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Preface

The emergence of the concept of a computable function over fifty vears
ago marked the birth of a new branch of mathematics: its importance may
be judged from the fact that it has had applications and implications in
fields as diverse as computer science, philosophy and the foundations of
mathematics, as well as in many other areas of mathematics itself, This
book is designed to be an introduction to the basic ideas and results of
computability theory (or recursian theory, as it is traditionally known
among mathematicians).

The initial purpose of computability theory is to make precise the
intuitive idea of a computable function; that is, a function whose values
can be caleulated in some kind of automatic or effective way. Thereby we
can gain a clearer understanding of this intuitive idea; and only thereby
can we begin to explore in a mathematical way the concept of compu-
tability as well as the many related ideas such as decidability and effective
enumerability. A rich theory then arises, having both positive and
negative aspects (here we are thinking of non-computability and wndeci-
dability resulis), which it is the aim of this book o introduce.

We could describe computability theory, from the viewpoint of
compuler selence, as beginning with the question What can computers do
in principle (without restrictions of space, time or money)? —and, by
implication - What are their inherent theoretical limitations? Thus this
book is nor about real computers and their hardware, nor is it about
programming languages and technigues. Nevertheless, our subject
matter is part of the theoretical background to the real world of
computers and their use, and should be of interest to the computing
community,

For the basic definition of computability we have used the ‘idealised
computer’ or register machine approach: we have found that this is readily
grasped by students, most of whom are aware of the idea of a computer.
(We do not, however, assume such an awareness although it is helpful)
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and even less do we assume any practical experience with computers or
caleulators.) Our approach is mathematically equivalent to the many
others that have been discovered, including Turing machines, the
favourite of many. (We discuss these equivalences in chapter 3.

This text grew out of a course given to undergraduates in mathematics
and computer science at the University of Hull. The reader envisaged isa
mathematics student with no prior knowledge of this subject, or a student
of computer science who may wish to supplement his practical expertise
with something of the theoretical background to his subject. We have
aimed at the second or third year undergraduate level, although the
carlier chapters covering the basic theory (chaptars 1-7) should be within
the grasp of good students in sixth forms. high schools and colleges (and
their teachers). The enly prerequisites are knowledge of the mathemati-
cal language of sets and functions (reviewed in the Prologue) and the
ability to follow a line of mathematical reasoning,

The later chaprers (8-12) are largely independent of each other. Thus a
short introductory course could consist of chapters 1-7 supplemented by
selection according to taste from chapters 8-12. It has been our aim in
these later chapters to provide an introduction to some of the
ramifications and applications of basic computability theory, and thereby
provide a stepping stone towards more advanced study. To this end, the
final chapter contains & brief survey of possible directions for further
study, and some suggestions for further reading. (The two main texts that
might be regarded as narural sequels to this one are M. L. Minsky,
Computaiion: Finite and Tnfinite Machines, which would complement the
present valume by its broad and comprehensive study of computaiion (as
opposed to computability), and H. Rogers, Theory of Recursive Functions
and Effective Compurabilivy, which provides a more advanced treatment
of recursion theory in depth.)

Manv people have helped towards the writing of this book. [ would first
thank John Cleave, who taught me recursive function theory in a gradu-
ate course at the University of Bristol in 1966, and introduced me to the
regster machine approach that [ have used here. I have greatly appreci-
ated the sustained interest and encouragement from Stan Wainer (who
also made valuable suggestions fur the material in chapters 10 and 12)
and David Jordan: [ thank them. [ would also like to thank David Jordan
and Dick Epstein for reading a drafrt of the manuseript and making many
valoable comments and corrections. | am grateful to the Cambridge
University Press for their interest and advice which has resulted in the
emergence of the completed manuscript.



Finally, a big thank you to my wife Mary for her patience and
encouragement during the many phases of writing and preparation of this
hook; her idealism and understanding have been a sustaining influence
throughout.

Prologue
Prerequisites and notation

The only prerequisite to be able to read this book is familiarity with the
basic notations of sets and functions, and the basic ideas of mathematical
reasoning. Here we shall review these matters, and explain the notation
and terminology that we shall wse. This is mostly standard; so for the
reader who prefers to move straight to chapter 1 and refer back to this
prologue orly as necessary, we point out that we shall use the word
function to mean a partia! function in general. We discuss this more fully
below.

1. Sets

Generally we shall use capital letters A, B, C, . .. to denote seis.
We write x £ A Lo mean that x % a member of A, and we write x2 A o
mean that x is not a member of A, The notation {x:...x...} where

. x...ls some statement involving ¢ means the set of all objects x for
which ... x...1s true, Thus {x: x is an even natural number} is the set
{0,2,4.6,...}

If A, B are sets, we write A = B to mean that A is contained in B (or 4
is a subset of B), we use the notation A © B tomeanthest Ac Bbhut A= R
li.e. A is a proper subser of B). The union of the sets A, B is the set
[x:x€ A orxe 8 (or bath)}, and is denoted by A U B; the intersection of
A,B is the set {x;x€ A and xe B} and is denoted by An 8. The
difference (or relative complement) of the sets A, B is the set {x: x e A
and x£ B} and is denoted by A\ B.

The empty set is denoted by &, We use the standard symbol R to
denote the set of natural numbers {0, 1, 2, 3,. .. 1. If A is a set of natural
numbers (i.e. A = &) we write A to denote the complement of A relative
to %, i.e. Bl A, We write M” for the set of positive natural numbers
{1,2.3, ...} and as usual £ denotes the set of integers.
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We write (x, v} to denote the ordered pair of elements x and y; thus
(x, y) # (y, x) ingenerzal. If A, B arc sets, the Carfesian product of A and B
is the set {(x, y): x = A and v € B}, and 1s denoted by A X 8.

More generally, for elements ¥y,.... %, We write (xp.....%.) 10
denote the ardered n-tuple of x-,. .., x.; an #a-tuple is often represented
by a single boldfaced symbol such as x IF Ay, ..., A, arc sets we write
Ax.. . %A, for the set of r-tuples {{x;,....,x.:x;24; and x:¢
Az...xe8 Ayl The product A = A =, .. x A (4 times) is abbreviated by
A" A means A.

2. Functions

We assume familiarity with the basic idea of a function, and the
distinction between & function f and a particular value f{x) at any given x
where f is defined.' If f is a function, the domain of fis the set {x: fix)is
defined}, and is denoted Domi/); we say that fix) is undefined if
x& Domi(f). The set {fix): x e Dam{f)} is called the range of f, and is
denoted by Ran( f). If A and B ars sets we say that f 1s a function from A ro
B iDom(fl= A and Ranlf} = B. We use the notation /: A -+ B to mean
that { is a function from A to 8 with Dom(fi=A.

A function f is said to be injective if whenever x, ¥y e Domlif) and x # y,
then fix}# fly). I f is injective, then ' denotes the inrerse of [, i.e. the
unique function g such that Domig)=Rani /) and g{fixhi=x for x ¢
Domi.fi. A function [ from A w0 B is surjective if Ran(f)= B.

If f- A— B, we say that f is an mpection (from A to B)if 1t 1s injective,
and a surjection (from A to B if it is surjective. [t 1s a bifecnion if it 1s both
an injection and a surjection.

Suppose that f is a function and X is a set. The restriction of ( to X,
denated by £| X, 15 the function with domain X —~ Domi £) whose value for
x X ~Domif)is flx). We write LX) for Ran(7 X ). If Y is a set, then
the inverse image of Yunderfisthesat [ Y Y)={x: fix)e ¥} (Note that
this is defined even when § is not injective.)

If f. g are functions, we say that g extends f 1if Dom(f) = Dom(g) and
fix)=g(x) for all x e Doml(f): in short, f=g¢ Domif). This is written
f=g

Usually in mathematical texts 2 function § s defined 10 be a set of ardered pairs
such that if (3, y)e Fand [x, 21€ fthen p = =, and [lx] & defined w he this v We
diov nat insist on this definition of a function, bul our exposilion is consistent with
it

< ey =

The composition of two functions f, g is the function whose domain is
the set {x: x =Domig} and gl{x)= Domif)}, and whose value is flglx))
when defined. This function is denoted f=g.

We denote by £ the function that is defined nowhere: L.e. f has the
property that Domifz)=Ran(f.)=&. Clearly fs=g | @ for any
function g.

Often in computability we shall encounter functions, or expressions
involving functions, that are not always defined. In such situations the
following notation is very useful. Suppose that a (x) and 8(x) are expres-
stons involving the variables x = {xy. .. . x,). Then we write

alx)=pBix)
to mean that for any x. the expressions x(x) and g(x) are either both
defined, or both undefined, and if defined they are equal. Thuos. for
example, if f, g are functions, writing f{x) = g(x) is another way of saving
that f = 2; and for any number y, fix) =y means that f(x) is defined and
fix)=y (since v is always defined).

Functions of natural numbers For most of this book we shall be
concerned with functions of natural numbers; that is, functions from f"
to fd for various #, most commonly # =1 or 2,

A function f from ™" to B is called an n-ary function. The value of [ at
an m-tuple (xy, ..., x.)eDom(f) is written fix,, ..., x.), or fix), if x
Tepresents (x,, ..., x,). In some texts the phrass parnal function is used
to describe a function from %" to f whose domain is not necessarily the
whole of B". For us the word function means partial function. On
occasion we will, nevertheless, write partia! function 1o emphasise this
facL A totgl function from & to M is a function whose domain is the whole
]

Particularly with number theoretic functions, we shall blur the dis-
tinetion between a function and its particular values in two fairly standard
and unambiguous ways. First we shall allow a phrase such as ‘Let
fixg ... x,) beafunction . .. " as a means of indicating that f is an x-ary
function, Second, we shall often describe a function in terms of its general
value when this is given by a formula, For instance, ‘the function x* means
‘the unary function f whose value at anv r =% is +*"; similarly, ‘the
function x —v' is the binary function whose value at (x, }f]E:‘%I2 isx+y.

We deseribe the zero function i = B by 0 and penerally, for m = &, we
denote the function B —=% whose value is always m bv the boldface
symbol m.
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3. Relations and predicates

If A is a set, a property M (x4, ..., x.) that holds (or is true) for
some n-tuples from A" and does not hold (or is false) for all other a-tuples
from A is called an n-ary relarion or predicate on A.”

For example, the property x < y is a binary relation (or predicate) on Rd;
23 holds (or is true) whereas 9 << 5 doesnot hold (orisfalse). Asanother
example, any n-ary function f from %" to % gives rise to an (a + 1)-ary
predicate Mix, ¥) given by

Mixy,...,xvlifandonly if fixy.....x)=w.

Equivalence relations and orders (The student unfamilar with these
notions may prefer to delay reading this paragraph until it is nzeded in
chapter 9.) In chapter @ we shall encounter two special kinds of relations
on 4 set.A.
(a) A binary relation R on a set A is called an equivalence relation if it
has the following properties for all x, v, z = A:

(i) (reflexivity) Rix, x);

{ii} {svmmetry) if Rix, v) then Ry, x);

(ii1) (transitivity)if Bix, ¥)and Biy, z) then Rix, z ).
We think of R(x, v} as saying that x, v are equivalent (in some particular
sense). Then we define the equivalence class of x as the set {y: R(x, vl},
consisting of all things equivalent to x.
(&) A binary relation B on a set A is called & parrial order if, for all
X, v,z 4,

(i} (irrefexivity) not Rix, x);

(i) (transitivity) if Bix, yiand Riy, z) then Rix, z ).
A partial order is usually denoted by the symbol <, and we write x <y
rather than <\(x, y). A partial order is often defined by first defining =
imeaning < or =), with the properties

1) x=ux;

i) fr=yandy=xthenx =y,

(i) = is transitive;
and then defining x < v tomean x =y and x # v,

4. Logical notation
Our logical notation and psage will be standard throughout, We
use the word if as an abbreviation for if and only if. The symbol =

T Diten an m-ary relation or predicate Mix) on 1 set A s identified with the sct
{x: 2 A" and Mx) holds). We do notinsist on this identificetion here, although
our exposition is consistent with this approach,
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denotes definitional equivalence, while = denotes implies, and <
denotes implies and is implied by, We use the symbols ¥, I to mean for
all’ and ‘there exists’ in the standard way.

The symbaol T is used in the text to indicate the end of a proof.

H References
Each chapter is divided into sections, and items in each section

are numbered consecutively. A reference such as theorem 5-1.4 means
theorem 1.4 of chapter 5: this is the fourth numbered item of § 1 in that
chapter. When referring within a chapter the number of the chapter is
pmitted, Exercises are included in this system of numbering. Thus
gxercisg 6-1.8(2) means the second exercise of exercises 1.8, found in
chapter 6.

Reference to entries in the tibliography is made by eiting the author
and year of publication of the work referred to.



1
Computable functions

We begin this chapter with a discussion of the fundamental idea of an
algonithm or efiective procedure. In subsequent sections we describe the
way in which this idea can be made precise using a Kind of idealised
computer; this lays the foundation for 2 mathematical theory of compu-
tability and computable functions.

1. Algorithms, or effective procedures

When taught arithmetic in junior school we all learnt to add and
to multiply two numbers. We were not merely taught that any two
numbers have a sum and a product - we were given methods or rules for
finding sums and products. Such methods ar rules are examples of
algorithms ot effechve procedures. Their implementation tequires no
ingenuity or even intelligence beyond that needed to obey the teacher's
instructions.

More generally, an algorithm or gffective procedure is a mechanical
rule, or automatic method, or programme for performing some mathe-
matical operation. Some more examples of operations for which casy
algorithms can be given are
[1.1)  {a) given n, finding the ath prime number,

{p) differentiating a polynomial,

{c) finding the highest common factor of two numbers {the
Euclidean algorithm),

{d) given two numbers x, v deciding whether x is a multiple of y,

Algorithms can be represented informally as shown in fig. la.
The input is the raw data or object on which the operation is to be
performed (e.g. & polvnomial for (1.1} (5), a pair of numbers for (1.1) (<)
and (4)) and the output is the result of the operation (e.g. for (1.1) (b)), the
derived polynomial, and for (1.1) (d), the answer ves or no). The output is
produced mechanically by the black box - which could be thought of as a
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Fig. 1a.
Input Cutpat

Black box

calculating machine, a computer, or a schoolboy correctly taught —or
even a very clever dog trained appropriately. The algorithm is the
procedure or method that is carried out by the black box to obtain the
output from the input.

When an algorithm or effective procedure is used to calculate the
values of a numerical function then the function in guestion is described
by phrases such as effectively calewlable, or algonthmically computable, or
effectively computable, or just computable. For instance, the funetions xy,
HCFix, v} =the highest common factor of x and y, and f(a)=the nth
prime number, are computable in this informal sense, as alreal.i}'
indicated. Consider, on the other hand, the following function:

I! if there 1s a run of exactly n consecutive 7s

ain)= in the decimal expansion of w,

|0 otherwise.
Most mathematicians would accept that g is a perfectly lemtimate
function. But is g computable? There /s a mechanical procedure for
generating successive digits in the decimal expansion of =,' so the
following ‘procedure’ for computing g suggests itself.

‘Given n, slart generating the decimal expansion of «, one digit at a
time, and walch for 7s. If at some stage a run of exactly n consecutive 7s
has appeared, then stop the process and put g(n ) = 1. If no such sequence
of 7s eppears put gin)=0."

The problem with this ‘procedure’ is that, if for a particular » there is no
sequence of exactly n consecutive 7s, then there is no stage in the process
where we can stop and conclude that this is the case. For all we know at
any particular stage, such a sequence of 7s could appear in the part of the
expansion of « that has not yet been examined. Thus the ‘procedure’ will
gn on for ever for inputs # such that gin)=0; so it is not an efective
procedure. (It is conceivable that there is an effective procedure for
computing g based. perhaps, on some theoretical properties of = At the
present time, however, no such procedure is known.)

' This will be estanlished in chapter 3 {example 7.1033).

& A AE HRILRGEU Pegbsrnys FRadlriifee &

This example pinpoints two [eatures implicit in the idea of an effective
procedure — namely, that such a procedure is carried out in a sequence of
stages or steps (each completed in a finite time), and that any output
should emerge after a finite number of steps.

So far we have described informally the idea of an algonthm, or
effective procedure, and the associated notion of computable function,
These ideas must be made precise before they can become the basis for a
mathematical theory of computability - and ron-computability.

We shall make our definitions in terms of a simple ‘idealised computer’
that operatas programs. Clearly, the procedures that can be carried out by
areal computer are examples of effective procedures. Any particular real
computer, however, is limited both in the size of the numbers that it can
receive as input, and in the amount of working space available; it is in
these respects that our ‘computer’ will be idealised in accordance with the
informal 1dea of an zlgorithm. The programs for our machine will be
finite, and we will require that a completed compuration takes onlyv a
finite number of steps. [nputs and outputs will be restricted to natural
numbers; this is not a significant restriction, since operations involving
other kinds of ohject can he coded as operations on natural numbers. (We
discuss this more fully in § 5.)

rd

The unlimited register machine
Our mathematical idezbsation of a computer s called an
unlimited register machine (URM); it is a slight variation of a machine
first conceived by Shepherdson & Sturgis [1963]. In this section we
describe the URM and how it works; we begin to explore whatitcandoin
83

The URM has an infinite number of registers labelled By, Ra, Rs, .. .,
each of which at any moment of time contains a natural number; we
denote the number contained in B, by r,. This can be represented as
follows

Ri Rz Ry Ry Rs Ry Ry

Fﬂ r F3 T4 Ts Fe rr

The contents of the registers may be altered by the URM in response to
certain instructions that it can recognise. These instructions correspend to
very simple operations used in performing calculations with numbers. A
finite list of instructions constitutes a program. The instructions are of four
kinds, as follows.
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Zerp instructions For cach a=1,2,3,... there is a zero instruction
Zin). The response of the URM to the instruction Zix ) is to change the
contents of R, to (0, leaving all other registers unaltered.

Example Suppose that the URM is in the following
confipuration
R] Rg Rq. R.j R-_q R.E,'

s 16 lsl23|7]o0

and obeys the zero instruction Z(3). Then the resulting configuration is

(") ] ] |23 7 0

The response of the URM 10 a zero instruction Zia | is denoted by U= R..
or £, =0 (this is read r, becomes 0),

Successor imstructions For each r=1,2,3,... Lhere 18 2 Successor
instruction Sin), The response of the URM to the instruction S(a) is to
increase the number contained in R, by 1, leaving all other registers
unaltered.

Example Suppose that the URM is in the configuration (")
above and oheys the successor instruction 5(5). Then the new con-
figuration is

Ri R: R; R: R: R

i @ | 6 D | 231810

The effect of a successor instruction S(r) is denoted by r, +1—+R,, or
rei=ra+ 1 15, becomes ra+1).

Transfer instructions Foreachm=1,2,3,. ..andn=1,2,3,.. .there
1 a transfer instruction Tim, n). The response of the URM to the
instruction T(m, n) is to replace the contents of R, by the number r,,
contained in R,. (i.c. transfer r,, into R, ); all other registers lincluding
R..) are unaltered.

Example Suppose that the URM is in the configuration (**)
above and obevs the transfer instruction T(5,1). Then the resulting

b o L b e b e e SR e b ) et e bk m b " - "

configuration is
B R: R; Ry Rs Ra

8 :aJn 23 |8 n_l.__

The response of the URM to a transfer instruction T{m, a] is denoted by
ro = Ry, OF 1 = 1 (£ becomes rp).

Jump instructions  In the operation of an infoermal algorithm thers may
“e a stage when alternative courses of action are preseribed, depending
on the progress of the operation up to that stage. In other situations it may
he necessary o repeat a given routine several times, The URM is able to
reflect such procedures as these using jump instructions | these will allow
jumps backwards or forwards in the list of instructions. We sheall, for
cxample, be able to use & jump instruction to produce the following
response:

‘If 2 = rg, go to the 10th instruction in the program; etherwise, 2o

on to the next instruction in the program.’

The instruction eliciting this response will be wrnitten 102, 6, 10,

Generally, foreach m=1,2,3....,n=12,53,...andg=1,2.3,...
there is a fump instriction Jm, n, g). The response of the URM to the
instruction Jim. n, g) is as follows. Suppose that this instruction s
encountered in a program P. The contents of R, and R, are compared,
but all registers are left unaltered. Then

if ry = ro. the URM proceeds to the gth instruction of P,
if 7o # ro, the URM proceeds to the next instruction in /7.

If the jump is impossible because P has less than g instructions, then the
URM stops operation,

Zero, successor and transfer instructions are called arithienic instruc-
Lions.

We summarise the response of the URM 1o the four kinds of instruc-
tion in table 1.

Compurations To perform a computation the URM must be provided
with a program P and an mtial confipuranon—ie. a sequence
g+, ds, @3,... of natural numbers i the registers R, RaRa ...
Suppose that P consists of 5 instructions [, I, ..., I,. The URM begins
the computation by obeying I, then I3, f3, and so on uniess a jump
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Table 1

Type of instruction Instruction Response of the URM

ZeTo Zin) Replace r, by 0 (0=R,, or r, =1

Successor Sin) Addltor, (r,+1=R orri=r+
1)

Transfer Tim,n) Replacer, by r,.ir, =R, arr, =r,)

Jump Timm, n, gl If ., = ¥, jump to the gth instruction;

atherwise go on to the next instruc-
ton in the program.

instruction, sav J(m, a, q), is encountered. In this case the URM proceeds
to the instruction prescribed by Jien, n, q) and the current contents of the
registers R, and R,. We illustrate this with an example.

[
-

Example
Consider the following program:

Iv N1, 2.6
I: 812)

I 813

I, I1,2,.6)
= I1,1,2)
fe: T(3,1)

Let us consider the computation by the URM under this program with
initial configuration

R: R: R; Ry R

o[22/ 0 0o

(We are not concerned at the moment about what function this program
actually computes; we wish to illustrate the way in which the URM
operates programs in a purely mechanical fashion withour needing Lo
understand the algorithm that is being carried out.)

We can represent the progress of the computation by writing down the
successive configurations that occur, together with the next instruction to
be obeyed at the completion of each stage.

R, R: Ry R, Rq Mex1 instruction
Initial - | - -
config- | 9 0 ] l 0 l R
uration 1 .
Q9 | 7 0 i | 0 | I (since ry # ral
9 ] s |ololo I
| 9 | 8 | 1 0 0 iy
Lg' 8 1 a | 0 I I_-', {since ry # rg:'
! 9 a 1 0 | 0 I2 (since 1y =ry)

and so on. (We shall continue this computation later.)

We can describe the operation of the URM under a program F=
I, s, . ... I, in general as follows. The URM starts by obeying instruc-
tion I;. At any future stage in the computation, suppose that the URM is
obeying instruction [ Then having done so it proceeds to the next
instruction in the computaiion, defined as follows;

if I, is not a jump instruction, the nexs instruction 18 Iy o4

. . _ . EiRE N

if I, =J(m, n, q) the next insiructon IS.U’
_,  atherwise,

where 7., F, are the current contents of R, and R,

The URM proceeds thus as long as possible: the computation stops
when, and only when, there is no next instruction; i.e. if the URM has just
obeyed instruction I, and the ‘next instruction in the computation’
according to the above definition is [, where ¢ = 5. This can happen in the
following ways:

{i} if k = s (the Jast instruction in P has been obeyed) and [, isan

arithmetic instruction,

(i) if Le=J(m, n,gq), rm=r. and g =3,

(i) if L =J(m, n,q), fm =1, and k =35.
We say then that the computation stops after instruction Iy the final
configuration is the sequence 7y, 2, f3, - . s the contents of the registers at
this stage.
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Let us now continue the computation kegun in example 2.1,

Example 2.1 (continued)
R, R: Ra R, R: Next instruction

rus1nr3...h

[olof1]o]o i
ERE 2 |0]o0 | &
L et
I o 9 2 0 0 l I (since ro=1r3)
Final T
config- | 2 9 | 2 0! o I sTOPR,
uration —

This computation stops as indicated because there is no seventh
instruction n the program.

232, Exeroise
Carry out the computation under the program of example 2.1
with initial configuration 8.4, 2, 0,4, ...

The essence of a program and the progress of computations under it is
often conveniently described informally using a flow diagram. For
example, a flow diagram representing the program of example 2.11s given
in fig. 14, (We have indicated alongside the flow diagram the typical
configuration of the registers at various stages in a computation. ) Note the
convention that tests or questions (corresponding to jump instructions)
are placed in diamond shaped boxes.

The translation of this low diagram into the program of exercise 2.1 1s
almost self-explanatory. Notice that the backwards jump on answer ‘No’
to the second question ‘ri=r;?" is achieved by the fifth instruction
Ji1, 1, 2) which is an unconditional jump: we always have ry =ry. 5o this
instruction causes a jump to [x whenever it is encountered.

When writing & program to perform a given procedure it is often
helpful to write an informal flow diagram as an intermediate step: the
translation of a flow diagram into a program is then usoally routine.

e A TVC WSRHITTIRE-Gd P RediEF FHIEER FREATEC T

Fig. 15 Flow diagram for the program of example 2.1,

START
Typical configuration
R, R; R,
Yes
s ly| =
Mo
rampyt

After k cycles round the loop
in this program:

Mo e
y+k|z—ki
Yes
IMa=p+k:
=R, ‘-—I z+.ﬁ:;+l;
STOF

There are, of course. computations that never stop: for example, no
computation under the simple program 5(1), Il 1. 1] ever stops.
Computation under this program is represented by the flow diagram m
fig. 1¢. The jump instruction invariably causes the URM to return, or loop
back, to the instruction S(1).

There are more sophisticated ways in which a computation may run for
ever, but always this is caused essentially by the above kind of repetition
or looping back in the execution of the program.
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Fig. 1c.
START
ry=r+ 1 |
=]
2.3 Exercise
Show that the computation under the program of example 2.1
with initial configuration 2, 3,0, 0, 0, . .. never stops.

The question of deciding whether a particular computation eventually
stops or not is one to which we will return later.

Some notation will help us now in our discussion. Let 4y, 22, a3, - .. be
an infinite sequence from f and let P be a program; we will write

(i) Play, az,as, ... for the computation under P with initial
configuration @y, 8z, das. ..
iii) Pia,, a2, a3, ... to mean that the computation
Pia., as, as, - - . ) eventuaily stops;
liii} Pla., as, @3,...)7 to mean that the computation
Play, @z, da, . .. ) never stops.

In most initial configurations that we shall consider, all but finitely
many of the a; will be 0. Thus the following notation is useful, Let

@1. da, . .., @, be a finite sequence of natural numbers; we write
{iv) Play, a2, . .., an) for the computation
Blaq, as, ool 000000000
Hence
(v} Plai, @z -..,d,), meansthat Pla;, az, ..., 2, 0,0,0, ... Ji:

(vi) Play, @z, ...,a,)t meansthat Play, @z, ..., 2, 0,0.0,... it
Often a computation that stops is said to converge, and one that never
stops is said to diverge.

s URM-computiable functions

Suppose that fi¢ a function from K" to f (n = 1); what does it
mean to say that f is computable by the URM? It is natural to think in
terms of computing a value fla., ..., a,) by means of a program P on
initial configuration @i, a3, ...,4.,0.0,.... That is, we consider
computations of the form P{a;, as,...,a,). If any such computation
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stops, we need to have a single number that we can regard as the output or
result of the computation; we make the convention that this is the number
r, finally contained in R;. The final contents of the other registers can be
regarded as rough work or jottings, that can be ignored onee we have the
desired resultin R,.

Since a computation Play, ..., d,) may nol stop, we can allow our
definition of computability to apply to functions f from MW" to M whose
domain may not be all of &"; i.e. partial functions. We shall require that
the relevant computations stop (and give the correct result!) precisely for
inputs from the domain of f. Thus we make the following definitions.

3l Defininons
Let f be a partial function from 4" to M.

{a) Suppose that P is a program, and let @, az, .. ., @, be™.

i} The computation Pla;. az,...,a.) concerges o b if
Play. as, . ...a,)} and in the final configuration b is in R,. We
write this Play, ..., & b

{iit P URM-computes [ if, for every ai.....8. 2
Piay.....a. ) ls if and only if (ay,....a,)sDom(f) and
fia, . ... a,)=b. (Inparticular, this means that P(a,, ..., @, i if
and only if {a:,. .., a.) £ Domif}.)

{b) The function f is URM-computable if there is a program that
URM-computes f.

The class of URM-computable functions is denoted by €, and n-ary
URM -computable functions by %.. From now on we will use the term
computable to mean URM-computable, except in chapter 3 where other
notions of computability are discussed.

We now consider some easy examples of computable functions.

32 Examples
{a) x+y.

We obtain x+y by adding 1 to x (using the successor instruction) ¥
times. A program lo compute ¥ + v must begin on initial configuration
% %0,0,0,...; our program will keep adding 1 to 7, using R; as a
counter to keep a record of how many times r, is thus increased. A typical
configuration during the computation is

R, R: Ri R: Rs

e T
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The program will be designed to stop when k =y, leaving x +y in B as
required.
The procedure we wish to embodvin our program is represented by the
flow diagram in fig. 1d. A program thal achieves this is the following:
I M3, 2, 51 ~——
I S(1) :
. Si3) }
AR (6 05 B8 el
(The dotted arrow, which is not part of the program, i5 to indicate to the
reader that the final instruction has the effect of always jumping back to
the first instruction.) Note that the sTOF has been achieved by a jump
instruction to ‘I=" which does not exist, Thus, x + v is computable.

Fig. 1d. Flow diagram for addition (example 3.2(a)).
START

ATOP

kg + ]
fre=r+ 1)

=1 ifx>0,

Q ifx=10.

(Since we are restricting ourselves to functions from fd to %, this is the best
approximation to the function x —1.]

We will write a program embodying the following procedure. Given
initial configuration x, 0, 0,0, ..., first check whether x =1 if so. stop:
otherwise, run two counters, containing k and & + 1, starting with k =0.
A typical configuration during 2 computation will be

R. R: R':; R.|

(5) x,—-1=[

x k(k+1[ 0

A EE. T TR R PR T R P R ey

Check whether x = & + 1;if so, the required result is & ; otherwisc increase
both counters by 1, and check again.

A fiow diagram representing this procedure is given in fig. le. A
program that carries out this procedure is the following:

I 1(1,4,9

I, S(3)

T SHEERCTY
I, Si2) :I
1: S(3) !
LR s==
L T2 1)

Thus the function x =1 is compulable.

Fig. 1e. Flow diagram for x =1 {esample 3.2{4]).

START Typical confipuration
H, R, R:
x| 0|0
Wes
(k=10
rat=1 101

v

# STOF

+ ryi=ry+ 1
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i, il x 1s even,

() ()=
e flx [undﬂﬁned if v odd,

In this example, Dom(f)=E (the e¢ven natural numbers) so we must
ensure that our program does not stop on odd inputs.

A procedure for computing flx) is as follows. Run two counters,
containing & and 2k for k=0, 1, 2,3, ... for successive values of k,
check whether x = 2k ; if so, the answer is k; otherwise increase k by one,
and repeat. If x is odd, this procedure will clearly continue for ever.

The typical configuration will be

R, R: R;y R,
x | 2k | k 0

with & = O initially. A flow diagram for the above process is given in fig. 1f.

Fig. 1. Flow diagram for example 3.2(c )},

START
Yes k=H.
. e ST
=R}
Py
" ki=k+1
'lr}:‘=;_~ F I.'
2ki=2k+1
i [ra=r+2)
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A program that executes it is

4 J1,2,8)
. S(3)

1. S(2)

I, S(2)

Is Jil.1,1)
Is T(3,1)

Hence f is computable.
Note, The programs in these examples are in no sense the only programs
that will eompute the functions in question.

Given any program P (i.e. any finite list of instructions), and n =1, by
thinking of the effect of P on imnitial configurations of the form
1.7, .o dn 0, 0, .. we see that there is a unique a-ary function that P
computes, denoted by f‘;’. From the definition 1t 15 clear that

the unique b such that Play, ..., a.) 18,
J#;-[a.ll-'-!aﬂ.]:{ irP{ah'--!ﬂn]'«L;
undefined, if Pla,,...,a.)].

[n a later chapter we shall consider the problem of determining [ ! for
any given program F.

It is clear that a particular computable function can be computed by
many different programs; for instance, any program can be altered by
adding instructions that have no effect, Less trivially, there mav be
different informal methods for calculating a particular function, and when
formalised as programs these would give different programs for the same
function. In terms of the notation we have introduced, we can have
different programs P, and P, with 7% = £, for some (or all) n. Later we
shall consider the problem of deciding whether or not two programs
compute the same functions.

3.3 Exercises
1. Show thar the following functions are computable by devising
programs that will compute them,

o ﬂ.xl_{n if x =0,
WENT L #x#0;
(b) flx)=35:

, 0 ifx=y,
o) fy={, =

\€) flx, y) 1 ifes#y:
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0 ifx=y
@ fean={; groo
= {j’x ifxisa multiplilz of 3,
undefined otherwise,

(fy fix}=[2x/3]. ([z] denotes the greatest integer =z ).
2. Let P be the program in example 2.1. What is f'?
3. Suppose that P isa program without any jump instructions. Show

that there is a number m such that either

V) =m. for all x,

or
fﬂ"{x}=x +m, forallx.

4. Show that for each transfer instruction T(m, n) there is a pro-
gram without any transfer instructions that has exactly the same
effect as Tim,n) on anv confipuration of the URM. [Thus
transfer instructions are really redundant in the formulation of
our URM; it is nevertheless natural and convenient to have
transfer as a basic facility of the URM.)

4. Decidable predicates and problems

I[n mathematics a common task is 10 decide whether numbers
possess a given property. For instance, the task described in (1.1) (d) is to
decide, given numbers x, y, whether they have the property that x s a
multiple of y. An algorithm for this operation would be an effective
procedure that on inputs x, y gives output Yes or No. If we adopt the
convention that 1 means Yes, and 0 means No, then the operation
amounts to calculation of the function

. [1 if x is a multiple of v,
0 if x is not a multiple of v,
Thus we can say that the property or predicate ‘x is a multiple of v' is
algorithmically or effectively decidable, or just decidable if this function f
is computable.

Generally, suppose that Mix,, xa,...,%,) is an n-ary predicate of
natural numbers. The characteristic function cylx) (setting x=
{x1:...,3:)) 18 given hy
1 if M(x)holds,

o {IJ=[
o 0 if M{x) doesn't hold.

4.1 Definition
The predicate Mx) is decidable if the [unction car 15 compu-
table; M ix) is undecidable if M(x) is not decidable,

4.2 Examples
The following predicates are decidable:
(a) *x #y": the function f of exercise 3.3 (1¢) is the characteristic
function of this predicate.
(p) ‘x=10" the characteristic function is given by

11 ifx=0,
BO={y i1y 40,
The following simple program computes g:
J(1,2.3)
Jii, 1,4}
5(2)
Ti2, 1)

{c) *x is a muliple of y': it is possible to write a program for the
characteristic function, but this would be somewhat lengthy and
complicated. A simpler demonstration that this predicate 15
decidable will emerge from the next chapter, where techniques
for generating more complex computable functions are
developed.

Mote that when discussing decidability (or undecidability} we are
always concernad with the computability (or non-computability) of tetal
functions.

In the context of decidability, properties or predicates are sometimes
described as problems. Thus we might say that the problem ‘x =y’ is
decidable. In chapter & we will study undecidable problems.

43 Exercise
Show that the following predicates are decidable.

(@) 'z,
(&) *x#3.°
{¢) ‘x is even’.
5. Computability on other domains

Since the URM handles only natural numbers, our definition of
computability and decidability applies only to functions and predicates
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of natural numbers. These notions are easily extended to other kinds of

object (e.g. integers, polynomials, matrices, etc.) by means of coding, as
follows.

A coding of a domain D of objects is an explicit and effective injection
a: D)=k, We say that an object d € D is coded by the natural number
ald). Suppose now that f is a function from D to D; then [ is naturally
colled by the function f* from W to K that maps the code of an object
d € Dom(f} to the code of f(). Explicitly we have

fr=asfou™,
Now we may extend the definition of URM—ccrmpulahiIity to D by saying
that f is computable it f* 18 a compurtable function of natural numbers.

5.1 Example
Consider the domain Z. An cxplicit coding is given by the
function o where
n) { 2n if n=0,
o =
=2n-1 ifp <0,
Then & is given by
im if i is even,
~3im+1) ifm is odd.

b l“.”rl‘l,'l = {
Consider now the function x —1 on Z;if we call this function f. then
f7 M- % s given by
1 if x =01ie x=ai0),
(#)=4x-2 ifx>0and xiseven lie.x=aln), n=0),
].r +2 ifxisodd. lie.x=ain), <0,

Itis a routine exercise to write a program that computes /*; hence x —1 is
# computable lunction on Z,

The definitions of computable n-ary function on a domain I and

decidable predicate on D are obtained by the obvious extension of the
above idea.

5:2 Exercives
L. Show that the function 2x on 2 is computable,
2. Show that the predicate ‘x = (' is a decidable predicate on 7.

2
Generating computable
functions

In this chapter we shall see that various methods of comhining compu-
table functions give rise to other computable functions. This wﬂll enable
us 1o show quite rapidly that many commonly occurring functions are
computable, without writing 2 program each time — a task that would bhe
rather laborious and tedious.

1 The basic functions

First we note that some particularly simple functions are
computable: from these basic functions (defined in lemma 1.1 below) we
shall then build more complicated computable functions using the tech-
miques developed in subsequent sections.

1.1. Lemma
The follawing basic funciions are computable:
ta) the zero function D(0(x) =0 for all x);
\ ib) the successor function x +1; .
(c) foreack n=1and 1=1i=n, the projection function U gizen
by Ub (X, X200 v Tn) =5 ]
FProof., These [unctions correspond to the arithmetic instructions for
the URM. Specifically, programs are as follows:
{a) 0: program Zi(1);
(8) x+1: program 5(1};
(e) UF: program T{i, 1). O

2. Joining programs together

In each of $33-5 below we need to write programs that
incorporate other programs as subprograms ot subroutines. In this se ction
we deal with some technical matters so as to make the program writing of
later sections as straightforward as possible. -
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A simple example of program building is when we have programs P
and ¢}, and we wish to write a program for the composite procedure: first
do P, and then do Q. Our instinet is to simply write down the instructions
in £ followed by the instructions in Q. But there are two technical poinls
Lo consider.,

Suppose that P=1,, I5,.. ., I. A computation under P is completed
when the ‘next instruction for the computation’ is I, for some o > 5: we
then require the camputzation under our composite program to proceed
to the first instruction of @, This will happen automaticallyif o = 5 + 1, but
not atherwise. Thus for building compasite programs we must confine our
attention to programs that invariably stop because the next instruction is
L, 1. Such programs are said to be in standard form. Clearly it is only jump
instructions that can cause a program to stop in non-standard fashion.
Thus we have the following definition.

2.1 Definition
A program P=1,I,,..., I is in standard form if, for every
jump instruction Jm, n, ) in P we have g =5+ 1,

Examples. In examples 1-3.2 the programs for (a) and (¢) are in
standard form, whereas the program in (5) is not.

Insisting on standard form if necessary is no restriction, as we now see.

2.3, Lemma

For any program P there is a program P* in standard form such
that any computation under P* is identical to the corresponding compu-
tation under P, except possibly in the manner of stopping. In particular, for
GAY 81y ...y b,

Play,...,a,)lbif and onlyv if Pia,, ..., 0,05,

Lk

and hence {2’ = fe far every n =10,
Proaf. Suppose that P=1y, [5,....[ . To obtain P* from P simply

change the jump instructions so that all jump stops occur because the
jump is to 1, ... Explicitly, put P*=1%, 1§, ..., IT where

if Ii is not & jump instruction, then I =1

. I iflg=s+1
[EI =J[ 5 fdg }'rih I*=[‘ T i
£ i OIS R Jim,n,a+1) ifg=s~+1.

Then clearly P¥ is as required. [
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Let us assume now that the programs P and € are in standard form.
The sccond problem when joining P and  concerns the jump instrue-
tions in (2. A jump J(n, 7, §) occurring in @ commands 2 jump to the gth
instruction of O (if r,, = r.). But the gth instruction of Q will bgcome.the
5 + gth instruction in the composite program; thus each jump Hm, 1, g} in
@ must be modified to become Jim. n, 5 + ¢) in the composite program if
the sense is to be preserved.

Now without any further worry we can define the joiy or cancatenaltion
of two programs in standard form:

2.3, Definition
Let P and O be programs of lengths s, 7 respectively, in standard

; F 2
form. The join or concatenation of P and Q. wrnitten PQ or _, is the

)
program I, 0s .. 0. l:... L, where P=I,...,1, and the
instructions I,_1,..., L4 are the instructions of @ with each jump

Jim. n, g) replaced by I{m, n, £ +4q).

With this definition it is clear that the effect of PQ is as desited: any
computation under P is identical to the corresponding computation
under P followed by the computation under Q whose initial configuration
is the final configuration from the computation under F.

There are two further considerations before we can proceed to the
major tasks of this chaptar. Suppose that we wish to compose a program
€ having a given program P as a subroutine. To write @ it is often
important to be able to find some registers that are unaffected by
compulations undar P. This can be done as follows,

Since P is finite, there 15 a smallest number o such that none of the
registers R, for ¢ = u is mentioned in P; i.e. if Z (), or 8(a), or Tim, n},
or Jim, n, q) is an instruction in P, then m. n=u. Clearly, during any
computation under P, the contents of R, for ¢ = u remain unaltered, and
have no effect on the values of ry, ..., r,. Thus when writing our new
program O the registers R, for ¢ > u can be used, for example, to store
information without affecting any computation under the subroutine F.
We denote the number u by p( P}

Finally, we introduce some notation that will greatly simplify the main
preofs of this chapter. Suppose that P is a program in standard form
designed to compute a function f(xy, ..., x,). Often when using F as a



subroutine in a larger program the inputs x,. ... «x, for which
flxi ... %) 05 desired may be held in registers Ry, ..o Ry, rather than
}} & A R, as the program P requires; further, the output P o WO, .

may be required for future purposes to be in some register R, rather than
the conventional R,: and finally the working registers Ry, ..., R, for P
may contain all kinds of unwanted information. We can modify P to take
account of all of these points as follows.

We write P[1,, ..., [, =] for the program in fig. 2a that translates the
Alow diagram alongside. The program P[i.,. .., [, =] has the effect of
computing f(r,, ..., r,_) and placing the result in R, Moreover, the only
registers affected by this program are (at most) Ry, Rz, ..., R,.» and R,
(We have assumed in defining P[i,,....[, ={] that Ripuva Ry are
distinet from R,,..., R,; this will be the case in all our uses of this
notation. The reader should be able to modify the definition for situations
where this is not the case.)

Fig. 2a. Flow diagram for P(i,. i, ~1].

START

Transfer x [rom .T“IIZ 2
;e Ry ot Ry R T[!: \
- ﬂl".’l
¥
II' Zin+1)
Clear R, 0 Ry (II !
s Zip(Py)
fix)= R, {usingP) f
r
gy H‘ Ti1. 0
v
1ap
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3 Substitation

A common way of manufacturing new functions from old is to
substitute funetions into other functions, otherwise known as composi-
tion of functions. In the following theorem we show that when this
process is applied to computable functions, the resulting functions are
also computable. In short, we sav that € is closed under the operation of
substitution.

1l Theorem
Suppose that fly, ..., v and glx), . .., gelx) are computable

funcrions, where x =\x1, ..., x.) Then the funciton hix) given by

hix)=flgix), ..., g&ix))

ts compuiable.

[Nare, Aix) is defined if and only if gi(x), . .., guix) are all defined and
(grxl o elxsDom(f); vhus, if f and g, ..., 8 are all ol
functions, then h s total)

Progf. Suppose that F, (7. ..., (7; are programs in standard form
which compute f, g1,..., 2, respectively. We will write a program H
that ¢embodies the following natural procedure for computing h. "Given
x, use the programs &y, ..., W compule in  succession
gyix), g2lk), ..., gelx), making & note of these values as they are
obtained. Then use the program F to compute flg:(x), .. .. gu(x}).’

We must take a little care 1o avoid losing information needed at later
stages in the procedure, namely r and those values gix) already
obtained. Pulting m = maxia, k, p(F ), plG ). ..., ptGy)), we shall begin
by storing x in Rpcth .o .o Ropn: the registers Rusnsns ooy Bmopsn will
be used to store the values g;{x) as they are computed fort=1,2,..., k
These tegisters are completely ignored by computations under
F, G, ..., (Fe. A typical configuration during computation under H will
be

Storage registers

-,

Rm'n Rm—n-ﬂ Rm—n+2 el

RI A Rm . Rm*—L i R”""-""'J.

| x gilx) | galxd)| ...l mix) |0 | O

An informal flow diagram for computing k is given in fig, 2b, This 1s
gasily translated into the following program H that computes k.
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Til. m+1)

Tin, m+n)

G m+l,m+2, ..., m+a+m+n+l] (Recall the meaning
: of this notation from
§2.

Gem+1,m+2,. . m+n->m+n~-k]

Flm=n+1,... ,m+un+k=1]

Fig. 24 Subsoimution (theorem 310

START

Store xin Boyioeoon Bgen

¥

1L S il LV

#

hi

gelx) =R

m+m=K

r

flzilel, g iell=R,

l

STOop

= wdE TR EECATE =&

Clearly a computation Hix) will stop if and only if 2ach computation
:(x) stops (1=i=Fk) and the computation Figix), ..., glx)) stops,
which is exactly as required. [

Mew functions can be obtained from any given function by rearranging
or identifying 1ts variables, or by adding new dummy variables: for
instance, from & funetion vy, v2) we can obtain

iyl X =fixz, x1) iTearrangement),
falxi=fix, x} (identification),

italxy, X3, x3)=Fflxz, x2) (adding dummy variables).

The following application of theorem 3.1 shows that any of these opera-
uens (or & combination of them) transforms computable functions into
caomputable functions,

3.2. Theorem

Suppose that flyy, ..., Vil 15 a computable function and that
Xipo Xige o oo o Xy §5 @ Sequence of k of the variables x1, . . ., x, { possibly with
repefiiions ). Then the funcnon h given by

fixe oo ) =Fflxi, .00 x,)
is compurabie.
Proaf, Writing x = (x4, ..., xa) we have that

hix)=fUN (), ULix), ..., Ulix))

which i1s computable, by Lemma 1.1(¢) and theorem 3.1. O

Using this result we can see that theorem 3.1 also holds when the
functions g, . . ., g« substituted into { are not necessarily functions of all
of the variables 14, ..., &, as in the following example.

3.3 Example

The function fixy, x2, x1) = 1 + ¥2+ x3 15 computahle ; this can be
deduced from the fact that x +y is computable (example 1-3.2(a)), by
substituting x +x: for x, and x4 for v in x+y.
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Substitution combined with the principle described in the next sectuon
gives a powerful method of generating computable functions.

34 Exercises

1. Without writing any programs, show that for every m =R the
following functions are computable:
(@) m (recall that m{x)=m, for all x},
(B oy,

2. Suppose that fix, v} is computable, and m R, Show that the
function
hix}=flx, m)
1s computable.

3. Suppose that g(x) is a total computable function. Show that the
predicate M (x, v) given by
Mix, y}="glx)=y
is decidable.

d. Recursion
Recursion is a method of defining a function by specifving each of
its values in terms of previously defined values, and possibly using other
already defined functions.
To be precise, suppose that flx) and gix, y, z) are functions (not
necessarily total or computable), Consider the following “definition’ of a
new function hix, v):

4.1y (i) kix, Q) =f(x),
i) hix,y+1)=glx, v. ilx, v)).

At first sight this may seem a little dubious as a definition, for in the
second ling it appears that & 1s being defined in terms of itself - a circular
definition! However, with a little thought we can convince ourselves that
this is a valid definition: to find the value of k(x, 3) for instance, first find
filx, 0} using {4.1)(i); then, knowing ki (x, ), use (4. 1)(ii) to obtain A(x, 1);
similarly, obtain fi(x, 2}, and finally #1(x, 3) by Further applications of
(4. 1){ii). Thus, circularity is avoided by thinking of the values of it(x, v} as
being defined one al a tme, always in terms of a value already obtained.

A function k defined thus is said to be defined by recursion from the
functions [ and g; the equations 4.1 are known as recursion equations.
Unless both F and g are total, then & as defined by (4.1) may not be total;
the domain of it will satisfy the conditions

ix. 01 = Domih) iff x £ Domi f),
{x. vy =1 eDomin) iff (x, vle Dom{h)
and ix, v, hix, v]ieDomig).

Let us summarise the above discussion in a theorem, whose proof we

Omit.

4.2, Theorem

Let x=1{%1,...,%.), and suppase that fix) and glx, v, z) arc
functions; then there is a unigue function Alx, v) satisfying the recursion
equarions

hix, 0)=fix),

iy, v+ 1}-= gix, ¥, hix, y).
Nore. When n =0 (ie. the parameters ¥ do not appear} the recursion
equations take the form

(D)= a,

Ay = 1) =gly, hiy}l

where a = [,

4.3. Exampies

(@) Addition: for any x, v we have

x+l=ux,

i+l =(x+y)+1,
Thus addition (i.e. the function hix, y]=x+y) is defined by recursion
from the functions flx)=x and gix, v, 2=z +1.

(b} y!: with the convention that ! = 1, we have that

ar=1,

fyt1)l=pliy+1L
Thus the function y! is defined by recursion from 1 and the function
gly.z)=z{y+1).

There are forms of definition by recursion that are more general than
the one we have discussed; we shall encounter an example of thisin § 5,
and a fuller discussion of this topic 1s included in chapter 10. In contexts
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where general kinds of recursion are being considered, the particularly
simple kind of definition given by (4.1] is called primitive recursion.

Many commonly occurring functions have easy definitions by (primi-
tive) recursion, so for establishing computability the next theorem is
extremely useful. Briefly, 1t shows that % is clesed under definition by
Tecursion.

4.4. Theorem

Suppose thar fix) and glx, v, 2) are compurable functions, where
X=ixq,...,. X0 then the funcion hix.v) obtained from [ and g hy
recursion {5 computable,

Proaf. Let F and G be programs in standard form which compute the
functions flx ) and gix, y, ). We will devise a program H for the function
kix, v) given by the recursion equations 4.1 Given an initial configura-
ton xi,..., e w L 0. .. H will first compute h(x, U0} (using F):
then, if y#£0, H will use & to compute successively hix, 1),
hix,2),..., hix, v), and then stop.

Let m=max{n+2, p(F), p{G)); we begin by storing x.y in
Rty Riisrnond the nexttwo registers will be used to store the current
value of the numbers & and hix, &) for k=0.1,2, ..., y. Writing r for
m +n, a typical configuration during the procedure will thus be

Storage registers

L

R| - H._.n ‘-Rm.,.| _ R_— R_--H R.-1,: R.’-]‘

*) L__. x | ¥ ko ohix k)

with & =1} imitially.
Aninformal flow diagram for the procedure is given in fig. 2¢. This flow
diagram translates easily into the following program H that computes A :
T, m+1)

Tn+1l,m+n+1)
FIL2,....0>14+3]

I Ja+2,t+1, p)
Glm+1,...m+ni4+2,1+351+3]
Sr+2)

Ji1, 1, q)
L. "Tle+3; 13

Hence h is computable. 71

AL = o T

Fig. 2c. Recursion (theorem 4.4).

START

l

Store royinB ... B { k=0 initizlly]

Flail = hie D) =R,

(AL this stage the
configuration 1s [«))

\ hix, k=K,
\_ (Fea—=R,]

gle i hix kN =R, l

[=hix. E+ 1)

5Tor

We now proceed to use theorems 3.1 and 4.4 to compile a collection of
computable functions. The collection is potentially infinite, so our choice
is influenced by (i) the needs of subsequent development of our theory,
and (ii) the desire to give credence to the thesis that all functions that we
would regard as computable in the informal sense are indeed URM-
computable. For reasons which will become apparent later we shall
include some functions such as ¥ + v and x = 1 for which we have already
writlen programs.

We shall use repeatedly the fact that,by theorem 3.2, in a definition by
recursion such as (4.1}, the computable functions f and g need not
be functions of all of the named variables for the function & to be
computable.
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4.5, Theorem
The following functions are compiitable. (Proofs are given as the
functions are hsted.)
(a) x+v Proof. Example 4.3{a) gives a definition by recursion
from the computable fonctions x and z +1.
() xy Proof. x0=10,
riv+1li=xy+ux,
is a definition by recursion from the computable
functions Wx) and = + x.
) x* Proof. x"=1,
x*"'=x"x: by recursion and (b},
(dlx=1 Proof 0=1=0,
(x+1}=1=ux; by recursion,
r—y ifx=vy,
0 atherwise.
Proof. x=0=x,
x={y+11=(x=y)=1; by recursion and {d).
- 0 ifx=1, ) -
(f) sgix) ={ S icf. exercises 1-3.3(1a))
1 ifx=0.
Praof. sgly=0,
sgix+1)=1; by recursion.
P o U (o 1 S
& SE[I"_{D if x %0,

(e) x+y= (cut-off subtraction)

[cf. example 1-4.2{%])

Proof. sgixi=1-sgix); by substitution, (¢) and ( f).

(hy|x =¥ Proof |x—y|=(x—=y)+{y—x): by substitution,
(a)and (e,
(i x! FProgf. Example 4.3(5) gives a definition by recursion
from computahle functions.
(1) minix, y)=mintmum of x and .
Proof. min(x, v)=x=(x=y); by substitution.
(k) maxix, y) = maximum of x and y.
Proaf. maxix, vl=x+(v=1x); by substitution,
i} rmix, v) = remainder when v is divided by x (ro obtain a rotal
function, we adopt the convention tmil, y) =y,
Proof. We have
mix, y+ 1y= l i sl J:.frm[x’ JI':H_ .
] ifrmlx, y)+1=1x
This gives the following definition by recursion:
rmix, 0} =0,
rmix, y +1)={rmix, v)+ 1) sgl x —(rmix, ¥) + 1)1

e L Y W T

The second equalion can be written
rmix, y+1i=glx, rmix, ¥))
where glx.zi=(z+1)sgllx—lz+1)); and g is
computahle by several applications of substitution,
Hence rmix, y) 15 computable.
(m) qlix, v) = quotient when y is divided by x (to abtain a total
function we define qt(D, y) =05
Proof. Since
ity 3= {qr?x, }*].|+ 1 Efrml.x. yi+1l=x,
qtix. vl if rmix, y)+1+#1x,
we have the following definition by recursion from
computable functions:
qtix, Gh=10,
glix, v + 1i=qtix, y)+580|x —irmix, y)+ 11}
) _ 1 fxy (x divides v},
(n) dwi.z,_y_l=~l o
: 0 fxry.
| We adapt the conventton that 0 0 bur 08 y 1if v = 0.) Hence
x| v is decidable (recall defimtion 1-4.1).
Proaf. divix, y)=3sgirmix, v)), computable by substi-
tution. [

The following are useful corollaries mvolving decidable predicates.

4.6. Corallary (Definition by cases)
Suppose that fi(x). . ... (x) are toral camputable tunctions, and
Miix), ..., M.lx) are decidable predicates, such thar for every x exactly
one af My{x), ..., Mulx) holds. Then the function glx) given by
-JI'.._ lx) j_lf l“‘: [I:‘I hﬂ!d.\',
. falx)  if Malx) holds,
pley=12E) 0 ":E
| felx) 1f Miix) holds,
ir computabie.
Proof. glx)=ca|x)filx)+. .. +cp (2)filx), computable by substitu-
tion using addition and multiplication. ]

4.7, Corollary (Algebra of decidabality)

Suppose that M(x) and Q(x) are decidable predicares; then the
following are also decidable.

{a) ‘not Mix)



h) ‘Mix) and OQ(x)'
ic) ‘Mix) or Qix)
Proof. The characteristic functions of these predicates are as follows:

(al ‘nol Mix)': 1=calx),
() *Mix) and Qix): carix) coix),
(c) ‘Mx)or Qix)": maxica (x), cglx)) (where we take ‘or' in the
inclusive sense).

Each of the functions on the right is computable provided c., and cg are,

by substitution in functions from theorem 4.5. [0

Recursion can be used to establish the computability of functions
obtained by other function building techniques, which we now describe.
First, we introduce some notation,

Suppose that fix, z) is any function; the bounded sum ¥, flx, z) and
the bounded product [1..., f(x, z) are the functions of x, y given by the
following recursion equations.

[ E. fx, z)=0,
@y 8
T Y fiez) =T fixz)+fixy),

(LT | :

( n f[x1 :}: 1,

| z=0

(4.9) , .
I flx, 3}=l 11 fix. z]jl - Flx, v

|
l._:--':-r--1 ey

4,10,  Theorem
Suppose that fix, z) s a total computable funcnion; then the
functions 2. flx, z) and J]..., fix, 2] are computable.
Proaf. The equations 4.8 and 4.9 are definitions by recursion from
computable functions, [

It is easily seen that if the bound on z in a bounded sum or product is

given by any computable function, the result is still computable, as
follows,

411,  Corollary
Suppose that fix, 2| and k(x, w} are total campuitable funcrions;

then so are the functions Y . Flx 2) and ], cpinw X, 2) (Both
functions of x, w,

Proof. By substitution of k(x, w) for y in the boundedsum } , . fix. 7}
and the bounded product ||, flx. z).

We now describe another useful function building technique which
yields computable functions, We write

BTyl
for ‘the least z less than v such that . .. ", [n order that this expression be
totally defined, we give it the value ¥y when no such z exsts. Then, for
example, given a function fl(x, z) we can define a new function g by
glx, vi=pz<y(flx.z}=0)

theleast z <y suchthat fix. z) =0, if such a z exists;

¥ if there is ne such 2.

The operator wz<y is called a bounded mimimalisanon aperator, O
bounded p-operaror.

4.12. Thearem
Suppose that fix, y) is a total computable function; ther 50 is the
function pz<y(fix, z)=0)
Proof. Consider the function

hix,e)= [1 sglflx, ud),

[TE-~1 )

which is computable by corollary 4.11. For a given x, y. suppose that
zg=pz<y(flx.z)=0). It is gasy Lo see that

if v =z, then Alx, vi=1;

if zo=v <y then Ailx, v)=0
Thus

zy=the number of vs less than y such that h(x, v) =1,

= ¥ hix, o)

Hence

pz<y{flxr,z)=0) = % [ [1 selflx, ul}).

Uty eI s

and is computable by theorem 4.10. [

As with bounded sums and products, the bound in bounded mini-
malisation can be given by any computable function:
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4.13. Coralilary

If fix, z) and kix, w) are total computable functions, then sa is the
Ffunchion

pr=kie, wiifix, z)=0).

Proof. By substitution of k(x, w) for y in the computable function
pr<y(flx,z)=0). [

Theorems 4.10 and 4.12 give us the following applications involving
decidable predicates.

4.14.  Corollary

Suppose that Rix, y) 15 a decidable predicate: then
(a) the function flx, vi=uz <y R{x, z) is compurabie.
(b)) the fallowing predicates are decidable:

i) Mi(x, yi=¥z<v R(x, z),

() Mxx, yI=Fz<yRix ).

Proof.
{a) fix,v)=pz <visglcrlx, 2))=0).
(b (i} carlx, v3=]1, -, crix, 2).

(i) Malx, v)=not(¥z<y (not Rix, z)))
which is decidable by (b)(i) and 4.7(2). T
Note. Asin4.11 and 4.13, the bound on = in this corollary could be any
total computable function.

We now use the above techniques to enlarge our collection of parti-
cular computable functions and decidable properties.

4.15.  Theorem

The following functions are compurabie.

ta} Dix)= the number of divisors af x (convention: D(0)=1),

(5) Prix)= Il if x 15 prime,

0 ifx is not prime
(f.e. *x is prime’ is decidable).
le} pe = the xth prime number (as a convention we set po= 1), then
pr=2,p:=3, erc.
the exponent of p, in the prime factorisation of x, for

(@) (x)y= 3% ¥ >0,

0 fx=00ry=0.

S INELC ARy

Proaf.
(o) Dix)=Y o divly, x) (where div is as in theorem 4.5(n]).
J 1 ifDix)=2 (i.e. x =1 and the only divisors of x
(&) Prix)= are 1 and x),
0 otherwise
=sgi[Dx) -2
e pa=0,

Dyt = gz ={p, 1+ 1)z >p, and z is prime),
which is a definition by recursion: the predicate 'z >y and z is
prime’ is decidable, so using corollary 4.14 (and the note follow-
ing) we have a computable function.
(d) (x), = pz=<x(pi ' ~x), which is computable since the pre-
dicate 'p}' " +x' is decidable. Tl

Note. The functien (x), s needed in the following kind of situation. A
sequence § ={dy, @3, @3, ..., 2,) from & can be coded by the single
a,+1  z.+l1 S

number b =pT*" p3¥ ...ph ;then the length & of 5 and the numbers
4, can be recovered effectively from & as follows:

n=pz<bl((b),+1=0),
a=(pr=1forl=i=n.
Alternative ways of coding pairs and sequences are indicated in
exercises 4.16 (2, 3) below.

4.16. Exercises
1. Show that the following functions are computable;

(@) Any polynomial function ap+a;x+. . +ax". where
gy Oty ee s Bn €M,
(6 [+'x).

(¢} LCMix, v)=rthe least common multiple of x and v,

(d) HCF(x, y)=the highest common factor of x and ¥,

() fix)=number of prime divisors of x,

(/1 & {x)=the number of positive integers less than x which are .
relatively prime to x. (Euler's function) (We say that x, y are
relatively prime if HCFix, v)=1.}

2. Let wix, y) =22y +1)—1. Show that = is a computable bijec-
tion from M to R, and that the functions 7. w2 such that
wimuiz), w2lz)) =z for all z are compurable.

3. Suppose fix) is defined by
fidy =1,
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fill=1,
fx=2)=fix)=flx+1].
i flx) s the Fibonaccl sequence.)
Show thar [ is computable, (Hinr: first show that the function
g2ix)=2"3""" is computable, using recursion.)
4. Show that the following problems are decidable:
(@) x is odd,
(k) x is a power of a prime number,
ic) x 1s a perfect cube.
5. Anv number 3 £ & has a unigue expression as
(1) x =Y ;2" withe; =0or 1, all i. Hence, if x =0, there are
unigue expressions for x in the forms
(2) ¥=2%42%+ 42" withO=hy<hs<.. <hand[=1.
and
(3] x=2% et | R, L bt L i
Putting
e(t, x)=a; as 10 the expression (1);
If asin {2), ifx =10,
H.’:J=‘|
‘N otherwise;
Jb.. asini2), ifx=Oandl=i=]

L0 otherwise;

i'a,-_. asin(3), fx=0andl=i=/
ali,x)=-

[II olherwise;
show thazt each of the functions w. [, &, a is computahle. (The
cxpression (3) is a way of regarding x as coding the segquence
[@1, @2y o0 oo r) OF numbers, and will be used in chapter 5.)

L

Minimalisation
In the previous section we have scen that a large collection of
functions can be shown to be computable using the operations of substi-
tution and recursion, and operations derived from these. There is a third
important operation which generates further computable functions,
namely unbounded minimalizaiton, or just minimalisation, which we now
deseribea,

Suppose thal flx, y) is a function (not necessarily total) and we wish to
define a function glx) by

g(x)=the least y such that fix, v} =0,

FoaWIPPilfFeddda idlicidry ¥

in such away that if f is computable then so is g. Twe probiems can anse.
Firsl, for some x there may not be any v such that fiz vi= 0. Second,
assuming that f is computable, consider the [ollowing natural atgoritho
for computing glx), ‘Compute fix, O, fix, L, .. until y 5 found such that
flx. vi="0". This procedurc may not terminate if  is not total, even if such
.a ¥ exists: for instance, if f{x. 0) is undefined but fix, 1) =1

-'[‘hus we are led to the following definition of the mummalisanon
operator w, which yields computable functions from computable
funclions.

5.1, Definition
For any funection fix, ¥)
the least v such that
i1} fix, z1isdefined, allz =y, and

pylfle, yr=0= i fix, v)=10, ilsuch a v exists,

undefined, if there is no such v
@vi ... ) is read ‘the least v such that .. . This operator is sometimes
called simply the w-operatar.

The next theorem shows that % is closed under minimalisation,

S Thearem
Suppose thar flx, v) is computable; then so s the function glx)=
vl flx, p)=10.

Proof, Suppose that x =1xy, ..., x,) and that F 15 a program il stHn-
dard form that computes the function flx, ¥i. Let m = maxin + I, ptF ).
We write a program & that embodies the natural algorithm for g: for
k=0,12..., compute [ix, k) until a value of k i5 found such that
flx. k)=0: this value of & is the required output.

The value of ¥ and the current value of k will be stored in registers
R, .:v. .1 Rusns before computing flx, & ): thus the typical configura-
tion will be

Storage regisiers

R .

R!_ . e Rm R.-rn-l v R.l}l-l-"l:Rll'. ta+l Rm+n-‘-2

’7 x Py 0 I

with &k =0 initially, Note that r.,.-,..z is always U,




el e e e g ) T oy s e i e R e ety b e o OB

A Aow diagram that carries oul the above procedure for g is given in fig.
2d. This translates casily into the following program & [or g:
T{l,m+1)

Tin,m+nl
I Flm+l,m+2,....m+n+l->1]
Hl,m+n+2. q)
Sim+nr+1)
I 1, p)
I, Tlm+a+1,1)

({f; is the first instruction of the subroutine Flm +1.m+2,...»1].) O

Fig. 2d4. Minimalisation (theorem 5.2,

START

l

Stor=x in ‘

{k =10 mutizlly
T "IR-n—n -]

H
/ 'F[I‘ Kl R

ki=k+1

Yes

k=R,

STOF

ad AVEASRAFFEICECENERRELTTE L X

5.3. Carollary
Suppose that R\x, y) 15 a decidable predicate; then the function
glxi=py Rix vyl
o .; the ieast v such that Rix, v) holds,  if there is such a v,
L undefined oTherwise,
is computable
Praaf. gix)=uvigice(x v} =0 -

In view of this corollary, the g-operator is often called a search
nperator. Given a deaidable predicate R(x, v) the function g(x) searches
for a ¥ such that R{x, yi holds, and moreover, finds the least such y if
there is ane.

The g-operator may generate a non-total computable function from a
total computable function; for instance, putting fix, y)=|x—y"|, and
gix)= wy(fix, v} =0}, we have that g is the non-total function

;

v x if x 15 a periect square,
Ri.x]=]

undefined otherwise.

Thus, in a trivial sense, using the g-operator together with substitution
and recursion, we can generate from the basic functions more functions
than can be obtained using only substitution and recursion (since these
operations always vield total functions from total functions). There are
also, however, foral functions for which the use of the u-operator is
essential. Example 5.5 below gives one such function; we present another
example in chapter 5. Thus we see that, in a strong sense, minimalisation,
unlike bounded minimalisation, cannot be defined in terms of substitu-
tion and recursion. It turns out, nevertheless, that most commonly
occurring computable total functions can be built up from the basic
functions using substitution and recursion only: such functions are called
primitive recursive, and are discussed further in chapter 3 § 2. In practice,
of course, we might establish the computability of these functions by what
amounts to a non-essential use of minimalisation, if this makes the task
easier,

54. Exercises

1. Suppose that fix] is a total injective computable function; prove
that f~ ' is computable,
Suppose that pix ) is a polynomial with integer coefficients; show
that the function

[ %]
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fiat=least non-negative integral root of pix)—alach)
i computable ( fla) is undefined if there is no such root).
3. Show that the Function

p [.:.-’y ify#£0andy|x,
X, v)=x
undefined  otherwise,

is computable.

We conclude this chapter with an example of a function that makes
essential use of the u-operator: it also shows how this operator can he
used not only to search for & single number possessing a given property,
but to search for finite sequences or sets of numbers, or other objects
coded by a single number. The function is a modification by Péter of an
cxample due to Ackermann, after whom it is named. It is rather more
complicated than any function we have considered so far,

it Example (The Ackermann function)
The function W(r, ¥} given by the following equations is
computable;

il vl=y+1,
wix+1,0)=ux 1],
wle=1, y+ 1 =ix, dlx—1, v)).

This definition involves a kind of double recursion that is stronger than
the primitive recursion discussed in § 3. To ses, nevertheless, that these
equations do unambiguously define a function, notice that any value
wix, v} (x =0)is defined in terms of ‘earlier’ values w{x,, vi)with x;<x
or xy=x and y, <y. In fact, &(x, y) can be obtained by using only a finite
number of such earlier values: this is easily.established by induction on x
and v. Hence ¢ is computable in the informal sense. For instance, it is easy
to calculate that oi(1, 1)=3 and (2, 1}=5.

To show rigorously that ¢ is computable is quite difficult. We sketch a
proof using the idea of a suitable set of triples S. The essentizl property of
a suitable set § (defined below) is that if (x, v, z) € §, then

(5.6) (i) z=uix, v}
[il} § contains all the earlier triples
(%1 ¥1. Wrlxs, ¥:)) that are needed to calculate ¢ix, y).
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Definition

A finite set of triples § is said to be swirable if the following
conditions are satisfied:

ta) if (0, v,zleSthenz=y+1,

ih) if {x+1,0,2)= 8 then (x, 1, 2] € §,

(c) if(x+1,y+1,z)eSthenthereis w suchthat (x +1, v, )= §

and (x, m. z)ES.
These three conditions correspond to the three clauses in the definition of
& for instance, (@) corresponds to the statement: if z = &(D, y), then
2 =y+1; (¢} corresponds to the statement: if z=d{x+1, v+ 1}, then
there is u such that u=di{x =1, y)and z = ix, K.

The definition of & suitable set § ensures that (5.6) s satisfied.
Moreover, for any particular pair of numbers (m, n) there is a smitable set
S such that (m, n, &im, n)) e 8; for example, let § be the set of triples
ix, v, ¥ix, ¥)) that are used in the calculation of &im, n).

Mow a triple {x, ¥, z) can be coded by the single positive number
4 =2"3"5"; a finite set of positive numbers {u:,. .., tiy | can be coded by
the single number p, P, . . - Do, Hence a finite set of triples can be coded
by a single number v say. Let S, denote the set of triples coded by the
number v. Then we have

ix, v, Z1ES. & paars=divides o,
s0°(x, v, 7)€ 8. isadecidable predicate of x, y. z, v; and if it holds, then x,
v, z < . Hence, using the technigues and functions of earher sections we
can show that the following predicate is decidable:

Rix, y, v)="v is the code number of a suitable set
of triplesand 3z <v ({x, v. 2} 8.}
Thus the function
fix, v)=poRi{x, v, v}
is a computable function that searches for the code of a switable set
containing {(x, v, zJ for some z, Hence
dix, V)= pziix, v, 2)E80.0)

which shows that ¢ is computable.

A more sophisticated proof that 15 computable will be given in
chapter 10 as an application of more advanced theoretical results.

We do not prove here that b cannot be shown to be computable using
substitution and recursion alone, This matter is further discussed in & 3 of
the next chapter.
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Other approaches to
computability: Church’s thesis

Over the past fifty vears there have been many proposals for a precise
mathematical characterisation of the intuitive idea of effective COMmpu-
tabihity, The URM approach is one of the more recent of these, In this
chapter we pause in our investigation of URM-computability itself to
consider two related questions.

1. How do the many different approaches to the characterisation of
computability compare with cach other, and in particular with
URM-computability?

2. How well do these approaches (particularly the URM approach)
characterise the informal idea of effective computability?

The first question will be discussed in §8 1-6: the second will be taken
up in & 7. The reader mterested anly in the technical development of the
theory in this book may omit §§ 3-6; none of the development in later
chapters depends on these sections.

I Other approaches to computability
The following are some of the alternative characterisations that
have been proposed:
@) Gddel-Herbrand-Kieene  (1936).  General recursive
funections defined by means of an eguation caleulus. (Kleene
[1952]. Mendelson [1964].)
(b) Church (1936), A-definable functions. (Church [1936] ar
[1941].) §
(¢} (fodel-Kleene (1936), p-recursive functions and partial
recursive functions (# 2 of this chapter.).
(@) Turing (1936). Functions computable by finite machines
known as Turing machines. (Turing [1936]: § 4 of this chapter.)
iel Posr (1943). Functions defined from canonical deduction
systems. (Post [1943], Minsky [1967]; § 5 of this chapter.)
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(f) Markor (1951). Functions given by certain algorithms over a
finite alphabet, (Markov [1954], Mendelson [1964]: & 5 of this
chapter.)

ig) Shepherdson-Swrgis (1963). URM-computable functions.
{Shepherdson & Sturgis [1963])

There is great diversity among these various approaches: each has its
own rationale for being considered a plausible characterisation of
computability, The remarkable resuolt of investigation by many resear-
chers is the following:

B The Fundamental result

Each af the ahove proposals for a characterisation of the notion af
effective computability gives rise to the same class of functions, the class that
we have denoted €.

Thus we have the simplest possible answer to the first question posed
above. Before discussing the second question, we shall examine briefly
the approaches of Godel-Kleene, Turing. Post and Markov, mentioned
above, and we will sketch some of the proofs of the equivalence of these
with the URM approach. The reader interested to discover full details of
these and other approaches, and proofs of all the equivalences in the
Fundamental result, may consult the references indicated,

2, Partial recursive functions {Godel-Kleene)

58 Defininion

The class & of partial recursive functions_is the smallest class of -
partial functions that contains the basic functions 0, x +1, L7 (lemma
3-1.1) and is closed under the operations of substitution, recursion and
minimalisation. (Equivalently, 31 is the class of partial functions that can
be built up from the basic functions by a finite number of operations of
substitution, recursion or minimalisation. ]

MNate that in the definition of the class #, no restriction is placed on the
use of the g-operator, so that & contains non-total functions. Gidel and
Kleene originally confined their attention to fora! functions; the class of
functions first considered was the class o of w-recursive functions,
defined like 3 above, except that applications of the u-operator are
allowed only if a toral function results. Thus #; is a class of total
functions, and clearly 9%.< #. [n fact, 3, contains all of the total
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functions that are in &, although this is not immediately obvious; see
corollary 2.3 below for a proof. Hence & is a natural extension of Hptoa
class of partial functions.

The term recursive funciion is used nowadays to describe JTecursive
functions: so a recursive function is always total —it is a tetally defined
partial recursive function. The term general recursive function is some-
times used to describe p-recursive functions, although historically, this
was the name Kleene gave to the total functions given by his equation
calculus approach (@) in § 1). It was Kleene who proved the equivalence
of general recursive funclions igiven by the equation calculus) and
p-recursive functions.

We now outline a proof of

2.2, Theorem
R=4."

Proof. From the main results of chapter 2 (lemma 1.1, theorems 3.1,
4.4, 5.2) it follows that # = €.

For the converse, suppose that fix) is a URM-computable function,
computed by aprogram P=1,,.... /. By a step in a computation Plx)we
mean the implementation of one instruction. Consider the following
functions connected with computations under P,

contents of B, zfter r steps in the computation

S Pix}, if Pix] has not already stopped;
clx, th=

the final contents of R, if Pix) has stopped
- after fewer than ¢ steps.

the computation Pix) have been performed,

J number of the next instruction, when ¢ steps of
Hx 1= l if P(x) has not stopped after 1 steps or fewer;

+0 if Pix) has stopped after ! steps or fewer.
Clearly ¢ and j are total functions.
If flx) is defined. then P(x) converges after gxactly #y steps, where
fo= i jix, 1= 0],
and then
fxi=clx, ).
_IL on the other hand, f(x) is not defined, then Pix) diverges. and so f{x, 1)
15 never zero. Thus el j(x, £) = 0) is undefined. Hence, in either case, we
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have
flx)=clx, pr{jlx h=0)).

S0, to show thal f is partial recursive, it is sufficient to show that ¢ and |
are recursive functions, [t is clear that these functions are computable in
the informal sense —we can simply simulate the compuration Pix) for up
to t steps. By a detailed analysis of computations Pix} and utilising many
of the functions obtained in chapter 2, it is not difficult, though rather
tedious, to show that ¢ and j are recursive: in fact, they can be obrtainad
from the basic functions without the use of minimalisation (30 they are
primitive recursive — see § 3 of this chapter). (A detailed proof of rather
more than this will be given in chapter 5 - theorem 1.2 and Appendix).
Hence f is partial recursive. ]

2.3. Corallary
Every toial function in R belongs o Ry,

Proaf. Suppose that fix) is a total function in 3, then § is URM-
compulable by a program P. Let ¢ and / be the functions defined in the
proof of theorem 2.2; as noted there, these can be obtained without any
use of minimalisation, so 1n particular they are in 58,. Further, since [ is
total, Pix) converges for every x, so the function we{ /(x, r}=10)is total and
belongs 1o &, Now

flx)=clx, wtijix, 11=101),

go falso is in ;. O

A predicate M (x) whose characteristic function ¢y is recursive is called
a recursive predicare, In view of theorem 2.2, a recursive predicate is the
same as a decidable predicate.

3. A digression: the primitive recersive functions

This 1s a natural point to mention an important subclass of 2, the
class of primitive rectirsive funciions, although they do not form part of the
main line of thought in this chapter. These functions were referred to 1in
chapter 2 § 3,

1 Defininion
(@) The class PR of primitive recursive funciions 1% the smallest
class of functions that contains the basic functions 0. x +1, U7,
and is closed under the operations of substitution and recursion.
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{b) A primitive recursive predicare is one whose characteristic
function is primitive recursive,

All of the particular computable functions obtained in §§ 1. 3, 4 of
chapter 2 are primitive recursive, since minimalisation was not used
there. We have already noted that the functions ¢ and j used in the proof
of theorem 2.2 are primitive recursive. Further, from theorems 2-4.10
and 2-4.12 we see that 3 is closed under bounded sums and products,
and under bounded minimalisation. Thus the class of primitive recursive
functions is quite extensive.

There are nevertheless recursive functions (or, equivalently, total
computable functions) that are not primitive recursive. Indeed, the
Ackermann function « of example 2-5.5 was given as an instance of such
a function. A detailed proof that the Ackermann function is not primitive
recursive is rather lengthy, and we refer the reader to Péter [1967,
chapter 9] or Mendelson [1964, p. 250, exercise 11]. Essentially one
shows that ¥ grows faster than any given primitive recursive function. (To
see how fast ¢ grows try to calculate a few simple values. )

[n chapter 5 we will be able 1o give an example of 2 total computable
{i.e. recursive) function that we shall prove is not primitive recursive.

Our conclusion is that although the primitive recursive functions form a
natural and very extensive class, they do ror include all computable
functions and thus fall short as a possible characterisation of the informal
notion of computability.

4, Turing-computabilicy

The definition of computability proposed by A, M. Turing [ 1936]
i3 based on an analysis of & human agent’s implementation of an
algorithm, using pen and paper. Turing viewed this as a succession of very
simple acts of the following kinds

{a) writing or erasing a single symbol.

(0] transferring attention from one part of the paper to another.
At each stage the algorithm specifies the action to be performed next.
This depends only on (i) the symbol on the part of the paper currently
being scrutinised by the agent, and (11) the current state (of mind) of the
agent. For the purposes of implementing the algorithm this is assumad to
be determined entirely by the algorithm and the history of the operation
so far. It may incorporate a partial record of what has happened to date,
but it will not reflect the mood or intelligence of the agent, or the state of
his indigestion. Moreover, there are only finitely many distinguishable
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states in which the agent can be, because he is finite. The state of the agent
may, of course, change as a result of the action taken at this stage.
Turing devised finite machines that carry out algorithms conceived in
this way. There is a different machine for 2ach algorithm. We shall briefiy
describe these machines, which have become known as Turing machines.

4.1. Turing machines.

A Turing machine M is a finite device, which parforms opera-
tons on a paper tape. This tape is infinite in both directions, and is divided
into s'mgile squares along its length. (The tape represents the paper used
by # human agent implementing an algorithm; each squuare represents a
portion of the paper capable of being viewed in a given instant, [n any
particular terminating computation under M only a finite part of the tape
will be used, although we may not know in advance how much will be
needed. The tape 12 nevertheless infinite, corresponding to the human
situation where we envisage an unlimited supply of clean paper.)

At any given time ezch square of the tape is either blank or contains a
single svmbol from a fixed finite list of symbals 5, 52, . . ., 5, the alphabet
of AL, We will let B denote a blank, and count it as the symbaol s, belonging
o M’s alphahet.

M has a reading head which at any given time scans or reads a single
sguare of the tape. We can visualise this as shown in fig. 3a.

M is capable of three kinds of simple operation on the tape, namely:

“ig- 2a. A Turing machinc,

Current stale
display window

e

—

Reading head

e

Tape 0ol E 3 53 T 5; |
.

Y
‘.\ Square bemmg scanned




la) erase the symbol in the square being scanned and replace it
by another symbol from the alphabet of Af:

{#) move the reading head one square to the right of that heing
scanned (or, equivalently. move the tape one square to the left):
{c) move the reading head one square to the left of that being
scanned (or, equivalently, move the tape one square to the ri zht).

At any given time M is in one of a fixed finite number of states,
represented by symbols g4, . . ., g.,. During operation the state of M can
change. We may envisage the symbol for the current state as being
displayed in a window on the exterior of M (asin fig. 3a), and think of this
as a partial guide to what has happened to date and what will happen in
the future.

The action that M takes at any instant depends on the current state of
M and on the symbol currently being scanned, This dependence is
described in M s specification which consists of 2 finite set © of quadru-
ples, each of which takes one of the following forms

R
l=ii=m
fr P : }
Sy (ﬂ5f_ E=n
ity

A quadruple gisg; in O specifies the action to be taken by M when it
i5 1n the state g, and scanning the symbol 5, as follows:
1.Operate on the tape thus:
la) if o = 5, erase 4, and write 5, in the square being scanned;
i#) if @ =R, move the reading head one square to the right;
(¢} if & =L, move the reading head one square to the left;
2. Change into state g,.

The specification @ is such thart for EVELY pair g,5; there is at most one
quadruple of the form g,5,28; otherwise there could he ambiguity about
what M does next.

To begin a computation, M must be provided with a tape and posi-
tioned so that a specified square is being scanned; further, M must be set
in some prescribed initial state, Then, if M is in the state ¢; and scans the
symbol 5. it acts as described above provided that there is a quadruple of
the form g5,2q, in Q. This kind of action is then repeated for the new state
and symbol scanned, and so on. M continuss in this way for as long as
possible. The operation of M terminates only when it is in a state a
scanning a symbol 5, such that there is no quadruple of the form gs.a8 in
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) i.e. there is no quadruple in O that specifies what to do next. (It is
possible that this never happens.)

4.3 Example

Let M be a Turing machine whose alphabet consists of the
symbols (), 1, (and a blank of course) and whose possible states are g, and
g2. The specihication of M is

q10Rq,
§110g:
galRga
qz1Rq:
Suppose that M is provided with the tape
!
l ' |
1)1y f1f{1y1f1 | |

scanning the square marked |, and initially in state g,. Itiseasy to see that
A 's action is to work from left to right along the tape, replacing alternate
ls by the symbol (0; Af stops when it scans the first blank square since
there is no quadruple that specifies what it should do. The resulting tape

15 ‘L
lol1/of1]o]1]o]1]0]1

with the square marked | being scanned, and M is in state g,.
On the other hand, if M is provided with 2 tape such that every square
contains the symbol 0 or 1, then the operation of M never stops.

It is clear from this example that a Turing machine M is a device for
effecting an algorithm that operates on tapes. Complete details of the
algorithm are contained in the specification @ of M. Thus, for the
mathematicizn, a Turing machine is defined to be the set of quadruples
that specify it. It is not usual to build physical Turing machines, except for
illustrative purposes.

4.3, Turing-computable functions

In order to regard a Turing machine M as computing a numerical
funection, we must use some convention for representing numbers on a
tape. One way 15 as follows: suppose, for convenience of exposition, that
the symbol 5; of M 's alphabetis 1. We use 1 as a “tally symbol’, and then
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represent 4 number x on the tape as follows (ignore the marker | for the
moment);

-

i1 ... 1|||l;

——x + 1 sguares ———

We use x + 1 tallys to represent x, so as to distinguish O from a blank tape.

The partial function f(x) compured bv M 15 defined as follows. Consider
the computation by M on the above tape, starting in state gy, and initially
scanming the square marked |. Then

lfthf: total number of occurrences of the symbol 1
flx) = ; on the final tape,  if this computation eventually stops;

~undefined otherwise,

Similarly, the n-ary partial function flxi, ..., x.) computed by M is
defined by counting the number of 15 on the final tape when M is started
in state g, and scanning the square marked . on the following tape:

|

= B
]t i o] iRl e

— il - 1—s
SQuUares S(uares

=y, F]—

squares

4.4 Definition

A partial function s Turing-computable if there is a Turing
machine that computes it. The class of all Turing-computable functions is
denoted ¢

4.5, Example

. The function x +y is Turing-computable; the Turing machine
given by the following specification Turing-computes this function.

d:1B8g,
g18Rq:
7:1Bg
q:BRq:
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The tape representation of (x, ¥} contains x +y +2 occurrences of the
symbol 1, so the machine M is designed to erase the first two of these
necurrences starting from the left. The details are casy to check by trying a
few particular values for x, ».

4.6, Exercises

1. What unary function is Turing-computed by the machine in
example 4.27
Devise Turing machines that will Turing-compute the functions
fa)x =118 2x

txab

It is not our purpose here to develop the theory of Turing machines and
Turing-computable functions; the interested reader should consult the
books by Davis [1938] or Minsky [1967] listed in the bibliography.

The fundamental result linking Turing-computability with partial
recursive functions and URM-computability is the following.

4.7. Theorem
H=FF=%.

Proof. There are various ways of establishing this result, which we
indicate in barest cutline.

A direct proof that ¢ = & is somewhat similar to the proof that € = &
(theorem 2.2). The tape configurations and states of a Turing machine
during a computation can be coded by natural numbers, and the opera-
tion of the machine is then represented by recursive functions of these
numbers.

For the converse inclusion, 3 = §%, one can show directly that 5%
contains the basic Functions and is closed under substitution, recursion,
and minimalisation. This is done in detail in Davis [1958]. Alternatively,
one can show that € = 7% by showing that URMs are equivalent in
power 1o a succession of simpler machines, ending with Turing machines.
This is the proof given in their original paper by Shepherdson & Sturgis
[1963] O

3, Symbol manipulation systems of Post and Markov

E. L. Post and A. A. Markov formulated their ideas of
effectiveness in terms of strings of symbols. They recognised that objects
(including numbers) to which effective processes apply can always be
represented as strings of symbols; in fact, in contexts such as symhbaolic
logic, abstract algebra and the analysis of languages the objects actually



are strings of symbols. Both Post and Markov, from different points of
view, considered that effective operations on strings of symhbols are those
that are built up from very simple manipulations of the strings lhem-
selves.

Post’s central idea was that of a canonical rystem, which we describe
below, Such systems do not compute functions; they generate sets of
strings. This i because Post aimed to characterise Ffarmallogical svstems
Le. systems that generate theorems from axioms by the mechanical
application of rules of logic. Thus a notion of effectiveness emerges from
Post’s work, initially in the guise of effectively (or mechanically) generated
sets. We shall see how a notion of a Post-computable function can be
derived from this.

In paragraph 5.17 below we explain the way in which Markov's
approach is related to that of Post.

We must now define some notation to aid our discussion. Let X =
{a1, ..., ac} be afinite set of symbols, called an alphabet. A siring from X
Is any sequence 4, ... a; of symbols from X Strings are sometimes
called words, by analogy with ordinary language. For any alphabet X, we
write I* to denote the set of all strings from X, Included in 5% is the empny
string, denoted A, that has no symbols. I[f o = bibz. . bwandr=0¢y ... ¢,
are strings then o+ denotes the string b, ... bc; . .. ¢.. The empty string
A has the property that for any string o, 4 = & = Aer.

il Posi-systems

In elementary algebra a common operation is to replace the
string (x —y)(x + y) whenever it occurs by the string (x* —y?). This string
manipulation may be denoted by writing

Six—ylix+y)8S: = 5ix" - vi)8,

where S; and 8- are arbitrary strings.
A more general manipulation of a string, yet still regarded by Post as
elementary, takes the form

(5.2) 20518182 . .. 8m 1808w = hoSihuSoha .. Sk,

where
() 8os- ... g By .. .. h, are fixed strings (and may be null),
(ii} the subscripts iy, ..., i, are all from 1,2,...,m, and need
not be distinet.
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Post called an operation of the form (5.2) a preduction; it may be
applied to any string o that can be analysed as
o= pari @103 -+« Frnlm (er1, - . . . (T are strinzs),

to produce the string hoory huaihz ... o Ay

=3 Example
Let X ={a, b}; consider the production

() af,68; =+ S;a85.0
Then the effect of [#) on some strings is given in the table

a Strings produced by (7))

aba aaaa
ahbba gadga and baabaa
ba () does not apply.
iThe entries in the second line correspond to the two possible analyses of

n abba aAbba
(AR el o T
abba: as "= 5. S,

5.4, Exercise
Examine the ways in which the production
S|b52ﬂﬂ$:‘:b e Sjﬂb5|

applies to the string babaabbaab,

Productions form the main ingredient of Post's cananical systems:

5.5. Definition :
A Post-(canonical) system ¥ consists of
{a} afinite alphabet X,
{5) a finite subset A of X*, the axioms of %,
l:ﬂil' a finite set Q of productions of the form (5.2), whose fixed
strings are in 5%,
We say that ¥ is a Post-sysrem over L.

We write o :g;-  if the string r can be obtained from the string o by a
finite succession of applications of pmdgctiuns in Q; then we write 7 if

there is an axiom o A such that & = In this case we say that T_i.s
generated by the Post-system; the set of all strings in S*generated by F is
denoted T, 1.6

Te={ocX™: g o}
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The set Ty is also called the set of thearems of %, reflecting the original
molivation of Post.

3.6. Exampie

Let % be the Post-system with alphabet X = {a, b}, axioms A, a, b
and productions § - aSa and § - 555, Then Ty is the set of palindromes —
the strings reading the same in either direction, such as aba, bbabk, abba.

Sometimes, in order o generate a particular set of strings in X™* it is
necessary o use auxiliary symbols in the generation process. This leads to
the following definition

5.7, Definition

Let X be an alphabet and let X' < £*. Then X is Post-generuble if
there is an alphabet X, = X and a Post-svstem % over X, such that X isthe
set of strings in X* that are generated by %.ie. X = Ty~ 3%,

Post proved aremarkable theorem showing that really anly very simple
productions are needed to generate Post-generable sets. A set of produc-
tions (J (and any system in which they oceur) 1s said to be aormal if all the
productions have the form 28 - Sh.

Post proved

5.8, Theorem (Post’s normal form theorem)
Any Post-generabie ser can be generated by a normal system.
For an excellent proof consult Minsky [1967].

Post-systems having only productions of the kind

51 ESj = SthE

give models of grammars and languages. They reflect the way in which
complex sentences of a language are built up from certain basic units
according to the rules of grammar, Restrictions on the nature of g and &
provide the context-sensitive and context-free languages of Chomsky,
which provide useful models of languages used in computer program-
ming. We cannot pursue this interesting topic here: the reader may

consult the books of Artib [1969] and Manna [1974] for further
information.
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5.9 Posi-svstems ane other approaches o computability

As we have seen., Post-svsiems give a characterisation of the
notion of an effectively generated ser. We may compare this with the
corresponding notion that emerges from the other approaches Lo compu-
tability. For URM-computability (or Turing-computability, etc.)
effectively generated sets of numbers are called recursively enumerable
ir.e.); these are the sets that are the range ol some URM-computable
function. (We shall study r.e_ sets in chapter 7.)

To compare sets of sirings with sets of numbers, we choose an (intw-
tively) effective coding function ™ 2™ — R under which the string rr = I*is
coded by the number . A convenient method for an alphabet x=
Lay, ..., a.}is by the k-adic coding where "t 2¥ > % isdefined by A =1
Gn . ao=mirk+. . +r,k™ It 1s casily seen that ” is aclually a
bijection, so if the inverse of " is denoted by " m— X* we also have a
representation of each number n by a string .

Suppose now that X is a set of strings: let X ={&7; & ¢ X}, the set of
numbers coding X. We have the equivalence result:

5.10.  Theorem
X iy Posr-generabie iff Xisre
Proof, We skelch one proof of this result. Let X < X and suppose first
that X isr.e. Let X = Ran( /), where f is URM-computable. Using carlier
cquivalences we can design a Turing machine M whose symbols include
the alphabet X, so that when in state g, and given initial tape

*) NI R

——mt] ———>

M haltsif and only if m = Domi f), and does so 1 the following configura-
tion
qu
il
H—I— (i1 =I—b |

i L

i.e. the symbals on the non-blank part of the tape indicated constitute the
string f?r?l from X, and M is in a special halting state gy scanning the
square marked |. Now devise a Post-system % to simulate the behaviour
of M on its tape; the alphabet of ¥ will include X and the symbols and
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states of M ; & will generate strings of the form
S5 en qk-—"'i, . a B

Lo represent any situation
CT:
| | 5y S | Lt J jirT. ‘i i,

that occurs during the computation by M from an inital tape of the form
(*). To get things going, ¥ will generzte all strings of the form

=1 —s

g:111 ... 11, which represent such initial tapes. If we include in % the

production S - 8, then the strings from I* generated by % will be the
5at

{flmi:meDomifi={A:ne Ran{f)}={n:ne X}=X.
Thus X = Ty ~ 2%, 50 X is Post generable.
Conversely, if X is Post-generable by a Post-system %, show that the
relation
‘i is generated by % using at most m productions’

is decidable; from the theory of r.e. sets (chapter 7) it follows easily that X
isre, [

511, Post-compurability
We now explain two ways to derive a concept of computable
function from Post-systems.In both cases the concept is defined first for
functions on £*, and then extended to M by coding or representation.
Suppose that f: £* - E* is a partial function. Select a symbol - notin X
and consider the set of strings
Gifl={a- fir): v =Dom( f1}

from the alphabet X _{-}. The set G(/) contains all information about f.
and we define:

5.12.  Definition
f: %= 3% is Post-computable if G(f) is Post-generable. -

3.13.  Example
Let 2 ={1} and consider the function f: £* - X* given by
fid)r=4,
FOIL., . 11)=1311...1111.

—hR— i—uz—y
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The set () is generated by the following Post-system:
Alpkaber {1, - |
Axiom (=4 -FflA)
Production §,- 8- = §;1- 5:5.5,1.

The single production of this system applics o a string of the form
i o B R O R b
— = 1—ﬂ2—b

to produce the string
11...111-111...11111... 1111, 111.

—n+l e—n —t—n—re—p—>

Henee [ is Post-computable,

Suppose that G(f) is generated by a Post-system 4. To see that fis
computable in the informal sease, consider the following algorithm for
finding fir) (where o= 2%).

‘GGenerate the strings Ty in some systematic fashion; examine these as
thev appear. looking for a string of the form o - 7 with reX* Such a
string will eventually be produced if, and only il. 7 € Domif), and then
r=fla).’ .

The definition (3.12) extends in an obvious way to partial funcbions
{£*)" - X*. Post-computability on M is then defined using any effective
representation 7 %= X7 in the natural way:

3,14, Defininon
Let g: B" =R be a partial function, and let
£: (2*)" = X* be the function defined by
gy, ma, ) =TE M, ) (i, mp )

Then g is Post-computable if g is Post-computable.

If we let %€ denote the class of Post-computable functions of natural
numbers, we have the equivalence:

5.15. Theorem

P =€ =F€=H (We omit a proof. When the reader has
studied chapters 6 and 7 he should be able to see that this follows from
theorem 5.10 and the results of chapters 6 and 7 linking r.e. sets with
URM-computable functions. )
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6.2. Example
D =3* where T={a. b}. The class &" of partial recursive
functions on X* is the smallest class of partial functions such that
() the basic functions
(i} flerd=A
(i) flel=wa
{iii) flor)=orh
{iv) the projection functions U {my. .. .. ¢ =0,
are in 7, ?
(b) ®" is closed under substitution,

n . . + [ iE
(c) 227 is closed under primitive recursive definitions of the following
form:

hilo, A)=Ff(or)

hier, ral=g/leo, 7, hio, 7))

hio, b~ galer, 1, hio, 7))
where f, g1, g:€ R,
(d) ®7 is closed under minimalisation: i fle, 7) is in 97, so is the
function i given by

hiod=uwr(fla, ri=A)

where ur means the first + in the natural ordering A, «, b, aa, ak, ka, bb,
aada, aak, apa, .. ..

For each of these, and other approaches to computability on a domain
D thar utilise the intrinsic structure of D, we find as expected that they are
equivalent to the approach that transfers the notion of computability
from M by wsing coding. And, vice versa, any natural notion of compu-
tability on a domain D induces an alternative (but equivalent) notion of
computability on 4 via coding, as with Post-computability in § 5.

6.3 Exercises

1. Prove that URM-computability on £ as outlined in example 6.1
is equivalent to URM-computability via coding (example 1-5.1).

2. Prove that the class ®” of partial recursive functions on 3%, as
defined in example 6.2, is identical to the Post-computable
functions on X*,

3. Suggest natural definitions of computability on the domains (g)
3% 3 matrices, (&) @ (rational numbers), .

4. Give a natura] definition of Turing-computability on X*, where
X is any finite alphabet.

R Ny .y

T Church’s thesis

We now turn our attention to the second guestion of the intro-
duction to this chapter: how well is the informal and intuitive idea of
etfectively computable function captured by the various formal charac-
terisations?

In the light of their investigations, Church, Turing and Markov each
put forward the claim that the class of functions he had defined coincides
with the informally defined class of effectively computable functions. In
view of the Fundamental result (1.1}, these claims are all mathematically
equivalent. The name Church’s thesis (sometimes the Church-Tunng
thesis) is now used to describe any of these other claims. Thus, in terms of
the URM approach, we can state:

Church’s thesis

The intuitively and informally defined class of effectively
computable partial functions coincides exactly with the class € of URM-
computable functions.

Note immediately that this thesis is not a theorem which is susceptible
to mathematical proof; it has the status of a claim or belief which must be
substantiated by evidence. The evidence for Church’s thesis, which we
summarise below, is impressive.

1. The Fundamental result: many independent proposals for a
precise formulation of the intuitive idea have led 1o the same
class of functions, which we have called %.

7. A vast collection of effectively computable functions has been
shown explicitly to belong to €, the particular functions of
chapter 2 constitute the beginning of such a collection, which can
be enlarged ad infinitum by the techniques of that chapter, and
other more sophisticated methods,

. The implementation of a program P on the TURM to compute a
function is clearly an example of an algorithm; thus. directly from
the definition of the class €, we see that all functions in € are
computable in the informal sense. Similarly with all the other
equivalent classes, the very definitions are such as to demon-
strate that the functions involved are effectively computable.

4. No one has ever found a function that would be accepted as
computable in the informal sense, that does not belong to €.

Oin the basis of this evidence, and that of their own experience, most
mathematicians are led to accept Church’s thesis. For our part, we

Lad
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propose to accept and use Church’s thesis throughout the rest of this
book, in a way that we now explain.

Suppose that we have an informally described algorithm for computing
the values of a function f. Such an algorithm may be described in English,
or by means of diagrams, or in semi-formal mathematical terms, or by any
other means that communicate unambiguously how to effectively cal-
culate the values of f, where defined, in a finite amount of tme. In such a
situation we may wish to prove that f is URM-computable, There are,
broadly, two methods open to us.

Methad 1. Write a program that URM-computes f (and prove that it
does so), or prove by indirect means that such a program exists. This could
be done, for instance, by the methods of chapter 2, or by showing that f
belongs to one of the many classes shown by the Fundzmental result to he
equivalent to ¥

Such & full and formal proof that f is URM-computahle may be a long
and rather technical process. Essentially it would involve translation of
the informally described algorithm into a program or into the language of
one of the other formal charactersations, Probably there would be
various flow diagrams as intermediate translations.

Method 2. Give an informal (though rigorous) proof that the given
informal algorithm is indeed an algorithm that serves to compute £, Then
appeal to Church's thesis and conclude immediately that f is URM-
computable.

We propose to accept method 2 as a valid method of proof, which we
call proaf by Church's thesis,

1. Examples
1. Let P be 2 URM program; define a function [ by

1 if Pix)ly after r or fewer steps
fxw o= of the computation Pix),
0 otherwise.

An informal algorithm for computing f is as follows.

‘Given (x, y, 1), simulate the computation P(x) (on a piece of
paper, for example, as in example 1-2.1}, carryving out ¢ steps of
Pix) unless this computation stops after fewer than r steps. If
P(x) stops after ¢ or fewer steps, with v finally in R,, then
flx,y, 1} = L. Otherwise (i.e. if P(x) stops in r or fewer steps with

some number other than y in Ry, orif P(x) has not stopped after ¢
steps) we have fix, y, 7}=0

Simulation of Pix) for at most ¢ steps is clearly a mechanical
procedure. which can be completed in a finite amount of time.
Thus, fis effectively computable. Hence, by Church’s thesis, f is

L RM-computable.

. Suppose that f and g are unary effectively computable functions.

Define a function b hy 4
if x € Dom(f) or x € Domi{g),

h[x}={1

undefined otherwise.

An algorithm for k can be described in terms of given algorithms
for the effectively computable functions f and g as follows:

“Giiven x, start the algorithms for computing f(x) and glx)
simultaneously. (Envisage two ageats or machines working
simultaneously, or one agent who does one step of each
algorithm alternately.) If and when one of these computations
terminates, then stop altogether, and set h(x)=1. Otherwise,
continue indefinitely.”

This algorithm gives h(x) =1 for any x such that either f(x) or
¢i{x) is defined; and it goes on for ever if neither is defined. Thus
we have an algorithm for computing &, so by Church’s thesis A is
URM-computable.

. Let fln)=the nth digit in the decimal expansion of 7=

3.14159 .. (sowe have F{0N=3, F{1} =1, fi2i=4, etc.). We can
obtain an informal algorithm for computing f(a) as follows.
Consider Hutton's series for

5[ i(Ln) 3x5 (w) }
251143 la) 5 (5:1‘ e

= (n12%)7 12/ 1 [ ) =te
g 2] [12 = T hosay.
= Lnenl \10) as\30/ |7 5"

Let s, =E,,,_ o B ; by the elementary theory of infinite series

‘Ix.'l

s;{ir-is::-rl,'ltl ;

Now s, is rational, so the decimal expansion of § can be
effectively calculzted to any desired number of places using long
division. Thus the following is an effective method for calculating
fin) (given & number n):



‘Find the first N = + 1 such that the decimal expansion
S =do.d107 . .. Bullpi1 ... 5.,

does not have allof @, ,1,.. ., ax equal to 9. (Such an N exists,
for otherwise the decimal expansion of = would end in recurring
9, making = rational.} Then put fin)=a,.’

To see that this gives the required value, suppose that a,, 29
with n << m =N, Then by the above

sw=w<sy-1/10"
=i +1,/107,

Henceay.a,...ay.. .8pn... <7 <8p.d1...05...la,+1)...
so the nth decimal place of 7 is indeed «,,
Hence by Church’s thesis, f is computable.

The student should try to provide complete formal proofs (method 1)
that the functions in these examples are URM-computable {assuming, for
example 2, that f and g are URM-computable). For all of them it is a
lengthy and tedious task.

Note that in using Church’s thesis we are not proposing to abandon all
thought of proof, as if Church'’s thesis is a magic wand which we can wave
instead. A proof by Church’s thesis will always involve proof that is
careful, and sometimes complicated, although informal. Moreover, any-
one using Church’s thesis in the way we propose should be able to provide
a formal proof if challenged. (As if to anticipate such a challenge, we
provide in the appendix to chapter 5 an alternative formal proof of one
fundamental theorem in that chapter (theorem 5-1.2) on which almost al]
later development depends. This then serves to substantiate further
Church’s thesis; incidentally, it is a simple formal corollary that the
tunctions in the first two examples above are URM-computable also.)

Church’s thesis not only keeps proofs shorter, but also prevents the
main idea of a proof or construction from being obscured by a mass of
technical details. It remains, however, an expression of faith or
confidence. The validity of faith depends on the evidence that can be
mustered. In the case of Church’s thesis, there is the mathematical
evidence already outlined. For the practised student there is the addi-
tional evidence of his own experience in translating informal alporithms
into formal counterparts. For the beginner, our use of Church’s thesis n
subsequent chapters may call on his willingness to place confidence in the
ability of others until self confidence is developed.

3]

To conclude: for the remainder of this boak, we accept Church’s thesis
ane wse it in the manner described abouve, often without explicit reference.

Exercises .
Suppose that fix} and gix) are effectively computable functions.
Prove, using Church's thesis, that the function h given by

. if x £ Domif)~Domig),
KON { undefined otherwise

15 URM-computable,

. Suppose that f is a total unary computable function. Prove,

by Church’s thesis, that the following function h is URM-

compulable
) 1 if x = Ran(f),
BA= Iundeﬁnad otherwise.

. Give a detailed proof by Church’s thesis that the Ackermann

function [example 2-5.5) is computable.

. Prove by Church’s thesis that the function g given by

gin) = nth digit in the decimal expansion of e
is computable (where the number e is the basis for natural
loganthms).



4
Numbering computable
functions

We return now to the study of UURM-computable functions. Henceforth
the term computable standing alone means URM-computahle, and
progrem means URM program.

The key fact established in this chapter is that the set of all programs is
effecively denumerable: in other words there is an effective coding of
programs by the set of all natural numbers. Among other things, it follows
that the class € is denumerable, which implies that there are many
functions that are not computable. [n § 3 we discuss Cantor’s diagonal
method. whereby this is established,

The numbering or eoding of programs, and particularly its effective-
ness, is absolutely fundamental to the development of the theory of
computability. We cannot overemphasise its importance. From it we
obtain codes or indices for computable functions, and this means that we
are able to pursue the idea of effective operations involving such codes.

In § 4 we prove the first of two important theorems involving codes of
functions: the so-called s—m—» theorem of Kleene, (The second theorem
15 the main result of chapter 5.

L. Numbering programs
We first explain the terminology that we shall use.

1.1, Definttions
{a) Aset X is denumerable if there is a bijection fo X =R,
(Note. The term countable is normally used to mean finite or
denumerable; thus, for infinite sets, countable means the same as
denumerable. The term countabiy infinite is used by some
authors instead of denumerable.)
(b} An enumeration of a set X is a surjection g: 8- X; this is
often represented by writing

X={ro,x0,x3...)
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where x, = gin ). Thisis an enumeration without repetitions if g 1s
injective,

{¢] Let X be asetof finite ubjects (for example a set of integers.
or a set of instructions, or aset of programs): then X is effecrively
denumerable if there is a bijection f: X - [ such that both f and
F ! are effectively computable functions.

(Note. We mean here the informal notion of effectively
computable. This is compelled on us since, in general, there isno
available formal notion of computability of functions from X to
k. " In cases where some formal notion does apply, we take thisto
be the meaning, as for example in theorem 1.2(a).)

Clearly. a set 18 denumerable if and only if it can be enumerated

without repetitions.

For the main result of this section we need the following (recall that ™
denotes the set of all positive natural numbers):

13, Theorem
The faliowing sets are effectively denumerabie.
(e} PP,
{bml h’+xm+xN+l
() Lleso ", the ser aof all finite sequences of nanral numbers.

Proof

{a) A bijection 7: % =k —® is defined by
wima)=2"2n+11—1.
It is clear from the definition that 7 is in fact a computable
function: to see that the inverse is effectively computable observe
that = ' is given by
o xh={ .-r_ﬂfx], malx ],
‘where i, 72 are the computable functions defined by m(x) =
(x4 1)y, malx) =3(x +1)/2™" = 1). (Ci. exercise 2-4.16(2).}
{(#) An explicit bijection ¢; %™ %M x &' =N is given, using the
function 7 of (a), by
fima,g)=mlwim—1,n-1)g-1).
Then we have

)= (mlmx)) =1, malmilx) + 1, maix) + 1)

' Ta say that we should use a notion of computabikity based an some cading begs
the whole question, since a coding is an effective (in the informal sense) funstion.
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Since the functions . my, s are effectively computable, then so
are £ and { .

{¢) A bijections: |~ MW" =M is defined by

rlay, ..ﬂ'k:I:2“""2“'_%1‘-'4'2#"_&‘*111 ?.‘_“ X

B T B T | %
e u -1

Clearly 1 is an effectively computable function. To see that risa
bijection, and to calculate 7 '(x), we use the fact that each
natural number has a unique expression as a binary decimal.
Thus, given x, we can effectively find unique numbers k = 1 and
ﬂ":'bl {b: dhs ‘:J'Jg: such that

T+ 1=2"42% 4, 42N

from which we obtain

T ixi=lay,..., g ),

where a.=58; and a,.y=5,1—b—1 (l=1<k). (Cf. exercise
2-4.16(3), where functions closely connected with the cal-
culation of ¢ ' are to be proved computable.)

Let us now denote the set of all URM instructions by .#, and the set of
all programs by 2. A program consists of & finite list of instructions, so we
next consider the set .

1.3. Theorem
Fis effectively denumerable.

Proof. We define an explicit bijection 8: # - % that maps the four
kinds of instruction onto natural numbers of the forms 4u, 4u + 1, 40 + 2,
4u + 3 respectively; we use the functions 7 and { defined in the proof of
theorem 1.2,

Bl{Zia))=4{n—-1),

BiSn=4n—-11+1.

BTimnl=dxim—1,n—1)+2,

Blllm,n, qli=44(m, n,g)+3.
This explicit definition shows that § is effectively computable. To find
H_l{IL first find u, r such that x =4u + ¢ with 0= r<4. The value of r
indicates which kind of instruction 8 '(x) is, and from x we can
effectively find the particular instruction of that kind. Specifically:

il r=10, then H_]t_xj—-Zl'_u-- 1):

ifr=1,then 8 [x)=S(u+1):

LI L G Rl S LS F e |

if r=2, then ﬂ"'lxr=T{1r11uI + 1, o)+ 1)
ifr=3then 8 '(x)=Mm. n, g), where (m, n, gl =¢ lul.

Hence 8 is also effectively computable. T

MNow we can prove:

1.4 Thearem
@ {5 effecrively denumerable,
Proof. Define an explicit bijection vi# =M as follows, using the
hijections 7 and g of theorems 1.2 and 1.3: i P=1., I, ..., I, then

yiPl=ag{L), ..., 8L
Since + and 8 are bijections, so is ¥; the fact thal =, § and their inverses

are effectively computable ensures that ¥ and y ' are also effectively
computable., [

The bijection v will play an impeortant role in subsequent development.
For a program P, the number v{ P} is called the code number of P, or the
Gidel® number of P, or just the aumber of P. We define

P_ = the program with icode) number n
=y '(n),
and sav that P, is the nth program. By construction of v, if m # n, then P,
differs from P., although these programs may compute the same
functions.
It is of the utmost importance for later results that the functions ¥ and
y T are effectively computable: i.e.
la] Given a particular program P, we can effectively find the
code number v(Fi;
[f) given & number n, we can effectively find the program
Po=vy '(n).

In order to emphasise this we give two simple illustrations.

15, Examples
{a) Let P be the program T{1, 3), 5(4), Zi6). We will calculate
¥iP).

BiTi1,3))=47(0,2)+2=42"2x2+1)-1)-2=18,
B(5i4))=4x3+1=13,
BlLib))=4=5=20.

® The term Cvidel number 15 used after K. Godel who Grst exploited the idea of
coding non-numerical objects by numbers in his [amous paper (Godel [193170.
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Hence y(P)= 7Sl T gt o f 0
=8007203549970431.
(&) Let n =4127; we will find Pagar.
4127=2"+2""—1; thus Py,2; isa program with two instructions
I, I where
Bllii=5=4x1+1,
BUd=12-5—-1=6=4x1-2=47(1,0)+2.
Hence from the definitionof 8, [, =5(2)and . = T(2, 1), 50 Pyjar
is
5(2)
T(2, 1)

There are, of course, many other possible effective bijections from # to
*; our choice in defining the details of ¥ was somewhat arhitrary. What is
vital, we again emphasise, is that y and v ' are effiectively compurable.
The particular details of ¥ are not so important. For subsequent theory.
any other bijection ¥ would suffice, provided that +' and its inverse are
effectively computable. However. we have to fix on one particular
numbering of programs, and we have chosen that given by . For rhe rest
aof this bovk, y remains fixed, so that for each particular number n, the

meaning of P, does not change. Thus, for instance, Py. 2 always means the
program S(2), T(2, 1).

1.6. Exercise
Find
{a) BIJ(3, 4,20,
(6) B~'(503),
{c] the code number of the following program:
Ti3, 4), 5(3), Zi1),
(d) Py,

2 Numbering computable functions

Usmg our fixed numbenng of programs, we can now number
computable functions and their domains and ranges. We introduce some
important notation which is basic to the rest of the book.

iy i Definition
Foreachac®™,and n=1:

i W
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fa] ¢4’ =the n-ary function computed by £,
= f¥ in the notation of chapter 1 § 3,

(51 W' =domainoféy ' ={{x,.... x50 Palxy, .o xallh
E'™ =range of pi".
We shall be mainly concerned with unary computable functions in later
chapters, so for convenience we omit the superseript (1) when it occurs;

thus we write &, for &4, W, for W,', and £, for E,".

2 Example
Let 2 =4127; from the previous section we know that Paiz 15

5(2), T(Z,1). Hence

azrlei=1 {all x}
and

CRPCL LS N E ST | T
Thus

Wiz =H, Eiiz-=1{1});

Wi, =R", Eqm =N dn=1l
Suppose that f 1s a unary computable function. Then there is a program
P, say, that computes f, so f = d,, where 2 = y(P). Wesay then thata isan
index for f. Since there are many diflerent programs that compute a given
function, we cannot say that a is the index for f: in fact, each computable
function has infinitely many indices.
We conclude that every unary computable function appears in the
enumeration
d, dri, o, .o
and that this is an enumeration with repetitions,
Similar remarks apply te a-ary functions and their enumeration.

.5 Exercise
Prove that everv computable function has infinitely many

indices.

Recall that we denoted the set of all n-ary computable function by %,

24, Thearem
€., ir denumerable,
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FProof. We use the enumeration &5, ¢1". &%, .. . (which has repeti-
tions) 10 construct one without repetitions.
iD=,
P e S
lf{m —1l)=pzia!' # . X TR Ly
Then

Do Brit Bz
is an enumeration of €, without repetitions.
Note. We are not claiming that f as defined in this proof is computable; in
fact, we will be able to show later that this is not the case. It is possible,
nevertheless, to give a complicated construction of a total computable
function & such that tﬁ"J{'E-f:.,tﬁrﬁ;"Ei;.f ... 15 an enumeration of %€, without
repetitions, This was proved by Friedberg [1958],

2.5, Corollary
€ is denumerable.

Proof. Since € =|_|, ., %,, this follows from the fact that a denumer-
able union of denumerable sets is denumerable.

Explicitly, for each a let 7, be the function used in theorem 2.4 to give
an enumeration of ¥, without repetitions. Let 7 be the bijection B x % =
* of theorem 1.2, Define #: ¥ < R by

ﬂl_-:_ﬁrfr:f'm;] =mlm,n—1),

Clearly # is a bijection. _|

The next thearem shows that there are functions that are not compu-
table, The idea of the proof is as important as the result 1tself.

L} jr\l '_*r 2.6. Theorem

There is a 1otal unary funcrion thar is not computable.

Proof. We shall construct a total function f that is simultaneously
different from every function in the enumeration dy, &, @2. ... of €.
Explicitly, define
d{n)+1 if b, (n)is defined,

0 if gh () is undefined.
Notice that we have constructed f so that for each n, 7 differs from &, atn:
if @b, (n) is defined, then [ differs from &, in that fini= @.(n};

fimy=1

if &, (n) is undefined, then f differs from &, in that fia ) is defined.
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Since f differs from every unary computable function ¢., f does not
appear in the enumeration of ¥, and is thus notitsell computable. Clearly
fistotal, 7]

3, Discussion: the diagonal method
The method of constructing the function f in theorem 2.6 is an

example of the diagonal method of construction, due to Cantor. Many
readers will be familiar with this method as used in proofs of the
uncountability of the set of real numbers. The underlying idea is appli-
cahle in 3 wide variely of situations, and is central in the proofs of many
results concerning computability and decidability.

To see why the term diagonal is used, consider again the construction
of i in theorem 2.6. Complete details of the functions ¢, @. ... can be
represented by the following infinite table:

| 0 I 2 3 4

(1] ®ol1} Pl 2) ¢.(3)

6 | 60 -@ a2 4.0

¢ | 60 uD) @ :03)
ol s e 4@

We suppose that in this table the word "undefined’ is written whenever
@i m ) 1s not defined.
The function f was constructed by taking the diagonal entries on this
table (circled)
dl0), (1), ai2), . ..
and systematically changing them, obtaining
Jioy, (L), A2, - -
such that f(n) differs from &,.(n), for each n. Note that there was
considerable freedom in choosing the value of f(n); we only had to ensure
that it differed from . (s ). Thus
daini+27" o, in)isdefined,
glr)= [n: if by in) is undefined,

is another non-computable total function.
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We can summarise the diagonal method as we shall be using it, in the
following way. Suppose that o, x4, ka2, . .. is an cnumeration of objects of
a certain kind (functions or sets of natoral numbers). Then we can

construet an object ¥ of the same kind that is different from every y..
using the following motto:
‘Make x and y, differ arn.’

The interpretation of the phrase differ at n depends on the kind of object
invalved. Functions may differ at n over whether they are defined, or in
their values at # if defined there; with functions, there is usually freedom
Lo construct y so as o meet specific extra requirements; for instance, that
x be computable, or that its domain (or range) should differ from that of
each y,.

In the case of sets, the guestion at a 18 whether or not i is 2 member,
We illustrate the diagonal construction when sets are invelved.

3.1 Example
Suppose that Ay, A, Az, .. 1% an enumeration of subsets of B,
We can define a new set B, using the diagonal motto, by

neBiandonlvif ne A,
Clearly, for each n, B+ A,.

There are important applications of the diagonal method in the next
two chapters.

F2: Exercises

1. Suppose that fx, v) is a total computable function. For each m,
let g, be the compurtable function given by

2alv]=Fflm, y)

Construet a total computable function k4 such that for each m,

7 g

2. Letfy, fi, ... be anenumeration of partial functions from & to fd,
Construct a function g from R to B such that Domig) < Dom! ;)
for cach £

3. Let f be a partial function from i ta B, and let m 2 &, Construct a
non-computable function g such that

glx)=fix)

4 {a ) (Cantor) Show that the set of all functions from i to B is not
denumerahle.

for x =m.

e e
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{k) Show that the set of all non-computable total functions from
Fd to R is not denumerable.

4, The s—m-np theorem
In the final section of this chapter we prove a theorem that has
many important uses, especially in conjunction with the main theorem of
the next chapter.
Suppose that f(x, y) is 2 computable function (not neuqsgg{;yF_tggq_I]_
Then for each fixed value a of x, f gives rise to a unary computable
function g, where

g.ly)=fla, y).
Since g. is computable, it has an index e, say. so that

fla, vi=d.(y).
The next theorem shows that such an index ¢ can be obtained effectively
from . This is a particular case of a more general theorem, known as the
§—m—n theorem, which we prove below. [ The reason for this name will be
explained after theorem 4.3.) For most purposes in this book, the
following suffices,

4.1, Theorem (The s-m-n theorem, simple form)
Suppose that flx, v} is a computable function. There is a total
compuiable function k (x) such that '
Fx. y) == duraky)-
Prmr’ For zach fixed a, k() will be the code number of a program Q,
which. given initial configuration :

E-

=) ¥ g0 0

computes fla, ¥).
Let F be & program that computes f. Then for Q, we write down F
prefaced by instructions that transform the configuration *)to
Ry R
{ a y 0|0




T NHEAFRACTIN e CUPTRLNE LR LG LR SE P

Thus, define Q. to be the following program

T(1,2)
Z(1)
TS(])
a times+4 -
|‘5|[1}
F
Now define

kla) = the code number of the program Q..

Since F is fixed, and from the fact that our numbering y of programs is
effective, we see that £ is an effectively computable function. Hence, by
Church’s thesis, k is computable. By construction

eyl =Ffla, y)
foreacha. O

The s—m—n theorem is sometimes called the Parameirisation thearem
because it shows that an index for a computable function (such as g, in the
discussion above) can be found effectively from a parameter isuch as a)
on which it effectively depends.

Before giving the full s—m—n theorem we give some simple illustrations
of the use of theorem 4.1 in effectively mdexing certain sequences of
computable functions or their domains or ranges.

4.2, Examples
1. Let fix, v}=y". By theorem 4.1 there 15 a total computable k
such that @y, (v) = v". Hence, for each fixed n, & (n) is an index
for the function »".
ry if y is & multiple of x

. Let fix, v)=1
\undefined otherwise.

Then fis computable, so let & be a computable function such that
Gl v )= fix, v). Then, for each fixed o
Py ) is defined iff v is a multiple of n

iff v 15 in the range of .

[ %]

i
Wiy = nfl { = the set of all multiples of 1)
=Et:-|:~

So we have an effective indexing of the sequence of sets (nf) as
(i) the domains of computable functions, (i) the ranges of
computable functions.

One obvious way to generalise theorem 4.1 is to replace the single
variables x, v by m- and n-tuples x and y respectively. We can also reflect
the Fact that the function k defined in the proof of theorem 4.1 depended
effectively on a particular program for the original function f. Thus,
instead of considering a fixed computable function fx, v} we consider &
general computable function &7 (x, ¥), and the question of effectively
finding, for each ¢ and x, a number z such that

im]

T E )= (y).

4.3 Thearein [ The s—m-n theorem)
Foreach m, n = 1 there is a total computaple (m + i-ary function
soie, x) such that

':!}Lm " I':xs .? .I = '#ir'::'llr.:ll ¥ ] W
Proof. We generalise the proof of theorem 4.1.
For any i =1 let Q1L x| be the subroutine
Zi
S{i1 |
- b x umes
817
that replaces the current contents of R, by x. Then for fixed m, 1 define
s™e, x) 10 he the code number of the following program:

b T This part of the program transforms any configuration
’ . R, R'r

T2 m+2) . =N

Rk 4 L ‘

Q[l, Xi) mnio

Q2. x3) B, R. Roii Ry, i)
. x Ko :".-] | }_'l ﬂ

[;ll'm._ -rm:'

P,

From this explicit definition, and the etfectiveness of v and 1;'1, we get
that s is effectively computable, hence computable, by Church's
thesis. ]
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The notation 5. for the function given by theorem 4.3 has given rise 10
the standard description of this result as the s—m—n theorem. We will also
use this name to describe the simpler version given in theorem 4.1,

It is not hard to see that the function 57 as defined above is in faet
primitive recursive. With a little thought it is also possible to see that for
each m there is a function £™ (also primitive recursive) that suffices in
theorem 4.3 for all n. See the exercises 4.4(5) below,

4.4. Exercises

1. Show that there is a total computable function k such that for
each a, kin) is an index of the function [¥x].

2. Show that there is 4 total computable function k such that for
gach n, W}, = the set of perfect nth powers.

3. Let n=1. Show that there is a total computable function s such
that
Wen ={lyi, ..o vadivityat. . tya=x}

4. Show that the functions s, defined in theorem 4.3 are all
primilive recursive.

5. Show that for each m there is a total (m —1)-ary computahle

function ™ such that for all »

(i) - in] i
dj’e LX. }'}liibr"'lr,ﬂl.y:'

where x, ¥ are m- and n-tuples respectively.

(Hint Consider the definition of 57 (e, ) given in the proof of
theorem 4.3, The only way in which n was used was in determi-
ning how many of the ry, ro, ... to transfer 10 Koo, Rasze. o
MNow recall that the effect of F. depends only on the original
contents of Ry, ... R,p,, where p is the function defined in
chapter 2§ 2; p(P. ) is independent of n.) Show further that there
15 such a function 5™ that is primitive recursive.

Eap— "

5
Universal programs

In this chapter we establish the somewhat surprising result that there are
universal programs; i.e, programs that in a sense embody all other
programs. This result is one of the twin pillars that support computability
theory (the other is the s—m-n theorem); both rest on the numbernng of
programs given in chapter 4.

Important among the applications of universal programs is the
construction of specific non-computable functions and undecidable
predicates, a topic pursued in chapter 6. We pive a foretaste of such
applications in § 2 of this chapier; we #lso use a universal program to
construct a total computable function that is not primitive recursive, as
promised in chapter 3.

The final section of this chapter is devoted to some illustrations of the
use of the s—m—n theorem in conjunction with universal programs to show
that certain operations on the indices of computable functions are
effective (a foretaste of the topic of chapter 10).

1 Universal functions and universal programs
Consider the function ¢k, ¥) defined bv
iz, y)=d. iyl

There is an obvious sense in which the single function ¢ embodies all the
unary computable functions ¢q, é1, @2, . . ., since for any particular s,
the function g given by

glyi=dilm, v)

is just the computahle function &.. Thus we describe o as the unmiversal
functiva for unary computable functions. (enerallv, we make the
following definition.
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13 Definition

The wniversal function for n-ary computable funcrions is the
{n +1)-arv function ' defined by

e g Y (s )

We write oy for i

The guestion arises, is dn; (or, generally, 17| & computable function?
If 50, then any program P that computes v, would appear to embody all
other programs, and P would be aptly called & universal program. At first,
perhaps, the existence of a universal program seems unlikely. Neverthe-
less, it is not hard to see that ¢y is indeed computable. The point is that a
universal program P does not need to contain all other programs F, in
itself; P only needs the ability to decode any number ¢ and hence mimic
S

1.2. Theorem
For each n. the universal function (!’ is computabie.

Proof. Fixn,and suppose that we are given an index e and an n-tuple x..
An informal procedure for computing &1} (e, x] is as follows:

‘Decode the number ¢ and write out the program F.. Now mimic the
computation P_[x) step by step, at each step writing down the configura-
tion of the registers and the next instruction 1o be obeyed (as was done in
example 1-2.1). If and when this computation stops, then the required
value 7' (e, x) is the number currently in R,.

We could conclude immediately (using Church’s thesis) that w7 le. x)is
computable. Because of the importance of this theorem, however, we
prefer to outline the beginnings of a formal proof and then make a rather
less sweeping appeal o Church's thesis. (For the sake of completeness of
our exposition we shall provide the restof the formal proof inan appendix
to this chapter.)

The plan for a formal proof is to show first how to use a single number o
to code the current situation during a computation; then we show that
there is a computable function expressing the dependence of @ on () the
program number e, (#) the input x, (¢} the number of steps of the
computation that have been completed. We will see that this suffices to
prove the theorem.

[et usreturn, then, to the computation P.(x) considered above. As we
have seen in examples, the current situation during a computation is
completely specified by (i) the current configuration of the rcgiﬁ't}érs

o —
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ri, P2, 73 .- - 20d (1) the number § of the next mstruction in the compu-
"mt_icn..“Sinc& only finitely manvy of the numbers r, are not zero, the current
configuration can be specified by the single number
=277 =1l g

(Recall that p; is the ih prime number.) We call this number the
configuration code ot just the configuration if there is no ambiguity. Note
that the contents r of K, can be easily recovered from ¢ mn fact r,=1(c);
(using the function of theorem 2-4.15{d)}.

The complete description of the current situation can now be coded by
the single number o =wl¢, | l. which we call the current state of the
compultation P, (x ). (Here or is the pairing function used in the proof of
theorem 4-1.2.) We will make the convention that if the computation has
stopped, then j=10 and ¢ is the final configuration. Note that c =7 (o}
and j=w2lo) where sy, 72 are the computable functions defined 1n
thecrem 4-1.2.

Now ¢, f, o change during the computation; their dependence on the
program niumber e, the input x and the number r of steps completed is
expressed by defining the following (n + 2}-ary functions:

(1) cule, x, t1=the configuration after ¢ steps of
P.ix) have been completed
{ = the final configuration if B,ix)} in ¢
or fewer steps).

the number” of the
next instruction for

if F,(x) has
not stopped

(2) lexn= P.|x) when 1 steps after t or
have been completed, fewer steps,
0 il P.(x)l in ¢ or fewer steps,
(3 o (e, x, 1) =the state of the computation P.(x)

after i steps
=ari{cale, x, 1) Jule, x, 1))

The aim now is to show that o, (and hence ¢, and j,) are computable
functions. To sce why this is sufficient, suppose that this has been done.
Clearly, if the computation P.{x) stops it does so in wilj.le, x, r1=10)
steps, then the final configuration s c, (e, x, piij. e, xk, 1) =10)), and s0 we

' We mean here the number f sich that the next instruction § is the jth instruction
of P,: we do not mean the code number gi1),
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have

it (e, x)={c.le, x, il fole, x, ) =00}
Thus, if ¢, and j, are computable, so is ¢ (using substilution and
minimalisation) and our proof is complete,

We now use Church’s thesis to show that o, (and hence ¢, and j, ) are
computable. We have the following informal algorithm for obtaining
ayle, x, t+ 1) eflectively from e, (e, X, t) and e

‘Decode erale, x, ¢) to find the numbers ¢ = e, (e, x, t) and f = . (e, x, 7).
If j=0, then o,ie, k. t+1)=o,le x t). Dtherwise, write out the
configuration coded by ¢,

gt | ehpteh | eds | oo | ledm | O] O

say, and by decoding ¢ write out the program P.. Now find the jth
instruction in . and operate with it on the configuration (*), producing a
new configuration with code ¢ say, Find also the aumber /' of the new
next instruction (with j' = (01f the computation has now terminated). Then
we have
ole, e r+1)=g(c', i)

This shows informally that o, (2, x, ) is computable by recursion in r, since
for =0 we have

oale, 6, O =7 (2737 ... por, 1)

to start the recursion off. Hence, by Church’s thesis. o, is computable,

]

and our theorem is now proved,

Nore. Since this theorem is so basic to further development, we provide
in the appendix a complete formal proof that &, (and hence #\7) is
computahle. This then provides further evidence for Church’s thesis.
(Our formal proof also gives us the extra information that =, is actually
primitive recursive.)

From the proof of this theorem we obtain:

1.3, Corollary
For each n =1, the following predicates are decidable.
(a) Salesx v, ti="P.lx)|vintorfewer steps’,
[b) Hule,x, th="P.(x)} in t or fewer steps”,
Proof. (a) S.le,x, v.1)="j.le,x, t)=0and (c (e, x, 1) =v".
b) Hyle, x,ti="jle.x. =0 O
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The significance of the next corollary is discussed in the first note
below.

1.4. Corollary (Kleens’s normal form theorem)

There is a total compurable function Ulx) and foreachn=1a
decidable predicate T (e, x, z) such that

{a) & (x) isdefined if and only if Az T,le, x, ),

() b ix)=Uipz T,le x, 2)).

Proof. To discover whether ¢ '(x) is defined, and the value if it is, we
need to search for a pair of numbers y, ¢ such that 8. (e, x, v, t), We have
the w-operator that enables us to search effectively for a single number
having a given propertv. To use this n searching for a pair of numbers, we
can think of a single number z as coding the pair of numbers (2); and (z)s.
Then. as z runs through R, the pair ({z };, (z}2) runs through fs <&, Sowe
define

Toie, k,2)=8.0e,x, (), (z)a).

For (a), suppose that ¢o''(x) is defined; then there are y, r such that

S,ie, x,y, 1), 50 putting z =2"3" we have T,(e, x, z).

Conversely, if there is z such that T, (g, x, z), then from the definition of
T, P.ix):ie. ¢ (x) is defined.

For (), it is clear from the definition of T, that if ¢.* (¥) is defined,
then for any z such that T.le, ¥, 7, we have dl:"\'{lr_'l = [z);. So if we put
L'iz)=(z); then

& (= Ulpz Tule,x, z)). O

Nares

1. From the appendix to this chapter it follows that the functions ¢,
and j, are primitive recursive. Hence, the predicates S, H,.. T, in
corollaries 1.3 and 1.4 are also primitive recursive. Thus, in particular,
the Kleene normal form theorem shows that every computable function
(or partial recursive function) can be obtained from primitive recursive
functions by wsing at most one application of the w-operator. The
theorem gives, morsover, a standard way of doing this.

2. The technique of searching for pairs of numbers by thinking of a
single number z as coding the pair (z):, (z); (as used in the proof of
corollary 1.4) is often used in computability theory. We give an exercise
needing this technique below (exercise 1.5(1)).

The technique can also be psed in searching for sequences
(X, X3, ..., x,) foranyn = 1.
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1.5. Exercses
1. (i} Show that there is a decidable predicate Q{x, v, z) such that

(o) veE, fandonly if 3z Qix, v, 2),
(b} ifye E,, and Q{x, v, z), then &, ({zh)=1y.
(ii] Deduce that there is a compurtable function g{x, ¥ such that
(a) glx, ¥)is defined if and onlv if y = E,.
(b)) if ye E, then glx, y)e W, and &, (gix, y))=v:iie gix, yv)=
d< ({v}.
(iii) Deduce that if £ is a computable injective function [not
necessarily total or surjective) then /™' is computable. (¢f. exer-
cise 2-5.4 (1)),

. (cf. example 3-7.1(2}) Suppose that f and g are unary comput-
able functions; assuming that T, has been formally proved to be
decidable, prove formally that the function hix) defined by

" 11 x e Domi for x € Domig),
hE.tI={

undefined otherwise,

[

is computable.

I~

Two applications of the universal program
We illustrate now the use of the computability of universal functions in
dizgonal constructions. This kind of application will be explored more
thoroughly in the next chapter.

g I Theorem
The probiem *d, is total’ ix undecidabie.
Proaf. Let g be the characteristic function of this problem; i.e.

. |1 if b, istotal,
glx)= S
0 1f ¢, 18 not total.

We must show that g is not computable. To achieve this, we use the
diagonal method to construct a total function f that is different from every
computahle function, yet such that if g is computable, then so is f
Explicitly, define § by
{tﬁ-x'lel+ 1 if &, is total,

B

flel=
fxl if &, isnot total.

Clearly, f is total and differs from everv computable function &,. Now,
using g and ¢y we can write f as follows:

ﬂt.l=luhrllx,x}-'-1 ifglx)=1,
=1,

if g{x)=0.

T
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Now suppose that g is computable; since ¢y is computable. then, by
Church's thesis, so is f, which is a contradiction. Hence g is not
computable, [

Our second application here fulfils the promise made in chapter 3 § 3.

2.2 Theorem
There is a total computable funcrion that is not primitive recursive,

Proaf, We give an informal proof. Recall that the primitive recursive
functions are those functions that can be built up from the basic functions
by a sequence of applications of the operations of substitution and
recursion. Thus each primitive recursive function can be specified by a
rlan that indicates the basic functions used and the exact sequence of
operations performed in its construction. To describe such a plan it is
convenient 10 adopt some notation such as the following:

Sublf: g1, £2.. . .. £ denotes the function obtained by substituting
Biy o~ 2minto [ (assuming that f i m-ary, and gy, .. ., 8. are a-ary for
SOMEe i),

Recl f, g} denotes the function obtained from f and g by recursion
{assuming that fis n-ary and g is (n + 2)-ary for some n).

If we write S for the function x +1, then we have, for example, the

following plan for the function fix)=x". We use letters gy, ..., g4 t0
denote intermediate functions.
Plan Explanation of the steps

gz y, 2)=Uilx, y, z)+1=z2+1,
{gz{r-. M=Uilx)=x,
galx, v+ 1= gilx, ¥, g2lx, ¥))
=galx, ¥+ 1.

Step 1. g, =Sub(S; U3).

Step 2. ga=Rec(UL, g).

So galx, yl=x+y.
Step 3. g3 =Sub(g:; UL, U3 gilx, ¥, z)=glx, zl=x+z.
{g4l_x,l}]={],
galx, ¥y + 1) = galx, ¥, g4lx, ¥))
=x+gx, ¥
So gylx, v)=xy.
Step 5. f=Sublgs: Ul, Ui). fix)=gx, x)=x"
Thus a plan is somewhat akin to a program, in that it is a finite and explicit
specification of a function.
We now restrict our attention to plans for unary primitive recursive
functions. As with programs, we can number these plans in an effective

Step 4. gs=Rec(0, 23).
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way, so that we mayv then define

8, = the unary primitive recursive function
defined by plan number n,

Then Ay 8. P2, ... is an effective enumeration of all unary primidve
recursive functions.

From chapter 2 we know that every primitive recursive function is
computable. Hence there is a total function p such that for each n. pin) is
the number of a program that computes 8, ; i.e.

B = ho

Mow the crucial peint is that we can find such a function p that is
computaple. We argue informally using Church’s thesis.

Recall the proofs of theorems 2-3.1 and 2-4.4, There we showed
explicitly how to obrtain a program for the function

Sublfign..., Bu)

given programs for 7, g1. .. ., g and also, how to obtain a program for
the function

Recif, g)

given programs for f and g. (In the next section (example 3.1(5)) we use
the 5—m-n theorem to show in detail that for cach n thereisa computable
function r such that for any ey, » an index for Recid)”, ¢ ) is given by
rieq, ¢2): we can do a similar thing for substitution (see exercise 3.2(54)).)
We also have explicit programs for the basic functions. Hence, given a

plan for a primitive recursive function f involving intermediate functions

E1. ..., Bx. say, we can effectively find programs for gy, ga,..., @, and
finally f. Thus there is an effectively computable function p such that
B = dpinye

By Church’s thesis, p 1s computable.
Now for the pavoff! From p and the universal function ¢, we can define
a total computable function g that differs from every primitive recursive
funetion #,. We use a diagonal construction as follows:
glxi=81x)+1

= gpzix)+1

= pix), x)+1.
From this we see immediately that g isa total function that is not primitive
recursive; but g is computable, by the computahility of Wy and p. O
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3, Effective operations on computable functions

In this section we illustrate another important application of the
computability of the universal functions, this lime in conjunction with the
—m—n theorem.

Consider the following operations on computable functions or their

domains:

ig) combining &, and ¢, to form the product &.4, ;

(b} forming the union W, u W, from W, and W..
We are all famibiar with a wide variety of operations of & similar kind,
usually defined explicitly like these, Is there any sense in which these
operations can be thought of as effective operations? [nasmuch as these
are operations involving infinite objects (functions or sets), they seem to
lie outside the scope of even our informal notion of computability, which
mplicitly applies only to finite objects. Nevertheless, we will see, for
instance, that an index for the function ¢.4, can be obtained effectively
from the indices x, y. In the following examples and exercises we see that
many other operations are effective when viewed thus as operations on
indices of the objects involved. (We will return ta the tapic of effective
operations on functions in chapter 10.)

3.1. Examples
1. There is a totzl computzable function 5(x, y) such that for all x, v

¢'::-.>| T ﬁf’:'ﬂf'r
Proof. Letfix,y, z2)=d.(z)p,(z)
=ulx, )iy, 7).
Thus [ is computable, so by the s—m—na theorem there 15 a total
computable function s(x, y) such that fi(x, y, 2) = ¢, (2); hence

Proiay) = Puly. s
2. Taking g{x)=slx, x), with g as an example 1, we have ($,)" =
q&u’!rl'

3. There is a total computable function s(x, v) such that
Mli.}-f-= W.u W,
= 7 fzeWoorzes W,
Proof. Letfix, v, z)=" ’
|undefined otherwise.

By Church's thesis and the computability of v, f 15 compu-
table; so there 15 a total computable function s(x, y) such that
fix, v, 2)=4db.iz). Then clearlv W, .= W, o W,
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4. Effectiveness of taking inverses. Let gix,v] be a computable

function as described in exercise 1.5; L.e. such that
(a) glx, y)is defined if and only if y € E,,
(k) if v E,, then gix, y)E W, and #.(glx, y))=1y.
By the s—m-n theorem thers is a total computable function &
such that gix, y) =y, yv). Then from (a) and (#) we have
1;:,1','] Wkn.-p =K.
b)Y 1) By W,
[ii) if veE,, then &, [dedv]i=y.
Henee, il ¢, is injective, then dy., = d7 ! and Euiy = W..

. Effectiveness of recursion. Let x ={x,, ..., x,.) and consider the

in+3]-ary function f defined by

fler, e, x, 00 =" (x),
Jrl..ﬂ 1y f2: L ¥ T 1} _\_,‘:ﬁ.':l"':l'.x' ¥ .Ir.I:.'E':! Lot Y:”-
Then using the universal functions ;' and &Y' to rewrite the
expressions on the right, this is a definition by recursion from
computahle functions, so [ is computable. Moreover, for fixed e,
#3 the function gix, y)=fle;, ez, x. v) is the function obtained
from ¢!} and &.}' "' by recursion.

By the s—m—-n theorem there is a total computable function
rley, e2) such that

ml -
ronen 15 ¥1=fle:, €5, %, ¥l
Hence rieq, e2) is an index for the {n + 1)-ary function obtained

from @' and & .2 ' by recursion. In the notation of theorem 2.2
brie vn = Recld ) ')

for all &4, #3.

The following exercises give more examples of the use of the s—m-n
theorem in showing that operations are effective on indices.

3.2,

Exercises

. Show that there 15 2 total computable function & (e) such that for

any g, if &, is the characteristic function for a decidable predicate
M ix). then ., is the characteristic function for ‘not M(x)',

. Show that there is a total computable funetion & (x) such that for

every x, Ev .= W..

. Show that theére is a total computable function six, ¥} such that

forall x, v, Eifpy = E: U E,.

. Suppose that fix) is computable; show that there is a total

computable function k(x} such that for all x, W =f WL

-

AR e s AT B W By

5. Prove the equivalent of example 5 above for the operations of
substitution and mimmalisation, namely;
@) Fix m,n=1; there is a total computable [unction
ile, €1, ..., € such that (in the notation of theorem 2.2)

&R =SS 62, 85 6,
i#) Fixn=1;there is a total computable function kie ) such that
forall &,

by (x) =y (6 (k¥ =0).
(We could extend the notation of theorem 2.2 in the obvious way
and write ¢\, = Min(&." " ')

Appendix

Computability of the function o,

In this appendix we give a formal proof that the function a,
defined in the proof of theorem 1.2 is computable (in fact, primitive
recursive] thus completing a formal proof of the computability of the
universal function ;.

Theorem,

The funciion tr, 15 primiive recursive.

Proaf. For the definition of o, and the functions ¢, and j, coded
by m,, refer wo the proof of theorem 1.2,

We define two functions ‘config’ and nxt’ that deseribe the changes in
¢, and j. during computations. Suppose that at some stage dunng
computation under P, the current state is o = (¢, f), and suppose that P,
has s instructions. We can describe the effect of the jthinstruction of P, on
the state o by defiming

1‘ the new configuration
| after the jth instruction ifl=j=s,

configle, o) = |of P, has been abeyed.

e otherwise,

the numberof the next  ifl=j=5
instruction for the and this next
computation, after the instruction
fthinstruction of P, has  existsin P.
been executed on the

configuration ¢,

nxlie, o) =

L0 otherwise.
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Now o, can be obtained from config and nxt by the following recursion
equations:

oule, . 0)=w(2%3% . pi~ 1),
oy le, x t+ 1= alconfigle, o (e, x, 1)), nxtie, o, (e, 3 £)]).

Thus, o, is primitive recursive if config and nxt are primitive recursive; we
procesd to show that they are.

We must be careful now to distinguish between the code number g({)
of an Instruction I and its number in any program in which it occurs (i.e.
the number § such that 1 is the jth instruction), We will always use the
term code number when #(1) is intended.

Itis sufficient to establish that the following four functions are primitive
TECUFSIVE:

i1} Inie) =the number of instructions 1n program P, ;

the code number of the jth

i) gnie, j) =+ instruction in B, if 1=i=In{el,
.0 otherwisz;
(3 chiz, z) = the configuration resulting when the

configuration ¢ is operated on by the
instruction with code number z;

the number j of the

‘next instruction for the

computation’ when the

configuration ¢ is operated on

{4) i€, s 21 =19 by the instruction with code ifi=0,
z, and this occurs as the

Jth instruction in a program,

0 otherwise

{The ‘next instruction for the computation’ here is as defined in chapter 1
§2,50 '=j+1 or, if { is a jump instruction Jim,, mz, g) we may have
i'=q.)
It these four functions are primitive recursive, then remembering that
o=mic, }) where ¢ = w1 lor) and j = mal7) we have
[chimyler), gnle, maler))) i 1 =mala) =Inle).

configle, o) = .
Larler) otherwise.
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¥{miler), maia), gnle, walo)))
nxtle, o} = JI il this number is < In{e).

L0 otherwise,

Thus config and nxt are primitive recursive, by the methods of chapter 2.

It remains to show that the functions (1)-(4) above are primitive
recursive. A sequence of auxiliary functions is needed to decode the code
numhers of programs and instructions. We use freely the standard
functions and technigues of chapter 2 §§ 1-4, together with the functions
defined in chapter 4 § 1 for coding instructions and programs.

(5] Thefunctions e (f, x), Hx), b, xyand a(i, x)of exercise 2-4.16{5) are
primitive recursive,

Proof. (i) x=%_,aii,x)2'; so we have qu2,x)=alix)+
ali+1,x)2+. .. and hence ali, x)=rm(2, qt(2’, x)).

i) Hx)=number of is such that = {i, x)=1; hence

Hxi= % aif x).

[+

i) If x>0, g=2400 2"y bl s, i 1=i=lix),

1

then b7, x) 15 the jth index & such that «(k, x)=1. Hence
1 [#}'{x( ¥ alk,x)= !'] ifl=i=HNx)and x =0,
bu,xi=] k=
1] otherwise,
(iv) From the definition:
ali, xi=hli x) i=0,1)
ali+l, xi=(0a+1, x)=biLxn~1 i=1)
From the above explicit formulae, using the techniques of chapter 2,
these functions are all primitive recursive.
i(6) The funections In(e) and gnie, [ are primitive recursive.
Progf, From the definitions of the coding function ¥
Iniey={le+1),
gnle, fi=alj, e+1),
where { and a are the functions in (5).
(7) There are primitive recursive functions u, &y, Mz, ¢, ¢z, va such that:
if &+ =g(Z{m)), then u(z)=m,
if z=gRI18(m)), thenulzl=m,
if z=g(Tlmq, ma)), then uyiz]=my and ua{z)=m,,
ifz=8A0m. mzq)), thenviz)=my, valz)=ma,

and valz)=g.
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Proof. From the definition of 8, and writing (z/4) for qti4, z), take
uz)=(z/41+1,
izl =miz/4)+1,
ualz)=malz/ 4+ 1,
vilz)=milmiz/40+1,
valz) = malmilz/4)) + 1,
valz)=mmalz/41+1.

{8) The following functions are primitive recursive:

(1) zeroig, m)=the change in the configuration ¢
effected by instruction Z{m ),
= qt[pf,r;}"'. c):

(ii) sucie, m)=the change in the configuration ¢
effected by instruction S(m),
= pr_

i1i) transfer{ec, m, n)=the change in the configuration ¢
effected by instruction Tim, n),
=qtpy " cPa ")

(9} The function chic, ) (defined in (3) above) is primitive recursive.
Proof.

fzerole, wiz)) frmid,z}=0(.e.z
is the code of a
zern insiruction),

| sucle, u(z)) frm(4,z)=1(ie. =
is the code of a
chle, 2} =1 SUCCessOr instruction),
transferic. u(z), uz02)) Hrmid, z)=2(.e. z
is the code of a
transfer instruction),

L& otherwise.
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{10) The function #(c, j, =) (defined in (4) above] is primitive recursive.
Proaf. We have

[j+1 if rm(4, z)#3

{i.e. z isthe

code of an

arithmetic

instruction),

e, Zl=x . ey
1“‘ I ] ;+ 1 ].f{_{:_ll;l[r];é{f]“z‘_”

ifrmi{4,z)=3
iLe. z is the eode of
& jump instruction).

vsiz) ko ={Cloaa)

From this definition by cases, we see thal ¥ 15 primitive recursive.
We have now shown that the functions (1)—{4) above are primitive
recursive, so the proetf of the theorem is complete. [
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Decidability, undecidability and
partial decidability

In previous chapters we have noted several decidable problems, butso far
we have encountered only one explicit example of undecidability: the
problem ‘¢, is total’ (theorem 5-2.1), It is of considerable interest to
identify decidable and undecidable problems; the latter, particularly,
indicate the limitations of computability, and hence demonstrate the
theoretical limits to the power of real world computers.

In this chapter the emphasis is largely on undecidability. In % 1 we give
a survey of undecidable problems arising in the theory of computability
itself, and discuss some methods for establishing undecidability. Sections
2-5 are devoted to a sample of decidable and undecidable problems from
other arcas of mathematics: these sections will not be needed in later
chapters and may be omitted. In the final section we discuss parial
decidabiliry, a notion closely related to decidability.

Let us recall from chapter 1 that a predicate M (x) is said to be decidable
if its characteristic function c,y, given by

(1 if Mix)holds,
‘l{ll if M (x) does not hold,

emix)=

15 computable. This i1s the same as saying that M(x) is recursive (see
chapter 3 & 2). The predicate M (x) is undecidable if it is not decidable. [n
the literature all of the following phrases are used to mean that Mix) is
decidable.

Mix) is recursively decidable,

M (x) has recursive decision problem,

M(x) is solpable,

Mix) is recursively solvable,

M ix) is compurable.

An algorithm for compuling ¢y is called a decision procedure for Mix).
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1. Undecidable problems in computability
Most proofs of undecidability rest on a diagonal construction, as
in the following important example.

1.1. Theorem
‘x € W.' (or, equivalently, ‘¢.(x) ts defined’, ar ‘P.(x W, ar
“Gulx, x) is defined’) is undecidable.
Praof. The characteristic function f of this problem is given by

f ]_{1 if x = W,
P70 itxew,
Suppose that f is computable; we shall obtain a contradiction.

Specifically, we make a diagonal construction of a computable function g
such that Domig) = W.(=Dom(g,)} for every x; this is obviously
contradictory.
The dizgonal motto tells us to ensure that Domig) differs from W, atx;
50 we aim to make
xeDomig) < xe W,
Lzt us define g, then, by
{x]_{l] if e W, (e if flx)=0),
Bl undefined ifxe W, (Le.if fix)=1)
Since [ is computable, then 30 is g (by Church’s thesis); so we have our
contradiction. (To see this in detail: since g is computable take m such
that g = ¢..;thenm = W,, © meDoml(g) & me W,, 2 contradiction),
We conclude that f is nor computable, and so the problem 'r= W, " 1s
undecidabhle. [

Naote that this theorem does nor say that we cannot tell for any
particlar number a whether ¢, (a) is defined. For some numbers this is
guite simple; for instance, if we have written a program F that computes a
total function, and P = P, then we know immediately that ¢.la) is
defined. What the theorem savys is that there 15 no single general method
for deciding whether ¢.(x) is defined; i.e. there is no method that works
for every x.

An easy corollary to the above result is

1.2 Carollary
There v a computable function h such thar the problems ‘x e
Dom(Ah) and ‘x € Ranik)' are koth undecidabie.
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Proaf. Let
/ x if re W
hi =I 2
x) undefined if xg W,.

Then h is computable, by Church’s thesis and the computability of the
universal function dy: (or, formally, we have that hix)=x L{pulx, x))
which is computable by substitution). Clearly we have ¥ = Dom(A) &
x = W, & x=Ranlh), so the problems ‘x e Domik}’ and ‘x = Ran(h)
are undecidable, [

Another important undecidable problem is derived easily from
theorem 1.1:

L Theorem (the Halting problem)
The problem ‘&, (y) is defined” (or, equivalentdy *P.(vi] or 'y e
W.') is undecidable.

Proof. Arguing informally, if the problem ‘e, 1) is defined’ is deci-
dable then so is the problem ‘¢, (x) is defined’, which is if anything easier,
But this contradicts theorem 1.1, |

Giving this argument in full detail, let g be the characteristic function
for *¢,(v) is defined’; i.e.

1 if &.(v)is defined,

0 if é.iv) is not defined.

If g 1= computable, then so is the function f(x)=g(x, x); but f is the
characteristic function of *x € W.°, and is not computable by theorem 1.1,
Hence g is not computable; so ‘g, (v) is defined’ is undecidable. [

glx, ¥)=

Theorem 1.3 is often described as the Uﬁsu]vabjtity of the Halting
problem (for URM programs): there is no effective general method for
discovering whether a given program running on a given input eventually
hzlts. The implication of this for the theory of computer Programming is
obvious: there can be no perfectly general method for checking programs
to see if they are free from possible infinite loops.

The undecidable problem x = W,' of theorem 1.1 is important for
several reasons. Among these is the fact that many problems can be
shown to be undecidable by showing that they are at least as difficult as
this one. We have already done this in a simple way in showing that the
Halting problem is undecidable (theorem 1.3): this process is known as
reducing one problem to another.
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Speaking generally, consider a prablem A (x]. Often we can show that
a solution to the general problem M (x) would lead to a solution to the
generzl problem ‘xe W,'. Then we say that the problem ‘xe W," is
reduced to the problem A ix). In other words, we can give a decision
procedure for ‘x = W, " if only we could find one for Mx). In this case, the
decidability of M (x) implies the decidability of “x £ W.’, from which we
conclude immediately that Mix) is undecidable.

The s—m-n thecrem is often useful in reducing ‘x = W.' to other
problems, as illustrated in the proofl of the next result.

1.4. Thearem
The probiem "¢, =0 is undecidable.
Proaf. Consider the function f defined by
Fry) = [E' ifxe W,
U lundefined  ifxe W

We have defined f anticipating that we shall use the s—m-n theorem:
thus we are thinking of x as a parameter, and are concerned about the
functions g. where go(y) = f(x, v]. We have actually designed f so that
=0 xe W,

By Church's thesis (or by substitution using 0 and ;) f 1s computable;
so there is a total computable function k(x) given by the s=m-n theorem
such that flx, v} = dwly) e ¢ = g Thus from the definition of f we
see thart
*) xe W, & du=0

Hence, a particular question Is x = W, 7 can be settled by answering the
question Is ¢, = 07 We have thus reduced the general problem ‘x € W’
to the general problem ‘g, =0'; the former is undecidable, hence so is the
latter, as was to be proved.

Let us present the final part of this argument in more detail as 1t is the
first example of its kind. Lat g be the characteristic function of ‘¢, =07,
i.e.

ifd, =0,

if g, # 0.

Suppose that g is computable; then so is the function kix) = glk(x]). But
from (*) above we have

1 ifghgin =002 x W,

0 if g #0;1e xe W,

gm=|:]

&{x}={
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So by theorem 1.1 f is nor computable. Hence g is not computable, and
the problem “¢b, =0 is undeadable. O

From theorem 1.4 we can see that there are inherent limitations when it
comes o checking the correctness of computer programs; this theorem
shows that there can be no perfectly general effective method for check-
ing whether a program will compute the zero function. By adapting the
proof of theorem 1.4 we can see that the same is true for any particular
computable function (see exercise 1.8(1¢) below).

The following easy corollary to theorem 1.4 shows that the question of
whether two programs compute the same unary function is undecidable.
Again there are obvious implications for computer programming theory.

1.5, Corollary
The problem ‘¢, = &," {5 undecidable.

Proaf. We can easily see thal this is a harder problem than the problem
'y =1,

Let ¢ be a number such that ¢, =0; il fix, v} is the characteristic
function of the problem &, = ., then the function glx)=fix, ¢) is the
characteristic function of ‘¢, = 0. By theorem 1.4, g is not computable,
so neither is f. Thus ‘¢, = ¢, " 1s undecidable, O

We use the s—m-n theorem again to reduce the problem 'x € W, " in the
following results.

1.6. Thearem
Let e be any number, The following problems are undecidable.
{a) (the Input or Acceptance problem) ‘c € W, (equivalenty,
‘Polch' or ‘c e Domic, ).
{B) (the Output or Printing problem) ‘¢ £ E, (equivalently, ‘c =
Ran{d.)").
Proof. We are able to reduce ‘xc W,' to these problems simul-
taneously. Consider the function f(x, v) given by
“ ,*l}' if xe W,
FPRYER undefined otherwise.
(With the s—m-n theorem in mind, we are concerned about the functions
g: where g,(y)=fix, y): we have designed f so that ¢ = Domig,) <
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r= W, & ceRanig.).) By Church's thesis f is computable, and so
the s—=m-n theorem provides a total computable function & such that
flx, v)=dwxiy). From the definition of [ we see that

x= W, > Wi =E. =450 ce Wyyandc e Exens

and
XE Wt =% Wp_u'. = EJ.:.:’,‘: = E, S0 CE Wm_. and c& En:[x],
Thus we have reduced the problem ‘x = W.' ta each of the problems
‘ce W, 'and ‘ce E,".
Completing the proof of (a) in detail, we see that if g is the charac-
teristic function of ‘¢ £ W', then
L bty
This function is not computable (theorem 1.1), so g cannot be compu-

table. Hence ‘¢ = W.' is undecidable.
A detailed proof of (h) is similar. O

We conclude this section with a very general undecidabality result, from
which theorems 1.4 and 1.6 follow immediately. It is another use of the
s—m-n theorem to reduce ‘x = W0

1.7. Thearem (Rice's theorem)
Suppose that B %), and # = &, €. Then the problem "¢, e R’
is undecidable,

Proof. From the algebra of decidability (theorem 2-4.7) we know that
‘B, £ A is decidable iff ‘¢, = €,\®" is decidable; s0 we may assume
without any loss of generality that the function f that is nowhere defined
does not belang to & (if not, prove the result for €,\5).

Choose a function g € #. Consider the function f(x, y) defined by

gly) ifxe W,
flx.y) {undeﬁncd if xe W,
The s—m—n theorem provides a total computable function & (x) such that
flx, ¥y)=dye(y). Thus we see that
xe W, 2 duo=g Le. din e F:
xE W, = dpini=Ffz 1.8 P 2B

So we have reduced the problem ‘x € W, to the problem ‘¢, € &' using
the computable function &. In the standard way we conclude that ‘¢, = B’
is undecidable. I
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Theorem 1.4, for example, is obtained immediately from Rice's
theorem by taking #={0}, and theorem 1.6{a) by taking & =
ig € €;:c e Dom(g)}. Rice's theorem may be similarly applied in several
of the exercises below,

1.8, Exercises

L. Show that the following problems are undecidable.

(@) ‘x = E." (Hini Either use a direct diagonal construction, or
reduce ‘x £ W, to this problem using the s—m-n theorem.),

(h) "W, =W, (Hinr. Reduce ‘¢, 1s total’ to this problem.),

(c) “d.(x}=0,

id) ‘& iv)=0,

i) 'xeE,’,

(f) ‘&, 15 total and constant’,

g) ‘W, =&,

(k) ‘E, is infinite’.

i} ‘b, =g’ where g is any fixed computable function.

2. Show that there is no total computable function fix, v) with the
following property: if P,(y) stops, then it does so in f{x, v) or
fewer steps. (Hinr. Show that if such a function exists, then the
Halting problem is decidable.)

Decidability and undecidability in other areas of mathema-
ticy  In many areas of mathematics there arise general problems for
which the informal idea of decidability is meaningful. Generally such
problems involve finite objects from a particular field of study. The idea
of decidability of some property involving these objects can always be
made precise using a suitable coding by natural numbers.

Much research has been directed towards identifving both decidable
and undecidable problems in a variety of mathematical situations: in the

next sections we give a small sample of the results that have been
obtained.

2, The word problem for groups’
Suppose that (7 s & group with identity element 1, and that G is
generated by a set of elements S={gy. g2. g3, .. . }=G. A word on § i3

! The r=ader with no knewledge of group theory should omit this section.
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any expression such as ggjggmgggg involving the elements of § and the
group operations. Each word represents an element of G, and to say that
7 is generared by § means that every element of & is represented by
some word on 5.

The word prablem for (7 (relative to §) is the problem of deciding for
which words w on § is it the case that w=1.

There are many groups with decidable word problem: for example any
finite group (with § finite, of course). For many years mathematicians
searched for an example of a finirely prea'fnfzri"‘ group with undecidable
word problem. Eventually it was shown by Novikovin 1955 and Boone in
1957 that such groups do exist. Proofs of the Novikov-Boone Theorem
are beyond the scope of this survey: the reader is referred to expositions
in Rotman [1965] or Manin [1977].

Group theory, and modern algebra in general, abounds with interes-
ting decidable and undecidable problems; a great many of them involve
properties of words or generators akin to the basic word problem for

2roups.

3. Diophantine equations
Suppose that plxy, xz,..., .} i5 a polynomial in the variables
X1y ..y X, with integer coefficients. Then the equation

for which integer solutions are sought 15 called a disphannne equarion.
Diophantine equations do not always have solutions: for instance the
equation x*—2=0.

Hilbert's tenth problem, posed in 1900, asks whether there is an
effective procedure that will determine whether any given diophantine
equation has a solution. It was shown in IQTI;Ir_b}r Y. Matiyasevich that
there is no such procedure: his proof was the culmination of earlier work
by M. Davis, J. Robinson and H. Putnam.

Actually Matiyasevich established rather more than the unsolvability
of Hilbert's tenth problem; the full Matiyasevich theorem and its appli-
cation to Hilbert's tenth problem are discussed in £ 6. For complete
details consult Davis [1973] or Manin [1977], or Bell & Machover
[1977].

A growp {7 is finitely presented if there is a finite setof generators 8 and a finite set
B of refations of the form w =1 [where w is a word on 5 such thar ii) all relations
in B are true in (3, and (i) all other relations holding in & can be deduced from
those in 8 by using the group axioms alone,
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4. Sturm’s algorithm

To redress the emphasis on undecidability in the previous two
sections, we now mention & theorem of Sturm that gives us positive results
for computability and decidability in connection with the zeros of poly-
nomials.

4.1. Sturm’ s theorem

Letp(x) be areal polynomial, and let po, p1, . . . , p. be the sequence
of real polynomials given by

[a) Po= ﬂ,

(b) pr=p’ (the derivative of p),

(c) for Q< i<r, there 15 a polvaomial q; such thatp,_y = pgi — Pias
with pi—y £ 0 and degree(p;_.)<degreel p,) (5o that g, and —p; 1y
are the quotien! and remainder respectively when p,_, is divided by

o),

{d) p—1=peg.
For any real number ¢ denote by 8(c) the number of sign changes in the
sequence pole), . .., p.ic) (ignoring zeros).

Suppose that a, b are rea! numbers that are not zeros of plx), and a < bh.
Then the number of zeros of p(x) in the interval [a, 5] is 5(a)— &(b), (each
zera being counted once only),

This is not the place to give a proof of Sturm's theorem. which the
reader may find clearly expounded in Cohn [1977] or Van der Waerden
[1949]. From our point of view, Sturm's theorem is interesting because of
the algorithm it embodies. It gives us positive results about the compu-
tability of the number of zeros of a polynomial, and the decidability of
statements about zeros of polynomials.

To frame such results, we must restrict attention to polynomials over
ihe rational numbers, denoted by @, so that the objects we are dealing
with are finite. Thus we are thinking in terms of computability over the
domain Q (which can be defined in terms of computability on M by the
usual coding device); note that a polynomial p{x) with coefficients in @ is
essentially a sequence of rational numbers.

A sample of the results that follow from Sturm’s theorem is the
following.

42, Theorem
(@) There is an effective pracedure for calculating the number of
real zeros of a palyvnomial over Q;
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ib) The predicate *p has a zero in [a, &] is decidable, where p
denotes a polvaomial prer Q@ and a, be Q.

Proof. Given any polynomial p, the pelynomials py, pu, . . ., pr defined
in Sturm’s theorem may be found effectively by using the standard rules
for differentiation and the division algorithm for polynomals.

For (a), it is a routine matter to find for any polynomial pix ) 2 rational
number M =0 such that all the zeros of p lie in the interval ]-M, M[. In
fact, if plx)=ag+a;x+...+a,x", the number

1
M= l--—[]a;; A |ﬂ_-|_—|_|':|
a

suffices. Then by Sturm’s theorem the number of zeros of p is §{—M)—
&{M) which may be calculated effectively.

For (), suppose that we are given a polynomial p and rationals a, b. To
decide whether g has a zero in [a, #], first calculate pla) and plb); if
neither of these is zero, caleulate #Slal—4&(b) and apply Sturm’s
thearem. [

Of course, Sturm’s theorem can be used to show that many other
questions about polynomials over @ are computable or decidable,

4.3. Exercise

Show that there is an effective procedure, given a polynomial p
and rational numbers g, b, for finding the number of zeros of p in [a, b].
(Remember that 2 or b may be zeros of p.)

5. Mathematical logic
Early investigations into the idea of effective computability were
very much linked with the development of mathematical logic, because
decidability was regarded as a basic question about any formalisation of
mathematics. We shall describe some of the results that have been
obtained in this area, in general terms that do not assume any acquain-
tance with mathematical logic. (The reader interested to learn the basics
of this subject may consult one of the many introductory texts, such as
Margaris [1966].)
The simplest logical system reflecting something of mathematical
reasoning is the propesitional calculus. In this calculus compound state-
ments are formed from basic propositions using symbaols for the logical

connectives ‘not’, ‘and’, ‘or’, and ‘implies’. [t is quite easy, once thfz
]
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propasitional calculus has been carefully defined, to see that it is deci-
dable. By this we mean that there is an effective procedure for deciding
whether a statement o of the calculus is (universally) valid; 1.e. true in all
possible situations. The method of truth tables gives an algorithm for this
that will be familiar to many readers.

A logical system that has greater expressive power than the pro-
positional caleulus is the (firsr-order) predicate calculus: using the
language of this calculus it is possible to formalise a great deal of
mathematics. The basic statements are formed from symbols represen-
ting individuzl objects (or elements) and predicates and functions of
them. The compound statements are formed using the logical svymbols of
the propositional caleulus together with ¥V and 3.

There is a precise notion of a prosf of a statement of the predicate
caleulus, such that a statement is provable if and onlv if it is valid.” In 1936
Church showed that provability (and hence validity} in the predicate
calculus is undecidable, unlike the simpler propositional calculus. (This
result was regarded by Hilbert as the most fundamental undecidability
result for the whole of mathematics.)

We can use the URM to give an easy proof of the undecidability of
validity, although this calls upon a certain familianity with the predicate
caleulus. We advise the reader who does not have a rudimentary know-
ledge of predicate logic to omil the proof that we now sketeh.

L8 Theorem
Validity in the firs:-order predicate caloulus is undecidable.

Froaf. (Not advised for strangers to the predicate calculus,)

Let P be a program in standard form having instructions [y, ..., I, and
let # = p[P) (as defined in chapter 2 § 2). We use the following symhols of
the predicate calculus,

0 a svmbol for an mdividual,

" a symbol for a unary function (whose value at x is x'),

R a symbol for a (1 +1)-ary relation,

X1, ¥za. .« X, Y Symbols for vanable individuals.
The interpretation we have in mind is that 0 represents the number 0, '
represents the function x+1, and R represents the possible states of a
computation under P. Thus if we write 1for 0', 2 for 0, ete. the statement

Riry. ..., k)

* This is described by saying that the nation of provability is complere, and is the
content of (ddel's completencss thearem.
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where ry,. .. r,, k €F means that the state

ri 2 | s | R 0 0| ... ; nextinstruction I,

ocours in the computation.

Mow for each instruction f; we can write down & statement 7; of the
predicate calculus that deseribes the effect of [, on states, using the symbol
» for *and’ and — for ‘implies™:

{a) if [y =Zin) let 1, be the statement

Wxy . W Rix L X X D R{xL L 0L K
(&) If I =5[a) It 7 be the statement

b SRR - & A : [ TR POGRRrat. Dl | o - | T PSS ol NS i o
ic) IE £; =Tim, v} let 7; be the statement

Wiy ML R v M e M T P e M s X I h
idr It I =Jim, n, g let 7; be the statement

Wy .. W Rixg..... Ko 1= (% = %0 = Rixp, ..o %0 qld

A # K = Ry, LG, )
Now for any a =4 let o, be the statement

(farma o onmaRa, 0,000,010
=3 ... Ix, Rixy, .., x84+ 10,

whare rp 1s the statement ¥x¥y((x' =y' = x=vy)ax'#0). (This cnsures
that in any interpretation, if m, 1 =® and m=n then m = n.)
The statement Ri{a, 0, ..., 0. 1) corresponds 1o a starting state

a i GT, .. ¢ nextinstruction I,

and any statement R(x,,...,X,, s+ 1) corresponds to a halting state
isince there 15 no instruction .., ). Thus we shall see that

) Pial) < o, isvalid.

Suppose first that Pia}l, and that we have a structure in which 7, ..., 7,
and R{a, 0,...,0,1) hold. Using the statements 7y, . .., 7. we find that
each of the statements Rirs, ..., r,, k) corresponding to the successive
states in the computation also holds. Eventually we find that a halting
statement Rib., ..., by. s+ 1) holds, for some b4, ..., b, €M, and hence
;.. Ix, Ring, ..., %0 8+ 1) holds, Thus o, 15 valid.
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Conversely, if o, is valid, it holds in particular in the structure [y with
the predicate symbol R interpreted by the predicate R, where

Rala., ..., a, k]= At some stage in the computation Pia) the
registers contain ay, az....,a,,0,0,...and
the next instruction is /..

Then o, ..., 7. and Ria, 0,...,0, 1) all hold in this structure, hence so
does 3x; ... Ix, Rixs,. .., %, 8+ 1). Therefore Pla)l.

If we take P to be a program that computes the function ¢yix, x), the
equivalence (*) gives a reduction of the problem ‘x = W, to the problem
‘or is valid’. Hence the latter is undecidable. T

The field of mathematical logic abounds with decidability and undeci-
dability results. A common type of problem that arises is whether a
statement is true in all mathematical structures of a certain kind. It has
been shown, for example, that the problem

‘e is a statement thal is true in all groups’
15 undecidable (here o is a statement of the first-order predicate language
appropriate to groups), whereas the problem

‘rr is a statement that is true in all abelian groups’
is decidable. (We say that the firsst-order theory of groups is undecidable
whereas the first-order theory of abelian groups is decidable.) Tt was
shown by Tarski [1951] that the problem

‘e is true in the field of real numbers’

is decidable. On the other hand, many problems connected with the
formalisation of ordinary arithmetic on the natural numbers are
undecidable, as we shall see in chapter 8.

For further examples and proofs of decidability and undecidability
results in logic the reader should consult books such as Tarski, Mostowski
& Robinson [1953], or Boolos & Jeffrey [1974].

f. Partially decidable predicates

Although the predicate ‘x = W," has non-computable charac-
teristic function, the following function connected with this problem s
computable:
1 if x e W,
undefined if x& W,
If we continue to think of 1 as a code for Yes, then any algorithm for fisa

fle)= {
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procedure that gives answer Yes when x € W, but goes on for ever when
ye W, does not hold. Such a procedure is called a partial decision
procedure for the problem ‘x e W.', and we say that this problem or
predicate is partfally decidable.

Many undecidable predicates turn out to be partially decidable: let us
formulate the general definition.

a.l. Definitian
A predicate M {x) of natural numbers is partially decidabie if the

function f given by

, '.—[ if M {x) holds,
PE=\ undefined  if M{x) does not hold,

is computable. (This funetion is called the partial charactenistic function
for M.} If M is partially decidable, anv algorithm for computing f is called
a partial decision pracedure for M.

Note. In the literature the terms partially solvable, semi-computable, and
recursively enumerable” are used with the same meaning as partially
decidable.

6.2, Examples
1. The Halting problem (theorem 1.3) is partiallv decidable, since
its partial characteristic function
e ..={1 if P.{y},
P53 7 lundefined  otherwise,

is computable, by Church’s thesis (or by observing that flx, y)=

Ligryix, w10

Any decidable predicate 15 partially decidable: simply arrange

for the decision procedure to enter a loop whenever it gives

output .

3. For any computable function g(x) the problem ‘x = Domig)' is
partially decidable, since it has the compurtable partial charac-
teristic function 1(g(x]). (Cf. corollary 1.2.)

4. The problem ‘x& W' is not partially decidable: for if f is its
partial characteristic function, then

]

xsDomif) & xe W..

Thus Dom( f) differs from the domain of every unary computable
function: hence f is not computable.

* The reason for the use of this term will be explzined in the next chapter.
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We proceed to establish some of the important characleristics of
partially decidable predicates. First we have the alternative charac-
terisation that is given essentially in example 6.2(3) above.

6.3, Thearem

A predicate M (x) is partially decidable if and only if there is a
computable function glx) suchk thar

Mix} iff x=Domig).

Proaf. 1f M(x) is partially decidable with computable partial charac-
teristic function fix), then from the definition we have Mix) iff
x = Domi f). The converse is given by example 6.2{3) above. [

The following characterisation of partially decidable predicates shows
how they are related to decidable predicates.

6.4, Thearem

A predicate M(x) is partially decidable if and only if there is a
decidable predicate Rix, v) such thar

Mix) of IyRix. y)

Proaf. Suppose that R(x, y) is a decidable predicate and that M(x) iff
AyR(x, y). By corollary 2-5.3 the function gix)=uyR (x, v} is compu-
table; clearly

M(x) = xeDomig),
50 M (x) is partially decidable by theorem 6.3,

For the converse, suppose that M ix) is partially decidable, with partial
decision procedure given by a program P, Define a predicate R (x. y) by

Rix,y) = Pix)| iny steps.
By corollary 5-1.3, R(x, v) is decidable. Moreover,
Mix) < Pix)]
= dyR(x, v)
as required. O
Note. From the appendix to chapter 5 it follows that the predicate R in

this characterisation may be taken to be primitive recursive (see the
note | following corollary 5-1.4).

The characterisation given by theorem 6.4 indicates an important way
to think of partially decidable predicates. It shows that partial decision
procedures can always be cast in the form of an unbounded search for a

S A PRy LD et R L L sa il A dkd

number v having some decidable property Rix, v]. This search is most
naturally carried out by examining successively ¥y =0,1,2.... to find
such a y. The search halts if and when y is found such that R({x, v} holds;
otherwise the search goes on for ever.

We can use theorem 6.4 to establish some further propertes of
partially decidable predicates, that aid us in their recognition,

6.5. Thearem

If Mix,y) i partially decidable, then so iz the predicate
IyMix, v).

Praof. Take a decidable predicate Rix, v, z) such that M(x, y) iff

3:zRix, v, z). Then we have

AyMx, y) & FyA:zR(x, ¥, 2).
We can use the standard technique of coding the pair of numbers v, z by
the single number u=2"3%; then the search for a pair v, z such that
Rix,y z) reduces to the search for a single number u such that
Rix, (u), (u)a), Le.

AvMix, v) < JuBx, (), (4)2).

The predicate §(x, u)= R(x, (x)1, (1);) is decidable (by substitution} and
s01 by theorem 6.4 IyM(x, v) is partiallv decidable.

Theorem 6.5 is described by saying that partially decidable predicates
are closed under existential guantification. Its repeated application gives

A6, Corollary
IFMix, ¥) is parally decidable. where v =y, ..., ¥u), then sos

b

the predicate vy .. v Mix, v ool Vel

Let us now consider some applications of the above results.

6.7, Exampies
1. The following predicates are partially decidable.
(a) x= EY" (n fixed). (The Printing problem: of. theorem 1.6.)
b)) W, # & (CL. exercise 1.8(1g))
Proofs
la) x EE‘-L": e 3zq,...32,3( Pz, .., 7o)l x in ¢t steps). The
predicate in the brackets on the right is decidable: apply coro-
llary 6.6.
(b)) W.# & & Jy3niP.(y)l in ¢ steps); again the predicate in
brackets is decidable, so corollary 6.6 applics.
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2. Provability in the predicate calculus is partially decidable (this is
for those who have read § 5).

Proof. We proceed informally; in the predicate calculus a
proof is defined as a finite object (usually a sequence of state-
ments] in such a way that the predicate
Prid, ¢)="'d is a proof of the statement o'
is decidable. Then we have
o 18 provahle <& 3d Prid, o),

hence ‘o is provable’ is partially decidable.

6.8.  Diophantine predicates (cf. § 3)

Suppose that pxy,...,Xe ¥1.. .., V) 15 @ polynomial with
integer coefficients. Then the predicate M(x) given by

Mx)=3y;... 3yalplx, viy .. s ¥ml=0)

i5 called a diophantine predicate, because of 1ts obvious connection with
diophantine equations. (The quantifiers Jv,, ..., Iy, are taken as
ranging over f.)

Example The predicate *x is a perfect square’ is diophantine,
since it is equivalent to Iy (x —y =0).

From corollary 6.6 we have immediately

h.9, Theorem
Diophantine predicates are partially decidable.
Proof. The predicate pix, ¥) =0 is decidable; apply corollary 6.6.

Clearly, diophantine predicates are partially decidable predicates that
can be cast in a relatively simple form, and for a long time it was not
known whether any undecidable diophantine predicates existed. This
guestion is closely connected with Hilbert’s tenth problem (§ 3), as we
shall see. It was a most remarkable achievement, therefore, when Mati-
vasevich proved in 1970:

6.10.  Theorem
Every parially dectdabie predicaie is diophantine.

The proof of this result by Matiyasevich rested heavily on earlier work
of Davis, Robinson and Putnam, and is far too long to present here. Full
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proofs are given in Davis [1973], Bell & Machover [1977] and Manin
[1977] The major part of the proof consists in showing that diophantine
predicates are closed under bounded universal quantification: ie. if
Afix, y) is diophantine then so is the predicate ¥z <yM(x, z). (It is an
easy exercise to show that partially decidable predicates are closed under
hcljnded universal quantification; see exercise 5.14(5) below.)

We can see how a negative solution to Hilbert's tenth problem is easily
derived from Matiyasevich’s theorem. First note that if the problem
posed by Hilbert is decidable, then so is the problem of deciding for a
general polynomial equation ple, ..., %)= () (with integer coefficients)
whether it has a solution in the natural numbers: this is because any
natural number is expressible as the sum of four squares, so we simply
lock for integer solutions to

plad+ii+ui=ol,. 5ot vun+en) =0,

MNow take a polynomial plx, y1,.. ., ¥m) such that

re W, <:>'E|1.'L e AR (POE Yy o0 Y] =10)
[this is possible by Matiyasevich's theorem). Then a decision procedure
for Hilbert's problem would give the following decision procedure for
‘v= W, to test whether a= W, see whether the polvnomial
Give, . o) V) =pl& Y1, .. ., ¥ ) has a solution in ™. 50 *x € W, " has been
reduced to Hilbert’s problem: hence the latter is undecidable.

We shall mention another (surprising) consequence of Mativasevich's
thecrem in the next chapter.

We conclude this chapter with two important results, linking partially
decidable predicates with decidable predicates (theorem 6.11) and
computable functions (theorem 6.13).

6.11.  Thearem
A predicate M(x) is decidable if and only if both M(x) and ‘not
Mix) are partially decidable.
Proof, If M(x) is decidable, so 15 ‘nol M(x)', so both are partially
decidable,
Conversely, suppose that partial decision procedures for M (x) and ‘not
M{x) are given by programs F, G. Then

Fix)]l © Mix) holds
and

Gix)) < ‘not M(x) holds.
Morcover, for any x, etther Flx), or G(x), but not berh. Thus
the following is an algorithm for deciding M(x). Given x, run the
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cnmguutaliu ns Fixland Gix) simultanen usly (or carry out altern ately one
step in each computation), and go on until one of them staps. If it is Fix)

that stops, then conclude that M{x) holds: if it is Gy
' 3 (x) thart st
M(x) does not hold, [ at stops, then

This theorem gives an alternative proof that the predicate ‘v W, is
not partially decidable. Similarly we have

6.12.  Corollary
‘ . The predicate "P.(y)1" (the Divergence problem: eguivalently,
ye W.', or ‘¢, (v) is undefined’) is nol partially decidable,

Praof. If this problem were partially decidable, then by theorem 6.11
and example 6.2(1) the Halting problem P, (y}] would be decidable. [J

. The final result of this chapter gives a useful way to show that a function
15 computahle.

6.13.  Theorem

Let f(x) be a partial function. Then [ is computable if and only if
the predicate -

fla)=y
ix partially decidable.
Froof. 1f f is computable by a program P, then we have
fixi=y & 3t(Pix}ly in ¢ steps).

The predicate on the right is partially decidable by theorem 6.4 and
corallary 5-1.3,

Conversely, suppose that the predicate *f(x) =y is partially decidable.
Let Rix, y, 1) be a decidable predicate such that fledb=y = 3R (x, v. 1)
Then we have the following algorithm for computing fix). L

Search for a pair of numbers y, ¢ such that Rix, y, ] holds: if and when
such a pair is found, then f{x)=y.

H:Irnue f is computable. (A formal proof of the computability of f could
be given by the standard technique of coding a pair y, ¢ by the- single
number z =2"3', See exercise 6.14(8) below,) [0

Fu:r:hcr properties of partially decidable predicates are given in the
exercises below (see in particular exercises 6.14(4, 5,91,

lnl the next chapter we will be studying unary partially decidable
predicates in greater detail, in the guise of recursively ﬁ'numer:;bfe.rﬂs. We
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shall see in particular why partially decidable predicates are oftzn
described as recursively enumerable predicates.

6.14. Exercises
1. Show that the following predicates are partially deaidable:
(a) *EV £ & (n fixed),
[B) ‘¢, [y} 1s 2 perfect square’,
[¢) *nisa Fermat number’, (We say that nis a Fermar number if
there are numbers ¢, v, z =0 such that x" = y" =z")
(d) ‘“There is a tun of exactly x consecutive 7s in the decimal
expansion of 7',
(For those knowing some group theory) Show that the word
problem for any finitely presented group is partially decidable.
3. A finite set 5 of 3% 3 matrices 1s said 1o be morral if there is a
finite product of members of § that equals the zero matrix. Show
that the predicate °§ is mortal’ is partially decidable. (It has been
shown that this problem is nor decidable: see Paterson [1970].)
4. Suppose that M (x) and N{x) are partially decidable; prove that
the predicates ‘M {x) and N(x)', ‘M(x) or Nix)' are partially
decidable. Show that the predicite ‘not M(x)’ 15 not necessarily
partially decidable.
5. Suppose that Mx, y) is partially decidable. Show that
la) ‘Jy<z Mlx, vV s partially decidable,
i8] Wy=zMix, y) is partially decidable.
\Hini. If fix,y) 15 the partial characteristic function of M,
consider the function [T, . flx, y).)
(o) WyMix, v)is not necessarily partially decidable.
fi. Show that the following predicates are diophantine,
(a) ‘x is even’,
(b] “x divides »".
. {This exereise shows how the technique of reducibility (§ 1) may
be used to show that a predicarte is not partially decidable.)
\a) Suppose that M(x) is a predicate and & a total computable
funection such that x = W, iff M(kix)) does not hold. Prove that
M {x) is not partially decidable.
5} Prove that *¢, is not total’ is not partizlly decidable.
( Hint. Consider the function & in the proof of theorem 1.6.)
ic) By considering the function

i |

|

1 if P.ix) does not converge in vy or
Jilx, vl=71 fewer steps,
l undefined otherwise,
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show thart *@, is total’ is not partially decidable. (Hini. Use the
s—#i-n theorem and (@).)

: {“rivg a formal proof of the second half of Theorem 6.13; ie.if
flx)=y"is partially decidable, then f is computable.

- Suppose that M (x,, . .., x.) is partially decidable and -] PR
are computable partial functions. Show that the predicate Niy)
given by

Niy)=Migiyl ..., gl

is partially decidablz. (We take this to mean that Niy) does not
hold if any one of g1(y), . ... g.(y) is undefined.)

)

Recursive and recursively
enumerable sets

The scts mentioned in the title to this chapter are subsets of % cor-
responding 1o decidable and partially decidable predicates. We discuss
recursive sets brieflv in § 1, The major part of this chapter is devoted to
the study of recursively enumerable sets, beginning in § 2: many of the
basic properties of these sets are derived directly from the results aboul
partially decidable predicates in the previous chapter. The central new
result in &2 is the characterisation of recursively enumerable sets that
gives them their name: they are sets that can be enumerated by a
recursive (or computable) function.

[n ¢ 3 and 4 we introduce creative scis and simple sets: these are
special kinds of recursively enumerable sets that are in marked contrast to
each other; they give a hint of the great variety existing within this class of
sets,

1. Recursive sets

There is a close connection between unary predicates of natural
numbers and subsets of Fu: corresponding 1o any predicate Mix ) we have
the set{x ; Mx) holds}, called the extens of M (which could, of course, be
0 while to 2 set A =% there corresponds the predicate ‘x e A" The
Name recursive s given Lo scts corresponding in this way to predicates that
are decidable.

EL Defintion

Let A be & subset of B, The characreristic function of A 1s the
function ¢4 given by

. [ﬂ_{] ifxeA,

A o ifxe A

! Asmenticned in a footnote to § 3 of the Prologue, predicates ace aften identified

with their extent: that view would not be inconsistent with our exposition.
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Then A is said to be recursive if £+ i5 compurtable, or equivalently, if
'x £ A" s a decidable predicate. -
Nates

1. For obvious reasons, recursive sets are also called computable sets.
2. If ca is primitive recursive, the set A is said 1o be primitive recursive,
3. The idea of a recursive set can be extended in the obvious way to
subsets of k" (n = 1), although in the text we shall {as is comman practice)
restrict the use of the term to subsets of Fd. There is no loss of generality in
doing this, because recursive subsets of M" can easily he cndcdﬂ as
recursive subsets of M. See exercise 1.4(2) below for details.

1.2 Examples
1. The following sets are recursive,
(a) ™,
{h) E (the even numbers),
ic] any finite ser,
(d) the set of prime numbers,
The following sets are not Tecursive,
(@) {x: 4, 1s total} (theorem 5-2.1),
k) {x:x = W.} (theorem 6-1.1),
(c) {x:d, =D} (theorem 6-1.4),
The algebra of decidability (corollary 2-4.7) gives us the following
properties of recursive sets immediately.

3

1.3. Theorem

If A, B are recursive sets, then so are the sets A, A ~B. A E,
A\B,

FProof. Direct translation of corollary 2-4.7.
Further facts about recursive sets will emerge in § 2,

1.4, Exercises
1. Let A, B be subsets of B, Define sets ASH and AEEB by
ADB={lx:xc A} {2x+1:xeRB}
ABB={mlx,y):xc A and y = B},
where 7 is the pairing function =(x, y) =2"2y+1)—-1 of
thearem 4-1.2. Prove that

(a) ADE is recursive iff A and B are both recursive,

(b) f A,B=Z, then A@E is recursive iff A and B are both
recursive.

£ RECHTSUELY CMIFENUING JELy Lowr ot

{a) Let B =Rl and let n = 1; prove that if B is recursive then the
predicate M(xq,. ..
Mixy, ..., xo) =2%3%__ preB

is decidable. .

(h) Let A=f"; define A to be recursive if the predicate
‘x=A" is decidable. Prove that A 15 recursive iff
[293% . pyriixg, ..., X ) € A} s recursive.

(£

+ X, ) given by

2 Recursively enumerable sets

) We turn now to the subsets of B that correspond to partially
decidable predicates. These constitute an important class, if only because
of the many situations in which they oceur.

2.1 Pefinitian

Let A be a subset of B, Then A 1s recursively enumerabie if the
function [ given by’

. 1 ifreA,

Hxl= l .

undefined ifxe A

is computable (or, equivalently, if the predicate ‘xe A’ is partizally
decidable). The phrase recursively enumerable is almost universally
abbreviated r.e.
Nores
1, The terms semi-recursive sets and semi-computabie sets are also used
to describe r.e. sets: indeed, from the above definition these names would
appear more appropriate than recursively enumerable. We will, neverthe-
less, adhere to the standard name recursively enumerable, which stems
from the fact that these sets may also be defined as sets that can be
enumerated by a recursive (or computable) function. This alternative
characterisation is given in theorem 2.7 below.
2. As with recursive sets, the idea of r.e. sets can be extended in the
obvious way to subsets of W" (r = 1), but there is no loss of generality in
confining attention (as we do in the text) to r.e. subsets of f4. See exercise
2.18(9) below.

2.2.  Examples
1. Let K ={x:x= W.}); then K is an r.e. set that is not recursive.
(example 6-6.2(1)). Its complement K is not r.e. (example
G-6.2(4)).
2. Any recursive set is r.e. {example 6-6.2(2)}.
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3. Theset{x: W. = 2} isre texample 6-6.701(#))).
4. If f is a computable function, then Ran(f) is r.e, (example
6-0.7(1la); of. theorem 2.7 below).

Nete. K isthe standard notation for the set {x-x e W.} (example
1 above), which plays a prominent role in the study of r.e. sets.

Most of the results for partially decidable predicates in chapter
6 § 6 translale immediately into the language of r.e. sets, We
begin with

2.3, Theorem
A set s re. i and only if it is the damain of a unury compurable
function.
Proaf. Theorem 6-6.3. [

We conclude from this theorem that the snumeration
Wo, Wi, Wy, ..,
Is an enumeration (with repetitions) of all r.e. sets. [f A = W, then e is
called an index for A.
From theorem 6-6.4 we obtain the next characterisation of r.e. sets.

2.4, Theorem

The set A s re. if and only if there is a decidable predicate R (x, y)
such that

xeA iff yRix, v).

(From the note following the proof of theorem 6-6.4 this predicate R may
be taken to be primitive recursive.)

We also have the following immediately from theorem 6-6.5,

2.5. Theorem

Suppose that M(x, y., ..., y.) is partially decidable: then the set
{3y .. BvMix v .., v. 1 isre

The following link between r.c. sets and recursive sets is an immediate
application of theorem 6-6.11.

2.6. Theorem
The set A is recursive if and only if A and A are r.e.

£ djti el EFEMITILTLELAE L iy L

Proof, This is immediate from theorem 6-6.11. but 1t 1s instructive to
give a formal proof of the non-trivial half of the proof. Suppose then that
R and § are decidable predicates such that

feA o AyR{x, v)
reA < IySix, v)

{we are using theorem 2.4). Now define a function fix) by
fle)=puylRix vior Sz vl

By the results of chapter 2, f is computable; further. since for every x,

either x = 4 or x £ A, fix) is always defined, and we have
reA < Rix, fix).

Thus ‘x € A" is decidable, so A is recursive.  []

We now turn to the characterisation of r.e. scis that gives them their
name.

(i8]
|

Theorem
Let A =8l Then the following are equivalent:
[a) Aisre,
by A =& ar A s the range of a unary fotal computable funciion,
() A is the range of a (pardal) computable function,

Proof. We shall prove the chain of implications (a) = (b} = (¢} =
[a).
@)= (h) Suppose that A= and that A =Domi(f), where f is
computed by a program . Choose an element @ € A. Then A is the range
of the following total Ainary function:

: [z if P{x)| in 1 steps,
Lt ”z.lu otherwise,

Clearly g is computable. To complete the proof we construct a waary total
computable function i having the same range as g Let

hizl=gllzh. {z)=)-
Clearlvy Ran(f)}=Ranig)= A.
B} = (c)is trivial.
ic) = (a) Suppose thal A= Ran(h) where k is an n-arv computable
function. Then

xeA & vy 3 lhlvn .. o) =x)
The predicate in brackets on the right 1s partially decidable (theorem
6-6.13) so applying theorem 2.5 we see that A isr.e. [
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{The reader may have noticed that various parts of this theorem have
been given, more or less explicitly, in examples and exercises sarlier in
this and other chapters.)

Nofice that it is from theorem 2.7(b) particularly that the name
recursively enumerable comes: a non-empty r.e. sct is a set that can be
enumeratedas A = {h(0), k(1), h(2), ... }where k15 a recursive (1e. total
computable) function. In fact, by using the results of chapter 5 (and
appendix) it is casily seen that the enumerating function k in the proof of
e} = (k] is primitive recursive.

Mote also that theorem 2.7 tells us that the enumeration E,, Fy, £, . ..
of the ranges of unary computable functions is enother enumeration {with
repetitions) of all r.e. sets. In informal terms, thearem 2.7 shows that r.e.
sets are the same as effectively generated sets. We would call a set A
effectively generated if there is an informal effective procedure for
compiling a list of the members of A, Such a procedure would from time
to time {not necessarily at regular intervals) output a number to be added
to the list. The procedure may 2o on ad infiaitum (and certainly must if A
is infinite). To see that a set A generated in this way is r.e., simply put

Fi) = 1st number listed by the procedure,

flnl=(n=1)th number listed by the procedure,

where fin) is defined iff there is an (n + 1)th number listed. Then clearly f
is computable, and A = Ran(§) is r.e.
We can illustrate this with an example.

2.8, Example

The set {x:there is a run of exactly x consecutive 7s in the
decimal expansion of 7} 15 r.e. (cf. exercise 6-6.14(14)). The following is
an informal procedure that generates this set of numbers. ‘Run an
algorithm that computes successive digits in the decimal expansion of =
Each time 2 run of 7s appears, count the number of consecutive 7s in the
run and add this number to the list.'

The characterisation of theorem 2.7 gives us a straightforward diagonal
proof that total computable functions cannot be recursively enumeratad.

2.9, Thearem
The set {x: &, is total} is nor r.e.
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Proof, (Cf. the suggested proof of this result given in exercise b-

6.14(7c).) _
Suppose to the contrary that f is a total unary compu-

table function that enumerates this set; i-e. dyo. @rian dpizn - - 15 Ia list of
all unary computable functions. Then we can easily make a diagonal
construction of a total computable function g that differs from every
function in this list. The diagonal motto says ‘make g differ from g, at
i, %0 we put
g’l:.t} i3 l;'l','[“{x] +1.

Then g is computable and total, but g # &y, for every m. This is a
contradiction. ]

There is one important result about partially decidable predicates that
we have so far omitted to transfer to the setting of r.e. sets, namely the
connection with diophantine pradicates. First we make a definition,

210, Defineeon
A set AcRK is diophantine if there is a polynomial
plx, ¥i.. .., ¥ with integer coefficients such that

xeA it Fyr. . Apalpix v ..., v =0

Of course, diophantine sets are re., and Mativasevich's theorem
[6-6,10) may be expressed (as it often is) as:

211, Theorsm (Mativasevich)
All r.e. sers are diophantine.

This 15 an appropriate place to mention a surprising (but easy)
consequence of Matiyasevich's theorem.

212,  Theorem

A set iy re. if and oniy if 1t Iy the set of non-negative values
maken by same palynomial plxy, .. ., x,) with integer coefficients (for vaiues
Of 1,4 .., ko from W)

Proof. Suppose that A is the set of non-negative values taken by
Pixe ... x.) them xe A & Ixp. . 3. (plxy, oo s 3a)=x), 50 A is
clearly r.e.

Conversely, if A is r.e. then by Mativasevich's theorem there is 2
polvnomial gix, ¥1,. ... ¥ ) such that

xEA < Ty Fyalgix, breeo ¥ =00



Then consider the polynomial plx, y) given by
ple, yi=x—(x+igix. v))°.
21, ¥) is non-negative if. and only if, g(x, ¥} =0, and then it takes the

value x. Thus A is the set of non-negative values taken by pix, v) as
Xi P1se -0y Vo run through R, 7] )

(The restriction of x,, ..., x, to B in the statement of this theorem 1s
somewhalt arbitrary; it is an easy exercise to see that the theorem is valid
when xy, ..., &, are allowed to range over £,

One application of this result that has aroused considerable interest
among mathematicians is to the set of prime numbers: this set, beingr.z.,
is the set of positive values taken by a polynomial with integer
coefficients, a result thought to be most unlikely before Mativasevich
came on the scene.

A refinement of theorem 2.12 shows that there is g single wniversal
polynomiai, which generates all r.c. sets; e, a polynomial
Pz X Ve, ) with the property that for any r.e. set A there is a
number z such that

€A & Iy Arnlplzin ¥, v ) =00

To see this, simply note that the Halting problem "x € W, ' is diophantine
and take z to be an index for A.

At this stage we should summarise the various characterisations of r.e.
sets that we now have available, The following are all equivalent condi-
tions on @ set A of natural numbers:

{1} "x £ A" is partially decidable (we have taken this as our basic
definition),

(2) A isthe domain of a unary computable function: ie. A = W
for some ¢ (theorem 2.3, -
{3} For some decidable predicate Rix, vl, re A Sy Rixy)
(theorem 2.4), :
(4} For some partiallv decidable predicate M(x, yi, ..., v.},
x£A & 3y . v Mix oy, ..., v (theorem 2.5),

1:_5 ) IFA # &I, Aisthe range of a total unary computable function
(theorem 2.7),

(6} A is the range of 2 computable function (theorem 3,

(T} A is diophantine (theorem 2.11),

(B) A is the set of non-negative values taken by a polvnomial
with integer coefficients (theorem 2.12).
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MNaturally, when working with r.e. sets one chooses the characterisation
that is most convenient for the purpose in hand. We illustrate this in the

proal of the next theorem.

2.13.  Theorem
If A and B are re., then so are A~ B and A B,

Proaf. For A m B use characterisation (2). Suppose that A = Domif)
and B =Domig) with f, g computable. Then A » B = Dom( fg), and fg

is computahle.
For A _ B use characterisation (5). If A = & or B = & there is nothing

to prove. So suppose that A = Ran{ f] and B = Ran(g) where f, g are total
computable. Define i1 by
h(2x)={fix),
A(2x+1)=glx).
Then h is compurtable and clearly Rank)=A v B O
i1t i5 instructive to find proofs for this theorem using sach of the other
characterisations of r.e. sets.)

Our next theorem gives another link between r.e. sets and recursive
sats.

214, Theorein
An mfinite vel is recursive i and only i it is the range of a tota!
increasing compwlable function, Le. if it can be recursively enumerared in

increasing order.
Proaf. Suppose that A is recursive and infinite; then A is enumerated

by the increasing function f given by

Jl0)=pyiveA),

fAr+ll=puyive A and v = fin).
Moreover, f is computable by minimalisation, recurzion and the recur-
siveness of A,

Conversely, suppose that A is the range of the computable total
inereasing function f; Le. f{0) < f{1) << f(2)=...Ttis clear that if y = fi{n)
then n = v. Hence we have

y=A & yeRanif)
e dn=yifini=y)
and the predicate on the right is decidable. Hence A is recursive. [



e WRE TR ER ST TR F R SRS T EAELS | W TR SR - AL PR Sl kLo

(An alternative proof could be given by showing that A is r.e.; we leave
this as an exercise for the reader.)

The above theorem may be applied to prove

2.15.  Theorem
Every infinite r.e. set has an infinite recursive supses,
Proaf. Let A =Ran(f) where f is a total computable function. We can
effectively enumerate a subset of A in increasing order by a function g as
follows

g(0) = f(0),
gln=1)1=flx), where x = uy(fiyi=glnl).

Since A =Ran(f] i1s infinite, g is totally defined. Bv construction,
Ran{g)< Ran(f) and g is increasing. It is clear that g is computable, by
minimalisation and recursion. Hence by theorem 2.14, Ranig) 15 an
infinite recursive subset of 4.

We conclude this section with a theorem of Rice and Shapiro aboutr.e.
sets of indices. We shall need this result in chapter 10, and there are other
applications we can make immediately, but it is of significance in its own
right. The theorem and its proof are generalisations of Rice's theorem
(6-1.7). (In the statement of this theorem, by a finite function § we mean a
function whose domain is finite: note that all finite functions are
computahble. )

2.16. Theorem (Rice-Shapiro)
Suppose that o is a set of unary computable functions such thar the
sef {x (b, €20} js r.e. Then for any unary computable funciion i

fead iff there is a finite function 6 = f with # = s

Before we prove this result, let us illustrate how it can be used to give
quick proofs of non-recursive enumerability. (Further applications of this
kind are given in exercises 2.18 below.)

2.17.  Carollary
The sets {x: ¢, is totad} and {x: &, is not toral} are not r.e.
FProaf. For A ={x: @, is total} we apply the Rice—Shapiro theorem to
the set & ={f: f= ¢, and f is total}. Forno f = & is there a finite 8 = fwith
# .4 Hence A isnotr.e,
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For 8 ={x:&. is not total}, consider the set & ={f: e ¥, and f is not
totall, Then if f is any total computable funection, f& 5 ; but every finite
function §=f is in . S0 B cannot be re., by the Rice—Shapiro

theorem, [

{Wore, This is the third proof we have of the non-recursive enumerability
of the indices of total functions: others are exercise 6-6.14(7¢) and
theorem 2.9 above, The reader will see that the proof suggested in the
first of these is actually the specialisation of the following proof.)

We return to the proof of the Rice—Shapiro theorem.

Proof of theorem 2.16

Let A ={x:¢h, o &} We are given that A is r.e, We shall show
that if either implication in the statement of the theorem is false, then the
problem ‘x = K can be reduced to ‘x = A°, (Recall from example 2.2(1)
that K ={x:x e W,}.) This would show that K is r.c., a contradiction.

Suppose first that f € & bul 8¢ .o for all finite # < f. Let P be a program
such that Piz}} iff z = K. Define a computable function gi{z, 1) by
fl6 if Piz){ int or fewer steps,

glz, )= ) )
lundefined i Piz)lin t or fewer steps.

The s—m-n theorem provides a total computable function s(z) such that
2lz, =g, (1), Note that by construction &,,., =7 for all z. We claim
further that

[zeK = ¢ s finite (hence d.,-, ¢ ),

P{ZE K = ¢.=f (hence g€ ).

Forif z ¢ K, therz is r such that Piz)} in ¢ steps. Then glz, 1) = d0lr') is
undefined for ¢ = r. Hance &,,., 15 finite. On the other hand, if =z 2 K, then
iz, th=f(¢) lor all ¢, so0 b, =1

Now (*) means that z ¢ K & s(z)= A, which implies that K is re., a
contradiction. Hence there must be 2 finite # = f with & = &

For the reverse implication, suppose that f is a computable funetion,
such that there is a finite function § €. with § = f, but f# = Define a
computable function g(z, 1) by
fit) freDomifiorze K,
undefined otherwise.

i

glz, 1) ==[
The s—m—n theorem provides 2 total computable 5{z) such that g(z, 1) =
i), From the defimition of g and the fact that 8 = f we sze that
2eK 2 ¢y =1 (hence &, 2 o)



and
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2K = .. =f|Dom(@) =8 (hence &,,,,= o).

But this means that z e K < s(z)= A, again showing that K is re., a
contradiction. Thus { e &' as required. [0

We leave it as an exercise for the reader to see how the Rice—Shapiro
theorem generalises Rice’s theorem (exercise 2.18(12) below).

2.18,

ba

Exercises

. Foranyael, let W, ={x:¢,(x)=a}. Show that “W, is r.e. (all
a). Does the enumeration “Wy, "W\, "W,, ... include all re.
sets?

. Show that the set {x: &, is not injective} is e,
. Shaw that there are total computable functions k&, ! such that for

every x, W, =FE,, and E, = Wy,,.

. Suppose that A is an r.e, set, Show that the sets |_J,.4 W, and

|_lic4 E; are both re.

Show that [, .4 W, is not necessarily r.e. as follows. For any 7
let K, ={x:P_(x}] in t steps}. Show that for any ¢, K. is recursive;
moreover K =|_J,.n K. and K = ,on &,

. Let f be a unary computable function, and suppose that A<

Dom(f), and let g = f| A. Prove that g is computable iff A isre,

. Let f be a unary function. Prove that f is computable iff the set

{2°3"*: x e Dom{f)} is r.e.

. (Cf. theorem 2.14.) Let A be an infinite r.e. set, Show that A can

be enumerated without repetitions by a total computable
function,

. Which of the following sets are recursive? Which are r.c.” Which

have r.e. complement?

{a) {xr:x=E.}

() {x:x is a perfect square},

(e) {x: &, is injective},

td) fx:there is & tun of ar leasr x consecutive 7s in the decimal
expansion of 7},

(e) fx:Poix)t) (m is fixed),

- (Cf. Exercise 1.4{2).) (a) Let B = M and let n > 1; prove that if B

is r.e. then the predicate Mix,, .. .. x,) given by
Mixy, ..., =g phe B
is partially decidable.

3.

10.

1,
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(5) Let Ach"; define A 1o be re. if the predicate ‘xe A’ is
partially decidable. Prove that A is r.e. iff

i alic e BN | b L o PR x e Avisre.
{c) Prove that Ach” is re. if A= or there 15 a tolal
computable function f:R—®" such that A=Ran(f). (By a
camputable function f from % to M" we mean an a-tuple f=
tfi.....0:) where each f is a unary computahle function and
fix}={fulx) ..o, falx)))
Suppose that f is a total computable function, A a recursive set
and B an r.c. set, Show that /7 (A) is recursive and that f(4),
fiByand Y{B)are r.e. but not necessarily recursive. What extra
information about these sets can be obtained if £ is a bijection?
Use the Rice-8hapira theorem ta show that the following prob-
lems are not partially decidable: (a) "W, = &, (5) ' W, is finite’,
(e) W, is infinite’, (d) ', =0, (e) ‘&, 20",

. Prove Ride's theorem itheorem 6-1.7) from the Rice-Shapiro

theorem (theorem 2.16). (Hint. Suppose that ‘&, e B’ is deci-
dable; then both & and %\ % satisfy the conditions of Rice-
Shapiro: consider the cases fxe & and fz2 8.

el Let Kg={x:d.(x)=0}and K, ={x:&.(x)= 1}. Show that K,

and K, are r.e., and that they are recursively inseparable, ie.
Ky~ K. =5 and there is no recursive set O such that K= C
and K, = ff‘; in particular neither Kq nor Ky is recursive. (Hind
Supposc that there is such a set € and let m be an index for its
characteristic function: consider whether or not m = C) (B} Show
that two disjoint sets A, B are recursively inseparable {in the
above sense) iff whenever A < W,, B2 W, and W, ~ W, =&,
then there is a number x& W, oW, (Nor. Recursive
imseparability for a pair of disjoint sets corresponds to non-
recursiveneass for a single set: pairs of recursively inseparable sets
that are also r.e. correspond to r.e. sets that are not recursive. )

i ; [
Productive and creative sets
Our chief concern in this section is to discuss a special classof re.

sets called creanve scts. These are r.e. sets whose complement fails to be
r.e. in a rather strong way. Thus we begin by considering & class of
non-r.e. scls, among whose complements creative sets are 1o be found.

Suppose that A is any set that is not r.e.; then if W, is an re. set

contained in A, there must be a number v = A\ W,, This number y isa
witness to the fact that A = W, [t turns out that for some non-r.e.sets it is
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possible to find such a witness in an effective way. Consider, for example,
the non-r.e.. set K ={x:xZ W.}. If W, = K, we cannot have x = W, (for
then x <K, so W, K); hence xr e K \W,. So x itself is a witness that
W, =K.

The name productive is used to describe non-r.e. sets for which a
witness can always be computed in this way,

3.1. Defintion

A set A is productive if there is a total computable function g
such that whenever W, C A, then g(x)= A\ W, The function g is called a
productive function for A, This is illustrated by fig. 7a.

Example. The set K is productive, with productive function glx)=x.

Many examples of productive sets are obtained from the following
theorem, which incorporates the idea of reducibility that was discussed in
the previous chapter.

32 Theorem
Suppose that A and B are sews such that A is productive, and there
is a ioal computable funciion f such that xe A if fix)eB. Then B is
productive.
Proof. Let g be a productive function for A. Suppose that W.c B.
Then f (W, =/ '{B)=A: moreover, f (W, isr.e., so there is z such
that f'(W, )= W.. Now W. c A, andso g(z) = A\ W,. from which we see

Fig. Ta. A productive set.
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Fig. 7b. Theorem 3.2,

A=F(m

//::E\ agiz)

@ afiglzi)

that flglz))e B\ W, i.e. fig(z)) is a witness to the fact that W, # B (fig.
Th).

We now need tg obtain the witness fig(z)) efecrively from x. A simple
application of the s—m-n theorem provides a total computable function
kix]such that Wy, =/ '(W,) (apply the s—=m-n theorem to the function
. Fly ). Then putting z = k{x) we see from the above reasoning that if
W, = B then flgikix))) = B\ W,. Hence B is productive, with productive
function flgik(x)). T

35 Examples

The following sets are productive:

la) {x: ¢ # 0},

(b} {x:ce W.l(c afixed number),

{¢) {x:ceE,} (¢ afixed number),
(For each of these sets apply theorem 3.2 using K and the functions
obtained in theorem 6-1.4 (for (@) and theorem &-1.6 (for (b} and (c]).)

The above examples of productive sets and many more may be
obtained from the following general application of theorem 2.2, based on
our proof of Rice's theorem.

3.4, Theorem
Suppose that B is a set of unary computable functions with fz= B
and B = ¥,. Then the set B ={x: ¢, € B} is productive,
Proof. Choose a computable function gé #. Proceeding exactly as in
the proof of Rice’s theorem (6-1.7) obtain a total computable function
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&(x)such that
e =g Hrek,
e =Tz ifrz K

Le. xc K iff k(x)= B. By theorem 3.2, B is productive. [

3.5, Example
The set {x:&, is not total} is productive, immediately from
theorem 3.4,

Owur chief interest in productive sets is when they occur as the comple-
ment of an e, set;

3.6, Definition
A set A is crearive if itis r.e. and its complement A is productive,
The simplest example of & creative set is of course K. Using theorem
2.6 we can say that a creative setis an r.e. set thal fails to be recursive in a
very strong way. We will see in chapter 9 that there is a sense in which
creative sets are the r.e. sets having the most difficult decision problem.

3.7, Examples
The following sets are creative
ta) {x:ce W1 (the complements of thess sets were
(h) {x:ceE,}| shown to be productive in examples 3.3).,
ic) The sel A={x:d.(x)=0} Clearly A is r.e.; to obtain a
productive function for A, use the s—m-a theorem o construet a
total compurtable function g such that

Gy =0 = b, (v)is defined,

T_hen glx)= A < gix)ec W, soif W, = 4 we must have glxle
AYVWL Thus g is a productive function for A,

Many examples of creative sets of indices are provided from the
following application of theorem 3 .4.

3.8, Thearem
Suppose that A€, and let A={x -d.c sl If A is re. and
A =5 or [, then A s creative.
Praof. Suppose that A isre and A= 2.8 I f-c o then A is
productive, by theorem 3.4, this is a contradiction. Thus fz € &, so A is
productive (theorem 3.4), hence A is creative. [
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The examples 3.7(a), (b) could be obtained by immedizte application
of this theorem; similarly we have:

3.9, Exampie
The set A = {x: W, # &} is creative; this setis obviously r.e. and
corresponds to the set o ={f €, faL

Many of the exercises at the ¢nd of the section may be daone with the aid
of theorem 3.8,

All examples of non-recursive r.e. sets that we have encountered so far
are creative, (The reader might care to prove this for the examples that we
have not dealt with explicitly.) The guestion then arises as to whether all
non-recursive r.e. sets are creative. The idea that this might be the case is
reinforced by theorem 3.8, and further examples in the exercises below, It
turns out, however, that this conjecture is false: by a special construction
we can obtain r.e. sets that are neither recursive nor creative. Section 4
will bz devoted to that task.

The construction to be made in the next section is inspired by theorem
3.11 below, which will show that a productive set (and hence the
complement of a creative set), although not itself r.e.. does contain an
infinite r.e. subset. (The secret of constructing an r.e. s2t A that is neither
recursive nor creative will be to ensure that A does nror have this
property.)

The proof of the theorem will be facilitated by first isolating the
following technical result.

3.10.  Lemma
Suppose that g is a tatal computable funcrion. Taen there is a total
computable function k such that for all x, Wy = W, Ufgix)}
Proof. Using the s—m—n theorem, take k(x) 1o be a total computable
function such that

‘ }_[l ifyesW,orv=gixl,
Grul¥}= undefined otherwise. [

3.11. Theorem
A productive set contains an infinite r.e. subset.
Proof. Let A be a productive set with productive funetion g. The ideaiis
to enumerate without repetition an infinite set B ={ys, v1... . ;= A inthe
tollowing way.
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{1) Take ¢n such that W, = & since W, = A, then gleg)= A, Pul
Yo gl-t'u"

{2) For n=0, suppose that yg,...,¥, have been given so that
¥ ..o Yol = Al Find an index e, _, such that [Fov. v o ¥ul=W. < A,

Tl

Then gle,ds AV W, thus if we put y,.y =gle,.;) we have ¥n-1EA
and Yue1 # Vo ..., Ve (see fig. To)

To see that this enumeration of ya, y,. .. is an effective one. we use
lemma 3.10. From the above discussion, when looking for the index et
we Tequire that

Wt-.q — p'{'. L {J"In-l' il ‘VE’_ LJ{E':E_.._-]]'

= Wiien

(where & is the function given by lemma 3. 1)), Thus we may definee, ., to
be kie.); then the sequence ey, e-, . . . is given by the recursion equations

£e = some index for &,

Fasl = ktfn :':
and is hence computable. Now vy, = gie,), so the sequence vy, y1,. .. is
also computable. Thus B ={y,. v, ...}, being the range of a computable
tunction, is r.e. By construction, B < A and 8 is infinite. [

For the record, we state the obvious

312, Corollary
If A is creative, then A contains an infinite r.e. suhset.

3.13. Exercises
1. Shew that the following sets are productive:
ta) {x: W, s finite},

Fig. 7e. Enumerating an infinite subset of A (theorem 3.11),

-.!"n-rl =€) ‘l
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(B {x:d, 1s not surjectivel,

(¢} {x:d, is injective],

(d) {x:d, is not a polynomial function}.

Prove that the following sets are creative:

(a) {x:xeE.}L

(b) {x:EV # &% (n fixed),

(c) {x:¢, is not injectivel},

{d) {x:d.(x)e A}, where A is any non-empty r.e. set.

ie) {x:éh(x)i=Flx)}, where fis any total computable function.
Prove that if B is r.e. and A~ B is productive, then A is
productive.

Prove that if C is creative and A 15 an r.e. set such that
AnC=3, then C o A is creative,

Prove that every productive set contains an infinite recursive
subset.

For any sets A, B define the sets AT F and A® B as in exerciss
1.4(1). Suppose that B is r.e. Show that (a) if A is ¢reative, then
so are AEB and A® B (provided B = &),

k) if B is recursive, then the implications in (@) reverse.

Let @ be a set of unary computable functions, and suppose that
g =9 is such that for all finite 8 < g, #¢ 3. Prove that the set
{x:ah, € H) 1s productive.

{Hint. Follow the first part of the proof of the Rice-Shapiro
theorem.)

Use the result of question 7 to show that the following sets are
productive:

(@) {x:¢, is total),

(b)) {x:¢h, 15 & polynomial function}.

(CE, exercise 2.18(13).) Disjoint sets A, B are said to be
effectively recursively imseparable if there is a total computable
function { such that whenever A= W, B W, and W, ~ W, =
&1, then fla, b)e W, u W, (see fig. Td).

{a) Prove that the sets Ki={x:ad.(x)=0} and K,
{x:dh.(x) =1} are effectively recursively inseparable.

(Hint. Find a total computable function f such that if We~ W,
i3, then

Ii

il

]'1 if x = W,,
drefx) =40 it x £ W,
undefined otherwise.)



Fig. 7d. Effectively recursively mseparable sets (exercise 3.13(9)),

o fla. b

(#) Suppose that A, B are effectively recursively inseparable.
Prove that if A, B are both r.e. then they are both creative.

{Nare. Extending the idea of effectiveness to a pair of recursively
inseparable sets in this way parallels the step from a non-
recursive set to a set having productive complement; the coun-
lerpart to a single creative set is then a pair of effectively
recursively inseparable sets that are both r.e.) ‘

4, Simple sets

Our task in this section is to show that there are sets satisfying the
following definition and hence (in view of theorem 4.2 below) to establish
that not zll non-recursive r.e. sets are creative,

4.1. Defintrion
A sel A is simple if
la) Alsre.,
(h) A is infinite,
{c) A contains no infinite r.e. subset.
The idea in (b}, (c) of this definition is to pinpoint some features of 2 set

that are not possessed by any recursive or creative set. Thus, although as
yet we have no examples of simple sets, we can easily see that

4.2, Theorem

A simple set ix neither recursive nor creative.

Proof. Suppose that A is a simple set. From (8) and {¢) of the
definition, A is not r.e., so A is ool recursive. By theorem 3.11 and i¢) of
the definition, A is not creative. [

The following construction of 4 simple set 15 due o Post

P
a3

Thearem
There iv a simple set

Proof. We shall define & computable partial function F such that the
range of f contains at least one member from every infinite r.e. set. Thisis
done by arranging that if &, is total and E, is infinite, then fixic £, Ta
make Ranl( /) simple we must at the seme time ensure that Ranif) is
infinite. We shall see that both conditions are met by the function f
defined informally as follows:

Te compute fle): compute o 00, ¢, (1), ... in succession (do not
proceed to the computation of @y + 1) unless and until &, (v ) has been
computed]; stopaf and only if a number z isfound such that &, iz ) = 2x:1in
that case put flxl=¢, |z (Formally we have flx) =, (uzidiz]>2x)),
demonstrating clearly that § 15 computable. |

Put A = Ran(f}; then A 1s r.e. We now verifv that A is simple.

Suppose that B is any infinite r.e. set. Then there is a foral computable
function ¢, such that B = F,.. Since £ 15 infinite, the construction ensures
that fi#) is defined and fik)c E, = B. Hence B2 A,

To see that A is infimite, note that if fix) is defined, then fix)=2x.
Thus, far any x. the members of A that are inthe set {0, 1. 2,. .., E_rr"r are
among F0), ..., fln—1). This means that A contains more than »
elements, for any n. Hence A is infinite. [0

The construction of 2 simple set is but the frstand ons of the easizsstof a
wide variety of constructions that yield r.e. sets with all kinds of special
properties. These are beyond the scope of this book; the interasted reader
should cansult & text such as Rogers [1967], where he wil find r.e. sers
rejoicing in names such a hypersimple, hvperhypersimple, pseudocrea-
Live, and maximal. {Sec also exercise 4.4(3) below for an example of an
r.e. sel that is neither recursive, creative nor simple.)

4.4. Exercises
1. Suppose that A and B are simple scts. Show that theset AT 8 is
simple. (For the definition of @ see exercise 1.4(1).)



2. Suppose that { is a total injective computable function such that

Ranif) is not recursive. (Exercise 2.18(7) showed that such
functions abeund.) Show that the set

A={x:3viy=xand fiy)<flx}

is simple. (Hinr. To see that A is infinite, assume the con trary and
show that there would then be a sequence of numbers yo< y- <
v2<...such that fiye)=f(y;}=fly2)>... To see that A does
not contain an infinite r.e. set B. suppose to the contrary that
B = A. Then show that the problem z = Ran(f) is decidable as
follows. Given z, find n = B such that f(a) > z; now use the fact
that nZ A to devise a finite procedure for testing whether z =
Ranif).) )

. Show that if A issimple, then A 2R is r.e., but neither recursive,
creative nor simple (see exercise 3.13({6)),

- Let A, B be simple sets. Prove that A@ B is not simple but that
AR is simple.

8
Arithmetic and Godel’s
incompleteness theorem

The celebrated incompleteness thearem of Gadel [1931] 15 one of many
results about formal arithmetic that involve an interplay between
computablity and logic. Although full proofs in this area are bevond the
scope of this book, we are able to ouotline some of the arguments
discovered by Godel and others. We shall highlight particularly the part
plaved by computability theory, which in many cases can be viewed as an
application of the phenomenon of creative and productive sets.

In §§ 1 and 2 we present some results about formal arithmetic that lead
up to the full Gidel incompleteness theorem in § 3. In the final section the
guestion of undecidability in formal arithmetic, already touched upon in
3 1, is taken up again. Our presentation in this chapter does not assume
any knowledge of formal logic.

1. Formal arithmetic
The formalisation of arithmetic begins by specifying a formal

logical language L that is adequate for making statements of ordinary
arithmetic of the natural numbers, The language L has its own alphabel,
which includes the symbols 0, 1, +, =, = (having the obvious meanings),
and also svmbols for logical notions as follows: — (‘not’), » (‘and’}, v
For’), - (‘implies'), ¥ [*for all’), 3 (‘there exists™). (In this chapter we will
reserve the symbols ¥, 3 for vse in L, and write the phrase ‘for all’ and
‘there exists” when needed in informal contexts.) In addition, I has
symbaols x, y, 2,. . . for variables, and brackets { and ), and there may be
other symbols besides.

The statementy (or formulas) of L are defined to be the meaningful
finite sequences of symbols from the alphabet of [.. For instance, the
statement

Iyiy={1+11=x)
18 the formal counterpart of the informal statement ‘x iseven’. It is helpful



to abbreviate the expression 1+ 1 by 2, (1+ 1)+ 1 by 3, and s0 on for all
natural numbers. Then the false informal statement *5 is even” would be
expressed formally in L by the statement

Ayly=x2=5).

We can similarly express in L formal counterparts of many informal
statements of ordinary arithmetic: for *x = y° we would write

zi—lz=0)nly+z=x0
{The statement —(z = 0) is often abbreviated by z # 0.) For ‘x is prime” we
would write
xED)a(x2T)AVWyVaix=yxz=(y=1vz=1)).
Let us denote by & the set of all possible meaningful statements of the

language I.. Then 5 divides into two important sets, namely

F =the set of all statements that are true in the
ordinary arithmetic of &,

% = the set of all statements that are false in the
ordinary arithmetic of k.

Mathematicians would like to discover as much as possible about the
set 7. A natural question from the point of view of computability is

(1.1Ma) Is .7 recursive, or even recursively enumerable?

Another question, important for the mathematician and philosopher
alike 1s

(1.1){k) Is there a simple-minded subset of 7 (a1 set of axioms) from

which all other statements in 7 can be proved?

We shall discover thart the answer to both of these questions is na.

Question 1.1ia) above can be made precise by means of a standard
coding procedure. It is quite routine to specify an effective enumeration
of the set #, without repetitions, using a procedure similar to that used to
enumerale programs in chapter 4, Ler us assume that this has been done.
and let us denote by 8, the (n + 1)th statement of Fin this enumeration,
50 that

o= {ﬂn_. l".]h i.qg_ e }

The effectiveness of this enumeration means that gIven n we Can
effectively find and write down the statement 4., and conversely, given
any statement 7 in # we can effectively compute the code number x such
that 7 =4,.
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This coding of statements is now used 1o code any set of statements &
by the set of numbers

X={n:8, =5}
[ PECUTSILE recursive
lz.e. t.e.

We say that &' is¢ productive if X is{ productive
creanue creative
|._elc. etc.

This gives the question 1.1(a) gbove a precise meaning.

One of the kev results that makes computability an extremely ussful
tool when investigaling formal arithmetic 1s the following, due to Godel,
we present it without any proof.

1.2 lemma

Suppose that Mixy. ..., x,.) 5 a decidable predicare. Then it is
passible o construct a statement ai(Xy, ..., X, ) of L thar is a farmal
counterpart of M{xy. .. .. x, ) in the following sense: foranyay, ..., 2. €84

Miay ..., a.) holds if eola.,....8,)eF.

Consider now the creative set K, By theorem 7-2.4 there is a decidable

predicate Rix, y) such that

x€ K & thereis y such that Rix, y).
Applying lemma 1.2 to the predicate R [x, v) let us fix on one particular
formal counterpart of this predicate, which we denote by agix, v}. Then
for any ne™ the statement 3yogrin,y) is a formal counterpart for
‘mek’, and —3yoi(n.y) is a formal counterpart of ‘e K'. Let us
therefore write

nek for Byoginy
and

nek for —3yoein.y).

Then using lemma 1.2 we have immediatelv

1.3. Lemma
Foranvn=M
lal neK ifneke 7
by neK if neke 7

We are almost readv to answer the question 1.1{a) above; we shall
need the following lemma.
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1.4, Lemma
There is a total computable function g such that for all n, 8., is
ne kK
FProaf. This is immediate from the effectiveness of the coding of
statements, since given n we can effectively write down the statement
neKi{=—3yorln. vyl

Now we have, in answer to question 1.1{a):

| Thearem
T is not ve; in fact 7 5 productive.
Froof. Let T ={n:#,€ }; taking g a3 in lemma 1.4 we have
nekK & nek
= neékKed (bylamma 1.3),
e plnle T by lemma 1.4).
So. since K is notr.e., neither is T. In fact, by theorem 7-3.2 we sce that T
is productive, [

1.6. Exercise
Show that F is productive.

2 Incompleteness

A simple version of Gddel’s incompleteness theorem follows
easily from theorem 1.5, We must first describe the setting of this famous
result.

Consider the second question (1.1(5)] posed in § 1. This question is
made precise by using the idea of a formal system. A formal system (s, 3)
ifor the language L) consists of a set of = & (the axioms) and an explicit
definition & of the notion of a formal praof of a statement in & from these
axioms, satisfying the conditions:

(2.1)  ta) Proofs are finite objects (hence capable of being coded),
(k) The explicit definition @ of proof is such that if & is recursive
then the relation
‘p is a proof of the statement & from the axioms =°
15 decidable.

We can now interpret the question 1.1(#] as asking whether there is a
formal system for L such that

(2.2} (a} o is recursive (so we are taking simple-minded in a fairly
wide sense),
(4} The provable statements are precisely those in 7.

= ST IR e TP

The condition (p) poses a problem for the philosopher who may be
trying to define the very notion of arithmetic truth by means of a formal
system. For him, this condition is meaningless, and must be replaced hy
conditions reflecting some of the properties to be expected of truth, such

as

(2.2){b"VConsistency ; there is no statement o such that both o and "o
are provable,

2.2 6" W ompleteness: for any statement o, either o s provable ot — i
provable,

A simplified version of Godel's theorem shows that there is no formal
system of arithmetic satisfying the conditions 2.2(a ) and (k). This is easily
derived from theorem 1.5, and is given below. The Tull theorem of Gidel
[1931] together with 118 improvement by Rosser shows that there is no
formal system of arithmetic (of a certain minimal strength) satisfying
conditions 2.2(a) and {(#"), ("), In other words, any consistent formal
system of arithmetic having a recursive set of axioms is incomplete. This
will be proved in § 3.

We shall need the following lemma to establish the simplified Godel
thearem.

2.3 Lemma
In any recursively axiomartised faormal system the set of provable
statements 1s r.e,
Proaf, Let 3 be the set of statements in 5 that are provable. Since
proofs are finite, they can be effectively numbered; then if & is a recursive
set of axioms the predicate

Mix, y)="y is the number of a proof of #, from the axioms &

is decidable, by (2.1){%). Then
&, 18 provable <> there is y such that M (x, y) holds,

i |

Hence, by theorem 7-2.4, #: isr.e.

Now we have

2.4, Theorem. (The simplified Gadel incompleteness theorem)

Suppose that (&, %) 15 a recursively axiomansed formal svstem in
which all provable statements are true. Then there is a statement o that is
triee bur not provable {and consequently — o i not provable either),



Proof. By lemma 2.3, the set #: of provable statements isr.e.. and we
are given that #: = . Now  is not r.c. {theorem 1.5) so we immediately
have a statement o £ 7\%¢; i.c. o is true but not provable. Clzarly —or is
nol provable either (otherwise —e would be true). [J

{Using the productiveness of 7 (theorem 1.5) we could strengthen this
theorem to say that the statement o can be obtained effectively from a
specification of the formal system (which would yield an index for #:).)

To aid an understanding of the proof of the full Godel thearemin § 2 it
is useful to examine the inner workings that were hidden when we
applied theorem 1.5 in the above proof to obtain the statement o,

Let us say that a statement is refuiable if its negation is provable.
Consider the sets of numbers Pr* and Ref* given by

Pr*={n:neK 1sprovablel.
Ref* ={n: ncK is refutable}
={n:ne K isprovable}
={a: Bon = Pal,
(where g 1s the computable function given by lemma 1.4 and used in the
proof of theorem 1.5). The assumption that provable statements are true
means in particular that Pr* = K and Ref* = K. Now Ref* isr.e. (from the
fact that n = Ref* &8, € P+, and 21 1s r.e.), 50 there is 1 number m
such that Ref* = W,..

By the productiveness of K we have immediately that m € K \Ref*,
Le. me K, and mZK i- not provable. Taking o to be the statement m 2 K
we thus see that « is true but not provable (and — o is not provable, as
before). The argument is illustrated by fig. 8a. (For comparison with the

Fig. Ba. Simplified Gade] incompleteness (theorem 2.41.
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proof of the full Gédel theorem in the next section, note that the
non-provability of —or can be seen as a consequence of the fact that
Pre= K: for m& K (as above), so mePr®, i.e. m=K is not provable.
Then, by the rules of formal proof —-m &K (Le. 7o) 15 not provable.)

Notice now the intended meaning of the statement o thus obtained: o
is the formal counterpart of the statement m 2 K, i.e. m& W, But we have

me W, < meRef*
<> m £ K is not provahble
= TE P

Thus « 15 a formal counterpart of the statement "o s not provable’; i.e.
speaking rather lousely, o says ‘T am not provable’. This is reminiscent of
the paradox of the liar, involving the informal statement

A="Tam lying’.
Informal reasoning about A resulis in the paradox
Adstrue iff A isnot true.

If the same informal reasoning is applied to the informal statement I am
not provable” the puradox s aveided by the conclusion that provadle is not
the same as true. This informal conclusion 1s nigorously justified by the
proof of theorem 2.4,

3 Godel's incompleteness theorem
We proceed in this section to show how the idea behind the proof

of theorem 2.4 can be refined so as to avoid any reference to truth.

For the moment we fix on a particular formal system of arithmetic
known as Peano arithmeric, The axioms for this system consist of a
recursive subset of % known as Peano's axioms; these reflect the simple
properties of the successor nperation on M, and the recursive definition of
addition and multiplication in terms of it, together with an axiom scheme
refzcting the principle of induction on ™, The notion aof a formal proof is
taken as that defined for the first-order predicate caleulus. Full details of
Peano arthmetic (sometimes called formal nuwmber theory) may be found
in any textbook on mathematical logic. For our purposes, the important
fact we need to know about Peano arithmetic is given hy the following
lemma, to which a substantial part of Godel's proof is devoted.

3.1 Lemma
LetMlxy,. ...k, beadecidable predicate, and let (X, . . .. %)
pe the starement of I that is the formal counterpart of M{x(, ..., X} as
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given by lemma 1.2, Then M is represented in Peano arithmeric in the

following sense: forany a,, ..., a,ch
I:a:.} fMiay,...,a,) holds, then o(a,, ..., a,) is provaple,
th) if Mia,.....a,) does not hold, then olayn ..., 8,) i
provabie.

(For a proof refer to a textbook such as Mendelson [1964].) [

Consider now the statement n= K (i.e. Iyogix. v that we took in § 1
as a formal counterpart of the statement n = K. Then from lemma 3.1 we
can obtain

3.2 Corollary
For any natural number n, if n € K then n = K is provable in Peano
anthmetic.

Proaf. Suppose that a = K. Then there is a natural number » such that
R(n, m) holds, so by lemma 3.1 we have that ag(n, m) is provable. The
rules of the predicate calculus are such that we can immediately find a
proof of Iyogin, y): i.e. n= K is provable.

For part of his proof, Gédel needed an extra technical condition called
w-consistency: & formal system is said to be w-consistent if there is no
statement 7{y) such that all of the following are provable-

yziy), 7(0), T7(1), = (2} ...

les-consistency is a stronger condition than consistency (2.2 k.
We can easily derive the converse of corollary 3.2 from lemma 3.1, with
the assumption of w-consistency.

3.3. Lemma
Suppase that Peano arithmetic 1s w-consistent: then forany narural
nutber n, if ne K is provable then n = K.
Proof. Suppose that n€ K ; then for every i =i we have that R (n, m)
does not hold, so by lemma 3.1, —orrin, miis provable. Thus, if ns K s
provable but n& K, all of the following are provable

Iyarin,yl, “ozin, 0), Tagin, 1),. ..

in contradiction of w-consistency for the statement riyl=agin,yl. O
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We can now present a proof of

a4 Theorem (Gédel's incompleteness theorem [1231])
There is a statement o of L such thar
(@) if Peano arithmetic is consistent, then o s not provable,
(b} if Peano arithmetic is w-consistent, then —or is nor pravable.
Proof.

(a) Recall the sets Pr* ={n: ne K is provable}.

Ref* ={n: ne K isrefutable},
that we defined in the discussion at the end of the previous
section. By corollary 3.2 we have K = Pr*; consistency implies
that Pr* ~Ref*= 2, and so Ref*= K. We can now argue =s
before: Ref* ist.e., so take m such that Ref* = W,,. The situation
is illustrated by fig. 85, which should be compared with that in
fig. Ba.

By the productiveness of K, we have that m = K\Ref™; in
particular, m € Ref* means that m € K is not provable, Hence (a)
is established, by taking o to be the statement m2 K.
i8) The condition of w-consistency implies (by lemma 3.3) that
Pr® = K, and hence Pr* = K. Thus, with w-consistency, fig. 8f is
modified to become fig. 8¢. Thus m & K means that m Pr; i.e.
m = K is not provable. The rules of the predicate calculus tell us
immediately that o (1.e. m € K} is not provable. ]

Nores

1. The statement o produced by Gddel's theorem is called an undeci-
dable or an undecided statement of Peano arithmetic. As discussad at the

Fig. 8. Gadel incompleteness (theorem 3.4(a))




Fig. Bc. Godel incompleteness [thearem 3.4 (b)),

end of § 2, & has the informal meaning ‘T am not provable’, and is, on an
intuitive level, true.

2. Clearly Gadel's theorem applies to any recursively axiomatised
formal system in which all decidable relations can be represented (in the
sense of lemma 3.1). In particular, this is true for any such system that is
stronger than Peano arithmetic. In consequence, there is no way to avoid
the incompleteness phenomenon by adding new axioms: for example o
or . The resulting formal system would have a new undecided
statement.

3. Note that the undecided statement & can be constructed explicitly
from a specification of Peano arithmetic, since from such a specification,
we could effectively find an index m for Ref*. This constructive aspect af
Godel's theorem is a consequence of the fact that K is creative. An
analysis of the proof would show that we can demonstrate the mere
extstence of an undecided statement using any non-recursive r.e. set A in
place of K,

4. Although not entirely clear from our presentation, the proof of part
(a) of Godel's theorem is a finitist proof: that is, it shows explicitly how,
given a formal proof of the statement o, to construct a proof of — o (thus
demonstrating inconsistency). We cannot make the same remark about
(), because w-consistency is not 2 finitist notion,

In 1936 J. B. Rosser saw how to eliminate the assumption of w-
consistency in part (5) of Gddel's theorem. We shall now see that Rosser’s
refinement of Godel's method can be viewed as an application of the
effective recursive inseparability of the r.e. sets

Ko={x:¢,lx)=0}and K, ={x: . (x)= 1}
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(that we discussed in exercise 7-3.13(9)), in place of the use pf thf':
creative set K. (Our treatment below does not assume familiarity with this
CEETCISE. )

We begin by describing some statements of & that are formal counter-
parts of the statements # € Ko and n € K, ; these are slightly more complex
than the formal version of n = K used esarlier. Select decidable predicates
RByix, v) and R,(x, v} such that

ne Ky & there is v such that Rqin, v}

and

ne K & thereis v such that Ri(n, y).
Now clearly Kyn K = &, so we also have
%] n = K, < there is v such that (i) Rylna, y) and

(i} for all = =y, R.(n, z) does not hold,

and there is a similar equivalence for n = K,. Now take statements ag,,
g, representing R, R, in Peano arithmetic as given by lemma 3.1.
Rosser's trick was (essentially) to use the following statement (based on
i*) above)
| Ay(ag,(n, ¥) A ¥Z=sy( ok, n, Z))
as the formal counterpart of n = K, rather than the simpler statement
Iyog,n, ¥l Let us write n < Kp for the statement i*%) above. Similarly we
write n € K, for the statement

Aylar, (N, v a¥z=yl og,ln, 21}

Mow it is guite straightforward to establish the following key lemma

[which should be compared with corollary 3.2):

3.5, Lemma
In Peanc arithmetic, for any natural numper n
(a) if ne Ky, then ne K is provable,
(B} if ne Ky, then ne Ky is provable,
() if ne Ky is provabie, then ng Kq ts alse provable.

The proof of this lemma uses some technical properties of Peano
arithmetic, and we therefore omit it. It is to obtain 3.3(¢) particularly that
the more complex formal representations of n€ Ky and ne K, are
needed. (For those familizr with mathematical logic we should mention
that lemma 3.5 is easily established once the following statements have
been shown to be provable in Peano arithmetic:



{3.6) (a) Forany m M-
Vi=miz=0vz=1v.. .vz=m),
b} Wy¥zly=zvz=vy).)

We can now complete the proof of

3T Theorem (The Godel-Rosser incompleteness theorem)
There is a statement T such that if Peano arithmeric is consistent,

neither v nor 17 is provable.
Proof. Define the sets
Pr** ={n: nzK, is provable
Ref** ={n: n=K; isrefutahle}
=1{n:n2 K, is provable}.
Consistency means that Pr** ~ Ref** = &,
From lemma 3.5(a) we have

K-n = Pr*,
Also, for any n, combining lemma 3.5(4) and {¢) we have
neKR, = ng Ky isprovable;

K< Ref*".
MNow I-Tr**.and Ref** are both r.e. (this uses the fact that P isT.e.} 50 the
recursive inseparability of Ky and K, (exercise 7-2.18(134)) means that
there is a number p# Pr** _ Ref**, The state of affairs is illustrated in fig.
8d. Now p& Pr** means that p  K; is not provable, and pe Ref** means

Fig. 84. Godel-Rosser incompletencss (theorem 3.7).

pree Ref**
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that p £ Kg is not provable, so the theorem is established, by taking r to be
the statement pe Ke.

Although the proof of the theorem as stated is complete, let us now see
how the numper p (hence the statement ) can be explicitly constructed.
From an explicit specification of Peano arithmetic, we can effectively find
an index p such that

(1 if m = Pr*¥,
dlni =410 if n = Ref**,
lundefined otherwise.

We can now see that p& Pr** U Ref**, as follows:
(i) if pePr*, then ¢.(pi=1, so peK,, hence p=Ref*,
contradicting consistency. Hence pe Pr*".
ther contradiction. Hence pe Rei™®,
{The fact that p can thus be obtained explicitly uses essentially the
effective recursive mseparability of K; and K, (see exercise 7-

3.139)) O

Notes

1. The statement =7 constructed in this theorem corresponds to the
undecided statement o of theorem 3.4 it is easily seen that — r also has
the informal interpretation ‘T am not provable’, and is intuitively true.

2. The Gddel-Rosser theorem applies to any recursively axiomatised
formal system of arithmetic in which all decidable relations can be
represented and for which lemma 3.5 can be established. (Lemma 3.3
always holds for systems in which statements 3.6 [a), (#) can be proved:
such systems are called Rosser systems. ) Again, there is thus no possibility
of avoiding incompleteness by adding new axioms,

3. The Godel-Rosser theorem is a completely finitist theorem: the
proof (when given in full detail) shows how to demonstrate inconsistency
explicitly if we were given a proof of either - or —r.

4, Undecidability
We have already seen that the set 7 of true statements of
arithmetic is not recursive (theorem 1.5): this is often described by saying
that 7 is undecidabie. In general, when considering sets of statements the
terms decidable and undecidable are often used to mean recursive and
NON-TECUrsive.
We can ask particularly of any formal svstem of arithmetic, is the set 24
of provable statements decidable? The answer is invariably no, and there
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are various ways to see this. We confine ourselves 1o one of the many
results in this area, using the ideas of the previous section.

4.1, Thearem
Suppose thar (&, 2) is an w-consistent formal system of arithmene
in which all decidable predicates are representable (in the sense aof leinma
3.1). Then the set of provable statements is crearnve.
Proaf. The assumption of the theorem means that Godel's theorem 3.4
applies, so in particular we have from the proof of theorem 3.4:

K=Pr*=in:nekK s provablel,

Mow let Pr=1{n: 8, is provable}; we can find a computable function 4 such
that n=K is 8., and then

nek < nePr*
&= hinlePr.
So by theorem 7-3.2, Pr is creative. [

4.2. Corailary

If Peano arithmetic is w-cansistent then the provable statemens
form a creative set. | This is the case in particular if all provable statements
are rue.)

The counterpart to theorem 4.1 and corollary 4.2 using Rosser’s ideas
15 given in the following exercise.

4.3, Exercise
Suppose that (&, @) 15 a consistent recursively axiomatised
formal svstem for which lemmas 3.1 and 3.5 hold. Let Pr** and Ref** he
the sets defined in the proof of theorem 3.6,
(a) Show that Pr** and Ref™ are effectively recursively
inseparable.
(¥) Let Pr=1{n: &, is provable} and Ref ={n: —4, is provable}.
Prove that Pr and Ref are effectively recursively inseparable.
(Hint. Extend the idea of theorem.7-3.2 to pams of effectively
recursively inseparable sets.)

The presentation of the results in this chapter is derived largely from
the books of Kleene [1967] and Smullyan [1961]. For further discussion
of incompleteness and undecidability in arithmetic and related areas, the
reader is referred to Bell & Machover [1977], Boolos & Jeffrey [1974], or
Rogers [1971],

9
Reducibility and degrees

In carlier chapters we have used the technique of reducing one problem to
another, often as means of demonstrating undecidability. We did this, for
wistance, in the proof of theorem 6-1.4 by showing that there 15 a total
computable function k such that x= W, < ¢, =0, i.e. we used the
funcrion k o transform or reduce each instance of the general problem
‘v o W, to an mstance of the general problem ‘b, = 0°. In this chapter we
consider two ways of making the idea of reducibility precise, and for each
we discuss the associated notion of degree (of difficulty) that arises.

It is more convenient to deal with reducibility berween sers rather than
between problems, remembering that any problem 1s represented by a set
of numbers. The informal idea of aset A being reducible 10 a2 set B can be
sapressed in various ways; for instance

ta) “Given a decision procedure for the problem ‘x = B', we can
construct one for ‘xe A°

ik] ‘For someone who knows all about 5, there is a mechanical
procedure (that uses his knowledge of B) for deciding questions
about A

{¢) *“Questions about A are no harder than guestions about 8.
{d) “The degree of difficulty of the problem 'x = A’ is no greater
than that of the problem ‘x B

It turns out that there are several non-equivalent ways of making this
dea precise. The differences between these consist in the manner and
extent o which information about 8 is allowed to be used to settle
Questions about A. In §8 1-3 we shall investigate one of the simplest
notions of reducibility, called manv-one reducibility, which includes all of
our earlier uses of the informal idea. [n the final sections we shall discuss a
maore general notion known as Turing reducibilin.
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Many—one reducibility

1.1. Definition
The set A i1s many—one reducible |abbreviated m-reducible) to
the set B if there is a total computable function f such that for all x
x=A WMl fixleB.
We shall write this A =, B; and weshall write f: A =, B toindicate that f
is a total computable function demonstrating that A =, B,
Note. The phrase many—one is used to distinguish this kind of reducibility
from a related notion called one—one reducibility, for which the function f
15 required to be injective.
We have used m-reducibility implicitly on many ceccasions in earlier
chapters. The s—m—n theorem is often needed to establish many-ons
reducibility, as we see in the following examples.

1.2. Examples
1. In chapter V1 we showed that K is m-reducible to each of the
following sets:
(@) {x:¢h, =0} (theorem 6-1.4, quoted above),
(b) {x:ce W.} (theorem 6-1.6),

. If we examine the function & given in the proof of theorem 6-1.6
we see that x € K & gy, 15 total. Hence
kK =_lx: 4, istotall.

. Rice's thearem (theorem 6-1.7) is proved by showing that
K =g {x:d, = 8} where 3 is any non-empty subset of % such
that f- & 8.

4, {x:¢p, 15 total}=_{x- . = 0}

Proaf. Using the s—m-n theorem obtain a total computable
function & such that ¢, ,. =0+, for all x. Then

Exix:daastotal} =n{x: ¢, =0}

[ ]

e

The following theorem gives some of the elementary proper-
ties of m-reduciility.

1.3. Thearem
Ler A, B, C be seis.
(a) =g isreflexive |ie. A=, A) and rransitive (i.e. f A =,Band
B=_Cthen A=_0C),
by A=_BiffA=_A,
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(c) if A is recursive and B =y, A, then B is recursive,
ld) if A is recursive and B = &, M, then A=, B,
(e] fAisre and B=_ A, then B irr.e.,
() () A=uNIfFA=MN,

(i) A= & iffA =0,
(g (i) M=, A ffA#&,

(i) 2 =pd iffA=H.

Proaf

(a) Reflextve. 1: A =, A, where « is the identity function. Tran-
siive B f: A=, Bandg: B=,C thenclearlyg<f: A=, C
i{r}l Ifg:A=,B thenxcA S glx)eB;hencexec A = gixle
B;hence g:A=,_,8,
{c) Suppose that g: B =, A; then cp(x)=calgix)). so ¢y is
computable.
(d) Choose b B and c# B, and define 7 by
Flx) = (e ifxeA,
A ifxe A,
Then f is computable (since A is recursive), and x £ 4 & fix)s
B hence [ A=_K.
i¢) Suppose that g: B=,A and A =Domik), with h compu-
table; then B =Dom(h<g), and A =g is computable, so0 B isr.e.
i) (i) By (a), M=_,MN. Conversely, suppose that f: A =_ [ i.e.

xeA < flr) =Rk Then clearly A =H,

(i) isdual to {i: A=, & S A< NS A=Ne>A=2,
Lg) (i) Suppose that fi¥=_A; then A=Ran(f), s0 A=J
{since f is total). Conversely, suppose that A # &, and choose
ce A, Then if we define glx)=c (all x), we have g:W=_A.

i) isdualto (i)} @ =pA S N=_ A D A£C = AN O

From (e} of this theorem we obtain the following example of non-
reducibility:

L4, Corollary

Neither of the sets {x: &, is total}, {x: & is not toral} is m-reducible
ta K,

Proof. From corollary 7-2.17 neither of these sets is r.e.; apply
theorem 1.3(e). [
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The exceptional behaviour of the sets &2, M as given in theorem 1.3(4),
[f), (g) is part of the price that has to be paid for the simplicity of the
notion of m-reducibility. Another rather unsatisfactory feature is that the
sets A and A are not necessarily inter-reducible (contrary to the intuition
that the problems ‘x e A" and ‘x2 A" should be equally difficult), as we
now see!

1.5. Corallary
If A is an r.e. set that is not recursive, then A€, A and A2, A.
Proof. Bythzorem 1.3(¢)if A =, A, then A isr.c.. a contradiction. For
A2, A, use theorem 1.3(5). O

The next result shows again the key role played by the r.e. set K.

1.6. Thearem
Aset Aisre ifandonivif A=, K.
Proof. If A=_K then theorem 1.30e) tells us that A isr.e, Conversely
let A be any r.e. set. Define a computable function fix, ¥) by

s ”_{1 ifx A,
b undefined if x& A.

The s—m-n thesorem gives a total computable function 5{x) such that
flx, ¥)=d (v} Itis clear from the definition of f that

reA & & 8lx)) is defined
= sixie kK.

le. A=_K O

This theorem may be interpreted as saying that the problem ‘x = K7 is
the most difficult partially decidable problem.

1.7. Exercizes
1. Show that K 15 m-reducible to sach of the following sets:
la) {x:gp.{x)=0],
(6) {x:xeE.}
. Show that for any sets A, B,if B £ & then A =, A& R. (Recall
that AR ={mia, bl ac A, be Bl
3. Show that
la) {x:d, =0} =,{x: ¢, is total and constant},
(b)Y {x:, 1s totall=_{x: W, 1s infinite}.

[ ]
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4. Show that none of the sets in exercise 3 above is m-reducible to
an r.e. set.

3. Suppose that A, B arere.setssuch that AuB=Mand A ~ B =
&.Prove that A=A B.

2 Degrees

For any notion of reducibility there is an associated notion of
equivalence between sets: this corresponds to the informal idea of two
sets or problems having the same degree of difficulty. Thus, for m-
reducibility we have:

Zila Definition
The sets A and B are many-one equivalent (abbreviated m-
equivalent) if A=_8 and B =, A. We write this A=_B.

The use of the word equivalent in this definition is justified by

2 Theorem
The relaton =, is an equivalence relation. (See Prologue § 3 for
definition.)
Proof. Reflexivity and transitivity follow immediately from theorem
1.3(a}; symmetry is obvious from the definition. O

2.3 Examples

L. Let¢ be any number; then {x:c € W,}=_K, by example 1.2(14)
and theorem 1.6,

2. For every recursive set A other than &, K, we have A =_ A by
theorem 1.3{d).

3. If A isr.e. but not recursive, then A 2. A, by corollary 1.5.

4. {x:d, =0} =1 {x: &, istotal}. One half of this is given by example
L.2{4); to see the reverse reduction, use the s—m—-n theorem to
obtain a total computable function k such that

i 0 if d.(v)=0,
L [undeh’ned otherwise,

Then clearly ¢, =0 < &y, is total.
For any set A, the equivalence class of A under the relation =, is the
class of sets dy(A) given by
dnlA)={B:A=_R}

This can be thought of as the class of all those sets having the same degree
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of difficulty (with respect to =) as the set A; hence d.(A) is called the
m-degree of A.

2.4, D finition
An m-degree is an equivalence class of sets under the relation
=,; Le. it is any class of sets of the form d.(A) for some set A,

It 15 conventional to use lower case bold face letters such as a, b, ¢ to
denote degrees.’ It is worth making a strong mental note that although
lower case letters are used, these are sets of sets, Thus it is meaningful to
write 4 = a, where g is a degree and A is a set, although at first this may
appear a little odd.

The relation =, on sets induces a partial ordering (see Prologue § 3 for
definition) on m-degrees, also denoted =, as follows:

2.5, Definition
Let a, b be m-degrees.
i@l @a=yb if there are A=a and Be b such that A=_8,
ib) a<=bifa=s bbutazh

Naote. Itis immediate from the definition of =, thata=_, b if A =_ B for
every Aca, Be b,

2.6, Theorem

The relation <, ¥ a partial ordering of m-degrees,

Proof. From theorem 1.3(a) we have immediately that a =, a
(reflexivity)and thata =, 8,6 =, c impliesa =,, ¢ (transitivity). Suppose
now that @ =, b and b=_a We have tlo show thatga =54, Let A=a and
B = b; then from the definitton we have A= Band B=, A, s0 A=_H.
Hencea=5b

The name recursive m-degree s given to any m-degree that contains a

recursive set; similarly, an r.c. m-degree 15 one that contains an r.e. set.

We can translate parts of theorem 1.3 and theorem 1.6 into the language
of degrees as follows,

2T Thearem
(a} {&€} and {8} are m-degrees. which we denote by o gnd n
respectively, © and m are recursive m-degrees.

context will resolve any possinle ambizuity
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(b) There ix one other recursive m-degree, denoted 0., that
consists of all recursive sets except & and M, moreover, 0, = a for
any m-degree a other than o, n.
(e} For any m-degree a. we have o=, a provided a #n, and
n =, a provided a # 0.
id) Any re. m-degree consisis anly of r.e. sets,
ie) If a=_b and b is an r.e. m-degree, then a is alvo an re.
m-degree,
() There is a mazimum r.e. m-degree, namely do(K ), which is
denoted 0.,

Proay.
{a) Follows from theorem 1.3(F);
(&) from theorem 1.30c), (d);
{c) from theorem 1.3(g):
() from theorem 1.310¢);
{2} from theorem [.3(e);
i f1 from theorem 1.6. _]

Theorem 2.7 gives us a picture of the m-degrees as shown in fig. 4. (In
this diagram, we position a degree a below a degree b to indicate that
a=_b.) We shall see later (as this picture suggesis) that there are re.
m-degrees other than @y and 0.

The structure of the collection of m-degrees under their partial order-
ing has been studied extensively. The following theorem means that this
structure is what 1s known as an upper semi-lattice.

Fig. 9a. The m-degrees.

on ra

0.
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2.8, Thearem
Any pairof m-degrees a, b have a least upper bound ;, Le. there is an
m-degree ¢ such that
i) a=,candb=nclcisan upper bound),
(i) ¢=pany ather upper bound af a, b.
Proof. Pick Aca, Bebandlet C=AQR. i.e
C={2x:xe A}u{2x+1:xeB}.
ThenxeAd =2 2x=C o A=,C, andxc8B & 2x+1e(, s0 B=,C,
Thus, putting ¢ =d,(C) we have that ¢ is an upper bound of a, b.
Suppose now that 4 is an m-degree such that @ =, d and b =, 4.
Chooseaset D ed andsuppose thatf: A =, Dandg: B =, D. Thenwe
have
veC & (xiseven & ixeA)or(xisodd & 3(x—1)e B)
e (xiseven & flx)c Dyorixisodd & giix—1)e D)
Thus we have h: C = D il we define i by
- [fiEx) if x is even,
Rlx}=4" 2" ol
| glzix — 1)) if x is odd.
Hencee=,d 0O

It is clear that the least upper hound ¢ of any pair of m-degrees a, b is
uniquely determined; moreover, it is easy to see thatif a, b arer.e soise
(see exercise 2.9(5) below].

When considermg the structure of the m-degrees, it is natural to
examine In particular the structure of the r.e. m-degrees. (These include,
of course, the recursive m-degrees 0, 0,n.) We have already seen in
theorem 2.7 (and indicated in fig. 9a ) the following basic facts aboutr.e.
m-degrees:

[a) if we ignore the exceptional m-degrees o, n there is a
mimimum r.e. m-degree 0 (in fact @, is minimum among all
m-degrees);
(b) the r.e. m-degrees form an inftial segment of the m-degrees;
i.e. anything below an r.e. m-degree is also r.e.
{¢) there is a maximum r.e. m-degree — namely 0,
Moreover, it is easy to see that while there are uncountably many
m-degrees, only countably many of these are r.e. (exercise 2.9(6) below).

It has emerged from much rescarch over the past twenty-five years that
the structure of the r.e. m-degrees is exceedingly complex, Within the
scope of this book it is only possible to show that it is not completely
simple; this we shall see in the next section.
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29 Exercises
1. Show that each of the following sets is m-equivalent to K :
() {x:xe E}
(&) {x:ehe(x) =0
. la) Show that A =, A DM for any set A,
(#) Let B be a non-empty recursive set. Showthat A=_A&®RE
for any A provided that A = &,
3. [CI. examples 2.3(2,3).) Is it true that if A=, A then A is
recursive? (See exercise 54 below.)
4. Show that the following sets all belong to the same m-degree:
le) {I vy = ﬂ]‘,
{0) {x:d, is total and constant},
{e) {x: W, is infinite}.
. Let @, b be m-degrees.
ta) Show that the least upper bound of a. b is uniquely deter-
mined; denote thisbva _ b;
(k) Show thatif a=_bd thenaub=»5;
{c) Show thatif a, b aret.e., thensoisa U b:
(d} Let Aza and let a* denote d,{A). (Check thal a* is
independent of the choice of Acq.) Show that (@ wa® ¥ =
aa®,
. (a) Show that any m-degree a is denumerable (i.e. there are
denumerably many sets A ea).
(A) Show that there are uncountably many m-degrees.
ir] Show that there are countably many r.e. m-degrees.

=

L]

3 m-complete r.e. sets

We have seen that 0, the m-degree of X is maximum among all
r.z. m-degrees. This is also described by saying that the set K is an
m-compleie r.e. set, ot just an m-complete ser.” (There is a corresponding
notion for any other kind of reducibility.)

3¢ bl Definition
A setis m-complete ifitisr.e. and any r.¢. set is m-reducible to it.

From thearem 1.6 we have immediately:

3.2. Theorem
la) K is m-complete,

2 =
Itis possiblz to have a nation of m-complete sets for classes other than the class af
r.c. s2rs; it is then necessary 1o eep the reference to r.e, here,
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(k) Aism-complete iff A=K if Aisre and K =, A,
{e) 0y consists exactly of all m-compiete sels.

Applying this we have the following:

14, Examples
The following sets are m-complete,
(a) {x:ce W} (example 1.2{15)),
(#) any non-trivial r.e. set of the form {x: &, € B} where 3 = ¥,
{the proofs of theorems 7-3.4 and 3.8 show that K =, such aset),

{c) {x:d.(x)=0}] ) X
i) froaeky  ooie Ll

The reader may have realised that m-reducibility appeared implicitly in
the statement of theorem 7-3.2, which implies immediately that

3.4, Thearem
Any m-complete set is crealive.
Proof. If A is m-complete, then K =, A, 50 K =, 4, and by Theorem
7-3.2 A is productive. [
It is very pleasing to find that the converse of this theorem is also true,
giving us a precise characterisation of m-camplete sets:

3.5, Theorem (Myhill)
Creative sets are m-complete.

We must wait until chapter 11 for & new tool - the Second Recursion
theorem — with which to prove this result. Note, however, that we have
already established it for creative sets of indices in example 3.3(h),

As an immediate corollary to theorem 3.4 we can use simple sets to
show that 0., and 0, are not the only r.e. degrees;

14, Corallary (to thearem 3.4)
Simpie sets are not m-complete ; hence if a is the m-degree af any
simple set, then 0, < a <, 0,.
Proaf. Simple sets are designed to be neither recursive nor
creative, [

This corollary justifies the inclusion of something between O, and 0 in
fig. 9a; it does not, however, justify the suggestion in that picture that
there is more than one non-recursive r.e. m-degree other than 0y,. In fact
there are infinitely many such m-degrees, although we shall not prave this
here.
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Itis beyond the scope of this book to investigate further the structure of
the m-degrees under their partial ordering =,, which, as already
mentioned, is very complex. Much of this complexity can be deduced
from results about the complex nature of the Turing degrees, which we
discuss in the next sections.

4. Relative computability

We saw in § 1 that m-reducibility has two rather unsatisfactory
features: the exceptional behaviour of & and %, and the fact that we do
not always have A =_ A. These features stem from the restricted nature
of m-reducibility: we have A =_ R only if each question 'x £ A7 can be
settled by answering a single prescribed question about B in a prescribed
way. The idea of Turing reducthilitv, which we shall definz in § 5, is that
‘xe A? can be settled in a mechanical wav by answering several ques-
tions about A, the nature and (finite) number of which are not necessarily
known in advance. This idea is made precise in terms of relanive compui-
fability, which we describe in this section,

Suppose that y is any total unary function. Informally we sav that a
function f is cormpurable relative to y, or just y-computable, if f can be
computed by an algorithm that is effective in the usual sense, except that
from time to time during computations we are allowed access to values of
the function x. Such an algorithm is called a y-algorithm. We can think of
a y-algorithm as being linked to some external agent or aracle that can
supply values of ¥ on demand. The y-algorithm operates in a purely
mechanical fashion, and a value yin) is requested from the oracle only as
dictated by the algorithm.

We can formulate a precise definition of relative computability using a
moditication of our URM, called an Unlimited Register Machine with
COracle, or URMO for short.

4.1. Definition

The URMO is like the URM in zll respects except that it can
recognize a fifth kind of instruction O(n) for every n = 1. The instruction
Oin)is called an aracie instruction.

To be able to obey oracle instructions the URMO must be linked to an
aracle, which supplies values of some given function y on demand. We say
then that the URMO has the function y inits oracle. The function y is not
thought of as part of the URMO itself.

The response of the URMO to an oracle instruction O(n ) is as follows:
if y is in the oracle, then replace r, (the contents of register R, ) by y(r.).
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This is denoted 1n flow diagrams by
ra=xlry) or yir.)=Ra

The URMUO, with y in 1ts oracle and obeying the instruction (hin } may
be envisaged as shown in fig. 95

A program is, as before, a finite sequence of instructions, The URMO
operates under a URMO program F in the same way as the URM, with
the following additional stipulation: after obeying an oracle instruction [,
m P the next instruction is J,...

We emphasise that in 2 URMO program P no particular function y is
mentioned. Thus the meaning of P varies according to the function
supplied in the oracle. However, a computatnon under P can be carried
out only when a particular function y is supplied, so we write P* to denote
the program  when used with the function y in the oracle. Thos we write

Px[ﬂl,...,,ﬂ“]
for the computation by P, with y in the oracle, and with initizl configura-
HO0 @1, @200 000 2, 0,0, ... 7 and we wrnite

Prlaylp

to mean that the computation Pia) stops with the number b in register
R,.

We can now make the following definitions (parallel with definition
1-3.10.

Fig. %
Clracle
[ * 7
i’
,\\_//
-
’ I
T ',"' i
; r
{ ¢ ki
; ’
1 L
T t_
L 2 Fs faty | s ot
R, R R, R.
With resulting configuration
m 2 | x(r.)
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47, Definition
Let x be a unary total function, and suppose that f is a partial
function from &" to R,
(a) Let P be a URMO program. Then P URMO-computes f
relative to x (ot fis y-computed by P) if, for every @ e MW" and
be i,
Priaylb iff fla)=h

(&) The function f is URMO-computable relative to y (or just
x-computable) if there is a URMO program that URMO-
computes it relative to y.

We write €* to denote the class of all y-computable functions.

We are now in a position where we could define Turing-reducibility.
However, to aid a better understanding of this concept when we come to
it we shall first outline a little of the development of the theory of relative
computability,

Most methods and results from unrelativised computability have
counterparts in relative computability. Thus in many of the theorems that
follow we supply only a sketch proof or a reference to the unrelativised
version of the same result. Throughout this section y stands for a total
unary function.

4.3, Thearem
la) ye¥*
(b) €c €,
(c) if x is computable, then € = €%,
(d) €*isclosed under substitution, recursion and minimalisation,
le) if W is a toral unary function that is y-computabie, then
e

Proaf,

{a) Use the URMO program Qi1).
(f) Any URM program is a URMO program.
{c) Inviewof (b), we need only show that €* = %. Suppose that f
is y-computable and that y is computable. Proceeding
informally, we can compute any value of f as follows: use the
x-algorithm for £, and whenever a value of y is requested simply
compute it using the algorithm for y. This is an effective pro-
cedure, so by Church’s thesis f is computable, (We leave the

reader to provide a formal proof of this result; see exercise
4.1003).)
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[d) The proofs are identical to those of theorems 2-3.1, 2-4 .4
and 2-5.2.

(¢} The proof is similar to that for (¢) (which 1s reallv a special
case of (2. O

Orher approaches to relavivised compurability Any alternative
approach to computability can be modified to provide a corresponding
notion of relative computability. A relativised version of the Fundamen-
tal result (theorem 3-1.1) can then be proved. and this leads to the
formulation of Church’s thesis for relativised computabihity.

We mention here only the relativised notion of partial recursive
function:

4.4, Definition
The elass ®&* of y-partial recursive functions 15 the smallest class
of functions such that
(@) the basic functions are in # ¥,
b) xRS,
fe) #* is closed under substitution, recursion and minimalisa-
tion,
The phrases partial recursive in x or pariéial recursize relative w y are
also used with the same meaning as y-partial recursive.
The notions y-recursive (orrecursive in, or relative io, y) and y-primitie
recursive (or primitive recursive in. or relative ta, x) are defined in the
obvious way.

Corresponding to theorem 3-2.2 (and proved in the same way) we have

4.5, Theorem
Farany y, "' = €%

Numbering program: and functions URMO programs can be
cfectively numbered or coded by an easy adaptation of the method used
in chapter ¢ for LURM programs. Let us assume that this has been done, so
that we have a fixed effective enumeration (without repetitions)

Ol.'lr Gl: QZ: L
of all URMO programs.” Then we write

¢ for the n-ary function y-computed by Q,,,,

' Each URM program P sppears in this list : in most cases, however, its number
here will ke different from that assigned to it in chapter 4,
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b for o',
W for Domiadh ),
E} for Ran(é®).

The s—m—n theorem (4-4.3) has a relativised counterpart with identical
proof;
4.6. Thearem (The relativised s—m—-n theorem)

Foreachm, n =1 there is a total computable (m =+ 1)-ary function
5. \e. x) such that for any x
:.l.m +ml I:I? y':. e Ct’:i.’nle..l: y [_}: N

Note. The function s, here differs, of course. from the function given the
same name in theorem 4-4.3. Mote, however, that s here is still
computable (not merely y-computable} and does not depend on y.

U'niversal programs for relative computability Relativisation of the
proof of theorem 5-1.2 gives immediately:

4.7. Theorem

For each n, the untwersal funcioa wi” for n-ary y-computable
furctions given by

P e, k)= "ix)

is y-computable.

Remark. A careful examination of the full formal proof of theorem 5-1.2
would show that there is a URMO program 7Y, independent of y, that
y-computes 1" for anv y.

Y-recursive and y-r.e. sets  The relativised notions of recursive and r.e.
sets are given by:

4.5, Definition
Let A be aset
(a) As y-recursive (01 recursive in x )il ¢ is y-computable,
(6] A s x-r.e ot re in x) if the partial characteristic function
1 if x s A,
undefined if xe A,

f[x,=1

is y-computzble,
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The following selection of basic results about y-recursive and y-r.e. sets
is proved by the addition of the prefix y- at the appropriate places in the
proofs of the corresponding unrelativised resulis in chapter 7:

4.9, Thearem
{a) Forany set A, A s y-recursive iff A and A are Y-rE.
1b) Forany set A, the following are eguivalent
1) A y-re,
(i) A= WP for same m,
{iii) A=E} for some m,
livl A= or A 5 the range of a rotal y-computable function,
(v) for some y-decidable predicare B [k, v),
reA < Iy Rixy)

iR 15 y-decidable if its characteristic function is y-computable).
lc) Ler K* ={x:x e WI}; then K" is x-r.e. but not y-recursive.

Compurability relative to a set  For any set A, we define compurability
relative to A {or just A-comprrability) to mean computability relative to
£a, the charactenstic function of A. Thus we wrile

P for P+ (if P is a URMO program),
€* for €7+,

b for 72,

W2 for Wea,

Enfor ER,

K™ for K=,

A-recursive for ca-recursive,

A-re forcs-r.e.,

ete.

In the next section we shall define Turing reducibility in terms of
computability relative to a set, For a set A, we can summarise the basic
idea that we have presented in this section, in a nutshell, as follows:
A-computability is computability for anyone whe knows all zbout A, To
be a little more precise, we should expand this to: for anyone who can
answer any question of the form ‘x £ A%, This excludes knowledge of
‘infinite’ facts about A, such as whether A has infinitely many even
members.

4.1k

I+

10.
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Erxercizes

. Let x. u be total unary functions, and suppose thai & F is total, Is

dr. mecessarily total?

. Suppose that y., y=, ..., y. are total unary functions. Define

@FEedz-¥ 10 be the smallest class of functions containing the
basic functions and ... ., y and closad under substitutions,
recursion and minimalisation. Formulate a definition of the set
%"t of functions computable relative to gy, .. . + X such that
Ehte =@ (Hing, Either define a machine having k
oracles, or find 2 single unary function y such that & =
A

. Provide a full formal proof of theorem 4.3(c): if y is compu-

table, then € = %"~

. Show that there is a total computable function & iindependent of

X1 such that Wi, . = W! o W5 forall indices a, b.

. Verify theorem 4.9,
. Let A be any set,

ta) Show that for any r.e. set B, there is an index ¢ such that
B=W,,

(#) Show thatif A is recursive , then W2 isre forall e

() Show that if A is recumsive, then K™ is re. but not
recursive,

. Let 4, B, C, be sets. Prove that

a) if A 15 B-recursive and B is C-recursive, then A is (-
recursive,

(p) if Ais B-r.e_and B is C-recursive, then A is (-r.e.,

i¢) if A is B-recursive and B is C-r.e., then A is not necessarily
C-r.e.

- \Relativisation of theorem 1.6.) Let A be any set. Show that for

any set H,
BisAre & B=_K?

. Show that there is a single number 4 such that

K™= W forallsets A,

la) We say that a set A is y-simple if (i) A is yre., (i) A is
infinite. (iii) A contains no infinite y-r.e. subset. Show that there
15 a y-simple sct,

(h) Formulate the definition of a y-creative set. Show that a
x-simple set is not y-creative.
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8 Turing reducibility and Turing degrees
Using relative computability we make the following definitions:

5.1 Definitions
{2) The set A is Turing reducible (or just T-reducible) to the set
B if A is B-recursive (equivalently, if ¢ 4 is B-computable). This is
written A =1 B, '
(b) The sets A, B are Turing equivalent (or T-equivalent) if
A =18 and B=1A. (The use of the word equivalent is justified
in theorem 3.2(k) below.) We write this A =1 B.

Let us consider informally the meaning of Turing reducibility. Suppose
that A =¢ B and that P is a URMO program that computes ca relative to
E. Then for any x, P*®(x) converges and

P x)l1 ifxeA,

PPx)l0 ifx2A
During any completed computation P®(x) there will have been a finite
number of requests to the oracle for a value cgln) of cg, as dictated by P
and the progress of the compurtation. These requests amount to a finite
number of questions of the form ‘r e B?". Soforanyx, x =A7 issettled
in a mechanical way by answering a finite number of questions about
B. Thus we see that Turing reducibility accords with the informal notion
of reducibility discussed at the beginning of § 4.

Some of the basic properties of the relations =t and =y are given in the
next theorem.

5.2, Theorem
fa) =< is reflexive and fransinve,
{f) =t is an equivalence relation,
(c) f A=nB then A=1B,
(d) A=A forall A,
{e) if A is recursive, then A=1B for all B,
() if Ais recursive and B =y A then B is recursive,
ig) if Alsre then A=¢K.

Proof.

(@) and (p) follow immediately from the observation that
A= B & ¥*c=€"” (by theorem 4.3(a), (e])
and hence
A= B & € =«¢"
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{c) Suppose that /A =,8, and let P be a URM program in
standard form that computes f Then the URMO program
P, O(1) is easily seen 1o B-compute Ca.

{d) Sinde g4 =527 ca, A is A-recursive (by substitution); hence
A=1A;and A =1A similarly.

ic) By theorem 4.3(k).

() By theorem 4.3(c).

{g) By (c) above and theorem 1.6. [

Remarks
1. From (d), (e}, (/) of this theorem we see that T-reducibility does not
have the defects of m-reducibility; this also shows us that these two
notions are distinect.
2. Part (g} of the above theoram shows that K is a T-complete (r.e.) set,
according to the following definition:

33, Drefintrion
Aset Ais T-complete if Aisre and B =1 A foreveryr.e. set B.

The name Turing degree is given o any equivalence class of sets under
the relation =1; again, we think of a degree as a collection of sets all
having the same degree of difficulty.

L1 Pefinutions
ta) Let A be aset; the equivalence class
diA)={B:B=,A}
is called the Turing degree of A, abbreviated the T-degree of A.
1k} Any T-degres containing a recursive set is called a recursive
T-degree.
ic) Any T-degree containing an r.e. set is called an r.e. T-degree.

The notions of Turing reducibility and Turing degree are widely
accepled &s the most basic among all other similar notions. Hence the
term reducible without gualification is often used to mean Turing
reducible; similarly, Turing degrees are often refsrred to merely as
degrees, or degrees of wnsolvability. We shall adopt this practice in the
remainder of our chapter. As before, the letters a, b, ¢, ete. are used for
degrees,

The relation =¢ on sets induces a partial ordering on degrees, as
with =,
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5.5 Definition
Let a, & be degrees.
{a) a=A4 if for some (equivalently, for all) Aca and Beb,
A ETB :
(b)) a<bhifa=banda=b.
{We leave it as an easy exercise for the reader to verify that < is a partial
ordering on degrees {cf. theorem 2.6).)

We can reformulate much of theorem 5.2 in terms of degrees as
follows:

5.6. Theorem
(@) There is a single recursive degree, which is denared 0; 0
consists af all the recurstve seis, and is the unique minimum degree,
(b)Y Ler O denore the degree of K then 0<0 and 0V is a
maximum among all r.e. degrees.
(e} Foranyses A, B
(i) dalAr=drlAl,
(1) if dulA)=ndeiB), then dr(A)=dB).
Proof.
(a) Thisis immediate from theorem 5.2(e) and (f).
{b) From (a) 0=0"; and 00 since K is not recursive. By
theorem 5.2(g), if @ 15 any r.c. degree, a =0,
(¢} Immediate from theorem 5.20c). [

There are two fundamental features of the structure of Turing degrees
under their partial ordering that we should now mention.

The jump operation  We have seen that the step from recursive sets to
T-complete sets such as K is a definite inerease in degree of difficulty,
expressed in the language of T-degrees by writing 0<0". We now show
that for any degree @ there is a corresponding step or jump to a higher
degree a', known as the jump of a. This is defined using the set
K*={x:x= W2} (for any set A <a): but first we need the following
theorem.

57, Theorem
Let A, B be any sels,
fal i) K™*izA-re.
{ii) if Bis A-r.e., then B=1 K™,
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(&) If A is recursive then K =K.
(c) A<yK™.
(d) (i) fA= BthenK"=-K",

(i) if A=rBthen K*=1K".

Praof.

(a) (i) is given by theorem 4.9(c); for {ii), a straichtforward
relativisation of theorem 1.6 (using the relativised s-m-n
theorem) shows that if B is A-r.e. then B=, K™
(b) Clearly K =1 K™, since K is A-r.e. for any A; on the other
hand, if A is recursive then the A-computable partial charac-
teristic function of K is actually computable (theorem 4.3(c));
hence K™ is re. Thus K" =1 K.
(¢c) A=-K* is given by (a)lii); A =, K™ is given by theorem
4.9(c). _
{d) (i) If A=1B. then simee K™ is A-r.e. it is also B-re. (see
exercise 4,10(74)). Hence K* = K7 by (a)(ii).
(i) follows immediately from (i), O

Part (@) of this theorem tells us that K* is what we would call a
T-compiere A-r.e, set; it is sometimes called the completion of A, but
usually it is called the jump of A and denoted A",

Notice that for any A € 0, the degree of K* is 0" (by (b) of the above
thearem). This leads to the following definition of the jump operator on
degrees.

-5 Definition
For any degree a, the jump of a, denoted @', is the degree of K*
foranv A=a.

Remarks

1. Theorem 5.7(d) tells us that this is a valid definition because the
degree of K™ is the same for every A =a.

2. By theorem 5.7(k) the new definition of 0' here as the jump of 0
accards with our earlier definition of 0 as the degree of K (theorem 5.6),

We can immediately write down the basic properties of the jump
operator:

3.9, Theorem
For any degrees a, b
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(g) a<a',

(b) if a=hbthena' =8,

ic) 0'=a’,

{dyif Bebh Acaand Bis A-re, then b=a'.
Proaf.

{a) By theorem 5.7(c).

() By theorem 5.7(d).

(¢} From [b), since 0=a.

{d) By theorem 5.7(a). O

The second fundamental feature of the structure of the Turing degrees
is one we have seen already for the m-degrees: they form an upper

semi-lattice:

510, Thearem
Any degrees @, b have a unique least upper bound.

Proof. We merely mention that the least upper bound of @, b is [as with
m-degrees) the degree of A@B for any sets A £ a, B b, and leave the
rest of the proof as an exercise, which is similar to the proof of theorem
28 o

The least upper bound of degrees a, b is denoted by a L b it is clear
from the construction that if @, b are re. thensoisa = b

The structure of the Turing degrees under their partial ordering, and
equipped with the operations ' and . has been studied extensively, and is
still by no means fully understood. Particular attention has been given to
the structure of the r.e, degrees (these do not form an initial segment of
the Turing degrees, as was the case with the r.e. m-degrees: see theorem
5.18 below). It is now known that the structure of the T-degrees and the
r.c. T-degrees is extremely rich and complex. For a long time, however,
even the following simply posed guestion was unsettled:

5.11.  Post's problem
Is there an r.e. degree a such that 0 <a <0"?

This problem was posed by Post in 1944 The simple sets, invented by
Post, did not provide an answer, as they did with corresponding question
for m-degrees (corollary 3.6). One reason for this is seen in the following
result of Dekker, which shows in particular that 0 contains a simple set.
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5.12. Theorem
Any non-recursive r.e. degree cantains a simple set.
Proof (sketch). Let B be an r.e. set that is not recursive, and let
B =Ran(f) where f is a total injective computable function (exercise
7-2.18{7}). Let A be the set given by

A={x:Jyly=rand fly)<flx)}

In exercise 7-4.4(2) we gave the hint for showing that A is simple. We
leave the proof that A =¢ B as an exercise (exercise 5.21(6) below).

This theorem underlines the difference between m-degrees and T-
degrees, since it shows that 0, unlike 0,,, contains many r.e, sets that are
not m-complete,

The breakthrough on Post’s problem came in 1956 when Friedberg
and Muchnik independently proved:

5.13.  Theorem

There are r.e. sets A, B such that A 27 B and B £ A. Hence, if
a, bare dr{A), dy[B) respectively, a2 b and b= a, and thus 0<a <0 and
O<b=0,

\Degrees a. b such that a2b and b=a are called incomparabie
degrees: this is written a |b.)

For a proot of the Friedberg-Muchnik theorem, which is well bevond
the scope of this book, we refer the reader to books such as Rogers [ 1967]
or Shoenfield [1971]. Friedberg and Muchnik used a new technique
known as the priority methed, which opened the way to the discovery of
the complex nature of the structure of the Turing-degrees.

There are many results about degrees that, like the Friedberg-Much-
nik theorem, are easy to formulate but difficult to prove. We give below a
sample of these, to illustrate the complexity of the T-degrees.

514, Theorem
For any r.e. degree a >0, there is an r.e. degree b such that b|a.

5.15.  Sacks' Densitv theorem
Forany r.e. degrees a < b there isanr.e. degree e witha <¢ < b.

5.16.  Sacks’ Spliting thearem
For any r.e. degree a >0 there are r.e. degrees b, ¢ such that
d<ag c¢<aanda=buc (hence b|c).
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5.17. Theorem (Lachlan, Yates)
{a) There are r.e. degrees a, b= 0 such thar 0 is the greatest lower
bound of a and b,
(k) There are r.e. degrees a, b having no greatest lower bound
(either amaong all degrees or among r.e. degrees).

Turning to non r.e. degrees, a surprising result is

5.18 Theorem (Shoenfield)
There is a non-r.e. degree a <0,

A minimal degree is a degree m = 0 such that there is no degree a with
0<a<m. By Sacks' Density theorem there can be no minimal r.e.
degree. However, Spector proved:

5.19.  Theorem
There is a minimal degree.

For proofs of these and other results about degrees we refer the reader
again to the books of Rogers and Shoenfield. The article by Simpson
[1977] gives a very readahle survey of more recent results that are not
included in these books.

T-degrees and m-degrees  Often results about T-degrees give informa-
tion about the structure of the m-degrees almost immediately, via
theorem 5.6(c). We illustrate with

5.20.  Corollary (1o theorem 5.14)
Foranyr.e. m-degree @ = Wy, there s an re. m-degree b such that
bla.

Proof. Let Aca; A isr.e. so by theorem 5.14 take an r.e. T-degree ¢
such that dr(A)|e. Let B be an r.e. set in ¢, and let b =d(B). Then if
a=_b or b=,a, by theorem 35.6{c) we have dr{A)=c¢ or e =dr(A),
contradicting dr(A)|e. Hence a |6 O

Other reducibilities There are other notions of reducibility that lie
between the restricted notion of m-reducibility and the broader T-
reducibility. The book of Rogers [1967] provides a full and detailed
discussion of these.

] O LA
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Exerciser

. Show that each of the following sets is T-complete;

la) {x:xe E.},
5 {x: W. =)

. Improve theorem 35.7(d} by showing that A =R iff

Kﬂﬂmﬁﬂ,andA—rﬂiﬁK“‘EmKﬂ-

. Show that the previous question can be made effective in the

following sense: there is 2 total computable function f such that
forany A, B, if ca= &7, then e K'=.K"

{(Hint. Find total computable functions g, it such that (i} if
ca=a. then K" =W, (i) duo WP =, K5 forall e.)

. For any set A define a sequence of sets A" by

Al'mzA; Am-r-:l:-:K,‘.l"'
and let A" ={xim, niimeA™"

(a) Show that A"™ <A™ for all n.

b} Show t_hat there is a total computable function k such that
€av =i forall n.

{c) Suppose that B is a set such that A'""'=,B for all n in the
following strong way: there is a total computable function f such
that ¢4mi= ¢ £y, all n. Show that A™' = B.

(d) Showthatif A=, B then A" =B alln,and A"’ = B"™".
(Hint. Use question 3 ahove, topether with (5) and (c).)

Prove theorem 5,10,

Complete the proof of theorem 5.12.

Prove as a corollary to theorem 5.17{a) that there are r.e.
m-degrees such that Oy, is the greatest lower bound of @ and &
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Effective operations on partial
functions

Once we have studied effectively computable operations on numbers it is
natural to ask whether there is a comparable notion for operations on
functions. The essential difference between functions and numbers as
basic objects is that functions are usually infinite rather than finite. With
this in mind, in & 1 of this chapter we discuss the features we might
reasonably expect of an ¢ffective operator on partial functions: this leads
to the formulation of the definition of recursive operators on partial
functions.

In § 2 we shall see that there is a close connection between recursive
operators and those effective operations on computable functions that we
discussed in Chapter 5 § 3. In § 3 we prove the important fixed point
theorem for recursive operators known as the first Recursion theorem.
The final part of this chapter provides a discussion of some of the
applications of this theorem in computability and the theory of pro-
gramming.

1. Recursive operators

Let us denote by %, (1 = 1) the class of all partial functions from
B" to %. We use the word operaior to descnibe & function @: F,, = F,.: the
letters @, W, . . . will invariably denote operators in this chapter. We shall
confine our attention to totally defined operators @: &, = #,; i.e. such
that the domain of @ is the whole of #,,.

The chief problem when trying to formulate the idea of a computable
{or effective) operator &: F,— #;, say, is that both an ‘input’ function f
and the ‘output’ function @( /) are likely to be infinite objects, and hence
incapable of being given in a finite time. Yet our intuition about effective
processes is that in some sense they should be completed within a finite
time.

To see how this problem can be overcome, consider the following
operators from F; to F:
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{at ) r:ﬁ"1[if'] = 2_,'

(b) @(fl=g where gix)=¥ _ fiyl.
These operators are certainly down to earth and explicit, Intuitively we
might regard them as effective operators: but why? Let fe %, and let
g = @i f); notice that any particular value g,(x) (if defined) can be
calculated in finite time from the single value f{x) of f: if we set
g2= @:(f). then to calculate g(x) (if defined) we need to know the finite
aumber of values (04, f(1),..., fix). Thus in both cases any defined
value of the output function (@1 /) or @.( f)} can be effectively calculated
m A fintte lime using only a fiaite part of the input function f. This is
essentially the definition of a recursive operator given below.

One consequence of the definition will be the following: suppose that
@ f)x) =y 18 calcolated using only a finite part 8 of f; then if z is any
other function having # as a finite part we must expect that Pighxi=y
also.

To frame our definition precisely there are some technical considera-
tions. First, let us agree that by a ‘finite part’ of a function f we mean a
finite function @ extended by /. (We say that 4 is a finite function if its
domain is a finite set.) For convenience we adopt the convention

8 aiways denates a finite function in this chaper.

The above discussion shows that the definition of recursive operator
will involve effective calculations with fnite functions. We mazke this
precise by coding each finite function & by a number & and using ordinary
computahility, A suitable coding for our purposes is defined as follows:
suppase that 8 = #,. The n-tuple x = (x1,. .., x.) is coded by the number
(x)=ppthpgtt. pﬁ-*'; then define the code € for @ by

#= JI  pog™ provided that Dom(g) # 2,

g =1 if Dom(8) = &
{in which case 8 = f/z).

Thcr.e is a simple effective procedure to decide for any numbesr = whether
z = ¢ for some finite function #; and if so, to decide whether a given x
belongs to Dom(é), and calculate A(x) if it does.

Now we have our definition:

1.1. Dafinition .

Let @0 %, -5, Then @ is a recursive aperator if there is a
computable function &(z, x) such that for all f= F,, and x=®", ye X
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P®{flix)=y iff there is finite # = f such that ¢ {8, x)~ y.
(Note that ¢ is not required to be total )

1.2. Example
The operator & [} = 2f is a recursive operator: to see this define

iz, x) by
[28{x) if z = & and x = Dom(#),

iz, x)= i
B2, 1undﬂﬁned otherwise.

By Church’s thesis, & is computable: now for any f, 1, v we have
PB(fiix]=y & reDomif) and v =2f(x)
o> thereis # < f with x e Dom(#) and v = 28(x)
& there is # < f such that & (8, x)=1y.

Hence @@ is a recursive operator,

Further examples will be given in 1.6 below.
An important feature of recursive operators is that they dre conrnnons
and monoone in the following sense.

1.3 Definition
Let ¢+: 3, - F,_ be an operator.
(a) @ is continuous if for any fe #,, and all ¥, v;
@i filx)=y iff thereis finite # =7 with L(F)xi=y;
(&) & is monarone if whenever f, ge &, with f= g. then
D= Pig)

These properties are easily established for recursive operators, and as
we shall see they aid the recognition of such operators.

1.4, Theorem
A recursive operalar is confinuous and monotone,

Proaf. Let @:%, = F, be a recursive operator, with computable
function ¢ as required by the definition. Suppose that @ fl{x) =y, and let
4 =f such that rf."[l'i x}=y. Since Ac#, it follows immediatelv that
P{dHx) =y Conversely, if # =7 and £(8)(x) =y, there is #, = # such that
@6, x)=y: but then & =f, so we have that & flix)=y. Hence & is
contnuous,

Monotonicity follows directly from continuity; suppose that f< g and
D{flix)=y. Take #cf such that @(dlix)=y; then =g, so by
continuity, @(gixi=v. T
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The use of the term continwous to describe the property 1.3(a) is
justified informally as follows. Suppose that @: F, - #, satisfies 1.3(a)
and f= 3, Then given any xi,. ... x; for which &(f)(x,) (1=i=§) are
defined, using 1.3(2) we can obtain a finite 8 = f such that @(6)(x,) =
P(f)x:) (1=i=k). Thus, whenever g =6, by 1.3(a) again, we have
Pighx) =@ flix;) (1 =i=k). Le.if gis‘near to f (in the sense that they
agree on the finite set Dom(&)] then &(g) is ‘near” to @i f) [in the sense
that they agree on the finite set x,, ..., x.). Thus, informally, @ is
continuous.

The continuity property 1.3{a) specifies that a value &(f)ix) is deter-
muned (if at all) by a finite amount of pesitive information about £, This
means information asserting that f is defined at certain points and takes
certain values there, as opposed to negarive information that would
indicate points where [ is not definad. Using this idea the term continuous
can be rigorously justified as follows.

The positive information ropology ' on #,, is defined by taking as base of
apen neighbourhoods sews of the form

Uy={f6cfl (9=, finite).
Thus f belongs to L7, iff # is correct positive information about f, Itis then
an easy exercise to see that an operator is continuous with respect to the
positive information topology precisely when it possesses property
1.3{a).

The following characterisation of recursive operators using continuity
will make it casy to establish recursiveness of various operators.

1.5, Thearem
Let @ F, = F, be an aperator, Then € is a recursive operator i
la) 4 is continuounsy,
(b} the function ¢z, x) given by
B x)=@(0)x) forde F,
Biz, x) is undefined  for all other =,
is compurable.

Progf. Suppose that @ is recursive with computable function &, such
that

@(f)x)=y if 3600 < f and d,(5, x) = y).

E The reader unfamiliar with ta po !{lg_‘, will lase noth ig.g in further dﬁ'ﬂ.‘ll.'!]! ment by
amitting this paragraph.
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Then taking ¢ as given in the theorem, we have
G x)=y & 36,00, = Aand (6, x)=y);
the relation on the right is partially decidable, sa & is computable by
theorem 6-6.13.
Conversely, suppose that conditions (z) and (#) of the theorem hold:
I'h":n g
@ fixi=y < A< fand P(A)x)=y)iby(a))
< 3R cfand pif x)=y) by (b)),
whenee @ 15 a recursive operator. [

This theorem enables us to show quite easilv that the following
operators are all recursive;

1.6. Examples
(@) (The diagonalisation operator) @filel=7fix, x) {(f=F)
& is abviously continuous, and ¢(f, x) = #(x, x) is computable,
(b) @iflix)=X .. flv)(feF)

This is the second example discussed al the beginning of this
section, We saw there that @ is continuous; and clearly Bif, x)=
¥, =, 8y} is computable.

{¢) Let g e %, be computable. Define §: %, = F, by @ (fl=gcf
Obviously & is continuous, and &8, x] = g{d(x])] is computable.
{4} {The Ackermann operatar). Let @: 5, —= 3, be given by
@AM, vi=y+1,

P Mx+1,0}=f(x, 1],

Pfx=1,p+1)=flx, Flx+1, y).

To see that @ is continuous, note that @(f)(x, v} depends on at
most two particular values of £, For recursiveness, it is immediate
by Church's thesis that the function & given by

¢(6,0,y)=y+1

Gif,x+1,00=6(x, 1)

G(f x+1, y+1)=8ix, Blx =1, ¥))

is computable,

(e} (The wm-operator.) Consider ¢: F,,,—=F., given by
@(f)x)=py(flx, y)=0). It is immediale that this operator is
continuous, and that the function ¢ given by

G, x)=pviglx y)=0)

is computable.
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When the defimition 1.1 of arecursive operator & F,, = %, is extended
to the case n =0, we have what is called a recursive funcnonal. The
members of #, are 0-ary functions; i.e. constants. Just as F, (n=1)
includes the funetion that is defined nowhere, &, includes the ‘undefined’
constant, which is denoted by w. Thus Fy=Ru{w}, and an operator
i = Fyis a recursive functional if there is a computable function ¢ [x)
such that for any f e %, and v = M;

@(f)=y iff Jaipcfand H(6)=y).
We wrnite @(7l=gw if @) is undefined; this emphasises that & is stll
thought of as being a total operator,

We should point out that in some texts the term partial recursive
funcrienal &, - F, is used to describe recursive operators, including the
case n = (. In such contexts the word partial describes the kind of object
being operated on rather than the domain of definition of the operation.

We shall not discuss here the extension of the ideas of this section to
partially defined operators and the corresponding partial recursive opera-
tors @ %, = F, The reader is referred to Rogers [1967] for a full
discussion of these and related matters,

1.7, Exercises
1. Show that the fellowing oparators are recursive.
(a) @{f)=F (Fe F),
(b) @ifl=g(feF,), where g 1% & fixed computable function in
#1.
(el @(f)=f=z (fc F | where g isafixed computable function in
s
(@) Let e, be a fixed computable function; define
D F, 1 +F, 1 by

0 if ix, vl=0.
Pif)x, yi={fix+1,¥)+1 if hix, y)is defined and =0,
undefined otherwise

{The significance of this operator will be seen later.)
. Prove thatif @ is a recursive operator and £ is computable then so
is P(f).
3. Decide whether the following operators @: .7, = #, are (i)
monotonic, (i1) continuous, (iii) recursive.

[fix) if Dom( 1) is finite,
lundefined if Dom(f) is infinite.

I

la) €{fix)=



10 Effecnive aperations on pardal functions 188

; _Jo if fix)is defined,
() d“'ﬂ[“_].undcﬁned otherwise.

0if flx)e K

ic) @Ax)=11if fix}]eK

jundefined  otherwise.

] if fix) is defined,

41 BLAN _h{undeﬁned if Dom( f) s finite,
(e R L fixd if Dooml f) is infinite.

Suppose that @: F,, = F, and ¥: %, = F, are recursive opera-
tors. Prove that ¥adb: ¥, = 5, s recursive,

Show how to extend the definition of recursive operator to
include operators @:F,, % F,#. . K Fy, = F, and prove
appropriate versions of thearems 1.4 and 1.5 for your definition,
Prove that the following operators arc recursive:

la) & F x F,+F, given bv Pif gi=F-g (cf. question lc
abovel;

(b) @ Fop1 % Foiq > Foq given by

#

0 if ke, ¥i=10,
@if o hix, x) --I flx+1,¥1+1 if Alx, y)is defined and is not 0,
[ undefined otherwise

icf. 1d above).

. (For those who know some topology. |

(@) Prove that an operator is continuous in the sense of
definition 1.3(a) iff it is continuous 1 the positive information
topology.

(61 Prove that the following are equivalent for V = &,

(i) V' is open in the positive information topology,

(i) feViff3g@cfand #=V).

. et F, - F, and ¥ F, = F, be conunuous operators; prove

that ¥ %, = F_ is continuous,

. Let (M) denote the class of all subsets of R formulate a

definition of a recursive operator @: P (%) = P (M) that parallels
the notion of a recursive operator from #, - ;. Frame and
prove theorems corresponding to theorems 1.4 and 1.5.
{Hint. The question of membership x = @(A) should depend
effectively on a finite amount of positive information about
membership of the set A.)

(Effective operators 2 (M) — P(R) are called enumeration
aperatars and are discussed in full in Rogers [1967].)
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ted

Effective operations on computable functions
In chapter 3 §3 we considered that certain operations on
computable functions should be called effective because they can be given
by total computable functions acting on indices, For instance, in example
5-3.1(2) we saw that there is a total computable function g such that for
all e £ %, (8.)" = Bgier

We shall see in this section that any recursive operator ¢, when
restricted to computable functions, vields an effective operation of this
kind on indices. This 18 the first part of a theorem of Myhill and
Shepherdson, They proved, morecver, that all such operations on indices
of computable functions arise in this way.

We shall prove the two parts of the Myhill-Shepherdson result
separately, taking the easier part first,

2.1, Thearem [Mvyhill-Shepherdson, part I)
Suppose thar ¥ F, = F, 5 a recursive operater. Then there 15 a
rotal computable function h such thar

Vg =di., lesh)

Proof. Let  be a computable function showing that ¥ is a recursive
operator according 1o definition 1.1, Then for any ¢ we have

Vit Jx)=y & 30(6 =, and Pid, x)=y).
We shall show that the function g defined by
dmy

gle, x)=¥{gd, Nx)

is computable, by showing that the relation gle, x1 =y is partially deci-
dable. Tao this end, consider the relation Rz, e, x, ¥) given by

Riz,e.x,y)=3P(z=4 and 6 = $." and WiE, x)=v).

Then R is partially decidable, with the following informal partial decision
procedure.

i1} Decide whether z = g for some @: if so obtain %;,..., % €
B™ and vy, .. .. v such that Dom({f) = {x,, ..., x.}and iz} =
il=:r=k); then

(2) fori=1,..., kcompute ¢ (x);il.forl=i=k, & (x)is

defined and equals v, then
{3 compute (z, x) and if defined check whether it equals y.
If Rz, g, x, ¥) holds, this is a mechanical procedure that will tell us soin
finite time, as required.
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Since Riz,e x.v) is partially decidable, so is the relation
Jr Rz, e x v} (by theorem 6-6.5): but
Iz Riz, e x v < Wig." lix)~y ifrom the definition of R
< gle, ¥ )=y (from the definition of g).
Thus gle, x} = v is partially decidable, so by theorem 6-6.13 g 1s comput-
able.
Mow the s—m—n theorem provides a total computable function i such

that oy
e ¥i=gle. x)

- Wi ™ )x),
from which we have ¢, = Piga ™), I

Notice that the funection i given by this theorem for a recursive
operator ¥ % - F is extenstonal in the following sense.

2.2, Definitian
A total function fi; % =R is exrensiona! if for all a, b, if ¢, = 9,
then ey = duiss

MNow we can state the other half of Myhill and Shepherdson’s result.

2:3: Theorem (Myhill-Shepherdson. part 11)
Suppose that h is an extensional roral computable funcoon. Then
there 15 a unique recursive operaior ' such that Wit )= du. for all e.

Proaf, Atthe heart of our proof lies an application of the Rice-Shapiro
theorem (theorem 7-2.16).

Let k he an extensional total computable function. Then b defines an
operator ¥ €, = %, by

Poldhe} = Piier:
W is well defined since h is extensional. We have to show that there is a
unique recursive operator ¥; #F, = F, that extends ¥,

First note that Wa(#) is defined for all finite &, since finite functions are
computable, Thus any recursive operator ¥ extending ¥, being
continuous, must be defined by
(24)  Wi(f)x)=y = FRiA< fand ¥yd)ix)=y).

So such a %, if it exists, 15 unigue, To prove the theorem we must now
show that

(1) (2.4} does define an operator ¥,

i} ¥ extends ¥,
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(iii) ¥ is recursive,
We first use the Rice-Shapiro theorem to show that ¥, is continuous in
the following sense: for computable functions f
(2.5)  Wy(fix)=y < 386 =F and Ful(8)(x) = ¥
To see this, fix x, v and let o ={f %, Yo /lx)= v} Then the set
A=leid, e} ={e i (x)==y)isr.e.;50 by the Rice—Shapirc theorem,
if f s computable then

fed o 3rPcfand P e,
which is precisely (2.5).

Now we establish (i), (i1), (iii) above,

(i} Let f be any partial function; we must show that for any x, (2.4)
defines ¥{f)(x) uniquely (if at all). Suppose then that 8,. d. =i and
Wyt x) =y, and @f:]{ﬂ:_'lfx V= y2. Take a finite function 4 = 8, ¢, say,
# = f|Dom{#,) . Dom(8:)); by (2.5)

Y=Yl )lx}=Wol@)ix) = Fo(B:){x) =y
Thus (2.4) defines an operator ¥ unamhiguously.

(i} This is immediate from (2.5) and the definition (2.4,

(iii) We show that ¥ satisfics the conditions of theorem 1.5, Clearly ¥
i continuous, from the definition. For the other condition we must show
that the function ¢ given by

Wid, x)=W(8)ix),
Wiz, x)is undefined if = # .
1s computable. Now it is easily seen by using Church’s thesis that there is a
computable function ¢ such that for any finite function @, €(8) is an index
for 8 i.c. 8 = $.5 Thus
wi6, x)= ¥id. 4 x)
= 'ﬁ'r'u'n:[;'ll[:-t _h

so 4 1= computable, since b and ¢ are. Henee ¥ is a recursive
operator. [

Remarks

1. The proof of theorem 2.3 actuallv shows that for any extensional
computable A there is a unique contnnous operator ¥ %, = &, such that
W) = ¢y all e, and that this Operator is recursive.

2. Theorem 2.3 extends in a natural way to cover operators from
#, = #F,. The proof is almost identical, using the naturzl extension of the
Rice-Shapiro theorem to subsets of € ; see exercise 2.6(2) below.
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2.6, Exercises
1. Suppose that @, ¥ are recursive operators 5 = F1; knowing
that @< W is continuous (exercise 1.7(7)) use the two parts of the
Myhill-Shepherdson theorem together with the first remark
above 1o show that &= ¥ is recursive.
State and prove a general version of theorem 2.3 for operators
from ¥, = %
1. Formulate and prove versions of the Myhill-Shepherdson
theorem (both parts) appropriate for the operators you have
defined (@) in exercise 1.705), () in exercise 1.7(8).

Fa

3. The first Recursion theorem

The first Recursion theorem of Kleene is a fixed point theorem
for recursive operators, and is often referred o as the Fixed point
theorem (of Tecursion theory). We shall see later that it 1s a very useful

result.

3.1. The first Recursion theorem (Kleene)

Suppose that ®: F, = F,. is a recursive operalor. Then there is o
camputable function fp that is the least fixed pownt of @5 e

ia) ©(fal=fan

(b} ifdig)=g, then fas g
Hence, if f» is total, it is the anly fixed point of @.

Proof. We use the continuity and monotonicity of & to construct the
least fixed point f» as follows. Define a sequence of functions {f,} (n )
by

fu= f= (the function with empty domain),
Fasr =®LF)

Then fo=fe=fi; and if f, € f.+1, by monotonicity we have that fus1=
@) = @ frri) = fuez. Henee f, =f.-: for all n. Now let

f‘t = U fm

nelfy

by which we mean

folx)==y iff 3n suchthat [ (x)=y.
We shall show that fg is a fixed point for &

For all .

Fa

fe
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hence

fu—1 = ¢|:.f1:|'§ q"ll.fd'}-
thus

fac®(fs)

Conversely, suppose that @€(fu)ix)=y; then there is finite # = fp such
that ¢(8)(x) = v: take n such that & = £, ; then by continuity &{ £, ){x) = y.
That is, fu.ilx) =y Hence fplx)=1y. Thus @(fs)=fe. and so @i fa)=fs
as requirad,

To see that fy is the least ixed point of &, suppose that ¢{g)=g; then
clearly fo=7z =g and by induction we see that f, = g for all ». Hence
f:qa = g. as required. Moreover, if /s is total, then f5 = g, s0 fa 1s the only
tixed point of &

Finally we show that f is computable., Use theorem 2.1 to obtain a
total computable function k such that for all e

dj‘f"t’c} - ‘ﬁ'h-p]-
Let es be an index for fu; define a computable function k& by
ElD)=eq

kln+1)=hikin,
Then f, = iy for each 1 ; thus
felrl=y < Inidepolxi=y).

The relation on the right hand side s partizlly decidable, and hence fs is
computable, [

Remark. The recursiveness af the operator ¢ was used in this proof only
in showing that [ is computable. The first part of the proof shows tha'l
any contingowrs operator has a least fixed point,

We shall see in the following examples that a recursive operator may

have many fixed points, and that the least fixed point is not necessarily a
total function,

3.2, Examples
1. Let @ be the recursive operator given by
LM =1,
B fiix+=Fflx+2).
fall)=1,

Then the least fixed point is ;
feolx +1)=undefined.

Other fixed points of @ take the form [ﬂﬂj T
flx+1)=a,
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2. Recall the definition of the Ackermann function ¢ in example
2-3.5:
S0, yi=y+1,
Gix+1,0)=uix, 1),
$ix+ 1l y+=¢ix ¢ix+1, y)).
The first Recursion theorem gives a neat proof that these egua-
tions do define a unique function ¢ and that 4 is total and
computable. Let ¢ be the Ackermann operator given in example
1.6(d). The fixed points of @ are the functions that sausfy the
above equations. Let o = fp; then o is a computable function
satisfving these equations, so we have only to show that ¢ is total.
Clearly, ur(0, v) is defined for all y; if wix, v} is defined for all v,
then by induction on y we see that dr{x =1, v) is defined for all y.
Hence wix, v) 1s defined for all x, v; i.e. & is total,

3. Let hix, ¥) be a fixed computable function and let & be the
recursive operator given n exercises 1.7(14d). Then the least
fixed point fa is 2 computable function satisfying

] if i, vi=0,
folx,y)=<felx+1,9)+1 if hix, v)is defined and not 0,
undehned otherwise,

But what is this rather strange looking function? We can quite
easily check that
folx, pl=pzlhlx+z.yi=0)
as follows, First suppose that pzihix+z, y)=0)=m; then
hix +z, y)isdefined and not O for all z <<m, and hix +m, v =10
Hence
falx, ¥l=folx+ 1 ¥)=1=., . =fslx+zy)+z (z=m)
=fpix—m y)+tm=0+m=m.
Suppose on the other hand that fpix, ¥)=m; then from the
equations this must be because
m=fplx, ¥)=fplx+1, yl+1l=...=fplx+tm, y}=m
and & (x + z, v)isdefined and not O for z < mithenfalx +m, ¥ ) =
Osofix+m y)=0 Thus m = uzihix+z, y) =00
We can infer from this example that the function fg(0, yi=
pzih(z, ¥} =0)is computable; of course, there is no use pretending that
we have a new and clever proof of the closure of ¥ under the y-operator,
since we have used this property of % implicitlv in our proof of the first
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Recursion theorem. (In Kleene's equation calculus approach (sze chapter
3 § 1), however, the first Recursion theorem is proved without the use of
the p-operator, so closure under the u-operator is established by this
example.)

We can see from the above examples why the first Recursion theorem 15
s called. The general idea of recursion is that of defining a function ‘in
terms of itself'. A simple instance of this is primitive recursion, discussed
m chapter 2. We have seen more general forms of recursion in the
defimitions of Ackerman’s function, and the function fo in example 2.2(3)
above, .

We were able 1o see quite easily in chapter 2 that primilive recursive
definitions are meaningful, but with more complex recursive definitions
this is not so obvious; conceivably there are no functions satisfying the
proposed definition. This is where the first Recursion theorem comes in.
Very general kinds of definition by recursion are represented by an
equation of the form

(33 f=&1f) -

where @ is a recursive operator. The first Recursion theorem shows that
such a definition s meaningful: there is even a campuiable function
satisfying iL. Since in mathematics we require that definitions define
things uniquely, we can say that the recursive definition (3.3) defines the
least fixed point of the operator @, Thus, according to the first Recursion
theorem, the class of computable functions is closed under & very general
form of definition by recursion.

3.4, Exercises
L. Find the least fixed point of the following operators:
(@) ®(fi=f (feF):

ib) Q}{_ﬂ{xl:i“ | itx=0, (feF)
2x -1+fix—-1) ifx=0;

{c) i:ﬂi_f_i[x_.y]:[ﬂ_ ’ ] el
fix—=1,flx,¥)) Hx=0.

. (McCarthy) Show that the function mix) given by

Q1 if x =100,

x—10 otherwise,

b

mu:x}=[

15 the only fixed paint of the recursive vperator ¢ given by
Ffix+11)) ifr= 100,

¢[,*'}tx}={
xr—10 otherwiss,
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3. Suppose that ¢ and ¥ are recursive operators &, = F, —+ #, (in
the sense vou have defined in exercise 1.7(3)). Show that there is
& least pair of funections f, g such that
f=®if gl
g=¥if. g
and f, g are computable,

4. Suppose that &@: F, = F,, =+ F, i5 a recursive operator (in the
sense you have defined in exercise 1.7(5)). For each ge ., let
&, . F, + F, be the operator given by @, f) = &(f, g).

Show that the operator ¥(g)=Ileast fixed point of @, is a
recursive aperator &, — F.

4, An application to the semantics of programming languages

We shall see in this section how the first Recursion theorem helps
to resolve a problem in the semantics of compuler programming
languages — the area that deals with the question of giving meaning to
programs. Our discussion is necessarily given in terms of a general and
unspecified programming language, but this is adequate to explain the
basic idea,

Suppose, then, that L is a general programming language. The basic
symbols of L will have been chosen with 2 particular meaning in mind, so
that the meaning of compound expressions built from them is also clear.
We may then envisage a simple program for a function as follows.
Suppose that v(x) is an expression of L such that whenever the variables x
are given particular values a, then i@ ) can be unambiguously evaluated
according to the semantics of L. If we now take a lunction symbol f of L
that does not occur in 7, then

4.1) Fflx)=7ix)

i a simple program for a function £., that has the obvious meaning: forany
numbers a, (&) is obtained by evaluating the expression v{a) according
to the semantics of L.

Suppose now that T is an expression in which the symbol f does occur.
We indicate this by wnting =(f, x}. Then the program (4.1} becomes
(4.2)  fixi=71f x).

This is now what is called a recursive program. Situations oceur where this
is the most natural and economical way to deseribe a function that we may

desire the computer to compute. Yet the meaning of the ‘program’ (4.2} 1s
not entirely clear. The fundamental problem with any recursive program
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is: how do we give it a precise meaning? It can hardly be called a program
until this question is settled,
There are basically two approaches that provide an answer to this
question:
(a) The computanenal approach. Here the function taken to be
defined by a recursive program is given in terms of a method of
computing it. This approach reflects the fact that the computer
scientist needs to know not only what a program means, but also
how to implement it,
(b) The fixed point approach gives a meaning to a recursive
program by an application of the first Recursion theorem. The
fixed point theory also resolves some problems raised by the
computational approach, and actually shows that the two
approaches may be viewed as complementary rather than
competing.
Let us now briefly explain these two approaches and see how first
Recursion theorem enters the picture.

The computarional approach This is best described by 2iving some

examples. Consider the recursive program

1 ifx=0,

2fix—1) ifx=0.

(We are assuming thatin L we can formulate conditional expressions such

as this.) Using the equation (4.3) we can formally evaluate the value F3),

for instance, as follows:
Fid=2xfi2)=2x2%f(1)=2x2 %2 f(0)=8:

here we have made successive substitutions and simplifications using the

formal equation 14.3). Hence if £, is the function deemed to be given by

the program (4.3) we would have f,(3) =&,

With more complicated recursive programs there may be more than
one way to use the formal equation f(x)=+(# x) in such an evaluation
procedure. Consider, for instance, the recursive program
l 1 fx=I0,

flx—1, flz, ¥ x>0,
Suppose that we try formally to evaluate fi1, 0). We have
(4.5)  Fi1,00=f{o, f1, 0.

But now there is a choice of occurrences of f for which to substitute

4.3) fl.'x)'—[

44y fix, vl=



18 Effecnive operations on partial funchions 198

=(f, x). Choosing the leftmost one and simplifying we have
F(1, 0)=fi0, f{1, 0)) = 1 (since x = 0).

If, on the other hand, we substitute for the rightmost occurrence of f sach
time, we obtain from (4.5)

f1,00=f(0, f{1,00) = £(0, O, f(1,0)))
.-.___ﬂ[]. f{ﬂ. fl:nv .ﬂ.l: {]”}] 2

and in this case no ‘value’ for f(1, 0) emerges.

A computation rule is a rule R that specifies how to proceed when
confronted with such a choice of possible substitutions during any formal
evaluation procedure. The computational rules we considered for the
recursive program (4.4} were ‘leftmost’ (LM) and ‘nightmost’ (RM),
There are many other possible rules. For any computation rule R, and
recursive program f{x)= r(f, x) we define the function f. g by: f. zla) is
the value obtained when f(a ) is formally evaluated using the rule R. If no
value is thus obtained, f.gla) is undefined. (Thus for the recursive
program (4.4) we have £ m(l, 0 =1, and £, gai 1. ) is undefined.)

So we sec that each computation rule gives a meaning to any recursive
program (and, at the same time, a method of implementing it).

The above example demonstrates that different computation rules may
give different meanings to any particular recursive program. The problem
now for the computer scientist who chooses this computational approach
is 1o decide which computation rule to choose, Moreover, for any rule R,
there is the question of determining in what sense, if any, the function fir
satisfies the equartion

flxi=rif x).

The fixed point approach, using the first Recursion theorem, avoids
these problems, and in fact sheds light on both of them, as we shall see.

The fixed point approach An expression =(f, x) of L gives rise 1o an
operator ¢ F, = #, by setting
Bghix)=rig x)

for any g £ ¥, Moreover, in most programming languages the finite and
explicit nature of the expression 7if, x) ensures that @ is a recursive
operator. The first Recursion theorem now tells us that @ has a compu-
table least fixed point, which we may denote by f.. Thus we may define
the function given by the program (4.2) as £.. This is quite reasonable,
because f, is computable, and moreover we know that 7.(x)=7(f. x),
which is surely what the programmer intended.
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There remains the matter of finding good practical procedures for
implementing the program (4.2) with its meaning defined in this way. It
can be shown that for any computation rule R, 7., = f,; turther, there are
computation rules R for which f. g = £, for all . Any one of these may be
chosen as a practical way of implementing recursive programs. Then we
can say that the computational and fixed point approaches are comple-
mentary rather than opposed to each other: the fixed point approach, via
the first Recursion theorem, gives theoretical justification for the parti-
cular computation rule chosen.

There are further advantages in adopting the fixed point approach (ara
computation rule equivalent to it): there is a variety of useful induction
techniques for proving correctness, equivalence, and other properties of
recursive programs with fixed point semantics, and these can zl] be
rigorously justified.

For a full discussion of this whole topic the reader is referred to the
books of Bird [1976] and Manna [1974]. Here we have slightly simplified
the framework within which the computer scientist works; in fact the
fixed point £, he chooses is least in a slightly different sense (but still given
by a version of the first Recursion theorem).
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The second Recursion theorem

The first Recursion theorem, together with the Myhill-Shepherdson
theorem in the previous chapter, shows that for any exiensional total
computable function f there is a number a such that

'-'ib'r'lni =hy.
The second Recursion theorem says that there 1s such an n even when f1s
nat extensional: we shall prove this in § 1 of this chapter.

This theorem (and its proof) mav seem a little strange at first. Never-
theless it playvs an important role in more advanced parts of the theory of
computabilitv. We shall use it in the promised proof of Myhill's theorem
(theorem 9-3.5) and in the proof of the Speed-up theorem in the next
chapter,

In § 1, after proving the simplest version of the second Recursion
theorem, we describe some applications and interpretations of it: §2 1s
devoted to a discussion of the idea underlying the proof of the theorem,
and other marters, including the relationship between the two Recursion
theorems. A more general version of the second Recursion theorem is
proved in &3, and is used to give the proof of Myhill's theorem.

The second Recursion theorem

First let us prove the theorem, and then see how we can under-
stand it.
1.1. Theorem (The sccond Recursion theorem)

Lt fbe arotal unary computable function; then there is a numbern
such that
'ﬁf'l.lll - ¢'|-
Proaf, By the s-m-n theorem there is a total computable function six)
such that for all x

{*) P o o P
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(If &.(x) is undefined, we mean the expression on the left of {*) to be
undefined; alternatively, we can take the left of (*] to denote
'J!""[J":.F':éulx.}j: _FI-]
Now take any m such that 5 = &, ; rewriting (*) we have
sty =da oy

Then, putting x = m and taking n = ., (m) (which is defined, since ¢, is
total) we have

¢f|n r':}':' = {t"n [_F_.'
as required, O

In spite of its appearance, for non-extensional functions f this is not a
genuine fixed-point theorem: there is no induced mapping ¢, - ¢, of
computable functions for which ¢. could be called a fixed pointL
However. we do have an induced mapping /* of programs given by

.f“t-Px:' = Fl"l'x_h

To expect a fixed point for /¥ in general would be too much: this would be
a program P, such that f*(P,) and P, are the same;ie. fin) = n. But what
theorem 1.1 says is that there is a program P, such that /*{P, ) and P, have
the same effect (when computing unary functions): i.e. iy = @, Thus the
second Recursion theorem is loosely called & pseudo-tixed point theorem;
and for convenience, any number n such that ¢y, = &, is called a fixed
painr or fixed point value for [,

The second Recursion theorem is a result about indices for computable
functions; it may be thought therefore that the proof rests on some special
feature of the particular numbering of programs that has been chosen.
Inspection of the proof shows, however, that we used only the s—m—n
theorem and the computability of the universal function; neither of these
results depends in any essential way on the details of our numbering.
Moreover, theorem 1.1 can be used to establish the second Recursion
theorem corresponding to any suitable numbering of programs; see
exercise 1.10(9) below.

There are various wavs in which theorem 1.1 can be generalised,
although the idea underlying the proof remains the same. In exercise
1.10(7) we have the peneralisation to k-ary functions for k>1; in
theorem 3.1 it is shown that a fixed point can be calculated effectively
from various parameters that may be connected with f.

We continue this section with some corollzries and applications of the
sccond Recursion theorem.
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L., Corailary
If f is a total campurable function, there is a number a such that

ftin1 = Wy and Espi= B,
Proof. If ¢y = b, then Wyia = W, and Er, = E,. [

1.3, Corollary
If 7 15 a rotal computable function there are arbitranily large
numbers n such that & = @
Proof. Pick any number k; take a number ¢ such that

. # by Py, .-, P
Define a function g by
. [e ifr=k,
BRI\ rey itk
Then g is computable; let » be a fixed point for g If a <%, then
Byin) = e 7, @ contradiction. Hence n =&, 50 fin)=g(n) and n s a
fixed pointfor £, O

iIn exercise 1.10(8] we shall indicate how the proof of theorem 1.1 can
be modified to obtain an increasing effective enumeration of fixed points
for f.}

The tollowing corollary summarises the way that the second Recursion
theorem is often applied, in conjunction with the s—m—n theorem.

1.4. Corallary
Let fix, vl be any computable function; then there s an index ¢
Fuch that
@.(¥)=fle, y).
Froof. Use the s-m-n theorem to obtain a total computable function s
such that &,,,(y)=f(x, y): now apply theorem 1.1, taking ¢ as a fixed
point for 5. O

As simple applications of this corollary, we have

1.5. Examples
(@) There is a number n such that ¢,ix)=x" all x: apply
corollary 1.4 with fim, xi=x";

1 — e S i TR T
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(£} there is @ number n such that W, = {n}: apply corollary 1.4
with

fix 'II“[U ity=ax,
£ undefined otherwise,

obtaining an index a such that ¢, (¥)is defined iff v=n.

The secand Recursion theorem received its name because, like the first
Recursion theorem, it justifies certain very general definitions ‘by recur-
sion’. Consider, for example, the following ‘definition’ of a function e, IN
terms of a given total computable function f:

f.be . ‘i‘.‘-‘.-.:-
The function @, is ‘defined’ effectively in terms of an algorithm for
computing itself (coded by the number ). In spite of its appearance as a
circular definition, we are told by the second Recursion theorem that
there are computable functions &, satisfying such a definition.

Itis often useful in advanced computability theory to be able to make
an even more general definition of a function ¢, ‘by recursion” of the kind

do(x)=gle, x),
where g is a given total computable function. Again, think of ¢, as
‘defined” effectively in terms of a code for its own algorithm. Then the
second Recursion thearem, in the guise of carollarv 1.4, makes this kind
of definition meaningful also. We shall use this fact in the Speed-up
theorem in the next chaprer,

We conlinue this section with some further straightforward, but some-
times surprising, consequences of theorem 1.1, First, we show how it can
be used to give a simple proof of Rice's theorem (6-1.7),

1.6, Theorem (Rice).
Suppose that D = d < €, and let A={x: &, o). Then A is not

FECUTSILE,

Proof. Letae A and e A. If A is recursive, then the function J given
by
a ifxeA,
hoifrsA,
s computable, Further, f has the propertythaty e 4 & fix)e A, forall .

On the other hand, by theorem 1.1, there is a number # such that
B =, 80 fln)z A < ne A, a contradiction. [

for =]
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Another apphication of the second Recursion theorem shows, as prom-
ised in chapter 4 %2, that the ‘natural’ enumeration of computable
functions without repetitions is not computable.

1.7. Thearem
Suppose that {15 a rotal increasing funciion such that
ta) if m#h, then dpm & B
tb) fin) iv the least index of the function e,
Then [ is not computable,
Proof. Suppose that f satisfies the conditions of the theorem. By (a), f
cannot be the dentity function, so there must be a number & such that

flal=n (nz=k),
whence, by (B)

Grm P =k,
On the other hand, if f is computable, then by corollary 1.3 there s a
number # = & such that &, = ¢., a contradiction. ]

Applications of the second Recursion theorem such as the following
can be interpreted in anthropomorphic terms,

Let P be a program. We can regard the code number +{P) as a
description of P. We could regard the program P as capable of self-
repraduction if for all inputs ¥ the computation P{x) gave as output its
own description, v(P). At first glance, it would seem difficult to construct
& self-reproducing pragram P. since to construct P we would need
know y(P), and hence P oitself, in advance. Nevertheless, the second
Recursion theorem shows that there are such programs.

1.B. Theorem
There is a program P such that for all x, Plx)}viP); ie. Pis
self-reproducing.
Proof. I we write n for v(P), the theorem says that there is a number n
such that

. lx)=n {forall x).

To establish this, simply apply corollary 1.4 to the function fim, x)=
m. [

We turn now to psychology! Recall the notation and terminology of
chapter 5. There we defined a total computable function ole, x, 1) that

e S
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codes the state of the computation P.(x) after ¢ steps; arie, x, ! contains
information about the contents of the registers and the number of the
next instruction to be obeved at stage 1. It is clear, then, that complete
details of the first r steps of the computation P.i1) are encoded by the
number

a*le,x, 0=1] phs™..
=

et us call the number a7 (e, x, 1) the code of the compuratian Pax) tor
steps. Clearly " is computable,

Suppose now that we arce given a toral caomputable function & and &
program . By the g-analysis of the compuranion Pix) we mean the code
of the computation Plx) to ¢ix) steps. We call a program P d-mnerp-
specnive ar x if Pix) converges and gives as output its own w-analvsis:
we call Protally d-introspective if 1t is b-introspective at all x.

1.9. Theorem
There is u program P thar is towally d-introspective.
Proof. Simply apply corollary 1.4 to the computable function fle, x) =
ot e, x, @wix]), obtaining a number n such that

¢.0x)=fn, x)=the g-analysisof P.ix). O

We close this section with a tale in which the second Recursion theorem
appears in military dress.

‘We are at war. An operation is mounted 1o sabotage the cnemy’s
central computer facility. Our special agents have penstrated the ensmy
defences and found a means of entry to the high security building that
houses all the programs

Py, P, Py

for the central computer. The mission will be accomplished if our agents
can systematically sabotage all of these programs, ensuring that
subsequently no program will operate as the enemy thinks it will. Simply
to destroy the programs is not sufficient: the enemy would soon discover
this and set about rewriting them. What is necded is a subtle alteration to
each program, so that, unknown to the enemy. the computer will give
wrong results. Swiftlv and silently our men move into action .

Alas, defeal at the hands of the second Recursion theorem' Whatever
systematic plan is devised to modify the programs. it will define an
effectively computable function 7 by

flx)=the code of the modification of P,
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The second Recursion theorem springs inte action, producing a number »
such that P, and its transtorm Py, have the same effect (on unary inputs,
at least), The operation was bound to fail.

(Sometme later, back at HQ. our master strategists consider recruiting
a chimpanzee whose mission is to alter the programs in random
Fashion ...

1.10. Exercises

Show that there is a number # such that ¢, ix)=[Jx].

Show that there is a number 7 such that W, = E, =nki

Show that there is a number e such that &, (x)=¢” for all x.

[s there a number » such that W, ={x: ¢, (x)7}?

Suppose that & € €, andlet A ={x: ¢, € &} Showthat A £ A

Deduce thearem 1.6,

f. Give an example of a total computable funetion f such that (i) if
o, is total, then sa is ¢hsyy, (i1) there is no fixed point # Tor £ with
o total.

7. Prove the second Recursion theorem for k-arv computable
functions: if f is a total computable function there 15 a number g
such that

(k) k]
|:JJI-:'.I'IIuZ = no-

L fa fad pPud e

B. Show that theorem 1.1 may be improved to: For any total
compurtable function f, there is an increasing recursive function
nii) such that for every f, @ = G- (Hint, Examine the
proof of thearem 1.1, note first that from our proof of the s—m-n
theorem we have s(x)=x for all ¥ {or else show that by adding
some redundant instructions to the end of P, an equally
suitable computable funenon 'ix) can be found, with ' {xi=x).
MNow observe that given anv number £ we can effectively find an
index m for s{x) with m =k Then, following the proof of
theorem1.1, we have that n =x{m) 15 a fixed point for [, and
n=s(mi=m=k. It is now a simple matter to construct a
function nir) as required.)

9. Prove that the second Recursion theorem does not depend on
the particular effective numbering of programs that is chosen.
[Hint. Let & be another effective numbering of programs; let
Q.. = program given code number m by &; let ., = the unary
function computed by Q... We have to prove that for any toral
computable function f there 15 a number r such that . = ¥...
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For this, show that there is 2 computable bijection r such that
P, = .., then show that it is sufficient to establish that there is a
number m such that &, 150, = dn.)

10. Suppose that in the tale just before these exercises, our special
agents find that the enemy’s computer operators have become
extremely sophisticated — they have only one program, a uni-
versit] program. Can our men now completely accomplish their
task?

11. Could a chimpanzee succeed where the special agents failed? (A
philosophical problem. )

§ed

[riscussion
The second Recursion theorem and its proof may seem a little
mysterious at first. We shall see, however, that it is essentially a simple
diagonal argument applied o effective enumerations of computable
functions.
Supposce that & s a2 computable Function. If k is total, then the

enumeration E given by

E 'ﬁhi-]_u_ [ﬁ'ﬁllh &'h:ﬂ]- -
1s an effective enumeration of computable functions. If & is nor wotal, we
can still regard A as enumeraring a sequence of computable functions £
by adopting the convenuon that for any x the expression ¢y, denotes the
function ziven by

el ¥) = btz ) vl

_Jdunly!l i hix)is defined,
\undefined  if h(x)is undefined.

Thus, if hix)is undefined, ¢y, is the function that 15 nowhere defined,

The following lemma shows that the sequence E thus enumerated by A
is an efectrve enumeration even when # is not total,

2.1 Lemma
Suppose that h is a computable funcion. There is ¢ total compu-
table funciion h' such that b and h' enumeraie the same sequence of
computable functions.
Progf. The s—m—n thearem gives a reral i’ such that
d’h'&x:':.]?] =gzl vl [
We can now explain the idea underlying the proof of the Recursion
thearem. For any &, let us denote by Ep the sequence of computable
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functions cffectively enumerated by @y then the hst Ey, Eq, Ea, ...
includes alf possible effective enumerations of computable functions. We
can display the details of these enumerations as follows (ignore the

circlesh:
Eu'. Donit ﬂh.n(::n aigta d'qm(lc'
EI: ';hd-lll.:l @ 'i]qr.i:] il ﬂ&.,._u;
E;: ¢|l-,:l'*.'l m\pl:lil.l v "!Ja:gl,\._

E,: By oy Do cee

Then the diagonal enumeration, D, circled on this array, is given by

D oy Gt Sazn o
Thus I} is an egffective enumeration, given by the computable function
hixh=¢.0x). Moreover, I} has an entrv in common with each effective
enumeration E; in fact, for sach k, P and E, have their (& - 1ith entry
iy x IN cCOMmMon.

Supposce now that f is a total computable function. Then we can

‘operate’ on [} to give an enumeration I given by

D--'*i"f'¢;.m-:, tﬁr;:,q:u_, tf’fr.;;m':. v
Now D% 15 an effective enumeration of computable functions (given by
fikix])) so there is & number m such that D* = E,,. Bvlemma 2.1 we may
assume that &, is oral. As noted above, I? and E., have their (m + 1ith
entry in common, i.e.

B = Dl e
Since .y 1s total, the number . () = n, sav, is defined, and
&, ='i‘r'|-r|-
The argument 18 simply illustrated as follows:
D ~,
Ey: e )
E]: : [ﬁ".m Li
; Bz
Dﬁ = Em li','......[l‘r:: 'ﬁ_’-g.[]w 'ﬁ_"_;—'-_.::n F {JE"J:r_ﬁmw: ] =':|!'|r.|...l|'|:l

Sa =g, 0m) is a fixed point.
Note. This proof can be rephrased to eppear similar to standard diagonal
arguments as follows, Suppose that f1s a total Fanction such that dy., = ¢

e 4
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for all n: then using f on the diagonal enumeration D, the enumeration
D* is constructed so as to differ from £y at & (fulfilling the requirements
of the diagonal motto). Hence D is nor an effective enumeration, so f
cannot be computable.

The second Recursion theorem can thus be viewed as 2 generalisation
of many earlier diagonal arguments. To illustrate this, we show how to use
the second Recursion theorem to prove that K is not recursive, one of the
tundamental dizgonal arguments,

2.2. Theorem
K is not recursive,
Proof. Let a. b be indices such that W, =2 and W, =M. If X is
recursive, then the function g defined by

_[= ifxekK,
il PR
15 computable. Notice thal g has the property that for all x
W= W,

"
(since xs W, & W, =M< eglr)=5 < x¢ W,). This is in contra-
diction Lo the second Recursion theorem. [

Remark., We have, of course, used a sledge hammer to crack a nut. The
point about this proof is that all diagonalisation 1= hidden inside the
application of the Second Recursion theorem. We are not suggesting that
the earlier proof should be replaced by this ane.

The relationship berween the 1wo Recursion theorems Suppose that
P: 5= 5, is a recursive operator, and that & is a total computable
function such that @{&.)=dy.,, for all x (as given by the Myhill-
Shepherdson theorem). If a is a fixed point for A, then ¢y, = &, 1e.
Fid. | = &, Thus the second Recursion theorem tells us (as does the first
theorem] that ¢has & compurable fixed point: it does no! tell us, however,
that ¢ has & computable least fixed point. So, for recursive operators the
first Kecursion theorem gives us more information.

On the other hand, the second Recursion theorem applies to non-
extensional computable functions as well; i.e. functions that do not arise
from recursive operatars. Thus the second theorem has a wider range of
application than the first theorem, although in the area of overlap it
gensrally gives less information. Thus, these two theorems are best
regarded as complementary. although a case is made by Rogers [1967]
far the view that the second theorem s the more general of the two.
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3 Myhill’s theorem

Let us now formulate and prove the generalisation of theorem
1.1 needed for Myhill's theorem. Suppose we have a total computable
funetion f(x, z); theorem 1.1 shows that for any particular value of the
parameters z there 15 a number n such that ¢y, -, = ¢, We now show that
# can be cbtained effectively from z.

3.1. Thearem (The second Recursion theorem)
Suppose that f(x, 2) is a wial computadle funcion, There [s a toral
computable function n(z) such that for all z
‘il,'l_:rl,z].zl = 'ﬁ'r[z]*
Proof. We simply introduce the parameter at appropriate points in the
proot of theorem 1.1.
By the s—m—n theorem there is a total computable function s(x, z) such
Lhat
'.‘] ‘i’fl:h:_x:l.z- __‘nﬁ‘s[t.z_-

Then, again by using the s—m-n thearem. there is a total computable
function miz) such that s(x, £) = ¢piziix). Rewriting (*) we have

‘:.fl'ﬁ_, [xizi = l”fb Y
Then, putting x = miz) and setting n{z) = b, miz)) we have
¢'flntz:.:l =ﬂ5’u1:r-

as required. [

We proceed immediately with the prool of Myhill's theerem [theorem
9-3.3).

3.2. Myiill’s thearem
Any creative set iy m-complete,
Praof. Suppose that A is creative and B is r.e.; we must prove that
B=,A4.
Let p be a productive function for A, Define a function fix, viz) by
fz=plxiand ye B,

flx, ,z'r={
it 2l undefined otherwise.

Then f is computable, so by the s—m-n theorem there is 2 total compu-
table function s{x, yJ such that

‘ﬁ':l_:.y][zx':ft.l. ¥. 2_..

1
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Then. in particular

{pix)} ifyeB,
Wi ={ )
il 1 otherwise,

By the second Recursion theorem (theorem 3.1) there is a total compu-
table function a(y) such that

Wiinivim = I""'Jllt:r'L
for all y. Thus. for all y

“'ru:'y'-={

We claim now that

[ veR iff piniylic A,
i) Suppose _Ihitt Y€ B, then W, ={pin(y))}. If piniy)le A,
then W..,,=A, so by the productive property of p,
pin(y) £ W, This is a contradiction. Hence pin{y)le A.
(k) Suppose that ve 8, tpen Won = c A, By the productive
property of p, piniy)) e A,

The claim (**) is thus established, so B =4 since glaly)) s compu-
table. O

{plaly))} ifyeB.
o otherwise.

3.3 Corollary
The m-degree 0, consists of all creative sets.

34 Exercises
1. Prove the following generalisation of theorem 3.1 For any
number & there is a total computable function nie, z) (where
z=(2,..., 2]} with the following property; if z is such that
. "(x, z) is defined for all x, then

Dol i = Doz

{ Hinr. This can in fact be derived as a corollary to theorem 3.1.)
2. Formulate and prove the result that improves theorem 3.1 in the
same way that exercise 1.10(8) improves theorem 1.1.
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Complexity of computation

In the real world of computing, the critical question ebout a function f is
nof Is f computable?, but rather Is f computable in practical terms? In
other words, Is there a program for [ that will compute § in the time (or
space) we have available? The answer depends partlv on our skill in
writing programs and the sophistication of our computers; but intuitively
we feel that there is an additional factor which can be deseribed 25 the
‘intrinsic complexity’ of the function f 1tself. The theory of compurational
complexiry, which we introduce in this chapter, has been developed in
order to be able to discoss such questions and to aid the study of the more
practical aspects of computability.

Using the URM approach, we can measure the time taken to compute
each value of a function { by a particular program, on the assumption that
each step of a URM computation is performed in unit time. The time of
computation thus defined is an example of a compurational camplexity
measure that reflects the complexity or etficiency of the program being
used. (Later we snall mention other complexity measures. )

With a notion of complexity of computation made precse, it 1s possible
L pursue questions such as How intrinsically complex is a computable
functien f? and Is it possible to find a ‘best’ program for computing #7

The theory of computational complexity is a telatively new field of
rescarch; we shall present a small sample of results that have a bearing on
the questions raised above, At the end of the chapter we shall provide
suggestions for the reader wishing 1o pursue this topic further.

We begin in & 1 by defining some notation; after some discussion we
proceed to show that there are arbitrarily complex computahle functions.
Section 2 is devoted to the surprising and curious Speed-up theorem of
M. Blum, which shows in particular that there are computable functions
having no ‘best’ program. In § 3 we introduce the idea of complexity
classes and prove Borodin’s Gap theorem; in the final section we show
how we can use complexity classes to give a pleasant characterisation of
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the elementary funcrions — an important subclass of the primitive recur-
sive functions.

1. Complexity and complexity measures
We begin by establishing some notation.

1.1. Naotation
(@) For any program P, we write £’ fot the function given by
the number of steps taken
te'(x)=1 by Ptocompute f&'(x), i £ (x)is defined,

undefined otherwise,

=t Pix}]in 1 steps).
LI

(&) For any index ¢ we write "' {x) for re (x). We shall write
il tl
for rp' and & for "' as is customary.

The collection of time functions ¢)"' constitutes an example of a
computational complexity measure. Some simple but important properties
of these functions are given in the following lemma.

1.2. Lemma
(@) Dom(+"' ) =Domia™"), all n, e.
(k) For each n the predicate Mie, x, y) defined by Mle, x, v)=
£ %) =y is decidable.
Froof. (a)is obvious; () follows from corollary 5-1.3(4). [

Remark. The property 15) 15 used frequently in complexity theory; it
stands in marked contrast to the fact that &5 (x) =1y is an undecidable
predicate.

Often in complexity theary a property holds for all sufficiently large
numbers r, though not necessarily for all n. Thus we make the following

definition.

1.3, Definition

A predicate M (n) holds for almost all n, or almost everywhere
ta.e) if Min] holds for all but finitely many natural numbers # (or,
equivalently, if there is a number n, such that M (n) holds whenever
H=ngh

We can now state our first theorem. which shows that there are
arbitrarily complex computahle functions.
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1.4 Thearem
Ler b be a woral computable function. There s a total compurable
function f, taking only the values 0, 1, such that if e is any index for 1, then
t.(n)=hin)a.e.

Praof. The reader should not be surprised to find that f is obtained by a
diagonal construction, The essence of the construction is to ensure that if
t;{im = b(m) for infinitely many values m, then f differs from ¢: at one of
those values. We define f by recursion as follows

At each stage s in the construction of / we shall either define an index
iy, 0F decade 1n a finite amount of ume that 1, is to be undefined. We then
ensure that f{n ) differs from o_(n ) if 7, is defined. In detail, assuming that
Fl0h, .. .. fla— 1) have been thus defined, we put

wili = m and ! differs from all previously
iy =+ defined 1, and fin)=dinl] if such an i exists,

undefned otherwise.

1 ifi, isdefinedand ¢, (n) =1,

fim) =
Hnl 1 otherwise,

There is & finite procedure that tells us for a given § whether fin) =
kin), since

Limy=bin) & Iy =binllnini=yv),

and the right hand side 15 deadable by lemma 1.2(4). Hence there is an
effective procedure to decide whether f is defined, and if so, to find its
value. Moreover, if 1, is defined. then so 15 &, (n). Hence 7 is a well-
defined total computable function.

Suppose now thal f == ¢, ; by construction e = i, whenever 1, 15 defined.
We shall show that if / is any index such that 4im)=#b(m) for infinitely
many m, then i =i, for some n, and hence § # e, This is sufficient to show
that r.(m ) = &{m) for almost all m.

Suppose then that &(ml=/bim} for infinitely many m. Let p=
| +max{k:i. isdefinad and i, < i} (put 7 = 0if there are no defined iy < 1)
Choose nsuchthatn =L pande(n)=bin).If i =4, for some k < n. there
is nothing further to prove. Assuming then that 7 i, for all &£ <n, we
have at stage n:

t =n and { differs from all previously defined 1, and i)l =pin).

Thus, from the definition of /., i, is defined and i, = 1. Bul since n = p, we
must have i, =i Henece i, =1, as required. [

I Compiexity measures

[ oF
b
L

We cannot in general improve this theorem to obtain the conclusion
)= &in) for all n; this is because for any f we can always write a
program that computes f quickly for some particular value a, simply by
speafying the value of f{a) in a preface to the program. For example,
suppose that f{a)=1: let F be a program that computes f. Then the
program ' based on the flow diagram in fig. 12a also computes f. Clearly
we have telai=a~3, Thus, f b is a computable function such that
bix)=x +3 for some x, then we cannot obtain the conclusion of theorem
1.4 with r.(n) = bin) for all a.

Using a similar idea we can write a program that computes fquickly for
any given finite number of values: see exercise 1.8(1) below. This shows
that 1,{n) = bin) a.e. is the best possible conclusion in thearem 1.4.

Other computarional complexity measures There are many other
natural ways to measure the complexity of a computation, of which the
following are a few examples. For simplicity we restrict our discussion to
unry computations.

Fig. 12a.

START

STOP
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1. For the complexity measures given in example 1.5(3), verify
lemma 1.6, cxpressed in the following terms. For any Turing
machine M, let fir be the unary function computed by M. Then
show that
la} Domi{dy i =Domi fu),

(b)) “duix)=1y"is decidable

(1) when

Jthc number of steps taken in computing fus(x)
Byl x) =1 using M, if fap (x ) is defined,

[_undﬂﬁncd ntherwise.
) when

the length of tape actually used” in the
Pelx) = computation of fu (x) by M, if fis(x) is defined,

undefined otherwise,

4. Suppose that @.(x) and ¥,.(x) are two ahstract computational
complexity measures. Show that &, and ¥, are recursivelv refated
in the following sense: there is & recursive function r such that for
any e
V.in)=rin, d.(nand &, (n)=rin. ¥.(n))
for almaest all 4 for which @.(a) and ¥.[n) are defined. (Hin
Consider the function r defined by rin, m)=max{@. (n), F.ixl:
e=nand @.(in)=m or F.in)l=m}l)

Show further that if 4%, (n), ¥.l8)=rn whenever defined, there
is a recursive function r such that Woini=rid.(n)) and @P.in)=
Pl (n)) whenever @, (n) and W, (i) are defined.

[

The Speed-up theorem
Suppose that P and @ are programs for computing a total
function 7, such that for any x

2alx)<tpix).
We would naturally say that Q is more than twice as fast as P. One
instance of the Speed-up theorem tzlls us that there is a total function f
with the following property: if P is any program for f, then there is
another program for f that is more than twice as fast on almost all inpurs.
Thus, in particular, there can be no best program for computing f.

* we saw that & sguare on the tape is wsed if iUis scanned during the compuration ar

lics herween the oulermost non-blank syuares on the inittal wpe (including these
CULETOS] Squares)

";
I
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The Speed-up theorem will give speed-up by any preassigned
(computable) factor: the example above represents speed-up by a Factor
of 2, given by the computable function rix)=2x. The proof of this
theorem is probably the most ditficult in this book. First we prove a
pseudo-specd-up theorem, which contains most of the work. The Speed-
up thearem then follows quite easily.

2. The pseudo-Speed-up theorem (Rlum)

Let 7 be a total computable funcvan. There is a total computable
function f such that given any program P- for f, we can find a F: with the
properiies

lal iy is roral and &, \x)= fix) ae.,

() rilx) < tix) a.e
(Note. This is pseudo-speed-up in that we do not nccessarily have
& (x) = flx) for all x, as will be the case in the Speed-up thearem.)

Proaf. First we must fix 2 particular total computable function s given
by the s—m-»n theorem, such that &° (4, x) =gl lx ),

We shall find a particular index ¢ such that ¢ is total and has the
[Oll_ﬂwing properties, where we write g, for the function given by g,ix) =
¢, x):

tal go=Ff the function required in the statement of the theorem,

(b) for any u, gu(x)=guix) ae.,

(e} if f=d; then there is an index j for g, such that ris;(x)) <

t:(x) a.e.; in fact we can take j=s{e, i —1).

Clearly this is suflicient to prove the theorem.

For the moment think of ¢ as arbitrary but fixed. Thinking of & as a
parameter, we shall define a computable function glu, x), which will also
depend implicitly on e in an effective way. For a particular e which will be
chosen later, g will be the function #°' above. The definition of g is by
recursion on x, with i fixed, as follows,

Forany x, glu, x)is defined only if g{u, 0, .. .. glu, x — 1) have all been
defined, and in the process some finite sets of cancelled indices
Cep. Cuis - -, Gy oy have been defined. Suppose that this is the case,
MNow sel
({u=i<xie | ) C., and tlx) =7t )}

. | i
Ce = ) if fop o plx ) is defined for w =i =< x,
|_ undefined otherwise.

(Of course, if x = u then C.. = and is defined). Note that for any i, if
Lici+udx} s defined, we can decide whether 1(x) = iz, 1,(x)) {using
lemma 1.2(%)), whether or not ix) is defined.
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Then glu, x)is given by
| —maxidxi:-ieC..} if C.,isdefined,

o, x) = i |
gl {und'.::muri otherwise.

(If C.., is defined, then for any 1e C,, we must have & (x) defined, so
glu, x) is certainly defined in this case.)

By Church’s thesis, g, as thus defined, is a computable partial function
which depends implicitly and effectively on the value of e. Hence, by
corollary 11-1.4 to the second Recursion theorem [slightly generalised)
there is an index ¢ such that

Y 2l .Iﬁ"*ci'[f:[u,.r].

Fram now on let e be a fixed index such that (*) holds: then e is the index
mentioned at the beginning of the proof. We must verify that it has the
required properties.

First we show that [*) implies that g s total. Fix x;foru=x. ., = @ so
glw, x) =1 immediately from the definition. For u <x we show that
glu, x}is defined by reverse induction on . Suppose then that gix, x),
glx—1,xh ..., glu+2, x), glu+1, x)are all defined. Then from (*) and
the definition of 5 we have dyi. () @ e_nlx), ..., Pien+1dx) are all
defined; hence 40 are £, (x )} for 4 =i < x. This in turn means that €,
is defined, hence glu, x) is defined also. Thus g(w, x) is a total function.

Now, writing g, for the function given by g, (x) = glx. x) we have

gdx)i=giu, x)

=" (1, x) (from (%))

= by ) (by definition af 5,

We must verify the properties (a)-(c] abave.

la) If we put f= gy, then [ is certainly total, as required by the
theorem.
{p} Fix a number u:; we must show that g(0, x)and g(u, x) differ
for only finitely many x, It is clear from the construction of the
sets O, that for any x

Coi=Coxrfuwu+l,....x—1}

Since the sets Oy, are all disjoint (by construction) we can find
the number » =max{x: Cy, contains an index /< u}. Then for
x>=pwehave Co.Sfu.a+1,...,x—1} and hence Gy .= C..
This means that gil, x} = glu, x) for x =v. Thus gaix)i=g.(x)
ac.
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lc} Suppose that / is an index [or fitaking f =sie, i + 1) we have
that ey = .oy, = g2y (from abovel,sojisanindexfor g, We
can prove that

rigleN=ritg, plx)<yix) forallx =i

[f this were not the case, then 1 would have been cancelled in the
definition of g(0, x) for some x =/ i.c. there would have been
x=iwithi= . But then, by construction of € we would have
20, x) = ¢:(x), a contradiction. This completes the proof.

Note that the pseudo-Speed-up theorem is effective: given a program P
for f we can effectively find another program that computes f almost
evervwhere, and is almost everywhere faster than P

We now show how to modify the above proot to obtain

rd
Fd

The Speed-up theorem (Blum)

Letr be any toral compurable function. There is a total compritable
function f such that, given any program P, far §, there is another program P,
for f suchk thar rléy(x)) < tix) a.e.

Froof. We may assume without any loss of generality that r s an
increasing function {or else replace r by a larger increasing computable
tunction). First, by a slight modification of the praof of theorem 2.1 we
obtain a total computable funetion f such that given any program P, for f,
there is a program £, such that

(a) oy is total and &, (x) = f(x) a.e.,

(B) rlixi+ i< tix) ae.
To do this, simply rewrite the definition of Cu. replacing * .. and
LX) =rllyesnlx) byt . and 1(x)= Fllsiei+1 (X )+ 200, We shall show
that the function [ so obtained is the function required by the theorem.

Suppose then that f=, and | is chosen with the properties (a), (A)
above. Our aim now is to medify £ to produce a program P;. thart
computes [ for ail x. Suppose that &,(x} = fx) farall x =p. Letfim)=p,,
for m =0, We modify P, by writing some extra instructions at the
beginning designed to give these values for m = p. Specifically, let P- be
the program that embodies the flow diagram given in fig. 124. Clearly P-
computes f, moreover, there is a number ¢ such that the extra instructions
add at most ¢ sleps to any computation: i.e. for all x

=lx)=fix)+c,
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1.5. Examples
1. rnumber of jumps made’ in exeeuting P (x),
&.()= if P(x)],
tundefined otherwise.
This measure 15 closely associated with the number of loops
performed when executing P.(x), which 15 in turn related o the
time of computation ¢.(x ).

2: the maximum number held in any of the registers
~|atany time during the computation F,(x)
@ (x)= if Puix)],
l_undeﬁned otherwise,
This measure obvicusly relates Lo the amount of storage space
necded to carry out the computation P,ix) on a real computer,
3. With the Turing machine approach, two natural complexity

measures are (i) the number of steps needed to perform a Turing
computation and (i1) the amount of tape used to perform a
computation.

In general, an abstract computational complexity measure [for unary
computations) is defined 1o be any collection of functions &, having the
abstract propertics that were given by lemma 1.2 for 1.

1.6. Definition

A computational complexity measwure 15 & collection of functions
. with the following properties;

(a) Dom(d,)=Domia, ), for all e;

(f) The pradicate "@.ix) =y 18 decidable.

Lemma
The functions grven in examples 1.5 above are computational
complexity measures,

Proaf. We pive sketch proofs for the examples 1.5(1) and 1.5(2},
leaving 1.5(3) as an exercise (1.8(3) below), In each case itis only part (6]
of definition 1.6 that requires any thought.

(1) Todecide ‘@, x)=yv', where @,(x) = number of jumps made
during P.ix). Suppose that P, has s instructions; then at most 5

! We mean here that if a jumpinstruction Jm, #, ) is encountered, then & jump (o
I,) 15 made il r,, = rq; but not atherwise.
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consecutive steps of £ (x) can be performed without making a
jump. Sorun P.ix) forup to 1 —{y = 1)s steps. If P.(x) S10ps in
fewer than this number of steps, then count the number of jumps
made to seeif itis y. Otherwise (i.c. if P.(x) has not stopped after
L+{y+1)s steps) P, (x) will have performed at least y + 1 jumps,
5o we conclude that @.ix) =y,

(2} Todecide ‘P, (x)=1v", where @.(x) = maximum number held
in any register during P, (x). Let u=p(P.), and consider all
possible non-halting states under the program P with

Run P.(x} for up to 1 +5(y=1)" steps. If P,ix) stops after this
number of steps or fewer, then find the maximum number that
has occurred in any of the registers and see if 1t is y. Otherwise [if
£.[x) has not stopped) one of two possibilities will have oceurred:
(il the computation has bezn in the same state on two separate
occasions, so Pox) isin a loop and &, (x) is undefined: (i) there
has been no repetition of states, in which case some register has
contained a number greater than v. In both cases we conclude
that @, (x}#=v. T

Note thatin proving theorem 1.4 we used only the properties of £, given
by lemma 1.2. Thus theorem 1.4 holds for any computational complexity
measure. There arc many other results in complexity theory which do not
depend on any particular measure of complexity. Such results are said Lo
be machine independent. The Speed-up theorem of the next section and
the Gap theorem of § 3 are further examples of such results.

1.5, Exercises

1. Let f be a total computable function that takes only the values
0, 1. Show that for any m there is a program F for f such that
trix)=2x+3 for all x =m. Deduce that if b is a computable
function such that #(x) > 2x < 3, then the restriction to almost all
n in theorem 1.4 cannot be improved.
Let &, be the complexity measure given in example 1.5(2). Show
that whenever ¢, (x} is defined, then @, (x) = max(x, ¢.(x)).

Let f be any total computable function, and let X be a finite
subset of Domi /). Prove that there is a program P, for f that is
the best possible on X (for this measure); iz, @, (x)=
maxix, ¢.(x)) for x e X.

[ |
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Fig. 12f. Spezd-up [rom pseudo-Speed-up.

ATAmR

F=ty,

=,

SO
Thus we have
ritlx )= rif{x)+ ¢} [since ris increasing}
=riglx)+xiforx=c
< lix)a.e.

Hence, taking k = j* the theorem is proved. ]

Remuarks

1. The above proofs of the pseudo-Speed-up and Speed-up theorems are
adapted from Young [1973]. Both results hold for arbitrary complexity
measures; in the case of theorem 2.1 itis clear that our proof uses only the
abstract properties of the time measure #;(x); in the proof of theorem 1’.:7_',
however, we have used some special details of the URM time measure, in
estimating the relationship between ¢» and ¢ In Young's paper the above
proof is generalised so as to work for any complexity measure.
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2. It can be shown that the Speed-up theorem is aor in general effective,

The Speed-up theorem pinpoints a problem when we try 1o define the
complexity of & computable function f (rather than the complexity of any
particular algorithm for f). We cannot define this as the complexity of the
best, or fastest, algorithm for f simply because f may not have a best
DrOgram.

We conclude this section with an amusing consequence of the Speed-
up theorem. Suppose that we have a URM that performs 1 step per
second, and we replace this with a new super-improved machine that is
100 times as fast. Then a computation F (1) that took Lix) seconds to
perfarm on the old machine will be performedin 4,ix )/ 100 seconds on the
new model. Consider now the function £ given by the Speed-up theorem
with speed-up factor of 100. Suppose that f is being computed by P; on
the new fast machine. By the Speed-up theorem there is a program P, for V&
such that 100y (x)<r(x) a.e.; le fix) </ (x 1/ 1040, Thus for almast all «,
the old machine using P, computes f faster than the new machine using P.
We conclude that for some functions at least the new machine is no
supenor to the old one (on most inputs )

23, Exercises

1. Show that in general the limitation of the meguality riz (x))=
fix] m the Speed-up theorem to afmost 2/l ¥ cannot be
improved,
Why should we regardrthe conclusion of the discussion in the
preceding paragraph (about new and old URMs) as of thearetical
rather than practical significance?

[

3. Complexity classes

Suppose that b is any total computable function. From the point
of view of complexity, a natural class of functions comprises those
functions having a program whose running time is bounded by b. Thus we
define

3.1, Drefinition
Let 4 be a total computable function. The complexiiv class of i,
&, 15 defined by

Ep={p. b istotal and 1, (x) = h(x) a.c}

={f: f is total, computable and has a program P, with f.(x) =
bixlael
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Remark. The class £, as thus defined, is the complexity class of & relative
to the time measure .(x): for any measure @.(x), we could define the
complexity class &F in the obvious way.

If &' is another total computable function. with A'(x) = &{x) for all x, of
course & =, if b'(x) > b(x) for all x, we would naturally expect that €,
contains some new functions not in &, especially if £'(x) is much larger
than &(x). The next theorem shows that this intuition is false: we can find
b, b" with b’ greater than & by any preassigned computable factor, such
that €, = &, in fact, the theorem shows that &, ' can be chosen so that
there is no running time . (x) that lies between b(x) and b'ix) for more
than finitely many x. Thus the theorem is called the Gap theorem.

31, The Gap thearem (Borodin)
Let r be a taral computable funcrion such that r(x) = x. Then there
is ¢ tatal computable function b such that
(@) for any e and x =&, if 1.(x) is defined and t.(x)= b{x), then
tlxdy=ribix)); hence
(b) &, =G ..
Proof. We define 4(x] informally as follows, Define a sequence of
numbers Rgp<k;<...<k, by
;Ca = U.
k,‘q]_: F”&'i:"l"l il{x:‘.
Consider the disjoint intervals® [k, r(k,)] for 0=;=x. There are x~1
such mtervals, so there is at least one that does not contain any of the

numbers £, (x} for £ < x, since there are at most x such numbers that are
defined. Choose /. = the least § such that

tlx) e[k, rik)iforall e<x,
and set b(x)=k;

Now, given that i, as defined above cxists on theoretical grounds, there
15 an effective procedure which will find it; we simply make repeated use
oflemma 1.2(h)to check .(x) = [k, r(k,)] for various e and /. We conclude
that # is a computable function, by Church’s thesis.

For the conclusion of the theorem., (a}, suppose that x > ¢ and ,(x) =
blx); by construction of b(x). we have r.{x)&[bix), r{b(x))]. Hence
Lixi=rib{x]).

A By the wrervai (¢, d] we mean the set of patural nombers {x:¢ = 3 =dj.

)
'\1
i

M, e e
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For part (p), we obviously have §,=C,..; now note that if fe
&,.5\ &, then f has a program P, with
Lix]=ribix)) a.e.
but
fe(x) > bix) infinitely often (otherwise fe §,).

This clearly contradicts (a). Hence 6, =G,.,.

Note. This proof is based on that given by Young [1973]. It is easy to see
that the function b in the theorem can be made larger than any pre-
assigned computable function ¢, simply by setting ky=c{x) instead of
kn=10in the proof. It is also clear from the proof that the Gap theorem is
machine independent.

4. The elementary Functions

In this final section we introduce the class of elementary functions as an
example of a class of computable functions that can be characterised very
neatly in terms of the complexity classes corresponding o time of
computation. The elementary functions form a natural and extensive
subclass of the primitive recursive functions, as we shall see, They have
been studied in some depth, and are of interest in their own right, quite
apart from complexity theory.

4.1. Defininon
la) The class & of elementary functions is the smallest class such
that
(i) the functions x + 1, UMl =i=n)x =y, x - v, xy are allin &,
(i1} & is closed under substitution.
(i) & is closed under the operations of forming bounded sums
and bounded products (i.c. if f(x, z) is in € then so are the
functions ¥ . fix 2) and []__. f(x, z), as defined in chapter 2
§4d),
(B8] A predicate Mix) is elementary if its characteristic function Car 18
elementary.,

Roughly speaking, % is the class of functions that can be obtained by
iteration of the operations of ordinary arithmetic. It is clear that elemen-
tary functions are computable; in fact they are all primitive recursive, hy
the results of chapter 2 §4. The next lemma helps to compile some
examples of elementary functions and predicates.
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4.2, Lemma
(a) # ix closed under bounded minimalizanon.
(b) Elementary predicates are closed under “not’, ‘and’, “or’, and
the bounded quantifiers “Vz<y and '‘Jz<y".
Praof.
{a) Suppose that f(x, z) is elementary; recall from the proof of
theorem 2-4.12 that

wz<y(fir,z}=01= % [] sglflx,u)).

Ly WSy
To see that this is clementary, just notice that sg is elementary,
sincesgix)=x(x=1),and 1=(x+1)=x
ib] We leave the proof as an easy exercise.

The next theorem gives an indication of the fact that ¥ is quite
extensive.

4.3. Theorem
The functions m (for m =M), and all of the functions listed in
thearems 2-4.5 and 4.15 are elementary.

Proof. We shall sketch proofs for a few functions where the proof is
non-trivial or differs significantly from that given in chapter 2. The
terminology of chapter 2 15 used throughour.

(@) 2% 2 =[le,x =[c, Uz, 3.

{ii} qt. qtix,y)=pr=ypx=0orx(z+1)>y)
=pz=ylxsglix{z+1=yN=00

(iii} Tm.  Tmix, y}=y=xqtlx,y)

(iv) p.. Assuming that the function Prix) (the characteristic

function of ‘x is prime’) has been proved elementary, we have

pe=py =27 (x =0ory is the xth prime)

=#}~£22'(x= ¥ P:l'_;:}]

= Q¥ "?-?zi(lx 0 o ]i = ﬂ) ;
(The bound p, = 2" is casily proved by induction, using the fact
that posr =pepz ... P+ 1.)

We leave the proofs for the other functions as an exercise for
the reader. ]
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We now show that & is even closed under definitions by primitive
recursion, provided that we know in advance some elementary bound on
the function being defined by the recursion equations.

4.4, Theprem

Let flx) and gk, y, 2) be elementary and let h be the function
defined fram f, g by

Alx, 0)=flx],

hl-tf}""l]:E{l'. ¥ hix, 1"}.1'
Suppose that there is an elementary function blx, v) such that hix, y)=
bix, v} forall x, v. Then k is elementary.

Proof. Fix x, v then the caleulation of k(x, ¥)in the usual way requires

the calculation of the sequence of numbers kix, 0), Alx, 1), ..., filx, v).
These can be coded by the single number & where:

e - ki1 EiE vl
= 2 3 N LI |

= 11 pl5°

L=y

= [[ p:§ =cix, y), say,
{"-;r
where ¢(x, v} i an elementary function. The key facts about 5 are
{1 (s) =hAlx 0)=fix), (ii) for z <"y, (slesa=hix, z+1i=gix, 2, (5).01)
and {iii] A{x, v)=[5),_1. Thus we have

Alx, vi=[us=cix, vIi(s), = Fflx)and
Vz<vlishaz = gla 2, (5 )M )50

This expression for 4 shows that #t is elementary, by the results proved
ahove. OO

The principle of definition describzad in this theorem is called limited
(primiriee | recursion. We shall see later that this is a weaker principle than
primitive recursion. The above result is concisely expressed by saying that
# is closed under limited recursion.

4.5, Corollary

The state function o, hence the functions ¢, and j,. defined in the
proaf of theorem 5-1.2 (computability of the universal functions) are
elementary. Hence also the predicate T, of Kleene's normal form (theorem
3-1.4) is elementary.
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Praof. We refer to the formal proof of theorem 5-1.2 as given in
chapter 5 and completed in the appendix to that chaprer. It is mostly
routine to establish, by using the above results, that the functions used to
build @, are all elementary. For the actual definition of 7, by primitive
recursion, note that we can obtain an elementary bound on e, as follows.

It is easy to see that for any ¢

cule, k)= [ pf™
I=a=a(F,)
and
Jule, x, f1=Inle).

These two bounds are elementary functions of 2, x,  once we have shown
that p(P,) and Inle) are elementary functions, Putting these bounds
together we then have an elementary bound for ... and theorem 4.4 may
be applied. The remainder of the proof that o, is elementary consists of
showing that pi{F,), Inie) and all the other functions defined in the
appendix to chapter 3 are elementary. This is left as an exercise for the
reader. (The only generzl principle needed but not explicitly mentioned
already 1s that elementary functions are closed under definition by cases;
see exercise 4.12(4a) below).

The elementary nature of ¢, j, and T, follows immediately since these
are all defined explicitly by substitution from =, and other slementary
functions. ]

The following corollary is often expressed by saying that functions
computable in elementary time are elementary.

4.6, Corollary
(a) Suppose that b(x) is elementary and ¢, is a total funciion
such that t)" (x)= bix) a.e.” Then ¢L' is elementary.
(&) If bix) is elementary, then &, = &
FProof. (b) is obviously a restatement of (a) for unary functions. To

(1]

prove (a), suppose that ¢," (x)=Fk{x) a.e. Then the function
kRixi=pwr=bix)jle, x, =00

is elementary, and we have
P ix)=(c.le, x, kix))) a.e.

* Here we sre extending the use af s.c. ta a-ary predicates Mx) in the obvious
way: M (x] holds a.e. if it holds for all but finitely many n-tuples x.

B
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By the results we have proved, the right hand side is an elementary
function. To conclude that & is elementary. we observe that a function
that is almost everywhere the same as an elementary function is elemen-
tary [see exercise 4.12(45) below), O

At this stage the reader might well be wondering whether the ¢lemen-
tary functions coincide with the primitive recursive functions. All parti-
cular examples of primitive recursive functions from earlier chapters have
been shown to be elementary. The only detectable difference between
these classes is that for # we have only been able to prove closure under
{imited recursion. Could it be that this is only an apparent distinction?
The answer, as we shall see below, 15 no. Limited recursion is a definition
principle that is really weaker than primitive recursion. We will find a
function that is primitive recursive but not elementary as a consequence
of the next theorem to be proved below,

MNevertheless, & is an extremely large class of functions, and contains
most of the functions used in practical mathematics. The class & is a
natural first suggestion for the class of total effectively computable
functions, based as it is on the ordinary operations of arithmetic. Indeed,
it has been argued (for example, by Brainerd & Landweber [1974]) that #
contains all practically computable functions. They argue that if fix) is
practically computahle, then there must be some number k such that f(x)
can be computed in at most

Rl

]
e

K

2%

steps for almost all x. After 4ll. for practical purposes, this number of

steps quickly becomes very large in comparison with x, even for small
values of k. Now, since the function

- mexix)

i
vir's
15 elementary (for fixed k), this means that f is elementary, by carollary
4.6,
Owur goal in the remainder of this section s to show that the elementary
functions can be characterised as precisely those functions that are
computable in time

5 MAR g}

y
[
2
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for some &. As a first step towards that goal, we have the following, which
incidentally will give a non-glementary primitive recursive function.

4.7. Theorem
If fix) is elementary, there is @ number k such that for all x,

flx)=2%
Proof. Let us write b (2} for
3
22} :
then, explicitly, we have ho(z)=z, b(z}=2% and bioi(z) =2 in
general. (Thus. by 2° is meant 2%, not (2, etc.). Note that by . (z)=
(bl 2)). We shall use implicitly below the fact that b, is increasing and
that z*=2" forall z.
To establish the theorem, we consider each of the clauses whereby a
function f can get into & Referring ta definition 4.1
i) ¢ +1=2";
Uzl =maxix);
X y=maxiy v);
puaxiee],

r+y=2maxix, y)= :

AmAR

xy = (maxix, v} =2
(ii) Suppose that h(x)=F(gi(x),. .., gulx)), and ki, ... ko i
are such that gix)=»b (maxix)) (1=i=m), and [iy
byimax(y)). Let k =max(k,. ..., k.). Then we have

|}E‘

hix)=h(max(g(x),....g.(x))

= b(max(b;, (maxix)), ..., by _(maxix}))

= b (b (max(x)}) = b, (maxix)).
(i) Suppose that gle.yi=Y,. flx,z), and that f(x, z)=
bp(maxix, z)). Then we have

2ix,yl= ¥ bimaxix, z))

¥
= ¥h (maxix, v}

o
= b imaxix, vJ)

S5 TakRAL
=g

= b& |z{m513"'-{1~ }'Ij

The case when g is 2 bounded product is similar, and is left as an exeroise
{4.12(6) below). [T
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4.8, Carpllary
The function

flx)=2%"

1S primitive recursive but not elementary.
Proof. To see that / is primitive recursive, notice that Flxdy=glx, x),
where g is defined by

gix,M=ux,

glx, y+1)=28"

»
{50 g s primitive recursive),
To see that f is not elementary, notice that for everv k
Flk+1=by ik +1)> b (k+1),

so there is no & such that flx )= p, (x) for all x, (Note that fis obtained by

—

‘diagonalising out of #°.) [

The penultimate step towards our goal is to show that elementary
functions can be computed in elementary time.

4.9, Theorem
If flx) s elementary. there is a program P for f such that 1 lix) ie
elemeniary.,
Proof. We must examine the ways in which a function getsinto % [t is
helpful to prove first the following general lemma.

4.10.  Lemma
Letx=(xy,..., ¥, ). Suppose that kix, v) is elementary, and has a
definttion by recursion from funcrions flx) and gix, v, z) which can be
computed in clementary time. Then k can bé computed in elementary time,
Proof. Take programs F, G for f, g in standard form, such that 7 and
fc are elementary. (For notational convenience we omit here and else-
where the superscripts from 2 for any program F whenever the
meaning is clear.) We shall take the program H for 4 as given in the
proof of theorem 2-4.4, and show that 1, is elementary. We simply
calculate 1y (x, ¥) by reference to the fAow diagram in fig. 2c and the
explicit program Ff that is its translation. We reproduce this flow diagram
in fig. 12c, indicating alongside each component the number of steps it
contributes when executed by the program H. It is now a simple matter
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to calculate that
tix. vi=n+1+iplFi+ielx)+1)+iy+1)

+ ¥ G +tsle k hile k)N+3)+1,

ke y

which is clearly an elementary function, since 7 15 and A are all

elementary. O

Proof of theorem 4.9
Let us consider each of the clauses in the definition of #:

(i) The functions x + 1 and U(x) can each be computed by single
step programs. For x = v, x + v, xy we use lemma 4.10. Consider
& + v, for example: this is defined by recursion from the fu nctions
fix)=x and g{x,v. z}= 1z +1, both of which are computable in

Fig. 12¢. The number of steps in a computation by recursion.

S5TART

l /n+]51cps

Store 1,y in R, ..., |

r

) plFI+ie(x)+ 1 steps
fixi=R,, ‘ }

1 step forcach
k < y [or this loop back e, 1 step foreach b=y,
=y+1sleps

1 step lor
each k=¥

L | step

glx Kk hiz K)=R, .,

L

plGY+ e &, Al k)I+1
steps for cach k <y

i S .,

=

k
i
r

o]
Tl
Tk
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elementary time. Now apply lemma 4.10. Similarly for x = y and
xy (for x —» we must first prove the result for x =1, again by
using lemma 4.10).

lit} Substitution, Suppose that Alx)=7flg.(x), ..., g.lx}). and
each of f, g, ..., 8. is computable in elementary time bv
programs F, &y, ..., G, 1n standard form. Let H be the pro-

gram for #t given in the proof of theorem 2-3.1. Calculating
directly from that program we have

tulx)=n+ ¥ (plGil+1g(x)+ 11+ plF)
i=1
+ipigaix), ... BmlxD+1,

which is an elementary function, by substitution.
(i) Bounded sums and products. The result is established by
using lemma 4.10. Suppose that g(x, v)=Y__ flx, z), and f is
computable in elementary time. Then g 15 obtained by recursion
from the lunctions 0 and z + fix, v) both of which are computable
in elementary time {from (i) and (ii) above), Hence, by lemma
4.10, g is computable in elementary time.

The proof for bounded products is similar, and is left as an
exercise (4.12(8) below). O

We have now done all of the hard work! To express the charac-
terisation of & towards which we have been working, it is helpiul 10
extend complexiry classes to include n-ary functions for all 7. Suppose,
then, that b{x) 15 a total function; let us write

EF={f: fistotal and f = &."' for some e with
' (x)=hlmax(x)) a.el.
Clearly €, = € n Unary functions.
MNow our final theorem 1s

4.11.  Theorem

A rotal function fix) is elementary iff it is computable in time
= by (maxix)), for some k. Le.

=1 &L,

k=N
Praof, Since for each &, b {max(x)) is an elementary function, we have

€% = # by corollary 4.6; hence

R

k=0



12 Complexity of computation 234

For the converse inclusion, let fix) be an elementary function. By
theorem 4.9 there is 2 program F for f such that /- is elementary: now by
theorem 4.7 find a number k such that rp(x) = beimaxix)). Then fe €5

so pur proof is complete, T

4.12. Exercises
1. Show that it was not strictly necessary to include the functions
x~—v and xy in the definition of £. (Hint First obtain xy as
4 bounded sum; then obtain x—yv from suitable products,
using = .
. Prove lemma 4.2(5).
. Complete the proof of theorem 4.3.
(@) Show that % is closed under definition by cases, when the
functions and predicates in the definition are all elementary.
(h) Show thatif f{x)is clementary and glx}=flx)a.e., then gix]
15 elementary.
5. Check all the details in the proof of corollary 4.5,
6. Complete the proof of theorem 4.7 by showing that if glx,y)=
[l,.,flx.z) and flx,z)=b.(maxix, z)). then gix.yI=
e -3lmaxix, y)).
7. Give an example of a unary prnimitive recursive function that is
not elementary, different from that of corollary £.8.
8. Prove that if f 15 computable in elementary time and gix, v]=
[1..,ftx, 2}, then g is computable in elementary time,
9, Suppose that @, is a complexity measure for unary functions that
is related o t, by an elementary function r. Le. for any ¢, and
almost all x for which t.(x) is defined,

i

&, (x)=rix, ,(x)) and £, (x) = rlx, P.ix}).

For anv total function klx}, let &% be the complexity class of &
relative to &, i.e.

¥ ={d.: . istotal and &, (x)=blx) ae.}.
Prove that |_le~s (5}'.';= #,. the unary elementary functions,

Further reading For a fuller treatment of the machine independent
theory of complexity, the reader should consult the basic paper of Blum
[1967], or the readable overview of the theory by Hartmanis & Hoperoft
[1971]. The paper of Young [1973], which we have already cited in
earlier sections, simplifies some of the proofs of basic theorems. The book
of Brainerd & Landweber [1974] has a good chapter on complexity, and
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also gives the characterisation of various subrecursive classes of functions
iincluding #) in terms of time of computation. Similar characterisations
are also discussed in the early (in the history of complexity theory | papers
of Ritchie [1963] and Cobham [1965], using the Turing machine tape
measure of complexity.
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Further study

Our basic study of computability has been designed so that it could serve
as a slepping stane to more advanced or more detailed study in any of
several directions. In this brief postlude, we shall mention soms of the
areas in which further study could be pursued, and we offer some
suggestions for further reading. The divisions below are not hard and fast,
and there are many interrelations between the various areas we mention.

Compurability  Further study of the theoretical notion of computahility
(the starting point of this book) could be pursued in two directions: (@)
more detailed examination of other equivalent approaches to compu-
tability (which we surveyed in chapter 3); (#) examination of more
restricted notions of effective computability, involving, for instance, finite
automata and similar devices,

Some references (several histonical) for (@) were given in chapter 3. For
both (4] and (&) we suggest the books of Minsky [1967] (a very compre-
hensive treatment], Arbib [1969], or Engeler [1973].

Recursion theory We use this traditional title under which to mention
more advanced ideas arising out of the notion of computability on B, such
as we began 1o pursue in chapters 7. and 9 to 11. Specific areas include:

Hicrarchies: there are various ways to extend the sequence
beginning ‘recursive, r.e.,. .. 'to obtain a hierarchy of kinds of set, sach
kind of set having more difficult decision problem than the preceding one.
Among the important hierarchies that have been studied are the arith-
metic hierarchy, the hyperarichmeric hierarchy, and the analyfical
hierarchy.

Reducibilities and degrees: between =, and =1 there is a spec-
trum of reducibilities that could be investigated, For the student wishing
to delve further into Turing reducibility, the next step would be to master
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a proof of the Friedberg-Muchnik solution to Post’s problem, before
proceeding to further results and proofs in this area, some of which we
mentionad in chapter 9,

Recursion i huigher tvpes: we considered briefly in chapter 10
the question of computable functions of functions. This study can be
extended to compurtability of functions of functions of functions, etc.
Hierarchies occur naturally here also.

The book of Rogers [1967] is the best single reference for each of these
areas, in that it is a more advanced and comprehensive textbook which
continues these topics where we have concluded our introduction. More
specific sources of information about degrees are Sacks [1963],
Shoenfield [1971] and Simpson [1977].

Under this heading we should also mention

Generalised recursion theory: This is a relatively new field of
study, in which ideas arising in computahility on M are transferred to
other structures that are not merely coded-up disguises of &, This
development has been particularly successful on certain sets called
admissible ordinals. An introductory article having a large annotated
bibliography is provided by Shore [1977] in the Handbook of Mathe-
matical Logic (Barwise [1977]).

Decidability and undecidability A good survey of unsolvable prab-
lems in general is provided in the article by Davis [1977] in the Handboak
af Mathemarical Logic.

For an introduction to mathematical logic, and decidability and
undecidability in this area, there are numerous basic tests, such as
Mendelson [1964] or Robbin [1969], These books also give a complete
treatment of Gédel's theorem and related results. For more advanced
study in this area there are texts such as Bell & Machover [1977], and
Boolos & Jeffrey [1974], The article by Rahin [1977] surveys methods and
results on the decidability of mathematical theories.

Computer science The study of topics included under the heading
Compurability above, especially finite automata, is of course relevant to
tomputer science — which could be called the realm of practical compu-

tability. Within this realm there are two areas we have touched on, albeit
briefiy:
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Programs and pragramming: further study here could include
topics such as the generation of programming languages and the structure
of programs; and the semantics of programming languages [which we
touched upon in chapter 10). Texts which cover these matters include
Athib [1969]. Bird [1976], Brainerd & Landweber [1974], Engeler
[1973] and Manna [1974.

Complexity theory: at the end of chapter 12 we offered soms
suggestions for further reading in this area. There is considerable interast
in identifying functions f(x) that can be computed in an amount of time
hounded by some polynomial in x. A major unsolved problem here is the
so-called P = NP problem: machines are considered in which there is a
certain amount of freedom in choosing the next step in a computation
isuch machines are called non-deterministic |, By making good guesses [or
choices) one can often obtain a quicker compurtation than by systemati-
cally working through all possible cases m a deterministic way. The
P = NP problem asks whether every function computable on a non-
deterministic machine in polvnomial time is computable in polynomial
time on ordinary (deterministic) machines. This problem is mentioned in
Rabin [1977] and discussed fully by Karp [1972]
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What can compulers do in principle? What are
their inherent theoretical limitations? These are
yuestions (o which computer scicntists must
wddress themselves. The theoretical framework
which cnubles such questions 1o be answered
has been developed over the last Bfty years
from the idea of a computable function:
intuitively a function whose values can be
calculaled in an effective or automatic wiy.

This book is an introduction 1o com=
putability theory (or recursion theory as itis
iraditionally known to mathematicians). Dr
Cutland begins with a mathematical
characterisation of computable functions using
a simple idealised computer (a register
machine): afler some comparisan with other
characterisations, he develops the mathematical
theory, including & full discussion of nan-
computability and undecidability, and the
theary of recursive and recursively enumerable
L.

The later chapters provide an introduction to
mare advanced topics such as Godel's
incompleteness theorem, degress of un-
solvahilily, (ke Recursion theorems and Lhe
theory of complexity of computation,
Computahility is thus a branch of mathematics
which is of relevance also to computer
scientists and philosophers. Mathamatics
students with no prior knowledge of the subject
and compuler science studzants who wish o
supplement thair practical expertise wilh some
theoretical background will find this book of
use and interest.

A reviewer's commenti

‘Dr Cutland hias produced bere an excellent and
much-neaded textbook which will yndoubtediy
help to establish recursion theory as a mare widely
raught branch of mainstream mathcmarics.'
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