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consequently, we have included a great deal of introductory and tutorial material. Any

person with the equivalent of the mathematics background required for the graduate-

level study of physics should be able to follow the material contained in this book,

though not without e�ort.

From the time the dissertation was written until now (approximately one year)

our understanding of the parameter estimation problem has changed extensively. We

have tried to incorporate what we have learned into this book.

I am indebted to a number of people who have aided me in preparing this docu-

ment: Dr. C. Ray Smith, Steve Finney, Juana Sanchez, Matthew Self, and Dr. Pat

Gibbons who acted as readers and editors. In addition, I must extend my deepest

thanks to Dr. Joseph Ackerman for his support during the time this manuscript was

being prepared.

Last, I am especially indebted to Professor E. T. Jaynes for his assistance and

guidance. Indeed it is my opinion that Dr. Jaynes should be a coauthor on this work,

but when asked about this, his response has always been \Everybody knows that

Ph.D. students have advisors." While his statement is true, it is essentially irrele-

vant; the amount of time and e�ort he has expended providing background material,

interpretations, editing, and in places, writing this material cannot be overstated,

and he deserves more credit for his e�ort than an \Acknowledgment."

St. Louis, Missouri, 1988 G. Larry Bretthorst



Contents

1 INTRODUCTION 1

1.1 Historical Perspective : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

1.2 Method of Calculation : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2 SINGLE STATIONARY SINUSOID PLUS NOISE 13

2.1 The Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

2.2 The Likelihood Function : : : : : : : : : : : : : : : : : : : : : : : : : 14

2.3 Elimination of Nuisance Parameters : : : : : : : : : : : : : : : : : : : 18

2.4 Resolving Power : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

2.5 The Power Spectral Density p̂ : : : : : : : : : : : : : : : : : : : : : : 25

2.6 Wolf's Relative Sunspot Numbers : : : : : : : : : : : : : : : : : : : : 27

3 THE GENERAL MODEL EQUATION PLUS NOISE 31

3.1 The Likelihood Function : : : : : : : : : : : : : : : : : : : : : : : : : 31

3.2 The Orthonormal Model Equations : : : : : : : : : : : : : : : : : : : 32

3.3 Elimination of the Nuisance Parameters : : : : : : : : : : : : : : : : 34

3.4 The Bessel Inequality : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

3.5 An Intuitive Picture : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

3.6 A Simple Diagnostic Test : : : : : : : : : : : : : : : : : : : : : : : : : 38

4 ESTIMATING THE PARAMETERS 43

4.1 The Expected Amplitudes hAji : : : : : : : : : : : : : : : : : : : : : 43

4.2 The Second Posterior Moments hAjAki : : : : : : : : : : : : : : : : : 45

4.3 The Estimated Noise Variance h�2i : : : : : : : : : : : : : : : : : : : 46

4.4 The Signal-To-Noise Ratio : : : : : : : : : : : : : : : : : : : : : : : : 47

4.5 Estimating the {!} Parameters : : : : : : : : : : : : : : : : : : : : : 48

4.6 The Power Spectral Density : : : : : : : : : : : : : : : : : : : : : : : 51

vii



viii

5 MODEL SELECTION 55

5.1 What About \Something Else?" : : : : : : : : : : : : : : : : : : : : : 55

5.2 The Relative Probability of Model fj : : : : : : : : : : : : : : : : : : 57

5.3 One More Parameter : : : : : : : : : : : : : : : : : : : : : : : : : : : 63

5.4 What is a Good Model? : : : : : : : : : : : : : : : : : : : : : : : : : 65

6 SPECTRAL ESTIMATION 69

6.1 The Spectrum of a Single Frequency : : : : : : : : : : : : : : : : : : 70

6.1.1 The \Student t-Distribution" : : : : : : : : : : : : : : : : : : 70

6.1.2 Example { Single Harmonic Frequency : : : : : : : : : : : : : 71

6.1.3 The Sampling Distribution of the Estimates : : : : : : : : : : 74

6.1.4 Violating the Assumptions { Robustness : : : : : : : : : : : : 74

6.1.5 Nonuniform Sampling : : : : : : : : : : : : : : : : : : : : : : 81

6.2 A Frequency with Lorentzian Decay : : : : : : : : : : : : : : : : : : : 86

6.2.1 The \Student t-Distribution" : : : : : : : : : : : : : : : : : : 87

6.2.2 Accuracy Estimates : : : : : : : : : : : : : : : : : : : : : : : : 88

6.2.3 Example { One Frequency with Decay : : : : : : : : : : : : : 90

6.3 Two Harmonic Frequencies : : : : : : : : : : : : : : : : : : : : : : : : 94

6.3.1 The \Student t-Distribution" : : : : : : : : : : : : : : : : : : 94

6.3.2 Accuracy Estimates : : : : : : : : : : : : : : : : : : : : : : : : 98

6.3.3 More Accuracy Estimates : : : : : : : : : : : : : : : : : : : : 101

6.3.4 The Power Spectral Density : : : : : : : : : : : : : : : : : : : 103

6.3.5 Example { Two Harmonic Frequencies : : : : : : : : : : : : : 105

6.4 Estimation of Multiple

Stationary Frequencies : : : : : : : : : : : : : : : : : : : : : : : : : : 108

6.5 The \Student t-Distribution" : : : : : : : : : : : : : : : : : : : : : : 109

6.5.1 Example { Multiple Stationary Frequencies : : : : : : : : : : : 111

6.5.2 The Power Spectral Density : : : : : : : : : : : : : : : : : : : 112

6.5.3 The Line Power Spectral Density : : : : : : : : : : : : : : : : 114

6.6 Multiple Nonstationary Frequency Estimation : : : : : : : : : : : : : 115

7 APPLICATIONS 117

7.1 NMR Time Series : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 117

7.2 Corn Crop Yields : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 134

7.3 Another NMR Example : : : : : : : : : : : : : : : : : : : : : : : : : 144

7.4 Wolf's Relative Sunspot Numbers : : : : : : : : : : : : : : : : : : : : 148



ix

7.4.1 Orthogonal Expansion of the Relative Sunspot

Numbers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 148

7.4.2 Harmonic Analysis of the

Relative Sunspot Numbers : : : : : : : : : : : : : : : : : : : : 151

7.4.3 The Sunspot Numbers in Terms of

Harmonically Related Frequencies : : : : : : : : : : : : : : : : 157

7.4.4 Chirp in the Sunspot Numbers : : : : : : : : : : : : : : : : : 158

7.5 Multiple Measurements : : : : : : : : : : : : : : : : : : : : : : : : : : 161

7.5.1 The Averaging Rule : : : : : : : : : : : : : : : : : : : : : : : 163

7.5.2 The Resolution Improvement : : : : : : : : : : : : : : : : : : 166

7.5.3 Signal Detection : : : : : : : : : : : : : : : : : : : : : : : : : 167

7.5.4 The Distribution of the Sample Estimates : : : : : : : : : : : 169

7.5.5 Example { Multiple Measurements : : : : : : : : : : : : : : : 173

8 SUMMARY AND CONCLUSIONS 179

8.1 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 179

8.2 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 180

A Choosing a Prior Probability 183

B Improper Priors as Limits 189

C Removing Nuisance Parameters 193

D Uninformative Prior Probabilities 195

E Computing the

\Student t-Distribution" 197



x



List of Figures

2.1 Wolf's Relative Sunspot Numbers : : : : : : : : : : : : : : : : : : : : 28

5.1 Choosing a Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

6.1 Single Frequency Estimation : : : : : : : : : : : : : : : : : : : : : : : 72

6.2 The Distribution of the Sample Estimates : : : : : : : : : : : : : : : 75

6.3 Periodic but Nonharmonic Time Signals : : : : : : : : : : : : : : : : 77

6.4 The E�ect of Nonstationary, Nonwhite Noise : : : : : : : : : : : : : : 79

6.5 Why Aliases Exist : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

6.6 Why Aliases Go Away for Nonuniformly Sampled Data : : : : : : : : 84

6.7 Uniform Sampling Compared to Nonuniform Sampling : : : : : : : : 85

6.8 Single Frequency with Lorentzian Decay : : : : : : : : : : : : : : : : 91

6.9 Two Harmonic Frequencies { The Data : : : : : : : : : : : : : : : : : 106

6.10 Posterior Probability density of Two Harmonic Frequencies : : : : : : 107

6.11 Multiple Harmonic Frequencies : : : : : : : : : : : : : : : : : : : : : 113

7.1 Analyzing NMR Spectra : : : : : : : : : : : : : : : : : : : : : : : : : 119

7.2 The Log10 Probability of One Frequency in Both Channels : : : : : : 121

7.3 The One-Frequency Model : : : : : : : : : : : : : : : : : : : : : : : : 123

7.4 The Two-Frequency Model : : : : : : : : : : : : : : : : : : : : : : : : 125

7.5 The Three-Frequency Model : : : : : : : : : : : : : : : : : : : : : : : 126

7.6 The Four-Frequency Model : : : : : : : : : : : : : : : : : : : : : : : : 127

7.7 The Five-Frequency Model : : : : : : : : : : : : : : : : : : : : : : : : 129

7.8 The Six-Frequency Model : : : : : : : : : : : : : : : : : : : : : : : : 130

7.9 The Seven-Frequency Model : : : : : : : : : : : : : : : : : : : : : : : 131

7.10 Comparison to an Absorption Spectrum : : : : : : : : : : : : : : : : 132

7.11 Corn Crop Yields for Three Selected States : : : : : : : : : : : : : : : 136

7.12 The Joint Probability of a Frequency Plus a Trend : : : : : : : : : : 139

7.13 Probability of Two Frequencies After Trend Correction : : : : : : : : 143

xi



xii

7.14 A Second NMR Example - Decay Envelope Extraction : : : : : : : : 145

7.15 How Does an NMR Signal Decay? : : : : : : : : : : : : : : : : : : : : 147

7.16 The Probability of the Expansion Order : : : : : : : : : : : : : : : : 150

7.17 Adding a Constant to the Model : : : : : : : : : : : : : : : : : : : : 152

7.18 The Posterior Probability of Nine Frequencies : : : : : : : : : : : : : 155

7.19 The Predicted Sunspot Series : : : : : : : : : : : : : : : : : : : : : : 156

7.20 Chirp in the Sunspot Numbers? : : : : : : : : : : : : : : : : : : : : : 160

7.21 A Simple Di�raction Pattern : : : : : : : : : : : : : : : : : : : : : : : 164

7.22 Log10 Probability of a Single Harmonic Frequency : : : : : : : : : : : 165

7.23 Example { Multiple Measurements : : : : : : : : : : : : : : : : : : : 171

7.24 The Distribution of Sample Estimates : : : : : : : : : : : : : : : : : : 174

7.25 Example - Di�raction Experiment : : : : : : : : : : : : : : : : : : : : 176

7.26 Example - Two Frequencies : : : : : : : : : : : : : : : : : : : : : : : 177



Chapter 1

INTRODUCTION

Experiments are performed in three general steps: �rst, the experiment must be

designed; second, the data must be gathered; and third, the data must be analyzed.

These three steps are highly idealized, and no clear boundary exists between them.

The problem of analyzing the data is one that should be faced early in the design

phase. Gathering the data in such a way as to learn the most about a phenomenon

is what doing an experiment is all about. It will do an experimenter little good to

obtain a set of data that does not bear directly on the model, or hypotheses, to be

tested.

In many experiments it is essential that one does the best possible job in analyzing

the data. This could be true because no more data can be obtained, or one is trying to

discover a very small e�ect. Furthermore, thanks to modern computers, sophisticated

data analysis is far less costly than data acquisition, so there is no excuse for not doing

the best job of analysis that one can.

The theory of optimum data analysis, which takes into account not only the raw

data but also the prior knowledge that one has to supplement the data, has been in

existence { at least, as a well-formulated program { since the time of Laplace. But

the resulting Bayesian probability theory (i.e., the direct application of probability

theory as a method of inference) using realistic models has been little applied to

spectral estimation problems and in science in general. Consequently, even though

probability theory is well understood, its application and the orders of magnitude

improvement in parameter estimates that its application can bring, are not. We hope

to show the advantage of using probability theory in this way by developing a little

of it and applying the results to some real data from physics and economics.

The basic model we are considering is always: we have recorded a discrete data

1
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set D = fd1; � � � ; dNg, sampled from y(t) at discrete times ft1; � � � ; tNg, with a model

equation

di = y(ti) = f(ti) + ei; (1 � i � N)

where f(ti) is the signal and ei represents noise in the problem. Di�erent models

correspond to di�erent choices of the signal f(t). The most general model we will

analyze will be of the form

f(t) =
mX
j=1

BjGj(t; f!g):

The model functions, Gi(t; f!g), are functions of other parameters f!1; � � � ; !rg which
we label collectively f!g (these parameters might be frequencies, chirp rates, decay

rates, the time of some event, or any other quantities one could encounter).

We have not assumed the time intervals to be uniform, nor have we assumed

the data to be drawn from some stationary Gaussian process. Indeed, in the most

general formulation of the problem such considerations will be completely irrelevant.

In the traditional way of thinking about this problem, one imagines that the data

are one sample drawn from an in�nite population of possible samples. One then uses

probability only for the distribution of possible samples that could have been drawn

{ but were not. Instead, what we will do is to concentrate our attention on the actual

data obtained, and use probability to make the \best" estimate of the parameters;

i.e. the values that were realized when the data were taken.

We will concentrate on the f!g parameters, and often consider the amplitudes

fBg as nuisance parameters. The basic question we would like to answer is: \What

are the best estimates of the f!g parameters one can make, independent of the

amplitudes fBg and independent of the noise variance?" We will solve this problem

for the case where we have little prior information about the amplitudes fBg, the f!g
parameters, and the noise. Because we incorporate little prior information into the

problem beyond the form of the model functions, the estimates of the amplitudes fBg
and the nonlinear f!g parameters cannot di�er greatly from the estimates one would

obtain from least squares or maximum likelihood. However, using least squares

or maximum likelihood would require us to estimate all parameters, interesting and

non-interesting, simultaneously; thus one would have the computational problem of

�nding a global maximum in a space of high dimensionality.

By direct application of probability theory we will be able to remove the uninter-

esting parameters and see what the data have to tell us about the interesting ones,

reducing the problem to one of low dimensionality, equal to the number of interesting
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parameters. In a typical \small" problem this might reduce the search dimensions

from ten to two; in one \large" problem the reduction was from thousands to six

or seven. This represents many orders of magnitude reduction in computation, the

di�erence between what is feasible, and what is not.

Additionally, the direct application of probability theory also tells us the accuracy

of our estimates, which direct least squares does not give at all, and which maximum

likelihood gives us only by a di�erent calculation (sampling distribution of the esti-

mator) which can be more di�cult than the high-dimensional search one { and even

then refers only to an imaginary class of di�erent data sets, not the speci�c one at

hand.

In Chapter 2, we analyze a time series which contains a single stationary harmonic

signal plus noise, because it contains most of the points of principle that must be

faced in the more general problem. In particular we derive the probability that a

signal of frequency ! is present, regardless of its amplitude, phase, and the variance

of the noise. We then demonstrate that the estimates one obtains using probability

theory are a full order of magnitude better than what one would obtain using the

discrete Fourier transform as a frequency estimator. This is not magic; we are able

to understand intuitively why it is true, and also to show that probability theory has

built-in automatic safety devices that prevent it from giving overoptimistic accuracy

claims. In addition, an example is given of numerical analysis of real data illustrating

the calculation.

In Chapter 3, we discuss the types of model equations used, introduce the con-

cept of an orthonormal model, and derive a transformation which will take any

nonorthonormal model into an orthonormal one. Using these orthonormal models,

we then remove the simplifying assumptions that were made in Chapter 2, generalize

the analysis to arbitrary model equations, and discuss a number of surprising features

to illustrate the power and generality of the method, including an intuitive picture of

model �tting that allows one to understand which parameters probability theory will

estimate and why, in simple terms.

In Chapter 4 we calculate a number of posterior expectation values including the

�rst and second moments, de�ne a power spectral density, and we devise a procedure

for estimating the nonlinear f!g parameters.

In Chapter 5 we turn our attention to the problem of selecting the \best" model of

a process. Although this problem sounds very di�erent from the parameter estimation

problem, it is essentially the same calculation. Here, we compute the relative posterior
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probability of a model: this allows one to select the most probable model based on

how well its parameters are estimated, and how well it �ts the data.

In Chapter 6, we specialize the discussion to spectral estimates and, proceeding

through stages, investigate the one-stationary-frequency problem and explicitly cal-

culate the posterior probability of a simple harmonic frequency independent of its

amplitude, phase and the variance of the noise, without the simplifying assumptions

made in Chapter 2.

At that point we pause brie
y to examine some of the assumptions made in the cal-

culation and show that when these assumptions are violated by the data, the answers

one obtains are still correct in a well-de�ned sense, but more conservative in the sense

that the accuracy estimates are wider. We also compare uniform and nonuniform time

sampling and demonstrate that for the single-frequency estimation problem, the use

of nonuniform sampling intervals does not a�ect the ability to estimate a frequency.

However, for apparently randomly sampled time series, aliases e�ectively do not exist.

We then proceed to solve the one-frequency-with-Lorentzian-decay problem and

discuss a number of surprising implications for how decaying signals should be sam-

pled. Next we examine the two stationary frequency problem in some detail, and

demonstrate that (1) the ability to estimate two close frequencies is essentially in-

dependent of the separation as long as that separation is at least one Nyquist step

j!1 � !2j � 2�=N ; and (2) that these frequencies are still resolvable at separations

corresponding to less than one half step, where the discrete Fourier transform shows

only a single peak.

After the two-frequency problem we discuss brie
y the multiple nonstationary

frequency estimation problem. In Chapter 3 Eq. (3.17) we derive the joint posterior

probability of multiple stationary or nonstationary frequencies independent of their

amplitude and phase and independent of the noise variance. Here we investigate

some of the implications of these formulas and discuss the techniques and procedures

needed to apply them e�ectively.

In Chapter 7, we apply the theory to a number of real time series, including Wolf's

relative sunspot numbers, some NMR (nuclear magnetic resonance) data containing

multiple close frequencies with decay, and to economic time series which have large

trends. The most spectacular results obtained to date are with NMR data, because

here prior information tells us very accurately what the \true" model must be.

Equally important, particularly in economics, is the way probability theory deals

with trend. Instead of seeking to eliminate the trend from the data (which is known to
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introduce spurious artifacts that distort the information in the data), we seek instead

to eliminate the e�ect of trend from the �nal conclusions, leaving the data intact. This

proves to be not only a safer, but also a more powerful procedure than detrending

the data. Indeed, it is now clear that many published economic time series have been

rendered nearly useless because the data have been detrended or seasonally adjusted

in an irreversible way that destroys information which probability theory could have

extracted from the raw, unmutilated data.

In the last example we investigate the use of multiple measurements and show that

probability theory can continue to obtain the standard
p
n improvement in parameter

estimates under much wider conditions than averaging. The analyses presented in

Chapter 7 will give the reader a better feel for the types of applications and complex

phenomena which can be investigated easily using Bayesian techniques.

1.1 Historical Perspective

Comprehensive histories of the spectral analysis problem have been given recently

by Robinson [2] and Marple [3]. We sketch here only the part of it that is directly

ancestral to the new work reported here. The problem of determining a frequency

in time sampled data is very old; the �rst astronomers were trying to solve this

problem when they attempted to determine the length of a year or the period of the

moon. Their methods were crude and consisted of little more than trying to locate

the maxima or the nodes of an approximately periodic function. The �rst signi�cant

advance in the frequency estimation problem occurred in the early nineteenth century,

when two separate methods of analyzing the problem came into being: the use of

probability theory, and the use of the Fourier transform.

Probabilistic methods of dealing with the problem were formulated in some gen-

erality by Laplace [4] in the late 18th century, and then applied by Legendre and

Gauss [5] [6] who �rst used (or at least �rst published) the method of least squares

to estimate model parameters in noisy data. In this procedure some idealized model

signal is postulated and the criterion of minimizing the sum of the squares of the

\residuals" (the discrepancies between the model and the data) is used to estimate

the model parameters. In the problem of determining a frequency, the model might

be a single cosine with an amplitude, phase, and frequency, contaminated by noise

with an unknown variance. Generally one is not interested in the amplitude, phase,
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or noise variance; ideally one would like to formulate the problem in such a way that

only the frequency remains, but this is not possible with direct least squares, which

requires us to �t all the model parameters. The method of least squares may be

di�cult to use in practice; in principle it is well understood. In the case of Gaussian

noise, the least squares estimates are simply the parameter values that maximize the

probability that we would obtain the data, if a model signal was present with those

parameters.

The spectral method of dealing with this problem also has its origin in the early

part of the nineteenth century. The Fourier transform is one of the most powerful tools

in analysis, and its discrete analogue is by de�nition the spectrum of the time sampled

data. How this is related to the spectrum of the original time series is, however,

a nontrivial technical problem whose answer is di�erent in di�erent circumstances.

Using the discrete Fourier transform of the data as an estimate of the \true" spectrum

is, intuitively, a natural thing to do: after all, the discrete Fourier transform is the

spectrum of the noisy time sampled series, and when the noise goes away the discrete

Fourier transform is the spectrum of the sampled \true" series, but calculating the

spectrum of a series and estimating a frequency are very di�erent problems. One of

the things we will attempt to do is to do is to exhibit the exact conditions under

which the discrete Fourier transform is an optimal frequency estimator.

With the introduction (or rather, rediscovery [7], [8], [9]) of the fast Fourier

transform by Cooley and Tukey [10] in 1965 and the development of computers, the

use of the discrete Fourier transform as a frequency and power spectral estimator

has become very commonplace. Like the method of least squares, the use of discrete

Fourier transform as a frequency estimator is well understood. If the data consist of a

signal plus noise, then by linearity the Fourier transform will be the signal transform

plus a noise transform. If one has plenty of data the noise transform will be, usually, a

function of frequency with slowly varying amplitude and rapidly varying phase. If the

peak of the signal transform is larger than the noise transform, the added noise does

not change the location of the peak very much. One can then estimate the frequency

from the location of the peak of the data transform, as intuition suggests.

Unfortunately, this technique does not work well when the signal-to-noise ratio of

the data is small; then we need probability theory. The technique also has problems

when the signal is other than a simple harmonic frequency: then the signal has some

type of structure [for example Lorentzian or Gaussian decay, or chirp: a chirped signal

has the form cos(�+!t+�t2)]. The peak will then be spread out relative to a simple
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harmonic spectrum. This allows the noise to interfere with the parameter estimation

problem much more severely, and probability theory becomes essential. Additionally,

the Fourier transform is not well de�ned when the data are nonuniform in time, even

though the problem of frequency estimation is not essentially changed.

Arthur Schuster [11] introduced the periodogram near the beginning of this cen-

tury, merely as an intuitive ad hoc method of detecting a periodicity and estimating

its frequency. The periodogram is essentially the squared magnitude of the discrete

Fourier transform of the data D � fd1; d2; � � � ; dNg and can be de�ned as

C(!) =
1

N

h
R(!)2 + I(!)2

i
=

1

N
j
NX
j=1

dje
i!tj j2; (1:1)

where R(!), and I(!) are the real and imaginary parts of the sum [Eqs. (2.4), and

(2.5) below], and N is the total number of data points. The periodogram remains

well de�ned when the frequency ! is allowed to vary continuously or when the data

are nonuniform. This avoids one of the potential drawbacks of using this method but

does not aid in the frequency estimation problem when the signal is not stationary.

Although Schuster himself had very little success with it, more recent experience has

shown that regardless of its drawbacks, indeed the discrete Fourier transform or the

periodogram does yield useful frequency estimates under a wide variety of conditions.

Like least squares, Fourier analysis alone does not give an indication of the accuracy

of the estimates of spectral density, although the width of a sharp peak is suggestive

of the accuracy of determination of the position of a very sharp line.

In the 160 years since the introduction of the spectral and probability theory

methods no particular connection between them had been noted, yet each of these

methods seems to function well in some conditions. That these methods could be very

closely related (from some viewpoints essentially the same) was shown when Jaynes

[12] derived the periodogram directly from the principles of probability theory and

demonstrated it to be, a \su�cient statistic" for inferences about a single station-

ary frequency or \signal" in a time sampled data set, when a Gaussian probability

distribution is assigned for the noise. That is, starting with the same probability dis-

tribution for the noise that had been used for maximum likelihood or least squares,

the periodogram was shown to be the only function of the data needed to make es-

timates of the frequency; i.e. it summarizes all the information in the data that is

relevant to the problem.

In this work we will continue the analysis started by Jaynes and show that when

the noise variance �2 is known, the conditional posterior probability density of a
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frequency ! given the data D, the noise variance �2, and the prior information I is

simply related to the periodogram:

P (!jD;�; I) / exp

(
C(!)

�2

)
: (1:2)

Thus, we will have demonstrated the relation between the two techniques. Because

the periodogram, and therefore the Fourier transform, will have been derived from

the principles of probability theory we will be able to see more clearly under what

conditions the discrete Fourier transform of the data is a valid frequency estimator

and the proper way to extract optimum estimates from it. Also, from (1.2) we will

be able to assess the accuracy of our estimates, which neither least squares, Fourier

analysis, nor maximum likelihood give directly.

The term \spectral analysis" has been used in the past to denote a wider class of

problems than we shall consider here; often, one has taken the view that the entire

time series is a \stochastic process" with an intrinsically continuous spectrum, which

we seek to infer. This appears to have been the viewpoint underlying the work of

Schuster, and of Blackman-Tukey noted in the following sections. For an account of

the large volume of literature on this version of the spectral estimation problem, we

refer the reader to Marple [3].

The present work is concerned with what Marple calls the \parameter estimation

method". Recent experience has taught us that this is usually a more realistic way

of looking at current applications; and that when the parameter estimation approach

is based on a correct model it can achieve far better results than can a \stochastic"

approach, because it incorporates cogent prior information into the calculation. In

addition, the parameter estimation approach proves to be more 
exible in ways that

are important in applications, adapting itself easily to such complicating features as

chirp, decay, or trend.

1.2 Method of Calculation

The basic reasoning used in this work will be a straightforward application of

Bayes' theorem: denoting by P (AjB) the conditional probability that proposition A

is true, given that proposition B is true, Bayes' theorem is

P (HjD; I) = P (HjI)P (DjH; I)
P (DjI) : (1:3)
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It is nothing but the probabilistic statement of an almost trivial fact: Aristotelian

logic is commutative. That is, the propositions

HD = \ Both H and D are true"

DH = \Both D and H are true"

say the same thing, so they must have the same truth value in logic and the same

probability, whatever our information about them. In the product rule of probability

theory, we may then interchange H and D

P (H;DjI) = P (DjI)P (HjD; I) = P (HjI)P (DjH; I)

which is Bayes' theorem. In our problems, H is any hypothesis to be tested, D is

the data, and I is the prior information. In the terminology of the current statisti-

cal literature, P (HjD; I) is called the posterior probability of the hypothesis, given

the data and the prior information. This is what we would like to compute for sev-

eral di�erent hypotheses concerning what systematic \signal" is present in our data.

Bayes' theorem tells us that to compute it we must have three terms: P (HjI) is the
prior probability of the hypothesis (given only our prior information), P (DjI) is the
prior probability of the data (this term will always be absorbed into a normalization

constant and will not change the conclusions within the context of a given model,

although it does a�ect the relative probabilities of di�erent models) and P (DjH; I) is
called the direct probability of the data, given the hypothesis and the prior informa-

tion. The direct probability is called the \sampling distribution" when the hypothesis

is held constant and one considers di�erent sets of data, and it is called the \likelihood

function" when the data are held constant and one varies the hypothesis. Often, a

prior probability distribution is called simply a \prior".

In a speci�c Bayesian probability calculation, we need to \de�ne our model"; i.e.

to enumerate the set fH1;H2; � � �g of hypotheses concerning the systematic signal in

the model, that is to be tested by the calculation. A serious weakness of all Fourier

transform methods is that they do not consider this aspect of the problem. In the

widely used Blackman-Tukey [13] method of spectrum analysis, for example, there

is no mention of any model or any systematic signal at all. In the problems we are

considering, speci�cation of a de�nite model (i.e. stating just what prior information

we have about the phenomenon being observed) is essential; the information we can

extract from the data depends crucially on which model we analyze.
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In our problems, therefore, the Blackman-Tukeymethod, which does not even have

the concept of a signal, much less a signal-to-noise ratio, would be inappropriate.

Bayesian analysis based on a good model can achieve orders of magnitude better

sensitivity and resolution. Indeed, one of our main new results is the very great

improvement in resolution that can be achieved by replacing an unrealistic model by

a realistic one.

In the most general model we will analyze, the hypothesis H will be of the form

H � \f(t) =
mX
j=1

BjGj(t; f!g)"

where f(t) is some analytic representation of the time series, Gj(t; f!g) is one par-
ticular model function (for example a sinusoid or trend), Bj is the amplitude with

which Gj enters the model, and f!g is a set of frequencies, decay rates, chirp rates,

trend rate, or any other parameters of interest.

In the problem we are considering we focus our attention on the f!g parameters.

Although we will calculate the expectation value of the amplitudes fBg we will not
generally be interested in them. We will seek to formulate the posterior probability

density P (f!gjD; I) independently of the amplitudes fBg.
The principles of probability theory uniquely determine how this is to be done.

Suppose ! is a parameter of interest, and B is a \nuisance parameter" that we do

not, at least at the moment, need to know. What we want is P (!jD; I), the posterior
probability (density) of !. This may be calculated as follows: �rst calculate the joint

posterior probability density of ! and B by Bayes' theorem:

P (!;BjD; I) = P (!;BjI)P (Dj!;B; I)
P (DjI)

and then integrate out B, obtaining the marginal posterior probability density for !:

P (!jD; I) =
Z
dBP (!;BjD; I)

which expresses what the data and prior information have to tell us about !, regard-

less of the value of B.

Although integration over the nuisance parameters may look a little strange at �rst

glance, it is easily demonstrated to be a straightforward application of the sum rule of

probability theory: the probability that one of several mutually exclusive propositions

is true, is the sum of their separate probabilities. Suppose for simplicity that B is a

discrete variable taking on the values fB1; � � � ; Bng and we know that when the data



Method of Calculation 11

were taken only one value of B was realized; but we do not know which value. We

can compute P (!;
Pn

i=1BijD; I) where the symbol \+" or \
P
" inside a probability

symbol means the Boolean \or" operation [read this as the probability of (! and B1)

or (! and B2) � � �]. Using the sum rule this probability may be written

P (!;B1 +
nX
i=2

BijD; I) = P (!;B1jD; I)

+ P (!;
nX
i=2

BijD; I)[1� P (!;B1j
nX
i=2

BiD; I)]:

The last term P (!;B1j
Pn

i=2BiD; I) is zero: only one value of B could be realized.

We have

P (!;B1 +
nX
i=2

BijD; I) = P (!;B1jD; I) + P (!;
nX
i=2

BijD; I)

and repeated application of the sum rule gives

P (!;
nX
i=1

BijD; I) =
nX
i=1

P (!;BijD; I):

When the values of B are continuous the sums go into integrals and one has

P (!jD; I) =
Z
dBP (!;BjD; I); (1:4)

the given rule. The term on the left is called the marginal posterior probability density

function of !, and it takes into account all possible values of B regardless of which

actual value was realized. We have dropped the reference to B speci�cally because

this distribution no longer depends on one speci�c value of B; it depends rather on

all of them.

We discuss these points further in Appendices A, B, and C where we show that

this procedure is similar to, but superior to, the common practice of estimating the

parameter B from the data and then constraining B to that estimate.

In the following chapter we consider the simplest nontrivial spectral estimation

model

f(t) = B1 cos!t+B2 sin!t

and analyze it in some depth to show some elementary but important points of prin-

ciple in the technique of using probability theory with nuisance parameters and \un-

informative" priors.
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Chapter 2

SINGLE STATIONARY

SINUSOID PLUS NOISE

2.1 The Model

We begin the analysis by constructing the direct probability, P (DjH; I). We think

of this as the likelihood of the parameters, because it is its dependence on the model

parameters which concerns us here. The time series y(t) we are considering is postu-

lated to contain a single stationary harmonic signal f(t) plus noise e(t). The basic

model is always: we have recorded a discrete data set D = fd1; � � � ; dNg; sampled

from y(t) at discrete times ft1; � � � ; tNg; with a model equation

di = y(ti) = f(ti) + ei; (1 � i � N):

As already noted, di�erent models correspond to di�erent choices of the signal f(t).

We repeat the analysis originally done by Jaynes [12] using a di�erent, but equivalent,

set of model functions. We repeat this analysis for three reasons: �rst, by using a

di�erent formulation of the problem we can see how to generalize to multiple fre-

quencies and more complex models; second, to introduce a di�erent prior probability

for the amplitudes, which simpli�es the calculation but has almost no e�ect on the

�nal result; and third, to introduce and discuss the calculation techniques without

the complex model functions confusing the issues.

The model for a simple harmonic frequency may be written

f(t) = B1 cos(!t) +B2 sin(!t) (2:1)

which has three parameters (B1; B2; !) that may be estimated from the data. The

13
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model used by Jaynes [12] was the same, but expressed in polar coordinates:

f(t) = B cos(!t+ �)

B =
q
B2

1 +B2
2

tan � = �B2

B1

dB1dB2d! = BdBd�d!:

It is the factor B in the volume elements which is treated di�erently in the two

calculations. Jaynes used a prior probability that initially considered equal intervals

of � and B to be equally likely, while we shall use a prior that initially considers equal

intervals of B1 and B2 to be equally likely.

Of course, neither choice fully expresses all the prior knowledge we are likely to

have in a real problem. This means that the results we �nd are conservative, and

in a case where we have quite speci�c prior information about the parameters, we

would be able to do somewhat better than in the following calculation. However,

the di�erences arising from di�erent prior probabilities are small provided we have

a reasonable amount of data. For a detailed discussion and derivation of the prior

probabilities used in this chapter, see Appendix A. In addition, in Appendix D

we show explicitly that the prior used by Jaynes is more conservative for frequency

estimation than the uniform prior we use, but when the signal-to-noise ratio is large

the e�ect of this uninformative prior is completely negligible.

2.2 The Likelihood Function

To construct the likelihood we take the di�erence between the model function, or

\signal", and the data. If we knew the true signal, then this di�erence would be just

the noise. Then if we knew the probability of the noise we could compute the direct

probability or likelihood. We wish to assign a noise prior probability density which

is consistent with the available information about the noise. The prior should be as

uninformative as possible to prevent us from \seeing" things in the data which are

not there.

To derive the prior probability for the noise is a problem that can be approached

in various ways. Perhaps the most general one is to view it as a simple application

of the principle of maximum entropy. Let P (ejI) stand for the probability that the
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noise has value \e" given the prior information I. Then, assuming the second moment

of the noise (i.e. the noise power) is known, the entropy functional which must be

maximized is given by

�
Z +1

�1
P (ejI) logP (ejI)de� �

Z +1

�1
e2P (ejI)de� �

Z +1

�1
P (ejI)de

where � is the Lagrange multiplier associated with the second moment, and � is the

multiplier for normalization. The solution to this standard maximization problem is

P (ej�; I) = (�=�)
1
2 exp

n
��e2

o
:

Adopting the notation � = (2�2)�1, where �2 is the second moment, assumed known,

we have

P (ej�; I) = 1p
2��2

exp

(
� e2

2�2

)
:

This is a Gaussian distribution, and when � is taken as the RMS noise level, it is the

least informative prior probability density for the noise that is consistent with the

given second moment. By least informative we mean that: if any of our assumptions

had been di�erent and we used that information in maximum entropy to derive a new

prior probability for the noise, then for a given �, that new probability density would

be less spread out, thus our accuracy estimates would be narrowed. Thus, in the

calculations below, we will be claiming less accuracy than would be justi�ed had we

included those additional e�ects in deriving the prior probability for the noise. The

point is discussed further in Chapter 5. In Chapter 6 we demonstrate (numerically)

the e�ects of violating the assumptions that will go into the calculation. All of these

\conservative" features are safety devices which make it impossible for the theory to

mislead us by giving overoptimistic results.

Having the prior probability for the noise, and adopting the notation: ei is the noise

at time ti, we apply the product rule of probability theory to obtain the probability

that we would obtain a set of noise values fe1; � � � ; eNg: supposing the ei independent
in the sense that P (eijej; �; I) = P (eij�; I) this is given by

P (e1; � � � ; eN j�; I) /
NY
i=1

"
1p
2��2

exp(� e2i
2�2

)

#
;

in which the independence of di�erent ei is also a safety device to maintain the conser-

vative aspect. But if we have de�nite prior evidence of dependence, i.e. correlations,

it is a simple computational detail to take it into account as noted later.
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Other rationales for this choice exist in other situations. For example, if the noise is

known to be the result of many small independent e�ects, the central limit theorem

of probability theory leads to the Gaussian form independently of the �ne details,

even if the second moment is not known. For a detailed discussion of why and when

a Gaussian distribution should be used for the noise probability, see the original

paper by Jaynes [12]. Additionally, the book of Jaynes' collected papers contains a

discussion of the principle of maximum entropy and much more [14].

If we have the true model, the di�erence between the data di and the model

fi is just the noise. Then the direct probability that we should obtain the data

D = fd1 � � � dNg, given the parameters, is proportional to the likelihood function:

P (DjB1; B2; !; �; I) / L(B1; B2; !; �) =
NY
i=1

��1 expf� 1

2�2
[di � f(ti)]

2g

L(B1; B2; !; �) = ��N � expf � 1

2�2

NX
i=1

[di � f(ti)]
2g: (2:2)

The usual way to proceed is to �t the sum in the exponent. Finding the parameter

values which minimize this sum is called \least squares". The equivalent procedure

(in this case) of �nding parameter values that maximize L(B1; B2; !; �) is called

\maximum likelihood". The maximum likelihood procedure is more general than

least squares: it has theoretical justi�cation when the likelihood is not Gaussian. The

departure of Jaynes was to use (2.2) in Bayes' theorem (1.3), and then to remove the

phase and amplitude from further consideration by integration over these parameters.

In doing this preliminary calculation we will make a number of simplifying as-

sumptions, then in Chapter 3 correct them by solving a much more general problem

exactly. For now we insert the model (2.1) into the likelihood (2.2) and expand the

exponent to obtain:

L(B1; B2; !; �) / ��N exp
�
�NQ

2�2

�
(2:3)

where

Q � d2 � 2

N
[B1R(!) +B2I(!)] +

1

2
(B2

1 +B2
2);

and

R(!) =
NX
i=1

di cos(!ti) (2:4)

I(!) =
NX
i=1

di sin(!ti) (2:5)
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are the functions introduced in (1.1), and

d2 =
1

N

NX
i=1

d2i

is the observed mean-square data value. In this preliminary discussion we assumed

the data have zero mean value (any nonzero average value has been subtracted from

the data), and we simpli�ed the quadratic term as follows:

NX
i=1

f(ti)
2 = B2

1

NX
i=1

cos2 !ti +B2
2

NX
i=1

sin2 !ti + 2B1B2

NX
i=1

cos(!ti) sin(!ti);

with
NX
i=1

cos2 !ti =
N

2
+
1

2

NX
i=1

cos 2!ti '
N

2
;

NX
i=1

sin2 !ti =
N

2
� 1

2

NX
i=1

cos 2!ti '
N

2
;

NX
i=1

cos(!ti) sin(!ti) =
1

2

NX
i=1

sin(2!ti)�
N

2

so the quadratic term is approximately

NX
i=1

f(ti)
2 � N

2

�
B2

1 +B2
2

�
:

The neglected terms are of order one, and small provided N � 1 (except in the

special case !tN � 1). We will assume, for now, that the data contain no evidence

of a low frequency.

The cross term,
PN

i=1 cos(!ti) sin(!ti), is at most of the same order as the terms

we just ignored; therefore, this term is also ignored. The assumption that this cross

term is zero is equivalent to assuming the sine and cosine functions are orthogonal

on the discrete time sampled set. Indeed, this is the actual case for uniformly spaced

time intervals; however, even without uniform spacing this is a good approximation

provided N is large. The assumption that the cross terms are zero by orthogonality

will prove to be the key to generalizing this problem to more complex models, and in

Chapter 3 the assumptions that we are making now will become exact by a change

of variables.
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2.3 Elimination of Nuisance Parameters

In a harmonic analysis one is primarily interested in the frequency !. Then if

the amplitude, phase, and the variance of the noise are unknown, they are nuisance

parameters. We gave the general procedure for dealing with nuisance parameters in

Chapter 1. To apply that rule we must integrate the posterior probability density

with respect to B1, B2, and also � if the noise variance is unknown.

If we had prior information about the nuisance parameters (such as: they had to

be positive, they could not exceed an upper limit, or we had independently measured

values for them) then here would be the place to incorporate that information into the

calculation. We illustrate the e�ects of integrating over a nuisance parameter, as well

as the use of prior information in, Appendices B and C and explicitly calculate the

expectation values of B1 and B2 when a prior measurement is available. At present we

assume no prior information about the amplitudesB1 and B2 and assign them a prior

probability which indicates \complete ignorance of a location parameter". This prior

is a uniform, 
at, prior density; it is called an improper prior probability because it

is not normalizable. In principle, we should approach an improper prior as the limit

of a sequence of proper priors. The point is discussed further in Appendices A and B.

However, in this problem there are no di�culties with the use of the uniform prior

because the Gaussian cuto� in the likelihood function ensures convergence in (2.3).

Upon multiplying the likelihood (2.3) by the uniform prior and integrating with

respect to B1 and B2 one obtains the joint quasi-likelihood of ! and �:

L(!; �) / ��N+2 � exp
�
� N

2�2
[d2 � 2C(!)=N ]

�
(2:6)

where C(!), the Schuster periodogram de�ned in (1.1), has appeared in a very natural

and unavoidable way. If one knows the variance �2 from some independent source

and has no additional prior information about !, then the problem is completed. The

posterior probability density for ! is given by

P (!jD;�; I) / exp

(
C(!)

�2

)
: (2:7)

Because we have assumed little prior information about B1, B2, ! and have made con-

servative assumptions about the noise; this probability density will yield conservative

estimates of !. By this we mean, as before, that if we had more prior information,

we could exploit it to obtain still better results. We will illustrate this point further
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in Chapter 5 and show that when the data have characteristics which di�er from our

assumptions, Eq. (2.7) will always make a conservative estimates of the frequency !.

Thus the assumptions we are making act as safeguards to protect us from seeing

things in the data that are not really there. We place such great stress on this point

because we shall presently obtain some surprisingly sharp estimates.

The above analysis is valid whenever the noise variance (or power) is known.

Frequently one has no independent prior knowledge of the noise. The noise variance

�2 then becomes a nuisance parameter. We eliminate it in much the same way as the

amplitudes were eliminated. Now � is restricted to positive values and additionally

it is a scale parameter. The prior which indicates \complete ignorance" of a scale is

the Je�reys prior 1=� [15]. Multiplying Eq. (2.6) by the Je�reys prior and integrating

over all positive values gives

P (!jD; I) /
�
1� 2C(!)

Nd2

� 2�N
2

: (2:8)

This is called a \Student t-distribution" for historical reasons, although it is expressed

here in very nonstandard notation. In our case it is the posterior probability density

that a stationary harmonic frequency ! is present in the data when we have no prior

information about �.

These simple results, Eqs. (2.7) and (2.8), show why the discrete Fourier transform

tends to peak at the location of a frequency when the data are noisy. Namely, the

discrete Fourier transform is directly related to the probability that a single harmonic

frequency is present in the data, even when the noise level is unknown. Additionally,

zero padding a time series (i.e. adding zeros at its end to make a longer series) and then

taking the Fast Fourier transform of the padded series, is equivalent to calculating the

Schuster periodogram at smaller frequency intervals. If the signal one is analyzing is

a simple harmonic frequency plus noise, then the maximum of the periodogram will

be the \best" estimate of the frequency that we can make in the absence of additional

prior information about it.

We now see the discrete Fourier transform and the Schuster periodogram in a

entirely new light: the highest peak in the discrete Fourier transform is an optimal

frequency estimator for a data set which contains a single harmonic frequency in

the presence of Gaussian white noise. Stated more carefully, the discrete Fourier



20 CHAPTER 2

transform will give optimal frequency estimates if six conditions are met:

1. The number of data values N is large,
2. There is no constant component in the data,
3. There is no evidence of a low frequency,
4. The data contain only one frequency,
5. The frequency must be stationary

(i.e. the amplitude and phase are constant),
6. The noise is white.

If any of these six conditions is not met, the discrete Fourier transform may give

misleading or simply incorrect results in light of the more realistic models. Not

because the discrete Fourier transform is wrong, but because it is answering what

we should regard as the wrong question. The discrete Fourier transform will always

interpret the data in terms of a single harmonic frequency model! In Chapter 6 we

illustrate the e�ects of violating one or more of these assumptions and demonstrate

that when they are violated the estimated parameters are always less certain than

when these conditions are met.

2.4 Resolving Power

When the six conditions are met, just how accurately can the frequency be es-

timated? This question is easily answered; we do this by approximating (2.7) by

a Gaussian and then making the (mean) � (standard deviation) estimates of the

frequency !. Expanding C(!) about the maximum !̂ we have

C(!) = C(!̂)� b

2
(!̂ � !)2 + � � �

where

b � �C 00(!̂) > 0: (2:9)

The Gaussian approximation is

P (!jD;�; I) '
"
2b

��2

# 1
2

exp

(
�b(!̂ � !)2

2�2

)

from which we would make the (mean) � (standard deviation) estimate of the fre-

quency

!est = !̂ � �p
b
:
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The accuracy depends on the curvature of C(!) at its peak, not on the height of

C(!). For example, if the data are composed of a single sine wave plus noise e(t) of

standard deviation �

dt = B̂1 cos(!̂t) + et

then as found by Jaynes [12]:

C(!max) '
NB̂2

1

4

b ' B̂2
1N

3

48

(!)est = !̂ � �

jB1j
q
48=N3 (2:10)

which indicates, as intuition would lead us to expect, that the accuracy depends on

the signal-to-noise ratio, and quite strongly on how much data we have.

The height of the posterior probability density increases like the exponential of

NB̂2
1=4�

2 while the error estimates depend on the exponential of N3B̂2
1=96�

2. If one

has a choice between doubling the amount of data N ! 2N , or doubling the signal-

to-noise ratio B̂1=�! 2B̂1=�, always double the amount of data if you have detected

the signal, and always double the signal-to-noise ratio if you have no strong evidence

of a signal.

If we have su�cient signal-to-noise ratio for the posterior probability density

expfNB̂2
1=4�

2g to have a peak well above the noise, doubling the amount of data,

N ! 2N will double the height of the periodogram giving expfNB̂2
1=4�

2g times more

evidence of a frequency while the error will go down like
p
8. On the other hand, if the

signal-to-noise ratio is so low that expfNB̂2
1=4�

2g has no clear peak above the noise,

then doubling the signal-to-noise ratio B̂2
1=�

2 ! 4B̂2
1=�

2 will give expf3NB̂2
1=4�

2g
times more evidence for a frequency, while the error goes down by 2. The trade

o� is clear: if you have su�cient signal-to-noise for signal detection more data are

important for resolution; otherwise more signal-to-noise will detect the signal with

less data.

We can further compare these results with experience, but �rst note that we are

using dimensionless units, since we took the data sampling interval to be 1. Convert-

ing to ordinary physical units, let the sampling interval be �t seconds, and denote

by f the frequency in Hz. Then the total number of cycles in our data record is

!̂(N � 1)

2�
= (N � 1)f̂�t = f̂T
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where T = (N � 1)�t seconds is the duration of our data run. So the conversion of

dimensionless ! to f in physical units is

f =
!

2��t
Hz:

The frequency estimate (2.10) becomes

fest = f̂ � �f Hz

where now, not distinguishing between N and (N � 1),

�f =
�

2�B̂1T

q
48=N =

1:1�

B̂1T
p
N

Hz: (2:11)

Comparing this with (2.10) we now see that to improve the accuracy of the estimate

the two most important factors are how long we sample (the T dependence) and the

signal-to-noise ratio. We could double the number of data values in one of two ways,

by doubling the total sampling time or by doubling the sampling rate. However, (2.11)

clearly indicates that doubling the sampling time is to be preferred. This indicates

that data values near the beginning and end of a record are most important for

frequency estimation, in agreement with intuitive common sense.

Let us take a speci�c example: if we have an RMS signal-to-noise ratio (i.e. ratio

of RMS signal to RMS noise � S/N) of S/N = B̂1=
p
2� = 1, and we take data every

�t = 10�3 sec. for T = 1 second, thus getting N = 1000 data points, the theoretical

accuracy for determining the frequency of a single steady sinusoid is

�f =
1:1p
2000

= 0:025 Hz (2:12)

while the Nyquist frequency for the onset of aliasing is fN = (2�t)�1 = 500Hz, greater

by a factor of 20,000.

To some, this result will be quite startling. Indeed, had we considered the peri-

odogram itself to be a spectrum estimator, we would have calculated instead the width

of its central peak. A noiseless sinusoid of frequency !̂ would have a periodogram

proportional to

C(!) / sin2fN(! � !̂)=2g
sin2f(! � !̂)=2g

thus the half-width at half amplitude is given by jN(!̂�!)=2j = �=4 or �! = �=2N .

Converting to physical units, the periodogram will have a width of about

�f =
1

4N�t
=

1

4T
= 0:25 Hz (2:13)
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just ten times greater than the value (2.12) indicated by probability theory. This

factor of ten is the amount of narrowing produced by the exponential peaking of the

periodogram in (2.7), even for unit signal-to-noise ratio.

But some would consider even the result (2.13) to be a little overoptimistic. The

famous Rayleigh criterion [16] for resolving power of an optical instrument supposes

that the minimum resolvable frequency di�erence corresponds to the peak of the

periodogram of one sinusoid coming at the �rst zero of the periodogram of the second.

This is twice (2.13):

�fRayleigh =
1

2T
= 0:5 Hz: (2:14)

There is a widely believed \folk-theorem" among theoreticians without laboratory

experience, which seems to confuse the Rayleigh limit with the Heisenberg uncertainty

principle, and holds that (2.14) is a fundamental irreducible limit of resolution. Of

course there is no such theorem, and workers in high resolution NMR have been

routinely determining line positions to an accuracy that surpasses the Rayleigh limit

by an order of magnitude, for thirty years.

The misconception is perhaps strengthened by the curious coincidence that (2.14)

is also the minimum half-width that can be achieved by a Blackman-Tukey spec-

trum analysis [13] (even at in�nite signal-to-noise ratio) because the \Hanning win-

dow" tapering function that is applied to the data to suppress side-lobes (the sec-

ondary maxima of [sin(x)=x]2) just doubles the width of the periodogram. Since

the Blackman-Tukey method has been used widely by economists, oceanographers,

geophysicists, and engineers for many years, it has taken on the appearance of an

optimum procedure.

According to E.T. Jaynes, Tukey himself acknowledged [17] that his method fails

to give optimum resolution, but held this to be of no importance because \real time

series do not have sharp lines." Nevertheless, this misconception is so strongly held

that there have been attacks on the claims of Bayesian/MaximumEntropy spectrum

analysts to be able to achieve results like (2.12) when the assumed conditions are

met. Some have tried to put such results in the same category with circle squaring

and perpetual motion machines. Therefore we want to digress to explain in very

elementary physical terms why it is the Bayesian result (2.11) that does correspond

to what a skilled experimentalist can achieve.

Suppose �rst that our only data analysis tool is our own eyes looking at a plot of

the raw data of duration T = 1 sec., and that the unknown frequency f in (2.12) is

100Hz. Now anyone who has looked at a record of a sinusoid and equal amplitude
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wide-band noise, knows that the cycles are quite visible to the eye. One can count

the total number of cycles in the record con�dently (using interpolation to help us

over the doubtful regions) and will feel quite sure that the count is not in error by

even one cycle. Therefore by raw eyeballing of the data and counting the cycles, one

can achieve an accuracy of

�f ' 1

T
= 1 Hz:

But in fact, if one draws the sine wave that seems to �t the data best, he can make a

quite reliable estimate of how many quarter-cycles were in the data, and thus achieve

�f ' 1

4T
= 0:25 Hz

corresponding just to the periodogram width (2.13).

Then the use of probability theory needs to surpass the naked eye by another

factor of ten to achieve the Bayesian width (2.12). What probability theory does

is essentially to average out the noise in a way that the naked eye cannot do. If we

repeat some measurementN times, any randomly varying component of the data will

be suppressed relative to the systematic component by a factor of N� 1
2 , the standard

rule.

In the case considered, we assumed N = 1000 data points. If they were all in-

dependent measurements of the same quantity with the same accuracy, this would

suppress the noise by about a factor of 30. But in our case not all measurements

are equally cogent for estimating the frequency. Data points in the middle of the

record contribute very little to the result; only data points near the ends are highly

relevant for determining the frequency, so the e�ective number of observations is less

than 1000. The probability analysis leading to (2.12) indicates that the \e�ective

number of observations" is only about N=10 = 100; thus the Bayesian width (2.12)

that results from the exponential peaking of the periodogram now appears to be, if

anything, somewhat conservative.

Indeed, that is what Bayesian analysis always does when we use smooth, uninfor-

mative priors for the parameters, because then probability theory makes allowance

for all possible values that they might have. As noted before, if we had any cogent

prior information about ! and expressed it in a narrower prior, we would be led to

still better results; but they would not be much better unless the prior range became

comparable to the width of the likelihood L(!).
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2.5 The Power Spectral Density p̂

The usual way the result from a spectral analysis is displayed is in the form of a

power spectral density (i.e. power per unit frequency). In Fourier transform spec-

troscopy this is typically taken as the squared magnitude of the discrete Fourier

transform of the data. We would like to express the results of the present calcula-

tion in a similar manner to facilitate comparisons between these techniques, although

strictly speaking there is no exact correspondence between a spectral density de�ned

with reference to a stochastic model and one that pertains to a parameter estimation

model.

We begin by de�ning what we mean by the \estimated spectrum," since several

quite di�erent meanings of the term can be found in the literature. De�ne p̂(!)d! as

the expectation, over the joint posterior probability distribution for all the parameters,

of the energy carried by the signal (not the noise) in frequency range d!, during our

observation time tN�t1. Then
R
p̂(!)d! over some frequency range is the expectation

of the total energy carried by the signal in that frequency range. The total energy E

carried by the signal in our model is

E =
Z tN

t1

f(t)2dt � T

2

�
B2

1 +B2
2

�

and its expectation is given by

p̂(!) =
T

2
hB2

1 +B2
2i;

but N = T=�t, where �t is the sampling time which in dimensionless units is one.

The power spectral density is

p̂(!) =
N

2

Z
dB1dB2(B

2
1 +B2

2)P (!;B1; B2jD;�; I):

Performing the integrals over B1 and B2 we obtain

p̂(!) = 2
h
�2 + C(!)

i
P (!jD;�; I): (2:15)

We see now that the peak of the periodogram is indicative of the total energy carried

by the signal. The additional term 2�2 is not di�cult to explain; but we delay

that explanation until after we have derived these results for the general theory (see

page 52).
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If the noise variance is assumed known, (2.15) becomes

p̂(!) = 2
h
�2 + C(!)

i exp fC(!)=�2gZ
d! exp

n
C(!)=�2

o: (2:16)

Probability theory will handle those secondary maxima (side lobes) that occur in the

periodogram by assigning them negligible weight.

This is easily seen by considering the same example discussed earlier. Take d(t) =

B̂1 cos(!̂t) sampled on a uniform grid; then when !̂ ' !

C(!) ' B̂2
1

4N

"
sinN(!̂ � !)=2

(!̂ � !)=2

#2

and C 00 is

C 00 � b ' B̂2
1N

3

24

and p̂(!) is approximately

p̂(!) ' 2

"
�2 +

4B̂2
1 sin

2N(!̂ � !)=2

(!̂ � !)2

# "
B̂2

1N
3

24��2

# 1
2

exp

(
�B̂

2
1N

3

48�2
(!̂ � !)2

)
:

Unless the signal-to-noise ratio B̂1=�
p
2 is very small, this is very nearly a delta

function.

If we take B̂1 =
p
2� = 1, and N = 1000 data values, then

p̂(!) ' 2

"
1 + 4

sin2 1000(!̂ � !)=2

(!̂ � !)2

#
[5150] expf�4� 107(!̂ � !)2g:

This reaches a maximumvalue of 1011 at !̂ = ! and has dropped to 1

2
this value when

!̂�! has changed by only 0:0001; this function is indeed a good approximation to a

delta function and (2.16) may be approximated by:

p̂(!) '
h
�2 + C(!̂)

i
[�(!̂ � !) + �(!̂ + !)]

for most purposes. But for the term �2, the peak of the periodogram is, in our model,

nearly the total energy carried by the signal. It is not an indication of the spectral

density as Schuster [11] supposed it to be for a stochastic model. In the present

model, the periodogram of the data is not even approximately the spectral energy

density of the signal.
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2.6 Wolf's Relative Sunspot Numbers

Wolf's relative sunspot numbers are, perhaps, the most analyzed set of data in all

of spectrum analysis. As Marple [3] explains in more detail, these numbers (de�ned

as: W = k[10g + f ], where g is the number of sunspot groups, f is the number of

individual sunspots, and k is used to reduce di�erent telescopes to a common scale)

have been collected on a yearly basis since 1700, and on a monthly basis since 1748

[18]. The exact physical mechanism which generates the sunspots is unknown, and

no complete theory exists. Di�erent analyses of these numbers have been published

more or less regularly since their tabulation began. Here we will analyze the sunspot

numbers with a number of di�erent models including the simple harmonic analysis

just completed, even though we know this analysis is too simple to be realistic for

these numbers.

We have plotted the time series from 1700 to 1985 in Fig. 2.1(A). A cursory

examination of this time series does indeed show a cyclic variation with a period

of about 11 years. The square of the discrete Fourier transform is a continuous

function of frequency and is proportional to the Schuster periodogram of the data

Fig. 2.1(B), continuous curve. The frequencies could be restricted to the Nyquist [19]

[20] steps (open circles); it is a theorem that the discrete Fourier transform on those

points contains all the information that is in the periodogram, but one sees that the

information is much more apparent to the eye in the continuous periodogram. The

Schuster periodogram or the discrete Fourier transform clearly show a maximumwith

period near 11 years.

We then compute the \Student t-distribution" (2.8) and have displayed it in �g-

ure 2.1(C). Now because of the processing in (2.8) all details in the periodogram have

been suppressed and only the peak at 11 years remains.

We determine the accuracy of the frequency estimate as follows: we locate the

maximum of the \Student t-distribution", integrate about a symmetric interval, and

record the enclosed probability at a number of points. This gives a period of 11.04

years with

period accuracy probability
in years in years enclosed
11.04 � 0.015 0.62

� 0.020 0.75
� 0.026 0.90



28 CHAPTER 2

Figure 2.1: Wolf's Relative Sunspot Numbers

SCHUSTER PERIODOGRAM

FAST FOURIER TRANSFORM

STUDENT t-DISTRIBUTION FOR A

SIMPLE HARMONIC FREQUENCY MODEL

Wolf's relative sunspot numbers (A) have been collected on a yearly basis since 1700.
The periodogram (B) contains evidence of several complex phenomena. In spite of
this the single frequency model posterior probability density (C) picks out the 11.04
year cycle to an estimated accuracy of �10 days.
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as an indication of the accuracy. According to this, there is not one chance in 10 that

the true period di�ers from 11.04 years by more than 10 days. At �rst glance, this

appears too good to be true.

But what does raw eyeballing of the data give? In 285 years, there are about

285=11 � 26 cycles. If we can count these to an accuracy of �1=4 cycle, our period

estimate would be about

(f)est = 11 years� 39 days:

Probability averaging of the noise, as discussed above (2.10), would reduce this un-

certainty by about a factor of
q
285=10 = 5:3, giving

(f)est = 11 years� 7:3 days; or (f)est = 11� 0:02 years

which corresponds nicely with the result of the probability analysis.

These results come from analyzing the data by a model which said there is nothing

present but a single sinusoid plus noise. Probability theory, given this model, is

obliged to consider everything in the data that cannot be �t to a single sinusoid to

be noise. But a glance at the data shows clearly that there is more present than

our model assumed: therefore, probability theory must estimate the noise to be quite

large.

This suggests that we might do better by using a more realistic model which

allows the \signal" to have more structure. Such a model can be �t to the data more

accurately; therefore it will estimate the noise to be smaller. This should permit a

still better period estimate!

But caution forces itself upon us; by adding more and more components to the

model we can always �t the data more and more accurately; it is absurd to suppose

that by mere proliferation of a model we can extract arbitrarily accurate estimates of

a parameter. There must be a point of diminishing returns { or indeed of negative

returns { beyond which we are deceiving ourselves.

It is very important to understand the following point. Probability theory always

gives us the estimates that are justi�ed by the information that was actually used in

the calculation. Generally, a person who has more relevant information will be able

to do a di�erent (more complicated) calculation, leading to better estimates. But of

course, this presupposes that the extra information is actually true. If one puts false

information into a probability calculation, then probability theory will give optimal

estimates based on false information: these could be very misleading. The onus is
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always on the user to tell the truth and nothing but the truth; probability theory has

no safety device to detect falsehoods.

The issue just raised takes us into an area that has been heretofore, to the best

of our knowledge, unexplored by any coherent theory. The analysis of this section

has shown how to make the optimum estimates of parameters given a model whose

correctness is not questioned. Deeper probability analysis is needed to indicate how

to make the optimum choice of a model, which neither cheats us by giving poorer

estimates than the data could justify, nor deceives us by seeming to give better es-

timates than the data can justify. But before we can turn to the model selection

problem, the results of this chapter must be generalized to more complex models and

it is to this task that we now turn.



Chapter 3

THE GENERAL MODEL

EQUATION PLUS NOISE

The results of the previous chapter already represent progress on the spectral

analysis problem because we were able to remove consideration of the amplitude,

phase and noise level, and �nd what probability theory has to say about the frequency

alone. In addition, it has given us an indication about how to proceed to more general

problems. If we had used a model where the quadratic term in the likelihood function

did not simplify, we would have a more complicated analytical solution. Although

any multivariate Gaussian integral can be done, the key to being able to remove the

nuisance parameters easily, and above all selectively, was that the likelihood factored

into independent parts. In the full spectrum analysis problem worked on by Jaynes,

[12] the nuisance parameters were not independent, and the explicit solution required

the diagonalization of a matrix that could be quite large.

3.1 The Likelihood Function

To understand an easier approach to complex models, suppose we have a model

of the form

di = f(ti) + ei

f(t) =
mX
j=1

BjGj(t; f!g): (3:1)

The model functions, Gi(t; f!g), are themselves functions of a set of parameters which

we label collectively f!g (these parameters might be frequencies, chirp rates, decay

31
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rates, or any other quantities one could encounter). Now if we substitute this model

into the likelihood (2.2), the simpli�cation that occurred in (2.3) does not take place:

L(fBg; f!g; �) / ��N � expf�NQ

2�2
g (3:2)

where

Q � d2 � 2

N

mX
j=1

NX
i=1

BjdiGj(ti) +
1

N

mX
j=1

mX
k=1

gjkBjBk (3:3)

gjk =
NX
i=1

Gj(ti)Gk(ti): (3:4)

If the desired simpli�cation is to take place, the matrix gjk must be diagonal.

3.2 The Orthonormal Model Equations

For the matrix gjk to be diagonal the model functions Gj must be made orthogonal.

This can be done by taking appropriate linear combinations of them. But care must

be taken; we do not desire a set of orthogonal functions of a continuous variable t,

but a set of vectors which are orthogonal when summed over the discrete sampling

times ti. It is the sum over ti appearing in the quadratic term of the likelihood which

must simplify.

To accomplish this, consider the real symmetric matrix gjk (3.4) de�ned above.

Since for all xj satisfying
P
x2j > 0,

mX
j;k=1

gjkxjxk =
NX
i=1

0
@ mX
j=1

xjGj(ti)

1
A
2

� 0

so that gjk is positive de�nite if it is of rank m. If it is of rank r < m, then the

model functions Gj(t) or the sampling times ti were poorly chosen. That is, if a

linear combination of the Gj(t) is zero at every sampling point:

mX
j=1

xjGj(ti) = 0; (1 � i � N)

then at least one of the model functions Gj(t) is redundant and can be removed from

the model without changing the problem.

We suppose that redundant model functions have been removed, so that gjk is

positive de�nite and of rank m in what follows. Let ekj represent the jth component
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of the kth normalized eigenvector of gjk; i.e.

mX
k=1

gjkelk = �lelj;

where �l is the lth eigenvalue of gjk. Then the functions Hj(t), de�ned as

Hj(t) =
1q
�j

mX
k=1

ejkGk(t); (3:5)

have the desired orthonormality condition,

NX
i=1

Hj(ti)Hk(ti) = �jk: (3:6)

The model Eq. (3.1) can now be rewritten in terms of these orthonormal functions as

f(t) =
mX
k=1

AkHk(t): (3:7)

The amplitudes Bk are linearly related to the Ak by

Bk =
mX
j=1

Ajejkq
�j

and Ak =
q
�k

mX
j=1

Bjekj : (3:8)

The volume elements are given by

dB1 � � � dBmd!1 � � � d!r =

���� eljp�j

���� dA1 � � � dAmd!1 � � � d!r

= �
� 1

2
1 � � � ��

1
2

m dA1 � � � dAmd!1 � � � d!r:

(3:9)

The Jacobian is a function of the f!g parameters and is a constant as long as we are

not integrating over these f!g parameters. At the end of the calculation the linear

relations between the A's and B's can be used to calculate the expected values of the

B's from the expected value of the A's, and the same is true of the second posterior

moments:

E(Bkjf!g;D; I) = hBki =
mX
j=1

hAjiejkq
�j

(3:10)

E(BkBljf!g;D; I) = hBkBli =
mX
i=1

mX
j=1

eikejlhAiAjiq
�i�j

(3:11)

where E(BkjD; I) stands for the expectation value of Bk given the data D, and the

prior information I: this is the notation used by the general statistical community,

while hBki is the notation more familiar in the physical sciences.
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The two operations of making a transformation on the model functions and chang-

ing variables will transform any nonorthonormal model of the form (3.1) into an or-

thonormal model (3.7). We still have a matrix to diagonalize, but this is done once at

the beginning of the calculation. If the gjk matrix cannot be diagonalized analytically,

it can still be computed numerically and then diagonalized. It is not necessary to

carry out the inverse transformation if we are interested only in estimating the f!g
parameters: the Hj(t; f!g) are functions of them.

3.3 Elimination of the Nuisance Parameters

We are now in a position to proceed as before. Because the calculation is essentially

identical to the single harmonic frequency calculation we will proceed very rapidly.

The likelihood can now be factored into a set of independent likelihoods for each of

the Aj. It is now possible to remove the nuisance parameters easily. Using the joint

likelihood (3.2), we make the change of function (3.5) and the change of variables (3.8)

to obtain the joint likelihood of the new parameters

L(fAg; f!g; �) / ��N � exp
�
� N

2�2
[d2 � 2

N

mX
j=1

Ajhj +
1

N

mX
j=1

A2
j ]
�

(3:12)

hj �
NX
i=1

diHj(ti); (1 � j � m): (3:13)

Here hj is just the projection of the data onto the orthonormal model function Hj . In

the simple harmonic analysis performed in Chapter 2, the R(!) and I(!) functions

are the analogues of these hj functions. However, the hj functions are more general,

we did not make any approximations in deriving them. The orthonormality of the

Hj functions was used to simplify the quadratic term. This simpli�cation makes it

possible to complete the square in the likelihood and to integrate over the Aj's, or

any selected subset of them.

As before, if one has prior information about these amplitudes, then here is where

it should be incorporated. Because we are performing a general calculation and have

not speci�ed the model functions we assume no prior information is available about

the amplitudes, and thus obtain conservative estimates by assigning the amplitudes

a uniform prior. Performing the m integrations one obtains

L(f!g; �) / ��N+m � exp
�
�Nd2 �mh2

2�2

�
(3:14)
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where

h2 � 1

m

mX
j=1

h2j (3:15)

is the mean-square of the observed projections. This equation is the analogue of (2.6)

in the simple harmonic calculation. Although it is exact and far more general, it

is actually simpler in structure and gives us a better intuitive understanding of the

problem than (2.6), as we will see in the Bessel inequality below. In a sense h2 is a

generalization of the periodogram to arbitrary model functions. In its dependence on

the parameters f!g it is a su�cient statistic for all of them.

If � is known, then the problem is again completed, provided we have no additional

prior information. The joint posterior probability of the f!g parameters, conditional

on the data and our knowledge of �, is

P (f!gjD;�; I) / exp

(
mh2

2�2

)
: (3:16)

But if there is no prior information available about the noise, then � is a nui-

sance parameter and can be eliminated as before. Using the Je�reys prior 1=� and

integrating (3.14) over � gives

P (f!gjD; I) /
"
1� mh2

Nd2

#m�N
2

: (3:17)

This is again of the general form of the \Student t-distribution" that we found before

in (2.8). But one may be troubled by the negative sign [in the square brackets (3.17)],

which suggests that (3.17) might become singular. We pause to investigate this

possibility by Bessel's famous argument.

3.4 The Bessel Inequality

Suppose we wish to approximate the data vector fd1; � � � ; dNg by the orthogonal

functions Hj(t):

di =
mX
j=1

ajHj(ti) + error; (1 � i � N):

What choice of fa1; � � � ; amg is \best"? If our criterion of \best" is the mean-square

error, we have
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0 �
NX
i=1

2
4di � mX

j=1

ajHj(ti)

3
5
2

= Nd2 +
mX
j=1

(a2j � 2ajhj)

= Nd2 �mh2 +
mX
j=1

(aj � hj)2

where we have used (3.13) and the orthonormality (3.6). Evidently, the \best" choice

of the coe�cients is

aj = hj ; (1 � j � m)

and with this choice the minimum possible mean-square error is given by the Bessel

inequality

Nd2 �mh2 � 0 (3:18)

with equality if and only if the approximation is perfect. In other words, Eq. (3.17)

becomes singular somewhere in the parameter space if and only if the model

f(t) =
mX
j=1

AjHj(t)

can be �tted to the data exactly. But in that case we know the parameters by de-

ductive reasoning, and probability theory becomes super
uous. Even so, probability

theory is still working correctly, indicating an in�nitely greater probability for the

true parameter values than for any others.

3.5 An Intuitive Picture

The Bessel inequality gives us the following intuitive picture of the meaning of

Eqs. (3.12-3.17). The data fd1; � � � ; dNg comprise a vector in an N -dimensional linear

vector space SN . The model equation

di =
mX
j=1

AjHj(ti) + ei; (1 � i � N)

supposes that these data can be separated into a \systematic part" f(ti) and a \ran-

dom part" ei. Estimating the parameters of interest f!g that are hidden in the model
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functions Hj(t) amounts essentially to �nding the values of the f!g that permit f(t)

to make the closest possible �t to the data by the mean-square criterion. Put dif-

ferently, probability theory tells us that the most likely values of the f!g are those

that allow a maximum amount of the mean-square data d2 to be accounted for by

the systematic term; from (3.18), those are the values that maximize h2.

However, we have N data points and only m model functions to �t to them.

Therefore, to assign a particular model is equivalent to supposing that the systematic

component of the data lies only in an m-dimensional subspace Sm of SN . What kind

of data should we then expect?

Let us look at the problem backwards for a moment. Suppose someone knows

(never mind how he could know this) that the model is correct, and he also knows

the true values of all the model parameters (fAg; f!g; �) { call this the Utopian state

of knowledge U { but he does not know what data will be found. Then the probability

density that he would assign to any particular data set D = fd1; � � � ; dNg is just our
original sampling distribution (3.2):

P (DjU) = (2��2)�
N
2 exp

�
� 1

2�2

NX
i=1

[di � f(ti)]
2

�
:

From this he would �nd the expectations and covariances of the data:

E(dijU) = hdii = f(ti) (1 � i � N)

hdidji � hdiihdji = (2��2)�
N
2

Z
dNx xixj exp

(
� 1

2�2

NX
i=1

x2i

)

= �2�ij

therefore he would \expect" to see a value of d2 of about

E(d2jU) = hd2i =
1

N

NX
i=1

hd2i i

=
1

N

NX
i=1

(hdii2 + �2)

=
1

N

NX
i=1

f2(ti) + �2:

(3:19)

But from the orthonormality (3.6) of the Hj(ti), we have

NX
i=1

f2(ti) =
NX
l=1

mX
j;k=1

AjAkHj(ti)Hk(ti)

=
mX
j=1

A2
j :
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So that (3.19) becomes

hd2i = m

N
A2 + �2:

Now, what value of h2 would he expect the data to generate? This is

E(h2jU) = hh2i =
1

m

mX
j=1

hh2j i

=
1

m

mX
j=1

NX
i;k=1

hdidkiHj(ti)Hj(tk)

=
1

m

mX
j=1

NX
i;k=1

(hdiihdki+ �2�ik)Hj(ti)Hj(tk):

(3:20)

But
NX
i=1

hdiiHj(ti) =
NX
i=1

mX
l=1

AlHl(ti)Hj(ti)

=
mX
l=1

Al�lj

= Aj

and (3.20) reduces to

hh2i = A2 + �2:

So he expects the left-hand side of the Bessel inequality (3.18) to be approximately

Nhd2i �mh2 � (N �m)�2: (3:21)

This agrees very nicely with our intuitive judgment that as the number of model

functions increases, we should be able to �t the data better and better. Indeed, when

m = N , the Hj(ti) become a complete orthonormal set on SN , and the data can

always be �t exactly, as (3.21) suggests.

3.6 A Simple Diagnostic Test

If � is known, these results give a simple diagnostic test for judging the adequacy of

our model. Having taken the data, calculate (Nd2�mh2). If the result is reasonably

close to (N �m)�2, then the validity of the model is \con�rmed" (in the sense that

the data give no evidence against the model). On the other hand, if (Nd2 � mh2)
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turns out to be much larger than (N �m)�2, the model is not �tting the data as well

as it should: it is \under�tting" the data. That is evidence either that the model is

inadequate to represent the data; we could need more model functions, or di�erent

model functions, or our supposed value of �2 is too low. The next order of business

would be to investigate these possibilities.

It is also possible, although unusual, that (Nd2�mh2) is far less than (N �m)�2;

the model is \over�tting" the data. That is evidence either that our supposed value

of � is too large (the data are actually better than we expected), or that the model

is more complex than it needs to be. By adding more model functions we can always

improve the apparent �t, but if our model functions represent more detail than is

really in the systematic e�ects at work, part of this �t is misleading: we are �tting

the noise.

A test to con�rm this would be to repeat the whole experiment under conditions

where we know the parameters should have the same values as before, and compare the

parameter estimates from the two experiments. Those parameters that are estimated

to be about the same in the two experiments are probably real systematic e�ects. If

some parameters are estimated to be quite di�erent in the two experiments, they are

almost surely spurious: i.e. these are not real e�ects but only artifacts of �tting the

noise. The model should then be simpli�ed, by removing the spurious parameters.

Unfortunately, a repetition is seldom possible with geophysical or economic time

series, although one may split the data into two parts and see if they make about the

same estimates. But repetition is usually easy and standard practice in the controlled

environment of a physics experiment. Indeed, the physicist's common-sense criterion

of a real e�ect is its reproducibility. Probability theory does not con
ict with good

common-sense judgment; it only sharpens it and makes it quantitative. A striking

example of this is given in the scenario below.

Consider now the case that � is completely unknown, where probability theory led

us to (3.17). As we show in Appendix C, integrating over a nuisance parameter is

very much like estimating the parameter from the data, and then using that estimate

in our equations. If the parameter is actually well determined by the data, the two

procedures are essentially equivalent. In Chapter 4 we derive an exact expression for
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the expectation value of the variance h�2i:

h�2i = N
N�m�2

"
d2 � mh2

N

#

=
1

N �m� 2

2
4 NX
i=1

d2i �
mX
j=1

h2j

3
5 :

(3:22)

Constraining � to this value, we obtain for the posterior probability of the f!g pa-

rameters approximately

P (f!gjD; h�2i; I) � exp

(
mh2

h�2i

)
:

In e�ect, probability theory tells us that we should apportion the �rst m degrees of

freedom to the signal, the next two to the variance, and the remaining (N �m � 2)

should be noise degrees of freedom. Thus everything probability theory cannot �t to

the signal will be placed in the noise.

More interesting is the opposite extreme when (3.17) approaches a singular value.

Consider the following scenario. You have obtained some data which are recorded

automatically to six �gures and look like this: D = fd1 = 1423:16; d2 = 1509:77; d3 =

1596:38; � � �g. But you have no prior knowledge of the accuracy of those data; for all

you know, � may be as large as 100 or even larger, making the last four digits garbage.

But you plot the data, to determine a model function that best �ts them. Suppose,

for simplicity, that the model function is linear: di = a+si+ei. On plotting di against

i, you are astonished and delighted to see the data falling exactly on a straight line

(i.e. to within the six �gures given). What conclusions do you draw from this?

Intuitively, one would think that the data must be far \better" than had been

thought; you feel sure that � < 10�2, and that you are therefore able to estimate the

slope s to an accuracy considerably better than �10�2, if the number of data values

N is large. It may, however, be hard to see at �rst glance how probability theory can

justify this intuitive conclusion that we draw so easily.

But that is just what (3.17) and (3.22) tell us; Bayesian analysis leads us to it

automatically and for any model functions. Even though you had no reason to expect

it, if it turns out that the data can be �t almost exactly to a model function, then

from the Bessel inequality (3.18) it follows that �2 must be extremely small and, if

the other parameters are independent, they can all be estimated almost exactly.

By \independent" in the last paragraph we mean that a given model function

f(t) =
P
AjHj(t) can be achieved with only one unique set of values for the pa-
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rameters. If several di�erent choices of the parameters all lead to the same model

function, of course the data cannot distinguish between them; only certain functions

of the parameters can be estimated accurately, however many data we have. In this

case the parameters are said to be \confounded" or \unidenti�ed". Generally, this

would be a sign that the model was poorly chosen. However, it may be that the

parameters are known to be real, and the experiment, whether by poor design or the

perversity of nature, is just not capable of distinguishing them.

As an example of confounded parameters, suppose that two di�erent sinusoidal

signals are known to be present, but they have identical frequencies. Then their

separate amplitudes are confounded: the data can give evidence only about their

sum. The di�erence in amplitudes can be known only from prior information.
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Chapter 4

ESTIMATING THE

PARAMETERS

Once the models had been rewritten in terms of the orthonormal model functions,

we were able to remove the nuisance parameters fAg and �. The integrals performed

in removing the nuisance parameters were all Gaussian or gamma integrals; therefore,

one can always compute the posterior moments of these parameters.

There are a number of reasons why these moments are of interest: the �rst moments

of the amplitudes are needed if one intends to reconstruct the model f(t); the second

moments are related to the energy carried by the signal; the estimated noise variance

�2 and the energy carried by the signal can be used to estimate the signal-to-noise ratio

of the data. Thus the parameters fAg and � are not entirely \nuisance" parameters;

it is of some interest to estimate them. Additionally, we cannot in general compute

the expected value of the f!g parameters analytically. We must devise a procedure

for estimating these parameters and their accuracy.

4.1 The Expected Amplitudes hAji

To begin we will compute the expected amplitudes hAji in the case where the

variance is assumed known. Now the likelihood (3.12) is a function of the f!g pa-

rameters and to estimate the hAji independently of the f!g's, we should integrate

over these parameters. Because we have not speci�ed the model functions, we cannot

do this once and for all. But we can obtain the estimate hAji as functions of the f!g
parameters. This gives us what would be the \best" estimate of the amplitudes if we

43
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knew the f!g parameters.

The expected amplitudes are given by

E(Ajjf!g; �;D; I) = hAji =
R+1
�1 dA1 � � � dAmAjL(fAg; f!g; �)R+1
�1 dA1 � � � dAmL(fAgjf!g; �)

:

We will carry out the �rst integration in detail to illustrate the procedure, and later

just give results. Using the likelihood (3.12) and having no prior information about

Aj, we assign a uniform prior, multiply by Aj and integrate over the fAg. Because
the joint likelihood is a product of their independent likelihoods, all of the integrals

except the one over Aj cancel:

hAji =
R+1
�1 dAjAj exp

n
� 1

2�2
[A2

j � 2Ajhj]
o

R+1
�1 dAj exp

n
� 1

2�2
[A2

j � 2Ajhj ]
o :

A simple change of variables uj = (Aj � hj)=
p
2�2 reduces the integrals to

hAji =

R+1
�1 duj

�p
2�2uj + hj

�
exp

n
�u2j

o
R+1
�1 duj exp

n
�u2j

o :

The �rst integral in the numerator is zero from symmetry and the second gives

hAji = hj: (4:1)

This is the result one would expect. After all, we are expanding the data on an

orthonormal set of vectors. The expansion coe�cients are just the projections of the

data onto the expansion vectors and that is what we �nd.

We can use these expected amplitudes hAji to calculate the expectation values of

the amplitudes hBji in the nonorthogonal model. Using (3.10), these are given by

E(Bj jf!g; �;D; I) = hBki =
mX
j=1

hjejkq
�j

: (4:2)

Care must be taken in using this formula, because the dependence of the hBki on the

f!g parameters is hidden. The functions hj, the eigenvectors ekj and the eigenvalues

�j are all functions of the f!g parameters. To remove the f!g dependence from (4.2)

one must multiply by P (f!gjD; I) and integrate over all the f!g parameters. If the

total number of f!g parameters r is large this will not be possible. Fortunately, if

the total amount of data is large P (f!gjD; I) will be so nearly a delta function that

we can estimate these parameters from the maximum of P (f!gjD; I).
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Next we compute hAji when the noise variance �2 is unknown to see if obtaining

independent information about � will a�ect these results. To do this we need the

likelihood L(fAg; f!g); this is given by (3.12) after removing the variance �2 using a

Je�reys prior 1=�:

L(f!g; fAg) /
�
d2 � mh2

N
+

1

N

mX
i=1

(Aj � hj)
2

��N
2

: (4:3)

Using (4.3) and repeating the calculation for hAji one obtains the same result (4.1).

Apparently it does not matter if we know the variance or not. We will make the same

estimate of the amplitudes regardless. As with some of the other results discovered

in this calculation, this is what one's intuition might have said; knowing � a�ects the

accuracy of the estimates but not their actual values. Indeed, the �rst moments were

independent of the value of � when the variance was known; it is hard to see how the

�rst moments could suddenly become di�erent when the variance is unknown.

4.2 The Second Posterior Moments hAjAki

The second posterior moments hAjAki cannot be independent of the noise variance
�2, for that is what limits the accuracy of our estimates of the Aj. The second

posterior moments, when the variance is assumed known, are given by

E(AjAkjf!g; �;D; I) = hAjAki =
R+1
�1 dA1 � � � dAmAjAkL(fAg; f!g; �)R+1

�1 dA1 � � � dAmL(fAg; f!g; �)
:

Using the likelihood (3.12) and again assuming a uniform prior, these expectation

values are given by

hAjAki = hjhk + �2�jk

so that, in view of (4.1), the posterior covariances are

hAjAki � hAjihAki = �2�jk: (4:4)

The Aj parameters are uncorrelated (we de�ned the model functions Hj(t) to ensure

this), and each one is estimated to an accuracy ��. Intuitively, we might anticipate

this but we would not feel very sure of it.

The expectation value hAjAki may be related to the expectation value for the

original model amplitudes by using (3.11):

hBkBli � hBkihBli = �2
mX
j=1

ejkejl

�j
: (4:5)
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These are the explicit Bayesian estimates for the posterior covariances for the original

model. These are the most conservative estimates (in the sense discussed before) one

can make, but they are still functions of the f!g parameters.

We can repeat these calculations for the second posterior moments in the case

when � is assumed unknown to see if obtaining explicit information about � is of use.

Of course, we expect the results to di�er from the previous result since (4.5) depends

explicitly on �. Performing the required calculation gives

E(AjAkjf!g;D; I) = hAjAki = hjhk

+
�

N

N � 2

� �
2N � 5

2N � 5 � 2m

� �
2N � 7

2N � 7 � 2m

� "
d2 � mh2

N

#
�jk:

Comparing this with (4.4) shows that obtaining independent information about � will

a�ect the estimates of the second moments. But not by much, as we will see below.

The second term in this equation is essentially an estimate of �2, but for small N it

di�ers appreciably from the direct estimate found next.

4.3 The Estimated Noise Variance h�2i

One of the things that is of interest in an experiment is to estimate the noise power

�2. This indicates how \good" the data appear to be in the light of the model, and

can help one in making many judgments, such as whether to try a new model or build

a new apparatus. We can obtain the expected value of � as a function of the f!g
parameters; however, we can just as easily obtain the posterior moments h�si for any
power s. Using (3.14), and the Je�reys prior 1=�, we integrate:

E(�sjf!g;D; I) = h�si =
R+1
0 d��s�1L(�jf!g;D; I)R+1
0 d���1L(�jf!g;D; I)

to obtain

h�si = �
�
N �m� s

2

�
�
�
N �m

2

��1�Nd2 �mh2

2

� s
2

: (4:6)

For s = 2 this gives the estimated variance as

h�2i =
N

N �m� 2

�
d2 � mh2

N

�

=
1

N �m� 2

� NX
i=1

d2i �
mX
j=1

h2j

�
:

(4:7)
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The estimate depends on the number m of expansion functions used in the model.

The more model functions we use, the smaller the last factor in (4.7), because by

the Bessel inequality (3.18) the larger models �t the data better and (d2 �mN�1h2)

decreases. But this should not decrease our estimate of �2 unless that factor decreases

by more than we would expect from �tting the noise. The factor N=(N�m�2) takes

this into account. In e�ect probability theory tells us that m+ 2 degrees of freedom

should go to estimating the model parameters and the variance, and the remaining

degrees of freedom should go to the noise: everything not explicitly accounted for

in the model is noise. We will show shortly that the estimated accuracy of the f!g
parameters depends directly on the estimated variance. If the model does not �t the

data well, the estimates will become less precise in direct relation to the estimated

variance.

We can use (4.6) to obtain an indication of the accuracy of the expected noise

variance. The (mean) � (standard deviation) estimate of �2 is

(�2)est = h�2i �
q
h�4i � h�2i2:

From which we obtain

(�2)est =
N

N �m� 2

�
d2 � mh2

N

��
1 � �

�

� �
q
2=(N �m� 4):

We then �nd the values of N �m needed to achieve a given accuracy

% accuracy � N �m

1 0.01 20,004
3 0.03 2,226
10 0.10 204
20 0.20 54

These are about what one would expect from simpler statistical estimation rules (the

usual N� 1
2 rule of thumb).

4.4 The Signal-To-Noise Ratio

These results may be used to empirically estimate the signal-to-noise ratio of the

data. We de�ne this as the square root of the mean power carried by the signal
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divided by the mean power carried by the noise:

Signal

Noise
=
�
h
mX
j=1

A2
j i=N�2

� 1
2

:

This may be obtained from (4.2):

Signal

Noise
=
�
m

N

�
1 +

h2

�2

�� 1
2

: (4:8)

A similar empirical signal-to-noise ratio may be obtained when the noise variance �

is unknown by replacing � in (4.8) by the estimated noise variance (4.7). When the

data �t the model so well that h2 � �2, the estimate reduces to

�
mh2

N�2

� 1
2

or
�Pm

j=1 h
2
jPN

k=1 e
2
i

� 1
2

We will compute the signal-to-noise ratio for several models in the following sections.

4.5 Estimating the {!} Parameters

Unlike the amplitudes fAg and the variance �2, we cannot calculate the expecta-

tion values of the f!g parameters analytically. In general, the integrals represented

by

h!ji =
Z
d!1 � � � d!r !j P (f!gjD; I)

cannot be done exactly. Nonetheless we must obtain an estimate of these parameters,

and their probable accuracy.

The exact joint posterior density is (3.16) when � is known, and (3.17) when it is

not. But they are not very di�erent provided we have enough data for good estimates.

For, writing the maximum attainable
P
h2j as0

@ mX
j=1

h2j

1
A
max

= x

and writing the di�erence from the maximum as q2 i.e.

mX
j=1

h2j = x� q2;

Eq. (3.17) becomes

"
NX
i=1

d2i � x+ q2
#m�N

2

� exp

(
� (N �m)q2

2(
PN

j=1 d
2
i � x)

)
:
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But this is nearly the same as

"
NX
i=1

d2i � x+ q2
#m�N

2

� exp

(
� q2

2h�2i

)

where we used the estimate (4.7) for �2 evaluated for the values f!̂g that maximize

the posterior probability as a function of the f!g parameters. So up to an irrelevant

normalization constant the posterior probability of the f!g parameters around the

location of the maximum is given by

P (f!gjD; h�2i; I) � exp
�
mh2

2h�2i

�
(4:9)

where the slightly inconsistent notation P (f!gjh�2i;D; I) has been adopted to remind

us that we have used h�2i, not �2. We have noted before that when we integrate over

a nuisance parameter, the e�ect is for most purposes to estimate the parameter from

the data, and then constrain the parameter to that value.

We expand h2, to obtain q2, in a Taylor series around the maximum f!̂g to obtain

P (f!gjD; h�2i; I) / exp
�
�

rX
jk=1

bjk

2h�2i�j�k

�
(4:10)

where bjk is the analogue of (2.9) de�ned in the single harmonic frequency problem

bjk � �
m

2

@2h2

@!j@!k
(4:11)

�j � !̂j � !j :

From (4.10) we can make the (mean) � (standard deviation) approximations for

the f!g parameters. We do these Gaussian integrals by �rst changing to orthogonal

variables and then perform the r integrals just as we did with the amplitudes in

Chapter 3. The new variables are obtained from the eigenvalues and eigenvectors of

bjk. Let ujk denote the kth component of the jth eigenvector of bjk and let vj be the

eigenvalue. The orthogonal variables are given by

sj =
p
vj

rX
k=1

�kukj �j =
rX

k=1

skujkp
vk

:

Making this change of variables, we have

P (fsgjh�2i;D; I) / v
� 1

2
1 � � � v�

1
2

r exp
�
�

rX
j=1

s2j

2h�2i

�
: (4:12)
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From (4.12) we can compute hsji and hs2j i. Of course hsji is zero and the expectation

value hsjski is given by

hsksji =

R1
�1 ds1 � � � dsrv

� 1
2

1 � � � v�
1
2

r sksj exp
�
�

rX
l=1

s2l
2h�2i

�

R1
�1 ds1 � � � dsrv

� 1
2

1 � � � v�
1
2

r exp
�
�

rX
l=1

s2l
2h�2i

�

hsksji = h�2i�kj

where �kj is a Kronecker delta function. In the posterior distribution the sj are

uncorrelated, as they should be. From this we may obtain the posterior covariances

of the f!g parameters. These are

h!j!ki � h!jih!ki = h�2i
rX

l=1

uljulk

vl
;

and the variance 
2k of the posterior distribution for !k is


2k � h�2i
rX

j=1

u2jk

vj
: (4:13)

Then the estimated !j parameters are

(!j)est = !̂j � 
j (4:14)

and; here !̂j is the location of the maximum of the probability distribution as a

function of the f!g parameter.

For an arbitrary model the matrix bjk cannot be calculated analytically; however,

it can be evaluated numerically using the computer code given in Appendix E. We

use a general searching routine to �nd the maximum of the probability distribution

and then calculate this matrix numerically. The log of the \Student t-distribution"

is so sharply peaked that gradient searching routines do not work well. We use a

\pattern" search routine described by Hooke and Jeeves [21] [22].

The accuracy estimates of both the f!g parameters and the amplitudes fAg in

Eq. (4.5) depend explicitly on the estimated noise variance. But the estimated vari-

ance is the mean square di�erence between the model and the data. If the mis�t is

large the variance is estimated to be large and the accuracy is estimated to be poor.

Thus when we say that the parameter estimates are conservative we mean that, be-

cause everything probability theory cannot �t to the model is assigned to the noise,

all of our parameter estimates are as wide as is consistent with the model and the
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data. For example, when we estimate a frequency from a discrete Fourier transform

we are in e�ect using a single harmonic frequency model for an estimate (position of

a peak). But the width of the peak has nothing to do with the noise level, and if

we supposed it, erroneously, to be an indication of the accuracy of our estimate, we

could make very large errors.

This is perhaps one of the most subtle and important points about the use of

uninformative priors that comes out in this work, and we will try to state it more

clearly. When we did this calculation, at every point where we had to supply a prior

probability we chose a prior that was as uninformative as possible (by uninformative

we mean that the prior is as smooth as it can be and still be consistent with the

known information). Speci�cally we mean a prior that has no sharp maximum: one

that does not determine any value of the parameter strongly. We derived the Gaussian

for the noise prior as the smoothest, least informative, prior that was consistent with

the given second moment of the noise. We speci�cally did not assume the noise was

nonwhite or correlated because we do not have prior information to that e�ect. So if

the noise turns out to be colored we have in e�ect already allowed for that possibility

because we used a less informative prior for the noise, which automatically considers

every possible way of being colored, in the sense that the white noise basic support

set includes all those of colored noise. On the other hand, if we knew a speci�c way in

which the noise departs from whiteness, we could exploit that information to obtain

a more concentrated noise probability distribution, leading to still better estimates of

the f!g parameters. We will demonstrate this point several times in Chapter 6.

4.6 The Power Spectral Density

Although not explicitly stated, we have calculated above an estimate of the total

energy of the signal. The total energy E carried by the signal in our orthogonal model

is

E �
Z tN

t1

f(t)2dt �
mX
j=1

A2
j

and its spectral density is given by

p̂(f!g) = m

�
�2 + h2

�
P (f!gjD; I; �): (4:15)

This function is the energy per unit f!g carried by the signal (not the noise). This

power spectral estimate is essentially a power normalized probability distribution,
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and should not be confused with what a power meter would measure (which is the

total power carried by the signal and the noise).

We have seen this estimated variance term once before. When we derived the

power spectral density for the single harmonic frequency a similar term was present

[see Eq. (2.16)]. That term of m�2 in (4.15) might be a little disconcerting to some;

if (4.15) estimates the energy carried by the \signal" why does it include the noise

power �2? If h2 � �2 then the term is of no importance. But in the unlikely event

h2 � �2, then what is this term telling us? When these equations were formulated

we put in the fact that there is present noise of variance �2 in a space of dimension

N , and a signal in a subspace of m model functions. But then if h2 � �2, there

is only one explanation: the noise is such that its components on those m model

functions just happened to cancel the signal. But if the noise just cancelled the

signal, then the power carried by the signal must have been equal to the power m�2

carried by the noise in those m functions; and that is exactly the answer one obtains.

This is an excellent example of the sophisticated subtlety of Bayesian analysis, which

automatically perceives things that our unaided intuition might not (and indeed did

not) notice in years of thinking about such problems.

We have already approximated P (f!gjD;�; I) as a Gaussian expanded about the

maximum of the probability density. Using (4.10) we can approximate the power

spectral density as

p̂(f!g) � m[h�2i+ h2]P (f!gjh�2i;D; I)

P (f!gjh�2i;D; I) / exp
�
�

rX
jk=1

bjk(!̂j � !j)(!̂k � !k)

2h�2i

�
:

(4:16)

This approximation will turn out to be very useful. We will be dealing typically

with problems where the f!g parameters are well determined or where we wish to

remove one or more of the f!g parameters as nuisances. For example, when we plot

the power spectral density for multiple harmonic frequencies, we do not wish to plot

this as a function of multiple variables, but as a function of one frequency: all other

frequencies must be removed by integration. We cannot do these integrals in (4.15);

in general, however, we will be able to do them in (4.16).

There are two possible problems with this de�nition of the power spectral density.

First we assumed there is only one maximum in the posterior probability density,

and second we asked a question about the total power carried by the signal, not a

question about one spectral line. It will turn out that the multiple frequency model

will be invariant under permutations of the labels on the frequencies. It cannot matter
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which frequency is number one and which is labeled number two. This invariance must

manifest itself in the joint posterior probability density; there will be multiple peaks of

equal probability and we will be led to generalize this de�nition. In addition we ask a

question about the total energy carried by the signal in the sampling time. This is the

proper question when the signal is not composed of sinusoids. But asking a question

about the total energy is not the same as asking about the energy carried by each

sinusoid. We will need to introduce another quantity that will describe the energy

carried by one sinusoid. Before we do this we need to understand much more about

the problem of estimating frequencies and decay rates. Chapter 6 is devoted primarily

to this subject. For now we turn attention to a slightly more general problem of \how

to make the optimal choice of a model?"
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Chapter 5

MODEL SELECTION

When analyzing the results of an experiment it is not always known which model

function (3.1) applies. We need a way to choose between several possible models.

This is easily done using Bayes' theorem (1.3) and repeated applications of the proce-

dure (1.4) which led to the \Student t-distribution." The �rst step in answering this

question is to enumerate the possible models. Suppose we have a set of s possible

models fH1; � � � ;Hsg with model functions ff1; � � � ; fsg. We are hardly ever sure that

the \true" model is actually contained in this set. Indeed, the \set of all possible

models" is not only in�nite, but it is also quite unde�ned. It is not even clear what

one could mean by a \true" model; both questions may take us into an area more

like theology than science.

The only questions we seek to examine here are the ones that are answerable

because they are mathematically well-posed. Such questions are of the form: \Given

a speci�ed set Ss of possible models fH1; � � � ;Hsg and looking only within that set,

which model is most probable in view of all the data and prior information, and how

strongly is it supported relative to the alternatives in that set?" Bayesian analysis

can give a de�nite answer to such a question { see [15], [23].

5.1 What About \Something Else?"

To say that we con�ne ourselves to the set Ss is not to assert dogmatically that

there are no other possibilities; we may assign prior probabilities P (Hj jI); (1 � j � s)

55
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which do not add up to one:

sX
j=1

P (Hj jI) = a < 1:

Then we are assigning a prior probability (1� a) to some unknown proposition

SE � \Something Else not yet thought of."

But until SE is speci�ed it cannot enter into a Bayesian analysis; probability theory

can only compare the speci�ed models ff1; � � � ; fsg with each other.

Let us demonstrate this more explicitly. If we try to include SE in our set of

hypotheses, we can calculate the posterior probabilities of the ffjg and SE to obtain

P (fjjD; I) =
P (fjjI)P (Djfj ; I)

P (DjI)

and

P (SEjD; I) = P (SEjI)P (DjSE; I)
P (DjI) :

But this is numerically indeterminate even if P (SEjI) = 1 � a is known, because

P (DjSE; I) is unde�ned until that \Something Else" is speci�ed. The denominator

P (DjI) is also indeterminate, because

P (DjI) =
sX

j=1

P (D; fj jI) + P (D;SEjI)

=
sX

j=1

P (Djfj ; I)P (fjjI) + P (DjSE; I)P (SEjI):

But the relative probabilities of the speci�ed models are still well de�ned, because

the indeterminates cancel out:

P (fijD; I)
P (fj jD; I)

=
P (fijI)
P (fj jI)

P (Djfi; I)
P (Djfj ; I)

:

These relative probabilities are independent of what probability (1� a) we assign to

\Something Else", so we shall get the same results if we just ignore \Something Else"

altogether, and act as if a = 1. In other words, while it is not wrong to introduce

an unspeci�ed \Something Else" into a probability calculation, no useful purpose is

served by it, and we shall not do so here.
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5.2 The Relative Probability of Model fj

We wish to con�ne our attention to a selected set of models ff1; � � � ; fsg. Because
of the arguments just given we may write

sX
j=1

P (fj jD; I) = 1

where P (fjjD; I) is the posterior probability of model fj. From Bayes' theorem (1.3)

we may write

P (fjjD; I) =
P (fjjI)P (Djfj ; I)

P (DjI)
(5:1)

and

P (DjI) =
sX

j=1

P (fjjI)P (Djfj ; I):

The way to proceed on this problem is to apply the general procedure for removing

nuisance parameters given in Chapter 1. We will assume for now that the variance

of the noise �2 is known and derive P (fjj�;D; I), then at the end of the calculation

if � is not known we will remove it. Thus symbolically, we have

P (Dj�; fj ; I) =
Z
dfAgdf!gP (fAg; f!gjI)P (DjfAg; f!g; �; fj; I): (5:2)

But this is essentially just the problem we solved in Chapter 3 [Eqs. (3.12-3.17)]

with three additions: when there can be di�ering numbers of parameters we must

use normalized priors, we must do the integrals over the f!g parameters, and the

direct probability Eq. (5.2) of the data for the jth model must include all numerical

factors in P (DjfAg; f!g; �; fj; I). We will need to keep track of the normalization

constants explicitly because the results we obtain will depend on them. We will do

this calculation in four steps; �rst perform the integrals over the amplitudes fAg
using an appropriately normalized prior. Second we approximate the quasi-likelihood

of the f!g parameters about the maximum likelihood point; third remove the f!g
parameters by integration; and fourth remove the variances (plural because two more

variances appear before we �nish the calculation). Because the calculation is lengthy,

we make many approximations of the kind that experienced users of applied math-

ematics learn to make. They could be avoided { but the calculation would then be

much longer, with the same �nal conclusions.

We begin by the calculation in a manner similar to that done in Chapter 3. The

question we would like to ask is \Given a set of model equations ff1; � � � ; fsg and
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looking only within that set, which model best accounts for the data?" We will take

fj(t) =
mX
k=1

AkHk(t; f!g)

as our model, where Hk are the orthonormal model functions de�ned earlier, Eq. (3.5).

The subscripts \j" refers to the jth member of the set of models ff1; � � � ; fsg, with
the understanding that the amplitudes fAg, the nonlinear f!g, the total number of

model functions m, and the model functions Hk(t; f!g) are di�erent for every fj.

We could label each of these with an additional subscript, for example Hjk to stand

for model function k of model fj ; however, we will not do this simply because the

proliferation of subscripts would render the mathematics unreadable.

To calculate the direct probability of the data given model fj we take the di�erence

between the data and the model. This di�erence is the noise, if the model is true,

and making the most conservative assumptions possible about the noise we assign a

Gaussian prior for the noise. This gives the

P (DjfAg; f!g; �; fj; I) = (2��2)�
N
2 exp

(
� 1

2�2

NX
i=1

[di � fj(ti)]
2

)

as the direct probability of the data given model fj and the parameters. Now ex-

panding the square we obtain

P (DjfAg; f!g; �; fj; I) = (2��2)�
N
2 exp

�
�NQ

2�2

�

where

Q � d2 � 2

N

mX
l=1

Alhl +
1

N

mX
l=1

A2
l

and
NX
i=1

Hl(ti)Hk(ti) = �lk

and

hl =
NX
i=1

diHl(ti)

was used to simplify the expression. This is now substituted back into Eq. (5.2) to

obtain

P (Dj�; fj ; I) =
Z
dfAgdf!gP (fAg; f!gjI)(2��2)�

N
2 exp

�
�NQ

2�2

�
: (5:3)

At this point in the calculation we have simply repeated the steps done in Chap-

ter 3 with one exception: we have retained the normalization constants in the direct
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probability. To remove the amplitudes we assign an appropriate normalized prior

and integrate. When we compare models with the same number of amplitudes and

the same priors for them, the prior normalization factors do not matter: they simply

cancel out of the posterior probability (5.1). But when we compare a model to one

that has fewer amplitudes, these prior factors no longer cancel. We must keep track

of them. In the calculation in Chapter 3 we used an improper uniform prior for these

parameters. We cannot do that here because it smears out our prior information over

an in�nite range, and this would automatically exclude the larger model.

We will assume that the parameters are logically independent in the sense that

gaining information about the amplitudes fAg will not change our information about

the nonlinear f!g parameters, thus the prior factors:

P (fAg; f!gjI) = P (fAgjI)P (f!gjI): (5:4)

The amplitudes are location parameters and in Appendix A we derived an appropriate

informative prior for a location parameter: the Gaussian. We will assume we have a

vague previous measurement of the amplitudes fAg and express this as a Gaussian

centered at zero. Thus we take

P (fAgj�; I) = (2��2)�
m
2 exp

(
�

mX
k=1

A2
k

2�2

)
(5:5)

as our informative prior. In the Bayesian literature, � is called a \hyperparameter".

We will do this calculation for the case where we have little (e�ectively no) prior

information: we assume �2 � �2. That is, the prior measurement is much worse than

the current measurement. Then the orthonormal amplitudes fAg are all estimated

with the same precision � as required by Eq. (4.4).

Substituting the factored prior, Eq. (5.4), into Eq. (5.3) and then substituting the

prior, Eq. (5.5), into Eq. (5.3) we arrive at

P (Dj�; �; fj ; I) =
Z
df!gP (f!gjI)(2��2)�m

2 (2��2)�
N
2

�
Z +1

�1
dA1 � � � dAm exp

(
�

mX
k=1

A2
k

2�2

)

� exp

(
� 1

2�2

�
Nd2 � 2

mX
k=1

Akhk +
mX
k=1

A2
k

�)

as the direct probability of the data given model function fj and the parameters.

What is essential here is that the prior may be considered a constant over the range

of values where the likelihood is large, but it goes to zero outside that range fast
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enough to make it normalizable. Thus the last term in this integral looks like a delta

function compared to the prior. We may write

P (Dj�; �; fj; I) =
Z
df!gP (f!gjI)(2��2)�

N
2 (2��2)�

m
2 exp

(
�

mX
k=1

Â2
k

2�2

)

�
Z +1

�1
dfAg exp

(
� 1

2�2

�
Nd2 � 2

mX
k=1

Akhk +
mX
k=1

A2
k

�)

where Â is the location of the maximum of the likelihood as a function of the fAg
parameters. But from (4.1) Âj = hj for a given model and after completing the

integrals over the amplitudes, we have

P (Dj�; �; fj ; I) =
Z
df!g(2��2)�m

2 (2��2)�
(N�m)

2 P (f!gjI)

� exp

(
�Nd2 �mh2

2�2
� mh2

2�2

)

as the direct probability of the data given the model function fj and the parameters.

The second step in this calculation is to approximate h2 around the maximum and

then perform the integrals over the f!g parameters. The prior uncertainty � � �, so

the prior factor in the above equation is only a small correction. When we expand h2

about the maximum f!̂g we will not bother expanding this term. This permits us to

use the same approximation given earlier (4.10, 4.9) while making only a small error.

We Taylor expand h2 to obtain

P (Dj�; �; fj; I) �
Z
df!gP (f!gjI)(2��2)�m

2 (2��2)�
N�m

2

� exp

(
�Nd2 �mh2(f!̂g)

2�2
� mh2(f!̂g)

2�2

)

� exp

8<
:�

rX
k;l

bkl(!̂k � !k)(!̂l � !l)

2�2

9=
; :

(5:6)

We are now in a position to remove the f!g parameters. To do this third step in

the calculation we will again assign a normalized prior for them. When we Taylor

expanded h2 we made a local approximation to the direct probability of the data

given the parameters. In this approximation the f!g parameters are location pa-

rameters. We again assume a prior which is Gaussian with some variance 
, another

hyperparameter. We have

P (f!gj
; I) = (2�
2)�
r
2 exp

(
�

rX
k=1

!2
k

2
2

)
(5:7)
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as the informative prior for the f!g parameters. If the f!g parameters are frequen-

cies then one could argue that they are scale parameters, for which the completely

uninformative prior is the nonnormalizable Je�reys prior; and so we should choose a

normalizable prior that resembles it. However, that does not matter; the only prop-

erties of our prior that survive are the prior density at the maximum likelihood point

and the prior range, and even these may cancel out in the end. We are simply playing

it safe by using normalized priors so that no singular mathematics can arise in our

calculation; and it does not matter which particular ones we use as long as they are

broad and uninformative.

Substituting the prior (5.7) into Eq. (5.6), the integral we must perform becomes

P (Dj
; �; �; fj; I) �
Z
df!g(2��2)�m

2 (2�
2)�
r
2 (2��2)�

N�m
2

� exp

(
�Nd2 �mh2(f!̂g)

2�2
� mh2(f!̂g)

2�2
�

rX
k=1

!2
k

2
2

)

� exp

8<
:�

rX
k;l

bkl(!̂k � !k)(!̂l � !l)

2�2

9=
; :

We will again assume that the prior information is vague, 
 � �, we treat the last

term in the integral like a delta function compared to the prior. Thus we will take the

prior factors out of the integral and simply evaluate them at the maximum likelihood

point. Then integrating over the f!g parameters gives the direct probability of the

data given the model fj and the three remaining parameters. If these three parameters

are actually known then the direct probability is given by

P (Dj
; �; �; fj ; I) = (2��2)�
m
2 exp

(
�mh2(f!̂g)

2�2

)

� (2�
2)�
r
2 exp

(
�r!

2

2
2

)
v
� 1

2
1 � � � v�

1
2

r

� (2��2)�
N�m�r

2 exp

(
�Nd2 �mh2(f!̂g)

2�2

)
(5:8)

where !2 = (1=r)
Pr

k=1 !̂
2 is the mean-square f!̂g for model fj, and h2(f!̂g) is the

mean-square projection of the data onto the orthonormal model functions evaluated at

the maximumlikelihood point for model fj , and v
� 1

2
1 � � � v�

1
2

r is the Jacobian introduced

in Eq. (4.12). If the three variances are known then the problem is complete, and the

number which must be used in (5.1) is given by (5.8).

We noted earlier that one must be careful with the prior factors when the models

have di�erent numbers of parameters and we can see that here. If two models have



62 CHAPTER 5

di�erent values ofm or r, their relative likelihood will have factors of the form (2��2)x,

or (2�
2)y. The prior ranges remain relevant, a fact that we would have missed had

we used improper priors.

There are three variances, �, �, and 
, in the direct probability of the data. We

would like to remove these from P (Dj
; �; �; fj ; I). We could remove these using

a Je�reys prior, because each of these parameters appears in every model. The

in�nity introduced in doing this would always cancel out formally. However, to be

safe, we can bound the integral, normalize the Je�reys prior, and then remove these

variances; then even if the normalization constant did not cancel we would still obtain

the correct result. We will proceed with this last approach. There are three variances,

and therefore three integrals to perform. Each of the three integrals is of the form:

1

log(H=L)

Z H

L
ds
s�a exp

n
�Q

s2

o
s

whereH stands for the upper bound on the variance, L for the lower bound, log(H=L)

is the normalization constant for the Je�reys prior, s is any one of the three variances,

and Q and a are constants associated with s. A change of variables u = Q=s2 reduces

this integral to

1

2

Q�a
2

log(H=L)

Z pQ

Lp
Q

H

du u
a
2
�1e�u:

This integral is of the form of an incomplete Gamma integral. But our knowledge of

the limits on this integral is vague: we know only that L is small and H large. If, for

example, we assume that

s
Q

H
� 1 and

a

2
� 1�

s
Q

L

then the integrand is e�ectively zero at the limits; we can take the integral to be

approximately �(a=2). Designating the ratio of the limits H=L as R�, where the

subscript represents the limits for �, �, or 
 integral, the three integrals are given

approximately by

Z H

L
d�
��m exp

n
�mh2=2�2

o
log(R�)�

� �(m=2)

2 log(R�)

"
mh2

2

#�m
2

for � and Z H

L
d



�r exp
n
�r!2=2
2

o
log(R
)


� �(r=2)

2 log(R
)

"
r!2

2

#� r
2
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for 
 and

Z H

L
d�

�m+r�N exp
n
�[Nd2 �mh2]=2�2

o
log(R�)�

�
�(N�m�r

2
)

2 log(R�)

"
Nd2 �mh2(f!g)

2

#m+r�N
2

for �.

Using these three integrals the global likelihood of the data given the model fj is

given by

P (Djfj ; I) =
�(m=2)
2 log(R�)

"
mh2(f!̂g)

2

#�m
2 �(r=2)
2 log(R
)

"
r!2

2

#� r
2

v
� 1

2
1 � � � v�

1
2

r

� �([N �m� r]=2)
2 log(R�)

"
Nd2 �mh2(f!g)

2

#m+r�N
2

:

(5:9)

The three factors involved in normalizing the Je�reys priors appear in every model:

they always cancel as long as we deal with models having all three types of parameters.

However, as soon as we try to compare a model involving two types of parameters to

a model involving all three types of parameters (e.g. a regression model to a nonlinear

model) they no longer cancel: the prior ranges become important. One must think

carefully about just what prior information one actually has about 
, and �, and use

that information to set their prior ranges. As we shall see in what follows, if the

data actually determine the model parameters well (so that these equations apply)

the actual values one assigns to � and 
 are relatively unimportant.

5.3 One More Parameter

We would like to understand (5.1), (5.8), and (5.9) better, and we present here a

simple example of their use. Suppose we are dealing with the simplest model selection

possible: expanding the data on a set of model functions. A typical set of model

functions might be polynomials. This is the simplest model possible because there

are no f!g parameters; only amplitudes. But suppose further that we choose our

model functions so that they are already orthogonal in the sense de�ned earlier. All

that is left for us to decide is \When have we incorporated enough expansion vectors

to adequately represent the signal?" We will assume in this demonstration that both

the variance � and the prior variance � are known and apply (5.8). Further, we will

be comparing only two models at a time, and will compute the ratio of Eq. (5.8) for

a model containing m expansion functions (or vectors on the discrete sample points)
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to a model containing m + 1 expansion functions. This ratio is called the posterior

\odds" in favor of the smaller model.

When we have m expansion vectors and no f!g, Eq. (5.8) reduces to

P (Djfm; �; �; I) = (2��2)�
m
2 exp

(
�

mX
k=1

h2k
2�2

)

� (2��2)�
N�m

2 exp

(
� 1

2�2

"
Nd2 �

mX
k=1

h2k

#)

for the �rst model and to

P (Djfm+1; I) = (2��2)�
m+1
2 exp

(
�

m+1X
k=1

h2k
2�2

)

� (2��2)�
N�m�1

2 exp

(
� 1

2�2

"
Nd2 �

m+1X
k=1

h2k

#)

for a model with m+ 1 parameters. Because these models are already orthonormal,

hk is the same in both equations: when we compute the odds ratio all but the last will

cancel. Thus the posterior odds ratio simpli�es considerably. We have the likelihood

ratio

L =
P (Djfm; �; �; I)
P (Djfm+1; �; �; I)

=
�

�
exp

(�
1

�2
� 1

�2

�
h2m+1

2

)
:

The posterior odds ratio then involves the posterior probabilities:

P (fmj�; �;D; I)
P (fm+1j�; �;D; I)

=
P (fmjI)
P (fm+1jI)

L:

We derived this approximation assuming �� �, so we have

L =
�

�
exp

(
�h

2
m+1

2�2

)
:

In other words, the smaller model is helped by uncertainty in the prior knowledge

of Am+1, while the larger model is helped by the relative size of the estimated next

amplitude compared to the noise. This is the Bayesian quantitative version of Occam's

razor: prefer the simpler model unless the bigger one achieves a signi�cantly better

�t to the data. For the bigger model to be preferred, the m + 1 model function's

projection onto the data must be large compared to the noise. Thus the Bayesian

answer to this question essentially tells one to do what his common sense might have

told him to do. That is, to continue increasing the number of expansion vectors until

the projection of the data onto the next vector becomes comparable to the noise.
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But we can be more speci�c than this. For example assume that 100� = �. Then

to achieve L = 1, we need

log(100) � h2m+1

2�2 = 0

hm+1 = �3:0�:

The \data �tting factor" cancels out the \Occam factor" when the next projection is

three times the RMS noise. Projections larger than this will favor the more compli-

cated model.

This result does not depend strongly on the assumed prior information. Here we

took � to be 100 times larger than �. But the answer depends on the square root of

log(�). So even if � had been a billion (109) times larger it would have increased the

critical value of hm+1 only by a factor of 2.3. Thus probability theory can give one

a reasonable criterion for choosing between models, that depends only weakly on the

prior information. There is hardly any real problem in which one would not feel sure

in advance that � < 1011�, and few in which that 1011 could not be reduced to 102.

But to try to go an improper prior � !1, would give entirely misleading results; the

larger model could never be accepted, whatever the data. Thus, while use of proper

priors is irrelevant in many problems, it is mandatory in some.

5.4 What is a Good Model?

We can now state what we mean by a good model. We know from the Bessel

inequality (3.17) that the estimated noise variance will have a value of d2 when we

have no model functions. As we include more model functions, the estimated variance

must go monotonically to zero. We can plot the estimated variance as a function of

the expansion order, Fig. 5.1 (by expansion order we mean the total number of model

functions m).

There are three general regions of interest: First, the solid line running from d2

down to zero (we will call this a \bad" model); second the region with values of �2

below this line; and third the region above this line. The region above the line is not a

bad or a good region; it is simply one in which the model functions have been labeled

in a bad order. By reordering the model functions we will obtain a curve below the

straight line.
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Figure 5.1: Choosing a Model

The solid line represents the worst possible choice of model functions. The region
above this line is neither good nor bad (see text). The region below the line represents
the behavior of good models. One strives to obtain the largest drop in the estimated
variance with the fewest model functions. The dashed line might represent a fair
model and the dotted line the \best" model.
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Let �(h�2i) stand for the change in the estimated variance �2 from incorporating

one additional model function [we de�ne �(h�2i) to be positive]. We assume the

model functions are incorporated in order of decreasing �(h�2i): the model function

with the largest �(h�2i) is labeled one; the model function which produces the second

largest �(h�2i) is number two, etc.

We called the solid line a \bad" model because all of the �(h�2i)'s are the same;

there is no particular model function which resembles the data better than any other.

It would require outstandingly bad judgment { or bad luck { to choose such a set

of model functions. But something like the linear behavior is to be expected when

one expands pure noise on a complete set. On the other hand, if there is a signal

present one expects to do better than this until the signal has been expanded; then

one expects the curve to become slowly varying.

We can characterize a model by how quickly the �(h�2i) drops. Any curve which

drops below another curve indicates a model which is better, in the sense that it

achieves a better quality of �t to the data with a given number of model functions.

The \best" model is one which projects as much mean-square data as possible onto

the �rst few model functions. What one would expect to �nd is: a very rapid drop as

the systematic signal is taken up by the model, followed by a slow drop as additional

model functions expand the noise.

We now have the following intuitive picture of the model �tting process: one strives

to �nd models which produce the largest and fastest drop in h�2i; any model which

absorbs the systematic part of the signal faster than another model is a better model;

the \best" is one which absorbs all of the systematic part of the signal with the

fewest model parameters. This corresponds to the usual course of a scienti�c research

project; initially one is very unsure of the phenomenon and so allows many conceivable

unknown parameters with a complicated model. With experience one learns which

parameters are irrelevant and removes them, giving a simpler model that accounts for

the facts with fewer model functions. The total number of \useful" model functions

is determined by the location of the break in the curve. The probability of any

particular model can be computed using (4.15), and this can be used to estimate

where the break in the curve occurs.

Of course, in a very complicated problem, where the data are contaminated by

many spurious features that one could hardly hope to capture in a model, there may

not be any well-de�ned breaking point. Even so, the curve is useful in that its shape

gives some indication of how clean-cut the problem is.
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Chapter 6

SPECTRAL ESTIMATION

The previous chapters surveyed the general theory. In this chapter we will special-

ize the analysis to frequency and spectrum estimates. Our ultimate aim is to derive

explicit Bayesian estimates of the power spectrum and other parameters when mul-

tiple nonstationary frequencies are present. We will do this by proceeding through

several stages beginning with the simplest spectrum estimation problem. We do this

because as was shown by Jaynes [12] when multiple well-separated frequencies are

present [j!j � !kj � 2�=N ], the spectrum estimation problem essentially separates

into independent single-frequency problems. It is only when multiple frequencies are

close together that we will need to use more general models.

In Chapters 3 and 4 we derived the posterior probability of the f!g parameters

independent of the amplitudes and noise variance and without assuming the sampling

times ti to be uniformly spaced. Much of the discussion in this Chapter will center

around understanding the behavior of the posterior probability density for multiple

frequencies. This discussion is, of course, simpler when the ti are uniform, because

then the sine and cosine terms are orthogonal in the sense discussed before. We will

start by making this assumption; then, where appropriate, the results for nonuniform

times will be given.

This should not be taken to imply that uniform time spacing is the \best" way to

obtain data. In fact, nonuniform time intervals have some signi�cant advantages over

uniform intervals. We will discuss this issue shortly, and show that obtaining data

at apparently random intervals will signi�cantly improve the discrimination of high

frequencies even with the same amount of data.

69
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6.1 The Spectrum of a Single Frequency

In Chapter 2 we worked out an approximate Bayesian solution to the single station-

ary harmonic frequency problem. Then in Chapter 3 we worked out what amounts

to the general solution to this problem. Because we have addressed this problem so

thoroughly in other places we will investigate some other properties of the analysis

that may be troubling the reader. In particular we would like to understand what

happens to the ability to estimate parameters when one or more of our assumptions

is violated. We would like to demonstrate that the estimates derived in Chapter 4

are accurate, and that when the assumptions are violated the estimated frequencies

are still reasonably correct but the error estimates are larger, and therefore, more

conservative.

6.1.1 The \Student t-Distribution"

We begin this chapter by demonstrating how to use the general formalism to derive

the exact \Student t-distribution" for the single frequency problem on a uniform grid.

For a uniformly sampled time series, the model equation is

fl = B1 cos!l +B2 sin!l

where l is an index running over a symmetric time interval (�T � l � T ) and

(2T + 1 = N). The matrix gij , Eq. (3.4), becomes

gij =

0
BBBBB@

TX
l=�T

cos2 !l
TX

l=�T

cos!l sin!l

TX
l=�T

cos!l sin!l
TX

l=�T

sin2 !l

1
CCCCCA :

For uniform time sampling the o� diagonal terms are zero and the diagonal term may

be summed explicitly to obtain

gij =
�
c 0
0 s

�

where

c =
N

2
+
sin(N!)

2 sin(!)
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s =
N

2
� sin(N!)

2 sin(!)
:

Then the orthonormal model functions may be written as

H1(t) =
cos(!t)p

c

H2(t) =
sin(!t)p

s
:

The posterior probability of a frequency ! in a uniformly sampled data set is given

by Eq. (3.17). Substituting these model functions gives

P (!jD; I) /
"
1� R(!)2=c + I(!)2=s

Nd2

# 2�N
2

(6:1)

where R(!) and I(!) are the squares of the real and imaginary parts of the discrete

Fourier transform (2.4, 2.5).

We see now why the discrete Fourier transform does poorly for small N or low

frequencies: the constants c and s are normalization constants that usually reduce to

N=2 for large N ; however, these constants can vary signi�cantly from N=2 for smallN

or low frequency. Thus the discrete Fourier transform is only an approximate result

that must be replaced by (6.1) for small amounts of data or data sets which contain

a low frequency. The general solution is represented by (3.17), and this equation may

be applied even when the sampling is nonuniform.

6.1.2 Example { Single Harmonic Frequency

To obtain a better understanding of the use of the power spectral density derived in

Chapter 2 (2.16), we have prepared an example: the data consist of a single harmonic

frequency plus Gaussian white noise, Fig. 6.1. We generated these data from the

following equation

dj = 0:001 + cos(0:3j + 1) + ej (6:2)

where j is a simple index running over the symmetric interval �T to T in integer

steps (2T+1 = 512), and ej is a random number with unit variance. After generating

the time series we computed its average value and subtracted it from each data point:

this ensures that the data have zero mean value. Figure 6.1(A) is a plot of this

computer simulated time series, and Fig. 6.1(B) is a plot of the Schuster periodogram

(continuous curve) with the fast Fourier transform marked with open circles. The
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Figure 6.1: Single Frequency Estimation

THE TIME SERIES SCHUSTER PERIODOGRAM

The data (A) contain a single har-
monic frequency plus noise; N =
512, and S=N � 1. The Schuster
periodogram, (B) solid curve, and
the fast Fourier transform, open cir-
cles, clearly show a sharp peak plus
side lobes. These side lobes do
not show up in the power spectral
density, (C), because the posterior
probability is very sharply peaked
around the maximum of the peri-
odogram. The dotted line in (C) is
a Blackman-Tukey spectrum with a
Hanning window and 256 lag coef-
�cients.

THE POWER SPECTRAL DENSITY
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periodogram and the fast Fourier transform have spurious side lobes, but these do

not appear in the plot of the power spectral density estimate, Fig. 6.1(C), because

as noted in Chapter 2, the processing in (4.15) will e�ectively suppress all but the

very highest peak in the periodogram. This just illustrates numerically what we

already knew analytically; it is only the very highest part of the periodogram that is

important for estimation of a single frequency.

We have included a Blackman-Tukey spectrum using a Hanning window (dotted

line) in Figure 6.1(C) for comparison. The Blackman-Tukey spectrum has removed

the side lobes at the cost of half the resolution. The maximum lag was set at 256,

i.e. over half the data. Had we used a lag of one-tenth as Tukey [13] advocates, the

Blackman-Tukey spectrum would look nearly like a horizontal straight line on the

scale of this plot.

Of course, the peak of the periodogram and the peak of the power spectral density

occur at the same frequency. Indeed, for a simple harmonic signal the peak of the

periodogram is the optimum frequency estimator. But in our problem (i.e. our model),

the periodogram is not even approximately a valid estimator of the power spectrum,

as we noted earlier. Consequently, even though these techniques give nearly the same

frequency estimates, they give very di�erent power spectral estimates and, from the

discussion in Chapters 2 and 4, very di�erent accuracy estimates.

Probably, one should explain the di�erence on the grounds that the two procedures

are solving di�erent problems. Unfortunately, we are unable to show this explicitly.

We have shown above in detail that the Bayesian procedure yields the optimal solution

to a well-formulated problem, by a well-de�ned criterion of optimality. One who

wishes to solve a di�erent problem, or to use a di�erent optimality criterion, will

naturally seek a di�erent procedure. The Blackman-Tukey procedure has not, to the

best of our knowledge, been so related to any speci�c problem, much less to any

optimality criterion; it was introduced as an intuitive, ad hoc device. We know that

Blackman and Tukey had in mind the case where the entire time series is considered a

sample drawn from a \stationary Gaussian random process"; thus it has no mention of

such notions as \signal" and \noise". But the \hanning window" smoothing procedure

has no theoretical relation to that problem; and of course the Bayesian solution to

it (given implicitly by Geisser and Corn�eld [24] and Zellner [25] in their Bayesian

estimates of the covariance matrix of a multivariate Gaussian sampling distribution)

would be very di�erent. It is still conceivable that the Blackman-Tukey procedure is

the solution to some well-de�ned problem, but we do not know what that problem is.



74 CHAPTER 6

6.1.3 The Sampling Distribution of the Estimates

We mentioned in Chapter 4 that we would illustrate numerically that the Bayesian

estimates for the f!g parameters were indeed accurate under the conditions supposed,

even by sampling-theory criteria. For the example just given the true frequency was

0:3 while the estimated frequency from data with unity signal-to-noise ratio was

(!)est = 0:2997 � 0:0006

at two standard deviations, in dimensionless units. But one example in which the

estimate is accurate is not a su�cient demonstration. Suppose we generate the sig-

nal (6.2) a number of times and allow the noise to be di�erent in each of these. We

can then compute a histogram of the number of times the frequency estimate was

within one standard deviation, two standard deviations � � � etc. of the true value. We

could then plot the histogram and compare this to a Gaussian, or we could integrate

the histogram and compare the total percentage of estimates included in the interval

!̂ � h!i to a Gaussian. This would tell us something about how accurately the re-

sults are reproducible over di�erent noise samples. This is not the same thing as the

accuracy with which ! is estimated from one given data set; but orthodox statistical

theory takes no note of the distinction. Indeed, in \orthodox" statistical theory, this

sampling distribution of the estimates is the sole criterion used in judging the merits

of an estimation procedure.

We did this numerically by generating some 3000 samples of (6.2) and estimating

the frequency ! from each one. We then computed the histogram of the estimates,

integrated, and plotted the total percentage of estimates enclosed as a function of

!̂ � h!i, Fig. 6.2 (solid line). From the 3000 sample estimates we computed the

mean and standard deviation. The dashed line is the equivalent plot for a Gaussian

having this mean and standard deviation. With 3000 samples the empirical sampling

distribution is e�ectively identical to this Gaussian, and its width corresponds closely

to the Bayesian error estimate. However, as R. A. Fisher explained many years ago,

this agreement need not hold when the estimator is not a su�cient statistic.

6.1.4 Violating the Assumptions { Robustness

We have said a number of times that the estimates we are making are the \most

conservative" estimates of the parameters one can make. We would like to convey a
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Figure 6.2: The Distribution of the Sample Estimates

We generated the single harmonic signal (6.2) some 3000 times and estimated the
frequency. We computed the mean, standard deviation, and a histogram from these
data, then totaled the number of estimates from left to right; this gives the total
percentage of estimates enclosed as a function of !̂�h!i (solid line). We have plotted
an equivalent Gaussian (dashed line) having the same mean and standard deviation
as the sample. Each tick mark on the plot corresponds to two standard deviations.
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better understanding of that term now. General theorems guarantee [25], [26], [27],

[28] that if all of the assumptions are met exactly, then the estimate we obtain will be

the \best" estimate of the parameters that one can make from the data and the prior

information. But in all cases where we had to put in prior information, we speci�cally

assumed the least amount of information possible. This occurred when we chose a

prior for the noise { we used maximum entropy to derive the most uninformative

prior we could for a given second moment: the Gaussian. It occurred again when we

assigned the priors for the amplitudes, and again when we assigned the prior for the

f!g parameters. This means that any estimate that takes into account additional

information by using a more concentrated prior will always do better! But, further if

the model assumptions are not met by the data (e.g. the noise is not white, the \true"

signal is di�erent from our model, etc.), then probability theory will necessarily make

the accuracy estimates even wider because the models do not �t the data as well!

These are bold claims, and we will demonstrate them for the single frequency model.

Periodic but Nonharmonic Signals

First let us investigate what will happen if the true signal in the data is di�erent

from that used in the model (i.e. it does not belong to the class of model functions

assumed by the model). Consider the time series given in Fig. 6.3(A); this signal is a

series of ramp functions. We generated the data with N = 1024 data points by simply

running a counter from zero to 15, and repeated this process 64 times. The RMS is

then [1=16
P15

k=0(k � 7:5)2]
1
2 = 4:61. We then added a unit normal random number

to the data, and last we computed the average value of the data and subtracted this

from each data point.

This signal is periodic but not harmonic; nonetheless we propose to use the single

harmonic frequency model on these data. Figure 6.3(B) is a plot of the log10 of the

probability of a single harmonic frequency in these data: essentially this is the discrete

Fourier transform of the data. We see in Fig. 6.3(B) the discrete Fourier transform has

at least four peaks. But we have demonstrated that the discrete Fourier transform is

an optimal frequency estimator for a single harmonic frequency: all of the structure,

except the main peak, is a spurious artifact of not using the true model. The main

peak in Fig. 6.3(B) is some 25 orders of magnitude above the second largest peak:

probability theory is telling us all of that other structure is completely negligible. We

then located this frequency as accurately as possible and computed the estimated
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Figure 6.3: Periodic but Nonharmonic Time Signals

BASE 10 LOGARITHM OF THE PROBABILITY OF A

HARMONIC FREQUENCY IN NONSINUSOIDAL DATA

The data in (A) contain a periodic but nonharmonic frequency, with N = 1024, and
S=N � 4:6. The Schuster periodogram, (B), clearly indicates a single sharp peak plus
a number of other spurious features. Estimating the frequency from the peak of the
periodogram gives 0:3927 � 0:0003 while the true frequency is 0:3927.
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error in the frequency using (4.14). This gives

(!)est = 0:3927 � 0:0003

at two standard deviations. The true frequency is

(!)true = 0:392699

while the \best" estimate possible for a sinusoidal signal with the same total number

of data values and the same signal-to-noise would be given by

(!)best = 0:392699 � 0:00003:

The estimate is a factor of ten worse than what could be obtained if the true signal

met the assumptions of the model (i.e. was sinusoidal with the same signal-to-noise

ratio). The major di�erence is in the estimated noise: the true signal-to-noise is 4.6,

but the estimated signal-to-noise using the harmonic model is only 1.5.

The E�ect of Nonstationary, Nonwhite Noise

What will be the e�ect of nonwhite noise on the ability to estimate a frequency?

In preparing this test we used the same harmonic signal as in the simple harmonic

frequency case (6.2). Although the noise is still Gaussian, we made it di�erent from

independent, identically distributed (iid) Gaussian in two ways: �rst, we made the

noise increase linearly in time and second, we �ltered the noise with a 1-2-1 �lter.

Thus the noise values not only increased in time; they were also correlated. The

data for this example are shown in Fig. 6.4(A), and the log10 of the \Student t-

distribution" is shown in Fig. 6.4(B). The data were prepared by �rst generating the

simple harmonic frequency. We then prepared the noise using a Gaussian distributed

random number generator, scaling linearly with increasing time, and �ltering; �nally,

we added the noise to the data. The noise variance in these data ranges from 0.1 in the

�rst data values to 2.1 in the last few data values { there are N = 1000 data values.

We next computed the log10 probability of a single harmonic frequency in the data

set, Fig. 6.4(B). There are two close peaks near 0.3 in dimensionless units. However,

we now know that only the highest peak is important for frequency estimation. The

highest peak is some 10 orders of magnitude above the second. Thus the second peak

is completely negligible compared to the �rst. We estimated the frequency from this

peak and found 0:297 � 0:003; the correct value is 0.3. Thus one pays a penalty in
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Figure 6.4: The E�ect of Nonstationary, Nonwhite Noise

BASE 10 LOGARITHM OF THE PROBABILITY

OF A HARMONIC FREQUENCY

The data in Fig. 6.4(A) contain a periodic frequency but the noise is nonstationary
and nonwhite, as described in the text. There are 1000 data points with S=N < 0:5,
The Schuster periodogram, Fig. 6.4(B), clearly indicates a single sharp peak from
which we estimated the frequency to be 0:297 � 0:003; the correct value is 0.3.
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accuracy; but the Bayesian conclusions still do not mislead us about this. Actually,

the nonstationarity, which obscures part of the data, was much more serious than the

nonwhiteness.

Amplitude modulation and other violations of the assumptions

It should be relatively clear by now what will happen when the amplitude of the

signal is not constant. For the single stationary frequency problem the su�cient

statistic is the Schuster periodogram, and we know from past experience that this

statistic is at least usable on nonstationary series with Lorentzian or Gaussian decay.

We can also say that when the amplitude modulation is completely unknown, the

single largest peak in the discrete Fourier transform is the only indication of frequen-

cies: all others are evidence but not proof. If one wishes to investigate these others

one must include some information about the amplitude modulation.

It should be equally obvious that when the signal consists of several stationary

sinusoids, the periodogram continues to work well as long as the frequencies are

reasonably well separated. But any part of the data that does not �t the model is

noise. In cases where we analyze data that contain multiple stationary frequencies

using a one-frequencymodel, all of the frequencies except the one corresponding to the

largest peak in the discrete Fourier transform are from the standpoint of probability

theory just noise { and extremely correlated, non-Gaussian noise.

All of these e�ects, and why probability theory continues to work after a fashion

in spite of them, are easily understood in terms of the intuitive picture given earlier

on page 36. We are picking the frequency so that the dot product between the data

and the model is as large as possible. In the case of the sawtooth function described

earlier, it is obvious that the \best" �t will occur when the frequency matches that

of the sawtooth, although the �t of a sawtooth to a sinusoid cannot be very good; so

probability theory will estimate the noise to be large. The same is true for harmonic

frequencies with decay; however, the estimated amplitude and phase of the signal will

not be accurate. This interpretation should also warn you that when you try to �t

a semiperiodic signal (like a Bessel oscillation) to a single sinusoidal model, the �t

will be poor. Fundamentally, the spectrum of a nonsinusoidal signal does not have a

sharp peak; and so the sharpness of the periodogram is no longer a criterion for how

well its parameters can be determined.
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6.1.5 Nonuniform Sampling

All of the analysis done in Chapters 2 through 5 is valid when the sampling inter-

vals are nonuniformly spaced. But is anything to be gained by using such a sampling

technique? Initially we might anticipate that the problem of aliasing will be signi�-

cantly reduced. Additionally, the low frequency cuto� is a function of the length of

time one samples. We will be using samples of the same duration, so we do not expect

to see any signi�cant change in the ability to detect and resolve low frequencies. But

will the ability to detect any signal be changed? Will sampling at a nonuniform rate

make it possible to estimate a frequency better? We will attempt to address all of

these concerns. But most of this will be in the form of numerical demonstrations. No

complete analytical theory exists on this subject.

Aliasing

We will address the question of aliasing �rst. To make this test as clear as possible

we have performed it without noise. The data were generated using

dj = cos([� + 0:3]tj + 1):

For the uniform sampled data tj is a simple index running from �T to T by integer

steps and 2T + 1 = 512. Except for the lack of noise and the addition of � to

the frequency this is just the example used in Fig. 6.1. Figure 6.5(A) is a plot

of this uniformly sampled series. The true frequency is 0:3 + �, but the plot has

the appearance of a frequency of only 0.3 radians per unit step. In the terminology

introduced by Tukey, this is an \alias" of the true frequency. The true frequency

is oscillating more than one full cycle for each time step measured. The nonaliased

frequencies that can be discriminated, with uniform time samples, have ranges from

0 to �=2. The periodogram of these data Fig. 6.5(B) has four peaks in the range

0 � ! � 2�: the true frequency at 0:3 + � and three aliases.

The nonuniform sampled time series Fig. 6.5(C) also has a time variable which

takes on values from �T to T . There are also 512 data points. The true frequency is

unchanged. The time variable was randomly sampled. A random number generator

with uniform distribution was used to generate 512 random numbers. These numbers

were scaled onto the proper time intervals and the simulated signal was then evaluated

at these points. No one particular region was intentionally sampled more than any



82 CHAPTER 6

Figure 6.5: Why Aliases Exist

UNIFORMLY SAMPLED SERIES SCHUSTER PERIODOGRAM

NONUNIFORMLY SAMPLED

TIME SERIES

SCHUSTER PERIODOGRAM OF

THE NONUNIFORM TIME SERIES

Aliasing is caused by uniform sampling of data. To demonstrate this we have prepared
two sets of data: A uniformly sampled set (A), and a nonuniformly sampled set (C).
The periodogram for the uniform signal, (B), contains a peak at the true frequency
(0:3+�) plus three alias peaks. The periodogram of the nonuniformly sampled data,
(D) has no aliases.
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other. The time series, Fig. 6.5(C) looks very di�erent from the uniformly sampled

time series. By sampling at di�erent intervals the presence of the high frequency

becomes apparent.

We then computed the periodogram for these data and have displayed it in

Fig. 6.5(D). The �rst striking feature is that the aliased frequencies (those correspond-

ing to negative frequencies as well as those due to adding � to the frequency) have

disappeared. The second feature which is apparent is that the two periodograms are

nearly the same height. Sampling at a nonuniform rate does not signi�cantly alter the

precision of the frequency estimates, provided we have the same amount of data, and

the same total sampling time. Third, the nonuniformly sampled time series has small

features in the periodogram which look very much like noise, even though we know

the signal has no noise. Small wiggles in the periodogram are not caused just by the

noise; they can also be caused by the irregular sampling times (it should be remem-

bered that these features are not relevant to the parameter estimation problem). The

answer to the �rst question: \Will aliasing go away when one uses a nonuniformly

sampled time series?" is yes.

Why aliasing is eliminated for a nonuniform time series is easily understood. Con-

sider Fig. 6.6; here we have illustrated the true frequency (solid line) and the three

alias frequencies from the previous example, Fig. 6.5. The squares mark the location

of three uniform sample points, while the circles mark the location of the nonuniform

points. Looking at Fig. 6.6 we now see aliasing in an entirely di�erent light. Probabil-

ity theory is indicating (quite rightly) that in the frequency region 0 � ! � 2� there

are four equally probable frequencies, Fig. 6.5(B), while for the nonuniformly sampled

data, probability theory is indicating that there is only one frequency consistent with

the data, Fig. 6.5(D).

Of course it must be true that the aliasing phenomenon returns for some su�ciently

high frequency. If the sampling times ftig, although nonuniform, are all integer

multiples of some small interval �t, then frequencies di�ering by 2�=�t will still be

aliased. We did one numerical test with a signal-to-noise ratio of one and the same true

frequency. We then calculated the periodogram for higher frequencies. We continued

increasing the frequency until we obtained the �rst alias. This occurred at a frequency

around 60�, almost 1.8 orders of magnitude improvement in the frequency band free

of aliasing. Even then this second large maximum was many orders of magnitude

below that at the �rst \true" frequency.
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Figure 6.6: Why Aliases Go Away for Nonuniformly Sampled Data

When aliases occur in a uniformly sampled time series, probability theory is still
working correctly; indicating there is more than one frequency corresponding to the
\best" estimate in the data. Suppose we have a signal cos(0:3 + �)t (solid line).
For a uniformly sampled data (squares) there are four possible frequencies: !̂ = 0:3
(dotted line), !̂ = � � 0:3 (dashed line), !̂ = 2� � 0:3 (chain dot), and the true
frequency (solid line) which pass through the uniform data (marked with squares).
For nonuniformly sampled time series (marked with circles), aliases e�ectively do not
occur because only the \true" (solid line) signal passes through the nonuniformly
spaced points (circles).
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Figure 6.7: Uniform Sampling Compared to Nonuniform Sampling

We generated some 3000 sets of data with nonuniform data samples, estimated the
frequency, computed a histogram, and computed the cumulative number of estimates
summing from left to right on this plot (solid line). The equivalent plot for uniformly
sampled data is repeated here for easy reference (dotted line). Clearly there is no
signi�cant di�erence in these plots.
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Nonuniform Sampling and the Frequency Estimates

The second question is \Will sampling at a nonuniform rate signi�cantly change

the frequency estimate?". To answer this question we have set up a second test,

Fig. 6.7. The simulated signal is the same as that in Fig. 6.2, only now the samples are

nonuniform. We generated some 3000 samples of the data and estimated the frequency

from each. We then computed a histogram and integrated to obtain cumulative

sampling distribution of the estimates, Fig. 6.7. If nonuniform sampling improves the

frequency resolution then we would expect the cumulative distribution (solid line) to

rise faster than for the uniformly sampled case (dotted line). As one can see from this

plot, nonuniform sampling is clearly equivalent to uniform sampling when it comes

to the accuracy of the parameter estimates; moreover, nonuniform sampling improves

the high frequency resolution but does not change the frequency estimates otherwise.

Some might be disturbed by the irregular appearance of the solid line in Fig. 6.7.

This irregular behavior is simply \digitization" error in the calculation. When we

performed this calculation for the uniform case the �rst time, this same e�ect was

present. We were unsure of the cause, so we repeated the calculation forcing our

searching routines to �nd the maximum of the periodogram much more precisely.

The irregular behavior was much reduced. We did not repeat this procedure on the

nonuniformly sampled data, because it is very expensive computationally.

6.2 A Frequency with Lorentzian Decay

The simple harmonic frequency problem discussed in Chapter 2 may be generalized

easily to include Lorentzian or Gaussian decay. We assume, for this discussion, that

the decay is Lorentzian; the generalization to other types of decay will become more

obvious as we proceed. For a uniformly sampled interval the model we are considering

is

f(l) = [B1 cos(!l) +B2 sin(!l)]e
��l (6:3)

where l is restricted to values (1 � l � N). We now have four parameters to estimate:

the amplitudes B1, B2; the frequency !; and the decay rate �.
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6.2.1 The \Student t-Distribution"

The solution to this problem is a straightforward application of the general proce-

dures. The matrix gij (3.4) is given by

gij =

0
BBBB@

NX
l=1

cos2(!l)e�2�l
NX
l=1

cos!l sin!le�2�l

NX
l=1

cos!l sin!le�2�l
NX
l=1

sin2(!l)e�2�l

1
CCCCA :

This problem can be solved exactly. However, the exact solution is tedious, and

not very informative. Fortunately an approximate solution is easily obtained which

exhibits most of the important features of the full solution; and is valid in the same

sense that a discrete Fourier transform is valid. We approximate gij as follows: First

the sum over the sine squared and cosine squared terms may be approximated as

c �
NX
l=1

cos2(!l)e�2l� �
NX
l=1

sin2(!l)e�2l�

=
1

2

NX
l=1

[1� cos(2!l)]e�2l�

� 1

2

NX
l=1

e�2l�

=
1

2

"
1 � e�2N�

e2� � 1

#
:

(6:4)

Second, the o� diagonal terms are at most the same order as the ignored terms; these

terms are therefore ignored. Thus the matrix gij can be approximated as

gij �
�
c 0
0 c

�
:

The orthonormal model functions may then be written as

H1(l) = cos(!l)e��l=
p
c (6:5)

H2(l) = sin(!l)e��l=
p
c (6:6)

The projections of the data onto the orthonormal model functions (3.13) are given by

h1 �
R(!; �)p

c
=

1p
c

NX
l=1

dl cos(!l)e
��l
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h2 �
I(!; �)p

c
=

1p
c

NX
l=1

dl sin(!l)e
��l

and the joint posterior probability of a frequency ! and a decay rate � is given by

P (!; �jD; I) /
"
1 � R(!; �)2 + I(!; �)2

Ncd2

# 2�N
2

: (6:7)

This approximation is valid provided there are plenty of data, N � 1, and there is

no evidence of a low frequency. There is no restriction on the range of �: if � > 0 the

signal is decaying with increasing time, if � < 0 the signal is growing with increasing

time, and if � = 0 the signal is stationary. This equation is analogous to (2.8) and

reduces to (2.8) in the limit �! 0.

6.2.2 Accuracy Estimates

We derived a general estimate for the f!g parameters in Chapter 4, and we would

like to use those estimates for comparison with the single stationary frequency prob-

lem. To do this we can approximate the probability distribution P (!; �jD;�; I) by a

Gaussian as was done in Chapter 4. This may be done readily by assuming a form

of the data, and then applying Eqs. (4.9) through (4.14). From the second derivative

we may obtain the desired (mean) � (standard deviation) estimates. Approximate

second derivatives, usable with real data, may be obtained analytically as follows.

We take as the data

d(t) = B̂ cos(!̂t)e��̂t; (6:8)

where !̂ is the true frequency of oscillation and �̂ is the true decay rate. We have

assumed only a cosine component to e�ect some simpli�cations in the discussion. It

will be obvious at the end of the calculation that the result for a signal of arbitrary

phase and magnitude may be obtained by replacing the amplitude B̂2 by the squared

magnitude B̂2 ! B̂2
1 + B̂2

2 .

The projection of the data (6.8) onto the model functions (6.5), and (6.6) is:

h1 =
B̂

2
p
c

"
NX
l=1

cos(! � !̂)le�(�+�̂)l +
NX
l=1

cos(! + !̂)le�(�+�̂)l
#
:

The second term is negligible compared to the �rst under the conditions we have in

mind. Likewise, the projection h2 is essentially zero compared to h1 and we have
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ignored it. These sums may be done explicitly using (6.4) to obtain

h1 =
B̂

4
p
c

"
1 � e�2Nv

e2v � 1
+
1 � e�2Nu

e2u � 1

#

where

v =
� + �̂� i(! � !̂)

2
and u =

�+ �̂+ i(! � !̂)

2
;

and i =
p
�1 in the above equations. Then the su�cient statistic h2 is given by:

h2 =
B̂2

16

"
e2� � 1

1� e�2N�

# "
1 � e�2Nv

1� e2v
+
1 � e�2Nu

1� e2u

#2

The region of the parameter space we are interested in is where the unitless decay

rate is small compared to one, and exp(N�̂) is large compared to one. In this region

the true signal decays away in the observation time, but not before we obtain a good

representative sample of it. We are not considering the case were the decay is so slow

that the signal is nearly stationary, or so fast that the signal is gone within a small

fraction of the observation time. Within these limits the su�cient statistic h2 is

h2 � B̂2�

2

"
� + �̂

(�+ �̂)2 + (! � !̂)2

#2
:

The �rst derivatives of h2 evaluated at ! = !̂ and � = �̂ are zero, as they should

be. The mixed second partial derivative is also zero, indicating that the presence of

decay does not (to second order) shift the location of a frequency, and this of course

explains why the discrete Fourier transform works on problems with decay. This gives

the second derivatives of h2 as

b� � �
 
@2h2

@�2

!
�=�̂

=
B̂2

16�̂3
and b! � �

 
@2h2

@!2

!
!=!̂

=
B̂2

2�̂3
:

From these derivatives we then make the (mean) � (standard deviation) estimates of

the frequency and decay rate to obtain

(�)est = �̂� �p
b�

and (!)est = !̂ � �p
b!

where
�p
b�
� 2:8��̂

3
2

jB̂j
and

�p
b!
� ��̂

3
2

jB̂j
: (6:9)

Converting to physical units, if the sampling rate is �t and �̂ is now the true decay

rate in hertz, these accuracy estimates are

�p
b�
� 2:8�

jB̂j
p
�̂3�t Hertz and

�p
b!
� �

jB̂j
p
�̂3�t Hertz:
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Just as with the single frequency problem the accuracy depends on the signal-to-noise

ratio and on the amount of data. In the single frequency case the amount of data

was represented by the factor of N . Here the amount of data depends on two factors:

the true decay rate �̂, and the sampling time �t. The only factor the experimenter

can typically control is the sampling time �t. With a decaying signal, to improve

the accuracy of the parameter estimates one must take the data faster, thus ensuring

that the data are sampled in the region where the signal is large, or one must improve

the signal-to-noise ratio of the data.

How does this compare to the results obtained before for the simple harmonic

frequency? For a signal with N = 1000, a decay rate of �̂ = 2Hz, B̂=
p
2� = 1, and

again taking data for 1 second gives the accuracy estimates for frequency and decay

as

(!)est = !̂ � 0:06 Hz and (�)est = �̂ � 0:17 Hz:

The uncertainty in ! is 0.13Hz compared to 0:025Hz for an equivalent stationary

signal with the same signal-to-noise ratio. This is a factor of 2.4 times larger than

for a stationary sinusoid, and since the error varies like N� 3
2 we have e�ectively lost

all but one third of the data due to decay. When we have reached the unitless time

of t = 250 the signal is down by a factor of 12 and has all but disappeared into the

noise. Again, the results of probability theory correspond nicely to the indications of

common sense { but they are quantitative where common sense is not.

6.2.3 Example { One Frequency with Decay

To illustrate some of these points we been making, we have prepared two more

examples: �rst we will investigate the use of this probability density when the decay

mode is known and second when it is unknown.

Known method of decay

Figure 6.8 is an example of the use of the posterior probability (6.7) when the signal

is known to be harmonic with Lorentzian decay. This time series was prepared from

the following equation

dj = 0:001 + cos(0:3j + 1)e�0:01j + ej: (6:10)

The N = 512 data samples were prepared in the following manner: �rst, we generated

the data without the noise; we then computed the average of the data, and subtracted
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Figure 6.8: Single Frequency with Lorentzian Decay

TIME SERIES SCHUSTER PERIODOGRAM

POWER SPECTRAL DENSITY

AS A FUNCTION OF DECAY RATE

POWER SPECTRAL DENSITY

AS A FUNCTION OF FREQUENCY

The data (A) contain a simple frequency with a Lorentzian decay plus noise. In (B)
the noise has signi�cantly distorted the periodogram (continuous curve) and the fast
Fourier transform (open circles). The power spectral density may be computed as a
function of decay rate � by integrating over the frequency (C), or as a function of
frequency ! by integrating over the decay (D).
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it from each data point, to ensure that the average of the data is zero; we then repeated

this process on the Gaussian white noise; next, we scaled the computer generated

signal by the appropriate ratio to make the signal-to-noise ratio of the data analyzed

exactly one. The time series clearly shows a small signal which rapidly decays away,

Fig. 6.8(A). Figure 6.8(B), the periodogram (continuous curve) and the fast Fourier

transform (open circles) clearly show the Lorentzian line shape. The noise is now

signi�cantly a�ecting the periodogram: the periodogram is no longer an optimum

frequency estimator.

Figures 6.8(C) and 6.8(D) contain plots of the power spectral density (4.16). In

Fig. 6.8(C) we have treated the frequency as a nuisance parameter and have inte-

grated it out numerically; as was emphasized earlier this is essentially the posterior

probability distribution for � normalized to a power level rather than to unity. In

Fig. 6.8(D) we have treated the decay as the nuisance parameter and have integrated

it out. This gives the power spectral estimate as a function of frequency.

The width of these curves is a measure of the uncertainty in the determination of

the parameters. We have determined full-width at half maximum (numerically) for

each of these and have compared these to the theoretical \best" estimates (6.9) and

�nd

(!)est = 0:2998 � 5 � 10�4 and (!)best = 0:3000 � 6 � 10�4;

(�)est = 0:0109 � 1:6 � 10�3 and (�)best = 0:0100 � 1:6 � 10�3:

The theoretical estimates and those calculated from these data are e�ectively identi-

cal.

Unknown Method of Decay

Now what e�ect does not knowing the true model have on the estimated accuracy

of these parameters? To test this we have analyzed the signal from Fig. 6.8 using

four di�erent models and have summarized the results in Table . There are several

signi�cant observations about the accuracy estimates; including a decay mode does

not signi�cantly a�ect the frequency estimates; however it does improve the accuracy

estimates for the frequency as well as the estimated standard deviation of the noise

�, but not very much.

As we had expected, the Gaussian decay does not �t the data well: it decays

away too fast, and the accuracy estimates are a little poorer. As with the single
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Table 6.1: The E�ect of Not Knowing the Decay Mode

Description model frequency ! � P (fj jD; I)
Stationary: B cos(!t+ �) 0:3001 � 6� 10�4 1.260 8:3 � 10�33

Gaussian
in time:

B cos(!t+ �)e��t
2

0:2991 � 7� 10�4 0.993 6:5 � 10�4

Lorentzian
in time:

B cos(!t+ �)

1 + �t2
0:2998 � 5� 10�4 0.978 0:0027

Lorentzian
in frequency:

B cos(!t+ �)e��t 0:2998 � 5� 10�4 0.979 0.9972

We analyzed the single frequency plus decay data (6.10) using four di�erent decay
models: stationary harmonic frequency, Gaussian decay, Lorentzian in time, and last
Lorentzian in frequency. The stationary harmonic frequency model (�rst row) gives a
poor estimate of the standard deviation of the noise, and consequently the estimated
uncertainty of the frequency is larger. The probability of this model is so small that
one would not even consider this as a possible model of the data. The second model
is a single frequency with Gaussian decay. Here the estimated standard deviation of
the noise is accurate, but the model �ts the data poorly; thus the relative probability
of this model e�ectively eliminates it from consideration. The third model is a single
frequency with a Lorentzian decay in time. The relative probability of this model
is also small indicating that although it is better than the two previous models, it
is not nearly as good as the last model. The last model is a single frequency with
Lorentzian decay. The relative probability of the model is e�ectively one, within the
class of models considered.
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harmonic frequency problem when we were demonstrating the e�ects of violating the

assumptions, nothing startling happens here and maybe that is the most startling

thing of all. Because it means that we do not have to know the exact models to

make signi�cant progress on analyzing the data. All we need are models which are

reasonable for the data; i.e. models which take on most of the characteristics of the

data.

The last column in this table is the relative probability of the various models (5.1).

The relative probability of the single harmonic frequencymodel, 8:3�10�33 completely

rules this model out as a possible explanation of these data. This is again not surpris-

ing: one can look at the data and see that it is decaying away. This small probability

is just a quantitative way of stating a conclusion that we draw so easily without any

probability theory. The Gaussian model �ts the data much better, 6:5 � 10�4, but

not as well as the two Lorentzian models. The Lorentzian model in time has only

about one chance in 500 of being \right" (i.e. of providing a better description of

future data than the Lorentzian in frequency). Thus probability theory can rank var-

ious models according to how well they �t the data, and discriminates easily between

models which predict only slightly di�erent data.

6.3 Two Harmonic Frequencies

We now turn our attention to the slightly more general problem of analyzing a data

set which we postulate contains two distinct harmonic frequencies. The \Student t-

distribution" represented by (3.17) is, of course, the general solution to this problem.

Unfortunately, that equation does not lend itself readily to understanding intuitively

what is in the probability distribution. In particular we would like to know the

behavior of these equations in three di�erent limits: �rst, when the frequencies are

well separated; second, when they are close but distinct; and third, when they are so

close as to be, for all practical purposes, identical. To investigate these we will solve,

approximately, the two stationary frequency problem.

6.3.1 The \Student t-Distribution"

The model equation for the two-frequency problem is a simple generalization of
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the single-harmonic problem:

f(t) = B1 cos(!1t) +B2 cos(!2t) +B3 sin(!1t) +B4 sin(!2t):

The model functions can then be used to construct the gjk matrix. On a uniform grid

this is given by

gjk =

0
BBB@
c11 c12 0 0
c12 c22 0 0
0 0 s11 s12
0 0 s12 s22

1
CCCA

where

cjk =
TX

l=�T

cos(!jl) cos(!kl) =
sin(1

2
N!+)

2 sin(1
2
!+)

+
sin(1

2
N!�)

2 sin(1
2
!�)

(6:11)

sjk =
TX

l=�T

sin(!j l) sin(!kl) =
sin(1

2
N!�)

2 sin(1
2
!�)

�
sin(1

2
N!+)

2 sin(1
2
!+)

(6:12)

!+ = !j + !k; (j; k = 1 or 2)

!� = !j � !k:

The eigenvalue and eigenvector problem for gjk splits into two separate problems,

each involving 2 � 2 matrices. The eigenvalues are:

�1 =
c11 + c22

2
+
q
(c11 � c22)2 + 4c212; �2 =

c11 + c22

2
�
q
(c11 � c22)2 + 4c212;

�3 =
s11 + s22

2
+
q
(s11 � s22)2 + 4s212; and �4 =

s11 + s22

2
�
q
(s11 � s22)2 + 4s212:

Well Separated Frequencies

When the frequencies are well separated j!1�!2j � 2�=N , the eigenvalues reduce

to � = N=2. That is, gjk goes into N=2 times the unit matrix. Then the model

functions are e�ectively orthogonal and the su�cient statistic h2 reduces to

h2 =
2

N
[C(!1) + C(!2)] :

The joint posterior probability, when the variance is known, is given by

P (!1; !2jD;�; I) / exp

"
C(!1) + C(!2)

�2

#
: (6:13)

The problem has separated: one can estimate each of the frequencies separately. The

maximum of the two-frequency posterior probability density will be located at the

two greatest peaks in the periodogram, in agreement with the common sense usage

of the discrete Fourier transform.
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Two Very Close Frequencies

The labels !1, !2, etc. for the frequencies in the model are arbitrary, and accord-

ingly their joint probability density is invariant under permutations. That means,

for the two-frequency problem, there is an axis of symmetry running along the line

!1 = !2. We do not know from (6.13) what is happening along that line. This is

easily investigated: when !1 = !2 � ! the eigenvalues become

�1 = N; �2 = 0; �3 = N; �4 = 0:

The matrix gjk has two redundant eigenvalues, and the probability distribution be-

comes

P (!jD;�; I) / exp

(
C(!)

�2

)
: (6:14)

The probability density goes smoothly into the single frequency probability distri-

bution along this axis of symmetry. Given that the two frequencies are equal, our

estimate of themwill be identical, in value and accuracy, to those of the one frequency

case. In the exact solution, the factor of two that we would have if we attempted to

use (6.13) where it is not valid, is just cancelled out.

Close But Distinct Frequencies

We have not yet addressed the posterior probability density when there are two

close but distinct frequencies. To understand this aspect of the problem we could

readily diagonalize the matrix gjk and obtain the exact solution. However, just like

the single frequency case with Lorentzian decay, this would be extremely tedious and

not very productive. Instead we derive an approximate solution which is simpler and

valid nearly everywhere if N is large. To obtain this approximate solution one needs

only to examine the matrix gjk and notice that the elements of this matrix consist of

the diagonal elements given by:

c11 =
N

2
+
sin(N!1)

2 sin(!1)
� N

2
;

c22 =
N

2
+
sin(N!2)

2 sin(!2)
� N

2
;

s11 =
N

2
� sin(N!1)

2 sin(!1)
� N

2
;
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s22 =
N

2
� sin(N!2)

2 sin(!2)
� N

2
;

and the o�-diagonal elements. The o�-diagonal terms are small compared to N unless

the frequencies are speci�cally in the region of !1 � !2; then only the terms involving

the di�erence (!1 � !2) are large. We can approximate the o� diagonal terms as:

c12 � s12 �
1

2

TX
l=�T

cos
1

2
(!1 � !2)l =

1

2

sin 1

2
N(!1 � !2)

sin 1

2
(!1 � !2)

� B

2
: (6:15)

When the two frequencies are well separated, (6.15) is of order one and is small

compared to the diagonal elements. When the two frequencies are nearly equal,

then the o�-diagonal terms are large and are given accurately by (6.15). So the

approximation is valid for all values of !1 and !2 that are not extremely close to zero

and �.

With this approximation for gjk it is now possible to write a simpli�ed solution for

the two-frequency problem. The matrix gjk is given approximately by

gjk =
1

2

0
BBB@
N B 0 0
B N 0 0
0 0 N B

0 0 B N

1
CCCA :

The orthonormal model functions (3.5) may now be constructed:

H1(t) =
1p

N +B
[cos(!1t) + cos(!2t)] ; (6:16)

H2(t) =
1p

N �B
[cos(!1t)� cos(!2t)] ;

H3(t) =
1p

N +B
[sin(!1t) + sin(!2t)] ;

H4(t) =
1p

N �B
[sin(!1t)� sin(!2t)] :

We can write the su�cient statistic h2 in terms of these orthonormal model functions

to obtain

h2 = h2+ + h2�;

h2+ �
1

4(N +B)

n
[R(!1) +R(!2)]

2 + [I(!1) + I(!2)]
2
o
;

h2� �
1

4(N �B)

n
[R(!1)�R(!2)]

2 + [I(!1)� I(!2)]
2
o
;
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where R and I are the sine and cosine transforms of the data as functions of the

appropriate frequency. The factor of 4 comes about because for this problem there

are m = 4 model functions. Using (3.15), the posterior probability that two distinct

frequencies are present given the noise variance �2 is

P (!1; !2jD;�; I) / exp

(
2h2

�2

)
: (6:17)

A quick check on the asymptotic forms of this will verify that when the frequencies are

well separated one has h2 = 1

2
[C(!1)+C(!2)], and it has reduced to (6.13). Likewise,

when the frequencies are the same the second term goes smoothly to zero, and the

�rst term goes into 1

2
C(!), to reduce to (6.14) as expected.

6.3.2 Accuracy Estimates

When the frequencies are very close or far apart we can apply the results obtained

by Jaynes [12] concerning the accuracy of the frequency estimates:

(!)est = !̂ � �

B̂

q
48=N3: (6:18)

In the region where the frequencies are close but distinct, (6.17) appears very di�erent.

We would like to understand what is happening in this region, in particular we would

like to know just how well two close frequencies can be estimated. To understand this

we will construct a Gaussian approximation similar to what was done for the case

with Lorentzian decay. We Taylor expand the h2 in (6.17) to obtain

P (!1; !2jD;�; I) � exp

8<
:� 1

2�2

2X
j=1

2X
k=1

bjk(!j � !̂j)(!k � !̂k)

9=
;

where

b11 = �2@
2h2

@!2
1

����
!1=!̂1
!2=!̂2

b22 = �2@
2h2

@!2
2

����
!1=!̂1
!2=!̂2

b12 = �2 @2h2

@!1@!2

����
!1=!̂1
!2=!̂2
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where !̂1, !̂2 are the locations of the maxima of (6.17). If we have uniformly sampled

data of the form

dl = Â1 cos(!̂1l) + Â2 cos(!̂2l) + Â3 sin(!̂1l) + Â4 sin(!̂2l) (6:19)

where �T � l � T , 2T + 1 = N , Â1, Â2, Â3, Â4 are the true amplitudes, and !̂1,

!̂2 are the true frequencies, then hj is given by the projection of Hj (6.16) onto the

data (6.19) to obtain

hj =
1q

N +B(!1; !2)

TX
l=�T

Hj(tl)dl

where
B(!1; !2)

2
� 1

2

TX
l=�T

cos(!1 � !2)l =
1

2

sin 1

2
N(!1 � !2)

sin 1

2
(!1 � !2)

: (6:20)

For a uniform time series these hj may be summed explicitly using (6.20) to obtain

h1 =
1

2
q
N + B(!1; !2)

�
�
Â1[B(!̂1; !1) +B(!̂1; !2)]

+ Â2[B(!̂2; !1) +B(!̂2; !2)]
�

h2 =
1

2
q
N �B(!1; !2)

�
�
Â1[B(!̂1; !1)�B(!̂1; !2)]

+ Â2[B(!̂2; !1)�B(!̂2; !2)]
�

h3 =
1

2
q
N + B(!1; !2)

�
�
Â3[B(!̂1; !1) +B(!̂1; !2)]

+ Â4[B(!̂2; !1) +B(!̂2; !2)]
�

h4 =
1

2
q
N �B(!1; !2)

�
�
Â3[B(!̂1; !1)�B(!̂1; !2)]

+ Â4[B(!̂2; !1)�B(!̂2; !2)]
�
:

We have kept terms corresponding to the di�erences in the frequencies. When the

frequencies are close together it is only these terms which are important: the approx-

imation is consistent with the others made.

The su�cient statistic h2 is then given by

h2 =
1

4
(h21 + h22 + h23 + h24): (6:21)
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To obtain a Gaussian approximation for (6.17) one must calculate the second deriva-

tive of (6.21) with respect to !1 and !2. The problem is simple in principle but

tedious in practice. To get these partial derivatives, we Taylor expand (6.21) around

the maximum located at !̂1 and !̂2 and then take the derivative. The intermediate

steps are of little concern and were carried out using an algebra manipulation pack-

age. Terms of order one compared to N were again ignored, and we have assumed

the frequencies are close but distinct, also we used the small angle approximations

for the sine and cosine at the end of the calculation. The local variable � [de�ned as

(!̂2 � !̂1)=2 � �=N ] measures the distance between two adjacent frequencies. If � is

� then the frequencies are separated by one step in the discrete Fourier transform.

The second partial derivatives of h2 evaluated at the maximum are given by:

b11 � (Â2
1 + Â2

3)N
3

 
3 sin2 � � 6� cos � sin � + �2[sin2 � + 3 cos �]� �4

24�3[sin � � �][sin� + �]

!

b22 � (Â2
2 + Â2

4)N
3

 
3 sin2 � � 6� cos � sin � + �2[sin2 � + 3 cos �]� �4

24�3[sin � � �][sin� + �]

!

b12 � (Â1Â2 + Â3Â4)N3

 
�4 sin � + 2�3 cos � � 3�2 sin � + sin3 �

8�3[sin � � �][sin � + �]

!
:

If the true frequencies !̂1 and !̂2 are separated by two steps in the discrete Fourier

transform, � = 2�, we may reasonably ignore all but the �4 term to obtain

b11 � (Â2
1 + Â2

3)N
3

24

b22 � (Â2
2 + Â2

4)N
3

24

b12 � (Â1Â2 + Â3Â4)N
3 sin(�)

8� :

Having the mixed partial derivatives we may now apply the general formalism (4.14)

to obtain

(!1)est = !̂1 �
vuuut 48�2

N3(Â2
1 + Â2

3)
�
1 � 9(Â1Â2+Â3 Â4)2 sin

2(�)=�2

4(Â2
1+Â

2
3)(Â

2
2+Â

2
4)

�

(!2)est = !̂2 �
vuuut 48�2

N3(Â2
2 + Â2

4)
�
1 � 9(Â1Â2+Â3 Â4)2 sin

2(�)=�2

4(Â2
1+Â

2
3)(Â

2
2+Â

2
4)

�



More Accuracy Estimates 101

The accuracy estimates reduce to (6.18) when the frequencies are well separated.

When the frequencies have approximately the same amplitudes and � is order of

2� (the frequencies are separated by two steps in the fast Fourier transform) the

interaction term is down by approximately 1/36; and one expects the estimates to be

nearly the same as those for a single frequency. Probability theory indicates that two

frequencies which are as close together as two steps in a discrete Fourier transform

do not interfere with each other in any signi�cant way. Also note the appearance of

the sinc function in the above estimates. When the frequencies are separated by a

Nyquist step (j!1 � !2j = 2�=N) the frequencies cannot interfere with each other.

Although this is a little surprising at �rst sight, a moment's thought will convince

one that when the frequencies are separated by 2�=N the sampled vectors are exactly

orthogonal to each other and because we are e�ectively taking dot products between

the model and the data, of course they cannot interfere with each other.

6.3.3 More Accuracy Estimates

To better understand the maximum theoretical accuracy with which two frequen-

cies can be estimated we have prepared Table 6.2. To make these estimates compara-

ble to those obtained in Chapter 2 we have again assumed N = 1000 data points and

� = 1. There are three regions of interest: when the frequency separation is small

compared to a single step in the discrete Fourier transform; when the separation is

of order one step; and when the separation is large. Additionally we would like to

understand the behavior when the signals are of the same amplitude, when one signal

is slightly larger than the other, and when one signal is much larger than the other.

When we prepared this table we used the joint posterior probability of two frequen-

cies (3.16) assuming the variance �2 known. The estimates obtained are the \best" in

the sense that in a real data set with � = 1, and N = 1000 data points the accuracy

estimates one obtains will be, nearly always, slightly worse than those contained in

table 6.2.

The three values of (!1 �!2) examined correspond to � = 1=4, � = 4, and � = 16:

roughly these correspond to frequency separations of 0.07, 0.3, and 5.1 Hz. We held

the squared magnitude of one signal constant, and the second is either 1, 4 or 128

times larger.

When the separation frequency is 0.07 Hz the frequencies are indistinguishable.

The smaller component cannot be estimated accurately. As the magnitude of the
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Table 6.2: Two Frequency Accuracy Estimatesp
B2
2+B

2
4p

B2
1+B

2
3

�f = 0:07 Hz �f = 0:3 Hz �f = 5:1 Hz

�f̂1 Hz �f̂2 Hz �f̂1 Hz �f̂2 Hz �f̂1 Hz �f̂2 Hz
1 �0:091 �0:091 �0:027 �0:027 �0:025 �0:025
4 �0:091 �0:088 �0:027 �0:013 �0:025 �0:012
128 �0:091 �0:034 �0:025 �0:0024 �0:025 �0:0022

We ran a number of simulations to determine how well two frequencies could be determined.

In column 1 the two frequencies are separated by only 0.07 Hz and cannot be resolved.

In column 2 the separation frequency is now 0.3 Hz and the resolution is approximately

0.0025 Hz for each of the three amplitudes tested. We would have to move one of the

frequencies by 11 standard deviations before they would overlap each other. In column 3

the frequencies are separated by 5.1 Hz and we would have to move one of the frequencies

by 200 standard deviations before they overlapped.

second signal increases, the estimated accuracy of the second signal becomes better

as one's intuition would suppose it should (the signal looks more and more like one

frequency). But even at 128:1 probability theory still senses that all is not quite

right for a single frequency, and gives an accuracy estimate wider than for a true

one frequency signal. However, for very close frequencies the true resolving power is

conveyed only by the two-dimensional plot like Fig. 6.10 below; not by the numbers

in Table 6.2.

When the separation frequency is 0.3 Hz or about one step in the discrete Fourier

transform, the accuracy estimates indicate that the two frequencies are well resolved.

By this we mean one of the frequencies would have to be moved by 11 standard devi-

ations before it would be confounded with the other (two parameters are said to be

confounded when probability theory cannot distinguish their separate values). This is

true for all sample signals in the table; it does, however, improve with increasing am-

plitude. According to probability theory, when two frequencies are as close together

as one Nyquist step in the discrete Fourier transform, those frequencies are clearly

resolvable by many standard deviations even at S=N = 1; the Rayleigh criterion is

far surpassed.

When the separation frequency is 5.1Hz, the accuracy estimates determine both

frequencies slightly better. Additionally, the accuracy estimates for the smaller fre-

quency are essentially 0.025Hz which is the same as the estimate for a single harmonic
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frequency that we found previously (2.12). Examining Table 6.2 more carefully, we

see that when the frequencies are separated by even a single step in the discrete

Fourier transform, the accuracy estimates are essentially those for the single harmonic

frequencies. The ability to estimate two close frequencies accurately is essentially in-

dependent of the separation frequency, as long as it is greater than or approximately

equal to one step in the discrete Fourier transform!

6.3.4 The Power Spectral Density

The power spectral density (4.16) speci�cally assumed there were no confounded

parameters. The exchange symmetry, in the two-harmonic frequency problem, en-

sures there are two equally probable maxima. We must generalize (4.16) to account

for these. The generalization is straightforward. We have from (4.16)

p̂(f!g) � 4h2
P (f!gjD; h�2i; I)R

df!gP (f!gjD; h�2i; I) : (6:22)

The generalization is in the approximating of P (f!gjD; h�2i; I). Suppose for simplic-

ity that the two frequencies are well separated and the variance �2 is known; then

the matrix bjk becomes

bjk = �m
2

@2h2

@!2
j

�jk:

Which gives

P (f!gjD; h�2i; I)Z
df!gP (f!gjD; h�2i; I)

�
 

b11
2�h�2i

b22
2�h�2i

!1
2

� exp

(
� b11

2h�2i (!̂1 � !1)2 �
b22

2h�2i(!̂2 � !2)2
)

when expanded around !1 � !̂1, !2 � !̂2, and

P (f!gjD; h�2i; I)Z
df!gP (f!gjD; h�2i; I)

�
 

b11

2�h�2i
b22

2�h�2i

!1
2

� exp

(
� b11

2h�2i (!̂1 � !2)2 �
b22

2h�2i(!̂2 � !1)2
)

when we expand around the other maximum. But to be consistent we must retain

the same symmetries in the approximation to the probability density as it originally
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possessed: the approximation which is valid everywhere is

P (f!gjD; h�2i; I)Z
df!gP (f!gjD; h�2i; I)

� 1

2

 
b11

2�h�2i
b22

2�h�2i

! 1
2

�
�
exp

(
� b11

2h�2i(!̂1 � !1)
2 � b22

2h�2i(!̂2 � !2)
2

)

+ exp

(
� b11

2h�2i (!̂1 � !2)
2 � b22

2h�2i(!̂2 � !1)
2

)�

The factor of 1/2 comes about because there are two equally probable maxima. The

power spectral density is a function of both !1 and !2, but we wish to plot it as

a function of only one variable !. We can do this by integrating out the nuisance

parameter (in this case one of the two frequencies). From symmetry, it cannot matter

which frequency we choose to eliminate. We choose to integrate out !1 and to relabel

!2 as !. Performing this integration we obtain

p̂(!) � 2h2(!̂2; !)

s
b11

2�h�2i exp
�
� b11

2h�2i(!̂1 � !)2
�

+ 2h2(!̂1; !)

s
b22

2�h�2i exp
�
� b22

2h�2i(!̂2 � !)2
�

and using the fact that

h2(!̂1; !̂2) = h2(!̂2; !̂1) = C(!̂1) + C(!̂2)

we have

p̂(!) � 2[C(!̂1) + C(!̂2)]
�s

b11

2�h�2i exp
�
� b11

2h�2i(!̂1 � !)2
�

+

s
b22

2�h�2i exp
�
� b22

2h�2i(!̂2 � !)2
��
:

We see now just what that exchange symmetry is doing: The power spectral density

conveys information about the total energy carried by the signal, and about the

accuracy of each line, but the two terms have equal areas; it contains no information

about how much energy is carried in each line. That is not too surprising; after all

we de�ned the power spectral density as the total energy carried by the signal per

unit f!g. That is typically what one is interested in for an arbitrary model function.
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However, the multiple frequency problem is unique in that one is typically interested

in the power carried by each line; not the total power carried by the signal. This is not

really a well de�ned problem in the sense that as two lines become closer and closer

together the frequencies are no longer orthogonal and power is shared between them.

The problem becomes even worse when one considers nonstationary frequencies. We

will later de�ne a line spectral density which will give information about the power

carried by one line when there are multiple well separated lines in the spectrum.

6.3.5 Example { Two Harmonic Frequencies

To illustrate some of the points we have been making about the two-frequency

probability density (6.17) we prepared a simple example, Fig. 6.9. This example was

prepared from the following equation

di = cos(0:3i+ 1) + cos(0:307i + 2) + ei

where ei has variance one and the index runs over the symmetric time interval

(�255:5 � i � 255:5) by unit steps. This time series, Fig. 6.9(A), has two sim-

ple harmonic frequencies separated by approximately 0.6 steps in the discrete Fourier

transform. One step corresponds to j!̂1 � !̂2j � 2�=512 = 0:012.

From looking at the raw time series one might just barely guess that there is more

going on than a simple harmonic frequency plus noise, because the oscillation ampli-

tude seems to vary slightly. If we were to guess that there are two close frequencies,

then by examining the data one can guess that the di�erence between these two fre-

quencies is not more than one cycle over the entire time interval. If the frequencies

were separated by more than this we would expect to see beats in the data. If there

are two frequencies, the second frequency must be within 0:012 of the �rst (in dimen-

sionless units). This is in the region where the frequency estimates are almost but

not quite confounded.

Now Fig. 6.9(B) the periodogram (continuous curve) and the fast Fourier transform

(open circles) show only a single peak. The single frequency model has estimated a

frequency which is essentially the average of the two. Yet the two frequency posterior

probability density Fig. 6.10 shows two well resolved, symmetrical maxima. Thus

the inclusion of just this one simple additional fact { that the signal may have two

frequencies { has greatly enhanced our ability to detect the two signals. Prior infor-

mation, even when it is only qualitative, can have a major e�ect on the quantitative
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Figure 6.9: Two Harmonic Frequencies { The Data

THE DATA

SCHUSTER PERIODOGRAM { DISCRETE FOURIER TRANSFORM

The data (A) contain two frequencies. They are separated from each other by ap-
proximately a single step in the discrete Fourier transform. The periodogram (B)
shows only a single peak located between the two frequencies.
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Figure 6.10: Posterior Probability density of Two Harmonic Frequencies

This is a fully normalized posterior probability density of two harmonic frequencies
in the data, Fig. 6.9. The two-frequency probability density clearly indicates the
presence of two frequencies. The posterior odds ratio prefers the two-frequency model
by 107 to 1.
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conclusions we are able to draw from a given data set.

This plot illustrates numerically some of the points we have been making. First,

in the two harmonic frequency probability density there are three discrete Fourier

transforms: one along each axis, and a third along !1 = !2. The two transforms along

the axes form ridges. If the frequencies are very close and have the same amplitude

the ridges are located at the average of the two frequencies: 0:5(0:3+ 0:307) = 0:335.

The discrete Fourier transform along the line of symmetry !1 = !2 can almost be

imagined. As we approach the true frequencies, !1 � 0:307 and !2 � 0:3, these ridges

have a slight bend away from the value indicated by the discrete Fourier transform:

these very close frequencies are not orthogonal. When the true frequencies are well

separated, these ridges intersect at right angles (the cross derivatives are zero) and

the frequencies do not interfere with each other. Even now, two very close frequencies

do not interfere greatly.

According to probability theory, the odds in favor of the two-frequency model

compared to the one-frequency model are 107 to 1. Now that we know the data

contain two partially resolved frequencies, we could proceed to obtain data over a

longer time span and resolve the frequencies still better. Regardless, it is now clear

that what one can detect clearly depends on what question one asks, and thus on

what prior information we have to suggest the best questions.

6.4 Estimation of Multiple

Stationary Frequencies

The problem of estimating multiple stationary harmonic frequencies can now be

addressed. The answer to this problem is, of course, given by the \Student t-

distribution" Eq. (3.17) using

f(t) =
rX

j=1

Bj cos!jt+
rX

j=1

Br+j sin!jt (6:23)

as a model. No exact analytic solution to this problem exists for more than a few

frequencies. However, a number of interesting things can be learned by studying this

problem.
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6.5 The \Student t-Distribution"

We begin this process by calculating the gij matrix explicitly. For a uniformly

sampled time series this is given by

gjk =

0
BBBBBBBBBBBBBBB@

c11 c12 � � � c1r 0 � � � � � � 0

c21 c22 � � � c2r
...

...
...

...
...

...
. . .

...
...

...
...

...
cr1 cr2 � � � crr 0 � � � � � � 0
0 � � � � � � 0 s11 s12 � � � s1r
...

...
...

... s21 s22 � � � s2r
...

...
...

...
...

...
. . .

...
0 � � � � � � 0 sr1 sr2 � � � srr

1
CCCCCCCCCCCCCCCA

where cjk and sjk were de�ned earlier (6.11, 6.12). To investigate the full solution we

�rst make the same large N approximations we made in the two-frequency problem.

When the frequencies are well separated, j!j�!kj � 2�=N , the diagonal elements

are again replaced by N=2 and the o� diagonal elements are given by B(!j; !k)=2,

using the notation Bjk � B(!j ; !k) de�ned earlier by Eq. (6.20). This simpli�es the

gjk matrix somewhat:

gjk =
1

2

0
BBBBBBBBBBBBBBB@

N B12 � � � B1r 0 � � � � � � 0

B21 N � � � B2r

...
...

...
...

...
...

. . .
...

...
...

...
...

Br1 Br2 � � � N 0 � � � � � � 0
0 � � � � � � 0 N B12 � � � B1r
...

...
...

... B21 N � � � B2r
...

...
...

...
...

...
. . .

...
0 � � � � � � 0 Br1 Br2 � � � N

1
CCCCCCCCCCCCCCCA

The problem separates into �nding the eigenvalues and eigenvectors of an r�r matrix.

Multiple Well-Separated Frequencies

For convenience, assume the frequencies are ordered: !1 < !2 < � � � < !r. The

exchange symmetries in this problem ensure that we can always do this. Now assume

that j!j � !kj � 2�=N . The gjk matrix will simplify signi�cantly, because all of the

o�-diagonal elements are essentially zero:

gjk �
N

2
�jk:
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The problem has separated completely, and the joint posterior probability of multiple

harmonic frequencies when the variance is known is given by

P (!1; � � � ; !rjD�; I) / exp

8<
:

rX
j=1

C(!j)

�2

9=
; :

This result was �rst found by Jaynes [12]. The estimated frequencies are the r largest

peaks in the discrete Fourier transform, again in agreement with common sense. Of

course, the accuracy estimates of the frequencies are those obtained from the single

harmonic frequency problem.

If one were to estimate the accuracy from multiple frequency data using a single-

frequency model, the answers would not be the same; the estimated noise variance �2

would be far greater, because multiple-frequency data will not �t a single-frequency

model. Thus in realistic cases where the noise variance �2 must be estimated from the

data, it is essential to use the estimated variance from the multiple-frequency model

even when the frequencies are well separated.

The results from this section let us see the discrete Fourier transform in yet an-

other way: the discrete Fourier transform is a su�cient statistic for the estimation

of multiple-well separated harmonic frequencies. P. Whittle [29] derived the peri-

odogram from the principle of maximum likelihood in 1954 and stated that \: : : in

practice the periodogram presents a wildly irregular appearance, suggesting little or

nothing to the eye." It now appears that this depends on the condition of the brain

behind that eye; after a little Bayesian education, a periodogram suggests a great deal

to the eye because one knows where to look. When the frequencies are well separated,

it is only the very largest peaks in the periodogram that are important for frequency

estimation. The common practice of taking the log of the periodogram is just about

the worst thing one could do, because it accents the noise and suppresses information

about the frequencies.

Two Close Frequencies

Now assume that the �rst two frequencies are close together: j!1 - !2j � 2�=N .

Then the o� diagonal term B12 is not small. But by assumption all the remaining o�-

diagonal terms are negligible. The problem separates into a two-frequency problem

for the close frequencies and r � 1 one-frequency problems. A feasible procedure for

estimating multiple harmonic frequencies is now clear. We calculate the probability
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of a single harmonic frequency in the data. We take the single largest peak from the

data and we examine it with a two-frequency model. If there is any evidence of two

frequencies, we will obtain a better �t; if not the frequencies will confound with each

other. Now generate the best model function from the estimated parameters (either

a one or two-frequency model) and subtract it from the data. The di�erence is the

residual signal which must be analyzed further.

What we are contemplating here is, in spirit, what an economist would call de-

trending (i.e. estimating a trend and then subtracting it from the data). Normally

this is a bad thing to do, because the trend and the signal of interest are not orthog-

onal. We can do this here because the orthogonality properties of multiple harmonic

model functions ensures that the error is small. But, we stress, it is only the special

properties of the sine and cosine functions that make this possible.

Next we examine the residual signal using the same procedure. We compute the

posterior probability of a frequency in the residuals and examine the largest peak for

two frequencies. We repeat the entire procedure until we have reduced the residuals

to noise (i.e. until they exhibit no visible regularity). Determining the stopping place

is not generally a problem, but if there are many small signals present it will be

necessary to use the procedures developed in Chapter 5 to determine the total number

of frequencies present. We stress again that this procedure is only applicable to the

multiple stationary frequency problem and then only because of the special properties

of the sine and cosine functions. Even here, if there is evidence of multiple close

frequencies it will be necessary to use the estimates obtained from this procedure as

initial estimates for a full multiple-frequency analysis on the data.

6.5.1 Example { Multiple Stationary Frequencies

To illustrate some of the points we have been making we have prepared a sim-

ple example of a stationary signal with multiple harmonic frequencies. This simple

example was prepared from

f(t) = cos(0:1i+ 1) + 2 cos(0:15i+ 2) + 5 cos(0:3i+ 3)
+ 2 cos(0:31i+ 4) + 3 cos(1i+ 5) + ei

and shown in Fig. 6.11(A), where ei has unit variance and there are N = 512 data

points. The periodogram Fig. 6.11(B) resolves the four well-separated frequencies and

then hints that the frequency near 0.3 could be two frequencies. To estimate these

frequencies we simply postulated a �ve-frequency model and used the estimates from
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the periodogram as initial estimates of the frequencies. We located the maximum

of the �ve-dimensional posterior probability density and determined the accuracy

estimate using the procedure given in (4.14).

The estimated frequencies and amplitudes from these data are

frequency amplitude
0.0998�0.0001 0.9�0.08
0.1498�0.0002 2.08�0.08
0.3001�0.0002 4.97�0.08
0.3102�0.0001 1.95�0.08
0.9999�0.0001 2.92�0.08

These are in excellent agreement with the true values. The estimated noise variance

for these data is 0.98 and the true variance is 1.0. For this data set with N = 512

data values, the \best" estimate for the well-separated frequencies is given by (2.10)

!est � !̂ �
q
48�2=N3(B2

1 +B2
2)

which gives

frequency amplitude
0.1000�0.0006 1.0�0.08
0.1500�0.0002 2.0�0.08
0.3000�0.0001 5.0�0.08
0.3100�0.0002 2.0�0.08
1.0000�0.0002 3.0�0.08

and the actual values we obtained are all comparable to these: in some cases a little

better and others a little worse.

6.5.2 The Power Spectral Density

We saw in the two-frequency problem that the power spectral density p̂(!) is

telling us something about the energy density of the signal and about the accuracy

of the line. We have not generalized that function to account for the symmetry

properties of the multiple frequency problem, and we do that now. The generalization

is straightforward and we simply give the result for well-separated frequencies here.

When the frequencies are well separated the problem essentially splits into a series

of one-frequency problems: all we must do is to maintain the symmetries of the

original probability density. Maintaining those symmetries and integrate out all but
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Figure 6.11: Multiple Harmonic Frequencies

THE DATA SCHUSTER PERIODOGRAM

THE POWER SPECTRAL DENSITY LINE POWER SPECTRAL DENSITY

The data (A) contain �ve frequencies. Three of the �ve are well separated. The
Schuster periodogram (B) resolves the three well-separated frequencies, but one can-
not tell if the peak near ! = 0:3 is one or two frequencies. The power spectral density
p̂(!) (C) clearly separates all �ve frequencies while the height is indicative of the res-
olution. The height of the line power spectral density (D) is indicative of the energy
carried by the line.
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one frequency, the power spectral density may be approximated as

p̂(!) � 2

2
4�2 +

rX
j=1

C(!̂j)

3
5 rX
k=1

"
bkk

2��2

# 1
2

exp

(
�bkk(!̂k � !)2

2�2

)
:

As was stressed earlier this function expresses information about the total energy

carried by the signal and about the accuracy of each line, but nothing about the

power carried by one line. After the fact this is not too surprising: after all, we asked

a question about the total energy carried by the signal, and not a question about the

power carried by one line. If we wish information about the power carried by one

line, we must ask a question about one line, and we do that in the next subsection.

First we illustrate the generalized power spectral density with a simple example. In

addition to determining the frequencies in the previous example we have plotted the

power spectral density in Fig. 6.11(C). We see from (C) that the �ve frequencies have

been well resolved by the \Student t-distribution": the widths of the lines from (C)

are indications of how well the lines have been determined from the data while the

integral over all lines is the total energy carried by the signal in the observation time.

6.5.3 The Line Power Spectral Density

We would like to plot a power spectral density that is an indication of the power

carried by the individual spectral lines. This is easily done simply by de�ning the

appropriate spectral density. Here we de�ne a line power spectral density Ŝ(!) as

the posterior expected value of the energy carried by one sinusoidal component of the

signal in the frequency range d!. This is given by

Ŝ(!) =
N

2

Z
(B2

1 +B2
1+r)P (fBg; f!gj�;D; I)dB1 � � � dBmd!2 � � � d!r

=
2

r

h
�2 + C(!)

i rX
k=1

"
bkk

2��2

# 1
2

exp

(
�bkk(!̂k � !)2

2�2

)

where we have performed the integrals over all but the �rst frequency. We have

relabeled !1 as !. When we computed this expectation value we used the amplitudes

for frequency !1 however, the exchange symmetries in this problem ensure we will

obtain the same result whichever one we chose to leave behind. This is essentially

just the marginal posterior probability density normalized to the power carried by

one spectral line. The integral over ! will give the total energy carried by all of the

spectral lines, and in this approximation each line contributes its total energy to the
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integral. We have included an example of this in the multiple frequency example

given earlier see Fig. 6.11(D). In this �gure the lines are normalized to a power level,

the heights are indications of the total energy carried by a line, and the width is an

indication of the accuracy of the estimates.

6.6 Multiple Nonstationary Frequency Estimation

The problem of multiple nonstationary frequencies is easily addressed using the

\Student t-distribution" (3.17). As with the multiple stationary frequency estimation

problem, an analytic solution is not feasible for more than a few frequencies. However,

we already know that this problem separates. If it did not, the discrete Fourier

transform would not be useful on this problem; and it is.

The way to handle this problem is to apply the \Student t-distribution" numeri-

cally. One can apply the single-frequency-plus-decay model when the nonstationary

frequencies are well separated, and then use more complex models where needed. The

numerical procedure to use is to calculate the discrete Fourier transform of the data,

and from it compute the logarithm of the probability of a single harmonic frequency.

Then set up a nonstationary frequency model using the single best frequency from

the discrete Fourier transform. Locate the maximum of the probability density and

then compute the residuals. These residuals are essentially what probability theory

is calling the noise. Repeat the Fourier transform step on the residuals. If there are

additional frequencies in the data, repeat the process using two, three, � � �, frequencies
model until all frequencies have been accounted for. Of course, one can save time here

by starting with an initial model that has the same number of well-separated peaks

as are in the Fourier transform of the data. But care must be taken; if these signals

are decaying, one must supply reasonable estimates for the decay rates and this can

be very di�cult.

When applying this procedure, there is no need to check to see if any of the peaks

have multiple frequencies. Later passes through the procedure will resolve double

structure. If any of the peaks has multiple frequencies, then when one �ts the main

peak not all of the signal will be removed, and on some later cycle through the

procedure the second frequency will be the largest remaining e�ect in the data and

the procedure will pick it out. The procedure works so well and the e�ects are so

striking, that an example is needed. We give this example in the next chapter.
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Chapter 7

APPLICATIONS

Perhaps the greatest test of any theory is not so much how it was derived, but

how it works. Here we apply the theory as developed in the preceding chapters to a

number of speci�c examples including: NMR signals, economic time series, and Wolf's

relative sunspot numbers. Also, we examine how multiple measurements a�ect the

analysis.

7.1 NMR Time Series

NMR provides an excellent example of how the introduction of modern computers

has revolutionized a branch of science. With the aid of computers more data can be

taken and summarized into a useful form faster than has ever been possible before.

The standard way to analyze an NMR experiment is to obtain a quadrature data

set, with two separate measurements, 90� out of phase with each other, and to do

a complex Fourier transform on these data [30]. The global phase of the discrete

complex transform is adjusted until the real part (called an absorption spectrum)

is as symmetric as possible. The frequencies and decay rates are then estimated

from the absorption spectrum. There are, of course, good physical reasons why the

absorption spectrum of the \true signal" is important to physicists. However, as

we have emphasized repeatedly since Chapter 2, the discrete Fourier transform is an

optimal frequency estimator only when a single simple harmonic frequency is present,

and there are no conditions known to the author under which an absorption spectrum

will give optimal frequency estimates.

We will apply the procedures developed in the previous sections to a time series

117
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from a real NMR experiment, and contrast our analysis to the one done using the

absorption spectrum. The NMR data used are of a free-induction decay [31], Fig. 7.1.

The sample contained a mixture of 63% liquid Hydrogen-Deuterium (HD) and Deu-

terium (D2) at 20:2�K. The sample was excited with a 55MHz pulse, and its response

was observed using a standard mixer-modulation technique. The resulting signal is

in the audio range where it has several oscillations at about 100Hz. The data were

sampled at �t = 0:0005 seconds, and N = 2048 data points were taken for each chan-

nel. The data therefore span a time interval of about one second. As was discussed

earlier, we are using dimensionless units. The relation to physical units is given by

f =
!

2��t
Hz, Period =

2��t

!
Seconds

where f is the frequency in Hertz, ! is the frequency in radians per step, and �t is

the sampling time interval in seconds.

In these data there are a number of e�ects which we would like to investigate.

First, the indirect J coupling [32] in the HD produces a doublet with a splitting of

about 43Hz. The D2 in the sample is also excited; its resonance is approximately in

the middle of the HD doublet. One of the things we would like to determine is the

shift of the D2 singlet relative to the center of the HD doublet. In addition to the

three frequencies there are two di�erent characteristic decay times; the decay rate of

the HD doublet is grossly di�erent from that of D2 [32]. However, an inhomogeneous

magnetic �eld could mask the true decay: the decay could be magnet limited. We

would like to know how strongly the inhomogeneous magnetic �eld has a�ected the

decay.

The analysis we did in Chapter 3, although general, did not use a notation appro-

priate to two channels. We need to generalize the notation; there are two di�erent

measurements of this signal, (assumed to be independent), and we designate them

as d1(ti) and d2(ti). The model functions will be abbreviated as f1(t) and f2(t) with

the understanding that each measurement of the signal has di�erent amplitudes and

noise variance, but the same f!g parameters.

We can write the likelihood (3.2) immediately to obtain

L(f1; f2) / (�1�2)
�N exp

(
� X

2�2
1

� Y

2�2
2

)

where

X �
NX
i=1

[d1(ti)� f1(ti)]
2
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Figure 7.1: Analyzing NMR Spectra

NMR TIME SERIES

CHANNEL 1
PERIODOGRAM OF CHANNEL 1

NMR TIME SERIES

CHANNEL 2
PERIODOGRAM OF CHANNEL 2

The data are channel 1 (A) and 2 (C) from a quadrature detected NMR experiment.
The time series or free-induction decay is of a sample containing a mixture of D2 and
HD in a liquid phase. Theory indicates there should be three frequencies in these
data: A D2 singlet, and an HD doublet with a 43Hz separation. The singlet should
be approximately in the center of the doublet. In the discrete Fourier transform, (B
channel 1) and (D channel 2), the singlet appears to be split.
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Y �
NX
i=1

[d2(ti)� f2(ti)]
2:

Because the amplitudes and noise variance are assumed di�erent in each channel, we

may remove these using the same procedure developed in Chapter 3.

As in most of our examples, this procedure is conservative; if we had de�nite prior

information linking the amplitude or variances in the two channels, we could exploit

that information at this point to get still better estimates of the f!g parameters.

For example, if we knew that the noise was strongly correlated in the two channels,

that would enable us to estimate the noise in each channel more accurately. After

removing the nuisance parameters, the marginal posterior probability of the f!g
parameters is just the product of the \Student t-distributions" Eq. (3.17) for each

channel separately:

P (f!gjD; I) /
"
1� mh21

Nd21

#m�N
2
"
1 � mh22

Nd22

#m�N
2

(7:1)

where the subscripts refer to the channel number. As explained previously, (7.1) in

e�ect estimates the noise level independently in the two channels. This procedure is

general and can be applied whenever two measurements of a signal are available; it

is not restricted to NMR data. It is possible to specialize the estimation procedures

to include this quadrature model, as well as the aforementioned phase and noise

correlations. If all of this prior information is incorporated into the analysis (the

author has, in fact, done this), we would expect to improve the results considerably.

However, the present results will prove adequate for most purposes.

A procedure for dealing with the multiple frequency problem was outlined in Chap-

ter VI, and we will apply that procedure here. The �rst step in any frequency esti-

mation problem is to plot the data and the log of the probability of a single harmonic

frequency. If there is only one data channel, this is essentially the periodogram of the

data, Fig. 7.1(B) and Fig. 7.1(D). When more than one channel is present, the log

probability of a single harmonic frequency is essentially the sum of the periodograms

for each channel, weighted by the appropriate reciprocal variances. If the variances

are unknown, then the appropriate statistic is the log of (7.1), shown in Fig. 7.2.

Now as was shown in Chapter 6, if the frequencies are well separated, a peak in

the periodogram above the noise level is evidence { but not proof { of a frequency

near that peak. From examining Fig. 7.2 we see there are nine resolved peaks in

0:2 < ! < 0:4 and suggestions of �ve more unresolved ones. This is many more

peaks than theoretical physics indicates there should be. Is this evidence of more
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Figure 7.2: The Log10 Probability of One Frequency in Both Channels

When more than one channel is present, the periodogram is not the proper statistic
to be analyzed for indications of a simple harmonic frequency. The proper statistic
(shown above) is log of the probability of a single harmonic frequency in both channels.
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going on than theory predicts? To answer this question we will apply the general

procedure outlined in the preceding chapter for determining multiple frequencies. We

�rst �t the data with the single best frequency plus decay. We choose Lorentzian

decay instead of Gaussian because physical theory indicates the decay is Lorentzian

in a liquid phase. The model we used is

f1(t) = [B1 cos(!1t) +B2 sin(!1t)]e
��t:

The computer code in Appendix E was used to evaluate the \Student t-distribution"

Eq. (3.17) for each channel, and these were multiplied to obtain, Eq. (7.1). We

searched in the two dimensional parameter space until we located the maximumof the

distribution by the \pattern" searching procedure noted before. Next we computed

the signal having the predicted parameters. The model (dotted line) and the data

from the real channel are shown in, Fig. 7.3(A). It is clear from examining this �gure

as well as from examining the residuals in, Fig. 7.3(B), that there is at least a second

frequency in this data. We see from the probability of a single harmonic frequency in

the residuals, Fig. 7.3(C), that there is still strong evidence for additional frequencies

near 0.3.

We then proceeded to a two-frequency-plus-decay model and repeated this pro-

cedure. That is, we estimated the second frequency plus decay from the residuals,

and then used the results from the one-frequency model plus the estimates from the

residuals as the initial estimates in a two-frequency model of the original data. We

searched this four-parameter space until we located the maximum of the probability

density. The results from the two-frequency model are displayed in Fig. 7.4. The

model (dotted line) now takes on more characteristics of the signal (A), while the

residuals (B) and the probability of a single harmonic frequency in the residuals (C)

continue to show evidence for additional e�ects in the data. Notice the structure of

the probability of a single frequency in the residuals. The addition of a second fre-

quency removed one peak and essentially left the others unchanged. We demonstrated

in Chapter 6 that when the frequencies are well separated the multiple-frequency es-

timation problem separates into a series of single-frequency problems, and this just

con�rms numerically that result.

To compare the two-frequency model to the one-frequency we computed the pos-

terior odds ratio, this is given by:

posterior odds =
P (f2jI)
P (f1jI)

P (Djf2; I)
P (Djf1; I)
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Figure 7.3: The One-Frequency Model

CHANNEL 1

RESIDUALS
PROBABILITY OF ONE MORE

FREQUENCY IN THE RESIDUALS

The data from one channel of the NMR experiment (solid line), and a one-frequency-
plus-decay model with the predicted parameters (dotted line) are shown in (A). Next
we computed the residuals: the di�erences between the data and the model (B).
The residuals clearly indicate additional e�ects in the data. Last we computed the
probability of a single harmonic frequency in the residuals (C). This clearly indicates
there are additional e�ects in the data.
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where, P (f1jI) and P (f2jI) are the prior probability of the one-frequency and two-

frequency models, and P (Djf1; I) and P (Djf2; I) are the global likelihoods, Eq. 5.9,
for the one-frequency and two-frequency models. We have some prior information

about how many frequencies should be present: theoretical physics indicates there

should be three frequencies, however, we will assume either of the models is equally

probable and set P (f2jI)=P (f1jI) = 1. We then computed the likelihood ratio and

�nd there is one chance in 10457 that the one-frequency model is a better description

of the phenomenon than the two-frequency model. There is zero chance that the

one-frequency model represents the data better! But it might be that very unusual

noise is confusing us, and there is a tiny chance that the one-frequency model would

represent the next data set better. To see how tiny that chance is, note that the

number of microseconds in the estimated age of the universe is only about 1024.

Then we proceeded to the three-frequency-plus-decay model. The most proba-

ble frequency is the low frequency peak in the vicinity of 0.3; so we ran the three-

frequency-plus-decay model using this low frequency as the initial estimate for the

third frequency, Fig. 7.5. The model has now taken on most of the dominant char-

acteristics of the signal as in Fig. 7.5(A): indeed the triple is the largest e�ect in

the data. However, �tting the triple does not account for the long time behavior of

the system. Notice in the residuals, Fig. 7.5(B), that there is still more than enough

signal left for the eye to make out the oscillations easily. We see from the probabil-

ity of a single frequency in the residuals, Fig. 7.5(C), that there is still evidence for

additional frequencies in the data. The posterior odds ratio for the two-frequency-

plus-decay model compared to the three-frequency-plus-decay model indicates that

there is one chance in 10703 that the two-frequency model is a better description than

the three-frequency model.

To see if there are additional e�ects in the data we proceeded to the four-frequency-

plus-decay model. Figure 7.6(A) is a plot of the data and the model. Now the

model is making a much better showing in the long time behavior of the system,

but even here we have not accounted for all the e�ects in the data. Clearly in the

residuals, Fig. 7.6(B), there is a small unaccounted for signal; the probability of

a single frequency in the residuals, Fig. 7.6(C), veri�es this, indicating it to be a

high-frequency component (not shown in Fig. 7.6). The posterior odds ratio of the

four-frequency-plus-decay model to the three-frequency-plus-decay model indicates

there is one chance in 1080 that the three-frequency model is a better description

than the four-frequency model.
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Figure 7.4: The Two-Frequency Model

CHANNEL 1

RESIDUALS
PROBABILITY OF ONE MORE

FREQUENCY IN THE RESIDUALS

Next we computed the probability of two frequencies plus decay in both channels.
The model (dotted line) and the data (solid line) are displayed in (A). The residuals
(B) clearly indicate additional e�ects in the data. We then computed the probability
of a single frequency in the residuals and displayed that in panel (C).
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Figure 7.5: The Three-Frequency Model

CHANNEL 1

RESIDUALS
PROBABILITY OF ONE MORE

FREQUENCY IN THE RESIDUALS

Because the two-frequency-plus-decay model did not take up all of the signal, we
proceeded to a three-frequency-plus-decay model, (A) dotted line. The residuals (B)
clearly indicate additional e�ects in the data. We computed the probability of a single
frequency in the residuals and displayed that in panel (C). Again we see there are
additional e�ects in this data set.
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Figure 7.6: The Four-Frequency Model

CHANNEL 1

RESIDUALS
PROBABILITY OF ONE MORE

FREQUENCY IN THE RESIDUALS

Because the three-frequency-plus-decay model did not account for all of the signal,
we proceeded to a four-frequency-plus-decay model, (A) dotted line. The residuals
(B) continue to indicate additional e�ects in the data. We computed the probability
of a single frequency in the residuals and displayed that in panel (C). Again we see
that there are additional e�ects in this data set.
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We continued repeating this procedure until we accounted for all systematic com-

ponents { see Fig. 7.7 through Fig. 7.9. Now in Fig. 7.9(C) the residuals are �nally

beginning to look like Gaussian white noise. However, there is some evidence for

a very small additional frequency, see Fig. 7.9(C). We did not go further because

this frequency, although present in the real channel, is not present to any signi�cant

degree in the quadrature data channel.

Our probability analysis indicates there are at least seven frequencies in these data,

of which one is attributable to the instrumentation. That leaves six frequencies lo-

cated near 0.3 in dimensionless units. The posterior probability of a single harmonic

frequency in the combined data, Fig. 7.2, gives evidence of multiple complex phenom-

ena around 0.3 but it could not sort out what is going on. This is not too surprising,

given that there are six frequencies in this region. The one-frequency model has

done surprisingly well. The absorption spectrum, Fig. 7.10(A), on the other hand,

shows only three peaks in this region. This simple example illustrated that the dis-

crete Fourier transform gives evidence of frequencies in the data that an absorption

spectrum does not. Although the probability of a single harmonic frequency or the

Schuster periodogram is not an exact estimator for multiple frequencies, it is adequate

as long as the frequencies are well separated. The only time one must worry about

this statistic being incorrect is when the frequencies are close together (as they were

here). But by contrast, there are no conditions under which the absorption spectrum

is an optimal frequency estimator, and the global phase adjustment on the absorption

spectrum can suppress indications of frequencies in the data.

We developed the procedures for estimating the accuracy of the frequencies and

the amplitudes and we have used those procedures here [to apply them we calculated

the second derivatives numerically (4.13)]. The results of this calculation are:

Frequency Decay Rate Amplitude Amplitude
Hertz Hertz Real Imaginary

75.0695 � 0.0005 7.294 � 0.003 49 46
78.1231 � 0.0002 19.613 � 0.001 170 160
94.1207 � 0.0008 8.569 � 0.001 71 72
98.0187 � 0.0001 23.211 � 0.001 354 318
117.6052 � 0.0001 16.336 � 0.001 193 188
121.0824 � 0.0002 11.270 � 0.001 67 66

We also estimated the signal-to-noise ratio, Eq. (4.8), for each channel:

Signal

Noise
= 1606 in channel 1,
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Figure 7.7: The Five-Frequency Model

CHANNEL 1

RESIDUALS
PROBABILITY OF ONE MORE

FREQUENCY IN THE RESIDUALS

Because the four-frequency model did not account for all of the signal, we proceeded
to a �ve-frequency model, (A) dotted line. The residuals (B) continue to indicate
additional e�ects in the data. We computed the probability of a single frequency in
the residuals and displayed that in panel (C). There is no apparent change in (C)
because a very high frequency component was remove by the four-frequency model.
Again we see that there are additional e�ects in this data set.
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Figure 7.8: The Six-Frequency Model

CHANNEL 1

RESIDUALS
PROBABILITY OF ONE MORE

FREQUENCY IN THE RESIDUALS

Because the six-frequency model did not account for all of the signal, we proceeded to
a seven-frequencymodel, (A) dotted line. The residuals (B) clearly indicate additional
e�ects in the data. We computed the probability of a single frequency in the residuals
and displayed that in panel (C). Again we see there are additional e�ects in this data
set.
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Figure 7.9: The Seven-Frequency Model

CHANNEL 1

RESIDUALS
PROBABILITY OF ONE MORE

FREQUENCY IN THE RESIDUALS

At last, with the seven-frequency model we reached a point where the model and
the signal look essentially identical (A). The residuals (B), now look much more like
white noise. We computed the probability of a single frequency in the residuals and
displayed that in panel (C). Again we see there are additional very small e�ects in
this data set. However, these e�ects are not repeated in both channels: we interpret
these e�ects be an instrumental artifact.
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Figure 7.10: Comparison to an Absorption Spectrum

ABSORPTION SPECTRUM

POWER SPECTRAL DENSITY

The absorption spectrum (described in the text, see page 117) gives a clear indication
of three frequencies and hints at three others (A). Using the full width at half maxi-
mum of the absorption spectrum to determine the accuracy estimate and converting
to physical units, it determines the frequencies to within �15Hz. The probability
analysis (B) used a seven-frequency model with decay. The estimated accuracy is
approximately �0:001Hz.
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Signal

Noise
= 1478 in channel 2,

and the estimated standard deviation (4.6):

(�)est = 9 in channel 1,

(�)est = 9 in channel 2.

The amplitudes were estimated separately in each channel, and if the spectrometer

is working correctly we expect the amplitude of each sinusoid to be approximately

the same. This serves as an additional check on the model; if we were �tting an

appreciable amount of noise, the estimated amplitudes would be di�erent in the two

channels.

The quantities of interest are the splitting between the two components of the HD

doublet as well as the shift in the center frequency. But physical theory indicated

there should be only three frequencies in the region of the main resonance: we �nd

six. The calculation indicates there is clearly more going on here than physical theory

indicates there should be. One of the major assumptions made in NMR is that the

magnetic �eld is uniform over the sample. If it is not, the resonances will be spread

out, corresponding to di�erent intensities of the local �eld, and false structure may

appear. Here we may be seeing this e�ect. However, the sharpness of the peaks

suggests that the e�ect is real, conceivably arising from impurities in the sample or

from association e�ects (such as H4O2 molecules) not considered in the theory.

However, we have derived a model of the process as if there were two major regions

in the sample where the �eld was approximately uniform. If we wish to derive the

splittings we must use the frequencies corresponding to uniform �eld. In each of

the regions where the �eld is a uniform, the frequency shifts should be according to

theory. Thus for the set of frequencies shifted to lower values (75, 94, and 117) the

HD doublet separation is

High - Low = 42:536 � 0:001Hz

and the center frequency (94 Hz) is displaced from the center of the doublet by

2.217�0.001 Hz. For the set of frequencies (78, 98, and 121) shifted to higher values

we have

High - Low = 42:956 � 0:001Hz

and the center frequency (98 Hz) is displaced from the center of the doublet by

1.521�0.001 Hz. Both of these tentative answers are in good agreement with the
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simple theory; unfortunately, until the �eld shimming problems are cleared up we

do not know which to believe, if either. The center frequency is displaced from the

center of the doublet in the correct direction, and in reasonable agreement with prior

measurements of this quantity [33]. In order to answer these questions it would be

necessary to rerun the experiment with better shimming. Additionally, the estimates

could be improved somewhat by sampling the data faster.

If one attempts to analyze these data using the standard absorption spectrum

Fig. 7.10(A) only three peaks are found, with hints of three other frequencies. The

splitting of the HD doublet is approximately correct, but the center peak is shifted

in the wrong direction. We can compare these estimates directly to the absorption

spectrum. The reason the analysis of this experiment is so di�cult with the absorp-

tion spectrum is that the full-width at half maximum for the D2 peak, Fig. 7.10(A),

is 15Hz. But this width is indicative only of the decay rates; not the accuracy with

which the oscillations frequency is determined. Probability theory has enabled us to

separate these entirely di�erent quantities. Figure 7.10(B) gives the estimates from

Eq. (7.1). We have plotted these estimates as normalized Gaussians, each centered

at the estimated frequency and having the same standard deviation as the estimated

frequency. Clearly, the resolution of these frequencies is much improved compared

to an absorption spectrum or a discrete Fourier transform. With separately normal-

ized distributions, the heights in Fig. 7.10(B) are indications of the accuracy of the

estimates, not of the power carried by the signal.

The accuracy of this procedure may be a little disturbing. To understand it, look

at the estimated signal-to-noise ratio in these data. It is on the order of 1500 for

each channel. There is essentially nothing in these data sets that can be ignored.

Every little bump and wiggle in the discrete Fourier transform is indicative of some

e�ect in the data, and must be accounted for. Because the accuracy of the estimates is

inversely proportional to the signal-to-noise of the data, the estimates are very precise.

It is rather the inaccuracy of the conventional method that should be disturbing to

one.

7.2 Corn Crop Yields

Economic data are hard to analyze, in part because the data are frequently con-

taminated by large spurious e�ects, which one does not know how to capture in a
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model, and the time series are often very short. Here we will examine one example

of economic data to demonstrate how to remove some unknown and spurious e�ects.

In particular, we will analyze one hundred year's worth of corn crop data from three

states (Kansas, South Dakota, and Nebraska), Fig. 7.11(A) through Fig. 7.11(C) [34].

We would like to know if there is any indication of periodic behavior in these data.

These data have been analyzed before. Currie [35] used a high pass �lter and then

applied the Burg algorithm [36] to the �ltered data. Currie �nds one frequency near

20 years which is attributed to the lunar 18.6 year cycle, and another at 11 years,

which is attributed to the solar cycle.

There are three steps in Currie's analysis that are troublesome. First, the Burg

algorithm is not optimal in the presence of noise (although it is for the problem it was

formulated to solve). The fact that it continues to work means that the procedure

is reasonably robust; that does not change the fact that it is fundamentally not

appropriate to this problem [36]. Second, one has doubts about the �lter: could it

suppress the e�ect one is looking for or introduce other spurious e�ects? Third, to

apply the Burg algorithm when the data consist of the actual values of a time series,

the autoregression order (maximum lag to be used) must be chosen and there is no

theoretical principle to determine this choice. We do not mean to imply that Currie's

result is incorrect; only that it is provisional. We would like to apply probability

theory as developed in this work to check these results.

The �rst step in a harmonic analysis is simply to plot the data, Fig. 7.11(A)

through Fig. 7.11(C) and the log of the posterior probability of a single harmonic

frequency. In the previous example we generalized the analysis for two channels. The

generalization to an arbitrary number of channels is just a repeat of the previous

arguments:

P (f!gjD; I) /
rY

j=1

"
1 � mjh2j

Njd2j

#mj�Nj
2

(7:2)

where the subscripts refer to the jth channels: each of the models has mj amplitudes,

and each data set contains Nj data values. Additionally it was assumed that the

noise variance �j was unknown and possibly di�erent for each channel. The \Stu-

dent t-distributions" Eq. (3.17) for each channel should be computed separately, thus

estimating and eliminating the nuisance parameters particular to that channel, and

then multiplied to obtain the posterior probability for the common e�ects, Eq. (7.2).

Again if we had prior knowledge of correlations in the \noise" for di�erent chan-

nels, we could exploit that information to get better �nal results, at the cost of more
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Figure 7.11: Corn Crop Yields for Three Selected States

SOUTH DAKOTA

CORN YIELDS

KANSAS

CORN YIELDS

NEBRASKA

CORN YIELDS

LOG PROBABILITY OF A COMMON

FREQUENCY IN THE THREE STATES

The three data sets analyzed were corn yields in bushels per acre for South Dakota
(A), Kansas (B), and Nebraska (C). The log probability of a single common frequency
plus a constant is plotted in (D). The question we would like to answer is \Is that
small bump located at approximately 0.3, corresponding to a 20 year period, a real
indication of a frequency or is it an artifact of the trend?"
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computation.

For this harmonic analysis we take the model to be a single sinusoid which oscillates

about a constant. The model for the jth channel may be written

fj(t) = Bj;1 +Bj;2 sin(!t) +Bj;3 cos(!t): (7:3)

Here we have three channels, named \South Dakota", \Kansas", and \Nebraska".

We allow Bj;1, Bj;2, and Bj;3 to be di�erent for each channel; thus there are a total of

nine amplitudes, one frequency, and three noise variances. To compute the posterior

probability for each measurement, we used the computer code in Appendix E. The

log of each \Student t-distribution" Eq. (3.17) was computed and added to obtain the

log of the posterior probability of a single common harmonic frequency, Fig. 7.11(D).

What we would like to know is, \Are those small bumps in Fig. 7.11(D) indications

of periodic behavior, or are they artifacts of the noise or trend?" To attempt to answer

this, consider the following model function

fj(t) = Tj(t) +Bj;1 cos(!t) +Bj;2 sin(!t)

where we have augmented the standard frequency model by a trend Tj(t). The only

parameter of interest is the frequency !. The trend Tj(t) is a nuisance function; to

eliminate it we expand the trend in orthonormal polynomials Lj(t). These orthonor-

mal polynomials could be any complete set. We use the Legendre polynomials with

an appropriate scaling of the independent variable to make them orthonormal on the

region (�49:5 � t � 49:5). This is the range of values used for the time index in

the sine and cosine terms. After expanding the trend, the model function for the jth

measurement can be written

fj(t) =
EX
k=0

Bj;k+1Lk(t) +Bj;E+2 cos(!t) +Bj;E+3 sin(!t):

Notice that if the expansion order E is zero the problem is reduced to the previous

problem (7.3).

The expansion order E must be set to some appropriate value. From looking at

these data one sees that it will take at least a second order expansion to remove the

trend. The actual expansion order for the trend is unknown. However, it will turn

out that the estimated frequencies are insensitive to the expansion order, as long as

the expansion is su�cient to represent the trend without representing the signal of

interest. Of course, di�erent orders could have very di�erent implications about other
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questions than the ones we are asking; for example, predicting the future trend. That

is an altogether more di�cult problem than the one we are solving.

The e�ects of increasing the expansion order E can be demonstrated by plotting

the posterior probability for several expansion orders { see Fig. 7.12(A){7.12(H).

For expansion order zero, Fig. 7.12(A), through expansion order 2, Fig. 7.12(C) the

trend has not been removed: the posterior probability continues to pick out the low

frequency trend. When a third order trend is used, Fig. 7.12(D), a sudden change in

the behavior is seen. The frequency near ! � 0:31 suddenly shows up, along with

a spurious low-frequency e�ect due to the trend. In expansion orders four through

seven, Fig. 7.12(E) through Fig. 7.12(H), the trend has been e�ectively removed and

the posterior probability indicates there is a frequency near 0.31 corresponding to a

20.4 year period.

The amount of variability in the frequency estimates as a function of the expansion

order will show how strongly the trend expansion is a�ecting the estimated frequency.

The frequency estimates for the fourth through seventh order expansions are

(f4)est = 20:60 �0:16 years

(f5)est = 20:47 �0:18 years

(f6)est = 20:20 �0:14 years

(f7)est = 20:47 �0:18 years:

Here the estimated errors represent two standard deviations. Thus, given the spread

in the estimates it appears there is indeed evidence for a frequency of a period 20.4

� 0.2 years.

Now that the e�ects of removing a trend are better understood, we can proceed

to a two-frequency model plus a trend to see if we can verify Currie's two frequency

results. Figure 7.13 is a plot of the log of this probability distribution after removing

a �fth order trend. The behavior of this plot is the type one would expect when a

two-frequency model is applied to a data set that contains only one frequency. From

this we cannot verify Currie's results. That is, for the three states taken as a whole

these data show evidence for an oscillation near 20.4 years as he reports, but we

do not �nd evidence for an 11 year cycle. This does not say that Currie's result is

incorrect; he incorporated much more data into his calculation, and to check it we

would need to include data from at least a dozen more states. While this is a worthy

project, it is beyond the scope of this simple demonstration, whose main purpose is

to show the good performance of the \theoretically correct" method of trend removal.
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Figure 7.12: The Joint Probability of a Frequency Plus a Trend

PROBABILITY OF A HARMONIC FREQUENCY

IN THE CORN YIELD DATA WITH

A CONSTANT CORRECTION

PROBABILITY OF A HARMONIC FREQUENCY

IN THE CORN YIELD DATA WITH

A FIRST ORDER TREND CORRECTION

By including a trend expansion in our model we e�ectively look for oscillations about
a trend. This is not the same as detrending, because the trend functions and the sine
and cosine functions are never orthogonal. The zero order trend (or constant) plus a
simple-harmonic-frequency model (A) is dominated by the trend. When we included
a linear trend the height of the trend is decreased some, however the trend is still the
dominant e�ect in the analysis.
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PROBABILITY OF A HARMONIC FREQUENCY

IN THE CORN YIELD DATA WITH

A SECOND ORDER TREND CORRECTION

PROBABILITY OF A HARMONIC FREQUENCY

IN THE CORN YIELD DATA WITH

A THIRD ORDER TREND CORRECTION

The probability of a single harmonic frequency plus a second-order trend (C) continues
to pick out the low frequency trend. However, the level and spread of the marginal
posterior probability density is such that the trend has almost been removed. When
the probability of a single harmonic frequency plus a third-order trend is computed,
the probability density suddenly changes behavior. The frequency near 0.3 is now the
dominant feature (D). The trend has not been completely removed; a small artifact
persists at low frequencies.
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PROBABILITY OF A HARMONIC FREQUENCY

IN THE CORN YIELD DATA WITH

A FOURTH ORDER TREND CORRECTION

PROBABILITY OF A HARMONIC FREQUENCY

IN THE CORN YIELD DATA WITH

A FIFTH ORDER TREND CORRECTION

When the probability of a fourth-order trend plus a harmonic frequency is computed
the trend is now completely gone and only the frequency at 20 years remains (E).
When the expansion order is increased in (F) the frequency estimate is not essentially
changed.



142 CHAPTER 7

PROBABILITY OF A HARMONIC FREQUENCY

IN THE CORN YIELD DATA WITH

A SIXTH ORDER TREND CORRECTION

PROBABILITY OF A HARMONIC FREQUENCY

IN THE CORN YIELD DATA WITH

A SEVENTH ORDER TREND CORRECTION

Increasing the expansion order further does not signi�cantly a�ect the estimated
frequency (G) and (H). If the expansion order is increased su�ciently, the expansion
will begin to remove the harmonic oscillation; and the posterior probability density
will gradually decrease in height.
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Figure 7.13: Probability of Two Frequencies After Trend Correction

This is the natural logarithm of the probability of two common harmonic frequencies
in the crop yield data with a �fth order trend. This type of structure is what one
expects from the su�cient statistic when there is only one frequency present. Notice
the maximum is located roughly along a vertical and horizontal line at 0.3.
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We did not seek to remove the trend from the data, but rather to eliminate its e�ect

from the conclusions.

7.3 Another NMR Example

Now that the tools have been developed we can demonstrate how one can incor-

porate partial information about a model. In the corn crop example the trend was

unknown, so it was expanded in orthonormal polynomials and integrated out of the

problem, while we included what partial information we had in the form of the sine

and cosine terms. In this NMR example let us assume that the decay function is of

interest to us. We would like to determine this function as accurately as possible.

The data we used, Fig. 7.14(A), in this example are one channel of a pure D2

spectrum [31]. Figure 7.14(B) contains the periodogram for these data. For this

demonstration we will use the �rst N = 512 data points because they contain most

of the signal.

For D2, theoretical studies indicate there is a single frequency with decay [32].

Now we expect the signal should have the form

f(t) = [B1 sin(!t) +B2 cos(!t)]D(t);

where D(t) is the decay function, and the sine and cosine e�ectively express what

partial information we have about the signal. We will expand the decay function D(t)

to obtain

f(t) = [B1 sin(!t) +B2 cos(!t)]
rX

j=0

DjLj(t)

where Dj are the expansion coe�cients for the decay function, B1 and B2 are e�ec-

tively the amplitude and phase of the sinusoidal oscillations, and Lj are the Legendre

polynomials with the appropriate change of variables. This model can be rewritten

as

f(t) =
rX

j=0

DjB1

�
Lj(t)[sin(!t) +

B2

B1

cos(!t)]
�
:

There is an indeterminacy in the overall scale. That is, the amplitude of the

sinusoid and the amplitude of the decay D(t) cannot both be determined. One of

them is necessarily arbitrary. We chose the amplitude of the sine term to be unity

because it e�ectively eliminates one f!g parameter from the problem. We have a

choice, in this problem, on which parameters are to be removed by integration. We
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Figure 7.14: A Second NMR Example - Decay Envelope Extraction

THE NMR TIME SERIES

SCHUSTER PERIODOGRAM

These NMR data (A) are a free-induction decay for a D2 sample. The sample was
excited using a 55MHz pulse and the signal detected using a mixer-demodulator.
We used 512 data samples to compute the periodogram (B). We would like to use
probability theory to obtain an estimate of the decay function while incorporating
what little we know about the oscillations.
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chose to eliminate fDjB1g because there are many more of them, even though they

are really the parameters of interest.

When we eliminate a parameter from the problem, it does not mean that it cannot

be estimated. In fact, we can always calculate the parameters fDjB1g from the linear

relations between models, Eq. (4.2). For this problem it is simpler to search for the

maximum of the probability distribution as a function of frequency ! and the ratio

B1=B2, and then use Eq. (4.2) to compute the expansion coe�cientsDj . If we choose

to eliminate the amplitudes of the sine and cosine terms, then we must search for the

maximum of the probability distribution as a function of the expansion parameters;

there could be a large number of these.

We must again set the expansion order r; here we have plenty of data so in principle

we could take r to be large. However, unless the decay is rapidly varying we would

expect a moderate expansion of perhaps 5th to 10th order to be more than adequate.

In the examples given here we set the expansion order to 10. We solved the problem

also with the expansion order set to 5, and the results were e�ectively identical to the

tenth order expansion.

To solve this problem we again used the computer code in Appendix E, and the

\pattern" search routine discussed earlier. We located the maximum of the two

dimensional \Student t-distribution," Eq. (3.17), and used the procedure given in

Chapter 4, Eqs. (4.9) through (4.14), to estimate the standard deviation of the pa-

rameters. We �nd these to be

(!)est = 0:14976 � 2 � 10�5

�
B2

B1

�
est

= �:475 � 5� 10�3

at two standard deviations. The variance of these data was d2 = 2902, the estimated

noise variance (�2)est � 27:1, and the signal-to-noise ratio was 23.3.

After locating the maximum of the probability density we used the linear rela-

tions (4.2) between the orthonormal model and the nonorthonormal model to com-

pute the expansion coe�cients. We set the scale by requiring the decay function and

the reconstructed model function to touch at one point near the global maximum. We

have plotted the data and the estimated decay function, Fig. 7.15(A). In Fig. 7.15(B)

we have a close up of the data, the decay function, and the reconstructed signal.

It is apparent from this plot that the decay is not Lorentzian or there is a second

very small frequency present in the data. The decay function drops rapidly and then

begins to oscillate. This is a real e�ect and is not an artifact of the procedure we are
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Figure 7.15: How Does an NMR Signal Decay?

DATA AND DECAY ENVELOPE

A CLOSE UP OF THE DATA, THE MODEL,

AND THE DECAY ENVELOPE

The decay function in (A) comes down smoothly and then begins to oscillate. This
is a real e�ect, and is not an artifact of the analysis. In (B) we have plotted a blow
up of the data, the predicted signal, and the decay function.
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using. There are two possible interpretations: there could be a second small signal

which is beating against the primary signal, or the inhomogeneous magnetic �eld

could be causing it. When a sample is placed in a magnetic �eld each individual

dipole in the �eld precesses at a well de�ned rate proportional to the local magnetic

�eld. When the �eld is inhomogeneous (badly shimmed) a sample will resonate with

an entire spectrum of frequencies around the principal frequency. Typically this

distribution will manifest itself microscopically as a broadening or perhaps a splitting

in lines: they become doubles and that is what we see here as this small oscillation. If

we were to go back and look at this resonance very carefully we would �nd a second

very small peak.

7.4 Wolf's Relative Sunspot Numbers

In 1848 Rudolph Wolf introduced the relative sunspot numbers as a measure of

solar activity. These numbers, de�ned earlier, are available as yearly averages since

1700 { Fig. 2.1(A). The importance of these numbers is primarily because they are the

longest available quantitative index of the sun's internal activity. The most prominent

feature in these numbers is the 11.04 year cycle mentioned earlier. In addition to this

cycle a number of others have been reported including cycles of 180, 90, 45, and a 22

years as well as a number of others [37], [38]. We will apply probability theory to

these numbers to see what can be learned. We must stress that in what follows we

do not know what the \true" model is, but can only examine a number of di�erent

possibilities. We begin by trying to determine the approximate number of degrees of

freedom any reasonable model of these numbers should have.

7.4.1 Orthogonal Expansion of the Relative Sunspot

Numbers

We can get a better understanding of the sunspot numbers if we simply expand

these numbers in orthogonal vectors, and allow Eqs. (5.1) and (5.9) to indicate the

number of expansion vectors needed to represent the data. This slight variant of

the discrete Fourier transform will serve several useful purposes: it will give us an

indication of the complexity of the data set, and it will indicate the noise level.

For this simple expansion we used sines and cosines. We generated the cosine



Orthogonal Expansion of the Relative Sunspot Numbers 149

vectors using

Hj(ti) =
1
p
cj
cos

�
�jti

N

�

cj �
NX
i=1

cos2
�
�jti

N

�

and the sine vectors using

Hk(ti) =
1
p
sj

sin

 
�kti

N

!

sj �
NX
i=1

sin2
 
�kti

N

!

where 0 � k � N=2 for the cosine components and 1 � k � N=2 for the sine

components. There are a total of 285 expansion vectors, and for this problem the

time increments are one year. Next we computed hk: the dot product between the

data and the expansion vectors. Both the sine and cosine dot products were then

squared and sorted into decreasing order.

From these ordered projections we could then easily compute the probability of

the expansion order E. For this problem this is essentially the posterior probability

Eq. (5.9) with r = 0 and the terms associated with the f!g set equal to 1. Because we
are using an orthonormal expansion the Jacobian is unity. This simpli�es Eq. (5.9)

somewhat; we have

P (EjD; I) = �
�
E

2

�
�
�
N �E

2

�"
E(h2)E

2

#�E
2 �N � E

2
h�2i

�E�N
2

;

where (h2)E is the su�cient statistic computed with the E largest orthonormal pro-

jections. Figure 7.16 is a plot of the posterior probability of the model as a function

of expansion order E. One can see from the plot that there is a peak in the proba-

bility around 90, and if one wants to be certain that all of the systematic component

has been expanded, then the expansion order must be taken to be approximately

100. The estimated signal-to-noise ratio of these data is approximately 11.5, and the

estimated standard deviation is about 5.

An orthogonal expansion of the data is about the worst model one could pick, in

the sense of having the largest number of degrees of freedom. If we were to produce

a model that reduced the total number of degrees of freedom by a factor 3 we would

still have over thirty. For a simple harmonic frequency model, that would be 10 to

14 total frequencies. There are 286 data values, and the main period of roughly 11
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Figure 7.16: The Probability of the Expansion Order

We expanded the Wolf sunspot numbers on orthonormal vectors and then used
Eq. (5.9) to decide when to stop the expansion. This probability density indicates
that the sunspot numbers are an extremely complex data set needing approximately
100 degrees of freedom to represent them.
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years; that gives 26 cycles in the record. If each period has a unique amplitude, that

still leaves approximately six to ten degrees of freedom to describe the shape of the

oscillation. The implication of this is that Wolf's numbers are intrinsically extremely

complicated, and no simple model for these numbers is going to prove possible. We

will investigate them using a number of relatively simple models to see what can be

learned.

7.4.2 Harmonic Analysis of the

Relative Sunspot Numbers

The second model we will investigate is the multiple harmonic frequency model.

There are three degrees of freedom for each frequency, and with 100 degrees of freedom

in the data, there is no chance of �nding all of the structure in them. We will content

ourselves with �nding the �rst few frequencies and seeing how the results compare

with the orthogonal expansion. Many writers have performed a harmonic analysis

on these numbers. We will compare our results to those obtained recently by Sonett

[38] and Bracewell [39]. The analysis done by Sonett concentrated on determining

the spectrum of the relative sunspot numbers. He used the Burg [36] algorithm.

This routine is extremely sensitive to the frequencies. In addition to �nding the

frequencies, this routine will sometimes shift the location of the predicted frequency,

and it estimates a spectral density (a power normalized probability distribution), not

the power carried in a line. Consequently, no accurate determination of the power

carried by these lines has been done. As explained by Jaynes [40], the Burg algorithm

yields the optimal solution to a certain well-de�ned problem. But in practice it is used

in some very di�erent problems for which it is not optimal (although still useful). We

will use probability theory to estimate the frequencies, their accuracy, the amplitudes,

the phases, as well as the power carried by each line.

Again, we plot the log of the probability of a single harmonic frequency plus a

constant, Fig. 7.17(A). In this study, we include a constant and allow probability

theory to remove it the correct way, instead of subtracting the average from the data

as was done in Chapter 2. We do this to see if this theoretically correct way of

eliminating a constant will make any di�erence in the evidence for frequencies. Thus

we plot the log of the marginal posterior probability Eq. (3.17) using

f(t) = B1 +B2 cos!t+B3 sin!t
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Figure 7.17: Adding a Constant to the Model

THE NATURAL LOGARITHM OF THE POSTERIOR PROBABILITY

OF A FREQUENCY CORRECTED FOR A CONSTANT

THE SCHUSTER PERIODOGRAM

The loge of the marginal posterior probability of a single harmonic frequency plus
a constant (A), and the periodogram (B) are almost identical. The periodogram is
related to the posterior probability when �2 is known; for a data set with zero mean
the periodogram must go to zero at zero frequency. The low frequency peak near zero
in (B) is caused by subtracting the average from the data. The loge of the marginal
posterior probability of a single harmonic frequency plus a constant will go to zero at
zero only if there is no evidence of a constant component in the data. Thus (A) does
not indicate the presence of a spurious low frequency peak, only a constant.
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as the model. The periodogram, Fig. 7.17(B), is a su�cient statistic for a single har-

monic frequency if and only if the time series has zero mean. Under these conditions

the periodogram must go to zero at ! = 0. But this is the only di�erence visible; in

the periodogram, Fig. 7.17(B), the low frequency peak near zero is a spurious e�ect

due to subtracting the average value from the data. Probability analysis using a sim-

ple harmonic frequency plus a constant does not show any evidence for this period,

Fig. 7.17(A).

Next we applied the general procedure for �nding multiple frequencies. We started

with the single frequency which best described the data, then computed the residuals

and looked to see if there was evidence for additional frequencies in the residuals. The

initial estimate from the residuals was then used in a two-frequency model. We con-

tinued this process until we had a nine-frequency model. Next we computed the stan-

dard deviation using the procedure developed in Chapter 4, Eqs. (4.9) through (4.14).

Last, we used the linear relations between the models, Eq. (4.2), to compute the

nonorthonormal amplitudes as well as their second moments. These are summarized

as in Table . With these nine frequencies and one constant, the estimated standard

deviation of the noise is (�)est = 15, and the signal-to-noise ratio is 14. The constant

term had a value of 46.

We have plotted these nine frequencies as normalized Gaussians, Fig. 7.18(A),

to get a better understanding of their determination. We plot in Fig. 7.18(B) an

approximation to the line spectral density obtained by normalizing Fig. 7.18(A) to the

appropriate power level. The dotted line on this plot is the periodogram normalized

to the highest value in the power spectral density. This plot brings home the fact that

when the frequencies are close, the periodogram is not even approximately a su�cient

statistic for estimating multiple harmonic frequencies. At least one of the frequencies

found by the nine-frequency model occurs right at a minimum of the periodogram.

Also notice that the normalized power is more or less in fair agreement with the

periodogram when the frequencies are well separated. That is because, for a simple

harmonic frequency, the peak of the periodogram is indeed a good estimate of the

energy carried in that line.

In Fig. 7.19(A), we can plot the simulated sunspot series. We have repeated

the plot of the sunspot numbers, Fig. 7.19(B), for comparison. This simple nine-

frequency model reproduces most of the features of the sunspot numbers, but there is

still something missing from the model. In particular the data values drop uniformly

to zero at the minima. This behavior is not repeated in the nine-frequency model.
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Table 7.1: The Nine Largest Sinusoidal Components in the Sunspot Numbers

hf̂iest hB1i hB2i
q
B2

1 +B2
2

11.02 � 0.01 years -35 4.5 35
10.73 � 0.03 years 1.0 19 19
9.98 � 0.01 years 15 -10 18
88.08 � 0.02 years 2.9 -17 17
53.96 � 0.02 years -10 -13 16
11.85 � 0.01 years -14 -2.2 14
48.44 � 0.04 years -9.8 -3.1 10
8.39 � 0.03 years -5.4 6.9 9
13.16 � 0.03 years 4.7 -6.6 8

The �rst column is the frequency with an estimate of the variance of the posterior
probability density; the second and third columns are amplitudes of the cosine and
sine components and the last column is the magnitude of the signal. There are any
number of e�ects in these data, but the largest is the 11 year cycle. We demonstrated
in Section 6.1.4, page 76 that when the oscillations are nonharmonic the single fre-
quency model can have spurious multiple peaks. It is only the largest peak in the
marginal posterior probability density of a single harmonic frequency plus a constant
that is indicative of the oscillation in the data. If we use a multiple harmonic fre-
quency model, as we did here, probability theory will interpret these spurious peaks
as frequencies. Probably all of the e�ects other than the 11 year cycle are artifacts
of not knowing the correct model, which presumably involves nonsinusoidal and non-
stationary oscillations.
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Figure 7.18: The Posterior Probability of Nine Frequencies

THE POWER SPECTRAL DENSITY

FOR 9 FREQUENCIES

THE LINE POWER SPECTRAL DENSITY

FOR 9 FREQUENCIES

The posterior probability of nine frequencies in the relative sunspot numbers (A),
has nine well resolved peaks. In (B) we have a line spectral density. The peak value
of the periodogram is an accurate estimate of the energy carried in a line as long as
there is only one isolated frequency present.
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Figure 7.19: The Predicted Sunspot Series

THE ESTIMATED SUNSPOT NUMBERS

WOLF'S RELATIVE SUNSPOT NUMBERS

Not only can one obtain the estimated power carried by the signal, one can use the
amplitudes to plot what probability theory has estimated to be the signal (A). We
have included the relative sunspot numbers (B), for easy comparison.
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Also, the data have sharper peaks than troughs, while our sinusoidal model, of course,

does not. This is, as has been noted before, evidence of some kind of \recti�cation"

process. A better model could easily reproduce these e�ects.

7.4.3 The Sunspot Numbers in Terms of

Harmonically Related Frequencies

We used a harmonic model on the sunspot numbers so that a simple comparison

to a model proposed by C. P. Sonett [38] could be done. He attempted to explain

the sunspot numbers in terms of harmonic frequencies; 180, 90, and 45 are examples

of harmonically related frequencies. In 1982, Sonett [38] published a paper in which

the sunspot number spectrum was to be explained using

f(t) = [1 + � cos(!mt)][cos(!ct) + �]2

as a model. Sonett's estimate of the magnetic cycle frequency !m is approximately 90

years, and his estimate of the solar cycle frequency !c is 22 years. The recti�cation

e�ect is present here.

This model is written in a deceptively simple form and a number of constants

(phases and amplitudes) have been suppressed. We propose to apply probability

theory using this model to estimate !c and !m. To do this, we �rst square the term

in brackets and then use trigonometric identities to reduce this model to a form in

which probability theory can readily estimate the amplitudes and phases:

f(t) = B1 + B2 cos([!m]t) + B3 sin([!m]t)

+ B4 cos([2!m]t) + B5 sin([2!m]t)

+ B6 cos([!c � 2!m]t) + B7 sin([!c � 2!m]t)

+ B8 cos([!c � !m]t) + B9 sin([!c � !m]t)

+ B10 cos([!c]t) + B11 sin([!c]t)

+ B12 cos([!c + !m]t) + B13 sin([!c + !m]t)

+ B14 cos([!c + 2!m]t) + B15 sin([!c + 2!m]t)

+ B16 cos([2!c � 2!m]t) + B17 sin([2!c � 2!m]t)

+ B18 cos([2!c � !m]t) + B19 sin([2!c � !m]t)

+ B20 cos([2!c]t) + B21 sin([2!c]t)

+ B22 cos([2!c + !m]t) + B23 sin([2!c + !m]t)

+ B24 cos([2!c + 2!m]t) + B25 sin([2!c + 2!m]t):
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Now Sonett speci�es the amplitudes of these, but not the phases [38]. We will take

a more general approach and not constrain these amplitudes. We will simply allow

probability theory to pick the amplitudes and phases which �t the data best. Thus

any result we �nd will have the Sonett frequencies !m and !c, but the amplitudes

and phases will be chosen in a way that will �t the data at least as well as does the

Sonett model { possibly somewhat better. After integrating out the amplitudes we

have only two parameters to determine, !c and !m.

We located the maximum of the posterior probability density using the computer

code in Appendix E and the pattern search routine. The \best" estimated value for

!c (in years) is approximately 21:0 years, and for !m approximately 643 years. The

values for these parameters given by Sonett are !c = 22 years and 76 < !m < 108

years with a mean value of !m � 89 years. Our probability analysis estimates the

values of !c to be about the same, and !m to be substantially di�erent, from those

given by Sonett. The most indicative value is the estimated standard deviation for this

model: �Sonett = 25:5 years. By this criterion, this model is no better than a four-

frequency model. Considering that a four-frequency model has 15 degrees of freedom

compared to 29 for this model, we can all but exclude harmonically related frequencies

as a possible explanation of the sunspot numbers. Of course, these conclusions refer

only to an analysis of the entire run of data; if we considered the �rst century of the

record to be unreliable and analyzed only the more recent data, a di�erent conclusion

might result.

7.4.4 Chirp in the Sunspot Numbers

We have so far investigated two variations of harmonic analysis of the relative

sunspot numbers. Let us proceed to investigate a more complex case to see whether

there is more structure in the relative sunspot numbers than just simple periodic

behavior. These data have been looked at from this standpoint at least once before.

Bracewell [39] has analyzed these numbers to determine whether they could have a

time-dependent \instantaneous phase". The model used by Bracewell can be written

as

f(t) = B1 +Re [E(t) exp(i�(t) + i!11t)]

where B1 is a constant term in the data, E(t) is a time varying magnitude of the

oscillation, �(t) is the \instantaneous phase", and !11 is the 11 year cycle.
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This model does not incorporate any prior information into the problem. It is so

general that any function can be written in this form. Nevertheless, the idea that the

phase �(t) could be varying slowly with time is interesting and worth investigating.

An \instantaneous phase" in the notation we have been using is a chirp. Let �(t)

stand for the phase of the signal, and ! its frequency. Then we may Taylor expand

�(t) around t = 0 to obtain

!t+ �(t) � �0 + !t+
�00

2
t2 + � � � ;

where we have assumed �0(t) = 0. If this were not so then ! is not the frequency as

presumed here. The Bracewell model can then be approximated as

f(t) = B1 + E(t)[cos(!t+ �t2) +B2 sin(!t+ �t2)]:

Thus, to second order, the Bracewell model is just a chirped frequency with a time

varying envelope.

We can investigate the possibility of a chirped signal using

f(t) = C1 + C2 cos(!t+ �t2) + C3 sin(!t+ �t2)

as the model, where � is the chirp rate, C1 is a constant component, ! is the frequency

of the oscillation, and C2 and C3 are e�ectively the amplitude and phase of the

oscillation. This model is not a substitute for the Bracewell model. Instead this

model is designed to allow us to investigate the possibility that the sunspot numbers

contain evidence of a chirp, or \instantaneous phase" in the Bracewell terminology.

A plot of the log of the \Student t-distribution" using this model is the proper

statistic to look for chirp. However, we now have two parameters to plot, not one.

In Fig.7.20 we have constructed a contour plot around the 11 year cycle. We expect

this plot to have a peak near the location of a frequency. It will be centered at zero

chirp rate if there is no evidence for chirp, and at some nonzero value when there is

evidence for chirp. Notice, that along the line � = 0 this \Student t-distribution" is

just the simple harmonic probability distribution studied earlier, see Fig. 2.1(A). As

with the Fourier transform if there are multiple well separated chirped frequencies

(with small chirp rates) then we expect there to be multiple peaks in Fig. 7.20.

There are indeed a number of peaks; the single largest point on the plot is located

o� the � = 0 axis. The data contain evidence for chirp. The low frequencies also

show evidence for chirp. To the extent that the Bracewell \instantaneous phase" may
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Figure 7.20: Chirp in the Sunspot Numbers?

LOG10 PROBABILITY OF A CHIRPED FREQUENCY

To check for chirp we take f(t) = A1 + A2 cos(!t + �t2) + A3 sin(!t + �t2) as the
model. After integrating out the nuisance parameters, the posterior probability is a
function of two variables, the frequency ! and the chirp rate �. We then plotted the
loge of the posterior probability. The single highest peak is located at a positive value
of �: there is evidence of chirp.
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be considered as a chirp, we must agree with him: there is evidence in these data for

chirp.

In light of this discussion, exactly what these numbers represent and exactly what

is going on inside the sun to produce them must be reconsidered. The orthogonal ex-

pansion on these numbers indicates that the complexity of these numbers is immense

and no simple model will su�ce to explain them. Given the total number of degrees

of freedom it is likely that every cycle has a unique amplitude and a complex non-

sinusoidal shape. In other words, di�erent sunspot cycles are about as complicated

in structure as are di�erent business cycles in economic data. If that is true, the

only frequency in these data of any relevance is probably the 11 year cycle; the other

indications of frequency are just e�ects of the nonharmonic oscillation. Again, had

we analyzed only the more recent data, the conclusions might have been di�erent.

Certainly we have not answered any real questions about what is going on; indeed

that was not our intention. Instead we have shown how use of probability theory

for data analysis can facilitate future research by testing various hypotheses more

sensitively than could the traditional intuitive ad hoc procedures.

7.5 Multiple Measurements

The traditional way to analyze multiple (i.e. multi-channel) measurements is to

average the data, and then analyze the averaged data. The hoped-for improvement

in the parameter estimates is the standard
p
n rule. To derive this rule one must

assume that the signal and the noise variance, are the same in every data set, and

that the noise samples were uncorrelated. Unfortunately, the conditions under which

averaging works at its theoretical best are almost never realized in real experiments.

Speci�cally, all experiments contain some e�ects which will not average out. These

e�ects can become so signi�cant, that the evidence for the signal can be greater in

any one of the data sets that went into the average than it is in the averaged data (we

will demonstrate this shortly). There are three main reasons why averaging may fail

to give the expected
p
n improvement in the parameter estimates: the experiment

may not be reproducible, the model may incorrect, the noise within di�erent data

sets may be correlated.

In real physics experiments, reproducibility depends critically on the electronics

repeating itself exactly every time. Of course this never happens; there are always
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small di�erences. For example, to repeat an NMR experiment one must bring the

sample to a stationary state (this may be far from equilibrium) and then further excite

the sample using a high power radio transmitter. In a perfect world, every time one

excited the sample it would be with a pulse of exactly the same amplitude and exactly

the same shape as before. Of course this never happens; every repetition is a unique

experiment having slightly di�erent amplitudes, phases, and noise variance. These

slight di�erences are enough to cause averaging to fail to give the
p
n improvement

when large numbers of data sets are averaged, even when the noise samples are

independent.

The second source of systematic error is in our imprecise knowledge of the model.

If the signal is exactly the same in each data set, of course the noise is reduced by

averaging. Unfortunately, if we do not know the model exactly, then our model is only

an approximation. When we �t the model to the data, some of the \true" signal will

not be �t. This mis�t of the model will be called noise by probability theory. But it

is noise that is perfectly correlated in successive data sets, and does not average out.

Thus the accuracy estimates will not improve, because the dominant contribution to

the estimated noise variance will be the mis�t between the model and the data.

If any systematic e�ect is present, averaging will fail to give the expected improve-

ment; nevertheless, probability theory does not mislead us. We have stressed several

times that the estimates one obtains from these procedures are conservative. That is,

when the models mis�t the data they still give the best estimates of the parameters

possible under the circumstances, and yield conservative (wide) error estimates. This

suggests that by analyzing each data set separately, and looking for common e�ects,

we might be able to realize better estimates than by averaging. In this section we

investigate the e�ects of multiple measurements and compare the results of a joint

analysis (analyzing all of the data) to the analysis of the averaged data. We will do

this analysis on a data set that most people would not hesitate to average. This is our

�rst example where we apply Bayesian analysis to data which are not a time series.

The experiment we will consider is a simple di�raction experiment. A mercury

vapor lamp was placed in front of a slit, and the light from the lamp passed through

the slit and onto a screen. An electronic camera (a Charge Coupled Device { CCD)

was placed behind the screen and used to image the intensity variations. The data

for this analysis were kindly provided by W. H. Smith [41]. The image consists of

a series of light and dark bars typical of such experiments. The pattern for the �rst

row in the CCD is shown in Fig. 7.21(A). Figure 7.21(B) is a plot of the averaged
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data.

This particular device has 573 pixels in each row and there are 380 rows. Thus there

are a total of 380 repeated measurements. The CCD was aligned parallel with the slit,

so the image appearing in each row should be identical. In principle the data could

be averaged to obtain a
p
380 improvement in the parameter estimates. However, the

concerns mentioned earlier are all applicable here. The types of systematic e�ects that

can enter this experiment are numerous, but a few of them are: the camera readout

has small systematic variations from one row to the next; there can be intensity

variations from the �rst to last row; and if the alignment of the camera is not perfect,

there will be small phase drifts from the �rst to last row. Nonetheless, when one

looks at these data, there is absolutely no reason to believe that averaging should not

work.

We begin the analysis by plotting the log10 of the probability of a single harmonic

frequency plus a constant. We plot this probability density for the �rst row of the CCD

in Fig. 7.22(A), for the average of the 380 data sets in Fig. 7.22(B), and jointly for all

data Fig. 7.22(C). One sees from the average data, Fig. 7.22(B), that there is indeed

large evidence for a frequency near 1.6 in dimensionless units. That peak is some 133

orders of magnitude above the noise level. The second thing that one sees is that the

peak from the �rst row of the CCD, Fig. 7.22(A), is some 136 orders of magnitude

above the noise: the peak from one row has more evidence for frequencies than the

average data! The third plot, Fig. 7.22(C), is from the joint analysis. That peak is

some 55,000 orders of magnitude higher than the average data! The implications of

this are indeed staggering. If one cannot average data in an experiment as simple as

this one, then there are probably no conditions under which averaging is the way to

proceed. Because the issues raised by this simple example are so important, we will

pause to investigate some of the theoretical implications before proceeding with this

example.

7.5.1 The Averaging Rule

To derive the average rule one assumes a signal f(t), and n sets of data d(ti)j with

noise variance �2. The signal f(t) and the noise variance �2 are assumed to be the

same in every data set. Then the probability that we should obtain a data set d(ti)j
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Figure 7.21: A Simple Di�raction Pattern

CHANNEL 1

SIMPLE DIFFRACTION PATTERN

AVERAGED DATA

An image was formed by placing a mercury vapor lamp behind a slit and allowing its
light to shine through a slit and onto a screen, the CCD imaged the screen. The �rst
row from the CCD is shown in (A). This particular CCD was 573 by 380 pixels, so
there are 380 channels. The averaged data is shown in (B). The expected improvement
in resolution is

p
380. However, if there are systematic errors in the data, the actual

improvement realized will be less.
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Figure 7.22: Log10 Probability of a Single Harmonic Frequency

LOG10 PROBABILITY

IN CHANNEL 1

LOG10 PROBABILITY

IN THE AVERAGED DATA

The base 10 logarithm of the probability
of a single harmonic frequency in the �rst
row from the CCD shows strong evidence
for a frequency (A). The same plot for the
average data (B) also has good evidence for
a frequency. The base 10 logarithm of the
probability of a single harmonic frequency
in the joint analysis of the data (C) is some
55,000 orders of magnitude higher.

LOG10 PROBABILITY

IN THE JOINT ANALYSIS
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is given by

P (Dj jf; �; I) / exp

(
� 1

2�2

NX
i=1

(d(ti)j � f(ti))
2

)
:

If the noise samples in di�erent channels are independent, the probability that we

should obtain all the data sets is just the product of the probabilities that we should

obtain any one of the data sets:

P (Djf; �; I) / �n
j=1 exp

(
� 1

2�2

NX
i=1

(d(ti)j � f(ti))
2

)
:

This can be written as

P (Djf; �; I) / exp

(
� n

2�2

NX
i=1

[d(ti)2 � 2d(ti)f(ti) + f(ti)
2]

)
;

where d(ti)2 is the mean square data value at time ti, and d(ti) is the mean data value,

where \mean" signi�es \average over the channels". This is almost a standard model-

�tting problem with the data replaced by the average. The procedure is called \Brute

Stacking" by geophysicists. The improvement comes from the factor of n multiplying

the term in square brackets. We demonstrated that the accuracy estimates are all

proportional to the square root of the variance, and here the variance is e�ectively

�2=n { this gives the standard
p
n improvement.

7.5.2 The Resolution Improvement

When multiple data sets are analyzed jointly, how much improvement in the pa-

rameter estimates can be expected? The resolution improvement depends on the

curvature of the posterior probability density at the maximum. The general rule de-

pends on the model; all we can say is that if all of the data sets have approximately

the same evidence in them, then the logarithm of the posterior probability density

is n times larger and something like the
p
n improvement will be realized. We can

demonstrate this for the single frequency estimation problem. Then the posterior

probability of the frequency, given n repeated measurements and assuming the noise

variance �2 is the same, is

P (!j�;D; I) � exp

8<
:

nX
j=1

C(!)j
�2

9=
; (7:4)
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where C(!)j is the Schuster periodogram evaluated for data set j. To obtain the

accuracy estimates we expand the exponent about the \true" frequency !̂ to obtain

P (!jD; I) � exp

8<
:�

nX
j=1

bj(!̂ � !)2

2�2

9=
; ;

where bj = �C 00
j for the jth data set. If the data contain a single sinusoid such as

B̂ cos(!̂t), then b is given by Eq. (2.10). This gives the posterior probability density

for a simple harmonic frequency when multiple measurement are present as

P (!jD; I) � exp

8<
:�

nX
j=1

N3B̂2
j

96�2
(!̂ � !)2

9=
; :

The accuracy estimate is given by

(!)est = !̂ �
s

48�2

N3nB2

where B2 is the mean square of the true amplitude. If all of the amplitudes are nearly

the same height, this is just the standard
p
n improvement.

The improvement realized is directly related to how well the assumptions in the

calculation are met. In the case of averaging, the assumptions are that the amplitude,

frequency, phase, and noise variance are the same in every data set. For the example

just given we removed the assumption that the amplitudes had to be the same in

every data set, consequently, nB̂2 was replaced by nB̂2. If we further remove the

assumption that the noise variance is the same in every data set, then nB̂2 is replaced

by
Pn

j=1 B̂
2
j =�

2
j .

When the assumed conditions are not met, the price one pays is in resolution. The

procedure described by Eq. (7.2) is more general than averaging in that it allows the

amplitudes, phases, and noise variance to be di�erent for each data set and still allows

one to look for common e�ects. When the true amplitudes, phases, and noise variance

are the same in every data set this procedure reduces to averaging. Thus Eq. (7.2)

represents a more conservative approach than averaging and will realize something

approaching the
p
n improvement under a wider variety of conditions, because it

makes fewer assumptions.

7.5.3 Signal Detection

When multiple measurements are present we would like to understand what hap-

pens to the joint analysis as we increase the number of measurements. In other words
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we typically average data when the signal-to-noise ratio is very bad. We do this be-

cause we think it allows one to reduce the noise; thus small signals can be detected.

But what will happen with the joint analysis? The general answer for the joint anal-

ysis again depends on the model function. However, as noted earlier, if the evidence

in each data set is roughly the same the su�cient statistic will be n times larger than

when only a single measurement is present. Thus the evidence for a signal will build

up in a manner similar to averaging. We will demonstrate how the evidence accumu-

lates in the joint analysis using the single frequency model. The posterior probability

density of a common harmonic frequency, when multiple measurements are available,

is again given by Eq. (7.4). What we would like to know is how high is the peak in

Eq. (7.4)? Again taking the data to be

d(t)j = B̂j cos(!̂t)

the peak value of the periodogram is given approximately by

C(!̂)j �
NB̂2

j

4
:

Assuming each data set has the same number of data values N , the maximum of the

posterior probability density will be

P (!̂jD; I) / exp

8<
:

nX
j=1

NB̂2
j

4�2

9=
; :

We can simplify this by using
nX
j=1

B̂2
j = nB2

where B2 is the mean-square true amplitude. The evidence for a signal increases by

the power of the number of data sets:

P (!̂jD; I) / exp

(
nNB2

4�2

)
:

If we allow the variance of the noise to be di�erent in each data set nB2 will be

replaced by a weighted average
Pn

j=1 B̂
2
j =�

2
j . Again we �nd the height of the posterior

probability density depends directly on the assumptions made in the calculation. In

the case of averaging, the log-height of the posterior probability density is n times

larger than the height from one data set (provided the assumptions are met). If we

relax the assumptions about the amplitude B, we replace B2 in the average rule by
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the mean-square true value. If we further relax the assumptions and allow the noise

variances to be di�erent, we obtain the weighted average of the true B2 values. Thus

we again have a more conservative procedure that will reduce to give the
p
n rule when

the appropriate conditions are met, under much wider conditions than averaging. In

the case of the simple harmonic frequency, doubling the number of data sets is similar

to doubling the number of time samples, while keeping the total sampling time �xed.

This is not the best way to �nd a signal (doubling the signal-to-noise works better),

but if no other course is available it will build up the probability density by essentially

squaring the distribution for each doubling of the number of data sets.

7.5.4 The Distribution of the Sample Estimates

In the CCD example, we had 380 repeated measurements, and the maximum of

the posterior probability was some 55,000 orders of magnitude above the noise. Each

data set raised the posterior probability approximately 55,000/380 = 144 orders of

magnitude. But when the data were averaged, small variations in the amplitude,

phases, and variance of the noise caused systematic variations in the data which

were nonsinusoidal. Probability theory automatically reduced both the height of the

posterior density (i.e. it could not see the signal as well) and reduced the precision of

the estimates. In this example the height was reduced from 55,000 to 133, and the

accuracy was reduced from 6:8� 10�8 to 0.00036; the error estimate of the averaged

data is 5266 times larger than the estimate from the joint analysis. It thus appears

that data averaging (Brute Stacking) is never better than a joint analysis of the

data, and it is in general worse. Averaging does, of course, reduce the amount of

computation; but with modern computers this is not an important consideration.

In this last example the improvement was very dramatic, but this was real exper-

imental data; perhaps the reason averaging failed was some other e�ect in the data.

We would like to show that the cause was the variation of the signal and the noise

variance in the various data sets. To do this we will generate data from the following

equation

d(t) = B cos(0:3t+ �) + e(t): (7:5)

We will vary B, �, and � from one data set to another. We will then estimate the

frequency in the averaged data and in a joint analysis of all the data, and show that

these variations will cause averaging to fail to give the
p
n improvement; while a joint

analysis will continue to exhibit the expected improvement.
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We generated multiple data sets from Eq. (7.5). Each data set we generated had a

di�erent amplitude B, phase �, and noise variance �2. To generate the data we used

three Gaussian random numbers with unit variance. We used one as the amplitude

B, another as the phase �, and the third to scale the noise. The noise was generated

using a Gaussian random number generator with unit variance. We generated the

noise and then multiplied it by the third random number. Using this procedure, the

signal will average to zero.

We generated 100 data sets, each containing 512 data values. An example of

one such data set is shown in Fig. 7.23(A). The log10 of the probability of a single

harmonic frequency is shown in Fig. 7.23(B). We have also displayed the average

data Fig. 7.23(C) and the log10 probability of a single frequency. In this particular

case averaging has not completely cancelled the signal, however, one measurement,

Fig. 7.23(A), has about a 109 times more evidence for a signal than the average data,

Fig. 7.23(B). We estimated the frequency in the 100 data sets in a joint analysis and

in the averaged data. We then selected three new random numbers and repeated this

calculation 3000 times.

The results are summarized in Table 7.2. This table contains the actual estimates

from a few of the 3000 sets of data analyzed. The second column is the estimated

frequency from the average data. The third column is the squared di�erence between

the true frequency and the estimate from the averaged data, (the variance of this esti-

mate). The fourth column is the estimated frequency from the joint analysis, and the

�fth column is the squared di�erence between the true frequency and the estimated

frequency from the joint analysis. We averaged all 3000 entries (labeled average at

the bottom of the table), and we computed the square root (the standard deviation)

estimate for the variance (columns 3 and 5). The estimate from the averaged is a

little better than it actually was in these data. When we estimated the frequency we

had to give the search routine an initial estimate of the frequency. This locked the

search routine onto the correct peak in the periodogram even though there was no

clear peak in many of the data sets. This is analogous to estimating the averaged

frequency with a strong prior.

For a single data set with unit signal-to-noise the \best" estimated frequency

should be �0:0006 radians per step; the estimated standard deviation of the aver-

aged data is about a factor of 2 larger than what one would obtain from one data

set. Thus averaging has destroyed evidence in the data: any one data set contains

more evidence for frequencies than the averaged data. If averaging were working
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Figure 7.23: Example { Multiple Measurements

ONE OF 100 DATA SETS
LOG10 PROBABILITY

OF ONE FREQUENCY

THE AVERAGED DATA
LOG10 PROBABILITY

OF ONE FREQUENCY

We generated 100 such data sets with di�erent amplitude, phase, and noise variance,
but the same frequency (see text for details). In (A) we have displayed one such data
set. The log10 of the probability of a single harmonic frequency is displayed in (B).
The average data (C) and the log10 probability of a single frequency in (D) show 10�9

times less evidence for a harmonic frequency than one data set.
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Table 7.2: \Brute Stacking" vs. Joint Analysis
Frequency Estimate (h!i � 0:3)2 Frequency Estimate (h!i � 0:3)2

Average Joint Analysis
1 0:30018 3:52�8 0:2999974 6:81�12

2 0:29863 1:87�6 0:2999896 1:08�10

3 0:29987 1:47�8 0:2999782 4:75�10

4 0:30076 5:79�7 0:2999995 1:64�13

5 0:30044 2:00�7 0:2999881 1:42�10

6 0:29804 3:82�6 0:2999998 2:78�14

7 0:30024 5:77�8 0:2999995 1:64�13

8 0:30047 2:22�7 0:2999985 2:18�12

9 0:29966 1:09�7 0:2999985 2:18�12

10 0:29990 8:30�9 0:3000088 7:90�11

...
...

...
...

...
2999 0:30152 2:31�6 0:2999969 9:16�12

3000 0:29968 1:02�7 0:3000008 7:16�13

Average 0:29999 1:39�6 0:2999995 3:02�11

SD 1:17�3 5:49�6

We generated 3000 frequency estimates (see text for details). The frequency estimate
in the second column was from the averaged data, and the third column is the variance
for that estimate. The fourth and �fth columns are the estimates from the joint
analysis. The row labeled \Average" is the average of the 3000 frequency and variance
estimates. The last row is the square root of the average variance. Averaging actually
appears a little better than it is in these data: when we estimated the frequency we
had to supply an initial frequency estimate; this locked the search routine onto the
correct peak in the periodogram, even though there was no clear peak above the noise
in many of the averaged data sets. From a probability standpoint this is analogous
to estimating the average frequency with a strong prior.
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at its theoretical best we would expect that in 100 data sets the estimates should

improve to �0:0006=
p
100 = �0:00006 radians per step. Averaging is a factor of

20 times worse than it should be. But how has the joint analysis done? For 3000

such estimates (in unit signal-to-noise) the joint analysis can do no better than the
p
n rule: �0:00006=

p
3000 � �0:000001 radians per step, where we �nd �0:000005,

about a factor of 5 larger; we conclude that the mean square weighted amplitude

was about 1/25. The joint analysis has performed well; about 0:001=0:000005 = 185

times better than averaging.

From the 3000 frequency estimates we computed a cumulative distribution of the

number of estimates within one standard deviation, two deviations etc. of the true

This distribution is displayed in Fig. 7.24. The solid line is the cumulative sample

distribution, while the dashed line is the equivalent plot for a Gaussian having the

same mean and standard deviation as the sample. The estimates resemble a Gaussian,

but there are systematic di�erences. These di�erences are numerical in origin. We had

to locate the maximum of the posterior probability, and this distribution is roughly

100 times more sharply peaked than a discrete Fourier transform. The pattern search

routine we used moves the frequency by some prede�ned �xed amount. Typically it

will move the frequency by only one or two steps, this tends to bunch the estimates

up into discrete categories. We could �x this problem at the cost of much greater

computing time.

7.5.5 Example { Multiple Measurements

We started this section by presenting a simple di�raction experiment and became

sidetracked by some of the implications of the example. When we computed the

su�cient statistic of the joint analysis we found the peak to be some 55,000 orders of

magnitude higher than the peak for the averaged data. We have used the estimate

of the frequency from that peak in several places; here, we plot the results of that

analysis to give a better understanding of the determination of the frequency. We will

estimate the frequency from the periodogram of the averaged data, from the \Student

t-distribution" using the averaged data, and last using a joint analysis on all of the

data.

The results of this analysis are displayed in Fig. 7.25. The normalization on all

of these curves is arbitrary. If we took the periodogram of the averaged data as our

frequency estimate we would have the broad peak in Fig. 7.25. However, probability
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Figure 7.24: The Distribution of Sample Estimates

We generated 100 data sets with di�erent amplitude, phase, and noise variance but
the same frequency. From the 100 data sets we estimated the frequency. We then
generated another 100 data sets and estimated the frequency. We repeated this
process some 3000 times. Here we have plotted the cumulative percentage of estimates
(solid line) falling within one, two, and three RMS standard deviations. The dashed
line is the equivalent distribution for a Gaussian. The axis labels here correspond to
two, four, and six standard deviations.
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theory applied to the averaged data would narrow that peak by another factor of 10.

The resulting posterior distribution is displayed as a sharp Gaussian inside the peri-

odogram. We then estimated the frequency from all of the data using a joint analysis

on all 380 data sets. The resulting posterior distribution is displayed as a Gaussian

centered at the estimated frequency and having the same variance as our estimate.

This is what appears as the vertical line just to the right of the Gaussian from the

averaged data. From this we see that the joint analysis estimates the frequency much

more precisely than does the analysis of the averaged data, and it estimates it to be

rather di�erent from that of the averaged data.

Before leaving this example we would like to apply one more simple analysis to

these data. It is true that the small peaks to either side of the main peak in Fig. 7.22

are indications of frequencies. But could there be more that one frequency in the

main peak? The spectrum of mercury has many lines in this main peak. Can we see

them in these data? To determine whether the main peak has indications for more

than one frequency, we compute the probability of two frequencies in this region

using only the �rst �ve rows from the CCD (we used only the �rst �ve rows to reduce

computation time). We plotted this as the contour plot in Fig. 7.26. If there is only

one frequency present, we expect there to be two ridges in this plot, one extending

horizontally and one vertically. On the other hand if there is more than one frequency

in these data, there will be a small peak just to one side of !1 � !2. We see from

Fig. 7.26 that there is indeed strong evidence of two frequencies in the main peak.

This reinforces one of the things we noted earlier: What one can learn from a data

set depends critically on what question one asks. R. A. Fisher once said \let the data

speak for themselves". It appears that the data are more than capable of this, but

they do not speak spontaneously; they need someone who is willing to ask the right

questions, suggested by cogent prior information.
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Figure 7.25: Example - Di�raction Experiment

The broad curve on this graph is the periodogram from the averaged data. The sharp
Gaussian inside this line is the posterior distribution obtained from the averaged data.
The sharp spike located just o�-center is the Gaussian representing the posterior
distribution from all 380 data sets.
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Figure 7.26: Example - Two Frequencies

We examined the main peak in the joint analysis to see if there is any evidence
for multiple frequencies. The results are presented as a contour plot of the log10
probability of two frequencies in these data. The plot shows clear evidence for two
frequencies, even when only a few of the 380 data sets are analyzed, as was done here.
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Chapter 8

SUMMARY AND

CONCLUSIONS

In this study we have attempted to develop and apply some of the aspects of

Bayesian parameter estimation to time series, even though the analysis as formulated

is applicable to any data set, be it a time series or not.

8.1 Summary

We began this analysis in Chapter 2, by applying probability theory to estimate the

spectrum of a data set that, we postulated, contained only a single sinusoid plus noise.

In Chapter 3, we generalized these simple considerations to relatively complex models

including the problem of estimating the spectrum of multiple nonstationary harmonic

frequencies in the presence of noise. This led us to the \Student t-distribution": the

posterior probability of the f!g parameters, whatever their meaning. In Chapter 4,

we estimated the parameters and calculated, among other things, the power spectral

density, and the noise variance, and we derived a procedure for assessing the accuracy

of the f!g parameter estimates. In Chapter 6, we specialized to spectrum analysis

and explored some of the implications of the \Student t-distribution" for this prob-

lem. In Chapter 7, we applied these analyses to a number of real time series with

the aim of exploring and broadening some of the techniques needed to apply these

procedures. In particular, we demonstrated how to use them to estimate multiple

nonstationary frequencies and how to incorporate incomplete information into the

estimation problem.
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8.2 Conclusions

Perhaps the single biggest conclusion of this work is that what one can learn about

a data set depends critically on what questions one asks. If one insists on taking the

discrete Fourier transform of a data set, then our analysis shows that one will always

obtain good answers to the question \What is the evidence of a single stationary

harmonic frequency in these data?" This will be adequate if there are plenty of data

and there is no evidence of complex phenomena. However, if the data show evidence

for multiple frequencies or complex behavior, the discrete Fourier transform can give

misleading or incorrect results in the light of more realistic models.

Although the use of integration to remove nuisance parameters is not new, and

indeed the calculation in Chapter 3 has, to some degree, been done by every Bayesian

who ever removed a nuisance parameter by integration, the realization of the degree

of narrowing of the marginal joint posterior probability density that can be achieved

by this is, to the best of our knowledge, new and almost startling. It indicates

that, even though we might not be able to estimate an amplitude very precisely, the

f!g parameters often associated with an amplitude may be very precisely estimated.

We can often improve the estimation of frequencies and decay rates by orders of

magnitude over the estimates obtained from the discrete Fourier transform, least

squares, or maximum likelihood. This is not to say that the actual estimates will

be very di�erent from those obtained from maximum likelihood or least squares {

indeed, when little prior information is available the estimates of the parameters are

the maximum likelihood estimates. The major di�erence is in the indicated accuracy

of the estimates.

The principles of least squares or maximum likelihood provide no way to eliminate

nuisance parameters, and thus oblige one to seek a global maximumin a space of much

high dimensionality, which typically requires orders of magnitude more computation

time. Having found this, they provide no way to assess the accuracy of the estimates

other than the sampling distribution of the estimator { which is another even longer

calculation. But it is a calculation that does not answer the real question of interest;

it answers the \pre-data" question:

(Q1): \Before you have seen the data, how much do you expect the estimate to

deviate from the true parameter value?"

The question of interest is the \post-data" one:
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(Q2): \After getting the data, how accurately does the data set that you actually

have determine the true values of the parameters?"

That these are very di�erent questions with di�erent answers in general, was rec-

ognized already by R. A. Fisher in the 1930's; he noted that in general two data sets

that yield the same numerical value of the estimator, may nevertheless justify very

di�erent claims of accuracy. He sought to correct this by his device of conditioning on

\ancillary statistics." But Jaynes [42] then showed that this conditioning is mathe-

matically equivalent to using Bayes' theorem, as we have done here. Bayes' theorem,

of course, always answers question (Q2), whether or not ancillary statistics exist.

The procedures for comparing models, Eq. (5.9), are perhaps new in the sense

that we have extended the Bayesian calculation into the nonlinear f!g parameters

and by carefully keeping track of the normalization constants we were able eventually

to integrate out all the parameters. This gives an objective way to compare models

and to determine when additional e�ects are present in the data. Of course, as with

any calculation, it will never replace the good sound judgment of the experimenter.

The calculation can give a relative ranking of the various choices presented to it. It

cannot decide which models to test.

Last, the improvement realized by these procedures when multiple measurements

are present is quite striking. The analysis presented in Chapter 7 indicates that

the traditional averaging rule will hold whenever the signal is exactly the same in

every measurement. Yet in real experiments it is almost impossible to realize the

true theoretical improvement. However, by computing the joint marginal posterior

probability density of the common e�ects, the expected
p
n can be obtained even

in data sets where averaging clearly will not work. The implications of this for

NMR and other �elds are rather profound. Using these techniques we were able

to improve resolution in NMR experiments by several orders of magnitude over the

discrete Fourier transform; this is making it possible to examine extremely small

e�ects that could not be examined before.
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Appendix A

Choosing a Prior Probability

The question \How to choose the prior probability to express complete ignorance?"

is interesting in itself, and it cannot be evaded in any problem of scienti�c inference

that is to be solved by using probability theory and Bayes' theorem, but in which we

do not wish to incorporate any particular prior information. In the case of the simple

harmonic analysis performed in Chapter 2, there are four parameters to be estimated

(B1, B2, !, �), and it is not obvious which choice of prior probabilities is to be pre-

ferred. Presumably, any prior probability distribution represents a conceivable state

of prior information, but the problem of relating the distribution to the information is

subtle and open-ended. You can always think more deeply and thus dredge up more

prior information that you didn't think to use at �rst.

There are two questions one may consider to help in this. First, one should ask

\Are the parameters logically connected?" That is, if we gain additional information

about one of the parameters, does it change the estimates we would make about the

others? If the answer is yes, then the parameters are not logically independent. It

will be useful to �nd a representation where the parameters are independent.

Another useful question is \What are the invariances that the prior probability

must obey?" That is, what transformations would convert the present problem into

one where we have the same state of prior knowledge? Actually it is only this sec-

ond question that is truly essential. However, using a representation in which the

parameters are not logically independent will mean that the prior probabilities for

all the parameters must be determined at once, by utilizing the properties of all the

parameters.

In the two representations considered in Chapter 2, Cartesian versus polar, ob-

taining information about the frequency would rarely a�ect one's prior estimates of
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the phase, amplitude, and noise level. Then the prior for the frequency will be in-

dependent of the other parameters, and the only invariance to be considered is some

group of mappings S of ! onto itself. Later in this appendix we will derive the prior

from the group of scale changes.

In the Cartesian representation, B1 and B2 are usually logically independent in

the sense just noted, so we would assign them independent priors. In the polar

notation the amplitude and phase are also logically independent, because obtaining

information about either would not a�ect our prior estimate of the other. The volume

elements transform as

dB1dB2 = BdBd�

and so we want a probability density � with the two seemingly di�erent forms:

�(B1; B2)dB1dB2 = �(B; �)BdBd�

with

�(B1; B2) = f(B1)f(B2)

but also

�(B; �) = g(B)h(�):

But we rarely have prior information about �, so we should take h(�) = const = 1=2�,

(0 � � � 2�). We are left with

f(B1)f(B2) =
1

2�
g(
q
B2

1 +B2
2)

but setting B2 = 0, this reduces to

f(B1)f(0) =
1

2�
g(B1)

so we have the functional equation

f(x)f(y) = f(
q
x2 + y2)f(0)

which a reasonable prior must satisfy. By writing this as

log[f(x)] + log[f(y)] = log[f(
q
x2 + y2)] + log[f(0)]

the general solution is obvious; if a function l(x) plus a function l(y) is a constant

plus a function only of (x2 + y2) for all x, y the only possibility is

l(x) = ax2 + b:
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Thus, f(x) must be a Gaussian; with a = �1=2�2 (the value of b is determined by

normalization):

f(x) =
1p
2��2

exp

(
� x2

2�2

)
:

To a modern physicist, this argument seems very familiar; it is just a two-dimensional

version of Maxwell's original derivation of the Maxwellian velocity distribution [43].

However, historical research has shown that the argument was not original with

Maxwell; ten years earlier the astronomer John Herschel [44] had given just our two-

dimensional argument in �nding the distribution of errors in measuring the position

of a star. Thus the Gaussian prior that we use in Appendix B to illustrate the limit

as � ! 1 to a uniform prior was not arbitrary; it is the only prior that could have

represented our \uninformative" state of knowledge about these parameters. This

is a good example of how one can relate prior probabilities to prior information by

logical analysis.

In the calculation done by Jaynes [12] the prior used was dAd�, whereas ours

amounts to taking instead AdAd�. The calculation performed in Chapter 2, and that

done by Jaynes will di�er from each other only in the �ne details. We, e�ectively,

assume slightly less information about the amplitude than Jaynes did, and so we make

a slightly less conservative estimate of the frequency. This also simpli�es the results

by eliminating the Bessel functions found by Jaynes. However, as demonstrated in

Appendix B, the di�erences introduced by the use of di�erent priors to represent

ignorance are negligibly small if we have any reasonable amount of data.

When we know that the parameters B1, B2, !, � are logically independent, how

does one choose a prior to represent ignorance of ! and �? Perhaps the easiest way

is to exploit the invariances in the problem. The invariances we would like to exploit

are the time invariances. There are two of these: �rst, the actual starting time of

the experiment cannot make any di�erence; second, a small change in the sampling

rate of the problem cannot make any di�erence provided the same amount of data is

collected. To exploit these we apply a technique described by Jaynes [45].

Consider the following problem: we have two experimenters who are to take data

on a stationary time series (the same problem described in Chapter 2). Each of these

experimenters is free to set up and take the data in any way he sees �t. They do

however measure the same time series, starting at slightly di�erent times and using

slightly di�erent sampling rates. Now the �rst experimenter, called E, assigns to his
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parameters a prior probability

P (B1; B2; !; �jI) / G(B1; B2; !; �)dB1dB2d!d�

and the second experimenter called E0 assigns to his a prior probability

P (B0
1; B

0
2; !

0; �0jI) / H(B0
1; B

0
2; !

0; �0)dB0
1dB

0
2d!

0d�0:

The model equation used by E is just the model used in Chapter 2,

f(t; B1; B2; !) = B1 cos(!t) +B2 sin(!t)

and E0 uses the same equation but with the primed variables

f(t0; B0
1; B

0
2; !

0) = B0
1 cos(!

0t0) +B0
2 sin(!

0t0):

These two equations are related to each other by a simple transformation in the time

variable t0 = �t + t0 where � is related to the sampling rates and t0 is the di�erence

in their starting times. The relations between these two system are

�!0 = !; and �d!0 = d!

B1 = B0
1 cos(!

0t0) +B0
2 sin(!

0t0)

B2 = B0
2 cos(!

0t0) �B0
1 sin(!

0t0) (A:1)

dB1dB2 = dB0
1dB

0
2

� = 
�0 and d� = 
d�0:

The factor of � from the time transformation will be absorbed into the frequency

as a scaling, because the number of cycles in a given interval (!t=2� = !0t0=2�)

is an invariant. The squared magnitudes of their model functions are equal; the

transformation introduces only an apparent phase change into the signal. In addition

to the transformation for the frequency ! the variable � will have an arbitrary scaling

introduced into it.

Now we know that each of these experimenters has performed essentially the same

experiment and we expect them to obtain nearly identical conclusions. Each of the

experimenters is in the same state of knowledge about his experiment and we apply

Jaynes' desideratum of consistency: \In two problems where we have the same prior

information, we should assign the same prior probability" [45]. Because E and E 0 are

in the same state of knowledge, H and G are the same functions. Thus we have

G(B1; B2; !; �)dB1dB2d!d� = G(B0
1; B

0
2; !

0; �0)dB0
1dB

0
2d!

0d�0:
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We will solve for the dependence of the prior on the frequency and variance having

already obtained the priors for B1 and B2. We substitute for ! and � to obtain

G(B1; B2; �!
0; 
�0) =

G(B0
1; B

0
2; !

0; �0)


�
:

This is a functional equation for the prior probability G. It is evident from (A.1)

that G must be independent of B1 and B2, so the dependence of the prior on the

parameters is now completely determined: the only prior which represents complete

ignorance of !, �, B1, and B2 is

P (B1; B2; !; �jI) /
1

!�
:

This is the Je�reys prior which we used for the standard deviation �. Other more

cogent derivations of the Je�reys prior are known [46] but they involve additional

technical tools beyond our present scope.

Of course, the realistic limits of the Je�reys prior do not go all the way to zero

and in�nity; for example, we always know in advance that � cannot be less than a

value determined by the digitizing accuracy with which we record data; nor so great

that the noise power would melt the apparatus. Likewise, as discussed earlier, we

know that when the data have zero mean, our data do not contain a zero frequency

component; nor can the data contain frequencies so high that they would not pass

through our circuitry. Strictly speaking, then, a Je�reys prior should always be taken

between �nite positive limits, and be normalized:

P (�jI) =

8><
>:

A��1 a < � < b

0 otherwise

9>=
>; (A:2)

with A�1 = log(b=a). But then this prior gets multiplied by a likelihood of the form

L(�) = ��N exp
�
�C

�2

�

which cuts o� so strongly as � ! 0 and � ! 1 that practically all the mass of the

posterior distribution

P (�jDI) / L(�)P (�jI) (A:3)

is concentrated near the peak of (A.3), at �2 = 2C=(N + 1). In our examples, the

exact conclusions from (A.2) di�er from the limiting ones (a! 0; b!1) by amounts

generally less than one part in 1020, so in practice we need never introduce the limits

a, b. Similarly, the prior limits on ! have negligible numerical e�ect, and need not be
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introduced at all. In our calculation we used a uniform prior for the frequency instead

of the Je�reys prior simply to save writing, because we knew that the di�erence in

the resulting frequency estimates would be negligibly small compared to the width of

the posterior distributions (i.e. compared to the error �! which was inevitable in any

event).
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Improper Priors as Limits

In the simple harmonic frequency problem Chapter 2 when we removed the ampli-

tudes B1 and B2 by integration to get Eq. (2.6), we used a uniform prior probability

density which we called an improper prior. In fact, such a function is not a probabil-

ity density at all. When we use an improper prior, what we really mean is that our

prior information is vague, that it carries negligible weight compared to the evidence

of the data: the exact prior bounds are so wide that they are far outside the range

indicated by the data. To perform the calculation (1.4) correctly, one could bound

the parameter to be removed, integrate over the bounded region, and then take a

limit as the bound is allowed to go to in�nity; but for this problem the result is the

same.

Alternatively, we could assume we have a previously measured value of the param-

eter and then take the limit as the uncertainty in that measurement becomes in�nite.

We will use a calculation very similar to this in a number of places in the text, and

we give this calculation to demonstrate that the use of an improper prior to express

\complete ignorance" cannot a�ect the results in any signi�cant way. This will also

show the e�ect of incorporating additional information into the calculation. Suppose

we have some previously measured values for the amplitudes, designated as B̂1 and

B̂2. We now proceed to calculate the expectation value of the amplitudes using a

prior probability that takes this information into account.

Suppose the previous measured values B̂1 and B̂2 are known with an accuracy of

�� (interpreted as the standard deviation of a Gaussian error distribution for the

previous measurements). The joint prior probability density of the true values B1
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and B2 is the posterior distribution for the �rst measurement,

P (B1; B2jI) =
h
2��2

i�1
exp

�
� 1

2�2
[(B̂1 �B1)

2 + (B̂2 �B2)
2]
�

(B:1)

which becomes our informative prior for the second measurement. Then using Bayes'

theorem, the posterior probability of the parameters is proportional to the product

of the prior (B.1) and the likelihood (2.3):

P (B1; B2jD; I) =
h
2��2

i�1 h
2��2

i�N
2 exp

�
� X

2�2
� NY

4�2

�

where

X � (B̂1 �B1)
2 + (B̂2 �B2)

2

Y � B2
1 + B2

2 � 2

 
2R(!)

N
B1 +

2I(!)

N
B2

!
:

After a little algebra the posterior probability may be written as

P (B1; B2jD; I) =
h
2��2

i�1 h
2��2

i�N
2 exp

n
��[(B1 � E1)

2 + (B2 � E2)
2]
o

� =
�2 + �2

2�2�2

where

E1 =
�2[2R(!)=N ] + �2B̂1

�2 + �2
(B:2)

E2 =
�2[2I(!)=N ] + �2B̂2

�2 + �2
(B:3)

are the posterior expectations:

hB1i = E1 and hB2i = E2:

The posterior estimates are now weighted averages of the two measurements. This

is a rather old result, �rst discovered by Laplace [47] but essentially forgotten for a

century, until the modern development of Bayesian methods began to demonstrate

that most of Laplace's results were correct and important.

To understand the full implications of this we will consider three special cases.

First, when � � �, the previous measurement is much better than the current one.

Then

hB1i = B̂1 and hB2i = B̂2



Improper Priors as Limits 191

which says to use the original measured value, a most pleasing result, since that is

exactly what any physicist would have done anyway. Second, consider the case where

� = �. Then

hB1i =
1

2

 
2R(!)

N
+ B̂1

!
and hB2i =

1

2

 
2I(!)

N
+ B̂2

!

which says the two measurements are of equal weight and one should average them.

Again a most pleasing result, since that is exactly what one's intuition would have

told one to do. Third, consider the case when � � � (one knows only that the two

amplitudes must be bounded) then,

hB1i =
2R(!)

N
and hB2i =

2I(!)

N
: (B:4)

This is the result obtained using the improper prior. In the limit as � goes to in�nity,

the prior (B.1) goes smoothly into the uniform improper prior used in our calculation

of Eq. (2.6), and the weighted averages go smoothly into (B.4).

The important point here is that if � is appreciably greater than �, the prior we

use does not make any signi�cant di�erence; as � becomes larger, less information

is conveyed by the prior measurement, and probability theory as indicated by (B.2)

and (B.3) automatically assigns less weight to it. The result must depend mostly on

the evidence in the data. In the limit as � goes to in�nity we have incorporated no

prior information about the parameter, and the result must depend totally on the

data.
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Appendix C

Removing Nuisance Parameters

We illustrate in this appendix that integrating over a nuisance parameter is very

much like estimating the parameter from the data and constraining it in the posterior

probability to that value. We �rst estimate the amplitudes by calculating their pos-

terior expectations, and then substitute them into the likelihood (2.3). If integrating

over a nuisance parameter is nearly the same, we should obtain (2.6), or at the very

least something very much like (2.6). We assume for this illustration that � is known;

then, using the likelihood Eq. (2.3), the expectation value of Bj, supposing ! known,

is

hBji =
R+1
�1 dB1dB2BjL(B1; B2; !; �)R+1
�1 dB1dB2L(B1; B2; !; �)

: (C:1)

We take these as our estimates hBji (!) in (2.3). Carrying out the required integra-

tions gives the posterior expectation values of B1 and B2:

B�
1(!) = hB1(!)i =

2R(!)

N
; (C:2)

B�
2(!) = hB2(!)i =

2I(!)

N
;

where R(!) and I(!) are the cosine and sine transforms of the data, as de�ned in (2.4)

and (2.5). Now these are substituted back into (2.3) to give

L(B�
1 ; B

�
2; !; �) / ��N exp

�
� N

2�2
[d2 � 2

N
C(!)]

�
: (C:3)

But in its dependence on !, this is just (2.6): integrating over the amplitudes with

respect to the uniform prior has given us the same result as constraining them to

their expectation values (C.1).
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The two procedures are not always equivalent, as they happen to be here, but they

can never be very di�erent whenever we have enough information or data to make a

good estimate of a nuisance parameter. In fact, these procedures would have been

slightly di�erent in this example if we had not assumed the noise variance �2 to be

known. Then �2 would also become a nuisance parameter which we would remove

by integration, and the \Student t-distribution" thus obtained would be raised to the

�N=2 power instead of (2�N)=2 as was found in Chapter 2.

More generally, whenever a nuisance parameter is actually well determined by

many data (N !1), these two procedures become for all practical purposes equiv-

alent. But when the data are too meager to determine the nuisance parameters

very well, the ad hoc procedure (C.3) can be overoptimistic, leading us to think that

we have determined ! more accurately than the data really justify; and if we have

relevant prior information about the parameters the ad hoc method ignores it.



Appendix D

Uninformative Prior Probabilities

When we worked the single frequency problem in Chapter 2 we used a uniform

prior for the amplitudes. In polar coordinates this prior is

P (B; �jI) / BdBd�

and leads to

P (!j�;D; I) / exp

(
C(!)

�2

)
(D:1)

as the posterior probability of a single harmonic frequency, given the data and the

noise variance �2. When Jaynes [12] worked this problem he performed the calculation

in polar coordinates and supposed prior information I 0 for which

P (B�jI 0) / dBd�

as the prior for the amplitude and phase. He then arrived at

P (!j�;D; I 0) / exp

(
C(!)

2�2

)
I0

 
C(!)

2�2

!
(D:2)

where I0 is a Bessel function of order zero. This is a very di�erent looking result,

given that the only di�erence in the two calculations was the prior used. How can

such a simple change in the problem have such a dramatic e�ect on the answer, and

just what e�ect did the use of these two di�erent priors have on the results?

The main question we will pursue here is \What e�ect did this di�erent prior have

on the frequency estimate?" The answer to this question is surprising: since Eq. (D.1)

and Eq. (D.2) are both functions of C(!), they both reach their maximumat the same

value ! = !̂; there is no di�erence at all in the actual frequency estimate! But there is
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a di�erence in the curvatures of Eq. (D.1) and Eq. (D.2) at their common maximum

!̂, so there is a di�erence in the claimed accuracy of that estimate. Recalling that

in the Gaussian approximation it is the second derivative of log(P (!j�;D; I) that

matters,
d2

d!2
logP (!j�;D; I)

����
!=!̂

=
1

(�!)2

a short calculation gives for the standard deviations, from Eq. (D.1)

�! =
�q

C 00(!̂)

and from Eq. (D.2)

�!0 =
�q

C 00(!̂)

�
2I0

I0 + I1

�1
2

where the argument of the I0 and I1 Bessel functions is C(!̂)=2�2. The ratio of the

error estimates is q(C(!̂=2�2)), where

q(x) =

 
2I0(x)

I0(x) + I1(x)

! 1
2

:

Substituting some numerical values for x we have

x q(x)
0 1.414
1 1.176
2 1.086
4 1.036
8 1.016

> 18 1 + (8x)�1:

Now if there is a single sinusoid present with amplitude B, the maximum of the

periodogram will be about

C(!̂) � NB2

4
:

With a signal-to-noise ratio of unity, the mean square signal B2=2 = �2, so

C(!̂)

2�2
� N

4
:

IfN � 10, there is less than a 6.5% di�erence in the error estimates, and when N > 50

the di�erence is less than 1%. Thus whenever we have enough signal-to-noise ratio or

enough data to justify any frequency estimates at all, the di�erences are completely

negligible.
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Computing the

\Student t-Distribution"

This subroutine was used to prepare all of the numerical analysis presented in this

work. This is a general purpose implementation of the calculation that will work for

any model functions and for any setting of the parameters, independent of the number

of parameters and their values, and it does not care if the data are uniformly sampled

or not. In order to do this, the subroutine requires �ve pieces of input data and one

work area. On return one receives Hi(tj), hi, h2, P (f!gjD; I), h�i, and p̂(f!g). The
parameter list is as follows:

Parm LABEL i/o Description/function
N INO input The number of discrete time samples in the time se-

ries to be analyzed.
m IFUN input This is the order of the matrix gjk and is equal to

the number of model functions.
dj DATA input The time series (length N): this is the data to be

analyzed. Note: the routine does not care if the data
are sampled uniformly or not.

gij GIJ input This matrix contains the j nonorthogonal model
functions [dimensioned as GIJ(INO,IFUN)] and eval-
uated at ti.
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Parm LABEL i/o Description/function
ZLOGE ZLOGE i/o This is the loge of the normalization con-

stant. The subroutine never computes the
\Student t-distribution" when ZLOGE is
zero: instead the loge of the \Student t-
distribution" is computed. It is up to the
user to locate a value of loge[P (f!gjD; I)]
close to the maximum of the probability
density. This log value should then be
placed in ZLOGE to act as an upper bound
on the normalization constant. With this
value in place the subroutine will return
the value of the probability; then, an in-
tegral over the probability density can be
done to �nd the correct value of the nor-
malization constant.

Hi(tj) HIJ output These are orthonormal model functions
Eq. (3.5) evaluated at the same time and
parameter values as GIJ.

hi HI output These are projections of the data onto the
orthonormal model functions Eq. (3.13)
and Eq. (4.3).

h2 H2BAR output The su�cient statistic h2 Eq. (3.15) is al-
ways computed.

P (f!gjD; I) ST output The \Student t-distribution" Eq. (3.17) is
not computed when the normalization con-
stant is zero. To insure this �eld is com-
puted the normalization constant must be
set to an appropriate value.

STLE STLE output This is the loge of the \Student t-
distribution" Eq. (3.17) and is always
computed.

h�i SIG output This is the expected value of the noise vari-
ance � as a function of the f!g parameters
Eq. (4.6) with s = 1.

p̂(f!g) PHAT output This is the power
spectral density Eq. (4.15) as a function
of the f!g parameters.
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Parm LABEL i/o Description/function
WORK scratch This work area must be dimensioned at least 5m2.

The dimension in the subroutines was set high to
avoid possible \call by value" problems in FOR-
TRAN. On return, WORK contains the eigenvec-
tors and eigenvalues of the gjk matrix. The eigen-
vector matrix occupies m2 contiguous storage loca-
tions. The m eigenvalues immediately follow the
eigenvectors.

This subroutine makes use of a general purpose \canned" eigenvalue and eigenvec-

tor routine which has not been included. The original routine used was from the IMSL

library and the code was later modi�ed to use a public-domain implementation (an

EISPACK routine). The actual routine one uses here is not important so long as the

routine calculates both the eigenvalues and eigenvectors of a real symmetric matrix.

If one chooses to implement this program one must replace the call (clearly marked in

the code) with a call to an equivalent routine. Both the eigenvalues and eigenvectors

are used by the subroutine and it assumes that the eigenvectors are normalized.

SUBROUTINE PROB

C (INO,IFUN,DATA,GIJ,ZLOGE,HIJ,HI,H2BAR,ST,STLOGE,SIGMA,PHAT,WORK)

IMPLICIT REAL*08(A-H,O-Z)

DIMENSION DATA(INO),HIJ(INO,IFUN),HI(IFUN),GIJ(INO,IFUN)

DIMENSION WORK(IFUN,IFUN,20)

C

C

CALL VECTOR(INO,IFUN,GIJ,HIJ,WORK)

C

H2=0D0

DO 1600 J=1,IFUN

H1=0D0

DO 1500 L=1,INO

1500 H1=H1 + DATA(L)*HIJ(L,J)

HI(J)=H1

H2=H2 + H1*H1

1600 CONTINUE

H2BAR=H2/IFUN

C

Y2=0D0

DO 1000 I=1,INO

1000 Y2=Y2 + DATA(I)*DATA(I)

Y2=Y2/INO

C
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QQ=1D0 - IFUN*H2BAR / INO / Y2

STLOGE=DLOG(QQ) * ((IFUN - INO)/2D0)

C

AHOLD=STLOGE - ZLOGE

ST =0D0

IF(DABS(ZLOGE).NE.0D0)ST=DEXP(AHOLD)

C

SIGMA=DSQRT( INO/(INO-IFUN-2) * (Y2 - IFUN*H2BAR/INO) )

C

PHAT = IFUN*H2BAR * ST

C

RETURN

END

SUBROUTINE VECTOR(INO,IFUN,GIJ,HIJ,WORK)

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION HIJ(INO,IFUN),GIJ(INO,IFUN),WORK(IFUN,IFUN,20)

C

DO 1000 I=1,IFUN

DO 1000 J=1,INO

1000 HIJ(J,I)=GIJ(J,I)

C

CALL ORTHO(INO,IFUN,HIJ,WORK)

C

DO 5000 I=1,IFUN

TOTAL=0D0

DO 4500 J=1,INO

4500 TOTAL=TOTAL + HIJ(J,I)**2

ANORM=DSQRT(TOTAL)

DO 4000 J=1,INO

4000 HIJ(J,I)=HIJ(J,I)/ANORM

5000 CONTINUE

C

RETURN

END

SUBROUTINE ORTHO(INO,NMAX,AIJ,W)

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 AIJ(INO,NMAX),W(NMAX)

C

IT=1

IE=IT + NMAX*NMAX

IM=IE + NMAX*NMAX

IW=IM + NMAX*NMAX

I2=IW + NMAX*NMAX

C

CALL TRANS(INO,NMAX,AIJ,W(IM),W(IT),W(IE),W(IW),W(I2))

C
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RETURN

END

SUBROUTINE TRANS

C(INO,NMAX,AIJ,METRIC,TRANSM,EIGV,WORK1,WORK2)

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 AIJ(INO,NMAX)

REAL*8 METRIC(NMAX,NMAX),EIGV(NMAX)

REAL*8 TRANSM(NMAX,NMAX),WORK1(NMAX),WORK2(NMAX)

DO 2000 I=1,NMAX

DO 2000 J=1,NMAX

TOTAL=0D0

DO 1000 K=1,INO

1000 TOTAL=TOTAL + AIJ(K,I)*AIJ(K,J)

METRIC(I,J)=TOTAL

2000 CONTINUE

C******************************************************************

C**** THIS CALL MUST BE REPLACED WITH THE CALL TO AN EIGENVALUE

C**** AND EIGENVECTOR ROUTINE

CALL EIGERS(NMAX,NMAX,METRIC,EIGV,1,TRANSM,WORK1,WORK2,IERR)

C**** NMAX IS THE ORDER OF THE MATRIX

C**** METRIC IS THE MATRIX FOR WHICH THE EIGENVALUES AND VECTORS

C**** ARE NEEDED

C**** EIGV MUST CONTAIN THE EIGENVALUES ON RETURN

C**** TRANSM MUST CONTAIN THE EIGENVECTORS ON RETURN

C**** WORK1 IS A WORK AREA USED BY MY ROUTINE AND MAY BE USED

C**** BY YOUR ROUTINE. ITS DIMENSION IS NMAX

C**** IN THIS ROUTINE. HOWEVER IT MAY BE DIMENSIONED

C**** AS LARGE AS NMAX*NMAX WITHOUT AFFECTING ANYTHING.

C**** WORK2 IS A SECOND WORK AREA AND IS OF DIMENSION NMAX

C**** IN THIS ROUTINE, IT MAY ALSO BE DIMENSIONED AS

C**** LARGE AS NMAX*NMAX WITHOUT AFFECTING ANYTHING.

C******************************************************************

DO 5120 K=1,INO

DO 3100 J=1,NMAX

3100 WORK1(J)=AIJ(K,J)

DO 5120 I=1,NMAX

TOTAL=0D0

DO 3512 J=1,NMAX

3512 TOTAL=TOTAL + TRANSM(J,I)*WORK1(J)

5120 AIJ(K,I)=TOTAL

RETURN

END
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Ŝ(!) 114

sampling distribution 9, 37
scale parameter 19, 187
Schempp, W. 162
Schlaifer, R. 76
Schuster, A. 7, 26
second posterior moments 45
Shaw, D. 117
side lobes 26
signal detection

multiple measurements 167
one-frequency 21, 90

signal-to-noise 48
sine transform 7, 16
Smith, W. H. 162
Sonett, C. P. 148, 151, 157, 158
spectrum absorption 117
stacking brute 163
Student t-distribution 19, 35

computing 197
one-frequency 71, 87
multiple harmonic frequencies 109
two-frequencies 94

su�cient statistic de�nition 7, 35, 110
sum rule 10
times discrete 13
trend elimination 137
Tribus, M. 76
Tukey, J. W. 6, 9, 23, 73
uniform prior 18, 34
units conversion 21, 22
variance 40, 47
Waldmeier, M. 27
weighted averages 190
Welch, P. D. 6
Whittle, P. 110
Wilde, D. J. 50
Wolf's relative sunspot numbers 27, 148
y(t) de�nition 13
Zellner, A. 55, 73, 76
zero padding 19


