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Introduction

These notes are based on the course “Probability” given by Prof. F.P. Kelly in Cam-
bridge in the Lent Term 1996. This typed version of the notes is totally unconnected
with Prof. Kelly.

Other sets of notes are available for different courses. At the time of typing these
courses were:
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Analysis Further Analysis
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Waves (etc.) Statistical Physics

General Relativity Dynamical Systems

Combinatorics Bifurcations in Nonlinear Convection

They may be downloaded from

http://www.istari.ucam.org/maths/ or
http://www.cam.ac.uk/CambUniv/Societies/archim/notes.htm

or you can email soc-archim-notes@lists.cam.ac.ukto get a copy of the
sets you require.
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Chapter 1

Basic Concepts

1.1 Sample Space

Suppose we have an experiment with a set € of outcomes. Then Q is called the sample
space. A potential outcome w € 2 is called a sample point.

For instance, if the experiment is tossing coins, then Q = {H, T}, or if the experi-
ment was tossing two dice, then Q = {(4,7) : 4,7 € {1,...,6}}.

A subset A of 2 is called an event. An event A occurs is when the experiment is
performed, the outcome w € (Q satisfies w € A. For the coin-tossing experiment, then
the event of a head appearing is A = {H} and for the two dice, the event “rolling a
four” would be A = {(1, 3),(2,2),(3,1)}.

1.2 Classical Probability

If 2 is finite, Q@ = {w1,...,w,}, and each of the n sample points is “equally likely”
then the probability of event A occurring is

_ Al

P =1

Example. Choose r digits from a table of random numbers. Find the probability that
for0 <k <9,
1. nodigit exceedsk,
2. kisthe greatest digit drawn.
Solution. The event that no digit exceeds & is
A, ={(a1,...,a,):0<a; <k,i=1...r}.

Now | Ay = (k + 1)", so that P(4;) = (&E)".
Let By, be the event that & is the greatest digit drawn. Then By = A’»‘ \ Ai—1. Also
Ajp_1 C Ap, sothat |By| = (k + 1)" — k. Thus P(By,) = $+HH "=k O

107



2 CHAPTER 1. BASIC CONCEPTS

The problem of the points

Players A and B play a series of games. The winner of a game wins a point. The two
players are equally skillful and the stake will be won by the first player to reach a target.
They are forced to stop when A is within 2 points and B within 3 points. How should
the stake be divided?

Pascal suggested that the following continuations were equally likely

AAAA AAAB AABB ABBB BBBB
AABA ABBA BABB
ABAA ABAB BBAB
BAAA BABA BBBA
BAAB
BBAA

This makes the ratio 11 : 5. It was previously thought that the ratio should be 6 : 4
on considering termination, but these results are not equally likely.

1.3 Combinatorial Analysis

The fundamental rule is:

Suppose r experiments are such that the first may result in any of ny possible out-
comes and such that for each of the possible outcomes of the first i — 1 experiments
there are n; possible outcomes to experiment . Let a; be the outcome of experiment i.
Then there are a total of [];_, n; distinct r-tuples (a1, ..., a,) describing the possible
outcomes of the r experiments.

Proof. Induction. O

1.4 Stirling’s Formula

For functions g(n) and h(n), we say that g is asymptotically equivalent to » and write
g(n) ~ h(n) if% — lasn — oco.

Theorem 1.1 (Stirling’s Formula). Asn — oo,

1 n! 0
og— —
& V2rnnte"

and thusn! ~ v/2mnne ™.

We first prove the weak form of Stirling’s formula, that log(n!) ~ nlogn.

Proof. logn! = "] log k. Now

n n n+1
/ log xdx < Zlogk < / log xdz,
1 1 1

and flz logz dr = zlogz — z + 1, and so
nlogn —n+1<logn! < (n+1)log(n+1) —n.

Divide by nlogn and let n — oo to sandwich 1°8"L between terms that tend to 1.

nlogn

Therefore logn! ~ nlogn. O




1.4. STIRLING’S FORMULA 3

Now we prove the strong form.

Proof. For z > 0, we have

. 1 .
l—z+2®? -3 < — <1—x+2°
1+

Now integrate from 0 to y to obtain
2 3 4 2 3
y—y /2+y7/3—y /A <log(l+y) <y -y /2+y"/3.
Let i, = log -2 . Then® we obtain

! ! <hp—hpt1 < ! + !
12n2 1203 =77 ML= 10p2 T 63
Forn > 2,0 < hp — hpy1 < # Thus h,, is a decreasing sequence, and 0 <
ho—hny1 < 3or_y(hp—heg1) <377 5. Therefore h,, is bounded below, decreasing
S0 is convergent. Let the limit be A. We have obtained

n! ~ entt1/2e—n

We need a trick to find A. Let I, = 0”/2 sin” 8 df. \We obtain the recurrence I, =
%Ir,z by integrating by parts. Therefore Iy, = %wﬂ and Is, 1 = ((222—1'1))2,
Now I,, is decreasing, so

I, Iy 1

1< <—=14——=1.
Iy 7 Iapg 2n

But by substituting our formula in, we get that

I, m2n+1 2 R 2w
Lpa 2 no e?4 e24’

Therefore e24 = 27 as required. O

Lhy playing silly buggers with log 1 + %
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Chapter 2

The Axiomatic Approach

2.1 The Axioms

Let 2 be a sample space. Then probability IP is a real valued function defined on subsets
of  satisfying :-

1. 0<P(A)<1forAcCQ,

3. for a finite or infinite sequence A;, Ao, --- C Q of disjoint events, P(UA;) =

Zi ]P(Au)

The number P(A) is called the probability of event A.

We can look at some distributions here. Consider an arbitrary finite or countable
Q = {w1,ws,...} and an arbitrary collection {p1, po, ...} of non-negative numbers
with sum 1. If we define

P(A) = > p

LwiEA

it is easy to see that this function satisfies the axioms. The numbers py,p»,... are
called a probability distribution. If € is finite with n elements, and if p; = p, = --- =
Pn = % we recover the classical definition of probability.

Another example would be to let @ = {0,1,...} and attach to outcome r the
probability p, = e—A§ for some A > 0. This is a distribution (as may be easily
verified), and is called the Poisson distribution with parameter \.

Theorem 2.1 (Properties of ). A probability P satisfies

1. P(A%) =1 - P(A),

3. if A C BthenP(4) < P(B),

4. P(AUB) = P(A) + P(B) — P(AN B).

5



6 CHAPTER 2. THE AXIOMATIC APPROACH

Proof. Notethat @ = AUA®,and ANA° = (). Thus1 =P(Q) = P(A) +P(A°). Now
we can use this to obtain P(§) = 1 — P(() = 0. If A C B, write B = AU (BN A°),
so that P(B) = P(A) + P(BN A°¢) > P(A). Finally, write AU B = AU (BN A°)
and B = (BN A)U (BN A°). Then P(AU B) = P(A) + P(BN A¢) and P(B) =
P(BnN A) + P(Bn A°), which gives the result. O

Theorem 2.2 (Boole’s Inequality). For any A, As,--- C Q,
P(U Al-) <Y P(4)
1 %
P (U Ai) < Z P(A;)
1 7

Proof. Let B; = A; and then inductively let B; = A4; \ U’fl By,. Thus the B;’s are
disjointand | J; B; = |J; A:. Therefore

f(02)-(0e)
= ;P(Bi)

< ZHD(Az) as B; C A;.

Theorem 2.3 (Inclusion-Exclusion Formula).

- £ (o)

jes
Proof. We know that P(A4; U Ay) = P(A;) + P(A2) — P(A; N Az). Thus the result
is true for n = 2. We also have that

P(AjU---UA,)=PA U---UA,1)+P(A,) —P(AU---UA,_1)NA,).
But by distributivity, we have

P (O Al> =P (Tbl Al> + ]P(An) -P (Tul(Al N An)> .

1

Application of the inductive hypothesis yields the result. O
Corollary (Bonferroni Inequalities).
< n
Z (—1)‘S|71]P ﬂ A]‘ 0|']P<UAZ‘>
} jes > 1

according asr iseven or odd. Or in other words, if the inclusion-exclusion formulais
truncated, the error has the sign of the omitted term and is smaller in absolute value.
Note that the caser = 1 is Bool€'sinequality.
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Proof. The result is true for n = 2. If true forn — 1, then itis true fornand 1 < r <
n — 1 by the inductive step above, which expresses a n-union in terms of twon — 1
unions. It is true for r = n by the inclusion-exclusion formula. O

Example (Derangements). After a dinner, the n guests take coats at random from a
pile. Find the probability that at least one guest has the right coat.

Solution. Let A, be the event that guest & has his® own coat.
We want P({J;"_, 4;). Now,

(n—r)!
n!

P(A, N---NA;) =

)

by counting the number of ways of matching guests and coats after ¢4,...,4, have
taken theirs. Thus

S P, N-N4) = <n>(n_r)! -1

_ _ r n! r!
11 <o <lpe

and the required probability is

" 11 (=1)n1
[P(U/h) :1—5+§+"'+T,
i=1

whichtendsto 1 —e~! as n — oo. O

Furthermore, let P,,,(n) be the probability that exactly m guests take the right coat.
Then Po(n) — e~ ! and n! Py(n) is the number of derangements of n objects. There-
fore

<n> 1 xIF’o(n—m') x (n —m)!

Po(n —
_ Poln—m) 5% asn o .
m!

m!

2.2 Independence

Definition 2.1. Two events A and B are said to be independent if
P(ANB)=P(A)P(B).
More generally, a collection of events A;, i € I areindependent if
[P(ﬂ Al-) = H P(A;)
i€J i€J
for all finite subsets J C I.

Example. Two fair dice arethrown. Let A; bethe event that thefirst die shows an odd
number. Let A, be the event that the second die shows an odd number and finally let
Az bethe event that the sum of the two numbersis odd. Are A; and A, independent?
Are A; and Az independent? Are A, A, and As independent?

1I’'m not being sexist, merely a lazy typist. Sex will be assigned at random...
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Solution. We first calculate the probabilities of the events Ay, Az, A3, A1NAy, AjNA3
and AN AsN As.

Event Probability
18 _ 1
Ay 6 =3

A, As above, £
6x3 _ 1
Az S5 =3
A
andy | 2=t

AiNAxN Az 0

Thus by a series of multiplications, we can see that A; and A, are independent, A
and Az are independent (also A and A3), but that A;, A> and A3 are not independent.
O

Now we wish to state what we mean by “2 independent experiments”2. Consider
Q) ={ay,...}and Qs = {1, ... } with associated probability distributions {py, ... }
and {qi,...}. Then, by “2 independent experiments”, we mean the sample space
1 x Q with probability distribution P((a;, 85)) = pig;.

Now, suppose A C 2; and B C 2. The event A can be interpreted as an event in
Q1 x Qq, namely A x s, and similarly for B. Then

P(ANB)= > pigy= >, pi » ¢ =PAPB),
gzgg a;€A  [;EB

which is why they are called “independent” experiments. The obvious generalisation
to n experiments can be made, but for an infinite sequence of experiments we mean a
sample space Q1 x Q5 x ... satisfying the appropriate formula Vn € N.

You might like to find the probability that n independent tosses of a biased coin
with the probability of heads p results in a total of r heads.

2.3 Distributions

The binomial distribution with parameters n and p, 0 <p < 1 hasQ = {0,...,n} and
probabilities p; = (7)p*(1 — p)" "

Theorem 2.4 (Poisson approximation to binomial). If n — oo, p — 0 withnp = A
held fixed, then

n A"
(1 — n—r _y 7)\_‘
<r>p (1-p) e

2or more generally, .
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Proof.

(:’)I)T(l _p)n—r — n(n B 1) - T'(n —r+ l)pr(l _ p)n—r

nn—1 mn—r+1(np)"

=L . 1—pnr
n n n r! ( p)

T (M)E(l_éy(l_é)_r
. n r! n n
=1

S1x = xeMx1

O

Suppose an infinite sequence of independent trials is to be performed. Each trial
results in a success with probability p € (0, 1) or a failure with probability 1 — p. Such
a sequence is called a sequence of Bernoulli trials. The probability that the first success
occurs after exactly r failures is p,, = p(1—p)". This is the geometric distribution with
parameter p. Since ) ,° p, = 1, the probability that all trials result in failure is zero.

2.4 Conditional Probability

Definition 2.2. Provided P(B) > 0, we define the conditional probability of A| B3 to
be
P(ANB)
P(B)
Whenever we write P(A|B), we assume that P(B) > 0.
Note that if A and B are independent then P(A|B) = P(A).

P(A|B) =

Theorem25. 1. P(ANB)=P(A|B)P(B)
2 P(ANBNC)=PABNC)P(B|C)P(C)

3. P(A|BNC) = TS,

4. the function P(o|B) restricted to subsets of B isa probability function on B.

Proof. Results 1 to 3 are immediate from the definition of conditional probability. For
result 4, note that ANB C B,soP(AN B) < P(B)andthusP(A|B) < 1. P(B|B) =
1 (obviously), so it just remains to show the last axiom. For disjoint A4;’s,

_ PU;(A4; N B))
]P(LiJAi B) =—bm
_ Zi ]P)(Al N B)
- PB)
= > P(4A;|B), as required.

(3

3read “A given B”.
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Theorem 2.6 (Law of total probability). Let By, Bs, ... beapartition of 2. Then

P(4) = P(A|B) P(B;).

Proof.

Z P(A|B;) P(B;) = Z P(AN B;)
=P (U AN Bi>

=P(A4), as required.
O

Example (Gambler’s Ruin). Afair coin istossed repeatedly. At each toss a gambler
wins £1 if a head shows and loses £1 if tails. He continues playing until his capital
reaches m or he goes broke. Find p,., the probability that he goes broke if his initial
capital is £x.

Solution. Let A be the event that he goes broke before reaching £m, and let H or
T be the outcome of the first toss. We condition on the first toss to get P(4) =
P(AH)P(H) + P(A|T)P(T). But P(A|H) = py41 and P(A|T) = pz—1. Thus
we obtain the recurrence

Pz+1 — Px = Pz — Pz—1-
Note that p, is linear in z, withpy = 1, p,, = 0. Thus p, =1 — . O

Theorem 2.7 (Bayes’ Formula). Let By, Bs, ... bea partition of 2. Then

_ P(AIB;) P(B))
P(B;|A) = >, P(A|B;j)P(B;j)

Proof.

B ]P(AﬂBi) _ ]P(A|Bi) ]P(Bi)
P(B;|A) = P(4) >, P(A|B;) P(By)’

by the law of total probability. O



Chapter 3

Random Variables

Let 2 be finite or countable, and let p,, = P({w}) forw € Q.
Definition 3.1. Arandomvariable X isafunction X : Q — R.

Note that “random variable” is a somewhat inaccurate term, a random variable is
neither random nor a variable.

Example. If Q = {(¢,7),1 < 14,5 < t}, then we can define random variables X and
Y by X(i,j) = i+ j and Y (i, j) = max{i, j}

Let Rx be the image of © under X. When the range is finite or countable then the

random variable is said to be discrete.
We write P(X = z;) for 3 v ()=, Py @nd for B C R

P(X €B)=) P(X =u).
rEB

Then
(P(X =z),z € Rx)

is the distribution of the random variable X. Note that it is a probability distribution
over Rx.

3.1 Expectation

Definition 3.2. The expectation of a randomvariable X isthe number

E[X] = Z pr(w)

weR

provided that this sum converges absol utely.

11



12 CHAPTER 3. RANDOM VARIABLES

Note that

E[X] = Z PuX ()

weR

= Z Z PuX (W)

T€ERx w:X (w)=z

=2 v > p

T€Rx w:X(w)=z

= Z zP(X =x).

TERX

Absolute convergence allows the sum to be taken in any order.

If X is a positive random variable and if _ ¢, p, X (w) = oo we write E[X] =
+oo. If

Z zP(X =z) = oo and

rERXx
z>0

then E[ X] is undefined.

Example. IfP(X =7) = e 2}, thenE[X] = A.

Solution.
o0
E[X] = Zre_’\AT—T
r=0
A ATt AN
= e~ Ae e = A
e ;(r—l)' e e

Example. If P(X =7) = (7)p"(1 — p)"~" then E[X| = np.



3.1. EXPECTATION 13

Solution.

r=1

= n—1 r n—1-—r
=mp)_ (* " )r(1-p)

r=1
=np

O

For any function f: R — R the composition of f and X defines a new random
variable f and X defines the new random variable f(X) given by

FX)(w) = f(X(w))-

Example. If a, b and ¢ are constants, then a + bX and (X — ¢)? arerandomvariables
defined by

(a+bX)(w) = a+ bX (w) and
(X = 0)*(w) = (X (w) = 0)*.
Note that E[ X] is a constant.
Theorem 3.1.
1. 1f X > 0then E[X] > 0.
2. 1f X > 0andE[X] = 0 then P(X = 0) = 1.
3. If a and b are constantsthen E[a + bX] = a + bE[X].
4. For anyrandomvariables X, Y then E[ X + Y] = E[X] + E[Y].
5. E[X] is the constant which minimis&sIE[(X - c)z}.

Proof. 1. X >0means X, > 0Vw € Q)

SOE[X]=> p.X(w)>0
we

2. If Jw € Q with p,, > 0and X (w) > 0then E[X] > 0, therefore P(X = 0) = 1.
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3.
Ela + bX] = Z (a+bX (w)) po
we
:azpw —l—prwX(W)
weN weN

=a+ E[X].
4. Trivial.
5. Now

(
(X — E[X])*] +2(X — E[X])(E[X] - ¢) + [(E[X] - o)]"]
(X — E[X])?] +2(B[X] - o)E[(X — E[X])] + (E[X] - ¢)”
(X —E[X])*] + (B[X] - ).

This is clearly minimised when ¢ = E[ X].

([l
Theorem 3.2. For any randomvariables X, X5, ...., X,
E in] = E[X]
=1 =1
Proof.
n n—1
E ZXZ-] =E|) Xi+X,
i=1 i=1
n—1
=E| ) Xi| +E[X]
=1
Result follows by induction. O

3.2 Variance

Var X = E[X?] - E[X] for Random Variable X
= E[X - B[X]] = o
Standard Deviation = v Var X

Theorem 3.3. Properties of Variance

(i) Var X > 0if Var X = 0, then P(X = E[X]) =1
Proof - from property 1 of expectation
(i) If a, b constants, Var (a + bX) = b2 Var X
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Proof.
Vara + bX = E[a + bX — a — bE[X]]
= b’E[X — E[X]]
=b?Var X

(i) Var X = E[X?] — E[X]°
Proof.
E[X* - 2XE[X] + (E[X])’]
E[X?] — 2E[X]E[X] + E[X]’
E[X?] - (B[X])?

E[X — E[X]]?

15

Example. Let X have the geometric distribution P(X = r) = pg” withr = 0,1,2

andp + ¢ = 1. ThenE[X] = % and Var X = ;Lz_
Solution.

(oo} (oo}
= Z rpq” = pq Z rg” !

:pq<er+l qu _1>
r=1 r=1

29 q ¢

e %
i)

Definition 3.3. The co-variance of randomvariables X and Y is.
Cov(X,Y) =E[(X — E[X])(Y — E[Y])]
The correlationof X and Y is:
Cou(X,Y)
VVar X VarY’

Corr(X,Y) =
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Linear Regression

Theorem 3.4. Var (X +Y) = Var X + VarY + 2Cov(X,Y)

Proof.

Var (X +Y) = E[(X +Y)? — E[X] — E[Y]]?
=E[(X - E[X])* + (¥ - E[Y])* + 2(X — E[X])(Y - E[Y])]
=Var X + VarY + 2Cov(X,Y)

O
3.3 Indicator Function
Definition 3.4. The Indicator Function I[A] of an event A C 2 isthefunction
1, ifweA4;
IA ={ ’ A
A]0w) {m ifwg Al 3.1
NB that I[A] is a random variable
1.
E[T[A]] = P(4)
E[I[A]] = ) poI[A](w)
weN
=P(A)

2. 1[4 =1 — I[A]

3. I[AN B] = I[A|I[B]

ITAU B] = I[A] + I[B] — I[A]I[B]
IJAUB](w) =1ifwue Aorwe B
ITAU B|(w) = I[A](w) + I[B](w) — I[A]I[B](w) WORKS!

Example. n > couplesare arranged randomly around a table such that males and fe-
malesalternate. Let NV = The number of hushandssitting next to their wives. Calculate
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the E[ V] and the Var N.

N =) I[A] A = eventcouplei aretogether

=1 1<J

—E (iI[Ai] +QZI[A1'][[AJ']>]
I

A’] 4 n(n — DE[(I[A1]1[A2])]

E[(I1A ) I[As])] = TE[[Ay 1 Ba] = B(Ay 1 Ao)

P(A1) P(A2]|Ar)

2 1 1 n—2 2
" n\n—-1n-1 n—-1n-1

Var N = E[N?] - E[N]*

:%(1-{—2(7}—2))—2

_2(n—2)
-1
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3.4 Inclusion - Exclusion Formula

()
()

(4

1

N
1 -] 1149

A

1 =1

%

)
W

=1-1

1-—

(1= I[A4i)

»—Amz —

N
Z ITA;] - Zil < ipI[A1]1[As]

Fo (C1 ST TANI[As] A

i1 <io...<ij

Take Expectation

Fot (CD7F DT P(A NAL NN A)
i1 <i2...<i;
3.5 Independence

Definition 3.5. Discrete random variables X, ..., X, are independent if and only if
for any zy...z,, :

P(X) =21, Xz = 230 Xy = 2) = [[P(X; = )

Theorem 3.5 (Preservation of Independence). If
X4, ..., X,, are independent random variables and f1, f>...f, are functionsR — R
then f; (Xy)...f»(X,,) areindependent random variables
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Proof.

]P(fl(Xl):yla-~-7fn(Xn):yn): Z HD(Xl =T1,...

Theorem 3.6. If X;.....X,, areindependent random variables then:

N N
II Xz‘l =[] Elx)]

E

NOTE that E[ > X;] = > E[X;] without requiring independence.

Proof. Write R; for Rx, the range of X;

N
ElHX2 = Z Z IEl..IEnHD(Xl :l‘l,XQZ.I‘Q .......
1

T1€ER TnERn

ﬁ ( > P = xi)>

T;ER;

[TEx

19

O

Theorem 3.7. If X4, ..., X,, areindependent random variablesand f....f,, are func-

tion R — R then:

E

1T fi(Xi)] = [ EL:(X0)]

1 1

Proof. Obvious from last two theorems!

Theorem 3.8. If X1, ..., X,, areindependent random variables then:

Var (i: Xl-> = Zn: Var X
i=1

=1
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Var (ix) :E:<§;X¢>2] ~E >

:E_;ﬁ +ZXZ'XJ] —ELiXir

L ]
= E[X7] + Y EX.X,]| - Y E[Xi]" - > E[X,]E[X]
i i#j i 1#]

=3 (B[x?] - ELXP)
= ZVar X;

Theorem 3.9. If X, ..., X, are independent identically distributed random variables
then

1 & 1
Var (ﬁ ZX¢> = EVarXi

=1

Proof.
1 — 1 ;
Var (E ;Xl) = FVar‘Xi
1 n
- F Z Var Xi
=1
1
= — Var Xi
n
O
Example. Experimental Design. Two rods of unknown lengths a, b. Arule can

measure the length but with but with error having 0 mean (unbiased) and variance 2.
Errors independent from measurement to measurement. To estimate a, b we could take
separate measurements A, B of each rod.

EA]=a Var A = o
E[B]=b Var B = o*
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Can we do better? YEP! Measurea + bas X anda — basY

EX]=a+b Var X = o’
EY]=a—-0 VarY = o?

Ly
E _ _2'_ | =a
X+Y 1
Var + = —o?
2
(X -Y
E =b
L 2 J
X-Y 1.
Var 5 = —o?
So thisis better.
Example. Non standard dice. You choose 1 then | choose one. Around this cycle

a— BPA>B)=2. Sotherelation’ A better that B’ is not transitive.
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Chapter 4

Inequalities

4.1 Jensen’s Inequality

A function f; (a,b) — R is convex if

flpr +qy) <pf(x) + (1 —p)f(y) -Vo,y € (a,b) - Vp € (0,1)

Strictly convex if strict inequality holds when z # y

fis concave if —f is convex. f is strictly concave if — f is strictly convex

23
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Concave

neither concave or convex.
We know that if f is twice differentiable and f" () > 0 for z € (a,b) the if f is
convex and strictly convex if f (z) > 0 forz € (a,b).

Example.
f@) = ~logx
, -1
fle)=—
f@) = >0
f(z) isstrictly convex on (0, co)
Example.
flz) = —zlogz
f(x) = =1+ logz)
" —].
(z) = o <0

Strictly concave.
Example. f(z = z* isstrictly convex on (0, oo) but not on (—oc, co)

Theorem 4.1. Let f : (a,b) — R bea convex function. Then:

Zpif(l?i) > f (me)

Z1,...,Xn € (a,b), p1,...,pn € (0,1) and > p; = 1. Further moreif fis strictly
convex then equality holdsif and only if all X'sare equal.

E[f(X)] = f(E[X])
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Proof. By induction on n n = 1 nothing to prove n = 2 definition of convexity.
Assume results holds up to n-1. Consider z,...,z,, € (a,b), p1,...,pn € (0,1) and

Yopi=1

Fori = 2..n, setp; = — Pi_ such that Zpl =1
p =2

Then by the inductive hypothesis twice, first for n-1, then for 2

n

immm = pufto) + (=) i)
Zpif(z) + (1 —p)f (ipzxz>
> f (pm +(1=p) ép;%)

o

f is strictly convex n > 3 and not all the zs equal then we assume not all of z5...z,,
are equal. But then

n
(1=p) Y pf(@) > (1—p))f (ZP#&)
=2
So the inequality is strict. O
Corollary (AM/GM Inequality). Positivereal numberszy,...,z,

1
([Ie) <55
=1 i=1

Equality holds ifandonly if 2, = 2o = --- =z,
Proof. Let
1
]P)(‘Y = l‘i) = E
then f(x) = — log x is a convex function on (0, co).
So

E[f(z)] > f (E[z]) (Jensen’s Inequality)
~Ellogz] > logE[«]  [1]

1 « 1
Therefore — -~ 21: logz; < —log - Z T

1
1

1) <25 o

For strictness since f strictly convex equation holds in [1] and hence [2] if and only if
T =Ty =-"-=Tp I:‘
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If f : (a,b) — Risaconvex function then it can be shown that at each pointy € (a, b)3
a linear function o, 4+ 8,2 such that

f(z) < ay + Byx z € (a,b)
fly) = ay + Byy

’

If f is differentiable at y then the linear function is the tangent f(y) + (z — y) f (v)

Lety = E[X], o = ay and 8 = G,

f(E[X]) = a + SE[X]

So for any random variable X taking values in (a, b)

E[f(X)] > Ela + 5X]
= a + PE[X]
= f(E[X])

4.2 Cauchy-Schwarz Inequality
Theorem 4.2. For any randomvariables X, Y,

E[XY]* <E[X?] E[V?]
Proof. Fora,b € R Let

LetZ = aX — bY
Then0 < E[Z?] = E[(aX — bY)?]
= a’E[X?] — 2abE[XY] + b’E[Y?]

quadratic in a with at most one real root and therefore has discriminant < 0.
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Take b # 0

E[XY]? < E[X?] E[V?]

Corollary.
|Corr(X,Y)| <1

Proof. Apply Cauchy-Schwarz to the random variables X — E[X]andY — E[Y] O

4.3 Markov’s Inequality

Theorem 4.3. If X isany random variable with finite mean then,

E{X1]

P(|X|>a) <
CIEREE

foranya> 0

Proof. Let

A=|X|>a
Then|X| > al[A]

Take expectation

4.4 Chebyshev’s Inequality
Theorem 4.4. Let X bearandomvariablewith E[ X?] < co. ThenVe > 0

E[X?]

P(X| 2 €) < =5

Proof.

2
x
I[|X|Z€]S€—2V3¢
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Then

2
T
I[|X|Z€]§€—2

Take Expectation

E[X?]

MXQ@SEEQ:

€

Note

1. Theresult is “distribution free” - no assumption about the distribution of X (other
than E[ X?] < o0).

2. Itis the “best possible” inequality, in the following sense
X = +¢ with probability -
262
C
= —e with ility —
€ with probability 52
. - C
= 0 with probability 1 — =
Then P(|X|> ¢) = =
E[X?] =¢

. c
P(X| 2 ) = & =

3. If p = E[X] then applying the inequality to X — u gives

Var X
2

P(X —p>e) <
€

Often the most useful form.

4.5 Law of Large Numbers

Theorem 4.5 (Weak law of large numbers). Let X, X5..... be a sequences of inde-
pendent identically distributed random variables with Variance o2 < oo Let

s
i=1

Then

——M‘ZG)—)O&SN—)OO
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Proof. By Chebyshev’s Inequality

E|(S,, — 2 _ .
= w propertles of expectatlon
n2e
Var S,, ..
= nz—ezn Since E[S,,] = nu
But Var Sn = no’2
2 2
ThUS]P(&—M‘ 25) S—n;Q =750
n n%e ne

O

Example. A,, A,... areindependent events, each with probability p. Let X; = I[A;].
Then

Sy ﬂ _ number of times A occurs
n n number of trials

p=E[I[A]] =P(4;) =p
Theorem states that

S.
—n—p‘26>—>0a5n—>oo
n

o

Which recovers the intuitive definition of probability.

Example. A Random Sample of size nis a sequence X, X5, ..., X,, of independent
identically distributed random variables (' n observations’)

n

_ i X
X = Lio X is called the SAMPLE MEAN
n

Theorem statesthat provided the variance of X; isfinite, the probability that the sample
mean differs from the mean of the distribution by more than e approachesOasn — oo.

We have shown the weak law of large numbers. Why weak? 3 a strong form of larger
numbers.

P(ﬁ—uiaSn—H)o> =1
n

This is NOT the same as the weak form. What does this mean?
w € ) determines

S,
Ly n=12,...
n
as a sequence of real numbers. Hence it either tends to p or it doesn’t.

]P(w:sn—(w)—)uaSn—)oo>:1
n
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Chapter 5

Generating Functions

In this chapter, assume that X is a random variable taking values in the range 0, 1, 2, . . ..
Letp, =P(X =7r)r=0,1,2,...

Definition 5.1. The Probability Generating Function (p.g.f) of the random variable
X,or of thedistributionp, = 0,1,2,...,is

p(z) = IE[ZX] = ZZT]P(X =r)= Zprzr
r=0 r=0

Thisp(z) isa polynomial or a power series. If a power seriesthen it is convergent for
|z| < 1 by comparison with a geometric series.

P <Y prlzl <D pre=1

Example.
1
p’r‘_gr_la 76
1
p(z) = E[z¥] :6(1+z+...z6)
21 —28
61—z

Theorem 5.1. Thedistribution of X is uniquely determined by the p.g.f p(z).

Proof. We know that we can differential p(z) term by term for |z| <1

]

p (2) =p1+2p2z+...
and so p (0) = py (p(0) = po)

Repeated differentiation gives

> !
(8) () — Z r. r—i
p (Z) - p— ('f' _ Z)|p’l‘z
and has p(¥) = 0 = i!p; Thus we can recover po, p1, . .. from p(z) O

31
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Theorem 5.2 (Abel’s Lemma).

E[X] = lim p'(z)

r—1

Proof.
o0
p'(z) = errzr_l |z] <1
r=t
For z € (0,1), p'(2) is a non decreasing function of z and is bounded above by
o0
E[X] = Z Dy
r=t
Choose € > 0, N large enough that
N
Z rpr > E[X] —€
r=t
Then
e’} N N
: r—1 > 13 r—1 _
lim errz > lim errz err
r=1 r=1 =1

True Ve > 0 and so

E[X] = lim p'(z)

r—1
O
Usually p'(z) is continuous at z=1, then E[X] = p/(1).
z1—26
Recall = -
( p(2) = e Z)
Theorem 5.3.
_ N i
E[X(X = 1)] = lim p"(2)
Proof.
pl(z)=> r(r—1)pz"?
r=2
Proof now the same as Abel’s Lemma O

Theorem 5.4. Supposethat X, X», ..., X, areindependent random variables with
p.9.f’'sp1(2),p2(2), - .., pn(2). Thenthe p.gf of

Xi+Xo+...X,

P1(2)p2(2) - - pn(2)
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Proof.

E[zX 1 HX0t-Xn] = B[z %1 X2 L 250 ]
B[] B[] B[]

=p1(2)p2(2) - - pu(2)

Example. Suppose X has Poisson Distribution

P(X=r)=e T r=0,1,
Then
E[ZX] = io:zre*’\£
- r!
r=0
— e—/\e—/\z
_ efk(lfz)

Let’s calculate the variance of X
—A(1-=2)

pl = e p” = N2 N1—2)
Then

E[X] = lim p () = p (1)( Sincep (z) continuousat z = 1 )E[X] = A

z—1

EX(X -1)]=p (1) =\’
Var X = E[X?] — E[X]?
= E[X(X - 1)] + E[X] - E[X]?
=N HA-N
=\
Example. Supposethat Y has a Poisson Distribution with parameter p. If Xand Y are
independent then:
E[zX+Y] = E[zX] E[zy]
— o M1=2) ymu(1—2)
— o~ OHm(1-2)
But thisisthe p.g.f of a Poisson random variable with parameter A + 1. By uniqueness
(first theorem of the p.g.f) this must be the distribution for X + Y
Example. X hasa binomial Distribution,

P(X =1) = <:f>pr(1 —p)" " r=0,1,...

E[z¥] = Zn: (:)pr(l —p)" 2"

r=0
=(pz+1-p)"
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Thisshowsthat X =Y} + Y3 + -+ Y,,. WhereY; + Y5 + .- + Y, areindependent
random variables each with

P(Y;=1)=p P¥;=0)=1-p

Note if the p.g.f factorizes |ook to see if the random variable can be written as a sum.

5.1 Combinatorial Applications
Tile a (2 x n) bathroom with (2 x 1) tiles. How many ways can this be done? Say f,,

fn:fn—1+fn—2 f0:f1:1
Let

F(z) = Z fnz"
n=0

fnzn = fn—lzn + fn—QZn

o] 0 o]
S F =3 ft 4 S o
n=2 n=2 n=0

F(2) = fo— 2f1 = 2(F(2) — fo) + 2°F(2)
F(z)1—z—-2") = fo(l—2)+zf

=1l—-z+2=1.
Since fo = f1 = 1,then F(z) = ——
Let
N 1+V5 N 1-5
T T2
1
F(z) =
(2) (1 —a12)(1 —asz)
(675] (65)

(I1-—a12) (1—az22)

1 o0 o0
= a1 E alz" —ao E ayz"
a1 — n—0

n=0

The coefficient of z7, that is f,, is

5.2 Conditional Expectation
Let X and Y be random variables with joint distribution

P(X =z,Y =y)
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Then the distribution of X is

yERy
This is often called the Marginal distribution for X. The conditional distribution for X
givenby Y =y is
PX =2,V =y)

P(X =z|Y =y) = P =)

Definition 5.2. The conditional expectation of X givenY = y is,

EX =z|Y =y|= > aP(X =z|Y =y)
TER,

The conditional Expectation of X given Y is the random variable E[ X |Y'] defined by
E[X|Y](w) = E[X]Y =Y ()]
ThusE[X|Y]: Q@ - R

Example. Let X1, X5,..., X, beindependent identically distributed random vari-
ableswithP(X; = 1) =pandP(X; =0) =1 —p. Let

Y=X1+Xo -+ Xn

Then
P(X, =1|Y =) = P(X];g/z};): r)
 PXi =1, X4+ + Xy =r—1)
P(Y =r)
o ]P(Xl)]P(‘YZ -f—-f—)(n =T — ].)
P(Y =r)
_ p(:l:i)prfl(l _ p)nfr
(M)pr (1 =p)nr
Gy
(")
Then

E[X,]Y =r] =0x P(X; =0]Y =r) + L x P(X; = 1]Y =1)

r

n

1
E[X1[Y = Y ()] = Y (w)
Therefore E[ X, |Y] = %Y

Note a randomvariable - a function of Y.
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5.3 Properties of Conditional Expectation
Theorem 5.5.

E[E[X|Y]] = E[X]
Proof.

EE[X|Y]]= ) P =y) E[X|Y =y]

=Y P(Y =y) Y PX=zY =y)

Y TER,
= ZZQ:]P(X =z|Y =y)
y

= E[X]

Theorem 5.6. If X and Y are independent then
E[X|Y] = E[X]
Proof. If X and Y are independentthen forany y € R,

EX|Y =y|= > aP(X =z} =y) =) 2P(X =z) = E[X]
TER, T

O

Example. Let Xy, X,,... bei.idrvswith p.g.f p(z). Let N be a random variable
independent of X1, X», ... with p.g.f A(z). What is the p.g.f of:

X1+ Xo+- -+ Xy
E[ZX1+,.--7Xn] - IE;[IEJ[ZX1+ """ X"|N]]

=Y PN =n)E[z5 "X |N =n]
n=0

=Y PN =n) ()"
n=0
= h(p(2))

Then for example

E[Xi+,...,X0] = —h(p(2))

= h'(1)p (1) = E[N]E[X1]
Exercise Calculate d%h(p(z)) and hence
Var X;+,..., X,
In terms of Var N and Var X
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5.4 Branching Processes

Xo, X1 ... sequence of random variables. X,, number of individuals in the n*" gener-
ation of population. Assume.

1. Xo=1

2. Each individual lives for unit time then on death produces & offspring, probabil-

ity fi. 22 fr =1
3. All offspring behave independently.
Xpp1 =Y+ Y+ + V)
Where Y™ are i.i.d.r.v’s. Y;” number of offspring of individual ¢ in generation n.

Assume
1 fo=>0
2. fo+f1 <1
Let F(z) be the probability generating function ofY;”.

F(z)= i fiuz® =E[z%] = E[zyin]
n=0

Let

F,(2) = E[2*"]
Then F (z) = F(z) the probability generating function of the offspring distribution.
Theorem 5.7.

Fuii(2) = Fu(F(2)) = F(F(...(F(2))...)

F, (z) isan n-fold iterative formula.
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Proof.

) Z e Ml X, = K]

- Z P(X, = k) E[Zyluyzu.._wnn]
n=0

S

n=0
= I ()"
n=0
= Fu(F(2))
([l
Theorem 5.8. Mean and Variance of population size
Ifm= Z kfi < oo
ando? = Z(k —m)?fy < 0
k=0
Mean and Variance of offspring distribution.
Then E[X,,] = m™
*m™ L (m® =)
Vaan:{ LT m7 1 (5.1)
no-, m=1

Proof. Prove by calculating F' (z), F'' (z) Alternatively

E[Xn] = E[E[Xn|anl]]
=E[m|X, 1]
= mE[X,,_1]
= m™ by induction
E[(X, —mX,1)*] = ]E[]E[(Xn —mXn-1)?|1X,]]
[Var (X, X,_1)]
=E[0?X,_1]

Uzmn 1

Thus

E[X2] — 2mE[X,,X,, 1] + m*E[X2_,]* = o>m" !
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Now calculate

E[ X Xp_1] = E[E[ X, X, 1| Xp_1]]
= B[ X1 B[ X, | X 1))
=E[X, 1mX, 1]
=mE[X2_,]
Then E[X2] = o?m" ™! + m?E[X,,_1]°
Var X,, = E[X2] — E[X,,]?

=m’E[X2_,] + o*m" ! —m2E[X, 4]
1

=m?Var X,,_1 + o2m™"
=m*Var X,_» + *(m™ ' + m")
— m2(n71) Var X; + 0_2(mn71 +mt 4+ m2n73)

=o*m" M l+m+ - +m")

To deal with extinction we need to be careful with limits as n — oo. Let

A, =X,=0
= Extinction occurs by generation n

and let A = UAn
1

= the event that extinction ever occurs

Can we calculate P(A) from P(A4,,)?
More generally let A,, be an increasing sequence

AL C A C ...

and define

n— o0

A= lim An:GAn
1

Define B,, forn > 1
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B,, forn > 1 are disjoint events and

s
=
[
s
&

s
I
-
~
I
-

Cs
=

[l
Cs
oy

s
I
-
~
I

=
< N
rCs

=
~——

I

- :
. -
rCs

=
~—

I
HM8
=
=

n
= Jim, > P(B)
n
= i, U
=1

n
n—00
=1

= lim P(4,)

n—o0

Thus
P( fim, 4) = fim P(d)

Probability is a continuous set function. Thus

P(extinction ever occurs) = lim P(A,)

n— 00
= lim P(X, =0)
n—oo
=q, Say
NoteP(X,, =0),n = 1,2,3,... is an increasing sequence so limit exists. But

P(X, =0) = F,(0) F, isthe p.g.fof X,
So

g = lim F,(0)

n—o0

Also
F(q) = F (lim F,(0))
= lim F(F,(0)) Since F is continuous
n—o0
= lim Fra O

Thus F'(q) = ¢
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“q” is called the Extinction Probability.
Alternative Derivation

q= Z P(X; = k) P(extinction| X1 = k)
k

= Z]P(Xl = k)"
= F(q)

Theorem 5.9. The probability of extinction, ¢, isthe smallest positive root of the equa-
tion F(¢) = q. m isthe mean of the offspring distribution.

Ifm < 1theng =1, whileif m > 1theng <1

Proof.
F(1)=1 mzzojkfk:;EF(z)
e .
F'(z)=> j(G—1)2/7?in0 < z < 1Since fo + f1 < 1 Also F(0) = fo > 0
Jj=z

Thus if m < 1, there does not exists a ¢ € (0,1) with F(q) = g. If m > 1 thenleta

be the smallest positive root of F'(z) = z then a < 1. Further,
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5.5 Random Walks
Let X1, X5,... bei.i.d.rvs. Let
S, =So+X1+Xo+---+ X, Where, usually So =0

Then S,, (n =0,1,2,... isal dimensional Random Walk.

We shall assume

X, = {1, with probability p (52)

—1, with probability ¢

This is a simple random walk. If p = ¢ = % then the random walk is called symmetric

Example (Gambler’s Ruin). You have an initial fortune of A and | have an initial
fortune of B. W\ toss coins repeatedly | win with probability p and you win with
probability ¢. What is the probability that | bankrupt you before you bankrupt me?
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Seta = A+ B and z = B Stop arandomwalk starting at z when it hits0 or a.

Let p. bethe probability that the random walk hits a before it hits 0, starting from
z. Let ¢, be the probability that the random walk hits 0 before it hits a, starting from
z. After the first step the gambler’sfortuneis either z — 1 or z + 1 with prob p and ¢
respectively. From the law of total probability.

Pz = qPz—1 + PPz+1 0<z<a

Alsopy = 0 andp, = 1. Must solvept? — t + ¢ = 0.

. 1++1—-4pg lﬁ:\/l—2p_1org
= % = % =
General Solution for p # g is
7\° 1
p.=A+B| = A+B=0A= ———
p 1_(1)
P

and so

To calculate ., observethat thisisthe same problemwith p, ¢, z replaced by p, g, a — 2z

respectively. Thus
() -6) ..,
1
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or
a—z

Q= ifp=gq
Thusq, + p, = 1 and so on, as we expected, the game ends with probability one.
P(hits 0 beforea) = ¢,
AN (2)2
7(1)) ——ifp#q

q- = @
O
p

a—z
Or =

ifp=ygq

What happensasa — co?

P( pathshit0 ever) = | | pathhits0 beforeit hitsa
a=z+1

P(hits0 ever) = lim P(hits0 beforea)

a—»00

= lim ¢,
a—r00

3)

=1 p=q
Let G bethe ultimate gain or loss.

oo o= w!th probab!”typz (5.3)
—z,  with probability ¢
E[G] = ap, — z, ffp #4q (5.4)
0, ifp=gq

Fair game remains fair if the coin is fair then then games based on it have expected
reward 0.

Duration of a Game Let D, be the expected time until the random walk hits 0
or a, starting from z. Is D, finite? D, is bounded above by x the mean of geometric
random variables (number of window’s of size a before a window with all +1's or
—1's). Hence D, is finite. Consider the first step. Then

D.,=1+pD.y1+qD, 1
E[duration] = E[E[duration | first step]]
= p (E[duration | first step up]) + ¢ (E[duration | first step down])
=p(l +Ds41) +q(1 + Do—1)
Equation holds for 0 < z < a with Dy = D, = 0. Let’s try for a particular solution
D,=0C,

Co(z+1)+Cy(z—-1)+1

S
I

C=—— forp #q
q—p
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Consider the homogeneous relation

pr—t+q=0 t1=1 ty=1
p
General Solution for p # ¢ is
D.=A+B <2> + =
p q=p
Substitute z = 0,a to get A and B
=)
z a p
D, = p#q

- a
q—p q—-pq_ (g)
p
If p = ¢ then a particular solution is —z2. General solution
D,—2>+ A+ Bz
Substituting the boundary conditions given.,
D, =z(a-z) p=gq

Example. Initial Capital.

p q z a | P(ruin) | E[gain] | E[duration|
05 | 0.5 | 90 | 100 0.1 0 900
045|055 | 9 | 10 0.21 -1.1 11
045 | 055 |90 | 100 | 0.87 -77 766

Stop the randomwalk when it hits 0 or a.
We have absorption at 0 or a. Let

U.., = P(r.w. hitsO at time n—starts at z)
Usnt1 =PUsyin +qU.—1 0<z<a

UO,n:Ua,nZO nZO
Ua,():].UZ70:0 OSZS(L

Let U, = i U. ns™.

n=0

Now multiply by s”** and addfor n = 0,1,2. ..

U,(s) = psU,41(s) + qsU.—_1(s)
Where Uy(s) = 1and U,(s) =0

Look for a solution

45
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Must satisfy
A(s) = ps (\(s)” +as

Two Roots,

1+ /1 — 4pgs?
M (s), Aafs) = — P

- 2ps
Every Solution of the form
Us(s) = A(s) (AMi(s))” + B(s) (Aa(s))
Substitute Uy (s) = 1 and U, (s) = 0.A(s) + B(s) = 1 and

A(s) (Aa(5))" + B(s) (A2(s))" =0

_ () (Ma(s)” = (als))” (Na(s)"
) = T O T )"
But A1 (5)Aa(s) = 2% recall quadratic

7\ (A(s)" ™ = (Aa(s)*
U.(s) = | = @ @
=(8) St
Same method give generating function for absor ption probabilities at the other barrier.

Generating function for the duration of the game is the sum of these two generating
functions.




Chapter 6

Continuous Random Variables

In this chapter we drop the assumption that €2 id finite or countable. Assume we are
given a probability p on some subset of .

For example, spin a pointer, and let w € Q give the position at which it stops, with
N=w:0<w< 27 Let

]P’(wE[O,H]):% (0<6<2n)

Definition 6.1. A continuous randomvariable X isafunction X :  — R for which

b
Pla < X(w) <b) = / flz)dx
Where f(xz) is a function satisfying
1 f(z) >0
2. [T f(z)de =1
The function f is called the Probability Density Function.

For example, if X(w) = w given position of the pointer then x is a continuous
random variable with p.d.f

ﬂ@:{%,mgxg%) )

0, otherwise

This is an example of a uniformly distributed random variable. On the interval [0, 27]

47
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in this case. Intuition about probability density functions is based on the approximate
relation.

T+ai

P(X € [z,z + zdox]) = / f(z)dz

x
Proofs however more often use the distribution function
F(z)=P(X <=x)

F(z) is increasing in .

If X is a continuous random variable then
F(z) = / f(z)dz
and so F' is continuous and differentiable.

F'(z) = f(x)

(At any point x where then fundamental theorem of calculus applies).
The distribution function is also defined for a discrete random variable,

F(I) = Z Pw

w: X (w)<z

and so F is a step function.

In either case

Pla< X <b)=P(X <b)—P(X <a) =Fb) — F(a)
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Example. The exponential distribution. Let

l—e ™ 0<z<
F(z) = € TeTe® (6.2)
0, z <0

The corresponding pdf is
f(x) = Xe™® 0<z <o

thisis known as the exponential distribution with parameter \. If X hasthis distribu-
tion then

P(X <z +2)

P(X <z)
67A($+2)

PIX<z+zX<z) =

Thisis known as the memoryless property of the exponential distribution.

Theorem 6.1. If X isa continuous random variablewith pdf f(z) and h(x) isa con-
tinuous strictly increasing function with »~* () differentiable then h(x) is a continu-
ous random variable with pdf

fa@) = £ (' (@) Lh (@)

Proof. The distribution function of A(X) is
P(h(X)<z)=P(X <h !(z)) =F (h ()
Since h is strictly increasing and F' is the distribution function of X Then.

Lrh(x) <)

is a continuous random variable with pdf as claimed f;,. Note usually need to repeat
proof than remember the result. O
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Example. Suppose X ~ U|[0, 1] that is it is uniformly distributed on [0, 1] Consider
Y =—-logx

PY <y) =P(-log X <y)
P(X >e ")

1

/ ldx
6—Y

1—e ¥

ThusY is exponentially distributed.
More generally

Theorem 6.2. Let U ~ UJ0,1]. For any continuous distribution function F, the ran-
domyvariable X defined by X = F~!(u) hasdistribution function F'.

Proof.
P(X <z) =P(F '(u) < 2)
— P(U < F(x))
= F(z) ~ U[0,1]
O
Remark

1. abit more messy for discrete random variables

P(X=X;)=p; i=0,1,...

Let
j—1 J
X=uif Y pp<U<Y pi U~UD1]
=0 1=0

2. useful for simulations

6.1 Jointly Distributed Random Variables

For two random variables X and Y the joint distribution function is

F(z,y) =P(X <2,Y <y) F:R* —[0,1]

Let
Fx(z) =P(Xz < x)
=P(X <z,Y <)
= F(z,00)
= lim F(z,y)
Y—00
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This is called the marginal distribution of X. Similarly
FY(x) = F(Ooay)

X1, Xo,...,X, are jointly distributed continuous random variables if for a set ¢ € R?

P((X1,Xs,...,X,) €c¢) = /// flze, ... zn)dxy .. .dey,
(z1,...,2n)EC

For some function f called the joint probability density function satisfying the obvious
conditions.

1.
f(xla"'axn)dxl Z 0

//"'/Rnf(xl,...,a:n)dxl...da:n:1

F(z,y) =P(X <z,Y <vy)

/ / f(u,v)dudv

OF(z,y)
0zxdy

Theorem 6.3. provided defined at (z,y). If X and y are jointly continuous random
variables then they are individually continuous.

Example. (n = 2)

and o f(x,y) =

Proof. Since X and Y are jointly continuous random variables
P(X € A)=P(X €AY € (—00,+0))
/ / fz,y)dzdy
= fafx(z)dz
where fx (z / flz,y)d

is the pdf of X. O

Jointly continuous random variables X and Y are Independent if

f(z,y) = fx(@)fv(y)
ThenP(X € A,Y € B) =P(X € A)P(Y € B)

Similarly jointly continuous random variables X1, ..., X, are independent if

fxla"'a HfX, xz
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Where fx, (z;) are the pdf’s of the individual random variables.

Example. Two points X and Y are tossed at random and independently onto a line
segment of length L. What is the probability that:

X - V| <1?

Supposethat “ at random” means uniformly so that

& —

f(-rvy):_z x,yE[O,L]Q
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Desired probability

/] S y)dady

area of A
L2
L2 — 2%(L —1)?
L2
2L — I?
L2

Example (Buffon’s Needle Problem). A needleof length| istossed at randomonto a
floor marked with parallel lines a distance L apart ! < L. What is the probability that
the needle intersects one of the parallel lines.

Let 4 € [0, 27] be the angle between the needle and the parallel linesand let = be
the distance from the bottom of the needle to the line closest to it. It is reasonable to
suppose that X is distributed Uniformly.

X ~U0,L]  ©~U0,n)

and X and © areindependent. Thus

1
f(z,@):l—OSzSLandOSHSﬂ'
™
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The needleintersectsthelineif and only if X < sinf The event A

= // f(z,0)dzdd
A
T sinf
=1 /0 7 db
2
L
Definition 6.2. The expectation or mean of a continuous randomvariable X is

E[X] = /00 zf(z)dz

provided not both of [*_zf(z)dx and ff’oo zf(z)dr areinfinite
Example (Normal Distribution). Let

1 —(@—p)?
e 202 —oo<z< o0
V2o

Thisis non-negativefor it to be a pdf we also need to check that

/O:O flz)dz =1

flz) =

Make the substitution z = *=#. Then

Il
3
3
—
—
2 8

aQ

ol

Q‘N

N

Thus[2:2i [/ e#dz} {/ eTydy]
0 —00 —o0

Il
U
I

Il

0

Therefore I = 1. A random variable with the pdf f(x) given above has a Normal
distribution with parameters i and o2 we write this as

X ~ N[IU,,O'Q]
The Expectationis
1 © —@-w?
EX] = / re 202 dx
X] V2mo J -

1 °°( ) (2= 2d N 1 e —(z—zu)zd
= — xr — ILL e 20 T =] ,ue 20 Z.
V210 J_o V210 J_o
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The first termis convergent and equal s zero by symmetry, so that

E[X] =0+ p
=

Theorem 6.4. If X isa continuous random variable then,

IE[X]:/OOOHD(XZx)dx—/OOOHD(XS —x)dz

Proof.
/0 P(X > x)dz = /0 [/I f(y)dy] dz
= [ [ 1> sdrwyas
0 0
0 ry
= [ [ asay
0 0
= /0 yf(y)dy
Similarly /00 P(X < —x)dz = /0 yf(y)dy
0 —00
result follows. O

Note This holds for discrete random variables and is useful as a general way of
finding the expectation whether the random variable is discrete or continuous.
If X takes values in the set [0, 1, ...,] Theorem states

E[X] = i P(X > n)

and a direct proof follows

Y P(X>n)=) > Im>n]P(X =m)
n=0

n=0 m=0
oo

=y (Z I[m > n]> P(X =m)
n=0

m=0
= Z mP(X =m)
m=0

Theorem 6.5. Let X be a continuous random variable with pdf f(x) and let h(z) be
a continuous real-valued function. Then provided

| @) s < o

— 00

Bbe) = [ W)

—00
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Proof.

/Ooo P(h(X) > y) dy

/0°° [/x:h(x)m f(z)dz
/000 /z:h(m)ZO ITh(z) = y|f (z)dzdy
oo

[ h@f@ay
z:h(z)>0

Similarly /Ooo P(h(X) < —y) = _/-/( e @y

dy

So the result follows from the last theorem. O

Definition 6.3. The variance of a continuousrandomvariable X is
Var X = IE:[(X — IE:[X])2]

Note The properties of expectation and variance are the same for discrete and contin-
uous randomvariables just replace >~ with | in the proofs.

Example.

Var X = E[X?] - B[X]? |
_ /0; 22 f (x)dz — </°:O xf(a:)da:) 2

Example. Suppose X ~ Nu,0?] Let z = X=£ then

X —
IP’(Zgz):HD< H §z>
g
=P(X <p+oz)
oz ] _eow?

= e 202 dx
PN 2mo

T—p 21 -2
Let |u= = e 2z du
< 9 > [oo V2

= ®(z) Thedistribution function of a NV (0, 1) randomvariable
Z ~N(0,1)
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What is the variance of Z?

Var X =E[Z?] —E[Z]” Last termis zero
1 /OO Q_Tzzd
= —F— ze z
Vo J o

{ 1 22]00 /oo sz

— | — ze 2 + e 2 dz

V2T —o o
=0+1=1

VarX =1

Variance of X?

X=p+oz
Thus E[ X] = o we know that already
Var X =o¢%Var Z
Var X = o2
X ~ (u,0%)

6.2 Transformation of Random Variables

Suppose X1, X, ..., X, have joint pdf f(zy,...,x,) let

le = Tl(Xh‘Y%"';Xn)
}[2 = TQ(X17X27"'7XTL)

Y, = Tn(XlaXQa“-aXn)

Let R € R™ be such that
H:D((XlaXQa"'aX’/’L) € R) = 1

Let S be the image of R under the above transformation suppose the transformation
from R to S is 1-1 (bijective).
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Then 3 inverse functions

Ty = 81(y17y27"'7y7’b)
T2 = 82(y17y27"'7y7’b)"'
Ty = Sn(y17y27"'7yn)

Assume that g; exists and is continuous at every point (y1,y2, .- .,¥,) In S
9s1. Os1
dy1 "7 Oyn
J=": : (6.3)
Osn. Osn.
dyr "7 Oyn
IfFACR

IP’((Xl,...,Xn)eA)[l]:/---/f(a:l,...,xn)dml...dycn

:/.../f(sl,...,sn)|J|dy1...dyn

Where B is the image of A

=P((Y1,...,Y,) € B)[2]

Since transformation is 1-1 then [1],[2] are the same
Thus the density for Y7, ...,Y,, is

g((ylava"'vyn) = f(Sl(y17y27---7yn)7---,Sn(y17y2,---,yn)) |J|
Y1,Y2,---,Yn € S
= 0 otherwise.

Example (density of products and quotients). Supposethat (X,Y") has density

dry, for0<x<1,0<y<1

: (6.4)
0, Otherwise.

f(x,y)Z{

LetU = £ andV = XV
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e
Il
ﬁ
<
k<
Il
SIS

=
[l
s
(4
Ny
[l

or 1 |v or 1 |u
%_5\/5 w2\
8y_—1v% oy 1

=2l 0 = 2

Therefore | J| = o= and so

1

g(u,v) = @(%y)

= i X 4\/uv\/§
n

2u
= 2% if (u,v) € D
=0 Otherwise.

Note U and V' are NOT independent

g(u,v) = 2%[[(%1}) € D]

not product of the two identities.

When the transformations are linear things are simpler still. Let A bethe n x n
invertible matrix.

|J| = det A=! = det A™!
Then the pdf of (Y7,...,Y,,)is

1
g(ylv"'vn) = detAf(A_lg)

Example. Suppose X1, X, havethe pdf f (x4, z2). Calculate the pdf of X; + Xo.
LetY =X;+XoandZ=X,. ThenX; =Y — Zand X, = Z.

A= <(1) _11> (6.5)

1
A7l =1
det det A
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Then

g(y,z) = f(xlaxZ) = f(y —Z,Z)

joint distributions of Y and X..
Marginal density of Yis

g(y)z/ fly—z,2)dz —0<y<oo
orgly) = / f(z,y — z)dz By change of variable

If X, and X, areindependent, with pgf’s f; and f5 then
f(z1,22) = f(21) f(72)

oo

and then g(y) = (y — 2)f(2)dz

— 00

- the convolution of f; and f»

For the pdf f(x)  isamodeif f (&) > f(z)Vx

Z isamedianif
/_oo f(x)dx _/@ flz)dz = %

For a discrete randomvariable, z isa median if

1
P(X <) > 5 o P(X > 2) >

DN =

If Xq,..., X, isasamplefromthe distribution then recall that the sample meanis
1 n
IR
n
1

LetY7,...,Y,, (thestatistics) bethevalues of X1, ..., X, arranged inincreasing
order. ThenthesamplemedianisYnTﬂ if n isodd or any valuein

[Y%,YnTH] if niseven
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IfY, =maxXy,..., X, and X, ..., X, areiidrv’'swith distribution £ and den-
sity f then,

P(Y, <y)=P(X1 <y,...,X, <y)
= (F(y)"

Thusthe density of V), is

SmilarlyY; = minX,,..., X,, andis
=1-(1-F(y)"

Then thedensity of Y7 is

=n(l-F)" " f(y)
What about the joint density of Y7, Y,,?
G(yayn) = ]P(Yl < yl:Yn < yn)
= ]P(Yn < yn) - ]P(Yn < ynayi Zl)
=P(Yn <yn) —Plyr < X1 <Yn,y1 < Xo <y, 01 S X < yn)
= (F(yn)" = (F(yn) = F(1))"
Thusthe pdf of Y7, Y, is
62
9(W1,yn) = mG(ylayn)
=n(n—1) (F(y.) — F)" " f1) f (yn) —00 <y <yp <00
=0 otherwise
What happensif the mappingisnot 1-1? X = f(z) and | X | = g(z)?
b

P(1X] € (a,b)) :/ (f(@) + f(=2))dz  g(z) = f(z) + f(-2)

a

Quppose Xy, ..., X, areiidrv's. What isthe pdf of Y7, . . ., Y, theorder statistics?

) = {n!f(yl)---f(yn), 1 <y2 < <yn 6.6)

O o, Otherwise

Example. SQuppose Xy, ..., X, areiidrv's exponentially distributed with parameter
A. Let

=Y
n=Y—-1

Zn = Yn - Ynfl
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Where Y7, ...,Y, arethe order statistics of X1,..., X,,. What is the distribution of
the z’s?

Z =AY
Where
1 0 0 0 0
-1 1 0 0 0
A4=10 -1 1 0 0 (6.7)
0 0 -1 1
det(A) =1
h(zl7' i ,Zn) = g(y17' i 7yn)
=n!f(y1) .- fyn)
=nI\te M T n
= pI\"e Myit-tyn)
— n!)\ne—A(212z2+~~~+nzn)
n
= [ rie=me-
=1
Thush(zy,...,z,) isexpressed as the product of n density functions and
Znt1—i ~ exp(Ai)
exponentially distributed with parameter \i, with zq, . .., 2z,, independent.
Example. Let X and Y beindependent N (0.1) randomvariables. Let
D=R’=X>+Y,
then tan © = X then
d = 2?4+ y? and § = arctan (Q)
T
2x 2y
| =|_2* : |=2 (6.8)

,_.
+
—~~
Bl
~—
W)
-
+
—
8
N
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Thus

But thisisjust the product of the densities

1 -
gD(d)zier 0<d<

1

T

Then D and © are independent. d ~exponentially mean 2. © ~ U0, 27].

Note thisis useful for the simulations of the normal random variable.

We know we can simulate N[0, 1] random variable by X = f(U) when U ~
U[0, 1] but thisis difficult for N[0, 1] random variable since

ge(0) 0<6<2m

trol o 2
F(z) =0(x) = [m \/ﬂeT
is difficult.
Let U; and U, be independent ~ U[0,1]. Let R? = —2logU, so that R? is

exponential with mean 2. © = 27U,. Then © ~ U[0, 27]. Now let

X = Rcos© = /—2logU; cos(2nU>)
Y = Rsin® = \/—2log U, sin(2xU;)

Then X and Y areindependent N[0, 1] random variables.

Example (Bertrand’s Paradox). Calculate the probability that a “ random chord” of
acircle of radius 1 has length greater that v/3. The length of the side of an inscribed
equilateral triangle.

There are at least 3 interpretations of a random chord.

(1) The ends are independently and uniformly distributed over the circumference.

answer = 1
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(2)The chord is perpendicular to a given diameter and the point of intersection is
uniformly distributed over the diameter.

o (?) _ (va)

answer = 1
(3) The foot of the perpendicular to the chord from the centre of the circle is uni-
formly distributed over the diameter of theinterior circle.

interior circle hasradius 1.

6.3 Moment Generating Functions

If X is a continuous random variable then the analogue of the pgf is the moment gen-
erating function defined by

m(f) = E[eef”]
for those @ such that m(6) is finite

m(6) = /00 e f(z)dx

— 00

where f(z) is the pdf of X.
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Theorem 6.6. The moment generating function determines the distribution of X, pro-
vided m () isfinite for someinterval containing the origin.

Proof. Not proved. O

Theorem 6.7. If X and Y are independent random variables with moment generating
function m (8) and m,,(#) then X + Y has the moment generating function

M yy (6) = ma(6) x my (6)
Proof.
E[ee(f”y)} = E[eemeey]

Ele”] E[e”]
ma(68)my (0)

O

Theorem 6.8. Thert" moment of X ie the expected value of X7, E[ X ], is the coeffi-
cient of £ of the series expansion of n(9).

Proof. Sketch of....

0 .
X:1+9X+—XZ+
'W
Ewﬂzywm]+ MX]
O

Example. Recall X has an exponential distribution, parameter A if it has a density
e for 0 < z < 0.

E[eGX] _ / Qx)\eAxdw

A
0=0
NI
0=0 A
Thus
Var X = E[X?] — E[X]?
2 1

BOYEDY
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Example. SQuppose X1, ..., X, areiidrvs each exponentially distributed with param-
eter \.

Claim: X,..., X, hasagammadistribution, I'(n, A) with parametersn, A\. With
density

)\nekaxnfl

1) 0<z<

we can check that thisis a density by integrating it by parts and show that it equals 1.

E[e/ Xt 40| = B[e"%1] . E[e"X"]

Supposethat Y ~ I'(n, A).

E[eGY]

/OO e()x )\ne—Axl,n—l "
0 (n—1)!

n poo _\n,—A—0)z,.n—1
A / (A—0)"e A
—6) J; =1

Hence claim, since moment generating function characterizes distribution.

Example (Normal Distribution). X ~ NJ0, 1]

E[¢/X] = /

o0
e® L e_(zzz_gfdx
s 2o

o0

1 -1, . . .
= / o exp [m(xz —2wp 4 p* — 200’21‘)] dx
< 1 -1
:/ mexp [F ((x — p—00%)° —2u020—0204)] dx

= e“9+92§ /oo N exp {_—l(w — - 002)2} dz
oo V2m0 202

Theintegral equals 1 areit isthe density of N[u + 02, 0?]

2
= e'u’0+9207

Which is the moment generating function of N[u, o] randomvariable.

Theorem 6.9. Suppose X, Y are independent X ~ Nuj,o0?] andY ~ N|uz, 03]
then

1

X +Y ~ N + pi2, 07 + 03]



6.4. CENTRAL LIMIT THEOREM

aX ~ Nlap; + a®0?]
Proof. 1
B[’ )] = E[e"¥] E[e""]
— (110+5070%) f(n20+5036%)
— elu1tu2)0+5 (05 +05)6?
which is the moment generating function for

Nl + p2, 0% + 03]

E[ee(ax)] _ ]E[e("“)x}
— et1(Ba)+307(0a)?
— e(a,u,l)0+%a2a'%02
which is the moment generating function of

N[a:ula aza—%]

6.4 Central Limit Theorem

Xi,..., X, iidrv’s, mean 0 and variance o2. X; has density

Var X; = o2
X; + -+ + X, has Variance

VarX; + --- + X,, = no?

67
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Xt Xa has Variance

X4t Xy ;
NG has Variance

Theorem 6.10. Let X1, ..., X, beiidrv'swith E[X;] = g and Var X; = ¢% < .

Snzzn:Xi
1

ThenV(a, b) suchthat —oco < a < b < 00

lim ]P’(a < M < b)
n—00 a'\/ﬁ

Which isthe pdf of a N[0, 1] random variable.

| S
e 2 dz
/a V2T
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Proof. Sketch of proof.....
WLOG take 1 = 0 and o2 = 1. we can replace X; by % mgf of X is

mx, (0) = E[e’*]

92 ) 03 3
=1+ 0EX;] + 5]E[Xi] + ylE[‘Xi] +...
62 6 .
:1+§~w§MAﬂ+”.
The mgf of \5/—%
E[egs_\/%} = E[e%(xﬁ" +X")}
= E[eﬁxl] . .E[eﬁ "]
= E[e%)ﬁ}n
= ()
= | mx, \/ﬁ
( 92 93E[X3] >n 02
=14+ =4+ — =— ez asn — oo
2n 3ln2
Which is the mgf of N[0, 1] random variable. O

Noteif S,, ~ Bin[n,p] X; = 1 with probability p and = 0 with probability (1 —p).
Then
Sn —np
V1Pq
This is called the normal approximation the the binomial distribution. Applies as n —

oo with p constant. Earlier we discussed the Poisson approximation to the binomial.
which applies when n — oo and np is constant.

~ N[0, 1]

Example. There are two competing airlines. n passengers each select 1 of the 2 plans
at random. Number of passengersin plane one

) 1
S ~ Bin[n, 5]
Suppose each plane has s seats and let
f(s) =P(S <s)

S —np
T ~ n[0, 1]
_ S—%n 5—%71
f(s)_P< N n)

thereforeif n = 1000 and s = 537 then f(s) = 0.01. Planes hold 1074 seats only 74
in excess.
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Example. An unknown fraction of the electorate, p, vote labour. It isdesired to find p
within an error no exceeding 0.005. How large should the sample be.

Let the fraction of labour votesin the sample be p’. We can never be certain (with-
out complete enumeration), that ‘p —p ‘ < 0.005. Instead choose n so that the event

‘p —y ‘ < 0.005 have probability > 0.95.

P(|p - #| < 0.005) = (1S, ~ npl < 0.005m)

_ ]P’('S” — np| < 0.005\/ﬁ>
N RV

Choose n such that the probability is > 0.95.

1.96 .
e dr=29(1.96) — 1
/_1.96 V2r

We must choose n so that

0.005V7 _ 4 o6
NG

But we don't know p. But pg < 1 with theworst casep = ¢ = 1

1.962 1
0.005% 4

n > ~ 40,000

If we replace 0.005 by 0.01 the n > 10, 000 will be sufficient. And is we replace 0.005
by 0.045 then n > 475 will suffice.

Note Answer does not depend upon the total population.
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6.5 Multivariate normal distribution

Letz,...,X,, beiid N[0, 1] random variables with joint density g(z1,...z,)

n 1 .
g(xl,...xn):H e 2

Write

X =
X,
and let 2 = /7 + AX where A is an invertible matrix (Z = A~1(Z — ). Density of Z

_ L1 g@rea) (aEn)
f(’zl?"'?’zn)_ (2’/T) detAe

- SHE-B) TS (E-h)

=
1
w1
(2m)= 3]
where SAAT. This is the multivariate normal density

7~ MVNIji,x]

Cov(zi,2;) = E[(zi — ) (25 — py)]
But this is the (7, j) entry of
E[(Z - @)(Z - {)"] = E[(AX)(4X)"]
= AE[X XxT] AT
= ATAT = AAT = ¥ Covariance matrix

If the covariance matrix of the MVN distribution is diagonal, then the components of
the random vector Z are independent since

ez = [[ e 7

bl (2m)2 0y
Where
oy 0 0
0 o2 0
Y= .
0 0 o2

Not necessarily true if the distribution is no MVN recall sheet 2 question 9.
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Example (bivariate normal).

1
21(1 — p?) 210y

P l_z(lipz) l(ml;my_
() (222) - (222 ]

o1,02 < 0and —1 < p < +1. Joint distribution of a bivariate normal random
variable.

fz1,m2) =

X

Example. An example with

n-1— 1 < o p‘71_1‘72_1>
- — .2 -1 -1 2
1—p? \po; "oy o35

N = Uf po103
Ppo102 O'%

E[X;] = p; and Var X; = o2, Cov(X1, X3) = 0102p.

Cov(X;, X
Correlation(X;, Xz) = M =p
0102



