This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

4 .,
e i

PHP Essentials, Second Edition

by Julie C. Meloni ISBN:1931841349
Premier Press © 2003 (326 pages)

This text serves as an introduction to the PHP scripting
language and provides real-world examples of common

i § uses--from downloading, installing and configuring a Web

- server with PHP, to creating dynamic content via database
interfaces and more.

< Table of Contents [* Back Cover

Table of Contents

Introduction

Chapter 1 - Getting Started with PHP

Chapter 2 - Basic PHP Techniques

Chapter 3 - Working with Databases

Chapter 4 - Creating and Populating Database Tables
Chapter 5 - User Authentication

Chapter 6 - User Tracking and Session Management
Chapter 7 - Advanced PHP Techniques: Web-Based Database Administration
Chapter 8 - Advanced PHP Techniques: Working with Images
Chapter 9 - Advanced PHP Techniques: Working with XML
Appendix A - Essential PHP Language Reference

Appendix B - Getting Support

Index

List of Figures

List of Tables

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« pusvisu]
PHP Essentials, Second Edition

by Julie C. Meloni ISBN:1931841349

Premier Press © 2003 (326 pages)

This text serves as an introduction to the PHP scripting
language and provides real-world examples of common
uses--from downloading, installing and configuring a Web
server with PHP, to creating dynamic content via database
interfaces and more.

[Table of Contents = Back Cover

Back Cover

Dive into the new edition of this popular guide to PHP. With a true focus on the essentials, this book gives
you the solid foundation in PHP programming you’re looking for. And you don't have to be a computer
scientist or programmer to learn from it! The simple, learn-by-example format of PHP Essentials will allow
you to quickly use the power of PHP to develop successful, dynamic Web sites.

Learn Faster

o Start with PHP basics like parsing, working with arrays, and displaying dynamic content

¢ Use PHP to plan and display an e-commerce product catalog and to ensure safe and secure shopping
e Master advanced PHP graphics techniques such as creating new images and scaling existing images
¢ Install a Web server—for Windows or Linux—and add database support

Learn More

e Learn how to establish various database connections with PHP, including MySQL, PostgreSQL, and
Oracle

e Use PHP to create a database table and edit your data
e Master user tracking and session management techniques

e Use the PHP Language Reference to answer your questions about syntax, variables, built-in
functions, and more!

About the Author

Julie C. Meloni is the technical director for i2i interactive—a multimedia company located in Los Altos,
California. She is also the author of several books and articles on Web-based programming languages and
database topics, including the first edition of PHP Essentials from Premier Press.

(roam Lio | e

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | (4 Frwvisus flwant o
PHP Essentials, Second Edition

Julie Meloni

Premier

E—

Press
Copyright © 2003 by Premier Press, a division of Course Technology.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system without written permission from Premier Press,
except for the inclusion of brief quotations in a review.

The Premier Press logo and related trade dress are trademarks of Premier Press and may not be used without written permission.
PHP was written by the PHP Development Team, and released under the GNU General Public License (GPL).
All other trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the appropriate software manufacturer's
technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary trademarks from descriptive terms by
following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be reliable. However, because of
the possibility of human or mechanical error by our sources, Premier Press, or others, the Publisher does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of the fact that the Internet is an ever-changing entity. Some
facts may have changed since this book went to press.

ISBN: 1-931841-34-9

Library of Congress Catalog Card Number: 2003101207
Printed in the United States of America
0304050607BH10987654321

Premier Press, a division of Course Technology
25 Thomson Place
Boston, MA 02210

Publisher
Stacy L. Hiquet

Senior Marketing Manager
Martine Edwards

Marketing Manager
Heather Hurley

Manager of Editorial Services
Heather Talbot

Acquisitions Editor
Todd Jenson

Project Editor
Estelle Manticas

Technical Reviewer
Michelle Jones

Copy Editor
Estelle Manticas

Interior Layout
Marian Hartsough

Cover Designer
Mike Tanamachi

Indexer
Sharon Shock

Proofreader
Sean Medlock

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Acknowledgments

Thanks as always to the PHP Group, Zend Technologies, the Apache Software Foundation and MySQL AB for creating and
maintaining such wonderful and accessible products for all users.

Thanks to every single PHP user and developer, because without you, | wouldn't have anything to write about.
Enormous thanks to everyone at i2i Interactive, for their never-ending support and encouragement.
About the Author

JULIE MELONI is the technical director for i2i Interactive, a multimedia company located in Los Altos, California. She's been
developing Web-based applications since the Web first saw the light of day and remembers the excitement surrounding the first
GUI Web browser. She is the author of several books and articles on Web-based programming languages and database topics,
and you can find translations of her work in many different languages, including Chinese, Danish, Finnish, Italian, Portuguese,
Polish and even Serbian.

= [rivieos L]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LiB | (4 Fravisui]|
Introduction

If you compare this book to most of the other books on PHP, you'll quickly notice that this book is much smaller than those
thousand-page behemoths. The relative smallness of this book is intentional-I've found it's easier to learn from a book you can
actually hold!

That being said, plenty of topics that are covered in those lengthier books are not covered in this book. This book offers, as its title,
says the essential information. In other words, information that will provide a solid foundation for the additional topics you will find in
longer, more advanced books.

A main characteristic of this book, besides teaching the fundamentals, is that you don't have to be a computer scientist or
programmer to learn from it. If you are a computer scientist or programmer already, you may not like the rather prosaic nature of
the explanations and instructions in this book. Ultimately, | wanted to write a book that someone could take off the shelf, skim
through, and say, "Hey, this PHP thing looks like a neat language, and ever-so-easy to learn!" Because it is!

If you've been programming with PHP since the beginning of time, there's probably not much you can get out of this book, except to
hand it to your boss and say, "Look! Another book on what a wonderful language this is. Can we please stop using ASP/Cold
Fusion/Java/Perl/C++ and migrate to PHP?" But if you've just dabbled with PHP or have never seen a PHP script, | am certain this
book will be of some use to you.

Supplemental Web Site
Additional information for this book (and for other books I've written) can be found at http://www.thickbook.com/. At this site you can

download all the code samples in this book, as well additional tutorials and notifications of any errors in the book. You can also use
the site to get help with any problems you may have with the examples.
[« rrvvious foesr

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam Lib [« rrsvisus]
Getting Started with PHP

Whether you're a first-time programmer or you have a few years of Web application development under your belt, you'll find
something useful in this book. Hopefully, what you'll find is a simple "learn-by-example" path to developing successful dynamic Web
sites.

Unlike the Web itself, this book is fairly linear. You'll start by installing the software needed to use PHP, and then you'll gradually
move into "Hello World!" scripts and eventually create shopping carts and other database-driven applications.

If you have an account with an Internet Service Provider who has enabled the use of PHP for all users on the server, you can skip
ahead to Chapter 2. But as you can install freely available Web servers, PHP, and a databsse or two on your own machine-with a
little poking and prodding-I recommend you do so. It's a great way to learn the "guts” of the tools you'll be using.

[ereions Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team Lo | [« erevious foat
What Is PHP?

PHP is a server-side scripting language. When your Web browser accesses a URL, it is making a request to a Web server. If you
are requesting a PHP page, something like http://www.yourcompany.com/home.php, the Web server wakes up the PHP parsing
engine and says, "Hey! You've got to do something before | send a result back to this person's Web browser." The PHP parsing
engine runs through the PHP code found in the home.php file and returns the resulting output. This output is passed back to the
Web server as the HTML code in the document, which in turn is passed on to your browser, which displays it to you.

A Brief History of PHP

In 1994, an incredibly forward-thinking man named Rasmus Lerdorf developed a set of tools that used a parsing engine to interpret
a few macros here and there. They were not extravagant: a guest book, a counter, and some other "home page" elements that
were cool when the Web was in its infancy. He eventually combined these tools with a form interpretation (FI) package he had
written, added some database support, and released what was known as PHP/FI.

Then, in the spirit of Open Source software development, developers all over the world began contributing to PHP/FI. By 1997,
more than 50,000 Web sites were using PHP/FI to accomplish different tasks-connecting to a database, displaying dynamic
content, and so on.

At that point, the development process really started becoming a team effort. With primary assistance from developers Zeev
Suraski and Andi Gutmans, the version 3.0 parser was created. The final release of PHP3 occurred in June of 1998, when it was
upgraded to include support for multiple platforms (it's not just for Linux anymore!) and Web servers, numerous databases, and
SNMP (Simple Network Management Protocol) and IMAP (Internet Message Access Protocol).

After PHP 3.0 was released, the aforementioned Suraski and Gutmans began to develop a super-fast engine to replace the core
elements of PHP, and in mid-1999 the Zend Engine was born. PHP 4.0 was based on this engine, and was released in the Spring
of 2000. This release was a watershed for PHP-the vast amount of new featues and incresed performance results now found in
PHP 4.0 made it a viable tool for advanced Web application development. The current version is PHP 4.3, which you'll learn to
install in Chapter 1, "Getting Started with PHP."

In the three years between the appearance, in early 2000, of the first edition of this book and this newest edition, PHP usage has
exploded. Companies like Amazon.com and Yahoo! use PHP in various areas of their Web sites. That's definitely high praise! The
most recent survey from Netcraft (http://www.netcraft.com/) show PHP is installed on over 9.5 million domains. It is commonplace
for Internet Service Providers to offer PHP and MySQL in even the most basic (or free!) hosting packages, and PHP source code is
shipped with most Linux distributions.

Additionally, there are hundreds of books which address PHP development in some way-a marked increase from the five or so
which were available when the first edition of this book was published. The tens of thousands of developers who use and contribute
to PHP have made this simple language near-revolutionary, and those numbers continue to grow.

What Does PHP Do?

PHP does anything you want, except sit on its head and spin. Actually, with a little on-the-fly image manipulation and Dynamic
HTML, it can probably do that, too.

According to the PHP Manual, "The goal of the language is to allow Web developers to write dynamically generated pages quickly."
The list below show some common uses of PHP. This is by no means a complete list, and doesn't indicate any of the more
advanced functionality that developers use in large applications; it's just an idea of the items that your average developer may use
on a daily basis.

= Perform system functions: create, open, read from, write to, and close files on your system, execute system
commands, create directories, and modify permissions.

= Gather data from forms: save the data to a file, send data via e-mail, return manipulated data to the user.

= Access databases and generate content on-the-fly, or create a Web interface for adding, deleting, and modifying
elements within your database.

= Set cookies and access cookie variables.
= Use PHP user authentication to restrict access to sections of your Web site.
= Create images on-the-fly.

= Encrypt data.
A Note Regarding Open Source Development

Open Source software must follow these criteria (they are available in detail at http://www.opensource.org/):
= Free redistribution.
= The program must include source code and must allow distribution in source code as well as compiled form.
= The license must allow modifications and derived works.
= Integrity of the author's source code.
= No discrimination against persons or groups.

= No discrimination against fields of endeavor.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= Distribution of license.
= License must not be specific to a product.
= License must not contaminate other software.
PHP is a fine example of Open Source development and distribution. Other examples include the following:
= Apache. The Web Server of choice for more than 4.8 million Web sites.
= Linux. The operating system of choice for more people than Microsoft would have you think.
= BIND. The software providing Domain Name Services to the Internet-all of it.
= Sendmail. The most widely-used software for transporting e-mail from sender to recipient.

Synonymous with "Open Source" is "volunteerism." Developers contributing to Open Source software don't directly make money
from doing so. Wherever possible, contribute to your favorite Open Source organization, be it the PHP Group or someone else.
Give back some time by answering questions, helping with documentation, contributing code where possible, or even making a
monetary donation. The cost of equipment, connectivity, tools, and, most importantly, brainpower is absorbed directly by the

volunteer developer, so that you and | have a freely (and widely) available piece of software.
[« rasvisis]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« rrsvisus]
Is PHP Right for Me?

Only you can decide if PHP should be your language of choice, whether you're developing sites for personal or commercial use on
a small or large scale. | can only tell you that in the commercial realm, I've worked with all the popular server-side scripting
languages-Active Server Pages (ASP), ColdFusion, Java Server Pages (JSP), Perl, and PHP-on numerous platforms and various
Web servers, with various degrees of success. PHP is the right choice for me: it's flexible, fast, and simplistic in its requirements yet
powerful in its output.

Before deciding whether to use PHP in a large-scale or commercial environment, consider your answers to the following questions:

= Will you always use the same Web server hardware and software? If not, look for something cross-platform and
available for multiple Web servers: PHP.

= Will you always have the exact same development team, comprised entirely of ASP (or ColdFusion) developers? Or
will you use whoever is available, thus necessitating a language that is easy to learn and syntactically similar to C
and Perl? If you have reason to believe that your ASP or ColdFusion developers might drop off the face of the earth,
don't use those tools; use PHP.

= Are memory and server load an issue? If so, don't use bloated third-party software that leaks precious memory; use
PHP.

There are plenty of other questions to ask yourself when making a decision regarding a development language, and in short | can

only say "Try it, you'll like it!"
[eivious [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team Li | [EEET|
Chapter 1: Getting Started with PHP

This chapter will walk you through the basics of getting PHP and a Web server up and running on your system, and will show you
how to add database support as well. You may or may not need to read this entire chapter-if you don't plan to install Microsoft IIS,
then, don't worry about reading that section.

No matter what section or sections you choose to read, please pay close attention to the instructions given. The installation is not
difficult, but it is important to follow the steps closely. Missing one instruction will result in frustration on your part and angry e-mails
in my inbox, both of which I'd like to avoid!

Installing a Web Server

In this section, you'll learn to install Apache on Linux/UNIX or Windows, and you'll also learn the basics of getting and installing
other Web servers, such as Microsoft IIS. Personally, | never install anything other than Apache, even if it's on my personal
Windows machines. But if you want to install Microsoft IS or another Web server, feel free! Some other Web servers will be
discussed at the end of this section.

Throughout the Apache installation sections, the instructions assume you know the basics of administering either Linux/UNIX or
Windows. If you don't know anything about the command line, or have never logged on as Administrator to a Windows machine,
you should take a step back and brush up on your system administrator skills before continuing.

Working with Apache

The Apache Web server is an open-source project produced and maintained by the Apache Software Foundation. Since 1996,
Apache has been the most popular Web server in use on the Internet-quite a run! Apache currently holds over 60 percent of the
Web server market share, and there are no signs of it relinquishing its stronghold.

The current version of the Apache server is 2.0.44, which is the version used as the basis for the installation instructions in this
chapter. Should you purchase this book and find the current version is different, first try the instructions as written here, and then
check for updated instructions at this book's Web site, http://www.thickbook.com/. Unless something drastic has happened to the
Apache source code (or this book is years out of date), the installation instructions in this book will work despite minor version
changes.

When working with Apache, you have two options for installation: building from source or installing from a pre-compiled binary.
Building from source gives you the greatest flexibility, as it enables you to remove modules you don't need and extend the server
with third-party modules. Additionally, building from source enables you to easily upgrade to the latest versions and quickly apply
security patches, whereas updated versions from vendors can take days or weeks to appear.

Pre-compiled binary installations are available from third-party vendors and can also be downloaded from the Apache Software
Foundation Web site. This installation method provides a simple way to install Apache for users with limited system administration
knowledge or with no special configuration needs.

In the following sections, you'll use the build-from-source method for installation on Linux/UNIX and the pre-compiled installation
method (in this case, using an Installer) for Windows systems.

Installing and Configuring Apache on Linux/UNIX

In this section, you'll install a fresh build of Apache 2.0 on Linux/UNIX. The official Apache download page is located at
http://httpd.apache.org/download.cgi, and it will always clearly indicate the most recent version of Apache for your platform.

The Apache source distribution files are first packed with the tar utility and then compressed, either with the gzip tool or the
compress utility. Download the .tar.gz version if you have the gunzip utility installed in your system, and download the tar.Z file if
gunzip is not present in your system.

The file you want to download will be named something like httpd-2.0.version.tar.gz or httpd-2.0.version.tar.Z, where version is the
most recent release version of Apache. For example, Apache version 2.0.44 is downloaded as a file named httpd-2.0.44 .tar.gz or
httpd-2.0.44 tar.Z. Whichever file you download, put it in directory reserved for source files, such as /usr/src/ or /usr/local/src/.

Now, let's get on with the installing. If you downloaded the tarball compressed with gzip, uncompress and unpack the software by
typing the following command at the prompt (#):

gunzip < httpd-2.0*.tar.gz | tar xvf -

If you downloaded the tarball compressed with compress (tar.Z suffix), type the following command at the prompt (#):
cat httpd-2.0*.tar.Z | uncompress | tar xvf -

Whichever method you used, you should now have a structure of directories, with the top-level directory named httpd-2.0.version.
Change your current directory to this top-level directory to prepare for configuring the software. For example:

cd httpd-2.0.44

With the Apache distribution unpacked, you can now configure a basic version of the server and start it up. You'll make some
modifications later when you install PHP, but first things first!

By running the configure script in the top-level distribution directory, you can add and remove functionality from Apache. By default,
Apache is compiled with a set of standard modules that are compiled statically. However, in preparation for the PHP installation
later in the chapter, you need to ensure that the mod_so module is compiled into Apache. This module, named for the Unix shared
object (* . so) format, enables the use of dynamic modules such as PHP with Apache. To configure Apache to install itself in a
specific location (in this case /usr/local/apache2/) and to enable the use of mod_so, issue the following command at the prompt:

./configure --prefix=/usr/local/apache2 --enable-module=so

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The configure script will run, determining the location of libraries, compile-time options, platform-specific differences, and so on, and
will end up creating a set of makefiles. If everything goes well after running the configure script, you will see a set of messages
related to the different checks just performed, and you will be returned to the prompt.

creating test/Makefile

config.status: creating docs/conf/httpd-std.conf
config.status: creating include/ap_config layout.h
config.status: creating support/apxs
config.status: creating support/apachectl
config.status: creating support/dbmmanage
config.status: creating support/envvars-std
config.status: creating support/log server status
config.status: creating support/logresolve.pl
config.status: creating support/phf abuse_ log.cgi
config.status: creating support/split-logfile
config.status: creating build/rules.mk
config.status: creating include/ap config auto.h
config.status: executing default commands

#

If the configure script fails, you will see warnings that will allow you to track down additional software, such as compilers or libraries,
that must be installed. After you install any missing software, you can try the configure command again, after deleting the
config.log and config.status files from the top-level directory.

Assuming that all went smoothly with the configure script, simply type make at the prompt in order to build Apache. You will see
several messages indicating the progress of the compilation, and you will end up back at the prompt. When compilation is
complete, you can install Apache by typing make install atthe prompt. The makefiles will install files and directories, and return
you to the prompt:

Installing header files

Installing man pages and online manual

mkdir /usr/local/apache2/man

mkdir /usr/local/apache2/man/manl

mkdir /usr/local/apache2/man/man8

mkdir /usr/local/apache2/manual

Installing build system files

make[l]: Leaving directory “/usr/local/bin/httpd-2.0.44"
#

The Apache distribution files should now be in the /usr/local/apache2 directory, as specified by the --prefix switch in the
configure command. To test that the httpd binary has been correctly built, type the following at the prompt:

/usr/local/apache2/bin/httpd -v

You should see the following output (your version and build date will be different):
Server version: Apache/2.0.44

Server built: Jan 21 2003 07:37:05

You're now only a few steps away from starting up your new Apache server. To run a basic installation of Apache, the only changes
you need to make are to the server name, which resides in the master configuration file called httpd.conf. This file lives in the conf
directory, within the Apache installation directory. In this case, the configuration files will be in /usr/local/apache2/conf/.

In your text editor of choice, open the httpd.conf and make the following changes:

= Change the value of ServerAdmin to your e-mail address:

ServerAdmin you@yourdomain.com

= Change the value of ServerName to something accurate (or use the loopback address of 127.0.0.1 for testing
purposes, if you're connecting locally) and remove the preceding "#", so that the entry looks like this:

ServerName 127.0.0.7

You do not want it to look like this:

#ServerName somehost.somedomain.com

These two modifications are the only changes necessary for a basic installation of Apache on Linux/UNIX. Whenever you modify
the configuration files you must restart Apache for the changes to take effect. Make sure you back up your original files before you
modify them.

Now you can try to start Apache. There's a handy utility, called apachect1, in the bin directory within your Apache installation
directory. It allows you to issue start, stop, and restart commands. Use this utility to start Apache for the first time by typing the
following from within the bin subdirectory of the Apache installation directory:

./apachectl start

If you don't get an error, then Apache is happily chugging along and you can now connect to whatever value you put in
serverName. When you connect to this new installation of Apache, you should see the Apache default start page, as shown in

Figure 1.1.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

Figure 1.1: Successful Apache installation

This page comes from the htdocs directory within your Apache installation directory. You can go into that directory and delete all the
default files if you want to, or you can leave them there. They're not hurting anything, but you'll eventually be filling the htdocs
directory with your own files and subdirectories, so you might want to delete them for the sake of good housekeeping.

If you do get an error when you try to start Apache, the output of apachect! will usually tell you why-most likely it'll be a typo in
httpd.conf that you can easily fix.

Unless you've got some extra time on your hands and an extra machine, you can skip the next section regarding installation of
Apache on Windows and jump ahead to "Installing an nfiguring PHP."

Installing and Configuring Apache on Windows

Although Apache 2.0 is designed to run on Windows NT, Windows 2000, and Windows XP, you can also run it on Windows 95 and
Windows 98 without difficulty. However, do so for testing purposes only, as these platforms are intended for personal use, not as a
server platform. If you are |nsta|||ng on Windows 95 or Windows 98, be sure to read the notes found at

and make sure your operating system is up-to-date. Also, before embarking on the
Apache installation, make sure that you do not already have a Web server running on your machine (for instance, a previous
version of Apache, Microsoft Internet Information Server, or Microsoft Personal Web Server). While you can run several Web
servers on the same machine, they will need to run under different address and port combinations.

Installing Apache on Windows is easily performed via the pre-packaged installer program. Go to the official Apache download page
at http://httpd.apache.org/download.cgi, and look for the link to the Windows installer, which is clearly marked as such. The naming
convention is apache_version-win32-x 86-no_ssl.msi, where version is the current version number. The installer file used for these
instructions is called apache_2.0.44-win32-x86-no_ssl.msi.

After you download the installer, the process begins with the basic double-click on the installer file. This launches the program,
complete with the welcome screen shown in Figure 1.2.

Figure 1.2: Apache Installer Welcome screen

Select Next to continue the installation process, and then read and accept the Apache license. After you accept the license, the
installer presents you with a brief introduction to Apache. Following that, it asks you to provide basic information about your

computer, as shown in Figure 1.3.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 1.3: Provide information about your server

The information you'll need to provide includes the full network address for your server (for instance,
yourmachine.yourdomain.com) and the administrators e-mail address.

Note If your machine does not have a full network address, use localhost or 127.0.0.1 as the serverName, as shown in

Figure 1.3.

After continuing to the next step, select the type of installation. Typical installation means that Apache binaries and documentation
will be installed, but headers and libraries will not. This is the best option to choose unless you plan to compile your own modules.

A custom installation enables you to choose whether to install header files or documentation. After selecting the target installation
directory, which defaults to C:\Program Files\Apache Group, the program will proceed through the installation process. If everything
goes well, it will present you with the final screen, shown in Figure 1.4.

Figure 1.4: Apache installer has finished

With Apache installed, you can now check its configuration file to ensure that the installer did its job. To check the configuration, go
to Start>Programs>Apache HTTP Server 2.0.44>Configure Apache Server>Test Configuration. A window will appear, containing
the result of the test. If the test is successful, the window will disappear on its own. If there is a problem, the correctable error
message will appear in the window.

After your configuration file has been validated, start the server by going to Start>Programs>Apache HTTP Server 2.0.44>Control
Apache Servers>Start Apache in Console. If no errors appear, then you can connect to this new installation of Apache. When you
do, you should see the Apache default start page (as shown previously, in Figure 1.1).

The default page comes from the htdocs directory within your Apache installation directory. You can go into that directory and
delete all the default files if you want to, or you can leave them there. They're not hurting anything, but you'll eventually be filling the
htdocs directory with your own files and subdirectories, so you might want to delete them for the sake of good housekeeping.

With the installation of Apache out of the way, you can continue on to installing PHP.

[Toam L | [« ervvious Pt v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= [« erevious]
Installing and Configuring PHP

PHP can be installed as a module, or even as a CGI processor if your Web server does not support SAPI (Server Application
Programming Interface) or ISAPI module types. In the following sections, you'll install PHP as a dynamic shared object (DSO) for
Apache on Linux/UNIX, and as a SAPI module for Apache on Windows. While the Linux/UNIX installation requires actual
compilation and building of files, the Windows installation consists only of placing files in particular places. Neither method is terribly
difficult-if you've made it through the Apache installation sections, then you have the skills to install PHP as well.

Installing PHP on Linux/UNIX

In this section, you'll learn how to install PHP with Apache on Linux/Unix as a dynamic shared object (DSO). While you might be
able to find pre-built versions of PHP for your system, compiling PHP from the source gives you greater control over the features
built into your binary.

To download the PHP distribution files, go to the home of PHP, http://www.php.net/, and follow the link to the Downloads section.
Grab the latest version of the source code-this example uses version 4.3.0. Your distribution will be named something like
php-version.tar.gz, where version is the most recent release number. Keep this file in the directory reserved for source files, such
as /ustr/src/ or /usr/local/src/.

Next, unzip and untar the software by typing the following command at the prompt (#):
gunzip < php-4.3.0.tar.gz | tar xvf -

You should now have a structure of directories, with the top-level directory named php-version. Change your current directory to
this top-level directory to prepare for configuring the software.

For example:
cd php-4.3.0

Like the Apache build method, PHP compiling follows the configure/make/make install sequence of events. Within your distribution
directory you will use the configure script, which accepts command-line arguments to control the features that PHP will support.
In these installation instructions, you will include the basic options you need to use to install PHP with Apache, and support for
using MySQL for your database applications. For now, type the following command at the prompt:

./configure --prefix=/usr/local/php --with-apxs2=/usr/local/apache2/bin/apxs

Once the configure script has run, and after you've received informational notes from the PHP Group, you will be returned to the
prompt. Unless the configure script errors, simply take the PHP Group notes as sound advice, and then issue the make
command, followed by the make install command. These commands should end the process of PHP compilation and
installation and return you to your prompt.

Installing build environment: /usr/local/php/lib/php/build/
Installing header files: /usr/local/php/include/php/
Installing helper programs: /usr/local/php/bin/

program: phpize
program: php-config
program: phpextdist

Next, you will need to ensure that two very important files are copied to their correct locations. First, issue the following command to
copy the distributed version of php.ini to its default location (the php.ini file is the configuration file for PHP, and you'll learn more
about it later in this chapter):

cp php.ini-dist /usr/local/php/lib/php.ini

Next, copy the PHP shared object file to its proper place in the Apache installation directory, if it has not already been placed there
by the installation process:

cp libs/libphp4.so /usr/local/apache2/modules/

To ensure that PHP and Apache get along with one another, you need to check for-and potentially add-a few items to the
httpd.conf configuration file. First, look for a line like the following:

LoadModule php4_module modules/libphp4.so

If this line is not present, or only appears with a # sign at the beginning of the line, you must add the line or remove the # sign. This
line tells Apache to use the PHP shared object file (libphp4.so) that was created by the PHP build process.

Next, look for this section:

#

AddType allows you to add to or override the MIME configuration
file mime.types for specific file types.

#

and add the following line:
AddType application/x-httpd-php .php

This ensures that the PHP engine will parse files that end with the .php extension. Your selection of filenames may differ, and you
may wish to add .html as an extension, which would parse every .html as PHP as well. When you're through adding your
extensions, save the file and restart Apache. When you look in your error_log, found in the logs subdirectory of your Apache
installation directory, you should see something like the following line:

[Tue Jan 21 09:48:44 2003] [notice] Apache/2.0.44 (Unix) PHP/4.3.0 configured

Congratulations are in order, as PHP is now part of the Apache Web server. If you want to learn how to install PHP on a Windows
platform, keep reading. Otherwise, you can skip ahead to the "Testing Your Installation" section later in this chapter.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Installing PHP on Windows

Unlike building and installing PHP on Linux/UNIX, installing PHP on Windows requires nothing more than downloading the
distribution and moving a few files around. To download the PHP distribution files, go to the home of PHP, http://www.php.net/, and
follow the link to the Downloads section. Grab the latest version of the Windows binaries-this example uses version 4.3.0. Your
distribution will be named something like php-version.zip, where version is the most recent release number.

Once the file is downloaded to your system, double-click on it to launch your unzipper. The distribution is packed up with
pathnames already in place, so if you extract the files to the root of your drive, it will create a directory called php-version-Win32
and place all the files and subdirectories under that new directory.

Now that you have all the basic PHP distribution files, you just need to move a few of them around:
1. In the PHP installation directory, find the php.ini-dist file and rename it php.ini.

2. Move the php.ini file to C:\WINDOWS\ or wherever you usually put your *.ini files.
3. Move the php4ts.dlil file to C:\AWINDOWS\SYSTEM\ or wherever you usually put your *.dll files.

To get a basic version of PHP working with Apache, you'll need to make a few minor modifications to the Apache configuration file.
First, find a section that looks something like this:

Example:

LoadModule foo module modules/mod foo.so

#

LoadModule access_module modules/mod access.so
LoadModule actions module modules/mod actions.so
LoadModule alias_module modules/mod_alias.so
LoadModule asis module modules/mod asis.so

LoadModule auth module modules/mod_auth.so
#LoadModule auth_anon_module modules/mod_auth_anon.so
#LoadModule auth_dbm module modules/mod_auth_ dbm.so
#LoadModule auth digest module modules/mod auth digest.so
LoadModule autoindex module modules/mod autoindex.so
#LoadModule cern meta module modules/mod cern meta.so
LoadModule cgi module modules/mod cgi.so

#LoadModule dav_module modules/mod_dav.so

#LoadModule dav_fs module modules/mod dav fs.so
LoadModule dir module modules/mod dir.so

LoadModule env_module modules/mod env.so

#LoadModule expires_module modules/mod expires.so
#LoadModule file cache module modules/mod file cache.so
#LoadModule headers module modules/mod headers.so

At the end of this section, add the following:
LoadModule php4 module c:/php-version/sapi/phpé4apache2.dll

Next, look for this section:

#

AddType allows you to add to or override the MIME configuration
file mime.types for specific file types.

#

Add the following line:
AddType application/x-httpd-php .php

This ensures that the PHP engine will parse files that end with the .php extension. Your selection of filenames may differ, and you
may wish to add .html as an extension, which would parse every .html as PHP as well. When you're through adding your
extensions, save the file and restart Apache. When you look in your error_log, found in the logs subdirectory of your Apache
installation directory, you should see something like the following line:

[Tue Jan 21 10:24:44 2003] [notice] Apache/2.0.44 (Win32) PHP/4.3.0 configured

Now that PHP is happily cohabitating with Apache, you can breathe easy and move on to bigger and better things.
Modifications with php.ini

Even after installing PHP, you can still change its behavior through the php.ini file. Directives in the php.ini file come in two forms:
values and flags. Value directives take the form of a directive name and a value separated by an equals sign (=). Possible values
vary from directive to directive. Flag directives take the form of a directive name and a positive or negative term separated by an
equals sign. Positive terms include 1, On, Yes, and True. Negative terms include 0, Off, No, and False.

You can change your php.ini settings at any time, but after you do, be sure to restart the server so that the changes can take effect.
At some point, take time to read through the php.ini file on your own, to see the types of things that can be configured.

Adding Database Support to PHP

One of the selling points of PHP s its ability to interface with numerous databases. This ability makes PHP a logical choice for
generating database-driven dynamic content, as well as developing e-commerce applications, project and document management
applications, and virtually any other application you can imagine that might use a database.

The examples of database usage in this book, in the context of application development, use MySQL as the database. However,
the basic PHP functions for database connectivity with other popular database systems are located in Chapter 3, "Working with
Databases." The other databases covered in Chapter 3 are PostgreSQL, Oracle, and Microsoft SQL Server.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In order to use the functions for these particular databases, you must enable their functionality when compiling PHP (on
Linux/UNIX) or through the php.ini file (on Windows). During the installation instructions for Linux/UNIX, earlier in this chapter, the
configuration directive --with-mysql was used. This directive told the compiler to include the MySQL-related functions as part of
PHP. In the Windows installation, nothing additional was needed to enable MySQL functions-they are enabled by default.

Enabling Other Database Support on Linux/UNIX

To enable support for other databases on Linux/UNIX, configuration flags similar to --with-mysqgl are used at configuration time.
For example:

» —-with-pgsgl=DIR. Enables PostgreSQL support. DIR is the base director of PostgreSQL, which defaults to
usr/local/pgsql

= ——with-oci8=DIR. Enables Oracle support.DIR defaults to the ORACLE HOME environment variable.

= —-with-mssql=DIR. Enables Microsoft SQL Server support. DIR is the base director of the FreeTDS library, which
defaults to /usr/local/freetds

Each of these directives assumes the database is already installed on your system. For additional notes regarding installation and
configuration of PHP with these database types, please see their respective pages in the PHP Manual.

= PostgreSQL information can be found at http://www.php.net/manual/en/ref.oci8.php.
= Oracle 8 information can be found at http://www.php.net/manual/en/ref.oci8.php.

= Microsoft SQL Server information can be found at http://www.php.net/manual/en/ref.oci8.php.

Enabli ng Other Database Support on Windows

To enable support for other databases on Windows, you must activate extensions through the php.ini file. Extensions ship with the
PHP distribution, and are found in the extensions directory within your PHP installation directory.

Activating an extension simply means that you must uncomment the line in php.ini that refers to the extension you wish to use.
There is a section in php.ini that looks something like this:

;Windows Extensions
;Note that MySQL and ODBC support is now built in, so no dll is needed for it.

;extension=php bz2.dll
;extension=php_cpdf.dll
;extension=php crack.dll
;extension=php_curl.dll
;extension=php db.dll
;extension=php_dba.dll
;extension=php_dbase.dll
To uncomment an extension, simply remove the semicolon from the front of the line.
For example:
= extension=php pgsql.dll will activate PostgreSQL support.
= extension=php oci8.dll will activate Oracle 8 support.
= extension=php msssql.dll will activate Microsoft SQL Server support.
After you have activated the appropriate extensions, save the php.ini file and restart your server.

For additional notes regarding installation and configuration of PHP with these database types, please see their respective pages in
the PHP Manual.

= PostgreSQL information can be found at http://www.php.net/manual/en/ref.oci8.php.
= Oracle 8 information can be found at http://www.php.net/manual/en/ref.oci8.php.

= Microsoft SQL Server information can be found at http://www.php.net/manual/en/ref.oci8.php.
Testing Your Installation

The simplest way to test your PHP installation is to create a small test script using the phpinfo () function. This function will
produce a long list of configuration information.

Open a text editor and type the following line:
<? phpinfo(); 2>

Save this file as phpinfo.php and place it in the document root of your Web server-the htdocs subdirectory of your Apache
installation. Access this file via your Web browser; you should see something like what's shown in Figure 1.5.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 1.5: The results of phpinfo () on a Linux/UNIX system.

Getting Installation Help

Should you hit a brick wall during your installation attempt, your first recourse should be to the official PHP site, at

http://www.php.net/ (particularly the annotated manual at http://www.php.net/manual/).
If you still can't find your answer, both the PHP site and the mailing list archives at http://www.php.net/search.php are searchable.

If you still can't figure out what's wrong, you may do the PHP community a service (and possibly get your solution) by explaining the
problem you're having. You can join the PHP mailing lists at http://www.php.net/support.php. Although these lists often have high
volume (and you may not want hundreds of extra e-mails in your inbox) you can learn a lot from them. If you are serious about PHP
scripting, you should certainly subscribe to at least one digest list. Once you've subscribed to the list that matches your concerns,

you might consider posting your problem.
[« rasvisus]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« rrsvisus]
Working with Other Web Servers

It's important to note that Apache is certainly not the only Web server that supports PHP. In fact, you'll be hard-pressed to find one
that doesn't. In the next section you'll find some information on using Microsoft IIS and PHP; there is plenty more information for

additional servers listed in the PHP Manual at http://www.php.net/manual/en/installation.php.
Installing on Microsoft IIS 4 (or Newer)

These instructions are the basics for installing PHP as an ISAPI module with IIS 4 (or newer). First, start the Microsoft Management
Console (also known as the Internet Services Manager on some systems). Right-click on your Web server and select the Properties
tab to get to the starting point. Then do the following:

1. Under ISAPI Filters, add the PHP filter (php4isapi.dil) as a new filter.
2. Under Home Directory, click the Configuration button.

3. Add a new entry in the Application Mappings area, using the path to php4isapi.dil as the value for Executable.
Use .php as the extension for PHP pages.

4. Check the Script Engine checkbox.

5. Close the dialog box.

6. Stop IIS completely, and then start it.
PHP and IIS should now be functioning together.

= [rivieos L]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | [« pruvisus flveixt o]
Chapter 2: Basic PHP Techniques

Before delving directly into PHP scripting, it's important to get a handle on basic HTML techniques. As PHP is embedded within
HTML, or perhaps because the script itself generates marked-up text, knowing the fundamental structure of HTML will help you
avoid potential problems with your script output. For example, if your PHP script is generating a table layout and that table does not
render onscreen, don't jump to the assumption that there's a problem with your PHP code. Most likely, the problem is a missing
table end tag!

An HTML Refresher

Hypertext Markup Language, or HTML, isn't a programming language in the same vein as C++ or Java. Instead, it is, as its name
implies, a markup language. You take a simple ASCII text file and "mark up" that text by putting text in brackets around other text.
Now put that page on a Web server and then request it in your Web browser by typing its URL, such as

. Your Web browser makes a request to the Web server, and the Web server responds
with the file. This transaction essentially says, "Please take the file called yourpage.html that exists on this machine and send it to
my Web browser."

Your Web browser then "renders" the document by taking the file, looking at the text in funny brackets, and following the directions
they contain. These directions tell the Web browser how the information displayed on the page should appear: bold, italicized, blue,
with line breaks, and so on.

This very brief HTML refresher lesson may be unnecessary for you, and if so, feel free to skip it. However, if you've only ever
created Web pages with a WYSIWYG editor or some other tool that eliminates the need to know HTML, please glance at this
information. In many Web applications, you will be coding PHP that will generate HTML, and you'll want to be sure that the HTML
you're generating is correct!

HTML Tags

HTML tags define elements of the document: titles, headings, paragraphs, lists, and so on. Without tags, the Web browser has no
way to determine how to display the elements.

Tags begin with a left-angle bracket (<) and end with a right-angle bracket (>). Tags, which are case insensitive, are usually in
pairs: the opening tag and the closing tag. Here's an example:

= <HTML>. The opening tag, which tells the browser that everything from that point forward is HTML.

= </HTML>. The closing tag, which tells the browser that the HTML document should end at that point. Note the /
before the tag name, defining it as a closing tag.

Certain HTML tags can contain attributes, or additional information included in the tag, such as alignment directives.

<P align=center>This is a centered paragraph.</P>
The attribute align=center tells the browser to center the paragraph.

There are two main types of HTML tags: block-level and text-level. An HTML document contains one or more block-level elements,
or text surrounded by block-level tags.

Block-Level Tags

Block-level tags, such as the logical division tag (<D1v></DI1V>), contain block-level elements. Block-level elements can contain
other block-level elements, as well as text-level elements. For example, a logical division can contain a paragraph, and the
paragraph can contain emphasized text:

<DIV>
<P>This paragraph introduces the next paragraph.</P>
<P>This paragraph contains very useful information.</P>
<P>Both paragraphs are within a logical division.</P>

</DIV>

Following are some examples of block-level tags:

= <H1></H1>, <H2></H2>, <H3></H3>, <H4></H4>, <H5></H5>, <H6></H6>. These are the level heading
tags. The level 1 heading (<H1></H1>) appears more prominently than other level heading tags, followed by <H2>
</H2> and <H3></H3>, through <H6></H6>. Use level heading tags in a hierarchical order: level 2 after level 1,
level 3 after level 2, and so on.

= <BLOCKQUOTE></BLOCKQUOTE>. Used when quoting large blocks of text from another document.

= . The unordered list. Unordered list items, indicated with the <L1> tag, are preceded by a bullet symbol.

= . The ordered list. Ordered list items, indicated with the <1 1> tag, are preceded by a number.

= <TABLE></TABLE>. Create a table when surrounding the <TH></TH> and <TD></TD> text-level tags.

= <TR></TR>. These tags insert a table row within a <TABLE> element. Table rows contain <TH></TH> and <TD>
</TD> elements.

= <TH></TH>. These tags insert a table header cell within a <TR> element.

= <TD></TD>. These tags insert a table data cell within a <TrR> element.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Text-Level Tags

Text-level tags are applied to specific text within block-level elements. For example, a paragraph can contain emphasized text and
a hypertext link, both of which are examples of text-level elements.

<P>This paragraph contains a link to a very interesting story.</P>
Following are some examples of text-level tags:

= . Strongly emphasized text.

= . Displays an image. No closing tag is necessary.

=
. Inserts a line break. No closing tag is necessary.

Creating a Valid HTML Document

HTML documents have a specific structure that should be followed in order to avoid display problems. Understanding the structure
of an HTML document is especially important when integrating it with PHP code, because in some instances PHP code must exist
before certain HTML elements. For example, when starting a session or sending cookies, the PHP code used to create and send
the cookie must exist before any text, line breaks, or other HTML is sent to the browser.

The following steps will create a structurally sound HTML document:

1. Using a document type declaration tag, define the document type according to the HTML standard it follows (3.0,
4.0, and so forth).

2. Open the <HTML> tag, stating that the information that follows is in HTML.

3. Open the <HEAD> tag. This area contains the title of your document, as well as other document information. With
the exception of the document title, none of the information in the <#EAD> element is displayed by the browser.

4. Insert the title of the document within the <TITLE></TITLE> tag pair.

5. Insert any <META> information. Examples of <META> information include document descriptions and expiration
dates.

6. Insert any <LINK> information. Examples of <LINK> information include the e-mail address of the document's
author and the location of the associated style sheet.

7. Insert the closing <HEAD> tag: </HEAD>.

8. Open the <BODY> tag. This area contains all of the information displayed by the browser. Only one <BoDY>
element exists in each document.

9. Insert your content, in HTML format.
10. Insert the closing <BODY> tag: </BODY>.
11. Insert the closing <HTML> tag: </HTML>.

Following these steps produces a valid HTML document, something like this:
<!DOCTYPE HTML PUBLIC "-//W3C//DID HIML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE>Your Title</TITLE>

<META NAME="description" CONTENT="My first document">
<LINK REV="made" HREF="mailto:you@yourserver.com">
</HEAD>

<BODY>

<P>All of your content goes here!</P>

</BODY>

</HTML>

Understanding valid HTML document structure is the first step in creating error-free PHP scripts.

The next two sections provide a quick overview of HTML tables and forms.

Understanding HTML Tables

HTML tables follow a structure as strict as the overall HTML document structure. One miscue, such as a missing closing tag, can
cause great debugging headaches. Many programmers have examined their code for hours, calling in reinforcements to help them
debug the mystery of the non-displaying pages, only to discover that they simply failed to insert the </ TABLE> tag to close the
table. This is known as "Smack the Forehead" syndrome. Repeat the mantra "Close all table tags," and you probably won't suffer
from "Smack the Forehead" syndrome.

A simple table contains one row and two columns. The row starts with a <TrR> tag and ends with a </ TRrR> closing tag. Within the
<TR> tags are the <TD> opening tag, followed by the data for that cells and the </ TD> closing tag. Each <Tb></TD> tag pair
represents a column, so if you have two columns, you'll need two tag pairs. For example:

<TABLE>
<TR>
<TD>Cell 1</TD>
<TD>Cell 2</TD>
</TR>

</TABLE>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The browser will display this code as follows:
Cell 1 Cell 2

To place a column heading above each column, use the <TH></TH> tag pair. For example:

<TABLE>
<TR>
<TH>Heading 1</TH>
<TH>Heading 2</TH>
</TR>
<TR>
<TD>Cell 1</TD>
<TD>Cell 2</TD>
</TR>
</TABLE>

Table headings are usually displayed in bold text. The browser will display this code like this:

Heading 1 Heading 2
Cell 1 Cell 2

HTML tables can be as complex or as simple as you need them to be, and can even be nested within one another. The more
complex the table code, the greater the chance for rendering errors. If you remember to close all open table tags, including row and
data tags, the likelihood of errors will certainly decrease.

Understanding HTML Forms

This section explains the display and internal elements of an HTML form. Later in this chapter you'll learn how to make functional
forms using PHP scripts; but first, the basics. Committing form basics to memory will alleviate script-debugging headaches, just like
remembering to close all table tags!

Forms begin with an opening <ForRM> tag and end with the closing </ForM> tag. The form's method and action are defined in the
opening <FORM> tag, like this:

<FORM METHOD="POST" ACTION="go.php">
Two methods exist for sending forms.

= GET. The default method. Sends input to a script via a URL. The GET method has a limit to the amount of data that
can be sent, so if you plan to send a large amount, use POST.

= POST. Sends input in the body of the submission, allowing for larger form submissions.
The action is the name of the script receiving the input.
After defining the method and action, you need a way to get data to your script: input elements.

There are three input element tags-<INPUT>, <TEXTAREA>, and <SELECT>-and there are several types within those elements.
Following are the common types:

= Text fields. An input field with a size indicated in the s1zE attribute and a maximum length indicated in the
MAXLENGTH attribute. Here's a 20-character text field named "Fieldl" with a character limit of 50 characters:

<input type="text" name="Fieldl" size-20 maxlength=50>

Password fields. Similar to text fields, except each typed character is displayed as an asterisk (*). Here's an
example of a 20-character password field named "Pass1" with a character limit of 50 characters:

<input type="password" name="Passl" size=20 maxlength=50>

Radio buttons. A radio button exists in a group. Each member of the group has the same name but a different
value. Only one member of the group can be checked-for example, a button with the value "yes" or a button with the
value "no." Additionally, you can specify that one of the values be checked by default. Here's an example of a radio
button group named "like_coffee", with "yes" and "no" as available answers:

<input type="radio" name="like coffee" value="yes" checked> yes

<input type="radio" name="like_coffee" value="no"> no

Checkboxes. Like radio buttons, checkboxes exist in a group. Each member of the group has the same name but a
different value. However, multiple checkboxes in each group can be selected. Additionally, you can specify that one
or more of the values be checked by default. Here's an example of a checkbox group named "drink", with "coffee",

"tea", "water", and "soda" as available answers:

<input type="checkbox" name="drink[]" wvalue="coffee"> coffee
<input type="checkbox" name="drink[]" wvalue="tea"> tea
<input type="checkbox" name="drink[]" value="water"> water
<input type="checkbox" name="drink[]" value="soda"> soda

The use of brackets ([1) after "drink" indicates that the responses are to be placed in an array. You'll learn more
about retrieving information from forms later in this chapter.

Text areas. These are displayed as a box with a width indicated by the number of coLs and a height indicated by
the number of rRows. Text areas must have a closing </TEXTAREA> tag. Here's an example of a text area named
"message" with a width of 20 characters and a height of five characters:

<textarea name="message" cols=20 rows=5></textarea>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= List boxes/drop-down list boxes. These input types begin with the <seLECT> tag, contain one or more <OPTION>
tags, and must end with the closing </SELECT> tag. The s1zE attribute indicates the number of <opTION>
elements displayed. If s1zE=1, a drop-down list will appear; otherwise, the user will see a scrollable list box. If the
MULTIPLE attribute is present within a list box, then the user can select more than one <opT10N> from the list.
<OPTION> tags have unique values. The default <opTION> tag is set using the SELECTED attribute. Here's a drop-
down list named "year", with "2003" as the default selection from the options 2003, 2004, and 2005:
<select name='year" size="1">
<option value="2003" selected>2003</option>
<option value="2004">2004</option>
<option value="2005">2005</option>
</select>

When you create forms, the NAME attributes of your input elements must all be unique. These element names become the variables
interpreted by your scripts, which you'll learn about later in this chapter. So, if you have a field called "my_name" with a value of
"Joe", and you have another field called "my_name" with a value of "coffee", then the script will overwrite the former value with the
latter. From that point forward, according to the script, your name would be "coffee" and not "Joe".

The final element of a form is crucial-it's the button that submits the form to the script! Submit buttons can be the default gray 3D
form buttons with text, or you can use images.

For a gray 3D button that displays SUBMIT, use

<INPUT TYPE="submit" NAME="submitme" VALUE="SUBMIT">

The vALUE attribute contains the text that appears on the face of the button. If you wanted this button to say "Send Form", the code
would look like this:

<INPUT TYPE="submit" NAME="submitme" VALUE="Send Form">

To use an image as a submission button, use
<INPUT TYPE="image" NAME="submitme" SRC="button image.gif" alt="Submit Me"
border=0>

When the user clicks the form submission button, the input field names and their associated values are sent to the script specified
as the form's ACTION.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lib | [« pusvisu]
Understanding How PHP Is Parsed

Previously, you were reminded of how a Web server responds to a request for a static HTML file. The following steps describe the
request-response sequence for a PHP file:

1. The Web browser requests a document with a .php extension (or any extension set to be treated as a PHP file).

2. The Web server sends the request on to the PHP parser, which is either built into the Web server binary or exists
separately as a filter or CGl executable.

3. The PHP parser scans the requested file for PHP code.

4. When the PHP parser finds PHP code, it executes that code and places the resulting output (if any) into the place
in the file formerly occupied by the code.

5. This new output file is sent back to the Web server.
6. The Web server sends the output file along to the Web browser.
7. The Web browser displays the output.

Because the PHP code is parsed by the server, this method of code execution is called server-side. When code is executed by the
browser, such as with JavaScript, it is called client-side.

Code Cohabitation and PHP Tags

To combine PHP code with HTML, the PHP code must be escaped, or set apart, from the HTML. The following method is the
default configuration of the PHP engine:

<?php

// PHP code goes here.

?>

The PHP engine will consider anything within the <2php opening tag and the 2> closing tag as PHP code. You can also escape
your PHP code by using the <2 opening tag and the 2> closing tag, or by using the <SCRIPT Language=php> opening tag and
the </scRIPT> closing tag.

Now it's time to write that first script. Your first PHP script will display "Hello World! I'm using PHP!" in the browser window.

First, open your favorite text editor and create a simple text file called first.php. In this text file, type the following code:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>My First PHP Script</TITLE>
</HEAD>
<BODY>
<?php

echo "<P>Hello World! I'm using PHP!</P>\n";
2>
</BODY>
</HTML>

Save this file and place it in the document root of your Web server. Now access it with your browser at its URL,
http://127.0.0.1/first.php. In your browser window, you should see this:

Hello World! I'm using PHP!

Note If your server has an actual machine and domain name, such as www.yourcompany.com, feel free to use it in place of
127.0.0.1 (which is the default localhost).

If you use your browser to view the source of the document, you should just see this:
<!DOCTYPE HTML PUBLIC "-//W3C//DID HIML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>My First PHP Script</TITLE>
</HEAD>
<BODY>
<P>Hello World! I'm using PHP!</P>
</BODY>
</HTML>

As the PHP code was rendered by the PHP parser, all that remains visible is the HTML output.

Now, take a look at the PHP code used in the script. It contains three elements: the command (echo), the string (<P>Hello
World. . .), and the instruction terminator (;).

Familiarize yourself now with echo, because it will likely be your most often-used command. The echo () function is used to output
information-in this case, to print <p>Hello World! I'm using PHP!</P> in the HTML file. The instruction terminator is such
an important concept that it warrants its own section.

The Importance of the Instruction Terminator

The instruction terminator, also known as the semicolon, is absolutely required. If you do not end your command with a semicolon,
the PHP engine will not parse your PHP code properly, and ugly errors will occur. For example, this code:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php
echo "<P>Hello World! I'm using PHP!</P>\n"
echo "<P>This is another message.</P>";
?>
produces this nasty error:
Parse error: parse error, expecting "," or ";" in
/path/to/your/file/filename.php on line 9

Avoid this error at all costs-remember to terminate commands with a semicolon!

Escaping Your Code

Right up there with remembering to end your commands with semicolons is remembering to escape elements like quotation marks.
When you use quotation marks inside other quotation marks, the inner pairs must be delineated from the outside pair using the
escape (\) character (also known as a backslash). For example, the following code will produce another parse error, because the
term "cool" is surrounded by double quotes, within a double-quoted string:

<?php

echo "<P>I think this is really "cool"!</P>";
?>

This code should instead look like this:

<?php
echo "<P>I think this is really \"cool\"!</P>";
?>

Now that the inner quotation marks are escaped, the PHP parser will skip right over them because it knows that these characters
should just be printed and that they have no other meaning. The same concept holds true for single-quoted elements within other
single-quoted strings-escape the inner element. Single-quoted strings within double-quoted strings, and vice versa, require no
escaping of characters.

Commenting Your Code

Whether you're adding comments to static HTML documents or to PHP scripts, code-commenting is a good habit to cultivate.
Comments will help you, and others who might have to edit your documents later, get a handle on what's going on in your
documents.

HTML comments are ignored by the browser and are contained within <! -- and --> tags. For example, the following comment
reminds you that the code following it contains your logo graphic:

<!-- logo graphic goes here -->

Similarly, PHP comments are ignored by the parsing engine. PHP comments are usually preceded by double slashes, like this:

// this is a comment in PHP code

Other types of commenting can be used in PHP files, as in the following:
This is shell-style style comment

and

/* This begins a C-style comment that runs
onto two lines */

HTML and PHP comments are used extensively throughout this book to explain blocks of code. Get used to reading comments,
and try to pick up the habit of using them. Writing clean, bug-free code, with plenty of comments and white space, will make you
popular among your developer peers because they won't have to work extra hard to figure out what your code is trying to do!

Now that you have a handle on how PHP documents are created and used, the next section will introduce you to the PHP variables

and operators that will become integral parts of your scripts.
[« rasvisis]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lib | [« pusvisu]
PHP Variables and Operators

Very simply put, variables represent data. If you want your script to hold onto a specific piece of information, first create a variable
and then assign a literal value to it using the equal sign (=).

For example, the variable username holds the literal value "joe" when appearing in your script as

Susername = "joe";

Variable names begin with the dollar sign ($) and are followed by a concise, meaningful name. The variable name cannot begin
with a numeric character, but it can contain numbers and the underscore character (_). Additionally, variable names are case
sensitive, meaning that sYOURVAR and $yourvar are two different variables.

Creating meaningful variable names is another way to lessen headaches while coding. If your script deals with name and password
values, don't create a variable called $n for the name and $p for the password-those are not meaningful names. If you pick up that
script weeks later, you might think that $n is the variable for "number" rather than "name," and that $p stands for "page" rather than
"password."

This section describes several kinds of variables. Some variables change values as your script runs, and others are assigned
values outside of your PHP script-such as HTML forms.

Variables and Value Types

You will create two main types of variables in your PHP code: scalar varriables and arrays. Scalar variables contain only one value
at a time, while arrays contain a list of values or another array (thus producing a multi-dimensional array). Within variables, their
associated values can be of different types, such as the following:

= Integers. Whole numbers (numbers without decimals). Examples are 1, 345, and 9922786. You can also use octal
and hexadecimal notation: the octal 0123 is decimal 83 and the hexadecimal 0x12 is decimal 18.

= Floating-point numbers ("floats" or "doubles"). Numbers with decimals. Examples are 1.5, 87.3446, and
0.88889992.

= Strings. Text and/or numeric information, specified within double quotes (" ") or single quotes (' ').

As you begin your PHP script, plan your variables and variable names carefully, and use comments in your code to remind you of
the assignments you've made.

Local and Global Variables

Variables can be local or global, the difference having to do with their definition and use by the programmer, as well as where they
appear in the context of the scripts you're creating. The variables described in the previous section-and in the majority of this book-
are local variables.

By default, PHP variables can be used only by the script they live within. Scripts cannot magically reach inside other scripts and use
the variables created and defined within them-unless you purposely share them with other scripts. For example, when creating your
own functions (blocks of reusable code that perform a particular task), you define the shared variables as global-that is, able to be
accessed by other scripts and functions that need them.

You will learn more about creating your own functions, and about using global as well as local variables, later in this chapter. For

now, just understand that there are two different variable scopes-local and global-that will come into play as you write more
advanced scripts.

Pre-defined Variables

In all PHP scripts, a set of pre-defined variables is in use. You may have seen some of these variables in the output of the
phpinfo () function if you scrolled down and read through the entire results page. Some of these pre-defined variable are also
called superglobals, essentially meaning that they are always present and available in your scripts.

Study the following list of superglobals, as they will be used throughout this book. Each of these superglobals is actually an array of
other variables. Don't worry about fully understanding this concept now, as it will be explained as you move along through the book.

= $_GET. Any variables provided to a script through the GET method.

= $_POST. Any variables provided to a script through the PosT method.

= $_COOKIE. Any variables provided to a script through a cookie.

= $_FILES. Any variables provided to a script through file uploads.

= $_ENV. Any variables provided to a script as part of the server environment.
= $ SESSION. Any variables that are currently registered in a session.

Note If you are using a version of PHP earlier than 4.1.x and cannot upgrade to a newer version of PHP (as described in
Chapter 1), you must adjust the names of these variables when following the scripts in this book. The old names are
$HTTP_GET_ VARS, $HTTP_POST VARS, SHTTP_COOKIE VARS, $HTTP POST FILES, SHTTP_ ENV_VARS, and
SHTTP_SESSION_VARS.

Using Constants

A constant is an identifier for a value that cannot change during the course of a script. Once a constant has a value, that value

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

remains throughout its execution lifetime. Constants can be user-defined, or you can use some of the predefined constants that
PHP always has available. Unlike simple variables, constants do not have a dollar sign before their name, and they are usually
uppercase, in order to distinguish them from scalar variables.

The function used to define a constant is called define (), and it requires the name of the constant and the value you want to give
it. In the following code snippet, you define a constant called MyconsTANT with a value of "This is a test of defining constants.”
Then the echo command will echo the value of the constant to the screen.

<?

define ("MYCONSTANT", "This is a test of defining constants.");

echo MYCONSTANT;

2>

The output of this script is just
This is a test of defining constants.

There are some common pre-defined constants in PHP, including:
= _FILE_ . The name of the script file being parsed.
= __LINE__. The number of the line in the script being parsed.
= PHP_VERSION. The version of PHP in use.
= PHP_OS. The operating system using PHP.

You can create a script to test them all out.

<?
echo "
This file is "._ _FILE__;
echo "
This is line number ". LINE ;

echo "
I am using ".PHP_VERSION;
echo "
This test is being run on ".PHP_OS;
?>

Save the file with the name constants.php and place it on your Web server. When you access this file, you should see the strings
you typed, plus the values of the constants. For example:

This file is /usr/local/bin/apache/htdocs/constants.php

This is line number 4

I am using 4.3.0

This test is being run on Linux

Operator Types

Values are assigned to variables using different types of operators. A list of common operators and operator types follows. For a
complete list, see the "Operators" section in Appendix A, "Essential PHP Language Reference."

Assignment Operators

You've already seen an assignment operator at work: the equal sign (=) in Susername = "joe"; is the basic assignment
operator.

Note The single equal sign does not mean "equal to." Instead, the single equal sign always means "is assigned to." The
double equal sign ("==") means "equal to." Commit this to memory to alleviate debugging headaches.

Other assignment operators include +=, -=, and .=.
Sex += 1; // Assigns the value of ($ex + 1) to S$ex.
// If Sex = 2, then the value of ($ex += 1) is 3.
Sex -= 1; // Assigns the value of ($ex - 1) to S$ex.
// If $ex = 2, then the value of ($ex -= 1) is 1.
Sex .= "coffee"; // Concatenates (adds to) a string. If $ex = "I like "
// then the value of ($ex .= "coffee") is "I like coffee".

Arithmetic Operators

Even if you've never written a line of code in your life, you already know most of the arithmetic operators-they're basic math!

+ Addition

- Subtraction
* Multiplication

/ Division

% Modulus, or "remainder"

In the following examples, sa = 5and $b = 4.
$c - Sa + S$b; // $c =9

$c - Sa - $b; // $c =1
$Sc - Sa * Sb; // $c = 20
$Sc - Sa / S$b; // $c = 1.25
$c - Sa % $b; // $c =1

You don't have to limit mathematical operations to variables-you can use hard-coded numbers as well. For example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$c = 3 + 4; // $c =1
Sc = 8 * 4; // $c = 32
$c = Sa * 10; // $c = 50

Comparison Operators

It should come as no surprise that comparison operators compare two values. As with the arithmetic operators, you already know
most of the comparison operators.

== Equalto

I= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

In the following examples, $a = 5and $b = 4.
= |s $a == $b? No; 5 does not equal 4. The comparison is FALSE.
=mls sa != $b2 Yes; 5 does not equal 4. The comparison is TRUE.
= ls $a > $b2 Yes; 5is greater than 4. The comparison is TRUE.
= ls $a < $b2 No; 5is not less than 4. The comparison is FALSE.
= ls $a >= $b2 Yes; although 5 does not equal 4, 5 is greater than 4. The comparison is TRUE.
= |s $a <= $b? No; 5 does not equal 4, and 5 is not less than 4. The comparison is FALSE.

Comparison operators are often used in conjunction with control statements (1f...else, while)to perform a specific task
based on the validity of expressions. For example, if you are writing a number-guessing program and you want your script to print
"That's the right number!" when a successful guess is made, you might include the following code:
// secret number 5
if ($guess == "5") {

echo "That's the right number!";
} else {

echo "Sorry. Bad guess.";

}

Logical Operators

Logical operators, like comparison operators, are often found within 1 f. . .else and while control statements. These operators
allow your script to determine the status of conditions and, in the context of your i . . .else or while statements, execute certain
code based on which conditions are true and which are false.

A common logical operator is | |, meaning OR. The following example shows the evaluation of two variables and the result of the
statement. In this example, | really want to drink coffee. | have two options, $drinkl and $drink2. If either of my options is
"coffee", | will be happy. Otherwise, I'll still need caffeine.

Sdrinkl = "coffee";
$drink2 = "milk";
if (($drinkl == "coffee") | ($drink2 == "coffee")) {
echo "I'm happy!";
} else {

echo "I still need caffeine.";

}

In this example, because the value of the $drink1 variable is "coffee", the logical OR comparison of $drinkl and $drink2 is
TRUE, and the script returns "I'm happy!"

Other logical