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1 Introduction

We always denote by X our universe, i.e. all the sets we shall consider are subsets of X.

Recall some standard notation. 2X everywhere denotes the set of all subsets of a given
set X. If A ∩ B = ∅ then we often write A t B rather than A ∪ B, to underline the
disjointness. The complement (in X) of a set A is denoted by Ac. By A4B the symmetric
difference of A and B is denoted, i.e. A4B = (A \B) ∪ (B \A). Letters i, j, k always
denote positive integers. The sign ¹ is used for restriction of a function (operator etc.) to
a subset (subspace).

1.1 The Riemann integral

Recall how to construct the Riemannian integral. Let f : [a, b] → R. Consider a partition
π of [a, b]:

a = x0 < x1 < x2 < . . . < xn−1 < xn = b

and set ∆xk = xk+1 − xk, |π| = max{∆xk : k = 0, 1, . . . , n − 1}, mk = inf{f(x) : x ∈
[xk, xk+1]},Mk = sup{f(x) : x ∈ [xk, xk+1]}. Define the upper and lower Riemann—
Darboux sums

s(f, π) =
n−1∑

k=0

mk∆xk, s̄(f, π) =
n−1∑

k=0

Mk∆xk.

One can show (the Darboux theorem) that the following limits exist

lim
|π|→0

s(f, π) = sup
π

s(f, π) =

∫ b

a

fdx

lim
|π|→0

s̄(f, π) = inf
π

s̄(f, π) =

∫ b

a

fdx.
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Clearly,

s(f, π) ≤
∫ b

a

fdx ≤
∫ b

a

fdx ≤ s̄(f, π)

for any partition π.

The function f is said to be Riemann integrable on [a, b] if the upper and lower integrals
are equal. The common value is called Riemann integral of f on [a, b].

The functions cannot have a large set of points of discontinuity. More presicely this
will be stated further.

1.2 The Lebesgue integral

It allows to integrate functions from a much more general class. First, consider a very
useful example. For f, g ∈ C[a, b], two continuous functions on the segment [a, b] = {x ∈
R : a 6 x 6 b} put

ρ1(f, g) = max
a6x6b

|f(x)− g(x)|,

ρ2(f, g) =

∫ b

a

|f(x)− g(x)|dx.

Then (C[a, b], ρ1) is a complete metric space, when (C[a, b], ρ2) is not. To prove the latter
statement, consider a family of functions {ϕn}∞n=1 as drawn on Fig.1. This is a Cauchy
sequence with respect to ρ2. However, the limit does not belong to C[a, b].
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Figure 1: The function ϕn.

2 Systems of Sets

Definition 2.1 A ring of sets is a non-empty subset in 2X which is closed with respect
to the operations ∪ and \.

Proposition. Let K be a ring of sets. Then ∅ ∈ K.

Proof. Since K 6= ∅, there exists A ∈ K. Since K contains the difference of every two
its elements, one has A \ A = ∅ ∈ K. ¥

Examples.

1. The two extreme cases are K = {∅} and K = 2X .

2. Let X = R and denote by K all finite unions of semi-segments [a, b).

Definition 2.2 A semi-ring is a collection of sets P ⊂ 2X with the following properties:

1. If A,B ∈ P then A ∩B ∈ P;
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2. For every A,B ∈ P there exists a finite disjoint collection (Cj) j = 1, 2, . . . , n of
sets (i.e. Ci ∩ Cj = ∅ if i 6= j) such that

A \B =
n⊔

j=1

Cj.

Example. Let X = R, then the set of all semi-segments, [a, b), forms a semi-ring.

Definition 2.3 An algebra (of sets) is a ring of sets containing X ∈ 2X .

Examples.

1. {∅, X} and 2X are the two extreme cases (note that they are different from the
corresponding cases for rings of sets).

2. Let X = [a, b) be a fixed interval on R. Then the system of finite unions of subin-
tervals [α, β) ⊂ [a, b) forms an algebra.

3. The system of all bounded subsets of the real axis is a ring (not an algebra).

Remark. A is algebra if (i) A,B ∈ A =⇒ A ∪B ∈ A, (ii) A ∈ A =⇒ Ac ∈ A.

Indeed, 1) A ∩B = (Ac ∪Bc)c; 2) A \B = A ∩Bc.

Definition 2.4 A σ-ring (a σ-algebra) is a ring (an algebra) of sets which is closed with
respect to all countable unions.

Definition 2.5 A ring (an algebra, a σ-algebra) of sets, K(U) generated by a collection
of sets U ⊂ 2X is the minimal ring (algebra, σ-algebra) of sets containing U.

In other words, it is the intersection of all rings (algebras, σ-algebras) of sets containing
U.
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3 Measures

Let X be a set, A an algebra on X.

Definition 3.1 A function µ: A −→ R+ ∪ {∞} is called a measure if

1. µ(A) > 0 for any A ∈ A and µ(∅) = 0;

2. if (Ai)i>1 is a disjoint family of sets in A ( Ai ∩ Aj = ∅ for any i 6= j) such that⊔∞
i=1 Ai ∈ A, then

µ(
∞⊔
i=1

Ai) =
∞∑
i=1

µ(Ai).

The latter important property, is called countable additivity or σ-additivity of the measure
µ.

Let us state now some elementary properties of a measure. Below till the end of this
section A is an algebra of sets and µ is a measure on it.

1. (Monotonicity of µ) If A,B ∈ A and B ⊂ A then µ(B) 6 µ(A).

Proof. A = (A \B) tB implies that

µ(A) = µ(A \B) + µ(B).

Since µ(A \B) ≥ 0 it follows that µ(A) ≥ µ(B).

2. (Subtractivity of µ). If A,B ∈ A and B ⊂ A and µ(B) < ∞ then µ(A \ B) =
µ(A)− µ(B).

Proof. In 1) we proved that

µ(A) = µ(A \B) + µ(B).

If µ(B) < ∞ then
µ(A)− µ(B) = µ(A \B).

3. If A,B ∈ A and µ(A ∩B) < ∞ then µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).

Proof. A ∩B ⊂ A, A ∩B ⊂ B, therefore

A ∪B = (A \ (A ∩B)) tB.

Since µ(A ∩B) < ∞, one has

µ(A ∪B) = (µ(A)− µ(A ∩B)) + µ(B).
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4. (Semi-additivity of µ). If (Ai)i≥1 ⊂ A such that
⋃∞

i=1 Ai ∈ A then

µ(
∞⋃
i=1

Ai) 6
∞∑
i=1

µ(Ai).

Proof. First let us proove that

µ(
n⋃

i=1

Ai) 6
n∑

i=1

µ(Ai).

Note that the family of sets

B1 = A1

B2 = A2 \ A1

B3 = A3 \ (A1 ∪ A2)

. . .

Bn = An \
n−1⋃
i=1

Ai

is disjoint and
⊔n

i=1 Bi =
⋃n

i=1 Ai. Moreover, since Bi ⊂ Ai, we see that µ(Bi) ≤
µ(Ai). Then

µ(
n⋃

i=1

Ai) = µ(
n⊔

i=1

Bi) =
n∑

i=1

µ(Bi) ≤
n∑

i=1

µ(Ai).

Now we can repeat the argument for the infinite family using σ-additivity of the
measure.

3.1 Continuity of a measure

Theorem 3.1 Let A be an algebra, (Ai)i≥1 ⊂ A a monotonically increasing sequence of
sets (Ai ⊂ Ai+1) such that

⋃
i≥1 ∈ A. Then

µ(
∞⋃
i=1

Ai) = lim
n→∞

µ(An).

Proof. 1). If for some n0 µ(An0) = +∞ then µ(An) = +∞∀n ≥ n0 and µ(
⋃∞

i=1 Ai) = +∞.

2). Let now µ(Ai) < ∞ ∀i ≥ 1.
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Then

µ(
∞⋃
i=1

Ai) = µ(A1 t (A2 \ A1) t . . . t (An \ An−1) t . . .)

= µ(A1) +
∞∑

k=2

µ(Ak \ Ak−1)

= µ(A1) + lim
n→∞

n∑

k=2

(µ(Ak)− µ(Ak−1)) = lim
n→∞

µ(An).

3.2 Outer measure

Let a be an algebra of subsets of X and µ a measure on it. Our purpose now is to extend
µ to as many elements of 2X as possible.

An arbitrary set A ⊂ X can be always covered by sets from A, i.e. one can always find
E1, E2, . . . ∈ A such that

⋃∞
i=1 Ei ⊃ A. For instance, E1 = X, E2 = E3 = . . . = ∅.

Definition 3.2 For A ⊂ X its outer measure is defined by

µ∗(A) = inf
∞∑
i=1

µ(Ei)

where the infimum is taken over all A-coverings of the set A, i.e. all collections (Ei), Ei ∈
A with

⋃
i Ei ⊃ A.

Remark. The outer measure always exists since µ(A) > 0 for every A ∈ A.

Example. Let X = R2, A = K(P), -σ-algebra generated by P, P = {[a, b) × R1}.
Thus A consists of countable unions of strips like one drawn on the picture. Put µ([a, b)×
R1) = b − a. Then, clearly, the outer measure of the unit disc x2 + y2 6 1 is equal to 2.
The same value is for the square |x| 6 1, |y| 6 1.

Theorem 3.2 For A ∈ A one has µ∗(A) = µ(A).

In other words, µ∗ is an extension of µ.

Proof. 1. A is its own covering. This implies µ∗(A) 6 µ(A).

2. By definition of infimum, for any ε > 0 there exists a A-covering (Ei) of A such that∑
i µ(Ei) < µ∗(A) + ε. Note that

A = A ∩ (
⋃
i

Ei) =
⋃
i

(A ∩ Ei).
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Using consequently σ-semiadditivity and monotonicity of µ, one obtains:

µ(A) 6
∑

i

µ(A ∩ Ei) 6
∑

i

µ(Ei) < µ∗(A) + ε.

Since ε is arbitrary, we conclude that µ(A) 6 µ∗(A). ¥
It is evident that µ∗(A) > 0, µ∗(∅) = 0 (Check !).

Lemma. Let A be an algebra of sets (not necessary σ-algebra), µ a measure on A. If
there exists a set A ∈ A such that µ(A) < ∞, then µ(∅) = 0.

Proof. µ(A \ A) = µ(A)− µ(A) = 0. ¥
Therefore the property µ(∅) = 0 can be substituted with the existence in A of a set

with a finite measure.

Theorem 3.3 (Monotonicity of outer measure). If A ⊂ B then µ∗(A) 6 µ∗(B).

Proof. Any covering of B is a covering of A. ¥

Theorem 3.4 (σ-semiadditivity of µ∗). µ∗(
⋃∞

j=1 Aj) 6
∑∞

j=1 µ∗(Aj).
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Proof. If the series in the right-hand side diverges, there is nothing to prove. So assume
that it is convergent.

By the definition of outer measur for any ε > 0 and for any j there exists an A-covering⋃
k Ekj ⊃ Aj such that

∞∑

k=1

µ(Ekj) < µ∗(Aj) +
ε

2j
.

Since ∞⋃

j,k=1

Ekj ⊃
∞⋃

j=1

Aj,

the definition of µ∗ implies

µ∗(
∞⋃

j=1

Aj) 6
∞∑

j,k=1

µ(Ekj)

and therefore

µ∗(
∞⋃

j=1

Aj) <

∞∑
j=1

µ∗(Aj) + ε.

¥

3.3 Measurable Sets

Let A be an algebra of subsets of X, µ a measure on it, µ∗ the outer measure defined in
the previous section.

Definition 3.3 A ⊂ X is called a measurable set (by Carathèodory) if for any E ⊂ X
the following relation holds:

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac).

Denote by Ã the collection of all set which are measurable by Carathèodory and set
µ̃ = µ∗ ¹ Ã.

Remark Since E = (E ∩ A) ∪ (E ∩ Ac), due to semiadditivity of the outer measure

µ∗(E) ≤ µ∗(E ∩ A) + µ∗(E ∩ Ac).

Theorem 3.5 Ã is a σ-algebra containing A, and µ̃ is a measure on Ã.
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Proof. We devide the proof into several steps.

1. If A,B ∈ Ã then A ∪B ∈ Ã.

By the definition one has

µ∗(E) = µ∗(E ∩B) + µ∗(E ∩Bc). (1)

Take E ∩ A instead of E:

µ∗(E ∩ A) = µ∗(E ∩ A ∩B) + µ∗(E ∩ A ∩Bc). (2)

Then put E ∩ Ac in (1) instead of E

µ∗(E ∩ Ac) = µ∗(E ∩ Ac ∩B) + µ∗(E ∩ Ac ∩Bc). (3)

Add (2) and (3):

µ∗(E) = µ∗(E ∩ A ∩B) + µ∗(E ∩ A ∩Bc) + µ∗(E ∩ Ac ∩B) + µ∗(E ∩ Ac ∩Bc). (4)

Substitute E ∩ (A ∪B) in (4) instead of E. Note that

1) E ∩ (A ∪B) ∩ A ∩B = E ∩ A ∩B

2) E ∩ (A ∪B) ∩ Ac ∩B = E ∩ Ac ∩B

3) E ∩ (A ∪B) ∩ A ∩Bc = E ∩ A ∩Bc

4) E ∩ (A ∪B) ∩ Ac ∩Bc = ∅.

One has

µ∗(E ∩ (A ∪B)) = µ∗(E ∩ A ∩B) + µ∗(E ∩ Ac ∩B) + µ∗(E ∩ A ∩Bc). (5)

From (4) and (5) we have

µ∗(E) = µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c).

2. If A ∈ Ã then Ac ∈ Ã.

The definition of measurable set is symmetric with respect to A and Ac.

Therefore Ã is an algebra of sets.

3.

Let A,B ∈ A, A ∩B = ∅. From (5)

µ∗(E ∩ (A tB)) = µ∗(E ∩ Ac ∩B) + µ∗(E ∩ A ∩Bc) = µ∗(E ∩B) + µ∗(E ∩ A).

10



4. Ã is a σ-algebra.

From the previous step, by induction, for any finite disjoint collection (Bj) of sets:

µ∗(E ∩ (
n⊔

j=1

Bj)) =
n∑

j=1

µ∗(E ∩Bj). (6)

Let A =
⋃∞

j=1 Aj, Aj ∈ A. Then A =
⋃∞

j=1 Bj, Bj = Aj \
⋃j−1

k=1 Ak and
Bi ∩Bj = ∅ (i 6= j). It suffices to prove that

µ∗(E) > µ∗(E ∩ (
∞⊔

j=1

Bj)) + µ∗(E ∩ (
∞⊔

j=1

Bj)
c). (7)

Indeed, we have already proved that µ∗ is σ-semi-additive.

Since Ã is an algebra, it follows that
⊔n

j=1 Bj ∈ Ã(∀n ∈ N) and the following inequality
holds for every n:

µ∗(E) > µ∗(E ∩ (
n⊔

j=1

Bj)) + µ∗(E ∩ (
n⊔

j=1

Bj)
c). (8)

Since E ∩ (
⊔∞

j=1 Bj)
c ⊂ E ∩ (

⊔n
j=1 Bj)

c, by monotonicity of the mesasure and (8)

µ∗(E) ≥
n∑

j=1

µ∗(E ∩Bj) + µ∗(E ∩ Ac). (9)

Passing to the limit we get

µ∗(E) ≥
∞∑

j=1

µ∗(E ∩Bj) + µ∗(E ∩ Ac). (10)

Due to semiadditivity

µ∗(E ∩ A) = µ∗(E ∩ (
∞⊔

j=1

Bj)) = µ∗(
∞⊔

j=1

(E ∩Bj)) ≤
∞∑

j=1

µ∗(E ∩Bj).

Compare this with (10):

µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac).

Thus, A ∈ Ã, which means that Ã is a σ-algebra.

5. µ̃ = µ∗ ¹ Ã is a measure.

11



We need to prove only σ-additivity. Let E =
⊔∞

j=1 Aj. From(10) we get

µ∗(
∞⊔

j=1

Aj) >
∞∑

j=1

µ∗(Aj).

The oposite inequality follows from σ-semiadditivity of µ∗.

6. Ã ⊃ A.

Let A ∈ A, E ⊂ X. We need to prove:

µ∗(E) > µ∗(E ∩ A) + µ∗(E ∩ Ac). (11)

If E ∈ A then (11) is clear since E ∩ A and E ∩ Ac are disjoint and both belong to A

where µ∗ = µ and so is additive.

For E ⊂ X for ∀ε > 0 there exists a A-covering (Ej) of E such that

µ∗(E) + ε >

∞∑
j=1

µ(Ej). (12)

Now, since Ej = (Ej ∩ A) ∪ (Ej ∩ Ac), one has

µ(Ej) = µ(Ej ∩ A) + µ(Ej ∩ A)

and also

E ∩ A ⊂
∞⋃

j=1

(Ej ∩ A)

E ∩ Ac ⊂
∞⋃

j=1

(Ej ∩ Ac)

By monotonicity and σ-semiadditivity

µ∗(E ∩ A) 6
∞∑

j=1

µ(Ej ∩ A),

µ∗(E ∩ Ac) 6
∞∑

j=1

µ(Ej ∩ Ac).

Adding the last two inequalities we obtain

µ∗(E ∩ A) + µ∗(E ∩ Ac) ≤
∞∑

j=1

µ∗(Ej) < µ∗(E) + ε.

Since ε > 0 is arbitrary, (11) is proved. ¥
The following theorem is a direct consequence of the previous one.
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Theorem 3.6 Let A be an algebra of subsets of X and µ be a measure on it. Then there
exists a σ-algebra A1 ⊃ A and a measure µ1 on A1 such that µ1 ¹ A = µ.

Remark. Consider again an algebra A of subsets of X. Denot by Aσ the generated
σ-algebra and construct the extension µσ of µ on Aσ. This extension is called minimal
extension of measure.

Since Ã ⊃ A therefore Aσ ⊂ Ã. Hence one can set µσ = µ̃ ¹ Aσ. Obviously µσ is a
minimal extension of µ. It always exists. On can also show (see below) that this extension
is unique.

Theorem 3.7 Let µ be a measure on an algebra A of subsets of X, µ∗ the corresponding
outer measure. If µ∗(A) = 0 for a set A ⊂ X then A ∈ Ã and µ̃(A) = 0.

Proof. Clearly, it suffices to prove that A ∈ Ã. Further, it suffices to prove that µ∗(E) >
µ∗(E ∩ A) + µ∗(E ∩ Ac). The latter statement follows from monotonicity of µ∗. Indeed,
one has µ∗(E ∩ A) 6 µ∗(A) = 0 and µ∗(E ∩ Ac) 6 µ∗(E). ¥

Definition 3.4 A measure µ on an algebra of sets A is called complete if conditions
B ⊂ A, A ∈ A, µ(A) = 0 imply B ∈ A and µ(B) = 0.

Corollary. µ̃ is a complete measure.

Definition 3.5 A measure µ on an algebra A is called finite if µ(X) < ∞. It is called
σ-finite if the is an increasing sequence (Fj)j≥1 ⊂ A such that X =

⋃
j Fj and µ(Fj) < ∞

∀j.

Theorem 3.8 Let µ be a σ-finite measure on an algebra A. Then there exist a unique
extension of µ to a measure on Ã.

Proof. It suffices to sjow uniqueness. Let ν be another extension of µ (ν ¹ A = µ ¹ A).

First, let µ (and therefore ν, µ∗) be finite. Let A ∈ Ã. Let (Ej) ⊂ A such that
A ⊂ ⋃

j Ej. We have

ν(A) ≤ ν(
∞⋃

j=1

Ej) ≤
∞∑

j=1

ν(Ej) =
∞∑

j=1

µ(Ej).

Therefore
ν(A) ≤ µ∗(A) ∀A ∈ Ã.
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Since µ∗ and ν are additive (on Ã) it follows that

µ∗(A) + µ∗(Ac) = ν(A) + ν(Ac).

The terms in the RHS are finite and ν(A) ≤ µ∗(A), ν(Ac) ≤ µ∗(Ac). From this we infer
that

ν(A) = µ∗(A) ∀A ∈ Ã.

Now let µ be σ-finite, (Fj) be an increasing sequence of sets from A such that µ(Fj) <
∞ ∀j and X =

⋃∞
j=1 Fj. From what we have already proved it follows that

µ∗(A ∩ Fj) = ν(A ∩ Fj) ∀A ∈ Ã.

Therefore
µ∗(A) = lim

j
µ∗(A ∩ Fj) = lim

j
ν(A ∩ Fj) = ν(A). ¥

Theorem 3.9 (Continuity of measure). Let A be a σ-algebra with a measure µ, {Aj} ⊂
A a monotonically increasing sequence of sets. Then

µ(
∞⋃

j=1

Aj) = lim
j→∞

µ(Aj).

Proof. One has:

A =
∞⋃

j=1

Aj =
∞⊔

j=2

(Aj+1 \ Aj) t A1.

Using σ-additivity and subtractivity of µ,

µ(A) =
∞∑

j=1

(µ(Aj+1)− µ(Aj)) + µ(A1) = lim
j→∞

µ(Aj). ¥

Similar assertions for a decreasing sequence of sets in A can be proved using de Morgan
formulas.

Theorem 3.10 Let A ∈ Ã. Then for any ε > 0 there exists Aε ∈ A such that µ∗(A4
Aε) < ε.

Proof. 1. For any ε > 0 there exists an A cover
⋃

Ej ⊃ A such that

∑
j

µ(Ej) < µ∗(A) +
ε

2
= µ̃(A) +

ε

2
.
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On the other hand, ∑
j

µ(Ej) > µ̃(
⋃
j

EJ).

The monotonicity of µ̃ implies

µ̃(
∞⋃

j=1

EJ) = lim
n→∞

µ̃(
n⋃

j=1

Ej),

hence there exists a positive integer N such that

µ̃(
∞⋃

j=1

Ej)− µ̃(
N⋃

j=1

Ej) <
ε

2
. (13)

2. Now, put

Aε =
N⋃

j=1

Ej

and prove that µ∗(A4 Aε) < ε.

2a. Since

A ⊂
∞⋃

j=1

Ej,

one has

A \ Aε ⊂
∞⋃

j=1

Ej \ Aε.

Since

Aε ⊂
∞⋃

j=1

Ej,

one can use the monotonicity and subtractivity of µ̃. Together with estimate (13), this
gives

µ̃(A \ Aε) ≤ µ̃(
∞⋃

j=1

Ej \ Aε) <
ε

2
.

2b. The inclusion

Aε \ A ⊂
∞⋃

j=1

Ej \ A

implies

µ̃(Aε \ A) 6 µ̃(
∞⋃

j=1

Ej \ A) = µ̃(
∞⋃

j=1

Ej)− µ̃(A) <
ε

2
.
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Here we used the same properties of µ̃ as above and the choice of the cover (Ej).

3. Finally,
µ̃(A4 Aε) 6 µ̃(A \ Aε) + µ̃(Aε \ A).

¥
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4 Monotone Classes

and Uniqueness of Extension of Measure

Definition 4.1 A collection of sets, M is called a monotone class if together with any
monotone sequence of sets M contains the limit of this sequence.

Example. Any σ-ring. (This follows from the Exercise 1. below).

Exercises.

1. Prove that any σ-ring is a monotone class.

2. If a ring is a monotone class, then it is a σ-ring.

We shall denote by M(K) the minimal monotone class containing K.

Theorem 4.1 Let K be a ring of sets, Kσ the σ-ring generated by K. Then M(K) = Kσ.

Proof. 1. Clearly, M(K) ⊂ Kσ. Now, it suffices to prove that M(K) is a ring. This follows
from the Exercise (2) above and from the minimality of Kσ.

2. M(K) is a ring.

2a. For B ⊂ X, set

KB = {A ⊂ X : A ∪B,A ∩B,A \B, B \ A ∈ M(K)}.

This definition is symmetric with respect to A and B, therefore A ∈ KB implies B ∈ KA.

2b. KB is a monotone class.

Let (Aj) ⊂ KB be a monotonically increasing sequence. Prove that the union, A =
⋃

Aj

belongs to KB.

Since Aj ∈ KB, one has Aj ∪B ∈ KB, and so

A ∪B =
∞⋃

j=1

(Aj ∪B) ∈ M(K).

In the same way,

A \B = (
∞⋃

j=1

Aj) \B =
∞⋃

j=1

(Aj \B) ∈ M(K);
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B \ A = B \ (
∞⋃

j=1

Aj) =
∞⋂

j=1

(B \ Aj) ∈ M(K).

Similar proof is for the case of decreasing sequence (Aj).

2c. If B ∈ K then M(K) ⊂ KB.

Obviously, K ⊂ KB. Together with minimality of M(K), this implies M(K) ⊂ KB.

2d. If B ∈ M(K) then M(K) ⊂ KB.

Let A ∈ K. Then M(K) ⊂ KA. Thus if B ∈ M(K), one has B ∈ KA, so A ∈ KB.

Hence what we have proved is K ⊂ KB. This implies M(K) ⊂ KB.

2e. It follows from 2a. — 2d. that if A,B ∈ M(K) then A ∈ KB and so A ∪ B, A ∩ B,
A \B and B \ A all belong to M(K). ¥

Theorem 4.2 Let A be an algebra of sets, µ and ν two measures defined on the σ-
algebra Aσ generated by A. Then µ ¹ A = ν ¹ A implies µ = ν.

Proof. Choose A ∈ Aσ, then A = limn→∞ An, An ∈ A, for Aσ = M(A). Using continuity
of measure, one has

µ(A) = lim
n→∞

µ(An) = lim
n→∞

ν(An) = ν(A).

¥

Theorem 4.3 Let A be an algebra of sets, B ⊂ X such that for any ε > 0 there exists
Aε ∈ A with µ∗(B 4 Aε) < ε. Then B ∈ Ã.

Proof. 1. Since any outer measure is semi-additive, it suffices to prove that for any E ⊂ X
one has

µ∗(E) > µ∗(E ∩B) + µ∗(E ∩Bc).

2a. Since A ⊂ Ã, one has

µ∗(E ∩ Aε) + µ∗(E ∩ Ac
ε) 6 µ∗(E). (14)

2b. Since A ⊂ B ∪ (A 4 B) and since the outer measure µ∗ is monotone and semi-
additive, there is an estimate |µ∗(A)− µ∗(B)| 6 µ∗(A4 B) for any A,B ⊂ X. (C.f. the
proof of similar fact for measures above).

2c. It follows from the monotonicity of µ∗ that

|µ∗(E ∩ Aε)− µ∗(E ∩B)| 6 µ∗((E ∩ Aε)4 (E ∩B)) 6 µ(Aε ∩B) < ε.

18



Therefore, µ∗(E ∩ Aε) > µ∗(E ∩B)− ε.

In the same manner, µ∗(E ∩ Ac
ε) > µ∗(E ∩Bc)− ε.

2d. Using (14), one obtains

µ∗(E) > µ∗(E ∩B) + µ∗(E ∩Bc)− 2ε.

¥
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5 The Lebesgue Measure on the real line R1

5.1 The Lebesgue Measure of Bounded Sets of R1

Put A for the algebra of all finite unions of semi-segments (semi-intervals) on R1, i.e. all
sets of the form

A =
k⋃

j=1

[aj, bj).

Define a mapping µ : A −→ R by:

µ(A) =
k∑

j=1

(bj − aj).

Theorem 5.1 µ is a measure.

Proof. 1. All properties including the (finite) additivity are obvious. The only thing to
be proved is the σ-additivity.

Let (Aj) ⊂ A be such a countable disjoint family that

A =
∞⊔

j=1

Aj ∈ A.

The condition A ∈ A means that
⊔

Aj is a finite union of intervals.

2. For any positive integer n,
n⋃

j=1

Aj ⊂ A,

hence
n∑

j=1

µ(Aj) 6 µ(A),

and ∞∑
j=1

µ(Aj) = lim
n→∞

n∑
j=1

µ(Aj) 6 µ(A).

3. Now, let Aε a set obtained from A by the following construction. Take a connected
component of A. It is a semi-segment of the form [s, t). Shift slightly on the left its
right-hand end, to obtain a (closed) segment. Do it with all components of A, in such a
way that

µ(A) < µ(Aε) + ε. (15)
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Apply a similar procedure to each semi-segment shifting their left end point to the left
Aj = [aj, bj), and obtain (open) intervals, Aε

j with

µ(Aε
j) < µ(Aj) +

ε

2j
. (16)

4. By the construction, Aε is a compact set and (Aε
j) its open cover. Hence, there exists

a positive integer n such that
n⋃

j=1

Aε
j ⊃ Aε.

Thus

µ(Aε) 6
n∑

j=1

µ(Aε
j).

The formulas (15) and (16) imply

µ(A) <

n∑
j=1

µ(Aε
j) + ε 6

n∑
j=1

µ(Aj) +
n∑

j=1

ε

2j
+ ε,

thus

µ(A) <

∞∑
j=1

µ(Aj) + 2ε.

¥
Now, one can apply the Carathèodory’s scheme developed above, and obtain the mea-

sure space (Ã, µ̃). The result of this extension is called the Lebesgue measure. We shall
denote the Lebesgue measure on R1 by m.

Exercises.

1. A one point set is measurable, and its Lebesgue measure is equal to 0.

2. The same for a countable subset in R1. In particular, m(Q ∩ [0, 1]) = 0.

3. Any open or closed set in R1 is Lebesgue measurable.

Definition 5.1 Borel algebra of sets, B on the real line R1 is a σ-algebra generated by
all open sets on R1. Any element of B is called a Borel set.

Exercise. Any Borel set is Lebesgue measurable.

Theorem 5.2 Let E ⊂ R1 be a Lebesgue measurable set. Then for any ε > 0 there
exists an open set G ⊃ E such that m(G \ E) < ε.
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Proof. Since E is measurable, m∗(E) = m(E). According the definition of an outer
measure, for any ε > 0 there exists a cover A =

⋃
[ak, bk) ⊃ E such that

m(A) < m(E) +
ε

2
.

Now, put

G =
⋃

(ak − ε

2k+1
, bk).

¥
Problem. Let E ⊂ R1 be a bounded Lebesgue measurable set. Then for any ε > 0

there exists a compact set F ⊂ E such that m(E \ F ) < ε. (Hint: Cover E with a
semi-segment and apply the above theorem to the σ-algebra of measurable subsets in this
semi-segment).

Corollary. For any ε > 0 there exist an open set G and a compact set F such that
G ⊃ E ⊃ F and m(G \ F ) < ε.

Such measures are called regular.

5.2 The Lebesgue Measure on the Real Line R1

We now abolish the condition of boundness.

Definition 5.2 A set A on the real numbers line R1 is Lebesgue measurable if for any
positive integer n the bounded set A ∩ [−n, n) is a Lebesgue measurable set.

Definition 5.3 The Lebesgue measure on R1 is

m(A) = lim
n→∞

m(A ∩ [−n, n)).

Definition 5.4 A measure is called σ-finite if any measurable set can be represented as
a countable union of subsets each has a finite measure.

Thus the Lebesgue measure m is σ-finite.

Problem. The Lebesgue measure on R1 is regular.

5.3 The Lebesgue Measure in Rd

Definition 5.5 We call a d-dimensional rectangle in Rd any set of the form

{x : x ∈ Rd : ai 6 xi < bi}.
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Using rectangles, one can construct the Lebesque measure in Rd in the same fashion as
we deed for the R1 case.
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6 Measurable functions

Let X be a set, A a σ-algebra on X.

Definition 6.1 A pair (X, A) is called a measurable space.

Definition 6.2 Let f be a function defined on a measurable space (X, A), with values in
the extended real number system. The function f is called measurable if the set

{x : f(x) > a}

is measurable for every real a.

Example.

Theorem 6.1 The following conditions are equivalent

{x : f(x) > a} is measurable for every real a. (17)

{x : f(x) ≥ a} is measurable for every real a. (18)

{x : f(x) < a} is measurable for every real a. (19)

{x : f(x) ≤ a} is measurable for every real a. (20)

Proof. The statement follows from the equalities

{x : f(x) ≥ a} =
∞⋂

n=1

{x : f(x) > a− 1

n
}, (21)

{x : f(x) < a} = X \ {x : f(x) ≥ a}, (22)

{x : f(x) ≤ a} =
∞⋂

n=1

{x : f(x) < a +
1

n
}, (23)

{x : f(x) > a} = X \ {x : f(x) ≤ a} (24)

Theorem 6.2 Let (fn) be a sequence of measurable functions. For x ∈ X set

g(x) = sup
n

fn(x)(n ∈ N)

h(x) = lim sup
n→∞

fn(x).

Then g and h are measurable.
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Proof.

{x : g(x) ≤ a} =
∞⋂

n=1

{x : fn(x) ≤ a}.

Since the LHS is measurable it follows that the RHS is measurable too. The same proof
works for inf.

Now
h(x) = inf gm(x),

where
gm(x) = sup

n≥m
fn(x).

Theorem 6.3 Let f and g be measurable real-valued functions defined on X. Let F be
real and continuous function on R2. Put

h(x) = F (f(x), g(x)) (x ∈ X).

Then h is measurable.

Proof. Let Ga = {(u, v) : F (u, v) > a}. Then Ga is an open subset of R2, and thus

Ga =
∞⋃

n=1

In

where (In) is a sequence of open intervals

In = {(u, v) : an < u < bn, cn < v < dn}.
The set {x : an < f(x) < bn} is measurable and so is the set

{x : (f(x), g(x)) ∈ In} = {x : an < f(x) < bn} ∩ {x : cn < g(x) < dn}.
Hence the same is true for

{x : h(x) > a} = {x : (f(x), g(x)) ∈ Ga} =
∞⋃

n=1

{x : (f(x), g(x)) ∈ In}.

Corollories. Let f and g be measurable. Then the following functions are measurable

(i)f + g (25)

(ii)f · g (26)

(iii)|f | (27)

(iv)
f

g
(ifg 6= 0) (28)

(v) max{f, g}, min{f, g} (29)

(30)

since max{f, g} = 1/2(f + g + |f − g|), min{f, g} = 1/2(f + g − |f − g|).
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6.1 Step functions (simple functions)

Definition 6.3 A real valued function f : X → R is called simple function if it takes
only a finite number of distinct values.

We will use below the following notation

χE(x) =

{
1 if x ∈ E
0 otherwise

Theorem 6.4 A simple function f =
∑n

j=1 cjχEj
is measurable if and only if all the

sets Ej are measurable.

Exercise. Prove the theorem.

Theorem 6.5 Let f be real valued. There exists a sequence (fn) of simple functions such
that fn(x) −→ f(x) as n →∞, for every x ∈ X. If f is measurable, (fn) may be chosen
to be a sequence of measurable functions. If f ≥ 0, (fn) may be chosen monotonically
increasing.

Proof. If f ≥ 0 set

fn(x) =
∑n·2n

i=1
i−1
2n χEni

+ nχFn

where

Eni
= {x : i−1

2n ≤ f(x) < i
2n}, Fn = {x : f(x) ≥ n}.

The sequence (fn) is monotonically increasing, fn is a simple function. If f(x) < ∞ then
f(x) < n for a sufficiently large n and |fn(x) − f(x)| < 1/2n. Therefore fn(x) −→ f(x).
If f(x) = +∞ then fn(x) = n and again fn(x) −→ f(x).

In the general case f = f+ − f−, where

f+(x) := max{f(x), 0}, f−(x) := −min{f(x), 0}.
Note that if f is bounded then fn −→ f uniformly.
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7 Integration

Definition 7.1 A triple (X, A, µ), where A is a σ-algebra of subsets of X and µ is a
measure on it, is called a measure space.

Let (X, A, µ) be a measure space. Let f : X 7→ R be a simple measurable function.

f(x) =
n∑

i=1

ciχEi
(x) (31)

and
n⋃

i=1

Ei = X, Ei ∩ Ej = ∅ (i 6= j).

There are different representations of f by means of (31). Let us choose the represen-
tation such that all ci are distinct.

Definition 7.2 Define the quantity

I(f) =
n∑

i=1

ciµ(Ei).

First, we derive some properties of I(f).

Theorem 7.1 Let f be a simple measurable function. If X =
⊔k

j=1 Fj and f takes the
constant value bj on Fj then

I(f) =
k∑

j=1

bjµ(Fj).

Proof. Clearly, Ei =
⊔

j: bj=ci
Fj.

∑
i

ciµ(Ei) =
n∑

i=1

ciµ(
⊔

j: bj=ci

Fj) =
n∑

i=1

ci

∑

j: bj=ci

µ(Fj) =
k∑

j=1

bjµ(Fj).

¥
This show that the quantity I(f) is well defined.
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Theorem 7.2 If f and g are measurable simple functions then

I(αf + βg) = αI(f) + βI(g).

Proof. Let f(x) =
∑n

j=1 bjχFj
(x), X =

⊔n
j=1 Fj, g(x) =

∑m
k=1 ckχGk

(x), X =
⊔n

k=1 Gk.

Then

αf + βg =
n∑

j=1

m∑

k=1

(αbj + βck)χEjk
(x)

where Ejk = Fj ∩Gk.

Exercise. Complete the proof.

Theorem 7.3 Let f and g be simple measurable functions. Suppose that f ≤ g every-
where except for a set of measure zero. Then

I(f) ≤ I(g).

Proof. If f ≤ g everywhere then in the notation of the previous proof bj ≤ ck on Ejk and
I(f) ≤ I(g) follows.

Otherwise we can assume that f ≤ g + φ where φ is non-negative measurable simple
function which is zero every exept for a set N of measure zero. Then I(φ) = 0 and

I(f) ≤ I(g + φ) = I(f) + I(φ) = I(g).

Definition 7.3 If f : X 7→ R1 is a non-negative measurable function, we define the
Lebesgue integral of f by ∫

fdµ := sup I(φ)

where sup is taken over the set of all simple functions φ such that φ ≤ f .

Theorem 7.4 If f is a simple measurable function then
∫

fdµ = I(f).

Proof. Since f ≤ f it follows that
∫

fdµ ≥ I(f).

On the other hand, if φ ≤ f then I(φ) ≤ I(f) and also

sup
φ≤f

I(φ) ≤ I(f)

which leads to the inequality ∫
fdµ ≤ I(f).

¥
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Definition 7.4 1. If A is a measurable subset of X (A ∈ A)and f is a non-negative
measurable function then we define

∫

A

fdµ =

∫
fχAdµ.

2. ∫
fdµ =

∫
f+dµ−

∫
f−dµ

if at least one of the terms in RHS is finite. If both are finite we call f integrable.

Remark. Finiteness of the integrals
∫

f+dµ and
∫

f−dµ is equivalent to the finitenes of
the integral ∫

|f |dµ.

If it is the case we write f ∈ L1(X, µ) or simply f ∈ L1 if there is no ambiguity.

The following properties of the Lebesgue integral are simple consequences of the defi-
nition. The proofs are left to the reader.

• If f is measurable and bounded on A and µ(A) < ∞ then f is integrable on A.

• If a ≤ f(x) ≤ b (x ∈ A)), µ(A) < ∞ then

aµ(A) ≤
∫

A

fdµ ≤ bµ(a).

• If f(x) ≤ g(x) for all x ∈ A then

∫

A

fdµ ≤
∫

A

gdµ.

• Prove that if µ(A) = 0 and f is measurable then

∫

A

fdµ = 0.

The next theorem expresses an important property of the Lebesgue integral. As a con-
sequence we obtain convergence theorems which give the main advantage of the Lebesgue
approach to integration in comparison with Riemann integration.
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Theorem 7.5 Let f be measurable on X. For A ∈ A define

φ(A) =

∫

A

fdµ.

Then φ is countably additive on A.

Proof. It is enough to consider the case f ≥ 0. The general case follows from the
decomposition f = f+ − f−.

If f = χE for some E ∈ A then

µ(A ∩ E) =

∫

A

χEdµ

and σ-additivity of φ is the same as this property of µ.

Let f(x) =
∑n

k=1 ckχEk
(x),

⊔n
k=1 Ek = X. Then for A =

⊔∞
i=1 Ai, Ai ∈ A we have

φ(A) =

∫

A

fdµ =

∫
fχAdµ =

n∑

k=1

ckµ(Ek ∩ A)

=
n∑

k=1

ckµ(Ek ∩ (
∞⊔
i=1

Ai)) =
n∑

k=1

ckµ(
∞⊔
i=1

(Ek ∩ Ai))

=
n∑

k=1

ck

∞∑
i=1

µ(Ek ∩ Ai) =
∞∑
i=1

n∑

k=1

ckµ(Ek ∩ Ai)

(the series of positive numbers)

=
∞∑
i=1

∫

Ai

fdµ =
∞∑
i=1

φ(Ai).

Now consider general positive f ’s. Let ϕ be a simple measurable function and ϕ ≤ f .
Then ∫

A

ϕdµ =
∞∑
i=1

∫

Ai

ϕdµ ≤
∞∑
i=1

φ(Ai).

Therefore the same inequality holds for sup, hence

φ(A) ≤
∞∑
i=1

φ(Ai).

Now if for some i φ(Ai) = +∞ then φ(A) = +∞ since φ(A) ≥ φ(An). So assume that
φ(Ai) < ∞∀i. Given ε > 0 choose a measurable simple function ϕ such that ϕ ≤ f and

∫

A1

ϕdµ ≥
∫

A1

fdµ− ε,

∫

A2

ϕdµ ≥
∫

A2

f − ε.
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Hence

φ(A1 ∪ A2) ≥
∫

A1∪A2

ϕdµ =

∫

A1

+

∫

A2

ϕdµ ≥ φ(A1) + φ(A2)− 2ε,

so that φ(A1 ∪ A2) ≥ φ(A1) + φ(A2).

By induction

φ(
n⋃

i=1

Ai) ≥
n∑

i=1

φ(Ai).

Since A ⊃ ⋃n
i=1 Ai we have that

φ(A) ≥
n∑

i=1

φ(Ai).

Passing to the limit n →∞ in the RHS we obtain

φ(A) ≥
∞∑
i=1

φ(Ai).

This completes the proof.¥
Corollary. If A ∈ A, B ⊂ A and µ(A \B) = 0 then

∫

A

fdµ =

∫

B

fdµ.

Proof. ∫

A

fdµ =

∫

B

fdµ +

∫

A\B
fdµ =

∫

B

fdµ + 0.

¥

Definition 7.5 f and g are called equivalent (f ∼ g in writing) if µ({x : f(x) 6=
g(x)}) = 0.

It is not hard to see that f ∼ g is relation of equivalence.
(i) f ∼ f , (ii) f ∼ g, g ∼ h ⇒ f ∼ h, (iii) f ∼ g ⇔ g ∼ f.

Theorem 7.6 If f ∈ L1 then |f | ∈ L1 and

∣∣∣∣
∫

A

fdµ

∣∣∣∣ ≤
∫

A

|f |dµ
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Proof.
−|f | ≤ f ≤ |f |

Theorem 7.7 (Monotone Convergence Theorem)
Let (fn) be nondecreasing sequence of nonnegative measurable functions with limit f. Then

∫

A

fdµ = lim
n→∞

∫

A

fndµ, A ∈ A

Proof. First, note that fn(x) ≤ f(x) so that

lim
n

∫

A

fndµ ≤
∫

fdµ

It is remained to prove the opposite inequality.
For this it is enough to show that for any simple ϕ such that 0 ≤ ϕ ≤ f the following
inequality holds ∫

A

ϕdµ ≤ lim
n

∫

A

fndµ

Take 0 < c < 1. Define
An = {x ∈ A : fn(x) ≥ cϕ(x)}

then An ⊂ An+1 and A =
⋃∞

n=1 An.
Now observe

c

∫

A

ϕdµ =

∫

A

cϕdµ = lim
n→∞

∫

An

cϕdµ ≤

(this is a consequence of σ-additivity of φ proved above)

≤ lim
n→∞

∫

An

fndµ ≤ lim
n→∞

∫

A

fndµ

Pass to the limit c → 1.¥

Theorem 7.8 Let f = f1 + f2, f1, f2 ∈ L1(µ). Then f ∈ L1(µ) and

∫
fdµ =

∫
f1dµ +

∫
f2dµ
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Proof. First, let f1, f2 ≥ 0. If they are simple then the result is trivial. Otherwise, choose
monotonically increasing sequences (ϕn,1), (ϕn,2) such that ϕn,1 → f1 and ϕn,2 → f2.

Then for ϕn = ϕn,1 + ϕn,2

∫
ϕndµ =

∫
ϕn,1dµ +

∫
ϕn,2dµ

and the result follows from the previous theorem.

If f1 ≥ 0 and f2 ≤ 0 put

A = {x : f(x) ≥ 0}, B = {x : f(x) < 0}

Then f, f1 and −f2 are non-negative on A.

Hence
∫

A
f1 =

∫
A

fdµ +
∫

A
(−f2)dµ

Similarly ∫

B

(−f2)dµ =

∫

B

f1dµ +

∫

B

(−f)dµ

The result follows from the additivity of integral. ¥

Theorem 7.9 Let A ∈ A, (fn) be a sequence of non-negative measurable functions and

f(x) =
∞∑

n=1

fn(x), x ∈ A

Then ∫

A

fdµ =
∞∑

n=1

∫

A

fndµ

Exercise. Prove the theorem.

Theorem 7.10 (Fatou’s lemma)
If (fn) is a sequence of non-negative measurable functions defined a.e. and

f(x) = limn→∞fn(x)

then ∫

A

fdµ ≤ limn→∞

∫

A

fndµ

A ∈ A
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Proof. Put gn(x) = infi≥n fi(x)
Then by definition of the lower limit limn→∞gn(x) = f(x).
Moreover, gn ≤ gn+1, gn ≤ fn. By the monotone convergence theorem

∫

A

fdµ = lim
n

∫

A

gndµ = limn

∫

A

gndµ ≤ limn

∫

A

fndµ.

Theorem 7.11 (Lebesgue’s dominated convergence theorem)
Let A ∈ A, (fn) be a sequence of measurable functions such that fn(x) → f(x) (x ∈ A.)
Suppose there exists a function g ∈ L1(µ) on A such that

|fn(x)| ≤ g(x)

Then

lim
n

∫

A

fndµ =

∫

A

fdµ

Proof. From |fn(x)| ≤ g(x) it follows that fn ∈ L1(µ). Sinnce fn + g ≥ 0 and f + g ≥ 0,
by Fatou’s lemma it follows

∫

A

(f + g)dµ ≤ limn

∫

A

(fn + g)

or

∫

A

fdµ ≤ limn

∫

A

fndµ.

Since g − fn ≥ 0 we have similarly

∫

A

(g − f)dµ ≤ limn

∫

A

(g − fn)dµ

so that

−
∫

A

fdµ ≤ −limn

∫

A

fndµ

which is the same as ∫

A

fdµ ≥ limn

∫

A

fndµ

This proves that

limn

∫

A

fndµ = limn

∫

A

fndµ =

∫

A

fdµ.
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8 Comparison of the Riemann

and the Lebesgue integral

To distinguish we denote the Riemann integral by (R)
∫ b

a
f(x)dx and the Lebesgue integral

by (L)
∫ b

a
f(x)dx.

Theorem 8.1 If a finction f is Riemann integrable on [a, b] then it is also Lebesgue
integrable on [a, b] and

(L)

∫ b

a

f(x)dx = (R)

∫ b

a

f(x)dx.

Proof. Boundedness of a function is a necessary condition of being Riemann integrable.
On the other hand, every bounded measurable function is Lebesgue integarble. So it is
enough to prove that if a function f is Riemann integrable then it is measurable.

Consider a partition πm of [a, b] on n = 2m equal parts by points a = x0 < x1 < . . . <
xn−1 < xn = b and set

f
m

(x) =
2m−1∑

k=0

mkχk(x), fm(x) =
2m−1∑

k=0

Mkχk(x),

where χk is a charactersitic function of [xk, xk+1) clearly,

f
1
(x) ≤ f

2
(x) ≤ . . . ≤ f(x),

f 1(x) ≥ f 2(x) ≥ . . . ≥ f(x).

Therefore the limits

f(x) = lim
m→∞

f
m

(x), f(x) = lim
m→∞

fm(x)

exist and are measurable. Note that f(x) ≤ f(x) ≤ f(x). Since f
m

and fm are simple
measurable functions, we have

(L)

∫ b

a

f
m

(x)dx ≤ (L)

∫ b

a

f(x)dx ≤ (L)

∫ b

a

f(x)dx ≤ (L)

∫ b

a

fm(x)dx.

Moreover,

(L)

∫ b

a

f
m

(x)dx =
2m−1∑

k=0

mk∆xk = s(f, πm)
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and similarly

(L)

∫ b

a

fm(x) = s(f, πm).

So

s(f, πm) ≤ (L)

∫ b

a

f(x)dx ≤ (L)

∫ b

a

f(x)dx ≤ s(f, πm).

Since f is Riemann integrable,

lim
m→∞

s(f, πm) = lim
m→∞

s(f, πm) = (R)

∫ b

a

f(x)dx.

Therefore

(L)

∫ b

a

(f(x)− f(x))dx = 0

and since f ≥ f we conclude that

f = f = f almost everywhere.

From this measurability of f follows. ¥
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9 Lp-spaces

Let (X, A, µ) be a measure space. In this section we study Lp(X, A, µ)-spaces which occur
frequently in analysis.

9.1 Auxiliary facts

Lemma 9.1 Let p and q be real numbers such that p > 1, 1
p

+ 1
q

= 1 (this numbers are

called conjugate). Then for any a > 0, b > 0 the inequality

ab ≤ ap

p
+

bq

q
.

holds.

Proof. Note that ϕ(t) := tp

p
+ 1

q
− t with t ≥ 0 has the only minimum at t = 1. It follows

that

t ≤ tp

p
+

1

q
.

Then letting t = ab−
1

p−1 we obtain

apb−q

p
+

1

q
≥ ab−

1
p−1 ,

and the result follows.¥

Lemma 9.2 Let p ≥ 1, a, b ∈ R. Then the inequality

|a + b|p ≤ 2p−1(|a|p + |b|p).

holds.

Proof. For p = 1 the statement is obvious. For p > 1 the function y = xp, x ≥ 0 is convex
since y′′ ≥ 0. Therefore ( |a|+ |b|

2

)p

≤ |a|p + |b|p
2

.¥
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9.2 The spaces Lp, 1 ≤ p < ∞. Definition

Recall that two measurable functions are said to be equaivalent (with respect to the
measure µ) if they are equal µ-a;most everywhere.

The space Lp = Lp(X, A, µ) consists of all µ-equaivalence classes of A-measurable
functions f such that |f |p has finite integral over X with respect to µ.

We set

‖f‖p :=

(∫

X

|f |pdµ

)1/p

.

9.3 Hölder’s inequality

Theorem 9.3 Let p > 1, 1
p

+ 1
q

= 1. Let f and g be measurable functions, |f |p and |g|q
be integrable. Then fg is integrable andthe inequality

∫

X

|fg|dµ ≤
(∫

X

|f |pdµ

)1/p (∫

X

|g|qdµ

)1/q

.

Proof. It suffices to consider the case

‖f‖p > 0, ‖g‖q > 0.

Let
a = |f(x)|‖f‖−1

p , b = |g(x)|‖g‖−1
q .

By Lemma 1
|f(x)g(x)|
‖f‖p‖g‖q

≤ |f(x)|p
p‖f‖p

p
+
|g(x)|q
q‖g‖q

q
.

After integration we obtain

‖f‖−1
p ‖g‖−1

q

∫

X

|fg|dµ ≤ 1

p
+

1

q
= 1. ¥

9.4 Minkowski’s inequality

Theorem 9.4 If f, g ∈ Lp, p ≥ 1, then f + g ∈ Lp and

‖f + g‖p ≤ ‖f‖p + ‖g‖p.
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Proof. If ‖f‖p and ‖g‖p are finite then by Lemma 2 |f + g|pis integrable and ‖f + g‖p

is well-defined.

|f(x)+g(x)|p = |f(x)+g(x)||f(x)+g(x)|p−1 ≤ |f(x)||f(x)+g(x)|p−1+|g(x)||f(x)+g(x)|p−1.

Integratin the last inequality and using Hölder’s inequality we obtain

∫

X

|f+g|pdµ ≤
(∫

X

|f |pdµ

)1/p (∫

X

|f + g|(p−1)qdµ

)1/q

+

(∫

X

|g|pdµ

)1/p (∫

X

|f + g|(p−1)qdµ

)1/q

.

The result follows. ¥

9.5 Lp, 1 ≤ p < ∞, is a Banach space

It is readily seen from the properties of an integral and Theorem 9.3 that Lp, 1 ≤ p < ∞,
is a vector space. We introduced the quantity ‖f‖p. Let us show that it defines a norm
on Lp, 1 ≤ p < ∞,. Indeed,

1. By the definition ‖f‖p ≥ 0.

2. ‖f‖p = 0 =⇒ f(x) = 0 for µ-almost all x ∈ X. Since Lp consists of µ-eqivalence
classes, it follows that f ∼ 0.

3. Obviously, ‖αf‖p = |α|‖f‖p.

4. From Minkowski’s inequality it follows that ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

So Lp, 1 ≤ p < ∞, is a normed space.

Theorem 9.5 Lp, 1 ≤ p < ∞, is a Banach space.

Proof. It remains to prove the completeness.

Let (fn) be a Cauchy sequence in Lp. Then there exists a subsequence (fnk
)(k ∈ N)

with nk increasing such that

‖fm − fnk
‖p <

1

2k
∀m ≥ nk.

Then
k∑

i=1

‖fni+1
− fni

‖p < 1.
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Let
gk := |fn1|+ |fn2 − fn1|+ . . . + |fnk+1

− fnk
|.

Then gk is monotonocally increasing. Using Minkowski’s inequality we have

‖gp
k‖1 = ‖gk‖p

p ≤
(
‖fn1‖p +

k∑
i=1

‖fni+1
− fni

‖p

)p

< (‖fn1‖p + 1)p.

Put
g(x) := lim

k
gk(x).

By the monotone convergence theorem

lim
k

∫

X

gp
kdµ =

∫

A

gpdµ.

Moreover, the limit is finite since ‖gp
k‖1 ≤ C = (‖fn1‖p + 1)p.

Therefore

|fn1|+
∞∑

j=1

|fnj+1
− fnj

| converges almost everywhere

and so does

fn1 +
∞∑

j=1

(fnj+1
− fnj

),

which means that

fn1 +
N∑

j=1

(fnj+1
− fnj

) = fnN+1
converges almost everywhere as N →∞.

Define
f(x) := lim

k→∞
fnk

(x)

where the limit exists and zero on the complement. So f is measurable.

Let ε > 0 be such that for n,m > N

‖fn − fm‖p
p =

∫

X

|fn − fm|pdµ < ε/2.

Then by Fatou’s lemma∫

X

|f − fm|pdµ =

∫

X

lim
k
|fnk

− fm|pdµ ≤ limk

∫

X

|fnk
− fm|pdµ

which is less than ε for m > N . This proves that

‖f − fm‖p → 0 as m →∞. ¥
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