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Chapter 1

Basic Concepts

1.1 Sample Space

Suppose we have an experiment with a set � of outcomes. Then � is called the sample
space. A potential outcome � � � is called a sample point.

For instance, if the experiment is tossing coins, then � � fH�Tg, or if the experi-
ment was tossing two dice, then � � f�i� j� � i� j � f�� � � � � �gg.

A subset A of � is called an event. An event A occurs is when the experiment is
performed, the outcome � � � satisfies � � A. For the coin-tossing experiment, then
the event of a head appearing is A � fHg and for the two dice, the event “rolling a
four” would be A � f��� ��� ��� ��� ��� ��g.

1.2 Classical Probability

If � is finite, � � f��� � � � � �ng, and each of the n sample points is “equally likely”
then the probability of event A occurring is

P�A� �
jAj
j�j

Example. Choose r digits from a table of random numbers. Find the probability that
for 	 � k � 
,

1. no digit exceeds k,

2. k is the greatest digit drawn.

Solution. The event that no digit exceeds k is

Ak � f�a�� � � � � ar� � 	 � ai � k� i � � � � � rg �

Now jAkj � �k � ��r, so that P�Ak� �
�
k��
��

�r
.

Let Bk be the event that k is the greatest digit drawn. Then Bk � Ak nAk��. Also
Ak�� � Ak, so that jBkj � �k � ��r � kr. Thus P�Bk� �

�k���r�kr
��r

1



2 CHAPTER 1. BASIC CONCEPTS

The problem of the points

Players A and B play a series of games. The winner of a game wins a point. The two
players are equally skillful and the stake will be won by the first player to reach a target.
They are forced to stop when A is within 2 points and B within 3 points. How should
the stake be divided?

Pascal suggested that the following continuations were equally likely

AAAA AAAB AABB ABBB BBBB
AABA ABBA BABB
ABAA ABAB BBAB
BAAA BABA BBBA

BAAB
BBAA

This makes the ratio �� � �. It was previously thought that the ratio should be � � 

on considering termination, but these results are not equally likely.

1.3 Combinatorial Analysis

The fundamental rule is:
Suppose r experiments are such that the first may result in any of n� possible out-

comes and such that for each of the possible outcomes of the first i � � experiments
there are ni possible outcomes to experiment i. Let ai be the outcome of experiment i.
Then there are a total of

Qr
i�� ni distinct r-tuples �a�� � � � � ar� describing the possible

outcomes of the r experiments.

Proof. Induction.

1.4 Stirling’s Formula

For functions g�n� and h�n�, we say that g is asymptotically equivalent to h and write
g�n� � h�n� if g�n�

h�n� � � as n��.

Theorem 1.1 (Stirling’s Formula). As n��,

log
n�p

��nnne�n
� 	

and thus n� � p
��nnne�n.

We first prove the weak form of Stirling’s formula, that log�n�� � n logn.

Proof. logn� �
Pn

� log k. NowZ n

�

logxdx �
nX
�

log k �
Z n��

�

logxdx�

and
R z
�
logx dx � z log z � z � �, and so

n logn� n� � � logn� � �n� �� log�n� ��� n�

Divide by n logn and let n � � to sandwich logn�
n logn between terms that tend to �.

Therefore logn� � n logn.
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Now we prove the strong form.

Proof. For x � 	, we have

�� x� x� � x� �
�

� � x
� �� x� x��

Now integrate from 	 to y to obtain

y � y��� � y���� y	�
 � log�� � y� � y � y��� � y����

Let hn � log n�en

nn����
. Then1 we obtain

�

��n�
� �

��n�
� hn � hn�� � �

��n�
�

�

�n�
�

For n � �, 	 � hn � hn�� � �
n� . Thus hn is a decreasing sequence, and 	 �

h��hn�� �
Pn

r���hr�hr��� �
P�

�
�
r� . Thereforehn is bounded below, decreasing

so is convergent. Let the limit be A. We have obtained

n� � eAnn����e�n�

We need a trick to find A. Let Ir �
R ���
� sinr � d�. We obtain the recurrence Ir �

r��
r Ir�� by integrating by parts. Therefore I�n � ��n��

��nn������ and I�n�� � ��nn���

��n���� .
Now In is decreasing, so

� � I�n
I�n��

� I�n��
I�n��

� � �
�

�n
� ��

But by substituting our formula in, we get that

I�n
I�n��

� �

�

�n� �

n

�

e�A
� ��

e�A
�

Therefore e�A � �� as required.

1by playing silly buggers with log � � �

n
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Chapter 2

The Axiomatic Approach

2.1 The Axioms

Let � be a sample space. Then probabilityP is a real valued function defined on subsets
of � satisfying :-

1. 	 � P�A� � � for A � �,

2. P��� � �,

3. for a finite or infinite sequence A�� A�� � � � � � of disjoint events, P�	Ai� �P
i P�Au�.

The number P�A� is called the probability of event A.
We can look at some distributions here. Consider an arbitrary finite or countable

� � f��� ��� � � � g and an arbitrary collection fp�� p�� � � � g of non-negative numbers
with sum �. If we define

P�A� �
X

i
�i�A
pi�

it is easy to see that this function satisfies the axioms. The numbers p�� p�� � � � are
called a probability distribution. If � is finite with n elements, and if p� � p� � � � � �
pn � �

n we recover the classical definition of probability.
Another example would be to let � � f	� �� � � �g and attach to outcome r the

probability pr � e�� �
r

r� for some � � 	. This is a distribution (as may be easily
verified), and is called the Poisson distribution with parameter �.

Theorem 2.1 (Properties of P). A probability P satisfies

1. P�Ac� � �� P�A�,

2. P�
� � 	,

3. if A � B then P�A� � P�B�,

4. P�A 	 B� � P�A� � P�B�� P�A � B�.

5



6 CHAPTER 2. THE AXIOMATIC APPROACH

Proof. Note that � � A	Ac, andA�Ac � 
. Thus � � P��� � P�A��P�Ac�. Now
we can use this to obtain P�
� � �� P�
c� � 	. If A � B, write B � A 	 �B � Ac�,
so that P�B� � P�A� � P�B � Ac� � P�A�. Finally, write A 	 B � A 	 �B � Ac�
and B � �B � A� 	 �B � Ac�. Then P�A 	 B� � P�A� � P�B �Ac� and P�B� �
P�B � A� � P�B � Ac�, which gives the result.

Theorem 2.2 (Boole’s Inequality). For any A�� A�� � � � � �,

P

�
n�
�

Ai

�
�

nX
i

P�Ai�

P

���
�

Ai

�
�

�X
i

P�Ai�

Proof. Let B� � A� and then inductively let Bi � Ai n
Si��

� Bk. Thus the Bi’s are
disjoint and

S
iBi �

S
iAi. Therefore

P

��
i

Ai

�
� P

��
i

Bi

�

�
X
i

P�Bi�

�
X
i

P�Ai� as Bi � Ai�

Theorem 2.3 (Inclusion-Exclusion Formula).

P

�
n�
�

Ai

�
�

X
S�f������ng

S ���

����jSj��P
�
��
j�S

Aj

�
A �

Proof. We know that P�A� 	 A�� � P�A�� � P�A�� � P�A� �A��. Thus the result
is true for n � �. We also have that

P�A� 	 � � � 	 An� � P�A� 	 � � � 	 An��� � P�An�� P��A� 	 � � � 	 An��� � An� �

But by distributivity, we have

P

�
n�
i

Ai

�
� P

�
n���
�

Ai

�
� P�An�� P

�
n���
�

�Ai � An�

�
�

Application of the inductive hypothesis yields the result.

Corollary (Bonferroni Inequalities).

X
S�f������rg

S ���

����jSj��P
�
��
j�S

Aj

�
A�

or
�
P

�
n�
�

Ai

�

according as r is even or odd. Or in other words, if the inclusion-exclusion formula is
truncated, the error has the sign of the omitted term and is smaller in absolute value.
Note that the case r � � is Boole’s inequality.
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Proof. The result is true for n � �. If true for n� �, then it is true for n and � � r �
n � � by the inductive step above, which expresses a n-union in terms of two n � �
unions. It is true for r � n by the inclusion-exclusion formula.

Example (Derangements). After a dinner, the n guests take coats at random from a
pile. Find the probability that at least one guest has the right coat.

Solution. Let Ak be the event that guest k has his1 own coat.
We want P�

Sn
i��Ai�. Now,

P�Ai� � � � � � Air � �
�n� r��

n�
�

by counting the number of ways of matching guests and coats after i�� � � � � ir have
taken theirs. Thus X

i������ir
P�Ai� � � � � � Air � �

	
n

r



�n� r��

n�
�

�

r�
�

and the required probability is

P

�
n�
i��

Ai

�
� �� �

��
�

�

��
� � � �� ����n��

n�
�

which tends to �� e�� as n��.

Furthermore, let Pm�n� be the probability that exactlym guests take the right coat.
Then P��n� � e�� and n�P��n� is the number of derangements of n objects. There-
fore

Pm�n� �

	
n

m



�� P��n�m�� �n�m��

n�

�
P��n�m�

m�
� e��

m�
as n���

2.2 Independence

Definition 2.1. Two events A and B are said to be independent if

P�A � B� � P�A�P�B� �

More generally, a collection of events Ai, i � I are independent if

P

��
i�J

Ai

�
�
Y
i�J

P�Ai�

for all finite subsets J � I .

Example. Two fair dice are thrown. Let A� be the event that the first die shows an odd
number. Let A� be the event that the second die shows an odd number and finally let
A� be the event that the sum of the two numbers is odd. Are A� and A� independent?
Are A� and A� independent? Are A�, A� and A� independent?

1I’m not being sexist, merely a lazy typist. Sex will be assigned at random...
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Solution. We first calculate the probabilities of the eventsA�,A�,A�,A��A�,A��A�

and A� � A� � A�.

Event Probability

A�
��
�� � �

�

A� As above, �
�

A�
���
�� � �

�

A� � A�
���
�� � �

	

A� � A�
���
�� � �

	

A� � A� � A� 	

Thus by a series of multiplications, we can see that A� and A� are independent,A�

and A� are independent (also A� and A�), but that A�, A� and A� are not independent.

Now we wish to state what we mean by “2 independent experiments”2. Consider
�� � f	�� � � � g and �� � f
�� � � � gwith associated probability distributions fp�� � � � g
and fq�� � � � g. Then, by “2 independent experiments”, we mean the sample space
�� ��� with probability distribution P��	i� 
j�� � piqj .

Now, suppose A � �� and B � ��. The event A can be interpreted as an event in
�� ���, namely A���, and similarly for B. Then

P�A � B� �
X
�i�A
�j�B

piqj �
X
�i�A

pi
X
�j�B

qj � P�A�P�B� �

which is why they are called “independent” experiments. The obvious generalisation
to n experiments can be made, but for an infinite sequence of experiments we mean a
sample space �� ��� � � � � satisfying the appropriate formula 
n � N.

You might like to find the probability that n independent tosses of a biased coin
with the probability of heads p results in a total of r heads.

2.3 Distributions

The binomial distribution with parameters n and p, 	 � p � � has � � f	� � � � � ng and
probabilities pi �

�
n
i

�
pi��� p�n�i.

Theorem 2.4 (Poisson approximation to binomial). If n � �, p � 	 with np � �
held fixed, then 	

n

r



pr��� p�n�r � e��

�r

r�
�

2or more generally, n.
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Proof. 	
n

r



pr��� p�n�r �

n�n� �� � � � �n� r � ��

r�
pr��� p�n�r

�
n

n

n� �

n
� � �

n� r � �

n

�np�r

r�
��� p�n�r

�

rY
i��

	
n� i� �

n



�r

r�

	
�� �

n


n	
�� �

n


�r

� �� �r

r�
� e�� � �

� e��
�r

r�
�

Suppose an infinite sequence of independent trials is to be performed. Each trial
results in a success with probability p � �	� �� or a failure with probability �� p. Such
a sequence is called a sequence of Bernoulli trials. The probability that the first success
occurs after exactly r failures is pr � p���p�r. This is the geometric distribution with
parameter p. Since

P�
� pr � �, the probability that all trials result in failure is zero.

2.4 Conditional Probability

Definition 2.2. Provided P�B� � 	, we define the conditional probability of AjB3 to
be

P�AjB� �
P�A �B�

P�B�
�

Whenever we write P�AjB�, we assume that P�B� � 	.

Note that if A and B are independent then P�AjB� � P�A�.

Theorem 2.5. 1. P�A � B� � P�AjB�P�B�,

2. P�A � B � C� � P�AjB � C�P�BjC�P�C�,

3. P�AjB � C� � P�A�BjC�
P�BjC� ,

4. the function P��jB� restricted to subsets of B is a probability function on B.

Proof. Results 1 to 3 are immediate from the definition of conditional probability. For
result 4, note thatA�B � B, so P�A � B� � P�B� and thus P�AjB� � �. P�BjB� �
� (obviously), so it just remains to show the last axiom. For disjoint Ai’s,

P

��
i

Ai

����B
�

�
P�
S
i�Ai � B��

P�B�

�

P
i P�Ai � B�

P�B�

�
X
i

P�AijB� � as required.

3read “A given B”.
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Theorem 2.6 (Law of total probability). Let B�� B�� � � � be a partition of �. Then

P�A� �
X
i

P�AjBi�P�Bi� �

Proof. X
P�AjBi�P�Bi� �

X
P�A � Bi�

� P

��
i

A � Bi

�

� P�A� � as required.

Example (Gambler’s Ruin). A fair coin is tossed repeatedly. At each toss a gambler
wins �� if a head shows and loses �� if tails. He continues playing until his capital
reaches m or he goes broke. Find px, the probability that he goes broke if his initial
capital is �x.

Solution. Let A be the event that he goes broke before reaching �m, and let H or
T be the outcome of the first toss. We condition on the first toss to get P�A� �
P�AjH�P�H� � P�AjT �P�T �. But P�AjH� � px�� and P�AjT � � px��. Thus
we obtain the recurrence

px�� � px � px � px���

Note that px is linear in x, with p� � �, pm � 	. Thus px � �� x
m .

Theorem 2.7 (Bayes’ Formula). Let B�� B�� � � � be a partition of �. Then

P�BijA� � P�AjBi�P�Bi�P
j P�AjBj�P�Bj�

�

Proof.

P�BijA� � P�A �Bi�

P�A�
�

P�AjBi�P�Bi�P
j P�AjBj�P�Bj�

�

by the law of total probability.



Chapter 3

Random Variables

Let � be finite or countable, and let p� � P�f�g� for � � �.

Definition 3.1. A random variable X is a function X � � �� R.

Note that “random variable” is a somewhat inaccurate term, a random variable is
neither random nor a variable.

Example. If � � f�i� j�� � � i� j � tg, then we can define random variables X and
Y by X�i� j� � i� j and Y �i� j� � maxfi� jg

Let RX be the image of � under X . When the range is finite or countable then the
random variable is said to be discrete.

We write P�X � xi� for
P

�
X����xi
p�, and for B � R

P�X � B� �
X
x�B

P�X � x� �

Then

�P�X � x� � x � RX�

is the distribution of the random variable X . Note that it is a probability distribution
over RX .

3.1 Expectation

Definition 3.2. The expectation of a random variable X is the number

E �X � �
X
��


pwX���

provided that this sum converges absolutely.

11
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Note that

E �X � �
X
��


pwX���

�
X
x�RX

X
�
X����x

p�X���

�
X
x�RX

x
X

�
X����x

p�

�
X
x�RX

xP�X � x� �

Absolute convergence allows the sum to be taken in any order.

If X is a positive random variable and if
P

��
 p�X��� � � we write E �X � �
��. If

X
x�RX
x	�

xP�X � x� �� and

X
x�RX
x��

xP�X � x� � ��

then E �X � is undefined.

Example. If P�X � r� � e�� �
r

r� , then E �X � � �.

Solution.

E �X � �

�X
r��

re�� �
r

r�

� �e��
�X
r��

�r��

�r � ���
� �e��e� � �

Example. If P�X � r� �
�
n
r

�
pr��� p�n�r then E �X � � np.
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Solution.

E �X � �
nX
r��

rpr��� p�n�r
	
n

r




�

nX
r��

r
n�

r��n � r��
pr��� p�n�r

� n
nX

r��

�n� ���

�r � ����n� r��
pr��� p�n�r

� np

nX
r��

�n� ���

�r � ����n� r��
pr����� p�n�r

� np

n��X
r��

�n� ���

�r���n � r��
pr��� p�n���r

� np

n��X
r��

	
n� �

r



pr��� p�n���r

� np

For any function f � R �� R the composition of f and X defines a new random
variable f and X defines the new random variable f�X� given by

f�X��w� � f�X�w���

Example. If a, b and c are constants, then a� bX and �X� c�� are random variables
defined by

�a� bX��w� � a� bX�w� and

�X � c���w� � �X�w�� c���

Note that E �X � is a constant.

Theorem 3.1.

1. If X � 	 then E �X � � 	.

2. If X � 	 and E �X � � 	 then P�X � 	� � �.

3. If a and b are constants then E �a� bX � � a� bE �X �.

4. For any random variables X , Y then E �X � Y � � E �X � � E �Y �.

5. E �X � is the constant which minimises E
h
�X � c�

�
i
.

Proof. 1. X � 	 means Xw � 	 
 w � �

So E �X � �
X
��


p�X��� � 	

2. If �� � � with p� � 	 and X��� � 	 then E �X � � 	, therefore P�X � 	� � �.
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3.

E �a� bX � �
X
��


�a� bX���� p�

� a
X
��


p� � b
X
��


p�X���

� a� E �X � �

4. Trivial.

5. Now

E
�
�X � c��



� E

�
�X � E �X � � E �X �� c��



� E

�
��X � E �X ���



� ��X � E �X ���E �X �� c� � ��E �X �� c����

� E
�
�X � E �X ���



� ��E �X �� c�E ��X � E �X ��� � �E �X �� c��

� E
�
�X � E �X ���



� �E �X �� c���

This is clearly minimised when c � E �X �.

Theorem 3.2. For any random variables X�� X�� ����� Xn

E

�
nX
i��

Xi

�
�

nX
i��

E �Xi�

Proof.

E

�
nX
i��

Xi

�
� E

�
n��X
i��

Xi �Xn

�

� E

�
n��X
i��

Xi

�
� E �X �

Result follows by induction.

3.2 Variance

VarX � E
�
X�

� E �X �

� for Random Variable X

� E �X � E �X ��� � ��

Standard Deviation �
p
VarX

Theorem 3.3. Properties of Variance

(i) VarX � 	 if VarX � 	, then P�X � E �X �� � �
Proof - from property 1 of expectation
(ii) If a� b constants, Var �a� bX� � b�VarX
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Proof.

Vara� bX � E �a� bX � a� bE �X ��

� b�E �X � E �X ��

� b�VarX

(iii) VarX � E
�
X�

� E �X �

�

Proof.

E �X � E �X ��
�
� E

�
X� � �XE �X � � �E �X ���



� E

�
X�

� �E �X � E �X � � E �X �

�

� E
�
X�

� �E �X ���

Example. Let X have the geometric distribution P�X � r� � pqr with r � 	� �� ����
and p� q � �. Then E �X � � q

p and VarX � q
p� .

Solution.

E �X � �
�X
r��

rpqr � pq
�X
r��

rqr��

�
�

pq

�X
r��

d

dq
�qr� � pq

d

dq

� �

�� q

�

� pq��� q��� �
q

p

E
�
X�


�

�X
r��

r�p�q�r

� pq

	 �X
r��

r�r � ��qr�� �
�X
r��

rqr��



� pq�
�

��� q��
� �

��� q��
�

�q

p�
� q

p

VarX � E
�
X�

� E �X �

�

�
�q

p�
� q

p
� q�

p

�
q

p�

Definition 3.3. The co-variance of random variables X and Y is:

Cov�X�Y � � E ��X � E �X ���Y � E �Y ���

The correlation of X and Y is:

Corr�X�Y � �
Cov�X�Y �p
VarX VarY
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Linear Regression

Theorem 3.4. Var �X � Y � � VarX �VarY � �Cov�X�Y �

Proof.

Var �X � Y � � E
�
�X � Y �� � E �X �� E �Y �


�
� E

�
�X � E �X ��� � �Y � E �Y ��� � ��X � E �X ���Y � E �Y ��



� VarX �VarY � �Cov�X�Y �

3.3 Indicator Function

Definition 3.4. The Indicator Function I �A� of an event A � � is the function

I �A��w� �

�
�� if � � A�

	� if � �� A�
(3.1)

NB that I �A� is a random variable

1.

E �I �A�� � P�A�

E �I �A�� �
X
��


p�I �A��w�

� P�A�

2. I �Ac� � �� I �A�

3. I �A � B� � I �A�I �B�

4.

I �A 	 B� � I �A� � I �B�� I �A�I �B�

I �A 	B���� � � if � � A or � � B

I �A 	B���� � I �A���� � I �B����� I �A�I �B���� WORKS!

Example. n � couples are arranged randomly around a table such that males and fe-
males alternate. Let N = The number of husbands sitting next to their wives. Calculate
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the E �N � and the VarN .

N �

nX
i��

I �Ai� Ai � event couple i are together

E �N � � E

�
nX
i��

I �Ai�

�

�
nX
i��

E �I �Ai��

�

nX
i��

�

n

Thus E �N � � n
�

n
� �

E
�
N�


� E

�
�� nX

i��

I �Ai�

��
�
�

� E

�
�
�
� nX

i��

I �Ai�

�

� �
X
i
j

I �Ai�I �Aj �

�
A
�
�

� nE
�
I �Ai�

�


� n�n� ��E ��I �A��I �A����

E
�
I �Ai�

�


� E �I �Ai�� �

�

n
E ��I �A��I �A���� � IE ��A� � B��� � P�A� � A��

� P�A��P�A�jA��

�
�

n

	
�

n� �

�

n� �
� n� �

n� �

�

n� �



VarN � E

�
N�

� E �N �

�

�
�

n� �
�� � ��n� ���� �

�
��n� ��

n� �
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3.4 Inclusion - Exclusion Formula

N�
�

Ai �

�
N�
�

Ac
i

�c

I

�
N�
�

Ai

�
� I

��
N�
�

Ac
i

�c�

� �� I

�
N�
�

Ac
i

�

� ��
NY
�

I �Ac
i �

� ��
NY
�

��� I �Ai��

�
NX
�

I �Ai��
X

i� � i�I �A��I �A��

� ���� ����j��
X

i�
i����
ij
I �A��I �A�����I �Aj � � ���

Take Expectation

E

�
N�
�

Ai

�
� P

�
N�
�

Ai

�

�
NX
�

P�Ai��
X

i� � i�P�A� � A��

� ���� ����j��
X

i�
i����
ij
P
�
Ai� � Ai� � ���� � Aij

�
� ���

3.5 Independence

Definition 3.5. Discrete random variables X�� ���� Xn are independent if and only if
for any x����xn :

P�X� � x�� X� � x��������Xn � xn� �

NY
�

P�Xi � xi�

Theorem 3.5 (Preservation of Independence). If
X�� ���� Xn are independent random variables and f�� f����fn are functions R � R

then f��X�����fn�Xn� are independent random variables
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Proof.

P�f��X�� � y�� � � � � fn�Xn� � yn� �
X

x�
f��X���y�����
xn
fn�Xn��yn

P�X� � x�� � � � � Xn � xn�

�

NY
�

X
xi
fi�Xi��yi

P�Xi � xi�

�

NY
�

P�fi�Xi� � yi�

Theorem 3.6. If X������Xn are independent random variables then:

E

�
NY
�

Xi

�
�

NY
�

E �Xi�

NOTE that E �
P

Xi� �
P

E �Xi� without requiring independence.

Proof. Write Ri for RXi the range of Xi

E

�
NY
�

Xi

�
�

X
x��R�

����
X

xn�Rn

x���xnP�X� � x�� X� � x��������� Xn � xn�

�
NY
�

� X
xi�Ri

P�Xi � xi�

�

�

NY
�

E �Xi�

Theorem 3.7. If X�� ���� Xn are independent random variables and f�����fn are func-
tion R � R then:

E

�
NY
�

fi�Xi�

�
�

NY
�

E �fi�Xi��

Proof. Obvious from last two theorems!

Theorem 3.8. If X�� ���� Xn are independent random variables then:

Var

�
nX
i��

Xi

�
�

nX
i��

VarXi
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Proof.

Var

�
nX
i��

Xi

�
� E

�
�
�

nX
i��

Xi

��
�
�� E

�
nX
i��

Xi

��

� E

�
�X

i

X�
i �

X
i��j

XiXj

�
�� E

�
nX
i��

Xi

��

�
X
i

E
�
X�
i



�
X
i��j

E �XiXj ��
X
i

E �Xi�
� �

X
i��j

E �Xi� E �Xj �

�
X
i

�
E
�
X�
i


� E �Xi�
�
�

�
X
i

VarXi

Theorem 3.9. If X�� ���� Xn are independent identically distributed random variables
then

Var

�
�

n

nX
i��

Xi

�
�

�

n
VarXi

Proof.

Var

�
�

n

nX
i��

Xi

�
�

�

n�
VarXi

�
�

n�

nX
i��

VarXi

�
�

n
VarXi

Example. Experimental Design. Two rods of unknown lengths a� b. A rule can
measure the length but with but with error having 0 mean (unbiased) and variance ��.
Errors independent from measurement to measurement. To estimate a� b we could take
separate measurements A�B of each rod.

E �A� � a VarA � ��

E �B� � b VarB � ��
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Can we do better? YEP! Measure a� b as X and a� b as Y

E �X � � a� b VarX � ��

E �Y � � a� b VarY � ��

E

�
X � Y

�

�
� a

Var
X � Y

�
�

�

�
��

E

�
X � Y

�

�
� b

Var
X � Y

�
�

�

�
��

So this is better.

Example. Non standard dice. You choose 1 then I choose one. Around this cycle

a� B P�A � B� � �
� . So the relation ’A better that B’ is not transitive.
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Chapter 4

Inequalities

4.1 Jensen’s Inequality

A function f � �a� b�� R is convex if

f�px� qy� � pf�x� � ��� p�f�y� - 
x� y � �a� b� - 
p � �	� ��

Strictly convex if strict inequality holds when x �� y

f is concave if �f is convex. f is strictly concave if �f is strictly convex

23
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Concave

neither concave or convex.
We know that if f is twice differentiable and f

��
�x� � 	 for x � �a� b� the if f is

convex and strictly convex if f
��
�x� � 	 forx � �a� b�.

Example.

f�x� � � logx

f
�
�x� �

��
x

f
��
�x� �

�

x�
� 	

f�x� is strictly convex on �	���

Example.

f�x� � �x logx
f
�
�x� � ��� � logx�

f
��
�x� �

��
x
� 	

Strictly concave.

Example. f�x � x� is strictly convex on �	��� but not on ������

Theorem 4.1. Let f � �a� b�� R be a convex function. Then:

nX
i��

pif�xi� � f

�
nX
i��

pixi

�

x�� � � � � Xn � �a� b�, p�� � � � � pn � �	� �� and
P

pi � �. Further more if f is strictly
convex then equality holds if and only if all x’s are equal.

E �f�X�� � f�E �X ��
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Proof. By induction on n n � � nothing to prove n � � definition of convexity.
Assume results holds up to n-1. Consider x�� ���� xn � �a� b�, p�� ���� pn � �	� �� andP

pi � �

For i � ����n� set p
�

i �
pi

�� pi
� such that

nX
i��

p
�

i � �

Then by the inductive hypothesis twice, first for n-1, then for 2
nX
�

pifi�xi� � p�f�x�� � ��� p��

nX
i��

p
�

if�xi�

� p�f�x�� � ��� p��f

�
nX
i��

p
�

ixi

�

� f

�
p�x� � ��� p��

nX
i��

p
�

ixi

�

� f

�
nX
i��

pixi

�

f is strictly convex n � � and not all the x�is equal then we assume not all of x����xn
are equal. But then

��� pj�

nX
i��

p
�

if�xi� � ��� pj�f

�
nX
i��

p
�

ixi

�

So the inequality is strict.

Corollary (AM/GM Inequality). Positive real numbers x�� � � � � xn�
nY
i��

xi

� �
n

� �

n

nX
i��

xi

Equality holds if and only if x� � x� � � � � � xn

Proof. Let

P�X � xi� �
�

n

then f�x� � � logx is a convex function on �	���.
So

E �f�x�� � f �E �x�� (Jensen’s Inequality)

�E �logx� � log E �x� ���

Therefore � �

n

nX
�

logxi � � log
�

n

nX
�

x

�
nY
i��

xi

� �
n

� �

n

nX
i��

xi ���

For strictness since f strictly convex equation holds in [1] and hence [2] if and only if
x� � x� � � � � � xn
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If f � �a� b�� R is a convex function then it can be shown that at each point y � �a� b��
a linear function 	y � 
yx such that

f�x� � 	y � 
yx x � �a� b�

f�y� � 	y � 
yy

If f is differentiable at y then the linear function is the tangent f�y� � �x � y�f
�
�y�

Let y � E �X �, 	 � 	y and 
 � 
y

f �E �X �� � 	� 
E �X �

So for any random variable X taking values in �a� b�

E �f�X�� � E �	� 
X �

� 	� 
E �X �

� f �E �X ��

4.2 Cauchy-Schwarz Inequality

Theorem 4.2. For any random variables X�Y ,

E �XY �
� � E

�
X�


E
�
Y �



Proof. For a� b � R Let

LetZ � aX � bY

Then	 � E
�
Z�


� E

�
�aX � bY ��



� a�E

�
X�

� �abE �XY � � b�E

�
Y �



quadratic in a with at most one real root and therefore has discriminant� 	.
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Take b �� 	

E �XY �� � E
�
X�


E
�
Y �



Corollary.

jCorr�X�Y �j � �

Proof. Apply Cauchy-Schwarz to the random variables X � E �X � and Y � E �Y �

4.3 Markov’s Inequality

Theorem 4.3. If X is any random variable with finite mean then,

P�jX j � a� � E �jX j�
a

for any a � 	

Proof. Let

A � jX j � a

Then jX j � aI �A�

Take expectation

E �jX j� � aP�A�

E �jX j� � aP�jX j � a�

4.4 Chebyshev’s Inequality

Theorem 4.4. Let X be a random variable with E
�
X�

 � �. Then 
� � 	

P�jX j � �� � E
�
X�



��

Proof.

I �jX j � �� � x�

��

x
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Then

I �jX j � �� � x�

��

Take Expectation

P�jX j � �� � E

�
x�

��

�
�
E
�
X�



��

Note

1. The result is “distribution free” - no assumption about the distribution of X (other
than E

�
X�

 � �).

2. It is the “best possible” inequality, in the following sense

X � �� with probability
c

���

� �� with probability
c

���

� 	 with probability �� c

��

Then P�jX j � �� �
c

��

E
�
X�


� c

P�jX j � �� �
c

��
�
E
�
X�



��

3. If 
 � E �X � then applying the inequality to X � 
 gives

P�X � 
 � �� � VarX

��

Often the most useful form.

4.5 Law of Large Numbers

Theorem 4.5 (Weak law of large numbers). Let X�� X������ be a sequences of inde-
pendent identically distributed random variables with Variance �� �� Let

Sn �

nX
i��

Xi

Then


� � 	, P

	����Snn � 


���� � �



� 	 as n��
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Proof. By Chebyshev’s Inequality

P

	����Snn � 


���� � �



� E

�
�Snn � 
��



��

�
E
�
�Sn � n
��



n���

properties of expectation

�
VarSn
n���

Since E �Sn� � n


But VarSn � n��

Thus P

	����Snn � 


���� � �



� n��

n���
�

��

n��
� 	

Example. A�� A���� are independent events, each with probability p. Let Xi � I �Ai�.
Then

Sn
n

�
nA

n
�

number of times A occurs
number of trials


 � E �I �Ai�� � P�Ai� � p

Theorem states that

P

	����Snn � p

���� � �



� 	 as n��

Which recovers the intuitive definition of probability.

Example. A Random Sample of size n is a sequence X�� X�� � � � � Xn of independent
identically distributed random variables (’n observations’)

�X �

Pn
i��Xi

n
is called the SAMPLE MEAN

Theorem states that provided the variance ofXi is finite, the probability that the sample
mean differs from the mean of the distribution by more than � approaches 0 as n��.

We have shown the weak law of large numbers. Why weak? � a strong form of larger
numbers.

P

	
Sn
n
� 
 as n��



� �

This is NOT the same as the weak form. What does this mean?
� � � determines

Sn
n
� n � �� �� � � �

as a sequence of real numbers. Hence it either tends to 
 or it doesn’t.

P

	
� �

Sn���

n
� 
 as n��



� �
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Chapter 5

Generating Functions

In this chapter, assume that X is a random variable taking values in the range 	� �� �� � � �.
Let pr � P�X � r� r � 	� �� �� � � �

Definition 5.1. The Probability Generating Function (p.g.f) of the random variable
X,or of the distribution pr � 	� �� �� � � � , is

p�z� � E
�
zX


�

�X
r��

zrP�X � r� �
�X
r��

prz
r

This p�z� is a polynomial or a power series. If a power series then it is convergent for
jzj � � by comparison with a geometric series.

jp�z�j �
X
r

pr jzjr �
X
r

pr � �

Example.

pr �
�

�
r � �� � � � � �

p�z� � E
�
zX


�

�

�

�
� � z � � � � z�

�
�

z

�

�� z�

�� z

Theorem 5.1. The distribution of X is uniquely determined by the p.g.f p�z�.

Proof. We know that we can differential p(z) term by term for jzj � �

p
�
�z� � p� � �p�z � � � �

and so p
�
�	� � p� �p�	� � p��

Repeated differentiation gives

p�i��z� �

�X
r�i

r�

�r � i��
prz

r�i

and has p�i� � 	 � i�pi Thus we can recover p�� p�� � � � from p(z)
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Theorem 5.2 (Abel’s Lemma).

E �X � � lim
r��

p��z�

Proof.

p��z� �
�X
r�i

rprz
r�� jzj � �

For z � �	� ��, p��z� is a non decreasing function of z and is bounded above by

E �X � �

�X
r�i

rpr

Choose � � 	, N large enough that

NX
r�i

rpr � E �X �� �

Then

lim
r��

�X
r�i

rprz
r�� � lim

r��

NX
r�i

rprz
r�� �

NX
r�i

rpr

True 
� � 	 and so

E �X � � lim
r��

p��z�

Usually p��z� is continuous at z=1, then E �X � � p����.

	
Recall p�z� �

z

�

�� z�

�� z




Theorem 5.3.

E �X�X � ��� � lim
z��

p���z�

Proof.

p���z� �
�X
r��

r�r � ��pzr��

Proof now the same as Abel’s Lemma

Theorem 5.4. Suppose that X�� X�� � � � � Xn are independent random variables with
p.g.f’s p��z�� p��z�� � � � � pn�z�. Then the p.g.f of

X� �X� � � � � Xn

is

p��z�p��z� � � � pn�z�
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Proof.

E
�
zX��X�����Xn



� E

�
zX� �zX� � � � �zXn



� E

�
zX�



E
�
zX�



� � � E

�
zXn



� p��z�p��z� � � � pn�z�

Example. Suppose X has Poisson Distribution

P�X � r� � e��
�r

r�
r � 	� �� � � �

Then

E
�
zX


�

�X
r��

zre��
�r

r�

� e��e��z

� e�����z�

Let’s calculate the variance of X

p
�
� �e�����z� p

��
� ��e�����z�

Then

E �X � � lim
z��

p
�
�z� � p

�
���� Since p

�
�z� continuous at z � � �E �X � � �

E �X�X � ��� � p
��
��� � ��

VarX � E
�
X�

� E �X �

�

� E �X�X � ��� � E �X �� E �X �
�

� �� � �� ��

� �

Example. Suppose that Y has a Poisson Distribution with parameter 
. If X and Y are
independent then:

E
�
zX�Y



� E

�
zX


E
�
zY



� e�����z�e�	���z�

� e����	����z�

But this is the p.g.f of a Poisson random variable with parameter ��
. By uniqueness
(first theorem of the p.g.f) this must be the distribution for X � Y

Example. X has a binomial Distribution,

P�X � r� �

	
n

r



pr��� p�n�r r � 	� �� � � �

E
�
zX


�

nX
r��

	
n

r



pr��� p�n�rzr

� �pz � �� p�n



34 CHAPTER 5. GENERATING FUNCTIONS

This shows that X � Y� � Y� � � � �� Yn. Where Y� � Y� � � � �� Yn are independent
random variables each with

P�Yi � �� � p P�Yi � 	� � �� p

Note if the p.g.f factorizes look to see if the random variable can be written as a sum.

5.1 Combinatorial Applications

Tile a ��� n� bathroom with ��� �� tiles. How many ways can this be done? Say fn

fn � fn�� � fn�� f� � f� � �

Let

F �z� �
�X
n��

fnz
n

fnz
n � fn��zn � fn��zn

�X
n��

fnz
n �

�X
n��

fn��zn �
�X
n��

fn��zn

F �z�� f� � zf� � z�F �z�� f�� � z�F �z�

F �z���� z � z�� � f���� z� � zf�

� �� z � z � ��

Since f� � f� � �, then F �z� � �
��z�z�

Let

	� �
� �

p
�

�
	� �

��p
�

�

F �z� �
�

��� 	�z���� 	�z�

�
	�

��� 	�z�
� 	�

��� 	�z�

�
�

	� � 	�

�
	�

�X
n��

	n� z
n � 	�

�X
n��

	n� z
n

�

The coefficient of zn� , that is fn, is

fn �
�

	� � 	�
�	n��� � 	n��� �

5.2 Conditional Expectation

Let X and Y be random variables with joint distribution

P�X � x� Y � y�
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Then the distribution of X is

P�X � x� �
X
y�Ry

P�X � x� Y � y�

This is often called the Marginal distribution for X . The conditional distribution for X
given by Y � y is

P�X � xjY � y� �
P�X � x� Y � y�

P�Y � y�

Definition 5.2. The conditional expectation of X given Y � y is,

E �X � xjY � y� �
X
x�Rx

xP�X � xjY � y�

The conditional Expectation of X given Y is the random variable E �X jY � defined by

E �X jY � ��� � E �X jY � Y ����

Thus E �X jY � � �� R

Example. Let X�� X�� � � � � Xn be independent identically distributed random vari-
ables with P�X� � �� � p and P�X� � 	� � �� p. Let

Y � X� �X� � � � ��Xn

Then

P�X� � �jY � r� �
P�X� � �� Y � r�

P�Y � r�

�
P�X� � �� X� � � � ��Xn � r � ��

P�Y � r�

�
P�X��P�X� � � � ��Xn � r � ��

P�Y � r�

�
p
�
n��
r��
�
pr����� p�n�r�

n
r

�
pr��� p�n�r

�

�
n��
r��
�

�
n
r

�
�

r

n

Then

E �X�jY � r� � 	� P�X� � 	jY � r� � �� P�X� � �jY � r�

�
r

n

E �X�jY � Y ���� �
�

n
Y ���

Therefore E �X�jY � �
�

n
Y

Note a random variable - a function of Y .
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5.3 Properties of Conditional Expectation

Theorem 5.5.

E �E �X jY �� � E �X �

Proof.

E �E �X jY �� �
X
y�Ry

P�Y � y� E �X jY � y�

�
X
y

P�Y � y�
X
x�Rx

P�X � xjY � y�

�
X
y

X
x

xP�X � xjY � y�

� E �X �

Theorem 5.6. If X and Y are independent then

E �X jY � � E �X �

Proof. If X and Y are independent then for any y � Ry

E �X jY � y� �
X
x�Rx

xP�X � xjY � y� �
X
x

xP�X � x� � E �X �

Example. Let X�� X�� � � � be i.i.d.r.v’s with p.g.f p�z�. Let N be a random variable
independent of X�� X�� � � � with p.g.f h�z�. What is the p.g.f of:

X� �X� � � � ��XN

E
�
zX�������Xn



� E

�
E
�
zX�������Xn jN



�

�X
n��

P�N � n� E
�
zX�������Xn jN � n




�

�X
n��

P�N � n� �p�z��n

� h�p�z��

Then for example

E �X��� � � � � Xn� �
d

dz
h�p�z��

����
z��

� h
�
���p

�
��� � E �N � E �X��

Exercise Calculate d�

dz�h�p�z�� and hence

VarX��� � � � � Xn

In terms of VarN and VarX�
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5.4 Branching Processes

X�� X� � � � sequence of random variables. Xn number of individuals in the nth gener-
ation of population. Assume.

1. X� � �

2. Each individual lives for unit time then on death produces k offspring, probabil-
ity fk.

P
fk � �

3. All offspring behave independently.

Xn�� � Y n
� � Y n

� � � � �� Y n
n

Where Y n
i are i.i.d.r.v’s. Y n

i number of offspring of individual i in generation n.

Assume

1. f� � 	

2. f� � f� � �

Let F(z) be the probability generating function ofY n
i .

F �z� �
�X
n��

fkz
k � E

�
zXi



� E

h
zY

n
i

i

Let

Fn�z� � E
�
zXn



Then F��z� � F �z� the probability generating function of the offspring distribution.

Theorem 5.7.

Fn���z� � Fn�F �z�� � F �F �� � � �F �z�� � � � ��

Fn�z� is an n-fold iterative formula.
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Proof.

Fn���z� � E
�
zXn��



� E

�
E
�
zXn�� jXn




�

�X
n��

P�Xn � k� E
�
zXn�� jXn � k




�
�X
n��

P�Xn � k� E
h
zY

n
� �Y n

� �����Y n
n

i

�

�X
n��

P�Xn � k� E
h
zY

n
�

i
� � � E

h
zY

n
n

i

�

�X
n��

P�Xn � k� �F �z��
k

� Fn�F �z��

Theorem 5.8. Mean and Variance of population size

If m �

�X
k��

kfk ��

and �� �
�X
k��

�k �m��fk � �

Mean and Variance of offspring distribution.
Then E �Xn� � mn

VarXn �

�

�mn���mn���

m�� � m �� �

n��� m � �
(5.1)

Proof. Prove by calculating F
�
�z�, F

��
�z� Alternatively

E �Xn� � E �E �XnjXn����
� E �mjXn���
� mE �Xn���
� mn by induction

E
�
�Xn �mXn����



� E

�
E
�
�Xn �mXn����jXn




� E �Var �XnjXn����

� E
�
��Xn��



� ��mn��

Thus

E
�
X�
n


� �mE �XnXn��� �m�
E
�
X�
n��


�
� ��mn��
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Now calculate

E �XnXn��� � E �E �XnXn��jXn����
� E �Xn��E �XnjXn����
� E �Xn��mXn���

� mE
�
X�
n��



Then E

�
X�
n



� ��mn�� �m�

E �Xn���
�

VarXn � E
�
X�
n


� E �Xn�
�

� m�
E
�
X�
n��



� ��mn�� �m�

E �Xn���
�

� m�VarXn�� � ��mn��

� m	VarXn�� � ���mn�� �mn�

� m��n���VarX� � ���mn�� �mn � � � ��m�n���

� ��mn���� �m� � � ��mn�

To deal with extinction we need to be careful with limits as n��. Let

An � Xn � 	

� Extinction occurs by generation n

and let A �

��
�

An

� the event that extinction ever occurs

Can we calculate P�A� from P�An�?
More generally let An be an increasing sequence

A� � A� � � � �

and define

A � lim
n��An �

��
�

An

Define Bn for n � �

B� � A�

Bn � An �
�
n���
i��

Ai

�c

� An �Ac
n��
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Bn for n � � are disjoint events and

��
i��

Ai �

��
i��

Bi

n�
i��

Ai �

n�
i��

Bi

P

���
i��

Ai

�
� P

���
i��

Bi

�

�
�X
�

P�Bi�

� lim
n��

nX
�

P�Bi�

� lim
n��

n�
i��

Bi

� lim
n��

n�
i��

Ai

� lim
n��P�An�

Thus

P

�
lim
n��An

�
� lim

n��P�An�

Probability is a continuous set function. Thus

P�extinction ever occurs� � lim
n��P�An�

� lim
n��P�Xn � 	�

� q� Say

Note P�Xn � 	�, n � �� �� �� � � � is an increasing sequence so limit exists. But

P�Xn � 	� � Fn�	� Fn is the p.g.f of Xn

So

q � lim
n��Fn�	�

Also

F �q� � F
�
lim
n��Fn�	�

�
� lim

n��F �Fn�	�� Since F is continuous

� lim
n��Fn���	�

Thus F �q� � q
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“q” is called the Extinction Probability.
Alternative Derivation

q �
X
k

P�X� � k�P�extinctionjX� � k�

�
X

P�X� � k� qk

� F �q�

Theorem 5.9. The probability of extinction, q, is the smallest positive root of the equa-
tion F �q� � q. m is the mean of the offspring distribution.

If m � � then q � �� while if m � �thenq � �

Proof.

F ��� � � m �

�X
�

kf
�

k � lim
z��

F
�
�z�

F
��
�z� �

�X
j�z

j�j � ��zj�� in 	 � z � � Since f� � f� � � Also F �	� � f� � 	

Thus if m � �, there does not exists a q � �	� �� with F �q� � q. If m � � then let 	

be the smallest positive root of F �z� � z then 	 � �. Further,

F �	� � F �	� � 	

F �F �	�� � F �	� � 	

Fn�	� � 	 
n � �

q � lim
n��Fn�	� � 	

q � 	 Since q is a root of F �z� � z
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5.5 Random Walks

Let X�� X�� � � � be i.i.d.r.vs. Let

Sn � S� �X� �X� � � � ��Xn Where, usually S� � 	

Then Sn �n � 	� �� �� � � � is a 1 dimensional Random Walk.

We shall assume

Xn �

�
�� with probability p

��� with probability q
(5.2)

This is a simple random walk. If p � q � �
� then the random walk is called symmetric

Example (Gambler’s Ruin). You have an initial fortune of A and I have an initial
fortune of B. We toss coins repeatedly I win with probability p and you win with
probability q. What is the probability that I bankrupt you before you bankrupt me?
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Set a � A� B and z � B Stop a random walk starting at z when it hits 	 or a.

Let pz be the probability that the random walk hits a before it hits 	, starting from
z. Let qz be the probability that the random walk hits 	 before it hits a, starting from
z. After the first step the gambler’s fortune is either z � � or z � � with prob p and q
respectively. From the law of total probability.

pz � qpz�� � ppz�� 	 � z � a

Also p� � 	 and pa � �. Must solve pt� � t� q � 	.

t �
��p

�� 
pq

�p
�

��p
�� �p

�p
� � or

q

p

General Solution for p �� q is

pz � A�B

	
q

p


z
A�B � 	A �

�

��
�
q
p

�a
and so

pz �
��

�
q
p

�z
��

�
q
p

�a
If p � q, the general solution is A�Bz

pz �
z

a

To calculate qz , observe that this is the same problem with p� q� z replaced by p� q� a�z
respectively. Thus

qz �

�
q
p

�a
�
�
q
p

�z
�
q
p

�a
� �

if p �� q
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or

qz �
a� z

z
if p � q

Thus qz � pz � � and so on, as we expected, the game ends with probability one.

P�hits 	 before a� � qz

qz �

�
q
p

�a
� � qp �

z�
q
p

�a
� �

if p �� q

Or �
a� z

z
if p � q

What happens as a��?

P� paths hit 	 ever� �
��

a�z��

path hits 	 before it hits a

P�hits 	 ever� � lim
a��P�hits 	 before a�

� lim
a�� qz

�

	
q

p



p � q

� � p � q

Let G be the ultimate gain or loss.

G �

�
a� z� with probability pz
�z� with probability qz

(5.3)

E �G� �

�
apz � z� if p �� q

	� if p � q
(5.4)

Fair game remains fair if the coin is fair then then games based on it have expected
reward 	.

Duration of a Game Let Dz be the expected time until the random walk hits 	
or a, starting from z. Is Dz finite? Dz is bounded above by x the mean of geometric
random variables (number of window’s of size a before a window with all ���s or
���s). Hence Dz is finite. Consider the first step. Then

Dz � � � pDz�� � qDz��
E �duration� � E �E �duration j first step��

� p �E �duration j first step up�� � q �E �duration j first step down��

� p�� �Dz��� � q�� �Dz���

Equation holds for 	 � z � a with D� � Da � 	. Let’s try for a particular solution
Dz � Cz

Cz � Cp�z � �� � Cq�z � �� � �

C �
�

q � p
for p �� q
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Consider the homogeneous relation

pt� � t� q � 	 t� � � t� �
q

p

General Solution for p �� q is

Dz � A�B

	
q

p


z
�

z

q � p

Substitute z � 	� a to get A and B

Dz �
z

q � p
� a

q � p

��
�
q
p

�z
��

�
q
p

�a p �� q

If p � q then a particular solution is �z�. General solution

Dz � z� �A�Bz

Substituting the boundary conditions given.,

Dz � z�a� z� p � q

Example. Initial Capital.

p q z a P�ruin� E �gain� E �duration�
0.5 0.5 90 100 0.1 0 900
0.45 0.55 9 10 0.21 -1.1 11
0.45 0.55 90 100 0.87 -77 766

Stop the random walk when it hits 	 or a.
We have absorption at 	 or a. Let

Uz�n � P�r.w. hits 0 at time n—starts at z�

Uz�n�� � pUz���n � qUz���n 	 � z � a n � 	

U��n � Ua�n � 	 n � 	

Ua�� � �Uz�� � 	 	 � z � a

Let Uz �
�X
n��

Uz�ns
n�

Now multiply by sn�� and add for n � 	� �� � � � �

Uz�s� � psUz���s� � qsUz���s�
Where U��s� � � and Ua�s� � 	

Look for a solution

Ux�s� � ���s��z ��s�
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Must satisfy

��s� � ps ����s��� � qs

Two Roots,

���s�� ���s� �
��p�� 
pqs�

�ps

Every Solution of the form

Uz�s� � A�s� ����s��
z
�B�s� ����s��

z

Substitute U��s� � � and Ua�s� � 	.A�s� �B�s� � � and

A�s� ����s��
a
�B�s� ����s��

a
� 	

Uz�s� �
����s��

a
����s��

z � ����s��
z
����s��

a

����s��
a � ����s��

a

But ���s����s� �
q

p
recall quadratic

Uz�s� �

	
q

p



����s��

a�z � ����s��
a�z

����s��
a � ����s��

a

Same method give generating function for absorption probabilities at the other barrier.
Generating function for the duration of the game is the sum of these two generating
functions.



Chapter 6

Continuous Random Variables

In this chapter we drop the assumption that � id finite or countable. Assume we are
given a probability p on some subset of �.

For example, spin a pointer, and let � � � give the position at which it stops, with
� � � � 	 � � � ��. Let

P�� � �	� ��� �
�

��
�	 � � � ���

Definition 6.1. A continuous random variable X is a function X � �� R for which

P�a � X��� � b� �

Z b

a

f�x�dx

Where f�x� is a function satisfying

1. f�x� � 	

2.
R ��
�� f�x�dx � �

The function f is called the Probability Density Function.

For example, if X��� � � given position of the pointer then x is a continuous
random variable with p.d.f

f�x� �

�
�
�� � �	 � x � ���

	� otherwise
(6.1)

This is an example of a uniformly distributed random variable. On the interval �	� ���

47
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in this case. Intuition about probability density functions is based on the approximate
relation.

P�X � �x� x� x�x�� �

Z x�x�x

x

f�z�dz

Proofs however more often use the distribution function

F �x� � P�X � x�

F �x� is increasing in x.

If X is a continuous random variable then

F �x� �

Z x

��
f�z�dz

and so F is continuous and differentiable.

F
�
�x� � f�x�

(At any point x where then fundamental theorem of calculus applies).
The distribution function is also defined for a discrete random variable,

F �x� �
X

�
X���
x
p�

and so F is a step function.

In either case

P�a � X � b� � P�X � b�� P�X � a� � F �b�� F �a�
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Example. The exponential distribution. Let

F �x� �

�
�� e��x� 	 � x � �
	� x � 	

(6.2)

The corresponding pdf is

f�x� � �e��x 	 � x � �

this is known as the exponential distribution with parameter �. If X has this distribu-
tion then

P�X � x� zjX � z� �
P�X � x� z�

P�X � z�

�
e���x�z�

e��z

� e��x

� P�X � x�

This is known as the memoryless property of the exponential distribution.

Theorem 6.1. If X is a continuous random variable with pdf f�x� and h�x� is a con-
tinuous strictly increasing function with h���x� differentiable then h�x� is a continu-
ous random variable with pdf

fh�x� � f
�
h���x�

� d

dx
h���x�

Proof. The distribution function of h�X� is

P�h�X� � x� � P
�
X � h���x�

�
� F

�
h���x�

�
Since h is strictly increasing and F is the distribution function of X Then.

d

dx
P�h�X� � x�

is a continuous random variable with pdf as claimed fh. Note usually need to repeat
proof than remember the result.
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Example. Suppose X � U �	� �� that is it is uniformly distributed on �	� �� Consider
Y � � logx

P�Y � y� � P�� logX � y�

� P
�
X � e�Y

�
�

Z �

e�Y
�dx

� �� e�Y

Thus Y is exponentially distributed.

More generally

Theorem 6.2. Let U � U �	� ��. For any continuous distribution function F, the ran-
dom variable X defined by X � F���u� has distribution function F .

Proof.

P�X � x� � P
�
F���u� � x

�
� P�U � F �x��

� F �x� � U �	� ��

Remark

1. a bit more messy for discrete random variables

P�X � Xi� � pi i � 	� �� � � �

Let

X � xj if
j��X
i��

pi � U �
jX

i��

pi U � U �	� ��

2. useful for simulations

6.1 Jointly Distributed Random Variables

For two random variables X and Y the joint distribution function is

F �x� y� � P�X � x� Y � y� F � R� � �	� ��

Let

FX �x� � P�Xz � x�

� P�X � x� Y ���

� F �x���

� lim
y��F �x� y�
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This is called the marginal distribution of X. Similarly

FY �x� � F ��� y�

X�� X�� � � � � Xn are jointly distributed continuous random variables if for a set c � R
b

P��X�� X�� � � � � Xn� � c� �

ZZ
� � �
Z

�x������xn��c
f�x�� � � � � xn�dx� � � � dxn

For some function f called the joint probability density function satisfying the obvious
conditions.

1.

f�x�� � � � � xn�dx� � 	

2. ZZ
� � �
Z
Rn

f�x�� � � � � xn�dx� � � � dxn � �

Example. �n � ��

F �x� y� � P�X � x� Y � y�

�

Z x

��

Z y

��
f�u� v�dudv

and so f�x� y� �
��F �x� y�

�x�y

Theorem 6.3. provided defined at �x� y�. If X and y are jointly continuous random
variables then they are individually continuous.

Proof. Since X and Y are jointly continuous random variables

P�X � A� � P�X � A� Y � ��������

�

Z
A

Z �

��
f�x� y�dxdy

� fAfX�x�dx

where fX�x� �

Z �

��
f�x� y�dy

is the pdf of X .

Jointly continuous random variables X and Y are Independent if

f�x� y� � fX�x�fY �y�

Then P�X � A� Y � B� � P�X � A�P�Y � B�

Similarly jointly continuous random variables X�� � � � � Xn are independent if

f�x�� � � � � xn� �

nY
i��

fXi�xi�
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Where fXi�xi� are the pdf’s of the individual random variables.

Example. Two points X and Y are tossed at random and independently onto a line
segment of length L. What is the probability that:

jX � Y j � l?

Suppose that “at random” means uniformly so that

f�x� y� �
�

L�
x� y � �	� L��
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Desired probability

�

ZZ
A

f�x� y�dxdy

�
area of A

L�

�
L� � � �� �L� l��

L�

�
�Ll� l�

L�

Example (Buffon’s Needle Problem). A needle of length l is tossed at random onto a
floor marked with parallel lines a distance L apart l � L. What is the probability that
the needle intersects one of the parallel lines.

Let � � �	� ��� be the angle between the needle and the parallel lines and let x be
the distance from the bottom of the needle to the line closest to it. It is reasonable to
suppose that X is distributed Uniformly.

X � U �	� L� � � U �	� ��

and X and � are independent. Thus

f�x� �� �
�

l�
	 � x � L and 	 � � � �
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The needle intersects the line if and only if X � sin � The event A

�

ZZ
A

f�x� ��dxd�

� l

Z �

�

sin �

�L
d�

�
�l

�L

Definition 6.2. The expectation or mean of a continuous random variable X is

E �X � �

Z �

��
xf�x�dx

provided not both of
R�
�� xf�x�dx and

R �
�� xf�x�dx are infinite

Example (Normal Distribution). Let

f�x� �
�p
���

e
��x����

��� �� � x � �

This is non-negative for it to be a pdf we also need to check thatZ �

��
f�x�dx � �

Make the substitution z � x�	

 . Then

I �
�p
���

Z �

��
e
��x����

��� dx

�
�p
��

Z Z �

��
e
�z�
� dz

Thus I� �
�

��

�Z �

��
e
�x�
� dx

� �Z �

��
e
�y�
� dy

�

�
�

��

Z �

��

Z �

��
e
��y��x��

� dxdy

�
�

��

Z ��

�

Z �

�

re
���
� drd�

�

Z ��

�

d� � �

Therefore I � �. A random variable with the pdf f(x) given above has a Normal
distribution with parameters 
 and �� we write this as

X � N �
� ���

The Expectation is

E �X � �
�p
���

Z �

��
xe

��x����
��� dx

�
�p
���

Z �

��
�x� 
�e

��x����
��� dx�

�p
���

Z �

��

e

��x����
��� dx�
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The first term is convergent and equals zero by symmetry, so that

E �X � � 	 � 


� 


Theorem 6.4. If X is a continuous random variable then,

E �X � �

Z �

�

P�X � x� dx�
Z �

�

P�X � �x� dx

Proof. Z �

�

P�X � x� dx �

Z �

�

�Z �

x

f�y�dy

�
dx

�

Z �

�

Z �

�

I �y � x�f�y�dydx

�

Z �

�

Z y

�

dxf�y�dy

�

Z �

�

yf�y�dy

Similarly
Z �

�

P�X � �x� dx �

Z �

��
yf�y�dy

result follows.

Note This holds for discrete random variables and is useful as a general way of
finding the expectation whether the random variable is discrete or continuous.

If X takes values in the set �	� �� � � � � � Theorem states

E �X � �

�X
n��

P�X � n�

and a direct proof follows

�X
n��

P�X � n� �

�X
n��

�X
m��

I �m � n�P�X � m�

�

�X
m��

� �X
n��

I �m � n�

�
P�X � m�

�
�X

m��

mP�X � m�

Theorem 6.5. Let X be a continuous random variable with pdf f�x� and let h�x� be
a continuous real-valued function. Then provided

Z �

��
jh�x�j f�x�dx � �

E �h�x�� �

Z �

��
h�x�f�x�dx
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Proof.

Z �

�

P�h�X� � y� dy

�

Z �

�

�Z
x
h�x�	�

f�x�dx

�
dy

�

Z �

�

Z
x
h�x�	�

I �h�x� � y�f�x�dxdy

�

Z
x
h�x�

�Z h�x�	�

�

dy

�
f�x�dx

�

Z
x
h�x�	�

h�x�f�x�dy

Similarly
Z �

�

P�h�X� � �y� � �
Z
x
h�x�
�

h�x�f�x�dy

So the result follows from the last theorem.

Definition 6.3. The variance of a continuous random variable X is

VarX � E
�
�X � E �X ���



Note The properties of expectation and variance are the same for discrete and contin-
uous random variables just replace

P
with

R
in the proofs.

Example.

VarX � E
�
X�

� E �X �

�

�

Z �

��
x�f�x�dx �

	Z �

��
xf�x�dx


�

Example. Suppose X � N �
� ��� Let z � X�	

 then

P�Z � z� � P

	
X � 


�
� z



� P�X � 
� �z�

�

Z 	�
z

��

�p
���

e
��x����

��� dx

Let

	
u �

x� 


�



�

Z z

��

�p
��

e
�u�
� du

� ��z� The distribution function of a N�	� �� random variable

Z � N�	� ��
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What is the variance of Z?

VarX � E
�
Z�

� E �Z�� Last term is zero

�
�p
��

Z �

��
z�e

�z�
� dz

�

�
� �p

��
ze

�z�
�

��
��

�

Z �

��
e
�z�
� dz

� 	 � � � �

VarX � �

Variance of X?

X � 
� �z

Thus E �X � � 
 we know that already

VarX � �� VarZ

VarX � ��

X � �
� ���

6.2 Transformation of Random Variables

Suppose X�� X�� � � � � Xn have joint pdf f�x�� � � � � xn� let

Y� � r��X�� X�� � � � � Xn�

Y� � r��X�� X�� � � � � Xn�

...

Yn � rn�X�� X�� � � � � Xn�

Let R � R
n be such that

P��X�� X�� � � � � Xn� � R� � �

Let S be the image of R under the above transformation suppose the transformation
from R to S is 1-1 (bijective).
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Then � inverse functions

x� � s��y�� y�� � � � � yn�

x� � s��y�� y�� � � � � yn� � � �

xn � sn�y�� y�� � � � � yn�

Assume that �si
�yj

exists and is continuous at every point �y�� y�� � � � � yn� in S

J �

�������
�s�
�y�

� � � �s�
�yn

...
. . .

...
�sn
�y�

� � � �sn
�yn

������� (6.3)

If A � R

P��X�� � � � � Xn� � A� ��� �

Z
� � �
Z

A

f�x�� � � � � xn�dx� � � � dxn

�

Z
� � �
Z

B

f �s�� � � � � sn� jJ j dy� � � � dyn

Where B is the image of A

� P��Y�� � � � � Yn� � B� ���

Since transformation is 1-1 then [1],[2] are the same

Thus the density for Y�� � � � � Yn is

g��y�� y�� � � � � yn� � f �s��y�� y�� � � � � yn�� � � � � sn�y�� y�� � � � � yn�� jJ j
y�� y�� � � � � yn � S

� 	 otherwise.

Example (density of products and quotients). Suppose that �X�Y � has density

f�x� y� �

�

xy� for 	 � x � �� 	 � y � �

	� Otherwise.
(6.4)

Let U � X
Y and V � XY
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X �
p
UV Y �

r
V

U

x �
p
uv y �

r
v

u

�x

�u
�

�

�

r
v

u

�x

�v
�

�

�

r
u

v

�y

�u
�
��
�

v
�
�

u
�
�

�y

�v
�

�

�
p
uv

�

Therefore jJ j � �
�u and so

g�u� v� �
�

�u
�
xy�

�
�

�u
� 


p
uv

r
v

u

� �
u

v
if �u� v� � D

� 	 Otherwise�

Note U and V are NOT independent

g�u� v� � �
u

v
I ��u� v� � D�

not product of the two identities.
When the transformations are linear things are simpler still. Let A be the n � n

invertible matrix.

�
B�
Y�
...
Yn

�
CA � A

�
B�
X�

...
Xn

�
CA �

jJ j � detA�� � detA��

Then the pdf of �Y�� � � � � Yn� is

g�y�� � � � �n � �
�

detA
f�A��g�

Example. Suppose X�� X� have the pdf f�x�� x��. Calculate the pdf of X� �X�.
Let Y � X� �X� and Z � X�. Then X� � Y � Z and X� � Z.

A�� �
	
� ��
	 �



(6.5)

detA�� � �
�

detA
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Then

g�y� z� � f�x�� x�� � f�y � z� z�

joint distributions of Y and X .
Marginal density of Y is

g�y� �

Z �

��
f�y � z� z�dz �� � y � �

or g�y� �
Z �

��
f�z� y � z�dz By change of variable

If X� and X� are independent, with pgf’s f� and f� then

f�x�� x�� � f�x��f�x��

and then g�y� �
Z �

��
f�y � z�f�z�dz

- the convolution of f� and f�

For the pdf f(x) �x is a mode if f��x� � f�x�
x
�x is a median if Z �x

��
f�x�dx �

Z �

�x

f�x�dx �
�

�

For a discrete random variable, �x is a median if

P�X � �x� � �

�
or P�X � �x� � �

�

If X�� � � � � Xn is a sample from the distribution then recall that the sample mean is

�

n

nX
�

Xi

Let Y�� � � � � Yn (the statistics) be the values of X�� � � � � Xn arranged in increasing
order. Then the sample median is Yn��

�
if n is odd or any value in

h
Yn

�
� Yn��

�

i
if n is even
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If Yn � maxX�� � � � � Xn and X�� � � � � Xn are iidrv’s with distribution F and den-
sity f then,

P�Yn � y� � P�X� � y� � � � � Xn � y�

� �F �y��
n

Thus the density of Yn is

g�y� �
d

dy
�F �y��

n

� n �F �y��
n��

f�y�

Similarly Y� � minX�� � � � � Xn and is

P�Y� � y� � �� P�X� � y� � � � � Xn � y�

� �� ��� F �y��
n

Then the density of Y� is

� n ��� F �y��n�� f�y�

What about the joint density of Y�� Yn?

G�y� yn� � P�Y� � y�� Yn � yn�

� P�Yn � yn�� P�Yn � yn� Y� ���

� P�Yn � yn�� P�y� � X� � yn� y� � X� � yn� � � � � y� � Xn � yn�

� �F �yn��
n � �F �yn�� F �y���

n

Thus the pdf of Y�� Yn is

g�y�� yn� �
��

�y��yn
G�y�� yn�

� n�n� �� �F �yn�� F �y���
n��

f�y��f�yn� �� � y� � yn � �
� 	 otherwise

What happens if the mapping is not 1-1? X � f�x� and jX j � g�x�?

P�jX j � �a� b�� �

Z b

a

�f�x� � f��x�� dx g�x� � f�x� � f��x�

SupposeX�� � � � � Xn are iidrv’s. What is the pdf of Y�� � � � � Yn the order statistics?

g�y�� � � � � yn� �

�
n�f�y�� � � � f�yn�� y� � y� � � � � � yn

	� Otherwise
(6.6)

Example. Suppose X�� � � � � Xn are iidrv’s exponentially distributed with parameter
�. Let

z� � Y�

z� � Y� � Y�

...

zn � Yn � Yn��
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Where Y�� � � � � Yn are the order statistics of X�� � � � � Xn. What is the distribution of
the z�s?

Z � AY
Where

A �

�
BBBBB�

� 	 	 � � � 	 	
�� � 	 � � � 	 	
	 �� � � � � 	 	
...

...
. . .

...
...

	 	 � � � �� �

�
CCCCCA (6.7)

det�A� � �

h�z�� � � � � zn� � g�y�� � � � � yn�

� n�f�y�� � � � f�yn�

� n��ne��y� � � � e��yn

� n��ne���y������yn�

� n��ne���z��z������nzn�

�

nY
i��

�ie��izn���i

Thus h�z�� � � � � zn� is expressed as the product of n density functions and

Zn���i � exp��i�

exponentially distributed with parameter �i, with z�� � � � � zn independent.

Example. Let X and Y be independentN�	��� random variables. Let

D � R� � X� � Y�

then tan� � Y
X then

d � x� � y� and � � arctan
�y
x

�

jJ j �
������

�x �y
�y
x�

��� yx �
�

�
x

��� yx �
�

������ � � (6.8)
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f�x� y� �
�p
��

e
�x�
�

�p
��

e
�y�
�

�
�

��
e
��x��y��

�

Thus

g�d� �� �
�


�
e
�d
� 	 � d � � 	 � � � ��

But this is just the product of the densities

gD�d� �
�

�
e
�d
� 	 � d ��

g���� �
�

��
	 � � � ��

Then D and � are independent. d �exponentially mean 2. � � U �	� ���.
Note this is useful for the simulations of the normal random variable.
We know we can simulate N �	� �� random variable by X � f ��U� when U �

U �	� �� but this is difficult for N �	� �� random variable since

F �x� � ��x� �

Z �x

��

�p
��

e
�z�
�

is difficult.
Let U� and U� be independent � U �	� ��. Let R� � �� logU , so that R� is

exponential with mean 2. � � ��U�. Then � � U �	� ���. Now let

X � R cos� �
p
�� logU� cos���U��

Y � R sin� �
p
�� logU� sin���U��

Then X and Y are independent N �	� �� random variables.

Example (Bertrand’s Paradox). Calculate the probability that a “random chord” of
a circle of radius 1 has length greater that

p
�. The length of the side of an inscribed

equilateral triangle.
There are at least 3 interpretations of a random chord.
(1) The ends are independently and uniformly distributed over the circumference.

answer � �
�
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(2)The chord is perpendicular to a given diameter and the point of intersection is
uniformly distributed over the diameter.

a� �

�p
�

�

��

�
�p

�
��

answer � �
�

(3) The foot of the perpendicular to the chord from the centre of the circle is uni-
formly distributed over the diameter of the interior circle.

interior circle has radius �
� .

answer �
�
�
�
��

�
���

�
�




6.3 Moment Generating Functions

If X is a continuous random variable then the analogue of the pgf is the moment gen-
erating function defined by

m��� � E
�
e
x



for those � such that m��� is finite

m��� �

Z �

��
e
xf�x�dx

where f�x� is the pdf of X .
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Theorem 6.6. The moment generating function determines the distribution of X , pro-
vided m��� is finite for some interval containing the origin.

Proof. Not proved.

Theorem 6.7. If X and Y are independent random variables with moment generating
function mx��� and my��� then X � Y has the moment generating function

mx�y��� � mx����my���

Proof.

E

h
e
�x�y�

i
� E

�
e
xe
y



� E

�
e
x


E
�
e
y



� mx���my���

Theorem 6.8. The rth moment of X ie the expected value of Xr, E �Xr�, is the coeffi-
cient of 
r

r� of the series expansion of n���.

Proof. Sketch of....
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Example. Recall X has an exponential distribution, parameter � if it has a density
�e�x for 	 � x ��.
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Example. Suppose X�� � � � � Xn are iidrvs each exponentially distributed with param-
eter �.

Claim : X�� � � � � Xn has a gamma distribution, ��n� �� with parameters n� �. With
density

�ne��xxn��

�n� ���
	 � x ��

we can check that this is a density by integrating it by parts and show that it equals 1.
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Suppose that Y � ��n� ��.
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Hence claim, since moment generating function characterizes distribution.

Example (Normal Distribution). X � N �	� ��
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The integral equals 1 are it is the density of N �
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Which is the moment generating function of N �
� ��� random variable.

Theorem 6.9. Suppose X , Y are independent X � N �
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2.

aX � N �a
� � a����

Proof. 1.
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which is the moment generating function for
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6.4 Central Limit Theorem

X�� � � � � Xn iidrv’s, mean 	 and variance ��. Xi has density

VarXi � ��

X� � � � ��Xn has Variance

VarX� � � � ��Xn � n��
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Theorem 6.10. Let X�� � � � � Xn be iidrv’s with E �Xi� � 
 and VarXi � �� � �.
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Which is the pdf of a N �	� �� random variable.
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Proof. Sketch of proof.....
WLOG take 
 � 	 and �� � �. we can replace Xi by Xi�	
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Which is the mgf of N �	� �� random variable.

Note if Sn � Bin�n� p�Xi � � with probability p and � 	 with probability ���p�.
Then

Sn � npp
npq

� N �	� ��

This is called the normal approximation the the binomial distribution. Applies as n�
� with p constant. Earlier we discussed the Poisson approximation to the binomial.
which applies when n�� and np is constant.

Example. There are two competing airlines. n passengers each select 1 of the 2 plans
at random. Number of passengers in plane one
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therefore if n � �			 and s � ��� then f�s� � 	�	�. Planes hold 1074 seats only 74
in excess.
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Example. An unknown fraction of the electorate, p, vote labour. It is desired to find p
within an error no exceeding 0.005. How large should the sample be.

Let the fraction of labour votes in the sample be p
�
. We can never be certain (with-

out complete enumeration), that
���p� p

�
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Choose n such that the probability is � 	�
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If we replace 0.005 by 0.01 the n � �	� 			 will be sufficient. And is we replace 0.005
by 0.045 then n � 
�� will suffice.

Note Answer does not depend upon the total population.
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6.5 Multivariate normal distribution

Let x�� � � � � Xn be iid N �	� �� random variables with joint density g�x�� � � � xn�
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where �AAT . This is the multivariate normal density
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� AIAT � AAT � � Covariance matrix

If the covariance matrix of the MVN distribution is diagonal, then the components of
the random vector �z are independent since
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Not necessarily true if the distribution is no MVN recall sheet 2 question 9.
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Example (bivariate normal).
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��� �� � 	 and �� � p � ��. Joint distribution of a bivariate normal random
variable.
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