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Preface

The purpose of this book is to provide an introduction to principles of 
probability, random variables, and random processes and their applications.

The book is designed for students in various disciplines of engineering, 
science, mathematics, and management. It may be used as a textbook and/or as 
a supplement to all current comparable texts. It should also be useful to those 
interested in the field for self-study. The book combines the advantages of both 
the textbook and the so-called review book. It provides the textual explanations 
of the textbook, and in the direct way characteristic of the review book, it gives 
hundreds of completely solved problems that use essential theory and 
techniques. Moreover, the solved problems are an integral part of the text. The 
background required to study the book is one year of calculus, elementary 
differential equations, matrix analysis, and some signal and system theory, 
including Fourier transforms.

I wish to thank Dr. Gordon Silverman for his invaluable suggestions and 
critical review of the manuscript. I also wish to express my appreciation to the 
editorial staff of the McGraw-Hill Schaum Series for their care, cooperation, 
and attention devoted to the preparation of the book. Finally, I thank my wife, 
Daisy, for her patience and encouragement.

HWEI P. HSU
MONTVILLE, NEW JERSEY
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Chapter 1 

Probability 

1.1 INTRODUCTION 

The study of probability stems from the analysis of certain games of chance, and it has found 
applications in most branches of science and engineering. In this chapter the basic concepts of prob- 
ability theory are presented. 

1.2 SAMPLE SPACE AND EVENTS 

A. Random Experiments: 

In the study of probability, any process of observation is referred to as an experiment. The results 
of an observation are called the outcomes of the experiment. An experiment is called a random experi- 
ment if its outcome cannot be predicted. Typical examples of a random experiment are the roll of a 
die, the toss of a coin, drawing a card from a deck, or selecting a message signal for transmission from 
several messages. 

B. Sample Space: 

The set of all possible outcomes of a random experiment is called the sample space (or universal 
set), and it is denoted by S. An element in S is called a sample point. Each outcome of a random 
experiment corresponds to a sample point. 

EXAMPLE 1.1 Find the sample space for the experiment of tossing a coin (a) once and (b) twice. 

(a) There are two possible outcomes, heads or tails. Thus 

S = {H, T) 

where H and T represent head and tail, respectively. 

(b) There are four possible outcomes. They are pairs of heads and tails. Thus 

S = (HH, HT, TH, TT) 

EXAMPLE 1.2 Find the sample space for the experiment of tossing a coin repeatedly and of counting the number 
of tosses required until the first head appears. 

Clearly all possible outcomes for this experiment are the terms of the sequence 1,2,3, . . . . Thus 

s = (1, 2, 3, . . .) 

Note that there are an infinite number of outcomes. 

EXAMPLE 1.3 Find the sample space for the experiment of measuring (in hours) the lifetime of a transistor. 

Clearly all possible outcomes are all nonnegative real numbers. That is, 

S = ( z : O < z < o o }  

where z  represents the life of a transistor in hours. 

Note that any particular experiment can often have many different sample spaces depending on the observ- 
ation of interest (Probs. 1.1 and 1.2). A sample space S is said to be discrete if it consists of a finite number of 
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sample points (as in Example 1.1) or countably infinite sample points (as in Example 1.2). A set is called countable 
if its elements can be placed in a one-to-one correspondence with the positive integers. A sample space S is said 
to be continuous if the sample points constitute a continuum (as in Example 1.3). 

C. Events: 

Since we have identified a sample space S as the set of all possible outcomes of a random experi- 
ment, we will review some set notations in the following. 

If C is an element of S (or belongs to S), then we write 

If S is not an element of S (or does not belong to S), then we write 

u s  
A set A is called a subset of B, denoted by 

A c B  

if every element of A is also an element of B. Any subset of the sample space S is called an event. A 
sample point of S is often referred to as an elementary event. Note that the sample space S is the 
subset of itself, that is, S c S. Since S is the set of all possible outcomes, it is often called the certain 
event. 

EXAMPLE 1.4 Consider the experiment of Example 1.2. Let A be the event that the number of tosses required 
until the first head appears is even. Let B be the event that the number of tosses required until the first head 
appears is odd. Let C be the event that the number of tosses required until the first head appears is less than 5. 
Express events A, B, and C. 

1.3 ALGEBRA OF SETS 

A. Set Operations: 

I .  Equality: 

Two sets A and B are equal, denoted A = B, if and only if A c B and B c A. 

2. Complementation : 

Suppose A c S. The complement of set A, denoted A, is the set containing all elements in S but 
not in A. 

A= {C: C: E Sand $ A) 

3. Union: 

The union of sets A and B, denoted A u B, is the set containing all elements in either A or B or 
both. 

4. Intersection: 

The intersection of sets A and B, denoted A n B, is the set containing all elements in both A 
and B. 
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The set containing no element is called the null set, denoted 0. Note that 

6. Disjoint Sets: 

Two sets A and B are called disjoint or mutually exclusive if they contain no common element, 
that is, if A n B = 0. 

The definitions of the union and intersection of two sets can be extended to any finite number of 
sets as follows: 

n 

U A ~ = A ,  u A , U . . - U  A, 
i =  1 

= ([: [ E  A l  or [ E  AZ or . - -  E A,) 

= (5: 5 E Al and 5 E A, and 5 E A,) 

Note that these definitions can be extended to an infinite number of sets: 

In our definition of event, we state that every subset of S is an event, including S and the null set 
0. Then 

S = the certain event 
@ = the impossible event 

If A and B are events in S, then 

2 = the event that A did not occur 
A u B = the event that either A or B or both occurred 
A n B = the event that both A and B occurred 

Similarly, if A,,  A,, . . . , A, are a sequence of events in S, then 

n 

U A, = the event that at least one of the A, occurred; 
i =  1 

n n Ai = the event that all of the A, occurred. 
i =  1 

B. Venn Diagram: 

A graphical representation that is very useful for illustrating set operation is the Venn diagram. 
For instance, in the three Venn diagrams shown in Fig. 1-1, the shaded areas represent, respectively, 
the events A u B, A n B, and A. The Venn diagram in Fig.. 1-2 indicates that B c A and the event 
A n B is shown as the shaded area. 
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( t r )  Shaded region: A  u H ( h )  Shaded region: A n B 

( I . )  Shaded region: A 

Fig. 1-1 

R c A  

Shaded region: A n R 

Fig. 1-2 

C. Identities: 

By the above set definitions or reference to Fig. 1-1, we obtain the following identities: 

S = @  

B = s  
J = A  

The union and intersection operations also satisfy the following laws: 

Commutative Laws: 

Associative Laws: 
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Distributive Laws: 

PROBABILITY 

De Morgan's Laws: 

These relations are verified by showing that any element that is contained in the set on the left side of 
the equality sign is also contained in the set on the right side, and vice versa. One way of showing this 
is by means of a Venn diagram (Prob. 1.13). The distributive laws can be extended as follows: 

Similarly, De Morgan's laws also can be extended as follows (Prob. 1.17): 

1.4 THE NOTION AND AXIOMS OF PROBABILITY 

An assignment of real numbers to the events defined in a sample space S is known as the prob- 
ability measure. Consider a random experiment with a sample space S, and let A be a particular event 
defined in S. 

A. Relative Frequency Definition: 

Suppose that the random experiment is repeated n times. If event A occurs n(A) times, then the 
probability of event A, denoted P(A), is defined as 

where n(A)/n is called the relative frequency of event A. Note that this limit may not exist, and in 
addition, there are many situations in which the concepts of repeatability may not be valid. It is clear 
that for any event A, the relative frequency of A will have the following properties: 

1. 0 5 n(A)/n I 1, where n(A)/n = 0 if A occurs in none of the n repeated trials and n(A)/n = 1 if A 
occurs in all of the n repeated trials. 

2. If A and B are mutually exclusive events, then 
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B. Axiomatic Definition: 

Let S be a finite sample space and A be an event in S. Then in the axiomatic definition, the 
, probability P(A) of the event A is a real number assigned to A which satisfies the following three 

axioms : 

Axiom 1 : P(A) 2 0 (1.21) 

Axiom 2: P(S) = 1 (1.22) 

Axiom 3:  P(A u B) = P(A) + P(B) if A n B = 0 (1.23) 

If the sample space S is not finite, then axiom 3 must be modified as follows: 

Axiom 3': If A, ,  A , ,  . . . is an infinite sequence of mutually exclusive events in S (Ai  n Aj  = 0 
for i # j), then 

These axioms satisfy our intuitive notion of probability measure obtained from the notion of relative 
frequency. 

C. Elementary Properties of Probability: 

By using the above axioms, the following useful properties of probability can be obtained: 

6. If A, ,  A , ,  . . . , A, are n arbitrary events in S, then 

- ... ( - 1 )" - 'P ( A1  n A, n - - . n  A,) (1.30) 

where the sum of the second term is over all distinct pairs of events, that of the third term is over 
all distinct triples of events, and so forth. 

7. If A,,  A, ,  . . . , A, is a finite sequence of mutually exclusive events in S (Ai  n Aj = 0 for i # j), 
then 

and a similar equality holds for any subcollection of the events. 

Note that property 4 can be easily derived from axiom 2 and property 3. Since A c S, we have 
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Thus, combining with axiom 1, we obtain 

0 < P(A) 5 1 

Property 5 implies that 

P(A u B) I P(A) + P(B) 

since P(A n B) 2 0 by axiom 1. 

1.5 EQUALLY LIKELY EVENTS 

A. Finite Sample Space: 

Consider a finite sample space S with n finite elements 

where ti's are elementary events. Let P(ci) = pi. Then 

3. If A = u &, where I is a collection of subscripts, then 
i f 1  

B. Equally Likely Events: 

When all elementary events (5, ( i  = 1,2, . . . , n) are equally likely, that is, 

p1 = p 2  = " * -  - Pn 
then from Eq. (1.35), we have 

and 

where n(A) is the number of outcomes belonging to event A and n is the number of sample points 
in S. 

1.6 CONDITIONAL PROBABILITY 

A. Definition : 

The conditional probability of an event A given event B, denoted by P(A I B), is defined as 

where P(A n B) is the joint probability of A and B. Similarly, 
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is the conditional probability of an event B given event A. From Eqs. (1.39) and (1.40), we have 

P(A n B) = P(A I B)P(B) = P(B I A)P(A) (1 .41 ) 

Equation (1 .dl) is often quite useful in computing the joint probability of events. 

B. Bayes' Rule: 

From Eq. (1.41) we can obtain the following Bayes' rule: 

1.7 TOTAL PROBABILITY 

The events A,, A,, . . . , A, are called mutually exclusive and exhaustive if 
n 

U Ai = A, u A, u v A, = S and A, n Aj = @ i # j 
i =  1 

Let B be any event in S. Then 

which is known as the total probability of event B (Prob. 1.47). Let A = Ai in Eq. (1.42); then, using 
Eq. (1.44), we obtain 

Note that the terms on the right-hand side are all conditioned on events Ai,  while the term on the left 
is conditioned on B. Equation (1.45) is sometimes referred to as Bayes' theorem. 

1.8 INDEPENDENT EVENTS 

Two events A and B are said to be (statistically) independent if and only if 

It follows immediately that if A and B are independent, then by Eqs. (1.39) and (1.40), 

P(A I B) = P(A) and P(B I A) = P(B) (1.47) 

If two events A and B are independent, then it can be shown that A and B are also independent; that 
is (Prob. 1.53), 

Then 

Thus, if A is independent of B, then the probability of A's occurrence is unchanged by information as 
to whether or not B has occurred. Three events A, B, C are said to be independent if and only if 

(1 SO) 
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We may also extend the definition of independence to more than three events. The events A,, A,, . . . , 
A, are independent if and only if for every subset (A,,, A,, , . . . , A,,) (2 5 k 5 n) of these events, 

P(Ail n A,, n . . n Aik) = P(Ai1)P(Ai,) P(Aik) (1.51) 

Finally, we define an infinite set of events to be independent if and only if every finite subset of these 
events is independent. 

To distinguish between the mutual exclusiveness (or disjointness) and independence of a collec- 
tion of events we summarize as follows: 

1. If (A,, i = 1,2, . . . , n} is a sequence of mutually exclusive events, then 

P( i) A,) = P(AJ 
i =  1 i =  1 

2. If {A,, i = 1,2, . . . , n) is a sequence of independent events, then 

and a similar equality holds for any subcollection of the events. 

Solved Problems 

SAMPLE SPACE AND EVENTS 

1.1. Consider a random experiment of tossing a coin three times. 

(a) Find the sample space S ,  if we wish to observe the exact sequences of heads and tails 
obtained. 

(b) Find the sample space S ,  if we wish to observe the number of heads in the three tosses. 

(a) The sampling space S, is given by 

S, = (HHH, HHT, HTH, THH, HTT, THT, TTH, TTT) 

where, for example, HTH indicates a head on the first and third throws and a tail on the second 
throw. There are eight sample points in S,. 

(b) The sampling space S ,  is given by 
Sz = (0, 1, 2, 3) 

where, for example, the outcome 2 indicates that two heads were obtained in the three tosses. The 
sample space S, contains four sample points. 

1.2. Consider an experiment of drawing two cards at random from a bag containing four cards 
marked with the integers 1 through 4. 

(a) Find the sample space S ,  of the experiment if the first card is replaced before the second is 
drawn. 

(b) Find the sample space S ,  of the experiment if the first card is not replaced. 

(a) The sample space S, contains 16 ordered pairs (i, J], 1 I i 1 4, 1 5 j 5 4, where the first number 
indicates the first number drawn. Thus, 

[(l, 1) (1, 2) (1, 3) (1,4)) 
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(b) The sample space S ,  contains 12 ordered pairs (i, j), i # j, 1 I i I 4, 1 I j I 4, where the first number 
indicates the first number drawn. Thus, 

(1, 2) (1, 3) (1, 4) 
(2, 1) (2, 3) (2, 4) 
(3, 1) (3, 2) (37 4) 
(4, 1) (4, 2) (4, 3) 

1.3. An experiment consists of rolling a die until a 6 is obtained. 

(a) Find the sample space S ,  if we are interested in all possibilities. 

(b) Find the sample space S, if we are interested in the number of throws needed to get a 6. 

(a) The sample space S, would be 

where the first line indicates that a 6 is obtained in one throw, the second line indicates that a 6 is 
obtained in two throws, and so forth. 

(b) In this case, the sample space S ,  is 

S ,  = ( i :  i 2 1) = (1, 2, 3, ...) 

where i is an integer representing the number of throws needed to get a 6. 

1.4. Find the sample space for the experiment consisting of measurement of the voltage output v from 
a transducer, the maximum and minimum of which are + 5 and - 5 volts, respectively. 

A suitable sample space for this experiment would be 

1.5. An experiment consists of tossing two dice. 

(a) Find the sample space S. 

(b) Find the event A that the sum of the dots on the dice equals 7. 
(c) Find the event B that the sum of the dots on the dice is greater than 10. 
(d) Find the event C that the sum of the dots on the dice is greater than 12. 

(a) For this experiment, the sample space S consists of 36 points (Fig. 1-3): 

S = ( ( i , j ) : i , j = l , 2 , 3 , 4 , 5 , 6 )  

where i represents the number of dots appearing on one die and j represents the number of dots 
appearing on the other die. 

(b) The event A consists of 6 points (see Fig. 1-3): 

A = ((1, 6), (2, 51, (3, 4), (4, 31, (5, 2), (6, 1)) 

(c )  The event B consists of 3 points (see Fig. 1-3): 

(d) The event C is an impossible event, that is, C = 12(. 
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A 

Fig. 1-3 

1.6. An automobile dealer offers vehicles with the following options: 
(a) With or without automatic transmission 
(b) With or without air-conditioning 

(c) With one of two choices of a stereo system 
(d) With one of three exterior colors , 

If the sample space consists of the set of all possible vehicle types, what is the number of out- 
comes in the sample space? 

The tree diagram for the different types of vehicles is shown in Fig. 1-4. From Fig. 1-4 we see that the 
number of sample points in S is 2 x 2 x 2 x 3 = 24. 

Transmission Automatic 

Air-conditioning 

Stereo 

Color 

Fig. 1-4 

1.7. State every possible event in the sample space S = {a, b, c, d ) .  

There are z4 = 16 possible events in S. They are 0; {a), (b), {c), {d) ; {a, b), {a, c), {a, d), {b, c), 
{b, d), (c ,  d )  ; {a, b, c) ,  (a, b, 4 ,  (a, c, d), {b, c, d) ; S = {a, b, c, dl- 

1.8. How many events are there in a sample space S with n elementary events? 

Let S = {s,, s,, . . . , s,). Let Q be the family of all subsets of S. (a is sometimes referred to as the power 
set of S.) Let Si be the set consisting of two statements, that is, 

Si = (Yes, the si is in; No, the s, is not in) 

Then Cl can be represented as the Cartesian product 

n = s, x s, x ... x s, 
= ((s,, s2, . . . , s,): si E Si for i = 1, 2, . . . , n) 
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Since each subset of S can be uniquely characterized by an element in the above Cartesian product, we 
obtain the number of elements in Q by 

n(Q) = n(S,)n(S,) - - . n(S,) = 2" 
' 

where n(Si) = number of elements in Si = 2. 
An alternative way of finding n(Q) is by the following summation: 

" nl 
n(Ql= ( y )  = 

i=O i = o  i ! ( n  - i)! 

The proof that the last sum is equal to 2" is not easy. 

ALGEBRA OF SETS 

1.9. Consider the experiment of Example 1.2. We define the events 

A = { k :  k is odd) 
B = { k : 4 < k 1 7 )  
C = { k :  1 5 k  5 10) 

where k is the number of tosses required until the first H (head) appears. Determine the events A, 
B , C , A u  B , B u C , A n  B , A n C , B n C , a n d A n  B. 

= (k:  k is even) = (2, 4, 6, . . .) 
B = { k :  k  = 1, 2, 3 or k  2 8) 
C =  ( k :  kr 1 1 )  
A u B  = { k :  k  is odd or k  = 4, 6 )  
B u C = C  
A n B  = (5 ,  7) 
A n C  = {I, 3, 5, 7, 9) 
B n C = B  
A n B  = ( 4 ,  6 )  

1.10. The sample space of an experiment is the real line expressed as 

(a) Consider the events 

A,  = { v :  0 S v  < $1 
A, = { v :  f 5 V < $1 

Determine the events 

(b) Consider the events 

U Ai and A, 
i =  1 i =  1 

1 B, = { v :  v 5 

B, = { v :  v  < 3) 
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Determine the events 

PROBABILITY 

U B, and O B ,  
i =  1 i =  1 

(a) It is clear that 

Noting that the Ai's are mutually exclusive, we have 

(b) Noting that B, 3 B, =, . . . 3 Bi 3 . . . , we have 
w 00 

U B~ = B, = {u: u I 3) and 0 B, = { v :  u r; 0) 
i =  1 i =  1 

1.1 1. Consider the switching networks shown in Fig. 1-5. Let A,, A,, and A, denote the events that 
the switches s,,  s , ,  and s, are closed, respectively. Let A,, denote the event that there is a closed 
path between terminals a and b. Express A,, in terms of A,, A, ,  and A, for each of the networks 
shown. 

(4 
(b)  

Fig. 1-5 

From Fig. 1-5(a), we see that there is a closed path between a and b only if all switches s,, s,, and s, 
are closed. Thus, 

A,, = A, n A, (3 A, 

From Fig. 1-5(b), we see that there is a closed path between a and b if at least one switch is closed. 
Thus, 

A,, = A, u A, v A, 

From Fig. 1-5(c), we see that there is a closed path between a and b if s, and either s, or s, are closed. 
Thus, 

A,, = A, n (A, v A,) 

Using the distributive law (1.12), we have 

A,, = (A1 n A,) u (A, n A,) 

which indicates that there is a closed path between a and b if s, and s, or s, and s, are closed. 

From Fig. 1-5(d), we see that there is a closed path between a and b if either s, and s, are closed or s, 
is closed. Thus 

A,, = (A, n A,) u A3 
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1.12. Verify the distributive law (1.1 2). 

Let s E [ A  n ( B  u C)]. Then s E A and s E (B u C). This means either that s E A  and s E B or that 
s E A  and s E C; that is, s E (A  n B) or s E (A n C). Therefore, 

A n ( B  u C ) c  [ (A n B) u ( A  n C)] 

Next, let s E [ ( A  n B) u ( A  n C)]. Then s E A and s E B or s E A and s E C. Thus s E A and (s E B or 
s E C). Thus, 

[(A n B) u ( A  n C)] c A  n (B u C) 

Thus, by the definition of equality, we have 

A n (B u C)=  ( A  n B) u (A n C) 

1.13. Using a Venn diagram, repeat Prob. 1.12. 

Figure 1-6 shows the sequence of relevant Venn diagrams. Comparing Fig. 1-6(b) and 1-6(e), we con- 
clude that 

( u )  Shaded region: H u C' ( h )  Shaded region: A n ( B  u C )  

( c )  Shaded region: A n H ( (1 )  Shaded region: A n C 

( r )  Shaded region: (A n H )  u ( A  n C )  

Fig. 1-6 

1.14. Let A  and B be arbitrary events. Show that A c B if and only if A  n B = A. 

"If" part: We show that if A n B = A, then A c B. Let s E A. Then s E (A  n B), since A = A n B. 
Then by the definition of intersection, s E B. Therefore, A c B. 

"Only if" part : We show that if A c B, then A n B = A. Note that from the definition of the intersec- 
tion, (A  n B) c A. Suppose s E A. If A  c B, then s E B. So s E A  and s E B; that is, s E (A  n B). Therefore, 
it follows that A c (A  n B). Hence, A  = A n B. This completes the proof. 

1.15. Let A  be an arbitrary event in S and let @ be the null event. Show that 

(a) A u ~ = A  

(b) A n D = 0  
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A u % = ( s : s ~ A o r s ~ ( a )  
But, by definition, there are no s E (a. Thus, 

A U @ = ( S : S E A ) = A  

A n 0 = { s : s ~ A a n d s ~ @ )  
But, since there are no s E (a, there cannot be an s such that s E A and s E 0. Thus, 

A n @ = @  

Note that Eq. (1.55) shows that (a is mutually excIusive with every other event and including with 
itself. 

1.16. Show that the null (or empty) set is a subset of every set A. 

From the definition of intersection, it follows that 

(A n B) c A and (A n B) c B 

for any pair of events, whether they are mutually exclusive or not. If A and B are mutually exclusive events, 
that is, A n B = a, then by Eq. (1.56) we obtain 

( a c A  and (a c B (1.57) 

Therefore, for any event A, 

@ c A  (1 .58) 

that is, 0 is a subset of every set A. 

1.17. Verify Eqs. (1 .1 8) and (1.1 9). 

Suppose first that s E A, then s I$ U A, . ( 1  ) ) 
That is, if s is not contained in any of the events A,, i = 1, 2, . . . , n, then s is contained in Ai for all 
i = 1, 2, . . . , n. Thus 

Next, we assume that 

Then s is contained in A, for all i = 1,2, . . . , n, which means that s is not contained in Ai for any i = 1, 
2, . . . , n, implying that 

Thus, 

This proves Eq. (1 .1 8). 

Using Eqs. (1 .l8) and (1.3), we have 

Taking complements of both sides of the above yields 

which is Eq. (1 .l9). 
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THE NOTION AND AXIOMS OF PROBABILITY 

1.18. Using the axioms of probability, prove Eq. (1.25). 

We have 

S = A u A  and A n A = @  

Thus, by axioms 2 and 3, it follows that 

P(S) = 1 = P(A) + P(A) 

from which we obtain 

P(A) = 1 - P(A) 

1.19. Verify Eq. (1.26). 

From Eq. (1 Z), we have 

P(A) = 1 - P(A) 

Let A = @. Then, by Eq. (1.2), A = @ = S, and by axiom 2 we obtain 

P ( @ ) = l - P ( S ) = l - 1 = 0  

1.20. Verify Eq. (1.27). 

Let A c B. Then from the Venn diagram shown in Fig. 1-7, we see that 

B = A u ( A n B )  and A n ( A n B ) = @  

Hence, from axiom 3, 

P(B) = P(A) + P(A n B) 

However, by axiom 1, P(A n B) 2 0. Thus, we conclude that 

P ( A ) I P ( B )  i f A c B  

1.21. Verify Eq. (1 .29). 

Shaded region: A n B 

Fig. 1-7 

From the Venn diagram of Fig. 1-8, each of the sets A u B and B can be represented, respectively, as a 
union of mutually exclusive sets as follows: 

A u B = A u ( A n  B) and B = ( A n B ) u ( A n B )  

Thus, by axiom 3, 

P(A u B) = P(A) + P(A n B) 

and P(B) = P(A n B) + P(A n B) 

From Eq. (l.61), we have 

P(A n B) = P(B) - P(A n B) 

Substituting Eq. (1.62) into Eq. (1.60), we obtain 

P(A u B) = P(A) + P(B) - P(A n B) 
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Shaded region: A n B Shaded region: A n B 

Fig. 1-8 

1.22. Let P(A) = 0.9 and P(B) = 0.8. Show that P(A n B) 2 0.7. 

From Eq. (l.29), we have 

P(A n B) = P(A) + P(B) - P(A u B) 

By Eq. (l.32), 0 I P(A u B) I 1. Hence 

P(A r\ B) 2 P(A) + P(B) - 1 

Substituting the given values of P(A) and P(B) in Eq. (1.63), we get 

P(A n B) 2 0.9 + 0.8 - 1 = 0.7 

Equation (1.63) is known as Bonferroni's inequality. 

1.23. Show that 

P(A) = P(A n B) + P(A n B) 
From the Venn diagram of Fig. 1-9, we see that 

A = ( A  n B) u ( A  n B) and ( A  n B) n ( A  n B) = 0 
Thus, by axiom 3, we have 

P(A) = P(A n B) + P(A n B) 

A n B  AnB 

Fig. 1-9 

1.24. Given that P(A) = 0.9, P(B) = 0.8, and P(A n B) = 0.75, find (a) P(A u B); (b)  P(A n B); and (c) 
P(A n B). 
(a) By Eq. (1 .29), we have 

P(A u B) = P(A) + P(B) - P(A n B) =: 0.9 + 0.8 - 0.75 = 0.95 

(b) By Eq. (1.64) (Prob. 1.23), we have 

P(A n B) = P(A) - P(A n B) = 0.9 - 0.75 = 0.15 

(c) By De Morgan's law, Eq. (1.14), and Eq. (1.25) and using the result from part (a), we get 

P(A n B) = P(A u B) = 1 - P(A u B) = 1 - 0.95 = 0.05 
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1.25. For any three events A,,  A , ,  and A, ,  show that 

P(Al u A,  u A,) = P(Al )  + P(A,) + P(A,) - P(A,  n A,) 

- P(Al n A,) - P(A, n A,)  + P(Al n A,  n A,)  

Let B = A, u A,. By Eq. (1.29), we have 

Using distributive law (1.1 2), we have 

A ,  n B = A ,  n ( A ,  u A,) = ( A ,  n A,) u ( A ,  n A,) 

Applying Eq. (1.29) to the above event, we obtain 

P(Al n B) = P(Al n A,) + P(Al n A,) - P[(Al n A,) n ( A ,  n A,)] 
="P(Al n A,) + P(Al n A,) - P(Al n A,  n A,) 

Applying Eq. (1.29) to the set B = A, u A,, we have 

P(B) = P(A, u A,) = P(A,) + P(A,) - P(A, n A,) 

Substituting Eqs. (1.69) and (1.68) into Eq. (1.67), we get 

P(Al u A, u A,) = P(Al)  + P(A,) + P(A,) - P(A, n A,) - P(A, n A,) 

- P(A, n A,) + P(Al n A, n A,) 

1.26. Prove that 

which is known as Boole's inequality. 

We will prove Eq. (1 .TO) by induction. Suppose Eq. (1.70) is true for n = k. 

Then 

Thus Eq. (1.70) is also true for n = k + 1. By Eq. (1.33), Eq. (1.70) is true for n = 2. Thus, Eq. (1.70) is true 
for n 2 2. 

1.27. Verify Eq. (1.31). 

Again we prove it by induction. Suppose Eq. (1.31) is true for n = k. 

Then 

Using the distributive law (1.1 6), we have 



CHAP. 11 PROBABILITY 

since A, n Aj = @ for i # j. Thus, by axiom 3, we have 

which indicates that Eq. (1.31) is also true for n = k + 1. By axiom 3, Eq. (1.31) is true for n = 2. Thus, it is 
true for n 2 2,. 

1.28. A sequence of events { A , ,  n 2 1 )  is said to be an increasing sequence if [Fig. 1-10(a)] 

A ,  c A2 c c A, c A k + l  c 

whereas it is said to be a decreasing sequence if [Fig. 1-10(b)] 

If ( A , ,  n 2 1) is an increasing sequence of events, we define a new event A ,  by 
CC, 

A ,  = lim A, = U A, 
n + c o  i =  1 

Similarly, if ( A , ,  n 2 1 )  is a decreasing sequence of events, we define a new event A ,  by 
02 

A ,  = lim A, = r) 
n+w i =  1 

Show that if' { A n ,  n 2 1) is either an increasing or a decreasing sequence of events, then 

lim P(A,) = P(A ,) 
n - r n  

which is known as the continuity theorem of probability. 

If (A,, n 2 1) is an increasing sequence of events, then by definition 

Now, we define the events B,, n 2 1, by 

Thus, B, consists of those elements in A, that are not in any of the earlier A,, k < n. From the Venn 
diagram shown in Fig. 1-11, it is seen that B, are mutually exclusive events such that 

n n a, 00 

U Bi = U A, for all n 2 1, and U B, = U A, = A, 
i = l  i = l  i = l  i = l  
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A, n A, A3 (7x2 

Fig. 1-11 

Thus, using axiom 3', we have 

n 

= lim z P(B,) = lirn P 
n+m 

Next, if (A,, n 2 1) is a decreasing sequence, then {A,, , n 2 1) is an increasing sequence. Hence, by Eq. 
(1.73, we have 

From Eq. (1.1 9), 

Thus, P Ai = lim P(An) ))I I-m 

Using Eq. (1.25), Eq. (1.76) reduces to 

Thus, 

Combining Eqs. (1.75) and (1.77), we obtain Eq. (1.74). 

EQUALLY LIKELY EVENTS 

1.29. Consider a telegraph source generating two symbols, dots and dashes. We observed that the dots 
were twice as likely to occur as the dashes. Find the probabilities of the dot's occurring and the 
dash's occurring. 
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* From the observation, we have 

P(dot) = 2P(dash) 

Then, by Eq. (1.39, 

P(dot) + P(dash) = 3P(dash) = 1 

Thus, P(dash) = 5 and P(dot) = 

1.30. The sample space S of a random experiment is given by 

S = {a, b, c, d ]  

with probabilities P(a) = 0.2, P(b) = 0.3, P(c) = 0.4, and P(d) = 0.1. Let A denote the event {a, b), 
and B the event {b, c, d). Determine the following probabilities: (a) P(A); (b) P(B); (c) P(A); (d) 
P(A u B); and (e) P(A n B). 

Using Eq. (1.36), we obtain 

(a) P(A) = P(u) + P(b) = 0.2 + 0.3 = 0.5 

(b) P(B) = P(b) + P(c) + P(d) = 0.3 + 0.4 + 0.1 = 0.8 

(c) A = (c, d);  P ( 4  = P(c) + P(d) = 0.4 + 0.1 = 0.5 

(d) A u B = {a, b, c, d) = S; P(A u B) = P(S) = 1 

(e) A n B=(b};P(A n B)= P(b)=O.3 

1.31. An experiment consists of observing the sum of the dice when two fair dice are thrown (Prob. 
1.5). Find (a) the probability that the sum is 7 and (b) the probability that the sum is greater than 

Let rij denote the elementary event (sampling point) consisting of the following outcome: cij = (i, j), 
where i represents the number appearing on one die and j represents the number appearing on the 
other die. Since the dice are fair, all the outcomes are equally likely. So P(rij) = &. Let A denote the 
event that the sum is 7. Since the events rij are mutually exclusive and from Fig. 1-3 (Prob. IS), we 
have 

P(A) = K 1 6  u (25 u (34 u C43 u (52 u (6,) 

= p(r16) + P(C25) + p(c34) + P(c421) + p(C52) + p(661) 
= 6(&) = 4 

Let B denote the event that the sum is greater than 10. Then from Fig. 1-3, we obtain 

P(B) = P(556 u c65 u (66) = PG6)  -1 P(C65) + W66) 
= 3(&) = 

1.32. There are n persons in a room. 

(a) What is the probability that at least two persons have the same birthday? 
(b) Calculate this probability for n = 50. 
(c) How large need n be for this probability to be greater than 0.5? 

(a) As each person can have his or her birthday on any one of 365 days (ignoring the possibility of 
February 29), there are a total of (365)" possible outcomes. Let A be the event that no two persons 
have the same birthday. Then the number of outcomes belonging to A is 

Assuming that each outcome is equally likely, then by Eq. (1.38), 
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Let B be the event that at least two persons have the same birthday. Then B = 2 and by Eq. (1.25), 
P(B) = 1 - P(A). 

(b) Substituting n = 50 in Eq. (1.78), we have 

P(A) z 0.03 and P(B) z 1 - 0.03 = 0.97 

(c) From Eq. (1.78), when n = 23, we have 

P(A) x 0.493 and P(B) = 1 - P(A) w 0.507 

That is, if there are 23 persons in a room, the probability that at least two of them have the same 
birthday exceeds 0.5. 

1.33. A committee of 5 persons is to be selected randomly from a group of 5 men and 10 women. 

(a) Find the probability that the committee consists of 2 men and 3 women. 
(b) Find the probability that the committee consists of all women. 

(a) The number of total outcomes is given by 

It is assumed that "random selection" means that each of the outcomes is equally likely. Let A be the 
event that the committee consists of 2 men and 3 women. Then the number of outcomes belonging to 
A is given by 

Thus, by Eq. (l.38), 

(b) Let B be the event that the committee consists of all women. Then the number of outcomes belonging 
to B is 

Thus, by Eq. (l.38), 

1.34. Consider the switching network shown in Fig. 1-12. It is equally likely that a switch will or 
will not work. Find the probability that a closed path will exist between terminals a and b. 

Fig. 1-12 
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Consider a sample space S of which a typical outcome is (1,0,0, I), indicating that switches 1 and 4 are 
closed and switches 2 and 3 are open. The sample space contains 24 = 16 points, and by assumption, they 
are equally likely (Fig. 1-13). 

Let A,, i = 1, 2, 3, 4 be the event that the switch si is closed. Let A be the event that there exists a 
closed path between a and b. Then 

A = A, u (A, n A,) u (A2  n A,) 

Applying Eq. (1 JO), we have 

Now, for example, the event A, n A, contains all elementary events with a 1 in the second and third 
places. Thus, from Fig. 1-13, we see that 

n(A,) = 8 n(A2 n A,) = 4 n(A2 n A4) = 4 
n(A, n A, n A,) = 2 n(A, n A, n A,) = 2 
n(A, n A, n A,) = 2 n(A, n A, n A, n A,) = 1 

Thus, 

Fig. 1-13 

1.35. Consider the experiment of tossing a fair coin repeatedly and counting the number of tosses 
required until the first head appears. 

(a) Find the sample space of the experiment. 
(b) Find the probability that the first head appears on the kth toss. 
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Verify that P(S) = 1. 

The sample space of this experiment is 

where e, is the elementary event that the first head appears on the kth toss. 

Since a fair coin is tossed, we assume that a head and a tail are equally likely to appear. Then P(H) = 
P(T)  = $. Let 

Since there are 2k equally likely ways of tossing a fair coin k times, only one of which consists of (k - 1) 
tails following a head we observe that 

Using the power series summation formula, we have 

1.36. Consider the experiment of Prob. 1.35. 

(a) Find the probability that the first head appears on an even-numbered toss. 
(b) Find the probability that the first head appears on an odd-numbered toss. 

(a) Let A be the event "the first head appears on an even-numbered toss." Then, by Eq. (1.36) and using 
Eq.  (1.79) of Prob. 1.35, we have 

(b) Let B be the event "the first head appears on an odd-numbered toss." Then it is obvious that B = 2. 
Then, by Eq. (1.25), we get 

As a check, notice that 

CONDITIONAL PROBABILITY 

1.37. Show that P(A I B) defined by Eq.  (1.39) satisfies the three axions of a probability, that is, 

P ( A ( B )  2 0 
P(S I B) = 1 

P(A,  u A, I B) = P(A, I B) + P(A, I B) if A, n A, = 0 
From definition (1.39), 

By axiom 1, P(A n B) 2 0. Thus, 

P(AIB)  2 0 
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(b)  By Eq. ( I S ) ,  S n B = B. Then 

(c)  By definition (1.39), 

Now by Eqs. (1.8) and (1.1 I ) ,  we have 

( A ,  u A,) n B = ( A l  n B) u ( A ,  n B) 

and A,  n A,  = 0 implies that ( A ,  n B) n ( A ,  n B) = 0. Thus, by axiom 3 we get 

1.38. Find P(A I B) if (a) A n B = a, (b)  A c B, and (c)  B c A. 

(a)  If A n B = 0, then P(A n B) = P ( 0 )  = 0. Thus, 

(b) If A c B, then A n B = A and 

(c )  If B c A, then 

1.39. Show that if P(A 

A n  B =  Band 

B) > P(A), then P(B I A) > P(B). 

P(A n B) 
If P(A I B) = -------- 

P(B) 
> P(A), then P(A n B) > P(A)P(B). Thus, 

1.40. Consider the experiment of throwing the two fair dice of Prob. 1.31 behind you; you are then 
informed that the sum is not greater than 3. 

(a) Find the probability of the event that two faces are the same without the information given. 
(b)  Find the probability of the same event with the information given. 

(a)  Let A be the event that two faces are the same. Then from Fig. 1-3 (Prob. 1.5) and by Eq.  (1.38), we 
have 

A = {(i, i): i = 1, 2 ,  ..., 6) 

and 
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(b) Let B be the event that the sum is not greater than 3. Again from Fig. 1-3, we see that 

B = {(i, j ) :  i + j  5 3) = {(I, I), (1, 21, (2, I)} 

and 

Now A n B is the event that two faces are the same and also that their sum is not greater than 3. 
Thus, 

Then by definition (1.39), we obtain 

Note that the probability of the event that two faces are the same doubled from 8 to 4 with the 
information given. 

Alternative Solution: 

There are 3 elements in B, and 1 of them belongs to A. Thus, the probability of the same event 
with the information given is 5. 

1.41. Two manufacturing plants produce similar parts. Plant 1 produces 1,000 parts, 100 of which are 
defective. Plant 2 produces 2,000 parts, 150 of which are defective. A part is selected at random 
and found to be defective. What is the probability that it came from plant 1 ? 

Let B be the event that "the part selected is defective," and let A be the event that "the part selected 
came from plant 1." Then A n B is the event that the item selected is defective and came from plant 1. 
Since a part is selected at random, we assume equally likely events, and using Eq. (1.38), we have 

Similarly, since there are 3000 parts and 250 of them are defective, we have 

By Eq. (1.39), the probability that the part came from plant 1 is 

Alternative Solution : 

There are 250 defective parts, and 100 of these are from plant 1. Thus, the probability that the 
defective part came from plant 1 is # = 0.4. 

1.42. A lot of 100 semiconductor chips contains 20 that are defective. Two chips are selected at 
random, without replacement, from the lot. 

(a) What is the probability that the first one selected is defective? 

(b) What is the probability that the second one selected is defective given that the first one was 
defective? 

(c) What is the probability that both are defective? 



CHAP. 1) PROBABILITY 

(a) Let A denote the event that the first one selected is defective. Then, by Eq. (1.38), 

P(A) = = 0.2 

(b) Let B denote the event that the second one selected is defective. After the first one selected is defective, 
there are 99 chips left in the lot with 19 chips that are defective. Thus, the probability that the second 
one selected is defective given that the first one was defective is 

(c) By Eq. ( l .41),  the probability that both are defective is 

1.43. A number is selected at random from (1, 2, . . . , 100). Given that the number selected is divisible 
by 2, find the probability that it is divisible by 3 or 5. 
Let A, = event that the number is divisible by 2 

A,  = event that the number is divisible by 3 
A ,  = event that the number is divisible by 5 

Then the desired probability is 

- - P(A3 n A,) + P(A, n A,) - P(A3 n As n A,) 

P(A 2 )  
C E ~ .  (1.29)1 

Now A,  n A, = event that the number is divisible by 6 
A ,  n A, = event that the number is divisible by 10 

A,  n A ,  n A, = event that the number is divisible by 30 

and P(A, n A,) =  AS n A21 = 7% P(A, n As n A,) = &, 
- 

Thus, P(A3 u As I A21 = 
Z O  + Ah -hi - 23 

5 0 - - 0.46 
loo 50 

1.44. Let A , , A  ,,..., A,beeventsinasamplespaceS. Show that 

P(A1 n A ,  n . n A,) = P(A,)P(A,  1 A,)P(A,  I A,  n A,) . P(A, ( A ,  n A, n . . n A,- ,) 

(1.81) 

We prove Eq. (1.81) by induction. Suppose Eq. (1.81) is true for n = k: 

P(Al n A, n . . n A,) = P(Al)P(A2 I A,)P(A,  I A ,  n A:,) . - .  P(A, I A,  n A,  n - - n A,- , )  

Multiplying both sides by P(A,+,  I A ,  n A ,  n . . . n A,), we have 

P(Al n A, n - - -  n A,)P(A,+,IA,  n A, n n A,) = P(Al n A,  n - . .  n A, , , )  

and P(A,  n A,  n - .  . n A,, , )  = P(A,)P(A, 1 A,)P(A3 1 A ,  rl A,) - - .  P(A,+,  1 A ,  n A ,  n - .  . n A,) 

Thus, Eq. (1.81) is also true for n = k + 1. By Eq. ( 1  A l ) ,  Eq. (1.81) is true for n = 2. Thus Eq. (1.81) is true 
for n 2 2. 

1.45. Two cards are drawn at random from a deck. Find the probability that both are aces. 

Let A be the event that the first card is an ace, and B be the event that the second card is an ace. The 
desired probability is P(B n A). Since a card is drawn at random, P(A) = A. Now if the first card is an ace, 
then there will be 3 aces left in the deck of 51 cards. Thus P(B I A )  = A. By Eq. ( 1  .dl) ,  
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Check: 

By counting technique, we have 

1.46. There are two identical decks of cards, each possessing a distinct symbol so that the cards from 
each deck can be identified. One deck of cards is laid out in a fixed order, and the other deck is 
shufkd and the cards laid out one by one on top of the fixed deck. Whenever two cards with the 
same symbol occur in the same position, we say that a match has occurred. Let the number of 
cards in the deck be 10. Find the probability of getting a match at the first four positions. 

Let A,,  i = 1,2,3,4, be the events that a match occurs at the ith position. The required probability is 

P(A, n A, n A, n A,) 

By Eq. (1.81), 

There are 10 cards that can go into position 1, only one of which matches. Thus, P(Al) = &. P(A, ( A , )  is 
the conditional probability of a match at position 2 given a match at position 1. Now there are 9 cards left 
to go into position 2, only one of which matches. Thus, P(A2 I A,)  = *. In a similar fashion, we obtain 
P(A3 I A,  n A,) = 4 and P(A, I A, n A, n A,) = 4. Thus, 

TOTAL PROBABILITY 

1.47. Verify Eq. (1.44). 

Since B n S = B [and using Eq. (1.43)], we have 

B =  B n S = B n ( A ,  u A, u u An) 
= ( B  n A,)  u (B n A,) u ... u (B  n An) 

Now the events B n A,, i = 1,2, . . . , n, are mutually exclusive, as seen from the Venn diagram of Fig. 1-14. 
Then by axiom 3 of probability and Eq. (1.41), we obtain 

B n A ,  B n A ,  B n A ,  

Fig. 1-14 
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Show that for any events A and B in S,  

P(B) = P(B I A)P( A) + P(B I A) P(X)  

From Eq. (1.64) (Prob. 1.23), we have 

P(B) = P(B n A)  + P(B n 4 

Using Eq. (1.39), we obtain 

P(B) = P(B I A)P(A) + P(B I X)P(A) 

Note that Eq. (1.83) is the special case of Eq. (1.44). 

Suppose that a laboratory test to detect a certain disease has the following statistics. Let 

A = event that the tested person has the disease 

B = event that the test result is positive 

It is known that 

P(B I A) = 0.99 and P(B I A) = 0.005 

and 0.1 percent of the population actually has the disease. What is the probability that a person 
has the disease given that the test result is positive? 

From the given statistics, we have 

P(A) = 0.001 then P(A) = 0.999 

The desired probability is P(A ) B). Thus, using Eqs. (1.42) and (1.83), we obtain 

Note that in only 16.5 percent of the cases where the tests are positive will the person actually have the 
disease even though the test is 99 percent effective in detecting the disease when it is, in fact, present. 

A company producing electric relays has three manufacturing plants producing 50, 30, and 20 
percent, respectively, of its product. Suppose that the probabilities that a relay manufactured by 
these plants is defective are 0.02,0.05, and 0.01, respectively. 

If a relay is selected at random from the output of the company, what is the probability that 
it is defective? 

If a relay selected at random is found to be defective, what is the probability that it was 
manufactured by plant 2? 

Let B be the event that the relay is defective, and let Ai be the event that the relay is manufactured by 
plant i (i = 1,2, 3). The desired probability is P(B). Using Eq. (1.44), we have 
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(b) The desired probability is P(A2 1 B). Using Eq. (1.42) and the result from part (a), we obtain 

1.51. Two numbers are chosen at random from among the numbers 1 to 10 without replacement. Find 
the probability that the second number chosen is 5. 

Let A,, i = 1, 2, . . . , 10 denote the event that the first number chosen is i. Let B be the event that the 
second number chosen is 5. Then by Eq. (1.44), 

Now P(A,) = A. P(B I A,) is the probability that the second number chosen is 5, given that the first is i. If 
i = 5, then P(B I Ai) = 0. If i # 5, then P(B I A,) = 4. Hence, 

1.52. Consider the binary communication channel shown in Fig. 1-15. The channel input symbol X 
may assume the state 0 or the state 1, and, similarly, the channel output symbol Y may assume 
either the state 0 or the state 1. Because of the channel noise, an input 0 may convert to an 
output 1 and vice versa. The channel is characterized by the channel transition probabilities p,,  
40, PI, and 91, ckfined by 

where x ,  and x, denote the events (X = 0 )  and ( X  = I), respectively, and yo and y, denote the 
events (Y = 0) and (Y = I), respectively. Note that p, + q,  = 1 = p, + q,. Let P(xo) = 0.5, po = 
0.1, and p, = 0.2. 

(a) Find P(yo) and P(y l ) .  

(b) If a 0 was observed at the output, what is the probability that a 0 was the input state? 

(c) If a 1 was observed at the output, what is the probability that a 1 was the input state? 

(d) Calculate the probability of error P,. 

Fig. 1-15 

(a) We note that 
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Using Eq. (1.44), we obtain 

(b) Using Bayes' rule (1.42), we have 

(c) Similarly, 

(d) The probability of error is 

P, = P(yl (xo)P(xo)  + P(yo ( x l ) P ( x l )  = O.l(O.5) + 0.2(0.5) = 0.15. 

INDEPENDENT EVENTS 

1.53. Let A and B be events in a sample space S. Show that if A and B are independent, then so are (a) 
A and B, (b)  A and B, and (c) A and B. 
(a) From Eq. (1.64) (Prob. 1.23), we have 

P(A) = P(A n B)  + P(A n B) 

Since A and B are independent, using Eqs. (1.46) and (1 .B ) ,  we obtain 

P(A n B) = P(A) - P(A n B) = P(A) - P(A)P(B) 

= P(A)[ l  - P(B)] = P(A)P(B) 

Thus, by definition (l.46), A and B are independent. 

(b) Interchanging A and B in Eq. (1.84), we obtain 

P(B n 3 = P(B)P(A) 

which indicates that A and B are independent. 

(c) We have 

P ( A  n B) = P[(A u B)] [Eq. (1.1411 
= 1 - P(A u B) [Eq- (1.25)1 
= 1 - P(A) - P(B) + P(A n B)  [Eq. (1.29)] 
= 1 - P(A) - P(B) + P(A)P(B) [Eq. (1.46)] 
= 1 - P(A) - P(B)[l - P(A)] 
= [l - P(A)][ l  - P(B)] 

= P(A)P(B) [Eq. (1.2511 

Hence, A and B are independent. 

1.54. Let A and B be events defined in a sample space S. Show that if both P(A) and P(B) are nonzero, 
then events A and B cannot be both mutually exclusive and independent. 

Let A and B be mutually exclusive events and P(A)  # 01, P(B) # 0. Then P(A n B) = P(%) = 0 but 
P(A)P(B) # 0. Since 

A and B cannot be independent. 

1.55. Show that if three events A, B, and C are independent, then A and (B u C) are independent. 
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We have 

P [ A  n (B  u C) ]  = P[ (A  n B) u ( A  n C ) ]  [Eq.  (1.12)1 
= P ( A n B ) + P ( A n C ) - P ( A n B n C )  [Eq.(1.29)]  
= P(A)P(B) + P(A)P(C) - P(A)P(B)P(C) CEq. ( 1 W I  
= P(A)P(B) + P(A)P(C) - P(A)P(B n C )  [Eq. (1.50)] 
= P(A)[P(B) + P(C) - P(B n C) ]  
= P(A)P(B u C )  C E ~ .  (1.2911 

Thus, A and ( B  u C )  are independent. 

1.56. Consider the experiment of throwing two fair dice (Prob. 1.31). Let A be the event that the sum 
of the dice is 7, B be the event that the sum of the dice is 6, and C be the event that the first die is 
4. Show that events A and C are independent, but events B and C are not independent. 

From Fig. 1-3 (Prob. l .5) ,  we see that 

and 

Now 

and 

Thus, events A and C are independent. But 

Thus, events B and C are not independent. 

1.57. In the experiment of throwing two fair dice, let A be the event that the first die is odd, B be the 
event that the second die is odd, and C be the event that the sum is odd. Show that events A, B, 
and C are pairwise independent, but A, B, and C are not independent. 

From Fig. 1-3 (Prob. 1.5), we see that 

Thus 

which indicates that A, B, and C are pairwise independent. However, since the sum of two odd numbers is 
even, ( A  n B n C )  = 0 and 

P(A n B n C )  = 0 # $ = P(A)P(B)P(C) 

which shows that A, B, and C are not independent. 

1.58. A system consisting of n separate components is said to be a series system if it functions when all 
n components function (Fig. 1-16). Assume that the components fail independently and that the 
probability of failure of component i is pi, i = 1, 2, . . . , n. Find the probability that the system 
functions. 

Fig. 1-16 Series system. 
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Let Ai be the event that component si functions. Then 

P(Ai) = 1 - P(Ai) = 1 - pi 

Let A be the event that the system functions. Then, since A,'s are independent, we obtain 

1.59. A system consisting of n separate components is said to be a parallel system if it functions when 
at least one of the components functions (Fig. 1-17). Assume that the components fail indepen- 
dently and that the probability of failure of component i is pi, i = 1, 2, . . . , n. Find the probabil- 
ity that the system functions. 

Fig. 1-17 Parallel system. 

Let Ai be the event that component si functions. Then 

Let A be the event that the system functions. Then, since A,'s are independent, we obtain 

1.60. Using Eqs. (1.85) and (1.86), redo Prob. 1.34. 

From Prob. 1.34, pi = 4, i = 1, 2, 3, 4, where pi is the probability of failure of switch si.  Let A be the 
event that there exists a closed path between a and b. Using Eq. (1.86), the probability of failure for the 
parallel combination of switches 3 and 4 is 

P34 = P3 P4 = (+)(a) == a 
Using Eq. (1.85), the probability of failure for the combination of switches 2, 3, and 4 is 

p234 = 1 - (1 - 4x1 - i) =; 1 - 3 = 8 8 

Again, using Eq. (1.86), we obtain 

1.61. A Bernoulli experiment is a random experiment, the outcome of which can be classified in but 
one of two mutually exclusive and exhaustive ways, say success or failure. A sequence of Ber- 
noulli trials occurs when a. Bernoulli experiment is performed several independent times so that 
the probability of success, say p, remains the same from trial to trial. Now an infinite sequence of 
Bernoulli trials is performed. Find the probability that (a) at least 1 success occurs in the first n 
trials; (b )  exactly k successes occur in the first n trials; (c)  all trials result in successes. 

(a) In order to find the probability of at least 1 success in the first n trials, it is easier to first compute the 
probability of the complementary event, that of no successes in the first n trials. Let Ai denote the event 
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of a failure on the ith trial. Then the probability of no successes is, by independence, 

P(A, n A, n - . . n A,) = P(Al)P(A2) . - . P(A,) = (1 - p)" (1.87) 

Hence, the probability that at least 1  success occurs in the first n trials is 1 - (1 - p)". 

(b) In any particular sequence of the first n outcomes, if k successes occur, where k = 0, 1, 2, . . . , n, then 

n - k failures occur. There are such sequences, and each one of these has probability pk(l - P)"-~. (9 
Thus, the probability that exactly k successes occur in the first n trials is given by - p y k .  

(c) Since Ai denotes the event of a success on the ith trial, the probability that all trials resulted in 
successes in the first n trials is, by independence, 

P(Al n A, n . + n An) = P(A,)P(A,) . . P(A,,) = pn (1.88) 

Hence, using the continuity theorem of probability (1.74) (Prob. 1.28), the probability that all trials 
result in successes is given by 

0 p < l  
P O X i  = P  lim r)Ai = limp n X i  = limpn= 

(1-1 ) m i 1  ) n i ) n-cc {l p =  1 

Let S be the sample space of an experiment and S = {A, B, C), where P(A) = p, P(B) = q, and 
P(C) = r. The experiment is repeated infinitely, and it is assumed that the successive experiments 
are independent. Find the probability of the event that A occurs before B. 

Suppose that A occurs for the first time at the nth trial of the experiment. If A is to have occurred 
before B, then C must have occurred on the first (n - 1) trials. Let D be the event that A occurs before B. 
Then 

where D, is the event that C occurs on the first (n - 1) trials and A occurs on the nth trial. Since Dm's are 
mutually exclusive, we have 

Since the trials are independent, we have 

Thus, 

1.63. In a gambling game, craps, a pair of dice is rolled and the outcome of the experiment is the sum 
of the dice. The player wins on the first roll if the sum is 7 or 11 and loses if the sum is 2,3, or 12. 
If the sum is 4, 5, 6, 8, 9, or 10, that number is called the player's "point." Once the point is 
established, the rule is: If the player rolls a 7 before the point, the player loses; but if the point is 
rolled before a 7, the player wins. Compute the probability of winning in the game of craps. 

Let A, B, and C be the events that the player wins, the player wins on the first roll, and the player gains 
point, respectively. Then P(A) = P(B) + P(C). Now from Fig. 1-3 (Prob. IS), 
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Let A, be the event that point of k occurs before 7. Then 

P(C) = P(A,)P(point = k) 
k e ( 4 ,  5 ,  6, 8, 9. 10) 

By Eq. (1.89) (Prob. 1.62), 

Again from Fig. 1-3, 

Now by Eq. (1 .go), 

Using these values, we obtain 

Supplementary Problems 

1.64. Consider the experiment of selecting items from a group consisting of three items ( a ,  b, c ) .  

(a)  Find the sample space S, of the experiment in which two items are selected without replacement. 

( b )  Find the sample space S ,  of the experiment in which two items are selected with replacement. 

Ans. ( a )  S ,  = {ab,  ac, ba, bc, ca, ch) 

(b)  S ,  = {aa,  ah, ac, ha, bh, bc, ca, cb, cc} 

1.65. Let A and B be arbitrary events. Then show that A c B if and on1.y if A u B = B. 

Hint : Draw a Venn diagram. 

1.66. Let A and B be events in the sample space S.  Show that if A c B, then B c A. 

Hint: Draw a Venn diagram. 

1.67. Verify Eq. (1.1 3). 

Hint: Draw a Venn diagram. 

1.68. Let A and B be any two events in S. The difference of B and A, denoted by B - A, is defined as 

B - A = B n A  

The symmetric difference of A and B, denoted by A A B, is defined by 

A A B = ( A  - B) U ( B  -- A)  

Show that 
-- 

A A B = ( A  u B) n ( A  1-1 B) 

Hint: Draw a Venn diagram. 
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Let A and B be any two events in S. Express the following events in terms of A and B. 
(a) At least one of the events occurs. 

(b) Exactly one of two events occurs. 

Ans. (a) A u B; (b) A A B 

Let A, B, and C be any three events in S. Express the following events in terms of these events. 

(a) Either B or C occurs, but not A. 

(b) Exactly one of the events occurs. 

(c) Exactly two of the events occur. 

Ans. (a) A n ( B  v C) 

(b) ( A  n ( B  u C))  u ( B  n ( A  u C ) )  u ( C  n ( A  u B)) 

(c) ( ( A  n B) n C) u { (A  n C )  n B )  u {(B n C )  n A) 

A random experiment has sample space S = {a, h, c). Suppose that P({a, c ) )  = 0.75 and P({b, c))  = 0.6. 
Find the probabilities of the elementary events. 

Ans. P(a) = 0.4, P(b) = 0.25, P(c) = 0.35 

Show that 
(a) P(A u B) = 1 - P(A n B) 

(b) P(A n B) 2 1 - P(A) - P(B) 

Hint: (a) Use Eqs. (1.1 5) and (1 . Z ) .  

(b) Use Eqs. (1 .29), (l.25), and (1.28). 

(c) See Prob. 1.68 and use axiom 3. 

Let A, B, and C be three events in S. If P(A) = P(B) = 4, P(C) = 4, P(A n B) = 4, P(A n C)  = 6, and 
P(B n C )  = 0, find P(A u B u C). 

Ans. 2 

Verify Eq. (1.30). 

Hint: Prove by induction. 

Show that 

P(A, n A, n - - n A,) 2 P(A,) + P(AJ + . - + P(A,) - (n  - 1) 

Hint: Use induction to generalize Bonferroni's inequality (1.63) (Prob. 1.22). 

In an experiment consisting of 10 throws of a pair of fair dice, find the probability of the event that at least 
one double 6 occurs. 

Ans. 0.246 

Show that if P(A) > P(B), then P(A I B) > P(B I A). 

Hint : Use Eqs. (1.39) and ( 1  .do). 

An urn contains 8 white balls and 4 red balls. The experiment consists of drawing 2 balls from the urn 
without replacement. Find the probability that both balls drawn are white. 

Ans. 0.424 
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There are 100 patients in a hospital with a certain disease. Of these, 10 are selected to undergo a drug 
treatment that increases the percentage cured rate from 50 percent to 75 percent. What is the probability 
that the patient received a drug treatment if the patient is known to be cured? 

Ans. 0.143 

Two boys and two girls enter a music hall and take four seats at random in a row. What is the probability 
that the girls take the two end seats? 

Ans. 

Let A and B be two independent events in S. It is known that I'(A n B) = 0.16 and P(A u B) = 0.64. Find 
P(A) and P(B). 

Ans. P(A) = P(B) = 0.4 

The relay network shown in Fig. 1-18 operates if and only if there is a closed path of relays from left to 
right. Assume that relays fail independently and that the probability of failure of each relay is as shown. 
What is the probability that the relay network operates? 

Ans. 0.865 

I 0.3 I 
Fig. 1-18 



Chapter 2 

2.1 INTRODUCTION 

In this chapter, the concept of a random variable is introduced. The main purpose of using a 
random variable is so that we can define certain probability functions that make it both convenient 
and easy to compute the probabilities of various events. 

2.2 RANDOM VARIABLES 

A. Definitions: 

Consider a random experiment with sample space S. A random variable X(c) is a single-valued 
real function that assigns a real number called the value of X([) to each sample point [ of S. Often, we 
use a single letter X for this function in place of X(5) and use r.v. to denote the random variable. 

Note that the terminology used here is traditional. Clearly a random variable is not a variable at 
all in the usual sense, and it is a function. 

The sample space S is termed the domain of the r.v. X, and the collection of all numbers [values 
of X([ ) ]  is termed the range of the r.v. X. Thus the range of X is a certain subset of the set of all real 
numbers (Fig. 2-1). 

Note that two or more different sample points might give the same value of X(0, but two differ- 
ent numbers in the range cannot be assigned to the same sample point. 

x (0 R 

Fig. 2-1 Random variable X as a function. 

EXAMPLE 2.1 In the experiment of tossing a coin once (Example 1.1), we might define the r.v. X as (Fig. 2-2) 

X ( H )  = 1 X ( T )  = 0 

Note that we could also define another r.v., say Y or 2, with 

Y(H) = 0, Y(T)  = 1 or Z ( H )  = 0, Z(T) = 0 

B. Events Defined by Random Variables: 

If X is a r.v. and x is a fixed real number, we can define the event (X = x) as 

(X = x) = {l :  X(C) = x) 

Similarly, for fixed numbers x, x,, and x, , we can define the following events: 

(X 5 x) = {l :  X(l) I x) 
(X > x) = {C: X([) > x) 

(xl < X I x2) = {C: XI < X(C) l x2) 
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Fig. 2-2 One random variable associated with coin tossing. 

These events have probabilities that are denoted by 

P(X = x) = P{C: X(6) = X} 

P(X 5 x) = P(6:  X(6) 5 x} 
P(X > x)  = P{C: X(6) > x) 

P(x,  < X I x,) = P { ( :  x ,  < X(C) I x,) 

EXAMPLE 2.2 In the experiment of tossing a fair coin three times (Prob. 1.1), the sample space S, consists of 
eight equally likely sample points S ,  = (HHH, . . . , TTT). If X is the r.v. giving the number of heads obtained, find 
(a) P(X = 2); (b)  P(X < 2). 

(a) Let A c S, be the event defined by X = 2. Then, from Prob. 1.1, we have 

A = ( X  = 2) = {C: X(C) = 2 )  = {HHT, HTH, THH) 

Since the sample points are equally likely, we have 

P(X = 2) = P(A) = 3 
(b) Let B c S ,  be the event defined by X < 2. Then 

B = ( X  < 2) = { c :  X ( ( )  < 2 )  = (HTT, THT, TTH, TTT) 

and P(X < 2) = P(B) = 3 = 4 

2.3 DISTRIBUTION FUNCTIONS 

A. Definition : 

The distribution function [or cumulative distributionfunction (cdf)] of X is the function defined by 

Most of the information about a random experiment described by the r.v. X is determined by the 
behavior of FAX).  

B. Properties of FAX) : 

Several properties of FX(x) follow directly from its definition (2.4). 

2. Fx(xl )  I Fx(x,) if x ,  < x2 

3. lim F,(x) = Fx(oo) = 1 
x-'m 

4. lim FAX)  = Fx(- oo) = 0 
x - r -m 

5. lim F A X )  = F d a + )  = Fx(a) a +  = lim a + E 
x+a+ O<&+O 
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Property 1 follows because FX(x) is a probability. Property 2 shows that FX(x) is a nondecreasing 
function (Prob. 2.5). Properties 3 and 4 follow from Eqs. (1.22) and (1.26): 

l imP(X<x)=  P(X < co) = P(S)= 1 
X+oO 

lim P(X s x) = P(X s - co) = P ( 0 )  = 0 
x-'-a, 

Property 5 indicates that FX(x) is continuous on the right. This is the consequence of the definition 
(2.4). 

Table 2.1 

% 
( T T T )  

( T T T ,  TTH,  THT, H T T )  
( T T T ,  TTH,  THT, HTT, HHT, HTH, THH) 

S 
S 

EXAMPLE 2.3 Consider the r.v. X defined in Example 2.2. Find and sketch the cdf FX(x) of X. 
Table 2.1 gives Fx(x) = P(X I x) for x = - 1, 0, 1 ,  2, 3, 4. Since the value of X must be an integer, the value of 

F,(x) for noninteger values of x must be the same as the value of FX(x) for the nearest smaller integer value of x.  
The FX(x) is sketched in Fig. 2-3. Note that F,(x) has jumps at x = 0, 1,2,3,  and that at each jump the upper value 
is the correct value for FX(x). 

- I  0 I 2 3 4 

Fig. 2-3 

C. Determination of Probabilities from the Distribution Function: 

From definition (2.4), we can compute other probabilities, such as P(a < X I b), P(X > a), and 
P(X < b) (Prob. 2.6): 

P(X < b) = F,(b-) b - =  lim b - E  
O<E- 'O 
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2.4 DISCRETE RANDOM VARIABLES AND PROBABILITY MASS FUNCTIONS 

A. Definition : 

Let X be a r.v. with cdf FX(x). If FX(x) changes values only in jumps (at most a countable number 
of them) and is constant between jumps-that is, FX(x) is a staircase function (see Fig. 2-3)-- then X 
is called a discrete random variable. Alternatively, X is a discrete r.v. only if its range contains a finite 
or countably infinite number of points. The r.v. X in Example 2.3 is an example of a discrete r.v. 

B. Probability Mass Functions: 

Suppose that the jumps in FX(x) of a discrete r.v. X occur at the points x,, x,, . . . , where the 
sequence may be either finite or countably infinite, and we assume xi < x j  if i < j. 

Then FX(xi) - FX(xi- ,) = P(X 5 xi) - P(X I xi- ,) = P(X = xi) (2.1 3) 

Let px(x) = P(X = x) (2.1 4) 

The function px(x) is called the probability mass function (pmf) of the discrete r.v. X. 

Properties of p d x )  : 

The cdf FX(x) of a discrete r.v. X can be obtained by 

2.5 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DENSITY FUNCTIONS 

A. Definition: 

Let X be a r.v. with cdf FX(x). If FX(x) is continuous and. also has a derivative dFx(x)/dx which 
exists everywhere except at possibly a finite number of points and is piecewise continuous, then X is 
called a continuous random variable. Alternatively, X is a continuous r.v. only if its range contains an 
interval (either finite or infinite) of real numbers. Thus, if X is a. continuous r.v., then (Prob. 2.18) 

Note that this is an example of an event with probability 0 that is not necessarily the impossible event 
0. 

In most applications, the r.v. is either discrete or continuous. But if the cdf FX(x) of a r.v. X 
possesses features of both discrete and continuous r.v.'s, then the r.v. X is called the mixed r.v. (Prob. 
2.10). 

B. Probability Density Functions: 

Let 

The function fx(x) is called the probability density function (pdf) of the continuous r.v. X. 
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Properties of fx(x) : 

3. fx(x) is piecewise continuous. 

The cdf FX(x) of a continuous r.v. X can be obtained by 

By Eq.  (2.19), if X is a continuous r.v., then 

2.6 MEAN AND VARIANCE 

A. Mean: 

The mean (or expected ualue) of a rev. X ,  denoted by px or E(X), is defined by 

X :  discrete 
px = E(X) = 

xfx(x) dx X :  continuous 

B. Moment: 

The nth moment of a r.v. X is defined by 

E(.n) = irx(xk) X :  discrete 

xnfdx )  dx X :  continuous 

Note that the mean of X is the first moment of X .  

C. Variance: 

The variance of a r.v. X ,  denoted by ax2 or Var(X),  is defined by 

ox2 = Var(X)  = E { [ X  - E(X)I2} 

Thus, 

rC (xk - p X ) 2 p X ( ~ J  X : discrete 

e X 2  = 1 im ( X  - px)2/x(x)  dx x :  continuous 
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Note from definition (2.28) that 

The standard deviation of a r.v. X, denoted by a,, is the positive square root of Var(X). 
Expanding the right-hand side of Eq. (2.28), we can obtain the following relation: 

which is a useful formula for determining the variance. 

2.7 SOME SPECIAL DISTRIBUTIONS 

In this section we present some important special distributions. 

A. Bernoulli Distribution: 

A r.v. X is called a Bernoulli r.v. with parameter p if its pmf is given by 

px(k) = P(X = k) = pk(l - P ) ' - ~  k = 0, 1 

where 0 p I 1. By Eq. (2.18), the cdf FX(x) of the Bernoulli r.v. X is given by 

x < o  

Figure 2-4 illustrates a Bernoulli distribution. 

Fig. 2-4 Bernoulli distribution. 

The mean and variance of the Bernoulli r.v. X are 

A Bernoulli r.v. X is associated with some experiment where an outcome can be classified as 
either a "success" or a "failure," and the probability of a success is p and the probability of a failure is 
1 - p. Such experiments are often called Bernoulli trials (Prob. 1.61). 
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B. Binomial Distribution: 

A r.v. X is called a binomial r.v. with parameters (n, p) if its pmf is given by 

where 0 5 p 5 1 and 

n ! (;) = k!(,, - k ) !  

which is known as the binomial coefficient. The corresponding cdf of X is 

Figure 2-5 illustrates the binomial distribution for n = 6 and p = 0.6. 

(a (h)  

Fig. 2-5 Binomial distribution with n = 6, p = 0.6. 

The mean and variance of the binomial r.v. X are (Prob. 2.28) 

A binomial r.v. X is associated with some experiments in which n independent Bernoulli trials are 
performed and X represents the number of successes that occur in the n trials. Note that a Bernoulli 
r.v. is just a binomial r.v. with parameters (1, p). 

C. Poisson Distribution: 

A r.v. X is called a Poisson r.v. with parameter A (> 0) if its pmf is given by 

The corresponding cdf of X is 

Figure 2-6 illustrates the Poisson distribution for A = 3. 
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Fig. 2-6 Poisson distribution with A = 3. 

The mean and variance of the Poisson r.v. X are (Prob. 2.29) 

px = E(X) = A. 
ax2 = Var(X) = il 

The Poisson r.v. has a tremendous range of applications in diverse areas because it may be used 
as an approximation for a binomial r.v. with parameters (n, p )  when n is large and p is small enough 
so that np is of a moderate size (Prob. 2.40). 

Some examples of Poisson r.v.'s include 

1. The number of telephone calls arriving at a switching center during various intervals of time 

2. The number of misprints on a page of a book 

3. The number of customers entering a bank during various intervals of time 

D. Uniform Distribution: 

A r.v. X is called a uniform r.v. over (a, b) if its pdf is given by 

(0 otherwise 

The corresponding cdf of X is 

x - a  
F X ( x )  = - 

{ h - a  
a < x < b  

Figure 2-7 illustrates a uniform distribution. 
The mean and variance of the uniform r.v. X are (Prob. 2.31) 
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Fig. 2-7 Uniform distribution over (a, b). 

A uniform r.v. X is often used where we have no prior knowledge of the actual pdf and all 
continuous values in some range seem equally likely (Prob. 2.69). 

E. Exponential Distribution: 

A r.v. X is called an exponential r.v. with parameter A (>O) if its pdf is given by 

which is sketched in Fig. 2-8(a). The corresponding cdf of X is 

which is sketched in Fig. 2-8(b). 

Fig. 2-8 Exponential distribution. 

The mean and variance of the exponential r.v. X are (Prob. 2.32) 

The most interesting property of the exponential distribution is its "memoryless" property. By 
this we mean that if the lifetime of an item is exponentially distributed, then an item which has been 
in use for some hours is as good as a new item with regard to the amount of time remaining until the 
item fails. The exponential distribution is the only distribution which possesses this property (Prob. 
2.53). 
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F. Normal (or Gaussian) Distribution: 

A r.v. X is called a normal (or gaussian) r.v. if its pdf is given by 

The corresponding cdf of X is 

This integral cannot be evaluated in a closed form and must be evaluated numerically. It is conve- 
nient to use the function @(z), defined as 

to help us to evaluate the value of FX(x) .  Then Eq. (2.53) can be written as 

Note that 

The function @(z)  is tabulated in Table A (Appendix A). Figure 2-9 illustrates a normal distribution. 

Fig. 2-9 Normal distribution. 

The mean and variance of the normal r.v. X are (Prob. 2.33) 

We shall use the notation N ( p ;  a 2 )  to denote that X is normal with mean p and variance a 2 .  A 
normal r.v. Z with zero mean and unit variance-that is, Z = N ( 0 ;  1)-is called a standard normal r.v. 
Note that the cdf of the standard normal r.v. is given by Eq. (2.54). The normal r.v. is probably the 
most important type of continuous r.v. It has played a significant role in the study of random pheno- 
mena in nature. Many naturally occurring random phenomena are approximately normal. Another 
reason for the importance of the normal r.v. is a remarkable theorem called the central limit theorem. 
This theorem states that the sum of a large number of independent r.v.'s, under certain conditions, 
can be approximated by a normal r.v. (see Sec. 4.8C). 
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2.8 CONDITIONAL DISTRIBUTIONS 

In Sec. 1.6 the conditional probability of an event A given event B is defined as 

The conditional cdf FX(x  ( B) of a r.v. X given event B is defined by 

The conditional cdf F,(x 1 B)  has the same properties as FX(x) .  (See Prob. 1.37 and Sec. 2.3.) In 
particular, 

F,( -coIB)=O F X ( m  1 B) = 1 (2.60) 

P(a < X I b  I B)  = Fx(b I B) - Fx(a I B)  (2.61) 

If X is a discrete r.v., then the conditional pmf p,(xk I B) is defined by 

If X is a continuous r.v., then the conditional pdf fx(x 1 B)  is defined by 

Solved Problems 

RANDOM VARIABLES 

2.1. Consider the experiment of throwing a fair die. Let X be the r.v. which assigns 1 if the number 
that appears is even and 0  if the number that appears is odd. 

(a) What is the range of X? 

(b )  Find P(X = 1 )  and P(X = 0) .  

The sample space S on which X is defined consists of 6 points which are equally likely: 

S = (1, 2, 3, 4, 5, 6) 

(a) The range of X is R,  = (0, 1 ) .  

(b) (X = 1) = (2, 4, 6). Thus, P(X = 1) = 2 = +. Similarly, (X = 0) = (1, 3,5), and P(X = 0) = 3. 

2.2. Consider the experiment of tossing a coin three times (Prob. 1.1). Let X be the r.v. giving the 
number of heads obtained. We assume that the tosses are independent and the probability of a 
head is p. 

(a) What is the range of X ? 

( b )  Find the probabilities P ( X  = 0), P(X = I ) ,  P ( X  = 2), and P(X = 3). 
The sample space S on which X is defined consists of eight sample points (Prob. 1.1): 

S =  {HHH, HHT, ..., TTT) 

(a) The range of X is R,  = (0, 1 ,  2, 3). 



CHAP. 21 RANDOM VARIABLES 

(b) If P(H) = p, then P(T) = 1 - p. Since the tosses are independent, we have 

2.3. An information source generates symbols at random from. a four-letter alphabet (a, b, c, d} with 
probabilities P(a) = f, P(b) = $, and P(c) = P(d) = i. A coding scheme encodes these symbols 
into binary codes as follows: 

Let X be the r.v. denoting the length of the code, that is, the number of binary symbols (bits). 

(a) What is the range of X?  
(b) Assuming that the generations of symbols are independent, find the probabilities P(X = I), 

P(X = 2), P(X = 3), and P(X > 3). 

(a) TherangeofXisR, = {1,2, 3). 

(b) P(X = 1) = P[{a)] = P(a) = 

P(X = 2) = P[(b)] = P(b) = $ 
P(X = 3) = P[(c, d)] = P(c) + P(d) = $ 
P(X > 3) = P(%) = 0 

2.4. Consider the experiment of throwing a dart onto a circular plate with unit radius. Let X be the 
r.v. representing the distance of the point where the dart lands from the origin of the plate. 
Assume that the dart always lands on the plate and that the dart is equally likely to land 
anywhere on the plate. 

(a) What is the range of X? 
(b) Find (i) P(X < a) and (ii) P(a < X < b), where a < b I 1. 

(a) The range of X is R, = (x: 0 I x < 1).  

(b) (i) (X < a) denotes that the point is inside the circle of radius a. Since the dart is equally likely to fall 
anywhere on the plate, we have (Fig. 2-10) 

(ii) (a < X < b) denotes the event that the point is inside the annular ring with inner radius a and 
outer radius b. Thus, from Fig. 2-10, we have 

DISTRIBUTION FUNCTION 

2.5. Verify Eq. (2.6). 

Let x, < x,. Then (X 5 x,) is a subset of ( X  I x,); that is, (X I x,) c (X I x,). Then, by Eq. (1.27), 
we have 
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Fig. 2-10 

[CHAP 2 

2.6. Verify (a)  Eq. (2.1 0); (b)  Eq. (2.1 1 ) ;  (c) Eq. (2.1 2). 

(a)  Since ( X  _< b )  = ( X  I a)  u (a  < X _< b) and ( X  I a)  n (a  < X 5 h)  = @, we have 

P(X I h)  = P(X 5 a )  + P(u < X I b) 

or F,y(b) = FX(a)  + P(u < X I h)  

Thus, P(u < X 5 b)  = Fx(h) - FX(u)  

(b) Since ( X  5 a )  u ( X  > a)  = S and (X I a)  n ( X  > a)  = a, we have 

P(X S a)  + P(X > a )  = P(S) = 1 

Thus, P(X > a)  = 1 - P(X 5 a)  = 1 - Fx(u) 

(c )  Now 

2.7. Show that 

P(X < h) = P[lim X 5 h - E ]  = l im P(X I b - E )  
c - 0  c+O 
c > O  E > O  

= l im Fx(h - E )  = Fx(b - ) 
8-0 
8: > 0 

(a)  P(a i X i b)  = P(X = a) + Fx(b) - Fx(a) 

(b)  P(a < X < b)  = Fx(b) - F,(a) - P(X = h)  

(c)  P(a i X < b) = P(X = u) + Fx(b) - Fx(a) - P(X = b) 

(a)  Using Eqs. (1.23) and (2.10), we have 

P(a I X I h) = P[(X = u)  u (a  < X I b)] 

= P(X = u)  + P(a < X 5 b)  
= P(X = a )  + F,y(h) - FX(a) 

(b) We have 

P(a < X 5 b)  = P[(u < X c h )  u ( X  = b)] 

= P(u < X < h) + P(X = b)  



CHAP. 21 RANDOM VARIABLES 

Again using Eq. (2.10), we obtain 

P(a < X < b) = P(a < X I b) - P(X = b) 
= Fx(b) - Fx(a) - P(X = b) 

Similarly, P(a I X I b) = P[(a I X < b) u (X = b)] 
= P(a I X < b) + P(X = b) 

Using Eq. (2.64), we obtain 

P(a I X < b) = P(a 5 X 5 b) - P(X = b) 

= P(X = a) + Fx(b) - F,(a) - P(X = b) 

X be the r.v. defined in Prob. 2.3. 

Sketch the cdf FX(x)  of X and specify the type of X. 

Find (i) P(X I I), (ii) P(l < X I 2), (iii) P(X > I), and (iv) P(l I X I 2). 

From the result of Prob. 2.3 and Eq. (2.18), we have 

which is sketched in Fig. 2-1 1. The r.v. X is a discrete r.v. 

(i) We see that 

P(X 5 1) = Fx(l) = 4 
(ii) By Eq. (2.1 O), 

P(l < X 5 2) = Fx(2) - FA1) = - 4 = 

(iii) By Eq. (2.1 I), 

P(X > 1) = 1 - Fx(l) = 1 - $ = $ 

(iv) By Eq. (2.64), 

P(l I X I 2) = P(X = 1) + Fx(2) - Fx(l) = 3 + 3 - 3 = 3 

Fig. 2-1 1 

Sketch the cdf F,(x) of the r.v. X defined in Prob. 2.4 and specify the type of X. 

From the result of Prob. 2.4, we have 

0 x < o  
F X ( x ) = P ( X I x ) =  

1 l l x  

which is sketched in Fig. 2-12. The r.v. X is a continuous r.v. 
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Fig. 2-12 

2.10. Consider the function given by 

(a) Sketch F(x) and show that F(x) has the properties of a cdf discussed in Sec. 2.3B. 

(6) If X is the r.v. whose cdf is given by F(x), find (i) P(X I i), (ii) P(0 < X i), (iii) P(X = O), 
and (iv) P(0 < X < i). 

(c )  Specify the type of X. 

(a) The function F(x) is sketched in Fig. 2-13. From Fig. 2-13, we see that 0 < F(x) < 1 and F(x) is a 
nondecreasing function, F(- co) = 0, F(co) = 1, F(0) = 4, and F(x) is continuous on the right. Thus, 
F(x) satisfies all the properties [Eqs. (2.5) to (2.91 required of a cdf. 

(6) (i) We have 

(ii) By Eq. (2.1 O), 

(iii) By Eq. (2.12), 

(iv) By Eq. (2.64), 

(c) The r.v. X is a mixed r.v. 

Fig. 2-13 
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2.11. Find the values of constants a and b such that 

is a valid cdf. 

To satisfy property 1 of F X ( x )  [ 0  I F X ( x )  5 11, we must ha.ve 0 5 a 5 1 and b > 0 .  Since b > 0 ,  pro- 
perty 3 of F X f x )  [ F x ( ~ )  = 1)  is satisfied. It is seen that property 4 of F X ( x )  [F,(-m) = O] is also satisfied. 
For 0 5 a I 1 and b > 0 ,  F ( x )  is sketched in Fig. 2-14. From Fig. 2-14, we see that F(x)  is a nondecreasing 
function and continuous on the right, and properties 2 and 5 of t7,(x) are satisfied. Hence, we conclude that 
F(x)  given is a valid cdf if 0 5 a 5 1 and b > 0. Note that if a = 0, then the r.v. X is a discrete r.v.; if a = 1, 
then X is a continuous r.v.; and if 0 < a < 1, then X is a mixed r.v. 

0 

Fig. 2-14 

DISCRETE RANDOM VARIABLES AND PMF'S 

2.12. Suppose a discrete r.v. X has the following pmfs: 

PXW = 4 P X ~  = $ px(3) = i 
(a) Find and sketch the cdf F,(x) of the r.v. X. 
(b) Find (i) P(X _< I), (ii) P(l < X _< 3), (iii) P ( l  I X I 3). 

(a )  By Eq. (2.1 8), we obtain 

which is sketched in Fig. 2-15. 

(b) (i) By Eq. (2.1 2), we see that 

P(X < I ) =  F x ( l - ) = 0  

(ii) By Eq. (2.10), 

P(l < X I 3 )  = Fx(3)  - F x ( l )  = - 4 = 2 
(iii) By Eq. (2.64), 

P ( l  I X I 3)  = P ( X  = 1) + Fx(3)  - F x ( l )  = 3 + 4 - 3 = 3 
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Fig. 2-15 

2.13. (a) Verify that the function p(x) defined by 

x =o,  1, 2, ... 
otherwise 

is a pmf of a discrete r.v. X. 

(b) Find (i) P(X = 2), (ii) P(X I 2), (iii) P(X 2 1). 

(a) It is clear that 0 5 p(x) < 1 and 

Thus, p(x) satisfies all properties of the pmf [Eqs. (2.15) to (2.17)] of a discrete r.v. X. 

(b) (i) By definition (2.14), 

P(X = 2) = p(2) = $($)2 = 

(ii) By Eq. (2.1 8), 

(iii) By Eq. (l.25), 

2.14. Consider the experiment of tossing an honest coin repeatedly (Prob. 1.35). Let the r.v. X denote 
the number of tosses required until the first head appears. 

(a) Find and sketch the pmf p,(x) and the cdf F,(x) of X. 

(b) Find (i) P(l < X s 4), (ii) P(X > 4). 

(a) From the result of Prob. 1.35, the pmf of X is given by 

Then by Eq. (2.1 8), 
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These functions are sketched in Fig. 2-16. 

(b) (9 BY Eq. ( 2 . m  

P(l < X 1 4)  = Fx(4) - Fx(X) = - 3 = 

(ii) By Eq. (1 .Z), 

P(X > 4)  = 1 - P(X 5 4)  = 1 - Fx(4) = 1 - = -& 

Fig. 2-16 

2.15. Consider a sequence of Bernoulli trials with probability p of success. This sequence is observed 
until the first success occurs. Let the r.v. X denote the trial number on which this first success 
occurs. Then the pmf of X is given by 

because there must be x - 1 failures before the first success occurs on trial x. The r.v. X defined 
by Eq. (2.67) is called a geometric r.v. with parameter p. 

(a) Show that px(x) given by Eq.  (2.67) satisfies Eq. (2.1 7) .  

(b) Find the cdf F,(x) of X. 

(a) Recall that for a geometric series, the sum is given by 

Thus, 

(b) Using Eq. (2.68), we obtain 

Thus, P(X 5 k )  = 1 - P(X > k )  = 1 - ( 1  - 

and F x ( x ) = P ( X < ~ ) = 1 - ( 1 - p ) "  x = 1 , 2 ,  ... 
Note that the r.v. X of Prob. 2.14 is the geometric r.v. with p == 4. 

2.16. Let X be a binomial r.v. with parameters (n, p). 

(a) Show that p&) given by Eq. (2.36) satisfies Eq. (2.1 7). 
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(b) FindP(X> l ) i f n =  6andp=0.1 .  

(a) Recall that the binomial expansion formula is given by 

Thus, by Eq. (2.36), 

(b) NOW P(X > 1 )  = 1 - P(X = 0 )  - P(X = 1) 

2.17. Let X be a Poisson r.v. with parameter A. 

(a) Show that p,(x) given by Eq. (2.40) satisfies Eq. (2.1 7). 

(b)  Find P(X > 2) with 1 = 4. 

(h) With A = 4, we have 

and 

Thus, 

CONTINUOUS RANDOM VARIABLES AND PDF'S 

2.18. Verify Eq. (2.1 9). 

From Eqs. (1.27) and (2.10), we have 

for any E 2 0. As F x ( x )  is continuous, the right-hand side of the above expression approaches 0 as E + 0. 
Thus, P(X = x )  = 0. 

2.19. The pdf .of a continuous r.v. X is given by 

3 O < x < l  

0 otherwise 

Find the corresponding cdf FX(x) and sketch fx(x) and F,(x). 
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By Eq. (2.24), the cdf of X is given by 

i 
X 

3 
0 1 x c 1  

F i x ) =  [ i d i + l $ d / = % x - i  1 5 ~ ~ 2  

2 1 x  

The functions f d x )  and F A X )  are sketched in Fig. 2-1 7. 

Fig. 2-17 

2.20. Let X be a continuous r.v. X with pdf 

kx O < x < l  
fx(x) = {O otherwise 

where k is a constant. 

(a) Determine the value of k and sketch f,(x). 
(b) Find and sketch the corresponding cdf Fx(x). 
(c) Find P($ < X 1 2). 

(a) By Eq. (2.21), we must have k > 0 ,  and by Eq. (2.22), 

Thus, k = 2 and 

2 x  O < x < l  
0 otherwise 

which is sketched in Fig. 2-18(a). 

( b )  By Eq. (2.24), the cdf of X is given by 

[ [ 2 ( d ( = l  l i x  

which is sketched in Fig. 2-18(b). 
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Fig. 2-18 

2.21. Show that the pdf of a normal r.v. X given by Eq. (2.52) satisfies Eq. (2.22). 

From Eq. (2.52), 

Let 

Then 

Letting x = r cos 9 and y = r sin 9 (that is, using polar coordinates), we have 

Thus, 

and 

2.22. Consider a function 

Find the value of a such that f ( x )  is a pdf of a continuous r.v. X. 
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Iff (x) is a pdf of a continuous r.v. X, then by  Eq. (2.22), we must have 

1 
Now by Eq. (2.52), the pdf of N ( i ;  4) is - e-(x-'/2)2. Thus, 

J;; 

from which we obtain a = a. 

2.23. A r.v. X is called a Rayleigh r.v. if its pdf is given by 
# 

(a) Determine the corresponding cdf FX(x). 
(b)  Sketch.fx(x) and FX(x) for a = 1. 

(a) By Eq. (2.24), the cdf of X is 

Let y = t2/(2a2). Then dy = (l/a2)t dt ,  and 

(b) With a = 1, we have 

and 

These functions are sketched in Fig. 2-19. 

2.24. A r.v. X is called a gamma r.v. with parameter (a, A) (a > 0 and 1 > 0) if its pdf is given by 

where T(a) is the gamma function defined by 
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(a )  (b)  

Fig. 2-19 Rayleigh distribution with o = 1. 

(a) Show that the gamma function has the following properties: 

(b) Show that the pdf given by Eq. (2.76) satisfies Eq. (2.22). 
(c) Plotfx(x) for (a, 1) = (1, I), (2, I), and (5,2). 

(a) Integrating Eq. (2.77) by parts (u = xa- ' ,  dv = e-" dx), we obtain 

Replacing a by a + 1 in Eq. (2.81), we get Eq. (2.78). 
Next, by applying Eq. (2.78) repeatedly using an integral value of a, say a = k, we obtain 

Since 

it follows that T ( k  + 1) = k !  . Finally, by Eq. (2.77), 

Let y = x1I2. Then dy = a x -  'I2 dx, and 

in view of Eq. (2.73). 
(b) Now 

Let y = Ax. Then dy = A dx and 
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0 1 2 3 4 X 

Fig. 2-20 Gamma distributions for selected values of a and I .  

(c) The pdf's fx(x) with (a, I )  = (1, I), (2, I), and (5,  2)  are plotted in Fig. 2-20. 

Note that when a = 1, the gamma r.v. becomes an exponential r.v. with parameter 1 [Eq. (2.48)]. 

MEAN AND VARIANCE 

2.25. Consider a discrete r.v. X whose pmf is given by 

(a) Plot p,(x) and find the mean and variance of X. 
(b) Repeat (a) if the pmf is given by 

(a) The pmf p,(x) is plotted in Fig. 2-21(a). By Eq. (2.26), the mean of X is 

p, = E(X)  = #(- 1 + 0 + 1) = 0 

By Eq. (2.29), the variance of X is 

ax2 = Var(X) = E[(X - px)2] = E(X2)  = $[(- 112 + (0)2 + = 3 
(b) The pmf px(x) is plotted in Fig. 2-21(b). Again by Eqs. (2.26) and (2.29), we obtain 

p x = E ( X ) = f ( - 2 + 0 + 2 ) = O  

Fig. 2-21 
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ox2 = Var(X) = +[(- 2)2 + (0)2 + (2)'] = 

Note that the variance of X is a measure of the spread of a distribution about its mean. 

2.26. Let a r.v. X denote the outcome of throwing a fair die. Find the mean and variance of X 

Since the die is fair, the pmf of X is 

px(x) = px(k) = i k = 1, 2, . . . , 6 

By Eqs. (2.26) and (2.29), the mean and variance of X are 

P X =  E(X)= +(I + 2 + 3 + 4 + 5 + 6) = g = 3.5 
ax2 = 4[(1 - T) 7 2 + (2 - $)2 + (3 - $)' + (4 - 4)' + (5 - 4)' + (6 - $)2] = 35 12 

Alternatively, the variance of X can be found as follows: 

E(X2) = i(12 + 2'+ 32 + 4 ' +  52 + 62)=  9 
Hence, by Eq. (2.31), 

ox2 = E(X2) - [E(X)12 = - (5)' = 35 12 

2.27. Find the mean and variance of the geometric r.v. X defined by Eq. (2.67) (Prob. 2.15). 

To find the mean and variance of a geometric r.v. X, we need the following results about the sum of a 
geometric series and its first and second derivatives. Let 

Then 

By Eqs. (2.26) and (2.67), and letting q = 1 - p, the mean of X is given by 

where Eq. (2.83) is used with a = p and r = q. 
To find the variance of X, we first find E[X(X - I)]. Now, 

where Eq. (2.84) is used with a = pq and r = q. 
Since E[X(X - I)] = E(X2 - X) = E(X2) - E(X), we have 

Then by Eq. (2.31), the variance of X is 

2.28. Let X be a binomial r.v. with parameters (n, p). Verify Eqs. (2.38) and (2.39). 
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By Eqs. (2.26) and (2.36), and letting q = 1 - p, we have 

n n ! 
= C k  

k = O  (n - k)! k! pkqn - 

Letting i = k - 1 and using Eq. (2.72), we obtain 

Next, 

n 
- n! k n -k  
- l k ( k -  - k)!k! 

k = 0 

Similarly, letting i = k - 2 and using Eq. (2.72), we obtain 
n - 2  (n - 2)! 

E[X(X - I)] = n(n - l)p2 C 
i = o  (n - 2 - i)! i! ~ ~ q ~ - ~ - ~  

= n(n - l)p2(p + q)"-2 = n(n - l)p2 

Thus, E(X2) = E[X(X - l)] + E(X) = n(n - l)p2 + np 

and by Eq. (2.31), 

ax2 = Var(x) = n(n - l)p2 + np - ( n ~ ) ~  = np(1 - p) 

2.29. Let X be a Poisson r.v. with parameter 1. Verify Eqs. (2.42) and (2.43). 

By Eqs. (2.26) and (2.40), 

Next, 

Thus, 



and by  Eq. (2.31), 
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2.30. Find the mean and variance of the r.v. X of Prob. 2.20. 

From Prob. 2.20, the pdf of X is 

2x O < x < l  
fx(x) = (0 otherwise 

By Eq. (2.26), the mean of X is 

By Eq. (2.27), we have 

Thus, by Eq. (2.31), the variance of X is 

2.31. Let X be a uniform r.v. over (a, b). Verify Eqs. (2.46) and (2.47). 

By Eqs. (2.44) and (2.26), the mean of X is 

By Eq. (2.27), we have 

Thus, by Eq. (2.31), the variance of X is 

2.32. Let X be an exponential r.v. X with parameter A. Verify Eqs. (2.50) and (2.51). 

By Eqs. (2.48) and (2.26), the mean of X is 

Integrating by parts (u = x, du = Re-" dx) yields 

Next, by Eq. (2.27), 

Again integrating by parts (u = x2, du = le-" dx), we obtain 
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Thus, by Eq. (2.31), the variance of X is 

2.33. Let X = N ( p ;  a2). Verify Eqs. (2.57) and (2.58). 

Using Eqs. (2.52) and (2.26), we have 

Writing x as (x - p) + p, we have 

Letting y = .x - p in the first integral, we obtain 

The first integral is zero, since its integrand is an odd function. Thus, by the property of pdf Eq. (2.22), we 
get 

Next, by Eq. (2.29), 

From Eqs. (2.22) and (2.52), we have 

[ ~ e - ( x - ~ ) 2 / ~ 2 a z )  dx = 

Differentiating with respect to a, we obtain 

Multiplying both sides by a2/&, we have 

Thus, ax2 = Var(X) = a2  

2.34. Find the mean and variance of a Rayleigh r.v. defined by Eq. (2.74) (Prob. 2.23). 

Using Eqs. (2.74) and (2.26), we have 

Now the variance of N(0;  a2) is given by 
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Since the integrand is an even function, we have 

Then 

Next, 

Let y = x2/(2a2). Then dy = x dx/a2, and so 

Hence, by Eq. (2.31), 

2.35. Consider a continuous r.v. X with pdf f,(x). If fx(x) = 0 for x < 0, then show that, for any a > 0, 

Clx P(X 2 a )  5 - a 

where px = E(X). This is known as the Markov inequality. 

From Eq. (2.23), 

Since fx(x) = 0 for x < 0, 

2.36. For any a > 0, show that 

where px and a x 2  are the mean and variance of X, respectively. This is known as the Chebyshev 
inequality. 

From Eq. (2.23), 

By Eq. (2.29), 
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Note that by setting a = ka, in Eq. (2.97), we obtain 

Equation (2.98) says that the probability that a r.v. will fall k or more standard deviations from its mean is 
< l/k2. Notice that nothing at all is said about the distribution function of X. The Chebyshev inequality is 
therefore quite a generalized statement. However, when applied to a particular case, it may be quite weak. 

SPECIAL DISTRIBUTIONS 

2.37. A binary source generates digits 1 and 0 randomly with probabilities 0.6 and 0.4, respectively. 

(a) What is the probability that two 1s and three 0s will occur in a five-digit sequence? 
(b) What is the probability that at least three 1s will occur in a five-digit sequence? 

(a) Let X be the r.v. denoting the number of 1s generated in a five-digit sequence. Since there are only two 
possible outcomes (1 or O), the probability of generating 1 is constant, and there are five digits, it is 
clear that X is a binomial r.v. with parameters (n, p) = (5, 0.6). Hence, by Eq. (2.36), the probability 
that two 1s and three 0s will occur in a five-digit sequence is 

(b) The probability that at least three 1s will occur in a five-digit sequence is 

where 

Hence, P(X 2 3) = 1 - 0.317 = 0.683 

2.38, A fair coin is flipped 10 times. Find the probability of the occurrence of 5 or 6 heads. 

Let the r.v. X denote the number of heads occurring when ia fair coin is flipped 10 times. Then X is a 
binomial r.v. with parameters (n, p) = (10, 4). Thus, by Eq. (2.36), 

2.39. Let X be a binomial r.v. with parameters (n, p), where 0 <: p < 1. Show that as k goes from 0 to 
n, the pmf p,(k) of X first increases monotonically and then decreases monotonically, reaching its 
largest value when k is the largest integer less than or equal to (n + 1)p. 

By Eq. (2.36), we have 

Hence, px(k) 2 px(k - 1) if and only if (n - k + l)p 2 k(l  - p) or k I (n + 1)p. Thus, we see that px(k) 
increases monotonically and reaches its maximum when k is the largest integer less than or equal to 
(n + 1)p and then decreases monotonically. 
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2.40. Show that the Poisson distribution can be used as a convenient approximation to the binomial 
distribution for large n and small p. 

From Eq. (2.36), the pmf of the binomial r.v. with parameters (n, p) is 

p = ( ) l  - p). - = 
n(n - 1Xn - 2) . . (n - k + 1) pk(l - p)"-k 

k ! 

Multiplying and dividing the right-hand side by nk, we have 

- i)(l - ) . . - 7) 
( I  - p). - = k ! (np)k(l- :r-k 

If we let n + oo in such a way that np = 1 remains constant, then 

where we used the fact that 

Hence, in the limit as n -, oo with np = 1 (and as p = Iln + O), 

Thus, in the case of large n and small p, 

which indicates that the binomial distribution can be approximated by the Poisson distribution. 

2.41. A noisy transmission channel has a per-digit error probability p = 0.01. 

(a) Calculate the probability of more than one error in 10 received digits. 
(b) Repeat (a), using the Poisson approximation Eq. (2.100). 

(a) It is clear that the number of errors in 10 received digits is a binomial r.v. X with parameters (n, p) = 
(10,0.01). Then, using Eq. (2.36), we obtain 

(b) Using Eq. (2.100) with 1 = np = 1q0.01) = 0.1, we have 

2.42. The number of telephone calls arriving at a switchboard during any 10-minute period is known 
to be a Poisson r.v. X with A =  2. 



CHAP. 21 RANDOM VARIABLES 

(a) Find the probability that more than three calls will arrive during any 10-minute period. 
(b) Find the probability that no calls will arrive during any 10-minute period. 

(a) From Eq. (2.40), the pmf of X is 

Thus, 
2k 

P(X > 3) = -P(X I 3 )  = 1 - e-2 - 
k = O  k !  

= 1 - e-2(1 + 2 + 4 + 8) z 0.143 

(b) P(X=0)=pdO)=e-2x0.135 

243. Consider the experiment of throwing a pair of fair dice. 

(a) Find the probability that it will take less than six tosses to throw a 7. 
(b) Find the probability that it will take more than six tosses to throw a 7. 

(a) From Prob. 1.31(a), we see that the probability of throwing a 7 on any toss is 4. Let X denote the 
number of tosses required for the first success of throwing a 7. Then, from Prob. 2.15, it is clear that X 
is a geometric r.v. with parameter p = 6. Thus, using Eq. (2.71) of Prob. 2.15, we obtain 

(b) Similarly, we get 
P(X > 6) = 1 - P(X 5 6) = 1 - FA6) 

= 1 - [l - (2)6] = (:)6 w 0.335 

2.44. Consider the experiment of rolling a fair die. Find the average number of rolls required in order 
to obtain a 6. 

Let X denote the number of trials (rolls) required until the number 6 first appears. Then X is a 
geometrical r.v. with parameter p = 4. From Eq. (2.85) of Prob. 2.27, the mean of X is given by 

Thus, the average number of rolls required in order to obtain a 6 is 6. 

2.45. Assume that the length of a phone call in minutes is an exponential r.v. X with parameter 
I = $. If someone arrives at a phone booth just before you arrive, find the probability that you 
will have to wait (a) less than 5 minutes, and (b) between 5 and 10 minutes. 

(a) From Eq. (2.48), the pdf of X is 

Then 

(b) Similarly, 
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2.46. All manufactured devices and machines fail to work sooner or later. Suppose that the failure rate 
is constant and the time to failure (in hours) is an exponential r.v. X with parameter A. 

Measurements show that the probability that the time to failure for computer memory chips 
in a given class exceeds lo4 hours is e -  ' (20.368). Calculate the value of the parameter I. 
Using the value of the parameter A determined in part (a), calculate the time x, such that 
the probability that the time to failure is less than x, is 0.05. 

From Eq. (2.49), the cdf of X is given by 

Now 

from which we obtain 1 = 
We want 

from which we obtain 

x, = - lo4 ln (0.95) = 51 3 hours 

2.47. A production line manufactures 1000-ohm (R) resistors that have 10 percent tolerance. Let X 
denote the resistance of a resistor. Assuming that X is a normal r.v. with mean 1000 and variance 
2500, find the probability that a resistor picked at random will be rejected. 

Let A be the event that a resistor is rejected. Then A = {X < 900) u {X > 1100). Since (X < 900) n 
{X > 1100) = (21, we have 

Since X is a normal r.v. with p = 1000 and a2  = 2500 (a = 50), by Eq. (2.55) and Table A (Appendix A), 

Fx(900) = @ (900 ~ ~ o o o )  = @( - 2) = 1 - @(2) 

1100 - 1000 
F,(1100) = @ ( 5o ) = 

Thus, P(A)  = 2[1 - @(2)] z 0.045 

2.48. The radial miss distance [in meters (m)] of the landing point of a parachuting sky diver from the 
center of the target area is known to be a Rayleigh r.v. X with parameter a2 = 100. 
(a) Find the probability that the sky diver will land within a radius of 10 m from the center of 

the target area. 
(b) Find the radius r such that the probability that X > r is e -  ( x 0.368). 

(a) Using Eq. (2.75) of Prob. 2.23, we obtain 

(b) Now 

P(X > r) = 1 - P(X < r )  = 1 - F,(r) 
- - 1 - (1 - e-r2/200) = e-r2 /200 = e-l 

from which we obtain r2 = 200 and r  = $66 = 14.142 rn. 
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CONDITIONAL DISTRIBUTIONS 

2.49. Let X be a Poisson r.v. with parameter 2. Find the conditional pmf of X given B = (X is even). 

From Eq. (2.40), the pdf of X is 

;Ik 
px(k) = e - A  - k = 0, 1, ... 

k ! 

Then the probability of event B is 

Let A = {X is odd). Then the probability of event A is 

Now 

a, Ak Ak (-A)k - , - A  - A  - , -21 f e - A k ! = e u -  7- 1 E - k = o d d  
e - 

k = even k = 0 

Hence, adding Eqs. (2.101) and (2.1 02), we obtain 

Now, by Eq. (2.62), the pmf of X given B is 

If k is even, ( X  = k) c B and ( X  = k) n B = ( X  = k). If k is odd, ( X  = k)  n B = fZI. Hence, 

P(X = k)  2e-9 ' '  
k even 

P(B) ( 1 + e T 2 " ) k !  
P*(k I B) = 

k odd 

2.50. Show that the conditional cdf and pdf of X given the event B = (a < X I b) are as follows: 

10 x 5: a 
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Substituting B = (a < X 5 b) in Eq. (2.59), we have 

Now 

Hence, 

F X ( x ( a < X I b ) = P ( X < x l a c ~ I b ) =  
P((X I x)  n (a < X I b)} 

P(a < X I b) 

x l a  

By Eq. (2.63), the conditional pdf of X given a < X I b is obtained by differentiating Eq. (2.104) with 
respect to x. Thus, 

Fx(x 

2.51. Recall the parachuting sky diver problem (Prob. 2.48). Find the probability of the sky diver 
landing within a 10-m radius from the center of the target area given that the landing is within 
50 m from the center of the target area. 

From Eq. (2.75) (Prob. 2.23) with a2 = 100, we have 

Setting x = 10 and b = 50 and a = - cc in Eq. (2.104), we obtain 

2.52. Let X = N(0; 02). Find E(X I X > 0) and Var(X 1 X > O), 

From Eq. (2.52), the pdf of X = N ( 0 ;  a2) is 

Then by Eq. (2.105), 

Hence, 
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Let y = x2/(2a2). Then d y  = x d x / a 2 ,  and we get 

Next, 

1 " 
= - I x 2 e - x 2 / ( 2 a 2 )  d x  = = .2 (2.1 08) 
f i ,  -" 

Then by Eq. (2.31), we obtain 

2.53. A r.v. X is said to be without memory, or memoryless, if 

P ( X ~ x + t l X > t ) = P ( X s x )  x , t > O  

Show that if X is a nonnegative continuous r.v. which is memoryless, then X must be an expo- 
nential r.v. 

By Eq. (1.39), the memoryless condition (2.1 10) is equivalent to 

If X is a nonnegative continuous r.v., then Eq. (2.1 11) becomes 

or [by Eq. (2.2511, 

Fx(x + t )  - Fx(t)  = CFXW - FX(0)ICl - FX(O1 

Noting that Fx(0) = 0 and rearranging the above equation, we get 

Taking the limit as t  -+ 0 ,  we obtain 

F W  = F>(O)[l - Fx(x)l 

where FX(x)  denotes the derivative of FX(x).  Let 

RX(x)  = 1 - FX(x) 

Then Eq. (2.1 12) becomes 

The solution to this differential equation is given by 

Rx(x)  = keRx(OIx 

where k is an integration constant. Noting that k = Rx(0) = 1 and letting RgO)  = - FXO) = -fdO) = - 1, 
we obtain 

Rx(x) = e -lx 
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and hence by Eq. (2.1 13), 

Thus, by Eq. (2.49), we conclude that X is an exponential r.v. with parameter 1 = fx(0) (>0). 
Note that the memoryless property Eq. (2.1 10) is also known as the Markov property (see Chap. 5), and 

it may be equivalently expressed as 

Let X be the lifetime (in hours) of a component. Then Eq. (2.114) states that the probability that the 
component will operate for at least x + t hours given that it has been operational for t hours is the same as 
the initial probability that it will operate for at least x hours. In other words, the component "forgets" how 
long it has been operating. 

Note that Eq. (2.115) is satisfied when X is an exponential rev., since P(X > x) = 1 - FAX) = e-" and 
e - A ( x + t )  = e - k i  -A t  e .  

Supplementary Problems 

2.54. Consider the experiment of tossing a coin. Heads appear about once out of every three tosses. If this 
experiment is repeated, what is the probability of the event that heads appear exactly twice during the first 
five tosses? 

Ans. 0.329 

2.55. Consider the experiment of tossing a fair coin three times (Prob. 1.1). Let X be the r.v. that counts the 
number of heads in each sample point. Find the following probabilities: 
(a) P(X I 1); (b) P(X > 1); and (c) P(0 < X < 3). 

2.56. Consider the experiment of throwing two fair dice (Prob. 1.31). Let X be the r.v. indicating the sum of the 
numbers that appear. 

(a) What is the range of X? 

(b) Find (i) P(X = 3); (ii) P(X 5 4); and (iii) P(3 < X 1 7). 

Ans. (a) Rx = (2, 3,4, . . . , 12) 

(b) (i) & ; (ii) 4 ; (iii) 4 

2.57. Let X denote the number of heads obtained in the flipping of a fair coin twice. 

(a) Find the pmf of X. 

(b) Compute the mean and the variance of X. 

2.58. Consider the discrete r.v. X that has the pmf 

px(xk) = (JP xk = 1, 2, 3, . . . 
Let A = (c: X({) = 1, 3, 5, 7, . . .}. Find P(A). 

Ans. 3 
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Consider the function given by 

(0  otherwise 

where k is a constant. Find the value of k such that p(x) can be the pmf of a discrete r.v. X .  

Ans. k = 6/n2 

It is known that the floppy disks produced by company A will be defective with probability 0.01. The 
company sells the disks in packages of 10 and offers a guarantee of replacement that at most 1 of the 10 
disks is defective. Find the probability that a package purchased will have to be replaced. 

Ans. 0.004 

Given that X is a Poisson r.v. and px(0) = 0.0498, compute E(X)  and P(X 2 3). 

Ans. E(X)  = 3, P(X 2 3) = 0.5767 

A digital transmission system has an error probability of per digit. Find the probability of three or 
more errors in lo6 digits by using the Poisson distribution approximation. 

Ans. 0.08 

Show that the pmf px(x) of a Poisson r.v. X with parameter 1 satisfies the following recursion formula: 

Hint: Use Eq.  (2.40). 

The continuous r.v. X has the pdf 

- x2)  0 < x < 1 
otherwise 

where k is a constant. Find the value of k and the cdf of X 

x 1 0  
Ans. k = 6 ;  FX(x) = 

The continuous r.v. X has the pdf 

- x2)  0 < x < 2 
otherwise 

where k is a constant. Find the value of k and P(X > 1). 

Ans. k = j ; ~ ( X  > 1 ) =  

A r.v. X is defined by the cdf 

(a) Find the value of k. 

(b) Find the type of X. 

(c) Find (i) P(4 < X I 1); (ii) P($ < X < 1 ) ;  and (iii) P(X > 2). 



RANDOM VARIABLES [CHAP 2 

Ans. (a) k = 1. 

(b) Mixed r.v. 

(c) (i) $; (ii) ; (iii) 0 

2.67. It is known that the time (in hours) between consecutive traffic accidents can be described by the exponen- 
tial r.v. X with parameter 1 = &. Find (i) P(X I 60); (ii) P(X > 120); and (iii) P(10 < X I 100). 

Ans. (i) 0.632; (ii) 0.135; (iii) 0.658 

2.68. Binary data are transmitted over a noisy communication channel in block of 16 binary digits. The probabil- 
ity that a received digit is in error as a result of channel noise is 0.01. Assume that the errors occurring in 
various digit positions within a block are independent. 

(a) Find the mean and the variance of the number of errors per block. 

(b) Find the probability that the number of errors per block is greater than or equal to 4. 

Ans. (a) E(X) = 0.16, Var(X) = 0.1 58 

(b) 0.165 x 

2.69. Let the continuous r.v. X denote the weight (in pounds) of a package. The range of weight of packages is 
between 45 and 60 pounds. 

(a) Determine the probability that a package weighs more than 50 pounds. 

(b) Find the mean and the variance of the weight of packages. 

Hint: Assume that X is uniformly distributed over (45, 60). 

Ans. (a) 4 ;  (b) E(X) = 52.5, Var(X) = 18.75 

2.70. In the manufacturing of computer memory chips, company A produces one defective chip for every nine 
good chips. Let X be time to failure (in months) of chips. It is known that X is an exponential r.v. with 
parameter 1 = f for a defective chip and A = with a good chip. Find the probability that a chip pur- 
chased randomly will fail before (a) six months of use; and (b) one year of use. 

Ans. (a) 0.501; (b)  0.729 

2.71. The median of a continuous r.v. X is the value of x = x, such that P(X 2 x,) = P(X I x,). The mode of X 
is the value of x = x, at which the pdf of X achieves its maximum value. 

(a) Find the median and mode of an exponential r.v. X with parameter 1. 
(b) Find the median and mode of a normal r.v. X = N(p, a2). 

Ans. (a) x, = (In 2)/1 = 0.69311, x, = 0 

(b) x, = x, = p 

2.72. Let the r.v. X denote the number of defective components in a random sample of n components, chosen 
without replacement from a total of N components, r of which are defective. The r.v. X is known as the 
hypergeometric r.v. with parameters (N, r, n). 

(a) Find the prnf of X. 

(b) Find the mean and variance of X. 

Hint: To find E(X), note that 

( )  = x ( x - 1  - ) and (:) = (L) (~  - r, 
x = O  n - x  

To find Var(X), first find E[X(X - I)]. 
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2.73. A lot consisting of 100 fuses is inspected by the following procedure: Five fuses are selected randomly, and 
if all five "blow" at the specified amperage, the lot is accepted. Suppose that the lot contains 10 defective 
fuses. Find the probability of accepting the lot. 

Hint: Let X be a r.v. equal to the number of defective fuses in the sample of 5 and use the result of Prob. 
2.72. 

Ans. 0.584 

2.74. Consider the experiment of observing a sequence of Bernoulli trials until exactly r successes occur. Let the 
r.v. X denote the number of trials needed to observe the rth success. The r-v. X is known as the negative 
binomial r.v. with parameter p, where p is the probability of a success at each trial. 

(a) Find the pmf of X. 

(b) Find the mean and variance of X. 

Hint: To find E(X), use Maclaurin's series expansions of the negative binomial h(q) = (1 - 9)-' and its 
derivatives h'(q) and hW(q), and note that 

To find Var(X), first find E[(X - r)(X - r - 1)] using hU(q). 

Ans. (a) px(x) = x = r, r + 1, ... 

r(l - P) (b) EIX) = r(i), Var(X) = - 
p2 

2.75. Suppose the probability that a bit transmitted through a digital communication channel and received in 
error is 0.1. Assuming that the transmissions are independent events, find the probability that the third 
error occurs at the 10th bit. 

Ans. 0.017 

2.76. A r.v. X is called a Laplace r.v. if its pdf is given by 

fx(x)=ke-'Ix1 1 > 0 ,  -co<x<oo 

where k is a constant. 

(a) Find the value of k. 

(b) Find the cdf of X. 

(c) Find the mean and the variance of X. 

2.77. A r.v. X is called a Cauchy r.v. if its pdf is given by 
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where a ( > 0) and k are constants. 

(a) Find the value of k. 

(b) Find the cdf of X. 

(c) Find the mean and the variance of X. 

Ans. (a) k = a/z (b) F,(x) = 

(c) E(X) = 0, Var(X) does not exist. 

[CHAP 2 



Chapter 3 

Multiple Random Variables 

3.1 INTRODUCTION 

In many applications it is important to study two or more r.v.'s defined on the same sample 
space. In this chapter, we first consider the case of two r.v.'s, their associated distribution, and some 
properties, such as independence of the r.v.'s. These concepts are then extended to the case of many 
r.v.'s defined on the same sample space. 

3.2. BIVARIATE RANDOM VARIABLES 

A. Definition: 

Let S be the sample space of a random experiment. Let X and Y be two r.v.'s. Then the pair (X, 
Y) is called a bivariate r.v. (or two-dimensional random vector) if each of X and Y associates a real 
number with every element of S. Thus, the bivariate r.v. (X, Y) can be considered as a function that to 
each point c in S assigns a point (x, y) in the plane (Fig. 3-1). The range space of the bivariate r.v. (X, 
Y) is denoted by R,, and defined by 

If the r.v.'s X and Y are each, by themselves, discrete r.v.'s, then (X, Y) is called a discrete 
bivariate r.v. Similarly, if X and Y are each, by themselves, continuous r.v.'s, then (X, Y) is called a 
continuous bivariate r.v. If one of X and Y is discrete while the other is continuous, then (X, Y) is 
called a mixed bivariate r.v. 

Fig. 3-1 (X, Y) as a function from S to the plane. 

79 
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3.3 JOINT DISTRIBUTION FUNCTIONS 

A. Definition: 

The joint cumulative distribution function (or joint cdf) of X and Y ,  denoted by FXy(x,  y), is the 
function defined by 

Fxy(x, y) = P(X I x ,  Y _< y) (3.1) 

The event (X 5 x, Y I y) in Eq. (3.1) is equivalent to the event A n B, where A and B are events of S 
defined by 

A = {c E S ;  X(c) _< x )  and B = (5 E S ;  Y ( ( )  I y )  (3-2) 

and 4 4  = Fx(x) P(B) = FY(Y) 

Thus, F X Y ~  Y )  = P(A n B) (3.3) 

If, for particular values of x and y, A and B were independent events of S ,  then by Eq. (l.46), 

FXYk y) = P(A n B) = W W B )  = Fx(x)FAy) 

B. Independent Random Variables: 

Two r.v.'s X and Y will be called independent if 

Fxy(x9 Y )  = FX(X)FY(Y) 

for every value of x and y. 

C. Properties of F&, y) :  

The joint cdf of two r.v.'s has many properties analogous to those of the cdf of a single r.v. 

0 I Fxy(x, y) < 1 (3.5) 

If x1 I x ,  , and y1 I y2 , then 

F x Y ~ ,  Y 1 )  5 Fxy(x2 , Y 1 )  5 Fxy(x2 , Y2) ( 3 . 6 ~ )  

F X Y ~  Y J  < Fxy(x1, Y2) l Fxy(x2 9 Y2) (3.6b) 

lirn FXy(x ,  y) = Fxy(w ,  GO) = 1 
x-'m 

(3.7) 

Y+W 

lim FXy(x,  y) = Fxy(- a, y) = 0 ( 3 . 8 ~ )  
X+ - W 

lim FXy(x,  y) = FXy(x,  - co) = 0 (3.8 b) 
y- - -co  

lim FXY(X,  Y )  = Fxy(af ,  Y )  = Fxy(a, Y )  ( 3 . 9 ~ )  
x+a+ 

lim FXy(x,  y) = FXy(x, b +) = FXy(x ,  b) (3.9b) 
y-+b+ 

P(x1 < X I x2,  Y 5 Y )  = Fxy(x2, Y b F x y ( x 1 ,  Y )  (3.1 0) 

P(X 5 x,  Y I  < Y 5 Y2) = F X Y ~  Y2) - FXY(X ,  Y I )  (3.1 1) 

If x, I x ,  and y ,  I y,, then 

Fxy(x2 7 Y2) - FxY(% Y2) - F X Y ( X ~  3 Y d  + F X Y ~  Y l )  2 0 (3.1 2) 
Note that the left-hand side of Eq. (3.12) is equal to P(xl < X 5 x 2 ,  y, < Y I y,) (Prob. 3.5). 



CHAP. 31 MULTIPLE RANDOM VARIABLES 

D. Marginal Distribution Functions: 

Now 

since the condition y 5 oo is always satisfied. Then 

Similarly, lim F X Y ~  Y) = FxY@, Y) = FY(Y) (3.14) 
X+ 00 

The cdf's FX(x) and F,(y), when obtained by Eqs. (3.13) and (3.14), are referred to as the marginal 
cdf's of X and Y, respectively. 

3.4 DISCRETE RANDOM VARIABLES-JOINT PROBABILITY MASS FUNCTIONS 

A. Joint Probability Mass Functions : 

Let (X, Y) be a discrete bivariate r.v., and let (X, Y) take on the values (xi, yj) for a certain 
allowable set of integers i and j. Let 

~x r (x i  .Yj) = P(X = xi , Y = yj) (3.15) 

The function pxy(xi, yj) is called the joint probability mass function (joint pmf) of (X, Y). 

B. Properties of p&, , y,) : 

where the summation is over the points (xi, yj) in the range space RA corresponding to the event A. 
The joint cdf of a discrete bivariate r.v. (X, Y) is given by 

C. Marginal Probability Mass Functions: 

Suppose that for a fixed value X = xi ,  the r.v. Y can take on only the possible values yj ( j  = 1, 2, 
. . . , n). Then 

where the summation is taken over all possible pairs (xi, yj) with xi fixed. Similarly, 

where the summation is taken over all possible pairs (xi, yj) with yj fixed. The pmf's pAxi) and pdyj), 
when obtained by Eqs. (3.20) and (3.21), are referred to as the marginal pmf's of X and Y, respectively. 

D. Independent Random Variables: 

If X and Y are independent r.v.'s, then (Prob. 3.10) 
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3.5 CONTINUOUS RANDOM VARIABLES-JOINT PROBABILITY DENSITY 
FUNCTIONS 

A. Joint Probability Density Functions: 

Let (X, Y) be a continuous bivariate r.v. with cdf FXdx, y) and let 

The function fxy(x, y) is called the joint probability density function (joint pdf) of (X, Y). By 
integrating Eq. (3.23), we have 

B. Properties of f,(x, y): 

3. f,Ax, y) is continuous for all values of x or y except possibly a finite set. 

Since P(X = a) = 0 = P(Y = c) [by Eq. (2.19)], it follows that 

C. Marginal Probability Density Functions: 

By Eq. (3.13)' 

Hence 

or 

Similarly, 

The pdf's fdx) and fdy), when obtained by Eqs. (3.30) and (3.31), are referred to as the marginal pdf's 
of X and Y, respectively. 
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D. Independent Random Variables : 

If X and Y are independent r.v.'s, by Eq. (3.4), 

Fxy(x, Y) = Fx(x)Fy(y) 

Then 

analogous with Eq. (3.22) for the discrete case. Thus, we say that the continuous r.v.'s X and Y are 
independent r.v.'s if and only if Eq. (3.32) is satisfied. 

3.6 CONDITIONAL DISTRIBUTIONS 

A. Conditional Probability Mass Functions: 

If (X, Y) is a discrete bivariate r.v. with joint pmf pxdxi, yj), then the conditional pmf of Y ,  given 
that X = xi, is defined by 

Similarly, we can define pxly(xi I yj) as 

B. Properties o f p Y l h j  [xi): 

1. 0 I pYlx(yj 1 xi) 5 1 
2. PY~X(Y~ l xi) = 1 

y i  

Notice that if X and Y are independent, then by Eq. (3.22), 

C. Conditional Probability Density Functions: 

If (X, Y) is a continuous bvivariate r.v. with joint pdf fxy(x, y), then the conditional pdf of Y ,  given 
that X = x, is defined by 

Similarly, we can define fxly(x I y) as 

D. Properties of fy , &J 1 x): 
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As in the discrete case, if X and Y are independent, then by Eq. (3.32), 

~YIX(Y I X) = fY(Y) and fxlY(x I Y) = fx(x) 

[CHAP 3 

3.7 COVARIANCE AND CORRELATION COEFFICIENT 

The (k, n)th moment of a bivariate r.v. (X, Y) is defined by 

(discrete case) 
mkn = E(xkYn) = (3.43) 

xkyn fxy(x, y) dx dy (continuous case) 

If n = 0, we obtain the kth moment of X, and if k = 0, we obtain the nth moment of Y. Thus, 

m,,  = E(X) = px and m,, = E(Y) = py (3.44) 

If (X, Y) is a discrete bivariate r.v., then using Eqs. (3.43), (3.20), and (3.21), we. obtain 

Similarly, we have 
E(x2) = 1 1xi2~xAxi 9 Yj) = 1 xi2PAxi) 

Yj Xi X i  

E(Y2) = z 1 Y ~ P X A X ~  9 Yj) = C Y ? P ~ Y ~ )  
Yj Xi Y j  

If (X, Y) is a continuous bivariate rev., then using Eqs. (3.43), (3.30), and (3.31), we obtain 

Similarly, we have 
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The variances of X and Y are easily obtained by using Eq. (2.31). The (1, 1)th joint moment of (X, Y), 

m,, = E(XY) (3.49) 

is called the correlation of X and Y. If E(XY) = 0, then we say that X and Y are orthogonal. The 
covariance of X and Y, denoted by Cov(X, Y) or ax,, is defined by 

Expanding Eq. (3.50), we obtain 

If Cov(X, Y) = 0, then we say that X and Y are uncorrelated. From Eq. (3.51), we see that X and Y 
are uncorrelated if 

Note that if X and Y are independent, then it can be shown that they are uncorrelated (Prob. 
3.32), but the converse is not true in general; that is, the fact that X and Y are uncorrelated does not, 
in general, imply that they are independent (Probs. 3.33, 3.34, and 3.38). The correlation coefficient, 
denoted by p(X, Y) or pxy, is defined by 

It can be shown that (Prob. 3.36) 

Note that the correlation coefficient of X and Y is a measure of linear dependence between X and Y 
(see Prob. 4.40). 

3.8 CONDITIONAL MEANS AND CONDITIONAL VARIANCES 

If (X, Y) is a discrete bivariate r.v. with joint pmf pxy(xi, y,), then the conditional mean (or condi- 
tional expectation) of Y, given that X = xi, is defined by 

The conditional variance of Y, given that X = xi, is defined by 

Yi 

which can be reduced to 

The conditional mean of X, given that Y = y,, and the conditional variance of X, given that Y = y,, 
are given by similar expressions. Note that the conditional mean of Y, given that X = xi, is a func- 
tion of xi alone. Similarly, the conditional mean of X, given that Y = yj, is a function of yj alone. 

If (X, Y) is a continuous bivariate rev. with joint pdf fxy(x, y), the conditional mean of Y, given 
that X = x, is defined by 

The conditional variance of Y, given that X = x, is defined by 
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which can be reduced to 
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The conditional mean of X, given that Y = y, and the conditional variance of X, given that Y = y, 
are given by similar expressions. Note that the conditional mean of Y, given that X = x, is a function 
of x alone. Similarly, the conditional mean of X, given that Y = y, is a function of y alone (Prob. 
3.40). 

3.9 N-VARIATE RANDOM VARIABLES 

In previous sections, the extension from one r.v. to two r.v.'s has been made. The concepts can be 
extended easily to any number of r.v.'s defined on the same sample space. In this section we briefly 
describe some of the extensions. 

A. Definitions: 

Given an experiment, the n-tuple of r.v.'s (XI, X,, . . . , X,) is called an n-variate r.v. (or n- 
dimensional random vector) if each Xi ,  i = 1, 2, . . . , n, associates a real number with every sample 
point E S. Thus, an n-variate r.v. is simply a rule associating an n-tuple of real numbers with every 
y E S .  

Let (XI, . . . , X,) be an n-variate r.v. on S. Then its joint cdf is defined as 

Note that 

The marginal joint cdf's are obtained by setting the appropriate Xi's to +GO in Eq. (3.61). For 
example, 

A discrete n-variate r.v. will be described by a joint pmf defined by 

pxl ... x n ( ~ l ,  . . . , x,) = P(X = x . . . , X, = x,) (3.65) 

The probability of any n-dimensional event A is found by summing Eq. (3.65) over the points in the 
n-dimensional range space RA corresponding to the event A : 

Properties of p,, . . . (x, , . . . , x,,) : 

The marginal pmf's of one or more of the r.v.'s are obtained by summing Eq. (3.65) appropriately. 
For example, 
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Conditional pmf's are defined similarly. For example, 

A continuous n-variate r.v. will be described by a joint pdf defined by 

Then 

and 

Properties of fx, . . . &(xi, . . . , x,) : 

The marginal pdf's of one or more of the r.v.'s are obtained by integrating Eq. (3.72) appropriately. 
For example, 

Conditional pdf's are defined similarly. For example, 

The r.v.'s XI, . . . , Xn are said to be mutually independent if 

for the discrete case, and 

for the continuous case. 
The mean (or expectation) of Xi in (XI, . . . , Xn) is defined as 

C . 1 xipxl ..xn(xl, . - - ,  xn) (discrete case) 
(3.82) 

xi fX1 ... X , ( ~ l ,  . . . , x,) dxl . dxn (continuous case) 

The variance of Xi is defined as 
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The covariance of Xi and Xj  is defined as 

oij = Cov(Xi, Xi) = E[(Xi - pi)(Xj - pj)] 

The correlation coefficient of Xi and Xj  is defined as 

Cov(Xi,Xj) 0.. 
Pij = 

V - 
oi oj  a i  oj 

3.10 SPECIAL DISTRIBUTIONS 

A. Multinomial Distribution: 

The multinomial distribution is an extension of the binomial distribution. An experiment is 
termed a multinomial trial with parameters p,, p, , . . . , p,, if it has the following conditions: 

1. The experiment has k possible outcomes that are mutually exclusive and exhaustive, say A,, A , ,  
..., Ak.  

k 

2. P(Ai) = pi i = 1, . . . , k and 1 pi = 1 (3.86) 
i =  1 

Consider an experiment which consists of n repeated, independent, multinomial trials with param- 
eters p,, p,, . . . , p,. Let Xi be the r.v. denoting the number of trials which result in Ai. Then (X,, X, , 
. . . , X& is called the multinomial r.v. with parameters (n, p,, p, , . . . , pk) and its pmf is given by (Prob. 
3.46) 

k 

for xi = 0, 1, . . . , n, i = 1, . . . , k, such that xi = n. 
i =  1 

Note that when k = 2, the multinomial distribution reduces to the binomial distribution. 

B. Bivariate Normal Distribution: 

A bivariate r.v. (X, Y) is said to be a bivariate normal (or gaussian) r.v. if its joint pdf is given by 

where ( x ,  ) = [ (  - 2 P ( 3 ( 7 )  + (yy] 
and A, pY, ox2, oy2 are the means and variances of X and Y, respectively. It can be shown that p is 
the correlation coefficient of X and Y (Prob. 3.50) and that X and Y are independent when p = 0 
(Prob. 3.49). 

C. N-variate Normal Distribution: 

Let (XI, . . . , X,) be an n-variate r.v. defined on a sample space S. Let X be an n-dimensional 
random vector expressed as an n x 1 matrix: 
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Let x be an n-dimensional vector (n x 1 matrix) defined by 

X = [;I] 

xn 

The n-variate r.v. (XI, . . . , Xn) is called an n-variate normal r.v. if its joint pdf is given by 

where T denotes the "transpose," p is the vector mean, K is the covariance matrix given by 

and det K is the determinant of the matrix K. Note that f,(x) stands for f,, ... L(xl, . . . , xn). 

Solved Problems 

BIVARIATE RANDOM VARIABLES AND JOINT DISTRIBUTION FUNCTIONS 

3.1. Consider an experiment of tossing a fair coin twice. Let (X, Y) be a bivariate r.v., where X is the 
number of heads that occurs in the two tosses and Y is the number of tails that occurs in the two 
tosses. 

(a) What is the range Rx of X? 

(b) What is the range Ry of Y? 

(c) Find and sketch the range Rxy of (X, Y). 
(d) Find P(X = 2, Y = 0), P(X = 0, Y = 2), and P(X = 1, Y = 1). 

The sample space S of the experiment is 

S = {HH, HT, TH, TT) 

(a) R, = (0, 1,2) 
(b) R ,  = (0, 192) 
(c) RXY = ((2, O), (1, I), (0, 2)) which is sketched in Fig. 3-2. 

(d) Since the coin is fair, we have 

P(X = 2, Y = 0) = P(HH} = $ 
P(X = 0, Y = 2) = P{TT) = 4 
P(X= 1, Y = 1 ) =  P{HT, TH} = 

3.2. Consider a bivariate r.v. (X, Y). Find the region of the xy plane corresponding to the events 

A = { X + Y 1 2 )  B = { x 2  + Y2 < 4) 
C = {min(X, Y) 1 2) D = (max(X, Y) 1 2) 
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Fig. 3-2 

( c )  (4 

Fig. 3-3 Regions corresponding to certain joint events. 
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The region corresponding to event A is expressed by x + y :I 2, which is shown in Fig. 3-3(a), that is, 
the region below and including the straight line x + y = 2. 

The region corresponding to event B is expressed by x2 + y2 < 2,, which is shown in Fig. 3-3(b), that 
is, the region within the circle with its center at the origin and radius 2. 

The region corresponding to event C is shown in Fig. 3-3(c), which is found by noting that 

The region corresponding to event D is shown in Fig. 3-3(d), which is found by noting that 

3.3. Verify Eqs. (3.7), (3.8a), and (3.8 b). 

Since {X I co, Y I co) = S and by Eq. (1.22), 

P(X I a ,  Y I a )  = FXy(a ,  a )  = P(S) = 1 

Next, as we know, from Eq. (2.8), 

P(X = -Go)= P(Y = -co)=O 

Since ( X =  - a , Y ~ y ) c ( X = - a )  and ( X I X , Y I - a ) c ( Y = - c o )  

and by Eq. (1 .D), we have 
P(X = - a ,  Y I y) = Fxy(-m, y) = 0 

P(X I X, Y = - m) = FxY(x, -- m) = 0 

3.4. Verify Eqs. (3.1 0) and (3.1 1). 

Clearly ( X S x , ,  Y IY)=(XSX, ,  Y ~ y )  u (x, < X I X , ,  Y ~ y )  

The two events on the right-hand side are disjoint; hence by Eq. (1 .D), 

P(X r x,, Y I y) = P(X I x,, Y I y) + P(x, < X I x,, Y 5 y) 

or P(x1 < X 5 x 2 ,  Y S y ) =  P(X IX,, Y ~ y ) -  P(X IX,, Y ~ y )  

= Fxy(x2 9 Y) - Fxy(x1, Y) 

Similarly, 

(X I x, y 5 y,) = (X I x, Y I y,) u (X- I x, y, < Y < y,) 

Again the two events on the right-hand side are disjoint, hence 

P(X I x, Y I y,) = P(X I x, Y I y,) + P(X I x, y, < Y I y,) 

or P(X 5 x, y, < Y I y,) = P(X 2 x, Y I y,) - P(X I x, Y S y,) 

= Fx,(x, Y,) - F X Y ~  Y,) 

3.5. Verify Eq. (3 .I 2). 

Clearly 

(x1 < X I x , ,  Y<y , )= (x ,  < X I x , ,  Y I y , ) v ( x ,  < X I x , , y ,  < Y 5 y 2 )  

The two events on the right-hand side are disjoint; hence 

P ( x l < X I x , ,  Y s y 2 ) = P ( x l  < X < x 2 ,  Y < y l ) . f  P(x1 < X < x , , y ,  < Y s y , )  

Then using Eq. (3.1 O), we obtain 
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Since the probability must be nonnegative, we conclude that 

Fxdx2 , Y2) - Fxyix,, ~ 2 )  - Fxdx2 9 Y,) + Fxdx,, Y,) 2 0 

ifx2 2 x, andy, 2 y,. 

3.6. Consider a function 

i 1 - e - ( x + ~ )  O l x < c o , O ~ y < o o  
F(x9 Y) = otherwise 

Can this function be a joint cdf of a bivariate r.v. (X, Y)? 

It is clear that F(x, y) satisfies properties 1 to 5 of a cdf [Eqs. (3.5) to (3.911. But substituting F(x, y) in 
Eq. (3.12) and setting x, = y, = 2 and x, = y, = 1, we get 

Thus, property 7 [Eq. (3.12)] is not satisfied. Hence F(x, y) cannot be a joint cdf. 

Consider a bivariate r.v. (X, Y). Show that if X and Y are independent, then every event of the 
form (a < X 5 b) is independent of every event of the form (c < Y I d). 

By definition (3.4), if X and Y are independent, we have 

Setting x, = a, x, = b, y, = c, and y2 = d in Eq. (3.95) (Prob. 3.9, we obtain 

which indicates that event (a < X I b) and event (c < Y I d) are independent [Eq. (1,4611. 

3.8. The joint cdf of a bivariate r.v. (X, Y) is given by 

i (l-e-"")(l-e-By) ~ 2 0 , ~ 2 0 , a , B > O  
Fx& Y) = () otherwise 

(a) Find the marginal cdf's of X and Y. 

(b) Show that X and Y are independent. 
(c) Find P(X 5 1, Y 5 I), P(X 2 I), P(Y > I), and P(X > x, Y > y). 

(a) By Eqs. (3.13) and (3.14), the marginal cdf's of X and Y are 

(b) Since FX-(x, y) = FX(x)Fy(y), X and Y are independent. 

(c) P(X I 1, Y I 1) = Fxr(l, 1) = (1 - e-")(l - e-8) 

P(X 5 1) = Fx(l) = (1 - e-") 
P(Y > 1) = 1 - P(Y I 1) = 1 - Fd1) = e-@ 
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By De Morgan's law (1.1 5), we have 
- -- 

(X > x) n (Y > y) = (X > x) u (Y > y) = (X I x) u ( Y  5 y) 

Then by Eq. (1 D ) ,  

P[(X > X) n ( Y  > y)] = P(X I x) + P(Y 5; y) - P(X s x, Y s y) 

= Fx(4 + FAY) - F,,(x, Y) 
= (1 - e-"") + (1 - e-fly) - (1 - e-ax)(l - e-fly) 
= 1 - e-aXe-By 

Finally, by Eq. (1.25), we obtain 

P(X > x, Y > y) = 1 - P[(X > x) n ( Y  > y)] = e-""e-DY 

3.9. The joint cdf of a bivariate r.v. (X, Y) is given by 

Find the marginal cdf's of X and Y. 
Find the conditions on p,, p, , and p, for which X and Y are independent. 

By Eq. (3.13), the marginal cdf of X is given by 

By Eq. (3.1 4), the marginal cdf of Y is given by 

For X and Y to be independent, by Eq. (3.4), we must have FXy(x, y) = FX(x)Fr(y). Thus, for 0 x < a, 
0 I y < b, we must have p ,  = p, p ,  for X and Y to be independent. 

DISCRETE BIVARIATE RANDOM VARIABLESJOINT PROBABILITY MASS 
FUNCTIONS 

3.10. Verify Eq.  (3.22). 

If X and Y are independent, then by Eq. (1.46), 

pxdxi, yj) = P(X = Xi ,Y = yi) = P(X = xi)P(Y = yj) = P ~ ( X ~ ) P ~ ( Y ~ )  

3.11. Two fair dice are thrown. Consider a bivariate r.v. (X, Y). Let X = 0 or 1 according to whether 
the first die shows an even number or an odd number of dots. Similarly, let Y = 0 or 1 according 
to the second die. 

(a) Find the range Rxy of (X, Y). 

(b) Find the joint pmf's of (X, Y). 
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(b) It is clear that X and Y are independent and 

P(X = 0) = P(X = 1) = 4 = q 
P(Y=O)=P(Y= I ) = $ = $  

Thus pxy(i,j)=P(X=i, Y=j)=P(X=i)P(Y = j ) = $  i,j=O, 1 

3.12. Consider the binary communication channel shown in Fig. 3-4 (Prob. 1.52). Let (X, Y) be a 
bivariate r.v., where X is the input to the channel and Y is the output of the channel. Let 
P(X = 0) = 0.5, P(Y = 11 X = 0) = 0.1, and P(Y = 0 1 X = 1) = 0.2. 

Find the joint pmf's of (X, Y). 
Find the marginal pmf's of X and Y. 
Are X and Y independent? 

From the results of Prob. 1.52, we found that 

Then by Eq. (1.41), we obtain 

Hence, the joint pmf's of (X, Y) are 

By Eq. (3.20), the marginal pmf's of X are 

px(0) = pxu(O, yj) = 0.45 + 0.05 = 0.5 
YJ 

px(l) = C pxr(l, yj) = 0.1 + 0.4 = 0.5 
YJ  

By Eq. (3.21), the marginal pmf's of Y are 

Fig. 3-4 Binary communication channel. 
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(c) Now 

p,(0)py(O) = OS(0.55) = 0.275 # pxy(O, 0 )  = 0.45 

Hence X and Y are not independent. 

Consider an experiment of drawing randomly three balls from an urn containing two red, three 
white, and four blue balls. Let (X, Y) be a bivariate r.v. where X and Y denote, respectively, the 
number of red and white balls chosen. 

Find the range of (X, Y). 

Find the joint pmf's of (X, Y). 
Find the marginaI pmf's of X and Y. 
Are X and Y independent? 

The range of ( X ,  Y) is given by 

Rxr = {(O, 019 (0,  I), (0,  2), (0 ,  3)9 ( 1 9  01, ( 1 ,  1 1 9  (1 ,  3 ,  (2,  O), (2, 1 ) )  

The joint pmf's of ( X ,  Y )  

p x y ( i , j ) =  P ( X = i ,  Y = j )  i = O ,  1 , 2  j = O ,  1 , 2 , 3  

are given as follows: 

which are expressed in tabular form as in Table 3.1. 

The marginal pmf's of X are obtained from Table 3.1 by computing the row sums, and the marginal 
pmf's of Y are obtained by computing the column sums. Thus 

Table 3.1 p&i, j )  
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(d) Since 

PXY(0, 0) = 6 Z PX(O)PY(O) = iE (%I 
X and Y are not independent. 

3.14. The joint pmf of a bivariate r.v. (X, Y) is given by 

k(2xi + y j )  xi  = 1 ,  2 ;  yj = 1 ,  2  
otherwise 

where k is a constant. 

(a) Find the value of k. 

(b) Find the marginal pmf's of X and Y. 

(c) Are X and Y independent? 

Thus, k = &. 
(b)  By Eq. (3.20), the marginal pmf's of X are 

By Eq. (3.21), the marginal pmf's of Y are 

(c) Now pAxi)py(yj) # pxY(xi, y,); hence X and Y are not independent. 

3.15. The joint pmf of a bivariate r.v. (X, Y) is given by 

kx i2y j  x i = l , 2 ; y j = l , 2 , 3  
otherwise 

where k is a constant. 

Find the value of k. 

Find the marginal pmf's of X and Y. 

Are X and Y independent? 

By Eq. (3.1 7), 

Thus, k = &. 
By Eq. (3.20), the marginal pmf's of X are 
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By Eq. (3.21), the marginal pmf's of Y are 

(c) Now 

Px(xi)P~(Yj) = &ixi2yj = PxAxi Yj) 

Hence X and Y are independent. 

3.16. Consider an experiment of tossing two coins three times. Coin A is fair, but coin B is not fair, 
with P(H) = and P(T) = $. Consider a bivariate r.v. (X, Y), where X denotes the number of 
heads resulting from coin A and Y denotes the number of heads resulting from coin B. 

(a) Find the range of (X, Y). 

(b) Find the joint pmf's of (X, Y). 
(c) Find P(X = Y), P(X > Y), and P(X + Y 1 4). 

(a) The range of (X, Y) is given by 

Rxy = {(i, j): i, j = 0, 1, 2, 3) 

(b) It is clear that the r.v.'s X and Y are independent, and they are both binomial r.v.'s with parameters (n, 
p) = (3, 4) and (n, p)  = (3, $), respectively. Thus, by Eq. (2.36), we have 

Since X and Y are independent, the joint pmf's of (X, Y) are 

which are tabulated in Table 3.2. 
(c) From Table 3.2, we have 

Table 3.2 pm(i, J) 
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Thus, ~ ( ~ + y < 4 ) = 1 - ~ ( ~ + ~ > 4 ) = 1 - & = ~  

CONTINUOUS BIVARIATE RANDOM VARIABLES-PROBABILITY DENSITY 
FUNCTIONS 

3.17. The joint pdf of a bivariate r.v. (X, Y) is given by 

,Ax. , = g(. + 

o < x < 2 , o < y < 2  

otherwise 

where k is a constant. 

(a) Find the value of k. 

(b) Find the marginal pdf's of X and Y. 

(c) Are X and Y independent? 

Thus k = $. 
(b)  By E q .  (3.30), the marginal pdf of X is 

O < x < 2  

Y = o otherwise 

Since fxy(x,  y) is symmetric with respect to x  and y, the marginal pdf of Y is 

M Y ) = { ; ( ~ + l )  O < Y < 2  
otherwise 

(c) Since fx,(x, y) # fx(x) fy(y), X and Y are not independent. 

3.18. The joint pdf of a bivariate r.v. (X, Y) is given by 

O < x < l , O < y < l  

otherwise 

where k is a constant. 

(a) Find the value of k. 
(b) Are X and Y independent? 
(c) Find P(X + Y < 1) .  
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Fig. 3-5 

(a) The range space Rxy is shown in Fig. 3-5(a). By Eq. (3.26), 

Thus k = 4. 

(b) To determine whether X and Y are independent, we must find the marginal pdf's of X and Y. By Eq. 
(3.30), 

(0 otherwise 

By symmetry, 

O < y < l  
fdy) = {? otherwise 

Since f,,(x, y) = fx(x) fJy), X and Y are independent. 

(c) The region in the xy plane corresponding to the event (X +. Y < 1) is shown in Fig. 3-5(b) as a shaded 
area. Then 

x2 1 - Y  

dx dY = [4Y(T lo ) dY 

= l 4 Y M l  - Y)'] dy = t 
3.19. The joint pdf of a bivariate r.v. (X, Y) is given by 

O < x < y < l  
otherwise 

where k is a constant. 

(a) Find the value of k. 
(b)  Are X and Y independent? 

(a) The range space Rxy is shown in Fig. 3-6. By Eq. (3.26), 
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0 

Fig. 3-6 

Thus k = 8. 
(b) By Eq. (3.30), the marginal pdf of X is 

(0 otherwise 

By Eq. (3.31), the marginal pdf of Y is 

(0 otherwise 

Since fx&, y) # fx(x) fy(y), X and Y are not independent. 
Note that if the range space Rxy depends functionally on x or y, then X and Y cannot be indepen- 

dent r.v.'s. 

3.20. The joint pdf of a bivariate r.v. (X, Y) is given by 

k O < y < x < l  
0  otherwise 

where k is a constant. 

(a) Determine the value of k. 
(b) Find the marginal pdf's of X and Y. 
(c) Find P(0 < X < i , O  c Y < i ) .  

(a) The range space Rxy is shown in Fig. 3-7. By Eq. (3.26), 

Thus k = 2. 
(b) By Eq. (3.30), the marginal pdf of X is 

(0 otherwise 

By Eq. (3.31)' the marginal pdf of Y is 

(0 otherwise 
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Fig. 3-7 

(c) The region in the xy plane corresponding to the event (0 < X < 3,O < Y < 3)  is shown in Fig. 3-7 as 
the shaded area R,. Then 

Note that the bivariate r.v. (X, Y) is said to be uniformly distributed over the region Rxy if its pdf is 

fX& Y )  = { k (x, Y )  E RXY 
0 otherwise 

where k is a constant. Then by Eq. (3.26), the contant k must be k = l/(area of Rxy). 

3.21. Suppose we select one point at random from within the circle with radius R. If we let the center 
of the circle denote the origin and define X and Y to be the coordinates of the point chosen (Fig. 
3-8), then (X, Y) is a uniform bivariate r.v. with joint pdf given by 

where k is a constant. 

(a) Determine the value of k. 
(b) Find the marginal pdf's of X and Y. 

(c) Find the probability that the distance from the origin of the point selected is not greater 
than a. 

Fig. 3-8 
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Thus k = 1/zR2. 

(b) By Eq. (3.30), the marginal pdf of X is 

Hence 

By symmetry, the marginal pdf of Y is 

(c) For 0 5 a 5 R, 
I- P 

3.22. The joint pdf of a bivariate r.v. (X, Y) is given by 

ke- (ax+by)  x > O , y > O  

otherwise 

where a and b are positive constants and k is a constant. 

(a) Determine the value of k. 
(b) Are X and Y independent? 

Thus k = ab. 

(b) By Eq. (3.30), the marginal pdf of X is 

By Eq. (3.31), the marginal pdf of Y is 

Since fXy(x,  y) = fx(x) fr(y), X and Y are independent. 
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3.23. A manufacturer has been using two different manufacturing processes to make computer 
memory chips. Let (X, Y) be a bivariate r.v., where X denotes the time to failure of chips made 
by process A and Y denotes the time to failure of chips rnade by process B. Assuming that the 
joint pdf of (X, Y) is 

where a = and b = l.2(10-4), determine P(X > Y). 

The region in the xy plane corresponding to the event (X > Y) is shown in Fig. 3-9 as the shaded area. 
Then 

Fig. 3-9 

3.24. A smooth-surface table is ruled with equidistant parallel lines a distance D apart. A needle of 
length L, where L I D, is randomly dropped onto this table. What is the probability that the 
needle will intersect one of the lines? (This is known as BufJbn's needle problem.) 

We can determine the needle's position by specifying a bivariate r.v. (X, 0) ,  where X is the distance 
from the middle point of the needle to the nearest parallel line: and O is the angle from the vertical to the 
needle (Fig. 3-10). We interpret the statement "the needle is randomly dropped to mean that both X and O 
have uniform distributions and that X and O are independent. The possible values of X are between 0 and 

- -- - - - - - - - - - 

Fig. 3-10 Buffon's needle problem. 
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012, and the possible values of O are between 0 and 42 .  Thus, the joint pdf of (X, O)  is 

(0 otherwise 

From Fig. 3-10, we see that the condition for the needle to intersect a line is X < L/2 cos 8. Thus, the 
probability that the needle will intersect a line is 

CONDITIONAL DISTRIBUTIONS 

3.25. Verify Eqs. (3.36) and (3.41). 

(a) By Eqs. (3.33) and (3.20), 

(b) Similarly, by Eqs. (3.38) and (3.30), 

3.26. Consider the bivariate r.v. (X, Y) of Prob. 3.14. 

(a) Find the conditional pmf's fiIx(yj I xi) and pXIY(xi ( yj). 
(b) Find P(Y = 2 1 X = 2) and P(X = 2 1 Y = 2). 

(a) From the results of Prob. 3.14, we have 

&(2xi + yj) Xi  = 1, 2; y j  = 1, 2 
otherwise 

px(xi) = &4xi + 3) xi = 1, 2 

P ~ Y ~ )  = Ad2yj + 6) Y j  = 17 2 

Thus, by Eqs. (3.33) and (3.34), 

(b)  Using the results of part (a), we obtain 
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3.27. Find the conditional pmf's pylx(yj  I xi)  and pXIy(x i  I y j )  for the bivariate r.v. (X, Y )  of Prob. 3.15. 

From the results of Prob. 3.15, we have 

xi = 1,  2;  yj = 1, 2, 3 
otherwise 

px(xJ = +xi2 X i  = 1, 2 

p A y j ) = i y j  Y j = 1 , 2 , 3  

Thus, by Eqs. (3.33) and (3.34), 

Note that PYlAyj  1 xi) = py(yj) and pXl& 1 yj) = pX(xi), as must be the case since X and Y are independent, 
as shown in Prob. 3.15. 

3.28. Consider the bivariate r.v. (X, Y) of Prob. 3.1 7. 

(a) Find the conditional pdf's f & ( y  I x)  and fxl,(x 1 y). 

(b) Find P(0 < Y < ) I X = 1). 

(a) From the results of Prob. 3.17, we have 

o < x < 2 , o < y < 2  
otherwise 

fx(x) = t ( x  + 1 )  0 < x < 2 

fdy )  = b(y + 1 )  0 < Y < 2 

Thus, by Eqs. (3.38) and (3.39), 

(b) Using the results of part (a), we obtain 

3.29. Find the conditional pdf's f y  l x ( y  ( x)  and fx l  ,(x ( y)  for the bivariate r.v. (X, Y )  of Prob. 3.18. 

From the results of Prob. 3.18, we have 

O < x < l , O < y < l  
otherwise 

f d x )  = 2x 0 < x < 1 

fv(y) = 2~ 0 < Y < 1 

Thus, by Eqs. (3.38) and (3.39), 
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Again note that fyldy I x) = fy(y) and fxldx I y) = fx(x), as must be the case since X and Y are independent, 
as shown in Prob. 3.18. 

3.30. Find the conditional pdf's fylx(y I x) and fxly(x I y) for the bivariate r.v. (X, Y) of Prob. 3.20. 

From the results of Prob. 3.20, we have 

i 2 O < y l x < l  
fxy(x' = 0 otherwise 

fx(x) = 2x O < x < l  
fY(Y) = 2(1 - Y) 0 < Y < 1 

Thus, by Eqs. (3.38) and (3.39), 

1 
fr,x(Y I x) = ; y < x < l , O < x < l  

3.31. The joint pdf of a bivariate r.v. (X, Y) is given by 

x > O , y > O  

otherwise 

(a) Show that f,,(x, y) satisfies Eq. (3.26). 

(b) Find P(X > 1 I Y = y). 

(a) We have 

(b) First we must find the marginal pdf on Y. By Eq. (3.31), 

By Eq. (3.39), the conditional pdf of X is 

Then 

x > o , y > o  
fxlu(x I Y) = - - 

otherwise 
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COVARIANCE AND CORRELATION COEFFICIENTS 

3.32. Let (X, Y) be a bivariate r.v. If X and Y are independent, show that X and Y are uncorrelated. 

If (X, Y) is a discrete bivariate r.v., then by Eqs. (3.43) and (3.22)' 

If (X, Y) is a continuous bivariate r.v., then by Eqs. (3.43) and (3.32), 

Thus, X and Y are uncorrelated by Eq. (3.52). 

3.33. Suppose the joint pmf of a bivariate r.v. (X, Y) is given by 

(a) Are X and Y independent? 

(b) Are X and Y uncorrelated? 

(a) By Eq. (3.20), the marginal pmf's of X are 

By Eq. (3.21), the marginal pmf's of Y are 

Thus X and Y are not independent. 

(b) By Eq.s (3.45a), (3.45b), and (3.43), we have 

Now by Eq. (3.51), 
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Thus, X and Y are uncorrelated. 

3.34. Let (X, Y) be a bivariate r.v. with the joint pdf 

Show that X and Y are not independent but are uncorrelated. 

By Eq. (3.30), the marginal pdf of X is 

Noting that the integrand of the first integral in the above expression is the pdf of N(0; 1) and the second 
integral in the above expression is the variance of N(0; I), we have 

Since fx,(x, y) is symmetric in x and y, we have 
I 

Now fx,(x, y) # fx(x) fu(y), and hence X and Y are not independent. Next, by Eqs. (3.47a) and (3.473), 

since for each integral the integrand is an odd function. By Eq. (3.43), 

The integral vanishes because the contributions of the second and the fourth quadrants cancel those of the 
first and the third. Thus, E(XY) = E(X)E(Y), and so X and Y are uncorrelated. 

3.35. Let (X, Y) be a bivariate r.v. Show that 

[E(xy)12 5 E(x2)E(y2) 

This is known as the Cauchy-Schwarz inequality. 

Consider the expression E[(X - for any two r.v.'s X and Y and a real variable a. This expres- 
sion, when viewed as a quadratic in a, is greater than or equal to zero; that is, 

E [(X - a Y)2] 2 0 

for any value of a. Expanding this, we obtain 

E(X2) - 2aE(XY) + a2E(Y2) 2 0 

Choose a value of a for which the left-hand side of this inequality is minimum, 
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which results in the inequality 

3.36. Verify Eq. (3.54). 

From the Cauchy-Schwarz inequality [Eq. (3.97)], we have 

{ECG - PX)(Y - PY)I)~ 5 EC(X - PX)~IEC(Y - PY)~I 

or oxy2 I ox20y2 

Then 

Since pxy is a real number, this implies 

p Y  or - l I p x Y I l  

3.37. Let (X, Y) be the bivariate r.v. of Prob. 3.12. 

(a) Find the mean and the variance of X. 
(b) Find the mean and the variance of Y. 

(c) Find the covariance of X and Y. 

(d) Find the correlation coefficient of X and Y. 

(a) From the results of Prob. 3.12, the mean and the variance of X are evaluated as follows: 

(b) Similarly, the mean and the variance of Y are 

By Eq. (3.51), the covariance of X and Y is 

(d) By Eq. (3.53), the correlation coefficient of X and Y is 

3.38. Suppose that a bivariate r.v. (X, Y) is uniformly distributed over a unit circle (Prob. 3.21). 
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(a) Are X and Y independent? 

(b) Are X and Y correlated? 

(a) Setting R = 1 in the results of Prob. 3.21, we obtain 

Since fxy(x, y) # fx(x) fy(y); X and Y are not independent. 
(b) By Eqs. (3.47~) and (3.47b), the means of X and Y are 

since each integrand is an odd function. 
Next, by Eq. (3.43), 

The integral vanishes because the contributions of the second and the fourth quadrants cancel those of 
the first and the third. Hence, E(XY) = E(X)E(Y) = 0 and X and Y are uncorrelated. 

CONDITIONAL MEANS AND CONDITIONAL VARIANCES 

3.39. Consider the bivariate r.v. (X, Y) of Prob. 3.14 (or Prob. 3.26). Compute the conditional mean 
and the conditional variance of Y given xi = 2. 

From Prob. 3.26, the conditional pmf pyl,(yj I xi) is 

2xi + y, 
PY l ~ ( ~ j  I xi) = - yj = 1, 2; xi = 1, 2 4xi + 3 

T ~ U S ,  PY~X(Y~ 12) = 4 + y j  y j = 1 , 2  

and by Eqs. (3.55) and (3.56), the conditional mean and the conditional variance of Y given xi  = 2 are 

4 + y j  
= E[(Y - {y I xi = 21 = (ij - E) (?) 
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3.40. Let (X, Y) be the bivariate r.v. of Prob. 3.20 (or Prob. 3.30). Compute the conditional means 
E(Y I x) and E(X I y). 

From Prob. 3.30, 

By Eq. (3.58), the conditional mean of Y, given X = x, is 

Similarly, the conditional mean of X, given Y = y, is 

Note that E( Y I x) is a function of x only and E(X I y) is a function of y only. 

3.41. Let (X, Y) be the bivariate r.v. of Prob. 3.20 (or Prob. 3.30). Compute the conditional variances 
Var(Y I x) and Var(X I y). 

Using the results of Prob. 3.40 and Eq. (3.59), the conditional variance of Y, given X = x, is 

Var(YIx) = E{CY - E(Y1x)I2 1x1 = 

Similarly, the conditional variance of X, given Y = y, is 

N-DIMENSIONAL RANDOM VECTORS 

3.42. Let (X,, X,, X,, X,) be a four-dimensional random vector, where X, (k = 1, 2, 3, 4) are inde- 
pendent Poisson r.v.'s with parameter 2. 

(a) Find P(X, = 1, X2 = 3,X3 = 2,X4 = 1). 
(b)  Find the probability that exactly one of the X,'s equals zero. 

(a) By Eq. (2.40), the pmf of X, is 

Since the X i s  are independent, by Eq. (3.80), 

P(X, = 1, x2 = 3, x3 = 2, x4 = 1) = px,(1)px2(3)~x3(2)~x4(1) 

(b) First, we find the probability that X, = 0, k = 1, 2,3,4. From Eq. (3.98), 

~ ( x , = O ) = e - ~  k = 1 , 2 , 3 , 4  
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Next, we treat zero as "success." If Y denotes the number of successes, then Y is a binomial r.v. with 
parameters (n, p) = (4, e-2) .  Thus, the probability that exactly one of the X,'s equals zero is given by [Eq. 
( 2 . W  

3.43. Let (X, Y, Z) be a trivariate r.v., where X, Y, and Z are independent uniform r.v.'s over (0, 1). 
Compute P ( Z  2 X Y). 

Since X, Y, Z are independent and uniformly distributed over (0, I), we have 

Then 

3 
= 1 ( I  x y )  d y  d x  = [ (1 - 2) d x  = I  

3.44. Let (X, Y, Z) be a trivariate r.v. with joint pdf 
{;-W+b+W x > O , Y > O , Z > O  

fxuz(x, Y ,  4 = otherwise 

where a, b, c > 0 and k are constants. 

(a) Determine the value of k. 

(b) Find the marginal joint pdf of X and Y. 

(c) Find the marginal pdf of X. 

(d) Are X, Y, and Z independent? 

Thus k = abc. 

(b)  By Eq. (3.77), the marginal joint pdf of X and Y is 

(c) By Eq. (3.78), the marginal pdf of X is 

(d) Similarly, we obtain 
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z > 0 

Since fxyz(x, y, z) = fx(x) fy(y) fz(z), X, Y, and Z are independent. 

3.45. Show that 

fxuz(x9 Y ,  4 'f&, Y(Z I x, Y)~Y,X(Y I x)fx(x) 

By definition (3.79), 

Hence 

Now, by Eq. (3.38), 

fxu(x9 Y) = fYIX(Y I x)fx(x) 

Substituting this expression into Eq. (3.100), we obtain 

SPECIAL DISTRIBUTIONS 

3.46. Derive Eq. (3.87). 

Consider a sequence of n independent multinomial trials. Let Ai (i = 1, 2, . . . , k) be the outcome of a 
single trial. The r.v. Xi is equal to the number of times Ai occurs in the n trials. If x,, x,, .. ., x, are 
nonnegative integers such that their sum equals n, then for such a sequence the probability that Ai occurs xi 
times, i = 1, 2, .. ., k-that is, P(X1 = x,, X, = x,, . . ., X, = x , t c a n  be obtained by counting the number 
of sequences containing exactly x, A,'s, x, A,'s, . . . , x, A,'s and multiplying by p,x1p2x2 . . . pkxk. The total 
number of such sequences is given by the number of ways we could lay out in a row n things, of which x, 
are of one kind, x, are of a second kind, . . . , x, are of a kth kind. The number of ways we could choose x, 

positions for the Alls is ; after having put the Al's in their position, the number of ways we could ) 
choose positions for the A,'s is ( n  i2x1), and so on, Thus, the total number of sequences with x, A19s, x, 

A,'s, . . . , xk Ah's is given by 

( ( n  , x l ) (  - ;3- x2) . * .  (n - x1 - x2 - - X k - 1  

Xk ) 
- n ! - (n - x,)! . . . ( n - x ,  - x , - - . . -  xk- I)! 

x,!(n - x,)! x,!(n - x, - x,)! x,! O! 

- n ! - 
x1!x2! - - -  x,! 

Thus, we obtain 

3.47. Suppose that a fair die is rolled seven times. Find the probability that 1 and 2 dots appear twice 
each; 3,4,  and 5 dots once each; and 6 dots not at all. 

Let (XI, X,, . . . , X,) be a six-dimensional random vector, where Xi denotes the number of times i dots 
appear in seven rolls of a fair die. Then (X,, X, , . . . , X,) is a multinomial r.v. with parameters (7, p,, p,, . . . , 
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ps) where pi = 4 (i = 1,2, . . . , 6 ) .  Hence, by Eq. (3.87), 

3.48. Show that the pmf of a multinomial r.v. given by Eq. (3.87) satisfies the condition (3.68); that is, 

. 1 Pxlx2 - .  ~ ~ ( ~ 1 ,  X ,  . - - 7  ~ k )  = l (3.1 01) 

where the summation is over the set of all nonnegative integers x,, x, , . . . , xk whose sum is n. 

The multinomial theorem (which is an extension of the binomial theorem) states that 

where x ,  + x ,  + . . . + x, = n and 

is called the multinomial coefficient, and the summation is over the set of all nonnegative integers x,, x, , . . . , 
x, whose sum is n. 

Thus, setting ai = pi in Eq. (3.102), we obtain 

3.49. Let (X, Y) be a bivariate normal r.v. with its pdf given by Eq.  (3.88). 

(a) Find the marginal pdf's of X and Y. 
(b)  Show that X and Y are independent when p = 0. 

(a) By Eq. (3.30), the marginal pdf of X is 

From Eqs. (3.88) and (3.89), we have 

Rewriting q(x, y), 

Then 
1 1 

f ~ x )  = e x p [  5 q,(x, i)] d~ 

where 
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Comparing the integrand with Eq. (2.52), we see that the integrand is a normal pdf with mean 
pY + p(oy/oX)(x - pX) and variance (1 - p2)oy2. Thus, the integral must be unity and we obtain 

In a similar manner, the marginal pdf of Y is 

(b) When p = 0, Eq. (3.88) reduces to 

Hence, X and Y are independent. 

3.50. Show that p in Eq. (3.88) is the correlation coefficient of X and Y. 

By Eqs. (3.50) and (3.53), the correlation coefficient of X and Y is 

where fxy(x, y) is given by Eq. (3.88). By making a change in variables v = (x - px)/ax and w = (y - py)/oy, 
we can write Eq. (3.105) as 

1 1 
PXY = J:' j;/w 2,1 - p 2 ) i / 2  

exp - - (v2 - 2pvw + w2) do dw [ 2 u  - p2) I 
The term in the curly braces is identified as the mean of V = N(pw; 1 - p2), and so 

The last integral is the variance of W = N ( 0 ;  l), and so it is equal to 1 and we obtain pxy = p. 

3.51. Let (X, Y) be a bivariate normal r.v. with its pdf given by Eq. (3.88). Determine E(Y I x). 

By Eq. (3.58), 

where 

Substituting Eqs. (3.88) and (3.103) into Eq. (3.107), and after somecancellation and rearranging, we obtain 
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which is equal to the pdf of a normal r.v. with mean py + p(a,/ox)(x - ,ux) and variance ( 1  - p2)ay2.  Thus, 
we get 

Note that when X and Y are independent, then p = 0 and E(Y I x)  = py = E(Y). 

3.52. The joint pdf of a bivariate r.v. ( X ,  Y) is given by 

(a) Find the means of X and Y. 

(b) Find the variances of X and Y. 

(c) Find the correlation coefficient of X and Y. 

We note that the term in the bracket of the exponential is a quadratic function of x and y, and hence 
fxy(x, y) could be a pdf of a bivariate normal r.v. If so, then it is simpler to solve equations for the various 
parameters. Now, the given joint pdf of ( X ,  Y )  can be expressed as 

where 

Comparing the above expressions with Eqs. (3.88) and (3.89), we see that fxy(x, y)  is the pdf of a bivariate 
normal r.v. with p, = 0, py = 1, and the following equations: 

Solving for ax2,  ay2 ,  and p, we get 

a x 2 = a y 2 = 2  and p = i  

Hence 

(a) The mean of X is zero, and the mean of Y is 1. 

(b) The variance of both X and Y is 2. 

(c) The correlation coefficient of X and Y is 4. 

3.53. Consider a bivariate r.v. (X, Y), where X and Y denote the horizontal and vertical miss dis- 
tances, respectively, from a target when a bullet is fired. Assume that X and Y are independent 
and that the probability of the bullet landing on any point of the xy plane depends only on the 
distance of the point from the target. Show that (X, Y) is a bivariate normal r.v. 

From the assumption, we have 

fxu(x7 Y )  =fx(x)fu(y) = s ( x 2  + y2) 

for some function g. Differentiating Eq. (3.109) with respect to x, we have 

f i ( ~ ) f Y ( ~ )  = 2xs'(x2 + y2) 

Dividing Eq. (3.1 10) by Eq. (3.1 09) and rearranging, we get 
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Note that the left-hand side of Eq. (3.11 1) depends only on x, whereas the right-hand side depends only on 
x2 + y2; thus 

where c is a constant. Rewriting Eq. (3.1 12) as 

and integrating both sides, we get 

where a and k are constants. By the properties of a pdf, the constant c must be negative, and setting c = 

- l/a2, we have 

Thus, by Eq. (2.52), X = N(0; a2) and 

, -~2n202 )  fX(4 = - 
f i a  

In a similar way, we can obtain the pdf of Y as 

Since X and Y are independent, the joint pdf of (X, Y) is 

1 
fXy(x, y) = fX(x) fy(y) = 7 e-(x2+ y2)1(2a2) 

2aa 

which indicates that (X, Y) is a bivariate normal r.v. 

3.54. Let (XI, X,, .. ., X,) be an n-variate normal r.v. with its joint pdf given by Eq. (3.92). Show that 
if the covariance of Xi and Xj is zero for i # j, that is, 

then XI, X ,  , . . . , X, are independent. 

From Eq. (3.94) with Eq. (3.1 14), the covariance matrix K becomes 

It therefore follows that 

and 
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K - l  = 

Then we can write 

Substituting Eqs. (3.1 16) and (3.1 18) into Eq. (3.92), we obtain 

Now Eq. (3.1 19) can be rewritten as 

where 

Thus we conclude that XI,  X,, . . . , Xn are independent. 

Supplementary Problems 

3.55. Consider an experiment of tossing a fair coin three times. Let (X, Y) be a bivariate r.v., where X denotes the 
number of heads on the first two tosses and Y denotes the number of heads on the third toss. 

(a) Find the range of X. 

(b) Find the range of Y. 

(c) Find the range of (X, Y). 

(d) Find(i)P(X 12, Y I l);(ii)P(X I 1, Y I l);and(iii)P(X 10, Y 1 0 ) .  

3.56. Let FXy(x, y) be a joint cdf of a bivariate r.v. (X, Y). Show that 

P(X > a, Y > c) = 1 - Fx(a) - F,(c) + Fx,(a, c) 

where F,(x) and F,(y)  are marginal cdf7s of X and Y, respectively. 

Hint: Set x, = a, y, = c, and x, = y, = co in Eq. (3.95) and use Eqs. (3.1 3) and (3.14). 



CHAP. 31 MULTIPLE RANDOM VARIABLES 

3.57. Let the joint pmf of (X, Y) be given by 

Pxy(xi, Yj) = {ri + ~ j )  
xi = 1, 2, 3; yj = 1, 2 
otherwise 

where k is a constant. 

(a) Find the value of k. 

(b) Find the marginal pmf's of X and Y. 

Ans. (a) k = & 
(b) px(xi) = &2xi + 3) xi = 1, 2, 3 

3.58. The joint pdf of (X, Y) is given by 

x > 0, y > 0 
otherwise 

where k is a constant. 

(a) Find the value of k. 

(b) Find P(X > 1, Y < I), P(X < Y), and P(X s 2). 

Ans. (a) k = 2 
(b) P(X > 1, Y < 1) = e-' - e - 3  z 0.318; P(X < Y) = 4; P(X I 2) = 1 - e - 2  z 0.865 

3.59. Let (X, Y) be a bivariate r.v., where X is a uniform r.v. over (0, 0.2) and Y is an exponential r.v. with 
parameter 5, and X and Y are independent. 

(a) Find the joint pdf of (X, Y). 
(b) Find P(Y 5 X). 

0 < x < 0.2, y > 0 
Ans. (a) fx&, y) = otherwise 

3.60. Let the joint pdf of (X, Y) be given by 

otherwise 

(a) Show that fxdx, y) satisfies Eq. (3.26). 

(b) Find the marginal pdf's of X and Y. 

Ans. (b) fx(x) = e-" x > O  
1 

fr(y) = 0' Y > O  

3.61. The joint pdf of (X, Y) is given by 

where k is a constant. 

x < y < 2 x , o < x < 2  
otherwise 

(a) Find the value of k. 

(b) Find the marginal pdf's of X and Y. 

Ans. (a) k = 
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(b) fx(x) = &x3(4 - $x) O < x < 2  

O < y < 2  

Qy3) 2 < Y < 4 
otherwise 

3.62. The joint pdf of (X, Y) is given by 

(a) Find the marginal pdf's of X and Y. 

(b) Are X and Y independent? 

Ans. (a) fx(x) = xe-"'I2 x > 0 
fky) = ye-y212 y > 0 

(b) Yes 

3.63. The joint pdf of (X, Y) is given by 

x>O, y > o  
f X Y k  Y) = otherwise 

(a) Are X and Y independent? 

(b) Find the conditional pdf's of X and Y. 

Ans. (a) Yes 

3.64. The joint pdf of (X, Y) is given by 

otherwise 

(a) Find the conditional pdf's of Y ,  given that X = x. 

(b) Find the conditional cdf's of Y ,  given that X = x. 

Ans. (a) fylx(y 1 x) = ex-Y y 2 x  

3.65. Consider the bivariate r.v. (X, Y) of Prob. 3.14. 

(a) Find the mean and the variance of X. 

(b) Find the mean and the variance of Y. 

(c) Find the covariance of X and Y. 

(d) Find the correlation coefficient of X and Y. 

Ans. (a) E(X) = g, Var(X) = 

(b) E(Y)= y,Var(Y)= 3 
(c) Cov(X, Y) = -A 
(d) p = -0.025 

3.66. Consider a bivariate r.v. (X, Y) with joint pdf 

Find P[(X, Y) I x2 + y2 I a2]. 
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Ans. 1 - e-"2/(2@2) 

3.67. Let (X, Y) be a bivariate normal r.v., where X f the and Y each have zero mean and variance a2, an( 
correlation coefficient of X and Y is p. Find the joint pdf of (X, Y). 

3.68. The joint pdf of a bivariate r.v. (X, Y) is given by 

(a) Find the means and variances of X and Y. 
(b) Find the correlation coefficient of X and Y. 

Ans. (a) p, = p, = 0 ax2 = aY2 = 1 

(b) P = 3 

3.69. Let (X, Y, 2) be a trivariate r.v., where X, Y, and Z are independent and each has a uniform distribution 
over (0, 1). Compute P(X 2 Y 2 Z). 

Ans. 3 



Chapter 4 

Functions of Random Variables, Expectation, 
Limit Theorems 

4.1 INTRODUCTION 

In this chapter we study a few basic concepts of functions of random variables and investigate the 
expected value of a certain function of a random variable. The techniques of moment generating 
functions and characteristic functions, which are very useful in some applications, are presented. 
Finally, the laws of large numbers and the central limit theorem, which is one of the most remarkable 
results in probability theory, are discussed. 

4.2 FUNCTIONS OF ONE RANDOM VARIABLE 

A. Random Variable g(X) : 

Given a r.v. X and a function g(x), the expression 

defines a new r.v. Y. With y a given number, we denote Dy the subset of Rx (range of X) such that 
g(x) s y. Then 

where (X E Dy) is the event consisting of all outcomes [ such that the point X([) E Dy . Hence 

If X is a continuous r.v. with pdf f,(x), then 

B. Determination of fYQ) from fx(x): 

Let X be a continuous r.v. with pdf f,(x). If the transformation y = g(x) is one-to-one and has the 
inverse transformation 

x = g-l(y) = NY) 

then the pdf of Y is given by (Prob. 4.2) 

Note that if g(x) is a continuous monotonic increasing or decreasing function, then the transfor- 
mation y = g(x) is one-to-one. If the transformation y = g(x) is not one-to-one, fb) is obtained as 
follows: Denoting the real roots of y = g(x) by x,, that is, 
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then 

where g'(x) is the derivative of g(x). 

4.3. FUNCTIONS OF TWO RANDOM VARIABLES 

A. One Function of Two Random Variables: 

Given two r.v.'s X and Y and a function g(x, y), the expression 

defines a new r.v. 2. With z a given number, we denote Dz the subset of Rxy [range of (X, Y)] such 
that g(x, y) 5 z. Then 

where ((X, Y) E DZ) is the event consisting of all outcomes such that the point {X([), Y(5)) E DZ. 
Hence 

FAz) = P(Z I z) = P[g(X, Y) 5 z] = P((X, Y) E D,} (4.1 1) 

If X and Y are continuous r.v.'s with joint pdffxAx, y), then 

B. Two Functions of Two Random Variables: 

Given two r.v.'s X and Y and two functions g(x, y) and h(x, y), the expression 

defines two new r.v.'s Z and W. With z and w two given numbers, we denote Dzw the subset of Rxy 
[range of (X, Y)] such that g(x, y) < z and h(x, y) 5 w. Then 

where ((X, Y) E Dzw} is the event consisting of all outcomes such that the point {X(c), Y([)} E DZw. 
Hence 

In the continuous case, we have 

Determination of fz iw(z, w) jiom f d x ,  y)  : 

Let X and Y be two continuous r.v.'s with joint pdf fxy(x, y). If the transformation 

z = g(x, Y) w = h(x, Y) 

is one-to-one and has the inverse transformation 
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then the joint pdf of Z and W is given by 

fzw(z, W) = f X Y k  Y) I J(x, Y) I - 
where x = q(z, w), y = r(z, w), and 

which is the jacobian of the transformation (4.1 7). If we define 

and Eq. (4.1 9) can be expressed as 

4.4 FUNCTIONS O F  n RANDOM VARIABLES 

A. One Function of n Random Variables: 

Given n r.v.'s X ,, . . . , X ,  and a function g(x,, . . . , x,), the expression 

y = g(X1, ..., X,) 

defines a new r.v. Y. Then 

and 

where Dy is the subset of the range of (X,, ..., X,) such that g(xl, ..., x,) < y. If XI, ..., X, are 
continuous r.v.'s with joint pdf f,, ... ,AX . . . , xn), then 

B. n Functions of n Random Variables: 

When the joint pdf of n r.v.'s X,, . . . , X, is given and we want to determine the joint pdf of n r.v.'s 
Y,, .. ., Y,, where 

Yl = gl(X1, - 7  Xn) 
(4.28) 

K = gn(X1, Xn) 

the approach is the same as for two r.v.'s. We shall assume that the transformation 
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where 

which is the jacobian of the transformation (4.29). 

4.5 EXPECTATION 

A. Expectation of a Function of One Random Variable: 

The expectation of Y = g(X) is given by 

(1 g(x) fX(x) dx (continuous case) 
-00 

B. Expectation of a Function of More than One Random Variable: 

Let XI,  ..., Xn be n r.v.'s, and let Y = g(X,, ..., Xn).Then 

C. Linearity Property of Expectation: 

Note that the expectation operation is linear (Prob. 4.39), and we have 

(discrete case) 

(continuous case) 

(4.34) 

where a,'s are constants. If r.v.'s X and Y are independent, then we have (Prob. 4.41) 

ECg(X)h( Y)I = ECg(X)IE[h( Y)I (4.36) 

The relation (4.36) can be generalized to a mutually independent set of n r.v.'s XI,  . . . , X,: 

~[f i  gi(xi)] = i =  fi 1 ECg/Xi)I (4.37) 
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D. Conditional Expectation as a Random Variable: 

In Sec. 3.8 we defined the conditional expectation of Y given X = x, E(Y 1 x) [Eq. (3.58)], which is, 
in general, a function of x, say H(x). Now H(X) is a function of the r.v. X; that is, 

H(X) = E(Y 1 X) (4.38) 

Thus, E(Y 1 X) is a function of the r.v. X. Note that E(Y I X) has the following property (Prob. 4.38): 

E C V  I XI1 = E(Y) (4.39) 

4.6 MOMENT GENERATING FUNCTIONS 

A. Definition: 

The moment generating function of a r.v. X is defined by 

(1 etXi~x(xi) (discrete case) 

Mx(t) = ~(e") = 

ii2yx(x, d~ (continuous case) 

where t is a real variable. Note that Mx(t) may not exist for all r.v.'s X. In general, M,(t) will exist 
only for those values of t for which the sum or integral of Eq. (4.40) converges absolutely. Suppose 
that Mdt)  exists. If we express etX formally and take expectation, then 

and the kth moment of X is given by 

mk = E(Xk) = Mx(k)(0) k = 1, 2, ... 

where 

B. Joint Moment Generating Function : 

The joint moment generating function Mxy(tl, t,) of two r.v.'s X and Y is defined by 

Mxr(tl, t2) = E[e(t1X+t2Y) 1 (4.44) 

where t1 and t2 are real variables. Proceeding as we did in Eq. (4.41), we can establish that 

and the (k, n) joint moment of X and Y is given by 

where 

In a similar fashion, we can define the joint moment generating function of n r.v.'s XI, . . . , X, by 

Mxl ... x,(tl, . . . , t,) = E[e(tlX1+"'+hXn)] (4.48) 
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from which the various moments can be computed. If X,, . . . , X, are independent, then 

C. Lemmas for Moment Generating Functions: 

Two important lemmas concerning moment generating functions are stated in the following: 

Lemma 4.1: If two r.v.'s have the same moment generating functions, then they must have the same 
distribution. 

Lemma 4.2: Given cdfs F(x), Fl(x), F,(x), . . . with corresponding moment generating functions M(t), M,(t), 
M,(t), . . . , then Fn(x) -, F(x) if M,(t) -+ M(t).  

4.7 CHARACTERISTIC FUNCTIONS 

A. Definition: 

The characteristic function of a r.v. X is defined by 

(x Brnxipx(xi) (discrete case) 

[J ejiwx fX(x) dx (continuous case) 
-a, 

where o is a real variable and j = p. Note that Yx(w) is obtained by replacing t in Mx(t) by jw if 
Mx(t) exists. Thus, the characteristic function has all the properties of the moment generating func- 
tion. Now 

for the discrete case and 

for the continuous case. Thus, the characteristic function Yx(u) is always defined even if the moment 
function Mx(t) is not (Prob. 4.58). Note that Yx(w) of Eq. (4.50) for the continuous case is the Fourier 
transform (with the sign of j reversed) of fx(x). Because of this fact, if Yx(w) is known, fx(x) can be 
found from the inverse Fourier transform; that is, 

B. Joint Characteristic Functions: 

The joint characteristic function Yx,(w,, w,) of two r.v.'s X and Y is defined by 

'1 e j ( ~ l x i + ~ 2 ~ k )  P X Y ( ~ ~ ,  ~ k )  (discrete case) 
i k 

C" C" e j ( a ~ x  +WZY) fXy(x, y) dx dy (continuous case) 

where w, and cu, are real variables. 
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The expression of Eq. (4.52) for the continuous case is recognized as the two-dimensional Fourier 
transform (with the sign of j reversed) of fxy(x, y). Thus, from the inverse Fourier transform, we have 

From Eqs. (4.50) and (4.52), we see that 

which are called marginal characteristic functions. 
Similarly, we can define the joint characteristic function of n r.v.'s XI,  . . . , X,! by 

As in the case of the moment generating function, if X,, . . . , X,, are independent, then 

C. Lemmas for Characteristic Functions: 

As with the moment generating function, we have the following two lemmas: 

Lemma 4.3: A distribution function is uniquely determined by its characteristic function. 

Lemma 4.4: Given cdfs F(x), F,(x), F,(x), . . . with corresponding characteristic functions Y(o), Y1(o), Y,(o), 
. . . , then Fn(x) + F(x) at points of continuity of F(x) if and only if Y,(o) -+ Y(o) for every o .  

4.8 THE LAWS OF LARGE NUMBERS AND THE CENTRAL LIMIT THEOREM 

A. The Weak Law of Large Numbers: 

Let XI, . . . , X, be a sequence of independent, identically distributed r.v.'s each with a finite mean 
E(Xi) = p. Let 

Then, for any E > 0, 

Equation (4.58) is known as the weak law of large numbers, and X, is known as the sample mean. 

B. The Strong Law of Large Numbers: 

Let XI ,  . . . , X, be a sequence of independent, identically distributed r.v.'s each with a finite mean 
E(Xi) = p. Then, for any E > 0, 

where Xn is the sample mean defined by Eq. (4.57). Equation (4.59) is known as the strong law of large 
numbers. 
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Notice the important difference between Eqs. (4.58) 6nd (,4.59). Equation (4.58) tells us how a 
sequence of probabilities converges, and Eq.  (4.59) tells us how the sequence of r.v,'s behaves in the 
limit. The strong law of large numbers tells us that the sequence (xn) is converging to the contant p. 

C. The Central Limit Theorem: 

The central limit theorem is one of the most remarkable results in probability theory. There are 
many versions of this theorem. In its simplest form, the central limit theorem is stated as follows: 

Let XI, . . . , X, be a sequence of independent, identically distributed r.v.'s each with mean p and 
variance a'. Let 

where 1, is defined by Eq. (4.57). Then the distribution of 2, tends to the standard normal as n -, oo; 
that is, 

lim 2, = N ( 0 ;  1 )  
n- t  m 

lim F,,(Z) = lim P(Z,  I z )  = @(z) 
fl-' aJ fl* W 

where @(z) is the cdf of a standard normal r.v. [Eq. (2.54)]. Thus, the central limit theorem tells us 
that for large n, the distribution of the sum Sn = XI + . . + X n  is approximately normal regardless of 
the form of the distribution of the individual X,'s. Notice how much stronger this theorem is than the 
laws of large numbers. In practice, whenever an observed r.v. is known to be a sum of a large number 
of r.v.3, then the central limit theorem gives us some justification for assuming that this sum is 
normally distributed. 

Solved Problems 

FUNCTIONS OF ONE RANDOM VARIABLE 

4.1. If X is N ( p ;  a2), then show that Z = (X - p)/a is a standard normal r.v.; that is, N ( 0 ;  1). 

The cdf of Z is 

By the change of variable y = (x - p)/a (that is, x = a y  + p), we obtain 
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and 

which indicates that Z = N(0;  1). 

4.2. Verify Eq. (4.6). 

Assume that y = g(x) is a continuous monotonically increasing function [Fig. 4-l(a)]. Since y = g(x) is 
monotonically increasing, it has an inverse that we denote by x = g-'(y) = h(y). Then 

Applying the chain rule of differentiation to this expression yields 

which can be written as 

If y = g(x) is monotonically decreasing [Fig. 4.l(b)], then 

Fdy) = P( Y I y )  = P [ X  > h(y)] = 1 - Fx[h(y)] 

d dx 
Thus, ~ Y ( Y )  = - FAY) = -fx(x) - x = h(y) (4.66) 

dy dy 

In Eq. (4.66), since y = g(x) is monotonically decreasing, dy/dx (and dxldy) is negative. Combining Eqs. 
(4.64) and (4.66), we obtain 

which is valid for any continuous monotonic (increasing or decreasing) function y = g(x). 

4.3. Let X be a r.v. with cdf F,(x) and pdf f,(x). Let Y =. a x  + b, where a and b are real constants 
and a # 0. 

(a )  Find the cdf of Y in terms of F,(x). 

Fig. 4-1 
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(a) (b )  

Fig. 4-2 

(b) Find the pdf of Y in terms of fx(x). 

(a) If a > 0, then [Fig. 4-2(a)] 

f &) = P(Y 6 y) = P(aX + b i y) = P(X 5 q) = Fx($) 

If a < 0, then [Fig. 4-2(b)] 

F&) = P(Y S y) = P(aX + b 6 y) = P(aX I y - b) 

= P ( X z e )  
(since a < 0, note the change 
in the inequality sign) 

- 1 - P ( X < ? )  

= 1 - P ( X . 5 )  + P(X +) 
= 1 - F x ( e )  + f'(x = E$) 

Note that if X is continuous, then P[X = (y - b)/a] = 0, and 

(b) From Fig. 4-2, we see that y = g(x) = ax  + b is a contirluous monotonically increasing (a > 0) or 
decreasing (a < 0) function. Its inverse is x = g-'(y) = h(y) = ( y  - b)/a, and dx/dy = l /a.  Thus, by Eq. 
(4.61, 

Note that Eq. (4.70) can also be obtained by differentiating Eqs. (4.67) and (4.69) with respect to y. 

4.4. Let Y = a x  + b. Determine the pdf of Y, if X is a uniform r.v. over (0, 1). 

The pdf of X is [Eq. (2.44)] 
1 O < x < l  

fx(x) = {O otherwise 

Then by Eq. (4.70), we get 
I 

1 
Y E R Y  

otherwise 
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Fig. 4-3 

The range Ry is found as follows: From Fig. 4-3, we see that 

For a > 0: R , = { y : b < y < a + b )  

For a < 0: R , = { y : a + b < y < b )  

4.5. Let Y = a x  + b. Show that if X = N(p; a2), then Y = N(ap + b ;  a202), and find the values of a 
and b so that Y = N(0;  1). 

Since X = N(p; a2), by Eq. (2.52), 

1 1 
fX(4 = --- ,pi. 

Hence, by Eq. (4.70), 

which is the pdf of N(ap + b; a2a2). Hence, Y = N(ap + b; a2a2). Next, let ap + b = 0 and a2a2 = 1, from 
which we get a = 110 and b = - pla. Thus, Y = (X - p)/a is N(0; 1) (see Prob. 4.1). 

4.6. Let X be a r.v. with pdf f,(x). Let Y = x2. Find the pdf of Y. 

The event A = ( Y  5 y) in R, is equivalent to the event B = (-& 5 X 5 &) in Rx (Fig. 4-4). If 
y 1 0, then 

and 

Thus, 
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Fig. 4-4 

Alternative Solution : 
If y c 0, then the equation y = x2 has no real solutions; hence f,(y) = 0. If y > 0, then y = x2 has two 

solutions, x, = f i  and x, = -A. Now, y = g(x) = x2 and gf(x) = 2x. Hence, by Eq. (4.8), 

4.7. Let Y = x2. Find the pdf of Y if X = N(0; 1). 

Since X = N(0; 1) 

Since f,(x) is an even function, by Eq. (4.74), we obtain 

4.8. Let Y = X2. Find and sketch the pdf of Y if X is a unifonn rev. over (- 1, 2). 

The pdf of X is [Eq. (2.4411 [Fig. 4-5(a)] 

- l < x < 2  
= {a otherwise 

In this case, the range of Y is (0, 4), and we must be careful in applying Eq. (4.74). When 0 < y c 1, both 
& and -& are in Rx = (- 1, 2), and by Eq. (4.74), 

When I < I. c 4, & is in R, = (- 1, 2) but -A < - 1, and by Eq. (4.74), 

Thus, 

O < y < l  
3J;  

l < y < 4  

otherwise 

which is sketched in Fig. 4-5(b). 
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4.9. Let Y = ex. Find the pdf of Y if X is a uniform r.v. over (0, 1). 

The pdf of X is 

1  O < x < l  
0 otherwise 

The cdf of Y is 

d d  1 
Thus, fu(y)=-FAY)=-lny=- 1 < y < e  

d y  dy Y 
Alternative Solution : 

The function y = g(x) = ex is a continuous monotonically increasing function. Its inverse is 
x = g-'Q = h(y) = In y. Thus, by Eq. (4.6), we obtain 

t 

(0 otherwise 

4.10. Let Y = ex. Find the pdf of Y if X = N ( p  ; a2). 

The pdf of X is [Eq. (2.52)] 

Thus, using the technique shown in the alternative solution of Prob. 4.9, we obtain 

Note that X = In Y is the normal r.v.; hence, the r.v. Y is called the log-normal r.v. 
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4.11. Let Y = tan X .  Find the pdf of Y if X is a uniform r.v. over (-7112, 71/2). 

The cdf of X is [Eq. (2.4511 

x s -. z/2 

(X + n/2) -n/2 < x < 4 2  

x 2 4 2  

Now Fy(y) = P(Y I y) = P(tan X 5 y) = P(X I tan- ' y) 

-a < y <  co 

Then the pdf of Y is given by 

d 1 
fy(y)=-Fy(y)=- - W < Y < W  

dy 4 1  + Y*) 

Note that the r.v. Y is a Cauchy r.v. with parameter 1. 

4.12. Let X be a continuous r.v. with the cdf FX(x). Let Y = Fx(X) .  Show that Y is a uniform r.v. over 
(0, 1). 

Notice from the properties of a cdf that y = FX(x) is a monotonically nondecreasing function. Since 
0 I FX(x) I 1 for all real x, y takes on values only on the interval (0, 1). Using Eq. (4.64) (Prob. 4.2), we 
have 

Hence, Y is a uniform r.v. over (0, 1). 

4.13. Let Y be a uniform r.v. over (0, 1) .  Let F(x)  be a function which has the properties of the cdf of a 
continuous r.v. with F(a) = 0, F(b) = 1 ,  and F(x)  strictly increasing for a < x < b, where a and b 
could be - co and oo, respectively. Let X = F-' (Y) .  Show that the cdf of X is F(x). 

FX(x) = P(X 5 X) = P[F-'(Y) 5 X] 

Since F(x) is strictly increasing, F-'(Y) 5 x is equivalent to Y I: F(x), and hence 

FX(x) = P(X I X) = P[Y S F(x)] 

Now Y is a uniform r.v. over (0, l), and by Eq. (2.45), 

F A y ) = P ( Y I y ) = y  O < y < l  

and accordingly, 

Fx(x) = P(X 5 x) = PLY 5 F(x)] = F(x) 0 < F(x) < 1 

Note that this problem is the converse of Prob. 4.12. 
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4.14. Let X be a continuous r.v. with the pdf 

Find the transformation Y = g(X) such that the pdf of Y is 

O < y < l  

otherwise 

The cdf of X is 

Then from the result of Prob. 4.12, the r.v. Z = 1 - e-' is uniformly distributed over (0, 1). Similarly, the 
cdf of Y is 

otherwise 

and the r.v. W = f i  is uniformly distributed over (0, 1). Thus, by setting Z = W, the required transfor- 
mation is Y = (1 - e-X)2 .  

FUNCTIONS OF TWO RANDOM VARIABLES 

4.15. Consider Z = X + Y. Show that if X and Y are independent Poisson r.v.'s with parameters A, 
and A,, respectively, then Z is also a Poisson r.v. with parameter A, + A,. 

We can write the event 

where events (X = i, Y = n - i), i = 0, 1, . . . , n, are disjoint. Since X and Y are independent, by Eqs. (1.46) 
and (2.40), we have 

n  A l i  i n  - i  n  ~ i ~ n - i  
- - C e - h  - - - -A2 2 - - e-(h+h2' 

i = o  i! (n - i)! E L  
i = o  z !  (n - i)! 

e-(ai+n~) " n! 
=- C- i i n - i  

n! i= , ,  t!(n - i)! 

which indicates that Z = X + Y is a Poisson r.v. with A ,  + 1, . 

4.16. Consider two r.v.'s X and Y with joint pdf f,,(x, y). Let Z = X + Y. 

(a) Determine the pdf of Z. 
(b) Determine the pdf of Z if X and Y are independent. 
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Fig. 4-6 

(a) The range Rz of Z corresponding to the event (Z I z) = (X + Y I z) is the set of points (x, y) which lie 
on and to the left of the line z = x + y (Fig. 4-6). Thus, we have 

Then 

= J=Im fx.,, 2 - x) dx 

(b) If X and Y are independent, then Eq. (4.79) reduces to 

The integral on the right-hand side of Eq. (4.80~) is known as a convolution of f,(z) and fdz). Since the 
convolution is commutative, Eq. (4.80~) can also be written as 

4.17. Using Eqs. (4.1 9) and (3.30), redo Prob. 4.16(a); that is, find the pdf of Z = X + Y .  

Let Z = X + Y and W = X. The transformation z = x + y, w = x has the inverse transformation 
x = w , y = z - w , a n d  

By Eq. (4.19), we obtain 

Hence, by Eq. (3.30), we get 

4.18. Suppose that X and Y are independent standard normal r.v.'s. Find the pdf of Z = X + Y. 
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The pdf s of X and Y are 

Then, by Eq. (4.80a), we have 

Now, z2 - 2zx + 2x2 = ( a x  - z/ \ / I )~ + z2/2, and we have 

with the change of variables u = f i x  - z/& Since the integrand is the pdf of N(0; I), the integral is 
equal to unity, and we get 

1 - 
1 

fi(4 = - e - z W  - -z3/2(&2 

&& &d 
which is the pdf of N(0;  2). Thus, Z is a normal r.v. with zero mean and variance 2. 

4.19. Let X and Y be independent uniform r.v.'s over (0, 1). Find and sketch the pdf of Z = X + Y .  

Since X and Y are independent, we have 

The range of Z is (0, 2), and 

Fz(z) = P(X + Y I z) = 

x + y s z  

If 0 < z < 1 [Fig. 4-7(a)], 

z 
Fdz) = dx dy = shaded area = - 

2 

and 
d 

fz(4 = , FZ(4 = z 

If 1 < z < 2 [Fig. 4-7(b)], 

(2 - z ) ~  
Fz(z) = 55 dx  d y  = shaded area = 1 - - 

2 

and 

Hence, 
O < z < l  

otherwise 
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Fig. 4-7 

which is sketched in Fig. 4-7(c). Note that the same result can be obtained by the convolution of fAz) and 
fd4. 

4.20. Let X and Y be independent gamma r.v.'s with respective parameters (a, A) and (j?, A). Show that 
Z = X + Y is also a gamma r.v. with parameters (a + #3, A). 

From Eq. (2.76) (Prob. 2.24), 

The range of Z is (0, co), and using Eq. (4.80a), we have 

By the change of variable w = x/z, we have 
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where k is a constant which does not depend on z. The value of k is determined as follows: Using Eq. (2.22) 
and definition (2.77) of the gamma function, we have 

Hence, k = l a+B/T(a  + B) and 

which indicates that Z is a gamma r.v. with parameters (a + /I, A). 

4.21. Consider two r.v.'s X and Y with joint pdff,,(x, y). Determine the pdf of Z = XY. 

Let Z = XY and W = X. The transformation z = xy, w = x has the inverse transformation x = w, 
y = z/w, and 

Thus, by Eq. (4.23), we obtain 

and the marginal pdf of Z is 

4.22. Let X and Y be independent uniform r.v.3 over (0, 1). Find the pdf of Z = XY. 

We have 

1 O < x < l , O < y < l  
fx'x' = {O otherwise 

The range of Z is (0, 1). Then 

1 O < w < 1 , 0 < z / w < 1  
h r ( l  :) = { 0 otherwise 

or 

By Eq. (4.82), 

fxr(W3 3 = { 1 O < z < w < l  
0 otherwise 
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Thus, fz(z)={;'"' ""'I 
otherwise 

4.23. Consider two r.v.'s X and Y with joint pdf fxy(x, y). Determine the pdf of Z = X / Y .  

Let Z -- X/Y and W = Y. The transformation z = x/y ,  w = y has the inverse transformation x = zw, 
y = w, and 

Thus, by Eq. (4.23), we obtain 

.fzw(z, w) = I - I fxy(z-9 w) 

and the marginal pdf of Z is 

4.24. Let X and Y be independent standard normal r.v.'s. Find the pdf of Z = X / Y .  

Since X and Y are independent, using Eq. (4.84), we have 

which is the pdf of a Cauchy r.v. with parameter 1. 

X and Y be two r.v.'s with joint pdf fxy(x, y) and joint cdf FXy(x ,  y). Let Z = max(X, Y). 

Find the cdf of 2. 

Find the pdf of Z if X and Y are independent. 

The region in the xy plane corresponding to the event (max(X, Y) 5 zj  is shown as the shaded area in 
Fig. 4-8. Then 

F,(z) = P(Z I Z) = P(X 5 Z, Y 5 Z) = FXy(z, Z) (4.85) 

If X and Y are independent, then 

F&) = Fx(z)Fy(z) 

and differentiating with respect to z gives 

fz(4 = fx(z)Fr(z) + Fx(z)fr(z) 
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Fig. 4-8 

4.26. Let X and Y be two r.v.3 with joint pdf f,Ax, y) and joint cdf F&, y). Let W = min(X, Y). 

(a) Find the cdf of W. 

(b) Find the pdf of W if X and Y are independent. 

(a) The region in the xy plane corresponding to the event {min(X, Y) I w )  is shown as the shaded area in 
Fig. 4-9. Then 

P(W I w) = P((X I w) u (Y I w)} 
= P(X 5 w) + P(Y I w) - P((X < w) n (Y 5 w))  

(b) If X and Y are independent, then 

and differentiating with respect to w gives 

Fig. 4-9 

4.27. Let X and Y be two r.v.'s with joint pdf f,& y). Let 

Find f,,(r, 0) in terms off,&, y). 
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We assume that r 2 0 and 0 < 8 < 2x.  With this assumption, the transformation 

has the inverse transformation 

x = r c o s 8  y = r s i n 0  

Since 

by Eq. (4.23) we obtain 

fRe(r, 8) = rfxu(r cos 0, r sin 8) (4.90) 

4.28. A voltage V is a function of time t and is given by 

V(t) = X cos o t  + Y sin ot 

in which o is a constant angular frequency and X = Y = N(0; a2) and they are independent. 

(a) Show that V(t)may be written as 

V(t)  = R cos (ot  - 0) (4.92) 

(b) Find the pdfs of r.v.'s R and O and show that R and O are independent. 

(a) We have 
V(t) = X cos wt + Y sin wt 

Y 
= ( ,& cos cut + sin a t  

, X2+ Y ) 
= , / n ( c o s  0 cos a t  + sin 0 sin a t )  

= R cos(at - 0 )  
Y 

where R=JW' and @ = t a n - ' -  
X 

which is the transformation (4.89). 

(b) Since X = Y = N(0; a2) and they are independent, we have 

-(xZ + yz)/(2az) f x h  Y )  = 2no' e 

Thus, using Eq. (4.90), we get 

Now 

and fa&, 8) = fR(r) fe(8); hence, R and 0 are independent. 
Note that R is a Rayleigh r.v. (Prob. 2.23), and 0 is a uniform r.v. over (0, 271.). 
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FUNCTIONS OF N RANDOM VARIABLES 

4.29. Let X, Y, and Z be independent standard normal r.v.'s. Let W = (X2 + Y2 + Z2)lI2. Find the 
pdf of W. 

We have 

and F,(W)= P ( W  I w )  = P ( X 2  + Y 2  + z2 < w2)  

where Rw = ((x, y, z ) :  x2 + y2 + z2  I w2). Using spherical coordinates (Fig. 4-10), we have 

d x  dy dz = r2 sin 8 dr d8 d q  

and e - r 2 / 2  r 2 sin 8 dr dB d q  

- - -& 5,'= dm sin 8 d8 [e-.'12r2 dr 

Thus, the pdf of W is 

Fig. 4-10 Spherical coordinates. 

4.30. Let XI, . . . , X, be n independent r.v.'s each with the identical pdf f (x). Let Z = max(X,, . . . , X,). 
Find the pdf of 2. 

The probability P(z < Z < z + dz)  is equal to the probability that one of the r.v.'s falls in (z, z + dz) 
and all others are less than z. The probability that one of Xi (i = 1, . . . , n) falls in (z, z + dz)  and all others 



CHAP. 41 FUNCTIONS O F  RANDOM VARIABLES, EXPECTATION, LIMIT THEOREMS 145 

are all less than z is 

Since there are n ways of choosing the variables to be maximum, we have 

When n = 2, Eq. (4.98) reduces to 

which is the same as Eq. (4.86) (Prob. 4.25) with fx(z) = fy(z) = f (2) and FX(z) = FY(z) = F(z). 

4.31. Let XI, . . . , X ,  be n independent r.v.'s each with the identical pdf f (x). Let W = min(Xl, . . . , X,). 
Find the pdf of W. 

The probability P(w < W < w + dw) is equal to the probability that one of the r.v.3 falls in (w, w + dw) 
and all others are greater than w. The probability that one of X i  ( i  = 1, . . . , n) falls in (w, w + dw) and all 
others are greater than w is 

Since there are n ways of choosing the variables to be minimum, we have 

When n = 2, Eq. (4.1 00) reduces to 

which is the same as Eq. (4.88) (Prob. 4.26) with f,(w) = f,(w) = f  (w) and F,(w) = F,(w) = F(w). 

Let X i ,  i = 1, . . . , n, be n independent gamma r.v.'s with respective parameters (ai, A), i = 1, . . . , 
n. Let 

Show that Y is also a gamma r.v. with parameters (C=, a i ,  1). 

We prove this proposition by induction. Let us assume that the proposition is true for n = k ;  that is, 

k 

is a gamma r.v. with parameters (8, A) = ( C ai ,  A). 
i= 1 

k +  1 

Let W = Z + X k + l  = 2 Xi 
i =  1 

Then, by the result of Prob. 4.20, we see that W is a gamma r.v. with parameters (/3 + a,+ ,, A) = 
(Elf ,' a,, 1). Hence, the proposition is true for n = k + 1. Next, by the result of Prob. 4.20, the proposition 
is true for n = 2. Thus, we conclude that the proposition is true for any n 2 2. 



FUNCTIONS OF RANDOM VARIABLES, EXPECTATION, LIMIT THEOREMS [CHAP. 4 

Let XI, . . . , X, be n independent exponential r.v.'s each with parameter A. Let 

Show that Y is a gamma r.v. with parameters (n, A). 

We note that an exponential r.v. with parameter 1 is a gamma r.v. with parameters (1, 1) (Prob. 2.24). 
Thus, from the result of Prob. 4.32 and setting ai = 1, we conclude that Y is a gamma r.v. with parameters 
(n, 4. 

Let Z,, . . . , Z, be n independent standard normal r.v.'s. Let 

i =  1 

Find the pdf of Y. 

Let Y, = Zi2. Then by Eq. (4.75) (Prob. 4.7), the pdf of is 

Now, using Eq. (2.80), we can rewrite 

and we recognize the above as the pdf of a gamma r.v. with parameters (4, 4) [Eq. (2.76)]. Thus, by the 
result of Prob. 4.32, we conclude that Y is the gamma r.v. with parameters (n/2, 3) and 

When n is an even integer, T(n/2) = [(n/2) - I]!, whereas when n is odd, T(n/2) can be obtained from 
T(a) = (a - l )r(a - 1) [Eq. (2.78)] and r(4) = f i  [Eq. (2.80)]. 

Note that Equation (4.102) is referred to as the chi-square (x2) density function with n degrees of 
freedom, and Y is known as the chi-square ( X 2 )  r.v. with n degrees of freedom. It is important to recognize 
that the sum of the squares of n independent standard normal r.v.3 is a chi-square r.v. with n degrees of 
freedom. The chi-square distribution plays an important role in statistical analysis. 

Let XI, X, , and X, be independent standard normal r.v.'s. Let 

Y, = XI + X ,  + X3 
Y2 = X ,  - X, 
Y, = X2 - X3 

Determine the joint pdf of Y,, Y2 , and Y3 . 
Let y, = x, + x, + x3 

Y2 = X l  - x2 
Y3 = x2 - x3 

By Eq. (4.32), the jacobian of transformation (4.103) is 
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Thus, solving the system (4.1 O3), we get 

X i  = ~ ( Y I  +2Y2 + ~ 3 )  
x2 = 3 ~ 1  -Y2 +Y3) 
x3 = 4(Y, - 372 - 2 ~ 3 )  

Then by Eq. (4.31), we obtain 

Since XI, X2 , and X3 are independent, 

1 
Hence, ~ Y ~ Y ~ Y , ( Y ~ ,  ~ 2 ,  ~ 3 )  = 

where 

EXPECTATION 

436. Let X be a uniform r.v. over (0, 1) and Y = ex. 

(a) Find E(Y) by using f,(y). 
(b) Find E(Y) by using f,(x). 

(a) From Eq. (4.76) (Prob. 4.9), 

(0 otherwise 

Hence, 

(b) The pdf of X is 

1 O < x < l  
fx(x) = { O  otherwise 

Then, by Eq. (4.33), 

4.37. Let Y = a x  + b, where a  and b are constants. Show that 

We verify for the continuous case. The proof for the discrete case is similar. 
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(b) Using.Eq. (4.1 Oj), we have 

4.38. Verify Eq. (4.39). 

Using Eqs. (3.58) and (3.38), we have 

fxr(x, Y) 
= J:* L U y  ZT MX) dx dl. = J:Y[J:fxyix, - Y) dx] dy 

4.39. L e t Z = a X +  bY,whereaandbareconstants.Show that 

We verify for the continuous case. The proof for the discrete case is similar. 

Note that Eq. (4.107) (the linearity of E) can be easily extended to n r.v.'s: 

4.40. Let Y = a x  + b. 

Find the covariance of X and Y. 
Find the correlation coefficient of X and Y. 

By Eq. (4.107), we have 
E(XY) = E[X(aX + h)] = aE(X2) + bE(X) 

E(Y) = E(aX + h) = aE(X) + b 

Thus, the covariance of X and Y is [Eq. (3.5111 

By Eq. (4.106), we have a, = / a I a,. Thus, the correlation coefficient of X and Y is [Eq. (3.53)J 
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4.41. Verify Eq. (4.36). 

Since X and Y are independent, we have 

The proof for the discrete case is similar 

4.42. Let X and Y be defined by 

X = cos 0 Y = sin O 

where O is a random variable uniformly distributed over (0, 271). 

(a) Show that X and Y are uncorrelated. 

(b)  Show that X and Y are not independent. 

(a) We have 
P 

( 0  otherwise 

Then E(X) = I:m~fx(x) d i  = l* cos Ofe(0) d0 = 

Similarly, E ( Y ) = ~  $ sin 0 d 0 = 0  

1  
E(XY) = i; cos 0 sin 0 d0 = - sin 20 d0 = 0 = E(X)E(Y) 

ax px 
Thus, by Eq. (3.52), X and Y are uncorrelated. 

1 1 1 
E(Y2) = Z; In sin2 0 d0 = ['(I - cos 20) d0 = - 2 

E(x'Y') = & % cos2 0 sin2 0 10 = - 
1 

( 1  - cos 4, d0 = - 8 

Hence 

If X and Y were independent, then by Eq. (4.36), we would have E(X2Y2) = E(X2)E(Y2). Therefore, X 
and Y are not independent. 

4.43. Let XI, . . . , Xn be n r.v.3. Show that 
n n 

Var x a i X i  = x x a i a j C o v ( X i ,  X j )  
( i 1 1  ) i = 1  j=1 
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If XI, . . . , X, are pairwise independent, then 

Let 

Then by Eq. (4.108), we have 

If XI, . . . , Xn are pairwise independent, then (Prob. 3.22) 

and Eq. (4.1 11) reduces to 

Var z a X = z a: Var(Xi) 
( 1  i) 

MOMENT GENERATING FUNCTIONS 

4.44. Let the moment of a discrete r.v. X be given by 

Find the moment generating function of X. 

Find P(X = 0) and P(X = 1). 

By Eq. (4.41), the moment generating function of X is 

By definition (4.40), 

Thus, equating Eqs. (4.113) and (4.114), we obtain 
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4.45. Let X be a Bernoulli r.v. 

(a) Find the moment generating function of X. 
(b) Find the mean and variance of X. 

(a) By definition (4.40) and Eq. (2.32), 

Mx(t) = E(etX) = etxipx(xi) 
1 

= et(O)pX(O) + et(')p,(l) -5 (1 - p) + pet 

Hence, 

4.46. Let X be a binomial r.v. with parameters (n, p). 

Find the moment generating function of X. 

Find the mean and variance of X. 

By definition (4.40) and Eq. (2.36), and letting q = 1 - p, we get 

The first two derivatives of Mx(t) are 

M;(t) = n(q + pet)"- 'pet 
Mi(t) = n(q + pet)"- lpet + n(n - l)(q + pet)"-2(pet)2 

Thus, by Eq. (4.42), 

Hence, 

4.47. Let X be a Poisson r.v. with parameter A. 
Find the moment generating function of X. 

Find the mean and variance of X. 
By definition (4.40) and Eq. (2.40), 

w 1' 
Mx(t) = E(etX) = etie - " -- 

i = o  i! 

The first two derivatives of Mx(t) are 

M;(t) = AefeA(er- 1) 

M;(t) = (Aet)2el(" - 1) + Aete"ec- 1) 

Thus, by Eq. (4.42), 

E(X) = Mi-0) = A E(X2) = M;(O) = A2 + A 
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Hence, Var(X) = E(X2) - [E(X)I2 = A2 + A - A2 = 1 

4.48. Let X be an exponential r.v. with parameter 1. 

Find the moment generating function of X. 

Find the mean and variance of X. 

By definition (4.40) and Eq. (2.48), 

The first two derivatives of Mx(t) are 

Thus, by Eq. (4.42), 

2 
Var(X) = E(X2) - [E(X)J2 = - - 1 

Hence, 

4.49. Find the moment generating function of the standard normal r.v. X = N(0;  1) and calculate the 
first three moments of X. 

By definition (4.40) and Eq. (2.52), 

Combining the exponents and completing the square, that is, 

we obtain 

since the integrand is the pdf of N(t; 1). 
Differentiating M,(t) with respect to t three times, we have 

Mi(t) = tet2I2 Mi(t) = (t2 + l)et2I2 ~ ~ ( ~ ) ( t )  = (t3 + 3t)et2I2 

Thus, by Eq. (4.42), 

E(X) = MgO) = 0 E(X2) = MgO) = 1 E(X3) = MX(3)(0) = 0 

4.50. Let Y = a x  + b. Let Mx(t)  be the moment generating function of X. Show that the moment 
generating function of Y is given by 

My(t )  = etbMx(at) 
By Eqs. (4.40) and (4.105), 
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4.51. Find the moment generating function of a normal r.v. N ( p ;  a2). 

If X is N(0; I), then from Prob. 4.1 (or Prob. 4.37), we see that Y = oX + p is N(p; 02), Then by setting 
a = a and b = p in Eq. (4.120) (Prob. 4.50) and using Eq. (4.1 l9), we get 

4.52. Let XI, . . . , X, be n independent r.v.'s and let the moment generating function of Xi  be Mxi(t).  
Let Y = X, + . + X,. Find the moment generating function of Y. 

By definition (4.40), 

4.53. Show that if XI, . . . , X, are independent Bernoulli r.v.'s with the parameter p, then Y = X, + 
. + X, is a binomial r.v. with the parameters (n, p). 

Using Eqs. (4.122) and (4.1 15), the moment generating function of Y is 

which is the moment generating function of a binomial r.v. with parameters (n, p) [Eq. (4.1 l6)J. Hence, Y is 
a binomial r.v. with parameters (n, p). 

4.54. Show that if XI, . . . , X, are independent Poisson r.v.'s Xi having parameter Ai, then Y = X, + 
. . + X, is also a Poisson r.v. with parameter 3, = A, + . + A,. 

Using Eqs. (4.1 22) and (4.1 17), the moment generating function of Y is 

which is the moment generating function of a Poisson r.v. with parameter 1. Hence, Y is a Poisson r.v. with 
parameter 1 = Xti = 1, + + 1,. 

Note that Prob. 4.15 is a special case for n = 2. 

4.55. Show that if XI ,  . . . , X, are independent normal r.v.'s and Xi = N(pi; ai2), then Y = XI + 
. . + X, is also a normal r.v. with mean p = p1 + . . + p, and variance a2 = aI2 + - . + an2. 

Using Eqs. (4.1 22) and (4.1 21), the moment generating function of Y is 

which is the moment generating function of a normal r.v. with mean p and variance a2. Hence, Y is a 
normal r.v. with mean p = p,  + - + p, and variance 02 = a12 + - + on2. 

Note that Prob. 4.18 is a special case for n = 2 with pi = 0 and ai2 = 1. 

4.56. Find the moment generating function of a gamma r.v. Y with parameters (n, A). 
From Prob. 4.33, we see that if XI, . . . , X, are independent exponential r.v.'s, each with parameter A, 

then Y = X ,  + . . + Xn is a gamma r.v. with parameters (n, A). Thus, by Eqs. (4.122) and (4.118), the 
moment generating function of Y is 
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CHARACTERISTIC FUNCTIONS 

4.57. The r.v. X can take on the values x, = - 1 and x2 = + 1 with pmfs p,(x,) = p,(x2) = 0.5. 
Determine the characteristic function of X. 

By definition (4.50), the characteristic function of X is 

Yx(o) = 0.5e-jw + 0.5d0 = i ( d w  + e-jw) = cos o 

4.58. Find the characteristic function of a Cauchy r.v. X with parameter a and pdf given by 

By direct integration (or from the Table of Fourier transforms in Appendix B), we have the following 
Fourier transform pair : 

Now, by the duality property of the Fourier transform, we have the following Fourier transform pair: 

or (by the linearity property of the Fourier transform) 

a 
++ e-alwl 

n(x2 + a2) 

Thus, the characteristic function of X is 

Yx(o) = e-alwl (4.1 24) 

Note that the moment generating function of the Cauchy r.v. X does not exist, since E(Xn) + co for n 2 2. 

4.59. The characteristic function of a r.v. X is given by 

Find the pdf of X. 

From formula (4.51), we obtain the pdf of X as 

4.60. Find the characteristic function of a normal r.v. X = N ( p ;  a2) .  

The moment generating function of N ( p ;  a2) is [Eq. (4.121)] 

M x ( t )  = eP' + 02'2/2 



CHAP. 4) FUNCTIONS OF RANDOM VARIABLES, EXPECTATION, LIMIT THEOREMS 155 

Thus the characteristic function of N ( p ;  a2) is obtained by setting t  = jo in Mx(t ) ;  that is, 

4.61. Let Y = a x  + b. Show that if Yx(w) is the characteristic function of X, then the characteristic 
function of Y is given by 

By definition (4.50), 

4.62. Using the characteristic equation technique, redo part (b) of Prob. 4.16. 

Let Z = X + Y, where X and Y are independent. Then 

Applying the convolution theorem of the Fourier transform (Appendix B), we obtain 

THE LAWS OF LARGE NUMBERS AND THE CENTRAL LIMIT THEOREM 

4.63. Verify the weak law of large numbers (4.58); that is, 

l i r n P ( I x , - p l > ~ ) = O  f o r a n y ~  
n+ do 

1 
where X,, = - (XI + . . + Xn) and E(XJ = p, Var(Xi) = 02. 

n 

Using Eqs. (4.1 08) and (4.1 1 Z), we have 

c2 
E(X,) = p and Var(,Yn) = - 

Then it follows from Chebyshev's inequality [Eq. (2.97)] (Prob. 2.36) that 

Since limn,, 02/(ne2) = 0, we get 

lim P ( ( R , - p i > & )  = O  
n +  w 

4.64. Let X be a r.v. with pdff,(x) and let X,, ..., X, be a set of independent r.v.'s each withpdff,(x). 
Then the set of r.v.'s XI, . . . , X, is called a random sample of size n of X. The sample mean is 
defined by 
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Let XI, .. ., X,, be a random sample of X with mean p and variance a2. How many 
samples of X should be taken if the probability that the sample mean will not deviate from the 
true mean p by more than a/10 is at least 0.95? 

Setting 8 = u/10 in Eq. (4.1 Z9), we have 

Thus if we want this probability to be at least 0.95, we must have 100/n < 0.05 or n 2 100/0.05 = 2000. 

4.65. Verify the central limit theorem (4.61 ). 

Let XI, ..., X, be a sequence of independent, identically distributed r.v.'s with E(Xi) = p and 
Var(Xi) = a2. Consider the sum S, = X1 + . + X,. Then by Eqs. (4.108) and (4.112), we have E(S,) = np 
and Var(S,) = na2. Let 

Then by Eqs. (4.105) and (4.106), we have E(Zn) = 0 and Var(Z,) = 1. Let M(t) be the moment generating 
function of the standardized r.v. = (Xi - ,u)/a. Since E ( 5 )  = 0 and E(X2) = Var(q) = 1, by Eq. (4.42), we 
have 

Given that Mf(t) and M"(t) are continuous functions of t, a Taylor (or Maclaurin) expansion of M(t) about 
t = 0 can be expressed as 

By adding and subtracting t2/2, we have 

Now, by Eqs. (4.1 20) and (4.1 22), the moment generating function of 2, is 

Using Eq. (4.1 32), Eq. (4.133) can be written as 

where now t, is between 0 and t/&. Since M"(t) is continuous at t = 0 and t, -+ 0 as n + co, we have 

lim [MU(t,) - 11 = M"(0) - 1 = 1 - 1 = 0 
n+co 

Thus, from elementary calculus, limn,, (1 + xln)" = ex, and we obtain 

The right-hand side is the moment generating function of the standard normal r.v. Z = N(0; 1) [Eq. 
(4.1 1911. Hence, by Lemma 4.2 of the moment generating function, 

lim Z, = N(0; 1) 
n+co 
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Let XI, . . . , Xn be n independent Cauchy r.v.'s with identical pdf shown in Prob. 4.58. Let 

Find the characteristic function of Y, . 
Find the pdf of Y, . 
Does the central limit theorem hold? 

From Eq. (4.1 24), the characteristic function of Xi is 

Let Y = X I  + . . + X,. Then the characteristic function of Y is 

Now Y, = ( l /n )Y .  Thus, by E q .  (4.126), the characteristic function of Y,  is 

Equation (4.135) indicates that Y, is also a Cauchy r.v. with parameter a, and its pdf is the same as that 
of Xi. 
Since the characteristic function of Y, is independent of n and so is its pdf, Y, does not tend to a normal 
r.v. as n + a, and so the central limit theorem does not hold in this case. 

Let Y be a binomial r.v. with parameters (n, p). Using the central limit theorem, derive the 
approximation formula 

where Wz) is the cdf of a standard normal r.v. [Eq. (2.54)J. 

We saw in Prob. 4.53 that if XI ,  . . . , X, are independent Bernoulli r.v.3, each with parameter p, then 
Y = X, + . - + X, is a binomial r.v. with parameters (n, p). Since X,'s are independent, we can apply the 
central limit theorem to the r.v. 2, defined by 

Thus, for large n, 2, is normally distributed and 

Substituting Eq. (4.1 37) into Eq. (4.1 38) gives 

Because we are approximating a discrete distribution by a continuous one, a slightly better approx- 
imation is given by 

Formula (4.139) is referred to as a continuity correction of Eq. (4.1 36). 
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4.68. Let Y be a Poisson r.v. with parameter I. Using the central limit theorem, derive approximation 
formula : 

We saw in Prob. 4.54 that if XI, . . . , X, are independent Poisson r.v.'s Xi having parameter Ai, then 
Y = XI + . . + X, is also a Poisson r.v. with parameter 1 = 1, + . . . + 1,. Using this fact, we can view a 
Poisson r.v. Y with parameter I as a sum of independent Poisson r.v.'s Xi,  i = 1, . . . , n, each with parameter 
1/n; that is, 

The central limit theorem then implies that the r.v. Z defined by 

is approximately normal and 

P(Z I z) w @(z) 

Substituting Eq. (4.141) into Eq. (4.142) gives 

P(? I z) = P(Y I Jiz + I) iE Wz) 

Again, using a continuity correction, a slightly better approximation is given by 

Supplementary Problems 

4.69. Let Y = 2X + 3. Find the pdf of Y if X is a uniform r.v. over (- 1, 2). 

l < y < 7  
Am. fy(y) = {i 

otherwise 

4.70. Let X be a r.v. with pdf fx(x). Let Y = I X I. Find the pdf of Y in terms of f,(x). 

Ans. fb) = 
Y < o  

4.71. Let Y = sin X, where X is uniformly distributed over (0, 2x). Find the pdf of Y 

I '  - l < y < l  
Ans. fro) = rrJm 

(0 otherwise 
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4.72. Let X and Y be independent r.v.3, each uniformly distributed over (0, 1 ) .  Let Z = X + Y ,  W = X - Y. 
Find the marginal pdf s of Z and W. 

O < z < l  w + l  - l < w < O  
1 < z < 2  f&w)= O < w < l  
otherwise otherwise 

4.73. Let X and Y be independent exponential r.v.'s with parameters a and B, respectively. Find the pdf of 
(a) Z = X - Y ;  (b)  Z = X / Y ;  (c)  Z = max(X, Y ) ;  ( d )  Z = min(X, Y) .  

4.74. Let X denote the number of heads obtained when three independent tossings of a fair coin are made. Let 
Y = X 2 .  Find E(Y). 

Ans. 3 

4.75. Let X be a uniform rev. over (- 1, 1). Let Y = Xn. 

(a) Calculate the covariance of X and Y. 

(b)  Calculate the correlation coefficient of X and Y 

n = even n = even 

4.76. Let the moment generating function of a discrete r.v. X be given by 

Mx(t )  = 0.25et + 0.35e3' + 0.40e5' 

Find P(X = 3). 

Ans. 0.35 

4.77. Let X be a geometric r.v. with parameter p. 

(a) Determine the moment generating function of X. 

(b)  Find the mean of X for p = 3 .  

Ans. pet Mx(t) = - 
1 - qe' 

4.78. Let X be a uniform r.v. over (a,  b). 

(a) Determine the moment generating function of X. 

(b)  Using the result of (a), find E(X),  E(X2),  and E(X3) .  

erb - 
Ans. (a)  Mx(t )  = ------ 

t(b - a) 

(b)  E ( X )  = $(b + a), E(X2)  = 4(b2 + ab + a2)  E(X3) = $(b3 + b2a + ba2 + a3) 
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Consider a r.v. X with pdf 

Find the moment generating function of X. 

Ans. M ,(t) = e - " + 

Let X = N ( 0 ;  1 ) .  Using the moment generating function of X ,  determine E(Xn). 

n = I ,  3, 5 ,  ... 
Ans. E ( X n )  = {e . 3 . . . . . 

(n - 1 )  n = 2, 4, 6 ,  ... 

Let X and Y be independent binomial r.v.'s with parameters (n, p) and (m, p), respectively. Let Z = X + Y. 
What is the distribution of Z? 

Hint: Use the moment generating functions. 

Ans. Z is a binomial r.v. with parameters (n + m, p). 

Let (X, Y) be a continuous bivariate r.v. with joint pdf 

x > o , y > o  
.fxu(x. Y )  = otherwise 

(a )  Find the joint moment function of X and Y. 

(h)  Find the joint moments m,, , m,,, and m ,  , . 
1 

Ans. ( a )  M X A t , ,  t,) = (h)  m , ,  = 1 ,  m,, = 1, m,, = 1 
(1  - t ,)(l - t2) 

Let (X, Y )  be a bivariate normal r.v. defined by Eq. (3.88). Find the joint moment generating function of X 
and Y .  

Let X,, . . . , X ,  be n independent r.v.'s and Xi > 0 .  Let 

Show that for large n, the pdf of Y is approximately log-normal. 

Hint: Take the natural logarithm of Y and use the central limit theorem and the result of Prob. 4.10. 

Let Y = (X - A)/JA, where X is a Poisson r.v, with parameter A. Show that Y = N(0;  1) when 1 is suffi- 
ciently large. 

Hint: Find the moment generating function of Y and let 1 -, co. 

Consider an experiment of tossing a fair coin 1000 times. Find the probability of obtaining more that 520 
heads (a) by using formula (4.136), and (h)  by formula (4.139). 

Ans. ( a )  0.1038 (h)  0.0974 

The number of cars entering a parking lot is Poisson distributed with a rate of 100 cars per hour. Find the 
time required for more than 200 cars to have entered the parking lot with probability 0.90 (a)  by using 
formula (4.1 do), and (h) by formula (4.1 43).  

Ans. (a) 2.1 89 h (h) 2.1946 h 



Chapter 5 

Random Processes 

5.1 INTRODUCTION 

In this chapter, we introduce the concept of a random (or stochastic) process. The theory of 
random processes was first developed in connection with the study of fluctuations and noise in physi- 
cal systems. A random process is the mathematical model of an empirical process whose development 
is governed by probability laws. Random processes provides useful models for the studies of such 
diverse fields as statistical physics, communication and control, time series analysis, population 
growth, and management sciences. 

5.2 RANDOM PROCESSES 

A1. Defintion: 

A random process is a family of r.v.'s (X(t), t E T)  defined on a given probability space, indexed 
by the parameter t, where t varies over an index set T. 

Recall that a random variable is a function defined on the sample space S (Sec. 2.2). Thus, a 
random process (X(t), t E T) is really a function of two arguments {X(t, c), t E T, 5 E S}. For a fixed 
t(=tk), X(tk, 5) = Xk(c) is a r.v. denoted by X(tk), as 5 varies over the sample space S. On the other 
hand, for a fixed sample point ci E S, X(t, ci) = Xi(t) is a single function of time t, called a sample 
function or a realization of the process. The totality of all sample functions is called an ensemble. 

Of course if both 5 and t are fixed, X(t,, ci) is simply a real number. In the following we use the 
notation X(t) to represent X(t, c).. 

B. Description of a Random Process: 

In a random process (X(t), t E T}, the index set T is called the parameter set of the random 
process. The values assumed by X(t) are called states, and the set of all possible values forms the state 
space E of the random process. If the index set T of a random process is discrete, then the process is 
called a discrete-parampter (or discrete-time) process. A discrete-parameter process is also called a 
random sequence and is denoted by {X,, n = 1, 2, . . .). If T is continuous, then we have a continuous- 
parameter (or continuous-time) process. If the state space E of a random process is discrete, then the 
process is called a discrete-state process, often referred to as a chain. In this case, the state space E is 
often assumed to be (0, 1, 2, . . .). If the state space E is continuous, then we have a continuous-state 
process. 

A complex random process X(t) is defined by 

where Xl(t) and X,(t) are (real) random processes and j = ,fq. Throughout this book, all random 
processes are real random processes unless specified otherwise. 

5.3 CHARACTERIZATION OF RANDOM PROCESSES 

A. Probabilistic Descriptions: 

Consider a random process X(t). For a fixed time t,, X(t,) = X ,  is a r.v., and its cdf F,(xl; t,) is 
defined as 
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F,(xl; t,) is known as the first-order distribution of X(t). Similarly, given t, and t,, X(t,) = X, and 
X(t2) = X, represent two r.v.3. Their joint distribution is known as the second-order distribution of 
X(t) and is given by 

In general, we define the nth-order distribution of X(t) by 

FX(x1, . . . , x,; ti, . . . , t,) = P{X(tl) I xl, . . . , X(t,) 2 x,) 

If X(t) is a discrete-time process, then X(t) is specified by a collection of pmf s: 

px(xl, . . . , Xn ; tl, . . . , t,) = P{X(tl) = XI, . . . , X(t,) = x,} (5.4) 

If X(t) is a continuous-time process, then X(t) is specified by a collection of pdf s: 

The complete characterization of X(t) requires knowledge of all the distributions as n + co. Fortu- 
nately, often much less is sufficient. 

B. Mean, Correlation, and Covariance Functions: 

As in the case of r.v.3, random processes are often described by using statistical averages. 
The mean of X(t) is defined by 

where X(t) is treated as a random variable for a fixed value of t. In general, p,(t) is a function of time, 
and it is often called the ensemble average of X(t). A measure of dependence among the r.v.'s of X(t) is 
provided by its autocorrelation function, defined by 

Rx(t, s) = ECX(t)X(s)l (5.7) 

Note that 

RX@, s) = Rx(s, t) (5.8) 

and Rx(~, t) = ECX2(t)l (5.9) 

The autocovariance function of X(t) is defined by 

KXV, s) = CovCX(t), X(s)l = E{CX(t) - px(t)lCX(s) - Px(s)l> 
= Rx(t, s) - Px(t)Px(s) (5.1 0) 

It is clear that if the mean of X(t) is zero, then Kx(t, s) = Rx(t, s). Note that the variance of X(t) is 
given by 

If X(t) is a complex random process, then its autocorrelation function Rx(t, s) and autocovariance 
function Kx(t, s) are defined, respectively, by 

5.4 CLASSIFICATION OF RANDOM PROCESSES 

If a random process X(t) possesses some special probabilistic structure, we can specify less to 
characterize X(t) completely. Some simple random processes are characterized completely by only the 
first- and second-order distributions. 
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A. Stationary Processes: 

A random process {X(t), t E T) is said to be stationary or strict-sense stationary if, for all n and 
for every set of time instants (t, E T, i = 1,2, . . . , n), 

for any 2. Hence, the distribution of a stationary process will be unaffected by a shift in the time 
origin, and X(t) and X(t + 2) will have the same distributions for any z. Thus, for the first-order 
distribution, 

FX(x; t) = FX(x; t + 2) = FAX) 

and fAx; t) = fx(x) 

Then Px(t) = ECX(t)l = P 

Var[X(t)J = a2 

where p and a2 are contants. Similarly, for the second-order distribution, 

F x h  x2; t1, t2) = Fx(x1, x2; t2 - t1) (5.1 9) 

and fx(% X2; tl, t2) = fx (~ l ,  ~ 2 ;  t2 - tl) (5.20) 

Nonstationary processes are characterized by distributions depending on the points t,, t, , . . . , tn . 

B. Wide-Sense Stationary Processes : 

If stationary condition (5.14) of a random process X(t) does not hold for all n but holds for n 5 k, 
then we say that the process X(t) is stationary to order k. If X(t) is stationary to order 2, then X(t) is 
said to be wide-sense stationary (WSS) or weak stationary. If X(t) is a WSS random process, then we 
have 

1. E[X(t)] = p (constant) 

2. Rx(t, S) = E[X(t)X(s)] = Rx( ( s - t 1 ) 
Note that a strict-sense stationary process is also a WSS process, but, in general, the converse is not 
true. 

C. Independent Processes: 

In a random process X(t), if X(ti) for i = 1,2, . . . , n are independent r.v.'s, so that for n = 2,3, . . . , 
n 

FJX~,  . . . , xn; t,, . . . , t,) = n F~(X,;  ti) 
i =  1 

then we call X(t) an independent random process. Thus, a first-order distribution is sufficient to charac- 
terize an independent random process X(t). 

D. Processes with Stationary Independent Increments: 

A random process {X(t), t 2 0) is said to have independent increments if whenever 0 < t, < t, < 
... < t,, 

X(O), X(t1) - X(O), X(t2) - X(tl), . . X(tn) - X(tn- 1) 
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are independent. If {X(t), t 2 0) has independent increments and X(t) - X(s) has the same distribu- 
tion as X(t + h) - X(s + h) for all s, t, h 2 0, s < t, then the process X(t) is said to have stationary 
independent increments. 

Let {X(t), t 2 0) be a random process with stationary independent increments and assume that 
X(0) = 0. Then (Probs. 5.21 and 5.22) 

where p, = E[X(l)] and 

where a12 = Var[X(l)]. 
From Eq. (5.24), we see that processes with stationary independent increments are nonstationary. 

Examples of processes with stationary independent increments are Poisson processes and Wiener 
processes, which are discussed in later sections. 

E. Markov Processes: 

A random process (X(t), t E 7') is said to be a Markov process if 

whenever t1 < t2 < < t, < t,,,. 
A discrete-state Markov process is called a Markov chain. For a discrete-parameter Markov 

chain {X,, n 2 0) (see Sec. 5.5), we have for every n 

P(X,+, = j ( X ,  = i,, Xi = i,, ..., Xn = i) = P(Xn+, = j lXn = i) (5.27) 

Equation (5.26) or Eq. (5.27) is referred to as the Markov property (which is also known as the 
memoryless property). This property of a Markov process states that the future state of the process 
depends only on the present state and not on the past history. Clearly, any process with independent 
increments is a Markov process. 

Using the Markov property, the nth-order distribution of a Markov process X(t) can be 
expressed as (Prob. 5.25) 

Thus, all finite-order distributions of a Markov process 
distributions. 

p{X(tk) 2 ~ k )  I X(tk - 1) = xk - I )  (5.28) 

can be expressed in terms of the second-order 

F. Normal Processes : 

A random process {X(t), t E T) is said to be a normal (or gaussian) process if for any integer n 
and any subset (t,, . . ., t,) of T, the n r.v.'s X(tl), ..., X(t,) are jointly normally distributed in the 
sense that their joint characteristic function is given by 

where w,, . .., on are any real numbers (see Probs. 5.59 and 5.60). Equation (5.29) shows that a 
normal process is completely characterized by the second-order distributions. Thus, if a normal 
process is wide-sense stationary, then it is also strictly stationary. 
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G. Ergodic Processes : 

Consider a random process {X(t), - co < t < co) with a typical sample function x(t). The time 
average of x(t) is defined as 

Similarly, the time autocorrelation function Rx(7) of x(t) is defined as 

A random process is said to be ergodic if it has the property that the time averages of sample 
functions of the process are equal to the corresponding statistical or ensemble averages. The subject 
of ergodicity is extremely complicated. However, in most physical applications, it is assumed that 
stationary processes are ergodic. 

5.5 DISCRETE-PARAMETER MARKOV CHAINS 

In this section we treat a discrete-parameter Markov chain {X,, n 2 0) with a discrete state 
space E = (0, 1, 2, . . .), where this set may be finite or infinite. If X, = i, then the Markov chain is 
said to be in state i at time n (or the nth step). A discrete-parameter Markov chain { X , ,  n 2 0) is 
characterized by [Eq. (5.2711 

P(Xn+l = j J X o  = io, Xi = i,, ..., X, = i) = P(X,+, = j JX ,  = i) (5.32) 

where P(x,+ , = j 1 X, = i) are known as one-step transition probabilities. If P{x, + , = j 1 X, = i} is 
independent of n, then the Markov chain is said to possess stationary transition probabilities and the 
process is referred to as a homogeneous Markov chain. Otherwise the process is known as a nonhomo- 
geneous Markov chain. Note that the concepts of a Markov chain's having stationary transition 
probabilities and being a stationary random process should not be confused. The Markov process, in 
general, is not stationary. We shall consider only homogeneous Markov chains in this section. 

A. Transition Probability Matrix : 

Let (X,, n 2 0) be a homogeneous Markov chain with a discrete infinite state space E = (0, 1, 
2, . . .). Then 

regardless of the value of n. A transition probability matrix of (X,, n 2 0) is defined by 

where the elements satisfy 
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In the case where the state space E is finite and equal to (1, 2, . . . , m), P is m x m dimensional; that is, 

where 

A square matrix whose elements satisfy Eq. (5.34) or (5.35) is called a Markov matrix or stochastic 
matrix. 

B. Higher-Order Transition Probabilities-Chapman-Kolmogorov Equation: 

Tractability of Markov chain models is based on the fact that the probability distribution of 
(X,, n 2 0) can be computed by matrix manipulations. 

Let P = pi,] be the transition probability matrix of a Markov chain {X,, n 2 0). Matrix powers 
of P are defined by 

with the (i, j)th element given by 

Note that when the state space E is infinite, the series above converges, since by Eq. (5.34), 

Similarly, p3 = P P ~  has the (i, j)th element 

and in general, Pn + = PPn has the (i, j)th element 

Finally, we define PO = I, where I is the identity matrix. 
The n-step transition probabilities for the homogeneous Markov chain (X,, n 2 0) are defined 

by 

Then we can show that (Prob. 5.70) 

We compute p i p 1  by taking matrix powers. 
The matrix identity 

when written in terms of elements 
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is known as the Chapman-Kolmogorou equation. It expresses the fact that a transition from i to j in 
n + m steps can be achieved by moving from i to an intermediate k in n steps (with probability pik(n)), 
and then proceeding to j from k in m steps (with probability p,]")). Furthermore, the events "go from i 
to k in n steps" and "go from k to j in m steps" are independent. Hence the probability of the 
transition from i to j in n + rn steps via i, k, j is pik(")pk]"). Finally, the probability of the transition 
from i to j is obtained by summing over the intermediate state k. 

C. The Probability Distribution of {X, , n 2 0) : 

Let pi(n) = P(X, = i) and 

Then pi(0) = P(Xo = i) are the initial-state probabilities, 

is called the initial-state probability vector, and p(n) is called the state probability vector after n tran- 
sitions or the probability distribution of X,. Now it can be shown that (Prob. 5.29) 

which indicates that the probability distribution of a homogeneous Markov chain is completely 
determined by the one-step transition probability matrix P and the initial-state probability vector 
HO). 

D. Classification of States: 

1. Accessible States : 

State j is said to be accessible from state i if for some n 2 0, pi,.('" z 0, and we write i -+ j. Two 
states i and j accessible to each other are said to communicate, and we write i-j. If all states commu- 
nicate with each other, then we say that the Markov chain is irreducible. 

2. Recurrent States: 

Let be the time (or the number of steps) of the first visit to state j after time zero, unless state j 
is never visited, in which case we set T j  = oo. Then IT;. is a discrete r.v. taking values in (1, 2, . . . , m}. 
Let 

f ; : ~ m ) = ~ ( T , = m l ~ , = i ) = ~ ( ~ , = j , ~ , # j , k = l , 2  ,..., m - l l X o = i )  (5.40) 

and&iO) = 0 since 7 j  2 1.  Then 

and 

The probability of visiting j in finite time, starting from i, is given by 

Now state j is said to be recurrent if 

f j j = P ( T , <  coIX,=j)= 1 
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That is, starting from j, the probability of eventual return to j is one. A recurrent state j is said to be 
positive recurrent if 

E ( q I X o  = j )  < co (5.45) 

and state j is said to be null recurrent if 

E ( q T ; . X o = j ) =  co 

Note that 

3. Transient States: 

State j is said to be transient (or nonrecurrent) if 

f j j = P ( q <  c o I X o = j ) <  1 

In this case there is positive probability of never returning t~ state j. 

4. Periodic and Aperiodic States : 

We define the period of state j to be 

where gcd stands for greatest common divisor. 
If d(j)  > 1, then state j is called periodic with period d(j). If d( j )  = 1, then state j is called aperiodic. 

Note that whenever pjj > 0, j is aperiodic. 

5. Absorbing States: 

State j is said to be an absorbing state if pjj = 1 ; that is, once state j is reached, it is never left. 

E. Absorption Probabilities: 

Consider a Markov chain X(n) = { X , ,  n 2 0) with finite state space E = (1, 2, . . . , N )  and tran- 
sition probability matrix P. Let A = (1, . . . , m) be the set of absorbing states and B = {m + 1, . . . , N )  
be a set of nonabsorbing states. Then the transition probability matrix P can be expressed as 

where I is an m x m identity matrix, 0 is an m x ( N  - m) zero matrix, and 

Note that the elements of R are the one-step transition probabilities from nonabsorbing to absorbing 
states, and the elements of Q are the one-step transition probabilities among the nonabsorbing states. 
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Let U = [ukj], where 
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ukj = P{X, = j ( ~  A) I X ,  = k ( ~  B)} 

It is seen that U is an (N - m) x m matrix and its elements are the absorption probabilities for the 
various absorbing states. Then it can be shown that (Prob. 5.40) 

U = (I - Q)-'R = (DR (5.50) 

The matrix (D = (I - Q)-' is known as the fundamental matrix of the Markov chain X(n). Let T, 
denote the total time units (or steps) to absorption from state k. Let 

Then it can be shown that (Prob. 5.74) 

where 4ki is the (k, i)th element of the fundamental matrix 0. 

F. Stationary Distributions: 

Let P be the transition probability matrix of a homogeneous Markov chain {X,, n 2 0). 
exists a probability vector p such that 

fiP = fi 

If there 

then p is called a stationary distribution for the Markov chain. Equation (5.52) indicates that a sta- 
tionary distribution p is a (left) eigenvector of P with eigenvalue 1. Note that any nonzero multiple of B 
is also an eigenvector of P. But the stationary distribution p is fixed by being a probability vector; 
that is, its components sum to unity. 

G. Limiting Distributions: 

A Markov chain is called regular if there is a finite positive integer m such that after m time-steps, 
every state has a nonzero chance of being occupied, no matter what the initial state. Let A > 0 
denote that every element aij of A satisfies the condition aij > 0. Then, for a regular Markov chain 
with transition probability matrix P, there exists an m > 0 such that Pm > 0. For a regular homoge- 
neous Markov chain we have the following theorem: 

THEOREM 5.5.1 

Let {X,, n 2 0) be a regular homogeneous finite-state Markov chain with transition matrix P. 
Then 

lim Pn = 
n+m 

where is a matrix whose rows are identical and equal to the stationary distribution p for the 
Markov chain defined by Eq. (5.52). 

5.6 POISSON PROCESSES 

A. Definitions: 

Let t represent a time variable. Suppose an experiment begins at t = 0. Events of a particular 
kind occur randomly, the first at TI, the second at T2, and so on. The r.v. IT;. denotes the time at which 
the ith event occurs, and the values ti of (i = 1,2, . . .) are called points of occurrence (Fig. 5-1). 
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0 5 5 ttl- 1 

Fig. 5-1 

Let Z, = T, - T,-, (5.54) 

and To = 0. Then Z, denotes the time between the (n - 1)st and the nth events (Fig. 5-1). The 
sequence of ordered r.v.'s { Z , ,  n 2 1) is sometimes called an interarrival process. If all r.v.'s Z, are 
independent and identically distributed, then {Z,, n 2 1) is called a renewal process or a recurrent 
process. From Eq. (5.54), we see that 

where T, denotes the time from the beginning until the occurrence of the nth event. Thus, (T,,  n 2 0) 
is sometimes called an arrival process. 

B. Counting Processes : 

A random process {X(t), t 2 0) is said to be a counting process if X(t) represents the total number 
of "events" that have occurred in the interval (0, t). From its definition, we see that for a counting 
process, X(t) must satisfy the following conditions: 

1. X(t) 2 0 and X(0) = 0. 
2. X(t) is integer valued. 
3. X(s) ~ X ( t ) i f s  < t. 
4. X(t) - X(s) equals the number of events that have occurred on the interval (s, t). 

A typical sample function (or realization) of X(t) is shown in Fig. 5-2. 
A counting process X(t) is said to possess independent increments if the numbers of events which 

occur in disjoint time intervals are independent. A counting process X(t) is said to possess stationary 
increments if the number of events in the interval (s + h, t + h)--that is, X(t + h) - X(s + h e h a s  the 
same distribution as the number of events in the interval (s, t)--that is, X(t) - X(s)--for all s < t and 
h > 0. 

Fig. 5-2 A sample function of a counting process. 

C. Poisson Processes: 

One of the most important types of counting processes is the Poisson process (or Poisson counting 
process), which is defined as follows: 
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DEFINITION 5.6.1 

A counting process X(t) is said to be a Poisson process with rate (or intensity) 1(> 0) if 

X(t) has independent increments. 
The number of events in any interval of length t is Poisson distributed with mean At; that is, for 
all s, t > 0, 

It follows from condition 3 of Def. 5.6.1 that a Poisson process has stationary increments and that 

E[X(t)] = At 

Then by Eq. (2.43) (Sec. 2.7C), we have 

Var[X(t)] = At 

Thus, the expected number of events in the unit interval (0, I), or any other interval of unit length, is 
just A (hence the name of the rate or intensity). 

An alternative definition of a Poisson process is given as follows : 

DEFINITION 5.6.2 

A counting process X(t) is said to be a Poisson process with rate (or intensity) A(>O) if 

1. X(0) = 0. 

2. X(t) has independent and stationary increments. 
3. P[X(t + At) - X(t) = 11 = A At + o(At) 

4. P[X(t + At) - X(t) 2 21 = o(At) 

where o(At) is a function of At which goes to zero faster than does At; that is, 

o m )  lim - - - 0 
at-o At 

Note : Since addition or multiplication by a scalar does not change the property of approaching zero, 
even when divided by At, o(At) satisfies useful identities such as o(At) + o(At) = o(At) and 
ao(At) = o(At) for all constant a. 

It can be shown that Def. 5.6.1 and Def. 5.6.2 are equivalent (Prob. 5.49). Note that from condi- 
tions 3 and 4 of Def. 5.6.2, we have (Prob. 5.50) 

P[X(t + At) - X(t) = 0] = 1 - 1 At + o(At) (5.59) 

Equation (5.59) states that the probability that no event occurs in any short interval approaches unity 
as the duration of the interval approaches zero. It can be shown that in the Poisson process, the 
intervals between successive events are independent and identically distributed exponential r.v.'s 
(Prob. 5.53). Thus, we also identify the Poisson process as a renewal process with exponentially 
distributed intervals. 

The autocorrelation function Rx(t, s) and the autocovariance function Kdt, s) of a Poisson 
process X(t) with rate 1 are given by (Prob. 5.52) 
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5.7 WIENER PROCESSES 

Another example of random processes with independent stationary increments is a Wiener process. 

DEFINITION 5.7.1 

A random process (X(t), t 2 0) is called a Wiener process if 

1. X(t) has stationary independent increments. 

2. The increment X(t) - X(s) (t > s) is normally distributed. 
3. E[X(t)J = O .  

4. X(0) = 0. 

The Wiener process is also known as the Brownian motion process, since it originates as a model for 
Brownian motion, the motion of particles suspended in a fluid. From Def. 5.7.1, we can verify that a 
Wiener process is a normal process (Prob. 5.61) and 

where a2 is a parameter of the Wiener process which must be determined from observations. When 
a2 = 1, X(t) is called a standard Wiener (or standard Brownian motion) process. 

The autocorrelation function Rx(t, s) and the autocovariance function K,(t, s) of a Wiener 
process X(t) are given by (see Prob. 5.23) 

DEFINITION 5.7.2 

A random process (X(t), t 2 0) is called a Wiener process with drift coeficient p if 

1. X(t) has stationary independent increments. 
2. X(t) is normally distributed with mean pt. 
3. X(0) = 0. 

From condition 2, the pdf of a standard Wiener process with drift coefficient p is given by 
4 

Solved Problems 

RANDOM PROCESSES 

5.1. Let XI, X,, . . . be independent Bernoulli r.v.'s (Sec. 2.7A) with P(X,  = 1) = p and P(X, = 0) = 
q = 1 - p for all n. The collection of r.v.'s (X,, n 2 1) is a random process, and it is called a 
Bernoulli process. 

(a) Describe the Bernoulli process. 

(b) Construct a typical sample sequence of the Bernoulli process. 

(a) The Bernoulli process {X,, n 2 1) is a discrete-parameter, discrete-state process. The state space is 
E = (0, I) ,  and the index set is T = {1,2, . . .). 
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(b) A sample sequence of the Bernoulli process can be obtained by tossing a coin consecutively. If a head 
appears, we assign 1, and if a tail appears, we assign 0. Thus, for instance, 

n 1 2 3 4 5 6 7 8 9 1 0 . - .  
Coin tossing H T T H H H T H H T . . . 

xn 1 0 0 1 1 1 0 1 1 0 ~ ~ ~  

The sample sequence {x,} obtained above is plotted in Fig. 5-3. 

5.2. Let Z,, Z , ,  . . . be independent identically distributed r.v.'s with P(Zn = 1) = p and 
P(Z,  = - 1) = q = 1 - p for all n. Let 

I -  

and X, = 0. The collection of r.v.'s {X,, n > 0 )  is a random process, and it is called the simple 
random walk X(n) in one dimension. 

0  0 . .  0 .  

(a) Describe the simple random walk X(n). 
(b) Construct a typical sample sequence (or realization) of X(n). 

I A I I A I I )  - 
0 2 4 6 8 10 n 

Fig. 5-3 A sample function of a Bernoulli process. 

(a) The simple random walk X(n) is a discrete-parameter (or time), discrete-state random process. The 
state space is E = (. . . , -2, - 1,0, 1, 2,. . .), and the index parameter set is T = (0, 1,2, . . .). 

(b) A sample sequence x(n) of a simple random walk X(n) can be produced by tossing a coin every second 
and letting x(n) increase by unity if a head appears and decrease by unity if a tail appears. Thus, for 
instance, 

n 0 1 2  3 4 5 6 7 8 9 10 
Coin tossing H T T H H H T H H T - m e  

x(n) 0 1 0 - 1 0 1 2 1 2 3 2 - a .  

The sample sequence x(n) obtained above is plotted in Fig. 5-4. The simple random walk X(n) specified 
in this problem is said to be unrestricted because there are no bounds on the possible values of X, . 
The simple random walk process is often used in the following primitive gambling model: 

Toss a coin. If a head appears, you win one dollar; if a tail appears, you lose one dollar (see 
Prob. 5.38). 

5.3. Let (x,, n 2 0) be a simple random walk of Prob. 5.2. Now let the random process X(t) be 
defined by 

X( t )=Xn n < t < n + l  

(a) Describe X(t). 

(b) Construct a typical sample function of X(t). 

(a) The random process X(t) is a continuous-parameter (or time), discrete-state random process. The state 
space is E = {. . . , -2, - 1,0, 1,2,. . .}, and the index parameter set is T = (t, t 2 0). 

(b) A sample function x(t) of X(t) corresponding to Fig. 5-4 is shown in Fig. 5-5. 
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Fig. 5-4 A sample function of a random walk. 

Fig. 5-5 

Consider a random process X(t) defined by 

X(t) = Y cos o t  t 2 0 

where o is a constant and Y is a uniform r.v. over (0, 1). 

(a) Describe X(t). 

(b) Sketch a few typical sample functions of X(t). 

(a) The random process X(t) is a continuous-parameter (or time), continuous-state random process. The 
state space is E = {x: - 1 < x < 1) and the index parameter set is T = {t: t 2 0). 

(b) Three sample functions of X(t) are sketched in Fig. 5-6. 

Consider patients coming to a doctor's office at random points in time. Let X, denote the time 
(in hours) that the nth patient has to wait in the office before being admitted to see the doctor. 

(a) Describe the random process X(n) = {X,, n 2 1). 

(b) Construct a typical sample function of X(n). 

(a) The random process X(n) is a discrete-parameter, continuous-state random process. The state space is 
E = {x: x 2 0)' and the index parameter set is T = (1'2, . . .). 

(b) A sample function x(n) of X(n) is shown in Fig. 5-7. 

CHARACTERIZATION OF RANDOM PROCESSES 

5.6. Consider the Bernoulli process of Prob. 5.1. Determine the probability of occurrence of the 
sample sequence obtained in part (b) of Prob. 5.1. 



CHAP. 51 RANDOM PROCESSES 

Fig. 5-6 

Since X,'s are independent, we have 

P(X1 = xl, X2 = x,, . . . , X, = x,) = P(Xl = x,)P(X, = x,) . . P(X, = x,) (5.67) 

Thus, for the sample sequence of Fig. 5-3, 

P(xl  = 1, x2 = 0, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 0, xs = 1, x9 = 1, Xl0 = 0) = p6q4 

2 4 6 8 

Fig. 5-7 
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5.7. Consider the random process X( t )  of Prob. 5.4. Determine the pdf s of X(t )  at t = 0, n/4w, 4 2 w ,  
n/w. 

For t = 0, X(0) = Y cos 0  = Y. Thus, 

For t = rr/4o, X(n/4o) = Y cos n/4 = 1/$ Y. Thus, 

O < x < l / J Z  
otherwise 

For t = 4 2 0 ,  X(zl2o) = Y cos n/2 = 0; that is, X(n/20) = 0  irrespective of the value of Y. Thus, the 
pmf of X(o/2o) is 

1 - l < x < O  
0  otherwise 

5.8. Derive the first-order probability distribution of the simple random walk X(n) of Prob. 5.2. 

The first-order probability distribution of the simple random walk X(n) is given by 

where k is an integer. Note that P ( X o  = 0) = 1. We note that p,(k) = 0 if n < 1 k 1 because the simple random 
walk cannot get to level k in less than I k I steps. Thus, n 2 1 k I. 

Let Nnf and N,- be the r.v.'s denoting the numbers of + 1s and - Is, respectively, in the first n steps. 
Then 

Adding Eqs. (5.68) and (5.69), we get 

N n t  = $(n + X,) (5.70) 

Thus, X, = k if and only if N,+ = i ( n  + k). From Eq. (5.70), we note that 2N,+ = n + X, must be even. 
Thus, X, must be even if n is even, and X, must be odd if n is odd. We note that N,+ is a binomial r.v. with 
parameters (n, p). Thus, by Eq. (2.36), we obtain 

where n 2 ( k 1, and n and k are either both even or both odd. 

5.9. Consider the simple random walk X(n)  of Prob. 5.2. 

(a)  Find the probability that X(n)  = - 2 after four steps. 

(b) Verify the result of part (a)  by enumerating all possible sample sequences that lead to the 
value X(n)  = - 2 after four steps. 

(a) Setting k = -2 and n = 4 in Eq. (5.71), we obtain 
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Fig. 5-8 

(b) All possible sample functions that lead to the value X, = -2 after 4 steps are shown in Fig. 5-8. For 
each sample sequence, P(X, = -2) = pq3. There are only four sample functions that lead to the value 
X, = -- 2 after four steps. Thus P(X, = - 2) = 4pq3. 

5.10 Find the mean and variance of the simple random walk X(n) of Prob. 5.2. 

From Eq. (5.66), we have 

and X, = 0 and 2, (n = 1,2, . . .) are independent and identically distributed (iid) r.v.'s with 

From Eq. (5.72), we observe that 

Then, because the 2, are iid r.v.3 and Xo = 0, by Eqs. (4.108) and (4.1 12), we have 

Var(X,) = Var 1 Z, = n Var(Z,) ) 
Now 

Thus 

Hence. 

Note that if p = q = i, then 

5.11. Find the autocorrelation function R,(n, rn) of the simple random walk X(n)  of Prob. 5.2. 
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From Eq. (5.73), we can express X,  as 

where Z, = X ,  = 0 and Zi ( i  2 1 )  are iid r.v.3 with 

P(Zi = + 1 )  = p P(Z,= - l ) = q =  l - p  

i + k 

Using Eqs. (5.74) and (5.75), we obtain 

R,(n, m) = min(n, m) + [nm - min(n, m)](p - q)2 

m+(nm-m)(p-q)2 m < n  
Rx(n, m) = n + (nm - nKp - q)2 n < m 

Note that i f p  = q = 3, then 

Rx(n, m) = min(n, m) n, m > 0 

5.12. Consider the random process X( t )  of Prob. 5.4; that is, 

X ( t ) = Y c o s o t  t 2 O  

where cu is a constant and Y is a uniform r.v. over (0, 1). 

(a)  Find E[X(t )] .  

(b)  Find the autocorrelation function R,(t, s) of X(t). 

(c)  Find the autocovariance function Kx(t, s) of X(t). 

(a) From Eqs. (2.46) and (2.91), we have E(Y) = 4 and E(y2)  = 4. Thus 

E[X(t)] = E(Y cos o t )  = E(Y) cos a t  = 4 cos o t  

(b)  By Eq. (5.7), we have 

R,(t, s) = E[X(t)X(s)] = E(Y2 cos wt cos U S )  

= E ( Y ~ )  cos wt cos U S  = 3 cos o t  cos U S  

(c) By Eq. @.lo), we have 

Kx(t, s) = Rdt,  s) - ECX(t)lECX(s)l 
= 4 COS Ot COS U S  - 3 cos o t  cos o s  
= COS Ot COS U S  

5.13. Consider a discrete-parameter random process X(n) = { X , ,  n 2 1 )  where the X i s  are iid r.v.'s 
with common cdf F,(x), mean p, and variance a2. 

(a) Find the joint cdf of X(n). 

(b)  Find the mean of X(n). 

(c)  Find the autocorrelation function R d n ,  m) of X(n). 

( d )  Find the autocovariance function Kx(n, m) of X(n). 
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(a) Since the X,'s are iid r.v.'s with common cdf FX(x), the joint cdf of X(n) is given by 

(b) The mean of X(n) is 

px(n) = E(Xn) = p for all n 

(c) If n # m, by Eqs. (5.7) and (5.90), 

Rx(n, m) = E(Xn X,) = E(X,)E(X,) = p2 

If n = m, then by Eq. (2.31), 

Hence, 

(4 BY Eq. ( 5 . m  

CLASSIFICATION OF RANDOM PROCESSES 

5.14. Show that a random process which is stationary to order n is also stationary to all orders lower 
than n. 

Assume that Eq. (5.14) holds for some particular n;  that is, 

for any z. Letting x, -, a, we have [see Eq. (3.63)] 

and the process is stationary to order n - 1. Continuing the same procedure, we see that the process is 
stationary to all orders lower than n. 

5.15. Show that if {X(t), t E T )  is a strict-sense stationary random process, then it is also WSS. 

Since X(t) is strict-sense stationary, the first- and second-order distributions are invariant through time 
translation for all T E T. Then we have 

px(t) = E[X(t)] = E[X(t + T)] = px(t + t )  

and hence the mean function pdt) must be constant; that is, 

Similarly, we have 

E[X(t)] = p (constant) 

E[X(s)X(t)] = E[X(s + z)X(t + T)] 

so that the autocorrelation function would depend on the time points s and t only through the difference 
( t - s 1 .  Thus, X(t) is WSS. 

5.16. Let (x,, n 2 0) be a sequence of iid r.v.'s with mean 0 and variance 1. Show that (X,, n 2 O} is 
a WSS process. 

By Eq. (5.90), 

E(Xn) = 0 (constant) for all n 



and by Eq. (5.91), 
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which depends only on k. Thus, (X,} is a WSS process. 

5.17. Show that if a random process X( t )  is WSS, then it must also be covariance stationary. 

If X(t) is WSS, then 

E[X(t)] = p (constant) for all t 

Rx(t, t + r)] = Rx(7) for all t 

NOW Kx(t, t + T) = Cov[X(t)X(t + T)] = Rx(t, t + z) - E[X(t)]E[X(t + z)] 
= R,(z) - p2 

which indicates that Kx(t, t + z) depends only on z; thus, X(t) is covariance stationary. 

5.18. Consider a random process X(t )  defined by 

X ( t ) =  U cos cot + V sin cot -a < t  < KI 

where ~ r >  is constant and U and V are r.v.'s. 

(a) Show that the condition 

E(U) = E(V) = 0 

is necessary for X(t )  to be stationary. 

(b) Show that X( t )  is WSS if and only if U and V are uncorrelated with equal variance; that is, 

E(UV) = o E ( u ~ )  = E ( v ~ )  = c2 (5.95) 

(a) Now 

px(t) = E[X(t)] = E(U) cos wt + E(V) sin cot 

must be independent of t for X(t) to be stationary. This is possible only if px(t) = 0, that is, 
E(U) = E(V) = 0. 

(6) If X(t) is WSS, then 

But X(0) = U and X(n/2w) = V; thus 

E(U2) = E(V2) = ax2 = a2 

Using the above result, we obtain 

Rx(t, t + 7) = E[X(t)X(t + T)] 
= E((U cos wt + V sin ot)[U cos o(t + z) + V sin o(t  + z)]} 
= o2 cos oz + E(UV) sin(2wt + wz) (5.96) 

which will be a function of z only if E(UV) = 0. Conversely, if E(UV) = 0 and E(U2) = E(V2) = 02, 

then from the result of part (a) and Eq. (5.96), we have 

Hence, X(t) is WSS. 
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5.19. Consider a random process X(t )  defined by 

X(t )  = U cos t + V sin t  - m < t  < 

where U and V are independent r.v.'s, each of which assumes the values -2 and 1 with the 
probabilities 4 and 3, respectively. Show that X(t )  is WSS but not strict-sense stationary. 

We have 

Since U and V are independent, 

Thus, by the results of Prob. 5.18, X(t) is WSS. To see if X(t) is strict-sense stationary, we consider E[x3(t)]. 

E[X3(t)] = E[(U cos t + V sin t)3] 
= E(U3) cos3 t + 3E(U2V) cos2 t sin t + 3E(UV2) cos t sin2 t + E(V3) sin3 t 

Now 

Thus E[X3(t)J = --2(cos3 t + sin3 t) 

which is a function of t. From Eq, (5.16), we see that all the moments of a strict-sense stationary process 
must be independent of time. Thus X(t) is not strict-sense stationary. 

5.20. Consider a random process X(t )  defined by 

X(t )  = A cos(wt + 0) - co < t  < co 

where A and w are constants and 0 is a uniform r.v. over (-71, n). Show that X(t )  is WSS. 

From Eq. (2.44), we have 

(0 otherwise 

Then cos(wt + 0) dB = 0 

Setting s = t + .t in Eq. (5.7), we have 

= A' !. [cos wr + cos(2wt + 28 + wr)] d8 
27c -, 2 

=- 
2 

cos wz 

Since the mean of X(t) is a constant and the autocorrelation of X(t) is a function of time difference only, we 
conclude that X(t) is WSS. 

5.21. Let (X( t ) ,  t  2 0 )  be a random process with stationary independent increments, and assume that 
X(0) = 0. Show that 
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where p,  = E[X(l)]. 
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Then, for any t and s and using Eq. (4.108) and the property of the stationary independent increments, we 
have 

The only solution to the above functional equation is f(t) = ct, where c is a constant. Since c = f(1) = 
E[X(l)], we obtain 

5.22. Let {X(t), t 2 0) be a random process with stationary independent increments, and assume that 
X(0) = 0. Show that 

(4 Var[X(t)] = aI2t (5.1 01) 

(4 Var[X(t) - X(s)] = a, 2(t - s) t > s (5.1 02) 

where a12 = Var[X(l)]. 

(a) Let g(t) = Var[X(t)] = Var[X(t) - X(O)] 

Then, for any t and s and using Eq. (4.1 12) and the property of the stationary independent increments, 
we get 

which is the same functional equation as Eq. (5.100). Thus, g(t) = kt, where k is a constant. Since 
k = g(1) = Var[X(l)], we obtain 

(b) Let t > s. Then 

Thus, using Eq. (5.1 Ol), we obtain 

5.23. Let {X(t), t 2 0) be a random process with stationary independent increments, and assume that 
X(0) = 0. Show that 

where a I2  = Var[X(l)]. 
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By definition (2.28), 

Thus, Cov[X(t), X(s)] = +{Var[X(t)] + var[X(s)] - Var[X(t) - X(s)l) 

Using Eqs. (3.1 01) and (5.1 02), we obtain 

$a12[t + s - (t - s)] = a12s t > s 
KX(4 s) = $a12[t + s - (S - t)] = a12t s > t 

or 

where aI2 = Var[X(l)]. 

5.24. (a) Show that a simple random walk X(n) of Prob. 5.2 is a Markov chain. 

(b) Find its one-step transition probabilities. 

(a) From Eq. (5.73) (Prob. 5.10), X(n) = {X,, n 2 0) can be expressed as 

where Z, (n = 1,2, . . .) are iid r.v.'s with 

P (Z ,=k)=ak  ( 1  - 1  and a , = p  a - , = q = l - p  

Then X(n) = {X,, n 2 0) is a Markov chain, since 

P ( X , + l = i , + l ~ X , = O , X l = i  ,,..., X,=i,) 
= P(Z,+, + in = in+,  lXo = 0, X, = i,, ..., X, = in) 
= P(Z,+l = in+, - i n )  = ain+i-in = P(X,+, = in+, IX, = in) 

since Z,+ , is independent of X,, X,, . . . , X,. 

(b) The one-step transition probabilities are given by 

k = j + l  
pjk=P(X,=klX,-I  = j ) =  1 - p  k = j - 1  

otherwise 

which do not depend on n. Thus, a simple random walk X(n) is a homogeneous Markov chain. 

5.25. Show that for a Markov process X(t), the second-order distribution is suficient to characterize 

Let X(t) be a Markov process with the nth-order distribution 

Then, using the Markov property (5.26), we have 

Applying the above relation repeatedly for lower-order distribution, we can write 
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Hence, all finite-order distributions of a Markov process can be completely determined by the second-order 
distribution. 

5.26. Show that if a normal process is WSS, then it is also strict-sense stationary. 

By Eq. (5.29), a normal random process X(t) is completely characterized by the specification of the 
mean E[X(t)] and the covariance function Kx(t, s) of the process. Suppose that X(t) is WSS. Then, by Eqs. 
(5.21) and (5.22), Eq. (5.29) becomes 

Now we translate all of the time instants t,, t,, . . . , t, by the same amount z. The joint characteristic 
function of the new r.v.'s X(ti + z), i = 1, 2, . . . , n, is then 

which indicates that the joint characteristic function (and hence the corresponding joint pdf) is unaffected by 
a shift in the. time origin. Since this result holds for any n and any set of time instants (ti E T, i = 1,2, . . . , n), 
it follows that if a normal process is WSS, then it is also strict-sense stationary. 

5.27. Let (X(t), - oo < t < oo} be a zero-mean, stationary, normal process with the autocorrelation 
function 

(0 otherwise 
Let {X( t i ) ,  i = 1,2, . . . , n) be a sequence of n samples of the process taken at the time instants 

Find the mean and the variance of the sample mean 

Since X(t) is zero-mean and stationary, we have 

and Rx(ti, tk) = E[X(ti)X(tk)] = RX(tk - ti) = Rx 

Thus 
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By Eq. (5.107), 

Thus 
1 1 

Var(&) = - [n( l )  + 2(n - l ) (3)  + 03 = - (2n - 1 )  
n2 n 

DISCRETE-PARAMETER MARKOV CHAINS 

5.28. Show that if P is a Markov matrix, then Pn is also a Markov matrix for any positive integer n. 

Let 

Then by the property of a Markov matrix [Eq. (5.391,  we can write 

where a T = [ l  1 11 

Premultiplying both sides of Eq. (5.1 11) by P, we obtain 

P2a = Pa = a  

which indicates that P2 is also a Markov matrix. Repeated premultiplication by P yields 

which shows that P" is also a Markov matrix. 

5.29. Verify Eq. (5.39); that is, 

We verify Eq. (5.39) by induction. If the state of X, is i ,  state XI  will be j only if a transition is made 
from i to j. The events {X, = i, i = 1 ,  2, . . .} are mutually exclusive, and one of them must occur. Hence, by 
the law of total probability [Eq.  (1.44)], 

In terms of vectors and matrices, Eq. (5.1 12) can be expressed as 

~ ( 1 )  = P(0)P 

Thus, Eq. (5.39) is true for n = 1. Assume now that Eq. (5.39) is true for n = k;  that is, 

PW = p W k  
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Again, by the law of total probability, 

In terms of vectors and matrices, Eq. (5.1 14) can be expressed as 

which indicates that Eq. (5.39) is true for k + 1. Hence, we conclude that Eq. (5.39) is true for all n 2 1. 

5.30. Consider a two-state Markov chain with the transition probability matrix 

(a) Show that the n-step transition probability matrix Pn is given by 

(b)  Find Pn when n -, a. 

(a) From matrix analysis, the characteristic equation of P is 

Thus, the eigenvalues of P are 1, = 1 and A, = 1 - a - b. Then, using the spectral decomposition 
method, Pn can be expressed as 

Pn = AlnE, + A2"E2 (5.1 18) 

where El and E, are constituent matrices of P, given by 

1 1 
El =- [ p  - 1211 E, =- [f'  - 1111 (5.1 19) 

1 1  - 1 2  1 2  - A 1  

Substituting 1, = 1 and 1, = 1 - a - b in the above expressions, we obtain 

Thus, by Eq. (5.1 18), we obtain 

(b) I f O < a < l , O < b < l , t h e n O <  1 - a <  1 a n d I 1 - a - b I <  l.Solimn,,(l-a-b)"=Oand 

Note that a limiting matrix exists and has the same rows (see Prob. 5.47). 

5.31. An example of a two-state Markov chain is provided by a communication network consisting of 
the sequence (or cascade) of stages of binary communication channels shown in Fig. 5-9. Here X, 
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x,, - , = 0 I - a  x,, = 0 

Fig. 5-9 Binary communication network. 

denotes the digit leaving the nth stage of the channel and X ,  denotes the digit entering the first 
stage. The transition probability matrix of this communication network is often called the 
channel matrix and is given by Eq. (5.1 16); that is, 

Assume that a = 0.1 and b = 0.2, and the initial distribution is P(X, = 0) = P(X, = 1) = 0.5. 

(a) Find the distribution of X, . 
(b) Find the distribution of X, when n -, co. 

(a) The channel matrix of the communication network is 

and the initial distribution is 

By Eq. (5.39), the distribution of X ,  is given by 

Letting a = 0.1 and b = 0.2 in Eq. (5.1 17), we get 

Thus, the distribution of Xn is 
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that is, 
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2 (0.7)" 
P(X, = 0) = - - - 1 (0.7)" 

and P(X, = 1) = - + - 
3 6 3 6 

(b) Since lim,,,(0.7)" = 0, the distribution of X ,  when n -, oo is 

P(X, = 0) = 3 and P(X, = 1) = 3 

Verify the transitivity property of the Markov chain ; that is, if i -+ j and j -+ k, then i -+ k. 

By definition, the relations i + j and j -, k imply that there exist integers n and m such that pip) > 0 
and pi:") > 0. Then, by the Chapman-Kolmogorov equation (5.38), we have 

= 1 pir*)prk(") 2 pij(n)pjk(m) > 0 (5.1 22) 
r 

Therefore i -, k. 

Verify Eq. (5.42). 

If the Markov chain (X,} goes from state i to state j in m steps, the first step must take the chain from i 
to some state k, where k # j. Now after that first step to k, we have m - 1 steps left, and the chain must get 
to state j, from state k, on the last of those steps. That is, the first visit to state j must occur on the (m - 1)st 
step, starting now in state k. Thus we must have 

Show that in a finite-state Markov chain, not all states can be transient. 

Suppose that the states are 0, 1, . . . , m, and suppose that they are all transient. Then by definition, after 
a finite amount of time (say To), state 0 will never be visited; after a finite amount of time (say TI), state 1 
will never be visited; and so on. Thus, after a finite time T = max{T,, TI, . . . , T,), no state will be visited. 
But as the process must be in some state after time T, we have a contradiction. Thus, we conclude that not 
all states can be transient and at least one of the states must be recurrent. 

A state transition diagram of a finite-state Markov chain is a line diagram with a vertex corre- 
sponding to each state and a directed line between two vertices i and j if pij  > 0. In such a 
diagram, if one can move from i and j by a path following the arrows, then i + j. The diagram is 
useful to determine whether a finite-state Markov chain is irreducible or not, or to check for 
periodicities. Draw the state transition diagrams and classify the states of the Markov chains 
with the following transition probability matrices: 

(a) P = 0.5 1 

[:5 I., "1 
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Fig. 5-10 State transition diagram. 

(a)  The state transition diagram of the Markov chain with P of part (a)  is shown in Fig. 5 - lqa ) .  From Fig. 
5-10(a), it is seen that the Markov chain is irreducible and aperiodic. For instance, one can get back to 
state 0 in two steps by going from 0 to 1 to 0 .  However, one can also get back to state 0 in three steps 
by going from 0 to 1 to 2 to 0 .  Hence 0 is aperiodic. Similarly, we can see that states 1 and 2 are also 
aperiodic. 

(b)  The state transition diagram of the Markov chain with P of part (b) is shown in Fig. 5-10(b). From Fig. 
5-10(b), it is seen that the Markov chain is irreducible and periodic with period 3. 

(c)  The state transition diagram of the Markov chain with P of part (c )  is shown in Fig. 5-10(c). From Fig. 
5-10(c), it is seen that the Markov chain is not irreducible, since states 0 and 4 do not communicate, 
and state 1 is absorbing. 

5.36. Consider a Markov chain with state space (0, 1)  and transition probability matrix 

(a) Show that state 0 is recurrent. 
(b) Show that state 1 is transient. 

(a)  By Eqs. (5.41) and (5.42), we have 

Then, by Eqs. (5.43), 

Thus, by definition (5.44), state 0 is recurrent. 

(b)  Similarly, we have 

00 

and f l l = P ( T l  <mIXo=l)= f l 1 ( " ) = i + O + O + - . - = ~ < 1  

Thus, by definition (5.48), state 1 is transient. 
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5.37. Consider a Markov chain with state space (0, 1,2) and transition probability matrix 

Show that state 0 is periodic with period 2. 

The characteristic equation of P is given by 

Thus, by the Cayley-Hamilton theorem (in matrix analysis), we have P3 = P. Thus, for n 2 1, 

Therefore d(0) = gcd{n 2 1 : poo(") > 0) = gcd(2, 5, 6, . . .) = 2 

Thus, state 0 is periodic with period 2. 
Note that the state transition diagram corresponding to the given P is shown in Fig. 5-11. From Fig. 

5-11, it is clear that state 0 is periodic with period 2. 

Fig. 5-11 

5.38. Let two gamblers, A and B, initially have k dollars and m dollars, respectively. Suppose that at 
each round of their game, A wins one dollar from B with probability p and loses one dollar to B 
with probability q = 1 - p. Assume that A and B play until one of them has no money left. (This 
is known as the Gambler's Ruin problem.) Let X, be A's capital after round n, where n = 0, 1, 
2, . . . and X ,  = k. 

(a) Show that X(n) = (X,, n 2 0) is a Markov chain with absorbing states. 

(b) Find its transition probability matrix P. 
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(a) The total capital of the two players at all times is 

k + m = N  

Let Z, (n 2 1) be independent r.v.3 with P(Z, = 1) = p and P(Z, = - 1 )  = q = 1 - p for all n. 
Then 

X , = X , - ,  + Z ,  n =  1,2  ,... 

and X ,  = k. The game ends when X ,  = 0  or X ,  = N. Thus, by Probs. 5.2 and 5.24, X(n) = (X,, n 2 0 )  
is a Markov chain with state space E = (0, 1, 2, ..., N), where states 0  and N are absorbing states. The 
Markov chain X(n) is also known as a simple random walk with absorbing barriers. 

(b) Since 

p,,, = P ( X , + ,  = O J X ,  = 0)= 1 
pN.,, = P(X,+I = NIX, = N) = 1 

the transition probability matrix P is 

For example, when p = q = 3 and N = 4, 

5.39. Conside :r a hom ogen .eous Markov chain X(n) = { X , ,  n 2 0 )  with a finite state spa ce E = (0, 1, 
..., N } ,  of which A = (0 ,  1 ,  ..., m), m 2 1, is a set of absorbing states and B = {rn + 1 ,  ..., N }  is 
a set of nonabsorbing states. It is assumed that at least one of the absorbing states in A is 
accessible from any nonabsorbing states in B. Show that a.bsorption of X(n) in one or another of 
the absorbing states is certain. 

If X, E A, then there is nothing to prove, since X(n) is already absorbed. Let X, E B. By assumption, 
there is at least one state in A which is accessible from any state in B. Now assume that state k E A is 
accessible from j G B. Let njk (< co) be the smallest number n such that > 0 .  For a given state j, let nj 
be the largest of njk as k varies and n' be the largest of nj as j varies. After n' steps, no matter what the initial 
state of X(n), there is a probability p > 0  that X(n) is in an absorbing state. Therefore 

and 0  < 1 - p < 1. It follows by homogeneity and the Markov property that 
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Now since lirn,, ,(l - p), = 0, we have 

lim P { X n  E B)  = 0 or lim P { X n  E B = A )  = 1 
n+ co n+ a, 

which shows that absorption of X(n) in one or another of the absorption states is certain. 

5.40. Verify Eq. (5.50). 

Let X(n) = {X, , n 2 0 )  be a homogeneous Markov chain with a finite state space E = (0 ,  1 ,  . . . , N } ,  of 
which A  = (0 ,  1 ,  . . . , m),  m 2 1 ,  is a set of absorbing states and B  = {m + 1 ,  . . . , N )  is a set of nonabsorbing 
states. Let state k E B  at the first step go to i E E with probability p,, . Then 

ukj = P{Xn = j ( ~  A) I X, = k ( ~  B)) 

Now 

Then Eq. (5.1 24) becomes 

But pk j ,  k = m + 1, ..., N ;  j = 1 ,  ..., m, are the elements of R, whereaspki, k = m + 1, ..., N ;  i = rn + 1 ,  ..., 
N  are the elements of Q [see Eq. (5.49a)I. Hence, in matrix notation, Eq. (5.125) can be expressed as 

U = R + Q U  or ( I - Q ) U = R  (5.126) 

Premultiplying both sides of the second equation of Eq. (5.126) with ( I  - Q)-' ,  we obtain 

u = ( I - Q ) - ' R = @ R  

5.41. Consider a simple random walk X(n) with absorbing barriers at state 0 and state N = 3 (see 
Prob. 5.38). 

(a) Find the transition probability matrix P. 

(b)  Find the probabilities of absorption into states 0 and 3. 

(a) The transition probability matrix P is [Eq. (5.1 23)] 

(b) Rearranging the transition probability matrix P as [Eq. (5.49a)], 
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and by Eq. (5.49b), the matrices Q and R are given by 

Then 

and 

By Eq. (5.50), 

Thus, the probabilities of absorption into state 0 from states 1 and 2 are given, respectively, by 

U I O  = - q2 and u2,=- 
1 - P9 1 - P 9  

and the probabilities of absorption into state 3 from states 1 and 2 are given, respectively, by 

p2 U I 3  = - P and u,, = - 
1 - P 9  1 - P9 

Note that 

which confirm the proposition of Prob. 5.39. 

5.42. Consider the simple random walk X(n) with absorbing barriers at 0 and 3 (Prob. 5.41). Find the 
expected time (or steps) to absorption when X ,  = 1 and when X ,  = 2. 

The fundamental matrix @ of X(n) is [Eq. (5.1 27)] 

Let be the time to absorption when X, = i. Then by Eq. (5.51), we get 

5.43. Consider the gambler's game described in Prob. 5.38. What is the probability of A's losing all his 
money? 

Let P(k), k = 0, 1, 2, . . . , N, denote the probability that A loses all his money when his initial capital is 
k dollars. Equivalently, P(k) is the probability of absorption at state 0 when X, = k in the simple random 
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walk X(n) with absorbing barriers at states 0 and N. Now if 0 < k < N, then 

P(k)=pP(k+ l )+qP(k -  1) k = 1, 2, ..., N - 1 

where pP(k + 1) is the probability that A wins the first round and subsequently loses all his money and 
qP(k - 1) is the probability that A loses the first round and subsequently loses all his money. Rewriting Eq. 
(5.130), we have 

which is a second-order homogeneous linear constant-coefficient difference equation. Next, we have 

P(0) = 1 and P(N) = 0 (5.1 32) 

since if k = 0, absorption at 0 is a sure event, and if k = N, absorption at N has occurred and absorption at 
0 is impossible. Thus, finding P(k) reduces to solving Eq. (5.131) subject to the boundary conditions given 
by Eq. (5.132). Let P(k) = r". Then Eq. (5.131) becomes 

Setting k = 1 (and noting that p + q = I), we get 

from which we get r = 1 and r = q/p. Thus, 

where c ,  and c, are arbitrary constants. Now, by Eq. (5.132), 

Solving for c, and c, , we obtain 

Hence 

Note that if N 9 k, 

Setting r = q / p  in Eq. (5.134), we have 

Thus, whenp = q = 3, 

5.44. Show that Eq. (5.1 34) is consistent with Eq. (5.1 28). 
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Substituting k = 1 and N = 3 in Eq. (5.134), and noting that p + q = 1, we have 

Now from Eq. (5.1 28), we have 

5.45. Consider the simple random walk X(n) with state space E = (0, 1, 2, . . . , N), where 0 and N are 
absorbing states (Prob. 5.38). Let r.v. T, denote the time (or number of steps) to absorption of 
X(n) when X ,  = k, k = 0, 1 ,  . . . , N. Find E(T,). 

Let Y(k) = E(G). Clearly, if k = 0 or k = N, then absorption is immediate, and we have 

Y(0) = Y(N) = 0 

Let the probability that absorption takes m steps when X, = k be defined by 

P(k, m) = P(T, = m) m = 1, 2, . . . 

Then, we have (Fig. 5-12) 

a, Q) Q) 

and Y(k) = E(T,) = 2 mP(k, m) = p x mP(k + 1, m - 1) + q C mP(k - 1, m - 1) 
m =  1 m =  1 m= 1 

Setting m - 1 = i, we get 
al 

0 1 2 3  k n 

Fig. 5-12 Simple random walk with absorbing barriers. 
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Now by the result of Prob. 5.39, we see that absorption is certain; therefore ' 

Thus Y ( k )  = pY(k + 1 )  + qY(k - 1 )  + p + q 

Rewriting Eq. (5.1 do), we have 

Thus, finding P(k) reduces to solving Eq. (5.141) subject to the boundary conditions given by Eq. (5.137). 
Let the general solution of Eq. (5.141) be 

where &(k) is the homogeneous solution satisfying 

and Y,(k) is the particular solution satisfying 

1 4 1 
Yp(k + 1 )  - - Yp(k) + - Y,(k - 1 )  = - - 

P P P 

Let Y,(k) = ak, where a is a constant. Then Eq. (5.143) becomes 

1 4  1 (k  + 1)a - - ka + - (k  - 1)a = - - 
P P  P 

from which we get a = l / (q  - p) and 

k 
Y,(k) = - 

4 - P  
P Z 4 

Since Eq. (5.142) is the same as Eq. (5.131), by Eq. (5.133), we obtain 

where c, and c2 are arbitrary constants. Hence, the general solution of Eq. (5.141) is 

Now, by Eq. (5.137), 

Y(0)  = 0 - q  + c, = o  

Solving for c ,  and c,, we obtain 

Substituting these values in Eq. (5.146), we obtain (for p # q) 

When p = q = 4, we have 

Y ( k )  = E(T,)  = k(N - k )  p = q  = 4 
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5.46. Consider a Markov chain with two states and transition probability matrix 

(a) Find the stationary distribution fi of the chain. 
(b) Find limn,, Pn. 

(a) By definition (5.52), 

p P  = p 

which yields p, = p,. Since p ,  + p,  = 1, we obtain 

P = c3 41 

(b)  NOW pn = 

and lim,, , Pn does not exist. 

5.47. Consider a Markov chain with two states and transition probability matrix 

(a) Find the stationary distribution fi of the chain. 
(b) Find limn,, Pn. 

(c) Find limn,, Pn by first evaluating Pn. 

(a) By definition (5.52); we have 

p P  = p 

or 

which yields 

 PI f 3 ~ 2  = PI 

$ P I  + 4 ~ 2  = P 2  

Each of these equations is equivalent to p ,  = 2 p 2 .  Since p ,  + p,  = 1, we obtain 

(b)  Since the Markov chain is regular, by Eq. (5.53), we obtain 
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(c) Setting a = a and b = in Eq. (5.120) (Prob. 5.30), we get 

Since limn,, (b)" = 0 ,  we obtain 

lim Pn = lim 
n-co  

POISSON PROCESSES 

5.48. Let T, denote the arrival time of the nth customer at a service station. Let 2, denote the time 
interval between the arrival of the nth customer and the (n - 1)st customer; that is, 

Z,=T,-T,-,  n r l  (5.149) 

and To = 0. Let (X(t), t 2 0) be the counting process associated with {T, ,  n 2 0). Show that if 
X(t)  has stationary increments, then Z ,  , n = 1,2, . . . , are identically distributed r.v.3. 

We have 

By Eq.  (5.149), P ( Z , > z ) =  P ( T , -  T,-,  > z ) =  P ( T , >  T,-, + z )  

Suppose that the observed value of T,-,  is t,- ,. The event (T, > T,-, + z ( T,-, = tn-  ,) occurs if and only if 
X ( t )  does not change count during the time interval ( tn-  ,, t n - ,  + z) (Fig. 5-13). Thus, 

Since X ( t )  has stationary increments, the probability on the right-hand side of Eq. (5.150) is a function only 
of the time difference z .  Thus 

which shows that the conditional distribution function on the left-hand side of Eq. (5.1 51) is independent of 
the particular value of n  in this case, and hence we have 

F,,(z) = P(Zn < Z )  = 1 - P [ X ( Z )  = 01 (5.1 52) 

which shows that the cdf of Zn is independent of n. Thus we conclude that the 2,'s are identically distrib- 
uted r.v.'s. 

0 l (2 5- 1 5 t 

Fig. 5-13 

5.49. Show that Definition 5.6.2 implies Definition 5.6.1. 

Let pn(t) = P [ X ( t )  = n] .  Then, by condition 2 of Definition 5.6.2, we have 

p,(t + At) = P [ X ( t  + At) = 01 = P [ X ( t )  = 0 ,  X ( t  + At) - X(0)  = 01 
= P [ X ( t )  = 01 P [ X ( t  + At) - X ( t )  = 01 
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Now, by Eq. (5.59), we have 

Thus, 

P[X(t + At) - X(t) = 01 = 1 - r3. At + o(At) 

po(t + At) = po(t)[l - I At + o(At)] 

Letting At + 0, and by Eq. (5.58), we obtain 

~ b ( t )  = - IP&) 

Solving the above differential equation, we get 

po(t) = ke-" 

where k is an integration constant. Since po(0) = P[X(O) = 01 = 1 ,  we obtain 

po(t) = e - At 

Similarly, for n > 0, 

pn(t + At) = P[X(t + At) = n] 
= P[X(t)  = n, X(t + At) - X(0) = 01 

n 

+ P[X(t) = n - 1,  X(t + At) - X(0) = 1) + P[X(t) = n - k, X(t + A t )  - X(0) = k]  
k = 2  

Now, by condition 4 of Definition 5.6.2, the last term in the above expression is o(At). Thus, by conditions 2 
and 3 of Definition 5.6.2, we have 

p,(t + At) = pn(t)[l - 1 At + o(At)] + p,- ,(t)[I At + o(At)] + @t) 

Thus 

and letting At -, 0 yields 

P X ~ )  + I P , ~  = Lpn - 1 ( t )  

Multiplying both sides by e", we get 

Hence 
d 
- [eapn(t)] = IeAtpn - ,(t) 
dt  

Then by Eq. (5.154), we have 

or pl(t) = (At + ~ ) e - ' ~  

where c is an integration constant. Since p,(O) = P[X(O) = 1) = 0, we obtain 

p,(t) = Ate-*' 

To show that 

we use mathematical induction. Assume that it is true for n - 1 ; that is, 
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Substituting the above expression into Eq. (5.156), we have 

Integrating, we get 

Since pn(0) = 0, c, = 0,  and we obtain 

which is Eq. (5.55) of Definition 5.6.1. Thus we conclude that Definition 5.6.2 implies Definition 5.6.1. 

5.50. Verify Eq. (5.59). 

We note first that X(t)  can assume only nonnegative integer values; therefore, the same is true for the 
counting increment X( t  + At) - X(t). Thus, summing over all possible values of the increment, we get 

00 

1 P[X( t  + At) - X( t )  = k]  = P[X( t  + At) - X( t )  = 01 
k = 0 

+ P[X( t  + At) - X(t)  = 11 + P[X( t  + At) - X( t )  2 21 
= 1 

Substituting conditions 3 and 4 of Definition 5.6.2 into the above equation, we obtain 

P[X(t  + At) - X(t)  = 0 )  = 1 - A At + o(At) 

5.51. (a) Using the Poison probability distribution in Eq. (5.158), obtain an analytical expression for 
the correction term o(At) in the expression (condition 3 of Definition 5.6.2) 

P[X(t + At) - X(t) = 11 = A At + o(At) (5.1 59) 

(b) Show that this correction term does have the property of Eq. (5.58); that is, 

o(At) lim - - - 0 
at-o At 

(a) Since the Poisson process X(t)  has stationary increments, Eq. (5.159) can be rewritten as 

P[X(At)  = 11 = p,(At) = A At + o(At) (5.1 60) 

Using Eq. (5.1 58) [or Eq. (5.1 57)], we have 

pl(At) = L At e-at  = A At(1 + - 1) 
= L At + A At(eVAAt - 1 )  

Equating the above expression with Eq. (5.160), we get 

from which we obtain 

o(At) = A At(e-"t - 1) 

(b) From Eq. (5.161), we have 

- lim lim - - A A W U t  - 1) = lim * ( ( ? - a t  - 1) = 0 
At-0 At At-0 At At-0 

5.52. Find the autocorrelation function R,(t, s) and the autocovariance function K,(t, s) of a Poisson 
process X(t) with rate 1. 
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From Eqs. (5.56) and (5.57), 

E [X(t)] = I t  Var [X(t)] = I t  

Now, the Poisson process X(t) is a random process with stationary independent increments and X(0) = 0. 
Thus, by Eq. (5.103) (Prob. 5.23), we obtain 

Kx(t, s) = o12 min(t, s) = I min(t, s) (5.1 62) 

since a12 = Var[X(l)] = I .  Next, since E[X(t)]E[X(s)] = A2ts, by Eq. (5.10), we obtain 

Rx(t, s) = I min(t, s) + 12ts (5.1 63) 

Show that the time intervals between successive events (or interarrival times) in a Poisson 
process X(t)  with rate 1 are independent and identically distributed exponential r.v.'s with 
parameter A. 

Let Z,, Z,, . . . be the r.v.'s representing the lengths of interarrival times in the Poisson process X(t). 
First, notice that { Z ,  > t )  takes place if and only if no event of the Poisson process occur in the interval 
(0, t), and thus by Eq. (5.154), 

Hence Z, is an exponential r.v. with parameter I [Eq. (2.49)]. Let f,(t) be the pdf of Z,. Then we have 

which indicates that Z, is also an exponential r.v. with parameter I and is independent of Z,. Repeating the 
same argument, we conclude that Z,, Z,, . . . are iid exponential r.v.'s with parameter I. 

Let T,, denote the time of the nth event of a Poisson process X(t) with rate A. Show that T, is a 
gamma r.v. with parameters (n, 1). 

Clearly, 

where Z,, n = 1, 2, . . . , are the interarrival times defined by Eq. (5.149). From Prob. 5.53, we know that Z, 
are iid exponential r.v.'s with parameter I .  Now, using the result of Prob. 4.33, we see that T, is a gamma 
r.v. with parameters (n, A), and its pdf is given by [Eq. (2.76)] : 

The random process {T,, n 2 1) is often called an arrival process. 

Suppose t is not a point at which an event occurs in a Poisson process X(t) with rate A. Let W(t) 
be the r.v. representing the time until the next occurrence of an event. Show that the distribution 
of W(t) is independent of t and W(t) is an exponential r.v. with parameter A. 

Let s (0 2 s < t) be the point at which the last event [say the (n - 1)st event] occurred (Fig. 5-14). The 
event (W(t) > 2) is equivalent to the event 



RANDOM PROCESSES [CHAP 5 

0 t l  5 Y c 
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Fig. 5-14 

Thus, using Eq. (5.1 64), we have 

P [ W ( t ) > z ] = P ( Z , > t - s + z I Z , > t - s )  

- - P ( Z n > t - s + z )  - e-a(t-s+r) - e-Lr 
- 

P ( Z n > t - s )  e-a(t-s) - 

and P[W(t) 2 z] = 1 - ear (5.1 66) 

which indicates that W(t) is an exponential r.v. with parameter I and is independent oft.  Note that W(t) is 
often called a waiting time. 

5.56. Patients arrive at the doctor's office according to a Poisson process with rate 1 = & minute. The 
doctor will not see a patient until at least three patients are in the waiting room. 

Find the expected waiting time until the first patient is admitted to see the doctor. 
What is the probability that nobody is admitted to see the doctor in the first hour? 

Let T, denote the arrival time of the nth patient at the doctor's office. Then 

T , = Z 1  +z, +-+zn 
where Z,, n = 1,2, . . . , are iid exponential r.v.'s with parameter I = &. By Eqs. (4.108) and (2.50), 

The expected waiting time until the first patient is admitted to see the doctor is 

E(T,) = 3(10) = 30 minutes 

Let X(t) be the Poisson process with parameter I = &. The probability that nobody is admitted to see 
the doctor in the first hour is the same as the probability that at most two patients arrive in the first 60 
minutes. Thus, by Eq. (5.53, 

P[X(60) - X(0) I 21 = P[X(60) - X(0) = 01 + P[X(60) - X(0) = 11 + P[X(60) - X(0) = 21 
- - e-60/10 + e - 6 0 / ~ o  (rn) 60 + e-60/10+(g)2 

= e-6(1 + 6 + 18) x 0.062 

T, denote the time of the nth event of a Poisson process X( t )  with rate A. Suppose that one 
event has occurred in the interval (0, t).  Show that the conditional distribution of arrival time T, 
is uniform over (0, t). 

For z I t, 

which indicates that T,  is uniform over (0, t) [see Eq. (2.45)]. 
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5.58. Consider a Poisson process X(t) with rate A, and suppose that each time an event occurs, it is 
classified as either a type 1 or a type 2 event. Suppose further that the event is classified as a type 
1 event with probability p and a type 2 event with probability 1 - p. Let X,(t) and X,(t) denote 
the number of type 1 and type 2 events, respectively, occurring in (0, t). Show that (X, ( t ) ,  t 2 0) 
and {X,(t), t 2 0) are both Poisson processes with rates Ap and A(1 - p), respectively. Further- 
more, the two processes are independent. 

We have 

First we calculate the joint probability PIXl(t) = k, X2(t) = m]. 

Note that 

P[X,(t) = k, X2(t) = m 1 X(t) = n] = 0 when n # k + m 
Thus, using Eq. (5.1 58), we obtain 

Now, given that k + m events occurred, since each event has probability p of being a type 1 event and 
probability 1 - p of being a type 2 event, it follows that 

Thus, 

Then 

which indicates that X,(t) is a Poisson process with rate Ap. Similarly, we can obtain 

and so X2(t) is a Poisson process with rate A(l - p). Finally, from Eqs. (5.170), (5.171), and (5.169), we see 
that 

Hence, Xl(t) and X2(t) are independent. 



RANDOM PROCESSES [CHAP 5 

WIENER PROCESSES 

5.59. Let X,, . . . , X, be jointly normal r.v.'s. Show that the joint characteristic function of XI, . . . , X, 
is given by 

1 
Y,, ... xn(ol, . . . , on) = exp wi pi - - oi a, o, 

i =  1 2 i = l  k = l  

where pi = E(Xi) and aik = Cov(Xi, X,). 

Let Y = a l X ,  + a2X2 + - a .  + anXn 

By definition (4.50), the characteristic function of Y is 

Now, by the results of Prob. 4.55, we see that Y is a normal r.v. with mean and variance given by [Eqs. 
(4.108) and (4.1 1 I ) ]  

Thus, by Eq. (4.125), 

Equating Eqs. (5.176) and (5.1 73)  and setting o = 1, we get 

By replacing a,'s with mi's, we obtain Eq. (5.1 72); that is, 

1 "  " 
YXI ... X,(ol, . . . , an) = exp mi pi - - C C ai cok cik 

i =  1 2 i = l  ,'=I 

Let 

Then we can write 

and Eq. (5.1 72) can be expressed more compactly as 

5.60. Let XI, . . . , X ,  be jointly normal r.v.'s Let 

where aik (i = 1, . . ., m; j = 1, . . . , n) are constants. Show that Y,, . . ., Y, are also jointly normal 
r.v.'s. 
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Let X = 

Then Eq. (5.1 78) can be expressed as 

Y = A X  

Then the characteristic function for Y can be written as 

Since X is a normal random vector, by Eq. (5.1 77) we can write 

Thus 

Yx(ATm) = e ~ p [ j ( A ~ m ) ~ p ~  - 3(AT~)TKX(ATw)] 
= exp[ joTAp, - $wTAKx A T 4  

Yda , ,  . . . , a,) = exp(jwTpy - $mTKy a )  

where = K~ = A K ~  

Comparing Eqs. (5.1 77) and (5.180), we see that Eq. (5.180) is the characteristic function of a random vector 
Y. Hence, we conclude that Y,, . . . , Ym are also jointly normal r.v.'s 

Note that on the basis of the above result, we can say that a random process {X(t), t E T) is a normal 
process if every finite linear combination of the r.v.'s X(ti), ti E T is normally distributed. 

5.61. Show that a Wiener process X(t)  is a normal process. 

Consider an arbitrary linear combination 

where 0 5 t, < - - - < tn and ai are real constants. Now we write 
n 

aiX(ti) = (a, + . . . + a,)[X(tl) - X(O)] + (a, + . + a,)[X(t,) - X(tl)] 
i =  1 

Now from conditions 1 and 2 of Definition 5.7.1, the right-hand side of Eq. (5.183) is a linear combination 
of independent normal r.v.3. Thus, based on the result of Prob. 5.60, the left-hand side of Eq. (5.183) is also 
a normal r.v.; that is, every finite linear combination of the r.v.'s X(ti) is a normal r.v. Thus we conclude that 
the Wiener process X(t) is a normal process. 

5.62. A random process {X( t ) ,  t E T )  is .said to be continuous in probability if for every 8 > 0 and t E T ,  

lim P( ( X(t + h) - X(t)  I > E )  = 0 
h+O 

Show that a Wiener process X(t)  is continuous in probability. 

From Chebyshev inequality (2.97), we have 

Var[X(t + h) - X(t)] 
P( I X(t + h) - X(t) I > E }  I E > 0 

&2 



RANDOM PROCESSES [CHAP 5 

Since X(t) has stationary increments, we have 

Var[X(t + h) - X(t)] = Var[X(h)] = a2h 

in view of Eq. (5.63). Hence, 

a2h 
lim P{ I X(t + h) - X(t) I > E )  = lim - = 0 
h - 0  h - r O  gZ 

Thus the Wiener process X(t) is continuous in probability. 

Supplementary Problems 

5.63. Consider a random process X(n) = {X,, n 2 l) ,  where 

x,=z, +z2 + -+z, 
and Z, are iid r.v.'s with zero mean and variance a2. Is X(n) stationary? 

Ans. No. 

5.64. Consider a random process X(t) defined by 

X ( t )  = Y cos(ot + 0 )  

where Y and 0 are independent r.v.3 and are uniformly distributed over (-A, A) and (- K, K), respectively. 

(a) Find the mean of X(t). 

(b) Find the autocorrelation function Rx(t, s) of X(t). 

Ans. (a) E[X(t)] = 0; (b) Rx(t, s) = i~~ cos O(t - S) 

5.65. Suppose that a random process X(t) is wide-sense stationary with autocorrelation 

R,(t, t + z) = e-1'112 

(a) Find the second moment of the r.v. X(5). 

(b) Find the second moment of the r.v. X(5) - X(3). 

Ans. (a) E [ X ~ ( ~ ) ]  = 1 ; (b) E{[X(5) - x(3)I2) = 2(1 - e -  ') 

5.66. Consider a random process X(t) defined by 

X(t) = U cos t + (V + 1) sin t - co < t < cx, 

where U and V are independent r.v.'s for which 

E(U) = E(V) = 0 E(UZ) = E(V2) = 1 

(a) Find the autocovariance function Kx(t, s) of X(t). 
(b) Is X(t) WSS? 

Ans. (a) Kx(t, s) = cos(s - t); (b) No. 

5.67. Consider the random processes 

where A,, A,, a,, and w, are constants, and r.v.3 0 and 0 are independent and uniformly distributed over 
( - w, 4. 



CHAP. 51 RANDOM PROCESSES 

(a)  Find the cross-correlation function of Rxy(t ,  t + z) of X( t )  and Y(t) .  
(b) Repeat (a) if 63 = 4. 
Ans. (a) Rxy(t, t + z)] = 0 

A 0 4  
(b) Rxy(t ,  t + 2) =- 

2 
cos[(ol - u,) t  + o,z] 

Given a Markov chain { X ,  , n 2 01, find the joint pmf 

P(X ,  = i , ,  X1 = i , ,  ..., X ,  = in) 

Hint: Use Eq. (5.32). 

Let {X,, n 2 0 )  be a homogeneous Markov chain. Show that 

P ( X n + , = k l  ,..., X , + , = k , I X , = i  ,,..., X , = i ) = P ( X ,  = k ,  ,..., X , = k , I X , = i )  

Hint: Use the Markov property (5.27) and the homogeneity property. 

Verify Eq. (5.37). 

Hint: Write Eq.  (5.39) in terms of components. 

Find Pn for the following transition probability matrices: 

A certain product is made by two companies, A and B, that control the entire market. Currently, A and B 
have 60 percent and 40 percent, respectively, of the total market. Each year, A loses 5 of its market share to 
By while B loses 3 of its share to A. Find the relative proportion of the market that each hold after 2 years. 

Ans. A has 43.3 percent and B has 56.7 percent. 

Consider a Markov chain with state (0 ,  1, 2) and transition probability matrix 

Is state 0 periodic? 

Hint: Draw the state transition diagram. 

Ans. No. 

5.74. Verify Eq. (5.51). 
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Hint: Let = [ N j k ] ,  where Njk  is the number of times the state k ( ~  B) is occupied until absorption takes 
place when X(n) starts in state j ( ~  B). Then 7;. = ~ ~ = , + ,  N j k ;  calculate E(Njk). 

5.75. Consider a Markov chain with transition probability matrix 

Find the steady-state probabilities. 

Ans. p = [$ $ $1 

5.76. Let X ( t )  be a Poisson process with rate A. Find E [ X 2 ( t ) ] .  

Ans. At + A2t2 

5.77. Let X ( t )  be a Poisson process with rate 1 .  Find E ( [ X ( t )  - X(s)I2)  for t  > s. 

Hint: Use the independent stationary increments condition and the result of Prob. 5.76. 

Ans. A(t - s)  + A2(t - s ) ~  

5.78. Let X ( t )  be a Poisson process with rate A. Find 

P [ X ( t  - d ) =  k I X ( t ) = j ]  d > O  

j !  ( t i d ) k ( : $ - k  
Ans. 

k ! ( j  - k ) !  

5.79. Let T, denote the time of the nth event of a Poisson process with rate A. Find the variance of T,. 

Ans. n/A2 

5.80. Assume that customers arrive at a bank in accordance with a Poisson process with rate 1  = 6 per hour, and 
suppose that each customer is a man with probability 4 and a woman with probability 5.  Now suppose 
that 10 men arrived in the first 2 hours. How many woman would you expect to have arrived in the first 2 
hours? 

Ans. 4 

5.81. Let X,, . . . , X, be jointly normal r.v.'s. Let 

5 = X i  + ci i = 1 ,  ..., n  

where ci are constants. Show that Y,, . . . , Y,, are also jointly normal r.v.'s. 

Hint: See Prob. 5.60. 

5.82. Derive Eq. (5.63). 

Hint: Use condition ( 1 )  of a Wiener process and Eq. (5.1 02) of Prob. 5.22. 



Chapter 6 

Analysis and Processing of Random Processes 

6.1 INTRODUCTION 

In this chapter, we introduce the methods for analysis and processing of random processes. First, 
we introduce the definitions of stochastic continuity, stochastic derivatives, and stochastic integrals of 
random processes. Next, the notion of power spectral density is introduced. This concept enables us 
to study wide-sense stationary processes in the frequency domain and define a white noise process. 
The response of linear systems to random processes is then studied. Finally, orthogonal and spectral 
representations of random processes are presented. 

6.2 CONTINUITY, DIFFERENTIATION, INTEGRATION 

In this section, we shall consider only the continuous-time random processes. 

A. Stochastic Continuity: 

A random process X(t) is said to be continuous in mean square or mean square (m.s.) continuous if 

lim E{[X(t + E) - X(t)I2) = 0 
8 - 0  

(6.1) 

The random process X(t) is m.s. continuous if and only if its autocorrelation function is continuous 
(Prob. 6.1). 1fx(t)  is WSS, then it is mas. continuous if and only if its autocorrelation 
continuous at z = 0. If X(t) is m.s. continuous, then its mean is continuous; that is, 

lirn p,(t + E) = pX(t) 
E + O  

which can be written as 

lirn E[X(t + E)] = E[lim X(t + E)] 
8 - 0  &-'O 

function Rx(r) is 

(6.2) 

Hence, if X(t) is m.s. continuous, then we may interchange the ordering of the operations of expecta- 
tion and limiting. Note that m.s. continuity of X(t) does not imply that the sample functions of X(t) 
are continuous. For instance, the Poisson process is m.s. continuous (Prob. 6.46), but sample func- 
tions of the Poisson process have a countably infinite number of discontinuities (see Fig. 5-2). 

B. Stochastic Derivatives: 

A random process X(t) is said to have a m.s. derivative X1(t) if 

where 1.i.m. denotes limit in the mean (square); that is, 
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The m.s. derivative of X(t) exists if a2~, ( t ,  s)/& as exists (Prob. 6.6). If X(t) has the m.s. derivative 
X1(t), then its mean and autocorrelation function are given by 

Equation (6.6) indicates that the operations of differentiation and expectation may be interchanged. If 
X(t) is a normal random process for which the m.s. derivative X'(t) exists, then X'(t) is also a normal 
random process (Prob. 6.10). 

C. Stochastic Integrals: 

A m.s. integral of a random process X(t) is defined by 

whereto < t, < tand At, = t i+ l  - t i .  
The m.s. integral of X(t) exists if the following integral exists (Prob. 6.1 1): 

This implies that if X(t) is m.s. continuous, then its m.s. integral Y(t) exists (see Prob. 6.1). The mean 
and the autocorrelation function of Y(t) are given by 

Equation (6.1 0) indicates that the operations of integration and expectation may be interchanged. If 
X(t) is a normal random process, then its integral Y(t) is also a normal random process. This follows 
from the fact that Z, X(ti) Ati is a linear combination of the jointly normal r.v.'s. (see Prob. 5.60). 

6.3 POWER SPECTRAL DENSITIES 

In this section we assume that all random processes are WSS. 

A. Autocorrelation Functions: 

The autocorrelation function of a continuous-time random process X(t) is defined as [Eq. (5.7)] 

Properties of RAT): 
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Property 3 [Eq. (6.15)J is easily obtained by setting z = 0 in Eq. (6.12). If we assume that X(t )  is a 
voltage waveform across a 1-Q resistor, then E[X2( t )]  is the average value of power delivered to the 
1-Q resistor by X(t). Thus, E [ x ~ ( ~ ) ]  is often called the average power of X(t). Properties 1 and 2 are 
verified in Prob. 6.13. 

In case of a discrete-time random process X(n), the autocorrelation function of X(n) is defined by 

Rx(k) = E[X(n)X(n + k)] (6.1 6 )  

Various properties of Rx(k) similar to those of RX(z)  can be obtained by replacing z by k in Eqs. (6.13) 
to (6.15). 

B. Cross-Correlation Functions 

The cross-correlation function of two continuous-time jointly WSS random processes X( t )  and 
Y ( t )  is defined by 

Properties of R A T )  : 

These properties are verified in Prob. 6.14. Two processes X(t )  and Y( t )  are called (mutually) orthog- 
onal if 

RXy(z)  = 0 for all z (6.21) 

Similarly, the cross-correlation function of two discrete-time jointly WSS random processes X(n) and 
Y(n)  is defined by 

Rxy(k) = E[X(n)  Y ( n  + k)] (6.22) 

and various properties of Rxy(k) similar to those of RXy(z) can be obtained by replacing z by k in Eqs. 
(6.18) to (6.20). 

C. Power Spectral Density: 

The power spectral density (or power spectrum) Sx (o )  of a continuous-time random process X(t )  is 
defined as the Fourier transform of RX(z):  

Thus, taking the inverse Fourier transform of Sx(o),  we obtain 

Equations (6.23) and (6.24) are known as the Wiener-Khinchin relations. 

Properties of SAo) : 

1. SAo) is real and Sx(o )  2 0. 
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Similarly, the power spectral density Sx(Q) of a discrete-time random process X(n) is defined as the 
Fourier transform of Rx(k): 

Thus, taking the inverse Fourier transform of Sx(Q), we obtain 

Properties of S#): 

1. Sx(Q + 271) = Sx(R) 
2. Sx(Q) is real and Sx(Q) 2 0. 
3. sx( - n )  = s,(q 

Note that property 1 [Eq. (6.30)] follows from the fact that e-jm is periodic with period 271. Hence it 
is sufficient to define SAR) only in the range (-n, n). 

D. Cross Power Spectral Densities: 

The cross power spectral density (or cross power spectrum) Sxy(w) of two continuous-time random 
processes X(t) and Y(t) is defined as the Fourier transform of RXy(z): 

Thus, taking the inverse Fourier transform of Sxdo), we get 

Properties of S,(o) : 

Unlike Sx(o), which is a real-valued function of o ,  Sxy(o), in general, is a complex-valued func- 
tion. 

Similarly, the cross power spectral density S,dQ) of two discrete-time random processes X(n) and 
Y(n) is defined as the Fourier transform of Rxy(k): 

Thus, taking the inverse Fourier transform of Sxy(R), we get 
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Properties of SAC&) : 

Unlike S,(SZ), which is a real-valued function of w, Sxy(Q), in general, is a complex-valued func- 
tion. 

6.4 WHITE NOISE 

A continuous-time white noise process, W(t), is a WSS zero-mean continuous-time random 
process whose autocorrelation function is given by 

where 6(2) is a unit impulse function (or Dirac 6 function) defined by 

where @(r) is any function continuous at z = 0. Taking the Fourier transform of Eq. (6.43), we obtain 

which indicates that X(t) has a constant power spectral density (hence the name white noise). Note 
that the average power of W(t) is not finite. 

Similarly, a WSS zero-mean discrete-time random process W(n) is called a discrete-time white noise 
if its autocorrelation function is given by 

where S(k) is a unit impulse sequence (or unit sample sequence) defined by 

Taking the Fourier transform of Eq. (6.46), we obtain 

Again the power spectral density of W(n) is a constant. Note that Sw(R + 2n) = Sw(Q) and the 
average power of W(n) is o2 = Var[W(n)], which is finite. 

6.5 RESPONSE OF LINEAR SYSTEMS TO RANDOM INPUTS 

A. Linear Systems: 

A system is a mathematical model of a physical process that relates the input (or excitation) 
signal x to the output (or response) signal y. Then the system is viewed as a transformation (or 
mapping) of x into y. This transformation is represented by the operator T as (Fig. 6-1) 

If x and y are continuous-time signals, then the system is called a continuous-time system, and if x 
and y are discrete-time signals, then the system is called a discrete-time system. If the operator T is a 
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System - 4 T I - b  
Fig. 6-1 

linear operator satisfying 

T{xl + x,} = Tx, + Tx, = y ,  + y2 (Additivity) 
T{ax} = aTx = ay (Homogeneity) 

where a is a scalar number, then the system represented by T is called a linear system. A system is 
called time-invariant if a time shift in the input signal causes the same time shift in the output signal. 
Thus, for a continuous-time system, 

for any value of t o ,  and for a discrete-time system, 

for any integer no. For a continuous-time linear time-invariant (LTI) system, Eq. (6.49) can be 
expressed as 

is known as the impulse response of a continuous-time LTI system. The right-hand side of Eq. (6.50) is 
commonly called the convolution integral of h(t) and x(t), denoted by h(t) * x(t). For a discrete-time 
LTI system, Eq. (6.49) can be expressed as 

where 

is known as the impulse response (or unit sample response) of a discrete-time LTI system. The right- 
hand side of Eq. (6.52) is commonly called the convolution sum of h(n) and x(n), denoted by h(n) * x(n). 

B. Response of a Continuous-Time Linear System to Random Input: 

When the input to a continuous-time linear system represented by Eq. (6.49) is a random process 
{X(t), t E T,}, then the output will also be a random process {Y(t), t E T y ) ;  that is, 

For any input sample function xi(t), the corresponding output sample function is 

If the system is LTI, then by Eq. (6.50), we can write 

Y(t) = J::(l)X(t - 4 d i  

Note that Eq. (6.56) is a stochastic integral. Then 
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The autocorrelation function of Y(t) is given by (Prob. 6.24) 

If the input X(t) is WSS, then from Eq. (6.57), 

where H(0) = H(o)I,=, and H(o) is the frequency response of the system defined by the Fourier 
transform of h(t); that is, 

The autocorrelation function of Y(t) is, from Eq. (6.58), 

Setting s = t + z, we get 

From Eqs. (6.59) and (6.62), we see that the output Y(t) is also WSS. Taking the Fourier transform of 
Eq. (6.62), the power spectral density of Y(t) is given by (Prob. 6.25) 

Thus, we obtain the important result that the power spectral density of the output is the product of the 
power spectral density of the input and the magnitude squared of the frequency response of the system. 

When the autocorrelation function of the output Ry(z) is desired, it is easier to determine the power 
spectral density S,(o) and then evaluate the inverse Fourier transform (Prob. 6.26). Thus, 

By Eq. (6.15), the average power in the output Y(t) is 

C. Response of a Discrete-Time Linear System to Random Input: 

When the input to a discrete-time LTI system is a discrete-time random process X(n), then by Eq. 
(6.52), the output Y(n) is 

The autocorrelation function of Y(n) is given by 
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When X(n) is WSS, then from Eq. (6.66), 

where H(0) = H(Q)I,=, and H(Q) is the frequency response of the system defined by the Fourier 
transform of h(n) : 

The autocorrelation function of Y(n) is, from Eq. (6.67), 

Setting m = n + k, we get 

From Eqs. (6.68) and (6.71), we see that the output Y(n) is also WSS. Taking the Fourier transform of 
Eq. (6.71), the power spectral density of Y(n) is given by (Prob. 6.28) 

which is the same as Eq. (6.63). 

6.6 FOURIER SERIES AND KARHUNEN-LOEVE EXPANSIONS 

A. Stochastic Periodicity : 

A continuous-time random process X(t) is said to be m.s. periodic with period T if 

E([X(t + T) - X(t)I2) = 0 (6.73) 

If X(t) is WSS, then X(t) is m.s. periodic if and only if its autocorrelation function is periodic with 
period T; that is, 

RX(z + T) = RX(z) (6.74) 

B. Fourier Series : 

Let X(t) be a WSS random process with periodic RX(z) having period T. Expanding RX(z) into a 
Fourier series, we obtain 

where 

Let T(t) be expressed as 
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where X, are r.v.'s given by 

Note that, in general, Xn are complex-valued r.v.'s. For complex-valued r.v.'s, the correlation between 
two r.v.'s X and Y is defined by E(XY*). Then 2(t) is called the m.s. Fourier series of X(t) such that 
(Prob. 6.34) 

Furthermore, we have (Prob. 6.33) 

C. Karhunen-Ldve Expansion 

Consider a random process X(t) which is not periodic. Let *(t) be expressed as 

where a set of functions {+,(t)) is orthonormal on an interval (0, T) such that 

and X, are r.v.'s given by 

Then %(t) is called the Karhunen-Lokve expansion of X(t) such that (Prob. 6.38) 

Let Rdt, s) be the autocorrelation function of X(t), and consider the following integral equation : 

where A, and 4,(t) are called the eigenvalues and the corresponding eigenfunctions of the integral 
equation (6.86). It is known from the theory of integral equations that if RJt, s) is continuous, then 
4,(t) of Eq. (6.86) are orthonormal as in Eq. (6.83), and they satisfy the following identity: 

which is known as Mercer's theorem. 
With the above results, we can show that Eq. (6.85) is satisfied and the coeficient X, are orthog- 

onal r.v.'s (Prob. 6.37); that is, 
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6.7 FOURIER TRANSFORM OF RANDOM PROCESSES 

A. Continuous-Time Random Processes: 

The Fourier transform of a continuous-time random process X(t) is a random process x(.(o) given 
by 

X(W) = J_bX(ne-jmt dt (6.89) 

which is the stochastic integral, and the integral is interpreted as an m.s. limit; that is, 

Note that g(w) is a complex random process. Similarly, the inverse Fourier transform 

is also a stochastic integral and should also be interpreted in the m.s. sense. The properties of 
continuous-time Fourier transforms (Appendix B) also hold for random processes (or random 
signals). For instance, if Y(t) is the output of a continuous-time LTI system with input X(t), then 

where H(o) is the frequency response of the system. 
Let b d q ,  03 be the two-dimensional Fourier transform of Rx(t, s); that is, 

Then the autocorrelation function of z(w) is given by (Prob. 6.41) 

If X(t) is a WSS random process with autocorrelation function Rx(t, s) = Rx(t - s) = R,(z) and power 
spectral density SAW), then (Prob. 6.42) 

Equation (6.99) shows that the Fourier transform of a WSS random process is nonstationary white 
noise. 

B. Discrete-Time Random Processes: 

The Fourier transform of a discrete-time random process X(n) is a random process X(0) given by 
(in m.s. sense) 
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Similarly, the inverse Fourier transform 

should also be interpreted in the m.s. sense. Note that z ( Q  + 2n) = z(Q) and the properties of 
discrete-time Fourier transforms (Appendix B) also hold for discrete-time random signals. For 
instance, if Y(n) is the output of a discrete-time LTI system with input X(n), then 

where H(i2) is the frequency response of the system. 
Let &al, Q,) be the two-dimensional Fourier transform of Rx(n, m): 

Then the autocorrelation function of R(Q) is given by (Prob. 6.44) 

If X(n) is a WSS random process with autocorrelation function Rx(n, m) = R,(n - m) = R,(k) and 
power spectral density Sx(Q), then 

Equation (6.106) shows that the Fourier transform of a discrete-time WSS random process is nonsta- 
tionary white noise. 

Solved Problems 

CONTINUITY, DIFFERENTIATION, INTEGRATION 

6.1. Show that the random process X(t) is m.s. continuous if and only if its autocorrelation function 
Rx(t, s) is continuous. 

We can write 

Thus, if Rx(t, s) is continuous, then 

lim E{[X(t + E) - X(t)I2) = lim {Rx(t + E, t + E) - 2Rx(t + E, t) + Rx(t, t)} = 0 
E-0  & + O  

and X(t) is m-s. continuous. Next, consider 

Rx(t + El, t + E2) - RX(t, t) = E{[X(t + El) - X(t)][X(t + E2) - X(t)]) 

+ E([X(t + 8,) - X(t)lX(t)) + E([X(t + 6,) - X(t)]X(t)) 

Applying Cauchy-Schwarz inequality (3.97) (Prob. 3.33, we obtain 

Rx(t + El, t + E2) - Rx(t, t) 2 (E{[X(t + E,) - X(t)12) E{[x(~ + c2) - ~ ( t ) ] ~ ) ) " ~  
+ iE(Cx(t + 8,) - ~ ( t ) ] ~ ) ~ [ x ~ ( t ) ] ) ~ ~ ~  + (E{[x(~ + - ~ ( t ) ] ~ } ~ [ x ~ ( t ) ] ) l / ~  

Thus if X(t) is m.s. continuous, then by Eq. (6.1) we have 

lim Rx(t + el, t + E2) - Rx(t, t )  = o 
E l .  E Z - ' ~  

that is, R,(t, s) is continuous. This completes the proof. 
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6.2. Show that a WSS random process X(t) is m.s. continuous if and only if its autocorrelation 
function R,(z) is continous at z = 0. 

If X(t) is WSS, then Eq. (6.1 07) becomes 

Thus if RX(r) is continuous at z = 0, that is, 

lirn [RX(&) - RX(0)] = 0 
& + O  

then lirn E([X(t + E) - X(t)I2) = 0 
&+O 

that is, X(t) is m.s. continuous. Similarly, we can show that if X(t) is m.s. continuous, then by Eq. (6.108), 
RAT) is continuous at z = 0. 

6.3. Show that if X(t) is m.s. continuous, then its mean is continuous; that is, 

lirn px(t + E )  = pX(t) 
c-+o 

We have 

Var[X(t + E) - X(t)] = E([X(t + E) - X(t)I2} - (E[X(t + E) - ~( t ) ] ) '  2 0 

Thus E([X(t + E )  - X(t)I2) 2 (E[X(t + E) - X(t)])2 = [px(t + E )  - px(t)12 

If X(t) is m.s. continuous, then as E -+ 0, the left-hand side of the above expression approaches zero. Thus 

lirn [px(t + E )  - px(t)] = 0 or lirn [p,(t + E )  = pdt) 
c - 0  E + O  

6.4. Show that the Wiener process X(t) is m.s. continuous. 

From Eq. (5.64), the autocorrelation function of the Wiener process X(t) is given by 

Thus, we have 

Since lim max(cl , c2) = 0 
E l .  6 2 - 0  

RAt, s) is continuous. Hence the Wiener process X(t) is m.s. continuous. 

6.5. Show that every m.s. continuous random process is continuous in probability. 

A random process X(t) is continuous in probability if, for every t and a > 0 (see Prob. 5.62), 

lirn P{  I X(t + E) - X(t) I > a) = 0 
e+O 

Applying Chebyshev inequality (2.97) (Prob. 2.37), we have 

Now, if X(t) is m.s. continuous, then the right-hand side goes to 0 as E -* 0, which implies that the left-hand 
side must also go to 0 as E -+ 0. Thus, we have proved that if X(t) is m.s. continuous, then it is also 
continuous in probability. 

6.6. Show that a random process X(t) has a m.s. derivative X'(t) if a2~, ( t ,  s)/at as exists at s = t. 
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Let 

By the Cauchy criterion (see the note at the end of this solution), the m.s. derivative X1(t)  exists if 

lim E { [ Y ( t ;  E , )  - Y ( t ;  & , ) I 2 )  = 0 
E l ,  & 2 + 0  

Thus lim E [ Y ( ~ ;  c2)Y( t ;  E , ) ]  = 
E l ,  ~2 -0 

provided d2Rx(t ,  s)/at as exists at s = t. Setting E ,  = E ,  in Eq. (6.1 12), we get 

lim E [ Y 2 ( t ;  E , ) ]  = lim E[Y2( t ;  &,)I = R2 
E l  -0 ~ 2 - 0  

and by Eq. (6.1 1  I ) ,  we obtain 

Thus, we conclude that X( t )  has a m.s. derivative X1( t )  if a2Rx(t ,  s)/at ds exists at s = t .  If X( t )  is WSS, then 
the above conclusion is equivalent to the existence of a2 RX(z)/Z22 at 7 = 0. 

Note: In real analysis, a function g(&) of some parameter e converges to a finite value if 

This is known as the Cauchy criterion. 

6.7. Suppose a random process X ( t )  has a m.s. derivative X'(t). 

(a)  Find E[X'( t ) ] .  

(b)  Find the cross-correlation function of X ( t )  and X1(t) .  
( c )  Find the autocorrelation function of X1(t) .  

(u) We have 

= lim E 
c + O  I 
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(b) From Eq. (6.1 7), the cross-correlation function of X(t)  and X1(t) is 

(c) Using Eq. (6.1 1 3 ,  the autocorrelation function of X'(t) is 

6.8. If X(t )  is a WSS random process and has a m.s. derivative X'(t), then show that 

For a WSS process X(t), Rx(t, s) = RX(s - t). Thus, setting s - t = z in Eq. (6.115) of Prob. 6.7, we 
obtain aRAs - t)/as = dRX(z)/dz and 

Now aRx(s - t)/at = -dRx(z)/dz. Thus, a2Rx(s - t)/at as = - d 2 ~ , ( z ) / d r 2 ,  and by Eq. (6.116) of Prob, 
6.7, we have 

6.9. Show that the Wiener process X(t )  does not have a m.s. derivative. 

From Eq. (5.64), the autocorrelation function of the Wiener process X(t)  is given by 

Thus 

where u(t - s) is a unit step function defined by 

and it is not continuous at s = t (Fig. 6-2). Thus d2R&, s)/& as does not exist at s = t, and the Wiener 
process X(t) does not have a m.s. derivative. 
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0 s t 

Fig. 6-2 Shifted unit step function. 

Note that although a m.s. derivative does not exist for the Wiener process, we can define a generalized 
derivative of the Wiener process (see Prob. 6.20). 

6.10. Show that if X(t)  is a normal random process for which the m.s. derivative Xt(t)  exists, then Xf( t )  
is also a normal random process. 

Let X(t) be a normal random process. Now consider 

Then, n r.v.'s Y,(t,), I&), . . . , Y,(t,,) are given by a linear transformation of the jointly normal r.v.'s X(t,), 
X(t, + E), X(t2), X(t2 + E),  . . . , X(t,), X(tn + E). It then follows by the result of Prob. 5.60 that Y,(t,), Y,(t,), 
. . . , Y,(tn) are jointly normal r.v.'s, and hence Y,(t) is a normal random process. Thus, we conclude that the 
m.s. derivative X'(t), which is the limit of Y,(t) as E + 0, is also a normal random process, since m.s. con- 
vergence implies convergence in probability (see Prob. 6.5). 

6.11. Show that the m.s. integral of a random process X(t)  exists if the following integral exists: 

A m.s. integral of X(t) is defined by [Eq. (641  

Again using the Cauchy criterion, the m.s. integral Y(t) of X(t) exists if 

As in the case of the m.s. derivative [Eq. (6.1 1 I)], expanding the square, we obtain 

E 1 X(ti) Ati - C X(tk) At, {[ i k 1'1 

and Eq. (6.1 20') holds if 

lim 1 R,(ti, t,) Ati Atk 
Ati, Atr+ 0 i k 
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exists, or, equivalently, 

exists. 

6.12. Let X(t)  be the Wiener process with parameter a2. Let 

(a) Find the mean and the variance of Y(t) .  
(b) Find the autocorrelation function of Y(t). 

(a) By assumption 3 of the Wiener process (Sec. 5.7), that is, E[X(t)] = 0, we have 

Then 

E[Y(t)] = E[[X(a) da] = [E[X(a)] da = 0 

By Eq. (5.64), R,(a, f i )  = a2 min(a, f l ) ;  thus, referring to Fig. 6-3, we obtain 

(b) Let t > s 2 0 and write 

Then, for t > s 2 0, 

Fig. 6-3 
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Now by Eq. (6.1 22), 

Using assumptions 1,3, and 4 of the Wiener process (Sec. 5.7), and since s I a I t, we have 

Finally, for 0 I B 5 s, 

Substituting these results into Eq. (6.1 23), we get 

Since R,(t, s) = RY(s, t), we obtain 

POWER SPECTRAL DENSITY 

6.13. Verify Eqs. (6.1 3) and (6.1 4). 

From Eq. (6.12), 

Setting t + T = s, we get 

Next, we have 

E{[X(t) + X(t + z)I2) 2 0 

Expanding the square, we have 

or 

Thus 

E[X2(t) + 2X(t)X(t + z) + x2(r  + T)] 2 0 

~ [ x ~ ( t ) ]  + 2E[X(t)X(t + t)] + ~[Jr:'(t + T)] r 0 
2Rx(0) +_ 2RX(z) 2 0 

from which we obtain Eq. (6.14); that is, 

6.14. Verify Eqs. (6.18) to (6.20). 
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By Eq. (6.1 7), 

R x y ( - r )  = E[X( t )Y ( t  - T ) ]  

Setting t  - z  = s, we get 

Rxu(-r )  = E [ X ( s  + ~ ) Y ( s ) ]  = E[Y( s )X ( s  + T)]  = RYx(z)  

Next, from the Cauchy-Schwarz inequality, Eq. (3.97) (Prob. 3.35), it follows that 

{ E [ X ( t ) Y ( t  + T ) ] } ~  5 E [ X 2 ( t ) ] ~ [ Y 2 ( t  + T)]  

or CRx Az)l  5 Rx(O)R AO) 

from which we obtain Eq. (6.19); that is, 

I RXYW I 5 JKKKiW 
Now E { [ X ( t )  - Y ( t  + z ) I2)  2 0 

Expanding the square, we have 

E [ x ~ ( ~ )  - 2 X ( t )  Y ( t  + z) + y2( t  + z)] 2 0 

or E[X2( t )]  - 2E[X( t )Y ( t  + 2)] + E [ Y 2 ( t  + z)] 2 0 

Thus Rx(0) - 2Rxy(z )  + Ry(0) 2 0 

from which we obtain Eq. (6.20); that is, 

RXY(4 l 3CRx(O) + RY(0)I 

6.15. Two random processes X(t )  and Y( t )  are given by 

where A and o are constants and O is a uniform r.v. over (0, 274. Find the cross-correlation 
function of X(t )  and Y(t)  and verify Eq. (6.18). 

From Eq. (6.1 7), the cross-correlation function of X( t )  and Y ( t )  is 

A2 
-- - sin o z  = RXy( z )  

2 

Similarly, 

A2 = -- 
2 

sin w r  = RYx(z)  

From Eqs. (6.1 25) and (6.1 26), we see that 

A2 A2 
Rxy(-2) = - sin a ( - r )  = - - sin o z  = R,,(T) 

2 2  

which verifies Eq. (6.1 8). 

6.16. Show that the power spectrum of a (real) random process X( t )  is real and verify Eq. (6.26). 
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From Eq. (6.23) and expanding the exponential, we have 

Since R,(-z) = RX(z), Rx(z) cos wz is an even function of z  and RX(z) sin o z  is an odd function of z,  and 
hence the imaginary term in Eq. (6.127) vanishes and we obtain 

(6.2 28) 

which indicates that Sx(o)  is real. Since cos ( -or )  = cos(oz), it follows that 

which indicates that the power spectrum of a real random process X(t) is an even function of frequency. 

6.17. Consider the random process 

where X(t)  is a Poisson process with rate A. Thus Y(t )  starts at Y(0) = 1 and switches back and 
forth from + 1 to - 1 at random Poisson times q ,  as shown in Fig. 6-4. The process Y(t )  is 
known as the semirandom telegraph signal because its initial value Y(0) = 1 is not random. 

(a) Find the mean of Y(t) .  
(b) Find the autocorrelation function of Y(t). 

(a) We have 

1 if X(t) is even 
Y( t )  = 

- 1 if X(t)  is odd 

Thus, using Eq. (5.59, we have 

P[Y(t)  = 11 = P[X(t)  = even integer] 

P[Y(t)  = - 11 = P[X(t)  = odd integer] 

Fig. 6-4 Semirandom telegraph signal. 
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Hence py(t) = E[Y(t)] = (1)P[Y(t) = 11 + (- I)P[Y(t) = - 11 
= e-*'(cash I t  - sinh I t )  = ePzAt  

(b) Similarly, since Y(t)Y(t + z) = 1 if there are an even number of events in (t,  t + z) for z > 0 and 
Y(t)Y(t + z) = - 1 if there are an odd number of events, then for t  > 0 and t  + z > 0, 

( A d n  = ( 1 )  e-" W + (- 1 )  e-" - 
n even n ! n o d d  n! 

which indicates that R,(t, t  + z) = RY(z), and by Eq. (6.13), 

Note that since E[Y(t)] is not a constant, Y(t)  is not WSS. 

6.18. Consider the random process 

where Y(t)  is the semirandom telegraph signal of Prob. 6.17 and A is a r.v. independent of Y(t)  
and takes on the values + 1 with equal probability. The process Z(t) is known as the random 
telegraph signal. 

(a) Show that Z(t) is WSS. 

(b) Find the power spectral density of Z(t). 

(a) Since E(A) = 0 and E(A2)  = 1, the mean of Z( t )  is 

and the autocorrelation of Z(t )  is 

Thus, using Eq. (6.130), we obtain 

Thus, we see that Z(t)  is WSS. 

(b) Taking the Fourier transform of Eq. (6.132) (see Appendix B), we see that the power spectrum of Z(t)  is 
given by 

6.19. Let X(t) and Y(t) be both zero-mean and WSS random processes. Consider the random process 
Z(t) defined by 

(a) Determine the autocorrelation function and the power spectral density of Z(t), (i) if X(t) and 
Y(t)  are jointly WSS; (ii) if X( t )  and Y(t)  are orthogonal. 

(b) Show that if X(t) and Y(t)  are orthogonal, then the mean square of Z(t) is equal to the sum 
of the mean squares of X(t) and Y(t). 
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(i) If X(t) and Y(t) are jointly WSS, then we have 

RzW = RXW + RXYW + R,x(z) + RY(4 

where z = s - t. Taking the Fourier transform of the above expression, we obtain 

S z ( 4  = Sxf4 + SXY(4 + SYX(4 + SY(W 

(ii) If X(t) and Y(t) are orthogonal [Eq. (6.21)], 

RXY(4 = R,,(z) = 0 

Then Rz(d = R x ~ )  + R&) 

SZ(4 = SAo) + SY(4 

(b) Setting z = 0 in Eq. (6.1 34a), and using Eq. (6.15), we get 

E[Z2(t)] = E[X2(t)] + E [  Y2(t)] 

which indicates that the mean square of Z(t) is equal to the sum of the mean squares of X(t) and Y(t). 

WHITE NOISE 

6.20. Using the notion of generalized derivative, show that the generalized derivative X'(t) of the 
Wiener process X(t)  is a white noise. 

From Eq. (5.64), 

Rx(t, s) = a2 min(t, s) 

and from Eq. (6.1 19) (Prob. 6.9), we have 

Now, using the 6 function, the generalized derivative of a unit step function u(t) is given by 

Applying the above relation to Eq. (6.135), we obtain 

which is, by Eq. (6.116) (Prob. 6.7), the autocorrelation function of the generalized derivative X'(t) of the 
Wiener process X(t); that is, 

where z = t -- s. Thus, by definition (6.43), we see that the generalized derivative X1(t) of the Wiener process 
X(t) is a white noise. 

Recall that the Wiener process is a normal process and its derivative is also normal (see Prob. 6.10). 
Hence, the generalized derivative X'(t) of the Wiener process is called white normal (or white gaussian) noise. 

6.21. Let X(t)  be a Poisson process with rate 1. Let 

Y(t )  = X(t)  - At 

Show that the generalized derivative Y'(t) of Y(t )  is a white noise. 

Since Y(t) = X(t) - At, we have formally 

r ( t )  = xl(t) - n 
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Then 

Ry*(t ,  S )  = E[Yf ( t )Y f ( s ) ]  = E{[X1( t )  - L] [Xf ( s )  - I ] )  
= E[Xf( t )Xr(s )  - LX1(s) - IXr ( t )  + 12]  
= E [Xr( t )X1(s) ]  - LE[Xf(s)]  - IEIX1(t)]  + L2 

Now, from Eqs. (5.56) and (5.60), we have 

Thus EIX1(t)]  = A and E[Xr(s) ]  = 1 (6.1 41) 

and from Eqs. (6.7) and (6.137), 

Substituting Eq. (6.1 41) into Eq. (6.1 39), we obtain 

Substituting Eqs. (6.141) and (6.142) into Eq. (6.140), we get 

Hence we see that Y1( t )  is a zero-mean WSS random process, and by definition (6.43), Y'(t) is a white noise 
with a 2  = I .  The process Y1( t )  is known as the Poisson white noise. 

6.22. Let X(t) be a white normal noise. Let 

(a) Find the autocorrelation function of Y(t). 

(b) Show that Y(t) is the Wiener process. 

(a) From Eq. (6.1 37) of Prob. 6.20, 

Thus, by Eq. (6.1 l ) ,  the autocorrelation function of Y ( t )  is 

(b) Comparing Eq. (6.145) and Eq.  (5.64), we see that Y( t )  has the same autocorrelation function as the 
Wiener process. In addition, Y ( t )  is normal, since X( t )  is a normal process and Y(0) = 0. Thus, we conclude 
that Y ( t )  is the Wiener process. 

6.23. Let Y(n) = X(n) + W(n), where X(n) = A (for all n) and A is a r.v. with zero mean and variance 
a:, and W(n) is a discrete-time white noise with average power a2. It is also assumed that X(n) 
and W(n) are independent. 

(a) Show that Y(n) is WSS. 
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(b) Find the power spectral density S,(Q of Y(n). 

(a) The mean of Y(n) is 

E[Y(n)] = E[X(n)] + E[W(n)] = E(A) + E[W(n)] = 0 

The autocorrelation function of Y(n) is 

Ry(n, n + k) = E{[X(n) + W(n)][X(n + k) + W(n + k) ] )  
= E[X(n)x(n + k)] + ECX(n)]E[W(n + k)] + E[W(n)]E[X(n + k)] + E[W(n) W(n + k)] 
= E(A2) + Rw(k) = a,' + a26(k) = Ry(k) (6.1 46) 

Thus Y(n) is WSS. 

(b) Taking the Fourier transform of Eq. (6.146), we obtain 

RESPONSE OF LINEAR SYSTEMS TO RANDOM INPUTS 

6.24. Derive Eq. (6.58). 

Using Eq. (6.56), we have 

6.25. Derive Eq. (6.63). 

From Eq. (6.62), we have 

Taking the Fourier transform of RAT), we obtain 

Letting r + a - #? = 1, we get 

6.26. A WSS random process X(t)  with autocorrelation function 
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where a is a real positive constant, is applied to the input of an LTI system with impulse 
response 

h(t) = e-b'u(t) 

where b is a real positive constant. Find the autocorrelation function of the output Y(t)  of the 
system. 

The frequency response H ( o )  of the system is 

The power spectral density of X(t)  is 

By Eq. (6.63), the power spectral density of Y( t )  is 

- - (L) 
(a2 - b2)b 02 + a2 

Taking the inverse Fourier transform of both sides of the above equation, we obtain 

1 
R~(" = - b2)b 

(ae-bI~I - be-aIrI) 

6.27. Verify Eq. (6.25), that is, the power spectral density of any WSS process X(t)  is real and S,(o) 2 0. 

The realness of Sx(o)  was shown in Prob. 6.16. Consider an ideal bandpass filter with frequency 
response (Fig. 6-5) 

1 w , < I w l < 0 2  
H ( o )  = 

0 otherwise 

with a random process X(t)  as its input. 
From Eq. (6.63), it follows that the power spectral density Sy(o )  of the output Y( t )  equals 

sy(o) = {y4 a1 < I I < a 2  

otherwise 

Hence, from Eq. (6.27), we have 

which indicates that the area of Sx(o)  in any interval of o is nonnegative. This is possible only if S,(o) 2 0 
for every o. 

-W2 *I 0 Wl Y W 

Fig. 6-5 
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Verify Eq. (6.72). 

From Eq. (6.71), we have 

Taking the Fourier transform of Rdk) ,  we obtain 

Letting k + i - 1 = n, we get 

The discrete-time system shown in Fig. 6-6 consists of one unit delay element and one scalar 
multiplier (a < 1). The input X(n) is discrete-time white noise with average power a2. Find the 
spectral density and average power of the output Y(n). 

Fig. 6-6 

From Fig. 6-6, Y(n) and X(n) are related by 

Y(n) = aY(n - 1 )  + X(n) 

The impulse response h(n) of the system is defined by 

h(n) = ah(n - 1) + 6(n) 

Solving Eq. (6.149), we obtain 

h(n) = anu(n) 

where u(n) is the unit step sequence defined by 

Taking the Fourier transform of Eq. (6.150), we obtain 
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Now, by Eq. (6.48), 

and by Eq. (6.72), the power spectral density of Y(n) is 

Taking the inverse Fourier transform of Eq. (6.151), we obtain 

Thus, by Eq. (6.33), the average power of Y(n) is 

6.30. Let Y(t )  be the output of an LTI system with impulse response h(t), when X(t)  is applied as input. 
Show that 

(a) Using Eq. (6.56), we have 

(b) Similarly, 

6.31. Let Y(t )  be the output of an LTI system with impulse response h(t) when a WSS random process 
X(t)  is applied as input. Show that 

(a) If X(t) is WSS, then Eq. (6.152) of Prob. 6.30 becomes 

which indicates that Rxy(t, s) is a function of the time difference z = s - t only. Hence 
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Taking the Fourier transform of Eq. (6.1 57), we obtain 

(b) Similarly, if X(t)  is WSS, then by Eq. (6.156), Eq. (6.153) becomes 

which indicates that Rdt ,  s) is a function of the time difference z = s - t only. Hence 

Taking the Fourier transform RAT), we obtain 

Note that from Eqs. (6.154) and (6.155), we obtain Eq. (6.63); that is, 

6.32. Consider a WSS process X(t )  with autocorrelation function RAT) and power spectral density 
Sx(o).  Let Xf( t )  = dX(t)/dt.  Show that 

(a) If X(t) is the input to a differentiator, then its output is Y( t )  = X'(t). The frequency response of a 
differentiator is known as H(o)  = j o .  Then from Eq. (6.1 54), 

Taking the inverse Fourier transform of both sides, we obtain 

(b) From Eq. (6.155), 
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Again taking the inverse Fourier transform of both sides and using the result of part (a), we have 

d d 
RX*(z) = - - RXx,(z)  = - - 

dz dz' R ~ ( z )  

(c) From Eq. (6.63), 

S x r ( o )  = ( H ( o )  ( 2Sx (o )  = ( j o  ( 2 S X ( o )  = o 2 S X ( w )  

Note that Eqs. (6.159) and (6.160) were proved in Prob. 6.8 by a different method. 

FOURIER SERIES AND KARHUNEN-LOEVE EXPANSIONS 

6.33. Verify Eqs. (6.80) and (6.81). 

From Eq. (6.78), 

Since X ( t )  is WSS, E[X( t ) ]  = p,, and we have 

Again using Eq. (6.78), we have 

Now 

Letting t - s = z, and using Eq. (6.76), we obtain 

Thus 

6.34. Let z(t) be the Fourier series representation of X(t)  shown in Eq. (6.77). Verify Eq. (6.79). 
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From Eq. (6.77), we have 

Now, by Eqs. (6.81) and (6.162), we have 

Using these results, finally we obtain 

since each sum above equals Rx(0) [see Eq. (6.75)]. 

6.35. Let X(t) be m.s. periodic and represented by the Fourier series [Eq. (6.77)] 

Show that 

From Eq. (6.81), we have 

Setting z = 0 in Eq. (6.75), we obtain 

Equation (6.1 63)  is known as Parseval's theorem for the Fourier series. 

6.36. If a random process X(t) is represented by a Karhunen-Loeve expansion [Eq. (6.82)] 

and Xn's are orthogonal, show that 4,(t) must satisfy integral equation (6.86); that is, 

Consider 
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Then 

since Xn's are orthogonal; that is, E(Xm X,*) = 0 if m # n. But by Eq. (6.84), 

Thus, equating Eqs. (6.165) and (6.166), we obtain 

where An = E( I Xn 12). 

6.37. Let z ( t )  be the Karhunen-Lokve expansion of X(t)  shown in Eq. (6.82). Verify Eq. (6.88). 

From Eqs. (6.166) and (6.86), we have 

Now by Eqs. (6.83), (6.84), and (6.1 67) we obtain 

6.38. Let z ( t )  be the Karhunen-Lobe expansion of X(t)  shown in Eq. (6.82). Verify Eq. (6.85). 

From Eq. (6.82), we have 

Using Eqs. (6.1 67) and (6.168), we have 

since by Mercer's theorem [Eq. (6.87)] 
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and A, = E(IXJ2)  = 1.; 

6.39. Find the Karhunen-Lokve expansion of the Wiener process X(t). 

From Eq. (5.64), . <. 

Substituting the above expression into Eq. (6.86), we obtain 

Differentiating Eq. (6.1 70) with respect to t ,  we get 

Differentiating Eq. (6.1 71) with respect to t again, we obtain 

A general solution of Eq. (6.1 72) is 

+,(t) = a, sin o,, t + bn cos con t con = a/ f i  

In order to determine the values of a,,  b,, and A,, (or on) ,  we need appropriate boundary conditions. From 
Eq. (6.1 70), we see that c$,(O) = 0. This implies that b, = 0. From Eq. (6.1 71), we see that &(T) = 0. This 
implies that 

a (2n - 1)n (n - %)n 
% I = = - = -  n = 1, 2, ... 

A 2T T 

Therefore the eigenvalues are given by 

a 2 T 2  
I ,  = n = I., 2, ... 

( n  - &)'n2 

The normalization requirement [Eq. (6.8311 implies that 

a: T 
[ (a ,  sin ant)' dt = =  I - + a n  = 4 

2 

Thus, the eigenfunctions are given by 

t = s i n  - ) t o < t < T 

and the Karhunen-Lokve expansion of the Wiener process X(t) is 

t = f , ,  s i n  - i) i 0 c t < T 
n =  1 

where X,  are given by 

xn = 8 F x ( t )  sin(. - i) t 

and they are uncorrelated with variance i n .  
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6.40. Find the Karhunen-Loeve expansion of the white normal (or white gaussian) noise W(t). 

From Eq. (6.43), 

Substituting the above expression into Eq. (6.86), we obtain 

or [by Eq. (6 .44)]  

which indicates that all I, = o2 and &,(t) are arbitrary. Thus, any complete orthogonal set { 4 , ( t ) )  with 
corresponding eigenvalues A, = o2 can be used in the Karhunen-LoCve expansion of the white gaussian 
noise. 

FOURIER TRANSFORM OF RANDOM PROCESSES 

6.41. Derive Eq. (6.94). 

From Eq. (6.89), 

Then 

in view of Eq. (6.93). 

6.42. Derive Eqs. (6.98) and (6.99). 

Since X ( t )  is WSS, by Eq. (6.93), and letting t - s = z, we have 

From the Fourier transform pair (Appendix B) 1 ++ 2nh(o), we have 

Next, from Eq. (6.94) and the above result, we obtain 
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6.43. Let z ( o )  be the Fourier transform of a random process X(t) .  If %(o) is a white noise with zero 
mean and autocorrelation function q(o,)6(co1 - a,), then show that X ( t )  is WSS with power 
spectral density q(o)/27r. 

By Eq. (6.91), 

Then ~ [ X ( w ) ] e j ' ~ ~  d o  = 0 

Assuming that X(t)  is a complex random process, we have 

-- ~[~(o,)~*(o,)]ej(~~~-"~~) d w ,  dw2 

1 " "  -- - 4n2 [ oo 1 mq(col)b(w, - 02)e'(w1t-w2G d o ,  d o ,  

1 r m  

which depends only on t - s = z. Hence, we conclude that X( t )  is WSS. Setting t - s = z and o,  = o in E q .  
(6.1 78), we have 

in view of Eq. (6.24). Thus, we obtain Sx(o )  = q(o)/2n. 

6.44. Verify Eq. (6.104). 

By Eq.  (6.100), 

m co 

Then R&, Q2) = E [ X ( Q , ) ~ * ( Q , ) ]  = x ~ [ X ( n ) X * ( r n ) ] e - j ( " ~ ~ - ~ ~ ~ )  

in view of Eq. (6.1 03). 

6.45. Derive Eqs. (6.105) and (6.106). 

If X(n) is WSS, then Rx(n, m) = R,(n - m). By Eq. (6.103), and letting n - m = k, we have 
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From the Fourier transform pair (Appendix B) x(n) = 1 ++ 27rs(Q), we have 
Q) 

1 e-jrn('l +n2) = 27cS(R, + a,) 
m = - w  

Hence &(%, n2) = 2&(%)6(fil + n2) 

Next, from Eq. (6.1 04) and the above result, we obtain 

M Q , ,  fi,) = Rx(fi,, 4,) = 2nsx(Q,)s(Q, - Q,) 

Supplementary Problems 

6.46. Is the Poisson process X ( t )  m.s. continuous? 

Hint: Use Eq. (5.60) and proceed as in Prob. 6.4. 

Ans. Yes. 

6.47. Let X(t)  be defined by (Prob. 5.4) 

X( t )  = Y cos o t  t 2 0 

where Y is a uniform r.v. over (0, 1) and w is a constant. 

(a) Is X(t)  m.s. continuous? 

(b) Does X( t )  have a m.s. derivative? 

Hint: Use Eq. (5.87) of Prob. 5.12. 

Ans. (a) Yes; (b)  yes. 

6.48. Let Z(t )  be the random telegraph signal of Prob. 6.18. 

(a) Is Z( t )  m.s. continuous? 

(b) Does Z(t )  have a m.s. derivative? 

Hint: Use Eq. (6.132) of Prob. 6.18. 

Ans. (a) Yes; (b) no. 

6.49. Let X( t )  be a WSS random process, and let X1(t)  be its m.s. derivative. Show that EIX(t)X1(t)] = 0. 

Hint : Use Eqs. (6.1 3) [or (6.1 4)] and (6.1 17). 

2 t + T / 2  

6.50. Let a t )  = 7 1 X(a) da 

where X(t)  is given by Prob. 6.47 with w = 2nlT. 

(a) Find the mean of Z(t) .  

(b) Find the autocorrelation function of Z(t). 

1 
Ans. (a) - - sin o t  

7t 

4 
(b) R,(t, s) = - sin a t  sin u s  

3n2 
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6.51. Consider a WSS random process X(t) with E[X(t)] = p,. Let 

The process X(t) is said to be ergodic in the mean if 

Find E [(X(r )) ,I. 

Ans. px 

6.52. Let X(t) = A cos(o, t + 0) ,  where A and w, are constants, O is a uniform r.v. over (-n, n) (Prob. 5.20). 
Find the power spectral density of X(t). 

A2a 
Ans. Sx(o) = T [6(o - o,) + 6(o + w,)] 

6.53. A random process Y(t) is defined by 

where A and o, are constants, O is a uniform r.v. over (-n, a), and X(t) is a zero-mean WSS random 
process with the autocorrelation function RX(z) and the power spectral density Sx(o). Furthermore, X(t) 
and O are independent. Show that Y(t) is WSS, and find the power spectral density of Y(t). 

A2 
Ans. Sdo)  = q [Sx(w - w,) + Sx(o + o,)] 

6.54. Consider a discrete-time random process defined by 

where a, and Ri are real constants and Oi are independent uniform r.v.'s over (- n, n). 

(a) Find the mean of X(n). 

(b) Find the autocorrelation function of X(n). 

Ans. (a) E[X(n)] = 0 
I m 

(b) Rx(n, n + k) = 1 a: cos(Ri k) 
2 , = I  

6.55. Consider a discrete-time WSS random process X(n) with the autocorrelation function 

Rx(k) = 10e-0.51k1 

Find the power spectral density of X(n). 

6.32 
Ans. S R 

X( ) = 1.368 - 1.213 cos Q 
- n < Q < n  

6.56. Let X(t) and Y(t) be defined by 
X(t)= U cosoo t  + V sin o o t  
Y(t)= Vcos mot-  Us ino , t  

where o, is constant and U and V are independent r.v.'s both having zero mean and variance c2. 

(a) Find the cross-correlation function of X(t) and Y(t). 

(b) Find the cross power spectral density of X(t) and Y(t). 
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Ans. (a) R,,(t, t + z) = - a2 sin o o z  

(b) Sx,(w) - ja2n[6(o .- uO) - 6 ( 0  + coo)] 

6.57. Verify Eqs. (6.36) and (6.37). 

Hint: Substitute Eq. (6.18) into Eq. (6.34). 

6.58. Let Y( t )  = X(t) + W(t),  where X(t)  and W ( t )  are orthogonal and W ( t )  is a white noise specified by Eq. (6.43) 
or (6.45). Find the autocorrelation function of Y(t) .  

Ans. Rd t ,  s) = Rx(t, s) + 026(t - S )  

6.59. A zero-mean WSS random process X(t) is called band-limited white noise if its spectral density is given by 

Find the autocorrelation function of X(t). 

No  o, sin o, z 
Ans. RX(z) = - - 

27~ o B z  

6.60. A WSS random process X(t)  is applied to the input of an LTI system with impulse response h(t) = 3e-2'u(t). 
Find the mean value of Y( t )  of the system if E[X(t)]  = 2. 

Hint: Use Eq. (6.59). 

Ans. 3 

6.61. The input X( t )  to the RC filter shown in Fig. 6-7 is a white noise specified by Eq. (6.45). Find the rnean- 
square value of Y(t).  

Hint: Use Eqs. (6.64) and (6.65). 

Ans. 02/(2RC) 

Fig. 6-7 RC filter. 

6.62. The input X(t)  to a differentiator is the random telegraph signal of Prob. 6.18. 

(a) Determine the power spectral density of the differentiator output. 

(b) Find the mean-square value of the differentiator output. 

41m2 
Ans. (a)  Sy(w) = - 

o2 + 4A2 

(b) E[Y2(t)J = co 

6.63. Suppose that the input to the filter shown in Fig. 6-8 is a white noise specified by Eq. (6.45). Find the power 
spectral density of Y(t).  

Ans. Sy (o )  = a2(1 + a2 + 2a cos o T )  
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Delay 
T 
I 

Fig. 6-8 

6.64. Verify Eq.  (6.67). 

Hint: Proceed as in Prob. 6.24. 

6.65. Suppose that the input to the discrete-time filter shown in Fig. 6-9 is a discrete-time white noise with 
average power a2. Find the power spectral density of Y(n). 

Ans. SY(Q) = o Z ( l  + az  + 2a cos R) 

delay 

Fig. 6-9 

6.66. Using the Karhunen-Loeve expansion of the Wiener process, obtain the Karhunen-Lobe expansion of the 
white normal noise. 

Hint: Take the derivative of Eq. (6.1 75) of Prob. 6.39. 

where W, are independent normal r.v.'s with the same variance a'. 

6.67. Let Y( t )  = X ( t )  + W(t ) ,  where X(t)  and W ( t )  are orthogonal and W ( t )  is a white noise specified by Eq. (6.43) 
or (6.45). Let $,(t) be the eigenfunctions of the integral equation (6.86) and 1, the corresponding eigenvalues. 

(a) Show that 4,(t)  are also the eigenfunctions of the integral equation for the Karhunen-Loeve expansion 
of Y( t )  with Ry(t ,  s). 

(b)  Find the corresponding eigenvalues. 

Hint: Use the result of Prob. 6.58. 

Ans. (b)  An + a2 

6.68. Suppose that 

where X n  are r.v.'s and o, is a constant. Find the Fourier transform of X(t) .  

Ans. X (w)  = C 2nXn6(w - n o , )  
n 
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6.69. Let %(o) be the Fourier transform of a continuous-time random process X(t). Find the mean of X(o). 

Ans. F[px(t)] = px(t)e-jot dt where p,(t) = E[X(t)] 

6.70. Let 

where E[X(n)] = 0 and E[X(n)X(k)] = an2 6(n - k). Find the mean and the autocorrelation function of 
W(a). 



Chapter 7 

Estimation Theory 

7.1 INTRODUCTION 

In this chapter, we present a classical estimation theory. There are two basic types of estimation 
problems. In the first type, we are interested in estimating the parameters of one or more r.v.'s, and in 
the second type, we are interested in estimating the value of an inaccessible r.v. Y in terms of the 
observation of an accessible r.v. X. 

7.2 PARAMETER ESTIMATION 

Let X be a r.v. with pdf f (x) and X , ,  . . . , X, a set of n independent r.v.'s each with pdf f (x). The 
set of r.v.'s (XI, . . . , X,) is called a random sample (or sample vector) of size n of X. Any real-valued 
function of a random sample s(Xl, . . . , X,) is called a statistic. 

Let X be a r.v. with pdf f (x; 8) which depends on an unknown parameter 8. Let (XI, . . . , X,) be a 
random sample of X. In this case, the joint pdf of X,, . . . , X, is given by 

n 

f(x; 8) = f ( ~ l 7  xn; 8) = n / ( x i ;  8) 
i =  1 

(7.1) 

where x,, . . . , x, are the values of the observed data taken from the random sample. 
An estimator of 8 is any statistic s(X,, . . . , X,), denoted as 

O = s(X,, . . , Xn) (7.2) 

For a particular set of observations X ,  = x,, . . . , Xn = x,, the value of the estimator s(x,, . . . , x,) will 
be called an estimate of 8 and denoted by 8. Thus an estimator is a r.v. and an estimate is a particular 
realization of it. It is not necessary that an estimate of a parameter be one single value; instead, the 
estimate could be a range of values. Estimates which specify a single value are called point estimates, 
and estimates which specify a range of values are called interval estimates. 

7.3 PROPERTIES OF POINT ESTIMATORS 

A. Unbiased Estimators: 

An estimator O = s(X,, . . . , Xn) is said to be an unbiased estimator of the parameter 8 if 

E(0) = 8 

for all possible values of 8. If O is an unbiased estimator, then its mean square error is given by 

EL(@ - 8)2] = E{[0 - E(@)]~) = Var(0) 

That is, its mean square error equals its variance. 

B. Efficient Estimators: 

An estimator 0, is said to be a more eflcient estimator of the parameter 8 than the estimator O,  
if 

1. 0, and 0, are both unbiased estimators of 8. 
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The estimator OM, = s(X,, . . . , X,) is said to be a most eficient (or minimum variance) unbiased 
estimator of the parameter 8 if 

1. It is an unbiased estimator of 8. 

2. Var(O,,) 5 Var(O) for all O. 

C. Consistent Estimators: 

The estimator On of 8 based on a random sample of size n is said to be consistent if for any small 
E > 0, 

lim P(I0,  - 81 < e) = 1 
n +  m 

(7.5) 

or equivalently, 

lim P ( I O n - 8 1 2 e ) = 0  
n+ m 

The following two conditions are sufficient to define consistency (Prob. 7.5): 

1. lim E(O,) = 8 
n+ m 

2. lim Var(O,) = 0 
n+ 00 

7.4 MAXIMUM-LIKELIHOOD ESTIMATION 

Let f (x; 8) = f (x,, . . . , x,; 8) denote the joint pmf of the r.v.'s X , ,  . . . , X, when they are discrete, 
and let it be their joint pdf when they are continuous. Let 

L(8) = f(x; 8) = f ( x , ,  ..., x,; 8) (7.9) 

Now L(8) represents the likelihood that the values x,, . . . , x, will be observed when 8 is the true value 
of the parameter. Thus L(8) is often referred to as the likelihood function of the random sample. Let 
OM, = s(xl, . . . , x,) be the maximizing value of L(8); that is, 

L(0,,) = max L(8) 
e 

Then the maximum-likelihood estimator of 0 is 

OML = s(X1, . . ., x,) 

and OM, is the maximum-likelihood estimate of 8. 
Since L(8) is a product of either pmf s or pdf s, it will always be positive (for the range of possible 

value of 8). Thus In L(8) can always be defined, and in determining the maximizing value of 8, it is 
often useful to use the fact that L(8) and In L(8) have their maximum at the same value of 8. Hence, 
we may also obtain OM, by maximizing In L(8). 

7.5 BAYES' ESTIMATION 

Suppose that the unknown parameter 8 is considered to be a r.v. having some fixed distribution 
or prior pdf f (8). Then f (x; 8) is now viewed as a conditional pdf and written as f (x 1 8), and we can 
express the joint pdf of the random sample (XI, . . . , X,) and 8 as 
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and the marginal pdf of the sample is given by 

where R, is the range of the possible value of 8. The other conditional pdf, 

is referred to as the posterior pdf of 8. Thus the prior pdf f(9) represents our information about 8 
prior to the observation of the outcomes of XI, . . . , X , ,  and the posterior pdf f (8 I x,, . . . , x,) rep- 
resents our information about 8 after having observed the sample. 

The conditional mean of 8, defined by 

is called the Bayes' estimate of 8, and 

OB = E(8 I XI, . . . , X,) 

is called the Bayes' estimator of 13. 

7.6 MEAN SQUARE ESTIMATION 

In this section, we deal with the second type of estimation problem-that is, estimating the value 
of an inaccessible r.v. Y in terms of the observation of an accessible r.v. X. In general, the estimator P 
of Y is given by a function of X, g(X). Then Y - P = Y - g(X) is called the estimation error, and 
there is a cost associated with this error, C[Y - g(X)]. We are interested in finding the function g(X) 
that minimizes this cost. When X and Y are continuous r.v.'s, the mean square (m.s.) error is often 
used as the cost function, 

It can be shown that the estimator of Y given by (Prob. 7.17), 

is the best estimator in the sense that the m.s. error defined by Eq. (7.1 7) is a minimum. 

7.7 LINEAR MEAN SQUARE ESTIMATION 

Now consider the estimator P of Y given by 

P = g(X) = a x  + b 

We would like to find the values of a and b such that the m.s. error defined by 

e = E[(Y - a2] = E([Y - (aX + b)I2} 

is minimum. We maintain that a and b must be such that (Prob. 7.20) 

E{[Y - ( ax  + b)]X} = 0 

and a and b are given by 
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and the minimum m.s. error em is (Prob. 7.22) 

where a,, = Cov(X, Y) and p,, is the correlation coefficient of X and Y. Note that Eq. (7.21) states 
that the optimum linear m.s. estimator p =  a x  + 6 of Y is such that the estimation error Y - P = Y - 
( a x  + b) is orthogonal to the observation X. This is known as the orthogonality principle. The line 
y = ax + b is often called a regression line. 

Next, we consider the estimator ? of Y with a linear combination of the random sample 
(XI, . - , Xn) by 

Again, we maintain that in order to produce the linear estimator with the minimum m.s. error, the 
coefficients ai must be such that the following orthogonality conditions are satisfied (Prob. 7.35): 

Solving Eq. (7.25) for ai, we obtain 

where 

a = ['I] .=[:I "=E(YXj) R =  Rij = E(XiXj) 
an 

and R -  ' is the inverse of R. 

Solved Problems 

PROPERTIES OF POINT ESTIMATORS 

7.1. Let (XI, . . . , Xn) be a random sample of X having unknown mean p. Show that the estimator of 
p defined by 

is an unbiased estimator of p. Note that X is known as the sample mean (Prob. 4.64). 

By Eq. (4.1 O8), 

Thus, M is an unbiased estimator of p. 

7.2. Let (XI, . . . , X,) be a random 
the estimator of a2 defined by 

sample of X having unknown mean p and variance a2. Show that 
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where R is the sample mean, is a biased estimator of a2. 

By definition, we have 

Now 

By Eqs. (4.1 12) and (7.27), we have 

Thus 

which shows that S2 is a biased estimator of c2. 

7.3. Let (XI, . . . , X,) be a random sample of a Poisson r.v. X with unknown parameter A. 

(a) Show that 

Al = Xi and A, = $(x, + X2) 
n i = l  

are both unbiased estimators of A. 

(b)  Which estimator is more efficient? 

(a) By Eqs. (2.42) and (4.108), we have 

Thus, both estimators are unbiased estimators of I. 

(b) By Eqs. (2.43) and (4.1 12), 

1 1 1 1 
Var(Al) = - Z Var(Xi) = - C Var(Xi) = - (ni) = - 

n2 i = l  n2 i = l  n2 n 

Thus, if n > 2, A, is a more efficient estimator of A than A,, since 1/n < 112. 

7.4. Let (XI, . . . , X,) be a random sample of X with mean p and variance a2. A linear estimator of p 
is defined to be a linear function of X,, . . ., X , ,  l (X, ,  .. ., X,). Show that the linear estimator 
defined by [Eq. (7.27)], 
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is the most efficient linear unbiased estimator of p. 

Assume that 

is a linear unbiased estimator of p with lower variance than M. Since MI is unbiased, we must have 

which implies that xy= '=, ai = 1. By Eq. (4.1 1 Z), 

Var(M) = 1 02 and Var(M ,) = o2 ai2 
n i= 1 

By assumption, 

Consider the sum 

which, by assumption (7.30), is less than 0. This is impossible unless ai = l/n, implying that M is the most 
efficient linear unbiased estimator of p. 

7.5. Showthatif 

lim E(O,) = 8 and limVar(O,) = 0 
n-rm n-+ a) 

then the estimator On is consistent. 

Using Chebyshev's inequality (2.97), we can write 

Thus, if 

lim E(On) = 8 and lim Var(G3,) = 0 
n- m n - r m  

then limP(I0, - 81 ~ E ) = O  
n-r  m 

that is, On is consistent [see Eq. (7.6)]. 

7.6. Let ( X I ,  . . . , X,) be a random sample of a uniform r.v. X  over (0, a), where a  is unknown. Show 
that 

is a consistent estimator of the parameter a. 



CHAP. 71 ESTIMATION THEORY 253 

If X is uniformly distributed over (0, a), then from Eqs. (2.44), (2.45), and (4.98) of Prob. 4.30, the pdf of 
Z = max(X,, . . . , X,) is 

Thus 

and 

Next, 

and 

lim E(A) = a 
n+ w 

lim Var(A) = 0 
n-* w 

Thus, by Eqs. (7.7) and (7.8), A is a consistent estimator of parameter a. 

MAXIMUM-LIKELIHOOD ESTIMATION 

7.7. Let (XI, . . . , X,) be a random sample of a binomial r.v. X with parameters (m, p), where m is 
assumed to be known and p unknown. Determine the maximum-likelihood estimator of p. 

The likelihood function is given by [Eq. (2.36)] 

Taking the natural logarithm of the above expression, we get 

where 

and 

Setting dun LCp)]/dp = 0, the maximum-likelihood estimate jML of' p is obtained as 

Hence, the maximum-likelihood estimator of p is given by 
I n I 

7.8. Let (XI, . . . , X,) be a random sample of a Poisson r.v. with unknown parameter A. Determine the 
maximum-likelihood estimator of A. 
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The likelihood function is given by [Eq. (2.40)] 

Thus, 

where 

and 

Setting d[ln L(A)]/dA = 0, the maximum-likelihood estimate A,, of 1 is obtained as 

A,, = - xi  
n i=l 

Hence, the maximum-likelihood estimator of A is given by 

7.9. Let (XI, . . . , X,) be a random sample of an exponential r.v. X with unknown parameter A. 
Determine the maximum-likelihood estimator of 1. 

The likelihood function is given by [Eq. (2.48)] 

Thus, 

and 

Setting d[ln L(R)]/dl  = 0, the maximum-likelihood estimate i,, of 1 is obtained as 

Hence, the maximum-likelihood estimator of 1 is given by 

7.10. Let (XI, . . . , X,) be a random sample of a normal random r.v. X with unknown mean p and 
unknown variance a2. Determine the maximum-likelihood estimators of p and a2. 

The likelihood function is given by [Eq. (2.52)] 
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Thus, 

In order to find the values of ,u and a maximizing the above, we compute 

Equating these equations to zero, we get 

Solving for jML and &ML, the maximum-likelihood estimates of p and a2 are given, respectively, by 

Hence, the maximum-likelihood estimators of p and a2 are given, respectively, by 

BAYES' ESTIMATION 

7.11. Let ( X I ,  . . . , X,)  be the random sample of a Bernoulli r.v. X with pmf given by [Eq. (2.32)] 

f ( x ;  P )  = PX(l - P)' -" x = o ,  1 (7.43) 

where p, 0 < p I 1 ,  is unknown. Assume that p is a uniform r.v. over (0,  1) .  Find the Bayes' 
estimator of p. 

The prior pdf of p  is the uniform pdf; that is, 

The posterior pdf of p is given by 

Then, by Eq. (7.1 2), 

where m = z;=, x i ,  and by Eq. (7.1 3), 

Now, from calculus, for integers m and k, we have 

m !  k !  
[ p m ( l  - d p  = -- 

(m + k $- I)! 



256 ESTIMATION THEORY [CHAP 7 

Thus, by Eq. (7.14), the posterior pdf of p is 

and by Eqs. (7.15) and (7.44), 

- - (n + 1)' + 1 - p y - m  
m!(n - m)! d p  

Hence, by Eq. (7.1 6), the Bayes' estimator of p is 

1 
PB = E(pIX,, ..., X,) =- 

n + 2 (:*xi + I) 

7.12. Let (XI, .. ., X,) be a random sample of an exponential r.v. X with unknown parameter A. 
Assume that 3, is itself to be an exponential rev. with parameter a. Find the Bayes' estimator of 1. 

The assumed prior pdf of 1 is [Eq. (2.48)J 

ae -"" a , l > O  
f ( 4  = i0 otherwise 

Now 

where m = El=, xi . Then, by Eqs. (7.1 2) and (7.13), 

By Eq. (7.14), the posterior pdf of 1 is given by 

Thus, by Eq. (7.15), the Bayes' estimate of 1 is 

AB = E(AI xl, ..., x,) = lf(Alxl, .. ., x,) d l  i' 
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and the Bayes' estimator of rZ is 

7.13. Let (XI, . . . , X,) be a random sample of a normal r.v. X with unknown mean p and variance 1. 
Assume that p is itself to be a normal r.v. with mean 0 and variance 1. Find the Bayes' estimator 
of p. 

The assumed prior pdf of p is 

Then by Eq. (7.12), 

Then, by Eq. (7.14), the posterior pdf of p is given by 

where C = C(xl, . . . , xn) is independent of p. However, Eq. (7.48) is just the pdf of a normal r.v. with mean 

and variance 

1 

n + l  

Hence, the conditional distribution of p given x,, . . . , x, is the normal distribution with mean 

and variance 

1 
n + l  

Thus, the Bayes' estimate of p is given by 
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7.14. Let (XI, . . ., X,) be a random sample of a r.v. X  with pdf f ( x ;  8), where 8  is an unknown 
parameter. The statistics L and U  determine a 10q1 - a) percent confidence interval (L, U )  for 
the parameter 8  if 

P ( L < O < U ) > l - a  O < a < l  (7.51) 

and 1  - a  is called the conjdence coefficient. Find L and U if X is a normal r.v. with known 
variance a2 and mean p is an unknown parameter. 

If X = N ( p ;  a2), then 

is a standard normal r.v., and hence for a given a we can find a number za12 from Table A (Appendix A) 
such that 

For example, if 1 - a = 0.95, then z,,, = z,.,,, = 1.96, and if 1 - a = 0.9, then za12 = z ~ . ~ ~  = 1.645. Now, 
recalling that o > 0, we have the following equivalent inequality relationships; 

x - p  
-.=a/, < - 

a/& 

7.15. Consider a normal r.v. with variance 1.66 and unknown mean p. Find the 95 percent confidence 
interval for the mean based on a random sample of size 10. 

As shown in Prob. 7.14, for 1 - a = 0.95, we have za12 = z,,,,, = 1.96 and 

za12(o/&) = 1.96(@/fi) = 0.8 

Thus, by Eq. (7.54), the 95 percent confidence interval for p is 

(K - 0.8, X + 0.8) 

MEAN SQUARE ESTIMATION 

7.16. Find the m.s. estimate of a r.v. Y by a constant c. 

By Eq. (7.17), the m.s. error is 
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Clearly the m.s. error e depends on c, and it is minimum if 

Thus, we conclude that the mas. estimate c of Y is given by 

Find the m.s. estimator of a r.v. Y by a function g(X) of the r.v. X. 

By Eq. (7.17), the m.s. error is 

Since f (x, y) = f (y I x) f (x), we can write 

Since the integrands above are positive, the m.s. error e is minimum if the inner integrand, 

is minimum for every x. Comparing Eq. (7.58) with Eq. (7.55) (Prob. 7.16), we see that they are the same 
form if c is changed to g(x) and f (y) is changed to f (y 1 x). Thus, by the result of Prob. 7.16 [Eq. (7.56)], we 
conclude that the m.s. estimate of Y is given by 

Hence, the m.s. estimator of Y is 

7.18. Find the m.s. error if g(x) = E(Y ( x) is the m.s. estimate of Y ,  

As we see from Eq. (3.58), the conditional mean E(Y I x) of Y, given that X = x, is a function of x, and 
by Eq. (4.39), 

SimilarIy, the conditional mean E[g(X, Y) I x] of g(X,  Y), given that X = x, is a function of x. It defines, 
therefore, the function E[g(X, Y) I XI of the r.v. X. Then 

Note that Eq. (7.62) is the generalization of Eq. (7.61). Next, we note that 
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Then by Eqs. (7.62) and (7.63), we have 

ECg1(X)g2(Y)I = E{ECg,(X)g2( Y )  I X I }  = E{g,(X)E(g2(Y) I X I )  

Now, setting g,(X) = g(X)  and g2(Y)  = Y in Eq. (7.64), and using Eq. (7.18), we obtain 

ECs(X)YI = ECg(X)E(Y I X)1 = ECg2(X)I 

Thus, the m.s. error is given by 

e  = E{[Y  - g(X)I2)  = E(Y2)  - 2E[g(X)Y]  + E[g2(X)]  
= E(Y2)  - E[g2(X)] 

7.19. Let Y = X2 and X be a uniform r.v. over (- 1, 1). Find the m.s. estimator of Y in terms of X and 
its m.s. error. 

By Eq. (7.18), the m.s. estimate of Y is given by 

g ( ~ ) = ~ ( ~ ~ ~ ) =  E ( x ~ ~ x = x ) = x ~  

Hence, the m.s. estimator of Y is 

p=x2 

The m.s. error is 

e  = E ( [ Y  - g(X)I2)  = E ( [ X 2  - X 2 I 2 )  = 0 

LINEAR MEAN SQUARE ESTIMATION 

7.20. Derive the orthogonality principle (7.21) and Eq. (7.22). 

B y  Eq. (7.20), the m.s. error is 

e(a, b) = E { [ Y  - ( a x  + b)I2)  

Clearly, the m.s. error e  is a function of a and b, and it is minimum if ae/da = 0 and &lab = 0. Now 

ae - = E { ~ [ Y  - ( a x  + b)](- 1)) = -2E{[Y - ( a x  + b)] )  
ab 

Setting aelda = 0 and &lab = 0, we obtain 

E { [ Y  - ( a x  + b ) ] X )  = 0 

ECY - ( a x  + b)] = 0 

Note that Eq. (7.68) is the orthogonality principle (7.21). 
Rearranging Eqs. (7.68) and (7.69), we get 

E(X2)a + E(X)b = E ( X Y )  

E(X)a + b = E ( Y )  

Solving for a and b, we obtain Eq. (7.22); that is, 

a  = 
E ( X Y )  - E(X)E(Y)  ax ,  a ,  

- - Pxr E(X2)  - [E(X)]  ax2 a, 
b  = E ( Y )  - aE(X)  = p, - up, 

where we have used Eqs. (2.31), (3.51), and (3.53). 

7.21. Show that m.s. error defined by Eq. (7.20) is minimum when Eqs. (7.68) and (7.69) are satisfied. 
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Assume that P = cX + d, where c and d are arbitrary constants. Then 

e(c, d) = E{[Y - (cX + d)I2) = E{[Y - ( ax  + b) + (a - c)X + (b - d)I2) 
= E{[Y - ( ax  + b)I2} + E{[(a - c)X + (b - d)] 2, 

+ 2(a - c)E{[ Y - ( ax  + b)]X) + 2(b - d)E{[Y - ( ax  + b)]} 
= e(a, b) + E{[(a - c)X + (b - d)I2) 

+ 2(a - c)E([Y - ( ax  + b)]X) + 2(b - d)E{[Y - ( a x  + b)]) 

The last two terms on the right-hand side are zero when Eqs. (7.68) and (7.69) are satisfied, and the second 
term on the right-hand side is positive if a # c and b # d. Thus, e(c, d )  2 e(a, b) for any c and d. Hence, 
e(a, b) is minimum. 

7.22. Derive Eq. (7.23). 

By Eqs. (7.68) and (7.69), we have 

R([Y - ( a x  + b)]aX) = 0 = E([Y - ( a x  + b)]b) 

Then em = e(a, b) = E{[Y - ( a x  + b)12) = E([Y - ( a x  + b)][Y - ( a x  + b)]) 
= E([Y - ( a x  + b)]Y) = E(Y2) - aE(XY) - bE(Y) 

Using Eqs. (2.31), (3.51), and (3.53), and substituting the values of a and b [Eq. (7.2211 in the above expres- 
sion, the minimum m.s. error is 

which is Eq. (7.23). 

7.23. Let Y = X2, and let X be a uniform r.v. over (- 1, 1) (see Prob. 7.19). Find the linear m.s. 
estimator of Y in terms of X and its m.s. error. 

The linear m.s. estimator of Y in terms of X is 

P = a x + b  

where a and b are given by [Eq. (7.2211 

Now, by Eqs. (2.46) and (2.44), 

px = E(X) = 0 

By Eq. (3.51), 

ax, = Cov(XY) = E(XY) - E(X)E(Y) = 0 

Thus, a = 0 and b = E(Y), and the linear m.s. estimator of Y is 

P = b =  E(Y) 

and the m.s. error is 

e = E([Y - E(Y)12) = ay2 

7.24. Find the minimum m.s. error estimator of Y in terms of X when X and Y are jointly normal 
r.v.'s. 
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By Eq. (7.18), the minimum m.s. error estimator of Y in terms of X is 

P =  E(Y1X) 

Now, when X and Y are jointly normal, by Eq. (3.1 08) (Prob. 3.51), we have 

Hence, the minimum m.s. error estimator of Y is 

Comparing Eq. (7.72) with Eqs. (7.19) and (7.22), we see that for jointly normal r.v.'s the linear m.s. estima- 
tor is the minimum m.s. error estimator. 

Supplementary Problems 

7.25. Let (XI, . . ., X,) be a random sample of X having unknown mean p and variance a2. Show that the 
estimator of a 2  defined by 

where X is the sample mean, is an unbiased estimator of a2. Note that S I2  is often called the sample 
variance. 

Hint: Show that S12 = -!- S2, and use Eq. (7.29). 
n - 1  

7.26. Let (XI, . . . , X,) be a random sample of X having known mean p and unknown variance a2. Show that the 
estimator of a2 defined by 

is an unbiased estimator of a2. 

Hint: Proceed as in Prob. 7.2. 

7.27. Let (XI, . . . , X,) be a random sample of a binomial r.v. X with parameter (m, p), where p is unknown. Show 
that the maximum-likelihood estimator of p given by Eq. (7.34) is unbiased. 

Hint: Use Eq. (2.38). 

7.28. Let (XI, . . . , X,) be a random sample of a Bernoulli r.v. X with pmf f (x; p) = px(l - p)'-", x = 0, 1, where 
p, 0 I p I 1, is unknown. Find the maximum-likelihood estimator of p. 

Ans. P,, = 1 x Xi = n i = l  

7.29. The values of a random sample, 2.9, 0.5, 1.7, 4.3, and 3.2, are obtained from a r.v. X that is uniformly 
distributed over the unknown interval (a, b). Find the maximum-likelihood estimates of a and b. 

Ans. 2,, = min xi = 0.5, hML = max xi = 4.3 
1 I 
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In analyzing the flow of traffic through a drive-in bank, the times (in minutes) between arrivals of 10 
customers are recorded as 3.2, 2.1, 5.3, 4.2, 1.2, 2.8, 6.4, 1.5, 1.9, and 3.0. Assuming that the interarrival time 
is an exponential r.v. with parameter I ,  find the maximum likelihood estimate of I .  

1 
Ans. I,, = - 

3.16 

Let (XI, . . . , X,) be a random sample of a normal r.v. X with known mean ,u and unknown variance a2. 
Find the maximum likelihood estimator of a2. 

1 - -  

Ans. SML2 = - x (Xi - 
n i = l  

Let (XI, . . ., X,) be the random sample of a normal r.v. X with mean p and variance a2, where p is 
unknown. Assume that p is itself to be a normal r.v. with mean p, and variance aI2.  Find the Bayes' 
estimate of p. 

Let (XI, . . . , X,) be the random sample of a normal r.v. X with variance 100 and unknown p. What sample 
size n is required such that the width of 95 percent confidence interval is 5? 

Ans. n = 62 

Find a constant a such that if Y is estimated by a x ,  the m.s. error is minimum, and also find the minimum 
m.s. error e m .  

Ans. a = E(XY)/E(X2) em = E(Y2) - [E(X Y)I2/[E(X)l2 

Derive Eqs. (7.25) and (7.26). 

Hint: Proceed as in Prob. 7.20. 



Chapter 8 

Decision Theory 

8.1 INTRODUCTION 

There are many situations in which we have to make decisions based on observations or data 
that are random variables. The theory behind the solutions for these situations is known as decision 
theory or hypothesis testing. In communication or radar technology, decision theory or hypothesis 
testing is known as (signal) detection theory. In this chapter we present a brief review of the binary 
decision theory and various decision tests. 

8.2 HYPOTHESIS TESTING 

A. Definitions: 

A statistical hypothesis is an assumption about the probability law of r.v.'s. Suppose we observe a 
random sample (XI, . . . , X,) of a r.v. X whose pdf f (x; 0) = f (x,, . . . , x,; 8) depends on a parameter 8. 
We wish to test the assumption 8 = 8, against the assumption 8 = 8,. The assumption 8 = 8, is 
denoted by H, and is called the null hypothesis. The assumption 8 = 8, is denoted by H, and is called 
the alternative hypothesis. 

H,: 8 = 8, (Null hypothesis) 
H, : 8 = 8, (Alternative hypothesis) 

A hypothesis is called simple if all parameters are specified exactly. Otherwise it is called compos- 
ite. Thus, suppose H,: 0 = 8, and H, : 8 # 0,; then H, is simple and H, is composite. 

B. Hypothesis Testing and Types of Errors: 

Hypothesis testing is a decision process establishing the validity of a hypothesis. We can think of 
the decision process as dividing the observation space Rn (Euclidean n-space) into two regions R, and 
R,.  Let x = (x,, . . . , x,) be the observed vector. Then if x E R,, we will decide on H,; if x E R,, we 
decide on H,. The region R, is known as the acceptance region and the region R ,  as the rejection (or 
critical) region (since the null hypothesis is rejected). Thus, with the observation vector (or data), one 
of the following four actions can happen: 

1. H, true;accept H, 
2. H, true; reject H, (or accept H,) 
3. H, true; accept H, 
4. H, true; reject H, (or accept H,) 

The first and third actions correspond to correct decisions, and the second and fourth actions corre- 
spond to errors. The errors are classified as 

1. Type I error: Reject H, (or accept H,) when H, is true. 
2. Type I1 error: Reject H, (or accept H,) when H, is true. 

Let PI and PI, denote, respectively, the probabilities of Type I and Type I1 errors: 
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where Di (i = 0, 1) denotes the event that the decision is made to accept Hi. PI is often denoted by a 
and is known as the level of signijcance, and PI, is denoted by fl and (1 - /3) is known as the power of 
the test. Note that since a and /? represent probabilities of events from the same decision problem, 
they are not independent of each other or of the sample size n. It would be desirable to have a 
decision process such that both a and fl will be small. However, in general, a decrease in one type of 
error leads to an increase in the other type for a fixed sample size (Prob. 8.4). The only way to 
simultaneously reduce both type of errors is to increase the sample size (Prob. 8.5). One might also 
attach some relative importance (or cost) to the four possible courses of action and minimize the total 
cost of the decision (see Sec. 8.3D). 

The probabilities of correct decisions (actions 1 and 3) may he expressed as 

In radar signal detection, the two hypotheses are 

H, : No target exists 

HI  : Target is present 

In this case, the probability of a Type I error PI = P(Dl I H,) is often referred to as the false-alarm 
probability (denoted by P,), the probability of a Type I1 error PI, = P(Do I HI) as the miss probability 
(denoted by P,), and P(Dl (HI)  as the detection probability (denoted by PD). The cost of failing to 
detect a target cannot be easily determined. In general we set a value of P, which is acceptable and 
seek a decision test that constrains P, to this value while maximizing P, (or equivalently minimizing 
P,). This test is known as the Neyman-Pearson test (see Sec. 8.3C). 

8.3 DECISION TESTS 

A. Maximum-Likelihood Test : 

Let x be the observation vector and P(x I Hi), i = 0.1, denote the probability of observing x given 
that Hi was true. In the maximum-likelihood test, the decision regions R, and R, are selected as 

Thus, the maximum-likelihood 

Ro = {x: P(x I H,) > P(x ( HI)} 
Rl = (x: P(x I Ho) < P(x I HI)) 

test can be expressed as 

if P(x ( H,) > P(x I HI) 
d(x)={i: i f P ( x H o ) < P ( x H l )  

The above decision test can be rewritten as 

If we define the likelihood ratio A(x) as 

then the maximum-likelihood test (8.7) can be expressed as 
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which is called the likelihood ratio test, and 1 is called the threshold value of the test. 
Note that the likelihood ratio A(x) is also often expressed as 

B. MAP Test: 

Let P(Hi (x), i = 0, 1, denote the probability that Hi was true given a particular value of x. The 
conditional probability P(Hi ( x) is called a posteriori (or posterior) probability, that is, a probability 
that is computed after an observation has been made. The probability P(Hi), i = 0, 1, is called a priori 
(or prior) probability. In the maximum a posteriori (MAP) test, the decision regions R, and R, are 
selected as 

R, = (x: P(H, 1 X) > P(Hl I x)) 
R,  = {x: P(Ho (x)  < P(H, I x)) 

Thus, the MAP test is given by 

which can be rewritten as 

Using Bayes' rule [Eq. (1.42)], Eq. (8.1 3) reduces to 

Using the likelihood ratio A(x) defined in Eq. (8.8)' the MAP test can be expressed in the following 
likelihood ratio test as 

where q = P(Ho)/P(Hl) is the threshold value for the MAP test. Note that when P(H,) = P(H,), the 
maximum-likelihood test is also the MAP test. 

C. Neyman-Pearson Test : 

As we mentioned before, it is not possible to simultaneously minimize both a(= PI) and fl(= P,). 
The Neyman-Pearson test provides a workable solution to this problem in that the test minimizes fl 
for a given level of a. Hence, the Neyman-Pearson test is the test which maximizes the power of the 
test 1 - /? for a given level of significance a. In the Neyman-Pearson test, the critical (or rejection) 
region R,  is selected such that 1 - fl = 1 - P(D, ( HI) = P(Dl I HI) is maximum subject to the con- 
straint a = P(D, I H,) = a,. This is a classical problem in optimization: maximizing a function subject 
to a constraint, which can be solved by the use of Lagrange multiplier method. We thus construct the 
objective function 

J = (1 - fl) - A(a - a,) (8.1 6) 

where 1 2 0 is a Lagrange multiplier. Then the critical region R, is chosen to maximize J. It can be 
shown that the Neyman-Pearson test can be expressed in terms of the likelihood ratio test as 
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(Prob. 8.8) 

where the threshold value q of the test is equal to the Lagrange multiplier A, which is chosen to satisfy 
the contraint a = a,. 

D. Bayes' Test : 

Let Cij be the cost associated with (D, , Hi), which denotes the event that we accept Hi when Hi is 
true. Then the average cost, which is known as the Bayes' risk, can be written as 

where P(Di, Hi) denotes the probability that we accept Hi when H j  is true. By Bayes' rule (1.42), we 
have 

In general, we assume that 

since it is reasonable to assume that the cost of making an incorrect decision is higher than the cost of 
making a correct decision. The test that minimizes the average cost e is called the Bayes' test, and it 
can be expressed in terms of the likelihood ratio test as (Prob. 8.10) 

Note that when C,, - Coo = Col - Cll , the Bayes' test (8.21) and 

E. Minimum Probability of Error Test: 

If we set Coo = Cll = 0 and Col = Clo = 1 in Eq. (8.18), we have 

e = P(Dl, Ho) + P(Do, HI) = P, 

(8.21) 

the MAP test (8.15) are identical. 

which is just the probability of making an incorrect decision. Thus, in this case, the Bayes' test yields 
the minimum probability of error, and Eq. (8.21) becomes 

We see that the minimum probability of error test is the same as the MAP test. 

F. Minimax Test : 

We have seen that the Bayes' test requires the a priori probabilities P(Ho) and P(Hl). Frequently, 
these probabilities are not known. In such a case, the Bayes' test cannot be applied, and the following 
minimax (min-max) test may be used. In the minimax test, we use the Bayes' test which corresponds 
to the least favorable P(Ho) (Prob. 8.12). In the minimax test, the critical region RT is defined by 
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for all R, # RT. In other words, RT is the critical region which yields the minimum Bayes' risk for the 
least favorable P(Ho). Assuming that the minimization and maximization operations are interchange- 
able, then we have 

min max C[P(H,), R,] = max min e[P(Ho), R,] 
R I  PWo) PWo) R I  

The minimization of C[P(H,), R,] with respect to R, is simply the Bayes' test, so that 

min C[P(H,), R, ]  = C*[P(H,)] 
R 1 

where C*[P(H,)] is the minimum Bayes' risk associated with the a priori probability P(H,). Thus, Eq. 
(8.25) states that we may find the minimax test by finding the Bayes' test for the least favorable P(Ho), 
that is, the P(H,) which maximizes C[P(H,)]. 

Solved Problems 

HYPOTHESIS TESTING 

8.1. Suppose a manufacturer of memory chips observes that the probability of chip failure is p = 0.05. 
A new procedure is introduced to improve the design of chips. To test this new procedure, 200 
chips could be produced using this new procedure and tested. Let r.v. X denote the number of 
these 200 chips that fail. We set the test rule that we would accept the new procedure if X s 5. 
Let 

H,: p = 0.05 (No change hypothesis) 
H, : p c 0.05 (Improvement hypothesis) 

Find the probability of a Type I error. 

If we assume that these tests using the new procedure are independent and have the same probability 
of failure on each test, then X is a binomial r.v. with parameters (n, p) = (200, p). We make a Type I error if 
X 5 5 when in fact p = 0.05. Thus, using Eq. (2.37), we have 

Since n is rather large and p is small, these binomial probabilities can be approximated by Poisson prob- 
abilities with IZ  = np = 200(0.05) = 10 (see Prob. 2.40). Thus, using Eq. (2.100)' we obtain 

Note that H, is a simple hypothesis but H, is a composite hypothesis. 

8.2. Consider again the memory chip manufacturing problem of Prob. 8.1. Now let 

H,: p = 0.05 (No change hypothesis) 
H, : p = 0.02 (Improvement hypothesis) 

Again our rule is, we would reject the new procedure if X > 5. Find the probability of a Type I1 
error. 
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Now both hypotheses are simple. We make a Type I1 er.ror if X > 5 when in fact p = 0.02. Hence, by 
Eq. (2.37), 

Again using the Poisson approximation with L = np = 200(0.02) = 4, we obtain 

8.3. Let (XI, . . . , X,) be a random sample of a normal r.v. X with mean p and variance 100. Let 

H,: p =  50 
H I :  p=p, (>SO) 

and sample size n = 25. As a decision procedure, we use the rule to reject H ,  if ;F 2 52, where E is 
the value of the sample mean X defined by Eq. (7.27). 

(a) Find the probability of rejecting H,: p = 50 as a function of p (> 50). 

(b) Find the probability of a Type I error a. 
(c)  Find the probability of a Type I1 error /I (i) when pl = 53 and (ii) when p, = 55. 

(a) Since the test calls for the rejection of H , :  p = 50 when 2 2 52, the probability of rejecting H ,  is given 
by 

Now, by Eqs. (4.1 12) and (7.27), we have 

Thus, .X is N(p; 4), and using Eq. (2.55), we obtain 

The function g(p) is known as the power function of the test, and the value of g(p) at p = p,, g(p,), is 
called the power at p,. 

(b) Note that the power at p = 50, g(50), is the probability of rejecting H , :  p = 50 when H ,  is true-that 
is, a Type I error. Thus, using Table A (Appendix A), we obtain 

(c) Note that the power at p = p,, g(pl), is the probability of rejecting H,: p = 50 when p = p,. Thus, 
1 - g(p,) is the probability of accepting Ho when p = p,--that is, the probability of a Type I1 error jl. 

(i) Setting p = p,  = 53 in Eq. (8.28) and using Table A (Appendix A), we obtain 

(ii) Similarly, for p = p1 = 55 we obtain 

Notice that clearly, the probability of a Type I1 error depends on the value of p,. 
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8.4. Consider the binary decision problem of Prob. 8.3. We modify the decision rule such that we 
reject H, if x 2 c. 

(a) Find the value of c such that the probability of a Type I error a = 0.05. 
(b) Find the probability of a Type I1 error /I when p, = 55 with the modified decision rule. 

(a) Using the result of part (b) in Prob. 8.3, c is selected such that [see Eq. (8.27)J 

a = g(50) = P ( x  2 c; p = 50) = 0.05 

However, when p = 50, X = N(50; 4), and [see Eq. (8.2811 

From Table A (Appendix A), we have 0(1.645) = 0.95. Thus 

c - 50 -- 
2 

- 1.645 and c = 50 + 2(1.645) = 53.29 

(b) The power function g(p) with the modified decision rule is 

Setting p = p,  = 55 and using Table A (Appendix A), we obtain 

Comparing with the results of Prob. 8.3, we notice that with the change of the decision rule, a is 
reduced from 0.1587 to 0.05, but j3 is increased from 0.0668 to 0.1963. 

8.5. Redo Prob. 8.4 for the case where the sample size n = 100. 

(a) With n = 100, we have 

As in part (a) of Prob. 8.4, c is selected so that 

a =  g(50) = P ( 8  2 c; p = 50) = 0.05 

Since X = N(50; I), we have 

Thus c - 50 = 1.645 and c = 51.645 

(b) The power function is 

Setting p = p,  = 55 and using Table A (Appendix A), we obtain 

fl = Pn = 1 - g(55) = (D(51.645 - 55) = @(-3.355) x 0.0004 
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Notice that with sample size n  = 100, both a and fl have decreased from their respective original values 
of 0.1587 and 0.0668 when n = 25. 

DECISION TESTS 

8.6. In a simple binary communication system, during every T seconds, one of two possible signals 
s,(t) and s , ( t )  is transmitted. Our two hypotheses are 

H,:  s,(t) was transmitted. 
H I :  s , ( t )  was transmitted. 

We assume that 

so@) = 0 and s l ( t )  = 1 0 < t < T 

The communication channel adds noise n(t), which is a zero-mean normal random process with 
variance 1. Let x(t) represent the received signal : 

We observe the received signal x(t)  at some instant during each signaling interval. Suppose that 
we received an observation x = 0.6. 

(a) Using the maximum likelihood test, determine which signal is transmitted. 
(b) Find P, and P,, . 

(a) The received signal under each hypothesis can be written as 

H , :  x = n  
HI:  x = l + n  

Then the pdf of x  under each hypothesis is given by 

The likelihood ratio is then given by 

By Eq. (8.9), the maximum likelihood test is 

Taking the natural logarithm of the above expression, we get 

Since x  = 0.6 > 4, we determine that signal s, ( t )  was transmitted. 

(b) The decision regions are given by 

Ro = { x :  x  < $1 =(-a, $) R ,  = { x :  x  > $1 =(*, m) 
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Then by Eqs. (8.1) and (8.2) and using Table A (Appendix A), we obtain 

8.7. In the binary communication system of Prob. 8.6, suppose that P(H,)  = and P ( H , )  = 4. 
(a) Using the MAP test, determine which signal is transmitted when x = 0.6. 
(b) Find PI and P I , .  

(a) Using the result of Prob. 8.6 and Eq. (8.15), the MAP test is given by 

Taking the natural logarithm of the above expression, we get 

Since x = 0.6 < 1.193, we determine that signal s,(t) was transmitted. 

(b) The decision regions are given by 

Ro = { x :  x < 1.193) = (-MI, 1.193) 
R 1  = {x: x > 1.193) = (1.193, a) 

Thus, by Eqs. (8.1) and (8.2) and using Table A (Appendix A), we obtain 

8.8. Derive the Neyman-Pearson test, Eq. (8.1 7). 

From Eq. (8.1 6), the objective function is 

J = ( 1  - 8) - n(a - a,) = P(Dl ] H I )  - R[P(D, (H,) - a,,] (8.29) 

where 1 is an undetermined Lagrange multiplier which is chosen to satisfy the constraint a = a,. Now, we 
wish to choose the critical region R ,  to maximize J. Using Eqs. (8.1) and (8.2), we have 
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To maximize J by selecting the critical region R,, we select x E R, such that the integrand in Eq. (8.30) is 
positive. Thus R ,  is given by 

and the Neyman-Pearson test is given by 

and 1 is determined such that the constraint 

is satisfied. 

8.9. Consider the binary communication system of Prob. 8.6 and suppose that we require that a = 
P, = 0.25. 

Using the Neyman-Pearson test, determine which signal is transmitted when x = 0.6. 

Find PI,. 

Using the result of Prob. 8.6 and Eq. (8.1 7), the Neyman-Pearson test is given by 

Taking the natural logarithm of the above expression, we get 

The critical region R, is thus 

R ,  = {x: x > $ + In A] 

Now we must determine A such that a = P,  = P ( D ,  ( H,) = 0.25. By Eq. (8.1), we have 

Thus 1 - @(i + In A) = 0.25 or Q(4 + In A) = 0.75 

From Table A (Appendix A), we find that Q(0.674) = 0.75. Thus 

Then the Neyman-Pearson test is 

Since x = 0.6 < 0.674, we determine that signal so(t) was transmitted. 

By Eq. (8.2), we have 

8.10. Derive Eq. (8.21). 
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By Eq. (8.19)' the Bayes' risk is 

Now we can express 

Then C can be expressed as 

Since Ro u R ,  = S and Ro n R ,  = 4, we can write 

Then Eq. (8.32) becomes 

e = coo P(H0) + COIP(H1) + K(C10 - Coo)P(Ho)f (x  I HOI1 - W O l  - Cl , )P(Hl ) f  (x  I H,II) dx 
JR 

The only variable in the above expression is the critical region R, .  By the assumptions [Eq. (8.20)] C l o  > 
Coo and Col  > C, , ,  the two terms inside the brackets in the integral are both positive. Thus, C is mini- 
mized if R ,  is chosen such that 

for all x E R ,. That is, we decide to accept H ,  if 

In terms of the likelihood ratio, we obtain 

which is Eq. (8.21). 

8.11. Consider a binary decision problem with the following conditional pdf's: 

f (x  I H,) = i e - IX I  

f ( x ( H 1 )  = e-21XI 

The Bayes' costs are given by 

Coo = C l l  = 0 C,,  = 2 C l 0  = 1 

(a) Determine the Bayes' test if P(Ho) = 3 and the associated Bayes' risk. 
(b) Repeat (a) with P(H,) = *. 
(a) The likelihood ratio is 

By Eq. (8.21)' the Bayes' test is given by 
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Taking the natural logarithm of both sides of the last expression yields 

Thus, the decision regions are given by 

0.693 0.693 
Then PI = P(Dl I Ho) = 

P11 = P(Do 1 HI) = e 2 " d x +  e - " d x = 2  e e - 2 " d x = 0 . 2 5  1' 0.693 I' 0.693 

and by Eq. (8.19), the Bayes' risk is 

(b) The Bayes' test is 

Again, taking the natural logarithm of both sides of the last expression yields 

Thus, the decision regions are given by 

Ro = { x :  1x1 > 1.386) R, = { x :  1x1 < 1.386) 

Then 

and by Eq. (8.19), the Bayes' risk is 

8.12. Consider the binary decision problem of Prob. 8.11 with the same Bayes' costs. Determine the 
minimax test. 

From Eq. (8.33), the likelihood ratio is 

In terms of P(Ho), the Bayes' test [Eq. (8.21)] becomes 

Taking the natural logarithm of both sides of the last expression yields 

For P(H,) > 0.8,6 becomes negative, and we always decide H,. For P(H,) _< 0.8, the decision regions are 

Ro = ( x :  1x1 > S) R ,  = {.x: 1x1 < 6) 
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Then, by setting Coo = C , ,  = 0, C, ,  = 2, and C , ,  = 1 in Eq. (8.19), the minimum Bayes' risk C* can be 
expressed as a function of P(Ho) as 

C*[P(Ho)] = P(Ho) I : 4 r x l  dx  + Z[1 - P(Ho)] [(:e2. dx + [ m e - 2 x  d x ]  

= P(Ho) [ e - .  dx + 1[1 - P(Ho)] e-'. dx i' 
= P(Ho)(l - e - * )  + 2[1 - P(Ho)]e-26 

From the definition of 6 [Eq. (8.34)], we have 

Thus e - d  = PWo)  and e - 2 * =  p2(Ho) 
4[1 - P(H0)I 16[1 - P(HO)l2 

Substituting these values in to Eq. (8.35), we obtain 

Now the value of P(Ho) which maximizes C* can be obtained by setting dC*[P(Ho)J/dP(Ho) equal to zero 
and solving for P(Ho). The result yields P(Ho) = 3.  Substituting this value into Eq. (8.34), we obtain the 
following minimax test : 

8.13. Suppose that we have n observations Xi, i = 1, . . ., n, of radar signals, and X i  are normal iid 
r.v.'s under each hypothesis. Under H , ,  Xi have mean p, and variance a2, while under H I ,  Xi  
have mean p,  and variance a2, and p, > p, . Determine the maximum likelihood test. 

By Eq. (2.52) for each Xi,  we have 

Since the X i  are independent, we have 

With, ie likelihood ratio is then given by 

Hence, the maximum likelihood test is given by 
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Taking the natural logarithm of both sides of the above expression yields 

Equation (8.36) indicates that the statistic 

provides enough information about the observations to enable us to make a decision. Thus, it is called the 
suficient statistic for the maximum likelihood test. 

8.14. Consider the same observations X i ,  i = 1, . . . , n, of radar s:ignals as in Prob. 8.13, but now, under 
H,, Xi  have zero mean and variance go2, while under H I ?  X i  have zero mean and variance a 1 2 ,  
and aI2 > go2. Determine the maximum likelihood test. 

In a similar manner as in Prob. 8.13, we obtain 

With a12 - > 0, the likelihood ratio is 

and the maximum likelihood test is 

Taking the natural logarithm of both sides of the above expression yields 

Note that in this case, 

is the sufficient statistic for the maximum likelihood test. 

8.15. In the binary communication system of Prob. 8.6, suppose that we have n independent obser- 
vations X i  = X(ti) ,  i = 1, . . ., n, where 0 < t 1  < . < t ,  I T .  

(a) Determine the maximum likelihood test. 
(b) Find PI and PI, for n = 5 and n = 10. 

(a) Setting I(, = 0 and I(, = 1 in Eq. (8.36), the maximum likelihood test is 
9 n H I  
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Then by Eqs. (4.108) and (4.1 12), and the result of Prob. 5.60, we see that Y is a normal r.v. with zero 
mean and variance l l n  under H ,  , and is a normal r.v. with mean 1 and variance l / n  under H ,. Thus 

Note that PI = PI, .  Using Table A (Appendix A), we have 

PI = PI, = 1 - @ ( l . l l 8 )  = 0.1318 for n = 5 
PI = PI, = 1 - O(1.581) = 0.057 for n = 10 

8.16. In the binary communication system of Prob. 8.6, suppose that s,(t) and sl(t) are arbitrary 
signals and that n observations of the received signal x(t) are made. Let n samples of s,(t) and 
sl(t) be represented, respectively, by 

So=C~Ol ,S02, . - . ,~onl~  and s1=Cs11,s12,...,s,,3T 

where T denotes "transpose of." Determine the MAP test. 

For each Xi, we can write 

1 
f (x i  ( H,) = - e x p [  4 ( x i  - s,,)'] 

Jz;; 

Since the noise components are independent, we have 

and the likelihood ratio is given by 

Thus, by Eq. (8.1 5), the MAP test is given by 

Taking the natural logarithm of both sides of the above expression yields 
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Supplementary Problems 

8.17. Let (XI, . . . , X,) be a random sample of a Bernoulli r.v. X with pmf 

where it is known that 0 < p 5 3. Let 

and n = 20. As a decision test, we use the rule to reject H, if I:=, xi  s 6. 
(a) Find the power function g(p) of the test. 

(b) Find the probability of a Type I error a. 

(c) Find the probability of a Type I1 error @ (i) when p ,  = $ and (ii) when p, = &. 

Ans. (a) g@)= (2i)pk(l -P)~'-* O < p l i  
k = O  

(b) a = 0.0577; (c) (i) /3 = 0.2142, (ii) /3 = 0.0024 

8.18. Let (X,, . . . , X,) be a random sample of a normal r.v. X with mean p and variance 36. Let 

H,: p = 5 0  
HI :  p = 55 

As a decision test, we use the rule to accept H, if 2 < 53, where 2 is the value of the sample mean. 

(a) Find the expression for the critical region R,. 

(b) Find a and @ for n = 16. 

(b) a = 0.0228, 8 = 0.0913 

8.19. Let (X,, . . . , X,) be a random sample of a normal r.v. X with mean p and variance 100. Let 

As a decision test, we use the rule that we reject H, if 2 2  c. Find the value of c and sample size n such that 
a = 0.025 and B = 0.05. 

Ans. c = 52.718, n = 52 

8.20. Let X be a normal r.v. with zero mean and variance a2. Let 

H,: a2  = 1 
HI:  a2 = 4  

Determine the maximum likelihood test. 

HI 
Ans. 1x1 2 1.36 

Ho 

8.21. Consider the binary decision problem of Prob. 8.20. Let P(H,) ==,$ and P(H,) = 3. Determine the MAP 
test. 
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8.22. Consider the binary communication system of Prob. 8.6. 

(a) Construct a Neyman-Pearson test for the case where a = 0.1. 
(b) Find g. 

H1 
Ans. (a) Ixl><1.282; (b) /?=0.6111 

Ho 
8.23. Consider the binary decision problem of Prob. 8.11. Determine the Bayes' test if P(Ho) = 0.25 and the 

Bayes' costs are 

Coo = Cll = 0 CO1 = 1 CIO = 2 
H1 

Ans. 1x1 5 1.10 
H o  



Chapter 9 

Queueing Theory 

9.1 INTRODUCTION 

Queueing theory deals with the study of queues (waiting lines). Queues abound in practical situ- 
ations. The earliest use of queueing theory was in the design of a telephone system. Applications of 
queueing theory are found in fields as seemingly diverse as traffic control, hospital management, and 
time-shared computer system design. In this chapter, we present an elementary queueing theory. 

9.2 QUEUEING SYSTEMS 

A. Description: 

A simple queueing system is shown in Fig. 9-1. Customers arrive randomly at an average rate of 
A,. Upon arrival, they are served without delay if there are available servers; otherwise, they are 
made to wait in the queue until it is their turn to be served. Once served, they are assumed to leave 
the system. We will be interested in determining such quantities as the average number of customers 
in the system, the average time a customer spends in the system, the average time spent waiting in the 
queue, etc. 

The description of any queueing system requires the specification of three parts: 

Arrivals + 

1. The arrival process 

2. The service mechanism, such as the number of servers and service-time distribution 

3. The queue discipline (for example, first-come, first-served) 

B. Classification : 

Fig. 9-1 A simple queueing system. 

Queue 

The notation A/B/s/K is used to classify a queueing system, where A specifies the type of arrival 
process, B denotes the service-time distribution, s specifies the number of servers, and K denotes the 
capacity of the system, that is, the maximum number of customers that can be accommodated. If K is 
not specified, it is assumed that the capacity of the system is unlimited. For example, an M/M/2 
queueing system (M stands for Markov) is one with Poisson arrivals (or exponential interarrival time 
distribution), exponential service-time distribution, and 2 servers. An M/G/l queueing system has 
Poisson arrivals, general service-time distribution, and a single server. A special case is the M/D/1 
queueing system, where D stands for constant (deterministic:) service time. Examples of queueing 
systems with limited capacity are telephone systems with limited trunks, hospital emergency rooms 
with limited beds, and airline terminals with limited space in which to park aircraft for loading and 
unloading. In each case, customers who arrive when the systeim is saturated are denied entrance and 
are lost. 

C. Useful Formulas 

b 

Some basic quantities of queueing systems are 

Service 
Departures 

b 
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L: the average number of customers in the system 

L,: the average number of customers waiting in the queue 
L,: the average number of customers in service 
W :  the average amount of time that a customer spends in the system 

W,: the average amount of time that a customer spends waiting in the queue 
W,: the average amount of time that a customer spends in service 

Many useful relationships between the above and other quantities of interest can be obtained by 
using the following basic cost identity: 

Assume that entering customers are required to pay an entrance fee (according to some rule) to 
the system. Then we have 

Average rate at which the system earns = A, x average amount an entering customer (9.1) 

pays where 1, is the average arrival rate of entering customers 

X(t) A, = lim 7 

and X(t) denotes the number of customer arrivals by time t. 
If we assume that each customer pays $1 per unit time while 

L=R,W 

Equation (9.2) is sometimes known as Little's formula. 
Similarly, if we assume that each customer pays $1 

yields 

Lq = A, wq 

in the system, Eq. (9.1) yields 

(9.4 

per unit time while in the queue, Eq. (9.1) 

(9.3) 

If we assume that each customer pays $1 per unit time while in service, Eq. (9.1) yields 

Note that Eqs. (9.2) to (9.4) are valid for almost all queueing systems, regardless of the arrival process, 
the number of servers, or queueing discipline. 

9.3 BIRTH-DEATH PROCESS 

We say that the queueing system is in state S,  if there are n customers in the system, including 
those being served. Let N(t) be the Markov process that takes on the value n when the queueing 
system is in state S, with the following assumptions: 

1. If the system is in state S, ,  it can make transitions only to S,-, or S,+ , , n 2 1 ; that is, either a 
customer completes service and leaves the system or, while the present customer is still being 
serviced, another customer arrives at the system ; from So , the next state can only be S, . 

2. If the system is in state S, at time t, the probability of a transition to Sn+, in the time interval 
(t, t + At) is an At. We refer to a, as the arrival parameter (or the birth parameter). 

3. If the system is in state S, at time t, the probability of a transition to S,-, in the time interval 
(t, t + At) is dn At. We refer to d, as the departure parameter (or the death parameter). 

The process N(t) is sometimes referred to as the birth-death process. 
Let p,(t) be the probability that the queueing system is in state S, at time t;  that is, 

Then we have the following fundamental recursive equations for N(t) (Prob. 9.2): 
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Assume that in the steady state we have 

and setting pb(t) and pk(t) = 0 in Eqs. (9.6), we obtain the following steady-state recursive equation: 

(an + dn)~n = an-lpn-1 + dn+lpn+l n 2 1 

and for the special case with do = 0, 

Equations (9.8) and (9.9) are also known as the steady-state equilibrium equations. The state transition 
diagram for the birth-death process is shown in Fig. 9-2. 

Fig. 9-2 State transition diagram for the birth-death process. 

Solving Eqs. (9.8) and (9.9) in terms of p, , we obtain 

where po can be determined from the fact that 

provided that the summation in parentheses converges to a finite value. 

9.4 THE M/M/1 QUEUEING SYSTEM 

In the M/M/1 queueing system, the arrival process is the Poisson process with rate A (the mean 
arrival rate) and the service time is exponentially distributed with parameter p (the mean service rate). 
Then the process N(t) describing the state of the M/M/1 queueing system at time t is a birth-death 
process with the Following state independent parameters: 

Then from Eqs. (9.1 0) and (9.1 I), we obtain (Prob. 9.3) 

where p = Alp < 1, which implies that the server, on the average, must process the customers faster 
than their average arrival rate; otherwise the queue length (the number of customers waiting in the 
queue) tends to infinity. The ratio p = Alp is sometimes referred to as the trafJic intensity of the 
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system. The traffic intensity of the system is defined as 

mean service time mean arrival rate 
Traffic intensity = - - 

mean interarrival time mean service rate 

The average number of customers in the system is given by (Prob. 9.4) 

Then, setting A, = 3, in Eqs. (9.2) to (9.4), we obtain (Prob. 9.5) 

9.5 THE M/M/s QUEUEING SYSTEM 

In the M/M/s queueing system, the arrival process is the Poisson process with rate A and each of 
the s servers has an exponential service time with parameter p. In this case, the process N(t )  describ- 
ing the state of the M/M/s queueing system at time t is a birth-death process with the following 
parameters : 

Note that the departure parameter d, is state dependent. Then, from Eqs. (9.10) and (9.1 I ) ,  we obtain 
(Prob. 9.10) 

where p = A/(+) < 1. Note that t :he ratio p = is the traffic intensity of the M/M/s queueing 
system. The average number of customers in the system and the average number of customers in the 
queue are given, respectively, by (Prob. 9.12) 

By Eqs. (9.2) and (9.3), the quantities W and W, are given by 
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9.6 THE M/M/l/K QUEUEING SYSTEM 

In the M/M/l/K queueing system, the capacity of the system is limited to K customers. When the 
system reaches its capacity, the effect is to reduce the arrival rate to zero until such time as a cus- 
tomer is served to again make queue space available. Thus, the M/M/l/K queueing system can be 
modeled as a birth-death process with the following parameters : 

Then, from Eqs. (9.1 0) and (9.1 I), we obtain (Pro b. 9.14) 

where p = Alp. It is important to note that it is no longer necessary that the traffic intensity p = R/p 
be less than 1. Customers are denied service when the system is in state K. Since the fraction of 
arrivals that actually enter the system is 1 - p, ,  the effective arrival rate is given by 

f e  = 4 1  - PK) 

The average number of customers in the system is given by (Prob. 9.15) 

Then, setting A, = A, in Eqs. (9.2) to (9.4), we obtain 

9.7 THE M/M/s/K QUEUEING SYSTEM 

Similarly, the M/M/s/K queueing system can be modeled as a birth-death process with the fol- 
lowing parameters : 

Then, from Eqs. (9.1 0) and (9.1 I), we obtain (Prob. 9.17) 

where p = A&). Note that the expression for p, is identical in form to that for the M/M/s system, 
Eq. (9.21). They differ only in the po term. Again, it is not necessary that p = A/(sp) be less than 1. The 
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average number of customers in the queue is given by (Prob. 9.18) 

The average number of customers in the system is 

The quantities W and Wq are given by 

Solved Problems 

9.1. Deduce the basic cost identity (9.1). 

Let T be a fixed large number. The amount of money earned by the system by time T can be com- 
puted by multiplying the average rate at which the system earns by the length of time T. On the other 
hand, it can also be computed by multiplying the average amount paid by an entering customer by the 
average number of customers entering by time T, which is equal to AaT, where A, is the average arrival rate 
of entering customers. Thus, we have 

Average rate at which the system earns x T = average amount paid by an entering customer x (JOT) 

Dividing both sides by T (and letting T -, co), we obtain Eq. (9.1). 

9.2. Derive Eq. (9.6). 

From properties 1 to 3 of the birth-death process N(t), we see that at time t + At, the system can be in 
state S, in three ways: 

1. By being in state S, at time t and no transition occurring in the time interval (t, t + At). This happens 
with probability (1 - a, At)(l - d, At) = 1 - (a, + d,) At [by neglecting the second-order effect 
a, dn(At)21. 

2. By being in state S , - ,  at time t and a transition to S, occurring in the time interval (t, t + At). This 
happens with probability a, -, At. 

3. By being in state S , ,  , at time t and a transition to S ,  occurring in the time interval (t, t + At). This 
happens with probability d, + , At. 

Let pi(t) = P[N(t) = i] 

Then, using the Markov property of N(t), we obtain 
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Rearranging the above relations 

Letting At -, 0, we obtain 

9.3. Derive Eqs. (9.13) and (9.1 4). 

Setting un = 1, do  = 0, and dn  = y in Eq. (9.1 O), we get 

P l = - P  - 
C1 

0 - PPo 

where po is determined by equating 

from which we obtain 

9.4. Derive Eq. (9.15). 

Since pn is the steady-state probability that the system contains exactly n customers, using Eq. (9.14), 
the average number of customers in the M/M/1 queueing system is given by 

where p = 1/y < 1. Using the algebraic identity 

we obtain 

9.5. Derive Eqs. (9.1 6) to (9.1 8). 

Since 1, = A, by Eqs. (9.2) and (9.15), we get 
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which is Eq. (9.1 6). Next, by definition, 

wq = w - w, 
where W, = 1/p, that is, the average service time. Thus, 

which is Eq. (9.1 7). Finally, by Eq. (9.31, 

which is Eq. (9.1 8). 

9.6. Let W, denote the amount of time an arbitrary customer spends in the M/M/1 queueing system. 
Find the distribution of W,. 

We have 
03 

P{ W, I a} = P( W, I a 1 n in the system when the customer arrives} 
n = 0 

x P{n in the system when the customer arrives} (9.44) 

where n is the number of customers in the system. Now consider the amount of time W, that this customer 
will spend in the system when there are already n customers when he or she arrives. When n = 0, then 
W, = W,,,,, that is, the service time. When n 2 1, there will be one customer in service and n - 1 customers 
waiting in line ahead of this customer's arrival. The customer in service might have been in service for some 
time, but because of the memoryless property of the exponential distribution of the service time, it follows 
that (see Prob. 2.57) the arriving customer would have to wait an exponential amount of time with param- 
eter p for this customer to complete service. In addition, the customer also would have to wait an exponen- 
tial amount of time for each of the other n - 1 customers in line. Thus, adding his or her own service time, 
the amount of time W, that the customer will spend in the system when there are already n customers when 
he or she arrives is the sum of n + 1 iid exponential r.v.'s with parameter p. Then by Prob. 4.33, we see that 
this r.v. is a gamma r.v. with parameters (n + 1, p). Thus, by Eq. (2.83), 

P{Wa 5 a I n in the system when customer arrives) = 

From Eq. (9.1 4), 

P{n in the system when customer arrives) = pn = 1 - - ( XY 
Hence, by Eq. (9.44), 

Thus, by Eq. (2.79), W, is an exponential r-v. with parameter p - 1. Note that from Eq. (2.99), E(W,) = 
1/(p - A), which agrees with Eq. (9.16), since W = E( W,). 

9.7. Customers arrive at a watch repair shop according to a Poisson process at a rate of one per 
every 10 minutes, and the service time is an exponential r.v. with mean 8 minutes. 

(a) Find the average number of customers L, the average time a customer spends in the shop 
W, and the average time a customer spends in waiting for service W,. 
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(b) Suppose that the arrival rate of the customers increases 10 percent. Find the corresponding 
changes in L, W, and W,. 

(a) The watch repair shop service can be modeled as an M/M/1 queueing system with 1 = &, p = 4. Thus, 
from Eqs. (9.1 5), (9.1 6), and (9.43), we have 

1 1 w=-=-- - 40 minutes 
- A  Q - i i j  

W, = W - W, = 40 - 8 = 32 minutes 

(b) Now 1 = 4, p = g. Then 

1 w=- - 
1 

--= 72 minutes 
p - a  + - g  

W, = W - W, = 72 - 8 = 64 minutes 

It can be seen that an increase of 10 percent in the customer arrival rate doubles the average number 
of customers in the system. The average time a customer spends in queue is also doubled. 

9.8. A drive-in banking service is modeled as an M/M/1 queueing system with customer arrival rate 
of 2 per minute. It is desired to have fewer than 5 customers line up 99 percent of the time. How 
fast should the service rate be? 

From Eq. (9.14), 
a, a, 1 

P(5 or more customers in the system} = C pn = C (1 - p)pn = p5 p = - 
n = 5  n = 5  P 

In order to have fewer than 5 customers line up 99 percent of the time, we require that this probability be 
less than 0.01. Thus, 

from which we obtain 

Thus, to meet the requirements, the average service rate must be at least 5.024 customers per minute. 

9.9. People arrive at a telephone booth according to a Poisson process at an average rate of 12 per 
hour, and the average time for each call is an exponential r.v. with mean 2 minutes. 

(a) What is the probability that an arriving customer will find the telephone booth occupied? 

(b) It is the policy of the telephone company to install additional booths if customers wait an 
average of 3 or more minutes for the phone. Find the average arrival rate needed to justify a 
second booth. 

(a) The telephone service can be modeled as an M/M/1 queueing system with 1 = 4, p = 3, and p = 
1/p = 5. The probability that an arriving customer will find the telephone occupied is P(L > 0), where 
L is the average number of customers in the system. Thus, from Eq. (9.1 3), 
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from which we obtain R 2 0.3 per minute. Thus, the required average arrival rate to justify the second 
booth is 18 per hour. 

9.10. Derive Eqs. (9.20) and (9.21). 

From Eqs. (9.1 9) and (9.1 O), we have 

Let p = I/(sp). Then Eqs. (9.46) and (9.47) can be rewritten as 

which is Eq. (9.21). From Eq. (9.1 I ) ,  p ,  is obtained by equating 

Using the summation formula 

we obtain Eq. (9.20); that is, 

provided p = A/(sp) < 1. 

9.11. Consider an M/M/s queueing system. Find the probability that an arriving customer is forced to 
join the queue. 

An arriving customer is forced to join the queue when all servers are busy-that is, when the number 
of customers in the system is equal to or greater than s. Thus, using Eqs. (9.20) and (9.21), we get 

w sS (SPY 
P(a customer is forced to join queue) = pn = p0 - 1 pn = po - 

n=s S! , = ,  s!(l - p) 

Equation (9.49) is sometimes referred to as Erlang's delay (or C) formula and denoted by C(s, Alp). Equation 
(9.49) is widely used in telephone systems and gives the probability that no trunk (server) is available for an 
incoming call (arriving customer) in a system of s trunks. 

9.12. Derive Eqs. (9.22) and (9.23). 
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Equation (9.21) can be rewritten as 

Then the average number of customers in the system is 

" - ' (spy' 

n = 0 n = 0 

Using the summation formulas, 

and Eq. (9.20), we obtain 

Next, using Eqs. (9.21) and (9.50), the average number of customers in the queue is 

9.13. A corporate computing center has two computers of the same capacity. The jobs arriving at the 
center are of two types, internal jobs and external jobs. These jobs have Poisson arrival times 
with rates 18 and 15 per hour, respectively. The service time for a job is an exponential r.v. with 
mean 3 minutes. 

(a) Find the average waiting time per job when one computer is used exclusively for internal 
jobs and the other for external jobs. 

(b) Find the average waiting time per job when two computers handle both types of jobs. 

(a) When the computers are used separately, we treat them as two M/M/1 queueing systems. Let W,, and 
W,, be the average waiting time per internal job and per external job, respectively. For internal jobs, 
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A1 = = & and p1 = 3. Then, from Eq. (9.16), 

3 - 
10 Wq I = ---- = 27 min 

4(4 - 6)  
For external jobs, 1, = = $ and p2 = 5, and 

1 
;I Wq2 = ---- - - 9 min 

+(3 - $1 
(b) When two computers handle both types of jobs, we model the computing service as an M/M/2 

queueing system with 

Now, substituting s = 2 in Eqs. (9.20), (9.22), (9.24), and (9.25), we get 

Thus, from Eq. (9.54), the average waiting time per job when both computers handle both types of jobs 
is given by 

2(%) 
% =  11 = 6.39 min mu - (%)21 

From these results, we see that it is more efficient for both computers to handle both types of jobs. 

9.14. Derive Eqs. (9.27) and (9.28). 

From Eqs. (9.26) and (9.1 O), we have 

From Eq. (9.1 I ) ,  p,  is obtained by equating 

Using the summation formula 

we obtain 

Note that in this case, there is no need to impose the condition that p = Alp < 1. 

9.15. Derive Eq. (9.30). 
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Using Eqs. (9.28) and (9.51), the average number of customers in the system is given by 

9.16. Consider the M/M/l/K queueing system. Show that 

Lq = L - (1 - p,) 

1 
wq=-L 

P 

In the M/M/l/K queueing system, the average number of customers in the system is 

K K 

L = E(N) = np, and 1 p, = 1 
n = 0 n = 0 

The average number of customers in the queue is 

A customer arriving with the queue in state S, has a wait time T, that is the sum of n independent exponen- 
tial r.v.'s, each with parameter p. The expected value of this sum is n/p  [Eq. (4.10811. Thus, the average 
amount of time that a customer spends waiting in the queue is 

Simililarly, the amount of time that a customer spends in the system is 

Note that Eqs. (9.57) to (9.59) are equivalent to Eqs. (9.31) to (9.33) (Prob. 9.27). 

9.17. Derive Eqs. (9.35) and (9.36). 

As in Prob. 9.10, from Eqs. (9.34) and (9.10), we have 

Let p = rl/(sp). Then Eqs. (9.60) and (9.61) can be rewritten as 
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which is Eq. (9.36). From Eq. (9.1 I ) ,  p, is obtained by equating 
K 

n=O 

Using the summation formula (9.56), we obtain 

which is Eq. (9.35). 

9.18. Derive Eq. (9.37). 

Using Eq. (9.36) and (9.51), the average number of customers in the queue is given by 

(sp)" K - s  
n - s)pn-' = po SI mpm = P o 7  C( 

n = s  m=O 

9.19. Consider an M/M/s/s queueing system. Find the probability that all servers are busy. 

Setting K = s in Eqs. (9.60) and (9.61), we get 

and p, is obtained by equating 

Thus 

The probability that all servers are busy is given by 

Note that in an M/M/s/s  queueing system, if an arriving customer finds that all servers are busy, the 
customer will turn away and is lost. In a telephone system with s trunks, p, is the portion of incoming calls 
which will receive a busy signal. Equation (9.64) is often referred to as Erlang's loss (or B) formula and is 
commonly denoted as B(s, Alp). 

9.20. An air freight terminal has four loading docks on the main concourse. Any aircraft which arrive 
when all docks are full are diverted to docks on the back concourse. The average aircraft arrival 
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rate is 3 aircraft per hour. The average service time per aircraft is 2 hours on the main concourse 
and 3 hours on the back concourse. 

Find the percentage of the arriving aircraft that are diverted to the back concourse. 
If a holding area which can accommodate up to 8 aircraft is added to the main concourse, 
find the percentage of the arriving aircraft that are diverted to the back concourse and the 
expected delay time awaiting service. 

The service system at the main concourse can be modeled as an M/M/s/s queueing system with s = 4, 
1 = 3, p = 3, and 1/p = 6. The percentage of the arriving aircraft that are diverted to the back con- 
course is 

100 x P(al1 docks on the main concourse are full) 

From Eq. (9.64), 

64/4 ! -- P(al1 docks on the main concourse are full) = p, = 7 - 54 P 0.47 
115 C 9 

n = O  

Thus, the percentage of the arriving aircraft that are diverted to the back concourse is about 47 
percent. 

With the addition of a holding area for 8 aircraft, the service system at the main concourse can now be 
modeled as an M/M/s/K queueing system with s = 4, K = 12, and p = A/(sp) = 1.5. NOW, from Eqs. 
(9.35) and (9.36), 

Thus, about 33.2 percent of the arriving aircraft will still be diverted to the back concourse. 
Next, from Eq. (9.37), the average number of aircraft in the queue is 

Then, from Eq. (9.40), the expected delay time waiting for service is 

W, = Lq = 6'0565 P 3.022 hours 
1 - ) 3(1 - 0.332) 

Note that when the 2-hour service time is added, the total expected processing time at the main 
concourse will be 5.022 hours compared to the 3-hour service time at the back concourse. 

Supplementary Problems 

9.21. Customers arrive at the express checkout lane in a supermarket in a Poisson process with a rate of 15 per 
hour. The time to check out a customer is an exponential r.v. with mean of 2 minutes. 

(a) Find the average number of customers present. 

(b) What is the expected idle delay time experienced by a customer? 

(c) What is the expected time for a customer to clear a system? 

Ans. (a) 1 ; (h) 2 min; (c) 4 min 

9.22. Consider an M/M/1 queueing system. Find the probability of finding at least k customers in the system. 
Ans. pk = 
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9.23. In a university computer center, 80 jobs an hour are submitted on the average. Assuming that the computer 
service is modeled as an M/M/1 queueing system, what should the service rate be if the average turnaround 
time (time at submission to time of getting job back) is to be less than 10 minutes? 

Ans. 1.43 jobs per minute 

9.24. The capacity of a communication line is 2000 bits per second. The line is used to transmit 8-bit characters, 
and the total volume of expected calls for transmission from many devices to be sent on the line is 12,000 
characters per minute. Find (a) the traffic intensity, (h )  the average number of characters waiting to be 
transmitted, and (c) the average transmission (including queueing delay) time per character. 

Ans. (a)  0.8; (h)  3.2; (c) 20 ms 

9.25. A bank counter is currently served by two tellers. Customers entering the bank join a single queue and go 
to the next available teller when they reach the head of the line. On the average, the service time for a 
customer is 3 minutes, and 15 customers enter the bank per hour. Assuming that the arrivals process is 
Poisson and the service time is an exponential r.v., find the probability that a customer entering the bank 
will have to wait for service. 

Ans. 0.205 

9.26. A post office has three clerks serving at the counter. Customers arrive on the average at the rate of 30 per 
hour, and arriving customers are asked to form a single queue. The average service time for each customer 
is 3 minutes. Assuming that the arrivals process is Poisson and the service time is an exponential r.v., find 
(a) the probability that all the clerks will be busy, (b) the average number of customers in the queue, and (c) 
the average length of time customers have to spend in the post office. 

Ans. (a) 0.237; (6 )  0.237; (c)  3.947 min 

9.27. Show that Eqs. (9.57) to (9.59) and Eqs. (9.31) to (9.33) are equivalent. 

Hint: Use Eq.  (9.29). 

9.28. Find the average number of customers L in the M/M/l/K queueing system when iZ = p. 

Ans. K/2 

9.29. A gas station has one diesel fuel pump for trucks only and has room for three trucks (including one at the 
pump). On the average trucks arrive at the rate of 4 per hour, and each truck takes 10 minutes to service. 
Assume that the arrivals process is Poisson and the service time is an exponential r.v. 

(a) What is the average time for a truck from entering to leaving the station? 

(b) What is the average time for a truck to wait for service? 

(c) What percentage of the truck trafic is being turned away? 

Ans. (a) 20.1 5 min; (h)  10.14 min; (c) 12.3 percent 

9.30. Consider the air freight terminal service of Prob. 9.20. How many additional docks are needed so that at 
least 80 percent of the arriving aircraft can be served in the main concourse with the addition of holding 
area? 

Ans. 4 
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Fig. A 

Table A Normal Distribution @(z) 



TABLE A NORMAL DISTRIBUTION 

Table A--Continued 

The material below refers to Fig. A. 



Appendix B 

Fourier Transform 

B.1 CONTINUOUS-TIME FOURIER TRANSFORM 

Definition : 

Table B-1 Properties of the Continuous-Time Fourier Transform 

I Property 

Linearity 
Time shifting 
Frequency shifting 

Time scaling 

Time reversal 
Duality 

Time differentiation 

Frequency differentiation 

Integration 

Convolution 

Multiplication 

Real signal 

Even component 
Odd component 

I Parseval's theorem 

Signal Fourier Transform 



FOURIER TRANSFORM 

Table B-2 Common Continuous-Time Fourier Transform Pairs 

sin at 
7ct 

i 1 t > O  
sgn t = 

- 1  t < O  

2nS(o) 
2nS(o - w,) 

a[G(o - a,) + S(w + o,)] 
-jn[S(o - oo) - 6(w + a,)] 

(jo + a)' 
2a 

a2 + o2 

sin o a  
2a - 

ma 

B.2 DISCRETE-TIME FOURIER TRANSFORM 

Definition : 

Table B-3 Properties of the Discrete-Time Fourier Transform 

[APP. B 



APP. B] FOURIER TRANSFORM 

Table B-SContinued 

Property 

Frequency shifting 
Time reversal 

Frequency differentiation 

Accumulation 

Convolution 

Multiplication 

Real sequence 

Even component 
Odd component 

Parseval's theorem 

Sequence Fourier Transform 

Table B-4 Common Discrete-Time Fourier Transform Pairs 

sin Wn 
O < W < z  

nn 

1 
n6iQ + l_e-" 

1 
1 - ae-jR 

1 
(1 - ae-jn)' 

1 - a 2  
1 - 2a cos Q ): a2 

sin[R(N, + t ) ]  
sin(R/2) 





Index
A
a priori probability, 266
a posteriori probability, 266
Absorbing states, 168
Absorption, 168

probability, 168
Acceptance region, 264
Accessible states, 167
Algebra of sets, 2-5, 12
Alternative hypothesis, 264
Aperiodic states, 168
Arrival parameter, 282
Arrival process, 170, 201
Autocorrelation, 162, 210
Autocovariance, 162
Axioms of probability, 5-6

B
Bayes'

estimator, 249
estimation, 248, 255
rule, 8
test, 267
theorem, 8

Bernoulli
distribution, 43
experiment, 33
process, 172
r.v., 43
trials, 33

Best estimator, 249
Biased estimator, 251
Binomial

distribution, 44
coefficient, 44
r.v., 44

Birth-death process, 282
Bivariate

normal distribution, 88
r.v., 79, 89

Bonferroni's inequality, 17
Boole's inequality, 18
Brownian motion process (see Wiener process)
Buffon's needle, 103

C
Cauchy

criterion, 221
r.v., 77-78, 135

Cauchy-Schwarz inequality, 108
Central limit theorem, 47, 128-129, 155-156
Chapman-Kolomogorov equation, 166
Characteristic function, 127-128, 154

303
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Chebyshev inequality, 66
Chi-square (c2) r.v., 146
Complement of set, 2
Complex random process, 161-162, 218
Composite hypothesis, 264
Conditional

distribution, 48, 71, 83, 104
expectation, 85, 126
mean, 85, 110
probability, 7, 24
probability density function (pdf), 83
probability mass function (pmf), 83
variance, 85, 110

Confidence
coefficient, 258
interval, 258

Consistent estimator, 248
Continuity theorem of probability, 19
Convolution, 137, 214

integral, 214
sum, 214

Correlation, 85
coefficient, 84-85, 107
Counting process, 170
Covariance, 84-85, 107

matrix, 89
Craps, 34
Critical region, 264
Cross-correlation, 211
Cross power spectral density (or spectrum), 212
Cumulative distribution function (cdf), 37

D
Decision test, 265, 271

Bayes', 267, 274
likelihood ratio, 266
MAP (maximum a posteriori), 266
maximum-likelihood, 265
minimax (min-max), 267
minimum probablity of error, 267
Neyman-Pearson, 266, 272

Decision theory, 264
De Morgan's laws, 5
Dirac d function, 213
Disjoint sets, 3
Distribution

Bernoulli,, 43
binomial, 44
conditional, 48, 71, 83, 104
exponential, 46
first-order, 162
limiting, 169
normal (or gaussian), 47
nth-order, 162
Poisson, 44, 68
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Distribution (continued)
second-order, 162
stationary, 169
uniform, 45

Distribution function, 37, 39, 49
cumulative (cdf), 37

Domain, 38

E
Efficient estimator, 247
Ensemble, 161

average, 162
Equally likely events, 7, 20
Ergodic, in the mean, 243

process, 165
Erlang's, delay (or C) formula, 290

loss (or B) formula, 294
Estimates, point, 247

interval, 247
Estimation, 247
Bayes', 255
error, 249

linear, 249
mean square, 249
maximum likelihood, 253
mean square, 249
parameter, 247

Estimator, Bayes' 249
best, 249
biased, 251
consistent, 248
efficient, 247
maximum-likelihood, 248
minimum mean square error, 249
point, 247, 250
unbiased, 247

Events, 2, 9
certain, 3
elementary, 2
equally likely, 7, 20
impossible, 3
independent, 8
mutually exclusive, 6

and exhaustive, 8
null, 3

Expectation, 42, 125
conditional, 85, 126

Expected value (see Mean)
Experiment, Bernoulli, 33

random, 1
Exponential, distribution, 46

r.v., 46

F
Fourier series, 216, 236
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Fourier series (continued)
Perseval's theorem for, 237

Fourier transform, 218, 240, 299
Functions of r.v.'s, 122-124, 129, 136, 144

G
Gambler's ruin, 190
Gamma, function, 59

r.v., 59, 145
Gaussian distribution (see Normal distribution)
Geometric r.v., 55, 62

H
Hypergeometric r.v., 76
Hypothesis
        alternative, 264

composite, 264
null, 264
simple, 264

Hypothesis testing, 264-275, 268
level of significance, 265
power of, 265

I
Impulse response, 214
Independent (statistically)

events, 8
increments, 163
process, 163
r.v.'s, 80-81, 83

Interarrival process, 170
Intersection of sets, 2
Interval estimate, 247

J
Jacobian, 125
Joint

characteristic function, 127
distribution function, 80, 89
moment-generating function, 126
probability density function (pdf), 82
probability mass function (pmf), 82

K
Karhunen-Loeve expansion, 217, 231

L
Lagrange multiplier, 266
Laplace r.v., 77
Law of large numbers, 128, 155
Level of significance, 265
Likelihood

function, 248
ratio, 265
test, 260
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Limiting distribution, 169
Linear mean-square estimation, 249
Linear system, 213, 231

impulse response of, 214
response to random inputs, 213-215, 231

Little's formula, 282
Log-normal r.v., 134

M
MAP (maximum a posteriori) test, 266
Marginal

distribution function, 81
cumulative distribution function (cdf), 81
probability density function (pdf), 82
probability mass function (pmf), 81

Markov
chains, 164

discrete-parameter, 165-169, 185
homogeneous, 165
irreducible, 167
nonhomogeneous, 165
regular, 169

inequality, 66
matrix, 166
process, 164, 183
property, 74, 164

Maximum likelihood estimator, 248
Mean, 42
Mean square

continuity, 209
derivative, 209
error, 249

minimum, 250
estimation, 249

linear, 249
integral, 210
periodicity, 216

Median, 76
Memoryless property (see Markov property)
Mercer's theorem, 217
Minimax (min-max) test, 267
Minimum probability of error test, 267
Minimum variance estimator, 248
Mixed r.v., 41
Mode, 76
Moment, 42, 84
Moment generating function, 126
Most efficient estimator, 248
Multinomial

coefficient, 114
distribution, 88
theorem, 114
trial, 88

Multiple r.v., 79
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Mutually exclusive
events, 3, 6, 9
and exhaustive events, 8
sets, 3

N
Negative binomial r.v., 77
Neyman-Pearson test, 266, 272
Normal

distribution, 47, 297
bivariate, 88
n-variate, 88

process, 164, 184
r.v., 47
standard, 47

Null
event (set), 3
hypothesis, 264
recurrent state, 168

O
Orthogonal r.v., 85
Orthogonality principle, 250
Outcomes, 1

P
Parameter estimation, 247
Parameter set, 161
Parseval's theorem, 237
Periodic states, 168
Point estimators, 247, 250
Point of occurrence, 169
Poisson, distribution, 44, 68
process, 169-171

r.v., 44
white noise, 230

Positive recurrent states, 168
Posterior probability, 266
Power

function, 269
of test, 265

Power spectral density (or spectrum), 210-213, 225
Prior probability, 266
Probability, 1

density function (pdf), 41
mass function (pmf), 41
measure, 5

Q
Queueing

system, 281
theory, 281
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R
Random

experiment, 1
process, 161

complex, 161-162, 218
independent, 163
real, 161

sample, 155, 247
telegraph signal, 228

semi, 227
variable (r.v.), 38

continuous, 41, 76, 82
discrete, 41
function of, 122
mixed, 41

vector, 79, 86
walk, 173

simple, 173, 183, 195
Range, 38
Rayleigh r.v., 59, 143
Real random process, 161
Recurrent states, 167

null, 168
positive, 168

Regression line, 250
Rejection region, 264
Relative frequency, 5
Renewal process, 170

S
Sample

function, 161
mean, 128, 155
point, 1
space, 1
variance, 262
vector (see Random sample)

Sets, 1
algebra of, 2-5, 12
disjoint, 3
intersection of, 2
mutually exclusive, 3
union of, 2

Simple
hypothesis, 264
random walk, 173, 183, 195

Standard
deviation, 43
normal r.v., 47

State space, 161
States

absorbing, 168
accessible, 167
aperiodic, 168
periodic, 168
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States (continued)
recurrent, 167

null, 168
positive, 168

transient, 168
Stationary

distributions, 169
independent increments, 163
processes, 163
strict sense, 163
wide sense (WSS), 163
transition probability, 165

Statistic, 247
sufficient, 277

Stochastic, continuity, 209
derivative, 209
integral, 210
matrix, (see Markov matrix)
periodicity, 216
process, (see Random process)

System, linear, 213
linear time invariance (LTI), 213-216
response to random inputs, 213-216
parallel, 33
series, 12

T
Threshold value, 266
Time-average, 165
Time autocorrelation function, 165
Total probability, 8
Traffic intensity, 283-284
Transient states, 168
Transition probability, 165

matrix, 165
stationary, 165

Type I error, 264
Type II error, 264

U
Unbiased estimator, 247
Uncorrelated r.v.'s, 85
Uniform, distribution, 45

r.v., 45
Union of sets, 2
Unit, impulse function (see Dirac d function)

impulse sequence, 213
sample response, 214
sample sequence, 213

Universal set, 1

V
Variance, 42

conditional, 85
Vector mean, 89
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Venn diagram, 3

W
Waiting time, 202
White noise, 213, 229

normal (or gaussian), 229
Poisson, 230

Wiener-Khinchin relations, 211
Wiener process, 172, 204

standard, 172
with drift coefficient, 172
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