# Measure Theory

V. Liskevich

#### 1998

## 1 Introduction

We always denote by X our *universe*, i.e. all the sets we shall consider are subsets of X.

Recall some standard notation.  $2^X$  everywhere denotes the set of all subsets of a given set X. If  $A \cap B = \emptyset$  then we often write  $A \sqcup B$  rather than  $A \cup B$ , to underline the disjointness. The complement (in X) of a set A is denoted by  $A^c$ . By  $A \triangle B$  the symmetric difference of A and B is denoted, i.e.  $A \triangle B = (A \setminus B) \cup (B \setminus A)$ . Letters i, j, k always denote positive integers. The sign  $\uparrow$  is used for restriction of a function (operator etc.) to a subset (subspace).

### 1.1 The Riemann integral

Recall how to construct the Riemannian integral. Let  $f : [a, b] \to \mathbb{R}$ . Consider a partition  $\pi$  of [a, b]:

$$a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b$$

and set  $\Delta x_k = x_{k+1} - x_k$ ,  $|\pi| = \max{\{\Delta x_k : k = 0, 1, \dots, n-1\}}$ ,  $m_k = \inf{\{f(x) : x \in [x_k, x_{k+1}]\}}$ ,  $M_k = \sup{\{f(x) : x \in [x_k, x_{k+1}]\}}$ . Define the upper and lower Riemann—Darboux sums

$$\underline{s}(f,\pi) = \sum_{k=0}^{n-1} m_k \Delta x_k, \quad \overline{s}(f,\pi) = \sum_{k=0}^{n-1} M_k \Delta x_k.$$

One can show (the Darboux theorem) that the following limits exist

$$\lim_{|\pi|\to 0} \underline{s}(f,\pi) = \sup_{\pi} \underline{s}(f,\pi) = \underbrace{\int_{a}^{b} f dx}_{\pi}$$
$$\lim_{|\pi|\to 0} \overline{s}(f,\pi) = \inf_{\pi} \overline{s}(f,\pi) = \overline{\int_{a}^{b} f dx}.$$

Clearly,

$$\underline{s}(f,\pi) \leq \underline{\int_{a}^{b} f dx} \leq \overline{\int_{a}^{b} f dx} \leq \overline{s}(f,\pi)$$

for any partition  $\pi$ .

The function f is said to be Riemann integrable on [a, b] if the upper and lower integrals are equal. The common value is called Riemann integral of f on [a, b].

The functions cannot have a large set of points of discontinuity. More presicely this will be stated further.

### 1.2 The Lebesgue integral

It allows to integrate functions from a much more general class. First, consider a very useful example. For  $f, g \in C[a, b]$ , two continuous functions on the segment  $[a, b] = \{x \in \mathbb{R} : a \leq x \leq b\}$  put

$$\rho_1(f,g) = \max_{a \leqslant x \leqslant b} |f(x) - g(x)|,$$

$$\rho_2(f,g) = \int_a^b |f(x) - g(x)| \mathrm{d}x.$$

Then  $(C[a, b], \rho_1)$  is a complete metric space, when  $(C[a, b], \rho_2)$  is not. To prove the latter statement, consider a family of functions  $\{\varphi_n\}_{n=1}^{\infty}$  as drawn on Fig.1. This is a Cauchy sequence with respect to  $\rho_2$ . However, the limit does not belong to C[a, b].



Figure 1: The function  $\varphi_n$ .

## 2 Systems of Sets

**Definition 2.1** A ring of sets is a non-empty subset in  $2^X$  which is closed with respect to the operations  $\cup$  and  $\setminus$ .

**Proposition.** Let  $\mathfrak{K}$  be a ring of sets. Then  $\emptyset \in \mathfrak{K}$ .

*Proof.* Since  $\mathfrak{K} \neq \emptyset$ , there exists  $A \in \mathfrak{K}$ . Since  $\mathfrak{K}$  contains the difference of every two its elements, one has  $A \setminus A = \emptyset \in \mathfrak{K}$ .

#### Examples.

- 1. The two extreme cases are  $\mathfrak{K} = \{ \varnothing \}$  and  $\mathfrak{K} = 2^X$ .
- 2. Let  $X = \mathbb{R}$  and denote by  $\mathfrak{K}$  all finite unions of semi-segments [a, b).

**Definition 2.2** A semi-ring is a collection of sets  $\mathfrak{P} \subset 2^X$  with the following properties:

1. If  $A, B \in \mathfrak{P}$  then  $A \cap B \in \mathfrak{P}$ ;

2. For every  $A, B \in \mathfrak{P}$  there exists a finite disjoint collection  $(C_j)$  j = 1, 2, ..., n of sets (i.e.  $C_i \cap C_j = \emptyset$  if  $i \neq j$ ) such that

$$A \setminus B = \bigsqcup_{j=1}^{n} C_j$$

**Example.** Let  $X = \mathbb{R}$ , then the set of all semi-segments, [a, b), forms a semi-ring.

**Definition 2.3** An algebra (of sets) is a ring of sets containing  $X \in 2^X$ .

#### Examples.

- 1.  $\{\emptyset, X\}$  and  $2^X$  are the two extreme cases (note that they are different from the corresponding cases for rings of sets).
- 2. Let X = [a, b) be a fixed interval on  $\mathbb{R}$ . Then the system of finite unions of subintervals  $[\alpha, \beta] \subset [a, b)$  forms an algebra.
- 3. The system of all bounded subsets of the real axis is a ring (not an algebra).

**Remark.**  $\mathfrak{A}$  is algebra if (i)  $A, B \in \mathfrak{A} \Longrightarrow A \cup B \in \mathfrak{A}$ , (ii)  $A \in \mathfrak{A} \Longrightarrow A^c \in \mathfrak{A}$ . Indeed, 1)  $A \cap B = (A^c \cup B^c)^c$ ; 2)  $A \setminus B = A \cap B^c$ .

**Definition 2.4** A  $\sigma$ -ring (a  $\sigma$ -algebra) is a ring (an algebra) of sets which is closed with respect to all countable unions.

**Definition 2.5** A ring (an algebra, a  $\sigma$ -algebra) of sets,  $\mathfrak{K}(\mathfrak{U})$  generated by a collection of sets  $\mathfrak{U} \subset 2^X$  is the minimal ring (algebra,  $\sigma$ -algebra) of sets containing  $\mathfrak{U}$ .

In other words, it is the intersection of all rings (algebras,  $\sigma$ -algebras) of sets containing  $\mathfrak{U}$ .

## 3 Measures

Let X be a set,  $\mathfrak{A}$  an algebra on X.

**Definition 3.1** A function  $\mu: \mathfrak{A} \longrightarrow \mathbb{R}_+ \cup \{\infty\}$  is called a measure if

- 1.  $\mu(A) \ge 0$  for any  $A \in \mathfrak{A}$  and  $\mu(\emptyset) = 0$ ;
- 2. if  $(A_i)_{i \ge 1}$  is a disjoint family of sets in  $\mathfrak{A}$  ( $A_i \cap A_j = \emptyset$  for any  $i \ne j$ ) such that  $\bigsqcup_{i=1}^{\infty} A_i \in \mathfrak{A}$ , then

$$\mu(\bigsqcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i).$$

The latter important property, is called *countable additivity* or  $\sigma$ -additivity of the measure  $\mu$ .

Let us state now some elementary properties of a measure. Below till the end of this section  $\mathfrak{A}$  is an algebra of sets and  $\mu$  is a measure on it.

1. (Monotonicity of  $\mu$ ) If  $A, B \in \mathfrak{A}$  and  $B \subset A$  then  $\mu(B) \leq \mu(A)$ . *Proof.*  $A = (A \setminus B) \sqcup B$  implies that

$$\mu(A) = \mu(A \setminus B) + \mu(B).$$

Since  $\mu(A \setminus B) \ge 0$  it follows that  $\mu(A) \ge \mu(B)$ .

2. (Subtractivity of  $\mu$ ). If  $A, B \in \mathfrak{A}$  and  $B \subset A$  and  $\mu(B) < \infty$  then  $\mu(A \setminus B) = \mu(A) - \mu(B)$ .

*Proof.* In 1) we proved that

$$\mu(A) = \mu(A \setminus B) + \mu(B).$$

If  $\mu(B) < \infty$  then

$$\mu(A) - \mu(B) = \mu(A \setminus B).$$

3. If  $A, B \in \mathfrak{A}$  and  $\mu(A \cap B) < \infty$  then  $\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$ . *Proof.*  $A \cap B \subset A, \ A \cap B \subset B$ , therefore

$$A \cup B = (A \setminus (A \cap B)) \sqcup B.$$

Since  $\mu(A \cap B) < \infty$ , one has

$$\mu(A \cup B) = (\mu(A) - \mu(A \cap B)) + \mu(B).$$

4. (Semi-additivity of  $\mu$ ). If  $(A_i)_{i\geq 1} \subset \mathfrak{A}$  such that  $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$  then

$$\mu(\bigcup_{i=1}^{\infty} A_i) \leqslant \sum_{i=1}^{\infty} \mu(A_i).$$

*Proof.* First let us proove that

$$\mu(\bigcup_{i=1}^n A_i) \leqslant \sum_{i=1}^n \mu(A_i).$$

Note that the family of sets

$$B_1 = A_1$$
$$B_2 = A_2 \setminus A_1$$
$$B_3 = A_3 \setminus (A_1 \cup A_2)$$
$$\cdots$$
$$B_n = A_n \setminus \bigcup_{i=1}^{n-1} A_i$$

is disjoint and  $\bigsqcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} A_i$ . Moreover, since  $B_i \subset A_i$ , we see that  $\mu(B_i) \leq \mu(A_i)$ . Then

$$\mu(\bigcup_{i=1}^{n} A_i) = \mu(\bigsqcup_{i=1}^{n} B_i) = \sum_{i=1}^{n} \mu(B_i) \le \sum_{i=1}^{n} \mu(A_i)$$

Now we can repeat the argument for the infinite family using  $\sigma$ -additivity of the measure.

## 3.1 Continuity of a measure

**Theorem 3.1** Let  $\mathfrak{A}$  be an algebra,  $(A_i)_{i\geq 1} \subset \mathfrak{A}$  a monotonically increasing sequence of sets  $(A_i \subset A_{i+1})$  such that  $\bigcup_{i\geq 1} \in \mathfrak{A}$ . Then

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(A_n).$$

Proof. 1). If for some  $n_0 \mu(A_{n_0}) = +\infty$  then  $\mu(A_n) = +\infty \ \forall n \ge n_0$  and  $\mu(\bigcup_{i=1}^{\infty} A_i) = +\infty$ . 2). Let now  $\mu(A_i) < \infty \ \forall i \ge 1$ . Then

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \mu(A_1 \sqcup (A_2 \setminus A_1) \sqcup \ldots \sqcup (A_n \setminus A_{n-1}) \sqcup \ldots)$$
$$= \mu(A_1) + \sum_{k=2}^{\infty} \mu(A_k \setminus A_{k-1})$$
$$= \mu(A_1) + \lim_{n \to \infty} \sum_{k=2}^{n} (\mu(A_k) - \mu(A_{k-1})) = \lim_{n \to \infty} \mu(A_n).$$

#### 3.2 Outer measure

Let a be an algebra of subsets of X and  $\mu$  a measure on it. Our purpose now is to extend  $\mu$  to as many elements of  $2^X$  as possible.

An arbitrary set  $A \subset X$  can be always covered by sets from  $\mathfrak{A}$ , i.e. one can always find  $E_1, E_2, \ldots \in \mathfrak{A}$  such that  $\bigcup_{i=1}^{\infty} E_i \supset A$ . For instance,  $E_1 = X, E_2 = E_3 = \ldots = \emptyset$ .

**Definition 3.2** For  $A \subset X$  its outer measure is defined by

$$\mu^*(A) = \inf \sum_{i=1}^{\infty} \mu(E_i)$$

where the infimum is taken over all  $\mathfrak{A}$ -coverings of the set A, i.e. all collections  $(E_i), E_i \in \mathfrak{A}$  with  $\bigcup_i E_i \supset A$ .

**Remark.** The outer measure always exists since  $\mu(A) \ge 0$  for every  $A \in \mathfrak{A}$ .

**Example.** Let  $X = \mathbb{R}^2$ ,  $\mathfrak{A} = \mathfrak{K}(\mathfrak{P})$ ,  $-\sigma$ -algebra generated by  $\mathfrak{P}$ ,  $\mathfrak{P} = \{[a, b) \times \mathbb{R}^1\}$ . Thus  $\mathfrak{A}$  consists of countable unions of strips like one drawn on the picture. Put  $\mu([a, b) \times \mathbb{R}^1) = b - a$ . Then, clearly, the outer measure of the unit disc  $x^2 + y^2 \leq 1$  is equal to 2. The same value is for the square  $|x| \leq 1$ ,  $|y| \leq 1$ .

**Theorem 3.2** For  $A \in \mathfrak{A}$  one has  $\mu^*(A) = \mu(A)$ .

In other words,  $\mu^*$  is an extension of  $\mu$ .

*Proof.* 1. A is its own covering. This implies  $\mu^*(A) \leq \mu(A)$ .

2. By definition of infimum, for any  $\varepsilon > 0$  there exists a  $\mathfrak{A}$ -covering  $(E_i)$  of A such that  $\sum_i \mu(E_i) < \mu^*(A) + \varepsilon$ . Note that

$$A = A \cap (\bigcup_i E_i) = \bigcup_i (A \cap E_i).$$



Using consequently  $\sigma$ -semiadditivity and monotonicity of  $\mu$ , one obtains:

$$\mu(A) \leqslant \sum_{i} \mu(A \cap E_i) \leqslant \sum_{i} \mu(E_i) < \mu^*(A) + \varepsilon$$

Since  $\varepsilon$  is arbitrary, we conclude that  $\mu(A) \leq \mu^*(A)$ .

It is evident that  $\mu^*(A) \ge 0$ ,  $\mu^*(\emptyset) = 0$  (Check !).

**Lemma.** Let  $\mathfrak{A}$  be an algebra of sets (not necessary  $\sigma$ -algebra),  $\mu$  a measure on  $\mathfrak{A}$ . If there exists a set  $A \in \mathfrak{A}$  such that  $\mu(A) < \infty$ , then  $\mu(\emptyset) = 0$ .

Proof.  $\mu(A \setminus A) = \mu(A) - \mu(A) = 0. \blacksquare$ 

Therefore the property  $\mu(\emptyset) = 0$  can be substituted with the existence in  $\mathfrak{A}$  of a set with a finite measure.

**Theorem 3.3** (Monotonicity of outer measure). If  $A \subset B$  then  $\mu^*(A) \leq \mu^*(B)$ .

*Proof.* Any covering of B is a covering of A.

**Theorem 3.4** ( $\sigma$ -semiadditivity of  $\mu^*$ ).  $\mu^*(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} \mu^*(A_j)$ .

*Proof.* If the series in the right-hand side diverges, there is nothing to prove. So assume that it is convergent.

By the definition of outer measur for any  $\varepsilon > 0$  and for any j there exists an  $\mathfrak{A}$ -covering  $\bigcup_k E_{kj} \supset A_j$  such that

$$\sum_{k=1}^{\infty} \mu(E_{kj}) < \mu^*(A_j) + \frac{\varepsilon}{2^j}.$$

Since

$$\bigcup_{j,k=1}^{\infty} E_{kj} \supset \bigcup_{j=1}^{\infty} A_j,$$

the definition of  $\mu^*$  implies

$$\mu^*(\bigcup_{j=1}^{\infty} A_j) \leqslant \sum_{j,k=1}^{\infty} \mu(E_{kj})$$

and therefore

$$\mu^*(\bigcup_{j=1}^{\infty} A_j) < \sum_{j=1}^{\infty} \mu^*(A_j) + \varepsilon.$$

### 3.3 Measurable Sets

Let  $\mathfrak{A}$  be an algebra of subsets of X,  $\mu$  a measure on it,  $\mu^*$  the outer measure defined in the previous section.

**Definition 3.3**  $A \subset X$  is called a measurable set (by Carathèodory) if for any  $E \subset X$  the following relation holds:

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Denote by  $\tilde{\mathfrak{A}}$  the collection of all set which are measurable by Carathèodory and set  $\tilde{\mu} = \mu^* \upharpoonright \tilde{\mathfrak{A}}$ .

**Remark** Since  $E = (E \cap A) \cup (E \cap A^c)$ , due to semiadditivity of the outer measure

$$\mu^*(E) \le \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

**Theorem 3.5**  $\tilde{\mathfrak{A}}$  is a  $\sigma$ -algebra containing  $\mathfrak{A}$ , and  $\tilde{\mu}$  is a measure on  $\tilde{\mathfrak{A}}$ .

*Proof.* We devide the proof into several steps.

1. If  $A, B \in \mathfrak{A}$  then  $A \cup B \in \mathfrak{A}$ .

By the definition one has

$$\mu^*(E) = \mu^*(E \cap B) + \mu^*(E \cap B^c).$$
(1)

Take  $E \cap A$  instead of E:

$$\mu^*(E \cap A) = \mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap B^c).$$
(2)

Then put  $E \cap A^c$  in (1) instead of E

$$\mu^*(E \cap A^c) = \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A^c \cap B^c).$$
(3)

Add (2) and (3):

$$\mu^*(E) = \mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap B^c) + \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A^c \cap B^c).$$
(4)

Substitute  $E \cap (A \cup B)$  in (4) instead of E. Note that

 $\begin{array}{ll} 1) & E \cap (A \cup B) \cap A \cap B = E \cap A \cap B \\ 2) & E \cap (A \cup B) \cap A^c \cap B = E \cap A^c \cap B \\ 3) & E \cap (A \cup B) \cap A \cap B^c = E \cap A \cap B^c \\ 4) & E \cap (A \cup B) \cap A^c \cap B^c = \varnothing. \end{array}$ 

One has

$$\mu^*(E \cap (A \cup B)) = \mu^*(E \cap A \cap B) + \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A \cap B^c).$$
(5)

From (4) and (5) we have

$$\mu^*(E) = \mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cup B)^c).$$

2. If  $A \in \tilde{\mathfrak{A}}$  then  $A^c \in \tilde{\mathfrak{A}}$ .

The definition of measurable set is symmetric with respect to A and  $A^c$ .

Therefore  $\hat{\mathfrak{A}}$  is an algebra of sets.

3.

Let  $A, B \in \mathfrak{A}, A \cap B = \emptyset$ . From (5)

$$\mu^*(E \cap (A \sqcup B)) = \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A \cap B^c) = \mu^*(E \cap B) + \mu^*(E \cap A).$$

### 4. $\tilde{\mathfrak{A}}$ is a $\sigma$ -algebra.

From the previous step, by induction, for any finite disjoint collection  $(B_j)$  of sets:

$$\mu^*(E \cap (\bigsqcup_{j=1}^n B_j)) = \sum_{j=1}^n \mu^*(E \cap B_j).$$
(6)

Let  $A = \bigcup_{j=1}^{\infty} A_j, A_j \in \mathfrak{A}$ . Then  $A = \bigcup_{j=1}^{\infty} B_j, B_j = A_j \setminus \bigcup_{k=1}^{j-1} A_k$  and  $B_i \cap B_j = \emptyset \ (i \neq j)$ . It suffices to prove that

$$\mu^{*}(E) \ge \mu^{*}(E \cap (\bigsqcup_{j=1}^{\infty} B_{j})) + \mu^{*}(E \cap (\bigsqcup_{j=1}^{\infty} B_{j})^{c}).$$
(7)

Indeed, we have already proved that  $\mu^*$  is  $\sigma$ -semi-additive.

Since  $\tilde{\mathfrak{A}}$  is an algebra, it follows that  $\bigsqcup_{j=1}^{n} B_j \in \tilde{\mathfrak{A}}(\forall n \in \mathbb{N})$  and the following inequality holds for every n:

$$\mu^{*}(E) \ge \mu^{*}(E \cap (\bigsqcup_{j=1}^{n} B_{j})) + \mu^{*}(E \cap (\bigsqcup_{j=1}^{n} B_{j})^{c}).$$
(8)

Since  $E \cap (\bigsqcup_{j=1}^{\infty} B_j)^c \subset E \cap (\bigsqcup_{j=1}^n B_j)^c$ , by monotonicity of the mesasure and (8)

$$\mu^*(E) \ge \sum_{j=1}^n \mu^*(E \cap B_j) + \mu^*(E \cap A^c).$$
(9)

Passing to the limit we get

$$\mu^*(E) \ge \sum_{j=1}^{\infty} \mu^*(E \cap B_j) + \mu^*(E \cap A^c).$$
(10)

Due to semiadditivity

$$\mu^*(E \cap A) = \mu^*(E \cap (\bigsqcup_{j=1}^{\infty} B_j)) = \mu^*(\bigsqcup_{j=1}^{\infty} (E \cap B_j)) \le \sum_{j=1}^{\infty} \mu^*(E \cap B_j).$$

Compare this with (10):

$$\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Thus,  $A \in \tilde{\mathfrak{A}}$ , which means that  $\tilde{\mathfrak{A}}$  is a  $\sigma$ -algebra.

5.  $\tilde{\mu} = \mu^* \upharpoonright \tilde{\mathfrak{A}}$  is a measure.

We need to prove only  $\sigma$ -additivity. Let  $E = \bigsqcup_{j=1}^{\infty} A_j$ . From(10) we get

$$\mu^*(\bigsqcup_{j=1}^{\infty} A_j) \geqslant \sum_{j=1}^{\infty} \mu^*(A_j).$$

The oposite inequality follows from  $\sigma$ -semiadditivity of  $\mu^*$ .

6.  $\underline{\mathfrak{A}} \supset \mathfrak{A}$ .

Let  $A \in \mathfrak{A}$ ,  $E \subset X$ . We need to prove:

$$\mu^{*}(E) \ge \mu^{*}(E \cap A) + \mu^{*}(E \cap A^{c}).$$
(11)

If  $E \in \mathfrak{A}$  then (11) is clear since  $E \cap A$  and  $E \cap A^c$  are disjoint and both belong to  $\mathfrak{A}$  where  $\mu^* = \mu$  and so is additive.

For  $E \subset X$  for  $\forall \varepsilon > 0$  there exists a  $\mathfrak{A}$ -covering  $(E_j)$  of E such that

$$\mu^*(E) + \varepsilon > \sum_{j=1}^{\infty} \mu(E_j).$$
(12)

Now, since  $E_j = (E_j \cap A) \cup (E_j \cap A^c)$ , one has

$$\mu(E_j) = \mu(E_j \cap A) + \mu(E_j \cap A)$$

and also

$$E \cap A \subset \bigcup_{j=1}^{\infty} (E_j \cap A)$$
$$E \cap A^c \subset \bigcup_{j=1}^{\infty} (E_j \cap A^c)$$

By monotonicity and  $\sigma$ -semiadditivity

$$\mu^*(E \cap A) \leqslant \sum_{j=1}^{\infty} \mu(E_j \cap A),$$
$$\mu^*(E \cap A^c) \leqslant \sum_{j=1}^{\infty} \mu(E_j \cap A^c).$$

Adding the last two inequalities we obtain

$$\mu^*(E \cap A) + \mu^*(E \cap A^c) \le \sum_{j=1}^{\infty} \mu^*(E_j) < \mu^*(E) + \varepsilon.$$

Since  $\varepsilon > 0$  is arbitrary, (11) is proved.

The following theorem is a direct consequence of the previous one.

**Theorem 3.6** Let  $\mathfrak{A}$  be an algebra of subsets of X and  $\mu$  be a measure on it. Then there exists a  $\sigma$ -algebra  $\mathfrak{A}_1 \supset \mathfrak{A}$  and a measure  $\mu_1$  on  $\mathfrak{A}_1$  such that  $\mu_1 \upharpoonright \mathfrak{A} = \mu$ .

**Remark.** Consider again an algebra  $\mathfrak{A}$  of subsets of X. Denot by  $\mathfrak{A}_{\sigma}$  the generated  $\sigma$ -algebra and construct the extension  $\mu_{\sigma}$  of  $\mu$  on  $\mathfrak{A}_{\sigma}$ . This extension is called *minimal* extension of measure.

Since  $\mathfrak{A} \supset \mathfrak{A}$  therefore  $\mathfrak{A}_{\sigma} \subset \mathfrak{A}$ . Hence one can set  $\mu_{\sigma} = \tilde{\mu} \upharpoonright \mathfrak{A}_{\sigma}$ . Obviously  $\mu_{\sigma}$  is a minimal extension of  $\mu$ . It always exists. On can also show (see below) that this extension is unique.

**Theorem 3.7** Let  $\mu$  be a measure on an algebra  $\mathfrak{A}$  of subsets of X,  $\mu^*$  the corresponding outer measure. If  $\mu^*(A) = 0$  for a set  $A \subset X$  then  $A \in \mathfrak{A}$  and  $\tilde{\mu}(A) = 0$ .

*Proof.* Clearly, it suffices to prove that  $A \in \mathfrak{A}$ . Further, it suffices to prove that  $\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \cap A^c)$ . The latter statement follows from monotonicity of  $\mu^*$ . Indeed, one has  $\mu^*(E \cap A) \le \mu^*(A) = 0$  and  $\mu^*(E \cap A^c) \le \mu^*(E)$ .

**Definition 3.4** A measure  $\mu$  on an algebra of sets  $\mathfrak{A}$  is called complete if conditions  $B \subset A$ ,  $A \in \mathfrak{A}$ ,  $\mu(A) = 0$  imply  $B \in \mathfrak{A}$  and  $\mu(B) = 0$ .

**Corollary.**  $\tilde{\mu}$  is a complete measure.

**Definition 3.5** A measure  $\mu$  on an algebra  $\mathfrak{A}$  is called finite if  $\mu(X) < \infty$ . It is called  $\sigma$ -finite if the is an increasing sequence  $(F_j)_{j\geq 1} \subset \mathfrak{A}$  such that  $X = \bigcup_j F_j$  and  $\mu(F_j) < \infty$   $\forall j$ .

**Theorem 3.8** Let  $\mu$  be a  $\sigma$ -finite measure on an algebra  $\mathfrak{A}$ . Then there exist a unique extension of  $\mu$  to a measure on  $\tilde{\mathfrak{A}}$ .

*Proof.* It suffices to sjow uniqueness. Let  $\nu$  be another extension of  $\mu$  ( $\nu \upharpoonright \mathfrak{A} = \mu \upharpoonright \mathfrak{A}$ ).

First, let  $\mu$  (and therefore  $\nu, \mu^*$ ) be finite. Let  $A \in \mathfrak{A}$ . Let  $(E_j) \subset \mathfrak{A}$  such that  $A \subset \bigcup_i E_j$ . We have

$$\nu(A) \le \nu(\bigcup_{j=1}^{\infty} E_j) \le \sum_{j=1}^{\infty} \nu(E_j) = \sum_{j=1}^{\infty} \mu(E_j).$$

Therefore

$$\nu(A) \le \mu^*(A) \quad \forall A \in \mathfrak{A}.$$

Since  $\mu^*$  and  $\nu$  are additive (on  $\mathfrak{A}$ ) it follows that

$$\mu^*(A) + \mu^*(A^c) = \nu(A) + \nu(A^c).$$

The terms in the RHS are finite and  $\nu(A) \leq \mu^*(A), \ \nu(A^c) \leq \mu^*(A^c)$ . From this we infer that

$$\nu(A) = \mu^*(A) \quad \forall A \in \mathfrak{A}$$

Now let  $\mu$  be  $\sigma$ -finite,  $(F_j)$  be an increasing sequence of sets from  $\mathfrak{A}$  such that  $\mu(F_j) < \infty \quad \forall j$  and  $X = \bigcup_{j=1}^{\infty} F_j$ . From what we have already proved it follows that

$$\mu^*(A \cap F_j) = \nu(A \cap F_j) \ \forall A \in \mathfrak{A}.$$

Therefore

$$\mu^*(A) = \lim_j \mu^*(A \cap F_j) = \lim_j \nu(A \cap F_j) = \nu(A). \quad \blacksquare$$

**Theorem 3.9** (Continuity of measure). Let  $\mathfrak{A}$  be a  $\sigma$ -algebra with a measure  $\mu$ ,  $\{A_j\} \subset \mathfrak{A}$  a monotonically increasing sequence of sets. Then

$$\mu(\bigcup_{j=1}^{\infty} A_j) = \lim_{j \to \infty} \mu(A_j).$$

*Proof.* One has:

$$A = \bigcup_{j=1}^{\infty} A_j = \bigsqcup_{j=2}^{\infty} (A_{j+1} \setminus A_j) \sqcup A_1.$$

Using  $\sigma$ -additivity and subtractivity of  $\mu$ ,

$$\mu(A) = \sum_{j=1}^{\infty} (\mu(A_{j+1}) - \mu(A_j)) + \mu(A_1) = \lim_{j \to \infty} \mu(A_j). \blacksquare$$

Similar assertions for a decreasing sequence of sets in  ${\mathfrak A}$  can be proved using de Morgan formulas.

**Theorem 3.10** Let  $A \in \tilde{\mathfrak{A}}$ . Then for any  $\varepsilon > 0$  there exists  $A_{\varepsilon} \in \mathfrak{A}$  such that  $\mu^*(A \bigtriangleup A_{\varepsilon}) < \varepsilon$ .

*Proof.* 1. For any  $\varepsilon > 0$  there exists an  $\mathfrak{A}$  cover  $\bigcup E_j \supset A$  such that

$$\sum_{j} \mu(E_j) < \mu^*(A) + \frac{\varepsilon}{2} = \tilde{\mu}(A) + \frac{\varepsilon}{2}$$

On the other hand,

$$\sum_{j} \mu(E_j) \ge \tilde{\mu}(\bigcup_{j} E_J).$$

The monotonicity of  $\tilde{\mu}$  implies

$$\tilde{\mu}(\bigcup_{j=1}^{\infty} E_J) = \lim_{n \to \infty} \tilde{\mu}(\bigcup_{j=1}^{n} E_j),$$

hence there exists a positive integer N such that

$$\tilde{\mu}(\bigcup_{j=1}^{\infty} E_j) - \tilde{\mu}(\bigcup_{j=1}^{N} E_j) < \frac{\varepsilon}{2}.$$
(13)

2. Now, put

$$A_{\varepsilon} = \bigcup_{j=1}^{N} E_j$$

and prove that  $\mu^*(A \bigtriangleup A_{\varepsilon}) < \varepsilon$ .

2a. Since

$$A \subset \bigcup_{j=1}^{\infty} E_j,$$

one has

$$A \setminus A_{\varepsilon} \subset \bigcup_{j=1}^{\infty} E_j \setminus A_{\varepsilon}.$$

Since

$$A_{\varepsilon} \subset \bigcup_{j=1}^{\infty} E_j,$$

one can use the monotonicity and subtractivity of  $\tilde{\mu}$ . Together with estimate (13), this gives

$$\tilde{\mu}(A \setminus A_{\varepsilon}) \leq \tilde{\mu}(\bigcup_{j=1}^{\infty} E_j \setminus A_{\varepsilon}) < \frac{\varepsilon}{2}.$$

2b. The inclusion

$$A_{\varepsilon} \setminus A \subset \bigcup_{j=1}^{\infty} E_j \setminus A$$

implies

$$\tilde{\mu}(A_{\varepsilon} \setminus A) \leq \tilde{\mu}(\bigcup_{j=1}^{\infty} E_j \setminus A) = \tilde{\mu}(\bigcup_{j=1}^{\infty} E_j) - \tilde{\mu}(A) < \frac{\varepsilon}{2}.$$

Here we used the same properties of  $\tilde{\mu}$  as above and the choice of the cover  $(E_j)$ .

3. Finally,

$$\tilde{\mu}(A \bigtriangleup A_{\varepsilon}) \leqslant \tilde{\mu}(A \setminus A_{\varepsilon}) + \tilde{\mu}(A_{\varepsilon} \setminus A).$$

# 4 Monotone Classes and Uniqueness of Extension of Measure

**Definition 4.1** A collection of sets,  $\mathfrak{M}$  is called a monotone class if together with any monotone sequence of sets  $\mathfrak{M}$  contains the limit of this sequence.

**Example.** Any  $\sigma$ -ring. (This follows from the Exercise 1. below).

#### Exercises.

1. Prove that any  $\sigma$ -ring is a monotone class.

2. If a ring is a monotone class, then it is a  $\sigma$ -ring.

We shall denote by  $\mathfrak{M}(\mathfrak{K})$  the minimal monotone class containing  $\mathfrak{K}$ .

**Theorem 4.1** Let  $\mathfrak{K}$  be a ring of sets,  $\mathfrak{K}_{\sigma}$  the  $\sigma$ -ring generated by  $\mathfrak{K}$ . Then  $\mathfrak{M}(\mathfrak{K}) = \mathfrak{K}_{\sigma}$ .

*Proof.* 1. Clearly,  $\mathfrak{M}(\mathfrak{K}) \subset \mathfrak{K}_{\sigma}$ . Now, it suffices to prove that  $\mathfrak{M}(\mathfrak{K})$  is a ring. This follows from the Exercise (2) above and from the minimality of  $\mathfrak{K}_{\sigma}$ .

2.  $\mathfrak{M}(\mathfrak{K})$  is a ring. 2a. For  $B \subset X$ , set

$$\mathfrak{K}_B = \{ A \subset X : A \cup B, A \cap B, A \setminus B, B \setminus A \in \mathfrak{M}(\mathfrak{K}) \}.$$

This definition is symmetric with respect to A and B, therefore  $A \in \mathfrak{K}_B$  implies  $B \in \mathfrak{K}_A$ .

2b.  $\Re_B$  is a monotone class.

Let  $(A_j) \subset \mathfrak{K}_B$  be a monotonically increasing sequence. Prove that the union,  $A = \bigcup A_j$  belongs to  $\mathfrak{K}_B$ .

Since  $A_j \in \mathfrak{K}_B$ , one has  $A_j \cup B \in \mathfrak{K}_B$ , and so

$$A \cup B = \bigcup_{j=1}^{\infty} (A_j \cup B) \in \mathfrak{M}(\mathfrak{K}).$$

In the same way,

$$A \setminus B = \left(\bigcup_{j=1}^{\infty} A_j\right) \setminus B = \bigcup_{j=1}^{\infty} (A_j \setminus B) \in \mathfrak{M}(\mathfrak{K});$$

$$B \setminus A = B \setminus (\bigcup_{j=1}^{\infty} A_j) = \bigcap_{j=1}^{\infty} (B \setminus A_j) \in \mathfrak{M}(\mathfrak{K}).$$

Similar proof is for the case of decreasing sequence  $(A_i)$ .

2c. If  $B \in \mathfrak{K}$  then  $\mathfrak{M}(\mathfrak{K}) \subset \mathfrak{K}_B$ .

Obviously,  $\mathfrak{K} \subset \mathfrak{K}_B$ . Together with minimality of  $\mathfrak{M}(\mathfrak{K})$ , this implies  $\mathfrak{M}(\mathfrak{K}) \subset \mathfrak{K}_B$ .

2d. If  $B \in \mathfrak{M}(\mathfrak{K})$  then  $\mathfrak{M}(\mathfrak{K}) \subset \mathfrak{K}_B$ .

Let 
$$A \in \mathfrak{K}$$
. Then  $\mathfrak{M}(\mathfrak{K}) \subset \mathfrak{K}_A$ . Thus if  $B \in \mathfrak{M}(\mathfrak{K})$ , one has  $B \in \mathfrak{K}_A$ , so  $A \in \mathfrak{K}_B$ .

Hence what we have proved is  $\mathfrak{K} \subset \mathfrak{K}_B$ . This implies  $\mathfrak{M}(\mathfrak{K}) \subset \mathfrak{K}_B$ .

2e. It follows from 2a. — 2d. that if  $A, B \in \mathfrak{M}(\mathfrak{K})$  then  $A \in \mathfrak{K}_B$  and so  $A \cup B, A \cap B$ ,  $A \setminus B$  and  $B \setminus A$  all belong to  $\mathfrak{M}(\mathfrak{K})$ .

**Theorem 4.2** Let  $\mathfrak{A}$  be an algebra of sets,  $\mu$  and  $\nu$  two measures defined on the  $\sigma$ -algebra  $\mathfrak{A}_{\sigma}$  generated by  $\mathfrak{A}$ . Then  $\mu \upharpoonright \mathfrak{A} = \nu \upharpoonright \mathfrak{A}$  implies  $\mu = \nu$ .

*Proof.* Choose  $A \in \mathfrak{A}_{\sigma}$ , then  $A = \lim_{n \to \infty} A_n$ ,  $A_n \in \mathfrak{A}$ , for  $\mathfrak{A}_{\sigma} = \mathfrak{M}(\mathfrak{A})$ . Using continuity of measure, one has

$$\mu(A) = \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \nu(A_n) = \nu(A).$$

**Theorem 4.3** Let  $\mathfrak{A}$  be an algebra of sets,  $B \subset X$  such that for any  $\varepsilon > 0$  there exists  $A_{\varepsilon} \in \mathfrak{A}$  with  $\mu^*(B \bigtriangleup A_{\varepsilon}) < \varepsilon$ . Then  $B \in \tilde{\mathfrak{A}}$ .

*Proof.* 1. Since any outer measure is semi-additive, it suffices to prove that for any  $E \subset X$  one has

$$\mu^*(E) \ge \mu^*(E \cap B) + \mu^*(E \cap B^c).$$

2a. Since  $\mathfrak{A} \subset \tilde{\mathfrak{A}}$ , one has

$$\mu^*(E \cap A_{\varepsilon}) + \mu^*(E \cap A_{\varepsilon}^c) \leqslant \mu^*(E).$$
(14)

2b. Since  $A \subset B \cup (A \triangle B)$  and since the outer measure  $\mu^*$  is monotone and semiadditive, there is an estimate  $|\mu^*(A) - \mu^*(B)| \leq \mu^*(A \triangle B)$  for any  $A, B \subset X$ . (C.f. the proof of similar fact for measures above).

2c. It follows from the monotonicity of  $\mu^*$  that

$$|\mu^*(E \cap A_{\varepsilon}) - \mu^*(E \cap B)| \leq \mu^*((E \cap A_{\varepsilon}) \bigtriangleup (E \cap B)) \leq \mu(A_{\varepsilon} \cap B) < \varepsilon.$$

Therefore,  $\mu^*(E \cap A_{\varepsilon}) > \mu^*(E \cap B) - \varepsilon$ . In the same manner,  $\mu^*(E \cap A_{\varepsilon}^c) > \mu^*(E \cap B^c) - \varepsilon$ .

2d. Using (14), one obtains

$$\mu^*(E) > \mu^*(E \cap B) + \mu^*(E \cap B^c) - 2\varepsilon.$$

## 5 The Lebesgue Measure on the real line $\mathbb{R}^1$

## 5.1 The Lebesgue Measure of Bounded Sets of $\mathbb{R}^1$

Put  $\mathfrak{A}$  for the algebra of all finite unions of semi-segments (semi-intervals) on  $\mathbb{R}^1$ , i.e. all sets of the form

$$A = \bigcup_{j=1}^{\kappa} [a_j, b_j).$$

Define a mapping  $\mu : \mathfrak{A} \longrightarrow \mathbb{R}$  by:

$$\mu(A) = \sum_{j=1}^{k} (b_j - a_j).$$

**Theorem 5.1**  $\mu$  is a measure.

*Proof.* 1. All properties including the (finite) additivity are obvious. The only thing to be proved is the  $\sigma$ -additivity.

Let  $(A_i) \subset \mathfrak{A}$  be such a countable disjoint family that

$$A = \bigsqcup_{j=1}^{\infty} A_j \in \mathfrak{A}$$

The condition  $A \in \mathfrak{A}$  means that  $\bigsqcup A_j$  is a finite union of intervals.

2. For any positive integer n,

$$\bigcup_{j=1}^{n} A_j \subset A,$$

hence

$$\sum_{j=1}^{n} \mu(A_j) \leqslant \mu(A),$$

and

$$\sum_{j=1}^{\infty} \mu(A_j) = \lim_{n \to \infty} \sum_{j=1}^{n} \mu(A_j) \leqslant \mu(A).$$

3. Now, let  $A^{\varepsilon}$  a set obtained from A by the following construction. Take a connected component of A. It is a semi-segment of the form [s,t). Shift slightly on the left its right-hand end, to obtain a (closed) segment. Do it with all components of A, in such a way that

$$\mu(A) < \mu(A^{\varepsilon}) + \varepsilon. \tag{15}$$

Apply a similar procedure to each semi-segment shifting their left end point to the left  $A_j = [a_j, b_j)$ , and obtain (open) intervals,  $A_i^{\varepsilon}$  with

$$\mu(A_j^{\varepsilon}) < \mu(A_j) + \frac{\varepsilon}{2^j}.$$
(16)

4. By the construction,  $A^{\varepsilon}$  is a compact set and  $(A_j^{\varepsilon})$  its open cover. Hence, there exists a positive integer n such that

$$\bigcup_{j=1}^{n} A_j^{\varepsilon} \supset A^{\varepsilon}.$$

Thus

$$\mu(A^{\varepsilon})\leqslant \sum_{j=1}^n \mu(A_j^{\varepsilon}).$$

The formulas (15) and (16) imply

$$\mu(A) < \sum_{j=1}^{n} \mu(A_j^{\varepsilon}) + \varepsilon \leqslant \sum_{j=1}^{n} \mu(A_j) + \sum_{j=1}^{n} \frac{\varepsilon}{2^j} + \varepsilon,$$

thus

$$\mu(A) < \sum_{j=1}^{\infty} \mu(A_j) + 2\varepsilon.$$

Now, one can apply the Carathèodory's scheme developed above, and obtain the measure space  $(\tilde{\mathfrak{A}}, \tilde{\mu})$ . The result of this extension is called *the Lebesgue measure*. We shall denote the Lebesgue measure on  $\mathbb{R}^1$  by m.

#### Exercises.

- 1. A one point set is measurable, and its Lebesgue measure is equal to 0.
- 2. The same for a countable subset in  $\mathbb{R}^1$ . In particular,  $m(\mathbb{Q} \cap [0,1]) = 0$ .
- 3. Any open or closed set in  $\mathbb{R}^1$  is Lebesgue measurable.

**Definition 5.1** Borel algebra of sets,  $\mathfrak{B}$  on the real line  $\mathbb{R}^1$  is a  $\sigma$ -algebra generated by all open sets on  $\mathbb{R}^1$ . Any element of  $\mathfrak{B}$  is called a Borel set.

**Exercise.** Any Borel set is Lebesgue measurable.

**Theorem 5.2** Let  $E \subset \mathbb{R}^1$  be a Lebesgue measurable set. Then for any  $\varepsilon > 0$  there exists an open set  $G \supset E$  such that  $m(G \setminus E) < \varepsilon$ .

*Proof.* Since E is measurable,  $m^*(E) = m(E)$ . According the definition of an outer measure, for any  $\varepsilon > 0$  there exists a cover  $A = \bigcup [a_k, b_k) \supset E$  such that

$$m(A) < m(E) + \frac{\varepsilon}{2}.$$

Now, put

$$G = \bigcup (a_k - \frac{\varepsilon}{2^{k+1}}, b^k).$$

**Problem.** Let  $E \subset \mathbb{R}^1$  be a bounded Lebesgue measurable set. Then for any  $\varepsilon > 0$  there exists a compact set  $F \subset E$  such that  $m(E \setminus F) < \varepsilon$ . (*Hint:* Cover E with a semi-segment and apply the above theorem to the  $\sigma$ -algebra of measurable subsets in this semi-segment).

**Corollary.** For any  $\varepsilon > 0$  there exist an open set G and a compact set F such that  $G \supset E \supset F$  and  $m(G \setminus F) < \varepsilon$ .

Such measures are called *regular*.

## 5.2 The Lebesgue Measure on the Real Line $\mathbb{R}^1$

We now abolish the condition of boundness.

**Definition 5.2** A set A on the real numbers line  $\mathbb{R}^1$  is Lebesgue measurable if for any positive integer n the bounded set  $A \cap [-n, n)$  is a Lebesgue measurable set.

**Definition 5.3** The Lebesgue measure on  $\mathbb{R}^1$  is

$$m(A) = \lim_{n \to \infty} m(A \cap [-n, n)).$$

**Definition 5.4** A measure is called  $\sigma$ -finite if any measurable set can be represented as a countable union of subsets each has a finite measure.

Thus the Lebesgue measure m is  $\sigma$ -finite.

**Problem.** The Lebesgue measure on  $\mathbb{R}^1$  is regular.

## 5.3 The Lebesgue Measure in $\mathbb{R}^d$

**Definition 5.5** We call a d-dimensional rectangle in  $\mathbb{R}^d$  any set of the form

$$\{x : x \in \mathbb{R}^d : a_i \leqslant x_i < b_i\}.$$

Using rectangles, one can construct the Lebesque measure in  $\mathbb{R}^d$  in the same fashion as we deed for the  $\mathbb{R}^1$  case.

## 6 Measurable functions

Let X be a set,  $\mathfrak{A}$  a  $\sigma$ -algebra on X.

**Definition 6.1** A pair  $(X, \mathfrak{A})$  is called a measurable space.

**Definition 6.2** Let f be a function defined on a measurable space  $(X, \mathfrak{A})$ , with values in the extended real number system. The function f is called measurable if the set

$$\{x: f(x) > a\}$$

is measurable for every real a.

#### Example.

**Theorem 6.1** The following conditions are equivalent

- $\{x: f(x) > a\} \text{ is measurable for every real } a.$ (17)
- $\{x : f(x) \ge a\} \text{ is measurable for every real } a.$ (18)
- $\{x : f(x) < a\} \text{ is measurable for every real } a.$ (19)
- $\{x: f(x) \le a\}$  is measurable for every real a. (20)

*Proof.* The statement follows from the equalities

$$\{x: f(x) \ge a\} = \bigcap_{n=1}^{\infty} \{x: f(x) > a - \frac{1}{n}\},\tag{21}$$

$$\{x : f(x) < a\} = X \setminus \{x : f(x) \ge a\},$$
(22)

$$\{x : f(x) \le a\} = \bigcap_{n=1}^{\infty} \{x : f(x) < a + \frac{1}{n}\},\tag{23}$$

$$\{x: f(x) > a\} = X \setminus \{x: f(x) \le a\}$$

$$(24)$$

**Theorem 6.2** Let  $(f_n)$  be a sequence of measurable functions. For  $x \in X$  set

$$g(x) = \sup_{n} f_n(x) (n \in \mathbb{N})$$
$$h(x) = \limsup_{n \to \infty} f_n(x).$$

Then g and h are measurable.

Proof.

$$\{x: g(x) \le a\} = \bigcap_{n=1}^{\infty} \{x: f_n(x) \le a\}.$$

Since the LHS is measurable it follows that the RHS is measurable too. The same proof works for inf.

Now

$$h(x) = \inf g_m(x),$$

where

$$g_m(x) = \sup_{n \ge m} f_n(x).$$

**Theorem 6.3** Let f and g be measurable real-valued functions defined on X. Let F be real and continuous function on  $\mathbb{R}^2$ . Put

$$h(x) = F(f(x), g(x)) \ (x \in X).$$

Then h is measurable.

*Proof.* Let  $G_a = \{(u, v) : F(u, v) > a\}$ . Then  $G_a$  is an open subset of  $\mathbb{R}^2$ , and thus

$$G_a = \bigcup_{n=1}^{\infty} I_n$$

where  $(I_n)$  is a sequence of open intervals

$$I_n = \{ (u, v) : a_n < u < b_n, c_n < v < d_n \}.$$

The set  $\{x : a_n < f(x) < b_n\}$  is measurable and so is the set

$$x: (f(x), g(x)) \in I_n \} = \{x: a_n < f(x) < b_n\} \cap \{x: c_n < g(x) < d_n\}.$$

Hence the same is true for

{

$$\{x: h(x) > a\} = \{x: (f(x), g(x)) \in G_a\} = \bigcup_{n=1}^{\infty} \{x: (f(x), g(x)) \in I_n\}.$$

**Corollories.** Let f and g be measurable. Then the following functions are measurable

$$(i)f + g \tag{25}$$

$$(ii)f \cdot g \tag{26}$$

$$(iii)|f| \tag{27}$$

$$(iv)\frac{f}{g}(\text{if}g \neq 0) \tag{28}$$

$$(v)\max\{f,g\},\min\{f,g\}\tag{29}$$

(30)

since  $\max\{f,g\} = 1/2(f+g+|f-g|), \ \min\{f,g\} = 1/2(f+g-|f-g|).$ 

### 6.1 Step functions (simple functions)

**Definition 6.3** A real valued function  $f : X \to \mathbb{R}$  is called simple function if it takes only a finite number of distinct values.

We will use below the following notation

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{otherwise} \end{cases}$$

**Theorem 6.4** A simple function  $f = \sum_{j=1}^{n} c_j \chi_{E_j}$  is measurable if and only if all the sets  $E_j$  are measurable.

**Exercise.** Prove the theorem.

**Theorem 6.5** Let f be real valued. There exists a sequence  $(f_n)$  of simple functions such that  $f_n(x) \longrightarrow f(x)$  as  $n \to \infty$ , for every  $x \in X$ . If f is measurable,  $(f_n)$  may be chosen to be a sequence of measurable functions. If  $f \ge 0$ ,  $(f_n)$  may be chosen monotonically increasing.

*Proof.* If  $f \ge 0$  set

 $f_n(x) = \sum_{i=1}^{n \cdot 2^n} \frac{i-1}{2^n} \chi_{E_{n_i}} + n \chi_{F_n}$  where

$$E_{n_i} = \{x : \frac{i-1}{2^n} \le f(x) < \frac{i}{2^n}\}, \ F_n = \{x : f(x) \ge n\}.$$

The sequence  $(f_n)$  is monotonically increasing,  $f_n$  is a simple function. If  $f(x) < \infty$  then f(x) < n for a sufficiently large n and  $|f_n(x) - f(x)| < 1/2^n$ . Therefore  $f_n(x) \longrightarrow f(x)$ . If  $f(x) = +\infty$  then  $f_n(x) = n$  and again  $f_n(x) \longrightarrow f(x)$ .

In the general case  $f = f^+ - f^-$ , where

 $f^+(x) := \max\{f(x), 0\}, \ f^-(x) := -\min\{f(x), 0\}.$ 

Note that if f is bounded then  $f_n \longrightarrow f$  uniformly.

## 7 Integration

**Definition 7.1** A triple  $(X, \mathfrak{A}, \mu)$ , where  $\mathfrak{A}$  is a  $\sigma$ -algebra of subsets of X and  $\mu$  is a measure on it, is called a measure space.

Let  $(X, \mathfrak{A}, \mu)$  be a measure space. Let  $f: X \mapsto \mathbb{R}$  be a simple measurable function.

$$f(x) = \sum_{i=1}^{n} c_i \chi_{E_i}(x)$$
(31)

and

$$\bigcup_{i=1}^{n} E_i = X, \ E_i \cap E_j = \emptyset \ (i \neq j).$$

There are different representations of f by means of (31). Let us choose the representation such that all  $c_i$  are distinct.

**Definition 7.2** Define the quantity

$$I(f) = \sum_{i=1}^{n} c_i \mu(E_i)$$

First, we derive some properties of I(f).

**Theorem 7.1** Let f be a simple measurable function. If  $X = \bigsqcup_{j=1}^{k} F_j$  and f takes the constant value  $b_j$  on  $F_j$  then

$$I(f) = \sum_{j=1}^{k} b_j \mu(F_j).$$

*Proof.* Clearly,  $E_i = \bigsqcup_{j: b_j = c_i} F_j$ .

$$\sum_{i} c_{i}\mu(E_{i}) = \sum_{i=1}^{n} c_{i}\mu(\bigsqcup_{j: b_{j}=c_{i}} F_{j}) = \sum_{i=1}^{n} c_{i}\sum_{j: b_{j}=c_{i}} \mu(F_{j}) = \sum_{j=1}^{k} b_{j}\mu(F_{j}).$$

This show that the quantity I(f) is well defined.

**Theorem 7.2** If f and g are measurable simple functions then

$$I(\alpha f + \beta g) = \alpha I(f) + \beta I(g).$$

*Proof.* Let  $f(x) = \sum_{j=1}^{n} b_j \chi_{F_j}(x), \ X = \bigsqcup_{j=1}^{n} F_j, \ g(x) = \sum_{k=1}^{m} c_k \chi_{G_k}(x), \ X = \bigsqcup_{k=1}^{n} G_k.$ 

Then

$$\alpha f + \beta g = \sum_{j=1}^{n} \sum_{k=1}^{m} (\alpha b_j + \beta c_k) \chi_{E_{jk}}(x)$$

where  $E_{jk} = F_j \cap G_k$ .

Exercise. Complete the proof.

**Theorem 7.3** Let f and g be simple measurable functions. Suppose that  $f \leq g$  everywhere except for a set of measure zero. Then

$$I(f) \le I(g).$$

*Proof.* If  $f \leq g$  everywhere then in the notation of the previous proof  $b_j \leq c_k$  on  $E_{jk}$  and  $I(f) \leq I(g)$  follows.

Otherwise we can assume that  $f \leq g + \phi$  where  $\phi$  is non-negative measurable simple function which is zero every exept for a set N of measure zero. Then  $I(\phi) = 0$  and

$$I(f) \le I(g+\phi) = I(f) + I(\phi) = I(g).$$

**Definition 7.3** If  $f : X \mapsto \mathbb{R}^1$  is a non-negative measurable function, we define the Lebesgue integral of f by

$$\int f d\mu := \sup I(\phi)$$

where sup is taken over the set of all simple functions  $\phi$  such that  $\phi \leq f$ .

**Theorem 7.4** If f is a simple measurable function then  $\int f d\mu = I(f)$ .

*Proof.* Since  $f \leq f$  it follows that  $\int f d\mu \geq I(f)$ .

On the other hand, if  $\phi \leq f$  then  $I(\phi) \leq I(f)$  and also

$$\sup_{\phi \le f} I(\phi) \le I(f)$$

which leads to the inequality

$$\int f d\mu \le I(f).$$

28

**Definition 7.4** 1. If A is a measurable subset of X  $(A \in \mathfrak{A})$  and f is a non-negative measurable function then we define

$$\int_A f d\mu = \int f \chi_A d\mu.$$

2.

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$

if at least one of the terms in RHS is finite. If both are finite we call f integrable.

**Remark**. Finiteness of the integrals  $\int f^+ d\mu$  and  $\int f^- d\mu$  is equivalent to the finitenes of the integral

$$\int |f| d\mu.$$

If it is the case we write  $f \in L^1(X, \mu)$  or simply  $f \in L^1$  if there is no ambiguity.

The following properties of the Lebesgue integral are simple consequences of the definition. The proofs are left to the reader.

- If f is measurable and bounded on A and  $\mu(A) < \infty$  then f is integrable on A.
- If  $a \leq f(x) \leq b$   $(x \in A)$ ,  $\mu(A) < \infty$  then

$$a\mu(A) \le \int_A f d\mu \le b\mu(a).$$

• If  $f(x) \leq g(x)$  for all  $x \in A$  then

$$\int_A f d\mu \le \int_A g d\mu.$$

• Prove that if  $\mu(A) = 0$  and f is measurable then

$$\int_A f d\mu = 0.$$

The next theorem expresses an important property of the Lebesgue integral. As a consequence we obtain convergence theorems which give the main advantage of the Lebesgue approach to integration in comparison with Riemann integration. **Theorem 7.5** Let f be measurable on X. For  $A \in \mathfrak{A}$  define

$$\phi(A) = \int_A f d\mu$$

Then  $\phi$  is countably additive on  $\mathfrak{A}$ .

*Proof.* It is enough to consider the case  $f \ge 0$ . The general case follows from the decomposition  $f = f^+ - f^-$ .

If  $f = \chi_E$  for some  $E \in \mathfrak{A}$  then

$$\mu(A \cap E) = \int_A \chi_E d\mu$$

and  $\sigma$ -additivity of  $\phi$  is the same as this property of  $\mu$ .

Let 
$$f(x) = \sum_{k=1}^{n} c_k \chi_{E_k}(x)$$
,  $\bigsqcup_{k=1}^{n} E_k = X$ . Then for  $A = \bigsqcup_{i=1}^{\infty} A_i$ ,  $A_i \in \mathfrak{A}$  we have

$$\phi(A) = \int_{A} f d\mu = \int f \chi_{A} d\mu = \sum_{k=1}^{n} c_{k} \mu(E_{k} \cap A)$$
$$= \sum_{k=1}^{n} c_{k} \mu(E_{k} \cap (\bigsqcup_{i=1}^{\infty} A_{i})) = \sum_{k=1}^{n} c_{k} \mu(\bigsqcup_{i=1}^{\infty} (E_{k} \cap A_{i}))$$
$$= \sum_{k=1}^{n} c_{k} \sum_{i=1}^{\infty} \mu(E_{k} \cap A_{i}) = \sum_{i=1}^{\infty} \sum_{k=1}^{n} c_{k} \mu(E_{k} \cap A_{i})$$
(the series of positive numbers)
$$= \sum_{i=1}^{\infty} \int_{A_{i}} f d\mu = \sum_{i=1}^{\infty} \phi(A_{i}).$$

Now consider general positive f's. Let  $\varphi$  be a simple measurable function and  $\varphi \leq f$ . Then

$$\int_{A} \varphi d\mu = \sum_{i=1}^{\infty} \int_{A_i} \varphi d\mu \le \sum_{i=1}^{\infty} \phi(A_i).$$

Therefore the same inequality holds for sup, hence

$$\phi(A) \le \sum_{i=1}^{\infty} \phi(A_i).$$

Now if for some  $i \ \phi(A_i) = +\infty$  then  $\phi(A) = +\infty$  since  $\phi(A) \ge \phi(A_n)$ . So assume that  $\phi(A_i) < \infty \forall i$ . Given  $\varepsilon > 0$  choose a measurable simple function  $\varphi$  such that  $\varphi \le f$  and

$$\int_{A_1} \varphi d\mu \ge \int_{A_1} f d\mu - \varepsilon, \quad \int_{A_2} \varphi d\mu \ge \int_{A_2} f - \varepsilon.$$

Hence

$$\phi(A_1 \cup A_2) \ge \int_{A_1 \cup A_2} \varphi d\mu = \int_{A_1} + \int_{A_2} \varphi d\mu \ge \phi(A_1) + \phi(A_2) - 2\varepsilon,$$

so that  $\phi(A_1 \cup A_2) \ge \phi(A_1) + \phi(A_2)$ .

By induction

$$\phi(\bigcup_{i=1}^{n} A_i) \ge \sum_{i=1}^{n} \phi(A_i).$$

Since  $A \supset \bigcup_{i=1}^n A_i$  we have that

$$\phi(A) \ge \sum_{i=1}^{n} \phi(A_i).$$

Passing to the limit  $n \to \infty$  in the RHS we obtain

$$\phi(A) \ge \sum_{i=1}^{\infty} \phi(A_i).$$

This completes the proof.  $\blacksquare$ 

**Corollary**. If  $A \in \mathfrak{A}$ ,  $B \subset A$  and  $\mu(A \setminus B) = 0$  then

$$\int_{A} f d\mu = \int_{B} f d\mu.$$

Proof.

$$\int_{A} f d\mu = \int_{B} f d\mu + \int_{A \setminus B} f d\mu = \int_{B} f d\mu + 0.$$

**Definition 7.5** f and g are called equivalent  $(f \sim g \text{ in writing})$  if  $\mu(\{x : f(x) \neq g(x)\}) = 0$ .

It is not hard to see that  $f \sim g$  is relation of equivalence. (i)  $f \sim f$ , (ii)  $f \sim g$ ,  $g \sim h \Rightarrow f \sim h$ , (iii)  $f \sim g \Leftrightarrow g \sim f$ .

**Theorem 7.6** If  $f \in L^1$  then  $|f| \in L^1$  and

$$\left|\int_{A} f d\mu\right| \leq \int_{A} |f| d\mu$$

Proof.

$$-|f| \leq f \leq |f|$$

**Theorem 7.7** (Monotone Convergence Theorem)

Let  $(f_n)$  be nondecreasing sequence of nonnegative measurable functions with limit f. Then

$$\int_{A} f d\mu = \lim_{n \to \infty} \int_{A} f_n d\mu, \ A \in \mathfrak{A}$$

*Proof.* First, note that  $f_n(x) \leq f(x)$  so that

$$\lim_{n} \int_{A} f_{n} d\mu \leq \int f d\mu$$

It is remained to prove the opposite inequality.

For this it is enough to show that for any simple  $\varphi$  such that  $0 \le \varphi \le f$  the following inequality holds

$$\int_{A} \varphi d\mu \le \lim_{n} \int_{A} f_{n} d\mu$$

Take 0 < c < 1. Define

$$A_n = \{x \in A : f_n(x) \ge c\varphi(x)\}$$

then  $A_n \subset A_{n+1}$  and  $A = \bigcup_{n=1}^{\infty} A_n$ . Now observe

$$c\int_{A}\varphi d\mu = \int_{A}c\varphi d\mu = \lim_{n\to\infty}\int_{A_n}c\varphi d\mu \leq$$

(this is a consequence of  $\sigma$ -additivity of  $\phi$  proved above)

$$\leq \lim_{n \to \infty} \int_{A_n} f_n d\mu \leq \lim_{n \to \infty} \int_A f_n d\mu$$

Pass to the limit  $c \to 1.$ 

**Theorem 7.8** Let  $f = f_1 + f_2, f_1, f_2 \in L^1(\mu)$ . Then  $f \in L^1(\mu)$  and

$$\int f d\mu = \int f_1 d\mu + \int f_2 d\mu$$

*Proof.* First, let  $f_1, f_2 \ge 0$ . If they are simple then the result is trivial. Otherwise, choose monotonically increasing sequences  $(\varphi_{n,1}), (\varphi_{n,2})$  such that  $\varphi_{n,1} \to f_1$  and  $\varphi_{n,2} \to f_2$ .

Then for  $\varphi_n = \varphi_{n,1} + \varphi_{n,2}$ 

$$\int \varphi_n d\mu = \int \varphi_{n,1} d\mu + \int \varphi_{n,2} d\mu$$

and the result follows from the previous theorem.

If  $f_1 \ge 0$  and  $f_2 \le 0$  put

$$A = \{x : f(x) \ge 0\}, B = \{x : f(x) < 0\}$$

Then  $f, f_1$  and  $-f_2$  are non-negative on A.

Hence  $\int_A f_1 = \int_A f d\mu + \int_A (-f_2) d\mu$ Similarly

$$\int_{B} (-f_2)d\mu = \int_{B} f_1 d\mu + \int_{B} (-f)d\mu$$

The result follows from the additivity of integral.  $\blacksquare$ 

**Theorem 7.9** Let  $A \in \mathfrak{A}$ ,  $(f_n)$  be a sequence of non-negative measurable functions and

$$f(x) = \sum_{n=1}^{\infty} f_n(x), \ x \in A$$

Then

$$\int_{A} f d\mu = \sum_{n=1}^{\infty} \int_{A} f_n d\mu$$

Exercise. Prove the theorem.

#### Theorem 7.10 (Fatou's lemma)

If  $(f_n)$  is a sequence of non-negative measurable functions defined a.e. and

$$f(x) = \underline{\lim}_{n \to \infty} f_n(x)$$

then

$$\int_{A} f d\mu \leq \underline{\lim}_{n \to \infty} \int_{A} f_{n} d\mu$$
$$A \in \mathfrak{A}$$

*Proof.* Put  $g_n(x) = \inf_{i \ge n} f_i(x)$ Then by definition of the lower limit  $\lim_{n \to \infty} g_n(x) = f(x)$ . Moreover,  $g_n \le g_{n+1}$ ,  $g_n \le f_n$ . By the monotone convergence theorem

$$\int_{A} f d\mu = \lim_{n} \int_{A} g_{n} d\mu = \underline{\lim}_{n} \int_{A} g_{n} d\mu \leq \underline{\lim}_{n} \int_{A} f_{n} d\mu.$$

**Theorem 7.11** (Lebesgue's dominated convergence theorem) Let  $A \in \mathfrak{A}$ ,  $(f_n)$  be a sequence of measurable functions such that  $f_n(x) \to f(x)$  ( $x \in A$ .) Suppose there exists a function  $g \in L^1(\mu)$  on A such that

$$|f_n(x)| \le g(x)$$

Then

$$\lim_{n} \int_{A} f_{n} d\mu = \int_{A} f d\mu$$

*Proof.* From  $|f_n(x)| \leq g(x)$  it follows that  $f_n \in L^1(\mu)$ . Since  $f_n + g \geq 0$  and  $f + g \geq 0$ , by Fatou's lemma it follows

$$\int_{A} (f+g)d\mu \le \underline{\lim}_{n} \int_{A} (f_{n}+g)$$

or

$$\int_{A} f d\mu \leq \underline{\lim}_{n} \int_{A} f_{n} d\mu.$$

Since  $g - f_n \ge 0$  we have similarly

$$\int_{A} (g - f) d\mu \le \underline{\lim}_{n} \int_{A} (g - f_{n}) d\mu$$

so that

$$-\int_{A} f d\mu \le -\underline{\lim}_{n} \int_{A} f_{n} d\mu$$

which is the same as

$$\int_{A} f d\mu \ge \overline{\lim}_{n} \int_{A} f_{n} d\mu$$

This proves that

$$\underline{\lim}_n \int_A f_n d\mu = \overline{\lim}_n \int_A f_n d\mu = \int_A f d\mu.$$

# 8 Comparison of the Riemann and the Lebesgue integral

To distinguish we denote the Riemann integral by  $(R) \int_a^b f(x) dx$  and the Lebesgue integral by  $(L) \int_a^b f(x) dx$ .

**Theorem 8.1** If a function f is Riemann integrable on [a, b] then it is also Lebesgue integrable on [a, b] and

$$(L)\int_{a}^{b} f(x)dx = (R)\int_{a}^{b} f(x)dx$$

*Proof.* Boundedness of a function is a necessary condition of being Riemann integrable. On the other hand, every bounded measurable function is Lebesgue integarble. So it is enough to prove that if a function f is Riemann integrable then it is measurable.

Consider a partition  $\pi_m$  of [a, b] on  $n = 2^m$  equal parts by points  $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$  and set

$$\underline{f}_{m}(x) = \sum_{k=0}^{2^{m}-1} m_{k} \chi_{k}(x), \ \overline{f}_{m}(x) = \sum_{k=0}^{2^{m}-1} M_{k} \chi_{k}(x),$$

where  $\chi_k$  is a characteristic function of  $[x_k, x_{k+1})$  clearly,

$$\underline{f}_1(x) \le \underline{f}_2(x) \le \ldots \le f(x),$$
$$\overline{f}_1(x) \ge \overline{f}_2(x) \ge \ldots \ge f(x).$$

Therefore the limits

$$\underline{f}(x) = \lim_{m \to \infty} \underline{f}_m(x), \quad \overline{f}(x) = \lim_{m \to \infty} \overline{f}_m(x)$$

exist and are measurable. Note that  $\underline{f}(x) \leq \overline{f}(x) \leq \overline{f}(x)$ . Since  $\underline{f}_m$  and  $\overline{f}_m$  are simple measurable functions, we have

$$(L)\int_{a}^{b}\underline{f}_{m}(x)dx \leq (L)\int_{a}^{b}\underline{f}(x)dx \leq (L)\int_{a}^{b}\overline{f}(x)dx \leq (L)\int_{a}^{b}\overline{f}_{m}(x)dx.$$

Moreover,

$$(L)\int_{a}^{b}\underline{f}_{m}(x)dx = \sum_{k=0}^{2^{m}-1}m_{k}\Delta x_{k} = \underline{s}(f,\pi_{m})$$

and similarly

$$(L)\int_{a}^{b}\overline{f}_{m}(x)=\overline{s}(f,\pi_{m}).$$

 $\operatorname{So}$ 

$$\underline{s}(f,\pi_m) \le (L) \int_a^b \underline{f}(x) dx \le (L) \int_a^b \overline{f}(x) dx \le \overline{s}(f,\pi_m).$$

Since f is Riemann integrable,

$$\lim_{m \to \infty} \underline{s}(f, \pi_m) = \lim_{m \to \infty} \overline{s}(f, \pi_m) = (R) \int_a^b f(x) dx.$$

Therefore

$$(L)\int_{a}^{b}(\overline{f}(x)-\underline{f}(x))dx = 0$$

and since  $\overline{f} \geq \underline{f}$  we conclude that

$$f = \overline{f} = \underline{f}$$
 almost everywhere.

From this measurability of f follows.  $\blacksquare$ 

# 9 $L^p$ -spaces

Let  $(X, \mathfrak{A}, \mu)$  be a measure space. In this section we study  $L^p(X, \mathfrak{A}, \mu)$ -spaces which occur frequently in analysis.

### 9.1 Auxiliary facts

**Lemma 9.1** Let p and q be real numbers such that p > 1,  $\frac{1}{p} + \frac{1}{q} = 1$  (this numbers are called conjugate). Then for any a > 0, b > 0 the inequality

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

holds.

*Proof.* Note that  $\varphi(t) := \frac{t^p}{p} + \frac{1}{q} - t$  with  $t \ge 0$  has the only minimum at t = 1. It follows that

$$t \le \frac{t^p}{p} + \frac{1}{q}.$$

Then letting  $t = ab^{-\frac{1}{p-1}}$  we obtain

$$\frac{a^{p}b^{-q}}{p} + \frac{1}{q} \ge ab^{-\frac{1}{p-1}},$$

and the result follows.  $\blacksquare$ 

**Lemma 9.2** Let  $p \ge 1$ ,  $a, b \in \mathbb{R}$ . Then the inequality

$$|a+b|^p \le 2^{p-1}(|a|^p + |b|^p).$$

holds.

*Proof.* For p = 1 the statement is obvious. For p > 1 the function  $y = x^p$ ,  $x \ge 0$  is convex since  $y'' \ge 0$ . Therefore

$$\left(\frac{|a|+|b|}{2}\right)^p \le \frac{|a|^p+|b|^p}{2}.\blacksquare$$

## 9.2 The spaces $L^p$ , $1 \le p < \infty$ . Definition

Recall that two measurable functions are said to be equaivalent (with respect to the measure  $\mu$ ) if they are equal  $\mu$ -a;most everywhere.

The space  $L^p = L^p(X, \mathfrak{A}, \mu)$  consists of all  $\mu$ -equaivalence classes of  $\mathfrak{A}$ -measurable functions f such that  $|f|^p$  has finite integral over X with respect to  $\mu$ .

We set

$$||f||_p := \left(\int_X |f|^p d\mu\right)^{1/p}.$$

## 9.3 Hölder's inequality

**Theorem 9.3** Let p > 1,  $\frac{1}{p} + \frac{1}{q} = 1$ . Let f and g be measurable functions,  $|f|^p$  and  $|g|^q$  be integrable. Then fg is integrable and the inequality

$$\int_X |fg|d\mu \le \left(\int_X |f|^p d\mu\right)^{1/p} \left(\int_X |g|^q d\mu\right)^{1/q}.$$

*Proof.* It suffices to consider the case

$$||f||_p > 0, ||g||_q > 0.$$

Let

$$a = |f(x)| ||f||_p^{-1}, \ b = |g(x)| ||g||_q^{-1}.$$

By Lemma 1

$$\frac{|f(x)g(x)|}{\|f\|_p\|g\|_q} \le \frac{|f(x)|^p}{p\|f\|_p^p} + \frac{|g(x)|^q}{q\|g\|_q^q}.$$

After integration we obtain

$$\|f\|_p^{-1}\|g\|_q^{-1}\int_X |fg|d\mu \le \frac{1}{p} + \frac{1}{q} = 1.$$

## 9.4 Minkowski's inequality

**Theorem 9.4** If  $f, g \in L^p$ ,  $p \ge 1$ , then  $f + g \in L^p$  and

$$||f + g||_p \le ||f||_p + ||g||_p.$$

*Proof.* If  $||f||_p$  and  $||g||_p$  are finite then by Lemma 2  $|f+g|^p$  is integrable and  $||f+g||_p$  is well-defined.

Integratin the last inequality and using Hölder's inequality we obtain

$$\int_{X} |f+g|^{p} d\mu \leq \left(\int_{X} |f|^{p} d\mu\right)^{1/p} \left(\int_{X} |f+g|^{(p-1)q} d\mu\right)^{1/q} + \left(\int_{X} |g|^{p} d\mu\right)^{1/p} \left(\int_{X} |g|^{p}$$

The result follows.  $\hfill \blacksquare$ 

## 9.5 $L^p$ , $1 \le p < \infty$ , is a Banach space

It is readily seen from the properties of an integral and Theorem 9.3 that  $L^p$ ,  $1 \le p < \infty$ , is a vector space. We introduced the quantity  $||f||_p$ . Let us show that it defines a norm on  $L^p$ ,  $1 \le p < \infty$ , Indeed,

- 1. By the definition  $||f||_p \ge 0$ .
- 2.  $||f||_p = 0 \implies f(x) = 0$  for  $\mu$ -almost all  $x \in X$ . Since  $L^p$  consists of  $\mu$ -equivalence classes, it follows that  $f \sim 0$ .
- 3. Obviously,  $\|\alpha f\|_p = |\alpha| \|f\|_p$ .
- 4. From Minkowski's inequality it follows that  $||f + g||_p \le ||f||_p + ||g||_p$ .
- So  $L^p$ ,  $1 \le p < \infty$ , is a normed space.

**Theorem 9.5**  $L^p$ ,  $1 \le p < \infty$ , is a Banach space.

*Proof.* It remains to prove the completeness.

Let  $(f_n)$  be a Cauchy sequence in  $L^p$ . Then there exists a subsequence  $(f_{n_k})(k \in \mathbb{N})$ with  $n_k$  increasing such that

$$\|f_m - f_{n_k}\|_p < \frac{1}{2^k} \quad \forall m \ge n_k.$$

Then

$$\sum_{i=1}^{k} \|f_{n_{i+1}} - f_{n_i}\|_p < 1.$$

Let

$$g_k := |f_{n_1}| + |f_{n_2} - f_{n_1}| + \ldots + |f_{n_{k+1}} - f_{n_k}|.$$

Then  $g_k$  is monotonocally increasing. Using Minkowski's inequality we have

$$\|g_k^p\|_1 = \|g_k\|_p^p \le \left(\|f_{n_1}\|_p + \sum_{i=1}^k \|f_{n_{i+1}} - f_{n_i}\|_p\right)^p < (\|f_{n_1}\|_p + 1)^p$$

Put

$$g(x) := \lim_{k} g_k(x).$$

By the monotone convergence theorem

$$\lim_k \int_X g_k^p d\mu = \int_A g^p d\mu.$$

Moreover, the limit is finite since  $||g_k^p||_1 \leq C = (||f_{n_1}||_p + 1)^p$ .

Therefore

$$|f_{n_1}| + \sum_{j=1}^{\infty} |f_{n_{j+1}} - f_{n_j}|$$
 converges almost everywhere

and so does

$$f_{n_1} + \sum_{j=1}^{\infty} (f_{n_{j+1}} - f_{n_j}),$$

which means that

 $f_{n_1} + \sum_{j=1}^{N} (f_{n_{j+1}} - f_{n_j}) = f_{n_{N+1}}$  converges almost everywhere as  $N \to \infty$ .

Define

$$f(x) := \lim_{k \to \infty} f_{n_k}(x)$$

where the limit exists and zero on the complement. So f is measurable.

Let  $\epsilon>0$  be such that for n,m>N

$$||f_n - f_m||_p^p = \int_X |f_n - f_m|^p d\mu < \epsilon/2.$$

Then by Fatou's lemma

$$\int_X |f - f_m|^p d\mu = \int_X \lim_k |f_{n_k} - f_m|^p d\mu \le \underline{\lim}_k \int_X |f_{n_k} - f_m|^p d\mu$$

which is less than  $\epsilon$  for m > N. This proves that

$$||f - f_m||_p \to 0 \text{ as } m \to \infty.$$