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PREFACE

When the present volume was first contemplated some five years ago it was
primarily meant to be a second edition of the author’s Topology (1930, Volume
XTI of the American Mathematical Society Colloquium Series). It soon became
evident however that the subject had moved too rapidly for a mere revised
edition, and that a completely new book would have to be written. With the
consent of the Colloquium Committee the task was undertaken by the author
and resulted in the present work. Its basic topic, often referred to as “Combi-
natorial Topology,” is in substance the theory of complexes and its applications.
Many factors have contributed to a great increase in the role of algebra in this
subject. For this reason it is more appropriately described as “Algebraic
Topology,” and this explains the title of the volume.

The purely topological (non-algebraic) part has been concentrated in the
first chapter, and all the necessary group-theoretic material in the second,
thus resulting in a great economy and simplification in the treatment of many
questions, notably duality and intersections. The next three chapters deal
with the theory of complexes proper. The basic type selected is A. W. Tucker’s
modified in that the elements may also take negative dimensions. As is well
known one of the important recent advances has been the extension to complexes
of the duality and intersection properties of manifolds. This may be ac-
complished by means of special “dual”’ cycles (the “pseudocycles” of Topology,
Chapter VI), or by a special dual complex as done by Tucker (companion
algebraic development by W. Mayer), or else again with Alexander and Whitney
without new elements but with a new boundary operator for the chains. By
utilizing negative dimensions it has been possible to associate with each complex
X a dual complex X* such that the relation between the two is wholly sym-
metrical. As a consequence the ‘“‘co-theory” of X (Whitney’s terminology)
appears as the ordinary theory of X*, and all the duality and intersection
properties are obtained by combining the X, X* relationship with group-duality
and group-multiplication in the sense of Pontrjagin. There .emerges thus a
theory of complexes of purely algebraic nature, with manifolds relegated to the
second plane.

The homology theory of topological spaces is taken up in Chapter VII, the
necessary limiting processes constituting the theory of nets and webs being dealt
with in Chapter VI. We have chosen as our basic theory the Cech homology
theory and in substance reduced to it the other known theories thus unifying a
domain which has definitely stood in need of it for some time.

The relative concepts which played such an important role in the previous
volume have not been neglected in the present. They appear chiefly in the
guise of certain binary dissections which run right through complexes, nets and
topological spaces, and are at the root of the mechanism of webs.
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The last chapter contains the applications to polyhedra and certain related
questions, notably a very concise and very general treatment of fixed points.
The book concludes with an appendix by Eilenberg and MacLane on the homol-
ogy groups of infinite complexes and another by Paul Smith on his theory of
fixed points of periodic transformations.

Owing to limitations of time and space it has not been possible to take up
the applications of algebraic topology. However with Marston Morse’s Calculus
of Variations in the Large (1934, Volume XVIII of the Colloquium Series),
W. V. D. Hodge’s The Theory and Applications of Harmonic Integrals (1941,
Cambridge University Press), and a forthcoming volume by Hassler Whitney
on sphere spaces, the reader interested in the applications will readily satisfy
his curiosity.

Certain deviations from standard usage have been adopted in the text and
should be kept in mind. Thus “compact” replaces ‘“bicompact,” and ‘“‘com-
plex” replaces “abstract complex.” (A nomenclature of complexes and mani-
folds is given at the end of Chapter VIIL.) All groups are topological (the
topology may be discrete) ; unless otherwise stated homomorphisms are supposed
to be continuous and group-isomorphisms topological, exceptions being indi-
cated by the mention ““in the algebraic sense.” For vector spaces over a field
there is a special set of conventions indicated in Chapter II (22.2).

The literature in topology has grown to such proportions that it has been
impossible to provide more than a scanty bibliography. References are given
by the author’s name followed by an appropriate letter in square brackets.
Those to the present volume are of the form (IV, 16.3), where IV stands for
Chapter IV and 16.3 for the numbering in the chapter.

It has been my good fortune to have obtained sympathetic cooperation and
advice from many sources. In preparation of the manuscript invaluable as-
sistance was received from Samuel Eilenberg, W. W. Flexner, N. E. Steenrod,
John Tukey, and as regards the second chapter, Claude Chevalley practically
acted as a collaborator. Parts of the manuscript in more or less final form or
important parts of the proofs were carefully read by Hubert Arnold, E. G. Begle,
Paco Lagerstrom, Saunders MacLane, Moses Richardson, Seymour Sherman,
J. D. Tamarkin, A. D. Wallace and Hassler Whitney. To one and all it isa
great pleasure to express here my appreciation and thanks.

S. LEFSCHETZ

PrinceTON, N. J.
October, 1941



CHAPTER 1
INTRODUCTION TO GENERAL TOPOLOGY

The scope of the chapter is sufficiently clear from its title. Particular at-
tention has been paid to compactness and there is also a thoroughgoing treat-
ment of inverse mapping systems which come strongly to the fore in (II), and
also in (VI, VII) in connection with the homology theory of topological spaces.

General references: The standard treatises and in addition: Alexandroff-
Urysohn [a], Cech [g], Steenrod [a], Tukey [T], Wallace [a], Wallman [a].

§1. PRIMITIVE CONCEPTS

1. We introduce a few formal abbreviations:

A = B means “A implies B”’;

A e B means “A is equivalent to B”;

A = B means “A is isomorphic with B.”

We shall assume that the reader is familiar with the basic concepts of point
sets. The null-set is designated by @ and if X is a set, X = @ signifies that X
isempty. If X, Y are sets we write X C Y or Y D X for: “every element of X
is an element of Y”, or: “X is a subset of Y”’. We shall also say of three sets
X, Y, Z that “Y is between X and Z” whenever X CY CZorelse X DY D Z.

The statement “zx is an element of the set X is written symbolically z ¢ X
or X 5 2. Frequently the different elements of a set X are denoted by the same

letter z with additional affixes as: x? , Zan , - - - , OF say by z, with complementary
affixes as: ., --- . In that case the set will sometimes be designated by
{z}, {%a}, --- . We shall also write X = {z}, X = {x.}, --- whenever it is

the intention to designate the different elements in the manner just stated.
However, the symbol { } is too convenient to be reserved strictly for the
preceding usage; deviations will be allowed but their meaning will generally
be clear from the context.

Let {X,} be a collection of sets which may or may not be distinct. Let par-
ticularly X, = {z,}. Then the set of all the z, for all a is called the union of
the X, and designated by U,X,. In this and similar symbols the subscript a
will often be omitted, and we shall write U in place of U,, wherever the “a’”
is clear from the context. Similarly the set of all the elements which are in
every X, (i.e., common to all the X,) is called the intersection of the X, and
denoted by N.X,. If the number of X, is finite, say consisting of the collection
X,, ++-, X, (r an integer), we also designate the union and intersection, respec-
tively, by Xju Xou---v X, and X;0 Xon ---n X,

Given two sets X, Y, the set of all the elements of X which are not in ¥ is
called the complement of Y in X, also the difference of X and Y, and is denoted
by X — Y.
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If P is a property and X = {z}, the totality of all the elements = which
satisfy P is denoted by {z |z has the property P}. As an example of this
notation, if {2} is the set of all real numbers, the set of all those between 0, 1
is denoted by {z|0 < z < 1}.

Negation of any relation shall be indicated by a bar drawn through its symbol
asin Y ¢ X (Y not contained in X), ¥ = X (Y different from X), etc.

The sets X, are said to be disjoint whenever any two are disjoint (X, n X = @,
for a = b).

2. Transformations or functions. Let X = {z}, Y = {y} be two sets and
let G be a subset of the set whose elements are the ordered pairs (z, y). We
suppose that G has the following property: every element x is found in precisely
one pair (z, y.) ¢ G. There results then an assignment to each z ¢ X of a definite
element 3, ¢ Y and this assignment is known as a transformation of X into Y
or function on X to Y. The statement “7T is a transformation of X into ¥
will be generally written in one of the symbolic forms: “T : X — Y,” “T :
T —y,,’ “z — y, defines T.” The set X is the range of T and y; is the value
of T at z. The element y. is frequently designated by Tz, and called the
transform or tmage of x under T. The set Y’ of all the values Tz for all z ¢ X
is a subset of Y called the transform or image of X under 7T, and we write Y’ =
TX. It may happen that Y’ = Y, i.e, that every element y occurs in some
pair (z, ) € G (every y is a Tz), in which case T is said to transform X onfo Y.

The transformation T is said to be univalent whenever z # =’ = Tx = Tz'.
It is said to be one-one when it is both univalent and a transformation “onto.”
That is to say, every y occurs in one and only one pair (z, ¥).

The set G of the pairs (z, y) serving to define 7' is known as the graph of T.

ExaMPLE. zisareal variableand X = Y = {z},while T:z2 — 22 Then X' = TX » X,
so T is a transformation of X into X but not onfto X. Suppose now the same situation
except that z is a complex variable. This time T is a transformation of X onto X. -

Let X, Y, T be as before and let Z C X. Then if z ¢ Z the assignment of
Tz to z defines a transformation Ti: Z — Y denoted by T'| Z. We also say
that 7' is an extension of T | Z to X.

(2.1) Multi-valued transformations. Let the sets X, Y, G be as before, except
that this time @ is not subjected to any restrictions. The elements y in any
pair (z, y) ¢ @ in which z occurs make up a set ¥, C Y, which may be ¢ (an
automatic subset of every set). The assignment T to any z of the set Y, is
called a multi-valued transformation of X into Y. The terms “value, image,
transform” and designations “Tz, TX,” are carried over to multi-valued trans-
formations. If it is known that every Tz consists of n elements, T is sometimes
said to be n-valued. The earlier transformations correspond to n = 1, and are
sometimes designated as single-valued.

A multi-valued transformation X — Y may be considered as a (single-valued)
transformation of X into the set Y’ of all the subsets of Y.

ExampLE. If X is the set of all complex numbers then z — zV" is a multi-valued trans-
formation X — X, the values Y. being sets of n complex numbers.
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(2.2) Indexed system of sets. A multi-valued transformation 7:X — Y,
with Tz = Y., is also called a system of sets indexed by X, or more simply an
indexed system, and denoted by {Y,}. It may be said that this designation
will be used chiefly whenever X plays a minor role. As an example of an
indexed system we may mention set sequences. We have then X = {1,2, ---,
n, - - -}, and the set sequence is here a system {Y,} indexed by {n}. Whenever
every Y, is a single point the set sequence becomes a point sequence or more
simply a sequence.

(2.3) Inverse transformations, one-one transformations. Let T:X — Y
be single-valued or multi-valued, and set X, = {z| Tz > y}. Then y — X,
defines a multi-valued transformation known as the inverse of T and denoted
by T~'. Thus if z is a complex variable then T : z — z" is a transformation
X — X whose inverse is T~' : z — z'/", already considered above.

If both T and T~ are single-valued T is one-one. In terms of the set G
the transformation 7' is one-one whenever every z and every y each occur in
a single pair (z, y) € G.

(2.4) Identification. Let R be a relation of equivalence between the elements
of a set X = {z} and let the resulting equivalence classes be taken as elements
of anew-set ¥ = {y}. The set Y is said to be obtained from X by identifica-
tion of the elements in each class y.

There is an obvious connection between ‘‘identification” and “‘transforma-
tion.” Indeed if we define 7' by Tz = the class y s z then T is a transformation
X —Y. Conversely, if T is a transformation X — Y and we define the relation
R by “z and 2z’ are in the relation R whenever z and z’ are elements of the same
set T 'y,” then R is a relation of equivalence and Y is derived from X by identi-
fication of the elements in each class.

ExampLEs. (2.5) A “book” may be obtained from a collection of rectangles {R.} by
identification of points on a set of edges {E.}, one in cach rectangle. Each equivalence
class consists of the points at a specified distance from one vertex in each E, or of a sin-
gle point not on an E, .

(2.6) Let X consist of a circular region with its boundary circumference Z and let the
relation R be defined as follows: each interior point is in the relation R with itself and itself
alone; two end points z, z’ of the same diameter are in the relation R with one another and
with no other points. The resulting identification yields the projective plane. Similarly
the Euclidean set z7 + --- + 22 < 1 gives rise to projective n-space.

(2.7) Imbedding. Let T be a univalent transformation X — Y and let X’ =
TX. Then the process of replacing ¥ by (Y — X’) v X is known as imbed-
ding X in Y.

3. Cartesian products.

(3.1) DerFiNITION. Let {X,} be a system of sets indexed by A = {a}, with
X, = {xzs}. The cartesian product, or merely product of the X, ts the set of
all the single-valued functions £(a) on A to UX, such that £(a) € X, for every a.
The product is denoted by PX, oralsoby X; X --+ X X, when A = (1,2, ---,n}.
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If the sets X, are merely the same set X repeated we also write the product as a
power: X*.

ExampLes. (3.2) Take two disjoint sets X1 = [z1}, X2 = (z:}. Then X, X X, isin
ane-one correspondence with the collection of all the pairs (z, , 1), : e Xi . Similarly if
Xi={z:},i=1,2, ---, n,are disjoint sets then X; X --+ X X, is the collection of all the
sets (y, -+, 2,), zi e Xs . '

(33) Let X, = X; = X = (z}. Then the product X X X, also written X?, is in one-one

~ correspondence with the set of all ordered pairs (z’,2'’),z’and 2’ ¢ X. Here then (z’,2"") =
(', ') when and only when 2’ = z'’. Similarly X X :-- X X (r factors), written also X,
is in one-one correspondence with the set of all ordered r-uples (zV, .- , ) of elements
of X. .

(3.4) Application to functions. By a function f on the sets X, , or of the variables z, ,

to a set ¥, is meant a function on PX, to Y. If there are only a finite number of z, , say

Zy, -, %, fis often designated by f(z,, --- , zr).

(3.5)- Graphs. Let X, Y designate the sets of points z, ¥ on two cartesian axes z’ O z,
y’ O y in an Euclidean plane . Then the points of = are in one-one correspondence with
the pairs of coordinates z, y, i.e., with the elements of X X ¥. With a function f on X
to Y there is associated the set @ of all points (z, f(z)), in which we recognize the graph of f
in the sense of (2).

By interchanging z, y and X, Y throughout, G may be viewed as the graph of f~1. If f
is single-valued every vertical meets G in a single point.

This simple configuration is so effective that its terminology has been increasingly
borrowed. Explicitly, given the product PX, and an element z in the product, we call
projection of z on X, , or ath coordinate of z, its value z(a) at a. In the case of a product
of two factors X X Y, we call z and y the horizontal and vertical projections of the point
(z, y) of the product. The horizontal, vertical, ath projection of a set in X X ¥ or PX,
is the aggregate of those of its elements.

(83.6) Other products. Interesting generalizations of the cartesian product may be ob-
tained. For example, we may take as elements all the unordered pairs (z’, 2’’) of elements
of X, thus obtaining the symmetric product of X by itself. Similarly the unordered sets
of r elements give the symmetric product of X by itself r times.

4. Partially ordered and directed systems. A set A is said to be partially
ordered or merely ordered, if certain pairs of elements (a, b) of A satisfy an
ordering relation denoted by a < b and subjected to the sole condition of transi-
tivity:a < band b < c=>a < c. Instead of @ < b we also write b > a. The
ordering is said to be: reflexive if @ < a for every a ¢ A, proper if a < a’ and
a' < a—>a = a'. Theset 4 is said to be simply ordered whenever every pair
of elements a, b are ordered: one of ¢ < b or b < a or both must hold.

Let A be ordered by <. Then A is said to be directed by > [ by <] when-
ever given any two elements a, b of A there exists a third ¢ such that ¢ > a
andc¢ > b[c < eand ¢ < b]. We also write accordingly 4 = {a; >} [4 =
{a; <}].

ExampLEs. (4.1) A is the set of all real numbers and a < be+» a < b. This set is simply
ordered and directed both by < and >.

(4.2) A is the Euclidean plane referred to the coordinates (z, y) and (z, y) < (z/, ¥')
means that z = z’, y < y’. This set is ordered but not simply ordered and not directed.

(4.3) A consists of all the subsets of a given set E and a < b «» ¢ C b. This system
is directed by > and not simply ordered. Its ordering will occur frequently and is some-
times called ordering by inclusion.
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A subset A’ of a directed set A = {a; >} [= {a; <}] is said to be cofinal
[coinitial] in A whenever for every a ¢ A there is an a’ ¢ A’ such that a < o’
[@ > @’]. Thusif A = {a.} is a monotone numerical sequence, then any sub-
sequence A’ is cofinal in A. In point of fact, cofinal systems play in many
respects a role analogous to that of subsequences.

In a partially ordered system A the subset A’ is said to have a, for an upper
[lower] bound whenever a < ay [a > ao] for every a ¢ A’. The element a, is
said to be maximal for A if @ > ay = ap > a. If the ordering is proper then
this definition specializes to the usual one: ay is maximal if no @ = ao is such
that ¢ > a.

(4.4) If {\; >} s a countable directed system, either it contains a maximal
element or it contains a cofinal simply ordered sequence.

Let {A}] = {M, Az, ---}. Choose \; = Ay, and choose An 50 that A, > Aa,
A—1and Aoy 3+ As. If such a choice is impossible at the nth step, then A,
is a maximal element. If the choice can always be carried out, then {\,}
is a sequence cofinal in {A}.

5. Zorn’s theorem. We now introduce a theorem which will be used in a
pumber of proofs. It is logically equivalent to the well-ordering postulate,
but in a form which can be used to replace arguments based on well-ordering,
particularly transfinite induction, by a simpler procedure.

We give three statements of the theorem, which are easily proved equivalent.

(5.1) TaEorREM OF ZORN. If in a partially ordered system A each simply
ordered subset has an upper bound in the system, then there exists at least one
mazximal element a € A, with a > a for a preassigned ao.

(a) A property P of sets is said to have finite character if whenever it holds for every finite
subset of a set X it also holds for X itself, and conversely.

(b) If a property P of some subsets of a set X has finite character then there exists at least
one subset Y of X with property P such that any subset containing Y which has property P
18 equal to Y.

(¢) Every partially ordered system contains at least one mazimal simply ordered subset;
that is, a subset B which cannot be extended in stmple order by an element greater than or less
than all elements of B. ’

This last form of the theorem is perhaps most intuitive; but (b) brings out more clearly
the basis for the proofs making use of Zorn’s theorem, since the properties involved usually
are first defined for finite subsets of some set and then extended.

In the formulation (a) and for the subsets of a given set ordered by inclusion the theorem
was given by R. L. Moore [M, 84] but the first general formulation, and particularly its
usage as a substitute for transfinite induction are due to Zorn.

§2. TOPOLOGICAL SPACES

6. We shall understand by topological space R an aggregate of elements, the
points of R, and an aggregate U of subsets, the open sets of R, which satisfy
the following axioms: - :

OS1. The null-set and R itself are open.

08S2. The union of any number of open sets is open.
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083. The intersection of two (and hence of any finite number of) open sets is open.

Although a space, as we have defined the concept, is made up of points, the
points themselves will not be used in a major way until (§6) is reached.

(6.1) Open base. An open base, or merely a base, for R is an aggregate { W}
of open sets (#0) of % such that every open set of R is a union of these basic open
sets. The empty set is understood to be a union of an empty aggregate of sets.

If we wish to make a set R into a space by choosing an aggregate {W,} of
its subsets as a base, we will need

(6.2) {W,]} is a base for a topological space if and only if: (a) R is a union of
W.'s; (b) the intersection of every two Wa's is a union of Wa's. ,

The necessity of these conditions is clear from OS123. If B is a union of
WJ's, then OS1 will be satisfied. OS2 is automatically satisfied. The inter-
section of two unions of W.'s is the union of intersections of pairs of W,’s;
hence if the intersections of pairs of W.'s are unions of W.,’s, then the inter-
section of two unions of W,'s is a union of W,’s and OS3 holds.

In the applications it is more convenient to replace (6.2) by the equivalent
condition:

(6.3) {W,} is a base whenever: (a) every point x is in some Wa; (b) if x ¢ W,
n Wy there is a W, such that x e W. C Waon W, .

Two bases {W.}, {W3} are said to be equivalent if they are bases for the
same topological space. The condition for this is that every W, is a union of
sets Wy , and conversely. Or more conveniently in terms of points: if z ¢ W,
there is a W, such that z « W C W, and likewise with W, , W, interchanged.

(6.4) Subbase. An aggregate {W,} of open sets of % such that their finite
intersections constitute a base is known as a subbase for R. If a space has a
subbase it is necessarily topological.

(6.5) Base and subbase at a point. Let z be a point of R. An aggregate
{W.} of open sets, all containing z, is a base at z, whenever if U is any open set
containing x there is a set W, such that z ¢ W, C U. An aggregate {Wa} isa
subbase at r whenever the finite intersections of its sets constitute a base at z.

(6.8) Countable bases. The presence of countable bases is often an important
property of a space. In this connection we must mention the two well known
axioms due to Hausdorfi: ‘

FIRST COUNTABILITY AXIOM. There is a couniable base at each point of R.
SECOND COUNTABILITY AXIOM. The space R has a countable base.

Clearly the second implies the first.
In connection with countable bases we have also the classical:

(6.7) TeEOREM OF LINDELGF. If R has a countable base and V = uv,,
where the V., are open sels, then there is a countable subcollection {Va,} of {Va}
such that V. = UV,
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Let {W.,} be a countable base. Every V, is a union of sets W,. The totahty
of the sets W, which are contained in some V, is thus a subcollection (W }
of {W, } and so necessarily countable. We have then V = UW,. Now for
each W, there is a :

Vo, D W
and clearly {V,,} behaves as required.

From the theorem we deduce

(6.8) If R has a countable base {W,} then every base {V,} contains a countable
subaggregate {Va,} which is already a base.

By the theorem just proved out of the sets ¥, whose union is W, there may
be selected a countable subcollection {V.,,,} whose union is again W,. There-
fore {V,,} (all p, q) is a countable base.

7. Closed sets. The complement F = ® — U of an open set is known as a
closed set. The properties of closed sets are the duals of those of open sets;
explicitly, the duals of OS123 are:

CS1. % and @ are closed.

CS2. Any interesection of closed sets is closed.

CS3. The union of two (and hence of a finite number of) closed sets is closed.

Conversely, if we had the closed sets satisfying CS123 and defined the open
sets as the complements of closed sets, then the open sets would satisfy 0S123.

(7.1) Closed base. An aggregate {F,} of closed sets of % is a closed base
whenever every closed set is an intersection of basic closed sets. Clearly:

(7.2) {Fa} s a closed base for R if and only if (R — F.} is an open base for
the space.

8. Transformations between spaces. A single- or multi-valued transforma-
tion T is called open [closed]if it takes open sets of 9% onto open sets of T % [closed
sets of ¢ onto closed sets of T R]. Since the image of a union is the union of
the images we have

(8.1) If {Us} is a base for R, then a transformation T of R onto S is open if

and only if each TU, is open in &.

A continuous transformation or mapping is a transformation T, whose inverse
T is open. An argument similar to that for (8.1) yields

(8.2) If {V.} is a subbase for S, then a transformation T of R into S is con-
tinuous if and only if each T~'V, is open in R.

If both T and T~ are single-valued and continuous, then T is called a topo-
logical transformation or a homeomorphism. Clearly:

(8.3) A one-one transformation T is topological if and only if both T and T™
are open.

(8.4) A transformation of R into S is continuous if and only if its inverse
s closed.

A formal description of topology may now be given:
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(8.5) DeriNiTIONS. A topological property of a topological space R 18 a prop-
erty of R which remains invarant under topological transformations. Topology
is the study of the topological properties of topological spaces.

ExamprLes. (8.6) A rigid plane motion is a topological transformation. A folding over
of the plane is a continuous transformation but it is not topological.

(8.7) Topological equivalence. The relation expressing that one space is the
topological transform of another is evidently an equivalence, and is called
topological equivalence.

9. Some examples of topological spaces.
(9.1) Ewuclidean spaces. Consider the set X of all the ordered sets of n real numbers
{Zy, -++ , 2.}. The subsets of X defined by inequalities

a; < z; < b, 1=1,2,:,n,

are xnown as n-intervals, written I*, or merely intervals when n = 1. Since {I*} is imme.
diately seen to verify (6.2) it may be chosen as a base in a topology for X*. The resulting
topological space, or any other topologically equivalent, is known as an Euclidean n-space,
written §», also as a real line for n = 1. The open sets of E* are sometimes called regions.

Strictly speaking ‘“‘Euclidean n-space’” should be applied only to certain metric spaces
described more accurately in (44.1). However, in this and other similar instances it will
be generally more convenient to enlarge the meaning of a well known term in the above
manner, rather than to have recourse to a more involved terminology.

Let U be the base just defined for € and let B be the set of the rational n-intervals, i.e.,
corresponding to the a;, b; all rational. If z ¢ I*, there is an element of B between z
and I*; hence every I is a union of sets of 8. Moreover every element of Bisan I*. There-
fore ¥ may serve as a base for §*. In other words € has a countable base namely B.

(9.2) Let R be any point set and let the open sets be defined as all the subsets of R so
that the points themselves are open. The verification of the axioms OS123 is now trivial.
The topology thus affixed to R is known as the discrete topology. Its chief function is to
make statements for topological spaces valid for arbitrary point sets, it being always
understood when this is done that the discrete topology is assigned to the set.

(9.3) Let R be a set ordered by <. Define as an open set any subset U such that z ¢ U
andz <z’ =>z’ ¢U. Then the sets U verify OS123. In fact OS3 is fulfilled in the stronger
form:

083'. Any intersection of open sets is open.

9 is known as an ordered space. Let a set F have the property that z ¢ F and 2z’ <z =>
z' ¢ F. Then % — F = U is open, and so F is closed. Conversely, if F is closed it has
the property just considered. From this follows that the closed sets of R satisfy the same
azxtoms OS123 as the open sets of R. Noteworthy examples of ordered spaces are the com-
plexes (III, 1). In their theory however the fact that they are topological spaces is not
important.

(9.4) An interesting example of ordered space is the real line L: —» < £ < 4, con-
sidered as a set ordered by <. The open sets are then the ‘“rays’”’ a < z < », and the
closed sets the rays —» < z < a. This topology is manifestly different from the customary
topology of L as an @!.

10. Additional topological concepts. The new concepts to be introduced must

of course be expressed directly or indirectly in terms of the primitive elements,

the open sets.
(10.1) The ¢nterior of a set A, written Int A, is the open set which is the union
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of all the open sets C A (greatest open set contained in A). Ifz ¢ Int 4, z is
said to be an inierior point of A.

(10.2) The closure A of A is the closed set which is the intersection of all the
closed sets D A (least closed set containing A). ‘

(103) A isdense in R if A = R.

(10.4) The boundary BA of A is the intersection of the closures of A and
its complement: BA = A n R — A.

(10.5) A neighborhood of A is any open set containing A.

Many formal properties may be derived directly from the definitions. Thus:

(10.6) Interiors are open sets, and the interior of an open set U is U ilself:
Int U = U. Closures and boundaries are closed scts, and the closure of a closed
set F is F itself: F = F.

(10.7) A is dense in R > A n U, = @ for every set U, of a base {U.}.

Noteworthy and readily proved properties of the closure are:

(10.8a) ACA,
(10.8b) 9 =9,
(10.8c) A=A,
(10.8d) AuB=AvuB.

It may be shown that if we take (10.8 abed) as axioms for a closure operator
and define a set F as closed by: F = F (10.6), then we obtain a collection {F}
satisfying' CS123. Thus following F. Riesz and Kuratowski, one may describe
topological spaces in terms of a suitably restricted closure operator. -
Additional properties of the closure needed later will now be considered.

(10.9) NA,cN4, IntU4A, DU Int 4,
(10.10) R — A =1Int (R — A).

This last property may also be expressed as: the complement of A is the union
of all the open sets which do not meet A. It leads to the following important
property (the only one of the present set where “points” are mentioned):

(10.11) The closure A is the set of all the points x such that every neighborhood
of x meets A.

For if z ¢ A, no neighborhood U of z can be in ® — A and so every such
neighborhood meets A. On the other hand if this last property holds then
z ¢ R — A, since otherwise 8 — A would be a neighborhood of z disjoint from
A. Therefore z ¢ A.

(10.12) Let R, © be topological spaces and T a mapping R — ©. Then of
A 1is any subset of R we have T(A) C TA.

For T"X(TA) is closed and D A, hence T"'(TA) D A which yields at once
(10.12).

11. Topologization of subsets. Let A be any subset of the space R and let
{U.}, {F.} be the aggregates of open sets and closed sets of ;. We see at
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once that any of the properties OS: which hold for {U.} also hold for {4 a UL},
provided only that we replace R by A in their statement. The same is true for
{F.}, CSi, and {4 n F.}. This leads to adopting throughout the present
work the rule '

(11.1) PRINCIPLE OF RELATIVIZATION. Any subset A of a topological space
R s turned into a topological space b : choosing as its open sets the iniersections
with A of the open sets of R. In this statement “open sets” may be replaced by
“closed sets.”

(11.2) Exampre. Under the principle of relativization the subsets of any Euclidean
space are topological spaces.

Observe that B might well be closed in A but not closed in ®. For example, let L be
the real line. If A is the interval 0 < z < 1, and B the set 0 < z = 1/2, then B is closed
in A but notin L.

(11.3) The closure in A of a subset of A is the intersection with A of its closure
in R.

(11.4) Application. Let T be a mapping R — S andlet A CR. Then T | A
is a mapping of A onto a subset B of &, for T | A is continuous in the relative
topologies. In particular T is a mapping of & onto its image TR.

12. Topological products. Let {.} be a collection of topological spaces, and
let {U.. 1} be the aggregate of open sets of .. We have already defined the
set-product PR,. We now agree to topologize it by choosing as a base the sets
V = PU,, 1 , where Us, 1) = Ra except for a finite set of a’s depending on V.
These sets might well be called “basic prisms.”” It is easily seen that (6.2) is
fulfilled and so the product is a topological space R. ’

We notice that {U, X Py} is a subbase for R.

(12.1) The projection 7. : R — Ra ts an open mapping. More generally if
{a} = {bju (¢}, R = PRy, R = PR, s0 that R = R’ X R, then the pro-
jection = : R — R’ is an open mapping.

It is only necessary to consider the projection m, . If U, is open in R, then
Vo= {z|2,eUs} = m; U, is openin ER} 80 m, is a mapping. Since 7.V, = U,,
m. is open by (8.1).

The following proposition is expressed in the form in which it usually occurs:

(12.2) Let © = {y} be a topological space and let fo(y) be a continuous func-
tion on & to Ra. If we set x = {fa(y)} = @(y), then o(y) is likewise continuous
on &. We may also say that ¢ s a mapping: © — R.

Since z, = f.(y) is continuous f; U, = ¢ 'V, is epen and since {V,} is a
subbase for R, ¢ is continuous (8.2).

(12.3) Application to the continuity of functions of several variables. To simplify
magtters consider a function of two variables f(z, ) with ranges i, i’ and values
in a space ©. By definition f is merely a function of the point (z, z') of ® X
i.e., with range ® X ', with values in ©; and f is said to be continuous in both
z, o', when it is a continuous mapping %t X %' — &. Let {U}, {U’} be the
open sets of &, ®’. Since {U X U’} is a base for ® X %’ a n. a. s. c. for the
function f to be continuous is that if f(zo , z,) = 3o and V is any neighborhood
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of yo then there exists a neighborhood U X U’ of (2o, zo) € ® X R’ such that
the values of fon U X U’ are in V. This is the well known condition: There
exist neighborhoods U, U’ of x,, x, such that z ¢ U, ' ¢ U’ = f(z, z’) e V.
The extension to any number of variables is obvious.

(12.4) The graph G of a mapping T: R — R’ 1s topologically equivalent to R.
More precisely if = is the projection R X R’ — R then = |G is a topological
mapping G — R.

It is already known that = | G is one-one, and it is continuous since = is con-
tinuous. Therefore we only need to prove = | G open. If {U}, {U’} are the
open sets of R, R’ then {U X R’} and {R X U’} together form a subbase for
R X R'. Hence {Gn U X R’} and {G@ an R X U’} together form a subbase
for the subset G. Now w(Ga U X®R') = U, #(GaR X U) = TV’ =
an open set of ®, since T is continuous. Since » | G maps the elements of a
subbase of G’ onto open sets it is open, and (12.4) follows.

(12.5) If R = PR,y Ao CR., A = PA,, then A = PA,. Or, explicitly:
the closure of a product is the product of the closures.

Since 4 is a product in order that x = {z,} ¢ 4 an. a.s. c. is that every neigh-
borhood of z meet A, and hence that every set of the subbase {Us X Pius}
(U, are the open sets of R,) containing z meet A. Hence the n.a.s.c. is: for
every a every neighborhood of z, must meet A,, or z, ¢ 4, for every a, and
this is (12.5).

If the A, are closed then A, = A,, and hence A = A or:

(12.6) A product of closed sets is a closed set.

This may also be proved directly as follows. If the A, are closed then 4 =
NG, G = As X P9 Since ® — Go = (R, — 4.) X PRsis open, G,
is closed and so is A.

(12.7) An Euclidean n-space €" is the product of n real lines: L; X « -+ X L,.
If we replace in this product one factor say L; by an interval X of L;, there is
obtained a strip “perpendicular’’ to L;, and the totality of these strips forms
a subbase. Thus in the Euclidean plane the horizontal and vertical strips
form a subbase.

(12.8) Parallelotopes, cells, spheres. We have already defined the interval
as a subset @ < 2 < b of the real line. Itsclosurea < « < b (a # b) is known
as a segment. Let A, ---, A, be intervals, and I; = X; the corresponding seg-
ments. The product P, is an n-interval I". The product P* = Pl is known
as an n-parallelotope. The set 8" = P" — I" = BP" is called a topological
(n — 1)-sphere. The topological zero-sphere consists of two points, the topo-
logical one-sphere of the perimeter of a rectangle.

The terms “parallelotope,” “sphere” are also applied to any sets topologically
equivalent to P", S™. However, a set topologically equivalent to I" is gen-
erally called an n-cell.

The number # for the n-parallelotope, n-cell or n-sphere is called its dimension.
For the present this designation is merely to be understood in a formal way.
Later (VIII, 15), we shall identify n with the topological dimension.
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Owing to their importance it is advisable to recognize parallelotopes, cells and
spheres even when they occur in a form unrelated to the products. Most models
may be deduced from:

(12.9) A bounded convexr region Q (region with bounded coordinates) in an
Euclidean n-space €" is an n-cell; its closure {} is an n~parallelotope and its boundary
BRisa topologwal (n — 1)-sphere.

Let z; be running coordinates for the space and choose for n-cell the set:
€:0 < z; <1 Takeapoint a on Qand a point agon Q,. Any ray A from a
meets the boundary 8Q in a single point p. Draw from ao a ray Ao parallel to A
and in the same direction, and let it meet BQ in py. Let T be the transforma-
tion whereby a point z, dividing aepo in a given ratio between 0 and 1 goes into
the point z dividing ap in the same ratio, while @y — a, po — p. T is manifestly
a topological transformation, and since TQy = Q, T8% = BQ, (12.9) follows.

ArpricatioN. Let En be referred to the coordinates z; . Then the Euclidean spherical

region
Z <1
is an n-cell. Its closure, the set

DIEHFB N

is an n-parallelotope. The boundary, the Euclidean (n — 1)-sphere, is a topological
(n — 1)-sphere. This is, of course, the justification for the term ‘‘sphere.”

(12.10) Let {l.} be a countable collection of segments. The product
= P, is known as the Hilbert parallelotope. If P“ is parametrized by
0 < z, < 1, then the “strips” defined by one condition of the form a, < z, < b, ,
0 <2, < by, a, <z, S 1, make up a subbase for P*.
Here again strictly speaking the Hilbert parallelotope as we have defined it,
is only a topological image of the set commonly designated by that name.

(12.11) Let X, Y denote, respectively, the segments 0 £ £ £ 1,0 £ y < 1 and let {Y,}
be a system indexed by X, where Y, = Y. Then PY, = YX is the set of all functions f
on X to Y. Let U, be an interval of Y, . Then the set V. = {f]| f(z) ¢ U.} is open in
YX and {V.} is a subbase for this space. The space thus obtained has many important
properties of great interest in analysis. For instance, the subset @ of ¥X which represents
the continuous functions on [0 — 1] to [0 — 1] is “very thinly spread’’ in YX,

The space YX is also interesting as a special case of what we shall call later (25.2) a
‘“‘compact parallelotope.”

13. Topological identification. We have seen (2.4) that a relation of equiva-
lence R between the elements of a set X yields a new set ¥ by identification of
the elements in each equivalence class y. We also have an associated trans-
formation T of X onto Y whereby Tz = y. Suppose that X is a topological
space and let Y be topologized by specifying V C Y to be open whenever
T7'V is open in X. Then OS123 are readily verified, and so Y is a topological
space. This space is said to be obtained from X by topological identification.
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Exampres. (13.1) The set deseribed as ‘‘projective plane’” in (2.6) receives by topo-
logical identification a definite topology and it is the set thus topologized which is referred
to henceforth as projective plane. Similarly for projective n-space.

(13.2) Let X = {z} be the real line and let the relation R be defined by the condition:
z and z’ are in the relation R whenever z = 2’ mod 1 (¢ — z’ is an integer). This is mani-
festly a relation of equivalence and topological identification yields the space Y referred
to as the real line mod 1, or also the circumference.

(13.3) Topological tmbedding. Let R contain a set S such that there is a
topological mapping t: @ — 8. If we replace every point z ¢ S by ¢~z both
in R and in its open sets, we obtain what is known as a topological mbedding or
tmmersing of © into R. It is an imbedding in the sense of (2.7) since it replaces
Rby (R — S)v &.

§3. AGGREGATES OF SETS. COVERINGS. DIMENSION

14. In view of the fundamental role of aggregates of sets and coverings it is
important to settle the nomenclature as rapidly as possible.

We shall be dealing with aggregates of subsets of a given space R. Let
A = {A,} be such an aggregate. The set {A.} of the closures of the 4, is
denoted by 9. Given a second collection B = {Bs} we shall write:

AuBorAVYB = the union of A and B;

AADB = {Aan Bs};

A X B = {A« X Bg};

A > B = every A, is in'some By ; we say also that U is a refinement of B or
refines B.

As a special case of A A B one of the collections, say A, may consist of a
single set A so that A A B is now {A n Bg}.

The order of U is the largest number p if one exists such that some p + 1 sets
of ¥ intersect; if p does not exist the order is said to be infinite.

The finiteness properties of the aggregates are important. We say that ¥ is:

point-finite whenever every point of R belongs to at most a finite number
of A, ; :

netghborhood-finite whenever every point of R has a neighborhood N which
meets at most a finite number of 4, ;

locally finite whenever every A, meets at most a finite number of 4. ;

finitely covered by B whenever A > B and every Bj contains at most a finite
number of 4. .

Notice that when %, B are point-finite or neighborhood-finite so is % v B

Two aggregates A = {A.}, B = {Bs} are said to be similar whenever there
may be established a one-one transformation 7: {a} — {8} such that
Aan--nAe # @ Bon - n B # @ The transformation ¥ — B
defined by A. — B:. is known also as a similitude.

By a covering of i is meant an aggregate A whose sets 4, have R for unicn:
Ud, = R (every point z belongs to an 4,). Ah open [closed] covering is a
covering by open [closed] sets.
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Let {%.} be a collection of coverings. We say that the subcollection {¥a}
is cofinal in {¥.} whenever every ¥, has an ¥ refinement.

Notice that a neighborhood-finite covering A may be characterized thus:
There exists an open covering each of whose sets meet at most a finite number
of sets of U.

15. Dimension. The general theory of dimension, of Menger and Urysohn,
fully developed for separable metric spaces, has not reached very far beyond
these spaces. An important reason is that several equivalent definitions, all
natural and which agree for separable metric spaces, seem to part company for
other, less simple, spaces. A full treatment of these questions is wholly outside
the scope of the present treatise, and they will be touched upon here and there
only in those phases of interest in algebraic topology. Let us say at all events,
that while in the early definition of Menger-Urysohn the “local” point of view
predominates, we shall adopt the definition, inspired by Lebesgue, in terms of
the order of coverings, as it is most closely related to our general purpose.

(15.1) DerFiniTioN. Let K = {2 ; >} be a class of coverings of a topological
space N, which is directed by refinement: A > A, «> Ay refines A, . For a given
N, consider all the W > U, , and let n, be the least order of all such Ax. The

K-dimension of R s sup n, .

Among the noteworthy classes K are: all the finite open or all the finite closed
coverings, all the point-finite, or neighborhood-finite open or closed coverings.
If R is topological then each of these has the property that %, A %, refines both
A, and %, and is in the class. Hence each may serve to define a dimension.
We have thus the dimensions by finite open or closed coverings, ---. The
most generally utilized is the first, and it is to this dimension by finite open
coverings that the term dimension, written dim %, is applied in the sequel.

Little is known regarding the mutual relations between the various dimensions
and there are few, if any, very general properties. A simple property is:

(156.2) If F is a closed sct in R then dim F < dim R.

‘Any finite open covering of F is of the form {F a U;}, where U = {U;} is a
finite collection of open sets of ®. Since {U;, R — F} is a finite covering of R,
if dim ® = n, the covering has a refinement ¥ = {V;} whose order does not
exceed n. The sets {F n V;} are then a refinement of the covering {F a U}
of F, whose order does not exceed n. Therefore dim F < n = dim R.

§4. CONNECTEDNESS
16. There is perhaps no simpler intuitive property of a space than con-

nectedness.

(16.1) DErINITION. A topological space R is said to be connected when it is not
the union of two non-void disjoint open sets.
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If R = Uvu V, where U and V are open and disjoint, then U and V are also
closed, so that R is the union of two disjoint closed sets, and conversely. There-
fore in the definition “open sets” may be replaced by “closed sets.” Moreover
the property of the definition is seen to be equivalent to the following: The null-
set and R itself are the only subsets of 9% which are both open and closed.

Let A, B be two subsets of % which satisfy the so-called Hausdorff-Lennes
separation condition:

(16.2) (AnB)u(AdaB)=4.
Explicitly neither set meets the closure of the other. We prove:

(16.3) THEOREM. A n.a.s.c. for the connectedness of a subset C of R is
that it admats of no decomposition C = A u B wherein A, B are not empty and
satisfy the Hausdorff-Lennes condition.

This characteristic property is frequently taken as the definition of con-
nectedness.

If C = A v B and (16.2) holds, then C n A € C — B C A, and hence 4 is
closed in C. Similarly B is closed in C, and hence B and A are open in C and C
is not connected.

If C is not connected, then ¢ = A v B, where A and B are disjoint, non-
empty, open and closed in C; hence (A a BYu (A n B) = CandnB)u
(AnCnB)=(AnB)u(AnB) =AnB =¢@. Thus the theorem is proved.

17. Connected aggregates. The definition of connectedness for aggregates
of sets rests upon the simple properties of certain finite collections, the chains.

Let us call topological chain or merely chain a finite collection 4 = A4,
Ay, -+, A, = A’ such that consecutive sets of the collection intersect. The
A; are the links of the chain. The chain is said to join A to A’, and if every
A; is member of a collection A = {A.}, the chain is said to join 4 to A’ in ¥,
and it is called an Y-chain. In particular when r = 1 then A = A’ and the
chain consists of one link 4.

Let us take a particular set A in % and let %; be the subaggregate of ¥ con-
sisting of all the sets which may be joined to A by a chain in . The aggre-
gate %, is called a component of A. The following properties are immediate:

(17.1) The set A belongs to the component Ay which it serves to determine.

(17.2) The component determined by any set of Uy is Ay tself.

In other words the components are independent of the individual sets which
serve to determine them and they depend on ¥ alone.

(17.3) Two components of U with a common set A coincide, or equivalently:
distinct components are disjoint.

(17.4) Each component of a locally finite aggregate is composed of a countable
number of sets.

For we may then obtain, say %, as follows: Take the sets A; (finite in number)
which meet 4; € i, then the sets A;; (finite in number) which meet the sets 4,
etc. The totality of the sets thus obtained is 2, and it is countable.
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An aggregate ¥ consisting of & single component is said to be connected.
It is characterized by the property that any two of its sets may be joined by
an A-chain. This corresponds in every way to the intuitive concept of con-
nectedness.

(17.5) Let ¥, B be two aggregates such that A > B and that every set of B con-
tains a set of A. Then if A is connected 8o is B.

Forlet B, B’ ¢ 8. By assumption we havein A twosets A CBand A’ C B'.
Since ¥ is connected there is a chain 4, 41, +-+, 4,, A’ joining A to A’ in .
Choose for each A; a set B; D A;. Then B, By, - -+, B,, B’ is a chain joining
B to B’ in 8. Therefore B is connected.

18. We now link up connectedness in sets and in aggregates by:

(18.1) A n.a.s.c. for connectedness of a space R is that all the coverings of any
one of the following families be connected: (a) all the open coverings; (b) all the
locally finite open coverings; (¢) all the finite open coverings; (d) a family cofinal
in any one of (a)-(c) (refinements as in 17.5).

The proof of (a, b, ¢) is the same, while combined with (17.5) they yield (d),
so we merely consider (a). If the condition holds all the open coverings are
connected. Therefore in every decomposition ® = U v V, U and V open,
necessarily U n V # @, or % is connected. Thus the condition is sufficient.
To prove necessity let % be connected and let the open covering U be dis-
connected. 11 has then at least two components. Let U be the open set
which is the union of all the elements of one of the components, and V the open
set which is the union of the remaining elements. We then have ® = Uu V,
U and V are open and U n V = @. But this is ruled out since % is connected.
This proves necessity and hence (18.1).

19. We shall utilize the result just proved to derive a certain number of
simple properties of connected sets. Unless otherwise stated they are supposed
to be subsets of a given topological space 9.

(19.1) A union of connected sets of which every pair intersect is itself connected
(18.1, 17.1).

(19.2) Whenever in a sequence of connected sets Ay, As, --- each meets the
next one, their union is connected.

For A;, Ayu A;, A1u Asu A;, - - - are all connected and contain A, . Hence
their union which is UA; is connected.

(19.8) If A is connected so is A.

Let U be a covering of A without sets not meeting A. Then 4 A U
is a covering of A. Since A A U > U these two aggregates are related as in
(17.5). It follows that in the sequence of sets and aggregates of sets: A, A A U,
U, A the connectedness of each implies that of the following one. This proves
(19.3).

(19.4) If A, B are connected so is A X B.

If (z, y), (21, y1) € A X B, both are in the union of the connected sets 4 X y,
z X B with the common point (x, ) and (19.4) follows.

(19.5) The image of a connected set under a mapping is connected.
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For let T map A continuously onto B and let I = {U’,} be an open covering
of B. Then {T'U.,} is an open covering of A and hence connected. Therefore
any two sets T"'U, and T7'U, may be joined by a chain of such sets. Since
T is single-valued, TT 'U, = U,, and so the images of the links of this chain
make up a U-chain joining U, to U, , hence U is connected and so is B.

20. From (19.1) follows that the union C(x) of all the connected sets con-
taining a given point z is connected. If y » z and y € C(x) then C(y) = C(x).
For otherwise their union would be a connected set containing = and ¢ C(x)
which contradicts the definition of C(x). Thus C(z) is uniquely defined by
any one of its points. The set C(x) is called a component of i. We have simi-
larly of course components of any subset of .

Since C(x) contains all the connected sets containing x and is itself connected,
it is the maximal connected set containing the point.

(20.1) The n-cell, n-paralleloiope, Hilbert parallelotope, n-sphere (n > 0),
are all connected. ‘

We first show that a segment I: 0 < ¢ < 1 is connected. For if it is not we
have I = A v B, where 4, B are closed and disjoint. Let 0 ¢ A and set a =
sup {¢t|teAd;t < B}. Since 4 is closed a ¢ A. Furthermore whatever y > 0
there is a point of B in the interval @, @ + 1. Hencea e B = B, and so 4, B
are not disjoint, contrary to assumption.

Since any two points of one of the sets in (20.1) can be joined by a “closed arc”
(one-parallelotope, topological image of a segment), by the result just proved
the sets are connected.

§56. COMPACT SPACES

21. It is not too much to say that all the spaces of chief interest in general
topology, and even more so in algebraic topology, are compact spaces or their
‘subsets. This is largely due to the fact that in dealing with compact spaces
one may frequently replace infinite collections by finite collections.

We emphasize at the outset the following important departures from hitherto accepted
terminology: (a) with Bourbaki we shall replace the term bicompact of Alexandroff-
Urysohn by the term compact; (b) what has been known hitherto as compact (following
Fréchet who introduced the concept) shall be called countably compact; (c¢) following
Alexandroff-Hopf, a compact metric space shall be called a compactum. It is important
that these modifications be kept in mind. The chief justification for adopting them, aside
from convenience, are first that ‘‘bicompact metric’”” = ‘‘compact metric’’ and that
‘“‘compact’’ (non-metric) spaces in the earlier sense occur but rarely.

22. (22.1) DeFINITION. A collection of sets ts said to have the finite inter-
section property whenever every finite subcollection has a non-empty intersection.

(22.2) The following properties of a topological space are equivalent.
P1. If {U,} is any open covering of R, then some finite subcollection of {U.,}

18 already a covering.
P2. If {F,} is a collection of closed sets with the finite intersection property,
then the intersection of the whole collection vs non-empty.
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For P2 is equivalent to: if the sets of {F.} have a void intersection the same
holds for some finite subcollection, and this is the dual of P1, hence equiva~
lent to P1.

On the strength of (22.2) we lay down the

(22.3) DerFINITION. A topological space satisying any one of P12 (and hence
both) s said to be compact.

Notice that the concept of compactness is primitive in the sense that it may
be expressed without reference to the other properties of open or closed sets.

In the applications it is convenient to have:

(22.4) If the U, in P1 are restricted to a particular open base, or the Fy in P2
lo a particular closed base, then we still have equivalent conditions.

Let in fact 8 = {V:} be any covering of R and suppose P1 to hold in the
restricted manner. Let U’ = {U,} be the set of the elements of the base which
are contained in any V.. Since every Vs is a union of elements of U, 1’ is also
a covering. By assumption it has a finite subcovering {U., , - - -, U.:,}. Each
U., is in some set Vs, of 8. Hence {V5,} is a finite subcovering of B and so
P1 holds. The treatment of P2 is wholly similar and is omitted.

(22.5) CompAacTNESS OF SUBSETS. A subset A of a topological space R is
compact when and only when one of the following two equivalent properties holds:
(a) of {U,} 1s any open covering of A by open sets of R then some finite sub-
collection of {U,} s already a covering; (b) if {F,} vs a collection of closed sets of R
such that {A n F,} has the finite intersection property, then the sets F, have a
non-empty intersection which meets A.

This is an immediate consequence of the principle of relativization (11.1).

23. (23.1) A closed subset F of a compact space R is also compact.

For a collection {F,} of closed subsets of F with the finiteintersection prop-
erty is also a similar collection for 9t itself, and so NF, > @, proving F compact.

(23.2) If a compact space R is mapped onto a subset A of a topological space
& then A 1is compact.

Let 7 be the mapping and {F,} a collection of closed sets of A with the finite
intersection property. Then {7 'F,} is a similar collection for . Hence

T—lFa # ¢

and therefore NF, = @, proving 4 compact.

(23.3) The union of a finite number of closed subsets of a space is compact if
and only if each subset 1s compact.

Let F = UF,. If F is compact, then, since each F, is a closed subset of F,
each F, is compact. If each F, is compact, consider any open covering of F;
each F, is covered by a finite number of its sets (22.5a) and hence F is covered
by a finite number of its sets. Thus P1 holds and F is compact.
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24. Products of compact spaces.

(24.1) TuEOREM. An arbitrary product of compact spaces is compact (Tycho-
noff; proof after Bourbaki).

Let % = PR\ where the R\ are compact. Given in R a family § = {F,}
of closed sets with the finite intersection property we must show that there is
a point common to all the F,.

By Zorn’s theorem § is contained in a family @ = {G:} of sets (not necessarily
closed) with the finite intersection property and maximal relatively to this
property. As a consequence: (a) any finite intersection of sets of @ is in @;
(b) a set meeting every set of @ is in ©.

Let m\ be the projection ® — R, and set & = {mG,}. Since G, is a family
of closed sets in R\ with the finite intersection property there is an z) common
to all its sets. Let z = {x\} and let N be any neighborhood of z. If {N,}
are the nelghborhoods of z, then {x;'N,} is a subbase at z, and so for some finite
set Ay, -+, M we have: zeN(m;Ny,) C N. Since z; ¢ m,Gs, Nx, meets
G . Hence mx; N, meets Gy, and so it is in ®. It follows that n(‘n, N)) €@,
hence N ¢®. Therefore N meets F, and consequently z e F, = F,. This
proves the theorem.

(24.2) If R, © are compact then every finite open covering ® = (W} of R X &
has a refinement U X B where 1 and B are finite open coverings of R and S.

Let-{U}, {V} be the open sets of R, S, so that {U >< vV} 1sa.ba.sefor9t X &.
For each (z, y)e R X Sselect a W 5 (z, y), then a U, X V, between (z,y) and
Wi. Thus {U. X V,},y fixed, is a covering of the compact set ® X , and S0
there is a finite subcovering {U‘ X Vil. IV, =NV then {U; X V)} is a
covering of ® X V, . Since {V,} is a covering of the compact set & it has a
finite subcovering B = {V,;}. Ifll; = {Ui}and U = W A --- A U, then
11 X B is readily shown to behave as asserted.

25. Applications.

(25.1) Segments are compact.

Let1: 0 < z = 1, be a segment. It has for base all the sets V of the follow-
ingtypes:0 Sz <a,a <z <b,b <z = 1, where a, b are rational and 0 < a,
b < 1. Therefore by (22.4) we merely need to show that a covering 8 by such
sets has a finite subcovering. Since the set of all the V’s is countable so is 8.
Let then 8 = {V,} and suppose that it has no finite subcovering. The sets
Wa.=1— (Viu ---uV,) are never empty. Since W,,; C W,, and each W,
is a finite set of disjoint segments, there may be selected among these segments
one, say l,, such that l,,; C I, throughout. It follows then from elementary
properties of the Dedekind cut that NI, @, and so it contains a point z. Since
z ¢ W, for every n, it is contained in no V, , which contradicts the fact that 8
is a covering and (25.1) follows.

(25.2) Let « be any cardinal number and | a segment. Then 1* is a compact
set known as ““compact parallelotope” (24.1, 25.1).
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(25.3) The n-parallelotope P" and the Hilbert parallelotope P° are compact.

(25.4) All spheres 8™ are compact.

For 8" is closed in P"**, and so (25.4) follows from (23.1) and (25.2).

(25.5) Any power C* of a circumference C is compact and s known as a ‘‘toroid”
and « 18 called the “dimension” of the toroid (24.1).

(25.6) Every closed and bounded subset of an Euclidean space @" is compact.

By “bounded subset of €’ we mean here a set A such that the coordinates
of its points are bounded. Since A is in some P*, and closed in P", (25.6)
follows from (25.3) and (23.1).

(25.7) Real projective spaces are compact.

For the set A of all points of &* which satisfy

s
is closed and bounded, and hence compact. Since a real projective n-space
is the image of A under a mapping it is likewise compact (23.2).
26. Compacting. This refers to the operation of imbedding topologically a
space in a compact space. The basic result is the

(26.1) TueorEM. Ewvery topological space R may be mapped topologically
onto a dense subset of a compact space & such that dim & = dim R (Wallman

[a]).

We will define the points, the closed sets and the open sets of &, and for
later purposes develop their properties somewhat beyond the immediate re-
quirements of the theorem. "

Notations. The points, open sets and closed sets of & are denoted by z, u, f,
and the same for @ by X, U, F.

The points of ©. Let ¢ denote the union of a closed set of R and of a finite
point set of !}. By a basic set is meant a collection ¢ = {¢,} with the finite
intersection property. By Zorn’s theorem £ is contained in a similar collection
which is maximal with respect to this property. Such a collection will be
called a maximal basic set (= m.b.s.). The points X of & are the m.b.s. and if
X = {¢a} then the ¢, are called the coordinates of X. Asin (24) the maximality
of X implies that: (a) every finite intersection of coordinates of X is a coordinate
of X; (b) every set ¢, and in particular, every set f meeting every coordinate
of X is also a coordinate.

Every z ¢ i is a set ¢, and so it is a coordinate of at least one maximal basic
set X = {p,}. Since X is a basic set  n ¢, # @, hence z € ¢, and Ny, = z.-
Suppose that z is a coordinate of X’ = {gs} % X. Then some ¢} ¢ X. Since
z € v, X may be augmented by ¢; without ceasing to be a basic set, which
contradicts the assumption that X is maximal. Therefore X’ = X. Thus:

(26.2) Every point x of N is a coordinate of a unique m.b.s. which ts written X (z).

If x # 2/ then x n *’ = @J, hence 2’ ¢ X and X(z') ¥ X(x). Therefore

(26.3) The transformation T: x — X(z) is univalent.
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Let X be a point which is not an X(z): X e & — TR. If ¢, ¢ X then ¢, =
faouziu---vux,. Since X = Tx;, none of the z; may belong to all the co-
ordinates of X. Therefore for each ¢ there is a ¢4, which does not contain z; .
Hence ¢» = Ng,, does not contain any x;. Now (eanesn e, #= @) = (fan osn 0, %
@) whatever the coordinate ¢, of X. Therefore f, n ¢, # @ and hence f, is a
coordinate of X also. Thus:

(26.4) If X ¢ TR has the coordinate o = fsu 11U -+ + - U T, , then the closed set f,
18 also a coordinate of X.

27. The closcd sets of ©. Let f be a closed set of i and &(f) the set of all
the points X with the coordinate f. We verify at once:

(27.1) @) =0, R =€, [#f ) =();

(27.2) (") = N&(f.)

whenever {f,} is finite;

(27.3) Fcf=ef) cof).
Less obvious is the relation

(27.4) ®(fuf) = ®(f) v o(f’).

Let fi = fu f’. Since fi D f, by (27.3): (f) C &(f1), and similarly &(f) C
®(f,). Therefore

(27.5) 8(f) v a(f’) Ce(fuf).

Suppose now X e ®(fi) — ®(f’). Since f, is a coordinate of X and f’ is not,
there is a finite intersection ¢ of coordinates of X which include f, , and such that
¢ does not meet f’. Since X is a maxinmal basic set, ¢ itself must be a coordinate
of X and so ¢ € fi — f' C f, hence X e ®(f). This proves (27.5) withthe in-
clusion reversed and (27.4) follows.

Referring to (6.2, 7.2) and by (27.1, 27.4) the collection {®(f)} may be
chosen as a closed base for &, turning it into a topological space. We shall
show that & is compact. Since {®(f)} is a base, we merely need to show that
if § = {®(f.)} has the finite intersection property then N&(f,) = #. Now by
(27.2) when § has the finite intersection property so has {f.}. That is to say,
{fu} is a basic set. It follows that there is a m.b.s. X with the f, as coordinates.
Thus X e ®(f.), N®(f.) # @, and S is compact.

The open sets of ©. Let u = R — fand set Qu) = & — ®(f) = an open set
of &. A point X is in 2(u) when and only when it does not have f as a co-
ordinate, or when and only when it has a coordinate ¢ C u. Since {®(f)} is a
closed base for &, {Q(u)} is an open base. From (27.1), - - -, (27.4) follows then
by dualization:

(27.6) QP =0, QR) =8, u#FueQu) #Qu);
27.7) o(Uu) = Uo(uy),

whenever {u,} is finite;
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(27.8) u Cu = Qu) Ceu);
(27.9) Qu a u') = Qu) n Q).

Further properties of the @(u) follow.

(27.10) If U = {w1, - - -, u.} ts a finite open covering of RN then QU) = {Q(u;)}
s one for & and in addition: (a) U < W = Q(U) < Q(WW); (b) order Q(U) = order U;
(c) us — Q(u;) defines a stmilitude U — Q(U).

The covering property is a consequence of (27.6) and (27.7), while (a), (b),
(c) follow from (27.6, ---, 27.9).

(27.11) Any finite open covering B of S has a finite refinement Q).

Since {Q(u)} is a base for & there is a refinement {Q(u1a)} = 2(U;) of B.
Since & is compact Q(U,) contains a finite subcovering Q(11) which refines B.

28. All the elements for the proof of the compacting theorem are now at
hand. We have already shown that & is compact and we have a univalent
transformation T: R — S. Let TR = R. If z ¢ u then X(x) = Tz has the
coordinate z in u, and so X(z) € Q(u). Conversely, X(z) ¢ Q(u) implies that
X (z) has a coordinate ¢ in u, and since z € ¢, likewise £ ¢ 4. Therefore z € u «»
X(x) € Q) n R. It follows that T induces a one-one transformation of the
elements of the base {u} for R into those of the base {Q(u) n R} for B. Conse-
quently T imbeds R topologically as a subset R of &.

Every u # @ contains at least one point z of & and so @(u) contains X(z) =
Tz ¢ R. Therefore @(u) meets B and @ — R contains no Q(u), hence no open
set since {Q(u)} is a base. It follows that © = R. Thus the imbedding is
dense.

Let finally dim R = n and let 8 be a finite open covering of &. By (27.11)
it has a finite refinement Q(11), where U is a finite open covering of . Since
dim R = n, U has a refinement IV of order not exceeding n, and Q(U') is a re-
finement of B of order likewise not exceeding n. Therefore dim & < n. This
completes the proof of the theorem.

29. Locally compact spaces. The compacting process just given, while very
general, usually provides a far more involved space than one would wish to
have. Consider, for example, the interval \: 0 < < 1, and let f, f* be two in-
finite convergent sequences tending towards 0 or 1, but having no common
terms. Each is the coordinate of a m.b.s., and the two m.b.s., say X, X’ thus
obtained must be distinet since f n f/ = @. Thus in the case under considera~
tion the space & of (26.1) is such that @ — R contains at least as many points
as there are disjoint sequences — 0, 1. On the other hand if C is a circumfer-
ence and y e C, \ is topologically equivalent to B = C — y, and so C is a com-
pacting space such that C — R is a point. This is a special case of a theorem
which we shall now prove. First a

(29.1) DErFINITION. A topological space R is said to be locally compact when-
ever every point & of R has a neighborhood N whose closure N is compact. Thus
the interval, the real line, indeed any Euclidean space, are locally compact but not
compact. They show that the locally compact class is very extensive.
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(29.2) A n.a.s.c. for R to be locally compact is the existence of an open base
whose elements have compact closures.

Sufficiency is obvious. Suppose R locally compact and let {U} be a base
and {V} the open sets with compact closures. Since U n V C V, we have
UnV CV, and hence U n V is compact. If W is any open set and z ¢ W,
there is a U between 2 and W and a V> 2. Hence U n V is an open set between
z and W whose closure is compact, and so {U n V} is a base whose sets have
compact closures. This proves necessity and hence also (29.2).

(29.3) TuEoREM. A locally compact space R may be compacted by the addition
of a single point y.

Let F denote the closed sets of ®®. Define the closed sets of ' = R vy asall
the sets F v y and all the sets F which are compact. The verification for R’
of the conditions CS? of (7) is a consequence of the same for R, and so R’ is
a topological space. Since the closed sets of R are the intersections with R
of those of ', N is topologically imbedded in R’. Let {f.} be a collection of
closed sets of R’ possessing the finite intersection property. Separate the f,
into two groups. The first made up of sets f; which are compact, and also
closed sets of % itself. The second group consists of sets f. such that f, =
F, u y, where F. is closed in . Suppose that there exist sets f; , and let f, be
one of them. We have Nf, = N(f, n fi,). The sets f, n f5, are closed in the
compact set f5, and their collection has the finite intersection property. Hence
their intersection is non-empty and the same holds for {f.}.

Suppose now that there are no sets fy . We have then

Vfa=0Nf, =N(F.uy)sy =P
Since Nf, # @, R’ is compact. The theorem is therefore proved.

(29.4) Remark. Since local compactness has not been utilized in the proof, the theorem
is valid for any topological space . However, if z ¢ R has the neighborhood N and ¥
is not compact then ¥ 5 y. Hence when R is not locally compact the open sets of %’ do not
behave very well and so the theorem is of value only in the locally compact case.

§6. SEPARATION AXIOMS

30. The theory developed so far rests exclusively upon the axioms OS: in
which the points are nowhere mentioned. Thus the points have merely been
the primitive elements of which the sets considered are composed. To express
it in another way the properties with which open or closed sets have been imple-
mented do not as yet enable us to distinguish between the individual points by
means of these sets: It may well happen that there exist pairs of distinct points
z, y such that every open or closed set containing one of the two also contains
the other. This is certainly remote from the situation in the familiar spaces,
where usually the points are closed, and where in fact no two are on the same
total aggregate of open sets.
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We require then a suitable “separation” axiom for the points. The most
frequently utilized are the following which we deseribe in the “T'-nomenclature”
of Alexandroff-Hopf [A-H, 58]:

Axtom T,. Of each pair of distinct pomts at least one has a neighborhood
which does not contain the other.

AxioMm Ty. Each point of every pasr of distinct points has a neighborhood which
does not contain the other.

Axiom T.. (Hausdorfl’s separation axiom.) Every pair of distinct points
have disjoint neighborhoods.

A topological space which verifies Axiom T'; is known as a T'-space, although
Te-spaces are commonly called Hausdorff spaces. They include all the spaces
of classical geometry and analysis.

The following proposition is an immediate consequence of the 7T-axioms
together with the principle of relativization:

(80.1) The subsets of a T-space are Ti-spaces. -

Again from the T':-axioms together with the definition of topological products
we deduce:

(30.2) A product of T.-spaces is a T-space.

In our ascending scale of axioms the following property shows that withthe
T:-class points begin to assume their customary properties:

(30.3) A n.a.s.c. in order that the points of a topological space R be closed sets
is that R be a Ti-space.

For let z, y be any two distinct points of . A n.a.s.c. for = to be closed is
that ® — r be open. Since y is merely any point of R — z a n.a.s.c. is that given
any y # z there exist an open set U between y and R — z, i.e., such that y ¢ U,
zeR — U. Inother words the required condition is that R satisfies Axiom 7).

We prove also for an ulterior purpose:

(30.4) If & is a Hausdorff space and T is a mapping R — S, then the graph G
of T in R X & is closed.

Let (x0, y0) € G, or yo = Txo and let (20, 1) ¢ G, or y; # y. Since & is a
Hausdorff space y , y1 have disjoint neighborhoods Vo, V;. Since T is continu-
ous x, has a neighborhood U such that e U = Tz ¢ Vo hence Tz ¢ V1. Hence
(UX V) aG =@ or (x, y) has the neighborhood U X V; free from points.
of G@. Therefore ® X & — @ is open and G is closed.

‘ExaMpLEs. (30.5) All the examples considered hitherto in the chapter except ordered
spaces (9.3) are T:-spaces. We state explicitly that cells, spheres, parallelotopes, Euclidean
and projective spaces as well as all their subsets, finally discrete spaces, are all T»-spaces.

(30.6) The following example essentially due to Alexandrofi-Urysohn [a], describes a
space which is T but not T» . The space is the real line L: —» <z < 4+=». Forzo =0
a base at z, consists of the intervals with the center zo. For zo > 0 a base {U} at zo is
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made up as follows: U is an interval 0 < a < z < b of center zo together with the interval
—b < z < —a with the center —z, removed. It is readily seen that as between zo and
—2zo Axiom T holds but 7', fails to hold.

(30.7) Any ordered space which contains at least one ordered pair: z < z’, is a To-space
but not a T';-space. Thus the real line L with the points ordered as in (9.4) by < is a Te-
space but not even a T;-space. Under its customary topology however L is a.T2-space.

31. Limits. A few words about this important concept will not be out of
place. Let R be a topological space. A sequence {z,} of points of R is said
to have for limit the point z of R or to tend or converge to z, written {z,} — z,
or r, — z, whenever corresponding to any neighborhood U of z there is an
integer p such that n > p = 2, ¢ U. When {z,} has a limit it is said to be
convergent.

(31.1) THEOREM. Let R have countable bases at each point and let T be a
transformaiion & — R’. Then a n.a.s.c. for T to be continuous, t.e., that it be
a mapping, is that if {x.} — x then {Tx,} — Tx. This is the situation in par-
ticular when R has a countable open base.

The proof of necessity is elementary and requires no restriction on the bases.
Conversely, suppose the condition fulfilled and yet T fail to be continuous.
There exist then z and 2’ = Tz, with a neighborhood U’ of z’ such that z
is not an interior point of T7'U’. We may construct a countable base {U,} at
z such that U,n € U.. Then U, contains a point z, ¢ TU’. Therefore
z, — z and yet Tz, + z’, contrary to assumption. This proves (31.1).

(31.2) TuEOREM. In a Hausdorff space limits are unique.

Suppose that a sequence {x,} converges to two distinct limits z, ’. There
exist disjoint neighborhoods U, U’ of z, 2’ such that for n sufficiently high
Zn e Un U’ = @ which is absurd. This proves (31.2).

32. Compact subsets of Hausdorff spaces. Many of the important and
better known characteristic properties of compact sets appear first in the Haus-
dorff class. '

(32.1) A compact subset A of a Hausdorff space R is cldsed.

Letz e R — Aandy e A. There exist disjoint open neighborhoods Uy(z) of =
and U.(y) of y. Since A is compact and has the open covering {A n U.(y)}
there is a finite subcovering. Hence there is a finite set {y;} suchthat 4 CV =
UU.(y:). If W = NU,,(x), we have then A C V,z e W,V a W = @, and
since W is open, so is ® — A which implies (32.1).

(32.2) A continuous tmage of a compact space into a Hausdorff space s closed
(23.2, 32.1).

(32.3) A continuous transformation of a compact space into a Hausdorff space
18 a closed transformation (32.2).

(32.4) A one-one mapping of a compact space onto a Hausdorff space ts topo-
logical; hence both spaces must be compact Hausdorff spaces.
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For T, the mapping, is continuous and closed hence both T and T~ are
continuous. ' v

(32.5) If A and B are disjoint compact subsets of a Hausdorff space, then they
have disjoint meighborhoods.

Let ye A, x ¢ B. As shown in the proof of (32.1) there exist disjoint neigh-
borhoods V', of A, and W(z) of z (the V, W there considered). Since {Bn W(z)}
covers the compact set B, it has a finite subcovering {B a W(z;)}. Hence
this time V = NV,, and W = UW(z,) are disjoint neighborhoods of A, B.

33. Normality, The separation axioms alone are in general not powerful
enough to reach down to the usual spaces. For example, they do not suffice
to characterize metric spaces. For this reason further restrictions are required
and one of the most important, given presently, is a separation axiom for closed
sets analogous to Hausdorff’s axiom. The basic definition is:

(33.1) DeriNiTION. A {fopological space R is said to be normal whenever
every two disjoint closed sets F, F' have disjoint neighborhoods: F C U, F' C U,
UnU =4@.

In point of fact normality, like compactness, is a primitive concept, in the sense that it
may likewise be expressed without reference to the other properties of open or closed sets.
One must also bear in mind that normality does not imply, nor is implied by any one of the
separation axioms T; . Of course mutual relations do exist. Thus if % is T, and normal
it is necessarily a Hausdorff space.

The dual form of (33.1) is

(33.2) If {U, U’} 7s an open covering of R then there exists a closed covering
{F,F'} suchthat F C U and F' C U'.

(33.3) DeFINITION. Given an open covering U = {Ua.} of R, if there exists
for each o an open set Vo such that Vo C U., and that B = {V.} is a covering,
we shall say that U has been shrunk to B, also that U s shrinkable.

A stronger result than (33.2) is:

(33.4) Every point-finite (in particular every finite or locally finite) open cover-
ing U of a normal space R vs shrinkable.

(a) U is finite. Although the proof for this case is covered by the general
proof, it is so simple, that we give it first. Let U = {U,, ---, U,}. Since the
closedsets F = R — Uy, F' = % — (U {U;| ¢ ¢ 1}) are disjoint, they have dis-
joint open neighborhoods U, V;. From V; CR — Ufollows V, CR - U C
U,. Since ® — (U {U:|7i#1}) € Vi we know that {V,,U,, ---, Ua} is
an open covering. We proceed to shrink the U;, ¢ 5 1, in the same way,
proving the theorem.

(b) General case. Let U = {U.}, A = {a} and let ¢(a) be a function on A
such that: (a) ¢(a) = Usorelsep(a) = Vo, Ve C U ; (b) {0(a)} is a covering.



[6] SEPARATION AXIOMS 27

Order ® = {¢} by the relation: ¢ < ¢’ whenever ¢'(a) = ¢() if () = V.
It is readily shown that if ' = {4’} C & is simply ordered, and ¢’ (a) = Ny’(a)
then ¢ ¢e® and ¢’ = sup ®'. Therefore by Zorn’s theorem & contains an
element ¢, such that ¢ > ¢1 = ¢ = ;. It remains to be shown that ¢;(a) = V,
for every a. Suppose indeed that ¢,(8) = Us and set F = R — Ufey(a) | a =
B}. We show as above that there is an open set Vg such that F C V,, V3 C U,.
Hence ¢, such that g(a) = ¢1(a), @ % 8, and p2(8) = Vs = ¢ and >¢;. This
contradiction proves that ¢1(8) = V; and (33.4) follows.

Notice that point-finiteness is required to prove that ¢’ is a covering: Let
Uay, -+, Us, be the sets U, containing z. From some qo(; on, none of them
will be modified so that if ¢’ > ¢ then ¢’(a:)) = po(a) = ¢”(a;) = U, or V.
Since ¢ is a covering, for some ;:z € po(as) = ¢ (as).

A direct generalization of the property of (33.1) is:

(33.5) If {F.} is a finite collection of closed sets in the normal space R, there
can be found for each F; an open set U; D F; such that Fia ---aF; = () «»
U;n M |} Uj = ¢

Suppose first that {G:} is a finite collection of nonintersecting closed sets.
Then { (R — G.)} is a finite open covering and so by (33.4) there exist open sets
W, such that W; C ® — G: and that {W,} is a covering. Therefore U; =
R — W, is an open set such that G; C U; and that NU; = @.

In the general case consider all the combinations @ = {ai, - - -, a;} of indices
such that NF,, = @. By the result just obtained there exist corresponding
neighborhoods Ug; of the F.,; such that ﬂU:'. = @#. For agiven i let U; =
N{U3, |aea}. Clearly {U,} is such that F; C U; and that F;n ---a F; =
@ U;n---naU;=¢. The implication in the other direction is obvious.

(33.6) A compact Hausdorff space is normal (23.1, 32.5).

34. Urysohn’s characteristic function. Normality is intimately related to the
existence of nonconstant real continuous functions. Let A, B be disjoint sets
and f a real continuous function on ®® whose values on 4, B are constant and
distinct. Then for suitable constants a, b the function @ + b arc tan f has the
same properties and takes its values in the segment [0 — 1]. Urysohn has con-
sidered more particularly continuous functions f on & to [0— 1} such that f(4) =0,
f(B) = 1. 1If such a function exists it is called a characteristic function of the
pair (A, B). Of particular importance is:

(34.1) UrvsoHN’s LEMMA. Normality ©s equivalent to the existence of a char-
acteristic function for every pair of disjoint closed sets (F, F').

Suppose that F, F’ have the characteristic funétion f and set U = {z | f(z) <
1/4}, U’ = {z|f(x) > 3/4}. Since f is continuous U, U’ are open and as
they are thus disjoint neighborhoods of F, F’, ® is normal.

Conversely, let i be normal and F, F’ disjoint closed sets. There exists an
open set U(1/2) such that F < U(1/2), U(1/2) C R — F'. We treat similarly
the pairs of disjoint closed sets (F, ® — U(1/2)), (U(1/2), F’), and thus obtain
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U(1/4), U(3/4), ete. This produces an open set U(t) for every dyadic proper
fraction ¢ = m/2" with the property: ¢t < ¢ = U(t) € U(¢). Given any z ¢ R
we define f(z) = y, wherey = sup {¢ |z ¢ U(f)}. The function f is single-valued
and has the proper range. Furthermoref = 0,at F,f = lat F'. If A\ = ab
is a subinterval of 0 — 1, or else closed at an end point a, b which is then O or 1,
we have f'(\) = U{U(@t) |t <b} — N{TQ® | t > a} = an open set. There-
fore f is continuous, and the lemma is proved.

A noteworthy application of Urysohn’s lemma is the proof (after Alexandroff-
Hopf [A-H, 75]) of:

(34.2) TIETZE'S EXTENSION THEOREM. Any mapping f of a closed subset F of
a normal space R into an n-parallelotope P" or into the Hilbert parallelotope P*
has an extension ¢: R — P" or P* as the case may be.

If P® or P are referred to coordinates z,, x,, ---, each of these will be a
real continuous single-valued function on ¥ and (34.2) will follow from:

(34.3) Any real continuous single-valued function f(x) on F has an extension
o(x) to R: o | F = f, which is also real continuous and single-valued. '

Evidently f may be replaced by 1/2 + (1/x) arc tan f whose values are in
the segment [0 — 1]. Therefore we may assume that this is already the case
for f. Given any two disjoint closed sets 4, B in R, we denote their charac-
teristic function in & by ®(4, B; z). Functions {f,, ¢}, where the range
of the f, is F, and the range of the ¢, is &R, are now introduced as follows:

Jo= f)fn+1 = fa = ¢n;
setting now F, = {z|f.(x) = (1/3)(2/3)"}, F. = {z|f.(x) = (2/3)(2/3)"},
we have two disjoint closed sets, and take

on = 3B)®(F,, Fo; ).

These relations yield a determination of the functions in the order fo, ¢, fi,
¢1,++, and an elementary recurrence leads to the inequalities:

(34.4) 0. =3®" O0=fas®"
Introduce now
sa(x) =@+ -+ + on

From (34.4) follows that the series ) o.(z) is uniformly convergent on %, and
since the ¢, are continuous and single-valued lim s.(z) exists and is a continu-
ous and single-valued function ¢(z) on R. From the relation

$u(x) = f(2) = fans(2), zeF,

follows then that ¢ | F = f. This proves (34.3) and hence (34.2).
35. Tychonoff spaces. These spaces originally called completely regular by
their discoverer Tychonoff are given by the
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(35.1) DErFINITION. A Tychonoff space R is a Hausdorff space such that for
every point x and neighborhood U of x there is a characteristic function of the pair
x, m - U-

We verify immediately:

(35.2) Every subset of a Tychonoff space is a Tychonoff space.

(35.3) Every normal Hausdorff space is a Tychonoff space.

The following two definitions are designed to introduce two important con-
cepts needed immediately:

(35.4) DeFINITION. Let R be a topological space, {Ra} an indexed system of
topological spaces and for each a let f, be a function on R to R, . Then k = {f,}
1s said to be a separating class for R whenever for any two distinct points z, y of R
there is an a such that fi(x) #= fa(y).

(35.5) DErFINITION. Under the same conditions let {Va} be the open sets of R, .
Then « is said to be a basic class for R whenever {f;'Va\} is a subbase for R.

(35.6) When R is a To-space, a basic class k ts necessartly separating.
Since R is a To-space if £ # y there is an open set U such that say z e U,
y¢U, and hence an f;'Va such that z ef;'Va, v ¢fo'Va and so clearly

Ja(@) = fa(y).
Returring to Tychonoff spaces we prove:

(35.7) LeMma. Let R be a Tychonoff space. Then the class k = {fs} of all
continuous functions on R to the segment [0 — 1] s a basic class for R.

Consider the f, as mapping R on the segment 0 < y < 1. Since f, is con-
tinuous the set V, = f'{y |0 < y < 1} is open. Take now any open set U
of R, and x ¢ U and let f, be the characteristic function of z, ® — U. Evidently
eV, C U. Therefore {V,} is a base and « is basic.

The fundamental theorem for the spaces under consideration is:

(35.8) TuEOREM. Every Tychonoff space R may be mapped topologically into
a compact parallelotope and every subset of such a parallelotope and indeed of any
compact Hausdorff space is a Tychonoff space (Tychonoff).

Letx = {f.} beasin (35.7) and set A = {a}. For each a introduce a segment
l,:0 <y, <landset P* = Pl,. Ify = {9}, ya = fa(x), then T — y defines
a transformation T: % — P*.

(a) T s univalent (35.6, 35.7).

(b) T is open. For {V,} being as before, TV, = {y|ya < 1} n TR is open
in TR and since {V,} is a base, T is open.

(¢) T is continuous (12.2).

Properties (a), (b), (¢) prove that T imbeds % topologically in P*.
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Since every compact Hausdorff space R is normal (33.6), by (35.3) and (35.2)
R and its subsets are Tychonoff spaces.

(35.9) Remark. The proof of (35.8) goes through step by step if « is replaced
by any subclass ko = {f»} such that {V,} is a base.

36. Separation properties and compacting. The influence of separation on
the two compacting processes that have been given is described in the two
propositions to follow.

(36.1) TueorEM. The space N and the compact space © of the general com-
pacting theorem (26.1) are related in their separation properties as follows: When R
18 Ty, T1, or Hausdorff normal, so is ©.

Let the notations be those of (26, 27, 28). Take two distinct points X, X’
of Sbothin TR = R. Thatistosay, X = X(z), X’ = X(2'), z > z’. Suppose
first ;! to be To. There exists then an open set u of R containing say z but
not z’. Since z, 2’ are coordinates of X, X’ we have X ¢Q(u), X’ ¢Q(u), and
so the T-axiom holds for the pair (X, X’). Suppose now X ¢ B. There exist
disjoint coordinates ¢, , ¢ of X, X’. If o, = fouziu--- vz, , by (264) f, is
also a coordinate of X and f, n @) = . Hence if u = R — f, then X ¢ Q(u),
X’ ¢Q(u) and the situation is as before. Therefore & is T, .

Suppose now R to be ;. Since the points of R are closed sets all the coordi-
nates ¢, are closed sets. If X X’ they have disjoint coordinates f,, f;’, and
50 QR — f3), AR — f.) are neighborhoods of X, X’ which are, respectively,
free from X’, X. Therefore ©is T, .

Suppose finally & to be normal Hausdorff. We have again disjoint coordi-
nates f, , f» of X, X’. Since % is normal there exist disjoint open neighborhoods
u, w of fo, fr. Therefore Q(u), 2(u’) are disjoint neighborhoods of X, X’ in &
and so & is Hausdorff. Since it is compact it is also normal, and the proof of
(36.1) is completed.

37. For locally compact spaces we have the stronger

(37.1) TueorEM. When the locally compact space R of (29.3) is a T-space so
1s the associated compact space

R =Ruy.

We may as well exclude at the outset the trivial case of ® compact. We
denote by U = {U} the collection of all the open sets U of R such that U is
compact.

(87.2) A set U s also open in R'.

For F = ® — U is not compact, else i would be the union of the two com-
pact sets F, U, and hence compact (23.3). It follows that F’ = F v y is closed
in® andso U = R’ — (F' v y) is open in R’.

(37.3) U s a base for R.
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Let V be an open set of R and z ¢ V. Then some U containszand Va U C
U= VaUell. Sincex CValUCV,Uis a base.

The proof of our theorem is now a simple matter. Any point z ¢ 9 has a
neighborhood U. The set U is thus closed in %’ and so V = R’ — U is a neigh-
borhood of y. By (37.2) U is also a neighborhood of zin %’. Since Un V = @,
Axiom T holds for the pair (z, y).

Suppose now R to be T'; and let z, z’ be distinct points of ®. The T'; condition
may be fulfilled with neighborhoods out of any base for i, and in particular out
of the base U of (37.3). Since the elements of 1l are open in R’ also, the T;
condition is fulfilled for the pair (z, 2). Since T, is fulfilled for the pairs (z, y)
so is T;. Therefore R’ is a T;-space.

§7. INVERSE MAPPING SYSTEMS

38. The spaces which are to be introduced here are especially important in
the applications to homology. For our purposes it will be quite sufficient to
restrict the treatment to Hausdorff spaces.

Let then {R\} be a system of Hausdorff spaces indexed by a directed set
A = {X\; >} and suppose that whenever A > p there is given a mapping, also
known as a projection, =, : R\ — R, such that A > u > v => #%x) = 7). The
system Z = {$) ; w,’:} of the R, and the w,’; is called an snverse mapping system.

Let )t* = P9 and in R* let R be the set of all the points * = {z\} such that
A> u=> o =x,. We call R the limit-space of the inverse mapping system Z.

Notice incidentally that for A < A we have mz, = z) or m = L.

ExampLE. {R\} is a sequence {C.} of circumferences, where C, is the image of a real
variable z, reduced mod 1. Choose #%*! = k,z, k. an integer, and define »%*? =
aptl ... gutp . ThenZ = {C, ; »2*?} is an inverse mapping system. Its limit-space %,
introduced by Vietoris, is known as a solenoid.

As a subset of R* the limit-space R receives the relative topology and by
(30.1) and (30.2)

(38.1) The limit-space R is a Hausdorff space.

(38.2) The topology of the limit-space R is frequently described as follows:
For each open set Uy, of R introduce the set Vi, = {z |z e R, 22 € U} and
choose {V».} as a base for the topology. This topology is readily identified with
the -elative topology. Define in fact Vi, = [z |z eR* 2reUr}. Then
Vae = V3o n R, and since {Vx,} is a subbase for R*, {Vi,} is one for R in the
relative topology. Furthermore given V.5, V,. let A > u, ». Owing to the
continuity of the projections (x}) U, , (a))"'U,. are open, and so is their inter-
section Uy, . From this follows that V5 a V,. = Vi, so that {V),} is actually
a base for the relative topology, making the identity of the two topologies
obvious.

The set R as a subset of $* may be viewed as the graph of the set of relations
ma, = z,. We find therefore the natural analogue of the property (30.4) for
graphs:

(38.3) The limit-space N is closed in the product space N*.
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For X > u introduce S} = {z|man = 2}, and let G, be the graph of -r,. .
We have: 8} = G} X P,,“,,, R,. Since G} is closed in R X R, (30.4), S} is
closed in %* (12. 6) Therefore & = NS} is also closed in 9R*.

From (23.1, 38.3) and (24.1) we deduce:

(38.4) When the R\ are compact so 18 the limit-space R*.

39. We now come to the important:

(39.1) TueorREM. If the Ry are compact and not empty then the limit-space
18 likewise not empty (Steenrod [a]).

Let the notations be those of (38.3). Since R* is compact we only need
to prove

(39.2) (8%} has the finite intersection property.

Given a finite set {S}i}, ¢ = 1, 2, , 7, choose \g > Ay, -~ : M. Since
)\ > u; we also have N > p;. Take any ax, € Ry, , define 2y, = mz,,, 7, =
i, , and let z be any pomt of ®* with the coordinates z);, z,;. From
wﬁ, = 7him? there follows m)iz\, = 2,,, and so = ¢ Sii. This proves (39.2)
and hence also (39.1). '

A complementary property is:

(39.3) If the Ry are compact and x, is such that for every A > p the set (x)) "z, = @
then R contains a point x with the coordinate x, .

If =, is the natural projection R* — R, then F = ="'z, is closed in R* and
(39.3) reduces to: F n R 5 @, and hence to:

(39.4) {F, S)} has the finite mterectwn property.

Choose this time Ag > Ay, --+, A, #. By hypothesis (1r,’§°) z, # 0, and 80
we may take ), in that set. We now take zx as before save that in addition
its u coordinate is to be z,, a condition which may manifestly be fulfilled.
Thus = € F and still z ¢ Sﬁ:ﬁ . Hence (39.4) holds and (39.3) follows.

40. Let M = {u; >} be a directed subsystem of A = {\; >}. Then the
spaces R, and projections =) give rise to a new inverse mapping system IZ; =
{R. ; mi'} known as a partial system of =. If M is cofinal in A we say that Z,
is cofinal in Z.

Let 2, be a partial system of = and & its limit-space. If z = {z\} ¢ R the
coordinates z. of z determine a unique point z’ of &. The transformation
7: R — & whereby 7z = z’ is known as the projection of R into S.

(40.1) Let =, with limit-space © be a partial system of =. Then: (a) the pro-
Jection 7: R — & is a mapping; (b) when Z, 1s cofinal in Z then t 1s topologwal
so that R, © are then topologically equivalent.

Let © = P%,. We have then #* = &* X P\, % and the projection
™: ®* — S* is continuous. Now if z = {x,} ¢ R the point 7*z is the point of
&* whose coordinates are the u coordinates of z, ie., 7™z = rr. Hence
r = 7| R, and so 7 is also continuous.

Suppose now that Z, is cofinal in 2. We shall show that 7 is a one-one
mapping of R onto ©. Given z’ = {z,} e S if x = {ar} ¢ R is to be such that



(8] METRIZATION 33

72 = 7' then we must have x\ = x}z,, u > A\. Choose some p > A and let z,
be defined by this relation. If g, > u > M then mlz,, = =(7'z,,) = =2,
80 that y; yields the same value of )\ asu. Take any two indices 1, 2. There
isap > m, pe and since u, u; and u, yo yield the same value for 2\, so do
w1, p2. Therefore z, is unique. If X > N choose ¢ > X\. From 2, = myz, =
vz, = mvxx follows that {x\} are in fact the coordinates of a point z ¢ %.
Since this point has the coordinates z, of 2’ we have 7z = z’. Thus every
point z’ is the image under r of one and only one x and so 7 is a one-one mapping.
To prove 7 topological there remains to show that it is open. Let Una, Vs
be as in (38.2). Then z ¢ Vi, = e Usns. Choose any p > A. Since «} is
continuous (7) *Uxs = U,s is open in R, and V,, = {z’ | z, € U,s} is open in &.
Since 7Vy = V.5, 7 is open and hence topological. This proves (40.1).

Two inverse mapping systems are said to be equivalent if there exists a third
in which both are cofinal. From (40.1) we deduce: '

(40.2) Equivalent inverse mapping systems have topologically equivalent limit-
spaces. :

41. When {\} is a sequence it is more convenient to use 1, 2, --- as the
indices. We write therefore R, for %, and "' for m\***, and require that for
n < p < gwehave miry = w5, . The system {R, ; 77} is then called an inverse
mapping sequence. From (4.4) and (40.2) we see that

(41.1) When {\} is countable, }® = lim {R\; m)} is topologically equivalent
either )‘to some Ry or to the limit-space of an inverse mapping sequence cofinal in
{Rumt

It is clear that if {U\.} is a base for each ) , then {V),} (in the notation of 38)
is a base for . Thus we have

(41.2) When {A\} is countable and the R\ all have countable bases, R =
lim {®; =} has likewise a countable base.

§8. METRIZATION

42. Guided by the Euclidean situation, given a point set R we call distance-
function or merely distance a real function d(z, y) defined for all x, y ¢ R and
possessing the following properties:

D1. d(z, y) = 0 when and only when z = y.

D2. (Triangle axiom): d(y, z2) < d(z, y) + d(z, 2).

From D12 we derive, with Lindenbaum, the other two noted properties of
the distance:

D3. d(z,y) = 0.

D4. d(z, y) = d(y, ).

We prove D3 by making z = y in D2. Regarding D4 making r = z in D2
and taking account of D1 we have d(y, ) £ d(z, y). Since the inequality
may be proved also in reverse order D4 follows.

The set B with an associated distance-function d(z, y) is called a metric space.
We also say that d(z, y) defines a metric for R.

We shall now discuss the first properties of metric spaces.
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(42.1) Subsets of a metric space. Let R be a metric space with the distance
d(z, y). If A C R and we take z, y ¢ A, d(z, y) becomes a suitable distance-
function for 4, so that A is metric also.

(42.2) Distance between two sets. Diameter of a set. Spheres. The distance
d(A, B) between two subsets 4 and B of R is inf {d(z,y) [z €4, y e B}. The
diameter of A (diam A) is sup {d(z, y) | z, y ¢ A}. The set of all points z such
that d(z, A) < e is called an e neighborhood of A and denoted by &(4, ).
When A = z,, a single point, &(xo, €) is commonly called a spheroid or sphere;
the point , is the center of the spheroid and e its radius. The analogy with
Euclidean spherical regions is obvious.

(42.3) e aggregates, e coverings, e transformations. This type of designation
with appropriate variations is frequently convenient. The mesh of an aggregate
is the supremum of the diameters of its sets. An e aggregate or covering is
one whose mesh is less than e. If a space has a finite ¢ covering for every ¢ > 0
it is said to be totally bounded. An e transformation of a metric space R into a
set Q = {y] is a transformation such that mesh {T 'y} < e

(42.4) In terms of the spheres we may define regions as in Euclidean geometry:
U is a region whenever z ¢ U implies &(x, ¢) C U for some ¢ > 0.

43. The chief justification for considering metric spaces at this juncture lies
in the

(43.1) TueoreM. If a metric space is topologized by choosing regions as open
sets it becomes a normal Hausdorff space with a countable base at each point.

The verification of 0S123 (6) is immediate. If z = y, thend(z,y) = ¢ > 0.
Hence &(z, ¢/3) and &S(y, ¢/3) are disjoint neighborhoods of r and y. If 4
and B are disjoint closed sets, then {z |3d(z, 4) < d(x, B)}, {z|3d(z, B) <
d(z, A)}, are disjoint open sets containing A and B. Thus the space is a normal
Hausdorff space. Clearly {&(zo, 1/n)} is a countable base at the point z, .

(43.2) The spheroids form a base, and those of center x form a base at .

On the strength of (43.2) we shall say that two distinct metrics are equivalent
whenever if &(z, ¢), &'(z, €) are the corresponding spheroids then given ¢ and z
there is an 7 such that &'(z, 1) C &(z, €), and vice versa. That is to say the
two metrics are equivalent if they induce the same topology in R.

It is easy to see that

(43.3) The distance-function in R defines a topology in the subsets which is in
accordance with the principle of relativization.

A topological space % is said to be metrizable whenever it is possible to assign
it a metric, i.e., a distance function d(z, y) inducing the topology of the space.
Metrization is the process of assigning a metric to a metrizable space. Fre-
quently for. shortness a space is described as metric when it is merely metrizable.
In each case the context shows clearly what is meant.

(43.3a) The closure A is the set of all points x such that d(z, A) = 0.

(43.4) Limits, continuity. Since metric spaces are Hausdorff spaces with a
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countable base in each point, limits in such spaces are unique (31.2) and con-
tinuity of mappings of metric spaces into one another may be expressed in
terms of limits asin (31.1). Moreover in so far as such spaces alone are involved
all questions of continuity and convergence may be dealt with by the “¢, §”
method of classical analysis. Many, if not most of the well known concepts
of the latter may be introduced here also. We merely recall the useful concept
of uniform continuity: R, R’ being metric the mapping T': R — R’ is said to be
uniformly continuous whenever if z ¢ R and ' = Tz then given any ¢ > 0,
there is an 7 > 0 independent of x such that T&(z, 1) C &(/, e).

(43.5) Completeness. Since {S(r, €} is a base at z, {z.} — r whenever
{d(z, z.)} — 0. As is well known a necessary condition in order that {zx.}
converge (to some point) is that Cauchy’s condition hold: given any ¢ > 0
there is an n such that p, ¢ > n = d(z,, r,) < e¢. Whenever Cauchy’s condi-
tion implies the convergence of any sequence for which it holds the space %
is said to be complete.

(43.6) Separabslity. A space is said to be separable whenever it has a count-
able dense subset. This property is only of interest in connection with metriza-
tion, and largely owing to:

(43.7) For a metrizable space R separability is equivalent lo the existence of a
countable base.

For this reason we shall call such spaces ‘‘separable metric.”

At all events whether % is metric or otherwise, when it has a countable base
{U.} we may choose a point z, on U,, and since {z.} is a countable dense
set, & is separable. Conversely, let ® be metric with the countable dense set
{z.}. To show that R has a countable base it will be sufficient to show that
LB = {S(x., pp)}, pp rational, which is composed of a countable number of
spheroids, is a base. Let U be any neighborhood of z. There is a spheroid
&(z, p) C U. Since the z, are dense in R we may find an z, such that
d(z, z.) < p/4, then choose p, between p/4 and p/2. As a consequence z e
S(zn, pp) < S(z, p) € U. Therefore B is a base.

(43.8) Metric product. Let {R.} be a countable collection of metrizable
spaces. Choose a distance d,(z, y) for R. and metrize the product R = PR,
(for the present merely set-product) as follows. If z = (z),---),y = (%1, --+)
are two points of 8 we choose a distance-function

_ dn(zn ) y")
(439) d(x’ ?/) - Z Fen 1+ du(xn ) yﬂ)

where > k. is any convergent series of strictly positive terms. For instance
‘we may take k, = 27" but any other choice will do. In particular if the
number of factors R, is finite we may choose

Az, y) = 2 da(Tn, Yn).

The verification of D12 is elementary, so that d(z, y) defines a metric for i
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and 9N is metrizable. We call R with the metric (43.9) a metric product of
the R®.. We shall now prove

(43.10) TueorEM. The metric (43.9) desermines the same topology as previously
assigned to the topological product. In particular it 18 independent of the special
choice of {k.} and of the metrics d, . '

Since the spheroids form a base on each ., we may choose as a base for i
the sets U = PU,, where U, = R, for n > m, and U, , n < m, is a spheroid
of M,. Given xr e U there is a similar U, 3 x, U'CU, with spheroidal factors
U, = ©(xy,7a), n S m, where the xz, are the projections of z. Let r =
inf r,, k = inf k, forn £ m and let R = kr/(1 + r). Then if y ¢ &(z, R),
we have from (43.9)

dn(zn ’ yn) kr
1+dﬂ(xﬂ)yﬂ) 1+r,

and hence d(z., y») < r. Therefore y, e Un, y e U, and finally &(z, R) C
U’ < U. Thus there is a spheroid between z and U.

Conversely, given &(z, R) we may choose m so large that the remainder of
3" k. after m terms is less than R/2, then take U, = (2, 74), n < R/2mk,
when n < m. As a consequence y e U = d(z,y) < R and hence z ¢e U C
S(x, R). Therefore {U} and {&(z, R)} are equivalent bases for R.

0n

]

kn n < m,

44. Examples.
(44.1) The n-dimensional number space €= referred to the coordinates z,, - -+ , z, has

the distance-function
(44.2) d(z, y) = (3 (z: — ).

The space with this metric is an Euclidean n-space. It is an elementary matter to identify

the resulting topology with that of (9.1).
If we consider € as the product of the n lines of the variables z; , metrized by d; =
[z; — yi|, the method of (43.10) leads for €* to the distance-function

(44.3) '@ y) =212 = yal

which yields again the same topology as (9.1), and hence as (44.2). Therefore for topo-
logical purposes the two metrics are interchangeable.

(44.4) Since G~ is metrizable so are all its subsets.

(44.5) Consider the Hilbert parallelotope P = Pl., and let I, be parametrized as:
0 < 2. < 1/n. Thus P¢is now the set of all sets: (z, ,2:, -+ ),0 < z. = 1/n. By (43.10)

P« is metrizable and admits the distance-function
' ZTn — ynl
(44.6) d(z,y) = Z -

Consider on the other hand the Euclidean metric for P« defined by
(44.7) &', y) = 2 @ — )

If ©(z, ) and ©'(z, ¢) arc the spheroids corresponding to the two metrics, it is readily shown
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that for fixed z each &(z, ¢) contains an €/(z, #), and conversely. Hence {&'(z, ¢)} is a
base for P, and so d’(z, y) defines an admissible metric for the Hilbert parallelotope. It
is in fact the metric customarily assigned to it.

45. Compacta. A compactum is a compact metric space. The category of
compacta partakes therefore of the combined advantages of compactness and
metrizability. Its importance is sufficiently indicated if we observe that closed
and bounded subsets of Euclidean spaces are compacta.

(45.1) Every compactum R is separable and hence possesses a countable base.

Define a set A as e dense in R whenever every point of R is nearer than e
to A. I say that we merely have to prove that there exists in i a countable
set A which is ¢ dense whatever e. For in that case every sphere &(z, p) about
a given point z will contain points of A. As these spheres form a base for z,
we will have z ¢ A, hence A = R.

Now {&(z, €)}, z ¢ R, is an open covering of the compact space . Hence
there is a finite subcovering {&(x;, ¢)}. Clearly the set A(e¢) = {z;} is e dense.
The set A = UA(1/n) is countable and e dense for each ¢ > 0.

(45.2) If F is closed in R and z e R — F then d(z, F) > 0 (43.3a).

45.3) If § = {F1, ---, F,} is a finite aggregate of nonintersecting closed sets
in the compactum R there is a constant c(F) > 0 such that every x ¢ R is at a dis-
tance not less than ¢(§) from at least one F; .

For otherwise whatever n there are points x whose distance from every F;
is not more than 1/n. The set G, of all such points is closed and G, D Gnya .
Since R is compact and NG, = @ it contains a point z. Clearly d(F:, z) = 0
and since F; is closed z ¢ F;. Therefore z ¢ NF; # @ contrary to assumption.
This proves (45.3).

(45.4) If F, F’ are closed in the compactum R and d(F, F') = O then F and F’
inlersect.

For otherwise if ¢ F we have d(z, F’) = c¢(F, F') > 0, and hence d(F, F') =
c(F, F') > 0.

(45.5) For every finite aggregate of closed sets § in the compactum R there exists
a positive constant d(§) called the Lebesgue number of §, such that if A C R, diam A
< d(§), and A meets a collection of sets of §, then these sets have a nonvacuous
intersection.

Let§:,72 = 1,2, -+, s, be the subaggregates of § whose sets do not meet,
and let d(§) = inf ¢(§:). If A behaves as stated it cannot meet the sets of §,
since otherwise = ¢ A would imply that z is nearer than ¢(§:) to every set of §:,
which contradicts the definition of ¢(§). This proves (45.5).

(45.6) For every finite open covering U = {U,} of the compactum R there exists
a positive constant di(1) called the Lebesgue number of W, such that: (a) every
point x of N is on some set U; and at a distance at least di(1) from R — U;;
(b) if A C R and diam A < di(U) then A s in some set U, .

Since UU; = R wehave N(R — U;) = @. Thereforedi(U) =d(R — U1, ---)
has property (a). If A is chosen in accordance with (b), and x ¢ A then for
some ¢ property (a) holds and hence 4 < U;.
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(45.7) A continuous mapping f of a compactum R into a metric space & 1s
uniformly continuous.

By (23.2) the values of f make up a compactum R in &. Given then any
¢ > 0 there is a finite open e covering U = {U,} of R. It follows that 8 =
{f~'U,} is a finite open covering of ®. Let n = di(B). If 2’ = f(z), ¥’ = f(y)
and d(z, y) < m, some f U, contains both z and y and hence some U, contains
both z’ and y’, which implies d(z’, ¥') < e. Therefore f is uniformly con-
tinuous.

The following two properties of compacta are obvious but often useful:

(45.8) A compactum s totally bounded (42.3).

(45.9) A decreasing sequence of closed sets {Fn}: Fnin © Fn, has a non-void
intersection and if diam F, — 0 the intersection is a point.

Sequential compactness. A familiar and very important fact in analysis is the
close connection between compaciness and convergence (see notably J. Tukey
[T]). The specialization to separable metric spaces brings to the fore the

(45.10) DerFINITION. The space R is said to be sequentially compact whenever
every sequence {x.} has a subsequence {x.-} which converges to a point of R.

(45.11) A compactum s sequentially compact.

By (45.8) & possesses a finite open e covering. The closures of its sets make
up a finite € closed covering § = {Fu, ---, Fi,}. Let {z.} CR. One of the
Fy; , say Fi,, contains an infinite subsequence {zi»}. Since Fy;, is a com-
pactum it has an ¢/2 finite closed covering {Fs;}, one of whose sets F;, contains
an infinite subsequence {Zm} of {Tim}, etc. By (45.9): NF.;, = z is a point
and clearly

{xsn] — xo (diagonal process).

(45.12) A sequentially compact metric space R is a compactum.

We first prove R separable. For any e the space has a finite ¢ dense set A4 (e).
For if this were false we could find a sequence {z.} such that d(zm, z.) = €
whatever m, n, m = n, and no subsequence could converge. It follows that
UA(Q/n)is a countable dense set, and so R is separable.

Since R is separable it has a counta,ble base (43 7). Hence (6. 7) an open
covering {U,} of R has a countable subcovering {Un.}. Suppose that the latter
has no finite subcovering. Then we may choose an z, e ® — (Urv ---u Uy
By hypothesis a subsequence {2} of {x.} has a limit x, . Since {U }is a
covering we have z, ¢ U, for some m, hence z, € U,, for n’ above a certain value.
Since this is ruled out (45.12) is proved.

(45.13) For metric spaces compactness and sequential compactness are equivalent
(45.11, 45.12).

An interesting consequence of (45.11) is:

(45.14) A compactum is complete.

46. Urysohn’s metrization theorems. We have now all the elements necessary
for dealing with these classical theorems.
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(46.1) TuroreM. Every Tychonoff space with a countable base can be imbedded
topologically in the Hilbert parallelotope P* and hence it is metrizable, and for that
matter also normal. ’

(46.2) TuEOoREM. A n.a.s.c. for a Hausdorff space with a countable base to
be metrizable is normality.

(46.3) TuroreM. Separable metric spaces are those and only those which may
be tmbedded topologically in P*.

(46.4) TuEorEM. A n.a.s. c. for a compact Hausdorff space to be a compacium
1s that it possess a countable base.

Proor or (46.1). Referring to (35.8) and (35.9), the mapping considered in
(35.8) exists when the base {V,} there considered is replaced by any subcollection
forming a base. Now under the hypothesis of (46.1), and by (6.8), there is a
countable subcollection {V,} which is a base and the mapping of (35.8) is then
into P°. This proves (46.1).

Proor oF (46.2). Since normal Hausdorff spaces are also Tychonoff spaces
(35.3) sufficiency is a consequence of (46.1); and necessity follows from (43.1).

Proor oF (46.3). Since P” is a compactum it has a countable base. Hence
the subsets of P are metric with a countable base, and therefore also separable.
Conversely, if 9 is separable metric it is normal with a countable base and hence
by (46.1) it may be imbedded topologically in P“.

Proor or (46.4). Necessity is a consequence of (45.1). Since a compact
Hausdorff space is normal (33.6), sufficiency follows from (46.2).

§9. HOMOTOPY. DEFORMATION. RETRACTION

47. These concepts are important not only in their strict form, but also in
view of certain noteworthy algebraic analogues which occur in the theory of
complexes.

Homotopy, deformation. The intuitive concept of a deformation or displace-
ment is clear enough. Duly generalized and made fully rigorous it gives rise
to the:

(47.1) DEerFiNiTIONS. Let A, B be topological spaces, and | the segment 0 =<
u £ 1. Two mappings t,, ts : A — B are said to be homotopic whenever there is a
mapping T of the product 1 X A — B such that T(0 X z) = iz, T(1 X z) = b2,
zeA. Ifty = 1, which implies A C B, then t; is a deformation. The set T(l X z)
s the path of x. Whenever the space is metric and the paths are all of diameter
less than e we have an ¢ homotopy, or € deformation as the case may be.

In a more geometric form the images of #,4 and A4 are homotopic whenever
the “cylinder” I X A may be so mapped in B that its bases agree with the
images hA, tA.
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(47.2) Homotopy s an equivalence relation.

Homotopy is:

symmetric, for if T is as above then T, such that Th(u X z) = T((1 — u) X z)
bears the same relation to ¢, , &, as T but in reverse order;

reflexive, for T(u X x) = iz is a mapping ! X A — A making ¢ homotopic
to itself; '

transitive, for let (¢, &) and (&, £3) be homotopic pairs of mappings 4 — B
with 77, 7" as the analogues of 7. Define

Tu X z) = T'((2u) X 2), 0=u=1/2
Tu X z)=T"'(2u — 1) X z), 1/2=5u =1.

It is clear that T'(w X z) is continuous in u X z. We have at once T(0 X z) =
tx, T(1 X z) = t3z, and so ¢, , t; are homotopic which proves transitivity, hence
also (47.2).

Since for fixed A, B homotopy is an equivalence there are corresponding
classes, which are known as homotopy-classes.

(47.3) Let ty , t, be homotopic mappings A — B and let t be a mapping B — C.
Then tt, , tt, are homotopic mappings A — C.

The notations being as before ¢T is a mapping | X A4 — C such that
tT(0 X z) = thx, tT(1 X z) = thz, proving our assertion.

For mappings into subsets of an Euclidean space " or parallelotope P a
convenient and intuitive sufficiency condition for homotopy is:

(47.4) Tie notations being the same suppose that B is a subset of ® = €" or P.
If for every x the points tix and Lz coincide or else may be joined by a segment of R
which 7s in B then {, and t, are homotopic.

For let A(z) = tiz when tjz = &z, and A(x) = the segment joining ¢z, t,z when
they are distinet. Then (in vector, notation)

Tu X z) = (1 — u)(tir) + u(tx)
defines a mapping | X 4 — R making ¢, , &, homotopic mappings A — R. Since

T(u X z) e \(z) we have T(l X A) C B, so that ¢, , & are in fact homotopic as

mappings A — B also.
(47.5) Retraction. This convenient concept, formulated by Borsuk, is closely

related to homotopy.

(47.6) DEeFINITIONS. Let A, B be topological spaces, with A C B. A relraction
of B onto A is a mapping t: B— A suchthatt| A = 1. When t exists A is called
aretractof B. If t is a deformation keeping every point x of A fixed (i.e., x 18 its
own path) then t is also called a deformation retraction and A is then said to be a
deformation retract of B.

The notations being the same A is called a neighborhood retract of B when it
has a neighborhood in B for which it is a retract.



CHAPTER II
ADDITIVE GROUPS

The content of this chapter consists of the group-theoretic material required
later. All the groups are assumed topological, and everywhere except in a few
places the topology is significant. Particular attention has been paid to the
Pontrjagin duality theory and related group multiplication, which we will find
most useful in connection with intersections. This need cause no surprise since
group multiplication may be considered as obtained by abstraction from the
Kronecker index or topological intersections. We have also devoted consider-
able space to inverse and direct systems and their limit-groups which will come
very much to the forein (VI, VII). In addition a full extension of the Pontrjagin
theory is made to vector spaces over a field.

General references: Alexander-Zippin [a], Chevalley [a], Freudenthal [a], van
Kampen [a], Pontrjagin [P, b}, Steenrod [a], Weil [W].

§1. GENERAL PROPERTIES

1. We are dealing exclusively with abelian groups: they will always be written
additively. The groups are denoted by G, H, - - - , their elements by g, &, - - -
with eventual supplementary indices. The zero element (unit element, neutral
element) will be written 0.

If A, A’ are two subsets of a group G, we denote, respectively, by A 4 A’
and A — A’ the sets of elements {g + ¢’} and {g — g'},g9€eAd, g’ e A’. The
set —A is the set of elements {—g|geA}. Observe that in this notation
A — A is not the element 0 but represents the set of all the differences g — ¢’
where ¢, g’ e 4.

If {4} is an indexed system of subsets of G then Y, A\ is the set
U, + -+ + A,) where {\, ---,\,} is a finite subset of {A}. If the 4,
are subgroups, >, A, is also a subgroup, namely the smallest subgroup containing
all the Ax .

(1.1) DerFINITION. Let the group G = {g} as a set of elements be assigned a
topology turning it into a topological space. Then G thus topologized is called a
topological group whenever it is a To-space and in addition ¢ — ¢’ is a continuous
Junction of (g, g’) in this topology.

Since it will occur repeatedly it is important to bear in mind that the con-
tinuity condition imposed upon ¢ — g’ means that it must be a mapping
G X @ — G. That is to say, if V is any neighborhood of g; = go — go then
there must exist neighborhoods U, U’ of go, go such that ge U, ¢’ e U’ =
g — g’ €V, or equivalently such that U — U’ C V.

41
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Hereafter all groups are assumed topological. Since the discrete topology
always makes any group G a topological group, G may always be assigned a
topology turning it into a topological group.

(1.2) DerFiniTIONS. A neighborhood of zero in a topological group G s known
as a nucleus of G. A base or subbase at zero will be called a nuclear base or subbase

as the case may be.

Exampres. (1.3) The additive group of the real numbers (real line) with its usual
topology is a topological group; likewise the additive group of the real vectors with the
usual topology is a topological group. However, in (25) and for certain special purposes
an altogether different topology will be assigned to vector spaces, under which they will

still be topological groups.

(1.4) Consider the additive group P of the reals mod 1. Take a circumference C re-
ferred to an angular variable 6: 0 £ 6 < 2, and identify B with C so that p ¢« P goes into
the angle 6 = 2pr mod 2=. If the usual topology of C is assigned to P it becomes a compact
topological group and it is this group that is referred to hereafter as ‘‘the group of the
reals mod 1,”” with the notation P attached. Its fundamental importance will become
clear when we deal with Pontrjagin’s duality theory.

2. From the definitions we deduce at once:

(2.1) The mapping g — —g 1s a topological mapping of G onto itself. Likewise
for the mapping g — go + g (go fized).

(2.2) If N is a nucleus so is —N. Furthermore if go ¢ G then go + N is a
netghborhood of go and every neighborhood of go is of this form.

It is a consequence of (2.2) that the nuclei of G determine its topology.

Does a given assignment of open sets or nuclei turn a group G into a topo-
logical group? This question is answered by the following two propositions:

(2.3) Let a group G be topologized by the assignment of a non-empty family {U}
as its family of open sets. N. a.s. c. in order that G be a topological group under
this assignment of open sets are: (a) if U is open and go € G then go + U 13 also
open; (b) if go # 0 there is an open set U such that 0 e U, go¢ U; (c) if 0 e U
there is a U’ containing 0 and such that U’ — U’ C U (Pontrjagin, [P, 54]).

Regarding necessity, (a) is a consequence of (2.1) and (c) is implied by the
continuity of ¢ — g’. As for (b), since G is a To-space there exists an open
set U containing one of 0, go but not the other. If 0 e U then (b) holds. If
goeU,0¢ U, we may set U = go + N, where N is a nucleus » — go. Hence
— N is a nucleus  go and this is (b). Passing to sufficiency let gq , go be distinct
elements. Then go — go # 0 and so by (b) there is a U such that0e U,
go— god U,orgoege + U = U’, go¢ U'. Therefore Gis a To-space. Whether
g, go are distinct or not let Usgo — go. Then (g0 — go) + U is open and
contains 0. By (c) there is a U’ such that 0 ¢ U’, U’ U’ C (g —go) + U,
or (go + U') — (g0 + U’) C U. Since go + U and g, + U’ are open sets
containing go , go , the mapping (g, ¢’) — ¢ — ¢’ is continuous and (2.3) follows.

(2.4) Let G be a group. N.a.s.c. in order that a family {N} of subsets may
serve as a nuclear base for a topology turning G into a topological group are: (a)
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the family ts non-empty; (b) every N contains 0; (c) if g ¢ N there is an N’ such
that ¢ + N’ C N; (d) the intersection of two sels N contains an N; (e) if g # 0
there is an N p g; (f) for every N there is an N’ such that N' — N’ C N.

Necessity is immediate. To prove sufficiency we will first show that {N + g}
may serve as a base for a topology. At all events the union of its sets is G.
Let gse (N + go) n (N' + g5). Then g1 — goeN, g1 — go eN' Therefore
by (c) there exist Ny, Ni such that g — go + N1 C N, g» — go + N1 C N'.
The intersection Ni a Ni contains N such that g; + N, is between g, and
(go + N) a (go + N’). Hence by (I, 6.3) {N + g} may be chosen as a base.
We must now verify the conditions of (2.3). Take go + U, U open, and
grego + U. Since g1 — go € U there is a g» + N between g1 — go and U and so
gie(go + g2) + N C go + U. Therefore go + U is open or (2.3a) holds.
Property (2.3b) is a consequence of (¢). Let now 0 e U. Again some g + N
is between 0 and U. Hence —g ¢ N and so by (c¢) we have some —g 4+ N; C N,
~ then by (f) an N’ such that N' — N’ C N,. From this follows N' — N’ C U

which is (2.3¢). Thus G has been made a topological group. There remains
to show that in its topology {N} is a nuclear base. We have just seen that if
0 e U then some N' — N’ C U. This implies that if g e N’ then g — 0 =
g € U or that N’ C U which proves the asserted base property and also (2.4).

A nucleus N is said to be symmetrical whenever N = —N.

(2.5) Every nucleus N contains a symmetrical nucleus (for example N a (—N)).

(2.6) A topological group is a Hausdorff space.

That is to say, for a topological group & the separation axiom 7T implies T .
Let indeed g, ¢’ be distinct elements of G. Since g — ¢’ # 0 there is a nucleus
Njg — ¢, then another N; such that Ny — N; C N. Nowg — g ¢ N =
g—¢¢Ni— Ni=>(g+ Ni)n (¢ + Ni) = @. Thusg, ¢’ have the disjoint
neighborhoods g + N1, ¢’ + N which proves (2.6).

A stronger result is:

(2.7) A topological group is a Tychonoff space (Pontrjagin).

In view of (2.2) it is only necessary to establish the Tychonoff property for 0.
That is to say, we are to show that if N is a nucleus there exists a characteristic
function for 0 and the complement M of N in G. We first construct symmetrical
nuclei No, N1, --- such that No © N, Niya + Niya © Ni. That this may
be done is a consequence of (2.4f) and (2.5). Any rational dyadic number «
of the interval 0 — 1 may be written as a finite dyadic fraction 0.awa; - - - a,,

= 0, 1. Corresponding to a let N(a) denote the set of all the elements
> aigi, gieN:. Since Nfa) is a union of open sets it is open. Moreover
a < B = N(a) € N(B). To prove it we merely need to show it for 8 =
0.a; - -+ a,l. Now if g e N(a) theset g + N1 meets N(a) org e N(a) — Nppa =
N(a) + N,41 = N(B) which proves our assertion. Referring now to (I, 34.1)
we find that {N(«)} has precisely the properties required in the construction
for .a characteristic function of (0, ).

(2.8) A n.a.s.c. for G to be locally compact is that it possess a nucleus N whose

closure N is compact.
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For a neighborhood of g is of the form g + N. Its closure ¢ + N is topo-
logically equivalent to N and hence compact when and only when ¥ is compact.

3. Subgroups. A subgroup of @ is a subset H of G such that H — H C H.
Under the principle of relativization H is assigned a definite topology.

(3.1) A subgroup is a topological group.

For as a subset of G it is already a To-space by (2.6). Moreover since the
transformation 7: G X G — G sending (g, ¢’) into g — ¢’ is continuous so is
7|H X H: H X H — H which sends (g, ¢’), where g, g’ ¢ H, intog — g’. This
proves (3.1).

(8.2) If H is a subgroup so s H.

We must show that # — H C H or that g1, g e H > g = g1 — g2 e H, or
again that if N is a nucleus then ¢ + N meets H. There is a nucleus N’ such
that N’ — N’ C N. Since g; ¢ H the set g; + N’ contains an element g; ¢ H
and since H is a group ¢’ = g1 — g» e H. Therefore g’ egy — go + N’ — N’ C
g + N, and since ¢’ ¢ H, (3.2) follows.

As an interesting special result needed later we have:

(3.3) Every closed proper subgroup G of the group B of the reals mod 1 s finite
and cyclic (i.e., consists of the multiples of a single element).

Identify P with a circumference. About every point p ¢ P there is an arc A
such that A contains no element g ¢ G other than p. For otherwise G' must
contain elements on the arc 0 — 1/n whatever n, and so G is dense in P, hence
G = G = P, contrary to assumption. Since G is compact it may be covered
by a finite number of arcs each containing at most one g. Thus G is finite.
Assuming, as we may, G % 0 let g1 0 be an element of G as near to 0 as
“possible. Then G consists of the multiples of g: . For if g, ¢ G is not an mg,
then some mg, — ¢: is nearer 0 than g, . Thus G is cyclic.

4. Homomorphisms. Let G, H be two groups. The purely algebraic con-
cept of a homomorphism 7 of G into H is that of a transformation r: G — H
such that (g — ¢g’) = rg — 7¢’. Since we are dealing with topological groups
we must ascribe suitable continuity properties to . There arise thus a certain
number of mixed concepts which we must now examine.

(4.1) DEFiNiTIONS. A homomorphism 7: G — H is a mapping G — H such
that (g — h) = 79 — th. If 7 has merely the algebraic property just stated (i.e.,
18 perhaps not continuous) we shall call it a homomorphism in the algebraic sense.

(4.2) DEeFiNITIONS. A homomorphism v: G — H which s a topological trans-
Jormation s called an isomorphism. If r is merely a one-one homomorphism in
the algebraic sense  is called an isomorphism in the algebraic sense.

A homomorphism t is said to be open if it is an open mapping. A univalent
open mapping 7: G — H 1is thus an isomorphism of G with a subgroup of H.

(4.3) Let 1 be a homomorphism G — H in the algebraic sense. If T is continu-
ous at 0 it s a homomorphism. If moreover r maps every nucleus of G onto a
nucleus of 7G, it is an open homomorphism.
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Suppose 7 continuous at 0 and let go e G. The mapping g — 7(g — go) is
continuous at go and hence this is also the case for 7: g — 79 = 790 + 7(g — g0)-
Thus 7 is continuous everywhere. A similar proof applies to the second assertion
of (4.3).

(4.4) Let 7 be a homomorphism G — H. The set of the elements g such that
79 = 0 18 a closed subgroup of G called the kernel of 7. A n. a. s. c. for T to be
univalent is that the kernel reduces to the element 0.

(4.5) Let T and 0 be homomorphisms G > Hand H - G. If 160 = 15,07 = 14
(the identity mappings of H, G into themselves) then both T and 6 are isomorphisms.

It is readily seen that both kernels are zero and then that 6 = 7 . Hence
7 is an isomorphism and similarly for 4.

5. Factor-groups. Let G' be a group.and @ a closed subgroup of G. If
g € G the set g + G’ is known as the coset of g mod G’. If g, g, are in the same
coset mod G’ then they are said to be congruent mod G’ and this relation is
manifestly an equivalence. If h, h; are the cosets of g, g1 mod G’ then b + k;
are those of g &= g1 mod G’. Therefore under this addition the cosets form a
group H, which, duly topologized as shown in a moment, is known as the factor-
group of G by G’ or mod G’, and denoted by G/G’.

The assignment to g of the coset h containing it defines a homomorphism in
the algebraic sense = of G onto G/@ known as the natural projection or merely
the projection of G onto the factor-group.

We now define a set V ¢ G/G’ as open whenever = 'V is open in G. If the
resulting topology turns G/G’ into a topological group it will also automatically
turn = into a homomorphism. ‘

The topology assigned to G/G’ is immediately seen to make it a topolog-
ical group. The proof merely requires that we verify the conditions of (2.3).

Let g* be any coset mod G’ and V an open set of G/G’. We have:
7 g* + V) = U{g + 'V | g eg*] = a union of open sets of G. Therefore
g* + V is open in G/G’, or (2.3a) holds.

We notice now that if U is open in G then #U is open in G/G’. For = '(xU) =
G’ + U =U{g+ U|geG'} = an open set of G.

Let g* ¢ G/G’ and # Q and let g be an element of the coset 7 'g* of G mod @'.
Since @ is closed so is ¢ + @’. Hence its complement U in G is open and it
contains G’. Therefore #UU = V is a nucleus not containing g*. This proves
(2.3b) for G/G'.

Let V be any nucleus of G/G’. Then = 'V is a nucleus of G. Hence it
contains another U'; such that U; — U; C = 'V. Therefore nU, is a nucleus of
G/@ such that #U; — «U; C V and this is (2.3¢) for G/G’. We have thus
proved:

(5.1) The topology assigned to G/G’ turns it into a topological group. It is
this topological group which is henceforth denoled by G/G’ and called the factor-
group of G by G’ or mod G'. Furthermore since congruence is an equivalence we
may identify elements congruent mod G’ (I, 13) and the resulting group is pre-
csely G/G'.
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We have also obtained, incidentally:

(5.2) The natural projection =: G — G/G' is an open homomorphism of G
onto G/@'.

We now prove:

(5.3) Let ¢ be a transformation of G into a topological space X such that ¢(g)
depends solely upon the coset g* of g modulo a closed subgroup G'. If we set o*(g*) =
o(g) then o* is a transformation G/G' — X and we have: (a) if ¢ is a mapping (i.e.,
continuous) so is ¢*; (b) if ¢ is open so is ¢*; (¢) if X is a group and ¢ a homo-
morphism G — X then ¢* is a homomorphism G/G' — X.

Let U be open in X. If ¢ is continuous then ¢ ~(U) is open in G and hence
¢* (U) = mp '(U), where = is the natural projection G — G/G’, is open in
G/G’. Therefore ¢* is continuous, which proves (a). Assume now ¢ open
and let V be open in G/G’. Then 7'V is open in G and so ¢*(V) = o(x'V) is
open, which proves (b). Finally if g €gr , g2€g> and ¢ is a homomorphism
then ¢* is continuous by (a) and in addition:

OF 4+ ) = olgs + 9) = olg) + olg) = ©*(g) + 0" (g2),

S0 ¢* is a homomorphism, and this is (c).

(5.4) Let  be a homomorphism G — H and @', H' closed subgroups of G, H.
If r@' C H’ there corresponds to v a homomorphism ': G/G' — H/H' given as
follows: if m, w are the natural projections of G, H, onto G/G', H/H' then v'x = wr.
If 7 is open so is 7.

Since wr depends solely upon the coset of g mod G, (5.4) is a consequence
of (5.3).

(5.5) Let G’ be a closed subgroup of G. If any two of the groups G, @', G/G’
are compact so is the third.

It is already known that when G is compact so is G' (I, 23.1) and hence
likewise G/G" = =G (I, 23.2) where = is the natural projection G — G/G’. Thus
there remains to show that when G’ and G/G’ are compact so is G. Let§ =
{F.} be an indexed system of closed sets of G with the finite intersection prop-
erty. We are to prove that NF, = @. We can obviously augment § by the
finite intersections of the F, without disturbing the situation, and so we assume
them already in §.

Now the indexed system {xF,} of closed sets of G/G’ has also the finite inter-
section property. Since G/G’ is compact N(xF,) # @ and so it contains an
element g*. The set = 'g* is a coset go + G’ of G mod G’. Since addition is a
topological operation and @' is closed and compact so is go + G'.

Let U be any neighborhood of go + G’. We propose to show that F, meets
U. If g ego+ G, thereisanucleus N such thatg + N C U then a symmetrical
one N’ such that N/ — N’ = N’ + N’ € N. It follows that ¢ + N’ is such
that if ¢’ eg + N’ then ¢ + N’ C U. Since {g + N’} is an open covering
of the compact set go + G’ there is a finite subcovering {g; + N },andgeg;: + N;—
g + Ni < U. Therefore if NN; = N, then whatever g ego + G’ we have
g + Ny € U. Now the union of all such sets g + No is a set 7'V where V
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is a neighborhood of g* in G/G’, and all sets = 'V are of the type in question.
Therefore to prove that U meets F, we only need to show that ¥V meets »F,,
and this is a consequence of the fact that g* e xF, . A

Since F, meets every neighborhood U of go + G’ it must meet this set itself,
otherwise the complement of F, in G would be a U which F, would fail to meet.

We have found then that {F, n (g0 + G’)} is an indexed system of closed
sets in the compact set go + G’ with the finite intersection property. Therefore
N(F, a (9o + G)) = @, hence NF, > @, and G is compact.

For locally compact groups we may prove the weaker property:

(5.6) If G is locally compact and @ 1is a closed subgroup of G then G/G’ is
likewise locally compact.

Let = still denote the natural projection G — G/G’. TUnder the assumption
G has a nucleus N with N compact. Hence G/G’ has the nucleus N* = #N.
Now: N* C »(N) C »N. Since «(N) is compact in a Hausdorff space, it is
closed and since it is between N* and N* we must have »(N) = N*. Thus N*
is a nucleus of G/G’ with compact closure, proving (5.6).

6. Product.

(6.1) DeFINITION. Let {Gh} be a system of groups indexed by A = {\}. The
topological product G = PG, is a Hausdorff space (I, 30.2). Ifg = {g}, ¢ =
{gr} are elements of G we define g + ¢’ = {gr + gr} and 0 = {0x} (O 75 the zero
of G). Under these conditions G becomes an additive group. Since g , gr are
continuous in (g, g’) so is gn — g and hence also ¢ — ¢’ (I, 12.2). Therefore
under its topology G s a topological group.

(6.2) Let M = {u} CAand G = PG,. Then the projection =: G — G’ is
an open homomorphism.

For = is a homomorphism in the algebraic sense and an open mapping as well
I, 12.1). ‘

(6.3) ExampLE. If A is any set, and P as in (1.4) then G = PB* is a compact
topological group known as toroidal. The cardinal number | A | is the dimension

of G. (See I, 25.5.)
7. Weak product.

(7.1) DeriNiTION. Consider now a system {Gh\} of discrete groups indexed
by A = {\}. The elements of PG\ which have at most a finite number of coordinates
different from 0 form a subgroup G which taken discrete is called the weak product
of the Gy , written PG, .

(7.2) REmark. If A is infinite, the discrete topology is not the topology
that @ is to receive as a subgroup of the product, and so it is not to be con-
sidered as a subgroup of PG, in the topological sense.

(73) Let M = {u} C A and @ = P*G,. To every ¢’ ¢ G’ there may be
assigned g = {gx} = n(g’) € G defined thus: g, = g, , gr» = Ofor A ¢ M. Clearly
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7 is an isomorphism of @’ with a subgroup of G. It is called the ¢njection of G’
into G. In particular we may choose M as consisting of the single element A\
and we then obtain the injection g, of the single group G\ into G@. For simplicity
and wherever no confusion arises, we continue to denote by g\ the element
m(gr) of G. Under this convention any element g ¢ G may be written as a
finite sum > gx (at most a finite number of terms different from 0).

8. Chains. The chains may be considered as a convenient symbolism for
dealing with certain products. This symbolism will be used extensively in
the theory of complexes, where owing to the similarity with linear forms, it has
become traditional.

Let again A = {\} be any set of indices and let ‘G = G*. Introduce now a set
of symbols X = {x)\} called elementary chains such that A — xz, is one-one.
The elements of ‘G may now be represented by the symbolic sums, called n-
finite chains: C = Y gxtx, gr € G, with the convention that

(8.1) 2ot £ D g = 2 (gr £ g

'@ is also referred to as the group of the infinite chains over G based on X.

Suppose now the group G discrete. We could introduce a ‘“weak A power”’
of G, but it is more convenient to take an indexed collection {G\} in which
G\ = G and then the weak power G* = P“G\. We introduce again X = {2}
with A\ — z, one-one. The elements of G* may now be represented by the
finite sums C = D_ gata, g € G, called finite chains, with the same addition
convention (8.1). G* is then referred to as the group of the finite chains over
G based on X.

In both types of chains and groups the base X will often be evident from
the context and mention of it omitted.

If A is finite the two groups ‘G, G* are in algebraic isomorphism, their chains
being finite in both cases. They are then described more adequately as groups
with topology (for 'G) or discrete (for G*).

Chain-homomorphisms. Let H, K be two groups of chains over G based,
respectively, on X = {x.}, Y = {y,} where A = {A}, M = {u}. The elements
of the two groups are then represented as

(8.2) =Y ha, k=2 ky., I,k €G.

Let now A = || ay, || be a matrix of integers with finite columns (for given u
at most a finite number of a,, are different from 0). We associate with A the
transformation H — K given by

(8.3) T Z ha = Z (; ha aku)yu-

(8.4) 7 1s @ homomorphism H — K.

It is clearly so in the algebraic sense. The continuity proof is best carried
through by means of the powers. We have then H = G*, K = G" and (8.3)
states that 7 sends the element h with coordinates A, into the element & with
the coordinates k, given by
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(85) k“ = ; h)\a)\,,.

Now h, is a continuous function of k (I, 12.1) and k, is a continuous function
of the hy in (8.5) since their number is finite and group addition is continuous.
It follows that k is also a continuous function of h (I, 12.2), and so (8.4) holds.

Suppose now G discrete with H, K as the groups of finite chains over G based
on X, Y. This time it will be necessary to impose finiteness of the rows upon A
(for a given \ at most a finite number of a), are > 0 ) and then 7 given by (8.3)
will still represent a homomorphism H — K. Since the groups H, K are dis-
crete the continuity considerations do not arise.

Homomorphisms of one of the two types just considered will be referred to
as chain-homomorphisms.

(8.6) We will now consider certain chain-groups required in connection
with the so-called “dissections” of a complex (III, 23).

Let Y, X be as before, except that now YV C X and let X’ = {z,} be the
complement of ¥ in X. The chains h’ = Y h.z, , h, € G, make up a group H'.
Corresponding to any open set U of G introduce the sets

V,={hlh eU}, V,={k|heU},
W.={h|keU}, W,={k|ki.eU}.

Let also 'K denote the subgroup of H consisting of the elements whose co-
ordinates h, = 0. By (I, 12.6) 'K is closed in H. Furthermore k = ), k,y, —
> 0x, + > k.y, defines a homomorphism: K — H called the injection of
K into H.

(8. 7) The injection 3 is an isomorphism of K with 'K.

It is clearly an isomorphism in the algebraic sense. Furthermore since
{V,; W,} is a subbase for H, {’Kn W,} is one for 'K. We have then in (W,} a
subbase for K such that nW = 'K an W,. Hence n maps into one another
the elements of subbases for K, ’K and so it is topological, proving (8.7).

(8.8) Taking advantage of (8.7 ) the identification ¥ — gk induced by » will
cause the topological imbedding of K as the closed subgroup 'K of H. This
identification is assumed henceforth, so that K is now a closed subgroup of H.

Let then H* = H/K. If h = Z hx, + 2 kyy, then b’ = 3 h,z, is a rep-
resentative of the coset h* of h mod K. Clearly h* — h’ defines an isomor-
phism 8 of H* with H’ in the algebraic sense.

(8.9) 0 s an isomorphism of H* with H'.

If = is the natural projection H — H* then {rV,} is a subbase for H*. Since
orV, = V., 6 maps the elements of a subbase for H* into those of a subbase
for H’. Hence 6 is topological and (8.9) follows.

§2. GENERATORS OF A GROUP

9. The present section is a digression from topological groups necessitated
by the requirements of the theory of complexes. For the present the topology
of the groups will not be utilized.
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Let G = {g} be a group and B = {g’} a (finite or infinite) subset of G. The
elements g’ of B are said to be linearly independent whenever there exists no
relation between a finite number of elements of B of the form:

(9.1) agi + -+ + ag, =0,

where the a; are integers not all zero. The rank of G is the maximum number
of linearly independent elements of G. Evidently:

(9.2) The rank of a finite product is the sum of the ranks of the factors.

The elements of the set B are said to be generators of G if it is possible to
express every g ¢ G in the form

9.3) g=agi+ -+ ag,, gi € B, a; an integer.

If in (9.3) the coefficients a; are always unique for a given g, or which is the
same, if the generators are independent, then B is said to be a base of G. A
group possessing a base is said to be free.

10. (10.1) A subgroup H 5= 0 of a free group G is a free group.

Let B = {b.} be a base for G and let A = {a} be well-ordered in a definite
way. Any heH may be written uniquely in the normal form h =
Mibay + -+ + Mba,, 01 < -+ < a,. We call a, the index of h. Given a if
there is an % of index « choose one, b, , such that in the normal form the co-
efficient of b, has its least absolute value different from 0. If no such h exists
choose b, = 0. Then B’ = {b,}, with the elements zero omitted, is a base for
H. Consider in fact k as above and let b, = -+ + n,b,, (normal form). If »
is the h.cf. of m,, n., we have mm, 4+ nn, = » for some integers m, n and
hence mh + nb,, = --- + vb,, (normal form). Since |»| = |n, |, we have
n, = v, m, = pn,. Itfollowsthath, = b — ub, eH isof index By < ay.
Repeating the reasoning we obtain k, = h — (ubs, + -+ + u,b:,,) of index
Bog1 < B: < -++ < ar. Since 4 is well-ordered the process must stop for some s.
We will then have h, = 0. Therefore B’ is a set of generators for H. Since
its elements are obviously linearly independent, B’ is a base for H and (10.1)
is proved.

Remark. The preceding proof based on well-ordering is shorter and more
intuitive than alternates resting upon Zorn’s theorem. Incidentally this is the
only instance where well-ordering will be utilized in the present work.

(10.2) A (discrete) group G is isomorphic with a faclor-group of a free group.

Let G = {g} and let

h = Y aig: = 0 (finite sums)

be the relations between the generators. For each g; introduce a new symbol
g,{ and let G’ be the free group based on the g; . Then the symbols b’ = E ag;
generate a subgroup H' of G/ and G = G'/H’.

11. Digression on integral matrices. The reduction properties of integral
matrices are very useful in the treatment of groups with a finite number of
generators, and hence in the theory of complexes.
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Consider then the integral matrix:
A= lajll, t=1,2---,p;i=12,---,q.

We say that 4 is unimodular when it is square (p = ¢) and its determinant
|A| = +1. :

(11.1) The product of two unimodular matrices is a unimodular matriz.

(11.2) The inverse A7 of a unimodular matriz A exists and is unimodular.

Let again A be any integral matrix whatever. The following three types of
operations on A are known as elementary: (a) transposition (interchange of two
rows or columns); (b) change in sign of a row or column; (¢) adding to the ele-
ments of a row or column the corresponding elements of another row or column
multiplied by an integer. Each corresponds to the multiplication of A on
one or the other side by a unimodular matrix. As a consequence, the effect
of a finite number of elementary operations on A is to replace it by a matrix
BAC, where B, C are unimodular.

(11.3) DerFINITION. Two matrices A, A, such that A, = BAC, B and C
unimodular, are said to be equivalent. It is clear in fact that their relation to
one another is a true relation of egquivalence.

Let p be the rank of A and §,(4) a number which is zero for p > p, and equal
to the h.c.f. of the minors of order p for p < p. If A, is equivalent to A the
minors of order p of A, are linear integral combinations of those of A and so
8,(A) divides §,(A1). Since the reverse is also true §,(4;) = 8,(4), or equivalent
matrices have the same numbers §,(A) and hence the same rank p. The num-
bers d, = §,(4)/6,1(4), (8(4) = 1), are the tnvariant factors of A.

(11.4) THEOREM. An integral matriz A is equivalent to a “diagonal”’ matriz
d

(1L.5) - d,

such that d, divides dpy1 .

As a consequence of (11.4) we shall have:

(11.6) di, - - -, d, ts the sequence of invariant factors of A, and so each tnvariant
Sactor s divisible by its predecessor.

(11.7) A n.a.s.c. for two integral matrices with the same numbers of rows and
columns to be equivalent is that they have the same sequence of invariant factors

di, - ,d,.
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It is clear that (11.4) and (11.6) yield (11.7). As for (11.6), in the matrix
(11.5) with the d, as stated, dids - -+ d, divides every minor of order p and is
itself such a minor. Therefore §,(A) = d; - -+ d,, hence 8,41(4)/8,(4) = dppr
and so dy, - -+, d, is the sequence of invariant factors of A. Furthermore d,
divides d,41 and so (11.6) will follow from (11.4).

Turning then our attention to (11.4) we dismiss the trivial case where the
terms of A are all zero. Then in each matrix equivalent to A there are terms
different from 0 and in one of these B = || b;; || there will occur a term d; (we
make as yet no assertion as to d;) which is the least positive term occurring in
all the matrices equivalent to A. By transpositions we may dispose of B so
thatby = dy. Letby =dig+r,7> 1,0 £r < d;. By multiplying the first
column by g and subtracting it from the ¢th we replace bi; by r < di , hence r = 0.
Thus we may replace B by a matrix in which the b;;, and similarly the by,
7 > 1, are all zero, or assume:

d 0
0 B

Since by adding the ¢th row, ¢ > 1, to the first we may bring bu, b > 1, to the
position of bi; , di must divide bs; and so all the terms of B,. Now if A has a
single row, the reduction to (11.8) already proves (11.4). Therefore we may
use induction on the number of columns, and so assuming (11.4) for B, prove it
for B. Under the circumstances B, is reducible by operations on B to the form
(11.5) with diagonal terms didy , - -+ , dyd, , where did,, are the invariant factors
of B; and did, divides did, ;1. Hence B is reducible to the form (11.5) with
diagonal terms d, , ddy, -, dld,', which proves (11.4).

12. Groups with a finite number of generators. We shall discuss certain
properties of these groups culminating in the basic product decomposition (12.8).

(11.8) B =

(12.1) DeFiNiTION. Let B = {g1, -, ga}, B’ = (g1, -+, gn) be two sels
of elements of G containing the same number n of elements. By a unimodular
transformation v: B — B’ 1s meant a system of relations,

(12.2) gi = D aijg;i, || ai;|| unimodular.
(12.3) If a group G has a finite base B = {g1, -+, ga} its rank s (obviously)
n. A n.a.s.c. for a second set B’ = {g{, SN gf.} to be a base is that it may be

obtained from B by a unimodular transformation.
Whatever the set B’ of n elements there exist relations

(12.4) gi = 2 cig;, C=|leill

A n.as.c. in order that {g;} be a base is that the g; be expressible as linear
combinations of the gi , or that there exist relations:

(12.5) g: = > dijg;, D =|ldis].

From this follows
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g: = 2 digtinge

and so since B is a base we must have DC = 1. This matrix relation yields
|ID|-|C| =1, and since the determinants are integers we must have |C | =
=+1. Thus in order that B’ be a base C. must be unimodular, or the condition
of (12.3) must be fulfilled. Conversely, if it is fulfilled, C is unimodular and
(12.5) holds with D = C ™, from which follows readily that B’ is a base.

(12.6) Let G be a free group of rank n, and H a subgroup of G. Then bases
{91, -+, 0n}, {M1, -+, hm} may be chosen for G, H such that

(127) h; = d.-g.- ’ 1= 1, 2, s, M, d; divides d.'+1 .

Furthermore the set dy , - - - , dm ts uniquely determined by H. _
Let {g:} be a base for G. Since H is a free group (10.1) it has also a base
{h:} and there subsist relations

hi = 3 aigi, A =|lall

By a change in the bases one may replace A by any other equivalent matrix
and so (12.6) is a consequence of (11.4).

(12.8) TueoreM. Let G be a group with a finite number n of generators and
of rank p. Then

(12.9) GG XG X XGCn,
where: (a) Gy s a free group of rank p when p > 0 and Go = 0 when p = 0; (b)

G, is cyclic of finite order e, where e, divides ep41; (c) m + p = n; (d) the sequence
e, -, em 18 uniquely determined by G.

By (10.2) G = G’/H', where @ is a free group. - We may therefore assume
G = G'/H'. Referring to (12.6) bases {g1, - - - , gn}, {h1, - - - , hi} may be chosen
for G’, H' such that

h: = d‘g: , 1 =1, 2 T d; divides dig1.

If = is the natural projection G’ — G and we set ng; = g;, wh; = h; , the genera-

tors g1, - - , ga are derived from the initial set by a unimodular transformation
and we shall have

h¢=d,g.-=0, i=1,2,"',1‘.

There may be a certain number of the first d; equal to unity. We cast away
the corresponding generators, denote the remaining d; by e, and so have a new
system of generators which we denote by g1, -+, gm+, sSuch that

hy = ex9, = 0, p=12 - ,m = r;e,divides ep41 .

In any case p is the rank of G. Since the g.; are linearly independent if p > 0
they generate a free group Gy of rank p, while if p = 0 we set Gy = 0. As for
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g» it generates a cyclic group of order ¢, and we have manifestly the asserted
decomposition (12.9).

(12.10) There remains to prove the unicity of the sequence e, -, €m.
The decomposition (12.9) depends only on the choice of G’ and the relation between
G’ and H’ and hence upon the set of generators g;, - - - , g» and so {¢,} depends
solely upon these. If we choose {h1, + - , h,} as a base for the group H’ and
write down the relations expressing its elements in terms of the g; :

(12.11) “hi= Y a9, A =|a;ll,

then {e,} is simply the set of the invariant factors of A which are greater than 1.
Suppose now that we add a new generator g, to the set g, -+ ,g.. We have
then a relation

—@gn+1 = Qp41101 + - +an+l.ngu .

There correspond new groups Gi , H; based on {g1, -+, gnsa}, {h1, -+, hys1)
with the relations (12.11) and

hip = an+1.1g{ + -+ an+l.ny; + g:.+1 .
Thus A is now replaced by
|0

0
Gnita, ~o, 1
whose invariant factors greater than 1 are the same as those of A. Thus by
adding new generators we do not modify {e,}. Suppose then that we have two
systems of generators {g;} and {g;}. Together they form again a system of
generators which is obtained from each by adding new generators. Therefore
the three systems yield the same set {e,} and in particular this is true for {g:}
and {g;} thus proving (12.8).

§3. LIMIT-GROUPS

13. Inverse systems. We now return to topological groups and investigate
certain systems of groups {Gh} indexed by a directed set A = {X\; >}.

(13.1) DeriniTION. Let {Gh} be an inverse mapping system (I, 38) whose
projections w, are homomorphisms. Then S = {G ; m} is said to be an inverse
system of groups, or merely an tnverse system.

(13.2) The limit ‘G of 8 is a closed subgroup of @ = PG\ and is known as the
“limit-group” of S.
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By (I, 38.3) ‘G is closed in G. Then if g, g’ ¢ ‘G we have: migy = g, , mgr =
gu , hence (g — 7)) = gu — g.,org — g e'G. Therefore ‘G is a subgroup of G.

(13.3) Let M = {u; >} be a directed subsystem of A, S’ the corresponding
partial system of S (I, 40), ‘G’ the limit-group of S’'. Then the projection r
d, 40.1) : 'G — '@’ is a homomorphism, dnd when S’ is cofinal in S then r is an
isomorphism.

If @ = PG, then r = = |’G where = is the projection G — G’, and since =
is here a homomorphism so is 7.  When 8§’ is cofinal in S the mapping 7 is topo-
logical and hence it is an isomorphism.

(13.4) If ¢ = {gr} € 'G then: (a) g — g» defines a homomorphism m\: ‘G — Gy, ;
(b) of the x (all \, p, X > p) are isomorphisms then = is likewise an isomor-
phism, so that 'G = G\ .

Property (a) is a special case of (13.3) obtained when M consists of the single
element .

Regarding (b), let A be kept fixed and take any g». Whatever u choose
v > X\, uand set g, = mi(m) 'gn. We see immediately that: («)g, is inde-
pendent of »; (8) {g.} € ‘G; (v) any element g e ‘G with the coordinate g will
have its u coordinate determined by the same relation as g, and so it must be
g. . Therefore m, is a univalent homomorphism onto.

To complete the proof there remains to show that = is open. Let U, be
any open set of G, and set V, = {g|g. e U,}. By (I, 38.2), {V.,} is a base for
’G. Choose again » > \, p. Since the =, are isomorphisms m\V, = =(x.)"'U,
is open in Gh. Hence m is open and (13.4) follows.

(13.5) Let 8 = {Gr; m}, = = {H\; w)} be inverse systems both indexed by
A = {Xx; >} and with imit-groups 'G, '"H. Suppose that for each \ there is a
homomorphism 7> : Gn — Hy such that: whr = 7,m,, N > p. There exists a
homomorphism 7:'G — 'H such that if g = {g\} € ‘G then g = {n\g}.

Let H = PH,. If g ¢’G then g — {ng} defines a homomorphism 7: ‘G — H
in the algebraic sense. Since every coordinate gy of 7g is a continuous function
of g so is 7g. Hence 7 is a homomorphism. From wh(ngy) = 7mgr = (7.g,)
follows that 7¢ € 'H, so 7 is actually a homomorphism ‘G — 'H.

(13.6) Under the same assumptions as in (13.5) let the G\ be compact. If
H) = n\Gh then 2’ = {Hy; w)} is an inverse system with limit-group say 'H’ and
T 18 an open homomorphism of 'G onto 'H’'.

We have found that 7 is a homomorphism of ‘G into 'H’. To prove that
is onto take B’ = {hy} ¢ 'H’ and let F = rx'hx . Since Hy is a Hausdorff space
hy is closed, and since 7, is continuous F) is closed in G, and so like G, it is a
compact Hausdorff space. If g e F) then ngy = hx , hence for A > u: whngy =
whr = h, = 7,(mhg). Therefore mig\ ¢ F, or m,Fx C F,. It follows that
{F\; m} is an inverse mapping system of compact Hausdorff spaces. By
(I, 39.1) its limit-space contains an element g = {g\} which is also in ‘G. Since
gr € F\ we have ng, = hyor ! = 7g. 'Therefore r is a mapping onto.

Let ‘G be the kernel of r. Then 7 defines a univalent homomorphism =, :
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'G/'Gy — 'H'. Since 'G is compact so is ‘Gy and hence also ‘G/'G; (5.5). Since
71 is a continuous one-one mapping of a compact space it is topological.

Now the natural projection #: ‘G — 'G/'G, is an open homomorphism. Since
7 = mm, and 7 is topological, 7 is also open, thus proving (13.6).

(13.7) Generalization. An important type of group arises in the homology
theory of nets (Cech theory, VI), which is analogous and closely related to
the limit-group of inverse systems. As before we have a system of groups
{G} indexed by {\; >} and for each \ there exists a closed subgroup Gy of Gy .
Corresponding to every ordered pair A > u there are given one or more homo-
morphisms or projections =, : G» — G, such that:

I. If A > u > vand 7, , # are projections so is 7% ) .

II. & c G, .

III. If ), #,, A > u, are projections then T — Tagh C G,', , o €Gh.

Let Hy, = G\/Gx and let 7, be the natural projection: Gy — H\. By (5.4)
there is 2 homomorphism w,); :Hy— H,,\ > pu, such that wﬁn = 1,1r,); and III
has for consequence that ) is independent of the particular ) in its definition:
w) is unique. We may also say that all the ) induce the same projection of
the cosets of Gy mod G into those of G, mod G, . It follows then readily that
{Hy ; wp} is an inverse system and its limit-group is denoted by H.

A decidedly different type of group, which generalizes limits of inverse sys-
tems, arises now as follows. Let G = PG, and let ¢ = {g\} ¢ @ be such that
A > u=> mg — g, € G,. By III this remains true if =, is replaced by any
other projection #, . It is clear that the set °G of all such elements is a sub-
group of G. It is the group which we had in view.

(a) °G s closed in G.

The function fy,(g) = m\gx — g, is & continuous function on G to G, . Hence
Fy, = f5.G, is closed in G and 56 is °G = NF,, .

(b) G’ = PG is a closed subgroup of G (I, 12.6) and hence also of °G.

(¢) °G/G' == H.

Let G* = °G/G’. If g = {g\} € °G then {ngr} = h ¢ H and h depends solely
upon the coset g* of g mod G’. From this we infer that g¥* — h defines a homo-
morphism 8: G* — H. 1If 6g* = 0 then g, ¢ Gx, and so g € G, hence g* = 0,
or 0 is univalent. Given h = {h} take in the coset h\ of Gy mod Gy a definite
element g,. Evidently A > u = 7hg» — g, ¢ G, and so ¢ = {g\} € °G is such
that 6g* = h. Thus 6 is onto and so it is an isomorphism in the algebraic
sense.

Let Uy be open in G\ . Since the sets {g | g ¢ U} make up a subbase for G,
if Va = {g|g¢€°G, greU,} then by the principle of relativization {V,} is a
subbase for °G. Since 7, is open the set 7\l is open in Hy and 6V, = {h | hr €
nUs} is open in H. Therefore 6 is open and so it is an isomorphism. This
proves (c).

(d) When the G\ are compact so are the groups °G, G, H.

For G is then compact, hence °G, @' are compact as closed subgroups of G,
and likewise H by (5.5).
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14. Direct systems.

(14.1) DeFINITION. Let this time {G\} be a system of discrete groups still
indexed by A = {\; >} and with projections running the other way Jor A >
there is a homomorphism m*: G, —»G,suchthat)\ Se>rvont=ntn
Then the system S* of the Gy and the mx" is said to form a direct system of groups or
merely a direct system, written S* = {Gy ; m*}.

If G = PG\ (weak product), the elements g, — m“g, (A > 1) generate a
subgroup H of G, and the factor-group G* = G/H is called the limit-group of
S*. Since G is discrete so are H and G*.

Let g € G\. Under the convention in (7.3) g\ represents also an element of
G and g*its coset mod H is an element of G*. We call g, a representative of g*
in G\. The mapping gr» — ¢*, which is clearly a homomorphxsm G — G*is
again called the m]ectzon of G\ into G*.

(14.2) Every g* e G* hes a representative in some G, , and in fact for every element
of a see M = {u} cofinal in A.

In g* (now a coset of G mod H) take any element g. We may write g as a
finitesumg =g\, + --- + gr,. Chooseany u > A, -+, . We have then
o — m, g\, e H, and hence g — Zx;™gy, e H. Therefore g* has the representa-
tive Zmy Mgy, € G,. It is clear that M = {u} is cofinal in A.

(14.3) H consists of those and only those elements g = g\, + -+ + g, of G
such that there exists @ Ao > A1, -+ - , \¢ such that wa:‘gx = 0.

Let (a) denote the property of the statement.

(a) If g has the property () then g e H.

For g = Z(gn — mo'oh) € H.

(b) A generator h = g, — mx"g, of H has property (a).

We may choose Ao > X > p and then myg, — 1;:‘(1: “g,) = 0. Since m"g, € Gy
this means that h has property (a).

(¢) The elements g wzth property (&) form a subgroup H, of H.

Letg = Zg0, ¢ ng be such tha,t. there are correspondmg )\o 7\0 such that
g = 0for A > Ao, g» = 0for A > XA and that Enogx =0, Zné ‘o = 0. If
we choose u > Ao, Ao we find at once E)‘.(,,‘)r: Mg — 1) = 0 proving that g — g’
has property (), and hence the asserted group property.

By (a) we have H, C H and by (b) and (¢): H C H, hence H = H,, which
proves (14.3).

(14.4) The representatives of the zero of G* m G;\ make up a set Hx which consists
of those and only those elements g\ such that n‘, ‘o = 0 for some Ao > .

If # is the injection Gh — G* then by (14.3): mH, = m(G. a H) which
proves (14.4).

(14.5) Let M = {u; >} be a directed subsystem of A = {\; >} and let $'* =
{G, ; m*'} be the direct system attached to M and G'* its limit-group. There is a
homomorphism r: G’* — G* such that if g, is a representative of g'* ¢ G’* then it is
also a representative of 7¢’*. If M is cofinal tn A (we then say: S'* is cofinal in S*)
then T is an isomorphism.
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Let @, H' be the analogues of G, H for S'*, and 7 the injection @' — G. Wé
have G* = G/H, @'* = G'/H', also immediately nH' C H. Let ¢ be the
mapping G' — G* whereby ¢(g’) is the coset g* of ng’ mod H. Since ¢(g’)
depends solely upon the coset of g’ mod H’, by (5.3) it induces & homomorphism
7. G@"* — G* which obviously behaves as required.

Suppose now M cofinal in A. Then: (a) 7 is univalent. For suppose rg™* = 0
and let g, be a representative of g’*. Since it is also a representative of rg*,
by (14.4) for some A > u we have my “g,'. = 0. Since M is cofinal in A there is a
# > A and so mm‘g, = 0 = m"g,. Therefore g* = 0. (b) rG'* = G*.
For let g* ¢ G* have the representative g» . There exists a 4 > A and hence
T, *g\ = g, is a representative of g* and likewise of a g’* ¢ G’* such that rg"* = g*.
From (a), (b) follows now that  is the asserted isomorphism.

(14.6) There is a homomorphism n, : G, — G* such that g* = n.g, has g, for
representative. If the m* are all isomorphisms then n, is an {somorphism so that
G =G,.

That #, is a homomorphism is a consequence of (14.5) obtained when M con-
sists of the single element u.

Suppose now that the my* are isomorphisms. If n,g, = O then some m*g, = 0,
and since m* is an isomorphism g, = 0. Therefore 7, is univalent. Take now
any g* ¢ G* and let it have the representative g, . Choose A > u, v. Since the
mx* are all isomorphisms (my*)'mx’g, = g, is likewise a representative of g* and
ngs = ¢g*. Hence 5, maps G, onto G*. Since 7, is univalent “onto” and G*,
G, are discrete they are isomorphic under 7,.

The indirect definition of the limit of a direct system in terms of the weak
product is most suitable from the point of view of group theory. In the applica-
tions (VI, VII) we shall find convenient to have the direct:

(14.7) Alternate definition. Let 8* = {Gy; m"*} be a direct system. Let
gu, g» be identified whenever for some A > u, » we have m’g, = m'g,. A
collection of identified elements g , g, , - * - is now denoted by ‘g, and gr, g, , * - -

~are called the representatives of ‘g. The set ‘G = {’g} of the elements thus
obtained is turned into a group as follows. First, the zeros of the G, are
representatives of a single element which is taken as the zero of ‘G. Second,
if g, ¢’ have representatives g,, g, we choose any A > u, v and find that
(mtg, + m'g,) Gy is the representative of a unique element which is by
definition ‘g + ‘g’. The verification of the group axioms is elementary and ‘G,
now denoting the new group taken discrete, is by definition the limit-group of S*.

We shall now show that 'G = G*. It follows from the definition and (14.4)
that the representatives of a given ‘g ¢ ‘G are in a coset g* of G mod H. That
is to say, the representatives of ‘g are all representatives of the element g* of G*.
Furthermore it is a simple matter to show that ‘g — ¢* is a homomorphism
8:'G — G*. Suppose now that g, , g, are representatives of g*. Theng, — g, e H
and by (14.3) for some \: m*g, = m'g, = gr» € Gr. Therefore g, , g, represent
the same element ‘g of ‘G and 6'g= g*. It follows that 6'G = G*. Let finally
g represent the 0 of G*. Then g, ¢ H and so for some A > u: m“g, = 0, and
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hence 67’0 = 0. Therefore 6 is an isomorphism. If we identify the elements
‘g and g* = 6’g the two groups ‘G, G* become identical.

(14.8) Generalization. It is essentially parallel to (13.7) and likewise required
later. TRis time we have a system of discrete groups {Gi} still indexed by
{X\; >} and for each \ a subgroup G5 of G,». For each pair X > u there exist
one or more homomorphlsms or proyectwns et G, — Gx such that:

L If A > u > vand 7,”, m* are projections so is m*m,".

II. w;"“G cG,,x > p

IIL. If m*, 7", N > u, are projections then ™ "9, — wx ‘g, C G .

Let Hy = G,/Gx and let 7, be the natural projection Gh, — H,. By (5.4)
there is a homomorphism wy*: H, — Hy, A\ > u, such that wx*r, = nm” and
it is unique, i.e., independent of the particular my* in its definition. From
this follows readily that {Hy ; wx*} is a direct system and its limit-group is
denoted by H.

A new type of group is now introduced in the following manner. The ele-
ments g 9» BT 1dent1ﬁed whenever for some A > pu, v there exist projections
m* m’ such that m'g, — mx ’g, €Gr . We will now turn the set °G of the
identified elements into a group. The zeros of the G are manifestly repre-
sentatives of a single element which is by definition the zero of °G. If g, ¢’ € °G
have representatives g, , g, we choose a A > g, v and find that m“g, £ ™ gx
is the representative of a unique element written ¢ + ¢’ and °G is the group
arising under these rules.

The elements g of °G which have a representative g, such that for some
N> o g, € Gy form a subgroup °@ of °G.

(a) °G/°@" =~ H.

Let G* = °G/°G’. 1If g € °G has the representative g, then r,g, is the repre-
sentative of an h ¢ H which depends solely upon the coset g* of ¢ mod °G’ and
g* — h defines a homomorphism 6: G* — H. If 6g* = 0 then for some
A > ulwr*ng. = n(m“g) = 0. Therefore m"g, e Gy and so g € °G’, g* = 0.
Thus 6 is umvalent If h, is a representative of h ¢ H and g, is in the coset
h. of G, mod G, then g, is the representative of a g ¢ °G whose coset g* mod °G’
is such that 6g* = h. Hence 6 is onto and so it is an isomorphism. This
proves (a).

§4. GROUP MULTIPLICATION

15. This section initiates the study of the group properties which lie at the
root of the duality theorems of topology. It has been shown by Pontrjagin
that these theorems consist of two parts, a group duality and what may be
termed a geometric duality. The former is based essentially upon Pontrjagin’s
concept of group multiplication which may be considered as obtained by abstrac-
tion from the Kronecker index of topology.

(15.1) DErFiNiTIONS. Two groups G, H are said to be paired to a third group K,
whenever there is given a function ¢(g, h), continuous and distributive in both
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variables, and whose values are in K. The operation ¢ 18 generally written as a
product gh and called a group multiplication or merely multiplication.

(15.2) DeriNiTIONS. Let G, H be paired to K under a multiplication gh and
let H' be a subgroup of H. If gh' = 0 for every ' e H', g s said to annul H'.
If all the elements of a subset A of G annul H', A is said to annul H'. The totality
of all the elements of G which annul H' is a subgroup of G known as the annshilator
of H in Q. These terms may also be applied when H' is not a subgroup, but
merely a subset of H. Furthermore the same terms may be applied with the roles
of G, H interchanged throughout.

(15.3) DeriniTIONS. Under the same conditions G, H are said to be orthogonal
to K or K-orthogonal or merely orthogonal, whenever the annihilators of G in H
and of H in G are both zero. This means that if gh = 0 for every h then g = 0,
and conversely.

(15.4) Let G, H be paired to K under a multiplication gh, and let G', H' be sub-
groups of G, H. Then if G’ annuls H’ it also annuls H' and the annihilators of
G, H' are closed subgroups.

Let B(g') denote the annihilator of ¢’ ¢ @’ in H. Since K is a Hausdorff
space and B(g’) is the inverse image of a point of K under the mapping h — g’h,
B(g') is closed. Since the annibMator of @ is the subgroup B(GQ') =
N{B(g") | ¢’ @'} it is a closed subgroup. If G’ annuls H’ then H' C B(G")
and hence A’ < B(G’), or H' annuls G’ also, and hence G’ annuls A’. Since G,
H and their subsets may be interchanged throughout, (15.4) is proved.

(15.5) TueorEM. Let G, H be paired to K and let H' be a closed subgroup
of H and G’ a subgroup of G which annuls H'. Then:

(a) G’ and H/H' are paired to K under a multiplication defined as follows:
if g’ €@ and h* ¢ H/H' then g'h* is the common value of all the products g'h for
h € h*.

(b) If G, H are orthogonal and H' is the annihilator of G' then G’ and H/H'
are orthogonal under the same multiplication.

(¢) Stmalarly with G, H interchanged.

The pairing described in (a) shall be referred to as induced by the pairing
of G, H.

A generalization of (15.5) needed in the homology theory of complexes is:

(15.6) Let G, H be paired to K and let G D G, D G;, H D H, D H,, where
G» , H; are closed subgroups of G and H, and H, , G, annul Gy, Hy. Then:

(a) G1/G» and Hi/H, are paired to K under a multiplication defined as follows:
if g* and h* are elements of the two factor-groups, then g*h* is the common value of
all the products gh for g € g*, h € h*.

(b) If H, , G: are the annihilators of Gy , H then G1/G; and H,/H, are orthogonal
under the same multiplication.
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If we make G, = &, Gy = 0, H, = H, H, = H’, (15.6) reduces to (15.5);
hence it is sufficient to prove (15.6).

The elements g*, h* are cosets g1 + G2 , lu + Ha. Ifg=gi+ g2, h=h+ M
are in the cosets we have gh = gih;. Since this produect is independent of g;, ks
we may take its value as the definition of g*h*, and this product is distributive
in both factors. Since gh is a continuous function of (g, h) given go , ha and
a neighborhood W of gnhan = gohe in K, there exist neighborhoods U of gu
in Gy and V of hy in Hy such that g, e U, hy e V = g1y ¢ W. Since the projec-
tions =: Gi — G1/G., w: Hy — H,/H, are open, #U and «V are neighborhoods
of gs in G1/G: and kg in Hy/H, such that g* e U, h* e oV = g*h* ¢ W. There-
fore g*h* is continuous, and so it is a multiplication behaving as described
under (15.6a).

Under the assumption of (15.6b) suppose g*h* = 0 for given g* whatever A*.
Then g;h; = 0 for a given g; e g* whatever hy and so g; € Gz, g* = 0. Similarly
with g*, h* interchanged and so (15.6b) follows.

16. Pairing of products and limit-groups. Let {G\}, {H)} be two systems of
groups indexed by the same set A = {A} and under the following conditions:

(a) The H, are discrete. i

(b) For each X\ the groups Gy , Hy are paired to a fixed group K.

(16.1) Let G = PG\, H" = PWH)‘, g=1{g} €G, h={h}eH’. Then gh =
> gaha defines a multiplication pairing G and H” to K. Furthermore when Gy ,
H, are orthogonal throughout, so are G, H".

Since at most a finite number of the h, are different from 0, gh = Y gahy has
a meaning and gh thus defined is distributive in both g and h. Since H" is
discrete, the continuity of gh in (g, h) reduces to that of gh as a function of g
alone for h fixed. That gh is continuous under these conditions is obvious since
g» is a continuous function of g and g\ a continuous function of g .

Suppose Gy , Hy orthogonal throughout. Then if #, is the injection Hy — H"
and if gh = 0 for every h we have in particular gm () = gnha = 0 for every h,
hence g = 0, g = 0. Similarly with g, h interchanged. Therefore G, H” are
orthogonal.

(16.2) DEFINITION. Two inverse and direct systems S = {Gx; m}, S* =
{Hy ; m"*} both indexed by A = {\; >} are said to be paired to a group K, if Gr, Hy
are paired to K and there holds the permanence relation

(16.3) o - (m'h) = (mgh) h A > op

(16.4) If S, S* are pawred to K so are their limit-groups ‘G, H* and this under
a multiplication 'gh* such that if g is a coordinate of 'g and hx a representative
of h*, then 'gh* = g\h .

We have seen that ‘G is a closed subgroup of G (13.2) and that H* = H"/L,
where L is the subgroup of H” generated by the elements h, — ™ he (N > p)
(14.1). By (16.1) we also have a pairing of G, H” to K. 1say that ‘G annuls L.
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This merely requires proving that

(16.5) ‘g-(hy — m*hy) = 0.
Now in view of the multiplication between G, H":
(16'6) ‘g (hy — 7":“ p) = "guh — 'yw:"h,. .

Since 'g ¢ ‘G we have ‘g, = m,'gr. By substituting in (16.6) and in view of
the relation of permanence (16.3) we find that (16.5) holds.

Since ‘G annuls L the asserted pairing of ‘G, H* is a consequence of (15.5).

17. We shall require later in the theory of intersections in nets (VI, 8) gen-
eralizations of (16.4) where the pairing of Gy, H, is to a variable group K, .
There are two cases which must be dealt with separately.

First case. S, S* are as before and in addition there is a third inverse system
Sy = {Ky; 6)} likewise indexed by A and with limit-group ‘K. We assume
a relation of permanence

(17.1) @(gx'f:”hn) = T:gh'hu ’ A >y,

and we have this time:

(17.2) The same as (16.4) except that ‘G, H* are now paired to 'K.

It follows readily from (13.3) that if M = {u} is cofinal in A and {k,} is such
that u > u’ = 8.k, = k, there is a unique element 'k ¢ ‘K with the coordinates
{k.}. Moreover if every k, = 0 then 'k = 0.

Let now h* ¢ H* have the representative h, and let ‘g = {g\} ¢ '‘G. For
u > v define h, = m,"h, and set k, = g,h,. If u > u’ > v then 1r:"' w = Ry,
and hence from (17.1) &k, = k.. Since M = {u} is cofinal in A, {k,} are co-
ordinates of a unique 'k ¢ ’K. If h,. is another representative of h* and yields
"k, then for some u > v, ¥': wi"h, — 1r: *’h,» = 0, from which readily follows that
'k — 'k, has coordinates zero for every u’ > u. Since {u’} is cofinal in A we
have 'k = k.

Thus ‘% depends solely upon ‘g and h*. We now define g’h* = ‘k and this
function is manifestly distributive.

Regarding continuity, since H* is discrete, we must prove it only for ‘gh*
as a function of 'g. Taking M as above we have ‘gh* = 'k where 'k has the
coordinates k, = g,h, for all u ¢ M where M is cofinal in A and depends solely
upon h*. Let gy = {gn}, ko = 'goh*, U any open set of Kx, Vi = {’k|kx e Up}.
Since {V\} is a base for 'K (I, 38.2) if V is any neighborhood of ‘k; in 'K there
is a V) between 'k, and V. Since 8 is continuous and M cofinal in A, there is a
u > Nand a U, s ko, such that 84U, C U, and hence ko C V, C V,. Since
guh, for h, fixed is continuous in g, there is a neighborhood W, of gy, in G, such
that g, e W, = g,h, € U,. Therefore W = {’g|g, ¢ W,} is a neighborhood of
‘g in 'G such that ‘g ¢ W = ‘gh* ¢ V. This proves that ‘gh* is continuous.
Hence 'G and H* are paired to ‘K.

Second case. This time there are three direct systems: S* = {Gy; m*},
St = {Hy; "}, S5 = {Kx; 65*}, all three directed by A = {\; >} with limit-
groups G*, H*, K* and with the relation of permanence



(5] CHARACTERS. DUALITY ' 63

(17.3) W;"gu'w;"h,‘ = o;“(gu hn) ’ A>ow

We now prove:

(17.4) G*, H* are paired to K* under a multiplication g*h* such that if g,
h are representatives of g* and h* then gyhy is a representative of g*h*.

Let gr, ha be representatives of g*, h*. Choose any u > \, A. Both have
representatives for the index u, and hence for all the elements of some M = {u}
cofinal in {A}. We may show then that g,h, = k, are the representatives of a
k* ¢ K* which is independent of M and distributive in g*, h*. The details
of the proof are essentially like those of the preceding case and so they are
omitted.

(17.5) The systems of (13.7), (14.8) give rise to an interesting generalization
of (17.4). We will suppose both systems indexed by {\; >}. The notations
of (13.7) remain the same except that the letters H, h are to be replaced every-
where by G”, g¢”. Thus we will have Gy for H,,ete. The notations of (14.8)
are modified in that G, g, H, h, r are replaced by H, h, H”, h"’, 7*.

We suppose then G) , H, paired to K in a multiplication gyhx which satisfies
the permanence relation analogous to (16.3):

(17.6) o (b)) = (wpgn) b

(17.7) Under the preceding circumstances the groups °G, °H are paired to K
in a multiplication gh such that if g is a coordinate of g € °G and hy a representative
of h € °H then gh = (n\gh)- (k).

In view of (17.6) gh is a function of g, h alone with values in K and is dis-
tributive in both variables. Since g\ is a continuous function of g, and the
operations are continuous gk is continuous in g, hence in both g, k since °H
is discrete, and this proves (17.7).

(17.8) Similar extensions may be given for (17.2, 17.4) and they are left to
the reader.

§5. CHARACTERS. DUALITY

18. (18.1) DEeFINITION. A Ccharacter h of a group G ts a homomorphism
G — P (= group of the reals mod 1). Instead of the functional notation h(g)
Jor the value of h at g we denote it by a product gh.

If by, hy are two characters we define h; + h, as the character given by
g(h1 + h2) = ghy + gh2 , and the character 0 as the one mapping G'into 0. Under
these definitions H = {h} is a group. Following Pontrjagin we topologize
H thus: If E is any compact subset of G and P any nucleus of P we choose as
nuclear base for H the family of all the sets N(E, P) = {h|gh e P; g ¢ E}.

(18.2) The topology assigned to H turns it into a topological group, known as
the character-group of G.

We must verify (a), -+, (f) of (2.4). The verification of (a), (b) is im-

mediate.
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Suppose ho ¢ N(E, P) The image E, of E under % is compact and hence
closed in PB. Since E, and the complement of P in P are disjoint closed subsets
of P there is a real number 5 between 0 and 1 such that if p € E; then (p &= 1) ¢ P.
Hence if P’ is the nucleus —n < p < nmod 1 we have hy + N(E, P’) CN(E, P),
and this is (2.4c). ,

From N(E] v K, , P n Pz) C N(E1 , Pl) n N(Ez ’ Pz) follows (24d). If
h 5% 0 there is a g such that gh > 0, hence a P p gh, and so h ¢ N(g, P) which is
(2.4e). Finally given P there is a P’ such that P — P’ C P and hence
N(E, P') — N(E, P') C N(E, P), which is (2.4f). This proves (18.2).

19. (19.1) If the group G is compact, discrete or more generally locally compact
then its character-group H 1s, respectively, discrete, compact or locally compact,
and in addition the multiplication gh defined in (18.1) pairs G and H to P.

Although the locally compact case offers no major difficulty it is not needed
later and so we shall treat only the other two cases.

(a) G is compact. Let P be the nucleus of P defined by —1/4 < p < 1/4
mod 1. Clearly the only closed subgroup of P in P is the element 0 (3.3).
On the other hand if & ¢ N(G, P) then h(G) is a closed subgroup of P in P and so
R(G) =0 or b = 0, and finally N(G, P) = 0. Since 0 is an open set of H
every h ¢ His an open set and so H is discrete.

(b) G s discrete. Let {B,} indexed by G be such that B, = P and let 'H =
P$P,. The group H is clearly a subgroup of ‘H (in the algebraic sense, i.e.,
except for the topology). We wish to show that it has also the correct relative
topology. Let H' be the space with the same elements as H and the relative
topology as a subset of ‘H. It is sufficient to show that they have a common
nuclear subbase. Since G is discrete its compact subsets are its finite subsets.
Hence if {P} are the nuclei of P the collection {N(g, P)} is a nuclear subbase
for H. Now it follows from the definition of N(g, P) and the known topology
of 'H that the same collection is likewise a nuclear subbase for H’ thus proving
our assertion. .

Consider the function on 'H to P defined by ¢g.o(h) = Rhgyg — by — hgr. A
n.a.s.c. in order that h € H is ¢, ,-(h) = 0 for all pairs g, ¢’ ¢ G. Let F(g, ¢")
be the subset of 'H defined by ¢,.,-(h) = 0. Assuming g, g’ fixed the coordinates
Rgto » hy, hy are continuous in h, and since the group operation in P is con-
tinuous so is ¢, . It follows that F(g, ¢’) is closed in 'H. Hence H =
N{F(g, ¢’) | g, g’ € G} is likewise closed in 'H, and since 'H is compact so is H.

(¢) Continuity of gh. Let goho = po. Given a nucleus P of P there exists
a symmetrical one P, such that P, + P, = P, — P, C P. Since G is locally
compact go has a neighborhood U with U compact. Since ho is continuous
go has also a neighborhood V C U such that h(V) C po + Pr,and V C U
implies that ¥ is compact. Consequently g e V,h e ho + N(V, P) = gh e po + P.
Therefore gh is continuous.

(19.2) It is clear that if we had interchanged throughout the roles of G and
H but not their order the argument would go through as before. A similar
observation may be made repeatedly in the sequel.
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(19.3) If a locally compact group G has a countable base then its character-
group H has one also.

If E is a compact subset of G and W is an open set of P, we will write M (E, W)
= {h|geE, ghe W} and first prove:

(a) M(E, W) is an open set of H.

Let ho ¢ M(E, W). Since ho is continuous A = ho(E) is a compact subset
of W. If p ¢ A there is a nucleus P of B such that p + P C W. Paraphrasing
the reasoning in the proof of (5.5) (with A in place of G’, loc. cit.) we show
that P may be chosen independent of p, i.e., such that the inclusion holds
for every pe A. Suppose now heN(E,P). We will have for g ¢ E:
gho + h) egho + P CT A + P C W, and hence ho + h e M(E, W), or ho +
N(E,P) C M(E,W). Since N(E, P) is a nucleus of H this proves (a).

Let now {U,} be a base for G such that the U, are compact (I, 29.2) and
let {W.} be a countable base for B. By (a) Van = M(U,, W.) is open in H.
We prove:

(b) {Vaa} is a subbase for H.

Given any open set V of H and hy ¢ V, some hy + N(E, P) C V. Choose
a P’ such that P’ + P’ C P. 1If g € E there exists a W, » gho such that W, —
gho CP’, and then owing to the continuity of ho, a U, ? g such that gho — ho(Ty)
C P’. Since {U\ n E} is an open covering of the compact set E there is a
finite subcovering. Therefore there is a finite set {g;}, and for each g; sets
Uy, , Wa, such that:

(C) UL")“. D E.

(d) W., — gho C P for every g ¢ U, N E. .

Let V, = NVxn;. If h eV,, hence h € Va;n; , and g ¢ E then by (c) some
Ur,>gand gh e Wo, = gh — ghoe P—>h — hg e N(E, P). Hence V, Cho +
N(E, P) C V. Since clearly ho € V,, V, is between hy and V, and since V, is
a finite intersection of sets V,, property (b) is proved.

If G has a countable base we may choose {U,} countable (I, 6.8). Then the
related subbase {Vy.} will also be countable and this implies (19.3).

(19.4) If G is a compactum [countably discrete] then its character-group H is
countably discrete [a compactum].

If G is a compactum it has a countable base, and so has H by (19.3). Since
{h} is a base of which no subcollection is a base by (I, 6.8) it must be countable.
If G is countably discrete {g} is a countable base. Hence H has a countable
base by (19.3), and since it is compact it is a compactum (I, 46.4). For ex-
amples see (21.2, 21.3, 21.6).

(19.5) Let @, H be paired to P under a multiplication gh and let G*, H* be
their character-groups. If g is kept fixed gh becomes a function ¢, on H to B,
and there is a similar function ¢, on G to P.

(19.6) g — ¢, [h — 1] defines a homomorphism x,: G — H* [x, : H — G*].

Clearly x,, x» are homomorphisms in the algebraic sense, so continuity
alone requires proof, and it will be sufficient to give it for x,. It reduces
at once to showing that given a nucleus N(E, P) of H* there is a nucleus N of G
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such that x, N © N(E, P). This reduces in turn to finding N such that g e N,
h e E = gh ¢ P. Since ghis continuous, if & ¢ E there is a nucleus N of G and
a neighborhood U of h in H such that g ¢ N», h ¢ Uy = gh ¢ P. Since E is
compact the open covering {Us n E} of E has a finite subcovering {Ux; n E}
and N = N N, is a nucleus of G behaving as required. This proves (19.6).

(19.7) The two homomorphisms x, , x» are said to be induced by the pairing
gh. If both are isomorphisms then G, H are said to be dually paired and the
pairing is called a dual pairing.

(19.8) If H is the character-group of G then the multiplication gh giving the
value of h at g (18.1) is known as the natural multiplication of the two groups.
Similarly with G, H interchanged.

(19.9) If G, H are dually paired they are orthogonal.

20. We shall now state the fundamental results of the Pontrjagin-van Kampen
duality theory.

(20.1) DuaLiTy THEOREM. Let G, H be locally compact, and let one of the
two be the character-group of the other with gh as the natural multiplication. Then
the multiplication gh is a dual pairing.

An apparently more general but equivalent form of the theorem is:

(20.2) Let G, H be locally compact and paired to B under a multiplication gh.
If one of the induced homomorphisms x, , x» is an tsomorphism so is the other, so
that the multiplication gh is a dual pairing for the two groups.

If x, is an isomorphism we may identify G with the character-group of H
so that we have ¢ = x,g and this reduces (20.2) to (20.1). Since (20.1) is a
special case of (20.2) the two are equivalent.

Referring to (19.1, 19.4) we may also state: :

(20.3) In the collection of all locally compact groups there may be set up a one-
one correspondence to within isomorphisms such that corresponding groups are
the character-groups of one another. This correspondence establishes similar
one-one correspondences: (a) between the collections of all compact and all discrete
groups; (b) between the collections of all the groups which are compacta and all
the countably discrete groups.

The full proof of these theorems in their general form will be found in van
Kampen [a] and A. Weil [W, VI]. The initial case treated by Pontrjagin
[P, V] corresponds to G a compactum and H countably discrete. The only
case required in the sequel is that of G compact and H discrete and will be
dealt with in (21). Explicitly stated it is:

(20.4) If G is compact, H discrete and one of them is the character-group of the
other with gh as the natural multiplication, then each is the character-group of
the other and gh is a dual pairing.

Before considering (20.4) we shall discuss certain consequences of (20.1).

(20.5) If G, H are locally compact and dually paired, G' is a closed subgroup
of G, H' its annihilator in H, then G’ is the annihilator of H' in G.
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We will require the following property, deduced here from (20.2), but actually
a step in its derivation. The part required in (21) will be discussed there (21.7).

(20.52) If G is locally compact and g € G, g 5= 0, there is a character h of G
which does not annul g.

Let H be the character-group of G and gh their natural multiplication. Since
we may replace G by an isomorph, by (20.1) we may assume that it is the
character-group of H. Since g 5 0 there is an h such that gh # 0, and h answers
the question.

Proor oF (20.5). Let G/G' = G* = {g*} and let = be the projection G — G*,
Under the hypothesis the annihilator G’ of H’ in G contains G’. Take now g,
in @ but not in G’ and let g5 = mgo. Thengs = 0. Since G* is locally compact
(5.6) by (20.5a) there is a character h* of G* such that goh* # 0. Hence the
function h(g), whose values gh are given by gh = (xg)h*, is a character of G.
It is clear that i annuls G’ and so h ¢ H’. On the other hand goh = goh* = 0,
and so go ¢ @”. Thus G’ D G" and hence ¢’ = G’’, which is (20.5). _

(20.6) A n.a.s.c. for a compact and a discrete group to be orthogonal in a pairing
to B is that the pairing be dual. )

Sufficiency is a consequence of (19.9). Regarding necessity, let G be the
compact group and H the discrete group and let H* be the character-group of
G. Then x4, as defined in (19.6), is a homomorphism § — H* and since H*
is discrete H; = x»H is closed in H*. Furthermore since G and H are orthog-
onal x; is univalent. Therefore x, is an isomorphism H — H, and G, H,
are orthogonal under the natural multiplication of G and H*. Since G, H, are
orthogonal, the annihilator of H, in G is 0, and so H, is H* itself, hence H =~ H, =
H*. This together with (20.2) yields (20.6). '

(20.7) Let {G\}, {H\} be two systems of groups both indexed by {\}, and such
that: (a) the Gy are compact and the H, discrete; (b) G\ , H\ are dually paired under
a multiplication gxhn . Then G = PGy, H* = PH, are dually paired under
the multiplication gh = Y gaha .

This is an immediate consequence of (16.1) and (20.6).

(20.8) Let 8 = {Gr; m}, S* = {H\; ="} be an inverse and a direct system
paired to P (see 16.2) and such that the G\ and H, are dually paired throughout.
(We will call S, S* “dual systems.”) Then the limit-groups 'G, H* are also
dually paired and this under the multiplication of (16.4).

Let G, H” be the same as in (16.1). We have ‘G C G and H* = H"/L,
where L annuls ‘G (see the proof of 16.4). We shall show that ‘G is the an-
nihilator of L. In fact let g e G annul L. If A > p and h, e H, we have
gChy — W;:"hu) =0 = guh, — gl("’:“hﬂ) = (g. — 729)\)}‘# by (16.3). Since G,
H, are orthogonal we must have g, = m,g, and so g ¢ 'G.

We conclude now from (20.5) that L is likewise the annihilator of ‘G’ and by
(15.5) that 'G, H* are orthogonal. Since they are also paired to P (20.8)
follows from (20.6).

(20.9) As an application of the duality theorems we discuss certain groups
needed in the following chapters. Given any group G and an integer m we set:
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G[m] = the subgroup consisting of the elements whose order divides m;

G(m) = the subgroup of the elements myg;

G*(m) = G/G(m).

The group G[m] is always closed in G. For if we define f(g) = mg, fis a
homomorphism G — G and G[m] is its kernel and hence closed. Not so, how-
ever, regarding G(m) and we lay down with Steenrod the

(20.10) DeFiNITION. A division-closure group is a group G such that all the
subgroups G(m) are closed.

(20.11) Compact groups, discrete groups and fields are division-closure groups
(Steenrod [a]).

This is trivial when @ is discrete or a field. When @ is compact then G(m)
as the continuous image of a compact group must also be compact and there-
fore closed.

(20.12) If G and H are the one compact, the other discrete and they are dually
paired then Gm] and H*(m) are likewise dually paired.

Let g annul H(m). Then g(mh) = (mg)h = 0 whatever h and so mg = 0,
or g e G[m]. Conversely, if g ¢ G[m] then g(mh) = 0 whatever k and so G[m]
is the annihilator of H(m). By (20.11) H(m) is closed. By (20.5) H(m) is
then also the annihilator of G[m], and so by (15.5) G[m] and H*(m) are orthog-
onal to PB. Suppose first G compact and H discrete. Since G[m] is closed
in G it is compact and since H is discrete so is H*(m) (since the natural projection
H — H*(m) is open). Therefore G[m] and H*(m) are dually paired by (20.6).
. Suppose now G discrete and H compact. Then G[m] is also discrete. Since
H(m) is closed (20.11) we are justified in considering H*(m) as a topological
group and it is compact (5.5). Therefore by (20.6) G[m] and H*(m) are dually
paired here also.

(20.13) REMARK. One might expect that all groups are of the division-closure type.
The following example due to Steenrod shows that this is not the case. G is the subgroup
of the additive group of the real numbers consisting of the rational numbers {2-*-m | n, m
any integers}. Then G(3) is dense in G and different from G since it does not contain 1/2.
We have then: G(3) = G # G(3) and so G(3) is not closed. Therefore G is not a division-
closure group.

Another example pointed out to the author by L. J. Savage and with well known his- -
torical significance is the following: G is the multiplicative group of all real positive rational
numbers, with the topology of the straight line; G(2) is the subgroup consisting of all the
rational squares. Since 2 is not a perfect square 2¢ G(2) and yet 2 € G(2) since it is
the limit of an increasing sequence of rational squares.

Let 3 be the group of the integers. P[m] is the group of fractions n/m mod
1, *(m) the group of residues mod m, both cyclic of order m. Hence

(20.14) Plm] = J*(m).

21. We will now take up the proof of the duality theorem (20.4). The general
argument runs thus: Following Pontrjagin [P, V] we first dispose of the so-called
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elementary groups and of certain preliminary results (21.1, - - -, 21.11), after
which the proof is brought to a rapid conclusion (21.12, 21.14) by means of
a device communicated to the author by van Kampen and Whitney.

Notations. Generally G denotes a compact group, H a discrete group, G*,
-+, the character-groups. We write

$=1p), I=1{} P={p*}, I=1{*}

(21.1) We begin with an important preliminary observation. Supposing
G, H orthogonal in a multiplication gh to P we have the homomorphism x, [xa] :
G — H* [H — G*] whereby g [h] is sent into the character of H [G] whose value
at hlg] is gh. In view of orthogonality x,, x» are univalent. Since G and H
are compact and discrete, x,G = @, x»+H = H. Thus we may identify G with
x,G and H with x.H, so that G, H will be subgroups of H*, G*. This procedure
will be followed wherever possible. Under the circumstances to prove that
G = H*[H = G*] it will be sufficient to show that G [H] contains all the char-
acters of H [G].

(21.2) B and I are isomorphic with one another’s character-groups and dually
paired by the numerical product pi mod 1.

At all events P and & are orthogonal in the multiplication in question, and
so by (21.1) it is only necessary to show that each contains all the characters
of the other. Now if i* ¢ 3* sends 1 into p it sends ¢ into pt, and the values of 7*
on & are those of pi. Thus ¢* ¢ B. Passing to B* if p* ¢ B* then p* ' (0)
is a closed subgroup of P, and is by (3.3) P itself or a finite cyclic subgroup of
. In the former case p* = 0; in the latter case on the circumference the points
of the subgroup are the vertices of a regular ¢-sided polygon, one of which is
the zero of P. As a consequence p* maps the arc 0 < p < 1/7 topologically
onthearc0 < p < 1. The mapping may be sense-preserving or sense-reversing.
According as one or the other alternative occurs we will have p*(m/ni) =
em/n, e = =1, m/n a proper positive fraction. Since {m/n} is dense on P
by a standard argument p*(p) = epi for all p ¢ B, and hence p* ¢ J. This
completes the proof of (21.2).

(21.3) If G s cyclic of (finite) order n then G =2 G*. More precisely let Gi = G
be the subgroup {m/n} of B and G2 = G the additive group of the integral residues
mod n. Then Gy, Gy are dually paired under the ordinary product gig» taken mod
1 (proof similar to that of 21.2).

(21.4) If G, H; (i = 1, 2) are dually paired in a multiplication g:h; then G =
G X Gy and H = Hy X H, are dually paired in the multiplication gh = gih1 + gohs,
where g = (g1, g2) and b = (b1, ha).

By (16.1) G, H are orthogonal and so applying (21.1) we merely have to show
that, say, G contains all the characters of H. Identify G; with G: X 0 so that
gi = (gi, 0) and similarly H; with H; X 0. Since every h may be written
h = hi + ho, we may write h* = g1 + g2, g:(hi + he) = h*(h:). Therefore H*
= @, and similarly G* = H, proving (21.4).
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(21.5) DerinNITIONS. A compact group s said to be elementary if it is the
product of a finite-dimensional toroidal group (6.3) by a finite group. A discrete
group 1s said to be elementary if it has a finite number of generators.

(21.6) Let G = Gy X Go, H = Hy X Go where Gy is an n-dimensional toroidal
group, H, a discrete free group of rank n and G a finite group. Then each s iso-
morphic with the character-group of the other.

Since we may replace G, H by isomorphs we may suppose that
G=G X XGun,H=H X --- X H,,where H; = & and then G; = B,
or else H; is cyclic of finite order and then G; = H Y= H;. If gihi = gi(hs)
is the natural multiplication of G; with H; corresponding to G; = HY, then
gihi is a dual pairing. Hence by repeated application of (21.4) the multiplica-
tion gh = X ghi, g = (g1, -+ s gm), b = (b1, -+, ha) is & dual pairing for
G, H and this proves (21.6).

Rather than (21.6) we shall need later the following closely related property
which is a special case of (20.4):

(21.62) If H is elementary and discrete then H and H* are dually paired
in their natural multvplication.

We may assume H = H; X --- X H, where the notations are as before.
Furthermore in accordance with (7.3) we identify H; with the subgroup
00X ---XO0XH; X0X---X0of H We have just shown that G, H
are dually paired by gh. As a consequence they are orthogonal and so by (21.1)
we may assume G C H*, the multiplication gh being then the value of the
natural multiplication h*h when h* ¢ G. Take now any h* whatever. We
have h* | H; = g;eG:and ¢ = (g1, --- , gm) € G is a character of H such that
gh = h*(h) = h*h. Hence h* = g, and so H* = @, showing that H, H* are
paired in the asserted way.

(21.7) If G is any group, G’ a closed subgroup of G, g1 a character of G; =
G/@', = the natural projection G — Gy, then g* = gim is a character of G.
We call g7 the projection of g*.

(21.8) Conversely, in the same notations, if g* is a character of G which takes
the value zero on G’ then g*(g) depends solely upon the coset of g mod G,
and by (5.3c) there is a character gt of Gy which is the projection of g*.

(21.9) If H’ is a subgroup of the discrete group H then every character g’ of H'
may be extended to a character g of H, i.e., g exists such that g | H' = ¢'.

Let v» = (gr, H)) where H, is a subgroup of H containing H’ and gy is a
character of H, such that g\ | H' = g’. Order the collection T' = {ya} by v > v,
whenever Hy D H, and gy | H, = g,. If {v,} is a simply ordered subsystem set
H, = Y H,, and define the character g, of H, by the condition that if h ¢ H,
then g,(h) = gu.(h). Itis clear thaty, = (g,, H,) e T and v, < v, for every u.
We may thus apply Zorn's lemma, and it asserts the existence of a maximal
v = (g, Ho). Since g|H’' = ¢, to prove (21.9) we merely need to show that
H, = H. Suppose this false and let h; ¢ H, hy ¢ Ho. If H; is the subgroup
of H generated by the elements ho + mhi , ho € Hy, then H, = Hy .

Let ¢ denote the least positive integer if any exists, such that ghs e Ho ; other-
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wise set ¢ = «. Define a character ¢, of H, as follows: On H, the values of
g1 are those of g; if ¢ = = take gi(h)) = 0, if ¢ # « take for gi(hi) one of the
q determinations of gi(¢ghi)/q. Clearly v1 = (g1, Hy) ¢ T and v1 > v, 71 % v,
a contradiction. Therefore Hy = H and (21.9) is proved.

(21.10) If G vs compact or discrete and go € G, go 5% 0, then there is a character
g* of G such that g*(go) # 0.

The proof for G compact requires an extensive appeal to integration in groups
and to the theory of representations and so it is omitted. The proof given
by Pontrjagin [P, 146C] for G a compactum is valid for any compact G. See
also van Kampen [a, proof of Lemma 3] and Gelfond-Raikov [a].

Suppose now G discrete. The multiples of go generate a cyclic subgroup Gy
of G and by (21.2, 21.3) G, has a character g{ such that g7 (go) = 0. By (21.9)
there is a character g* of G such that g* | G; = g7 and so g*(go) # 0. This proves
(21.10) for a discrete G.

(21.11) Let G = H* (G compact, H discrete) and let H' be a subgroup of H and
G’ its annihilator in G. Then @ is closed in G (15.4) and G, = G/G’' = H'*.
More precisely x,, G\ = H'*.

Let gh be the natural multiplication of G, H. Since G = H* the only ¢
annulling His g = 0. Given h ¢ H by (21.10) there is a g such that gh = 0
and hence the only h annulling G is h = 0. Thus G, H are orthogonal, and
so (15.5b) the compact group G, and discrete group H’ are orthogonal in the
multiplication g4’ induced by gh in accordance with (15.5a). Thus again by
(21.1) we merely need to show that G, contains every character h'* of H'.

Since H is discrete by (21.9) there is a character g of H such that g | H' = h'*,
If gy is the coset of g mod G’ then g,h' = h'*(h’), hence h’* = g, and (21.11)
follows.

(21.12) Let G be compact or discrete and G*, G** = (G*)*, G** = (G**)*
the successive character-groups. If G** is not x,G, then G*** 4s not x,G*.

Using orthogonality in the appropriate natural multiplications and by refer-
ence to (21.1) we may suppose G C G** and G* C G***. Suppose then G** = G.
Since G**/G is compact or discrete and different from 0, by (21.7) it has a
character different from 0 with an extension h to G** which is zero on G but
not everywhere. Hence h is an element of G*** but not of G*. This proves
(21.12). _

(21.13) As a consequence of the preceding result if G is compact [discrete]
and different from G** then G* is discrete [compact] and different from (G*)**.
Therefore in proving (20.4) it is sufficient to consider G = H*, G compact.

(21.14) Supposing then G compact, and G = H* we will prove that G* = x, H.
Once more by (21.1) we may suppose H C G* and show that there is no g* ¢ H.
Suppose such a g* exists. Take in P the nucleus P = {p||p| < 1/4 mod 1}.
Thus P contains no closed subgroup different from 0. Since g* is a continuous
function on G to P, there must exist a nucleus N of G such that g*N C P.
Since G = H* we may choose N of form N({h,, ---,h.}, P’). Let H' be the
subgroup of H generated by {h:, ---,h,} and G’ its annihilator in G. By
(21.11) if G: = G/G’ then x,,Gi; = H'*. Identifying now g, with x,,g: , hence
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G, with H'*, makes the multiplication ¢4’ of (21.11) the natural multiplication.
Since H' is elementary, by (21.6a) Gy, H' are dually paired by g:h'.

Now if g* annuls G, g* has for projection a character gr of Gy (21.8). Since
H', G, are dually paired by gih' there exists an 2’ such that g:h’ = g1 (g1) for every
g1 € G1 .. Hence whatever g e G if g, is the coset of g mod G’ we will have gh’ =
gih' = gi(g) = g*(g). It follows that A’ is the character g* of G and so g* ¢ H
contrary to assumption. Thus g* cannot annul G’. As a consequence g*(G’)
is a closed subgroup of P which is different from 0 and hence ¢ P. Since G’ C N,
this is a contradiction and the proof of (20.4) is completed.

§6. VECTOR SPACES

22. While the earlier group-duality theorems utilized in topology (and ex-
plicitly contained in the duality theorems for infinite manifolds of [L, VII, §3])
have been eclipsed by the brilliant results of Pontrjagin, they have not been
reduced to mere corollaries. They refer essentially to groups with a field as
domain of operators, i.e., to vector spaces. We propose to consider these
spaces with particular emphasis on duality.

Henceforth we utilize a fized field Q which is taken with discrete topology (discrete
field). The elements of Q are usually denoted by «, 8, v, -+ .

(22.1) DEFINITION. A vector space over Q is an additive group G = {g} for
which there is defined an operation assigning to every pair (o, g) an element of G
written ag which is continuous and distributive in both variables and such that
1-g = g, a(d'g) = (aa’)g for every o, o’ ¢ @ and g ¢ G. Notice that since Q is
discrete, ag is continuous in (a, g) when it s continuous in g alone.

Let G, H be vector spaces over € and let 7 be a homomorphism G — H. We
say that r is linear whenever r(ag) = a(7g), @ € Q, g € G. Suppose that 7 is
an isomorphism and linear in the sense just stated. It means that rg = ¢’ =
7(ag) = ag’, and hence that g = 7'g’ = ag = 7 (ag’), or 77" is likewise linear.
Therefore if an isomorphism 7 is linear so is #~'. This makes it unnecessary
to introduce the concept of “bilinear” isomorphism.

Let now G, H, K be vector spaces over © such that G, H are paired to K under
a multiplication gh. This multiplication is said to be linear whenever a(gh) =
(ag)h = g(ah), a € Q.

(22.2) Fundamental conventions for vector spaces. Hereafter unless otherwise
stated a homomorphism of one vector space into another, or a multiplication
pairing two vector spaces to a third will always be understood to be linear.
Furthermore throughout the present chapter (and later also with chain- and
related groups) vector spaces will be taken with a topology, likewise called
linear, and fully described in (25). Until then the questions dealt with are
really non-topological or rather independent of the topology.

23. If A = {g.} is a subset of the vector space G so is the set {ag,} and it
is denoted by a4. A subspace of G is a subgroup H such that h e H = ah e H
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for every a € Q. It is easily seen that this property is equivalent to: «H = H
for every a« € € and = 0.

A finite set of vectors g1, - -, g, is linearly independent whenever Y aig; =
0 = every a; = 0. More generally a subset A of G is linearly independent if
every finite subset of A has that property.

The intersection of any number of subspaces is clearly a subspace. There-
fore all those containing a given set B intersect in a subspace H, the “smallest”
subspace containing B, and said to be spanned by B. If B is linearly indepen-
dent it is said to be a base for H. '

Notice the mild deviations from the meaning previously attached to “linear
independence” and ‘“base’” in (9). A supplementary mention “relative to Q”
will be used wherever needed to avoid misunderstanding, but this will rarely
be necessary.

(23.1) Let G be a vector space and H a subspace of G. Then:

(a) If C s a base for H there exists a base B of G containing C. ,

(b) There is a subspace H' of G such that G = H + H', Ha H = 0. Con-
sequently every g may be written uniquely in the formg = h + b’ h e H, k' ¢ H'.

If H = 0 we have C = @ and hence a special case of (23.1a) is:

(23.2) Every vector space G has a base.

Proor or (23.1a). Consider all the linearly independent sets A containing
C. By Zorn’s theorem there is a maximal set B. If g ¢ B then B v ¢ is not
an A and so there must exist a non-trivial relation ag = gy + -+ + anga,
gi € B, and we must have a # 0 since the g; are linearly independent. Therefore
g = > a'ag: and B is a base.

Proor or (23.1b). In the same notations the complement C’ of C in B
spans an H’ behaving as stated.

24. (24.1) Any two bases of the same vector space have the same cardinal number
(proof by Chevalley).

Let B be a base, A any linearly independent set; | A | and | B | the cardinal
numbers of A and B. It is sufficient to prove

(24.2) l4|s Bl

Let ¢ denote a one-one transformation of a subset B, of B into a subset 4,
of A such that if A/, is the complement of 4, in A then B, u A, is linearly in-
dependent. The set ® = {¢} = @; for if ¢, sends the empty subset of B into
A then B,, = A,, = @, A,, = A and B,, u A,, = A is linearly independent.
Therefore ¢ ¢ ® # @

Order ® as follows: ¢ < ¢’ whenever B, C B,  and ¢ = ¢’ | B,. Let ¥ be
a simply ordered subset of & and set B* = U{B,|¢ ¢¥}. We may define
a one-one mapping ¥ of B* onto a subset A* of A such that ¢ | B, = ¢ for every
¢ ¢ ¥ and moreover A* = U{4,|¢ ¢ ¥}. Let A* be the complement of A*

inAd andletgi, ---,gp, M, -+, h, be a finite set of vectors of B* v A* where
the g; include all the vectors of the set in B*, and hence the h; are in A*'. Then
{g:} C B, for some ¢ ¢ ¥, and {h:} C A¥ C A, . Therefore g;, -, h, are

linearly independent. Thusy e® and g e ¥ = ¢ < ¢.
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It follows from Zorn’s theorem that ® contains a maximal element ¢, . I say
that 4,, = A. If this does not hold then A,, # @ and so it contains an ele-
ment h. Let A‘,,o be the set of elements different from h in A,,. Since the
vectors of B,, u A, are linearly independent & is not in the space H spanned by
B, u Azo . On the other hand since B is a base we have h = aig: + - + anfin s
n finite, g; ¢ B, and at least one of the g, say g1 ¢ H. Therefore B,, u A,, T
is linearly 1ndependent Extend now ¢, to ¢ defined by ¢.|B,, = ¢,
e1(g1) = h. Clearly ¢, ¢® and o1 > ¢ yet o1 # @0, hence ¢ is not maximal.
This contradiction proves that 4 = 4,, .

Now B,, C B=> | B,,| < | B|. On the other hand since ¢;’4 = B,, and ¢,
is one-one we have |A| = |B,,| < |B| which proves (24.2) and hence
also (24.1).

(24.3) DerFINITION. The common value of | B | for all the bases of G is called
the dimension of G.

(24.4) If H 1s a subspace of G then dim H < dim G. Hence: (a) +f G has a
countable base so has H; (b) if dim H = dim G 18 finite then H = Q.

In view of (23.1a) we may take a base B for G with a subset C which is a
base for H andsodim H = |C | = dim G = | B|. Property (a) is then obvious,
and as for (b) if both dimensions are finite and equal, C = B and hence G = H.

(24.5) If dim G = n s finite then n is the mazimum number of linearly inde-

pendent vectors in G. Moreover any n linearly independent vectors form a base.

If {g1, -+, ga} is a base the g, are linearly independent. On the other hand
if g1, ,gus are any n 4+ 1 vectors we have relations

= E @55

from which follows at once that there is at least one non-trivial relation
> B:9: = 0. Hence the g: are not linearly independent and = is maximal.

Suppose now g, ‘- , g. merely linearly independent. Since » is maximal
if g € G there is a relation ag = D>, aigi, a # 0. Henceg = Y, o aig; , and
s0 {g:} is a base.

(24.6) If H is a subspace of G and G/H = K (discrete topology) then dim G
= dim H + dim K.

Select a base B for G with a subset C as a base for H. If D is the complement
of C in B then K is isomorphic with the subspace spanned by D, from which
to (24.6) is but a step.

25. Linear topology. We have already made it a part of our conventions
that vector spaces are topological groups with a specialized topology. This
topology is described in the

(25.1) DEFINITIONS. A vector space G is said to be linearly topologized or to
have a linear topology if it is a topological group with a nuclear base composed of
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subspaces. A subspace which s also a nucleus will be called a nuclear subspace.
Since an isomorphism transforms a nuclear base into a nuclear base and a sub-
space into a subspace, it preserves the linearity of the topology. That is to say if 7
1s an isomorphism G — H and G has a linear topology the same holds for H. With-
out this properly the linear topology would have of course but little value.

We recall then that under the fundamental convention (22.2) throughout the
rest of the chapter all vector spaces are assumed linearly topologized.

Since the intersection of two subspaces is a subspace we have at once:

(25.2) If G is linearly topologized so are its subspaces.

By means of this property and the definition we may now prove:

(25.3) Under our fundamental convention (22.2) when the operations: closure,
taking a factor-group, product, weak product, are applied to vector spaces alone,
they yield only vector spaces (understood with a linear topology). Furthermore even
with these added restrictions all the results of (§§1, 3, 4) continue to hold.

Closure. Let H be a subspace of G and {N} a nuclear base of G composed
of subspaces. Then H consists of the elements h such that every h + N meets H.
As a consequence ah + aN = ah + N meets oH = H, hence ah e H and H
is a subspace.

Factor-group. The notations remaining the same, suppose H closed in @ and
let G* = G/H. If g*is the coset of g mod H denote by ag* the coset of ag mod H.
This multiplication obeys the algebraic rules required for vector spaces. Let
denote the natural projection G — G*. If N* is a nucleus of G* then *'N*
is a nucleus of G. Since = is continuous there is an N < = 'N*. Since = is
open =N is a nucleus of G* and since xN C N*, {xN} is a nuclear base for G*.
Evidently g* e tN = ag* e7N, and so ag* is a continuous multiplication.
Therefore G* is a vector space. Since w(ag) = a(rg) the =N are subspaces.
Therefore {rN} is a nuclear base of G* composed of subspaces, and the topology
of G* is linear. Thus G* is a vector space.

Products. Let {G\} be an indexed system of vector spaces and let G = PGy .
If g = {g] €@ then {eg,} is also an element of G and if we denote it by ag,
then g e G = ag ¢ G. This multiplication obeys the algebraic rules required for
a vector space (22.1). Since the coordinates agx are continuous in g, hence
in g, ag is also continuous in g. Let {N} be a nuclear base of G\ composed of
subspaces. Then if {\;, ---, N} is any finite subset of {\} and u ranges over
the X 5 A1, -+, A, the products Ni, X --- X Ny, X PG, are subspaces and
make up a nuclear base. Therefore G has a linear topology. Thus G is a
vector space. Notice also that if {u} is any subset of {A} then the projection
G — PG, is a linear homomorphism.

The weak produect is treated in the same way.

If @ is a group of chains over @ based on X = {n\} and g = >~ ez then og
is the element >, (aen)2x .

(25.4) DEFINITION. By an inverse or direct system of vector spaces is meant,
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respectively, inverse or direct systems whose groups are vector spaces over @ and
whose projections are linear.

Since the limit-groups of inverse and direct systems are defined in terms of
products, weak products, subspaces and factor-groups, they are vector spaces
and the appropriate results in (§§1, 3, 4) hold.

From the definitions of the operations involved and the preceding considera-
tions there follows immediately:

(25.5) The natural projection G — G/H, H a closed subspace of G, 18 a linear
open homomorphism. Similarly if {u} is a subset of {\} as regards the natural
projection PGy — PG, . .

(25.6) A finite-dimensional vector space G with linear topology s discrete.

Since G is a Hausdorff space, 0 is the intersection of all the nuclei. Let {N}
be a nuclear base composed of subspaces and suppose N = 0. IfgeN, g = 0,
then some N’ g. Hence N = N a N’ C N and N”  N. Therefore
dim N’ < dim N. Since dim N is finite after repeating the process a finite
number of times we arrive at a nucleus reduced to 0. Therefore G is discrete.

(25.7) A discrete vector space has a linear topology (obvious).

(25.8) Let N be a nuclear subspace of G. Then -

(a) N s both open and closed;

(b) H = G/N 1s discrete;

(¢)@ =N+ H NoH =0

(d) every element g may be written uniquely g = n + h, neN, heH, and
more generally if G’ is any subspace of G then

@ =N+H, N =NaG, NanH =0, H =G/N;

(e) the transformation r: (n + h) — (m, h) is an isomorphism G — N X H.

Since ge N = g + N C N, Nisopen. Sinceg¢N = (g + N) a N = @,
the complement of N is open, hence N is closed and (a) holds.

Let = be the natural projection G — G/N. Since =.is open #N = 0 is a
nucleus of G/N, and so the latter is discrete, which is (b).

By (23.1b): G = N + H,N a H = 0. Therefore 0 is a nucleus of H and so
it is discrete. It is obviously = G/N in the algebraic sense, and hence topo-
logically also, since both are discrete. This proves (¢). As for (d) it is an
obvious consequence of (c).

That r under (e) is an isomorphism in the algebraic sense is immediate. If
{N,} is a nuclear base for N it is also one for G. Since H is discrete {N1 X 0}
is a nuclear base for N X H. Since TN; = N; X 0, 7 establishes a one-one
correspondence between the elements of two nuclear bases, and so it is topo-
logical, proving (e).

While the pairing of vector spaces will be taken up later we may prove at the
present time a simple property which has often been used in topology in con-
nection with duality.

(25.9) Let the vector spaces G, H be orthogonal under a multiplication gh pairing

them to Q. Then:
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(@) If g1, * + - , gn are linearly independent vectors of G, then dim H = n and
there may be selected in H linearly independent vectors hy, - - - , ha such that the
determinant | g:h;| = 0. »

. (b) More precisely hi, --- , ha may be chosen such that || g:hj|| s the unit
matriz of order n, or in another form such that g:h; = 8; (Kronecker deltas).

(¢) The two preceding properties hold with G, H inlterchanged.

(d) Both dim G, dim H are finite and equal, or else both are infinite.

With the situation as in (a) suppose dim H = m < n and let {hy, - , hm}
be a base for H. The system

ar(gih;) + +++ + aalgahy) =0

in the a; has a solution in elements of @ not all zero. Therefore ¢ =
agr + -+ + angs is an element of G which is different from 0 and such that
gh;i=0,(j=1,2,---,m). Since {h;} is a base this implies gh = 0 for every
h ¢ H and since orthogonality rules this out we have m = n. In particular then
if dim @ is infinite: dim H = n whatever n hence dim H is infinite also, and
conversely. Since G and H may manifestly be interchanged necessarily dim H =
dim G when one of them is finite and this is (d).

Returning to (a) let Gi be the subspace of G spanned by {g1, - -, ga} and
let H; be its annihilator in H. If H* = H/H, then G, and H* are orthogonal
under a multiplication g;h* such that if h € h* then g1h* = gih (15.5b). Further-
more referring to (25.3) H* is a vector space and g:h* a correct multiplication
for G, , H*. By the above argument dim H* = n. If {hf, -, hr} are inde-
pendent then | g;h] | # 0, since otherwise we could obtain the same violation of
orthogonality as before. Select now foreach janh;e kY : Wehave g:h; = gih;
and hence | g:h; | # 0. This relation, or the linear independence of {h]} implies
the same for {h;}. This proves (a). Property (b) is then an elementary conse-
quence of (a) and (c) is obvious.

26. Linear varieties.

(26.1) DEFINITIONS. A linear variety V in G is a coset mod H, H a subspace
of G. The dimension of V, written dim V, s the dimension of H. If H = 0
the coset of g is merely the element g itself and dim V = 0. Thus the elements
may be viewed as the zero-dimensional linear varieties. G and its subspaces are all
linear varieties. In fact if dim G = n 1s finite, G ilself is the only n-dimensional
linear variety which it contains.

(26.2) If G’ is a closed subspace of G, = the natural projection G — G/G', V a
linear variety in G, then wV is a linear variety in G/G’.

For = is a linear homomorphism.

(26.3) If V is a linear variety so is V.

Forif V = g + H then ¥V = g + H, and this is a linear variety since H is a
subspace (25.3).

(26.4) If V' C V both are linear varieties and dim V is finite then dim V' <
dim Vorelse V=1"V.
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ForifgeV’ thenV, V' arecosetsg + H,g + H,and V C V- H CH
from which to (26.4) is but a step.

27. Linear compactness. Various considerations, notably the applications to
homology suggest a weakening of the concept of compactness as applied to
vector spaces in accordance with the

(27.1) DeFINITION. A linearly topologized vector space G, and more generally
a linear variety V in G, 1s said to be linearly compact whenever given any family
{V.} of linear varieties which are closed in G or V as the case may be and have
the finite intersection property then NV, ¢ @. It is hardly necessary to observe
that linear compactness is preserved under an isomorphism: if V is linearly compact
in G and 7 is an isomorphism G — H then 1V is linearly compact in H.

Many of the important properties of compactness carry over to linear compact-
ness as we shall now show.

(27.2) A product of linearly compact vector spaces is linearly compact.

For the results of (26) make it possible to carry over the proof of (I, 24.1).

(27.3) If G is linearly compact so ¢s every closed linear variety in G (obvious).

(27.4) If G is linearly compact then: (a) its image under a homomornhism s also
linearly compact; (b) if H is a closed subspace of G then G/H +s linearly compact.

The proof of (a) is the same as for (I, 23.2) with closed linear varieties re-
placing closed sets. As for (b) it is a consequence of (a) plus the faci that the
natural projection G — G/H is a homomorphism.

(27.5) If the linear variety V ts linearly compact in G it is closed in G.

Let {N} be the nuclear subspaces and g ¢ 7. Since g + N is a neighborhood
ofg,(g + N)aV =W = @. Since a finite intersection of sets g + N is a set
g + N, {W} has the finite intersection property. Moreover since N is closed
(25.8a) sois g + N, and hence W is closed in V. By the compactness condition
NW = @. From NN = 0 follows N((g + N) n V) = NW = g, hence g e V,
or V = V, proving (27.5). :

Referring to (I, 38, 39) we find that the results just obtained enable us to
prove:

(27.8) Let S = {G»; 7.} be an inverse system of vector spaces and let V, be a
linearly compact variety in Gy such that X > u => m,V\ C V.. Then the results
of (I, 38, 39) are valid for the inverse mapping system = = {Vy ; x,}, with com-
pactness replaced by linear compactness.

(27.7) A n.a.s.c. for a discrete G to be linearly compact is that its dimension
be finite. Hence every finite-dimensional G is linearly compact (25.6).

Suppose dim G = 1, so that G is discrete. A linear variety V in G is G itself
or else an element, so @ is linearly compact. If dim G = = is finite and @ is
discrete then @ is the product of n one-dimensional vector spaces and so by
(27.2) it is linearly compact. Thus the condition is sufficient.

Suppose now G discrete and linearly compact. The case G = 0 is trivial; so
we assume G 7 0. The space has then a base B = {b} and we haveg = J_ asb
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(finite sum). Now V3 = {g|a = 1} is a linear variety and is closed since G
is discrete. Furthermore {V3} has the finite intersection property. Hence if G
is linearly compact NV, = @, which is impossible if B is not finite. Since B is
finite so is dim G. This proves necessity and hence (27.7).

(27.8) If 7 is a univalent homomorphism of G onto H and G is linearly compact
then r 1is an isomorphism.

Since 7 is already one-one, all that needs to be proved is that it is open. If
N is a nuclear subspace of G we must show then that N, = 7N is one for H.
By (25.8) N is closed and G/N discrete. Since G/N is the natural projection
of G it is also linearly compact (27.4) and hence finite-dimensional (27.7).
Since N is closed in @ it is linearly compact and so is Ni. Therefore N, is
closed in H. Now to 7 there corresponds a homomorphism of G/N onto H/N; .
Hence H/N, is finite-dimensional and therefore discrete. Since N, is the inverse
image in H of the nucleus 0 of H/N; under the natural projection H — H/N,,
N, is a nuclear subspace for H and (27.8) follows.

The natural extension of the notion of local compactness in the direction of
linear compactness is manifestly given by the

(27.9) DErFINITION. The vector space G is said to be locally linearly compact
whenever it has a linearly compact nuclear subspace.

Evidently this property is preserved under an isomorphism. Moreover com-
pact and discrete vector spaces are locally linearly compact.

(27.10) A n.a.s.c. for G to be locally linearly compact ts that G = Gy X Gq,
where G, 18 discrete and G linearly compact. '

Necessity is a consequence of (25.8). Conversely, suppose G behaves as
stated. We may as well assume G = G; X G: and then 0 X G: is a linearly
compact nuclear subspace of G, hence G is locally linearly compact.

(27.11) Essential elements. This concept of importance in the homology
theory of nets is due to Cech [a). Generally speaking, if S = {G» ; =} is for
the present any inverse system of groups then an essential element of G, is an
element z, such that X > u = (x))7'z, @, or which is the same such that
z, emG.. We have from (27.6) and (I, 39.3):

(27.12) When S is an inverse system of compact groups or an inverse system of
linearly compact vector spaces then a n.a.s.c. for z, lo be essential is that it be a
coordinate of an element of the limit-group or limit-space as the case may be.

A noteworthy property is the following:

(27.13) Let S be an inverse system of finite-dimensional vector spaces. Then
for every i there is a Ao > p such that all the x); x,, A > Ao, are essential (Cech).

The essential elements of G, are those of the subspace H, = N{x,G\ |\ > p}.
Since dim G, = n is finite there exists a finite set A, - -+, \;, such that H, =
N(x3Gr;). Choose any Ao > A1, -+, A, . Then 743G, C x)'Gx, hence for X > No:
W}G,\ C H. Since the inclusion may also be reversed H, = wﬁGx .

28. Field characters. Duality. The preceding developments will enable us
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to extend in a significant way the duality theory of Pontrjagin-van Kampen.
The basic definitions are:

(28.1) DEeriNITIONS. A field character h of a vector space G over a field Q is a
homomorphism G — Q. As in (18.1) we denote by gh the value of h at g. If
hy, hs are field characters and oy , as € Q then the relation gh = ayghy + asghs defines
a character which is written a\hy + ashe .  Except for continuity conditions H = {h}
18 thus turned into a vector space. To topologize H if E is any linearly compact
subspace of G and N(E) = {h | gh = 0, g € E}, then we choose {N(E)} as a nuclear
base for H. Since h e N(E) => ah e N(E), ah is continuous under this topology.
Since N(E) is a subspace of H, the topology is linear and so H 1is a vector space
behaving in accordance with (22.2). This vector space is known as the field character-
group of G, or else also as the character-space of G.

We shall now prove the analogue of (19.1):

(28.2) If G 1is linearly compact, discrete, locally linearly compact then its field
character-space H s respectively discrete, linearly compact, locally linearly compact
and gh pairs G and H to Q.

(a) G is linearly compact. Then N(G) = 0 is a nucleus of H, and so H is
discrete.

(b) G s discrete. Let B = {b} be a base for G, {h} a set of symbols such
that b — h, is one-one, @ a copy of @ corresponding to b, H' = PQ,. Any
element i’ of H' may be represented as an infinite chain over {hs}

K =3 Bohy.
On the other hand if g ¢ G we have
g = Y asb (finite sum)

so that G may be identified with the weak product P“Q, , the chains of G being
thus considered as representations of the weak product by finite chains over {b}.
If we assign to g the element of Q:

(") gh' = Y asBs (finite sum)

the assignment g — gh’ makes b’ a field character of G. The hs are the particular
field characters such that bk, = 1, b’k = 0, b > b’, or in terms of Kronecker
deltas:

b'hy = &y .

Now if h e H sends b into 8, then h — k' = 3 Bhy defines an isomorphism 7:
H — H'’ in the algebraic sense. Let N(E) be a nuclear subspace of H. Since G
is discrete so is E, and since E is linearly compact it is finite-dimensional and
therefore a subspace of the space spanned by a finite subset {b;, ---, bs} of B.
Now Ny, = {h|heH', By, = -+ = P, = 0} is a nucleus of H' and since
tN(E) D N,, ris open. Therefore ™ is a univalent homomorphism H’ — H
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and since H’ is linearly compact v is an isomorphism. Since H’ is linearly
compact so is H = 7 'H'.

(¢) G is locally linearly compact. We have then G = Gi X G:, G discrete
and G: linearly compact. For our purposes we may assume G = Gi X G
and then '

G=G1X0+OXG3, (G1X0)II(0XGz)=O.

Let now H, H; denote the character-spaces of G, G;. We have g = (g1, g2),
gi € G;. Hence if h; is a field character of G; the relation gh = giu + gohe
defines a univalent homomorphism 7: H; X H. — H, in the algebraic sense,
whereby (hi, h2) — h. Conversely, let h ¢ H. Since g = (g1, 0) + (0, g2) the
relations gitx = (g1, 0)h, geha = (0, g2)h define elements h; e H; such that
7(h1, hy) = h. Hence 7 is an isomorphism in the algebraic sense.

In order to show that 7 is topological we prove that r establishes a one-one
correspondence between the elements of nuclear bases for H; X H; and H.
Let N(E) be as before and N,(E;) the analogue of N(E) for H;. The set
{N(E)} is a nuclear base for H. If we write E = E; X E:(E: C G1, E: C Gy)
E, and E, must be linearly compact since the projection g X g2 — g1 X 0
[g1 X g2 — 0 X go] is continuous. On the other hand every E = E; X E; is
linearly compact, if E; and E. are linearly compact. Furthermore every
N(E, X E) contains N(E; X G:). It follows that {N(E: X Gi)} (E: any
linearly compact subspace of Gi) is a nuclear base for H. But clearly
7(N(E;) X 0) = N(E: X G:) and any N(E; X G:) can be obtained in that way,
proving 7 topological.

Since H = r(Hy X H,), and H; X H, is locally linearly compact so is H.

(d) gh is a multiplication pairing G, H to Q. The algebraic properties (22.2)
are easily verified. We tak®d G locally linearly compact and as in (c) sineé this is
the general case. If E = 0 X G: then E is both linearly compact and open.
Hence E X N(E) is a nucleus of G X H mapped by gh into zero. Therefore
gh is continuous. This proves (d), and also (28.2).

29. Suppose now G, H paired to @ with a multiplication gh. As in (19.5,
19.6) we introduce the associated field characters ¢,(h) = gh, oa(g) = gh of H
and G, and then likewise the induced homomorphisms x, defined by g — ¢,
of @ into the character-space of H, and x; defined by h — ¢; into the character-
space of G. If both x,, x» are isomorphisms G and H are said to be dually
paired. We now prove the analogue of the Pontrjagin-van Kampen duality
theorem (20.2):

(29.1) DUALITY THEOREM FOR VECTOR SPACES. Let G, H be locally linearly
compact vector spaces paired to Q under a multiplication gh. Then if one of the
induced homomorphisms xg , xa i an isomorphism so is the other. Thus G, H are
dually paired.

Let us assume that x; is an isomorphism. If G* is the character-space of H
we must show that x,: G — G* is an isomorphism.
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30. Suppose first G linearly compact. Then H is discrete. Take a base
B = {b} of H, choose a copy @ of @ for each b and set ‘G = PQ,. Corre-
sponding to ¢, we have then {¢,(b)} = igb} ¢ ‘G and the result of (28.2b) may
be interpreted as showing that ¢, — {¢,(b)} defines an isomorphism G* — ‘G.
Therefore to prove that x, is an isomorphism it is sufficient in the present in-
stance to prove that the homomorphism 7: G — ’G defined by g — {gb} is an
isomorphism.

(a) 7 is univalent. We must prove go = 0 = gy = 0, or that geb » 0 for
some b. There exists a nuclear subspace N of G such that go ¢ N. By (25.8)
wehave G = N + G, Nn @ = 0. Let {b'} be a base for @’. By (25.8d)
every g ¢ @ has a unique representation

g =gr+ 2 av(gl,

where gy ¢ N and the sum is finite. Since g, ¢ N, some as-(go) = 0. Hence
ay(g) is a character of G mapping the nucleus N into zero and different from 0
at go. Hence some b must exist such that gob > 0, as asserted.

(b) 7G = 'G. Let {by, ---,bs} and {g1, ---,gm} be finite subsets of B
and G. Consider now the matrix || (¢:b;) || and suppose that whatever {g;} its
rank is at most r < n. As a consequence we may choose 7 linearly independent
combinations b; of the b; and m vectors g; such that in || (g:b;) || the last column
consists of zeros. Since the b; may replace the b; in B, we may assume that
|| (gibj) || already behaves in this manner. Since the matrix

|| (g:b5) |
Il (gby) |
is of rank not exceeding r, whatever g, we must have gb, = 0 and hence b, = 0’
which is ruled out.

We conclude then that we may choose g1, - -, ga such that || (g:bs) || is of
rank n. Therefore we may choose g = Y a:(g)g: such that {(gh;)} are n pre-
assigned elements of Q.

Let now’g = {ab} ¢’G and let U be any neighborhood of ‘g. The sets in
'G for which a finite number of the coordinates are zero and the rest arbitrary,
form a nuclear base. Therefore there exists a set {b;, ---, b,} such that the
points ‘g whose b; coordinate is a; (Z = 1,2, -+ ,n) are all in U. We have
seen that among these there is a point 7g. Therefore 7G = ‘G. However G
being linearly compact =G is closed in ‘G (27.5), and so G = G = 'G.

If we combine (a), (b) with (27.8) we find that r is an isomorphism. This
proves (29.1) for the present case.

31. Suppose now G discrete. The notations being those of (28.2b), and since
in proving (29.1) we may replace H by any isomorph, we may assume H = PQ, ,
the pairing being given by (28.2b’). Let g* ¢ G*. Since g* is continuous and 0
is a nucleus of Q, the subset of H mapped by g* into 0 will contain an element
of a nuclear base. Now the sets N of H consisting of the elements having all
but a finite number of coordinates zero, and the rest arbitrary form a nuclear
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base for H. Hence g* will take the value zero on a certain set N, say the set
for which the coordinates by, --- , b, are zero. That is to say if g* = as,
then o = 0forb £ by, -+- ,b,. If g = D asb then g — g* defines x, and it is
a homomorphism of G onto G*. Since G, G* are both discrete, (29.1) merely
requires here to show that x, is univalent. Suppose go # 0. By (23.1a) we
may assume go = b ¢ B and since gh, = 1 # 0, we have x,90 # 0. Therefore
Xp is univalent and (29.1) holds in the case under consideration.

Suppose finally G locally linearly compact, and let the notations be those of
(28.2¢c). Thus H = H, X H, and we may identify the two vector spaces, so
that H = H, X H.. For similar reasons if G} is the character-space of H;
we may assume G* = Gy X Gy. If ¢i, xio have their obvious meaning, and if
h = (hy, ) then ¢,(h) = @i,(h) + ¢x(he) and therefore x, is defined by g —
(¢1(h1), @2(he)). Coupling this with the fact already proved that the x;, are
isomorphisms we find that the same holds for x, . This completes the proof of
the duality theorem (29.1). ‘

32. Two results obtained incidentally deserve mention. It is a consequence
of the argument of (30) that:

(32.1) Turorem. Every linearly compact vector space is a product of one-
dimensional spaces.

As a consequence of (30) we also have:

(32.2) Let B = {b} be any set and for each b select a copy U of Q. Then
G = PQ, and H = P“Q, are dually paired under a multiplication which may be
described as follows. Let '

(32.3) g=2 s, h=2 Bl

be respective representations of the elements of G, H by infinite and finite chains.
Then

(32.4) gh =D as.

(32.5) Noteworthy special case: G, H are both one-dimensional. Then each may
be identified with @ and the dual pairing is under a multiplication which is merely
the multiplication in Q.

33. Once we are in possession of the analogue (29.1) of (20.2) the remaining
results: (20.5, - - - , 20.8), of (20) are derived as loc. cit. ‘“Dual systems” in
the sense of (20.8) will refer of course to pairing to ©. There are other minor
deviations which the reader will readily supply.

34. Weak duality. We shall have occasion in homology theory to consider a
couple S, S* as in (20.8) save that Gr , Hx will both be discrete spaces orthogonal
in a pairing to @. We shall then say that we have weak duality. If the dimen-
sion of one of the groups Gy, Hy is finite whatever X then the same holds for the
other and they are in fact equal (25.9). In that case the G\ are again linearly
compact (27.7) and we are back to ordinary vector space duality.
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35. Dimensional complements. Certain questions which are important in

connection with homology will be treated here.
(35 1) The dzmenszon of the limit-space of a direct system of vector spaces. Let
= {Hy; m*} be a dxrect system with limit-space H. Conmder any finite

set {hui}, © = 1; 2, --+ , t, of elements of H, such that {mx*hu} is a linearly
independent set for Hx Let p(\, u) = sup ¢ and set
(35.2) p = sup {inf p(\ W}

m

In connection with Betti numbers and certain other characters Alexandroff
has repeatedly considered numbers analogous to p. For this reason we will
call p the Alexandroff number of S*.

Let us set p(x) = inf\ p(\, &), 7, = dim H,, ,r = dim H, H = the subspace of
the representa.tlves of the 2ero of Hin H,. By (14.4) H, is a subgroup, and
since h, e H, , a € Q — ah ¢ H, , it is also a subspace. By (23.1b) there is a
second subspace H, of H, such that

(35.3) H,=H,+H/, H,aH =0.

From the definition of these subspaces follow also if dim H, = r, :
35.4) r,<r;

(35.5) T S o).

We will now prove:

(35.6) If p(u) is finite then r = p(u).

Choose A > u such that p()\, w) =p(u) and let H,,,\ be the subspace of the
elements &, of H, such that ™ *ha = 0. We have again a decomposition

H,=Hp+ Hp, HanHpy=0.

Suppose that there exists an h,,,\ eH,,x n H,,., , where also » > u and hy % 0-
Take a v/ > v, \. Then h,.x € H,W and 7, *hj, = 0. Since every element of H,
is in H,» mod H,, , and H,, C H,, , we w111 have dim H,, < dim H, = p(k)
which is ruled out, since p(u) = inf) dim H,.x Therefore H,.;. n H,"'., =0. In
other words whatever » > u we have, m*h, %= 0. Thus Ha n H, = 0. It
follows that H, = H\, and since each element of each of H, , H,x is equal to
an element of the other mod H' their dimensions are the same. This is
precisely (35.6).
It is a consequence of (35.4), (35.6) that if p(u) is finite then r = p(u), and
hence also r = p. Thus if the p(u) are all finite and p is infinite so is r.
Suppose now that H contains s linearly independent elements. Then for
some u the space H, will also contain s linearly independent elements and so
s <7, < p(u) S p. Thereforeif r = sup s = » likewise p = o, and if ris
finite then p = r. Consequently if all the p(u) are finite then r and p are both
finite and equal or else both are infinite.
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Suppose some p(u) = «. Then p = « and no comparison is possible.
Since p() S o(A, u) = n for every X > u, this circumstance will certainly fail
to occur if the r\ are all finite or else all the p(A, u) are finite. Therefore

(35.7) If p is finite then p = r. More precisely if the p(\, p) or else the r\ are
all finite then p and r are both finite and equal or else both are infinite.

(35.8) The following example shows that when the 7\ are all infinite (35.7)
need not hold. Take a countable set of symbols {b,} as a base for finite chains
over © and let H, be the group of the finite chains based on {bs, bay1, *-- },
and {A\; >} = {n} with > «» >. Define 7", m < n as follows: if h =
Ombm + -+ + agbg then 72"k = @by + -+ + ab,. It is readily seen that
Tm , p(n, m) are all infinite. Nevertheless the limit-group H reduces to the zero
and so r = 0. Thus when the r, are infinite we may haver = 0, p = .

(85.9) Consider now an inverse system of vector spaces S = {G ; .} and
let p’(A, u) be the maximum number of elements of G, whose projections by 1r,’: ,
A > u, form a linearly independent set. The number

p' = sup {inf p'(\, p)}
s A

is called the Alexandroff number of S. We prove:

(35.10) If 8, S8* form a dual system (20.8, 33) then their Alexandroff numbers
are equal.

Let {hy}, 2 = 1,2, .-+, s, be such that {mx*hu}, X > n, is a linearly inde-
pendent subset of Hy. Since G\ and H, are dually paired under the multi-
plication gk , by (33) and (25.9b) G\ contains a lmearly independent subset
{;i}, (¢ = 1,2, ---,8) such that

ori(mr*h,;) = 8! (Kronecker delta).
Hence by (16.3)
(mgri)hus = 8% .

Therefore {mg}} is a linearly independent subset of G, and so p’(\, u) Z s, and
hence p’(\, u) = p(\, ). By interchanging the roles of G, H we find similarly
e\, u) = o'\, u). Therefore p(\, u) = p'(A, u) are both finite and equal, or
else both infinite. If p(\, ) and p’(\, u) are always finite then (35.10) holds,
while if they are infinite for some pair (\, u) then p, p’ are both infinite and so
(35.10) holds again.

36. Field extension. Let G be a vector space over © and €, a field which is
an extension of 2. We propose to examine certain consequences for G and
certain related spaces, having in mind chiefly an important application to
homology. Since we shall only be concerned with questions of dimension we
may as well assume all the vector spaces discrete.

(36.1) Let B = {b} be a base for G and correspondingly introduce X = {z}
such that b <> 23 is one-one. Thus G is isomorphic with the space of the finite
chains over Q based on X. Let G, be the similar space for @, and the same X.
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Suppose now that C = {c} is a second base for G, and let ¥ = {y.}, G, be the
analogues of X, Gy for C. We first prove

(36.2) GG
Since B, C are both bases for G we have relations
(36.3) b= b, ¢=3 ule b,

where the sums are finite. Since
b= g X(b, C)[J(C, b')b') ¢ = bz'}t(C, b)k(b, C’)C',

and B, C are bases we must have
Z X(b, c)l‘(c’ b) = 6:’ ’

(36.4)
; “(c’ b)k(b) c’) = 6:' )
where 85 , 5 are the Kronecker deltas.

Now by linear extension

2 — A0, e, Yo 3 ule, b)ms,

define in the obvious way homomorphisms 7 : Gy — G, 2 : Gy — Gy. Using
(36.4) we find at once 77, = 1, ;my = 1. Hence 7, is an isomorphism and
(36.2) follows.

(36.5) In view of (36.2) we may as well denote G; by @G without reference
to the special base used in its construction. It is clear that Gy may be identified
with the additive group of the finite linear combinations of the elements b of B
with coefficients in @, . Thus every linear function on G (= homomorphism
into another vector space over Q) has a unique extension to G, .

(36.6) Let now G’ be a subspace of G, and let there be given a set of linear
functions {fs(g)} on G to Q. The system

(36.7) fag) =0

determines a subspace G’ of G. It is assumed that G’ C G’ and so we form
G* = G"/G’' which is again a vector space over Q. Let now Q%G = @G,
2@ = Gi. By linear extension f.(g) becomes a linear function on G, to
and so (35.7) determines a vector space @) over ©,. Clearly G{ C GY C G, ,
so that we may again introduce Gf = Gy/Gi. We prove:

(36.8) GY = 0,G* and in particular dim Gf = dim G*.

We first prove that G = ©G”. Since €, may be considered as a vector
space over , as such it has a base {wx}. Hence any g ¢ Gy is of the form
w\gr where the sum is finite and g ¢G. We have then fu(g) = 0 =
wnfa(gr) = 0 = fa(gr) = 0 since {wr} is a base over Q@ and fa(gr) ¢Q. Thus
g ¢G” and so G © ©G”. Since the converse is obvious our assertion follows.
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Let now C be a base for G’ and extend it to a base Cu D, C n D = @, for G”’.
Define 2,G' and ©,G"' using this base. Then it is clear that G*, GI are, respec-
tively, isomorphic with the vector spaces over 2, @ spanned by D and this
means precisely that (36.8) holds. ’

37. Kronecker products. '

(37.1) Let @ = {g}, H = {h} be two discrete vector spaces over 2. Choose
two bases B = {b}, C = {c} for G, H and introduce new symbols {b ® c}.
The finite linear forms Zab b ® c (finite chains) give rise by addition and multi-
plication by elements of @ to a new vector space K over Q. If we have

g=>pb, k=2 v (finite sums)

then Z Brycb ® c is a definite element of K written ¢ ® h. The operation ®
thus defined between the elements of G and H is distributive and we have
(ag) ® h =g ® (ah) = alg @ h),

(37.2) If we replace B or C, and hence both, by new bases B/, C’ and form the
analogue K’ of K we show as in (36) that there are two homomorphisms
1 K — K’, T2 :K' - K such that TIT = 1, T2 Ty = 1. Hence 1 is an iso-
morphism. If ®’ is the analogue of ® relative to K’, we readily verify that the
identification of ¢ ® h with ¢ ® h turns ; into the identity; this identification
is assumed henceforth and so we will have K = K’. We have thus arrived at a
unique new discrete vector space K depending solely upon G and H. It is
known as the Kronecker product of G, H and denoted by G @ H.

(37.3) When G, H are both finite-dimensional so is G @ H and dim G @ H =
dim G dim H. When one of G, H is infinite-dimensional and the other is not
zero then G ® H 1is likewise infinite-dimensional. '

(37.4) If G admits the decomposition in subspaces:

G=G0+4+G¢", GaG =0,
then G ® H admits the analogous decomposition
(37.48) GOH=GQ®H+6"H,
(37.4b) GCR®HaG@" @ H=0.

Similarly with G, H interchanged.

All but (37.4b) are obvious, and (37.4b) is a consequence of the fact that if
B’, B" are bases for @, @’ then B’ v B” is one for G.

(87.5) Under the same circumstances as for (37.4) f g @ heG’' @ Hand h = 0
then g e G'. .

For if g ® h 5 0 then it is of the form ¢’ @ h, ¢’ ¢G’, and if ¢ @ h = 0,
h 7 0, then g = 0 and again g ¢ G’.

(37.6) Extensive generalizations and indeed a full treatment of the Kronecker
product, under the name “tensor product” will be found in Whitney [f], to
which the reader is referred for further details on this topic.



CHAPTER III
COMPLEXES

A complex is a particular type of partially ordered set with complementary
properties designed to carry an algebraic superstructure, its homology theory.
Complexes thus appear as the tool par excellence for the application of algebraic
methods to topology.

For the present we shall deal chiefly with finite complexes and give a complete
treatment of their homology and cohomology groups and duality theory. Poly-
hedral and Euclidean complexes are discussed as special examples. Infinite
complexes are likewise considered as well as a special class, the simple complexes,
introduced by A. W. Tucker, and may be said to have all the main alge-
braic attributes of the polyhedral type. It is for simple complexes that an
intersection theory is developed in (V), and the combinatorial manifolds of (V)
are also simple complexes. '

Summation notation. It is the same as in tensor calculus: non-dimensional
indices (usually clear from the context) repeated up and down are to be summed
uznlesg an explicit statement is made to the contrary. Thus g¢'z; stands for

i0'T: .

Kronecker deltas. They are the well known numbers defined by §; = 0 for
174,68 =1fori=j. '

Designations for some spectal groups. We will write as in (II): = the group
of the integers, 3» = the group of the residues mod m, P = the group of the
reals mod 1, R = the additive group of the rational numbers (rational group).

If G = {g} is any group then {ga} is a group under the composition law
ga — g'a = (g — g')a, and this group is written Ga. The designations G(m),
G*(m), G[m] are as in (If, 20.9).

The function 8(p). Convenient in many calculations it is defined by

p(p-1)
B(p) = (—1) 2 )
and we notice the useful relations:
p(p+1)
B(—P) = ('—'1) : ’

B(p)B(g) = (—1)"B(p + g).

General references: Alexander [b, c], Alexandroff [f], Alexandroff-Hopf [A-H,
Part 2], Hopf [a], Lefschetz [L, I, VII; L], Mayer [a, c], Poincaré [b], Seifert-
Threlfall [S-T), Steenrod [a], Tucker [a], Veblen [V ], Whitney [d].
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§1. COMPLEXES. DEFINITIONS AND EXAMPLES

1. (1.1) DermNiTIONS. A complex X 1is a set {x} of elements ordered by a
proper reflexive ordering relation < (I, 4) together with two associated functions of
the elements and element pairs whose values are integers: one, dim z, the dimension
of z, also denoted by means of an index as z”, the element then being called p-dimen-
stonal or a p-element, and the other, [x:z'], the incidence number of x and x', subject
to the following conditions:

Kl. 2 < z = dim 2’ £ dim z;

K2. [z:2'] = [2":2];

K3. [z:2] # 02>z <z’ orz’ < z,and |dimz — dimz’'| = 1.

K4. For every pair of elements z, x'" whose dimensions differ by two there is at
most a finite number of «’ such that [z:z')[x':2”’] # 0 and then

(1.2) Z; [x:2'][z":2"] = 0.

When the complex vs finite K4 may be replaced by the simpler condition:
K4'. For every pair of elements z, z'' whose dimensions differ by two, the rela-
tion (1.2) holds.

The dimension of X, written dim X is sup dim z. When its value n is finite X
is sometimes called an n-complex.

(1.3) Let a(z) be a function of x whose values are 1. If [z:2'] is replaced
by a(z)a(z')[z:2'] conditions K1234 are fulfilled and so we still have a complex,
say X’. In conformity with the usual conventions we agree to consider X’ as
identical with X. Thus the function [ : ] for a given X is to be considered as
not unique but only given to within a factor a(z)a(z’). The different sets of
incidence numbers thus arising are said to be admissible, the passage from one
to the other is described as reorienting X. The function a(z) is known as an
orientation function and we say that z has been reoriented if a(z) = —1, and
that it has preserved its orientation otherwise.

(1.4) RemMarRk. The definition of complexes adopted here is essentially Tucker’s [a)
and differs from his only in that: (a) the dimensions are not restricted to being greater than
or equal to 0 which will be of importance in dealing with duality; (b) the complexes need
not be finite. Indeed persistent attention to infinite complexes will characterize our

treatment.
The complexes which we have just introduced are often called ‘‘abstract complexes.”

Other general types have been considered in the literature notably by M. H. A. Newman
[a] and W. Mayer [a]. Newman’s type is designed chiefly to preserve as many as possible
of the properties of polyhedra and for many purposes it is decidedly too ‘‘geometric.”
In Mayer’s type on the other hand only the properties which flow from the incidence
numbers are preserved and the type is thus too ‘‘algebraic.”” Tucker’s type may be said
to occupy a reasonable intermediate position.

2. There are three important sets associated with any element z ¢ X : the star
of z, written St z, the closure of x, written Cl z and the boundary of z, written
Bz. Their defining relations are



90 COMPLEXES [III]

Stz = {2’ |z <2z'}, Clz={2'|2 <z},
Br=Clz—z={2'|2 <&z = z}.

An analogue St 2 — z of Bz may be formally introduced but will not be needed
in the sequel.

We say that 2’ is a face of x when 2’ < z (a proper face when z’ > z), also
that z and z’ are incident when 2’ > or < z. By the incidence relations in z
we shall mean the incidences < together with all the incidence numbers.

The notions of star, closure and boundary of a single element may be gen-
eralized as follows: if Y is any subaggregate of X the star of Y, written St Y,
is the union of the stars of all the elements of Y. Similarly the closure of Y,
written Cl Y, is the union of the closures of all the elements of Y. St Y is the
union of all the elements > some element of Y, while Cl Y is the union of all
the elements < some element of Y. The boundary of an open subcomplex
Yis®Y =ClY-Y.

A subcomplex of X is a subaggregate ¥ = {2’} of X such that with the same
dimensions and incidence relations as in X, conditions K1234 hold in Y alone.
It is clear that the verification of the complex condltlons for Y merely requires
the verification of K4 alone.

We say that the subcomplex Y of X is

oper whenever St Y = Y,orze Y = Stz C Y;

closed whenever C1Y = Y,orze Y = Clz C Y.

Immediate consequences are:

(2.1) If one of the sets Y, X — Y s an open subcomplex the other is a closed
subcomplex, and conversely.

(2.2) Any union or intersection of open or closed subcomplexes s, respectively,
an open or a closed subcomplex.

The aggregates St Y, Cl Y, Bz, are subcomplexes of X. The proof merely
requires that we verify K4. Let us do so for the first. If z, 2" ¢ St Y, the only
significant contribution to Y, [z:z'][z':2"] occurs say when z < z”’ a.nd from
elements z’ between both. But in that case 2’ ¢ St Y also, so that the relation
in question holds in St Y alone. Evidently St z is an open subcomplex, and
Cl z a closed subcomplex; since Cl z is closed so is Bz.

The p-section X” of X is the set of all the elements of X whose dimension
does not exceed p. X7 is likewise a closed subcomplex of X. For the union
of all St z, dim z > p, is an open subcomplex and X is its complement.

When the dimensions of the elements of X are greater than or equal to 0, the
zero-dimensional elements are frequently called the vertices of X.

(2.3) Connectedness and components. The component of any element z is the
set of all 2’ such that there exists a finite collection z = x;, --- ,z, = 2z’ in
which any two consecutive elements are incident. We will then say briefly
that x, 2’ are in the relation R. It is not difficult to see that:

(2.4) Properties (I, 17.1, --- ,17.4) hold for X and the present definition of
components.
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Furthermore we also prove readily: .

(2.5) The relation R is equivalent to each of the following:

(a) St z, St 2’ are in the same component of {St z} in the sense of (I, 17);

(b) Clz, Cl 2’ are in the same component of {Cl z} in the same sense.

It is also a consequence of the definition that

(2.6) The component X' of x contains both Cl x and St x. Hence X' is both an
open and a closed subcomplex of X.

The complex X is said to be connected whenever it consists of a single com-
ponent, i.e., when any two elements are in the relation R.

3. The complex X is said to be star-finite, or closure-finite whenever every
St z or Cl z is finite, and to be locally finite when it has both properties. Notice
these properties:

(8.1) Finiteness = local finiteness.

(8.2) When X is star- or closure-finite there ts at most a finite number of elements
between x and '’ and hence K4 may then be replaced by the simpler condition K4'.

(3.3) Every component of a locally finite complex X 18 countable.

Let Y be a component of X and z any element of Y. Consider the sequence
Yy=1z,Y,, - ,where Y, .u = St C1Y,. Every Y, is finite and since UY, =
Y, Y is countable.

4. Let X, = {x1}, X2 = {z.} be two complexes and suppose that there exists
a one-one, order-preserving transformation 7T: {z;} — {z:} such that: (a) dim
Tz, = dim z, + k where k is a fixed integer; (b) the numbers [z, : z;] are appropri-
ate incidence numbers for T'z;, Tz, . Whenever k = 0 we call T an 1somorphic
transformation or isomorphism X, <> X, and say that X; and X, are isomorphic.
When k& # 0 we say that we have a weak isomorphism and refer to X;, X,
as weakly isomorphic.

It is clear that these two types of isomorphisms give rise to equivalence
classes but we will not refer to them particularly in the sequel as they are not
sufficiently broad for the applications.

Dual complex. Given the complex X = {z}, let us introduce a new set of
elements X* = {x*} such that x < z* is a one-one correspondence with the
following properties: (a) z < 2’ e z'* < z*; (b) dim z* = — dim z; (c)
[x* :2'*] = [x:2']. We verify immediately that conditions K1234 continue
to be fulfilled, so that X* is also a complex. It is known as the dual of X.
Clearly X** = (X*)* =~ X. If we agree to choose as the elements z** the

elements x themselves: 2** = z, then we will have X** = X. Thus X, X*
will be dual to one another.

By way of notation if 27 is any element of X its image z7* in X* is conveni-
ently denoted by z; . Thus when the dimensional index of an element is a
subscript it denotes the negative of the true dimension of the element.

The reader will not have missed the fact that our definitions have been so couched as
to continue to give free play to the dualism which permeates the general theory of ordered
sets. This is the chief justification for imposing symmetry in the incidence numbers and
for introducing negative dimensions. The so-called dual complexes hitherto considered in
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topology had of course only positive dimensions, and also in fact nonsymmetrical inei-
dence numbers. Wherever they occurred these complexes were weak isomorphs of X*
with dimensions raised to make them greater than or equal to 0, and with a certain reorienta-
tion that need not be described at the present time.

5. Simplicial complexes. As we shall see later (VII, VIII) this is the domi-
nant type wherever complexes occur in topology.

(5.1) We must first define the simplex. A p-simplex ¢ is merely any set
of p + 1 objects {Ao, : -, A,}, known as the vertices of o*. It will generally be
assumed that they are assigned a definite order modulo an even permutation
and we will write accordingly ¢ = Ao -+ A,, the specified order being the
~one in which the A; are named. The simplex o with its vertices ordered as
just stated is said to be oriented. The number p is the dimension of . The
simplexes whose vertices are among those of ¢” are known as the faces of o,
more precisely its g-faces for those of dimension g. In particular ¢® has p + 1
zero-faces, the vertices A;, and a single p-face, namely itself.

Ifo,=A¢--- Ay, 00 = Agyy --- Ap, where Ao, -+, 4, are all distinct,
we write o = g102, call o” the join of o1, 02 and also o1, o2 opposite faces of
o*. The symbol o, - -+ o, is defined by recurrence.

(5.2) We come now to the simplicial complex.. The elements of a simplicial
complex K are simplexes. They make up a set {o} such that if ¢ is in the
set then every face of ¢ is likewise in the set. The dimension of ¢ is as defined in
(5.1). The relation ¢/ < o means that o’ is a face of ¢ in the sense of (5.1).
The incidence numbers are defined as follows:

(d) If o1 1s the face opposite the vertex A in o set e = =1 according as o 18 or 48
not ordered like Ao, ; set ¢ = 0 in all the other cases (o, not a face opposite a vertex
of o nor the other way arnund). Then [o:0y] = [o1i0] = e

ExAMPLE. o = A;434;, 0, = A14;. Since A;4.4; is not 4,4,4; modulo an even
permutation we have [0:q;] = —1. On the other hand for instance [s:4,] = 0.

It remains to verify that K is a complex. Since K123 are manifestly satisfied
it is only necessary to verify K4. It reduces here to:

(5.3) ’z: [o:ailloriae] = 0.

The verification is trivial unless the situation may be so arranged that o,
is the opposite face of a one-simplex AB of ¢, and o, is then, except for ordering
o1, one of the simplexes Aoy, Bo:. Furthermore if the order is changed in
any simplex occurring in (5.3) the left-hand side will at most change sign.
Therefore the order of the vertices may be chosen as specified by the above
symbols. And now (5.3) reduces to

[ABO’Z:Ao‘z][AO‘zIO’Q] + [ABa'ziBa'z][Bo’zia’z] = 0.

Therefore K is a complex.
(5.4) If the ordering of the vertices is changed the effect upon the incidence

numbers is the same as applying to K an orientation function a(¢) = (—1),
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where » is 0 or 1 according as the permutation of the vertices of ¢ is even or odd.
Under our conventions this does not modify K.

To orient a simplicial complex K = {o} is to orient every ¢ ¢ K. The order
assigned to the vertices of each o is the one which is to serve in calculating
the incidence numbers in (5.2). A convenient mode often utilized in orienting
K is to range its vertices {A:} in a definite order, then to orient every ¢ as
o=A; - A;,1 < - <]

(5.5) Special terms. A one-dimensional complex is sometimes called a
linear graph, or merely a graph. If L is a closed subcomplex of the simplicial
complex K then L is also a simplicial complex. The complement K — L is
known as an open simplicial complex. By contrast K itself is sometimes called
8 closed simplicial complex. :

The boundary 8" = B¢"*! of a ¢"* is a closed simplicial n-complex, some-
~ times called an n-sphere. The zero-sphere S° consists of two vertices.

(5.6) While K may be infinite, it is clearly closure-finite but need not be
star-finite.

(5.7) An alternate scheme for the incidence numbers. It is convenient on
occasion to define the incidence numbers in the following way: If ¢ = ¢’A then
the new incidence numbers, denoted temporarily by [ : ) are[s:¢’) = [¢':0]) =1
and all the other incidence numbers are zero. Clearly [¢”:¢” ) = (—1)?[¢":¢"].
That is to say, the new incidence numbers correspond to reorientation by means
of a(¢”) = B(—p), where B(p) is as in the Introduction. Thus they are admis-
sible incidence numbers for K.

(5.8) ReMaRk. Unless otherwise stated the incidence numbers will always
be selected in accordance with (5.2). '

(5.9) Duals. The dual K* of the simplicial complex K is defined as for any
complex. Its elements are denoted by o} , and in particular the dual of 4; is
written A°. Ifo? = A, --- Ay we write o5, = A7 ... 4% andcall 47, ..., 4*
the vertices of o, . If ¢® = Axe” " or ¢ = ¢% then we also write ¢, = A's, s
or o, = 0.0,, as the case may be. The incidence numbers may be defined
directly in K* as in K hy the rule [Ac:o] = [0:Ag] = 1 in the case of (5.2),
[¢A:0] = [6:0A] = 1 in the case of (5.7), and all the other [ : ] zero. Wealso
have dim A* = 0, dim o, = —p and ¢, < o, signifies that the set of vertices
of o, contains the set of vertices of o,. In other words, the passage from K
to K* consists essentially: (a) in ordering the subsets of {A'} by theinclusions
of their complements; (b) in replacing the dimensions by their negatives.

6. Polyhedral complexes. We will consider polyhedral complexes in an
Euclidean space " and indicate the extension to those in the Hilbert parallelo-

tope (6.14).

(6.1) DEFINITIONS. A polyhedral complex in G" is a countable locally finite
complex II = {E} with the following properties:

(a) a p-dimensional element E” is a p-cell which is a bounded convex region of
some G of GC";
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(b) the cells are disjoint;

(¢) the union of the cells of Cl E? is E?;

(d) If ¢(E) is the union of the cells E' ¢ St E, then o(BE) n E = @.
The set UE is known as a polyhedron, written |1I |.

Notice that (¢) implies that E’ < E when and only when it is E or else a cell
C E — E. 1In other words, E' < E is equivalent to: E' = E or else E’ is a
face of E in the commonly accepted sense.

Evidently (d) holds automatically when the polyhedral complex is finite.
Its purpose is to eliminate certain topological complications which are foreign
to the structure of complexes (see 6.2).

The incidence numbers are described below but they necessitate an extensive
discussion of Euclidean coordinates.

(6.2) ExampLes. The regular solids are well known finite polyhedral complexes. The
subdivision of the plane by the lines z, y = 0, =£1, &2, -+ , is a good example of an infinite
polyhedral complex. On the other hand the set of segments:

1
lo:0=22zs1,y=0; l,.:0§z§l,y='-l, n=12-...,

is not a polyhedral complex since ¢(lo) = U I, is such that ¢(lo) D Io .

It may be noticed that under our definition a given point set A may admit
of a decomposition in disjoint cells in two distinct ways, one of which gives
rise to a polyhedral complex, and the other fails to do so. In particular (c)
may cease to hold. Thus let A be the set 0 < v < 1. The interval together
with ¥ = 1 is not a polyhedral complex. However, the intervals 1/(n+1) <
u < 1/n together with their end points decompose A into the cells of a poly-
hedral complex.

(6.3) The incidence numbers in IT will be described in terms of auxiliary
coordinate systems in the spaces of the cells. As is well known, an Euclidean
space €" may be viewed as a linear variety L in a real vector space B, i.e., a
vector space over the field of reals. An@”inE” is a linear p-dimensional variety
L' contained in L. The points of & may be represented as vectors a + z,
where {z} spans a p-subspace B, of B. If {b, ---,b"} is a base for B, then
we have z = zb’, and {2,, ---, x,} is a coordinate system for . The point
a is known as the origin of the system.

We will suppose once for all that every G” has been assigned a definite co-
ordinate system called its basic coordinate system. Let {z,, ---, z,} be the
one of . Thenif {y1, -+, ¥»} is any coordinate system for G we will have:

(6.3a) yi = alz; + ai, a=| al | = 0.

The number ¢ = a/| a| = =£1 is known as the characteristic number of the

coordinate system {y}.
An @' C @ partitions G” into two convex regions ?, &"””.  We may choose
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a coordinate system {z;} for G” such that z, = O represents '. The two
regions @7, &7 are then the two sets z, > 0, z, < 0. Since we may choose a
new coordinate system in which z, is replaced by —z, , and the other coordinates
are unchanged, we may assume {z;} such that say € is the region r, > 0.
The coordinates {z;, - - - , Z,_1} of any point of G define a coordinate system
for G, with characteristic number say ¢ . We will introduce incidence
numbers

(6.3b) €@ = —[E":E] = &7

Let the basic coordinate system {z;} of €” serving to determine the char-
acteristic numbers be replaced by another {Z;}. We have then relations

(6.3¢c) Z=miz;+n;,, p=|mi|#0.

If u > 0 the characteristic numbers are unchanged, if » < 0 they are all changed
in sign. To orient G” is to assign to it a coordinate system {x;} modulo a trans-
formation (6.3c) with p > 0. It is said to have its orientation reversed if
the basic coordinate system undergoes a transformation (6.3¢) with . < 0.

(6.4) We are now ready for the incidence numbers of II. Let € denote the
subspace of the space G" of II containing E? and suppose E% ' < E?. The
subspace GZ* divides 7 into two regions one of which, say @ contains E?,
and we define [E?:E?™") = [EP™:E?] = [€7:@7"] = £1. All the other
incidence numbers which are not determined by this rule are set equal to zero.
Thus K123 hold and we merely have to verify K4.

(6.5) Suppose Ef* < E?. InG? let @ be a plane meeting G at a single
point A ¢ EF™. The intersection of & with E? is a closed convex plane poly-
gonal region with the vertex A. In such a region each vertex is incident with
exactly two edges. Hence Ef* is the common face of exactly two (p — 1)-
faces Ef™', EI™ of E?. There are now two possibilities:

(8) G = GF™". Let G, G, be the two regions of the partition of
@2 by G2~ Since E?™'  EZ™' and they have the common face E?P™*, there
must be one in each of the two regions, say E?™ — G;", Ef ™ < €;””". Hence
under our definition of the incidence numbers:

[EP:EF?) = —[EE:EP7"] = £1.
On the other hand: .
[E?:E?™") = [EP:E7"] = [6":6€] 7] = =1
Hence
(6.6) 2 (BF: BB ERT] = 0

and K4 holds.

(b) G2 » GZ'. Choose a coordinate system {zi, ---, z,} for G such
that @5, G2 are, respectively, represented by ,-, = 0 and z, = 0 and that
on E? : 2,1 > 0, z, > 0. As a consequence on Ef 'z, > 0 and on E "
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2,1 > 0. For we must have, respectively, z, = 0, z,-1 = 0 and equality is
excluded. To proceed further let us introduce the characteristic numbers
€, & £ of G, G2, GF Y, GF7* with respect to the coordinate systems

{xl, ...,xp}, {xl, ...,xp_z’xp}’ {xl, "',xp—l}, {xl, ---,:cp_.z}. We have
then
(BP:E?7') = —fe™;  [ER:EPY) = £87
BB = &g (BERE = &7

That the last three incidence numbers have the correct value is clear. Regard-
ing the first, to determine it we may utilize for G the coordinate system
{Zy, -+, Tpa, Ty, Tp} With 2, = Zp_1, Tp_1 = z,. This system has the

. e / —1 . ’
characteristic ¢,” = —e’. The space €/ is now represented by z, = 0,
. . l4 . 0 .
and has the coordinate system {z,, - - , o2 , Z,—1} with the same characteristic
-1
ef” as before. Hence
! 7 . -
[E?:E?7Y] = ¢Ped™ = —efe?™

Substituting the incidence numbers in (6.6) we find that this relation holds
here also. Thus K4 is fulfilled in all cases and so II is a complex.

(6.7) The characteristic numbers ¢/ have been defined throughout relative
to fixed orientations of the spaces €7 . If these are modified one will obtain
new characteristic numbers ¢”. Setting a(E?) = e’e;” we find then that the
effect upon the incidence numbers [E?:E?7'] is equivalent to applying the
orientation function «(E). Thus the polyhedron as a complex is independent
of the basic coordinate systems which serve to determine the ¢’ and hence
the incidence numbers.

(6.8) A polyhedral complex is countable and locally finite.

This is an immediate consequence of the definition (6.1).

(6.9) Euclidean complexes. We must first define Euclidean stmplexes, the
constituent parts of Eyclidean complexes.

We will consider again a fixed " and as in (6.3) take a representation of the
space as a subset of a real vector space 8. Let then ¢° be a simplex whose
vertices {a;} are independent points of ", that is to say, contained in no G**
of " or equivalently contained in a unique & of G". We associate with ¢”
a set of , known as an Euclidean p-stmplex, and composed of the points of

E" given by:
(6.10) z=y'a;, 0<y'<l, Xy'=1, p>0; z=a, p=0.

The y* are the barycentric coordinates of . To the face o = a; --- a; of o
there corresponds the set of points obtained by replacing above 0 < y* by 0 = v
fork s« 4, ---,j. Itis the o, associated with ¢’ and is known as a face of ¢?.
We transfer to ¢7 and all its faces the terminology and concepts introduced
for ¢ and thus we have notably the incidences, and incidence numbers of (5).

(6.11) o? s a p-cell; jits boundary Be? is a topological (p — 1)-sphere and
a7 is a closed p-cell.
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Let G” be the space of o7 (i.e., the ® D ¢?). It is an immediate consequence
of (6.10) that: (a) o7 is convex; (b) if A € o7 , any ray AL issued from A in G®
intersects 67 in a segment AB, B > 4, B e 8ol . Now ¢! is contained in some
parallelotope P of €". Since Bo? is thus a closed subset of the compactum P
it is likewise a compactum. Hence A ¢ Bo? = d(4, Be?) > p > 0 (I, 45.2)
and therefore S(4, p) n & C ¢? . Thus 4 is an interior point of ¢? in G and
s0 o? is a convex region of €*. Hence (6.11) is a consequence of (I, 12.9).

(6.12) Let now K = {o} be a countable locally finite simplicial complex
whose vertices {a;} are points of an G" and such that:

(a) the vertices of any ¢ ¢ K are independent and therefore determine an
Euclidean simplex o of G"; :

() o= o =000 =@

(¢) if o(o,) is the union of all the o, ¢ St 0., then ¢(c.) n 0o = @.

If we transfer to {o.} the dimensions, incidences *is a face of,” and incidence
numbers prevailing in K, it becomes a complex K, =2 K, known as an Euclidean
complex. We also speak of K, as an Euclidean realization of K, of K as an

antecedent of K..
It follows from the definition of K, that every x e 0.6 K, satisfies a relation

r=ya, 2y=1,
where if z € 0, , and o, has the vertices a;, -+, ax, then y’, -+, 4* = 0, and
all the other y* are zero. The y' are-the barycentric coordinates of x and are
uniquely determined by the point.

(6.13) K, 7s a polyhedral complex.

Let K° be the g-section of K. Since (6.13) is trivial for K} we may assume
it for K?™' and prove it for K? . At all events all the requisite conditions
except those referring to the incidence numbers are fulfilled. Thus we merely
have to show that admissible incidence numbers of K are suitable for K, as
a polyhedral complex. '

Let the vertices {a;} be ranged in some fixed order and let ¢, o7 have the
common vertices @i, , +** , @i, ,% < +-+ < ip. If " is the space of ¢”, we agree
to choose as its basic coordinate system {z;, ---, z,} a system with origin
at a;, and such that a;,, h > 0, has the coordinates 8% (Kronecker deltas).
Let o**, 627" be the faces of o, o7 with the vertices ai,, - -+, @iy, Gigyys ==
a;, and let the incidence numbers in K be defined by taking the vertices in the
increasing order of the subscripts and in accordance with (5.7). Then

[":6"] = (=1)" = [o7:027'].

Therefore (6.13) is proved.

(6.14) Polyhedral complexes in the Hilbert parallelotope. Let P° be referred
to the coordinates {x;, %2, --+},0 < 2, = 1/n. Consider a real vector space 8
defined as follows: its elements are all the ordered countable sets of real numbers
¥y = {n, vy,  };if ais real then ay = {ay.};if ¥ = {yn) theny + ¥’ =
{yn + yn). We may identify P* with a subset of a real variety L in 8, where
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L is so chosen that it contains no proper linear subvariety D P“. If we inter-
pret everywhere an G as being a set L’ n P, where L’ is a linear p-dimensional
variety contained in L, then all the preceding considerations are applicable.
We will thus obtain polyhedral complexes, Euclidean simplexes and complexes
in P* which have exactly the same properties as before.

(6.15) If K, = {o.} then in accordance with (6.1) the set Ug, is designated
by | K.|. Similarly if L, is a closed subcomplex of K, then the union of the
o, ¢ K, — L, is written | K, — L,]|.

§2. HOMOLOGY THEORY OF FINITE COMPLEXES

(a) GENERALITIES

7. The group-theoretic role of the algebraic structure imposed upon a complex
receives its full significance through the medium of the chain-groups and certain
associated subgroups and factor-groups. The groups related to finite complexes
are to be investigated first and to the full. They will serve as a fundamental
pattern for all later developments.

(7.1) Let then X = {z} be a finite complex, and G an additive group. In
the terminology of (II, 8) we use {27} as a base to form the p-chains over G,
or chains

C? = g'z?, ¢ ¢G.

These are all finite since X is finite, and their group P(Gz?) is denoted by
C”(X, G). Instead of “C” is a chain of X,” we will also say more simply “C?
is contained in X,” written C* C X.

(7.2) If there are no p-elements it is convenient to introduce formally a
group @°(X, G) consisting solely of zero.

(7.3) The set of all the z? appearing in C” with a coefficient g* » 0 together
with all their faces is a closed subcomplex of X denoted by | C |.

(7.4) Instead of ‘“chain over &, Jm, B, over the rational group,” we will
say “integral, mod m, mod 1, rational chain” and similarly later for related
entities (cycles, homology groups, etc.), the meaning being clear from the
context.

(7.5) Notice that in dealing with finite complexes the groups of chains arising
out of P” may be considered as merely those arising out of P over a discrete
G, and the distinction between the two possible types of chains of (II, 8) dis-
appears.

(7.6) When @G is a discrete field the chain-groups over G and the related
groups introduced below will all be vector spaces over G' and will conform with
the basic convention (II, 22.2) for such spaces. That the homomorphisms and
multiplications which will arise are always linear will generally be obvious.

8. The chain-boundary, or merely boundary of C” is the (p—1)-chain

(1) FC” = 2 ¢'le?:a] 2]
1
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The boundary operator F is thus defined simultaneously for all groups G what-
ever. When FC” = 0, C” is said to be a p-cycle of X over G. Notice that Fz”
is a chain of Cl 27, and hence FC” is a chain of Cl|C”|. Identifying for con-
_ venience z? with the integral p-chain 1.2? , F defines the integral boundary
of zP as '

(8.2) Fz? = ) [a?:2a? 72?7
i

Since the [z? :2?7'] are integers, the finite sum g‘[z?:2?"] is an element of
G so0 FC” is an element of G*~'. We notice that when z? has no (p—1)-faces,
Fz? = 0 for every G. In particular if ¢ is the lowest dimension of all the ele-
ments of X we have Fz{ = 0 and hence FC* = 0 whatever C*: all the chains
of the lowest dimension are cycles. This is not an exception as it corresponds
merely to the fact that € = 0.

According to (II, 8.4) the operation F determines a homomorphism ¢” — ¢,
The transformed group §* = FGE”* is known as the group of the bounding p-
chains over G. The homomorphism F: ® — ¢”* has a kernel 37 in G” whose
elements are the p-cycles over @, and 3" is known as the group of the p-cycles
over G. If there are no p-elements then as in (7.2) we define formally 3* =
§F =0

(8.3) As a consequence of K4 (K4’ of 1 in fact since X is finite) we have
FFC? = 0 whatever C* and whatever G. This relation is generally expressed
in the operator form

(8.3a) FF = 0.

In fact condition K4’ is strictly equivalent to (8.3a) for @ = & and it is at least
as frequently expressed in this form. Our formulation offered the formal
advantage of being wholly divested of any connection with the chain-groups.

(8.4) It is a consequence of (8.3) that §” is a subgroup not merely of G”
but actually of 3°. Or in words: every boundary is a cycle. For G = & this
is merely another formulation of K4'. '

9. Since 8° = F '@, , where &, is the zero of ¢, 3” is a closed subgroup of
G®. Since 87 is closed §¥ < 8. Thus §”, which is also a subgroup (II, 3.2),
is actually a closed subgroup of 8°. In accordance with (II, 5) we may there-
fore introduce the factor-group:

(9.1) X, &) = (X, §)/F (X, G).

It is known as the pth homology group of X over G, and its elements as the pth
homology classes of X over G. If C* — D” e §”, we then write with Poincaré

the homology:
9.2) C* ~ D"

It is hardly necessary to point out that the homologies (9.2) combine like
linear equations with integral coefficients, i.e., like arithmetical congruences.
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The homology groups have various important characteristic numbers, notably
their rank. The rank R” of the pth integral homology group is known as the
pth Bettt number of the complex. The calculation of these numbers will be
illustrated in some of the examples.

(9.3) The reader will have no difficulty in proving also

(9.4) (X, G)/8(X, &) 2§ (X, B.

However, while of some interest, (9.4) rarely occurs in the applications.

10. Complementary remarks.

(10.1) Reorientation convention for chains. We shall agree that if X is
reoriented by the orientation function a(z), the element gz” of G” is to be re-
placed by a(z”)gz®. In other words the chain-groups are to undergo a simul-
taneous automorphism o« that may be described as:

a: 2z — a(z) z.

Referring to (8.1) we find that oF = Fa (@ commutes with F). It follows that
&”, B” are unchanged by a, and hence the same holds regarding $°. In other,
words our convention merely introduces isomorphisms of all the groups €
& 3, . )

(10.2) Influence of isomorphisms upon the different groups. An isomorphism
X — X’ induces likewise isomorphisms of the groups &"(X, @), ---, §°X, @),
with the corresponding groups of X’. A weak isomorphism X — X’ raising
dimensions 7 units induces isomorphisms of the groups €°(X, @), - - - , with the
groups &***(X, @), ---. A similar remark applies to all the groups of com-
plexes introduced later and will not be repeated.

(10.3) Separation of dimensions. While we are separating dimensions throughout, this
is not absolutely necessary. We could have defined a chain over G as any expressions
C = g'z;, ¢g' ¢ (@, with resulting groups €, --- , P related as before. Evidently € =
PG, --- . However, the more interesting parts of the theory of complexes arise precisely
from the comparison of certain dimensions, and so the scheme which we are following is
preferable.

(10.4) Simplicial complexes and their duals. Let the notations be as in (5),
notably as in (5.9) regarding the dual. If C* = J_ g; o7 is a chain of K, then
AC? denotes the chain Y g:(Ao?), where if either A¢? is not a simplex of K,
or A is a vertex of ¢ then the term g,(A¢?) is to be set equal to zero. A similar
convention is adopted for K* and its chains.

It is convenient to have the explicit expression of Fo?, Fo, under both schemes

(5.2, 5.7):
(a) under the scheme (5.2)

Fdo -+ Ap =2 (=1)%4o -+ Agi denr -+ 4y, p>0;
(b) under the scheme (5.7) ([¢4:0] = 1):
FA0~--Ap=Z(—l)ﬁAo‘“Aq—lAHl"‘Ap» p>0;
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(c) under both schemes Fo° = 0.
In K*, we have if vo = > A°, then:
(d) under the scheme (5.2):
Fop = 7005 ; FCp = %Cy ;
(e) under the scheme (5.7):
Fo, = opvo; FC, = Cyye.

We verify directly Fyo = 0, so v, is a zero-cycle of K*. This zero-cycle plays
the role of a boundary operator for K*: multiplied to the left under (d), and
to the right under (e).

The usual scheme is (d), and so v, will generally act as a left multxpher.

(10.5) Boundary relations in polyhedral complexzes. Let II = {E} be a polyhe-
dral complex and let E" € II have as its (n — 1)-faces {E;™'}. Then [E™:E}™"]
= ¢ = =1 (6.4), and so: ,

FE" = €E!™.

Therefore:

(10.6) Every (n — 1)-face of E" appears in FE" with a coefficient 4 1.

Since E" is a bounded region in an §", BE™, n > 0, cannot be contained in
a finite set of s, p < n — 1. Therefore E” has at least one (n—1)-face
and hence:

(10.7) E*, n > 0, 7s not a cycle.

In II we have in more general form:

(10.8) FE! = 7i(n — 1)E;™,
where pi(n — 1) = =x1if E} " is a face of E7 , and 5i(n — 1) = 0 otherwise.

§3. HOMOLOGY THEORY OF FINITE COMPLEXES
(b) INTEGRAL GROUPS

11. Further progress is contingent upon a full investigation of the integral
groups. They are assumed taken with discrete topology and it is to these
that the symbols €, 3, §, O shall refer in the present section.

Since @” is a free group on a finite number of generators, we shall naturally
utilize properties of such groups as given in (II, §2).

Set for convenience [z?*':z?] = 3i(p), and denote by 5(p) the matrix of
these numbers, or pth mczdence matriz of X. The group 8° of the p-cycles
is the subgroup of the elements v’ = g'z? of € which satisfy the relations

Fy* =0or
@11.1) gni(p — 1) = 0.

Since 3” is a subgroup of a free group of finite rank it is itself a free group of
P

finite rank (II, 10.1). Since the topology is discrete §” = §®. The latter is
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the group generated by the elements Fz?*' = »i(p)z?. The group $” is
the factor-group of B° by §” and so it is isomorphic with the group of the ele-
ments g'z? such that (11.1) holds and with the relations

(11.2) ni(p)z} = 0.

Thus §° is a group on a finite number of generators and so from the basic re-
duction theorem for such groups (II, 12.8) we conclude:

(11.3) TueorEM. The pth integral homology group of a finite complez X
satisfies a relation:

(11.4) o =B X Pg?

where: (a) B is a free group on a number of generators equal to the pth Betti number
R*(X); (b) the T are cyclic groups in finite number whose orders t? are finite
and such that t? divides t7, .

The t? are the pth torsion coefficients of X and B” its pth Betti group. From
the reduction theorem we have also the complementary result:

(11.5) The torsion coefficients tf are the invariant factors greater than 1 of
the incidence matrix n(p).

The group ” = PZ? is also known as the pth torsion group of X and we have:

(11.6) D" is isomorphic with the product of the pth Betti group and the pth torsion
group.

12. Pursuing our investigation we shall obtain a simultaneous reduction
of the chain-groups to a form clearly exhibiting their mutual relations.

The group G” of the integral p-chains is a free group on the z? with the
subgroups 3”7, §°, where §* < 3°. By (II, 12.6) a base may be chosen for
@” consisting of elements A7 , Bf such that certain multiples s;A? make up
a base for 3°. .

Now ty* = tg'z? is a cycle when and only when the fg° satisfy (11.1). But
in that case the g’ themselves satisfy also these relations and so v” is likewise
acycle. In other words, ty® ¢ 83° =>y” ¢ 3°. Applying this to the A? we deduce
that A? ¢ 3%, which can only be if the s' are unity. Thus:

(12.1) A base {A?, BY } may be chosen for G° such that {A?} is a base for
the group 37 of the integral p-cycles. .

Regarding the B? no element based on them is a cycle, i.e., no g'Bf ¢ 8°.
unless every g' = 0.

The same reduction may be carried out for all dimensions. Since the A7+
are cycles, FA?™ = 0 and so §” has for generators the chains FB?* which
are in fact p-cycles (8). Again by (II, 12.6) a base may be chosen for 3°
consisting of cycles A;”, ¢? such that certain multiples r?A:” form a base for
%°. Furthermore r! divides rfy, throughout.

Notice that the replacement of the A? by the A7, c¢? as free generators of
@”, is a change of base in €” which leaves the B undisturbed.
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Since $* = 8°/§” it is isomorphic with the group on the generators A%,
¢? with the relations:

(12.2) rPA? = 0.

We now divide the A;” into two sets. The first will consist of the elements,
denoted by a? , such that the corresponding r? = 1, the second of those, denoted
by b? , such that the corresponding r? , henceforth written ¢? are greater than 1.
The notations are so chosen that t? divides ;. The group $” is now iso-
morphic with the group on the generators a?f , bY , ¢? with the relations:

(12.3a) a? =0,
(12.3b) 17b? = 0.

Evidently the a? may be suppressed among the generators so that $° is in fact
isomorphic with the group on the b?, ¢ with the relations (12.3b). We have

then

12.4) 9 = P(3c?) X P3*(hd?).
By comparing with (11.4) we have then:
(12.5) B == P(Sc?), TF = PP =~ P(G*(¢?)b?).

Therefore: (a) the rank R of B, or of $7, is the number of ¢! ; (b) the ¢? are
the orders of the T7, i.e., they are the pth torsion coefficients of X.

13. Since {a?, t7b7} are free generators for §”, by (II, 12.3) they must be
reducible to the set of free generators {FB?*'} by a unimodular transformation.
That is to say there exist relations:

7b? = NFB?* = F(\{B?")
a? = uiFB?*' = F(uiB}")
with a unimodular matrix
[A]

|
Ll

It follows that if we set
d?+l — AZB:‘,'{-I, e?+l = “::B;?-{-l,

the d?*!, ¢ may replace the free generators B?* in the set of free generators
(AP B?™} for G"*. Notice that this substitution does not affect {4?™'} =
{a'gzi-l’ b,‘P-H C?.H} .

14. Let us suppose now that the dimensions in X run from ¢ tor. We reduce
the bases for €% G*!, ... in succession as follows:

Group §°. Here €' = 0s0 G = 3% The first reduction yields the base
{A?} and the second the base {a}, b}, ci}. There are no di, ef.
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Group G, The first reduction yields the base {A§™, B{*'}, and the second
{af™, pit ¢t B¥Y'}, The a?, b? determine the ef*', di*' and as already
observed the choice of these in place of the BI*' as generators is tantamount
to a change of base for ™', We thus have a third reduction to & final base
{af™, ..., &™) for G ,

Group 6. The same reduction may be applied step by step for p = ¢ + 1

-, r. We have thus proved the

(14.1) TaeorEM. The bases for the integral chain-groups of a finite complex
may be chosen to consist for each dimension p of five sets of elements al, -, e
with the boundary relations:

Fef* = a?, Fa? = 0,
Fart = b7, Fb? =0,
(14.2) Fe? =0,
Fd? = t27'b?7,
Fe? = a?™.

The number of c? is the pth Betti number R”, and the t's are the torsion coefficients.

The bases in the reduced form described in the theorem are said to be canonieal.

15. There remains the explicit calculation of the R*. Let o’ denote as before
the number of elements z? , and let o” be the rank of the incidence matrix #(p).

Since 3” is the subgroup of the elements g'z? for which (11.1) holds, its rank
is o® — p”!. Since $° = the factor-group of 3 by the subgroup of the ele-
ments which satisfy the relations (11.2), its rank is o® — oot — P or
(15.1) R* = o — o
Since n(p) exists only for ¢ < p < r — 1, to make (15.1) hold formally for all
dimensions we define ' = 0, fors < gors > r — 1. Thus (15.1) provides an
explicit expression for the Betti numbers in terms of the incidence matrices.

If we multiply both sides in (15.1) by (—1)” and add there comes the classical
Euler-Poincaré relation for finite complexes:

(15.2) > (=1)%” = 3, (—1)’R".

The common value x(X) of these two sums is known as the Euler characteristic
of X. The relation (15.2) is often convenient for computing Betti numbers,
notably when the range of the dimensions in X is small.

(15.3) The Poincaré polynomial. We understand thereby the polynomial

(15.4) Pt X) = > RF

whose coefficients are the Betti numbers of X. Under certain circumstances
(formation of the product, IV) this polynomial obeys very convenient formal

— pp.
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rules. Moreover it may be used to advantage in describing the Betti numbers
of certain simple complexes. Thus for the boundary of the (n + 1)-simplex
we shall find later (22.4) that in substance P(t, X) = 1 + ¢".

§4. HOMOLOGY THEORY OF FINITE COMPLEXES

(c) ARBITRARY GROUPS OF COEFFICIENTS

16. Let again G be an arbitrary topological group and let this time €, 8, §, ©
refer to the groups over G. Following Steenrod [a] we shall give a complete

analysis of these groups.
By definition (11, 8)

& = P(Gz?).

Let us designate temporarily by z;? the elements a? , - - - , e of (14.1), where
we have a relation

(16.1) z? = N@®2f,  Mp) = || N(p) || unimodular.
Consider now the group
¢” = P(Gz).

Referring to (II, 8.4):

g’z — g'N(p)z}
defines a homomorphism 7: €” — ¢®. Since A(p) is unimodular, it has an
inverse :

(@) = N"(@) = || i@ |,

and so

g'z? — g'ul(p)zy
defines a homomorphism §: € — €. It is an elementary matter to verify
-g)p : @1:;,, 6r = 1; hence 7, 6 are isomorphisms (II, 4.5), and consequently

From the result just obtained we infer that we may represent every element
C” ¢ & in the form:

(16.2) C® = g"a + y'b? + 2'c? + u'df + v'ef
where the coefficients ¢ G. From (14.2) follows now:
(16.3) FC? = 272" + v'a?™".

Hence C” is a cycle when and only when »' = 0 and #£7"«* = 0 (k unsummed).
Therefore in the group symbolism of the introduction to the present chapter:

(16.4) 8" = P(Gaf) X P(Gb?) X P(Gc?) X P(GIE"1d}).
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On the other hand §” is the set of all chains

(16.5) C? = g"af + y't7b?.
Since yt? ( unsummed) is merely any element of G(t?) we have:
(16.6) § = P@GaX) X PG@DY).

The topology of the factor Gaf is governed by that of G and the isomorphism
Ga} =~ @. The topology of G(t7)b? is its relative topology as a subgroup of
Gb? =~ @. Therefore {7 is obtained by merely replacing G(t7)b? by its closure
G(t*)b? as a subgroup of Gb? , and this is the same as G(t?)b? (closure in G).
With this meaning of the symbols clearly before us we have then

(16.7) & = P(Ga}) X P(G@7)bD).

If we combine with (16.4) and recall that § = 3/F, we have:
(16.8) X, &) = P(G/G@))w?) X P(Ge}) x P(GIE™1dD),
or finally in equivalent form:

(16.9) (X, @) = P@*w?) X PGe?) X PGIE™"dD).

We have thus obtained a basic decomposition of the homology groups over any
coefficient group G.

Some simple conclusions may immediately be drawn from the relations just
obtained notably:

(16.10) If there are no torsion coeffictents for the dimension p then a p-cycle ~ 0
18 a bounding cycle. Hence if there are mo torsion coefficients “~0"” and
“bounding’’ are equivalent. (See 9.)

For the second product at the right in (16.6) is then absent, hence §* = §,
which is (16.10).

(16.11) If there are mo torsion coefficients for the dimensions p and p — 1 the
pth homology group over G reduces to the “Betti” part P(Gc?). Hence if there
are no torsion coefficients all the homology groups reduce to their Betti parts.

(16.12) If in X: p < dim z = ¢ then: (a) no g-cycle ~0 unless it is zero; (b)
every p-chain 1s a cycle.

Noteworthy special case: In a simplicial complex or in a polyhedral complez,
every zero-chain is a zero-cycle.

Since there are no (¢ + 1)-chains different from 0, we have F**'(X, @) = 0
which is (a). Owing to the absence of (p — 1)-chains different from 0 we have
FC? = 0 whatever C? and this is (b).

17. Some noteworthy coefficient-groups.

(17.1) Division-closure groups. For these groups the G(m) are all closed (II,
20.9) and so from (16.7):

(17.2) When G is a division-closure group, § = §°, and hence: (a) “~0" &>
“bounding;”’ (b) & = 3°/§" (Steenrod [a]).

Noteworthy special cases: G is compact or discrete.
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(17.3) G is a discrete field. The groups € (X, @), ---, $°(X, @) are then
finite-dimensional vector spaces over G and hence discrete (II, 25.6). The
dimension R”(X, G) of (X, @) is known as the pth Betti number over G. Let =
be the characteristic of G. It will be recalled that x is such that #g = 0 for
every g ¢ G, and is a prime number or zero. Among the special fields of char-
acteristic # > 0 is found J. , the field of the residues mod =, and it is a subfield
of every field G of characteristic 7. The corresponding chains, - - - are known
as chains, - - - , mod = and the associated groups and Betti numbers are written
¢ (X, x), -+, R*(X, v). We shall show in substance that for most purposes
3> may replace G.

We will make use of (II, 36). In the notations there utilized and since 3,
is a subfield of G we recognize immediately that €°(X, G) = GC*(X, ). Fur-
thermore 37(X, =) is defined by means of FC? = 0, where the coefficients of FC”
are reduced mod . The group 3”(X, @) is defined by the same relation save
that the values FC? for the chains over @ are obtained by linear extension from
the values for the chains mod ». Both the groups §(X, @) and §*(X, ) are
spanned by the chains FE?*' taken mod = (i.e., with coefficients reduced mod ).
We have therefore the exact situation of (II,36.8). By that result then $°(X, @)
is isomorphic with the vector space over G spanned by $"(X, r), and $°(X, @,
H°(X, =) have the same dimension, or

(17.4) R’(X, @) = R*(X, =).

We have obtained (17.4) without utilizing the reduction (16.9). We may
also use the latter for the same purpose, and it will lead to an expression for
R?(X, =) in terms of the integral Betti numbers and torsion coefficients.

Referring to (16.9), R*(X, G) is equal to the number of products effectively
present at the right:

(a) When = does not divide ¢ , G(tf) = @, and the corresponding term is
absent. When = divides t7 , G({¥) = 0 and there is a term Gb? . Therefore the
first product at the right in (16.9) consists of 6% isomorphs of @, where 6% is the
number of {7 with 7 as a prime factor.

(b) The second product in (16.9) consists of R’ isomorphs of G.

(c) When = divides t™", Q[t?™'] = G, otherwise it is zero. Therefore the
third product in (16.9) consists of 627" isomorphs of G-

Thus $°(X, G) is the product of R? + 62" + 6% isomorphs of G. Hence

(17.5) R'(X,G) = R + 627" + 6%.
Since this value depends only on 7, (17.4) follows. We write explicitly
(17.6) R*(X, =) = R* + 27" + 62.

The case 7 = 0, i.e., G of characteristic zero, is not exceptional. The field
is then to be replaced by the rational field . The corresponding chains, - - -,
are said to be rational. We verify directly that in (16.9) the second product
alone remains, thus yielding for G of characteristic zero:
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(17.7) R'(X, 6 = R*(X, R®) = R*(X).

This shows that the integral Betti numbers themselves may also be defined as
the dimensions of the homology groups over a field, namely the rational field R,
or for that matter any field of characteristic zero. An incidental and frequently
convenient result is that {c?} is a base for the rational p-cycles with respect to

homology.
To sum up we have proved for finite complexes, a theorem which will recur

in a number of instances later, and is formulated for later reference in a more
general form than immediately required:

(17.8) UNIVERSAL THEOREM FOR FIELDS. The homology groups over a field G
of characteristic = are vector spaces over G, and their dimensions, the Betti numbers
over G, are equal to the corresponding Betti numbers mod .

COMPLEMENTARY RESULT. A mazimal set of p-cycles mod w independent with
respect to homology s likewise a maximal independent set for any field of charac-
teristic .

These properties hold likewise for # = 0, the cycles mod =, and their Betti numbers
being then the rational cycles and Betty numbers.

Complements (for finite complexes only): (a) The Betti numbers are all finite,
and the rational Betti numbers are the numbers R’ (integral Betti numbers) pre-
viously defined. (b) The Euler-Poincaré formula holds for all fields G:

(17.9) 3 (—1°R*(X, @) = 3 (—1)a.

(Immediate consequence of (15.2) and (17.6).)

Historical note. The special theory mod 2 played an important role in earlier topology,
as a reference to Veblen [V] will show.

(17.10) G = P, the group of the reals mod 1. This time P(m) = P, hence
PB*(m) = 0. Therefore

(17.11) (X, B) = P(Bef) X P(B[2™'1df).
The first term is a toroidal group, which is the direct product of R” isomorphs

of B. Since P[P~ 22 I*(t2™"), (11, 20.14) the second term in (17.11) =< T*(X).
Therefore

(X, B) = P(Be?) X T(X).

This proves:
(17.12) The pth homology group of X mod 1 is < the product of an RP-dimen-

stonal toroidal group by the (p — 1)-dimensional torsion group of X (which s a
finite group).



[6] APPLICATION TO SOME SPECIAL COMPLEXES 109

18. Universal coefficient-groups. A group Gy is called a universal coefficient-
group for X, whenever given the full set {$”(X, G;)} and an arbitrary G it is
possible to determine in terms of the groups of this set and of G all the groups
{9°(X, @}.

When the integral homology groups and G are known, so are the Betti numbers
and torsion coefficients and hence also an isomorph of the product at the right
in (16.9), and finally $°(X, @) itself. Similarly, given all the homology groups
mod 1 and the group G, we learn from (17.11) the values of the numbers R”,
and also the $7'(X), hence the torsion coefficients. Consequently, we may
again determine the terms in (16.9) and hence the groups over G. Therefore

(18.1) The groups &, P of the integers and of the reals mod 1 are both universal
coefficient-groups for finite complexes.

(18.2) A n.a.s.c. for two finite complexes to have the same homology groups
over every G is that they have the same integral homology groups, or else the same
homology groups mod 1, and so, in the last analysis, that they have the same Betti
numbers and torsion coefficients.

19. The following properties which are often useful, are ready consequences

of the general theory:

(19.1) If X = UX,, where the X; are disjoint complexes, then:
(19.2) (X, G) = PE(X:, 6) (every @),
(19.3) R'(X,®) = X, R*(X:, G) (G a field).

The second relation follows from the first, so we merely prove (19.2). Every
chain C? of X over @G is of the form .

(19.4) c’=> C?,

where C? is a chain of X; over G. N. a.s. c. for C” to be a cycle, or to be ~0,
are, respectively, that every C? be a cycle, or be ~0. From this to (19.2) is

but a step.

(19.5) If X**' is the (p + 1)-section of X then for every r < p:
(19.6) X, = 9'X™",6) (every G)
(19.7) R'(X, Q) = R(X*", @) (G a field),

For §'(X, G) depends solely on the elements of X**".

§5. APPLICATION TO SOME SPECIAL COMPLEXES

20. Simplicial complexes. et K = {o} be a finite simplicial complex. The
vertices of K will be designated by A with possible supplementary indices. If
o” = Ao --- A, e K then (10.4ac):

(20.1) Fo? = > (=1%o -+ Aedgpr -+ 4p, p > 0;
(20.2) FA = 0.
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In particular for p = 1
(20.3) Fo' = 4, — 4.

(20.4) DeriNtTioN. I C° = g*A, 48 a zero-chain then 3 g' 18 a function of C°
known as the Kronecker index of C° and denoted by KI(C®). As we shall sce later
(28, 46) this number 18 a special case of a more general numerical function with
the same designation.

We will now prove a series of properties relating connectedness and the zero-
cycles. They are so interlocked that they will have to be proved more or less
together. The following notations will be used:

{K;} = the components of K;

{Aa} = the vertices of K, ; however, the vertex A, will be written 4; .

(20.5) A n. a. s. c. for two vertices A, A’ to be in the same componentis A ~ A’'.

(20.6) C* ~ 0= KI(C") = 0.

(20.7) Every zero-cycle over any G satisfies a relation

(20.71) C"~g'di, ¢'eQ.
Moreover a relation
(20.7b) g'4:~0, ¢'€G,

implies that every g* = 0.
(20.8) For every group G:

9'(K, @) = P(GA,).

In particular when G = 3, the group of the integers, then ' (K, I) is isomorphic
with the free group on the generators A;. This group has no elements of Jinite
order and so there are no torsion coefficients for the dimension zero.

(20.9) The number of components of K s the zero-dimensional Betti nu.mber
R'(K, @), G any field. Hence R'(K, Q) is independent of G and it will be desig-
nated by R'(K).

(20.10) If K is connected and A any vertex then every C° satisfies the relation:

C* ~ KI(C"A.

Therefore when K is connected C° ~ 0 «» KI(C®) = 0.

(a) Suppose first G = J. Let A, A’ be any two vertices of K;. Since K;
is a component there is a finite set of elements of K; : 4 = o0, -+ ,0, = A’
in which any two consecutive elements are incident (2.3). If ¢;is not a vertex
it contains a vertex A; of ¢, and a vertex A of ¢4, hence also the one-
simplex A;A; . Tt follows that in the sequence joining 4 to A’ we may replace
o by the set of simplexes: A] , (4;A}), A7, and still have consecutive elements
incident. Proceeding thus we will arrive at a set of the same type and of form
Aihl = A, 0§ , A:’hg y t ot ,A.‘}., = A’. Hence Fa{ = A,').L.H bl Aihk a,nd so if
C' = Y ojthen FC' = A’ — A ~ 0. This proves (20.5) as regards necessity.
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If C° ~ 0 and G = & we have C° = F(g"s}), hence KI(C®) = ¢"KI(Fo}) = 0

by (20.3). This is (20.6) for the present situation.
If C° is an integral chain we have C* = Y. €%, C} C K., and C} = g"4a .
By the necessity part of (20.5) for G *= 3 we have As ~ A., hence !~
X gMA; = KI(C?)A: from which (20.7a) follows. Furthermore this also proves
(20.10) for integral chains.
Suppose that (20.7b) holds with the g’ integers and not all zero. Then
g'A; =FC'=F > C},C; CK;. Since chains in different components cannot
cancel out we have FCi = ¢'A; (¢ unsummed). Hence by (20.6) already proved
for @ = §: KI(FC}) = 0 = g'. This proves (20.7b) for G = §. From this
follows also the sufficiency proof of (20.5). For suppose A ~ A’ and 4, A’ in
different components say K;, K;, 7 # j. The two vertices may then be chosen
as A;, A; and we would have 4; ~ A; which is ruled out. Therefore 4, A’
are in the same component, and the proof of (20.5) is completed.

It follows from (20.7) for @ = & that $°(K, 3) is isomorphic with the free
group on the generators {A;} and this is merely another way of stating (20.8)
for G = &. This is as much as may be obtained for G = J.

(b) Suppose now that G is any group. We first notice that (20.9) is a con-
sequence of (20.8) and so requires no further consideration. For all but (20.8)
the only property required is that “~ 0” «» “bounding” for the zero-cycles,
and this follows from (16.10) and the fact that there are no ¢} (20.8 for G = J).
Regarding (20.8), if we go back to the derivation of (12.4) we venfy that,
since there are no & , {c}} is merely any set of zero-cycles such that §° (K, &)
is isomorphic with the free group on the generators ¢; . Therefore we may
choose {c}} = {A:}, and so (20.8) follows from (16. 11) This completes the
proofs of all our propositions.

21. Complexes with cyclic and acyclic properties. An important and simple
property of many noteworthy complexes is to have all the homology groups for
certain dimensions vanishing or merely isomorphic with the coefficient-groups.
Among these are found, for example, simplexes and their boundaries.

(21.1) DeriniTiONs. The complex X is said to be cyclic [acyclic] in the dimen-
sion p over G if & (X, G) = G [=0]. It is said to be (p, ---, g)-cyclic
[to be (p, - -+, @)-acyclic, acyclic] over G if it is cyclic over G in the dimensions
p, -+, q and acyclic over G in the other dimensions [acyclic over G in the dimen-
sions p, - -+ , ¢, in all dimensions]. If X say, is cyclic in the dimension p over G
for every G it is merely said to be “cyclic in the dimension p,” and similarly for
the other properties.

As in similar instances when G = &, S, R we will say “integrally acyclic,”
“geyclic mod m” or “rationally acyclic,” and similarly for the other concepts.

We have at once from (16.9):

(21.2) A n.a.s.c. for a finite complex to be acyclic is that all the Betti numbers
and torsion coefficients vanish.
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(21.3) A n.a.s.c. for a finite complex to be (p, - -+ , q)-cyclic is that all the torsion
coefficients vanish, that the Betti number R' = 1 fors = p, -+ ,qand R' = 0
otherwise.

A convenient result is:

(21.4) Ifdim X = n + 1 2 2, and X s zero-cyclic and with a single (n + 1)-
element z"**, then its n-section X" = X — z"*' 4s (0, n)-cyclic, and all its n-cycles
are of the form g&", 8" = Fz"*.

By (19.5) it is only necessary to show that X" is cyclic in the dimension 7,
and this will follow if we can show that every n-cycle of X is of the form gé”",
8" = Fz""'. Referring to the canonical bases (14), since there is only one
(n + 1)-element 2"** it is the single ¢/ ** on hand and there are no df *'. There-
fore at the right in (16.6), only the first product is present and it is G§". By
(16.7) we find then §* (X, @) = §" (X, G) = G5". Since X is acyclic in the
dimension n we must have 3*(X, &) = §*(X, @) = G8". Hence every n-cycle
is a gé", and (21.4) follows.

(21.5) A closed connected simplicial complex is cyclic in the dimension zero
(20.10).

22. The simplex, its closure and boundary. Let ¢" be an n-simplex. We
will consider the groups of ¢", Cl ¢", Bo". It is often convenient to call ¢"
an open simplex, Cl ¢” a closed simplex.

(22.1) Groups of ¢". The simplex o" itself is (trivially) n-cyclic.

(22.2) Groups of Cl ¢". We will show that it is zero-cyclic. For n = 0
this is the same as (22.1) so we assume n > 0. If A, A’ are any two vertices
then AA’ is a one-simplex of Cl ¢" and so Cl ¢" is connected and hence cyclic
in the dimension zero (21.5). Let now ¢" = A¢" ™, and Cl " = {¢?7'}.
By (20.1): FA¢?™ = ¢?' — AFe?™", p > 1, and FAe)} = o7 — A. Hence

FAC*™ = C*™' — AFC™, p > 1;
FAC® = C* — KI(C")-A.

Let now 4%, p > 0, be a cycle of Cl ¢”, and suppose first p > 1. We have
P =AC" 4+ (", C" " and C° CClo"". Hence Fy’ = C*' — AFC* ' + F(C® =
0. Since the middle term alone contains the vertex A we have FC*™ = 0,
C*™' = —FC” and hence v* = FAC®. When p = 1 we obtain: Fy' =
" — KI(CHA + FC' = 0, hence KI(C®) = 0, C° = —FC', and the con-
clusion is again the same. Therefore v* ~ 0 for every p > 0 and so Cl ¢" is
zero-cyclic.

(22.4) Groups of Bs". By (21.4) when n > 1, B¢" is (0, n — 1)-cyclic.
Since Bo' consists of two points A, B its sole homology group different from 0
is the one for the dimension zero and it is the product for any given G of two
isomorphs of G.

23. Dissection of a complex. Relative cycles.

(23.1) Let X, be a closed subcomplex of X and X, = X — X, its open comple-
ment. The pair (Xo, X)) in the order named will be referred to as a dissection
of X. Our present purpose is to compare the groups of the X; with those of

(22.3)
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X itself. We will denote by F, the boundary operator for X;. If C is a chain
of X we have C = Cy + Cy, C; C X;, and we will call C; : the chain C reduced
mod X ; (j # ), or merely “C mod X;.” If ¢(C) is a function whose range
and values are chains of X, we have '

o(C) = 0o(C) + &u(C),  &:(C) C X,

and we will call ;(C): the function ¢ reduced mod X; (5 # 7).

(23.2) The groups of Xy. If z eX, then Bz C X;, and hence F, = F| X, .
It follows that a cycle 4” of X, is also a cycle of X and that if C; bounds in X,
it also bounds in X.

Since the elements of X; are among those of X we have an injection
€ (X, G) —» € (X, @) in the sense of (II, 8.6). We may consider this as a
simultaneous operation on all the chain-groups of X, into those of X, and
denote it briefly as #:X; — X, as if it were an operation on X; to X. This
operation is called an injection of X, into X. We notice the obvious property:
Fn=qF,. Asa consequence of this, n maps, respectively, 3°(X;, @), F (X1, @)
into 3°(X, @), (X, @), and since 7 is continuous also F'(X: , G) into F(X, @).
Hence (I1, 5.4) n induces a homomorphism 7: $*(X,, @) — (X, F). We will
set 2%’ (X1, G) = § (X1, ), 19"(X1, G) = &I (X1, G).

(233) Since ﬂSP(XI ) G) = Sp(Xl ’ G)’ the group ‘@f(xl ’ G) = Bp(Xl ’ G)/
87(X:, @) n F(X, @) may be viewed as the group of the cycles of X, as
to bounding in X. Taking now integral chains it will be seen that the con-
siderations of (12, 13) are still applicable when the p-chains are restricted to
X1 and the (p + 1)-chains are still chains of X. They will lead to a system
(14.2) for the particular dimension p (but not simultaneously for all dimensions),
with the (p + 1)-chains d? ™", e?* chains of X and the rest chains of X;. The
reductions and the other results of (16), of (17) (all but 17.8b), and of (18),
follow automatically.

(23.4) The groups of X mod X;. The important operation is now the re-
duction = of the chains of X mod X;. Thatistosay,if C =Cy+ C;,C; C X,
then #C = Cy. Since & (X, @) = ¢ (X,, & X € (X:, @), r is a collection of
open homomorphisms: (X, G) — G (X,, @), (II, 6.2). We call = the pro-
jection of X into X, and denote it symbolically also as m: X — X,. We verify
here: #FC = FyrC or 7#F = For, and we conclude as before that = induces a
collection of homomorphisms #:97(X, G) — H"(Xo, G). This time a cycle
+? of X, is not a cycle of X but merely a chain of X, whose boundary is in X, ,
and v* ~ 0 in X, means that v* + a chain of X; ~ 0in X. For this reason vy*
is called a relative cycle or a cycle of X mod X, and the groups of X, are corres-
spondingly written (X, X1, @), ---. The term absolute cycle is sometimes
applied to the cycles of X itself. Thus the cycles of X; are absolute cycles,
those of X, are relative cycles. .

(23.5) We will now make certain identifications in accordance with (II,
8.6, ---, 89). First €(X:, G) is identified with yC?(X,, G) in accordance
with (II, 8.8) and thus becomes a closed subgroup of C”(X, @G). We will say
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that two chains C%, C7 ¢ €°(X, G) are congruent mod X, if they are congruent
mod G°(X;, G) in the sense of (II, 5.1). We will now identify all the chains
congruent to a given chain mod X, , first with their coset mod €°(X,, G) (II,
5.1), then with the representative of the coset in €”(X,, @), thus obtaining in
particular the topological identification of €°(X, G)/C”(X,, G) with €°(X,, G)
(11, 8.9). Al these identifications will be assumed throughout the sequel in all
similar instances.

Hereafter a chain mod X, over @ is then merely a chain given to within a
chain of X; over G. The identification of the chains causes the identification
of 3°(X,, @) with the group of the cosets of €”(X, G) mod €”(X;, G) con-
sisting of the chains v* over @ such that Fy* < X;. Under our identification
such a chain is also to be described henceforth as a cycle mod X; and it is
known only to within a chain of X, .

Similarly §°(Xo, @) is identified henceforth with the group of the cosets of
the chains & of ¢*(X, @) mod G*(X,, G) such that * = FC*** 4+ D?, D’ C X, .
The chain 47 is also to be described as a bounding cycle mod X, and is again only
known to within a chain in X;. For the same reasons §° ~ 0 mod X, is now
understood to mean that 8 — D, ¢ §(X,, G), D* C X;.

(23.6) Remark. We have temporarily denoted by F; the boundary operator of X;.
However if we return to our previous custom and designate by F the boundary operator of
any complex whatever then we have 9F = Fy, «F = Fr. Thus both » and » commute
with F. The general class of the operations with this property will come strongly to the
fore in the next chapter under the designation of “‘chain-mapping”’ (IV, 9).

24. Circuits. An absolute n-circuit or merely an n-circuit is an n-complex
X with the following properties: (a) I'" = > z7 is an n-cycle mod 2; (b) no
proper closed subcomplex of X possesses such a cycle, i.e., X is irreducible with
respect to (a). Property (b) implies in particular: X = | I'" | (notation of 7.3).

When X is simplicial (a) means that every ¢" " is the face of an even num-
ber of ¢".

(24.1) If an n-circurt X has integral n-cycles different from Q then: (a) their
group s infinite cyclic; (b) if D" is any integral n-cycle different from 0, then | D" |
= X.

Let D" = a'z? # 0 be an integral n-cycle. We show first that | D" | = X.
If the o' have a common factor p, D'* = (1/p)D" is likewise an n-cycle and as
| D'™| = | D" |, D'" may replace D". Therefore we may suppose the a' rela~
tively prime and hence one of them, say a', tobe odd. Let b' = 0, 1 according
as @' is even or odd. Then b'z} is a cycle mod 2 and hence b'z} = I'", b* = 1.

" Therefore every element of D" is also an element of I'" and hence [D"| =
"] = X.

Suppose that there are integral n-cycles different from 0. Their group 3°(X)
is free (11) and its dimension d > 0. If d > 1 a suitable combination D" of
the base elements will lack some z", which contradicts | D" | = X. Therefore

d = 1 and B”(X) is infinite cyclic.
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Under the same conditions 37(X) will have a base consisting of a single A",
called a basic n-cycle. The only other basic n-cycle is — A"

(24.2) The n-circuit is called orientable when it possesses integral n-cycles,
non-orientable otherwise.

A simple n-circuit (sometimes called an n-pseudo-manifold) is an n-circuit in
which every (n — 1)-element is a face of precisely two n-elements. The simple
n-circuit may be orientable or not.

If Y is a closed subcomplex of X and X — Y is an n-circuit, X is called a
relative n-circuit, or an n-circuit mod Y. This may be combined with “ori-
entability”’ or the ‘simple-circuit” property. In the relative circuits the
n-cycles I'", A™ are cycles of X mod Y.

Let X denote an n-circuit (absolute or relative). From the definition we
infer that its nth homology group $"(X, 2) is eyclic, i.e., consists of 0 and a
single element I'". Then X is orientable whenever its integral homology
group $"(X) is cyclic, non-orientable when $"(X) = 0. When the circuit
is relative, the homology groups are those of X mod Y.

(24.3) ExampLEs. Bo™*!, n 2 1, is an absolute orientable n-circuit. Take a rectangle
ABCD, match A with C, B with D, AB with CD. There results the so-called Mébius strip.
If [ABCD:AB] = 2, the resulting complex is a non-orientable n-circuit mod (4D Y BC).

(24.4) Simplicial simple n-circuit. For these important circuits the defining
properties may be given a more elementary form in accordance with:

(24.5) If K — L is simplicial, n.a.s.c. for K to be a simple n-circuit mod L are:

(a) every sz'mplex o e K — L is a face of a o" 5

(8) every ¢™ " is a face of two and only two o™;

() the set M of the ¢" " and ¢" of K — L is connected

Notice that M is the complement of the (n — 2)-section of K — L and so
it is an open subcomplex of K — L.

When K — L is a simple n-circuit both («) and (8) hold by definition. As
for (v) if {M.},7 = 1,2, ---, r, are the components of M then I'" = > I'?,
I C M;, and I'} is an n-cycle mod (L, 2). Hence if K — L is an n-circuit
we must have r = 1, or (y) holds. Conversely, suppose that («), (8), (v) hold.
In view of (8), X of = I'"is a cycle mod (L, 2) so property (a) holds. Suppose
that a proper closed subcomplex of K — L contained another such cycle I'".
Owing to (), I''" must lack at least one n-simplex say of. Let o be present
in I'". Since K — L is connected in view of (a) there is a sequence which
under proper labelling may be put in the form o7 , 037, 05 , ---, o , where
consecutive terms are incident. Now owing to (8), and since I''" is a cycle
mod (L, 2), if i is a face of I'", so must o=y be, and hence likewise oy, .
Consequently of must be a face of T'", and this contradiction proves that
I'" cannot exist, or property (b) holds also. Therefore K — L is an n-circuit,
and in view of (B) it is simple. This proves (24.5).

(24.6) ExampLE. The sphere S* = Be™*!, n > 0, is a simplicial, simple, orientable
n-circuit.
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By (214, 22.2) if y» = Fo*1, then: (a) y" is an integral n-cycle of S, hence also a cycle
mod 2; (b) there are no other n-cycles mod 2 different from 0. Since | y*| = 8%, the two
basic circuit conditions (a, b) are fulfilled. It is an elementary matter to show that every
"1 ¢ 8" ig the face of just two o*, and so S™ is a simplicial simple n-circuit. Since it con-
tains the integral n-cycle v* it is orientable. Thus S has all the properties asserted
in (24.6).

§6. DUALITY THEORY FOR FINITE COMPLEXES

25. (25.1) Let X = {z?} be a finite complex and X* = {z}} its dual. We
shall compare the various groups of the two complexes.

Since X* is a finite complex it has all the general properties of finite com-
plexes. However, it is convenient to adopt a terminology referring the rela-
tions in X* back to X. A (—p)-chain or (—p)-cycle of X* is called a p-cochain
or p-cocycle of X, and denoted by Cp,v,. Their groups are written €, (X, G),
B,(X, @), those of the bounding cocycles F,(X, @). The (—p)-dimensional
homology groups of X* are called the p-dimensional cohomology groups of X, writ-
ten $,(X, @), and the corresponding Betti numbers and torsion coefficients are
written R,(X, 7), t5. For reasons of euphony we will sometimes say: dual
Betti numbers, groups, etc. In substance then in the notations the dimension
(—p) in X* is indicated by the subscript p.

All the necessary modifications are obvious enough and need not be discussed.
Notice, for later reference, that the basic boundary relations for the cochains are

(25.2) Fgizy = 22 gilzy i zbplzhn.
1

The boundary of C, is then a Cp,1 whose dimension is that of C, decreased by
one. The “dimensional” behavior is thus the same as for chains.

Referring to (23), and in the same notations, we may also introduce new
types of absolute or relative cocycles. They are: the absolute cocycles of X,
and the cocycles of X mod X, (cycles of X* mod X7).

(25.3) Let K be simplicial. The notations being those of (10.4) we will call
vo = 2 A’ the fundamental zero-cocycle of K (27.7a). The coboundary relations
are then FC, = v,C, , under the usual incidence number scheme (5.2), and FCp =
Cyvo, under the scheme of (5.7). This is a mere restatement of (10.4de)
in the “co-terminology.”

26. Instead of considering the “‘co-theory” as a theory of a different collection of ele-
ments from those of X, some authors prefer to view it as a theory of the elements of X
with < reversed. It is then necessary to introduce, side by side with F, a second operator
F*, the coboundary operator, defined by

(26.1) F*(g'22) = Zj‘, gilar:ar*ilarty,

which raises the dimensions by one unit, instead of lowering them like F. Thus Whitney
. proceeds in that manner and writes 9, & for ¥, F*. The operator F* is a homomorphism
§?» — @r*1 with similar properties to those of F, the cocycles are the chains of X whose
coboundary vanishes, etc.
In the present work we shall definitely consider the elements of X* as distinct from those
of X with the notations and terminology indicated in (25).
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To justify our choice we may anticipate and consider cartesian products of chains and
cochains as in (IV, §2). If we write down expressions such as C? X C1, C? X Cq, we know
by inspection the rules for calculating the appropriate boundary chains F(C? X Cu9),
F(C? X C,), the operator F being the same throughout. However, if we adopted the
alternate procedure with F, F*, we should have to write all these expressions C? X Cb,
and choose each time one of four possible operators. Three factors would impose a choice

between eight operators.
It may be pointed out also that our convention merely represents adherence to those

employed for many years in projective geometry and related doctrines, whereby covariant
and contravariant elements are represented by distinct symbols. This is in keeping with
the fact that they undergo distinct transformations.

27. It is evident that all the results of (§3) are applicable to X*, i.e., to
cochains, etc. Let a,, - -+ have the same meaning for X* as o”, -- -, for X.
Evidently a, = o, and from (25.1) follows that if 9*(p) is the (—p)th incidence
matrix for X*, then 7*(p + 1) = (n(p))’ (the prime means the transpose).
Therefore p,41 = p° and the torsion coefficients t,,, are the same as the ¢7.
Since the subscripts are the negatives of the dimensions we obtain in place
of (15.1)

—1
Rp:ap—PvH_Pp:ap_Pp“Pp = R”.

Hence T,41, B, are abstractly the same as ¥, 8”. This proves the following
theorem which is the analogue of Poincaré’s initial duality theorem for mani-
folds (V,33.1) and as far as Betti groups go, is the duality theorem of [L, 286]
(duality theorem for pseudo-cycles):

(27.1) First pvaLiTy THEOREM. The pth Betti and dual Betti groups are iso-
morphic, and likewise the pth torsion and (p + 1)st dual torsion groups, and

(27.2) R, = R?, tpn =1

We state also explicitly the convenient property:

(27.3) When X is torsion-free so is X* and the integral pth homology and
cohomology groups are isomorphic with one another as well as with the pth Bett:
group of X. '

(27.4) The Betti numbers and torsion coefficients of a finite complex determine
all its homology and cohomology groups.

Let us define X as p-cocyclic, - - - whenever X* is (—p)-cyclic, --- . Then
we have by (21.3):
(27.5) Whenever X 1s (p, - - - , q)-cyclic or acyclic it is also (p, - - -, q)-cocyclic

or acocyclic, and conversely.

(27.6) Let X = {x} be such that p < dimz < ¢q. Then: (a) no p-cocycle ~ 0
unless it 1s zero; (b) every g-cochain is a cocycle (16.12).

(27.7) Let K = {o} be a simplicial complex with vertices {A;} and duals (A},
Then: '

(@) vo = Y A’ s a cocycle;

(b) #f K 1s connected every zero-cocycle s of the form gvo ;
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() if K is a simple n-circust then every o' is an n-cocycle and ot ~ == o
Sor all 4, j; hence every n—cocycle ~ ga;, .

ProoF oF (a). We have Fo} = n.A j, where X! = 0. Hence FA’ = 4lof,
and so Fy, = F Z A= 3 iai 2 ini = 0. Therefore v, is a cocycle.

Proor oF (b). When K is connected then R, = R’ = 1 and there are no # .
It follows that K is cocyclic in the dimension 0. Consequently every zero-
cocycle is of the form g, where & is an integral cocycle. Suppose 6 = z:4°,
and let 7o = y&. We have then 3 A' = yr;A° and so yz; = 1. Hence

=y = =1, 8 = v, from which (b) follows. ‘

Proor or (¢). Let K be a simple n-circuit and let K™ be its (n — 2)-section.
By (24.5y) K — K™ is connected. It follows that if ¢", ¢'" are any two n-
simplexes of K there is a sequence ¢" = oy, of ', 05, -+, 011, of =o',
in which consecutive elements are incident. Consequently this holds equally
regarding o, oh_1, -+, o,. Since K is a simple circuit: [sh_y:0h] = £1 =
=+ [oh_1205""]. Since the only elements of {c.,} incident with oh-1 are i and
o' we have Fol_; = £(oh =+ oit') ~ 0, or o}, ~ +0i'", and so finally o, ~
:ba:. .

(27.8) ExampLE. Consider the sphere S* = 80"+, 0"l = A¢ -+ Ang1,n > 0. Since Sris
(0, n)-cyclic it is also (0, n)-cocyclic. Its zero-cocycles are all of the form g Z A, We
have seen (24.6) that S» is a simple n-circuit and so its n-cocycles are all ~g4° ... A,

28. Kronecker index of chains and cochains. Further progress will rest upon
an extension of the concept of Kronecker index. The connection with the
earlier concept will be made in (46).

(28.1) DEFiNITION. Let B(p) be as in the Introduction. Then the Kronecker
index of the couple z¥ , x, is the number

(28.2) KI(2? , z}) = B(p)s; (Kronecker delta),
and the Kronecker index of i, , z? is
(28.3) KI(z} , 27) = B(—p)8l = (—1)’KI(? , z}).

(28.4) We have just specified values for the Kronecker index whenever X,
X* are so oriented that [z?:2?7'] = [v,_;:2,]. In order to allow for arbitrary
reorientations we add the convention that if X, X* are reoriented by means
of orientation functions a(z?), o*(z5) then

KI(x?, xp) = a(zf )a*(xp)B(p)ﬁ,
= (=1)’KI(z; , 2?).

ReMark. In [L, 165] the analogous definition of the index was given by means of (28.2)
but without the factor 3(p), thus causing dissymetry under dualization. To pass from the
present to the earlier definition it is merely necessary to reorient X* by a(z,) = 8(—p).

(28.5) We shall now choose two groups G, H paired to a third J and with a
multiplication gh. We define hg = gh, so that H, G are formally paired to J
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with the same multiplication gh. Thus the two groups G, H are paired to J in
one or the other order and with a multiplication independent of the order of
the pairing. We shall i briefly describe this relationship by the statement
“@, H are commulatively paired to J.”

Suppose that we have a chain and cochain over G and H:

Cp=g‘x?’ gieG; 'Cp=h"$;.,, h.-eH.
The Kronecker index of C?, €, , written KI(C”, C,) is an element of J defined by:

(28.6) KI(C?, Cyp) = g'hKI(z? , z3) = B(p)g'hi .
Similarly with the terms in reverse order we define
(28.7) KI(C,, C*) = B(—p)g'h: -

(28.8) Interpretaiion. A noteworthy interpretation, very close to the initial reason for
introducing the index, is to consider that the dual elements z% , z} cross one another when
i = j, and do not cross one another when ¢ > j. It will be convenient to say that C?, C,
have a crossing at 2% , i whenever both g* = 0, h; 0. We agree to count this crossing
with the weight 8(p)g*h: ({ unsummed) and so the index (28.6) may be interpreted as a
mode of counting the crossings suitably weighted. If G = H = J = the ring of the integers,
the weights become multiplicities in a reasonable sense. Viewed in this manner the index
has for example played an important role in the author’s work on Algebraic Geometry.
(See [L, VIII, §4].)

29. The Kronecker index will now be utilized as a basis for deriving the

duality relations between the chain- and cochain-groups. We shall use the
following notations:

The chains and cochains over G and H are denoted by C?, C,, the cycles
and cocycles over G and H by v”, v, and their homology and cohomology classes
by I'’, T,,. We shall also denote by €”, 87, §”, " the groups of chains, cycles,
bounding cycles and homology groups over @, and by €, , - - - the same for the
cochains, --- over H. The group H is assumed discrete.

As a preliminary we prove the important relation:

(29.1) KI(FC*™", C,) = (—1)” KI(C**, FC,)
p+1

which is the analogue of Formula 20 of [L, 169]. If C** = 2%, C, = 2},
both sides of (29.1) become B(p) [z?*:x¥f], so (29.1) holds. Since the two
sides are bilinear in z?+!, ;r.p , (29.1) holds in all eases.

(29.2) The index obeys the commutation rule
(29.3) KI(C,, C*) = (—1)? KI(C?, C,).

(29.4) KI(C?, Cy) is a group multiplication for G?, G, which pairs them to J.
Since Gz? , Hz), are respective isomorphs of G, H they are paired to J with
the multiplication B(p)gh. Since €, is discrete

(29.5) ¢ = PGz?, G,=P"Hz},
(29.4) follows from (II, 16.1).
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(29.6) ¥’ orvp ~ 0= KI(¥", 75) = 0.
An equivalent formulation is
(20.7) 3y, 87 annul @’, 8» -

It is only necessary to prove the property of the pair §?, 8, , and hence (II,
15.4) that §” annuls 8, , or that v* = FC?*' annuls 3,, and this follows im-

mediately from (29.1),, since it yields:
KI(y", v;) = (—1KI(C*™, 0) = 0.
(29.8) KI(vy", v,) depends solely upon the classes I, T', (29.6).

(29.9) DeFINITION. The fized value of KI(Y", v,) under (29.8) is called the
Kronecker index of the classes T, T, written KI(I?, T',).

(29.10) KI(T?, T,) is a group multiplication for $°, ,, and obeys the com-
mutation rule (29.3), (with T in place of C).

Except for commutation (29.10) is a consequence of (29.4), and (II, 15.6),
while the commutation rule follows from (29.2).

(29.11) If G, H are J-orthogonal so are &, €, .

For Ga? , Hr, are then J-orthogonal and so (29.11) follows from (29.5)
and (II, 16.1).

(29.12) If G, H are J-orthogonal, B, is the annihilator of §° and likewise 3°
of T»- '

It is sufficient to prove the property of the pair 3, ,J”. We have just shown
that every v, annuls §”, so it is only necessary to prove the converse, or that if
v, annuls §” it is a cocycle. If v, annuls §” it annuls §” and so by (29.1):

KI(FC™", v,) = (—1)’KI(C"", Fy,) = 0.

Thus Fy, ¢ €,41 annuls 6**', and so by (29.11),41, Fy, = 0 or v, is a cocycle.

30. Duality theorems. The situation which will now be faced will recur again
and again in a more or less similar form. It is therefore best to introduce at
the outset a systematic terminology designed especially to avoid undue repeti-
tion later.

(30.1) DeriNiTION. The pair (G, H) in the order named, is said to form a
normal couple whenever one of the following two possibilities arises:

(a) G is compect, H 1is discrete and they are dually paired by a commutative
multiplication gh to B. In particular then they are orthogonal and each = the
character-group of the other.

(b) G = H = J = a discrete field and the multiplication gh is merely the mul-
tiplication of the field J. Notice that G may be viewed as a linearly compact (one-
dimensional) vector space over J, and H as a (one-dimensional) discrete vector
space over J, dually paired under the multiplication gh, which is merely the multi-
plication of the field J (I1, 32.5).
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We may now state the

(30.2) SECOND DUALITY THEOREM FOR FINITE COMPLEXES. If G, H s a
normal couple then the pth homology and cohomology groups §"(X, @), 9,(X, H)
are dually paired (to B or to the discrete field J when G = H = J) and with the
class Kronecker index as the group multiplication.

This is the duality theorem of [L, 286] with the all-important Pontrjagin
group duality complement.

Since G, H are dually paired to P or J as the case may be, so are their iso-
morphs Gz? , Hr, and with the Kronecker index as the multiplication. Hence
the same holds for €7, €, (II, 20.7, 33). Since G, H are dually paired, 3,
and §” are one another’s annihilators in §,, € (29.12; II, 20.5, 33), and like-
wise for 8%, §, (= §»). Therefore §° = 37/§” and $, = 3,/F, are likewise
orthogonal to P or J as the case may be (II, 15.6) and hence dually paired
(I1, 20.6, 33). Since I'?, T, are merely the cosets of v, v, mod §”, §, , the mul-
tiplication of the dual pairing is the one described under (II, 15.5a) and it is
precisely the class Kronecker index. This proves the theorem.

31. Dual categories. The preceding theorem will serve as a pattern for a
number of similar theorems occurring later. In order to facilitate their descrip-
tion and minimize repetition, we introduce the convenient concept of dual
categories.

Let A, B be two collections of cycles and cocycles of all the different dimen-
sions and over various groups of coefficients. For the missing dimensions the
groups are taken to be zero. Let it be possible to define the groups § and hence
the homology and cohomology groups § = 3/, likewise the Kronecker index
KI(v?, v,) with the same properties other than orthogonality as in (29). When
the coefficient-group is a field J it is assumed that the corresponding groups
B3, § are vector spaces over J, and in particular satisfy the basic convention
(I1, 22.2). Under our assumptions one may define a class index KI(T?, T,).
If (G, H) is any normal couple and $°(G), $,(H) are the corresponding
homology and cohomology groups, we shall say that the cycles of A and the
cocycles of B [the cocycles of B and the cycles of A] are:

dual categories whenever the groups $°(G), ,(H) [9,(), D°(H)] are dually
paired (to P or to the discrete field J when @ = H = J) and with the class
Kronecker index as the group multiplication;

weak dual categories whenever the groups are defined only for G = H = J =
a discrete field, and are vector spaces orthogonal to J with the class Kronecker
index as the multiplication. Whenever the dimensions of the paired spaces
are finite their pairing is again a full dual pairing of vector spaces (II, 34).

Since orthogonality to B or a discrete field J results in each case in the dual
pairing (II, 20.6, 33) we may say that: (a) the characteristic property of dual
categories is orthogonality to B or J; (b) weak dual categories are those where
only orthogonality to J may take place.
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In the terminology just introduced (30.2) assumes the form:

(31.1) The cycles and cocycles of a finite complex in one or the other order are
dual categories.

As a further application we also have:

(31.2) Let X, Xo, X1 be as in (23). Then the cycles of X mod X, and the co-
cycles of X, in one or the other order are dual categories.

A similar statement may be made for the cocycles of X mod X, and the
cycles of X;, but it is merely the expression of (31.1) for X, itself. Notice
also that when X, = @ and X = X;, (31.2) reduces to (31.1).

32. Several noteworthy properties of dual categories are immediate con-
sequences of properties of vector spaces.

We suppose then that A, B are dual categories of any sort and take the groups
over a discrete field J. The formulation is given so as to include possible infinite-
dimensional groups which may occur later. The Betti and dual Betti numbers
have their usual significance of dimension of the homology and cohomology
groups.

(32.1) The pth Betti and dual Betti numbers over J are finite and equal or
else both infinite (11, 25.9d).

When these numbers are finite, in particular for a finite complex, (32.1)
gives the full content of (30.2) for the groups over the field J.

(32.2) If the cyclesv? , (¢ = 1,2, - - - , 1) are tndependent with respect to homol-
ogy, there can be selected cocycles v’ , (j = 1,2, -+, r) such that
(32.3) KI(? ,v}) = 6}

For this is true for the classes (II, 25.9b), and so by (29.8) for 4%, v, .

(32.4) If the Betti numbers are finite and {y?}, {v}} are maximal independent
sets (with respect to ~), then
(32.5) | K167 ,75) | = 0.

Since the I'? are independent, by (II, 25.9a) classes I'; may be chosen such
that

| KI(T?, T5) | # 0,
which, in view of (29.8) yields (32.4).
33. Returning to the duality theorem for finite complexes, in view of its

importance, and also for later purposes, we shall indicate another proof based

on the comparison of canonical bases (14).
Let us pass from the bases {z7} for the integral chains to new bases {e}

by simultaneous transformations
(33.1) a? = APe?, N = ||A?’|| unimodular.

It will be convenient to designate by A\, = || Api || the matrix (\*)7, i.e., such
that Af'AZx = & (p unsummed). Since )\, is also unimodular,

(33.2) T = Ayl
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-is a simultaneous transformation from the bases {z5} to the new bases {e}}.

If we let [z?™:2?] = 57, then:

(33.3) Fz?* = 9P,

(33.4) Fz:, =9 $p+1,

the matrix in (33.4) being the transpose of the matrix in (33.3). Using (33.1)
and (33.2) we now obtain

(33.5) Fet' = (Pie?
(33.6) Fe, = tT'n,
where {27 = Nsia.mE™\D’; again the matriz of (33.6) is the transpose of the ma-
trix of (33.5).
By an elementary calculation:
(33.7) KI(ef, ) = B(p)3 .
In other words the index is invariant under simultaneous application of (33.1)
and (33.2).

Suppose in particular that (33.1) is the transformation to the canonical bases
{a?, ---, e’} of (14) and let the correspondmg new bases {e,} for the co-
cycles be {a}, ---, e,}. In other words if ¢/ = a?, - - then ¢, = ay, .
Formula (14.2) speclﬁed the form of the diagonal ma,trix &7t of (33.5) so that
(33.8) Fa?™ =0, Fb?"' =0, Fef™ =0,

Fd?* = %62, Fe?™ =a? .
Applying (33.6) we have immediately
(339) Fal =épy, Fbl =1t ,db,, Feo=0, Fd, =0, Fe, =0,

where ¢, 1 = t?, and 7 is not summed in (33.8), (33.9).
Furthermore

(33.10) KI(a?,a}) = --- = KI(e? , ¢}) = B(p),

and all the other indices will be zero. Thus we have proved:

(33.11) At the same time as the bases for the chains are reduced to the canonical
form (14.2) those for the cochains may be reduced to the canonical form (33.9)
with indices related as stated. Notice that in (33.9) the analogues of af , ---,
ef are €5, -+, aj.

34. The application to the duality theorem is immediate. Suppose that we
have two groups of coefficients G and H for the homology and cohomology
groups, respectively. Then the direct decomposition (16.9) and the result
of (33.9) yield:

(34.1) (X, @) = PG*)b?) X P(Ge?) X P(G[t2™"1d?),
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(34.2) $,(X, H) == P(H[t; ]b5) X P(Hcy) X PH*(t5)d}).

Referring to (11, 20.12), or else directly if G = H = J, a field, we find that
when (G, H) is a normal couple then G*(t?)b? and Hit} :]d} are dually paired
with the Kronecker index as the group multiplication. Similarly each group
in (34.1) is dually paired with one and only one of the groups in (34.2). Hence
(11, 20.7, 33) (X, @) and $,(X, H) are likewise dually paired with the Kro-
necker index as the group multiplication, and this is (30.2).

§7. LINKING COEFFICIENTS. DUALITY IN THE SENSE OF
ALEXANDER

35. The Kronecker index may be considered as the algebraic analogue of
the intuitive concept of ‘“‘multiplicity of intersection,” for instance of two
plane curves, in geometry. Another closely related geometric concept is that
of linking coefficient, of two curves C, D in a three-space &, which describes the
“algebraic’”’ number of times each twists around the other. We shall show that
under certain conditions such numbers may be introduced in complexes, and
as we shall see later (VII, 9) in certain topological spaces.

Much of the argument will refer to finite complexes which are (p — 1, p)-
acyclic. Let X be such a complex, and (G, H) a normal couple. If ¥ is
a cycle over G and v, a cocycle over H, we have y"~' ~ 0 and so since G, H
are division-closure groups v*~* = FC” (17.2). Suppose also that y*~* = FC”,
Therefore F(C* — C””) = 0 and C* — C’, being a p-cycle, is ~0. Hence
by (29.6):

(35.1) KI(C?, v;) = KI(C”, v5).

Thus the index at the left is independent of the C” bounded by v**, and its
value is known as the linking coefficient of ¥*~, v, written Lk(v*™", v,). One
must keep n mind that it is only defined for v*~*, v, over a normal couple G, H.

Since cycles and cocycles are dual categories X is also (p — 1, p)-acocyclic.
This enables us to interchange their role and so define a linking coefficient
Lk'(y", v,). However (29.3) yields at once Lk’ = (—1)""" Lk, so except for
a fixed change in sign, their values are equal.

36. The duality theorems which have been given so far relate merely the groups of a
complex to one another. The linking coefficients will enable us to give full expression to
duality theorems of a different type introduced by J. W. Alexander. They may be de-
scribed at this stage, as relating under certain conditions the groups of a closed subcomplex
to those of the complement. What is commonly known as Alerander’'s duality theorem
is a duality theorem for topological complexes immersed in spheres. However the general
intent is always the same, and we shall refer to the whole class of similar propositions as
“duality theorems of the type of Alexander.”

37. (37.1) TueoreEM. Let X be (p — 1, p)-acyclic and let X, be a closed sub-
complex of X and G compact or a field. Then there subsists the isomorphism

(37.2) $7N(X,, G) = (X, Xi, G).
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If 4* is a cycle of X mod X, "' = Fy” is an absolute cycle of X;. Here F
is the boundary operator for X itself. Thus F induces a homomorphism:
3°(X, X;,6)—8'(X1,B). Supposey” ~0mod X;. Since G has the division-
closure property, ¥* = FC**' + D?, D* C Xi, and hence 8" = FD?, or 1~0
inX;. Therefore F maps{*(X, X;, @) = F (X1, @) and hence (II, 5.4) F in-
duces a homomorphism ¢: $°(X, X;, G) = $"'(X:, @). To prove (37.1) we
merely need to show that ¢ is an isomorphism.

(a) o isamapping of (X, Xy, @) onto &' (X1, G). Since X is acyclic in the
gimension p — 1 and G is a division-closure group every 8° is an Fy”, so (a)

“holds.

(b) ¢ is univalent. It is required to show that Fy* = 8 ~0in X, = 7" ~ 0
mod X; in X. Since G is a division-closure group if §*"' ~ 0in X, there is a D®
in X, such that ' = FD” and as a consequence v’ — D7 is a cycle of X. Since
X is acyeclic in the dimension p we have y* — D ~ 0in X or v* ~ 0 mod X,
in X which proves (b).

The group G may be compact or else a discrete field. Suppose G compact.
The groups § over G are then compact also. By (a), (b) ¢ is & mapping which
is an isomorphism in the algebraic sense of one compact group into another.
1t follows that ¢ is topological and hence it is an isomorphism. When @ is
a discrete field the groups § are finite-dimensional vector spaces, hence discrete
and so ¢ is again an isomorphism. This proves (37.1).

38. Let again G, H be a normal couple and (X, , X) a dissection of X. If ot
is a cycle of X1, we have "' «~ Fy”, y* a cycle of X,. We may therefore in-
troduce Lk(8"", v,) and we have

(38.1) KI(Y, v,) = Lk(®®, v;) = Lk(Fy, v5)-
It is obvious that, Lk takes a fixed value when 6°", v, vary in fixed classes A",

I, of X1 and X, , and this value is by definition the class linking coefficient
Lk(a”, T,). From (37.2) we deduce:

(38.2) KI(I? T,) = Lk(a*™, I',) = Lk(FI?, T'}p),

where FI'” denotes the homology class of Fy” in X; . From the duality theorem
(30.2) and (38.2) follows then:

~ (38.3) DuaLiTy THEOREM. Let X be (p — 1, p)-acyclic, and let (Xo, X1)
be a dissection of X, with X, open and X, closed. Given any normal couple (G, H)
the groups 9" (X1, G) and $,(Xo, H) are dually paired with the class linking
coefficient as the group multiplication.

(38.4) OBvious REMARK. In (38.3) the two groups G, H may be inter-
changed.

Coupling (38.3, 38.4) with (30.2) for X, we find:

(38.5) Under the same conditions as in (38.3) we have ,1(X1, G) = H(Xo, G)
for any G which is compact, discrete or a field' (Kolmogoroff [b]; see Alexandroff [f]).
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In the special case where G = H = a field of characteristic » we have:
(38.8) Under the same conditions as in (38.3):

(38.6a) R7'(Xy, m) = Ry(X,, 7).

39. We shall now consider certain important related special cases.

(39.1) X s acyclic. (38.3) holds then for all p.

(39.2) X is simplicial and zero-cyclic. Then (38.3) holds for p > 1. Since
X is zero-cyclic, it is connected, and a zero-cycle ¥° ~ 0 in X when and only
when KI(y") = 0 (20.10).

The homology classes of the zero-cycles in X, which are ~0 in X form a sub-
group '$°(X; , @) of $°(X,, @), and the same argument goes through as before
provided that $°(X;, G) is replaced by ‘9°(X:, G). Now if v’ is any zero-cycle
of X,, and if A; are vertices one on each component of X, then (20.7a):

¥~ g'4; = KIG) A1 + g'(4: — 4)) = KIG) 4, + &,
where KI(3°) = 0. Since 4; ~ 0 in X, if I is the class of 4, then
'D'(X1, 6) = §'(X1, G)/GT".

Thus in (38.3) in the present instance $’(X,, G) must be replaced by $°(X,, G)/
GT°. In these and similar expressions later GI° represents the subgroup of
the classes of the cycles g4, .

(39.3) X s simplicial, n-dimensional, and (0, n)-cyclic. Suppose first n > 1.
For 1 < p < n, the situation is as under (39.1), and for p = 1 as under (39.2).
Let p = n. Since dim X = n and X is n-cyclic: $*(X, @) = Gy; , where v
s a basic integral n-cycle and so (37b) must be replaced by

(b)) ("' ~0in X) = (v" ~ gvi mod X; in X).
As a consequence in place of (37.2) we have, if Ty is the class of v (basic class):
(39.4) H™(X, X1, ®)/GT; = &" (X1, B),

and the factor-group at the left must replace $"(X, X1, @).

Finally if n = 1, we must combine the operation under (39.2) with the one
just described and as they cancel, (38.3) is applicable as it stands.

To sum up we may state:

(39.5) Theorem (38.3) is valid when X is: (a) acyclic for all dimensions p; (b)
zero-cyclic and simplicial for all p, provided that $°(X., G) is replaced by
©°(X1, G)/GT’, where T° is the class of a vertex of X1 ; (¢) (0, n)-cyclic and simplicial
for all n provided that ° (X, , @), " (X, X1, @) are replaced by $° (X, G)/GT",
9" (X, X1, @)/GTy , except that (38.3) applies as it stands for n = 1.

(39.6) The explicit Betti number relations are:

(a) X acyclic: (38.6a) for all p;

(b) X simplicial and zero-cyclic

R7'(Xy, m) = Rp(Xo, ) + &7 .
(¢) X simplicial, (0, n)-cyclic and dim X = n:
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R X1, 7) = Ry(Xo, ) + 87 — 85

For Betti numbers mod 2 the last formula is the analogue for complexes
of Alexander’s original result for manifolds.

(39.7) ExampLEs. An augmented closed n-simplex, in the sense defined later in (42) is
acyclic (42.6), and so (38.3) is valid for such a complex and all p. The ordinary closed
n-simplex is zero-cyclic and falls under (39.2) (second case of 39.5). Finally Bo"*t, n > 0,
is (0, n)-cyclic and n-dimensional, thus falling under (39.3) (third case of 39.5).

§8. HOMOLOGY THEORY OF INFINITE COMPLEXES

40. In endeavoring to carry over to infinite complexes the theory developed
so far, serious difficulties arise in defining groups 3, §, of any sort, unless the
complexes are at least star- or closure-finite. The simplest situation is of course
when they are locally finite. Fortunately these types include all the types
of interest in topology and certainly all those for which any general results are
known. We shall therefore confine our attention to star-, closure-, and locally
Sfinite complexes.

Let then X = {z} be infinite and of one of the three types just mentioned.
This time we may introduce two kinds of chain- or cochain-groups:

(X, @) = P(Gx?), the group of the infinite chains over any G;

62 (X, @) = P¥(Gz?), the group of the finite chains over a discrete G;
and the similar cochain groups €,(X, @), €,(X, @).

Referring now to (II, 8.4) we have the following situations.

(a) X s star-finite. Then F defines for every p and G a chain-homomorphism
6°(X, G) —» G* (X, G). When G is discrete F defines in addition homomor-
ph'isms L:’ (X. G) hd S’;.H (X, G)

(b) X 1s closure-finite. The situation is the same for X* as previously for X,
i.e., with eycles and cocyles interchanged. We have then homomorphisms of
the groups of finite chains over a discrete G and in addition F defines homo-
morphisms €,(X, @) — €,.(X, G) (any G).

(e) X is locally finite. Then F defines the four types of homomorphisms con-
sidered under (a) and (b).

We notice also that when G is a discrete field all the groups € under discussion
are vector spaces and so they fall under the fundamental convention (II, 22.2)
for such spaces.

In any one of the three cases just considered the groups 8 may be defined as
in (7, 8, 9) and likewise the groups § as the factor-groups = 3/F F = §
for the groups of finite chains). We may therefore state the comprehensive

(40.1) TueorEM. When X s star-finite [closure-finite] the homology [coho-
mology) groups of the infinite cycles [cocycles] of X over any G may be introduced
in the same manner as for finite complexes. When X is locally finite this holds
for both the infinite cycles and cocycles. In all three cases this holds also for the
finite cycles and cocycles over a discrete G.
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CoMPLEMENTARY REMARKS. (40.2) We call attention to the fact that many
definitions given for finite complexes are directly applicable to certain infinite
complexes. In particular:

(a) When X is star-finite we may- introduce as before the following concepts:
dissections and related groups for infinite cycles (23), the cyclic or acyclic types
of (21) corresponding to infinite cycles, and also the circuits of various kinds
(24) which are now described in terms of groups of infinite n-cycles.
infinite n-cycles only.

(b) When X is closure-finite the dissections and the cocyclic and acocyclic
types may be introduced.

(¢) When X is locally finite there may be introduced all the concepts men-
tioned under (a) and (b).

(40.3) Suppose G compact. Then if X is star-finite the groups of infinite
chains G*(X, @), 3°(X, @), F(X, @) which may then be introduced are all com-
pact: the second as a closed subgroup of the first, and the third as the image of
¢ (X, @) under F. As a consequence $*(X, G) is closed in G*(X, @), or
§FX, @) = FX, @). Hence X, @) = 8" (X, 6)/F (X, G) and it is also
compact. Similarly of course for a closure-finite X and the groups €,, 3,,
%P ’ ‘\61 .

(40.4) When G is a linearly compact field the groups, €, 3, § are linearly
compact and the same argument goes through as is seen by reference to (II,
27.2,---,27.5). The groups $ = B/ F are found this time to be linearly compact.

(40.5) Betti numbers. They are defined in the same way as before, as the
dimensions of the vector spaces (X, J) or §,(X, J), J a discrete field. We
may notice here and now that the universal theorem for fields (17.8) is valid for
the case under consideration. For B°(X, J), (X, J) are spanned here also by
B7(X, =), F(X, 7) and so the asserted property is a direct consequence of
(11, 36.8).

(40.6) Alternate definition of the homology groups. Let X be star-finite. Besides the
topologized homology group $» = 37/F» one may consider the purely formal algebraic
factor-group 7 = 37/F" (or even more generally $? = 37/'F» where '§? is a subgroup of 3#
such that §» € '§» < §»). This would amount to taking C? untopologized. As stated in
(40.3) nnd (40.4) the two concepts are algebraically equivalent when G is compact or a
field. JTn other cases, however, (for instance for integral chains) it may very well happen
that 7 = §” and that also 37/3F7, 87/F” are essentially different. The latter and likewise
the group F#/F? (taken discrete) have been considered recently to advantage by Eilenberg
[a] and Steenrod [b] (Appendix A).

(40.7) Unaversal coefficient-groups. It has been proved by Cech [d] that the
group of the integers is universal for the homology groups of the finite cycles
of a locally finite complex. A complete description of all the groups of such
complexes has just been obtained by Eilenberg and MacLane [a] (Appendix A).

(40.8) The analogue of the question considered in (23.3) is of interest later. We suppose
X infinite, ¥ a finite closed subcomplex and consider the groups of the cycles of ¥ over a
discrete G reduced with respect to bounding in X. Here again we readily arrive at (14.2)
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for a single dimension p, except that the (p + 1)-chains in (14.2) are to be replaced by
finite cycles of X mod Y. Let ZP denote the system thus obtained. Let also M be a

finite closed subcomplex of X which includes Y and all the d,»*1, ¢;?*1. If we reduce the

cycles of Y with respect to bounding in M we still obtain E,. , for we have already utilized
all the relations of bounding in M. Similarly if M is replaced by any other closed finite

subcomplex M, D M. Since the groups in question for any G depend solely upon Z,, ,
(23.3), the groups of Y reduced with respect to bounding in M and M, must be the same.
From this we conclude that the groups relative to bounding in X and M are the same.
For otherwise Y must contain a cycle v» ~ 0 in X but ~ 0in M. Hence if v» = FCr¥1,
Cr*! finite, and M, is any finite closed subcomplex containing M and C?*1, the reductions
relative to bounding in M and M, cannot yield the same groups, a contradiction proving
our statement. We conclude then:

(40.9) If Y is a finite closed subcomplex of the complex X, then the homology groups of the
cycles of Y reduced relative to finite bounding in X are the same as those reduced relative to bound-
ing in a certain finite closed subcomplex M containing Y. Hence in varticular the remarks of
(23.3) are applicable to the groups in question. Thus they have finite Betti numbers and the
group of the integers is a universal coefficient-group (18).

41. Duality. Let X be star-finite, and @, H commutatively paired to J. We
consider the group @ of the infinite chains over G. Since X is star-finite we
may introduce the infinite cycles over G; they form a subgroup 3° of @7,
likewise the infinite bounding cycles over G with group §* € 8°. Therefore the
homology groups of the infinite cycles over G are §° = 8°/F".

Regarding the cocycles, since X need not be closure-finite, only finite cocycles
may be allowed, and groups over a discrete H: G, , 85, &5, 95 = 35/85 .

It is hardly necessary to observe that the index KI(C?, C,) may be defined
asin (28).+ Indeed it may even be defined when both C?, C, are infinite (H being
then any topological group) provided that they have a finite number of crossings.

When X is closure-finite the situation is the same with cycles and cocycles
interchanged.

We are now in position to state

(41.1) The properties of the Kronecker index given in (29) are valid for infinite
cycles [cocycles) and finite cocycles [cycles) in a star-finite [closure-finite] complex X.

For the proofs loc. cit. apply without modification.

We may now repeat for X, and also for X* when X is closure-finite, the
argument of (30) and thus obtain

(41.2) DUALITY THEOREM FOR STAR- OR CLOSURE-FINITE COMPLEXES. When
X is star-finite [closure-finite] the infinite cycles [cocycles] and the finite cocycles
[cycles) are dual categories. When X is locally finite both types of dual categories

are present.

(41.3) Linking coefficients. The full argument and definitions of (§7) may
be extended to locally finite complexes, and in particular:

(41.4) TueoreM. The duality theorems (38.3, 39.5) of the Alevander type,
hold for locally finite complexes.
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ReMark. We shall return to infinite complexes in (VI, §6) when we shall
apply to them the powerful method of nets and webs.

§9. AUGMENTABLE AND SIMPLE COMPLEXES

42. Let K = {0} be a simplicial complex, {4,} its vertices, {A*} their duals.
Upon examining the argument in (5. 1) we readily verify that K does not cease
to be a complex if we increase it by a new null-simplex € such that: (a) eis a
face of every o; (b) dim ¢ = —1; (¢) [dite] = [e:4;] = 1, [67:¢] = [e:0”] = 0
for p > 0. The complex K, = K u e thus obtained is said to be K augmented
(A. W. Tucker [a]). The chief differences between K and K, are embodied in
the properties:

(42.1) A finite zero-chain C° is a cycle of K, when and only when its Kronecker
inder KI(C*) = 0.

For in K, we have FC* = KI(C")e.

As a noteworthy special case:

(42.2) The differences A; — A ; are integral zero-cycles of K, but A; is not.

Let {K,} be the components of K and B; a vertex of K;. A one-chain C'
of K is likewise one of K, , and whether considered as in K or K, its boundary
FC' is the same. It follows that (20.7) holds for K, and finite chains. If 4°
is a zero-cycle of K, we have KI(y") = 0 and hence by (20.7a):

(42.3) ¥’ ~ ¢'(B: — By) + KI(")B, ~ ¢'(B: — By).
By (20.7b) also
g'(Bi = B)) ~0=>g' = 0.
From this we deduce the analogue of (20.8) for K, :
(42.4) 9'(K., G) = 9°(K, G)/GB:,

where for simplicity B, is identified with its class. As a special case of (42.3)
if K is connected ° ~ 0, and hence:

(42.5) If K 1s connected then K, is acyclic in the dimension zero.

(42.6) (Cl o™, 15 acyclic and (Bo")s 1s (n — 1)-cyclic (22.2, 224, 42.5).

42.7) R'(K) = R'(K.) + 1, (42.4).

43. Let now X = {x} be any closure-finite complex with dim z = 0. Isit
possible to “augment’” X, i.e., to increase it by a (—1)-dimensional element e,
which is to be a face of every z, and with incidence numbers \; = [23:¢] =
[e:2%] not all zero and [z”:¢] = [e:2”] = O for p > 0?7 If so X is said to be
augmentable and the new complex X, = X v eis called X augmented. In order
that X, be a complex it must fulfill conditions K1234 of (1), or which is equiva-
lent, its dual X, must fulfill them. The first three are automatically satisfied
and so only K4 is in question. By (8.3) it reduces to requiring that if €* is the
dual (one-dimensional) of ¢, then FFe* = 0. Since [{:¢] = [e*:x25] = \i, this



(9] AUGMENTABLE AND SIMPLE COMPLEXES 131

is equivalent to requiring FAz§ = 0, i.e., that vo = Azi be an integral zero-
cocycle, a result due to Tucker [a]. The particular zero-cocycle arising in the
augmentation is called the fundamental zero-cocycle, and we shall say that “X is
augmentable, or augmented, with fundamental zero-cocycle v, .”

44. All the possible modes of augmenting X correspond to its different non-
trivial integral zero-cocycles, i.e., to the nonzero elements of 3¢(X). Since
dim X* < 0: 3¢(X) = $o(X) (27.6a). Hence the integral zero-cocycles form
a free group of rank Ry = R°. Therefore

(44.1) A n.a.s.c. for augmentability is that the Betti number R® # 0. Each
mode of augmenting is uniquely determined by an integral zero-cocycle yo = \;xi,
and in Xo = X v e \i = [23:¢.

An equivalent condition of augmentability is FFC' = 0 for every finite chain
C'over Gin X,. If FC' = gz} this yields as n. a. s. c.:

(44.2) Mg’ = KI(FC', v0) = 0,

where the index is an element of @. Therefore

(44.3) The n. a. s. c. for augmentability in (44.1) is equivalent to requiring the
existence of a non-trivial integral zero-cocycle vo such that KI(FC', o) = 0 for all
finite C*.

45. Suppose X augmented and with the fundamental zero-cocycle vo. If ¥
is a closed subcomplex of X we may write yo = vyo + o where v, is in ¥* and
o has no element in Y*. We shall say that Y* meets vo when vo > 0, and we
shall call v, for the present the ¢ntersection of Y* with vo. Since vq is a cocycle
of Y we have:

(45.1) Let X be augmentable with fundamental cocycle vo . Then every closed
subcomplex Y such that Y* meets v, is also augmentable and with a fundamental
cocycle -y.', which is the intersection of vo with Y*.

When Y is finite and augmentable as stated it may be augmented with v, as
fundamental cocycle. We shall denote in any case by ¥, the new augmented
complex Y u ¢, when v, 5 0, and Y itself when yo = 0. Notice that Y, may
depend a priorz upon the cocycle v, chosen as fundamental for X. In fact the
significance of the choice of v, as fundamental cocycle lies in a sense in that it
provides a uniform procedure for augmenting the finite subcomplexes of X.

46. Returning for a moment to the simplicial complex K, let 8, = Y A°.

If C° = g*A}, we have

(46.1) > g' = KI(C°, &).

Therefore the Kronecker index as a sum of coefficients is in fact also a ‘“‘chain-
cochain” index. Furthermore if FC' = ¢'4{, C' finite,

(46.2) > ¢' =0 = KI(FC", ).

Therefore K is augmentable with v, = &, 1.e., with unity as the new incidence
numbers [4;:e]. This is precisely the way in which K, has been obtained in (42).
We also know that if K is connected, R’ = 1, so that all the zero-cocycles are
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of the form gé . Therefore when K s finite and connected it can only be aug-
mented in essentially one way and with incidence numbers \; all equal. Their
common value X is the only “indeterminate’” in the augmentation.

Referring also to (28.8) we have the following noteworthy interpretation for
KI(C%: it is the number of weighted crossings of C° with the cocycle & .

47. The preceding properties suggest the following extension of simplicial
complexes:

(47.1) DerFiNiTION. A complex X = {z} is satd to be stmple whenever: (a) X s
closure-finite; (b) X is augmentable and this with a fundamental zero-cocycle which
in a sustable orientation of X is given by vo = 2 x4 ; (c) every (Cl ), 18 acyclic.

We agree first of all to orient X so thaty, = ) x5 . Then in X the Kronecker
index KI(C’, vo), C° finite, is the sum of the coefficients of C°, and it will be
denoted once more by KI(C®). '

Notice that when X is simplicial with vertices {4} thenvo = Y, A°. Thus
for a simplicial complex the fundamental cocycle in the sense of (25.3) is the same
as the fundamental cocycle of (47.1).

If X is simple and Y is a closed subcomplex of X, then X — Y is called an
open simple complex. By contrast X or Y are also called closed simple complexes.

How close the approximation is to simplicial complexes is attested by the
following properties:

(47.2) Simplicial and polyhedral complexes are simple.

For simplicial complexes it is a consequence of (44). For polyhedral com-~
plexes the proof will be given later (IV, 28.2).

(47.3) Every closed subcomplex of a simple complex is simple.

(47.4) When X is simple every p-element has at least one (p — 1)-face, hence at
least one vertex, and every one-face has two vertices (Whitney [d]).

Suppose Fz” = 0, p > 0. Then 2” is a p-cycle of (Cl z),, hence 2° ~ 0 in
(Cl ), , and since both have the dimension p, z* = 0, which is absurd. There-
fore Fz” > 0, so that z” must have at least one (p — 1)-face, and therefore step
by step it is shown to have at least one vertex.

Suppose that z' has only one vertex 2° so that Fx' = g2°. Since (Cl z'), is
augmented, KI(Fz') = g = 0, hence again z' must be a cycle which we have
just ruled out. Suppose on the other hand that z' has three vertices 7 , 23 , a3 .
Then z{ — 23 and 21 — z3 are cycles of (Cl z"), and hence z} — z) = gFz!,
zy — 23 = hFz', where g, h are distinct nonzero integers. As a consequence
h(x‘{ —x3) = g(:c‘l’ — z3), g =h, Ty = 73 , a contradiction.

(47.5) When X 1s finite and satisfies (47.1b) then “X is zero-cyclic” and “X, is
acyclic” are equivalent. Henee in (47.1) “every (Cl z). is acyclic” may be replaced
by “every Cl x s zero-cyclic.”

Let X be zero-cyclic and let C° = gz} be a zero-cycle of X,. Then in
X.:FC’= 0 = KI(C"). Since X is zero-cyclic ] — gz} ~ Oforsomeg. Hence
KI(z} —gzd)=(1—¢)=0,g=1,20 — 27 ~0. Hence ¢’ = C* — KI(C")z} =
g'(x} — 2}) ~ 0in X and hence also in X,. Therefore X, is acyclic. The con-
verse is immediate.



[9] AUGMENTABLE AND SIMPLE COMPLEXES 133

(47.6) A one-dimensional simple complex X' is simplicial.

By (47.4) X' has the ordering relations of a simplicial complex. Let A4, B
be the vertices of z'. If Fz' = g4 + hB we have KI(F2') = g + h = 0,
g = —h, F2' = g(A — B). Also by (47.5) A ~ kB, or A — kB = Fma!' =
mg(A — B). Hencemg = 1, g = +1. Therefore [z1:4] = —[z':B] = =+1.
Thus z' has the incidence numbers of a simplicial one-complex and (47.6) follows.

(47.7) Properties (20.5, - - - , 20.10) hold for a simple complex, provided that the
zero-dimensional homology groups and Belti numbers are those of the finite zero-
cycles.

For the elements of X are all connected with those of its one-section X' which
is simplicial, and the proof of (20.5) refers solely to X" and its finite zero-cycles.

(47.8) When X s connected and simple all the modes of augmenting X are
essentially unique, in the sense that all the possible fundamental cocycles are merely
the multiples of a single cocycle (Whitney [d]).

For by (41.2) R, = R} = 1. It follows that every integral cocycle 8 =
D Aziisa rational multiple of yo = > x5 , and hence it is an integral multiple:
b =A) .

(47.9) Properties (42.1, - - - | 42.5, 42.7) hold for any stmple complex X.

For they depend solely upon the one-section X' of X and X' is simplicial
(47.6).

(47.10) When X s simple, (Bz"),,p = 1,15 (p — 1)-cyclic, and all its (p — 1)-
cycles are of the form gFx".

For p > 1 this follows from (21.4, 47.5), and for p = 1 from the fact that z! is
a simplex (47.6).



CHAPTER 1V
COMPLEXES: PRODUCTS. TRANSFORMATIONE. SUBDIVISIONS

The title gives sufficient indication of the ground covered in the chapter.
There are two basic types of transformations: those of a complex as a set of
elements, and certain homomorphisms of the chain-groups, the chain-mappings.
The latter are of fundamental importance in the sequel, and. their properties are
similar in many ways to those of point set mappings. Thus one may introduce
a very useful concept of chain-homotopy, classify chain-mavpings with respect
to this relation, ete. ‘

While the treatment is mainly developed for finite comp'cxes, the modifica-
tions required for infinite complexes are discussed in full in (§6).

General references: Alexandroff-Hopf [A-H], Hopf [a], Kiinneth [a], Lefschetz
[L, I, V; e, f], Tucker [a, c].

§1. PRODUCTS OF COMPLEXES

1. Let X, Y be two complexes. With Tucker [a] we will turn the product
{zf} X {y}} into a complex to be called the product of X by Y, written X X Y,
in the following manner. For convenience the elements of {zf} X [y} are
written 27 X y?. Then: .

(a) 2 Xy <zXyerz' <zandy < y;

(b) dim(z X y) = dim z 4+ dim y; .

© [z X y:2’ Xyl = [z:27]; [z Xyiz Xy]=(—1D)"*[y:¢);
the incidence numbers that are not of one of these two forms are all zero,
by definition.

Of the four basic properties Kl - -- 4 of (III, 1), all but the last are trivially
verified; so K4 alone requires proof. Given z X y, '/ X ", there is at most
a finite number of elements ' X ¥’ (we do not exclude 2’ = zor 2",y =y
or y"’) such that

(1.1) [xt X y:2' X ¢z Xy:x" Xy'l=0.

We may assume in fact that 2"/ X y”’ < z X y, and then the only two cases
requiring verification are:
(a) 2" = z,orelsey” = y. The verification of K4 reduces then to the same

for X or Y.

(8) dim 2" = dimz — 1,dim y” = dim y — 1. The only elements 2’ X y’
to be considered are z X %'’ and 2’” X y. The sum of the corresponding expres-
sions (1.1) must be zero, i.e., we must have:

[z X yiz X ¢"lle X y":2” X y"]+ [z X y:2” X ylla” X y:2” X ¢"] = 0.
By (c), together with dim z”/ = dim z — 1, this reduces to (—1)*™*[y:y"][z:z"]
+ (—1)*==z:2"]ly:y”] = 0. Therefore X X Y is a complex.

134 :
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(1.2) Remark. The choice of the factor (—1)*™% in (c) is solely on grounds
of expediency. By examining the rectangle as product of two segments the
reader will quickly convince himself that some such factor is needed if the
orientations of the elements are to behave in accordance with the rather natural
rules for polyhedra given in (III, 6.4). This will be brought out more fully in
connection with the product of polyhedra (3).

(1.3) Product of any finite number of factors. Consider first (X; X X5) X X3
and X; X (X: X X;). Their elements are the same and so are their ordering
relations and incidence numbers. Hence the two products coincide and are iso-
morphic. We identify them (a convenient procedure followed in similar cases
later) and designate the complex thus obtained by X; X X; X X;. The product
X; X .-+ X X, is defined by an obvious recurrence.

Let now X, Y be disjoint and compare X X Y with ¥ X X. Their elements
are once more the same and with the same ordering relations. If we set

(14) a(z X y) = (=1)tmsdiny,

then we verify that the incidence numbers in ¥ X X are such that it is merely
X X Y reoriented by a(z X y).

(1.5) Identical factors. The product of n factors equal to X is written some-
times X", Itis to be noted that while the product of n elements z; X - -+ X z, of
X is associative it is not generally commutative. Thus generally 2, X z; »

T2 X 21,
2. The following properties are direct consequences of the definitions:

2.1) St(zx X y) = 8t2 X Sty;
(2.2) Cl(z X y) = Clz X Cly;
(2.3) Bx Xy) =Bx X ClyuClz X By.

(2.4) The product of two open [closed] subcomplexes of X, Y is an open [a closed]
subcomplex of X X Y (2.1, 2.2).

(2.5) When X, Y are both star-finite [closure-finite and hence when they are
both locally finite] so is X X ¥ (2.1, 2.2).

(2.6) If X, Y are reoriented by the orientation functions a(z), o' (y) then X X Y
18 reoriented by the orientation function o''(x X y) = a(z)d’(y).

(2.7) Duals. Let us denote temporarily by z*, y* (z X y)* the duals of
z,y,z X yin X* Y* (X X Y)* From the incidences we find at once that
(x X y)* — x* X y* defines an isomorphism of (X X Y)* with X* X Y*. It
will be convenient therefore to identify the two complexes so that (z X y)* =
z* X y* and we will then have the relation

(2.8) (X X Y)* = X* X Y*

Thus the dual of z? X y? will be 2, X ¥}, and (X X Y)* = {z} X yi}.

(2.9) The components of X X Y are the products of those of X and Y. Hence
if X and Y are connected so is X X Y.

Referring to (III, 2.3) and to (1a) a n.a.s.c. for x X y and 2’ X ¥’ to be in
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the relation B, in the sense of (III, 2.8), is that this holds for z, 2’ and for y, ¥'.
In other words, z X y and 2’ X ¥’ are in the same component of X X Y when
and only when z, 2’ are in the same component of X and y, ¥’ in the same com-
ponent of Y. This is essentially (2.9).

3. Products of polyhedral complexes. It will be sufficicnt to consider a
product of two polyhedral complexes II; = {E?;}, ¢ = 1, 2. We have on the
one hand the topological product of polyhedra |II;| X |II:|, on the other
hand the product of complexes II; X I, We prove:

(3.1) I, X I, 58 a polyhedral complex whose polyhedron | X M| =
|| X || .

This provides the best possible justification for the product convention of (1).

Proor oF (3.1).

(3.2) If Q, ' are bounded convex regions in the Euclidean spaces @™, €" then
Q X @ is a bounded convex region in ™ X " (proof elementary).

(3.3) B[O X Q) =B2Xuld X BY (I, 12.5).

If we combine (2.3) and (3.3) we find by an elementary induction on the
dimension that

(3.4) {EF; X Eji;} are the cells of a polyhedral complez II such that [1I | =
| My | X ||

The complexes II, II; X II; consist of the same elements with the same assign-
ment of dimensions and incidences. Hence to prove (3.1) it is sufficient to
show that

(8.5) The incidence numbers of the elements in II and I, X I are the same.

(3.6) Let @™ be an Euclidean space referred to the coordinate system
{Z1, -+, Tnm} and let its characteristic be ¢” (III, 6.3). The subspace e
z, = 0 has the coordinate system {z, - -+, Zp-1, Tps1, ***, Zn} and with a char-
acteristic, say ¢™ . Let '™, €™ be the two regions z, > 0, z, < 0. We
modify the convention of (III, 6.3) in that we now define the incidence num-
bers as:

[@;m:@m—-l] = _[@"m:@m—l] = (_l)p—lemem—l‘

Under our original convention we should introduce a new coordinate system
{z1, -+, Zn} for G™ such that: 7, = 2i, 4 < P} Ti = Tipr, £ > D} Tm = Zp,
whose characteristic for @™ is (—1)™ %' ¢™. Hence we would have [E'™:E™ "]
= (=1)™?"e"e™ . One sees readily, however, that this does not modify
the argument of (III, 6.5), and the present convention is more convenient for
our immediate purpose.

(3.7) Let G be a second Euclidean space with coordinates {yi1, -+, yn}
and characteristic ¢*. Then G™ X G"is an G"™"" with coordinates {z,, - -,
Tm, Y1, - -, ys) and characteristic ¢"¢". Let also "', G'" be analogues

of ™!, @™ relative toy, . Then again "' X €", " X G"and €™ X G",
G™ X '™ are similar pairs for xz,, y, relative to €™ X €". Their incidence
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numbers are given by:
(3.8) [@,m x @n:@m—l x @n] = [@/m:@m—ll’
3.9) " X E":C" X €] = (~1)"E™:E],

The incidence numbers for II calculated by means of (3.8, 3.9) and the rule
of (III, 6.4) being those of I} X II, , (3.5) follows and so (3.1) is proved.

4. The joins of simplicial complexes. It is readily seen that the product of
two simplicial complexes is only simplicial in the trivial case when their di-
mensions are zero. This is already apparent in the property that the product
of two segments is a rectangle and not a triangle. A substitute operation, the
join, will have the advantage of preserving simpliciality.

(4.1) Let K = {o}, L = {¢} be two simplicial complexes and let K., La
be K, L augmented by the same (—1)-element e (the null-simplex). It is
convenient to introduce also the formal joins oe, ec which we define as ge =
e = o. Similarly (e = ¢ = ¢.

Consider now the following sets of joins:

KL = {ot}, K.L = {sf} v L,
KL, = {6t} K, K,L, = {ef}uKuLve

We call KL, --- the join of K and L, --- . If weset M = {of} u Ku L, then
M is a closed simplicial complex, and hence KL, K,L, KL, are open simplicial
complexes, while K.Ls = M, = an augmented simplicial complex.

(4.2) Let 'K, - - - denote the weak isomorphs of K, --- obtained by raising
all the dimensions one unit. Then we quickly verify: '(KL) = 'K X 'L,--
"(KoLs) = 'Ks X 'Ls. Thus if we raised all dimensions one unit we could
replace the joins by products.

(4.3) Let K,, L, be finite Euclidean complexes situated, respectively, in
@™, G" and let K, L be the simplicial companions with the same vertices such
as in (III, 6.12). If z ¢ K., y € L, the segments zy in €™ X €" generate an
Euclidean complex whose simplicial compamon augmented is KoL,. This
provides a good geometric illustration for the Jom Kola . Similar configura-
tions related to K,L, KL, , KL are generated by zy — z, zy — ¥, Ty — T — Y.

§2. PRODUCTS OF CHAINS AND CYCLES

5. In this section the restriction is imposed that all the factor complexes
X, Y, - are star-finite. As a consequence their products will be likewise
star—ﬁmte (2.5), and so the boundary operator F will have free scope throughout.

The natural definition of chain-products for two complexes X, Y requires
that the chains of X, Y be taken over two groups G, H commutatively paired
to a third J. Given then two chains

(51) Ep = g‘x? ) gi € G; ﬂq = hly? ) hj € H:
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their product is by definition the (p + ¢)-chain of X X ¥ over J
(5.2) £ X0t =gWal X .

Since G, H are paired to J their isomorphs Gz? , Hyj are paired to J2f X yf
o J under a multiplication such that the product of gzf by hyf is ghz? X yf .
Hence by (II, 16.1) the chain-groups & (X, G) and G*(Y, H) are paired to
(X X Y, J) by the multiplication given loc. cit. If the product of ¢ by
7 is written £ X #°, this multiplication is precisely (5.2). Therefore

(5.3) The product of chains defined by (5.2) is a multiplicatirn pairing the chain-
groups & (X, @), C(Y, H) to €™(X X Y, J).

From the assigned incidence numbers there follows:

(5.4) F? X yf) = (Fz?) X y§ + (=17 X (Fy))

and therefore:
(5.5) The boundary relation for the product is:

(5.6) F( X 1) = (F&) X o + (=1)"F X (Fn").
Denote cycles of X, Y by v, & and their classes by I', A. We have at once
from (5.6): '

(5.7) ¥v* X 8% isa (p + q)-cycle.

Thus in other words the multiplication (5.3) pairs 8°(X, G), 3°(Y, H) to
BX X Y, J).

(58) Y ord® ~0—=>9" X & ~0.

For if say v* = F£™, by (5.6): 9" X 8 = F(#™ X &), and hence v* X &
for & fixed, maps F(X, @) — F X X Y, J). Since the multiplication is
continuous it maps also F(X, @) — F (X X Y, J). Similarly with X, ¥
interchanged, and this is (5.8).

(5.9) 7* € T?, 8% ¢ A* = " X 8" lies in a fixed homology class called the product of
I?, A, written T X A% and this product defines a multiplication pairing 9 (X, @),
&Y, H) to "X X Y, J) (5.8; II, 15.6a).

(5.10) While we have allowed infinite chains everywhere, everything that
precedes continues to hold if the chains are restricted to being finite. The groups
are then groups of finite chains throughout.

(5.11) Assuming X, Y disjoint let X X Y be replaced by ¥ X X. Under
our convention (1.3) this is equivalent to reorienting X X Y by means of (1.4).
Let us agree to designate by 1° X £ the chain corresponding to £ X #'of X X Y
after commutation of the factors X, Y. Referring to (III, 10.1) we will have:

(5.12) o X E = (=17 X1

This may be described as the commutation rule for the chains of the product.

If we have a product X; X --- X X, then we may commute consecutive
disjoint factors X, X.1 and treat each time the chain-products in accordance
with (5.12). ‘ )

(5.13) Joins. Let the notations be those of (4). If & = g'ol , n" = A7,
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then the (p + ¢ + 1)-chain £9° = g'h’e?¢? is known as the join of £ and #".
We readily verify:

(5.14) F#n") = @) + (=" EFn).

The same relation holds relative to K,L, provided that we also allow £ = n = ¢,
it being understood that we are to write £, n for £¢, ne and ¢, en. In particular
(5.142 holds also for p or ¢ = 0 provided that we replace F£, Fr’ by KI(&),
KI(n).

(5.15) REMaRrk. There is an interesting connection between chain-products
and the Kronecker product of (I, 37). To simplify matters suppose G = H =
a field, and let the chain-groups be those of the finite chains. Then we readily
verify the relation €'(X X ¥, @) = 2 poer&(X, 6) ® €(Y, ). IfX, Y
are both finite a similar relation holds for the homology groups.

6. Homology groups of finite products. Let X, Y be two finite complexes.
The homology groups of X X Y are uniquely determined by the integral groups
and so we concentrate our efforts primarily upon these groups. The results
given below are essentially due to Kiinneth [a]. See also [L, V], [A-H, 299].

(6.1) Notations. af, ---, el are the same for X as in (III, 14) for K; af,

-, ¢ are the analogues for Y; 7 , 67 = the torsion coefficients of X,Y; & =
a chain of X, n° = a chain of ¥; {* = a chain of X X Y.

Let us fix our attention upon a particular dimension s. A change of bases
for the p-chains of X and the g-chains of Y, for all p, ¢ such that p + ¢ = s,
induces a change of bases for the s-chains of X X Y. Hence {a X o , a? X 67,
o.,e? X €}, forall p + ¢ = s, is a base for the s-chains of X X Y. We will
say that a chain or cycle of X X Y is a reduced chain or cycle if it is a sum of
terms containing only factors b, ¢, d, and 8, v, é.

The basic boundary relations for X, Y are:

t?o?; Fcf = 0;
085; Fy7=0.

(6.2) Fe?™ =a?, Fd?™
(6.3) Fed'! = aof, Fait

The chains @, b, ¢, , 8, v are.cycles. The boundary relations in X X Y are
obtained by means of (5.6) and need not be written down. We find from them
immediately that a reduced chain has a reduced boundary. Therefore if

* 8¢ denote the groups of the integral reduced chains and cycles then FE!™ =
&' C B!, and so we may form the reduced integral homology group $: =
B/ . If (X X Y) is the integral s-dimensional homology group of X XY
we prove:

(6.4) X XY)=9;.

Let {* be a given integral cycle of X X Y. If 4°is an integral cycle of Y,
then F(e?*! X 7% = a? X 7" ~ 0. Hence we may suppress in ¢* the terms

a X a,a X B, a X v and similarly the terms b X a, ¢ X a, without modifying
its homology class. Suppose this already done. The terms in ¢ with af as
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a factor make up a chain a? X 7¢. From
F(e?™ X 99) = a? X 9! + (=1""ef™ X Fqf ~ 0,

we conclude that we may suppress af X 7? in {* and replace it by terms e X 1.
We will thus have

¢' ~areduced chain + > e? X nf + D & X al + Y £P X & + X ziie? X ¢,

where 7? contains no e term, and ¢, ¢ contain no a, e terms. We must have
F¢' = 0. Since reduced chains have reduced boundaries this yields

2 @™ X n§ + (17} X Fnf) + X (F&) X of

+ X ((FE?) X & + (—1%7 X i)

+ 2 2@ X & + (—1)% X of ) =0.
Since the terms e X a occur only in the last sum we have zi, = 0. Then "
terms occur only in the first sum and so 30 = 0. The coefficient of af " is
(FEE™ + (=1)°t?), and as it must be zero we have &P = (—1)""'Fg™.
Then F&” = 0, and so (F£*) X ¢ = 0. Thus ultimately:

¢* ~ a reduced chain + ) (—1)""'F(¢?™ X €) ~ a reduced chain.

Thus every I'" ¢ §°(X X Y) contains a reduced cycle.

Consider now any A’ ¢ §; . The cycles in A’ are in a unique I and A’ — I
defines a homomorphism 7 of §; onto §’ as just shown. Moreover r is univalent.
For suppose that ¢* ¢ A® bounds in X X Y, so that {* = F¢'*'. We may write
¢ =™ 4+ 67, where {11 is reduced and each term of 3™ contains one of
the factors a, a, ¢, e. Thus Fi3*' = ¢* — Fii*' = a reduced chain. By direct
computation we find then that this implies Fi3*' = 0. Therefore ¢* = Fgi™,
or ' ~0in X X Y, ¢ reduced = ¢’ ;. Therefore r is univalent. Hence
it is an isomorphism, and (6.4) follows.

Several simple but very useful conclusions may already be drawn from (6.4).

(6.5) The homology groups of a product of finite complexes are uniquely deter-
mined by those of the factors.

It is clearly sufficient to consider X X Y. Suppose that X’, Y’ have the
same homology groups as X, Y and let b?, - - - , 3, have their obvious meaning.
Then b? X 8% — b;® X B3, - - - defines an isomorphism of the groups of reduced
chains G2, G," of X X ¥, X’ X Y’, under which the related groups 3!, 3.*
and §:, §.° correspond to one another. Hence the reduced homology groups
of X X Y, X’ X Y’ are isomorphic, and therefore also by (6.4) the integral
homology groups, and finally by (III, 18.2) all the homology groups of the two
complexes. This proves (6.5).

(6.6) A product of finite acyclic complexes is acyclic.

For if X, Y are acyclic there are no b, ¢, d, 8, v, 8, hence no reduced cycles
and so by (6.4) all the integral homology groups are zero. It follows that the
product has no torsion coefficients and that all its Betti numbers vanish. Hence

it is acyelic (III, 21.3).
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(6.7) If X, Y have no torsion coefficients the same holds regarding X X Y and
{c? X%}, p + g = s, is a base for a group = $' (X X Y).

For in the absence of torsion coefficients there are no b, 8, d, 5, and hence all
‘the reduced chains are cycles and none is bounding.

(6.8) Betti numbers. Consider the groups mod =, a prime, or the rational
group (r = 0). The basic system for the chains and their boundary relations
in X is still (ITI, 14.2). However if v does not divide t , writing now d’ +1 for
s’:d""“ &) = 1 mod =, the second relation of the system becomes Fd" s A
and so of the same form as the first, while if r divides 3, d3t! is merged with the
c?+, Hence we may suppress the b, d. The system (III, 14.2) retains its form but
with chains b, d absent. The argument may then proceed as before as if there were
no such terms, i.e., as if there were no torsion coefficients. The {c?}, {y]} are
now merely bases for groups isomorphic with the groups $°(X, =), $°(Y, ).
We still obtain the analogue of (6.7) and so {¢! X v§}, p + ¢ = s, is a base
for a group isomorphic with $°(X X Y, ). Since we are dealing with vector
spaces over 3, the dimensions are the corresponding Betti numbers and also
the numbers of elements in the bases. Hence

(6.9) R(X XY, n) = X RX,mR(Y,n).
Ptg=e
In particular for the ordinary (rational) Betti numbers:
(6.10) R(X XY) = X R(X)RYY).
Ptgm=s

This relation is equivalent to the following noteworthy relation between the
Poincaré polynomials (III, 15.3):

(6.11) P(t; X X Y) = P(t; X)P(t; Y).

We may also introduce in the obvious way the Poincaré polynomial mod =
(i.e., whose coefficients are the Betti numbers mod =), say P.(t; X), and then
(6.9) is equivalent to

(6.12) P.(t; X X Y) = P.(t; X)P.(t; Y).

(6.13) If X is p-cyclic and Y is g-cyclic then X X Y is (p + q)-cyclic (6.7,
6.10; 111, 21.3).

(6.13a) If £, 1% are cycles of X, Y mod = then £ X 7 ~0,£” » 0= 5" ~0,
and simzlarly with £, n interchanged.

In the notations of (6.8) £ ~g'c?, n? ~ k' v4, 8> Xn*~g k' c? X v ~ 0.
By the argument in (6.8) the last homology implies that every g hj = 0, and
since not every g' = 0, we must have h/ = 0 for every j, and hence ¢~ 0.

(6.14) Application. Let | be a segment considered as a polyhedron. Its
homology groups are those of the closed one-simplex and so [ is zero-cyclic.
Hence the Euclidean parallelotope P" (product of n segments) is also zero-
cyclic. Since P" has a single n-element, when n > 1, the boundary sphere
Bl" is (0, n — 1)-cyclic (III, 21.4).
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The preceding results lead to a rapid proof of:

(8.18) The product of a finite number of simple complexes °s simple.
It is sufficient to consider a product of two simple factors X, Y.
(a) dimz Xy = 0.

(b) Let &, 7 be the fundamental zero-cocycles of X, Y. We have

b= 2 a5, o= 2 .
Since & , no are zero-cycles of X*, Y*, & X no is a zero-cycle of X* X Y*, hence
8 zero-cycle of (X X Y)* (2.8) and it is

fo X m =2 2 Xyt

which is the sum of the duals of the vertices of X X Y. Therefore X X Y is
augmentable and with a fundamental zero-cocycle equal to tiie sum of the duals

of its vertices.

(¢) Cl(z X y) is finite and zero-cyclic. This follows from (2.2) and (6.13).
Since X.X Y is augmentable, (Cl(z X y)). is acyclic (III, 47.5).

Referring now to (III, 47.1), property (6.15) is a consequence of (a, b, c).

(6.16) Bettr and torsion groups. In view of (6.4) to determine these groups we
only need to consider reduced chains. Among their generators all those not
containing a factor d or é are cycles. Moreover a chain { containing terms
d X ¢ is readily seen not to be a cycle. Suppose

¢ = ub? X 8 +vdfT X BT 4 -
From the relation F¢' = 0 we find w67 = (—1""w?. Let generally
T?} = h.c.f. (tf, 67). Then

N
b= (=)™ s 61,

P
T3

U= e i,
and therefore
A
£ = Tpe F@™ X 8) + ---.

Thus the group of reduced cycles contains also the generator {;;(p, ¢) =
F@d?*' X 83)/T?*'. Hence a full set of generators for 3! consists of the cycles
of the type just written together with the products b? X 8§, b7 X +¥,c? X 87,
¢? X v}. The basic boundary relations are:

F(d?*' X &) = T’ ¢ i(p, ),
F@dr* X ) = 267 X B7;  F((—1)"7 X 8¢ = 637 X 6¢;
F@?* X9 = 262 X v¥;  F((—1)%? X 8™) = g%? X 62.

We may express T7f in terms of 7 , 62 as T?? = 7" + (—1)76%,%, and this
enables us to replace the second and third basic boundary relations by the
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unique relation
F(t7d?™ X B2 + 6,7 X 8%) = THb? X 6.

Since the ¢ X ¥ are the only products which occur in no boundary, the Betti
group B'(X X Y) is isomorphic with the free group on {¢f X v{},p + ¢ = s.

From the basic boundary relations we also verify that the torsion group is
isomorphic with a product of cyclic groups of orders T%*, TZ?#, 7, 6%,
P + ¢ = s. Thus the torsion coefficients are the invariant factors greater than 1
of a diagonal matrix with all these terms in the diagonal.

(6.17) Application to joins. Let K, L be as in (4) and finite. Let also
a, -+ ,eand a, ---, € be the elements of canonical bases for K and L. Then
from (4.2) and the appropriate results for the product we deduce:

(6.18) {cPv?}, » + ¢ = s — 1, i3 a base for the Belti group B*(KL).

(6.19) R'(KL, %) = +2 ) R’(K, »)RY(K, =).
Prgms—.

(6.20) When K, L have no torsion coefficients this is also the case for KL.

(6.21) The same results hold for the joins K.L, KL, , K,Ls , provided that the
basic elements ¢} , v7 are properly chosen.

As an application of the preceding results or else directly one may also prove
the useful property:

(6.22) Let K be a finite simplicial complex and A a point. Then the pth
homology groups of AK [of AK,)] are the same as the (p — 1)st of K [of K,].

§3. SET-TRANSFORMATIONS

7. The dual nature, algebraic and structural, of complexes, reflects itself in
their transformations. We shall have to consider separately those of X as an
ordered space, then the homomorphisms on the chain-groups, and ultimately
combine the two types. The following treatment of set-transformations is based

on Tucker [b].

(7.1) DEFINITION. Given two complexes X, Y, we shall understand by a set-
transformation t: X — Y a transformation of the set X into the set Y (for each z,
tx is a set of elements of Y). We call t:

closed when t Cl1 = Cl ¢

weakly closed when Clt Cl = Cl ¢ (Cl commules with Cl t);

open when t St = St t;

weakly open when St t St = St ¢;

stmple when Y is simple and every (Cl tz)4 s acyclic.

Convenient formal relations to keep in mind in connection with these definitions are:

(7.2) CICl=Cl, StSt=St.

We also notice the following properties of set-transformations:
(7.3) When t is closed [open] it is weakly closed [open].
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(7.4) When ¢ is weakly closed, 2’ < = = Cl ta’ < Cl i». Simalarly for the
obvious dual situation.

(7.5) The product t't of two closed, weakly closed, open, weakly open set-trans-
formations t: X — Y, t':Y — Z, is a set-transformation X — Z of the same type
as the factors.

(7.6) The identity X — X 1s both open and closed.

Properties (7.3, 7.6) are obvious. Regarding (7.4): 2’ < z = 2’ ¢Cl z =
te' CtClz= Cltz’ € CltCla = Cl tx, which disposes of the weakly closed
case. The dualization is obvious. Passing to (7.5) it is only necessary to con-
sider the weakly closed case. If we apply Cl ¢’ to the two sides of the relation
Cl ¢t Cl = Cl¢ and if we remember Cl ¢’ Cl = Cl ¢ we have in view of (7.1):
Clt'CltCl=Cl#tCl=Cl¢ Clt = Cl (¢t) which disposes of the case in ques-
tion, and similarly for the rest.

ExampLes (7.7). Take a simplicial complex K = {o} and the join with a point A’
AcKs = L. Then ¢ — Ao defines a set-transformation ¢t:K — L, Now {Clo = 4 Cl o2
whileCltec = ClAe = AClouCloud,andsotCl # Clt. On the other hand Cl1 ¢ Cl ¢ =
Cl(A4Clo) =ACleouCloud = Clic. Thustis weakly closed but not closed.

(7.8) Let K consist of the closed simplex 4, --- A, and let ¢ be the set-transformation
K — K whereby A:d; - Ax (1 < j < -+ < k) is transformed into Aindisn *+* Akyn,
where the indices are understood mod (p 4+ 1). Then ¢t Cl = Cl ¢ is immediately verified and
8o ¢ is closed.

(7.9) Simplicial set-transformations. Let K = {o}, L = {¢} be two simplicial
complexes with respective vertices {A4;}, {B;}. A simplicial set-transformation
t:K — L is one which sends every vertex A; of K into a vertex B, of L and
sendso = A;--- A;eKinto{ = te = (tA:) --- (tA;) e L. We notice that:

(a) et is single-valued;

(b) ¢ s closed;

(c) the two preceding properties are sufficient to characterize t.

Property (a) is obvious. Regarding (b), clearly ¢’ < o= t¢’ < to. More-
over if {/ = By --- By < to there are indices #/, --- , k' such that t4, =
By, -+, tAy = Bi, where A, ---, Ay are vertices of 0. Thus ¢ =
Ap -+ Ap < cand t¢’ = ¢’. Hence ¢t Cl = Cl¢, which is (b). Suppose now
that t has properties (a), (b). Since Cl1t A; = tCl A; =tA;, CltA;is asimplex
and so it is a point. Suppose that we have shown that every t¢%, ¢ < p, is the
simplex of L whose vertices are the transforms of those of ¢°. Consider now
o® = Ay --- A,. By hypothesis 180" has no other vertices than t4,, --- , 4, .
Suppose ¢ = to” has a vertex B not among these. Since Cl t¢* = Cl § =
t Cl ¢”, B must be in some t¢’, ¢’ < ¢%, ¢’ # ¢”, contrary to assumption. There-
fore { = (tAo) -+ (tA,), t is simplicial and (¢) is proved.

(7.10) An interesting generalization is the following. The notations remain-
ing the same, ¢ is closed and such that every to is a Cl {. Thus ¢ is a single-
valued transformation {¢} — {Cl {}. We will call ¢ a generalized simplicial
set-transformation.
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8. Inverse and dual set-transformations.

(8.1) The definition of the inverse is as usual: ¢ is a set-mapping ¥ — X
such that z ¢ 'y when and only when y ¢ tz. The dual t* of ¢ will be defined
as a set-transformation Y* — X* such that z* ¢ t*y* e y e fx. It is convenient
to introduce also an auxiliary set-transformation £:X* — Y* defined by:
y* etyx* & y etz. However it is definitely ¢* that we require later. We note
the following properties:

(8.2) ** =t t=1t  t*= (D

(8.3) f t is closed [open] then t™ and t, are open [closed);

(8.4) if one of t, t* is closed so is the other.

Property (8.2) is obvious and (8.4) is a consequence of (8.3) and the third of
(8.2) so that (8.3) alone requires proof. The assertion as to ¢, ¢« is again obvious
so that only the one concerning ¢, £ requires proof. Suppose ¢ closed. Given
thenz et St y, thereisay’ > ysuch that z e# ™'y’ andsoy’ etxandy e Cly’ C
Cltx = t Clz. Hence there is an ' < x such that y ez’ or 2’ e£'y. There-
fore z ¢ St ¢ 'y, and hence £ 'St y C St ™'y. Conversely, let z ¢ St ¢ 'y. There
is an 2’ < x such that 2’/ ¢t 'y. Since 2’ ¢Cl z we have Cl tzx = ¢t Cl z D
tx'>y. Hence there is a y' etz and >y. Hence ¥ ¢St y and z ety C
t'Sty. ThereforeStt 'y Ct ' Sty. Thust St = St or¢ isopen. By
dualizing the proof we find that ¢ open implies £ closed; so (8.3) is proved.

§4. CHAIN-MAPPINGS

9. Let X, Y be finite complexes and let || ai(p) ||, p = 0, &1, - - - be matrices
of integers. Referring to (II, 8.4) the relations
9.1) = = al(p)y}
define a system of homomorphisms of the integral chain-groups r:@€”(X) —
@”(Y). The operation 7 is known as a chain-transformation. When in addi-
tion r commutes with F:
9.2 7F = Fr,
(for integral chains) then 7 is called a chain-mapping X — Y.

(9.3) If G is any coefficient-group whatever, a chain-mapping r induces
a homomorphism&”(X, @) — E°(Y, @) defined by the relations
(9.4) w(g's?) = al(p)gy} , g'eG,
which still commutes with F. Furthermore owing to (9.2) = maps 8°(X, @) —
3, @, FX, @ — F(Y, ), and hence (II, 5.4) 7 also induces homomor-
phisms: §°(X, @) — (Y, G). Thus:

(9.5) THEOREM. A chain-mapping 7:X — Y induces homomorphisms of the
groups G, --- , ©° of X over any G into the corresponding groups of Y.

Let the boundary relations in X, Y be
(9.6) Fz? = ol(p)a?™,  Fy? = Bi(p)y? ™
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Notice that for X*, Y* they are

9.7) Fry = oj(p)zh,  Fyp1 = Bi(p)Yh -
A simple calculation yields
(9.8) (+F — Fr)g'z? = {ai(p)ai(p — 1) — ai(p)Bi(p)}o'yd™".

A n.a.s.c. for (9.2) to hold is that this last expression vanish identically.
Therefore (9.2) and

(9.9) al(p)di(p — 1) — al(p)Bi(p) = 0

are equivalent.

(9.10) Simple chain-mapping. Let X, Y be simple. The chain-mapping
7:X — Y is said to be simple whenever it preserves the Kronecker indices of
integral zero-chains: KI(r¢") = KI(¢%). It implies that if X, ¥ are augmented
to X,, Y, with (—1)-elements ¢, n then 7 may be extended to r.:X, — Y,
such that r,e = n, where 7, = 7 on X, 7.,F£ = Frt’. Explicit n. a.s. c. for =
to be simple are

KI(z}) = KI(ai(0)y5),
which are equivalent to:

(9.11) 2 a0 =1

for every t.

(9.12) Simplicial chain-mapping. Let X = {o}, Y = {{} be simplicial with
vertices A;, B;, and let ¢ be a simplicial set-transformation X — Y. Set
tA; = B; where the B’s need not be distinct. Define a chain-mapping
X —> Y by

B, - -+ B;, when the B;, are distinct,

9.13 = 1dy, e Ay =
(0.13)  ro = rds %~ 10 otherwise.

To prove commutation with F it is sufficient to prove rFo = Fro. Assume the
labels so chosen that A;, = Ax. Then if the B; are distinct:

TFO’ = Tz (—l)iAo A.'_1A¢+1 Ap
= Z ("‘1)‘Bo st B.'_lB,'+1 et Bp = Fro.

If the B’s are not distinet the labels may be so chosen that By = B, and then
the first two terms in the second sum cancel and the rest vanish. Hence
7Fo = Fro in any case, so 7 is a chain-mapping. Since KI(4,) = KI(B;) = 1,
7 is also simple. A chain-mapping such as 7 is said to be simplicial.

(9.14) It may be noticed that while ¢ determines 7 uniquely the converse is
also true. For this reason we will often write 7o for {¢ and this will cause no

ambiguity.
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(9.15) Product of chain-mappings: If r is a chain-mapping X — Y and v’ isa
chain-mapping Y — Z then 7't 4s a chain-mapping X — Z.

(9.16) Chain-mappings and reorientation. The effect of applying to X an
orientation function a(z) is the same as subjecting X to the chain-mapping
a:z — a(z)z. Similarly to reorient Y by means of ei(y) is the same as sub-
jecting Y to the chain-mapping a;:y — au(y)y. Therefore if X, ¥ both undergo
the preceding reorientations the equations of 7 given by (9.1) become instead

(9.17) 2f = a(z?)ai(p)a!)y? .

(9.18) Notation. 1f X’ is a closed subcomplex of X and r a chain-mapping
X — Y, the values of 7 on the chains of X’ define a chain-mapping 7": X’ — ¥
which we will conveniently denote by = | X’. This is a slight but very natural
deviation from the | notation of (I, 2).

(9.19) DeriNiTION. Let {Gh}, {Hy} be two systems of groups indexed by the
same set A = {\} and let  be an operation upon the groups of the first system such
that r is a homomorphism, an open homomorphism, - - -:Gy — Hx. We will call =
a simultaneous homomorphism, - - - , of {Gr} into [onto or with, if need be] {Hy},
written symbolically as usual 7:G\ — Hy . Frequently when the meaning is other-
wise clear we shall drop ‘‘simultaneous’ and still call T a homomorphism, - - - .

ExaMpLES: A chain-mapping 7:X — Y is a simultaneous homomorphism of the groups
¢*(X, Q) —» @ (Y, G). Here A = {(p, G)}. Other simultaneous homomorphisms are: the

projections and injections corresponding to a dissection of a complex, the set of homo-
morphisms of (9.5). Very frequently the indexing system will be of the form {(p, G)}

but other types will also occur.

10. Side by side with r we may consider the dual mapping r*:¥Y* — X*
defined by ,
(10.1) ™y = al(p)z; .
If we compute 7*F — F+* we find again that its vanishing is equivalent to (9.9).
Therefore

(10.2) If one of , 7* is a chain-mapping so is the other.

We also have, with 8(p) as in (III, Introduction),
(10.3) KI(rz? , 4%) = B(p)di(p) = KI(z? , 7*y5),

and hence, since the index is distributive:
(10.4) Invariance of the Kronecker index. If G, H are commutatively paired

to J, and £, n, are, respectively, over G, H then:
(10.5) KI(TEPy Np) = KI(EP; 7*15).

Conversely, let it be known that 7, 7* are so related that (10.5) is satisfied,
where 7 is as before and 7* is given by

™y = a;'(p)z) .
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From (10.5) follows for & = 2%, n, = ¥} : a;*(p) = ai(p) ard so r* is the dual
of r. Therefore:
(10.6) A n.a.s.c. for v, * to be dual 1s that (10.5) hold for integral &, n, .
Suppose now that X, Y, r are simple, and let & , 7o be the fundamental zero-
cocycles. By (10.4;III, 47.1) and since r is simple we have:

(10.7) KI(r£, ) = KI(¢, &) = KI(¢', m*n).
Select £ = z} and let & — *n = A;-zf . From (10.7) follws
KI(z?, Ajzd) = A\ =0

or § = 7*n . Conversely, if & = 7*n0, from (10.5) follows the first equality
in (10.7), and hence 7 is simple. Therefore:

(10.8) When X, Y are simple a n. a. s. c. for 7 to be simple s that * map the
Sfundamental zero-cocycle of Y into the same for X.

Since r* is a chain-mapping, we have from (9.5):

(10.9) TueoreM. The dual * of 7 induces homomorphisms of the groups
€y, -+, Oy of Y into the corresponding groups for X.

(10.10) If 7 induces isomorphisms of the homology groups of X with the corre-
sponding groups of Y, then v* induces isomorphisms of the cohomology groups of Y
with the corresponding groups of X.

The proof rests upon

(10.11) If 7 induces isomorphisms of the integral homology groups, then it
induces isomorphisms of those over every G.

Let there be given sets {b? , c¢f , d?} of chains of X such that: (a) they satisfy
the same relations Fd?*' = t?b? , Fc? = 0 as the elements b, ¢, d of canonical
bases (III, 14.2); (b) every integral p-cycle ~ a combination of the bf, ¢?.
Upon examining the proof of (III, 14.1) it is found that the sets may be com-
pleted by suitable chains af , e? to canonical bases {af, b7, ---, ef}.

Let now 767 = @87, 7¢?! = vF, 7d? = 87 . Under our assumptions X, ¥
have the same Betti numbers and torsion coeflicients, and furthermore (b) will
hold for Y and the 87 ,y7 . Since r commutes with F we have as a consequence
of (a): Fo?™ = 787 , Fy? = 0, which is (a) for ¥ and the 8, v, 5. Therefore
the 8, v, § may be completed to canonical bases {af , 87, ---, €'} for Y.

Referring now to the explicit expression (III, 16.9) for the $*(X, @), and to
the same for Y, property (10.11) becomes obvious.

Proor or (10.10). In view of the result just obtained, clearly we only need
to prove the asserted property for the integral groups. By (III, 30.2) $*(X, P)
and 9,(X, J), likewise $”(Y, B) and $,(Y, ) are dually paired with the Kro-
necker index as the multiplication. Let I'?, I', denote the elements of the above
homology and cohomology groups of X, and A”, A, the same for Y. By (10.5)
and (III, 29.8) we have:

KI(+T?, &,) = KI(I?, *A,).
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This relation states in substance that the character r*a, of (X, B) takes the
same value at I'” as the character A, of (Y, P) at +I*. Since r is an iso-
morphism the relationship between the characters implies that 7* is a univalent
homomorphism onto, and so that it is an isomorphism.

(10.12) If 7:X — Y, 7':Y — Z are chain-mappings then the chain-mapping
71:X — Z has for dual (v'7)* = 7%'*,

This is an immediate consequence of the definition of the duals by (10.1).

(10.13) Application to dissections. Let (Xo, X1) be a dissection of X, = the
projection X — Xo, n the injection X; — X (III, 23). Then (X7, X;) is a
dissection of X* and there are a related projection

7*: X* - X7
and an injection
*: Xy — X*.
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