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Set Theory

1.1 Basic Definitions

A set is a collection of things called elements of the set. For example, the set of
integers, the collection of signed whole numbers such as 1,2,-4, etc. This set whose
existence will be assumed is denoted by Z. Other sets could be the set of people in
a family or the set of donuts in a display case at the store. Sometimes parentheses,
{ } specify a set by listing the things which are in the set between the parentheses.
For example the set of integers between -1 and 2, including these numbers could
be denoted as {−1, 0, 1, 2}. The notation signifying x is an element of a set S, is
written as x ∈ S. Thus, 1 ∈ {−1, 0, 1, 2, 3}. Here are some axioms about sets.
Axioms are statements which are accepted, not proved.

1. Two sets are equal if and only if they have the same elements.

2. To every set, A, and to every condition S (x) there corresponds a set, B, whose
elements are exactly those elements x of A for which S (x) holds.

3. For every collection of sets there exists a set that contains all the elements
that belong to at least one set of the given collection.

4. The Cartesian product of a nonempty family of nonempty sets is nonempty.

5. If A is a set there exists a set, P (A) such that P (A) is the set of all subsets
of A. This is called the power set.

These axioms are referred to as the axiom of extension, axiom of specification,
axiom of unions, axiom of choice, and axiom of powers respectively.

It seems fairly clear you should want to believe in the axiom of extension. It is
merely saying, for example, that {1, 2, 3} = {2, 3, 1} since these two sets have the
same elements in them. Similarly, it would seem you should be able to specify a
new set from a given set using some “condition” which can be used as a test to
determine whether the element in question is in the set. For example, the set of all
integers which are multiples of 2. This set could be specified as follows.

{x ∈ Z : x = 2y for some y ∈ Z} .

11



12 SET THEORY

In this notation, the colon is read as “such that” and in this case the condition is
being a multiple of 2.

Another example of political interest, could be the set of all judges who are not
judicial activists. I think you can see this last is not a very precise condition since
there is no way to determine to everyone’s satisfaction whether a given judge is an
activist. Also, just because something is grammatically correct does not mean it
makes any sense. For example consider the following nonsense.

S = {x ∈ set of dogs : it is colder in the mountains than in the winter} .

So what is a condition?
We will leave these sorts of considerations and assume our conditions make sense.

The axiom of unions states that for any collection of sets, there is a set consisting
of all the elements in each of the sets in the collection. Of course this is also open to
further consideration. What is a collection? Maybe it would be better to say “set
of sets” or, given a set whose elements are sets there exists a set whose elements
consist of exactly those things which are elements of at least one of these sets. If S
is such a set whose elements are sets,

∪{A : A ∈ S} or ∪ S

signify this union.
Something is in the Cartesian product of a set or “family” of sets if it consists

of a single thing taken from each set in the family. Thus (1, 2, 3) ∈ {1, 4, .2} ×
{1, 2, 7}×{4, 3, 7, 9} because it consists of exactly one element from each of the sets
which are separated by ×. Also, this is the notation for the Cartesian product of
finitely many sets. If S is a set whose elements are sets,

∏

A∈S
A

signifies the Cartesian product.
The Cartesian product is the set of choice functions, a choice function being a

function which selects exactly one element of each set of S. You may think the axiom
of choice, stating that the Cartesian product of a nonempty family of nonempty sets
is nonempty, is innocuous but there was a time when many mathematicians were
ready to throw it out because it implies things which are very hard to believe, things
which never happen without the axiom of choice.

A is a subset of B, written A ⊆ B, if every element of A is also an element of
B. This can also be written as B ⊇ A. A is a proper subset of B, written A ⊂ B
or B ⊃ A if A is a subset of B but A is not equal to B, A 6= B. A ∩B denotes the
intersection of the two sets, A and B and it means the set of elements of A which
are also elements of B. The axiom of specification shows this is a set. The empty
set is the set which has no elements in it, denoted as ∅. A ∪ B denotes the union
of the two sets, A and B and it means the set of all elements which are in either of
the sets. It is a set because of the axiom of unions.
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The complement of a set, (the set of things which are not in the given set ) must
be taken with respect to a given set called the universal set which is a set which
contains the one whose complement is being taken. Thus, the complement of A,
denoted as AC ( or more precisely as X \A) is a set obtained from using the axiom
of specification to write

AC ≡ {x ∈ X : x /∈ A}
The symbol /∈ means: “is not an element of”. Note the axiom of specification takes
place relative to a given set. Without this universal set it makes no sense to use
the axiom of specification to obtain the complement.

Words such as “all” or “there exists” are called quantifiers and they must be
understood relative to some given set. For example, the set of all integers larger
than 3. Or there exists an integer larger than 7. Such statements have to do with a
given set, in this case the integers. Failure to have a reference set when quantifiers
are used turns out to be illogical even though such usage may be grammatically
correct. Quantifiers are used often enough that there are symbols for them. The
symbol ∀ is read as “for all” or “for every” and the symbol ∃ is read as “there
exists”. Thus ∀∀∃∃ could mean for every upside down A there exists a backwards
E.

DeMorgan’s laws are very useful in mathematics. Let S be a set of sets each of
which is contained in some universal set, U . Then

∪{
AC : A ∈ S}

= (∩{A : A ∈ S})C

and
∩{

AC : A ∈ S}
= (∪{A : A ∈ S})C

.

These laws follow directly from the definitions. Also following directly from the
definitions are:

Let S be a set of sets then

B ∪ ∪{A : A ∈ S} = ∪{B ∪A : A ∈ S} .

and: Let S be a set of sets show

B ∩ ∪{A : A ∈ S} = ∪{B ∩A : A ∈ S} .

Unfortunately, there is no single universal set which can be used for all sets.
Here is why: Suppose there were. Call it S. Then you could consider A the set
of all elements of S which are not elements of themselves, this from the axiom of
specification. If A is an element of itself, then it fails to qualify for inclusion in A.
Therefore, it must not be an element of itself. However, if this is so, it qualifies for
inclusion in A so it is an element of itself and so this can’t be true either. Thus
the most basic of conditions you could imagine, that of being an element of, is
meaningless and so allowing such a set causes the whole theory to be meaningless.
The solution is to not allow a universal set. As mentioned by Halmos in Naive
set theory, “Nothing contains everything”. Always beware of statements involving
quantifiers wherever they occur, even this one.
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1.2 The Schroder Bernstein Theorem

It is very important to be able to compare the size of sets in a rational way. The
most useful theorem in this context is the Schroder Bernstein theorem which is the
main result to be presented in this section. The Cartesian product is discussed
above. The next definition reviews this and defines the concept of a function.

Definition 1.1 Let X and Y be sets.

X × Y ≡ {(x, y) : x ∈ X and y ∈ Y }
A relation is defined to be a subset of X × Y . A function, f, also called a mapping,
is a relation which has the property that if (x, y) and (x, y1) are both elements of
the f , then y = y1. The domain of f is defined as

D (f) ≡ {x : (x, y) ∈ f} ,

written as f : D (f) → Y .

It is probably safe to say that most people do not think of functions as a type
of relation which is a subset of the Cartesian product of two sets. A function is like
a machine which takes inputs, x and makes them into a unique output, f (x). Of
course, that is what the above definition says with more precision. An ordered pair,
(x, y) which is an element of the function or mapping has an input, x and a unique
output, y,denoted as f (x) while the name of the function is f . “mapping” is often
a noun meaning function. However, it also is a verb as in “f is mapping A to B
”. That which a function is thought of as doing is also referred to using the word
“maps” as in: f maps X to Y . However, a set of functions may be called a set of
maps so this word might also be used as the plural of a noun. There is no help for
it. You just have to suffer with this nonsense.

The following theorem which is interesting for its own sake will be used to prove
the Schroder Bernstein theorem.

Theorem 1.2 Let f : X → Y and g : Y → X be two functions. Then there exist
sets A, B,C, D, such that

A ∪B = X, C ∪D = Y, A ∩B = ∅, C ∩D = ∅,
f (A) = C, g (D) = B.

The following picture illustrates the conclusion of this theorem.

B = g(D)

A -

¾ D

C = f(A)

YX

f

g
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Proof: Consider the empty set, ∅ ⊆ X. If y ∈ Y \ f (∅), then g (y) /∈ ∅ because
∅ has no elements. Also, if A,B, C, and D are as described above, A also would
have this same property that the empty set has. However, A is probably larger.
Therefore, say A0 ⊆ X satisfies P if whenever y ∈ Y \ f (A0) , g (y) /∈ A0.

A ≡ {A0 ⊆ X : A0 satisfies P}.

Let A = ∪A. If y ∈ Y \ f (A), then for each A0 ∈ A, y ∈ Y \ f (A0) and so
g (y) /∈ A0. Since g (y) /∈ A0 for all A0 ∈ A, it follows g (y) /∈ A. Hence A satisfies
P and is the largest subset of X which does so. Now define

C ≡ f (A) , D ≡ Y \ C, B ≡ X \A.

It only remains to verify that g (D) = B.
Suppose x ∈ B = X \ A. Then A ∪ {x} does not satisfy P and so there exists

y ∈ Y \ f (A ∪ {x}) ⊆ D such that g (y) ∈ A ∪ {x} . But y /∈ f (A) and so since A
satisfies P, it follows g (y) /∈ A. Hence g (y) = x and so x ∈ g (D) and this proves
the theorem.

Theorem 1.3 (Schroder Bernstein) If f : X → Y and g : Y → X are one to one,
then there exists h : X → Y which is one to one and onto.

Proof: Let A,B, C,D be the sets of Theorem1.2 and define

h (x) ≡
{

f (x) if x ∈ A
g−1 (x) if x ∈ B

Then h is the desired one to one and onto mapping.
Recall that the Cartesian product may be considered as the collection of choice

functions.

Definition 1.4 Let I be a set and let Xi be a set for each i ∈ I. f is a choice
function written as

f ∈
∏

i∈I

Xi

if f (i) ∈ Xi for each i ∈ I.

The axiom of choice says that if Xi 6= ∅ for each i ∈ I, for I a set, then
∏

i∈I

Xi 6= ∅.

Sometimes the two functions, f and g are onto but not one to one. It turns out
that with the axiom of choice, a similar conclusion to the above may be obtained.

Corollary 1.5 If f : X → Y is onto and g : Y → X is onto, then there exists
h : X → Y which is one to one and onto.
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Proof: For each y ∈ Y , f−1 (y) ≡ {x ∈ X : f (x) = y} 6= ∅. Therefore, by the
axiom of choice, there exists f−1

0 ∈ ∏
y∈Y f−1 (y) which is the same as saying that

for each y ∈ Y , f−1
0 (y) ∈ f−1 (y). Similarly, there exists g−1

0 (x) ∈ g−1 (x) for all
x ∈ X. Then f−1

0 is one to one because if f−1
0 (y1) = f−1

0 (y2), then

y1 = f
(
f−1
0 (y1)

)
= f

(
f−1
0 (y2)

)
= y2.

Similarly g−1
0 is one to one. Therefore, by the Schroder Bernstein theorem, there

exists h : X → Y which is one to one and onto.

Definition 1.6 A set S, is finite if there exists a natural number n and a map θ
which maps {1, · · ·, n} one to one and onto S. S is infinite if it is not finite. A
set S, is called countable if there exists a map θ mapping N one to one and onto
S.(When θ maps a set A to a set B, this will be written as θ : A → B in the future.)
Here N ≡ {1, 2, · · ·}, the natural numbers. S is at most countable if there exists a
map θ : N→S which is onto.

The property of being at most countable is often referred to as being countable
because the question of interest is normally whether one can list all elements of the
set, designating a first, second, third etc. in such a way as to give each element of
the set a natural number. The possibility that a single element of the set may be
counted more than once is often not important.

Theorem 1.7 If X and Y are both at most countable, then X × Y is also at most
countable. If either X or Y is countable, then X × Y is also countable.

Proof: It is given that there exists a mapping η : N→ X which is onto. Define
η (i) ≡ xi and consider X as the set {x1, x2, x3, · · ·}. Similarly, consider Y as the
set {y1, y2, y3, · · ·}. It follows the elements of X × Y are included in the following
rectangular array.

(x1, y1) (x1, y2) (x1, y3) · · · ← Those which have x1 in first slot.
(x2, y1) (x2, y2) (x2, y3) · · · ← Those which have x2 in first slot.
(x3, y1) (x3, y2) (x3, y3) · · · ← Those which have x3 in first slot.

...
...

...
...

.

Follow a path through this array as follows.

(x1, y1) → (x1, y2) (x1, y3) →
↙ ↗

(x2, y1) (x2, y2)
↓ ↗

(x3, y1)

Thus the first element of X ×Y is (x1, y1), the second element of X ×Y is (x1, y2),
the third element of X × Y is (x2, y1) etc. This assigns a number from N to each
element of X × Y. Thus X × Y is at most countable.
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It remains to show the last claim. Suppose without loss of generality that X
is countable. Then there exists α : N → X which is one to one and onto. Let
β : X × Y → N be defined by β ((x, y)) ≡ α−1 (x). Thus β is onto N. By the first
part there exists a function from N onto X ×Y . Therefore, by Corollary 1.5, there
exists a one to one and onto mapping from X × Y to N. This proves the theorem.

Theorem 1.8 If X and Y are at most countable, then X ∪Y is at most countable.
If either X or Y are countable, then X ∪ Y is countable.

Proof: As in the preceding theorem, X = {x1, x2, x3, · · ·} and Y = {y1, y2, y3, · · ·}.
Consider the following array consisting of X ∪ Y and path through it.

x1 → x2 x3 →
↙ ↗

y1 → y2

Thus the first element of X ∪ Y is x1, the second is x2 the third is y1 the fourth is
y2 etc.

Consider the second claim. By the first part, there is a map from N onto X×Y .
Suppose without loss of generality that X is countable and α : N→ X is one to one
and onto. Then define β (y) ≡ 1, for all y ∈ Y ,and β (x) ≡ α−1 (x). Thus, β maps
X × Y onto N and this shows there exist two onto maps, one mapping X ∪ Y onto
N and the other mapping N onto X ∪ Y . Then Corollary 1.5 yields the conclusion.
This proves the theorem.

1.3 Equivalence Relations

There are many ways to compare elements of a set other than to say two elements
are equal or the same. For example, in the set of people let two people be equiv-
alent if they have the same weight. This would not be saying they were the same
person, just that they weighed the same. Often such relations involve considering
one characteristic of the elements of a set and then saying the two elements are
equivalent if they are the same as far as the given characteristic is concerned.

Definition 1.9 Let S be a set. ∼ is an equivalence relation on S if it satisfies the
following axioms.

1. x ∼ x for all x ∈ S. (Reflexive)

2. If x ∼ y then y ∼ x. (Symmetric)

3. If x ∼ y and y ∼ z, then x ∼ z. (Transitive)

Definition 1.10 [x] denotes the set of all elements of S which are equivalent to x
and [x] is called the equivalence class determined by x or just the equivalence class
of x.
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With the above definition one can prove the following simple theorem.

Theorem 1.11 Let ∼ be an equivalence class defined on a set, S and let H denote
the set of equivalence classes. Then if [x] and [y] are two of these equivalence classes,
either x ∼ y and [x] = [y] or it is not true that x ∼ y and [x] ∩ [y] = ∅.

1.4 Partially Ordered Sets

Definition 1.12 Let F be a nonempty set. F is called a partially ordered set if
there is a relation, denoted here by ≤, such that

x ≤ x for all x ∈ F .

If x ≤ y and y ≤ z then x ≤ z.

C ⊆ F is said to be a chain if every two elements of C are related. This means that
if x, y ∈ C, then either x ≤ y or y ≤ x. Sometimes a chain is called a totally ordered
set. C is said to be a maximal chain if whenever D is a chain containing C, D = C.

The most common example of a partially ordered set is the power set of a given
set with ⊆ being the relation. It is also helpful to visualize partially ordered sets
as trees. Two points on the tree are related if they are on the same branch of
the tree and one is higher than the other. Thus two points on different branches
would not be related although they might both be larger than some point on the
trunk. You might think of many other things which are best considered as partially
ordered sets. Think of food for example. You might find it difficult to determine
which of two favorite pies you like better although you may be able to say very
easily that you would prefer either pie to a dish of lard topped with whipped cream
and mustard. The following theorem is equivalent to the axiom of choice. For a
discussion of this, see the appendix on the subject.

Theorem 1.13 (Hausdorff Maximal Principle) Let F be a nonempty partially
ordered set. Then there exists a maximal chain.



The Riemann Stieltjes
Integral

The integral originated in attempts to find areas of various shapes and the ideas
involved in finding integrals are much older than the ideas related to finding deriva-
tives. In fact, Archimedes1 was finding areas of various curved shapes about 250
B.C. using the main ideas of the integral. What is presented here is a generaliza-
tion of these ideas. The main interest is in the Riemann integral but if it is easy to
generalize to the so called Stieltjes integral in which the length of an interval, [x, y]
is replaced with an expression of the form F (y) − F (x) where F is an increasing
function, then the generalization is given. However, there is much more that can
be written about Stieltjes integrals than what is presented here. A good source for
this is the book by Apostol, [3].

2.1 Upper And Lower Riemann Stieltjes Sums

The Riemann integral pertains to bounded functions which are defined on a bounded
interval. Let [a, b] be a closed interval. A set of points in [a, b], {x0, · · ·, xn} is a
partition if

a = x0 < x1 < · · · < xn = b.

Such partitions are denoted by P or Q. For f a bounded function defined on [a, b] ,
let

Mi (f) ≡ sup{f (x) : x ∈ [xi−1, xi]},
mi (f) ≡ inf{f (x) : x ∈ [xi−1, xi]}.

1Archimedes 287-212 B.C. found areas of curved regions by stuffing them with simple shapes
which he knew the area of and taking a limit. He also made fundamental contributions to physics.
The story is told about how he determined that a gold smith had cheated the king by giving him
a crown which was not solid gold as had been claimed. He did this by finding the amount of water
displaced by the crown and comparing with the amount of water it should have displaced if it had
been solid gold.

19
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Definition 2.1 Let F be an increasing function defined on [a, b] and let ∆Fi ≡
F (xi)− F (xi−1) . Then define upper and lower sums as

U (f, P ) ≡
n∑

i=1

Mi (f)∆Fi and L (f, P ) ≡
n∑

i=1

mi (f) ∆Fi

respectively. The numbers, Mi (f) and mi (f) , are well defined real numbers because
f is assumed to be bounded and R is complete. Thus the set S = {f (x) : x ∈
[xi−1, xi]} is bounded above and below.

In the following picture, the sum of the areas of the rectangles in the picture on
the left is a lower sum for the function in the picture and the sum of the areas of the
rectangles in the picture on the right is an upper sum for the same function which
uses the same partition. In these pictures the function, F is given by F (x) = x and
these are the ordinary upper and lower sums from calculus.

y = f(x)

x0 x1 x2 x3 x0 x1 x2 x3

What happens when you add in more points in a partition? The following
pictures illustrate in the context of the above example. In this example a single
additional point, labeled z has been added in.

y = f(x)

x0 x1 x2 x3z x0 x1 x2 x3z

Note how the lower sum got larger by the amount of the area in the shaded
rectangle and the upper sum got smaller by the amount in the rectangle shaded by
dots. In general this is the way it works and this is shown in the following lemma.

Lemma 2.2 If P ⊆ Q then

U (f,Q) ≤ U (f, P ) , and L (f, P ) ≤ L (f,Q) .
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Proof: This is verified by adding in one point at a time. Thus let P =
{x0, · · ·, xn} and let Q = {x0, · · ·, xk, y, xk+1, · · ·, xn}. Thus exactly one point, y, is
added between xk and xk+1. Now the term in the upper sum which corresponds to
the interval [xk, xk+1] in U (f, P ) is

sup {f (x) : x ∈ [xk, xk+1]} (F (xk+1)− F (xk)) (2.1)

and the term which corresponds to the interval [xk, xk+1] in U (f,Q) is

sup {f (x) : x ∈ [xk, y]} (F (y)− F (xk)) (2.2)
+ sup {f (x) : x ∈ [y, xk+1]} (F (xk+1)− F (y)) (2.3)
≡ M1 (F (y)− F (xk)) + M2 (F (xk+1)− F (y)) (2.4)

All the other terms in the two sums coincide. Now sup {f (x) : x ∈ [xk, xk+1]} ≥
max (M1,M2) and so the expression in 2.2 is no larger than

sup {f (x) : x ∈ [xk, xk+1]} (F (xk+1)− F (y))
+ sup {f (x) : x ∈ [xk, xk+1]} (F (y)− F (xk))

= sup {f (x) : x ∈ [xk, xk+1]} (F (xk+1)− F (xk)) ,

the term corresponding to the interval, [xk, xk+1] and U (f, P ) . This proves the
first part of the lemma pertaining to upper sums because if Q ⊇ P, one can obtain
Q from P by adding in one point at a time and each time a point is added, the
corresponding upper sum either gets smaller or stays the same. The second part
about lower sums is similar and is left as an exercise.

Lemma 2.3 If P and Q are two partitions, then

L (f, P ) ≤ U (f, Q) .

Proof: By Lemma 2.2,

L (f, P ) ≤ L (f, P ∪Q) ≤ U (f, P ∪Q) ≤ U (f, Q) .

Definition 2.4

I ≡ inf{U (f,Q) where Q is a partition}

I ≡ sup{L (f, P ) where P is a partition}.

Note that I and I are well defined real numbers.

Theorem 2.5 I ≤ I.

Proof: From Lemma 2.3,

I = sup{L (f, P ) where P is a partition} ≤ U (f,Q)
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because U (f, Q) is an upper bound to the set of all lower sums and so it is no
smaller than the least upper bound. Therefore, since Q is arbitrary,

I = sup{L (f, P ) where P is a partition}
≤ inf{U (f,Q) where Q is a partition} ≡ I

where the inequality holds because it was just shown that I is a lower bound to the
set of all upper sums and so it is no larger than the greatest lower bound of this
set. This proves the theorem.

Definition 2.6 A bounded function f is Riemann Stieltjes integrable, written as

f ∈ R ([a, b])

if
I = I

and in this case, ∫ b

a

f (x) dF ≡ I = I.

When F (x) = x, the integral is called the Riemann integral and is written as

∫ b

a

f (x) dx.

Thus, in words, the Riemann integral is the unique number which lies between
all upper sums and all lower sums if there is such a unique number.

Recall the following Proposition which comes from the definitions.

Proposition 2.7 Let S be a nonempty set and suppose sup (S) exists. Then for
every δ > 0,

S ∩ (sup (S)− δ, sup (S)] 6= ∅.
If inf (S) exists, then for every δ > 0,

S ∩ [inf (S) , inf (S) + δ) 6= ∅.

This proposition implies the following theorem which is used to determine the
question of Riemann Stieltjes integrability.

Theorem 2.8 A bounded function f is Riemann integrable if and only if for all
ε > 0, there exists a partition P such that

U (f, P )− L (f, P ) < ε. (2.5)
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Proof: First assume f is Riemann integrable. Then let P and Q be two parti-
tions such that

U (f,Q) < I + ε/2, L (f, P ) > I − ε/2.

Then since I = I,

U (f, Q ∪ P )− L (f, P ∪Q) ≤ U (f, Q)− L (f, P ) < I + ε/2− (I − ε/2) = ε.

Now suppose that for all ε > 0 there exists a partition such that 2.5 holds. Then
for given ε and partition P corresponding to ε

I − I ≤ U (f, P )− L (f, P ) ≤ ε.

Since ε is arbitrary, this shows I = I and this proves the theorem.
The condition described in the theorem is called the Riemann criterion .
Not all bounded functions are Riemann integrable. For example, let F (x) = x

and

f (x) ≡
{

1 if x ∈ Q
0 if x ∈ R \Q (2.6)

Then if [a, b] = [0, 1] all upper sums for f equal 1 while all lower sums for f equal
0. Therefore the Riemann criterion is violated for ε = 1/2.

2.2 Exercises

1. Prove the second half of Lemma 2.2 about lower sums.

2. Verify that for f given in 2.6, the lower sums on the interval [0, 1] are all equal
to zero while the upper sums are all equal to one.

3. Let f (x) = 1 + x2 for x ∈ [−1, 3] and let P =
{−1,− 1

3 , 0, 1
2 , 1, 2

}
. Find

U (f, P ) and L (f, P ) for F (x) = x and for F (x) = x3.

4. Show that if f ∈ R ([a, b]) for F (x) = x, there exists a partition, {x0, · · ·, xn}
such that for any zk ∈ [xk, xk+1] ,

∣∣∣∣∣
∫ b

a

f (x) dx−
n∑

k=1

f (zk) (xk − xk−1)

∣∣∣∣∣ < ε

This sum,
∑n

k=1 f (zk) (xk − xk−1) , is called a Riemann sum and this exercise
shows that the Riemann integral can always be approximated by a Riemann
sum. For the general Riemann Stieltjes case, does anything change?

5. Let P =
{
1, 11

4 , 1 1
2 , 1 3

4 , 2
}

and F (x) = x. Find upper and lower sums for the
function, f (x) = 1

x using this partition. What does this tell you about ln (2)?

6. If f ∈ R ([a, b]) with F (x) = x and f is changed at finitely many points,
show the new function is also in R ([a, b]) . Is this still true for the general case
where F is only assumed to be an increasing function? Explain.
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7. In the case where F (x) = x, define a “left sum” as

n∑

k=1

f (xk−1) (xk − xk−1)

and a “right sum”,
n∑

k=1

f (xk) (xk − xk−1) .

Also suppose that all partitions have the property that xk − xk−1 equals a
constant, (b− a) /n so the points in the partition are equally spaced, and
define the integral to be the number these right and left sums get close to as
n gets larger and larger. Show that for f given in 2.6,

∫ x

0
f (t) dt = 1 if x is

rational and
∫ x

0
f (t) dt = 0 if x is irrational. It turns out that the correct

answer should always equal zero for that function, regardless of whether x is
rational. This is shown when the Lebesgue integral is studied. This illustrates
why this method of defining the integral in terms of left and right sums is total
nonsense. Show that even though this is the case, it makes no difference if f
is continuous.

2.3 Functions Of Riemann Integrable Functions

It is often necessary to consider functions of Riemann integrable functions and a
natural question is whether these are Riemann integrable. The following theorem
gives a partial answer to this question. This is not the most general theorem which
will relate to this question but it will be enough for the needs of this book.

Theorem 2.9 Let f, g be bounded functions and let f ([a, b]) ⊆ [c1, d1] and g ([a, b]) ⊆
[c2, d2] . Let H : [c1, d1]× [c2, d2] → R satisfy,

|H (a1, b1)−H (a2, b2)| ≤ K [|a1 − a2|+ |b1 − b2|]
for some constant K. Then if f, g ∈ R ([a, b]) it follows that H ◦ (f, g) ∈ R ([a, b]) .

Proof: In the following claim, Mi (h) and mi (h) have the meanings assigned
above with respect to some partition of [a, b] for the function, h.

Claim: The following inequality holds.

|Mi (H ◦ (f, g))−mi (H ◦ (f, g))| ≤
K [|Mi (f)−mi (f)|+ |Mi (g)−mi (g)|] .

Proof of the claim: By the above proposition, there exist x1, x2 ∈ [xi−1, xi]
be such that

H (f (x1) , g (x1)) + η > Mi (H ◦ (f, g)) ,

and
H (f (x2) , g (x2))− η < mi (H ◦ (f, g)) .
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Then
|Mi (H ◦ (f, g))−mi (H ◦ (f, g))|

< 2η + |H (f (x1) , g (x1))−H (f (x2) , g (x2))|
< 2η + K [|f (x1)− f (x2)|+ |g (x1)− g (x2)|]
≤ 2η + K [|Mi (f)−mi (f)|+ |Mi (g)−mi (g)|] .

Since η > 0 is arbitrary, this proves the claim.
Now continuing with the proof of the theorem, let P be such that

n∑

i=1

(Mi (f)−mi (f))∆Fi <
ε

2K
,

n∑

i=1

(Mi (g)−mi (g))∆Fi <
ε

2K
.

Then from the claim,

n∑

i=1

(Mi (H ◦ (f, g))−mi (H ◦ (f, g)))∆Fi

<

n∑

i=1

K [|Mi (f)−mi (f)|+ |Mi (g)−mi (g)|]∆Fi < ε.

Since ε > 0 is arbitrary, this shows H ◦ (f, g) satisfies the Riemann criterion and
hence H ◦ (f, g) is Riemann integrable as claimed. This proves the theorem.

This theorem implies that if f, g are Riemann Stieltjes integrable, then so is
af + bg, |f | , f2, along with infinitely many other such continuous combinations of
Riemann Stieltjes integrable functions. For example, to see that |f | is Riemann
integrable, let H (a, b) = |a| . Clearly this function satisfies the conditions of the
above theorem and so |f | = H (f, f) ∈ R ([a, b]) as claimed. The following theorem
gives an example of many functions which are Riemann integrable.

Theorem 2.10 Let f : [a, b] → R be either increasing or decreasing on [a, b] and
suppose F is continuous. Then f ∈ R ([a, b]) .

Proof: Let ε > 0 be given and let

xi = a + i

(
b− a

n

)
, i = 0, · · ·, n.

Since F is continuous, it follows that it is uniformly continuous. Therefore, if n is
large enough, then for all i,

F (xi)− F (xi−1) <
ε

f (b)− f (a) + 1
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Then since f is increasing,

U (f, P )− L (f, P ) =
n∑

i=1

(f (xi)− f (xi−1)) (F (xi)− F (xi−1))

≤ ε

f (b)− f (a) + 1

n∑

i=1

(f (xi)− f (xi−1))

=
ε

f (b)− f (a) + 1
(f (b)− f (a)) < ε.

Thus the Riemann criterion is satisfied and so the function is Riemann Stieltjes
integrable. The proof for decreasing f is similar.

Corollary 2.11 Let [a, b] be a bounded closed interval and let φ : [a, b] → R be
Lipschitz continuous and suppose F is continuous. Then φ ∈ R ([a, b]) . Recall that
a function, φ, is Lipschitz continuous if there is a constant, K, such that for all
x, y,

|φ (x)− φ (y)| < K |x− y| .

Proof: Let f (x) = x. Then by Theorem 2.10, f is Riemann Stieltjes integrable.
Let H (a, b) ≡ φ (a). Then by Theorem 2.9 H ◦ (f, f) = φ ◦ f = φ is also Riemann
Stieltjes integrable. This proves the corollary.

In fact, it is enough to assume φ is continuous, although this is harder. This
is the content of the next theorem which is where the difficult theorems about
continuity and uniform continuity are used. This is the main result on the existence
of the Riemann Stieltjes integral for this book.

Theorem 2.12 Suppose f : [a, b] → R is continuous and F is just an increasing
function defined on [a, b]. Then f ∈ R ([a, b]) .

Proof: Since f is continuous, it follows f is uniformly continuous on [a, b] .
Therefore, if ε > 0 is given, there exists a δ > 0 such that if |xi − xi−1| < δ, then
Mi −mi < ε

F (b)−F (a)+1 . Let

P ≡ {x0, · · ·, xn}

be a partition with |xi − xi−1| < δ. Then

U (f, P )− L (f, P ) <

n∑

i=1

(Mi −mi) (F (xi)− F (xi−1))

<
ε

F (b)− F (a) + 1
(F (b)− F (a)) < ε.

By the Riemann criterion, f ∈ R ([a, b]) . This proves the theorem.



2.4. PROPERTIES OF THE INTEGRAL 27

2.4 Properties Of The Integral

The integral has many important algebraic properties. First here is a simple lemma.

Lemma 2.13 Let S be a nonempty set which is bounded above and below. Then if
−S ≡ {−x : x ∈ S} ,

sup (−S) = − inf (S) (2.7)

and
inf (−S) = − sup (S) . (2.8)

Proof: Consider 2.7. Let x ∈ S. Then −x ≤ sup (−S) and so x ≥ − sup (−S) . If
follows that − sup (−S) is a lower bound for S and therefore, − sup (−S) ≤ inf (S) .
This implies sup (−S) ≥ − inf (S) . Now let −x ∈ −S. Then x ∈ S and so x ≥ inf (S)
which implies −x ≤ − inf (S) . Therefore, − inf (S) is an upper bound for −S and
so − inf (S) ≥ sup (−S) . This shows 2.7. Formula 2.8 is similar and is left as an
exercise.

In particular, the above lemma implies that for Mi (f) and mi (f) defined above
Mi (−f) = −mi (f) , and mi (−f) = −Mi (f) .

Lemma 2.14 If f ∈ R ([a, b]) then −f ∈ R ([a, b]) and

−
∫ b

a

f (x) dF =
∫ b

a

−f (x) dF.

Proof: The first part of the conclusion of this lemma follows from Theorem 2.10
since the function φ (y) ≡ −y is Lipschitz continuous. Now choose P such that

∫ b

a

−f (x) dF − L (−f, P ) < ε.

Then since mi (−f) = −Mi (f) ,

ε >

∫ b

a

−f (x) dF −
n∑

i=1

mi (−f)∆Fi =
∫ b

a

−f (x) dF +
n∑

i=1

Mi (f)∆Fi

which implies

ε >

∫ b

a

−f (x) dF +
n∑

i=1

Mi (f) ∆Fi ≥
∫ b

a

−f (x) dF +
∫ b

a

f (x) dF.

Thus, since ε is arbitrary,
∫ b

a

−f (x) dF ≤ −
∫ b

a

f (x) dF

whenever f ∈ R ([a, b]) . It follows
∫ b

a

−f (x) dF ≤ −
∫ b

a

f (x) dF = −
∫ b

a

− (−f (x)) dF ≤
∫ b

a

−f (x) dF

and this proves the lemma.
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Theorem 2.15 The integral is linear,

∫ b

a

(αf + βg) (x) dF = α

∫ b

a

f (x) dF + β

∫ b

a

g (x) dF.

whenever f, g ∈ R ([a, b]) and α, β ∈ R.

Proof: First note that by Theorem 2.9, αf + βg ∈ R ([a, b]) . To begin with,
consider the claim that if f, g ∈ R ([a, b]) then

∫ b

a

(f + g) (x) dF =
∫ b

a

f (x) dF +
∫ b

a

g (x) dF. (2.9)

Let P1,Q1 be such that

U (f,Q1)− L (f,Q1) < ε/2, U (g, P1)− L (g, P1) < ε/2.

Then letting P ≡ P1 ∪Q1, Lemma 2.2 implies

U (f, P )− L (f, P ) < ε/2, and U (g, P )− U (g, P ) < ε/2.

Next note that

mi (f + g) ≥ mi (f) + mi (g) , Mi (f + g) ≤ Mi (f) + Mi (g) .

Therefore,

L (g + f, P ) ≥ L (f, P ) + L (g, P ) , U (g + f, P ) ≤ U (f, P ) + U (g, P ) .

For this partition,

∫ b

a

(f + g) (x) dF ∈ [L (f + g, P ) , U (f + g, P )]

⊆ [L (f, P ) + L (g, P ) , U (f, P ) + U (g, P )]

and
∫ b

a

f (x) dF +
∫ b

a

g (x) dF ∈ [L (f, P ) + L (g, P ) , U (f, P ) + U (g, P )] .

Therefore,
∣∣∣∣∣
∫ b

a

(f + g) (x) dF −
(∫ b

a

f (x) dF +
∫ b

a

g (x) dF

)∣∣∣∣∣ ≤

U (f, P ) + U (g, P )− (L (f, P ) + L (g, P )) < ε/2 + ε/2 = ε.

This proves 2.9 since ε is arbitrary.



2.4. PROPERTIES OF THE INTEGRAL 29

It remains to show that

α

∫ b

a

f (x) dF =
∫ b

a

αf (x) dF.

Suppose first that α ≥ 0. Then
∫ b

a

αf (x) dF ≡ sup{L (αf, P ) : P is a partition} =

α sup{L (f, P ) : P is a partition} ≡ α

∫ b

a

f (x) dF.

If α < 0, then this and Lemma 2.14 imply
∫ b

a

αf (x) dF =
∫ b

a

(−α) (−f (x)) dF

= (−α)
∫ b

a

(−f (x)) dF = α

∫ b

a

f (x) dF.

This proves the theorem.
In the next theorem, suppose F is defined on [a, b] ∪ [b, c] .

Theorem 2.16 If f ∈ R ([a, b]) and f ∈ R ([b, c]) , then f ∈ R ([a, c]) and
∫ c

a

f (x) dF =
∫ b

a

f (x) dF +
∫ c

b

f (x) dF. (2.10)

Proof: Let P1 be a partition of [a, b] and P2 be a partition of [b, c] such that

U (f, Pi)− L (f, Pi) < ε/2, i = 1, 2.

Let P ≡ P1 ∪ P2. Then P is a partition of [a, c] and

U (f, P )− L (f, P )

= U (f, P1)− L (f, P1) + U (f, P2)− L (f, P2) < ε/2 + ε/2 = ε. (2.11)

Thus, f ∈ R ([a, c]) by the Riemann criterion and also for this partition,
∫ b

a

f (x) dF +
∫ c

b

f (x) dF ∈ [L (f, P1) + L (f, P2) , U (f, P1) + U (f, P2)]

= [L (f, P ) , U (f, P )]

and ∫ c

a

f (x) dF ∈ [L (f, P ) , U (f, P )] .

Hence by 2.11,
∣∣∣∣∣
∫ c

a

f (x) dF −
(∫ b

a

f (x) dF +
∫ c

b

f (x) dF

)∣∣∣∣∣ < U (f, P )− L (f, P ) < ε

which shows that since ε is arbitrary, 2.10 holds. This proves the theorem.
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Corollary 2.17 Let F be continuous and let [a, b] be a closed and bounded interval
and suppose that

a = y1 < y2 · ·· < yl = b

and that f is a bounded function defined on [a, b] which has the property that f is
either increasing on [yj , yj+1] or decreasing on [yj , yj+1] for j = 1, · · ·, l − 1. Then
f ∈ R ([a, b]) .

Proof: This follows from Theorem 2.16 and Theorem 2.10.
The symbol,

∫ b

a
f (x) dF when a > b has not yet been defined.

Definition 2.18 Let [a, b] be an interval and let f ∈ R ([a, b]) . Then

∫ a

b

f (x) dF ≡ −
∫ b

a

f (x) dF.

Note that with this definition,
∫ a

a

f (x) dF = −
∫ a

a

f (x) dF

and so ∫ a

a

f (x) dF = 0.

Theorem 2.19 Assuming all the integrals make sense,

∫ b

a

f (x) dF +
∫ c

b

f (x) dF =
∫ c

a

f (x) dF.

Proof: This follows from Theorem 2.16 and Definition 2.18. For example, as-
sume

c ∈ (a, b) .

Then from Theorem 2.16,

∫ c

a

f (x) dF +
∫ b

c

f (x) dF =
∫ b

a

f (x) dF

and so by Definition 2.18,

∫ c

a

f (x) dF =
∫ b

a

f (x) dF −
∫ b

c

f (x) dF

=
∫ b

a

f (x) dF +
∫ c

b

f (x) dF.

The other cases are similar.
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The following properties of the integral have either been established or they
follow quickly from what has been shown so far.

If f ∈ R ([a, b]) then if c ∈ [a, b] , f ∈ R ([a, c]) , (2.12)

∫ b

a

α dF = α (F (b)− F (a)) , (2.13)

∫ b

a

(αf + βg) (x) dF = α

∫ b

a

f (x) dF + β

∫ b

a

g (x) dF, (2.14)

∫ b

a

f (x) dF +
∫ c

b

f (x) dF =
∫ c

a

f (x) dF, (2.15)

∫ b

a

f (x) dF ≥ 0 if f (x) ≥ 0 and a < b, (2.16)

∣∣∣∣∣
∫ b

a

f (x) dF

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

|f (x)| dF

∣∣∣∣∣ . (2.17)

The only one of these claims which may not be completely obvious is the last one.
To show this one, note that

|f (x)| − f (x) ≥ 0, |f (x)|+ f (x) ≥ 0.

Therefore, by 2.16 and 2.14, if a < b,

∫ b

a

|f (x)| dF ≥
∫ b

a

f (x) dF

and ∫ b

a

|f (x)| dF ≥ −
∫ b

a

f (x) dF.

Therefore, ∫ b

a

|f (x)| dF ≥
∣∣∣∣∣
∫ b

a

f (x) dF

∣∣∣∣∣ .

If b < a then the above inequality holds with a and b switched. This implies 2.17.

2.5 Fundamental Theorem Of Calculus

In this section F (x) = x so things are specialized to the ordinary Riemann integral.
With these properties, it is easy to prove the fundamental theorem of calculus2.

2This theorem is why Newton and Liebnitz are credited with inventing calculus. The integral
had been around for thousands of years and the derivative was by their time well known. However
the connection between these two ideas had not been fully made although Newton’s predecessor,
Isaac Barrow had made some progress in this direction.
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Let f ∈ R ([a, b]) . Then by 2.12 f ∈ R ([a, x]) for each x ∈ [a, b] . The first version
of the fundamental theorem of calculus is a statement about the derivative of the
function

x →
∫ x

a

f (t) dt.

Theorem 2.20 Let f ∈ R ([a, b]) and let

F (x) ≡
∫ x

a

f (t) dt.

Then if f is continuous at x ∈ (a, b) ,

F ′ (x) = f (x) .

Proof: Let x ∈ (a, b) be a point of continuity of f and let h be small enough
that x + h ∈ [a, b] . Then by using 2.15,

h−1 (F (x + h)− F (x)) = h−1

∫ x+h

x

f (t) dt.

Also, using 2.13,

f (x) = h−1

∫ x+h

x

f (x) dt.

Therefore, by 2.17,

∣∣h−1 (F (x + h)− F (x))− f (x)
∣∣ =

∣∣∣∣∣h
−1

∫ x+h

x

(f (t)− f (x)) dt

∣∣∣∣∣

≤
∣∣∣∣∣h
−1

∫ x+h

x

|f (t)− f (x)| dt

∣∣∣∣∣ .

Let ε > 0 and let δ > 0 be small enough that if |t− x| < δ, then

|f (t)− f (x)| < ε.

Therefore, if |h| < δ, the above inequality and 2.13 shows that
∣∣h−1 (F (x + h)− F (x))− f (x)

∣∣ ≤ |h|−1
ε |h| = ε.

Since ε > 0 is arbitrary, this shows

lim
h→0

h−1 (F (x + h)− F (x)) = f (x)

and this proves the theorem.
Note this gives existence for the initial value problem,

F ′ (x) = f (x) , F (a) = 0
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whenever f is Riemann integrable and continuous.3

The next theorem is also called the fundamental theorem of calculus.

Theorem 2.21 Let f ∈ R ([a, b]) and suppose there exists an antiderivative for
f, G, such that

G′ (x) = f (x)

for every point of (a, b) and G is continuous on [a, b] . Then

∫ b

a

f (x) dx = G (b)−G (a) . (2.18)

Proof: Let P = {x0, · · ·, xn} be a partition satisfying

U (f, P )− L (f, P ) < ε.

Then

G (b)−G (a) = G (xn)−G (x0)

=
n∑

i=1

G (xi)−G (xi−1) .

By the mean value theorem,

G (b)−G (a) =
n∑

i=1

G′ (zi) (xi − xi−1)

=
n∑

i=1

f (zi)∆xi

where zi is some point in [xi−1, xi] . It follows, since the above sum lies between the
upper and lower sums, that

G (b)−G (a) ∈ [L (f, P ) , U (f, P )] ,

and also ∫ b

a

f (x) dx ∈ [L (f, P ) , U (f, P )] .

Therefore,
∣∣∣∣∣G (b)−G (a)−

∫ b

a

f (x) dx

∣∣∣∣∣ < U (f, P )− L (f, P ) < ε.

Since ε > 0 is arbitrary, 2.18 holds. This proves the theorem.
3Of course it was proved that if f is continuous on a closed interval, [a, b] , then f ∈ R ([a, b])

but this is a hard theorem using the difficult result about uniform continuity.
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The following notation is often used in this context. Suppose F is an antideriva-
tive of f as just described with F continuous on [a, b] and F ′ = f on (a, b) . Then

∫ b

a

f (x) dx = F (b)− F (a) ≡ F (x) |ba.

Definition 2.22 Let f be a bounded function defined on a closed interval [a, b] and
let P ≡ {x0, · · ·, xn} be a partition of the interval. Suppose zi ∈ [xi−1, xi] is chosen.
Then the sum

n∑

i=1

f (zi) (xi − xi−1)

is known as a Riemann sum. Also,

||P || ≡ max {|xi − xi−1| : i = 1, · · ·, n} .

Proposition 2.23 Suppose f ∈ R ([a, b]) . Then there exists a partition, P ≡
{x0, · · ·, xn} with the property that for any choice of zk ∈ [xk−1, xk] ,

∣∣∣∣∣
∫ b

a

f (x) dx−
n∑

k=1

f (zk) (xk − xk−1)

∣∣∣∣∣ < ε.

Proof: Choose P such that U (f, P ) − L (f, P ) < ε and then both
∫ b

a
f (x) dx

and
∑n

k=1 f (zk) (xk − xk−1) are contained in [L (f, P ) , U (f, P )] and so the claimed
inequality must hold. This proves the proposition.

It is significant because it gives a way of approximating the integral.
The definition of Riemann integrability given in this chapter is also called Dar-

boux integrability and the integral defined as the unique number which lies between
all upper sums and all lower sums which is given in this chapter is called the Dar-
boux integral . The definition of the Riemann integral in terms of Riemann sums
is given next.

Definition 2.24 A bounded function, f defined on [a, b] is said to be Riemann
integrable if there exists a number, I with the property that for every ε > 0, there
exists δ > 0 such that if

P ≡ {x0, x1, · · ·, xn}
is any partition having ||P || < δ, and zi ∈ [xi−1, xi] ,

∣∣∣∣∣I −
n∑

i=1

f (zi) (xi − xi−1)

∣∣∣∣∣ < ε.

The number
∫ b

a
f (x) dx is defined as I.

Thus, there are two definitions of the Riemann integral. It turns out they are
equivalent which is the following theorem of of Darboux.
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Theorem 2.25 A bounded function defined on [a, b] is Riemann integrable in the
sense of Definition 2.24 if and only if it is integrable in the sense of Darboux.
Furthermore the two integrals coincide.

The proof of this theorem is left for the exercises in Problems 10 - 12. It isn’t
essential that you understand this theorem so if it does not interest you, leave it
out. Note that it implies that given a Riemann integrable function f in either sense,
it can be approximated by Riemann sums whenever ||P || is sufficiently small. Both
versions of the integral are obsolete but entirely adequate for most applications and
as a point of departure for a more up to date and satisfactory integral. The reason
for using the Darboux approach to the integral is that all the existence theorems
are easier to prove in this context.

2.6 Exercises

1. Let F (x) =
∫ x3

x2
t5+7

t7+87t6+1 dt. Find F ′ (x) .

2. Let F (x) =
∫ x

2
1

1+t4 dt. Sketch a graph of F and explain why it looks the way
it does.

3. Let a and b be positive numbers and consider the function,

F (x) =
∫ ax

0

1
a2 + t2

dt +
∫ a/x

b

1
a2 + t2

dt.

Show that F is a constant.

4. Solve the following initial value problem from ordinary differential equations
which is to find a function y such that

y′ (x) =
x7 + 1

x6 + 97x5 + 7
, y (10) = 5.

5. If F, G ∈ ∫
f (x) dx for all x ∈ R, show F (x) = G (x) + C for some constant,

C. Use this to give a different proof of the fundamental theorem of calculus
which has for its conclusion

∫ b

a
f (t) dt = G (b)−G (a) where G′ (x) = f (x) .

6. Suppose f is Riemann integrable on [a, b] and continuous. (In fact continuous
implies Riemann integrable.) Show there exists c ∈ (a, b) such that

f (c) =
1

b− a

∫ b

a

f (x) dx.

Hint: You might consider the function F (x) ≡ ∫ x

a
f (t) dt and use the mean

value theorem for derivatives and the fundamental theorem of calculus.
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7. Suppose f and g are continuous functions on [a, b] and that g (x) 6= 0 on (a, b) .
Show there exists c ∈ (a, b) such that

f (c)
∫ b

a

g (x) dx =
∫ b

a

f (x) g (x) dx.

Hint: Define F (x) ≡ ∫ x

a
f (t) g (t) dt and let G (x) ≡ ∫ x

a
g (t) dt. Then use

the Cauchy mean value theorem on these two functions.

8. Consider the function

f (x) ≡
{

sin
(

1
x

)
if x 6= 0

0 if x = 0 .

Is f Riemann integrable? Explain why or why not.

9. Prove the second part of Theorem 2.10 about decreasing functions.

10. Suppose f is a bounded function defined on [a, b] and |f (x)| < M for all
x ∈ [a, b] . Now let Q be a partition having n points, {x∗0, · · ·, x∗n} and let P
be any other partition. Show that

|U (f, P )− L (f, P )| ≤ 2Mn ||P ||+ |U (f, Q)− L (f, Q)| .

Hint: Write the sum for U (f, P )−L (f, P ) and split this sum into two sums,
the sum of terms for which [xi−1, xi] contains at least one point of Q, and
terms for which [xi−1, xi] does not contain any points of Q. In the latter case,
[xi−1, xi] must be contained in some interval,

[
x∗k−1, x

∗
k

]
. Therefore, the sum

of these terms should be no larger than |U (f,Q)− L (f, Q)| .
11. ↑ If ε > 0 is given and f is a Darboux integrable function defined on [a, b],

show there exists δ > 0 such that whenever ||P || < δ, then

|U (f, P )− L (f, P )| < ε.

12. ↑ Prove Theorem 2.25.



Important Linear Algebra

This chapter contains some important linear algebra as distinguished from that
which is normally presented in undergraduate courses consisting mainly of uninter-
esting things you can do with row operations.

The notation, Cn refers to the collection of ordered lists of n complex numbers.
Since every real number is also a complex number, this simply generalizes the usual
notion of Rn, the collection of all ordered lists of n real numbers. In order to avoid
worrying about whether it is real or complex numbers which are being referred to,
the symbol F will be used. If it is not clear, always pick C.

Definition 3.1 Define Fn ≡ {(x1, · · ·, xn) : xj ∈ F for j = 1, · · ·, n} . (x1, · · ·, xn) =
(y1, · · ·, yn) if and only if for all j = 1, · · ·, n, xj = yj . When (x1, · · ·, xn) ∈ Fn, it is
conventional to denote (x1, · · ·, xn) by the single bold face letter, x. The numbers,
xj are called the coordinates. The set

{(0, · · ·, 0, t, 0, · · ·, 0) : t ∈ F}

for t in the ith slot is called the ith coordinate axis. The point 0 ≡ (0, · · ·, 0) is
called the origin.

Thus (1, 2, 4i) ∈ F3 and (2, 1, 4i) ∈ F3 but (1, 2, 4i) 6= (2, 1, 4i) because, even
though the same numbers are involved, they don’t match up. In particular, the
first entries are not equal.

The geometric significance of Rn for n ≤ 3 has been encountered already in
calculus or in precalculus. Here is a short review. First consider the case when
n = 1. Then from the definition, R1 = R. Recall that R is identified with the
points of a line. Look at the number line again. Observe that this amounts to
identifying a point on this line with a real number. In other words a real number
determines where you are on this line. Now suppose n = 2 and consider two lines

37
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which intersect each other at right angles as shown in the following picture.

2

6 · (2, 6)

−8

3·(−8, 3)

Notice how you can identify a point shown in the plane with the ordered pair,
(2, 6) . You go to the right a distance of 2 and then up a distance of 6. Similarly,
you can identify another point in the plane with the ordered pair (−8, 3) . Go to
the left a distance of 8 and then up a distance of 3. The reason you go to the left
is that there is a − sign on the eight. From this reasoning, every ordered pair
determines a unique point in the plane. Conversely, taking a point in the plane,
you could draw two lines through the point, one vertical and the other horizontal
and determine unique points, x1 on the horizontal line in the above picture and x2

on the vertical line in the above picture, such that the point of interest is identified
with the ordered pair, (x1, x2) . In short, points in the plane can be identified with
ordered pairs similar to the way that points on the real line are identified with
real numbers. Now suppose n = 3. As just explained, the first two coordinates
determine a point in a plane. Letting the third component determine how far up
or down you go, depending on whether this number is positive or negative, this
determines a point in space. Thus, (1, 4,−5) would mean to determine the point
in the plane that goes with (1, 4) and then to go below this plane a distance of 5
to obtain a unique point in space. You see that the ordered triples correspond to
points in space just as the ordered pairs correspond to points in a plane and single
real numbers correspond to points on a line.

You can’t stop here and say that you are only interested in n ≤ 3. What if you
were interested in the motion of two objects? You would need three coordinates
to describe where the first object is and you would need another three coordinates
to describe where the other object is located. Therefore, you would need to be
considering R6. If the two objects moved around, you would need a time coordinate
as well. As another example, consider a hot object which is cooling and suppose
you want the temperature of this object. How many coordinates would be needed?
You would need one for the temperature, three for the position of the point in the
object and one more for the time. Thus you would need to be considering R5.
Many other examples can be given. Sometimes n is very large. This is often the
case in applications to business when they are trying to maximize profit subject
to constraints. It also occurs in numerical analysis when people try to solve hard
problems on a computer.

There are other ways to identify points in space with three numbers but the one
presented is the most basic. In this case, the coordinates are known as Cartesian
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coordinates after Descartes1 who invented this idea in the first half of the seven-
teenth century. I will often not bother to draw a distinction between the point in n
dimensional space and its Cartesian coordinates.

The geometric significance of Cn for n > 1 is not available because each copy of
C corresponds to the plane or R2.

3.1 Algebra in Fn

There are two algebraic operations done with elements of Fn. One is addition and
the other is multiplication by numbers, called scalars. In the case of Cn the scalars
are complex numbers while in the case of Rn the only allowed scalars are real
numbers. Thus, the scalars always come from F in either case.

Definition 3.2 If x ∈ Fn and a ∈ F, also called a scalar, then ax ∈ Fn is defined
by

ax = a (x1, · · ·, xn) ≡ (ax1, · · ·, axn) . (3.1)

This is known as scalar multiplication. If x,y ∈ Fn then x + y ∈ Fn and is defined
by

x + y = (x1, · · ·, xn) + (y1, · · ·, yn)
≡ (x1 + y1, · · ·, xn + yn) (3.2)

With this definition, the algebraic properties satisfy the conclusions of the fol-
lowing theorem.

Theorem 3.3 For v,w ∈ Fn and α, β scalars, (real numbers), the following hold.

v + w = w + v, (3.3)

the commutative law of addition,

(v + w) + z = v+(w + z) , (3.4)

the associative law for addition,

v + 0 = v, (3.5)

the existence of an additive identity,

v+(−v) = 0, (3.6)

the existence of an additive inverse, Also

α (v + w) = αv+αw, (3.7)
1René Descartes 1596-1650 is often credited with inventing analytic geometry although it seems

the ideas were actually known much earlier. He was interested in many different subjects, physi-
ology, chemistry, and physics being some of them. He also wrote a large book in which he tried to
explain the book of Genesis scientifically. Descartes ended up dying in Sweden.
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(α + β)v =αv+βv, (3.8)

α (βv) = αβ (v) , (3.9)

1v = v. (3.10)

In the above 0 = (0, · · ·, 0).

You should verify these properties all hold. For example, consider 3.7

α (v + w) = α (v1 + w1, · · ·, vn + wn)
= (α (v1 + w1) , · · ·, α (vn + wn))
= (αv1 + αw1, · · ·, αvn + αwn)
= (αv1, · · ·, αvn) + (αw1, · · ·, αwn)
= αv + αw.

As usual subtraction is defined as x− y ≡ x+(−y) .

3.2 Subspaces Spans And Bases

Definition 3.4 Let {x1, · · ·,xp} be vectors in Fn. A linear combination is any ex-
pression of the form

p∑

i=1

cixi

where the ci are scalars. The set of all linear combinations of these vectors is
called span (x1, · · ·,xn) . If V ⊆ Fn, then V is called a subspace if whenever α, β
are scalars and u and v are vectors of V, it follows αu + βv ∈ V . That is, it is
“closed under the algebraic operations of vector addition and scalar multiplication”.
A linear combination of vectors is said to be trivial if all the scalars in the linear
combination equal zero. A set of vectors is said to be linearly independent if the
only linear combination of these vectors which equals the zero vector is the trivial
linear combination. Thus {x1, · · ·,xn} is called linearly independent if whenever

p∑

k=1

ckxk = 0

it follows that all the scalars, ck equal zero. A set of vectors, {x1, · · ·,xp} , is called
linearly dependent if it is not linearly independent. Thus the set of vectors is linearly
dependent if there exist scalars, ci, i = 1, ···, n, not all zero such that

∑p
k=1 ckxk = 0.

Lemma 3.5 A set of vectors {x1, · · ·,xp} is linearly independent if and only if
none of the vectors can be obtained as a linear combination of the others.
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Proof: Suppose first that {x1, · · ·,xp} is linearly independent. If

xk =
∑

j 6=k

cjxj ,

then
0 = 1xk +

∑

j 6=k

(−cj)xj ,

a nontrivial linear combination, contrary to assumption. This shows that if the
set is linearly independent, then none of the vectors is a linear combination of the
others.

Now suppose no vector is a linear combination of the others. Is {x1, · · ·,xp}
linearly independent? If it is not there exist scalars, ci, not all zero such that

p∑

i=1

cixi = 0.

Say ck 6= 0. Then you can solve for xk as

xk =
∑

j 6=k

(−cj) /ckxj

contrary to assumption. This proves the lemma.
The following is called the exchange theorem.

Theorem 3.6 (Exchange Theorem) Let {x1, · · ·,xr} be a linearly independent set
of vectors such that each xi is in span(y1, · · ·,ys) . Then r ≤ s.

Proof: Define span{y1, · · ·,ys} ≡ V, it follows there exist scalars, c1, · · ·, cs

such that

x1 =
s∑

i=1

ciyi. (3.11)

Not all of these scalars can equal zero because if this were the case, it would follow
that x1 = 0 and so {x1, · · ·,xr} would not be linearly independent. Indeed, if
x1 = 0, 1x1 +

∑r
i=2 0xi = x1 = 0 and so there would exist a nontrivial linear

combination of the vectors {x1, · · ·,xr} which equals zero.
Say ck 6= 0. Then solve (3.11) for yk and obtain

yk ∈ span


x1,

s-1 vectors here︷ ︸︸ ︷
y1, · · ·,yk−1,yk+1, · · ·,ys


 .

Define {z1, · · ·, zs−1} by

{z1, · · ·, zs−1} ≡ {y1, · · ·,yk−1,yk+1, · · ·,ys}
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Therefore, span {x1, z1, · · ·, zs−1} = V because if v ∈ V, there exist constants c1, · ·
·, cs such that

v =
s−1∑

i=1

cizi + csyk.

Now replace the yk in the above with a linear combination of the vectors,

{x1, z1, · · ·, zs−1}
to obtain v ∈ span {x1, z1, · · ·, zs−1} . The vector yk, in the list {y1, · · ·,ys} , has
now been replaced with the vector x1 and the resulting modified list of vectors has
the same span as the original list of vectors, {y1, · · ·,ys} .

Now suppose that r > s and that span (x1, · · ·,xl, z1, · · ·, zp) = V where the
vectors, z1, · · ·, zp are each taken from the set, {y1, · · ·,ys} and l + p = s. This
has now been done for l = 1 above. Then since r > s, it follows that l ≤ s < r
and so l + 1 ≤ r. Therefore, xl+1 is a vector not in the list, {x1, · · ·,xl} and since
span {x1, · · ·,xl, z1, · · ·, zp} = V, there exist scalars, ci and dj such that

xl+1 =
l∑

i=1

cixi +
p∑

j=1

djzj . (3.12)

Now not all the dj can equal zero because if this were so, it would follow that
{x1, · · ·,xr} would be a linearly dependent set because one of the vectors would
equal a linear combination of the others. Therefore, (3.12) can be solved for one of
the zi, say zk, in terms of xl+1 and the other zi and just as in the above argument,
replace that zi with xl+1 to obtain

span


x1, · · ·xl,xl+1,

p-1 vectors here︷ ︸︸ ︷
z1, · · ·zk−1, zk+1, · · ·, zp


 = V.

Continue this way, eventually obtaining

span (x1, · · ·,xs) = V.

But then xr ∈ span (x1, · · ·,xs) contrary to the assumption that {x1, · · ·,xr} is
linearly independent. Therefore, r ≤ s as claimed.

Definition 3.7 A finite set of vectors, {x1, · · ·,xr} is a basis for Fn if

span (x1, · · ·,xr) = Fn

and {x1, · · ·,xr} is linearly independent.

Corollary 3.8 Let {x1, · · ·,xr} and {y1, · · ·,ys} be two bases2 of Fn. Then r =
s = n.

2This is the plural form of basis. We could say basiss but it would involve an inordinate amount
of hissing as in “The sixth shiek’s sixth sheep is sick”. This is the reason that bases is used instead
of basiss.
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Proof: From the exchange theorem, r ≤ s and s ≤ r. Now note the vectors,

ei =

1 is in the ith slot︷ ︸︸ ︷
(0, · · ·, 0, 1, 0 · ··, 0)

for i = 1, 2, · · ·, n are a basis for Fn. This proves the corollary.

Lemma 3.9 Let {v1, · · ·,vr} be a set of vectors. Then V ≡ span (v1, · · ·,vr) is a
subspace.

Proof: Suppose α, β are two scalars and let
∑r

k=1 ckvk and
∑r

k=1 dkvk are two
elements of V. What about

α

r∑

k=1

ckvk + β

r∑

k=1

dkvk?

Is it also in V ?

α

r∑

k=1

ckvk + β

r∑

k=1

dkvk =
r∑

k=1

(αck + βdk)vk ∈ V

so the answer is yes. This proves the lemma.

Definition 3.10 A finite set of vectors, {x1, · · ·,xr} is a basis for a subspace, V
of Fn if span (x1, · · ·,xr) = V and {x1, · · ·,xr} is linearly independent.

Corollary 3.11 Let {x1, · · ·,xr} and {y1, · · ·,ys} be two bases for V . Then r = s.

Proof: From the exchange theorem, r ≤ s and s ≤ r. Therefore, this proves
the corollary.

Definition 3.12 Let V be a subspace of Fn. Then dim (V ) read as the dimension
of V is the number of vectors in a basis.

Of course you should wonder right now whether an arbitrary subspace even has
a basis. In fact it does and this is in the next theorem. First, here is an interesting
lemma.

Lemma 3.13 Suppose v /∈ span (u1, · · ·,uk) and {u1, · · ·,uk} is linearly indepen-
dent. Then {u1, · · ·,uk,v} is also linearly independent.

Proof: Suppose
∑k

i=1 ciui + dv = 0. It is required to verify that each ci = 0
and that d = 0. But if d 6= 0, then you can solve for v as a linear combination of
the vectors, {u1, · · ·,uk},

v = −
k∑

i=1

(ci

d

)
ui

contrary to assumption. Therefore, d = 0. But then
∑k

i=1 ciui = 0 and the linear
independence of {u1, · · ·,uk} implies each ci = 0 also. This proves the lemma.
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Theorem 3.14 Let V be a nonzero subspace of Fn. Then V has a basis.

Proof: Let v1 ∈ V where v1 6= 0. If span {v1} = V, stop. {v1} is a basis for V .
Otherwise, there exists v2 ∈ V which is not in span {v1} . By Lemma 3.13 {v1,v2}
is a linearly independent set of vectors. If span {v1,v2} = V stop, {v1,v2} is a basis
for V. If span {v1,v2} 6= V, then there exists v3 /∈ span {v1,v2} and {v1,v2,v3} is
a larger linearly independent set of vectors. Continuing this way, the process must
stop before n + 1 steps because if not, it would be possible to obtain n + 1 linearly
independent vectors contrary to the exchange theorem. This proves the theorem.

In words the following corollary states that any linearly independent set of vec-
tors can be enlarged to form a basis.

Corollary 3.15 Let V be a subspace of Fn and let {v1, · · ·,vr} be a linearly inde-
pendent set of vectors in V . Then either it is a basis for V or there exist vectors,
vr+1, · · ·,vs such that {v1, · · ·,vr,vr+1, · · ·,vs} is a basis for V.

Proof: This follows immediately from the proof of Theorem 3.14. You do exactly
the same argument except you start with {v1, · · ·,vr} rather than {v1}.

It is also true that any spanning set of vectors can be restricted to obtain a
basis.

Theorem 3.16 Let V be a subspace of Fn and suppose span (u1 · ··,up) = V
where the ui are nonzero vectors. Then there exist vectors, {v1 · ··,vr} such that
{v1 · ··,vr} ⊆ {u1 · ··,up} and {v1 · ··,vr} is a basis for V .

Proof: Let r be the smallest positive integer with the property that for some
set, {v1 · ··,vr} ⊆ {u1 · ··,up} ,

span (v1 · ··,vr) = V.

Then r ≤ p and it must be the case that {v1 · ··,vr} is linearly independent because
if it were not so, one of the vectors, say vk would be a linear combination of the
others. But then you could delete this vector from {v1 · ··,vr} and the resulting list
of r − 1 vectors would still span V contrary to the definition of r. This proves the
theorem.

3.3 An Application To Matrices

The following is a theorem of major significance.

Theorem 3.17 Suppose A is an n × n matrix. Then A is one to one if and only
if A is onto. Also, if B is an n× n matrix and AB = I, then it follows BA = I.

Proof: First suppose A is one to one. Consider the vectors, {Ae1, · · ·, Aen}
where ek is the column vector which is all zeros except for a 1 in the kth position.
This set of vectors is linearly independent because if

n∑

k=1

ckAek = 0,
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then since A is linear,

A

(
n∑

k=1

ckek

)
= 0

and since A is one to one, it follows

n∑

k=1

ckek = 03

which implies each ck = 0. Therefore, {Ae1, · · ·, Aen}must be a basis for Fn because
if not there would exist a vector, y /∈ span (Ae1, · · ·, Aen) and then by Lemma 3.13,
{Ae1, · · ·, Aen,y} would be an independent set of vectors having n+1 vectors in it,
contrary to the exchange theorem. It follows that for y ∈ Fn there exist constants,
ci such that

y =
n∑

k=1

ckAek = A

(
n∑

k=1

ckek

)

showing that, since y was arbitrary, A is onto.
Next suppose A is onto. This means the span of the columns of A equals Fn. If

these columns are not linearly independent, then by Lemma 3.5 on Page 40, one of
the columns is a linear combination of the others and so the span of the columns of
A equals the span of the n− 1 other columns. This violates the exchange theorem
because {e1, · · ·, en} would be a linearly independent set of vectors contained in the
span of only n− 1 vectors. Therefore, the columns of A must be independent and
this equivalent to saying that Ax = 0 if and only if x = 0. This implies A is one to
one because if Ax = Ay, then A (x− y) = 0 and so x− y = 0.

Now suppose AB = I. Why is BA = I? Since AB = I it follows B is one to
one since otherwise, there would exist, x 6= 0 such that Bx = 0 and then ABx =
A0 = 0 6= Ix. Therefore, from what was just shown, B is also onto. In addition to
this, A must be one to one because if Ay = 0, then y = Bx for some x and then
x = ABx = Ay = 0 showing y = 0. Now from what is given to be so, it follows
(AB) A = A and so using the associative law for matrix multiplication,

A (BA)−A = A (BA− I) = 0.

But this means (BA− I)x = 0 for all x since otherwise, A would not be one to
one. Hence BA = I as claimed. This proves the theorem.

This theorem shows that if an n×n matrix, B acts like an inverse when multiplied
on one side of A it follows that B = A−1and it will act like an inverse on both sides
of A.

The conclusion of this theorem pertains to square matrices only. For example,
let

A =




1 0
0 1
1 0


 , B =

(
1 0 0
1 1 −1

)
(3.13)
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Then

BA =
(

1 0
0 1

)

but

AB =




1 0 0
1 1 −1
1 0 0


 .

3.4 The Mathematical Theory Of Determinants

It is assumed the reader is familiar with matrices. However, the topic of determi-
nants is often neglected in linear algebra books these days. Therefore, I will give a
fairly quick and grubby treatment of this topic which includes all the main results.
Two books which give a good introduction to determinants are Apostol [3] and
Rudin [35]. A recent book which also has a good introduction is Baker [7]

Let (i1, · · ·, in) be an ordered list of numbers from {1, · · ·, n} . This means the
order is important so (1, 2, 3) and (2, 1, 3) are different.

The following Lemma will be essential in the definition of the determinant.

Lemma 3.18 There exists a unique function, sgnn which maps each list of n num-
bers from {1, · · ·, n} to one of the three numbers, 0, 1, or −1 which also has the
following properties.

sgnn (1, · · ·, n) = 1 (3.14)

sgnn (i1, · · ·, p, · · ·, q, · · ·, in) = − sgnn (i1, · · ·, q, · · ·, p, · · ·, in) (3.15)

In words, the second property states that if two of the numbers are switched, the
value of the function is multiplied by −1. Also, in the case where n > 1 and
{i1, · · ·, in} = {1, · · ·, n} so that every number from {1, · · ·, n} appears in the ordered
list, (i1, · · ·, in) ,

sgnn (i1, · · ·, iθ−1, n, iθ+1, · · ·, in) ≡
(−1)n−θ sgnn−1 (i1, · · ·, iθ−1, iθ+1, · · ·, in) (3.16)

where n = iθ in the ordered list, (i1, · · ·, in) .

Proof: To begin with, it is necessary to show the existence of such a func-
tion. This is clearly true if n = 1. Define sgn1 (1) ≡ 1 and observe that it works.
No switching is possible. In the case where n = 2, it is also clearly true. Let
sgn2 (1, 2) = 1 and sgn2 (2, 1) = 0 while sgn2 (2, 2) = sgn2 (1, 1) = 0 and verify it
works. Assuming such a function exists for n, sgnn+1 will be defined in terms of
sgnn . If there are any repeated numbers in (i1, · · ·, in+1) , sgnn+1 (i1, · · ·, in+1) ≡ 0.
If there are no repeats, then n + 1 appears somewhere in the ordered list. Let
θ be the position of the number n + 1 in the list. Thus, the list is of the form
(i1, · · ·, iθ−1, n + 1, iθ+1, · · ·, in+1) . From 3.16 it must be that

sgnn+1 (i1, · · ·, iθ−1, n + 1, iθ+1, · · ·, in+1) ≡
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(−1)n+1−θ sgnn (i1, · · ·, iθ−1, iθ+1, · · ·, in+1) .

It is necessary to verify this satisfies 3.14 and 3.15 with n replaced with n + 1. The
first of these is obviously true because

sgnn+1 (1, · · ·, n, n + 1) ≡ (−1)n+1−(n+1) sgnn (1, · · ·, n) = 1.

If there are repeated numbers in (i1, · · ·, in+1) , then it is obvious 3.15 holds because
both sides would equal zero from the above definition. It remains to verify 3.15 in
the case where there are no numbers repeated in (i1, · · ·, in+1) . Consider

sgnn+1

(
i1, · · ·, r

p, · · ·, s
q, · · ·, in+1

)
,

where the r above the p indicates the number, p is in the rth position and the s
above the q indicates that the number, q is in the sth position. Suppose first that
r < θ < s. Then

sgnn+1

(
i1, · · ·, r

p, · · ·, θ
n + 1, · · ·, s

q, · · ·, in+1

)
≡

(−1)n+1−θ sgnn

(
i1, · · ·, r

p, · · ·, s−1
q , · · ·, in+1

)

while

sgnn+1

(
i1, · · ·, r

q, · · ·, θ
n + 1, · · ·, s

p, · · ·, in+1

)
=

(−1)n+1−θ sgnn

(
i1, · · ·, r

q, · · ·, s−1
p , · · ·, in+1

)

and so, by induction, a switch of p and q introduces a minus sign in the result.
Similarly, if θ > s or if θ < r it also follows that 3.15 holds. The interesting case
is when θ = r or θ = s. Consider the case where θ = r and note the other case is
entirely similar.

sgnn+1

(
i1, · · ·,

r
n + 1, · · ·, s

q, · · ·, in+1

)
=

(−1)n+1−r sgnn

(
i1, · · ·, s−1

q , · · ·, in+1

)
(3.17)

while
sgnn+1

(
i1, · · ·, r

q, · · ·, s
n + 1, · · ·, in+1

)
=

(−1)n+1−s sgnn

(
i1, · · ·, r

q, · · ·, in+1

)
. (3.18)

By making s− 1− r switches, move the q which is in the s− 1th position in 3.17 to
the rth position in 3.18. By induction, each of these switches introduces a factor of
−1 and so

sgnn

(
i1, · · ·, s−1

q , · · ·, in+1

)
= (−1)s−1−r sgnn

(
i1, · · ·, r

q, · · ·, in+1

)
.
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Therefore,

sgnn+1

(
i1, · · ·,

r
n + 1, · · ·, s

q, · · ·, in+1

)
= (−1)n+1−r sgnn

(
i1, · · ·, s−1

q , · · ·, in+1

)

= (−1)n+1−r (−1)s−1−r sgnn

(
i1, · · ·, r

q, · · ·, in+1

)

= (−1)n+s sgnn

(
i1, · · ·, r

q, · · ·, in+1

)
= (−1)2s−1 (−1)n+1−s sgnn

(
i1, · · ·, r

q, · · ·, in+1

)

= − sgnn+1

(
i1, · · ·, r

q, · · ·, s
n + 1, · · ·, in+1

)
.

This proves the existence of the desired function.
To see this function is unique, note that you can obtain any ordered list of

distinct numbers from a sequence of switches. If there exist two functions, f and
g both satisfying 3.14 and 3.15, you could start with f (1, · · ·, n) = g (1, · · ·, n)
and applying the same sequence of switches, eventually arrive at f (i1, · · ·, in) =
g (i1, · · ·, in) . If any numbers are repeated, then 3.15 gives both functions are equal
to zero for that ordered list. This proves the lemma.

In what follows sgn will often be used rather than sgnn because the context
supplies the appropriate n.

Definition 3.19 Let f be a real valued function which has the set of ordered lists
of numbers from {1, · · ·, n} as its domain. Define

∑

(k1,···,kn)

f (k1 · · · kn)

to be the sum of all the f (k1 · · · kn) for all possible choices of ordered lists (k1, · · ·, kn)
of numbers of {1, · · ·, n} . For example,

∑

(k1,k2)

f (k1, k2) = f (1, 2) + f (2, 1) + f (1, 1) + f (2, 2) .

Definition 3.20 Let (aij) = A denote an n × n matrix. The determinant of A,
denoted by det (A) is defined by

det (A) ≡
∑

(k1,···,kn)

sgn (k1, · · ·, kn) a1k1 · · · ankn

where the sum is taken over all ordered lists of numbers from {1, · · ·, n}. Note it
suffices to take the sum over only those ordered lists in which there are no repeats
because if there are, sgn (k1, · · ·, kn) = 0 and so that term contributes 0 to the sum.

Let A be an n× n matrix, A = (aij) and let (r1, · · ·, rn) denote an ordered list
of n numbers from {1, · · ·, n}. Let A (r1, · · ·, rn) denote the matrix whose kth row
is the rk row of the matrix, A. Thus

det (A (r1, · · ·, rn)) =
∑

(k1,···,kn)

sgn (k1, · · ·, kn) ar1k1 · · · arnkn (3.19)
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and
A (1, · · ·, n) = A.

Proposition 3.21 Let
(r1, · · ·, rn)

be an ordered list of numbers from {1, · · ·, n}. Then

sgn (r1, · · ·, rn) det (A)

=
∑

(k1,···,kn)

sgn (k1, · · ·, kn) ar1k1 · · · arnkn
(3.20)

= det (A (r1, · · ·, rn)) . (3.21)

Proof: Let (1, · · ·, n) = (1, · · ·, r, · · ·s, · · ·, n) so r < s.

det (A (1, · · ·, r, · · ·, s, · · ·, n)) = (3.22)

∑

(k1,···,kn)

sgn (k1, · · ·, kr, · · ·, ks, · · ·, kn) a1k1 · · · arkr · · · asks · · · ankn ,

and renaming the variables, calling ks, kr and kr, ks, this equals

=
∑

(k1,···,kn)

sgn (k1, · · ·, ks, · · ·, kr, · · ·, kn) a1k1 · · · arks · · · askr · · · ankn

=
∑

(k1,···,kn)

− sgn


k1, · · ·,

These got switched︷ ︸︸ ︷
kr, · · ·, ks , · · ·, kn


 a1k1 · · · askr · · · arks · · · ankn

= − det (A (1, · · ·, s, · · ·, r, · · ·, n)) . (3.23)

Consequently,
det (A (1, · · ·, s, · · ·, r, · · ·, n)) =

− det (A (1, · · ·, r, · · ·, s, · · ·, n)) = − det (A)

Now letting A (1, · · ·, s, · · ·, r, · · ·, n) play the role of A, and continuing in this way,
switching pairs of numbers,

det (A (r1, · · ·, rn)) = (−1)p det (A)

where it took p switches to obtain(r1, · · ·, rn) from (1, · · ·, n). By Lemma 3.18, this
implies

det (A (r1, · · ·, rn)) = (−1)p det (A) = sgn (r1, · · ·, rn) det (A)

and proves the proposition in the case when there are no repeated numbers in the
ordered list, (r1, · · ·, rn). However, if there is a repeat, say the rth row equals the
sth row, then the reasoning of 3.22 -3.23 shows that A (r1, · · ·, rn) = 0 and also
sgn (r1, · · ·, rn) = 0 so the formula holds in this case also.
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Observation 3.22 There are n! ordered lists of distinct numbers from {1, · · ·, n} .

To see this, consider n slots placed in order. There are n choices for the first
slot. For each of these choices, there are n − 1 choices for the second. Thus there
are n (n− 1) ways to fill the first two slots. Then for each of these ways there are
n− 2 choices left for the third slot. Continuing this way, there are n! ordered lists
of distinct numbers from {1, · · ·, n} as stated in the observation.

With the above, it is possible to give a more symmetric description of the de-
terminant from which it will follow that det (A) = det

(
AT

)
.

Corollary 3.23 The following formula for det (A) is valid.

det (A) =
1
n!
·

∑

(r1,···,rn)

∑

(k1,···,kn)

sgn (r1, · · ·, rn) sgn (k1, · · ·, kn) ar1k1 · · · arnkn
. (3.24)

And also det
(
AT

)
= det (A) where AT is the transpose of A. (Recall that for

AT =
(
aT

ij

)
, aT

ij = aji.)

Proof: From Proposition 3.21, if the ri are distinct,

det (A) =
∑

(k1,···,kn)

sgn (r1, · · ·, rn) sgn (k1, · · ·, kn) ar1k1 · · · arnkn .

Summing over all ordered lists, (r1, · · ·, rn) where the ri are distinct, (If the ri are
not distinct, sgn (r1, · · ·, rn) = 0 and so there is no contribution to the sum.)

n! det (A) =
∑

(r1,···,rn)

∑

(k1,···,kn)

sgn (r1, · · ·, rn) sgn (k1, · · ·, kn) ar1k1 · · · arnkn .

This proves the corollary since the formula gives the same number for A as it does
for AT .

Corollary 3.24 If two rows or two columns in an n×n matrix, A, are switched, the
determinant of the resulting matrix equals (−1) times the determinant of the original
matrix. If A is an n × n matrix in which two rows are equal or two columns are
equal then det (A) = 0. Suppose the ith row of A equals (xa1 + yb1, · · ·, xan + ybn).
Then

det (A) = xdet (A1) + y det (A2)

where the ith row of A1 is (a1, · · ·, an) and the ith row of A2 is (b1, · · ·, bn) , all
other rows of A1 and A2 coinciding with those of A. In other words, det is a linear
function of each row A. The same is true with the word “row” replaced with the
word “column”.
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Proof: By Proposition 3.21 when two rows are switched, the determinant of the
resulting matrix is (−1) times the determinant of the original matrix. By Corollary
3.23 the same holds for columns because the columns of the matrix equal the rows
of the transposed matrix. Thus if A1 is the matrix obtained from A by switching
two columns,

det (A) = det
(
AT

)
= − det

(
AT

1

)
= − det (A1) .

If A has two equal columns or two equal rows, then switching them results in the
same matrix. Therefore, det (A) = −det (A) and so det (A) = 0.

It remains to verify the last assertion.

det (A) ≡
∑

(k1,···,kn)

sgn (k1, · · ·, kn) a1k1 · · · (xaki
+ ybki

) · · · ankn

= x
∑

(k1,···,kn)

sgn (k1, · · ·, kn) a1k1 · · · aki
· · · ankn

+y
∑

(k1,···,kn)

sgn (k1, · · ·, kn) a1k1 · · · bki · · · ankn

≡ xdet (A1) + y det (A2) .

The same is true of columns because det
(
AT

)
= det (A) and the rows of AT are

the columns of A.

Definition 3.25 A vector, w, is a linear combination of the vectors {v1, · · ·,vr} if
there exists scalars, c1, · · ·cr such that w =

∑r
k=1 ckvk. This is the same as saying

w ∈ span {v1, · · ·,vr} .

The following corollary is also of great use.

Corollary 3.26 Suppose A is an n× n matrix and some column (row) is a linear
combination of r other columns (rows). Then det (A) = 0.

Proof: Let A =
(

a1 · · · an

)
be the columns of A and suppose the condition

that one column is a linear combination of r of the others is satisfied. Then by using
Corollary 3.24 you may rearrange the columns to have the nth column a linear
combination of the first r columns. Thus an =

∑r
k=1 ckak and so

det (A) = det
(

a1 · · · ar · · · an−1

∑r
k=1 ckak

)
.

By Corollary 3.24

det (A) =
r∑

k=1

ck det
(

a1 · · · ar · · · an−1 ak

)
= 0.

The case for rows follows from the fact that det (A) = det
(
AT

)
. This proves the

corollary.
Recall the following definition of matrix multiplication.
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Definition 3.27 If A and B are n × n matrices, A = (aij) and B = (bij), AB =
(cij) where

cij ≡
n∑

k=1

aikbkj .

One of the most important rules about determinants is that the determinant of
a product equals the product of the determinants.

Theorem 3.28 Let A and B be n× n matrices. Then

det (AB) = det (A) det (B) .

Proof: Let cij be the ijth entry of AB. Then by Proposition 3.21,

det (AB) =

∑

(k1,···,kn)

sgn (k1, · · ·, kn) c1k1 · · · cnkn

=
∑

(k1,···,kn)

sgn (k1, · · ·, kn)

(∑
r1

a1r1br1k1

)
· · ·

(∑
rn

anrnbrnkn

)

=
∑

(r1···,rn)

∑

(k1,···,kn)

sgn (k1, · · ·, kn) br1k1 · · · brnkn (a1r1 · · · anrn)

=
∑

(r1···,rn)

sgn (r1 · · · rn) a1r1 · · · anrn det (B) = det (A) det (B) .

This proves the theorem.

Lemma 3.29 Suppose a matrix is of the form

M =
(

A ∗
0 a

)
(3.25)

or

M =
(

A 0
∗ a

)
(3.26)

where a is a number and A is an (n− 1) × (n− 1) matrix and ∗ denotes either a
column or a row having length n− 1 and the 0 denotes either a column or a row of
length n− 1 consisting entirely of zeros. Then

det (M) = adet (A) .

Proof: Denote M by (mij) . Thus in the first case, mnn = a and mni = 0 if
i 6= n while in the second case, mnn = a and min = 0 if i 6= n. From the definition
of the determinant,

det (M) ≡
∑

(k1,···,kn)

sgnn (k1, · · ·, kn)m1k1 · · ·mnkn
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Letting θ denote the position of n in the ordered list, (k1, · · ·, kn) then using the
earlier conventions used to prove Lemma 3.18, det (M) equals

∑

(k1,···,kn)

(−1)n−θ sgnn−1

(
k1, · · ·, kθ−1,

θ

kθ+1, · · ·,
n−1

kn

)
m1k1 · · ·mnkn

Now suppose 3.26. Then if kn 6= n, the term involving mnkn in the above expression
equals zero. Therefore, the only terms which survive are those for which θ = n or
in other words, those for which kn = n. Therefore, the above expression reduces to

a
∑

(k1,···,kn−1)

sgnn−1 (k1, · · ·kn−1)m1k1 · · ·m(n−1)kn−1 = adet (A) .

To get the assertion in the situation of 3.25 use Corollary 3.23 and 3.26 to write

det (M) = det
(
MT

)
= det

((
AT 0
∗ a

))
= a det

(
AT

)
= a det (A) .

This proves the lemma.
In terms of the theory of determinants, arguably the most important idea is

that of Laplace expansion along a row or a column. This will follow from the above
definition of a determinant.

Definition 3.30 Let A = (aij) be an n × n matrix. Then a new matrix called
the cofactor matrix, cof (A) is defined by cof (A) = (cij) where to obtain cij delete
the ith row and the jth column of A, take the determinant of the (n− 1)× (n− 1)
matrix which results, (This is called the ijth minor of A. ) and then multiply this
number by (−1)i+j. To make the formulas easier to remember, cof (A)ij will denote
the ijth entry of the cofactor matrix.

The following is the main result. Earlier this was given as a definition and the
outrageous totally unjustified assertion was made that the same number would be
obtained by expanding the determinant along any row or column. The following
theorem proves this assertion.

Theorem 3.31 Let A be an n× n matrix where n ≥ 2. Then

det (A) =
n∑

j=1

aij cof (A)ij =
n∑

i=1

aij cof (A)ij . (3.27)

The first formula consists of expanding the determinant along the ith row and the
second expands the determinant along the jth column.

Proof: Let (ai1, · · ·, ain) be the ith row of A. Let Bj be the matrix obtained
from A by leaving every row the same except the ith row which in Bj equals
(0, · · ·, 0, aij , 0, · · ·, 0) . Then by Corollary 3.24,

det (A) =
n∑

j=1

det (Bj)
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Denote by Aij the (n− 1) × (n− 1) matrix obtained by deleting the ith row and
the jth column of A. Thus cof (A)ij ≡ (−1)i+j det

(
Aij

)
. At this point, recall that

from Proposition 3.21, when two rows or two columns in a matrix, M, are switched,
this results in multiplying the determinant of the old matrix by −1 to get the
determinant of the new matrix. Therefore, by Lemma 3.29,

det (Bj) = (−1)n−j (−1)n−i det
((

Aij ∗
0 aij

))

= (−1)i+j det
((

Aij ∗
0 aij

))
= aij cof (A)ij .

Therefore,

det (A) =
n∑

j=1

aij cof (A)ij

which is the formula for expanding det (A) along the ith row. Also,

det (A) = det
(
AT

)
=

n∑

j=1

aT
ij cof

(
AT

)
ij

=
n∑

j=1

aji cof (A)ji

which is the formula for expanding det (A) along the ith column. This proves the
theorem.

Note that this gives an easy way to write a formula for the inverse of an n× n
matrix.

Theorem 3.32 A−1 exists if and only if det(A) 6= 0. If det(A) 6= 0, then A−1 =(
a−1

ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.

Proof: By Theorem 3.31 and letting (air) = A, if det (A) 6= 0,
n∑

i=1

air cof (A)ir det(A)−1 = det(A) det(A)−1 = 1.

Now consider
n∑

i=1

air cof (A)ik det(A)−1

when k 6= r. Replace the kth column with the rth column to obtain a matrix, Bk

whose determinant equals zero by Corollary 3.24. However, expanding this matrix
along the kth column yields

0 = det (Bk) det (A)−1 =
n∑

i=1

air cof (A)ik det (A)−1
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Summarizing,
n∑

i=1

air cof (A)ik det (A)−1 = δrk.

Using the other formula in Theorem 3.31, and similar reasoning,

n∑

j=1

arj cof (A)kj det (A)−1 = δrk

This proves that if det (A) 6= 0, then A−1 exists with A−1 =
(
a−1

ij

)
, where

a−1
ij = cof (A)ji det (A)−1

.

Now suppose A−1 exists. Then by Theorem 3.28,

1 = det (I) = det
(
AA−1

)
= det (A) det

(
A−1

)

so det (A) 6= 0. This proves the theorem.
The next corollary points out that if an n × n matrix, A has a right or a left

inverse, then it has an inverse.

Corollary 3.33 Let A be an n×n matrix and suppose there exists an n×n matrix,
B such that BA = I. Then A−1 exists and A−1 = B. Also, if there exists C an
n× n matrix such that AC = I, then A−1 exists and A−1 = C.

Proof: Since BA = I, Theorem 3.28 implies

detB detA = 1

and so detA 6= 0. Therefore from Theorem 3.32, A−1 exists. Therefore,

A−1 = (BA)A−1 = B
(
AA−1

)
= BI = B.

The case where CA = I is handled similarly.
The conclusion of this corollary is that left inverses, right inverses and inverses

are all the same in the context of n× n matrices.
Theorem 3.32 says that to find the inverse, take the transpose of the cofactor

matrix and divide by the determinant. The transpose of the cofactor matrix is
called the adjugate or sometimes the classical adjoint of the matrix A. It is an
abomination to call it the adjoint although you do sometimes see it referred to in
this way. In words, A−1 is equal to one over the determinant of A times the adjugate
matrix of A.

In case you are solving a system of equations, Ax = y for x, it follows that if
A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y



56 IMPORTANT LINEAR ALGEBRA

thus solving the system. Now in the case that A−1 exists, there is a formula for
A−1 given above. Using this formula,

xi =
n∑

j=1

a−1
ij yj =

n∑

j=1

1
det (A)

cof (A)ji yj .

By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det



∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗


 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·, yn)T ,
and the determinant of this modified matrix is taken and divided by det (A). This
formula is known as Cramer’s rule.

Definition 3.34 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus
such a matrix equals zero below the main diagonal, the entries of the form Mii as
shown. 



∗ ∗ · · · ∗
0 ∗ . . .

...
...

. . . . . . ∗
0 · · · 0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above
the main diagonal are equal to zero.

With this definition, here is a simple corollary of Theorem 3.31.

Corollary 3.35 Let M be an upper (lower) triangular matrix. Then det (M) is
obtained by taking the product of the entries on the main diagonal.

Definition 3.36 A submatrix of a matrix A is the rectangular array of numbers
obtained by deleting some rows and columns of A. Let A be an m× n matrix. The
determinant rank of the matrix equals r where r is the largest number such that
some r × r submatrix of A has a non zero determinant. The row rank is defined
to be the dimension of the span of the rows. The column rank is defined to be the
dimension of the span of the columns.

Theorem 3.37 If A has determinant rank, r, then there exist r rows of the matrix
such that every other row is a linear combination of these r rows.

Proof: Suppose the determinant rank of A = (aij) equals r. If rows and columns
are interchanged, the determinant rank of the modified matrix is unchanged. Thus
rows and columns can be interchanged to produce an r× r matrix in the upper left
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corner of the matrix which has non zero determinant. Now consider the r+1×r+1
matrix, M, 



a11 · · · a1r a1p

...
...

...
ar1 · · · arr arp

al1 · · · alr alp




where C will denote the r × r matrix in the upper left corner which has non zero
determinant. I claim det (M) = 0.

There are two cases to consider in verifying this claim. First, suppose p > r.
Then the claim follows from the assumption that A has determinant rank r. On the
other hand, if p < r, then the determinant is zero because there are two identical
columns. Expand the determinant along the last column and divide by det (C) to
obtain

alp = −
r∑

i=1

cof (M)ip

det (C)
aip.

Now note that cof (M)ip does not depend on p. Therefore the above sum is of the
form

alp =
r∑

i=1

miaip

which shows the lth row is a linear combination of the first r rows of A. Since l is
arbitrary, this proves the theorem.

Corollary 3.38 The determinant rank equals the row rank.

Proof: From Theorem 3.37, the row rank is no larger than the determinant
rank. Could the row rank be smaller than the determinant rank? If so, there exist
p rows for p < r such that the span of these p rows equals the row space. But this
implies that the r × r submatrix whose determinant is nonzero also has row rank
no larger than p which is impossible if its determinant is to be nonzero because at
least one row is a linear combination of the others.

Corollary 3.39 If A has determinant rank, r, then there exist r columns of the
matrix such that every other column is a linear combination of these r columns.
Also the column rank equals the determinant rank.

Proof: This follows from the above by considering AT . The rows of AT are the
columns of A and the determinant rank of AT and A are the same. Therefore, from
Corollary 3.38, column rank of A = row rank of AT = determinant rank of AT =
determinant rank of A.

The following theorem is of fundamental importance and ties together many of
the ideas presented above.

Theorem 3.40 Let A be an n× n matrix. Then the following are equivalent.
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1. det (A) = 0.

2. A, AT are not one to one.

3. A is not onto.

Proof: Suppose det (A) = 0. Then the determinant rank of A = r < n.
Therefore, there exist r columns such that every other column is a linear com-
bination of these columns by Theorem 3.37. In particular, it follows that for
some m, the mth column is a linear combination of all the others. Thus letting
A =

(
a1 · · · am · · · an

)
where the columns are denoted by ai, there exists

scalars, αi such that
am =

∑

k 6=m

αkak.

Now consider the column vector, x ≡ (
α1 · · · −1 · · · αn

)T . Then

Ax = −am +
∑

k 6=m

αkak = 0.

Since also A0 = 0, it follows A is not one to one. Similarly, AT is not one to one
by the same argument applied to AT . This verifies that 1.) implies 2.).

Now suppose 2.). Then since AT is not one to one, it follows there exists x 6= 0
such that

AT x = 0.

Taking the transpose of both sides yields

xT A = 0

where the 0 is a 1× n matrix or row vector. Now if Ay = x, then

|x|2 = xT (Ay) =
(
xT A

)
y = 0y = 0

contrary to x 6= 0. Consequently there can be no y such that Ay = x and so A is
not onto. This shows that 2.) implies 3.).

Finally, suppose 3.). If 1.) does not hold, then det (A) 6= 0 but then from
Theorem 3.32 A−1 exists and so for every y ∈ Fn there exists a unique x ∈ Fn such
that Ax = y. In fact x = A−1y. Thus A would be onto contrary to 3.). This shows
3.) implies 1.) and proves the theorem.

Corollary 3.41 Let A be an n× n matrix. Then the following are equivalent.

1. det(A) 6= 0.

2. A and AT are one to one.

3. A is onto.

Proof: This follows immediately from the above theorem.
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3.5 The Cayley Hamilton Theorem

Definition 3.42 Let A be an n×n matrix. The characteristic polynomial is defined
as

pA (t) ≡ det (tI −A)

and the solutions to pA (t) = 0 are called eigenvalues. For A a matrix and p (t) =
tn + an−1t

n−1 + · · ·+ a1t + a0, denote by p (A) the matrix defined by

p (A) ≡ An + an−1A
n−1 + · · ·+ a1A + a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix.

The Cayley Hamilton theorem states that every matrix satisfies its characteristic
equation, that equation defined by PA (t) = 0. It is one of the most important
theorems in linear algebra. The following lemma will help with its proof.

Lemma 3.43 Suppose for all |λ| large enough,

A0 + A1λ + · · ·+ Amλm = 0,

where the Ai are n× n matrices. Then each Ai = 0.

Proof: Multiply by λ−m to obtain

A0λ
−m + A1λ

−m+1 + · · ·+ Am−1λ
−1 + Am = 0.

Now let |λ| → ∞ to obtain Am = 0. With this, multiply by λ to obtain

A0λ
−m+1 + A1λ

−m+2 + · · ·+ Am−1 = 0.

Now let |λ| → ∞ to obtain Am−1 = 0. Continue multiplying by λ and letting
λ →∞ to obtain that all the Ai = 0. This proves the lemma.

With the lemma, here is a simple corollary.

Corollary 3.44 Let Ai and Bi be n× n matrices and suppose

A0 + A1λ + · · ·+ Amλm = B0 + B1λ + · · ·+ Bmλm

for all |λ| large enough. Then Ai = Bi for all i. Consequently if λ is replaced by
any n× n matrix, the two sides will be equal. That is, for C any n× n matrix,

A0 + A1C + · · ·+ AmCm = B0 + B1C + · · ·+ BmCm.

Proof: Subtract and use the result of the lemma.
With this preparation, here is a relatively easy proof of the Cayley Hamilton

theorem.

Theorem 3.45 Let A be an n × n matrix and let p (λ) ≡ det (λI −A) be the
characteristic polynomial. Then p (A) = 0.
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Proof: Let C (λ) equal the transpose of the cofactor matrix of (λI −A) for |λ|
large. (If |λ| is large enough, then λ cannot be in the finite list of eigenvalues of A

and so for such λ, (λI −A)−1 exists.) Therefore, by Theorem 3.32

C (λ) = p (λ) (λI −A)−1
.

Note that each entry in C (λ) is a polynomial in λ having degree no more than n−1.
Therefore, collecting the terms,

C (λ) = C0 + C1λ + · · ·+ Cn−1λ
n−1

for Cj some n× n matrix. It follows that for all |λ| large enough,

(A− λI)
(
C0 + C1λ + · · ·+ Cn−1λ

n−1
)

= p (λ) I

and so Corollary 3.44 may be used. It follows the matrix coefficients corresponding
to equal powers of λ are equal on both sides of this equation. Therefore, if λ is
replaced with A, the two sides will be equal. Thus

0 = (A−A)
(
C0 + C1A + · · ·+ Cn−1A

n−1
)

= p (A) I = p (A) .

This proves the Cayley Hamilton theorem.

3.6 An Identity Of Cauchy

There is a very interesting identity for determinants due to Cauchy.

Theorem 3.46 The following identity holds.

∏

i,j

(ai + bj)

∣∣∣∣∣∣∣

1
a1+b1

· · · 1
a1+bn

...
...

1
an+b1

· · · 1
an+bn

∣∣∣∣∣∣∣
=

∏

j<i

(ai − aj) (bi − bj) . (3.28)

Proof: What is the exponent of a2 on the right? It occurs in (a2 − a1) and in
(am − a2) for m > 2. Therefore, there are exactly n − 1 factors which contain a2.
Therefore, a2 has an exponent of n − 1. Similarly, each ak is raised to the n − 1
power and the same holds for the bk as well. Therefore, the right side of 3.28 is of
the form

can−1
1 an−1

2 · · · an−1
n bn−1

1 · · · bn−1
n

where c is some constant. Now consider the left side of 3.28.
This is of the form

1
n!

∏

i,j

(ai + bj)
∑

i1···in,j1,···jn

sgn (i1 · · · in) sgn (j1 · · · jn)
1

ai1 + bj1

1
ai2 + bj2

··· 1
ain + bjn

.
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For a given i1 ···in, j1, ···jn, let S (i1 · · · in, j1, · · ·jn) ≡ {(i1, j1) , (i2, j2) · ··, (in, jn)} .
This equals

1
n!

∑

i1···in,j1,···jn

sgn (i1 · · · in) sgn (j1 · · · jn)
∏

(i,j)/∈{(i1,j1),(i2,j2)···,(in,jn)}
(ai + bj)

where you can assume the ik are all distinct and the jk are also all distinct because
otherwise sgn will produce a 0. Therefore, in

∏
(i,j)/∈{(i1,j1),(i2,j2)···,(in,jn)} (ai + bj) ,

there are exactly n− 1 factors which contain ak for each k and similarly, there are
exactly n− 1 factors which contain bk for each k. Therefore, the left side of 3.28 is
of the form

dan−1
1 an−1

2 · · · an−1
n bn−1

1 · · · bn−1
n

and it remains to verify that c = d. Using the properties of determinants, the left
side of 3.28 is of the form

∏

i 6=j

(ai + bj)

∣∣∣∣∣∣∣∣∣

1 a1+b1
a1+b2

· · · a1+b1
a1+bn

a2+b2
a2+b1

1 · · · a2+b2
a2+bn

...
...

. . .
...

an+bn

an+b1
an+bn

an+b2
· · · 1

∣∣∣∣∣∣∣∣∣

Let ak → −bk. Then this converges to
∏

i 6=j (−bi + bj) . The right side of 3.28
converges to ∏

j<i

(−bi + bj) (bi − bj) =
∏

i 6=j

(−bi + bj) .

Therefore, d = c and this proves the identity.

3.7 Block Multiplication Of Matrices

Suppose A is a matrix of the form



A11 · · · A1m

...
. . .

...
Ar1 · · · Arm


 (3.29)

where Aij is a si×pj matrix where si does not depend on j and pj does not depend
on i. Such a matrix is called a block matrix. Let n =

∑
j pj and k =

∑
i si so A

is an k × n matrix. What is Ax where x ∈ Fn? From the process of multiplying a
matrix times a vector, the following lemma follows.

Lemma 3.47 Let A be an m× n block matrix as in 3.29 and let x ∈ Fn. Then Ax
is of the form

Ax =




∑
j A1jxj

...∑
j Arjxj




where x =(x1, · · ·,xm)T and xi ∈ Fpi .
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Suppose also that B is a l × k block matrix of the form



B11 · · · B1p

...
. . .

...
Bm1 · · · Bmp


 (3.30)

and that for all i, j, it makes sense to multiply BisAsj for all s ∈ {1, · · ·,m}. (That
is the two matrices are conformable.) and that for each s,BisAsj is the same size
so that it makes sense to write

∑
s BisAsj .

Theorem 3.48 Let B be an l×k block matrix as in 3.30 and let A be a k×n block
matrix as in 3.29 such that Bis is conformable with Asj and each product, BisAsj

is of the same size so they can be added. Then BA is a l × n block matrix having
rp blocks such that the ijth block is of the form

∑
s

BisAsj . (3.31)

Proof: Let Bis be a qi×ps matrix and Asj be a ps×rj matrix. Also let x ∈ Fn

and let x = (x1, · · ·,xm)T and xi ∈ Fri so it makes sense to multiply Asjxj . Then
from the associative law of matrix multiplication and Lemma 3.47 applied twice,

(BA)x = B (Ax)

=




B11 · · · B1p

...
. . .

...
Bm1 · · · Bmp







∑
j A1jxj

...∑
j Arjxj




=




∑
s

∑
j B1sAsjxj

...∑
s

∑
j BmsAsjxj


 =




∑
j (

∑
s B1sAsj)xj

...∑
j (

∑
s BmsAsj)xj


 .

By Lemma 3.47, this shows that (BA)x equals the block matrix whose ijth entry is
given by 3.31 times x. Since x is an arbitrary vector in Fn, this proves the theorem.

The message of this theorem is that you can formally multiply block matrices as
though the blocks were numbers. You just have to pay attention to the preservation
of order.

This simple idea of block multiplication turns out to be very useful later. For now
here is an interesting and significant application. In this theorem, pM (t) denotes
the polynomial, det (tI −M) . Thus the zeros of this polynomial are the eigenvalues
of the matrix, M .

Theorem 3.49 Let A be an m×n matrix and let B be an n×m matrix for m ≤ n.
Then

pBA (t) = tn−mpAB (t) ,

so the eigenvalues of BA and AB are the same including multiplicities except that
BA has n−m extra zero eigenvalues.
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Proof: Use block multiplication to write
(

AB 0
B 0

)(
I A
0 I

)
=

(
AB ABA
B BA

)

(
I A
0 I

)(
0 0
B BA

)
=

(
AB ABA
B BA

)
.

Therefore,
(

I A
0 I

)−1 (
AB 0
B 0

)(
I A
0 I

)
=

(
0 0
B BA

)

Since
(

0 0
B BA

)
and

(
AB 0
B 0

)
are similar,they have the same characteristic

polynomials. Therefore, noting that BA is an n × n matrix and AB is an m ×m
matrix,

tm det (tI −BA) = tn det (tI −AB)

and so det (tI −BA) = pBA (t) = tn−m det (tI −AB) = tn−mpAB (t) . This proves
the theorem.

3.8 Shur’s Theorem

Every matrix is related to an upper triangular matrix in a particularly significant
way. This is Shur’s theorem and it is the most important theorem in the spectral
theory of matrices.

Lemma 3.50 Let {x1, · · ·,xn} be a basis for Fn. Then there exists an orthonormal
basis for Fn, {u1, · · ·,un} which has the property that for each k ≤ n,

span (x1, · · ·,xk) = span (u1, · · ·,uk) .

Proof: Let {x1, · · ·,xn} be a basis for Fn. Let u1 ≡ x1/ |x1| . Thus for k = 1,
span (u1) = span (x1) and {u1} is an orthonormal set. Now suppose for some k < n,
u1, · · ·, uk have been chosen such that (uj · ul) = δjl and span (x1, · · ·,xk) =
span (u1, · · ·,uk). Then define

uk+1 ≡
xk+1 −

∑k
j=1 (xk+1 · uj)uj∣∣∣xk+1 −

∑k
j=1 (xk+1 · uj)uj

∣∣∣
, (3.32)

where the denominator is not equal to zero because the xj form a basis and so

xk+1 /∈ span (x1, · · ·,xk) = span (u1, · · ·,uk)

Thus by induction,

uk+1 ∈ span (u1, · · ·,uk,xk+1) = span (x1, · · ·,xk,xk+1) .
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Also, xk+1 ∈ span (u1, · · ·,uk,uk+1) which is seen easily by solving 3.32 for xk+1

and it follows

span (x1, · · ·,xk,xk+1) = span (u1, · · ·,uk,uk+1) .

If l ≤ k,

(uk+1 · ul) = C


(xk+1 · ul)−

k∑

j=1

(xk+1 · uj) (uj · ul)




= C


(xk+1 · ul)−

k∑

j=1

(xk+1 · uj) δlj




= C ((xk+1 · ul)− (xk+1 · ul)) = 0.

The vectors, {uj}n
j=1 , generated in this way are therefore an orthonormal basis

because each vector has unit length.
The process by which these vectors were generated is called the Gram Schmidt

process. Recall the following definition.

Definition 3.51 An n × n matrix, U, is unitary if UU∗ = I = U∗U where U∗ is
defined to be the transpose of the conjugate of U.

Theorem 3.52 Let A be an n × n matrix. Then there exists a unitary matrix, U
such that

U∗AU = T, (3.33)

where T is an upper triangular matrix having the eigenvalues of A on the main
diagonal listed according to multiplicity as roots of the characteristic equation.

Proof: Let v1 be a unit eigenvector for A . Then there exists λ1 such that

Av1 = λ1v1, |v1| = 1.

Extend {v1} to a basis and then use Lemma 3.50 to obtain {v1, · · ·,vn}, an or-
thonormal basis in Fn. Let U0 be a matrix whose ith column is vi. Then from the
above, it follows U0 is unitary. Then U∗

0 AU0 is of the form



λ1 ∗ · · · ∗
0
... A1

0




where A1 is an n− 1× n− 1 matrix. Repeat the process for the matrix, A1 above.
There exists a unitary matrix Ũ1 such that Ũ∗

1 A1 Ũ1 is of the form



λ2 ∗ · · · ∗
0
... A2

0


 .
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Now let U1 be the n× n matrix of the form
(

1 0
0 Ũ1

)
.

This is also a unitary matrix because by block multiplication,
(

1 0
0 Ũ1

)∗(
1 0
0 Ũ1

)
=

(
1 0
0 Ũ∗

1

)(
1 0
0 Ũ1

)

=
(

1 0
0 Ũ∗

1 Ũ1

)
=

(
1 0
0 I

)

Then using block multiplication, U∗
1 U∗

0 AU0U1 is of the form



λ1 ∗ ∗ · · · ∗
0 λ2 ∗ · · · ∗
0 0
...

... A2

0 0




where A2 is an n− 2× n− 2 matrix. Continuing in this way, there exists a unitary
matrix, U given as the product of the Ui in the above construction such that

U∗AU = T

where T is some upper triangular matrix. Since the matrix is upper triangular, the
characteristic equation is

∏n
i=1 (λ− λi) where the λi are the diagonal entries of T.

Therefore, the λi are the eigenvalues.
What if A is a real matrix and you only want to consider real unitary matrices?

Theorem 3.53 Let A be a real n × n matrix. Then there exists a real unitary
matrix, Q and a matrix T of the form

T =




P1 · · · ∗
. . .

...
0 Pr


 (3.34)

where Pi equals either a real 1 × 1 matrix or Pi equals a real 2 × 2 matrix having
two complex eigenvalues of A such that QT AQ = T. The matrix, T is called the real
Schur form of the matrix A.

Proof: Suppose
Av1 = λ1v1, |v1| = 1

where λ1 is real. Then let {v1, · · ·,vn} be an orthonormal basis of vectors in Rn.
Let Q0 be a matrix whose ith column is vi. Then Q∗0AQ0 is of the form




λ1 ∗ · · · ∗
0
... A1

0
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where A1 is a real n− 1× n− 1 matrix. This is just like the proof of Theorem 3.52
up to this point.

Now in case λ1 = α + iβ, it follows since A is real that v1 = z1 + iw1 and
that v1 = z1 − iw1 is an eigenvector for the eigenvalue, α − iβ. Here z1 and w1

are real vectors. It is clear that {z1,w1} is an independent set of vectors in Rn.
Indeed,{v1,v1} is an independent set and it follows span (v1,v1) = span (z1,w1) .
Now using the Gram Schmidt theorem in Rn, there exists {u1,u2} , an orthonormal
set of real vectors such that span (u1,u2) = span (v1,v1) . Now let {u1,u2, · · ·,un}
be an orthonormal basis in Rn and let Q0 be a unitary matrix whose ith column
is ui. Then Auj are both in span (u1,u2) for j = 1, 2 and so uT

k Auj = 0 whenever
k ≥ 3. It follows that Q∗

0AQ0 is of the form



∗ ∗ · · · ∗
∗ ∗
0
... A1

0




where A1 is now an n − 2 × n − 2 matrix. In this case, find Q̃1 an n − 2 × n − 2
matrix to put A1 in an appropriate form as above and come up with A2 either an
n− 4× n− 4 matrix or an n− 3× n− 3 matrix. Then the only other difference is
to let

Q1 =




1 0 0 · · · 0
0 1 0 · · · 0
0 0
...

... Q̃1

0 0




thus putting a 2 × 2 identity matrix in the upper left corner rather than a one.
Repeating this process with the above modification for the case of a complex eigen-
value leads eventually to 3.34 where Q is the product of real unitary matrices Qi

above. Finally,

λI − T =




λI1 − P1 · · · ∗
. . .

...
0 λIr − Pr




where Ik is the 2 × 2 identity matrix in the case that Pk is 2 × 2 and is the num-
ber 1 in the case where Pk is a 1 × 1 matrix. Now, it follows that det (λI − T ) =∏r

k=1 det (λIk − Pk) . Therefore, λ is an eigenvalue of T if and only if it is an eigen-
value of some Pk. This proves the theorem since the eigenvalues of T are the same
as those of A because they have the same characteristic polynomial due to the
similarity of A and T.

Definition 3.54 When a linear transformation, A, mapping a linear space, V to
V has a basis of eigenvectors, the linear transformation is called non defective.
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Otherwise it is called defective. An n×n matrix, A, is called normal if AA∗ = A∗A.
An important class of normal matrices is that of the Hermitian or self adjoint
matrices. An n× n matrix, A is self adjoint or Hermitian if A = A∗.

The next lemma is the basis for concluding that every normal matrix is unitarily
similar to a diagonal matrix.

Lemma 3.55 If T is upper triangular and normal, then T is a diagonal matrix.

Proof: Since T is normal, T ∗T = TT ∗. Writing this in terms of components
and using the description of the adjoint as the transpose of the conjugate, yields
the following for the ikth entry of T ∗T = TT ∗.

∑

j

tijt
∗
jk =

∑

j

tijtkj =
∑

j

t∗ijtjk =
∑

j

tjitjk.

Now use the fact that T is upper triangular and let i = k = 1 to obtain the following
from the above. ∑

j

|t1j |2 =
∑

j

|tj1|2 = |t11|2

You see, tj1 = 0 unless j = 1 due to the assumption that T is upper triangular.
This shows T is of the form




∗ 0 · · · 0
0 ∗ · · · ∗
...

. . . . . .
...

0 · · · 0 ∗


 .

Now do the same thing only this time take i = k = 2 and use the result just
established. Thus, from the above,

∑

j

|t2j |2 =
∑

j

|tj2|2 = |t22|2 ,

showing that t2j = 0 if j > 2 which means T has the form



∗ 0 0 · · · 0
0 ∗ 0 · · · 0
0 0 ∗ · · · ∗
...

...
. . . . . .

...
0 0 0 0 ∗




.

Next let i = k = 3 and obtain that T looks like a diagonal matrix in so far as the
first 3 rows and columns are concerned. Continuing in this way it follows T is a
diagonal matrix.

Theorem 3.56 Let A be a normal matrix. Then there exists a unitary matrix, U
such that U∗AU is a diagonal matrix.



68 IMPORTANT LINEAR ALGEBRA

Proof: From Theorem 3.52 there exists a unitary matrix, U such that U∗AU
equals an upper triangular matrix. The theorem is now proved if it is shown that
the property of being normal is preserved under unitary similarity transformations.
That is, verify that if A is normal and if B = U∗AU, then B is also normal. But
this is easy.

B∗B = U∗A∗UU∗AU = U∗A∗AU

= U∗AA∗U = U∗AUU∗A∗U = BB∗.

Therefore, U∗AU is a normal and upper triangular matrix and by Lemma 3.55 it
must be a diagonal matrix. This proves the theorem.

Corollary 3.57 If A is Hermitian, then all the eigenvalues of A are real and there
exists an orthonormal basis of eigenvectors.

Proof: Since A is normal, there exists unitary, U such that U∗AU = D, a
diagonal matrix whose diagonal entries are the eigenvalues of A. Therefore, D∗ =
U∗A∗U = U∗AU = D showing D is real.

Finally, let
U =

(
u1 u2 · · · un

)

where the ui denote the columns of U and

D =




λ1 0
. . .

0 λn




The equation, U∗AU = D implies

AU =
(

Au1 Au2 · · · Aun

)

= UD =
(

λ1u1 λ2u2 · · · λnun

)

where the entries denote the columns of AU and UD respectively. Therefore, Aui =
λiui and since the matrix is unitary, the ijth entry of U∗U equals δij and so

δij = uT
i uj = uT

i uj = ui · uj .

This proves the corollary because it shows the vectors {ui} form an orthonormal
basis.

Corollary 3.58 If A is a real symmetric matrix, then A is Hermitian and there
exists a real unitary matrix, U such that UT AU = D where D is a diagonal matrix.

Proof: This follows from Theorem 3.53 and Corollary 3.57.
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3.9 The Right Polar Decomposition

This is on the right polar decomposition.

Theorem 3.59 Let F be an n × m matrix where m ≥ n. Then there exists an
m× n matrix R and a n× n matrix U such that

F = RU, U = U∗,

all eigenvalues of U are non negative,

U2 = F ∗F, R∗R = I,

and |Rx| = |x|.

Proof: (F ∗F )∗ = F ∗F and so F ∗F is self adjoint. Also,

(F ∗Fx, x) = (Fx, Fx) ≥ 0.

Therefore, all eigenvalues of F ∗F must be nonnegative because if F ∗Fx = λx for
x 6= 0,

0 ≤ (Fx, Fx) = (F ∗Fx,x) = (λx,x) = λ |x|2 .

From linear algebra, there exists Q such that Q∗Q = I and Q∗F ∗FQ = D where
D is a diagonal matrix of the form




λ1 · · · 0
...

. . .
...

0 · · · λn




where each λi ≥ 0. Therefore, you can consider

D1/2 ≡




λ
1/2
1 · · · 0
...

. . .
...

0 · · · λ1/2
n


 ≡




µ1 · · · · · · · · · · · · 0

0
. . . v

... µr

...
... 0

...
...

. . .
...

0 · · · · · · · · · · · · 0




(3.35)

where the µi are the positive eigenvalues of D1/2.
Let U ≡ Q∗D1/2Q. This matrix is the square root of F ∗F because

(
Q∗D1/2Q

)(
Q∗D1/2Q

)
= Q∗D1/2D1/2Q = Q∗DQ = F ∗F

It is self adjoint because
(
Q∗D1/2Q

)∗
= Q∗D1/2Q∗∗ = Q∗D1/2Q.
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Let {x1, · · ·,xr} be an orthogonal set of eigenvectors such that Uxi = µixi and
normalize so that

{µ1x1, · · ·, µrxr} = {Ux1, · · ·, Uxr}
is an orthonormal set of vectors. By 3.35 it follows rank (U) = r and so {Ux1, · · ·, Uxr}
is also an orthonormal basis for U (Fn).

Then {Fxr, · · ·, Fxr} is also an orthonormal set of vectors in Fm because

(Fxi, Fxj) = (F ∗Fxi,xj) =
(
U2xi,xj

)
= (Uxi, Uxj) = δij .

Let {Ux1, · · ·, Uxr,yr+1, · · ·,yn} be an orthonormal basis for Fn and let

{Fxr, · · ·, Fxr, zr+1, · · ·, zn, · · ·, zm}

be an orthonormal basis for Fm. Then a typical vector of Fn is of the form

r∑

k=1

akUxk +
n∑

j=r+1

bjyj .

Define

R




r∑

k=1

akUxk +
n∑

j=r+1

bjyj


 ≡

r∑

k=1

akFxk +
n∑

j=r+1

bjzj

Then since {Ux1, · · ·, Uxr,yr+1, · · ·,yn} and {Fxr, · · ·, Fxr, zr+1, · · ·, zn, · · ·, zm}
are orthonormal,

∣∣∣∣∣∣
R




r∑

k=1

akUxk +
n∑

j=r+1

bjyj




∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

r∑

k=1

akFxk +
n∑

j=r+1

bjzj

∣∣∣∣∣∣

2

=
r∑

k=1

|ak|2 +
n∑

j=r+1

|bj |2

=

∣∣∣∣∣∣

r∑

k=1

akUxk +
n∑

j=r+1

bjyj

∣∣∣∣∣∣

2

.

Therefore, R preserves distances.
Letting x ∈ Fn,

Ux =
r∑

k=1

akUxk (3.36)

for some unique choice of scalars, ak because {Ux1, · · ·, Uxr} is a basis for U (Fn).
Therefore,

RUx = R

(
r∑

k=1

akUxk

)
≡

r∑

k=1

akFxk = F

(
r∑

k=1

akxk

)
.
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Is F (
∑r

k=1 akxk) = F (x)? Using 3.36,

F ∗F

(
r∑

k=1

akxk − x

)
= U2

(
r∑

k=1

akxk − x

)

=
r∑

k=1

akµ2
kxk − U (Ux)

=
r∑

k=1

akµ2
kxk − U

(
r∑

k=1

akUxk

)

=
r∑

k=1

akµ2
kxk − U

(
r∑

k=1

akµkxk

)
= 0.

Therefore,

∣∣∣∣∣F
(

r∑

k=1

akxk − x

)∣∣∣∣∣

2

=

(
F

(
r∑

k=1

akxk − x

)
, F

(
r∑

k=1

akxk − x

))

=

(
F ∗F

(
r∑

k=1

akxk − x

)
,

(
r∑

k=1

akxk − x

))
= 0

and so F (
∑r

k=1 akxk) = F (x) as hoped. Thus RU = F on Fn.

Since R preserves distances,

|x|2 + |y|2 + 2 (x,y) = |x + y|2 = |R (x + y)|2

= |x|2 + |y|2 + 2 (Rx,Ry).

Therefore,
(x,y) = (R∗Rx,y)

for all x,y and so R∗R = I as claimed. This proves the theorem.

3.10 The Space L (Fn,Fm)

Definition 3.60 The symbol, L (Fn,Fm) will denote the set of linear transforma-
tions mapping Fn to Fm. Thus L ∈ L (Fn,Fm) means that for α, β scalars and x,y
vectors in Fn,

L (αx + βy) = αL (x) + βL (y) .

It is convenient to give a norm for the elements of L (Fn,Fm) . This will allow
the consideration of questions such as whether a function having values in this space
of linear transformations is continuous.



72 IMPORTANT LINEAR ALGEBRA

3.11 The Operator Norm

How do you measure the distance between linear transformations defined on Fn? It
turns out there are many ways to do this but I will give the most common one here.

Definition 3.61 L (Fn,Fm) denotes the space of linear transformations mapping
Fn to Fm. For A ∈ L (Fn,Fm) , the operator norm is defined by

||A|| ≡ max {|Ax|Fm : |x|Fn ≤ 1} < ∞.

Theorem 3.62 Denote by |·| the norm on either Fn or Fm. Then L (Fn,Fm) with
this operator norm is a complete normed linear space of dimension nm with

||Ax|| ≤ ||A|| |x| .

Here Completeness means that every Cauchy sequence converges.

Proof: It is necessary to show the norm defined on L (Fn,Fm) really is a norm.
This means it is necessary to verify

||A|| ≥ 0 and equals zero if and only if A = 0.

For α a scalar,
||αA|| = |α| ||A|| ,

and for A,B ∈ L (Fn,Fm) ,

||A + B|| ≤ ||A||+ ||B||

The first two properties are obvious but you should verify them. It remains to verify
the norm is well defined and also to verify the triangle inequality above. First if
|x| ≤ 1, and (Aij) is the matrix of the linear transformation with respect to the
usual basis vectors, then

||A|| = max





(∑

i

|(Ax)i|2
)1/2

: |x| ≤ 1





= max








∑

i

∣∣∣∣∣∣
∑

j

Aijxj

∣∣∣∣∣∣

2



1/2

: |x| ≤ 1





which is a finite number by the extreme value theorem.
It is clear that a basis for L (Fn,Fm) consists of linear transformations whose

matrices are of the form Eij where Eij consists of the m×n matrix having all zeros
except for a 1 in the ijth position. In effect, this considers L (Fn,Fm) as Fnm. Think
of the m× n matrix as a long vector folded up.
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If x 6= 0,

|Ax| 1
|x| =

∣∣∣∣A
x
|x|

∣∣∣∣ ≤ ||A|| (3.37)

It only remains to verify completeness. Suppose then that {Ak} is a Cauchy
sequence in L (Fn,Fm) . Then from 3.37 {Akx} is a Cauchy sequence for each x ∈ Fn.
This follows because

|Akx−Alx| ≤ ||Ak −Al|| |x|
which converges to 0 as k, l → ∞. Therefore, by completeness of Fm, there exists
Ax, the name of the thing to which the sequence, {Akx} converges such that

lim
k→∞

Akx = Ax.

Then A is linear because

A (ax + by) ≡ lim
k→∞

Ak (ax + by)

= lim
k→∞

(aAkx + bAky)

= a lim
k→∞

Akx + b lim
k→∞

Aky

= aAx + bAy.

By the first part of this argument, ||A|| < ∞ and so A ∈ L (Fn,Fm) . This proves
the theorem.

Proposition 3.63 Let A (x) ∈ L (Fn,Fm) for each x ∈ U ⊆ Fp. Then letting
(Aij (x)) denote the matrix of A (x) with respect to the standard basis, it follows
Aij is continuous at x for each i, j if and only if for all ε > 0, there exists a δ > 0
such that if |x− y| < δ, then ||A (x)−A (y)|| < ε. That is, A is a continuous
function having values in L (Fn,Fm) at x.

Proof: Suppose first the second condition holds. Then from the material on
linear transformations,

|Aij (x)−Aij (y)| = |ei · (A (x)−A (y)) ej |
≤ |ei| |(A (x)−A (y)) ej |
≤ ||A (x)−A (y)|| .

Therefore, the second condition implies the first.
Now suppose the first condition holds. That is each Aij is continuous at x. Let

|v| ≤ 1.

|(A (x)−A (y)) (v)| =




∑

i

∣∣∣∣∣∣
∑

j

(Aij (x)−Aij (y)) vj

∣∣∣∣∣∣

2



1/2

(3.38)

≤




∑

i


∑

j

|Aij (x)−Aij (y)| |vj |



2



1/2

.
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By continuity of each Aij , there exists a δ > 0 such that for each i, j

|Aij (x)−Aij (y)| < ε

n
√

m

whenever |x− y| < δ. Then from 3.38, if |x− y| < δ,

|(A (x)−A (y)) (v)| <




∑

i


∑

j

ε

n
√

m
|v|




2



1/2

≤




∑

i


∑

j

ε

n
√

m




2



1/2

= ε

This proves the proposition.



The Frechet Derivative

Let U be an open set in Fn, and let f : U → Fm be a function.

Definition 4.1 A function g is o (v) if

lim
|v|→0

g (v)
|v| = 0 (4.1)

A function f : U → Fm is differentiable at x ∈ U if there exists a linear transfor-
mation L ∈ L (Fn,Fm) such that

f (x + v) = f (x) + Lv + o (v)

This linear transformation L is the definition of Df (x). This derivative is often
called the Frechet derivative. .

Usually no harm is occasioned by thinking of this linear transformation as its
matrix taken with respect to the usual basis vectors.

The definition 4.1 means that the error,

f (x + v)− f (x)− Lv

converges to 0 faster than |v|. Thus the above definition is equivalent to saying

lim
|v|→0

|f (x + v)− f (x)− Lv|
|v| = 0 (4.2)

or equivalently,

lim
y→x

|f (y)− f (x)−Df (x) (y − x)|
|y − x| = 0. (4.3)

Now it is clear this is just a generalization of the notion of the derivative of a
function of one variable because in this more specialized situation,

lim
|v|→0

|f (x + v)− f (x)− f ′ (x) v|
|v| = 0,

75
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due to the definition which says

f ′ (x) = lim
v→0

f (x + v)− f (x)
v

.

For functions of n variables, you can’t define the derivative as the limit of a difference
quotient like you can for a function of one variable because you can’t divide by a
vector. That is why there is a need for a more general definition.

The term o (v) is notation that is descriptive of the behavior in 4.1 and it is
only this behavior that is of interest. Thus, if t and k are constants,

o (v) = o (v) + o (v) , o (tv) = o (v) , ko (v) = o (v)

and other similar observations hold. The sloppiness built in to this notation is
useful because it ignores details which are not important. It may help to think of
o (v) as an adjective describing what is left over after approximating f (x + v) by
f (x) + Df (x)v.

Theorem 4.2 The derivative is well defined.

Proof: First note that for a fixed vector, v, o (tv) = o (t). Now suppose both
L1 and L2 work in the above definition. Then let v be any vector and let t be a
real scalar which is chosen small enough that tv + x ∈ U . Then

f (x + tv) = f (x) + L1tv + o (tv) , f (x + tv) = f (x) + L2tv + o (tv) .

Therefore, subtracting these two yields (L2 − L1) (tv) = o (tv) = o (t). There-
fore, dividing by t yields (L2 − L1) (v) = o(t)

t . Now let t → 0 to conclude that
(L2 − L1) (v) = 0. Since this is true for all v, it follows L2 = L1. This proves the
theorem.

Lemma 4.3 Let f be differentiable at x. Then f is continuous at x and in fact,
there exists K > 0 such that whenever |v| is small enough,

|f (x + v)− f (x)| ≤ K |v|
Proof: From the definition of the derivative, f (x + v)−f (x) = Df (x)v+o (v).

Let |v| be small enough that o(|v|)
|v| < 1 so that |o (v)| ≤ |v|. Then for such v,

|f (x + v)− f (x)| ≤ |Df (x)v|+ |v|
≤ (|Df (x)|+ 1) |v|

This proves the lemma with K = |Df (x)|+ 1.

Theorem 4.4 (The chain rule) Let U and V be open sets, U ⊆ Fn and V ⊆
Fm. Suppose f : U → V is differentiable at x ∈ U and suppose g : V → Fq is
differentiable at f (x) ∈ V . Then g ◦ f is differentiable at x and

D (g ◦ f) (x) = D (g (f (x))) D (f (x)) .
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Proof: This follows from a computation. Let B (x,r) ⊆ U and let r also be small
enough that for |v| ≤ r, it follows that f (x + v) ∈ V . Such an r exists because f is
continuous at x. For |v| < r, the definition of differentiability of g and f implies

g (f (x + v))− g (f (x)) =

Dg (f (x)) (f (x + v)− f (x)) + o (f (x + v)− f (x))
= Dg (f (x)) [Df (x)v + o (v)] + o (f (x + v)− f (x))
= D (g (f (x))) D (f (x))v + o (v) + o (f (x + v)− f (x)) . (4.4)

It remains to show o (f (x + v)− f (x)) = o (v).
By Lemma 4.3, with K given there, letting ε > 0, it follows that for |v| small

enough,

|o (f (x + v)− f (x))| ≤ (ε/K) |f (x + v)− f (x)| ≤ (ε/K)K |v| = ε |v| .
Since ε > 0 is arbitrary, this shows o (f (x + v)− f (x)) = o (v) because whenever
|v| is small enough,

|o (f (x + v)− f (x))|
|v| ≤ ε.

By 4.4, this shows

g (f (x + v))− g (f (x)) = D (g (f (x))) D (f (x))v + o (v)

which proves the theorem.
The derivative is a linear transformation. What is the matrix of this linear

transformation taken with respect to the usual basis vectors? Let ei denote the
vector of Fn which has a one in the ith entry and zeroes elsewhere. Then the matrix
of the linear transformation is the matrix whose ith column is Df (x) ei. What is
this? Let t ∈ R such that |t| is sufficiently small.

f (x + tei)− f (x) = Df (x) tei + o (tei)
= Df (x) tei + o (t) .

Then dividing by t and taking a limit,

Df (x) ei = lim
t→0

f (x + tei)− f (x)
t

≡ ∂f
∂xi

(x) .

Thus the matrix of Df (x) with respect to the usual basis vectors is the matrix of
the form 


f1,x1 (x) f1,x2 (x) · · · f1,xn (x)

...
...

...
fm,x1 (x) fm,x2 (x) · · · fm,xn (x)


 .

As mentioned before, there is no harm in referring to this matrix as Df (x) but it
may also be referred to as Jf (x) .

This is summarized in the following theorem.
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Theorem 4.5 Let f : Fn → Fm and suppose f is differentiable at x. Then all the
partial derivatives ∂fi(x)

∂xj
exist and if Jf (x) is the matrix of the linear transformation

with respect to the standard basis vectors, then the ijth entry is given by fi,j or
∂fi

∂xj
(x).

What if all the partial derivatives of f exist? Does it follow that f is differen-
tiable? Consider the following function.

f (x, y) =
{ xy

x2+y2 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0)

.

Then from the definition of partial derivatives,

lim
h→0

f (h, 0)− f (0, 0)
h

= lim
h→0

0− 0
h

= 0

and

lim
h→0

f (0, h)− f (0, 0)
h

= lim
h→0

0− 0
h

= 0

However f is not even continuous at (0, 0) which may be seen by considering the
behavior of the function along the line y = x and along the line x = 0. By Lemma
4.3 this implies f is not differentiable. Therefore, it is necessary to consider the
correct definition of the derivative given above if you want to get a notion which
generalizes the concept of the derivative of a function of one variable in such a way
as to preserve continuity whenever the function is differentiable.

4.1 C1 Functions

However, there are theorems which can be used to get differentiability of a function
based on existence of the partial derivatives.

Definition 4.6 When all the partial derivatives exist and are continuous the func-
tion is called a C1 function.

Because of Proposition 3.63 on Page 73 and Theorem 4.5 which identifies the
entries of Jf with the partial derivatives, the following definition is equivalent to
the above.

Definition 4.7 Let U ⊆ Fn be an open set. Then f : U → Fm is C1 (U) if f is
differentiable and the mapping

x →Df (x) ,

is continuous as a function from U to L (Fn,Fm).

The following is an important abstract generalization of the familiar concept of
partial derivative.
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Definition 4.8 Let g : U ⊆ Fn × Fm → Fq, where U is an open set in Fn × Fm.
Denote an element of Fn × Fm by (x,y) where x ∈ Fn and y ∈ Fm. Then the map
x → g (x,y) is a function from the open set in X,

{x : (x,y) ∈ U}

to Fq. When this map is differentiable, its derivative is denoted by

D1g (x,y) , or sometimes by Dxg (x,y) .

Thus,
g (x + v,y)− g (x,y) = D1g (x,y)v + o (v) .

A similar definition holds for the symbol Dyg or D2g. The special case seen in
beginning calculus courses is where g : U → Fq and

gxi (x) ≡ ∂g (x)
∂xi

≡ lim
h→0

g (x + hei)− g (x)
h

.

The following theorem will be very useful in much of what follows. It is a version
of the mean value theorem.

Theorem 4.9 Suppose U is an open subset of Fn and f : U → Fm has the property
that Df (x) exists for all x in U and that, x+t (y − x) ∈ U for all t ∈ [0, 1]. (The
line segment joining the two points lies in U .) Suppose also that for all points on
this line segment,

||Df (x+t (y − x))|| ≤ M.

Then
|f (y)− f (x)| ≤ M |y − x| .

Proof: Let
S ≡ {t ∈ [0, 1] : for all s ∈ [0, t] ,

|f (x + s (y − x))− f (x)| ≤ (M + ε) s |y − x|} .

Then 0 ∈ S and by continuity of f , it follows that if t ≡ sup S, then t ∈ S and if
t < 1,

|f (x + t (y − x))− f (x)| = (M + ε) t |y − x| . (4.5)

If t < 1, then there exists a sequence of positive numbers, {hk}∞k=1 converging to 0
such that

|f (x + (t + hk) (y − x))− f (x)| > (M + ε) (t + hk) |y − x|

which implies that

|f (x + (t + hk) (y − x))− f (x + t (y − x))|

+ |f (x + t (y − x))− f (x)| > (M + ε) (t + hk) |y − x| .



80 THE FRECHET DERIVATIVE

By 4.5, this inequality implies

|f (x + (t + hk) (y − x))− f (x + t (y − x))| > (M + ε)hk |y − x|
which yields upon dividing by hk and taking the limit as hk → 0,

|Df (x + t (y − x)) (y − x)| ≥ (M + ε) |y − x| .
Now by the definition of the norm of a linear operator,

M |y − x| ≥ ||Df (x + t (y − x))|| |y − x|
≥ |Df (x + t (y − x)) (y − x)| ≥ (M + ε) |y − x| ,

a contradiction. Therefore, t = 1 and so

|f (x + (y − x))− f (x)| ≤ (M + ε) |y − x| .
Since ε > 0 is arbitrary, this proves the theorem.

The next theorem proves that if the partial derivatives exist and are continuous,
then the function is differentiable.

Theorem 4.10 Let g : U ⊆ Fn × Fm → Fq. Then g is C1 (U) if and only if D1g
and D2g both exist and are continuous on U . In this case,

Dg (x,y) (u,v) = D1g (x,y)u+D2g (x,y)v.

Proof: Suppose first that g ∈ C1 (U). Then if (x,y) ∈ U ,

g (x + u,y)− g (x,y) = Dg (x,y) (u,0) + o (u) .

Therefore, D1g (x,y)u =Dg (x,y) (u,0). Then

|(D1g (x,y)−D1g (x′,y′)) (u)| =
|(Dg (x,y)−Dg (x′,y′)) (u,0)| ≤
||Dg (x,y)−Dg (x′,y′)|| |(u,0)| .

Therefore,

|D1g (x,y)−D1g (x′,y′)| ≤ ||Dg (x,y)−Dg (x′,y′)|| .
A similar argument applies for D2g and this proves the continuity of the function,
(x,y) → Dig (x,y) for i = 1, 2. The formula follows from

Dg (x,y) (u,v) = Dg (x,y) (u,0) + Dg (x,y) (0,v)
≡ D1g (x,y)u+D2g (x,y)v.

Now suppose D1g (x,y) and D2g (x,y) exist and are continuous.

g (x + u,y + v)− g (x,y) = g (x + u,y + v)− g (x,y + v)
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+g (x,y + v)− g (x,y)

= g (x + u,y)− g (x,y) + g (x,y + v)− g (x,y)+

[g (x + u,y + v)− g (x + u,y)− (g (x,y + v)− g (x,y))]

= D1g (x,y)u + D2g (x,y)v + o (v) + o (u)+

[g (x + u,y + v)− g (x + u,y)− (g (x,y + v)− g (x,y))] . (4.6)

Let h (x,u) ≡ g (x + u,y + v)− g (x + u,y). Then the expression in [ ] is of the
form,

h (x,u)− h (x,0) .

Also
D2h (x,u) = D1g (x + u,y + v)−D1g (x + u,y)

and so, by continuity of (x,y) → D1g (x,y),

||D2h (x,u)|| < ε

whenever ||(u,v)|| is small enough. By Theorem 4.9 on Page 79, there exists δ > 0
such that if ||(u,v)|| < δ, the norm of the last term in 4.6 satisfies the inequality,

||g (x + u,y + v)− g (x + u,y)− (g (x,y + v)− g (x,y))|| < ε ||u|| . (4.7)

Therefore, this term is o ((u,v)). It follows from 4.7 and 4.6 that

g (x + u,y + v) =

g (x,y) + D1g (x,y)u + D2g (x,y)v+o (u) + o (v) + o ((u,v))

= g (x,y) + D1g (x,y)u + D2g (x,y)v + o ((u,v))

Showing that Dg (x,y) exists and is given by

Dg (x,y) (u,v) = D1g (x,y)u + D2g (x,y)v.

The continuity of (x,y) → Dg (x,y) follows from the continuity of (x,y) →
Dig (x,y). This proves the theorem.

Not surprisingly, it can be generalized to many more factors.

Definition 4.11 Let g : U ⊆ ∏n
i=1 Fri → Fq, where U is an open set. Then the

map xi → g (x) is a function from the open set in Fri ,

{xi : x ∈ U}
to Fq. When this map is differentiable, its derivative is denoted by Dig (x). To aid
in the notation, for v ∈ Xi, let θiv ∈

∏n
i=1 Fri be the vector (0, · · ·,v, · · ·,0) where

the v is in the ith slot and for v ∈∏n
i=1 Fri , let vi denote the entry in the ith slot of

v. Thus by saying xi → g (x) is differentiable is meant that for v ∈ Xi sufficiently
small,

g (x + θiv)− g (x) = Dig (x)v + o (v) .
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Here is a generalization of Theorem 4.10.

Theorem 4.12 Let g, U,
∏n

i=1 Fri , be given as in Definition 4.11. Then g is C1 (U)
if and only if Dig exists and is continuous on U for each i. In this case,

Dg (x) (v) =
∑

k

Dkg (x)vk (4.8)

Proof: The only if part of the proof is left for you. Suppose then that Dig
exists and is continuous for each i. Note that

∑k
j=1 θjvj = (v1, · · ·,vk,0, · · ·,0).

Thus
∑n

j=1 θjvj = v and define
∑0

j=1 θjvj ≡ 0. Therefore,

g (x + v)− g (x) =
n∑

k=1


g


x+

k∑

j=1

θjvj


− g


x +

k−1∑

j=1

θjvj





 (4.9)

Consider the terms in this sum.

g


x+

k∑

j=1

θjvj


− g


x +

k−1∑

j=1

θjvj


 = g (x+θkvk)− g (x)+ (4.10)


g


x+

k∑

j=1

θjvj


− g (x+θkvk)


−


g


x +

k−1∑

j=1

θjvj


− g (x)


 (4.11)

and the expression in 4.11 is of the form h (vk)− h (0) where for small w ∈ Frk ,

h (w) ≡ g


x+

k−1∑

j=1

θjvj + θkw


− g (x + θkw) .

Therefore,

Dh (w) = Dkg


x+

k−1∑

j=1

θjvj + θkw


−Dkg (x + θkw)

and by continuity, ||Dh (w)|| < ε provided |v| is small enough. Therefore, by
Theorem 4.9, whenever |v| is small enough, |h (θkvk)− h (0)| ≤ ε |θkvk| ≤ ε |v|
which shows that since ε is arbitrary, the expression in 4.11 is o (v). Now in 4.10
g (x+θkvk)−g (x) = Dkg (x)vk +o (vk) = Dkg (x)vk +o (v). Therefore, referring
to 4.9,

g (x + v)− g (x) =
n∑

k=1

Dkg (x)vk + o (v)

which shows Dg exists and equals the formula given in 4.8.
The way this is usually used is in the following corollary, a case of Theorem 4.12

obtained by letting Frj = F in the above theorem.
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Corollary 4.13 Let U be an open subset of Fn and let f :U → Fm be C1 in the sense
that all the partial derivatives of f exist and are continuous. Then f is differentiable
and

f (x + v) = f (x) +
n∑

k=1

∂f
∂xk

(x) vk + o (v) .

4.2 Ck Functions

Recall the notation for partial derivatives in the following definition.

Definition 4.14 Let g : U → Fn. Then

gxk
(x) ≡ ∂g

∂xk
(x) ≡ lim

h→0

g (x + hek)− g (x)
h

Higher order partial derivatives are defined in the usual way.

gxkxl
(x) ≡ ∂2g

∂xl∂xk
(x)

and so forth.

To deal with higher order partial derivatives in a systematic way, here is a useful
definition.

Definition 4.15 α = (α1, · · ·, αn) for α1 · · · αn positive integers is called a multi-
index. For α a multi-index, |α| ≡ α1 + · · ·+ αn and if x ∈ Fn,

x = (x1, · · ·, xn),

and f a function, define

xα ≡ xα1
1 xα2

2 · · · xαn
n , Dαf(x) ≡ ∂|α|f(x)

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

.

The following is the definition of what is meant by a Ck function.

Definition 4.16 Let U be an open subset of Fn and let f : U → Fm. Then for k a
nonnegative integer, f is Ck if for every |α| ≤ k, Dαf exists and is continuous.

4.3 Mixed Partial Derivatives

Under certain conditions the mixed partial derivatives will always be equal.
This astonishing fact is due to Euler in 1734.

Theorem 4.17 Suppose f : U ⊆ F2 → R where U is an open set on which fx, fy,
fxy and fyx exist. Then if fxy and fyx are continuous at the point (x, y) ∈ U , it
follows

fxy (x, y) = fyx (x, y) .
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Proof: Since U is open, there exists r > 0 such that B ((x, y) , r) ⊆ U. Now let
|t| , |s| < r/2, t, s real numbers and consider

∆ (s, t) ≡ 1
st
{

h(t)︷ ︸︸ ︷
f (x + t, y + s)− f (x + t, y)−

h(0)︷ ︸︸ ︷
(f (x, y + s)− f (x, y))}. (4.12)

Note that (x + t, y + s) ∈ U because

|(x + t, y + s)− (x, y)| = |(t, s)| = (
t2 + s2

)1/2

≤
(

r2

4
+

r2

4

)1/2

=
r√
2

< r.

As implied above, h (t) ≡ f (x + t, y + s) − f (x + t, y). Therefore, by the mean
value theorem from calculus and the (one variable) chain rule,

∆ (s, t) =
1
st

(h (t)− h (0)) =
1
st

h′ (αt) t

=
1
s

(fx (x + αt, y + s)− fx (x + αt, y))

for some α ∈ (0, 1) . Applying the mean value theorem again,

∆ (s, t) = fxy (x + αt, y + βs)

where α, β ∈ (0, 1).
If the terms f (x + t, y) and f (x, y + s) are interchanged in 4.12, ∆ (s, t) is un-

changed and the above argument shows there exist γ, δ ∈ (0, 1) such that

∆ (s, t) = fyx (x + γt, y + δs) .

Letting (s, t) → (0, 0) and using the continuity of fxy and fyx at (x, y) ,

lim
(s,t)→(0,0)

∆(s, t) = fxy (x, y) = fyx (x, y) .

This proves the theorem.
The following is obtained from the above by simply fixing all the variables except

for the two of interest.

Corollary 4.18 Suppose U is an open subset of Fn and f : U → R has the property
that for two indices, k, l, fxk

, fxl
, fxlxk

, and fxkxl
exist on U and fxkxl

and fxlxk

are both continuous at x ∈ U. Then fxkxl
(x) = fxlxk

(x) .

By considering the real and imaginary parts of f in the case where f has values
in F you obtain the following corollary.

Corollary 4.19 Suppose U is an open subset of Fn and f : U → F has the property
that for two indices, k, l, fxk

, fxl
, fxlxk

, and fxkxl
exist on U and fxkxl

and fxlxk

are both continuous at x ∈ U. Then fxkxl
(x) = fxlxk

(x) .
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Finally, by considering the components of f you get the following generalization.

Corollary 4.20 Suppose U is an open subset of Fn and f : U → F mhas the
property that for two indices, k, l, fxk

, fxl
, fxlxk

, and fxkxl
exist on U and fxkxl

and
fxlxk

are both continuous at x ∈ U. Then fxkxl
(x) = fxlxk

(x) .

It is necessary to assume the mixed partial derivatives are continuous in order
to assert they are equal. The following is a well known example [5].

Example 4.21 Let

f (x, y) =

{
xy(x2−y2)

x2+y2 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0)

From the definition of partial derivatives it follows immediately that fx (0, 0) =
fy (0, 0) = 0. Using the standard rules of differentiation, for (x, y) 6= (0, 0) ,

fx = y
x4 − y4 + 4x2y2

(x2 + y2)2
, fy = x

x4 − y4 − 4x2y2

(x2 + y2)2

Now

fxy (0, 0) ≡ lim
y→0

fx (0, y)− fx (0, 0)
y

= lim
y→0

−y4

(y2)2
= −1

while

fyx (0, 0) ≡ lim
x→0

fy (x, 0)− fy (0, 0)
x

= lim
x→0

x4

(x2)2
= 1

showing that although the mixed partial derivatives do exist at (0, 0) , they are not
equal there.

4.4 Implicit Function Theorem

The implicit function theorem is one of the greatest theorems in mathematics. There
are many versions of this theorem. However, I will give a very simple proof valid in
finite dimensional spaces.

Theorem 4.22 (implicit function theorem) Suppose U is an open set in Rn×Rm.
Let f : U → Rn be in C1 (U) and suppose

f (x0,y0) = 0, D1f (x0,y0)
−1 ∈ L (Rn,Rn) . (4.13)
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Then there exist positive constants, δ, η, such that for every y ∈ B (y0, η) there
exists a unique x (y) ∈ B (x0, δ) such that

f (x (y) ,y) = 0. (4.14)

Furthermore, the mapping, y → x (y) is in C1 (B (y0, η)).

Proof: Let

f (x,y) =




f1 (x,y)
f2 (x,y)

...
fn (x,y)


 .

Define for
(
x1, · · ·,xn

) ∈ B (x0, δ)
n

and y ∈ B (y0, η) the following matrix.

J
(
x1, · · ·,xn,y

) ≡




f1,x1

(
x1,y

) · · · f1,xn

(
x1,y

)
...

...
fn,x1 (xn,y) · · · fn,xn (xn,y)


 .

Then by the assumption of continuity of all the partial derivatives, there exists
δ0 > 0 and η0 > 0 such that if δ < δ0 and η < η0, it follows that for all

(
x1, · · ·,xn

) ∈
B (x0, δ)

n
and y ∈ B (y0, η) ,

det
(
J

(
x1, · · ·,xn,y

))
> r > 0. (4.15)

and B (x0, δ0)× B (y0, η0) ⊆ U . Pick y ∈ B (y0, η) and suppose there exist x, z ∈
B (x0, δ) such that f (x,y) = f (z,y) = 0. Consider fi and let

h (t) ≡ fi (x + t (z− x) ,y) .

Then h (1) = h (0) and so by the mean value theorem, h′ (ti) = 0 for some ti ∈ (0, 1) .
Therefore, from the chain rule and for this value of ti,

h′ (ti) = Dfi (x + ti (z− x) ,y) (z− x) = 0. (4.16)

Then denote by xi the vector, x + ti (z− x) . It follows from 4.16 that

J
(
x1, · · ·,xn,y

)
(z− x) = 0

and so from 4.15 z− x = 0. Now it will be shown that if η is chosen sufficiently
small, then for all y ∈ B (y0, η) , there exists a unique x (y) ∈ B (x0, δ) such that
f (x (y) ,y) = 0.

Claim: If η is small enough, then the function, hy (x) ≡ |f (x,y)|2 achieves its
minimum value on B (x0, δ) at a point of B (x0, δ) .

Proof of claim: Suppose this is not the case. Then there exists a sequence
ηk → 0 and for some yk having |yk−y0| < ηk, the minimum of hyk

occurs on a point
of the boundary of B (x0, δ), xk such that |x0−xk| = δ. Now taking a subsequence,
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still denoted by k, it can be assumed that xk → x with |x− x0| = δ and yk → y0.
Let ε > 0. Then for k large enough, hyk

(x0) < ε because f (x0,y0) = 0. Therefore,
from the definition of xk, hyk

(xk) < ε. Passing to the limit yields hy0 (x) ≤ ε. Since
ε > 0 is arbitrary, it follows that hy0 (x) = 0 which contradicts the first part of the
argument in which it was shown that for y ∈ B (y0, η) there is at most one point, x
of B (x0, δ) where f (x,y) = 0. Here two have been obtained, x0 and x. This proves
the claim.

Choose η < η0 and also small enough that the above claim holds and let x (y)
denote a point of B (x0, δ) at which the minimum of hy on B (x0, δ) is achieved.
Since x (y) is an interior point, you can consider hy (x (y) + tv) for |t| small and
conclude this function of t has a zero derivative at t = 0. Thus

Dhy (x (y))v = 0 = 2f (x (y) ,y)T
D1f (x (y) ,y)v

for every vector v. But from 4.15 and the fact that v is arbitrary, it follows
f (x (y) ,y) = 0. This proves the existence of the function y → x (y) such that
f (x (y) ,y) = 0 for all y ∈ B (y0, η) .

It remains to verify this function is a C1 function. To do this, let y1 and y2 be
points of B (y0, η) . Then as before, consider the ith component of f and consider
the same argument using the mean value theorem to write

0 = fi (x (y1) ,y1)− fi (x (y2) ,y2)
= fi (x (y1) ,y1)− fi (x (y2) ,y1) + fi (x (y2) ,y1)− fi (x (y2) ,y2)

= D1fi

(
xi,y1

)
(x (y1)− x (y2)) + D2fi

(
x (y2) ,yi

)
(y1 − y2) .

Therefore,
J

(
x1, · · ·,xn,y1

)
(x (y1)− x (y2)) = −M (y1 − y2) (4.17)

where M is the matrix whose ith row is D2fi

(
x (y2) ,yi

)
. Then from 4.15 there

exists a constant, C independent of the choice of y ∈ B (y0, η) such that
∣∣∣
∣∣∣J

(
x1, · · ·,xn,y

)−1
∣∣∣
∣∣∣ < C

whenever
(
x1, · · ·,xn

) ∈ B (x0, δ)
n
. By continuity of the partial derivatives of f it

also follows there exists a constant, C1 such that ||D2fi (x,y)|| < C1 whenever,
(x,y) ∈ B (x0, δ) × B (y0, η) . Hence ||M || must also be bounded independent of
the choice of y1 and y2 in B (y0, η) . From 4.17, it follows there exists a constant,
C such that for all y1,y2 in B (y0, η) ,

|x (y1)− x (y2)| ≤ C |y1 − y2| . (4.18)

It follows as in the proof of the chain rule that

o (x (y + v)− x (y)) = o (v) . (4.19)

Now let y ∈ B (y0, η) and let |v| be sufficiently small that y + v ∈ B (y0, η) .
Then

0 = f (x (y + v) ,y + v)− f (x (y) ,y)
= f (x (y + v) ,y + v)− f (x (y + v) ,y) + f (x (y + v) ,y)− f (x (y) ,y)
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= D2f (x (y + v) ,y)v + D1f (x (y) ,y) (x (y + v)− x (y)) + o (|x (y + v)− x (y)|)

= D2f (x (y) ,y)v + D1f (x (y) ,y) (x (y + v)− x (y)) +
o (|x (y + v)− x (y)|) + (D2f (x (y + v) ,y)v−D2f (x (y) ,y)v)

= D2f (x (y) ,y)v + D1f (x (y) ,y) (x (y + v)− x (y)) + o (v) .

Therefore,

x (y + v)− x (y) = −D1f (x (y) ,y)−1
D2f (x (y) ,y)v + o (v)

which shows that Dx (y) = −D1f (x (y) ,y)−1
D2f (x (y) ,y) and y →Dx (y) is

continuous. This proves the theorem.
In practice, how do you verify the condition, D1f (x0,y0)

−1 ∈ L (Fn,Fn)?
In practice, how do you verify the condition, D1f (x0,y0)

−1 ∈ L (Fn,Fn)?

f (x,y) =




f1 (x1, · · ·, xn, y1, · · ·, yn)
...

fn (x1, · · ·, xn, y1, · · ·, yn)


 .

The matrix of the linear transformation, D1f (x0,y0) is then



∂f1(x1,···,xn,y1,···,yn)
∂x1

· · · ∂f1(x1,···,xn,y1,···,yn)
∂xn

...
...

∂fn(x1,···,xn,y1,···,yn)
∂x1

· · · ∂fn(x1,···,xn,y1,···,yn)
∂xn




and from linear algebra, D1f (x0,y0)
−1 ∈ L (Fn,Fn) exactly when the above matrix

has an inverse. In other words when

det




∂f1(x1,···,xn,y1,···,yn)
∂x1

· · · ∂f1(x1,···,xn,y1,···,yn)
∂xn

...
...

∂fn(x1,···,xn,y1,···,yn)
∂x1

· · · ∂fn(x1,···,xn,y1,···,yn)
∂xn


 6= 0

at (x0,y0). The above determinant is important enough that it is given special
notation. Letting z = f (x,y) , the above determinant is often written as

∂ (z1, · · ·, zn)
∂ (x1, · · ·, xn)

.

Of course you can replace R with F in the above by applying the above to the
situation in which each F is replaced with R2.

Corollary 4.23 (implicit function theorem) Suppose U is an open set in Fn×Fm.
Let f : U → Fn be in C1 (U) and suppose

f (x0,y0) = 0, D1f (x0,y0)
−1 ∈ L (Fn,Fn) . (4.20)
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Then there exist positive constants, δ, η, such that for every y ∈ B (y0, η) there
exists a unique x (y) ∈ B (x0, δ) such that

f (x (y) ,y) = 0. (4.21)

Furthermore, the mapping, y → x (y) is in C1 (B (y0, η)).

The next theorem is a very important special case of the implicit function the-
orem known as the inverse function theorem. Actually one can also obtain the
implicit function theorem from the inverse function theorem. It is done this way in
[30] and in [3].

Theorem 4.24 (inverse function theorem) Let x0 ∈ U ⊆ Fn and let f : U → Fn .
Suppose

f is C1 (U) , and Df(x0)−1 ∈ L(Fn,Fn). (4.22)

Then there exist open sets, W , and V such that

x0 ∈ W ⊆ U, (4.23)

f : W → V is one to one and onto, (4.24)

f−1 is C1. (4.25)

Proof: Apply the implicit function theorem to the function

F (x,y) ≡ f (x)− y

where y0 ≡ f (x0). Thus the function y → x (y) defined in that theorem is f−1.
Now let

W ≡ B (x0, δ) ∩ f−1 (B (y0, η))

and
V ≡ B (y0, η) .

This proves the theorem.

4.5 More Continuous Partial Derivatives

Corollary 4.23 will now be improved slightly. If f is Ck, it follows that the function
which is implicitly defined is also in Ck, not just C1. Since the inverse function
theorem comes as a case of the implicit function theorem, this shows that the
inverse function also inherits the property of being Ck.

Theorem 4.25 (implicit function theorem) Suppose U is an open set in Fn × Fm.
Let f : U → Fn be in Ck (U) and suppose

f (x0,y0) = 0, D1f (x0,y0)
−1 ∈ L (Fn,Fn) . (4.26)
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Then there exist positive constants, δ, η, such that for every y ∈ B (y0, η) there
exists a unique x (y) ∈ B (x0, δ) such that

f (x (y) ,y) = 0. (4.27)

Furthermore, the mapping, y → x (y) is in Ck (B (y0, η)).

Proof: From Corollary 4.23 y → x (y) is C1. It remains to show it is Ck for
k > 1 assuming that f is Ck. From 4.27

∂x
∂yl

= −D1 (x,y)−1 ∂f
∂yl

.

Thus the following formula holds for q = 1 and |α| = q.

Dαx (y) =
∑

|β|≤q

Mβ (x,y)Dβf (x,y) (4.28)

where Mβ is a matrix whose entries are differentiable functions of Dγ (x) for |γ| < q

and Dτ f (x,y) for |τ | ≤ q. This follows easily from the description of D1 (x,y)−1 in
terms of the cofactor matrix and the determinant of D1 (x,y). Suppose 4.28 holds
for |α| = q < k. Then by induction, this yields x is Cq. Then

∂Dαx (y)
∂yp

=
∑

|β|≤|α|

∂Mβ (x,y)
∂yp

Dβf (x,y) + Mβ (x,y)
∂Dβf (x,y)

∂yp
.

By the chain rule ∂Mβ(x,y)
∂yp is a matrix whose entries are differentiable functions of

Dτ f (x,y) for |τ | ≤ q+1 and Dγ (x) for |γ| < q+1. It follows since yp was arbitrary
that for any |α| = q + 1, a formula like 4.28 holds with q being replaced by q + 1.
By induction, x is Ck. This proves the theorem.

As a simple corollary this yields an improved version of the inverse function
theorem.

Theorem 4.26 (inverse function theorem) Let x0 ∈ U ⊆ Fn and let f : U → Fn .
Suppose for k a positive integer,

f is Ck (U) , and Df(x0)−1 ∈ L(Fn,Fn). (4.29)

Then there exist open sets, W , and V such that

x0 ∈ W ⊆ U, (4.30)

f : W → V is one to one and onto, (4.31)

f−1 is Ck. (4.32)
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Metric Spaces And General
Topological Spaces

5.1 Metric Space

Definition 5.1 A metric space is a set, X and a function d : X × X → [0,∞)
which satisfies the following properties.

d (x, y) = d (y, x)
d (x, y) ≥ 0 and d (x, y) = 0 if and only if x = y

d (x, y) ≤ d (x, z) + d (z, y) .

You can check that Rn and Cn are metric spaces with d (x,y) = |x− y| . How-
ever, there are many others. The definitions of open and closed sets are the same
for a metric space as they are for Rn.

Definition 5.2 A set, U in a metric space is open if whenever x ∈ U, there exists
r > 0 such that B (x, r) ⊆ U. As before, B (x, r) ≡ {y : d (x, y) < r} . Closed sets are
those whose complements are open. A point p is a limit point of a set, S if for every
r > 0, B (p, r) contains infinitely many points of S. A sequence, {xn} converges to
a point x if for every ε > 0 there exists N such that if n ≥ N, then d (x, xn) < ε.
{xn} is a Cauchy sequence if for every ε > 0 there exists N such that if m,n ≥ N,
then d (xn, xm) < ε.

Lemma 5.3 In a metric space, X every ball, B (x, r) is open. A set is closed if
and only if it contains all its limit points. If p is a limit point of S, then there exists
a sequence of distinct points of S, {xn} such that limn→∞ xn = p.

Proof: Let z ∈ B (x, r). Let δ = r − d (x, z) . Then if w ∈ B (z, δ) ,

d (w, x) ≤ d (x, z) + d (z, w) < d (x, z) + r − d (x, z) = r.

Therefore, B (z, δ) ⊆ B (x, r) and this shows B (x, r) is open.
The properties of balls are presented in the following theorem.

93
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Theorem 5.4 Suppose (X, d) is a metric space. Then the sets {B(x, r) : r >
0, x ∈ X} satisfy

∪ {B(x, r) : r > 0, x ∈ X} = X (5.1)

If p ∈ B (x, r1) ∩B (z, r2), there exists r > 0 such that

B (p, r) ⊆ B (x, r1) ∩B (z, r2) . (5.2)

Proof: Observe that the union of these balls includes the whole space, X so
5.1 is obvious. Consider 5.2. Let p ∈ B (x, r1) ∩B (z, r2). Consider

r ≡ min (r1 − d (x, p) , r2 − d (z, p))

and suppose y ∈ B (p, r). Then

d (y, x) ≤ d (y, p) + d (p, x) < r1 − d (x, p) + d (x, p) = r1

and so B (p, r) ⊆ B (x, r1). By similar reasoning, B (p, r) ⊆ B (z, r2). This proves
the theorem.

Let K be a closed set. This means KC ≡ X \ K is an open set. Let p be a
limit point of K. If p ∈ KC , then since KC is open, there exists B (p, r) ⊆ KC . But
this contradicts p being a limit point because there are no points of K in this ball.
Hence all limit points of K must be in K.

Suppose next that K contains its limit points. Is KC open? Let p ∈ KC .
Then p is not a limit point of K. Therefore, there exists B (p, r) which contains at
most finitely many points of K. Since p /∈ K, it follows that by making r smaller if
necessary, B (p, r) contains no points of K. That is B (p, r) ⊆ KC showing KC is
open. Therefore, K is closed.

Suppose now that p is a limit point of S. Let x1 ∈ (S \ {p})∩B (p, 1) . If x1, ···, xk

have been chosen, let

rk+1 ≡ min
{

d (p, xi) , i = 1, · · ·, k,
1

k + 1

}
.

Let xk+1 ∈ (S \ {p}) ∩B (p, rk+1) . This proves the lemma.

Lemma 5.5 If {xn} is a Cauchy sequence in a metric space, X and if some subse-
quence, {xnk

} converges to x, then {xn} converges to x. Also if a sequence converges,
then it is a Cauchy sequence.

Proof: Note first that nk ≥ k because in a subsequence, the indices, n1, n2, ··· are
strictly increasing. Let ε > 0 be given and let N be such that for k > N, d (x, xnk

) <
ε/2 and for m,n ≥ N, d (xm, xn) < ε/2. Pick k > n. Then if n > N,

d (xn, x) ≤ d (xn, xnk
) + d (xnk

, x) <
ε

2
+

ε

2
= ε.

Finally, suppose limn→∞ xn = x. Then there exists N such that if n > N, then
d (xn, x) < ε/2. it follows that for m, n > N,

d (xn, xm) ≤ d (xn, x) + d (x, xm) <
ε

2
+

ε

2
= ε.

This proves the lemma.
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5.2 Compactness In Metric Space

Many existence theorems in analysis depend on some set being compact. Therefore,
it is important to be able to identify compact sets. The purpose of this section is
to describe compact sets in a metric space.

Definition 5.6 Let A be a subset of X. A is compact if whenever A is contained
in the union of a set of open sets, there exists finitely many of these open sets whose
union contains A. (Every open cover admits a finite subcover.) A is “sequen-
tially compact” means every sequence has a convergent subsequence converging to
an element of A.

In a metric space compact is not the same as closed and bounded!

Example 5.7 Let X be any infinite set and define d (x, y) = 1 if x 6= y while
d (x, y) = 0 if x = y.

You should verify the details that this is a metric space because it satisfies the
axioms of a metric. The set X is closed and bounded because its complement is
∅ which is clearly open because every point of ∅ is an interior point. (There are
none.) Also X is bounded because X = B (x, 2). However, X is clearly not compact
because

{
B

(
x, 1

2

)
: x ∈ X

}
is a collection of open sets whose union contains X but

since they are all disjoint and nonempty, there is no finite subset of these whose
union contains X. In fact B

(
x, 1

2

)
= {x}.

From this example it is clear something more than closed and bounded is needed.
If you are not familiar with the issues just discussed, ignore them and continue.

Definition 5.8 In any metric space, a set E is totally bounded if for every ε > 0
there exists a finite set of points {x1, · · ·, xn} such that

E ⊆ ∪n
i=1B (xi, ε).

This finite set of points is called an ε net.

The following proposition tells which sets in a metric space are compact. First
here is an interesting lemma.

Lemma 5.9 Let X be a metric space and suppose D is a countable dense subset
of X. In other words, it is being assumed X is a separable metric space. Consider
the open sets of the form B (d, r) where r is a positive rational number and d ∈ D.
Denote this countable collection of open sets by B. Then every open set is the union
of sets of B. Furthermore, if C is any collection of open sets, there exists a countable
subset, {Un} ⊆ C such that ∪nUn = ∪C.

Proof: Let U be an open set and let x ∈ U. Let B (x, δ) ⊆ U. Then by density of
D, there exists d ∈ D∩B (x, δ/4) . Now pick r ∈ Q∩(δ/4, 3δ/4) and consider B (d, r) .
Clearly, B (d, r) contains the point x because r > δ/4. Is B (d, r) ⊆ B (x, δ)? if so,
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this proves the lemma because x was an arbitrary point of U . Suppose z ∈ B (d, r) .
Then

d (z, x) ≤ d (z, d) + d (d, x) < r +
δ

4
<

3δ

4
+

δ

4
= δ

Now let C be any collection of open sets. Each set in this collection is the union
of countably many sets of B. Let B′ denote the sets of B which are contained in
some set of C. Thus ∪B′ = ∪C. Then for each B ∈ B′, pick UB ∈ C such that
B ⊆ UB . Then {UB : B ∈ B′} is a countable collection of sets of C whose union
equals ∪C. Therefore, this proves the lemma.

Proposition 5.10 Let (X, d) be a metric space. Then the following are equivalent.

(X, d) is compact, (5.3)

(X, d) is sequentially compact, (5.4)

(X, d) is complete and totally bounded. (5.5)

Proof: Suppose 5.3 and let {xk} be a sequence. Suppose {xk} has no convergent
subsequence. If this is so, then by Lemma 5.3, {xk} has no limit point and no value
of the sequence is repeated more than finitely many times. Thus the set

Cn = ∪{xk : k ≥ n}

is a closed set because it has no limit points and if

Un = CC
n ,

then
X = ∪∞n=1Un

but there is no finite subcovering, because no value of the sequence is repeated more
than finitely many times. This contradicts compactness of (X, d). This shows 5.3
implies 5.4.

Now suppose 5.4 and let {xn} be a Cauchy sequence. Is {xn} convergent? By
sequential compactness xnk

→ x for some subsequence. By Lemma 5.5 it follows
that {xn} also converges to x showing that (X, d) is complete. If (X, d) is not
totally bounded, then there exists ε > 0 for which there is no ε net. Hence there
exists a sequence {xk} with d (xk, xl) ≥ ε for all l 6= k. By Lemma 5.5 again,
this contradicts 5.4 because no subsequence can be a Cauchy sequence and so no
subsequence can converge. This shows 5.4 implies 5.5.

Now suppose 5.5. What about 5.4? Let {pn} be a sequence and let {xn
i }mn

i=1 be
a 2−n net for n = 1, 2, · · ·. Let

Bn ≡ B
(
xn

in
, 2−n

)

be such that Bn contains pk for infinitely many values of k and Bn ∩ Bn+1 6= ∅.
To do this, suppose Bn contains pk for infinitely many values of k. Then one of
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the sets which intersect Bn, B
(
xn+1

i , 2−(n+1)
)

must contain pk for infinitely many
values of k because all these indices of points from {pn} contained in Bn must be
accounted for in one of finitely many sets, B

(
xn+1

i , 2−(n+1)
)
. Thus there exists a

strictly increasing sequence of integers, nk such that

pnk
∈ Bk.

Then if k ≥ l,

d (pnk
, pnl

) ≤
k−1∑

i=l

d
(
pni+1 , pni

)

<

k−1∑

i=l

2−(i−1) < 2−(l−2).

Consequently {pnk
} is a Cauchy sequence. Hence it converges because the metric

space is complete. This proves 5.4.
Now suppose 5.4 and 5.5 which have now been shown to be equivalent. Let Dn

be a n−1 net for n = 1, 2, · · · and let

D = ∪∞n=1Dn.

Thus D is a countable dense subset of (X, d).
Now let C be any set of open sets such that ∪C ⊇ X. By Lemma 5.9, there

exists a countable subset of C,
C̃ = {Un}∞n=1

such that ∪C̃ = ∪C. If C admits no finite subcover, then neither does C̃ and there ex-
ists pn ∈ X \∪n

k=1Uk. Then since X is sequentially compact, there is a subsequence
{pnk

} such that {pnk
} converges. Say

p = lim
k→∞

pnk
.

All but finitely many points of {pnk
} are in X \∪n

k=1Uk. Therefore p ∈ X \∪n
k=1Uk

for each n. Hence
p /∈ ∪∞k=1Uk

contradicting the construction of {Un}∞n=1 which required that ∪∞n=1Un ⊇ X. Hence
X is compact. This proves the proposition.

Consider Rn. In this setting totally bounded and bounded are the same. This
will yield a proof of the Heine Borel theorem from advanced calculus.

Lemma 5.11 A subset of Rn is totally bounded if and only if it is bounded.

Proof: Let A be totally bounded. Is it bounded? Let x1, · · ·,xp be a 1 net for
A. Now consider the ball B (0, r + 1) where r > max (|xi| : i = 1, · · ·, p) . If z ∈ A,
then z ∈ B (xj , 1) for some j and so by the triangle inequality,

|z− 0| ≤ |z− xj |+ |xj | < 1 + r.
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Thus A ⊆ B (0,r + 1) and so A is bounded.
Now suppose A is bounded and suppose A is not totally bounded. Then there

exists ε > 0 such that there is no ε net for A. Therefore, there exists a sequence of
points {ai} with |ai − aj | ≥ ε if i 6= j. Since A is bounded, there exists r > 0 such
that

A ⊆ [−r, r)n.

(x ∈[−r, r)n means xi ∈ [−r, r) for each i.) Now define S to be all cubes of the form

n∏

k=1

[ak, bk)

where
ak = −r + i2−pr, bk = −r + (i + 1) 2−pr,

for i ∈ {0, 1, · · ·, 2p+1− 1}. Thus S is a collection of
(
2p+1

)n non overlapping cubes
whose union equals [−r, r)n and whose diameters are all equal to 2−pr

√
n. Now

choose p large enough that the diameter of these cubes is less than ε. This yields a
contradiction because one of the cubes must contain infinitely many points of {ai}.
This proves the lemma.

The next theorem is called the Heine Borel theorem and it characterizes the
compact sets in Rn.

Theorem 5.12 A subset of Rn is compact if and only if it is closed and bounded.

Proof: Since a set in Rn is totally bounded if and only if it is bounded, this
theorem follows from Proposition 5.10 and the observation that a subset of Rn is
closed if and only if it is complete. This proves the theorem.

5.3 Some Applications Of Compactness

The following corollary is an important existence theorem which depends on com-
pactness.

Corollary 5.13 Let X be a compact metric space and let f : X → R be continuous.
Then max {f (x) : x ∈ X} and min {f (x) : x ∈ X} both exist.

Proof: First it is shown f (X) is compact. Suppose C is a set of open sets whose
union contains f (X). Then since f is continuous f−1 (U) is open for all U ∈ C.
Therefore,

{
f−1 (U) : U ∈ C} is a collection of open sets whose union contains X.

Since X is compact, it follows finitely many of these,
{
f−1 (U1) , · · ·, f−1 (Up)

}
contains X in their union. Therefore, f (X) ⊆ ∪p

k=1Uk showing f (X) is compact
as claimed.

Now since f (X) is compact, Theorem 5.12 implies f (X) is closed and bounded.
Therefore, it contains its inf and its sup. Thus f achieves both a maximum and a
minimum.
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Definition 5.14 Let X,Y be metric spaces and f : X → Y a function. f is
uniformly continuous if for all ε > 0 there exists δ > 0 such that whenever x1 and
x2 are two points of X satisfying d (x1, x2) < δ, it follows that d (f (x1) , f (x2)) < ε.

A very important theorem is the following.

Theorem 5.15 Suppose f : X → Y is continuous and X is compact. Then f is
uniformly continuous.

Proof: Suppose this is not true and that f is continuous but not uniformly
continuous. Then there exists ε > 0 such that for all δ > 0 there exist points,
pδ and qδ such that d (pδ, qδ) < δ and yet d (f (pδ) , f (qδ)) ≥ ε. Let pn and qn

be the points which go with δ = 1/n. By Proposition 5.10 {pn} has a convergent
subsequence, {pnk

} converging to a point, x ∈ X. Since d (pn, qn) < 1
n , it follows

that qnk
→ x also. Therefore,

ε ≤ d (f (pnk
) , f (qnk

)) ≤ d (f (pnk
) , f (x)) + d (f (x) , f (qnk

))

but by continuity of f , both d (f (pnk
) , f (x)) and d (f (x) , f (qnk

)) converge to 0
as k →∞ contradicting the above inequality. This proves the theorem.

Another important property of compact sets in a metric space concerns the finite
intersection property.

Definition 5.16 If every finite subset of a collection of sets has nonempty inter-
section, the collection has the finite intersection property.

Theorem 5.17 Suppose F is a collection of compact sets in a metric space, X
which has the finite intersection property. Then there exists a point in their inter-
section. (∩F 6= ∅).

Proof: If this were not so, ∪{
FC : F ∈ F}

= X and so, in particular, picking
some F0 ∈ F ,

{
FC : F ∈ F}

would be an open cover of F0. Since F0 is compact,
some finite subcover, FC

1 , · · ·, FC
m exists. But then F0 ⊆ ∪m

k=1F
C
k which means

∩∞k=0Fk = ∅, contrary to the finite intersection property.

Theorem 5.18 Let Xi be a compact metric space with metric di. Then
∏m

i=1 Xi is
also a compact metric space with respect to the metric, d (x,y) ≡ maxi (di (xi, yi)).

Proof: This is most easily seen from sequential compactness. Let
{
xk

}∞
k=1

be a sequence of points in
∏m

i=1 Xi. Consider the ith component of xk, xk
i . It

follows
{
xk

i

}
is a sequence of points in Xi and so it has a convergent subsequence.

Compactness of X1 implies there exists a subsequence of xk, denoted by
{
xk1

}
such

that
lim

k1→∞
xk1

1 → x1 ∈ X1.

Now there exists a further subsequence, denoted by
{
xk2

}
such that in addition to

this, xk2
2 → x2 ∈ X2. After taking m such subsequences, there exists a subsequence,{

xl
}

such that liml→∞ xl
i = xi ∈ Xi for each i. Therefore, letting x ≡ (x1, · · ·, xm),

xl → x in
∏m

i=1 Xi. This proves the theorem.
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5.4 Ascoli Arzela Theorem

Definition 5.19 Let (X, d) be a complete metric space. Then it is said to be locally
compact if B (x, r) is compact for each r > 0.

Thus if you have a locally compact metric space, then if {an} is a bounded
sequence, it must have a convergent subsequence.

Let K be a compact subset of Rn and consider the continuous functions which
have values in a locally compact metric space, (X, d) where d denotes the metric on
X. Denote this space as C (K, X) .

Definition 5.20 For f, g ∈ C (K, X) , where K is a compact subset of Rn and X
is a locally compact complete metric space define

ρK (f, g) ≡ sup {d (f (x) , g (x)) : x ∈ K} .

Then ρK provides a distance which makes C (K, X) into a metric space.

The Ascoli Arzela theorem is a major result which tells which subsets of C (K, X)
are sequentially compact.

Definition 5.21 Let A ⊆ C (K, X) for K a compact subset of Rn. Then A is said
to be uniformly equicontinuous if for every ε > 0 there exists a δ > 0 such that
whenever x,y ∈ K with |x− y| < δ and f ∈ A,

d (f (x) , f (y)) < ε.

The set, A is said to be uniformly bounded if for some M < ∞, and a ∈ X,

f (x) ∈ B (a,M)

for all f ∈ A and x ∈ K.

Uniform equicontinuity is like saying that the whole set of functions, A, is uni-
formly continuous on K uniformly for f ∈ A. The version of the Ascoli Arzela
theorem I will present here is the following.

Theorem 5.22 Suppose K is a nonempty compact subset of Rn and A ⊆ C (K, X)
is uniformly bounded and uniformly equicontinuous. Then if {fk} ⊆ A, there exists
a function, f ∈ C (K, X) and a subsequence, fkl

such that

lim
l→∞

ρK (fkl
, f) = 0.

To give a proof of this theorem, I will first prove some lemmas.

Lemma 5.23 If K is a compact subset of Rn, then there exists D ≡ {xk}∞k=1 ⊆ K
such that D is dense in K. Also, for every ε > 0 there exists a finite set of points,
{x1, · · ·,xm} ⊆ K, called an ε net such that

∪m
i=1B (xi, ε) ⊇ K.
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Proof: For m ∈ N, pick xm
1 ∈ K. If every point of K is within 1/m of xm

1 , stop.
Otherwise, pick

xm
2 ∈ K \B (xm

1 , 1/m) .

If every point of K contained in B (xm
1 , 1/m)∪B (xm

2 , 1/m) , stop. Otherwise, pick

xm
3 ∈ K \ (B (xm

1 , 1/m) ∪B (xm
2 , 1/m)) .

If every point of K is contained in B (xm
1 , 1/m)∪B (xm

2 , 1/m)∪B (xm
3 , 1/m) , stop.

Otherwise, pick

xm
4 ∈ K \ (B (xm

1 , 1/m) ∪B (xm
2 , 1/m) ∪B (xm

3 , 1/m))

Continue this way until the process stops, say at N (m). It must stop because
if it didn’t, there would be a convergent subsequence due to the compactness of
K. Ultimately all terms of this convergent subsequence would be closer than 1/m,

violating the manner in which they are chosen. Then D = ∪∞m=1 ∪N(m)
k=1 {xm

k } . This
is countable because it is a countable union of countable sets. If y ∈ K and ε > 0,
then for some m, 2/m < ε and so B (y, ε) must contain some point of {xm

k } since
otherwise, the process stopped too soon. You could have picked y. This proves the
lemma.

Lemma 5.24 Suppose D is defined above and {gm} is a sequence of functions of
A having the property that for every xk ∈ D,

lim
m→∞

gm (xk) exists.

Then there exists g ∈ C (K,X) such that

lim
m→∞

ρ (gm, g) = 0.

Proof: Define g first on D.

g (xk) ≡ lim
m→∞

gm (xk) .

Next I show that {gm} converges at every point of K. Let x ∈ K and let ε > 0 be
given. Choose xk such that for all f ∈ A,

d (f (xk) , f (x)) <
ε

3
.

I can do this by the equicontinuity. Now if p, q are large enough, say p, q ≥ M,

d (gp (xk) , gq (xk)) <
ε

3
.

Therefore, for p, q ≥ M,

d (gp (x) , gq (x)) ≤ d (gp (x) , gp (xk)) + d (gp (xk) , gq (xk)) + d (gq (xk) , gq (x))

<
ε

3
+

ε

3
+

ε

3
= ε
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It follows that {gm (x)} is a Cauchy sequence having values X. Therefore, it con-
verges. Let g (x) be the name of the thing it converges to.

Let ε > 0 be given and pick δ > 0 such that whenever x,y ∈ K and |x− y| < δ,
it follows d (f (x) , f (y)) < ε

3 for all f ∈ A. Now let {x1, · · ·,xm} be a δ net for K
as in Lemma 5.23. Since there are only finitely many points in this δ net, it follows
that there exists N such that for all p, q ≥ N,

d (gq (xi) , gp (xi)) <
ε

3

for all {x1, · · ·,xm} · Therefore, for arbitrary x ∈ K, pick xi ∈ {x1, · · ·,xm} such
that |xi − x| < δ. Then

d (gq (x) , gp (x)) ≤ d (gq (x) , gq (xi)) + d (gq (xi) , gp (xi)) + d (gp (xi) , gp (x))

<
ε

3
+

ε

3
+

ε

3
= ε.

Since N does not depend on the choice of x, it follows this sequence {gm} is uni-
formly Cauchy. That is, for every ε > 0, there exists N such that if p, q ≥ N,
then

ρ (gp, gq) < ε.

Next, I need to verify that the function, g is a continuous function. Let N be
large enough that whenever p, q ≥ N, the above holds. Then for all x ∈ K,

d (g (x) , gp (x)) ≤ ε

3
(5.6)

whenever p ≥ N. This follows from observing that for p, q ≥ N,

d (gq (x) , gp (x)) <
ε

3

and then taking the limit as q →∞ to obtain 5.6. In passing to the limit, you can
use the following simple claim.

Claim: In a metric space, if an → a, then d (an, b) → d (a, b) .
Proof of the claim: You note that by the triangle inequality, d (an, b) −

d (a, b) ≤ d (an, a) and d (a, b)− d (an, b) ≤ d (an, a) and so

|d (an, b)− d (a, b)| ≤ d (an, a) .

Now let p satisfy 5.6 for all x whenever p > N. Also pick δ > 0 such that if
|x− y| < δ, then

d (gp (x) , gp (y)) <
ε

3
.

Then if |x− y| < δ,

d (g (x) , g (y)) ≤ d (g (x) , gp (x)) + d (gp (x) , gp (y)) + d (gp (y) , g (y))

<
ε

3
+

ε

3
+

ε

3
= ε.
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Since ε was arbitrary, this shows that g is continuous.
It only remains to verify that ρ (g, gk) → 0. But this follows from 5.6. This

proves the lemma.
With these lemmas, it is time to prove Theorem 5.22.
Proof of Theorem 5.22: Let D = {xk} be the countable dense set of K

gauranteed by Lemma 5.23 and let {(1, 1) , (1, 2) , (1, 3) , (1, 4) , (1, 5) , · · ·} be a sub-
sequence of N such that

lim
k→∞

f(1,k) (x1) exists.

This is where the local compactness of X is being used. Now let

{(2, 1) , (2, 2) , (2, 3) , (2, 4) , (2, 5) , · · ·}
be a subsequence of {(1, 1) , (1, 2) , (1, 3) , (1, 4) , (1, 5) , · · ·} which has the property
that

lim
k→∞

f(2,k) (x2) exists.

Thus it is also the case that

f(2,k) (x1) converges to lim
k→∞

f(1,k) (x1) .

because every subsequence of a convergent sequence converges to the same thing as
the convergent sequence. Continue this way and consider the array

f(1,1), f(1,2), f(1,3), f(1,4), · · · converges at x1

f(2,1), f(2,2), f(2,3), f(2,4) · · · converges at x1 and x2

f(3,1), f(3,2), f(3,3), f(3,4) · · · converges at x1, x2, and x3

...

Now let gk ≡ f(k,k). Thus gk is ultimately a subsequence of
{
f(m,k)

}
whenever

k > m and therefore, {gk} converges at each point of D. By Lemma 5.24 it follows
there exists g ∈ C (K) such that

lim
k→∞

ρ (g, gk) = 0.

This proves the Ascoli Arzela theorem.
Actually there is an if and only if version of it but the most useful case is what

is presented here. The process used to get the subsequence in the proof is called
the Cantor diagonalization procedure.

5.5 General Topological Spaces

It turns out that metric spaces are not sufficiently general for some applications.
This section is a brief introduction to general topology. In making this generaliza-
tion, the properties of balls which are the conclusion of Theorem 5.4 on Page 94 are
stated as axioms for a subset of the power set of a given set which will be known as
a basis for the topology. More can be found in [29] and the references listed there.
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Definition 5.25 Let X be a nonempty set and suppose B ⊆ P (X). Then B is a
basis for a topology if it satisfies the following axioms.

1.) Whenever p ∈ A ∩ B for A,B ∈ B, it follows there exists C ∈ B such that
p ∈ C ⊆ A ∩B.

2.) ∪B = X.
Then a subset, U, of X is an open set if for every point, x ∈ U, there exists

B ∈ B such that x ∈ B ⊆ U . Thus the open sets are exactly those which can be
obtained as a union of sets of B. Denote these subsets of X by the symbol τ and
refer to τ as the topology or the set of open sets.

Note that this is simply the analog of saying a set is open exactly when every
point is an interior point.

Proposition 5.26 Let X be a set and let B be a basis for a topology as defined
above and let τ be the set of open sets determined by B. Then

∅ ∈ τ , X ∈ τ , (5.7)

If C ⊆ τ , then ∪ C ∈ τ (5.8)

If A,B ∈ τ , then A ∩B ∈ τ . (5.9)

Proof: If p ∈ ∅ then there exists B ∈ B such that p ∈ B ⊆ ∅ because there are
no points in ∅. Therefore, ∅ ∈ τ . Now if p ∈ X, then by part 2.) of Definition 5.25
p ∈ B ⊆ X for some B ∈ B and so X ∈ τ .

If C ⊆ τ , and if p ∈ ∪C, then there exists a set, B ∈ C such that p ∈ B.
However, B is itself a union of sets from B and so there exists C ∈ B such that
p ∈ C ⊆ B ⊆ ∪C. This verifies 5.8.

Finally, if A,B ∈ τ and p ∈ A ∩ B, then since A and B are themselves unions
of sets of B, it follows there exists A1, B1 ∈ B such that A1 ⊆ A,B1 ⊆ B, and
p ∈ A1 ∩ B1. Therefore, by 1.) of Definition 5.25 there exists C ∈ B such that
p ∈ C ⊆ A1 ∩ B1 ⊆ A ∩ B, showing that A ∩ B ∈ τ as claimed. Of course if
A ∩B = ∅, then A ∩B ∈ τ . This proves the proposition.

Definition 5.27 A set X together with such a collection of its subsets satisfying
5.7-5.9 is called a topological space. τ is called the topology or set of open sets of
X.

Definition 5.28 A topological space is said to be Hausdorff if whenever p and q
are distinct points of X, there exist disjoint open sets U, V such that p ∈ U, q ∈ V .
In other words points can be separated with open sets.

Hausdorff

·p
U

·q
V
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Definition 5.29 A subset of a topological space is said to be closed if its comple-
ment is open. Let p be a point of X and let E ⊆ X. Then p is said to be a limit
point of E if every open set containing p contains a point of E distinct from p.

Note that if the topological space is Hausdorff, then this definition is equivalent
to requiring that every open set containing p contains infinitely many points from
E. Why?

Theorem 5.30 A subset, E, of X is closed if and only if it contains all its limit
points.

Proof: Suppose first that E is closed and let x be a limit point of E. Is x ∈ E?
If x /∈ E, then EC is an open set containing x which contains no points of E, a
contradiction. Thus x ∈ E.

Now suppose E contains all its limit points. Is the complement of E open? If
x ∈ EC , then x is not a limit point of E because E has all its limit points and so
there exists an open set, U containing x such that U contains no point of E other
than x. Since x /∈ E, it follows that x ∈ U ⊆ EC which implies EC is an open set
because this shows EC is the union of open sets.

Theorem 5.31 If (X, τ) is a Hausdorff space and if p ∈ X, then {p} is a closed
set.

Proof: If x 6= p, there exist open sets U and V such that x ∈ U, p ∈ V and
U ∩ V = ∅. Therefore, {p}C is an open set so {p} is closed.

Note that the Hausdorff axiom was stronger than needed in order to draw the
conclusion of the last theorem. In fact it would have been enough to assume that
if x 6= y, then there exists an open set containing x which does not intersect y.

Definition 5.32 A topological space (X, τ) is said to be regular if whenever C is
a closed set and p is a point not in C, there exist disjoint open sets U and V such
that p ∈ U, C ⊆ V . Thus a closed set can be separated from a point not in the
closed set by two disjoint open sets.

Regular

·p
U

C

V

Definition 5.33 The topological space, (X, τ) is said to be normal if whenever C
and K are disjoint closed sets, there exist disjoint open sets U and V such that
C ⊆ U, K ⊆ V . Thus any two disjoint closed sets can be separated with open sets.
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Normal

C

U

K

V

Definition 5.34 Let E be a subset of X. E is defined to be the smallest closed set
containing E.

Lemma 5.35 The above definition is well defined.

Proof: Let C denote all the closed sets which contain E. Then C is nonempty
because X ∈ C.

(∩{A : A ∈ C})C = ∪{
AC : A ∈ C} ,

an open set which shows that ∩C is a closed set and is the smallest closed set which
contains E.

Theorem 5.36 E = E ∪ {limit points of E}.

Proof: Let x ∈ E and suppose that x /∈ E. If x is not a limit point either, then
there exists an open set, U ,containing x which does not intersect E. But then UC

is a closed set which contains E which does not contain x, contrary to the definition
that E is the intersection of all closed sets containing E. Therefore, x must be a
limit point of E after all.

Now E ⊆ E so suppose x is a limit point of E. Is x ∈ E? If H is a closed set
containing E, which does not contain x, then HC is an open set containing x which
contains no points of E other than x negating the assumption that x is a limit point
of E.

The following is the definition of continuity in terms of general topological spaces.
It is really just a generalization of the ε - δ definition of continuity given in calculus.

Definition 5.37 Let (X, τ) and (Y, η) be two topological spaces and let f : X → Y .
f is continuous at x ∈ X if whenever V is an open set of Y containing f(x), there
exists an open set U ∈ τ such that x ∈ U and f(U) ⊆ V . f is continuous if
f−1(V ) ∈ τ whenever V ∈ η.

You should prove the following.

Proposition 5.38 In the situation of Definition 5.37 f is continuous if and only
if f is continuous at every point of X.

Definition 5.39 Let (Xi, τ i) be topological spaces.
∏n

i=1 Xi is the Cartesian prod-
uct. Define a product topology as follows. Let B =

∏n
i=1 Ai where Ai ∈ τ i. Then B

is a basis for the product topology.
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Theorem 5.40 The set B of Definition 5.39 is a basis for a topology.

Proof: Suppose x ∈ ∏n
i=1 Ai∩

∏n
i=1 Bi where Ai and Bi are open sets. Say

x = (x1, · · ·, xn) .

Then xi ∈ Ai ∩Bi for each i. Therefore, x ∈ ∏n
i=1 Ai ∩Bi ∈ B and

∏n
i=1 Ai ∩Bi ⊆∏n

i=1 Ai.
The definition of compactness is also considered for a general topological space.

This is given next.

Definition 5.41 A subset, E, of a topological space (X, τ) is said to be compact if
whenever C ⊆ τ and E ⊆ ∪C, there exists a finite subset of C, {U1 · · ·Un}, such that
E ⊆ ∪n

i=1Ui. (Every open covering admits a finite subcovering.) E is precompact if
E is compact. A topological space is called locally compact if it has a basis B, with
the property that B is compact for each B ∈ B.

A useful construction when dealing with locally compact Hausdorff spaces is the
notion of the one point compactification of the space.

Definition 5.42 Suppose (X, τ) is a locally compact Hausdorff space. Then let
X̃ ≡ X ∪ {∞} where ∞ is just the name of some point which is not in X which is
called the point at infinity. A basis for the topology τ̃ for X̃ is

τ ∪ {
KC where K is a compact subset of X

}
.

The complement is taken with respect to X̃ and so the open sets, KC are basic open
sets which contain ∞.

The reason this is called a compactification is contained in the next lemma.

Lemma 5.43 If (X, τ) is a locally compact Hausdorff space, then
(
X̃, τ̃

)
is a com-

pact Hausdorff space.

Proof: Since (X, τ) is a locally compact Hausdorff space, it follows
(
X̃, τ̃

)
is

a Hausdorff topological space. The only case which needs checking is the one of
p ∈ X and ∞. Since (X, τ) is locally compact, there exists an open set of τ , U

having compact closure which contains p. Then p ∈ U and ∞ ∈ U
C

and these are
disjoint open sets containing the points, p and ∞ respectively. Now let C be an
open cover of X̃ with sets from τ̃ . Then ∞ must be in some set, U∞ from C, which
must contain a set of the form KC where K is a compact subset of X. Then there
exist sets from C, U1, · · ·, Ur which cover K. Therefore, a finite subcover of X̃ is
U1, · · ·, Ur, U∞.

In general topological spaces there may be no concept of “bounded”. Even if
there is, closed and bounded is not necessarily the same as compactness. However,
in any Hausdorff space every compact set must be a closed set.
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Theorem 5.44 If (X, τ) is a Hausdorff space, then every compact subset must also
be a closed set.

Proof: Suppose p /∈ K. For each x ∈ X, there exist open sets, Ux and Vx such
that

x ∈ Ux, p ∈ Vx,

and
Ux ∩ Vx = ∅.

If K is assumed to be compact, there are finitely many of these sets, Ux1 , · · ·, Uxm

which cover K. Then let V ≡ ∩m
i=1Vxi

. It follows that V is an open set containing
p which has empty intersection with each of the Uxi . Consequently, V contains no
points of K and is therefore not a limit point of K. This proves the theorem.

Definition 5.45 If every finite subset of a collection of sets has nonempty inter-
section, the collection has the finite intersection property.

Theorem 5.46 Let K be a set whose elements are compact subsets of a Hausdorff
topological space, (X, τ). Suppose K has the finite intersection property. Then
∅ 6= ∩K.

Proof: Suppose to the contrary that ∅ = ∩K. Then consider

C ≡ {
KC : K ∈ K}

.

It follows C is an open cover of K0 where K0 is any particular element of K. But
then there are finitely many K ∈ K, K1, · · ·, Kr such that K0 ⊆ ∪r

i=1K
C
i implying

that ∩r
i=0Ki = ∅, contradicting the finite intersection property.

Lemma 5.47 Let (X, τ) be a topological space and let B be a basis for τ . Then K
is compact if and only if every open cover of basic open sets admits a finite subcover.

Proof: Suppose first that X is compact. Then if C is an open cover consisting
of basic open sets, it follows it admits a finite subcover because these are open sets
in C.

Next suppose that every basic open cover admits a finite subcover and let C be
an open cover of X. Then define C̃ to be the collection of basic open sets which are
contained in some set of C. It follows C̃ is a basic open cover of X and so it admits
a finite subcover, {U1, · · ·, Up}. Now each Ui is contained in an open set of C. Let
Oi be a set of C which contains Ui. Then {O1, · · ·, Op} is an open cover of X. This
proves the lemma.

In fact, much more can be said than Lemma 5.47. However, this is all which I
will present here.



5.6. CONNECTED SETS 109

5.6 Connected Sets

Stated informally, connected sets are those which are in one piece. More precisely,

Definition 5.48 A set, S in a general topological space is separated if there exist
sets, A,B such that

S = A ∪B, A,B 6= ∅, and A ∩B = B ∩A = ∅.
In this case, the sets A and B are said to separate S. A set is connected if it is not
separated.

One of the most important theorems about connected sets is the following.

Theorem 5.49 Suppose U and V are connected sets having nonempty intersection.
Then U ∪ V is also connected.

Proof: Suppose U ∪ V = A ∪ B where A ∩ B = B ∩ A = ∅. Consider the sets,
A ∩ U and B ∪ U. Since

(A ∩ U) ∩ (B ∩ U) = (A ∩ U) ∩ (
B ∩ U

)
= ∅,

It follows one of these sets must be empty since otherwise, U would be separated.
It follows that U is contained in either A or B. Similarly, V must be contained in
either A or B. Since U and V have nonempty intersection, it follows that both V
and U are contained in one of the sets, A,B. Therefore, the other must be empty
and this shows U ∪ V cannot be separated and is therefore, connected.

The intersection of connected sets is not necessarily connected as is shown by
the following picture.

U

V

Theorem 5.50 Let f : X → Y be continuous where X and Y are topological spaces
and X is connected. Then f (X) is also connected.

Proof: To do this you show f (X) is not separated. Suppose to the contrary
that f (X) = A∪B where A and B separate f (X) . Then consider the sets, f−1 (A)
and f−1 (B) . If z ∈ f−1 (B) , then f (z) ∈ B and so f (z) is not a limit point of
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A. Therefore, there exists an open set, U containing f (z) such that U ∩ A = ∅.
But then, the continuity of f implies that f−1 (U) is an open set containing z such
that f−1 (U)∩f−1 (A) = ∅. Therefore, f−1 (B) contains no limit points of f−1 (A) .
Similar reasoning implies f−1 (A) contains no limit points of f−1 (B). It follows
that X is separated by f−1 (A) and f−1 (B) , contradicting the assumption that X
was connected.

An arbitrary set can be written as a union of maximal connected sets called
connected components. This is the concept of the next definition.

Definition 5.51 Let S be a set and let p ∈ S. Denote by Cp the union of all
connected subsets of S which contain p. This is called the connected component
determined by p.

Theorem 5.52 Let Cp be a connected component of a set S in a general topological
space. Then Cp is a connected set and if Cp ∩ Cq 6= ∅, then Cp = Cq.

Proof: Let C denote the connected subsets of S which contain p. If Cp = A∪B
where

A ∩B = B ∩A = ∅,
then p is in one of A or B. Suppose without loss of generality p ∈ A. Then every
set of C must also be contained in A also since otherwise, as in Theorem 5.49, the
set would be separated. But this implies B is empty. Therefore, Cp is connected.
From this, and Theorem 5.49, the second assertion of the theorem is proved.

This shows the connected components of a set are equivalence classes and par-
tition the set.

A set, I is an interval in R if and only if whenever x, y ∈ I then (x, y) ⊆ I. The
following theorem is about the connected sets in R.

Theorem 5.53 A set, C in R is connected if and only if C is an interval.

Proof: Let C be connected. If C consists of a single point, p, there is nothing
to prove. The interval is just [p, p] . Suppose p < q and p, q ∈ C. You need to show
(p, q) ⊆ C. If

x ∈ (p, q) \ C

let C ∩ (−∞, x) ≡ A, and C ∩ (x,∞) ≡ B. Then C = A∪B and the sets, A and B
separate C contrary to the assumption that C is connected.

Conversely, let I be an interval. Suppose I is separated by A and B. Pick x ∈ A
and y ∈ B. Suppose without loss of generality that x < y. Now define the set,

S ≡ {t ∈ [x, y] : [x, t] ⊆ A}
and let l be the least upper bound of S. Then l ∈ A so l /∈ B which implies l ∈ A.
But if l /∈ B, then for some δ > 0,

(l, l + δ) ∩B = ∅
contradicting the definition of l as an upper bound for S. Therefore, l ∈ B which
implies l /∈ A after all, a contradiction. It follows I must be connected.

The following theorem is a very useful description of the open sets in R.
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Theorem 5.54 Let U be an open set in R. Then there exist countably many dis-
joint open sets, {(ai, bi)}∞i=1 such that U = ∪∞i=1 (ai, bi) .

Proof: Let p ∈ U and let z ∈ Cp, the connected component determined by p.
Since U is open, there exists, δ > 0 such that (z − δ, z + δ) ⊆ U. It follows from
Theorem 5.49 that

(z − δ, z + δ) ⊆ Cp.

This shows Cp is open. By Theorem 5.53, this shows Cp is an open interval, (a, b)
where a, b ∈ [−∞,∞] . There are therefore at most countably many of these con-
nected components because each must contain a rational number and the rational
numbers are countable. Denote by {(ai, bi)}∞i=1 the set of these connected compo-
nents. This proves the theorem.

Definition 5.55 A topological space, E is arcwise connected if for any two points,
p, q ∈ E, there exists a closed interval, [a, b] and a continuous function, γ : [a, b] → E
such that γ (a) = p and γ (b) = q. E is locally connected if it has a basis of connected
open sets. E is locally arcwise connected if it has a basis of arcwise connected open
sets.

An example of an arcwise connected topological space would be the any subset
of Rn which is the continuous image of an interval. Locally connected is not the
same as connected. A well known example is the following.

{(
x, sin

1
x

)
: x ∈ (0, 1]

}
∪ {(0, y) : y ∈ [−1, 1]} (5.10)

You can verify that this set of points considered as a metric space with the metric
from R2 is not locally connected or arcwise connected but is connected.

Proposition 5.56 If a topological space is arcwise connected, then it is connected.

Proof: Let X be an arcwise connected space and suppose it is separated.
Then X = A ∪ B where A, B are two separated sets. Pick p ∈ A and q ∈ B.
Since X is given to be arcwise connected, there must exist a continuous function
γ : [a, b] → X such that γ (a) = p and γ (b) = q. But then we would have γ ([a, b]) =
(γ ([a, b]) ∩A) ∪ (γ ([a, b]) ∩B) and the two sets, γ ([a, b]) ∩A and γ ([a, b]) ∩B are
separated thus showing that γ ([a, b]) is separated and contradicting Theorem 5.53
and Theorem 5.50. It follows that X must be connected as claimed.

Theorem 5.57 Let U be an open subset of a locally arcwise connected topological
space, X. Then U is arcwise connected if and only if U if connected. Also the
connected components of an open set in such a space are open sets, hence arcwise
connected.

Proof: By Proposition 5.56 it is only necessary to verify that if U is connected
and open in the context of this theorem, then U is arcwise connected. Pick p ∈ U .
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Say x ∈ U satisfies P if there exists a continuous function, γ : [a, b] → U such that
γ (a) = p and γ (b) = x.

A ≡ {x ∈ U such that x satisfies P.}
If x ∈ A, there exists, according to the assumption that X is locally arcwise con-

nected, an open set, V, containing x and contained in U which is arcwise connected.
Thus letting y ∈ V, there exist intervals, [a, b] and [c, d] and continuous functions
having values in U , γ, η such that γ (a) = p, γ (b) = x, η (c) = x, and η (d) = y.
Then let γ1 : [a, b + d− c] → U be defined as

γ1 (t) ≡
{

γ (t) if t ∈ [a, b]
η (t) if t ∈ [b, b + d− c]

Then it is clear that γ1 is a continuous function mapping p to y and showing that
V ⊆ A. Therefore, A is open. A 6= ∅ because there is an open set, V containing p
which is contained in U and is arcwise connected.

Now consider B ≡ U \ A. This is also open. If B is not open, there exists a
point z ∈ B such that every open set containing z is not contained in B. Therefore,
letting V be one of the basic open sets chosen such that z ∈ V ⊆ U, there exist
points of A contained in V. But then, a repeat of the above argument shows z ∈ A
also. Hence B is open and so if B 6= ∅, then U = B ∪ A and so U is separated by
the two sets, B and A contradicting the assumption that U is connected.

It remains to verify the connected components are open. Let z ∈ Cp where Cp

is the connected component determined by p. Then picking V an arcwise connected
open set which contains z and is contained in U, Cp ∪V is connected and contained
in U and so it must also be contained in Cp. This proves the theorem.

As an application, consider the following corollary.

Corollary 5.58 Let f : Ω → Z be continuous where Ω is a connected open set.
Then f must be a constant.

Proof: Suppose not. Then it achieves two different values, k and l 6= k. Then
Ω = f−1 (l) ∪ f−1 ({m ∈ Z : m 6= l}) and these are disjoint nonempty open sets
which separate Ω. To see they are open, note

f−1 ({m ∈ Z : m 6= l}) = f−1

(
∪m6=l

(
m− 1

6
, n +

1
6

))

which is the inverse image of an open set.

5.7 Exercises

1. Let V be an open set in Rn. Show there is an increasing sequence of open sets,
{Um} , such for all m ∈ N, Um ⊆ Um+1, Um is compact, and V = ∪∞m=1Um.

2. Completeness of R is an axiom. Using this, show Rn and Cn are complete
metric spaces with respect to the distance given by the usual norm.
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3. Let X be a metric space. Can we conclude B (x, r) = {y : d (x, y) ≤ r}?
Hint: Try letting X consist of an infinite set and let d (x, y) = 1 if x 6= y and
d (x, y) = 0 if x = y.

4. The usual version of completeness in R involves the assertion that a nonempty
set which is bounded above has a least upper bound. Show this is equivalent
to saying that every Cauchy sequence converges.

5. If (X, d) is a metric space, prove that whenever K, H are disjoint non empty
closed sets, there exists f : X → [0, 1] such that f is continuous, f(K) = {0},
and f(H) = {1}.

6. Consider R with the usual metric, d (x, y) = |x− y| and the metric,

ρ (x, y) = |arctanx− arctan y|

Thus we have two metric spaces here although they involve the same sets of
points. Show the identity map is continuous and has a continuous inverse.
Show that R with the metric, ρ is not complete while R with the usual metric
is complete. The first part of this problem shows the two metric spaces are
homeomorphic. (That is what it is called when there is a one to one onto
continuous map having continuous inverse between two topological spaces.)
Thus completeness is not a topological property although it will likely be
referred to as such.

7. If M is a separable metric space and T ⊆ M , then T is also a separable metric
space with the same metric.

8. Prove the Heine Borel theorem as follows. First show [a, b] is compact in R.
Next show that

∏n
i=1 [ai, bi] is compact. Use this to verify that compact sets

are exactly those which are closed and bounded.

9. Give an example of a metric space in which closed and bounded subsets are
not necessarily compact. Hint: Let X be any infinite set and let d (x, y) = 1
if x 6= y and d (x, y) = 0 if x = y. Show this is a metric space. What about
B (x, 2)?

10. If f : [a, b] → R is continuous, show that f is Riemann integrable.Hint: Use
the theorem that a function which is continuous on a compact set is uniformly
continuous.

11. Give an example of a set, X ⊆ R2 which is connected but not arcwise con-
nected. Recall arcwise connected means for every two points, p, q ∈ X there
exists a continuous function f : [0, 1] → X such that f (0) = p, f (1) = q.

12. Let (X, d) be a metric space where d is a bounded metric. Let C denote the
collection of closed subsets of X. For A,B ∈ C, define

ρ (A,B) ≡ inf {δ > 0 : Aδ ⊇ B and Bδ ⊇ A}
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where for a set S,

Sδ ≡ {x : dist (x, S) ≡ inf {d (x, s) : s ∈ S} ≤ δ} .

Show Sδ is a closed set containing S. Also show that ρ is a metric on C. This
is called the Hausdorff metric.

13. Using 12, suppose (X, d) is a compact metric space. Show (C, ρ) is a complete
metric space. Hint: Show first that if Wn ↓ W where Wn is closed, then
ρ (Wn,W ) → 0. Now let {An} be a Cauchy sequence in C. Then if ε > 0
there exists N such that when m,n ≥ N , then ρ (An, Am) < ε. Therefore, for
each n ≥ N ,

(An)ε⊇∪∞k=nAk.

Let A ≡ ∩∞n=1∪∞k=nAk. By the first part, there exists N1 > N such that for
n ≥ N1,

ρ
(∪∞k=nAk, A

)
< ε, and (An)ε ⊇ ∪∞k=nAk.

Therefore, for such n, Aε ⊇ Wn ⊇ An and (Wn)ε ⊇ (An)ε ⊇ A because

(An)ε ⊇ ∪∞k=nAk ⊇ A.

14. In the situation of the last two problems, let X be a compact metric space.
Show (C, ρ) is compact. Hint: Let Dn be a 2−n net for X. Let Kn denote
finite unions of sets of the form B (p, 2−n) where p ∈ Dn. Show Kn is a
2−(n−1) net for (C, ρ).

15. Suppose U is an open connected subset of Rn and f : U → N is continuous.
That is f has values only in N. Also N is a metric space with respect to the
usual metric on R. Show that f must actually be constant.



Approximation Theorems

6.1 The Bernstein Polynomials

To begin with I will give a famous theorem due to Weierstrass which shows that
every continuous function can be uniformly approximated by polynomials on an
interval. The proof I will give is not the one Weierstrass used. That proof is found
in [35] and also in [29].

The following estimate will be the basis for the Weierstrass approximation the-
orem. It is actually a statement about the variance of a binomial random variable.

Lemma 6.1 The following estimate holds for x ∈ [0, 1].

m∑

k=0

(
m

k

)
(k −mx)2 xk (1− x)m−k ≤ 1

4
m

Proof: By the Binomial theorem,

m∑

k=0

(
m

k

) (
etx

)k (1− x)m−k =
(
1− x + etx

)m
. (6.1)

Differentiating both sides with respect to t and then evaluating at t = 0 yields

m∑

k=0

(
m

k

)
kxk (1− x)m−k = mx.

Now doing two derivatives of 6.1 with respect to t yields
∑m

k=0

(
m
k

)
k2 (etx)k (1− x)m−k = m (m− 1) (1− x + etx)m−2

e2tx2

+m (1− x + etx)m−1
xet.

Evaluating this at t = 0,

m∑

k=0

(
m

k

)
k2 (x)k (1− x)m−k = m (m− 1)x2 + mx.

115
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Therefore,

m∑

k=0

(
m

k

)
(k −mx)2 xk (1− x)m−k = m (m− 1)x2 + mx− 2m2x2 + m2x2

= m
(
x− x2

) ≤ 1
4
m.

This proves the lemma.

Definition 6.2 Let f ∈ C ([0, 1]). Then the following polynomials are known as
the Bernstein polynomials.

pn (x) ≡
n∑

k=0

(
n

k

)
f

(
k

n

)
xk (1− x)n−k

.

Theorem 6.3 Let f ∈ C ([0, 1]) and let pn be given in Definition 6.2. Then

lim
n→∞

||f − pn||∞ = 0.

Proof: Since f is continuous on the compact [0, 1], it follows f is uniformly
continuous there and so if ε > 0 is given, there exists δ > 0 such that if

|y − x| ≤ δ,

then
|f (x)− f (y)| < ε/2.

By the Binomial theorem,

f (x) =
n∑

k=0

(
n

k

)
f (x)xk (1− x)n−k

and so

|pn (x)− f (x)| ≤
n∑

k=0

(
n

k

) ∣∣∣∣f
(

k

n

)
− f (x)

∣∣∣∣xk (1− x)n−k

≤
∑

|k/n−x|>δ

(
n

k

) ∣∣∣∣f
(

k

n

)
− f (x)

∣∣∣∣ xk (1− x)n−k +

∑

|k/n−x|≤δ

(
n

k

) ∣∣∣∣f
(

k

n

)
− f (x)

∣∣∣∣ xk (1− x)n−k

< ε/2 + 2 ||f ||∞
∑

(k−nx)2>n2δ2

(
n

k

)
xk (1− x)n−k

≤ 2 ||f ||∞
n2δ2

n∑

k=0

(
n

k

)
(k − nx)2 xk (1− x)n−k + ε/2.
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By the lemma,

≤ 4 ||f ||∞
δ2n

+ ε/2 < ε

whenever n is large enough. This proves the theorem.
The next corollary is called the Weierstrass approximation theorem.

Corollary 6.4 The polynomials are dense in C ([a, b]).

Proof: Let f ∈ C ([a, b]) and let h : [0, 1] → [a, b] be linear and onto. Then f ◦h
is a continuous function defined on [0, 1] and so there exists a poynomial, pn such
that

|f (h (t))− pn (t)| < ε

for all t ∈ [0, 1]. Therefore for all x ∈ [a, b],
∣∣f (x)− pn

(
h−1 (x)

)∣∣ < ε.

Since h is linear pn ◦ h−1 is a polynomial. This proves the theorem.
The next result is the key to the profound generalization of the Weierstrass

theorem due to Stone in which an interval will be replaced by a compact or locally
compact set and polynomials will be replaced with elements of an algebra satisfying
certain axioms.

Corollary 6.5 On the interval [−M,M ], there exist polynomials pn such that

pn (0) = 0

and
lim

n→∞
||pn − |·|||∞ = 0.

Proof: Let p̃n → |·| uniformly and let

pn ≡ p̃n − p̃n (0).

This proves the corollary.

6.2 Stone Weierstrass Theorem

6.2.1 The Case Of Compact Sets

There is a profound generalization of the Weierstrass approximation theorem due
to Stone.

Definition 6.6 A is an algebra of functions if A is a vector space and if whenever
f, g ∈ A then fg ∈ A.

To begin with assume that the field of scalars is R. This will be generalized
later.
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Definition 6.7 An algebra of functions, A defined on A, annihilates no point of A
if for all x ∈ A, there exists g ∈ A such that g (x) 6= 0. The algebra separates points
if whenever x1 6= x2, then there exists g ∈ A such that g (x1) 6= g (x2).

The following generalization is known as the Stone Weierstrass approximation
theorem.

Theorem 6.8 Let A be a compact topological space and let A ⊆ C (A;R) be an
algebra of functions which separates points and annihilates no point. Then A is
dense in C (A;R).

Proof: First here is a lemma.

Lemma 6.9 Let c1 and c2 be two real numbers and let x1 6= x2 be two points of A.
Then there exists a function fx1x2 such that

fx1x2 (x1) = c1, fx1x2 (x2) = c2.

Proof of the lemma: Let g ∈ A satisfy

g (x1) 6= g (x2).

Such a g exists because the algebra separates points. Since the algebra annihilates
no point, there exist functions h and k such that

h (x1) 6= 0, k (x2) 6= 0.

Then let
u ≡ gh− g (x2)h, v ≡ gk − g (x1) k.

It follows that u (x1) 6= 0 and u (x2) = 0 while v (x2) 6= 0 and v (x1) = 0. Let

fx1x2 ≡
c1u

u (x1)
+

c2v

v (x2)
.

This proves the lemma. Now continue the proof of Theorem 6.8.
First note that A satisfies the same axioms as A but in addition to these axioms,

A is closed. The closure of A is taken with respect to the usual norm on C (A),

||f ||∞ ≡ max {|f (x)| : x ∈ A} .

Suppose f ∈ A and suppose M is large enough that

||f ||∞ < M.

Using Corollary 6.5, there exists {pn}, a sequence of polynomials such that

||pn − |·|||∞ → 0, pn (0) = 0.
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It follows that pn ◦ f ∈ A and so |f | ∈ A whenever f ∈ A. Also note that

max (f, g) =
|f − g|+ (f + g)

2

min (f, g) =
(f + g)− |f − g|

2
.

Therefore, this shows that if f, g ∈ A then

max (f, g) , min (f, g) ∈ A.

By induction, if fi, i = 1, 2, · · ·,m are in A then

max (fi, i = 1, 2, · · ·,m) , min (fi, i = 1, 2, · · ·,m) ∈ A.

Now let h ∈ C (A;R) and let x ∈ A. Use Lemma 6.9 to obtain fxy, a function
of A which agrees with h at x and y. Letting ε > 0, there exists an open set U (y)
containing y such that

fxy (z) > h (z)− ε if z ∈ U(y).

Since A is compact, let U (y1) , · · ·, U (yl) cover A. Let

fx ≡ max (fxy1 , fxy2 , · · ·, fxyl
).

Then fx ∈ A and
fx (z) > h (z)− ε

for all z ∈ A and fx (x) = h (x). This implies that for each x ∈ A there exists an
open set V (x) containing x such that for z ∈ V (x),

fx (z) < h (z) + ε.

Let V (x1) , · · ·, V (xm) cover A and let

f ≡ min (fx1 , · · ·, fxm).

Therefore,
f (z) < h (z) + ε

for all z ∈ A and since fx (z) > h (z)− ε for all z ∈ A, it follows

f (z) > h (z)− ε

also and so
|f (z)− h (z)| < ε

for all z. Since ε is arbitrary, this shows h ∈ A and proves A = C (A;R). This
proves the theorem.
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6.2.2 The Case Of Locally Compact Sets

Definition 6.10 Let (X, τ) be a locally compact Hausdorff space. C0 (X) denotes
the space of real or complex valued continuous functions defined on X with the
property that if f ∈ C0 (X) , then for each ε > 0 there exists a compact set K such
that |f (x)| < ε for all x /∈ K. Define

||f ||∞ = sup {|f (x)| : x ∈ X}.

Lemma 6.11 For (X, τ) a locally compact Hausdorff space with the above norm,
C0 (X) is a complete space.

Proof: Let
(
X̃, τ̃

)
be the one point compactification described in Lemma 5.43.

D ≡
{

f ∈ C
(
X̃

)
: f (∞) = 0

}
.

Then D is a closed subspace of C
(
X̃

)
. For f ∈ C0 (X) ,

f̃ (x) ≡
{

f (x) if x ∈ X
0 if x = ∞

and let θ : C0 (X) → D be given by θf = f̃ . Then θ is one to one and onto and also
satisfies ||f ||∞ = ||θf ||∞. Now D is complete because it is a closed subspace of a
complete space and so C0 (X) with ||·||∞ is also complete. This proves the lemma.

The above refers to functions which have values in C but the same proof works
for functions which have values in any complete normed linear space.

In the case where the functions in C0 (X) all have real values, I will denote the
resulting space by C0 (X;R) with similar meanings in other cases.

With this lemma, the generalization of the Stone Weierstrass theorem to locally
compact sets is as follows.

Theorem 6.12 Let A be an algebra of functions in C0 (X;R) where (X, τ) is a
locally compact Hausdorff space which separates the points and annihilates no point.
Then A is dense in C0 (X;R).

Proof: Let
(
X̃, τ̃

)
be the one point compactification as described in Lemma

5.43. Let Ã denote all finite linear combinations of the form
{

n∑

i=1

cif̃i + c0 : f ∈ A, ci ∈ R
}

where for f ∈ C0 (X;R) ,

f̃ (x) ≡
{

f (x) if x ∈ X
0 if x = ∞ .
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Then Ã is obviously an algebra of functions in C
(
X̃;R

)
. It separates points because

this is true of A. Similarly, it annihilates no point because of the inclusion of c0 an
arbitrary element of R in the definition above. Therefore from Theorem 6.8, Ã is
dense in C

(
X̃;R

)
. Letting f ∈ C0 (X;R) , it follows f̃ ∈ C

(
X̃;R

)
and so there

exists a sequence {hn} ⊆ Ã such that hn converges uniformly to f̃ . Now hn is of
the form

∑n
i=1 cn

i f̃n
i + cn

0 and since f̃ (∞) = 0, you can take each cn
0 = 0 and so

this has shown the existence of a sequence of functions in A such that it converges
uniformly to f . This proves the theorem.

6.2.3 The Case Of Complex Valued Functions

What about the general case where C0 (X) consists of complex valued functions
and the field of scalars is C rather than R? The following is the version of the Stone
Weierstrass theorem which applies to this case. You have to assume that for f ∈ A
it follows f ∈ A. Such an algebra is called self adjoint.

Theorem 6.13 Suppose A is an algebra of functions in C0 (X) , where X is a
locally compact Hausdorff space, which separates the points, annihilates no point,
and has the property that if f ∈ A, then f ∈ A. Then A is dense in C0 (X).

Proof: Let ReA ≡ {Re f : f ∈ A}, ImA ≡{Im f : f ∈ A}. First I will show
that A = ReA+ i ImA =ImA+ i ReA. Let f ∈ A. Then

f =
1
2

(
f + f

)
+

1
2

(
f − f

)
= Re f + i Im f ∈ ReA+ i ImA

and so A ⊆ ReA+ i ImA. Also

f =
1
2i

(
if + if

)− i

2

(
if + (if)

)
= Im (if) + i Re (if) ∈ ImA+ i ReA

This proves one half of the desired equality. Now suppose h ∈ ReA+ i ImA. Then
h = Re g1 + i Im g2 where gi ∈ A. Then since Re g1 = 1

2 (g1 + g1) , it follows Re g1 ∈
A. Similarly Im g2 ∈ A. Therefore, h ∈ A. The case where h ∈ ImA + i ReA is
similar. This establishes the desired equality.

Now ReA and ImA are both real algebras. I will show this now. First consider
ImA. It is obvious this is a real vector space. It only remains to verify that
the product of two functions in ImA is in ImA. Note that from the first part,
ReA, ImA are both subsets of A because, for example, if u ∈ ImA then u + 0 ∈
ImA + i ReA = A. Therefore, if v, w ∈ ImA, both iv and w are in A and so
Im (ivw) = vw and ivw ∈ A. Similarly, ReA is an algebra.

Both ReA and ImA must separate the points. Here is why: If x1 6= x2, then
there exists f ∈ A such that f (x1) 6= f (x2) . If Im f (x1) 6= Im f (x2) , this shows
there is a function in ImA, Im f which separates these two points. If Im f fails
to separate the two points, then Re f must separate the points and so you could
consider Im (if) to get a function in ImA which separates these points. This shows
ImA separates the points. Similarly ReA separates the points.
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Neither ReA nor ImA annihilate any point. This is easy to see because if x
is a point there exists f ∈ A such that f (x) 6= 0. Thus either Re f (x) 6= 0 or
Im f (x) 6= 0. If Im f (x) 6= 0, this shows this point is not annihilated by ImA.
If Im f (x) = 0, consider Im (if) (x) = Re f (x) 6= 0. Similarly, ReA does not
annihilate any point.

It follows from Theorem 6.12 that ReA and ImA are dense in the real valued
functions of C0 (X). Let f ∈ C0 (X) . Then there exists {hn} ⊆ ReA and {gn} ⊆
ImA such that hn → Re f uniformly and gn → Im f uniformly. Therefore, hn +
ign ∈ A and it converges to f uniformly. This proves the theorem.

6.3 Exercises

1. Let X be a finite dimensional normed linear space, real or complex. Show
that X is separable. Hint: Let {vi}n

i=1 be a basis and define a map from
Fn to X, θ, as follows. θ (

∑n
k=1 xkek) ≡ ∑n

k=1 xkvk. Show θ is continuous
and has a continuous inverse. Now let D be a countable dense set in Fn and
consider θ (D).

2. Let B (X;Rn) be the space of functions f , mapping X to Rn such that

sup{|f (x)| : x ∈ X} < ∞.

Show B (X;Rn) is a complete normed linear space if we define

||f || ≡ sup{|f (x)| : x ∈ X}.

3. Let α ∈ (0, 1]. We define, for X a compact subset of Rp,

Cα (X;Rn) ≡ {f ∈ C (X;Rn) : ρα (f) + ||f || ≡ ||f ||α < ∞}

where
||f || ≡ sup{|f (x)| : x ∈ X}

and

ρα (f) ≡ sup{ |f (x)− f (y)|
|x− y|α : x,y ∈ X, x 6= y}.

Show that (Cα (X;Rn) , ||·||α) is a complete normed linear space. This is
called a Holder space. What would this space consist of if α > 1?

4. Let {fn}∞n=1 ⊆ Cα (X;Rn) where X is a compact subset of Rp and suppose

||fn||α ≤ M

for all n. Show there exists a subsequence, nk, such that fnk
converges in

C (X;Rn). We say the given sequence is precompact when this happens.
(This also shows the embedding of Cα (X;Rn) into C (X;Rn) is a compact
embedding.) Hint: You might want to use the Ascoli Arzela theorem.
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5. Let f :R× Rn → Rn be continuous and bounded and let x0 ∈ Rn. If

x : [0, T ] → Rn

and h > 0, let

τhx (s) ≡
{

x0 if s ≤ h,
x (s− h) , if s > h.

For t ∈ [0, T ], let

xh (t) = x0 +
∫ t

0

f (s, τhxh (s)) ds.

Show using the Ascoli Arzela theorem that there exists a sequence h → 0 such
that

xh → x

in C ([0, T ] ;Rn). Next argue

x (t) = x0 +
∫ t

0

f (s,x (s)) ds

and conclude the following theorem. If f :R× Rn → Rn is continuous and
bounded, and if x0 ∈ Rn is given, there exists a solution to the following
initial value problem.

x′ = f (t,x) , t ∈ [0, T ]
x (0) = x0.

This is the Peano existence theorem for ordinary differential equations.

6. Let H and K be disjoint closed sets in a metric space, (X, d), and let

g (x) ≡ 2
3
h (x)− 1

3

where

h (x) ≡ dist (x,H)
dist (x,H) + dist (x,K)

.

Show g (x) ∈ [− 1
3 , 1

3

]
for all x ∈ X, g is continuous, and g equals −1

3 on H
while g equals 1

3 on K.

7. Suppose M is a closed set in X where X is the metric space of problem 6 and
suppose f : M → [−1, 1] is continuous. Show there exists g : X → [−1, 1]
such that g is continuous and g = f on M . Hint: Show there exists

g1 ∈ C (X) , g1 (x) ∈
[−1

3
,
1
3

]
,
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and |f (x)− g1 (x)| ≤ 2
3 for all x ∈ H. To do this, consider the disjoint closed

sets

H ≡ f−1

([
−1,

−1
3

])
, K ≡ f−1

([
1
3
, 1

])

and use Urysohn’s lemma or something to obtain a continuous function g1

defined on X such that g1 (H) = −1/3, g1 (K) = 1/3 and g1 has values in
[−1/3, 1/3]. When this has been done, let

3
2

(f (x)− g1 (x))

play the role of f and let g2 be like g1. Obtain
∣∣∣∣∣f (x)−

n∑

i=1

(
2
3

)i−1

gi (x)

∣∣∣∣∣ ≤
(

2
3

)n

and consider

g (x) ≡
∞∑

i=1

(
2
3

)i−1

gi (x).

8. ↑ Let M be a closed set in a metric space (X, d) and suppose f ∈ C (M).
Show there exists g ∈ C (X) such that g (x) = f (x) for all x ∈ M and if
f (M) ⊆ [a, b], then g (X) ⊆ [a, b]. This is a version of the Tietze extension
theorem.

9. This problem gives an outline of the way Weierstrass originally proved the
theorem. Choose an such that

∫ 1

−1

(
1− x2

)n
andx = 1. Show an < n+1

2 or
something like this. Now show that for δ ∈ (0, 1) ,

lim
n→∞

(∫ 1

δ

(
1− x2

)n
an +

∫ −δ

−1

(
1− x2

)n
dx

)
= 0.

Next for f a continuous function defined on R, define the polynomial, pn (x)
by

pn (x) ≡
∫ x+1

x−1

(
1− (x− t)2

)n

f (t) dt =
∫ 1

−1

f (x− t)
(
1− t2

)n
dt.

Then show limn→∞ ||pn − f ||∞ = 0. where ||f ||∞ = max {|f (x)| : x ∈ [−1, 1]}.
10. Suppose f : R→ R and f ≥ 0 on [−1, 1] with f (−1) = f (1) = 0 and f (x) < 0

for all x /∈ [−1, 1] . Can you use a modification of the proof of the Weierstrass
approximation theorem given in Problem 9 to show that for all ε > 0 there
exists a polynomial, p, such that |p (x)− f (x)| < ε for x ∈ [−1, 1] and
p (x) ≤ 0 for all x /∈ [−1, 1]? Hint:Let fε (x) = f (x)− ε

2 . Thus there exists δ
such that 1 > δ > 0 and fε < 0 on (−1,−1 + δ) and (1− δ, 1) . Now consider

φk (x) = ak

(
δ2 − (

x
δ

)2
)k

and try something similar to the proof given for the
Weierstrass approximation theorem above.



Abstract Measure And
Integration

7.1 σ Algebras

This chapter is on the basics of measure theory and integration. A measure is a real
valued mapping from some subset of the power set of a given set which has values
in [0,∞]. Many apparently different things can be considered as measures and also
there is an integral defined. By discussing this in terms of axioms and in a very
abstract setting, many different topics can be considered in terms of one general
theory. For example, it will turn out that sums are included as an integral of this
sort. So is the usual integral as well as things which are often thought of as being
in between sums and integrals.

Let Ω be a set and let F be a collection of subsets of Ω satisfying

∅ ∈ F , Ω ∈ F , (7.1)

E ∈ F implies EC ≡ Ω \ E ∈ F ,

If {En}∞n=1 ⊆ F , then ∪∞n=1 En ∈ F . (7.2)

Definition 7.1 A collection of subsets of a set, Ω, satisfying Formulas 7.1-7.2 is
called a σ algebra.

As an example, let Ω be any set and let F = P(Ω), the set of all subsets of Ω
(power set). This obviously satisfies Formulas 7.1-7.2.

Lemma 7.2 Let C be a set whose elements are σ algebras of subsets of Ω. Then
∩C is a σ algebra also.

Be sure to verify this lemma. It follows immediately from the above definitions
but it is important for you to check the details.

Example 7.3 Let τ denote the collection of all open sets in Rnand let σ (τ) ≡
intersection of all σ algebras that contain τ . σ (τ) is called the σ algebra of Borel
sets . In general, for a collection of sets, Σ, σ (Σ) is the smallest σ algebra which
contains Σ.

125
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This is a very important σ algebra and it will be referred to frequently as the
Borel sets. Attempts to describe a typical Borel set are more trouble than they are
worth and it is not easy to do so. Rather, one uses the definition just given in the
example. Note, however, that all countable intersections of open sets and countable
unions of closed sets are Borel sets. Such sets are called Gδ and Fσ respectively.

Definition 7.4 Let F be a σ algebra of sets of Ω and let µ : F → [0,∞]. µ is
called a measure if

µ(
∞⋃

i=1

Ei) =
∞∑

i=1

µ(Ei) (7.3)

whenever the Ei are disjoint sets of F . The triple, (Ω,F , µ) is called a measure
space and the elements of F are called the measurable sets. (Ω,F , µ) is a finite
measure space when µ (Ω) < ∞.

The following theorem is the basis for most of what is done in the theory of
measure and integration. It is a very simple result which follows directly from the
above definition.

Theorem 7.5 Let {Em}∞m=1 be a sequence of measurable sets in a measure space
(Ω,F , µ). Then if · · ·En ⊆ En+1 ⊆ En+2 ⊆ · · ·,

µ(∪∞i=1Ei) = lim
n→∞

µ(En) (7.4)

and if · · ·En ⊇ En+1 ⊇ En+2 ⊇ · · · and µ(E1) < ∞, then

µ(∩∞i=1Ei) = lim
n→∞

µ(En). (7.5)

Stated more succinctly, Ek ↑ E implies µ (Ek) ↑ µ (E) and Ek ↓ E with µ (E1) < ∞
implies µ (Ek) ↓ µ (E).

Proof: First note that ∩∞i=1Ei = (∪∞i=1E
C
i )C ∈ F so ∩∞i=1Ei is measurable.

Also note that for A and B sets of F , A \B ≡ (
AC ∪B

)C ∈ F . To show 7.4, note
that 7.4 is obviously true if µ(Ek) = ∞ for any k. Therefore, assume µ(Ek) < ∞
for all k. Thus

µ(Ek+1 \ Ek) + µ(Ek) = µ(Ek+1)

and so
µ(Ek+1 \ Ek) = µ(Ek+1)− µ(Ek).

Also,
∞⋃

k=1

Ek = E1 ∪
∞⋃

k=1

(Ek+1 \ Ek)

and the sets in the above union are disjoint. Hence by 7.3,

µ(∪∞i=1Ei) = µ(E1) +
∞∑

k=1

µ(Ek+1 \ Ek) = µ(E1)
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+
∞∑

k=1

µ(Ek+1)− µ(Ek)

= µ(E1) + lim
n→∞

n∑

k=1

µ(Ek+1)− µ(Ek) = lim
n→∞

µ(En+1).

This shows part 7.4.
To verify 7.5,

µ(E1) = µ(∩∞i=1Ei) + µ(E1 \ ∩∞i=1Ei)

since µ(E1) < ∞, it follows µ(∩∞i=1Ei) < ∞. Also, E1 \ ∩n
i=1Ei ↑ E1 \ ∩∞i=1Ei and

so by 7.4,

µ(E1)− µ(∩∞i=1Ei) = µ(E1 \ ∩∞i=1Ei) = lim
n→∞

µ(E1 \ ∩n
i=1Ei)

= µ(E1)− lim
n→∞

µ(∩n
i=1Ei) = µ(E1)− lim

n→∞
µ(En),

Hence, subtracting µ (E1) from both sides,

lim
n→∞

µ(En) = µ(∩∞i=1Ei).

This proves the theorem.
It is convenient to allow functions to take the value +∞. You should think of

+∞, usually referred to as ∞ as something out at the right end of the real line and
its only importance is the notion of sequences converging to it. xn → ∞ exactly
when for all l ∈ R, there exists N such that if n ≥ N, then

xn > l.

This is what it means for a sequence to converge to ∞. Don’t think of ∞ as a
number. It is just a convenient symbol which allows the consideration of some limit
operations more simply. Similar considerations apply to −∞ but this value is not
of very great interest. In fact the set of most interest is the complex numbers or
some vector space. Therefore, this topic is not considered.

Lemma 7.6 Let f : Ω → (−∞,∞] where F is a σ algebra of subsets of Ω. Then
the following are equivalent.

f−1((d,∞]) ∈ F for all finite d,

f−1((−∞, d)) ∈ F for all finite d,

f−1([d,∞]) ∈ F for all finite d,

f−1((−∞, d]) ∈ F for all finite d,

f−1 ((a, b)) ∈ F for all a < b,−∞ < a < b < ∞.



128 ABSTRACT MEASURE AND INTEGRATION

Proof: First note that the first and the third are equivalent. To see this, observe

f−1([d,∞]) = ∩∞n=1f
−1((d− 1/n,∞]),

and so if the first condition holds, then so does the third.

f−1((d,∞]) = ∪∞n=1f
−1([d + 1/n,∞]),

and so if the third condition holds, so does the first.
Similarly, the second and fourth conditions are equivalent. Now

f−1((−∞, d]) = (f−1((d,∞]))C

so the first and fourth conditions are equivalent. Thus the first four conditions are
equivalent and if any of them hold, then for −∞ < a < b < ∞,

f−1((a, b)) = f−1((−∞, b)) ∩ f−1((a,∞]) ∈ F .

Finally, if the last condition holds,

f−1 ([d,∞]) =
(∪∞k=1f

−1 ((−k + d, d))
)C ∈ F

and so the third condition holds. Therefore, all five conditions are equivalent. This
proves the lemma.

This lemma allows for the following definition of a measurable function having
values in (−∞,∞].

Definition 7.7 Let (Ω,F , µ) be a measure space and let f : Ω → (−∞,∞]. Then
f is said to be measurable if any of the equivalent conditions of Lemma 7.6 hold.
When the σ algebra, F equals the Borel σ algebra, B, the function is called Borel
measurable. More generally, if f : Ω → X where X is a topological space, f is said
to be measurable if f−1 (U) ∈ F whenever U is open.

You should verify this last condition is verified in the special cases considered
above.

Theorem 7.8 Let fn and f be functions mapping Ω to (−∞,∞] where F is a σ al-
gebra of measurable sets of Ω. Then if fn is measurable, and f(ω) = limn→∞ fn(ω),
it follows that f is also measurable. (Pointwise limits of measurable functions are
measurable.)

Proof: First is is shown f−1 ((a, b)) ∈ F . Let Vm ≡ (
a + 1

m , b− 1
m

)
and

V m =
[
a + 1

m , b− 1
m

]
. Then for all m, Vm ⊆ (a, b) and

(a, b) = ∪∞m=1Vm = ∪∞m=1V m.

Note that Vm 6= ∅ for all m large enough. Since f is the pointwise limit of fn,

f−1(Vm) ⊆ {ω : fk(ω) ∈ Vm for all k large enough} ⊆ f−1(V m).
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You should note that the expression in the middle is of the form

∪∞n=1 ∩∞k=n f−1
k (Vm).

Therefore,

f−1((a, b)) = ∪∞m=1f
−1(Vm) ⊆ ∪∞m=1 ∪∞n=1 ∩∞k=nf−1

k (Vm)

⊆ ∪∞m=1f
−1(V m) = f−1((a, b)).

It follows f−1((a, b)) ∈ F because it equals the expression in the middle which is
measurable. This shows f is measurable.

Theorem 7.9 Let B consist of open cubes of the form

Qx ≡
n∏

i=1

(xi − δ, xi + δ)

where δ is a positive rational number and x ∈ Qn. Then every open set in Rn can be
written as a countable union of open cubes from B. Furthermore, B is a countable
set.

Proof: Let U be an open set and let y ∈ U. Since U is open, B (y, r) ⊆ U for
some r > 0 and it can be assumed r/

√
n ∈ Q. Let

x ∈ B

(
y,

r

10
√

n

)
∩Qn

and consider the cube, Qx ∈ B defined by

Qx ≡
n∏

i=1

(xi − δ, xi + δ)

where δ = r/4
√

n. The following picture is roughly illustrative of what is taking
place.

qyqx
Qx

B(y, r)
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Then the diameter of Qx equals

(
n

(
r

2
√

n

)2
)1/2

=
r

2

and so, if z ∈ Qx, then

|z− y| ≤ |z− x|+ |x− y|
<

r

2
+

r

2
= r.

Consequently, Qx ⊆ U. Now also,

(
n∑

i=1

(xi − yi)
2

)1/2

<
r

10
√

n

and so it follows that for each i,

|xi − yi| < r

4
√

n

since otherwise the above inequality would not hold. Therefore, y ∈ Qx ⊆ U . Now
let BU denote those sets of B which are contained in U. Then ∪BU = U.

To see B is countable, note there are countably many choices for x and countably
many choices for δ. This proves the theorem.

Recall that g : Rn → R is continuous means g−1 (open set) = an open set. In
particular g−1 ((a, b)) must be an open set.

Theorem 7.10 Let fi : Ω → R for i = 1, · · ·, n be measurable functions and let
g : Rn → R be continuous where f ≡ (f1 · · ·fn)T . Then g◦ f is a measurable function
from Ω to R.

Proof: First it is shown

(g ◦ f)−1 ((a, b)) ∈ F .

Now (g ◦ f)−1 ((a, b)) = f−1
(
g−1 ((a, b))

)
and since g is continuous, it follows that

g−1 ((a, b)) is an open set which is denoted as U for convenience. Now by Theorem
7.9 above, it follows there are countably many open cubes, {Qk} such that

U = ∪∞k=1Qk

where each Qk is a cube of the form

Qk =
n∏

i=1

(xi − δ, xi + δ) .
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Now

f−1

(
n∏

i=1

(xi − δ, xi + δ)

)
= ∩n

i=1f
−1
i ((xi − δ, xi + δ)) ∈ F

and so

(g ◦ f)−1 ((a, b)) = f−1
(
g−1 ((a, b))

)
= f−1 (U)

= f−1 (∪∞k=1Qk) = ∪∞k=1f
−1 (Qk) ∈ F .

This proves the theorem.

Corollary 7.11 Sums, products, and linear combinations of measurable functions
are measurable.

Proof: To see the product of two measurable functions is measurable, let
g (x, y) = xy, a continuous function defined on R2. Thus if you have two mea-
surable functions, f1 and f2 defined on Ω,

g ◦ (f1, f2) (ω) = f1 (ω) f2 (ω)

and so ω → f1 (ω) f2 (ω) is measurable. Similarly you can show the sum of two
measurable functions is measurable by considering g (x, y) = x + y and you can
show a linear combination of two measurable functions is measurable by considering
g (x, y) = ax + by. More than two functions can also be considered as well.

The message of this corollary is that starting with measurable real valued func-
tions you can combine them in pretty much any way you want and you end up with
a measurable function.

Here is some notation which will be used whenever convenient.

Definition 7.12 Let f : Ω → [−∞,∞]. Define

[α < f ] ≡ {ω ∈ Ω : f (ω) > α} ≡ f−1 ((α,∞])

with obvious modifications for the symbols [α ≤ f ] , [α ≥ f ] , [α ≥ f ≥ β], etc.

Definition 7.13 For a set E,

XE(ω) =
{

1 if ω ∈ E,
0 if ω /∈ E.

This is called the characteristic function of E. Sometimes this is called the
indicator function which I think is better terminology since the term characteristic
function has another meaning. Note that this “indicates” whether a point, ω is
contained in E. It is exactly when the function has the value 1.

Theorem 7.14 (Egoroff) Let (Ω,F , µ) be a finite measure space,

(µ(Ω) < ∞)
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and let fn, f be complex valued functions such that Re fn, Im fn are all measurable
and

lim
n→∞

fn(ω) = f(ω)

for all ω /∈ E where µ(E) = 0. Then for every ε > 0, there exists a set,

F ⊇ E, µ(F ) < ε,

such that fn converges uniformly to f on FC .

Proof: First suppose E = ∅ so that convergence is pointwise everywhere. It
follows then that Re f and Im f are pointwise limits of measurable functions and
are therefore measurable. Let Ekm = {ω ∈ Ω : |fn(ω) − f(ω)| ≥ 1/m for some
n > k}. Note that

|fn (ω)− f (ω)| =
√

(Re fn (ω)− Re f (ω))2 + (Im fn (ω)− Im f (ω))2

and so, By Theorem 7.10, [
|fn − f | ≥ 1

m

]

is measurable. Hence Ekm is measurable because

Ekm = ∪∞n=k+1

[
|fn − f | ≥ 1

m

]
.

For fixed m,∩∞k=1Ekm = ∅ because fn converges to f . Therefore, if ω ∈ Ω there
exists k such that if n > k, |fn (ω)− f (ω)| < 1

m which means ω /∈ Ekm. Note also
that

Ekm ⊇ E(k+1)m.

Since µ(E1m) < ∞, Theorem 7.5 on Page 126 implies

0 = µ(∩∞k=1Ekm) = lim
k→∞

µ(Ekm).

Let k(m) be chosen such that µ(Ek(m)m) < ε2−m and let

F =
∞⋃

m=1

Ek(m)m.

Then µ(F ) < ε because

µ (F ) ≤
∞∑

m=1

µ
(
Ek(m)m

)
<

∞∑
m=1

ε2−m = ε

Now let η > 0 be given and pick m0 such that m−1
0 < η. If ω ∈ FC , then

ω ∈
∞⋂

m=1

EC
k(m)m.
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Hence ω ∈ EC
k(m0)m0

so
|fn(ω)− f(ω)| < 1/m0 < η

for all n > k(m0). This holds for all ω ∈ FCand so fn converges uniformly to f on
FC .

Now if E 6= ∅, consider {XEC fn}∞n=1 . Each XEC fn has real and imaginary
parts measurable and the sequence converges pointwise to XEf everywhere. There-
fore, from the first part, there exists a set of measure less than ε, F such that on
FC , {XEC fn} converges uniformly to XEC f. Therefore, on (E ∪ F )C

, {fn} con-
verges uniformly to f . This proves the theorem.

Finally here is a comment about notation.

Definition 7.15 Something happens for µ a.e. ω said as µ almost everywhere, if
there exists a set E with µ(E) = 0 and the thing takes place for all ω /∈ E. Thus
f(ω) = g(ω) a.e. if f(ω) = g(ω) for all ω /∈ E where µ(E) = 0. A measure space,
(Ω,F , µ) is σ finite if there exist measurable sets, Ωn such that µ (Ωn) < ∞ and
Ω = ∪∞n=1Ωn.

7.2 The Abstract Lebesgue Integral

7.2.1 Preliminary Observations

This section is on the Lebesgue integral and the major convergence theorems which
are the reason for studying it. In all that follows µ will be a measure defined on a
σ algebra F of subsets of Ω. 0 · ∞ = 0 is always defined to equal zero. This is a
meaningless expression and so it can be defined arbitrarily but a little thought will
soon demonstrate that this is the right definition in the context of measure theory.
To see this, consider the zero function defined on R. What should the integral of
this function equal? Obviously, by an analogy with the Riemann integral, it should
equal zero. Formally, it is zero times the length of the set or infinity. This is why
this convention will be used.

Lemma 7.16 Let f (a, b) ∈ [−∞,∞] for a ∈ A and b ∈ B where A,B are sets.
Then

sup
a∈A

sup
b∈B

f (a, b) = sup
b∈B

sup
a∈A

f (a, b) .

Proof: Note that for all a, b, f (a, b) ≤ supb∈B supa∈A f (a, b) and therefore, for
all a,

sup
b∈B

f (a, b) ≤ sup
b∈B

sup
a∈A

f (a, b) .

Therefore,
sup
a∈A

sup
b∈B

f (a, b) ≤ sup
b∈B

sup
a∈A

f (a, b) .

Repeating the same argument interchanging a and b, gives the conclusion of the
lemma.



134 ABSTRACT MEASURE AND INTEGRATION

Lemma 7.17 If {An} is an increasing sequence in [−∞,∞], then sup {An} =
limn→∞An.

The following lemma is useful also and this is a good place to put it. First
{bj}∞j=1 is an enumeration of the aij if

∪∞j=1 {bj} = ∪i,j {aij} .

In other words, the countable set, {aij}∞i,j=1 is listed as b1, b2, · · ·.
Lemma 7.18 Let aij ≥ 0. Then

∑∞
i=1

∑∞
j=1 aij =

∑∞
j=1

∑∞
i=1 aij. Also if {bj}∞j=1

is any enumeration of the aij , then
∑∞

j=1 bj =
∑∞

i=1

∑∞
j=1 aij .

Proof: First note there is no trouble in defining these sums because the aij are
all nonnegative. If a sum diverges, it only diverges to ∞ and so ∞ is written as the
answer. ∞∑

j=1

∞∑

i=1

aij ≥ sup
n

∞∑

j=1

n∑

i=1

aij = sup
n

lim
m→∞

m∑

j=1

n∑

i=1

aij

= sup
n

lim
m→∞

n∑

i=1

m∑

j=1

aij = sup
n

n∑

i=1

∞∑

j=1

aij =
∞∑

i=1

∞∑

j=1

aij . (7.6)

Interchanging the i and j in the above argument the first part of the lemma is
proved.

Finally, note that for all p,
p∑

j=1

bj ≤
∞∑

i=1

∞∑

j=1

aij

and so
∑∞

j=1 bj ≤
∑∞

i=1

∑∞
j=1 aij . Now let m,n > 1 be given. Then

m∑

i=1

n∑

j=1

aij ≤
p∑

j=1

bj

where p is chosen large enough that {b1, · · ·, bp} ⊇ {aij : i ≤ m and j ≤ n} . There-
fore, since such a p exists for any choice of m, n,it follows that for any m,n,

m∑

i=1

n∑

j=1

aij ≤
∞∑

j=1

bj .

Therefore, taking the limit as n →∞,
m∑

i=1

∞∑

j=1

aij ≤
∞∑

j=1

bj

and finally, taking the limit as m →∞,
∞∑

i=1

∞∑

j=1

aij ≤
∞∑

j=1

bj

proving the lemma.
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7.2.2 Definition Of The Lebesgue Integral For Nonnegative
Measurable Functions

The following picture illustrates the idea used to define the Lebesgue integral to be
like the area under a curve.

h

2h

3h

hµ([h < f ])

hµ([2h < f ])

hµ([3h < f ])

You can see that by following the procedure illustrated in the picture and letting
h get smaller, you would expect to obtain better approximations to the area under
the curve1 although all these approximations would likely be too small. Therefore,
define

∫
fdµ ≡ sup

h>0

∞∑

i=1

hµ ([ih < f ])

Lemma 7.19 The following inequality holds.

∞∑

i=1

hµ ([ih < f ]) ≤
∞∑

i=1

h

2
µ

([
i
h

2
< f

])
.

Also, it suffices to consider only h smaller than a given positive number in the above
definition of the integral.

Proof:
Let N ∈ N.

2N∑

i=1

h

2
µ

([
i
h

2
< f

])
=

2N∑

i=1

h

2
µ ([ih < 2f ])

=
N∑

i=1

h

2
µ ([(2i− 1) h < 2f ]) +

N∑

i=1

h

2
µ ([(2i)h < 2f ])

=
N∑

i=1

h

2
µ

([
(2i− 1)

2
h < f

])
+

N∑

i=1

h

2
µ ([ih < f ])

1Note the difference between this picture and the one usually drawn in calculus courses where
the little rectangles are upright rather than on their sides. This illustrates a fundamental philo-
sophical difference between the Riemann and the Lebesgue integrals. With the Riemann integral
intervals are measured. With the Lebesgue integral, it is inverse images of intervals which are
measured.
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≥
N∑

i=1

h

2
µ ([ih < f ]) +

N∑

i=1

h

2
µ ([ih < f ]) =

N∑

i=1

hµ ([ih < f ]) .

Now letting N →∞ yields the claim of the lemma.
To verify the last claim, suppose M <

∫
fdµ and let δ > 0 be given. Then there

exists h > 0 such that

M <

∞∑

i=1

hµ ([ih < f ]) ≤
∫

fdµ.

By the first part of this lemma,

M <

∞∑

i=1

h

2
µ

([
i
h

2
< f

])
≤

∫
fdµ

and continuing to apply the first part,

M <

∞∑

i=1

h

2n
µ

([
i

h

2n
< f

])
≤

∫
fdµ.

Choose n large enough that h/2n < δ. It follows M < supδ>h>0

∑∞
i=1 hµ ([ih < f ]) ≤∫

fdµ. Since M is arbitrary, this proves the last claim.

7.2.3 The Lebesgue Integral For Nonnegative Simple Func-
tions

Definition 7.20 A function, s, is called simple if it is a measurable real valued
function and has only finitely many values. These values will never be ±∞. Thus
a simple function is one which may be written in the form

s (ω) =
n∑

i=1

ciXEi (ω)

where the sets, Ei are disjoint and measurable. s takes the value ci at Ei.

Note that by taking the union of some of the Ei in the above definition, you
can assume that the numbers, ci are the distinct values of s. Simple functions are
important because it will turn out to be very easy to take their integrals as shown
in the following lemma.

Lemma 7.21 Let s (ω) =
∑p

i=1 aiXEi (ω) be a nonnegative simple function with
the ai the distinct non zero values of s. Then

∫
sdµ =

p∑

i=1

aiµ (Ei) . (7.7)

Also, for any nonnegative measurable function, f , if λ ≥ 0, then
∫

λfdµ = λ

∫
fdµ. (7.8)
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Proof: Consider 7.7 first. Without loss of generality, you can assume 0 < a1 <
a2 < · · · < ap and that µ (Ei) < ∞. Let ε > 0 be given and let

δ1

p∑

i=1

µ (Ei) < ε.

Pick δ < δ1 such that for h < δ it is also true that

h <
1
2

min (a1, a2 − a1, a3 − a2, · · ·, an − an−1) .

Then for 0 < h < δ

∞∑

k=1

hµ ([s > kh]) =
∞∑

k=1

h

∞∑

i=k

µ ([ih < s ≤ (i + 1) h])

=
∞∑

i=1

i∑

k=1

hµ ([ih < s ≤ (i + 1) h])

=
∞∑

i=1

ihµ ([ih < s ≤ (i + 1) h]) . (7.9)

Because of the choice of h there exist positive integers, ik such that i1 < i2 < ···, < ip
and

i1h < a1 ≤ (i1 + 1) h < · · · < i2h < a2 < (i2 + 1) h < · · · < iph < ap ≤ (ip + 1) h

Then in the sum of 7.9 the only terms which are nonzero are those for which
i ∈ {i1, i2 · ··, ip}. From the above, you see that

µ ([ikh < s ≤ (ik + 1) h]) = µ (Ek) .

Therefore,
∞∑

k=1

hµ ([s > kh]) =
p∑

k=1

ikhµ (Ek) .

It follows that for all h this small,

0 <

p∑

k=1

akµ (Ek)−
∞∑

k=1

hµ ([s > kh])

=
p∑

k=1

akµ (Ek)−
p∑

k=1

ikhµ (Ek) ≤ h

p∑

k=1

µ (Ek) < ε.

Taking the inf for h this small and using Lemma 7.19,

0 ≤
p∑

k=1

akµ (Ek)− sup
δ>h>0

∞∑

k=1

hµ ([s > kh]) =
p∑

k=1

akµ (Ek)−
∫

sdµ ≤ ε.
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Since ε > 0 is arbitrary, this proves the first part.
To verify 7.8 Note the formula is obvious if λ = 0 because then [ih < λf ] = ∅

for all i > 0. Assume λ > 0. Then
∫

λfdµ ≡ sup
h>0

∞∑

i=1

hµ ([ih < λf ])

= sup
h>0

∞∑

i=1

hµ ([ih/λ < f ])

= sup
h>0

λ

∞∑

i=1

(h/λ) µ ([i (h/λ) < f ])

= λ

∫
fdµ.

This proves the lemma.

Lemma 7.22 Let the nonnegative simple function, s be defined as

s (ω) =
n∑

i=1

ciXEi (ω)

where the ci are not necessarily distinct but the Ei are disjoint. It follows that

∫
s =

n∑

i=1

ciµ (Ei) .

Proof: Let the values of s be {a1, · · ·, am}. Therefore, since the Ei are disjoint,
each ai equal to one of the cj . Let Ai ≡ ∪{Ej : cj = ai}. Then from Lemma 7.21
it follows that

∫
s =

m∑

i=1

aiµ (Ai) =
m∑

i=1

ai

∑

{j:cj=ai}
µ (Ej)

=
m∑

i=1

∑

{j:cj=ai}
cjµ (Ej) =

n∑

i=1

ciµ (Ei) .

This proves the lemma.
Note that

∫
s could equal +∞ if µ (Ak) = ∞ and ak > 0 for some k, but

∫
s is

well defined because s ≥ 0. Recall that 0 · ∞ = 0.

Lemma 7.23 If a, b ≥ 0 and if s and t are nonnegative simple functions, then
∫

as + bt = a

∫
s + b

∫
t.
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Proof: Let

s(ω) =
n∑

i=1

αiXAi(ω), t(ω) =
m∑

i=1

βjXBj (ω)

where αi are the distinct values of s and the βj are the distinct values of t. Clearly
as + bt is a nonnegative simple function because it is measurable and has finitely
many values. Also,

(as + bt)(ω) =
m∑

j=1

n∑

i=1

(aαi + bβj)XAi∩Bj (ω)

where the sets Ai ∩Bj are disjoint. By Lemma 7.22,

∫
as + bt =

m∑

j=1

n∑

i=1

(aαi + bβj)µ(Ai ∩Bj)

= a

n∑

i=1

αiµ(Ai) + b

m∑

j=1

βjµ(Bj)

= a

∫
s + b

∫
t.

This proves the lemma.

7.2.4 Simple Functions And Measurable Functions

There is a fundamental theorem about the relationship of simple functions to mea-
surable functions given in the next theorem.

Theorem 7.24 Let f ≥ 0 be measurable. Then there exists a sequence of simple
functions {sn} satisfying

0 ≤ sn(ω) (7.10)

· · · sn(ω) ≤ sn+1(ω) · ··
f(ω) = lim

n→∞
sn(ω) for all ω ∈ Ω. (7.11)

If f is bounded the convergence is actually uniform.

Proof : Letting I ≡ {ω : f (ω) = ∞} , define

tn(ω) =
2n∑

k=0

k

n
X[k/n≤f<(k+1)/n](ω) + nXI(ω).

Then tn(ω) ≤ f(ω) for all ω and limn→∞ tn(ω) = f(ω) for all ω. This is because
tn (ω) = n for ω ∈ I and if f (ω) ∈ [0, 2n+1

n ), then

0 ≤ f (ω)− tn (ω) ≤ 1
n

. (7.12)



140 ABSTRACT MEASURE AND INTEGRATION

Thus whenever ω /∈ I, the above inequality will hold for all n large enough. Let

s1 = t1, s2 = max (t1, t2) , s3 = max (t1, t2, t3) , · · ·.

Then the sequence {sn} satisfies 7.10-7.11.
To verify the last claim, note that in this case the term nXI(ω) is not present.

Therefore, for all n large enough, 7.12 holds for all ω. Thus the convergence is
uniform. This proves the theorem.

7.2.5 The Monotone Convergence Theorem

The following is called the monotone convergence theorem. This theorem and re-
lated convergence theorems are the reason for using the Lebesgue integral.

Theorem 7.25 (Monotone Convergence theorem) Let f have values in [0,∞] and
suppose {fn} is a sequence of nonnegative measurable functions having values in
[0,∞] and satisfying

lim
n→∞

fn(ω) = f(ω) for each ω.

· · ·fn(ω) ≤ fn+1(ω) · ··
Then f is measurable and

∫
fdµ = lim

n→∞

∫
fndµ.

Proof: From Lemmas 7.16 and 7.17,

∫
fdµ ≡ sup

h>0

∞∑

i=1

hµ ([ih < f ])

= sup
h>0

sup
k

k∑

i=1

hµ ([ih < f ])

= sup
h>0

sup
k

sup
m

k∑

i=1

hµ ([ih < fm])

= sup
m

sup
h>0

∞∑

i=1

hµ ([ih < fm])

≡ sup
m

∫
fmdµ

= lim
m→∞

∫
fmdµ.

The third equality follows from the observation that

lim
m→∞

µ ([ih < fm]) = µ ([ih < f ])
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which follows from Theorem 7.5 since the sets, [ih < fm] are increasing in m and
their union equals [ih < f ]. This proves the theorem.

To illustrate what goes wrong without the Lebesgue integral, consider the fol-
lowing example.

Example 7.26 Let {rn} denote the rational numbers in [0, 1] and let

fn (t) ≡
{

1 if t /∈ {r1, · · ·, rn}
0 otherwise

Then fn (t) ↑ f (t) where f is the function which is one on the rationals and zero
on the irrationals. Each fn is Riemann integrable (why?) but f is not Riemann
integrable. Therefore, you can’t write

∫
fdx = limn→∞

∫
fndx.

A meta-mathematical observation related to this type of example is this. If you
can choose your functions, you don’t need the Lebesgue integral. The Riemann
integral is just fine. It is when you can’t choose your functions and they come to
you as pointwise limits that you really need the superior Lebesgue integral or at
least something more general than the Riemann integral. The Riemann integral
is entirely adequate for evaluating the seemingly endless lists of boring problems
found in calculus books.

7.2.6 Other Definitions

To review and summarize the above, if f ≥ 0 is measurable,
∫

fdµ ≡ sup
h>0

∞∑

i=1

hµ ([f > ih]) (7.13)

another way to get the same thing for
∫

fdµ is to take an increasing sequence of
nonnegative simple functions, {sn} with sn (ω) → f (ω) and then by monotone
convergence theorem, ∫

fdµ = lim
n→∞

∫
sn

where if sn (ω) =
∑m

j=1 ciXEi (ω) ,

∫
sndµ =

m∑

i=1

cim (Ei) .

Similarly this also shows that for such nonnegative measurable function,
∫

fdµ = sup
{∫

s : 0 ≤ s ≤ f, s simple
}

which is the usual way of defining the Lebesgue integral for nonnegative simple
functions in most books. I have done it differently because this approach led to
such an easy proof of the Monotone convergence theorem. Here is an equivalent
definition of the integral. The fact it is well defined has been discussed above.
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Definition 7.27 For s a nonnegative simple function, s (ω) =
∑n

k=1 ckXEk
(ω) ,

∫
s =∑n

k=1 ckµ (Ek) . For f a nonnegative measurable function,
∫

fdµ = sup
{∫

s : 0 ≤ s ≤ f, s simple
}

.

7.2.7 Fatou’s Lemma

Sometimes the limit of a sequence does not exist. There are two more general
notions known as lim sup and lim inf which do always exist in some sense. These
notions are dependent on the following lemma.

Lemma 7.28 Let {an} be an increasing (decreasing) sequence in [−∞,∞] . Then
limn→∞ an exists.

Proof: Suppose first {an} is increasing. Recall this means an ≤ an+1 for all n.
If the sequence is bounded above, then it has a least upper bound and so an → a
where a is its least upper bound. If the sequence is not bounded above, then for
every l ∈ R, it follows l is not an upper bound and so eventually, an > l. But this
is what is meant by an →∞. The situation for decreasing sequences is completely
similar.

Now take any sequence, {an} ⊆ [−∞,∞] and consider the sequence {An} where
An ≡ inf {ak : k ≥ n} . Then as n increases, the set of numbers whose inf is being
taken is getting smaller. Therefore, An is an increasing sequence and so it must
converge. Similarly, if Bn ≡ sup {ak : k ≥ n} , it follows Bn is decreasing and so
{Bn} also must converge. With this preparation, the following definition can be
given.

Definition 7.29 Let {an} be a sequence of points in [−∞,∞] . Then define

lim inf
n→∞

an ≡ lim
n→∞

inf {ak : k ≥ n}

and
lim sup

n→∞
an ≡ lim

n→∞
sup {ak : k ≥ n}

In the case of functions having values in [−∞,∞] ,
(
lim inf

n→∞
fn

)
(ω) ≡ lim inf

n→∞
(fn (ω)) .

A similar definition applies to lim supn→∞ fn.

Lemma 7.30 Let {an} be a sequence in [−∞,∞] . Then limn→∞ an exists if and
only if

lim inf
n→∞

an = lim sup
n→∞

an

and in this case, the limit equals the common value of these two numbers.
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Proof: Suppose first limn→∞ an = a ∈ R. Then, letting ε > 0 be given, an ∈
(a− ε, a + ε) for all n large enough, say n ≥ N. Therefore, both inf {ak : k ≥ n}
and sup {ak : k ≥ n} are contained in [a− ε, a + ε] whenever n ≥ N. It follows
lim supn→∞ an and lim infn→∞ an are both in [a− ε, a + ε] , showing

∣∣∣∣lim inf
n→∞

an − lim sup
n→∞

an

∣∣∣∣ < 2ε.

Since ε is arbitrary, the two must be equal and they both must equal a. Next suppose
limn→∞ an = ∞. Then if l ∈ R, there exists N such that for n ≥ N,

l ≤ an

and therefore, for such n,

l ≤ inf {ak : k ≥ n} ≤ sup {ak : k ≥ n}
and this shows, since l is arbitrary that

lim inf
n→∞

an = lim sup
n→∞

an = ∞.

The case for −∞ is similar.
Conversely, suppose lim infn→∞ an = lim supn→∞ an = a. Suppose first that

a ∈ R. Then, letting ε > 0 be given, there exists N such that if n ≥ N,

sup {ak : k ≥ n} − inf {ak : k ≥ n} < ε

therefore, if k, m > N, and ak > am,

|ak − am| = ak − am ≤ sup {ak : k ≥ n} − inf {ak : k ≥ n} < ε

showing that {an} is a Cauchy sequence. Therefore, it converges to a ∈ R, and
as in the first part, the lim inf and lim sup both equal a. If lim infn→∞ an =
lim supn→∞ an = ∞, then given l ∈ R, there exists N such that for n ≥ N,

inf
n>N

an > l.

Therefore, limn→∞ an = ∞. The case for −∞ is similar. This proves the lemma.
The next theorem, known as Fatou’s lemma is another important theorem which

justifies the use of the Lebesgue integral.

Theorem 7.31 (Fatou’s lemma) Let fn be a nonnegative measurable function with
values in [0,∞]. Let g(ω) = lim infn→∞ fn(ω). Then g is measurable and

∫
gdµ ≤ lim inf

n→∞

∫
fndµ.

In other words, ∫ (
lim inf

n→∞
fn

)
dµ ≤ lim inf

n→∞

∫
fndµ
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Proof: Let gn(ω) = inf{fk(ω) : k ≥ n}. Then

g−1
n ([a,∞]) = ∩∞k=nf−1

k ([a,∞]) ∈ F .

Thus gn is measurable by Lemma 7.6 on Page 127. Also g(ω) = limn→∞ gn(ω) so
g is measurable because it is the pointwise limit of measurable functions. Now the
functions gn form an increasing sequence of nonnegative measurable functions so
the monotone convergence theorem applies. This yields

∫
gdµ = lim

n→∞

∫
gndµ ≤ lim inf

n→∞

∫
fndµ.

The last inequality holding because
∫

gndµ ≤
∫

fndµ.

(Note that it is not known whether limn→∞
∫

fndµ exists.) This proves the Theo-
rem.

7.2.8 The Righteous Algebraic Desires Of The Lebesgue In-
tegral

The monotone convergence theorem shows the integral wants to be linear. This is
the essential content of the next theorem.

Theorem 7.32 Let f, g be nonnegative measurable functions and let a, b be non-
negative numbers. Then

∫
(af + bg) dµ = a

∫
fdµ + b

∫
gdµ. (7.14)

Proof: By Theorem 7.24 on Page 139 there exist sequences of nonnegative
simple functions, sn → f and tn → g. Then by the monotone convergence theorem
and Lemma 7.23,

∫
(af + bg) dµ = lim

n→∞

∫
asn + btndµ

= lim
n→∞

(
a

∫
sndµ + b

∫
tndµ

)

= a

∫
fdµ + b

∫
gdµ.

As long as you are allowing functions to take the value +∞, you cannot consider
something like f + (−g) and so you can’t very well expect a satisfactory statement
about the integral being linear until you restrict yourself to functions which have
values in a vector space. This is discussed next.
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7.3 The Space L1

The functions considered here have values in C, a vector space.

Definition 7.33 Let (Ω,S, µ) be a measure space and suppose f : Ω → C. Then f
is said to be measurable if both Re f and Im f are measurable real valued functions.

Definition 7.34 A complex simple function will be a function which is of the form

s (ω) =
n∑

k=1

ckXEk
(ω)

where ck ∈ C and µ (Ek) < ∞. For s a complex simple function as above, define

I (s) ≡
n∑

k=1

ckµ (Ek) .

Lemma 7.35 The definition, 7.34 is well defined. Furthermore, I is linear on the
vector space of complex simple functions. Also the triangle inequality holds,

|I (s)| ≤ I (|s|) .

Proof: Suppose
∑n

k=1 ckXEk
(ω) = 0. Does it follow that

∑
k ckµ (Ek) = 0?

The supposition implies

n∑

k=1

Re ckXEk
(ω) = 0,

n∑

k=1

Im ckXEk
(ω) = 0. (7.15)

Choose λ large and positive so that λ + Re ck ≥ 0. Then adding
∑

k λXEk
to both

sides of the first equation above,

n∑

k=1

(λ + Re ck)XEk
(ω) =

n∑

k=1

λXEk

and by Lemma 7.23 on Page 138, it follows upon taking
∫

of both sides that

n∑

k=1

(λ + Re ck)µ (Ek) =
n∑

k=1

λµ (Ek)

which implies
∑n

k=1 Re ckµ (Ek) = 0. Similarly,
∑n

k=1 Im ckµ (Ek) = 0 and so∑n
k=1 ckµ (Ek) = 0. Thus if

∑

j

cjXEj =
∑

k

dkXFk

then
∑

j cjXEj +
∑

k (−dk)XFk
= 0 and so the result just established verifies∑

j cjµ (Ej)−
∑

k dkµ (Fk) = 0 which proves I is well defined.
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That I is linear is now obvious. It only remains to verify the triangle inequality.
Let s be a simple function,

s =
∑

j

cjXEj

Then pick θ ∈ C such that θI (s) = |I (s)| and |θ| = 1. Then from the triangle
inequality for sums of complex numbers,

|I (s)| = θI (s) = I (θs) =
∑

j

θcjµ (Ej)

=

∣∣∣∣∣∣
∑

j

θcjµ (Ej)

∣∣∣∣∣∣
≤

∑

j

|θcj |µ (Ej) = I (|s|) .

This proves the lemma.
With this lemma, the following is the definition of L1 (Ω) .

Definition 7.36 f ∈ L1(Ω) means there exists a sequence of complex simple func-
tions, {sn} such that

sn (ω) → f (ω) for all ω ∈ Ω
limm,n→∞ I (|sn − sm|) = limn,m→∞

∫ |sn − sm| dµ = 0 (7.16)

Then
I (f) ≡ lim

n→∞
I (sn) . (7.17)

Lemma 7.37 Definition 7.36 is well defined.

Proof: There are several things which need to be verified. First suppose 7.16.
Then by Lemma 7.35

|I (sn)− I (sm)| = |I (sn − sm)| ≤ I (|sn − sm|)

and for m, n large enough this last is given to be small so {I (sn)} is a Cauchy
sequence in C and so it converges. This verifies the limit in 7.17 at least exists. It
remains to consider another sequence {tn} having the same properties as {sn} and
verifying I (f) determined by this other sequence is the same. By Lemma 7.35 and
Fatou’s lemma, Theorem 7.31 on Page 143,

|I (sn)− I (tn)| ≤ I (|sn − tn|) =
∫
|sn − tn| dµ

≤
∫
|sn − f |+ |f − tn| dµ

≤ lim inf
k→∞

∫
|sn − sk| dµ + lim inf

k→∞

∫
|tn − tk| dµ < ε
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whenever n is large enough. Since ε is arbitrary, this shows the limit from using
the tn is the same as the limit from using sn. This proves the lemma.

What if f has values in [0,∞)? Earlier
∫

fdµ was defined for such functions and
now I (f) has been defined. Are they the same? If so, I can be regarded as an
extension of

∫
dµ to a larger class of functions.

Lemma 7.38 Suppose f has values in [0,∞) and f ∈ L1 (Ω) . Then f is measurable
and

I (f) =
∫

fdµ.

Proof: Since f is the pointwise limit of a sequence of complex simple func-
tions, {sn} having the properties described in Definition 7.36, it follows f (ω) =
limn→∞Re sn (ω) and so f is measurable. Also

∫ ∣∣∣(Re sn)+ − (Re sm)+
∣∣∣ dµ ≤

∫
|Re sn − Re sm| dµ ≤

∫
|sn − sm| dµ

where x+ ≡ 1
2 (|x|+ x) , the positive part of the real number, x. 2Thus there is no

loss of generality in assuming {sn} is a sequence of complex simple functions having
values in [0,∞). Then since for such complex simple functions, I (s) =

∫
sdµ,

∣∣∣∣I (f)−
∫

fdµ

∣∣∣∣ ≤ |I (f)− I (sn)|+
∣∣∣∣
∫

sndµ−
∫

fdµ

∣∣∣∣ < ε +
∫
|sn − f | dµ

whenever n is large enough. But by Fatou’s lemma, Theorem 7.31 on Page 143, the
last term is no larger than

lim inf
k→∞

∫
|sn − sk| dµ < ε

whenever n is large enough. Since ε is arbitrary, this shows I (f) =
∫

fdµ as
claimed.

As explained above, I can be regarded as an extension of
∫

dµ so from now on,
the usual symbol,

∫
dµ will be used. It is now easy to verify

∫
dµ is linear on L1 (Ω) .

Theorem 7.39
∫

dµ is linear on L1 (Ω) and L1 (Ω) is a complex vector space. If
f ∈ L1 (Ω) , then Re f, Im f, and |f | are all in L1 (Ω) . Furthermore, for f ∈ L1 (Ω) ,

∫
fdµ =

∫
(Re f)+ dµ−

∫
(Re f)− dµ + i

(∫
(Im f)+ dµ−

∫
(Im f)− dµ

)

Also the triangle inequality holds,
∣∣∣∣
∫

fdµ

∣∣∣∣ ≤
∫
|f | dµ

2The negative part of the real number x is defined to be x− ≡ 1
2

(|x| − x) . Thus |x| = x+ +x−

and x = x+ − x−. .
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Proof: First it is necessary to verify that L1 (Ω) is really a vector space because
it makes no sense to speak of linear maps without having these maps defined on
a vector space. Let f, g be in L1 (Ω) and let a, b ∈ C. Then let {sn} and {tn}
be sequences of complex simple functions associated with f and g respectively as
described in Definition 7.36. Consider {asn + btn} , another sequence of complex
simple functions. Then asn (ω) + btn (ω) → af (ω) + bg (ω) for each ω. Also, from
Lemma 7.35

∫
|asn + btn − (asm + btm)| dµ ≤ |a|

∫
|sn − sm| dµ + |b|

∫
|tn − tm| dµ

and the sum of the two terms on the right converge to zero as m,n → ∞. Thus
af + bg ∈ L1 (Ω) . Also

∫
(af + bg) dµ = lim

n→∞

∫
(asn + btn) dµ

= lim
n→∞

(
a

∫
sndµ + b

∫
tndµ

)

= a lim
n→∞

∫
sndµ + b lim

n→∞

∫
tndµ

= a

∫
fdµ + b

∫
gdµ.

If {sn} is a sequence of complex simple functions described in Definition 7.36
corresponding to f , then {|sn|} is a sequence of complex simple functions satisfying
the conditions of Definition 7.36 corresponding to |f | . This is because |sn (ω)| →
|f (ω)| and ∫

||sn| − |sm|| dµ ≤
∫
|sm − sn| dµ

with this last expression converging to 0 as m,n →∞. Thus |f | ∈ L1 (Ω). Also, by
similar reasoning, {Re sn} and {Im sn} correspond to Re f and Im f respectively in
the manner described by Definition 7.36 showing that Re f and Im f are in L1 (Ω).
Now (Re f)+ = 1

2 (|Re f |+ Re f) and (Re f)− = 1
2 (|Re f | − Re f) so both of these

functions are in L1 (Ω) . Similar formulas establish that (Im f)+ and (Im f)− are in
L1 (Ω) .

The formula follows from the observation that

f = (Re f)+ − (Re f)− + i
(
(Im f)+ − (Im f)−

)

and the fact shown first that
∫

dµ is linear.
To verify the triangle inequality, let {sn} be complex simple functions for f as

in Definition 7.36. Then
∣∣∣∣
∫

fdµ

∣∣∣∣ = lim
n→∞

∣∣∣∣
∫

sndµ

∣∣∣∣ ≤ lim
n→∞

∫
|sn| dµ =

∫
|f | dµ.

This proves the theorem.
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Now here is an equivalent description of L1 (Ω) which is the version which will
be used more often than not.

Corollary 7.40 Let (Ω,S, µ) be a measure space and let f : Ω → C. Then f ∈
L1 (Ω) if and only if f is measurable and

∫ |f | dµ < ∞.

Proof: Suppose f ∈ L1 (Ω) . Then from Definition 7.36, it follows both real and
imaginary parts of f are measurable. Just take real and imaginary parts of sn and
observe the real and imaginary parts of f are limits of the real and imaginary parts
of sn respectively. By Theorem 7.39 this shows the only if part.

The more interesting part is the if part. Suppose then that f is measurable and∫ |f | dµ < ∞. Suppose first that f has values in [0,∞). It is necessary to obtain the
sequence of complex simple functions. By Theorem 7.24, there exists a sequence of
nonnegative simple functions, {sn} such that sn (ω) ↑ f (ω). Then by the monotone
convergence theorem,

lim
n→∞

∫
(2f − (f − sn)) dµ =

∫
2fdµ

and so
lim

n→∞

∫
(f − sn) dµ = 0.

Letting m be large enough, it follows
∫

(f − sm) dµ < ε and so if n > m
∫
|sm − sn| dµ ≤

∫
|f − sm| dµ < ε.

Therefore, f ∈ L1 (Ω) because {sn} is a suitable sequence.
The general case follows from considering positive and negative parts of real and

imaginary parts of f. These are each measurable and nonnegative and their integral
is finite so each is in L1 (Ω) by what was just shown. Thus

f = Re f+ − Re f− + i
(
Im f+ − Im f−

)

and so f ∈ L1 (Ω). This proves the corollary.

Theorem 7.41 (Dominated Convergence theorem) Let fn ∈ L1(Ω) and suppose

f(ω) = lim
n→∞

fn(ω),

and there exists a measurable function g, with values in [0,∞],3 such that

|fn(ω)| ≤ g(ω) and
∫

g(ω)dµ < ∞.

Then f ∈ L1 (Ω) and

0 = lim
n→∞

∫
|fn − f | dµ = lim

n→∞

∣∣∣∣
∫

fdµ−
∫

fndµ

∣∣∣∣
3Note that, since g is allowed to have the value ∞, it is not known that g ∈ L1 (Ω) .
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Proof: f is measurable by Theorem 7.8. Since |f | ≤ g, it follows that

f ∈ L1(Ω) and |f − fn| ≤ 2g.

By Fatou’s lemma (Theorem 7.31),
∫

2gdµ ≤ lim inf
n→∞

∫
2g − |f − fn|dµ

=
∫

2gdµ− lim sup
n→∞

∫
|f − fn|dµ.

Subtracting
∫

2gdµ,

0 ≤ − lim sup
n→∞

∫
|f − fn|dµ.

Hence

0 ≥ lim sup
n→∞

(
∫
|f − fn|dµ)

≥ lim inf
n→∞

|
∫
|f − fn|dµ| ≥

∣∣∣∣
∫

fdµ−
∫

fndµ

∣∣∣∣ ≥ 0.

This proves the theorem by Lemma 7.30 on Page 142 because the lim sup and lim inf
are equal.

Corollary 7.42 Suppose fn ∈ L1 (Ω) and f (ω) = limn→∞ fn (ω) . Suppose also
there exist measurable functions, gn, g with values in [0,∞] such that limn→∞

∫
gndµ =∫

gdµ, gn (ω) → g (ω) µ a.e. and both
∫

gndµ and
∫

gdµ are finite. Also suppose
|fn (ω)| ≤ gn (ω) . Then

lim
n→∞

∫
|f − fn| dµ = 0.

Proof: It is just like the above. This time g + gn − |f − fn| ≥ 0 and so by
Fatou’s lemma, ∫

2gdµ− lim sup
n→∞

∫
|f − fn| dµ =

lim inf
n→∞

∫
(gn + g)− lim sup

n→∞

∫
|f − fn| dµ

= lim inf
n→∞

∫
((gn + g)− |f − fn|) dµ ≥

∫
2gdµ

and so − lim supn→∞
∫ |f − fn| dµ ≥ 0.

Definition 7.43 Let E be a measurable subset of Ω.
∫

E

fdµ ≡
∫

fXEdµ.
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If L1(E) is written, the σ algebra is defined as

{E ∩A : A ∈ F}
and the measure is µ restricted to this smaller σ algebra. Clearly, if f ∈ L1(Ω),
then

fXE ∈ L1(E)

and if f ∈ L1(E), then letting f̃ be the 0 extension of f off of E, it follows f̃
∈ L1(Ω).

7.4 Vitali Convergence Theorem

The Vitali convergence theorem is a convergence theorem which in the case of a
finite measure space is superior to the dominated convergence theorem.

Definition 7.44 Let (Ω,F , µ) be a measure space and let S ⊆ L1(Ω). S is uni-
formly integrable if for every ε > 0 there exists δ > 0 such that for all f ∈ S

|
∫

E

fdµ| < ε whenever µ(E) < δ.

Lemma 7.45 If S is uniformly integrable, then |S| ≡ {|f | : f ∈ S} is uniformly
integrable. Also S is uniformly integrable if S is finite.

Proof: Let ε > 0 be given and suppose S is uniformly integrable. First suppose
the functions are real valued. Let δ be such that if µ (E) < δ, then

∣∣∣∣
∫

E

fdµ

∣∣∣∣ <
ε

2

for all f ∈ S. Let µ (E) < δ. Then if f ∈ S,
∫

E

|f | dµ ≤
∫

E∩[f≤0]

(−f) dµ +
∫

E∩[f>0]

fdµ

=

∣∣∣∣∣
∫

E∩[f≤0]

fdµ

∣∣∣∣∣ +

∣∣∣∣∣
∫

E∩[f>0]

fdµ

∣∣∣∣∣
<

ε

2
+

ε

2
= ε.

In general, if S is a uniformly integrable set of complex valued functions, the in-
equalities, ∣∣∣∣

∫

E

Re fdµ

∣∣∣∣ ≤
∣∣∣∣
∫

E

fdµ

∣∣∣∣ ,

∣∣∣∣
∫

E

Im fdµ

∣∣∣∣ ≤
∣∣∣∣
∫

E

fdµ

∣∣∣∣ ,

imply ReS ≡ {Re f : f ∈ S} and Im S ≡ {Im f : f ∈ S} are also uniformly inte-
grable. Therefore, applying the above result for real valued functions to these sets
of functions, it follows |S| is uniformly integrable also.
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For the last part, is suffices to verify a single function in L1 (Ω) is uniformly
integrable. To do so, note that from the dominated convergence theorem,

lim
R→∞

∫

[|f |>R]

|f | dµ = 0.

Let ε > 0 be given and choose R large enough that
∫
[|f |>R]

|f | dµ < ε
2 . Now let

µ (E) < ε
2R . Then

∫

E

|f | dµ =
∫

E∩[|f |≤R]

|f | dµ +
∫

E∩[|f |>R]

|f | dµ

< Rµ (E) +
ε

2
<

ε

2
+

ε

2
= ε.

This proves the lemma.
The following theorem is Vitali’s convergence theorem.

Theorem 7.46 Let {fn} be a uniformly integrable set of complex valued functions,
µ(Ω) < ∞, and fn(x) → f(x) a.e. where f is a measurable complex valued
function. Then f ∈ L1 (Ω) and

lim
n→∞

∫

Ω

|fn − f |dµ = 0. (7.18)

Proof: First it will be shown that f ∈ L1 (Ω). By uniform integrability, there
exists δ > 0 such that if µ (E) < δ, then

∫

E

|fn| dµ < 1

for all n. By Egoroff’s theorem, there exists a set, E of measure less than δ such
that on EC , {fn} converges uniformly. Therefore, for p large enough, and n > p,

∫

EC

|fp − fn| dµ < 1

which implies ∫

EC

|fn| dµ < 1 +
∫

Ω

|fp| dµ.

Then since there are only finitely many functions, fn with n ≤ p, there exists a
constant, M1 such that for all n,

∫

EC

|fn| dµ < M1.

But also,
∫

Ω

|fm| dµ =
∫

EC

|fm| dµ +
∫

E

|fm|
≤ M1 + 1 ≡ M.
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Therefore, by Fatou’s lemma,
∫

Ω

|f | dµ ≤ lim inf
n→∞

∫
|fn| dµ ≤ M,

showing that f ∈ L1 as hoped.
Now S∪{f} is uniformly integrable so there exists δ1 > 0 such that if µ (E) < δ1,

then
∫

E
|g| dµ < ε/3 for all g ∈ S ∪ {f}. By Egoroff’s theorem, there exists a set,

F with µ (F ) < δ1 such that fn converges uniformly to f on FC . Therefore, there
exists N such that if n > N , then

∫

F C

|f − fn| dµ <
ε

3
.

It follows that for n > N ,
∫

Ω

|f − fn| dµ ≤
∫

F C

|f − fn| dµ +
∫

F

|f | dµ +
∫

F

|fn| dµ

<
ε

3
+

ε

3
+

ε

3
= ε,

which verifies 7.18.

7.5 Exercises

1. Let Ω = N ={1, 2, · · ·}. Let F = P(N), the set of all subsets of N, and let
µ(S) = number of elements in S. Thus µ({1}) = 1 = µ({2}), µ({1, 2}) = 2,
etc. Show (Ω,F , µ) is a measure space. It is called counting measure. What
functions are measurable in this case?

2. For a measurable nonnegative function, f, the integral was defined as

sup
δ>h>0

∞∑

i=1

hµ ([f > ih])

Show this is the same as ∫ ∞

0

µ ([f > t]) dt

where this integral is just the improper Riemann integral defined by
∫ ∞

0

µ ([f > t]) dt = lim
R→∞

∫ R

0

µ ([f > t]) dt.

3. Using the Problem 2, show that for s a nonnegative simple function, s (ω) =∑n
i=1 ciXEi (ω) where 0 < c1 < c2 · ·· < cn and the sets, Ek are disjoint,

∫
sdµ =

n∑

i=1

ciµ (Ei) .

Give a really easy proof of this.
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4. Let Ω be any uncountable set and let F = {A ⊆ Ω : either A or AC is
countable}. Let µ(A) = 1 if A is uncountable and µ(A) = 0 if A is countable.
Show (Ω,F , µ) is a measure space. This is a well known bad example.

5. Let F be a σ algebra of subsets of Ω and suppose F has infinitely many
elements. Show that F is uncountable. Hint: You might try to show there
exists a countable sequence of disjoint sets of F , {Ai}. It might be easiest to
verify this by contradiction if it doesn’t exist rather than a direct construction
however, I have seen this done several ways. Once this has been done, you
can define a map, θ, from P (N) into F which is one to one by θ (S) = ∪i∈SAi.
Then argue P (N) is uncountable and so F is also uncountable.

6. An algebra A of subsets of Ω is a subset of the power set such that Ω is in the
algebra and for A,B ∈ A, A \ B and A ∪ B are both in A. Let C ≡ {Ei}∞i=1

be a countable collection of sets and let Ω1 ≡ ∪∞i=1Ei. Show there exists an
algebra of sets, A, such that A ⊇ C and A is countable. Note the difference
between this problem and Problem 5. Hint: Let C1 denote all finite unions
of sets of C and Ω1. Thus C1 is countable. Now let B1 denote all complements
with respect to Ω1 of sets of C1. Let C2 denote all finite unions of sets of
B1 ∪ C1. Continue in this way, obtaining an increasing sequence Cn, each of
which is countable. Let

A ≡ ∪∞i=1Ci.

7. We say g is Borel measurable if whenever U is open, g−1(U) is a Borel set. Let
f : Ω → X and let g : X → Y where X is a topological space and Y equals
C,R, or (−∞,∞] and F is a σ algebra of sets of Ω. Suppose f is measurable
and g is Borel measurable. Show g ◦ f is measurable.

8. Let (Ω,F , µ) be a measure space. Define µ : P(Ω) → [0,∞] by

µ(A) = inf{µ(B) : B ⊇ A, B ∈ F}.

Show µ satisfies

µ(∅) = 0, if A ⊆ B, µ(A) ≤ µ(B),

µ(∪∞i=1Ai) ≤
∞∑

i=1

µ(Ai), µ (A) = µ (A) if A ∈ F .

If µ satisfies these conditions, it is called an outer measure. This shows every
measure determines an outer measure on the power set. Outer measures are
discussed more later.

9. Let {Ei} be a sequence of measurable sets with the property that

∞∑

i=1

µ(Ei) < ∞.
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Let S = {ω ∈ Ω such that ω ∈ Ei for infinitely many values of i}. Show
µ(S) = 0 and S is measurable. This is part of the Borel Cantelli lemma.
Hint: Write S in terms of intersections and unions. Something is in S means
that for every n there exists k > n such that it is in Ek. Remember the tail
of a convergent series is small.

10. ↑ Let {fn} , f be measurable functions with values in C. {fn} converges in
measure if

lim
n→∞

µ(x ∈ Ω : |f(x)− fn(x)| ≥ ε) = 0

for each fixed ε > 0. Prove the theorem of F. Riesz. If fn converges to f
in measure, then there exists a subsequence {fnk

} which converges to f a.e.
Hint: Choose n1 such that

µ(x : |f(x)− fn1(x)| ≥ 1) < 1/2.

Choose n2 > n1 such that

µ(x : |f(x)− fn2(x)| ≥ 1/2) < 1/22,

n3 > n2 such that

µ(x : |f(x)− fn3(x)| ≥ 1/3) < 1/23,

etc. Now consider what it means for fnk
(x) to fail to converge to f(x). Then

use Problem 9.

11. Let Ω = N = {1, 2, · · ·} and µ(S) = number of elements in S. If

f : Ω → C

what is meant by
∫

fdµ? Which functions are in L1(Ω)? Which functions are
measurable? See Problem 1.

12. For the measure space of Problem 11, give an example of a sequence of non-
negative measurable functions {fn} converging pointwise to a function f , such
that inequality is obtained in Fatou’s lemma.

13. Suppose (Ω, µ) is a finite measure space (µ (Ω) < ∞) and S ⊆ L1 (Ω). Show
S is uniformly integrable and bounded in L1 (Ω) if there exists an increasing
function h which satisfies

lim
t→∞

h (t)
t

= ∞, sup
{∫

Ω

h (|f |) dµ : f ∈ S

}
< ∞.

S is bounded if there is some number, M such that
∫
|f | dµ ≤ M

for all f ∈ S.
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14. Let (Ω,F , µ) be a measure space and suppose f, g : Ω → (−∞,∞] are mea-
surable. Prove the sets

{ω : f(ω) < g(ω)} and {ω : f(ω) = g(ω)}

are measurable. Hint: The easy way to do this is to write

{ω : f(ω) < g(ω)} = ∪r∈Q [f < r] ∩ [g > r] .

Note that l (x, y) = x − y is not continuous on (−∞,∞] so the obvious idea
doesn’t work.

15. Let {fn} be a sequence of real or complex valued measurable functions. Let

S = {ω : {fn(ω)} converges}.

Show S is measurable. Hint: You might try to exhibit the set where fn

converges in terms of countable unions and intersections using the definition
of a Cauchy sequence.

16. Suppose un(t) is a differentiable function for t ∈ (a, b) and suppose that for
t ∈ (a, b),

|un(t)|, |u′n(t)| < Kn

where
∑∞

n=1 Kn < ∞. Show

(
∞∑

n=1

un(t))′ =
∞∑

n=1

u′n(t).

Hint: This is an exercise in the use of the dominated convergence theorem
and the mean value theorem from calculus.

17. Suppose {fn} is a sequence of nonnegative measurable functions defined on a
measure space, (Ω,S, µ). Show that

∫ ∞∑

k=1

fkdµ =
∞∑

k=1

∫
fkdµ.

Hint: Use the monotone convergence theorem along with the fact the integral
is linear.



The Construction Of
Measures

8.1 Outer Measures

What are some examples of measure spaces? In this chapter, a general procedure
is discussed called the method of outer measures. It is due to Caratheodory (1918).
This approach shows how to obtain measure spaces starting with an outer mea-
sure. This will then be used to construct measures determined by positive linear
functionals.

Definition 8.1 Let Ω be a nonempty set and let µ : P(Ω) → [0,∞] satisfy

µ(∅) = 0,

If A ⊆ B, then µ(A) ≤ µ(B),

µ(∪∞i=1Ei) ≤
∞∑

i=1

µ(Ei).

Such a function is called an outer measure. For E ⊆ Ω, E is µ measurable if for
all S ⊆ Ω,

µ(S) = µ(S \ E) + µ(S ∩ E). (8.1)

To help in remembering 8.1, think of a measurable set, E, as a process which
divides a given set into two pieces, the part in E and the part not in E as in
8.1. In the Bible, there are four incidents recorded in which a process of division
resulted in more stuff than was originally present.1 Measurable sets are exactly

11 Kings 17, 2 Kings 4, Mathew 14, and Mathew 15 all contain such descriptions. The stuff
involved was either oil, bread, flour or fish. In mathematics such things have also been done with
sets. In the book by Bruckner Bruckner and Thompson there is an interesting discussion of the
Banach Tarski paradox which says it is possible to divide a ball in R3 into five disjoint pieces and
assemble the pieces to form two disjoint balls of the same size as the first. The details can be
found in: The Banach Tarski Paradox by Wagon, Cambridge University press. 1985. It is known
that all such examples must involve the axiom of choice.

157



158 THE CONSTRUCTION OF MEASURES

those for which no such miracle occurs. You might think of the measurable sets as
the nonmiraculous sets. The idea is to show that they form a σ algebra on which
the outer measure, µ is a measure.

First here is a definition and a lemma.

Definition 8.2 (µbS)(A) ≡ µ(S ∩ A) for all A ⊆ Ω. Thus µbS is the name of a
new outer measure, called µ restricted to S.

The next lemma indicates that the property of measurability is not lost by
considering this restricted measure.

Lemma 8.3 If A is µ measurable, then A is µbS measurable.

Proof: Suppose A is µ measurable. It is desired to to show that for all T ⊆ Ω,

(µbS)(T ) = (µbS)(T ∩A) + (µbS)(T \A).

Thus it is desired to show

µ(S ∩ T ) = µ(T ∩A ∩ S) + µ(T ∩ S ∩AC). (8.2)

But 8.2 holds because A is µ measurable. Apply Definition 8.1 to S ∩ T instead of
S.

If A is µbS measurable, it does not follow that A is µ measurable. Indeed, if
you believe in the existence of non measurable sets, you could let A = S for such a
µ non measurable set and verify that S is µbS measurable.

The next theorem is the main result on outer measures. It is a very general
result which applies whenever one has an outer measure on the power set of any
set. This theorem will be referred to as Caratheodory’s procedure in the rest of the
book.

Theorem 8.4 The collection of µ measurable sets, S, forms a σ algebra and

If Fi ∈ S, Fi ∩ Fj = ∅, then µ(∪∞i=1Fi) =
∞∑

i=1

µ(Fi). (8.3)

If · · ·Fn ⊆ Fn+1 ⊆ · · ·, then if F = ∪∞n=1Fn and Fn ∈ S, it follows that

µ(F ) = lim
n→∞

µ(Fn). (8.4)

If · · ·Fn ⊇ Fn+1 ⊇ · · ·, and if F = ∩∞n=1Fn for Fn ∈ S then if µ(F1) < ∞,

µ(F ) = lim
n→∞

µ(Fn). (8.5)

Also, (S, µ) is complete. By this it is meant that if F ∈ S and if E ⊆ Ω with
µ(E \ F ) + µ(F \ E) = 0, then E ∈ S.
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Proof: First note that ∅ and Ω are obviously in S. Now suppose A,B ∈ S. I
will show A \B ≡ A ∩BC is in S. To do so, consider the following picture.

S
⋂

AC
⋂

BC

S
⋂

AC
⋂

B

S
⋂

A
⋂

B

S
⋂

A
⋂

BC

A

B

S

Since µ is subadditive,

µ (S) ≤ µ
(
S ∩A ∩BC

)
+ µ (A ∩B ∩ S) + µ

(
S ∩B ∩AC

)
+ µ

(
S ∩AC ∩BC

)
.

Now using A,B ∈ S,

µ (S) ≤ µ
(
S ∩A ∩BC

)
+ µ (S ∩A ∩B) + µ

(
S ∩B ∩AC

)
+ µ

(
S ∩AC ∩BC

)

= µ (S ∩A) + µ
(
S ∩AC

)
= µ (S)

It follows equality holds in the above. Now observe using the picture if you like that

(A ∩B ∩ S) ∪ (
S ∩B ∩AC

) ∪ (
S ∩AC ∩BC

)
= S \ (A \B)

and therefore,

µ (S) = µ
(
S ∩A ∩BC

)
+ µ (A ∩B ∩ S) + µ

(
S ∩B ∩AC

)
+ µ

(
S ∩AC ∩BC

)

≥ µ (S ∩ (A \B)) + µ (S \ (A \B)) .

Therefore, since S is arbitrary, this shows A \B ∈ S.
Since Ω ∈ S, this shows that A ∈ S if and only if AC ∈ S. Now if A,B ∈ S,

A ∪B = (AC ∩BC)C = (AC \B)C ∈ S. By induction, if A1, · · ·, An ∈ S, then so is
∪n

i=1Ai. If A, B ∈ S, with A ∩B = ∅,
µ(A ∪B) = µ((A ∪B) ∩A) + µ((A ∪B) \A) = µ(A) + µ(B).
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By induction, if Ai ∩Aj = ∅ and Ai ∈ S, µ(∪n
i=1Ai) =

∑n
i=1 µ(Ai).

Now let A = ∪∞i=1Ai where Ai ∩Aj = ∅ for i 6= j.

∞∑

i=1

µ(Ai) ≥ µ(A) ≥ µ(∪n
i=1Ai) =

n∑

i=1

µ(Ai).

Since this holds for all n, you can take the limit as n →∞ and conclude,

∞∑

i=1

µ(Ai) = µ(A)

which establishes 8.3. Part 8.4 follows from part 8.3 just as in the proof of Theorem
7.5 on Page 126. That is, letting F0 ≡ ∅, use part 8.3 to write

µ (F ) = µ (∪∞k=1 (Fk \ Fk−1)) =
∞∑

k=1

µ (Fk \ Fk−1)

= lim
n→∞

n∑

k=1

(µ (Fk)− µ (Fk−1)) = lim
n→∞

µ (Fn) .

In order to establish 8.5, let the Fn be as given there. Then, since (F1 \ Fn)
increases to (F1 \ F ), 8.4 implies

lim
n→∞

(µ (F1)− µ (Fn)) = µ (F1 \ F ) .

Now µ (F1 \ F ) + µ (F ) ≥ µ (F1) and so µ (F1 \ F ) ≥ µ (F1)− µ (F ). Hence

lim
n→∞

(µ (F1)− µ (Fn)) = µ (F1 \ F ) ≥ µ (F1)− µ (F )

which implies
lim

n→∞
µ (Fn) ≤ µ (F ) .

But since F ⊆ Fn,
µ (F ) ≤ lim

n→∞
µ (Fn)

and this establishes 8.5. Note that it was assumed µ (F1) < ∞ because µ (F1) was
subtracted from both sides.

It remains to show S is closed under countable unions. Recall that if A ∈ S, then
AC ∈ S and S is closed under finite unions. Let Ai ∈ S, A = ∪∞i=1Ai, Bn = ∪n

i=1Ai.
Then

µ(S) = µ(S ∩Bn) + µ(S \Bn) (8.6)
= (µbS)(Bn) + (µbS)(BC

n ).

By Lemma 8.3 Bn is (µbS) measurable and so is BC
n . I want to show µ(S) ≥

µ(S \ A) + µ(S ∩ A). If µ(S) = ∞, there is nothing to prove. Assume µ(S) < ∞.
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Then apply Parts 8.5 and 8.4 to the outer measure, µbS in 8.6 and let n → ∞.
Thus

Bn ↑ A, BC
n ↓ AC

and this yields µ(S) = (µbS)(A) + (µbS)(AC) = µ(S ∩A) + µ(S \A).
Therefore A ∈ S and this proves Parts 8.3, 8.4, and 8.5. It remains to prove the

last assertion about the measure being complete.
Let F ∈ S and let µ(E \ F ) + µ(F \ E) = 0. Consider the following picture.

E F

S

Then referring to this picture and using F ∈ S,

µ(S) ≤ µ(S ∩ E) + µ(S \ E)
≤ µ (S ∩ E ∩ F ) + µ ((S ∩ E) \ F ) + µ (S \ F ) + µ (F \ E)
≤ µ (S ∩ F ) + µ (E \ F ) + µ (S \ F ) + µ (F \ E)
= µ (S ∩ F ) + µ (S \ F ) = µ (S)

Hence µ(S) = µ(S∩E)+µ(S \E) and so E ∈ S. This shows that (S, µ) is complete
and proves the theorem.

Completeness usually occurs in the following form. E ⊆ F ∈ S and µ (F ) = 0.
Then E ∈ S.

Where do outer measures come from? One way to obtain an outer measure is
to start with a measure µ, defined on a σ algebra of sets, S, and use the following
definition of the outer measure induced by the measure.

Definition 8.5 Let µ be a measure defined on a σ algebra of sets, S ⊆ P (Ω). Then
the outer measure induced by µ, denoted by µ is defined on P (Ω) as

µ(E) = inf{µ(F ) : F ∈ S and F ⊇ E}.
A measure space, (S, Ω, µ) is σ finite if there exist measurable sets, Ωi with µ (Ωi) <
∞ and Ω = ∪∞i=1Ωi.

You should prove the following lemma.

Lemma 8.6 If (S, Ω, µ) is σ finite then there exist disjoint measurable sets, {Bn}
such that µ (Bn) < ∞ and ∪∞n=1Bn = Ω.

The following lemma deals with the outer measure generated by a measure
which is σ finite. It says that if the given measure is σ finite and complete then no
new measurable sets are gained by going to the induced outer measure and then
considering the measurable sets in the sense of Caratheodory.
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Lemma 8.7 Let (Ω,S, µ) be any measure space and let µ : P(Ω) → [0,∞] be the
outer measure induced by µ. Then µ is an outer measure as claimed and if S is the
set of µ measurable sets in the sense of Caratheodory, then S ⊇ S and µ = µ on S.
Furthermore, if µ is σ finite and (Ω,S, µ) is complete, then S = S.

Proof: It is easy to see that µ is an outer measure. Let E ∈ S. The plan is to
show E ∈ S and µ(E) = µ(E). To show this, let S ⊆ Ω and then show

µ(S) ≥ µ(S ∩ E) + µ(S \ E). (8.7)

This will verify that E ∈ S. If µ(S) = ∞, there is nothing to prove, so assume
µ(S) < ∞. Thus there exists T ∈ S, T ⊇ S, and

µ(S) > µ(T )− ε = µ(T ∩ E) + µ(T \ E)− ε

≥ µ(T ∩ E) + µ(T \ E)− ε

≥ µ(S ∩ E) + µ(S \ E)− ε.

Since ε is arbitrary, this proves 8.7 and verifies S ⊆ S. Now if E ∈ S and V ⊇ E
with V ∈ S, µ(E) ≤ µ(V ). Hence, taking inf, µ(E) ≤ µ(E). But also µ(E) ≥ µ(E)
since E ∈ S and E ⊇ E. Hence

µ(E) ≤ µ(E) ≤ µ(E).

Next consider the claim about not getting any new sets from the outer measure
in the case the measure space is σ finite and complete.

Claim 1: If E, D ∈ S, and µ(E \D) = 0, then if D ⊆ F ⊆ E, it follows F ∈ S.
Proof of claim 1:

F \D ⊆ E \D ∈ S,

and E\D is a set of measure zero. Therefore, since (Ω,S, µ) is complete, F \D ∈ S
and so

F = D ∪ (F \D) ∈ S.

Claim 2: Suppose F ∈ S and µ (F ) < ∞. Then F ∈ S.
Proof of the claim 2: From the definition of µ, it follows there exists E ∈ S

such that E ⊇ F and µ (E) = µ (F ) . Therefore,

µ (E) = µ (E \ F ) + µ (F )

so
µ (E \ F ) = 0. (8.8)

Similarly, there exists D1 ∈ S such that

D1 ⊆ E, D1 ⊇ (E \ F ) , µ (D1) = µ (E \ F ) .

and
µ (D1 \ (E \ F )) = 0. (8.9)
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E

F

D1

D

Now let D = E \ D1. It follows D ⊆ F because if x ∈ D, then x ∈ E but
x /∈ (E \ F ) and so x ∈ F . Also F \ D = D1 \ (E \ F ) because both sides equal
D1 ∩ F \ E.

Then from 8.8 and 8.9,

µ (E \D) ≤ µ (E \ F ) + µ (F \D)
= µ (E \ F ) + µ (D1 \ (E \ F )) = 0.

By Claim 1, it follows F ∈ S. This proves Claim 2.
Now since (Ω,S,µ) is σ finite, there are sets of S, {Bn}∞n=1 such that µ (Bn) <

∞,∪nBn = Ω. Then F ∩Bn ∈ S by Claim 2. Therefore, F = ∪∞n=1F ∩Bn ∈ S and
so S =S. This proves the lemma.

8.2 Regular measures

Usually Ω is not just a set. It is also a topological space. It is very important to
consider how the measure is related to this topology.

Definition 8.8 Let µ be a measure on a σ algebra S, of subsets of Ω, where (Ω, τ)
is a topological space. µ is a Borel measure if S contains all Borel sets. µ is called
outer regular if µ is Borel and for all E ∈ S,

µ(E) = inf{µ(V ) : V is open and V ⊇ E}.

µ is called inner regular if µ is Borel and

µ(E) = sup{µ(K) : K ⊆ E, and K is compact}.

If the measure is both outer and inner regular, it is called regular.

It will be assumed in what follows that (Ω, τ) is a locally compact Hausdorff
space. This means it is Hausdorff: If p, q ∈ Ω such that p 6= q, there exist open
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sets, Up and Uq containing p and q respectively such that Up ∩ Uq = ∅ and Locally
compact: There exists a basis of open sets for the topology, B such that for each
U ∈ B, U is compact. Recall B is a basis for the topology if ∪B = Ω and if every
open set in τ is the union of sets of B. Also recall a Hausdorff space is normal if
whenever H and C are two closed sets, there exist disjoint open sets, UH and UC

containing H and C respectively. A regular space is one which has the property
that if p is a point not in H, a closed set, then there exist disjoint open sets, Up and
UH containing p and H respectively.

8.3 Urysohn’s lemma

Urysohn’s lemma which characterizes normal spaces is a very important result which
is useful in general topology and in the construction of measures. Because it is
somewhat technical a proof is given for the part which is needed.

Theorem 8.9 (Urysohn) Let (X, τ) be normal and let H ⊆ U where H is closed
and U is open. Then there exists g : X → [0, 1] such that g is continuous, g (x) = 1
on H and g (x) = 0 if x /∈ U .

Proof: Let D ≡ {rn}∞n=1 be the rational numbers in (0, 1). Choose Vr1 an open
set such that

H ⊆ Vr1 ⊆ V r1 ⊆ U.

This can be done by applying the assumption that X is normal to the disjoint closed
sets, H and UC , to obtain open sets V and W with

H ⊆ V, UC ⊆ W, and V ∩W = ∅.

Then
H ⊆ V ⊆ V , V ∩ UC = ∅

and so let Vr1 = V .
Suppose Vr1 , · · ·, Vrk

have been chosen and list the rational numbers r1, · · ·, rk

in order,
rl1 < rl2 < · · · < rlk for {l1, · · ·, lk} = {1, · · ·, k}.

If rk+1 > rlk then letting p = rlk , let Vrk+1 satisfy

V p ⊆ Vrk+1 ⊆ V rk+1 ⊆ U.

If rk+1 ∈ (rli , rli+1), let p = rli and let q = rli+1 . Then let Vrk+1 satisfy

V p ⊆ Vrk+1 ⊆ V rk+1 ⊆ Vq.

If rk+1 < rl1 , let p = rl1 and let Vrk+1 satisfy

H ⊆ Vrk+1 ⊆ V rk+1 ⊆ Vp.
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Thus there exist open sets Vr for each r ∈ Q ∩ (0, 1) with the property that if
r < s,

H ⊆ Vr ⊆ V r ⊆ Vs ⊆ V s ⊆ U.

Now let
f (x) = inf{t ∈ D : x ∈ Vt}, f (x) ≡ 1 if x /∈

⋃

t∈D

Vt.

I claim f is continuous.

f−1 ([0, a)) = ∪{Vt : t < a, t ∈ D},

an open set.
Next consider x ∈ f−1 ([0, a]) so f (x) ≤ a. If t > a, then x ∈ Vt because if not,

then
inf{t ∈ D : x ∈ Vt} > a.

Thus
f−1 ([0, a]) = ∩{Vt : t > a} = ∩{V t : t > a}

which is a closed set. If a = 1, f−1 ([0, 1]) = f−1 ([0, a]) = X. Therefore,

f−1 ((a, 1]) = X \ f−1 ([0, a]) = open set.

It follows f is continuous. Clearly f (x) = 0 on H. If x ∈ UC , then x /∈ Vt for any
t ∈ D so f (x) = 1 on UC. Let g (x) = 1− f (x). This proves the theorem.

In any metric space there is a much easier proof of the conclusion of Urysohn’s
lemma which applies.

Lemma 8.10 Let S be a nonempty subset of a metric space, (X, d) . Define

f (x) ≡ dist (x, S) ≡ inf {d (x, y) : y ∈ S} .

Then f is continuous.

Proof: Consider |f (x)− f (x1)|and suppose without loss of generality that
f (x1) ≥ f (x) . Then choose y ∈ S such that f (x) + ε > d (x, y) . Then

|f (x1)− f (x)| = f (x1)− f (x) ≤ f (x1)− d (x, y) + ε

≤ d (x1, y)− d (x, y) + ε

≤ d (x, x1) + d (x, y)− d (x, y) + ε

= d (x1, x) + ε.

Since ε is arbitrary, it follows that |f (x1)− f (x)| ≤ d (x1, x) and this proves the
lemma.

Theorem 8.11 (Urysohn’s lemma for metric space) Let H be a closed subset of
an open set, U in a metric space, (X, d) . Then there exists a continuous function,
g : X → [0, 1] such that g (x) = 1 for all x ∈ H and g (x) = 0 for all x /∈ U.
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Proof: If x /∈ C, a closed set, then dist (x,C) > 0 because if not, there would
exist a sequence of points of C converging to x and it would follow that x ∈ C.
Therefore, dist (x, H) + dist

(
x,UC

)
> 0 for all x ∈ X. Now define a continuous

function, g as

g (x) ≡ dist
(
x, UC

)

dist (x,H) + dist (x,UC)
.

It is easy to see this verifies the conclusions of the theorem and this proves the
theorem.

Theorem 8.12 Every compact Hausdorff space is normal.

Proof: First it is shown that X, is regular. Let H be a closed set and let p /∈ H.
Then for each h ∈ H, there exists an open set Uh containing p and an open set Vh

containing h such that Uh ∩ Vh = ∅. Since H must be compact, it follows there
are finitely many of the sets Vh, Vh1 · · · Vhn such that H ⊆ ∪n

i=1Vhi
. Then letting

U = ∩n
i=1Uhi and V = ∪n

i=1Vhi , it follows that p ∈ U , H ∈ V and U ∩ V = ∅. Thus
X is regular as claimed.

Next let K and H be disjoint nonempty closed sets.Using regularity of X, for
every k ∈ K, there exists an open set Uk containing k and an open set Vk containing
H such that these two open sets have empty intersection. Thus H∩Uk = ∅. Finitely
many of the Uk, Uk1 , ···, Ukp cover K and so ∪p

i=1Uki is a closed set which has empty

intersection with H. Therefore, K ⊆ ∪p
i=1Uki and H ⊆ (∪p

i=1Uki

)C
. This proves

the theorem.
A useful construction when dealing with locally compact Hausdorff spaces is the

notion of the one point compactification of the space discussed earler. However, it
is reviewed here for the sake of convenience or in case you have not read the earlier
treatment.

Definition 8.13 Suppose (X, τ) is a locally compact Hausdorff space. Then let
X̃ ≡ X ∪ {∞} where ∞ is just the name of some point which is not in X which is
called the point at infinity. A basis for the topology τ̃ for X̃ is

τ ∪ {
KC where K is a compact subset of X

}
.

The complement is taken with respect to X̃ and so the open sets, KC are basic open
sets which contain ∞.

The reason this is called a compactification is contained in the next lemma.

Lemma 8.14 If (X, τ) is a locally compact Hausdorff space, then
(
X̃, τ̃

)
is a com-

pact Hausdorff space.

Proof: Since (X, τ) is a locally compact Hausdorff space, it follows
(
X̃, τ̃

)
is

a Hausdorff topological space. The only case which needs checking is the one of
p ∈ X and ∞. Since (X, τ) is locally compact, there exists an open set of τ , U
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having compact closure which contains p. Then p ∈ U and ∞ ∈ U
C

and these are
disjoint open sets containing the points, p and ∞ respectively. Now let C be an
open cover of X̃ with sets from τ̃ . Then ∞ must be in some set, U∞ from C, which
must contain a set of the form KC where K is a compact subset of X. Then there
exist sets from C, U1, · · ·, Ur which cover K. Therefore, a finite subcover of X̃ is
U1, · · ·, Ur, U∞.

Theorem 8.15 Let X be a locally compact Hausdorff space, and let K be a compact
subset of the open set V . Then there exists a continuous function, f : X → [0, 1],
such that f equals 1 on K and {x : f (x) 6= 0} ≡ spt (f) is a compact subset of V .

Proof: Let X̃ be the space just described. Then K and V are respectively
closed and open in τ̃ . By Theorem 8.12 there exist open sets in τ̃ , U , and W such
that K ⊆ U,∞ ∈ V C ⊆ W , and U ∩W = U ∩ (W \ {∞}) = ∅. Thus W \ {∞} is
an open set in the original topological space which contains V C , U is an open set in
the original topological space which contains K, and W \ {∞} and U are disjoint.

Now for each x ∈ K, let Ux be a basic open set whose closure is compact and
such that

x ∈ Ux ⊆ U.

Thus Ux must have empty intersection with V C because the open set, W \ {∞}
contains no points of Ux. Since K is compact, there are finitely many of these sets,
Ux1 , Ux2 , · · ·, Uxn which cover K. Now let H ≡ ∪n

i=1Uxi .
Claim: H = ∪n

i=1Uxi

Proof of claim: Suppose p ∈ H. If p /∈ ∪n
i=1Uxi then if follows p /∈ Uxi for

each i. Therefore, there exists an open set, Ri containing p such that Ri contains
no other points of Uxi . Therefore, R ≡ ∩n

i=1Ri is an open set containing p which
contains no other points of ∪n

i=1Uxi = W, a contradiction. Therefore, H ⊆ ∪n
i=1Uxi .

On the other hand, if p ∈ Uxi then p is obviously in H so this proves the claim.
From the claim, K ⊆ H ⊆ H ⊆ V and H is compact because it is the finite

union of compact sets. Repeating the same argument, there exists an open set, I
such that H ⊆ I ⊆ I ⊆ V with I compact. Now

(
I, τ I

)
is a compact topological

space where τ I is the topology which is obtained by taking intersections of open
sets in X with I. Therefore, by Urysohn’s lemma, there exists f : I → [0, 1] such
that f is continuous at every point of I and also f (K) = 1 while f

(
I \H

)
= 0.

Extending f to equal 0 on I
C

, it follows that f is continuous on X, has values in
[0, 1] , and satisfies f (K) = 1 and spt (f) is a compact subset contained in I ⊆ V.
This proves the theorem.

In fact, the conclusion of the above theorem could be used to prove that the
topological space is locally compact. However, this is not needed here.

Definition 8.16 Define spt(f) (support of f) to be the closure of the set {x :
f(x) 6= 0}. If V is an open set, Cc(V ) will be the set of continuous functions f ,
defined on Ω having spt(f) ⊆ V . Thus in Theorem 8.15, f ∈ Cc(V ).
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Definition 8.17 If K is a compact subset of an open set, V , then K ≺ φ ≺ V if

φ ∈ Cc(V ), φ(K) = {1}, φ(Ω) ⊆ [0, 1],

where Ω denotes the whole topological space considered. Also for φ ∈ Cc(Ω), K ≺ φ
if

φ(Ω) ⊆ [0, 1] and φ(K) = 1.

and φ ≺ V if
φ(Ω) ⊆ [0, 1] and spt(φ) ⊆ V.

Theorem 8.18 (Partition of unity) Let K be a compact subset of a locally compact
Hausdorff topological space satisfying Theorem 8.15 and suppose

K ⊆ V = ∪n
i=1Vi, Vi open.

Then there exist ψi ≺ Vi with
n∑

i=1

ψi(x) = 1

for all x ∈ K.

Proof: Let K1 = K \ ∪n
i=2Vi. Thus K1 is compact and K1 ⊆ V1. Let K1 ⊆

W1 ⊆ W 1 ⊆ V1 with W 1compact. To obtain W1, use Theorem 8.15 to get f such
that K1 ≺ f ≺ V1 and let W1 ≡ {x : f (x) 6= 0} . Thus W1, V2, · · ·Vn covers K and
W 1 ⊆ V1. Let K2 = K \ (∪n

i=3Vi ∪W1). Then K2 is compact and K2 ⊆ V2. Let
K2 ⊆ W2 ⊆ W 2 ⊆ V2 W 2 compact. Continue this way finally obtaining W1, · · ·, Wn,
K ⊆ W1 ∪ · · · ∪Wn, and W i ⊆ Vi W i compact. Now let W i ⊆ Ui ⊆ U i ⊆ Vi , U i

compact.

Wi Ui Vi

By Theorem 8.15, let U i ≺ φi ≺ Vi, ∪n
i=1W i ≺ γ ≺ ∪n

i=1Ui. Define

ψi(x) =
{

γ(x)φi(x)/
∑n

j=1 φj(x) if
∑n

j=1 φj(x) 6= 0,

0 if
∑n

j=1 φj(x) = 0.

If x is such that
∑n

j=1 φj(x) = 0, then x /∈ ∪n
i=1U i. Consequently γ(y) = 0 for

all y near x and so ψi(y) = 0 for all y near x. Hence ψi is continuous at such x.
If

∑n
j=1 φj(x) 6= 0, this situation persists near x and so ψi is continuous at such

points. Therefore ψi is continuous. If x ∈ K, then γ(x) = 1 and so
∑n

j=1 ψj(x) = 1.
Clearly 0 ≤ ψi (x) ≤ 1 and spt(ψj) ⊆ Vj . This proves the theorem.

The following corollary won’t be needed immediately but is of considerable in-
terest later.
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Corollary 8.19 If H is a compact subset of Vi, there exists a partition of unity
such that ψi (x) = 1 for all x ∈ H in addition to the conclusion of Theorem 8.18.

Proof: Keep Vi the same but replace Vj with Ṽj ≡ Vj \ H. Now in the proof
above, applied to this modified collection of open sets, if j 6= i, φj (x) = 0 whenever
x ∈ H. Therefore, ψi (x) = 1 on H.

8.4 Positive Linear Functionals

Definition 8.20 Let (Ω, τ) be a topological space. L : Cc(Ω) → C is called a
positive linear functional if L is linear,

L(af1 + bf2) = aLf1 + bLf2,

and if Lf ≥ 0 whenever f ≥ 0.

Theorem 8.21 (Riesz representation theorem) Let (Ω, τ) be a locally compact Haus-
dorff space and let L be a positive linear functional on Cc(Ω). Then there exists a
σ algebra S containing the Borel sets and a unique measure µ, defined on S, such
that

µ is complete, (8.10)
µ(K) < ∞ for all K compact, (8.11)

µ(F ) = sup{µ(K) : K ⊆ F, K compact},
for all F open and for all F ∈ S with µ(F ) < ∞,

µ(F ) = inf{µ(V ) : V ⊇ F, V open}

for all F ∈ S, and ∫
fdµ = Lf for all f ∈ Cc(Ω). (8.12)

The plan is to define an outer measure and then to show that it, together with the
σ algebra of sets measurable in the sense of Caratheodory, satisfies the conclusions
of the theorem. Always, K will be a compact set and V will be an open set.

Definition 8.22 µ(V ) ≡ sup{Lf : f ≺ V } for V open, µ(∅) = 0. µ(E) ≡
inf{µ(V ) : V ⊇ E} for arbitrary sets E.

Lemma 8.23 µ is a well-defined outer measure.

Proof: First it is necessary to verify µ is well defined because there are two
descriptions of it on open sets. Suppose then that µ1 (V ) ≡ inf{µ(U) : U ⊇ V
and U is open}. It is required to verify that µ1 (V ) = µ (V ) where µ is given as
sup{Lf : f ≺ V }. If U ⊇ V, then µ (U) ≥ µ (V ) directly from the definition. Hence
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from the definition of µ1, it follows µ1 (V ) ≥ µ (V ) . On the other hand, V ⊇ V and
so µ1 (V ) ≤ µ (V ) . This verifies µ is well defined.

It remains to show that µ is an outer measure. Let V = ∪∞i=1Vi and let f ≺ V .
Then spt(f) ⊆ ∪n

i=1Vi for some n. Let ψi ≺ Vi,
∑n

i=1 ψi = 1 on spt(f).

Lf =
n∑

i=1

L(fψi) ≤
n∑

i=1

µ(Vi) ≤
∞∑

i=1

µ(Vi).

Hence

µ(V ) ≤
∞∑

i=1

µ(Vi)

since f ≺ V is arbitrary. Now let E = ∪∞i=1Ei. Is µ(E) ≤ ∑∞
i=1 µ(Ei)? Without

loss of generality, it can be assumed µ(Ei) < ∞ for each i since if not so, there is
nothing to prove. Let Vi ⊇ Ei with µ(Ei) + ε2−i > µ(Vi).

µ(E) ≤ µ(∪∞i=1Vi) ≤
∞∑

i=1

µ(Vi) ≤ ε +
∞∑

i=1

µ(Ei).

Since ε was arbitrary, µ(E) ≤ ∑∞
i=1 µ(Ei) which proves the lemma.

Lemma 8.24 Let K be compact, g ≥ 0, g ∈ Cc(Ω), and g = 1 on K. Then
µ(K) ≤ Lg. Also µ(K) < ∞ whenever K is compact.

Proof: Let α ∈ (0, 1) and Vα = {x : g(x) > α} so Vα ⊇ K and let h ≺ Vα.

g > α

VαK

Then h ≤ 1 on Vα while gα−1 ≥ 1 on Vα and so gα−1 ≥ h which implies
L(gα−1) ≥ Lh and that therefore, since L is linear,

Lg ≥ αLh.

Since h ≺ Vα is arbitrary, and K ⊆ Vα,

Lg ≥ αµ (Vα) ≥ αµ (K) .

Letting α ↑ 1 yields Lg ≥ µ(K). This proves the first part of the lemma. The
second assertion follows from this and Theorem 8.15. If K is given, let

K ≺ g ≺ Ω

and so from what was just shown, µ (K) ≤ Lg < ∞. This proves the lemma.
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Lemma 8.25 If A and B are disjoint compact subsets of Ω, then µ(A ∪ B) =
µ(A) + µ(B).

Proof: By Theorem 8.15, there exists h ∈ Cc (Ω) such that A ≺ h ≺ BC . Let
U1 = h−1(( 1

2 , 1]), V1 = h−1([0, 1
2 )). Then A ⊆ U1, B ⊆ V1 and U1 ∩ V1 = ∅.

B V1A U1

From Lemma 8.24 µ(A ∪B) < ∞ and so there exists an open set, W such that

W ⊇ A ∪B, µ (A ∪B) + ε > µ (W ) .

Now let U = U1 ∩W and V = V1 ∩W . Then

U ⊇ A, V ⊇ B, U ∩ V = ∅, and µ(A ∪B) + ε ≥ µ (W ) ≥ µ(U ∪ V ).

Let A ≺ f ≺ U, B ≺ g ≺ V . Then by Lemma 8.24,

µ(A ∪B) + ε ≥ µ(U ∪ V ) ≥ L(f + g) = Lf + Lg ≥ µ(A) + µ(B).

Since ε > 0 is arbitrary, this proves the lemma.
From Lemma 8.24 the following lemma is obtained.

Lemma 8.26 Let f ∈ Cc(Ω), f(Ω) ⊆ [0, 1]. Then µ(spt(f)) ≥ Lf . Also, every
open set, V satisfies

µ (V ) = sup {µ (K) : K ⊆ V } .

Proof: Let V ⊇ spt(f) and let spt(f) ≺ g ≺ V . Then Lf ≤ Lg ≤ µ(V ) because
f ≤ g. Since this holds for all V ⊇ spt(f), Lf ≤ µ(spt(f)) by definition of µ.

Vspt(f)

Finally, let V be open and let l < µ (V ) . Then from the definition of µ, there
exists f ≺ V such that L (f) > l. Therefore, l < µ (spt (f)) ≤ µ (V ) and so this
shows the claim about inner regularity of the measure on an open set.

Lemma 8.27 If K is compact there exists V open, V ⊇ K, such that µ(V \K) ≤
ε. If V is open with µ(V ) < ∞, then there exists a compact set, K ⊆ V with
µ(V \K) ≤ ε.
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Proof: Let K be compact. Then from the definition of µ, there exists an open
set U , with µ(U) < ∞ and U ⊇ K. Suppose for every open set, V , containing
K, µ(V \ K) > ε. Then there exists f ≺ U \ K with Lf > ε. Consequently,
µ((f)) > Lf > ε. Let K1 = spt(f) and repeat the construction with U \ K1 in
place of U.

U

K1
K

K2

K3

Continuing in this way yields a sequence of disjoint compact sets, K, K1, · · ·
contained in U such that µ(Ki) > ε. By Lemma 8.25

µ(U) ≥ µ(K ∪ ∪r
i=1Ki) = µ(K) +

r∑

i=1

µ(Ki) ≥ rε

for all r, contradicting µ(U) < ∞. This demonstrates the first part of the lemma.
To show the second part, employ a similar construction. Suppose µ(V \K) > ε

for all K ⊆ V . Then µ(V ) > ε so there exists f ≺ V with Lf > ε. Let K1 = spt(f)
so µ(spt(f)) > ε. If K1 · · ·Kn, disjoint, compact subsets of V have been chosen,
there must exist g ≺ (V \ ∪n

i=1Ki) be such that Lg > ε. Hence µ(spt(g)) > ε. Let
Kn+1 = spt(g). In this way there exists a sequence of disjoint compact subsets of
V , {Ki} with µ(Ki) > ε. Thus for any m, K1 · · ·Km are all contained in V and
are disjoint and compact. By Lemma 8.25

µ(V ) ≥ µ(∪m
i=1Ki) =

m∑

i=1

µ(Ki) > mε

for all m, a contradiction to µ(V ) < ∞. This proves the second part.

Lemma 8.28 Let S be the σ algebra of µ measurable sets in the sense of Caratheodory.
Then S ⊇ Borel sets and µ is inner regular on every open set and for every E ∈ S
with µ(E) < ∞.

Proof: Define
S1 = {E ⊆ Ω : E ∩K ∈ S}

for all compact K.
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Let C be a compact set. The idea is to show that C ∈ S. From this it will follow
that the closed sets are in S1 because if C is only closed, C ∩K is compact. Hence
C ∩ K = (C ∩K) ∩ K ∈ S. The steps are to first show the compact sets are in
S and this implies the closed sets are in S1. Then you show S1 is a σ algebra and
so it contains the Borel sets. Finally, it is shown that S1 = S and then the inner
regularity conclusion is established.

Let V be an open set with µ (V ) < ∞. I will show that

µ (V ) ≥ µ(V \ C) + µ(V ∩ C).

By Lemma 8.27, there exists an open set U containing C and a compact subset of
V , K, such that µ(V \K) < ε and µ (U \ C) < ε.

U

C

V

K

Then by Lemma 8.25,

µ(V ) ≥ µ(K) ≥ µ((K \ U) ∪ (K ∩ C))
= µ(K \ U) + µ(K ∩ C)
≥ µ(V \ C) + µ(V ∩ C)− 3ε

Since ε is arbitrary,
µ(V ) = µ(V \ C) + µ(V ∩ C) (8.13)

whenever C is compact and V is open. (If µ (V ) = ∞, it is obvious that µ (V ) ≥
µ(V \C) + µ(V ∩C) and it is always the case that µ (V ) ≤ µ (V \ C) + µ (V ∩ C) .)

Of course 8.13 is exactly what needs to be shown for arbitrary S in place of V .
It suffices to consider only S having µ (S) < ∞. If S ⊆ Ω, with µ(S) < ∞, let
V ⊇ S, µ(S) + ε > µ(V ). Then from what was just shown, if C is compact,

ε + µ(S) > µ(V ) = µ(V \ C) + µ(V ∩ C)
≥ µ(S \ C) + µ(S ∩ C).

Since ε is arbitrary, this shows the compact sets are in S. As discussed above, this
verifies the closed sets are in S1.

Therefore, S1 contains the closed sets and S contains the compact sets. There-
fore, if E ∈ S and K is a compact set, it follows K ∩ E ∈ S and so S1 ⊇ S.

To see that S1 is closed with respect to taking complements, let E ∈ S1.

K = (EC ∩K) ∪ (E ∩K).
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Then from the fact, just established, that the compact sets are in S,

EC ∩K = K \ (E ∩K) ∈ S.
Similarly S1 is closed under countable unions. Thus S1 is a σ algebra which contains
the Borel sets since it contains the closed sets.

The next task is to show S1 = S. Let E ∈ S1 and let V be an open set with
µ(V ) < ∞ and choose K ⊆ V such that µ(V \ K) < ε. Then since E ∈ S1, it
follows E ∩K ∈ S and

µ(V ) = µ(V \ (K ∩ E)) + µ(V ∩ (K ∩ E))
≥ µ(V \ E) + µ(V ∩ E)− ε

because

µ (V ∩ (K ∩ E)) +

<ε︷ ︸︸ ︷
µ (V \K) ≥ µ (V ∩ E)

Since ε is arbitrary,
µ(V ) = µ(V \ E) + µ(V ∩ E).

Now let S ⊆ Ω. If µ(S) = ∞, then µ(S) = µ(S ∩ E) + µ(S \ E). If µ(S) < ∞, let

V ⊇ S, µ(S) + ε ≥ µ(V ).

Then

µ(S) + ε ≥ µ(V ) = µ(V \ E) + µ(V ∩ E) ≥ µ(S \ E) + µ(S ∩ E).

Since ε is arbitrary, this shows that E ∈ S and so S1 = S. Thus S ⊇ Borel sets as
claimed.

From Lemma 8.26 and the definition of µ it follows µ is inner regular on all
open sets. It remains to show that µ(F ) = sup{µ(K) : K ⊆ F} for all F ∈ S with
µ(F ) < ∞. It might help to refer to the following crude picture to keep things
straight.

FK K ∩ V C U

V

In this picture the shaded area is V.
Let U be an open set, U ⊇ F, µ(U) < ∞. Let V be open, V ⊇ U \ F , and

µ(V \ (U \ F )) < ε. This can be obtained because µ is a measure on S. Thus from
outer regularity there exists V ⊇ U \ F such that µ (U \ F ) + ε > µ (V ) . Then

µ (V \ (U \ F )) + µ (U \ F ) = µ (V )
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and so
µ (V \ (U \ F )) = µ (V )− µ (U \ F ) < ε.

Also,

V \ (U \ F ) = V ∩ (
U ∩ FC

)C

= V ∩ [
UC ∪ F

]

= (V ∩ F ) ∪ (
V ∩ UC

)

⊇ V ∩ F

and so
µ(V ∩ F ) ≤ µ (V \ (U \ F )) < ε.

Since V ⊇ U ∩ FC , V C ⊆ UC ∪ F so U ∩ V C ⊆ U ∩ F = F . Hence U ∩ V C is a
subset of F . Now let K ⊆ U, µ(U \K) < ε. Thus K ∩ V C is a compact subset of
F and

µ(F ) = µ(V ∩ F ) + µ(F \ V )
< ε + µ(F \ V ) ≤ ε + µ(U ∩ V C) ≤ 2ε + µ(K ∩ V C).

Since ε is arbitrary, this proves the second part of the lemma. Formula 8.11 of this
theorem was established earlier.

It remains to show µ satisfies 8.12.

Lemma 8.29
∫

fdµ = Lf for all f ∈ Cc(Ω).

Proof: Let f ∈ Cc(Ω), f real-valued, and suppose f(Ω) ⊆ [a, b]. Choose t0 < a
and let t0 < t1 < · · · < tn = b, ti − ti−1 < ε. Let

Ei = f−1((ti−1, ti]) ∩ spt(f). (8.14)

Note that ∪n
i=1Ei is a closed set and in fact

∪n
i=1 Ei = spt(f) (8.15)

since Ω = ∪n
i=1f

−1((ti−1, ti]). Let Vi ⊇ Ei, Vi is open and let Vi satisfy

f (x) < ti + ε for all x ∈ Vi, (8.16)

µ(Vi \ Ei) < ε/n.

By Theorem 8.18 there exists hi ∈ Cc(Ω) such that

hi ≺ Vi,

n∑

i=1

hi(x) = 1 on spt(f).

Now note that for each i,

f(x)hi(x) ≤ hi(x)(ti + ε).
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(If x ∈ Vi, this follows from Formula 8.16. If x /∈ Vi both sides equal 0.) Therefore,

Lf = L(
n∑

i=1

fhi) ≤ L(
n∑

i=1

hi(ti + ε))

=
n∑

i=1

(ti + ε)L(hi)

=
n∑

i=1

(|t0|+ ti + ε)L(hi)− |t0|L
(

n∑

i=1

hi

)
.

Now note that |t0| + ti + ε ≥ 0 and so from the definition of µ and Lemma 8.24,
this is no larger than

n∑

i=1

(|t0|+ ti + ε)µ(Vi)− |t0|µ(spt(f))

≤
n∑

i=1

(|t0|+ ti + ε)(µ(Ei) + ε/n)− |t0|µ(spt(f))

≤ |t0|
n∑

i=1

µ(Ei) + |t0|ε +
n∑

i=1

tiµ(Ei) + ε(|t0|+ |b|)

+ε

n∑

i=1

µ(Ei) + ε2 − |t0|µ(spt(f)).

From 8.15 and 8.14, the first and last terms cancel. Therefore this is no larger than

(2|t0|+ |b|+ µ(spt(f)) + ε)ε +
n∑

i=1

ti−1µ(Ei) + εµ(spt(f))

≤
∫

fdµ + (2|t0|+ |b|+ 2µ(spt(f)) + ε)ε.

Since ε > 0 is arbitrary,

Lf ≤
∫

fdµ (8.17)

for all f ∈ Cc(Ω), f real. Hence equality holds in 8.17 because L(−f) ≤ − ∫
fdµ

so L(f) ≥ ∫
fdµ. Thus Lf =

∫
fdµ for all f ∈ Cc(Ω). Just apply the result for

real functions to the real and imaginary parts of f . This proves the Lemma.
This gives the existence part of the Riesz representation theorem.
It only remains to prove uniqueness. Suppose both µ1 and µ2 are measures on

S satisfying the conclusions of the theorem. Then if K is compact and V ⊇ K, let
K ≺ f ≺ V . Then

µ1(K) ≤
∫

fdµ1 = Lf =
∫

fdµ2 ≤ µ2(V ).
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Thus µ1(K) ≤ µ2(K) for all K. Similarly, the inequality can be reversed and so it
follows the two measures are equal on compact sets. By the assumption of inner
regularity on open sets, the two measures are also equal on all open sets. By outer
regularity, they are equal on all sets of S. This proves the theorem.

An important example of a locally compact Hausdorff space is any metric space
in which the closures of balls are compact. For example, Rn with the usual metric
is an example of this. Not surprisingly, more can be said in this important special
case.

Theorem 8.30 Let (Ω, τ) be a metric space in which the closures of the balls are
compact and let L be a positive linear functional defined on Cc (Ω) . Then there
exists a measure representing the positive linear functional which satisfies all the
conclusions of Theorem 8.15 and in addition the property that µ is regular. The
same conclusion follows if (Ω, τ) is a compact Hausdorff space.

Proof: Let µ and S be as described in Theorem 8.21. The outer regularity
comes automatically as a conclusion of Theorem 8.21. It remains to verify inner
regularity. Let F ∈ S and let l < k < µ (F ) . Now let z ∈ Ω and Ωn = B (z, n) for
n ∈ N. Thus F ∩ Ωn ↑ F. It follows that for n large enough,

k < µ (F ∩ Ωn) ≤ µ (F ) .

Since µ (F ∩ Ωn) < ∞ it follows there exists a compact set, K such that K ⊆
F ∩ Ωn ⊆ F and

l < µ (K) ≤ µ (F ) .

This proves inner regularity. In case (Ω, τ) is a compact Hausdorff space, the con-
clusion of inner regularity follows from Theorem 8.21. This proves the theorem.

The proof of the above yields the following corollary.

Corollary 8.31 Let (Ω, τ) be a locally compact Hausdorff space and suppose µ
defined on a σ algebra, S represents the positive linear functional L where L is
defined on Cc (Ω) in the sense of Theorem 8.15. Suppose also that there exist Ωn ∈ S
such that Ω = ∪∞n=1Ωn and µ (Ωn) < ∞. Then µ is regular.

The following is on the uniqueness of the σ algebra in some cases.

Definition 8.32 Let (Ω, τ) be a locally compact Hausdorff space and let L be a
positive linear functional defined on Cc (Ω) such that the complete measure defined
by the Riesz representation theorem for positive linear functionals is inner regular.
Then this is called a Radon measure. Thus a Radon measure is complete, and
regular.

Corollary 8.33 Let (Ω, τ) be a locally compact Hausdorff space which is also σ
compact meaning

Ω = ∪∞n=1Ωn, Ωn is compact,

and let L be a positive linear functional defined on Cc (Ω) . Then if (µ1,S1) , and
(µ2,S2) are two Radon measures, together with their σ algebras which represent L
then the two σ algebras are equal and the two measures are equal.
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Proof: Suppose (µ1,S1) and (µ2,S2) both work. It will be shown the two
measures are equal on every compact set. Let K be compact and let V be an open
set containing K. Then let K ≺ f ≺ V. Then

µ1 (K) =
∫

K

dµ1 ≤
∫

fdµ1 = L (f) =
∫

fdµ2 ≤ µ2 (V ) .

Therefore, taking the infimum over all V containing K implies µ1 (K) ≤ µ2 (K) .
Reversing the argument shows µ1 (K) = µ2 (K) . This also implies the two measures
are equal on all open sets because they are both inner regular on open sets. It is
being assumed the two measures are regular. Now let F ∈ S1 with µ1 (F ) < ∞.
Then there exist sets, H, G such that H ⊆ F ⊆ G such that H is the countable
union of compact sets and G is a countable intersection of open sets such that
µ1 (G) = µ1 (H) which implies µ1 (G \H) = 0. Now G \ H can be written as the
countable intersection of sets of the form Vk \Kk where Vk is open, µ1 (Vk) < ∞ and
Kk is compact. From what was just shown, µ2 (Vk \Kk) = µ1 (Vk \Kk) so it follows
µ2 (G \H) = 0 also. Since µ2 is complete, and G and H are in S2, it follows F ∈ S2

and µ2 (F ) = µ1 (F ) . Now for arbitrary F possibly having µ1 (F ) = ∞, consider
F ∩Ωn. From what was just shown, this set is in S2 and µ2 (F ∩ Ωn) = µ1 (F ∩ Ωn).
Taking the union of these F ∩Ωn gives F ∈ S2 and also µ1 (F ) = µ2 (F ) . This shows
S1 ⊆ S2. Similarly, S2 ⊆ S1.

The following lemma is often useful.

Lemma 8.34 Let (Ω,F , µ) be a measure space where Ω is a metric space having
closed balls compact or more generally a topological space. Suppose µ is a Radon
measure and f is measurable with respect to F . Then there exists a Borel measurable
function, g, such that g = f a.e.

Proof: Assume without loss of generality that f ≥ 0. Then let sn ↑ f pointwise.
Say

sn (ω) =
Pn∑

k=1

cn
kXEn

k
(ω)

where En
k ∈ F . By the outer regularity of µ, there exists a Borel set, Fn

k ⊇ En
k such

that µ (Fn
k ) = µ (En

k ). In fact Fn
k can be assumed to be a Gδ set. Let

tn (ω) ≡
Pn∑

k=1

cn
kXF n

k
(ω) .

Then tn is Borel measurable and tn (ω) = sn (ω) for all ω /∈ Nn where Nn ∈ F is
a set of measure zero. Now let N ≡ ∪∞n=1Nn. Then N is a set of measure zero
and if ω /∈ N , then tn (ω) → f (ω). Let N ′ ⊇ N where N ′ is a Borel set and
µ (N ′) = 0. Then tnX(N ′)C converges pointwise to a Borel measurable function, g,
and g (ω) = f (ω) for all ω /∈ N ′. Therefore, g = f a.e. and this proves the lemma.
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8.5 One Dimensional Lebesgue Measure

To obtain one dimensional Lebesgue measure, you use the positive linear functional
L given by

Lf =
∫

f (x) dx

whenever f ∈ Cc (R) . Lebesgue measure, denoted by m is the measure obtained
from the Riesz representation theorem such that

∫
fdm = Lf =

∫
f (x) dx.

From this it is easy to verify that

m ([a, b]) = m ((a, b)) = b− a. (8.18)

This will be done in general a little later but for now, consider the following picture
of functions, fk and gk converging pointwise as k →∞ to X[a,b].
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Then the following estimate follows.
(

b− a− 2
k

)
≤

∫
fkdx =

∫
fkdm ≤ m ((a, b)) ≤ m ([a, b])

=
∫
X[a,b]dm ≤

∫
gkdm =

∫
gkdx ≤

(
b− a +

2
k

)
.

From this the claim in 8.18 follows.

8.6 The Distribution Function

There is an interesting connection between the Lebesgue integral of a nonnegative
function with something called the distribution function.

Definition 8.35 Let f ≥ 0 and suppose f is measurable. The distribution function
is the function defined by

t → µ ([t < f ]) .
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Lemma 8.36 If {fn} is an increasing sequence of functions converging pointwise
to f then

µ ([f > t]) = lim
n→∞

µ ([fn > t])

Proof: The sets, [fn > t] are increasing and their union is [f > t] because if
f (ω) > t, then for all n large enough, fn (ω) > t also. Therefore, from Theorem 7.5
on Page 126 the desired conclusion follows.

Lemma 8.37 Suppose s ≥ 0 is a measurable simple function,

s (ω) ≡
n∑

k=1

akXEk
(ω)

where the ak are the distinct nonzero values of s, a1 < a2 < · · · < an. Suppose φ is
a C1 function defined on [0,∞) which has the property that φ (0) = 0, φ′ (t) > 0 for
all t. Then ∫ ∞

0

φ′ (t)µ ([s > t]) dm =
∫

φ (s) dµ.

Proof: First note that if µ (Ek) = ∞ for any k then both sides equal ∞ and
so without loss of generality, assume µ (Ek) < ∞ for all k. Letting a0 ≡ 0, the left
side equals

n∑

k=1

∫ ak

ak−1

φ′ (t)µ ([s > t]) dm =
n∑

k=1

∫ ak

ak−1

φ′ (t)
n∑

i=k

µ (Ei) dm

=
n∑

k=1

n∑

i=k

µ (Ei)
∫ ak

ak−1

φ′ (t) dm

=
n∑

k=1

n∑

i=k

µ (Ei) (φ (ak)− φ (ak−1))

=
n∑

i=1

µ (Ei)
i∑

k=1

(φ (ak)− φ (ak−1))

=
n∑

i=1

µ (Ei)φ (ai) =
∫

φ (s) dµ.

This proves the lemma.
With this lemma the next theorem which is the main result follows easily.

Theorem 8.38 Let f ≥ 0 be measurable and let φ be a C1 function defined on
[0,∞) which satisfies φ′ (t) > 0 for all t > 0 and φ (0) = 0. Then

∫
φ (f) dµ =

∫ ∞

0

φ′ (t)µ ([f > t]) dt.
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Proof: By Theorem 7.24 on Page 139 there exists an increasing sequence of
nonnegative simple functions, {sn} which converges pointwise to f. By the monotone
convergence theorem and Lemma 8.36,

∫
φ (f) dµ = lim

n→∞

∫
φ (sn) dµ = lim

n→∞

∫ ∞

0

φ′ (t)µ ([sn > t]) dm

=
∫ ∞

0

φ′ (t)µ ([f > t]) dm

This proves the theorem.

8.7 Completion Of Measures

Suppose (Ω,F , µ) is a measure space. Then it is always possible to enlarge the σ
algebra and define a new measure µ on this larger σ algebra such that

(
Ω,F , µ

)
is

a complete measure space. Recall this means that if N ⊆ N ′ ∈ F and µ (N ′) = 0,
then N ∈ F . The following theorem is the main result. The new measure space is
called the completion of the measure space.

Theorem 8.39 Let (Ω,F , µ) be a σ finite measure space. Then there exists a
unique measure space,

(
Ω,F , µ

)
satisfying

1.
(
Ω,F , µ

)
is a complete measure space.

2. µ = µ on F
3. F ⊇ F
4. For every E ∈ F there exists G ∈ F such that G ⊇ E and µ (G) = µ (E) .

5. For every E ∈ F there exists F ∈ F such that F ⊆ E and µ (F ) = µ (E) .

Also for every E ∈ F there exist sets G, F ∈ F such that G ⊇ E ⊇ F and

µ (G \ F ) = µ (G \ F ) = 0 (8.19)

Proof: First consider the claim about uniqueness. Suppose (Ω,F1, ν1) and
(Ω,F2, ν2) both work and let E ∈ F1. Also let µ (Ωn) < ∞, · · ·Ωn ⊆ Ωn+1 · ··, and
∪∞n=1Ωn = Ω. Define En ≡ E ∩ Ωn. Then pick Gn ⊇ En ⊇ Fn such that µ (Gn) =
µ (Fn) = ν1 (En). It follows µ (Gn \ Fn) = 0. Then letting G = ∪nGn, F ≡ ∪nFn,
it follows G ⊇ E ⊇ F and

µ (G \ F ) ≤ µ (∪n (Gn \ Fn))

≤
∑

n

µ (Gn \ Fn) = 0.

It follows that ν2 (G \ F ) = 0 also. Now E \ F ⊆ G \ F and since (Ω,F2, ν2) is
complete, it follows E \ F ∈ F2. Since F ∈ F2, it follows E = (E \ F ) ∪ F ∈ F2.
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Thus F1 ⊆ F2. Similarly F2 ⊆ F1. Now it only remains to verify ν1 = ν2. Thus let
E ∈ F1 = F2 and let G and F be as just described. Since νi = µ on F ,

µ (F ) ≤ ν1 (E)
= ν1 (E \ F ) + ν1 (F )
≤ ν1 (G \ F ) + ν1 (F )
= ν1 (F ) = µ (F )

Similarly ν2 (E) = µ (F ) . This proves uniqueness. The construction has also verified
8.19.

Next define an outer measure, µ on P (Ω) as follows. For S ⊆ Ω,

µ (S) ≡ inf {µ (E) : E ∈ F} .

Then it is clear µ is increasing. It only remains to verify µ is subadditive. Then let
S = ∪∞i=1Si. If any µ (Si) = ∞, there is nothing to prove so suppose µ (Si) < ∞ for
each i. Then there exist Ei ∈ F such that Ei ⊇ Si and

µ (Si) + ε/2i > µ (Ei) .

Then

µ (S) = µ (∪iSi)

≤ µ (∪iEi) ≤
∑

i

µ (Ei)

≤
∑

i

(
µ (Si) + ε/2i

)
=

∑

i

µ (Si) + ε.

Since ε is arbitrary, this verifies µ is subadditive and is an outer measure as claimed.
Denote by F the σ algebra of measurable sets in the sense of Caratheodory.

Then it follows from the Caratheodory procedure, Theorem 8.4, on Page 158 that(
Ω,F , µ

)
is a complete measure space. This verifies 1.

Now let E ∈ F . Then from the definition of µ, it follows

µ (E) ≡ inf {µ (F ) : F ∈ F and F ⊇ E} ≤ µ (E) .

If F ⊇ E and F ∈ F , then µ (F ) ≥ µ (E) and so µ (E) is a lower bound for all such
µ (F ) which shows that

µ (E) ≡ inf {µ (F ) : F ∈ F and F ⊇ E} ≥ µ (E) .

This verifies 2.
Next consider 3. Let E ∈ F and let S be a set. I must show

µ (S) ≥ µ (S \ E) + µ (S ∩ E) .
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If µ (S) = ∞ there is nothing to show. Therefore, suppose µ (S) < ∞. Then from
the definition of µ there exists G ⊇ S such that G ∈ F and µ (G) = µ (S) . Then
from the definition of µ,

µ (S) ≤ µ (S \ E) + µ (S ∩ E)
≤ µ (G \ E) + µ (G ∩ E)
= µ (G) = µ (S)

This verifies 3.
Claim 4 comes by the definition of µ as used above. The only other case is when

µ (S) = ∞. However, in this case, you can let G = Ω.
It only remains to verify 5. Let the Ωn be as described above and let E ∈ F

such that E ⊆ Ωn. By 4 there exists H ∈ F such that H ⊆ Ωn, H ⊇ Ωn \ E, and

µ (H) = µ (Ωn \ E) . (8.20)

Then let F ≡ Ωn ∩HC . It follows F ⊆ E and

E \ F = E ∩ FC = E ∩ (
H ∪ ΩC

n

)

= E ∩H = H \ (Ωn \ E)

Hence from 8.20
µ (E \ F ) = µ (H \ (Ωn \ E)) = 0.

It follows
µ (E) = µ (F ) = µ (F ) .

In the case where E ∈ F is arbitrary, not necessarily contained in some Ωn, it
follows from what was just shown that there exists Fn ∈ F such that Fn ⊆ E ∩Ωn

and
µ (Fn) = µ (E ∩ Ωn) .

Letting F ≡ ∪nFn

µ (E \ F ) ≤ µ (∪n (E ∩ Ωn \ Fn)) ≤
∑

n

µ (E ∩ Ωn \ Fn) = 0.

Therefore, µ (E) = µ (F ) and this proves 5. This proves the theorem.
Now here is an interesting theorem about complete measure spaces.

Theorem 8.40 Let (Ω,F , µ) be a complete measure space and let f ≤ g ≤ h be
functions having values in [0,∞] . Suppose also that f (ω) = h (ω) a.e. ω and that
f and h are measurable. Then g is also measurable. If

(
Ω,F , µ

)
is the completion

of a σ finite measure space (Ω,F , µ) as described above in Theorem 8.39 then if f
is measurable with respect to F having values in [0,∞] , it follows there exists g
measurable with respect to F , g ≤ f, and a set N ∈ F with µ (N) = 0 and g = f
on NC . There also exists h measurable with respect to F such that h ≥ f, and a
set of measure zero, M ∈ F such that f = h on MC .
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Proof: Let α ∈ R.
[f > α] ⊆ [g > α] ⊆ [h > α]

Thus
[g > α] = [f > α] ∪ ([g > α] \ [f > α])

and [g > α] \ [f > α] is a measurable set because it is a subset of the set of measure
zero,

[h > α] \ [f > α] .

Now consider the last assertion. By Theorem 7.24 on Page 139 there exists an
increasing sequence of nonnegative simple functions, {sn} measurable with respect
to F which converges pointwise to f . Letting

sn (ω) =
mn∑

k=1

cn
kXEn

k
(ω) (8.21)

be one of these simple functions, it follows from Theorem 8.39 there exist sets,
Fn

k ∈ F such that Fn
k ⊆ En

k and µ (Fn
k ) = µ (En

k ) . Then let

tn (ω) ≡
mn∑

k=1

cn
kXF n

k
(ω) .

Thus tn = sn off a set of measure zero, Nn ∈ F , tn ≤ sn. Let N ′ ≡ ∪nNn. Then by
Theorem 8.39 again, there exists N ∈ F such that N ⊇ N ′ and µ (N) = 0. Consider
the simple functions,

s′n (ω) ≡ tn (ω)XNC (ω) .

It is an increasing sequence so let g (ω) = limn→∞ sn′ (ω) . It follows g is mesurable
with respect to F and equals f off N .

Finally, to obtain the function, h ≥ f, in 8.21 use Theorem 8.39 to obtain the
existence of Fn

k ∈ F such that Fn
k ⊇ En

k and µ (Fn
k ) = µ (En

k ). Then let

tn (ω) ≡
mn∑

k=1

cn
kXF n

k
(ω) .

Thus tn = sn off a set of measure zero, Mn ∈ F , tn ≥ sn, and tn is measurable with
respect to F . Then define

s′n = max
k≤n

tn.

It follows s′n is an increasing sequence of F measurable nonnegative simple functions.
Since each s′n ≥ sn, it follows that if h (ω) = limn→∞ s′n (ω) ,then h (ω) ≥ f (ω) .
Also if h (ω) > f (ω) , then ω ∈ ∪nMn ≡ M ′, a set of F having measure zero. By
Theorem 8.39, there exists M ⊇ M ′ such that M ∈ F and µ (M) = 0. It follows
h = f off M. This proves the theorem.
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8.8 Product Measures

8.8.1 General Theory

Given two finite measure spaces, (X,F , µ) and (Y,S, ν) , there is a way to define a
σ algebra of subsets of X × Y , denoted by F × S and a measure, denoted by µ× ν
defined on this σ algebra such that

µ× ν (A×B) = µ (A)λ (B)

whenever A ∈ F and B ∈ S. This is naturally related to the concept of iterated
integrals similar to what is used in calculus to evaluate a multiple integral. The
approach is based on something called a π system, [13].

Definition 8.41 Let (X,F , µ) and (Y,S, ν) be two measure spaces. A measurable
rectangle is a set of the form A×B where A ∈ F and B ∈ S.

Definition 8.42 Let Ω be a set and let K be a collection of subsets of Ω. Then K
is called a π system if ∅ ∈ K and whenever A,B ∈ K, it follows A ∩B ∈ K.

Obviously an example of a π system is the set of measurable rectangles because

A×B ∩A′ ×B′ = (A ∩A′)× (B ∩B′) .

The following is the fundamental lemma which shows these π systems are useful.

Lemma 8.43 Let K be a π system of subsets of Ω, a set. Also let G be a collection
of subsets of Ω which satisfies the following three properties.

1. K ⊆ G
2. If A ∈ G, then AC ∈ G
3. If {Ai}∞i=1 is a sequence of disjoint sets from G then ∪∞i=1Ai ∈ G.

Then G ⊇ σ (K) , where σ (K) is the smallest σ algebra which contains K.

Proof: First note that if

H ≡ {G : 1 - 3 all hold}

then ∩H yields a collection of sets which also satisfies 1 - 3. Therefore, I will assume
in the argument that G is the smallest collection satisfying 1 - 3. Let A ∈ K and
define

GA ≡ {B ∈ G : A ∩B ∈ G} .

I want to show GA satisfies 1 - 3 because then it must equal G since G is the smallest
collection of subsets of Ω which satisfies 1 - 3. This will give the conclusion that for
A ∈ K and B ∈ G, A ∩ B ∈ G. This information will then be used to show that if
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A,B ∈ G then A ∩B ∈ G. From this it will follow very easily that G is a σ algebra
which will imply it contains σ (K). Now here are the details of the argument.

Since K is given to be a π system, K ⊆ GA. Property 3 is obvious because if
{Bi} is a sequence of disjoint sets in GA, then

A ∩ ∪∞i=1Bi = ∪∞i=1A ∩Bi ∈ G

because A ∩Bi ∈ G and the property 3 of G.
It remains to verify Property 2 so let B ∈ GA. I need to verify that BC ∈ GA.

In other words, I need to show that A ∩BC ∈ G. However,

A ∩BC =
(
AC ∪ (A ∩B)

)C ∈ G

Here is why. Since B ∈ GA, A ∩ B ∈ G and since A ∈ K ⊆ G it follows AC ∈ G. It
follows the union of the disjoint sets, AC and (A ∩B) is in G and then from 2 the
complement of their union is in G. Thus GA satisfies 1 - 3 and this implies since G is
the smallest such, that GA ⊇ G. However, GA is constructed as a subset of G. This
proves that for every B ∈ G and A ∈ K, A ∩B ∈ G. Now pick B ∈ G and consider

GB ≡ {A ∈ G : A ∩B ∈ G} .

I just proved K ⊆ GB . The other arguments are identical to show GB satisfies 1 - 3
and is therefore equal to G. This shows that whenever A,B ∈ G it follows A∩B ∈ G.

This implies G is a σ algebra. To show this, all that is left is to verify G is closed
under countable unions because then it follows G is a σ algebra. Let {Ai} ⊆ G.
Then let A′1 = A1 and

A′n+1 ≡ An+1 \ (∪n
i=1Ai)

= An+1 ∩
(∩n

i=1A
C
i

)

= ∩n
i=1

(
An+1 ∩AC

i

) ∈ G

because finite intersections of sets of G are in G. Since the A′i are disjoint, it follows

∪∞i=1Ai = ∪∞i=1A
′
i ∈ G

Therefore, G ⊇ σ (K) and this proves the Lemma.
With this lemma, it is easy to define product measure.
Let (X,F , µ) and (Y,S, ν) be two finite measure spaces. Define K to be the set

of measurable rectangles, A×B, A ∈ F and B ∈ S. Let

G ≡
{

E ⊆ X × Y :
∫

Y

∫

X

XEdµdν =
∫

X

∫

Y

XEdνdµ

}
(8.22)

where in the above, part of the requirement is for all integrals to make sense.
Then K ⊆ G. This is obvious.
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Next I want to show that if E ∈ G then EC ∈ G. Observe XEC = 1−XE and so∫

Y

∫

X

XEC dµdν =
∫

Y

∫

X

(1−XE) dµdν

=
∫

X

∫

Y

(1−XE) dνdµ

=
∫

X

∫

Y

XEC dνdµ

which shows that if E ∈ G, then EC ∈ G.
Next I want to show G is closed under countable unions of disjoint sets of G. Let

{Ai} be a sequence of disjoint sets from G. Then
∫

Y

∫

X

X∪∞i=1Aidµdν =
∫

Y

∫

X

∞∑

i=1

XAidµdν

=
∫

Y

∞∑

i=1

∫

X

XAidµdν

=
∞∑

i=1

∫

Y

∫

X

XAidµdν

=
∞∑

i=1

∫

X

∫

Y

XAidνdµ

=
∫

X

∞∑

i=1

∫

Y

XAidνdµ

=
∫

X

∫

Y

∞∑

i=1

XAidνdµ

=
∫

X

∫

Y

X∪∞i=1Aidνdµ, (8.23)

the interchanges between the summation and the integral depending on the mono-
tone convergence theorem. Thus G is closed with respect to countable disjoint
unions.

From Lemma 8.43, G ⊇ σ (K) . Also the computation in 8.23 implies that on
σ (K) one can define a measure, denoted by µ× ν and that for every E ∈ σ (K) ,

(µ× ν) (E) =
∫

Y

∫

X

XEdµdν =
∫

X

∫

Y

XEdνdµ. (8.24)

Now here is Fubini’s theorem.

Theorem 8.44 Let f : X×Y → [0,∞] be measurable with respect to the σ algebra,
σ (K) just defined and let µ × ν be the product measure of 8.24 where µ and ν are
finite measures on (X,F) and (Y,S) respectively. Then

∫

X×Y

fd (µ× ν) =
∫

Y

∫

X

fdµdν =
∫

X

∫

Y

fdνdµ.
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Proof: Let {sn} be an increasing sequence of σ (K) measurable simple functions
which converges pointwise to f. The above equation holds for sn in place of f from
what was shown above. The final result follows from passing to the limit and using
the monotone convergence theorem. This proves the theorem.

The symbol, F × S denotes σ (K).
Of course one can generalize right away to measures which are only σ finite.

Theorem 8.45 Let f : X×Y → [0,∞] be measurable with respect to the σ algebra,
σ (K) just defined and let µ × ν be the product measure of 8.24 where µ and ν are
σ finite measures on (X,F) and (Y,S) respectively. Then

∫

X×Y

fd (µ× ν) =
∫

Y

∫

X

fdµdν =
∫

X

∫

Y

fdνdµ.

Proof: Since the measures are σ finite, there exist increasing sequences of sets,
{Xn} and {Yn} such that µ (Xn) < ∞ and µ (Yn) < ∞. Then µ and ν restricted
to Xn and Yn respectively are finite. Then from Theorem 8.44,

∫

Yn

∫

Xn

fdµdν =
∫

Xn

∫

Yn

fdνdµ

Passing to the limit yields
∫

Y

∫

X

fdµdν =
∫

X

∫

Y

fdνdµ

whenever f is as above. In particular, you could take f = XE where E ∈ F × S
and define

(µ× ν) (E) ≡
∫

Y

∫

X

XEdµdν =
∫

X

∫

Y

XEdνdµ.

Then just as in the proof of Theorem 8.44, the conclusion of this theorem is obtained.
This proves the theorem.

It is also useful to note that all the above holds for
∏n

i=1 Xi in place of X × Y.
You would simply modify the definition of G in 8.22 including all permutations for
the iterated integrals and for K you would use sets of the form

∏n
i=1 Ai where Ai

is measurable. Everything goes through exactly as above. Thus the following is
obtained.

Theorem 8.46 Let {(Xi,Fi, µi)}n
i=1 be σ finite measure spaces and let

∏n
i=1 Fi de-

note the smallest σ algebra which contains the measurable boxes of the form
∏n

i=1 Ai

where Ai ∈ Fi. Then there exists a measure, λ defined on
∏n

i=1 Fi such that if
f :

∏n
i=1 Xi → [0,∞] is

∏n
i=1 Fi measurable, and (i1, · · ·, in) is any permutation of

(1, · · ·, n) , then ∫
fdλ =

∫

Xin

· · ·
∫

Xi1

fdµi1 · · · dµin
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8.8.2 Completion Of Product Measure Spaces

Using Theorem 8.40 it is easy to give a generalization to yield a theorem for the
completion of product spaces.

Theorem 8.47 Let {(Xi,Fi, µi)}n
i=1 be σ finite measure spaces and let

∏n
i=1 Fi de-

note the smallest σ algebra which contains the measurable boxes of the form
∏n

i=1 Ai

where Ai ∈ Fi. Then there exists a measure, λ defined on
∏n

i=1 Fi such that if
f :

∏n
i=1 Xi → [0,∞] is

∏n
i=1 Fi measurable, and (i1, · · ·, in) is any permutation of

(1, · · ·, n) , then ∫
fdλ =

∫

Xin

· · ·
∫

Xi1

fdµi1 · · · dµin

Let
(∏n

i=1 Xi,
∏n

i=1 Fi, λ
)

denote the completion of this product measure space and
let

f :
n∏

i=1

Xi → [0,∞]

be
∏n

i=1 Fi measurable. Then there exists N ∈ ∏n
i=1 Fi such that λ (N) = 0 and a

nonnegative function, f1 measurable with respect to
∏n

i=1 Fi such that f1 = f off
N and if (i1, · · ·, in) is any permutation of (1, · · ·, n) , then

∫
fdλ =

∫

Xin

· · ·
∫

Xi1

f1dµi1 · · · dµin
.

Furthermore, f1 may be chosen to satisfy either f1 ≤ f or f1 ≥ f.

Proof: This follows immediately from Theorem 8.46 and Theorem 8.40. By the
second theorem, there exists a function f1 ≥ f such that f1 = f for all (x1, · · ·, xn) /∈
N, a set of

∏n
i=1 Fi having measure zero. Then by Theorem 8.39 and Theorem 8.46

∫
fdλ =

∫
f1dλ =

∫

Xin

· · ·
∫

Xi1

f1dµi1 · · · dµin
.

To get f1 ≤ f, just use that part of Theorem 8.40.
Since f1 = f off a set of measure zero, I will dispense with the subscript. Also

it is customary to write
λ = µ1 × · · · × µn

and
λ = µ1 × · · · × µn.

Thus in more standard notation, one writes
∫

fd (µ1 × · · · × µn) =
∫

Xin

· · ·
∫

Xi1

fdµi1 · · · dµin

This theorem is often referred to as Fubini’s theorem. The next theorem is also
called this.
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Corollary 8.48 Suppose f ∈ L1
(∏n

i=1 Xi,
∏n

i=1 Fi, µ1 × · · · × µn

)
where each Xi

is a σ finite measure space. Then if (i1, · · ·, in) is any permutation of (1, · · ·, n) , it
follows ∫

fd (µ1 × · · · × µn) =
∫

Xin

· · ·
∫

Xi1

fdµi1 · · · dµin
.

Proof: Just apply Theorem 8.47 to the positive and negative parts of the real
and imaginary parts of f. This proves the theorem.

Here is another easy corollary.

Corollary 8.49 Suppose in the situation of Corollary 8.48, f = f1 off N, a set of∏n
i=1 Fi having µ1×· · ·×µn measure zero and that f1 is a complex valued function

measurable with respect to
∏n

i=1 Fi. Suppose also that for some permutation of
(1, 2, · · ·, n) , (j1, · · ·, jn)

∫

Xjn

· · ·
∫

Xj1

|f1| dµj1 · · · dµjn
< ∞.

Then

f ∈ L1

(
n∏

i=1

Xi,

n∏

i=1

Fi, µ1 × · · · × µn

)

and the conclusion of Corollary 8.48 holds.

Proof: Since |f1| is
∏n

i=1 Fi measurable, it follows from Theorem 8.46 that

∞ >

∫

Xjn

· · ·
∫

Xj1

|f1| dµj1 · · · dµjn

=
∫
|f1| d (µ1 × · · · × µn)

=
∫
|f1| d (µ1 × · · · × µn)

=
∫
|f | d (µ1 × · · · × µn) .

Thus f ∈ L1
(∏n

i=1 Xi,
∏n

i=1 Fi, µ1 × · · · × µn

)
as claimed and the rest follows from

Corollary 8.48. This proves the corollary.
The following lemma is also useful.

Lemma 8.50 Let (X,F , µ) and (Y,S, ν) be σ finite complete measure spaces and
suppose f ≥ 0 is F × S measurable. Then for a.e. x,

y → f (x, y)

is S measurable. Similarly for a.e. y,

x → f (x, y)

is F measurable.
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Proof: By Theorem 8.40, there exist F × S measurable functions, g and h and
a set, N ∈ F × S of µ× λ measure zero such that g ≤ f ≤ h and for (x, y) /∈ N, it
follows that g (x, y) = h (x, y) . Then

∫

X

∫

Y

gdνdµ =
∫

X

∫

Y

hdνdµ

and so for a.e. x, ∫

Y

gdν =
∫

Y

hdν.

Then it follows that for these values of x, g (x, y) = h (x, y) and so by Theorem 8.40
again and the assumption that (Y,S, ν) is complete, y → f (x, y) is S measurable.
The other claim is similar. This proves the lemma.

8.9 Disturbing Examples

There are examples which help to define what can be expected of product measures
and Fubini type theorems. Three such examples are given in Rudin [36] and that
is where I saw them.

Example 8.51 Let {an} be an increasing sequence of numbers in (0, 1) which
converges to 1. Let gn ∈ Cc (an, an+1) such that

∫
gndx = 1. Now for (x, y) ∈

[0, 1)× [0, 1) define

f (x, y) ≡
∞∑

k=1

gn (y) (gn (x)− gn+1 (x)) .

Note this is actually a finite sum for each such (x, y) . Therefore, this is a continuous
function on [0, 1)× [0, 1). Now for a fixed y,

∫ 1

0

f (x, y) dx =
∞∑

k=1

gn (y)
∫ 1

0

(gn (x)− gn+1 (x)) dx = 0

showing that
∫ 1

0

∫ 1

0
f (x, y) dxdy =

∫ 1

0
0dy = 0. Next fix x.

∫ 1

0

f (x, y) dy =
∞∑

k=1

(gn (x)− gn+1 (x))
∫ 1

0

gn (y) dy = g1 (x) .

Hence
∫ 1

0

∫ 1

0
f (x, y) dydx =

∫ 1

0
g1 (x) dx = 1. The iterated integrals are not equal.

Note the function, g is not nonnegative even though it is measurable. In addition,
neither

∫ 1

0

∫ 1

0
|f (x, y)| dxdy nor

∫ 1

0

∫ 1

0
|f (x, y)| dydx is finite and so you can’t apply

Corollary 8.49. The problem here is the function is not nonnegative and is not
absolutely integrable.
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Example 8.52 This time let µ = m, Lebesgue measure on [0, 1] and let ν be count-
ing measure on [0, 1] , in this case, the σ algebra is P ([0, 1]) . Let l denote the line
segment in [0, 1] × [0, 1] which goes from (0, 0) to (1, 1). Thus l = (x, x) where
x ∈ [0, 1] . Consider the outer measure of l in m× ν. Let l ⊆ ∪kAk ×Bk where Ak

is Lebesgue measurable and Bk is a subset of [0, 1] . Let B ≡ {k ∈ N : ν (Bk) = ∞} .
If m (∪k∈BAk) has measure zero, then there are uncountably many points of [0, 1]
outside of ∪k∈BAk. For p one of these points, (p, p) ∈ Ai×Bi and i /∈ B. Thus each
of these points is in ∪i/∈BBi, a countable set because these Bi are each finite. But
this is a contradiction because there need to be uncountably many of these points as
just indicated. Thus m (Ak) > 0 for some k ∈ B and so m× ν (Ak ×Bk) = ∞. It
follows m× ν (l) = ∞ and so l is m× ν measurable. Thus

∫ Xl (x, y) d m× ν = ∞
and so you cannot apply Fubini’s theorem, Theorem 8.47. Since ν is not σ finite,
you cannot apply the corollary to this theorem either. Thus there is no contradiction
to the above theorems in the following observation.

∫ ∫
Xl (x, y) dνdm =

∫
1dm = 1,

∫ ∫
Xl (x, y) dmdν =

∫
0dν = 0.

The problem here is that you have neither
∫

fd m× ν < ∞ not σ finite measure
spaces.

The next example is far more exotic. It concerns the case where both iterated
integrals make perfect sense but are unequal. In 1877 Cantor conjectured that the
cardinality of the real numbers is the next size of infinity after countable infinity.
This hypothesis is called the continuum hypothesis and it has never been proved
or disproved2. Assuming this continuum hypothesis will provide the basis for the
following example. It is due to Sierpinski.

Example 8.53 Let X be an uncountable set. It follows from the well ordering
theorem which says every set can be well ordered which is presented in the ap-
pendix that X can be well ordered. Let ω ∈ X be the first element of X which is
preceded by uncountably many points of X. Let Ω denote {x ∈ X : x < ω} . Then
Ω is uncountable but there is no smaller uncountable set. Thus by the contin-
uum hypothesis, there exists a one to one and onto mapping, j which maps [0, 1]
onto Ω. Thus, for x ∈ [0, 1] , j (x) is preceeded by countably many points. Let
Q ≡

{
(x, y) ∈ [0, 1]2 : j (x) < j (y)

}
and let f (x, y) = XQ (x, y) . Then

∫ 1

0

f (x, y) dy = 1,

∫ 1

0

f (x, y) dx = 0

In each case, the integrals make sense. In the first, for fixed x, f (x, y) = 1 for all
but countably many y so the function of y is Borel measurable. In the second where

2In 1940 it was shown by Godel that the continuum hypothesis cannot be disproved. In 1963 it
was shown by Cohen that the continuum hypothesis cannot be proved. These assertions are based
on the axiom of choice and the Zermelo Frankel axioms of set theory. This topic is far outside the
scope of this book and this is only a hopefully interesting historical observation.
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y is fixed, f (x, y) = 0 for all but countably many x. Thus

∫ 1

0

∫ 1

0

f (x, y) dydx = 1,

∫ 1

0

∫ 1

0

f (x, y) dxdy = 0.

The problem here must be that f is not m×m measurable.

8.10 Exercises

1. Let Ω = N, the natural numbers and let d (p, q) = |p− q|, the usual dis-
tance in R. Show that (Ω, d) the closures of the balls are compact. Now let
Λf ≡ ∑∞

k=1 f (k) whenever f ∈ Cc (Ω). Show this is a well defined positive
linear functional on the space Cc (Ω). Describe the measure of the Riesz rep-
resentation theorem which results from this positive linear functional. What
if Λ (f) = f (1)? What measure would result from this functional? Which
functions are measurable?

2. Verify that µ defined in Lemma 8.7 is an outer measure.

3. Let F : R→ R be increasing and right continuous. Let Λf ≡ ∫
fdF where

the integral is the Riemann Stieltjes integral of f ∈ Cc (R). Show the measure
µ from the Riesz representation theorem satisfies

µ ([a, b]) = F (b)− F (a−) , µ ((a, b]) = F (b)− F (a) ,

µ ([a, a]) = F (a)− F (a−) .

Hint: You might want to review the material on Riemann Stieltjes integrals
presented in the Preliminary part of the notes.

4. Let Ω be a metric space with the closed balls compact and suppose µ is a
measure defined on the Borel sets of Ω which is finite on compact sets. Show
there exists a unique Radon measure, µ which equals µ on the Borel sets.

5. ↑ Random vectors are measurable functions, X, mapping a probability space,
(Ω, P,F) to Rn. Thus X (ω) ∈ Rn for each ω ∈ Ω and P is a probability
measure defined on the sets of F , a σ algebra of subsets of Ω. For E a Borel
set in Rn, define

µ (E) ≡ P
(
X−1 (E)

) ≡ probability that X ∈ E.

Show this is a well defined measure on the Borel sets of Rn and use Problem 4
to obtain a Radon measure, λX defined on a σ algebra of sets of Rn including
the Borel sets such that for E a Borel set, λX (E) =Probability that (X ∈E).

6. Suppose X and Y are metric spaces having compact closed balls. Show

(X × Y, dX×Y )
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is also a metric space which has the closures of balls compact. Here

dX×Y ((x1, y1) , (x2, y2)) ≡ max (d (x1, x2) , d (y1, y2)) .

Let
A ≡ {E × F : E is a Borel set in X, F is a Borel set in Y } .

Show σ (A), the smallest σ algebra containingA contains the Borel sets. Hint:
Show every open set in a metric space which has closed balls compact can be
obtained as a countable union of compact sets. Next show this implies every
open set can be obtained as a countable union of open sets of the form U ×V
where U is open in X and V is open in Y .

7. Suppose (Ω,S, µ) is a measure space which may not be complete. Could you
obtain a complete measure space,

(
Ω,S, µ1

)
by simply letting S consist of all

sets of the form E where there exists F ∈ S such that (F \ E)∪ (E \ F ) ⊆ N
for some N ∈ S which has measure zero and then let µ (E) = µ1 (F )? Explain.

8. Let (Ω,S, µ) be a σ finite measure space and let f : Ω → [0,∞) be measurable.
Define

A ≡ {(x, y) : y < f (x)}
Verify that A is µ×m measurable. Show that

∫
fdµ =

∫ ∫
XA (x, y) dµdm =

∫
XAdµ×m.

9. For f a nonnegative measurable function, it was shown that
∫

fdµ =
∫

µ ([f > t]) dt.

Would it work the same if you used
∫

µ ([f ≥ t]) dt? Explain.

10. The Riemann integral is only defined for functions which are bounded which
are also defined on a bounded interval. If either of these two criteria are not
satisfied, then the integral is not the Riemann integral. Suppose f is Riemann
integrable on a bounded interval, [a, b]. Show that it must also be Lebesgue
integrable with respect to one dimensional Lebesgue measure and the two
integrals coincide. Give a theorem in which the improper Riemann integral
coincides with a suitable Lebesgue integral. (There are many such situations
just find one.) Note that

∫∞
0

sin x
x dx is a valid improper Riemann integral but

is not a Lebesgue integral. Why?

11. Suppose µ is a finite measure defined on the Borel subsets of X where X is a
separable metric space. Show that µ is necessarily regular. Hint: First show
µ is outer regular on closed sets in the sense that for H closed,

µ (H) = inf {µ (V ) : V ⊇ H and V is open}
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Then show that for every open set, V

µ (V ) = sup {µ (H) : H ⊆ V and H is closed} .

Next let F consist of those sets for which µ is outer regular and also inner reg-
ular with closed replacing compact in the definition of inner regular. Finally
show that if C is a closed set, then

µ (C) = sup {µ (K) : K ⊆ C and K is compact} .

To do this, consider a countable dense subset of C, {an} and let

Cn = ∪mn

k=1B

(
ak,

1
n

)
∩ C.

Show you can choose mn such that

µ (C \ Cn) < ε/2n.

Then consider K ≡ ∩nCn.
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Lebesgue Measure

9.1 Basic Properties

Definition 9.1 Define the following positive linear functional for f ∈ Cc (Rn) .

Λf ≡
∫ ∞

−∞
· · ·

∫ ∞

−∞
f (x) dx1 · · · dxn.

Then the measure representing this functional is Lebesgue measure.

The following lemma will help in understanding Lebesgue measure.

Lemma 9.2 Every open set in Rn is the countable disjoint union of half open boxes
of the form

n∏

i=1

(ai, ai + 2−k]

where ai = l2−k for some integers, l, k. The sides of these boxes are equal.

Proof: Let

Ck = {All half open boxes
n∏

i=1

(ai, ai + 2−k] where

ai = l2−k for some integer l.}
Thus Ck consists of a countable disjoint collection of boxes whose union is Rn. This
is sometimes called a tiling of Rn. Think of tiles on the floor of a bathroom and
you will get the idea. Note that each box has diameter no larger than 2−k

√
n. This

is because if

x,y ∈
n∏

i=1

(ai, ai + 2−k],

then |xi − yi| ≤ 2−k. Therefore,

|x− y| ≤
(

n∑

i=1

(
2−k

)2

)1/2

= 2−k
√

n.

197
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Let U be open and let B1 ≡ all sets of C1 which are contained in U . If B1, · · ·,Bk

have been chosen, Bk+1 ≡ all sets of Ck+1 contained in

U \ ∪ (∪k
i=1Bi

)
.

Let B∞ = ∪∞i=1Bi. In fact ∪B∞ = U . Clearly ∪B∞ ⊆ U because every box of every
Bi is contained in U . If p ∈ U , let k be the smallest integer such that p is contained
in a box from Ck which is also a subset of U . Thus

p ∈ ∪Bk ⊆ ∪B∞.

Hence B∞ is the desired countable disjoint collection of half open boxes whose union
is U . This proves the lemma.

Now what does Lebesgue measure do to a rectangle,
∏n

i=1(ai, bi]?

Lemma 9.3 Let R =
∏n

i=1[ai, bi], R0 =
∏n

i=1(ai, bi). Then

mn (R0) = mn (R) =
n∏

i=1

(bi − ai).

Proof: Let k be large enough that

ai + 1/k < bi − 1/k

for i = 1, · · ·, n and consider functions gk
i and fk

i having the following graphs.

ai + 1/k

@
@R

ai

£
£
£
£

1
B
B
B
B

bi − 1/k
¡

¡ª

bi

fk
i

ai − 1/k
@

@@R
ai

£
£
£
£

1
B
B
B
B

bi

bi + 1/k
¡

¡ª

gk
i

Let

gk(x) =
n∏

i=1

gk
i (xi), fk(x) =

n∏

i=1

fk
i (xi).

Then by elementary calculus along with the definition of Λ,
n∏

i=1

(bi − ai + 2/k) ≥ Λgk =
∫

gkdmn ≥ mn(R) ≥ mn(R0)

≥
∫

fkdmn = Λfk ≥
n∏

i=1

(bi − ai − 2/k).

Letting k →∞, it follows that

mn(R) = mn(R0) =
n∏

i=1

(bi − ai).

This proves the lemma.
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Lemma 9.4 Let U be an open or closed set. Then mn (U) = mn (x + U) .

Proof: By Lemma 9.2 there is a sequence of disjoint half open rectangles, {Ri}
such that ∪iRi = U. Therefore, x + U = ∪i (x + Ri) and the x + Ri are also
disjoint rectangles which are identical to the Ri but translated. From Lemma 9.3,
mn (U) =

∑
i mn (Ri) =

∑
i mn (x + Ri) = mn (x + U) .

It remains to verify the lemma for a closed set. Let H be a closed bounded set
first. Then H ⊆ B (0,R) for some R large enough. First note that x+H is a closed
set. Thus

mn (B (x, R)) = mn (x + H) + mn ((B (0, R) + x) \ (x + H))
= mn (x + H) + mn ((B (0, R) \H) + x)
= mn (x + H) + mn ((B (0, R) \H))
= mn (B (0, R))−mn (H) + mn (x + H)
= mn (B (x, R))−mn (H) + mn (x + H)

the last equality because of the first part of the lemma which implies mn (B (x, R)) =
mn (B (0, R)) . Therefore, mn (x + H) = mn (H) as claimed. If H is not bounded,
consider Hm ≡ B (0,m) ∩H. Then mn (x + Hm) = mn (Hm) . Passing to the limit
as m →∞ yields the result in general.

Theorem 9.5 Lebesgue measure is translation invariant. That is

mn (E) = mn (x + E)

for all E Lebesgue measurable.

Proof: Suppose mn (E) < ∞. By regularity of the measure, there exist sets
G,H such that G is a countable intersection of open sets, H is a countable union
of compact sets, mn (G \H) = 0, and G ⊇ E ⊇ H. Now mn (G) = mn (G + x) and
mn (H) = mn (H + x) which follows from Lemma 9.4 applied to the sets which are
either intersected to form G or unioned to form H. Now

x + H ⊆ x + E ⊆ x + G

and both x+H and x+G are measurable because they are either countable unions
or countable intersections of measurable sets. Furthermore,

mn (x + G \ x + H) = mn (x + G)−mn (x + H) = mn (G)−mn (H) = 0

and so by completeness of the measure, x + E is measurable. It follows

mn (E) = mn (H) = mn (x + H) ≤ mn (x + E)
≤ mn (x + G) = mn (G) = mn (E) .

If mn (E) is not necessarily less than ∞, consider Em ≡ B (0,m) ∩ E. Then
mn (Em) = mn (Em + x) by the above. Letting m → ∞ it follows mn (Em) =
mn (Em + x). This proves the theorem.
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Corollary 9.6 Let D be an n× n diagonal matrix and let U be an open set. Then

mn (DU) = |det (D)|mn (U) .

Proof: If any of the diagonal entries of D equals 0 there is nothing to prove
because then both sides equal zero. Therefore, it can be assumed none are equal to
zero. Suppose these diagonal entries are k1, · · ·, kn. From Lemma 9.2 there exist half
open boxes, {Ri} having all sides equal such that U = ∪iRi. Suppose one of these is
Ri =

∏n
j=1(aj , bj ], where bj −aj = li. Then DRi =

∏n
j=1 Ij where Ij = (kjaj , kjbj ]

if kj > 0 and Ij = [kjbj , kjaj) if kj < 0. Then the rectangles, DRi are disjoint
because D is one to one and their union is DU. Also,

mn (DRi) =
n∏

j=1

|kj | li = |detD|mn (Ri) .

Therefore,

mn (DU) =
∞∑

i=1

mn (DRi) = |det (D)|
∞∑

i=1

mn (Ri) = |det (D)|mn (U) .

and this proves the corollary.
From this the following corollary is obtained.

Corollary 9.7 Let M > 0. Then mn (B (a,Mr)) = Mnmn (B (0, r)) .

Proof: By Lemma 9.4 there is no loss of generality in taking a = 0. Let D be the
diagonal matrix which has M in every entry of the main diagonal so |det (D)| = Mn.
Note that DB (0, r) = B (0,Mr) . By Corollary 9.6

mn (B (0,Mr)) = mn (DB (0, r)) = Mnmn (B (0, r)) .

There are many norms on Rn. Other common examples are

||x||∞ ≡ max {|xk| : x = (x1, · · ·, xn)}
or

||x||p ≡
(

n∑

i=1

|xi|p
)1/p

.

With ||·|| any norm for Rn you can define a corresponding ball in terms of this
norm.

B (a, r) ≡ {x ∈ Rn such that ||x− a|| < r}
It follows from general considerations involving metric spaces presented earlier that
these balls are open sets. Therefore, Corollary 9.7 has an obvious generalization.

Corollary 9.8 Let ||·|| be a norm on Rn. Then for M > 0, mn (B (a,Mr)) =
Mnmn (B (0, r)) where these balls are defined in terms of the norm ||·||.



9.2. THE VITALI COVERING THEOREM 201

9.2 The Vitali Covering Theorem

The Vitali covering theorem is concerned with the situation in which a set is con-
tained in the union of balls. You can imagine that it might be very hard to get
disjoint balls from this collection of balls which would cover the given set. How-
ever, it is possible to get disjoint balls from this collection of balls which have the
property that if each ball is enlarged appropriately, the resulting enlarged balls do
cover the set. When this result is established, it is used to prove another form of
this theorem in which the disjoint balls do not cover the set but they only miss a
set of measure zero.

Recall the Hausdorff maximal principle, Theorem 1.13 on Page 18 which is
proved to be equivalent to the axiom of choice in the appendix. For convenience,
here it is:

Theorem 9.9 (Hausdorff Maximal Principle) Let F be a nonempty partially or-
dered set. Then there exists a maximal chain.

I will use this Hausdorff maximal principle to give a very short and elegant proof
of the Vitali covering theorem. This follows the treatment in Evans and Gariepy
[18] which they got from another book. I am not sure who first did it this way but
it is very nice because it is so short. In the following lemma and theorem, the balls
will be either open or closed and determined by some norm on Rn. When pictures
are drawn, I shall draw them as though the norm is the usual norm but the results
are unchanged for any norm. Also, I will write (in this section only) B (a, r) to
indicate a set which satisfies

{x ∈ Rn : ||x− a|| < r} ⊆ B (a, r) ⊆ {x ∈ Rn : ||x− a|| ≤ r}

and B̂ (a, r) to indicate the usual ball but with radius 5 times as large,

{x ∈ Rn : ||x− a|| < 5r} .

Lemma 9.10 Let ||·|| be a norm on Rn and let F be a collection of balls determined
by this norm. Suppose

∞ > M ≡ sup{r : B(p, r) ∈ F} > 0

and k ∈ (0,∞) . Then there exists G ⊆ F such that

if B(p, r) ∈ G then r > k, (9.1)

if B1, B2 ∈ G then B1 ∩B2 = ∅, (9.2)

G is maximal with respect to 9.1 and 9.2.

Note that if there is no ball of F which has radius larger than k then G = ∅.



202 LEBESGUE MEASURE

Proof: Let H = {B ⊆ F such that 9.1 and 9.2 hold}. If there are no balls with
radius larger than k then H = ∅ and you let G =∅. In the other case, H 6= ∅ because
there exists B(p, r) ∈ F with r > k. In this case, partially order H by set inclusion
and use the Hausdorff maximal principle (see the appendix on set theory) to let C
be a maximal chain in H. Clearly ∪C satisfies 9.1 and 9.2 because if B1 and B2 are
two balls from ∪C then since C is a chain, it follows there is some element of C,B
such that both B1 and B2 are elements of B and B satisfies 9.1 and 9.2. If ∪C is
not maximal with respect to these two properties, then C was not a maximal chain
because then there would exist B ! ∪C, that is, B contains C as a proper subset
and {C,B} would be a strictly larger chain in H. Let G = ∪C.
Theorem 9.11 (Vitali) Let F be a collection of balls and let

A ≡ ∪{B : B ∈ F}.
Suppose

∞ > M ≡ sup{r : B(p, r) ∈ F} > 0.

Then there exists G ⊆ F such that G consists of disjoint balls and

A ⊆ ∪{B̂ : B ∈ G}.
Proof: Using Lemma 9.10, there exists G1 ⊆ F ≡ F0 which satisfies

B(p, r) ∈ G1 implies r >
M

2
, (9.3)

B1, B2 ∈ G1 implies B1 ∩B2 = ∅, (9.4)

G1 is maximal with respect to 9.3, and 9.4.

Suppose G1, · · ·,Gm have been chosen, m ≥ 1. Let

Fm ≡ {B ∈ F : B ⊆ Rn \ ∪{G1 ∪ · · · ∪ Gm}}.
Using Lemma 9.10, there exists Gm+1 ⊆ Fm such that

B(p, r) ∈ Gm+1 implies r >
M

2m+1
, (9.5)

B1, B2 ∈ Gm+1 implies B1 ∩B2 = ∅, (9.6)

Gm+1 is a maximal subset of Fm with respect to 9.5 and 9.6.

Note it might be the case that Gm+1 = ∅ which happens if Fm = ∅. Define

G ≡ ∪∞k=1Gk.

Thus G is a collection of disjoint balls in F . I must show {B̂ : B ∈ G} covers A.
Let x ∈ B(p, r) ∈ F and let

M

2m
< r ≤ M

2m−1
.
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Then B (p, r) must intersect some set, B (p0, r0) ∈ G1 ∪ · · · ∪ Gm since otherwise,
Gm would fail to be maximal. Then r0 > M

2m because all balls in G1∪· · ·∪Gm satisfy
this inequality.

¾r0

p0

?
r

p
.x

Then for x ∈ B (p, r) , the following chain of inequalities holds because r ≤ M
2m−1

and r0 > M
2m

|x− p0| ≤ |x− p|+ |p− p0| ≤ r + r0 + r

≤ 2M

2m−1
+ r0 =

4M

2m
+ r0 < 5r0.

Thus B (p, r) ⊆ B̂ (p0, r0) and this proves the theorem.

9.3 The Vitali Covering Theorem (Elementary Ver-
sion)

The proof given here is from Basic Analysis [29]. It first considers the case of open
balls and then generalizes to balls which may be neither open nor closed or closed.

Lemma 9.12 Let F be a countable collection of balls satisfying

∞ > M ≡ sup{r : B(p, r) ∈ F} > 0

and let k ∈ (0,∞) . Then there exists G ⊆ F such that

If B(p, r) ∈ G then r > k, (9.7)

If B1, B2 ∈ G then B1 ∩B2 = ∅, (9.8)

G is maximal with respect to 9.7 and 9.8. (9.9)

Proof: If no ball of F has radius larger than k, let G = ∅. Assume therefore, that
some balls have radius larger than k. Let F ≡ {Bi}∞i=1. Now let Bn1 be the first ball
in the list which has radius greater than k. If every ball having radius larger than
k intersects this one, then stop. The maximal set is just Bn1 . Otherwise, let Bn2

be the next ball having radius larger than k which is disjoint from Bn1 . Continue
this way obtaining {Bni}∞i=1, a finite or infinite sequence of disjoint balls having
radius larger than k. Then let G ≡ {Bni}. To see that G is maximal with respect to
9.7 and 9.8, suppose B ∈ F , B has radius larger than k, and G ∪ {B} satisfies 9.7
and 9.8. Then at some point in the process, B would have been chosen because it
would be the ball of radius larger than k which has the smallest index. Therefore,
B ∈ G and this shows G is maximal with respect to 9.7 and 9.8.

For the next lemma, for an open ball, B = B (x, r) , denote by B̃ the open ball,
B (x, 4r) .
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Lemma 9.13 Let F be a collection of open balls, and let

A ≡ ∪{B : B ∈ F} .

Suppose
∞ > M ≡ sup {r : B(p, r) ∈ F} > 0.

Then there exists G ⊆ F such that G consists of disjoint balls and

A ⊆ ∪{B̃ : B ∈ G}.

Proof: Without loss of generality assume F is countable. This is because there
is a countable subset of F , F ′ such that ∪F ′ = A. To see this, consider the set
of balls having rational radii and centers having all components rational. This is a
countable set of balls and you should verify that every open set is the union of balls
of this form. Therefore, you can consider the subset of this set of balls consisting
of those which are contained in some open set of F , G so ∪G = A and use the
axiom of choice to define a subset of F consisting of a single set from F containing
each set of G. Then this is F ′ . The union of these sets equals A . Then consider
F ′ instead of F . Therefore, assume at the outset F is countable. By Lemma 9.12,
there exists G1 ⊆ F which satisfies 9.7, 9.8, and 9.9 with k = 2M

3 .
Suppose G1, · · ·,Gm−1 have been chosen for m ≥ 2. Let

Fm = {B ∈ F : B ⊆ Rn \
union of the balls in these Gj︷ ︸︸ ︷
∪{G1 ∪ · · · ∪ Gm−1} }

and using Lemma 9.12, let Gm be a maximal collection of disjoint balls from Fm

with the property that each ball has radius larger than
(

2
3

)m
M. Let G ≡ ∪∞k=1Gk.

Let x ∈ B (p, r) ∈ F . Choose m such that

(
2
3

)m

M < r ≤
(

2
3

)m−1

M

Then B (p, r) must have nonempty intersection with some ball from G1 ∪ · · · ∪ Gm

because if it didn’t, then Gm would fail to be maximal. Denote by B (p0, r0) a ball
in G1 ∪ · · · ∪ Gm which has nonempty intersection with B (p, r) . Thus

r0 >

(
2
3

)m

M.

Consider the picture, in which w ∈ B (p0, r0) ∩B (p, r) .

w·¾
r0

p0

?
r

p
·x
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Then

|x− p0| ≤ |x− p|+ |p−w|+
<r0︷ ︸︸ ︷

|w − p0|

< r + r + r0 ≤ 2

< 3
2 r0︷ ︸︸ ︷(

2
3

)m−1

M + r0

< 2
(

3
2

)
r0 + r0 = 4r0.

This proves the lemma since it shows B (p, r) ⊆ B (p0, 4r0) .

With this Lemma consider a version of the Vitali covering theorem in which
the balls do not have to be open. A ball centered at x of radius r will denote
something which contains the open ball, B (x, r) and is contained in the closed ball,
B (x, r). Thus the balls could be open or they could contain some but not all of
their boundary points.

Definition 9.14 Let B be a ball centered at x having radius r. Denote by B̂ the
open ball, B (x, 5r).

Theorem 9.15 (Vitali) Let F be a collection of balls, and let

A ≡ ∪{B : B ∈ F} .

Suppose
∞ > M ≡ sup {r : B(p, r) ∈ F} > 0.

Then there exists G ⊆ F such that G consists of disjoint balls and

A ⊆ ∪{B̂ : B ∈ G}.

Proof: For B one of these balls, say B (x, r) ⊇ B ⊇ B (x, r), denote by B1, the
ball B

(
x, 5r

4

)
. Let F1 ≡ {B1 : B ∈ F} and let A1 denote the union of the balls in

F1. Apply Lemma 9.13 to F1 to obtain

A1 ⊆ ∪{B̃1 : B1 ∈ G1}

where G1 consists of disjoint balls from F1. Now let G ≡ {B ∈ F : B1 ∈ G1}. Thus
G consists of disjoint balls from F because they are contained in the disjoint open
balls, G1. Then

A ⊆ A1 ⊆ ∪{B̃1 : B1 ∈ G1} = ∪{B̂ : B ∈ G}

because for B1 = B
(
x, 5r

4

)
, it follows B̃1 = B (x, 5r) = B̂. This proves the theorem.
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9.4 Vitali Coverings

There is another version of the Vitali covering theorem which is also of great impor-
tance. In this one, balls from the original set of balls almost cover the set,leaving
out only a set of measure zero. It is like packing a truck with stuff. You keep trying
to fill in the holes with smaller and smaller things so as to not waste space. It is
remarkable that you can avoid wasting any space at all when you are dealing with
balls of any sort provided you can use arbitrarily small balls.

Definition 9.16 Let F be a collection of balls that cover a set, E, which have the
property that if x ∈ E and ε > 0, then there exists B ∈ F , diameter of B < ε and
x ∈ B. Such a collection covers E in the sense of Vitali.

In the following covering theorem, mn denotes the outer measure determined by
n dimensional Lebesgue measure.

Theorem 9.17 Let E ⊆ Rn and suppose 0 < mn(E) < ∞ where mn is the outer
measure determined by mn, n dimensional Lebesgue measure, and let F be a col-
lection of closed balls of bounded radii such that F covers E in the sense of Vitali.
Then there exists a countable collection of disjoint balls from F , {Bj}∞j=1, such that
mn(E \ ∪∞j=1Bj) = 0.

Proof: From the definition of outer measure there exists a Lebesgue measurable
set, E1 ⊇ E such that mn (E1) = mn (E). Now by outer regularity of Lebesgue
measure, there exists U , an open set which satisfies

mn(E1) > (1− 10−n)mn(U), U ⊇ E1.

E1

U

Each point of E is contained in balls of F of arbitrarily small radii and so
there exists a covering of E with balls of F which are themselves contained in U .
Therefore, by the Vitali covering theorem, there exist disjoint balls, {Bi}∞i=1 ⊆ F
such that

E ⊆ ∪∞j=1B̂j , Bj ⊆ U.
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Therefore,

mn (E1) = mn (E) ≤ mn

(
∪∞j=1B̂j

)
≤

∑

j

mn

(
B̂j

)

= 5n
∑

j

mn (Bj) = 5nmn

(∪∞j=1Bj

)

Then
mn(E1) > (1− 10−n)mn(U)

≥ (1− 10−n)[mn(E1 \ ∪∞j=1Bj) + mn(∪∞j=1Bj)]

≥ (1− 10−n)[mn(E1 \ ∪∞j=1Bj) + 5−n

=mn(E1)︷ ︸︸ ︷
mn(E) ].

and so
(
1− (

1− 10−n
)
5−n

)
mn (E1) ≥ (1− 10−n)mn(E1 \ ∪∞j=1Bj)

which implies

mn(E1 \ ∪∞j=1Bj) ≤ (1− (1− 10−n) 5−n)
(1− 10−n)

mn (E1)

Now a short computation shows

0 <
(1− (1− 10−n) 5−n)

(1− 10−n)
< 1

Hence, denoting by θn a number such that

(1− (1− 10−n) 5−n)
(1− 10−n)

< θn < 1,

mn

(
E \ ∪∞j=1Bj

) ≤ mn(E1 \ ∪∞j=1Bj) < θnmn (E1) = θnmn (E)

Now pick N1 large enough that

θnmn(E) ≥ mn(E1 \ ∪N1
j=1Bj) ≥ mn(E \ ∪N1

j=1Bj) (9.10)

Let F1 = {B ∈ F : Bj ∩B = ∅, j = 1, · · ·, N1}. If E \ ∪N1
j=1Bj = ∅, then F1 = ∅

and
mn

(
E \ ∪N1

j=1Bj

)
= 0

Therefore, in this case let Bk = ∅ for all k > N1. Consider the case where

E \ ∪N1
j=1Bj 6= ∅.

In this case, F1 6= ∅ and covers E \ ∪N1
j=1Bj in the sense of Vitali. Repeat the same

argument, letting E \ ∪N1
j=1Bj play the role of E and letting U \ ∪N1

j=1 Bj play the
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role of U . (You pick a different E1 whose measure equals the outer measure of
E \ ∪N1

j=1Bj .) Then choosing Bj for j = N1 + 1, · · ·, N2 as in the above argument,

θnmn(E \ ∪N1
j=1Bj) ≥ mn(E \ ∪N2

j=1Bj)

and so from 9.10,
θ2

nmn(E) ≥ mn(E \ ∪N2
j=1Bj).

Continuing this way

θk
nmn(E) ≥ mn

(
E \ ∪Nk

j=1Bj

)
.

If it is ever the case that E \ ∪Nk
j=1Bj = ∅, then, as in the above argument,

mn

(
E \ ∪Nk

j=1Bj

)
= 0.

Otherwise, the process continues and

mn

(
E \ ∪∞j=1Bj

) ≤ mn

(
E \ ∪Nk

j=1Bj

)
≤ θk

nmn (E)

for every k ∈ N. Therefore, the conclusion holds in this case also. This proves the
Theorem.

There is an obvious corollary which removes the assumption that 0 < mn(E).

Corollary 9.18 Let E ⊆ Rn and suppose mn(E) < ∞ where mn is the outer
measure determined by mn, n dimensional Lebesgue measure, and let F , be a col-
lection of closed balls of bounded radii such that F covers E in the sense of Vitali.
Then there exists a countable collection of disjoint balls from F , {Bj}∞j=1, such that
mn(E \ ∪∞j=1Bj) = 0.

Proof: If 0 = mn(E) you simply pick any ball from F for your collection of
disjoint balls.

It is also not hard to remove the assumption that mn (E) < ∞.

Corollary 9.19 Let E ⊆ Rn and let F , be a collection of closed balls of bounded
radii such that F covers E in the sense of Vitali. Then there exists a countable
collection of disjoint balls from F , {Bj}∞j=1, such that mn(E \ ∪∞j=1Bj) = 0.

Proof: Let Rm ≡ (−m, m)n be the open rectangle having sides of length 2m
which is centered at 0 and let R0 = ∅. Let Hm ≡ Rm \ Rm. Since both Rm

and Rm have the same measure, (2m)n
, it follows mn (Hm) = 0. Now for all

k ∈ N, Rk ⊆ Rk ⊆ Rk+1. Consider the disjoint open sets, Uk ≡ Rk+1 \ Rk. Thus
Rn = ∪∞k=0Uk ∪N where N is a set of measure zero equal to the union of the Hk.
Let Fk denote those balls of F which are contained in Uk and let Ek ≡ Uk ∩ E.
Then from Theorem 9.17, there exists a sequence of disjoint balls, Dk ≡

{
Bk

i

}∞
i=1
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of Fk such that mn(Ek \ ∪∞j=1B
k
j ) = 0. Letting {Bi}∞i=1 be an enumeration of all

the balls of ∪kDk, it follows that

mn(E \ ∪∞j=1Bj) ≤ mn (N) +
∞∑

k=1

mn(Ek \ ∪∞j=1B
k
j ) = 0.

Also, you don’t have to assume the balls are closed.

Corollary 9.20 Let E ⊆ Rn and let F , be a collection of open balls of bounded
radii such that F covers E in the sense of Vitali. Then there exists a countable
collection of disjoint balls from F , {Bj}∞j=1, such that mn(E \ ∪∞j=1Bj) = 0.

Proof: Let F be the collection of closures of balls in F . Then F covers E in
the sense of Vitali and so from Corollary 9.19 there exists a sequence of disjoint
closed balls from F satisfying mn

(
E \ ∪∞i=1Bi

)
= 0. Now boundaries of the balls,

Bi have measure zero and so {Bi} is a sequence of disjoint open balls satisfying
mn (E \ ∪∞i=1Bi) = 0. The reason for this is that

(E \ ∪∞i=1Bi) \
(
E \ ∪∞i=1Bi

) ⊆ ∪∞i=1Bi \ ∪∞i=1Bi ⊆ ∪∞i=1Bi \Bi,

a set of measure zero. Therefore,

E \ ∪∞i=1Bi ⊆
(
E \ ∪∞i=1Bi

) ∪ (∪∞i=1Bi \Bi

)

and so

mn (E \ ∪∞i=1Bi) ≤ mn

(
E \ ∪∞i=1Bi

)
+ mn

(∪∞i=1Bi \Bi

)

= mn

(
E \ ∪∞i=1Bi

)
= 0.

This implies you can fill up an open set with balls which cover the open set in
the sense of Vitali.

Corollary 9.21 Let U ⊆ Rn be an open set and let F be a collection of closed or
even open balls of bounded radii contained in U such that F covers U in the sense
of Vitali. Then there exists a countable collection of disjoint balls from F , {Bj}∞j=1,
such that mn(U \ ∪∞j=1Bj) = 0.

9.5 Change Of Variables For Linear Maps

To begin with certain kinds of functions map measurable sets to measurable sets.
It will be assumed that U is an open set in Rn and that h : U → Rn satisfies

Dh (x) exists for all x ∈ U, (9.11)

Lemma 9.22 Let h satisfy 9.11. If T ⊆ U and mn (T ) = 0, then mn (h (T )) = 0.
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Proof: Let
Tk ≡ {x ∈ T : ||Dh (x)|| < k}

and let ε > 0 be given. Now by outer regularity, there exists an open set, V ,
containing Tk which is contained in U such that mn (V ) < ε. Let x ∈ Tk. Then by
differentiability,

h (x + v) = h (x) + Dh (x)v + o (v)

and so there exist arbitrarily small rx < 1 such that B (x,5rx) ⊆ V and whenever
|v| ≤ rx, |o (v)| < k |v| . Thus

h (B (x, rx)) ⊆ B (h (x) , 2krx) .

From the Vitali covering theorem there exists a countable disjoint sequence of
these sets, {B (xi, ri)}∞i=1 such that {B (xi, 5ri)}∞i=1 =

{
B̂i

}∞
i=1

covers Tk Then
letting mn denote the outer measure determined by mn,

mn (h (Tk)) ≤ mn

(
h

(
∪∞i=1B̂i

))

≤
∞∑

i=1

mn

(
h

(
B̂i

))
≤

∞∑

i=1

mn (B (h (xi) , 2krxi))

=
∞∑

i=1

mn (B (xi, 2krxi)) = (2k)n
∞∑

i=1

mn (B (xi, rxi))

≤ (2k)n
mn (V ) ≤ (2k)n

ε.

Since ε > 0 is arbitrary, this shows mn (h (Tk)) = 0. Now

mn (h (T )) = lim
k→∞

mn (h (Tk)) = 0.

This proves the lemma.

Lemma 9.23 Let h satisfy 9.11. If S is a Lebesgue measurable subset of U , then
h (S) is Lebesgue measurable.

Proof: Let Sk = S ∩B (0, k) , k ∈ N. By inner regularity of Lebesgue measure,
there exists a set, F , which is the countable union of compact sets and a set T with
mn (T ) = 0 such that

F ∪ T = Sk.

Then h (F ) ⊆ h (Sk) ⊆ h (F ) ∪ h (T ). By continuity of h, h (F ) is a countable
union of compact sets and so it is Borel. By Lemma 9.22, mn (h (T )) = 0 and so
h (Sk) is Lebesgue measurable because of completeness of Lebesgue measure. Now
h (S) = ∪∞k=1h (Sk) and so it is also true that h (S) is Lebesgue measurable. This
proves the lemma.

In particular, this proves the following corollary.
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Corollary 9.24 Suppose A is an n×n matrix. Then if S is a Lebesgue measurable
set, it follows AS is also a Lebesgue measurable set.

Lemma 9.25 Let R be unitary (R∗R = RR∗ = I) and let V be a an open or closed
set. Then mn (RV ) = mn (V ) .

Proof: First assume V is a bounded open set. By Corollary 9.21 there is a
disjoint sequence of closed balls, {Bi} such that U = ∪∞i=1Bi∪N where mn (N) = 0.
Denote by xi the center of Bi and let ri be the radius of Bi. Then by Lemma 9.22
mn (RV ) =

∑∞
i=1 mn (RBi) . Now by invariance of translation of Lebesgue measure,

this equals
∑∞

i=1 mn (RBi −Rxi) =
∑∞

i=1 mn (RB (0, ri)) . Since R is unitary, it
preserves all distances and so RB (0, ri) = B (0, ri) and therefore,

mn (RV ) =
∞∑

i=1

mn (B (0, ri)) =
∞∑

i=1

mn (Bi) = mn (V ) .

This proves the lemma in the case that V is bounded. Suppose now that V is just
an open set. Let Vk = V ∩ B (0, k) . Then mn (RVk) = mn (Vk) . Letting k → ∞,
this yields the desired conclusion. This proves the lemma in the case that V is open.

Suppose now that H is a closed and bounded set. Let B (0,R) ⊇ H. Then letting
B = B (0, R) for short,

mn (RH) = mn (RB)−mn (R (B \H))
= mn (B)−mn (B \H) = mn (H) .

In general, let Hm = H ∩ B (0,m). Then from what was just shown, mn (RHm) =
mn (Hm) . Now let m → ∞ to get the conclusion of the lemma in general. This
proves the lemma.

Lemma 9.26 Let E be Lebesgue measurable set in Rn and let R be unitary. Then
mn (RE) = mn (E) .

Proof: First suppose E is bounded. Then there exist sets, G and H such that
H ⊆ E ⊆ G and H is the countable union of closed sets while G is the countable
intersection of open sets such that mn (G \H) = 0. By Lemma 9.25 applied to these
sets whose union or intersection equals H or G respectively, it follows

mn (RG) = mn (G) = mn (H) = mn (RH) .

Therefore,

mn (H) = mn (RH) ≤ mn (RE) ≤ mn (RG) = mn (G) = mn (E) = mn (H) .

In the general case, let Em = E ∩B (0,m) and apply what was just shown and let
m →∞.

Lemma 9.27 Let V be an open or closed set in Rn and let A be an n× n matrix.
Then mn (AV ) = |det (A)|mn (V ).
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Proof: Let RU be the right polar decomposition (Theorem 3.59 on Page 69) of
A and let V be an open set. Then from Lemma 9.26,

mn (AV ) = mn (RUV ) = mn (UV ) .

Now U = Q∗DQ where D is a diagonal matrix such that |det (D)| = |det (A)| and
Q is unitary. Therefore,

mn (AV ) = mn (Q∗DQV ) = mn (DQV ) .

Now QV is an open set and so by Corollary 9.6 on Page 200 and Lemma 9.25,

mn (AV ) = |det (D)|mn (QV ) = |det (D)|mn (V ) = |det (A)|mn (V ) .

This proves the lemma in case V is open.
Now let H be a closed set which is also bounded. First suppose det (A) = 0.

Then letting V be an open set containing H,

mn (AH) ≤ mn (AV ) = |det (A)|mn (V ) = 0

which shows the desired equation is obvious in the case where det (A) = 0. Therefore,
assume A is one to one. Since H is bounded, H ⊆ B (0, R) for some R > 0. Then
letting B = B (0, R) for short,

mn (AH) = mn (AB)−mn (A (B \H))
= |det (A)|mn (B)− |det (A)|mn (B \H) = |det (A)|mn (H) .

If H is not bounded, apply the result just obtained to Hm ≡ H ∩B (0,m) and then
let m →∞.

With this preparation, the main result is the following theorem.

Theorem 9.28 Let E be Lebesgue measurable set in Rn and let A be an n × n
matrix. Then mn (AE) = |det (A)|mn (E) .

Proof: First suppose E is bounded. Then there exist sets, G and H such that
H ⊆ E ⊆ G and H is the countable union of closed sets while G is the countable
intersection of open sets such that mn (G \H) = 0. By Lemma 9.27 applied to these
sets whose union or intersection equals H or G respectively, it follows

mn (AG) = |det (A)|mn (G) = |det (A)|mn (H) = mn (AH) .

Therefore,

|det (A)|mn (E) = |det (A)|mn (H) = mn (AH) ≤ mn (AE)
≤ mn (AG) = |det (A)|mn (G) = |det (A)|mn (E) .

In the general case, let Em = E ∩B (0,m) and apply what was just shown and let
m →∞.
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9.6 Change Of Variables For C1 Functions

In this section theorems are proved which generalize the above to C1 functions.
More general versions can be seen in Kuttler [29], Kuttler [30], and Rudin [36].
There is also a very different approach to this theorem given in [29]. The more
general version in [29] follows [36] and both are based on the Brouwer fixed point
theorem and a very clever lemma presented in Rudin [36]. This same approach will
be used later in this book to prove a different sort of change of variables theorem
in which the functions are only Lipschitz. The proof will be based on a sequence of
easy lemmas.

Lemma 9.29 Let U and V be bounded open sets in Rn and let h,h−1 be C1 func-
tions such that h (U) = V. Also let f ∈ Cc (V ) . Then

∫

V

f (y) dy =
∫

U

f (h (x)) |det (Dh (x))| dx

Proof: Let x ∈ U. By the assumption that h and h−1 are C1,

h (x + v)− h (x) = Dh (x)v + o (v)
= Dh (x)

(
v + Dh−1 (h (x))o (v)

)

= Dh (x) (v + o (v))

and so if r > 0 is small enough then B (x, r) is contained in U and

h (B (x, r))− h (x) = h (x+B (0,r))− h (x) ⊆ Dh (x) (B (0, (1 + ε) r)) . (9.12)

Making r still smaller if necessary, one can also obtain

|f (y)− f (h (x))| < ε (9.13)

for any y ∈ h (B (x, r)) and

|f (h (x1)) |det (Dh (x1))| − f (h (x)) |det (Dh (x))|| < ε (9.14)

whenever x1 ∈ B (x, r) . The collection of such balls is a Vitali cover of U. By
Corollary 9.21 there is a sequence of disjoint closed balls {Bi} such that U =
∪∞i=1Bi ∪ N where mn (N) = 0. Denote by xi the center of Bi and ri the radius.
Then by Lemma 9.22, the monotone convergence theorem, and 9.12 - 9.14,

∫
V

f (y) dy =
∑∞

i=1

∫
h(Bi)

f (y) dy

≤ εmn (V ) +
∑∞

i=1

∫
h(Bi)

f (h (xi)) dy

≤ εmn (V ) +
∑∞

i=1 f (h (xi)) mn (h (Bi))
≤ εmn (V ) +

∑∞
i=1 f (h (xi)) mn (Dh (xi) (B (0, (1 + ε) ri)))

= εmn (V ) + (1 + ε)n ∑∞
i=1

∫
Bi

f (h (xi)) |det (Dh (xi))| dx

≤ εmn (V ) + (1 + ε)n ∑∞
i=1

(∫
Bi

f (h (x)) |det (Dh (x))| dx + εmn (Bi)
)

≤ εmn (V ) + (1 + ε)n ∑∞
i=1

∫
Bi

f (h (x)) |det (Dh (x))| dx + (1 + ε)n
εmn (U)

= εmn (V ) + (1 + ε)n ∫
U

f (h (x)) |det (Dh (x))| dx + (1 + ε)n
εmn (U)
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Since ε > 0 is arbitrary, this shows
∫

V

f (y) dy ≤
∫

U

f (h (x)) |det (Dh (x))| dx (9.15)

whenever f ∈ Cc (V ) . Now x →f (h (x)) |det (Dh (x))| is in Cc (U) and so using the
same argument with U and V switching roles and replacing h with h−1,

∫

U

f (h (x)) |det (Dh (x))| dx

≤
∫

V

f
(
h

(
h−1 (y)

)) ∣∣det
(
Dh

(
h−1 (y)

))∣∣ ∣∣det
(
Dh−1 (y)

)∣∣ dy

=
∫

V

f (y) dy

by the chain rule. This with 9.15 proves the lemma.

Corollary 9.30 Let U and V be open sets in Rn and let h,h−1 be C1 functions
such that h (U) = V. Also let f ∈ Cc (V ) . Then

∫

V

f (y) dy =
∫

U

f (h (x)) |det (Dh (x))| dx

Proof: Choose m large enough that spt (f) ⊆ B (0,m) ∩ V ≡ Vm. Then let
h−1 (Vm) = Um. From Lemma 9.29,

∫

V

f (y) dy =
∫

Vm

f (y) dy =
∫

Um

f (h (x)) |det (Dh (x))| dx

=
∫

U

f (h (x)) |det (Dh (x))| dx.

This proves the corollary.

Corollary 9.31 Let U and V be open sets in Rn and let h,h−1 be C1 functions
such that h (U) = V. Also let E ⊆ V be measurable. Then

∫

V

XE (y) dy =
∫

U

XE (h (x)) |det (Dh (x))| dx.

Proof: Let Em = E ∩ Vm where Vm and Um are as in Corollary 9.30. By
regularity of the measure there exist sets, Kk, Gk such that Kk ⊆ Em ⊆ Gk, Gk

is open, Kk is compact, and mn (Gk \Kk) < 2−k. Let Kk ≺ fk ≺ Gk. Then
fk (y) → XEm (y) a.e. because if y is such that convergence fails, it must be
the case that y is in Gk \ Kk infinitely often and

∑
k mn (Gk \Kk) < ∞. Let

N = ∩m ∪∞k=m Gk \ Kk, the set of y which is in infinitely many of the Gk \ Kk.
Then fk (h (x)) must converge to XE (h (x)) for all x /∈ h−1 (N) , a set of measure
zero by Lemma 9.22. By Corollary 9.30

∫

Vm

fk (y) dy =
∫

Um

fk (h (x)) |det (Dh (x))| dx.
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By the dominated convergence theorem using a dominating function, XVm in the
integral on the left and XUm

|det (Dh)| on the right,
∫

Vm

XEm
(y) dy =

∫

Um

XEm
(h (x)) |det (Dh (x))| dx.

Therefore,
∫

V

XEm (y) dy =
∫

Vm

XEm (y) dy =
∫

Um

XEm (h (x)) |det (Dh (x))| dx

=
∫

U

XEm
(h (x)) |det (Dh (x))| dx

Let m → ∞ and use the monotone convergence theorem to obtain the conclusion
of the corollary.

With this corollary, the main theorem follows.

Theorem 9.32 Let U and V be open sets in Rn and let h,h−1 be C1 functions
such that h (U) = V. Then if g is a nonnegative Lebesgue measurable function,

∫

V

g (y) dy =
∫

U

g (h (x)) |det (Dh (x))| dx. (9.16)

Proof: From Corollary 9.31, 9.16 holds for any nonnegative simple function in
place of g. In general, let {sk} be an increasing sequence of simple functions which
converges to g pointwise. Then from the monotone convergence theorem

∫

V

g (y) dy = lim
k→∞

∫

V

skdy = lim
k→∞

∫

U

sk (h (x)) |det (Dh (x))| dx

=
∫

U

g (h (x)) |det (Dh (x))| dx.

This proves the theorem.
This is a pretty good theorem but it isn’t too hard to generalize it. In particular,

it is not necessary to assume h−1 is C1.

Lemma 9.33 Suppose V is an n−1 dimensional subspace of Rn and K is a compact
subset of V . Then letting

Kε ≡ ∪x∈KB (x,ε) = K + B (0, ε) ,

it follows that
mn (Kε) ≤ 2nε (diam (K) + ε)n−1

.

Proof: Let an orthonormal basis for V be

{v1, · · ·,vn−1}
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and let
{v1, · · ·,vn−1,vn}

be an orthonormal basis for Rn. Now define a linear transformation, Q by Qvi = ei.
Thus QQ∗ = Q∗Q = I and Q preserves all distances because

∣∣∣∣∣Q
∑

i

aiei

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

i

aivi

∣∣∣∣∣

2

=
∑

i

|ai|2 =

∣∣∣∣∣
∑

i

aiei

∣∣∣∣∣

2

.

Letting k0 ∈ K, it follows K ⊆ B (k0, diam (K)) and so,

QK ⊆ Bn−1 (Qk0, diam (QK)) = Bn−1 (Qk0,diam (K))

where Bn−1 refers to the ball taken with respect to the usual norm in Rn−1. Every
point of Kε is within ε of some point of K and so it follows that every point of QKε

is within ε of some point of QK. Therefore,

QKε ⊆ Bn−1 (Qk0, diam (QK) + ε)× (−ε, ε) ,

To see this, let x ∈ QKε. Then there exists k ∈ QK such that |k− x| < ε. There-
fore, |(x1, · · ·, xn−1)− (k1, · · ·, kn−1)| < ε and |xn − kn| < ε and so x is contained
in the set on the right in the above inclusion because kn = 0. However, the measure
of the set on the right is smaller than

[2 (diam (QK) + ε)]n−1 (2ε) = 2n [(diam (K) + ε)]n−1
ε.

This proves the lemma.
Note this is a very sloppy estimate. You can certainly do much better but this

estimate is sufficient to prove Sard’s lemma which follows.

Definition 9.34 In any metric space, if x is a point of the metric space and S is
a nonempty subset,

dist (x,S) ≡ inf {d (x, s) : s ∈ S} .

More generally, if T, S are two nonempty sets,

dist (S, T ) ≡ inf {d (t, s) : s ∈ S, t ∈ T} .

Lemma 9.35 The function x → dist (x,S) is continuous.

Proof: Let x,y be given. Suppose dist (x, S) ≥ dist (y, S) and pick s ∈ S such
that dist (y, S) + ε ≥ d (y, s) . Then

0 ≤ dist (x, S)− dist (y, S) ≤ dist (x, S)− (d (y, s)− ε)
≤ d (x, s)− d (y, s) + ε ≤ d (x,y) + d (y, s)− d (y, s) + ε = d (x,y) + ε.

Since ε > 0 is arbitrary, this shows |dist (x, S)− dist (y, S)| ≤ d (x,y) . This proves
the lemma.
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Lemma 9.36 Let h be a C1 function defined on an open set, U and let K be a
compact subset of U. Then if ε > 0 is given, there exits r1 > 0 such that if |v| ≤ r1,
then for all x ∈ K,

|h (x + v)− h (x)−Dh (x)v| < ε |v| .

Proof: Let 0 < δ < dist
(
K, UC

)
. Such a positive number exists because if there

exists a sequence of points in K, {kk} and points in UC , {sk} such that |kk − sk| →
0, then you could take a subsequence, still denoted by k such that kk → k ∈ K and
then sk → k also. But UC is closed so k ∈ K ∩ UC , a contradiction. Then

|h (x + v)− h (x)−Dh (x)v|
|v| ≤

∣∣∣
∫ 1

0
Dh (x + tv)vdt−Dh (x)v

∣∣∣
|v|

≤
∫ 1

0
|Dh (x + tv)v −Dh (x)v| dt

|v| .

Now from uniform continuity of Dh on the compact set, {x : dist (x,K) ≤ δ} it
follows there exists r1 < δ such that if |v| ≤ r1, then ||Dh (x + tv)−Dh (x)|| < ε
for every x ∈ K. From the above formula, it follows that if |v| ≤ r1,

|h (x + v)− h (x)−Dh (x)v|
|v| ≤

∫ 1

0
|Dh (x + tv)v −Dh (x)v| dt

|v| <

∫ 1

0
ε |v| dt

|v| = ε.

This proves the lemma.
A different proof of the following is in [29]. See also [30].

Lemma 9.37 (Sard) Let U be an open set in Rn and let h : U → Rn be C1. Let

Z ≡ {x ∈ U : det Dh (x) = 0} .

Then mn (h (Z)) = 0.

Proof: Let {Uk}∞k=1 be an increasing sequence of open sets whose closures are
compact and whose union equals U and let Zk ≡ Z∩Uk. To obtain such a sequence,
let Uk =

{
x ∈ U : dist

(
x,UC

)
< 1

k

} ∩ B (0, k) . First it is shown that h (Zk) has
measure zero. Let W be an open set contained in Uk+1 which contains Zk and
satisfies

mn (Zk) + ε > mn (W )

where here and elsewhere, ε < 1. Let

r = dist
(
Uk, UC

k+1

)

and let r1 > 0 be a constant as in Lemma 9.36 such that whenever x ∈ Uk and
0 < |v| ≤ r1,

|h (x + v)− h (x)−Dh (x)v| < ε |v| . (9.17)
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Now the closures of balls which are contained in W and which have the property
that their diameters are less than r1 yield a Vitali covering of W. Therefore, by
Corollary 9.21 there is a disjoint sequence of these closed balls,

{
B̃i

}
such that

W = ∪∞i=1B̃i ∪N

where N is a set of measure zero. Denote by {Bi} those closed balls in this sequence
which have nonempty intersection with Zk, let di be the diameter of Bi, and let zi

be a point in Bi ∩ Zk. Since zi ∈ Zk, it follows Dh (zi)B (0,di) = Di where Di is
contained in a subspace, V which has dimension n− 1 and the diameter of Di is no
larger than 2Ckdi where

Ck ≥ max {||Dh (x)|| : x ∈ Zk}
Then by 9.17, if z ∈ Bi,

h (z)− h (zi) ∈ Di + B (0, εdi) ⊆ Di + B (0,εdi) .

Thus
h (Bi) ⊆ h (zi) + Di + B (0,εdi)

By Lemma 9.33

mn (h (Bi)) ≤ 2n (2Ckdi + εdi)
n−1

εdi

≤ dn
i

(
2n [2Ck + ε]n−1

)
ε

≤ Cn,kmn (Bi) ε.

Therefore, by Lemma 9.22

mn (h (Zk)) ≤ mn (W ) =
∑

i

mn (h (Bi)) ≤ Cn,kε
∑

i

mn (Bi)

≤ εCn,kmn (W ) ≤ εCn,k (mn (Zk) + ε)

Since ε is arbitrary, this shows mn (h (Zk)) = 0 and so 0 = limk→∞mn (h (Zk)) =
mn (h (Z)).

With this important lemma, here is a generalization of Theorem 9.32.

Theorem 9.38 Let U be an open set and let h be a 1− 1, C1 function with values
in Rn. Then if g is a nonnegative Lebesgue measurable function,

∫

h(U)

g (y) dy =
∫

U

g (h (x)) |det (Dh (x))| dx. (9.18)

Proof: Let Z = {x : det (Dh (x)) = 0} . Then by the inverse function theorem,
h−1 is C1 on h (U \ Z) and h (U \ Z) is an open set. Therefore, from Lemma 9.37
and Theorem 9.32,

∫

h(U)

g (y) dy =
∫

h(U\Z)

g (y) dy =
∫

U\Z
g (h (x)) |det (Dh (x))| dx

=
∫

U

g (h (x)) |det (Dh (x))| dx.



9.7. MAPPINGS WHICH ARE NOT ONE TO ONE 219

This proves the theorem.
Of course the next generalization considers the case when h is not even one to

one.

9.7 Mappings Which Are Not One To One

Now suppose h is only C1, not necessarily one to one. For

U+ ≡ {x ∈ U : |det Dh (x)| > 0}
and Z the set where |detDh (x)| = 0, Lemma 9.37 implies mn(h(Z)) = 0. For
x ∈ U+, the inverse function theorem implies there exists an open set Bx such that
x ∈ Bx ⊆ U+, h is one to one on Bx.

Let {Bi} be a countable subset of {Bx}x∈U+ such that U+ = ∪∞i=1Bi. Let
E1 = B1. If E1, · · ·, Ek have been chosen, Ek+1 = Bk+1 \ ∪k

i=1Ei. Thus

∪∞i=1Ei = U+, h is one to one on Ei, Ei ∩ Ej = ∅,
and each Ei is a Borel set contained in the open set Bi. Now define

n(y) ≡
∞∑

i=1

Xh(Ei)(y) + Xh(Z)(y).

The set, h (Ei) ,h (Z) are measurable by Lemma 9.23. Thus n (·) is measurable.

Lemma 9.39 Let F ⊆ h(U) be measurable. Then
∫

h(U)

n(y)XF (y)dy =
∫

U

XF (h(x))| detDh(x)|dx.

Proof: Using Lemma 9.37 and the Monotone Convergence Theorem or Fubini’s
Theorem,

∫

h(U)

n(y)XF (y)dy =
∫

h(U)




∞∑

i=1

Xh(Ei)(y) +

mn(h(Z))=0︷ ︸︸ ︷
Xh(Z)(y)


XF (y)dy

=
∞∑

i=1

∫

h(U)

Xh(Ei)(y)XF (y)dy

=
∞∑

i=1

∫

h(Bi)

Xh(Ei)(y)XF (y)dy

=
∞∑

i=1

∫

Bi

XEi(x)XF (h(x))| detDh(x)|dx

=
∞∑

i=1

∫

U

XEi(x)XF (h(x))| detDh(x)|dx

=
∫

U

∞∑

i=1

XEi(x)XF (h(x))| detDh(x)|dx
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=
∫

U+

XF (h(x))| detDh(x)|dx =
∫

U

XF (h(x))| detDh(x)|dx.

This proves the lemma.

Definition 9.40 For y ∈ h(U), define a function, #, according to the formula

#(y) ≡ number of elements in h−1(y).

Observe that
#(y) = n(y) a.e. (9.19)

because n(y) = #(y) if y /∈ h(Z), a set of measure 0. Therefore, # is a measurable
function.

Theorem 9.41 Let g ≥ 0, g measurable, and let h be C1(U). Then
∫

h(U)

#(y)g(y)dy =
∫

U

g(h(x))| detDh(x)|dx. (9.20)

Proof: From 9.19 and Lemma 9.39, 9.20 holds for all g, a nonnegative simple
function. Approximating an arbitrary measurable nonnegative function, g, with an
increasing pointwise convergent sequence of simple functions and using the mono-
tone convergence theorem, yields 9.20 for an arbitrary nonnegative measurable func-
tion, g. This proves the theorem.

9.8 Lebesgue Measure And Iterated Integrals

The following is the main result.

Theorem 9.42 Let f ≥ 0 and suppose f is a Lebesgue measurable function defined
on Rn. Then ∫

Rn

fdmn =
∫

Rk

∫

Rn−k

fdmn−kdmk.

This will be accomplished by Fubini’s theorem, Theorem 8.47 on Page 189 and
the following lemma.

Lemma 9.43 mk ×mn−k = mn on the mn measurable sets.

Proof: First of all, let R =
∏n

i=1(ai, bi] be a measurable rectangle and let
Rk =

∏k
i=1(ai, bi], Rn−k =

∏n
i=k+1(ai, bi]. Then by Fubini’s theorem,

∫
XRd (mk ×mn−k) =

∫

Rk

∫

Rn−k

XRk
XRn−k

dmkdmn−k

=
∫

Rk

XRk
dmk

∫

Rn−k

XRn−k
dmn−k

=
∫
XRdmn
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and so mk ×mn−k and mn agree on every half open rectangle. By Lemma 9.2
these two measures agree on every open set. Now if K is a compact set, then
K = ∩∞k=1Uk where Uk is the open set, K + B

(
0, 1

k

)
. Another way of saying this

is Uk ≡
{
x : dist (x,K) < 1

k

}
which is obviously open because x →dist (x,K) is a

continuous function. Since K is the countable intersection of these decreasing open
sets, each of which has finite measure with respect to either of the two measures, it
follows that mk ×mn−k and mn agree on all the compact sets.

Now let E be a bounded Lebesgue measurable set. Then there are sets, H and
G such that H is a countable union of compact sets, G a countable intersection of
open sets, H ⊆ E ⊆ G, and mn (G \H) = 0. Then from what was just shown about
compact and open sets, the two measures agree on G and on H. Therefore,

mn (H) = mk ×mn−k (H) ≤ mk ×mn−k (E)
≤ mk ×mn−k (G) = mn (G) = mn (E) = mn (H)

By completeness of the measure space for mk ×mn−k, it follows that E is mk ×mn−k

measurable and mk ×mn−k (E) = mn (E) . This proves the lemma.
You could also show that the two σ algebras are the same. However, this is not

needed for the lemma or the theorem.
Proof of Theorem 9.42: By the lemma and Fubini’s theorem, Theorem 8.47,

∫

Rn

fdmn =
∫

Rn

fd (mk ×mn−k) =
∫

Rk

∫

Rn−k

fdmn−kdmk.

Not surprisingly, the following corollary follows from this.

Corollary 9.44 Let f ∈ L1 (Rn) where the measure is mn. Then
∫

Rn

fdmn =
∫

Rk

∫

Rn−k

fdmn−kdmk.

Proof: Apply Fubini’s theorem to the positive and negative parts of the real
and imaginary parts of f .

9.9 Spherical Coordinates In Many Dimensions

Sometimes there is a need to deal with spherical coordinates in more than three
dimensions. In this section, this concept is defined and formulas are derived for
these coordinate systems. Recall polar coordinates are of the form

y1 = ρ cos θ
y2 = ρ sin θ

where ρ > 0 and θ ∈ [0, 2π). Here I am writing ρ in place of r to emphasize a pattern
which is about to emerge. I will consider polar coordinates as spherical coordinates
in two dimensions. I will also simply refer to such coordinate systems as polar
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coordinates regardless of the dimension. This is also the reason I am writing y1 and
y2 instead of the more usual x and y. Now consider what happens when you go to
three dimensions. The situation is depicted in the following picture.

φ1

¶
¶

¶
¶

¶¶

ρ

r(x1, x2, x3)

R2

R

From this picture, you see that y3 = ρ cosφ1. Also the distance between (y1, y2)
and (0, 0) is ρ sin (φ1) . Therefore, using polar coordinates to write (y1, y2) in terms
of θ and this distance,

y1 = ρ sin φ1 cos θ,
y2 = ρ sin φ1 sin θ,
y3 = ρ cos φ1.

where φ1 ∈ [0, π] . What was done is to replace ρ with ρ sinφ1 and then to add in
y3 = ρ cosφ1. Having done this, there is no reason to stop with three dimensions.
Consider the following picture:

φ2

¶
¶

¶
¶

¶¶

ρ

r(x1, x2, x3, x4)

R3

R

From this picture, you see that y4 = ρ cos φ2. Also the distance between (y1, y2, y3)
and (0, 0, 0) is ρ sin (φ2) . Therefore, using polar coordinates to write (y1, y2, y3) in
terms of θ, φ1, and this distance,

y1 = ρ sin φ2 sin φ1 cos θ,
y2 = ρ sin φ2 sin φ1 sin θ,
y3 = ρ sin φ2 cosφ1,
y4 = ρ cosφ2

where φ2 ∈ [0, π] .
Continuing this way, given spherical coordinates in Rn, to get the spherical

coordinates in Rn+1, you let yn+1 = ρ cos φn−1 and then replace every occurance of
ρ with ρ sin φn−1 to obtain y1 · · · yn in terms of φ1, φ2, · · ·, φn−1,θ, and ρ.

It is always the case that ρ measures the distance from the point in Rn to the
origin in Rn, 0. Each φi ∈ [0, π] , and θ ∈ [0, 2π). It can be shown using math
induction that these coordinates map

∏n−2
i=1 [0, π]× [0, 2π)× (0,∞) one to one onto

Rn \ {0} .
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Theorem 9.45 Let y = h (φ, θ, ρ) be the spherical coordinate transformations in
Rn. Then letting A =

∏n−2
i=1 [0, π]× [0, 2π), it follows h maps A× (0,∞) one to one

onto Rn \ {0} . Also |det Dh (φ, θ, ρ)| will always be of the form

|det Dh (φ, θ, ρ)| = ρn−1Φ(φ, θ) . (9.21)

where Φ is a continuous function of φ and θ.1 Furthermore whenever f is Lebesgue
measurable and nonnegative,

∫

Rn

f (y) dy =
∫ ∞

0

ρn−1

∫

A

f (h (φ, θ, ρ)) Φ (φ, θ) dφ dθdρ (9.22)

where here dφ dθ denotes dmn−1 on A. The same formula holds if f ∈ L1 (Rn) .

Proof: Formula 9.21 is obvious from the definition of the spherical coordinates.
The first claim is also clear from the definition and math induction. It remains to
verify 9.22. Let A0 ≡

∏n−2
i=1 (0, π)×(0, 2π) . Then it is clear that (A \A0)×(0,∞) ≡

N is a set of measure zero in Rn. Therefore, from Lemma 9.22 it follows h (N) is also
a set of measure zero. Therefore, using the change of variables theorem, Fubini’s
theorem, and Sard’s lemma,

∫

Rn

f (y) dy =
∫

Rn\{0}
f (y) dy =

∫

Rn\({0}∪h(N))

f (y) dy

=
∫

A0×(0,∞)

f (h (φ, θ, ρ)) ρn−1Φ(φ, θ) dmn

=
∫
XA×(0,∞) (φ, θ, ρ) f (h (φ, θ, ρ)) ρn−1Φ(φ, θ) dmn

=
∫ ∞

0

ρn−1

(∫

A

f (h (φ, θ, ρ))Φ (φ, θ) dφ dθ

)
dρ.

Now the claim about f ∈ L1 follows routinely from considering the positive and
negative parts of the real and imaginary parts of f in the usual way. This proves
the theorem.

Notation 9.46 Often this is written differently. Note that from the spherical co-
ordinate formulas, f (h (φ, θ, ρ)) = f (ρω) where |ω| = 1. Letting Sn−1 denote the
unit sphere, {ω ∈ Rn : |ω| = 1} , the inside integral in the above formula is some-
times written as ∫

Sn−1
f (ρω) dσ

where σ is a measure on Sn−1. See [29] for another description of this measure. It
isn’t an important issue here. Later in the book when integration on manifolds is
discussed, more general considerations will be dealt with. Either 9.22 or the formula

∫ ∞

0

ρn−1

(∫

Sn−1
f (ρω) dσ

)
dρ

1Actually it is only a function of the first but this is not important in what follows.
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will be referred to as polar coordinates and is very useful in establishing estimates.
Here σ

(
Sn−1

) ≡ ∫
A

Φ(φ, θ) dφ dθ.

Example 9.47 For what values of s is the integral
∫

B(0,R)

(
1 + |x|2

)s

dy bounded
independent of R? Here B (0, R) is the ball, {x ∈ Rn : |x| ≤ R} .

I think you can see immediately that s must be negative but exactly how neg-
ative? It turns out it depends on n and using polar coordinates, you can find just
exactly what is needed. From the polar coordinats formula above,

∫

B(0,R)

(
1 + |x|2

)s

dy =
∫ R

0

∫

Sn−1

(
1 + ρ2

)s
ρn−1dσdρ

= Cn

∫ R

0

(
1 + ρ2

)s
ρn−1dρ

Now the very hard problem has been reduced to considering an easy one variable
problem of finding when ∫ R

0

ρn−1
(
1 + ρ2

)s
dρ

is bounded independent of R. You need 2s + (n− 1) < −1 so you need s < −n/2.

9.10 The Brouwer Fixed Point Theorem

This seems to be a good place to present a short proof of one of the most important
of all fixed point theorems. There are many approaches to this but the easiest and
shortest I have ever seen is the one in Dunford and Schwartz [16]. This is what is
presented here. In Evans [19] there is a different proof which depends on integration
theory. A good reference for an introduction to various kinds of fixed point theorems
is the book by Smart [39]. This book also gives an entirely different approach to
the Brouwer fixed point theorem.

The proof given here is based on the following lemma. Recall that the mixed
partial derivatives of a C2 function are equal. In the following lemma, and elsewhere,
a comma followed by an index indicates the partial derivative with respect to the
indicated variable. Thus, f,j will mean ∂f

∂xj
. Also, write Dg for the Jacobian matrix

which is the matrix of Dg taken with respect to the usual basis vectors in Rn. Recall
that for A an n×n matrix, cof (A)ij is the determinant of the matrix which results
from deleting the ith row and the jth column and multiplying by (−1)i+j .

Lemma 9.48 Let g : U → Rn be C2 where U is an open subset of Rn. Then

n∑

j=1

cof (Dg)ij,j = 0,

where here (Dg)ij ≡ gi,j ≡ ∂gi

∂xj
. Also, cof (Dg)ij = ∂ det(Dg)

∂gi,j
.
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Proof: From the cofactor expansion theorem,

det (Dg) =
n∑

i=1

gi,j cof (Dg)ij

and so
∂ det (Dg)

∂gi,j
= cof (Dg)ij (9.23)

which shows the last claim of the lemma. Also

δkj det (Dg) =
∑

i

gi,k (cof (Dg))ij (9.24)

because if k 6= j this is just the cofactor expansion of the determinant of a matrix
in which the kth and jth columns are equal. Differentiate 9.24 with respect to xj

and sum on j. This yields

∑

r,s,j

δkj
∂ (detDg)

∂gr,s
gr,sj =

∑

ij

gi,kj (cof (Dg))ij +
∑

ij

gi,k cof (Dg)ij,j .

Hence, using δkj = 0 if j 6= k and 9.23,

∑
rs

(cof (Dg))rs gr,sk =
∑
rs

gr,ks (cof (Dg))rs +
∑

ij

gi,kcof (Dg)ij,j .

Subtracting the first sum on the right from both sides and using the equality of
mixed partials,

∑

i

gi,k


∑

j

(cof (Dg))ij,j


 = 0.

If det (gi,k) 6= 0 so that (gi,k) is invertible, this shows
∑

j (cof (Dg))ij,j = 0. If
det (Dg) = 0, let

gk = g + εkI

where εk → 0 and det (Dg + εkI) ≡ det (Dgk) 6= 0. Then

∑

j

(cof (Dg))ij,j = lim
k→∞

∑

j

(cof (Dgk))ij,j = 0

and this proves the lemma.
To prove the Brouwer fixed point theorem, first consider a version of it valid for

C2 mappings. This is the following lemma.

Lemma 9.49 Let Br = B (0,r) and suppose g is a C2 function defined on Rn

which maps Br to Br. Then g (x) = x for some x ∈ Br.
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Proof: Suppose not. Then |g (x)− x| must be bounded away from zero on Br.
Let a (x) be the larger of the two roots of the equation,

|x+a (x) (x− g (x))|2 = r2. (9.25)

Thus

a (x) =
− (x, (x− g (x))) +

√
(x, (x− g (x)))2 +

(
r2 − |x|2

)
|x− g (x)|2

|x− g (x)|2 (9.26)

The expression under the square root sign is always nonnegative and it follows
from the formula that a (x) ≥ 0. Therefore, (x, (x− g (x))) ≥ 0 for all x ∈ Br.
The reason for this is that a (x) is the larger zero of a polynomial of the form
p (z) = |x|2 + z2 |x− g (x)|2 − 2z (x,x− g (x)) and from the formula above, it is
nonnegative. −2 (x,x− g (x)) is the slope of the tangent line to p (z) at z = 0. If
x 6= 0, then |x|2 > 0 and so this slope needs to be negative for the larger of the two
zeros to be positive. If x = 0, then (x,x− g (x)) = 0.

Now define for t ∈ [0, 1],

f (t,x) ≡ x+ta (x) (x− g (x)) .

The important properties of f (t,x) and a (x) are that

a (x) = 0 if |x| = r. (9.27)

and
|f (t,x)| = r for all |x| = r (9.28)

These properties follow immediately from 9.26 and the above observation that for
x ∈ Br, it follows (x, (x− g (x))) ≥ 0.

Also from 9.26, a is a C2 function near Br. This is obvious from 9.26 as long as
|x| < r. However, even if |x| = r it is still true. To show this, it suffices to verify
the expression under the square root sign is positive. If this expression were not
positive for some |x| = r, then (x, (x− g (x))) = 0. Then also, since g (x) 6= x,

∣∣∣∣
g (x) + x

2

∣∣∣∣ < r

and so

r2 >

(
x,

g (x) + x
2

)
=

1
2

(x,g (x)) +
r2

2
=
|x|2
2

+
r2

2
= r2,

a contradiction. Therefore, the expression under the square root in 9.26 is always
positive near Br and so a is a C2 function near Br as claimed because the square
root function is C2 away from zero.

Now define
I (t) ≡

∫

Br

det (D2f (t,x)) dx.
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Then

I (0) =
∫

Br

dx = mn (Br) > 0. (9.29)

Using the dominated convergence theorem one can differentiate I (t) as follows.

I ′ (t) =
∫

Br

∑

ij

∂ det (D2f (t,x))
∂fi,j

∂fi,j

∂t
dx

=
∫

Br

∑

ij

cof (D2f)ij

∂ (a (x) (xi − gi (x)))
∂xj

dx.

Now from 9.27 a (x) = 0 when |x| = r and so integration by parts and Lemma 9.48
yields

I ′ (t) =
∫

Br

∑

ij

cof (D2f)ij

∂ (a (x) (xi − gi (x)))
∂xj

dx

= −
∫

Br

∑

ij

cof (D2f)ij,j a (x) (xi − gi (x)) dx = 0.

Therefore, I (1) = I (0). However, from 9.25 it follows that for t = 1,

∑

i

fifi = r2

and so,
∑

i fi,jfi = 0 which implies since |f (1,x)| = r by 9.25, that det (fi,j) =
det (D2f (1,x)) = 0 and so I (1) = 0, a contradiction to 9.29 since I (1) = I (0).
This proves the lemma.

The following theorem is the Brouwer fixed point theorem for a ball.

Theorem 9.50 Let Br be the above closed ball and let f : Br → Br be continuous.
Then there exists x ∈ Br such that f (x) = x.

Proof: Let fk (x) ≡ f(x)
1+k−1 . Thus ||fk − f || < r

1+k where

||h|| ≡ max {|h (x)| : x ∈ Br} .

Using the Weierstrass approximation theorem, there exists a polynomial gk such
that ||gk − fk|| < r

k+1 . Then if x ∈ Br, it follows

|gk (x)| ≤ |gk (x)− fk (x)|+ |fk (x)|
<

r

1 + k
+

kr

1 + k
= r

and so gk maps Br to Br. By Lemma 9.49 each of these gk has a fixed point, xk

such that gk (xk) = xk. The sequence of points, {xk} is contained in the compact
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set, Br and so there exists a convergent subsequence still denoted by {xk} which
converges to a point, x ∈ Br. Then

|f (x)− x| ≤ |f (x)− fk (x)|+ |fk (x)− fk (xk)|+
∣∣∣∣∣∣
fk (xk)−

=xk︷ ︸︸ ︷
gk (xk)

∣∣∣∣∣∣
+ |xk − x|

≤ r

1 + k
+ |f (x)− f (xk)|+ r

1 + k
+ |xk − x| .

Now let k →∞ in the right side to conclude f (x) = x. This proves the theorem.
It is not surprising that the ball does not need to be centered at 0.

Corollary 9.51 Let f : B (a, r) → B (a, r) be continuous. Then there exists x ∈
B (a, r) such that f (x) = x.

Proof: Let g : Br → Br be defined by g (y) ≡ f (y + a) − a. Then g is a
continuous map from Br to Br. Therefore, there exists y ∈ Br such that g (y) = y.
Therefore, f (y + a) − a = y and so letting x = y + a, f also has a fixed point as
claimed.

9.11 Exercises

1. Let R ∈ L (Rn,Rn). Show that R preserves distances if and only if RR∗ =
R∗R = I.

2. Let f be a nonnegative strictly decreasing function defined on [0,∞). For
0 ≤ y ≤ f (0), let f−1 (y) = x where y ∈ [f (x+) , f (x−)]. (Draw a picture. f
could have jump discontinuities.) Show that f−1 is nonincreasing and that

∫ ∞

0

f (t) dt =
∫ f(0)

0

f−1 (y) dy.

Hint: Use the distribution function description.

3. Let X be a metric space and let Y ⊆ X, so Y is also a metric space. Show
the Borel sets of Y are the Borel sets of X intersected with the set, Y .

4. Consider the following nested sequence of compact sets, {Pn}. We let P1 =
[0, 1], P2 =

[
0, 1

3

]∪[
2
3 , 1

]
, etc. To go from Pn to Pn+1, delete the open interval

which is the middle third of each closed interval in Pn. Let P = ∩∞n=1Pn.
Since P is the intersection of nested nonempty compact sets, it follows from
advanced calculus that P 6= ∅. Show m(P ) = 0. Show there is a one to one
onto mapping of [0, 1] to P . The set P is called the Cantor set. Thus, although
P has measure zero, it has the same number of points in it as [0, 1] in the sense
that there is a one to one and onto mapping from one to the other. Hint:
There are various ways of doing this last part but the most enlightenment is
obtained by exploiting the construction of the Cantor set rather than some
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silly representation in terms of sums of powers of two and three. All you need
to do is use the theorems related to the Schroder Bernstein theorem and show
there is an onto map from the Cantor set to [0, 1]. If you do this right and
remember the theorems about characterizations of compact metric spaces, you
may get a pretty good idea why every compact metric space is the continuous
image of the Cantor set which is a really interesting theorem in topology.

5. ↑ Consider the sequence of functions defined in the following way. Let f1 (x) =
x on [0, 1]. To get from fn to fn+1, let fn+1 = fn on all intervals where fn

is constant. If fn is nonconstant on [a, b], let fn+1(a) = fn(a), fn+1(b) =
fn(b), fn+1 is piecewise linear and equal to 1

2 (fn(a) + fn(b)) on the middle
third of [a, b]. Sketch a few of these and you will see the pattern. The process
of modifying a nonconstant section of the graph of this function is illustrated
in the following picture.

¡
¡

¡




Show {fn} converges uniformly on [0, 1]. If f(x) = limn→∞ fn(x), show that
f(0) = 0, f(1) = 1, f is continuous, and f ′(x) = 0 for all x /∈ P where

P is the Cantor set. This function is called the Cantor function.It is a very
important example to remember. Note it has derivative equal to zero a.e.
and yet it succeeds in climbing from 0 to 1. Hint: This isn’t too hard if you
focus on getting a careful estimate on the difference between two successive
functions in the list considering only a typical small interval in which the
change takes place. The above picture should be helpful.

6. Let m(W ) > 0, W is measurable, W ⊆ [a, b]. Show there exists a nonmea-
surable subset of W . Hint: Let x ∼ y if x − y ∈ Q. Observe that ∼ is an
equivalence relation on R. See Definition 1.9 on Page 17 for a review of this ter-
minology. Let C be the set of equivalence classes and let D ≡ {C ∩W : C ∈ C
and C ∩W 6= ∅}. By the axiom of choice, there exists a set, A, consisting of
exactly one point from each of the nonempty sets which are the elements of
D. Show

W ⊆ ∪r∈QA + r (a.)

A + r1 ∩A + r2 = ∅ if r1 6= r2, ri ∈ Q. (b.)

Observe that since A ⊆ [a, b], then A+r ⊆ [a−1, b+1] whenever |r| < 1. Use
this to show that if m(A) = 0, or if m(A) > 0 a contradiction results.Show
there exists some set, S such that m (S) < m (S ∩A) + m (S \A) where m is
the outer measure determined by m.

7. ↑ This problem gives a very interesting example found in the book by McShane
[33]. Let g(x) = x + f(x) where f is the strange function of Problem 5. Let
P be the Cantor set of Problem 4. Let [0, 1] \ P = ∪∞j=1Ij where Ij is open
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and Ij ∩ Ik = ∅ if j 6= k. These intervals are the connected components of the
complement of the Cantor set. Show m(g(Ij)) = m(Ij) so

m(g(∪∞j=1Ij)) =
∞∑

j=1

m(g(Ij)) =
∞∑

j=1

m(Ij) = 1.

Thus m(g(P )) = 1 because g([0, 1]) = [0, 2]. By Problem 6 there exists a set,
A ⊆ g (P ) which is non measurable. Define φ(x) = XA(g(x)). Thus φ(x) = 0
unless x ∈ P . Tell why φ is measurable. (Recall m(P ) = 0 and Lebesgue
measure is complete.) Now show that XA(y) = φ(g−1(y)) for y ∈ [0, 2]. Tell
why g−1 is continuous but φ ◦ g−1 is not measurable. (This is an example of
measurable ◦ continuous 6= measurable.) Show there exist Lebesgue measur-
able sets which are not Borel measurable. Hint: The function, φ is Lebesgue
measurable. Now recall that Borel ◦ measurable = measurable.

8. If A is mbS measurable, it does not follow that A is m measurable. Give an
example to show this is the case.

9. Let f (y) = g (y) = |y|−1/2if y ∈ (−1, 0) ∪ (0, 1) and f (y) = g (y) = 0 if
y /∈ (−1, 0) ∪ (0, 1). For which values of x does it make sense to write the
integral

∫
R f (x− y) g (y) dy?

10. ↑ Let f ∈ L1(R), g ∈ L1(R). Wherever the integral makes sense, define

(f ∗ g)(x) ≡
∫

R
f(x− y)g(y)dy.

Show the above integral makes sense for a.e. x and that if f ∗ g (x) is defined
to equal 0 at every point where the above integral does not make sense, it
follows that |(f ∗ g)(x)| < ∞ a.e. and

||f ∗ g||L1 ≤ ||f ||L1 ||g||L1 . Here ||f ||L1 ≡
∫
|f |dx.

11. ↑ Let f : [0,∞) → R be in L1(R,m). The Laplace transform is given by f̂(x) =∫∞
0

e−xtf(t)dt. Let f, g be in L1(R, m), and let h(x) =
∫ x

0
f(x−t)g(t)dt. Show

h ∈ L1, and ĥ = f̂ ĝ.

12. Show that the function sin (x) /x is not in L1 (0,∞). Even though this function
is not in L1 (0,∞), show limA→∞

∫ A

0
sin x

x dx = π
2 . This limit is sometimes

called the Cauchy principle value and it is often the case that this is what
is found when you use methods of contour integrals to evaluate improper
integrals. Hint: Use 1

x =
∫∞
0

e−xtdt and Fubini’s theorem.

13. Let E be a countable subset of R. Show m(E) = 0. Hint: Let the set be
{ei}∞i=1 and let ei be the center of an open interval of length ε/2i.
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14. ↑ If S is an uncountable set of irrational numbers, is it necessary that S has
a rational number as a limit point? Hint: Consider the proof of Problem 13
when applied to the rational numbers. (This problem was shown to me by
Lee Erlebach.)
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The Lp Spaces

10.1 Basic Inequalities And Properties

One of the main applications of the Lebesgue integral is to the study of various
sorts of functions space. These are vector spaces whose elements are functions of
various types. One of the most important examples of a function space is the space
of measurable functions whose absolute values are pth power integrable where p ≥ 1.
These spaces, referred to as Lp spaces, are very useful in applications. In the chapter
(Ω,S, µ) will be a measure space.

Definition 10.1 Let 1 ≤ p < ∞. Define

Lp(Ω) ≡ {f : f is measurable and
∫

Ω

|f(ω)|pdµ < ∞}

In terms of the distribution function,

Lp (Ω) = {f : f is measurable and
∫ ∞

0

ptp−1µ ([|f | > t]) dt < ∞}

For each p > 1 define q by
1
p

+
1
q

= 1.

Often one uses p′ instead of q in this context.
Lp (Ω) is a vector space and has a norm. This is similar to the situation for Rn

but the proof requires the following fundamental inequality. .

Theorem 10.2 (Holder’s inequality) If f and g are measurable functions, then if
p > 1, ∫

|f | |g| dµ ≤
(∫

|f |pdµ

) 1
p

(∫
|g|qdµ

) 1
q

. (10.1)

Proof: First here is a proof of Young’s inequality .

Lemma 10.3 If p > 1, and 0 ≤ a, b then ab ≤ ap

p + bq

q .

233
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Proof: Consider the following picture:

b

a

x

t

x = tp−1

t = xq−1

From this picture, the sum of the area between the x axis and the curve added to
the area between the t axis and the curve is at least as large as ab. Using beginning
calculus, this is equivalent to the following inequality.

ab ≤
∫ a

0

tp−1dt +
∫ b

0

xq−1dx =
ap

p
+

bq

q
.

The above picture represents the situation which occurs when p > 2 because the
graph of the function is concave up. If 2 ≥ p > 1 the graph would be concave down
or a straight line. You should verify that the same argument holds in these cases
just as well. In fact, the only thing which matters in the above inequality is that
the function x = tp−1 be strictly increasing.

Note equality occurs when ap = bq.
Here is an alternate proof.

Lemma 10.4 For a, b ≥ 0,

ab ≤ ap

p
+

bq

q

and equality occurs when if and only if ap = bq.

Proof: If b = 0, the inequality is obvious. Fix b > 0 and consider f (a) ≡
ap

p + bq

q − ab. Then f ′ (a) = ap−1 − b. This is negative when a < b1/(p−1) and is
positive when a > b1/(p−1). Therefore, f has a minimum when a = b1/(p−1). In other
words, when ap = bp/(p−1) = bq since 1/p + 1/q = 1. Thus the minimum value of f
is

bq

p
+

bq

q
− b1/(p−1)b = bq − bq = 0.

It follows f ≥ 0 and this yields the desired inequality.
Proof of Holder’s inequality: If either

∫ |f |pdµ or
∫ |g|pdµ equals ∞, the

inequality 10.1 is obviously valid because ∞ ≥ anything. If either
∫ |f |pdµ or∫ |g|pdµ equals 0, then f = 0 a.e. or that g = 0 a.e. and so in this case the left side of

the inequality equals 0 and so the inequality is therefore true. Therefore assume both
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∫ |f |pdµ and
∫ |g|pdµ are less than ∞ and not equal to 0. Let

(∫ |f |pdµ
)1/p = I (f)

and let
(∫ |g|pdµ

)1/q = I (g). Then using the lemma,

∫ |f |
I (f)

|g|
I (g)

dµ ≤ 1
p

∫ |f |p
I (f)p dµ +

1
q

∫ |g|q
I (g)q dµ = 1.

Hence,
∫
|f | |g| dµ ≤ I (f) I (g) =

(∫
|f |pdµ

)1/p (∫
|g|qdµ

)1/q

.

This proves Holder’s inequality.
The following lemma will be needed.

Lemma 10.5 Suppose x, y ∈ C. Then

|x + y|p ≤ 2p−1 (|x|p + |y|p) .

Proof: The function f (t) = tp is concave up for t ≥ 0 because p > 1. Therefore,
the secant line joining two points on the graph of this function must lie above the
graph of the function. This is illustrated in the following picture.

¡
¡

¡
¡

¡¡

|x| |y|m

(|x|+ |y|)/2 = m

Now as shown above,

( |x|+ |y|
2

)p

≤ |x|p + |y|p
2

which implies
|x + y|p ≤ (|x|+ |y|)p ≤ 2p−1 (|x|p + |y|p)

and this proves the lemma.
Note that if y = φ (x) is any function for which the graph of φ is concave up,

you could get a similar inequality by the same argument.

Corollary 10.6 (Minkowski inequality) Let 1 ≤ p < ∞. Then

(∫
|f + g|p dµ

)1/p

≤
(∫

|f |p dµ

)1/p

+
(∫

|g|p dµ

)1/p

. (10.2)
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Proof: If p = 1, this is obvious because it is just the triangle inequality. Let
p > 1. Without loss of generality, assume

(∫
|f |p dµ

)1/p

+
(∫

|g|p dµ

)1/p

< ∞

and
(∫ |f + g|p dµ

)1/p 6= 0 or there is nothing to prove. Therefore, using the above
lemma, ∫

|f + g|pdµ ≤ 2p−1

(∫
|f |p + |g|pdµ

)
< ∞.

Now |f (ω) + g (ω)|p ≤ |f (ω) + g (ω)|p−1 (|f (ω)|+ |g (ω)|). Also, it follows from the
definition of p and q that p− 1 = p

q . Therefore, using this and Holder’s inequality,

∫
|f + g|pdµ ≤

∫
|f + g|p−1|f |dµ +

∫
|f + g|p−1|g|dµ

=
∫
|f + g| p

q |f |dµ +
∫
|f + g| p

q |g|dµ

≤ (
∫
|f + g|pdµ)

1
q (

∫
|f |pdµ)

1
p + (

∫
|f + g|pdµ)

1
q (

∫
|g|pdµ)

1
p.

Dividing both sides by (
∫ |f + g|pdµ)

1
q yields 10.2. This proves the corollary.

The following follows immediately from the above.

Corollary 10.7 Let fi ∈ Lp (Ω) for i = 1, 2, · · ·, n. Then

(∫ ∣∣∣∣∣
n∑

i=1

fi

∣∣∣∣∣

p

dµ

)1/p

≤
n∑

i=1

(∫
|fi|p

)1/p

.

This shows that if f, g ∈ Lp, then f + g ∈ Lp. Also, it is clear that if a is a
constant and f ∈ Lp, then af ∈ Lp because

∫
|af |p dµ = |a|p

∫
|f |p dµ < ∞.

Thus Lp is a vector space and
a.)

(∫ |f |p dµ
)1/p ≥ 0,

(∫ |f |p dµ
)1/p = 0 if and only if f = 0 a.e.

b.)
(∫ |af |p dµ

)1/p = |a| (∫ |f |p dµ
)1/p if a is a scalar.

c.)
(∫ |f + g|p dµ

)1/p ≤ (∫ |f |p dµ
)1/p +

(∫ |g|p dµ
)1/p.

f → (∫ |f |p dµ
)1/p would define a norm if

(∫ |f |p dµ
)1/p = 0 implied f = 0.

Unfortunately, this is not so because if f = 0 a.e. but is nonzero on a set of
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measure zero,
(∫ |f |p dµ

)1/p = 0 and this is not allowed. However, all the other
properties of a norm are available and so a little thing like a set of measure zero
will not prevent the consideration of Lp as a normed vector space if two functions
in Lp which differ only on a set of measure zero are considered the same. That is,
an element of Lp is really an equivalence class of functions where two functions are
equivalent if they are equal a.e. With this convention, here is a definition.

Definition 10.8 Let f ∈ Lp (Ω). Define

||f ||p ≡ ||f ||Lp ≡
(∫

|f |p dµ

)1/p

.

Then with this definition and using the convention that elements in Lp are
considered to be the same if they differ only on a set of measure zero, || ||p is a
norm on Lp (Ω) because if ||f ||p = 0 then f = 0 a.e. and so f is considered to be
the zero function because it differs from 0 only on a set of measure zero.

The following is an important definition.

Definition 10.9 A complete normed linear space is called a Banach1 space.

Lp is a Banach space. This is the next big theorem.

Theorem 10.10 The following hold for Lp(Ω)
a.) Lp(Ω) is complete.
b.) If {fn} is a Cauchy sequence in Lp(Ω), then there exists f ∈ Lp (Ω) and a

subsequence which converges a.e. to f ∈ Lp(Ω), and ||fn − f ||p → 0.

Proof: Let {fn} be a Cauchy sequence in Lp(Ω). This means that for every
ε > 0 there exists N such that if n, m ≥ N , then ||fn − fm||p < ε. Now select a
subsequence as follows. Let n1 be such that ||fn−fm||p < 2−1 whenever n,m ≥ n1.
Let n2 be such that n2 > n1 and ||fn−fm||p < 2−2 whenever n,m ≥ n2. If n1, ···, nk

have been chosen, let nk+1 > nk and whenever n,m ≥ nk+1, ||fn− fm||p < 2−(k+1).
The subsequence just mentioned is {fnk

}. Thus, ||fnk
− fnk+1 ||p < 2−k. Let

gk+1 = fnk+1 − fnk
.

1These spaces are named after Stefan Banach, 1892-1945. Banach spaces are the basic item of
study in the subject of functional analysis and will be considered later in this book.

There is a recent biography of Banach, R. Katuża, The Life of Stefan Banach, (A. Kostant and
W. Woyczyński, translators and editors) Birkhauser, Boston (1996). More information on Banach
can also be found in a recent short article written by Douglas Henderson who is in the department
of chemistry and biochemistry at BYU.

Banach was born in Austria, worked in Poland and died in the Ukraine but never moved. This
is because borders kept changing. There is a rumor that he died in a German concentration camp
which is apparently not true. It seems he died after the war of lung cancer.

He was an interesting character. He hated taking examinations so much that he did not receive
his undergraduate university degree. Nevertheless, he did become a professor of mathematics due
to his important research. He and some friends would meet in a cafe called the Scottish cafe where
they wrote on the marble table tops until Banach’s wife supplied them with a notebook which
became the ”Scotish notebook” and was eventually published.
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Then by the corollary to Minkowski’s inequality,

∞ >

∞∑

k=1

||gk+1||p ≥
m∑

k=1

||gk+1||p ≥
∣∣∣∣∣

∣∣∣∣∣
m∑

k=1

|gk+1|
∣∣∣∣∣

∣∣∣∣∣
p

for all m. It follows that

∫ (
m∑

k=1

|gk+1|
)p

dµ ≤
( ∞∑

k=1

||gk+1||p
)p

< ∞ (10.3)

for all m and so the monotone convergence theorem implies that the sum up to m
in 10.3 can be replaced by a sum up to ∞. Thus,

∫ ( ∞∑

k=1

|gk+1|
)p

dµ < ∞

which requires
∞∑

k=1

|gk+1(x)| < ∞ a.e. x.

Therefore,
∑∞

k=1 gk+1(x) converges for a.e. x because the functions have values in
a complete space, C, and this shows the partial sums form a Cauchy sequence. Now
let x be such that this sum is finite. Then define

f(x) ≡ fn1(x) +
∞∑

k=1

gk+1(x)= lim
m→∞

fnm (x)

since
∑m

k=1 gk+1(x) = fnm+1(x) − fn1(x). Therefore there exists a set, E having
measure zero such that

lim
k→∞

fnk
(x) = f(x)

for all x /∈ E. Redefine fnk
to equal 0 on E and let f(x) = 0 for x ∈ E. It then

follows that limk→∞ fnk
(x) = f(x) for all x. By Fatou’s lemma, and the Minkowski

inequality,

||f − fnk
||p =

(∫
|f − fnk

|p dµ

)1/p

≤

lim inf
m→∞

(∫
|fnm − fnk

|p dµ

)1/p

= lim inf
m→∞

||fnm − fnk
||p ≤

lim inf
m→∞

m−1∑

j=k

∣∣∣∣fnj+1 − fnj

∣∣∣∣
p
≤

∞∑

i=k

∣∣∣∣fni+1 − fni

∣∣∣∣
p
≤ 2−(k−1). (10.4)

Therefore, f ∈ Lp(Ω) because

||f ||p ≤ ||f − fnk
||p + ||fnk

||p < ∞,



10.1. BASIC INEQUALITIES AND PROPERTIES 239

and limk→∞ ||fnk
− f ||p = 0. This proves b.).

This has shown fnk
converges to f in Lp (Ω). It follows the original Cauchy

sequence also converges to f in Lp (Ω). This is a general fact that if a subsequence
of a Cauchy sequence converges, then so does the original Cauchy sequence. You
should give a proof of this. This proves the theorem.

In working with the Lp spaces, the following inequality also known as Minkowski’s
inequality is very useful. It is similar to the Minkowski inequality for sums. To see
this, replace the integral,

∫
X

with a finite summation sign and you will see the usual
Minkowski inequality or rather the version of it given in Corollary 10.7.

To prove this theorem first consider a special case of it in which technical con-
siderations which shed no light on the proof are excluded.

Lemma 10.11 Let (X,S, µ) and (Y,F , λ) be finite complete measure spaces and
let f be µ× λ measurable and uniformly bounded. Then the following inequality is
valid for p ≥ 1.

∫

X

(∫

Y

|f(x, y)|p dλ

) 1
p

dµ ≥
(∫

Y

(
∫

X

|f(x, y)| dµ)pdλ

) 1
p

. (10.5)

Proof: Since f is bounded and µ (X) , λ (X) < ∞,

(∫

Y

(
∫

X

|f(x, y)|dµ)pdλ

) 1
p

< ∞.

Let

J(y) =
∫

X

|f(x, y)|dµ.

Note there is no problem in writing this for a.e. y because f is product measurable
and Lemma 8.50 on Page 190. Then by Fubini’s theorem,

∫

Y

(∫

X

|f(x, y)|dµ

)p

dλ =
∫

Y

J(y)p−1

∫

X

|f(x, y)|dµ dλ

=
∫

X

∫

Y

J(y)p−1|f(x, y)|dλ dµ

Now apply Holder’s inequality in the last integral above and recall p− 1 = p
q . This

yields
∫

Y

(∫

X

|f(x, y)|dµ

)p

dλ

≤
∫

X

(∫

Y

J(y)pdλ

) 1
q

(∫

Y

|f(x, y)|pdλ

) 1
p

dµ

=
(∫

Y

J(y)pdλ

) 1
q

∫

X

(∫

Y

|f(x, y)|pdλ

) 1
p

dµ
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=
(∫

Y

(
∫

X

|f(x, y)|dµ)pdλ

) 1
q

∫

X

(∫

Y

|f(x, y)|pdλ

) 1
p

dµ. (10.6)

Therefore, dividing both sides by the first factor in the above expression,

(∫

Y

(∫

X

|f(x, y)|dµ

)p

dλ

) 1
p

≤
∫

X

(∫

Y

|f(x, y)|pdλ

) 1
p

dµ. (10.7)

Note that 10.7 holds even if the first factor of 10.6 equals zero. This proves the
lemma.

Now consider the case where f is not assumed to be bounded and where the
measure spaces are σ finite.

Theorem 10.12 Let (X,S, µ) and (Y,F , λ) be σ-finite measure spaces and let f
be product measurable. Then the following inequality is valid for p ≥ 1.

∫

X

(∫

Y

|f(x, y)|p dλ

) 1
p

dµ ≥
(∫

Y

(
∫

X

|f(x, y)| dµ)pdλ

) 1
p

. (10.8)

Proof: Since the two measure spaces are σ finite, there exist measurable sets,
Xm and Yk such that Xm ⊆ Xm+1 for all m, Yk ⊆ Yk+1 for all k, and µ (Xm) , λ (Yk) <
∞. Now define

fn (x, y) ≡
{

f (x, y) if |f (x, y)| ≤ n
n if |f (x, y)| > n.

Thus fn is uniformly bounded and product measurable. By the above lemma,

∫

Xm

(∫

Yk

|fn(x, y)|p dλ

) 1
p

dµ ≥
(∫

Yk

(
∫

Xm

|fn(x, y)| dµ)pdλ

) 1
p

. (10.9)

Now observe that |fn (x, y)| increases in n and the pointwise limit is |f (x, y)|. There-
fore, using the monotone convergence theorem in 10.9 yields the same inequality
with f replacing fn. Next let k → ∞ and use the monotone convergence theorem
again to replace Yk with Y . Finally let m →∞ in what is left to obtain 10.8. This
proves the theorem.

Note that the proof of this theorem depends on two manipulations, the inter-
change of the order of integration and Holder’s inequality. Note that there is nothing
to check in the case of double sums. Thus if aij ≥ 0, it is always the case that


∑

j

(∑

i

aij

)p



1/p

≤
∑

i


∑

j

ap
ij




1/p

because the integrals in this case are just sums and (i, j) → aij is measurable.
The Lp spaces have many important properties.



10.2. DENSITY CONSIDERATIONS 241

10.2 Density Considerations

Theorem 10.13 Let p ≥ 1 and let (Ω,S, µ) be a measure space. Then the simple
functions are dense in Lp (Ω).

Proof: Recall that a function, f , having values in R can be written in the form
f = f+ − f− where

f+ = max (0, f) , f− = max (0,−f) .

Therefore, an arbitrary complex valued function, f is of the form

f = Re f+ − Re f− + i
(
Im f+ − Im f−

)
.

If each of these nonnegative functions is approximated by a simple function, it
follows f is also approximated by a simple function. Therefore, there is no loss of
generality in assuming at the outset that f ≥ 0.

Since f is measurable, Theorem 7.24 implies there is an increasing sequence of
simple functions, {sn}, converging pointwise to f(x). Now

|f(x)− sn(x)| ≤ |f(x)|.

By the Dominated Convergence theorem,

0 = lim
n→∞

∫
|f(x)− sn(x)|pdµ.

Thus simple functions are dense in Lp.
Recall that for Ω a topological space, Cc(Ω) is the space of continuous functions

with compact support in Ω. Also recall the following definition.

Definition 10.14 Let (Ω,S, µ) be a measure space and suppose (Ω, τ) is also a
topological space. Then (Ω,S, µ) is called a regular measure space if the σ algebra
of Borel sets is contained in S and for all E ∈ S,

µ(E) = inf{µ(V ) : V ⊇ E and V open}

and if µ (E) < ∞,

µ(E) = sup{µ(K) : K ⊆ E and K is compact }

and µ (K) < ∞ for any compact set, K.

For example Lebesgue measure is an example of such a measure.

Lemma 10.15 Let Ω be a metric space in which the closed balls are compact and
let K be a compact subset of V , an open set. Then there exists a continuous function
f : Ω → [0, 1] such that f(x) = 1 for all x ∈ K and spt(f) is a compact subset of
V . That is, K ≺ f ≺ V.
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Proof: Let K ⊆ W ⊆ W ⊆ V and W is compact. To obtain this list of
inclusions consider a point in K, x, and take B (x, rx) a ball containing x such that
B (x, rx) is a compact subset of V . Next use the fact that K is compact to obtain
the existence of a list, {B (xi, rxi/2)}m

i=1 which covers K. Then let

W ≡ ∪m
i=1B

(
xi,

rxi

2

)
.

It follows since this is a finite union that

W = ∪m
i=1B

(
xi,

rxi

2

)

and so W , being a finite union of compact sets is itself a compact set. Also, from
the construction

W ⊆ ∪m
i=1B (xi, rxi

) .

Define f by

f(x) =
dist(x,WC)

dist(x,K) + dist(x,WC)
.

It is clear that f is continuous if the denominator is always nonzero. But this is
clear because if x ∈ WC there must be a ball B (x, r) such that this ball does not
intersect K. Otherwise, x would be a limit point of K and since K is closed, x ∈ K.
However, x /∈ K because K ⊆ W .

It is not necessary to be in a metric space to do this. You can accomplish the
same thing using Urysohn’s lemma.

Theorem 10.16 Let (Ω,S, µ) be a regular measure space as in Definition 10.14
where the conclusion of Lemma 10.15 holds. Then Cc(Ω) is dense in Lp(Ω).

Proof: First consider a measurable set, E where µ (E) < ∞. Let K ⊆ E ⊆ V
where µ (V \K) < ε. Now let K ≺ h ≺ V. Then

∫
|h−XE |p dµ ≤

∫
X p

V \Kdµ = µ (V \K) < ε.

It follows that for each s a simple function in Lp (Ω) , there exists h ∈ Cc (Ω) such
that ||s− h||p < ε. This is because if

s(x) =
m∑

i=1

ciXEi(x)

is a simple function in Lp where the ci are the distinct nonzero values of s each
µ (Ei) < ∞ since otherwise s /∈ Lp due to the inequality

∫
|s|p dµ ≥ |ci|p µ (Ei) .

By Theorem 10.13, simple functions are dense in Lp (Ω) ,and so this proves the
Theorem.
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10.3 Separability

Theorem 10.17 For p ≥ 1 and µ a Radon measure, Lp(Rn, µ) is separable. Recall
this means there exists a countable set, D, such that if f ∈ Lp(Rn, µ) and ε > 0,
there exists g ∈ D such that ||f − g||p < ε.

Proof: Let Q be all functions of the form cX[a,b) where

[a,b) ≡ [a1, b1)× [a2, b2)× · · · × [an, bn),

and both ai, bi are rational, while c has rational real and imaginary parts. Let D be
the set of all finite sums of functions in Q. Thus, D is countable. In fact D is dense in
Lp(Rn, µ). To prove this it is necessary to show that for every f ∈ Lp(Rn, µ), there
exists an element of D, s such that ||s− f ||p < ε. If it can be shown that for every
g ∈ Cc (Rn) there exists h ∈ D such that ||g − h||p < ε, then this will suffice because
if f ∈ Lp (Rn) is arbitrary, Theorem 10.16 implies there exists g ∈ Cc (Rn) such
that ||f − g||p ≤ ε

2 and then there would exist h ∈ Cc (Rn) such that ||h− g||p < ε
2 .

By the triangle inequality,

||f − h||p ≤ ||h− g||p + ||g − f ||p < ε.

Therefore, assume at the outset that f ∈ Cc (Rn).
Let Pm consist of all sets of the form [a,b) ≡ ∏n

i=1[ai, bi) where ai = j2−mand
bi = (j + 1)2−m for j an integer. Thus Pm consists of a tiling of Rn into half open
rectangles having diameters 2−mn

1
2 . There are countably many of these rectangles;

so, let Pm = {[ai,bi)}∞i=1 and Rn = ∪∞i=1[ai,bi). Let cm
i be complex numbers with

rational real and imaginary parts satisfying

|f(ai)− cm
i | < 2−m,

|cm
i | ≤ |f(ai)|. (10.10)

Let

sm(x) =
∞∑

i=1

cm
i X[ai,bi)

(x) .

Since f(ai) = 0 except for finitely many values of i, the above is a finite sum. Then
10.10 implies sm ∈ D. If sm converges uniformly to f then it follows ||sm − f ||p → 0
because |sm| ≤ |f | and so

||sm − f ||p =
(∫

|sm − f |p dµ

)1/p

=

(∫

spt(f)

|sm − f |p dµ

)1/p

≤ [εmn (spt (f))]1/p

whenever m is large enough.
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Since f ∈ Cc (Rn) it follows that f is uniformly continuous and so given ε > 0
there exists δ > 0 such that if |x− y| < δ, |f (x)− f (y)| < ε/2. Now let m be large
enough that every box in Pm has diameter less than δ and also that 2−m < ε/2.
Then if [ai,bi) is one of these boxes of Pm, and x ∈ [ai,bi),

|f (x)− f (ai)| < ε/2

and
|f (ai)− cm

i | < 2−m < ε/2.

Therefore, using the triangle inequality, it follows that |f (x)− cm
i | = |sm (x)− f (x)| <

ε and since x is arbitrary, this establishes uniform convergence. This proves the the-
orem.

Here is an easier proof if you know the Weierstrass approximation theorem.

Theorem 10.18 For p ≥ 1 and µ a Radon measure, Lp(Rn, µ) is separable. Recall
this means there exists a countable set, D, such that if f ∈ Lp(Rn, µ) and ε > 0,
there exists g ∈ D such that ||f − g||p < ε.

Proof: Let P denote the set of all polynomials which have rational coefficients.
Then P is countable. Let τk ∈ Cc ((− (k + 1) , (k + 1))n) such that [−k, k]n ≺ τk ≺
(− (k + 1) , (k + 1))n

. Let Dk denote the functions which are of the form, pτk where
p ∈ P. Thus Dk is also countable. Let D ≡ ∪∞k=1Dk. It follows each function in D is
in Cc (Rn) and so it in Lp (Rn, µ). Let f ∈ Lp (Rn, µ). By regularity of µ there exists
g ∈ Cc (Rn) such that ||f − g||Lp(Rn,µ) < ε

3 . Let k be such that spt (g) ⊆ (−k, k)n
.

Now by the Weierstrass approximation theorem there exists a polynomial q such
that

||g − q||[−(k+1),k+1]n ≡ sup {|g (x)− q (x)| : x ∈ [− (k + 1) , (k + 1)]n}
<

ε

3µ ((− (k + 1) , k + 1)n)
.

It follows

||g − τkq||[−(k+1),k+1]n = ||τkg − τkq||[−(k+1),k+1]n <
ε

3µ ((− (k + 1) , k + 1)n)
.

Without loss of generality, it can be assumed this polynomial has all rational coef-
ficients. Therefore, τkq ∈ D.

||g − τkq||pLp(Rn) =
∫

(−(k+1),k+1)n

|g (x)− τk (x) q (x)|p dµ

≤
(

ε

3µ ((− (k + 1) , k + 1)n)

)p

µ ((− (k + 1) , k + 1)n)

<
(ε

3

)p

.

It follows

||f − τkq||Lp(Rn,µ) ≤ ||f − g||Lp(Rn,µ) + ||g − τkq||pLp(Rn,µ) <
ε

3
+

ε

3
< ε.

This proves the theorem.
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Corollary 10.19 Let Ω be any µ measurable subset of Rn and let µ be a Radon
measure. Then Lp(Ω, µ) is separable. Here the σ algebra of measurable sets will
consist of all intersections of measurable sets with Ω and the measure will be µ
restricted to these sets.

Proof: Let D̃ be the restrictions of D to Ω. If f ∈ Lp(Ω), let F be the zero
extension of f to all of Rn. Let ε > 0 be given. By Theorem 10.17 or 10.18 there
exists s ∈ D such that ||F − s||p < ε. Thus

||s− f ||Lp(Ω,µ) ≤ ||s− F ||Lp(Rn,µ) < ε

and so the countable set D̃ is dense in Lp(Ω).

10.4 Continuity Of Translation

Definition 10.20 Let f be a function defined on U ⊆ Rn and let w ∈ Rn. Then
fw will be the function defined on w + U by

fw(x) = f(x−w).

Theorem 10.21 (Continuity of translation in Lp) Let f ∈ Lp(Rn) with the mea-
sure being Lebesgue measure. Then

lim
||w||→0

||fw − f ||p = 0.

Proof: Let ε > 0 be given and let g ∈ Cc(Rn) with ||g − f ||p < ε
3 . Since

Lebesgue measure is translation invariant (mn(w + E) = mn(E)),

||gw − fw||p = ||g − f ||p <
ε

3
.

You can see this from looking at simple functions and passing to the limit or you
could use the change of variables formula to verify it.

Therefore

||f − fw||p ≤ ||f − g||p + ||g − gw||p + ||gw − fw||
<

2ε

3
+ ||g − gw||p. (10.11)

But lim|w|→0 gw(x) = g(x) uniformly in x because g is uniformly continuous. Now
let B be a large ball containing spt (g) and let δ1 be small enough that B (x, δ) ⊆ B
whenever x ∈ spt (g). If ε > 0 is given there exists δ < δ1 such that if |w| < δ, it
follows that |g (x−w)− g (x)| < ε/3

(
1 + mn (B)1/p

)
. Therefore,

||g − gw||p =
(∫

B

|g (x)− g (x−w)|p dmn

)1/p

≤ ε
mn (B)1/p

3
(
1 + mn (B)1/p

) <
ε

3
.
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Therefore, whenever |w| < δ, it follows ||g−gw||p < ε
3 and so from 10.11 ||f−fw||p <

ε. This proves the theorem.
Part of the argument of this theorem is significant enough to be stated as a

corollary.

Corollary 10.22 Suppose g ∈ Cc (Rn) and µ is a Radon measure on Rn. Then

lim
w→0

||g − gw||p = 0.

Proof: The proof of this follows from the last part of the above argument simply
replacing mn with µ. Translation invariance of the measure is not needed to draw
this conclusion because of uniform continuity of g.

10.5 Mollifiers And Density Of Smooth Functions

Definition 10.23 Let U be an open subset of Rn. C∞c (U) is the vector space of all
infinitely differentiable functions which equal zero for all x outside of some compact
set contained in U . Similarly, Cm

c (U) is the vector space of all functions which are
m times continuously differentiable and whose support is a compact subset of U .

Example 10.24 Let U = B (z, 2r)

ψ (x) =





exp
[(
|x− z|2 − r2

)−1
]

if |x− z| < r,

0 if |x− z| ≥ r.

Then a little work shows ψ ∈ C∞c (U). The following also is easily obtained.

Lemma 10.25 Let U be any open set. Then C∞c (U) 6= ∅.

Proof: Pick z ∈ U and let r be small enough that B (z, 2r) ⊆ U . Then let
ψ ∈ C∞c (B (z, 2r)) ⊆ C∞c (U) be the function of the above example.

Definition 10.26 Let U = {x ∈ Rn : |x| < 1}. A sequence {ψm} ⊆ C∞c (U) is
called a mollifier (sometimes an approximate identity) if

ψm(x) ≥ 0, ψm(x) = 0, if |x| ≥ 1
m

,

and
∫

ψm(x) = 1. Sometimes it may be written as {ψε} where ψε satisfies the above
conditions except ψε (x) = 0 if |x| ≥ ε. In other words, ε takes the place of 1/m
and in everything that follows ε → 0 instead of m →∞.

As before,
∫

f(x,y)dµ(y) will mean x is fixed and the function y → f(x,y)
is being integrated. To make the notation more familiar, dx is written instead of
dmn(x).
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Example 10.27 Let

ψ ∈ C∞c (B(0, 1)) (B(0, 1) = {x : |x| < 1})
with ψ(x) ≥ 0 and

∫
ψdm = 1. Let ψm(x) = cmψ(mx) where cm is chosen in such

a way that
∫

ψmdm = 1. By the change of variables theorem cm = mn.

Definition 10.28 A function, f , is said to be in L1
loc(Rn, µ) if f is µ measurable

and if |f |XK ∈ L1(Rn, µ) for every compact set, K. Here µ is a Radon measure
on Rn. Usually µ = mn, Lebesgue measure. When this is so, write L1

loc(Rn) or
Lp(Rn), etc. If f ∈ L1

loc(Rn, µ), and g ∈ Cc(Rn),

f ∗ g(x) ≡
∫

f(y)g(x− y)dµ.

The following lemma will be useful in what follows. It says that one of these very
unregular functions in L1

loc (Rn, µ) is smoothed out by convolving with a mollifier.

Lemma 10.29 Let f ∈ L1
loc(Rn, µ), and g ∈ C∞c (Rn). Then f ∗ g is an infinitely

differentiable function. Here µ is a Radon measure on Rn.

Proof: Consider the difference quotient for calculating a partial derivative of
f ∗ g.

f ∗ g (x + tej)− f ∗ g (x)
t

=
∫

f(y)
g(x + tej − y)− g (x− y)

t
dµ (y) .

Using the fact that g ∈ C∞c (Rn), the quotient,

g(x + tej − y)− g (x− y)
t

,

is uniformly bounded. To see this easily, use Theorem 4.9 on Page 79 to get the
existence of a constant, M depending on

max {||Dg (x)|| : x ∈ Rn}
such that

|g(x + tej − y)− g (x− y)| ≤ M |t|
for any choice of x and y. Therefore, there exists a dominating function for the
integrand of the above integral which is of the form C |f (y)| XK where K is a
compact set containing the support of g. It follows the limit of the difference
quotient above passes inside the integral as t → 0 and

∂

∂xj
(f ∗ g) (x) =

∫
f(y)

∂

∂xj
g (x− y) dµ (y) .

Now letting ∂
∂xj

g play the role of g in the above argument, partial derivatives of all
orders exist. This proves the lemma.
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Theorem 10.30 Let K be a compact subset of an open set, U . Then there exists
a function, h ∈ C∞c (U), such that h(x) = 1 for all x ∈ K and h(x) ∈ [0, 1] for all
x.

Proof: Let r > 0 be small enough that K + B(0, 3r) ⊆ U. The symbol,
K + B(0, 3r) means

{k + x : k ∈ K and x ∈ B (0, 3r)} .

Thus this is simply a way to write

∪{B (k, 3r) : k ∈ K} .

Think of it as fattening up the set, K. Let Kr = K + B(0, r). A picture of what is
happening follows.

K Kr U

Consider XKr ∗ ψmwhere ψmis a mollifier. Let m be so large that 1
m < r.

Then from the definition of what is meant by a convolution, and using that ψm has
support in B

(
0, 1

m

)
, XKr ∗ ψm = 1 on K and that its support is in K + B (0, 3r).

Now using Lemma 10.29, XKr ∗ ψm is also infinitely differentiable. Therefore, let
h = XKr ∗ ψm.

The following corollary will be used later.

Corollary 10.31 Let K be a compact set in Rn and let {Ui}∞i=1 be an open cover
of K. Then there exist functions, ψk ∈ C∞c (Ui) such that ψi ≺ Ui and

∞∑

i=1

ψi (x) = 1.

If K1 is a compact subset of U1 there exist such functions such that also ψ1 (x) = 1
for all x ∈ K1.

Proof: This follows from a repeat of the proof of Theorem 8.18 on Page 168,
replacing the lemma used in that proof with Theorem 10.30.

Theorem 10.32 For each p ≥ 1, C∞c (Rn) is dense in Lp(Rn). Here the measure
is Lebesgue measure.

Proof: Let f ∈ Lp(Rn) and let ε > 0 be given. Choose g ∈ Cc(Rn) such that
||f − g||p < ε

2 . This can be done by using Theorem 10.16. Now let

gm (x) = g ∗ ψm (x) ≡
∫

g (x− y)ψm (y) dmn (y) =
∫

g (y) ψm (x− y) dmn (y)
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where {ψm} is a mollifier. It follows from Lemma 10.29 gm ∈ C∞c (Rn). It vanishes
if x /∈ spt(g) + B(0, 1

m ).

||g − gm||p =
(∫

|g(x)−
∫

g(x− y)ψm(y)dmn(y)|pdmn(x)
) 1

p

≤
(∫

(
∫
|g(x)− g(x− y)|ψm(y)dmn(y))pdmn(x)

) 1
p

≤
∫ (∫

|g(x)− g(x− y)|pdmn(x)
) 1

p

ψm(y)dmn(y)

=
∫

B(0, 1
m )

||g − gy||pψm(y)dmn(y) <
ε

2

whenever m is large enough. This follows from Corollary 10.22. Theorem 10.12 was
used to obtain the third inequality. There is no measurability problem because the
function

(x,y) → |g(x)− g(x− y)|ψm(y)

is continuous. Thus when m is large enough,

||f − gm||p ≤ ||f − g||p + ||g − gm||p <
ε

2
+

ε

2
= ε.

This proves the theorem.
This is a very remarkable result. Functions in Lp (Rn) don’t need to be continu-

ous anywhere and yet every such function is very close in the Lp norm to one which
is infinitely differentiable having compact support.

Another thing should probably be mentioned. If you have had a course in com-
plex analysis, you may be wondering whether these infinitely differentiable functions
having compact support have anything to do with analytic functions which also have
infinitely many derivatives. The answer is no! Recall that if an analytic function
has a limit point in the set of zeros then it is identically equal to zero. Thus these
functions in C∞c (Rn) are not analytic. This is a strictly real analysis phenomenon
and has absolutely nothing to do with the theory of functions of a complex variable.

10.6 Exercises

1. Let E be a Lebesgue measurable set in R. Suppose m(E) > 0. Consider the
set

E − E = {x− y : x ∈ E, y ∈ E}.
Show that E − E contains an interval. Hint: Let

f(x) =
∫
XE(t)XE(x + t)dt.

Note f is continuous at 0 and f(0) > 0 and use continuity of translation in
Lp.
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2. Give an example of a sequence of functions in Lp (R) which converges to zero
in Lp but does not converge pointwise to 0. Does this contradict the proof
of the theorem that Lp is complete? You don’t have to be real precise, just
describe it.

3. Let K be a bounded subset of Lp (Rn) and suppose that for each ε > 0 there
exists G such that G is compact with

∫

Rn\G
|u (x)|p dx < εp

and for all ε > 0, there exist a δ > 0 and such that if |h| < δ, then
∫
|u (x + h)− u (x)|p dx < εp

for all u ∈ K. Show that K is precompact in Lp (Rn). Hint: Let φk be a
mollifier and consider

Kk ≡ {u ∗ φk : u ∈ K} .

Verify the conditions of the Ascoli Arzela theorem for these functions defined
on G and show there is an ε net for each ε > 0. Can you modify this to let
an arbitrary open set take the place of Rn? This is a very important result.

4. Let (Ω, d) be a metric space and suppose also that (Ω,S, µ) is a regular mea-
sure space such that µ (Ω) < ∞ and let f ∈ L1 (Ω) where f has complex
values. Show that for every ε > 0, there exists an open set of measure less
than ε, denoted here by V and a continuous function, g defined on Ω such
that f = g on V C . Thus, aside from a set of small measure, f is continuous.
If |f (ω)| ≤ M , show that we can also assume |g (ω)| ≤ M . This is called
Lusin’s theorem. Hint: Use Theorems 10.16 and 10.10 to obtain a sequence
of functions in Cc (Ω) , {gn} which converges pointwise a.e. to f and then use
Egoroff’s theorem to obtain a small set, W of measure less than ε/2 such that
convergence is uniform on WC . Now let F be a closed subset of WC such
that µ

(
WC \ F

)
< ε/2. Let V = FC . Thus µ (V ) < ε and on F = V C ,

the convergence of {gn} is uniform showing that the restriction of f to V C is
continuous. Now use the Tietze extension theorem.

5. Let φ : R→ R be convex. This means

φ(λx + (1− λ)y) ≤ λφ(x) + (1− λ)φ(y)

whenever λ ∈ [0, 1]. Verify that if x < y < z, then φ(y)−φ(x)
y−x ≤ φ(z)−φ(y)

z−y

and that φ(z)−φ(x)
z−x ≤ φ(z)−φ(y)

z−y . Show if s ∈ R there exists λ such that
φ(s) ≤ φ(t)+λ(s− t) for all t. Show that if φ is convex, then φ is continuous.
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6. ↑ Prove Jensen’s inequality. If φ : R→ R is convex, µ(Ω) = 1, and f : Ω → R
is in L1(Ω), then φ(

∫
Ω

f du) ≤ ∫
Ω

φ(f)dµ. Hint: Let s =
∫
Ω

f dµ and use
Problem 5.

7. Let 1
p + 1

p′ = 1, p > 1, let f ∈ Lp(R), g ∈ Lp′(R). Show f ∗ g is uniformly
continuous on R and |(f ∗ g)(x)| ≤ ||f ||Lp ||g||Lp′ . Hint: You need to consider
why f ∗ g exists and then this follows from the definition of convolution and
continuity of translation in Lp.

8. B(p, q) =
∫ 1

0
xp−1(1 − x)q−1dx,Γ(p) =

∫∞
0

e−ttp−1dt for p, q > 0. The first
of these is called the beta function, while the second is the gamma function.
Show a.) Γ(p + 1) = pΓ(p); b.) Γ(p)Γ(q) = B(p, q)Γ(p + q).

9. Let f ∈ Cc(0,∞) and define F (x) = 1
x

∫ x

0
f(t)dt. Show

||F ||Lp(0,∞) ≤
p

p− 1
||f ||Lp(0,∞) whenever p > 1.

Hint: Argue there is no loss of generality in assuming f ≥ 0 and then assume
this is so. Integrate

∫∞
0
|F (x)|pdx by parts as follows:

∫ ∞

0

F pdx =

show = 0︷ ︸︸ ︷
xF p|∞0 − p

∫ ∞

0

xF p−1F ′dx.

Now show xF ′ = f − F and use this in the last integral. Complete the
argument by using Holder’s inequality and p− 1 = p/q.

10. ↑ Now suppose f ∈ Lp(0,∞), p > 1, and f not necessarily in Cc(0,∞). Show
that F (x) = 1

x

∫ x

0
f(t)dt still makes sense for each x > 0. Show the inequality

of Problem 9 is still valid. This inequality is called Hardy’s inequality. Hint:
To show this, use the above inequality along with the density of Cc (0,∞) in
Lp (0,∞).

11. Suppose f, g ≥ 0. When does equality hold in Holder’s inequality?

12. Prove Vitali’s Convergence theorem: Let {fn} be uniformly integrable and
complex valued, µ(Ω) < ∞, fn(x) → f(x) a.e. where f is measurable. Then
f ∈ L1 and limn→∞

∫
Ω
|fn − f |dµ = 0. Hint: Use Egoroff’s theorem to show

{fn} is a Cauchy sequence in L1 (Ω). This yields a different and easier proof
than what was done earlier. See Theorem 7.46 on Page 152.

13. ↑ Show the Vitali Convergence theorem implies the Dominated Convergence
theorem for finite measure spaces but there exist examples where the Vitali
convergence theorem works and the dominated convergence theorem does not.

14. Suppose f ∈ L∞ ∩ L1. Show limp→∞ ||f ||Lp = ||f ||∞. Hint:

(||f ||∞ − ε)p
µ ([|f | > ||f ||∞ − ε]) ≤

∫

[|f |>||f ||∞−ε]
|f |p dµ ≤
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∫
|f |p dµ =

∫
|f |p−1 |f | dµ ≤ ||f ||p−1

∞

∫
|f | dµ.

Now raise both ends to the 1/p power and take lim inf and lim sup as p →∞.
You should get ||f ||∞ − ε ≤ lim inf ||f ||p ≤ lim sup ||f ||p ≤ ||f ||∞

15. Suppose µ(Ω) < ∞. Show that if 1 ≤ p < q, then Lq(Ω) ⊆ Lp(Ω). Hint Use
Holder’s inequality.

16. Show L1(R) * L2(R) and L2(R) * L1(R) if Lebesgue measure is used. Hint:
Consider 1/

√
x and 1/x.

17. Suppose that θ ∈ [0, 1] and r, s, q > 0 with

1
q

=
θ

r
+

1− θ

s
.

show that

(
∫
|f |qdµ)1/q ≤ ((

∫
|f |rdµ)1/r)θ((

∫
|f |sdµ)1/s)1−θ.

If q, r, s ≥ 1 this says that

||f ||q ≤ ||f ||θr||f ||1−θ
s .

Using this, show that

ln
(
||f ||q

)
≤ θ ln (||f ||r) + (1− θ) ln (||f ||s) .

Hint: ∫
|f |qdµ =

∫
|f |qθ|f |q(1−θ)dµ.

Now note that 1 = θq
r + q(1−θ)

s and use Holder’s inequality.

18. Suppose f is a function in L1 (R) and f is infinitely differentiable. Does it fol-
low that f ′ ∈ L1 (R)? Hint: What if φ ∈ C∞c (0, 1) and f (x) = φ (2n (x− n))
for x ∈ (n, n + 1) , f (x) = 0 if x < 0?



Banach Spaces

11.1 Theorems Based On Baire Category

11.1.1 Baire Category Theorem

Some examples of Banach spaces that have been discussed up to now are Rn,Cn,
and Lp (Ω). Theorems about general Banach spaces are proved in this chapter.
The main theorems to be presented here are the uniform boundedness theorem, the
open mapping theorem, the closed graph theorem, and the Hahn Banach Theorem.
The first three of these theorems come from the Baire category theorem which is
about to be presented. They are topological in nature. The Hahn Banach theorem
has nothing to do with topology. Banach spaces are all normed linear spaces and as
such, they are all metric spaces because a normed linear space may be considered
as a metric space with d (x, y) ≡ ||x− y||. You can check that this satisfies all the
axioms of a metric. As usual, if every Cauchy sequence converges, the metric space
is called complete.

Definition 11.1 A complete normed linear space is called a Banach space.

The following remarkable result is called the Baire category theorem. To get an
idea of its meaning, imagine you draw a line in the plane. The complement of this
line is an open set and is dense because every point, even those on the line, are limit
points of this open set. Now draw another line. The complement of the two lines
is still open and dense. Keep drawing lines and looking at the complements of the
union of these lines. You always have an open set which is dense. Now what if there
were countably many lines? The Baire category theorem implies the complement
of the union of these lines is dense. In particular it is nonempty. Thus you cannot
write the plane as a countable union of lines. This is a rather rough description of
this very important theorem. The precise statement and proof follow.

Theorem 11.2 Let (X, d) be a complete metric space and let {Un}∞n=1 be a se-
quence of open subsets of X satisfying Un = X (Un is dense). Then D ≡ ∩∞n=1Un

is a dense subset of X.

253
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Proof: Let p ∈ X and let r0 > 0. I need to show D ∩B(p, r0) 6= ∅. Since U1 is
dense, there exists p1 ∈ U1∩B(p, r0), an open set. Let p1 ∈ B(p1, r1) ⊆ B(p1, r1) ⊆
U1 ∩ B(p, r0) and r1 < 2−1. This is possible because U1 ∩ B (p, r0) is an open set
and so there exists r1 such that B (p1, 2r1) ⊆ U1 ∩B (p, r0). But

B (p1, r1) ⊆ B (p1, r1) ⊆ B (p1, 2r1)

because B (p1, r1) = {x ∈ X : d (x, p) ≤ r1}. (Why?)

¾ r0 p

p1
·

There exists p2 ∈ U2 ∩B(p1, r1) because U2 is dense. Let

p2 ∈ B(p2, r2) ⊆ B(p2, r2) ⊆ U2 ∩B(p1, r1) ⊆ U1 ∩ U2 ∩B(p, r0).

and let r2 < 2−2. Continue in this way. Thus

rn < 2−n,

B(pn, rn) ⊆ U1 ∩ U2 ∩ ... ∩ Un ∩B(p, r0),

B(pn, rn) ⊆ B(pn−1, rn−1).

The sequence, {pn} is a Cauchy sequence because all terms of {pk} for k ≥ n
are contained in B (pn, rn), a set whose diameter is no larger than 2−n. Since X is
complete, there exists p∞ such that

lim
n→∞

pn = p∞.

Since all but finitely many terms of {pn} are in B(pm, rm), it follows that p∞ ∈
B(pm, rm) for each m. Therefore,

p∞ ∈ ∩∞m=1B(pm, rm) ⊆ ∩∞i=1Ui ∩B(p, r0).

This proves the theorem.
The following corollary is also called the Baire category theorem.

Corollary 11.3 Let X be a complete metric space and suppose X = ∪∞i=1Fi where
each Fi is a closed set. Then for some i, interior Fi 6= ∅.

Proof: If all Fi has empty interior, then FC
i would be a dense open set. There-

fore, from Theorem 11.2, it would follow that

∅ = (∪∞i=1Fi)
C = ∩∞i=1F

C
i 6= ∅.
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The set D of Theorem 11.2 is called a Gδ set because it is the countable inter-
section of open sets. Thus D is a dense Gδ set.

Recall that a norm satisfies:
a.) ||x|| ≥ 0, ||x|| = 0 if and only if x = 0.
b.) ||x + y|| ≤ ||x||+ ||y||.
c.) ||cx|| = |c| ||x|| if c is a scalar and x ∈ X.
From the definition of continuity, it follows easily that a function is continuous

if
lim

n→∞
xn = x

implies
lim

n→∞
f(xn) = f(x).

Theorem 11.4 Let X and Y be two normed linear spaces and let L : X → Y be
linear (L(ax + by) = aL(x) + bL(y) for a, b scalars and x, y ∈ X). The following
are equivalent

a.) L is continuous at 0
b.) L is continuous
c.) There exists K > 0 such that ||Lx||Y ≤ K ||x||X for all x ∈ X (L is

bounded).

Proof: a.)⇒b.) Let xn → x. It is necessary to show that Lxn → Lx. But
(xn − x) → 0 and so from continuity at 0, it follows

L (xn − x) = Lxn − Lx → 0

so Lxn → Lx. This shows a.) implies b.).
b.)⇒c.) Since L is continuous, L is continuous at 0. Hence ||Lx||Y < 1 whenever

||x||X ≤ δ for some δ. Therefore, suppressing the subscript on the || ||,

||L
(

δx

||x||
)
|| ≤ 1.

Hence

||Lx|| ≤ 1
δ
||x||.

c.)⇒a.) follows from the inequality given in c.).

Definition 11.5 Let L : X → Y be linear and continuous where X and Y are
normed linear spaces. Denote the set of all such continuous linear maps by L(X, Y )
and define

||L|| = sup{||Lx|| : ||x|| ≤ 1}. (11.1)

This is called the operator norm.
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Note that from Theorem 11.4 ||L|| is well defined because of part c.) of that
Theorem.

The next lemma follows immediately from the definition of the norm and the
assumption that L is linear.

Lemma 11.6 With ||L|| defined in 11.1, L(X, Y ) is a normed linear space. Also
||Lx|| ≤ ||L|| ||x||.

Proof: Let x 6= 0 then x/ ||x|| has norm equal to 1 and so
∣∣∣∣
∣∣∣∣L

(
x

||x||
)∣∣∣∣

∣∣∣∣ ≤ ||L|| .

Therefore, multiplying both sides by ||x||, ||Lx|| ≤ ||L|| ||x||. This is obviously a
linear space. It remains to verify the operator norm really is a norm. First of all,
if ||L|| = 0, then Lx = 0 for all ||x|| ≤ 1. It follows that for any x 6= 0, 0 = L

(
x
||x||

)

and so Lx = 0. Therefore, L = 0. Also, if c is a scalar,

||cL|| = sup
||x||≤1

||cL (x)|| = |c| sup
||x||≤1

||Lx|| = |c| ||L|| .

It remains to verify the triangle inequality. Let L,M ∈ L (X, Y ) .

||L + M || ≡ sup
||x||≤1

||(L + M) (x)|| ≤ sup
||x||≤1

(||Lx||+ ||Mx||)

≤ sup
||x||≤1

||Lx||+ sup
||x||≤1

||Mx|| = ||L||+ ||M || .

This shows the operator norm is really a norm as hoped. This proves the lemma.
For example, consider the space of linear transformations defined on Rn having

values in Rm. The fact the transformation is linear automatically imparts conti-
nuity to it. You should give a proof of this fact. Recall that every such linear
transformation can be realized in terms of matrix multiplication.

Thus, in finite dimensions the algebraic condition that an operator is linear is
sufficient to imply the topological condition that the operator is continuous. The
situation is not so simple in infinite dimensional spaces such as C (X;Rn). This
explains the imposition of the topological condition of continuity as a criterion for
membership in L (X, Y ) in addition to the algebraic condition of linearity.

Theorem 11.7 If Y is a Banach space, then L(X, Y ) is also a Banach space.

Proof: Let {Ln} be a Cauchy sequence in L(X,Y ) and let x ∈ X.

||Lnx− Lmx|| ≤ ||x|| ||Ln − Lm||.

Thus {Lnx} is a Cauchy sequence. Let

Lx = lim
n→∞

Lnx.
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Then, clearly, L is linear because if x1, x2 are in X, and a, b are scalars, then

L (ax1 + bx2) = lim
n→∞

Ln (ax1 + bx2)

= lim
n→∞

(aLnx1 + bLnx2)

= aLx1 + bLx2.

Also L is continuous. To see this, note that {||Ln||} is a Cauchy sequence of real
numbers because |||Ln|| − ||Lm||| ≤ ||Ln−Lm||. Hence there exists K > sup{||Ln|| :
n ∈ N}. Thus, if x ∈ X,

||Lx|| = lim
n→∞

||Lnx|| ≤ K||x||.

This proves the theorem.

11.1.2 Uniform Boundedness Theorem

The next big result is sometimes called the Uniform Boundedness theorem, or the
Banach-Steinhaus theorem. This is a very surprising theorem which implies that for
a collection of bounded linear operators, if they are bounded pointwise, then they are
also bounded uniformly. As an example of a situation in which pointwise bounded
does not imply uniformly bounded, consider the functions fα (x) ≡ X(α,1) (x)x−1

for α ∈ (0, 1). Clearly each function is bounded and the collection of functions is
bounded at each point of (0, 1), but there is no bound for all these functions taken
together. One problem is that (0, 1) is not a Banach space. Therefore, the functions
cannot be linear.

Theorem 11.8 Let X be a Banach space and let Y be a normed linear space. Let
{Lα}α∈Λ be a collection of elements of L(X, Y ). Then one of the following happens.

a.) sup{||Lα|| : α ∈ Λ} < ∞
b.) There exists a dense Gδ set, D, such that for all x ∈ D,

sup{||Lαx|| α ∈ Λ} = ∞.

Proof: For each n ∈ N, define

Un = {x ∈ X : sup{||Lαx|| : α ∈ Λ} > n}.

Then Un is an open set because if x ∈ Un, then there exists α ∈ Λ such that

||Lαx|| > n

But then, since Lα is continuous, this situation persists for all y sufficiently close
to x, say for all y ∈ B (x, δ). Then B (x, δ) ⊆ Un which shows Un is open.

Case b.) is obtained from Theorem 11.2 if each Un is dense.
The other case is that for some n, Un is not dense. If this occurs, there exists

x0 and r > 0 such that for all x ∈ B(x0, r), ||Lαx|| ≤ n for all α. Now if y ∈
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B(0, r), x0 + y ∈ B(x0, r). Consequently, for all such y, ||Lα(x0 + y)|| ≤ n. This
implies that for all α ∈ Λ and ||y|| < r,

||Lαy|| ≤ n + ||Lα(x0)|| ≤ 2n.

Therefore, if ||y|| ≤ 1,
∣∣∣∣ r

2y
∣∣∣∣ < r and so for all α,

||Lα

(r

2
y
)
|| ≤ 2n.

Now multiplying by r/2 it follows that whenever ||y|| ≤ 1, ||Lα (y)|| ≤ 4n/r. Hence
case a.) holds.

11.1.3 Open Mapping Theorem

Another remarkable theorem which depends on the Baire category theorem is the
open mapping theorem. Unlike Theorem 11.8 it requires both X and Y to be
Banach spaces.

Theorem 11.9 Let X and Y be Banach spaces, let L ∈ L(X, Y ), and suppose L
is onto. Then L maps open sets onto open sets.

To aid in the proof, here is a lemma.

Lemma 11.10 Let a and b be positive constants and suppose

B(0, a) ⊆ L(B(0, b)).

Then
L(B(0, b)) ⊆ L(B(0, 2b)).

Proof of Lemma 11.10: Let y ∈ L(B(0, b)). There exists x1 ∈ B(0, b) such
that ||y − Lx1|| < a

2 . Now this implies

2y − 2Lx1 ∈ B(0, a) ⊆ L(B(0, b)).

Thus 2y − 2Lx1 ∈ L(B(0, b)) just like y was. Therefore, there exists x2 ∈ B(0, b)
such that ||2y − 2Lx1 − Lx2|| < a/2. Hence ||4y − 4Lx1 − 2Lx2|| < a, and there
exists x3 ∈ B (0, b) such that ||4y − 4Lx1 − 2Lx2 − Lx3|| < a/2. Continuing in this
way, there exist x1, x2, x3, x4, ... in B(0, b) such that

||2ny −
n∑

i=1

2n−(i−1)L(xi)|| < a

which implies

||y −
n∑

i=1

2−(i−1)L(xi)|| = ||y − L

(
n∑

i=1

2−(i−1)(xi)

)
|| < 2−na (11.2)
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Now consider the partial sums of the series,
∑∞

i=1 2−(i−1)xi.

||
n∑

i=m

2−(i−1)xi|| ≤ b

∞∑

i=m

2−(i−1) = b 2−m+2.

Therefore, these partial sums form a Cauchy sequence and so since X is complete,
there exists x =

∑∞
i=1 2−(i−1)xi. Letting n →∞ in 11.2 yields ||y − Lx|| = 0. Now

||x|| = lim
n→∞

||
n∑

i=1

2−(i−1)xi||

≤ lim
n→∞

n∑

i=1

2−(i−1)||xi|| < lim
n→∞

n∑

i=1

2−(i−1)b = 2b.

This proves the lemma.
Proof of Theorem 11.9: Y = ∪∞n=1L(B(0, n)). By Corollary 11.3, the set,

L(B(0, n0)) has nonempty interior for some n0. Thus B(y, r) ⊆ L(B(0, n0)) for
some y and some r > 0. Since L is linear B(−y, r) ⊆ L(B(0, n0)) also. Here is
why. If z ∈ B(−y, r), then −z ∈ B(y, r) and so there exists xn ∈ B (0, n0) such
that Lxn → −z. Therefore, L (−xn) → z and −xn ∈ B (0, n0) also. Therefore
z ∈ L(B(0, n0)). Then it follows that

B(0, r) ⊆ B(y, r) + B(−y, r)
≡ {y1 + y2 : y1 ∈ B (y, r) and y2 ∈ B (−y, r)}
⊆ L(B(0, 2n0))

The reason for the last inclusion is that from the above, if y1 ∈ B (y, r) and y2 ∈
B (−y, r), there exists xn, zn ∈ B (0, n0) such that

Lxn → y1, Lzn → y2.

Therefore,
||xn + zn|| ≤ 2n0

and so (y1 + y2) ∈ L(B(0, 2n0)).
By Lemma 11.10, L(B(0, 2n0)) ⊆ L(B(0, 4n0)) which shows

B(0, r) ⊆ L(B(0, 4n0)).

Letting a = r(4n0)−1, it follows, since L is linear, that B(0, a) ⊆ L(B(0, 1)). It
follows since L is linear,

L(B(0, r)) ⊇ B(0, ar). (11.3)

Now let U be open in X and let x + B(0, r) = B(x, r) ⊆ U . Using 11.3,

L(U) ⊇ L(x + B(0, r))

= Lx + L(B(0, r)) ⊇ Lx + B(0, ar) = B(Lx, ar).
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Hence
Lx ∈ B(Lx, ar) ⊆ L(U).

which shows that every point, Lx ∈ LU , is an interior point of LU and so LU is
open. This proves the theorem.

This theorem is surprising because it implies that if |·| and ||·|| are two norms
with respect to which a vector space X is a Banach space such that |·| ≤ K ||·||,
then there exists a constant k, such that ||·|| ≤ k |·| . This can be useful because
sometimes it is not clear how to compute k when all that is needed is its existence.
To see the open mapping theorem implies this, consider the identity map id x = x.
Then id : (X, ||·||) → (X, |·|) is continuous and onto. Hence id is an open map which
implies id−1 is continuous. Theorem 11.4 gives the existence of the constant k.

11.1.4 Closed Graph Theorem

Definition 11.11 Let f : D → E. The set of all ordered pairs of the form
{(x, f(x)) : x ∈ D} is called the graph of f .

Definition 11.12 If X and Y are normed linear spaces, make X×Y into a normed
linear space by using the norm ||(x, y)|| = max (||x||, ||y||) along with component-
wise addition and scalar multiplication. Thus a(x, y)+ b(z, w) ≡ (ax+ bz, ay + bw).

There are other ways to give a norm for X × Y . For example, you could define
||(x, y)|| = ||x||+ ||y||

Lemma 11.13 The norm defined in Definition 11.12 on X × Y along with the
definition of addition and scalar multiplication given there make X × Y into a
normed linear space.

Proof: The only axiom for a norm which is not obvious is the triangle inequality.
Therefore, consider

||(x1, y1) + (x2, y2)|| = ||(x1 + x2, y1 + y2)||
= max (||x1 + x2|| , ||y1 + y2||)
≤ max (||x1||+ ||x2|| , ||y1||+ ||y2||)

≤ max (||x1|| , ||y1||) + max (||x2|| , ||y2||)
= ||(x1, y1)||+ ||(x2, y2)|| .

It is obvious X × Y is a vector space from the above definition. This proves the
lemma.

Lemma 11.14 If X and Y are Banach spaces, then X × Y with the norm and
vector space operations defined in Definition 11.12 is also a Banach space.
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Proof: The only thing left to check is that the space is complete. But this
follows from the simple observation that {(xn, yn)} is a Cauchy sequence in X × Y
if and only if {xn} and {yn} are Cauchy sequences in X and Y respectively. Thus
if {(xn, yn)} is a Cauchy sequence in X×Y , it follows there exist x and y such that
xn → x and yn → y. But then from the definition of the norm, (xn, yn) → (x, y).

Lemma 11.15 Every closed subspace of a Banach space is a Banach space.

Proof: If F ⊆ X where X is a Banach space and {xn} is a Cauchy sequence
in F , then since X is complete, there exists a unique x ∈ X such that xn → x.
However this means x ∈ F = F since F is closed.

Definition 11.16 Let X and Y be Banach spaces and let D ⊆ X be a subspace. A
linear map L : D → Y is said to be closed if its graph is a closed subspace of X×Y .
Equivalently, L is closed if xn → x and Lxn → y implies x ∈ D and y = Lx.

Note the distinction between closed and continuous. If the operator is closed
the assertion that y = Lx only follows if it is known that the sequence {Lxn}
converges. In the case of a continuous operator, the convergence of {Lxn} follows
from the assumption that xn → x. It is not always the case that a mapping which
is closed is necessarily continuous. Consider the function f (x) = tan (x) if x is not
an odd multiple of π

2 and f (x) ≡ 0 at every odd multiple of π
2 . Then the graph

is closed and the function is defined on R but it clearly fails to be continuous. Of
course this function is not linear. You could also consider the map,

d

dx
:
{
y ∈ C1 ([0, 1]) : y (0) = 0

} ≡ D → C ([0, 1]) .

where the norm is the uniform norm on C ([0, 1]) , ||y||∞. If y ∈ D, then

y (x) =
∫ x

0

y′ (t) dt.

Therefore, if dyn

dx → f ∈ C ([0, 1]) and if yn → y in C ([0, 1]) it follows that

yn (x) =
∫ x

0
dyn(t)

dx dt
↓ ↓

y (x) =
∫ x

0
f (t) dt

and so by the fundamental theorem of calculus f (x) = y′ (x) and so the mapping
is closed. It is obviously not continuous because it takes y (x) and y (x)+ 1

n sin (nx)
to two functions which are far from each other even though these two functions are
very close in C ([0, 1]). Furthermore, it is not defined on the whole space, C ([0, 1]).

The next theorem, the closed graph theorem, gives conditions under which closed
implies continuous.

Theorem 11.17 Let X and Y be Banach spaces and suppose L : X → Y is closed
and linear. Then L is continuous.
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Proof: Let G be the graph of L. G = {(x, Lx) : x ∈ X}. By Lemma 11.15
it follows that G is a Banach space. Define P : G → X by P (x, Lx) = x. P maps
the Banach space G onto the Banach space X and is continuous and linear. By the
open mapping theorem, P maps open sets onto open sets. Since P is also one to
one, this says that P−1 is continuous. Thus ||P−1x|| ≤ K||x||. Hence

||Lx|| ≤ max (||x||, ||Lx||) ≤ K||x||

By Theorem 11.4 on Page 255, this shows L is continuous and proves the theorem.
The following corollary is quite useful. It shows how to obtain a new norm on

the domain of a closed operator such that the domain with this new norm becomes
a Banach space.

Corollary 11.18 Let L : D ⊆ X → Y where X, Y are a Banach spaces, and L is
a closed operator. Then define a new norm on D by

||x||D ≡ ||x||X + ||Lx||Y .

Then D with this new norm is a Banach space.

Proof: If {xn} is a Cauchy sequence in D with this new norm, it follows both
{xn} and {Lxn} are Cauchy sequences and therefore, they converge. Since L is
closed, xn → x and Lxn → Lx for some x ∈ D. Thus ||xn − x||D → 0.

11.2 Hahn Banach Theorem

The closed graph, open mapping, and uniform boundedness theorems are the three
major topological theorems in functional analysis. The other major theorem is the
Hahn-Banach theorem which has nothing to do with topology. Before presenting
this theorem, here are some preliminaries about partially ordered sets.

Definition 11.19 Let F be a nonempty set. F is called a partially ordered set if
there is a relation, denoted here by ≤, such that

x ≤ x for all x ∈ F .

If x ≤ y and y ≤ z then x ≤ z.

C ⊆ F is said to be a chain if every two elements of C are related. This means that
if x, y ∈ C, then either x ≤ y or y ≤ x. Sometimes a chain is called a totally ordered
set. C is said to be a maximal chain if whenever D is a chain containing C, D = C.

The most common example of a partially ordered set is the power set of a given
set with ⊆ being the relation. It is also helpful to visualize partially ordered sets
as trees. Two points on the tree are related if they are on the same branch of
the tree and one is higher than the other. Thus two points on different branches
would not be related although they might both be larger than some point on the
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trunk. You might think of many other things which are best considered as partially
ordered sets. Think of food for example. You might find it difficult to determine
which of two favorite pies you like better although you may be able to say very
easily that you would prefer either pie to a dish of lard topped with whipped cream
and mustard. The following theorem is equivalent to the axiom of choice. For a
discussion of this, see the appendix on the subject.

Theorem 11.20 (Hausdorff Maximal Principle) Let F be a nonempty partially
ordered set. Then there exists a maximal chain.

Definition 11.21 Let X be a real vector space ρ : X → R is called a gauge function
if

ρ(x + y) ≤ ρ(x) + ρ(y),

ρ(ax) = aρ(x) if a ≥ 0. (11.4)

Suppose M is a subspace of X and z /∈ M . Suppose also that f is a linear
real-valued function having the property that f(x) ≤ ρ(x) for all x ∈ M . Consider
the problem of extending f to M ⊕ Rz such that if F is the extended function,
F (y) ≤ ρ(y) for all y ∈ M ⊕ Rz and F is linear. Since F is to be linear, it suffices
to determine how to define F (z). Letting a > 0, it is required to define F (z) such
that the following hold for all x, y ∈ M .

f(x)︷ ︸︸ ︷
F (x) + aF (z) = F (x + az) ≤ ρ(x + az),

f(y)︷ ︸︸ ︷
F (y)− aF (z) = F (y − az) ≤ ρ(y − az). (11.5)

Now if these inequalities hold for all y/a, they hold for all y because M is given to
be a subspace. Therefore, multiplying by a−1 11.4 implies that what is needed is
to choose F (z) such that for all x, y ∈ M ,

f(x) + F (z) ≤ ρ(x + z), f(y)− ρ(y − z) ≤ F (z)

and that if F (z) can be chosen in this way, this will satisfy 11.5 for all x, y and the
problem of extending f will be solved. Hence it is necessary to choose F (z) such
that for all x, y ∈ M

f(y)− ρ(y − z) ≤ F (z) ≤ ρ(x + z)− f(x). (11.6)

Is there any such number between f(y) − ρ(y − z) and ρ(x + z) − f(x) for every
pair x, y ∈ M? This is where f(x) ≤ ρ(x) on M and that f is linear is used.
For x, y ∈ M ,

ρ(x + z)− f(x)− [f(y)− ρ(y − z)]

= ρ(x + z) + ρ(y − z)− (f(x) + f(y))

≥ ρ(x + y)− f(x + y) ≥ 0.
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Therefore there exists a number between

sup {f(y)− ρ(y − z) : y ∈ M}

and
inf {ρ(x + z)− f(x) : x ∈ M}

Choose F (z) to satisfy 11.6. This has proved the following lemma.

Lemma 11.22 Let M be a subspace of X, a real linear space, and let ρ be a gauge
function on X. Suppose f : M → R is linear, z /∈ M , and f (x) ≤ ρ (x) for all
x ∈ M . Then f can be extended to M ⊕Rz such that, if F is the extended function,
F is linear and F (x) ≤ ρ(x) for all x ∈ M ⊕ Rz.

With this lemma, the Hahn Banach theorem can be proved.

Theorem 11.23 (Hahn Banach theorem) Let X be a real vector space, let M be a
subspace of X, let f : M → R be linear, let ρ be a gauge function on X, and suppose
f(x) ≤ ρ(x) for all x ∈ M . Then there exists a linear function, F : X → R, such
that

a.) F (x) = f(x) for all x ∈ M
b.) F (x) ≤ ρ(x) for all x ∈ X.

Proof: Let F = {(V, g) : V ⊇ M, V is a subspace of X, g : V → R is linear,
g(x) = f(x) for all x ∈ M , and g(x) ≤ ρ(x) for x ∈ V }. Then (M, f) ∈ F so F 6= ∅.
Define a partial order by the following rule.

(V, g) ≤ (W,h)

means
V ⊆ W and h(x) = g(x) if x ∈ V.

By Theorem 11.20, there exists a maximal chain, C ⊆ F . Let Y = ∪{V : (V, g) ∈ C}
and let h : Y → R be defined by h(x) = g(x) where x ∈ V and (V, g) ∈ C. This
is well defined because if x ∈ V1 and V2 where (V1, g1) and (V2, g2) are both in the
chain, then since C is a chain, the two element related. Therefore, g1 (x) = g2 (x).
Also h is linear because if ax + by ∈ Y , then x ∈ V1 and y ∈ V2 where (V1, g1)
and (V2, g2) are elements of C. Therefore, letting V denote the larger of the two Vi,
and g be the function that goes with V , it follows ax + by ∈ V where (V, g) ∈ C.
Therefore,

h (ax + by) = g (ax + by)
= ag (x) + bg (y)
= ah (x) + bh (y) .

Also, h(x) = g (x) ≤ ρ(x) for any x ∈ Y because for such x, x ∈ V where (V, g) ∈ C.
Is Y = X? If not, there exists z ∈ X \ Y and there exists an extension of h to

Y ⊕ Rz using Lemma 11.22. Letting h denote this extended function, contradicts
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the maximality of C. Indeed, C ∪ {(Y ⊕ Rz, h
)} would be a longer chain. This

proves the Hahn Banach theorem.
This is the original version of the theorem. There is also a version of this theorem

for complex vector spaces which is based on a trick.

Corollary 11.24 (Hahn Banach) Let M be a subspace of a complex normed linear
space, X, and suppose f : M → C is linear and satisfies |f(x)| ≤ K||x|| for all
x ∈ M . Then there exists a linear function, F , defined on all of X such that
F (x) = f(x) for all x ∈ M and |F (x)| ≤ K||x|| for all x.

Proof: First note f(x) = Re f(x) + i Im f (x) and so

Re f(ix) + i Im f(ix) = f(ix) = if(x) = i Re f(x)− Im f(x).

Therefore, Im f(x) = −Re f(ix), and

f(x) = Re f(x)− i Re f(ix).

This is important because it shows it is only necessary to consider Re f in under-
standing f . Now it happens that Re f is linear with respect to real scalars so the
above version of the Hahn Banach theorem applies. This is shown next.

If c is a real scalar

Re f(cx)− i Re f(icx) = cf(x) = c Re f(x)− icRe f(ix).

Thus Re f(cx) = c Re f(x). Also,

Re f(x + y)− i Re f(i (x + y)) = f(x + y)
= f (x) + f (y)

= Re f(x)− i Re f(ix) + Re f(y)− i Re f(iy).

Equating real parts, Re f(x + y) = Re f(x) + Re f(y). Thus Re f is linear with
respect to real scalars as hoped.

Consider X as a real vector space and let ρ(x) ≡ K||x||. Then for all x ∈ M ,

|Re f(x)| ≤ |f (x)| ≤ K||x|| = ρ(x).

From Theorem 11.23, Re f may be extended to a function, h which satisfies

h(ax + by) = ah(x) + bh(y) if a, b ∈ R
h(x) ≤ K||x|| for all x ∈ X.

Actually, |h (x)| ≤ K ||x|| . The reason for this is that h (−x) = −h (x) ≤ K ||−x|| =
K ||x|| and therefore, h (x) ≥ −K ||x||. Let

F (x) ≡ h(x)− ih(ix).
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By arguments similar to the above, F is linear.

F (ix) = h (ix)− ih (−x)
= ih (x) + h (ix)
= i (h (x)− ih (ix)) = iF (x) .

If c is a real scalar,

F (cx) = h(cx)− ih(icx)
= ch (x)− cih (ix) = cF (x)

Now

F (x + y) = h(x + y)− ih(i (x + y))
= h (x) + h (y)− ih (ix)− ih (iy)
= F (x) + F (y) .

Thus

F ((a + ib) x) = F (ax) + F (ibx)
= aF (x) + ibF (x)
= (a + ib) F (x) .

This shows F is linear as claimed.
Now wF (x) = |F (x)| for some |w| = 1. Therefore

|F (x)| = wF (x) = h(wx)−
must equal zero︷ ︸︸ ︷

ih(iwx) = h(wx)
= |h(wx)| ≤ K||wx|| = K ||x|| .

This proves the corollary.

Definition 11.25 Let X be a Banach space. Denote by X ′ the space of continuous
linear functions which map X to the field of scalars. Thus X ′ = L(X,F). By
Theorem 11.7 on Page 256, X ′ is a Banach space. Remember with the norm defined
on L (X,F),

||f || = sup{|f(x)| : ||x|| ≤ 1}
X ′ is called the dual space.

Definition 11.26 Let X and Y be Banach spaces and suppose L ∈ L(X,Y ). Then
define the adjoint map in L(Y ′, X ′), denoted by L∗, by

L∗y∗(x) ≡ y∗(Lx)

for all y∗ ∈ Y ′.
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The following diagram is a good one to help remember this definition.

X ′
L∗

← Y ′

X
→
L

Y

This is a generalization of the adjoint of a linear transformation on an inner
product space. Recall

(Ax, y) = (x,A∗y)

What is being done here is to generalize this algebraic concept to arbitrary Banach
spaces. There are some issues which need to be discussed relative to the above
definition. First of all, it must be shown that L∗y∗ ∈ X ′. Also, it will be useful to
have the following lemma which is a useful application of the Hahn Banach theorem.

Lemma 11.27 Let X be a normed linear space and let x ∈ X. Then there exists
x∗ ∈ X ′ such that ||x∗|| = 1 and x∗(x) = ||x||.

Proof: Let f : Fx → F be defined by f(αx) = α||x||. Then for y = αx ∈ Fx,

|f (y)| = |f (αx)| = |α| ||x|| = |y| .
By the Hahn Banach theorem, there exists x∗ ∈ X ′ such that x∗(αx) = f(αx) and
||x∗|| ≤ 1. Since x∗(x) = ||x|| it follows that ||x∗|| = 1 because

||x∗|| ≥
∣∣∣∣x∗

(
x

||x||
)∣∣∣∣ =

||x||
||x|| = 1.

This proves the lemma.

Theorem 11.28 Let L ∈ L(X, Y ) where X and Y are Banach spaces. Then
a.) L∗ ∈ L(Y ′, X ′) as claimed and ||L∗|| = ||L||.
b.) If L maps one to one onto a closed subspace of Y , then L∗ is onto.
c.) If L maps onto a dense subset of Y , then L∗ is one to one.

Proof: It is routine to verify L∗y∗ and L∗ are both linear. This follows imme-
diately from the definition. As usual, the interesting thing concerns continuity.

||L∗y∗|| = sup
||x||≤1

|L∗y∗ (x)| = sup
||x||≤1

|y∗ (Lx)| ≤ ||y∗|| ||L|| .

Thus L∗ is continuous as claimed and ||L∗|| ≤ ||L|| .
By Lemma 11.27, there exists y∗x ∈ Y ′ such that ||y∗x|| = 1 and y∗x (Lx) =

||Lx|| .Therefore,

||L∗|| = sup
||y∗||≤1

||L∗y∗|| = sup
||y∗||≤1

sup
||x||≤1

|L∗y∗ (x)|

= sup
||y∗||≤1

sup
||x||≤1

|y∗ (Lx)| = sup
||x||≤1

sup
||y∗||≤1

|y∗ (Lx)| ≥ sup
||x||≤1

|y∗x (Lx)| = sup
||x||≤1

||Lx|| = ||L||
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showing that ||L∗|| ≥ ||L|| and this shows part a.).
If L is one to one and onto a closed subset of Y , then L (X) being a closed

subspace of a Banach space, is itself a Banach space and so the open mapping
theorem implies L−1 : L(X) → X is continuous. Hence

||x|| = ||L−1Lx|| ≤
∣∣∣∣L−1

∣∣∣∣ ||Lx||
Now let x∗ ∈ X ′ be given. Define f ∈ L(L(X),C) by f(Lx) = x∗(x). The function,
f is well defined because if Lx1 = Lx2, then since L is one to one, it follows x1 = x2

and so f (L (x1)) = x∗ (x1) = x∗ (x2) = f (L (x1)). Also, f is linear because

f (aL (x1) + bL (x2)) = f (L (ax1 + bx2))
≡ x∗ (ax1 + bx2)
= ax∗ (x1) + bx∗ (x2)
= af (L (x1)) + bf (L (x2)) .

In addition to this,

|f(Lx)| = |x∗(x)| ≤ ||x∗|| ||x|| ≤ ||x∗||
∣∣∣∣L−1

∣∣∣∣ ||Lx||
and so the norm of f on L (X) is no larger than ||x∗|| ∣∣∣∣L−1

∣∣∣∣. By the Hahn Banach
theorem, there exists an extension of f to an element y∗ ∈ Y ′ such that ||y∗|| ≤
||x∗||

∣∣∣∣L−1
∣∣∣∣. Then

L∗y∗(x) = y∗(Lx) = f(Lx) = x∗(x)

so L∗y∗ = x∗ because this holds for all x. Since x∗ was arbitrary, this shows L∗ is
onto and proves b.).

Consider the last assertion. Suppose L∗y∗ = 0. Is y∗ = 0? In other words
is y∗ (y) = 0 for all y ∈ Y ? Pick y ∈ Y . Since L (X) is dense in Y, there exists
a sequence, {Lxn} such that Lxn → y. But then by continuity of y∗, y∗ (y) =
limn→∞ y∗ (Lxn) = limn→∞ L∗y∗ (xn) = 0. Since y∗ (y) = 0 for all y, this implies
y∗ = 0 and so L∗ is one to one.

Corollary 11.29 Suppose X and Y are Banach spaces, L ∈ L(X, Y ), and L is one
to one and onto. Then L∗ is also one to one and onto.

There exists a natural mapping, called the James map from a normed linear
space, X, to the dual of the dual space which is described in the following definition.

Definition 11.30 Define J : X → X ′′ by J(x)(x∗) = x∗(x).

Theorem 11.31 The map, J , has the following properties.
a.) J is one to one and linear.
b.) ||Jx|| = ||x|| and ||J || = 1.
c.) J(X) is a closed subspace of X ′′ if X is complete.
Also if x∗ ∈ X ′,

||x∗|| = sup {|x∗∗ (x∗)| : ||x∗∗|| ≤ 1, x∗∗ ∈ X ′′} .
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Proof:

J (ax + by) (x∗) ≡ x∗ (ax + by)
= ax∗ (x) + bx∗ (y)
= (aJ (x) + bJ (y)) (x∗) .

Since this holds for all x∗ ∈ X ′, it follows that

J (ax + by) = aJ (x) + bJ (y)

and so J is linear. If Jx = 0, then by Lemma 11.27 there exists x∗ such that
x∗(x) = ||x|| and ||x∗|| = 1. Then

0 = J(x)(x∗) = x∗(x) = ||x||.

This shows a.).
To show b.), let x ∈ X and use Lemma 11.27 to obtain x∗ ∈ X ′ such that

x∗(x) = ||x|| with ||x∗|| = 1. Then

||x|| ≥ sup{|y∗(x)| : ||y∗|| ≤ 1}
= sup{|J(x)(y∗)| : ||y∗|| ≤ 1} = ||Jx||
≥ |J(x)(x∗)| = |x∗(x)| = ||x||

Therefore, ||Jx|| = ||x|| as claimed. Therefore,

||J || = sup{||Jx|| : ||x|| ≤ 1} = sup{||x|| : ||x|| ≤ 1} = 1.

This shows b.).
To verify c.), use b.). If Jxn → y∗∗ ∈ X ′′ then by b.), xn is a Cauchy sequence

converging to some x ∈ X because

||xn − xm|| = ||Jxn − Jxm||

and {Jxn} is a Cauchy sequence. Then Jx = limn→∞ Jxn = y∗∗.
Finally, to show the assertion about the norm of x∗, use what was just shown

applied to the James map from X ′ to X ′′′ still referred to as J .

||x∗|| = sup {|x∗ (x)| : ||x|| ≤ 1} = sup {|J (x) (x∗)| : ||Jx|| ≤ 1}

≤ sup {|x∗∗ (x∗)| : ||x∗∗|| ≤ 1} = sup {|J (x∗) (x∗∗)| : ||x∗∗|| ≤ 1}
≡ ||Jx∗|| = ||x∗||.

This proves the theorem.

Definition 11.32 When J maps X onto X ′′, X is called reflexive.

It happens the Lp spaces are reflexive whenever p > 1.
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11.3 Exercises

1. Is N a Gδ set? What about Q? What about a countable dense subset of a
complete metric space?

2. ↑ Let f : R→ C be a function. Define the oscillation of a function in B (x, r)
by ωrf(x) = sup{|f(z) − f(y)| : y, z ∈ B(x, r)}. Define the oscillation of the
function at the point, x by ωf(x) = limr→0 ωrf(x). Show f is continuous
at x if and only if ωf(x) = 0. Then show the set of points where f is
continuous is a Gδ set (try Un = {x : ωf(x) < 1

n}). Does there exist a
function continuous at only the rational numbers? Does there exist a function
continuous at every irrational and discontinuous elsewhere? Hint: Suppose
D is any countable set, D = {di}∞i=1, and define the function, fn (x) to equal
zero for every x /∈ {d1, · · ·, dn} and 2−n for x in this finite set. Then consider
g (x) ≡ ∑∞

n=1 fn (x). Show that this series converges uniformly.

3. Let f ∈ C([0, 1]) and suppose f ′(x) exists. Show there exists a constant, K,
such that |f(x) − f(y)| ≤ K|x − y| for all y ∈ [0, 1]. Let Un = {f ∈ C([0, 1])
such that for each x ∈ [0, 1] there exists y ∈ [0, 1] such that |f(x) − f(y)| >
n|x−y|}. Show that Un is open and dense in C([0, 1]) where for f ∈ C ([0, 1]),

||f || ≡ sup {|f (x)| : x ∈ [0, 1]} .

Show that ∩nUn is a dense Gδ set of nowhere differentiable continuous func-
tions. Thus every continuous function is uniformly close to one which is
nowhere differentiable.

4. ↑ Suppose f (x) =
∑∞

k=1 uk (x) where the convergence is uniform and each uk

is a polynomial. Is it reasonable to conclude that f ′ (x) =
∑∞

k=1 u′k (x)? The
answer is no. Use Problem 3 and the Weierstrass approximation theorem do
show this.

5. Let X be a normed linear space. A ⊆ X is “weakly bounded” if for each x∗ ∈
X ′, sup{|x∗(x)| : x ∈ A} < ∞, while A is bounded if sup{||x|| : x ∈ A} < ∞.
Show A is weakly bounded if and only if it is bounded.

6. Let f be a 2π periodic locally integrable function on R. The Fourier series for
f is given by

∞∑

k=−∞
akeikx ≡ lim

n→∞

n∑

k=−n

akeikx ≡ lim
n→∞

Snf (x)

where
ak =

1
2π

∫ π

−π

e−ikxf (x) dx.

Show
Snf (x) =

∫ π

−π

Dn (x− y) f (y) dy
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where

Dn(t) =
sin((n + 1

2 )t)
2π sin( t

2 )
.

Verify that
∫ π

−π
Dn (t) dt = 1. Also show that if g ∈ L1 (R) , then

lim
a→∞

∫

R
g (x) sin (ax) dx = 0.

This last is called the Riemann Lebesgue lemma. Hint: For the last part,
assume first that g ∈ C∞c (R) and integrate by parts. Then exploit density of
the set of functions in L1 (R).

7. ↑It turns out that the Fourier series sometimes converges to the function point-
wise. Suppose f is 2π periodic and Holder continuous. That is |f (x)− f (y)| ≤
K |x− y|θ where θ ∈ (0, 1]. Show that if f is like this, then the Fourier series
converges to f at every point. Next modify your argument to show that if
at every point, x, |f (x+)− f (y)| ≤ K |x− y|θ for y close enough to x and
larger than x and |f (x−)− f (y)| ≤ K |x− y|θ for every y close enough to x

and smaller than x, then Snf (x) → f(x+)+f(x−)
2 , the midpoint of the jump

of the function. Hint: Use Problem 6.

8. ↑ Let Y = {f such that f is continuous, defined on R, and 2π periodic}. Define
||f ||Y = sup{|f(x)| : x ∈ [−π, π]}. Show that (Y, || ||Y ) is a Banach space. Let
x ∈ R and define Ln(f) = Snf(x). Show Ln ∈ Y ′ but limn→∞ ||Ln|| = ∞.
Show that for each x ∈ R, there exists a dense Gδ subset of Y such that for f
in this set, |Snf(x)| is unbounded. Finally, show there is a dense Gδ subset of
Y having the property that |Snf(x)| is unbounded on the rational numbers.
Hint: To do the first part, let f(y) approximate sgn(Dn(x−y)). Here sgn r =
1 if r > 0,−1 if r < 0 and 0 if r = 0. This rules out one possibility of the
uniform boundedness principle. After this, show the countable intersection of
dense Gδ sets must also be a dense Gδ set.

9. Let α ∈ (0, 1]. Define, for X a compact subset of Rp,

Cα (X;Rn) ≡ {f ∈ C (X;Rn) : ρα (f) + ||f || ≡ ||f ||α < ∞}

where
||f || ≡ sup{|f (x)| : x ∈ X}

and

ρα (f) ≡ sup{ |f (x)− f (y)|
|x− y|α : x,y ∈ X, x 6= y}.

Show that (Cα (X;Rn) , ||·||α) is a complete normed linear space. This is
called a Holder space. What would this space consist of if α > 1?
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10. ↑Let X be the Holder functions which are periodic of period 2π. Define
Lnf (x) = Snf (x) where Ln : X → Y for Y given in Problem 8. Show ||Ln||
is bounded independent of n. Conclude that Lnf → f in Y for all f ∈ X. In
other words, for the Holder continuous and 2π periodic functions, the Fourier
series converges to the function uniformly. Hint: Lnf (x) is given by

Lnf (x) =
∫ π

−π

Dn (y) f (x− y) dy

where f (x− y) = f (x) + g (x, y) where |g (x, y)| ≤ C |y|α. Use the fact the
Dirichlet kernel integrates to one to write

∣∣∣∣
∫ π

−π

Dn (y) f (x− y) dy

∣∣∣∣ ≤

=|f(x)|︷ ︸︸ ︷∣∣∣∣
∫ π

−π

Dn (y) f (x) dy

∣∣∣∣

+C

∣∣∣∣
∫ π

−π

sin
((

n +
1
2

)
y

)
(g (x, y) / sin (y/2)) dy

∣∣∣∣
Show the functions, y → g (x, y) / sin (y/2) are bounded in L1 independent of
x and get a uniform bound on ||Ln||. Now use a similar argument to show
{Lnf} is equicontinuous in addition to being uniformly bounded. In doing
this you might proceed as follows. Show

|Lnf (x)− Lnf (x′)| ≤
∣∣∣∣
∫ π

−π

Dn (y) (f (x− y)− f (x′ − y)) dy

∣∣∣∣

≤ ||f ||α |x− x′|α

+

∣∣∣∣∣
∫ π

−π

sin
((

n +
1
2

)
y

) (
f (x− y)− f (x)− (f (x′ − y)− f (x′))

sin
(

y
2

)
)

dy

∣∣∣∣∣

Then split this last integral into two cases, one for |y| < η and one where
|y| ≥ η. If Lnf fails to converge to f uniformly, then there exists ε > 0 and a
subsequence, nk such that ||Lnk

f − f ||∞ ≥ ε where this is the norm in Y or
equivalently the sup norm on [−π, π]. By the Arzela Ascoli theorem, there is
a further subsequence, Lnkl

f which converges uniformly on [−π, π]. But by
Problem 7 Lnf (x) → f (x).

11. Let X be a normed linear space and let M be a convex open set containing
0. Define

ρ(x) = inf{t > 0 :
x

t
∈ M}.

Show ρ is a gauge function defined on X. This particular example is called a
Minkowski functional. It is of fundamental importance in the study of locally
convex topological vector spaces. A set, M , is convex if λx + (1 − λ)y ∈ M
whenever λ ∈ [0, 1] and x, y ∈ M .
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12. ↑ The Hahn Banach theorem can be used to establish separation theorems. Let
M be an open convex set containing 0. Let x /∈ M . Show there exists x∗ ∈ X ′

such that Rex∗(x) ≥ 1 > Re x∗(y) for all y ∈ M . Hint: If y ∈ M, ρ(y) < 1.
Show this. If x /∈ M, ρ(x) ≥ 1. Try f(αx) = αρ(x) for α ∈ R. Then extend
f to the whole space using the Hahn Banach theorem and call the result F ,
show F is continuous, then fix it so F is the real part of x∗ ∈ X ′.

13. A Banach space is said to be strictly convex if whenever ||x|| = ||y|| and x 6= y,
then ∣∣∣∣

∣∣∣∣
x + y

2

∣∣∣∣
∣∣∣∣ < ||x||.

F : X → X ′ is said to be a duality map if it satisfies the following: a.)
||F (x)|| = ||x||. b.) F (x)(x) = ||x||2. Show that if X ′ is strictly convex, then
such a duality map exists. The duality map is an attempt to duplicate some
of the features of the Riesz map in Hilbert space. This Riesz map is the map
which takes a Hilbert space to its dual defined as follows.

R (x) (y) = (y, x)

The Riesz representation theorem for Hilbert space says this map is onto.
Hint: For an arbitrary Banach space, let

F (x) ≡
{

x∗ : ||x∗|| ≤ ||x|| and x∗ (x) = ||x||2
}

Show F (x) 6= ∅ by using the Hahn Banach theorem on f(αx) = α||x||2.
Next show F (x) is closed and convex. Finally show that you can replace
the inequality in the definition of F (x) with an equal sign. Now use strict
convexity to show there is only one element in F (x).

14. Prove the following theorem which is an improved version of the open mapping
theorem, [15]. Let X and Y be Banach spaces and let A ∈ L (X, Y ). Then
the following are equivalent.

AX = Y,

A is an open map.

Note this gives the equivalence between A being onto and A being an open
map. The open mapping theorem says that if A is onto then it is open.

15. Suppose D ⊆ X and D is dense in X. Suppose L : D → Y is linear and
||Lx|| ≤ K||x|| for all x ∈ D. Show there is a unique extension of L, L̃, defined
on all of X with ||L̃x|| ≤ K||x|| and L̃ is linear. You do not get uniqueness
when you use the Hahn Banach theorem. Therefore, in the situation of this
problem, it is better to use this result.

16. ↑ A Banach space is uniformly convex if whenever ||xn||, ||yn|| ≤ 1 and
||xn + yn|| → 2, it follows that ||xn − yn|| → 0. Show uniform convexity
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implies strict convexity (See Problem 13). Hint: Suppose it is not strictly
convex. Then there exist ||x|| and ||y|| both equal to 1 and

∣∣∣∣xn+yn

2

∣∣∣∣ = 1
consider xn ≡ x and yn ≡ y, and use the conditions for uniform convexity to
get a contradiction. It can be shown that Lp is uniformly convex whenever
∞ > p > 1. See Hewitt and Stromberg [23] or Ray [34].

17. Show that a closed subspace of a reflexive Banach space is reflexive. Hint:
The proof of this is an exercise in the use of the Hahn Banach theorem. Let
Y be the closed subspace of the reflexive space X and let y∗∗ ∈ Y ′′. Then
i∗∗y∗∗ ∈ X ′′ and so i∗∗y∗∗ = Jx for some x ∈ X because X is reflexive.
Now argue that x ∈ Y as follows. If x /∈ Y , then there exists x∗ such that
x∗ (Y ) = 0 but x∗ (x) 6= 0. Thus, i∗x∗ = 0. Use this to get a contradiction.
When you know that x = y ∈ Y , the Hahn Banach theorem implies i∗ is onto
Y ′ and for all x∗ ∈ X ′,

y∗∗ (i∗x∗) = i∗∗y∗∗ (x∗) = Jx (x∗) = x∗ (x) = x∗ (iy) = i∗x∗ (y).

18. xn converges weakly to x if for every x∗ ∈ X ′, x∗(xn) → x∗(x). xn ⇀ x
denotes weak convergence. Show that if ||xn − x|| → 0, then xn ⇀ x.

19. ↑ Show that if X is uniformly convex, then if xn ⇀ x and ||xn|| → ||x||, it
follows ||xn−x|| → 0. Hint: Use Lemma 11.27 to obtain f ∈ X ′ with ||f || = 1
and f(x) = ||x||. See Problem 16 for the definition of uniform convexity.
Now by the weak convergence, you can argue that if x 6= 0, f (xn/ ||xn||) →
f (x/ ||x||). You also might try to show this in the special case where ||xn|| =
||x|| = 1.

20. Suppose L ∈ L (X, Y ) and M ∈ L (Y, Z). Show ML ∈ L (X, Z) and that
(ML)∗ = L∗M∗.



Hilbert Spaces

12.1 Basic Theory

Definition 12.1 Let X be a vector space. An inner product is a mapping from
X ×X to C if X is complex and from X ×X to R if X is real, denoted by (x, y)
which satisfies the following.

(x, x) ≥ 0, (x, x) = 0 if and only if x = 0, (12.1)

(x, y) = (y, x). (12.2)

For a, b ∈ C and x, y, z ∈ X,

(ax + by, z) = a(x, z) + b(y, z). (12.3)

Note that 12.2 and 12.3 imply (x, ay + bz) = a(x, y) + b(x, z). Such a vector space
is called an inner product space.

The Cauchy Schwarz inequality is fundamental for the study of inner product
spaces.

Theorem 12.2 (Cauchy Schwarz) In any inner product space

|(x, y)| ≤ ||x|| ||y||.

Proof: Let ω ∈ C, |ω| = 1, and ω(x, y) = |(x, y)| = Re(x, yω). Let

F (t) = (x + tyω, x + tωy).

If y = 0 there is nothing to prove because

(x, 0) = (x, 0 + 0) = (x, 0) + (x, 0)

and so (x, 0) = 0. Thus, it can be assumed y 6= 0. Then from the axioms of the
inner product,

F (t) = ||x||2 + 2t Re(x, ωy) + t2||y||2 ≥ 0.

275
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This yields
||x||2 + 2t|(x, y)|+ t2||y||2 ≥ 0.

Since this inequality holds for all t ∈ R, it follows from the quadratic formula that

4|(x, y)|2 − 4||x||2||y||2 ≤ 0.

This yields the conclusion and proves the theorem.

Proposition 12.3 For an inner product space, ||x|| ≡ (x, x)1/2 does specify a
norm.

Proof: All the axioms are obvious except the triangle inequality. To verify this,

||x + y||2 ≡ (x + y, x + y) ≡ ||x||2 + ||y||2 + 2 Re (x, y)

≤ ||x||2 + ||y||2 + 2 |(x, y)|
≤ ||x||2 + ||y||2 + 2 ||x|| ||y|| = (||x||+ ||y||)2.

The following lemma is called the parallelogram identity.

Lemma 12.4 In an inner product space,

||x + y||2 + ||x− y||2 = 2||x||2 + 2||y||2.

The proof, a straightforward application of the inner product axioms, is left to
the reader.

Lemma 12.5 For x ∈ H, an inner product space,

||x|| = sup
||y||≤1

|(x, y)| (12.4)

Proof: By the Cauchy Schwarz inequality, if x 6= 0,

||x|| ≥ sup
||y||≤1

|(x, y)| ≥
(

x,
x

||x||
)

= ||x|| .

It is obvious that 12.4 holds in the case that x = 0.

Definition 12.6 A Hilbert space is an inner product space which is complete. Thus
a Hilbert space is a Banach space in which the norm comes from an inner product
as described above.

In Hilbert space, one can define a projection map onto closed convex nonempty
sets.

Definition 12.7 A set, K, is convex if whenever λ ∈ [0, 1] and x, y ∈ K, λx+(1−
λ)y ∈ K.
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Theorem 12.8 Let K be a closed convex nonempty subset of a Hilbert space, H,
and let x ∈ H. Then there exists a unique point Px ∈ K such that ||Px − x|| ≤
||y − x|| for all y ∈ K.

Proof: Consider uniqueness. Suppose that z1 and z2 are two elements of K
such that for i = 1, 2,

||zi − x|| ≤ ||y − x|| (12.5)

for all y ∈ K. Also, note that since K is convex,

z1 + z2

2
∈ K.

Therefore, by the parallelogram identity,

||z1 − x||2 ≤ ||z1 + z2

2
− x||2 = ||z1 − x

2
+

z2 − x

2
||2

= 2(||z1 − x

2
||2 + ||z2 − x

2
||2)− ||z1 − z2

2
||2

=
1
2
||z1 − x||2 +

1
2
||z2 − x||2 − ||z1 − z2

2
||2

≤ ||z1 − x||2 − ||z1 − z2

2
||2,

where the last inequality holds because of 12.5 letting zi = z2 and y = z1. Hence
z1 = z2 and this shows uniqueness.

Now let λ = inf{||x − y|| : y ∈ K} and let yn be a minimizing sequence. This
means {yn} ⊆ K satisfies limn→∞ ||x − yn|| = λ. Now the following follows from
properties of the norm.

||yn − x + ym − x||2 = 4(||yn + ym

2
− x||2)

Then by the parallelogram identity, and convexity of K, yn+ym

2 ∈ K, and so

|| (yn − x)− (ym − x) ||2 = 2(||yn − x||2 + ||ym − x||2)−

=||yn−x+ym−x||2︷ ︸︸ ︷
4(||yn + ym

2
− x||2)

≤ 2(||yn − x||2 + ||ym − x||2)− 4λ2.

Since ||x− yn|| → λ, this shows {yn − x} is a Cauchy sequence. Thus also {yn} is
a Cauchy sequence. Since H is complete, yn → y for some y ∈ H which must be in
K because K is closed. Therefore

||x− y|| = lim
n→∞

||x− yn|| = λ.

Let Px = y.
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Corollary 12.9 Let K be a closed, convex, nonempty subset of a Hilbert space, H,
and let x ∈ H. Then for z ∈ K, z = Px if and only if

Re(x− z, y − z) ≤ 0 (12.6)

for all y ∈ K.

Before proving this, consider what it says in the case where the Hilbert space is
Rn.

-XXXyK
y θ

x
z

Condition 12.6 says the angle, θ, shown in the diagram is always obtuse. Re-
member from calculus, the sign of x · y is the same as the sign of the cosine of the
included angle between x and y. Thus, in finite dimensions, the conclusion of this
corollary says that z = Px exactly when the angle of the indicated angle is obtuse.
Surely the picture suggests this is reasonable.

The inequality 12.6 is an example of a variational inequality and this corollary
characterizes the projection of x onto K as the solution of this variational inequality.

Proof of Corollary: Let z ∈ K and let y ∈ K also. Since K is convex, it
follows that if t ∈ [0, 1],

z + t(y − z) = (1− t) z + ty ∈ K.

Furthermore, every point of K can be written in this way. (Let t = 1 and y ∈ K.)
Therefore, z = Px if and only if for all y ∈ K and t ∈ [0, 1],

||x− (z + t(y − z))||2 = ||(x− z)− t(y − z)||2 ≥ ||x− z||2

for all t ∈ [0, 1] and y ∈ K if and only if for all t ∈ [0, 1] and y ∈ K

||x− z||2 + t2 ||y − z||2 − 2tRe (x− z, y − z) ≥ ||x− z||2

If and only if for all t ∈ [0, 1],

t2 ||y − z||2 − 2tRe (x− z, y − z) ≥ 0. (12.7)

Now this is equivalent to 12.7 holding for all t ∈ (0, 1). Therefore, dividing by
t ∈ (0, 1) , 12.7 is equivalent to

t ||y − z||2 − 2 Re (x− z, y − z) ≥ 0

for all t ∈ (0, 1) which is equivalent to 12.6. This proves the corollary.
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Corollary 12.10 Let K be a nonempty convex closed subset of a Hilbert space, H.
Then the projection map, P is continuous. In fact,

|Px− Py| ≤ |x− y| .

Proof: Let x, x′ ∈ H. Then by Corollary 12.9,

Re (x′ − Px′, Px− Px′) ≤ 0, Re (x− Px, Px′ − Px) ≤ 0

Hence

0 ≤ Re (x− Px, Px− Px′)− Re (x′ − Px′, Px− Px′)

= Re (x− x′, Px− Px′)− |Px− Px′|2

and so
|Px− Px′|2 ≤ |x− x′| |Px− Px′| .

This proves the corollary.
The next corollary is a more general form for the Brouwer fixed point theorem.

Corollary 12.11 Let f : K → K where K is a convex compact subset of Rn. Then
f has a fixed point.

Proof: Let K ⊆ B (0, R) and let P be the projection map onto K. Then
consider the map f ◦ P which maps B (0, R) to B (0, R) and is continuous. By the
Brouwer fixed point theorem for balls, this map has a fixed point. Thus there exists
x such that

f ◦ P (x) = x

Now the equation also requires x ∈ K and so P (x) = x. Hence f (x) = x.

Definition 12.12 Let H be a vector space and let U and V be subspaces. U ⊕V =
H if every element of H can be written as a sum of an element of U and an element
of V in a unique way.

The case where the closed convex set is a closed subspace is of special importance
and in this case the above corollary implies the following.

Corollary 12.13 Let K be a closed subspace of a Hilbert space, H, and let x ∈ H.
Then for z ∈ K, z = Px if and only if

(x− z, y) = 0 (12.8)

for all y ∈ K. Furthermore, H = K ⊕K⊥ where

K⊥ ≡ {x ∈ H : (x, k) = 0 for all k ∈ K}

and
||x||2 = ||x− Px||2 + ||Px||2 . (12.9)
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Proof: Since K is a subspace, the condition 12.6 implies Re(x − z, y) ≤ 0
for all y ∈ K. Replacing y with −y, it follows Re(x − z,−y) ≤ 0 which implies
Re(x − z, y) ≥ 0 for all y. Therefore, Re(x − z, y) = 0 for all y ∈ K. Now let
|α| = 1 and α (x− z, y) = |(x− z, y)|. Since K is a subspace, it follows αy ∈ K for
all y ∈ K. Therefore,

0 = Re(x− z, αy) = (x− z, αy) = α (x− z, y) = |(x− z, y)|.

This shows that z = Px, if and only if 12.8.
For x ∈ H, x = x − Px + Px and from what was just shown, x − Px ∈ K⊥

and Px ∈ K. This shows that K⊥ + K = H. Is there only one way to write
a given element of H as a sum of a vector in K with a vector in K⊥? Suppose
y + z = y1 + z1 where z, z1 ∈ K⊥ and y, y1 ∈ K. Then (y − y1) = (z1 − z) and
so from what was just shown, (y − y1, y − y1) = (y − y1, z1 − z) = 0 which shows
y1 = y and consequently z1 = z. Finally, letting z = Px,

||x||2 = (x− z + z, x− z + z) = ||x− z||2 + (x− z, z) + (z, x− z) + ||z||2
= ||x− z||2 + ||z||2

This proves the corollary.
The following theorem is called the Riesz representation theorem for the dual of

a Hilbert space. If z ∈ H then define an element f ∈ H ′ by the rule (x, z) ≡ f (x). It
follows from the Cauchy Schwarz inequality and the properties of the inner product
that f ∈ H ′. The Riesz representation theorem says that all elements of H ′ are of
this form.

Theorem 12.14 Let H be a Hilbert space and let f ∈ H ′. Then there exists a
unique z ∈ H such that

f (x) = (x, z) (12.10)

for all x ∈ H.

Proof: Letting y, w ∈ H the assumption that f is linear implies

f (yf(w)− f(y)w) = f (w) f (y)− f (y) f (w) = 0

which shows that yf(w)−f(y)w ∈ f−1 (0), which is a closed subspace of H since f is
continuous. If f−1 (0) = H, then f is the zero map and z = 0 is the unique element
of H which satisfies 12.10. If f−1 (0) 6= H, pick u /∈ f−1 (0) and let w ≡ u−Pu 6= 0.
Thus Corollary 12.13 implies (y, w) = 0 for all y ∈ f−1 (0). In particular, let y =
xf(w)− f(x)w where x ∈ H is arbitrary. Therefore,

0 = (f(w)x− f(x)w, w) = f(w)(x,w)− f(x)||w||2.

Thus, solving for f (x) and using the properties of the inner product,

f(x) = (x,
f(w)w
||w||2 )



12.2. APPROXIMATIONS IN HILBERT SPACE 281

Let z = f(w)w/||w||2. This proves the existence of z. If f (x) = (x, zi) i = 1, 2,
for all x ∈ H, then for all x ∈ H, then (x, z1 − z2) = 0 which implies, upon taking
x = z1 − z2 that z1 = z2. This proves the theorem.

If R : H → H ′ is defined by Rx (y) ≡ (y, x) , the Riesz representation theorem
above states this map is onto. This map is called the Riesz map. It is routine to
show R is linear and |Rx| = |x|.

12.2 Approximations In Hilbert Space

The Gram Schmidt process applies in any Hilbert space.

Theorem 12.15 Let {x1, · · ·, xn} be a basis for M a subspace of H a Hilbert space.
Then there exists an orthonormal basis for M, {u1, · · ·, un} which has the property
that for each k ≤ n, span(x1, · · ·, xk) = span (u1, · · ·, uk) . Also if {x1, · · ·, xn} ⊆ H,
then

span (x1, · · ·, xn)

is a closed subspace.

Proof: Let {x1, · · ·, xn} be a basis for M. Let u1 ≡ x1/ |x1| . Thus for k = 1,
span (u1) = span (x1) and {u1} is an orthonormal set. Now suppose for some
k < n, u1, · · ·, uk have been chosen such that (uj · ul) = δjl and span (x1, · · ·, xk) =
span (u1, · · ·, uk). Then define

uk+1 ≡
xk+1 −

∑k
j=1 (xk+1 · uj) uj∣∣∣xk+1 −

∑k
j=1 (xk+1 · uj) uj

∣∣∣
, (12.11)

where the denominator is not equal to zero because the xj form a basis and so

xk+1 /∈ span (x1, · · ·, xk) = span (u1, · · ·, uk)

Thus by induction,

uk+1 ∈ span (u1, · · ·, uk, xk+1) = span (x1, · · ·, xk, xk+1) .

Also, xk+1 ∈ span (u1, · · ·, uk, uk+1) which is seen easily by solving 12.11 for xk+1

and it follows

span (x1, · · ·, xk, xk+1) = span (u1, · · ·, uk, uk+1) .

If l ≤ k,

(uk+1 · ul) = C


(xk+1 · ul)−

k∑

j=1

(xk+1 · uj) (uj · ul)




= C


(xk+1 · ul)−

k∑

j=1

(xk+1 · uj) δlj




= C ((xk+1 · ul)− (xk+1 · ul)) = 0.



282 HILBERT SPACES

The vectors, {uj}n
j=1 , generated in this way are therefore an orthonormal basis

because each vector has unit length.
Consider the second claim about finite dimensional subspaces. Without loss of

generality, assume {x1, · · ·, xn} is linearly independent. If it is not, delete vectors un-
til a linearly independent set is obtained. Then by the first part, span (x1, · · ·, xn) =
span (u1, · · ·, un) ≡ M where the ui are an orthonormal set of vectors. Suppose
{yk} ⊆ M and yk → y ∈ H. Is y ∈ M? Let

yk ≡
n∑

j=1

ck
j uj

Then let ck ≡ (
ck
1 , · · ·, ck

n

)T
. Then

∣∣ck − cl
∣∣2 ≡

n∑

j=1

∣∣ck
j − cl

j

∣∣2 =




n∑

j=1

(
ck
j − cl

j

)
uj ,

n∑

j=1

(
ck
j − cl

j

)
uj




= ||yk − yl||2

which shows
{
ck

}
is a Cauchy sequence in Fn and so it converges to c ∈ Fn. Thus

y = lim
k→∞

yk = lim
k→∞

n∑

j=1

ck
j uj =

n∑

j=1

cjuj ∈ M.

This completes the proof.

Theorem 12.16 Let M be the span of {u1, · · ·, un} in a Hilbert space, H and let
y ∈ H. Then Py is given by

Py =
n∑

k=1

(y, uk)uk (12.12)

and the distance is given by
√√√√|y|2 −

n∑

k=1

|(y, uk)|2. (12.13)

Proof:
(

y −
n∑

k=1

(y, uk) uk, up

)
= (y, up)−

n∑

k=1

(y, uk) (uk, up)

= (y, up)− (y, up) = 0

It follows that (
y −

n∑

k=1

(y, uk) uk, u

)
= 0
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for all u ∈ M and so by Corollary 12.13 this verifies 12.12.
The square of the distance, d is given by

d2 =

(
y −

n∑

k=1

(y, uk)uk, y −
n∑

k=1

(y, uk)uk

)

= |y|2 − 2
n∑

k=1

|(y, uk)|2 +
n∑

k=1

|(y, uk)|2

and this shows 12.13.
What if the subspace is the span of vectors which are not orthonormal? There

is a very interesting formula for the distance between a point of a Hilbert space and
a finite dimensional subspace spanned by an arbitrary basis.

Definition 12.17 Let {x1, · · ·, xn} ⊆ H, a Hilbert space. Define

G (x1, · · ·, xn) ≡




(x1, x1) · · · (x1, xn)
...

...
(xn, x1) · · · (xn, xn)


 (12.14)

Thus the ijth entry of this matrix is (xi, xj). This is sometimes called the Gram
matrix. Also define G (x1, · · ·, xn) as the determinant of this matrix, also called the
Gram determinant.

G (x1, · · ·, xn) ≡

∣∣∣∣∣∣∣

(x1, x1) · · · (x1, xn)
...

...
(xn, x1) · · · (xn, xn)

∣∣∣∣∣∣∣
(12.15)

The theorem is the following.

Theorem 12.18 Let M = span (x1, · · ·, xn) ⊆ H, a Real Hilbert space where
{x1, · · ·, xn} is a basis and let y ∈ H. Then letting d be the distance from y to
M,

d2 =
G (x1, · · ·, xn, y)
G (x1, · · ·, xn)

. (12.16)

Proof: By Theorem 12.15 M is a closed subspace of H. Let
∑n

k=1 αkxk be the
element of M which is closest to y. Then by Corollary 12.13,

(
y −

n∑

k=1

αkxk, xp

)
= 0

for each p = 1, 2, · · ·, n. This yields the system of equations,

(y, xp) =
n∑

k=1

(xp, xk)αk, p = 1, 2, · · ·, n (12.17)
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Also by Corollary 12.13,

||y||2 =

d2

︷ ︸︸ ︷∣∣∣∣∣

∣∣∣∣∣y −
n∑

k=1

αkxk

∣∣∣∣∣

∣∣∣∣∣

2

+

∣∣∣∣∣

∣∣∣∣∣
n∑

k=1

αkxk

∣∣∣∣∣

∣∣∣∣∣

2

and so, using 12.17,

||y||2 = d2 +
∑

j

(∑

k

αk (xk, xj)

)
αj

= d2 +
∑

j

(y, xj)αj (12.18)

≡ d2 + yT
x α (12.19)

in which
yT

x ≡ ((y, x1) , · · ·, (y, xn)) , αT≡ (α1, · · ·, αn) .

Then 12.17 and 12.18 imply the following system
( G (x1, · · ·, xn) 0

yT
x 1

)(
α
d2

)
=

(
yx

||y||2
)

By Cramer’s rule,

d2 =
det

( G (x1, · · ·, xn) yx

yT
x ||y||2

)

det
( G (x1, · · ·, xn) 0

yT
x 1

)

=
det

( G (x1, · · ·, xn) yx

yT
x ||y||2

)

det (G (x1, · · ·, xn))

=
det (G (x1, · · ·, xn, y))
det (G (x1, · · ·, xn))

=
G (x1, · · ·, xn, y)
G (x1, · · ·, xn)

and this proves the theorem.

12.3 Orthonormal Sets

The concept of an orthonormal set of vectors is a generalization of the notion of the
standard basis vectors of Rn or Cn.

Definition 12.19 Let H be a Hilbert space. S ⊆ H is called an orthonormal set if
||x|| = 1 for all x ∈ S and (x, y) = 0 if x, y ∈ S and x 6= y. For any set, D,

D⊥ ≡ {x ∈ H : (x, d) = 0 for all d ∈ D} .

If S is a set, span (S) is the set of all finite linear combinations of vectors from S.
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You should verify that D⊥ is always a closed subspace of H.

Theorem 12.20 In any separable Hilbert space, H, there exists a countable or-
thonormal set, S = {xi} such that the span of these vectors is dense in H. Further-
more, if span (S) is dense, then for x ∈ H,

x =
∞∑

i=1

(x, xi) xi ≡ lim
n→∞

n∑

i=1

(x, xi)xi. (12.20)

Proof: Let F denote the collection of all orthonormal subsets of H. F is
nonempty because {x} ∈ F where ||x|| = 1. The set, F is a partially ordered set
with the order given by set inclusion. By the Hausdorff maximal theorem, there
exists a maximal chain, C in F . Then let S ≡ ∪C. It follows S must be a maximal
orthonormal set of vectors. Why? It remains to verify that S is countable span (S)
is dense, and the condition, 12.20 holds. To see S is countable note that if x, y ∈ S,
then

||x− y||2 = ||x||2 + ||y||2 − 2Re (x, y) = ||x||2 + ||y||2 = 2.

Therefore, the open sets, B
(
x, 1

2

)
for x ∈ S are disjoint and cover S. Since H is

assumed to be separable, there exists a point from a countable dense set in each of
these disjoint balls showing there can only be countably many of the balls and that
consequently, S is countable as claimed.

It remains to verify 12.20 and that span (S) is dense. If span (S) is not dense,
then span (S) is a closed proper subspace of H and letting y /∈ span (S),

z ≡ y − Py

||y − Py|| ∈ span (S)⊥ .

But then S ∪ {z} would be a larger orthonormal set of vectors contradicting the
maximality of S.

It remains to verify 12.20. Let S = {xi}∞i=1 and consider the problem of choosing
the constants, ck in such a way as to minimize the expression

∣∣∣∣∣

∣∣∣∣∣x−
n∑

k=1

ckxk

∣∣∣∣∣

∣∣∣∣∣

2

=

||x||2 +
n∑

k=1

|ck|2 −
n∑

k=1

ck (x, xk)−
n∑

k=1

ck(x, xk).

This equals

||x||2 +
n∑

k=1

|ck − (x, xk)|2 −
n∑

k=1

|(x, xk)|2

and therefore, this minimum is achieved when ck = (x, xk) and equals

||x||2 −
n∑

k=1

|(x, xk)|2
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Now since span (S) is dense, there exists n large enough that for some choice of
constants, ck, ∣∣∣∣∣

∣∣∣∣∣x−
n∑

k=1

ckxk

∣∣∣∣∣

∣∣∣∣∣

2

< ε.

However, from what was just shown,

∣∣∣∣∣

∣∣∣∣∣x−
n∑

i=1

(x, xi) xi

∣∣∣∣∣

∣∣∣∣∣

2

≤
∣∣∣∣∣

∣∣∣∣∣x−
n∑

k=1

ckxk

∣∣∣∣∣

∣∣∣∣∣

2

< ε

showing that limn→∞
∑n

i=1 (x, xi) xi = x as claimed. This proves the theorem.
The proof of this theorem contains the following corollary.

Corollary 12.21 Let S be any orthonormal set of vectors and let

{x1, · · ·, xn} ⊆ S.

Then if x ∈ H ∣∣∣∣∣

∣∣∣∣∣x−
n∑

k=1

ckxk

∣∣∣∣∣

∣∣∣∣∣

2

≥
∣∣∣∣∣

∣∣∣∣∣x−
n∑

i=1

(x, xi)xi

∣∣∣∣∣

∣∣∣∣∣

2

for all choices of constants, ck. In addition to this, Bessel’s inequality

||x||2 ≥
n∑

k=1

|(x, xk)|2 .

If S is countable and span (S) is dense, then letting {xi}∞i=1 = S, 12.20 follows.

12.4 Fourier Series, An Example

In this section consider the Hilbert space, L2 (0, 2π) with the inner product,

(f, g) ≡
∫ 2π

0

fgdm.

This is a Hilbert space because of the theorem which states the Lp spaces are com-
plete, Theorem 10.10 on Page 237. An example of an orthonormal set of functions
in L2 (0, 2π) is

φn (x) ≡ 1√
2π

einx

for n an integer. Is it true that the span of these functions is dense in L2 (0, 2π)?

Theorem 12.22 Let S = {φn}n∈Z. Then span (S) is dense in L2 (0, 2π).
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Proof: By regularity of Lebesgue measure, it follows from Theorem 10.16 that
Cc (0, 2π) is dense in L2 (0, 2π) . Therefore, it suffices to show that for g ∈ Cc (0, 2π) ,
then for every ε > 0 there exists h ∈ span (S) such that ||g − h||L2(0,2π) < ε.

Let T denote the points of C which are of the form eit for t ∈ R. Let A denote
the algebra of functions consisting of polynomials in z and 1/z for z ∈ T. Thus a
typical such function would be one of the form

m∑

k=−m

ckzk

for m chosen large enough. This algebra separates the points of T because it
contains the function, p (z) = z. It annihilates no point of t because it contains
the constant function 1. Furthermore, it has the property that for f ∈ A, f ∈ A.
By the Stone Weierstrass approximation theorem, Theorem 6.13 on Page 121, A is
dense in C (T ) . Now for g ∈ Cc (0, 2π) , extend g to all of R to be 2π periodic. Then
letting G

(
eit

) ≡ g (t) , it follows G is well defined and continuous on T. Therefore,
there exists H ∈ A such that for all t ∈ R,

∣∣H (
eit

)−G
(
eit

)∣∣ < ε2/2π.

Thus H
(
eit

)
is of the form

H
(
eit

)
=

m∑

k=−m

ck

(
eit

)k
=

m∑

k=−m

ckeikt ∈ span (S) .

Let h (t) =
∑m

k=−m ckeikt. Then

(∫ 2π

0

|g − h|2 dx

)1/2

≤
(∫ 2π

0

max {|g (t)− h (t)| : t ∈ [0, 2π]} dx

)1/2

=
(∫ 2π

0

max
{∣∣G (

eit
)−H

(
eit

)∣∣ : t ∈ [0, 2π]
}

dx

)1/2

<

(∫ 2π

0

ε2

2π

)1/2

= ε.

This proves the theorem.

Corollary 12.23 For f ∈ L2 (0, 2π) ,

lim
m→∞

∣∣∣∣∣

∣∣∣∣∣f −
m∑

k=−m

(f, φk)φk

∣∣∣∣∣

∣∣∣∣∣
L2(0,2π)

Proof: This follows from Theorem 12.20 on Page 285.
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12.5 Exercises

1. For f, g ∈ C ([0, 1]) let (f, g) =
∫ 1

0
f (x) g (x)dx. Is this an inner product

space? Is it a Hilbert space? What does the Cauchy Schwarz inequality say
in this context?

2. Suppose the following conditions hold.

(x, x) ≥ 0, (12.21)

(x, y) = (y, x). (12.22)

For a, b ∈ C and x, y, z ∈ X,

(ax + by, z) = a(x, z) + b(y, z). (12.23)

These are the same conditions for an inner product except it is no longer
required that (x, x) = 0 if and only if x = 0. Does the Cauchy Schwarz
inequality hold in the following form?

|(x, y)| ≤ (x, x)1/2 (y, y)1/2
.

3. Let S denote the unit sphere in a Banach space, X,

S ≡ {x ∈ X : ||x|| = 1} .

Show that if Y is a Banach space, then A ∈ L (X,Y ) is compact if and only
if A (S) is precompact, A (S) is compact. A ∈ L (X, Y ) is said to be compact
if whenever B is a bounded subset of X, it follows A (B) is a compact subset
of Y. In words, A takes bounded sets to precompact sets.

4. ↑ Show that A ∈ L (X, Y ) is compact if and only if A∗ is compact. Hint: Use
the result of 3 and the Ascoli Arzela theorem to argue that for S∗ the unit ball
in X ′, there is a subsequence, {y∗n} ⊆ S∗ such that y∗n converges uniformly
on the compact set, A (S). Thus {A∗y∗n} is a Cauchy sequence in X ′. To get
the other implication, apply the result just obtained for the operators A∗ and
A∗∗. Then use results about the embedding of a Banach space into its double
dual space.

5. Prove the parallelogram identity,

|x + y|2 + |x− y|2 = 2 |x|2 + 2 |y|2 .

Next suppose (X, || ||) is a real normed linear space and the parallelogram
identity holds. Can it be concluded there exists an inner product (·, ·) such
that ||x|| = (x, x)1/2?
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6. Let K be a closed, bounded and convex set in Rn and let f : K → Rn be
continuous and let y ∈ Rn. Show using the Brouwer fixed point theorem
there exists a point x ∈ K such that P (y − f (x) + x) = x. Next show that
(y − f (x) , z− x) ≤ 0 for all z ∈ K. The existence of this x is known as
Browder’s lemma and it has great significance in the study of certain types of
nolinear operators. Now suppose f : Rn → Rn is continuous and satisfies

lim
|x|→∞

(f (x) ,x)
|x| = ∞.

Show using Browder’s lemma that f is onto.

7. Show that every inner product space is uniformly convex. This means that if
xn, yn are vectors whose norms are no larger than 1 and if ||xn + yn|| → 2,
then ||xn − yn|| → 0.

8. Let H be separable and let S be an orthonormal set. Show S is countable.
Hint: How far apart are two elements of the orthonormal set?

9. Suppose {x1, · · ·, xm} is a linearly independent set of vectors in a normed
linear space. Show span (x1, · · ·, xm) is a closed subspace. Also show every
orthonormal set of vectors is linearly independent.

10. Show every Hilbert space, separable or not, has a maximal orthonormal set
of vectors.

11. ↑ Prove Bessel’s inequality, which says that if {xn}∞n=1 is an orthonormal
set in H, then for all x ∈ H, ||x||2 ≥ ∑∞

k=1 |(x, xk)|2. Hint: Show that if
M = span(x1, · · ·, xn), then Px =

∑n
k=1 xk(x, xk). Then observe ||x||2 =

||x− Px||2 + ||Px||2.
12. ↑ Show S is a maximal orthonormal set if and only if span (S) is dense in H,

where span (S) is defined as

span(S) ≡ {all finite linear combinations of elements of S}.
13. ↑ Suppose {xn}∞n=1 is a maximal orthonormal set. Show that

x =
∞∑

n=1

(x, xn)xn ≡ lim
N→∞

N∑
n=1

(x, xn)xn

and ||x||2 =
∑∞

i=1 |(x, xi)|2. Also show (x, y) =
∑∞

n=1(x, xn)(y, xn). Hint:
For the last part of this, you might proceed as follows. Show that

((x, y)) ≡
∞∑

n=1

(x, xn)(y, xn)

is a well defined inner product on the Hilbert space which delivers the same
norm as the original inner product. Then you could verify that there exists
a formula for the inner product in terms of the norm and conclude the two
inner products, (·, ·) and ((·, ·)) must coincide.
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14. Suppose X is an infinite dimensional Banach space and suppose

{x1 · · · xn}

are linearly independent with ||xi|| = 1. By Problem 9 span (x1 · · · xn) ≡ Xn

is a closed linear subspace of X. Now let z /∈ Xn and pick y ∈ Xn such that
||z − y|| ≤ 2 dist (z, Xn) and let

xn+1 =
z − y

||z − y|| .

Show the sequence {xk} satisfies ||xn − xk|| ≥ 1/2 whenever k < n. Now
show the unit ball {x ∈ X : ||x|| ≤ 1} in a normed linear space is compact if
and only if X is finite dimensional. Hint:

∣∣∣∣
∣∣∣∣

z − y

||z − y|| − xk

∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣
z − y − xk ||z − y||

||z − y||

∣∣∣∣
∣∣∣∣.

15. Show that if A is a self adjoint operator on a Hilbert space and Ay = λy for
λ a complex number and y 6= 0, then λ must be real. Also verify that if A is
self adjoint and Ax = µx while Ay = λy, then if µ 6= λ, it must be the case
that (x, y) = 0.



Representation Theorems

13.1 Radon Nikodym Theorem

This chapter is on various representation theorems. The first theorem, the Radon
Nikodym Theorem, is a representation theorem for one measure in terms of an-
other. The approach given here is due to Von Neumann and depends on the Riesz
representation theorem for Hilbert space, Theorem 12.14 on Page 280.

Definition 13.1 Let µ and λ be two measures defined on a σ-algebra, S, of subsets
of a set, Ω. λ is absolutely continuous with respect to µ,written as λ ¿ µ, if
λ(E) = 0 whenever µ(E) = 0.

It is not hard to think of examples which should be like this. For example,
suppose one measure is volume and the other is mass. If the volume of something
is zero, it is reasonable to expect the mass of it should also be equal to zero. In
this case, there is a function called the density which is integrated over volume to
obtain mass. The Radon Nikodym theorem is an abstract version of this notion.
Essentially, it gives the existence of the density function.

Theorem 13.2 (Radon Nikodym) Let λ and µ be finite measures defined on a σ-
algebra, S, of subsets of Ω. Suppose λ ¿ µ. Then there exists a unique f ∈ L1(Ω, µ)
such that f(x) ≥ 0 and

λ(E) =
∫

E

f dµ.

If it is not necessarily the case that λ ¿ µ, there are two measures, λ⊥ and λ|| such
that λ = λ⊥ + λ||, λ|| ¿ µ and there exists a set of µ measure zero, N such that for
all E measurable, λ⊥ (E) = λ (E ∩N) = λ⊥ (E ∩N) . In this case the two mesures,
λ⊥ and λ|| are unique and the representation of λ = λ⊥ + λ|| is called the Lebesgue
decomposition of λ. The measure λ|| is the absolutely continuous part of λ and λ⊥
is called the singular part of λ.

Proof: Let Λ : L2(Ω, µ + λ) → C be defined by

Λg =
∫

Ω

g dλ.

291
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By Holder’s inequality,

|Λg| ≤
(∫

Ω

12dλ

)1/2 (∫

Ω

|g|2 d (λ + µ)
)1/2

= λ (Ω)1/2 ||g||2

where ||g||2 is the L2 norm of g taken with respect to µ + λ. Therefore, since Λ
is bounded, it follows from Theorem 11.4 on Page 255 that Λ ∈ (L2(Ω, µ + λ))′,
the dual space L2(Ω, µ + λ). By the Riesz representation theorem in Hilbert space,
Theorem 12.14, there exists a unique h ∈ L2(Ω, µ + λ) with

Λg =
∫

Ω

g dλ =
∫

Ω

hgd(µ + λ). (13.1)

The plan is to show h is real and nonnegative at least a.e. Therefore, consider the
set where Im h is positive.

E = {x ∈ Ω : Im h(x) > 0} ,

Now let g = XE and use 13.1 to get

λ(E) =
∫

E

(Re h + i Im h)d(µ + λ). (13.2)

Since the left side of 13.2 is real, this shows

0 =
∫

E

(Im h) d(µ + λ)

≥
∫

En

(Im h) d(µ + λ)

≥ 1
n

(µ + λ) (En)

where

En ≡
{

x : Imh (x) ≥ 1
n

}

Thus (µ + λ) (En) = 0 and since E = ∪∞n=1En, it follows (µ + λ) (E) = 0. A similar
argument shows that for

E = {x ∈ Ω : Im h (x) < 0},
(µ + λ)(E) = 0. Thus there is no loss of generality in assuming h is real-valued.

The next task is to show h is nonnegative. This is done in the same manner as
above. Define the set where it is negative and then show this set has measure zero.

Let E ≡ {x : h(x) < 0} and let En ≡ {x : h(x) < − 1
n}. Then let g = XEn . Since

E = ∪nEn, it follows that if (µ + λ) (E) > 0 then this is also true for (µ + λ) (En)
for all n large enough. Then from 13.2

λ(En) =
∫

En

h d(µ + λ) ≤ − (1/n) (µ + λ) (En) < 0,
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a contradiction. Thus it can be assumed h ≥ 0.
At this point the argument splits into two cases.
Case Where λ ¿ µ. In this case, h < 1.
Let E = [h ≥ 1] and let g = XE . Then

λ(E) =
∫

E

h d(µ + λ) ≥ µ(E) + λ(E).

Therefore µ(E) = 0. Since λ ¿ µ, it follows that λ(E) = 0 also. Thus it can be
assumed

0 ≤ h(x) < 1

for all x.
From 13.1, whenever g ∈ L2(Ω, µ + λ),

∫

Ω

g(1− h)dλ =
∫

Ω

hgdµ. (13.3)

Now let E be a measurable set and define

g(x) ≡
n∑

i=0

hi(x)XE(x)

in 13.3. This yields

∫

E

(1− hn+1(x))dλ =
∫

E

n+1∑

i=1

hi(x)dµ. (13.4)

Let f(x) =
∑∞

i=1 hi(x) and use the Monotone Convergence theorem in 13.4 to let
n →∞ and conclude

λ(E) =
∫

E

f dµ.

f ∈ L1(Ω, µ) because λ is finite.
The function, f is unique µ a.e. because, if g is another function which also

serves to represent λ, consider for each n ∈ N the set,

En ≡
[
f − g >

1
n

]

and conclude that
0 =

∫

En

(f − g) dµ ≥ 1
n

µ (En) .

Therefore, µ (En) = 0. It follows that

µ ([f − g > 0]) ≤
∞∑

n=1

µ (En) = 0
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Similarly, the set where g is larger than f has measure zero. This proves the
theorem.

Case where it is not necessarily true that λ ¿ µ.
In this case, let N = [h ≥ 1] and let g = XN . Then

λ(N) =
∫

N

h d(µ + λ) ≥ µ(N) + λ(N).

and so µ (N) = 0. Now define a measure, λ⊥ by

λ⊥ (E) ≡ λ (E ∩N)

so λ⊥ (E ∩N) = λ (E ∩N ∩N) ≡ λ⊥ (E) and let λ|| ≡ λ− λ⊥. Then if µ (E) = 0,

then µ (E) = µ
(
E ∩NC

)
. Also,

λ|| (E) = λ (E)− λ⊥ (E) ≡ λ (E)− λ (E ∩N) = λ
(
E ∩NC

)
.

Therefore, if λ|| (E) > 0, it follows since h < 1 on NC

0 < λ|| (E) = λ
(
E ∩NC

)
=

∫

E∩NC

h d(µ + λ)

< µ
(
E ∩NC

)
+ λ

(
E ∩NC

)
= 0 + λ|| (E) ,

a contradiction. Therefore, λ|| ¿ µ.
It only remains to verify the two measures λ⊥ and λ|| are unique. Suppose then

that ν1 and ν2 play the roles of λ⊥ and λ|| respectively. Let N1 play the role of N
in the definition of ν1 and let g1 play the role of g for ν2. I will show that g = g1 µ
a.e. Let Ek ≡ [g1 − g > 1/k] for k ∈ N. Then on observing that λ⊥ − ν1 = ν2 − λ||

0 = (λ⊥ − ν1)
(
En ∩ (N1 ∪N)C

)
=

∫

En∩(N1∪N)C

(g1 − g) dµ

≥ 1
k

µ
(
Ek ∩ (N1 ∪N)C

)
=

1
k

µ (Ek) .

and so µ (Ek) = 0. Therefore, µ ([g1 − g > 0]) = 0 because [g1 − g > 0] = ∪∞k=1Ek.
It follows g1 ≤ g µ a.e. Similarly, g ≥ g1 µ a.e. Therefore, ν2 = λ|| and so λ⊥ = ν1

also. This proves the theorem.
The f in the theorem for the absolutely continuous case is sometimes denoted

by dλ
dµ and is called the Radon Nikodym derivative.
The next corollary is a useful generalization to σ finite measure spaces.

Corollary 13.3 Suppose λ ¿ µ and there exist sets Sn ∈ S with

Sn ∩ Sm = ∅, ∪∞n=1Sn = Ω,

and λ(Sn), µ(Sn) < ∞. Then there exists f ≥ 0, where f is µ measurable, and

λ(E) =
∫

E

f dµ

for all E ∈ S. The function f is µ + λ a.e. unique.



13.1. RADON NIKODYM THEOREM 295

Proof: Define the σ algebra of subsets of Sn,

Sn ≡ {E ∩ Sn : E ∈ S}.

Then both λ, and µ are finite measures on Sn, and λ ¿ µ. Thus, by Theorem 13.2,
there exists a nonnegative Sn measurable function fn,with λ(E) =

∫
E

fndµ for all
E ∈ Sn. Define f(x) = fn(x) for x ∈ Sn. Since the Sn are disjoint and their union
is all of Ω, this defines f on all of Ω. The function, f is measurable because

f−1((a,∞]) = ∪∞n=1f
−1
n ((a,∞]) ∈ S.

Also, for E ∈ S,

λ(E) =
∞∑

n=1

λ(E ∩ Sn) =
∞∑

n=1

∫
XE∩Sn(x)fn(x)dµ

=
∞∑

n=1

∫
XE∩Sn(x)f(x)dµ

By the monotone convergence theorem

∞∑
n=1

∫
XE∩Sn(x)f(x)dµ = lim

N→∞

N∑
n=1

∫
XE∩Sn(x)f(x)dµ

= lim
N→∞

∫ N∑
n=1

XE∩Sn(x)f(x)dµ

=
∫ ∞∑

n=1

XE∩Sn(x)f(x)dµ =
∫

E

f dµ.

This proves the existence part of the corollary.
To see f is unique, suppose f1 and f2 both work and consider for n ∈ N

Ek ≡
[
f1 − f2 >

1
k

]
.

Then
0 = λ(Ek ∩ Sn)− λ(Ek ∩ Sn) =

∫

Ek∩Sn

f1(x)− f2(x)dµ.

Hence µ(Ek ∩ Sn) = 0 for all n so

µ(Ek) = lim
n→∞

µ(E ∩ Sn) = 0.

Hence µ([f1 − f2 > 0]) ≤ ∑∞
k=1 µ (Ek) = 0. Therefore, λ ([f1 − f2 > 0]) = 0 also.

Similarly
(µ + λ) ([f1 − f2 < 0]) = 0.
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This version of the Radon Nikodym theorem will suffice for most applications,
but more general versions are available. To see one of these, one can read the
treatment in Hewitt and Stromberg [23]. This involves the notion of decomposable
measure spaces, a generalization of σ finite.

Not surprisingly, there is a simple generalization of the Lebesgue decomposition
part of Theorem 13.2.

Corollary 13.4 Let (Ω,S) be a set with a σ algebra of sets. Suppose λ and µ are
two measures defined on the sets of S and suppose there exists a sequence of disjoint
sets of S, {Ωi}∞i=1 such that λ (Ωi) , µ (Ωi) < ∞. Then there is a set of µ measure
zero, N and measures λ⊥ and λ|| such that

λ⊥ + λ|| = λ, λ|| ¿ µ, λ⊥ (E) = λ (E ∩N) = λ⊥ (E ∩N) .

Proof: Let Si ≡ {E ∩ Ωi : E ∈ S} and for E ∈ Si, let λi (E) = λ (E) and
µi (E) = µ (E) . Then by Theorem 13.2 there exist unique measures λi

⊥ and λi
||

such that λi = λi
⊥ + λi

||, a set of µi measure zero, Ni ∈ Si such that for all E ∈ Si,

λi
⊥ (E) = λi (E ∩Ni) and λi

|| ¿ µi. Define for E ∈ S
λ⊥ (E) ≡

∑

i

λi
⊥ (E ∩ Ωi) , λ|| (E) ≡

∑

i

λi
|| (E ∩ Ωi) , N ≡ ∪iNi.

First observe that λ⊥ and λ|| are measures.

λ⊥
(∪∞j=1Ej

) ≡
∑

i

λi
⊥

(∪∞j=1Ej ∩ Ωi

)
=

∑

i

∑

j

λi
⊥ (Ej ∩ Ωi)

=
∑

j

∑

i

λi
⊥ (Ej ∩ Ωi) =

∑

j

∑

i

λ (Ej ∩ Ωi ∩Ni)

=
∑

j

∑

i

λi
⊥ (Ej ∩ Ωi) =

∑

j

λ⊥ (Ej) .

The argument for λ|| is similar. Now

µ (N) =
∑

i

µ (N ∩ Ωi) =
∑

i

µi (Ni) = 0

and

λ⊥ (E) ≡
∑

i

λi
⊥ (E ∩ Ωi) =

∑

i

λi (E ∩ Ωi ∩Ni)

=
∑

i

λ (E ∩ Ωi ∩N) = λ (E ∩N) .

Also if µ (E) = 0, then µi (E ∩ Ωi) = 0 and so λi
|| (E ∩ Ωi) = 0. Therefore,

λ|| (E) =
∑

i

λi
|| (E ∩ Ωi) = 0.

The decomposition is unique because of the uniqueness of the λi
|| and λi

⊥ and the
observation that some other decomposition must coincide with the given one on the
Ωi.
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13.2 Vector Measures

The next topic will use the Radon Nikodym theorem. It is the topic of vector and
complex measures. The main interest is in complex measures although a vector
measure can have values in any topological vector space. Whole books have been
written on this subject. See for example the book by Diestal and Uhl [14] titled
Vector measures.

Definition 13.5 Let (V, || · ||) be a normed linear space and let (Ω,S) be a measure
space. A function µ : S → V is a vector measure if µ is countably additive. That
is, if {Ei}∞i=1 is a sequence of disjoint sets of S,

µ(∪∞i=1Ei) =
∞∑

i=1

µ(Ei).

Note that it makes sense to take finite sums because it is given that µ has
values in a vector space in which vectors can be summed. In the above, µ (Ei) is a
vector. It might be a point in Rn or in any other vector space. In many of the most
important applications, it is a vector in some sort of function space which may be
infinite dimensional. The infinite sum has the usual meaning. That is

∞∑

i=1

µ(Ei) = lim
n→∞

n∑

i=1

µ(Ei)

where the limit takes place relative to the norm on V .

Definition 13.6 Let (Ω,S) be a measure space and let µ be a vector measure defined
on S. A subset, π(E), of S is called a partition of E if π(E) consists of finitely
many disjoint sets of S and ∪π(E) = E. Let

|µ|(E) = sup{
∑

F∈π(E)

||µ(F )|| : π(E) is a partition of E}.

|µ| is called the total variation of µ.

The next theorem may seem a little surprising. It states that, if finite, the total
variation is a nonnegative measure.

Theorem 13.7 If |µ|(Ω) < ∞, then |µ| is a measure on S. Even if |µ| (Ω) =
∞, |µ| (∪∞i=1Ei) ≤

∑∞
i=1 |µ| (Ei) . That is |µ| is subadditive and |µ| (A) ≤ |µ| (B)

whenever A,B ∈ S with A ⊆ B.

Proof: Consider the last claim. Let a < |µ| (A) and let π (A) be a partition of
A such that

a <
∑

F∈π(A)

||µ (F )|| .
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Then π (A) ∪ {B \A} is a partition of B and

|µ| (B) ≥
∑

F∈π(A)

||µ (F )||+ ||µ (B \A)|| > a.

Since this is true for all such a, it follows |µ| (B) ≥ |µ| (A) as claimed.
Let {Ej}∞j=1 be a sequence of disjoint sets of S and let E∞ = ∪∞j=1Ej . Then

letting a < |µ| (E∞) , it follows from the definition of total variation there exists a
partition of E∞, π(E∞) = {A1, · · ·, An} such that

a <

n∑

i=1

||µ(Ai)||.

Also,
Ai = ∪∞j=1Ai ∩ Ej

and so by the triangle inequality, ||µ(Ai)|| ≤
∑∞

j=1 ||µ(Ai ∩Ej)||. Therefore, by the
above, and either Fubini’s theorem or Lemma 7.18 on Page 134

a <

n∑

i=1

≥||µ(Ai)||︷ ︸︸ ︷
∞∑

j=1

||µ(Ai ∩ Ej)||

=
∞∑

j=1

n∑

i=1

||µ(Ai ∩ Ej)||

≤
∞∑

j=1

|µ|(Ej)

because {Ai ∩ Ej}n
i=1 is a partition of Ej .

Since a is arbitrary, this shows

|µ|(∪∞j=1Ej) ≤
∞∑

j=1

|µ|(Ej).

If the sets, Ej are not disjoint, let F1 = E1 and if Fn has been chosen, let Fn+1 ≡
En+1 \ ∪n

i=1Ei. Thus the sets, Fi are disjoint and ∪∞i=1Fi = ∪∞i=1Ei. Therefore,

|µ| (∪∞j=1Ej

)
= |µ| (∪∞j=1Fj

) ≤
∞∑

j=1

|µ| (Fj) ≤
∞∑

j=1

|µ| (Ej)

and proves |µ| is always subadditive as claimed regarless of whether |µ| (Ω) < ∞.
Now suppose |µ| (Ω) < ∞ and let E1 and E2 be sets of S such that E1 ∩E2 = ∅

and let {Ai
1 · · ·Ai

ni
} = π(Ei), a partition of Ei which is chosen such that

|µ| (Ei)− ε <

ni∑

j=1

||µ(Ai
j)|| i = 1, 2.
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Such a partition exists because of the definition of the total variation. Consider the
sets which are contained in either of π (E1) or π (E2) , it follows this collection of
sets is a partition of E1 ∪E2 denoted by π(E1 ∪E2). Then by the above inequality
and the definition of total variation,

|µ|(E1 ∪ E2) ≥
∑

F∈π(E1∪E2)

||µ(F )|| > |µ| (E1) + |µ| (E2)− 2ε,

which shows that since ε > 0 was arbitrary,

|µ|(E1 ∪ E2) ≥ |µ|(E1) + |µ|(E2). (13.5)

Then 13.5 implies that whenever the Ei are disjoint, |µ|(∪n
j=1Ej) ≥

∑n
j=1 |µ|(Ej).

Therefore,

∞∑

j=1

|µ|(Ej) ≥ |µ|(∪∞j=1Ej) ≥ |µ|(∪n
j=1Ej) ≥

n∑

j=1

|µ|(Ej).

Since n is arbitrary,

|µ|(∪∞j=1Ej) =
∞∑

j=1

|µ|(Ej)

which shows that |µ| is a measure as claimed. This proves the theorem.
In the case that µ is a complex measure, it is always the case that |µ| (Ω) < ∞.

Theorem 13.8 Suppose µ is a complex measure on (Ω,S) where S is a σ algebra
of subsets of Ω. That is, whenever, {Ei} is a sequence of disjoint sets of S,

µ (∪∞i=1Ei) =
∞∑

i=1

µ (Ei) .

Then |µ| (Ω) < ∞.

Proof: First here is a claim.
Claim: Suppose |µ| (E) = ∞. Then there are subsets of E, A and B such that

E = A ∪B, |µ (A)| , |µ (B)| > 1 and |µ| (B) = ∞.
Proof of the claim: From the definition of |µ| , there exists a partition of

E, π (E) such that ∑

F∈π(E)

|µ (F )| > 20 (1 + |µ (E)|) . (13.6)

Here 20 is just a nice sized number. No effort is made to be delicate in this argument.
Also note that µ (E) ∈ C because it is given that µ is a complex measure. Consider
the following picture consisting of two lines in the complex plane having slopes 1
and -1 which intersect at the origin, dividing the complex plane into four closed
sets, R1, R2, R3, and R4 as shown.
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Let πi consist of those sets, A of π (E) for which µ (A) ∈ Ri. Thus, some sets,
A of π (E) could be in two of the πi if µ (A) is on one of the intersecting lines. This
is not important. The thing which is important is that if µ (A) ∈ R1 or R3, then√

2
2 |µ (A)| ≤ |Re (µ (A))| and if µ (A) ∈ R2 or R4 then

√
2

2 |µ (A)| ≤ |Im (µ (A))| and
Re (z) has the same sign for z in R1 and R3 while Im (z) has the same sign for z in
R2 or R4. Then by 13.6, it follows that for some i,

∑

F∈πi

|µ (F )| > 5 (1 + |µ (E)|) . (13.7)

Suppose i equals 1 or 3. A similar argument using the imaginary part applies if i
equals 2 or 4. Then,

∣∣∣∣∣
∑

F∈πi

µ (F )

∣∣∣∣∣ ≥
∣∣∣∣∣
∑

F∈πi

Re (µ (F ))

∣∣∣∣∣ =
∑

F∈πi

|Re (µ (F ))|

≥
√

2
2

∑

F∈πi

|µ (F )| > 5
√

2
2

(1 + |µ (E)|) .

Now letting C be the union of the sets in πi,

|µ (C)| =
∣∣∣∣∣
∑

F∈πi

µ (F )

∣∣∣∣∣ >
5
2

(1 + |µ (E)|) > 1. (13.8)

Define D ≡ E \ C.
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E

C

Then µ (C) + µ (E \ C) = µ (E) and so

5
2

(1 + |µ (E)|) < |µ (C)| = |µ (E)− µ (E \ C)|
= |µ (E)− µ (D)| ≤ |µ (E)|+ |µ (D)|

and so
1 <

5
2

+
3
2
|µ (E)| < |µ (D)| .

Now since |µ| (E) = ∞, it follows from Theorem 13.8 that ∞ = |µ| (E) ≤ |µ| (C) +
|µ| (D) and so either |µ| (C) = ∞ or |µ| (D) = ∞. If |µ| (C) = ∞, let B = C and
A = D. Otherwise, let B = D and A = C. This proves the claim.

Now suppose |µ| (Ω) = ∞. Then from the claim, there exist A1 and B1 such that
|µ| (B1) = ∞, |µ (B1)| , |µ (A1)| > 1, and A1∪B1 = Ω. Let B1 ≡ Ω\A play the same
role as Ω and obtain A2, B2 ⊆ B1 such that |µ| (B2) = ∞, |µ (B2)| , |µ (A2)| > 1,
and A2 ∪B2 = B1. Continue in this way to obtain a sequence of disjoint sets, {Ai}
such that |µ (Ai)| > 1. Then since µ is a measure,

µ (∪∞i=1Ai) =
∞∑

i=1

µ (Ai)

but this is impossible because limi→∞ µ (Ai) 6= 0. This proves the theorem.

Theorem 13.9 Let (Ω,S) be a measure space and let λ : S → C be a complex
vector measure. Thus |λ|(Ω) < ∞. Let µ : S → [0, µ(Ω)] be a finite measure such
that λ ¿ µ. Then there exists a unique f ∈ L1(Ω) such that for all E ∈ S,

∫

E

fdµ = λ(E).

Proof: It is clear that Re λ and Im λ are real-valued vector measures on S.
Since |λ|(Ω) < ∞, it follows easily that |Re λ|(Ω) and | Im λ|(Ω) < ∞. This is clear
because

|λ (E)| ≥ |Re λ (E)| , |Im λ (E)| .
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Therefore, each of

|Re λ|+ Re λ

2
,
|Re λ| − Re(λ)

2
,
| Imλ|+ Im λ

2
, and

| Im λ| − Im(λ)
2

are finite measures on S. It is also clear that each of these finite measures are abso-
lutely continuous with respect to µ and so there exist unique nonnegative functions
in L1(Ω), f1, f2, g1, g2 such that for all E ∈ S,

1
2
(|Reλ|+ Re λ)(E) =

∫

E

f1dµ,

1
2
(|Reλ| − Re λ)(E) =

∫

E

f2dµ,

1
2
(| Im λ|+ Im λ)(E) =

∫

E

g1dµ,

1
2
(| Im λ| − Im λ)(E) =

∫

E

g2dµ.

Now let f = f1 − f2 + i(g1 − g2).
The following corollary is about representing a vector measure in terms of its

total variation. It is like representing a complex number in the form reiθ. The proof
requires the following lemma.

Lemma 13.10 Suppose (Ω,S, µ) is a measure space and f is a function in L1(Ω, µ)
with the property that

|
∫

E

f dµ| ≤ µ(E)

for all E ∈ S. Then |f | ≤ 1 a.e.

Proof of the lemma: Consider the following picture.

¾
1

(0, 0) .p

B(p, r)

where B(p, r) ∩ B(0, 1) = ∅. Let E = f−1(B(p, r)). In fact µ (E) = 0. If µ(E) 6= 0
then ∣∣∣∣

1
µ(E)

∫

E

f dµ− p

∣∣∣∣ =
∣∣∣∣

1
µ(E)

∫

E

(f − p)dµ

∣∣∣∣

≤ 1
µ(E)

∫

E

|f − p|dµ < r

because on E, |f (x)− p| < r. Hence

| 1
µ(E)

∫

E

fdµ| > 1
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because it is closer to p than r. (Refer to the picture.) However, this contradicts the
assumption of the lemma. It follows µ(E) = 0. Since the set of complex numbers,
z such that |z| > 1 is an open set, it equals the union of countably many balls,
{Bi}∞i=1 . Therefore,

µ
(
f−1({z ∈ C : |z| > 1}) = µ

(∪∞k=1f
−1 (Bk)

)

≤
∞∑

k=1

µ
(
f−1 (Bk)

)
= 0.

Thus |f(x)| ≤ 1 a.e. as claimed. This proves the lemma.

Corollary 13.11 Let λ be a complex vector measure with |λ|(Ω) < ∞1 Then there
exists a unique f ∈ L1(Ω) such that λ(E) =

∫
E

fd|λ|. Furthermore, |f | = 1 for |λ|
a.e. This is called the polar decomposition of λ.

Proof: First note that λ ¿ |λ| and so such an L1 function exists and is unique.
It is required to show |f | = 1 a.e. If |λ|(E) 6= 0,

∣∣∣∣
λ(E)
|λ|(E)

∣∣∣∣ =
∣∣∣∣

1
|λ|(E)

∫

E

f d|λ|
∣∣∣∣ ≤ 1.

Therefore by Lemma 13.10, |f | ≤ 1, |λ| a.e. Now let

En =
[
|f | ≤ 1− 1

n

]
.

Let {F1, · · ·, Fm} be a partition of En. Then

m∑

i=1

|λ (Fi)| =
m∑

i=1

∣∣∣∣
∫

Fi

fd |λ|
∣∣∣∣ ≤

m∑

i=1

∫

Fi

|f | d |λ|

≤
m∑

i=1

∫

Fi

(
1− 1

n

)
d |λ| =

m∑

i=1

(
1− 1

n

)
|λ| (Fi)

= |λ| (En)
(

1− 1
n

)
.

Then taking the supremum over all partitions,

|λ| (En) ≤
(

1− 1
n

)
|λ| (En)

which shows |λ| (En) = 0. Hence |λ| ([|f | < 1]) = 0 because [|f | < 1] = ∪∞n=1En.This
proves Corollary 13.11.

1As proved above, the assumption that |λ| (Ω) < ∞ is redundant.
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Corollary 13.12 Suppose (Ω,S) is a measure space and µ is a finite nonnegative
measure on S. Then for h ∈ L1 (µ) , define a complex measure, λ by

λ (E) ≡
∫

E

hdµ.

Then
|λ| (E) =

∫

E

|h| dµ.

Furthermore, |h| = gh where gd |λ| is the polar decomposition of λ,

λ (E) =
∫

E

gd |λ|

Proof: From Corollary 13.11 there exists g such that |g| = 1, |λ| a.e. and for
all E ∈ S

λ (E) =
∫

E

gd |λ| =
∫

E

hdµ.

Let sn be a sequence of simple functions converging pointwise to g. Then from the
above, ∫

E

gsnd |λ| =
∫

E

snhdµ.

Passing to the limit using the dominated convergence theorem,
∫

E

d |λ| =
∫

E

ghdµ.

It follows gh ≥ 0 a.e. and |g| = 1. Therefore, |h| = |gh| = gh. It follows from the
above, that

|λ| (E) =
∫

E

d |λ| =
∫

E

ghdµ =
∫

E

d |λ| =
∫

E

|h| dµ

and this proves the corollary.

13.3 Representation Theorems For The Dual Space
Of Lp

Recall the concept of the dual space of a Banach space in the Chapter on Banach
space starting on Page 253. The next topic deals with the dual space of Lp for p ≥ 1
in the case where the measure space is σ finite or finite. In what follows q = ∞ if
p = 1 and otherwise, 1

p + 1
q = 1.

Theorem 13.13 (Riesz representation theorem) Let p > 1 and let (Ω,S, µ) be a
finite measure space. If Λ ∈ (Lp(Ω))′, then there exists a unique h ∈ Lq(Ω) ( 1

p + 1
q =

1) such that

Λf =
∫

Ω

hfdµ.

This function satisfies ||h||q = ||Λ|| where ||Λ|| is the operator norm of Λ.
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Proof: (Uniqueness) If h1 and h2 both represent Λ, consider

f = |h1 − h2|q−2(h1 − h2),

where h denotes complex conjugation. By Holder’s inequality, it is easy to see that
f ∈ Lp(Ω). Thus

0 = Λf − Λf =∫
h1|h1 − h2|q−2(h1 − h2)− h2|h1 − h2|q−2(h1 − h2)dµ

=
∫
|h1 − h2|qdµ.

Therefore h1 = h2 and this proves uniqueness.
Now let λ(E) = Λ(XE). Since this is a finite measure space XE is an element

of Lp (Ω) and so it makes sense to write Λ (XE). In fact λ is a complex measure
having finite total variation. Let A1, · · ·, An be a partition of Ω.

|ΛXAi | = wi(ΛXAi) = Λ(wiXAi)

for some wi ∈ C, |wi| = 1. Thus

n∑

i=1

|λ(Ai)| =
n∑

i=1

|Λ(XAi)| = Λ(
n∑

i=1

wiXAi)

≤ ||Λ||(
∫
|

n∑

i=1

wiXAi |pdµ)
1
p = ||Λ||(

∫

Ω

dµ)
1
p = ||Λ||µ(Ω)

1
p.

This is because if x ∈ Ω, x is contained in exactly one of the Ai and so the absolute
value of the sum in the first integral above is equal to 1. Therefore |λ|(Ω) < ∞
because this was an arbitrary partition. Also, if {Ei}∞i=1 is a sequence of disjoint
sets of S, let

Fn = ∪n
i=1Ei, F = ∪∞i=1Ei.

Then by the Dominated Convergence theorem,

||XFn −XF ||p → 0.

Therefore, by continuity of Λ,

λ(F ) = Λ(XF ) = lim
n→∞

Λ(XFn) = lim
n→∞

n∑

k=1

Λ(XEk
) =

∞∑

k=1

λ(Ek).

This shows λ is a complex measure with |λ| finite.
It is also clear from the definition of λ that λ ¿ µ. Therefore, by the Radon

Nikodym theorem, there exists h ∈ L1(Ω) with

λ(E) =
∫

E

hdµ = Λ(XE).
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Actually h ∈ Lq and satisfies the other conditions above. Let s =
∑m

i=1 ciXEi be a
simple function. Then since Λ is linear,

Λ(s) =
m∑

i=1

ciΛ(XEi) =
m∑

i=1

ci

∫

Ei

hdµ =
∫

hsdµ. (13.9)

Claim: If f is uniformly bounded and measurable, then

Λ (f) =
∫

hfdµ.

Proof of claim: Since f is bounded and measurable, there exists a sequence of
simple functions, {sn} which converges to f pointwise and in Lp (Ω). This follows
from Theorem 7.24 on Page 139 upon breaking f up into positive and negative parts
of real and complex parts. In fact this theorem gives uniform convergence. Then

Λ (f) = lim
n→∞

Λ (sn) = lim
n→∞

∫
hsndµ =

∫
hfdµ,

the first equality holding because of continuity of Λ, the second following from 13.9
and the third holding by the dominated convergence theorem.

This is a very nice formula but it still has not been shown that h ∈ Lq (Ω).
Let En = {x : |h(x)| ≤ n}. Thus |hXEn | ≤ n. Then

|hXEn |q−2(hXEn) ∈ Lp(Ω).

By the claim, it follows that

||hXEn ||qq =
∫

h|hXEn |q−2(hXEn)dµ = Λ(|hXEn |q−2(hXEn))

≤ ||Λ|| ∣∣∣∣|hXEn |q−2(hXEn)
∣∣∣∣

p
= ||Λ|| ||hXEn ||

q
p
q ,

the last equality holding because q − 1 = q/p and so

(∫ ∣∣|hXEn |q−2(hXEn)
∣∣p dµ

)1/p

=
(∫ (

|hXEn |q/p
)p

dµ

)1/p

= ||hXEn ||
q
p
q

Therefore, since q − q
p = 1, it follows that

||hXEn ||q ≤ ||Λ||.

Letting n →∞, the Monotone Convergence theorem implies

||h||q ≤ ||Λ||. (13.10)
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Now that h has been shown to be in Lq(Ω), it follows from 13.9 and the density
of the simple functions, Theorem 10.13 on Page 241, that

Λf =
∫

hfdµ

for all f ∈ Lp(Ω).
It only remains to verify the last claim.

||Λ|| = sup{
∫

hf : ||f ||p ≤ 1} ≤ ||h||q ≤ ||Λ||

by 13.10, and Holder’s inequality. This proves the theorem.
To represent elements of the dual space of L1(Ω), another Banach space is

needed.

Definition 13.14 Let (Ω,S, µ) be a measure space. L∞(Ω) is the vector space of
measurable functions such that for some M > 0, |f(x)| ≤ M for all x outside of
some set of measure zero (|f(x)| ≤ M a.e.). Define f = g when f(x) = g(x) a.e.
and ||f ||∞ ≡ inf{M : |f(x)| ≤ M a.e.}.

Theorem 13.15 L∞(Ω) is a Banach space.

Proof: It is clear that L∞(Ω) is a vector space. Is || ||∞ a norm?
Claim: If f ∈ L∞ (Ω), then |f (x)| ≤ ||f ||∞ a.e.
Proof of the claim:

{
x : |f (x)| ≥ ||f ||∞ + n−1

} ≡ En is a set of measure zero
according to the definition of ||f ||∞. Furthermore, {x : |f (x)| > ||f ||∞} = ∪nEn

and so it is also a set of measure zero. This verifies the claim.
Now if ||f ||∞ = 0 it follows that f (x) = 0 a.e. Also if f, g ∈ L∞ (Ω),

|f (x) + g (x)| ≤ |f (x)|+ |g (x)| ≤ ||f ||∞ + ||g||∞
a.e. and so ||f ||∞ + ||g||∞ serves as one of the constants, M in the definition of
||f + g||∞. Therefore,

||f + g||∞ ≤ ||f ||∞ + ||g||∞ .

Next let c be a number. Then |cf (x)| = |c| |f (x)| ≤ |c| ||f ||∞ and so ||cf ||∞ ≤
|c| ||f ||∞. Therefore since c is arbitrary, ||f ||∞ = ||c (1/c) f ||∞ ≤

∣∣ 1
c

∣∣ ||cf ||∞ which
implies |c| ||f ||∞ ≤ ||cf ||∞. Thus || ||∞ is a norm as claimed.

To verify completeness, let {fn} be a Cauchy sequence in L∞(Ω) and use the
above claim to get the existence of a set of measure zero, Enm such that for all
x /∈ Enm,

|fn(x)− fm(x)| ≤ ||fn − fm||∞
Let E = ∪n,mEnm. Thus µ(E) = 0 and for each x /∈ E, {fn(x)}∞n=1 is a Cauchy
sequence in C. Let

f(x) =
{

0 if x ∈ E
limn→∞ fn(x) if x /∈ E

= lim
n→∞

XEC (x)fn(x).
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Then f is clearly measurable because it is the limit of measurable functions. If

Fn = {x : |fn(x)| > ||fn||∞}

and F = ∪∞n=1Fn, it follows µ(F ) = 0 and that for x /∈ F ∪ E,

|f(x)| ≤ lim inf
n→∞

|fn(x)| ≤ lim inf
n→∞

||fn||∞ < ∞

because {||fn||∞} is a Cauchy sequence. (|||fn||∞ − ||fm||∞| ≤ ||fn − fm||∞ by the
triangle inequality.) Thus f ∈ L∞(Ω). Let n be large enough that whenever m > n,

||fm − fn||∞ < ε.

Then, if x /∈ E,

|f(x)− fn(x)| = lim
m→∞

|fm(x)− fn(x)|
≤ lim

m→∞
inf ||fm − fn||∞ < ε.

Hence ||f − fn||∞ < ε for all n large enough. This proves the theorem.
The next theorem is the Riesz representation theorem for

(
L1 (Ω)

)′.

Theorem 13.16 (Riesz representation theorem) Let (Ω,S, µ) be a finite measure
space. If Λ ∈ (L1(Ω))′, then there exists a unique h ∈ L∞(Ω) such that

Λ(f) =
∫

Ω

hf dµ

for all f ∈ L1(Ω). If h is the function in L∞(Ω) representing Λ ∈ (L1(Ω))′, then
||h||∞ = ||Λ||.

Proof: Just as in the proof of Theorem 13.13, there exists a unique h ∈ L1(Ω)
such that for all simple functions, s,

Λ(s) =
∫

hs dµ. (13.11)

To show h ∈ L∞(Ω), let ε > 0 be given and let

E = {x : |h(x)| ≥ ||Λ||+ ε}.

Let |k| = 1 and hk = |h|. Since the measure space is finite, k ∈ L1(Ω). As in
Theorem 13.13 let {sn} be a sequence of simple functions converging to k in L1(Ω),
and pointwise. It follows from the construction in Theorem 7.24 on Page 139 that
it can be assumed |sn| ≤ 1. Therefore

Λ(kXE) = lim
n→∞

Λ(snXE) = lim
n→∞

∫

E

hsndµ =
∫

E

hkdµ
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where the last equality holds by the Dominated Convergence theorem. Therefore,

||Λ||µ(E) ≥ |Λ(kXE)| = |
∫

Ω

hkXEdµ| =
∫

E

|h|dµ

≥ (||Λ||+ ε)µ(E).

It follows that µ(E) = 0. Since ε > 0 was arbitrary, ||Λ|| ≥ ||h||∞. It was shown
that h ∈ L∞(Ω), the density of the simple functions in L1 (Ω) and 13.11 imply

Λf =
∫

Ω

hfdµ , ||Λ|| ≥ ||h||∞. (13.12)

This proves the existence part of the theorem. To verify uniqueness, suppose h1

and h2 both represent Λ and let f ∈ L1(Ω) be such that |f | ≤ 1 and f(h1 − h2) =
|h1 − h2|. Then

0 = Λf − Λf =
∫

(h1 − h2)fdµ =
∫
|h1 − h2|dµ.

Thus h1 = h2. Finally,

||Λ|| = sup{|
∫

hfdµ| : ||f ||1 ≤ 1} ≤ ||h||∞ ≤ ||Λ||

by 13.12.
Next these results are extended to the σ finite case.

Lemma 13.17 Let (Ω,S, µ) be a measure space and suppose there exists a measur-
able function, r such that r (x) > 0 for all x, there exists M such that |r (x)| < M
for all x, and

∫
rdµ < ∞. Then for

Λ ∈ (Lp(Ω, µ))′, p ≥ 1,

there exists a unique h ∈ Lp′(Ω, µ), L∞(Ω, µ) if p = 1 such that

Λf =
∫

hfdµ.

Also ||h|| = ||Λ||. (||h|| = ||h||p′ if p > 1, ||h||∞ if p = 1). Here

1
p

+
1
p′

= 1.

Proof: Define a new measure µ̃, according to the rule

µ̃ (E) ≡
∫

E

rdµ. (13.13)

Thus µ̃ is a finite measure on S. Now define a mapping, η : Lp(Ω, µ) → Lp(Ω, µ̃) by

ηf = r−
1
p f.
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Then
||ηf ||pLp(eµ) =

∫ ∣∣∣r− 1
p f

∣∣∣
p

rdµ = ||f ||pLp(µ)

and so η is one to one and in fact preserves norms. I claim that also η is onto. To
see this, let g ∈ Lp(Ω, µ̃) and consider the function, r

1
p g. Then

∫ ∣∣∣r 1
p g

∣∣∣
p

dµ =
∫
|g|p rdµ =

∫
|g|p dµ̃ < ∞

Thus r
1
p g ∈ Lp (Ω, µ) and η

(
r

1
p g

)
= g showing that η is onto as claimed. Thus

η is one to one, onto, and preserves norms. Consider the diagram below which is
descriptive of the situation in which η∗ must be one to one and onto.

h, Lp′ (µ̃) Lp (µ̃)′ , Λ̃
η∗

→ Lp (µ)′ , Λ

Lp (µ̃)
η
← Lp (µ)

Then for Λ ∈ Lp (µ)′ , there exists a unique Λ̃ ∈ Lp (µ̃)′ such that η∗Λ̃ = Λ,
∣∣∣
∣∣∣Λ̃

∣∣∣
∣∣∣ =

||Λ|| . By the Riesz representation theorem for finite measure spaces, there exists
a unique h ∈ Lp′ (µ̃) which represents Λ̃ in the manner described in the Riesz
representation theorem. Thus ||h||Lp′ (eµ) =

∣∣∣
∣∣∣Λ̃

∣∣∣
∣∣∣ = ||Λ|| and for all f ∈ Lp (µ) ,

Λ (f) = η∗Λ̃ (f) ≡ Λ̃ (ηf) =
∫

h (ηf) dµ̃ =
∫

rh
(
f−

1
p f

)
dµ

=
∫

r
1
p′ hfdµ.

Now ∫ ∣∣∣r 1
p′ h

∣∣∣
p′

dµ =
∫
|h|p′ rdµ = ||h||p′

Lp′ (eµ)
< ∞.

Thus
∣∣∣
∣∣∣r 1

p′ h
∣∣∣
∣∣∣
Lp′ (µ)

= ||h||Lp′ (eµ) =
∣∣∣
∣∣∣Λ̃

∣∣∣
∣∣∣ = ||Λ|| and represents Λ in the appropriate

way. If p = 1, then 1/p′ ≡ 0. This proves the Lemma.
A situation in which the conditions of the lemma are satisfied is the case where

the measure space is σ finite. In fact, you should show this is the only case in which
the conditions of the above lemma hold.

Theorem 13.18 (Riesz representation theorem) Let (Ω,S, µ) be σ finite and let

Λ ∈ (Lp(Ω, µ))′, p ≥ 1.

Then there exists a unique h ∈ Lq(Ω, µ), L∞(Ω, µ) if p = 1 such that

Λf =
∫

hfdµ.
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Also ||h|| = ||Λ||. (||h|| = ||h||q if p > 1, ||h||∞ if p = 1). Here

1
p

+
1
q

= 1.

Proof: Let {Ωn} be a sequence of disjoint elements of S having the property
that

0 < µ(Ωn) < ∞, ∪∞n=1Ωn = Ω.

Define

r(x) =
∞∑

n=1

1
n2
XΩn(x) µ(Ωn)−1, µ̃(E) =

∫

E

rdµ.

Thus ∫

Ω

rdµ = µ̃(Ω) =
∞∑

n=1

1
n2

< ∞

so µ̃ is a finite measure. The above lemma gives the existence part of the conclusion
of the theorem. Uniqueness is done as before.

With the Riesz representation theorem, it is easy to show that

Lp(Ω), p > 1

is a reflexive Banach space. Recall Definition 11.32 on Page 269 for the definition.

Theorem 13.19 For (Ω,S, µ) a σ finite measure space and p > 1, Lp(Ω) is reflex-
ive.

Proof: Let δr : (Lr(Ω))′ → Lr′(Ω) be defined for 1
r + 1

r′
= 1 by

∫
(δrΛ)g dµ = Λg

for all g ∈ Lr(Ω). From Theorem 13.18 δr is one to one, onto, continuous and linear.
By the open map theorem, δ−1

r is also one to one, onto, and continuous (δrΛ equals
the representor of Λ). Thus δ∗r is also one to one, onto, and continuous by Corollary
11.29. Now observe that J = δ∗p ◦ δ−1

q . To see this, let z∗ ∈ (Lq)′, y∗ ∈ (Lp)′,

δ∗p ◦ δ−1
q (δqz

∗)(y∗) = (δ∗pz
∗)(y∗)

= z∗(δpy
∗)

=
∫

(δqz
∗)(δpy

∗)dµ,

J(δqz
∗)(y∗) = y∗(δqz

∗)

=
∫

(δpy
∗)(δqz

∗)dµ.

Therefore δ∗p ◦ δ−1
q = J on δq(Lq)′ = Lp. But the two δ maps are onto and so J is

also onto.
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13.4 The Dual Space Of C (X)

Consider the dual space of C(X) where X is a compact Hausdorff space. It will
turn out to be a space of measures. To show this, the following lemma will be
convenient.

Lemma 13.20 Suppose λ is a mapping which is defined on the positive continuous
functions defined on X, some topological space which satisfies

λ (af + bg) = aλ (f) + bλ (g) (13.14)

whenever a, b ≥ 0 and f, g ≥ 0. Then there exists a unique extension of λ to all of
C (X), Λ such that whenever f, g ∈ C (X) and a, b ∈ C, it follows

Λ (af + bg) = aΛ (f) + bΛ (g) .

Proof: Let C(X;R) be the real-valued functions in C(X) and define

ΛR(f) = λf+ − λf−

for f ∈ C(X;R). Use the identity

(f1 + f2)+ + f−1 + f−2 = f+
1 + f+

2 + (f1 + f2)−

and 13.14 to write

λ(f1 + f2)+ − λ(f1 + f2)− = λf+
1 − λf−1 + λf+

2 − λf−2 ,

it follows that ΛR(f1 + f2) = ΛR(f1) + ΛR(f2). To show that ΛR is linear, it is
necessary to verify that ΛR(cf) = cΛR(f) for all c ∈ R. But

(cf)± = cf±,

if c ≥ 0 while
(cf)+ = −c(f)−,

if c < 0 and
(cf)− = (−c)f+,

if c < 0. Thus, if c < 0,

ΛR(cf) = λ(cf)+ − λ(cf)− = λ
(
(−c) f−

)− λ
(
(−c)f+

)

= −cλ(f−) + cλ(f+) = c(λ(f+)− λ(f−)) = cΛR (f) .

A similar formula holds more easily if c ≥ 0. Now let

Λf = ΛR(Re f) + iΛR(Im f)
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for arbitrary f ∈ C(X). This is linear as desired. It is obvious that Λ (f + g) =
Λ (f) + Λ (g) from the fact that taking the real and imaginary parts are linear
operations. The only thing to check is whether you can factor out a complex scalar.

Λ ((a + ib) f) = Λ (af) + Λ (ibf)

≡ ΛR (aRe f) + iΛR (a Im f) + ΛR (−b Im f) + iΛR (bRe f)

because ibf = ibRe f − b Im f and so Re (ibf) = −b Im f and Im (ibf) = bRe f .
Therefore, the above equals

= (a + ib) ΛR (Re f) + i (a + ib) ΛR (Im f)
= (a + ib) (ΛR (Re f) + iΛR (Im f)) = (a + ib) Λf

The extension is obviously unique. This proves the lemma.
Let L ∈ C(X)′. Also denote by C+(X) the set of nonnegative continuous

functions defined on X. Define for f ∈ C+(X)

λ(f) = sup{|Lg| : |g| ≤ f}.

Note that λ(f) < ∞ because |Lg| ≤ ||L|| ||g|| ≤ ||L|| ||f || for |g| ≤ f . Then the
following lemma is important.

Lemma 13.21 If c ≥ 0, λ(cf) = cλ(f), f1 ≤ f2 implies λf1 ≤ λf2, and

λ(f1 + f2) = λ(f1) + λ(f2).

Proof: The first two assertions are easy to see so consider the third. Let
|gj | ≤ fj and let g̃j = eiθj gj where θj is chosen such that eiθj Lgj = |Lgj |. Thus
Lg̃j = |Lgj |. Then

|g̃1 + g̃2| ≤ f1 + f2.

Hence
|Lg1|+ |Lg2| = Lg̃1 + Lg̃2 =

L(g̃1 + g̃2) = |L(g̃1 + g̃2)| ≤ λ(f1 + f2). (13.15)

Choose g1 and g2 such that |Lgi|+ ε > λ(fi). Then 13.15 shows

λ(f1) + λ(f2)− 2ε ≤ λ(f1 + f2).

Since ε > 0 is arbitrary, it follows that

λ(f1) + λ(f2) ≤ λ(f1 + f2). (13.16)

Now let |g| ≤ f1 + f2, |Lg| ≥ λ(f1 + f2)− ε. Let

hi (x) =

{
fi(x)g(x)

f1(x)+f2(x) if f1 (x) + f2 (x) > 0,

0 if f1 (x) + f2 (x) = 0.
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Then hi is continuous and h1(x) + h2(x) = g(x), |hi| ≤ fi. Therefore,

−ε + λ(f1 + f2) ≤ |Lg| ≤ |Lh1 + Lh2| ≤ |Lh1|+ |Lh2|
≤ λ(f1) + λ(f2).

Since ε > 0 is arbitrary, this shows with 13.16 that

λ(f1 + f2) ≤ λ(f1) + λ(f2) ≤ λ(f1 + f2)

which proves the lemma.
Let Λ be defined in Lemma 13.20. Then Λ is linear by this lemma. Also, if

f ≥ 0,
Λf = ΛRf = λ (f) ≥ 0.

Therefore, Λ is a positive linear functional on C(X) (= Cc(X) since X is compact).
By Theorem 8.21 on Page 169, there exists a unique Radon measure µ such that

Λf =
∫

X

f dµ

for all f ∈ C(X). Thus Λ(1) = µ(X). What follows is the Riesz representation
theorem for C(X)′.

Theorem 13.22 Let L ∈ (C(X))′. Then there exists a Radon measure µ and a
function σ ∈ L∞(X,µ) such that

L(f) =
∫

X

f σ dµ.

Proof: Let f ∈ C(X). Then there exists a unique Radon measure µ such that

|Lf | ≤ Λ(|f |) =
∫

X

|f |dµ = ||f ||1.

Since µ is a Radon measure, C(X) is dense in L1(X,µ). Therefore L extends
uniquely to an element of (L1(X, µ))′. By the Riesz representation theorem for L1,
there exists a unique σ ∈ L∞(X, µ) such that

Lf =
∫

X

f σ dµ

for all f ∈ C(X).

13.5 The Dual Space Of C0(X)

It is possible to give a simple generalization of the above theorem. For X a locally
compact Hausdorff space, X̃ denotes the one point compactification of X. Thus,
X̃ = X ∪ {∞} and the topology of X̃ consists of the usual topology of X along
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with all complements of compact sets which are defined as the open sets containing
∞. Also C0 (X) will denote the space of continuous functions, f , defined on X

such that in the topology of X̃, limx→∞ f (x) = 0. For this space of functions,
||f ||0 ≡ sup {|f (x)| : x ∈ X} is a norm which makes this into a Banach space.
Then the generalization is the following corollary.

Corollary 13.23 Let L ∈ (C0 (X))′ where X is a locally compact Hausdorff space.
Then there exists σ ∈ L∞ (X, µ) for µ a finite Radon measure such that for all
f ∈ C0 (X),

L (f) =
∫

X

fσdµ.

Proof: Let
D̃ ≡

{
f ∈ C

(
X̃

)
: f (∞) = 0

}
.

Thus D̃ is a closed subspace of the Banach space C
(
X̃

)
. Let θ : C0 (X) → D̃ be

defined by

θf (x) =
{

f (x) if x ∈ X,
0 if x = ∞.

Then θ is an isometry of C0 (X) and D̃. (||θu|| = ||u|| .)The following diagram is
obtained.

C0 (X)′ θ∗←
(
D̃

)′ i∗← C
(
X̃

)′

C0 (X) →
θ

D̃ →
i

C
(
X̃

)

By the Hahn Banach theorem, there exists L1 ∈ C
(
X̃

)′
such that θ∗i∗L1 = L.

Now apply Theorem 13.22 to get the existence of a finite Radon measure, µ1, on X̃

and a function σ ∈ L∞
(
X̃, µ1

)
, such that

L1g =
∫
eX gσdµ1.

Letting the σ algebra of µ1 measurable sets be denoted by S1, define

S ≡{E \ {∞} : E ∈ S1}

and let µ be the restriction of µ1 to S. If f ∈ C0 (X),

Lf = θ∗i∗L1f ≡ L1iθf = L1θf =
∫
eX θfσdµ1 =

∫

X

fσdµ.

This proves the corollary.
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13.6 More Attractive Formulations

In this section, Corollary 13.23 will be refined and placed in an arguably more
attractive form. The measures involved will always be complex Borel measures
defined on a σ algebra of subsets of X, a locally compact Hausdorff space.

Definition 13.24 Let λ be a complex measure. Then
∫

fdλ ≡ ∫
fhd |λ| where

hd |λ| is the polar decomposition of λ described above. The complex measure, λ is
called regular if |λ| is regular.

The following lemma says that the difference of regular complex measures is also
regular.

Lemma 13.25 Suppose λi, i = 1, 2 is a complex Borel measure with total variation
finite2 defined on X, a locally compact Hausdorf space. Then λ1 − λ2 is also a
regular measure on the Borel sets.

Proof: Let E be a Borel set. That way it is in the σ algebras associated
with both λi. Then by regularity of λi, there exist K and V compact and open
respectively such that K ⊆ E ⊆ V and |λi| (V \K) < ε/2. Therefore,

∑

A∈π(V \K)

|(λ1 − λ2) (A)| =
∑

A∈π(V \K)

|λ1 (A)− λ2 (A)|

≤
∑

A∈π(V \K)

|λ1 (A)|+ |λ2 (A)|

≤ |λ1| (V \K) + |λ2| (V \K) < ε.

Therefore, |λ1 − λ2| (V \K) ≤ ε and this shows λ1 − λ2 is regular as claimed.

Theorem 13.26 Let L ∈ C0 (X)′ Then there exists a unique complex measure, λ
with |λ| regular and Borel, such that for all f ∈ C0 (X) ,

L (f) =
∫

X

fdλ.

Furthermore, ||L|| = |λ| (X) .

Proof: By Corollary 13.23 there exists σ ∈ L∞ (X, µ) where µ is a Radon
measure such that for all f ∈ C0 (X) ,

L (f) =
∫

X

fσdµ.

Let a complex Borel measure, λ be given by

λ (E) ≡
∫

E

σdµ.

2Recall this is automatic for a complex measure.



13.7. EXERCISES 317

This is a well defined complex measure because µ is a finite measure. By Corollary
13.12

|λ| (E) =
∫

E

|σ| dµ (13.17)

and σ = g |σ| where gd |λ| is the polar decomposition for λ. Therefore, for f ∈
C0 (X) ,

L (f) =
∫

X

fσdµ =
∫

X

fg |σ| dµ =
∫

X

fgd |λ| ≡
∫

X

fdλ. (13.18)

From 13.17 and the regularity of µ, it follows that |λ| is also regular.
What of the claim about ||L||? By the regularity of |λ| , it follows that C0 (X) (In

fact, Cc (X)) is dense in L1 (X, |λ|). Since |λ| is finite, g ∈ L1 (X, |λ|). Therefore,
there exists a sequence of functions in C0 (X) , {fn} such that fn → g in L1 (X, |λ|).
Therefore, there exists a subsequence, still denoted by {fn} such that fn (x) → g (x)
|λ| a.e. also. But since |g (x)| = 1 a.e. it follows that hn (x) ≡ fn(x)

|fn(x)|+ 1
n

also
converges pointwise |λ| a.e. Then from the dominated convergence theorem and
13.18

||L|| ≥ lim
n→∞

∫

X

hngd |λ| = |λ| (X) .

Also, if ||f ||C0(X) ≤ 1, then

|L (f)| =
∣∣∣∣
∫

X

fgd |λ|
∣∣∣∣ ≤

∫

X

|f | d |λ| ≤ |λ| (X) ||f ||C0(X)

and so ||L|| ≤ |λ| (X) . This proves everything but uniqueness.
Suppose λ and λ1 both work. Then for all f ∈ C0 (X) ,

0 =
∫

X

fd (λ− λ1) =
∫

X

fhd |λ− λ1|

where hd |λ− λ1| is the polar decomposition for λ− λ1. By Lemma 13.25 λ− λ1 is
regular and so, as above, there exists {fn} such that |fn| ≤ 1 and fn → h pointwise.
Therefore,

∫
X

d |λ− λ1| = 0 so λ = λ1. This proves the theorem.

13.7 Exercises

1. Suppose µ is a vector measure having values in Rn or Cn. Can you show that
|µ| must be finite? Hint: You might define for each ei, one of the standard ba-
sis vectors, the real or complex measure, µei

given by µei
(E) ≡ ei·µ (E) . Why

would this approach not yield anything for an infinite dimensional normed lin-
ear space in place of Rn?

2. The Riesz representation theorem of the Lp spaces can be used to prove a
very interesting inequality. Let r, p, q ∈ (1,∞) satisfy

1
r

=
1
p

+
1
q
− 1.
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Then
1
q

= 1 +
1
r
− 1

p
>

1
r

and so r > q. Let θ ∈ (0, 1) be chosen so that θr = q. Then also

1
r

=




1/p+1/p′=1︷ ︸︸ ︷
1− 1

p′


 +

1
q
− 1 =

1
q
− 1

p′

and so
θ

q
=

1
q
− 1

p′

which implies p′ (1− θ) = q. Now let f ∈ Lp (Rn) , g ∈ Lq (Rn) , f, g ≥ 0.
Justify the steps in the following argument using what was just shown that
θr = q and p′ (1− θ) = q. Let

h ∈ Lr′ (Rn) .

(
1
r

+
1
r′

= 1
)

∣∣∣∣
∫

f ∗ g (x)h (x) dx

∣∣∣∣ =
∣∣∣∣
∫ ∫

f (y) g (x− y)h (x) dxdy

∣∣∣∣ .

≤
∫ ∫

|f (y)| |g (x− y)|θ |g (x− y)|1−θ |h (x)| dydx

≤
∫ (∫ (

|g (x− y)|1−θ |h (x)|
)r′

dx

)1/r′

·

(∫ (
|f (y)| |g (x− y)|θ

)r

dx

)1/r

dy

≤
[∫ (∫ (

|g (x− y)|1−θ |h (x)|
)r′

dx

)p′/r′

dy

]1/p′

·

[∫ (∫ (
|f (y)| |g (x− y)|θ

)r

dx

)p/r

dy

]1/p

≤
[∫ (∫ (

|g (x− y)|1−θ |h (x)|
)p′

dy

)r′/p′

dx

]1/r′

·

[∫
|f (y)|p

(∫
|g (x− y)|θr

dx

)p/r

dy

]1/p
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=

[∫
|h (x)|r′

(∫
|g (x− y)|(1−θ)p′

dy

)r′/p′

dx

]1/r′

||g||q/r
q ||f ||p

= ||g||q/r
q ||g||q/p′

q ||f ||p ||h||r′ = ||g||q ||f ||p ||h||r′ . (13.19)

Young’s inequality says that

||f ∗ g||r ≤ ||g||q ||f ||p . (13.20)

Therefore ||f ∗ g||r ≤ ||g||q ||f ||p. How does this inequality follow from the
above computation? Does 13.19 continue to hold if r, p, q are only assumed to
be in [1,∞]? Explain. Does 13.20 hold even if r, p, and q are only assumed to
lie in [1,∞]?

3. Suppose (Ω, µ,S) is a finite measure space and that {fn} is a sequence of
functions which converge weakly to 0 in Lp (Ω). Suppose also that fn (x) → 0
a.e. Show that then fn → 0 in Lp−ε (Ω) for every p > ε > 0.

4. Give an example of a sequence of functions in L∞ (−π, π) which converges
weak ∗ to zero but which does not converge pointwise a.e. to zero. Conver-
gence weak ∗ to 0 means that for every g ∈ L1 (−π, π) ,

∫ π

−π
g (t) fn (t) dt → 0.
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Integrals And Derivatives

14.1 The Fundamental Theorem Of Calculus

The version of the fundamental theorem of calculus found in Calculus has already
been referred to frequently. It says that if f is a Riemann integrable function, the
function

x →
∫ x

a

f (t) dt,

has a derivative at every point where f is continuous. It is natural to ask what occurs
for f in L1. It is an amazing fact that the same result is obtained asside from a set of
measure zero even though f , being only in L1 may fail to be continuous anywhere.
Proofs of this result are based on some form of the Vitali covering theorem presented
above. In what follows, the measure space is (Rn,S,m) where m is n-dimensional
Lebesgue measure although the same theorems can be proved for arbitrary Radon
measures [30]. To save notation, m is written in place of mn.

By Lemma 8.7 on Page 162 and the completeness of m, the Lebesgue measurable
sets are exactly those measurable in the sense of Caratheodory. Also, to save on
notation m is also the name of the outer measure defined on all of P(Rn) which is
determined by mn. Recall

B(p, r) = {x : |x− p| < r}. (14.1)

Also define the following.

If B = B(p, r), then B̂ = B(p, 5r). (14.2)

The first version of the Vitali covering theorem presented above will now be used
to establish the fundamental theorem of calculus. The space of locally integrable
functions is the most general one for which the maximal function defined below
makes sense.

Definition 14.1 f ∈ L1
loc(Rn) means fXB(0,R) ∈ L1(Rn) for all R > 0. For

f ∈ L1
loc(Rn), the Hardy Littlewood Maximal Function, Mf , is defined by

Mf(x) ≡ sup
r>0

1
m(B(x, r))

∫

B(x,r)

|f(y)|dy.

321
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Theorem 14.2 If f ∈ L1(Rn), then for α > 0,

m([Mf > α]) ≤ 5n

α
||f ||1.

(Here and elsewhere, [Mf > α] ≡ {x ∈ Rn : Mf(x) > α} with other occurrences of
[ ] being defined similarly.)

Proof: Let S ≡ [Mf > α]. For x ∈ S, choose rx > 0 with

1
m(B(x, rx))

∫

B(x,rx)

|f | dm > α.

The rx are all bounded because

m(B(x, rx)) <
1
α

∫

B(x,rx)

|f | dm <
1
α
||f ||1.

By the Vitali covering theorem, there are disjoint balls B(xi, ri) such that

S ⊆ ∪∞i=1B(xi, 5ri)

and
1

m(B(xi, ri))

∫

B(xi,ri)

|f | dm > α.

Therefore

m(S) ≤
∞∑

i=1

m(B(xi, 5ri)) = 5n
∞∑

i=1

m(B(xi, ri))

≤ 5n

α

∞∑

i=1

∫

B(xi,ri)

|f | dm

≤ 5n

α

∫

Rn

|f | dm,

the last inequality being valid because the balls B(xi, ri) are disjoint. This proves
the theorem.

Note that at this point it is unknown whether S is measurable. This is why
m(S) and not m (S) is written.

The following is the fundamental theorem of calculus from elementary calculus.

Lemma 14.3 Suppose g is a continuous function. Then for all x,

lim
r→0

1
m(B(x, r))

∫

B(x,r)

g(y)dy = g(x).
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Proof: Note that

g (x) =
1

m(B(x, r))

∫

B(x,r)

g (x) dy

and so ∣∣∣∣∣g (x)− 1
m(B(x, r))

∫

B(x,r)

g(y)dy

∣∣∣∣∣

=

∣∣∣∣∣
1

m(B(x, r))

∫

B(x,r)

(g(y)− g (x)) dy

∣∣∣∣∣

≤ 1
m(B(x, r))

∫

B(x,r)

|g(y)− g (x)| dy.

Now by continuity of g at x, there exists r > 0 such that if |x− y| < r, |g (y)− g (x)| <
ε. For such r, the last expression is less than

1
m(B(x, r))

∫

B(x,r)

εdy < ε.

This proves the lemma.

Definition 14.4 Let f ∈ L1
(
Rk,m

)
. A point, x ∈ Rk is said to be a Lebesgue

point if

lim sup
r→0

1
m (B (x, r))

∫

B(x,r)

|f (y)− f (x)| dm = 0.

Note that if x is a Lebesgue point, then

lim
r→0

1
m (B (x, r))

∫

B(x,r)

f (y) dm = f (x) .

and so the symmetric derivative exists at all Lebesgue points.

Theorem 14.5 (Fundamental Theorem of Calculus) Let f ∈ L1(Rk). Then there
exists a set of measure 0, N , such that if x /∈ N , then

lim
r→0

1
m(B(x, r))

∫

B(x,r)

|f(y)− f(x)|dy = 0.

Proof: Let λ > 0 and let ε > 0. By density of Cc

(
Rk

)
in L1

(
Rk, m

)
there exists

g ∈ Cc

(
Rk

)
such that ||g − f ||L1(Rk) < ε. Now since g is continuous,

lim sup
r→0

1
m (B (x, r))

∫

B(x,r)

|f (y)− f (x)| dm

= lim sup
r→0

1
m (B (x, r))

∫

B(x,r)

|f (y)− f (x)| dm

− lim
r→0

1
m (B (x, r))

∫

B(x,r)

|g (y)− g (x)| dm



324 INTEGRALS AND DERIVATIVES

= lim sup
r→0

(
1

m (B (x, r))

∫

B(x,r)

|f (y)− f (x)| − |g (y)− g (x)| dm

)

≤ lim sup
r→0

(
1

m (B (x, r))

∫

B(x,r)

||f (y)− f (x)| − |g (y)− g (x)|| dm

)

≤ lim sup
r→0

(
1

m (B (x, r))

∫

B(x,r)

|f (y)− g (y)− (f (x)− g (x))| dm

)

≤ lim sup
r→0

(
1

m (B (x, r))

∫

B(x,r)

|f (y)− g (y)| dm

)
+ |f (x)− g (x)|

≤ M ([f − g]) (x) + |f (x)− g (x)| .
Therefore,

[
lim sup

r→0

1
m (B (x, r))

∫

B(x,r)

|f (y)− f (x)| dm > λ

]

⊆
[
M ([f − g]) >

λ

2

]
∪

[
|f − g| > λ

2

]

Now

ε >

∫
|f − g| dm ≥

∫

[|f−g|> λ
2 ]
|f − g| dm

≥ λ

2
m

([
|f − g| > λ

2

])

This along with the weak estimate of Theorem 14.2 implies

m

([
lim sup

r→0

1
m (B (x, r))

∫

B(x,r)

|f (y)− f (x)| dm > λ

])

<

(
2
λ

5k +
2
λ

)
||f − g||L1(Rk)

<

(
2
λ

5k +
2
λ

)
ε.

Since ε > 0 is arbitrary, it follows

m

([
lim sup

r→0

1
m (B (x, r))

∫

B(x,r)

|f (y)− f (x)| dm > λ

])
= 0.

Now let

N =

[
lim sup

r→0

1
m (B (x, r))

∫

B(x,r)

|f (y)− f (x)| dm > 0

]
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and

Nn =

[
lim sup

r→0

1
m (B (x, r))

∫

B(x,r)

|f (y)− f (x)| dm >
1
n

]

It was just shown that m (Nn) = 0. Also, N = ∪∞n=1Nn. Therefore, m (N) = 0 also.
It follows that for x /∈ N,

lim sup
r→0

1
m (B (x, r))

∫

B(x,r)

|f (y)− f (x)| dm = 0

and this proves a.e. point is a Lebesgue point.
Of course it is sufficient to assume f is only in L1

loc

(
Rk

)
.

Corollary 14.6 (Fundamental Theorem of Calculus) Let f ∈ L1
loc(Rk). Then there

exists a set of measure 0, N , such that if x /∈ N , then

lim
r→0

1
m(B(x, r))

∫

B(x,r)

|f(y)− f(x)|dy = 0.

Proof: Consider B (0, n) where n is a positive integer. Then fn ≡ fXB(0,n) ∈
L1

(
Rk

)
and so there exists a set of measure 0, Nn such that if x ∈ B (0, n) \Nn,

then

lim
r→0

1
m(B(x, r))

∫

B(x,r)

|fn(y)−fn(x)|dy = lim
r→0

1
m(B(x, r))

∫

B(x,r)

|f(y)−f(x)|dy = 0.

Let N = ∪∞n=1Nn. Then if x /∈ N, the above equation holds.

Corollary 14.7 If f ∈ L1
loc(Rn), then

lim
r→0

1
m(B(x, r))

∫

B(x,r)

f(y)dy = f(x) a.e. x. (14.3)

Proof:
∣∣∣∣∣

1
m(B(x, r))

∫

B(x,r)

f(y)dy − f(x)

∣∣∣∣∣ ≤
1

m(B(x, r))

∫

B(x,r)

|f(y)− f(x)| dy

and the last integral converges to 0 a.e. x.

Definition 14.8 For N the set of Theorem 14.5 or Corollary 14.6, NC is called
the Lebesgue set or the set of Lebesgue points.

The next corollary is a one dimensional version of what was just presented.

Corollary 14.9 Let f ∈ L1(R) and let

F (x) =
∫ x

−∞
f(t)dt.

Then for a.e. x, F ′(x) = f(x).
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Proof: For h > 0

1
h

∫ x+h

x

|f(y)− f(x)|dy ≤ 2(
1
2h

)
∫ x+h

x−h

|f(y)− f(x)|dy

By Theorem 14.5, this converges to 0 a.e. Similarly

1
h

∫ x

x−h

|f(y)− f(x)|dy

converges to 0 a.e. x.
∣∣∣∣
F (x + h)− F (x)

h
− f(x)

∣∣∣∣ ≤
1
h

∫ x+h

x

|f(y)− f(x)|dy (14.4)

and ∣∣∣∣
F (x)− F (x− h)

h
− f(x)

∣∣∣∣ ≤
1
h

∫ x

x−h

|f(y)− f(x)|dy. (14.5)

Now the expression on the right in 14.4 and 14.5 converges to zero for a.e. x.
Therefore, by 14.4, for a.e. x the derivative from the right exists and equals f (x)
while from 14.5 the derivative from the left exists and equals f (x) a.e. It follows

lim
h→0

F (x + h)− F (x)
h

= f(x) a.e. x

This proves the corollary.

14.2 Absolutely Continuous Functions

Definition 14.10 Let [a, b] be a closed and bounded interval and let f : [a, b] → R.
Then f is said to be absolutely continuous if for every ε > 0 there exists δ > 0 such
that if

∑m
i=1 |yi − xi| < δ, then

∑m
i=1 |f (yi)− f (xi)| < ε.

Definition 14.11 A finite subset, P of [a, b] is called a partition of [x, y] ⊆ [a, b] if
P = {x0, x1, · · ·, xn} where

x = x0 < x1 < · · ·, < xn = y.

For f : [a, b] → R and P = {x0, x1, · · ·, xn} define

VP [x, y] ≡
n∑

i=1

|f (xi)− f (xi−1)| .

Denoting by P [x, y] the set of all partitions of [x, y] define

V [x, y] ≡ sup
P∈P[x,y]

VP [x, y] .

For simplicity, V [a, x] will be denoted by V (x) . It is called the total variation of
the function, f.
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There are some simple facts about the total variation of an absolutely continuous
function, f which are contained in the next lemma.

Lemma 14.12 Let f be an absolutely continuous function defined on [a, b] and
let V be its total variation function as described above. Then V is an increasing
bounded function. Also if P and Q are two partitions of [x, y] with P ⊆ Q, then
VP [x, y] ≤ VQ [x, y] and if [x, y] ⊆ [z, w] ,

V [x, y] ≤ V [z, w] (14.6)

If P = {x0, x1, · · ·, xn} is a partition of [x, y] , then

V [x, y] =
n∑

i=1

V [xi, xi−1] . (14.7)

Also if y > x,

V (y)− V (x) ≥ |f (y)− f (x)| (14.8)

and the function, x → V (x) − f (x) is increasing. The total variation function, V
is absolutely continuous.

Proof: The claim that V is increasing is obvious as is the next claim about
P ⊆ Q leading to VP [x, y] ≤ VQ [x, y] . To verify this, simply add in one point
at a time and verify that from the triangle inequality, the sum involved gets no
smaller. The claim that V is increasing consistent with set inclusion of intervals is
also clearly true and follows directly from the definition.

Now let t < V [x, y] where P0 = {x0, x1, · · ·, xn} is a partition of [x, y] . There
exists a partition, P of [x, y] such that t < VP [x, y] . Without loss of generality it
can be assumed that {x0, x1, · · ·, xn} ⊆ P since if not, you can simply add in the
points of P0 and the resulting sum for the total variation will get no smaller. Let
Pi be those points of P which are contained in [xi−1, xi] . Then

t < Vp [x, y] =
n∑

i=1

VPi [xi−1, xi] ≤
n∑

i=1

V [xi−1, xi] .

Since t < V [x, y] is arbitrary,

V [x, y] ≤
n∑

i=1

V [xi, xi−1] (14.9)

Note that 14.9 does not depend on f being absolutely continuous. Suppose now
that f is absolutely continuous. Let δ correspond to ε = 1. Then if [x, y] is an
interval of length no larger than δ, the definition of absolute continuity implies

V [x, y] < 1.
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Then from 14.9

V [a, nδ] ≤
n∑

i=1

V [a + (i− 1) δ, a + iδ] <

n∑

i=1

1 = n.

Thus V is bounded on [a, b]. Now let Pi be a partition of [xi−1, xi] such that

VPi
[xi−1, xi] > V [xi−1, xi]− ε

n

Then letting P = ∪Pi,

−ε +
n∑

i=1

V [xi−1, xi] <
n∑

i=1

VPi [xi−1, xi] = VP [x, y] ≤ V [x, y] .

Since ε is arbitrary, 14.7 follows from this and 14.9.
Now let x < y

V (y)− f (y)− (V (x)− f (x)) = V (y)− V (x)− (f (y)− f (x))
≥ V (y)− V (x)− |f (y)− f (x)| ≥ 0.

It only remains to verify that V is absolutely continuous.
Let ε > 0 be given and let δ correspond to ε/2 in the definition of absolute conti-

nuity applied to f . Suppose
∑n

i=1 |yi − xi| < δ and consider
∑n

i=1 |V (yi)− V (xi)|.
By 14.9 this last equals

∑n
i=1 V [xi, yi] . Now let Pi be a partition of [xi, yi] such

that VPi [xi, yi] + ε
2n > V [xi, yi] . Then by the definition of absolute continuity,

n∑

i=1

|V (yi)− V (xi)| =
n∑

i=1

V [xi, yi] ≤
n∑

i=1

VPi [xi, yi] + η < ε/2 + ε/2 = ε.

and shows V is absolutely continuous as claimed.

Lemma 14.13 Suppose f : [a, b] → R is absolutely continuous and increasing.
Then f ′ exists a.e., is in L1 ([a, b]) , and

f (x) = f (a) +
∫ x

a

f ′ (t) dt.

Proof: Define L, a positive linear functional on C ([a, b]) by

Lg ≡
∫ b

a

gdf

where this integral is the Riemann Stieltjes integral with respect to the integrating
function, f. By the Riesz representation theorem for positive linear functionals,
there exists a unique Radon measure, µ such that Lg =

∫
gdµ. Now consider the

following picture for gn ∈ C ([a, b]) in which gn equals 1 for x between x + 1/n and
y.
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Then gn (t) → X(x,y] (t) pointwise. Therefore, by the dominated convergence
theorem,

µ ((x, y]) = lim
n→∞

∫
gndµ.

However,
(

f (y)− f

(
x +

1
n

))
≤

∫
gndµ =

∫ b

a

gndf ≤
(

f

(
y +

1
n

)
− f (y)

)

+
(

f (y)− f

(
x +

1
n

))
+

(
f

(
x +

1
n

)
− f (x)

)

and so as n →∞ the continuity of f implies

µ ((x, y]) = f (y)− f (x) .

Similarly, µ (x, y) = f (y) − f (y) and µ ([x, y]) = f (y) − f (x) , the argument used
to establish this being very similar to the above. It follows in particular that

f (x)− f (a) =
∫

[a,x]

dµ.

Note that up till now, no referrence has been made to the absolute continuity of f.
Any increasing continuous function would be fine.

Now if E is a Borel set such that m (E) = 0, Then the outer regularity of m
implies there exists an open set, V containing E such that m (V ) < δ where δ
corresponds to ε in the definition of absolute continuity of f. Then letting {Ik} be
the connected components of V it follows E ⊆ ∪∞k=1Ik with

∑
k m (Ik) = m (V ) < δ.

Therefore, from absolute continuity of f, it follows that for Ik = (ak, bk) and each
n

µ (∪n
k=1Ik) =

n∑

k=1

µ (Ik) =
n∑

k=1

|f (bk)− f (ak)| < ε

and so letting n →∞,

µ (E) ≤ µ (V ) =
∞∑

k=1

|f (bk)− f (ak)| ≤ ε.
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Since ε is arbitrary, it follows µ (E) = 0. Therefore, µ ¿ m and so by the Radon
Nikodym theorem there exists a unique h ∈ L1 ([a, b]) such that

µ (E) =
∫

E

hdm.

In particular,

µ ([a, x]) = f (x)− f (a) =
∫

[a,x]

hdm.

From the fundamental theorem of calculus f ′ (x) = h (x) at every Lebesgue point
of h. Therefore, writing in usual notation,

f (x) = f (a) +
∫ x

a

f ′ (t) dt

as claimed. This proves the lemma.
With the above lemmas, the following is the main theorem about absolutely

continuous functions.

Theorem 14.14 Let f : [a, b] → R be absolutely continuous if and only if f ′ (x)
exists a.e., f ′ ∈ L1 ([a, b]) and

f (x) = f (a) +
∫ x

a

f ′ (t) dt.

Proof: Suppose first that f is absolutely continuous. By Lemma 14.12 the total
variation function, V is absolutely continuous and f (x) = V (x) − (V (x)− f (x))
where both V and V −f are increasing and absolutely continuous. By Lemma 14.13

f (x)− f (a) = V (x)− V (a)− [(V (x)− f (x))− (V (a)− f (a))]

=
∫ x

a

V ′ (t) dt−
∫ x

a

(V − f)′ (t) dt.

Now f ′ exists and is in L1 becasue f = V −(V − f) and V and V −f have derivatives
in L1. Therefore, (V − f)′ = V ′ − f ′ and so the above reduces to

f (x)− f (a) =
∫ x

a

f ′ (t) dt.

This proves one half of the theorem.
Now suppose f ′ ∈ L1 and f (x) = f (a) +

∫ x

a
f ′ (t) dt. It is necessary to verify

that f is absolutely continuous. But this follows easily from Lemma 7.45 on Page
151 which implies that a single function, f ′ is uniformly integrable. This lemma
implies that if

∑
i |yi − xi| is sufficiently small then

∑

i

∣∣∣∣
∫ yi

xi

f ′ (t) dt

∣∣∣∣ =
∑

i

|f (yi)− f (xi)| < ε.
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14.3 Differentiation Of Measures With Respect To
Lebesgue Measure

Recall the Vitali covering theorem in Corollary 9.20 on Page 209.

Corollary 14.15 Let E ⊆ Rn and let F , be a collection of open balls of bounded
radii such that F covers E in the sense of Vitali. Then there exists a countable
collection of disjoint balls from F , {Bj}∞j=1, such that m(E \ ∪∞j=1Bj) = 0.

Definition 14.16 Let µ be a Radon mesure defined on Rn. Then

dµ

dm
(x) ≡ lim

r→0

µ (B (x, r))
m (B (x, r))

whenever this limit exists.

It turns out this limit exists for m a.e. x. To verify this here is another definition.

Definition 14.17 Let f (r) be a function having values in [−∞,∞] . Then

lim sup
r→0+

f (r) ≡ lim
r→0

(sup {f (t) : t ∈ [0, r]})

lim inf
r→0+

f (r) ≡ lim
r→0

(inf {f (t) : t ∈ [0, r]})

This is well defined because the function r → inf {f (t) : t ∈ [0, r]} is increasing and
r → sup {f (t) : t ∈ [0, r]} is decreasing. Also note that limr→0+ f (r) exists if and
only if

lim sup
r→0+

f (r) = lim inf
r→0+

f (r)

and if this happens

lim
r→0+

f (r) = lim inf
r→0+

f (r) = lim sup
r→0+

f (r) .

The claims made in the above definition follow immediately from the definition
of what is meant by a limit in [−∞,∞] and are left for the reader.

Theorem 14.18 Let µ be a Borel measure on Rn then dµ
dm (x) exists in [−∞,∞]

m a.e.

Proof:Let p < q and let p, q be rational numbers. Define Npq (M) as
{
x ∈ B (0,M) such that lim sup

r→0+

µ (B (x, r))
m (B (x, r))

> q > p > lim inf
r→0+

µ (B (x, r))
m (B (x, r))

}
,

Also define Npq as
{
x ∈ Rn such that lim sup

r→0+

µ (B (x, r))
m (B (x, r))

> q > p > lim inf
r→0+

µ (B (x, r))
m (B (x, r))

}
,
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and N as
{
x ∈ Rn such that lim sup

r→0+

µ (B (x, r))
m (B (x, r))

> lim inf
r→0+

µ (B (x, r))
m (B (x, r))

}
.

I will show m (Npq (M)) = 0. Use outer regularity to obtain an open set, V con-
taining Npq (M) such that

m (Npq (M)) + ε > m (V ) .

From the definition of Npq (M) , it follows that for each x ∈ Npq (M) there exist
arbitrarily small r > 0 such that

µ (B (x, r))
m (B (x, r))

< p.

Only consider those r which are small enough to be contained in B (0, M) so that
the collection of such balls has bounded radii. This is a Vitali cover of Npq (M) and
so by Corollary 14.15 there exists a sequence of disjoint balls of this sort, {Bi}∞i=1

such that
µ (Bi) < pm (Bi) , m (Npq (M) \ ∪∞i=1Bi) = 0. (14.10)

Now for x ∈ Npq (M) ∩ (∪∞i=1Bi) (most of Npq (M)), there exist arbitrarily small
balls, B (x, r) , such that B (x, r) is contained in some set of {Bi}∞i=1 and

µ (B (x, r))
m (B (x, r))

> q.

This is a Vitali cover of Npq (M)∩(∪∞i=1Bi) and so there exists a sequence of disjoint
balls of this sort,

{
B′

j

}∞
j=1

such that

m
(
(Npq (M) ∩ (∪∞i=1Bi)) \ ∪∞j=1B

′
j

)
= 0, µ

(
B′

j

)
> qm

(
B′

j

)
. (14.11)

It follows from 14.10 and 14.11 that

m (Npq (M)) ≤ m ((Npq (M) ∩ (∪∞i=1Bi))) ≤ m
(∪∞j=1B

′
j

)
(14.12)

Therefore,
∑

j

µ
(
B′

j

)
> q

∑

j

m
(
B′

j

) ≥ qm (Npq (M) ∩ (∪iBi)) = qm (Npq (M))

≥ pm (Npq (M)) ≥ p (m (V )− ε) ≥ p
∑

i

m (Bi)− pε

≥
∑

i

µ (Bi)− pε ≥
∑

j

µ
(
B′

j

)− pε.

It follows
pε ≥ (q − p)m (Npq (M))
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Since ε is arbitrary, m (Npq (M)) = 0. Now Npq ⊆ ∪∞M=1Npq (M) and so m (Npq) =
0. Now

N = ∪p.q∈QNpq

and since this is a countable union of sets of measure zero, m (N) = 0 also. This
proves the theorem.

From Theorem 13.8 on Page 299 it follows that if µ is a complex measure then
|µ| is a finite measure. This makes possible the following definition.

Definition 14.19 Let µ be a real measure. Define the following measures. For E
a measurable set,

µ+ (E) ≡ 1
2

(|µ|+ µ) (E) ,

µ− (E) ≡ 1
2

(|µ| − µ) (E) .

These are measures thanks to Theorem 13.7 on Page 297 and µ+ − µ− = µ. These
measures have values in [0,∞). They are called the positive and negative parts of µ
respectively. For µ a complex measure, define Re µ and Imµ by

Reµ (E) ≡ 1
2

(
µ (E) + µ (E)

)

Imµ (E) ≡ 1
2i

(
µ (E)− µ (E)

)

Then Re µ and Im µ are both real measures. Thus for µ a complex measure,

µ = Re µ+ − Re µ− + i
(
Im µ+ − Imµ−

)

= ν1 − ν1 + i (ν3 − ν4)

where each νi is a real measure having values in [0,∞).

Then there is an obvious corollary to Theorem 14.18.

Corollary 14.20 Let µ be a complex Borel measure on Rn. Then dµ
dm (x) exists

a.e.

Proof: Letting νi be defined in Definition 14.19. By Theorem 14.18, for m a.e.
x, dνi

dm (x) exists. This proves the corollary because µ is just a finite sum of these
νi.

Theorem 13.2 on Page 291, the Radon Nikodym theorem, implies that if you have
two finite measures, µ and λ, you can write λ as the sum of a measure absolutely
continuous with respect to µ and one which is singular to µ in a unique way. The
next topic is related to this. It has to do with the differentiation of a measure which
is singular with respect to Lebesgue measure.
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Theorem 14.21 Let µ be a Radon measure on Rn and suppose there exists a µ
measurable set, N such that for all Borel sets, E, µ (E) = µ (E ∩N) where m (N) =
0. Then

dµ

dm
(x) = 0 m a.e.

Proof: For k ∈ N, let

Bk (M) ≡
{
x ∈ NC : lim sup

r→0+

µ (B (x, r))
m (B (x, r))

>
1
k

}
∩B (0,M) ,

Bk ≡
{
x ∈ NC : lim sup

r→0+

µ (B (x, r))
m (B (x, r))

>
1
k

}
,

B ≡
{
x ∈ NC : lim sup

r→0+

µ (B (x, r))
m (B (x, r))

> 0
}

.

Let ε > 0. Since µ is regular, there exists H, a compact set such that H ⊆
N ∩B (0, M) and

µ (N ∩B (0, M) \H) < ε.

B(0,M)

N ∩B(0,M)

H

Bi

Bk(M)

For each x ∈ Bk (M) , there exist arbitrarily small r > 0 such that B (x, r) ⊆
B (0,M) \H and

µ (B (x, r))
m (B (x, r))

>
1
k

. (14.13)

Two such balls are illustrated in the above picture. This is a Vitali cover of Bk (M)
and so there exists a sequence of disjoint balls of this sort, {Bi}∞i=1 such that
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m (Bk (M) \ ∪iBi) = 0. Therefore,

m (Bk (M)) ≤ m (Bk (M) ∩ (∪iBi)) ≤
∑

i

m (Bi) ≤ k
∑

i

µ (Bi)

= k
∑

i

µ (Bi ∩N) = k
∑

i

µ (Bi ∩N ∩B (0,M))

≤ kµ (N ∩B (0,M) \H) < εk

Since ε was arbitrary, this shows m (Bk (M)) = 0.
Therefore,

m (Bk) ≤
∞∑

M=1

m (Bk (M)) = 0

and m (B) ≤ ∑
k m (Bk) = 0. Since m (N) = 0, this proves the theorem.

It is easy to obtain a different version of the above theorem. This is done with
the aid of the following lemma.

Lemma 14.22 Suppose µ is a Borel measure on Rn having values in [0,∞). Then
there exists a Radon measure, µ1 such that µ1 = µ on all Borel sets.

Proof: By assumption, µ (Rn) < ∞ and so it is possible to define a positive
linear functional, L on Cc (Rn) by

Lf ≡
∫

fdµ.

By the Riesz representation theorem for positive linear functionals of this sort, there
exists a unique Radon measure, µ1 such that for all f ∈ Cc (Rn) ,

∫
fdµ1 = Lf =

∫
fdµ.

Now let V be an open set and let Kk ≡
{
x ∈ V : dist

(
x, V C

) ≤ 1/k
} ∩ B (0,k).

Then {Kk} is an incresing sequence of compact sets whose union is V. Let Kk ≺ fk

≺ V. Then fk (x) → XV (x) for every x. Therefore,

µ1 (V ) = lim
k→∞

∫
fkdµ1 = lim

k→∞

∫
fkdµ = µ (V )

and so µ = µ1 on open sets. Now if K is a compact set, let

Vk ≡ {x ∈ Rn : dist (x,K) < 1/k} .

Then Vk is an open set and ∩kVk = K. Letting K ≺ fk ≺ Vk, it follows that
fk (x) → XK (x) for all x ∈ Rn. Therefore, by the dominated convergence theorem
with a dominating function, XRn

µ1 (K) = lim
k→∞

∫
fkdµ1 = lim

k→∞

∫
fkdµ = µ (K)
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and so µ and µ1 are equal on all compact sets. It follows µ = µ1 on all countable
unions of compact sets and countable intersections of open sets.

Now let E be a Borel set. By regularity of µ1, there exist sets, H and G such
that H is the countable union of an increasing sequence of compact sets, G is the
countable intersection of a decreasing sequence of open sets, H ⊆ E ⊆ G, and
µ1 (H) = µ1 (G) = µ1 (E) . Therefore,

µ1 (H) = µ (H) ≤ µ (E) ≤ µ (G) = µ1 (G) = µ1 (E) = µ1 (H) .

therefore, µ (E) = µ1 (E) and this proves the lemma.

Corollary 14.23 Suppose µ is a complex Borel measure defined on Rn for which
there exists a µ measurable set, N such that for all Borel sets, E, µ (E) = µ (E ∩N)
where m (N) = 0. Then

dµ

dm
(x) = 0 m a.e.

Proof: Each of Re µ+, Re µ−, Im µ+, and Imµ− are real measures having values
in [0,∞) and so by Lemma 14.22 each is a Radon measure having the same property
that µ has in terms of being supported on a set of m measure zero. Therefore, for
ν equal to any of these, dν

dm (x) = 0 m a.e. This proves the corollary.

14.4 Exercises

1. Let E be a Lebesgue measurable set. x ∈ E is a point of density if

lim
r→0

mn(E ∩B(x, r))
mn(B(x, r))

= 1.

Show that a.e. point of E is a point of density. Hint: The numerator of the
above quotient is

∫
B(x,r)

XE (x) dm. Now consider the fundamental theorem
of calculus.

2. Show that if f ∈ L1
loc (Rn) and

∫
fφdx = 0 for all φ ∈ C∞c (Rn), then f (x) = 0

a.e.

3. ↑Now suppose that for u ∈ L1
loc (Rn), w ∈ L1

loc (Rn) is a weak partial derivative
of u with respect to xi if whenever hk → 0 it follows that for all φ ∈ C∞c (Rn),

lim
k→∞

∫

Rn

(u (x + hkei)− u (x))
hk

φ (x) dx =
∫

Rn

w (x)φ (x) dx. (14.14)

and in this case, write w = u,i. Using Problem 2 show this is well defined.

4. ↑Show that w ∈ L1
loc (Rn) is a weak partial derivative of u with respect to xi

in the sense of Problem 3 if and only if for all φ ∈ C∞c (Rn) ,

−
∫

u (x)φ,i (x) dx =
∫

w (x) φ (x) dx.



14.4. EXERCISES 337

5. If f ∈ L1
loc (Rn), the fundamental theorem of calculus says

lim
r→0

1
mn (B (x, r))

∫

B(x,r)

|f (y)− f (x)| dy = 0

for a.e. x. Suppose now that {Ek} is a sequence of measurable sets and rk is
a sequence of positive numbers converging to zero such that Ek ⊆ B (x, rk)
and mn (Ek) ≥ cmn (B (x, rk)) where c is some positive number. Then show

lim
k→∞

1
mn (Ek)

∫

Ek

|f (y)− f (x)| dy = 0

for a.e. x. Such a sequence of sets is known as a regular family of sets [40]
and is said to converge regularly to x in [28].

6. Let f be in L1
loc(Rn). Show Mf is Borel measurable. Hint: First consider

the function, Fr (x) ≡ 1
mn(B(x,r))

∫
B(x,r)

|f (x)| dmn. Argue Fr is continuous.
Then Mf (x) = supr>0 Fr (x).

7. If f ∈ Lp, 1 < p < ∞, show Mf ∈ Lp and

||Mf ||p ≤ A(p, n)||f ||p.

Hint: Let

f1(x) ≡
{

f(x) if |f(x)| > α/2,
0 if |f(x)| ≤ α/2.

Argue [Mf(x) > α] ⊆ [Mf1(x) > α/2]. Then use the distribution function.
Recall why ∫

(Mf)pdx =
∫ ∞

0

pαp−1m([Mf > α])dα

≤
∫ ∞

0

pαp−1m([Mf1 > α/2])dα.

Now use the fundamental estimate satisfied by the maximal function and
Fubini’s Theorem as needed.

8. Show |f(x)| ≤ Mf(x) at every Lebesgue point of f whenever f ∈ L1
loc(Rn).

9. In the proof of the Vitali covering theorem, Theorem 9.11 on Page 202, there
is nothing sacred about the constant 1

2 . Go through the proof replacing this
constant with λ where λ ∈ (0, 1). Show that it follows that for every δ > 0,
the conclusion of the Vitali covering theorem can be obtained with 5 replaced
by (3 + δ) in the definition of B̂. In this context, see Rudin [36] who proves
a different version of the Vitali covering theorem involving only finite covers
and gets the constant 3. See also Problem 10.
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10. Suppose A is covered by a finite collection of Balls, F . Show that then there
exists a disjoint collection of these balls, {Bi}p

i=1, such that A ⊆ ∪p
i=1B̂i where

5 can be replaced with 3 in the definition of B̂. Hint: Since the collection of
balls is finite, they can be arranged in order of decreasing radius.

11. Suppose E is a Lebesgue measurable set which has positive measure and let B
be an arbitrary open ball and let D be a set dense in Rn. Establish the result
of Smı́tal, [10]which says that under these conditions, mn ((E + D) ∩B) =
mn (B) where here mn denotes the outer measure determined by mn. Is this
also true for X, an arbitrary possibly non measurable set replacing E in which
mn (X) > 0? Hint: Let x be a point of density of E and let D′ denote those
elements of D, d, such that d + x ∈ B. Thus D′ is dense in B. Now use
translation invariance of Lebesgue measure to verify there exists, R > 0 such
that if r < R, we have the following holding for d ∈ D′ and rd < R.

mn ((E + D) ∩B (x + d, rd)) ≥

mn ((E + d) ∩B (x + d, rd)) ≥ (1− ε)mn (B (x + d, rd)) .

Argue the balls, mn (B (x + d, rd)), form a Vitali cover of B.

12. Consider the construction employed to obtain the Cantor set, but instead of
removing the middle third interval, remove only enough that the sum of the
lengths of all the open intervals which are removed is less than one. That
which remains is called a fat Cantor set. Show it is a compact set which has
measure greater than zero which contains no interval and has the property
that every point is a limit point of the set. Let P be such a fat Cantor set
and consider

f (x) =
∫ x

0

XP C (t) dt.

Show that f is a strictly increasing function which has the property that its
derivative equals zero on a set of positive measure.

13. Let f be a function defined on an interval, (a, b). The Dini derivates are
defined as

D+f (x) ≡ lim inf
h→0+

f (x + h)− f (x)
h

,

D+f (x) ≡ lim sup
h→0+

f (x + h)− f (x)
h

D−f (x) ≡ lim inf
h→0+

f (x)− f (x− h)
h

,

D−f (x) ≡ lim sup
h→0+

f (x)− f (x− h)
h

.
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Suppose f is continuous on (a, b) and for all x ∈ (a, b), D+f (x) ≥ 0. Show
that then f is increasing on (a, b). Hint: Consider the function, H (x) ≡
f (x) (d− c) − x (f (d)− f (c)) where a < c < d < b. Thus H (c) = H (d).
Also it is easy to see that H cannot be constant if f (d) < f (c) due to the
assumption that D+f (x) ≥ 0. If there exists x1 ∈ (a, b) where H (x1) > H (c),
then let x0 ∈ (c, d) be the point where the maximum of f occurs. Consider
D+f (x0). If, on the other hand, H (x) < H (c) for all x ∈ (c, d), then consider
D+H (c).

14. ↑ Suppose in the situation of the above problem we only know

D+f (x) ≥ 0 a.e.

Does the conclusion still follow? What if we only know D+f (x) ≥ 0 for every
x outside a countable set? Hint: In the case of D+f (x) ≥ 0,consider the
bad function in the exercises for the chapter on the construction of measures
which was based on the Cantor set. In the case where D+f (x) ≥ 0 for all but
countably many x, by replacing f (x) with f̃ (x) ≡ f (x) + εx, consider the
situation where D+f̃ (x) > 0 for all but countably many x. If in this situation,
f̃ (c) > f̃ (d) for some c < d, and y ∈

(
f̃ (d) , f̃ (c)

)
,let

z ≡ sup
{

x ∈ [c, d] : f̃ (x) > y0

}
.

Show that f̃ (z) = y0 and D+f̃ (z) ≤ 0. Conclude that if f̃ fails to be in-
creasing, then D+f̃ (z) ≤ 0 for uncountably many points, z. Now draw a
conclusion about f .

15. ↑ Let f : [a, b] → R be increasing. Show

m




Npq︷ ︸︸ ︷[
D+f (x) > q > p > D+f (x)

]

 = 0 (14.15)

and conclude that aside from a set of measure zero, D+f (x) = D+f (x).
Similar reasoning will show D−f (x) = D−f (x) a.e. and D+f (x) = D−f (x)
a.e. and so off some set of measure zero, we have

D−f (x) = D−f (x) = D+f (x) = D+f (x)

which implies the derivative exists and equals this common value. Hint: To
show 14.15, let U be an open set containing Npq such that m (Npq)+ε > m (U).
For each x ∈ Npq there exist y > x arbitrarily close to x such that

f (y)− f (x) < p (y − x) .
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Thus the set of such intervals, {[x, y]} which are contained in U constitutes a
Vitali cover of Npq. Let {[xi, yi]} be disjoint and

m (Npq \ ∪i [xi, yi]) = 0.

Now let V ≡ ∪i (xi, yi). Then also we have

m


Npq \

=V︷ ︸︸ ︷
∪i (xi, yi)


 = 0.

and so m (Npq ∩ V ) = m (Npq). For each x ∈ Npq ∩ V , there exist y > x
arbitrarily close to x such that

f (y)− f (x) > q (y − x) .

Thus the set of such intervals, {[x′, y′]} which are contained in V is a Vitali
cover of Npq ∩ V . Let {[x′i, y′i]} be disjoint and

m (Npq ∩ V \ ∪i [x′i, y
′
i]) = 0.

Then verify the following:
∑

i

f (y′i)− f (x′i) > q
∑

i

(y′i − x′i) ≥ qm (Npq ∩ V ) = qm (Npq)

≥ pm (Npq) > p (m (U)− ε) ≥ p
∑

i

(yi − xi)− pε

≥
∑

i

(f (yi)− f (xi))− pε ≥
∑

i

f (y′i)− f (x′i)− pε

and therefore, (q − p) m (Npq) ≤ pε. Since ε > 0 is arbitrary, this proves that
there is a right derivative a.e. A similar argument does the other cases.

16. Suppose |f(x)− f(y)| ≤ K|x− y|. Show there exists g ∈ L∞(R), ||g||∞ ≤ K,
and

f(y)− f(x) =
∫ y

x

g(t)dt.

Hint: Let F (x) = Kx + f(x) and let λ be the measure representing
∫

fdF .
Show λ ¿ m.

17. We P = {x0, x1, · · ·, xn} is a partition of [a, b] if a = x0 < · · · < xn = b.
Define ∑

P

|f (xi)− f (xi−1)| ≡
n∑

i=1

|f (xi)− f (xi−1)|

A function, f : [a, b] → R is said to be of bounded variation if

sup
P

{∑

P

|f (xi)− f (xi−1)|
}

< ∞.
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Show that whenever f is of bounded variation it can be written as the differ-
ence of two increasing functions. Explain why such bounded variation func-
tions have derivatives a.e.
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Fourier Transforms

15.1 An Algebra Of Special Functions

First recall the following definition of a polynomial.

Definition 15.1 α = (α1, · · ·, αn) for α1 · · · αn positive integers is called a multi-
index. For α a multi-index, |α| ≡ α1 + · · ·+ αn and if x ∈ Rn,

x = (x1, · · ·, xn) ,

and f a function, define
xα ≡ xα1

1 xα2
2 · · · xαn

n .

A polynomial in n variables of degree m is a function of the form

p (x) =
∑

|α|≤m

aαxα.

Here α is a multi-index as just described and aα ∈ C. Also define for α = (α1, ···, αn)
a multi-index

Dαf (x) ≡ ∂|α|f
∂xα1

1 ∂xα2
2 · · · ∂xαn

n
.

Definition 15.2 Define G1 to be the functions of the form p (x) e−a|x|2 where a > 0
and p (x) is a polynomial. Let G be all finite sums of functions in G1. Thus G is an
algebra of functions which has the property that if f ∈ G then f ∈ G.

It is always assumed, unless stated otherwise that the measure will be Lebesgue
measure.

Lemma 15.3 G is dense in C0 (Rn) with respect to the norm,

||f ||∞ ≡ sup {|f (x)| : x ∈ Rn}

343
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Proof: By the Weierstrass approximation theorem, it suffices to show G sep-
arates the points and annihilates no point. It was already observed in the above
definition that f ∈ G whenever f ∈ G. If y1 6= y2 suppose first that |y1| 6= |y2| .
Then in this case, you can let f (x) ≡ e−|x|

2
and f ∈ G and f (y1) 6= f (y2). If

|y1| = |y2| , then suppose y1k 6= y2k. This must happen for some k because y1 6= y2.
Then let f (x) ≡ xke−|x|

2
. Thus G separates points. Now e−|x|

2
is never equal to

zero and so G annihilates no point of Rn. This proves the lemma.
These functions are clearly quite specialized. Therefore, the following theorem

is somewhat surprising.

Theorem 15.4 For each p ≥ 1, p < ∞,G is dense in Lp (Rn).

Proof: Let f ∈ Lp (Rn) . Then there exists g ∈ Cc (Rn) such that ||f − g||p < ε.
Now let b > 0 be large enough that

∫

Rn

(
e−b|x|2

)p

dx < εp.

Then x → g (x) eb|x|2 is in Cc (Rn) ⊆ C0 (Rn) . Therefore, from Lemma 15.3 there
exists ψ ∈ G such that ∣∣∣

∣∣∣geb|·|2 − ψ
∣∣∣
∣∣∣
∞

< 1

Therefore, letting φ (x) ≡ e−b|x|2ψ (x) it follows that φ ∈ G and for all x ∈ Rn,

|g (x)− φ (x)| < e−b|x|2

Therefore,
(∫

Rn

|g (x)− φ (x)|p dx

)1/p

≤
(∫

Rn

(
e−b|x|2

)p

dx

)1/p

< ε.

It follows
||f − φ||p ≤ ||f − g||p + ||g − φ||p < 2ε.

Since ε > 0 is arbitrary, this proves the theorem.
The following lemma is also interesting even if it is obvious.

Lemma 15.5 For ψ ∈ G , p a polynomial, and α, β multiindices, Dαψ ∈ G and
pψ ∈ G. Also

sup{|xβDαψ(x)| : x ∈ Rn} < ∞

15.2 Fourier Transforms Of Functions In G
Definition 15.6 For ψ ∈ G Define the Fourier transform, F and the inverse
Fourier transform, F−1 by

Fψ(t) ≡ (2π)−n/2

∫

Rn

e−it·xψ(x)dx,
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F−1ψ(t) ≡ (2π)−n/2

∫

Rn

eit·xψ(x)dx.

where t · x ≡∑n
i=1 tixi.Note there is no problem with this definition because ψ is in

L1 (Rn) and therefore, ∣∣eit·xψ(x)
∣∣ ≤ |ψ(x)| ,

an integrable function.

One reason for using the functions, G is that it is very easy to compute the
Fourier transform of these functions. The first thing to do is to verify F and F−1

map G to G and that F−1 ◦ F (ψ) = ψ.

Lemma 15.7 The following formulas are true
∫

R
e−c(x+it)2dx =

∫

R
e−c(x−it)2dx =

√
π√
c
, (15.1)

∫

Rn

e−c(x+it)·(x+it)dx =
∫

Rn

e−c(x−it)·(x−it)dx =
(√

π√
c

)n

, (15.2)

∫

R
e−ct2e−istdt =

∫

R
e−ct2eistdt = e−

s2
4c

√
π√
c
, (15.3)

∫

Rn

e−c|t|2e−is·tdt =
∫

Rn

e−c|t|2eis·tdt = e−
|s|2
4c

(√
π√
c

)n

. (15.4)

Proof: Consider the first one. Simple manipulations yield

H (t) ≡
∫

R
e−c(x+it)2dx = ect2

∫

R
e−cx2

cos (2cxt) dx.

Now using the dominated convergence theorem to justify passing derivatives inside
the integral where necessary and using integration by parts,

H ′ (t) = 2ctect2
∫

R
e−cx2

cos (2cxt) dx− ect2
∫

R
e−cx2

sin (2cxt) 2xcdx

= 2ctH (t)− ect22ct

∫

R
e−cx2

cos (2cxt) dx = 2ct (H (t)−H (t)) = 0

and so H (t) = H (0) =
∫
R e−cx2

dx ≡ I. Thus

I2 =
∫

R2
e−c(x2+y2)dxdy =

∫ ∞

0

∫ 2π

0

e−cr2
rdθdr =

π

c
.

Therefore, I =
√

π/
√

c. Since the sign of t is unimportant, this proves 15.1. This
also proves 15.2 after writing as iterated integrals.
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Consider 15.3.

∫

R
e−ct2eistdt =

∫

R
e
−c
�

t2− ist
c +( is

2c )
2
�
e−

s2
4c dt

= e−
s2
4c

∫

R
e−c(t− is

2c )
2

dt = e−
s2
4c

√
π√
c
.

Changing the variable t → −t gives the other part of 15.3.

Finally 15.4 follows from using iterated integrals.

With these formulas, it is easy to verify F, F−1 map G to G and F ◦ F−1 =
F−1 ◦ F = id.

Theorem 15.8 Each of F and F−1 map G to G. Also F−1 ◦ F (ψ) = ψ and
F ◦ F−1 (ψ) = ψ.

Proof: The first claim will be shown if it is shown that Fψ ∈ G for ψ (x) =
xαe−b|x|2 because an arbitrary function of G is a finite sum of scalar multiples of
functions such as ψ. Using Lemma 15.7,

Fψ (t) ≡
(

1
2π

)n/2 ∫

Rn

e−it·xxαe−b|x|2dx

=
(

1
2π

)n/2

(i)−|α|Dα
t

(∫

Rn

e−it·xe−b|x|2dx

)

=
(

1
2π

)n/2

(i)−|α|Dα
t

(
e−

|t|2
2b

(√
π√
b

)n)

and this is clearly in G because it equals a polynomial times e−
|t|2
2b . It remains

to verify the other assertion. As in the first case, it suffices to consider ψ (x) =
xαe−b|x|2 . Using Lemma 15.7 and ordinary integration by parts on the iterated
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integrals,
∫
Rn e−c|t|2eis·tdt = e−

|s|2
2c

(√
π√
c

)n

F−1 ◦ F (ψ) (s)

≡
(

1
2π

)n/2 ∫

Rn

eis·t
(

1
2π

)n/2 ∫

Rn

e−it·xxαe−b|x|2dxdt

=
(

1
2π

)n ∫

Rn

eis·t (−i)−|α|Dα
t

(∫

Rn

e−it·xe−b|x|2dxdt

)

=
(

1
2π

)n/2 ∫

Rn

eis·t
(

1
2π

)n/2

(−i)−|α|Dα
t

(
e−

|t|2
4b

(√
π√
b

)n)
dt

=
(

1
2π

)n (√
π√
b

)n

(−i)−|α|
∫

Rn

eis·tDα
t

(
e−

|t|2
4b

)
dt

=
(

1
2π

)n (√
π√
b

)n

(−i)−|α| (−1)|α| sα (i)|α|
∫

Rn

eis·te−
|t|2
4b dt

=
(

1
2π

)n (√
π√
b

)n

sα

∫

Rn

eis·te−
|t|2
4b dt

=
(

1
2π

)n (√
π√
b

)n

sαe−
|s|2

4(1/(4b))

( √
π√

1/ (4b)

)n

=
(

1
2π

)n (√
π√
b

)n

sαe−b|s|2
(√

π2
√

b
)n

= sαe−b|s|2 = ψ (s) .

This little computation proves the theorem. The other case is entirely similar.

15.3 Fourier Transforms Of Just About Anything

Definition 15.9 Let G∗ denote the vector space of linear functions defined on G
which have values in C. Thus T ∈ G∗ means T : G →C and T is linear,

T (aψ + bφ) = aT (ψ) + bT (φ) for all a, b ∈ C, ψ, φ ∈ G

Let ψ ∈ G. Then define Tψ ∈ G∗ by

Tψ (φ) ≡
∫

Rn

ψ (x) φ (x) dx

Lemma 15.10 The following is obtained for all φ, ψ ∈ G.

TFψ (φ) = Tψ (Fφ) , TF−1ψ (φ) = Tψ

(
F−1φ

)

Also if ψ ∈ G and Tψ = 0, then ψ = 0.
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Proof:

TFψ (φ) ≡
∫

Rn

Fψ (t) φ (t) dt

=
∫

Rn

(
1
2π

)n/2 ∫

Rn

e−it·xψ(x)dxφ (t) dt

=
∫

Rn

ψ(x)
(

1
2π

)n/2 ∫

Rn

e−it·xφ (t) dtdx

=
∫

Rn

ψ(x)Fφ (x) dx ≡ Tψ (Fφ)

The other claim is similar.
Suppose now Tψ = 0. Then

∫

Rn

ψφdx = 0

for all φ ∈ G. Therefore, this is true for φ = ψ and so ψ = 0. This proves the lemma.
From now on regard G ⊆ G∗ and for ψ ∈ G write ψ (φ) instead of Tψ (φ) . It was

just shown that with this interpretation1,

Fψ (φ) = ψ (F (φ)) , F−1ψ (φ) = ψ
(
F−1φ

)
.

This lemma suggests a way to define the Fourier transform of something in G∗.
Definition 15.11 For T ∈ G∗, define FT, F−1T ∈ G∗ by

FT (φ) ≡ T (Fφ) , F−1T (φ) ≡ T
(
F−1φ

)

Lemma 15.12 F and F−1 are both one to one, onto, and are inverses of each
other.

Proof: First note F and F−1 are both linear. This follows directly from the
definition. Suppose now FT = 0. Then FT (φ) = T (Fφ) = 0 for all φ ∈ G. But F
and F−1 map G onto G because if ψ ∈ G, then ψ = F

(
F−1 (ψ)

)
. Therefore, T = 0

and so F is one to one. Similarly F−1 is one to one. Now

F−1 (FT ) (φ) ≡ (FT )
(
F−1φ

) ≡ T
(
F

(
F−1 (φ)

))
= Tφ.

Therefore, F−1 ◦F (T ) = T. Similarly, F ◦F−1 (T ) = T. Thus both F and F−1 are
one to one and onto and are inverses of each other as suggested by the notation.
This proves the lemma.

Probably the most interesting things in G∗ are functions of various kinds. The
following lemma has to do with this situation.

1This is not all that different from what was done with the derivative. Remember when you
consider the derivative of a function of one variable, in elementary courses you think of it as a
number but thinking of it as a linear transformation acting on R is better because this leads to
the concept of a derivative which generalizes to functions of many variables. So it is here. You
can think of ψ ∈ G as simply an element of G but it is better to think of it as an element of G∗ as
just described.



15.3. FOURIER TRANSFORMS OF JUST ABOUT ANYTHING 349

Lemma 15.13 If f ∈ L1
loc (Rn) and

∫
Rn fφdx = 0 for all φ ∈ Cc (Rn), then f =

0 a.e.

Proof: First suppose f ≥ 0. Let

E ≡ {x :f (x) ≥ r}, ER ≡ E ∩B (0,R).

Let Km be an increasing sequence of compact sets and let Vm be a decreasing
sequence of open sets satisfying

Km ⊆ ER ⊆ Vm, mn (Vm) ≤ mn (Km) + 2−m, V1 ⊆ B (0,R) .

Therefore,
mn (Vm \Km) ≤ 2−m.

Let
φm ∈ Cc (Vm) , Km ≺ φm ≺ Vm.

Then φm (x) → XER (x) a.e. because the set where φm (x) fails to converge to this
set is contained in the set of all x which are in infinitely many of the sets Vm \Km.
This set has measure zero because

∞∑
m=1

mn (Vm \Km) < ∞

and so, by the dominated convergence theorem,

0 = lim
m→∞

∫

Rn

fφmdx = lim
m→∞

∫

V1

fφmdx =
∫

ER

fdx ≥ rm (ER).

Thus, mn (ER) = 0 and therefore mn (E) = limR→∞mn (ER) = 0. Since r > 0 is
arbitrary, it follows

mn ([f > 0]) = ∪∞k=1mn

([
f > k−1

])
= 0.

Now suppose f has values in R. Let E+ = [f ≥ 0] and E− = [f < 0] . Thus
these are two measurable sets. As in the first part, let Km and Vm be sequences
of compact and open sets such that Km ⊆ E+ ∩ B (0, R) ⊆ Vm ⊆ B (0, R) and let
Km ≺ φm ≺ Vm with mn (Vm \Km) < 2−m. Thus φm ∈ Cc (Rn) and the sequence
converges pointwise to XE+∩B(0,R). Then by the dominated convergence theorem,
if ψ is any function in Cc (Rn)

0 =
∫

fφmψdmn →
∫

fψXE+∩B(0,R)dmn.

Hence, letting R →∞,

∫
fψXE+dmn =

∫
f+ψdmn = 0
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Since ψ is arbitrary, the first part of the argument applies to f+ and implies f+ = 0.
Similarly f− = 0. Finally, if f is complcx valued, the assumptions mean

∫
Re (f)φdmn = 0,

∫
Im (f)φdmn = 0

for all φ ∈ Cc (Rn) and so both Re (f) , Im (f) equal zero a.e. This proves the
lemma.

Corollary 15.14 Let f ∈ L1 (Rn) and suppose
∫

Rn

f (x)φ (x) dx = 0

for all φ ∈ G. Then f = 0 a.e.

Proof: Let ψ ∈ Cc (Rn) . Then by the Stone Weierstrass approximation theo-
rem, there exists a sequence of functions, {φk} ⊆ G such that φk → ψ uniformly.
Then by the dominated convergence theorem,

∫
fψdx = lim

k→∞

∫
fφkdx = 0.

By Lemma 15.13 f = 0.
The next theorem is the main result of this sort.

Theorem 15.15 Let f ∈ Lp (Rn) , p ≥ 1, or suppose f is measurable and has
polynomial growth,

|f (x)| ≤ K
(
1 + |x|2

)m

for some m ∈ N. Then if ∫
fψdx = 0

for all ψ ∈ G then it follows f = 0.

Proof: The case where f ∈ L1 (Rn) was dealt with in Corollary 15.14. Suppose
f ∈ Lp (Rn) for p > 1. Then by Holder’s inequality and the density of G in Lp′ (Rn) ,
it follows that

∫
fgdx = 0 for all g ∈ Lp′ (Rn) . By the Riesz representation theorem,

f = 0.
It remains to consider the case where f has polynomial growth. Thus x →

f (x) e−|x|
2 ∈ L1 (Rn) . Therefore, for all ψ ∈ G,

0 =
∫

f (x) e−|x|
2
ψ (x) dx

because e−|x|
2
ψ (x) ∈ G. Therefore, by the first part, f (x) e−|x|

2
= 0 a.e.

The following theorem shows that you can consider most functions you are likely
to encounter as elements of G∗.
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Theorem 15.16 Let f be a measurable function with polynomial growth,

|f (x)| ≤ C
(
1 + |x|2

)N

for some N,

or let f ∈ Lp (Rn) for some p ∈ [1,∞]. Then f ∈ G∗ if

f (φ) ≡
∫

fφdx.

Proof: Let f have polynomial growth first. Then the above integral is clearly
well defined and so in this case, f ∈ G∗.

Next suppose f ∈ Lp (Rn) with ∞ > p ≥ 1. Then it is clear again that the
above integral is well defined because of the fact that φ is a sum of polynomials
times exponentials of the form e−c|x|2 and these are in Lp′ (Rn). Also φ → f (φ) is
clearly linear in both cases. This proves the theorem.

This has shown that for nearly any reasonable function, you can define its Fourier
transform as described above. Also you should note that G∗ includes C0 (Rn)′ , the
space of complex measures whose total variation are Radon measures. It is especially
interesting when the Fourier transform yields another function of some sort.

15.3.1 Fourier Transforms Of Functions In L1 (Rn)

First suppose f ∈ L1 (Rn) .

Theorem 15.17 Let f ∈ L1 (Rn) . Then Ff (φ) =
∫
Rn gφdt where

g (t) =
(

1
2π

)n/2 ∫

Rn

e−it·xf (x) dx

and F−1f (φ) =
∫
Rn gφdt where g (t) =

(
1
2π

)n/2 ∫
Rn eit·xf (x) dx. In short,

Ff(t) ≡ (2π)−n/2

∫

Rn

e−it·xf(x)dx,

F−1f(t) ≡ (2π)−n/2

∫

Rn

eit·xf(x)dx.

Proof: From the definition and Fubini’s theorem,

Ff (φ) ≡
∫

Rn

f (t) Fφ (t) dt =
∫

Rn

f (t)
(

1
2π

)n/2 ∫

Rn

e−it·xφ (x) dxdt

=
∫

Rn

((
1
2π

)n/2 ∫

Rn

f (t) e−it·xdt

)
φ (x) dx.

Since φ ∈ G is arbitrary, it follows from Theorem 15.15 that Ff (x) is given by the
claimed formula. The case of F−1 is identical.

Here are interesting properties of these Fourier transforms of functions in L1.
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Theorem 15.18 If f ∈ L1 (Rn) and ||fk−f ||1 → 0, then Ffk and F−1fk converge
uniformly to Ff and F−1f respectively. If f ∈ L1 (Rn), then F−1f and Ff are
both continuous and bounded. Also,

lim
|x|→∞

F−1f(x) = lim
|x|→∞

Ff(x) = 0. (15.5)

Furthermore, for f ∈ L1 (Rn) both Ff and F−1f are uniformly continuous.

Proof: The first claim follows from the following inequality.

|Ffk (t)− Ff (t)| ≤ (2π)−n/2

∫

Rn

∣∣e−it·xfk(x)− e−it·xf(x)
∣∣ dx

= (2π)−n/2

∫

Rn

|fk (x)− f (x)| dx

= (2π)−n/2 ||f − fk||1 .

which a similar argument holding for F−1.
Now consider the second claim of the theorem.

|Ff (t)− Ff (t′)| ≤ (2π)−n/2

∫

Rn

∣∣∣e−it·x − e−it′·x
∣∣∣ |f(x)| dx

The integrand is bounded by 2 |f (x)|, a function in L1 (Rn) and converges to 0 as
t′ → t and so the dominated convergence theorem implies Ff is continuous. To see
Ff (t) is uniformly bounded,

|Ff (t)| ≤ (2π)−n/2

∫

Rn

|f(x)| dx < ∞.

A similar argument gives the same conclusions for F−1.
It remains to verify 15.5 and the claim that Ff and F−1f are uniformly contin-

uous.

|Ff (t)| ≤
∣∣∣∣(2π)−n/2

∫

Rn

e−it·xf(x)dx

∣∣∣∣

Now let ε > 0 be given and let g ∈ C∞c (Rn) such that (2π)−n/2 ||g − f ||1 < ε/2.
Then

|Ff (t)| ≤ (2π)−n/2

∫

Rn

|f(x)− g (x)| dx

+
∣∣∣∣(2π)−n/2

∫

Rn

e−it·xg(x)dx

∣∣∣∣

≤ ε/2 +
∣∣∣∣(2π)−n/2

∫

Rn

e−it·xg(x)dx

∣∣∣∣ .

Now integrating by parts, it follows that for ||t||∞ ≡ max {|tj | : j = 1, · · ·, n} > 0

|Ff (t)| ≤ ε/2 + (2π)−n/2

∣∣∣∣∣∣
1

||t||∞

∫

Rn

n∑

j=1

∣∣∣∣
∂g (x)
∂xj

∣∣∣∣ dx

∣∣∣∣∣∣
(15.6)
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and this last expression converges to zero as ||t||∞ →∞. The reason for this is that
if tj 6= 0, integration by parts with respect to xj gives

(2π)−n/2

∫

Rn

e−it·xg(x)dx = (2π)−n/2 1
−itj

∫

Rn

e−it·x ∂g (x)
∂xj

dx.

Therefore, choose the j for which ||t||∞ = |tj | and the result of 15.6 holds. There-
fore, from 15.6, if ||t||∞ is large enough, |Ff (t)| < ε. Similarly, lim||t||→∞ F−1 (t) =
0. Consider the claim about uniform continuity. Let ε > 0 be given. Then there
exists R such that if ||t||∞ > R, then |Ff (t)| < ε

2 . Since Ff is continuous, it is
uniformly continuous on the compact set, [−R− 1, R + 1]n. Therefore, there exists
δ1 such that if ||t− t′||∞ < δ1 for t′, t ∈ [−R− 1, R + 1]n, then

|Ff (t)− Ff (t′)| < ε/2. (15.7)

Now let 0 < δ < min (δ1, 1) and suppose ||t− t′||∞ < δ. If both t, t′ are contained
in [−R, R]n, then 15.7 holds. If t ∈ [−R, R]n and t′ /∈ [−R, R]n, then both are
contained in [−R− 1, R + 1]n and so this verifies 15.7 in this case. The other case
is that neither point is in [−R,R]n and in this case,

|Ff (t)− Ff (t′)| ≤ |Ff (t)|+ |Ff (t′)|
<

ε

2
+

ε

2
= ε.

This proves the theorem.
There is a very interesting relation between the Fourier transform and convolu-

tions.

Theorem 15.19 Let f, g ∈ L1(Rn). Then f∗g ∈ L1 and F (f∗g) = (2π)n/2
FfFg.

Proof: Consider ∫

Rn

∫

Rn

|f (x− y) g (y)| dydx.

The function, (x,y) → |f (x− y) g (y)| is Lebesgue measurable and so by Fubini’s
theorem,

∫

Rn

∫

Rn

|f (x− y) g (y)| dydx =
∫

Rn

∫

Rn

|f (x− y) g (y)| dxdy

= ||f ||1 ||g||1 < ∞.

It follows that for a.e. x,
∫
Rn |f (x− y) g (y)| dy < ∞ and for each of these values

of x, it follows that
∫
Rn f (x− y) g (y) dy exists and equals a function of x which is
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in L1 (Rn) , f ∗ g (x). Now

F (f ∗ g) (t)

≡ (2π)−n/2
∫

Rn

e−it·xf ∗ g (x) dx

= (2π)−n/2
∫

Rn

e−it·x
∫

Rn

f (x− y) g (y) dydx

= (2π)−n/2
∫

Rn

e−it·yg (y)
∫

Rn

e−it·(x−y)f (x− y) dxdy

= (2π)n/2
Ff (t) Fg (t) .

There are many other considerations involving Fourier transforms of functions
in L1 (Rn).

15.3.2 Fourier Transforms Of Functions In L2 (Rn)

Consider Ff and F−1f for f ∈ L2(Rn). First note that the formula given for Ff
and F−1f when f ∈ L1 (Rn) will not work for f ∈ L2(Rn) unless f is also in L1(Rn).
Recall that a + ib = a− ib.

Theorem 15.20 For φ ∈ G, ||Fφ||2 = ||F−1φ||2 = ||φ||2.

Proof: First note that for ψ ∈ G,

F (ψ) = F−1(ψ) , F−1(ψ) = F (ψ). (15.8)

This follows from the definition. For example,

Fψ (t) = (2π)−n/2

∫

Rn

e−it·xψ (x) dx

= (2π)−n/2

∫

Rn

eit·xψ (x) dx

Let φ, ψ ∈ G. It was shown above that

∫

Rn

(Fφ)ψ(t)dt =
∫

Rn

φ(Fψ)dx.

Similarly, ∫

Rn

φ(F−1ψ)dx =
∫

Rn

(F−1φ)ψdt. (15.9)
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Now, 15.8 - 15.9 imply
∫

Rn

|φ|2dx =
∫

Rn

φF−1(Fφ)dx

=
∫

Rn

φF (Fφ)dx

=
∫

Rn

Fφ(Fφ)dx

=
∫

Rn

|Fφ|2dx.

Similarly
||φ||2 = ||F−1φ||2.

This proves the theorem.

Lemma 15.21 Let f ∈ L2 (Rn) and let φk → f in L2 (Rn) where φk ∈ G. (Such
a sequence exists because of density of G in L2 (Rn).) Then Ff and F−1f are both
in L2 (Rn) and the following limits take place in L2.

lim
k→∞

F (φk) = F (f) , lim
k→∞

F−1 (φk) = F−1 (f) .

Proof: Let ψ ∈ G be given. Then

Ff (ψ) ≡ f (Fψ) ≡
∫

Rn

f (x) Fψ (x) dx

= lim
k→∞

∫

Rn

φk (x) Fψ (x) dx = lim
k→∞

∫

Rn

Fφk (x) ψ (x) dx.

Also by Theorem 15.20 {Fφk}∞k=1 is Cauchy in L2 (Rn) and so it converges to some
h ∈ L2 (Rn). Therefore, from the above,

Ff (ψ) =
∫

Rn

h (x)ψ (x)

which shows that F (f) ∈ L2 (Rn) and h = F (f) . The case of F−1 is entirely
similar. This proves the lemma.

Since Ff and F−1f are in L2 (Rn) , this also proves the following theorem.

Theorem 15.22 If f ∈ L2(Rn), Ff and F−1f are the unique elements of L2 (Rn)
such that for all φ ∈ G,

∫

Rn

Ff(x)φ(x)dx =
∫

Rn

f(x)Fφ(x)dx, (15.10)

∫

Rn

F−1f(x)φ(x)dx =
∫

Rn

f(x)F−1φ(x)dx. (15.11)
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Theorem 15.23 (Plancherel)

||f ||2 = ||Ff ||2 = ||F−1f ||2. (15.12)

Proof: Use the density of G in L2 (Rn) to obtain a sequence, {φk} converging
to f in L2 (Rn). Then by Lemma 15.21

||Ff ||2 = lim
k→∞

||Fφk||2 = lim
k→∞

||φk||2 = ||f ||2 .

Similarly,
||f ||2 = ||F−1f ||2.

This proves the theorem.
The following corollary is a simple generalization of this. To prove this corollary,

use the following simple lemma which comes as a consequence of the Cauchy Schwarz
inequality.

Lemma 15.24 Suppose fk → f in L2 (Rn) and gk → g in L2 (Rn). Then

lim
k→∞

∫

Rn

fkgkdx =
∫

Rn

fgdx

Proof:
∣∣∣∣
∫

Rn

fkgkdx−
∫

Rn

fgdx

∣∣∣∣ ≤
∣∣∣∣
∫

Rn

fkgkdx−
∫

Rn

fkgdx

∣∣∣∣ +

∣∣∣∣
∫

Rn

fkgdx−
∫

Rn

fgdx

∣∣∣∣
≤ ||fk||2 ||g − gk||2 + ||g||2 ||fk − f ||2 .

Now ||fk||2 is a Cauchy sequence and so it is bounded independent of k. Therefore,
the above expression is smaller than ε whenever k is large enough. This proves the
lemma.

Corollary 15.25 For f, g ∈ L2(Rn),
∫

Rn

fgdx =
∫

Rn

Ff Fgdx =
∫

Rn

F−1f F−1gdx.

Proof: First note the above formula is obvious if f, g ∈ G. To see this, note
∫

Rn

Ff Fgdx =
∫

Rn

Ff (x)
1

(2π)n/2

∫

Rn

e−ix·tg (t) dtdx

=
∫

Rn

1

(2π)n/2

∫

Rn

eix·tFf (x) dxg (t)dt

=
∫

Rn

(
F−1 ◦ F

)
f (t) g (t)dt

=
∫

Rn

f (t) g (t)dt.
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The formula with F−1 is exactly similar.
Now to verify the corollary, let φk → f in L2 (Rn) and let ψk → g in L2 (Rn).

Then by Lemma 15.21
∫

Rn

Ff Fgdx = lim
k→∞

∫

Rn

Fφk Fψkdx

= lim
k→∞

∫

Rn

φkψkdx

=
∫

Rn

fgdx

A similar argument holds for F−1.This proves the corollary.
How does one compute Ff and F−1f ?

Theorem 15.26 For f ∈ L2(Rn), let fr = fXEr
where Er is a bounded measurable

set with Er ↑ Rn. Then the following limits hold in L2 (Rn) .

Ff = lim
r→∞

Ffr , F−1f = lim
r→∞

F−1fr.

Proof: ||f − fr||2 → 0 and so ||Ff −Ffr||2 → 0 and ||F−1f −F−1fr||2 → 0 by
Plancherel’s Theorem. This proves the theorem.

What are Ffr and F−1fr? Let φ ∈ G
∫

Rn

Ffrφdx =
∫

Rn

frFφdx

= (2π)−
n
2

∫

Rn

∫

Rn

fr(x)e−ix·yφ(y)dydx

=
∫

Rn

[(2π)−
n
2

∫

Rn

fr(x)e−ix·ydx]φ(y)dy.

Since this holds for all φ ∈ G, a dense subset of L2(Rn), it follows that

Ffr(y) = (2π)−
n
2

∫

Rn

fr(x)e−ix·ydx.

Similarly

F−1fr(y) = (2π)−
n
2

∫

Rn

fr(x)eix·ydx.

This shows that to take the Fourier transform of a function in L2 (Rn), it suffices
to take the limit as r → ∞ in L2 (Rn) of (2π)−

n
2

∫
Rn fr(x)e−ix·ydx. A similar

procedure works for the inverse Fourier transform.
Note this reduces to the earlier definition in case f ∈ L1 (Rn). Now consider the

convolution of a function in L2 with one in L1.

Theorem 15.27 Let h ∈ L2 (Rn) and let f ∈ L1 (Rn). Then h ∗ f ∈ L2 (Rn),

F−1 (h ∗ f) = (2π)n/2
F−1hF−1f,
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F (h ∗ f) = (2π)n/2
FhFf,

and

||h ∗ f ||2 ≤ ||h||2 ||f ||1 . (15.13)

Proof: An application of Minkowski’s inequality yields

(∫

Rn

(∫

Rn

|h (x− y)| |f (y)| dy

)2

dx

)1/2

≤ ||f ||1 ||h||2 . (15.14)

Hence
∫ |h (x− y)| |f (y)| dy < ∞ a.e. x and

x →
∫

h (x− y) f (y) dy

is in L2 (Rn). Let Er ↑ Rn, m (Er) < ∞. Thus,

hr ≡ XErh ∈ L2 (Rn) ∩ L1 (Rn),

and letting φ ∈ G, ∫
F (hr ∗ f) (φ) dx

≡
∫

(hr ∗ f) (Fφ) dx

= (2π)−n/2
∫ ∫ ∫

hr (x− y) f (y) e−ix·tφ (t) dtdydx

= (2π)−n/2
∫ ∫ (∫

hr (x− y) e−i(x−y)·tdx

)
f (y) e−iy·tdyφ (t) dt

=
∫

(2π)n/2
Fhr (t) Ff (t)φ (t) dt.

Since φ is arbitrary and G is dense in L2 (Rn),

F (hr ∗ f) = (2π)n/2
FhrFf.

Now by Minkowski’s Inequality, hr ∗ f → h ∗ f in L2 (Rn) and also it is clear that
hr → h in L2 (Rn) ; so, by Plancherel’s theorem, you may take the limit in the above
and conclude

F (h ∗ f) = (2π)n/2
FhFf.

The assertion for F−1 is similar and 15.13 follows from 15.14.
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15.3.3 The Schwartz Class

The problem with G is that it does not contain C∞c (Rn). I have used it in presenting
the Fourier transform because the functions in G have a very specific form which
made some technical details work out easier than in any other approach I have
seen. The Schwartz class is a larger class of functions which does contain C∞c (Rn)
and also has the same nice properties as G. The functions in the Schwartz class
are infinitely differentiable and they vanish very rapidly as |x| → ∞ along with all
their partial derivatives. This is the description of these functions, not a specific
form involving polynomials times e−α|x|2 . To describe this precisely requires some
notation.

Definition 15.28 f ∈ S, the Schwartz class, if f ∈ C∞(Rn) and for all positive
integers N ,

ρN (f) < ∞
where

ρN (f) = sup{(1 + |x|2)N |Dαf(x)| : x ∈ Rn , |α| ≤ N}.
Thus f ∈ S if and only if f ∈ C∞(Rn) and

sup{|xβDαf(x)| : x ∈ Rn} < ∞ (15.15)

for all multi indices α and β.

Also note that if f ∈ S, then p(f) ∈ S for any polynomial, p with p(0) = 0 and
that

S ⊆ Lp(Rn) ∩ L∞(Rn)

for any p ≥ 1. To see this assertion about the p (f), it suffices to consider the case
of the product of two elements of the Schwartz class. If f, g ∈ S, then Dα (fg) is
a finite sum of derivatives of f times derivatives of g. Therefore, ρN (fg) < ∞ for
all N . You may wonder about examples of things in S. Clearly any function in
C∞c (Rn) is in S. However there are other functions in S. For example e−|x|

2
is in

S as you can verify for yourself and so is any function from G. Note also that the
density of Cc (Rn) in Lp (Rn) shows that S is dense in Lp (Rn) for every p.

Recall the Fourier transform of a function in L1 (Rn) is given by

Ff(t) ≡ (2π)−n/2

∫

Rn

e−it·xf(x)dx.

Therefore, this gives the Fourier transform for f ∈ S. The nice property which S
has in common with G is that the Fourier transform and its inverse map S one to
one onto S. This means I could have presented the whole of the above theory in
terms of S rather than in terms of G. However, it is more technical.

Theorem 15.29 If f ∈ S, then Ff and F−1f are also in S.
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Proof: To begin with, let α = ej = (0, 0, · · ·, 1, 0, · · ·, 0), the 1 in the jth slot.

F−1f(t + hej)− F−1f(t)
h

= (2π)−n/2

∫

Rn

eit·xf(x)(
eihxj − 1

h
)dx. (15.16)

Consider the integrand in 15.16.
∣∣∣∣eit·xf(x)(

eihxj − 1
h

)
∣∣∣∣ = |f (x)|

∣∣∣∣(
ei(h/2)xj − e−i(h/2)xj

h
)
∣∣∣∣

= |f (x)|
∣∣∣∣
i sin ((h/2)xj)

(h/2)

∣∣∣∣
≤ |f (x)| |xj |

and this is a function in L1(Rn) because f ∈ S. Therefore by the Dominated
Convergence Theorem,

∂F−1f(t)
∂tj

= (2π)−n/2

∫

Rn

eit·xixjf(x)dx

= i(2π)−n/2

∫

Rn

eit·xxej f(x)dx.

Now xej f(x) ∈ S and so one can continue in this way and take derivatives indefi-
nitely. Thus F−1f ∈ C∞(Rn) and from the above argument,

DαF−1f(t) =(2π)−n/2

∫

Rn

eit·x(ix)α
f(x)dx.

To complete showing F−1f ∈ S,

tβDαF−1f(t) =(2π)−n/2

∫

Rn

eit·xtβ(ix)a
f(x)dx.

Integrate this integral by parts to get

tβDαF−1f(t) =(2π)−n/2

∫

Rn

i|β|eit·xDβ((ix)a
f(x))dx. (15.17)

Here is how this is done.
∫

R
eitjxj t

βj

j (ix)α
f(x)dxj =

eitjxj

itj
t
βj

j (ix)αf(x) |∞−∞ +

i

∫

R
eitjxj t

βj−1

j Dej ((ix)αf(x))dxj

where the boundary term vanishes because f ∈ S. Returning to 15.17, use the fact
that |eia| = 1 to conclude

|tβDαF−1f(t)| ≤C

∫

Rn

|Dβ((ix)a
f(x))|dx < ∞.

It follows F−1f ∈ S. Similarly Ff ∈ S whenever f ∈ S.



15.3. FOURIER TRANSFORMS OF JUST ABOUT ANYTHING 361

Theorem 15.30 Let ψ ∈ S. Then (F ◦ F−1)(ψ) = ψ and (F−1 ◦ F )(ψ) = ψ
whenever ψ ∈ S. Also F and F−1 map S one to one and onto S.

Proof: The first claim follows from the fact that F and F−1 are inverses of each
other which was established above. For the second, let ψ ∈ S. Then ψ = F

(
F−1ψ

)
.

Thus F maps S onto S. If Fψ = 0, then do F−1 to both sides to conclude ψ = 0.
Thus F is one to one and onto. Similarly, F−1 is one to one and onto.

15.3.4 Convolution

To begin with it is necessary to discuss the meaning of φf where f ∈ G∗ and φ ∈ G.
What should it mean? First suppose f ∈ Lp (Rn) or measurable with polynomial
growth. Then φf also has these properties. Hence, it should be the case that
φf (ψ) =

∫
Rn φfψdx =

∫
Rn f (φψ) dx. This motivates the following definition.

Definition 15.31 Let T ∈ G∗ and let φ ∈ G. Then φT ≡ Tφ ∈ G∗ will be defined
by

φT (ψ) ≡ T (φψ) .

The next topic is that of convolution. It was just shown that

F (f ∗ φ) = (2π)n/2
FφFf, F−1 (f ∗ φ) = (2π)n/2

F−1φF−1f

whenever f ∈ L2 (Rn) and φ ∈ G so the same definition is retained in the general
case because it makes perfect sense and agrees with the earlier definition.

Definition 15.32 Let f ∈ G∗ and let φ ∈ G. Then define the convolution of f with
an element of G as follows.

f ∗ φ ≡ (2π)n/2
F−1 (FφFf) ∈ G∗

There is an obvious question. With this definition, is it true that F−1 (f ∗ φ) =
(2π)n/2

F−1φF−1f as it was earlier?

Theorem 15.33 Let f ∈ G∗ and let φ ∈ G.

F (f ∗ φ) = (2π)n/2
FφFf, (15.18)

F−1 (f ∗ φ) = (2π)n/2
F−1φF−1f. (15.19)

Proof: Note that 15.18 follows from Definition 15.32 and both assertions hold
for f ∈ G. Consider 15.19. Here is a simple formula involving a pair of functions in
G. (

ψ ∗ F−1F−1φ
)
(x)
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=
(∫ ∫ ∫

ψ (x− y) eiy·y1eiy1·zφ (z) dzdy1dy

)
(2π)n

=
(∫ ∫ ∫

ψ (x− y) e−iy·ỹ1e−iỹ1·zφ (z) dzdỹ1dy

)
(2π)n

= (ψ ∗ FFφ) (x) .

Now for ψ ∈ G,

(2π)n/2
F

(
F−1φF−1f

)
(ψ) ≡ (2π)n/2 (

F−1φF−1f
)
(Fψ) ≡

(2π)n/2
F−1f

(
F−1φFψ

) ≡ (2π)n/2
f

(
F−1

(
F−1φFψ

))
=

f
(
(2π)n/2

F−1
((

FF−1F−1φ
)
(Fψ)

)) ≡

f
(
ψ ∗ F−1F−1φ

)
= f (ψ ∗ FFφ) (15.20)

Also

(2π)n/2
F−1 (FφFf) (ψ) ≡ (2π)n/2 (FφFf)

(
F−1ψ

) ≡

(2π)n/2
Ff

(
FφF−1ψ

) ≡ (2π)n/2
f

(
F

(
FφF−1ψ

))
=

= f
(
F

(
(2π)n/2 (

FφF−1ψ
)))

= f
(
F

(
(2π)n/2 (

F−1FFφF−1ψ
)))

= f
(
F

(
F−1 (FFφ ∗ ψ)

))

f (FFφ ∗ ψ) = f (ψ ∗ FFφ) . (15.21)

The last line follows from the following.

∫
FFφ (x− y)ψ (y) dy =

∫
Fφ (x− y) Fψ (y) dy

=
∫

Fψ (x− y)Fφ (y) dy

=
∫

ψ (x− y)FFφ (y) dy.

From 15.21 and 15.20 , since ψ was arbitrary,

(2π)n/2
F

(
F−1φF−1f

)
= (2π)n/2

F−1 (FφFf) ≡ f ∗ φ

which shows 15.19.
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15.4 Exercises

1. For f ∈ L1 (Rn), show that if F−1f ∈ L1 or Ff ∈ L1, then f equals a
continuous bounded function a.e.

2. Suppose f, g ∈ L1(R) and Ff = Fg. Show f = g a.e.

3. Show that if f ∈ L1 (Rn) , then lim|x|→∞ Ff (x) = 0.

4. ↑ Suppose f ∗ f = f or f ∗ f = 0 and f ∈ L1(R). Show f = 0.

5. For this problem define
∫∞

a
f (t) dt ≡ limr→∞

∫ r

a
f (t) dt. Note this coincides

with the Lebesgue integral when f ∈ L1 (a,∞). Show

(a)
∫∞
0

sin(u)
u du = π

2

(b) limr→∞
∫∞

δ
sin(ru)

u du = 0 whenever δ > 0.

(c) If f ∈ L1 (R), then limr→∞
∫
R sin (ru) f (u) du = 0.

Hint: For the first two, use 1
u =

∫∞
0

e−utdt and apply Fubini’s theorem to∫ R

0
sin u

∫
R e−utdtdu. For the last part, first establish it for f ∈ C∞c (R) and

then use the density of this set in L1 (R) to obtain the result. This is sometimes
called the Riemann Lebesgue lemma.

6. ↑Suppose that g ∈ L1 (R) and that at some x > 0, g is locally Holder contin-
uous from the right and from the left. This means

lim
r→0+

g (x + r) ≡ g (x+)

exists,
lim

r→0+
g (x− r) ≡ g (x−)

exists and there exist constants K, δ > 0 and r ∈ (0, 1] such that for |x− y| <
δ,

|g (x+)− g (y)| < K |x− y|r

for y > x and
|g (x−)− g (y)| < K |x− y|r

for y < x. Show that under these conditions,

lim
r→∞

2
π

∫ ∞

0

sin (ur)
u

(
g (x− u) + g (x + u)

2

)
du

=
g (x+) + g (x−)

2
.
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7. ↑ Let g ∈ L1 (R) and suppose g is locally Holder continuous from the right
and from the left at x. Show that then

lim
R→∞

1
2π

∫ R

−R

eixt

∫ ∞

−∞
e−ityg (y) dydt =

g (x+) + g (x−)
2

.

This is very interesting. If g ∈ L2 (R), this shows F−1 (Fg) (x) = g(x+)+g(x−)
2 ,

the midpoint of the jump in g at the point, x. In particular, if g ∈ G,
F−1 (Fg) = g. Hint: Show the left side of the above equation reduces to

2
π

∫ ∞

0

sin (ur)
u

(
g (x− u) + g (x + u)

2

)
du

and then use Problem 6 to obtain the result.

8. ↑ A measurable function g defined on (0,∞) has exponential growth if |g (t)| ≤
Ceηt for some η. For Re (s) > η, define the Laplace Transform by

Lg (s) ≡
∫ ∞

0

e−sug (u) du.

Assume that g has exponential growth as above and is Holder continuous from
the right and from the left at t. Pick γ > η. Show that

lim
R→∞

1
2π

∫ R

−R

eγteiytLg (γ + iy) dy =
g (t+) + g (t−)

2
.

This formula is sometimes written in the form

1
2πi

∫ γ+i∞

γ−i∞
estLg (s) ds

and is called the complex inversion integral for Laplace transforms. It can be
used to find inverse Laplace transforms. Hint:

1
2π

∫ R

−R

eγteiytLg (γ + iy) dy =

1
2π

∫ R

−R

eγteiyt

∫ ∞

0

e−(γ+iy)ug (u) dudy.

Now use Fubini’s theorem and do the integral from −R to R to get this equal
to

eγt

π

∫ ∞

−∞
e−γug (u)

sin (R (t− u))
t− u

du

where g is the zero extension of g off [0,∞). Then this equals

eγt

π

∫ ∞

−∞
e−γ(t−u)g (t− u)

sin (Ru)
u

du
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which equals

2eγt

π

∫ ∞

0

g (t− u) e−γ(t−u) + g (t + u) e−γ(t+u)

2
sin (Ru)

u
du

and then apply the result of Problem 6.

9. Suppose f ∈ S. Show F (fxj
)(t) = itjFf(t).

10. Let f ∈ S and let k be a positive integer.

||f ||k,2 ≡ (||f ||22 +
∑

|α|≤k

||Dαf ||22)1/2.

One could also define

|||f |||k,2 ≡ (
∫

Rn

|Ff(x)|2(1 + |x|2)kdx)1/2.

Show both || ||k,2 and ||| |||k,2 are norms on S and that they are equivalent.
These are Sobolev space norms. For which values of k does the second norm
make sense? How about the first norm?

11. ↑ Define Hk(Rn), k ≥ 0 by f ∈ L2(Rn) such that

(
∫
|Ff(x)|2(1 + |x|2)kdx)

1
2 < ∞,

|||f |||k,2 ≡ (
∫
|Ff(x)|2(1 + |x|2)kdx)

1
2.

Show Hk(Rn) is a Banach space, and that if k is a positive integer, Hk(Rn)
={ f ∈ L2(Rn) : there exists {uj} ⊆ G with ||uj − f ||2 → 0 and {uj} is a
Cauchy sequence in || ||k,2 of Problem 10}. This is one way to define Sobolev
Spaces. Hint: One way to do the second part of this is to define a new
measure, µ by

µ (E) ≡
∫

E

(
1 + |x|2

)k

dx.

Then show µ is a Radon measure and show there exists {gm} such that gm ∈ G
and gm → Ff in L2(µ). Thus gm = Ffm, fm ∈ G because F maps G onto G.
Then by Problem 10, {fm } is Cauchy in the norm || ||k,2.

12. ↑ If 2k > n, show that if f ∈ Hk(Rn), then f equals a bounded continuous
function a.e. Hint: Show that for k this large, Ff ∈ L1(Rn), and then use
Problem 1. To do this, write

|Ff(x)| = |Ff(x)|(1 + |x|2) k
2 (1 + |x|2)−k

2 ,

So ∫
|Ff(x)|dx =

∫
|Ff(x)|(1 + |x|2) k

2 (1 + |x|2)−k
2 dx.

Use the Cauchy Schwarz inequality. This is an example of a Sobolev imbedding
Theorem.
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13. Let u ∈ G. Then Fu ∈ G and so, in particular, it makes sense to form the
integral, ∫

R
Fu (x′, xn) dxn

where (x′, xn) = x ∈ Rn. For u ∈ G, define γu (x′) ≡ u (x′, 0). Find a
constant such that F (γu) (x′) equals this constant times the above integral.
Hint: By the dominated convergence theorem

∫

R
Fu (x′, xn) dxn = lim

ε→0

∫

R
e−(εxn)2Fu (x′, xn) dxn.

Now use the definition of the Fourier transform and Fubini’s theorem as re-
quired in order to obtain the desired relationship.

14. Recall the Fourier series of a function in L2 (−π, π) converges to the func-
tion in L2 (−π, π). Prove a similar theorem with L2 (−π, π) replaced by
L2 (−mπ, mπ) and the functions

{
(2π)−(1/2)

einx
}

n∈Z

used in the Fourier series replaced with
{

(2mπ)−(1/2)
ei n

m x
}

n∈Z

Now suppose f is a function in L2 (R) satisfying Ff (t) = 0 if |t| > mπ. Show
that if this is so, then

f (x) =
1
π

∑

n∈Z
f

(−n

m

)
sin (π (mx + n))

mx + n
.

Here m is a positive integer. This is sometimes called the Shannon sampling
theorem.Hint: First note that since Ff ∈ L2 and is zero off a finite interval,
it follows Ff ∈ L1. Also

f (t) =
1√
2π

∫ mπ

−mπ

eitxFf (x) dx

and you can conclude from this that f has all derivatives and they are all
bounded. Thus f is a very nice function. You can replace Ff with its Fourier
series. Then consider carefully the Fourier coefficient of Ff. Argue it equals
f

(−n
m

)
or at least an appropriate constant times this. When you get this the

rest will fall quickly into place if you use Ff is zero off [−mπ, mπ].
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The Complex Numbers

The reader is presumed familiar with the algebraic properties of complex numbers,
including the operation of conjugation. Here a short review of the distance in C is
presented.

The length of a complex number, referred to as the modulus of z and denoted
by |z| is given by

|z| ≡ (
x2 + y2

)1/2
= (zz)1/2

,

Then C is a metric space with the distance between two complex numbers, z and
w defined as

d (z, w) ≡ |z − w| .
This metric on C is the same as the usual metric of R2. A sequence, zn → z if and
only if xn → x in R and yn → y in R where z = x + iy and zn = xn + iyn. For
example if zn = n

n+1 + i 1
n , then zn → 1 + 0i = 1.

Definition 16.1 A sequence of complex numbers, {zn} is a Cauchy sequence if for
every ε > 0 there exists N such that n,m > N implies |zn − zm| < ε.

This is the usual definition of Cauchy sequence. There are no new ideas here.

Proposition 16.2 The complex numbers with the norm just mentioned forms a
complete normed linear space.

Proof: Let {zn} be a Cauchy sequence of complex numbers with zn = xn + iyn.
Then {xn} and {yn} are Cauchy sequences of real numbers and so they converge
to real numbers, x and y respectively. Thus zn = xn + iyn → x + iy. C is a linear
space with the field of scalars equal to C. It only remains to verify that | | satisfies
the axioms of a norm which are:

|z + w| ≤ |z|+ |w|
|z| ≥ 0 for all z

|z| = 0 if and only if z = 0

|αz| = |α| |z| .

369
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The only one of these axioms of a norm which is not completely obvious is the first
one, the triangle inequality. Let z = x + iy and w = u + iv

|z + w|2 = (z + w) (z + w) = |z|2 + |w|2 + 2Re (zw)

≤ |z|2 + |w|2 + 2 |(zw)| = (|z|+ |w|)2

and this verifies the triangle inequality.

Definition 16.3 An infinite sum of complex numbers is defined as the limit of the
sequence of partial sums. Thus,

∞∑

k=1

ak ≡ lim
n→∞

n∑

k=1

ak.

Just as in the case of sums of real numbers, an infinite sum converges if and
only if the sequence of partial sums is a Cauchy sequence.

From now on, when f is a function of a complex variable, it will be assumed that
f has values in X, a complex Banach space. Usually in complex analysis courses,
f has values in C but there are many important theorems which don’t require this
so I will leave it fairly general for a while. Later the functions will have values in
C. If you are only interested in this case, think C whenever you see X.

Definition 16.4 A sequence of functions of a complex variable, {fn} converges
uniformly to a function, g for z ∈ S if for every ε > 0 there exists Nε such that if
n > Nε, then

||fn (z)− g (z)|| < ε

for all z ∈ S. The infinite sum
∑∞

k=1 fn converges uniformly on S if the partial
sums converge uniformly on S. Here ||·|| refers to the norm in X, the Banach space
in which f has its values.

The following proposition is also a routine application of the above definition.
Neither the definition nor this proposition say anything new.

Proposition 16.5 A sequence of functions, {fn} defined on a set S, converges
uniformly to some function, g if and only if for all ε > 0 there exists Nε such that
whenever m,n > Nε,

||fn − fm||∞ < ε.

Here ||f ||∞ ≡ sup {||f (z)|| : z ∈ S} .

Just as in the case of functions of a real variable, one of the important theorems
is the Weierstrass M test. Again, there is nothing new here. It is just a review of
earlier material.

Theorem 16.6 Let {fn} be a sequence of complex valued functions defined on S ⊆
C. Suppose there exists Mn such that ||fn||∞ < Mn and

∑
Mn converges. Then∑

fn converges uniformly on S.
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Proof: Let z ∈ S. Then letting m < n

∣∣∣∣∣

∣∣∣∣∣
n∑

k=1

fk (z)−
m∑

k=1

fk (z)

∣∣∣∣∣

∣∣∣∣∣ ≤
n∑

k=m+1

||fk (z)|| ≤
∞∑

k=m+1

Mk < ε

whenever m is large enough. Therefore, the sequence of partial sums is uniformly
Cauchy on S and therefore, converges uniformly to

∑∞
k=1 fk (z) on S.

16.1 The Extended Complex Plane

The set of complex numbers has already been considered along with the topology of
C which is nothing but the topology of R2. Thus, for zn = xn + iyn, zn → z ≡ x+ iy
if and only if xn → x and yn → y. The norm in C is given by

|x + iy| ≡ ((x + iy) (x− iy))1/2 =
(
x2 + y2

)1/2

which is just the usual norm in R2 identifying (x, y) with x + iy. Therefore, C is
a complete metric space topologically like R2 and so the Heine Borel theorem that
compact sets are those which are closed and bounded is valid. Thus, as far as
topology is concerned, there is nothing new about C.

The extended complex plane, denoted by Ĉ , consists of the complex plane, C
along with another point not in C known as ∞. For example, ∞ could be any point
in R3. A sequence of complex numbers, zn, converges to ∞ if, whenever K is a
compact set in C, there exists a number, N such that for all n > N, zn /∈ K. Since
compact sets in C are closed and bounded, this is equivalent to saying that for all
R > 0, there exists N such that if n > N, then zn /∈ B (0, R) which is the same as
saying limn→∞ |zn| = ∞ where this last symbol has the same meaning as it does in
calculus.

A geometric way of understanding this in terms of more familiar objects involves
a concept known as the Riemann sphere.

Consider the unit sphere, S2 given by (z − 1)2 + y2 + x2 = 1. Define a map
from the complex plane to the surface of this sphere as follows. Extend a line
from the point, p in the complex plane to the point (0, 0, 2) on the top of this
sphere and let θ (p) denote the point of this sphere which the line intersects. Define
θ (∞) ≡ (0, 0, 2).

s

s

s(0, 0, 2)

(0, 0, 1)
s

@
@

@
@

@
@@

p

θ(p)

C
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Then θ−1 is sometimes called sterographic projection. The mapping θ is clearly
continuous because it takes converging sequences, to converging sequences. Fur-
thermore, it is clear that θ−1 is also continuous. In terms of the extended complex
plane, Ĉ, a sequence, zn converges to ∞ if and only if θzn converges to (0, 0, 2) and
a sequence, zn converges to z ∈ C if and only if θ (zn) → θ (z) .

In fact this makes it easy to define a metric on Ĉ.

Definition 16.7 Let z, w ∈ Ĉ including possibly w = ∞. Then let d (x,w) ≡
|θ (z)− θ (w)| where this last distance is the usual distance measured in R3.

Theorem 16.8
(
Ĉ, d

)
is a compact, hence complete metric space.

Proof: Suppose {zn} is a sequence in Ĉ. This means {θ (zn)} is a sequence in
S2 which is compact. Therefore, there exists a subsequence, {θznk

} and a point,
z ∈ S2 such that θznk

→ θz in S2 which implies immediately that d (znk
, z) → 0.

A compact metric space must be complete.

16.2 Exercises

1. Prove the root test for series of complex numbers. If ak ∈ C and r ≡
lim supn→∞ |an|1/n then

∞∑

k=0

ak





converges absolutely if r < 1
diverges if r > 1
test fails if r = 1.

2. Does limn→∞ n
(

2+i
3

)n exist? Tell why and find the limit if it does exist.

3. Let A0 = 0 and let An ≡ ∑n
k=1 ak if n > 0. Prove the partial summation

formula,
q∑

k=p

akbk = Aqbq −Ap−1bp +
q−1∑

k=p

Ak (bk − bk+1) .

Now using this formula, suppose {bn} is a sequence of real numbers which
converges to 0 and is decreasing. Determine those values of ω such that
|ω| = 1 and

∑∞
k=1 bkωk converges.

4. Let f : U ⊆ C → C be given by f (x + iy) = u (x, y) + iv (x, y) . Show f is
continuous on U if and only if u : U → R and v : U → R are both continuous.



Riemann Stieltjes Integrals

In the theory of functions of a complex variable, the most important results are those
involving contour integration. I will base this on the notion of Riemann Stieltjes
integrals as in [11], [32], and [24]. The Riemann Stieltjes integral is a generalization
of the usual Riemann integral and requires the concept of a function of bounded
variation.

Definition 17.1 Let γ : [a, b] → C be a function. Then γ is of bounded variation
if

sup

{
n∑

i=1

|γ (ti)− γ (ti−1)| : a = t0 < · · · < tn = b

}
≡ V (γ, [a, b]) < ∞

where the sums are taken over all possible lists, {a = t0 < · · · < tn = b} .

The idea is that it makes sense to talk of the length of the curve γ ([a, b]) , defined
as V (γ, [a, b]) . For this reason, in the case that γ is continuous, such an image of a
bounded variation function is called a rectifiable curve.

Definition 17.2 Let γ : [a, b] → C be of bounded variation and let f : [a, b] → X.
Letting P ≡ {t0, · · ·, tn} where a = t0 < t1 < · · · < tn = b, define

||P|| ≡ max {|tj − tj−1| : j = 1, · · ·, n}
and the Riemann Steiltjes sum by

S (P) ≡
n∑

j=1

f (γ (τ j)) (γ (tj)− γ (tj−1))

where τ j ∈ [tj−1, tj ] . (Note this notation is a little sloppy because it does not identify
the specific point, τ j used. It is understood that this point is arbitrary.) Define∫

γ
fdγ as the unique number which satisfies the following condition. For all ε > 0

there exists a δ > 0 such that if ||P|| ≤ δ, then
∣∣∣∣
∫

γ

fdγ − S (P)
∣∣∣∣ < ε.
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Sometimes this is written as
∫

γ

fdγ ≡ lim
||P||→0

S (P) .

The set of points in the curve, γ ([a, b]) will be denoted sometimes by γ∗.

Then γ∗ is a set of points in C and as t moves from a to b, γ (t) moves from
γ (a) to γ (b) . Thus γ∗ has a first point and a last point. If φ : [c, d] → [a, b] is
a continuous nondecreasing function, then γ ◦ φ : [c, d] → C is also of bounded
variation and yields the same set of points in C with the same first and last points.

Theorem 17.3 Let φ and γ be as just described. Then assuming that
∫

γ

fdγ

exists, so does ∫

γ◦φ
fd (γ ◦ φ)

and ∫

γ

fdγ =
∫

γ◦φ
fd (γ ◦ φ) . (17.1)

Proof: There exists δ > 0 such that if P is a partition of [a, b] such that ||P|| < δ,
then ∣∣∣∣

∫

γ

fdγ − S (P)
∣∣∣∣ < ε.

By continuity of φ, there exists σ > 0 such that if Q is a partition of [c, d] with
||Q|| < σ,Q = {s0, · · ·, sn} , then |φ (sj)− φ (sj−1)| < δ. Thus letting P denote the
points in [a, b] given by φ (sj) for sj ∈ Q, it follows that ||P|| < δ and so

∣∣∣∣∣∣

∫

γ

fdγ −
n∑

j=1

f (γ (φ (τ j))) (γ (φ (sj))− γ (φ (sj−1)))

∣∣∣∣∣∣
< ε

where τ j ∈ [sj−1, sj ] . Therefore, from the definition 17.1 holds and
∫

γ◦φ
fd (γ ◦ φ)

exists.
This theorem shows that

∫
γ

fdγ is independent of the particular γ used in its
computation to the extent that if φ is any nondecreasing function from another
interval, [c, d] , mapping to [a, b] , then the same value is obtained by replacing γ
with γ ◦ φ.

The fundamental result in this subject is the following theorem.
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Theorem 17.4 Let f : γ∗ → X be continuous and let γ : [a, b] → C be continuous
and of bounded variation. Then

∫
γ

fdγ exists. Also letting δm > 0 be such that
|t− s| < δm implies ||f (γ (t))− f (γ (s))|| < 1

m ,

∣∣∣∣
∫

γ

fdγ − S (P)
∣∣∣∣ ≤

2V (γ, [a, b])
m

whenever ||P|| < δm.

Proof: The function, f ◦ γ , is uniformly continuous because it is defined on
a compact set. Therefore, there exists a decreasing sequence of positive numbers,
{δm} such that if |s− t| < δm, then

|f (γ (t))− f (γ (s))| < 1
m

.

Let
Fm ≡ {S (P) : ||P|| < δm}.

Thus Fm is a closed set. (The symbol, S (P) in the above definition, means to
include all sums corresponding to P for any choice of τ j .) It is shown that

diam (Fm) ≤ 2V (γ, [a, b])
m

(17.2)

and then it will follow there exists a unique point, I ∈ ∩∞m=1Fm. This is because
X is complete. It will then follow I =

∫
γ

f (t) dγ (t) . To verify 17.2, it suffices to
verify that whenever P and Q are partitions satisfying ||P|| < δm and ||Q|| < δm,

|S (P)− S (Q)| ≤ 2
m

V (γ, [a, b]) . (17.3)

Suppose ||P|| < δm and Q ⊇ P. Then also ||Q|| < δm. To begin with, suppose
that P ≡ {t0, · · ·, tp, · · ·, tn} and Q ≡ {t0, · · ·, tp−1, t

∗, tp, · · ·, tn} . Thus Q contains
only one more point than P. Letting S (Q) and S (P) be Riemann Steiltjes sums,

S (Q) ≡
p−1∑

j=1

f (γ (σj)) (γ (tj)− γ (tj−1)) + f (γ (σ∗)) (γ (t∗)− γ (tp−1))

+f (γ (σ∗)) (γ (tp)− γ (t∗)) +
n∑

j=p+1

f (γ (σj)) (γ (tj)− γ (tj−1)) ,

S (P) ≡
p−1∑

j=1

f (γ (τ j)) (γ (tj)− γ (tj−1))+

=f(γ(τp))(γ(tp)−γ(tp−1))︷ ︸︸ ︷
f (γ (τp)) (γ (t∗)− γ (tp−1)) + f (γ (τp)) (γ (tp)− γ (t∗))
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+
n∑

j=p+1

f (γ (τ j)) (γ (tj)− γ (tj−1)) .

Therefore,

|S (P)− S (Q)| ≤
p−1∑

j=1

1
m
|γ (tj)− γ (tj−1)|+ 1

m
|γ (t∗)− γ (tp−1)|+

1
m
|γ (tp)− γ (t∗)|+

n∑

j=p+1

1
m
|γ (tj)− γ (tj−1)| ≤ 1

m
V (γ, [a, b]) . (17.4)

Clearly the extreme inequalities would be valid in 17.4 if Q had more than one
extra point. You simply do the above trick more than one time. Let S (P) and
S (Q) be Riemann Steiltjes sums for which ||P|| and ||Q|| are less than δm and let
R ≡ P ∪Q. Then from what was just observed,

|S (P)− S (Q)| ≤ |S (P)− S (R)|+ |S (R)− S (Q)| ≤ 2
m

V (γ, [a, b]) .

and this shows 17.3 which proves 17.2. Therefore, there exists a unique complex
number, I ∈ ∩∞m=1Fm which satisfies the definition of

∫
γ

fdγ. This proves the
theorem.

The following theorem follows easily from the above definitions and theorem.

Theorem 17.5 Let f ∈ C (γ∗) and let γ : [a, b] → C be of bounded variation and
continuous. Let

M ≥ max {||f ◦ γ (t)|| : t ∈ [a, b]} . (17.5)

Then ∣∣∣∣
∣∣∣∣
∫

γ

fdγ

∣∣∣∣
∣∣∣∣ ≤ MV (γ, [a, b]) . (17.6)

Also if {fn} is a sequence of functions of C (γ∗) which is converging uniformly to
the function, f on γ∗, then

lim
n→∞

∫

γ

fndγ =
∫

γ

fdγ. (17.7)

Proof: Let 17.5 hold. From the proof of the above theorem, when ||P|| < δm,

∣∣∣∣
∣∣∣∣
∫

γ

fdγ − S (P)
∣∣∣∣
∣∣∣∣ ≤

2
m

V (γ, [a, b])

and so ∣∣∣∣
∣∣∣∣
∫

γ

fdγ

∣∣∣∣
∣∣∣∣ ≤ ||S (P)||+ 2

m
V (γ, [a, b])
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≤
n∑

j=1

M |γ (tj)− γ (tj−1)|+ 2
m

V (γ, [a, b])

≤ MV (γ, [a, b]) +
2
m

V (γ, [a, b]) .

This proves 17.6 since m is arbitrary. To verify 17.7 use the above inequality to
write ∣∣∣∣

∣∣∣∣
∫

γ

fdγ −
∫

γ

fndγ

∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣
∫

γ

(f − fn) dγ (t)
∣∣∣∣
∣∣∣∣

≤ max {||f ◦ γ (t)− fn ◦ γ (t)|| : t ∈ [a, b]}V (γ, [a, b]) .

Since the convergence is assumed to be uniform, this proves 17.7.
It turns out to be much easier to evaluate such integrals in the case where γ is

also C1 ([a, b]) . The following theorem about approximation will be very useful but
first here is an easy lemma.

Lemma 17.6 Let γ : [a, b] → C be in C1 ([a, b]) . Then V (γ, [a, b]) < ∞ so γ is of
bounded variation.

Proof: This follows from the following

n∑

j=1

|γ (tj)− γ (tj−1)| =
n∑

j=1

∣∣∣∣∣
∫ tj

tj−1

γ′ (s) ds

∣∣∣∣∣

≤
n∑

j=1

∫ tj

tj−1

|γ′ (s)| ds

≤
n∑

j=1

∫ tj

tj−1

||γ′||∞ ds

= ||γ′||∞ (b− a) .

Therefore it follows V (γ, [a, b]) ≤ ||γ′||∞ (b− a) . Here ||γ||∞ = max {|γ (t)| : t ∈ [a, b]}.

Theorem 17.7 Let γ : [a, b] → C be continuous and of bounded variation. Let
Ω be an open set containing γ∗ and let f : Ω × K → X be continuous for K a
compact set in C, and let ε > 0 be given. Then there exists η : [a, b] → C such that
η (a) = γ (a) , γ (b) = η (b) , η ∈ C1 ([a, b]) , and

||γ − η|| < ε, (17.8)
∣∣∣∣
∫

γ

f (·, z) dγ −
∫

η

f (·, z) dη

∣∣∣∣ < ε, (17.9)

V (η, [a, b]) ≤ V (γ, [a, b]) , (17.10)

where ||γ − η|| ≡ max {|γ (t)− η (t)| : t ∈ [a, b]} .
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Proof: Extend γ to be defined on all R according to γ (t) = γ (a) if t < a and
γ (t) = γ (b) if t > b. Now define

γh (t) ≡ 1
2h

∫ t+ 2h
(b−a) (t−a)

−2h+t+ 2h
(b−a) (t−a)

γ (s) ds.

where the integral is defined in the obvious way. That is,

∫ b

a

α (t) + iβ (t) dt ≡
∫ b

a

α (t) dt + i

∫ b

a

β (t) dt.

Therefore,

γh (b) =
1
2h

∫ b+2h

b

γ (s) ds = γ (b) ,

γh (a) =
1
2h

∫ a

a−2h

γ (s) ds = γ (a) .

Also, because of continuity of γ and the fundamental theorem of calculus,

γ′h (t) =
1
2h

{
γ

(
t +

2h

b− a
(t− a)

)(
1 +

2h

b− a

)
−

γ

(
−2h + t +

2h

b− a
(t− a)

)(
1 +

2h

b− a

)}

and so γh ∈ C1 ([a, b]) . The following lemma is significant.

Lemma 17.8 V (γh, [a, b]) ≤ V (γ, [a, b]) .

Proof: Let a = t0 < t1 < · · · < tn = b. Then using the definition of γh and
changing the variables to make all integrals over [0, 2h] ,

n∑

j=1

|γh (tj)− γh (tj−1)| =

n∑

j=1

∣∣∣∣∣
1
2h

∫ 2h

0

[
γ

(
s− 2h + tj +

2h

b− a
(tj − a)

)
−

γ

(
s− 2h + tj−1 +

2h

b− a
(tj−1 − a)

)]∣∣∣∣

≤ 1
2h

∫ 2h

0

n∑

j=1

∣∣∣∣γ
(

s− 2h + tj +
2h

b− a
(tj − a)

)
−

γ

(
s− 2h + tj−1 +

2h

b− a
(tj−1 − a)

)∣∣∣∣ ds.
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For a given s ∈ [0, 2h] , the points, s − 2h + tj + 2h
b−a (tj − a) for j = 1, · · ·, n form

an increasing list of points in the interval [a− 2h, b + 2h] and so the integrand is
bounded above by V (γ, [a− 2h, b + 2h]) = V (γ, [a, b]) . It follows

n∑

j=1

|γh (tj)− γh (tj−1)| ≤ V (γ, [a, b])

which proves the lemma.
With this lemma the proof of the theorem can be completed without too much

trouble. Let H be an open set containing γ∗ such that H is a compact subset of Ω.
Let 0 < ε < dist

(
γ∗,HC

)
. Then there exists δ1 such that if h < δ1, then for all t,

|γ (t)− γh (t)| ≤ 1
2h

∫ t+ 2h
(b−a) (t−a)

−2h+t+ 2h
(b−a) (t−a)

|γ (s)− γ (t)| ds

<
1
2h

∫ t+ 2h
(b−a) (t−a)

−2h+t+ 2h
(b−a) (t−a)

εds = ε (17.11)

due to the uniform continuity of γ. This proves 17.8.
From 17.2 and the above lemma, there exists δ2 such that if ||P|| < δ2, then for

all z ∈ K,

∣∣∣∣
∣∣∣∣
∫

γ

f (·, z) dγ (t)− S (P)
∣∣∣∣
∣∣∣∣ <

ε

3
,

∣∣∣∣∣

∣∣∣∣∣
∫

γh

f (·, z) dγh (t)− Sh (P)

∣∣∣∣∣

∣∣∣∣∣ <
ε

3

for all h. Here S (P) is a Riemann Steiltjes sum of the form

n∑

i=1

f (γ (τ i) , z) (γ (ti)− γ (ti−1))

and Sh (P) is a similar Riemann Steiltjes sum taken with respect to γh instead of
γ. Because of 17.11 γh (t) has values in H ⊆ Ω. Therefore, fix the partition, P, and
choose h small enough that in addition to this, the following inequality is valid for
all z ∈ K.

|S (P)− Sh (P)| < ε

3
This is possible because of 17.11 and the uniform continuity of f on H × K. It
follows ∣∣∣∣∣

∣∣∣∣∣
∫

γ

f (·, z) dγ (t)−
∫

γh

f (·, z) dγh (t)

∣∣∣∣∣

∣∣∣∣∣ ≤
∣∣∣∣
∣∣∣∣
∫

γ

f (·, z) dγ (t)− S (P)
∣∣∣∣
∣∣∣∣ + ||S (P)− Sh (P)||

+

∣∣∣∣∣

∣∣∣∣∣Sh (P)−
∫

γh

f (·, z) dγh (t)

∣∣∣∣∣

∣∣∣∣∣ < ε.
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Formula 17.10 follows from the lemma. This proves the theorem.
Of course the same result is obtained without the explicit dependence of f on z.
This is a very useful theorem because if γ is C1 ([a, b]) , it is easy to calculate∫

γ
fdγ and the above theorem allows a reduction to the case where γ is C1. The

next theorem shows how easy it is to compute these integrals in the case where γ is
C1. First note that if f is continuous and γ ∈ C1 ([a, b]) , then by Lemma 17.6 and
the fundamental existence theorem, Theorem 17.4,

∫
γ

fdγ exists.

Theorem 17.9 If f : γ∗ → X is continuous and γ : [a, b] → C is in C1 ([a, b]) ,
then ∫

γ

fdγ =
∫ b

a

f (γ (t)) γ′ (t) dt. (17.12)

Proof: Let P be a partition of [a, b], P = {t0, · · ·, tn} and ||P|| is small enough
that whenever |t− s| < ||P|| ,

|f (γ (t))− f (γ (s))| < ε (17.13)

and ∣∣∣∣∣∣

∣∣∣∣∣∣

∫

γ

fdγ −
n∑

j=1

f (γ (τ j)) (γ (tj)− γ (tj−1))

∣∣∣∣∣∣

∣∣∣∣∣∣
< ε.

Now
n∑

j=1

f (γ (τ j)) (γ (tj)− γ (tj−1)) =
∫ b

a

n∑

j=1

f (γ (τ j))X[tj−1,tj ] (s) γ′ (s) ds

where here

X[a,b] (s) ≡
{

1 if s ∈ [a, b]
0 if s /∈ [a, b] .

Also, ∫ b

a

f (γ (s)) γ′ (s) ds =
∫ b

a

n∑

j=1

f (γ (s))X[tj−1,tj ] (s) γ′ (s) ds

and thanks to 17.13,
∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

=
Pn

j=1 f(γ(τj))(γ(tj)−γ(tj−1))︷ ︸︸ ︷∫ b

a

n∑

j=1

f (γ (τ j))X[tj−1,tj ] (s) γ′ (s) ds−

=
R b

a
f(γ(s))γ′(s)ds︷ ︸︸ ︷∫ b

a

n∑

j=1

f (γ (s))X[tj−1,tj ] (s) γ′ (s) ds

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

≤
n∑

j=1

∫ tj

tj−1

||f (γ (τ j))− f (γ (s))|| |γ′ (s)| ds ≤ ||γ′||∞
∑

j

ε (tj − tj−1)

= ε ||γ′||∞ (b− a) .
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It follows that
∣∣∣∣∣

∣∣∣∣∣
∫

γ

fdγ −
∫ b

a

f (γ (s)) γ′ (s) ds

∣∣∣∣∣

∣∣∣∣∣ ≤
∣∣∣∣∣∣

∣∣∣∣∣∣

∫

γ

fdγ −
n∑

j=1

f (γ (τ j)) (γ (tj)− γ (tj−1))

∣∣∣∣∣∣

∣∣∣∣∣∣

+

∣∣∣∣∣∣

∣∣∣∣∣∣

n∑

j=1

f (γ (τ j)) (γ (tj)− γ (tj−1))−
∫ b

a

f (γ (s)) γ′ (s) ds

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ ε ||γ′||∞ (b− a) + ε.

Since ε is arbitrary, this verifies 17.12.

Definition 17.10 Let Ω be an open subset of C and let γ : [a, b] → Ω be a contin-
uous function with bounded variation f : Ω → X be a continuous function. Then
the following notation is more customary.

∫

γ

f (z) dz ≡
∫

γ

fdγ.

The expression,
∫

γ
f (z) dz, is called a contour integral and γ is referred to as the

contour. A function f : Ω → X for Ω an open set in C has a primitive if there
exists a function, F, the primitive, such that F ′ (z) = f (z) . Thus F is just an
antiderivative. Also if γk : [ak, bk] → C is continuous and of bounded variation, for
k = 1, · · ·,m and γk (bk) = γk+1 (ak) , define

∫
Pm

k=1 γk

f (z) dz ≡
m∑

k=1

∫

γk

f (z) dz. (17.14)

In addition to this, for γ : [a, b] → C, define −γ : [a, b] → C by −γ (t) ≡
γ (b + a− t) . Thus γ simply traces out the points of γ∗ in the opposite order.

The following lemma is useful and follows quickly from Theorem 17.3.

Lemma 17.11 In the above definition, there exists a continuous bounded vari-
ation function, γ defined on some closed interval, [c, d] , such that γ ([c, d]) =
∪m

k=1γk ([ak, bk]) and γ (c) = γ1 (a1) while γ (d) = γm (bm) . Furthermore,

∫

γ

f (z) dz =
m∑

k=1

∫

γk

f (z) dz.

If γ : [a, b] → C is of bounded variation and continuous, then
∫

γ

f (z) dz = −
∫

−γ

f (z) dz.

Re stating Theorem 17.7 with the new notation in the above definition,
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Theorem 17.12 Let K be a compact set in C and let f : Ω×K → X be continuous
for Ω an open set in C. Also let γ : [a, b] → Ω be continuous with bounded variation.
Then if r > 0 is given, there exists η : [a, b] → Ω such that η (a) = γ (a) , η (b) =
γ (b) , η is C1 ([a, b]) , and

∣∣∣∣
∫

γ

f (z, w) dz −
∫

η

f (z, w) dz

∣∣∣∣ < r, ||η − γ|| < r.

It will be very important to consider which functions have primitives. It turns
out, it is not enough for f to be continuous in order to possess a primitive. This is
in stark contrast to the situation for functions of a real variable in which the funda-
mental theorem of calculus will deliver a primitive for any continuous function. The
reason for the interest in such functions is the following theorem and its corollary.

Theorem 17.13 Let γ : [a, b] → C be continuous and of bounded variation. Also
suppose F ′ (z) = f (z) for all z ∈ Ω, an open set containing γ∗ and f is continuous
on Ω. Then ∫

γ

f (z) dz = F (γ (b))− F (γ (a)) .

Proof: By Theorem 17.12 there exists η ∈ C1 ([a, b]) such that γ (a) = η (a) ,
and γ (b) = η (b) such that

∣∣∣∣
∣∣∣∣
∫

γ

f (z) dz −
∫

η

f (z) dz

∣∣∣∣
∣∣∣∣ < ε.

Then since η is in C1 ([a, b]) ,

∫

η

f (z) dz =
∫ b

a

f (η (t)) η′ (t) dt =
∫ b

a

dF (η (t))
dt

dt

= F (η (b))− F (η (a)) = F (γ (b))− F (γ (a)) .

Therefore, ∣∣∣∣
∣∣∣∣(F (γ (b))− F (γ (a)))−

∫

γ

f (z) dz

∣∣∣∣
∣∣∣∣ < ε

and since ε > 0 is arbitrary, this proves the theorem.

Corollary 17.14 If γ : [a, b] → C is continuous, has bounded variation, is a closed
curve, γ (a) = γ (b) , and γ∗ ⊆ Ω where Ω is an open set on which F ′ (z) = f (z) ,
then ∫

γ

f (z) dz = 0.
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17.1 Exercises

1. Let γ : [a, b] → R be increasing. Show V (γ, [a, b]) = γ (b)− γ (a) .

2. Suppose γ : [a, b] → C satisfies a Lipschitz condition, |γ (t)− γ (s)| ≤ K |s− t| .
Show γ is of bounded variation and that V (γ, [a, b]) ≤ K |b− a| .

3. γ : [c0, cm] → C is piecewise smooth if there exist numbers, ck, k = 1, · ·
·,m such that c0 < c1 < · · · < cm−1 < cm such that γ is continuous and
γ : [ck, ck+1] → C is C1. Show that such piecewise smooth functions are of
bounded variation and give an estimate for V (γ, [c0, cm]) .

4. Let γ : [0, 2π] → C be given by γ (t) = r (cos mt + i sinmt) for m an integer.
Find

∫
γ

dz
z .

5. Show that if γ : [a, b] → C then there exists an increasing function h : [0, 1] →
[a, b] such that γ ◦ h ([0, 1]) = γ∗.

6. Let γ : [a, b] → C be an arbitrary continuous curve having bounded variation
and let f, g have continuous derivatives on some open set containing γ∗. Prove
the usual integration by parts formula.

∫

γ

fg′dz = f (γ (b)) g (γ (b))− f (γ (a)) g (γ (a))−
∫

γ

f ′gdz.

7. Let f (z) ≡ |z|−(1/2)
e−i θ

2 where z = |z| eiθ. This function is called the principle
branch of z−(1/2). Find

∫
γ

f (z) dz where γ is the semicircle in the upper half
plane which goes from (1, 0) to (−1, 0) in the counter clockwise direction. Next
do the integral in which γ goes in the clockwise direction along the semicircle
in the lower half plane.

8. Prove an open set, U is connected if and only if for every two points in U,
there exists a C1 curve having values in U which joins them.

9. Let P,Q be two partitions of [a, b] with P ⊆ Q. Each of these partitions can
be used to form an approximation to V (γ, [a, b]) as described above. Recall
the total variation was the supremum of sums of a certain form determined by
a partition. How is the sum associated with P related to the sum associated
with Q? Explain.

10. Consider the curve,

γ (t) =
{

t + it2 sin
(

1
t

)
if t ∈ (0, 1]

0 if t = 0 .

Is γ a continuous curve having bounded variation? What if the t2 is replaced
with t? Is the resulting curve continuous? Is it a bounded variation curve?

11. Suppose γ : [a, b] → R is given by γ (t) = t. What is
∫

γ
f (t) dγ? Explain.
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Fundamentals Of Complex
Analysis

18.1 Analytic Functions

Definition 18.1 Let Ω be an open set in C and let f : Ω → X. Then f is analytic
on Ω if for every z ∈ Ω,

lim
h→0

f (z + h)− f (z)
h

≡ f ′ (z)

exists and is a continuous function of z ∈ Ω. Here h ∈ C.

Note that if f is analytic, it must be the case that f is continuous. It is more
common to not include the requirement that f ′ is continuous but it is shown later
that the continuity of f ′ follows.

What are some examples of analytic functions? In the case where X = C, the
simplest example is any polynomial. Thus

p (z) ≡
n∑

k=0

akzk

is an analytic function and

p′ (z) =
n∑

k=1

akkzk−1.

More generally, power series are analytic. This will be shown soon but first here is
an important definition and a convergence theorem called the root test.

Definition 18.2 Let {ak} be a sequence in X. Then
∑∞

k=1 ak ≡ limn→∞
∑n

k=1 ak

whenever this limit exists. When the limit exists, the series is said to converge.

385
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Theorem 18.3 Consider
∑∞

k=1 ak and let ρ ≡ lim supk→∞ ||ak||1/k
. Then if ρ < 1,

the series converges absolutely and if ρ > 1 the series diverges spectacularly in the
sense that limk→∞ ak 6= 0. If ρ = 1 the test fails. Also

∑∞
k=1 ak (z − a)k converges

on some disk B (a,R) . It converges absolutely if |z − a| < R and uniformly on
B (a, r1) whenever r1 < R. The function f (z) =

∑∞
k=1 ak (z − a)k is continuous on

B (a,R) .

Proof: Suppose ρ < 1. Then there exists r ∈ (ρ, 1) . Therefore, ||ak|| ≤ rk for
all k large enough and so by a comparison test,

∑
k ||ak|| converges because the

partial sums are bounded above. Therefore, the partial sums of the original series
form a Cauchy sequence in X and so they also converge due to completeness of X.

Now suppose ρ > 1. Then letting ρ > r > 1, it follows ||ak||1/k ≥ r infinitely
often. Thus ||ak|| ≥ rk infinitely often. Thus there exists a subsequence for which
||ank

|| converges to ∞. Therefore, the series cannot converge.
Now consider

∑∞
k=1 ak (z − a)k. This series converges absolutely if

lim sup
k→∞

||ak||1/k |z − a| < 1

which is the same as saying |z − a| < 1/ρ where ρ ≡ lim supk→∞ ||ak||1/k. Let
R = 1/ρ.

Now suppose r1 < R. Consider |z − a| ≤ r1. Then for such z,

||ak|| |z − a|k ≤ ||ak|| rk
1

and
lim sup

k→∞

(||ak|| rk
1

)1/k
= lim sup

k→∞
||ak||1/k

r1 =
r1

R
< 1

so
∑

k ||ak|| rk
1 converges. By the Weierstrass M test,

∑∞
k=1 ak (z − a)k converges

uniformly for |z − a| ≤ r1. Therefore, f is continuous on B (a, R) as claimed because
it is the uniform limit of continuous functions, the partial sums of the infinite series.

What if ρ = 0? In this case,

lim sup
k→∞

||ak||1/k |z − a| = 0 · |z − a| = 0

and so R = ∞ and the series,
∑ ||ak|| |z − a|k converges everywhere.

What if ρ = ∞? Then in this case, the series converges only at z = a because if
z 6= a,

lim sup
k→∞

||ak||1/k |z − a| = ∞.

Theorem 18.4 Let f (z) ≡ ∑∞
k=1 ak (z − a)k be given in Theorem 18.3 where R >

0. Then f is analytic on B (a,R) . So are all its derivatives.
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Proof: Consider g (z) =
∑∞

k=2 akk (z − a)k−1 on B (a,R) where R = ρ−1 as
above. Let r1 < r < R. Then letting |z − a| < r1 and h < r − r1,

∣∣∣∣
∣∣∣∣
f (z + h)− f (z)

h
− g (z)

∣∣∣∣
∣∣∣∣

≤
∞∑

k=2

||ak||
∣∣∣∣∣
(z + h− a)k − (z − a)k

h
− k (z − a)k−1

∣∣∣∣∣

≤
∞∑

k=2

||ak||
∣∣∣∣∣
1
h

(
k∑

i=0

(
k

i

)
(z − a)k−i

hi − (z − a)k

)
− k (z − a)k−1

∣∣∣∣∣

=
∞∑

k=2

||ak||
∣∣∣∣∣
1
h

(
k∑

i=1

(
k

i

)
(z − a)k−i

hi

)
− k (z − a)k−1

∣∣∣∣∣

≤
∞∑

k=2

||ak||
∣∣∣∣∣

(
k∑

i=2

(
k

i

)
(z − a)k−i

hi−1

)∣∣∣∣∣

≤ |h|
∞∑

k=2

||ak||
(

k−2∑

i=0

(
k

i + 2

)
|z − a|k−2−i |h|i

)

= |h|
∞∑

k=2

||ak||
(

k−2∑

i=0

(
k − 2

i

)
k (k − 1)

(i + 2) (i + 1)
|z − a|k−2−i |h|i

)

≤ |h|
∞∑

k=2

||ak|| k (k − 1)
2

(
k−2∑

i=0

(
k − 2

i

)
|z − a|k−2−i |h|i

)

= |h|
∞∑

k=2

||ak|| k (k − 1)
2

(|z − a|+ |h|)k−2
< |h|

∞∑

k=2

||ak|| k (k − 1)
2

rk−2.

Then

lim sup
k→∞

(
||ak|| k (k − 1)

2
rk−2

)1/k

= ρr < 1

and so ∣∣∣∣
∣∣∣∣
f (z + h)− f (z)

h
− g (z)

∣∣∣∣
∣∣∣∣ ≤ C |h| .

therefore, g (z) = f ′ (z) . Now by 18.3 it also follows that f ′ is continuous. Since
r1 < R was arbitrary, this shows that f ′ (z) is given by the differentiated series
above for |z − a| < R. Now a repeat of the argument shows all the derivatives of f
exist and are continuous on B (a,R).

18.1.1 Cauchy Riemann Equations

Next consider the very important Cauchy Riemann equations which give conditions
under which complex valued functions of a complex variable are analytic.
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Theorem 18.5 Let Ω be an open subset of C and let f : Ω → C be a function,
such that for z = x + iy ∈ Ω,

f (z) = u (x, y) + iv (x, y) .

Then f is analytic if and only if u, v are C1 (Ω) and

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Furthermore,

f ′ (z) =
∂u

∂x
(x, y) + i

∂v

∂x
(x, y) .

Proof: Suppose f is analytic first. Then letting t ∈ R,

f ′ (z) = lim
t→0

f (z + t)− f (z)
t

=

lim
t→0

(
u (x + t, y) + iv (x + t, y)

t
− u (x, y) + iv (x, y)

t

)

=
∂u (x, y)

∂x
+ i

∂v (x, y)
∂x

.

But also

f ′ (z) = lim
t→0

f (z + it)− f (z)
it

=

lim
t→0

(
u (x, y + t) + iv (x, y + t)

it
− u (x, y) + iv (x, y)

it

)

1
i

(
∂u (x, y)

∂y
+ i

∂v (x, y)
∂y

)

=
∂v (x, y)

∂y
− i

∂u (x, y)
∂y

.

This verifies the Cauchy Riemann equations. We are assuming that z → f ′ (z) is
continuous. Therefore, the partial derivatives of u and v are also continuous. To see
this, note that from the formulas for f ′ (z) given above, and letting z1 = x1 + iy1

∣∣∣∣
∂v (x, y)

∂y
− ∂v (x1, y1)

∂y

∣∣∣∣ ≤ |f ′ (z)− f ′ (z1)| ,

showing that (x, y) → ∂v(x,y)
∂y is continuous since (x1, y1) → (x, y) if and only if

z1 → z. The other cases are similar.
Now suppose the Cauchy Riemann equations hold and the functions, u and v

are C1 (Ω) . Then letting h = h1 + ih2,

f (z + h)− f (z) = u (x + h1, y + h2)
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+iv (x + h1, y + h2)− (u (x, y) + iv (x, y))

We know u and v are both differentiable and so

f (z + h)− f (z) =
∂u

∂x
(x, y) h1 +

∂u

∂y
(x, y)h2+

i

(
∂v

∂x
(x, y) h1 +

∂v

∂y
(x, y)h2

)
+ o (h) .

Dividing by h and using the Cauchy Riemann equations,

f (z + h)− f (z)
h

=
∂u
∂x (x, y)h1 + i∂v

∂y (x, y)h2

h
+

i ∂v
∂x (x, y)h1 + ∂u

∂y (x, y)h2

h
+

o (h)
h

=
∂u

∂x
(x, y)

h1 + ih2

h
+ i

∂v

∂x
(x, y)

h1 + ih2

h
+

o (h)
h

Taking the limit as h → 0,

f ′ (z) =
∂u

∂x
(x, y) + i

∂v

∂x
(x, y) .

It follows from this formula and the assumption that u, v are C1 (Ω) that f ′ is
continuous.

It is routine to verify that all the usual rules of derivatives hold for analytic
functions. In particular, the product rule, the chain rule, and quotient rule.

18.1.2 An Important Example

An important example of an analytic function is ez ≡ exp (z) ≡ ex (cos y + i sin y)
where z = x + iy. You can verify that this function satisfies the Cauchy Riemann
equations and that all the partial derivatives are continuous. Also from the above
discussion, (ez)′ = ex cos (y) + iex sin y = ez. Later I will show that ez is given by
the usual power series. An important property of this function is that it can be
used to parameterize the circle centered at z0 having radius r.

Lemma 18.6 Let γ denote the closed curve which is a circle of radius r centered
at z0. Then a parameterization this curve is γ (t) = z0 + reit where t ∈ [0, 2π] .

Proof: |γ (t)− z0|2 =
∣∣reitre−it

∣∣ = r2. Also, you can see from the definition of
the sine and cosine that the point described in this way moves counter clockwise
over this circle.
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18.2 Exercises

1. Verify all the usual rules of differentiation including the product and chain
rules.

2. Suppose f and f ′ : U → C are analytic and f (z) = u (x, y) + iv (x, y) .
Verify uxx + uyy = 0 and vxx + vyy = 0. This partial differential equation
satisfied by the real and imaginary parts of an analytic function is called
Laplace’s equation. We say these functions satisfying Laplace’s equation are
harmonic functions. If u is a harmonic function defined on B (0, r) show that
v (x, y) ≡ ∫ y

0
ux (x, t) dt− ∫ x

0
uy (t, 0) dt is such that u + iv is analytic.

3. Let f : U → C be analytic and f (z) = u (x, y) + iv (x, y) . Show u, v and uv
are all harmonic although it can happen that u2 is not. Recall that a function,
w is harmonic if wxx + wyy = 0.

4. Define a function f (z) ≡ z ≡ x− iy where z = x + iy. Is f analytic?

5. If f (z) = u (x, y) + iv (x, y) and f is analytic, verify that

det
(

ux uy

vx vy

)
= |f ′ (z)|2 .

6. Show that if u (x, y) + iv (x, y) = f (z) is analytic, then ∇u · ∇v = 0. Recall

∇u (x, y) = 〈ux (x, y) , uy (x, y)〉.

7. Show that every polynomial is analytic.

8. If γ (t) = x (t)+iy (t) is a C1 curve having values in U, an open set of C, and if
f : U → C is analytic, we can consider f ◦γ, another C1 curve having values in
C. Also, γ′ (t) and (f ◦ γ)′ (t) are complex numbers so these can be considered
as vectors in R2 as follows. The complex number, x + iy corresponds to the
vector, 〈x, y〉. Suppose that γ and η are two such C1 curves having values in
U and that γ (t0) = η (s0) = z and suppose that f : U → C is analytic. Show
that the angle between (f ◦ γ)′ (t0) and (f ◦ η)′ (s0) is the same as the angle
between γ′ (t0) and η′ (s0) assuming that f ′ (z) 6= 0. Thus analytic mappings
preserve angles at points where the derivative is nonzero. Such mappings
are called isogonal. . Hint: To make this easy to show, first observe that
〈x, y〉 · 〈a, b〉 = 1

2 (zw + zw) where z = x + iy and w = a + ib.

9. Analytic functions are even better than what is described in Problem 8. In
addition to preserving angles, they also preserve orientation. To verify this
show that if z = x + iy and w = a + ib are two complex numbers, then
〈x, y, 0〉 and 〈a, b, 0〉 are two vectors in R3. Recall that the cross product,
〈x, y, 0〉 × 〈a, b, 0〉, yields a vector normal to the two given vectors such that
the triple, 〈x, y, 0〉, 〈a, b, 0〉, and 〈x, y, 0〉× 〈a, b, 0〉 satisfies the right hand rule
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and has magnitude equal to the product of the sine of the included angle
times the product of the two norms of the vectors. In this case, the cross
product either points in the direction of the positive z axis or in the direction
of the negative z axis. Thus, either the vectors 〈x, y, 0〉, 〈a, b, 0〉,k form a right
handed system or the vectors 〈a, b, 0〉, 〈x, y, 0〉,k form a right handed system.
These are the two possible orientations. Show that in the situation of Problem
8 the orientation of γ′ (t0) , η′ (s0) ,k is the same as the orientation of the
vectors (f ◦ γ)′ (t0) , (f ◦ η)′ (s0) ,k. Such mappings are called conformal. If f
is analytic and f ′ (z) 6= 0, then we know from this problem and the above that
f is a conformal map. Hint: You can do this by verifying that (f ◦ γ)′ (t0)×
(f ◦ η)′ (s0) = |f ′ (γ (t0))|2 γ′ (t0) × η′ (s0). To make the verification easier,
you might first establish the following simple formula for the cross product
where here x + iy = z and a + ib = w.

(x, y, 0)× (a, b, 0) = Re (ziw)k.

10. Write the Cauchy Riemann equations in terms of polar coordinates. Recall
the polar coordinates are given by

x = r cos θ, y = r sin θ.

This means, letting u (x, y) = u (r, θ) , v (x, y) = v (r, θ) , write the Cauchy Rie-
mann equations in terms of r and θ. You should eventually show the Cauchy
Riemann equations are equivalent to

∂u

∂r
=

1
r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ

11. Show that a real valued analytic function must be constant.

18.3 Cauchy’s Formula For A Disk

The Cauchy integral formula is the most important theorem in complex analysis.
It will be established for a disk in this chapter and later will be generalized to
much more general situations but the version given here will suffice to prove many
interesting theorems needed in the later development of the theory. The following
are some advanced calculus results.

Lemma 18.7 Let f : [a, b] → C. Then f ′ (t) exists if and only if Re f ′ (t) and
Im f ′ (t) exist. Furthermore,

f ′ (t) = Re f ′ (t) + i Im f ′ (t) .

Proof: The if part of the equivalence is obvious.
Now suppose f ′ (t) exists. Let both t and t + h be contained in [a, b]

∣∣∣∣
Re f (t + h)− Re f (t)

h
− Re (f ′ (t))

∣∣∣∣ ≤
∣∣∣∣
f (t + h)− f (t)

h
− f ′ (t)

∣∣∣∣
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and this converges to zero as h → 0. Therefore, Re f ′ (t) = Re (f ′ (t)) . Similarly,
Im f ′ (t) = Im (f ′ (t)) .

Lemma 18.8 If g : [a, b] → C and g is continuous on [a, b] and differentiable on
(a, b) with g′ (t) = 0, then g (t) is a constant.

Proof: From the above lemma, you can apply the mean value theorem to the
real and imaginary parts of g.

Applying the above lemma to the components yields the following lemma.

Lemma 18.9 If g : [a, b] → Cn = X and g is continuous on [a, b] and differentiable
on (a, b) with g′ (t) = 0, then g (t) is a constant.

If you want to have X be a complex Banach space, the result is still true.

Lemma 18.10 If g : [a, b] → X and g is continuous on [a, b] and differentiable on
(a, b) with g′ (t) = 0, then g (t) is a constant.

Proof: Let Λ ∈ X ′. Then Λg : [a, b] → C . Therefore, from Lemma 18.8, for each
Λ ∈ X ′, Λg (s) = Λg (t) and since X ′ separates the points, it follows g (s) = g (t) so
g is constant.

Lemma 18.11 Let φ : [a, b]× [c, d] → R be continuous and let

g (t) ≡
∫ b

a

φ (s, t) ds. (18.1)

Then g is continuous. If ∂φ
∂t exists and is continuous on [a, b]× [c, d] , then

g′ (t) =
∫ b

a

∂φ (s, t)
∂t

ds. (18.2)

Proof: The first claim follows from the uniform continuity of φ on [a, b]× [c, d] ,
which uniform continuity results from the set being compact. To establish 18.2, let
t and t + h be contained in [c, d] and form, using the mean value theorem,

g (t + h)− g (t)
h

=
1
h

∫ b

a

[φ (s, t + h)− φ (s, t)] ds

=
1
h

∫ b

a

∂φ (s, t + θh)
∂t

hds

=
∫ b

a

∂φ (s, t + θh)
∂t

ds,

where θ may depend on s but is some number between 0 and 1. Then by the uniform
continuity of ∂φ

∂t , it follows that 18.2 holds.
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Corollary 18.12 Let φ : [a, b]× [c, d] → C be continuous and let

g (t) ≡
∫ b

a

φ (s, t) ds. (18.3)

Then g is continuous. If ∂φ
∂t exists and is continuous on [a, b]× [c, d] , then

g′ (t) =
∫ b

a

∂φ (s, t)
∂t

ds. (18.4)

Proof: Apply Lemma 18.11 to the real and imaginary parts of φ.
Applying the above corollary to the components, you can also have the same

result for φ having values in Cn.

Corollary 18.13 Let φ : [a, b]× [c, d] → Cn be continuous and let

g (t) ≡
∫ b

a

φ (s, t) ds. (18.5)

Then g is continuous. If ∂φ
∂t exists and is continuous on [a, b]× [c, d] , then

g′ (t) =
∫ b

a

∂φ (s, t)
∂t

ds. (18.6)

If you want to consider φ having values in X, a complex Banach space a similar
result holds.

Corollary 18.14 Let φ : [a, b]× [c, d] → X be continuous and let

g (t) ≡
∫ b

a

φ (s, t) ds. (18.7)

Then g is continuous. If ∂φ
∂t exists and is continuous on [a, b]× [c, d] , then

g′ (t) =
∫ b

a

∂φ (s, t)
∂t

ds. (18.8)

Proof: Let Λ ∈ X ′. Then Λφ : [a, b] × [c, d] → C is continuous and ∂Λφ
∂t exists

and is continuous on [a, b]× [c, d] . Therefore, from 18.8,

Λ (g′ (t)) = (Λg)′ (t) =
∫ b

a

∂Λφ (s, t)
∂t

ds = Λ
∫ b

a

∂φ (s, t)
∂t

ds

and since X ′ separates the points, it follows 18.8 holds.
The following is Cauchy’s integral formula for a disk.
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Theorem 18.15 Let f : Ω → X be analytic on the open set, Ω and let

B (z0, r) ⊆ Ω.

Let γ (t) ≡ z0 + reit for t ∈ [0, 2π] . Then if z ∈ B (z0, r) ,

f (z) =
1

2πi

∫

γ

f (w)
w − z

dw. (18.9)

Proof: Consider for α ∈ [0, 1] ,

g (α) ≡
∫ 2π

0

f
(
z + α

(
z0 + reit − z

))

reit + z0 − z
rieitdt.

If α equals one, this reduces to the integral in 18.9. The idea is to show g is a
constant and that g (0) = f (z) 2πi. First consider the claim about g (0) .

g (0) =
(∫ 2π

0

reit

reit + z0 − z
dt

)
if (z)

= if (z)
(∫ 2π

0

1
1− z−z0

reit

dt

)

= if (z)
∫ 2π

0

∞∑
n=0

r−ne−int (z − z0)
n

dt

because
∣∣ z−z0

reit

∣∣ < 1. Since this sum converges uniformly you can interchange the
sum and the integral to obtain

g (0) = if (z)
∞∑

n=0

r−n (z − z0)
n

∫ 2π

0

e−intdt

= 2πif (z)

because
∫ 2π

0
e−intdt = 0 if n > 0.

Next consider the claim that g is constant. By Corollary 18.13, for α ∈ (0, 1) ,

g′ (α) =
∫ 2π

0

f ′
(
z + α

(
z0 + reit − z

)) (
reit + z0 − z

)

reit + z0 − z
rieitdt

=
∫ 2π

0

f ′
(
z + α

(
z0 + reit − z

))
rieitdt

=
∫ 2π

0

d

dt

(
f

(
z + α

(
z0 + reit − z

)) 1
α

)
dt

= f
(
z + α

(
z0 + rei2π − z

)) 1
α
− f

(
z + α

(
z0 + re0 − z

)) 1
α

= 0.

Now g is continuous on [0, 1] and g′ (t) = 0 on (0, 1) so by Lemma 18.9, g equals a
constant. This constant can only be g (0) = 2πif (z) . Thus,

g (1) =
∫

γ

f (w)
w − z

dw = g (0) = 2πif (z) .
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This proves the theorem.
This is a very significant theorem. A few applications are given next.

Theorem 18.16 Let f : Ω → X be analytic where Ω is an open set in C. Then f
has infinitely many derivatives on Ω. Furthermore, for all z ∈ B (z0, r) ,

f (n) (z) =
n!
2πi

∫

γ

f (w)
(w − z)n+1 dw (18.10)

where γ (t) ≡ z0 + reit, t ∈ [0, 2π] for r small enough that B (z0, r) ⊆ Ω.

Proof: Let z ∈ B (z0, r) ⊆ Ω and let B (z0, r) ⊆ Ω. Then, letting γ (t) ≡
z0 + reit, t ∈ [0, 2π] , and h small enough,

f (z) =
1

2πi

∫

γ

f (w)
w − z

dw, f (z + h) =
1

2πi

∫

γ

f (w)
w − z − h

dw

Now
1

w − z − h
− 1

w − z
=

h

(−w + z + h) (−w + z)
and so

f (z + h)− f (z)
h

=
1

2πhi

∫

γ

hf (w)
(−w + z + h) (−w + z)

dw

=
1

2πi

∫

γ

f (w)
(−w + z + h) (−w + z)

dw.

Now for all h sufficiently small, there exists a constant C independent of such h
such that ∣∣∣∣

1
(−w + z + h) (−w + z)

− 1
(−w + z) (−w + z)

∣∣∣∣

=

∣∣∣∣∣
h

(w − z − h) (w − z)2

∣∣∣∣∣ ≤ C |h|

and so, the integrand converges uniformly as h → 0 to

=
f (w)

(w − z)2

Therefore, the limit as h → 0 may be taken inside the integral to obtain

f ′ (z) =
1

2πi

∫

γ

f (w)
(w − z)2

dw.

Continuing in this way, yields 18.10.
This is a very remarkable result. It shows the existence of one continuous deriva-

tive implies the existence of all derivatives, in contrast to the theory of functions of
a real variable. Actually, more than what is stated in the theorem was shown. The
above proof establishes the following corollary.
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Corollary 18.17 Suppose f is continuous on ∂B (z0, r) and suppose that for all
z ∈ B (z0, r) ,

f (z) =
1

2πi

∫

γ

f (w)
w − z

dw,

where γ (t) ≡ z0 + reit, t ∈ [0, 2π] . Then f is analytic on B (z0, r) and in fact has
infinitely many derivatives on B (z0, r) .

Another application is the following lemma.

Lemma 18.18 Let γ (t) = z0 + reit, for t ∈ [0, 2π], suppose fn → f uniformly on
B (z0, r), and suppose

fn (z) =
1

2πi

∫

γ

fn (w)
w − z

dw (18.11)

for z ∈ B (z0, r) . Then

f (z) =
1

2πi

∫

γ

f (w)
w − z

dw, (18.12)

implying that f is analytic on B (z0, r) .

Proof: From 18.11 and the uniform convergence of fn to f on γ ([0, 2π]) , the
integrals in 18.11 converge to

1
2πi

∫

γ

f (w)
w − z

dw.

Therefore, the formula 18.12 follows.
Uniform convergence on a closed disk of the analytic functions implies the target

function is also analytic. This is amazing. Think of the Weierstrass approximation
theorem for polynomials. You can obtain a continuous nowhere differentiable func-
tion as the uniform limit of polynomials.

The conclusions of the following proposition have all been obtained earlier in
Theorem 18.4 but they can be obtained more easily if you use the above theorem
and lemmas.

Proposition 18.19 Let {an} denote a sequence in X. Then there exists R ∈ [0,∞]
such that ∞∑

k=0

ak (z − z0)
k

converges absolutely if |z − z0| < R, diverges if |z − z0| > R and converges uniformly
on B (z0, r) for all r < R. Furthermore, if R > 0, the function,

f (z) ≡
∞∑

k=0

ak (z − z0)
k

is analytic on B (z0, R) .
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Proof: The assertions about absolute convergence are routine from the root test
if

R ≡
(

lim sup
n→∞

|an|1/n

)−1

with R = ∞ if the quantity in parenthesis equals zero. The root test can be used
to verify absolute convergence which then implies convergence by completeness of
X.

The assertion about uniform convergence follows from the Weierstrass M test
and Mn ≡ |an| rn. (

∑∞
n=0 |an| rn < ∞ by the root test). It only remains to verify

the assertion about f (z) being analytic in the case where R > 0.

Let 0 < r < R and define fn (z) ≡ ∑n
k=0 ak (z − z0)

k
. Then fn is a polynomial

and so it is analytic. Thus, by the Cauchy integral formula above,

fn (z) =
1

2πi

∫

γ

fn (w)
w − z

dw

where γ (t) = z0 + reit, for t ∈ [0, 2π] . By Lemma 18.18 and the first part of this
proposition involving uniform convergence,

f (z) =
1

2πi

∫

γ

f (w)
w − z

dw.

Therefore, f is analytic on B (z0, r) by Corollary 18.17. Since r < R is arbitrary,
this shows f is analytic on B (z0, R) .

This proposition shows that all functions having values in X which are given as
power series are analytic on their circle of convergence, the set of complex numbers,
z, such that |z − z0| < R. In fact, every analytic function can be realized as a power
series.

Theorem 18.20 If f : Ω → X is analytic and if B (z0, r) ⊆ Ω, then

f (z) =
∞∑

n=0

an (z − z0)
n (18.13)

for all |z − z0| < r. Furthermore,

an =
f (n) (z0)

n!
. (18.14)

Proof: Consider |z − z0| < r and let γ (t) = z0 + reit, t ∈ [0, 2π] . Then for
w ∈ γ ([0, 2π]) , ∣∣∣∣

z − z0

w − z0

∣∣∣∣ < 1
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and so, by the Cauchy integral formula,

f (z) =
1

2πi

∫

γ

f (w)
w − z

dw

=
1

2πi

∫

γ

f (w)

(w − z0)
(
1− z−z0

w−z0

)dw

=
1

2πi

∫

γ

f (w)
(w − z0)

∞∑
n=0

(
z − z0

w − z0

)n

dw.

Since the series converges uniformly, you can interchange the integral and the sum
to obtain

f (z) =
∞∑

n=0

(
1

2πi

∫

γ

f (w)
(w − z0)

n+1

)
(z − z0)

n

≡
∞∑

n=0

an (z − z0)
n

By Theorem 18.16, 18.14 holds.
Note that this also implies that if a function is analytic on an open set, then all

of its derivatives are also analytic. This follows from Theorem 18.4 which says that
a function given by a power series has all derivatives on the disk of convergence.

18.4 Exercises

1. Show that if |ek| ≤ ε, then
∣∣∑∞

k=m ek

(
rk − rk+1

)∣∣ < ε if 0 ≤ r < 1. Hint:
Let |θ| = 1 and verify that

θ

∞∑

k=m

ek

(
rk − rk+1

)
=

∣∣∣∣∣
∞∑

k=m

ek

(
rk − rk+1

)
∣∣∣∣∣ =

∞∑

k=m

Re (θek)
(
rk − rk+1

)

where −ε < Re (θek) < ε.

2. Abel’s theorem says that if
∑∞

n=0 an (z − a)n has radius of convergence equal
to 1 and if A =

∑∞
n=0 an, then limr→1−

∑∞
n=0 anrn = A. Hint: Show∑∞

k=0 akrk =
∑∞

k=0 Ak

(
rk − rk+1

)
where Ak denotes the kth partial sum

of
∑

aj . Thus

∞∑

k=0

akrk =
∞∑

k=m+1

Ak

(
rk − rk+1

)
+

m∑

k=0

Ak

(
rk − rk+1

)
,

where |Ak −A| < ε for all k ≥ m. In the first sum, write Ak = A+ ek and use
Problem 1. Use this theorem to verify that arctan (1) =

∑∞
k=0 (−1)k 1

2k+1 .
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3. Find the integrals using the Cauchy integral formula.

(a)
∫

γ
sin z
z−i dz where γ (t) = 2eit : t ∈ [0, 2π] .

(b)
∫

γ
1

z−adz where γ (t) = a + reit : t ∈ [0, 2π]

(c)
∫

γ
cos z
z2 dz where γ (t) = eit : t ∈ [0, 2π]

(d)
∫

γ
log(z)

zn dz where γ (t) = 1 + 1
2eit : t ∈ [0, 2π] and n = 0, 1, 2. In this

problem, log (z) ≡ ln |z| + i arg (z) where arg (z) ∈ (−π, π) and z =
|z| ei arg(z). Thus elog(z) = z and log (z)′ = 1

z .

4. Let γ (t) = 4eit : t ∈ [0, 2π] and find
∫

γ
z2+4

z(z2+1)dz.

5. Suppose f (z) =
∑∞

n=0 anzn for all |z| < R. Show that then

1
2π

∫ 2π

0

∣∣f (
reiθ

)∣∣2 dθ =
∞∑

n=0

|an|2 r2n

for all r ∈ [0, R). Hint: Let

fn (z) ≡
n∑

k=0

akzk,

show
1
2π

∫ 2π

0

∣∣fn

(
reiθ

)∣∣2 dθ =
n∑

k=0

|ak|2 r2k

and then take limits as n →∞ using uniform convergence.

6. The Cauchy integral formula, marvelous as it is, can actually be improved
upon. The Cauchy integral formula involves representing f by the values of
f on the boundary of the disk, B (a, r) . It is possible to represent f by using
only the values of Re f on the boundary. This leads to the Schwarz formula .
Supply the details in the following outline.

Suppose f is analytic on |z| < R and

f (z) =
∞∑

n=0

anzn (18.15)

with the series converging uniformly on |z| = R. Then letting |w| = R,

2u (w) = f (w) + f (w)

and so

2u (w) =
∞∑

k=0

akwk +
∞∑

k=0

ak (w)k
. (18.16)
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Now letting γ (t) = Reit, t ∈ [0, 2π]
∫

γ

2u (w)
w

dw = (a0 + a0)
∫

γ

1
w

dw

= 2πi (a0 + a0) .

Thus, multiplying 18.16 by w−1,

1
πi

∫

γ

u (w)
w

dw = a0 + a0.

Now multiply 18.16 by w−(n+1) and integrate again to obtain

an =
1
πi

∫

γ

u (w)
wn+1

dw.

Using these formulas for an in 18.15, we can interchange the sum and the
integral (Why can we do this?) to write the following for |z| < R.

f (z) =
1
πi

∫

γ

1
z

∞∑

k=0

( z

w

)k+1

u (w) dw − a0

=
1
πi

∫

γ

u (w)
w − z

dw − a0,

which is the Schwarz formula. Now Re a0 = 1
2πi

∫
γ

u(w)
w dw and a0 = Re a0 −

i Im a0. Therefore, we can also write the Schwarz formula as

f (z) =
1

2πi

∫

γ

u (w) (w + z)
(w − z)w

dw + i Im a0. (18.17)

7. Take the real parts of the second form of the Schwarz formula to derive the
Poisson formula for a disk,

u
(
reiα

)
=

1
2π

∫ 2π

0

u
(
Reiθ

) (
R2 − r2

)

R2 + r2 − 2Rr cos (θ − α)
dθ. (18.18)

8. Suppose that u (w) is a given real continuous function defined on ∂B (0, R)
and define f (z) for |z| < R by 18.17. Show that f, so defined is analytic.
Explain why u given in 18.18 is harmonic. Show that

lim
r→R−

u
(
reiα

)
= u

(
Reiα

)
.

Thus u is a harmonic function which approaches a given function on the
boundary and is therefore, a solution to the Dirichlet problem.



18.5. ZEROS OF AN ANALYTIC FUNCTION 401

9. Suppose f (z) =
∑∞

k=0 ak (z − z0)
k for all |z − z0| < R. Show that f ′ (z) =∑∞

k=0 akk (z − z0)
k−1 for all |z − z0| < R. Hint: Let fn (z) be a partial sum

of f. Show that f ′n converges uniformly to some function, g on |z − z0| ≤ r
for any r < R. Now use the Cauchy integral formula for a function and its
derivative to identify g with f ′.

10. Use Problem 9 to find the exact value of
∑∞

k=0 k2
(

1
3

)k
.

11. Prove the binomial formula,

(1 + z)α =
∞∑

n=0

(
α

n

)
zn

where (
α

n

)
≡ α · · · (α− n + 1)

n!
.

Can this be used to give a proof of the binomial formula,

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk?

Explain.

12. Suppose f is analytic on B (z0, r) and continuous on B (z0, r) and |f (z)| ≤ M
on B (z0, r). Show that then

∣∣f (n) (a)
∣∣ ≤ Mn!

rn .

18.5 Zeros Of An Analytic Function

In this section we give a very surprising property of analytic functions which is in
stark contrast to what takes place for functions of a real variable.

Definition 18.21 A region is a connected open set.

It turns out the zeros of an analytic function which is not constant on some
region cannot have a limit point. This is also a good time to define the order of a
zero.

Definition 18.22 Suppose f is an analytic function defined near a point, α where
f (α) = 0. Thus α is a zero of the function, f. The zero is of order m if f (z) =
(z − α)m

g (z) where g is an analytic function which is not equal to zero at α.

Theorem 18.23 Let Ω be a connected open set (region) and let f : Ω → X be
analytic. Then the following are equivalent.

1. f (z) = 0 for all z ∈ Ω

2. There exists z0 ∈ Ω such that f (n) (z0) = 0 for all n.
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3. There exists z0 ∈ Ω which is a limit point of the set,

Z ≡ {z ∈ Ω : f (z) = 0} .

Proof: It is clear the first condition implies the second two. Suppose the third
holds. Then for z near z0

f (z) =
∞∑

n=k

f (n) (z0)
n!

(z − z0)
n

where k ≥ 1 since z0 is a zero of f. Suppose k < ∞. Then,

f (z) = (z − z0)
k
g (z)

where g (z0) 6= 0. Letting zn → z0 where zn ∈ Z, zn 6= z0, it follows

0 = (zn − z0)
k
g (zn)

which implies g (zn) = 0. Then by continuity of g, we see that g (z0) = 0 also,
contrary to the choice of k. Therefore, k cannot be less than ∞ and so z0 is a point
satisfying the second condition.

Now suppose the second condition and let

S ≡
{

z ∈ Ω : f (n) (z) = 0 for all n
}

.

It is clear that S is a closed set which by assumption is nonempty. However, this
set is also open. To see this, let z ∈ S. Then for all w close enough to z,

f (w) =
∞∑

k=0

f (k) (z)
k!

(w − z)k = 0.

Thus f is identically equal to zero near z ∈ S. Therefore, all points near z are
contained in S also, showing that S is an open set. Now Ω = S∪ (Ω \ S) , the union
of two disjoint open sets, S being nonempty. It follows the other open set, Ω \ S,
must be empty because Ω is connected. Therefore, the first condition is verified.
This proves the theorem. (See the following diagram.)

1.)
↙↗ ↘

2.) ←− 3.)

Note how radically different this is from the theory of functions of a real variable.
Consider, for example the function

f (x) ≡
{

x2 sin
(

1
x

)
if x 6= 0

0 if x = 0
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which has a derivative for all x ∈ R and for which 0 is a limit point of the set, Z,
even though f is not identically equal to zero.

Here is a very important application called Euler’s formula. Recall that

ez ≡ ex (cos (y) + i sin (y)) (18.19)

Is it also true that ez =
∑∞

k=0
zk

k! ?

Theorem 18.24 (Euler’s Formula) Let z = x + iy. Then

ez =
∞∑

k=0

zk

k!
.

Proof: It was already observed that ez given by 18.19 is analytic. So is exp (z) ≡∑∞
k=0

zk

k! . In fact the power series converges for all z ∈ C. Furthermore the two
functions, ez and exp (z) agree on the real line which is a set which contains a limit
point. Therefore, they agree for all values of z ∈ C.

This formula shows the famous two identities,

eiπ = −1 and e2πi = 1.

18.6 Liouville’s Theorem

The following theorem pertains to functions which are analytic on all of C, “entire”
functions.

Definition 18.25 A function, f : C→ C or more generally, f : C → X is entire
means it is analytic on C.

Theorem 18.26 (Liouville’s theorem) If f is a bounded entire function having
values in X, then f is a constant.

Proof: Since f is entire, pick any z ∈ C and write

f ′ (z) =
1

2πi

∫

γR

f (w)
(w − z)2

dw

where γR (t) = z + Reit for t ∈ [0, 2π] . Therefore,

||f ′ (z)|| ≤ C
1
R

where C is some constant depending on the assumed bound on f. Since R is
arbitrary, let R →∞ to obtain f ′ (z) = 0 for any z ∈ C. It follows from this that f
is constant for if zj j = 1, 2 are two complex numbers, let h (t) = f (z1 + t (z2 − z1))
for t ∈ [0, 1] . Then h′ (t) = f ′ (z1 + t (z2 − z1)) (z2 − z1) = 0. By Lemmas 18.8 -
18.10 h is a constant on [0, 1] which implies f (z1) = f (z2) .
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With Liouville’s theorem it becomes possible to give an easy proof of the fun-
damental theorem of algebra. It is ironic that all the best proofs of this theorem
in algebra come from the subjects of analysis or topology. Out of all the proofs
that have been given of this very important theorem, the following one based on
Liouville’s theorem is the easiest.

Theorem 18.27 (Fundamental theorem of Algebra) Let

p (z) = zn + an−1z
n−1 + · · ·+ a1z + a0

be a polynomial where n ≥ 1 and each coefficient is a complex number. Then there
exists z0 ∈ C such that p (z0) = 0.

Proof: Suppose not. Then p (z)−1 is an entire function. Also

|p (z)| ≥ |z|n −
(
|an−1| |z|n−1 + · · ·+ |a1| |z|+ |a0|

)

and so lim|z|→∞ |p (z)| = ∞ which implies lim|z|→∞
∣∣∣p (z)−1

∣∣∣ = 0. It follows that,

since p (z)−1 is bounded for z in any bounded set, we must have that p (z)−1 is a
bounded entire function. But then it must be constant. However since p (z)−1 → 0
as |z| → ∞, this constant can only be 0. However, 1

p(z) is never equal to zero. This
proves the theorem.

18.7 The General Cauchy Integral Formula

18.7.1 The Cauchy Goursat Theorem

This section gives a fundamental theorem which is essential to the development
which follows and is closely related to the question of when a function has a
primitive. First of all, if you have two points in C, z1 and z2, you can consider
γ (t) ≡ z1 + t (z2 − z1) for t ∈ [0, 1] to obtain a continuous bounded variation curve
from z1 to z2. More generally, if z1, · · ·, zm are points in C you can obtain a contin-
uous bounded variation curve from z1 to zm which consists of first going from z1 to
z2 and then from z2 to z3 and so on, till in the end one goes from zm−1 to zm. We
denote this piecewise linear curve as γ (z1, · · ·, zm) . Now let T be a triangle with
vertices z1, z2 and z3 encountered in the counter clockwise direction as shown.

¡
¡

¡
¡

¡@
@

@
@

@z1
z2

z3

Denote by
∫

∂T
f (z) dz, the expression,

∫
γ(z1,z2,z3,z1)

f (z) dz. Consider the fol-
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lowing picture.
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By Lemma 17.11 ∫

∂T

f (z) dz =
4∑

k=1

∫

∂T 1
k

f (z) dz. (18.20)

On the “inside lines” the integrals cancel as claimed in Lemma 17.11 because there
are two integrals going in opposite directions for each of these inside lines.

Theorem 18.28 (Cauchy Goursat) Let f : Ω → X have the property that f ′ (z)
exists for all z ∈ Ω and let T be a triangle contained in Ω. Then

∫

∂T

f (w) dw = 0.

Proof: Suppose not. Then
∣∣∣∣
∣∣∣∣
∫

∂T

f (w) dw

∣∣∣∣
∣∣∣∣ = α 6= 0.

From 18.20 it follows

α ≤
4∑

k=1

∣∣∣∣∣

∣∣∣∣∣
∫

∂T 1
k

f (w) dw

∣∣∣∣∣

∣∣∣∣∣
and so for at least one of these T 1

k , denoted from now on as T1,
∣∣∣∣
∣∣∣∣
∫

∂T1

f (w) dw

∣∣∣∣
∣∣∣∣ ≥

α

4
.

Now let T1 play the same role as T , subdivide as in the above picture, and obtain
T2 such that ∣∣∣∣

∣∣∣∣
∫

∂T2

f (w) dw

∣∣∣∣
∣∣∣∣ ≥

α

42
.

Continue in this way, obtaining a sequence of triangles,

Tk ⊇ Tk+1, diam (Tk) ≤ diam (T ) 2−k,

and ∣∣∣∣
∣∣∣∣
∫

∂Tk

f (w) dw

∣∣∣∣
∣∣∣∣ ≥

α

4k
.
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Then let z ∈ ∩∞k=1Tk and note that by assumption, f ′ (z) exists. Therefore, for all
k large enough,

∫

∂Tk

f (w) dw =
∫

∂Tk

f (z) + f ′ (z) (w − z) + g (w) dw

where ||g (w)|| < ε |w − z| . Now observe that w → f (z) + f ′ (z) (w − z) has a
primitive, namely,

F (w) = f (z) w + f ′ (z) (w − z)2 /2.

Therefore, by Corollary 17.14.
∫

∂Tk

f (w) dw =
∫

∂Tk

g (w) dw.

From the definition, of the integral,

α

4k
≤

∣∣∣∣
∣∣∣∣
∫

∂Tk

g (w) dw

∣∣∣∣
∣∣∣∣ ≤ εdiam (Tk) (length of ∂Tk)

≤ ε2−k (length of T ) diam (T ) 2−k,

and so
α ≤ ε (length of T ) diam (T ) .

Since ε is arbitrary, this shows α = 0, a contradiction. Thus
∫

∂T
f (w) dw = 0 as

claimed.
This fundamental result yields the following important theorem.

Theorem 18.29 (Morera1) Let Ω be an open set and let f ′ (z) exist for all z ∈ Ω.
Let D ≡ B (z0, r) ⊆ Ω. Then there exists ε > 0 such that f has a primitive on
B (z0, r + ε).

Proof: Choose ε > 0 small enough that B (z0, r + ε) ⊆ Ω. Then for w ∈
B (z0, r + ε) , define

F (w) ≡
∫

γ(z0,w)

f (u) du.

Then by the Cauchy Goursat theorem, and w ∈ B (z0, r + ε) , it follows that for |h|
small enough,

F (w + h)− F (w)
h

=
1
h

∫

γ(w,w+h)

f (u) du

=
1
h

∫ 1

0

f (w + th) hdt =
∫ 1

0

f (w + th) dt

which converges to f (w) due to the continuity of f at w. This proves the theorem.
The following is a slight generalization of the above theorem which is also referred

to as Morera’s theorem.
1Giancinto Morera 1856-1909. This theorem or one like it dates from around 1886
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Corollary 18.30 Let Ω be an open set and suppose that whenever

γ (z1, z2, z3, z1)

is a closed curve bounding a triangle T, which is contained in Ω, and f is a contin-
uous function defined on Ω, it follows that

∫

γ(z1,z2,z3,z1)

f (z) dz = 0,

then f is analytic on Ω.

Proof: As in the proof of Morera’s theorem, let B (z0, r) ⊆ Ω and use the given
condition to construct a primitive, F for f on B (z0, r) . Then F is analytic and so
by Theorem 18.16, it follows that F and hence f have infinitely many derivatives,
implying that f is analytic on B (z0, r) . Since z0 is arbitrary, this shows f is analytic
on Ω.

18.7.2 A Redundant Assumption

Earlier in the definition of analytic, it was assumed the derivative is continuous.
This assumption is redundant.

Theorem 18.31 Let Ω be an open set in C and suppose f : Ω → X has the property
that f ′ (z) exists for each z ∈ Ω. Then f is analytic on Ω.

Proof: Let z0 ∈ Ω and let B (z0, r) ⊆ Ω. By Morera’s theorem f has a prim-
itive, F on B (z0, r) . It follows that F is analytic because it has a derivative, f,
and this derivative is continuous. Therefore, by Theorem 18.16 F has infinitely
many derivatives on B (z0, r) implying that f also has infinitely many derivatives
on B (z0, r) . Thus f is analytic as claimed.

It follows a function is analytic on an open set, Ω if and only if f ′ (z) exists for
z ∈ Ω. This is because it was just shown the derivative, if it exists, is automatically
continuous.

The same proof used to prove Theorem 18.29 implies the following corollary.

Corollary 18.32 Let Ω be a convex open set and suppose that f ′ (z) exists for all
z ∈ Ω. Then f has a primitive on Ω.

Note that this implies that if Ω is a convex open set on which f ′ (z) exists and
if γ : [a, b] → Ω is a closed, continuous curve having bounded variation, then letting
F be a primitive of f Theorem 17.13 implies

∫

γ

f (z) dz = F (γ (b))− F (γ (a)) = 0.
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Notice how different this is from the situation of a function of a real variable! It
is possible for a function of a real variable to have a derivative everywhere and yet
the derivative can be discontinuous. A simple example is the following.

f (x) ≡
{

x2 sin
(

1
x

)
if x 6= 0

0 if x = 0 .

Then f ′ (x) exists for all x ∈ R. Indeed, if x 6= 0, the derivative equals 2x sin 1
x−cos 1

x
which has no limit as x → 0. However, from the definition of the derivative of a
function of one variable, f ′ (0) = 0.

18.7.3 Classification Of Isolated Singularities

First some notation.

Definition 18.33 Let B′ (a, r) ≡ {z ∈ C such that 0 < |z − a| < r}. Thus this is
the usual ball without the center. A function is said to have an isolated singularity
at the point a ∈ C if f is analytic on B′ (a, r) for some r > 0.

It turns out isolated singularities can be neatly classified into three types, re-
movable singularities, poles, and essential singularities. The next theorem deals
with the case of a removable singularity.

Definition 18.34 An isolated singularity of f is said to be removable if there exists
an analytic function, g analytic at a and near a such that f = g at all points near
a.

Theorem 18.35 Let f : B′ (a, r) → X be analytic. Thus f has an isolated singu-
larity at a. Suppose also that

lim
z→a

f (z) (z − a) = 0.

Then there exists a unique analytic function, g : B (a, r) → X such that g = f on
B′ (a, r) . Thus the singularity at a is removable.

Proof: Let h (z) ≡ (z − a)2 f (z) , h (a) ≡ 0. Then h is analytic on B (a, r)
because it is easy to see that h′ (a) = 0. It follows h is given by a power series,

h (z) =
∞∑

k=2

ak (z − a)k

where a0 = a1 = 0 because of the observation above that h′ (a) = h (a) = 0. It
follows that for |z − a| > 0

f (z) =
∞∑

k=2

ak (z − a)k−2 ≡ g (z) .

This proves the theorem.
What of the other case where the singularity is not removable? This situation

is dealt with by the amazing Casorati Weierstrass theorem.
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Theorem 18.36 (Casorati Weierstrass) Let a be an isolated singularity and sup-
pose for some r > 0, f (B′ (a, r)) is not dense in C. Then either a is a removable
singularity or there exist finitely many b1, · · ·, bM for some finite number, M such
that for z near a,

f (z) = g (z) +
M∑

k=1

bk

(z − a)k
(18.21)

where g (z) is analytic near a.

Proof: Suppose B (z0, δ) has no points of f (B′ (a, r)) . Such a ball must exist if
f (B′ (a, r)) is not dense. Then for z ∈ B′ (a, r) , |f (z)− z0| ≥ δ > 0. It follows from
Theorem 18.35 that 1

f(z)−z0
has a removable singularity at a. Hence, there exists h

an analytic function such that for z near a,

h (z) =
1

f (z)− z0
. (18.22)

There are two cases. First suppose h (a) = 0. Then
∑∞

k=1 ak (z − a)k = 1
f(z)−z0

for z near a. If all the ak = 0, this would be a contradiction because then the left
side would equal zero for z near a but the right side could not equal zero. Therefore,
there is a first m such that am 6= 0. Hence there exists an analytic function, k (z)
which is not equal to zero in some ball, B (a, ε) such that

k (z) (z − a)m =
1

f (z)− z0
.

Hence, taking both sides to the −1 power,

f (z)− z0 =
1

(z − a)m

∞∑

k=0

bk (z − a)k

and so 18.21 holds.
The other case is that h (a) 6= 0. In this case, raise both sides of 18.22 to the −1

power and obtain
f (z)− z0 = h (z)−1

,

a function analytic near a. Therefore, the singularity is removable. This proves the
theorem.

This theorem is the basis for the following definition which classifies isolated
singularities.

Definition 18.37 Let a be an isolated singularity of a complex valued function, f .
When 18.21 holds for z near a, then a is called a pole. The order of the pole in
18.21 is M. If for every r > 0, f (B′ (a, r)) is dense in C then a is called an essential
singularity.

In terms of the above definition, isolated singularities are either removable, a
pole, or essential. There are no other possibilities.
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Theorem 18.38 Suppose f : Ω → C has an isolated singularity at a ∈ Ω. Then a
is a pole if and only if

lim
z→a

d (f (z) ,∞) = 0

in Ĉ.

Proof: Suppose first f has a pole at a. Then by definition, f (z) = g (z) +∑M
k=1

bk

(z−a)k for z near a where g is analytic. Then

|f (z)| ≥ |bM |
|z − a|M

− |g (z)| −
M−1∑

k=1

|bk|
|z − a|k

=
1

|z − a|M
(
|bM | −

(
|g (z)| |z − a|M +

M−1∑

k=1

|bk| |z − a|M−k

))
.

Now limz→a

(
|g (z)| |z − a|M +

∑M−1
k=1 |bk| |z − a|M−k

)
= 0 and so the above in-

equality proves limz→a |f (z)| = ∞. Referring to the diagram on Page 372, you see
this is the same as saying

lim
z→a

|θf (z)− (0, 0, 2)| = lim
z→a

|θf (z)− θ (∞)| = lim
z→a

d (f (z) ,∞) = 0

Conversely, suppose limz→a d (f (z) ,∞) = 0. Then from the diagram on Page
372, it follows limz→a |f (z)| = ∞ and in particular, a cannot be either removable or
an essential singularity by the Casorati Weierstrass theorem, Theorem 18.36. The
only case remaining is that a is a pole. This proves the theorem.

Definition 18.39 Let f : Ω → C where Ω is an open subset of C. Then f is called
meromorphic if all singularities are isolated and are either poles or removable and
this set of singularities has no limit point. It is convenient to regard meromorphic
functions as having values in Ĉ where if a is a pole, f (a) ≡ ∞. From now on, this
will be assumed when a meromorphic function is being considered.

The usefulness of the above convention about f (a) ≡ ∞ at a pole is made clear
in the following theorem.

Theorem 18.40 Let Ω be an open subset of C and let f : Ω → Ĉ be meromorphic.
Then f is continuous with respect to the metric, d on Ĉ.

Proof: Let zn → z where z ∈ Ω. Then if z is a pole, it follows from Theorem
18.38 that

d (f (zn) ,∞) ≡ d (f (zn) , f (z)) → 0.

If z is not a pole, then f (zn) → f (z) in C which implies |θ (f (zn))− θ (f (z))| =
d (f (zn) , f (z)) → 0. Recall that θ is continuous on C.
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18.7.4 The Cauchy Integral Formula

This section presents the general version of the Cauchy integral formula valid for
arbitrary closed rectifiable curves. The key idea in this development is the notion
of the winding number. This is the number also called the index, defined in the
following theorem. This winding number, along with the earlier results, especially
Liouville’s theorem, yields an extremely general Cauchy integral formula.

Definition 18.41 Let γ : [a, b] → C and suppose z /∈ γ∗. The winding number,
n (γ, z) is defined by

n (γ, z) ≡ 1
2πi

∫

γ

dw

w − z
.

The main interest is in the case where γ is closed curve. However, the same
notation will be used for any such curve.

Theorem 18.42 Let γ : [a, b] → C be continuous and have bounded variation with
γ (a) = γ (b) . Also suppose that z /∈ γ∗. Define

n (γ, z) ≡ 1
2πi

∫

γ

dw

w − z
. (18.23)

Then n (γ, ·) is continuous and integer valued. Furthermore, there exists a sequence,
ηk : [a, b] → C such that ηk is C1 ([a, b]) ,

||ηk − γ|| < 1
k

, ηk (a) = ηk (b) = γ (a) = γ (b) ,

and n (ηk, z) = n (γ, z) for all k large enough. Also n (γ, ·) is constant on every
connected component of C\γ∗ and equals zero on the unbounded component of C\γ∗.

Proof: First consider the assertion about continuity.

|n (γ, z)− n (γ, z1)| ≤ C

∣∣∣∣
∫

γ

(
1

w − z
− 1

w − z1

)
dw

∣∣∣∣
≤ C̃ (Length of γ) |z1 − z|

whenever z1 is close enough to z. This proves the continuity assertion. Note this
did not depend on γ being closed.

Next it is shown that for a closed curve the winding number equals an integer.
To do so, use Theorem 17.12 to obtain ηk, a function in C1 ([a, b]) such that z /∈
ηk ([a, b]) for all k large enough, ηk (x) = γ (x) for x = a, b, and

∣∣∣∣∣
1

2πi

∫

γ

dw

w − z
− 1

2πi

∫

ηk

dw

w − z

∣∣∣∣∣ <
1
k

, ||ηk − γ|| < 1
k

.

It is shown that each of 1
2πi

∫
ηk

dw
w−z is an integer. To simplify the notation, write η

instead of ηk. ∫

η

dw

w − z
=

∫ b

a

η′ (s) ds

η (s)− z
.
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Define

g (t) ≡
∫ t

a

η′ (s) ds

η (s)− z
. (18.24)

Then
(
e−g(t) (η (t)− z)

)′
= e−g(t)η′ (t)− e−g(t)g′ (t) (η (t)− z)

= e−g(t)η′ (t)− e−g(t)η′ (t) = 0.

It follows that e−g(t) (η (t)− z) equals a constant. In particular, using the fact that
η (a) = η (b) ,

e−g(b) (η (b)− z) = e−g(a) (η (a)− z) = (η (a)− z) = (η (b)− z)

and so e−g(b) = 1. This happens if and only if −g (b) = 2mπi for some integer m.
Therefore, 18.24 implies

2mπi =
∫ b

a

η′ (s) ds

η (s)− z
=

∫

η

dw

w − z
.

Therefore, 1
2πi

∫
ηk

dw
w−z is a sequence of integers converging to 1

2πi

∫
γ

dw
w−z ≡ n (γ, z)

and so n (γ, z) must also be an integer and n (ηk, z) = n (γ, z) for all k large enough.
Since n (γ, ·) is continuous and integer valued, it follows from Corollary 5.58 on

Page 112 that it must be constant on every connected component of C\γ∗. It is clear
that n (γ, z) equals zero on the unbounded component because from the formula,

lim
z→∞

|n (γ, z)| ≤ lim
z→∞

V (γ, [a, b])
(

1
|z| − c

)

where c ≥ max {|w| : w ∈ γ∗} .This proves the theorem.

Corollary 18.43 Suppose γ : [a, b] → C is a continuous bounded variation curve
and n (γ, z) is an integer where z /∈ γ∗. Then γ (a) = γ (b) . Also z → n (γ, z) for
z /∈ γ∗ is continuous.

Proof: Letting η be a C1 curve for which η (a) = γ (a) and η (b) = γ (b) and
which is close enough to γ that n (η, z) = n (γ, z) , the argument is similar to the
above. Let

g (t) ≡
∫ t

a

η′ (s) ds

η (s)− z
. (18.25)

Then
(
e−g(t) (η (t)− z)

)′
= e−g(t)η′ (t)− e−g(t)g′ (t) (η (t)− z)

= e−g(t)η′ (t)− e−g(t)η′ (t) = 0.

Hence
e−g(t) (η (t)− z) = c 6= 0. (18.26)
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By assumption

g (b) =
∫

η

1
w − z

dw = 2πim

for some integer, m. Therefore, from 18.26

1 = e2πmi =
η (b)− z

c
.

Thus c = η (b)− z and letting t = a in 18.26,

1 =
η (a)− z

η (b)− z

which shows η (a) = η (b) . This proves the corollary since the assertion about con-
tinuity was already observed.

It is a good idea to consider a simple case to get an idea of what the winding
number is measuring. To do so, consider γ : [a, b] → C such that γ is continuous,
closed and bounded variation. Suppose also that γ is one to one on (a, b) . Such a
curve is called a simple closed curve. It can be shown that such a simple closed curve
divides the plane into exactly two components, an “inside” bounded component and
an “outside” unbounded component. This is called the Jordan Curve theorem or
the Jordan separation theorem. This is a difficult theorem which requires some
very hard topology such as homology theory or degree theory. It won’t be used
here beyond making reference to it. For now, it suffices to simply assume that γ
is such that this result holds. This will usually be obvious anyway. Also suppose
that it is possible to change the parameter to be in [0, 2π] , in such a way that
γ (t) + λ

(
z + reit − γ (t)

) − z 6= 0 for all t ∈ [0, 2π] and λ ∈ [0, 1] . (As t goes
from 0 to 2π the point γ (t) traces the curve γ ([0, 2π]) in the counter clockwise
direction.) Suppose z ∈ D, the inside of the simple closed curve and consider the
curve δ (t) = z+reit for t ∈ [0, 2π] where r is chosen small enough that B (z, r) ⊆ D.
Then it happens that n (δ, z) = n (γ, z) .

Proposition 18.44 Under the above conditions,

n (δ, z) = n (γ, z)

and n (δ, z) = 1.

Proof: By changing the parameter, assume that [a, b] = [0, 2π] . From Theorem
18.42 it suffices to assume also that γ is C1. Define hλ (t) ≡ γ (t)+λ

(
z + reit − γ (t)

)
for λ ∈ [0, 1] . (This function is called a homotopy of the curves γ and δ.) Note that
for each λ ∈ [0, 1] , t → hλ (t) is a closed C1 curve. Also,

1
2πi

∫

hλ

1
w − z

dw =
1

2πi

∫ 2π

0

γ′ (t) + λ
(
rieit − γ′ (t)

)

γ (t) + λ (z + reit − γ (t))− z
dt.
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This number is an integer and it is routine to verify that it is a continuous function
of λ. When λ = 0 it equals n (γ, z) and when λ = 1 it equals n (δ, z). Therefore,
n (δ, z) = n (γ, z) . It only remains to compute n (δ, z) .

n (δ, z) =
1

2πi

∫ 2π

0

rieit

reit
dt = 1.

This proves the proposition.
Now if γ was not one to one but caused the point, γ (t) to travel around γ∗ twice,

you could modify the above argument to have the parameter interval, [0, 4π] and
still find n (δ, z) = n (γ, z) only this time, n (δ, z) = 2. Thus the winding number
is just what its name suggests. It measures the number of times the curve winds
around the point. One might ask why bother with the winding number if this is
all it does. The reason is that the notion of counting the number of times a curve
winds around a point is rather vague. The winding number is precise. It is also the
natural thing to consider in the general Cauchy integral formula presented below.
Consider a situation typified by the following picture in which Ω is the open set
between the dotted curves and γj are closed rectifiable curves in Ω.

-
γ1γ2

¾

γ3

¾

U

The following theorem is the general Cauchy integral formula.

Definition 18.45 Let {γk}n
k=1 be continuous oriented curves having bounded vari-

ation. Then this is called a cycle if whenever, z /∈ ∪n
k=1γ

∗
k,

∑n
k=1 n (γk, z) is an

integer.

By Theorem 18.42 if each γk is a closed curve, then {γk}n
k=1 is a cycle.

Theorem 18.46 Let Ω be an open subset of the plane and let f : Ω → X be
analytic. If γk : [ak, bk] → Ω, k = 1, · · ·, m are continuous curves having bounded
variation such that for all z /∈ ∪m

k=1γk ([ak, bk])

m∑

k=1

n (γk, z) equals an integer

and for all z /∈ Ω,
m∑

k=1

n (γk, z) = 0.
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Then for all z ∈ Ω \ ∪m
k=1γk ([ak, bk]) ,

f (z)
m∑

k=1

n (γk, z) =
m∑

k=1

1
2πi

∫

γk

f (w)
w − z

dw.

Proof: Let φ be defined on Ω× Ω by

φ (z, w) ≡
{

f(w)−f(z)
w−z if w 6= z

f ′ (z) if w = z
.

Then φ is analytic as a function of both z and w and is continuous in Ω× Ω. This
is easily seen using Theorem 18.35. Consider the case of w → φ (z, w) .

lim
w→z

(w − z) (φ (z, w)− φ (z, z)) = lim
w→z

(
f (w)− f (z)

w − z
− f ′ (z)

)
= 0.

Thus w → φ (z, w) has a removable singularity at z. The case of z → φ (z, w) is
similar.

Define

h (z) ≡ 1
2πi

m∑

k=1

∫

γk

φ (z, w) dw.

Is h is analytic on Ω? To show this is the case, verify
∫

∂T

h (z) dz = 0

for every triangle, T, contained in Ω and apply Corollary 18.30. To do this, use
Theorem 17.12 to obtain for each k, a sequence of functions, ηkn ∈ C1 ([ak, bk])
such that

ηkn (x) = γk (x) for x ∈ {ak, bk}
and

ηkn ([ak, bk]) ⊆ Ω, ||ηkn − γk|| <
1
n

,

∣∣∣∣∣

∣∣∣∣∣
∫

ηkn

φ (z, w) dw −
∫

γk

φ (z, w) dw

∣∣∣∣∣

∣∣∣∣∣ <
1
n

, (18.27)

for all z ∈ T. Then applying Fubini’s theorem,
∫

∂T

∫

ηkn

φ (z, w) dwdz =
∫

ηkn

∫

∂T

φ (z, w) dzdw = 0

because φ is given to be analytic. By 18.27,
∫

∂T

∫

γk

φ (z, w) dwdz = lim
n→∞

∫

∂T

∫

ηkn

φ (z, w) dwdz = 0

and so h is analytic on Ω as claimed.
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Now let H denote the set,

H ≡
{

z ∈ C\ ∪m
k=1 γk ([ak, bk]) :

m∑

k=1

n (γk, z) = 0

}
.

H is an open set because z → ∑m
k=1 n (γk, z) is integer valued by assumption and

continuous. Define

g (z) ≡
{

h (z) if z ∈ Ω
1

2πi

∑m
k=1

∫
γk

f(w)
w−z dw if z ∈ H

. (18.28)

Why is g (z) well defined? For z ∈ Ω ∩H, z /∈ ∪m
k=1γk ([ak, bk]) and so

g (z) =
1

2πi

m∑

k=1

∫

γk

φ (z, w) dw =
1

2πi

m∑

k=1

∫

γk

f (w)− f (z)
w − z

dw

=
1

2πi

m∑

k=1

∫

γk

f (w)
w − z

dw − 1
2πi

m∑

k=1

∫

γk

f (z)
w − z

dw

=
1

2πi

m∑

k=1

∫

γk

f (w)
w − z

dw

because z ∈ H. This shows g (z) is well defined. Also, g is analytic on Ω because
it equals h there. It is routine to verify that g is analytic on H also because of
the second line of 18.28. By assumption, ΩC ⊆ H because it is assumed that∑

k n (γk, z) = 0 for z /∈ Ω and so Ω ∪H = C showing that g is an entire function.
Now note that

∑m
k=1 n (γk, z) = 0 for all z contained in the unbounded compo-

nent of C\∪m
k=1 γk ([ak, bk]) which component contains B (0, r)C for r large enough.

It follows that for |z| > r, it must be the case that z ∈ H and so for such z, the
bottom description of g (z) found in 18.28 is valid. Therefore, it follows

lim
|z|→∞

||g (z)|| = 0

and so g is bounded and entire. By Liouville’s theorem, g is a constant. Hence,
from the above equation, the constant can only equal zero.

For z ∈ Ω \ ∪m
k=1γk ([ak, bk]) ,

0 = h (z) =
1

2πi

m∑

k=1

∫

γk

φ (z, w) dw =
1

2πi

m∑

k=1

∫

γk

f (w)− f (z)
w − z

dw =

1
2πi

m∑

k=1

∫

γk

f (w)
w − z

dw − f (z)
m∑

k=1

n (γk, z) .

This proves the theorem.
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Corollary 18.47 Let Ω be an open set and let γk : [ak, bk] → Ω, k = 1, · · ·,m, be
closed, continuous and of bounded variation. Suppose also that

m∑

k=1

n (γk, z) = 0

for all z /∈ Ω. Then if f : Ω → C is analytic,

m∑

k=1

∫

γk

f (w) dw = 0.

Proof: This follows from Theorem 18.46 as follows. Let

g (w) = f (w) (w − z)

where z ∈ Ω \ ∪m
k=1γk ([ak, bk]) . Then by this theorem,

0 = 0
m∑

k=1

n (γk, z) = g (z)
m∑

k=1

n (γk, z) =

m∑

k=1

1
2πi

∫

γk

g (w)
w − z

dw =
1

2πi

m∑

k=1

∫

γk

f (w) dw.

Another simple corollary to the above theorem is Cauchy’s theorem for a simply
connected region.

Definition 18.48 An open set, Ω ⊆ C is a region if it is open and connected. A
region, Ω is simply connected if Ĉ \Ω is connected where Ĉ is the extended complex
plane. In the future, the term simply connected open set will be an open set which
is connected and Ĉ \Ω is connected .

Corollary 18.49 Let γ : [a, b] → Ω be a continuous closed curve of bounded vari-
ation where Ω is a simply connected region in C and let f : Ω → X be analytic.
Then ∫

γ

f (w) dw = 0.

Proof: Let D denote the unbounded component of Ĉ\γ∗. Thus ∞ ∈ Ĉ\γ∗.
Then the connected set, Ĉ \Ω is contained in D since every point of Ĉ \Ω must be
in some component of Ĉ\γ∗ and ∞ is contained in both Ĉ\Ω and D. Thus D must
be the component that contains Ĉ \ Ω. It follows that n (γ, ·) must be constant on
Ĉ \ Ω, its value being its value on D. However, for z ∈ D,

n (γ, z) =
1

2πi

∫

γ

1
w − z

dw
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and so lim|z|→∞ n (γ, z) = 0 showing n (γ, z) = 0 on D. Therefore this verifies the
hypothesis of Theorem 18.46. Let z ∈ Ω ∩D and define

g (w) ≡ f (w) (w − z) .

Thus g is analytic on Ω and by Theorem 18.46,

0 = n (z, γ) g (z) =
1

2πi

∫

γ

g (w)
w − z

dw =
1

2πi

∫

γ

f (w) dw.

This proves the corollary.
The following is a very significant result which will be used later.

Corollary 18.50 Suppose Ω is a simply connected open set and f : Ω → X is
analytic. Then f has a primitive, F, on Ω. Recall this means there exists F such
that F ′ (z) = f (z) for all z ∈ Ω.

Proof: Pick a point, z0 ∈ Ω and let V denote those points, z of Ω for which
there exists a curve, γ : [a, b] → Ω such that γ is continuous, of bounded variation,
γ (a) = z0, and γ (b) = z. Then it is easy to verify that V is both open and closed
in Ω and therefore, V = Ω because Ω is connected. Denote by γz0,z such a curve
from z0 to z and define

F (z) ≡
∫

γz0,z

f (w) dw.

Then F is well defined because if γj , j = 1, 2 are two such curves, it follows from
Corollary 18.49 that

∫

γ1

f (w) dw +
∫

−γ2

f (w) dw = 0,

implying that ∫

γ1

f (w) dw =
∫

γ2

f (w) dw.

Now this function, F is a primitive because, thanks to Corollary 18.49

(F (z + h)− F (z))h−1 =
1
h

∫

γz,z+h

f (w) dw

=
1
h

∫ 1

0

f (z + th)hdt

and so, taking the limit as h → 0, F ′ (z) = f (z) .

18.7.5 An Example Of A Cycle

The next theorem deals with the existence of a cycle with nice properties. Basically,
you go around the compact subset of an open set with suitable contours while staying
in the open set. The method involves the following simple concept.
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Definition 18.51 A tiling of R2 = C is the union of infinitely many equally spaced
vertical and horizontal lines. You can think of the small squares which result as
tiles. To tile the plane or R2 = C means to consider such a union of horizontal and
vertical lines. It is like graph paper. See the picture below for a representation of
part of a tiling of C.

Theorem 18.52 Let K be a compact subset of an open set, Ω. Then there exist
continuous, closed, bounded variation oriented curves {Γj}m

j=1 for which Γ∗j ∩K = ∅
for each j, Γ∗j ⊆ Ω, and for all p ∈ K,

m∑

k=1

n (Γk, p) = 1.

while for all z /∈ Ω
m∑

k=1

n (Γk, z) = 0.

Proof: Let δ = dist
(
K, ΩC

)
. Since K is compact, δ > 0. Now tile the plane

with squares, each of which has diameter less than δ/2.

K

K

Ω
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Let S denote the set of all the closed squares in this tiling which have nonempty
intersection with K.Thus, all the squares of S are contained in Ω. First suppose p is
a point of K which is in the interior of one of these squares in the tiling. Denote by
∂Sk the boundary of Sk one of the squares in S, oriented in the counter clockwise
direction and Sm denote the square of S which contains the point, p in its interior.

Let the edges of the square, Sj be
{

γj
k

}4

k=1
. Thus a short computation shows

n (∂Sm, p) = 1 but n (∂Sj , p) = 0 for all j 6= m. The reason for this is that for
z in Sj , the values {z − p : z ∈ Sj} lie in an open square, Q which is located at a
positive distance from 0. Then Ĉ \Q is connected and 1/ (z − p) is analytic on Q.
It follows from Corollary 18.50 that this function has a primitive on Q and so

∫

∂Sj

1
z − p

dz = 0.

Similarly, if z /∈ Ω, n (∂Sj , z) = 0. On the other hand, a direct computation will

verify that n (p, ∂Sm) = 1. Thus 1 =
∑

j,k n
(
p, γj

k

)
=

∑
Sj∈S n (p, ∂Sj) and if

z /∈ Ω, 0 =
∑

j,k n
(
z, γj

k

)
=

∑
Sj∈S n (z, ∂Sj) .

If γj∗
k coincides with γl∗

l , then the contour integrals taken over this edge are
taken in opposite directions and so the edge the two squares have in common can
be deleted without changing

∑
j,k n

(
z, γj

k

)
for any z not on any of the lines in the

tiling. For example, see the picture,

6

?

6

¾¾

?

- -

6

¾

-

?

From the construction, if any of the γj∗
k contains a point of K then this point is

on one of the four edges of Sj and at this point, there is at least one edge of some
Sl which also contains this point. As just discussed, this shared edge can be deleted
without changing

∑
i,j n

(
z, γj

k

)
. Delete the edges of the Sk which intersect K but

not the endpoints of these edges. That is, delete the open edges. When this is done,
delete all isolated points. Let the resulting oriented curves be denoted by {γk}m

k=1 .
Note that you might have γ∗k = γ∗l . The construction is illustrated in the following
picture.
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6

?

-

¾

-

? 6

?

K

K

Ω

Then as explained above,
∑m

k=1 n (p, γk) = 1. It remains to prove the claim
about the closed curves.

Each orientation on an edge corresponds to a direction of motion over that
edge. Call such a motion over the edge a route. Initially, every vertex, (corner of
a square in S) has the property there are the same number of routes to and from
that vertex. When an open edge whose closure contains a point of K is deleted,
every vertex either remains unchanged as to the number of routes to and from that
vertex or it loses both a route away and a route to. Thus the property of having the
same number of routes to and from each vertex is preserved by deleting these open
edges.. The isolated points which result lose all routes to and from. It follows that
upon removing the isolated points you can begin at any of the remaining vertices
and follow the routes leading out from this and successive vertices according to
orientation and eventually return to that end. Otherwise, there would be a vertex
which would have only one route leading to it which does not happen. Now if you
have used all the routes out of this vertex, pick another vertex and do the same
process. Otherwise, pick an unused route out of the vertex and follow it to return.
Continue this way till all routes are used exactly once, resulting in closed oriented
curves, Γk. Then

∑

k

n (Γk, p) =
∑

j

n (γk, p) = 1.

In case p ∈ K is on some line of the tiling, it is not on any of the Γk because
Γ∗k ∩K = ∅ and so the continuity of z → n (Γk, z) yields the desired result in this
case also. This proves the lemma.
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18.8 Exercises

1. If U is simply connected, f is analytic on U and f has no zeros in U, show
there exists an analytic function, F, defined on U such that eF = f.

2. Let f be defined and analytic near the point a ∈ C. Show that then f (z) =∑∞
k=0 bk (z − a)k whenever |z − a| < R where R is the distance between a and

the nearest point where f fails to have a derivative. The number R, is called
the radius of convergence and the power series is said to be expanded about
a.

3. Find the radius of convergence of the function 1
1+z2 expanded about a = 2.

Note there is nothing wrong with the function, 1
1+x2 when considered as a

function of a real variable, x for any value of x. However, if you insist on using
power series, you find there is a limitation on the values of x for which the
power series converges due to the presence in the complex plane of a point, i,
where the function fails to have a derivative.

4. Suppose f is analytic on all of C and satisfies |f (z)| < A + B |z|1/2
. Show f

is constant.

5. What if you defined an open set, U to be simply connected if C\U is connected.
Would it amount to the same thing? Hint: Consider the outside of B (0, 1) .

6. Let γ (t) = eit : t ∈ [0, 2π] . Find
∫

γ
1

zn dz for n = 1, 2, · · ·.

7. Show i
∫ 2π

0
(2 cos θ)2n

dθ =
∫

γ

(
z + 1

z

)2n (
1
z

)
dz where γ (t) = eit : t ∈ [0, 2π] .

Then evaluate this integral using the binomial theorem and the previous prob-
lem.

8. Suppose that for some constants a, b 6= 0, a, b ∈ R, f (z + ib) = f (z) for all
z ∈ C and f (z + a) = f (z) for all z ∈ C. If f is analytic, show that f must
be constant. Can you generalize this? Hint: This uses Liouville’s theorem.

9. Suppose f (z) = u (x, y) + iv (x, y) is analytic for z ∈ U, an open set. Let
g (z) = u∗ (x, y) + iv∗ (x, y) where

(
u∗

v∗

)
= Q

(
u
v

)

where Q is a unitary matrix. That is QQ∗ = Q∗Q = I. When will g be
analytic?

10. Suppose f is analytic on an open set, U, except for γ∗ ⊂ U where γ is a one
to one continuous function having bounded variation, but it is known that f
is continuous on γ∗. Show that in fact f is analytic on γ∗ also. Hint: Pick a
point on γ∗, say γ (t0) and suppose for now that t0 ∈ (a, b) . Pick r > 0 such
that B = B (γ (t0) , r) ⊆ U. Then show there exists t1 < t0 and t2 > t0 such
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that γ ([t1, t2]) ⊆ B and γ (ti) /∈ B. Thus γ ([t1, t2]) is a path across B going
through the center of B which divides B into two open sets, B1, and B2 along
with γ∗. Let the boundary of Bk consist of γ ([t1, t2]) and a circular arc, Ck.

Now letting z ∈ Bk, the line integral of f(w)
w−z over γ∗ in two different directions

cancels. Therefore, if z ∈ Bk, you can argue that f (z) = 1
2πi

∫
C

f(w)
w−z dw. By

continuity, this continues to hold for z ∈ γ ((t1, t2)) . Therefore, f must be
analytic on γ ((t1, t1)) also. This shows that f must be analytic on γ ((a, b)) .
To get the endpoints, simply extend γ to have the same properties but defined
on [a− ε, b + ε] and repeat the above argument or else do this at the beginning
and note that you get [a, b] ⊆ (a− ε, b + ε) .

11. Let U be an open set contained in the upper half plane and suppose that
there are finitely many line segments on the x axis which are contained in
the boundary of U. Now suppose that f is defined, real, and continuous on
these line segments and is defined and analytic on U. Now let Ũ denote the
reflection of U across the x axis. Show that it is possible to extend f to a
function, g defined on all of

W ≡ Ũ ∪ U ∪ {the line segments mentioned earlier}

such that g is analytic in W . Hint: For z ∈ Ũ , the reflection of U across the
x axis, let g (z) ≡ f (z). Show that g is analytic on Ũ ∪ U and continuous on
the line segments. Then use Problem 10 or Morera’s theorem to argue that
g is analytic on the line segments also. The result of this problem is know as
the Schwarz reflection principle.

12. Show that rotations and translations of analytic functions yield analytic func-
tions and use this observation to generalize the Schwarz reflection principle
to situations in which the line segments are part of a line which is not the x
axis. Thus, give a version which involves reflection about an arbitrary line.



424 FUNDAMENTALS OF COMPLEX ANALYSIS



The Open Mapping Theorem

19.1 A Local Representation

The open mapping theorem, is an even more surprising result than the theorem
about the zeros of an analytic function. The following proof of this important
theorem uses an interesting local representation of the analytic function.

Theorem 19.1 (Open mapping theorem) Let Ω be a region in C and suppose f :
Ω → C is analytic. Then f (Ω) is either a point or a region. In the case where f (Ω)
is a region, it follows that for each z0 ∈ Ω, there exists an open set, V containing
z0 and m ∈ N such that for all z ∈ V,

f (z) = f (z0) + φ (z)m (19.1)

where φ : V → B (0, δ) is one to one, analytic and onto, φ (z0) = 0, φ′ (z) 6= 0 on
V and φ−1 analytic on B (0, δ) . If f is one to one then m = 1 for each z0 and
f−1 : f (Ω) → Ω is analytic.

Proof: Suppose f (Ω) is not a point. Then if z0 ∈ Ω it follows there exists r > 0
such that f (z) 6= f (z0) for all z ∈ B (z0, r) \ {z0} . Otherwise, z0 would be a limit
point of the set,

{z ∈ Ω : f (z)− f (z0) = 0}
which would imply from Theorem 18.23 that f (z) = f (z0) for all z ∈ Ω. Therefore,
making r smaller if necessary and using the power series of f,

f (z) = f (z0) + (z − z0)
m

g (z) ( ?=
(
(z − z0) g (z)1/m

)m

)

for all z ∈ B (z0, r) , where g (z) 6= 0 on B (z0, r) . As implied in the above formula,
one wonders if you can take the mth root of g (z) .

g′

g is an analytic function on B (z0, r) and so by Corollary 18.32 it has a primitive

on B (z0, r) , h. Therefore by the product rule and the chain rule,
(
ge−h

)′ = 0 and
so there exists a constant, C = ea+ib such that on B (z0, r) ,

ge−h = ea+ib.

425
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Therefore,
g (z) = eh(z)+a+ib

and so, modifying h by adding in the constant, a + ib, g (z) = eh(z) where h′ (z) =
g′(z)
g(z) on B (z0, r) . Letting

φ (z) = (z − z0) e
h(z)

m

implies formula 19.1 is valid on B (z0, r) . Now

φ′ (z0) = e
h(z0)

m 6= 0.

Shrinking r if necessary you can assume φ′ (z) 6= 0 on B (z0, r). Is there an open
set, V contained in B (z0, r) such that φ maps V onto B (0, δ) for some δ > 0?

Let φ (z) = u (x, y) + iv (x, y) where z = x + iy. Consider the mapping
(

x
y

)
→

(
u (x, y)
v (x, y)

)

where u, v are C1 because φ is given to be analytic. The Jacobian of this map at
(x, y) ∈ B (z0, r) is

∣∣∣∣
ux (x, y) uy (x, y)
vx (x, y) vy (x, y)

∣∣∣∣ =
∣∣∣∣

ux (x, y) −vx (x, y)
vx (x, y) ux (x, y)

∣∣∣∣

= ux (x, y)2 + vx (x, y)2 =
∣∣φ′ (z)

∣∣2 6= 0.

This follows from a use of the Cauchy Riemann equations. Also
(

u (x0, y0)
v (x0, y0)

)
=

(
0
0

)

Therefore, by the inverse function theorem there exists an open set, V, containing
z0 and δ > 0 such that (u, v)T maps V one to one onto B (0, δ) . Thus φ is one to
one onto B (0, δ) as claimed. Applying the same argument to other points, z of V
and using the fact that φ′ (z) 6= 0 at these points, it follows φ maps open sets to
open sets. In other words, φ−1 is continuous.

It also follows that φm maps V onto B (0, δm) . Therefore, the formula 19.1
implies that f maps the open set, V, containing z0 to an open set. This shows f (Ω)
is an open set because z0 was arbitrary. It is connected because f is continuous and
Ω is connected. Thus f (Ω) is a region. It remains to verify that φ−1 is analytic on
B (0, δ) . Since φ−1 is continuous,

lim
φ(z1)→φ(z)

φ−1 (φ (z1))− φ−1 (φ (z))
φ (z1)− φ (z)

= lim
z1→z

z1 − z

φ (z1)− φ (z)
=

1
φ′ (z)

.

Therefore, φ−1 is analytic as claimed.
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It only remains to verify the assertion about the case where f is one to one. If
m > 1, then e

2πi
m 6= 1 and so for z1 ∈ V,

e
2πi
m φ (z1) 6= φ (z1) . (19.2)

But e
2πi
m φ (z1) ∈ B (0, δ) and so there exists z2 6= z1(since φ is one to one) such that

φ (z2) = e
2πi
m φ (z1) . But then

φ (z2)
m =

(
e

2πi
m φ (z1)

)m

= φ (z1)
m

implying f (z2) = f (z1) contradicting the assumption that f is one to one. Thus
m = 1 and f ′ (z) = φ′ (z) 6= 0 on V. Since f maps open sets to open sets, it follows
that f−1 is continuous and so

(
f−1

)′
(f (z)) = lim

f(z1)→f(z)

f−1 (f (z1))− f−1 (f (z))
f (z1)− f (z)

= lim
z1→z

z1 − z

f (z1)− f (z)
=

1
f ′ (z)

.

This proves the theorem.
One does not have to look very far to find that this sort of thing does not hold

for functions mapping R to R. Take for example, the function f (x) = x2. Then
f (R) is neither a point nor a region. In fact f (R) fails to be open.

Corollary 19.2 Suppose in the situation of Theorem 19.1 m > 1 for the local
representation of f given in this theorem. Then there exists δ > 0 such that if
w ∈ B (f (z0) , δ) = f (V ) for V an open set containing z0, then f−1 (w) consists of
m distinct points in V. (f is m to one on V )

Proof: Let w ∈ B (f (z0) , δ) . Then w = f (ẑ) where ẑ ∈ V. Thus f (ẑ) =

f (z0) + φ (ẑ)m
. Consider the m distinct numbers,

{
e

2kπi
m φ (ẑ)

}m

k=1
. Then each of

these numbers is in B (0, δ) and so since φ maps V one to one onto B (0, δ) , there
are m distinct numbers in V , {zk}m

k=1 such that φ (zk) = e
2kπi

m φ (ẑ). Then

f (zk) = f (z0) + φ (zk)m = f (z0) +
(
e

2kπi
m φ (ẑ)

)m

= f (z0) + e2kπiφ (ẑ)m = f (z0) + φ (ẑ)m = f (ẑ) = w

This proves the corollary.

19.1.1 Branches Of The Logarithm

The argument used in to prove the next theorem was used in the proof of the open
mapping theorem. It is a very important result and deserves to be stated as a
theorem.
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Theorem 19.3 Let Ω be a simply connected region and suppose f : Ω → C is
analytic and nonzero on Ω. Then there exists an analytic function, g such that
eg(z) = f (z) for all z ∈ Ω.

Proof: The function, f ′/f is analytic on Ω and so by Corollary 18.50 there is
a primitive for f ′/f, denoted as g1. Then

(
e−g1f

)′ = −f ′

f
e−g1f + e−g1f ′ = 0

and so since Ω is connected, it follows e−g1f equals a constant, ea+ib. Therefore,
f (z) = eg1(z)+a+ib. Define g (z) ≡ g1 (z) + a + ib.

The function, g in the above theorem is called a branch of the logarithm of f
and is written as log (f (z)).

Definition 19.4 Let ρ be a ray starting at 0. Thus ρ is a straight line of infinite
length extending in one direction with its initial point at 0.

A special case of the above theorem is the following.

Theorem 19.5 Let ρ be a ray starting at 0. Then there exists an analytic function,
L (z) defined on C \ ρ such that

eL(z) = z.

This function, L is called a branch of the logarithm. This branch of the logarithm
satisfies the usual formula for logarithms, L (zw) = L (z) + L (w) provided zw /∈ ρ.

Proof: C \ ρ is a simply connected region because its complement with respect
to Ĉ is connected. Furthermore, the function, f (z) = z is not equal to zero on
C \ ρ. Therefore, by Theorem 19.3 there exists an analytic function L (z) such that
eL(z) = f (z) = z. Now consider the problem of finding a description of L (z). Each
z ∈ C \ ρ can be written in a unique way in the form

z = |z| ei argθ(z)

where argθ (z) is the angle in (θ, θ + 2π) associated with z. (You could of course
have considered this to be the angle in (θ − 2π, θ) associated with z or in infinitely
many other open intervals of length 2π. The description of the log is not unique.)
Then letting L (z) = a + ib

z = |z| ei argθ(z) = eL(z) = eaeib

and so you can let L (z) = ln |z|+ i argθ (z) .
Does L (z) satisfy the usual properties of the logarithm? That is, for z, w ∈ C\ρ,

is L (zw) = L (z)+L (w)? This follows from the usual rules of exponents. You know
ez+w = ezew. (You can verify this directly or you can reduce to the case where z, w
are real. If z is a fixed real number, then the equation holds for all real w. Therefore,
it must also hold for all complex w because the real line contains a limit point. Now
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for this fixed w, the equation holds for all z real. Therefore, by similar reasoning,
it holds for all complex z.)

Now suppose z, w ∈ C \ ρ and zw /∈ ρ. Then

eL(zw) = zw, eL(z)+L(w) = eL(z)eL(w) = zw

and so L (zw) = L (z) + L (w) as claimed. This proves the theorem.
In the case where the ray is the negative real axis, it is called the principal

branch of the logarithm. Thus arg (z) is a number between −π and π.

Definition 19.6 Let log denote the branch of the logarithm which corresponds to
the ray for θ = π. That is, the ray is the negative real axis. Sometimes this is called
the principal branch of the logarithm.

19.2 Maximum Modulus Theorem

Here is another very significant theorem known as the maximum modulus theorem
which follows immediately from the open mapping theorem.

Theorem 19.7 (maximum modulus theorem) Let Ω be a bounded region and let
f : Ω → C be analytic and f : Ω → C continuous. Then if z ∈ Ω,

|f (z)| ≤ max {|f (w)| : w ∈ ∂Ω} . (19.3)

If equality is achieved for any z ∈ Ω, then f is a constant.

Proof: Suppose f is not a constant. Then f (Ω) is a region and so if z ∈ Ω,
there exists r > 0 such that B (f (z) , r) ⊆ f (Ω) . It follows there exists z1 ∈ Ω
with |f (z1)| > |f (z)| . Hence max

{|f (w)| : w ∈ Ω
}

is not achieved at any interior
point of Ω. Therefore, the point at which the maximum is achieved must lie on the
boundary of Ω and so

max {|f (w)| : w ∈ ∂Ω} = max
{|f (w)| : w ∈ Ω

}
> |f (z)|

for all z ∈ Ω or else f is a constant. This proves the theorem.
You can remove the assumption that Ω is bounded and give a slightly different

version.

Theorem 19.8 Let f : Ω → C be analytic on a region, Ω and suppose B (a, r) ⊆ Ω.
Then

|f (a)| ≤ max
{∣∣f (

a + reiθ
)∣∣ : θ ∈ [0, 2π]

}
.

Equality occurs for some r > 0 and a ∈ Ω if and only if f is constant in Ω hence
equality occurs for all such a, r.
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Proof: The claimed inequality holds by Theorem 19.7. Suppose equality in the
above is achieved for some B (a, r) ⊆ Ω. Then by Theorem 19.7 f is equal to a
constant, w on B (a, r) . Therefore, the function, f (·)−w has a zero set which has
a limit point in Ω and so by Theorem 18.23 f (z) = w for all z ∈ Ω.

Conversely, if f is constant, then the equality in the above inequality is achieved
for all B (a, r) ⊆ Ω.

Next is yet another version of the maximum modulus principle which is in Con-
way [11]. Let Ω be an open set.

Definition 19.9 Define ∂∞Ω to equal ∂Ω in the case where Ω is bounded and
∂Ω ∪ {∞} in the case where Ω is not bounded.

Definition 19.10 Let f be a complex valued function defined on a set S ⊆ C and
let a be a limit point of S.

lim sup
z→a

|f (z)| ≡ lim
r→0

{sup |f (w)| : w ∈ B′ (a, r) ∩ S} .

The limit exists because {sup |f (w)| : w ∈ B′ (a, r) ∩ S} is decreasing in r. In case
a = ∞,

lim sup
z→∞

|f (z)| ≡ lim
r→∞

{sup |f (w)| : |w| > r,w ∈ S}

Note that if lim supz→a |f (z)| ≤ M and δ > 0, then there exists r > 0 such that
if z ∈ B′ (a, r) ∩ S, then |f (z)| < M + δ. If a = ∞, there exists r > 0 such that if
|z| > r and z ∈ S, then |f (z)| < M + δ.

Theorem 19.11 Let Ω be an open set in C and let f : Ω → C be analytic. Suppose
also that for every a ∈ ∂∞Ω,

lim sup
z→a

|f (z)| ≤ M < ∞.

Then in fact |f (z)| ≤ M for all z ∈ Ω.

Proof: Let δ > 0 and let H ≡ {z ∈ Ω : |f (z)| > M + δ} . Suppose H 6= ∅.
Then H is an open subset of Ω. I claim that H is actually bounded. If Ω is
bounded, there is nothing to show so assume Ω is unbounded. Then the condition
involving the lim sup implies there exists r > 0 such that if |z| > r and z ∈ Ω, then
|f (z)| ≤ M + δ/2. It follows H is contained in B (0, r) and so it is bounded. Now
consider the components of Ω. One of these components contains points from H.
Let this component be denoted as V and let HV ≡ H ∩ V. Thus HV is a bounded
open subset of V. Let U be a component of HV . First suppose U ⊆ V . In this
case, it follows that on ∂U, |f (z)| = M + δ and so by Theorem 19.7 |f (z)| ≤ M + δ
for all z ∈ U contradicting the definition of H. Next suppose ∂U contains a point
of ∂V, a. Then in this case, a violates the condition on lim sup . Either way you
get a contradiction. Hence H = ∅ as claimed. Since δ > 0 is arbitrary, this shows
|f (z)| ≤ M.
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19.3 Extensions Of Maximum Modulus Theorem

19.3.1 Phragmên Lindelöf Theorem

This theorem is an extension of Theorem 19.11. It uses a growth condition near the
extended boundary to conclude that f is bounded. I will present the version found
in Conway [11]. It seems to be more of a method than an actual theorem. There
are several versions of it.

Theorem 19.12 Let Ω be a simply connected region in C and suppose f is ana-
lytic on Ω. Also suppose there exists a function, φ which is nonzero and uniformly
bounded on Ω. Let M be a positive number. Now suppose ∂∞Ω = A ∪ B such
that for every a ∈ A, lim supz→a |f (z)| ≤ M and for every b ∈ B, and η > 0,
lim supz→b |f (z)| |φ (z)|η ≤ M. Then |f (z)| ≤ M for all z ∈ Ω.

Proof: By Theorem 19.3 there exists log (φ (z)) analytic on Ω. Now define
g (z) ≡ exp (η log (φ (z))) so that g (z) = φ (z)η

. Now also

|g (z)| = |exp (η log (φ (z)))| = |exp (η ln |φ (z)|)| = |φ (z)|η .

Let m ≥ |φ (z)| for all z ∈ Ω. Define F (z) ≡ f (z) g (z) m−η. Thus F is analytic
and for b ∈ B,

lim sup
z→b

|F (z)| = lim sup
z→b

|f (z)| |φ (z)|η m−η ≤ Mm−η

while for a ∈ A,

lim sup
z→a

|F (z)| ≤ M.

Therefore, for α ∈ ∂∞Ω, lim supz→α |F (z)| ≤ max (M,Mη−η) and so by Theorem
19.11, |f (z)| ≤

(
mη

|φ(z)|η
)

max (M, Mη−η) . Now let η → 0 to obtain |f (z)| ≤ M.

In applications, it is often the case that B = {∞}.
Now here is an interesting case of this theorem. It involves a particular form for

Ω, in this case Ω =
{
z ∈ C : |arg (z)| < π

2a

}
where a ≥ 1

2 .

Ω

Then ∂Ω equals the two slanted lines. Also on Ω you can define a logarithm,
log (z) = ln |z| + i arg (z) where arg (z) is the angle associated with z between −π
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and π. Therefore, if c is a real number you can define zc for such z in the usual way:

zc ≡ exp (c log (z)) = exp (c [ln |z|+ i arg (z)])
= |z|c exp (ic arg (z)) = |z|c (cos (c arg (z)) + i sin (c arg (z))) .

If |c| < a, then |c arg (z)| < π
2 and so cos (c arg (z)) > 0. Therefore, for such c,

|exp (− (zc))| = |exp (− |z|c (cos (c arg (z)) + i sin (c arg (z))))|
= |exp (− |z|c (cos (c arg (z))))|

which is bounded since cos (c arg (z)) > 0.

Corollary 19.13 Let Ω =
{
z ∈ C : |arg (z)| < π

2a

}
where a ≥ 1

2 and suppose f is
analytic on Ω and satisfies lim supz→a |f (z)| ≤ M on ∂Ω and suppose there are
positive constants, P, b where b < a and

|f (z)| ≤ P exp
(
|z|b

)

for all |z| large enough. Then |f (z)| ≤ M for all z ∈ Ω.

Proof: Let b < c < a and let φ (z) ≡ exp (− (zc)) . Then as discussed above,
φ (z) 6= 0 on Ω and |φ (z)| is bounded on Ω. Now

|φ (z)|η = |exp (− |z|c η (cos (c arg (z))))|

lim sup
z→∞

|f (z)| |φ (z)|η = lim sup
z→∞

P exp
(
|z|b

)

|exp (|z|c η (cos (c arg (z))))| = 0 ≤ M

and so by Theorem 19.12 |f (z)| ≤ M.
The following is another interesting case. This case is presented in Rudin [36]

Corollary 19.14 Let Ω be the open set consisting of {z ∈ C : a < Re z < b} and
suppose f is analytic on Ω , continuous on Ω, and bounded on Ω. Suppose also that
f (z) ≤ 1 on the two lines Re z = a and Re z = b. Then |f (z)| ≤ 1 for all z ∈ Ω.

Proof: This time let φ (z) = 1
1+z−a . Thus |φ (z)| ≤ 1 because Re (z − a) > 0 and

φ (z) 6= 0 for all z ∈ Ω. Also, lim supz→∞ |φ (z)|η = 0 for every η > 0. Therefore, if a
is a point of the sides of Ω, lim supz→a |f (z)| ≤ 1 while lim supz→∞ |f (z)| |φ (z)|η =
0 ≤ 1 and so by Theorem 19.12, |f (z)| ≤ 1 on Ω.

This corollary yields an interesting conclusion.

Corollary 19.15 Let Ω be the open set consisting of {z ∈ C : a < Re z < b} and
suppose f is analytic on Ω , continuous on Ω, and bounded on Ω. Define

M (x) ≡ sup {|f (z)| : Re z = x}
Then for x ∈ (a, b).

M (x) ≤ M (a)
b−x
b−a M (b)

x−a
b−a .
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Proof: Let ε > 0 and define

g (z) ≡ (M (a) + ε)
b−z
b−a (M (b) + ε)

z−a
b−a

where for M > 0 and z ∈ C, Mz ≡ exp (z ln (M)) . Thus g 6= 0 and so f/g is
analytic on Ω and continuous on Ω. Also on the left side,

∣∣∣∣
f (a + iy)
g (a + iy)

∣∣∣∣ =

∣∣∣∣∣
f (a + iy)

(M (a) + ε)
b−a−iy

b−a

∣∣∣∣∣ =

∣∣∣∣∣
f (a + iy)

(M (a) + ε)
b−a
b−a

∣∣∣∣∣ ≤ 1

while on the right side a similar computation shows
∣∣∣ f

g

∣∣∣ ≤ 1 also. Therefore, by
Corollary 19.14 |f/g| ≤ 1 on Ω. Therefore, letting x + iy = z,

|f (z)| ≤
∣∣∣(M (a) + ε)

b−z
b−a (M (b) + ε)

z−a
b−a

∣∣∣ =
∣∣∣(M (a) + ε)

b−x
b−a (M (b) + ε)

x−a
b−a

∣∣∣
and so

M (x) ≤ (M (a) + ε)
b−x
b−a (M (b) + ε)

x−a
b−a .

Since ε > 0 is arbitrary, it yields the conclusion of the corollary.
Another way of saying this is that x → ln (M (x)) is a convex function.
This corollary has an interesting application known as the Hadamard three cir-

cles theorem.

19.3.2 Hadamard Three Circles Theorem

Let 0 < R1 < R2 and suppose f is analytic on {z ∈ C : R1 < |z| < R2} . Then letting
R1 < a < b < R2, note that g (z) ≡ exp (z) maps the strip {z ∈ C : ln a < Re z < b}
onto {z ∈ C : a < |z| < b} and that in fact, g maps the line ln r + iy onto the circle
reiθ. Now let M (x) be defined as above and m be defined by

m (r) ≡ max
θ

∣∣f (
reiθ

)∣∣ .

Then for a < r < b, Corollary 19.15 implies

m (r) = sup
y

∣∣f (
eln r+iy

)∣∣ = M (ln r) ≤ M (ln a)
ln b−ln r
ln b−ln a M (ln b)

ln r−ln a
ln b−ln a

= m (a)ln(b/r)/ ln(b/a)
m (b)ln(r/a)/ ln(b/a)

and so
m (r)ln(b/a) ≤ m (a)ln(b/r)

m (b)ln(r/a)
.

Taking logarithms, this yields

ln
(

b

a

)
ln (m (r)) ≤ ln

(
b

r

)
ln (m (a)) + ln

( r

a

)
ln (m (b))

which says the same as r → ln (m (r)) is a convex function of ln r.
The next example, also in Rudin [36] is very dramatic. An unbelievably weak

assumption is made on the growth of the function and still you get a uniform bound
in the conclusion.



434 THE OPEN MAPPING THEOREM

Corollary 19.16 Let Ω =
{
z ∈ C : |Im (z)| < π

2

}
. Suppose f is analytic on Ω,

continuous on Ω, and there exist constants, α < 1 and A < ∞ such that

|f (z)| ≤ exp (A exp (α |x|)) for z = x + iy

and ∣∣∣f
(
x± i

π

2

)∣∣∣ ≤ 1

for all x ∈ R. Then |f (z)| ≤ 1 on Ω.

Proof: This time let φ (z) = [exp (A exp (βz)) exp (A exp (−βz))]−1 where α <
β < 1. Then φ (z) 6= 0 on Ω and for η > 0

|φ (z)|η =
1

|exp (ηA exp (βz)) exp (ηA exp (−βz))|
Now

exp (ηA exp (βz)) exp (ηA exp (−βz))
= exp (ηA (exp (βz) + exp (−βz)))
= exp

[
ηA

(
cos (βy)

(
eβx + e−βx

)
+ i sin (βy)

(
eβx − e−βx

))]

and so
|φ (z)|η =

1
exp [ηA (cos (βy) (eβx + e−βx))]

Now cos βy > 0 because β < 1 and |y| < π
2 . Therefore,

lim sup
z→∞

|f (z)| |φ (z)|η ≤ 0 ≤ 1

and so by Theorem 19.12, |f (z)| ≤ 1.

19.3.3 Schwarz’s Lemma

This interesting lemma comes from the maximum modulus theorem. It will be used
later as part of the proof of the Riemann mapping theorem.

Lemma 19.17 Suppose F : B (0, 1) → B (0, 1) , F is analytic, and F (0) = 0. Then
for all z ∈ B (0, 1) ,

|F (z)| ≤ |z| , (19.4)

and
|F ′ (0)| ≤ 1. (19.5)

If equality holds in 19.5 then there exists λ ∈ C with |λ| = 1 and

F (z) = λz. (19.6)
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Proof: First note that by assumption, F (z) /z has a removable singularity at
0 if its value at 0 is defined to be F ′ (0) . By the maximum modulus theorem, if
|z| < r < 1, ∣∣∣∣

F (z)
z

∣∣∣∣ ≤ max
t∈[0,2π]

∣∣F (
reit

)∣∣
r

≤ 1
r
.

Then letting r → 1, ∣∣∣∣
F (z)

z

∣∣∣∣ ≤ 1

this shows 19.4 and it also verifies 19.5 on taking the limit as z → 0. If equality
holds in 19.5, then |F (z) /z| achieves a maximum at an interior point so F (z) /z
equals a constant, λ by the maximum modulus theorem. Since F (z) = λz, it follows
F ′ (0) = λ and so |λ| = 1.

Rudin [36] gives a memorable description of what this lemma says. It says that
if an analytic function maps the unit ball to itself, keeping 0 fixed, then it must do
one of two things, either be a rotation or move all points closer to 0. (This second
part follows in case |F ′ (0)| < 1 because in this case, you must have |F (z)| 6= |z|
and so by 19.4, |F (z)| < |z|)

19.3.4 One To One Analytic Maps On The Unit Ball

The transformation in the next lemma is of fundamental importance.

Lemma 19.18 Let α ∈ B (0, 1) and define

φα (z) ≡ z − α

1− αz
.

Then φα : B (0, 1) → B (0, 1) , φα : ∂B (0, 1) → ∂B (0, 1) , and is one to one and
onto. Also φ−α = φ−1

α . Also

φ′α (0) = 1− |α|2 , φ′ (α) =
1

1− |α|2 .

Proof: First of all, for |z| < 1/ |α| ,

φα ◦ φ−α (z) ≡

(
z+α
1+αz

)
− α

1− α
(

z+α
1+αz

) = z

after a few computations. If I show that φα maps B (0, 1) to B (0, 1) for all |α| < 1,
this will have shown that φα is one to one and onto B (0, 1).

Consider
∣∣φα

(
eiθ

)∣∣ . This yields

∣∣∣∣
eiθ − α

1− αeiθ

∣∣∣∣ =
∣∣∣∣
1− αe−iθ

1− αeiθ

∣∣∣∣ = 1



436 THE OPEN MAPPING THEOREM

where the first equality is obtained by multiplying by
∣∣e−iθ

∣∣ = 1. Therefore, φα maps
∂B (0, 1) one to one and onto ∂B (0, 1) . Now notice that φα is analytic on B (0, 1)
because the only singularity, a pole is at z = 1/α. By the maximum modulus
theorem, it follows

|φα (z)| < 1

whenever |z| < 1. The same is true of φ−α.
It only remains to verify the assertions about the derivatives. Long division

gives φα (z) = (−α)−1 +
(
−α+(α)−1

1−αz

)
and so

φ′α (z) = (−1) (1− αz)−2
(
−α + (α)−1

)
(−α)

= α (1− αz)−2
(
−α + (α)−1

)

= (1− αz)−2
(
− |α|2 + 1

)

Hence the two formulas follow. This proves the lemma.
One reason these mappings are so important is the following theorem.

Theorem 19.19 Suppose f is an analytic function defined on B (0, 1) and f maps
B (0, 1) one to one and onto B (0, 1) . Then there exists θ such that

f (z) = eiθφα (z)

for some α ∈ B (0, 1) .

Proof: Let f (α) = 0. Then h (z) ≡ f ◦ φ−α (z) maps B (0, 1) one to one and
onto B (0, 1) and has the property that h (0) = 0. Therefore, by the Schwarz lemma,

|h (z)| ≤ |z| .
but it is also the case that h−1 (0) = 0 and h−1 maps B (0, 1) to B (0, 1). Therefore,
the same inequality holds for h−1. Therefore,

|z| =
∣∣h−1 (h (z))

∣∣ ≤ |h (z)|
and so |h (z)| = |z| . By the Schwarz lemma again, h (z) ≡ f

(
φ−α (z)

)
= eiθz.

Letting z = φα, you get f (z) = eiθφα (z).

19.4 Exercises

1. Consider the function, g (z) = z−i
z+i . Show this is analytic on the upper half

plane, P+ and maps the upper half plane one to one and onto B (0, 1). Hint:
First show g maps the real axis to ∂B (0, 1) . This is really easy because you
end up looking at a complex number divided by its conjugate. Thus |g (z)| = 1
for z on ∂ (P+) . Now show that lim supz→∞ |g (z)| = 1. Then apply a version
of the maximum modulus theorem. You might note that g (z) = 1+ −2i

z+i . This
will show |g (z)| ≤ 1. Next pick w ∈ B (0, 1) and solve g (z) = w. You just
have to show there exists a unique solution and its imaginary part is positive.
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2. Does there exist an entire function f which maps C onto the upper half plane?

3. Letting g be the function of Problem 1 show that
(
g−1

)′ (0) = 2. Also note
that g−1 (0) = i. Now suppose f is an analytic function defined on the upper
half plane which has the property that |f (z)| ≤ 1 and f (i) = β where |β| < 1.
Find an upper bound to |f ′ (i)| . Also find all functions, f which satisfy the
condition, f (i) = β, |f (z)| ≤ 1, and achieve this maximum value. Hint: You
could consider the function, h (z) ≡ φβ ◦ f ◦ g−1 (z) and check the conditions
for the Schwarz lemma for this function, h.

4. This and the next two problems follow a presentation of an interesting topic
in Rudin [36]. Let φα be given in Lemma 19.18. Suppose f is an analytic
function defined on B (0, 1) which satisfies |f (z)| ≤ 1. Suppose also there are
α, β ∈ B (0, 1) and it is required f (α) = β. If f is such a function, show
that |f ′ (α)| ≤ 1−|β|2

1−|α|2 . Hint: To show this consider g = φβ ◦ f ◦ φ−α. Show
g (0) = 0 and |g (z)| ≤ 1 on B (0, 1) . Now use Lemma 19.17.

5. In Problem 4 show there exists a function, f analytic on B (0, 1) such that
f (α) = β, |f (z)| ≤ 0, and |f ′ (α)| = 1−|β|2

1−|α|2 . Hint: You do this by choosing
g in the above problem such that equality holds in Lemma 19.17. Thus you
need g (z) = λz where |λ| = 1 and solve g = φβ ◦ f ◦ φ−α for f .

6. Suppose that f : B (0, 1) → B (0, 1) and that f is analytic, one to one, and
onto with f (α) = 0. Show there exists λ, |λ| = 1 such that f (z) = λφα (z) .
This gives a different way to look at Theorem 19.19. Hint: Let g = f−1.
Then g′ (0) f ′ (α) = 1. However, f (α) = 0 and g (0) = α. From Problem
4 with β = 0, you can conclude an inequality for |f ′ (α)| and another one
for |g′ (0)| . Then use the fact that the product of these two equals 1 which
comes from the chain rule to conclude that equality must take place. Now use
Problem 5 to obtain the form of f.

7. In Corollary 19.16 show that it is essential that α < 1. That is, show there
exists an example where the conclusion is not satisfied with a slightly weaker
growth condition. Hint: Consider exp (exp (z)) .

8. Suppose {fn} is a sequence of functions which are analytic on Ω, a bounded
region such that each fn is also continuous on Ω. Suppose that {fn} converges
uniformly on ∂Ω. Show that then {fn} converges uniformly on Ω and that the
function to which the sequence converges is analytic on Ω and continuous on
Ω.

9. Suppose Ω is a bounded region and there exists a point z0 ∈ Ω such that
|f (z0)| = min

{|f (z)| : z ∈ Ω
}

. Can you conclude f must equal a constant?

10. Suppose f is continuous on B (a, r) and analytic on B (a, r) and that f is not
constant. Suppose also |f (z)| = C 6= 0 for all |z − a| = r. Show that there
exists α ∈ B (a, r) such that f (α) = 0. Hint: If not, consider f/C and C/f.
Both would be analytic on B (a, r) and are equal to 1 on the boundary.
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11. Suppose f is analytic on B (0, 1) but for every a ∈ ∂B (0, 1) , limz→a |f (z)| =
∞. Show there exists a sequence, {zn} ⊆ B (0, 1) such that limn→∞ |zn| = 1
and f (zn) = 0.

19.5 Counting Zeros

The above proof of the open mapping theorem relies on the very important inverse
function theorem from real analysis. There are other approaches to this important
theorem which do not rely on the big theorems from real analysis and are more
oriented toward the use of the Cauchy integral formula and specialized techniques
from complex analysis. One of these approaches is given next which involves the
notion of “counting zeros”. The next theorem is the one about counting zeros. It
will also be used later in the proof of the Riemann mapping theorem.

Theorem 19.20 Let Ω be an open set in C and let γ : [a, b] → Ω be closed, con-
tinuous, bounded variation, and n (γ, z) = 0 for all z /∈ Ω. Suppose also that f
is analytic on Ω having zeros a1, · · ·, am where the zeros are repeated according to
multiplicity, and suppose that none of these zeros are on γ∗. Then

1
2πi

∫

γ

f ′ (z)
f (z)

dz =
m∑

k=1

n (γ, ak) .

Proof: Let f (z) =
∏m

j=1 (z − aj) g (z) where g (z) 6= 0 on Ω. Hence

f ′ (z)
f (z)

=
m∑

j=1

1
z − aj

+
g′ (z)
g (z)

and so
1

2πi

∫

γ

f ′ (z)
f (z)

dz =
m∑

j=1

n (γ, aj) +
1

2πi

∫

γ

g′ (z)
g (z)

dz.

But the function, z → g′(z)
g(z) is analytic and so by Corollary 18.47, the last integral

in the above expression equals 0. Therefore, this proves the theorem.
The following picture is descriptive of the situation described in the next theo-

rem.

Ω
f

q

γ
a1q

qa2

a3q
f(γ([a, b]))

αq

Theorem 19.21 Let Ω be a region, let γ : [a, b] → Ω be closed continuous, and
bounded variation such that n (γ, z) = 0 for all z /∈ Ω. Also suppose f : Ω → C
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is analytic and that α /∈ f (γ∗) . Then f ◦ γ : [a, b] → C is continuous, closed,
and bounded variation. Also suppose {a1, · · ·, am} = f−1 (α) where these points are
counted according to their multiplicities as zeros of the function f − α Then

n (f ◦ γ, α) =
m∑

k=1

n (γ, ak) .

Proof: It is clear that f ◦ γ is continuous. It only remains to verify that it is of
bounded variation. Suppose first that γ∗ ⊆ B ⊆ B ⊆ Ω where B is a ball. Then

|f (γ (t))− f (γ (s))| =

∣∣∣∣
∫ 1

0

f ′ (γ (s) + λ (γ (t)− γ (s))) (γ (t)− γ (s)) dλ

∣∣∣∣
≤ C |γ (t)− γ (s)|

where C ≥ max
{|f ′ (z)| : z ∈ B

}
. Hence, in this case,

V (f ◦ γ, [a, b]) ≤ CV (γ, [a, b]) .

Now let ε denote the distance between γ∗ and C \ Ω. Since γ∗ is compact, ε > 0.
By uniform continuity there exists δ = b−a

p for p a positive integer such that if
|s− t| < δ, then |γ (s)− γ (t)| < ε

2 . Then

γ ([t, t + δ]) ⊆ B
(
γ (t) ,

ε

2

)
⊆ Ω.

Let C ≥ max
{
|f ′ (z)| : z ∈ ∪p

j=1B
(
γ (tj) , ε

2

)}
where tj ≡ j

p (b− a)+ a. Then from
what was just shown,

V (f ◦ γ, [a, b]) ≤
p−1∑

j=0

V (f ◦ γ, [tj , tj+1])

≤ C

p−1∑

j=0

V (γ, [tj , tj+1]) < ∞

showing that f ◦γ is bounded variation as claimed. Now from Theorem 18.42 there
exists η ∈ C1 ([a, b]) such that

η (a) = γ (a) = γ (b) = η (b) , η ([a, b]) ⊆ Ω,

and
n (η, ak) = n (γ, ak) , n (f ◦ γ, α) = n (f ◦ η, α) (19.7)

for k = 1, · · ·,m. Then
n (f ◦ γ, α) = n (f ◦ η, α)



440 THE OPEN MAPPING THEOREM

=
1

2πi

∫

f◦η

dw

w − α

=
1

2πi

∫ b

a

f ′ (η (t))
f (η (t))− α

η′ (t) dt

=
1

2πi

∫

η

f ′ (z)
f (z)− α

dz

=
m∑

k=1

n (η, ak)

By Theorem 19.20. By 19.7, this equals
∑m

k=1 n (γ, ak) which proves the theorem.
The next theorem is incredible and is very interesting for its own sake. The

following picture is descriptive of the situation of this theorem.

f q
t a

t a1

t a2

t a3

t a4

B(a, ε)

sz s α

B(α, δ)

Theorem 19.22 Let f : B (a,R) → C be analytic and let

f (z)− α = (z − a)m
g (z) , ∞ > m ≥ 1

where g (z) 6= 0 in B (a,R) . (f (z)− α has a zero of order m at z = a.) Then there
exist ε, δ > 0 with the property that for each z satisfying 0 < |z − α| < δ, there exist
points,

{a1, · · ·, am} ⊆ B (a, ε) ,

such that
f−1 (z) ∩B (a, ε) = {a1, · · ·, am}

and each ak is a zero of order 1 for the function f (·)− z.

Proof: By Theorem 18.23 f is not constant on B (a,R) because it has a zero
of order m. Therefore, using this theorem again, there exists ε > 0 such that
B (a, 2ε) ⊆ B (a,R) and there are no solutions to the equation f (z) − α = 0 for
z ∈ B (a, 2ε) except a. Also assume ε is small enough that for 0 < |z − a| ≤ 2ε,
f ′ (z) 6= 0. This can be done since otherwise, a would be a limit point of a sequence
of points, zn, having f ′ (zn) = 0 which would imply, by Theorem 18.23 that f ′ = 0
on B (a,R) , contradicting the assumption that f − α has a zero of order m and is
therefore not constant. Thus the situation is described by the following picture.
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f − α 6= 0

f ′ 6= 0

2ε
s

¡
¡

¡¡ª

Now pick γ (t) = a + εeit, t ∈ [0, 2π] . Then α /∈ f (γ∗) so there exists δ > 0 with

B (α, δ) ∩ f (γ∗) = ∅. (19.8)

Therefore, B (α, δ) is contained on one component of C \ f (γ ([0, 2π])) . Therefore,
n (f ◦ γ, α) = n (f ◦ γ, z) for all z ∈ B (α, δ) . Now consider f restricted to B (a, 2ε) .
For z ∈ B (α, δ) , f−1 (z) must consist of a finite set of points because f ′ (w) 6= 0
for all w in B (a, 2ε) \ {a} implying that the zeros of f (·) − z in B (a, 2ε) have no
limit point. Since B (a, 2ε) is compact, this means there are only finitely many. By
Theorem 19.21,

n (f ◦ γ, z) =
p∑

k=1

n (γ, ak) (19.9)

where {a1, · · ·, ap} = f−1 (z) . Each point, ak of f−1 (z) is either inside the circle
traced out by γ, yielding n (γ, ak) = 1, or it is outside this circle yielding n (γ, ak) =
0 because of 19.8. It follows the sum in 19.9 reduces to the number of points of
f−1 (z) which are contained in B (a, ε) . Thus, letting those points in f−1 (z) which
are contained in B (a, ε) be denoted by {a1, · · ·, ar}

n (f ◦ γ, α) = n (f ◦ γ, z) = r.

Also, by Theorem 19.20, m = n (f ◦ γ, α) because a is a zero of f − α of order m.
Therefore, for z ∈ B (α, δ)

m = n (f ◦ γ, α) = n (f ◦ γ, z) = r

Therefore, r = m. Each of these ak is a zero of order 1 of the function f (·) − z
because f ′ (ak) 6= 0. This proves the theorem.

This is a very fascinating result partly because it implies that for values of f
near a value, α, at which f (·) − α has a zero of order m for m > 1, the inverse
image of these values includes at least m points, not just one. Thus the topological
properties of the inverse image changes radically. This theorem also shows that
f (B (a, ε)) ⊇ B (α, δ) .

Theorem 19.23 (open mapping theorem) Let Ω be a region and f : Ω → C
be analytic. Then f (Ω) is either a point or a region. If f is one to one, then
f−1 : f (Ω) → Ω is analytic.
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Proof: If f is not constant, then for every α ∈ f (Ω) , it follows from Theorem
18.23 that f (·)−α has a zero of order m < ∞ and so from Theorem 19.22 for each
a ∈ Ω there exist ε, δ > 0 such that f (B (a, ε)) ⊇ B (α, δ) which clearly implies
that f maps open sets to open sets. Therefore, f (Ω) is open, connected because f
is continuous. If f is one to one, Theorem 19.22 implies that for every α ∈ f (Ω)
the zero of f (·)− α is of order 1. Otherwise, that theorem implies that for z near
α, there are m points which f maps to z contradicting the assumption that f is one
to one. Therefore, f ′ (z) 6= 0 and since f−1 is continuous, due to f being an open
map, it follows

(
f−1

)′
(f (z)) = lim

f(z1)→f(z)

f−1 (f (z1))− f−1 (f (z))
f (z1)− f (z)

= lim
z1→z

z1 − z

f (z1)− f (z)
=

1
f ′ (z)

.

This proves the theorem.

19.6 An Application To Linear Algebra

Gerschgorin’s theorem gives a convenient way to estimate eigenvalues of a matrix
from easy to obtain information. For A an n × n matrix, denote by σ (A) the
collection of all eigenvalues of A.

Theorem 19.24 Let A be an n × n matrix. Consider the n Gerschgorin discs
defined as

Di ≡


λ ∈ C : |λ− aii| ≤

∑

j 6=i

|aij |


 .

Then every eigenvalue is contained in some Gerschgorin disc.

This theorem says to add up the absolute values of the entries of the ith row
which are off the main diagonal and form the disc centered at aii having this radius.
The union of these discs contains σ (A) .

Proof: Suppose Ax = λx where x 6= 0. Then for A = (aij)

∑

j 6=i

aijxj = (λ− aii)xi.

Therefore, if we pick k such that |xk| ≥ |xj | for all xj , it follows that |xk| 6= 0 since
|x| 6= 0 and

|xk|
∑

j 6=k

|akj | ≥
∑

j 6=k

|akj | |xj | ≥ |λ− akk| |xk| .

Now dividing by |xk| we see that λ is contained in the kth Gerschgorin disc.
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More can be said using the theory about counting zeros. To begin with the
distance between two n× n matrices, A = (aij) and B = (bij) as follows.

||A−B||2 ≡
∑

ij

|aij − bij |2 .

Thus two matrices are close if and only if their corresponding entries are close.
Let A be an n × n matrix. Recall the eigenvalues of A are given by the zeros

of the polynomial, pA (z) = det (zI −A) where I is the n× n identity. Then small
changes in A will produce small changes in pA (z) and p′A (z) . Let γk denote a very
small closed circle which winds around zk, one of the eigenvalues of A, in the counter
clockwise direction so that n (γk, zk) = 1. This circle is to enclose only zk and is
to have no other eigenvalue on it. Then apply Theorem 19.20. According to this
theorem

1
2πi

∫

γ

p′A (z)
pA (z)

dz

is always an integer equal to the multiplicity of zk as a root of pA (t) . Therefore,
small changes in A result in no change to the above contour integral because it
must be an integer and small changes in A result in small changes in the integral.
Therefore whenever every entry of the matrix B is close enough to the corresponding
entry of the matrix A, the two matrices have the same number of zeros inside γk

under the usual convention that zeros are to be counted according to multiplicity. By
making the radius of the small circle equal to ε where ε is less than the minimum
distance between any two distinct eigenvalues of A, this shows that if B is close
enough to A, every eigenvalue of B is closer than ε to some eigenvalue of A. The
next theorem is about continuous dependence of eigenvalues.

Theorem 19.25 If λ is an eigenvalue of A, then if ||B −A|| is small enough, some
eigenvalue of B will be within ε of λ.

Consider the situation that A (t) is an n × n matrix and that t → A (t) is
continuous for t ∈ [0, 1] .

Lemma 19.26 Let λ (t) ∈ σ (A (t)) for t < 1 and let Σt = ∪s≥tσ (A (s)) . Also let
Kt be the connected component of λ (t) in Σt. Then there exists η > 0 such that
Kt ∩ σ (A (s)) 6= ∅ for all s ∈ [t, t + η] .

Proof: Denote by D (λ (t) , δ) the disc centered at λ (t) having radius δ > 0,
with other occurrences of this notation being defined similarly. Thus

D (λ (t) , δ) ≡ {z ∈ C : |λ (t)− z| ≤ δ} .

Suppose δ > 0 is small enough that λ (t) is the only element of σ (A (t)) contained
in D (λ (t) , δ) and that pA(t) has no zeroes on the boundary of this disc. Then by
continuity, and the above discussion and theorem, there exists η > 0, t+η < 1, such
that for s ∈ [t, t + η] , pA(s) also has no zeroes on the boundary of this disc and that
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A (s) has the same number of eigenvalues, counted according to multiplicity, in the
disc as A (t) . Thus σ (A (s)) ∩D (λ (t) , δ) 6= ∅ for all s ∈ [t, t + η] . Now let

H =
⋃

s∈[t,t+η]

σ (A (s)) ∩D (λ (t) , δ) .

I will show H is connected. Suppose not. Then H = P ∪Q where P, Q are separated
and λ (t) ∈ P. Let

s0 ≡ inf {s : λ (s) ∈ Q for some λ (s) ∈ σ (A (s))} .

There exists λ (s0) ∈ σ (A (s0)) ∩ D (λ (t) , δ) . If λ (s0) /∈ Q, then from the above
discussion there are

λ (s) ∈ σ (A (s)) ∩Q

for s > s0 arbitrarily close to λ (s0) . Therefore, λ (s0) ∈ Q which shows that s0 > t
because λ (t) is the only element of σ (A (t)) in D (λ (t) , δ) and λ (t) ∈ P. Now let
sn ↑ s0. Then λ (sn) ∈ P for any

λ (sn) ∈ σ (A (sn)) ∩D (λ (t) , δ)

and from the above discussion, for some choice of sn → s0, λ (sn) → λ (s0) which
contradicts P and Q separated and nonempty. Since P is nonempty, this shows
Q = ∅. Therefore, H is connected as claimed. But Kt ⊇ H and so Kt∩σ (A (s)) 6= ∅
for all s ∈ [t, t + η] . This proves the lemma.

The following is the necessary theorem.

Theorem 19.27 Suppose A (t) is an n×n matrix and that t → A (t) is continuous
for t ∈ [0, 1] . Let λ (0) ∈ σ (A (0)) and define Σ ≡ ∪t∈[0,1]σ (A (t)) . Let Kλ(0) = K0

denote the connected component of λ (0) in Σ. Then K0 ∩ σ (A (t)) 6= ∅ for all
t ∈ [0, 1] .

Proof: Let S ≡ {t ∈ [0, 1] : K0 ∩ σ (A (s)) 6= ∅ for all s ∈ [0, t]} . Then 0 ∈ S.
Let t0 = sup (S) . Say σ (A (t0)) = λ1 (t0) , · · ·, λr (t0) . I claim at least one of these
is a limit point of K0 and consequently must be in K0 which will show that S
has a last point. Why is this claim true? Let sn ↑ t0 so sn ∈ S. Now let the discs,
D (λi (t0) , δ) , i = 1, ···, r be disjoint with pA(t0) having no zeroes on γi the boundary
of D (λi (t0) , δ) . Then for n large enough it follows from Theorem 19.20 and the
discussion following it that σ (A (sn)) is contained in ∪r

i=1D (λi (t0) , δ). Therefore,
K0 ∩ (σ (A (t0)) + D (0, δ)) 6= ∅ for all δ small enough. This requires at least one of
the λi (t0) to be in K0. Therefore, t0 ∈ S and S has a last point.

Now by Lemma 19.26, if t0 < 1, then K0∪Kt would be a strictly larger connected
set containing λ (0) . (The reason this would be strictly larger is that K0∩σ (A (s)) =
∅ for some s ∈ (t, t + η) while Kt ∩ σ (A (s)) 6= ∅ for all s ∈ [t, t + η].) Therefore,
t0 = 1 and this proves the theorem.

The following is an interesting corollary of the Gerschgorin theorem.
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Corollary 19.28 Suppose one of the Gerschgorin discs, Di is disjoint from the
union of the others. Then Di contains an eigenvalue of A. Also, if there are n
disjoint Gerschgorin discs, then each one contains an eigenvalue of A.

Proof: Denote by A (t) the matrix
(
at

ij

)
where if i 6= j, at

ij = taij and at
ii = aii.

Thus to get A (t) we multiply all non diagonal terms by t. Let t ∈ [0, 1] . Then
A (0) = diag (a11, · · ·, ann) and A (1) = A. Furthermore, the map, t → A (t) is
continuous. Denote by Dt

j the Gerschgorin disc obtained from the jth row for the
matrix, A (t). Then it is clear that Dt

j ⊆ Dj the jth Gerschgorin disc for A. Then
aii is the eigenvalue for A (0) which is contained in the disc, consisting of the single
point aii which is contained in Di. Letting K be the connected component in Σ for
Σ defined in Theorem 19.27 which is determined by aii, it follows by Gerschgorin’s
theorem that K ∩ σ (A (t)) ⊆ ∪n

j=1D
t
j ⊆ ∪n

j=1Dj = Di ∪ (∪j 6=iDj) and also, since
K is connected, there are no points of K in both Di and (∪j 6=iDj) . Since at least
one point of K is in Di,(aii) it follows all of K must be contained in Di. Now by
Theorem 19.27 this shows there are points of K ∩ σ (A) in Di. The last assertion
follows immediately.

Actually, this can be improved slightly. It involves the following lemma.

Lemma 19.29 In the situation of Theorem 19.27 suppose λ (0) = K0 ∩ σ (A (0))
and that λ (0) is a simple root of the characteristic equation of A (0). Then for all
t ∈ [0, 1] ,

σ (A (t)) ∩K0 = λ (t)

where λ (t) is a simple root of the characteristic equation of A (t) .

Proof: Let S ≡
{t ∈ [0, 1] : K0 ∩ σ (A (s)) = λ (s) , a simple eigenvalue for all s ∈ [0, t]} .

Then 0 ∈ S so it is nonempty. Let t0 = sup (S) and suppose λ1 6= λ2 are two
elements of σ (A (t0)) ∩K0. Then choosing η > 0 small enough, and letting Di be
disjoint discs containing λi respectively, similar arguments to those of Lemma 19.26
imply

Hi ≡ ∪s∈[t0−η,t0]σ (A (s)) ∩Di

is a connected and nonempty set for i = 1, 2 which would require that Hi ⊆ K0.
But then there would be two different eigenvalues of A (s) contained in K0, contrary
to the definition of t0. Therefore, there is at most one eigenvalue, λ (t0) ∈ K0 ∩
σ (A (t0)) . The possibility that it could be a repeated root of the characteristic
equation must be ruled out. Suppose then that λ (t0) is a repeated root of the
characteristic equation. As before, choose a small disc, D centered at λ (t0) and η
small enough that

H ≡ ∪s∈[t0−η,t0]σ (A (s)) ∩D

is a nonempty connected set containing either multiple eigenvalues of A (s) or else a
single repeated root to the characteristic equation of A (s) . But since H is connected
and contains λ (t0) it must be contained in K0 which contradicts the condition for
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s ∈ S for all these s ∈ [t0 − η, t0] . Therefore, t0 ∈ S as hoped. If t0 < 1, there exists
a small disc centered at λ (t0) and η > 0 such that for all s ∈ [t0, t0 + η] , A (s) has
only simple eigenvalues in D and the only eigenvalues of A (s) which could be in K0

are in D. (This last assertion follows from noting that λ (t0) is the only eigenvalue
of A (t0) in K0 and so the others are at a positive distance from K0. For s close
enough to t0, the eigenvalues of A (s) are either close to these eigenvalues of A (t0)
at a positive distance from K0 or they are close to the eigenvalue, λ (t0) in which
case it can be assumed they are in D.) But this shows that t0 is not really an upper
bound to S. Therefore, t0 = 1 and the lemma is proved.

With this lemma, the conclusion of the above corollary can be improved.

Corollary 19.30 Suppose one of the Gerschgorin discs, Di is disjoint from the
union of the others. Then Di contains exactly one eigenvalue of A and this eigen-
value is a simple root to the characteristic polynomial of A.

Proof: In the proof of Corollary 19.28, first note that aii is a simple root of A (0)
since otherwise the ith Gerschgorin disc would not be disjoint from the others. Also,
K, the connected component determined by aii must be contained in Di because it
is connected and by Gerschgorin’s theorem above, K ∩ σ (A (t)) must be contained
in the union of the Gerschgorin discs. Since all the other eigenvalues of A (0) , the
ajj , are outside Di, it follows that K ∩ σ (A (0)) = aii. Therefore, by Lemma 19.29,
K ∩ σ (A (1)) = K ∩ σ (A) consists of a single simple eigenvalue. This proves the
corollary.

Example 19.31 Consider the matrix,



5 1 0
1 1 1
0 1 0




The Gerschgorin discs are D (5, 1) , D (1, 2) , and D (0, 1) . Then D (5, 1) is dis-
joint from the other discs. Therefore, there should be an eigenvalue in D (5, 1) .
The actual eigenvalues are not easy to find. They are the roots of the characteristic
equation, t3− 6t2 + 3t + 5 = 0. The numerical values of these are −. 669 66, 1. 423 1,
and 5. 246 55, verifying the predictions of Gerschgorin’s theorem.

19.7 Exercises

1. Use Theorem 19.20 to give an alternate proof of the fundamental theorem
of algebra. Hint: Take a contour of the form γr = reit where t ∈ [0, 2π] .
Consider

∫
γr

p′(z)
p(z) dz and consider the limit as r →∞.

2. Let M be an n×n matrix. Recall that the eigenvalues of M are given by the
zeros of the polynomial, pM (z) = det (M − zI) where I is the n× n identity.
Formulate a theorem which describes how the eigenvalues depend on small
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changes in M. Hint: You could define a norm on the space of n×n matrices
as ||M || ≡ tr (MM∗)1/2 where M∗ is the conjugate transpose of M. Thus

||M || =

∑

j,k

|Mjk|2



1/2

.

Argue that small changes will produce small changes in pM (z) . Then apply
Theorem 19.20 using γk a very small circle surrounding zk, the kth eigenvalue.

3. Suppose that two analytic functions defined on a region are equal on some
set, S which contains a limit point. (Recall p is a limit point of S if every
open set which contains p, also contains infinitely many points of S. ) Show
the two functions coincide. We defined ez ≡ ex (cos y + i sin y) earlier and we
showed that ez, defined this way was analytic on C. Is there any other way
to define ez on all of C such that the function coincides with ex on the real
axis?

4. You know various identities for real valued functions. For example cosh2 x−
sinh2 x = 1. If you define cosh z ≡ ez+e−z

2 and sinh z ≡ ez−e−z

2 , does it follow
that

cosh2 z − sinh2 z = 1

for all z ∈ C? What about

sin (z + w) = sin z cos w + cos z sin w?

Can you verify these sorts of identities just from your knowledge about what
happens for real arguments?

5. Was it necessary that U be a region in Theorem 18.23? Would the same
conclusion hold if U were only assumed to be an open set? Why? What
about the open mapping theorem? Would it hold if U were not a region?

6. Let f : U → C be analytic and one to one. Show that f ′ (z) 6= 0 for all z ∈ U.
Does this hold for a function of a real variable?

7. We say a real valued function, u is subharmonic if uxx+uyy ≥ 0. Show that if u
is subharmonic on a bounded region, (open connected set) U, and continuous
on U and u ≤ m on ∂U, then u ≤ m on U. Hint: If not, u achieves its
maximum at (x0, y0) ∈ U. Let u (x0, y0) > m + δ where δ > 0. Now consider
uε (x, y) = εx2 + u (x, y) where ε is small enough that 0 < εx2 < δ for all
(x, y) ∈ U. Show that uε also achieves its maximum at some point of U and
that therefore, uεxx + uεyy ≤ 0 at that point implying that uxx + uyy ≤ −ε,
a contradiction.

8. If u is harmonic on some region, U, show that u coincides locally with the
real part of an analytic function and that therefore, u has infinitely many
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derivatives on U. Hint: Consider the case where 0 ∈ U. You can always
reduce to this case by a suitable translation. Now let B (0, r) ⊆ U and use
the Schwarz formula to obtain an analytic function whose real part coincides
with u on ∂B (0, r) . Then use Problem 7.

9. Show the solution to the Dirichlet problem of Problem 8 on Page 400 is unique.
You need to formulate this precisely and then prove uniqueness.



Residues

Definition 20.1 The residue of f at an isolated singularity α which is a pole,
written res (f, α) is the coefficient of (z − α)−1 where

f (z) = g (z) +
m∑

k=1

bk

(z − α)k
.

Thus res (f, α) = b1 in the above.

At this point, recall Corollary 18.47 which is stated here for convenience.

Corollary 20.2 Let Ω be an open set and let γk : [ak, bk] → Ω, k = 1, · · ·,m, be
closed, continuous and of bounded variation. Suppose also that

m∑

k=1

n (γk, z) = 0

for all z /∈ Ω. Then if f : Ω → C is analytic,
m∑

k=1

∫

γk

f (w) dw = 0.

The following theorem is called the residue theorem. Note the resemblance to
Corollary 18.47.

Theorem 20.3 Let Ω be an open set and let γk : [ak, bk] → Ω, k = 1, · · ·,m, be
closed, continuous and of bounded variation. Suppose also that

m∑

k=1

n (γk, z) = 0

for all z /∈ Ω. Then if f : Ω → Ĉ is meromorphic with no pole of f contained in any
γ∗k,

1
2πi

m∑

k=1

∫

γk

f (w) dw =
∑

α∈A

res (f, α)
m∑

k=1

n (γk, α) (20.1)

449
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where here A denotes the set of poles of f in Ω. The sum on the right is a finite
sum.

Proof: First note that there are at most finitely many α which are not in
the unbounded component of C \ ∪m

k=1γk ([ak, bk]) . Thus there exists a finite set,
{α1, · · ·, αN} ⊆ A such that these are the only possibilities for which

∑n
k=1 n (γk, α)

might not equal zero. Therefore, 20.1 reduces to

1
2πi

m∑

k=1

∫

γk

f (w) dw =
N∑

j=1

res (f, αj)
n∑

k=1

n (γk, αj)

and it is this last equation which is established. Near αj ,

f (z) = gj (z) +
mj∑
r=1

bj
r

(z − αj)
r ≡ gj (z) + Qj (z) .

where gj is analytic at and near αj . Now define

G (z) ≡ f (z)−
N∑

j=1

Qj (z) .

It follows that G (z) has a removable singularity at each αj . Therefore, by Corollary
18.47,

0 =
m∑

k=1

∫

γk

G (z) dz =
m∑

k=1

∫

γk

f (z) dz −
N∑

j=1

m∑

k=1

∫

γk

Qj (z) dz.

Now
m∑

k=1

∫

γk

Qj (z) dz =
m∑

k=1

∫

γk

(
bj
1

(z − αj)
+

mj∑
r=2

bj
r

(z − αj)
r

)
dz

=
m∑

k=1

∫

γk

bj
1

(z − αj)
dz ≡

m∑

k=1

n (γk, αj) res (f, αj) (2πi) .

Therefore,

m∑

k=1

∫

γk

f (z) dz =
N∑

j=1

m∑

k=1

∫

γk

Qj (z) dz

=
N∑

j=1

m∑

k=1

n (γk, αj) res (f, αj) (2πi)

= 2πi

N∑

j=1

res (f, αj)
m∑

k=1

n (γk, αj)

= (2πi)
∑

α∈A

res (f, α)
m∑

k=1

n (γk, α)
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which proves the theorem.
The following is an important example. This example can also be done by real

variable methods and there are some who think that real variable methods are
always to be preferred to complex variable methods. However, I will use the above
theorem to work this example.

Example 20.4 Find limR→∞
∫ R

−R
sin(x)

x dx

Things are easier if you write it as

lim
R→∞

1
i

(∫ −R−1

−R

eix

x
dx +

∫ R

R−1

eix

x
dx

)
.

This gives the same answer because cos (x) /x is odd. Consider the following contour
in which the orientation involves counterclockwise motion exactly once around.

−R R−R−1 R−1

Denote by γR−1 the little circle and γR the big one. Then on the inside of this
contour there are no singularities of eiz/z and it is contained in an open set with
the property that the winding number with respect to this contour about any point
not in the open set equals zero. By Theorem 18.22

1
i

(∫ −R−1

−R

eix

x
dx +

∫

γR−1

eiz

z
dz +

∫ R

R−1

eix

x
dx +

∫

γR

eiz

z
dz

)
= 0 (20.2)

Now ∣∣∣∣∣
∫

γR

eiz

z
dz

∣∣∣∣∣ =
∣∣∣∣
∫ π

0

eR(i cos θ−sin θ)idθ

∣∣∣∣ ≤
∫ π

0

e−R sin θdθ

and this last integral converges to 0 by the dominated convergence theorem. Now
consider the other circle. By the dominated convergence theorem again,

∫

γR−1

eiz

z
dz =

∫ 0

π

eR−1(i cos θ−sin θ)idθ → −iπ
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as R →∞. Then passing to the limit in 20.2,

lim
R→∞

∫ R

−R

sin (x)
x

dx

= lim
R→∞

1
i

(∫ −R−1

−R

eix

x
dx +

∫ R

R−1

eix

x
dx

)

= lim
R→∞

1
i

(
−

∫

γR−1

eiz

z
dz −

∫

γR

eiz

z
dz

)
=
−1
i

(−iπ) = π.

Example 20.5 Find limR→∞
∫ R

−R
eixt sin x

x dx. Note this is essentially finding the
inverse Fourier transform of the function, sin (x) /x.

This equals

lim
R→∞

∫ R

−R

(cos (xt) + i sin (xt))
sin (x)

x
dx

= lim
R→∞

∫ R

−R

cos (xt)
sin (x)

x
dx

= lim
R→∞

∫ R

−R

cos (xt)
sin (x)

x
dx

= lim
R→∞

1
2

∫ R

−R

sin (x (t + 1)) + sin (x (1− t))
x

dx

Let t 6= 1,−1. Then changing variables yields

lim
R→∞

(
1
2

∫ R(1+t)

−R(1+t)

sin (u)
u

du +
1
2

∫ R(1−t)

−R(1−t)

sin (u)
u

du

)
.

In case |t| < 1 Example 20.4 implies this limit is π. However, if t > 1 the limit
equals 0 and this is also the case if t < −1. Summarizing,

lim
R→∞

∫ R

−R

eixt sin x

x
dx =

{
π if |t| < 1
0 if |t| > 1 .

20.1 Rouche’s Theorem And The Argument Prin-
ciple

20.1.1 Argument Principle

A simple closed curve is just one which is homeomorphic to the unit circle. The
Jordan Curve theorem states that every simple closed curve in the plane divides
the plane into exactly two connected components, one bounded and the other un-
bounded. This is a very hard theorem to prove. However, in most applications the
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conclusion is obvious. Nevertheless, to avoid using this big topological result and
to attain some extra generality, I will state the following theorem in terms of the
winding number to avoid using it. This theorem is called the argument principle.
First recall that f has a zero of order m at α if f (z) = g (z) (z − α)m where g is
an analytic function which is not equal to zero at α. This is equivalent to having
f (z) =

∑∞
k=m ak (z − α)k for z near α where am 6= 0. Also recall that f has a pole

of order m at α if for z near α, f (z) is of the form

f (z) = h (z) +
m∑

k=1

bk

(z − α)k
(20.3)

where bm 6= 0 and h is a function analytic near α.

Theorem 20.6 (argument principle) Let f be meromorphic in Ω. Also suppose γ∗

is a closed bounded variation curve containing none of the poles or zeros of f with
the property that for all z /∈ Ω, n (γ, z) = 0 and for all z ∈ Ω, n (γ, z) either equals 0
or 1. Now let {p1, · · ·, pm} and {z1, · · ·, zn} be respectively the poles and zeros for
which the winding number of γ about these points equals 1. Let zk be a zero of order
rk and let pk be a pole of order lk. Then

1
2πi

∫

γ

f ′ (z)
f (z)

dz =
n∑

k=1

rk −
m∑

k=1

lk

Proof: This theorem follows from computing the residues of f ′/f. It has residues
at poles and zeros. I will do this now. First suppose f has a pole of order p at α.
Then f has the form given in 20.3. Therefore,

f ′ (z)
f (z)

=
h′ (z)−∑p

k=1
kbk

(z−α)k+1

h (z) +
∑p

k=1
bk

(z−α)k

=
h′ (z) (z − α)p −∑p−1

k=1 kbk (z − α)−k−1+p − pbp

(z−α)

h (z) (z − α)p +
∑p−1

k=1 bk (z − α)p−k + bp

This is of the form

=
bp

s (z) + bp

r (z)− pbp

(z−α)

bp
=

bp

s (z) + bp

(
r (z)
bp

− p

(z − α)

)

where s (α) = r (α) = 0. From this, it is clear res (f ′/f, α) = −p, the order of the
pole.

Next suppose f has a zero of order p at α. Then

f ′ (z)
f (z)

=

∑∞
k=p akk (z − α)k−1

∑∞
k=p ak (z − α)k

=

∑∞
k=p akk (z − α)k−1−p

∑∞
k=p ak (z − α)k−p

and from this it is clear res (f ′/f) = p, the order of the zero. The conclusion of this
theorem now follows from Theorem 20.3.
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One can also generalize the theorem to the case where there are many closed
curves involved. This is proved in the same way as the above.

Theorem 20.7 (argument principle) Let f be meromorphic in Ω and let γk :
[ak, bk] → Ω, k = 1, · · ·,m, be closed, continuous and of bounded variation. Suppose
also that

m∑

k=1

n (γk, z) = 0

and for all z /∈ Ω and for z ∈ Ω,
∑m

k=1 n (γk, z) either equals 0 or 1. Now let
{p1, · · ·, pm} and {z1, · · ·, zn} be respectively the poles and zeros for which the above
sum of winding numbers equals 1. Let zk be a zero of order rk and let pk be a pole
of order lk. Then

1
2πi

∫

γ

f ′ (z)
f (z)

dz =
n∑

k=1

rk −
m∑

k=1

lk

There is also a simple extension of this important principle which I found in
[24].

Theorem 20.8 (argument principle) Let f be meromorphic in Ω. Also suppose γ∗

is a closed bounded variation curve with the property that for all z /∈ Ω, n (γ, z) = 0
and for all z ∈ Ω, n (γ, z) either equals 0 or 1. Now let {p1, · · ·, pm} and {z1, · · ·, zn}
be respectively the poles and zeros for which the winding number of γ about these
points equals 1 listed according to multiplicity. Thus if there is a pole of order m
there will be this value repeated m times in the list for the poles. Also let g (z) be
an analytic function. Then

1
2πi

∫

γ

g (z)
f ′ (z)
f (z)

dz =
n∑

k=1

g (zk)−
m∑

k=1

g (pk)

Proof: This theorem follows from computing the residues of g (f ′/f) . It has
residues at poles and zeros. I will do this now. First suppose f has a pole of order
m at α. Then f has the form given in 20.3. Therefore,

g (z)
f ′ (z)
f (z)

=
g (z)

(
h′ (z)−∑m

k=1
kbk

(z−α)k+1

)

h (z) +
∑m

k=1
bk

(z−α)k

= g (z)
h′ (z) (z − α)m −∑m−1

k=1 kbk (z − α)−k−1+m − mbm

(z−α)

h (z) (z − α)m +
∑m−1

k=1 bk (z − α)m−k + bm

From this, it is clear res (g (f ′/f) , α) = −mg (α) , where m is the order of the pole.
Thus α would have been listed m times in the list of poles. Hence the residue at
this point is equivalent to adding −g (α) m times.
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Next suppose f has a zero of order m at α. Then

g (z)
f ′ (z)
f (z)

= g (z)
∑∞

k=m akk (z − α)k−1

∑∞
k=m ak (z − α)k

= g (z)
∑∞

k=m akk (z − α)k−1−m

∑∞
k=m ak (z − α)k−m

and from this it is clear res (g (f ′/f)) = g (α)m, where m is the order of the zero.
The conclusion of this theorem now follows from the residue theorem, Theorem
20.3.

The way people usually apply these theorems is to suppose γ∗ is a simple closed
bounded variation curve, often a circle. Thus it has an inside and an outside, the
outside being the unbounded component of C\γ∗. The orientation of the curve is
such that you go around it once in the counterclockwise direction. Then letting rk

and lk be as described, the conclusion of the theorem follows. In applications, this
is likely the way it will be.

20.1.2 Rouche’s Theorem

With the argument principle, it is possible to prove Rouche’s theorem . In the
argument principle, denote by Zf the quantity

∑m
k=1 rk and by Pf the quantity∑n

k=1 lk. Thus Zf is the number of zeros of f counted according to the order of the
zero with a similar definition holding for Pf . Thus the conclusion of the argument
principle is.

1
2πi

∫

γ

f ′ (z)
f (z)

dz = Zf − Pf

Rouche’s theorem allows the comparison of Zh − Ph for h = f, g. It is a wonderful
and amazing result.

Theorem 20.9 (Rouche’s theorem)Let f, g be meromorphic in an open set Ω. Also
suppose γ∗ is a closed bounded variation curve with the property that for all z /∈
Ω, n (γ, z) = 0, no zeros or poles are on γ∗, and for all z ∈ Ω, n (γ, z) either equals 0
or 1. Let Zf and Pf denote respectively the numbers of zeros and poles of f, which
have the property that the winding number equals 1, counted according to order, with
Zg and Pg being defined similarly. Also suppose that for z ∈ γ∗

|f (z) + g (z)| < |f (z)|+ |g (z)| . (20.4)

Then
Zf − Pf = Zg − Pg.

Proof: From the hypotheses,
∣∣∣∣1 +

f (z)
g (z)

∣∣∣∣ < 1 +
∣∣∣∣
f (z)
g (z)

∣∣∣∣

which shows that for all z ∈ γ∗,

f (z)
g (z)

∈ C \ [0,∞).
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Letting l denote a branch of the logarithm defined on C \ [0,∞), it follows that
l
(

f(z)
g(z)

)
is a primitive for the function,

(f/g)′

(f/g)
=

f ′

f
− g′

g
.

Therefore, by the argument principle,

0 =
1

2πi

∫

γ

(f/g)′

(f/g)
dz =

1
2πi

∫

γ

(
f ′

f
− g′

g

)
dz

= Zf − Pf − (Zg − Pg) .

This proves the theorem.
Often another condition other than 20.4 is used.

Corollary 20.10 In the situation of Theorem 20.9 change 20.4 to the condition,

|f (z)− g (z)| < |f (z)|
for z ∈ γ∗. Then the conclusion is the same.

Proof: The new condition implies
∣∣∣1− g

f (z)
∣∣∣ <

∣∣∣ g(z)
f(z)

∣∣∣ on γ∗. Therefore, g(z)
f(z) /∈

(−∞, 0] and so you can do the same argument with a branch of the logarithm.

20.1.3 A Different Formulation

In [38] I found this modification for Rouche’s theorem concerned with the counting
of zeros of analytic functions. This is a very useful form of Rouche’s theorem because
it makes no mention of a contour.

Theorem 20.11 Let Ω be a bounded open set and suppose f, g are continuous on Ω
and analytic on Ω. Also suppose |f (z)| < |g (z)| on ∂Ω. Then g and f + g have the
same number of zeros in Ω provided each zero is counted according to multiplicity.

Proof: Let K =
{
z ∈ Ω : |f (z)| ≥ |g (z)|} . Then letting λ ∈ [0, 1] , if z /∈ K,

then |f (z)| < |g (z)| and so

0 < |g (z)| − |f (z)| ≤ |g (z)| − λ |f (z)| ≤ |g (z) + λf (z)|
which shows that all zeros of g + λf are contained in K which must be a compact
subset of Ω due to the assumption that |f (z)| < |g (z)| on ∂Ω. By Theorem 18.52 on
Page 419 there exists a cycle, {γk}n

k=1 such that ∪n
k=1γ

∗
k ⊆ Ω\K,

∑n
k=1 n (γk, z) = 1

for every z ∈ K and
∑n

k=1 n (γk, z) = 0 for all z /∈ Ω. Then as above, it follows
from the residue theorem or more directly, Theorem 20.7,

n∑

k=1

1
2πi

∫

γk

λf ′ (z) + g′ (z)
λf (z) + g (z)

dz =
p∑

j=1

mj



20.2. SINGULARITIES AND THE LAURENT SERIES 457

where mj is the order of the jth zero of λf + g in K, hence in Ω. However,

λ →
n∑

k=1

1
2πi

∫

γk

λf ′ (z) + g′ (z)
λf (z) + g (z)

dz

is integer valued and continuous so it gives the same value when λ = 0 as when
λ = 1. When λ = 0 this gives the number of zeros of g in Ω and when λ = 1 it is
the number of zeros of f + g. This proves the theorem.

Here is another formulation of this theorem.

Corollary 20.12 Let Ω be a bounded open set and suppose f, g are continuous on
Ω and analytic on Ω. Also suppose |f (z)− g (z)| < |g (z)| on ∂Ω. Then f and
g have the same number of zeros in Ω provided each zero is counted according to
multiplicity.

Proof: You let f − g play the role of f in Theorem 20.11. Thus f − g + g = f
and g have the same number of zeros. Alternatively, you can give a proof of this
directly as follows.

Let K = {z ∈ Ω : |f (z)− g (z)| ≥ |g (z)|} . Then if g (z) + λ (f (z)− g (z)) = 0
it follows

0 = |g (z) + λ (f (z)− g (z))| ≥ |g (z)| − λ |f (z)− g (z)|
≥ |g (z)| − |f (z)− g (z)|

and so z ∈ K. Thus all zeros of g (z) + λ (f (z)− g (z)) are contained in K. By
Theorem 18.52 on Page 419 there exists a cycle, {γk}n

k=1 such that ∪n
k=1γ

∗
k ⊆

Ω \ K,
∑n

k=1 n (γk, z) = 1 for every z ∈ K and
∑n

k=1 n (γk, z) = 0 for all z /∈ Ω.
Then by Theorem 20.7,

n∑

k=1

1
2πi

∫

γk

λ (f ′ (z)− g′ (z)) + g′ (z)
λ (f (z)− g (z)) + g (z)

dz =
p∑

j=1

mj

where mj is the order of the jth zero of λ (f − g) + g in K, hence in Ω. The left
side is continuous as a function of λ and so the number of zeros of g corresponding
to λ = 0 equals the number of zeros of f corresponding to λ = 1. This proves the
corollary.

20.2 Singularities And The Laurent Series

20.2.1 What Is An Annulus?

In general, when you consider singularities, isolated or not, the fundamental tool
is the Laurent series. This series is important for many other reasons also. In
particular, it is fundamental to the spectral theory of various operators in functional
analysis and is one way to obtain relationships between algebraic and analytical
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conditions essential in various convergence theorems. A Laurent series lives on an
annulus. In all this f has values in X where X is a complex Banach space. If you
like, let X = C.

Definition 20.13 Define ann (a, R1, R2) ≡ {z : R1 < |z − a| < R2} .

Thus ann (a, 0, R) would denote the punctured ball, B (a,R) \ {0} and when
R1 > 0, the annulus looks like the following.

r a

The annulus is the stuff between the two circles.
Here is an important lemma which is concerned with the situation described in

the following picture.

q a
qz

q a
qz

Lemma 20.14 Let γr (t) ≡ a + reit for t ∈ [0, 2π] and let |z − a| < r. Then
n (γr, z) = 1. If |z − a| > r, then n (γr, z) = 0.

Proof: For the first claim, consider for t ∈ [0, 1] ,

f (t) ≡ n (γr, a + t (z − a)) .

Then from properties of the winding number derived earlier, f (t) ∈ Z, f is continu-
ous, and f (0) = 1. Therefore, f (t) = 1 for all t ∈ [0, 1] . This proves the first claim
because f (1) = n (γr, z) .

For the second claim,

n (γr, z) =
1

2πi

∫

γr

1
w − z

dw

=
1

2πi

∫

γr

1
w − a− (z − a)

dw

=
1

2πi

−1
z − a

∫

γr

1

1−
(

w−a
z−a

)dw

=
−1

2πi (z − a)

∫

γr

∞∑

k=0

(
w − a

z − a

)k

dw.
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The series converges uniformly for w ∈ γr because
∣∣∣∣
w − a

z − a

∣∣∣∣ =
r

r + c

for some c > 0 due to the assumption that |z − a| > r. Therefore, the sum and the
integral can be interchanged to give

n (γr, z) =
−1

2πi (z − a)

∞∑

k=0

∫

γr

(
w − a

z − a

)k

dw = 0

because w →
(

w−a
z−a

)k

has an antiderivative. This proves the lemma.
Now consider the following picture which pertains to the next lemma.

γr

r a

Lemma 20.15 Let g be analytic on ann (a,R1, R2) . Then if γr (t) ≡ a + reit for
t ∈ [0, 2π] and r ∈ (R1, R2) , then

∫
γr

g (z) dz is independent of r.

Proof: Let R1 < r1 < r2 < R2 and denote by −γr (t) the curve, −γr (t) ≡
a + rei(2π−t) for t ∈ [0, 2π] . Then if z ∈ B (a,R1), Lemma 20.14 implies both
n

(
γr2

, z
)

and n
(
γr1

, z
)

= 1 and so

n
(−γr1

, z
)

+ n
(
γr2

, z
)

= −1 + 1 = 0.

Also if z /∈ B (a,R2) , then Lemma 20.14 implies n
(
γrj

, z
)

= 0 for j = 1, 2.

Therefore, whenever z /∈ ann (a,R1, R2) , the sum of the winding numbers equals
zero. Therefore, by Theorem 18.46 applied to the function, f (w) = g (z) (w − z)
and z ∈ ann (a, R1, R2) \ ∪2

j=1γrj
([0, 2π]) ,

f (z)
(
n

(
γr2

, z
)

+ n
(−γr1

, z
))

= 0
(
n

(
γr2

, z
)

+ n
(−γr1

, z
))

=

1
2πi

∫

γr2

g (w) (w − z)
w − z

dw − 1
2πi

∫

γr1

g (w) (w − z)
w − z

dw

=
1

2πi

∫

γr2

g (w) dw − 1
2πi

∫

γr1

g (w) dw

which proves the desired result.
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20.2.2 The Laurent Series

The Laurent series is like a power series except it allows for negative exponents.
First here is a definition of what is meant by the convergence of such a series.

Definition 20.16
∑∞

n=−∞ an (z − a)n converges if both the series,

∞∑
n=0

an (z − a)n and
∞∑

n=1

a−n (z − a)−n

converge. When this is the case, the symbol,
∑∞

n=−∞ an (z − a)n is defined as

∞∑
n=0

an (z − a)n +
∞∑

n=1

a−n (z − a)−n
.

Lemma 20.17 Suppose

f (z) =
∞∑

n=−∞
an (z − a)n

for all |z − a| ∈ (R1, R2) . Then both
∑∞

n=0 an (z − a)n and
∑∞

n=1 a−n (z − a)−n

converge absolutely and uniformly on {z : r1 ≤ |z − a| ≤ r2} for any r1 < r2 satis-
fying R1 < r1 < r2 < R2.

Proof: Let R1 < |w − a| = r1 − δ < r1. Then
∑∞

n=1 a−n (w − a)−n converges
and so

lim
n→∞

|a−n| |w − a|−n = lim
n→∞

|a−n| (r1 − δ)−n = 0

which implies that for all n sufficiently large,

|a−n| (r1 − δ)−n
< 1.

Therefore,
∞∑

n=1

|a−n| |z − a|−n =
∞∑

n=1

|a−n| (r1 − δ)−n (r1 − δ)n |z − a|−n
.

Now for |z − a| ≥ r1,

|z − a|−n ≤ 1
rn
1

and so for all sufficiently large n

|a−n| |z − a|−n ≤ (r1 − δ)n

rn
1

.

Therefore, by the Weierstrass M test, the series,
∑∞

n=1 a−n (z − a)−n converges
absolutely and uniformly on the set

{z ∈ C : |z − a| ≥ r1} .
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Similar reasoning shows the series,
∑∞

n=0 an (z − a)n converges uniformly on the set

{z ∈ C : |z − a| ≤ r2} .

This proves the Lemma.

Theorem 20.18 Let f be analytic on ann (a,R1, R2) . Then there exist numbers,
an ∈ C such that for all z ∈ ann (a,R1, R2) ,

f (z) =
∞∑

n=−∞
an (z − a)n

, (20.5)

where the series converges absolutely and uniformly on ann (a, r1, r2) whenever R1 <
r1 < r2 < R2. Also

an =
1

2πi

∫

γ

f (w)
(w − a)n+1 dw (20.6)

where γ (t) = a + reit, t ∈ [0, 2π] for any r ∈ (R1, R2) . Furthermore the series is
unique in the sense that if 20.5 holds for z ∈ ann (a,R1, R2) , then an is given in
20.6.

Proof: Let R1 < r1 < r2 < R2 and define γ1 (t) ≡ a + (r1 − ε) eit and γ2 (t) ≡
a+(r2 + ε) eit for t ∈ [0, 2π] and ε chosen small enough that R1 < r1−ε < r2 +ε <
R2.

q a

zq

γ1

γ2

Then using Lemma 20.14, if z /∈ ann (a, R1, R2) then

n (−γ1, z) + n (γ2, z) = 0

and if z ∈ ann (a, r1, r2) ,

n (−γ1, z) + n (γ2, z) = 1.
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Therefore, by Theorem 18.46, for z ∈ ann (a, r1, r2)

f (z) =
1

2πi

[∫

−γ1

f (w)
w − z

dw +
∫

γ2

f (w)
w − z

dw

]

=
1

2πi




∫

γ1

f (w)

(z − a)
[
1− w−a

z−a

]dw +
∫

γ2

f (w)

(w − a)
[
1− z−a

w−a

]dw




=
1

2πi

∫

γ2

f (w)
w − a

∞∑
n=0

(
z − a

w − a

)n

dw+

1
2πi

∫

γ1

f (w)
(z − a)

∞∑
n=0

(
w − a

z − a

)n

dw. (20.7)

From the formula 20.7, it follows that for z ∈ ann (a, r1, r2), the terms in the first

sum are bounded by an expression of the form C
(

r2
r2+ε

)n

while those in the second

are bounded by one of the form C
(

r1−ε
r1

)n

and so by the Weierstrass M test, the
convergence is uniform and so the integrals and the sums in the above formula may
be interchanged and after renaming the variable of summation, this yields

f (z) =
∞∑

n=0

(
1

2πi

∫

γ2

f (w)
(w − a)n+1 dw

)
(z − a)n +

−1∑
n=−∞

(
1

2πi

∫

γ1

f (w)
(w − a)n+1

)
(z − a)n

. (20.8)

Therefore, by Lemma 20.15, for any r ∈ (R1, R2) ,

f (z) =
∞∑

n=0

(
1

2πi

∫

γr

f (w)
(w − a)n+1 dw

)
(z − a)n +

−1∑
n=−∞

(
1

2πi

∫

γr

f (w)
(w − a)n+1

)
(z − a)n

. (20.9)

and so

f (z) =
∞∑

n=−∞

(
1

2πi

∫

γr

f (w)
(w − a)n+1 dw

)
(z − a)n

.

where r ∈ (R1, R2) is arbitrary. This proves the existence part of the theorem. It
remains to characterize an.

If f (z) =
∑∞

n=−∞ an (z − a)n on ann (a,R1, R2) let

fn (z) ≡
n∑

k=−n

ak (z − a)k
. (20.10)
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This function is analytic in ann (a, R1, R2) and so from the above argument,

fn (z) =
∞∑

k=−∞

(
1

2πi

∫

γr

fn (w)

(w − a)k+1
dw

)
(z − a)k

. (20.11)

Also if k > n or if k < −n,
(

1
2πi

∫

γr

fn (w)

(w − a)k+1
dw

)
= 0.

and so

fn (z) =
n∑

k=−n

(
1

2πi

∫

γr

fn (w)

(w − a)k+1
dw

)
(z − a)k

which implies from 20.10 that for each k ∈ [−n, n] ,

1
2πi

∫

γr

fn (w)

(w − a)k+1
dw = ak

However, from the uniform convergence of the series,
∞∑

n=0

an (w − a)n

and ∞∑
n=1

a−n (w − a)−n

ensured by Lemma 20.17 which allows the interchange of sums and integrals, if
k ∈ [−n, n] ,

1
2πi

∫

γr

f (w)

(w − a)k+1
dw

=
1

2πi

∫

γr

∑∞
m=0 am (w − a)m +

∑∞
m=1 a−m (w − a)−m

(w − a)k+1
dw

=
∞∑

m=0

am
1

2πi

∫

γr

(w − a)m−(k+1)
dw

+
∞∑

m=1

a−m

∫

γr

(w − a)−m−(k+1)
dw

=
n∑

m=0

am
1

2πi

∫

γr

(w − a)m−(k+1)
dw

+
n∑

m=1

a−m

∫

γr

(w − a)−m−(k+1)
dw

=
1

2πi

∫

γr

fn (w)

(w − a)k+1
dw



464 RESIDUES

because if l > n or l < −n,

∫

γr

al (w − a)l

(w − a)k+1
dw = 0

for all k ∈ [−n, n] . Therefore,

ak =
1

2πi

∫

γr

f (w)

(w − a)k+1
dw

and so this establishes uniqueness. This proves the theorem.

20.2.3 Contour Integrals And Evaluation Of Integrals

Here are some examples of hard integrals which can be evaluated by using residues.
This will be done by integrating over various closed curves having bounded variation.

Example 20.19 The first example we consider is the following integral.
∫ ∞

−∞

1
1 + x4

dx

One could imagine evaluating this integral by the method of partial fractions
and it should work out by that method. However, we will consider the evaluation
of this integral by the method of residues instead. To do so, consider the following
picture.

x

y

Let γr (t) = reit, t ∈ [0, π] and let σr (t) = t : t ∈ [−r, r] . Thus γr parameterizes
the top curve and σr parameterizes the straight line from −r to r along the x
axis. Denoting by Γr the closed curve traced out by these two, we see from simple
estimates that

lim
r→∞

∫

γr

1
1 + z4

dz = 0.
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This follows from the following estimate.
∣∣∣∣∣
∫

γr

1
1 + z4

dz

∣∣∣∣∣ ≤
1

r4 − 1
πr.

Therefore, ∫ ∞

−∞

1
1 + x4

dx = lim
r→∞

∫

Γr

1
1 + z4

dz.

We compute
∫
Γr

1
1+z4 dz using the method of residues. The only residues of the

integrand are located at points, z where 1 + z4 = 0. These points are

z = −1
2

√
2− 1

2
i
√

2, z =
1
2

√
2− 1

2
i
√

2,

z =
1
2

√
2 +

1
2
i
√

2, z = −1
2

√
2 +

1
2
i
√

2

and it is only the last two which are found in the inside of Γr. Therefore, we need
to calculate the residues at these points. Clearly this function has a pole of order
one at each of these points and so we may calculate the residue at α in this list by
evaluating

lim
z→α

(z − α)
1

1 + z4

Thus

Res
(

f,
1
2

√
2 +

1
2
i
√

2
)

= lim
z→ 1

2

√
2+ 1

2 i
√

2

(
z −

(
1
2

√
2 +

1
2
i
√

2
))

1
1 + z4

= −1
8

√
2− 1

8
i
√

2

Similarly we may find the other residue in the same way

Res
(

f,−1
2

√
2 +

1
2
i
√

2
)

= lim
z→− 1

2

√
2+ 1

2 i
√

2

(
z −

(
−1

2

√
2 +

1
2
i
√

2
))

1
1 + z4

= −1
8
i
√

2 +
1
8

√
2.

Therefore,
∫

Γr

1
1 + z4

dz = 2πi

(
−1

8
i
√

2 +
1
8

√
2 +

(
−1

8

√
2− 1

8
i
√

2
))

=
1
2
π
√

2.



466 RESIDUES

Thus, taking the limit we obtain 1
2π
√

2 =
∫∞
−∞

1
1+x4 dx.

Obviously many different variations of this are possible. The main idea being
that the integral over the semicircle converges to zero as r →∞.

Sometimes we don’t blow up the curves and take limits. Sometimes the problem
of interest reduces directly to a complex integral over a closed curve. Here is an
example of this.

Example 20.20 The integral is
∫ π

0

cos θ

2 + cos θ
dθ

This integrand is even and so it equals

1
2

∫ π

−π

cos θ

2 + cos θ
dθ.

For z on the unit circle, z = eiθ, z = 1
z and therefore, cos θ = 1

2

(
z + 1

z

)
. Thus

dz = ieiθdθ and so dθ = dz
iz . Note this is proceeding formally to get a complex

integral which reduces to the one of interest. It follows that a complex integral
which reduces to the one desired is

1
2i

∫

γ

1
2

(
z + 1

z

)

2 + 1
2

(
z + 1

z

) dz

z
=

1
2i

∫

γ

z2 + 1
z (4z + z2 + 1)

dz

where γ is the unit circle. Now the integrand has poles of order 1 at those points
where z

(
4z + z2 + 1

)
= 0. These points are

0,−2 +
√

3,−2−
√

3.

Only the first two are inside the unit circle. It is also clear the function has simple
poles at these points. Therefore,

Res (f, 0) = lim
z→0

z

(
z2 + 1

z (4z + z2 + 1)

)
= 1.

Res
(
f,−2 +

√
3
)

=

lim
z→−2+

√
3

(
z −

(
−2 +

√
3
)) z2 + 1

z (4z + z2 + 1)
= −2

3

√
3.

It follows
∫ π

0

cos θ

2 + cos θ
dθ =

1
2i

∫

γ

z2 + 1
z (4z + z2 + 1)

dz

=
1
2i

2πi

(
1− 2

3

√
3
)

= π

(
1− 2

3

√
3
)

.
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Other rational functions of the trig functions will work out by this method also.
Sometimes you have to be clever about which version of an analytic function

that reduces to a real function you should use. The following is such an example.

Example 20.21 The integral here is
∫ ∞

0

ln x

1 + x4
dx.

The same curve used in the integral involving sin x
x earlier will create problems

with the log since the usual version of the log is not defined on the negative real
axis. This does not need to be of concern however. Simply use another branch of
the logarithm. Leave out the ray from 0 along the negative y axis and use Theorem
19.5 to define L (z) on this set. Thus L (z) = ln |z|+ i arg1 (z) where arg1 (z) will be
the angle, θ, between −π

2 and 3π
2 such that z = |z| eiθ. Now the only singularities

contained in this curve are

1
2

√
2 +

1
2
i
√

2,−1
2

√
2 +

1
2
i
√

2

and the integrand, f has simple poles at these points. Thus using the same proce-
dure as in the other examples,

Res
(

f,
1
2

√
2 +

1
2
i
√

2
)

=

1
32

√
2π − 1

32
i
√

2π

and

Res
(

f,
−1
2

√
2 +

1
2
i
√

2
)

=

3
32

√
2π +

3
32

i
√

2π.

Consider the integral along the small semicircle of radius r. This reduces to

∫ 0

π

ln |r|+ it

1 + (reit)4
(
rieit

)
dt

which clearly converges to zero as r → 0 because r ln r → 0. Therefore, taking the
limit as r → 0,

∫

large semicircle

L (z)
1 + z4

dz + lim
r→0+

∫ −r

−R

ln (−t) + iπ

1 + t4
dt+

lim
r→0+

∫ R

r

ln t

1 + t4
dt = 2πi

(
3
32

√
2π +

3
32

i
√

2π +
1
32

√
2π − 1

32
i
√

2π

)
.
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Observing that
∫
large semicircle

L(z)
1+z4 dz → 0 as R →∞,

e (R) + 2 lim
r→0+

∫ R

r

ln t

1 + t4
dt + iπ

∫ 0

−∞

1
1 + t4

dt =
(
−1

8
+

1
4
i

)
π2
√

2

where e (R) → 0 as R →∞. From an earlier example this becomes

e (R) + 2 lim
r→0+

∫ R

r

ln t

1 + t4
dt + iπ

(√
2

4
π

)
=

(
−1

8
+

1
4
i

)
π2
√

2.

Now letting r → 0+ and R →∞,

2
∫ ∞

0

ln t

1 + t4
dt =

(
−1

8
+

1
4
i

)
π2
√

2− iπ

(√
2

4
π

)

= −1
8

√
2π2,

and so ∫ ∞

0

ln t

1 + t4
dt = − 1

16

√
2π2,

which is probably not the first thing you would thing of. You might try to imagine
how this could be obtained using elementary techniques.

The next example illustrates the use of what is referred to as a branch cut. It
includes many examples.

Example 20.22 Mellin transformations are of the form
∫ ∞

0

f (x) xα dx

x
.

Sometimes it is possible to evaluate such a transform in terms of the constant, α.

Assume f is an analytic function except at isolated singularities, none of which
are on (0,∞) . Also assume that f has the growth conditions,

|f (z)| ≤ C

|z|b
, b > α

for all large |z| and assume that

|f (z)| ≤ C ′

|z|b1
, b1 < α

for all |z| sufficiently small. It turns out there exists an explicit formula for this
Mellin transformation under these conditions. Consider the following contour.



20.2. SINGULARITIES AND THE LAURENT SERIES 469

¾

−R

-

¾

In this contour the small semicircle in the center has radius ε which will converge
to 0. Denote by γR the large circular path which starts at the upper edge of the
slot and continues to the lower edge. Denote by γε the small semicircular contour
and denote by γεR+ the straight part of the contour from 0 to R which provides
the top edge of the slot. Finally denote by γεR− the straight part of the contour
from R to 0 which provides the bottom edge of the slot. The interesting aspect of
this problem is the definition of f (z) zα−1. Let

zα−1 ≡ e(ln|z|+i arg(z))(α−1) = e(α−1) log(z)

where arg (z) is the angle of z in (0, 2π) . Thus you use a branch of the logarithm
which is defined on C\(0,∞) . Then it is routine to verify from the assumed estimates
that

lim
R→∞

∫

γR

f (z) zα−1dz = 0

and
lim

ε→0+

∫

γε

f (z) zα−1dz = 0.

Also, it is routine to verify

lim
ε→0+

∫

γεR+

f (z) zα−1dz =
∫ R

0

f (x) xα−1dx

and

lim
ε→0+

∫

γεR−

f (z) zα−1dz = −ei2π(α−1)

∫ R

0

f (x)xα−1dx.
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Therefore, letting ΣR denote the sum of the residues of f (z) zα−1 which are con-
tained in the disk of radius R except for the possible residue at 0,

e (R) +
(
1− ei2π(α−1)

) ∫ R

0

f (x) xα−1dx = 2πiΣR

where e (R) → 0 as R →∞. Now letting R →∞,

lim
R→∞

∫ R

0

f (x)xα−1dx =
2πi

1− ei2π(α−1)
Σ =

πe−πiα

sin (πα)
Σ

where Σ denotes the sum of all the residues of f (z) zα−1 except for the residue at
0.

The next example is similar to the one on the Mellin transform. In fact it is
a Mellin transform but is worked out independently of the above to emphasize a
slightly more informal technique related to the contour.

Example 20.23
∫∞
0

xp−1

1+x dx, p ∈ (0, 1) .

Since the exponent of x in the numerator is larger than −1. The integral does
converge. However, the techniques of real analysis don’t tell us what it converges
to. The contour to be used is as follows: From (ε, 0) to (r, 0) along the x axis and
then from (r, 0) to (r, 0) counter clockwise along the circle of radius r, then from
(r, 0) to (ε, 0) along the x axis and from (ε, 0) to (ε, 0) , clockwise along the circle
of radius ε. You should draw a picture of this contour. The interesting thing about
this is that zp−1 cannot be defined all the way around 0. Therefore, use a branch of
zp−1 corresponding to the branch of the logarithm obtained by deleting the positive
x axis. Thus

zp−1 = e(ln|z|+iA(z))(p−1)

where z = |z| eiA(z) and A (z) ∈ (0, 2π) . Along the integral which goes in the positive
direction on the x axis, let A (z) = 0 while on the one which goes in the negative
direction, take A (z) = 2π. This is the appropriate choice obtained by replacing the
line from (ε, 0) to (r, 0) with two lines having a small gap joined by a circle of radius
ε and then taking a limit as the gap closes. You should verify that the two integrals
taken along the circles of radius ε and r converge to 0 as ε → 0 and as r → ∞.
Therefore, taking the limit,

∫ ∞

0

xp−1

1 + x
dx +

∫ 0

∞

xp−1

1 + x

(
e2πi(p−1)

)
dx = 2πi Res (f,−1) .

Calculating the residue of the integrand at −1, and simplifying the above expression,
(
1− e2πi(p−1)

)∫ ∞

0

xp−1

1 + x
dx = 2πie(p−1)iπ.

Upon simplification ∫ ∞

0

xp−1

1 + x
dx =

π

sin pπ
.
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Example 20.24 The Fresnel integrals are
∫ ∞

0

cos
(
x2

)
dx,

∫ ∞

0

sin
(
x2

)
dx.

To evaluate these integrals consider f (z) = eiz2
on the curve which goes from

the origin to the point r on the x axis and from this point to the point r
(

1+i√
2

)

along a circle of radius r, and from there back to the origin as illustrated in the
following picture.

x

y

@
¡

Thus the curve to integrate over is shaped like a slice of pie. Denote by γr the
curved part. Since f is analytic,

0 =
∫

γr

eiz2
dz +

∫ r

0

eix2
dx−

∫ r

0

e
i
�

t
�

1+i√
2

��2 (
1 + i√

2

)
dt

=
∫

γr

eiz2
dz +

∫ r

0

eix2
dx−

∫ r

0

e−t2
(

1 + i√
2

)
dt

=
∫

γr

eiz2
dz +

∫ r

0

eix2
dx−

√
π

2

(
1 + i√

2

)
+ e (r)

where e (r) → 0 as r → ∞. Here we used the fact that
∫∞
0

e−t2dt =
√

π
2 . Now

consider the first of these integrals.
∣∣∣∣∣
∫

γr

eiz2
dz

∣∣∣∣∣ =

∣∣∣∣∣
∫ π

4

0

ei(reit)2

rieitdt

∣∣∣∣∣

≤ r

∫ π
4

0

e−r2 sin 2tdt

=
r

2

∫ 1

0

e−r2u

√
1− u2

du

≤ r

2

∫ r−(3/2)

0

1√
1− u2

du +
r

2

(∫ 1

0

1√
1− u2

)
e−(r1/2)
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which converges to zero as r →∞. Therefore, taking the limit as r →∞,
√

π

2

(
1 + i√

2

)
=

∫ ∞

0

eix2
dx

and so ∫ ∞

0

sin x2dx =
√

π

2
√

2
=

∫ ∞

0

cos x2dx.

The following example is one of the most interesting. By an auspicious choice
of the contour it is possible to obtain a very interesting formula for cot πz known
as the Mittag- Leffler expansion of cot πz.

Example 20.25 Let γN be the contour which goes from −N − 1
2 −Ni horizontally

to N + 1
2 − Ni and from there, vertically to N + 1

2 + Ni and then horizontally
to −N − 1

2 + Ni and finally vertically to −N − 1
2 − Ni. Thus the contour is a

large rectangle and the direction of integration is in the counter clockwise direction.
Consider the following integral.

IN ≡
∫

γN

π cos πz

sin πz (α2 − z2)
dz

where α ∈ R is not an integer. This will be used to verify the formula of Mittag
Leffler,

1
α2

+
∞∑

n=1

2
α2 − n2

=
π cot πα

α
. (20.12)

You should verify that cot πz is bounded on this contour and that therefore,
IN → 0 as N → ∞. Now you compute the residues of the integrand at ±α and
at n where |n| < N + 1

2 for n an integer. These are the only singularities of the
integrand in this contour and therefore, you can evaluate IN by using these. It is
left as an exercise to calculate these residues and find that the residue at ±α is

−π cosπα

2α sin πα

while the residue at n is
1

α2 − n2
.

Therefore,

0 = lim
N→∞

IN = lim
N→∞

2πi

[
N∑

n=−N

1
α2 − n2

− π cot πα

α

]

which establishes the following formula of Mittag Leffler.

lim
N→∞

N∑

n=−N

1
α2 − n2

=
π cot πα

α
.

Writing this in a slightly nicer form, yields 20.12.
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20.3 The Spectral Radius Of A Bounded Linear
Transformation

As a very important application of the theory of Laurent series, I will give a short
description of the spectral radius. This is a fundamental result which must be
understood in order to prove convergence of various important numerical methods
such as the Gauss Seidel or Jacobi methods.

Definition 20.26 Let X be a complex Banach space and let A ∈ L (X, X) . Then

r (A) ≡
{

λ ∈ C : (λI −A)−1 ∈ L (X,X)
}

This is called the resolvent set. The spectrum of A, denoted by σ (A) is defined as
all the complex numbers which are not in the resolvent set. Thus

σ (A) ≡ C \ r (A)

Lemma 20.27 λ ∈ r (A) if and only if λI − A is one to one and onto X. Also if
|λ| > ||A|| , then λ ∈ σ (A). If the Neumann series,

1
λ

∞∑

k=0

(
A

λ

)k

converges, then
1
λ

∞∑

k=0

(
A

λ

)k

= (λI −A)−1
.

Proof: Note that to be in r (A) , λI − A must be one to one and map X onto
X since otherwise, (λI −A)−1

/∈ L (X,X) .
By the open mapping theorem, if these two algebraic conditions hold, then

(λI −A)−1 is continuous and so this proves the first part of the lemma. Now
suppose |λ| > ||A|| . Consider the Neumann series

1
λ

∞∑

k=0

(
A

λ

)k

.

By the root test, Theorem 18.3 on Page 386 this series converges to an element
of L (X, X) denoted here by B. Now suppose the series converges. Letting Bn ≡
1
λ

∑n
k=0

(
A
λ

)k
,

(λI −A) Bn = Bn (λI −A) =
n∑

k=0

(
A

λ

)k

−
n∑

k=0

(
A

λ

)k+1

= I −
(

A

λ

)n+1

→ I
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as n → ∞ because the convergence of the series requires the nth term to converge
to 0. Therefore,

(λI −A)B = B (λI −A) = I

which shows λI −A is both one to one and onto and the Neumann series converges
to (λI −A)−1

. This proves the lemma.
This lemma also shows that σ (A) is bounded. In fact, σ (A) is closed.

Lemma 20.28 r (A) is open. In fact, if λ ∈ r (A) and |µ− λ| <
∣∣∣
∣∣∣(λI −A)−1

∣∣∣
∣∣∣
−1

,

then µ ∈ r (A).

Proof: First note

(µI −A) =
(
I − (λ− µ) (λI −A)−1

)
(λI −A) (20.13)

= (λI −A)
(
I − (λ− µ) (λI −A)−1

)
(20.14)

Also from the assumption about |λ− µ| ,
∣∣∣
∣∣∣(λ− µ) (λI −A)−1

∣∣∣
∣∣∣ ≤ |λ− µ|

∣∣∣
∣∣∣(λI −A)−1

∣∣∣
∣∣∣ < 1

and so by the root test,

∞∑

k=0

(
(λ− µ) (λI −A)−1

)k

converges to an element of L (X, X) . As in Lemma 20.27,

∞∑

k=0

(
(λ− µ) (λI −A)−1

)k

=
(
I − (λ− µ) (λI −A)−1

)−1

.

Therefore, from 20.13,

(µI −A)−1 = (λI −A)−1
(
I − (λ− µ) (λI −A)−1

)−1

.

This proves the lemma.

Corollary 20.29 σ (A) is a compact set.

Proof: Lemma 20.27 shows σ (A) is bounded and Lemma 20.28 shows it is
closed.

Definition 20.30 The spectral radius, denoted by ρ (A) is defined by

ρ (A) ≡ max {|λ| : λ ∈ σ (A)} .

Since σ (A) is compact, this maximum exists. Note from Lemma 20.27, ρ (A) ≤
||A||.
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There is a simple formula for the spectral radius.

Lemma 20.31 If |λ| > ρ (A) , then the Neumann series,

1
λ

∞∑

k=0

(
A

λ

)k

converges.

Proof: This follows directly from Theorem 20.18 on Page 461 and the obser-
vation above that 1

λ

∑∞
k=0

(
A
λ

)k
= (λI −A)−1 for all |λ| > ||A||. Thus the analytic

function, λ → (λI −A)−1 has a Laurent expansion on |λ| > ρ (A) by Theorem 20.18
and it must coincide with 1

λ

∑∞
k=0

(
A
λ

)k
on |λ| > ||A|| so the Laurent expansion of

λ → (λI −A)−1 must equal 1
λ

∑∞
k=0

(
A
λ

)k
on |λ| > ρ (A) . This proves the lemma.

The theorem on the spectral radius follows. It is due to Gelfand.

Theorem 20.32 ρ (A) = limn→∞ ||An||1/n.

Proof: If
|λ| < lim sup

n→∞
||An||1/n

then by the root test, the Neumann series does not converge and so by Lemma
20.31 |λ| ≤ ρ (A) . Thus

ρ (A) ≥ lim sup
n→∞

||An||1/n
.

Now let p be a positive integer. Then λ ∈ σ (A) implies λp ∈ σ (Ap) because

λpI −Ap = (λI −A)
(
λp−1 + λp−2A + · · ·+ Ap−1

)

=
(
λp−1 + λp−2A + · · ·+ Ap−1

)
(λI −A)

It follows from Lemma 20.27 applied to Apthat for λ ∈ σ (A) , |λp| ≤ ||Ap|| and so
|λ| ≤ ||Ap||1/p

. Therefore, ρ (A) ≤ ||Ap||1/p and since p is arbitrary,

lim inf
p→∞

||Ap||1/p ≥ ρ (A) ≥ lim sup
n→∞

||An||1/n
.

This proves the theorem.

20.4 Exercises

1. Example 20.19 found the integral of a rational function of a certain sort. The
technique used in this example typically works for rational functions of the
form f(x)

g(x) where deg (g (x)) ≥ deg f (x) + 2 provided the rational function
has no poles on the real axis. State and prove a theorem based on these
observations.
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2. Fill in the missing details of Example 20.25 about IN → 0. Note how important
it was that the contour was chosen just right for this to happen. Also verify
the claims about the residues.

3. Suppose f has a pole of order m at z = a. Define g (z) by

g (z) = (z − a)m
f (z) .

Show
Res (f, a) =

1
(m− 1)!

g(m−1) (a) .

Hint: Use the Laurent series.

4. Give a proof of Theorem 20.6. Hint: Let p be a pole. Show that near p, a
pole of order m,

f ′ (z)
f (z)

=
−m +

∑∞
k=1 bk (z − p)k

(z − p) +
∑∞

k=2 ck (z − p)k

Show that Res (f, p) = −m. Carry out a similar procedure for the zeros.

5. Use Rouche’s theorem to prove the fundamental theorem of algebra which
says that if p (z) = zn + an−1z

n−1 · · · +a1z + a0, then p has n zeros in C.
Hint: Let q (z) = −zn and let γ be a large circle, γ (t) = reit for r sufficiently
large.

6. Consider the two polynomials z5 +3z2−1 and z5 +3z2. Show that on |z| = 1,
the conditions for Rouche’s theorem hold. Now use Rouche’s theorem to verify
that z5 + 3z2 − 1 must have two zeros in |z| < 1.

7. Consider the polynomial, z11 + 7z5 + 3z2 − 17. Use Rouche’s theorem to find
a bound on the zeros of this polynomial. In other words, find r such that if z
is a zero of the polynomial, |z| < r. Try to make r fairly small if possible.

8. Verify that
∫∞
0

e−t2dt =
√

π
2 . Hint: Use polar coordinates.

9. Use the contour described in Example 20.19 to compute the exact values of
the following improper integrals.

(a)
∫∞
−∞

x
(x2+4x+13)2

dx

(b)
∫∞
0

x2

(x2+a2)2
dx

(c)
∫∞
−∞

dx
(x2+a2)(x2+b2) , a, b > 0

10. Evaluate the following improper integrals.

(a)
∫∞
0

cos ax
(x2+b2)2

dx
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(b)
∫∞
0

x sin x
(x2+a2)2

dx

11. Find the Cauchy principle value of the integral
∫ ∞

−∞

sin x

(x2 + 1) (x− 1)
dx

defined as

lim
ε→0+

(∫ 1−ε

−∞

sin x

(x2 + 1) (x− 1)
dx +

∫ ∞

1+ε

sin x

(x2 + 1) (x− 1)
dx

)
.

12. Find a formula for the integral
∫∞
−∞

dx
(1+x2)n+1 where n is a nonnegative integer.

13. Find
∫∞
−∞

sin2 x
x2 dx.

14. If m < n for m and n integers, show
∫ ∞

0

x2m

1 + x2n
dx =

π

2n

1
sin

(
2m+1

2n π
) .

15. Find
∫∞
−∞

1
(1+x4)2

dx.

16. Find
∫∞
0

ln(x)
1+x2 dx = 0.

17. Suppose f has an isolated singularity at α. Show the singularity is essential
if and only if the principal part of the Laurent series of f has infinitely many
terms. That is, show f (z) =

∑∞
k=0 ak (z − α)k +

∑∞
k=1

bk

(z−α)k where infinitely
many of the bk are nonzero.

18. Suppose Ω is a bounded open set and fn is analytic on Ω and continuous on
Ω. Suppose also that fn → f uniformly on Ω and that f 6= 0 on ∂Ω. Show
that for all n large enough, fn and f have the same number of zeros on Ω
provided the zeros are counted according to multiplicity.
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Complex Mappings

21.1 Conformal Maps

If γ (t) = x (t) + iy (t) is a C1 curve having values in U, an open set of C, and
if f : U → C is analytic, consider f ◦ γ, another C1 curve having values in C.
Also, γ′ (t) and (f ◦ γ)′ (t) are complex numbers so these can be considered as
vectors in R2 as follows. The complex number, x + iy corresponds to the vector,
(x, y) . Suppose that γ and η are two such C1 curves having values in U and that
γ (t0) = η (s0) = z and suppose that f : U → C is analytic. What can be said about
the angle between (f ◦ γ)′ (t0) and (f ◦ η)′ (s0)? It turns out this angle is the same
as the angle between γ′ (t0) and η′ (s0) assuming that f ′ (z) 6= 0. To see this, note
(x, y) · (a, b) = 1

2 (zw + zw) where z = x + iy and w = a + ib. Therefore, letting θ

be the cosine between the two vectors, (f ◦ γ)′ (t0) and (f ◦ η)′ (s0) , it follows from
calculus that

cos θ

=
(f ◦ γ)′ (t0) · (f ◦ η)′ (s0)∣∣(f ◦ η)′ (s0)

∣∣ ∣∣(f ◦ γ)′ (t0)
∣∣

=
1
2

f ′ (γ (t0)) γ′ (t0) f ′ (η (s0))η′ (s0) + f ′ (γ (t0)) γ′ (t0)f ′ (η (s0)) η′ (s0)
|f ′ (γ (t0))| |f ′ (η (s0))|

=
1
2

f ′ (z) f ′ (z)γ′ (t0) η′ (s0) + f ′ (z)f ′ (z) γ′ (t0)η′ (s0)
|f ′ (z)| |f ′ (z)|

=
1
2

γ′ (t0) η′ (s0) + η′ (s0) γ′ (t0)
1

which equals the angle between the vectors, γ′ (t0) and η′ (t0) . Thus analytic map-
pings preserve angles at points where the derivative is nonzero. Such mappings are
called isogonal. .

Actually, they also preserve orientations. If z = x + iy and w = a + ib are two
complex numbers, then (x, y, 0) and (a, b, 0) are two vectors in R3. Recall that the
cross product, (x, y, 0) × (a, b, 0) , yields a vector normal to the two given vectors
such that the triple, (x, y, 0) , (a, b, 0) , and (x, y, 0)× (a, b, 0) satisfies the right hand

479
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rule and has magnitude equal to the product of the sine of the included angle times
the product of the two norms of the vectors. In this case, the cross product will
produce a vector which is a multiple of k, the unit vector in the direction of the z
axis. In fact, you can verify by computing both sides that, letting z = x + iy and
w = a + ib,

(x, y, 0)× (a, b, 0) = Re (ziw)k.

Therefore, in the above situation,

(f ◦ γ)′ (t0)× (f ◦ η)′ (s0)

= Re
(
f ′ (γ (t0)) γ′ (t0) if ′ (η (s0))η′ (s0)

)
k

= |f ′ (z)|2 Re
(
γ′ (t0) iη′ (s0)

)
k

which shows that the orientation of γ′ (t0), η′ (s0) is the same as the orientation of
(f ◦ γ)′ (t0) , (f ◦ η)′ (s0). Mappings which preserve both orientation and angles are
called conformal mappings and this has shown that analytic functions are conformal
mappings if the derivative does not vanish.

21.2 Fractional Linear Transformations

21.2.1 Circles And Lines

These mappings map lines and circles to either lines or circles.

Definition 21.1 A fractional linear transformation is a function of the form

f (z) =
az + b

cz + d
(21.1)

where ad− bc 6= 0.

Note that if c = 0, this reduces to a linear transformation (a/d) z+(b/d) . Special
cases of these are defined as follows.

dilations: z → δz, δ 6= 0, inversions: z → 1
z
,

translations: z → z + ρ.

The next lemma is the key to understanding fractional linear transformations.

Lemma 21.2 The fractional linear transformation, 21.1 can be written as a finite
composition of dilations, inversions, and translations.

Proof: Let

S1 (z) = z +
d

c
, S2 (z) =

1
z
, S3 (z) =

(bc− ad)
c2

z
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and
S4 (z) = z +

a

c

in the case where c 6= 0. Then f (z) given in 21.1 is of the form

f (z) = S4 ◦ S3 ◦ S2 ◦ S1.

Here is why.

S2 (S1 (z)) = S2

(
z +

d

c

)
≡ 1

z + d
c

=
c

zc + d
.

Now consider

S3

(
c

zc + d

)
≡ (bc− ad)

c2

(
c

zc + d

)
=

bc− ad

c (zc + d)
.

Finally, consider

S4

(
bc− ad

c (zc + d)

)
≡ bc− ad

c (zc + d)
+

a

c
=

b + az

zc + d
.

In case that c = 0, f (z) = a
dz + b

d which is a translation composed with a dilation.
Because of the assumption that ad− bc 6= 0, it follows that since c = 0, both a and
d 6= 0. This proves the lemma.

This lemma implies the following corollary.

Corollary 21.3 Fractional linear transformations map circles and lines to circles
or lines.

Proof: It is obvious that dilations and translations map circles to circles and
lines to lines. What of inversions? If inversions have this property, the above lemma
implies a general fractional linear transformation has this property as well.

Note that all circles and lines may be put in the form

α
(
x2 + y2

)− 2ax− 2by = r2 − (
a2 + b2

)

where α = 1 gives a circle centered at (a, b) with radius r and α = 0 gives a line. In
terms of complex variables you may therefore consider all possible circles and lines
in the form

αzz + βz + βz + γ = 0, (21.2)

To see this let β = β1 + iβ2 where β1 ≡ −a and β2 ≡ b. Note that even if α is not
0 or 1 the expression still corresponds to either a circle or a line because you can
divide by α if α 6= 0. Now I verify that replacing z with 1

z results in an expression
of the form in 21.2. Thus, let w = 1

z where z satisfies 21.2. Then

(
α + βw + βw + γww

)
=

1
zz

(
αzz + βz + βz + γ

)
= 0
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and so w also satisfies a relation like 21.2. One simply switches α with γ and β
with β. Note the situation is slightly different than with dilations and translations.
In the case of an inversion, a circle becomes either a line or a circle and similarly, a
line becomes either a circle or a line. This proves the corollary.

The next example is quite important.

Example 21.4 Consider the fractional linear transformation, w = z−i
z+i .

First consider what this mapping does to the points of the form z = x + i0.
Substituting into the expression for w,

w =
x− i

x + i
=

x2 − 1− 2xi

x2 + 1
,

a point on the unit circle. Thus this transformation maps the real axis to the unit
circle.

The upper half plane is composed of points of the form x + iy where y > 0.
Substituting in to the transformation,

w =
x + i (y − 1)
x + i (y + 1)

,

which is seen to be a point on the interior of the unit disk because |y − 1| < |y + 1|
which implies |x + i (y + 1)| > |x + i (y − 1)|. Therefore, this transformation maps
the upper half plane to the interior of the unit disk.

One might wonder whether the mapping is one to one and onto. The mapping
is clearly one to one because it has an inverse, z = −iw+1

w−1 for all w in the interior
of the unit disk. Also, a short computation verifies that z so defined is in the upper
half plane. Therefore, this transformation maps {z ∈ C such that Im z > 0} one to
one and onto the unit disk {z ∈ C such that |z| < 1} .

A fancy way to do part of this is to use Theorem 19.11. lim supz→a

∣∣∣ z−i
z+i

∣∣∣ ≤ 1

whenever a is the real axis or ∞. Therefore,
∣∣∣ z−i
z+i

∣∣∣ ≤ 1. This is a little shorter.

21.2.2 Three Points To Three Points

There is a simple procedure for determining fractional linear transformations which
map a given set of three points to another set of three points. The problem is as
follows: There are three distinct points in the extended complex plane, z1, z2, and
z3 and it is desired to find a fractional linear transformation such that zi → wi

for i = 1, 2, 3 where here w1, w2, and w3 are three distinct points in the extended
complex plane. Then the procedure says that to find the desired fractional linear
transformation solve the following equation for w.

w − w1

w − w3
· w2 − w3

w2 − w1
=

z − z1

z − z3
· z2 − z3

z2 − z1
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The result will be a fractional linear transformation with the desired properties.
If any of the points equals ∞, then the quotient containing this point should be
adjusted.

Why should this procedure work? Here is a heuristic argument to indicate why
you would expect this to happen rather than a rigorous proof. The reader may
want to tighten the argument to give a proof. First suppose z = z1. Then the right
side equals zero and so the left side also must equal zero. However, this requires
w = w1. Next suppose z = z2. Then the right side equals 1. To get a 1 on the left,
you need w = w2. Finally suppose z = z3. Then the right side involves division by
0. To get the same bad behavior, on the left, you need w = w3.

Example 21.5 Let Im ξ > 0 and consider the fractional linear transformation
which takes ξ to 0, ξ to ∞ and 0 to ξ/ξ, .

The equation for w is

w − 0
w − (

ξ/ξ
) =

z − ξ

z − 0
· ξ − 0
ξ − ξ

After some computations,

w =
z − ξ

z − ξ
.

Note that this has the property that x−ξ

x−ξ
is always a point on the unit circle because

it is a complex number divided by its conjugate. Therefore, this fractional linear
transformation maps the real line to the unit circle. It also takes the point, ξ to
0 and so it must map the upper half plane to the unit disk. You can verify the
mapping is onto as well.

Example 21.6 Let z1 = 0, z2 = 1, and z3 = 2 and let w1 = 0, w2 = i, and w3 = 2i.

Then the equation to solve is

w

w − 2i
· −i

i
=

z

z − 2
· −1

1

Solving this yields w = iz which clearly works.

21.3 Riemann Mapping Theorem

From the open mapping theorem analytic functions map regions to other regions or
else to single points. The Riemann mapping theorem states that for every simply
connected region, Ω which is not equal to all of C there exists an analytic function,
f such that f (Ω) = B (0, 1) and in addition to this, f is one to one. The proof
involves several ideas which have been developed up to now. The proof is based on
the following important theorem, a case of Montel’s theorem. Before, beginning,
note that the Riemann mapping theorem is a classic example of a major existence
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theorem. In mathematics there are two sorts of questions, those related to whether
something exists and those involving methods for finding it. The real questions are
often related to questions of existence. There is a long and involved history for
proofs of this theorem. The first proofs were based on the Dirichlet principle and
turned out to be incorrect, thanks to Weierstrass who pointed out the errors. For
more on the history of this theorem, see Hille [24].

The following theorem is really wonderful. It is about the existence of a subse-
quence having certain salubrious properties. It is this wonderful result which will
give the existence of the mapping desired. The other parts of the argument are
technical details to set things up and use this theorem.

21.3.1 Montel’s Theorem

Theorem 21.7 Let Ω be an open set in C and let F denote a set of analytic
functions mapping Ω to B (0,M) ⊆ C. Then there exists a sequence of functions
from F , {fn}∞n=1 and an analytic function, f such that f

(k)
n converges uniformly to

f (k) on every compact subset of Ω.

Proof: First note there exists a sequence of compact sets, Kn such that Kn ⊆
intKn+1 ⊆ Ω for all n where here intK denotes the interior of the set K, the
union of all open sets contained in K and ∪∞n=1Kn = Ω. In fact, you can verify
that B (0, n) ∩ {

z ∈ Ω : dist
(
z, ΩC

) ≤ 1
n

}
works for Kn. Then there exist positive

numbers, δn such that if z ∈ Kn, then B (z, δn) ⊆ intKn+1. Now denote by Fn

the set of restrictions of functions of F to Kn. Then let z ∈ Kn and let γ (t) ≡
z + δneit, t ∈ [0, 2π] . It follows that for z1 ∈ B (z, δn) , and f ∈ F ,

|f (z)− f (z1)| =
∣∣∣∣

1
2πi

∫

γ

f (w)
(

1
w − z

− 1
w − z1

)
dw

∣∣∣∣

≤ 1
2π

∣∣∣∣
∫

γ

f (w)
z − z1

(w − z) (w − z1)
dw

∣∣∣∣

Letting |z1 − z| < δn

2 ,

|f (z)− f (z1)| ≤ M

2π
2πδn

|z − z1|
δ2

n/2

≤ 2M
|z − z1|

δn
.

It follows that Fn is equicontinuous and uniformly bounded so by the Arzela Ascoli
theorem there exists a sequence, {fnk}∞k=1 ⊆ F which converges uniformly on Kn.
Let {f1k}∞k=1 converge uniformly on K1. Then use the Arzela Ascoli theorem applied
to this sequence to get a subsequence, denoted by {f2k}∞k=1 which also converges
uniformly on K2. Continue in this way to obtain {fnk}∞k=1 which converges uni-
formly on K1, · · ·,Kn. Now the sequence {fnn}∞n=m is a subsequence of {fmk} ∞k=1

and so it converges uniformly on Km for all m. Denoting fnn by fn for short, this
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is the sequence of functions promised by the theorem. It is clear {fn}∞n=1 converges
uniformly on every compact subset of Ω because every such set is contained in Km

for all m large enough. Let f (z) be the point to which fn (z) converges. Then f
is a continuous function defined on Ω. Is f is analytic? Yes it is by Lemma 18.18.
Alternatively, you could let T ⊆ Ω be a triangle. Then

∫

∂T

f (z) dz = lim
n→∞

∫

∂T

fn (z) dz = 0.

Therefore, by Morera’s theorem, f is analytic.
As for the uniform convergence of the derivatives of f, recall Theorem 18.52

about the existence of a cycle. Let K be a compact subset of int (Kn) and let
{γk}m

k=1 be closed oriented curves contained in

int (Kn) \K

such that
∑m

k=1 n (γk, z) = 1 for every z ∈ K. Also let η denote the distance
between ∪jγ

∗
j and K. Then for z ∈ K,

∣∣∣f (k) (z)− f (k)
n (z)

∣∣∣ =

∣∣∣∣∣∣
k!
2πi

m∑

j=1

∫

γj

f (w)− fn (w)

(w − z)k+1
dw

∣∣∣∣∣∣

≤ k!
2π
||fk − f ||Kn

m∑

j=1

(length of γk)
1

ηk+1
.

where here ||fk − f ||Kn
≡ sup {|fk (z)− f (z)| : z ∈ Kn} . Thus you get uniform

convergence of the derivatives.
Since the family, F satisfies the conclusion of Theorem 21.7 it is known as a

normal family of functions. More generally,

Definition 21.8 Let F denote a collection of functions which are analytic on Ω, a
region. Then F is normal if every sequence contained in F has a subsequence which
converges uniformly on compact subsets of Ω.

The following result is about a certain class of fractional linear transformations.
Recall Lemma 19.18 which is listed here for convenience.

Lemma 21.9 For α ∈ B (0, 1) , let

φα (z) ≡ z − α

1− αz
.

Then φα maps B (0, 1) one to one and onto B (0, 1), φ−1
α = φ−α, and

φ′α (α) =
1

1− |α|2 .
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The next lemma, known as Schwarz’s lemma is interesting for its own sake but
will also be an important part of the proof of the Riemann mapping theorem. It
was stated and proved earlier but for convenience it is given again here.

Lemma 21.10 Suppose F : B (0, 1) → B (0, 1) , F is analytic, and F (0) = 0. Then
for all z ∈ B (0, 1) ,

|F (z)| ≤ |z| , (21.3)

and
|F ′ (0)| ≤ 1. (21.4)

If equality holds in 21.4 then there exists λ ∈ C with |λ| = 1 and

F (z) = λz. (21.5)

Proof: First note that by assumption, F (z) /z has a removable singularity at
0 if its value at 0 is defined to be F ′ (0) . By the maximum modulus theorem, if
|z| < r < 1, ∣∣∣∣

F (z)
z

∣∣∣∣ ≤ max
t∈[0,2π]

∣∣F (
reit

)∣∣
r

≤ 1
r
.

Then letting r → 1, ∣∣∣∣
F (z)

z

∣∣∣∣ ≤ 1

this shows 21.3 and it also verifies 21.4 on taking the limit as z → 0. If equality
holds in 21.4, then |F (z) /z| achieves a maximum at an interior point so F (z) /z
equals a constant, λ by the maximum modulus theorem. Since F (z) = λz, it follows
F ′ (0) = λ and so |λ| = 1. This proves the lemma.

Definition 21.11 A region, Ω has the square root property if whenever f, 1
f : Ω →

C are both analytic1, it follows there exists φ : Ω → C such that φ is analytic and
f (z) = φ2 (z) .

The next theorem will turn out to be equivalent to the Riemann mapping the-
orem.

21.3.2 Regions With Square Root Property

Theorem 21.12 Let Ω 6= C for Ω a region and suppose Ω has the square root
property. Then for z0 ∈ Ω there exists h : Ω → B (0, 1) such that h is one to one,
onto, analytic, and h (z0) = 0.

Proof: Define F to be the set of functions, f such that f : Ω → B (0, 1) is one
to one and analytic. The first task is to show F is nonempty. Then, using Montel’s
theorem it will be shown there is a function in F , h, such that |h′ (z0)| ≥

∣∣ψ′ (z0)
∣∣

1This implies f has no zero on Ω.
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for all ψ ∈ F . When this has been done it will be shown that h is actually onto.
This will prove the theorem.

Claim 1: F is nonempty.
Proof of Claim 1: Since Ω 6= C it follows there exists ξ /∈ Ω. Then it follows

z − ξ and 1
z−ξ are both analytic on Ω. Since Ω has the square root property,

there exists an analytic function, φ : Ω → C such that φ2 (z) = z − ξ for all
z ∈ Ω, φ (z) =

√
z − ξ. Since z − ξ is not constant, neither is φ and it follows

from the open mapping theorem that φ (Ω) is a region. Note also that φ is one
to one because if φ (z1) = φ (z2) , then you can square both sides and conclude
z1 − ξ = z2 − ξ implying z1 = z2.

Now pick a ∈ φ (Ω) . Thus
√

za − ξ = a. I claim there exists a positive lower
bound to

∣∣√z − ξ + a
∣∣ for z ∈ Ω. If not, there exists a sequence, {zn} ⊆ Ω such

that √
zn − ξ + a =

√
zn − ξ +

√
za − ξ ≡ εn → 0.

Then √
zn − ξ =

(
εn −

√
za − ξ

)
(21.6)

and squaring both sides,

zn − ξ = ε2
n + za − ξ − 2εn

√
za − ξ.

Consequently, (zn − za) = ε2
n − 2εn

√
za − ξ which converges to 0. Taking the limit

in 21.6, it follows 2
√

za − ξ = 0 and so ξ = za, a contradiction to ξ /∈ Ω. Choose
r > 0 such that for all z ∈ Ω,

∣∣√z − ξ + a
∣∣ > r > 0. Then consider

ψ (z) ≡ r√
z − ξ + a

. (21.7)

This is one to one, analytic, and maps Ω into B (0, 1) (
∣∣√z − ξ + a

∣∣ > r). Thus F
is not empty and this proves the claim.

Claim 2: Let z0 ∈ Ω. There exists a finite positive real number, η, defined by

η ≡ sup
{∣∣ψ′ (z0)

∣∣ : ψ ∈ F}
(21.8)

and an analytic function, h ∈ F such that |h′ (z0)| = η. Furthermore, h (z0) = 0.
Proof of Claim 2: First you show η < ∞. Let γ (t) = z0 + reit for t ∈ [0, 2π]

and r is small enough that B (z0, r) ⊆ Ω. Then for ψ ∈ F , the Cauchy integral
formula for the derivative implies

ψ′ (z0) =
1

2πi

∫

γ

ψ (w)
(w − z0)

2 dw

and so
∣∣ψ′ (z0)

∣∣ ≤ (1/2π) 2πr
(
1/r2

)
= 1/r. Therefore, η < ∞ as desired. For ψ

defined above in 21.7

ψ′ (z0) =
−rφ′ (z0)

(φ (z0) + a)2
=
−r (1/2)

(√
z0 − ξ

)−1

(φ (z0) + a)2
6= 0.
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Therefore, η > 0. It remains to verify the existence of the function, h.
By Theorem 21.7, there exists a sequence, {ψn}, of functions in F and an

analytic function, h, such that
∣∣ψ′n (z0)

∣∣ → η (21.9)

and
ψn → h, ψ′n → h′, (21.10)

uniformly on all compact subsets of Ω. It follows

|h′ (z0)| = lim
n→∞

∣∣ψ′n (z0)
∣∣ = η (21.11)

and for all z ∈ Ω,

|h (z)| = lim
n→∞

|ψn (z)| ≤ 1. (21.12)

By 21.11, h is not a constant. Therefore, in fact, |h (z)| < 1 for all z ∈ Ω in
21.12 by the open mapping theorem.

Next it must be shown that h is one to one in order to conclude h ∈ F . Pick
z1 ∈ Ω and suppose z2 is another point of Ω. Since the zeros of h − h (z1) have no
limit point, there exists a circular contour bounding a circle which contains z2 but
not z1 such that γ∗ contains no zeros of h− h (z1).

t
z1

?

¾

6

γ

t
z2

Using the theorem on counting zeros, Theorem 19.20, and the fact that ψn is
one to one,

0 = lim
n→∞

1
2πi

∫

γ

ψ′n (w)
ψn (w)− ψn (z1)

dw

=
1

2πi

∫

γ

h′ (w)
h (w)− h (z1)

dw,

which shows that h−h (z1) has no zeros in B (z2, r) . In particular z2 is not a zero of
h− h (z1) . This shows that h is one to one since z2 6= z1 was arbitrary. Therefore,
h ∈ F . It only remains to verify that h (z0) = 0.

If h (z0) 6= 0,consider φh(z0) ◦ h where φα is the fractional linear transformation
defined in Lemma 21.9. By this lemma it follows φh(z0) ◦ h ∈ F . Now using the
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chain rule,
∣∣∣∣
(
φh(z0) ◦ h

)′
(z0)

∣∣∣∣ =
∣∣∣φ′h(z0) (h (z0))

∣∣∣ |h′ (z0)|

=

∣∣∣∣∣
1

1− |h (z0)|2
∣∣∣∣∣ |h

′ (z0)|

=

∣∣∣∣∣
1

1− |h (z0)|2
∣∣∣∣∣ η > η

Contradicting the definition of η. This proves Claim 2.
Claim 3: The function, h just obtained maps Ω onto B (0, 1).
Proof of Claim 3: To show h is onto, use the fractional linear transformation

of Lemma 21.9. Suppose h is not onto. Then there exists α ∈ B (0, 1)\h (Ω) . Then
0 6= φα ◦ h (z) for all z ∈ Ω because

φα ◦ h (z) =
h (z)− α

1− αh (z)

and it is assumed α /∈ h (Ω) . Therefore, since Ω has the square root property, you
can consider an analytic function z →

√
φα ◦ h (z). This function is one to one

because both φα and h are. Also, the values of this function are in B (0, 1) by
Lemma 21.9 so it is in F .

Now let
ψ ≡ φ√

φα◦h(z0)
◦

√
φα ◦ h. (21.13)

Thus
ψ (z0) = φ√

φα◦h(z0)
◦

√
φα ◦ h (z0) = 0

and ψ is a one to one mapping of Ω into B (0, 1) so ψ is also in F . Therefore,

∣∣ψ′ (z0)
∣∣ ≤ η,

∣∣∣∣
(√

φα ◦ h
)′

(z0)
∣∣∣∣ ≤ η. (21.14)

Define s (w) ≡ w2. Then using Lemma 21.9, in particular, the description of φ−1
α =

φ−α, you can solve 21.13 for h to obtain

h (z) = φ−α ◦ s ◦ φ−
√

φα◦h(z0)
◦ ψ

=




≡F︷ ︸︸ ︷
φ−α ◦ s ◦ φ−

√
φα◦h(z0)

◦ ψ


 (z)

= (F ◦ ψ) (z) (21.15)

Now

F (0) = φ−α ◦ s ◦ φ−
√

φα◦h(z0)
(0) = φ−1

α (φα ◦ h (z0)) = h (z0) = 0
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and F maps B (0, 1) into B (0, 1). Also, F is not one to one because it maps B (0, 1)
to B (0, 1) and has s in its definition. Thus there exists z1 ∈ B (0, 1) such that
φ−
√

φα◦h(z0)
(z1) = − 1

2 and another point z2 ∈ B (0, 1) such that φ−
√

φα◦h(z0)
(z2) =

1
2 . However, thanks to s, F (z1) = F (z2).

Since F (0) = h (z0) = 0, you can apply the Schwarz lemma to F . Since F is
not one to one, it can’t be true that F (z) = λz for |λ| = 1 and so by the Schwarz
lemma it must be the case that |F ′ (0)| < 1. But this implies from 21.15 and 21.14
that

η = |h′ (z0)| = |F ′ (ψ (z0))|
∣∣ψ′ (z0)

∣∣
= |F ′ (0)|

∣∣ψ′ (z0)
∣∣ <

∣∣ψ′ (z0)
∣∣ ≤ η,

a contradiction. This proves the theorem.
The following lemma yields the usual form of the Riemann mapping theorem.

Lemma 21.13 Let Ω be a simply connected region with Ω 6= C. Then Ω has the
square root property.

Proof: Let f and 1
f both be analytic on Ω. Then f ′

f is analytic on Ω so by

Corollary 18.50, there exists F̃ , analytic on Ω such that F̃ ′ = f ′

f on Ω. Then(
fe− eF )′

= 0 and so f (z) = Ce
eF = ea+ibe

eF . Now let F = F̃ + a + ib. Then F is

still a primitive of f ′/f and f (z) = eF (z). Now let φ (z) ≡ e
1
2 F (z). Then φ is the

desired square root and so Ω has the square root property.

Corollary 21.14 (Riemann mapping theorem) Let Ω be a simply connected region
with Ω 6= C and let z0 ∈ Ω. Then there exists a function, f : Ω → B (0, 1) such
that f is one to one, analytic, and onto with f (z0) = 0. Furthermore, f−1 is also
analytic.

Proof: From Theorem 21.12 and Lemma 21.13 there exists a function, f : Ω →
B (0, 1) which is one to one, onto, and analytic such that f (z0) = 0. The assertion
that f−1 is analytic follows from the open mapping theorem.

21.4 Analytic Continuation

21.4.1 Regular And Singular Points

Given a function which is analytic on some set, can you extend it to an analytic
function defined on a larger set? Sometimes you can do this. It was done in the
proof of the Cauchy integral formula. There are also reflection theorems like those
discussed in the exercises starting with Problem 10 on Page 422. Here I will give a
systematic way of extending an analytic function to a larger set. I will emphasize
simply connected regions. The subject of analytic continuation is much larger than
the introduction given here. A good source for much more on this is found in Alfors
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[2]. The approach given here is suggested by Rudin [36] and avoids many of the
standard technicalities.

Definition 21.15 Let f be analytic on B (a, r) and let β ∈ ∂B (a, r) . Then β is
called a regular point of f if there exists some δ > 0 and a function, g analytic on
B (β, δ) such that g = f on B (β, δ) ∩ B (a, r) . Those points of ∂B (a, r) which are
not regular are called singular.

r a

rβ

Theorem 21.16 Suppose f is analytic on B (a, r) and the power series

f (z) =
∞∑

k=0

ak (z − a)k

has radius of convergence r. Then there exists a singular point on ∂B (a, r).

Proof: If not, then for every z ∈ ∂B (a, r) there exists δz > 0 and gz analytic
on B (z, δz) such that gz = f on B (z, δz) ∩ B (a, r) . Since ∂B (a, r) is compact,
there exist z1, · · ·, zn, points in ∂B (a, r) such that {B (zk, δzk

)}n
k=1 covers ∂B (a, r) .

Now define

g (z) ≡
{

f (z) if z ∈ B (a, r)
gzk

(z) if z ∈ B (zk, δzk
)

Is this well defined? If z ∈ B (zi, δzi)∩B
(
zj , δzj

)
, is gzi (z) = gzj (z)? Consider the

following picture representing this situation.

You see that if z ∈ B (zi, δzi) ∩ B
(
zj , δzj

)
then I ≡ B (zi, δzi) ∩ B

(
zj , δzj

) ∩
B (a, r) is a nonempty open set. Both gzi and gzj equal f on I. Therefore, they
must be equal on B (zi, δzi) ∩ B

(
zj , δzj

)
because I has a limit point. Therefore,

g is well defined and analytic on an open set containing B (a, r). Since g agrees
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with f on B (a, r) , the power series for g is the same as the power series for f and
converges on a ball which is larger than B (a, r) contrary to the assumption that the
radius of convergence of the above power series equals r. This proves the theorem.

21.4.2 Continuation Along A Curve

Next I will describe what is meant by continuation along a curve. The following
definition is standard and is found in Rudin [36].

Definition 21.17 A function element is an ordered pair, (f, D) where D is an open
ball and f is analytic on D. (f0, D0) and (f1, D1) are direct continuations of each
other if D1 ∩D0 6= ∅ and f0 = f1 on D1 ∩D0. In this case I will write (f0, D0) ∼
(f1, D1) . A chain is a finite sequence, of disks, {D0, · · ·, Dn} such that Di−1∩Di 6=
∅. If (f0, D0) is a given function element and there exist function elements, (fi, Di)
such that {D0, · · ·, Dn} is a chain and (fj−1, Dj−1) ∼ (fj , Dj) then (fn, Dn) is
called the analytic continuation of (f0, D0) along the chain {D0, · · ·, Dn}. Now
suppose γ is an oriented curve with parameter interval [a, b] and there exists a chain,
{D0, · · ·, Dn} such that γ∗ ⊆ ∪n

k=1Dk, γ (a) is the center of D0, γ (b) is the center
of Dn, and there is an increasing list of numbers in [a, b] , a = s0 < s1 · ·· < sn = b
such that γ ([si, si+1]) ⊆ Di and (fn, Dn) is an analytic continuation of (f0, D0)
along the chain. Then (fn, Dn) is called an analytic continuation of (f0, D0) along
the curve γ. (γ will always be a continuous curve. Nothing more is needed. )

In the above situation it does not follow that if Dn∩D0 6= ∅, that fn = f0! How-
ever, there are some cases where this will happen. This is the monodromy theorem
which follows. This is as far as I will go on the subject of analytic continuation. For
more on this subject including a development of the concept of Riemann surfaces,
see Alfors [2].

Lemma 21.18 Suppose (f, B (0, r)) for r < 1 is a function element and (f, B (0, r))
can be analytically continued along every curve in B (0, 1) that starts at 0. Then
there exists an analytic function, g defined on B (0, 1) such that g = f on B (0, r) .

Proof: Let

R = sup{r1 ≥ r such that there exists gr1

analytic on B (0, r1) which agrees with f on B (0, r) .}
Define gR (z) ≡ gr1 (z) where |z| < r1. This is well defined because if you use r1

and r2, both gr1 and gr2 agree with f on B (0, r), a set with a limit point and so
the two functions agree at every point in both B (0, r1) and B (0, r2). Thus gR is
analytic on B (0, R) . If R < 1, then by the assumption there are no singular points
on B (0, R) and so Theorem 21.16 implies the radius of convergence of the power
series for gR is larger than R contradicting the choice of R. Therefore, R = 1 and
this proves the lemma. Let g = gR.

The following theorem is the main result in this subject, the monodromy theo-
rem.
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Theorem 21.19 Let Ω be a simply connected proper subset of C and suppose
(f, B (a, r)) is a function element with B (a, r) ⊆ Ω. Suppose also that this function
element can be analytically continued along every curve through a. Then there exists
G analytic on Ω such that G agrees with f on B (a, r).

Proof: By the Riemann mapping theorem, there exists h : Ω → B (0, 1) which
is analytic, one to one and onto such that f (a) = 0. Since h is an open map, there
exists δ > 0 such that

B (0, δ) ⊆ h (B (a, r)) .

It follows f ◦ h−1 can be analytically continued along every curve through 0. By
Lemma 21.18 there exists g analytic on B (0, 1) which agrees with f ◦h−1 on B (0, δ).
Define G (z) ≡ g (h (z)) . For z = h−1 (w) , it follows G

(
h−1 (w)

)
= g (w) . If w ∈

B (0, δ) , then G
(
h−1 (w)

)
= f ◦ h−1 (w) and so G = f on h−1 (B (0, δ)) , an open

set contained in B (a, r). Therefore, G = f on B (a, r) because h−1 (B (0, δ)) has a
limit point. This proves the theorem.

Actually, you sometimes want to consider the case where Ω = C. This requires
a small modification to obtain from the above theorem.

Corollary 21.20 Suppose (f, B (a, r)) is a function element with B (a, r) ⊆ C.
Suppose also that this function element can be analytically continued along every
curve through a. Then there exists G analytic on C such that G agrees with f on
B (a, r).

Proof: Let Ω1 ≡ {z ∈ C : a + it : t > a} and Ω2 ≡ {z ∈ C : a− it : t > a} . Here
is a picture of Ω1.

Ω1

a
r

A picture of Ω2 is similar except the line extends down from the boundary of
B (a, r).

Thus B (a, r) ⊆ Ωi and Ωi is simply connected and proper. By Theorem 21.19
there exist analytic functions, Gi analytic on Ωi such that Gi = f on B (a, r). Thus
G1 = G2 on B (a, r) , a set with a limit point. Therefore, G1 = G2 on Ω1∩Ω2. Now
let G (z) = Gi (z) where z ∈ Ωi. This is well defined and analytic on C. This proves
the corollary.

21.5 The Picard Theorems

The Picard theorem says that if f is an entire function and there are two complex
numbers not contained in f (C) , then f is constant. This is certainly one of the
most amazing things which could be imagined. However, this is only the little
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Picard theorem. The big Picard theorem is even more incredible. This one asserts
that to be non constant the entire function must take every value of C but two
infinitely many times! I will begin with the little Picard theorem. The method of
proof I will use is the one found in Saks and Zygmund [38], Conway [11] and Hille
[24]. This is not the way Picard did it in 1879. That approach is very different and
is presented at the end of the material on elliptic functions. This approach is much
more recent dating it appears from around 1924.

Lemma 21.21 Let f be analytic on a region containing B (0, r) and suppose

|f ′ (0)| = b > 0, f (0) = 0,

and |f (z)| ≤ M for all z ∈ B (0, r). Then f (B (0, r)) ⊇ B
(
0, r2b2

6M

)
.

Proof: By assumption,

f (z) =
∞∑

k=0

akzk, |z| ≤ r. (21.16)

Then by the Cauchy integral formula for the derivative,

ak =
1

2πi

∫

∂B(0,r)

f (w)
wk+1

dw

where the integral is in the counter clockwise direction. Therefore,

|ak| ≤ 1
2π

∫ 2π

0

∣∣f (
reiθ

)∣∣
rk

dθ ≤ M

rk
.

In particular, br ≤ M . Therefore, from 21.16

|f (z)| ≥ b |z| −
∞∑

k=2

M

rk
|z|k = b |z| −

M
(
|z|
r

)2

1− |z|
r

= b |z| − M |z|2
r2 − r |z|

Suppose |z| = r2b
4M < r. Then this is no larger than

1
4
b2r2 3M − br

M (4M − br)
≥ 1

4
b2r2 3M −M

M (4M −M)
=

r2b2

6M
.

Let |w| < r2b
4M . Then for |z| = r2b

4M and the above,

|w| = |(f (z)− w)− f (z)| < r2b

4M
≤ |f (z)|

and so by Rouche’s theorem, z → f (z)−w and z → f (z) have the same number of
zeros in B

(
0, r2b

4M

)
. But f has at least one zero in this ball and so this shows there

exists at least one z ∈ B
(
0, r2b

4M

)
such that f (z)− w = 0. This proves the lemma.
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21.5.1 Two Competing Lemmas

Lemma 21.21 is a really nice lemma but there is something even better, Bloch’s
lemma. This lemma does not depend on the bound of f . Like the above two
lemmas it is interesting for its own sake and in addition is the key to a fairly short
proof of Picard’s theorem. It features the number 1

24 . The best constant is not
currently known.

Lemma 21.22 Let f be analytic on an open set containing B (0, R) and suppose
|f ′ (0)| > 0. Then there exists a ∈ B (0, R) such that

f (B (0, R)) ⊇ B

(
f (a) ,

|f ′ (0)|R
24

)
.

Proof: Let K (ρ) ≡ max {|f ′ (z)| : |z| = ρ} . For simplicity, let Cρ ≡ {z : |z| = ρ}.
Claim: K is continuous from the left.
Proof of claim: Let zρ ∈ Cρ such that |f ′ (zρ)| = K (ρ) . Then by the maximum

modulus theorem, if λ ∈ (0, 1) ,

|f ′ (λzρ)| ≤ K (λρ) ≤ K (ρ) = |f ′ (zρ)| .

Letting λ → 1 yields the claim.
Let ρ0 be the largest such that (R− ρ0) K (ρ0) = R |f ′ (0)| . (Note (R− 0)K (0) =

R |f ′ (0)| .) Thus ρ0 < R because (R−R) K (R) = 0. Let |a| = ρ0 such that
|f ′ (a)| = K (ρ0). Thus

|f ′ (a)| (R− ρ0) = |f ′ (0)|R (21.17)

Now let r = R−ρ0
2 . From 21.17,

|f ′ (a)| r =
1
2
|f ′ (0)|R, B (a, r) ⊆ B (0, ρ0 + r) ⊆ B (0, R) . (21.18)

r
0

ra



496 COMPLEX MAPPINGS

Therefore, if z ∈ B (a, r) , it follows from the maximum modulus theorem and
the definition of ρ0 that

|f ′ (z)| ≤ K (ρ0 + r) <
R |f ′ (0)|

R− ρ0 − r
=

2R |f ′ (0)|
R− ρ0

=
2R |f ′ (0)|

2r
=

R |f ′ (0)|
r

(21.19)

Let g (z) = f (a + z)− f (a) where z ∈ B (0, r) . Then |g′ (0)| = |f ′ (a)| > 0 and
for z ∈ B (0, r),

|g (z)| ≤
∣∣∣∣∣
∫

γ(a,z)

g′ (w) dw

∣∣∣∣∣ ≤ |z − a| R |f
′ (0)|
r

= R |f ′ (0)| .

By Lemma 21.21 and 21.18,

g (B (0, r)) ⊇ B

(
0,

r2 |f ′ (a)|2
6R |f ′ (0)|

)

= B

(
0,

r2
(

1
2r |f ′ (0)|R)2

6R |f ′ (0)|

)
= B

(
0,
|f ′ (0)|R

24

)

Now g (B (0, r)) = f (B (a, r))− f (a) and so this implies

f (B (0, R)) ⊇ f (B (a, r)) ⊇ B

(
f (a) ,

|f ′ (0)|R
24

)
.

This proves the lemma.
Here is a slightly more general version which allows the center of the open set

to be arbitrary.

Lemma 21.23 Let f be analytic on an open set containing B (z0, R) and suppose
|f ′ (z0)| > 0. Then there exists a ∈ B (z0, R) such that

f (B (z0, R)) ⊇ B

(
f (a) ,

|f ′ (z0)|R
24

)
.

Proof: You look at g (z) ≡ f (z0 + z) − f (z0) for z ∈ B (0, R) . Then g′ (0) =
f ′ (z0) and so by Lemma 21.22 there exists a1 ∈ B (0, R) such that

g (B (0, R)) ⊇ B

(
g (a1) ,

|f ′ (z0)|R
24

)
.

Now g (B (0, R)) = f (B (z0, R)) − f (z0) and g (a1) = f (a) − f (z0) for some a ∈
B (z0, R) and so

f (B (z0, R))− f (z0) ⊇ B

(
g (a1) ,

|f ′ (z0)|R
24

)

= B

(
f (a)− f (z0) ,

|f ′ (z0)|R
24

)
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which implies

f (B (z0, R)) ⊇ B

(
f (a) ,

|f ′ (z0)|R
24

)

as claimed. This proves the lemma.
No attempt was made to find the best number to multiply by R |f ′ (z0)|. A

discussion of this is given in Conway [11]. See also [24]. Much larger numbers than
1/24 are available and there is a conjecture due to Alfors about the best value. The
conjecture is that 1/24 can be replaced with

Γ
(

1
3

)
Γ

(
11
12

)
(
1 +

√
3
)1/2

Γ
(

1
4

) ≈ . 471 86

You can see there is quite a gap between the constant for which this lemma is proved
above and what is thought to be the best constant.

Bloch’s lemma above gives the existence of a ball of a certain size inside the
image of a ball. By contrast the next lemma leads to conditions under which the
values of a function do not contain a ball of certain radius. It concerns analytic
functions which do not achieve the values 0 and 1.

Lemma 21.24 Let F denote the set of functions, f defined on Ω, a simply con-
nected region which do not achieve the values 0 and 1. Then for each such function,
it is possible to define a function analytic on Ω, H (z) by the formula

H (z) ≡ log

[√
log (f (z))

2πi
−

√
log (f (z))

2πi
− 1

]
.

There exists a constant C independent of f ∈ F such that H (Ω) does not contain
any ball of radius C.

Proof: Let f ∈ F . Then since f does not take the value 0, there exists g1 a
primitive of f ′/f . Thus

d

dz

(
e−g1f

)
= 0

so there exists a, b such that f (z) e−g1(z) = ea+bi. Letting g (z) = g1 (z) + a + ib, it
follows eg(z) = f (z). Let log (f (z)) = g (z). Then for n ∈ Z, the integers,

log (f (z))
2πi

,
log (f (z))

2πi
− 1 6= n

because if equality held, then f (z) = 1 which does not happen. It follows log(f(z))
2πi

and log(f(z))
2πi − 1 are never equal to zero. Therefore, using the same reasoning, you

can define a logarithm of these two quantities and therefore, a square root. Hence
there exists a function analytic on Ω,

√
log (f (z))

2πi
−

√
log (f (z))

2πi
− 1. (21.20)
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For n a positive integer, this function cannot equal
√

n±√n− 1 because if it did,
then (√

log (f (z))
2πi

−
√

log (f (z))
2πi

− 1

)
=
√

n±√n− 1 (21.21)

and you could take reciprocals of both sides to obtain
(√

log (f (z))
2πi

+

√
log (f (z))

2πi
− 1

)
=
√

n∓√n− 1. (21.22)

Then adding 21.21 and 21.22

2

√
log (f (z))

2πi
= 2

√
n

which contradicts the above observation that log(f(z))
2πi is not equal to an integer.

Also, the function of 21.20 is never equal to zero. Therefore, you can define the
logarithm of this function also. It follows

H (z) ≡ log

(√
log (f (z))

2πi
−

√
log (f (z))

2πi
− 1

)
6= ln

(√
n±√n− 1

)
+ 2mπi

where m is an arbitrary integer and n is a positive integer. Now

lim
n→∞

ln
(√

n +
√

n− 1
)

= ∞

and limn→∞ ln
(√

n−√n− 1
)

= −∞ and so C is covered by rectangles having
vertices at points ln

(√
n±√n− 1

)
+ 2mπi as described above. Each of these

rectangles has height equal to 2π and a short computation shows their widths are
bounded. Therefore, there exists C independent of f ∈ F such that C is larger
than the diameter of all these rectangles. Hence H (Ω) cannot contain any ball of
radius larger than C.

21.5.2 The Little Picard Theorem

Now here is the little Picard theorem. It is easy to prove from the above.

Theorem 21.25 If h is an entire function which omits two values then h is a
constant.

Proof: Suppose the two values omitted are a and b and that h is not constant.
Let f (z) = (h (z)− a) / (b− a). Then f omits the two values 0 and 1. Let H be
defined in Lemma 21.24. Then H (z) is clearly not of the form az+b because then it
would have values equal to the vertices ln

(√
n±√n− 1

)
+2mπi or else be constant

neither of which happen if h is not constant. Therefore, by Liouville’s theorem, H ′

must be unbounded. Pick ξ such that |H ′ (ξ)| > 24C where C is such that H (C)
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contains no balls of radius larger than C. But by Lemma 21.23 H (B (ξ, 1)) must

contain a ball of radius |H
′(ξ)|
24 > 24C

24 = C, a contradiction. This proves Picard’s
theorem.

The following is another formulation of this theorem.

Corollary 21.26 If f is a meromophic function defined on C which omits three
distinct values, a, b, c, then f is a constant.

Proof: Let φ (z) ≡ z−a
z−c

b−c
b−a . Then φ (c) = ∞, φ (a) = 0, and φ (b) = 1. Now

consider the function, h = φ ◦ f. Then h misses the three points ∞, 0, and 1. Since
h is meromorphic and does not have ∞ in its values, it must actually be analytic.
Thus h is an entire function which misses the two values 0 and 1. Therefore, h is
constant by Theorem 21.25.

21.5.3 Schottky’s Theorem

Lemma 21.27 Let f be analytic on an open set containing B (0, R) and suppose
that f does not take on either of the two values 0 or 1. Also suppose |f (0)| ≤ β.
Then letting θ ∈ (0, 1) , it follows

|f (z)| ≤ M (β, θ)

for all z ∈ B (0, θR) , where M (β, θ) is a function of only the two variables β, θ.
(In particular, there is no dependence on R.)

Proof: Consider the function, H (z) used in Lemma 21.24 given by

H (z) ≡ log

(√
log (f (z))

2πi
−

√
log (f (z))

2πi
− 1

)
. (21.23)

You notice there are two explicit uses of logarithms. Consider first the logarithm
inside the radicals. Choose this logarithm such that

log (f (0)) = ln |f (0)|+ i arg (f (0)) , arg (f (0)) ∈ (−π, π]. (21.24)

You can do this because

elog(f(0)) = f (0) = eln|f(0)|eiα = eln|f(0)|+iα

and by replacing α with α + 2mπ for a suitable integer, m it follows the above
equation still holds. Therefore, you can assume 21.24. Similar reasoning applies to
the logarithm on the outside of the parenthesis. It can be assumed H (0) equals

ln

∣∣∣∣∣

√
log (f (0))

2πi
−

√
log (f (0))

2πi
− 1

∣∣∣∣∣ + i arg

(√
log (f (0))

2πi
−

√
log (f (0))

2πi
− 1

)

(21.25)
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where the imaginary part is no larger than π in absolute value.
Now if ξ ∈ B (0, R) is a point where H ′ (ξ) 6= 0, then by Lemma 21.22

H (B (ξ, R− |ξ|)) ⊇ B

(
H (a) ,

|H ′ (ξ)| (R− |ξ|)
24

)

where a is some point in B (ξ, R− |ξ|). But by Lemma 21.24 H (B (ξ, R− |ξ|))
contains no balls of radius C where C depended only on the maximum diameters of
those rectangles having vertices ln

(√
n±√n− 1

)
+ 2mπi for n a positive integer

and m an integer. Therefore,

|H ′ (ξ)| (R− |ξ|)
24

< C

and consequently

|H ′ (ξ)| < 24C

R− |ξ| .

Even if H ′ (ξ) = 0, this inequality still holds. Therefore, if z ∈ B (0, R) and γ (0, z)
is the straight segment from 0 to z,

|H (z)−H (0)| =

∣∣∣∣∣
∫

γ(0,z)

H ′ (w) dw

∣∣∣∣∣ =
∣∣∣∣
∫ 1

0

H ′ (tz) zdt

∣∣∣∣

≤
∫ 1

0

|H ′ (tz) z| dt ≤
∫ 1

0

24C

R− t |z| |z| dt

= 24C ln
(

R

R− |z|
)

.

Therefore, for z ∈ ∂B (0, θR) ,

|H (z)| ≤ |H (0)|+ 24C ln
(

1
1− θ

)
. (21.26)

By the maximum modulus theorem, the above inequality holds for all |z| < θR also.
Next I will use 21.23 to get an inequality for |f (z)| in terms of |H (z)|. From

21.23,

H (z) = log

(√
log (f (z))

2πi
−

√
log (f (z))

2πi
− 1

)

and so

2H (z) = log

(√
log (f (z))

2πi
−

√
log (f (z))

2πi
− 1

)2

−2H (z) = log

(√
log (f (z))

2πi
−

√
log (f (z))

2πi
− 1

)−2

= log

(√
log (f (z))

2πi
+

√
log (f (z))

2πi
− 1

)2
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Therefore,

(√
log (f (z))

2πi
+

√
log (f (z))

2πi
− 1

)2

+

(√
log (f (z))

2πi
−

√
log (f (z))

2πi
− 1

)2

= exp (2H (z)) + exp (−2H (z))

and (
log (f (z))

πi
− 1

)
=

1
2

(exp (2H (z)) + exp (−2H (z))) .

Thus

log (f (z)) = πi +
πi

2
(exp (2H (z)) + exp (−2H (z)))

which shows

|f (z)| =
∣∣∣∣exp

[
πi

2
(exp (2H (z)) + exp (−2H (z)))

]∣∣∣∣

≤ exp
∣∣∣∣
πi

2
(exp (2H (z)) + exp (−2H (z)))

∣∣∣∣

≤ exp
∣∣∣π
2

(|exp (2H (z))|+ |exp (−2H (z))|)
∣∣∣

≤ exp
∣∣∣π
2

(exp (2 |H (z)|) + exp (|−2H (z)|))
∣∣∣

= exp (π exp 2 |H (z)|) .

Now from 21.26 this is dominated by

exp
(

π exp 2
(
|H (0)|+ 24C ln

(
1

1− θ

)))

= exp
(

π exp (2 |H (0)|) exp
(

48C ln
(

1
1− θ

)))
(21.27)

Consider exp (2 |H (0)|). I want to obtain an inequality for this which involves
β. This is where I will use the convention about the logarithms discussed above.
From 21.25,

2 |H (0)| = 2

∣∣∣∣∣log

(√
log (f (0))

2πi
−

√
log (f (0))

2πi
− 1

)∣∣∣∣∣
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≤ 2




(
ln

∣∣∣∣∣

√
log (f (0))

2πi
−

√
log (f (0))

2πi
− 1

∣∣∣∣∣

)2

+ π2




1/2

≤ 2




∣∣∣∣∣ln
(∣∣∣∣∣

√
log (f (0))

2πi

∣∣∣∣∣ +

∣∣∣∣∣

√
log (f (0))

2πi
− 1

∣∣∣∣∣

)∣∣∣∣∣

2

+ π2




1/2

≤ 2

∣∣∣∣∣ln
(∣∣∣∣∣

√
log (f (0))

2πi

∣∣∣∣∣ +

∣∣∣∣∣

√
log (f (0))

2πi
− 1

∣∣∣∣∣

)∣∣∣∣∣ + 2π

≤ ln
(

2
(∣∣∣∣

log (f (0))
2πi

∣∣∣∣ +
∣∣∣∣
log (f (0))

2πi
− 1

∣∣∣∣
))

+ 2π

= ln
((∣∣∣∣

log (f (0))
πi

∣∣∣∣ +
∣∣∣∣
log (f (0))

πi
− 2

∣∣∣∣
))

+ 2π (21.28)

Consider
∣∣∣ log(f(0))

πi

∣∣∣

log (f (0))
πi

= − ln |f (0)|
π

i +
arg (f (0))

π

and so
∣∣∣∣
log (f (0))

πi

∣∣∣∣ =

(∣∣∣∣
ln |f (0)|

π

∣∣∣∣
2

+
(

arg (f (0))
π

)2
)1/2

≤
(∣∣∣∣

ln β

π

∣∣∣∣
2

+
(π

π

)2
)1/2

=

(∣∣∣∣
ln β

π

∣∣∣∣
2

+ 1

)1/2

.

Similarly,

∣∣∣∣
log (f (0))

πi
− 2

∣∣∣∣ ≤
(∣∣∣∣

ln β

π

∣∣∣∣
2

+ (2 + 1)2
)1/2

=

(∣∣∣∣
ln β

π

∣∣∣∣
2

+ 9

)1/2

It follows from 21.28 that

2 |H (0)| ≤ ln


2

(∣∣∣∣
ln β

π

∣∣∣∣
2

+ 9

)1/2

 + 2π.

Hence from 21.27
|f (z)| ≤
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exp


π exp


ln


2

(∣∣∣∣
ln β

π

∣∣∣∣
2

+ 9

)1/2

 + 2π


 exp

(
48C ln

(
1

1− θ

))


and so, letting M (β, θ) be given by the above expression on the right, the lemma
is proved.

The following theorem will be referred to as Schottky’s theorem. It looks just
like the above lemma except it is only assumed that f is analytic on B (0, R) rather
than on an open set containing B (0, R). Also, the case of an arbitrary center is
included along with arbitrary points which are not attained as values of the function.

Theorem 21.28 Let f be analytic on B (z0, R) and suppose that f does not take
on either of the two distinct values a or b. Also suppose |f (z0)| ≤ β. Then letting
θ ∈ (0, 1) , it follows

|f (z)| ≤ M (a, b, β, θ)

for all z ∈ B (z0, θR) , where M (a, b, β, θ) is a function of only the variables β, θ,a, b.
(In particular, there is no dependence on R.)

Proof: First you can reduce to the case where the two values are 0 and 1 by
considering

h (z) ≡ f (z)− a

b− a
.

If there exists an estimate of the desired sort for h, then there exists such an estimate
for f. Of course here the function, M would depend on a and b. Therefore, there is
no loss of generality in assuming the points which are missed are 0 and 1.

Apply Lemma 21.27 to B (0, R1) for the function, g (z) ≡ f (z0 + z) and R1 < R.
Then if β ≥ |f (z0)| = |g (0)| , it follows |g (z)| = |f (z0 + z)| ≤ M (β, θ) for every
z ∈ B (0, θR1) . Now let θ ∈ (0, 1) and choose R1 < R large enough that θR = θ1R1

where θ1 ∈ (0, 1) . Then if |z − z0| < θR, it follows

|f (z)| ≤ M (β, θ1) .

Now let R1 → R so θ1 → θ.

21.5.4 A Brief Review

First recall the definition of the metric on Ĉ. For convenience it is listed here again.
Consider the unit sphere, S2 given by (z − 1)2 +y2 +x2 = 1. Define a map from the
complex plane to the surface of this sphere as follows. Extend a line from the point,
p in the complex plane to the point (0, 0, 2) on the top of this sphere and let θ (p)
denote the point of this sphere which the line intersects. Define θ (∞) ≡ (0, 0, 2).
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s
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p

θ(p)

C

Then θ−1 is sometimes called sterographic projection. The mapping θ is clearly
continuous because it takes converging sequences, to converging sequences. Fur-
thermore, it is clear that θ−1 is also continuous. In terms of the extended complex
plane, Ĉ, a sequence, zn converges to ∞ if and only if θzn converges to (0, 0, 2) and
a sequence, zn converges to z ∈ C if and only if θ (zn) → θ (z) .

In fact this makes it easy to define a metric on Ĉ.

Definition 21.29 Let z, w ∈ Ĉ. Then let d (x, y) ≡ |θ (z)− θ (w)| where this last
distance is the usual distance measured in R3.

Theorem 21.30
(
Ĉ, d

)
is a compact, hence complete metric space.

Proof: Suppose {zn} is a sequence in Ĉ. This means {θ (zn)} is a sequence in
S2 which is compact. Therefore, there exists a subsequence, {θznk

} and a point,
z ∈ S2 such that θznk

→ θz in S2 which implies immediately that d (znk
, z) → 0.

A compact metric space must be complete.
Also recall the interesting fact that meromorphic functions are continuous with

values in Ĉ which is reviewed here for convenience. It came from the theory of
classification of isolated singularities.

Theorem 21.31 Let Ω be an open subset of C and let f : Ω → Ĉ be meromorphic.
Then f is continuous with respect to the metric, d on Ĉ.

Proof: Let zn → z where z ∈ Ω. Then if z is a pole, it follows from Theorem
18.38 that

d (f (zn) ,∞) ≡ d (f (zn) , f (z)) → 0.

If z is not a pole, then f (zn) → f (z) in C which implies |θ (f (zn))− θ (f (z))| =
d (f (zn) , f (z)) → 0. Recall that θ is continuous on C.

The fundamental result behind all the theory about to be presented is the Ascoli
Arzela theorem also listed here for convenience.

Definition 21.32 Let (X, d) be a complete metric space. Then it is said to be
locally compact if B (x, r) is compact for each r > 0.

Thus if you have a locally compact metric space, then if {an} is a bounded
sequence, it must have a convergent subsequence.

Let K be a compact subset of Rn and consider the continuous functions which
have values in a locally compact metric space, (X, d) where d denotes the metric on
X. Denote this space as C (K, X) .
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Definition 21.33 For f, g ∈ C (K, X) , where K is a compact subset of Rn and X
is a locally compact complete metric space define

ρK (f, g) ≡ sup {d (f (x) , g (x)) : x ∈ K} .

The Ascoli Arzela theorem, Theorem 5.22 is a major result which tells which
subsets of C (K, X) are sequentially compact.

Definition 21.34 Let A ⊆ C (K, X) for K a compact subset of Rn. Then A is
said to be uniformly equicontinuous if for every ε > 0 there exists a δ > 0 such that
whenever x,y ∈ K with |x− y| < δ and f ∈ A,

d (f (x) , f (y)) < ε.

The set, A is said to be uniformly bounded if for some M < ∞, and a ∈ X,

f (x) ∈ B (a,M)

for all f ∈ A and x ∈ K.

The Ascoli Arzela theorem follows.

Theorem 21.35 Suppose K is a nonempty compact subset of Rn and A ⊆ C (K,X) ,
is uniformly bounded and uniformly equicontinuous where X is a locally compact
complete metric space. Then if {fk} ⊆ A, there exists a function, f ∈ C (K,X) and
a subsequence, fkl

such that

lim
l→∞

ρK (fkl
, f) = 0.

In the cases of interest here, X = Ĉ with the metric defined above.

21.5.5 Montel’s Theorem

The following lemma is another version of Montel’s theorem. It is this which will
make possible a proof of the big Picard theorem.

Lemma 21.36 Let Ω be a region and let F be a set of functions analytic on Ω
none of which achieve the two distinct values, a and b. If {fn} ⊆ F then one of the
following hold: Either there exists a function, f analytic on Ω and a subsequence,
{fnk

} such that for any compact subset, K of Ω,

lim
k→∞

||fnk
− f ||K,∞ = 0. (21.29)

or there exists a subsequence {fnk
} such that for all compact subsets K,

lim
k→∞

ρK (fnk
,∞) = 0. (21.30)
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Proof: Let B (z0, 2R) ⊆ Ω. There are two cases to consider. The first case is
that there exists a subsequence, nk such that {fnk

(z0)} is bounded. The second
case is that limn→∞ |fnk

(z0)| = ∞.
Consider the first case. By Theorem 21.28 {fnk

(z)} is uniformly bounded on
B (z0, R) because by this theorem, and letting θ = 1/2 applied to B (z0, 2R) , it fol-
lows |fnk

(z)| ≤ M
(
a, b, 1

2 , β
)

where β is an upper bound to the numbers, |fnk
(z0)|.

The Cauchy integral formula implies the existence of a uniform bound on the
{
f ′nk

}
which implies the functions are equicontinuous and uniformly bounded. Therefore,
by the Ascoli Arzela theorem there exists a further subsequence which converges
uniformly on B (z0, R) to a function, f analytic on B (z0, R). Thus denoting this
subsequence by {fnk

} to save on notation,

lim
k→∞

||fnk
− f ||

B(z0,R),∞ = 0. (21.31)

Consider the second case. In this case, it follows {1/fn (z0)} is bounded on
B (z0, R) and so by the same argument just given {1/fn (z)} is uniformly bounded
on B (z0, R). Therefore, a subsequence converges uniformly on B (z0, R). But
{1/fn (z)} converges to 0 and so this requires that {1/fn (z)} must converge uni-
formly to 0. Therefore,

lim
k→∞

ρ
B(z0,R)

(fnk
,∞) = 0. (21.32)

Now let {Dk} denote a countable set of closed balls, Dk = B (zk, Rk) such that
B (zk, 2Rk) ⊆ Ω and ∪∞k=1 int (Dk) = Ω. Using a Cantor diagonal process, there
exists a subsequence, {fnk

} of {fn} such that for each Dj , one of the above two
alternatives holds. That is, either

lim
k→∞

||fnk
− gj ||Dj ,∞ = 0 (21.33)

or,
lim

k→∞
ρDj

(fnk
,∞) . (21.34)

Let A = {∪ int (Dj) : 21.33 holds} , B = {∪ int (Dj) : 21.34 holds} . Note that the
balls whose union is A cannot intersect any of the balls whose union is B. Therefore,
one of A or B must be empty since otherwise, Ω would not be connected.

If K is any compact subset of Ω, it follows K must be a subset of some finite
collection of the Dj . Therefore, one of the alternatives in the lemma must hold.
That the limit function, f must be analytic follows easily in the same way as the
proof in Theorem 21.7 on Page 484. You could also use Morera’s theorem. This
proves the lemma.

21.5.6 The Great Big Picard Theorem

The next theorem is the main result which the above lemmas lead to. It is the Big
Picard theorem, also called the Great Picard theorem.Recall B′ (a, r) is the deleted
ball consisting of all the points of the ball except the center.
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Theorem 21.37 Suppose f has an isolated essential singularity at 0. Then for
every R > 0, and β ∈ C, f−1 (β)∩B′ (0, R) is an infinite set except for one possible
exceptional β.

Proof: Suppose this is not true. Then there exists R1 > 0 and two points, α
and β such that f−1 (β) ∩ B′ (0, R1) and f−1 (α) ∩ B′ (0, R1) are both finite sets.
Then shrinking R1 and calling the result R, there exists B (0, R) such that

f−1 (β) ∩B′ (0, R) = ∅, f−1 (α) ∩B′ (0, R) = ∅.

Now let A0 denote the annulus
{
z ∈ C : R

22 < |z| < 3R
22

}
and let An denote the

annulus
{
z ∈ C : R

22+n < |z| < 3R
22+n

}
. The reason for the 3 is to insure that An ∩

An+1 6= ∅. This follows from the observation that 3R/22+1+n > R/22+n. Now
define a set of functions on A0 as follows:

fn (z) ≡ f
( z

2n

)
.

By the choice of R, this set of functions missed the two points α and β. Therefore, by
Lemma 21.36 there exists a subsequence such that one of the two options presented
there holds.

First suppose limk→∞ ||fnk
− f ||K,∞ = 0 for all K a compact subset of A0 and

f is analytic on A0. In particular, this happens for γ0 the circular contour having
radius R/2. Thus fnk

must be bounded on this contour. But this says the same
thing as f (z/2nk) is bounded for |z| = R/2, this holding for each k = 1, 2, · · ·. Thus
there exists a constant, M such that on each of a shrinking sequence of concentric
circles whose radii converge to 0, |f (z)| ≤ M . By the maximum modulus theorem,
|f (z)| ≤ M at every point between successive circles in this sequence. Therefore,
|f (z)| ≤ M in B′ (0, R) contradicting the Weierstrass Casorati theorem.

The other option which might hold from Lemma 21.36 is that limk→∞ ρK (fnk
,∞) =

0 for all K compact subset of A0. Since f has an essential singularity at 0 the zeros
of f in B (0, R) are isolated. Therefore, for all k large enough, fnk

has no zeros for
|z| < 3R/22. This is because the values of fnk

are the values of f on Ank
, a small

anulus which avoids all the zeros of f whenever k is large enough. Only consider k
this large. Then use the above argument on the analytic functions 1/fnk

. By the as-
sumption that limk→∞ ρK (fnk

,∞) = 0, it follows limk→∞ ||1/fnk
− 0||K,∞ = 0 and

so as above, there exists a shrinking sequence of concentric circles whose radii con-
verge to 0 and a constant, M such that for z on any of these circles, |1/f (z)| ≤ M .
This implies that on some deleted ball, B′ (0, r) where r ≤ R, |f (z)| ≥ 1/M which
again violates the Weierstrass Casorati theorem. This proves the theorem.

As a simple corollary, here is what this remarkable theorem says about entire
functions.

Corollary 21.38 Suppose f is entire and nonconstant and not a polynomial. Then
f assumes every complex value infinitely many times with the possible exception of
one.
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Proof: Since f is entire, f (z) =
∑∞

n=0 anzn. Define for z 6= 0,

g (z) ≡ f

(
1
z

)
=

∞∑
n=0

an

(
1
z

)n

.

Thus 0 is an isolated essential singular point of g. By the big Picard theorem,
Theorem 21.37 it follows g takes every complex number but possibly one an infinite
number of times. This proves the corollary.

Note the difference between this and the little Picard theorem which says that
an entire function which is not constant must achieve every value but two.

21.6 Exercises

1. Prove that in Theorem 21.7 it suffices to assume F is uniformly bounded on
each compact subset of Ω.

2. Find conditions on a, b, c, d such that the fractional linear transformation,
az+b
cz+d maps the upper half plane onto the upper half plane.

3. Let D be a simply connected region which is a proper subset of C. Does there
exist an entire function, f which maps C onto D? Why or why not?

4. Verify the conclusion of Theorem 21.7 involving the higher order derivatives.

5. What if Ω = C? Does there exist an analytic function, f mapping Ω one to
one and onto B (0, 1)? Explain why or why not. Was Ω 6= C used in the proof
of the Riemann mapping theorem?

6. Verify that |φα (z)| = 1 if |z| = 1. Apply the maximum modulus theorem to
conclude that |φα (z)| ≤ 1 for all |z| < 1.

7. Suppose that |f (z)| ≤ 1 for |z| = 1 and f (α) = 0 for |α| < 1. Show that
|f (z)| ≤ |φα (z)| for all z ∈ B (0, 1) . Hint: Consider f(z)(1−αz)

z−α which has a
removable singularity at α. Show the modulus of this function is bounded by
1 on |z| = 1. Then apply the maximum modulus theorem.

8. Let U and V be open subsets of C and suppose u : U → R is harmonic while
h is an analytic map which takes V one to one onto U . Show that u ◦ h is
harmonic on V .

9. Show that for a harmonic function, u defined on B (0, R) , there exists an
analytic function, h = u + iv where

v (x, y) ≡
∫ y

0

ux (x, t) dt−
∫ x

0

uy (t, 0) dt.
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10. Suppose Ω is a simply connected region and u is a real valued function defined
on Ω such that u is harmonic. Show there exists an analytic function, f such
that u = Re f . Show this is not true if Ω is not a simply connected region.
Hint: You might use the Riemann mapping theorem and Problems 8 and
9. For the second part it might be good to try something like u (x, y) =
ln

(
x2 + y2

)
on the annulus 1 < |z| < 2.

11. Show that w = 1+z
1−z maps {z ∈ C : Im z > 0 and |z| < 1} to the first quadrant,

{z = x + iy : x, y > 0} .

12. Let f (z) = az+b
cz+d and let g (z) = a1z+b1

c1z+d1
. Show that f ◦g (z) equals the quotient

of two expressions, the numerator being the top entry in the vector
(

a b
c d

)(
a1 b1

c1 d1

)(
z
1

)

and the denominator being the bottom entry. Show that if you define

φ

((
a b
c d

))
≡ az + b

cz + d
,

then φ (AB) = φ (A) ◦ φ (B) . Find an easy way to find the inverse of f (z) =
az+b
cz+d and give a condition on the a, b, c, d which insures this function has an
inverse.

13. The modular group2 is the set of fractional linear transformations, az+b
cz+d such

that a, b, c, d are integers and ad − bc = 1. Using Problem 12 or brute force
show this modular group is really a group with the group operation being
composition. Also show the inverse of az+b

cz+d is dz−b
−cz+a .

14. Let Ω be a region and suppose f is analytic on Ω and that the functions fn

are also analytic on Ω and converge to f uniformly on compact subsets of Ω.
Suppose f is one to one. Can it be concluded that for an arbitrary compact
set, K ⊆ Ω that fn is one to one for all n large enough?

15. The Vitali theorem says that if Ω is a region and {fn} is a uniformly bounded
sequence of functions which converges pointwise on a set, S ⊆ Ω which has a
limit point in Ω, then in fact, {fn} must converge uniformly on compact sub-
sets of Ω to an analytic function. Prove this theorem. Hint: If the sequence
fails to converge, show you can get two different subsequences converging uni-
formly on compact sets to different functions. Then argue these two functions
coincide on S.

16. Does there exist a function analytic on B (0, 1) which maps B (0, 1) onto
B′ (0, 1) , the open unit ball in which 0 has been deleted?

2This is the terminology used in Rudin’s book Real and Complex Analysis.
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Approximation By Rational
Functions

22.1 Runge’s Theorem

Consider the function, 1
z = f (z) for z defined on Ω ≡ B (0, 1) \ {0} = B′ (0, 1) .

Clearly f is analytic on Ω. Suppose you could approximate f uniformly by poly-
nomials on ann

(
0, 1

2 , 3
4

)
, a compact subset of Ω. Then, there would exist a suit-

able polynomial p (z) , such that
∣∣∣ 1
2πi

∫
γ

f (z)− p (z) dz
∣∣∣ < 1

10 where here γ is a

circle of radius 2
3 . However, this is impossible because 1

2πi

∫
γ

f (z) dz = 1 while
1

2πi

∫
γ

p (z) dz = 0. This shows you can’t expect to be able to uniformly approxi-
mate analytic functions on compact sets using polynomials. This is just horrible!
In real variables, you can approximate any continuous function on a compact
set with a polynomial. However, that is just the way it is. It turns out that the
ability to approximate an analytic function on Ω with polynomials is dependent on
Ω being simply connected.

All these theorems work for f having values in a complex Banach space. How-
ever, I will present them in the context of functions which have values in C. The
changes necessary to obtain the extra generality are very minor.

Definition 22.1 Approximation will be taken with respect to the following norm.

||f − g||K,∞ ≡ sup {||f (z)− g (z)|| : z ∈ K}

22.1.1 Approximation With Rational Functions

It turns out you can approximate analytic functions by rational functions, quotients
of polynomials. The resulting theorem is one of the most profound theorems in
complex analysis. The basic idea is simple. The Riemann sums for the Cauchy
integral formula are rational functions. The idea used to implement this observation
is that if you have a compact subset, K of an open set, Ω there exists a cycle
composed of closed oriented curves

{
γj

}n

j=1
which are contained in Ω\K such that

511
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for every z ∈ K,
∑n

k=1 n (γk, z) = 1. One more ingredient is needed and this is a
theorem which lets you keep the approximation but move the poles.

To begin with, consider the part about the cycle of closed oriented curves. Recall
Theorem 18.52 which is stated for convenience.

Theorem 22.2 Let K be a compact subset of an open set, Ω. Then there exist
continuous, closed, bounded variation oriented curves

{
γj

}m

j=1
for which γ∗j ∩K = ∅

for each j, γ∗j ⊆ Ω, and for all p ∈ K,

m∑

k=1

n (p, γk) = 1.

and
m∑

k=1

n (z, γk) = 0

for all z /∈ Ω.

This theorem implies the following.

Theorem 22.3 Let K ⊆ Ω where K is compact and Ω is open. Then there exist
oriented closed curves, γk such that γ∗k∩K = ∅ but γ∗k ⊆ Ω, such that for all z ∈ K,

f (z) =
1

2πi

p∑

k=1

∫

γk

f (w)
w − z

dw. (22.1)

Proof: This follows from Theorem 18.52 and the Cauchy integral formula. As
shown in the proof, you can assume the γk are linear mappings but this is not
important.

Next I will show how the Cauchy integral formula leads to approximation by
rational functions, quotients of polynomials.

Lemma 22.4 Let K be a compact subset of an open set, Ω and let f be analytic
on Ω. Then there exists a rational function, Q whose poles are not in K such that

||Q− f ||K,∞ < ε.

Proof: By Theorem 22.3 there are oriented curves, γk described there such that
for all z ∈ K,

f (z) =
1

2πi

p∑

k=1

∫

γk

f (w)
w − z

dw. (22.2)

Defining g (w, z) ≡ f(w)
w−z for (w, z) ∈ ∪p

k=1γ
∗
k × K, it follows since the distance

between K and ∪kγ∗k is positive that g is uniformly continuous and so there exists
a δ > 0 such that if ||P|| < δ, then for all z ∈ K,

∣∣∣∣∣∣
f (z)− 1

2πi

p∑

k=1

n∑

j=1

f (γk (τ j)) (γk (ti)− γk (ti−1))
γk (τ j)− z

∣∣∣∣∣∣
<

ε

2
.
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The complicated expression is obtained by replacing each integral in 22.2 with a
Riemann sum. Simplifying the appearance of this, it follows there exists a rational
function of the form

R (z) =
M∑

k=1

Ak

wk − z

where the wk are elements of components of C \K and Ak are complex numbers or
in the case where f has values in X, these would be elements of X such that

||R− f ||K,∞ <
ε

2
.

This proves the lemma.

22.1.2 Moving The Poles And Keeping The Approximation

Lemma 22.4 is a nice lemma but needs refining. In this lemma, the Riemann sum
handed you the poles. It is much better if you can pick the poles. The following
theorem from advanced calculus, called Merten’s theorem, will be used

22.1.3 Merten’s Theorem.

Theorem 22.5 Suppose
∑∞

i=r ai and
∑∞

j=r bj both converge absolutely1. Then

( ∞∑

i=r

ai

) 


∞∑

j=r

bj


 =

∞∑
n=r

cn

where

cn =
n∑

k=r

akbn−k+r.

Proof: Let pnk = 1 if r ≤ k ≤ n and pnk = 0 if k > n. Then

cn =
∞∑

k=r

pnkakbn−k+r.

1Actually, it is only necessary to assume one of the series converges and the other converges
absolutely. This is known as Merten’s theorem and may be read in the 1974 book by Apostol
listed in the bibliography.
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Also,
∞∑

k=r

∞∑
n=r

pnk |ak| |bn−k+r| =
∞∑

k=r

|ak|
∞∑

n=r

pnk |bn−k+r|

=
∞∑

k=r

|ak|
∞∑

n=k

|bn−k+r|

=
∞∑

k=r

|ak|
∞∑

n=k

∣∣bn−(k−r)

∣∣

=
∞∑

k=r

|ak|
∞∑

m=r

|bm| < ∞.

Therefore,
∞∑

n=r

cn =
∞∑

n=r

n∑

k=r

akbn−k+r =
∞∑

n=r

∞∑

k=r

pnkakbn−k+r

=
∞∑

k=r

ak

∞∑
n=r

pnkbn−k+r =
∞∑

k=r

ak

∞∑

n=k

bn−k+r

=
∞∑

k=r

ak

∞∑
m=r

bm

and this proves the theorem.
It follows that

∑∞
n=r cn converges absolutely. Also, you can see by induction that

you can multiply any number of absolutely convergent series together and obtain a
series which is absolutely convergent. Next, here are some similar results related to
Merten’s theorem.

Lemma 22.6 Let
∑∞

n=0 an (z) and
∑∞

n=0 bn (z) be two convergent series for z ∈ K
which satisfy the conditions of the Weierstrass M test. Thus there exist positive
constants, An and Bn such that |an (z)| ≤ An, |bn (z)| ≤ Bn for all z ∈ K and∑∞

n=0 An < ∞,
∑∞

n=0 Bn < ∞. Then defining the Cauchy product,

cn (z) ≡
n∑

k−0

an−k (z) bk (z) ,

it follows
∑∞

n=0 cn (z) also converges absolutely and uniformly on K because cn (z)
satisfies the conditions of the Weierstrass M test. Therefore,

∞∑
n=0

cn (z) =

( ∞∑

k=0

ak (z)

)( ∞∑
n=0

bn (z)

)
. (22.3)

Proof:

|cn (z)| ≤
n∑

k=0

|an−k (z)| |bk (z)| ≤
n∑

k=0

An−kBk.
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Also,

∞∑
n=0

n∑

k=0

An−kBk =
∞∑

k=0

∞∑

n=k

An−kBk

=
∞∑

k=0

Bk

∞∑
n=0

An < ∞.

The claim of 22.3 follows from Merten’s theorem. This proves the lemma.

Corollary 22.7 Let P be a polynomial and let
∑∞

n=0 an (z) converge uniformly and
absolutely on K such that the an satisfy the conditions of the Weierstrass M test.
Then there exists a series for P (

∑∞
n=0 an (z)) ,

∑∞
n=0 cn (z) , which also converges

absolutely and uniformly for z ∈ K because cn (z) also satisfies the conditions of the
Weierstrass M test.

The following picture is descriptive of the following lemma. This lemma says
that if you have a rational function with one pole off a compact set, then you can
approximate on the compact set with another rational function which has a different
pole.

V
u

u
a

b

K

Lemma 22.8 Let R be a rational function which has a pole only at a ∈ V, a
component of C \ K where K is a compact set. Suppose b ∈ V. Then for ε > 0
given, there exists a rational function, Q, having a pole only at b such that

||R−Q||K,∞ < ε. (22.4)

If it happens that V is unbounded, then there exists a polynomial, P such that

||R− P ||K,∞ < ε. (22.5)

Proof: Say that b ∈ V satisfies P if for all ε > 0 there exists a rational function,
Qb, having a pole only at b such that

||R−Qb||K,∞ < ε

Now define a set,
S ≡ {b ∈ V : b satisfies P } .
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Observe that S 6= ∅ because a ∈ S.
I claim S is open. Suppose b1 ∈ S. Then there exists a δ > 0 such that

∣∣∣∣
b1 − b

z − b

∣∣∣∣ <
1
2

(22.6)

for all z ∈ K whenever b ∈ B (b1, δ) . In fact, it suffices to take |b− b1| < dist (b1,K) /4
because then

∣∣∣∣
b1 − b

z − b

∣∣∣∣ <

∣∣∣∣
dist (b1,K) /4

z − b

∣∣∣∣ ≤
dist (b1,K) /4

|z − b1| − |b1 − b|
≤ dist (b1,K) /4

dist (b1,K)− dist (b1,K) /4
≤ 1

3
<

1
2
.

Since b1 satisfies P, there exists a rational function Qb1 with the desired prop-
erties. It is shown next that you can approximate Qb1 with Qb thus yielding an
approximation to R by the use of the triangle inequality,

||R−Qb1 ||K,∞ + ||Qb1 −Qb||K,∞ ≥ ||R−Qb||K,∞ .

Since Qb1 has poles only at b1, it follows it is a sum of functions of the form
αn

(z−b1)
n . Therefore, it suffices to consider the terms of Qb1 or that Qb1 is of the

special form

Qb1 (z) =
1

(z − b1)
n .

However,
1

(z − b1)
n =

1

(z − b)n
(
1− b1−b

z−b

)n

Now from the choice of b1, the series

∞∑

k=0

(
b1 − b

z − b

)k

=
1(

1− b1−b
z−b

)

converges absolutely independent of the choice of z ∈ K because
∣∣∣∣∣
(

b1 − b

z − b

)k
∣∣∣∣∣ <

1
2k

.

By Corollary 22.7 the same is true of the series for 1

(1− b1−b
z−b )n . Thus a suitable partial

sum can be made uniformly on K as close as desired to 1
(z−b1)

n . This shows that b

satisfies P whenever b is close enough to b1 verifying that S is open.
Next it is shown S is closed in V. Let bn ∈ S and suppose bn → b ∈ V. Then

since bn ∈ S, there exists a rational function, Qbn such that

||Qbn −R||K,∞ <
ε

2
.
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Then for all n large enough,

1
2

dist (b,K) ≥ |bn − b|

and so for all n large enough, ∣∣∣∣
b− bn

z − bn

∣∣∣∣ <
1
2
,

for all z ∈ K. Pick such a bn. As before, it suffices to assume Qbn
, is of the form

1
(z−bn)n . Then

Qbn
(z) =

1
(z − bn)n =

1

(z − b)n
(
1− bn−b

z−b

)n

and because of the estimate, there exists M such that for all z ∈ K

∣∣∣∣∣∣
1(

1− bn−b
z−b

)n −
M∑

k=0

ak

(
bn − b

z − b

)k
∣∣∣∣∣∣
<

ε (dist (b,K))n

2
. (22.7)

Therefore, for all z ∈ K

∣∣∣∣∣Qbn (z)− 1
(z − b)n

M∑

k=0

ak

(
bn − b

z − b

)k
∣∣∣∣∣ =

∣∣∣∣∣∣
1

(z − b)n
(
1− bn−b

z−b

)n −
1

(z − b)n

M∑

k=0

ak

(
bn − b

z − b

)k
∣∣∣∣∣∣
≤

ε (dist (b, K))n

2
1

dist (b,K)n =
ε

2

and so, letting Qb (z) = 1
(z−b)n

∑M
k=0 ak

(
bn−b
z−b

)k

,

||R−Qb||K,∞ ≤ ||R−Qbn ||K,∞ + ||Qbn −Qb||K,∞

<
ε

2
+

ε

2
= ε

showing that b ∈ S. Since S is both open and closed in V it follows that, since
S 6= ∅, S = V . Otherwise V would fail to be connected.

It remains to consider the case where V is unbounded. Pick b ∈ V large enough
that ∣∣∣z

b

∣∣∣ <
1
2

(22.8)

for all z ∈ K. From what was just shown, there exists a rational function, Qb having
a pole only at b such that ||Qb −R||K,∞ < ε

2 . It suffices to assume that Qb is of the
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form

Qb (z) =
p (z)

(z − b)n = p (z) (−1)n 1
bn

1(
1− z

b

)n

= p (z) (−1)n 1
bn

( ∞∑

k=0

(z

b

)k
)n

Then by an application of Corollary 22.7 there exists a partial sum of the power
series for Qb which is uniformly close to Qb on K. Therefore, you can approximate
Qb and therefore also R uniformly on K by a polynomial consisting of a partial sum
of the above infinite sum. This proves the theorem.

If f is a polynomial, then f has a pole at ∞. This will be discussed more later.

22.1.4 Runge’s Theorem

Now what follows is the first form of Runge’s theorem.

Theorem 22.9 Let K be a compact subset of an open set, Ω and let {bj} be a
set which consists of one point from each component of Ĉ \ K. Let f be analytic
on Ω. Then for each ε > 0, there exists a rational function, Q whose poles are all
contained in the set, {bj} such that

||Q− f ||K,∞ < ε. (22.9)

If Ĉ \K has only one component, then Q may be taken to be a polynomial.

Proof: By Lemma 22.4 there exists a rational function of the form

R (z) =
M∑

k=1

Ak

wk − z

where the wk are elements of components of C \ K and Ak are complex numbers
such that

||R− f ||K,∞ <
ε

2
.

Consider the rational function, Rk (z) ≡ Ak

wk−z where wk ∈ Vj , one of the com-
ponents of C \ K, the given point of Vj being bj . By Lemma 22.8, there exists
a function, Qk which is either a rational function having its only pole at bj or a
polynomial, depending on whether Vj is bounded such that

||Rk −Qk||K,∞ <
ε

2M
.

Letting Q (z) ≡ ∑M
k=1 Qk (z) ,

||R−Q||K,∞ <
ε

2
.



22.1. RUNGE’S THEOREM 519

It follows
||f −Q||K,∞ ≤ ||f −R||K,∞ + ||R−Q||K,∞ < ε.

In the case of only one component of C \ K, this component is the unbounded
component and so you can take Q to be a polynomial. This proves the theorem.

The next version of Runge’s theorem concerns the case where the given points
are contained in Ĉ \Ω for Ω an open set rather than a compact set. Note that here
there could be uncountably many components of Ĉ \Ω because the components are
no longer open sets. An easy example of this phenomenon in one dimension is where
Ω = [0, 1] \P for P the Cantor set. Then you can show that R \Ω has uncountably
many components. Nevertheless, Runge’s theorem will follow from Theorem 22.9
with the aid of the following interesting lemma.

Lemma 22.10 Let Ω be an open set in C. Then there exists a sequence of compact
sets, {Kn} such that

Ω = ∪∞k=1Kn, · · ·, Kn ⊆ intKn+1 · ··, (22.10)

and for any K ⊆ Ω,
K ⊆ Kn, (22.11)

for all n sufficiently large, and every component of Ĉ \Kn contains a component of
Ĉ \ Ω.

Proof: Let

Vn ≡ {z : |z| > n} ∪
⋃

z/∈Ω

B

(
z,

1
n

)
.

Thus {z : |z| > n} contains the point, ∞. Now let

Kn ≡ Ĉ \ Vn = C \ Vn ⊆ Ω.

You should verify that 22.10 and 22.11 hold. It remains to show that every compo-
nent of Ĉ\Kn contains a component of Ĉ\Ω. Let D be a component of Ĉ\Kn ≡ Vn.

If ∞ /∈ D, then D contains no point of {z : |z| > n} because this set is connected
and D is a component. (If it did contain a point of this set, it would have to
contain the whole set.) Therefore, D ⊆ ⋃

z/∈Ω

B
(
z, 1

n

)
and so D contains some point

of B
(
z, 1

n

)
for some z /∈ Ω. Therefore, since this ball is connected, it follows D must

contain the whole ball and consequently D contains some point of ΩC . (The point
z at the center of the ball will do.) Since D contains z /∈ Ω, it must contain the
component, Hz, determined by this point. The reason for this is that

Hz ⊆ Ĉ \ Ω ⊆ Ĉ \Kn

and Hz is connected. Therefore, Hz can only have points in one component of
Ĉ \Kn. Since it has a point in D, it must therefore, be totally contained in D. This
verifies the desired condition in the case where ∞ /∈ D.
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Now suppose that ∞ ∈ D. ∞ /∈ Ω because Ω is given to be a set in C. Letting
H∞ denote the component of Ĉ \ Ω determined by ∞, it follows both D and H∞
contain ∞. Therefore, the connected set, H∞ cannot have any points in another
component of Ĉ \ Kn and it is a set which is contained in Ĉ \ Kn so it must be
contained in D. This proves the lemma.

The following picture is a very simple example of the sort of thing considered
by Runge’s theorem. The picture is of a region which has a couple of holes.

sa1
sa2

Ω

However, there could be many more holes than two. In fact, there could be
infinitely many. Nor does it follow that the components of the complement of Ω need
to have any interior points. Therefore, the picture is certainly not representative.

Theorem 22.11 (Runge) Let Ω be an open set, and let A be a set which has one
point in each component of Ĉ \ Ω and let f be analytic on Ω. Then there exists a
sequence of rational functions, {Rn} having poles only in A such that Rn converges
uniformly to f on compact subsets of Ω.

Proof: Let Kn be the compact sets of Lemma 22.10 where each component of
Ĉ\Kn contains a component of Ĉ\Ω. It follows each component of Ĉ\Kn contains
a point of A. Therefore, by Theorem 22.9 there exists Rn a rational function with
poles only in A such that

||Rn − f ||Kn,∞ <
1
n

.

It follows, since a given compact set, K is a subset of Kn for all n large enough,
that Rn → f uniformly on K. This proves the theorem.

Corollary 22.12 Let Ω be simply connected and f analytic on Ω. Then there exists
a sequence of polynomials, {pn} such that pn → f uniformly on compact sets of Ω.

Proof: By definition of what is meant by simply connected, Ĉ \Ω is connected
and so there are no bounded components of Ĉ\Ω. Therefore, in the proof of Theorem
22.11 when you use Theorem 22.9, you can always have Rn be a polynomial by
Lemma 22.8.

22.2 The Mittag-Leffler Theorem

22.2.1 A Proof From Runge’s Theorem

This theorem is fairly easy to prove once you have Theorem 22.9. Given a set of
complex numbers, does there exist a meromorphic function having its poles equal
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to this set of numbers? The Mittag-Leffler theorem provides a very satisfactory
answer to this question. Actually, it says somewhat more. You can specify, not just
the location of the pole but also the kind of singularity the meromorphic function
is to have at that pole.

Theorem 22.13 Let P ≡ {zk}∞k=1 be a set of points in an open subset of C, Ω.
Suppose also that P ⊆ Ω ⊆ C. For each zk, denote by Sk (z) a function of the form

Sk (z) =
mk∑

j=1

ak
j

(z − zk)j
.

Then there exists a meromorphic function, Q defined on Ω such that the poles of
Q are the points, {zk}∞k=1 and the singular part of the Laurent expansion of Q at
zk equals Sk (z) . In other words, for z near zk, Q (z) = gk (z) + Sk (z) for some
function, gk analytic near zk.

Proof: Let {Kn} denote the sequence of compact sets described in Lemma
22.10. Thus ∪∞n=1Kn = Ω, Kn ⊆ int (Kn+1) ⊆ Kn+1 · ··, and the components of
Ĉ\Kn contain the components of Ĉ\Ω. Renumbering if necessary, you can assume
each Kn 6= ∅. Also let K0 = ∅. Let Pm ≡ P ∩ (Km \Km−1) and consider the
rational function, Rm defined by

Rm (z) ≡
∑

zk∈Km\Km−1

Sk (z) .

Since each Km is compact, it follows Pm is finite and so the above really is a
rational function. Now for m > 1,this rational function is analytic on some open
set containing Km−1. There exists a set of points, A one point in each component
of Ĉ\Ω. Consider Ĉ\Km−1. Each of its components contains a component of Ĉ\Ω
and so for each of these components of Ĉ \Km−1, there exists a point of A which
is contained in it. Denote the resulting set of points by A′. By Theorem 22.9 there
exists a rational function, Qm whose poles are all contained in the set, A′ ⊆ ΩC

such that

||Rm −Qm||Km−1,∞ <
1

2m
.

The meromorphic function is

Q (z) ≡ R1 (z) +
∞∑

k=2

(Rk (z)−Qk (z)) .

It remains to verify this function works. First consider K1. Then on K1, the above
sum converges uniformly. Furthermore, the terms of the sum are analytic in some
open set containing K1. Therefore, the infinite sum is analytic on this open set and
so for z ∈ K1 The function, f is the sum of a rational function, R1, having poles at
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P1 with the specified singular terms and an analytic function. Therefore, Q works
on K1. Now consider Km for m > 1. Then

Q (z) = R1 (z) +
m+1∑

k=2

(Rk (z)−Qk (z)) +
∞∑

k=m+2

(Rk (z)−Qk (z)) .

As before, the infinite sum converges uniformly on Km+1 and hence on some open
set, O containing Km. Therefore, this infinite sum equals a function which is
analytic on O. Also,

R1 (z) +
m+1∑

k=2

(Rk (z)−Qk (z))

is a rational function having poles at ∪m
k=1Pk with the specified singularities because

the poles of each Qk are not in Ω. It follows this function is meromorphic because
it is analytic except for the points in P. It also has the property of retaining the
specified singular behavior.

22.2.2 A Direct Proof Without Runge’s Theorem

There is a direct proof of this important theorem which is not dependent on Runge’s
theorem in the case where Ω = C. I think it is arguably easier to understand and
the Mittag-Leffler theorem is very important so I will give this proof here.

Theorem 22.14 Let P ≡ {zk}∞k=1 be a set of points in C which satisfies limn→∞ |zn| =
∞. For each zk, denote by Sk (z) a polynomial in 1

z−zk
which is of the form

Sk (z) =
mk∑

j=1

ak
j

(z − zk)j
.

Then there exists a meromorphic function, Q defined on C such that the poles of Q
are the points, {zk}∞k=1 and the singular part of the Laurent expansion of Q at zk

equals Sk (z) . In other words, for z near zk,

Q (z) = gk (z) + Sk (z)

for some function, gk analytic in some open set containing zk.

Proof: First consider the case where none of the zk = 0. Letting

Kk ≡ {z : |z| ≤ |zk| /2} ,

there exists a power series for 1
z−zk

which converges uniformly and absolutely on
this set. Here is why:

1
z − zk

=

(
−1

1− z
zk

)
1
zk

=
−1
zk

∞∑

l=0

(
z

zk

)l
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and the Weierstrass M test can be applied because

∣∣∣∣
z

zk

∣∣∣∣ <
1
2

on this set. Therefore, by Corollary 22.7, Sk (z) , being a polynomial in 1
z−zk

, has
a power series which converges uniformly to Sk (z) on Kk. Therefore, there exists a
polynomial, Pk (z) such that

||Pk − Sk||B(0,|zk|/2),∞ <
1
2k

.

Let

Q (z) ≡
∞∑

k=1

(Sk (z)− Pk (z)) . (22.12)

Consider z ∈ Km and let N be large enough that if k > N, then |zk| > 2 |z|

Q (z) =
N∑

k=1

(Sk (z)− Pk (z)) +
∞∑

k=N+1

(Sk (z)− Pk (z)) .

On Km, the second sum converges uniformly to a function analytic on int (Km)
(interior of Km) while the first is a rational function having poles at z1, · · ·, zN .
Since any compact set is contained in Km for large enough m, this shows Q (z) is
meromorphic as claimed and has poles with the given singularities.

Now consider the case where the poles are at {zk}∞k=0 with z0 = 0. Everything
is similar in this case. Let

Q (z) ≡ S0 (z) +
∞∑

k=1

(Sk (z)− Pk (z)) .

The series converges uniformly on every compact set because of the assumption
that limn→∞ |zn| = ∞ which implies that any compact set is contained in Kk for
k large enough. Choose N such that z ∈ int(KN ) and zn /∈ KN for all n ≥ N + 1.
Then

Q (z) = S0 (z) +
N∑

k=1

(Sk (z)− Pk (z)) +
∞∑

k=N+1

(Sk (z)− Pk (z)) .

The last sum is analytic on int(KN ) because each function in the sum is analytic due
to the fact that none of its poles are in KN . Also, S0 (z)+

∑N
k=1 (Sk (z)− Pk (z)) is

a finite sum of rational functions so it is a rational function and Pk is a polynomial
so zm is a pole of this function with the correct singularity whenever zm ∈ int (KN ).
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22.2.3 Functions Meromorphic On Ĉ
Sometimes it is useful to think of isolated singular points at ∞.

Definition 22.15 Suppose f is analytic on {z ∈ C : |z| > r} . Then f is said to
have a removable singularity at ∞ if the function, g (z) ≡ f

(
1
z

)
has a removable

singularity at 0. f is said to have a pole at ∞ if the function, g (z) = f
(

1
z

)
has a

pole at 0. Then f is said to be meromorphic on Ĉ if all its singularities are isolated
and either poles or removable.

So what is f like for these cases? First suppose f has a removable singularity
at ∞. Then zg (z) converges to 0 as z → 0. It follows g (z) must be analytic near
0 and so can be given as a power series. Thus f (z) is of the form f (z) = g

(
1
z

)
=∑∞

n=0 an

(
1
z

)n
. Next suppose f has a pole at ∞. This means g (z) has a pole at 0 so

g (z) is of the form g (z) =
∑m

k=1
bk

zk +h (z) where h (z) is analytic near 0. Thus in the
case of a pole at ∞, f (z) is of the form f (z) = g

(
1
z

)
=

∑m
k=1 bkzk +

∑∞
n=0 an

(
1
z

)n.
It turns out that the functions which are meromorphic on Ĉ are all rational

functions. To see this suppose f is meromorphic on Ĉ and note that there exists
r > 0 such that f (z) is analytic for |z| > r. This is required if ∞ is to be isolated.
Therefore, there are only finitely many poles of f for |z| ≤ r, {a1, · · ·, am} , because
by assumption, these poles are isolated and this is a compact set. Let the singular
part of f at ak be denoted by Sk (z) . Then f (z)−∑m

k=1 Sk (z) is analytic on all of
C. Therefore, it is bounded on |z| ≤ r. In one case, f has a removable singularity at
∞. In this case, f is bounded as z →∞ and

∑
k Sk also converges to 0 as z →∞.

Therefore, by Liouville’s theorem, f (z) − ∑m
k=1 Sk (z) equals a constant and so

f −∑
k Sk is a constant. Thus f is a rational function. In the other case that f has

a pole at ∞, f (z)−∑m
k=1 Sk (z)−∑m

k=1 bkzk =
∑∞

n=0 an

(
1
z

)n−∑m
k=1 Sk (z) . Now

f (z)−∑m
k=1 Sk (z)−∑m

k=1 bkzk is analytic on C and so is bounded on |z| ≤ r. But
now

∑∞
n=0 an

(
1
z

)n − ∑m
k=1 Sk (z) converges to 0 as z → ∞ and so by Liouville’s

theorem, f (z) −∑m
k=1 Sk (z) −∑m

k=1 bkzk must equal a constant and again, f (z)
equals a rational function.

22.2.4 A Great And Glorious Theorem About Simply Con-
nected Regions

Here is given a laundry list of properties which are equivalent to an open set being
simply connected. Recall Definition 18.48 on Page 417 which said that an open
set, Ω is simply connected means Ĉ \ Ω is connected. Recall also that this is not
the same thing at all as saying C \ Ω is connected. Consider the outside of a disk
for example. I will continue to use this definition for simply connected because it
is the most convenient one for complex analysis. However, there are many other
equivalent conditions. First here is an interesting lemma which is interesting for
its own sake. Recall n (p, γ) means the winding number of γ about p. Now recall
Theorem 18.52 implies the following lemma in which BC is playing the role of Ω in
Theorem 18.52.



22.2. THE MITTAG-LEFFLER THEOREM 525

Lemma 22.16 Let K be a compact subset of BC , the complement of a closed set.
Then there exist continuous, closed, bounded variation oriented curves {Γj}m

j=1 for
which Γ∗j ∩K = ∅ for each j, Γ∗j ⊆ Ω, and for all p ∈ K,

m∑

k=1

n (Γk, p) = 1.

while for all z ∈ B
m∑

k=1

n (Γk, z) = 0.

Definition 22.17 Let γ be a closed curve in an open set, Ω, γ : [a, b] → Ω. Then
γ is said to be homotopic to a point, p in Ω if there exists a continuous function,
H : [0, 1]×[a, b] → Ω such that H (0, t) = p,H (α, a) = H (α, b) , and H (1, t) = γ (t) .
This function, H is called a homotopy.

Lemma 22.18 Suppose γ is a closed continuous bounded variation curve in an
open set, Ω which is homotopic to a point. Then if a /∈ Ω, it follows n (a, γ) = 0.

Proof: Let H be the homotopy described above. The problem with this is
that it is not known that H (α, ·) is of bounded variation. There is no reason it
should be. Therefore, it might not make sense to take the integral which defines
the winding number. There are various ways around this. Extend H as follows.
H (α, t) = H (α, a) for t < a, H (α, t) = H (α, b) for t > b. Let ε > 0.

Hε (α, t) ≡ 1
2ε

∫ t+ 2ε
(b−a) (t−a)

−2ε+t+ 2ε
(b−a) (t−a)

H (α, s) ds, Hε (0, t) = p.

Thus Hε (α, ·) is a closed curve which has bounded variation and when α = 1, this
converges to γ uniformly on [a, b]. Therefore, for ε small enough, n (a,Hε (1, ·)) =
n (a, γ) because they are both integers and as ε → 0, n (a,Hε (1, ·)) → n (a, γ) . Also,
Hε (α, t) → H (α, t) uniformly on [0, 1]× [a, b] because of uniform continuity of H.
Therefore, for small enough ε, you can also assume Hε (α, t) ∈ Ω for all α, t. Now
α → n (a, Hε (α, ·)) is continuous. Hence it must be constant because the winding
number is integer valued. But

lim
α→0

1
2πi

∫

Hε(α,·)

1
z − a

dz = 0

because the length of Hε (α, ·) converges to 0 and the integrand is bounded because
a /∈ Ω. Therefore, the constant can only equal 0. This proves the lemma.

Now it is time for the great and glorious theorem on simply connected regions.
The following equivalence of properties is taken from Rudin [36]. There is a slightly
different list in Conway [11] and a shorter list in Ash [6].

Theorem 22.19 The following are equivalent for an open set, Ω.
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1. Ω is homeomorphic to the unit disk, B (0, 1) .

2. Every closed curve contained in Ω is homotopic to a point in Ω.

3. If z /∈ Ω, and if γ is a closed bounded variation continuous curve in Ω, then
n (γ, z) = 0.

4. Ω is simply connected, (Ĉ \ Ω is connected and Ω is connected. )

5. Every function analytic on Ω can be uniformly approximated by polynomials
on compact subsets.

6. For every f analytic on Ω and every closed continuous bounded variation
curve, γ, ∫

γ

f (z) dz = 0.

7. Every function analytic on Ω has a primitive on Ω.

8. If f, 1/f are both analytic on Ω, then there exists an analytic, g on Ω such
that f = exp (g) .

9. If f, 1/f are both analytic on Ω, then there exists φ analytic on Ω such that
f = φ2.

Proof: 1⇒2. Assume 1 and let γ be a closed curve in Ω. Let h be the homeo-
morphism, h : B (0, 1) → Ω. Let H (α, t) = h

(
α

(
h−1γ (t)

))
. This works.

2⇒3 This is Lemma 22.18.
3⇒4. Suppose 3 but 4 fails to hold. Then if Ĉ \ Ω is not connected, there exist

disjoint nonempty sets, A and B such that A ∩ B = A ∩ B = ∅. It follows each
of these sets must be closed because neither can have a limit point in Ω nor in
the other. Also, one and only one of them contains ∞. Let this set be B. Thus
A is a closed set which must also be bounded. Otherwise, there would exist a
sequence of points in A, {an} such that limn→∞ an = ∞ which would contradict
the requirement that no limit points of A can be in B. Therefore, A is a compact
set contained in the open set, BC ≡ {z ∈ C : z /∈ B} . Pick p ∈ A. By Lemma 22.16
there exist continuous bounded variation closed curves {Γk}m

k=1 which are contained
in BC , do not intersect A and such that

1 =
m∑

k=1

n (p,Γk)

However, if these curves do not intersect A and they also do not intersect B then
they must be all contained in Ω. Since p /∈ Ω, it follows by 3 that for each k,
n (p,Γk) = 0, a contradiction.

4⇒5 This is Corollary 22.12 on Page 520.
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5⇒6 Every polynomial has a primitive and so the integral over any closed
bounded variation curve of a polynomial equals 0. Let f be analytic on Ω. Then let
{fn} be a sequence of polynomials converging uniformly to f on γ∗. Then

0 = lim
n→∞

∫

γ

fn (z) dz =
∫

γ

f (z) dz.

6⇒7 Pick z0 ∈ Ω. Letting γ (z0, z) be a bounded variation continuous curve
joining z0 to z in Ω, you define a primitive for f as follows.

F (z) =
∫

γ(z0,z)

f (w) dw.

This is well defined by 6 and is easily seen to be a primitive. You just write the
difference quotient and take a limit using 6.

lim
w→0

F (z + w)− F (z)
w

= lim
w→0

1
w

(∫

γ(z0,z+w)

f (u) du−
∫

γ(z0,z)

f (u) du

)

= lim
w→0

1
w

∫

γ(z,z+w)

f (u) du

= lim
w→0

1
w

∫ 1

0

f (z + tw)wdt = f (z) .

7⇒8 Suppose then that f, 1/f are both analytic. Then f ′/f is analytic and so
it has a primitive by 7. Let this primitive be g1. Then

(
e−g1f

)′ = e−g1 (−g′1) f + e−g1f ′

= −e−g1

(
f ′

f

)
f + e−g1f ′ = 0.

Therefore, since Ω is connected, it follows e−g1f must equal a constant. (Why?)
Let the constant be ea+ibi. Then f (z) = eg1(z)ea+ib. Therefore, you let g (z) =
g1 (z) + a + ib.

8⇒9 Suppose then that f, 1/f are both analytic on Ω. Then by 8 f (z) = eg(z).
Let φ (z) ≡ eg(z)/2.

9⇒1 There are two cases. First suppose Ω = C. This satisfies condition 9
because if f, 1/f are both analytic, then the same argument involved in 8⇒9 gives
the existence of a square root. A homeomorphism is h (z) ≡ z√

1+|z|2
. It obviously

maps onto B (0, 1) and is continuous. To see it is 1 - 1 consider the case of z1

and z2 having different arguments. Then h (z1) 6= h (z2) . If z2 = tz1 for a positive
t 6= 1, then it is also clear h (z1) 6= h (z2) . To show h−1 is continuous, note that if
you have an open set in C and a point in this open set, you can get a small open
set containing this point by allowing the modulus and the argument to lie in some
open interval. Reasoning this way, you can verify h maps open sets to open sets. In
the case where Ω 6= C, there exists a one to one analytic map which maps Ω onto
B (0, 1) by the Riemann mapping theorem. This proves the theorem.
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22.3 Exercises

1. Let a ∈ C. Show there exists a sequence of polynomials, {pn} such that
pn (a) = 1 but pn (z) → 0 for all z 6= a.

2. Let l be a line in C. Show there exists a sequence of polynomials {pn} such
that pn (z) → 1 on one side of this line and pn (z) → −1 on the other side of
the line. Hint: The complement of this line is simply connected.

3. Suppose Ω is a simply connected region, f is analytic on Ω, f 6= 0 on Ω, and
n ∈ N. Show that there exists an analytic function, g such that g (z)n = f (z)
for all z ∈ Ω. That is, you can take the nth root of f (z) . If Ω is a region
which contains 0, is it possible to find g (z) such that g is analytic on Ω and
g (z)2 = z?

4. Suppose Ω is a region (connected open set) and f is an analytic function
defined on Ω such that f (z) 6= 0 for any z ∈ Ω. Suppose also that for every
positive integer, n there exists an analytic function, gn defined on Ω such that
gn

n (z) = f (z) . Show that then it is possible to define an analytic function, L
on f (Ω) such that eL(f(z)) = f (z) for all z ∈ Ω.

5. You know that φ (z) ≡ z−i
z+i maps the upper half plane onto the unit ball. Its

inverse, ψ (z) = i 1+z
1−z maps the unit ball onto the upper half plane. Also for z

in the upper half plane, you can define a square root as follows. If z = |z| eiθ

where θ ∈ (0, π) , let z1/2 ≡ |z|1/2
eiθ/2 so the square root maps the upper half

plane to the first quadrant. Now consider

z → exp

(
−i log

[
i

(
1 + z

1− z

)]1/2
)

. (22.13)

Show this is an analytic function which maps the unit ball onto an annulus.
Is it possible to find a one to one analytic map which does this?



Infinite Products

The Mittag-Leffler theorem gives existence of a meromorphic function which has
specified singular part at various poles. It would be interesting to do something
similar to zeros of an analytic function. That is, given the order of the zero at
various points, does there exist an analytic function which has these points as zeros
with the specified orders? You know that if you have the zeros of the polynomial,
you can factor it. Can you do something similar with analytic functions which
are just limits of polynomials? These questions involve the concept of an infinite
product.

Definition 23.1
∏∞

n=1 (1 + un) ≡ limn→∞
∏n

k=1 (1 + uk) whenever this limit ex-
ists. If un = un (z) for z ∈ H, we say the infinite product converges uniformly on
H if the partial products,

∏n
k=1 (1 + uk (z)) converge uniformly on H.

The main theorem is the following.

Theorem 23.2 Let H ⊆ C and suppose that
∑∞

n=1 |un (z)| converges uniformly on
H where un (z) bounded on H. Then

P (z) ≡
∞∏

n=1

(1 + un (z))

converges uniformly on H. If (n1, n2, · · ·) is any permutation of (1, 2, · · ·) , then for
all z ∈ H,

P (z) =
∞∏

k=1

(1 + unk
(z))

and P has a zero at z0 if and only if un (z0) = −1 for some n.

529
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Proof: First a simple estimate:

n∏

k=m

(1 + |uk (z)|)

= exp

(
ln

(
n∏

k=m

(1 + |uk (z)|)
))

= exp

(
n∑

k=m

ln (1 + |uk (z)|)
)

≤ exp

( ∞∑

k=m

|uk (z)|
)

< e

for all z ∈ H provided m is large enough. Since
∑∞

k=1 |uk (z)| converges uniformly
on H, |uk (z)| < 1

2 for all z ∈ H provided k is large enough. Thus you can take
log (1 + uk (z)) . Pick N0 such that for n > m ≥ N0,

|um (z)| < 1
2
,

n∏

k=m

(1 + |uk (z)|) < e. (23.1)

Now having picked N0, the assumption the un are bounded on H implies there
exists a constant, C, independent of z ∈ H such that for all z ∈ H,

N0∏

k=1

(1 + |uk (z)|) < C. (23.2)

Let N0 < M < N . Then

∣∣∣∣∣
N∏

k=1

(1 + uk (z))−
M∏

k=1

(1 + uk (z))

∣∣∣∣∣

≤
N0∏

k=1

(1 + |uk (z)|)
∣∣∣∣∣

N∏

k=N0+1

(1 + uk (z))−
M∏

k=N0+1

(1 + uk (z))

∣∣∣∣∣

≤ C

∣∣∣∣∣
N∏

k=N0+1

(1 + uk (z))−
M∏

k=N0+1

(1 + uk (z))

∣∣∣∣∣

≤ C

(
M∏

k=N0+1

(1 + |uk (z)|)
) ∣∣∣∣∣

N∏

k=M+1

(1 + uk (z))− 1

∣∣∣∣∣

≤ Ce

∣∣∣∣∣
N∏

k=M+1

(1 + |uk (z)|)− 1

∣∣∣∣∣ .
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Since 1 ≤ ∏N
k=M+1 (1 + |uk (z)|) ≤ e, it follows the term on the far right is domi-

nated by

Ce2

∣∣∣∣∣ln
(

N∏

k=M+1

(1 + |uk (z)|)
)
− ln 1

∣∣∣∣∣

≤ Ce2
N∑

k=M+1

ln (1 + |uk (z)|)

≤ Ce2
N∑

k=M+1

|uk (z)| < ε

uniformly in z ∈ H provided M is large enough. This follows from the simple obser-
vation that if 1 < x < e, then x−1 ≤ e (lnx− ln 1). Therefore, {∏m

k=1 (1 + uk (z))}∞
m=1

is uniformly Cauchy on H and therefore, converges uniformly on H. Let P (z) denote
the function it converges to.

What about the permutations? Let {n1, n2, · · ·} be a permutation of the indices.
Let ε > 0 be given and let N0 be such that if n > N0,

∣∣∣∣∣
n∏

k=1

(1 + uk (z))− P (z)

∣∣∣∣∣ < ε

for all z ∈ H. Let {1, 2, · · ·, n} ⊆ {
n1, n2, · · ·, np(n)

}
where p (n) is an increasing

sequence. Then from 23.1 and 23.2,

∣∣∣∣∣∣
P (z)−

p(n)∏

k=1

(1 + unk
(z))

∣∣∣∣∣∣

≤
∣∣∣∣∣P (z)−

n∏

k=1

(1 + uk (z))

∣∣∣∣∣ +

∣∣∣∣∣∣

n∏

k=1

(1 + uk (z))−
p(n)∏

k=1

(1 + unk
(z))

∣∣∣∣∣∣

≤ ε +

∣∣∣∣∣∣

n∏

k=1

(1 + uk (z))−
p(n)∏

k=1

(1 + unk
(z))

∣∣∣∣∣∣

≤ ε +

∣∣∣∣∣
n∏

k=1

(1 + |uk (z)|)
∣∣∣∣∣

∣∣∣∣∣1−
∏

nk>n

(1 + unk
(z))

∣∣∣∣∣

≤ ε +

∣∣∣∣∣
N0∏

k=1

(1 + |uk (z)|)
∣∣∣∣∣

∣∣∣∣∣
n∏

k=N0+1

(1 + |uk (z)|)
∣∣∣∣∣

∣∣∣∣∣1−
∏

nk>n

(1 + unk
(z))

∣∣∣∣∣

≤ ε + Ce

∣∣∣∣∣
∏

nk>n

(1 + |unk
(z)|)− 1

∣∣∣∣∣ ≤ ε + Ce

∣∣∣∣∣∣

M(p(n))∏

k=n+1

(1 + |unk
(z)|)− 1

∣∣∣∣∣∣
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where M (p (n)) is the largest index in the permuted list,
{
n1, n2, · · ·, np(n)

}
. then

from 23.1, this last term is dominated by

ε + Ce2

∣∣∣∣∣∣
ln




M(p(n))∏

k=n+1

(1 + |unk
(z)|)


− ln 1

∣∣∣∣∣∣

≤ ε + Ce2
∞∑

k=n+1

ln (1 + |unk
|) ≤ ε + Ce2

∞∑

k=n+1

|unk
| < 2ε

for all n large enough uniformly in z ∈ H. Therefore,
∣∣∣P (z)−∏p(n)

k=1 (1 + unk
(z))

∣∣∣ <

2ε whenever n is large enough. This proves the part about the permutation.
It remains to verify the assertion about the points, z0, where P (z0) = 0. Obvi-

ously, if un (z0) = −1, then P (z0) = 0. Suppose then that P (z0) = 0 and M > N0.
Then ∣∣∣∣∣

M∏

k=1

(1 + uk (z0))

∣∣∣∣∣ =

∣∣∣∣∣
M∏

k=1

(1 + uk (z0))−
∞∏

k=1

(1 + uk (z0))

∣∣∣∣∣

≤
∣∣∣∣∣

M∏

k=1

(1 + uk (z0))

∣∣∣∣∣

∣∣∣∣∣1−
∞∏

k=M+1

(1 + uk (z0))

∣∣∣∣∣

≤
∣∣∣∣∣

M∏

k=1

(1 + uk (z0))

∣∣∣∣∣

∣∣∣∣∣
∞∏

k=M+1

(1 + |uk (z0)|)− 1

∣∣∣∣∣

≤ e

∣∣∣∣∣
M∏

k=1

(1 + uk (z0))

∣∣∣∣∣

∣∣∣∣∣ln
∞∏

k=M+1

(1 + |uk (z0)|)− ln 1

∣∣∣∣∣

≤ e

( ∞∑

k=M+1

ln (1 + |uk (z)|)
) ∣∣∣∣∣

M∏

k=1

(1 + uk (z0))

∣∣∣∣∣

≤ e

∞∑

k=M+1

|uk (z)|
∣∣∣∣∣

M∏

k=1

(1 + uk (z0))

∣∣∣∣∣

≤ 1
2

∣∣∣∣∣
M∏

k=1

(1 + uk (z0))

∣∣∣∣∣

whenever M is large enough. Therefore, for such M,

M∏

k=1

(1 + uk (z0)) = 0

and so uk (z0) = −1 for some k ≤ M. This proves the theorem.
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23.1 Analytic Function With Prescribed Zeros

Suppose you are given complex numbers, {zn} and you want to find an analytic
function, f such that these numbers are the zeros of f . How can you do it? The
problem is easy if there are only finitely many of these zeros, {z1, z2, · · ·, zm} . You
just write (z − z1) (z − z2) · · · (z − zm) . Now if none of the zk = 0 you could
also write it at

∏m
k=1

(
1− z

zk

)
and this might have a better chance of success in

the case of infinitely many prescribed zeros. However, you would need to verify
something like

∑∞
n=1

∣∣∣ z
zn

∣∣∣ < ∞ which might not be so. The way around this is to

adjust the product, making it
∏∞

k=1

(
1− z

zk

)
egk(z) where gk (z) is some analytic

function. Recall also that for |x| < 1, ln
(
(1− x)−1

)
=

∑∞
n=1

xn

n . If you had x/xn

small and real, then 1 = (1− x/xn) exp
(
ln

(
(1− x/xn)−1

))
and

∏∞
k=1 1 of course

converges but loses all the information about zeros. However, this is why it is not
too unreasonable to consider factors of the form

(
1− z

zk

)
e
Ppk

k=1

�
z

zk

�k 1
k

where pk is suitably chosen.
First here are some estimates.

Lemma 23.3 For z ∈ C,
|ez − 1| ≤ |z| e|z|, (23.3)

and if |z| ≤ 1/2,

∣∣∣∣∣
∞∑

k=m

zk

k

∣∣∣∣∣ ≤
1
m

|z|m
1− |z| ≤

2
m
|z|m ≤ 1

m

1
2m−1

. (23.4)

Proof: Consider 23.3.

|ez − 1| =
∣∣∣∣∣
∞∑

k=1

zk

k!

∣∣∣∣∣ ≤
∞∑

k=1

|z|k
k!

= e|z| − 1 ≤ |z| e|z|

the last inequality holding by the mean value theorem. Now consider 23.4.
∣∣∣∣∣
∞∑

k=m

zk

k

∣∣∣∣∣ ≤
∞∑

k=m

|z|k
k

≤ 1
m

∞∑

k=m

|z|k

=
1
m

|z|m
1− |z| ≤

2
m
|z|m ≤ 1

m

1
2m−1

.

This proves the lemma.
The functions, Ep in the next definition are called the elementary factors.



534 INFINITE PRODUCTS

Definition 23.4 Let E0 (z) ≡ 1− z and for p ≥ 1,

Ep (z) ≡ (1− z) exp
(

z +
z2

2
+ · · ·+ zp

p

)

In terms of this new symbol, here is another estimate. A sharper inequality is
available in Rudin [36] but it is more difficult to obtain.

Corollary 23.5 For Ep defined above and |z| ≤ 1/2,

|Ep (z)− 1| ≤ 3 |z|p+1
.

Proof: From elementary calculus, ln (1− x) = −∑∞
n=1

xn

n for all |x| < 1.
Therefore, for |z| < 1,

log (1− z) = −
∞∑

n=1

zn

n
, log

(
(1− z)−1

)
=

∞∑
n=1

zn

n
,

because the function log (1− z) and the analytic function, −∑∞
n=1

zn

n both are
equal to ln (1− x) on the real line segment (−1, 1) , a set which has a limit point.
Therefore, using Lemma 23.3,

|Ep (z)− 1|

=
∣∣∣∣(1− z) exp

(
z +

z2

2
+ · · ·+ zp

p

)
− 1

∣∣∣∣

=

∣∣∣∣∣(1− z) exp

(
log

(
(1− z)−1

)
−

∞∑
n=p+1

zn

n

)
− 1

∣∣∣∣∣

=

∣∣∣∣∣exp

(
−

∞∑
n=p+1

zn

n

)
− 1

∣∣∣∣∣

≤
∣∣∣∣∣−

∞∑
n=p+1

zn

n

∣∣∣∣∣ e|−
P∞

n=p+1
zn

n |

≤ 1
p + 1

· 2 · e1/(p+1) |z|p+1
. ≤ 3 |z|p+1

This proves the corollary.
With this estimate, it is easy to prove the Weierstrass product formula.

Theorem 23.6 Let {zn} be a sequence of nonzero complex numbers which have no
limit point in C and let {pn} be a sequence of nonnegative integers such that

∞∑
n=1

(
R

|zn|
)pn+1

< ∞ (23.5)
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for all R ∈ R. Then

P (z) ≡
∞∏

n=1

Epn

(
z

zn

)

is analytic on C and has a zero at each point, zn and at no others. If w occurs m
times in {zn} , then P has a zero of order m at w.

Proof: Since {zn} has no limit point, it follows limn→∞ |zn| = ∞. Therefore,
if pn = n− 1 the condition, 23.5 holds for this choice of pn. Now by Theorem 23.2,
the infinite product in this theorem will converge uniformly on |z| ≤ R if the same
is true of the sum,

∞∑
n=1

∣∣∣∣Epn

(
z

zn

)
− 1

∣∣∣∣ . (23.6)

But by Corollary 23.5 the nth term of this sum satisfies
∣∣∣∣Epn

(
z

zn

)
− 1

∣∣∣∣ ≤ 3
∣∣∣∣

z

zn

∣∣∣∣
pn+1

.

Since |zn| → ∞, there exists N such that for n > N, |zn| > 2R. Therefore, for
|z| < R and letting 0 < a = min {|zn| : n ≤ N} ,

∞∑
n=1

∣∣∣∣Epn

(
z

zn

)
− 1

∣∣∣∣ ≤ 3
N∑

n=1

∣∣∣∣
R

a

∣∣∣∣
pn+1

+3
∞∑

n=N

(
R

2R

)pn+1

< ∞.

By the Weierstrass M test, the series in 23.6 converges uniformly for |z| < R and so
the same is true of the infinite product. It follows from Lemma 18.18 on Page 396
that P (z) is analytic on |z| < R because it is a uniform limit of analytic functions.

Also by Theorem 23.2 the zeros of the analytic P (z) are exactly the points,
{zn} , listed according to multiplicity. That is, if zn is a zero of order m, then if it
is listed m times in the formula for P (z) , then it is a zero of order m for P. This
proves the theorem.

The following corollary is an easy consequence and includes the case where there
is a zero at 0.

Corollary 23.7 Let {zn} be a sequence of nonzero complex numbers which have
no limit point and let {pn} be a sequence of nonnegative integers such that

∞∑
n=1

(
r

|zn|
)1+pn

< ∞ (23.7)

for all r ∈ R. Then

P (z) ≡ zm
∞∏

n=1

Epn

(
z

zn

)



536 INFINITE PRODUCTS

is analytic Ω and has a zero at each point, zn and at no others along with a zero of
order m at 0. If w occurs m times in {zn} , then P has a zero of order m at w.

The above theory can be generalized to include the case of an arbitrary open
set. First, here is a lemma.

Lemma 23.8 Let Ω be an open set. Also let {zn} be a sequence of points in Ω
which is bounded and which has no point repeated more than finitely many times
such that {zn} has no limit point in Ω. Then there exist {wn} ⊆ ∂Ω such that
limn→∞ |zn − wn| = 0.

Proof: Since ∂Ω is closed, there exists wn ∈ ∂Ω such that dist (zn, ∂Ω) =
|zn − wn| . Now if there is a subsequence, {znk

} such that |znk
− wnk

| ≥ ε for all k,
then {znk

} must possess a limit point because it is a bounded infinite set of points.
However, this limit point can only be in Ω because {znk

} is bounded away from ∂Ω.
This is a contradiction. Therefore, limn→∞ |zn − wn| = 0. This proves the lemma.

Corollary 23.9 Let {zn} be a sequence of complex numbers contained in Ω, an
open subset of C which has no limit point in Ω. Suppose each zn is repeated no more
than finitely many times. Then there exists a function f which is analytic on Ω
whose zeros are exactly {zn} . If w ∈ {zn} and w is listed m times, then w is a zero
of order m of f.

Proof: There is nothing to prove if {zn} is finite. You just let f (z) =∏m
j=1 (z − zj) where {zn} = {z1, · · ·, zm}.
Pick w ∈ Ω \ {zn}∞n=1 and let h (z) ≡ 1

z−w . Since w is not a limit point of {zn} ,
there exists r > 0 such that B (w, r) contains no points of {zn} . Let Ω1 ≡ Ω \ {w}.
Now h is not constant and so h (Ω1) is an open set by the open mapping theorem.
In fact, h maps each component of Ω to a region. |zn − w| > r for all zn and
so |h (zn)| < r−1. Thus the sequence, {h (zn)} is a bounded sequence in the open
set h (Ω1) . It has no limit point in h (Ω1) because this is true of {zn} and Ω1.
By Lemma 23.8 there exist wn ∈ ∂ (h (Ω1)) such that limn→∞ |wn − h (zn)| = 0.
Consider for z ∈ Ω1

f (z) ≡
∞∏

n=1

En

(
h (zn)− wn

h (z)− wn

)
. (23.8)

Letting K be a compact subset of Ω1, h (K) is a compact subset of h (Ω1) and so if
z ∈ K, then |h (z)− wn| is bounded below by a positive constant. Therefore, there
exists N large enough that for all z ∈ K and n ≥ N,

∣∣∣∣
h (zn)− wn

h (z)− wn

∣∣∣∣ <
1
2

and so by Corollary 23.5, for all z ∈ K and n ≥ N,

∣∣∣∣En

(
h (zn)− wn

h (z)− wn

)
− 1

∣∣∣∣ ≤ 3
(

1
2

)n

. (23.9)
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Therefore,
∞∑

n=1

∣∣∣∣En

(
h (zn)− wn

h (z)− wn

)
− 1

∣∣∣∣

converges uniformly for z ∈ K. This implies
∏∞

n=1 En

(
h(zn)−wn

h(z)−wn

)
also converges

uniformly for z ∈ K by Theorem 23.2. Since K is arbitrary, this shows f defined
in 23.8 is analytic on Ω1.

Also if zn is listed m times so it is a zero of multiplicity m and wn is the point
from ∂ (h (Ω1)) closest to h (zn) , then there are m factors in 23.8 which are of the
form

En

(
h (zn)− wn

h (z)− wn

)
=

(
1− h (zn)− wn

h (z)− wn

)
egn(z)

=
(

h (z)− h (zn)
h (z)− wn

)
egn(z)

=
zn − z

(z − w) (zn − w)

(
1

h (z)− wn

)
egn(z)

= (z − zn)Gn (z) (23.10)

where Gn is an analytic function which is not zero at and near zn. Therefore, f has
a zero of order m at zn. This proves the theorem except for the point, w which has
been left out of Ω1. It is necessary to show f is analytic at this point also and right
now, f is not even defined at w.

The {wn} are bounded because {h (zn)} is bounded and limn→∞ |wn − h (zn)| =
0 which implies |wn − h (zn)| ≤ C for some constant, C. Therefore, there exists
δ > 0 such that if z ∈ B′ (w, δ) , then for all n,

∣∣∣∣∣∣
h (zn)− w(

1
z−w

)
− wn

∣∣∣∣∣∣
=

∣∣∣∣
h (zn)− wn

h (z)− wn

∣∣∣∣ <
1
2
.

Thus 23.9 holds for all z ∈ B′ (w, δ) and n so by Theorem 23.2, the infinite product
in 23.8 converges uniformly on B′ (w, δ) . This implies f is bounded in B′ (w, δ) and
so w is a removable singularity and f can be extended to w such that the result is
analytic. It only remains to verify f (w) 6= 0. After all, this would not do because
it would be another zero other than those in the given list. By 23.10, a partial
product is of the form

N∏
n=1

(
h (z)− h (zn)
h (z)− wn

)
egn(z) (23.11)

where

gn (z) ≡
(

h (zn)− wn

h (z)− wn
+

1
2

(
h (zn)− wn

h (z)− wn

)2

+ · · ·+ 1
n

(
h (zn)− wn

h (z)− wn

)n
)
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Each of the quotients in the definition of gn (z) converges to 0 as z → w and so
the partial product of 23.11 converges to 1 as z → w because

(
h(z)−h(zn)
h(z)−wn

)
→ 1 as

z → w.
If f (w) = 0, then if z is close enough to w, it follows |f (z)| < 1

2 . Also, by the
uniform convergence on B′ (w, δ) , it follows that for some N, the partial product
up to N must also be less than 1/2 in absolute value for all z close enough to w
and as noted above, this does not occur because such partial products converge to
1 as z → w. Hence f (w) 6= 0. This proves the corollary.

Recall the definition of a meromorphic function on Page 410. It was a function
which is analytic everywhere except at a countable set of isolated points at which
the function has a pole. It is clear that the quotient of two analytic functions yields
a meromorphic function but is this the only way it can happen?

Theorem 23.10 Suppose Q is a meromorphic function on an open set, Ω. Then
there exist analytic functions on Ω, f (z) and g (z) such that Q (z) = f (z) /g (z) for
all z not in the set of poles of Q.

Proof: Let Q have a pole of order m (z) at z. Then by Corollary 23.9 there
exists an analytic function, g which has a zero of order m (z) at every z ∈ Ω. It
follows gQ has a removable singularity at the poles of Q. Therefore, there is an
analytic function, f such that f (z) = g (z) Q (z) . This proves the theorem.

Corollary 23.11 Suppose Ω is a region and Q is a meromorphic function defined
on Ω such that the set, {z ∈ Ω : Q (z) = c} has a limit point in Ω. Then Q (z) = c
for all z ∈ Ω.

Proof: From Theorem 23.10 there are analytic functions, f, g such that Q = f
g .

Therefore, the zero set of the function, f (z)− cg (z) has a limit point in Ω and so
f (z)− cg (z) = 0 for all z ∈ Ω. This proves the corollary.

23.2 Factoring A Given Analytic Function

The next theorem is the Weierstrass factorization theorem which can be used to
factor a given analytic function f . If f has a zero of order m when z = 0, then you
could factor out a zm and from there consider the factorization of what remains
when you have factored out the zm. Therefore, the following is the main thing of
interest.

Theorem 23.12 Let f be analytic on C, f (0) 6= 0, and let the zeros of f, be
{zk} ,listed according to order. (Thus if z is a zero of order m, it will be listed m
times in the list, {zk} .) Choosing nonnegative integers, pn such that for all r > 0,

∞∑
n=1

(
r

|zn|
)pn+1

< ∞,
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There exists an entire function, g such that

f (z) = eg(z)
∞∏

n=1

Epn

(
z

zn

)
. (23.12)

Note that eg(z) 6= 0 for any z and this is the interesting thing about this function.
Proof: {zn} cannot have a limit point because if there were a limit point of this

sequence, it would follow from Theorem 18.23 that f (z) = 0 for all z, contradicting
the hypothesis that f (0) 6= 0. Hence limn→∞ |zn| = ∞ and so

∞∑
n=1

(
r

|zn|
)1+n−1

=
∞∑

n=1

(
r

|zn|
)n

< ∞

by the root test. Therefore, by Theorem 23.6

P (z) =
∞∏

n=1

Epn

(
z

zn

)

a function analytic on C by picking pn = n − 1 or perhaps some other choice. (
pn = n− 1 works but there might be another choice that would work.) Then f/P
has only removable singularities in C and no zeros thanks to Theorem 23.6. Thus,
letting h (z) = f (z) /P (z) , Corollary 18.50 implies that h′/h has a primitive, g̃.
Then (

he−eg)′ = 0

and so
h (z) = ea+ibeeg(z)

for some constants, a, b. Therefore, letting g (z) = g̃ (z) + a + ib, h (z) = eg(z) and
thus 23.12 holds. This proves the theorem.

Corollary 23.13 Let f be analytic on C, f has a zero of order m at 0, and let the
other zeros of f be {zk} , listed according to order. (Thus if z is a zero of order l,
it will be listed l times in the list, {zk} .) Also let

∞∑
n=1

(
r

|zn|
)1+pn

< ∞ (23.13)

for any choice of r > 0. Then there exists an entire function, g such that

f (z) = zmeg(z)
∞∏

n=1

Epn

(
z

zn

)
. (23.14)

Proof: Since f has a zero of order m at 0, it follows from Theorem 18.23 that
{zk} cannot have a limit point in C and so you can apply Theorem 23.12 to the
function, f (z) /zm which has a removable singularity at 0. This proves the corollary.
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23.2.1 Factoring Some Special Analytic Functions

Factoring a polynomial is in general a hard task. It is true it is easy to prove the
factors exist but finding them is another matter. Corollary 23.13 gives the existence
of factors of a certain form but it does not tell how to find them. This should not
be surprising. You can’t expect things to get easier when you go from polynomials
to analytic functions. Nevertheless, it is possible to factor some popular analytic
functions. These factorizations are based on the following Mitag-Leffler expansions.
By an auspicious choice of the contour and the method of residues it is possible to
obtain a very interesting formula for cot πz .

Example 23.14 Let γN be the contour which goes from −N − 1
2 −Ni horizontally

to N + 1
2 − Ni and from there, vertically to N + 1

2 + Ni and then horizontally
to −N − 1

2 + Ni and finally vertically to −N − 1
2 − Ni. Thus the contour is a

large rectangle and the direction of integration is in the counter clockwise direction.
Consider the integral

IN ≡
∫

γN

π cos πz

sin πz (α2 − z2)
dz

where α ∈ R is not an integer. This will be used to verify the formula of Mittag-
Leffler,

1
α

+
∞∑

n=1

2α

α2 − n2
= π cot πα. (23.15)

First you show that cot πz is bounded on this contour. This is easy using the
formula for cot (z) = eiz+e−iz

eiz−e−iz . Therefore, IN → 0 as N →∞ because the integrand
is of order 1/N2 while the diameter of γN is of order N. Next you compute the
residues of the integrand at ±α and at n where |n| < N + 1

2 for n an integer. These
are the only singularities of the integrand in this contour and therefore, using the
residue theorem, you can evaluate IN by using these. You can calculate these
residues and find that the residue at ±α is

−π cosπα

2α sin πα

while the residue at n is
1

α2 − n2
.

Therefore

0 = lim
N→∞

IN = lim
N→∞

2πi

[
N∑

n=−N

1
α2 − n2

− π cot πα

α

]

which establishes the following formula of Mittag Leffler.

lim
N→∞

N∑

n=−N

1
α2 − n2

=
π cot πα

α
.
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Writing this in a slightly nicer form, you obtain 23.15.
This is a very interesting formula. This will be used to factor sin (πz) . The

zeros of this function are at the integers. Therefore, considering 23.13 you can pick
pn = 1 in the Weierstrass factorization formula. Therefore, by Corollary 23.13 there
exists an analytic function g (z) such that

sin (πz) = zeg(z)
∞∏

n=1

(
1− z

zn

)
ez/zn (23.16)

where the zn are the nonzero integers. Remember you can permute the factors in
these products. Therefore, this can be written more conveniently as

sin (πz) = zeg(z)
∞∏

n=1

(
1−

( z

n

)2
)

and it is necessary to find g (z) . Differentiating both sides of 23.16

π cos (πz) = eg(z)
∞∏

n=1

(
1−

( z

n

)2
)

+ zg′ (z) eg(z)
∞∏

n=1

(
1−

( z

n

)2
)

+zeg(z)
∞∑

n=1

−
(

2z

n2

) ∏

k 6=n

(
1−

( z

k

)2
)

Now divide both sides by sin (πz) to obtain

π cot (πz) =
1
z

+ g′ (z)−
∞∑

n=1

2z/n2

(1− z2/n2)

=
1
z

+ g′ (z) +
∞∑

n=1

2z

z2 − n2
.

By 23.15, this yields g′ (z) = 0 for z not an integer and so g (z) = c, a constant. So
far this yields

sin (πz) = zec
∞∏

n=1

(
1−

( z

n

)2
)

and it only remains to find c. Divide both sides by πz and take a limit as z → 0.
Using the power series of sin (πz) , this yields

1 =
ec

π

and so c = ln π. Therefore,

sin (πz) = zπ

∞∏
n=1

(
1−

( z

n

)2
)

. (23.17)
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Example 23.15 Find an interesting formula for tan (πz) .

This is easy to obtain from the formula for cot (πz) .

cot
(

π

(
z +

1
2

))
= − tan πz

for z real and therefore, this formula holds for z complex also. Therefore, for z + 1
2

not an integer

π cot
(

π

(
z +

1
2

))
=

2
2z + 1

+
∞∑

n=1

2z + 1(
2z+1

2

)2 − n2

23.3 The Existence Of An Analytic Function With
Given Values

The Weierstrass product formula, Theorem 23.6, along with the Mittag-Leffler the-
orem, Theorem 22.13 can be used to obtain an analytic function which has given
values on a countable set of points, having no limit point. This is clearly an amazing
result and indicates how potent these theorems are. In fact, you can show that it
isn’t just the values of the function which may be specified at the points in this
countable set of points but the derivatives up to any finite order.

Theorem 23.16 Let P ≡ {zk}∞k=1 be a set of points in C,which has no limit point.
For each zk, consider

mk∑

j=0

ak
j (z − zk)j

. (23.18)

Then there exists an analytic function defined on C such that the Taylor series of
f at zk has the first mk terms given by 23.18.1

Proof: By the Weierstrass product theorem, Theorem 23.6, there exists an
analytic function, f defined on all of Ω such that f has a zero of order mk + 1 at
zk. Consider this zk Thus for z near zk,

f (z) =
∞∑

j=mk+1

cj (z − zk)j

where cmk+1 6= 0. You choose b1, b2, · · ·, bmk+1 such that

f (z)

(
mk+1∑

l=1

bl

(z − zk)k

)
=

mk∑

j=0

ak
j (z − zk)j +

∞∑

k=mk+1

ck
j (z − zk)j

.

1This says you can specify the first mk derivatives of the function at the point zk.
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Thus you need

mk+1∑

l=1

∞∑

j=mk+1

cjbl (z − zk)j−l =
mk∑
r=0

ak
r (z − zk)r + Higher order terms.

It follows you need to solve the following system of equations for b1, · · ·, bmk+1.

cmk+1bmk+1 = ak
0

cmk+2bmk+1 + cmk+1bmk
= ak

1

cmk+3bmk+1 + cmk+2bmk
+ cmk+1bmk−1 = ak

2
...

cmk+mk+1bmk+1 + cmk+mk
bmk

+ · · ·+ cmk+1b1 = ak
mk

Since cmk+1 6= 0, it follows there exists a unique solution to the above system.
You first solve for bmk+1 in the top. Then, having found it, you go to the next
and use cmk+1 6= 0 again to find bmk

and continue in this manner. Let Sk (z)
be determined in this manner for each zk. By the Mittag-Leffler theorem, there
exists a Meromorphic function, g such that g has exactly the singularities, Sk (z) .
Therefore, f (z) g (z) has removable singularities at each zk and for z near zk, the
first mk terms of fg are as prescribed. This proves the theorem.

Corollary 23.17 Let P ≡ {zk}∞k=1 be a set of points in Ω, an open set such that
P has no limit points in Ω. For each zk, consider

mk∑

j=0

ak
j (z − zk)j

. (23.19)

Then there exists an analytic function defined on Ω such that the Taylor series of
f at zk has the first mk terms given by 23.19.

Proof: The proof is identical to the above except you use the versions of the
Mittag-Leffler theorem and Weierstrass product which pertain to open sets.

Definition 23.18 Denote by H (Ω) the analytic functions defined on Ω, an open
subset of C. Then H (Ω) is a commutative ring2 with the usual operations of addition
and multiplication. A set, I ⊆ H (Ω) is called a finitely generated ideal of the ring
if I is of the form

{
n∑

k=1

gkfk : fk ∈ H (Ω) for k = 1, 2, · · ·, n
}

where g1, ···, gn are given functions in H (Ω). This ideal is also denoted as [g1, · · ·, gn]
and is called the ideal generated by the functions, {g1, · · ·, gn}. Since there are
finitely many of these functions it is called a finitely generated ideal. A principal
ideal is one which is generated by a single function. An example of such a thing is
[1] = H (Ω) .

2It is not a field because you can’t divide two analytic functions and get another one.
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Then there is the following interesting theorem.

Theorem 23.19 Every finitely generated ideal in H (Ω) for Ω a connected open set
(region) is a principal ideal.

Proof: Let I = [g1, · · ·, gn] be a finitely generated ideal as described above.
Then if any of the functions has no zeros, this ideal would consist of H (Ω) because
then g−1

i ∈ H (Ω) and so 1 ∈ I. It follows all the functions have zeros. If any of the
functions has a zero of infinite order, then the function equals zero on Ω because Ω
is connected and can be deleted from the list. Similarly, if the zeros of any of these
functions have a limit point in Ω, then the function equals zero and can be deleted
from the list. Thus, without loss of generality, all zeros are of finite order and there
are no limit points of the zeros in Ω. Let m (gi, z) denote the order of the zero of
gi at z. If gi has no zero at z, then m (gi, z) = 0.

I claim that if no point of Ω is a zero of all the gi, then the conclusion of the
theorem is true and in fact [g1, · · ·, gn] = [1] = H (Ω) . The claim is obvious if n = 1
because this assumption that no point is a zero of all the functions implies g 6= 0
and so g−1 is analytic. Hence 1 ∈ [g1] . Suppose it is true for n − 1 and consider
[g1, · · ·, gn] where no point of Ω is a zero of all the gi. Even though this may be true
of {g1, · · ·, gn} , it may not be true of {g1, · · ·, gn−1} . By Corollary 23.9 there exists
φ, a function analytic on Ω such that m (φ, z) = min {m (gi, z) , i = 1, 2, · · ·, n− 1} .
Thus the functions {g1/φ, · · ·, gn−1/φ} .are all analytic. Could they all equal zero
at some point, z? If so, pick i where m (φ, z) = m (gi, z) . Thus gi/φ is not equal to
zero at z after all and so these functions are analytic there is no point of Ω which
is a zero of all of them. By induction, [g1/φ, · · ·, gn−1/φ] = H (Ω). (Also there are
no new zeros obtained in this way.)

Now this means there exist functions fi ∈ H (Ω) such that

n∑

i=1

fi

(
gi

φ

)
= 1

and so φ =
∑n

i=1 figi. Therefore, [φ] ⊆ [g1, · · ·, gn−1] . On the other hand, if∑n−1
k=1 hkgk ∈ [g1, · · ·, gn−1] you could define h ≡ ∑n−1

k=1 hk (gk/φ ) , an analytic
function with the property that hφ =

∑n−1
k=1 hkgk which shows [φ] = [g1, · · ·, gn−1].

Therefore,
[g1, · · ·, gn] = [φ, gn]

Now φ has no zeros in common with gn because the zeros of φ are contained in the
set of zeros for g1, · · ·, gn−1. Now consider a zero, α of φ. It is not a zero of gn and
so near α, these functions have the form

φ (z) =
∞∑

k=m

ak (z − α)k
, gn (z) =

∞∑

k=0

bk (z − α)k
, b0 6= 0.

I want to determine coefficients for an analytic function, h such that

m (1− hgn, α) ≥ m (φ, α) . (23.20)
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Let

h (z) =
∞∑

k=0

ck (z − α)k

and the ck must be determined. Using Merten’s theorem, the power series for 1−hgn

is of the form

1− b0c0 −
∞∑

j=1

(
j∑

r=0

bj−rcr

)
(z − α)j

.

First determine c0 such that 1− c0b0 = 0. This is no problem because b0 6= 0. Next
you need to get the coefficients of (z − α) to equal zero. This requires

b1c0 + b0c1 = 0.

Again, there is no problem because b0 6= 0. In fact, c1 = (−b1c0/b0) . Next consider
the second order terms if m ≥ 2.

b2c0 + b1c1 + b0c2 = 0

Again there is no problem in solving, this time for c2 because b0 6= 0. Continuing this
way, you see that in every step, the ck which needs to be solved for is multiplied by
b0 6= 0. Therefore, by Corollary 23.9 there exists an analytic function, h satisfying
23.20. Therefore, (1− hgn) /φ has a removable singularity at every zero of φ and
so may be considered an analytic function. Therefore,

1 =
1− hgn

φ
φ + hgn ∈ [φ, gn] = [g1 · · · gn]

which shows [g1 · · · gn] = H (Ω) = [1] . It follows the claim is established.
Now suppose {g1 · · · gn} are just elements of H (Ω) . As explained above, it can

be assumed they all have zeros of finite order and the zeros have no limit point
in Ω since if these occur, you can delete the function from the list. By Corollary
23.9 there exists φ ∈ H (Ω) such that m (φ, z) ≤ min {m (gi, z) : i = 1, · · ·, n} . Then
gk/φ has a removable singularity at each zero of gk and so can be regarded as an
analytic function. Also, as before, there is no point which is a zero of each gk/φ and
so by the first part of this argument, [g1/φ · · · gn/φ] = H (Ω) . As in the first part
of the argument, this implies [g1 · · · gn] = [φ] which proves the theorem. [g1 · · · gn]
is a principal ideal as claimed.

The following corollary follows from the above theorem. You don’t need to
assume Ω is connected.

Corollary 23.20 Every finitely generated ideal in H (Ω) for Ω an open set is a
principal ideal.

Proof: Let [g1, · · ·, gn] be a finitely generated ideal in H (Ω) . Let {Uk} be the
components of Ω. Then applying the above to each component, there exists hk ∈
H (Uk) such that restricting each gi to Uk, [g1, · · ·, gn] = [hk] . Then let h (z) = hk (z)
for z ∈ Uk. This is an analytic function which works.
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23.4 Jensen’s Formula

This interesting formula relates the zeros of an analytic function to an integral. The
proof given here follows Alfors, [2]. First, here is a technical lemma.

Lemma 23.21 ∫ π

−π

ln
∣∣1− eiθ

∣∣ dθ = 0.

Proof: First note that the only problem with the integrand occurs when θ = 0.
However, this is an integrable singularity so the integral will end up making sense.
Letting z = eiθ, you could get the above integral as a limit as ε → 0 of the following
contour integral where γε is the contour shown in the following picture with the
radius of the big circle equal to 1 and the radius of the little circle equal to ε..

∫

γε

ln |1− z|
iz

dz.

s
1

s

On the indicated contour, 1−z lies in the half plane Re z > 0 and so log (1− z) =
ln |1− z|+ i arg (1− z). The above integral equals

∫

γε

log (1− z)
iz

dz −
∫

γε

arg (1− z)
z

dz

The first of these integrals equals zero because the integrand has a removable sin-
gularity at 0. The second equals

i

∫ −ηε

−π

arg
(
1− eiθ

)
dθ + i

∫ π

ηε

arg
(
1− eiθ

)
dθ

+εi

∫ −π

−π
2−λε

θdθ + εi

∫ π
2−λε

π

θdθ

where ηε, λε → 0 as ε → 0. The last two terms converge to 0 as ε → 0 while the
first two add to zero. To see this, change the variable in the first integral and then
recall that when you multiply complex numbers you add the arguments. Thus you
end up integrating arg (real valued function) which equals zero.

In this material on Jensen’s equation, ε will denote a small positive number. Its
value is not important as long as it is positive. Therefore, it may change from place
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to place. Now suppose f is analytic on B (0, r + ε) , and f has no zeros on B (0, r).
Then you can define a branch of the logarithm which makes sense for complex
numbers near f (z) . Thus z → log (f (z)) is analytic on B (0, r + ε). Therefore, its
real part, u (x, y) ≡ ln |f (x + iy)| must be harmonic. Consider the following lemma.

Lemma 23.22 Let u be harmonic on B (0, r + ε) . Then

u (0) =
1
2π

∫ π

−π

u
(
reiθ

)
dθ.

Proof: For a harmonic function, u defined on B (0, r + ε) , there exists an
analytic function, h = u + iv where

v (x, y) ≡
∫ y

0

ux (x, t) dt−
∫ x

0

uy (t, 0) dt.

By the Cauchy integral theorem,

h (0) =
1

2πi

∫

γr

h (z)
z

dz =
1
2π

∫ π

−π

h
(
reiθ

)
dθ.

Therefore, considering the real part of h,

u (0) =
1
2π

∫ π

−π

u
(
reiθ

)
dθ.

This proves the lemma.
Now this shows the following corollary.

Corollary 23.23 Suppose f is analytic on B (0, r + ε) and has no zeros on B (0, r).
Then

ln |f (0)| = 1
2π

∫ π

−π

ln
∣∣f (

reiθ
)∣∣ (23.21)

What if f has some zeros on |z| = r but none on B (0, r)? It turns out 23.21
is still valid. Suppose the zeros are at

{
reiθk

}m

k=1
, listed according to multiplicity.

Then let

g (z) =
f (z)∏m

k=1 (z − reiθk)
.
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It follows g is analytic on B (0, r + ε) but has no zeros in B (0, r). Then 23.21 holds
for g in place of f. Thus

ln |f (0)| −
m∑

k=1

ln |r|

=
1
2π

∫ π

−π

ln
∣∣f (

reiθ
)∣∣ dθ − 1

2π

∫ π

−π

m∑

k=1

ln
∣∣reiθ − reiθk

∣∣ dθ

=
1
2π

∫ π

−π

ln
∣∣f (

reiθ
)∣∣ dθ − 1

2π

∫ π

−π

m∑

k=1

ln
∣∣eiθ − eiθk

∣∣ dθ −
m∑

k=1

ln |r|

=
1
2π

∫ π

−π

ln
∣∣f (

reiθ
)∣∣ dθ − 1

2π

∫ π

−π

m∑

k=1

ln
∣∣eiθ − 1

∣∣ dθ −
m∑

k=1

ln |r|

Therefore, 23.21 will continue to hold exactly when 1
2π

∫ π

−π

∑m
k=1 ln

∣∣eiθ − 1
∣∣ dθ = 0.

But this is the content of Lemma 23.21. This proves the following lemma.

Lemma 23.24 Suppose f is analytic on B (0, r + ε) and has no zeros on B (0, r) .
Then

ln |f (0)| = 1
2π

∫ π

−π

ln
∣∣f (

reiθ
)∣∣ (23.22)

With this preparation, it is now not too hard to prove Jensen’s formula. Suppose
there are n zeros of f in B (0, r) , {ak}n

k=1, listed according to multiplicity, none equal
to zero. Let

F (z) ≡ f (z)
n∏

i=1

r2 − aiz

r (z − ai)
.

Then F is analytic on B (0, r + ε) and has no zeros in B (0, r) . The reason for this
is that f (z) /

∏n
i=1 r (z − ai) has no zeros there and r2 − aiz cannot equal zero if

|z| < r because if this expression equals zero, then

|z| = r2

|ai| > r.

The other interesting thing about F (z) is that when z = reiθ,

F
(
reiθ

)
= f

(
reiθ

) n∏

i=1

r2 − aire
iθ

r (reiθ − ai)

= f
(
reiθ

) n∏

i=1

r − aie
iθ

(reiθ − ai)
= f

(
reiθ

)
eiθ

n∏

i=1

re−iθ − ai

reiθ − ai

so
∣∣F (

reiθ
)∣∣ =

∣∣f (
reiθ

)∣∣.
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Theorem 23.25 Let f be analytic on B (0, r + ε) and suppose f (0) 6= 0. If the
zeros of f in B (0, r) are {ak}n

k=1, listed according to multiplicity, then

ln |f (0)| = −
n∑

i=1

ln
(

r

|ai|
)

+
1
2π

∫ 2π

0

ln
∣∣f (

reiθ
)∣∣ dθ.

Proof: From the above discussion and Lemma 23.24,

ln |F (0)| = 1
2π

∫ π

−π

ln
∣∣f (

reiθ
)∣∣ dθ

But F (0) = f (0)
∏n

i=1
r
ai

and so ln |F (0)| = ln |f (0)|+ ∑n
i=1 ln

∣∣∣ r
ai

∣∣∣ . Therefore,

ln |f (0)| = −
n∑

i=1

ln
∣∣∣∣
r

ai

∣∣∣∣ +
1
2π

∫ 2π

0

ln
∣∣f (

reiθ
)∣∣ dθ

as claimed.
Written in terms of exponentials this is

|f (0)|
n∏

k=1

∣∣∣∣
r

ak

∣∣∣∣ = exp
(

1
2π

∫ 2π

0

ln
∣∣f (

reiθ
)∣∣ dθ

)
.

23.5 Blaschke Products

The Blaschke3 product is a way to produce a function which is bounded and analytic
on B (0, 1) which also has given zeros in B (0, 1) . The interesting thing here is
that there may be infinitely many of these zeros. Thus, unlike the above case of
Jensen’s inequality, the function is not analytic on B (0, 1). Recall for purposes of
comparison, Liouville’s theorem which says bounded entire functions are constant.
The Blaschke product gives examples of bounded functions on B (0, 1) which are
definitely not constant.

Theorem 23.26 Let {αn} be a sequence of nonzero points in B (0, 1) with the
property that

∞∑
n=1

(1− |αn|) < ∞.

Then for k ≥ 0, an integer

B (z) ≡ zk
∞∏

k=1

αn − z

1− αnz

|αn|
αn

is a bounded function which is analytic on B (0, 1) which has zeros only at 0 if k > 0
and at the αn.

3Wilhelm Blaschke, 1915
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Proof: From Theorem 23.2 the above product will converge uniformly on B (0, r)
for r < 1 to an analytic function if

∞∑

k=1

∣∣∣∣
αn − z

1− αnz

|αn|
αn

− 1
∣∣∣∣

converges uniformly on B (0, r) . But for |z| < r,

∣∣∣∣
αn − z

1− αnz

|αn|
αn

− 1
∣∣∣∣

=
∣∣∣∣

αn − z

1− αnz

|αn|
αn

− αn (1− αnz)
αn (1− αnz)

∣∣∣∣

=

∣∣∣∣∣
|αn|αn − |αn| z − αn + |αn|2 z

(1− αnz) αn

∣∣∣∣∣

=

∣∣∣∣∣
|αn|αn − αn − |αn| z + |αn|2 z

(1− αnz) αn

∣∣∣∣∣

= ||αn| − 1|
∣∣∣∣

αn + z |αn|
(1− αnz)αn

∣∣∣∣

= ||αn| − 1|
∣∣∣∣
1 + z (|αn| /αn)

(1− αnz)

∣∣∣∣

≤ ||αn| − 1|
∣∣∣∣
1 + |z|
1− |z|

∣∣∣∣ ≤ ||αn| − 1|
∣∣∣∣
1 + r

1− r

∣∣∣∣

and so the assumption on the sum gives uniform convergence of the product on
B (0, r) to an analytic function. Since r < 1 is arbitrary, this shows B (z) is analytic
on B (0, 1) and has the specified zeros because the only place the factors equal zero
are at the αn or 0.

Now consider the factors in the product. The claim is that they are all no larger
in absolute value than 1. This is very easy to see from the maximum modulus
theorem. Let |α| < 1 and φ (z) = α−z

1−αz . Then φ is analytic near B (0, 1) because its
only pole is 1/α. Consider z = eiθ. Then

∣∣φ (
eiθ

)∣∣ =
∣∣∣∣

α− eiθ

1− αeiθ

∣∣∣∣ =
∣∣∣∣
1− αe−iθ

1− αeiθ

∣∣∣∣ = 1.

Thus the modulus of φ (z) equals 1 on ∂B (0, 1) . Therefore, by the maximum mod-
ulus theorem, |φ (z)| < 1 if |z| < 1. This proves the claim that the terms in the
product are no larger than 1 and shows the function determined by the Blaschke
product is bounded. This proves the theorem.

Note in the conditions for this theorem the one for the sum,
∑∞

n=1 (1− |αn|) <
∞. The Blaschke product gives an analytic function, whose absolute value is bounded
by 1 and which has the αn as zeros. What if you had a bounded function, analytic
on B (0, 1) which had zeros at {αk}? Could you conclude the condition on the sum?
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The answer is yes. In fact, you can get by with less than the assumption that f is
bounded but this will not be presented here. See Rudin [36]. This theorem is an
exciting use of Jensen’s equation.

Theorem 23.27 Suppose f is an analytic function on B (0, 1) , f (0) 6= 0, and
|f (z)| ≤ M for all z ∈ B (0, 1) . Suppose also that the zeros of f are {αk}∞k=1 ,
listed according to multiplicity. Then

∑∞
k=1 (1− |αk|) < ∞.

Proof: If there are only finitely many zeros, there is nothing to prove so assume
there are infinitely many. Also let the zeros be listed such that |αn| ≤ |αn+1| · ·· Let
n (r) denote the number of zeros in B (0, r) . By Jensen’s formula,

ln |f (0)|+
n(r)∑

i=1

ln r − ln |αi| = 1
2π

∫ 2π

0

ln
∣∣f (

reiθ
)∣∣ dθ ≤ ln (M) .

Therefore, by the mean value theorem,

n(r)∑

i=1

1
r

(r − |αi|) ≤
n(r)∑

i=1

ln r − ln |αi| ≤ ln (M)− ln |f (0)|

As r → 1−, n (r) →∞, and so an application of Fatous lemma yields

∞∑

i=1

(1− |αi|) ≤ lim inf
r→1−

n(r)∑

i=1

1
r

(r − |αi|) ≤ ln (M)− ln |f (0)| .

This proves the theorem.
You don’t need the assumption that f (0) 6= 0.

Corollary 23.28 Suppose f is an analytic function on B (0, 1) and |f (z)| ≤ M
for all z ∈ B (0, 1) . Suppose also that the nonzero zeros4 of f are {αk}∞k=1 , listed
according to multiplicity. Then

∑∞
k=1 (1− |αk|) < ∞.

Proof: Suppose f has a zero of order m at 0. Then consider the analytic
function, g (z) ≡ f (z) /zm which has the same zeros except for 0. The argument
goes the same way except here you use g instead of f and only consider r > r0 > 0.

4This is a fun thing to say: nonzero zeros.
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Thus from Jensen’s equation,

ln |g (0)|+
n(r)∑

i=1

ln r − ln |αi|

=
1
2π

∫ 2π

0

ln
∣∣g (

reiθ
)∣∣ dθ

=
1
2π

∫ 2π

0

ln
∣∣f (

reiθ
)∣∣ dθ − 1

2π

∫ 2π

0

m ln (r)

≤ M +
1
2π

∫ 2π

0

m ln
(
r−1

)

≤ M + m ln
(

1
r0

)
.

Now the rest of the argument is the same.
An interesting restatement yields the following amazing result.

Corollary 23.29 Suppose f is analytic and bounded on B (0, 1) having zeros {αn} .
Then if

∑∞
k=1 (1− |αn|) = ∞, it follows f is identically equal to zero.

23.5.1 The Müntz-Szasz Theorem Again

Corollary 23.29 makes possible an easy proof of a remarkable theorem named above
which yields a wonderful generalization of the Weierstrass approximation theorem.
In what follows b > 0. The Weierstrass approximation theorem states that linear
combinations of 1, t, t2, t3, · · · (polynomials) are dense in C ([0, b]) . Let λ1 < λ2 <
λ3 < · · · be an increasing list of positive real numbers. This theorem tells when
linear combinations of 1, tλ1 , tλ2 , · · · are dense in C ([0, b]). The proof which follows
is like the one given in Rudin [36]. There is a much longer one in Cheney [12]
which discusses more aspects of the subject. This other approach is much more
elementary and does not depend in any way on the theory of functions of a complex
variable. There are those of us who automatically prefer real variable techniques.
Nevertheless, this proof by Rudin is a very nice and insightful application of the
preceding material. Cheney refers to the theorem as the second Müntz theorem. I
guess Szasz must also have been involved.

Theorem 23.30 Let λ1 < λ2 < λ3 < · · · be an increasing list of positive real
numbers and let a > 0. If

∞∑
n=1

1
λn

= ∞, (23.23)

then linear combinations of 1, tλ1 , tλ2 , · · · are dense in C ([0, b]).

Proof: Let X denote the closure of linear combinations of
{
1, tλ1 , tλ2 , · · ·} in

C ([0, b]) . If X 6= C ([0, b]) , then letting f ∈ C ([0, b]) \X, define Λ ∈ C ([0, b])′ as
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follows. First let Λ0 : X + Cf be given by Λ0 (g + αf) = α ||f ||∞. Then

sup
||g+αf ||≤1

|Λ0 (g + αf)| = sup
||g+αf ||≤1

|α| ||f ||∞
= sup

||g/α+f ||≤ 1
|α|

|α| ||f ||∞

= sup
||g+f ||≤ 1

|α|

|α| ||f ||∞

Now dist (f, X) > 0 because X is closed. Therefore, there exists a lower bound,
η > 0 to ||g + f || for g ∈ X. Therefore, the above is no larger than

sup
|α|≤ 1

η

|α| ||f ||∞ =
(

1
η

)
||f ||∞

which shows that ||Λ0|| ≤
(

1
η

)
||f ||∞. By the Hahn Banach theorem Λ0 can be

extended to Λ ∈ C ([0, b])′ which has the property that Λ (X) = 0 but Λ (f) =
||f || 6= 0. By the Weierstrass approximation theorem, there exists a polynomial, p
such that Λ (p) 6= 0. Therefore, if it can be shown that whenever Λ (X) = 0, it is
the case that Λ (p) = 0 for all polynomials, it must be the case that X is dense in
C ([0, b]).

By the Riesz representation theorem the elements of C ([0, b])′ are complex mea-
sures. Suppose then that for µ a complex measure it follows that for all tλk ,

∫

[0,b]

tλkdµ = 0.

I want to show that then ∫

[0,b]

tkdµ = 0

for all positive integers. It suffices to modify µ is necessary to have µ ({0}) = 0 since
this will not change any of the above integrals. Let µ1 (E) = µ (E ∩ (0, b]) and use
µ1. I will continue using the symbol, µ.

For Re (z) > 0, define

F (z) ≡
∫

[0,b]

tzdµ =
∫

(0,b]

tzdµ

The function tz = exp (z ln (t)) is analytic. I claim that F (z) is also analytic for
Re z > 0. Apply Morea’s theorem. Let T be a triangle in Re z > 0. Then

∫

∂T

F (z) dz =
∫

∂T

∫

(0,b]

e(z ln(t))ξd |µ| dz

Now
∫

∂T
can be split into three integrals over intervals of R and so this integral is es-

sentially a Lebesgue integral taken with respect to Lebesgue measure. Furthermore,
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e(z ln(t)) is a continuous function of the two variables and ξ is a function of only the
one variable, t. Thus the integrand is product measurable. The iterated integral is
also absolutely integrable because

∣∣e(z ln(t))
∣∣ ≤ ex ln t ≤ ex ln b where x + iy = z and

x is given to be positive. Thus the integrand is actually bounded. Therefore, you
can apply Fubini’s theorem and write

∫

∂T

F (z) dz =
∫

∂T

∫

(0,b]

e(z ln(t))ξd |µ| dz

=
∫

(0,b]

ξ

∫

∂T

e(z ln(t))dzd |µ| = 0.

By Morea’s theorem, F is analytic on Re z > 0 which is given to have zeros at the
λk.

Now let φ (z) = 1+z
1−z . Then φ maps B (0, 1) one to one onto Re z > 0. To see this

let 0 < r < 1.

φ
(
reiθ

)
=

1 + reiθ

1− reiθ
=

1− r2 + i2r sin θ

1 + r2 − 2r cos θ

and so Re φ
(
reiθ

)
> 0. Now the inverse of φ is φ−1 (z) = z−1

z+1 . For Re z > 0,

∣∣φ−1 (z)
∣∣2 =

z − 1
z + 1

· z − 1
z + 1

=
|z|2 − 2Re z + 1
|z|2 + 2Re z + 1

< 1.

Consider F ◦ φ, an analytic function defined on B (0, 1). This function is given to
have zeros at zn where φ (zn) = 1+zn

1−zn
= λn. This reduces to zn = −1+λn

1+λn
. Now

1− |zn| ≥ c

1 + λn

for a positive constant, c. It is given that
∑

1
λn

= ∞. so it follows
∑

(1− |zn|) = ∞
also. Therefore, by Corollary 23.29, F ◦ φ = 0. It follows F = 0 also. In particular,
F (k) for k a positive integer equals zero. This has shown that if Λ ∈ C ([0, b])′ and
Λ sends 1 and all the tλn to 0, then Λ sends 1 and all tk for k a positive integer to
zero. As explained above, X is dense in C ((0, b]) .

The converse of this theorem is also true and is proved in Rudin [36].

23.6 Exercises

1. Suppose f is an entire function with f (0) = 1. Let

M (r) = max {|f (z)| : |z| = r} .

Use Jensen’s equation to establish the following inequality.

M (2r) ≥ 2n(r)

where n (r) is the number of zeros of f in B (0, r).
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2. The version of the Blaschke product presented above is that found in most
complex variable texts. However, there is another one in [31]. Instead of
αn−z
1−αnz

|αn|
αn

you use
αn − z
1

αn
− z

Prove a version of Theorem 23.26 using this modification.

3. The Weierstrass approximation theorem holds for polynomials of n variables
on any compact subset of Rn. Give a multidimensional version of the Müntz-
Szasz theorem which will generalize the Weierstrass approximation theorem
for n dimensions. You might just pick a compact subset of Rn in which
all components are positive. You have to do something like this because
otherwise, tλ might not be defined.

4. Show cos (πz) =
∏∞

k=1

(
1− 4z2

(2k−1)2

)
.

5. Recall sin (πz) = zπ
∏∞

n=1

(
1− (

z
n

)2
)

. Use this to derive Wallis product,
π
2 =

∏∞
k=1

4k2

(2k−1)(2k+1) .

6. The order of an entire function, f is defined as

inf
{

a ≥ 0 : |f (z)| ≤ e|z|
a

for all large enough |z|
}

If no such a exists, the function is said to be of infinite order. Show the order
of an entire function is also equal to lim supr→∞

ln(ln(M(r)))
ln(r) where M (r) ≡

max {|f (z)| : |z| = r}.
7. Suppose Ω is a simply connected region and let f be meromorphic on Ω.

Suppose also that the set, S ≡ {z ∈ Ω : f (z) = c} has a limit point in Ω. Can
you conclude f (z) = c for all z ∈ Ω?

8. This and the next collection of problems are dealing with the gamma function.
Show that ∣∣∣

(
1 +

z

n

)
e
−z
n − 1

∣∣∣ ≤ C (z)
n2

and therefore,
∞∑

n=1

∣∣∣
(
1 +

z

n

)
e
−z
n − 1

∣∣∣ < ∞

with the convergence uniform on compact sets.

9. ↑ Show
∏∞

n=1

(
1 + z

n

)
e
−z
n converges to an analytic function on C which has

zeros only at the negative integers and that therefore,

∞∏
n=1

(
1 +

z

n

)−1

e
z
n
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is a meromorphic function (Analytic except for poles) having simple poles at
the negative integers.

10. ↑Show there exists γ such that if

Γ (z) ≡ e−γz

z

∞∏
n=1

(
1 +

z

n

)−1

e
z
n ,

then Γ (1) = 1. Thus Γ is a meromorphic function having simple poles at the
negative integers. Hint:

∏∞
n=1 (1 + n) e−1/n = c = eγ .

11. ↑Now show that

γ = lim
n→∞

[
n∑

k=1

1
k
− ln n

]

12. ↑Justify the following argument leading to Gauss’s formula

Γ (z) = lim
n→∞

(
n∏

k=1

(
k

k + z

)
e

z
k

)
e−γz

z

= lim
n→∞

(
n!

(1 + z) (2 + z) · · · (n + z)
ez(Pn

k=1
1
k )

)
e−γz

z

= lim
n→∞

n!
(1 + z) (2 + z) · · · (n + z)

ez(Pn
k=1

1
k )e−z[Pn

k=1
1
k−ln n]

= lim
n→∞

n!nz

(1 + z) (2 + z) · · · (n + z)
.

13. ↑ Verify from the Gauss formula above that Γ (z + 1) = Γ (z) z and that for n
a nonnegative integer, Γ (n + 1) = n!.

14. ↑ The usual definition of the gamma function for positive x is

Γ1 (x) ≡
∫ ∞

0

e−ttx−1dt.

Show
(
1− t

n

)n ≤ e−t for t ∈ [0, n] . Then show
∫ n

0

(
1− t

n

)n

tx−1dt =
n!nx

x (x + 1) · · · (x + n)
.

Use the first part to conclude that

Γ1 (x) = lim
n→∞

n!nx

x (x + 1) · · · (x + n)
= Γ (x) .

Hint: To show
(
1− t

n

)n ≤ e−t for t ∈ [0, n] , verify this is equivalent to
showing (1− u)n ≤ e−nu for u ∈ [0, 1].
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15. ↑Show Γ (z) =
∫∞
0

e−ttz−1dt. whenever Re z > 0. Hint: You have already
shown that this is true for positive real numbers. Verify this formula for
Re z > 0 yields an analytic function.

16. ↑Show Γ
(

1
2

)
=
√

π. Then find Γ
(

5
2

)
.

17. Show that
∫∞
−∞ e

−s2
2 ds =

√
2π. Hint: Denote this integral by I and observe

that I2 =
∫
R2 e−(x2+y2)/2dxdy. Then change variables to polar coordinates,

x = r cos (θ), y = r sin θ.

18. ↑ Now that you know what the gamma function is, consider in the formula
for Γ (α + 1) the following change of variables. t = α + α1/2s. Then in terms
of the new variable, s, the formula for Γ (α + 1) is

e−ααα+ 1
2

∫ ∞

−√α

e−
√

αs

(
1 +

s√
α

)α

ds

= e−ααα+ 1
2

∫ ∞

−√α

e
α
h
ln
�
1+ s√

α

�
− s√

α

i
ds

Show the integrand converges to e−
s2
2 . Show that then

lim
α→∞

Γ (α + 1)
e−ααα+(1/2)

=
∫ ∞

−∞
e
−s2
2 ds =

√
2π.

Hint: You will need to obtain a dominating function for the integral so that
you can use the dominated convergence theorem. You might try considering
s ∈ (−√α,

√
α) first and consider something like e1−(s2/4) on this interval.

Then look for another function for s >
√

α. This formula is known as Stirling’s
formula.

19. This and the next several problems develop the zeta function and give a
relation between the zeta and the gamma function. Define for 0 < r < 2π

Ir (z) ≡
∫ 2π

0

e(z−1)(ln r+iθ)

ereiθ − 1
ireiθdθ +

∫ ∞

r

e(z−1)(ln t+2πi)

et − 1
dt (23.24)

+
∫ r

∞

e(z−1) ln t

et − 1
dt

Show that Ir is an entire function. The reason 0 < r < 2π is that this prevents
ereiθ − 1 from equaling zero. The above is just a precise description of the
contour integral,

∫
γ

wz−1

ew−1dw where γ is the contour shown below.
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-¾

¾

-

?

in which on the integrals along the real line, the argument is different in going
from r to ∞ than it is in going from ∞ to r. Now I have not defined such
contour integrals over contours which have infinite length and so have chosen
to simply write out explicitly what is involved. You have to work with these
integrals given above anyway but the contour integral just mentioned is the
motivation for them. Hint: You may want to use convergence theorems from
real analysis if it makes this more convenient but you might not have to.

20. ↑ In the context of Problem 19 define for small δ > 0

Irδ (z) ≡
∫

γr,δ

wz−1

ew − 1
dw

where γrδ is shown below.

-

¾

¾

-

? 2δ
s¡

¡
¡µr

x

Show that limδ→0 Irδ (z) = Ir (z) . Hint: Use the dominated convergence
theorem if it makes this go easier. This is not a hard problem if you use these
theorems but you can probably do it without them with more work.

21. ↑ In the context of Problem 20 show that for r1 < r, Irδ (z) − Ir1δ (z) is a
contour integral, ∫

γr,r1,δ

wz−1

ew − 1
dw

where the oriented contour is shown below.
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¾

-

?

-

¾

6

γr,r1,δ

In this contour integral, wz−1 denotes e(z−1) log(w) where log (w) = ln |w| +
i arg (w) for arg (w) ∈ (0, 2π) . Explain why this integral equals zero. From
Problem 20 it follows that Ir = Ir1 . Therefore, you can define an entire func-
tion, I (z) ≡ Ir (z) for all r positive but sufficiently small. Hint: Remember
the Cauchy integral formula for analytic functions defined on simply connected
regions. You could argue there is a simply connected region containing γr,r1,δ.

22. ↑ In case Re z > 1, you can get an interesting formula for I (z) by taking the
limit as r → 0. Recall that

Ir (z) ≡
∫ 2π

0

e(z−1)(ln r+iθ)

ereiθ − 1
ireiθdθ +

∫ ∞

r

e(z−1)(ln t+2πi)

et − 1
dt (23.25)

+
∫ r

∞

e(z−1) ln t

et − 1
dt

and now it is desired to take a limit in the case where Re z > 1. Show the first
integral above converges to 0 as r → 0. Next argue the sum of the two last
integrals converges to

(
e(z−1)2πi − 1

) ∫ ∞

0

e(z−1) ln(t)

et − 1
dt.

Thus

I (z) =
(
ez2πi − 1

) ∫ ∞

0

e(z−1) ln(t)

et − 1
dt (23.26)

when Re z > 1.

23. ↑ So what does all this have to do with the zeta function and the gamma
function? The zeta function is defined for Re z > 1 by

∞∑
n=1

1
nz

≡ ζ (z) .

By Problem 15, whenever Re z > 0,

Γ (z) =
∫ ∞

0

e−ttz−1dt.
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Change the variable and conclude

Γ (z)
1
nz

=
∫ ∞

0

e−nssz−1ds.

Therefore, for Re z > 1,

ζ (z) Γ (z) =
∞∑

n=1

∫ ∞

0

e−nssz−1ds.

Now show that you can interchange the order of the sum and the integral.
This is possibly most easily done by using Fubini’s theorem. Show that∑∞

n=1

∫∞
0

∣∣e−nssz−1
∣∣ ds < ∞ and then use Fubini’s theorem. I think you

could do it other ways though. It is possible to do it without any reference to
Lebesgue integration. Thus

ζ (z) Γ (z) =
∫ ∞

0

sz−1
∞∑

n=1

e−nsds

=
∫ ∞

0

sz−1e−s

1− e−s
ds =

∫ ∞

0

sz−1

es − 1
ds

By 23.26,

I (z) =
(
ez2πi − 1

) ∫ ∞

0

e(z−1) ln(t)

et − 1
dt

=
(
ez2πi − 1

)
ζ (z) Γ (z)

=
(
e2πiz − 1

)
ζ (z) Γ (z)

whenever Re z > 1.

24. ↑ Now show there exists an entire function, h (z) such that

ζ (z) =
1

z − 1
+ h (z)

for Re z > 1. Conclude ζ (z) extends to a meromorphic function defined on
all of C which has a simple pole at z = 1, namely, the right side of the above
formula. Hint: Use Problem 10 to observe that Γ (z) is never equal to zero
but has simple poles at every nonnegative integer. Then for Re z > 1,

ζ (z) ≡ I (z)
(e2πiz − 1) Γ (z)

.

By 23.26 ζ has no poles for Re z > 1. The right side of the above equation is
defined for all z. There are no poles except possibly when z is a nonnegative
integer. However, these points are not poles either because of Problem 10
which states that Γ has simple poles at these points thus cancelling the simple
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zeros of
(
e2πiz − 1

)
. The only remaining possibility for a pole for ζ is at z = 1.

Show it has a simple pole at this point. You can use the formula for I (z)

I (z) ≡
∫ 2π

0

e(z−1)(ln r+iθ)

ereiθ − 1
ireiθdθ +

∫ ∞

r

e(z−1)(ln t+2πi)

et − 1
dt (23.27)

+
∫ r

∞

e(z−1) ln t

et − 1
dt

Thus I (1) is given by

I (1) ≡
∫ 2π

0

1
ereiθ − 1

ireiθdθ +
∫ ∞

r

1
et − 1

dt +
∫ r

∞

1
et − 1

dt

=
∫

γr

dw
ew−1 where γr is the circle of radius r. This contour integral equals 2πi

by the residue theorem. Therefore,

I (z)
(e2πiz − 1) Γ (z)

=
1

z − 1
+ h (z)

where h (z) is an entire function. People worry a lot about where the zeros of
ζ are located. In particular, the zeros for Re z ∈ (0, 1) are of special interest.
The Riemann hypothesis says they are all on the line Re z = 1/2. This is a
good problem for you to do next.

25. There is an important relation between prime numbers and the zeta function
due to Euler. Let {pn}∞n=1 be the prime numbers. Then for Re z > 1,

∞∏
n=1

1
1− p−z

n
= ζ (z) .

To see this, consider a partial product.

N∏
n=1

1
1− p−z

n
=

N∏
n=1

∞∑

jn=1

(
1
pz

n

)jn

.

Let SN denote all positive integers which use only p1, · · ·, pN in their prime
factorization. Then the above equals

∑
n∈SN

1
nz . Letting N → ∞ and using

the fact that Re z > 1 so that the order in which you sum is not important (See
Theorem 24.1 or recall advanced calculus. ) you obtain the desired equation.
Show

∑∞
n=1

1
pn

= ∞.
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Elliptic Functions

This chapter is to give a short introduction to elliptic functions. There is much
more available. There are books written on elliptic functions. What I am presenting
here follows Alfors [2] although the material is found in many books on complex
analysis. Hille, [24] has a much more extensive treatment than what I will attempt
here. There are also many references and historical notes available in the book by
Hille. Another good source for more having much the same emphasis as what is
presented here is in the book by Saks and Zygmund [38]. This is a very interesting
subject because it has considerable overlap with algebra.

Before beginning, recall that an absolutely convergent series can be summed in
any order and you always get the same answer. The easy way to see this is to think
of the series as a Lebesgue integral with respect to counting measure and apply
convergence theorems as needed. The following theorem provides the necessary
results.

Theorem 24.1 Suppose
∑∞

n=1 |an| < ∞ and let θ, φ : N→ N be one to one and
onto mappings. Then

∑∞
n=1 aφ(n) and

∑∞
n=1 aθ(n) both converge and the two sums

are equal.

Proof: By the monotone convergence theorem,

∞∑
n=1

|an| = lim
n→∞

n∑

k=1

∣∣aφ(k)

∣∣ = lim
n→∞

n∑

k=1

∣∣aθ(k)

∣∣

but these last two equal
∑∞

k=1

∣∣aφ(k)

∣∣ and
∑∞

k=1

∣∣aθ(k)

∣∣ respectively. Therefore,∑∞
k=1 aθ(k) and

∑∞
k=1 aφ(k) exist (n → aθ(n) is in L1 with respect to counting

measure.) It remains to show the two are equal. There exists M such that if
n > M then

∞∑

k=n+1

∣∣aθ(k)

∣∣ < ε,

∞∑

k=n+1

∣∣aφ(k)

∣∣ < ε

∣∣∣∣∣
∞∑

k=1

aφ(k) −
n∑

k=1

aφ(k)

∣∣∣∣∣ < ε,

∣∣∣∣∣
∞∑

k=1

aθ(k) −
n∑

k=1

aθ(k)

∣∣∣∣∣ < ε

563
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Pick such an n denoted by n1. Then pick n2 > n1 > M such that

{θ (1) , · · ·, θ (n1)} ⊆ {φ (1) , · · ·, φ (n2)} .

Then
n2∑

k=1

aφ(k) =
n1∑

k=1

aθ(k) +
∑

φ(k)/∈{θ(1),···,θ(n1)}
aφ(k).

Therefore,
∣∣∣∣∣

n2∑

k=1

aφ(k) −
n1∑

k=1

aθ(k)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

φ(k)/∈{θ(1),···,θ(n1)},k≤n2

aφ(k)

∣∣∣∣∣∣
Now all of these φ (k) in the last sum are contained in {θ (n1 + 1) , · · ·} and so the
last sum above is dominated by

≤
∞∑

k=n1+1

∣∣aθ(k)

∣∣ < ε.

Therefore,
∣∣∣∣∣
∞∑

k=1

aφ(k) −
∞∑

k=1

aθ(k)

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑

k=1

aφ(k) −
n2∑

k=1

aφ(k)

∣∣∣∣∣

+

∣∣∣∣∣
n2∑

k=1

aφ(k) −
n1∑

k=1

aθ(k)

∣∣∣∣∣

+

∣∣∣∣∣
n1∑

k=1

aθ(k) −
∞∑

k=1

aθ(k)

∣∣∣∣∣ < ε + ε + ε = 3ε

and since ε is arbitrary, it follows
∑∞

k=1 aφ(k) =
∑∞

k=1 aθ(k) as claimed. This proves
the theorem.

24.1 Periodic Functions

Definition 24.2 A function defined on C is said to be periodic if there exists w
such that f (z + w) = f (z) for all z ∈ C. Denote by M the set of all periods. Thus
if w1, w2 ∈ M and a, b ∈ Z, then aw1 + bw2 ∈ M. For this reason M is called the
module of periods.1In all which follows it is assumed f is meromorphic.

Theorem 24.3 Let f be a meromorphic function and let M be the module of peri-
ods. Then if M has a limit point, then f equals a constant. If this does not happen
then either there exists w1 ∈ M such that Zw1 = M or there exist w1, w2 ∈ M such
that M = {aw1 + bw2 : a, b ∈ Z} and w1/w2 is not real. Also if τ = w2/w1,

|τ | ≥ 1,
−1
2
≤ Re τ ≤ 1

2
.

1A module is like a vector space except instead of a field of scalars, you have a ring of scalars.
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Proof: Suppose f is meromorphic and M has a limit point, w0. By Theorem
23.10 on Page 538 there exist analytic functions, p, q such that f (z) = p(z)

q(z) . Now
pick z0 such that z0 is not a pole of f . Then letting wn → w0 where {wn} ⊆ M,
f (z0 + wn) = f (z0) . Therefore, p (z0 + wn) = f (z0) q (z0 + wn) and so the analytic
function, p (z) − f (z0) q (z) has a zero set which has a limit point. Therefore, this
function is identically equal to zero because of Theorem 18.23 on Page 401. Thus
f equals a constant as claimed.

This has shown that if f is not constant, then M is discreet. Therefore, there
exists w1 ∈ M such that |w1| = min {|w| : w ∈ M}. Suppose first that every element
of M is a real multiple of w1. Thus, if w ∈ M, it follows there exists a real number,
x such that w = xw1. Then there exist positive integers, k, k + 1 such that k ≤ x <
k +1. If x > k, then w−kw1 = (x− k)w1 is a period having smaller absolute value
than |w1| which would be a contradiction. Hence, x = k and so M = Zw1.

Now suppose there exists w2 ∈ M which is not a real multiple of w1. You
can let w2 be the element of M having this property which has smallest absolute
value. Now let w ∈ M. Since w1 and w2 point in different directions, it follows
w = xw1 +yw2 for some real numbers, x, y. Let |m− x| ≤ 1

2 and |n− y| ≤ 1
2 where

m,n are integers. Therefore,

w = mw1 + nw2 + (x−m)w1 + (y − n)w2

and so
w −mw1 − nw2 = (x−m)w1 + (y − n)w2 (24.1)

Now since w2/w1 /∈ R,

|(x−m)w1 + (y − n)w2| < |(x−m) w1|+ |(y − n)w2|
=

1
2
|w1|+ 1

2
|w2| .

Therefore, from 24.1,

|w −mw1 − nw2| = |(x−m)w1 + (y − n)w2|
<

1
2
|w1|+ 1

2
|w2| ≤ |w2|

and so the period, w−mw1 − nw2 cannot be a non real multiple of w1 because w2

is the one which has smallest absolute value and this period has smaller absolute
value than w2. Therefore, the ratio w −mw1 − nw2/w1 must be a real number, x.
Thus

w −mw1 − nw2 = xw1

Since w1 has minimal absolute value of all periods, it follows |x| ≥ 1. Let k ≤ x <
k + 1 for some integer, k. If x > k, then

w −mw1 − nw2 − kw1 = (x− k)w1

which would contradict the choice of w1 as being the period having minimal absolute
value because the expression on the left in the above is a period and it equals
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something which has absolute value less than |w1|. Therefore, x = k and w is an
integer linear combination of w1 and w2. It only remains to verify the claim about
τ .

From the construction, |w1| ≤ |w2| and |w2| ≤ |w1 − w2| , |w2| ≤ |w1 + w2| .
Therefore,

|τ | ≥ 1, |τ | ≤ |1− τ | , |τ | ≤ |1 + τ | .
The last two of these inequalities imply −1/2 ≤ Re τ ≤ 1/2.

This proves the theorem.

Definition 24.4 For f a meromorphic function which has the last of the above
alternatives holding in which M = {aw1 + bw2 : a, b ∈ Z} , the function, f is called
elliptic. This is also called doubly periodic.

Theorem 24.5 Suppose f is an elliptic function which has no poles. Then f is
constant.

Proof: Since f has no poles it is analytic. Now consider the parallelograms
determined by the vertices, mw1 +nw2 for m, n ∈ Z. By periodicity of f it must be
bounded because its values are identical on each of these parallelograms. Therefore,
it equals a constant by Liouville’s theorem.

Definition 24.6 Define Pa to be the parallelogram determined by the points

a + mw1 + nw2, a + (m + 1) w1 + nw2, a + mw1 + (n + 1) w2,

a + (m + 1) w1 + (n + 1) w2

Such Pa will be referred to as a period parallelogram. The sum of the orders of
the poles in a period parallelogram which contains no poles or zeros of f on its
boundary is called the order of the function. This is well defined because of the
periodic property of f .

Theorem 24.7 The sum of the residues of any elliptic function, f equals zero on
every Pa if a is chosen so that there are no poles on ∂Pa.

Proof: Choose a such that there are no poles of f on the boundary of Pa. By
periodicity, ∫

∂Pa

f (z) dz = 0

because the integrals over opposite sides of the parallelogram cancel out because
the values of f are the same on these sides and the orientations are opposite. It
follows from the residue theorem that the sum of the residues in Pa equals 0.

Theorem 24.8 Let Pa be a period parallelogram for a nonconstant elliptic function,
f which has order equal to m. Then f assumes every value in f (Pa) exactly m
times.
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Proof: Let c ∈ f (Pa) and consider Pa′ such that f−1 (c) ∩ Pa′ = f−1 (c) ∩ Pa

and Pa′ contains the same poles and zeros of f − c as Pa but Pa′ has no zeros of
f (z) − c or poles of f on its boundary. Thus f ′ (z) / (f (z)− c) is also an elliptic
function and so Theorem 24.7 applies. Consider

1
2πi

∫

∂Pa′

f ′ (z)
f (z)− c

dz.

By the argument principle, this equals Nz−Np where Nz equals the number of zeros
of f (z)−c and Np equals the number of the poles of f (z). From Theorem 24.7 this
must equal zero because it is the sum of the residues of f ′/ (f − c) and so Nz = Np.
Now Np equals the number of poles in Pa counted according to multiplicity.

There is an even better theorem than this one.

Theorem 24.9 Let f be a non constant elliptic function and suppose it has poles
p1, · · ·, pm and zeros, z1, · · ·, zm in Pα, listed according to multiplicity where ∂Pα

contains no poles or zeros of f . Then
∑m

k=1 zk −
∑m

k=1 pk ∈ M, the module of
periods.

Proof: You can assume ∂Pa contains no poles or zeros of f because if it did,
then you could consider a slightly shifted period parallelogram, Pa′ which contains
no new zeros and poles but which has all the old ones but no poles or zeros on its
boundary. By Theorem 20.8 on Page 454

1
2πi

∫

∂Pa

z
f ′ (z)
f (z)

dz =
m∑

k=1

zk −
m∑

k=1

pk. (24.2)

Denoting by γ (z, w) the straight oriented line segment from z to w,
∫

∂Pa

z
f ′ (z)
f (z)

dz

=
∫

γ(a,a+w1)

z
f ′ (z)
f (z)

dz +
∫

γ(a+w1+w2,a+w2)

z
f ′ (z)
f (z)

dz

+
∫

γ(a+w1,a+w2+w1)

z
f ′ (z)
f (z)

dz +
∫

γ(a+w2,a)

z
f ′ (z)
f (z)

dz

=
∫

γ(a,a+w1)

(z − (z + w2))
f ′ (z)
f (z)

dz

+
∫

γ(a,a+w2)

(z − (z + w1))
f ′ (z)
f (z)

dz

Now near these line segments f ′(z)
f(z) is analytic and so there exists a primitive, gwi (z)

on γ (a, a + wi) by Corollary 18.32 on Page 407 which satisfies egwi
(z) = f (z).

Therefore,

= −w2 (gw1 (a + w1)− gw1 (a))− w1 (gw2 (a + w2)− gw2 (a)) .
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Now by periodicity of f it follows f (a + w1) = f (a) = f (a + w2) . Hence

gwi
(a + w1)− gwi

(a) = 2mπi

for some integer, m because

egwi
(a+wi) − egwi

(a) = f (a + wi)− f (a) = 0.

Therefore, from 24.2, there exist integers, k, l such that

1
2πi

∫

∂Pa

z
f ′ (z)
f (z)

dz

=
1

2πi
[−w2 (gw1 (a + w1)− gw1 (a))− w1 (gw2 (a + w2)− gw2 (a))]

=
1

2πi
[−w2 (2kπi)− w1 (2lπi)]

= −w2k − w1l ∈ M.

From 24.2 it follows
m∑

k=1

zk −
m∑

k=1

pk ∈ M.

This proves the theorem.
Hille says this relation is due to Liouville. There is also a simple corollary which

follows from the above theorem applied to the elliptic function, f (z)− c.

Corollary 24.10 Let f be a non constant elliptic function and suppose the func-
tion, f (z)− c has poles p1, · · ·, pm and zeros, z1, · · ·, zm on Pα, listed according to
multiplicity where ∂Pα contains no poles or zeros of f (z) − c. Then

∑m
k=1 zk −∑m

k=1 pk ∈ M, the module of periods.

24.1.1 The Unimodular Transformations

Definition 24.11 Suppose f is a nonconstant elliptic function and the module of
periods is of the form {aw1 + bw2} where a, b are integers and w1/w2 is not real.
Then by analogy with linear algebra, {w1, w2} is referred to as a basis. The uni-
modular transformations will refer to matrices of the form

(
a b
c d

)

where all entries are integers and

ad− bc = ±1.

These linear transformations are also called the modular group.

The following is an interesting lemma which ties matrices with the fractional
linear transformations.
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Lemma 24.12 Define

φ

((
a b
c d

))
≡ az + b

cz + d
.

Then
φ (AB) = φ (A) ◦ φ (B) , (24.3)

φ (A) (z) = z if and only if
A = cI

where I is the identity matrix and c 6= 0. Also if f (z) = az+b
cz+d , then f−1 (z) exists

if and only if ad− cb 6= 0. Furthermore it is easy to find f−1.

Proof: The equation in 24.3 is just a simple computation. Now suppose φ (A) (z) =

z. Then letting A =
(

a b
c d

)
, this requires

az + b = z (cz + d)

and so az + b = cz2 + dz. Since this is to hold for all z it follows c = 0 = b and
a = d. The other direction is obvious.

Consider the claim about the existence of an inverse. Let ad − cb 6= 0 for
f (z) = az+b

cz+d . Then

f (z) = φ

((
a b
c d

))

It follows
(

a b
c d

)−1

exists and equals 1
ad−bc

(
d −b
−c a

)
. Therefore,

z = φ (I) (z) = φ

((
a b
c d

) (
1

ad− bc

(
d −b
−c a

)))
(z)

= φ

((
a b
c d

))
◦ φ

((
1

ad− bc

(
d −b
−c a

)))
(z)

= f ◦ f−1 (z)

which shows f−1 exists and it is easy to find.
Next suppose f−1 exists. I need to verify the condition ad − cb 6= 0. If f−1

exists, then from the process used to find it, you see that it must be a fractional

linear transformation. Letting A =
(

a b
c d

)
so φ (A) = f, it follows there exists

a matrix B such that

φ (BA) (z) = φ (B) ◦ φ (A) (z) = z.

However, it was shown that this implies BA is a nonzero multiple of I which requires
that A−1 must exist. Hence the condition must hold.
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Theorem 24.13 If f is a nonconstant elliptic function with a basis {w1, w2} for
the module of periods, then {w′1, w′2} is another basis, if and only if there exists a

unimodular transformation,
(

a b
c d

)
= A such that

(
w′1
w′2

)
=

(
a b
c d

)(
w1

w2

)
. (24.4)

Proof: Since {w1, w2} is a basis, there exist integers, a, b, c, d such that 24.4
holds. It remains to show the transformation determined by the matrix is unimod-
ular. Taking conjugates,

(
w′1
w′2

)
=

(
a b
c d

)(
w1

w2

)
.

Therefore, (
w′1 w′1
w′2 w′2

)
=

(
a b
c d

)(
w1 w1

w2 w2

)

Now since {w′1, w′2} is also given to be a basis, there exits another matrix having

all integer entries,
(

e f
g h

)
such that

(
w1

w2

)
=

(
e f
g h

)(
w′1
w′2

)

and (
w1

w2

)
=

(
e f
g h

)(
w′1
w′2

)
.

Therefore, (
w′1 w′1
w′2 w′2

)
=

(
a b
c d

)(
e f
g h

)(
w′1 w′1
w′2 w′2

)
.

However, since w′1/w′2 is not real, it is routine to verify that

det
(

w′1 w′1
w′2 w′2

)
6= 0.

Therefore, (
1 0
0 1

)
=

(
a b
c d

)(
e f
g h

)

and so det
(

a b
c d

)
det

(
e f
g h

)
= 1. But the two matrices have all integer

entries and so both determinants must equal either 1 or −1.
Next suppose (

w′1
w′2

)
=

(
a b
c d

)(
w1

w2

)
(24.5)
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where
(

a b
c d

)
is unimodular. I need to verify that {w′1, w′2} is a basis. If w ∈ M,

there exist integers, m, n such that

w = mw1 + nw2 =
(

m n
) (

w1

w2

)

From 24.5

±
(

d −b
−c a

)(
w′1
w′2

)
=

(
w1

w2

)

and so

w = ± (
m n

)(
d −b
−c a

)(
w′1
w′2

)

which is an integer linear combination of {w′1, w′2} . It only remains to verify that
w′1/w′2 is not real.

Claim: Let w1 and w2 be nonzero complex numbers. Then w2/w1 is not real
if and only if

w1w2 − w1w2 = det
(

w1 w1

w2 w2

)
6= 0

Proof of the claim: Let λ = w2/w1. Then

w1w2 − w1w2 = λw1w1 − w1λw1 =
(
λ− λ

) |w1|2

Thus the ratio is not real if and only if
(
λ− λ

) 6= 0 if and only if w1w2−w1w2 6= 0.
Now to verify w′2/w′1 is not real,

det
(

w′1 w′1
w′2 w′2

)

= det
((

a b
c d

)(
w1 w1

w2 w2

))

= ± det
(

w1 w1

w2 w2

)
6= 0

This proves the theorem.

24.1.2 The Search For An Elliptic Function

By Theorem 24.5 and 24.7 if you want to find a nonconstant elliptic function it must
fail to be analytic and also have either no terms in its Laurent expansion which are
of the form b1 (z − a)−1 or else these terms must cancel out. It is simplest to look
for a function which simply does not have them. Weierstrass looked for a function
of the form

℘ (z) ≡ 1
z2

+
∑

w 6=0

(
1

(z − w)2
− 1

w2

)
(24.6)
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where w consists of all numbers of the form aw1 + bw2 for a, b integers. Sometimes
people write this as ℘ (z, w1, w2) to emphasize its dependence on the periods, w1

and w2 but I won’t do so. It is understood there exist these periods, which are
given. This is a reasonable thing to try. Suppose you formally differentiate the
right side. Never mind whether this is justified for now. This yields

℘′ (z) =
−2
z3

−
∑

w 6=0

−2
(z − w)3

=
∑
w

−2
(z − w)3

which is clearly periodic having both periods w1 and w2. Therefore, ℘ (z + w1) −
℘ (z) and ℘ (z + w2)− ℘ (z) are both constants, c1 and c2 respectively. The reason
for this is that since ℘′ is periodic with periods w1 and w2, it follows ℘′ (z + wi)−
℘′ (z) = 0 as long as z is not a period. From 24.6 you can see right away that

℘ (z) = ℘ (−z)

Indeed

℘ (−z) =
1
z2

+
∑

w 6=0

(
1

(−z − w)2
− 1

w2

)

=
1
z2

+
∑

w 6=0

(
1

(−z + w)2
− 1

w2

)
= ℘ (z) .

and so

c1 = ℘
(
−w1

2
+ w1

)
− ℘

(
−w1

2

)

= ℘
(w1

2

)
− ℘

(
−w1

2

)
= 0

which shows the constant for ℘ (z + w1) − ℘ (z) must equal zero. Similarly the
constant for ℘ (z + w2)− ℘ (z) also equals zero. Thus ℘ is periodic having the two
periods w1, w2.

Of course to justify this, you need to consider whether the series of 24.6 con-
verges. Consider the terms of the series.

∣∣∣∣∣
1

(z − w)2
− 1

w2

∣∣∣∣∣ = |z|
∣∣∣∣∣

2w − z

(z − w)2 w2

∣∣∣∣∣

If |w| > 2 |z| , this can be estimated more. For such w,
∣∣∣∣∣

1
(z − w)2

− 1
w2

∣∣∣∣∣

= |z|
∣∣∣∣∣

2w − z

(z − w)2 w2

∣∣∣∣∣ ≤ |z| (5/2) |w|
|w|2 (|w| − |z|)2

≤ |z| (5/2) |w|
|w|2 ((1/2) |w|)2 = |z| 10

|w|3 .
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It follows the series in 24.6 converges uniformly and absolutely on every compact
set, K provided

∑
w 6=0

1
|w|3 converges. This question is considered next.

Claim: There exists a positive number, k such that for all pairs of integers,
m,n, not both equal to zero,

|mw1 + nw2|
|m|+ |n| ≥ k > 0.

Proof of claim: If not, there exists mk and nk such that

lim
k→∞

mk

|mk|+ |nk|w1 +
nk

|mk|+ |nk|w2 = 0

However,
(

mk

|mk|+|nk| ,
nk

|mk|+|nk|
)

is a bounded sequence in R2 and so, taking a sub-
sequence, still denoted by k, you can have

(
mk

|mk|+ |nk| ,
nk

|mk|+ |nk|
)
→ (x, y) ∈ R2

and so there are real numbers, x, y such that xw1 + yw2 = 0 contrary to the
assumption that w2/w1 is not equal to a real number. This proves the claim.

Now from the claim,
∑

w 6=0

1
|w|3

=
∑

(m,n)6=(0,0)

1
|mw1 + nw2|3

≤
∑

(m,n)6=(0,0)

1
k3 (|m|+ |n|)3

=
1
k3

∞∑

j=1

∑

|m|+|n|=j

1
(|m|+ |n|)3 =

1
k3

∞∑

j=1

4j

j3
< ∞.

Now consider the series in 24.6. Letting z ∈ B (0, R) ,

℘ (z) ≡ 1
z2

+
∑

w 6=0,|w|≤R

(
1

(z − w)2
− 1

w2

)

+
∑

w 6=0,|w|>R

(
1

(z − w)2
− 1

w2

)

and the last series converges uniformly on B (0, R) to an analytic function. Thus ℘ is
a meromorphic function and also the argument given above involving differentiation
of the series termwise is valid. Thus ℘ is an elliptic function as claimed. This is
called the Weierstrass ℘ function. This has proved the following theorem.

Theorem 24.14 The function ℘ defined above is an example of an elliptic function.
On any compact set, ℘ equals a rational function added to a series which is uniformly
and absolutely convergent on the compact set.
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24.1.3 The Differential Equation Satisfied By ℘

For z not a pole,

℘′ (z) =
−2
z3

−
∑

w 6=0

2
(z − w)3

Also since there are no poles of order 1 you can obtain a primitive for ℘, −ζ.2

To do so, recall

℘ (z) ≡ 1
z2

+
∑

w 6=0

(
1

(z − w)2
− 1

w2

)

where for |z| < R this is the sum of a rational function with a uniformly convergent
series. Therefore, you can take the integral along any path, γ (0, z) from 0 to z
which misses the poles of ℘. By the uniform convergence of the above integral, you
can interchange the sum with the integral and obtain

ζ (z) =
1
z

+
∑

w 6=0

1
z − w

+
z

w2
+

1
w

(24.7)

This function is odd. Here is why.

ζ (−z) =
1
−z

+
∑

w 6=0

1
−z − w

− z

w2
+

1
w

while

−ζ (z) =
1
−z

+
∑

w 6=0

−1
z − w

− z

w2
− 1

w

=
1
−z

+
∑

w 6=0

−1
z + w

− z

w2
+

1
w

.

Now consider 24.7. It will be used to find the Laurent expansion about the origin
for ζ which will then be differentiated to obtain the Laurent expansion for ℘ at the
origin. Since w 6= 0 and the interest is for z near 0 so |z| < |w| ,

1
z − w

+
z

w2
+

1
w

=
z

w2
+

1
w
− 1

w

1
1− z

w

=
z

w2
+

1
w
− 1

w

∞∑

k=0

( z

w

)k

= − 1
w

∞∑

k=2

( z

w

)k

2I don’t know why it is traditional to refer to this antiderivative as −ζ rather than ζ but I
am following the convention. I think it is to minimize the number of minus signs in the next
expression.
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From 24.7

ζ (z) =
1
z

+
∑

w 6=0

(
−

∞∑

k=2

zk

wk+1

)

=
1
z
−

∞∑

k=2

∑

w 6=0

zk

wk+1
=

1
z
−

∞∑

k=2

∑

w 6=0

z2k−1

w2k

because the sum over odd powers must be zero because for each w 6= 0, there exists
−w 6= 0 such that the two terms z2k

w2k+1 and z2k

(−w)2k+1 cancel each other. Hence

ζ (z) =
1
z
−

∞∑

k=2

Gkz2k−1

where Gk =
∑

w 6=0
1

w2k . Now with this,

−ζ ′ (z) = ℘ (z) =
1
z2

+
∞∑

k=2

Gk (2k − 1) z2k−2

=
1
z2

+ 3G2z
2 + 5G3z

4 + · · ·

Therefore,

℘′ (z) =
−2
z3

+ 6G2z + 20G3z
3 + · · ·

℘′ (z)2 =
4
z6
− 24G2

z2
− 80G3 + · · ·

4℘ (z)3 = 4
(

1
z2

+ 3G2z
2 + 5G3z

4 · ··
)3

=
4
z6

+
36
z2

G2 + 60G3 + · · ·

and finally

60G2℘ (z) =
60G2

z2
+ 0 + · · ·

where in the above, the positive powers of z are not listed explicitly. Therefore,

℘′ (z)2 − 4℘ (z)3 + 60G2℘ (z) + 140G3 =
∞∑

n=1

anzn

In deriving the equation it was assumed |z| < |w| for all w = aw1+bw2 where a, b are
integers not both zero. The left side of the above equation is periodic with respect
to w1 and w2 where w2/w1 is not a real number. The only possible poles of the
left side are at 0, w1, w2, and w1 +w2, the vertices of the parallelogram determined
by w1 and w2. This follows from the original formula for ℘ (z) . However, the above
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equation shows the left side has no pole at 0. Since the left side is periodic with
periods w1 and w2, it follows it has no pole at the other vertices of this parallelogram
either. Therefore, the left side is periodic and has no poles. Consequently, it equals
a constant by Theorem 24.5. But the right side of the above equation shows this
constant is 0 because this side equals zero when z = 0. Therefore, ℘ satisfies the
differential equation,

℘′ (z)2 − 4℘ (z)3 + 60G2℘ (z) + 140G3 = 0.

It is traditional to define 60G2 ≡ g2 and 140G3 ≡ g3. Then in terms of these new
quantities the differential equation is

℘′ (z)2 = 4℘ (z)3 − g2℘ (z)− g3.

Suppose e1, e2 and e3 are zeros of the polynomial 4w3 − g2w − g3 = 0. Then the
above equation can be written in the form

℘′ (z)2 = 4 (℘ (z)− e1) (℘ (z)− e2) (℘ (z)− e3) . (24.8)

24.1.4 A Modular Function

The next task is to find the ei in 24.8. First recall that ℘ is an even function. That
is ℘ (−z) = ℘ (z). This follows from 24.6 which is listed here for convenience.

℘ (z) ≡ 1
z2

+
∑

w 6=0

(
1

(z − w)2
− 1

w2

)
(24.9)

Thus

℘ (−z) =
1
z2

+
∑

w 6=0

(
1

(−z − w)2
− 1

w2

)

=
1
z2

+
∑

w 6=0

(
1

(−z + w)2
− 1

w2

)
= ℘ (z) .

Therefore, ℘ (w1 − z) = ℘ (z − w1) = ℘ (z) and so −℘′ (w1 − z) = ℘′ (z) . Letting
z = w1/2, it follows ℘′ (w1/2) = 0. Similarly, ℘′ (w2/2) = 0 and ℘′ ((w1 + w2) /2) =
0. Therefore, from 24.8

0 = 4 (℘ (w1/2)− e1) (℘ (w1/2)− e2) (℘ (w1/2)− e3) .

It follows one of the ei must equal ℘ (w1/2) . Similarly, one of the ei must equal
℘ (w2/2) and one must equal ℘ ((w1 + w2) /2).

Lemma 24.15 The numbers, ℘ (w1/2) , ℘ (w2/2) , and ℘ ((w1 + w2) /2) are dis-
tinct.
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Proof: Choose Pa, a period parallelogram which contains the pole 0, and the
points w1/2, w2/2, and (w1 + w2) /2 but no other pole of ℘ (z) . Also ∂P ∗a does not
contain any zeros of the elliptic function, z → ℘ (z) − ℘ (w1/2). This can be done
by shifting P0 slightly because the poles are only at the points aw1 + bw2 for a, b
integers and the zeros of ℘ (z)− ℘ (w1/2) are discreet.

0s
w1

w2s

s

s
w1 + w2

»»»»»»»»»»

£
£
£
£
£
£
£
£
»»»»»»»»»»

£
£
£
£
£
£
£
£

a
s»»»»»»»»»»

£
£
£
£
£
£
£
£
»»»»»»»»»»

£
£
£
£
£
£
£
£

If ℘ (w2/2) = ℘ (w1/2) , then ℘ (z)−℘ (w1/2) has two zeros, w2/2 and w1/2 and
since the pole at 0 is of order 2, this is the order of ℘ (z)−℘ (w1/2) on Pa hence by
Theorem 24.8 on Page 566 these are the only zeros of this function on Pa. It follows
by Corollary 24.10 on Page 568 which says the sum of the zeros minus the sum of
the poles is in M , w1

2 + w2
2 ∈ M. Thus there exist integers, a, b such that

w1 + w2

2
= aw1 + bw2

which implies (2a− 1)w1 + (2b− 1)w2 = 0 contradicting w2/w1 not being real.
Similar reasoning applies to the other pairs of points in {w1/2, w2/2, (w1 + w2) /2} .
For example, consider (w1 + w2) /2 and choose Pa such that its boundary contains
no zeros of the elliptic function, z → ℘ (z) − ℘ ((w1 + w2) /2) and Pa contains no
poles of ℘ on its interior other than 0. Then if ℘ (w2/2) = ℘ ((w1 + w2) /2) , it
follows from Theorem 24.8 on Page 566 w2/2 and (w1 + w2) /2 are the only two
zeros of ℘ (z)− ℘ ((w1 + w2) /2) on Pa and by Corollary 24.10 on Page 568

w1 + w1 + w2

2
= aw1 + bw2 ∈ M

for some integers a, b which leads to the same contradiction as before about w1/w2

not being real. The other cases are similar. This proves the lemma.
Lemma 24.15 proves the ei are distinct. Number the ei such that

e1 = ℘ (w1/2) , e2 = ℘ (w2/2)

and
e3 = ℘ ((w1 + w2) /2) .

To summarize, it has been shown that for complex numbers, w1 and w2 with
w2/w1 not real, an elliptic function, ℘ has been defined. Denote this function as
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℘ (z) = ℘ (z, w1, w2) . This in turn determined numbers, ei as described above. Thus
these numbers depend on w1 and w2 and as described above,

e1 (w1, w2) = ℘
(w1

2
, w1, w2

)
, e2 (w1, w2) = ℘

(w2

2
, w1, w2

)

e3 (w1, w2) = ℘

(
w1 + w2

2
, w1, w2

)
.

Therefore, using the formula for ℘, 24.9,

℘ (z) ≡ 1
z2

+
∑

w 6=0

(
1

(z − w)2
− 1

w2

)

you see that if the two periods w1 and w2 are replaced with tw1 and tw2 respectively,
then

ei (tw1, tw2) = t−2ei (w1, w2) .

Let τ denote the complex number which equals the ratio, w2/w1 which was assumed
in all this to not be real. Then

ei (w1, w2) = w−2
1 ei (1, τ)

Now define the function, λ (τ)

λ (τ) ≡ e3 (1, τ)− e2 (1, τ)
e1 (1, τ)− e2 (1, τ)

(
=

e3 (w1, w2)− e2 (w1, w2)
e1 (w1, w2)− e2 (w1, w2)

)
. (24.10)

This function is meromorphic for Im τ > 0 or for Im τ < 0. However, since the
denominator is never equal to zero the function must actually be analytic on both
the upper half plane and the lower half plane. It never is equal to 0 because e3 6= e2

and it never equals 1 because e3 6= e1. This is stated as an observation.

Observation 24.16 The function, λ (τ) is analytic for τ in the upper half plane
and never assumes the values 0 and 1.

This is a very interesting function. Consider what happens when
(

w′1
w′2

)
=

(
a b
c d

)(
w1

w2

)

and the matrix is unimodular. By Theorem 24.13 on Page 570 {w′1, w′2} is just an-
other basis for the same module of periods. Therefore, ℘ (z, w1, w2) = ℘ (z, w′1, w

′
2)

because both are defined as sums over the same values of w, just in different order
which does not matter because of the absolute convergence of the sums on compact
subsets of C. Since ℘ is unchanged, it follows ℘′ (z) is also unchanged and so the
numbers, ei are also the same. However, they might be permuted in which case
the function λ (τ) defined above would change. What would it take for λ (τ) to
not change? In other words, for which unimodular transformations will λ be left
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unchanged? This happens if and only if no permuting takes place for the ei. This
occurs if ℘

(
w1
2

)
= ℘

(
w′1
2

)
and ℘

(
w2
2

)
= ℘

(
w′2
2

)
. If

w′1
2
− w1

2
∈ M,

w′2
2
− w2

2
∈ M

then ℘
(

w1
2

)
= ℘

(
w′1
2

)
and so e1 will be unchanged and similarly for e2 and e3.

This occurs exactly when

1
2

((a− 1)w1 + bw2) ∈ M,
1
2

(cw1 + (d− 1)w2) ∈ M.

This happens if a and d are odd and if b and c are even. Of course the stylish way
to say this is

a ≡ 1mod 2, d ≡ 1mod 2, b ≡ 0 mod 2, c ≡ 0mod 2. (24.11)

This has shown that for unimodular transformations satisfying 24.11 λ is unchanged.
Letting τ be defined as above,

τ ′ =
w′2
w′1

≡ cw1 + dw2

aw1 + bw2
=

c + dτ

a + bτ
.

Thus for unimodular transformations,
(

a b
c d

)
satisfying 24.11, or more suc-

cinctly, (
a b
c d

)
∼

(
1 0
0 1

)
mod 2 (24.12)

it follows that

λ

(
c + dτ

a + bτ

)
= λ (τ) . (24.13)

Furthermore, this is the only way this can happen.

Lemma 24.17 λ (τ) = λ (τ ′) if and only if

τ ′ =
aτ + b

cτ + d

where 24.12 holds.

Proof: It only remains to verify that if ℘ (w′1/2) = ℘ (w1/2) then it is necessary
that

w′1
2
− w1

2
∈ M

with a similar requirement for w2 and w′2. If w′1
2 − w1

2 /∈ M, then there exist integers,
m,n such that

−w′1
2

+ mw1 + nw2
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is in the interior of P0, the period parallelogram whose vertices are 0, w1, w1 + w2,
and w2. Therefore, it is possible to choose small a such that Pa contains the pole,
0, w1

2 , and −w′1
2 +mw1 +nw2 but no other poles of ℘ and in addition, ∂P ∗a contains

no zeros of z → ℘ (z) − ℘
(

w1
2

)
. Then the order of this elliptic function is 2. By

assumption, and the fact that ℘ is even,

℘

(−w′1
2

+ mw1 + nw2

)
= ℘

(−w′1
2

)
= ℘

(
w′1
2

)
= ℘

(w1

2

)
.

It follows both −w′1
2 + mw1 + nw2 and w1

2 are zeros of ℘ (z) − ℘
(

w1
2

)
and so by

Theorem 24.8 on Page 566 these are the only two zeros of this function in Pa.
Therefore, from Corollary 24.10 on Page 568

w1

2
− w′1

2
+ mw1 + nw2 ∈ M

which shows w1
2 − w′1

2 ∈ M. This completes the proof of the lemma.
Note the condition in the lemma is equivalent to the condition 24.13 because

you can relabel the coefficients. The message of either version is that the coefficient
of τ in the numerator and denominator is odd while the constant in the numerator
and denominator is even.

Next,
(

1 0
2 1

)
∼

(
1 0
0 1

)
mod2 and therefore,

λ

(
2 + τ

1

)
= λ (τ + 2) = λ (τ) . (24.14)

Thus λ is periodic of period 2.
Thus λ leaves invariant a certain subgroup of the unimodular group. According

to the next definition, λ is an example of something called a modular function.

Definition 24.18 When an analytic or meromorphic function is invariant under
a group of linear transformations, it is called an automorphic function. A function
which is automorphic with respect to a subgroup of the modular group is called a
modular function or an elliptic modular function.

Now consider what happens for some other unimodular matrices which are not
congruent to the identity mod 2. This will yield other functional equations for λ
in addition to the fact that λ is periodic of period 2. As before, these functional
equations come about because ℘ is unchanged when you change the basis for M,
the module of periods. In particular, consider the unimodular matrices

(
1 0
1 1

)
,

(
0 1
1 0

)
. (24.15)

Consider the first of these. Thus
(

w′1
w′2

)
=

(
w1

w1 + w2

)



24.1. PERIODIC FUNCTIONS 581

Hence τ ′ = w′2/w′1 = (w1 + w2) /w1 = 1 + τ . Then from the definition of λ,

λ (τ ′) = λ (1 + τ)

=
℘

(
w′1+w′2

2

)
− ℘

(
w′2
2

)

℘
(

w′1
2

)
− ℘

(
w′2
2

)

=
℘

(
w1+w2+w1

2

)− ℘
(

w1+w2
2

)

℘
(

w1
2

)− ℘
(

w1+w2
2

)

=
℘

(
w2
2 + w1

)− ℘
(

w1+w2
2

)

℘
(

w1
2

)− ℘
(

w1+w2
2

)

=
℘

(
w2
2

)− ℘
(

w1+w2
2

)

℘
(

w1
2

)− ℘
(

w1+w2
2

)

= −℘
(

w1+w2
2

)− ℘
(

w2
2

)

℘
(

w1
2

)− ℘
(

w1+w2
2

)

= − ℘
(

w1+w2
2

)− ℘
(

w2
2

)

℘
(

w1
2

)− ℘
(

w2
2

)
+ ℘

(
w2
2

)− ℘
(

w1+w2
2

)

= −

(
℘(w1+w2

2 )−℘(w2
2 )

℘(w1
2 )−℘(w2

2 )

)

1 +
(

℘(w2
2 )−℘(w1+w2

2 )
℘(w1

2 )−℘(w2
2 )

)

=

(
℘(w1+w2

2 )−℘(w2
2 )

℘(w1
2 )−℘(w2

2 )

)

(
℘(w1+w2

2 )−℘(w2
2 )

℘(w1
2 )−℘(w2

2 )

)
− 1

=
λ (τ)

λ (τ)− 1
. (24.16)

Summarizing the important feature of the above,

λ (1 + τ) =
λ (τ)

λ (τ)− 1
. (24.17)
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Next consider the other unimodular matrix in 24.15. In this case w′1 = w2 and
w′2 = w1. Therefore, τ ′ = w′2/w′1 = w1/w2 = 1/τ . Then

λ (τ ′) = λ (1/τ)

=
℘

(
w′1+w′2

2

)
− ℘

(
w′2
2

)

℘
(

w′1
2

)
− ℘

(
w′2
2

)

=
℘

(
w1+w2

2

)− ℘
(

w1
2

)

℘
(

w2
2

)− ℘
(

w1
2

)

=
e3 − e1

e2 − e1
= −e3 − e2 + e2 − e1

e1 − e2

= − (λ (τ)− 1) = −λ (τ) + 1. (24.18)

You could try other unimodular matrices and attempt to find other functional
equations if you like but this much will suffice here.

24.1.5 A Formula For λ

Recall the formula of Mittag-Leffler for cot (πα) given in 23.15. For convenience,
here it is.

1
α

+
∞∑

n=1

2α

α2 − n2
= π cot πα.

As explained in the derivation of this formula it can also be written as

∞∑
n=−∞

α

α2 − n2
= π cot πα.

Differentiating both sides yields

π2 csc2 (πα) =
∞∑

n=−∞

α2 + n2

(α2 − n2)2

=
∞∑

n=−∞

(α + n)2 − 2αn

(α + n)2 (α− n)2

=
∞∑

n=−∞

(α + n)2

(α + n)2 (α− n)2
−

=0︷ ︸︸ ︷
∞∑

n=−∞

2αn

(α2 − n2)2

=
∞∑

n=−∞

1
(α− n)2

. (24.19)

Now this formula can be used to obtain a formula for λ (τ) . As pointed out
above, λ depends only on the ratio w2/w1 and so it suffices to take w1 = 1 and
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w2 = τ . Thus

λ (τ) =
℘

(
1+τ
2

)− ℘
(

τ
2

)

℘
(

1
2

)− ℘
(

τ
2

) . (24.20)

From the original formula for ℘,

℘

(
1 + τ

2

)
− ℘

(τ

2

)

=
1(

1+τ
2

)2 −
1(
τ
2

)2 +
∑

(k,m) 6=(0,0)

1(
k − 1

2 +
(
m− 1

2

)
τ
)2 −

1(
k +

(
m− 1

2

)
τ
)2

=
∑

(k,m)∈Z2

1(
k − 1

2 +
(
m− 1

2

)
τ
)2 −

1(
k +

(
m− 1

2

)
τ
)2

=
∑

(k,m)∈Z2

1(
k − 1

2 +
(
m− 1

2

)
τ
)2 −

1(
k +

(
m− 1

2

)
τ
)2

=
∑

(k,m)∈Z2

1(
k − 1

2 +
(−m− 1

2

)
τ
)2 −

1(
k +

(−m− 1
2

)
τ
)2

=
∑

(k,m)∈Z2

1(
1
2 +

(
m + 1

2

)
τ − k

)2 −
1((

m + 1
2

)
τ − k

)2 . (24.21)

Similarly,

℘

(
1
2

)
− ℘

(τ

2

)

=
1(
1
2

)2 −
1(
τ
2

)2 +
∑

(k,m)6=(0,0)

1(
k − 1

2 + mτ
)2 −

1(
k +

(
m− 1

2

)
τ
)2

=
∑

(k,m)∈Z2

1(
k − 1

2 + mτ
)2 −

1(
k +

(
m− 1

2

)
τ
)2

=
∑

(k,m)∈Z2

1(
k − 1

2 −mτ
)2 −

1(
k +

(−m− 1
2

)
τ
)2

=
∑

(k,m)∈Z2

1(
1
2 + mτ − k

)2 −
1((

m + 1
2

)
τ − k

)2 . (24.22)

Now use 24.19 to sum these over k. This yields,

℘

(
1 + τ

2

)
− ℘

(τ

2

)

=
∑
m

π2

sin2
(
π

(
1
2 +

(
m + 1

2

)
τ
)) − π2

sin2
(
π

(
m + 1

2

)
τ
)

=
∑
m

π2

cos2
(
π

(
m + 1

2

)
τ
) − π2

sin2
(
π

(
m + 1

2

)
τ
)
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and

℘

(
1
2

)
− ℘

(τ

2

)
=

∑
m

π2

sin2
(
π

(
1
2 + mτ

)) − π2

sin2
(
π

(
m + 1

2

)
τ
)

=
∑
m

π2

cos2 (πmτ)
− π2

sin2
(
π

(
m + 1

2

)
τ
) .

The following interesting formula for λ results.

λ (τ) =

∑
m

1

cos2(π(m+ 1
2 )τ) −

1

sin2(π(m+ 1
2 )τ)∑

m
1

cos2(πmτ) − 1

sin2(π(m+ 1
2 )τ)

. (24.23)

From this it is obvious λ (−τ) = λ (τ) . Therefore, from 24.18,

− λ (τ) + 1 = λ

(
1
τ

)
= λ

(−1
τ

)
(24.24)

(It is good to recall that λ has been defined for τ /∈ R.)

24.1.6 Mapping Properties Of λ

The two functional equations, 24.24 and 24.17 along with some other properties pre-
sented above are of fundamental importance. For convenience, they are summarized
here in the following lemma.

Lemma 24.19 The following functional equations hold for λ.

λ (1 + τ) =
λ (τ)

λ (τ)− 1
, 1 = λ (τ) + λ

(−1
τ

)
(24.25)

λ (τ + 2) = λ (τ) , (24.26)
λ (z) = λ (w) if and only if there exists a unimodular matrix,

(
a b
c d

)
∼

(
1 0
0 1

)
mod 2

such that
w =

az + b

cz + d
(24.27)

Consider the following picture.

Ω

C l2l1

r
1

r
1
2
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In this picture, l1 is the y axis and l2 is the line, x = 1 while C is the top half of
the circle centered at

(
1
2 , 0

)
which has radius 1/2. Note the above formula implies

λ has real values on l1 which are between 0 and 1. This is because 24.23 implies

λ (ib) =

∑
m

1

cos2(π(m+ 1
2 )ib) −

1

sin2(π(m+ 1
2 )ib)∑

m
1

cos2(πmib) − 1

sin2(π(m+ 1
2 )ib)

=

∑
m

1

cosh2(π(m+ 1
2 )b) + 1

sinh2(π(m+ 1
2 )b)∑

m
1

cosh2(πmb)
+ 1

sinh2(π(m+ 1
2 )b)

∈ (0, 1) . (24.28)

This follows from the observation that

cos (ix) = cosh (x) , sin (ix) = i sinh (x) .

Thus it is clear from 24.28 that limb→0+ λ (ib) = 1.
Next I need to consider the behavior of λ (τ) as Im (τ) →∞. From 24.23 listed

here for convenience,

λ (τ) =

∑
m

1

cos2(π(m+ 1
2 )τ) −

1

sin2(π(m+ 1
2 )τ)∑

m
1

cos2(πmτ) − 1

sin2(π(m+ 1
2 )τ)

, (24.29)

it follows

λ (τ) =

1

cos2(π(− 1
2 )τ) −

1

sin2(π(− 1
2 )τ) + 1

cos2(π 1
2 τ) −

1

sin2(π 1
2 τ) + A (τ)

1 + B (τ)

=

2

cos2(π( 1
2 )τ) −

2

sin2(π( 1
2 )τ) + A (τ)

1 + B (τ)
(24.30)

Where A (τ) , B (τ) → 0 as Im (τ) → ∞. I took out the m = 0 term involving
1/ cos2 (πmτ) in the denominator and the m = −1 and m = 0 terms in the nu-
merator of 24.29. In fact, e−iπ(a+ib)A (a + ib) , e−iπ(a+ib)B (a + ib) converge to zero
uniformly in a as b →∞.

Lemma 24.20 For A, B defined in 24.30, e−iπ(a+ib)C (a + ib) → 0 uniformly in a
for C = A, B.

Proof: From 24.23,

e−iπτA (τ) =
∑

m 6=0
m6=−1

e−iπτ

cos2
(
π

(
m + 1

2

)
τ
) − e−iπτ

sin2
(
π

(
m + 1

2

)
τ
)

Now let τ = a + ib. Then letting αm = π
(
m + 1

2

)
,

cos (αma + iαmb) = cos (αma) cosh (αmb)− i sinh (αmb) sin (αma)
sin (αma + iαmb) = sin (αma) cosh (αmb) + i cos (αma) sinh (αmb)
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Therefore,
∣∣cos2 (αma + iαmb)

∣∣ = cos2 (αma) cosh2 (αmb) + sinh2 (αmb) sin2 (αma)

≥ sinh2 (αmb) .

Similarly,
∣∣sin2 (αma + iαmb)

∣∣ = sin2 (αma) cosh2 (αmb) + cos2 (αma) sinh2 (αmb)

≥ sinh2 (αmb) .

It follows that for τ = a + ib and b large
∣∣e−iπτA (τ)

∣∣

≤
∑

m 6=0
m 6=−1

2eπb

sinh2
(
π

(
m + 1

2

)
b
)

≤
∞∑

m=1

2eπb

sinh2
(
π

(
m + 1

2

)
b
) +

−2∑
m=−∞

2eπb

sinh2
(
π

(
m + 1

2

)
b
)

= 2
∞∑

m=1

2eπb

sinh2
(
π

(
m + 1

2

)
b
) = 4

∞∑
m=1

eπb

sinh2
(
π

(
m + 1

2

)
b
)

Now a short computation shows

eπb

sinh2(π(m+1+ 1
2 )b)

eπb

sinh2(π(m+ 1
2 )b)

=
sinh2

(
π

(
m + 1

2

)
b
)

sinh2
(
π

(
m + 3

2

)
b
) ≤ 1

e3πb
.

Therefore, for τ = a + ib,

∣∣e−iπτA (τ)
∣∣ ≤ 4

eπb

sinh
(

3πb
2

)
∞∑

m=1

(
1

e3πb

)m

≤ 4
eπb

sinh
(

3πb
2

) 1/e3πb

1− (1/e3πb)

which converges to zero as b →∞. Similar reasoning will establish the claim about
B (τ) . This proves the lemma.

Lemma 24.21 limb→∞ λ (a + ib) e−iπ(a+ib) = 16 uniformly in a ∈ R.

Proof: From 24.30 and Lemma 24.20, this lemma will be proved if it is shown

lim
b→∞

(
2

cos2
(
π

(
1
2

)
(a + ib)

) − 2
sin2

(
π

(
1
2

)
(a + ib)

)
)

e−iπ(a+ib) = 16
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uniformly in a ∈ R. Let τ = a + ib to simplify the notation. Then the above
expression equals

(
8(

ei π
2 τ + e−i π

2 τ
)2 +

8(
ei π

2 τ − e−i π
2 τ

)2

)
e−iπτ

=

(
8eiπτ

(eiπτ + 1)2
+

8eiπτ

(eiπτ − 1)2

)
e−iπτ

=
8

(eiπτ + 1)2
+

8
(eiπτ − 1)2

= 16
1 + e2πiτ

(1− e2πiτ )2
.

Now
∣∣∣∣∣

1 + e2πiτ

(1− e2πiτ )2
− 1

∣∣∣∣∣ =

∣∣∣∣∣
1 + e2πiτ

(1− e2πiτ )2
−

(
1− e2πiτ

)2

(1− e2πiτ )2

∣∣∣∣∣

≤
∣∣3e2πiτ − e4πiτ

∣∣
(1− e−2πb)2

≤ 3e−2πb + e−4πb

(1− e−2πb)2

and this estimate proves the lemma.

Corollary 24.22 limb→∞ λ (a + ib) = 0 uniformly in a ∈ R. Also λ (ib) for b > 0
is real and is between 0 and 1, λ is real on the line, l2 and on the curve, C and
limb→0+ λ (1 + ib) = −∞.

Proof: From Lemma 24.21,
∣∣∣λ (a + ib) e−iπ(a+ib) − 16

∣∣∣ < 1

for all a provided b is large enough. Therefore, for such b,

|λ (a + ib)| ≤ 17e−πb.

24.28 proves the assertion about λ (−bi) real.
By the first part, limb→∞ |λ (ib)| = 0. Now from 24.24

lim
b→0+

λ (ib) = lim
b→0+

(
1− λ

(−1
ib

))
= lim

b→0+

(
1− λ

(
i

b

))
= 1. (24.31)

by Corollary 24.22.
Next consider the behavior of λ on line l2 in the above picture. From 24.17 and

24.28,

λ (1 + ib) =
λ (ib)

λ (ib)− 1
< 0
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and so as b → 0+ in the above, λ (1 + ib) → −∞.

It is left as an exercise to show that the map τ → 1− 1
τ maps l2 onto the curve,

C. Therefore, by 24.25, for τ ∈ l2,

λ

(
1− 1

τ

)
=

λ
(−1

τ

)

λ
(−1

τ

)− 1
(24.32)

=
1− λ (τ)

(1− λ (τ))− 1
=

λ (τ)− 1
λ (τ)

∈ R (24.33)

It follows λ is real on the boundary of Ω in the above picture. This proves the
corollary.

Now, following Alfors [2], cut off Ω by considering the horizontal line segment,
z = a + ib0 where b0 is very large and positive and a ∈ [0, 1] . Also cut Ω off
by the images of this horizontal line, under the transformations z = 1

τ and z =
1− 1

τ . These are arcs of circles because the two transformations are fractional linear
transformations. It is left as an exercise for you to verify these arcs are situated as
shown in the following picture. The important thing to notice is that for b0 large the
points of these circles are close to the origin and (1, 0) respectively. The following
picture is a summary of what has been obtained so far on the mapping by λ.

:z -
? 6

¾
real small positive

near 1 and real
C2C1

large, real, negative

small, real, negative
z = a + ib0

Ω

C

l2l1

r
1

r
1
2

In the picture, the descriptions are of λ acting on points of the indicated bound-
ary of Ω. Consider the oriented contour which results from λ (z) as z moves first up
l2 as indicated, then along the line z = a + ib and then down l1 and then along C1

to C and along C till C2 and then along C2 to l2. As indicated in the picture, this
involves going from a large negative real number to a small negative real number
and then over a smooth curve which stays small to a real positive number and from
there to a real number near 1. λ (z) stays fairly near 1 on C1 provided b0 is large
so that the circle, C1 has very small radius. Then along C, λ (z) is real until it hits
C2. What about the behavior of λ on C2? For z ∈ C2, it follows from the definition
of C2 that z = 1 − 1

τ where τ is on the line, a + ib0. Therefore, by Lemma 24.21,
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24.17, and 24.24

λ (z) = λ

(
1− 1

τ

)
=

λ
(−1

τ

)

λ
(−1

τ

)− 1
=

λ
(

1
τ

)

λ
(

1
τ

)− 1

=
1− λ (τ)

(1− λ (τ))− 1
=

λ (τ)− 1
λ (τ)

= 1− 1
λ (τ)

which is approximately equal to

1− 1
16eiπ(a+ib0)

= 1− eπb0e−iaπ

16
.

These points are essentially on a large half circle in the upper half plane which has
radius approximately eπb0

16 .
Now let w ∈ C with Im (w) 6= 0. Then for b0 large enough, the motion over the

boundary of the truncated region indicated in the above picture results in λ tracing
out a large simple closed curve oriented in the counter clockwise direction which
includes w on its interior if Im (w) > 0 but which excludes w if Im (w) < 0.

Theorem 24.23 Let Ω be the domain described above. Then λ maps Ω one to one
and onto the upper half plane of C, {z ∈ C such that Im (z) > 0} . Also, the line
λ (l1) = (0, 1) , λ (l2) = (−∞, 0) , and λ (C) = (1,∞).

Proof: Let Im (w) > 0 and denote by γ the oriented contour described above
and illustrated in the above picture. Then the winding number of λ ◦ γ about w
equals 1. Thus

1
2πi

∫

λ◦γ

1
z − w

dz = 1.

But, splitting the contour integrals into l2,the top line, l1, C1, C, and C2 and chang-
ing variables on each of these, yields

1 =
1

2πi

∫

γ

λ′ (z)
λ (z)− w

dz

and by the theorem on counting zeros, Theorem 19.20 on Page 438, the function,
z → λ (z) − w has exactly one zero inside the truncated Ω. However, this shows
this function has exactly one zero inside Ω because b0 was arbitrary as long as it
is sufficiently large. Since w was an arbitrary element of the upper half plane, this
verifies the first assertion of the theorem. The remaining claims follow from the
above description of λ, in particular the estimate for λ on C2. This proves the
theorem.

Note also that the argument in the above proof shows that if Im (w) < 0, then
w is not in λ (Ω) . However, if you consider the reflection of Ω about the y axis,
then it will follow that λ maps this set one to one onto the lower half plane. The
argument will make significant use of Theorem 19.22 on Page 440 which is stated
here for convenience.
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Theorem 24.24 Let f : B (a,R) → C be analytic and let

f (z)− α = (z − a)m
g (z) , ∞ > m ≥ 1

where g (z) 6= 0 in B (a,R) . (f (z)− α has a zero of order m at z = a.) Then there
exist ε, δ > 0 with the property that for each z satisfying 0 < |z − α| < δ, there exist
points,

{a1, · · ·, am} ⊆ B (a, ε) ,

such that
f−1 (z) ∩B (a, ε) = {a1, · · ·, am}

and each ak is a zero of order 1 for the function f (·)− z.

Corollary 24.25 Let Ω be the region above. Consider the set of points, Q = Ω ∪
Ω′ \ {0, 1} described by the following picture.

Ω′

r
−1

Ω

C l2l1

r
1

r
1
2

Then λ (Q) = C\ {0, 1} . Also λ′ (z) 6= 0 for every z in ∪∞k=−∞ (Q + 2k) ≡ H.

Proof: By Theorem 24.23, this will be proved if it can be shown that λ (Ω′) =
{z ∈ C : Im (z) < 0} . Consider λ1 defined on Ω′ by

λ1 (x + iy) ≡ λ (−x + iy).

Claim: λ1 is analytic.
Proof of the claim: You just verify the Cauchy Riemann equations. Letting

λ (x + iy) = u (x, y) + iv (x, y) ,

λ1 (x + iy) = u (−x, y)− iv (−x, y)
≡ u1 (x, y) + iv (x, y) .

Then u1x (x, y) = −ux (−x, y) and v1y (x, y) = −vy (−x, y) = −ux (−x, y) since
λ is analytic. Thus u1x = v1y. Next, u1y (x, y) = uy (−x, y) and v1x (x, y) =
vx (−x, y) = −uy (−x, y) and so u1y = −vx.

Now recall that on l1, λ takes real values. Therefore, λ1 = λ on l1, a set with
a limit point. It follows λ = λ1 on Ω′ ∪ Ω. By Theorem 24.23 λ maps Ω one to
one onto the upper half plane. Therefore, from the definition of λ1 = λ, it follows
λ maps Ω′ one to one onto the lower half plane as claimed. This has shown that λ
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is one to one on Ω ∪ Ω′. This also verifies from Theorem 19.22 on Page 440 that
λ′ 6= 0 on Ω ∪ Ω′.

Now consider the lines l2 and C. If λ′ (z) = 0 for z ∈ l2, a contradiction can
be obtained. Pick such a point. If λ′ (z) = 0, then z is a zero of order m ≥ 2 of
the function, λ − λ (z) . Then by Theorem 19.22 there exist δ, ε > 0 such that if
w ∈ B (λ (z) , δ) , then λ−1 (w) ∩B (z, ε) contains at least m points.

Ω′

r
−1

Ω

C l2l1

r
1

r
1
2

z1
r B(z, ε)zr

rλ(z1)

B(λ(z), δ)

λ(z)r

In particular, for z1 ∈ Ω ∩ B (z, ε) sufficiently close to z, λ (z1) ∈ B (λ (z) , δ)
and so the function λ− λ (z1) has at least two distinct zeros. These zeros must be
in B (z, ε) ∩ Ω because λ (z1) has positive imaginary part and the points on l2 are
mapped by λ to a real number while the points of B (z, ε) \ Ω are mapped by λ to
the lower half plane thanks to the relation, λ (z + 2) = λ (z) . This contradicts λ
one to one on Ω. Therefore, λ′ 6= 0 on l2. Consider C. Points on C are of the form
1− 1

τ where τ ∈ l2. Therefore, using 24.33,

λ

(
1− 1

τ

)
=

λ (τ)− 1
λ (τ)

.

Taking the derivative of both sides,

λ′
(

1− 1
τ

)(
1
τ2

)
=

λ′ (τ)
λ (τ)2

6= 0.

Since λ is periodic of period 2 it follows λ′ (z) 6= 0 for all z ∈ ∪∞k=−∞ (Q + 2k) .

Lemma 24.26 If Im (τ) > 0 then there exists a unimodular
(

a b
c d

)
such that

c + dτ

a + bτ
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is contained in the interior of Q. In fact,
∣∣∣ c+dτ
a+bτ

∣∣∣ ≥ 1 and

−1/2 ≤ Re
(

c + dτ

a + bτ

)
≤ 1/2.

Proof: Letting a basis for the module of periods of ℘ be {1, τ} , it follows from
Theorem 24.3 on Page 564 that there exists a basis for the same module of periods,
{w′1, w′2} with the property that for τ ′ = w′2/w′1

|τ ′| ≥ 1,
−1
2
≤ Re τ ′ ≤ 1

2
.

Since this is a basis for the same module of periods, there exists a unimodular

matrix,
(

a b
c d

)
such that

(
w′1
w′2

)
=

(
a b
c d

) (
1
τ

)
.

Hence,

τ ′ =
w′2
w′1

=
c + dτ

a + bτ
.

Thus τ ′ is in the interior of H. In fact, it is on the interior of Ω′ ∪ Ω ≡ Q.

0
ss

11/2−1 −1/2

τ
′ s

24.1.7 A Short Review And Summary

With this lemma, it is easy to extend Corollary 24.25. First, a simple observation
and review is a good idea. Recall that when you change the basis for the module
of periods, the Weierstrass ℘ function does not change and so the set of ei used in
defining λ also do not change. Letting the new basis be {w′1, w′2} , it was shown
that (

w′1
w′2

)
=

(
a b
c d

)(
w1

w2

)
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for some unimodular transformation,
(

a b
c d

)
. Letting τ = w2/w1 and τ ′ =

w′2/w′1
τ ′ =

c + dτ

a + bτ
≡ φ (τ)

Now as discussed earlier

λ (τ ′) = λ (φ (τ)) ≡
℘

(
w′1+w′2

2

)
− ℘

(
w′2
2

)

℘
(

w′1
2

)
− ℘

(
w′2
2

)

=
℘

(
1+τ ′

2

)
− ℘

(
τ ′
2

)

℘
(

1
2

)− ℘
(

τ ′
2

)

These numbers in the above fraction must be the same as ℘
(

1+τ
2

)
, ℘

(
τ
2

)
, and

℘
(

1
2

)
but they might occur differently. This is because ℘ does not change and these

numbers are the zeros of a polynomial having coefficients involving only numbers
and ℘ (z) . It could happen for example that ℘

(
1+τ ′

2

)
= ℘

(
τ
2

)
in which case this

would change the value of λ. In effect, you can keep track of all possibilities by
simply permuting the ei in the formula for λ (τ) given by e3−e2

e1−e2
. Thus consider the

following permutation table.
1 2 3
2 3 1
3 1 2
2 1 3
1 3 2
3 2 1

.

Corresponding to this list of 6 permutations, all possible formulas for λ (φ (τ))
can be obtained as follows. Letting τ ′ = φ (τ) where φ is a unimodular matrix
corresponding to a change of basis,

λ (τ ′) =
e3 − e2

e1 − e2
= λ (τ) (24.34)

λ (τ ′) =
e1 − e3

e2 − e3
=

e3 − e2 + e2 − e1

e3 − e2
= 1− 1

λ (τ)
=

λ (τ)− 1
λ (τ)

(24.35)

λ (τ ′) =
e2 − e1

e3 − e1
= −

[
e3 − e2 − (e1 − e2)

e1 − e2

]−1

= − [λ (τ)− 1]−1 =
1

1− λ (τ)
(24.36)

λ (τ ′) =
e3 − e1

e2 − e1
= −

[
e3 − e2 − (e1 − e2)

e1 − e2

]

= − [λ (τ)− 1] = 1− λ (τ) (24.37)
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λ (τ ′) =
e2 − e3

e1 − e3
=

e3 − e2

e3 − e2 − (e1 − e2)
=

1
1− 1

λ(τ)

=
λ (τ)

λ (τ)− 1
(24.38)

λ (τ ′) =
e1 − e3

e3 − e2
=

1
λ (τ)

(24.39)

Corollary 24.27 λ′ (τ) 6= 0 for all τ in the upper half plane, denoted by P+.

Proof: Let τ ∈ P+. By Lemma 24.26 there exists φ a unimodular transforma-
tion and τ ′ in the interior of Q such that τ ′ = φ (τ). Now from the definition of λ in
terms of the ei, there is at worst a permutation of the ei and so it might be the case
that λ (φ (τ)) 6= λ (τ) but it is the case that λ (φ (τ)) = ξ (λ (τ)) where ξ′ (z) 6= 0.
Here ξ is one of the functions determined by 24.34 - 24.39. (Since λ (τ) /∈ {0, 1} ,
ξ′ (λ (z)) 6= 0. This follows from the above possibilities for ξ listed above in 24.34 -
24.39.) All the possibilities are ξ (z) =

z,
z − 1

z
,

1
1− z

, 1− z,
z

z − 1
,
1
z

and these are the same as the possibilities for ξ−1. Therefore, λ′ (φ (τ)) φ′ (τ) =
ξ′ (λ (τ)) λ′ (τ) and so λ′ (τ) 6= 0 as claimed.

Now I will present a lemma which is of major significance. It depends on the
remarkable mapping properties of the modular function and the monodromy theo-
rem from analytic continuation. A review of the monodromy theorem will be listed
here for convenience. First recall the definition of the concept of function elements
and analytic continuation.

Definition 24.28 A function element is an ordered pair, (f, D) where D is an open
ball and f is analytic on D. (f0, D0) and (f1, D1) are direct continuations of each
other if D1 ∩D0 6= ∅ and f0 = f1 on D1 ∩D0. In this case I will write (f0, D0) ∼
(f1, D1) . A chain is a finite sequence, of disks, {D0, · · ·, Dn} such that Di−1∩Di 6=
∅. If (f0, D0) is a given function element and there exist function elements, (fi, Di)
such that {D0, · · ·, Dn} is a chain and (fj−1, Dj−1) ∼ (fj , Dj) then (fn, Dn) is
called the analytic continuation of (f0, D0) along the chain {D0, · · ·, Dn}. Now
suppose γ is an oriented curve with parameter interval [a, b] and there exists a chain,
{D0, · · ·, Dn} such that γ∗ ⊆ ∪n

k=1Dk, γ (a) is the center of D0, γ (b) is the center
of Dn, and there is an increasing list of numbers in [a, b] , a = s0 < s1 · ·· < sn = b
such that γ ([si, si+1]) ⊆ Di and (fn, Dn) is an analytic continuation of (f0, D0)
along the chain. Then (fn, Dn) is called an analytic continuation of (f0, D0) along
the curve γ. (γ will always be a continuous curve. Nothing more is needed. )

Then the main theorem is the monodromy theorem listed next, Theorem 21.19
and its corollary on Page 493.

Theorem 24.29 Let Ω be a simply connected subset of C and suppose (f, B (a, r))
is a function element with B (a, r) ⊆ Ω. Suppose also that this function element can
be analytically continued along every curve through a. Then there exists G analytic
on Ω such that G agrees with f on B (a, r).
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Here is the lemma.

Lemma 24.30 Let λ be the modular function defined on P+ the upper half plane.
Let V be a simply connected region in C and let f : V → C\ {0, 1} be analytic
and nonconstant. Then there exists an analytic function, g : V → P+ such that
λ ◦ g = f.

Proof: Let a ∈ V and choose r0 small enough that f (B (a, r0)) contains neither
0 nor 1. You need only let B (a, r0) ⊆ V . Now there exists a unique point in Q, τ0

such that λ (τ0) = f (a). By Corollary 24.25, λ′ (τ0) 6= 0 and so by the open
mapping theorem, Theorem 19.22 on Page 440, There exists B (τ0, R0) ⊆ P+ such
that λ is one to one on B (τ0, R0) and has a continuous inverse. Then picking r0

still smaller, it can be assumed f (B (a, r0)) ⊆ λ (B (τ0, R0)). Thus there exists
a local inverse for λ, λ−1

0 defined on f (B (a, r0)) having values in B (τ0, R0) ∩
λ−1 (f (B (a, r0))). Then defining g0 ≡ λ−1

0 ◦ f, (g0, B (a, r0)) is a function element.
I need to show this can be continued along every curve starting at a in such a way
that each function in each function element has values in P+.

Let γ : [α, β] → V be a continuous curve starting at a, (γ (α) = a) and sup-
pose that if t < T there exists a nonnegative integer m and a function element
(gm, B (γ (t) , rm)) which is an analytic continuation of (g0, B (a, r0)) along γ where
gm (γ (t)) ∈ P+ and each function in every function element for j ≤ m has values
in P+. Thus for some small T > 0 this has been achieved.

Then consider f (γ (T )) ∈ C\ {0, 1} . As in the first part of the argument, there
exists a unique τT ∈ Q such that λ (τT ) = f (γ (T )) and for r small enough there is
an analytic local inverse, λ−1

T between f (B (γ (T ) , r)) and λ−1 (f (B (γ (T ) , r))) ∩
B (τT , RT ) ⊆ P+ for some RT > 0. By the assumption that the analytic continua-
tion can be carried out for t < T, there exists {t0, · · ·, tm = t} and function elements
(gj , B (γ (tj) , rj)) , j = 0, · · ·,m as just described with gj (γ (tj)) ∈ P+, λ ◦ gj = f
on B (γ (tj) , rj) such that for t ∈ [tm, T ] , γ (t) ∈ B (γ (T ) , r). Let

I = B (γ (tm) , rm) ∩B (γ (T ) , r) .

Then since λ−1
T is a local inverse, it follows for all z ∈ I

λ (gm (z)) = f (z) = λ
(
λ−1

T ◦ f (z)
)

Pick z0 ∈ I . Then by Lemma 24.19 on Page 584 there exists a unimodular mapping
of the form

φ (z) =
az + b

cz + d

where (
a b
c d

)
∼

(
1 0
0 1

)
mod 2

such that
gm (z0) = φ

(
λ−1

T ◦ f (z0)
)
.



596 ELLIPTIC FUNCTIONS

Since both gm (z0) and φ
(
λ−1

T ◦ f (z0)
)

are in the upper half plane, it follows ad−
cb = 1 and φ maps the upper half plane to the upper half plane. Note the pole of
φ is real and all the sets being considered are contained in the upper half plane so
φ is analytic where it needs to be.

Claim: For all z ∈ I,

gm (z) = φ ◦ λ−1
T ◦ f (z) . (24.40)

Proof: For z = z0 the equation holds. Let

A =
{
z ∈ I : gm (z) = φ

(
λ−1

T ◦ f (z)
)}

.

Thus z0 ∈ I. If z ∈ I and if w is close enough to z, then w ∈ I also and so both
sides of 24.40 with w in place of z are in λ−1

m (f (I)) . But by construction, λ is one
to one on this set and since λ is invariant with respect to φ,

λ (gm (w)) = λ
(
λ−1

T ◦ f (w)
)

= λ
(
φ ◦ λ−1

T ◦ f (w)
)

and consequently, w ∈ A. This shows A is open. But A is also closed in I because
the functions are continuous. Therefore, A = I and so 24.40 is obtained.

Letting f (z) ∈ f (B (γ (T )) , r) ,

λ
(
φ

(
λ−1

T (f (z))
))

= λ
(
λ−1

T (f (z))
)

= f (z)

and so φ ◦ λ−1
T is a local inverse for λ on f (B (γ (T )) , r) . Let the new function

element be




gm+1︷ ︸︸ ︷
φ ◦ λ−1

T ◦ f, B (γ (T ) , r)


 . This has shown the initial function element

can be continued along every curve through a.
By the monodromy theorem, there exists g analytic on V such that g has values

in P+ and g = g0 on B (a, r0) . By the construction, it also follows λ ◦ g = f . This
last claim is easy to see because λ ◦ g = f on B (a, r0) , a set with a limit point so
the equation holds for all z ∈ V . This proves the lemma.

24.2 The Picard Theorem Again

Having done all this work on the modular function which is important for its own
sake, there is an easy proof of the Picard theorem. In fact, this is the way Picard
did it in 1879. I will state it slightly differently since it is no trouble to do so, [24].

Theorem 24.31 Let f be meromorphic on C and suppose f misses three distinct
points, a, b, c. Then f is a constant function.

Proof: Let φ (z) ≡ z−a
z−c

b−c
b−a . Then φ (c) = ∞, φ (a) = 0, and φ (b) = 1. Now

consider the function, h = φ ◦ f. Then h misses the three points ∞, 0, and 1. Since
h is meromorphic and does not have ∞ in its values, it must actually be analytic.
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Thus h is an entire function which misses the two values 0 and 1. If h is not constant,
then by Lemma 24.30 there exists a function, g analytic on C which has values in
the upper half plane, P+ such that λ ◦ g = h. However, g must be a constant
because there exists ψ an analytic map on the upper half plane which maps the
upper half plane to B (0, 1) . You can use the Riemann mapping theorem or more
simply, ψ (z) = z−i

z+i . Thus ψ ◦ g equals a constant by Liouville’s theorem. Hence
g is a constant and so h must also be a constant because λ (g (z)) = h (z) . This
proves f is a constant also. This proves the theorem.

24.3 Exercises

1. Show the set of modular transformations is a group. Also show those modular
transformations which are congruent mod 2 to the identity as described above
is a subgroup.

2. Suppose f is an elliptic function with period module M. If {w1, w2} and
{w′1, w′2} are two bases, show that the resulting period parallelograms resulting
from the two bases have the same area.

3. Given a module of periods with basis {w1, w2} and letting a typical element
of this module be denoted by w as described above, consider the product

σ (z) ≡ z
∏

w 6=0

(
1− z

w

)
e(z/w)+ 1

2 (z/w)2 .

Show this product converges uniformly on compact sets, is an entire function,
and satisfies

σ′ (z) /σ (z) = ζ (z)

where ζ (z) was defined above as a primitive of ℘ (z) and is given by

ζ (z) =
1
z

+
∑

w 6=0

1
z − w

+
z

w2
+

1
w

.

4. Show ζ (z + wi) = ζ (z) + ηi where ηi is a constant.

5. Let Pa be the parallelogram shown in the following picture.
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Show that 1
2πi

∫
∂Pa

ζ (z) dz = 1 where the contour is taken once around the
parallelogram in the counter clockwise direction. Next evaluate this contour
integral directly to obtain Legendre’s relation,

η1w2 − η2w1 = 2πi.

6. For σ defined in Problem 3, 4 explain the following steps. For j = 1, 2

σ′ (z + wj)
σ (z + wj)

= ζ (z + wj) = ζ (z) + ηj =
σ′ (z)
σ (z)

+ ηj

Therefore, there exists a constant, Cj such that

σ (z + wj) = Cjσ (z) eηjz.

Next show σ is an odd function, (σ (−z) = −σ (z)) and then let z = −wj/2
to find Cj = −e

ηjwj
2 and so

σ (z + wj) = −σ (z) eηj(z+
wj
2 ). (24.41)

7. Show any even elliptic function, f with periods w1 and w2 for which 0 is
neither a pole nor a zero can be expressed in the form

f (0)
n∏

k=1

℘ (z)− ℘ (ak)
℘ (z)− ℘ (bk)

where C is some constant. Here ℘ is the Weierstrass function which comes
from the two periods, w1 and w2. Hint: You might consider the above func-
tion in terms of the poles and zeros on a period parallelogram and recall that
an entire function which is elliptic is a constant.

8. Suppose f is any elliptic function with {w1, w2} a basis for the module of
periods. Using Theorem 24.9 and 24.41 show that there exists constants
a1, · · ·, an and b1, · · ·, bn such that for some constant C,

f (z) = C

n∏

k=1

σ (z − ak)
σ (z − bk)

.

Hint: You might try something like this: By Theorem 24.9, it follows that if
{αk} are the zeros and {bk} the poles in an appropriate period parallelogram,∑

αk−
∑

bk equals a period. Replace αk with ak such that
∑

ak−
∑

bk = 0.
Then use 24.41 to show that the given formula for f is bi periodic. Anyway,
you try to arrange things such that the given formula has the same poles as
f. Remember an entire elliptic function equals a constant.

9. Show that the map τ → 1− 1
τ maps l2 onto the curve, C in the above picture

on the mapping properties of λ.

10. Modify the proof of Theorem 24.23 to show that λ (Ω)∩{z ∈ C : Im (z) < 0} =
∅.



The Hausdorff Maximal
Theorem

The purpose of this appendix is to prove the equivalence between the axiom of
choice, the Hausdorff maximal theorem, and the well-ordering principle. The Haus-
dorff maximal theorem and the well-ordering principle are very useful but a little
hard to believe; so, it may be surprising that they are equivalent to the axiom of
choice. First it is shown that the axiom of choice implies the Hausdorff maximal
theorem, a remarkable theorem about partially ordered sets.

A nonempty set is partially ordered if there exists a partial order, ≺, satisfying

x ≺ x

and
if x ≺ y and y ≺ z then x ≺ z.

An example of a partially ordered set is the set of all subsets of a given set and
≺≡⊆. Note that two elements in a partially ordered sets may not be related. In
other words, just because x, y are in the partially ordered set, it does not follow
that either x ≺ y or y ≺ x. A subset of a partially ordered set, C, is called a chain
if x, y ∈ C implies that either x ≺ y or y ≺ x. If either x ≺ y or y ≺ x then x and
y are described as being comparable. A chain is also called a totally ordered set. C
is a maximal chain if whenever C̃ is a chain containing C, it follows the two chains
are equal. In other words C is a maximal chain if there is no strictly larger chain.

Lemma A.1 Let F be a nonempty partially ordered set with partial order ≺. Then
assuming the axiom of choice, there exists a maximal chain in F .

Proof: Let X be the set of all chains from F . For C ∈ X , let

SC = {x ∈ F such that C∪{x} is a chain strictly larger than C}.
If SC = ∅ for any C, then C is maximal. Thus, assume SC 6= ∅ for all C ∈ X . Let
f(C) ∈ SC . (This is where the axiom of choice is being used.) Let

g(C) = C ∪ {f(C)}.

599
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Thus g(C) ) C and g(C) \ C ={f(C)} = {a single element of F}. A subset T of X
is called a tower if

∅ ∈ T ,

C ∈ T implies g(C) ∈ T ,

and if S ⊆ T is totally ordered with respect to set inclusion, then

∪S ∈ T .

Here S is a chain with respect to set inclusion whose elements are chains.
Note that X is a tower. Let T0 be the intersection of all towers. Thus, T0 is a

tower, the smallest tower. Are any two sets in T0 comparable in the sense of set
inclusion so that T0 is actually a chain? Let C0 be a set of T0 which is comparable
to every set of T0. Such sets exist, ∅ being an example. Let

B ≡ {D ∈ T0 : D ) C0 and f (C0) /∈ D} .

The picture represents sets of B. As illustrated in the picture, D is a set of B when
D is larger than C0 but fails to be comparable to g (C0). Thus there would be more
than one chain ascending from C0 if B 6= ∅, rather like a tree growing upward in
more than one direction from a fork in the trunk. It will be shown this can’t take
place for any such C0 by showing B = ∅.

C0 D
f(C0)·

This will be accomplished by showing T̃0 ≡ T0 \ B is a tower. Since T0 is the
smallest tower, this will require that T̃0 = T0 and so B = ∅.

Claim: T̃0 is a tower and so B = ∅.
Proof of the claim: It is clear that ∅ ∈ T̃0 because for ∅ to be contained in B

it would be required to properly contain C0 which is not possible. Suppose D ∈ T̃0.
The plan is to verify g (D) ∈ T̃0.

Case 1: f (D) ∈ C0. If D ⊆ C0, then since both D and {f (D)} are contained in
C0, it follows g (D) ⊆ C0 and so g (D) /∈ B. On the other hand, if D ) C0, then since
D ∈ T̃0, f (C0) ∈ D and so g (D) also contains f (C0) implying g (D) /∈ B. These are
the only two cases to consider because C0 is comparable to every set of T0.

Case 2: f (D) /∈ C0. If D ( C0 it can’t be the case that f (D) /∈ C0 because if
this were so, g (D ) would not compare to C0.

D C0

f(C0)·
f(D)·

Hence if f (D) /∈ C0, then D ⊇ C0. If D = C0, then f (D) = f (C0) ∈ g (D) so
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g (D) /∈ B. Therefore, assume D ) C0. Then, since D is in T̃0, f (C0) ∈ D and so
f (C0) ∈ g (D). Therefore, g (D) ∈ T̃0.

Now suppose S is a totally ordered subset of T̃0 with respect to set inclusion.
Then if every element of S is contained in C0, so is ∪S and so ∪S ∈ T̃0. If, on
the other hand, some chain from S, C, contains C0 properly, then since C /∈ B,
f (C0) ∈ C ⊆ ∪S showing that ∪S /∈ B also. This has proved T̃0 is a tower and
since T0 is the smallest tower, it follows T̃0 = T0. This has shown roughly that no
splitting into more than one ascending chain can occur at any C0 which is comparable
to every set of T0. Next it is shown that every element of T0 has the property that
it is comparable to all other elements of T0. This is done by showing that these
elements which possess this property form a tower.

Define T1 to be the set of all elements of T0 which are comparable to every
element of T0. (Recall the elements of T0 are chains from the original partial order.)

Claim: T1 is a tower.
Proof of the claim: It is clear that ∅ ∈ T1 because ∅ is a subset of every set.

Suppose C0 ∈ T1. It is necessary to verify that g (C0) ∈ T1. Let D ∈ T0 (Thus D ⊆ C0

or else D ) C0.)and consider g (C0) ≡ C0 ∪ {f (C0)}. If D ⊆ C0, then D ⊆ g (C0)
so g (C0) is comparable to D. If D ) C0, then D ⊇ g (C0) by what was just shown
(B = ∅). Hence g (C0) is comparable to D. Since D was arbitrary, it follows g (C0)
is comparable to every set of T0. Now suppose S is a chain of elements of T1 and
let D be an element of T0. If every element in the chain, S is contained in D, then
∪S is also contained in D. On the other hand, if some set, C, from S contains D
properly, then ∪S also contains D. Thus ∪S ∈ T 1 since it is comparable to every
D ∈ T0.

This shows T1 is a tower and proves therefore, that T0 = T1. Thus every set of
T0 compares with every other set of T0 showing T0 is a chain in addition to being a
tower.

Now ∪T0, g (∪T0) ∈ T0. Hence, because g (∪T0) is an element of T0, and T0 is a
chain of these, it follows g (∪T0) ⊆ ∪T0. Thus

∪T0 ⊇ g (∪T0) ) ∪T0,

a contradiction. Hence there must exist a maximal chain after all. This proves the
lemma.

If X is a nonempty set,≤ is an order on X if

x ≤ x,

and if x, y ∈ X, then
either x ≤ y or y ≤ x

and
if x ≤ y and y ≤ z then x ≤ z.

≤ is a well order and say that (X,≤) is a well-ordered set if every nonempty subset
of X has a smallest element. More precisely, if S 6= ∅ and S ⊆ X then there exists
an x ∈ S such that x ≤ y for all y ∈ S. A familiar example of a well-ordered set is
the natural numbers.
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Lemma A.2 The Hausdorff maximal principle implies every nonempty set can be
well-ordered.

Proof: Let X be a nonempty set and let a ∈ X. Then {a} is a well-ordered
subset of X. Let

F = {S ⊆ X : there exists a well order for S}.

Thus F 6= ∅. For S1, S2 ∈ F , define S1 ≺ S2 if S1 ⊆ S2 and there exists a well
order for S2, ≤2 such that

(S2,≤2) is well-ordered

and if
y ∈ S2 \ S1 then x ≤2 y for all x ∈ S1,

and if ≤1is the well order of S1 then the two orders are consistent on S1. Then
observe that ≺ is a partial order on F . By the Hausdorff maximal principle, let C
be a maximal chain in F and let

X∞ ≡ ∪C.

Define an order, ≤, on X∞ as follows. If x, y are elements of X∞, pick S ∈ C such
that x, y are both in S. Then if ≤S is the order on S, let x ≤ y if and only if x ≤S y.
This definition is well defined because of the definition of the order, ≺. Now let U
be any nonempty subset of X∞. Then S ∩ U 6= ∅ for some S ∈ C. Because of the
definition of ≤, if y ∈ S2 \S1, Si ∈ C, then x ≤ y for all x ∈ S1. Thus, if y ∈ X∞ \S
then x ≤ y for all x ∈ S and so the smallest element of S ∩ U exists and is the
smallest element in U . Therefore X∞ is well-ordered. Now suppose there exists
z ∈ X \X∞. Define the following order, ≤1, on X∞ ∪ {z}.

x ≤1 y if and only if x ≤ y whenever x, y ∈ X∞

x ≤1 z whenever x ∈ X∞.

Then let
C̃ = {S ∈ C or X∞ ∪ {z}}.

Then C̃ is a strictly larger chain than C contradicting maximality of C. Thus X \
X∞ = ∅ and this shows X is well-ordered by ≤. This proves the lemma.

With these two lemmas the main result follows.

Theorem A.3 The following are equivalent.

The axiom of choice

The Hausdorff maximal principle

The well-ordering principle.



A.1. EXERCISES 603

Proof: It only remains to prove that the well-ordering principle implies the
axiom of choice. Let I be a nonempty set and let Xi be a nonempty set for each
i ∈ I. Let X = ∪{Xi : i ∈ I} and well order X. Let f (i) be the smallest element
of Xi. Then

f ∈
∏

i∈I

Xi.

A.1 Exercises

1. Zorn’s lemma states that in a nonempty partially ordered set, if every chain
has an upper bound, there exists a maximal element, x in the partially ordered
set. x is maximal, means that if x ≺ y, it follows y = x. Show Zorn’s lemma
is equivalent to the Hausdorff maximal theorem.

2. Let X be a vector space. Y ⊆ X is a Hamel basis if every element of X can be
written in a unique way as a finite linear combination of elements in Y . Show
that every vector space has a Hamel basis and that if Y, Y1 are two Hamel
bases of X, then there exists a one to one and onto map from Y to Y1.

3. ↑ Using the Baire category theorem of the chapter on Banach spaces show
that any Hamel basis of a Banach space is either finite or uncountable.

4. ↑ Consider the vector space of all polynomials defined on [0, 1]. Does there
exist a norm, ||·|| defined on these polynomials such that with this norm, the
vector space of polynomials becomes a Banach space (complete normed vector
space)?
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order, 555
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partition of unity, 168
period parallelogram, 566
Phragmen Lindelof theorem, 431
pi systems, 185
Plancherel theorem, 356
point of density, 336
polar decomposition, 303
pole, 409
polynomial, 343
positive and negative parts of a mea-

sure, 333
positive linear functional, 169
power series

analytic functions, 397
power set, 11
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Schottky’s theorem, 503
Schroder Bernstein theorem, 15
Schwarz formula, 399
Schwarz reflection principle, 423
Schwarz’s lemma, 486
self adjoint, 67
separated, 109
separation theorem, 273
sets, 11
Shannon sampling theorem, 366
simple function, 136
Smı́tal, 338
Sobolev Space

embedding theorem, 365
equivalent norms, 365

Sobolev spaces, 365
span, 40, 51
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spectral radius, 474
stereographic projection, 372, 504
Stirling’s formula, 557
strict convexity, 274
subspace, 40
support of a function, 167

Tietze extention theorem, 124
topological space, 104
total variation, 297, 326
totally bounded set, 95
totally ordered set, 599
translation invariant, 199
translations, 480
trivial, 40

uniform boundedness theorem, 257
uniform convergence, 370
uniform convexity, 274
uniformly bounded, 100, 505
uniformly equicontinuous, 100, 505
uniformly integrable, 151
unimodular transformations, 568
upper and lower sums, 20
Urysohn’s lemma, 164

variational inequality, 278
vector measures, 297
Vitali convergence theorem, 152, 251
Vitali covering theorem, 202, 205, 206,

208
Vitali coverings, 206, 208
Vitali theorem, 509

weak convergence, 274
Weierstrass

approximation theorem, 117
Stone Weierstrass theorem, 118

Weierstrass M test, 370
Weierstrass P function, 573
well ordered sets, 601
winding number, 411

Young’s inequality, 233, 319

zeta function, 557
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