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1 Introduction

We always denote by X our universe, i.e. all the sets we shall consider are subsets of X.

Recall some standard notation. 2% everywhere denotes the set of all subsets of a given
set X. If AN B = & then we often write A LI B rather than A U B, to underline the
disjointness. The complement (in X)) of a set A is denoted by A¢. By AA B the symmetric
difference of A and B is denoted, i.e. AA B = (A\ B)U(B\ A). Letters i, j, k always
denote positive integers. The sign [ is used for restriction of a function (operator etc.) to
a subset (subspace).

1.1 The Riemann integral

Recall how to construct the Riemannian integral. Let f : [a,b] — R. Consider a partition
7 of [a, b]:
=20 < 11 <T2<...<Tp1<xp,=2>b

and set Az, = x4 — xg, || = max{Ax, : £k =0,1,...,n— 1}, my = inf{f(z) : = €
[k, Tpia]}, My = sup{f(z) : © € [k, xx41]}. Define the upper and lower Riemann—

Darboux sums )
7'(') = kaAQ?k, , ZMkAxk
k=0

One can show (the Darboux theorem) that the followmg hmlts exist

lim s(f, ﬂ)—supsfﬁ / fdx

7| =0

lim s(f,7) = 1171f s(f,m) = fd:L'.

|7|—0 @



Clearly,

s(f.m) < /bfd:r < /bfdx < 5(f,m)

for any partition 7.

The function f is said to be Riemann integrable on [a, 0] if the upper and lower integrals
are equal. The common value is called Riemann integral of f on [a, b].

The functions cannot have a large set of points of discontinuity. More presicely this
will be stated further.

1.2 The Lebesgue integral

It allows to integrate functions from a much more general class. First, consider a very
useful example. For f, g € Cla,b], two continuous functions on the segment [a,b] = {z €
R:a < x<b}put

pi(f,9) = max |f(z) — g(x)],

a<ae<b

b
p2(f,9) = / |f(x) — g(x)|dz.

Then (Cla, b, p1) is a complete metric space, when (Cla, b, p2) is not. To prove the latter
statement, consider a family of functions {¢,}°, as drawn on Fig.1. This is a Cauchy
sequence with respect to ps. However, the limit does not belong to Cla, b].
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Figure 1: The function ¢,.

2 Systems of Sets

Definition 2.1 A ring of sets is a non-empty subset in 2% which is closed with respect
to the operations U and \.

Proposition. Let K be a ring of sets. Then @ € K.

Proof. Since R # @, there exists A € K. Since K contains the difference of every two
its elements, one has A\ A=2c & A

Examples.

1. The two extreme cases are & = {@} and & = 2.

2. Let X =R and denote by R all finite unions of semi-segments [a, b).

Definition 2.2 A semi-ring is a collection of sets B C 2% with the following properties:

1. IfA,B € then AN B € B;



2. For every A, B € P there exists a finite disjoint collection (C;) j = 1,2,...,n of
sets (i.e. C;NC; =@ if i # j) such that

s (le
j=1

Example. Let X =R, then the set of all semi-segments, [a, ), forms a semi-ring.
Definition 2.3 An algebra (of sets) is a ring of sets containing X € 2%.

Examples.

1. {2, X} and 2% are the two extreme cases (note that they are different from the
corresponding cases for rings of sets).

2. Let X = [a,b) be a fixed interval on R. Then the system of finite unions of subin-
tervals [a, ) C [a,b) forms an algebra.

3. The system of all bounded subsets of the real axis is a ring (not an algebra).

Remark. 2 is algebra if (i) A, Be (A= AUB e, (i) AecA= A°c .
Indeed, 1) ANB = (A°U B 2) A\ B=AnNB°.

Definition 2.4 A o-ring (a o-algebra) is a ring (an algebra) of sets which is closed with
respect to all countable unions.

Definition 2.5 A ring (an algebra, a o-algebra) of sets, R(4l) generated by a collection
of sets U C 2% is the minimal ring (algebra, o-algebra) of sets containing .

In other words, it is the intersection of all rings (algebras, o-algebras) of sets containing

M.



3 Measures

Let X be a set, A an algebra on X.

Definition 3.1 A function p: A — R, U {oo} is called a measure if

1. w(A) =0 for any A € A and (&) = 0;

2. if (Ai)i>1 is a disjoint family of sets in A (A; N A; = @ for any i # j) such that
L2, Ai € 2, then

The latter important property, is called countable additivity or o-additivity of the measure
L.

Let us state now some elementary properties of a measure. Below till the end of this
section 2 is an algebra of sets and y is a measure on it.

1. (Monotonicity of ) If A, B € 2 and B C A then pu(B) < pu(A).
Proof. A= (A\ B)U B implies that
p(A) = p(A\ B) + u(B).
Since p(A\ B) > 0 it follows that u(A) > u(B).

2. (Subtractivity of u). If A,B € % and B C A and u(B) < oo then u(A\ B) =
w(A) — 1u(B).
Proof. In 1) we proved that
n(A) = p(A\ B) + pu(B).

If u(B) < oo then
p(A) = (B) = u(A\ B).

3. If A,B e and u(ANB) < oo then u(AUB) = u(A) + pu(B) — p(AN B).
Proof. ANB C A, AN B C B, therefore

AUB=(A\(ANB))UB.
Since p(A N B) < 0o, one has
(AU B) = (u(A) — p(AN B)) + u(B).



4. (Semi-additivity of p). If (A;);>1 C A such that (J;2; A; € A then

[e.o]

M(U A;) < Z (A7)

i=1 =1

Proof. First let us proove that

Note that the family of sets

BIZAl
By = Ay \ A4
B3:A3\<A1UA2)

e
B, = A\ |J A
=1

is disjoint and | |\, B; = J_, A;. Moreover, since B; C A;, we see that p(B;) <
1(A;). Then

n

M(U A;) = M(|_| B;) = ZN(Bi) < ZM(AZ)

1=
Now we can repeat the argument for the infinite family using o-additivity of the
measure.

3.1 Continuity of a measure

Theorem 3.1 Let A be an algebra, (A;)i>1 C A a monotonically increasing sequence of
sets (A; C Ai1) such that J;5, € A. Then

p(JAi) = lim p(Ay).

) n—00
=1

Proof. 1). If for some ng p1(A,,) = +oo then p(A,) = +oo Vn > ng and p(J;=, A;) = +o0.
2). Let now u(A;) < oo Vi > 1.



Then

M(UAi):M(Al|_|(AQ\Al)u...l_l(An\An,l)l_l...)

= (A1) + D p(Ar\ Ay

k=2

= p(A) + lim ™ (u(Ag) — pu(Axr)) = Tim pu(A,).

n—oo

3.2 Outer measure

Let a be an algebra of subsets of X and p a measure on it. Our purpose now is to extend
i to as many elements of 2% as possible.

An arbitrary set A C X can be always covered by sets from 2, i.e. one can always find
Ey, Es, ... € Asuch that |J;-, E; D A. For instance, £y = X, Ey = E5 = ... = @.

Definition 3.2 For A C X its outer measure is defined by
i (A) = inf > ()
i=1

where the infimum is taken over all A-coverings of the set A, i.e. all collections (E;), E; €

A with Uz E; D A.

Remark. The outer measure always exists since pu(A) > 0 for every A € 2.

Example. Let X = R?, 2 = &(P), -o-algebra generated by B, P = {[a,b) x R'}.
Thus 2 consists of countable unions of strips like one drawn on the picture. Put pu([a,b) x
R!) = b — a. Then, clearly, the outer measure of the unit disc 2% + y* < 1 is equal to 2.
The same value is for the square |z| < 1, |y| < 1.

Theorem 3.2 For A € 2 one has p*(A) = u(A).

In other words, p* is an extension of .

Proof. 1. A is its own covering. This implies p*(A) < u(A).

2. By definition of infimum, for any ¢ > 0 there exists a 2-covering (E;) of A such that
> (E;) < p*(A) + €. Note that

A=An(JE) = JAnE).

()
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Using consequently o-semiadditivity and monotonicity of p, one obtains:
p(A) <Y ANE) <Y p(E) < pH(A) +e.

Since ¢ is arbitrary, we conclude that p(A) < p*(A). B
It is evident that u*(A) >0, p*(@) =0 (Check !).

Lemma. Let 2 be an algebra of sets (not necessary o-algebra),  a measure on 2. If
there exists a set A € 2 such that p(A) < oo, then u(@) = 0.

Proof. i(A\ A) = p(A) — p(A) =0. B
Therefore the property ©(@) = 0 can be substituted with the existence in 2 of a set

with a finite measure.
Theorem 3.3 (Monotonicity of outer measure). If A C B then pu*(A) < p*(B).

Proof. Any covering of B is a covering of A. B

Theorem 3.4 (o-semiadditivity of p*). p*(Uj2, Aj) < 2252, 1 (Aj).



Proof. 1f the series in the right-hand side diverges, there is nothing to prove. So assume
that it is convergent.

By the definition of outer measur for any € > 0 and for any j there exists an 2-covering
U, Ekj DO A; such that

ZN (Ekz) < p'( )+_-
k=1

27
Since - -
U Ekj D) U AJ,
k=1 j=1
the definition of y* implies
U*(U Aj) < Z 1(Ekj)
7=1 j,k=1

and therefore

3.3 Measurable Sets

Let 2 be an algebra of subsets of X, ;1 a measure on it, y* the outer measure defined in
the previous section.

Definition 3.3 A C X is called a measurable set (by Caratheodory) if for any E C X
the following relation holds:

p(E) = p (ENA)+ p (BN A).
Denote by 2 the collection of all set which are measurable by Caratheodory and set

fo=p" 2L
Remark Since £ = (ENA) U (EN A°), due to semiadditivity of the outer measure

p(E) < p (ENA)+p (BN A

Theorem 3.5 U is a o-algebra containing A, and i is a measure on A.



Proof. We devide the proof into several steps.
1.If A,BeAthen AUB e 2.
By the definition one has

W*(E) = 1 (EN B) 4+ 1 (BN BY). 1)
Take E'N A instead of E:
p(ENA) =p(ENANB)+p" (ENANB°). (2)
Then put £ N A¢in (1) instead of £
p(ENAY) =p (ENA°NB) 4+ u*(ENA°N BY). (3)
Add (2) and (3):
p(E)=p (ENANB)+ " (ENANB) + " (ENANB)+ " (ENANBY. (4)
Substitute £ N (AU B) in (4) instead of E. Note that

1) EN(AUB)NANB=ENANB

)
2) EN(AUB)NA°NB=FENA°NB
3) EN(AUB)NANB*=FENANB°
4) EN(AUB)NA°NB°=g.
One has
p(EN(AUB))=p(ENANB)+ " (ENA°NB)+pu (ENANB°). (5)

From (4) and (5) we have
W*(B) = 1 (BN (AU B) + (B N (AU BY),
2.If A € A then A° € A
The definition of measurable set is symmetric with respect to A and A°€.
Therefore 2 is an algebra of sets.

3.
Let A,Be A, AN B =@. From (5)

p(EN(AUB))=p(ENA°NB)+u (ENANBY) =p(ENB)+ u (ENA).

10



4. 2 is a o-algebra.

From the previous step, by induction, for any finite disjoint collection (B;) of sets:

n

Q(U B;) =Y _ w(ENB). (6)

Let A=, A;,4; €A Then A=, B;, Bj=A;\Uj_; A and
B;NB; =& (i # j). It suffices to prove that

w(E) > u*(Eﬂ(I__l By)) + 1 (EN (L] By)). (7)

Indeed, we have already proved that p* is o-semi-additive.

Since 2 is an algebra, it follows that |_|;.1:1 B; € 2A(¥n € N) and the following inequality
holds for every n:

w(B) > W B0 (L B) +u (B0 (L By ®

Since £ N (L;Z, Bj)* € E N (j-, B;), by monotonicity of the mesasure and (8)

WH(E) 2 Y @ (ENB)) +p' (BN AY). (9)

j=1

Passing to the limit we get

Z (ENBy) 4 u*(E N A%). (10)
Due to semiadditivity
p(ENA) =p*(En( |_|B w (| |(E N By)) Z (EN By).
J=1 J=1

Compare this with (10):
p(E) > p (ENA)+ p*(EnAS.
Thus, A € Q~l, which means that 2 is a o-algebra.

5. = p* | 2l is a measure.

11



We need to prove only o-additivity. Let E = |_|;il A;. From(10) we get
pr(| A =D (4.
j=1 j=1

The oposite inequality follows from o-semiadditivity of u*.
6.2 52U
Let A€, E C X. We need to prove:
p(E) Z p (ENA)+p (BN A (11)

If £ € 2 then (11) is clear since E N A and E N A¢ are disjoint and both belong to 2
where * = 1 and so is additive.

For E C X for Ve > 0 there exists a «A-covering (E;) of E such that
p(E) +e > 3 () (12)
j=1

Now, since E; = (E; N A) U (E; N A°), one has
p(E;) = p(E; N A) + p(E; N A)
and also

EnAc|J(E;nA)

j=1
EnA°c | J(EnAY)
j=1

By monotonicity and o-semiadditivity

NE

w(ENA) < u(E; N A),

1

.
Il

NE

BN AY) < S (N A).

1

<.
Il

Adding the last two inequalities we obtain

pHENA) +u*(ENAY) <> ' (By) < p*(B) + &
j=1
Since £ > 0 is arbitrary, (11) is proved. B

The following theorem is a direct consequence of the previous one.

12



Theorem 3.6 Let A be an algebra of subsets of X and p be a measure on it. Then there
exists a o-algebra A; D A and a measure 11 on Ay such that py [ A = p.

Remark. Consider again an algebra 2 of subsets of X. Denot by 2, the generated
o-algebra and construct the extension u, of p on 2,. This extension is called minimal
extension of measure.

Since A D A therefore A, C A. Hence one can set e = i [ ™Ay Obviously u, is a
minimal extension of u. It always exists. On can also show (see below) that this extension
is unique.

Theorem 3.7 Let p be a measure on an algebra 2 of subsets of X, p* the corresponding
outer measure. If u*(A) =0 for a set A C X then A €A and ji(A) = 0.

Proof. Clearly, it suffices to prove that A € 2. Further, it suffices to prove that p*(E) >
W (ENA)+ p (ENA°). The latter statement follows from monotonicity of p*. Indeed,
one has p*(ENA) < p*(A) =0and p*(ENA°) < p*(E). R

Definition 3.4 A measure p on an algebra of sets A is called complete if conditions
BcCcA, AeA, pu(A) =0 imply Bed and p(B) =0.

Corollary. /i is a complete measure.

Definition 3.5 A measure p on an algebra A is called finite if p(X) < oo. It is called
o-finite if the is an increasing sequence (Fy)j>1 C A such that X = J; F; and p(F;) < oo
Vj.

Theorem 3.8 Let p1 be a o-finite measure on an algebra A. Then there exist a unique
extension of pu to a measure on 2.

Proof. 1t suffices to sjow uniqueness. Let v be another extension of pu (v [ A= pu [ 2A).

First, let u (and therefore v, ;*) be finite. Let A € . Let (E;) C 2 such that
A C U, Ej. We have

Therefore



Since * and v are additive (on 2) it follows that

W (A) + 1" (A) = v(A) + 1(A°).

The terms in the RHS are finite and v(A) < p*(A), v(A°) < p*(A°). From this we infer
that .
v(A) =p"(A) VAe

Now let p be o-finite, (F}) be an increasing sequence of sets from A such that p(F}) <
oo Vj and X = U;’il F;. From what we have already proved it follows that

W (ANF) =v(ANF;) VA €.
Therefore
pr(A) =limp* (AN F;) =limv(ANE;) =v(4). R
j j

Theorem 3.9 (Continuity of measure). Let A be a o-algebra with a measure pu, {A;} C
2 a monotonically increasing sequence of sets. Then

A;) = lim p(A;).

Jj—oo

1(

Tt

1

J

Proof. One has:

e}

=4, |_| A \Aj) U A,
j=1

Using o-additivity and subtractivity of u,

p(A) = " (u(Aj) — p(A))) + u(Ar) = Jim p(4;). W

j=1

Similar assertions for a decreasing sequence of sets in 2 can be proved using de Morgan
formulas.

Theorem 3.10 Let A € . Then for any € > 0 there exists A. € 2 such that p*(A A
A) <e.

Proof. 1. For any € > 0 there exists an 2 cover |J E; D A such that
. e €
> nlBy) < p(A) + 5 = i(A) + 5.
J

14



On the other hand,

> u(Ey) = il JEy).
J J
The monotonicity of ji implies

n

UEJ = lim () E),

j=1 Jj=1

hence there exists a positive integer N such that

e _ €
i JE)—n U Ej) < 5. (13)
Jj=1 =
2. Now, put
N
— U E
j=1
and prove that p*(AA A.) <e
2a. Since -
Ac|JE
j=1
one has .
ANA. Cc | JE;\ A
j=1
Since .
AclJE
j=1

one can use the monotonicity and subtractivity of fi. Together with estimate (13), this
gives

A(A\ A UE\A %

2b. The inclusion .
ANAcC|E N\ 4

=1

; UE\A i E)

Jj=1

implies

tz
wlm

15



Here we used the same properties of /i as above and the choice of the cover (E;).

3. Finally,
A D A) < BA\ A + (A A).

16



4 Monotone Classes
and Uniqueness of Extension of Measure

Definition 4.1 A collection of sets, MM is called a monotone class if together with any
monotone sequence of sets M contains the limit of this sequence.

Example. Any o-ring. (This follows from the Exercise 1. below).

Exercises.

1. Prove that any o-ring is a monotone class.

2. If a ring is a monotone class, then it is a o-ring.

We shall denote by 2M(RK) the minimal monotone class containing K.
Theorem 4.1 Let R be a ring of sets, R, the o-ring generated by K. Then M(R) = R,.

Proof. 1. Clearly, M(RK) C R,. Now, it suffices to prove that 9(RK) is a ring. This follows
from the Exercise (2) above and from the minimality of K.

2. M(R) is a ring.
2a. For B C X, set
Rp={ACX:AUB,ANB,A\ B,B\ AecMR)}.

This definition is symmetric with respect to A and B, therefore A € K implies B € K4.

2b. Kp is a monotone class.

Let (A;) C Rp be a monotonically increasing sequence. Prove that the union, A = [J A4;
belongs to Kp.

Since A; € &g, one has A; U B € &g, and so

AUB = G(AjuB) € M(R).

J=1

In the same way,

[e.e]

A\B=(JA)\ B =]\ B) e M(&);

Jj=1 Jj=1

17



[e.9]

B\A=B\(J4)=(B\4)cMA).

j=1 j=1
Similar proof is for the case of decreasing sequence (A;).

2. If B € & then M(K) C Ry

Obviously, & C Rp. Together with minimality of 9(R), this implies M(R) C Kp.
2d. If B € M(R) then M(R) C Rp.

Let A € R. Then M(R) C Ka. Thus if B € M(R), one has B € Ry, so A € Rg.
Hence what we have proved is 8 C £5. This implies MM(K) C Kp.

2e. It follows from 2a. — 2d. that if A, B € 9(RK) then A € Kz and so AUB, AN B,
A\ B and B\ A all belong to 9(R). &

Theorem 4.2 Let 2 be an algebra of sets, p and v two measures defined on the o-
algebra 2, generated by A. Then p | A =v [ A implies p = v.

Proof. Choose A € 2,, then A = lim,, o, 4,, A, €2, for A, = M(A). Using continuity
of measure, one has

u(A) = lim p(A,) = lim v(A,) = v(A).

n—oo n—oo

Theorem 4.3 Let 2 be an algebra of sets, B C X such that for any ¢ > 0 there exists
A, € A with p*(BA A.) <e. Then B € 2.

Proof. 1. Since any outer measure is semi-additive, it suffices to prove that for any £ C X

one has
p(E) Zz ' (ENB)+ p' (BN B°).

2a. Since A C A, one has

W(E N A+ i (BN AS) < 1(E). (14)

2b. Since A C BU (A A B) and since the outer measure p* is monotone and semi-
additive, there is an estimate |u*(A) — p*(B)| < p*(A A B) for any A, B C X. (C.f. the

proof of similar fact for measures above).

2c. 1t follows from the monotonicity of p* that

W (ENA) —p (ENB)| < p ((ENA) A(ENB)) < p(A:NB) <e.

18



Therefore, p*(ENA.) > p (ENB) —e.
In the same manner, p*(E N AS) > pu*(EN B°) —e¢.
2d. Using (14), one obtains

w(E)>p (ENB)+ u (ENB°) — 2.

19



5 The Lebesgue Measure on the real line R!

5.1 The Lebesgue Measure of Bounded Sets of R!

Put 2 for the algebra of all finite unions of semi-segments (semi-intervals) on R!, i.e. all

sets of the form i
A = U [aj, bj)

Jj=1

Define a mapping p : % — R by:

Theorem 5.1 p is a measure.

Proof. 1. All properties including the (finite) additivity are obvious. The only thing to
be proved is the o-additivity.

Let (A;) C 2 be such a countable disjoint family that

A:DAjte.

j=1
The condition A € A means that | | A; is a finite union of intervals.

2. For any positive integer n,

4, ca,
j=1
hence .
> Ay < (A,
j=1
and

ZM(Aj) = lim Z 1(4;) < p(A).

3. Now, let A° a set obtained from A by the following construction. Take a connected
component of A. It is a semi-segment of the form [s,¢). Shift slightly on the left its
right-hand end, to obtain a (closed) segment. Do it with all components of A, in such a
way that

1(A) < p(A%) +e. (15)

20



Apply a similar procedure to each semi-segment shifting their left end point to the left
Aj = [aj,b;), and obtain (open) intervals, AS with

B(AS) < p(A;) + —

= (16)

4. By the construction, A® is a compact set and (A; ) its open cover. Hence, there exists
a positive integer n such that

J4so 4
j=1
Thus

pA) < 37 ().

The formulas (15) and (16) imply

n

n . n 8
() <Y p(AS) +e <Y p(d) + ) ot
j=1 j=1 j=1

thus -
plA) < S plAy) + 2
j=1

Now, one can apply the Caratheodory’s scheme developed above, and obtain the mea-
sure space (2, 1). The result of this extension is called the Lebesque measure. We shall
denote the Lebesgue measure on R! by m.

Exercises.

1. A one point set is measurable, and its Lebesgue measure is equal to 0.
2. The same for a countable subset in R'. In particular, m(Q N [0, 1]) = 0.

3. Any open or closed set in R! is Lebesgue measurable.

Definition 5.1 Borel algebra of sets, B on the real line R is a o-algebra generated by
all open sets on RY. Any element of B is called a Borel set.

Exercise. Any Borel set is Lebesgue measurable.

Theorem 5.2 Let E C R! be a Lebesque measurable set. Then for any € > 0 there
exists an open set G D E such that m(G \ E) < e.

21



Proof. Since E is measurable, m*(E) = m(FE). According the definition of an outer
measure, for any € > 0 there exists a cover A = (J[ag, bx) D E such that

m(A) < m(E) + g

Now, put

€
G = U(ak — W’bk)
|

Problem. Let £ C R! be a bounded Lebesgue measurable set. Then for any € > 0
there exists a compact set F' C E such that m(F \ F') < e. (Hint: Cover E with a
semi-segment and apply the above theorem to the g-algebra of measurable subsets in this
semi-segment).

Corollary. For any € > 0 there exist an open set G and a compact set F' such that
GDEDFandm(G\F) <e.

Such measures are called regular.

5.2 The Lebesgue Measure on the Real Line R!

We now abolish the condition of boundness.

Definition 5.2 A set A on the real numbers line R' is Lebesque measurable if for any
positive integer n the bounded set AN [—n,n) is a Lebesque measurable set.

Definition 5.3 The Lebesque measure on R is

m(A) = lim m(AN[—n,n)).

n—oo

Definition 5.4 A measure is called o-finite if any measurable set can be represented as
a countable union of subsets each has a finite measure.

Thus the Lebesgue measure m is o-finite.

Problem. The Lebesgue measure on R! is regular.

5.3 The Lebesgue Measure in R?

Definition 5.5 We call a d-dimensional rectangle in R? any set of the form

{r:0 R aq; <oy < b}

22



Using rectangles, one can construct the Lebesque measure in R? in the same fashion as
we deed for the R! case.

23



6 Measurable functions
Let X be a set, 2 a o-algebra on X.
Definition 6.1 A pair (X,2l) is called a measurable space.

Definition 6.2 Let f be a function defined on a measurable space (X,2A), with values in
the extended real number system. The function f is called measurable if the set

{z: f(z) > a}

1s measurable for every real a.
Example.

Theorem 6.1 The following conditions are equivalent

{z: f(x) > a} is measurable for every real a. (17)

{z: f(z) > a} is measurable for every real a. (18)

{z: f(x) < a} is measurable for every real a. (19)

{z: f(x) < a} is measurable for every real a. (20)

Proof. The statement follows from the equalities
~ 1
: >at = : - — 21
oS0 2 ah = (Yo @) >0 1) (21)

m'<><ay?X\m-<>>a} (22)
{z: f(x) <a}—ﬂ{:c ) <a+— } (23)
(1) > a) = X\ o+ f(2) < a) (24)
Theorem 6.2 Let (f,) be a sequence of measurable functions. For z € X set

g(x) = s171Lp fa(z)(n € N)

h(z) = limsup f,(x).

n—oo

Then g and h are measurable.
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Proof.
{w:g(x) <a} = [({z: fulz) <a}.
n=1
Since the LHS is measurable it follows that the RHS is measurable too. The same proof
works for inf.

Now

h(z) = inf g,,(z),
where

gm(z) = sup fu(x).

n>m

Theorem 6.3 Let f and g be measurable real-valued functions defined on X. Let F' be
real and continuous function on R%. Put

Wz) = F(f(z),9(x)) (z € X).

Then h is measurable.

Proof. Let G, = {(u,v) : F(u,v) > a}. Then G, is an open subset of R? and thus

G.=J I
n=1
where (I,,) is a sequence of open intervals
I, ={(u,v) ra, <u<by,c, <v<d,}
The set {z : a,, < f(z) < b,} is measurable and so is the set
{z: (f(x),g(@) e L} ={z: an < flz) <buj O {z: cn <g(z) <dn}.

Hence the same is true for

{z: hw)>a} ={z: (f(2),9(x) € G} = | J{: (f(2),9(x)) € L}.

Corollories. Let f and g be measurable. Then the following functions are measurable

() +9 (25)

(i) - g (26)

(i) f (1)

(i) (itg 20 (28)

(v) max{f, g}, min{f, g} (29)
(30)

since max{f,g} = 1/2(f + g+ |f —gl), min{f, g} =1/2(f +g—1|f —g]).
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6.1 Step functions (simple functions)

Definition 6.3 A real valued function f : X — R is called simple function if it takes
only a finite number of distinct values.

We will use below the following notation

1 ifzekl
0 otherwise

Xe(r) = {

Theorem 6.4 A simple function f = > "

=1 CiXE; 1s measurable if and only if all the
sets F; are measurable.

Exercise. Prove the theorem.

Theorem 6.5 Let f be real valued. There exists a sequence (f,) of simple functions such
that f,(z) — f(z) as n — oo, for every x € X. If f is measurable, (f,) may be chosen
to be a sequence of measurable functions. If f > 0, (f,) may be chosen monotonically
mereasing.

Proof. If f > 0 set
fn($) = ZZ;Z; Z;_anE"z -+ nxr,
where

The sequence ( f,,) is monotonically increasing, f,, is a simple function. If f(x) < oo then
f(z) < n for a sufficiently large n and |f,(z) — f(z)| < 1/2". Therefore f,(z) — f(z).
If f(z) = 400 then f,(z) =n and again f,(x) — f(x).

In the general case f = ft — f~, where

[T (x) :=max{f(x),0}, f~(z):=—min{f(z),0}.
Note that if f is bounded then f,, — f uniformly.
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7 Integration

Definition 7.1 A triple (X, 2, 1), where A is a o-algebra of subsets of X and u is a
measure on it, is called a measure space.

Let (X, 2, 1) be a measure space. Let f: X +— R be a simple measurable function.

n

fl@) =" cxn(@) (31)

=1

and

i=1
There are different representations of f by means of (31). Let us choose the represen-

tation such that all ¢; are distinct.

Definition 7.2 Define the quantity
I(f) = ZCzM(Ez)
i=1

First, we derive some properties of I(f).

Theorem 7.1 Let f be a simple measurable function. If X = |_|?:1Fj and f takes the
constant value b; on Iy then

k
I(f) = ijM(Fj)-

Proof. Clearly, E; = |;.,

j=c; = J°
n

danE) =Y anl || F) =)« (k) = ijM(Fj)-

7 i=1 j: bj=c; =1 j: bj=c;

3

|
This show that the quantity I(f) is well defined.

27



Theorem 7.2 If f and g are measurable simple functions then

I{af + Bg) = ol(f) + BI(g).

Proof. Let f(x) =37 bjxr;(z), X =j_, F}, 9(z) = D01, aexey (), X =y, G
Then

m

of +B8g =YY (abj+ Bex)xe,,(x)

j=1 k=1
where Ej, = F; NGy,
Exercise. Complete the proof.

Theorem 7.3 Let f and g be simple measurable functions. Suppose that f < g every-
where except for a set of measure zero. Then

I(f) < I(g).

Proof. It f < g everywhere then in the notation of the previous proof b; < ¢;, on Ej;, and
I(f) < 1(g) follows.

Otherwise we can assume that f < g + ¢ where ¢ is non-negative measurable simple
function which is zero every exept for a set N of measure zero. Then I(¢) = 0 and

I(f) < I(g+ o) = 1(f) + 1(¢) = I(9).

Definition 7.3 If f : X — R! is a non-negative measurable function, we define the
Lebesgue integral of f by

/fdﬂ = sup I (o)

where sup s taken over the set of all simple functions ¢ such that ¢ < f.
Theorem 7.4 If f is a simple measurable function then [ fdu = I(f).

Proof. Since f < f it follows that [ fdu > I(f).
On the other hand, if ¢ < f then I(¢) < I(f
<

) and also
sup [(¢) < I(f)
P<f

which leads to the inequality

[ in< 1),
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Definition 7.4 1. If A is a measurable subset of X (A € A)and f is a non-negative
measurable function then we define

/A i = [ fradu
[ tan= [ rrau= [ 5a

if at least one of the terms in RHS is finite. If both are finite we call f integrable.

Remark. Finiteness of the integrals [ fTdu and [ f~dpu is equivalent to the finitenes of

the integral
[ 151a

If it is the case we write f € L'(X, u) or simply f € L' if there is no ambiguity.

The following properties of the Lebesgue integral are simple consequences of the defi-
nition. The proofs are left to the reader.

e If f is measurable and bounded on A and u(A) < oo then f is integrable on A.
o Ifa < f(x) <b(ze€A)), n(A) < oo then

ap(A) < /Afdu < bu(a).
o If f(x) < g(z) for all x € A then

/A fdu < /A gdp.

e Prove that if 4(A) =0 and f is measurable then

[ su=o.

The next theorem expresses an important property of the Lebesgue integral. As a con-
sequence we obtain convergence theorems which give the main advantage of the Lebesgue
approach to integration in comparison with Riemann integration.
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Theorem 7.5 Let f be measurable on X. For A € A define

o) = [ fau
A
Then ¢ is countably additive on 2.

Proof. 1t is enough to consider the case f > 0. The general case follows from the
decomposition f = f* — f~.

If f = xg for some E € 2 then

u(AﬂE):/XEdu
A

and o-additivity of ¢ is the same as this property of pu.
Let f(z) =Y, axr(x), ey Bx = X. Then for A = |2, A;, A; € A we have

¢(A) = /Afdu = /fXAdM = au(Ern A)
k=1

= B (| A) =" el (BN A)))

k= i=1 i=1

3 =

k=1 i=1 i=1 k=1
(the series of positive numbers)

=3 [ sau=3 o),
i=1 7 Ai i=1
Now consider general positive f’s. Let ¢ be a simple measurable function and ¢ < f.

Then . .
/ pdp = Z/ pdp <Y B(Ay).
A i=1 7 Ai i=1

Therefore the same inequality holds for sup, hence
¢(A) < Z¢(Ai)-
i=1

Now if for some i ¢(A;) = 400 then ¢(A) = +oo since ¢(A) > ¢(A,). So assume that
#(A;) < ooVi. Given € > 0 choose a measurable simple function ¢ such that ¢ < f and

/sodMZ/ fdp —e, /SOdMZ f—e
Ay Aq Az As
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Hence

B(ALU Ay) = /

A1UAo
so that ¢(A1 U Ag) Z ¢(A1) -+ ¢(A2)
By induction

Since A D (J_, A; we have that

Passing to the limit n — oo in the RHS we obtain
B(A) > d(A)).
i=1

This completes the proof.ll
Corollary. If Ae A, B C A and p(A\ B) =0 then

/A Fp = /B Fd.

/Afduz/dequ A\deﬂz/deﬂw.

Proof.

Definition 7.5 f and g are called equivalent (f ~ g in writing) if p({z :

g(z)}) = 0.

It is not hard to see that f ~ g is relation of equivalence.
@O f~f ,G)f~g g~h=f~h (i) f~geg~f

Theorem 7.6 If f € L' then |f| € L' and
/fdu‘ < [ 1flau
A A
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Proof.
—fI< f<If]

Theorem 7.7 (Monotone Convergence Theorem)
Let (f,,) be nondecreasing sequence of nonnegative measurable functions with limit f. Then

/fd,u = lim | f.du, AeU
A n=00 J g

Proof. First, note that f,,(x) < f(z) so that

1?AhW§/NM

It is remained to prove the opposite inequality.
For this it is enough to show that for any simple ¢ such that 0 < ¢ < f the following

inequality holds
/ pdp < lim / Jndp
A noJa

An ={r € A: fulz) = co(2)}

then A, C A,y and A=~ A,.
Now observe

Take 0 < ¢ < 1. Define

c/ pdp = / cpdp = lim codp <
A A o JA,

(this is a consequence of o-additivity of ¢ proved above)

n—oo

SMIQMMQM/EW
A, n—oo [ 4
Pass to the limit ¢ — 1.1

Theorem 7.8 Let f = fi + fo, f1, fo € L' (). Then f € L' (i) and

[ tin= [ s [
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Proof. First, let fi, fo > 0. If they are simple then the result is trivial. Otherwise, choose
monotonically increasing sequences (¢, 1), (¢n2) such that ¢, ; — fi and p,2 — fo.

Then for ¢, = @n1 + @2

/sonduz /son,ldu+/s0n,zdu

and the result follows from the previous theorem.

If fiy >0and fy <0 put
A={z: f(z) >0}, B={x: f(z) <0}

Then f, f; and — f, are non-negative on A.

Hence [, fi= [, fdu+ [,(=f2)du
Similarly
[ ain= [ fdp+ [ =
B B B
The result follows from the additivity of integral. B
Theorem 7.9 Let A €A, (f,) be a sequence of non-negative measurable functions and
f@) = falz), z€A
n=1
Then .
Jdp = / Jndp
fom=2,

Exercise. Prove the theorem.

Theorem 7.10 (Fatou’s lemma)
If (fn) is a sequence of non-negative measurable functions defined a.e. and

f(x) = lim, . fo(2)

[ g <t [ fud
A A
Aec

then
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Proof. Put  g,(x) = inf;>, fi(x)
Then by definition of the lower limit lim,,_,.g,(z) = f(z).
Moreover, g, < gni1, 9n < fn. By the monotone convergence theorem

/ fdu = lim / gndp = lim,, / gndp < lim, / Tndp.
A n A A A

Theorem 7.11 (Lebesgue’s dominated convergence theorem)
Let A € A, (fn) be a sequence of measurable functions such that f,(x) — f(z) (x € A.)
Suppose there exists a function g € L'(u) on A such that

()] < g(x)

hfln/AfndﬁL:/Afdﬂ

Proof. From |f,(z)| < g(z) it follows that f, € L'(u). Sinnce f, +¢g > 0 and f+ g > 0,
by Fatou’s lemma it follows

Then

/f‘(fjtg)duéli_mn/fl(fwrg)

or

/fduéh_mn/fndu.
A A

Since g — f,, > 0 we have similarly
/(g = fldp < li_mn/(g — fa)dp
A A

so that
~ [ g < i, [ g
A A

/ fdp > T, / Fdi
A A

A A A

which is the same as

This proves that
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8 Comparison of the Riemann
and the Lebesgue integral

To distinguish we denote the Riemann integral by (R) fab f(x)dx and the Lebesgue integral
by (L) [? f(z)dx.

Theorem 8.1 If a finction f is Riemann integrable on |a,b] then it is also Lebesgue
integrable on [a,b] and

(L) / " f(a)dr = (B) / )

Proof. Boundedness of a function is a necessary condition of being Riemann integrable.
On the other hand, every bounded measurable function is Lebesgue integarble. So it is
enough to prove that if a function f is Riemann integrable then it is measurable.

Consider a partition 7, of [a,b] on n = 2™ equal parts by points a = xo < x; < ... <
Tpo1 < T, = b and set

F@) =S o), Fal) = 3 Mo(a).
k=0 k=0

where ;. is a charactersitic function of [z, 251 1) clearly,
F@) < f,@) < < flo),
fi(@) > Folz) > ... > f(a).

Therefore the limits

flz) = lim f (x), flx) = lim f, (o)

m—oo —MmM m—oo

exist and are measurable. Note that f(z) < f(z) < f(x). Since f, and f.n, are simple
measurable functions, we have

w [ 'f (@)de < (1) / ' fa)dr < (1) / Flaydr < (1) / @),

Moreover,
om_1

(L)/ f (x)dx = Z miAxy = s(f, mm)

<m
k=0
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and similarly

(L) / Fonlz) = 5/ 7).
So , ,
s(fomm) < (D) / fla)de < (L) / F(@)dw < 5(f,mm).

Since f is Riemann integrable,

th(fﬂ'm)—h_I)nSfﬂ-m: /f

Therefore )
L) [ 7w - f@)dr =0
and since f > J we conclude that

f=f= S almost everywhere.

From this measurability of f follows. B
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9 [P-spaces

Let (X, 2, 1) be a measure space. In this section we study LP(X, %, u)-spaces which occur
frequently in analysis.

9.1 Auxiliary facts

Lemma 9.1 Let p and q be real numbers such that p > 1, =+ = =1 (this numbers are

called conjugate). Then for any a > 0, b > 0 the inequality

141
P g

ab b
ab < —+ —.
p q

holds.

Proof. Note that o(t) := % + é — ¢ with ¢ > 0 has the only minimum at ¢t = 1. It follows

that
tP 1
t< —+-.
p q

Then letting t = ab” 71 we obtain

a’b=? 1 _1
+ - >ab T,
p q

and the result follows.l

Lemma 9.2 Letp > 1, a,b € R. Then the inequality
ja+ 0" < 277 (laf + [b]).

holds.

Proof. For p = 1 the statement is obvious. For p > 1 the function y = 2P, x > 0 is convex

since 3y > 0. Therefore
lal + 1B[\" _ lal” + [0 o
2 - 2 .
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9.2 The spaces [P, 1 < p < co. Definition

Recall that two measurable functions are said to be equaivalent (with respect to the
measure ) if they are equal p-a;most everywhere.

The space LP = LP(X,%, u) consists of all u-equaivalence classes of 2A-measurable
functions f such that |f[? has finite integral over X with respect to p.

We set U
= Pd )
11 := ([ 1#Pdn)

9.3 Holder’s inequality

Theorem 9.3 Letp > 1, %Jr % = 1. Let f and g be measurable functions, |f|P and |g|?
be integrable. Then fg is integrable andthe inequality

| 1salin < ( / |f|”du)1/p ( / |g|%lu)1/q.

Proof. 1t suffices to consider the case

||pr >0, ||9||q > 0.

Let
a=[f@)IfI," b= lg(@)llgll;"-
By Lemma 1
@@ @ g
I lpllglle = 2L dallglld

After integration we obtain

- _ 1 1
115 gl /X o< e lon

9.4 Minkowski’s inequality
Theorem 9.4 If f,ge LP, p>1, then f+g € LP and

1+ gllp < 11 f1lp + llgllp-
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Proof. If || f]|, and ||g||, are finite then by Lemma 2 |f + ¢|Pis integrable and || f + ¢||,
is well-defined.

(@) +g(@)I” = f(2)+g(@)||f (@)+g(@) P < |[f @)l f () +g(@)" +g(@)]| f(2)+g()["".

Integratin the last inequality and using Holder’s inequality we obtain

1/p 1/q 1/p 1/q
Py < P (p—=1)q g ) ( P ) ( (p—=1)q g ) )
[ 11+ u<</X|f| u) </X|f+g\ n) ([ ) ([ 17+ g1

The result follows. W

9.5 [’ 1<p< oo,is a Banach space

It is readily seen from the properties of an integral and Theorem 9.3 that LP, 1 < p < o0,
is a vector space. We introduced the quantity || f]|,. Let us show that it defines a norm
on IP, 1 <p< o0, Indeed,

1. By the definition || f||, > 0.

2. [[fll, = 0= f(x) = 0 for p-almost all + € X. Since LP consists of u-eqivalence
classes, it follows that f ~ 0.

3. Obviously, [lafll, = o[l /]l

4. From Minkowski’s inequality it follows that ||f + gll, < | f|l, + llgll,-

So LP, 1 < p < o0, is a normed space.
Theorem 9.5 L” 1< p < o0, is a Banach space.

Proof. Tt remains to prove the completeness.

Let (f,) be a Cauchy sequence in LP. Then there exists a subsequence (f,, )(k € N)
with ny increasing such that

1
||fm - fnka < % VYm > ny.

Then
k
Z ||fm'+1 - mep <L
i=1
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Let
Gk = | foa| + [ frg = fra| + o+ ’fnkﬂ - fnk‘
Then g is monotonocally increasing. Using Minkowski’s inequality we have

k p
lgilly = Nlgklly < (Hfm”p + D s — fni||p> < (I llp + 1),
i=1

Put
g(x) := lim gy (z).

By the monotone convergence theorem

lim/ gidu—/gpdu.
koJx A

Moreover, the limit is finite since ||gf |1 < C = (|| fa, |l + 1)7-
Therefore

(0.9}
| for| + Z | i — fn,| converges almost everywhere
=1

and so does

fn1 + Z(fnj+1 - fnj)>

j=1
which means that

N
foi + Z(fnj+1 — fn;) = fan,, converges almost everywhere as N — oo.
j=1

Define
f(@) = lim f,(2)

where the limit exists and zero on the complement. So f is measurable.

Let € > 0 be such that for n,m > N
= Sl = [ 1= bl < /2,
Then by Fatou’s lemma
J 18 = b= [ 1o = gl <tim [ 1~ b

which is less than € for m > N. This proves that

\f— fullp, = 0 as m — oo. [ |
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