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Chapter 1

Set theory and terminology

The principle purpose of this chapter is to introduce the mathematical notation and lan-
guage that will be used in the remainder of these volumes. Much of this notation is standard,
or at least the notation we use is generally among a collection of standard possibilities. In
this respect, the chapter is a simple one. However, we also wish to introduce the reader
to some elementary, although somewhat abstract, mathematics. The secondary objective
behind this has three components.

1. We aim to provide a somewhat rigorous foundation for what follows. This means being
fairly clear about defining the (usually) somewhat simple concepts that arise in the
chapter. Thus “intuitively clear” concepts like sets, subsets, maps, etc., are given a fairly
systematic and detailed discussion. It is at least interesting to know that this can be
done. And, if it is not of interest, it can be sidestepped at a first reading.

2. This chapter contains some results, and many of these require very simple proofs. We
hope that these simple proofs might be useful to readers who are new to the world where
everything is proved. Proofs in other chapters in these volumes may not be so useful for
achieving this objective.

3. The material is standard mathematical material, and should be known by anyone pur-
porting to love mathematics.

Do I need to read this chapter? Readers who are familiar with standard mathematical
notation (e.g., who understand the symbols ∈, ⊂, ∪, ∩, ×, f : S → T , N, and Z) can simply
skip this chapter in its entirety. Some ideas (e.g., relations, orders, Zorn’s Lemma) may need
to be referred to during the course of later chapters, but this is easily done.

Readers not familiar with the above standard mathematical notation will have some
work to do. They should certainly read Sections 1.1, 1.2, and 1.3 closely enough that
they understand the language, notation, and main ideas. And they should read enough
of Section 1.4 that they know what objects, familiar to them from their being human, the
symbols N and Z refer to. The remainder of the material can be overlooked until it is needed
later. •
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Section 1.1

Sets

The basic ingredient in modern mathematics is the set. The idea of a set is familiar to
everyone at least in the form of “a collection of objects.” In this section, we shall not really
give a definition of a set that excels that intuitive one. Rather we shall accept this intuitive
idea of a set, and move forward from there. This way of dealing with sets is called näıve set
theory . There are some problems with näıve set theory, as described in Section 1.8.1, and
these lead to a more formal notion of a set as an object that satisfies certain axioms, those
given in Section 1.8.2. However, these matters will not concern us much at the moment.

Do I need to read this section? Readers familiar with basic set theoretic notation can skip
this section. Other readers should read it, since it contains language, notation, and ideas
that are absolutely commonplace in these volumes. •

1.1.1 Definitions and examples

First let us give our working definition of a set. A set is, for us, a well-defined collection
of objects. Thus one can speak of everyday things like “the set of red-haired ladies who own
yellow cars.” Or one can speak of mathematical things like “the set of even prime numbers.”
Sets are therefore defined by describing their members or elements, i.e., those objects
that are in the set. When we are feeling less formal, we may refer to an element of a set as
a point in that set. The set with no members is the empty set , and is denoted by ∅. If S
is a set with member x, then we write x ∈ S. If an object x is not in a set S, then we write
x 6∈ S.

1.1.1 Examples (Sets)

1. If S is the set of even prime numbers, then 2 ∈ S.

2. If S is the set of even prime numbers greater than 3, then S is the empty set.

3. If S is the set of red-haired ladies who own yellow cars and if x = Ghandi, then x 6∈ S. •

If it is possible to write the members of a set, then they are usually written between
braces { }. For example, the set of prime numbers less that 10 is written as {2, 3, 5, 7} and
the set of physicists to have won a Fields Prize as of 2005 is {Edward Witten}.

A set S is a subset of a set T if x ∈ S implies that x ∈ T . We shall write S ⊂ T , or
equivalently T ⊃ S, in this case. If x ∈ S, then the set {x} ⊂ S with one element, namely x,
is a singleton . Note that x and {x} are different things. For example, x ∈ S and {x} ⊂ S.
If S ⊂ T and if T ⊂ S, then the sets S and T are equal , and we write S = T . If two sets
are not equal, then we write S 6= T . If S ⊂ T and if S 6= T , then S is a proper subset of
T , and we write S ( T if we wish to emphasise this fact. Some of the following examples
may not be perfectly obvious, so may require sorting through the definitions.

1.1.2 Examples (Subsets)

1. For any set S, ∅ ⊂ S (see Exercise 1.1.1).

2. {1, 2} ⊂ {1, 2, 3}.
3. {1, 2} ( {1, 2, 3}.
4. {1, 2} = {2, 1}.
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5. {1, 2} = {2, 1, 2, 1, 1, 2}. •

A common means of defining a set is to define it as the subset of an existing set that
satisfies conditions. Let us be slightly precise about this. A one-variable predicate is a
statement which, in order that its truth be evaluated needs a single argument to be specified.
For example, P (x) = “x is blue” needs the single argument x in order that it be decided
whether it is true or not. We then use the notation

{x ∈ S | P (x)}

to denote the members x of S for which the predicate P is true when evaluated at x. This
is read as something like, “the set of x’s in S such that P (x) holds.”

For sets S and T , the relative complement of T in S is the set

S − T = {x ∈ S | x 6∈ T} .

Note that for this to make sense, we do not require that T be a subset of S. It is a common
occurrence when dealing with complements that one set be a subset of another. We use
different language and notation to deal with this. If S is a set and if T ⊂ S, then S \ T
denotes the absolute complement of T in S, and is defined by

S \ T = {x ∈ S | x 6∈ T} .

Note that, if we forget that T is a subset of S, then we have S \ T = S − T . Thus S − T is
the more general notation. Of course, if A ⊂ T ⊂ S, one needs to be careful when using the
words “absolute complement of A,” since one must say whether one is taking the complement
in T or the larger complement in S. For this reason, we prefer the notation we use rather
the commonly encountered notation AC or A′ to refer to the absolute complement. Note
that one should not talk about the absolute complement to a set, without saying within
which subset the complement is being taken. To do so would imply the existence of “a set
containing all sets,” an object that leads one to certain paradoxes (see Section 1.8).

A useful set associated with every set S is its power set , by which we mean the set

2S = {A | A ⊂ S} .

The reader can investigate the origins of the peculiar notation in Exercise 1.1.2.

1.1.2 Unions and intersections

In this section we indicate how to construct new sets from existing ones.
Given two sets S and T , the union of S and T is the set S ∪ T whose members are

members of S or T . The intersection of S and T is the set S ∩ T whose members are
members of S and T . If two sets S and T have the property that S ∩ T = ∅, then S and T
are said to be disjoint . For sets S and T their symmetric complement is the set

S4T = (S − T ) ∪ (T − S).

Thus S4T is the set of objects in union S ∪ T that do not lie in the intersection S ∩ T .
The symmetric complement is so named because S4T = T4S. In Figure 1.1 we give Venn
diagrams describing union, intersection, and symmetric complement.

The following result gives some simple properties of pairwise unions and intersections
of sets. We leave the straightforward verification of some or all of these to the reader as
Exercise 1.1.3.
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S T S T

S T S T S T

Figure 1.1 S ∪T (top left), S ∩T (top right), S−T (bottom left),
S4T (bottom middle), and T − S (bottom right)

1.1.3 Proposition (Properties of unions and intersections) For sets S and T, the following
statements hold:

(i) S ∪ ∅ = S;

(ii) S ∩ ∅ = ∅;
(iii) S ∪ S = S;

(iv) S ∩ S = S;

(v) S ∪ T = T ∪ S (commutativity);

(vi) S ∩ T = T ∩ S (commutativity);

(vii) S ⊂ S ∪ T;

(viii) S ∩ T ⊂ S;

(ix) S ∪ (T ∪ U) = (S ∪ T) ∪ U (associativity);

(x) S ∩ (T ∩ U) = (S ∩ T) ∩ U (associativity);

(xi) S ∩ (T ∪ U) = (S ∩ T) ∪ (S ∩ U) (distributivity);

(xii) S ∪ (T ∩ U) = (S ∪ T) ∩ (S ∪ U) (distributivity).

We may more generally consider not just two sets, but an arbitrary collection S of sets.
In this case we posit the existence of a set, called the union of the sets S , with the property
that it contains each element of each set S ∈ S . Moreover, one can specify the subset of
this big set to only contain members of sets from S . This set we will denote by ∪S∈S S.
We can also perform a similar construction with intersections of an arbitrary collection S
of sets. Thus we denote by ∩S∈S S the set, called the intersection of the sets S , having
the property that x ∈ ∩S∈S S if x ∈ S for every S ∈ S . Note that we do not need to posit
the existence of the intersection.

Let us give some properties of general unions and intersections as they relate to comple-
ments.

1.1.4 Proposition (De Morgan’s1 Laws) Let T be a set and let S be a collection of subsets of
T. Then the following statements hold:

(i) T \ (∪S∈S S) = ∩S∈S (T \ S);

1Augustus De Morgan (1806–1871) was a British mathematician whose principal mathematical contri-
butions were to analysis and algebra
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(ii) T \ (∩S∈S S) = ∪S∈S (T \ S).

Proof (i) Let x ∈ T \ (∪S∈S ). Then, for each S ∈ S , x 6∈ S, or x ∈ T \ S. Thus x ∈
∩S∈S (T \ S). Therefore, T \ (∪S∈S ) ⊃ ∩S∈S (T \ S). Conversely, if x ∈ ∩S∈S (T \ S), then,
for each S ∈ S , x 6∈ S. Therefore, x 6∈ ∪S∈S . Therefore, x ∈ T \ (∪S∈S ), thus showing that
∩S∈S (T \ S) ⊂ T \ (∪S∈S ). It follows that T \ (∪S∈S ) = ∩S∈S (T \ S).

(ii) This follows in much the same manner as part (i), and we leave the details to the
reader. �

1.1.5 Remark (Showing two sets are equal) Note that in proving part (i) of the preceding result,
we proved two things. First we showed that T \ (∪S∈S ) ⊂ ∩S∈S (T \S) and then we showed
that ∩S∈S (T \ S) ⊂ T \ (∪S∈S ). This is the standard means of showing that two sets are
equal; first show that one is a subset of the other, and then show that the other is a subset
of the one. •

For general unions and intersections, we also have the following generalisation of the
distributive laws for unions and intersections. We leave the straightforward proof to the
reader (Exercise 1.1.4)

1.1.6 Proposition (Distributivity laws for general unions and intersections) Let T be a set and
let S be a collection of sets. Then the following statements hold:

(i) T ∩ (∪S∈S S) = ∪S∈S(T ∩ S);

(ii) T ∪ (∩S∈S S) = ∩S∈S(T ∪ S).

There is an alternative notion of the union of sets, one that retains the notion of mem-
bership in the original set. The issue that arises is this. If S = {1, 2} and T = {2, 3}, then
S ∪ T = {1, 2, 3}. Note that we lose with the usual union the fact that 1 is an element of S
only, but that 2 is an element of both S and T . Sometimes it is useful to retain these sorts
of distinctions, and for this we have the following definition.

1.1.7 Definition (Disjoint union) For sets S and T , their disjoint union is the set

S
◦
∪T = {(S, x) | x ∈ S} ∪ {(T, y) | y ∈ T} . •

Let us see how the disjoint union differs from the usual union.

1.1.8 Example (Disjoint union) Let us again take the simple example S = {1, 2} and T = {2, 3}.
Then S ∪ T = {1, 2, 3} and

S
◦
∪T = {(S, 1), (S, 2), (T, 2), (T, 3)}.

We see that the idea behind writing an element in the disjoint union as an ordered pair is
that the first entry in the ordered pair simply keeps track of the set from which the element
in the disjoint union was taken. In this way, if S ∩ T 6= ∅, we are guaranteed that there will
be no “collapsing” when the disjoint union is formed. •

1.1.3 Finite Cartesian products

As we have seen, if S is a set and if x1, x2 ∈ S, then {x1, x2} = {x2, x1}. There are times,
however, when we wish to keep track of the order of elements in a set. To accomplish this
and other objectives, we introduce the notion of an ordered pair. First, however, in order
to make sure that we understand the distinction between ordered and unordered pairs, we
make the following definition.
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1.1.9 Definition (Unordered pair) If S is a set, an unordered pair from S is any subset of S
with two elements. The collection of unordered pairs from S is denoted by S(2). •

Obviously one can talk about unordered collections of more than two elements of a set,
and the collection of subsets of a set S comprised of k elements is denoted by S(k) and called
the set of unordered k-tuples.

With the simple idea of an unordered pair, the notion of an ordered pair is more distinct.

1.1.10 Definition (Ordered pair and Cartesian product) Let S and T be sets, and let x ∈ S and
y ∈ T . The ordered pair of x and y is the set (x, y) = {{x}, {x, y}}. The Cartesian
product of S and T is the set

S × T = {(x, y) | x ∈ S, y ∈ T} . •

The definition of the ordered pair seems odd at first. However, it is as it is to secure the
objective that if two ordered pairs (x1, y1) and (x2, y2) are equal, then x1 = x2 and y1 = y2.
The reader can check in Exercise 1.1.6 that this objective is in fact achieved by the definition.
It is also worth noting that the form of the ordered pair as given in the definition is seldom
used after its initial introduction.

Clearly one can define the Cartesian product of any finite number of sets S1, . . . , Sk

inductively. Thus, for example, S1 × S2 × S3 = (S1 × S2) × S3. Note that, according to
the notation in the definition, an element of S1×S2×S3 should be written as ((x1, x2), x3).
However, it is immaterial that we define S1 × S2 × S3 as we did, or as S1 × S2 × S3 =
S1 × (S2 × S3). Thus we simply write elements in S1 × S2 × S3 as (x1, x2, x3), and similarly
for a Cartesian product S1 × · · · × Sk. The Cartesian product of a set with itself k-times is
denoted by Sk. That is,

Sk = S × · · · × S︸ ︷︷ ︸
k-times

.

In Section 1.6.1 we shall indicate how to define Cartesian products of more than finite
collections of sets.

Let us give some simple examples.

1.1.11 Examples (Cartesian products)

1. If S is a set then note that S ×∅ = ∅. This is because there are no ordered pairs from S
and ∅. It is just as clear that ∅ × S = ∅. It is also clear that, if S × T = ∅, then either
S = ∅ or T = ∅.

2. If S = {1, 2} and T = {2, 3}, then

S × T = {(1, 2), (1, 3), (2, 2), (2, 3)}. •

Cartesian products have the following properties.

1.1.12 Proposition (Properties of Cartesian product) For sets S, T, U, and V, the following
statements hold:

(i) (S ∪ T)× U = (S× U) ∪ (T× U);

(ii) (S ∩ U)× (T ∩ V) = (S× T) ∩ (U× V);

(iii) (S− T)× U = (S× U)− (T× U).
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Proof Let us prove only the first identity, leaving the remaining two to the reader. Let
(x, u) ∈ (S ∪ T ) × U . Then x ∈ S ∪ T and u ∈ U . Therefore, x is an element of at least
one of S and T . Without loss of generality, suppose that x ∈ S. Then (x, u) ∈ S × U and so
(x, u) ∈ (S ×U) ∪ (T ×U). Therefore, (S ∪ T )×U = (S ×U) ∪ (T ×U). Conversely, suppose
that (x, u) ∈ (S×U)∪ (T ×U). Without loss of generality, suppose that (x, u) ∈ S×U . Then
x ∈ S ⊂ S∪T and u ∈ U . Therefore, (x, u) ∈ (S∪T )×U . Thus (S×U)∪(T×U) ⊂ (S∪T )×U ,
giving the result. �

1.1.13 Remark (“Without loss of generality”) In the preceding proof, we twice employed the
expression “without loss of generality.” This is a commonly encountered expression, and
is frequently used in one of the following two contexts. The first, as above, indicates that
one is making an arbitrary selection, but that were another arbitrary selection to have been
made, the same argument holds. This is a more or less straightforward use of “without loss
of generality.” A more sophisticated use of the expression might indicate that one is making
a simplifying assumption, and that this is okay, because it can be shown that the general
case follows easily from the simpler one. The trick is to then understand how the general
case follows from the simpler one, and this can sometimes be nontrivial, depending on the
willingness of the writer to describe this process. •

Exercises

1.1.1 Prove that the empty set is a subset of every set.
Hint: Assume the converse, and arrive at an absurdity.

1.1.2 If S is a set with n members, show that 2S is a set with 2n members.

1.1.3 Prove as many parts of Proposition 1.1.3 as you wish.

1.1.4 Prove Proposition 1.1.6.

1.1.5 Let S be a set with n members and let T be a set with m members. Show that S
◦
∪T

is a set with nm members.

1.1.6 Let S and T be sets, let x1, x2 ∈ S, and let y1, y2 ∈ T . Show that (x1, y1) = (x2, y2) if
and only if x1 = x2 and y1 = y2.
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Section 1.2

Relations

Relations are a fundamental ingredient in the description of many mathematical ideas.
One of the most valuable features of relations is that they allow many useful constructions
to be explicitly made only using elementary ideas from set theory.

Do I need to read this section? The ideas in this section will appear in many places in
the series, so this material should be regarded as basic. However, readers looking to proceed
with minimal background can skip the section, referring back to it when needed. •

1.2.1 Definitions

We shall describe in this section “binary relations,” or relations between elements of two
sets. It is possible to define more general sorts of relations where more sets are involved.
However, these will not come up for us.

1.2.1 Definition (Relation) A binary relation from S to T (or simply a relation from S to
T is a subset of S × T . If R ⊂ S × T and if (x, y) ∈ R, then we shall write x R y, meaning
that x and y are related by R. A relation from S to S is a relation in S. •

The definition is simple. Let us give some example to give it a little texture.

1.2.2 Examples (Relations)

1. Let S be the set of husbands and let T be the set of wives. Define a relation R from S
to T by asking that (x, y) ∈ R if x is married to y. Thus, to say that x and y are related
in this case means to say that x is married to y.

2. Let S be a set and consider the relation R in the power set 2S of S given by

R = {(A, B) | A ⊂ B} .

Thus A is related to B if A is a subset of B.

3. Let S be a set and define a relation R in S by

R = {(x, x) | x ∈ S} .

Thus, under this relation, two members in S are related if and only if they are equal.

4. Let S be the set of integers, let k be a positive integer, and define a relation Rk in S by

Rk = {(n1, n2) | n1 − n2 = k} .

Thus, if n ∈ S, then all integers of the form n + mk for an integer m are related to n. •

1.2.3 Remark (“If” versus “if and only if”) In part 3 of the preceding example we used the
expression “if and only if” for the first time. It is, therefore, worth saying a few words
about this commonly used terminology. One says that statement A holds “if and only if”
statement B holds to mean that statements A and B are exactly equivalent. Typically,
this language arises in theorem statements. In proving such theorems, it is important to
note that one must prove both that statement A implies statement B and that statement B
implies statement A.
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To confuse matters, when stating a definition, the convention is to use “if” rather than
“if and only if,” even though it is the case, by the very meaning of the word “definition,” that
“if and only if” is also proper. However, it is usually taken as understood in a definition. •

In the next section we will encounter the notion of the inverse of a function; this idea is
perhaps known to the reader. However, the notion of inverse also applies to the more general
setting of relations.

1.2.4 Definition (Inverse of a relation) If R ⊂ S×T is a relation from S to T , then the inverse
of R is the relation R−1 from T to S defined by

R−1 = {(y, x) ∈ T × S | (x, y) ∈ R} . •

There are a variety of properties that can be bestowed upon relations to ensure they have
certain useful attributes. The following is a partial list of such properties.

1.2.5 Definition (Properties of relations) Let S be a set and let R be a relation in S. The
relation R is:

(i) reflexive if (x, x) ∈ R for each x ∈ S;

(ii) irreflexive if (x, x) 6∈ R for each x ∈ S;

(iii) symmetric if (x1, x2) ∈ R implies that (x2, x1) ∈ R;

(iv) antisymmetric if (x1, x2) ∈ R and (x2, x1) ∈ R implies that x1 = x2;

(v) transitive if (x1, x2) ∈ R and (x2, x3) ∈ R implies that (x1, x3) ∈ R. •

1.2.6 Examples (Example 1.2.2 cont’d)

1. The relation of inclusion in the power set 2S of a set S is reflexive, antisymmetric, and
transitive.

2. The relation of equality in a set S is reflexive, symmetric, antisymmetric, and transitive.

3. The relation Rk in the set S of integers is reflexive, symmetric, and transitive. •

1.2.2 Equivalence relations

In this section we turn our attention to an important class of relations, and we indicate
why these are important by giving them a characterisation in terms of a decomposition of a
set.

1.2.7 Definition (Equivalence relation, equivalence class) An equivalence relation in a set
S is a relation R that is reflexive, symmetric, and transitive. For x ∈ S, the set of elements
of S related to x is denoted by [x], and is the equivalence class of x with respect to R.
An element x′ is an equivalence class [x] is a representative of that equivalence class. The
set of equivalence classes is denoted by S/R (typically pronounced as S modulo R). •

It is common to denote that two elements x1, x2 ∈ S are related by an equivalence relation
by writing x1 ∼ x2. Of the relations defined in Example 1.2.2, we see that those in parts 3
and 4 are equivalence relations, but that in part 2 is not.

Let us now characterise equivalence relations in a more descriptive manner. We begin
by defining a (perhaps seemingly unrelated) notion concerning subsets of a set.

1.2.8 Definition (Partition of a set) A partition of a set S is a collection A of subsets of S
having the properties that
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(i) two distinct subsets in A are disjoint and

(ii) S = ∪A∈A A. •

We now prove that there is an exact correspondence between equivalence classes associ-
ated to an equivalence relation.

1.2.9 Proposition Let S be a set and let R be an equivalence relation in S. Then the set of
equivalence classes with respect to R is a partition of S.

Conversely, if A is a partition of S, then the relation

{(x1, x2) | x1, x2 ∈ A for some A ∈ A }

is an equivalence relation in S.

Proof We first claim that two distinct equivalence classes are disjoint. Thus we let x1, x2 ∈ S
and suppose that [x1] 6= [x2]. Suppose that x ∈ [x1] ∩ [x2]. Then x ∼ x1 and x ∼ x2, or, by
transitivity of R, x1 ∼ x and x ∼ x2. By transitivity of R, x1 ∼ x2, contradicting the fact that
[x1] 6= [x2]. To show that S is the union of its equivalence classes, merely note that, for each
x ∈ S, x ∈ [x] by reflexivity of R.

Now let A be a partition and defined R as in the statement of the proposition. Let x ∈ S
and let A be the element of A that contains x. Then clearly we see that (x, x) ∈ R since x ∈ A.
Thus R is reflexive. Next let (x1, x2) ∈ R and let A be the element of A such that x1, x2 ∈ A.
Clearly then, (x2, x1) ∈ R, so R is symmetric. Finally, let (x1, x2), (x2, x3 ∈ R. Then there
are elements A12, A23 ∈ A such that x1, x2 ∈ A12 and such that x2, x3 ∈ A23. Since A12 and
A23 have the point x2 in common, we must have A12 = A23. Thus (x1, x3 ∈ A12 = A23, giving
transitivity of R. �

Exercises

1.2.1 In a set S define a relation R = {(x, y) ∈ S × S | x = y}.
(a) Show that R is an equivalence relation.

(b) Show that S/R = S.
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Section 1.3

Maps

Another basic concept in all of mathematics is that of a map between sets. Indeed, many
of the interesting objects in mathematics are maps of some sort. In this section we review
the notation associated with maps, and give some simple properties of maps.

Do I need to read this section? The material in this section is basic, and will be used
constantly throughout the series. Unless you are familiar already with maps and the notation
associated to them, this section is essential reading. •

1.3.1 Definitions and notation

We begin with the definition.

1.3.1 Definition (Map) For sets S and T , a map from S to T is a relation R from S to T having
the property that, for each x ∈ S, there exists a unique y ∈ T such that (x, y) ∈ R. The set
S is the domain of the map and the set T is the codomain of the map. The set of maps
from S to T is denoted by T S.2 •

By definition, a map is a relation. This is not how one most commonly thinks about a
map, although the definition serves to render the concept of a map in terms of concepts we
already know. Suppose one has a map from S to T defined by a relation R. Then, given
x ∈ S, there is a single y ∈ T such that x and y are related. Denote this element of T by
f(x), since it is defined by x. When one refers to a map, one more typically refers to the
assignment of the element f(x) ∈ T to x ∈ S. Thus one refers to the map as f , leaving
aside the baggage of the relation as in the definition. Indeed, this is how we from now on
will think of maps. The definition above does, however, have some use, although we alter
our language, since we are now thinking of a map as an “assignment.” We call the set

graph(f) = {(x, f(x)) | x ∈ S}

(which we originally called the map in Definition 1.3.1) the graph of the map f : S → T .
If one wishes to indicate a map f with domain S and codomain T , one typically writes

f : S → T to compactly express this. If one wishes to define a map by saying what it does,
the notation

f : S → T

x 7→ what x gets mapped to

is sometimes helpful. Sometimes we shall write this in the text as f : x 7→
“what x gets mapped to”. Note the distinct uses of the symbols “→” and “7→”.

1.3.2 Notation (f versus f(x)) Note that a map is denoted by “f”. It is quite common to
see the expression “consider the map f(x)”. Taken literally, these words are difficult to
comprehend. First of all, x is unspecified. Second of all, even if x were specified, f(x)
is an element of T , not a map. Thus it is considered bad form mathematically to use an

2The idea behind this notation is the following. A map from S to T assigns to each point in S a point
in T . If S and T are finite sets with k and l elements, respectively, then there are l possible values that can
be assigned to each of the k elements of S. Thus the set of maps has lk elements.
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expression like “consider the map f(x)”. However, there are times when it is quite convenient
to use this poor notation, with an understanding that some compromises are being made.
For instance, in this volume, we will be frequently dealing simultaneously with functions of
both time (typically denoted by t) and frequency (typically denoted by ν). Thus it would
be convenient to write “consider the map f(t)” when we wish to write a map that we are
considering as a function of time, and similarly for frequency. Nonetheless, we shall refrain
from doing this, and shall consistently use the mathematically precise language “consider
the map f”. •

The following is a collection of examples of maps. Some of these examples are not just
illustrative, but also define concepts and notation that we will use throughout the series.

1.3.3 Examples (Maps)

1. There are no maps having ∅ as a domain or codomain since there are no elements in the
empty set.

2. If S is a set and if T ⊂ S, then the map iT : T → S defined by iT (x) = x is called the
inclusion of T in S.

3. The inclusion map iS : S → S of a set S into itself (since S ⊂ S) is the identity map,
and we denote it by idS.

4. If f : S → T is a map and if A ⊂ S, then the map from A to T which assigns to x ∈ A
the value f(x) ∈ T is called the restriction of f to A, and is denoted by f |A : A → T .

5. If S is a set with A ⊂ S, then the map χA from S to the integers defined by

χA(x) =

1, x ∈ A,

0, x 6∈ A,

is the characteristic function of A.

6. If S1, . . . , Sk are sets, if S1×· · ·×Sk is the Cartesian product, and if j ∈ {1, . . . , k}, then
the map

prj : S1 × · · · × Sj × · · · × Sk → Sj

(x1, . . . , xj, . . . , xk) 7→ xj

is the projection onto the jth factor .

7. If R is an equivalence relation in a set S, then the map πR : S → S/R defined by
πR(x) = [x] is called the canonical projection associated to R.

8. If S, T , and U are sets and if f : S → T and g : T → U are maps, then we define a map
g ◦f : S → U by g ◦f(x) = g(f(x)). This is the composition of f and g. •

Next we introduce the notions of images and preimages of points and sets.

1.3.4 Definition (Image and preimage) Let S and T be sets and let f : S → T be a map.

(i) If A ⊂ S, then f(A) = {f(x) | x ∈ A}.
(ii) The image of f is the set image(f) = f(S) ⊂ T .

(iii) If B ⊂ T , then f−1(B) = {x ∈ S | f(x) ∈ B} is the preimage of B under f . If
B = {y} for some y ∈ T , then we shall often write f−1(y) rather that f−1({y}). •

Note that one can think of f as being a map from 2S to 2T and of f−1 as being a map
from 2T to 2S. Here are some elementary properties of f and f−1 thought of in this way.
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1.3.5 Proposition (Properties of images and preimages) Let S and T be sets, let f : S → T
be a map, let A ⊂ S and B ⊂ T, and let A and B be collections of subsets of S and T,
respectively. Then the following statements hold:

(i) A ⊂ f−1(f(A));

(ii) f(f−1(B)) ⊂ B;

(iii) ∪A∈A f(A) = f(∪A∈A A);

(iv) ∪B∈Bf−1(B) = f−1(∪B∈BB);

(v) ∩A∈A f(A) = f(∩A∈A A);

(vi) ∩B∈Bf−1(B) = f−1(∩B∈BB).

Proof We shall prove only some of these, leaving the remainder for the reader to complete.
(i) Let x ∈ A. Then x ∈ f−1(f(x)) since f(x) = f(x).
(iii) Let y ∈ ∪A∈A f(A). Then y = f(x) for some x ∈ ∪A∈A A. Thus y ∈ f(∪A∈A A).

Conversely, let y ∈ f(∪A∈A A). Then, again, y = f(x) for some x ∈ ∪A∈A A, and so y ∈
∪A∈A f(A).

(vi) Let x ∈ ∩B∈Bf−1(B). Then, for each B ∈ B, x ∈ f−1(B). Thus f(x) ∈ B for all
B ∈ B and so f(x) ∈ ∩B∈BB. Thus x ∈ f−1(∩B∈BB). Conversely, if x ∈ f−1(∩B∈BB), then
f(x) ∈ B for each B ∈ B. Thus x ∈ f−1(B) for each B ∈ B, or x ∈ ∩B∈Bf−1(B). �

1.3.2 Properties of maps

Certain basic features of maps will be of great interest.

1.3.6 Definition (Injection, surjection, bijection) Let S and T be sets. A map f : S → T is:

(i) injective , or an injection , if f(x) = f(y) implies that x = y;

(ii) surjective , or a surjection , if f(S) = T ;

(iii) bijective , or a bijection , if it is both injective and surjective. •

1.3.7 Remarks (One-to-one, onto, 1–1 correspondence)

1. It is not uncommon for an injective map to be said to be 1–1 or one-to-one , and that
a surjective map be said to be onto. In this series, we shall exclusively use the terms
injective and surjective, however. These words appear to have been given prominence by
their adoption by Bourbaki (see footnote on page ??).

2. If there exists a bijection f : S → T between sets S and T , it is common to say that
there is a 1–1 correspondence between S and T . This can be confusing if one is
familiar with the expression “1–1” as referring to an injective map. The words “1–1
correspondence” mean that there is a bijection, not an injection. In case S and T are in
1–1 correspondence, we shall also say that S and T are equivalent . •

Closely related to the above concepts, although not immediately obviously so, are the
following notions of inverse.

1.3.8 Definition (Left-inverse, right-inverse, inverse) Let S and T be sets, and let f : S → T
be a map. A map g : T → S is:

(i) a left-inverse of f if g ◦f = idS;

(ii) a right-inverse of f if f ◦g = idT ;

(iii) an inverse of f if it is both a left- and a right-inverse. •
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In Definition 1.2.4 we gave the notion of the inverse of a relation. Functions, being
relations, also possess inverses in the sense of relations. We ask the reader to explore the
relationships between the two concepts of inverse in Exercise 1.3.5.

The following result relates these various notions of inverse to the properties of injective,
surjective, and bijective.

1.3.9 Proposition (Characterisation of various inverses) Let S and T be sets and let f : S → T
be a map. Then the following statements hold:

(i) f is injective if and only if it possesses a left-inverse;

(ii) f is surjective if and only if it possess a right-inverse;

(iii) f is bijective if and only if it possesses an inverse;

(iv) there is at most one inverse for f;

(v) if f possesses a left-inverse and a right-inverse, then these necessarily agree.

Proof (i) Suppose that f is injective. For y ∈ image(f), define g(y) = x where f−1(y) = {x},
this being well-defined since f is injective. For y 6∈ image(f), define g(y) = x0 for some
x0 ∈ S. The map g so defined is readily verified to satisfy g ◦f = idS , and so is a left-inverse.
Conversely, suppose that f possesses a left-inverse g, and let x1, x2 ∈ S satisfy f(x1) = f(x2).
Then g ◦f(x1) = g ◦f(x2), or x1 = x2. Thus f is injective.

(ii) Suppose that f is surjective. For y ∈ T let x ∈ f−1(y) and define g(y) = x.3 With g so
defined it is easy to see that f ◦g = idT , so that g is a right-inverse. Conversely, suppose that
f possesses a right-inverse g. Now let y ∈ T and take x = g(y). Then f(x) = f ◦g(y) = y, so
that f is surjective.

(iii) Since f is bijective, it possesses a left-inverse gL and a right-inverse gR. We claim that
these are equal, and each is actually an inverse of f . We have

gL = gL ◦ idT == gL ◦f ◦gR = idS ◦gR = gR,

showing equality of gL and gR. Thus each is a left- and a right-inverse, and therefore an inverse
for f .

(iv) Let g1 and g2 be inverses for f . Then, just as in part (iii),

g1 = g1 ◦ idT = g1 ◦f ◦g2 = idS ◦g2 = g2.

(v) This follows from the proof of part (iv), noting that there we only used the facts that
g1 is a left-inverse and that g2 is a right-inverse. �

In Figure 1.2 we depict maps that have various of the properties of injectivity, sur-
jectivity, or bijectivity. From these cartoons, the reader may develop some intuition for
Proposition 1.3.9. In the case that f : S → T is a bijection, we denote its unique inverse by
f−1 : T → S. The confluence of the notation f−1 introduced when discussing preimages is
not a problem, in practice.

It is worth mentioning at this point that the characterisation of left- and right-inverses
in Proposition 1.3.9 is not usually very helpful. Normally, in a given setting, one will want
these inverses to have certain properties. For vector spaces, for example, one may want left-
or right-inverses to be linear (see ), and for topological spaces, for another example, one may what

want a left- or right-inverse to be continuous (see Chapter II-2).

3Note that the ability to choose an x from each set f−1(y) requires the Axiom of Choice (see Section 1.8.3).
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Figure 1.2 A depiction of maps that are injective but not surjective
(top left), surjective but not injective (top right), and bijective
(bottom)

1.3.3 Graphs and commutative diagrams

Often it is useful to be able to understand the relationship between a number of maps
by representing them together in a diagram. We shall be somewhat precise about what we
mean by a diagram by making it a special instance of a graph. We shall encounter graphs
in , although for the present purposes we merely use them as a means of making precise thewhere?

notion of a commutative diagram.
First the definitions for graphs.

1.3.10 Definition (Graph) A graph is a pair (V, E) where V is a set an element of which is called
a vertex and E is a subset of the set V (2) of unordered pairs from V an element of which is
called an edge . If {v1, v2} ∈ E is an edge, then the vertices v1 and v2 are the endvertices
of this edge. •

In a graph, it is the way that vertices and edges are related that is of interest. To capture
this structure, the following language is useful.

1.3.11 Definition (Adjacent and incident) Let (V, E) be a graph. Two vertices v1, v2 ∈ V are
adjacent if {v1, v2} ∈ E and a vertex v ∈ V and an edge e ∈ E are incident if there exists
v′ ∈ V such that e = {v, v′}. •

One typically represents a graph by placing the vertices in some sort of array on the page,
and then drawing a line connecting two vertices if there is a corresponding edge associated
with the two vertices. Some examples make this process clear.

1.3.12 Examples (Graphs)

1. Consider the graph (V, E) with V = {1, 2, 3, 4} and E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}}.
There are many ways one can lay out the vertices on the page, but for this diagram,
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it is most convenient to arrange them in a square. Doing so gives rise to the following
representation of the graph:

1 2

3 4

The vertices 1 and 2 are adjacent, but the vertices 1 and 4 are not. The vertex 1 and
the edge {1, 2} are incident, but the vertex 1 and the edge {3, 4} are not.

2. For the graph (V, E) with V = {1, 2, 3, 4} and E = {{1, 2}, {2, 3}, {2, 3}, {3, 4}} we have
the representation

1 2 3 4

Note that we allow the same edge to appear twice, and we allow for an edge to connect
a vertex to itself. We observe that the vertices 2 and 3 are adjacent, but the vertices 1
and 3 are not. Also, the vertex 3 and the edge {2, 3} are incident, but the vertex 4 and
the edge {1, 2} are not. •

Often one wishes to attach “direction” to vertices. This is done with the following
notion.

1.3.13 Definition (Directed graph) A directed graph , or digraph , is a pair (V, E) where V is
a set an element of which is called a vertex and E is a subset of the set V × V of ordered
pairs from V an element of which is called an edge . If e = (v1, v2) ∈ E is an edge, then v1

is the source for e and v2 is the target for e. •

Note that every directed graph is certainly also a graph, since one can assign an unordered
pair to every ordered pair of vertices.

The examples above of graphs are easily turned into directed graphs, and we see that to
represent a directed graph one needs only to put a “direction” on an edge, typically via an
arrow.

1.3.14 Examples (Directed graphs)

1. Consider the directed graph (V, E) with V = {1, 2, 3, 4} and E =
{(1, 2), (1, 3), (2, 4), (3, 4)}. A convenient representation of this directed graph is
as follows:

1 //

��

2

��
3 // 4

2. For the directed graph (V, E) with V = {1, 2, 3, 4} and E =
{(1, 1), (1, 2), (2, 3), (2, 3), (3, 4)} we have the representation

199 // 2 // 3aa
// 4 •

Of interest in graph theory is the notion of connecting two, perhaps nonadjacent, vertices
with a sequence of edges. This is made precise as follows.

1.3.15 Definition (Path)

(i) If (V, E) is a graph, a path in the graph is a sequence {aj}j∈{1,...,k} in V ∪E with the
following properties:
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(a) a1, ak ∈ V ;

(b) for j ∈ {1, . . . , k − 1}, if aj ∈ V (resp. aj ∈ E), then aj+1 ∈ E (resp. aj+1 ∈ V ).

(ii) If (V, E) is a directed graph, a path in the graph is a sequence {aj}j∈{1,...,k} in V ∪ E
with the following properties:

(a) {aj}j∈{1,...,k} is a path in the graph associated to (V, E);

(b) for j ∈ {2, . . . , k − 1}, if aj ∈ E, then aj = (aj−1, aj+1).

(iii) If {aj}j∈{1,...,k} is a path, the length of the path is the number of edges in the path.

(iv) For a path {aj}j∈{1,...,k}, the source is the vertex a1 and the target is the vertex ak. •

Let us give some examples of paths for graphs and for directed graphs.

1.3.16 Examples (Paths)

1. For the graph (V, E) with V = {1, 2, 3, 4} and E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}}, there
are an infinite number of paths. Let us list a few:

(a) {1}, {2}, {3}, and {4};
(b) {4, {3, 4}, 3, {1, 3}, 1};
(c) {1, {1, 2}, 2, {2, 4}, 4, {3, 4}, 3, {1, 3}, 1};
(d) {1, {1, 2}, 2, {1, 2}, 1, {1, 2}, 2, {1, 2}, 1}.

Note that for this graph there are infinitely many paths.

2. For the directed graph (V, E) with V = {1, 2, 3, 4} and E = {(1, 2), (1, 3), (2, 4), (3, 4)},
there are a finite number of paths:

(a) {1}, {2}, {3}, and {4};
(b) {1, (1, 2), 2};
(c) {1, (1, 2), 2, (2, 4), 4};
(d) {1, (1, 3), 3};
(e) {1, (1, 3), 3, (2, 4), 4};
(f) {2, (2, 4)};
(g) {3, (3, 4), 4}.

3. For the graph (V, E) with V = {1, 2, 3, 4} and E = {{1, 2}, {2, 3}, {2, 3}, {3, 4}} some
examples of paths are:

(a) {1}, {2}, {3}, and {4};
(b) {1, {1, 2}, 2, {2, 3}, 3, {2, 3}, 2, {1, 2}, 1};
(c) {4, {3, 4}, 3}.

There are an infinite number of paths for this graph.

4. For the directed graph (V, E) with V = {1, 2, 3, 4} and E =
{(1, 1), (1, 2), (2, 3), (2, 3), (3, 4)} some paths include:

(a) {1}, {2}, {3}, and {4};
(b) {1, (1, 2), 2, (2, 3), 3, (3, 2), 2, (2, 3), 3, (3, 4), 4};
(c) {3, (3, 4), 4}.

This directed graph has an infinite number of paths by virtue of the fact that the path
{2, (2, 3), 3, (3, 2), 2} can be repeated an infinite number of times. •
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1.3.17 Notation (Notation for paths of nonzero length) For paths which contain at least one
edge, i.e., which have length at least 1, the vertices in the path are actually redundant. For
this reason we will often simply write a path as the sequence of edges contained in the path,
since the vertices can be obviously deduced. •

There is a great deal one can say about graphs, a little of which we will say in . However, where

for our present purposes of defining diagrams, the notions at hand are sufficient. In the
definition we employ Notation 1.3.17.

1.3.18 Definition (Diagram, commutative diagram) Let (V, E) be a directed graph.

(i) A diagram on (V, E) is a collection {Sv}v∈V of sets associated with each vertex and
a collection {fe}e∈E of maps associated with each edge such that, if e = (v1, v2), then
fe has domain Sv1 and codomain Sv2 .

(ii) If P = {ej}j∈{1,...,k} ⊂ E is a path of nonzero length in a diagram on (V, E), the
composition along P is the map fek

◦ · · · ◦fe1 .

(iii) A diagram is commutative if, for every two vertices v1, v2 ∈ V and any two paths
P1 and P2 with source v1 and target v2, the composition along P1 is equal to the
composition along P2. •

The notion of a diagram, and in particular a commutative diagram is straightforward.

1.3.19 Examples (Diagrams and commutative diagrams)

1. Let S1, S2, S3, and S4 be sets and consider maps f21 : S1 → S2, f31 : S1 → S3, f42 : S2 →
S4, and f43 : S3 → S4.

4 Note that if we assign set Sj to j for each j ∈ {1, 2, 3, 4}, then where?

this gives a diagram on (V, E) whereV = {1, 2, 3, 4} and E = {(1, 2), (1, 3), (2, 4), (3, 4)}.
This diagram can be represented by

S1
f21 //

f31

��

S2

f42

��
S3 f43

// 4

The diagram is commutative if and only if f42 ◦f21 = f43 ◦f31.

2. Let S1, S2, S3, and S4 be sets and let f11 : S1 → S1, f21 : S1 → S2, f32 : S2 → S3, f23 : S3 →
S2, and f43 : S3 → S4 be maps. This data then represents a commutative diagram on the
directed graph (V, E) where V = {1, 2, 3, 4} and E = {(1, 1), (1, 2), (2, 3), (2, 3), (3, 4)}.
The diagram is represented as

S1f11 66
f21 // S2

f32 // S3

f23

ee
f43 // S4

While it is possible to write down conditions for this diagram to be commutative, there
will be infinitely many such conditions. In practice, one encounters commutative di-
agrams with only finitely many paths with a given source and target. This example,
therefore, is not so interesting as a commutative diagram, but is more interesting as a
signal flow graph, as we shall see . • where

4It might seem more natural to write, for example, f12 : S1 → S2 to properly represent the normal
order of the domain and codomain. However, we instead write f21 : S1 → S2 for reasons having to do with
conventions that will become convenient in .
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Exercises

1.3.1 Let S, T , U , and V be sets, and let f : S → T , g : T → U , and h : U → V be maps.
Show that h ◦ (g ◦f) = (h ◦g) ◦f .

1.3.2 If S, T , and U are sets and if f : S → T and g : T → U are bijections, then show that
(g ◦f)−1 = f−1 ◦g−1.

1.3.3 Let S, T and U be sets and let f : S → T and g : T → U be maps.

(a) Show that if f and g are injective, then so too is g ◦f .

(b) Show that if f and g are surjective, then so too is g ◦f .

1.3.4 Let S and T be sets, let f : S → T be a map, and let A ⊂ S and B ⊂ T . Do the
following:

(a) show that if f is injective then A = f−1(f(A));

(b) show that if f is surjective then f(f−1(B)) = B.

1.3.5 Let S and T be sets and let f : S → T be a map.

(a) Show that if f is invertible as a map, then “the relation of its inverse is the inverse
of its relation.” (Part of the question is to precisely understand the statement in
quotes.)

(b) Show that the inverse of the relation defined by f is itself the relation associated
to a function if and only if f is invertible.

1.3.6 Show that equivalence of sets, as in Remark 1.3.7–2, is an “equivalence relation”5 on
collection of all sets.

5The quotes are present because the notion of equivalence relation, as we have defined it, applies to sets.
However, there is no set containing all sets; see Section 1.8.1
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Section 1.4

Construction of the integers

It can be supposed that the reader has some idea of what the set of integers is. In this
section we actually give the set of integers a definition. As will be seen, this is not overly
difficult to do. Moreover, the construction has little bearing on what we do. We merely
present it so that the reader can be comfortable with the fact that the integers, and so
subsequently the rational numbers and the real numbers (see Section 2.1), have a formal
definition.

Do I need to read this section? Much of this section is not of importance in the remainder
of this series. The reader should certainly know what the sets N and Z are. However, the
details of their construction should be read only when the inclination strikes. •

1.4.1 Construction of the natural numbers

The natural numbers are the numbers 1, 2, 3, and so on, i.e., the “counting numbers.”
As such, we are all quite familiar with them in that we can recognise, in the absence of
trickery, when we are presented with 4 of something. However, what is 4? This is what we
endeavour to define in this section.

The important concept in defining the natural numbers is the following.

1.4.1 Definition (Successor) Let S be a set. The successor of S is the set S+ = S ∪ {S}. •

Thus the successor is a set whose elements are the elements of S, plus an additional
element which is the set S itself. This seems, and indeed is, a simple enough idea. However,
it does make possible the following definition.

1.4.2 Definition (0, 1, 2, etc.)

(i) The number zero, denoted by 0, is the set ∅.
(ii) The number one , denoted by 1, is the set 0+.

(iii) The number two, denoted by 2, is the set 1+.

(iv) The number three , denoted by 3, is the set 2+.

(v) The number four , denoted by 4, is the set 3+.

This procedure can be inductively continued to define any finite nonnegative integer. •

The procedure above is well-defined, and so gives meaning to the symbol “k” where k is
any nonnegative finite number. Let us give the various explicit ways of writing the first few
numbers:

0 = ∅,
1 = 0+ = {0} = {∅},
2 = 1+ = {0, 1} = {∅, {∅}},
3 = 2+ = {0, 1, 2} = {∅, {∅}, {∅, {∅}}},
4 = 3+ = {0, 1, 2, 3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}.
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This settles the matter of defining any desired number. We now need to indicate how
to talk about the set of numbers. This necessitates an assumption. As we shall see in
Section 1.8.2, this assumption is framed as an axiom in axiomatic set theory.

1.4.3 Assumption There exists a set containing ∅ and all subsequent successors. •

We are now almost done. The remaining problem is that the set guaranteed by the
assumption may contain more than what we want. However, this is easily remedied as
follows. Let S be the set whose existence is guaranteed by Assumption 1.4.3. Define a
collection A of subsets of S by

A =
{
A ⊂ S | ∅ ∈ A and n+ ∈ A if n ∈ A

}
.

Note that S ∈ A so that A is nonempty. The following simple result is now useful.

1.4.4 Lemma If B ⊂ A , then (∩B∈BB) ∈ A .

Proof For each B ∈ B, ∅ ∈ B. Thus ∅ ∈ ∩B∈BB. Also let n ∈ ∩B∈BB. Since n+ ∈ B for
each B ∈ B, xn+ ∈ ∩B∈BB. Thus (∩B∈BB) ∈ A , as desired. �

The lemma shows that ∩A∈A A ∈ A . Now we have the following definition of the set of
numbers.

1.4.5 Definition (Natural numbers) Let S and A be as defined above.

(i) The set ∩A∈A A is denoted by N0, and is the set of nonnegative integers .

(ii) The set N0 \ {0} is denoted by N, and is the set of natural numbers. •

1.4.6 Remark (Convention concerning N) It is not uncommon to see the set that we denote by
N0 called the natural numbers, and denoted, therefore, by N. This is a matter of convention,
so the reader should be aware that both conventions are in use. One of the uncomfortable
things about the convention we use appears in the preceding definition. Namely, we declared
N0 to be the set of “nonnegative integers.” This seems an odd definition since we have not
given meaning to either of the words “nonnegative” or “integer.” While the reader may
think they already know what these things are, they are well advised to forget that for now,
and just thing of “nonnegative integer” as a pair of randomly chosen words whose meaning
will be justified shortly. •

Next we turn to the definition of the usual operations of arithmetic with the set N0. That
is to say, we indicate how to “add” and “multiply.” First we consider addition.

1.4.7 Definition (Addition in N0) For k ∈ N0, inductively define a map ak : N0 → N0, called
addition by k, by

(i) ak(0) = k;

(ii) ak(j
+) = (ak(j))

+, j ∈ N.

We denote ak(j) = k + j. •

Upon a moments reflection, it is easy to convince yourself that this formal definition of
addition agrees with our established intuition. Roughly speaking, one defines k + (j + 1) =
(k+ j)+1, where, by definition, the operation of adding 1 means taking the successor. With
these definitions it is straightforward to verify such commonplace assertions as “1 + 1 = 2.”

Now we define multiplication.
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1.4.8 Definition (Multiplication in N0) For k ∈ N0, inductively define a map mk : N0 → N0,
called multiplication by k, by

(i) mk(0) = 0;

(ii) mk(j
+) = mk(j) + k.

We denote mk(j) = k · j, or simply jk where no confusion can arise. •

Again, this definition of multiplication is in concert with our intuition. The definition
says that k · (j + 1) = k · j + k. For k,m ∈ N0, define km recursively by k0 = 1, and
km+

= km · k. The element km ∈ N0 is the mth power of k.
Let us verify that addition and multiplication in N0 have the expected properties. In

stating the properties, we use the usual order of operation rules one learns in high school;
in this case, operations are done with the following precedence: (1) operations enclosed in
parentheses, (2) multiplication, then (3) addition.

1.4.9 Proposition (Properties of arithmetic in N0) Addition and multiplication in N0 satisfy the
following rules:

(i) k1 + k2 = k2 + k1, k1, k2 ∈ N0 (commutativity of addition);

(ii) (k1 + k2) + k3 = k1 + (k2 + k3), k1, k2, k3 ∈ N0 (associativity of addition);

(iii) k + 0 = k, k ∈ N0 (additive identity);

(iv) k1 · k2 = k2 · k1, k1, k2 ∈ N0 (commutativity of multiplication);

(v) (k1 · k2) · k3 = k1 · (k2 · k3), k1, k2, k3 ∈ N0 (associativity of multiplication);

(vi) k · 1 = k, k ∈ N0 (multiplicative identity);

(vii) j · (k1 + k2) = j · k1 + j · k2, j, k1, k2 ∈ N0 (distributivity);

(viii) jk1 · jk2 = jk1+k2, j, k1, k2 ∈ N0.

Proof We shall prove these in logical sequence, rather than the sequence in which they are
stated.

(ii) We prove this by induction on k3. For k3 = 0 we have (k1 + k2) + 0 = k1 + k2 and
k1+(k2+0) = k1+k2, giving the result in this case. Now suppose that (k1+k2)+j = k1+(k2+j)
for j ∈ {0, 1, . . . , k3}. Then

(k1 + k2) + k+
3 = ((k1 + k2) + k3)+ = (k1 + (k2 + k3))+ = k1 + (k2 + k3)+ = k1 + (k2 + k+

3 ),

where we have used the definition of addition, the induction hypothesis, and then twice used
the definition of addition.

(i) We first claim that 0 + k = k for all k ∈ N0. It is certainly true, by definition, that
0 + 0 = 0. Now suppose that 0 + j = j for j ∈ {0, 1, . . . , k}. Then

0 + k+ = 0 + (k + 1) = (0 + k) + 1 = k + 1 = k+.

We next claim that k+
1 + k2 = (k1 + k2)+ for k1, k2 ∈ N0. We prove this by induction on k2.

For k2 = 0 we have k+
1 + 0 = k+

1 and (k1 + 0)+ = k+
1 , using the definition of addition. This

gives the claim for k2 = 0. Now suppose that k+
1 + j = (k1 + j)+ for j ∈ {0, 1, . . . , k2}. Then

k+
1 + k+

2 = k+
1 + (k2 + 1) = (k+

1 + k2) + 1 = (k+
1 + k2)+,

as desired.
We now complete the proof of this part of the result by induction on k1. For k1 = 0 we

have 0 + k2 = k2 = k2 + 0, using the first of our claims above and the definition of addition.
Now suppose that j + k2 = k2 + j for j ∈ {0, 1, . . . , k1}. Then

k+
1 + k2 = (k1 + k2)+ = (k2 + k1)+ = k2 + k+

1 ,
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using the second or our claims above and the definition of addition.
(iii) This is part of the definition of addition.
(vii) We prove the this by induction on k2. First note that for k2 = 0 we have j · (k1 +0) =

j · k1 and j · k1 + j · 0 = j · k1 + 0 = j · k1, so the result holds when k2 = 0. Now suppose that
j · (k1 + k) = j · k1 + j · k for k ∈ {0, 1, . . . , k2}. Then we have

j · (k1 + k+
2 ) = j · (k1 + k2)+ = j · (k1 + k2) + j

= (j · k1 + j · k2) + j = j · k1 + (j · k2 + j)
= j · k1 + j · k+

2 ,

as desired, where we have used, in sequence, the definition of addition, the definition of mul-
tiplication, the induction hypothesis, the associativity of addition, and the definition of multi-
plication.

(iv) We first prove by induction on k that 0 · k = 0 for k ∈ N0. For k = 0 the claim holds
by definition of multiplication. So suppose that 0 · j = 0 for j ∈ {0, 1, . . . , k} and then compute
0 · k+ = 0 · k + 0 = 0, as desired.

We now prove the result by induction on k2. For k2 = 0 we have k1 · 0 = 0 by definition
of multiplication. We also have k2 · 0 = 0 by the first part of the proof. So now suppose that
k1 · j = j · k for j ∈ {0, 1, . . . , k2}. We then have

k1 · k+
2 = k1 · k2 + k1 = k2 · k1 + k1 = k1 + k2 · k1 = (1 + k2) · k1 = k+

2 · k1,

where we have used, in sequence, the definition of multiplication, the induction hypothesis,
commutativity of addition, distributivity, commutativity of addition, and the definition of
addition.

(v) We prove this part of the result by induction on k3. For k3 = 0 we have (k1 · k2) · 0 = 0
and k1 · (k2 · 0) = k1 · 0 = 0. Thus the result is true when k3 = 0. Now suppose that
(k1 · k2) · j = k1 · (k2 · j) for j ∈ {0, 1, . . . , k3}. Then

(k1 · k2) · k+
3 = (k1 · k2) · k3 + k1 · k2 = k1 · (k2 · k3) + k1 · k2 = k1 · (k2 · k3 + k2) = k1 · (k2 · k+

3 ),

where we have used, in sequence, the definition of multiplication, the induction hypothesis,
distributivity, and the definition of multiplication.

(vi) This follows from the definition of multiplication.
(viii) We prove the result by induction on k1. The result is obviously true for k2 = 0, so

suppose that jk1+l = jk1 · jl for l ∈ {1, . . . , k2}. Then

jk1+k+
2 = j(k1+k2)+ = jk1+k2 · j = jk1 · jk2 · j = jk1 · jk+

2 ,

as desired. �

1.4.2 Two relations on N0

Another property of the naturals that we would all agree they ought to have is an “order.”
Thus we should have a means of saying when one natural number is less than another. To
get started at this, we have the following result.

1.4.10 Lemma For j, k ∈ N0, exactly one of the following possibilities holds:

(i) j ⊂ k;

(ii) k ⊂ j;

(iii) j = k.
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Proof For k ∈ N0 define

S(k) = {j ∈ N | j ⊂ k, k ⊂ j, or j = k} .

We shall prove by induction that S(k) = N0 for each k ∈ N0.
First take the case of k = 0. Since ∅ is a subset of every set, 0 ∈ S(0). Now suppose that

j ∈ S(0) for j ∈ N0. We have the following cases.
1. j ∈ 0: This is impossible since 0 is the empty set.
2. 0 ∈ j: In this case 0 ∈ j+.
3. 0 = j: In this case 0 ∈ j+.

Thus j ∈ S(0) implies that j+ ∈ S(0), and so S(0) = N0.
Now suppose that S(m) = N0 for m ∈ {0, 1, . . . , k}. We will show that S(k+) = N0.

Clearly 0 ∈ S(k+). So suppose that j ∈ S(k+). We again have three cases.
1. j ∈ k+: We have the following two subcases.

(a) j = k: Here we have j+ = k+.
(b) j ∈ k: Since j+ ∈ S(k) by the induction hypothesis, we have the following three

cases.
i. k ∈ j+: This is impossible since j ∈ k.
ii. j+ ∈ k: Here j+ ∈ k+.
iii. j+ = k: Here again, j+ ∈ n+.

2. k+ ∈ j: In this case k+ ∈ j+.
3. k+ = j: In this case k+ ∈ j+.

In all cases we conclude that j+ ∈ S(k+), and this completes the proof. �

It is easy to show that j ∈ k if and only if j ⊂ k, and that, if j ∈ k but j 6= k, then j ( k
(see Exercise 1.4.2). With this result, it is now comparatively easy to prove the following.

1.4.11 Proposition (Order6 on N0) On N0 define two relations < and ≤ by

j < k ⇐⇒ j ( k,

j ≤ k ⇐⇒ j ⊂ k.

Then

(i) < and ≤ are transitive,

(ii) < is irreflexive;

(iii) ≤ is reflexive and antisymmetric.

Furthermore, for any j, k ∈ N0, either j ≤ k or k ≤ j.

The following rewording of the final part of the result is distinguished.

1.4.12 Corollary (Trichotomy Law for N0) For j, k ∈ N0, exactly one of the following possibilities
holds:

(i) j < k;

(ii) k < j;

(iii) j = k.

6We have not introduced the notion of order yet, but refer the reader to Section 1.5.
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Of course, the symbols “<” and “≤” have their usual meaning, which is “less than”
and “less than or equal to,” respectively. We shall explore such matters in more depth and
generality in Section 1.5.

We shall also sometimes write “j > k” (resp. “j ≥ k”) for “k < j” (resp. “k ≤ j”). The
symbols “>” and “≥” then have their usual meaning as “greater than” and “greater than
or equal to,” respectively.

The relations < and ≤ satisfy some natural properties with respect to addition and
multiplication in N0. Let us record these, leaving their proof as Exercise 1.4.3.

1.4.13 Proposition (Relation between addition and multiplication and <) For j, k, m ∈ N0, the
following statements hold:

(i) if j < k then j + m < k + m;

(ii) if j < k and if m 6= 0 then m · j < m · k.

1.4.3 Construction of the integers from the natural numbers

Next we construct negative numbers to arrive at a definition of the integers. The con-
struction renders the integers as the set of equivalence classes under a prescribed equivalence
relation in N0 × N0. The equivalence relation is defined formally as follows:

(j1, k1) ∼ (j2, k2) ⇐⇒ j1 + k2 = k1 + j2. (1.1)

It is a simple exercise to check that this is indeed an equivalence relation.
We now define the integers.

1.4.14 Definition (Integers) The set of integers is the set Z = (N0 × N0)/ ∼, where ∼ is the
equivalence relation in (1.1). •

Now let us try to understand this definition by understanding the equivalence classes
under the relation of (1.1). Key to this is the following result.

1.4.15 Lemma Let Z be the subset of N0 × N0 defined by

Z = {(k, 0) | k ∈ N} ∪ {(0, k) | k ∈ N} ∪ {(0, 0)},

and define a map fZ : Z → Z by fZ(j, k) = [(j, k)]. Then fZ is a bijection.

Proof First we show that fZ is injective. Suppose that fZ(j1, k1) = fZ(j2, k2). This means
that (j1, k1) ∼ (j2, k2), or that j1 + k2 = k1 + j2. If (j1, k1) = (0, 0), then this means that
k2 = j2, which means that (j2, k2) = (0, 0) since this is the only element of Z whose entries
agree. If j1 = 0 and k1 > 0, then we have k2 = k1 + j2. Since at least one of j2 and k2 must be
zero, we then deduce that it must be that j2 is zero (or else the equality k2 = k1 + j2) cannot
hold. This then also gives k2 = k1. A similar argument holds if j1 > 0 and k1 = 0. This shows
injectivity of fZ .

Next we show that fZ is surjective. Let [(j, k)] ∈ Z. By the Trichotomy Law, we have
three cases.

1. j = k: We claim that [(j, j)] = fZ(0, 0). Indeed, we need only note that (0, 0) ∼ (j, j)
since 0 + j = 0 + j.

2. j < k: Let m ∈ N be defined such that j + m = k. (Why can this be done?) We then
claim that fZ(0,m) = [(j, k)]. Indeed, since 0 + k = m + j, this is so.

3. k < j: Here we let m ∈ N satisfy k + m = j, and, as in the previous case, we can easily
check that fZ(m, 0) = [(j, k)]. �
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With this in mind, we introduce the following notation to denote an integer.

1.4.16 Notation (Notation for integers) Let [(j, k)] ∈ Z.

(i) If f−1
Z [(j, k)] = [(0, 0)] then we write [(j, k)] = 0.

(ii) If [(j, k)] = [(m, 0)], m > 0, then we write [(j, k)] = m. Such integers are positive .

(iii) If [(j, k)] = [(0, m)], m > 0, then we write [(j, k)] = −m. Such integers are negative .

An integer is nonnegative if it is either positive or zero, and an integer is nonpositive if
it is either negative or zero. •

This then relates the equivalence class definition of integers to the notion we are more
familiar with: positive and negative numbers. We can also define the familiar operations of
addition and multiplication of integers.

1.4.17 Definition (Addition and multiplication in Z) Define the operations of addition and
multiplication in Z by

(i) [(j1, k1)] + [(j2, k2)] = [(j1 + j2, k1 + k2)] and

(ii) [(j1, k1)] · [(j2, k2)] = [(j1 · j2 + k1 · k2, j1 · k2 + k1 · j2)],

respectively, for [(j1, k1)], [(j2, k2)] ∈ Z. As with multiplication in N0, we shall sometimes
omit the “·”. •

These definitions do not a priori make sense; this needs to be verified.

1.4.18 Lemma The definitions for addition and multiplication in Z a well-defined in that they do
not depend on the choice of representative.

Proof Let (j1, k1) ∼ (j̃1, k̃1) and (j2, k2) ∼ (j̃2, k̃2). Thus

j1 + k̃1 = k1 + j̃1, j2 + k̃2 = k2 + j̃2.

It therefore follows that

(j̃1 + j̃2) + (k1 + k2) = (k̃1 + k̃2) + (j1 + j2),

which gives the independence of addition on representative. One may also directly verify that

(j̃1 · j̃2 + k̃1 · k̃2) + (j1 · k2 + k1 · j2) = (j̃1 · k̃2 + k̃1 · j̃2) + (j1 · j2 + k1 · k2),

which gives the independence of multiplication on representative. �

As with elements of N0, we can define powers for integers. Let k ∈ Z and m ∈ N0. We
define km recursively as follows. We take k0 = 1 and define km+

= km · k. We call km the
mth power of k. Note that, at this point, km only makes sense for m ∈ N0.

Finally, we give the properties of addition and multiplication in Z. Some of these prop-
erties are as for N0. However, there is a useful new feature that arises in Z that mirrors our
experience with negative numbers. In the statement of the result, it is convenient to denote
an integer as in Notation 1.4.16, rather than as in the definition.

1.4.19 Proposition (Properties of addition and multiplication in Z) Addition and multiplication
in Z satisfy the following rules:

(i) k1 + k2 = k2 + k1, k1, k2 ∈ Z (commutativity of addition);

(ii) (k1 + k2) + k3 = k1 + (k2 + k3), k1, k2, k3 ∈ Z (associativity of addition);

(iii) k + 0 = k, k ∈ Z (additive identity);
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(iv) k + (−1 · k) = 0, k ∈ Z (additive inverse);

(v) k1 · k2 = k2 · k1, k1, k2 ∈ Z (commutativity of multiplication);

(vi) (k1 · k2) · k3 = k1 · (k2 · k3), k1, k2, k3 ∈ Z (associativity of multiplication);

(vii) k · 1 = k, k ∈ Z (multiplicative identity);

(viii) j · (k1 + k2) = j · k1 + j · k2, j, k1, k2 ∈ Z (distributivity);

(ix) jk1 · jk2 = jk1+k2, j ∈ Z, k1, k2 ∈ N0.

Moreover, if we define iN0 : N0 → Z by iN0(k) = [(k, 0)], then addition and multiplication in
Z agrees with that in N0:

iN0(k1) + iN0(k2) = iN0(k1 + k2), iN0(k1) · iN0(k2) = iN0(k1 · k2).

Proof These follow easily from the definitions of addition and multiplication, using the fact
that the corresponding properties hold for N0. We leave the details to the reader as Exer-
cise 1.4.4. We therefore only prove the new property (iv). For this, we suppose without loss of
generality that k ∈ N0, i.e., k = [(k, 0)]. Then −k = [(0, k)] so that

k + (−k) = [(k + 0, 0 + k)] = [(k, k)] = [(0, 0)] = 0,

as claimed. �

We shall make the convention that −1 · k be written as −k, whether k be positive or
negative. We shall also, particularly as we move along to things of more substance, think of
N0 as a subset of Z, without making explicit reference to the map iN0 .

1.4.4 Two relations in Z

Finally we introduce in Z two relations that extend the relations < and ≤ for N0. The
following result is the analogue of Proposition 1.4.11.

1.4.20 Proposition (Order on Z) On Z define two relations < and ≤ by

[(j1, k1)] < [(j2, k2)] ⇐⇒ j1 + k2 < k1 + j2,

[(j1, k1)] ≤ [(j2, k2)] ⇐⇒ j1 + k2 ≤ k1 + j2.

Thensindex ⇐⇒
=⇒

(i) < and ≤ are transitive,

(ii) < is irreflexive, and

(iii) ≤ is reflexive.

Furthermore, for any j, k ∈ Z, either j ≤ k or k ≤ j.

Proof First one must show that the relations are well-defined in that they do not depend on
the choice of representative. Thus let [(j1, k1)] ∼ [(j̃1, k̃1)] and [(j2, k2)] ∼ [(j̃2, k̃2)], so that

j1 + k̃1 = k1 + j̃1, j2 + k̃2 = k2 + j̃2.

Now suppose that the relation j1 + k2 < k1 + j2 holds. Now perform the following steps:
1. add j̃1 + k1 + j2 + k̃2 + j1 + k̃1 + k2 + j̃2 to both sides of the relation;
2. observe that j1 + k2 + k1 + j2 appears on both sides of the relation;
3. observe that j1 + k̃1 appears on one side of the relation and that j̃1 + k1 appears on the

other;
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4. observe that k2 + j̃2 appears on one side of the relation and that j2 + k̃2 appears on the
other.

After simplification using the above observations, and using Proposition 1.4.13, we note that
the relation j̃1 + k̃2 < k̃1 + j̃2 holds, which gives independence of the definition of < on the
choice of representative. The same argument works for the relation ≤.

The remainder of the proof follows in a fairly straightforward manner from the correspond-
ing assertions for N0, and we leave the details to the reader as Exercise 1.4.6. �

As with the natural numbers, the last assertion of the previous result has a standard
restatement.

1.4.21 Corollary (Trichotomy Law for Z) For j, k ∈ Z, exactly one of the following possibilities
holds:

(i) j < k;

(ii) k < j;

(iii) j = k.

Similarly with N0, we shall also write “j > k” for “k < j” and “j ≥ k” for “k ≤ j. It
is also easy to directly verify that the relations < and ≤ have the expected properties with
respect to positive and negative integers. These are given in Exercise 1.4.7, for the interested
reader.

We also have the following extension of Proposition 1.4.13 that relates addition and
multiplication to the relations < and ≤. We again leave these to the reader to verify in
Exercise 1.4.8.

1.4.22 Proposition (Relation between addition and multiplication and <) For j, k, m ∈ Z, the
following statements hold:

(i) if j < k then j + m < k + m;

(ii) if j < k and if m > 0 then m · j < m · k;
(iii) if j < k and if m < 0 then m · k < m · j;
(iv) if 0 < j, k then 0 < j · k.

1.4.5 The absolute value function

On the set of integers there is an important map that assigns a nonnegative integer to
each integer.

1.4.23 Definition (Integer absolute value function) The absolute value function on Z is the
map from Z to N0, denoted by k 7→ |k|, defined by

|k| =


k, 0 < k,

0, k = 0,

−k, k < 0.

•

The absolute value has the following properties.

1.4.24 Proposition (Properties of absolute value on Z) The following statements hold:

(i) |k| ≥ 0 for all k ∈ Z;

(ii) |k| = 0 if and only if k = 0;
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(iii) |j · k| = |j| · |k| for all j, k ∈ Z;

(iv) |j + k| ≤ |j|+ |k| for all j, k ∈ Z (triangle inequality).

Proof Parts (i) and (ii) follow directly from the definition of |·|.
(iii) We first note that |−k| = |k| for all k ∈ Z. Now, if 0 ≤ j, k, then the result is clear. If

j < 0 and k ≥ 0, then

|j · k| = |−1 · (−j) · k| = |(−j) · k| = |−j| · |k| = |j| · |k| .

A similar argument hold when k < 0 and j ≥ 0.
(iv) We consider various cases.

1. |j| ≤ |k|:
(a) 0 ≥ j, k: Here |j + k| = j + k, and |j| = j and |k| = k. So the result is obvious.
(b) j < 0, k ≥ 0: Here one can easily argue, using the definition of addition, that

0 < j + k. From Proposition 1.4.22 we have j + k < 0 + k = k. Therefore, |j + k| <
|k| < |j|+ |k|, again by Proposition 1.4.22.

(c) k < 0, j ≥ 0: This follows as in the preceding case, swapping j and k.
(d) j, k < 0: Here |j + k| = |−j + (−k)| = |−(j + k)| = −(j + k), and |j| = −j and

|k| = −k, so the result follows immediately.
2. |k| ≤ |j|: The argument here is the same as the preceding one, but swapping j and k. �

Exercises

1.4.1 Let k ∈ N. Show that k ⊂ N; thus k is both an element of N and a subset of N.

1.4.2 Let j, k ∈ N0. Do the following:

(a) show that j ∈ k if and only if j ⊂ k;

(b) show that if j ( k, then k 6∈ j (and so j ∈ k by the Trichotomy Law).

1.4.3 Prove Proposition 1.4.13.

1.4.4 Complete the proof of Proposition 1.4.19.

1.4.5 For j1, j2, k ∈ Z, prove the distributive rule (j1 + j2) · k = j1 · k + j2 · k.

1.4.6 Complete the proof of Proposition 1.4.20.

1.4.7 Show that the relations < and ≤ on Z have the following properties:

1. [(0, j)] < [(0, 0)] for all j ∈ N;

2. [(0, j)] < [(k, 0)] for all j, k ∈ N;

3. [(0, j)] < [(0, k)], j, k,∈ N0, if and only if k < j;

4. [(0, 0)] < [(j, 0)] for all j ∈ N;

5. [(j, 0)] < [(k, 0)], j, k ∈ N0, if and only if j < k;

6. [(0, j)] ≤ [(0, 0)] for all j ∈ N0;

7. [(0, j)] ≤ [(k, 0)] for all j, k ∈ N0;

8. [(0, j)] ≤ [(0, k)], j, k,∈ N0, if and only if k ≤ j;

9. [(0, 0)] ≤ [(j, 0)] for all j ∈ N0;

10. [(j, 0)] ≤ [(k, 0)], j, k ∈ N0, if and only if j ≤ k.

1.4.8 Prove Proposition 1.4.22.
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Section 1.5

Orders of various sorts

In Section 1.4 we defined two relations, denoted by < and ≤, on both N0 and Z. Here we
see that these relations have additional properties that fall into a general class of relations
called orders. There are various classes or orders, having varying degrees of “strictness,” as
we shall see.

Do I need to read this section? Much of the material in this section is not used widely in
the series, so perhaps can be overlooked until it is needed. •

1.5.1 Definitions

Let us begin by defining the various types of orders we consider.

1.5.1 Definition (Partial order, total order, well order) Let S be a set and let R be a relation
in S.

(i) R is a partial order in S if it is reflexive, transitive, and antisymmetric.

(ii) A partially ordered set is a pair (S, R) where R is a partial order in S.

(iii) R is a strict partial order in S if it is irreflexive and transitive.

(iv) A strictly partially ordered set is a pair (S, R) where R is a strict partial order in
S.

(v) R is a total order in S if it is a partial order and if, for each x1, x2 ∈ S, either
(x1, x2) ∈ R or (x2, x1) ∈ R.

(vi) A totally ordered set is a pair (S, R) where R is a total order in S.

(vii) R is a well order in S if it is a partial order and if, for every nonempty subset A ⊂ S,
there exists an element x ∈ A such that (x, x′) ∈ R for every x′ ∈ A.

(viii) A well ordered set is a pair (S, R) where R is a well order in S. •

1.5.2 Remark (Mathematical structures as ordered pairs) In the preceding definitions we see
four instances of an “X set,” where X is some property, e.g., a partial order. In such cases,
it is common practice to do as we have done and write the object as an ordered pair, in the
cases above, as (S, R). The practice dictates that the first element in the ordered pair be
the name of the set, and that the second specifies the structure.

In many cases one simply wishes to refer to the set, with the structure being understood.
For example, one might say, “Consider the partially ordered set S. . . ” and not make explicit
reference to the partial order. Both pieces of language are in common use by mathematicians,
and in mathematical texts. •

Let us consider some simple examples of partial and strict partial orders.

1.5.3 Examples (Partial orders)

1. Consider the relation R = {(k1, k2) | k1 ≤ k2} in either N0 or Z. Then one verifies that
R is a partial order. In fact, it is both a total order and a well order.

2. Consider the relation R = {(k1, k2) | k1 ≤ k2} in either N0 or Z. Here one can verify
that R is a strict partial order.
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3. Let S be a set and consider the relation R in 2S defined by R = {(A, B) | A ⊂ B}. Here
one can see that R is a partial order, but it is generally neither a total order nor a well
order (cf. Exercise 1.5.2).

4. Let S be a set and consider the relation R in 2S defined by R = {(A, B) | A ( B}. In
this case R can be verified to be a strict partial order.

5. A well order R is a total order. Indeed, for (x1, x2) ∈ R, there exists an element x ∈
{x1, x2} such that (x, x′) ∈ R for every x′ ∈ {x1, x2}. But this implies that either
(x1, x2) ∈ R or (x2, x1) ∈ R, meaning that R is a total order. •

Motivated by the first and second of these examples, we utilise the following more or less
commonplace notation for partial orders.

1.5.4 Notation (� and ≺) If R is a partial order in S, we shall normally write x1 � x2 for
(x1, x2) ∈ R, and shall refer to � as the partial order. In like manner, if R is a strict partial
order in S, we shall write x1 ≺ x2 for (x1, x2) ∈ R. We shall also use x1 � x2 and x1 � x2

to stand for x2 � x1 and x2 ≺ x1, respectively. •

There is a natural way of associating to every partial order a strict partial order, and
vice versa.

1.5.5 Proposition (Relationship between partial and strict partial orders) Let S be a set.

(i) If � is a partial order in S, then the relation ≺ defined by

x1 ≺ x2 ⇐⇒ x1 � x2 and x1 6= x2

is a strict partial order in S.

(ii) If ≺ is a strict partial order in S, then the relation � defined by

x1 � x2 ⇐⇒ x1 ≺ x2 or x1 = x2

is a partial order in S.

Proof This is a straightforward matter of verifying that the definitions are satisfied. �

When talking about a partial order �, the symbol ≺ will always refer to the strict
partial order as in part (i) of the preceding result. Similarly, given a strict partial order ≺,
the symbol � will always refer to the partial order as in part (ii) of the preceding result.

1.5.6 Examples (Example 1.5.3 cont’d)

1. One can readily verify that < is the strict partial order associated with the partial order
≤ in either N0 or Z, and that ≤ is the partial order associated to <.

2. It is also easy to verify that, for a set S, ( is the strict partial order in 2S associated to
the partial order ⊂, and that ⊂ is the partial order associated to (. •

1.5.2 Subsets of partially ordered sets

Surrounding subsets of a partially ordered set (S,�) there is some useful language. For
the following definition, it is helpful to think of an order, be it partial, strictly partial, or
whatever, as a relation, and to use the notation of a relation. Thus we refer to an order as
R, and not as �.
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1.5.7 Definition (Restriction of an order) Let S be a set and let R be a partial order, (resp. strict
partial order, total order, well order) in S. For a subset T ⊂ S, the restriction of R to T
is the partial order (resp. strict partial order, total order, well order) in T defined by

R|T = R ∩ {(x1, x2) ∈ S × S | x1, x2 ∈ T} . •

It is a trivial matter to see that if R is an order, then its restriction to T is an order
having the same properties as R, as is tacitly assumed in the definition. The notion of the
restriction of an order allows us to talk unambiguously about the order on a subset of a
given set, and we shall do this freely in this section.

Since most of this section is language, let us begin with some simple language associated
with points.

1.5.8 Definition (Comparing elements in a partially ordered set) Let (S,�) be a partially
ordered set.

(i) A point x1 ∈ S is less than or smaller than x2, or equivalently is a predecessor of
x2, if x1 � x2.

(ii) A point x1 ∈ S is greater than or larger than x2, or equivalently is a successor of
x2, if x1 � x2.

(iii) A point x′ is between x1 and x2 if x1 � x′ and if x′ � x2.

Similarly, let (S,≺) be a strictly partially ordered set.

(iv) A point x1 ∈ S is strictly less than or strictly smaller than x2, or equivalently is
a strict predecessor of x2, if x1 ≺ x2.

(v) A point x1 ∈ S is strictly greater than or strictly larger than x2, or equivalently
is a strict successor of x2, if x1 � x2.

(vi) A point x′ is strictly between x1 and x2 if x1 ≺ x′ and if x′ ≺ x2.

(vii) If x1 < x2 and there exists no x′ ∈ S that is strictly between x1 and x2, then x1 is the
immediate predecessor of x2. •

Next we talk about some language attached to subsets of a partially ordered set.

1.5.9 Definition (Segment, least, greatest, minimal, maximal) Let (S,�) be a partially ordered
set.

(i) The initial segment determined by x ∈ S is the set seg(x) = {x′ ∈ S | x′ � S}.
(ii) A least , smallest , or first element in S is an element x ∈ S with the property that

x � x′ for every x′ ∈ S.

(iii) A greatest , largest , or last element in S is an element x ∈ S with the property that
x′ � x for every x′ ∈ S.

(iv) A minimal element of S is an element x ∈ S with the property that x � x′ implies
that x′ = x.

(v) A maximal element of S is an element x ∈ S with the property that x ≺ x′ implies
that x′ = x.

Now let (S,�) be a partially ordered set.

(vi) The strict initial segment determined by x ∈ S is the set seg(x) =
{x′ ∈ S | x′ ≺ S}. •



36 1 Set theory and terminology 06/10/2005

The least and greatest elements of a set, if they exist, are unique. This is easy to prove
(Exercise 1.5.4).

Let us give an example that distinguishes between least and minimal.

1.5.10 Example (Least and minimal are different) Let S be a set and consider the partially
ordered set (2S \ ∅,⊂). Then any singleton is a minimal element of 2S \ ∅. However, unless
S is itself a set with only one member, then 2S has no least element, i.e., there is no subset
which is contained in every other subset. •

Next we turn to two important concepts related to partial orders.

1.5.11 Definition (Greatest lower bound and least upper bound) Let (S,�) be a partially ordered
set and let A ⊂ S.

(i) An element x ∈ S is a lower bound for A if x � x′ for every x′ ∈ A.

(ii) An element x ∈ S is an upper bound for A if x′ � x for every x′ ∈ A.

(iii) If, in the set of lower bounds for A, there is a greatest element, this is the greatest
lower bound , or the infimum , of E. This is denoted by inf(A).

(iv) If, in the set of upper bounds for A, there is a least element, this is the least upper
bound , or the supremum , of E. This is denoted by sup(A).

Now let (S,≺) be a strictly partially ordered set and let A ⊂ S.

(v) An element x ∈ S is a strict lower bound for A if x ≺ x′ for every x′ ∈ A.

(vi) An element x ∈ S is a strict upper bound for A if x′ ≺ x for every x′ ∈ A. •

Let us give some examples that illustrate the various possibilities arising from the pre-
ceding definitions. The examples will be given for lower bounds, but similar examples can
be conjured to give similar conclusions for upper bounds.

1.5.12 Examples (Greatest lower bounds)

1. A subset A ⊂ S may have no lower bounds. For example, the set of negative integers
has no lower bound if we use the standard partial order in Z.

2. A subset A ⊂ S may have a greatest lower bound in A. For example, the set of nonneg-
ative integers has as lower bounds all nonpositive integers. The greatest of these lower
bounds is 0, which is itself a nonnegative integer.

3. A subset A ⊂ S may have a greatest lower bound that is not an element of A. To see
this, let S be the set of nonpositive integers, let A be the set of negative integers, and
define a partial order � in S by

k1 � k2 ⇐⇒


k1 ≤ k2, k1, k2 ∈ A, or

k1 = k2 = 0, or

k1 = 0, k2 ∈ A.

Thus this is the usual partial order in A ⊂ S, and one declares 0 to be less than all
elements of A. In this case, 0 is the only lower bound for A, and so is, therefore, the
greatest lower bound. But 0 6∈ A. •
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1.5.3 Zorn’s Lemma

Zorn’s7 Lemma comes up frequently in mathematics during the course of nonconstructive
existence proofs. Since some of these proofs appear in this series and are important, we state
Zorn’s Lemma.

1.5.13 Theorem (Zorn’s Lemma) Every partially ordered set (S,�) in which every totally ordered
subset has an upper bound contains at least one maximal member.

Proof Suppose that every totally ordered subset has an upper bound, but that S has no
maximal member. By assumption, if A ⊂ S is a totally ordered subset, then there exists an
upper bound x for A. Since S has no maximal element, there exists x′ ∈ S such that x < x′.
Therefore, x′ is a strict upper bound for A. Thus we have shown that every totally ordered
subset possesses a strict upper bound. Let b be a function from the collection of totally ordered
subsets into S having the property that b(A) is a strict upper bound for A.8

A b-set is a subset B of S that is well ordered and has the property that, for every x ∈ B,
we have x = b(segB(x)), where segB(x) denotes the strict initial segment of x in B.

1 Lemma If B1 and B2 are unequal b-sets, then one of the following statements holds:
(i) there exists x1 ∈ B1 such that B2 = segB1

(x1);
(ii) there exists x2 ∈ B2 such that B1 = segB2

(x2).

Proof If B2 ( B1, then we claim that (i) holds. Take x1 to be the least member of B1 − B2.
We claim that B2 = segB1

(x1). First of all, if x ∈ B2, then x < x1 since x1 is the least member
of B1 − B2. Therefore, B2 ⊂ segB1

(x1). Now suppose that segB1
(x1) − B2 6= ∅, and let x be

the least member of this set. Note that for any x′ ∈ B2 we therefore have x′ < x, contradicting
the fact that x1 is the least member of B1 −B2. Thus we must have segB1

(x1)−B2 = ∅, and
so B2 = segB1

(x1).
We now suppose that B2−B1 6= ∅. Let x2 be the least member of B2−B1. If x ∈ segB2

(x2)
then x < x2 and x must therefore be an element of B1, or else this contradicts the definition
of x2. Now suppose that B1 \ segB2

(x2) 6= ∅ and let y1 be the least member of this set. If
y ∈ segB1

(y1) and y′ ∈ B2 satisfies y′ < y, then y′ ∈ segB1
(y1). If z is the least member of

B2 \ segB1
(y1), we then have segB2

(z) = segB1
(y1). Therefore

z = b(segB2
(z)) = b(segB1

(y1)) = y1.

Since y1 ∈ B1, z = y1 6= x2. Since z ≤ x2, it follows that z < x2. Thus y1 = z ∈ segB2(x2).
This, however, contradicts the choice of y1, so we conclude that B1 \ segB2

(x2) = ∅, and so
that B1 = segB2

(x2). Thus (ii) holds.
A swapping of the rôles of B1 and B2 will complete the proof. H

2 Lemma The union of all b-sets is a b-set.

Proof Let U denote the union of all b-sets. First we must show that U is well ordered. Let
A ⊂ U and let x ∈ A. Then there is a b-set B such that x ∈ B. We claim that segA(x) ⊂ B.
Indeed, if x′ < x then, by Lemma 1, either x′ ∈ B or x′ does not lie in any b-set. Since A lies
in the union of all b-sets, it must be the case that x′ ∈ B. Thus segA(x) is a subset of the well
ordered set B, and as such has a least element x0. This is clearly also a least element for A,
so U is well ordered.

Next, let x ∈ U and let B be a b-set such that x ∈ B. Our above argument shows that
segU (x) ⊂ B so that segU (x) = segB(x). Therefore, x = b(segB(x)) = b(segU (x)). This
completes the proof. H

7Max August Zorn (1906–1993) was a German mathematician who did work in the areas of set theory,
algebra, and topology.

8The existence of the function b relies on the Axiom of Choice (see Section 1.8.3).
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To complete the proof, let U be the union of all b-sets and let x = b(U). Then we claim
that U ∪{x} is a b-set. That U ∪{x} is well ordered follows since U is well ordered and since x
is an upper bound for U . Since U is the union of all b-sets, it must hold that x ∈ U . However,
this contradicts the fact that x is a strict upper bound for U . �

1.5.4 Induction and recursion

In some of the proofs we have given in this section, and in our definition of N0, we have
used the idea of induction. This idea is an eminently reasonable one. One starts with a fact
or a definition that applies to the element 0 ∈ N0, and a rule for extending this from the
jth number to the (j + 1)st number, and then asserts that the fact or definition applies to
all elements of N0. In this section we formulate this principle in a more general setting that
the set N0, namely for a well ordered set.

Since the result will have to do with a property being true for the elements of a well
ordered set, let us formally say that a property defined in a set S is a map P : S →
{true, false}. A property is true , or holds, at x if P (x) = true.

1.5.14 Theorem (Principle of Transfinite Induction) Let (W,�) be a well ordered set and let P
be a property defined in W. Suppose that, for every w ∈ W, the fact that P(w′) is true for
every w′ ≺ w implies that P(w) is true. Then P(w) is true for every w ∈ W.

Proof Suppose that the hypothesis is true, but the conclusion is false. Then

F = {w ∈ W | P (w) = false} 6= ∅.

Let w be the least element of F Therefore, for w′ < w it must hold that P (w′) = true. But
then the hypotheses imply that P (w) = true, so that w ∈ W \ F . This is a contradiction. �

Next we turn to the process of defining something using recursion. As we did for induc-
tion, let us first consider doing this for N0. What we wish to define is a map f : N0 → S.
The idea for doing this is that, if, for each k ∈ N0, one knows the value of f on the first k
elements of N0, and if one knows a rule for then giving the value of f at k + 1, then the f
extends uniquely to a function on all of N0. To give a concrete example, if S = Z and if we
define f(k + 1) = 2 · f(k), then the resulting function f : N0 → Z is determined by its value
at 0: f(k) = 2k · f(0).

To state the general theorem requires some notation. We let W be a well ordered set
and let S be a set. For w ∈ W , we let seqS(w) be the set of maps from seg(w) into S. We
then let SeqS(W ) be the set of all maps of the form g : seqS(w) → S. The idea is that an
element of SS(W ) tells us how to extend a map from seg(w) to give its value at w.

The desired result is now the following.

1.5.15 Theorem (Transfinite recursion) Let (W,�) be a well ordered set and let S be a set. Given
a member g ∈ SeqS(W), there exists a unique map fg : W → S such that fg(w) = g(f| seg(w)).

Proof That there can be only one map fg as in the theorem statement follows from the
Principle of Transfinite Induction (take P (w) = true if and only if fg(w) = g(fg| seg(w))).

So we shall prove the existence of fg. Define

Cg = {A ⊂ W × S|
w ∈ W , h ∈ seqS(w), (w′, h(w′)) ∈ A for all w′ ∈ seg(w) =⇒ (w, g(h)) ∈ A}.

Note that W × S ∈ Cg, so that Cg is not empty. It is easy to check that the intersection of
members of Cg is also a member of Cg. Therefore we let Fg = ∩A∈CgA, and note that Fg ∈ Cg.
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We shall show that Fg is the graph of a function fg that satisfies the conditions in the theorem
statement.

First we need to show that, for each w ∈ W , there exists exactly one x ∈ S such that
(w, x) ∈ Fg. Define

Ag = {w ∈ W | there exists exactly one x ∈ S such that (w, x) ∈ Fg} .

For w ∈ W , we claim that if seg(w) ⊂ Ag, then w ∈ Ag. Indeed, if seg(w) ⊂ Ag, define
h ∈ seqS(w) by h(w′) = x′ where x′ ∈ S is the unique element such that (w′, x′) ∈ Ag. Since
Fg ∈ Cg, there exists some x ∈ S such that (w, x) ∈ Fg. Suppose that x 6= g(h). We claim
that Fg −{(w, x)} ∈ Cg. Let w′ ∈ W and let h′ ∈ segS(w′) satisfy (w′′, h′(w′′)) ∈ Fg −{(w, x)}
for all w′′ ∈ seg(w′). If w′ = w then h′ = h by the uniqueness assertion of the theorem, and
therefore (w′, g(h′)) ∈ Fg − {(w, x)} since x 6= g(h) = g(h′). On the other hand, if w′ 6= w
then (w′, g(h′)) ∈ Fg−{(w, x)} since Fg ∈ Cg. Thus, indeed, Fg−{(w, x)} ∈ Cg, contradicting
the fact that Fg is the intersection of all sets in Cg. Thus we can conclude that x = g(h), and
therefore that there is exactly one x ∈ S such that (w, x) ∈ Fg. By the Principle of Transfinite
Induction, we can then conclude that for every w ∈ W , there is exactly one x ∈ S such that
(w, x) ∈ Fg. Thus Fg is the graph of a map fg : W → S.

It remains to verify that fg(w) = g(fg| seg(w)). This, however, follows easily from the
definition of Fg. �

One of the features of transfinite induction and transfinite recursion that requires some
getting used to is that, unlike the usual induction with natural numbers as the well ordered
set, one does not begin the induction or recursion by starting at 0 (or, in the case of a
well ordered set, the least element), and proceeding element by element. Rather, one deals
with initial segments. The reason for this is that in a well ordered set one may not have an
immediate predecessor for every element, so that cannot be part of the induction/recursion;
so the initial segment serves this purpose instead.

1.5.5 Zermelo’s Well Ordering Theorem

The final topic in this section is a somewhat counterintuitive one. It says that every set
possesses as well order.

1.5.16 Theorem (Zermelo’s9 Well Ordering Theorem) For every set S, there is a well order in
S.

Proof Define

W = {(W,�W ) | W ⊂ S and �W is a well order on W} .

Since ∅ ∈ W , W is nonempty. Define a partial order � on W by

W1 � W2 ⇐⇒ W2 is similar to a segment of W1.

Suppose that T is a totally ordered subset of W .

1 Lemma The set ∪A∈T A has a unique well ordering, denoted by ., such that A′ . ∪A∈T for
all A′ ∈ T .
Proof Let x1, x2 ∈ ∪A∈T A, and let W1,W2 ∈ T have the property that x1 ∈ W1 and x2 ∈ W2.
Note that since either W1 = W2, W1 � W2, or W2 � W1, it must be the case that x1 and x2

lie in the same set from C , let us call this W . The order in ∪A∈T A is then defined by giving
to the points x1 and x2 their order in W . This is unambiguous since T is totally ordered. It
is then a simple exercise, left to the reader, that this is a well order. H

9Ernst Friedrich Ferdinand Zermelo (1871–1953) was a German mathematician whose mathematical
contributions were mainly in the area of set theory.
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The lemma ensures that the hypotheses of Zorn’s Lemma apply to the totally ordered
subsets of W , and therefore the conclusions of Zorn’s Lemma ensure that there is a maximal
element W in W . We claim that this maximal element is S. Suppose this is not the case,
and that x ∈ S − W . We claim that W ∪ {x} ∈ W . To see this, simply define a well order
on W ∪ {x} by asking that points in W have their usual order, and that x be greater that all
points in W . The result is easily verified to be a well order on W ∪ {x}, so contradiction the
maximality of W . This completes the proof. �

It might be surprising that it should be possible to well order any set. A well order
can be thought of as allowing an arranging of the elements in a set, starting from the least
element, and moving upwards in order:

x0 < x1 < x2 < · · · .

The complicated thing to understand here are the “· · · ,” since they only mean “and so
on” with an appropriate interpretation of these words (this is entirely related to the idea
of ordinal numbers discussed in Section 1.7.1). As an example, the reader might want to
imagine trying to order the real numbers (which we define in Section 2.1). It might seem
absurd that it is possible to well order the real numbers. However, this is one of the many
counterintuitive consequences arising from set theory, in this case directly related to the
Axiom of Choice (Section 1.8.3).

1.5.6 Similarity

Between partially ordered sets, there are classes of maps that are distinguished by their
preserving of the order relation. In this section we look into these and some of their prop-
erties, particularly with respect to well orders.

1.5.17 Definition (Similarity) If (S,�S) and (T,�T ) are partially ordered sets, a bijection f : S →
T is a similarity , and (S,�S) and (T,�T ) are said to be similar , if f(x1) �T f(x2) if and
only if x1 �S x2. •

Now we prove a few results relating to similarities between well ordered sets. These shall
be useful in our discussion or ordinal numbers in Section 1.7.1.

1.5.18 Proposition (Similarities of a well ordered set with itself) If (S,�) is a well ordered set
and if f : S → S is a similarity, then x � f(x) for each x ∈ S.

Proof Define A = {x ∈ S | f(x) ≺ x} and let x be the least element of A. Then, for any
x′ < x, we have x/ � f(x′). In particular, f(x) � f ◦f(x). But f(x) < x implies that
f ◦f(x) < f(x), giving a contradiction. Thus A = ∅. �

1.5.19 Proposition (Well ordered sets are similar in at most one way) If f, g : S → T are
similarities between well ordered sets (S,�S) and (T,�T), then f = g.

Proof Let h = f−1 ◦g, and note that h is a similarity from S to itself. By Proposition 1.5.18
this implies that x �S h(x) for each x ∈ S. Thus

x �S f−1 ◦g(x), x ∈ S

=⇒ f(x) �T g(x), x ∈ S.

Reversing the argument gives g(x) �T f(x) for every x ∈ S. This gives the result. �

1.5.20 Proposition (Well ordered sets are not similar to their segments) If (S,≺) is a well
ordered set and if x ∈ S, then S is not similar to seg(x).
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Proof If f(x) ∈ seg(x) then f(x) < x, contradiction Proposition 1.5.18. �

The final result is the deepest of the results we give here, because it gives a rather simple
structure to the collection of all well ordered sets.

1.5.21 Proposition (Comparing well ordered sets) If (S,�S) and (T,�T) are well ordered sets,
then one of the following statements holds:

(i) S and T are similar;

(ii) there exists x ∈ S such that seg(x) and T are similar;

(iii) there exists y ∈ T such that seg(y) and S are similar.

Proof Define

S0 = {x ∈ S | there exists y ∈ T such that seg(x) is similar to seg(y)} ,

noting that S0 is nonempty, since the segment of the least element in S is similar to the segment
of the least element in T . Define f : S0 → T by f(x) = y where seg(x) is similar to seg(y). Note
that this uniquely defines f by Propositions 1.5.19 and 1.5.20. We then take T0 = image(f).
If S0 = S, then the result immediately follows. If S0 ( S, then we claim that S0 = seg(x0)
for some x0 ∈ S. Indeed, we simply take x0 to be the least strict upper bound for S0, and
then apply the definition of S0 to see that S0 = seg(x0). We next claim that T0 = T . Indeed,
suppose that T0 ( T , let y0 be the least strict upper bound for T0, and let x0 be the least
strict upper bound for S0. We claim that seg(x0) is similar to seg(y0). Indeed, if this is not
the case, then there exists y < y0 such that seg(y) is not similar to a segment in S. However,
this contradicts the definition of T0. �

Exercises

1.5.1 Show that any set S possesses a partial order.

1.5.2 Give conditions on S under which the partial order ⊂ on 2S is

(a) a total order or

(b) a well-order.

1.5.3 Given two partially ordered sets (S,�S) and (T,�T ), we define a relation �S×T in
S × T by

(x1, y1) �S×T (x2, y2) ⇐⇒ (x1 ≺S x2) or (x1 = x2 and y1 �T y2).

This is called the lexicographic order on S × T . Show the following:

(a) the lexicographic order is a partial order;

(b) if �S and �T are total orders, then the lexicographic order is a total order.

1.5.4 Show that a partially ordered set (S,�) possesses at most one least element and/or
at most one greatest element.
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Section 1.6

Families of sets and elements of sets

In this section we discuss general collections of sets, and general collections of members
of sets. In Section 1.1.3 we considered Cartesian products of a finite collection of sets. In
this section, we wish to extend this to allow for an arbitrary collection of sets. The often
used idea of an index set is introduced here, and will come up on many occasions in the text.

Do I need to read this section? The idea of a general family of sets, and notions related
to it, do not arise in a lot of places in these volumes. But they do arise. The ideas here are
simple, and so perhaps can be read through. But the reader in a rush can skip the material,
knowing they can look back on it if necessary. •

1.6.1 General Cartesian products

Before giving general definitions, it pays to revisit the idea of the Cartesian product
S1 × S2 of sets S1 and S2 as defined in Section 1.1.3 (the reason for our change from S and
T to S1 and S2 will become clear shortly). Let A = {1, 2}, and let f : A → S1∪S2 be a map
satisfying f(1) ∈ S1 and f(2) ∈ S2. Then (f(1), f(2)) ∈ S1 × S2. Conversely, given a point
(x1, x2) ∈ S1×S2, we define a map f : A → S1∪S2 by f(1) = x1 and f(2) = x2, noting that
f(1) ∈ S1 and f(2) ∈ S2.

The punchline is that, for a pair of sets S1 and S2, their Cartesian product is in 1–
1 correspondence with maps f from A = {1, 2} to S1∪S1 having the property that f(x1) ∈ S1

and f(x2) ∈ S2. There are two things to note here: (1) the use of the set A to label the sets
S1 and S2 and (2) the alternative characterisation of the Cartesian product.

The preceding discussion motivates the following definitions.

1.6.1 Definition (Family of sets) Let A be a set. A family of sets with index set A is a
collection of sets, one associated to each member of A. The set associated to a ∈ A is
typically denoted by Sa, and the collection is denoted by {Sa}a∈A. •

Thus a family of sets is nothing more than what we have been referring to previously
as a “collection” of sets. The difference now is that we are using a separate set, the index
set, to label the sets. In practice, this is typically convenient. In this case, one also uses the
notation ∪a∈ASa and ∩a∈ASa to denote the union and intersection of a family of sets indexed
by A. Similarly, when considering the disjoint union of a family of sets indexed by A, we
define this to be

◦
∪a∈ASa = ∪a∈A({a} × Sa).

Thus an element in the disjoint union has the form (a, x) where x ∈ Sa. Just as with the
disjoint union of a pair of sets, the disjoint union of a family of sets keeps track of the set
that element belongs to, now labelled by the index set A, along with the element. A family
of sets {Sa}a∈A is pairwise disjoint if, for every distinct a1, a2 ∈ A, Sa1 ∩ Sa2 = ∅.

Often when one writes {Sa}a∈A, one omits saying that the family is “indexed by A,” this
being understood from the notation. Moreover, many authors will say things like, “Consider
the family of sets {Sa},” so omitting any reference to the index set. In such cases, the index
set is usually understood (often it is N). However, we shall not use this notation, and will
always give a symbol for the index set.
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Next we generalise the Cartesian product to families of sets.

1.6.2 Definition (Cartesian product) The Cartesian product of a family of sets {Sa}a∈A is the
set ∏

a∈A

Sa = {f : A → ∪a∈ASa | f(a) ∈ Sa} . •

Note that the analogue to the ordered pair in a general Cartesian product is simply the
set f(A) for some f ∈ ∏

a∈A Sa. The reader should convince themselves that this is indeed
the appropriate generalisation.

1.6.2 Sequences and generalisations

In this section we fix a set S and we consider collections of elements in S.

1.6.3 Definition (Families of elements of a set, sequence, subsequence) Let A and S be sets.

(i) A family of elements of S with index set A is a map f : A → S. A family
f : A → S of elements of S is typically denoted by {f(a)}a∈A, or simply by {xa}a∈A.

(ii) If A = N, a family {xj}j∈N is a sequence in S.

(iii) A subsequence of a sequence {xj}j∈N in S is a map f : A → S where

(a) A ⊂ N is a nonempty set with no upper bound and

(b) f(k) = xk for all k ∈ A.

If the elements in the set A are ordered as j1 < j2 < j3 < · · · , then the subsequence
may be written as {xjk

}k∈N. •

As with families of sets, it is not uncommon to see a family of elements of a set simply
denoted by {xa}, with no reference to the index set. Again, we shall not adopt this notation,
preferring to always name the index set.

Exercises

1.6.1
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Section 1.7

Ordinal numbers, cardinal numbers, cardinality

The notion of cardinality has to do with the “size” of a set. For sets with finite numbers
of elements, there is no problem with “size.” For example, it is clear what it means for one
set with a finite number of elements to be “larger” or “smaller” than another set with a
finite number of elements. However, for sets with infinite numbers of elements, can one be
larger than another? If so, how can this be decided? In this section we see that there is a
set, called the cardinal numbers, which exactly characterises the “size” of all sets, just as
natural numbers characterise the “size” if finite sets.

Do I need to read this section? The material in this section is used only slightly, so it can
be thought of as “cultural,” and hopefully interesting. Certainly the details of constructing
the ordinal numbers, and then the cardinal numbers, plays no essential rôle in these volumes.
The idea of cardinality comes up, but only in the simple sense of Theorem 1.7.12. •

1.7.1 Ordinal numbers

Ordinal numbers generalise the natural numbers. Recall from Section 1.4.1 that a natural
number is a set, and moreover, from Section 1.4.2, a well ordered set. Indeed, the number
k ∈ N0 is, by definition,

k = {0, 1, . . . , k − 1}.

Moreover, note that, for every j ∈ k, j = seg(j). This motivates our definition of the ordinal
numbers.

1.7.1 Definition (Ordinal number) An ordinal number is a well ordered set (o,≤) with the
property that, for each x ∈ o, x = seg(x). •

Let us give some examples of ordinal numbers. The examples we give are all of “small”
ordinals. We begin our constructions in a fairly detailed way, and then we omit the details
as we move on, since the idea becomes clear after the initial constructions.

1.7.2 Examples (Ordinal numbers)

1. As we saw before we stated Definition 1.7.1, each nonnegative integer is an ordinal
number.

2. The set N0 is an ordinal number. This is easily verified, but discomforting. We are saying
that the set of numbers is itself a new kind of number, an ordinal number. Let us call
this ordinal number ω. Pressing on. . .

3. The successor N+
0 = N0 ∪ {N0} is also an ordinal number, in just the same manner as a

natural number is an ordinal number. This ordinal number is denoted by ω + 1.

4. One carries on in this way defining ordinal numbers ω + (k + 1) = (ω + k)+.

5. Next we assume that there is a set containing ω and all of its successors. In axiomatic set
theory, this follows from a construction like that justifying Assumption 1.4.3, along with
another axiom (the Axiom of Substitution; see Section 1.8.2) saying, essentially, that we
can repeat the process. Just as we did with the definition of N0, we take the smallest of
these sets of successors to arrive at a net set that is to ω as ω is to 0. As was ω = N0,
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we well order this set by the partial order ⊂. This set is then clearly an ordinal number,
and is denoted by ω2.

6. One now proceeds to construct the successors ω2 + 1 = ω2+, ω2 + 2 = (ω2 + 1)+, and so
on. These new sets are also ordinal numbers.

7. The preceding process yields ordinal numbers ω, ω2, ω3, and so on.

8. We now again apply the same procedure to define an ordinal number that is contains ω,
ω2, etc. This set we denote by ω2.

9. One then defines ω2 + 1 = (ω2)+, ω2 + 2 = (ω2 + 1)+, etc., noting that these two are all
ordinal numbers.

10. Next comes ω2 + ω, which is the set containing all ordinal numbers ω2 + 1, ω2 + 2, etc.

11. Then comes ω2 + ω + 1, ω2 + ω + 2, etc.

12. Following these is ω2 + ω2, ω2 + ω2 + 1, and so on.

13. Then comes ω2 + ω3, ω2 + ω3 + 1, and so on.

14. After ω2, ω2 + ω, ω2 + ω2, and so on, we arrive at ω22.

15. One then arrives at ω22 + 1, . . . , ω22 + ω, . . . , ω22 + ω2, etc.

16. After ω22, ω23, and so on comes ω3.

17. After ω, ω2, ω3, etc., comes ωω.

18. After ω, ωω, ωωω
, etc., comes ε0. The entire construction starts again from ε0. Thus we

get to ε0 + 1, ε0 + 2, and so on reproducing all of the above steps with an ε0 in front of
everything.

19. Then we get ε02, ε03, and so on up to ε0ω.

20. These are followed by ε0ω
2, ε0ω

3 and so on up to ε0ω
ω.

21. Then comes ε0ω
ωω

, etc.

22. These are followed by ε2
0.

23. We hope the reader is getting the point of these constructions, and can produce more
such ordinals derived from the natural numbers. •

The above constructions of examples of ordinal numbers suggests that there are a lot
of them. However, the concrete constructions do not really do justice to the number of
ordinals. The ordinals that are elements of N0 are called finite ordinals, and all other
ordinals are transfinite . All of the ordinals we have named above are called “countable”
(see Definition 1.7.13). There are many other ordinals not included in the above list, but
before we can appreciate this, we first have to describe some properties of ordinals.

First we note that ordinals are exactly defined by similarity. More precisely, we have the
following result.

1.7.3 Proposition (Similar ordinals are equal) If o1 and o2 are similar ordinal numbers then
o1 = o2.

Proof Let f : o1 → o2 be a similarity and define

S = {x ∈ o1 | f(x) = x} .

We wish to show that S = o1. Suppose that seg(x) ⊂ S for x ∈ o1. Then x is the least
element of seg(x) and, since f is a similarity, f(x) is the least element of f(seg(x)). Therefore,
x and f(x) both have seg(x) as their strict initial segment, by definition of S. Thus, by the
definition of ordinal numbers, x = f(x). The result now follows by the Principle of Transfinite
Induction. �
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The next result gives a rather rigid structure to any set of ordinal numbers.

1.7.4 Proposition (Sets of ordinals are always well ordered) If O is a set of ordinal numbers,
then this set is well ordered by ⊂.

Proof First we claim that O is totally ordered. Let o1, o2 ∈ O and note that these are both
well ordered sets. Therefore, by Proposition 1.5.21, either o1 = o2, o1 is similar to a strict
initial segment in o2, or o2 is similar to a strict initial segment in o1. In either of the last two
cases, it follows from Proposition 1.7.3 that either o1 is equal to a strict initial segment in o2,
or vice versa. Thus, either o1 ≤ o2 or o2 ≤ o1. Thus O is totally ordered, a fact we shall
assume in the remainder of the proof.

Let o ∈ O. If o ≤ o′ for every o′ ∈ O, then o is the least member of O, and so O has a
least member, namely o. If o is not the least member of O, then there exists o′ ∈ O such that
o′ < o. Thus o′ ∈ o and so the set o ∩ E is nonempty. Let o0 be the least element of o. We
claim that o0 is also the least element of O. Indeed, let o′ ∈ O. If o′ < o then o′ ∈ o ∩ E and
so o0 ≤ o′. If o ≤ o′ then o0 < o′, so showing that o0 is indeed the least element of O. �

Our constructions in Example 1.7.2, and indeed the definition of an ordinal number,
suggest the true fact that every ordinal number has a successor that is an ordinal number.
However, it may not be the case that an ordinal number has an immediate predecessor. For
example, each of the ordinals that are natural numbers has an immediate predecessor, but
the ordinal ω does not have an immediate predecessor. That is to say, there is no largest
ordinal number strictly less ω.

Recall that the set N0 was defined by being the smallest set, having a certain property,
that contains all nonnegative integers. One can then ask, “Is there a set containing all
ordinal numbers?” It turns out the definition of the ordinal numbers prohibits this.

1.7.5 Proposition (Burali-Forti Paradox) There is no set O having the property that, if o is an
ordinal number, then o ∈ O.

Proof Suppose that such a set O exists. We claim that supp O exists and is an ordinal number.
Indeed, we claim that supp O = ∪o∈Oo. Note that the set ∪o∈Oo is well ordered by inclusion
by Proposition 1.7.4. Clearly, ∪o∈O is the smallest such set containing each o ∈ O. Moreover,
it is also clear from Proposition 1.7.4 that if o′ ∈ ∪o∈O, then o′ = seg(o′). Thus supp O exists,
and is an ordinal number. Moreover, this order number is greater than all those in O, thus
showing that O cannot exist. �

For our purposes, the most useful feature of the ordinal numbers is the following.

1.7.6 Theorem (Ordinal numbers can count the size of a set) If (S,�) is a well ordered set,
then there exists a unique ordinal number oS with the property that S and oS are similar.

Proof The uniqueness follows from Proposition 1.7.3. Let x0 ∈ S have the property that if
x < x0 then seg(x) is similar to some (necessarily unique) ordinal. (Why does x0 exist?) Now
let P (x, o) be the proposition “o is an ordinal number similar to seg(x)”. Then define the set
of ordinal numbers

o0 = {o | for each x ∈ seg(x0), there exists o such that P (x, o) holds} .

One can easily verify that o0 is itself an ordinal number that is similar to seg(x0). Therefore,
the Principle of Transfinite Induction can be applied to show that S is similar to an ordinal
number. �

This theorem is important, because it tells us that the ordinal numbers are the same,
essentially, as the well ordered sets. Thus one can use the two concepts interchangeably; this
is not obvious from the definition of an ordinal number.
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It is also possible to define addition and multiplication of ordinal numbers. Since we will
not make use of this, let us merely sketch how this goes. For ordinal numbers o1 and o2, let
(S1,�1) and (S2,�2) be well ordered sets similar to o1 and o2, respectively. Define a partial

order in S1

◦
∪S2 by

(i1, x1) �+ (i2, x2) ⇐⇒

i1 = i2, x1 �i1 , or

i1 < i2.

One may verify that this is a well order. Then define o1 + o2 as the unique ordinal number

equivalent to the well ordered set (S1

◦
∪S2,�+). To define product of o1 and o2, on the

Cartesian product S1 × S2 consider the partial order

(x1, x2) �× (y1, y2) ⇐⇒

x2 ≺2 y2, or

x2 = y2, x1 ≺1 y1.

Again, this is verifiable as being a well order. One then defines o1 · o2 to be the unique
ordinal number similar to the well ordered set (S1 × S2,�×). One must exercise care when
dealing with addition and multiplication of ordinals, since, for example, neither addition not
multiplication are commutative. For example, 1 + ω 6= ω + 1 (why?). However, since we do
not make use of this arithmetic, we shall not explore this further. It is worth noting that the
notation in Example 1.7.2 is derived from ordinal arithmetic. Thus, for example, ω2 = ω · 2,
etc.

1.7.2 Cardinal numbers

The cardinal numbers, as mentioned at the beginning of this section, are intended to
be measures of the size of a set. If one combines the Zermelo’s Well Ordering Theorem
(Theorem 1.5.16) and Theorem 1.7.6, one might be inclined to say that the ordinal numbers
are suited to this task. Indeed, simply place a well order on the set of interest by Theo-
rem 1.5.16, and then use the associated ordinal number, given by Theorem 1.7.6, to define
“size.” The problem with this construction is that this notion of the “size” of a set would
depend on the choice of well ordering. As an example, let us take the set N0. We place two
well orderings on N0, one being the natural well ordering ≤ and the other being defined by

k1 � k2 ⇐⇒


k1 ≤ k2, k1, k2 ∈ N, or

k1 = k2 = 0, or

k1 = 0, k2 ∈ N.

Thus, for the partial order �, one places 0 after all other natural numbers. One then verifies
that (N0,≤) is similar to the ordinal number ω and that (N0,�) is similar to the ordinal
number ω + 1. Thus, even in a fairly simple example of a non-finite set, we see that the well
order can change the size, if we go with size being determined by ordinals.

Therefore, we introduce a special subset of ordinals.

1.7.7 Definition (Cardinal number) A cardinal number is an ordinal number c with the prop-
erty that, for all ordinal numbers o for which there exists a bijection from c to o, we have
c ≤ o. •

In other words, a cardinal number is the least ordinal number in a collection of ordinal
numbers that are equivalent. Note that finite ordinals are only equivalent with a single
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ordinal, namely themselves. However, transfinite ordinals may be equivalent to different
transfinite ordinals. The following example illustrates this.

1.7.8 Example (Equivalent transfinite ordinals) We claim that there is a 1–1 correspondence
between ω and ω + 1. We can establish this correspondence explicitly by defining a map
f : ω → ω + 1 by

f(x) =

ω, x = 0,

x− 1, x ∈ N,

where x− 1 denotes the immediate predecessor of x ∈ N.
One can actually check that all of the ordinal numbers presented in Example 1.7.2 are

equivalent to ω! This is a consequence of Proposition 1.7.16 below. Accepting this as fact
for the moment, we see that the only ordinals from Example 1.7.2 that are cardinal numbers
are the elements of N0 along with ω. •

Certain of the facts about ordinal numbers translate directly to equivalent facts about
cardinal numbers. Let us record these

1.7.9 Proposition (Properties of cardinal numbers) The following statements hold:

(i) if c1 and c2 are similar cardinal numbers then c1 = c2;

(ii) if C is a set of cardinal numbers, then this set is well ordered by ⊂;

(iii) there is no set C having the property that, if c is an cardinal number, then c ∈ C
(Cantor’s paradox ).10

Proof The only thing that does not follow immediately from the corresponding results for
ordinal numbers is Cantor’s Paradox. The proof of this part of the result goes exactly as does
that of Proposition 1.7.5. One only needs to verify that, if C is any set of cardinal numbers,
then there exists a cardinal number greater or equal to supp C. This, however, is clear since
supp C is an ordinal number strictly greater than any element of C, meaning that there is a
corresponding cardinal number c equivalent to supp C. Thus c ≥ supp C. �

1.7.3 Cardinality

Cardinality is the measure of the “size” of a set that we have been after. The following
result sets the stage for the definition.

1.7.10 Lemma For a set S there exists a unique cardinal number card(S) such that S and card(S)
are equivalent.

Proof By Theorem 1.7.6 there exists an ordinal number oS that is similar to S, and therefore
equivalent to S. Any ordinal equivalent to oS is therefore also equivalent to S, since equivalence
of sets is an “equivalence relation” (Exercise 1.3.6). Therefore, the result follows by choosing
the unique least element in the set of ordinals equivalent to oS . �

With this fact at hand, the following definition makes sense.

1.7.11 Definition (Cardinality) The cardinality of a set S is the unique cardinal number card(S)
that is equivalent to S. •

The next result indicates how one often deals with cardinality in practice. The important
thing to note is that, provided one is interested only in comparing cardinalities of sets, then
one need not deal with the complication of cardinal numbers.details

10
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1.7.12 Theorem (Cantor–Schröder–Bernstein11 Theorem) For sets S and T, the following state-
ments are equivalent:

(i) card(S) = card(T);

(ii) there exists a bijection f : S → T;

(iii) there exists injections f : S → T and g : T → S;

(iv) there exists surjections f : S → T and g : T → S.

Proof It is clear from Lemma 1.7.10 that (i) and (ii) are equivalent. It is also clear that (ii)
implies both (iii) and (iv).

(iii) =⇒ (ii) We start with a lemma.

1 Lemma If A ⊂ S and if there exists an injection f : S → A, then there exists a bijection
g : S → A.

Proof Define B0 = S \ A and then inductively define Bj , j ∈ N, by Bj+1 = f(Bj). We claim
that the sets {Bj}j∈N0 are pairwise disjoint. Suppose not and let (j, k) ∈ N0 ×N0 be the least
pair, with respect to the lexicographic ordering (see Exercise 1.5.3), for which Bj ∩ Bk 6= ∅.
Since clearly B0 ∩Bj = ∅ for j ∈ N, we can assume that j = j̃ + 1 and k = k̃ + 1 for j̃, k̃ ∈ N0,
and so therefore that Bj = f(Bj̃) and Bk = f(Bk̃). Thus f(Bj̃ ∩Bk̃) 6= ∅ by Proposition 1.3.5,
and so Bj̃ ∩ Bk̃ 6= ∅. Since (j̃, k̃) is less that (j, k) with respect to the lexicographic order, we
have a contradiction.

Now let B = ∪j∈N0Bj and define g : S → A by

g(x) =

{
f(x), x ∈ B,

x, x 6∈ B.

For x ∈ B, g(x) = f(x) ∈ A. For x 6∈ B, we have x ∈ A by definition of B0, so that g indeed
takes values in A. By definition g is injective. Also, let x ∈ A. If x 6∈ B then g(x) = x. If
x ∈ B then x ∈ Bj+1 for some j ∈ N0. Since Bj+1 = f(Bj), x ∈ image(g), so showing that g
is surjective. H

We now continue with the proof of this part of the theorem. Note that g ◦f : S → g(T )
is injective (cf. Exercise 1.3.3). Therefore, by the preceding lemma, there exists a bijection
h : S → g(T ). Since g is injective, g : T → g(T ) is bijective, and let us denote the inverse by,
abusing notation, g−1 : g(T ) → T . We then define b : S → T by b = g−1 ◦h, and leave it to the
reader to perform the easy verification that b is a bijection.

(iv) =⇒ (iii) Since f is surjective, by Proposition 1.3.9 there exists a right inverse fR : T →
S. Thus f ◦fR = idT . Thus f is a left-inverse for fR, implying that fR is injective, again by
Proposition 1.3.9. In like manner, g being surjective implies that there is an injective map
from S to T , namely a right-inverse for g. �

Distinguished names are given to certain kinds of sets, based on their cardinality. Recall
that ω is the cardinal number corresponding to the set of natural numbers.

1.7.13 Definition (Finite, countable, uncountable) A set S is:

(i) finite if card(S) ∈ N0;

11Georg Ferdinand Ludwig Philipp Cantor (1845–1918) was a Russian mathematician who made many
contributions to the foundations of mathematics, and is regarded as the founder of set theory as we now
know it. Friedrich Wilhelm Karl Ernst Schröder (1814–1902) was a German mathematician whose work was
in the area of mathematical logic. Felix Bernstein (1878–1956) was born in Germany. Despite his name
being attached to a basic result in set theory, Bernstein’s main contributions were in the areas of statistics,
mathematical biology, and actuarial mathematics.
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(ii) infinite if card(S) ≥ ω;

(iii) countable if card(S) ∈ N0 or if card(S) = ω;

(iv) countably infinite if card(S) = ω;

(v) uncountable , or uncountably infinite , if card(S) > ω. •

Let us give some examples illustrating the distinctions between the various notions of set
size.

1.7.14 Examples (Cardinality)

1. All elements of N0 are, of course, finite sets.

2. The set N0 is countably infinite. Indeed, card(N0) = ω.

3. We claim that 2N0 is uncountable. More generally, we claim that, for any set S, card(S) <
card(2S). To see this, we shall show that any map f : S → 2S is not surjective. For such
a map, let

Af = {x ∈ S | x 6∈ f(x)} .

We claim that Af 6∈ image(f). Indeed, suppose that Af = f(x). If x ∈ Af then
x 6∈ f(x) = Af by definition of Af ; a contradiction. On the other hand, if x 6∈ Af , then
x ∈ f(x) = Af ; again a contradiction. We thus conclude that Af 6∈ image(f).

Thus there is no surjective map from S to 2S. There is, however, a surjective map from
2S to S; for example, for any x0 ∈ S, the map

g(A) =

x, A = {x},
x0, otherwise

is surjective. Thus S is “smaller than” 2S, or card(S) < card(2S). •

1.7.15 Remark (Uncountable sets exist, Continuum Hypothesis) A consequence of the last of
the preceding examples is that fact that uncountable sets exist since 2N0 has a cardinality
strictly greater than that of N0.

It is usual to denote the countable ordinal by ℵ0 (pronounced “aleph zero” or “aleph
naught”). The smallest uncountable ordinal is then denoted by ℵ1. An easy way to char-
acterise ℵ1 is as follows. Note that the cardinal ℵ0 has the property that each of its initial
segments is finite. In like manner, ℵ1 has the property that each of its segments is countable.
This does not define ℵ1, but perhaps gives the reader some idea what it is.

It is conjectured that there are no cardinal numbers between ℵ0 and ℵ1; this conjecture
is called the Continuum Hypothesis . For readers prepared to accept the existence of
the real numbers (or to look ahead to Section 2.1), we comment that card(R) = card(2N0)
(see Exercise 1.7.5). From this follows a slightly more concrete statement of the Continuum
Hypothesis, namely the conjecture that card(R) = ℵ1. Said yet otherwise, the Continuum
Hypothesis is the conjecture that, among the subsets of R, the only possibilities are (1) count-
able sets and (2) sets having the same cardinality as R. •

It is clear the finite union of finite sets is finite. The following result, however, is less
clearly true.

1.7.16 Proposition (Countable unions of countable sets are countable) Let {Sj}j∈N0 be a family
of sets, each of which is countable. Then ∪j∈N0Sj is countable.
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Proof Let us explicitly enumerate the elements in the sets Sj , j ∈ N0. Thus we write Sj =
{xjk}k∈N0 . We now indicate how one constructs a surjective map f from N0 to ∪j∈N0Sj :

f(0) = x00, f(1) = x01, f(2) = x10, f(3) = x02, f(4) = x11, f(5) = x20,

f(6) = x03, f(7) = x12, f(8) = x21, f(9) = x30, f(10) = x04, . . . .

We leave it to the reader to examine this definition and convince themselves that, if it were
continued indefinitely, it would include every element of the set ∪j∈NSj in the domain of f . �

For cardinal numbers one can define arithmetic in a manner similar to, but not the
same as, that for ordinal numbers. Given cardinal numbers c1 and c2 we let S1 and S2 be
sets equivalent to (not necessarily similar to, note) c1 and c2, respectively. We then define

c1 + c2 = card(S1

◦
∪S2) and c1 · c2 = card(S1 × S2). Note that cardinal number arithmetic is

not just ordinal number arithmetic restricted to the cardinal numbers. That is to say, for
example, the sum of two cardinal numbers is not the ordinal sum of the cardinal numbers
thought of as ordinal numbers. It is easy to see this with an example. If S and T are two

countably infinite sets, then so too is S
◦
∪T a countably infinite set (this is Proposition 1.7.16).

Therefore, card(S) + card(T ) = card(S
◦
∪T ) = ω = card(S) = card(T ).

The only result that we shall care about concerning cardinal arithmetic is the following.

1.7.17 Theorem (Sums and products of infinite cardinal number) If c is an infinite cardinal
number then

(i) c + k = c for every finite cardinal number k,

(ii) c = c + c, and

(iii) c = c · c.
Proof (i) Let S and T be disjoint sets such that card(S) = c and card(T ) = k. Let g : T →
{1, . . . , k} be a bijection. Since S is infinite, we may suppose that S contains N as a subset.
Define f : S ∪ T → S by

f(x) =


g(x), x ∈ T,

x + k, x ∈ N ⊂ S,

x, x ∈ S \ N.

This is readily seen to be a bijection, and so gives the result by definition of cardinal addition.
(ii) Let S be a set such that card(S) = c and define

G(S) = {(f,A) | A ⊂ S, f : A× {0, 1} → A is a bijection} .

If A ⊂ S is countably infinite, then card(A × {0, 1}) = card(A), and so G(S) is not empty.
Place a partial order � on G(S) by (f1, A1) � (f2, A2) if A1 ⊂ A2 and if f2|A1 = f1. This is
readily verified to be a partial order. Moreover, if {(fj , Aj)}j∈J is a totally ordered subset, then
we define an upper bound (f,A) as follows. We take A = ∪j∈JAj and f(x, k) = fj(x, k) where
j ∈ J is defined such that x ∈ Aj . One can now use Zorn’s Lemma to assert the existence of a
maximal element of G(S) which we denote by (f,A). We claim that S \A is finite. Indeed, if
S \ A is infinite, then there exists a countably infinite subset B of S \ A. Let g be a bijection
from B × {0, 1} to B and note that the map f × g : (A ∪B)× {0, 1} → A ∪B defined by

f × g(x, k) =

{
f(x, k), x ∈ A,

g(x, k), x ∈ B
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if then a bijection, thus contradicting the maximality of (f,A). Thus S \ A is indeed finite.
Finally, since (f,A) ∈ G(S), we have card(A)+card(A) = card(A). Also, card(S) = card(A)+
card(A \ S). Since card(S \A) is finite, by part (i) this part of the theorem follows.

(iii) Let S be a set such that card(S) = c and define

F (S) = {(f,A) | A ⊂ S, f : A×A → Af is a bijection} .

If A ⊂ S is countably infinite, then card(A × A) = card(A) and so there exists a bijection
from A × A to A. Thus F (S) is not empty. Place a partial order � on F (S) by asking that
(f1, A1) � (f2, A2) if A1 ⊂ A2 and f2|A1×A1 = f1; we leave to the reader the straightforward
verification that this is a partial order. Moreover, if {(fj , Aj)}j∈J is a totally ordered subset,
it is easy to define an upper bound (f,A) for this set as follows. Take A = ∪j∈JAj and define
f(x, y) = fj(x, y) where j ∈ J is defined such that (x, y) ∈ Aj × Aj . Thus, by Zorn’s Lemma,
there exists a maximal element (f,A) of F (S). By definition of F (S) we have card(A) card(A) =
card(A). We now show that card(A) = card(S).

Clearly card(A) ≤ card(S) since A ⊂ S. Thus suppose that card(A) < card(S). We now
use a lemma.

1 Lemma If c1 and c2 are cardinal numbers at least one of which is infinite, and if c3 is the
larger of c1 and c2, then c1 + c2 = c3.

Proof Let S1 and S2 be disjoint sets such that card(S1) = c1 and card(S2) = c2. Since c1 ≤ c3

and c2 ≤ c3 it follows that c1 + c2 = c3 + c3. Also, card(c3) ≤ card(c1) + card(c2). The lemma
now follows from part (ii). H

From the lemma we know that card(S) is the larger of card(A) and card(S \A), i.e., that
card(S) = card(S\A). Therefore card(A) < card(S\A). Thus there exists a subset B ⊂ (S\A)
such that card(B) = card(A). Therefore,

card(A×B) = card(B ×A) = card(B ×B) = card(A) = card(B).

Therefore,
card((A×B) ∪ (B ×A) ∪ (B ×B)) = card(B)

by part (ii). Therefore, there exists a bijection g from (A×B)∪ (B×A)∪ (B×B) to B. Thus
we can define a bijection f × g from

(A ∪B)× (A ∪B) = (A×A) ∪ (A×B) ∪ (B ×A) ∪ (B ×B)

to A ∪B by

f × g(x, y) =

{
f(x, y), (x, y) ∈ A×A,

g(x, y), otherwise.

Since A ⊂ (A ∪ B) and since f × g|(A × A) = f , this contradicts the maximality of (f,A).
Thus our assumption that card(A) < card(S) is invalid. �

The following corollary will be particularly useful.

1.7.18 Corollary (Sum and product of a countable cardinal and an infinite cardinal) If c is an
infinite cardinal number then

(i) c ≤ c + card(N) and

(ii) c ≤ c · card(N).

Proof This follows from Theorem 1.7.17 since card(N) is the smallest infinite cardinal number,
and so card(N) ≤ c. �
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Exercises

1.7.1 Show that every element of an ordinal number is an ordinal number.

1.7.2 Show that any finite union of finite sets is finite.

1.7.3 Show that the Cartesian product of a finite number of countable sets is countable.

1.7.4 For a set S, as per Definition 1.3.1, let 2S denote the collection of maps from the set
S to the set 2. Show that card(2S) = card(2S), so justifying the notation 2S as the
collection of subsets of S.
Hint: Given a subset A ⊂ S, think of a natural way of assigning a map from S to 2.

In the next exercise you will show that card(R) = card(2N). We refer to Section 2.1 for the
definition of the real numbers. There the reader can also find the definition of the rational
numbers, as these are also used in the next exercise.

1.7.5 Show that card(R) = card(2N) by answering the following questions.
Define f1 : R → 2Q by

f1(x) = {q ∈ Q | q ≤ x} .

(a) Show that f1 is injective to conclude that card(R) ≤ card(2Q).

(b) Show that card(2Q) = card(2N), and conclude that card(R) ≤ card(2N).

Let {0, 2}N be the set of maps from N to {0, 2}, and regard {0, 2}N as a subset of [0, 1]
by thinking of {0, 2}N as being a sequence representing a decimal expansion in base
3. That is, to f : N → {0, 2} assign the real number

f2(f) =
∞∑

j=1

f(j)

3j
.

Thus f2 is a map from {0, 2}N to [0, 1].

(c) Show that f2 is injective so that card({0, 2}N) ≤ card([0, 1]).

(d) Show that card([0, 1]) ≤ card(R).

(e) Show that card({0, 2}N) = card(2N), and conclude that card(2N) ≤ card(R).
Hint: Use Exercise 1.7.4.

This shows that card(R) = card(2N), as desired.
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Section 1.8

Some words on axiomatic set theory

The account of set theory in this chapter is, as we said at the beginning of Section 1.1,
called “näıve set theory.” It turns out that the lack of care in saying what a set is in näıve set
theory causes some problems. We indicate the nature of these problems in Section 1.8.1. To
get around these problems, the presently accepted technique is the define a set as an element
of a collection of objects satisfying certain axioms. This is called axiomatic set theory ,
and we refer the reader to [Suppes 1960] for a detailed discussion. The most commonly used
such axioms are those of Zermelo–Fränkel set theory, and we give these in Section 1.8.2.
There are alternative collections of axioms, some equivalent to the Zermelo–Fränkel axioms,
and some not. We shall not discuss this here. An axiom commonly, although not incontro-
versially, accepted is the Axiom of Choice, which we discuss in Section 1.8.3. We also discuss
the Peano Axioms in Section 1.8.4, as these are the axioms of arithmetic. We close with a
discussion of some of the issues in set theory, since these are of at least cultural interest.

Do I need to read this section? The material in this section is used exactly nowhere else
in the texts. However, we hope the reader will find the informal presentation, and historical
slant, interesting. •

1.8.1 Russell’s Paradox

Russell’s Paradox 12 is the following. Let S be the set of all sets that are not members
of themselves. For example, the set P of prime numbers is not in S since the set of prime
numbers is not a prime number. However, the set N of all things that are not prime numbers
is in S since the set of all things that are not prime numbers is not a prime number. Now
argue as follows. If T ∈ S then T 6∈ S by definition of S. On the other hand, if T 6∈ S then
T ∈ S, again by definition of S. This is clearly absurd, so the set S cannot exist, although
there seems to be nothing wrong with its definition. That a contradiction can be derived
from the näıve version of set theory means that it is inconsistent .

A consequence of Russell’s Paradox is that there is no set containing all sets. Indeed, let
S be any set. Then define

T = {x ∈ S | x 6∈ x} .

We claim that T 6∈ S. Indeed, suppose that T ∈ S. Then either T ∈ T or T 6∈ T . In the first
instance, since T ∈ S, T 6∈ T . In the second instance, again since T ∈ S, we have T 6∈ T .
This is clearly a contradiction, and so we have concluded that, for every set S, there exists
something that is not in A. Thus there can be no set of subsets.

Another consequence of Russell’s Paradox is the ridiculous conclusion that everything is
true. This is a simply logical consequence of the fact that, if a contradiction holds, then all
statements hold. Here a contradiction means that a proposition P and its negation ¬P both
hold. The argument is as follows. Consider a proposition P ′. Then P or P ′ holds, since P
holds. However, since ¬P holds and either P or P ′ holds, it must be the case that P ′ holds,
no matter what P ′ is!

12So named for Bertrand Arthur William Russell (1872–1970), who was a British philosopher and math-
ematician. Russell received a Nobel prize for literature in recognition of his popular writings on philosophy.
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Thus the contradiction arising from Russell’s Paradox is unsettling since it now calls
into question any conclusions that might arise from our discussion of set theory. Various
attempts were made to eliminate the eliminate the inconsistency in the näıve version of set
theory. The presently most widely accepted of these attempts is the collection of axioms
forming Zermelo–Fränkel set theory.

1.8.2 The axioms of Zermelo–Fränkel set theory

The axioms we give here are the culmination of the work of Ernst Friedrich Ferdinand
Zermelo (1871–1953) and Adolf Abraham Halevi Fränkel (1891–1965).13 The axioms were
constructed in an attempt to arrive at a basis for set theory that was free of inconsistencies.
At present, it is unknown whether the axioms of Zermelo–Fränkel set theory, abbreviated
ZF , are consistent.

Here we shall state the axioms, give a slight discussion of them, and indicate some of the
places in the chapter where the axioms were employed.

The first axiom merely says that two sets are equal if they have the same elements. This
is not controversial, and we have used this axiom out of hand throughout the chapter.

Axiom of Extension For sets S and T , if x ∈ S if and only if x ∈ T , then A = B. •

The next axiom indicates that one can form the set of elements for which a certain
property holds. Again, this is not controversial, and is an axiom we have used throughout
the chapter.

Axiom of Separation For a set S and a property P defined in S, there exists a set A such
that x ∈ A if and only if x ∈ S and P (x) = true. •

We also have an axiom which says that one can extract two members from two sets, and
think of these as members of another set. This is another uncontroversial axiom that we
have used without much fuss.

Axiom of the Unordered Pair For sets S1 and S2 and for x1 ∈ S1 and x2 ∈ S2, there exists
a set T such that x ∈ T if and only if x = x1 or x = x2. •

To form the union of two sets, one needs an axiom asserting that the union exists. This
is natural, and we have used it whenever we use the notion of union, i.e., frequently.

Axiom of Union For sets S1 and S2 there exists a set T such that x ∈ T if and only if
x ∈ S1 or x ∈ S2. •

The existence of the power set is also included in the axioms. It is natural and we have
used it frequently.

Axiom of the Power Set For a set S there exists a set T such that A ∈ T if and only if
A ⊂ S. •

When we constructed the set of natural numbers, we needed an axiom to ensure that
this set existed (cf. Assumption 1.4.3). This axiom is the following.

Axiom of Infinity There exists a set S such that

(i) ∅ ∈ S and

13Fränkel was a German mathematician who worked primarily in the areas of set theory and mathematical
logic.
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(ii) for each x ∈ S, x+ ∈ S. •

When we constructed a large number of ordinal numbers in Example 1.7.2, we repeatedly
used an axiom, the essence of which was, “The same principle used to assert the existence
of N0 can be applied to this more general setting.” Let us now state this idea more formally.

Axiom of Substitution For a set S, if for all x ∈ S there exists a unique y such that
P (x, y) holds, then there exists a set T and a map f : S → T such that f(x) = y where
P (x, y) = true. •

The idea is that, for each x ∈ S, the collection of objects y for which P (x, y) holds forms
a set. Let us illustrate how the Axiom of Substitution can be used to define the ordinal
number ω2, as in Example 1.7.2. For k ∈ N0 we define

P (k, y) =

true, y = ω + k,

false, otherwise.

The Axiom of Substitution then says that there is a set T and a map f : N0 → T such that
f(k) = ω + k. The ordinal number ω2 is then simply the image of the map f .

The final axiom in ZF is the one whose primary purpose is to eliminate inconsistencies
such as those arising from Russell’s Paradox.

Axiom of Regularity For each nonempty set S there exists x ∈ S such that x ∩ S = ∅. •

The Axiom of Regularity rules out sets like S = {S} whose only members are themselves.
It is no great loss having to live without such sets.

1.8.3 The Axiom of Choice

The Axiom of Choice has its origins in Zermelo’s proof of his theorem that every set can
be well ordered. In order to prove the theorem, he had to introduce a new axiom in addition
to those accepted at the time to characterise sets. The new axiom is the following.

Axiom of Choice For each family {Sa}a∈A of nonempty sets, there exists a function, f : A →
∪a∈ASa, called a choice function , having the property that f(a) ∈ Sa. •

The combination of the axioms of ZF with the Axiom of Choice is sometimes called
ZF with Choice , or ZFC . Work of Cohen [1963]14 shows that the Axiom of Choice is
independent of the axioms of ZF. Thus, when one adopts ZFC, the Axiom of Choice is really
something additional that one is adding to one’s list of assumptions of set theory.

At first glance, the Axiom of Choice, at least in the form we give it, does not seem
startling. It merely says that, from any collection of sets, it is possible to select an element
from each set. A trivial rephrasing of the Axiom of Choice is that, for any family {Sa}a∈A

of nonempty sets, the Cartesian product
∏

a∈A Sa is nonempty.
What is less settling about the Axiom of Choice is that it can lead to some nonintuitive

conclusions. For example, as mentioned above, Zermelo’s Well Ordering Theorem follows
from the Axiom of Choice. Indeed, the two are equivalent. Let us, in fact, list the equivalence
of the Axiom of Choice with two other important results from the chapter, one of which is
Zermelo’s Well Ordering Theorem.

14Paul Joseph Cohen was born in the United States in 1934, and has made outstanding contributions to
the foundations of mathematics and set theory.
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1.8.1 Theorem (Equivalents of the Axiom of Choice) If the axioms of ZF hold, then the following
statements are equivalent:

(i) the Axiom of Choice holds;

(ii) Zorn’s Lemma holds;

(iii) Zermelo’s Well Ordering Theorem holds.

Proof Let us suppose that the proofs we give of Theorems 1.5.13 and 1.5.16 are valid using
the axioms of ZF. This is true, and can be verified, if tediously. One only needs to check
that no constructions, other than those allowed by the axioms of ZF were used in the proofs.
Assuming this, the implications (i) =⇒ (ii) and (ii) =⇒ (iii) hold, since these are what is used in
the proofs of Theorems 1.5.13 and 1.5.16. It only remains to prove the implication (iii) =⇒ (i).
However, this is straightforward. Let {Sa}a∈A be a family of sets. By Zermelo’s Well Ordering
Theorem, well order each of these sets, and then define a choice function by assigning to a ∈ A
the least member of Sa. �

There are, in fact, many statements that are equivalent to the Axiom of Choice. For
example, the fact that a surjective map possesses a right-inverse is equivalent to the Axiom
of Choice. A discussion of such matters may be found in the book of Moore [1982]. In
Exercise 1.8.1 we give a few of the more easily proved equivalents of the Axiom of Choice.
At the time of its introduction, the equivalence of the Axiom of Choice with Zermelo’s Well
Ordering Theorem led many mathematicians to reject the validity of the Axiom of Choice.
Zermelo, however, countered that many mathematicians implicitly used the Axiom of Choice
without saying so. This then led to much activity in mathematics along the lines of deciding
which results required the Axiom of Choice for their proof. Results can then be divided into
three groups, in ascending order of “goodness,” where the Axiom of Choice is deemed “bad”:

1. results that are equivalent to the Axiom of Choice;

2. results that are not equivalent to the Axiom of Choice, but can be shown to require it
for their proof;

3. results that are true, whether or not the Axiom of Choice holds.

Somewhat more startling is that, if one accepts the Axiom of Choice, then it is possible to
derive results which seem absurd. Perhaps the most famous of these is the Banach–Tarski
Paradox ,15 which says, very roughly, that it is possible to divide a sphere into a finite
number of pieces and then reassemble them, while maintaining their shape, into two spheres
of equal volume. Said in this way, the result seems impossible. However, if one looks at
the result carefully, the nature of the pieces into which the sphere is divided is, obviously,
extremely complicated. In the language of Chapter II-1, they are nonmeasurable sets. Such
sets correspond poorly with our intuition, and indeed require the Axiom of Choice to assert
their existence.

On the flip side of this is the fact that there are statements that seem like they must be
true, and that are equivalent to the Axiom of Choice. One such statement is the Trichotomy
Law for the real numbers, which says that, given two real numbers x and y, either x < y,
y < x, or x = y. If rejecting the Axiom of Choice means rejecting the Trichotomy Law for real
numbers, then many mathematicians would have to rethink the way they do mathematics!

Indeed, there is a branch of mathematics that is dedicated to just this sort of rethinking,
and this is called constructivism ; see [Bridges and Richman 1987], for example. The

15Stefan Banach (1892–1945) was a well-known Polish mathematician who made significant and foun-
dational contributions to functional analysis. Alfred Tarski (1902–1983) was also Polish, and his main
contributions were to set theory and mathematical logic.
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genesis of this branch of mathematics is the dissatisfaction, often arising from applications
of the Axiom of Choice, with nonconstructive proofs in mathematics (for example, our proof
that a surjective map possesses a right-inverse).

In this book, we will unabashedly assume the validity of the Axiom of Choice. In doing
so, we follow in the mainstream of contemporary mathematics.

1.8.4 Peano’s axioms

Peano’s axioms16 were derived in order to establish a basis for arithmetic. They essen-
tially give those properties of the set of “numbers” that allow the establishment of the usual
laws for addition and multiplication of natural numbers. Peano’s axioms are these:

1. 0 = ∅ is a number;

2. if k is a number, the successor of k is a number;

3. there is no number for which 0 is a successor;

4. if j+ = k+ then j = k for all numbers j and k;

5. if S is a set of numbers containing 0 and having the property that the successor of every
element of S is in S, then S contains the set of numbers.

Peano’s axioms, since they led to the integers, and so there to the rational and real
numbers (as in Section 2.1), were once considered as the basic ingredient from which all the
rest of mathematics stemmed. This idea, however, received a blow with the publication of a
paper by Kurt Gödel [1931]17. Gödel showed that in any logical system sufficiently general
to include the Peano axioms, there exist statements whose truth cannot be validated within
the axioms of the system. Thus, this showed that any system built on arithmetic could not
possibly be self-contained.

1.8.5 Discussion of the status of set theory

In this section, we have painted a picture of set theory that suggests it is something
of a morass of questionable assumptions and possibly unverifiable statements. There is
some validity in this, in the sense that there are many fundamental questions unanswered.
However, we shall not worry much about these matters as we proceed onto more concrete
topics.

Exercises

1.8.1 Prove the following result.

Theorem If the axioms of ZF hold, then the following statements are equivalent:

(i) the Axiom of Choice holds;

(ii) for any family {Sa}a∈A of sets, the Cartesian product
∏

a∈A Sa is nonempty;

(iii) every surjective map possesses a right inverse.

16Named after Giuseppe Peano (1858–1932), an Italian mathematician who did work with differential
equations and set theory.

17Kurt Gödel (1906–1978) was born in a part of the Austro-Hungarian Empire that is now Czechoslovakia.
He made outstanding contributions to the subject of mathematical logic.
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Section 1.9

Some words about proving things

Rigour is an important part of the presentation in this series, and if you are so unfortunate
as to be using these books as a text, then hopefully you will be asked to prove some things,
for example, from the exercises. In this section we say a few (almost uselessly) general things
about techniques for proving things. We also say some things about poor proof technique,
much (but not all) of which is delivered with tongue in cheek. The fact of the matter is that
the best way to become proficient at proving things is to (1) read a lot of (needless to say,
good) proofs, and (2) most importantly, get lots of practice. What is certainly true is that it
much easier to begin your theorem-proving career by proving simple things. In this respect,
the proofs and exercises in this chapter are good ones. Similarly, many of the proofs and
exercises in Chapters 4 and 5 provide a good basis for honing one’s theorem-proving skills.
By contrast, some of the results in Chapter 2 are a little more sophisticated, while still not
difficult. As we progress through the preparatory material, we shall increasingly encounter
material that is quite challenging, and so proofs that are quite elaborate. The neophyte
should not be so ambitious as to tackle these early on in their mathematical development.

Do I need to read this section? Go ahead, read it. It will be fun. •

1.9.1 Legitimate proof techniques

The techniques here are the principle ones use in proving simple results. For very com-
plicated results, many of which appear in this series, one is unlikely to get much help from
this list.

1. Proof by definition: Show that the desired proposition follows directly from the given
definitions and assumptions. Theorems that have already been proven to follow from the
definitions and assumptions may also be used. Proofs of this sort are often abbreviated
by “This is obvious.” While this may well be true, it is better to replace this hopelessly
vague assertion with something more meaningful like “This follows directly from the
definition.”

2. Proof by contradiction: Assume that the hypotheses of the desired proposition hold, but
that the conclusions are false, and make no other assumption. Show that this leads to
an impossible conclusion. This implies that the assumption must be false, meaning the
desired proposition is true.

3. Proof by induction: In this method one wishes to prove a proposition for an enumerable
number of cases, say 1, 2, . . . , n, . . . . One first proves the proposition for case 1. Then
one proves that, if the proposition is true for the nth case, it is true for the (n + 1)st
case.

4. Proof by exhaustion: One proves the desired proposition to be true for all cases. This
method only applies when there is a finite number of cases.

5. Proof by contrapositive: To show that proposition A implies proposition B, one shows
that proposition B not being true implies that proposition A is not true. It is common
to see newcomers get proof by contrapositive and proof by contradiction confused.

6. Proof by counterexample: This sort of proof is typically useful in showing that some
general assertion does not hold. That is to say, one wishes to show that a certain
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conclusion does not follow from certain hypotheses. To show this, it suffices to come up
with a single example for which the hypotheses hold, but the conclusion does not. Such
an example is called a counterexample .

1.9.2 Improper proof techniques

Many of these seem so simple that a first reaction is, “Who would be dumb enough to
do something so obviously incorrect.” However, it is easy, and sometimes tempting, to hide
one of these incorrect arguments inside something complicated.

1. Proof by reverse implication: To prove that A implies B, shows that B implies A.

2. Proof by half proof: One is required to show that A and B are equivalent, but one only
shows that A implies B. Note that the appearance of “if and only if” means that you
have two implications to prove!

3. Proof by example: Show only a single case among many. Assume that only a single case
is sufficient (when it is not) or suggest that the proof of this case contains most of the
ideas of the general proof.

4. Proof by picture: A more convincing form of proof by example. Pictures can provide nice
illustrations, but suffice in no part of a rigorous argument.

5. Proof by special methods: You are allowed to divide by zero, take wrong square roots,
manipulate divergent series, etc.

6. Proof by convergent irrelevancies: Prove a lot of things related to the desired result.

7. Proof by semantic shift: Some standard but inconvenient definitions are changed for the
statement of the result.

8. Proof by limited definition: Define (or implicitly assume) a set S, for which all of whose
elements the desired result is true, then announce that in the future only members of the
set S will be considered.

9. Proof by circular cross-reference: Delay the proof of a lemma until many theorems have
been derived from it. Use one or more of these theorems in the proof of the lemma.

10. Proof by appeal to intuition: Cloud-shaped drawings frequently help here.

11. Proof by elimination of counterexample: Assume the hypothesis is true. Then show
that a counterexample cannot exist. (This is really just a well-disguised proof by reverse
implication.) A common variation, known as “begging the question” involves getting
deep into the proof and then using a step that assumes the hypothesis.

12. Proof by obfuscation: A long plotless sequence of true and/or meaningless syntactically
related statements.

13. Proof by cumbersome notation: Best done with access to at least four alphabets and
special symbols. Can help make proofs by special methods look more convincing.

14. Proof by cosmology: The negation of a proposition is unimaginable or meaningless.

15. Proof by reduction to the wrong problem: To show that the result is true, compare
(reduce/translate) the problem (in)to another problem. This is valid if the other problem
is then solvable. The error lies in comparing to an unsolvable problem.

Exercises

1.9.1 Find the flaw in the following inductive “proof” of the fact that, in any class, if one
selects a subset of students, they will have received the same grade.



06/10/2005 1.9 Some words about proving things 61

Suppose that we have a class with students S = {S1, . . . , Sm}. We shall
prove by induction on the size of the subset that any subset of students
receive the same grade. For a subset {Sj1}, the assertion is clearly true. Now
suppose that the assertion holds for all subsets of S with k students with k ∈
{1, . . . , l}, and suppose we have a subset {Sj1 , . . . , Sjl

, Sjl+1
} of l+1 students.

By the induction hypothesis, the students from the set {Sj1 , . . . , Sjl
} all

receive the same grade. Also by the induction hypothesis, the students
from the set {S2, . . . , Sjl

, Sjl+1
} all receive the same grade. In particular, the

grade received by student Sjl+1
is the same as the grade received by student

Sjl
. But this is the same as the grade received by students Sj1 , . . . , Sjl−1

,
and so, by induction, we have proved that all students receive the same
grade.

In the next exercise you will consider one of Zeno’s paradoxes. Zeno18 is best known for
having developed a collection of paradoxes, some of which touch surprisingly deeply on
mathematical ideas that were not perhaps fully appreciated until the 19th century. Many
of his paradoxes have a flavour similar to the one we give here, which may be the most
commonly encountered during dinnertime conversations.

1.9.2 Consider the classical problem of the Achilles chasing the tortoise. A tortoise starts
off a race T seconds before Achilles. Achilles, of course, is faster than the tortoise, but
we shall argue that, despite this, Achilles will actually never overtake the tortoise.

At time T when Achilles starts after the tortoise, the tortoise will be some
distance d1 ahead of Achilles. Achilles will reach this point after some time
t1. But, during the time it took Achilles to travel distance d1, the tortoise
will have moved along to some point d2 ahead of d1. Achilles will then take a
time t2 to travel the distance d2. But by then the tortoise will have travelled
another distance d3. This clearly will continue, and when Achilles reaches
the point where the tortoise was at some moment before, the tortoise will
have moved inexorably ahead. Thus Achilles will never actually catch up
to the tortoise.

What is the flaw in the argument?

18Zeno of Elea (∼490BC–∼425BC) was an Italian born philosopher of the Greek school.
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