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CHAPTE.. 1

Basic Simulation Modeling

Recommended sections for a first reading: 1.1 through 1.4 (except 1.4.8), 1.7,

1.1
THE NATURE OF SIMULATION

This is a book about techniques for using computers to imitate, or simulate, the
operations of various kinds of real-world facilities or processes. The facility or
process of interest is usually called a system, and in order to study it scientifically
we often have to make a set of assumptions about how it works Thcsc assumptions,
which usually take the form of math ical or logical relati a
model that is used to try to gain some understanding of how the cnm::pnmlmg
system behaves,

If the relationships that compose the model are simple enough, it may be
possible to use mathematical methods (such as algebra, calculus, or probability
theory) to obtain exaer information on questions of interest; this is called an
analytic solution. However, most real-world systems are too complex to allow
realistic models to be evaluated analytically, and these models must be studied by
means of simulation, In a simulation we use a computer to evaluate a model nu-
merically, and data are gathered in order to estimate the desired true characteris-
tics of the model.

As an example of the use of simulation, consider a manufacturing company that
is contemplating building a large extension onto one of its plants but is not sure if
the potential gain in productivity would justify the construction cost. It certainly
would not be cost-effective to build the extension and then remove it later if it does
not work out. However, a careful simulation study could shed some light on the ®
question by simulating the operation of the plant as it currently exists .md as it
would be if . _lant were expanded.
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Experiment
with a model
of the system

Experiment
with the
actual system

Physical Mathematical
model modél
Analytical Simulation
solution
FIGURE 1.1
Ways to study a system.

+ Experiment with the Actual System vs. Experiment with a Model of the System. I
it is possible (and cost-effective) to alter the system physically and then la? it op-
erate under the new conditions, it is probably desirable to do so, for in this case
there is no question about whether what we study is valid. However, it is rarely
feasible to do this, because such an experiment would often be too costly or too
disruptive to the system. For example, a bank may be contemplating reducing the
number of tellers to decrease costs, but actually trying this could lead to long cus-
tomer delays and alienation. More graphically, the “system” might not even exist,
but we nevertheless want to study it in its various proposed alternative copﬁguyu-
tions to see how it should be built in the first place; examples of this situation
might be a proposed communications network, or a strategic nuclear weapons
system. For these reasons, it is usually necessary to build a model as a represen-
tation of the system and study it as a surrogate for the actual system. When using
a model, there is always the question of whether it accurately reflects the system
for the purposes of the decisions to be made; this question of model validiry is
taken up in detail in Chap. 5.

« Physical Model vs. Mathematical Model. To most people, the word “model”
evokes images of clay cars in wind tunnels, cockpits disconnected from their air-
planes to be used in pilot training, or miniature supertankers scurrying about in
a swimming pool. These are examples of physical models (also called iconic
models), and are not typical of the kinds of models that are usvally of interest in
operations research and systems analysis. Occasiona'™* however, it has been
found useful to build physical models to study engu.cering or management

CHAPTER ONE 5§

systems; examples include tabletop scale models of material-handling systems,
and in at least onc casc a full-scale physical model of a fast-food restaurant in-
side a h plete with full-scale, real (and p bly hungry) hu-
mans [see Swart and Donno (1981)). But the vast majority of models built for
such purposes are mathematical, representing a system in terms of logical and
quantitati jonships that are then ipulated and changed to sec how the
model reacts, and thus how the system would react—if the mathematical model
is a valid one, Perhaps the simplest example of a mathematical model is the fa-
miliar relation d = rr, where r is the rate of travel, ¢ is the time spent traveling,
and d is the distance traveled. This might provide a valid model in one instance
(e.g., a space probe to another planet after it has attained its flight velocity) but a
very poor model for other purposes (e.g., rush-hour commuting on congested
urban freeways).

+ Analytical Solution vs. Simulation. Once we have built a mathematical model, it
‘must then be examined to see how it can be used to answer the questions of inter-
est about the system it is supposed to represent. If the model is simple enough, it
may be possible to work with its relationships and quantities to get an exact,
analytical solution. In the d = rr example, if we know the distance to be traveled
and the velocity, then we can work with the model to get r = d/r as the time that
will be required. This is a very simple, closed-form solution obtainable with just
paper and pencil, but some analytical solutions can become extraordinarily com-
plex, requiring vast computing resources; inverting a large nonsparse matrix is a
well-known example of a situation in which there is an analytical formula known
in principle, but obtaining it numerically in a given instance is far from trivial. If
an analytical solution to a ical model is available and is computationally
efficient, it is usually desirable to study the model in this way rather than via a
simulation. However, many systems are highly complex, so that valid mathemat-
ical models of them are themselves complex, precluding any possibility of an an-
alytical solution. In this case, the model must be studied by means of simularion,
i.e., numerically exercising the model for the inputs in question to see how they
affect the output measures of performance,

While there may be a small element of truth to pejorative old saws such as “method
of last resort” sometimes used to describe simulation, the fact is that we are very
quickly led to simulation in most situations, due to the sheer complexity of the sys-
tems of interest and of the models necessary to represent them in a valid way.

Given, then, that we have a mathematical model to be studied by means of sim-
ulation (h forth referred to as a simulation model), we must then look for par-
ticular tools to do this, It is useful for this purpose to classify simulation models
along three different dimensions:

* Static vs. Dynamic Simulation Models, A static simulation model is a representa-
tion of a system at a particular time, or one that may be used to represent a system
in which time simply plays no role; examples of static simulations are Monte
Carlo models, discussed in Sec. 1.8.3. On the other hand, a dynamic simulation
model repre s a system as it evolves over time, such as a conveyor system in a
factory. -
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. inistic vs. Stochastic Simulation Models, If a simulation model does not
contain any probabilistic (i.c., random) components, it is called deterministic;
a complicated (and analytically i ble) system of di i ions de-

scribing a chemical reaction might be such a model. In deterministic models, the
output is “determined"” once the set of input quantities and relationships in the
model have been specified, even though it might take a lot of computer time to
evaluate what it is. Many systems, however, must be modeled as having at least
some random input components, and these give rise to srochastic simulation mod~
els. (For an example of the danger of ignoring randomness in modeling a system,
see Sec. 4.7.) Most queneing and inventory systems are modeled stochastically.
Stochastic simulation models produce output that is itself random, and must
therefore be treated as only an estimate of the true characteristics of the model;
this is one of the main disadvantages of simulation (see Sec. 1.9) and is dealt with
in Chaps. 9 through 12 of this book.

« Continuous vs. Discrete Simulation Models. Loosely speaking, we definc discrere
and i i ion models analogously to the way discrete and continu-

ous systems were defined above. More precise definitions of discrete (event) sim-
ulation and continuous simulation are given in Secs. 1.3 and 1.8, respectively. It
should be mentioned that a discrete model is not always used to model a discrete
system, and vice versa. The decision whether to usc a discrete or a continuous
model for a particular system depends on the specific objectives of the study. For
example, a model of traffic flow on a freeway would be discrete if the character-
istics and movement of individual cars are important. Alternatively, if the cars can
be treated “in the aggregate,” the flow of traffic can be described by differential
equations in a continuous model. More discussion on this issue can be found in
Sec. 5.2, and in particular in Example 5.2.

The simulation models we consider in the remainder of this book, except for
those in Sec. 1.8, will be discrete, dynamic, and stochastic and will henceforth be
called discrete-event simulation models. (Since deterministic models are a special
case of stochastic models, the restriction to stochastic models involves no loss of
generality.)

1.3
DISCRETE-EVENT SIMULATION

Discrete t simulation concerns the modeling of a system as it evolves over time
by a representation in which the state variables change instantaneously at separate
points in time. (In more mathematical terms, we might say that the system can
change at only a countable number of points in time.) These points in time are the
ones at which an event occurs, where an event is defined as an instantaneous occur-
rence that may change the state of the system. Although discrete-event simulation
could conceptually be done by hand calculations, the amount of data that must be
stored and manipulated for most real-world systems dictates that discrete-event
simulations be done on a digital computer. (In Sec. 1.4.2 we carry out a small hand
simulation, merely to illustrate the logic involved.)

CHAPTER ONE T

EXAMPLE 1.1. Consider a service facility with a single server—e.g., a one-operatay
t an i i atan airp for which we would like to estimate the
(expected) average delay in queue (line) of arriving customers, where the delay in queue
of & customer is the length of the time interval from the instant of his arrival at the facil-
ity to the instant he begins being served. For the objective of estimating the average
delay of a customer, the state variables for a discrete-event simulation model of the fa-
cility would be the status of the server, i.e., either idle or busy, the number of customers
waiting in queue to be served (if any), and the time of arrival of each person waiting in
queue. The status of the server is needed to determine, upon a customer's amival,
by d i) iately or must join the end of the queue. When
the server completes serving a customer, the number of custamers in the queue is used to
determine whether the server will become idle or begin serving the first customer in the
quene. The time of arrival of a customer is needed to compute his delay in queue, which
is the time he begins being served (which will be known) minus his time of arrival. There
are two types of eyents for this system: the arrival of a customer and the completion of
serviee for a customer, which results in the customer's departure. An arrival is an event
since it causes the (state variable) server status to change from idle to busy or the (state
variable) number of customers in the queue to increase by 1. Correspondingly, a depar-
ture is an event because it causes the server status to change from busy to idle or the
number of customers in the queue to decrease by 1. We show in detail how to build a
discrete-event simulation model of this single-server queueing system in Sec. 1.4.

In the above example both types of events actually changed the state of the sys-
tem, but in some discrete-event simulation models events are used for purposes that
do not actially effect such a change. For example, an event might be used to sched-
ule the end of a simulation run at a particular time (see Sec. 1.4.7) or to schedule a
decision about a system's operation at a particular time (see Sec. 1.5) and might not
actually result in a change in the state of the system. This is why we criginally said
that an event may change the state of a system.

1.3.1 Time-Advance Mechanisms

Because of the dynamic nature of discrete-event simulation models, we must keep
track of the current value of simulated time as the simulation proceeds, and we also
need a mechanism to advance simulated time from one value to another. We call the
variable in a simulation model that gives the current value of simulated time the
simulation clock. The unit of time for the simulation clock is never stated explicitly
when a model is written in a general-purpose language such as FORTRAN or C,
and it is assumed to be in the same units as the input parameters. Also, there is gen-
erally no relationship between simulated time and the time needed to run a simula-
tion on the computer.

Historically, two principal approaches have been suggested for advancing the
simulation clock: next-event time advance and fixed-increment time advance. Since
the first approach is used by all major simulation software and by most people cod-
ing their model in a general-purpose language, and since the second is a special case
of the first, we shall use the next-event time-advance approach for all discrete-event
simulation models discussed in this book. A brief discussion of fixed-increment
time advance is given in App. 1A (at the end of this chapter).
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With the next-event time-advance approach, the simulation clock is injtialized
to zero and the times of occurrence of future events are determined. The simulation
clock is then advanced to the time of occurrence of the most imminent (first) of these
future events, at which point the state of the system is updated to account for the fact
that an event has occorred, and our knowledge of the times of occurrence of future
events is also updated. Then the simulation clock is advanced to the time of the
(new) most imminent event, the state of the system is updated, and future event
times are determined, etc. This process of advanmng, the sunuh!lon ciock from one
event time to another is i until ly some presp d stopping con-
dition is satisfied. Since all state changes occur only at :v:nt times for a discrete-
event simulation model, periods of inactivity are skipped over by jumping the clock
from event time to event time. (Fixed-increment time advance does not skip over
these inactive periods, which can eat up a lot of computer time; see App. 1A.) It
should be noted that the successive jumps of the simulation clock are generally vari-
able (or unequal) in size.

EXAMPLE 1,2, We now illustrate in detail the next-event time-advance approach for

the single-server queueing system of Example 1.1, We need the following notation:

£, = time of arrival of the ith customer (f, = 0)

Ay =&, — &,y = imerarrival time between (i — 1)st and ith amivals of customers

8 = time that server actually spends serving ith customer (exclusive of cus-
tomer's delay in quene)

Dy = delay in queue of ith customer

€ =t D, + 8 = time that ith customer completes service and departs

€; = time of occurrence of ith event of any type (ith value the simulation clock
takes on, excluding the value e, = 0)

Each of these defined quantitics will generally be a random variable. Assume that the
probability distributions of the interarrival times A, A,,. .. and the service times
1. 85, . ., are known and have cumulative distribution functions (see Sec. 4.2) denoted
by F, and Fy, respectively. (In general, F, and Fy would be determined by collecting
data from the system of interest and then specifying distributions consistent with these
data using the techniques of Chap. 6.) Alum: 6= Dthe status of the server u idle, and
the time 1, of the first arrival is by g g A, from F, for
generating random observations from upm{md dumbuuun are discussed in Chap. 8)
and adding it to 0. The simulation clock is then advanced from e, to the time of the next
(first) event, &, = 1,, (See Fig. 1.2, where the curved amows represent advancing the
simulation ¢lock.) Since the customer erriving at time #; finds the server jdle, she im-
mediately enters service and has a delay in queue of D, = 0 and the status of the server
is changed from idle to busy. The time, ¢;, when the arriving customer will complete
service is computed by generating S, from Fy and adding it to 1,. Finally, the time of the
sccond arrival, £y, is computed as £, = f; + A, where A, is generated from F,, If 1, < ¢,
as depicted in Fig. 1.2, the simulation clock is advanced from e, to the time of the next
event, &; = ¢, (If €, were Jess than r,, the clock would be advanced from e to ¢,.) Since
the customer arriving at time 1, finds the server already busy, the number of customers
inthe queue is increased from 0 to 1 and the time of arrival of this customer is recorded;

however, his service time S, is not generated at this time. Also, the time of the third ar-
rival, fy, is computed as 1y =, + Ay If ¢, < t, s depicte ' the figure, the simulation
clock is advanced from e, to the time of the next event, _, = ¢, where the customer

e R - e = Y R ¥ v |

<
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FIGURE 1.2
I t 1) ch approach i for the single-server queueing
system.

completing service departs, the customer in the queuve (ie., the one who amived at
time l,) begins service and his delay in queuc and service-completion time are com-

d 23 Dy = g — 1y apd £y = £ + 5y (5 3 now generated from Fy), and the number
of customers in the queue is decreased from | to 0. If r, < ¢, the ulation clock is
advanced from e, to the time of the next event, ¢, = #,, etc. The simulation might even-
tually be terminated when, say, the number of customers whose delays have been
observed reaches some specified value.

1.3.2 Components and Organization of a Discrete-Event
Simulation Model

Although simulation has been applied to a great diversity of real-world systems,
discrete-event simulation models all share a number of common components and
there is a logical organization for these components that promotes the program-
ming, debugging, and future changing of a simulation model’s computer program.
In particular, the following components will be found in most discrete-event simu-
Intion models using the next-event ti dvance app prog in a

Beneral-purpose language:

System state: The collection of state variables necessary to describe the system
at a particular time

Simulation clock: A variable giving the current value of simulated time

Event list: A list containing the next time when each type of event will occur

Statistical counters: Variables used for storing statistical information about
system performance

Initialization routine; Asubprogram to initialize the simulation model at time 0

Timing routine: A subprogram that determines the next event from the event list
and then advances the simulation clock to the time when that event is to occur

Event routine: A subprogram that updates the system state when a particular
type of event occurs (there is one event routine for each event type}

Library routines: A set of subprograms used to generate random observations »
from r=bability distributions that were determined as part of the simulation
mode.
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Report g + A subprogram that comp i (from the statistical
counters) -of the desired measures of performance and produces a report
when the simulation ends

Main program: A subprogram that invokes the timing routine to determine
the next event and then transfers control to the corresponding event routine
to update the system state appropriately. The main program may also check
for termination and invoke the report generator when the simulation is
over.

The logical relationships (flow of control) among these components are shown in
Fig. 1.3. The simulation begins at time 0 with the main program invoking the
initialization routine, where the simulation clock is set to zero, the system state and
the statistical counters are initialized, and the event list is initialized. After control
has been returned to the main progeam, it invokes the timing routine to determine

Initalization routine Main program ;

Timing routine

1. Set simulation 0. Inveke the initialization routine
clock =0 D | 1. Determine the next
2. Initinlize system state [*— =>1  event typo, say, i
and suatistical -+ . : e 2. Advance the
1. Inveke the timing routine (7 i g

2. Invoke event routine i }R"’“"""’

counters
3. Initialize event list

Event routine i £®

Library routines

1, Update system state

2, Update statistical counters Generate random

3. Generate future events and add to variates
event list

1. Compute estimates of interest
2. Write report

FIGURE 1.3
Flow of control for the next-event time-advance approach.
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which type of event is most imminent. If an event of type { is the next to occur, the
simulation clock is advanced to the time that event type i will occur and control is*
returned to the main program. Then the main program invokes event routine i,
where typically three types of activities occur: (1) The system state is updated to ac-
count for the fact that an event of type i has occurred; (2) information about system
performance is gathered by updating the statistical counters; and (3) the times of oc-
currence of future events are generated, and this information is added to the event
list. Often it is necessary to generate random observations from probability distrib-
utions in order to determine these future event times; we will refer to such a gener-
ated observation as a random variate. After all processing has been completed,
either in event routine i or in the main program, a check is typically made to deter-
mine (relative to some stopping condition) if the simulation should now be termi-
pated. If it is time to terminate the simulation, the report generator is invoked from
the main program to compute estimates (from the statistical counters) of the desired
measures of performance and to produce a report. If it is not time for termination,
control is passed back to the main program and the main program-timing rou-
tine-main progr t routis ination check cycle is repeated until the
stopping condition is eventually satisfied.

Before concluding this section, a few additional words about the system state
may be in order. As mentioned in Sec. 1.2, a system is a well-defined collection of
entities. Entities are characterized by data values called aftributes, and these attrib-
utes are part of the system state for a discrete-event simulation model. Furthermore,
entities with some common property are often grouped together in lists (or files or
sets). For each entity there is a record in the list consisting of the entity’s attributes,
and the order in which the records are placed in the list depends on some specified
rule. (See Chap. 2 for a discussion of efficient approaches for storing lists of
records.) For the single-server queueing facility of Examples 1.1 and 1.2, the enti-
ties are the server and the customers in the facility. The server has the attribute
“server status” (busy or idle), and the customers waiting in queue have the attribute
“time of arrival.” (The number of customers in the queue might also be considered
an attribute of the server.) Furthermore, as we shall see in Sec. 1.4, these customers
in queue will be grouped together in a list.

The organization and action of a discrete-event simulation program using

t-event ti dvance ism as depicted above are fairly typical when
coding such lations in a g I-purpose prog: ing language such as
FORTRAN or C; it is called the event-scheduling approach to simulation modeling,
since the times of future events are explicitly coded into the model and are sched-
uled to occur in the simulated future, It should be mentioned here that there is an
alternative approach to simulation modeling, called the process approach, that in-
stead views the simulation in terms of the individual entities involved, and the code
written describes the “experience” of a “typical” entity as it “flows” through the sys-
tem; coding simulations modeled from the process point of view usually requires
the use of special-purpose simulation software, as discussed in Chap. 3. Even when
taking the process approach, however, the simulation is actually executed behind
the scenes in the event-scheduling logic as described above.
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1.4
SIMULATION OF A SINGLE-SERVER QUEUEING SYSTEM

This section shows in detail how to simulate a single-server queueing system such
as a one-operator barbershop. Although this system seems very simple compared
with those usually of real interest, how it is simulated is actually quite representa-
tive of the operation of simulations of great complexity.

In Sec. 1.4.1 we describe the system of interest and state our objectives more
precisely, We explain intuitively how to simulate this system in Sec. 1.4.2 by show-
ing a “snapshot” of the simulated system just after each event occurs. Section 1.4.3
describes the language-independent organization and logic of the FORTRAN and
C codes given in Secs. 1.4.4 and 1.4.5. The simulation’s results are discussed in
Sec. 1.4.6, and Sec. 1.4.7 alters the stopping rule to another common way to end sim-
ulations. Finally, Sec. 1.4.8 briefly describes a technique for identifying and simpli-
fying the event and variable structure of a simulation.

14.1 Problem Statement

Consider a single-: server qu:ucmg sysl:m (sce F‘g 1.4) for which the interarrival
times Ay, A,, . . . are s ib { (1ID) random variables.

e

A departing customer

Server

Customer in service

Customers in queue

An armiving customer

FIGURE 14

A single-server queucing sys.. ..

—O 000 O[] O
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(“Identically distributed” means that the interarrival times have the same probabil-
ity distribution.) A customer who arrives and finds the server idle enters service
immediately, and the service times §,, 5, . . . of the successive customers are IID
random variables that are independent of the interarrival times. A customer who ar-
rives and finds the server busy joins the end of a single queue. Upon completing
service for a customer, the server chooses a customer from the queue (if any) in a
first-in, first-out (FIFO) manner. (For a discussion of other queue disciplines and
queueing systems in general, see App. 1B.)

The simulation will begin in the “empty-and-idle” state; i.e., no customers are
present and the server is idle. At time 0, we will begin waiting for the arrival of the
first customer, which will occur after the first interarrival time, A,, rather than at
time 0 (which would be a possibly valid, but different, modeling assumption). We
wish to simulate this system until a fixed number (n) of customers have completed
their delays in queue; i.e., the simulation will stop when the nth customer enters ser-
vice. Note that the fime the simulation ends is thus a random variable, depending on
the observed values for the interarrival and service-time random variables.

To measure the performance of this system, we will look at estimates of three
quantities. First, we will estimate the expected average delay in queue of the n cus-
tomers completing their delays during the simulation; we denote this quantity by
d(n). The word “expected” in the definition of d(n) means this: On a given run of the
simulation (o, for that matter, on a given run of the actual system the simulation
model represents), the actual average delay observed of the n customers depends on
the interarrival and service-time random variable observations that happen to have
been obtained. On another run of the simulation (or on a different day for the real
system) there would probably be arrivals at different times, and the service times
required would also be different; this would give rise to a different value for the av-
erage of the n delays. Thus, the average delay on a given run of the simulation is
properly regarded as a random variable itself. What we want to estimate, d(n), is the
expected value of this random variable. One interpretation of this is that d(n) is the
average of a large (actually, infinite) number of n-customer average delays. From a
single run of the simulation resulting in customer delays D, D,, . . ., D,. an obvi-
ous estimator of d(n) is

i b
dim) = =2

which is just the average of the  D;'s that were observed in the simulation [so that
d(n} could also be denoted by D(n)] {Throughout this book, a hat () above a sym-
bol denotes an estimator.] It is important to note that by “delay” we do not exclude
the possibility that a customer could have a delay of zero in the case of an arrival
finding the system empty and idle (with this model, we know for sure that D, = 0
delays with a value of 0 are counted in the average, since if many delays were zero
this would represent a system providing very good service, and our output mea- |
sure should reflect this, One reason for taking the average of the D's, as opposed
to just lookin  * them individually, is that they will not have the same distribution
(e.g., D, = 0, vut D, could be positive), and the average gives us a single composite
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measure of all the customers’ delays; in this sense, this is not the usual “average™
taken in basic statistics, as the individual terms are not independent random cbser-
vations from the same distribution, Note also that by itself, d(z) is an estimator
based on a sample of size 1, since we are making only one complete simulation run.
From elementary statistics, we know that a sample of size 1 is not worth much; we
return to this issue in Chaps. 9 through 12.

While an estimate of d(n) gives information about system performance from
the customers’ point of view, the management of such a system may want different
information; indeed, since most real simulations are quite complex and may be
time-consuming to run, we usually collect many output measures of performance,
describing different aspects of system behavior. One such measure for our simple
model here is the expected average number of customers in the queue (but not being
served), denoted by g(n), where the n is necessary in the notation to indicate that
this average is taken over the time period needed to observe the n delays defining
our stopping rule. This is a different kind of “average” than the average delay in
queue, because it is taken over (continuous) time, rather than over customers (being
discrete). Thus, we need to define what is meant by this fime-average number of
customers in queue. To do this, let Q(1) denote the number of customers in queue at
time r, for any real number t = 0, and let T{n) ‘be the time required to observe our
n delays in queue, Then for any time 1 between 0 and T(n), Q(1) is a nonnegative in-
teger. Further, if we let p, be the expected proportion (which will be between 0 and
1) of the time that Q(f) is equal to i, then a reasonable definition of g(n) would be

am) =3 ipy
=0

Thus, g(n) is a weighted average of the possible values i for the queue length O(n),
with the weights being the expected proportion of time the queue spends at each of
its possible lengths. To estimate g(n) from a simulation, we simply replace the p,'s
with estimates of them, and get

am =3 i (¢8))

i=0

where p is the observed (rather than expected) proportion of the time during the
simulation that there were i customers in the quene. Computationally, however, itis
easier to rewrite §(n) using some geometric considerations. If we let T, be the rotal
time during the simulation that the queue is of length i, then T(n) = T+ +
Ty + - -and p; = T,/T(n), so that we can rewrite Eq. (1.1) above as

S,

_I=

§m) = ) (1.2)
Figure 1.5 illustrates a possible time path, or realization, of Q(r) for this system in
the case of n = 6; ignore the shading for now. Arrivals occur at times 0.4, 1.6, 2.1,
3.8,4.0,5.6, 5.8, and 7.2 Departures (service completions) occur at times 2.4, 3.1,
3.3,4.9, and 8.6, and the simulation ends at time T(6) = 8.6. Remember in looking
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FIGURE 1.5
Q(r), arrival times, and departure times for a realization of a single-server queueing system.

- atFig. 1.5 that Q(r) does not count the customer in service (if any), so between times

0.4 and 1.6 there is one customer in the system being served, even though the queue

is empty [@(1) = 0]; the same is true between times 3.1 and 3.3, between times 3.8

and 4.0, and between times 4.9 and 5.6. Between times 3.3 and 3.8, however, the

system is empty of customers and the server is idle, as is obviously the casc between

times 0 and 0.4. To compute §(n), we must first compute the T’s, which can be read

:ﬁ’ F;g‘ 1.5 as the (sometimes separated) intervals over which Q(y) is equal to 0, 1,
, and 50 on:

Th=(016-00)+(4.0~31)+ (56 -49) =32
Ni=Q21-16+@1-24)+@9-40)+ (58-56) =23
h,=(24-21)+(02-58) =17
T,=(86-172) =14
(7; = 0 for i = 4, since the queue never grew to those lengths in this realization.)
‘The numerator in Eq. (1.2) is thus

z M=0X3)+1X2N+2XILD+@X14) =99 (13
=0

and so our estimate of the time-average number in queue from this particular simu-
lation run is §(6) = 9.9/8.6 = 1.15. Now, note that each of the nonzero terms on
the right-hand side of Eq. (1.3) corresponds to one of the shaded areas in Fig. 1.5:
1 X 2.3 is the diagonally shaded area (in four pieces), 2 X 1.7 is the cross-hatched
area (in two pieces), and 3 X 1.4 is the screened area (in a single piece). In other
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words, the summation in the numerator of Eq. (1.2) is just the area under the Q(¢)
curve between the beginning and the end of the simulation. Remembering that “arca
under a curve” is an integral, we can thus write

= Tin)
Sm=[" owa
=0 ™

and the estimator of g(n) can then be expressed as

Tin)
J; Q) dt
- —_— 1.4;

4(n) o) (14
While Egs. (1.4) and (1.2) are equivalent expressions for§(n), Eq. (1.4) is preferable
since the integral in this equation can be accumulated as simple areas of rectangles
as the simulation progresses through time. It is less convenient to carry out the com-
putations to get the ion in Eq. (1.2) explicitly. , the app of
Eq. (1.4) suggests a continuous average of Q(1), since in a rough sense, an integral

can be regarded as a continuous summation.

‘The third and final output measure of performance for this system is a measure
of how busy the server is. The expected urilization of the server is the expected pro-
portion of time during the simulation [from time 0 to time T{(n)] that the server is
busy (i.c., not idle), and is thus a number between 0 and 1; denote it by u(r). From
a single simulation, then, our estimate of u(n) is i(n) = the observed proportion of
time during the simulation that the server is busy. Now 2(n) could be computed
directly from the simulation by noting the times at which the server changes status
(idle to busy or vice versa) and then doing the appropriate subtractions and division.
However, it is easier to look at this quantity as a continuous-time average, similar 1o
the average queue length, by defining the “busy function”

if the server is busy at time ¢

1
= {a if the server is idle at time 1

and so i(n) could be expressed as the proportion of time that B(r) is equal to 1. Fig-

ure 1.6 plots B(r) for the same simulation realization as used in Fig. 1.5 for o). In
this case, we get

(3.3 = 04) + (86— 38) _ 77

8.6 T 86

indicating that the server was busy about 90 percent of the time during this simula-
tion. Again, however, the numerator in Eq. (1.5) can be viewed as the area under the
B(r) function over the course of the simulation, since the height of B(r) is always
either 0 or 1. Thus,

&n) = =090 (1.5)

Jm"B:d
Bk

fn) = _T(T (1.6)

and we see again that fi(n) is the continuous average < ~ ‘he B{¢) function, corre-
sponding to our notion of utilization. As was the case forgyn), the reason for writing

ey
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FIGURE 1.6

B(r), arrival times, and departure times for a realization of a single-server queueing system
(same realization as in Fig. 1.5).

fi(n) in the integral form of Eq. (1.6) is that computationally, as the simulation pro-
gresses, the integral of B(1) can casily be accumulated by adding up areas of rectan-
gles. For many simulations involving “scrvers” of some sort, utilization statistics
are quite informative in identifying bottlenecks (utilizations near 100 percent, cou-
pled with heavy congestion measures for the queue leading in) or excess capacity
(low utilizations); this is particularly true if the “servers” are expensive items such
as robots in a manufacturing system or large mainframe computers in a data-
processing operation.

To recap, the three measures of performance are the average delay in queue
din), the time-average number of customers in queue ¢(n), and the proportion of
time the server is busy #(n). The average delay in queue is an example of a discrere-
time statistic, since it is defined relative to the collection of random variables (D}
that have a discrete “time” index, i = 1,2, . ... The time-average number in queue
and the proportion of time the server is busy are examples of continuous-fime sta-
tistics, since they are defined on the collection of random variables {Q(1} and {B(£)},
respectively, each of which is indexed on the continuous time parameter ¢ € (0, =).
(The symbol € means “contained in.” Thus, in this case, f can be any nonnegative
real number.) Both discrete-time and continuous-time statistics are common in sim-
ulation, and they furthermore can be other than averages. For example, we might be
interested in the maximum of all the delays in queue observed (a discrete-time
statistic), or the proportion of time during the simulation that the queue contained at
least five customers (a continuous-time statistic).

The events for this system are the arrival of a customer and the departure of a
customer (after a service completion); the state variables necessary to estimate d(x),
g(n), and u(n) are the status of the server (0 for idle and 1 for busy), the number of _
customers in the queue, the time of arrival of each customer currently in the queue
(represented +  list), and the time of the last (i.e., most recent) event. The time of
the last event, aefined to be ¢;_, if &,_, = ¢ < ¢; (where  is the current time in‘the
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simulation), is needed to compute the width of the rectangles for the area accumu-
lations in the cstimates of g(n) and u(n).

1.4.2 Intuitive Explanation

‘We begin our explanation of how to simulate a single-server queueing system by
showing how its simulation model would be represented inside the computer at time
&, = O and the times e, e, . . ., &5 at which the 13 successive events occur that are
needed to observe the desired number, n = 6, of delays in queue. For cxpository
convenience, we assume that the interarrival and service times of customers are

A = 04,4, = 12,4, = 0.5,A, = L7, Ag = 02,
Ag = 1.6.A; = 02, Ag = 1.4, A= 19,. ..

8§, = 20,8 = 07,85 = 02,8 = 11,5 = 37,5 = 06,...

Thus, between time 0 and the time of the first arrival there is 0.4 time unit, between
the arrivals of the first and second customers there are 1.2 time units, etc., and the
service time required for the first customer is 2.0 time units, etc. Note that it is not
necessary to declare what the time units are (minutes, hours, etc.), but only to be
sure that all time quantities are expressed in the same units. In an actual simulation
(see Secs. 1.4.4 and 1.4.5), the A,’s and the 5,'s would be generated from their cor-

ding probability distributions, as needed, during the course of the simulation.
The numerical values for the A,’s and the 5s given above have been artificially cho-
sen so as to generate the same simulation realization as depicted in Figs. 1.5 and 1.6
illustrating the O() and B(r) processes.

Figure 1.7 gives a snapshot of the system itself and of a computer representa-
tion of the system at each of the times ¢, = 0, ¢, = 0.4,. .., ¢); = 8.6.In the “sys-
tem” pictures, the square represents the server, dnd circles represent customers; the
numbers inside the customer circles are the times of their arrivals. In the “computer
representation” pictures, the values of the variables shown are affer all processing
has been completed at that event. Our discussion will focus on how the computer
representation changes at the event times.

r=0 Initialization. The simulation begins with the main program invoking
the initialization routine. Our modeling assumption was that initially
the system is empty of customers and the server is idle, as depicted in
the “system" picture of Fig. 1.7a. The model state variables are ini-
tialized to represent this: Server status is O [we use 0 to répresent an
idle server and 1 to represent a busy server, similar to the definition of
the B(#) function), and the number of customers in the queue is 0. There
is a one-dimensional array to store the times of arrival of customers
currently in the queue; this array is initially empty, and as the simula-
tion progresses, its length will grow and shrink. The time of the last
(most recent) event is initialized to 0, so that at the time of the first
event (when it is used), it will have its correct value. The simulation
clock is set to 0, and the event list, giving the times of the next
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Snapshots of the system and of its computer representation at time 0 and at each of the
13 succeeding event times.
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occurrence of each of the event types, is initialized as follows. The
time of the first atrival is 0 + A, = 0.4, and is denoted by “A” next to
the event list. Since there is no customer in service, it does not even
make sense to talk about the time of the next departure ("D by the
event list), and we know that the first event will be the initial customer
arrival at time 0.4. However, the simulation progresses in general by
looking at the event list and picking the smallest value from it to
determine what the next event will be, so by scheduling the next
departure to occur at time % (or a very large number in a computer
program), we effectively eliminate the departure event from consider-
ation and force the next event to be an arrival. (This is sometimes
called poisoning the departure event.) Finally, the four statistical
counters are initialized to 0. When all initialization is done, control is
returned to the main program, which then calls the timing routine to
determine the next event, Since 0.4 < o, the next event will be an ar-
rival at time 0.4, and the timing routine advances the clock to this
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1=04:

time, then passes control back to the main program with the informa-
tion that the next event is to be an arrival.

Arrival of customer 1. At time 0.4, the main program passes control
to the arrival routine to process the arrival of the first customer. Fig-
ure 1.7b shows the system and its computer representation affer all
changes have been made to process this arrival. Since this customer ar-
rived to find the server idle (status-equal to 0), he begins service im-
mediately and has a delay in queue of D, = 0 (which does count as a
delay). The server status is set to 1 to represent that the server is now
busy, but the queue itself is still empty. The clock has been advanced
to the current time, 0.4, and the event list is updated to reflect this cus-
tomer’s arrival: The next arrival will be A, = 1.2 time units from now,
attime 0.4 + 1.2 = 1.6, and the next departure (the service comple-
tion of the customer now arriving) will be §; = 2.0 time units from
now, at time 0.4 + 2.0 = 24. The number delayed is incremented
to 1 (when this reaches n = 6, the simulation will end), and D, = Ois
added into the total delay (still at zero). The area under Q(r) is updated
by adding in the product of the previous value (i.e., the level it had be-
tween the last event and now) of Q() (0 in this case) times the width
of the interval of time from the last event to now,  — (time of last
event) = 0.4 — 0 in this case. Note that the time of the last event used
here is its old value (0), before it is updated to its new value (0.4) in
this event routine. Similarly, the area under B(z) is updated by adding
in the product of its previous value (0) times the width of the interval
of time since the last event. [Look back at Figs. 1.5 and 1.6 to trace the
accumulation of the areas under (1) and B(r).] Finally, the time of the
last event is brought up to the current time, 0.4, and control is passed
back to the main program, It invokes the timing routine, which scans
the event list for the smallest value, and determines that the next event
will be another arrival at time 1.6; it updates the clock to this value and
passes control back to the main program with the information that the
next event is an arrival.

Arrival of customer 2. At this time we again enter the arrival routine,
and Fig. 1.7¢ shows the system and its computer representation after
all changes have been made to process this event. Since this customer
arrives to find the server busy (status equal to 1 upon her arrival), she
must queue up in the first location in the queue, her time of arrival is
stored in the first location in the array, and the number-in-queue vari-
able rises to 1. The time of the next arrival in the event list is updated
to A; = 0.5 time unit from now, 1.6 + 0.5 = 2.1; the time of the next
departure is not changed, since its value of 2.4 is the departure time of
customer 1, who is still in service at this time. Since we are not
observing the end of anyone's delay in queue, the number-delayed and
total-delay variables are unch: d. The area under Q(¢) is increased
by O [the previous value of Q(r)] times the ime since the last event,
1.6 — 0.4 = 1.2. The area under B{¢) is inc. .sed by 1 [the previous

=21
=24
r=31
=33
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value of B(t)] times this same interval of time, 1.2, After updating the
time of the last event to now, control is passed back to the main pro-
gram and then to the timing routine, which determines that the next
event will be an arrival at time 2.1.

Arrival of customer 3, Once again the arrival routine is invoked, as
depicted in Fig. 1.7d. The server stays busy, and the queue grows by
one customer, whose time of arrival is stored in the queue array's
second location. The next arrival is updated tor + 4, = 2.1 + 1.7 =
3.8, and the next departure is still the same, as we are still waiting for
the service completion of customer 1. The delay counters are un-
changed, since this is not the end of anyone’s delay in queue, and the
two area accumulators are updated by adding in 1 [the previous values
of both O() and B{¢)] times the time since the last event, 2.1 — 1.6 =
0.5. After bringing the time of the last event up to the present, we go
back to the main program and invoke the timing routine, which looks
at the event list to determine that the next event will be a departure at
time 2.4, and updates the clock to that time.

Departure of customer 1. Now the main program invokes the depar-
ture routine, and Fig. 1.7 shows the system and its representation
after this occurs. The server will maintain its busy status, since cus-
tomer 2 moves out of the first place in queue and into service. The
queue shrinks by 1, and the time-of-arrival array is moved up one
place, to represent that customer 3 is now first in line. Customer 2, now
entering service, will require §; = 0.7 time unit, so the time of the next
departure (that of customer 2) in the event list is updated to S, time
units from now, or to time 2.4 + 0.7 = 3.1; the time of the next arrival
(that of customer 4) is unchanged, since this was scheduled earlier at
the time of customer 3's arrival, and we are still waiting at this time for
customer 4 to arrive. The delay statistics are updated, since at this time
customer 2 is entering service and is completing her delay in queue.
Here we make use of the time-of-arrival array, and compute the second
delay as the current time minus the second customer’s time of arrival,
orD, = 2.4 — 1.6 = 0.8, (Note that the value of 1.6 was. stored in the
first location in the time-of-arrival array before it was changed, so this
delay computation would have to be done before advancing the times
of arrival in the array.) The area statistics are updated by adding in2 X
(2.4 — 2.1) for Q(r) [note that the previous value of Q(r) was used],
and 1 X (2.4 — 2.1) for B(r). The time of the last event is updated, we
return to the main program, and the timing routine determines that the
next event is a departure at time 3.1.

Departure of customer 2. The changes at this departure are similar to
those at the departure of customer 1 at time 2.4 just discussed. Note
that we cbserve another delay in queue, and that after this event is
processed the queue is again empty, but the server is still busy.
P=narture of customer 3. Again, the changes are similar to those in
L. above two departure events, with one important exception: Since
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the queue is now empty, the server becomes idle and we must set the
next departure time in the event list to %, since the system now looks
the same as it did at time 0 and we want to force the next event to be
the arrival of customer 4.

1=38 Arrival of customer 4. Since this customer arrives to find the server
idle, he has a delay of 0 (i.e., D, = 0) and goes right into service.
Thus, the changes here are very similar to those at the arrival of the
first customer at time ¢ = 0.4,

The remaining six event times are depicted in Figs. 1.7i through 1.7», and readers
should work through these to be sure they understand why the variables and arrays
are as they appear; it may be helpful to follow along in the plots of Q(¢) and B(r) in
Figs. 1.5 and 1.6. With the departure of customer 5 at time f = 8.6, customer 6
leaves the quene and enters service, at which time the number delayed reaches 6
(the specified value of n) and the simulation ends. At this point, the main program
invokes the report generator to compute the final output measures [J(ﬁ) =57/6=
0.95,4(6) = 9.9/8.6 = 1.15, and 4(6) = 7.7/8.6 = 0.90] and write them out.

A few specific comments about the above example illustrating the logic of a
simulation should be made:

+ Perhaps the key element in the dynamics of a simulation is the interaction be-
tween the simulation clock and the event list. The event list is maintained, and the
clock jumps to the next event, as determined by scanting the event list at the end
of each event's processing for the smallest (i.e., next) event time. This is how the
simulation progresses through time.

* While processing an event, no “simulated” time passes. However, even though

time is standing still for the model, care must be taken to process updates of the

state variables and statistical counters in the appropriate order. For example, it
would be incorrect to update the number in queue before updating the area-under-

Q(r) counter, since the height of the rectangle to be used is the previous value of

Q1) [before the effect of the current event on Q(f) has been implemented]. Simi-

larly, it would be incorrect to update the time of the last event before updating the

area accumulators. Yet another type of error would result if the queue list were
changed at a departure before the delay of the first customer in queue were com-
puted, since his time of arrival to the system would be lost.

It is sometimes easy to overlook contingencies that seem out of the ordinary but

that ne: must be dated. For iple, it would be easy to forget

that a departing customer could leave behind an empty queue, necessitating that
the server be idled and the departure event again be eliminated from considera-
tion. Also, termination conditions are often more involved than they might seem
at first sight; in the above example, the simulation stopped in what seems to be the

“usual” way, after a departure of one customer, allowing another to enter service

and contribute the last delay needed, but the simulation cou/d actually have ended

instead with an arrival event—how?

* In some simulations it can happen that two (or more) entries in the event list are
tied for smallest, and a decision rule must be incorporated to break such time ties
(this happens with the inventory simulation considered later in Sec. 1.5). The

—
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tie-breaking rule can affect the results of the simulation, so must be chosen in
accordance with how the system is to be modeled. In many simulations, however,
we can ignore the possibility of ties, since the use of continuous random variables
may make their an event with probability 0. In the above model, for
example, if the inter: time or ice-time distribution is i then a
time tie in the event list is a probability-zero event (though it could still happen
during the computer simulation due to finite accuracy in representation of real
numbers).

‘The above exercise is intended to illustrate the changes and data structures in-
volved in carrying out a discrete-event simulation from the event-scheduling point
of view, and contains most of the important ideas needed for more complex simula-
tions of this type. The interarrival and service times used could have been drawn
from a random-number table of some sort, constructed to reflect the desired proba-
bility distributions; this would result in what might be called a hand simulation,
which in principle could be carried out to any length, The tedium of doing this
should now be clear, so we will next tum to the use of computers (which are not eas-
ily bored) to carry out the arithmetic and bookkeeping involved in longer or more
complex simulations.

1.4.3 Program Organization and Logic

In this section we set up the necessary ingredients for the programs to simulate

the single-server queueing system in FORTRAN (Sec. 1.4.4) and C (Sec. 14.5).

The organization and logic described in this section apply for both languages, so the

reader need only go through one of Sec. 1.4.4 or 1.4.5, according to language

preference.

There are several reasons for choosing a general-purpose language such as
FORTRAN or C, rather than more powerful high-level simulation software, for in-
treducing computer simulation at this point:

* By leamning to simulate in a general-purpose language, in which one must pay
attention to every detail, there will be a greater understanding of how simulations
actually operate, and thus less chance of conceptual errors if a switch is later
made to high-level simulation software.

* Despite the fact that there is now very good and powerful simulation software
available (see Chap. 3), it is sometimes necessary to write at least parts of com-
plex simulations in a general-purpose language if the specific, detailed logic of
complex systems is to be represented faithfully.

* G I-purpose I are widely available, and entire simulations are some-
times still written in this way.

It is not our purpose in this book to teach any particular simulation software in de-

tail, although we survey several packages in Chap. 3. With the understanding pro-

moted by our more general approach and by going through our simulations in this
and the next chapter, the reader should find it easier to learn a specialized simulation
software product.




28 BASIC SIMULATION MODELING

The single-server queueing model that we will simulate in the following two
sections differs in two respects from the model used in the previous section:

* The simulation will end when n = 1000 delays in queue have been completed,
rather than i = 6, in order to collect more data (and maybe to impress the reader
with the patience of computers, since we have just slugged it out by hand in the
n = G.case in the preceding section). It is important to note that this change in the
stopping rule changes the model itself, in that the cutput measures are defined rel-
ative to the stopping rule; hence the presence of the “n” in the notation for the
quantities d(n), g(n), and u(n) being estimated.

The interarrival and service times will now be modeled as independent random
variables from exponential distributions with mean 1 minute for the interarrival
times and mean 0.5 minute for the service times. The exponential distribution with
‘mean 8 (any positive real number) is continuous, with probability density function

fo = ée“"’ forx =0

(See Chaps. 4 and 6 for more information on density functions in general, and on
the exponential distribution in particular.) We make this change here since it is
much more common to generate input quantities (which drive the simulation)
such as interarrival and service times from specified distributions than to assume
that they are “known" as we did in the preceding section. The choice of the expo-
nential distribution with the above particular values of B is essentially arbitrary,
and is made primarily because it is easy to generate exponential random variates
on a computer. (Actually, the assumption of exponential interarrival times is often
quite realistic; assuming exponential service times, however, is less plausible.)
Chapter 6 addresses in detail the important issue of how one chooses distribution
forms and for modeling simulation input random variables.

The single-server queue with exponential interarrival.and service times is com-
monly called the M/M/] quewe, as discussed in App. 1B.

To simulate this model, we need a way to generate random variates from an
exponential distribution. The subprograms used by the FORTRAN and C codes
both operate in the same way, which we will now develop. First, a random-number
generator (discussed in detail in Chap. 7) is invoked to generate a variate U that is
distributed (continuously) uniformly between 0 and 1; this distribution will hence-
forth be referred to as U(0, 1) and has probability density function

1 if0=sx=1
D= {D otherwise

Tt is easy to show that the probability that a U(0, 1) random variable falls in any
subinterval [x, ¥ + Ax] contained in the interval [0, 1] is (uniformly) Ax (sce
Sec. 6.2.2). The U(0, 1) distribution is fund 1 to si i deling be-
canse, as we shall see in Chap. 8, a random variate from any distribution can be gen-
erated by first generating one or more U(0, 1) random variates and then performing
some kind of transformation: After obtaining U, we shall "¢ the natural logarithm
of it, multiply the result by @, and finally change the sig.  retumn what we will
- 1 Ame .

wmann A thatfe —@1n IT
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To see why this algerithm works, recall that the (cumulative) distribution func-
tion of a random variable X is defined, for any real x, to be Flx) = P(X = x)
(Chap. 4 contains a review of basic probability theory). If X is exponential with
‘mean 3, then

1 e
=] = d
F(x) J:,B e It

— ¢~x/B

for any real x = 0, since the probability density function of the exponential distrib-
ution at the argument ¢ = s (1/8)e™"%. To show that our method is correct, we can
try to verify that the value it returns will be less than or equal to x (any nonnegative
real number), with probability F(x) given above:

P-BlnU=x= P(ln U= —%)

=PU= e
=P =y=s1)
—— ]
The first line in the above is obtained by dividing through by —8 (recall that 8 > 0,
50 —f8 < 0 and the inequality reverses), the second line is obtained by exponentiat-
ing both sides (the exponential function is monotone increasing, so the inequality is
preserved), the third line is just rewriting, together with knowing that U is in [0, 1]
anyway, and the last line follows since U/ is U(0, 1), and the interval [e™*/7, 1] is
contained within the interval [0, 1]. Since the last line is F(x) for the exponential
distribution, we have verified that our algorithm is correct. Chapter 8 discusses how
to generate random variates and processes in general.

In our programs, we will use a particular method for random-number genera-
tion to obtain the variate U described above, as expressed in the FORTRAN and
C codes of Figs. 7.5 through 7.7 in App. 7A of Chap. 7. While most compilers do
have some kind of built-in random-number generator, many of these are of ex-
tremely poor quality and should not be used; this issue is discussed fully in Chap. 7.

It is convenient (if not the most computationally efficient) to modularize the
programs into several subprograms to clarify the logic and interactions, as dis-
cussed in general in Sec. 1.3.2. In addition to a main program, the simulation pro-
gram includes routines for initiali timing, report g ion, and generating
exponential random variates, as in Fig. 1.3. It also simplifies matters if we write a
separate routine to update the continuous-time statistics, being the accumulated
areas under the Q() and B(r) curves. The most important action, however, takes
place in the routines for the events, which we number as follows:

‘Event description Event type
Amrival v sustomer to the system 1 .
Departure of & customer from the system after completing service 2
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As the logic of these event routines is independent of the particular language to
be used, we shall discuss it here. Figure 1.8 contains a flowchart for the arrival
event, First, the time of the next arrival in the future is generated and placed in the
event list. Then a check is made to determine whether the server is busy. If so, the
number of in the queue is i d by 1, and we ask whether the stor-
age space allocated to hold the queue is already full (see the code in Sec. 1.4.4 or
1.4.5 for details). If the queue is already full, an error message is produced and the
simulation s stopped; if there is still room in the queue, the arriving customer's time

CaD

Schedule the next
arrival event

r this customer

Add 1 to the
number of
costomers delayed

Make the
server busy

Schedule a
departure event for
this customer

Store time of
arrival of this
customer

FIGURE 1.8
Flowchart for arrival routine, queueing model.
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of arrival is put at the (new) end of the queue. (This queue-full check could be elim-
inated if using dynamic storage allocation in a prog; ing I that supports
this.) On the other hand, if the arriving customer finds the server idle, then this cus-
tomer Has a delay of 0, which is counted as a delay, and the number of customer de-
lays completed is incremented by 1. The server must be made busy, arid the time of
departure from service of the amriving customer is scheduled into the event list.

The departure event's logic is depicted in the flowchart of Fig. 1.9. Recall that

this routine is invoked when a service pletion (and p

Subtract 1 from
the number in

Make the
serveridle

Eliminate departure Compute delay of
event from

consideration and gather statistics

Add 1 to the
number of custom
delayed

Schedule a
departure cvent
for this custor

Move each customer
in queue (if any) up
one place

FIGURE 1.9

Flowchart for departure routine, queueing model.
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oceurs. If the departing customer leaves no other customers behind in queue, the
server is idled and the departure event is eliminated from consideration, since the
next event must be an arrival. On the other hand, if one or more customers are left
behind by the departing customer, the first customer in queue will leave the queue
and enter service, so the queue length is reduced by 1, and the delay in queue of this
customer is computed and registered in the appropriate statistical counter. The
number delayed is increased by 1, and a departure event for the customer now en-
tering service is scheduled. Finally, the rest of the queue (if any) is advanced one
place. Our implementation of the list for the queue will be very simple in this chap-
ter, and is certainly not the most efficient; Chap. 2 discusses better ways of handling
lists to model such things as queues.

In the next two sections we give examples of how the above setup can be used
to write simulation programs in FORTRAN and C. Again, only one of these sec-
tions need be studied, depending on language familiarity or preference; the logic
and organization are essentially identical, except for changes dictated by a particu-
lar language’s features or shortcomings. The results (which were identical for both
languages) are discussed in Sec. 1.4.6. These programs are neither the simplest nor
most efficient possible, but were instead designed to illustrate how one might orga-
nize programs for more complex simulations.

1.4.4 FORTRAN Program

This section presents and describes 2 FORTRAN 77 program for the M/M/1 queue
simulation. A general reference on the FORTRAN 77 language is Koffman and
Friedman (1996). In this and all FORTRAN 77 programs in this book we have
obeyed the ANSI standards so far as possible in an attempt to make the programs
general and portable. The only exception to the ANSI standard for FORTRAN 77 is
use of the INCLUDE i d later in this subsection, which can have
slightly different syntax from what we show in our figures below. All code is avail-
able at http://www.mhhe.com/lawkelton.

We have also run the programs on a variety of different machines and compilers.
The numerical results differed in some cases for a-given model run with different
compilers or on different machines, due to inaccuracies in floating-point operations.
This can matter if, for example, at some point in the simulation two events are sched-
uled very close together in time, and roundoff error results in a different sequencing
of the events’ occurrences.

The subroutines and functions shown in Table 1.1 make up the FORTRAN pro-
gram for this model. The table also shows the FORTRAN variables used (modeling
variables include state variables, statistical counters, and variables used to facilitate
coding).

The code for the main program is shown in Fig. 1.10, and begins with the
INCLUDE statement to bring in the lines in the file mml.dcl, which is shown in
Fig, 1.11. The action the INCLUDE statement takes is to copy the file named
between the quotes (in this case, mm1.dcl) into the main ~rogram in place of the
INCLUDE statement, The file mm1.dcl contains “decla...sons” of the variables

TABLE L1
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Subroutines, functions, and FORTRAN variables for the queueing model

Subprogram Purpose
INIT Initialization routine
TIMING Timing routine
ARRIVE Event routine to process type 1 events
DEPART Event routine to process type 2 events
REPORT Generates report when simulation cnds
UPTAVG Updates conti i statistics just befc n
event occurence.
EXPON(RMEAN) Function to generate an exponential random variate with
mean RMEAN
RAND(1) Function to generate & uniform random variate between 0 and 1 (shown
in Fig. 7.5)
Varisble Definition
Input parameters:
MARRVT ‘Mean interarrival time (= 1.0 here)
MSERVT Mean service time (=0.5)
TOTCUS Total number, n, of customer delays to be observed (=1000)
Modeling variables:
ANIQ Arca under the number-in-quoue function (0(7)] so far
AUTIL Area under the server-status function [B(r)] so far
BUSY Mnemonic for server busy (=1)
DELAY Delay in queue of a customer
IDLE Mnemonic for server idle (=0)
MINTNE Used by TIMING to determine which event is next
NEVNTS Number of event types for this model, used by TIMING routine
(=2 here)
NEXT Event type (1 or 2 here) of the next event to oecur (determined by
TIMING routine)
NIQ Number of customers currently in queus
NUMCUS Number of customers who have completed their delays so far
QLIMIT Number of storage locations for the queue TARRVL (=100)
RMEAN Mean of the exponential random variate to be generated (used by
EXPON)
SERVER Server status (0 for idle, 1 for busy)
TARRVL(T) Time of arrival of the customer now Ith in queue (dimensioned to have
100 places)
TIME Simulation clock
TLEVNT ‘Time of the last (most recent) event
TNE(D Time of the next event of type [ (I = 1, 2), part of event list
TOTDEL Total of the delays completed so far
TSLE Time since the last event (used by UPTAVG)
Output variables:
AVGDEL Average delay in queue [d(n)]
AVGNIQ Time-average number in queve (3(n)]
UTIL Server utilization (4(n)]
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¢ Main program for single-server queusing system.
L] Bring in declarations file.

INCLUDE ‘mml.dcl
» Open input and output filen.

OPEN (5, FILE = 'mal.in')
OFEN (6, FILE = ‘mml.out')

¥ Specify tha number of event types for the timing routine.

WEVNTS = 2

* St mmemonlos for marver's being busy and idle.
BUSY = 1
IDLE = O

! Read input parameters.

READ (5,*) MARRVT, MSERVT, TOTCUS
+  write report heading and input parenaters.

TE (§,2010) MARRVI, MSERVT, TOTCUS
rver quwda aystea'/

F11.3,' -:.nu:oru

s A :Inn cnrvh:u tims', ni 3,' minutes'//

0 * Number of customers’,T14//)

. Initialize the simlation.
CALL INIT
B, Determine the mext event.
10 CALL TINING
] Tpdate statistical

CALL UPTAVG
call the appropriate event routine.
60 TO (20, 30), NEXT

CALL ARRIVE

20
@0 10 40
30 CALL DEPART

simulation. If mot, continue tbe simulation

40 IF (¥OMCDS .LT. TOTCUS) GO TO 10
CALL REPORT
cLOSE (5)
cLosE (§)

L
B

FIGURE 110
FORTRAN code for the main program, queueing model.

If the simulation is over, call tha report wuu-tor and end the
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m’suu QLINIT

:rrmn. BUSY, IDLX, NEVNTS, NEXT, NIQ, NUMCUS, SERVER, TOTCUS

REAL mu.am; MARRVT, MSERVT, TARRVL (QLINIT) , rzm.um-r,mm,
&

REAL EXI

comu maw,f AMIQ, AUTIL, BUSY, IDLE, MARRVT, SERVT, NEVNTS, NEXT, K10,

NUNCUS, SERVER, TARRVL, TINE, TLEVNT, TNE, TOTCUS, TOTDEL

FIGURE 1.11
FORTRAN code for the declarations file (mm1.dcl), queveing model.

and arrays to be INTEGER or REAL, the COMMON block MODEL, and the
PARAMETER value QLIMIT = 100, our guess (which may have to be adjusted by
trial and error) as to the longest the queue will ever get. (As mentioned earlier, using
dynamic storage allocation in a language that supports this would eliminate the
need for such a guess. While FORTRAN 77 does not support dynamic storage
allocation, FORTRAN 90 does.) All of the statements in the file mm1.dcl must ap-
pear at the beginning of almost all subp in the simulation, and using the
INCLUDE statement simply makes it easier to do this, and to make any necessary
changes. The variables in the COMMON block MODEL are those we want to be
global; i.c., variables in the block will be known and accessible to all subprograms
that contain this COMMON statement. Variables not in COMMON will be local to
the subprogram in which they appear. Also, we have adopted the convention of
explicitly declaring the type (REAL or INTEGER) of all variables, arrays, and
functions regardless of whether the first letter of the variable would default to its de-
sired type according to the FORTRAN convention. Next, the input data file (called
mm1.in) is opened and assigned to unit 5, and the file to contain the output (called
mm1.out) is opened and assigned to unit 6. (We do not show the contents of the file
mmL.in, since it is only a single line consisting of the numbers 1.0, 0.5, and 1000,
separated by any number of blanks.) The number of event types for the simulation,
NEVNTS, is initialized to 2 for this model, and the mnemonic constants BUSY and
IDLE are set to use with the SERVER status variable, for code readability. The input
parameters are then read in free format. After writing a report heading and echoing
the input parameters (as a check that they were read correctly), the initialization
routine INIT is called. The timing routine, TIMING, is then called to determine the
event type, NEXT, of the next event to cccur and to advance the simulation clock,
TIME, to its time. Before processing this event, subroutine UPTAVG is called to
update the areas under the Q(r) and B(r) curves, for the continuous-time statistics;
UPTAVG also brings the time of the last event, TLEVNT, up to the present. By
doing this at this time we automatically update these areas before processing each
event. Then a “computed GO TO statement,” based on NEXT, is used to pass con-
trol to the appropriate event routine. If NEXT = 1, event routine ARRIVE is called
(at statement label 20) to process the arrival of a customer. If NEXT = 2, event rou-
tine DEPART (at statement label 30) is called to process the departure of a customer
after completing service. After control is returned to the main program from
ARRIVE or DEPART, a check is made (at statement label 40) to see whether
the number of customers who have completed their delays, NUMCUS (which is
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i d by 1 after each customer comp his or her delay), is still (strictly) less
than the number of customers whose delays we want to observe, TOTCUS. If so,
TIMING is called to continue the simulation, If the specified number of delays has
been observed, the report generator, REPORT, is called to compute and write esti-
‘mates of the desired of per Finally, the input and output files are
closed(ap y measure that i ired on many systems), and the simu-
lation run is terminated. .

Code for subroutine INIT is given in Fig. 112, Note that the same declarations
file, mm1.del, is brought in here by the INCLUDE statement. Each statement in
INIT corresponds to an element of the computer representation in Fig. 1.7a. Nc!w
that the time of the first arrival, TNE(1), is d by adding an exp 1
random variate with mean MARRVT, namely, EXPON(MARRVT), to the simula-
tion clock, TIME = 0. (We explicitly nsed TIME in this staternent, although it has
a value of 0, to show the general form of a statement to determine the time of a fu-
ture event.) Since no customers are present at TIME = 0, the time of the next de-
parture, TNE(2), is set to 1.0E + 30 (FORTRAN notation for 10°%), guaranteeing
that the first event will be an arrival.

Subroutine TIMING is given in Fig. 1.13, The program compares TNE(L),
TNE(2), . . . , TNE(NEVNTS) and sets NEXT equal to the event type whose time
of occurrence is the smallest. (Note that NEVNTS is set in the main program.) In
case of ties, the lowest-numbered event type is chosen. Then the simulation clock is
advanced to the time of occurrence of the chosen event type, MINTNE. The pro-
gram is complicated slightly by an error check for the event list’s being empty,

SUBROUTINE INIT
INCLUDE ‘mmi.dcl’

ok Initialize the simulation clock.
TIME = 0.0
W Initialize the state variables.

SERVER = IDLE
NI -0
TLEVNT = 0.0

. Initialize the statistical counters.

. Initialize avent list. Since no cuatomsrs are present, the
. departura (service completion) event is elimimated from
. consideration.

THE(1) = TIKE + EXPON (MARRVT)
TNE(2) = 1.08+30

RETURN
E¥D

TIGURE 1,12
FORTRAN codc for subroutine INIT, queucing modes.
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SUBROUTINE TTMING
INCLUDE ‘mnl.dol’

MINTNE = 108429
NEXT = 0

. Datermine the event typs of the next event to oocur.

DO 10 I = 1, WEVNTS
IF (THE(I) .LT. KINTNE) THEW
)

s whether the event list is empty.

IF (WEXT .EQ. 0) THEN

* The event list is empty, so stop the simulation.
WRITE (6,2010) TIME
2010 FORMAT (' Evest list empty at tima‘,P10.3)
g
* The event list is not empty, so advance the simulation clock.

TIME = MINTNE

RETURN
)

FIGURE 113

FORTRAN code for subroutine TIMING, queucing model.

which we define to mean that all events are scheduled to occur at TIME = 10%. If
this is ever the case (as indicated by NEXT = 0), an error message is produced
along with the current clock time (as a possible debugging aid), and the simulation
is terminated.

The code for event routine ARRIVE is in Fig. 1.14, and follows the language-
independent discussion as given in Sec. 1.4.3 and in the flowchart of Fig. 1.8. Note
that TIME is the time of arrival of the customer who is just now arriving, and that
the queune-overflow check (required since we cannot do dynamic storage allocation
in FORTRAN 77) is made by asking whether NIQ is now greater than QLIMIT, the
length for which TARRVL was dimensioned.

Event routine DEPART, whose code is shown in Fig. 1.15, is called from the
main program when a service completion (and subsequent departure) occurs; the
logic for it was discussed in Sec. 1.4.3, with a flowchart in Fig. 1.9, Note that if
the statement TNE(2) = 1.0E + 30 just before the ELSE were omitted, the program.
would get into an infinite loop. (Why?) Advancing the rest of the queue (if any) one
place by DO loop 10 ensures that the arrival time of the next customer entering ser-
vice (after being delayed in queue) will always be stored in TARRVL(1). Note that *
if the queue w~-= now empty (i.e., if the customer who just left the queue and en-
tered service k... been the only one in quene), then NIQ would be equal to 0, and
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%=

SUBROUTINE ARRIVE
INCLODE ‘'mmi.del’
REAL DELAY
A schedula next arrival.
THE{1) = TIME + EXPON(MARRVT)
. Check to mes whether server is busy.
IF (SEAVER .EQ. BUSY) THEN
. Server Ls busy, #0 incressat musber of customers in gueus.
WIQ = NIQ + 1
& Check to ses whether an overflow condition exists.

IF (WIQ .GT. QLINIT) THEN

. The queue has overflowed, so stop the simulation.
WRITE (6,3010) TINE
2010 FORMAT {* Overflow of the array TARRVL at tima,F10.3)
aror
mo Ir
. Thers Ls still room in the gueus, s0 stors the tiss of arrival
. of the arriving customar st tha (new) end of TARRVL.
TARRVL(RIQ) = TIME
nLsx
. gecver 1s idla, so arriving customer has a delay of zero. (The
. following two #tatements are for program clarity and do mot
L affect the results of tha simulation.)
DELAY = 0.0
TOTDEL = TOTDEL + DELAT
» Iacremant the numbar of customers delayed, and make server
* busy.
NUNCUS = NUMCUS + 1
EERVER = BUSY
+ Schedula a departurs (ssrvica completion).
THE(Z) = TIME + EXPON(MSERVT)
o Ir
RETURN
BD
FIGURE 1.14

FORTRAN code for subroutine ARRIVE, queucing model.

this DO loop would not be exccuted at all since the beginning value of the DO

loop index, 1, starts out at a value (1) that would already exceed its final value

(NIQ = 0); this is a feature of FORTRAN 77. (Managing the queue in this simple

way, by moving the arrival times up physically, is certainly inefficient; we return

to this issue in Chap. 2.) A final comment about DEPART concerns the subtraction
P = i D an

tha Aalars in mvana TF tha
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SUBROUTINE DEPART
IRCLUDE ‘mml.del’
INTEGER I
REAL DELAY

. Check to sea whether the queue Ls empty.

Ir (NIQ .EQ. 0) THEN

. The queve is eapty #o make the server idle and slininate ths
. dsparture (service completion) svent from comsideration.

SERVER = IDLE

mm(2) = 108430

ELSE

. 7The queus is nonempty, so decrement the mumber of customers in
. queus.

n10 - WG - 1
o3 Compute the delay of the customer who is beginning mervice and
. update the totsl delsy accumilator.

DELAY = TINE - TARRVL(1)
TOTDEL = TOTDEL » DELAY

. Increment the nunber of customers delayed, and schedule
. departure.

I8 - s+ 1
TNE(1) = TINE + EXPON(MSERVT)
. Move each customer in queus (1f sny) up one place.
D010 1 = 1, NIQ
10 TARRVL(I) = TARRVL(I » 1}
BND IF

RETURN
D

FIGURE L.15
FORTRAN code for subroutine DEPART, queucing model.

simulation is to run for a long period of (simulated) time, both TIME and
TARRVL(1) would become very large numbers in comparison with the difference
between them; thus, since they are both stored as floating-point (REAL) numbers
with finite accuracy, there is potentially a serious loss of precision when doing
this subtraction, For this reason, it may be necessary to make both TIME and the
TARRVL array DOUBLE PRECISION if we want to run this simulation out fora
long period of time.

The code for subroutine REPORT, called when the termination check in the main
program determines that the simulation is over, is given in Fig. 1.16. The average
delay, AVGDEL, is computed by dividing the total of the delays by the number of cus-
tomers whose delays were observed, and the time-average number in queue, AVG-
NIQ, is obtained by dividing the area under ((¢), now updated to the end of the sim-
ulation (since UPTAVG is called from the main program before processing either an

and tha cimulatinn) b tha elack ralne ot

arriral Ar danarmira ana nf whick
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SUBROUTINE REPORT
INCLUDE ‘mml,del’
REAL AVGDEL, AVGNIQ, UPIL

- Compute and writs estisates of desired measures of performance.

AVGDEL = TOTDEL / NUMCUS
AVONIQ = ANIQ / TIME

DTIL = AUTIL / 7
WRITH (6,2010) AVGDEL, AVONIQ, UTIL, TIME
2040 FORMAT (/* Average delay in queus',F11.3,' minutes'//
1l

& ! Aver in quaue’,F10.3/
& * Berver utilization',Fi5.3//
& ¢ Tims simulation ended',P12.3,' minmutes')
E¥D
FIGURE 1.16

FORTRAN code for subroutine REPORT, queueing model.

termination. The server utilization, UTIL, is computed by dividing the areaunder B(r)
by the final clock time, and all three measures are written out. We also write out the
final clock value itself, to see how long it took to observe the 1000 delays.
Subroutine UPTAVG is shown in Fig. 1.17. This subroutine is called just before
processing each event (of any type) and updates the areas under the two functions
needed for the continuous-time statistics; this routine is separate for coding conve-
nience only, and is not an event routine. The time since the last event, TSLE, is first
computed, and the time of the last event, TLEVNT, is brought up to the current time
in oxder 10 be ready for the next entry into UPTAVG. Then the area under the
q function is d by the area of the rectangle under Q(r) dur-
ing the interval since the previous event, which is of width TSLE and height NIQ;
remember, UPTAVG is called before processing an event, and state variables such
as NIQ still have their previous values. The area under B(r) is then augmented by the

SUBROUTINE UPTAVO
INCLUDE ‘mml.del’
REAL TSLE

. Compute time since last event, and updata last-svent-time marker.

TSLR = TIME - TLEVAT
TLEVNT = TIME

£ Update area under mumber-in-quess functlion.
ANIQ = ANIQ ¢ NIQ * TSLE

* Update area under werver-busy indicator function.
AUTIL = AUTIL + GERVER * TSLE

RETURN
£

FIGURE 1.17
FORTRAN code for subroutine UPTAVG, queueing moaw..
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XXX, FONCTIOH: EXPON(RNEAN)
REAL RMEAN
REAL RAND
* Return an exponential random variate with mean RMEAN.
EXPON = -EMEAN * LOG(RAND(1})

RETORN
D

FIGURE 1.18
FORTRAN code for function EXPON.

area of a rectangle of width TSLE and height SERVER,; this is why it is convenient
to define SERVER to be either 0 or 1. Note that this routine, like DEPART, contains
a subtraction of two floating-point numbers (TIME — TLEVNT), both of which
could become quite large relative to their difference if we were to run the simulation
for along timé; in this case it may be necessary to declare both TIME and TLEVNT
to be DOUBLE PRECISION variables.

The function EXPON, which generates an exponential random variate with
mean 8 = RMEAN (passed into EXPON), is shown in Fig. 1.18, and follows the
algorithm discussed in Sec. 1.4.3. The random-number generator RAND, used here
with an INTEGER argument of 1, is discussed fully in Chap. 7, and is shown specif-
ically in Fig. 7.5. The FORTRAN built-in function LOG returns the natural loga-

‘rithm of its argument, and agrees in type with its argument.

The program described here must be bined with the rands b
generator code from Fig. 7.5. This could be done by separate compilations, fol-
lowed by linking the object codes together in an installation-dependent way.

1.4.5 C Program

This section presents a C program for the M/M/1 queue simulation. We use the
ANSI-standard version of the language, as defined by Kemighan and Ritchie
(1988), and in particular use function prototyping. We have also taken advantage of
C's facility to give variables and functions fairly long names, which should thus be
self-explanatory (for instance, the current value of simulated time is in a variable
called sim_time). As with our FORTRAN 77 programs, we have run all our C
programs on several different computers and compilers to ensure good portability,
and for the same reasons given at the beginning of Sec. 1.4.4, numerical results can
differ across computers and compilers. The C math library must be linked, which
might require setting an option, dependmg on the compiler (on UNIX sys-
tems this option is often -Im in the il ). All code is ilabl
at http:/iwww.mbhe.com/lawkelton,

The external definitions are given in Fig. 1.19. The header file lcgrand h (listed
in Fig. 7.7) is included to declare the ions for the rand
The symbolic ¢~ tant Q_LIMIT is set to 100, our guess (which may have to be
adjusted by trial aud error) as to the longest the queue will ever get, (As mentioned
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{* External definitions for single=server queueing sy...m. */
#include <stdio.h>

#inoclude <math.hy .
#includs *lcgrand.h” /* Header file for random-nurber generator. */

#define Q_LINIT 100 i“ Limit on queus length.
#define BUSY 3 amon: for server's bciw busy */
.t

* M
#define IDLE 0 /* and idle
layed, num delays required, num_events,

int  mext_event_type, nn_mnu
num_in_q. lll.'\rlr »
float area_num_in ¢ _status, mean_in
.mgm, u-. ms.v.uq_;.mn + 1], time_L

rival, mean_Serv:
avent, tims_next_e n-ncm,

void timing

woid mart(m!dl

wotd update_time -vg_-t.n(vns.dn

Float axpon(Float wesnls

FIGURE 1.19

C code for the external definitions, queveing model.

earlier, this guess could be eliminated if we were using dynamic storage allocation;
while C supports this, we hlv: not used it in our examples in order tn nukc them
le to the g FORTRAN 77 .) Th

BUSY and IDLE are defined to be used with the server_status variable, for code
readability. File pointers *infile and *outfile are defined to allow us to open the
input and output files from within the code, rather than at the operating-system
level. Note also that the event list, as we have discussed it so far, will be imple-
mented in an array called time_next_event, whose Oth entry will be ignored in order
to make the index agree with the event type.

The code for the main fonction is shown in Fig. 1.20. The input and output
files are opened, and the number of event types for the simulation is initialized to
2 for this model. The input parameters then are read in from the file mml.in,
which contains a single line with the numbers 1.0, 0.5, and 1000, separated by
blanks. After writing a report heading and echoing the input parameters (as a
check that they were read correctly), the initialization function is invoked. The
“while” loop then executes the simulation as long as more customer delays are
needed to fulfill the 1000-delay stopping rule. Inside the “while” loop, the timing
function is first invoked to determine the type of the next event to occur and to ad-
vance the simulation clock to its time. Before processing this event, the function
to update the areas under the Q(1) and B(z) curves is invoked; by doing this at this
time we automatically update these areas before processing each event. Then a
switch statement, based on next_event_type (=1 for an arrival and 2 for a depar-
ture), passes control to the appropriate event function. After the “while” loop is
done, the report function is invoked, the input and output files are closed, and the
simulation ends.

LnAFiBK UNE

main() /* sain function. */

/% open input and cutput files. */

infile = fopen{*mml.in®, "r*)y
cutfile = fopen(*mml,out®, *w<);

/% Specify the nuzber of aveants for the timing function. */
mum_svents = 3

/% Read input peramsters. */

facanf{infils, *Sf %f %4", &mean_interarrival, &mean_service,
m_ﬂllwl}mlrl&

«

/* Write report heading and input paramete:

fpeiatf(outtile, "Single-sarver qusualng systes\nint);
!ptlﬂ:!(wtul "Hoan i time¥11,3f .

4 rarrival))

Mean service time¥16.3f minutes\s\n”, mean_service);
“Mumber of customershlddin\n®, num delays_required);

fprintf luﬂt!!l
fprintf (outfd

/* Initialize tha simslation, */
initialize()s
/+ Run the simulation whils more delays are still needed. */
while (nusm_custs_delayed < oum delsys_required) {
/+ Datermine the next event. */
timing()y
/* Tpdate time-average statistical accusulators. */
pdste_time_avg_stats(};
/% Invoke the appropriaste event function. */
switoh (next_event_type) {
casa
arrivai);
break;
case 11
depart(};
break)
}

/* Invoke the report gensrator and end the simulation. */

raport()s

felosa(intile)s
folose{outfile);

Taturn 07
)

FIGURE 1.20
C code for the main function, queueing model.

s
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woid Initinlize(vold) /% Initislization funetion. */
/* Initialize the similation elock. */
sin_time = 0.0
/* Initialize tha state variables. */

merver_status = IDLE;

um_ing =0y

time_last_svent = 0.0

/* Tnitialize the statistical counters. */

num_custs_dslaysd = 0

total_of_delsys

axes_nun_in_q - 0.0

aren_server_status = 0.0;

/* Initialize avest list. Since no customers are present, the departure
(mervice completion) svent is sliminated from consideration. */

tine_next_svent{1] = sim_tims + expon(mean_interarrivall);
tima_next_svent(2] = 1.0me30;

)

FIGURE 1.21

€ code for function initialize, queucing model.

Code for the initialization function is given in Fig. 1.21. Each statement here
corresponds to an element of the computer representation in Fig. 1.7a. Note that
the time of the first arrival, time_next_event[1], is determined by adding an expo-
nential random variate with mean mean_interarrival, namely, expon(mean_interar-
rival), to the simulation clock, sim_time = 0. (We explicitly used “sim_time" in
this statement, although it has a value of 0, to show the general form of a statement
to determine the time of a future event.) Since no customers are present at time
sim_time = 0, the time of the next departure, time_next_event[2], is set to
1.0e + 30 (C notation for 10*"), guaranteeing that the first event will be an arrival.

The timing function, which is given in Fig. 1.22, is used to compare
time_next_cvent[1], time_next_event(2}, . . ., time_next_event[num_events] (re-
call that num_events was set in the main function) and to set next_event_type
equal to the event type whose time of occurrence is the smallest. In case of ties,
the lowest-numbered event type is chosen. Then the simulation clock is advanced
to the time of occurrence of the chosen event type, min_time_next_event. The pro-
gram is complicated slightly by an emror check for the event list's being emg)ty‘
which we define to mean that all events are scheduled to occur at time = 10%, If
this is ever the case (as indicated by next_event_type = 0}, an error message is
produced along with the current clock time (as a possible debugging aid), and the
simulation is terminated.

The code for event function arrive is in Fig. 1.23, and follows the language-
independent discussion as given in Sec. 1.4.3 and in the flowchart of Fig. 1.8. Note
that “sim_time" is the time of arrival of the customer who is just now arriving, and
that the queue-overflow check is made by asking whether rum_in_q is now greater
than Q_LIMIT, the length for which the array time_arriv. vas dimensioned.
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void timing(vold) /* Timing function, */
t
ine
float min_time_next_event = 1.0es19;
next_svent_type = 0y
/% Detersine the event type of the next event to occur, */
for (1 = 1) 4 <= sum_events; ssi)
42 (time_next_event[l] < min_time_next_event) {

n_Eine_next_event = time_next_svent[i];
‘next_event_type =L

/% chack to mee vhether the event list is empty. */

if (next_event_typs == 0) (
/% The event List s empty, so stop the simulatien. */
fprintf(outfile, *\nBvent list empty at time %", sim time);
exit(i)y

/% Tha wvent list is not empty, so sdvance the sisulation clock. */

j Rt s e, et drints
FIGURE 1.22
C code for function timing, queucing model.

Event function depart, whose code is shown in Fig. 1.24, is invoked from the
main program when a service completion (and subsequent departure) occurs; the
logic for it was discussed in Sec. 1.4.3, with the flowchart in Fig. 1.9. Note that if
the statement “time_next_event[2] = 1.0e + 30;" just before the “else’’ were omit-
ted, the program would get into an infinite loop. (Why?) Advancing the rest of the
queue (if any) one place by the “for” loop near the end of the function ensures that
the arrival time of the next customer entering service (after being delayed in queue)
will always be stored in time_arrival[1]. Note that if the queue were now empty
(i.e., the customer who just left the queue and entered service had been the only one
in queue), then num_in_q would be equal to 0, and this loop would not be executed
at all since the beginning value of the loop index, i, starts out at a value (1) that
would already exceed its final value (num_in_q = 0). (Managing the queue in this
simple way is certainly inefficient, and could be improved by using pointers; we re-
turn to this issue in Chap. 2.) A final comment about depart concerns the subtraction
of time_arrival[1] from the clock value, sim_time, to obtain the delay in queve. If
the simulation is to run for a long period of (simulated) time, both sim_time and
time_arrival(1] would become very large numbers in comparison with the differ-
ence between them; thus, since they are both stored as floating-point {float) numbers
with finite accuracy, there is potentially a serious loss of precision when doing this
subtraction. For this reason, it may be necessary to make both sim_time and the
time_arrival ar - of type double if we are o run this simulation out for a lon,
period of time. *
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vold arrive{void) /* Arrival event functisn. */

Y e ay;
/* Schedule mext arrival. */
time_next_event(1] = sim time s expon(mean interarrival);
/* Check te see whether server ls busy. */

4f (merver_status == BOUSY) {

/% Server is busy, mo increment mumber of customers in queus. */
++num_in gy
/* Check to see whether an overflow condition exists. */
4f (num_in_q > Q_LINIT) {
/% The queue has overflowed, so step the simlation, */
fprintf(outfile, *\nOvarflow of the Jllly tima_arrival at®)y
1

fprintf(outfile, * time %%, sim ti
exit(2);

/* Thers im mtill room in the quens, sc stors the time of arrival of the
arriving custoser at the (new) end of time_arrival. */

time_arrival[num_in_g] = sim_time;

y
alss {
/* Berver is idle, so srriving custoner has o delay of sero.  (The
following two stat ‘or progran clarity and do not affect
Che Temuits of the simiation.) +
delay = 0.0
total of delays += dalays
/* Increment tha number of customers delayed, and make b
+enun_custs_delaye:
server_status = xozr,
/% Schedule a departurs (service complation). */
time_next_svent[3] = sim tims + expon(mean_service);
}
FIGURE 1.23

C code for function arrive, queueing model.

The code for the report function, invoked when the “while” loop in the main
program is over, is given in Fig. 1.25. The average delay is computed by dividing
the total of the delays by the number of customers whose delays were observed, and
the time-average number in queue is obtained by dividing the area under Q(t), now
updated to the end of the simulation (since the function to update the areas is called
from the main program before processing either an arrival or departure, one of
which will end the simulation), by the clock value at termination. The server

B

§
§
i
!
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wvold depart(void) /¢ Departure event function, */ .
{

ine 4y
£loat delays

/* Check to ses whether the queue is empty. */
if (mum_in g == 0) (

/% The queue is empty so Ill)ll the server idle the
departurs (service ) event from “

sarvar_status
time_next_svent(2] = iy n-.zo,

¢
/* The queus is nonempty, so decrement the nurber of customers in
queus. */

==num_in_q7

/* Cospute the dalay of tha customer who is beginning service and update
the total delay accumulator. */

dalay #im _time - time_arrivalli];
tocal. _of_delays 4= ﬂnnyr

/* Increment the number of customers delayed, and scheduls departurs. */

++nun_custs_delayed;
tima_next_event (1] = sim_tims + expon(mean_service);

/* Move each customer in queus (if any) up onme place. */

for (1 = 1y i < num _in_qr s+i]
tima_arrival(i] = time_ -zrlu‘lu s 107

¥

FIGURE 1.24
C code for function depart, queucing model.

roid report(vold) /* Report genarator function. */

/* cospute and write estimates of desired measures of performance. */

fprintf(outfila, "\n\nAverage delay I.n r.m-ann 3¢ minutesinin®,
al_of dslays / num_g
rp:!.n:!(w:n ., "Average n_b-! lq qu-wv\lu 3f\atn®,
9a_run_in g / sin_tine|
fprinte (oureiie, *Sitvar nunnuu.ms It\atan,

rvar_status / sin_time)

“iIne similatios andedsiz. f miutast, #im_tine);

priats {outfile,
¥

FIGURE 1.25
C code for function report, queucing model.
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vo1d update_time_svg_stats(veld) /* Update ares accusmlators for time-average
statistics. */
float time_since last_event;
f* Compute time mince lmat event, and updste last-event-time marker, */

time_since last_svent = sim time - time_last_svent;
time_last_svent = sim_time;

/% Update area under number-in-queue function. */
4= num_in_g * time_since_last_event;

/* Update area under server-busy indlcator functlon. #/

area_num_in_q

area_sacver_status += merver_status * tims_since_last_svent;

FIGURE 1.26
C code for function update_time_avg_stats, queueing model.

utilization is computed by dividing the area under B(r) by the final clock time, and
all three measures are written out directly. We also write out the final clock value
itself, to see how long it took to observe the 1000 delays.

Function update_time_avg_stats is shown in Fig. 1.26. This function is invoked
just before processing each event (of any type) and updates the areas under the two
functions needed for the continuous-time statistics; this routine is separate for cod-
ing convenience only, and is not an event routine, The time since the last event is
first computed, and then the time of the last event is brought up to the current time
in order to be ready for the next entry into this function, Then the area under the
number-in-queue function is augmented by the area of the rectangle under Q(r) dur-
ing the interval since the previous event, which is of width time_since_last_event
and of height num_in_q; remember, this function is invoked before processing an
event, and state variables such as num_in_q still have their previous values. The
area under B(f) is then augmented by the area of a rectangle of width
time_since_last_event and height server_status; this is why it is convenient to de-
fine server_status to be either 0 or 1. Note that this function, like depart, contains a
subtraction of two floating-point numbers (sim_time — time_last_event), both of
which could become quite Jarge relative to their difference if we were to run the
simulation for a long time; in this case it might be necessary to declare both
sim_time and time_last_event to be of type double.

The function expon, which generates an exponential random variate with mean
B = mean (passed into expon), is shown in Fig. 1.27, and follows the algorithm

float oxpon(float mean) /* Exponential variate generatien functien. */
/% Raturn an exponential rendom wvariste with mean “mean®. */

return -mean * logilegrandil));

FIGURE 1,27
C cade for function expon,

T S
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discussed in Sec. 1.4.3. The random-number generator lcgrand, used here with an
int argument of 1, is discussed fully in Chap. 7, and is shown specifically in Fig. 7.6.
The C predefined function log returns the natural logarithm of its argument.

The program i here must be bined with the random-number-
generator code from Fig. 7.6. This could be done by separate compilations, fol-
Jowed by linking the object codes together in an installation-dependent way.

14.6 Output and Di

The output (in a file named mm1.out) is shown in Fig. 1.28; since the same method
for random-number generation was used for the programs in both languages, they
produced identical results. In this run, the average delay in queue was 0.430 minute,
there was an average of 0.418 customer in the queue, and the server was busy
46 percent of the time. It took 1027.915 simulated minutes to run the simulation to
the completion of 1000 delays, which seems reasonable since the expected time
between customer arrivals was 1 minute. (It is not a coincidence that the average
delay, average number in queue, and utilization are all so close together for this
model; see App. 1B.)

Note that these particular numbers in the output were determined, at root, by the
numbers the random-number generator happened to come up with this time. If a dif-
ferent random-number generator were used, or if this one were used in another way
(with another “seed” or “stream,” as discussed in Chap. 7), then different numbers
would have been produced in the output. Thus, these numbers are not to be regarded
as “The Answers,” but rather as estimates (and perhaps poor ones) of the expected
quantities we want to know about, d(n), q(n), and u(n); the statistical analysis of
simulation output data is discussed in Chaps. 9 through 12. Also, the results are
functions of the input parameters, in this case the mean interarrival and service
times, and the n = 1000 stopping rule; they are also affected by the way we initial-
ized the simulation (empty and idle).

In some simulation studies, we might want to estimate steady-state character-
istics of the model (see Chap. 9), i.e., characteristics of a model after the simulation
has been running a very long (in theory, an infinite amount of) time. For the simple

singla-sacver queueing systen
Mean interarrival time 1.000 ninutes
¥ean service time 0.500 minutes
Kusber of customers 1000
Average delsy in queus 0.430 minutes
Avarage number in queus 0.418

2 0.460
Server utili- “ion FIGURE 1.28
Time similation ended  1027.515 minutes Qutput report, queueing model.




MIM!| queue we have been considering, it is possible to compute analytically the
steady-state average delay in queue, the steady-state lime-average number in
queuc, and the steady-state server utilization, all of these measures of performance
being 0.5 [see, e.g., Ross (1997, pp. 419-420)). Thus, if we wanted to determine
these steady-state measures, our estimates based on the stopping rule n = 1000 de-
lays were not too far off, at least in absolute terms. However, we were somewhat
lucky, since n = 1000 was chosen arbitrarily! In practice, the choice of a stopping
rule that will give good estimates of steady-state measures is quite difficult. To
illustrate this point, suppose for the M/M/1 queue that the arrival rate of customers
were increased from 1 per minute to 1.98 per minute (the mean interarrival time is
now 0.505 minute), that the mean service time is unchanged, and that we wish to
estimate the steady-state measures from a run of length n = 1000 delays, as before.
‘We performed this simulation run and got values for the average delay, average
number in queue, and server utilization of 17.404 minutes, 34.831, and 0,997,
respectively. Since the true steady-state values of these measures are 49.5 minutes,
98.01, and 0.99 (respectively), it is clear that the stopping rule cannot be chosen
arbitrarily, We discuss how to specify the run length for a steady-state simulation in
Chap. 9.

‘The reader may have wondered why we did not estimate the expected average
waiting time in the system of a customer, w(n), rather than the expected average
delay in queue, d(n), where the waiting time of a customer is defined as the time
interval from the instant the customer arrives to the instant the customer completes
service and departs. There were two reasons. First, for many queueing systems we
believe that the customer's delay in queue while waiting for other customers to be
served is the most troublesome part of the customer’s wait in the system. Moreover,
if the queue represents part of a manufacturing system where the “customers” are
actually parts waiting for service at a machine (the “server”), then the delay in
queue represents a loss, whereas the time spent in service is “necessary.” Our sec-
ond reason for focusing on the delay in queue is one of statistical efficiency. The
usual estimator of wi{n) would be
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where W, = D, + §, is the waiting time in the system of the ith customer and
&(n) is the average of the n customers’ service times. Since the service-time dis-
tribution would have to be known to perform a simulation in the first place, the
expected or mean service time, E(S), would also be known and an alternative
estimator of win) is

Wn) = d(n) + E(5)
[Note that 5(n) is an unbiased estimator of E(S) in Eq. (1.7).) In almost all queue-
ing simulations, #(n) will be a more efficient (less variable) estimator of w(n) than
W(n) and is thus preferable (both estimators are unbiased). Therefore, if one wants
an estimate of w(n), estimate d(z) and add the known expected service time, E(S).
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In general, the moral is to replace esti by their expected values wh 3
possible (see the di ion of indirect esti; in Sec. 11.5).

1.4.7 Alternative Stopping Rules

In the above queucing example, the simulation was terminated when the number of
customers delayed became equal to 1000; the final value of the simulation clock
was thus a random variable. However, for many real-world models, the simulation
is to stop after some fixed amount of time, say 8 hours. Since the interarrival and
service times for our example are continuous random variables, the probability of
the simulation’s terminating after exactly 480 minutes is 0 (neglecting the finite ac-
curacy of a computer). Therefore, to stop the simulation at a specified time, we in-
troduce a dummy “end-simulation” event (call it an event of type 3), which is
scheduled to. occur at time 480. When the time of occurrence of this event (being
held in the third spot of the event list) is less than all other entries in the event list,
the report generator is called and the simulation is terminated. The number of
customers delayed is now a random variable.

These ideas can be impl d in the computer progi by making changes
to the main program, the initialization routine, and the report generator, as described
below. The reader need go through the changes for only one of the languages, but
should review carefully the corresponding code.

FORTRAN Program. Changes must be made in the main program, the decla-
rations file (renamed mmlalt.dcl), INIT, and REPORT, as shown in Figs. 1.29
through 1.32. The only changes in TIMING, ARRIVE, DEPART, and UPTAYG are
in the file name in the INCLUDE statements, and there are no changes at all in
EXPON. In Figs. 1.29 and 1.30, note that we now have 3 events, that the desired
simulation run length, TEND, is now an input parameter and a member of the
COMMON block MODEL (TOTCUS has been removed), and that the statements
after the “computed GO TO" statement have been changed. In the main program
(as before), we call UPTAVG before entering an event routine, so that in particu-
lar the areas will be updated to the end of the simulation, here when the type 3 event
(end simulation) is next. The only change to INIT (other than the file name to
INCLUDE) is the addition of the statement TNE(3) = TEND, which schedules the
end of the simulation. The only change to REPORT in Fig. 1.32 is to write the num-
ber of customers delayed instead of the time the simulation ends, since in this case
we know that the ending time will be 480 minutes but will not know how many
customer delays will have been completed during that time.

C Program. Changes must be made in the external definitions, the main func-
tion, and the initialize and report functions, as shown in Figs. 1.33 through 1.36; the
rest of the program is unaltered. In Figs. 1.33 and 1.34, note that we now have
3 events, that the desired simulation run length, time_end, is now an input parame-
ter (num_delays_required has been removed), and that the “switch” statement has
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» Hain program for single
* Bring in declarations file,
INCLUDE ‘mmialt.del’

" Open input and cutput files.

OPEN (5, FILE = 'mmlalt.in')
OFER {5, FIL¥ = ‘mmlalt.out’)

4 Bpecify the purber of event types for the timing routinms.
NEVHTS = 3
. £t mnemtrdos for merver's being busy and idle.
BUSY = 1
IDLE = 0
ad Read input parameters,
READ (5,%) MARRVT, MSERVY, TEND
® Write report heading and input parameters.

WRITR (€,2010) MARRVY, MSERVT, TEND
2010 PORMAT (° Single-servar quussing system with Tixed run length'//
¥ ! Mean interarrival tima',P11.3,° minutes'//

& ! Mean mervice tiwe',F15.3,' minutes'//
& ! Length of the simlation’,PS.3,' minutes'//)
o Initialize the simulatien.
€ALL INIT
* Determine the pext event,

10 €ALL TIMING
L Tpdate time-average statistical accumulators,

CALL UPTAVG

Call the appropriate svent routine,

oc 0 120, 30, 40), WEXT
0 L ARRIVE

CAL]
G0 T0 10
30 CALL DEPART
10
- simulation s Gver; call report gensrator and end
G similation,

40 CALL REPORT

CLOBE (S)
cLose ()

sTop
=

FIGURE 1.29
FORTRAN code for the nain program, queueing model with fixed run length,

Tver queusing system fixed run length,
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INTEGER BUSY, IDLE, NEVNTS, NEXT, NIQ, NUMCUS, SERVER
REAL ANTQ,AUTIL, MARRVT, MSERVT, TARRVL (QLIMIT) ,TEND, TIME, TLEVNT,

& TRE(3) L

REAL EXPON

COMMON /KODEL/ ANIQ,AOTIL, BUSY, IDLE, MARRVT, MSERVT, KEVNTS, NEXT, NIQ,
& NUNCUS , SERVER, TARSNL, TEWD, TIHE, TLEVAT, TNE, TUTDEL

FIGURE 1.30
FORTRAN code for the declarations file (mmalt.del), queucing model

with fixed run Jength.

been changed. To stop the simulation, the priginal “while” loop has been replaced
by a “do while" loop in Fig. 1.34, where the loop keeps repeating itself as long as
the type of event just executed is not 3 (end simulation); aftes @ type 3 event is cho-
sen for execution, the loop ends and the simulation stops. In the main program (as
before), we invoke update_time_avg_stats before entering an event function, so that
in particular the areas will be updated to the end of the simulation here when the
type 3 event (end simulation) is next. The only change to the initialization function
inFig. 1.35 is the addition of the statement time_next_event[3] = time_end, which
schedules the end of the simulation. The only change to the report function in
Fig. 1.36 is to write the number of customers delayed instead of the time the

SUBROUTINE INIT
INCLODE ‘smialt.del’

- Initialize the aimulation elock.
e .0

% nitinlize the state varisbles.
GERVER = IDLX
wIQ =0
TLEVIT = 0.0

atisticsl counters.

Initinlize sveat list. §ince no custowers are present, the

.
. leparture {service completion) event is eliminated from
¥ covsidaration. The end-slmulation event (type 3) is scheduled for
* time TEND,
THE(1) = TIMR ¢ EXPON(MARRVT)
THE(2) = 1.0%s30
THE(3) = TEND
RETURN
L
FIGURE 1.3° .

FORTRAN coue for subroutine INIT, queueing model with fixed run length.
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SUBROUTINE REPORT saln() /* ¥ain function. */ .
INCLUDE 'mmlalt.del’

REAL AVODEL, AVONIQ, UPIL /* Open laput and output fil
. Compute and write sstimates of desired measures of performance. infile = fopen(*mmlalt.in®, 1kl
outfile = fopan(*malalt.out®, *w');
AVODEL = TOTDEL / NUMCUS
AVGNIQ = ANIQ / TINS /* Specify the nunber of events for the timing function. */
1L = AUTIL / TIME
WRITE (6,2010) AVGDEL, AVONIQ, UTIL, NUMCOS sum_events = 3
2010 mnm (/' Average delay in ww-',rll 3,' minutes'//
\ve; 7, /* Read input paramsters. */
: + Wusber of delays cospleted’,I?) facant(infile, "Xf Xf X£", Gmean_{nterarrival, Emean_servics, Ltime_end);
RETURN i /* ¥rits Teport heading and imput paranstera. */
=D
fprintf(outfll Single- T quensing system with fixed run*);
FIGURE 1.32 hnyth\n\n'l ]
val imen1l,3f 5

FORTRAN code for subroutine REPORT, queueing model with fixed run length. oy o
fprintf(outfile, -Mesn ssrvice timedis.)f minutes\n\a’, mean_servica);
fprintf(cutfile, "Length of the simulationhd.3f minutes\n\n", time_end);

simulation ends, since in this case we know that the ending time will be 480 min- o e aTine ik sdmitaidion. o)
:1[::::-:: will not know how many customer delays will have been completed during e

The output file (named mmlalt.out if either the FORTRAN or C program was ” ?:;p:h;} ::;ll::m until it terminates after an ecd-simulation event

run) is shown in Fig. 1.37. The number of customer delays completed was 475 in

this run, which seems reasonable in a 480-minute run where customers are arriving i do €
at an average rate of 1 per minute. The same three measures of performance are i /* Datermine the next aveat. *f
again numerically close to each other, but are all somewhat less than their earlier r oo
values in the 1000-delay simulation. A possible reason for this is that the current run
is roughly only half as long as the earlier one, and since the initial conditions for the /* Update time-average statistical accumilators. */
simulation are empty and idle (an uncongested state), the model in this shorter run update_time_avg_stata();
/* Invoke the appropriate svent function. */
/% External definitions for single-server queueing system, fixed rum length. */
switch (next_svent_type) {
#includs cstdio.h> case 1i
#include <math.hs arzive();
#include "logrand.h" /* Hesder file for random-nusber generator. */ breaks
e v

#define Q_LIMIT lon /* Limit on queus length. dapaze(}y
#detine BUSY e o mvants batad T ] ‘break;
#define IDLE D /% and 141 L) case 3

i report ()
int next_event_type, nm_cul:l dlloy!ﬂ, an!l pum_in g, break;
float are n_q, area_i atus, mean_int T 1

sim_time, time ur!.valuu.ml'r + 1), time , time fast _event,
event [4], total_of delays; /2 1€ the event fust exscutad ves not the end-almlstion erent (tyve 3.

rILE *outfiles continue mimula herwi, mulation. *
void initialize(vodd)) )} while (next_svent_typa Is 1)}
wvoid Ly odd) y
woid arrive(void}) ; £closs(infile);
void depart (void); i fcloss(outtile) s

vold report (void); 1

vold update_time avg stats(void)s

float expon(float mesn); ¥
FIGURE 1.34

Ccode for the main function, queueing model with fixed run length.

xeturn 07

FIGURE 1.33
C code for the external definitions, queueing model with fixed run length.
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joid inttlaliza(vold) /* Initialisation functlon. ¢/
/% Yiitlalize the simulavdon clock. =7
sin_tise = 0.0;

/* Initislize the state variables. */

sarver_status = IDLE;
A3 0

num_{ -
time_last_svent = 0.0;

/* Initislize the statistical counters. */
oum_cus
total_o!

axea_nua_i
area_server_status = 0,01

/* Initiallze event list. Blnce no customers are present, the departure
(service completion) event is eliminated from con'iﬂ!xaticlh The end-
simulation event (typa 3) ls scheduled for time t. e

time_next_event(1] = sim_tims + expon(mean_interarrivall
Il.ln_nent avent (2] = 1,0e+30;
time_next_event(3] = tima_end,

)

FIGURE 1.35
C code for function initialize, queneing model with fixed run length.

has less chance to become congested. Again, however, this is just a single run and is.
thus subject to perhaps considerable uncertainty; there is no easy way to assess the

degree of uncertainty from only a single run.

If the queveing system being considered had actually b:r.n a one-operator
barbershop open from 9 A.M. to 5 PM., stopping the simulation after exactly 8 hours
might leave a customer with hair partially cut. In such a case, we might want to
close the door of the barbershop after 8 hours but continue to run the simulation
until all customers present when the door closes (if any) have been served. The
reader is asked in Prob. 1.10 to supply the program changes necessary to implement
this stopping rule (see also Sec. 2.6).

\‘wm zeport(void) /* Repert genezator function. */
/* Computs and write estimates of desired measures of performance. */

fprintf {outfile,

it in Tasaer10. 36\ata,

total _of_delsys
fprints (outtils, "Aver
area_num_in g / ai
fprintf(ouctila, "server uuun:xnms atvmiar,
ares_secver_status / edm_tim
fprintf(outfile, "Number of delays :mlltld'ﬂd"
num_custs_delayed) ;
}

FIGURE 1.36
C code for function report, queveing model with fixed run length.
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Single-sarver queueing system with fixed run length

Mean interarrival time 1.000 minutes

Mean service time 0.500 minutes

Length of the simulstion 480.000 minutes

Averags delay in queus 0.399 minuten
Avarage mumber in queus 0.384
Server utilization 0.464

Humber of dslays completed 475

FIGURE 137
Output report, queuring model with fixed run length.

1.4.8 Determining the Events and Variables

We defined an event in Sec. 1.3 as an instantancous occurrence that may change
the system state, and in the simple single-server queue of Sec. 1.4.1 it was not too
hard to identify the events. However, the question sometimes arises, especially for
complex systems, of how one determines the number and definition of events in
general for a model. It may also be difficult to specify the state variables needed
to keep the simulation running in the correct event sequence and to obtain the de-
sired output measures. There is no completely general way to answer these ques-
tions, and different people may come up with different ways of representing a
model in terms of events and variables, all of which may be correct. But there are
some principles and techniques to help simplify the model’s structure and to avoid
logical errors.

(1983b) d an iph method, which was subsequently
refined and extended by Sargent (1988) nnd Som and Sargent (1989). In this ap-
proach proposed events, each rep d by a node, are d by directed arcs
(arrows) depicting how events may be scheduled from other events and from them-
selves. For example, in the queueing simulation of Sec. 1.4.3, the amival event
schedules another future occurrence of itself and (possibly) a departure event, and
the departure event may schedule another future occurrence of itself; in addition,
the arrival event must be initially scheduled in order to get the simulation going.
Event graphs connect the proposed set of events (nodes) by arcs indicating the type
of event scheduling that can occur. In Fig. 1.38 we show the event graph for our

A -2

FIGURE 1.38
Event graph, queucing mwdcl
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single-server queueing system, where the heavy, smooth arrows indicate that an
event at the end of the arrow may be scheduled from the event at the beginning of
the arrow in a (possibly) nonzero amount of time, and the thin jagged arrow indi-
cates that the event at its end is scheduled initially. Thus, the arrival event resched-
ules itself and may schedule a departure (in the case of an arrival who finds the
server idle), and the departure event may reschedule itself (if a departure leaves be-
hind someone else in queue).
For this model, it could be asked why we did not explicitly account for the act

of a customer's entering service (either from the queue or upon arrival) as a sepa-
rate event. This certainly can happen, and it could cavse the state to change (i.c., the
queue length to fall by 1). In fact, this could have been put in as a separate event
without making the simulation incorrect, and would give rise to the event diagram
in Fig. 1.39. The two thin smooth arrows each Tepresént an event at the beginning
of an arrow potentially scheduling an event at the end of the arrow without any
intervening time, i.c., immediately; in this case the straight thin smooth arrow refers
10 a customer who arrives to an empty system and whose “enter-service” event is
thus scheduled to oceur immediately, and the curved thin smooth Aarrow represents
acustomer departing with  queue left behind, and so the first customer in the queue
would be scheduled to enter service i diately. The number of events has now
increased by 1, and so we have a hat more )it ion of our
model. One of the uses of event graphs is to simplify a simulation’s event structure
by eliminating unnecessary events. There are several “rules” that allow for simpli-

fication, and one of them is that if an event node has incoming arcs that are all thin

and smooth (i.e., the only way this event is scheduled is by other events and with-

out any intervening time), then this event can be eliminated from the model and its

action built into the events that schedule it in zero time, Here, the “enter-service™

event could be eliminated, and its action put partly into the arrival event (when a

customer arives to an idle server and begins service immediately) and partly into

the departure event (when a customer finishes service and there is a quene from
which the next customer is taken to enter service); this takes us back to the simplér
event graph in Fig. 1.38. Basically, “events” that can happen only in conjunction
with other events do not need to be in the model, Reducing the number of events not
only simplifies model ization, but may also speed its execution, Care
must be taken, however, when “collapsing” events in this way to handle priorities
and time ties appropriately,

=)

FIGURE 1.39
Event graph, queueing mode] with separate “enter.service” event,
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Another rule has to do with initialization. The event graph is decomposed info
strongly connected components, within each of which it is pu.ss‘i'bh? to “lrﬂ\f:l" !’mm
every node to every other node by following the arcs in their indicated duecimps.
The graph in Fig. 1.38 decomposes into two strongly connected components (with
a single node in each), and that in Fig. 1.39 has two strongly com!ecwd components
(one of which is the arrival node by itself, and the other of which consists of the

ice and d nodes). The initiali: rule states that in any strongly
connected component of nodes that has no incoming arcs frum ?ﬂm event nud{s
outside the component, there must be at least one node that is initially scheduled: if
this rule were violated, it would never be possible to execute any of the events in the
component. In Figs. 1.38 and 1,39, the arrival node is such a suunglyl:unn:med
component since it has no incoming arcs from other nodes, and so it must be
initialized. Figure 1.40 shows the event graph for the queueing model or. Sec. 1.4.3
with the fixed run length, for which we introduced the dummy * "‘
event. Note that this event is itself a strongly connected component without any arcs
coming in, and so it must be initialized; i.c., the end of the simulation is ;chuQulpd
as part of the initialization. Failure to do so would result in erroneous termination of
the simulation.

‘We have presented only a partial and simplified account of mg ev:nt~graph
technique. There are several other features, including CVenlAcancehng relations,
ways to combine similar events into one, refining the event-scheduling arcs to
include conditional scheduling, and incorporating the state variables needed; see the
original paper by Schruben (1983b). Sargent (1988) and Som anfl Sa:gem (!939)
extend and refine the technique, giving comprehensive illustrations involving a
flexible manufacturing system and computer network models. Event graphs can
also be used to test whether two apparently different models might in fact bclcquw-
alent [Yiicesan and Schruben (1992)), as well as to forecast how computationally
intensive a model will be when it is executed [Yiicesan and Schruben (1998)].
Schruben (1995) provides a software package, SIGMA, that allows on-screen
building of an event-graph representation of a simulation model, anfi then generates
code and runs the model. A general event-graph review and tutorial are given by

Buss (1996).

(=

)

FIGURE 1.40
Event graph, queneing model
with fixed run length.
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In modeling a system, the event-graph technique can be used to simplify the
structure and to detect certain kinds of crrors, and is especially useful in complex
‘models involving a large number of i d events. Other iderations should
also be kept in mind, such as continually asking why a particular state variable is
needed; see Prob. 1.4,

1.5
SIMULATION OF AN INVENTORY SYSTEM

We shall now see how simulation can be used to compare alternative ordering poli-
cies for an inventory system. Many of the elements of our model are representative
of those found in actual inventory systems.

15.1 Problem Statement

A company that sells a single product would like to decide how many items it
should have in inventory for each of the next n months (n is a fixed input parame-
ter). The times between demands are IID exponential random variables with a mean
of 0.1 month. The sizes of the demands, D, are ITD random variables (independent
of when the demands occur), with

w.p.

D=

5w

where w.p. is read “with probability.”

At the beginning of each month, the company reviews the inventory level and
decides how many items to order from its supplier. If the company orders Z items,
itincurs a cost of X + iZ, where K = $32 is the setup cost and i = $3 is the incre-
mental cost per item ordered. (If Z = 0, no cost is incurred.) When an order is
placed, the time required for it to arrive (called the delivery lag or lead time) is a
random variable that is distributed uniformly between 0.5 and 1 month.

The company uses a stationary (s, §) policy to decide how much to order, i.e.,

=51 ifi<s
i {U ifl=s

where [ is the inventory level at the beginning of the month.

& When a demand occurs, it is satisfied immediately if the inventory level is at
least as large as the demand, If the demand exceeds the inventory level, the excess
of demand over supply is backlogged and satisfied by future deliveries. (In this
case, the new inventory level is equal to the old inventory level minus the demand
size, resulting in a negative inventory level.) When an order arrives, it is first used
to eliminate as much of the backlog (if any) as possible;  remainder of the order
(if any) is added to the inventory.
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So far, we have discussed only one type of cost incurred by the inventory
system, the ordering cost. However, most real inventory systems also have two
additional types of costs, holding and shortage costs, which we discuss after intro-
ducing some additional notation. Let I(f) be the inventory level at time ¢ [note that
I(r) could be positive, negative, or zero]; let 1 *(r) = max(/(z), 0} be the number of
items physically on hand in the inventory at time ¢ [note that /* () = 0); and let
I7(t) = max{—I(r), 0} be the backlog at time [/ (1) = 0 as well]. A possible real-
ization of I(s), I*(#), and I (1) is shown in Fig. 1.41. The time points at which I(r)
decreases are the ones at which demands occur.

For our model, we shall assume that the company incurs a holding cost of
h = $1 per item per month held in (positive) inventory. The holding cost includes
such costs as warehouse rental, insurance, taxes, and maintenance, as well as the op-
portunity cost of having capital tied up in inventory rather than invested elsewhere.
We have ignored in our formulation the fact that some holding costs are still in-
curred when I'*(£) = 0. However, since our goal is to compare ordering policies, ig-
noring this factor, which after all is independent of the policy used, will not affect
our assessment of which policy is best. Now, since 7 *(r) is the number of items held
in inventory at time f, the time-average (per month) number of items held in inven-
tory for the n-month period is

rl‘(l) dt
fran
n

which is akin to the definition of the time-average number of customers in queue
given in Sec. 1.4.1. Thus, the average holding cost per month is hf *.

Similarly, suppose that the company incurs a backlog cost of 7 = $5 per item
per month in backlog; this accounts for the cost of extra record keeping when a
backlog exists, as well as loss of customers’ goodwill. The time-average number of

1

f

Place an order Order arrives Place an order

FIGURE 1.41
A realization of I{r), I" (1), and /(1) over time.
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