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1. Measures.
Let X be a set. We will use the notation: Ac = {x ∈ X : x /∈ A} and A−B = A ∩Bc.

Definition. An algebra or a field is a collection A of subsets of X such that
(a) ∅, X ∈ A;
(b) if A ∈ A, then Ac ∈ A;
(c) if A1, . . . , An ∈ A, then ∪n

i=1Ai and ∩n
i=1Ai are in A.

A is a σ-algebra or σ-field if in addition
(d) if A1, A2, . . . are in A, then ∪∞i=1Ai and ∩∞i=1Ai are in A.

In (d) we allow countable unions and intersections only; we do not allow uncountable unions and intersections.

Example. Let X = R and A be the collection of all subsets of R.

Example. Let X = R and let A = {A ⊂ R : A is countable or Ac is countable}.

Definition. A measure on (X,A) is a function µ : A → [0,∞] such that
(a) µ(A) ≥ 0 for all A ∈ A;
(b) µ(∅) = 0;
(c) if Ai ∈ A are disjoint, then

µ(∪∞i=1Ai) =
∞∑

i=1

µ(Ai).

Example. X is any set, A is the collection of all subsets, and µ(A) is the number of elements in A.

Example. X = R, A the collection of all subsets, x1, x2, . . . ∈ R, a1, a2, . . . > 0, and µ(A) =
∑
{i:xi∈A} ai.

Example. δx(A) = 1 if x ∈ A and 0 otherwise. This measure is called point mass at x.

Proposition 1.1. The following hold:

(a) If A,B ∈ A with A ⊂ B, then µ(A) ≤ µ(B).
(b) If Ai ∈ A and A = ∪∞i=1Ai, then µ(A) ≤

∑∞
i=1 µ(Ai).

(c) If Ai ∈ A, A1 ⊂ A2 ⊂ · · ·, and A = ∪∞i=1Ai, then µ(A) = limn→∞ µ(An).
(d) If Ai ∈ A, A1 ⊃ A2 ⊃ · · ·, µ(A1) < ∞, and A = ∩∞i=1Ai, then we have µ(A) = limn→∞ µ(An).

Proof. (a) Let A1 = A, A2 = B−A, and A3 = A4 = · · · = ∅. Now use part (c) of the definition of measure.
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(b) Let B1 = A1, B2 = A2 − B1, B3 = A3 − (B1 ∪ B2), and so on. The Bi are disjoint and
∪∞i=1Bi = ∪∞i=1Ai. So µ(A) =

∑
µ(Bi) ≤

∑
µ(Ai).

(c) Define the Bi as in (b). Since ∪n
i=1Bi = ∪n

i=1Ai, then

µ(A) = µ(∪∞i=1Ai) = µ(∪∞i=1Bi) =
∞∑

i=1

µ(Bi)

= lim
n→∞

n∑
i=1

µ(Bi) = lim
n→∞

µ(∪n
i=1Bi) = lim

n→∞
µ(∪n

i=1Ai).

(d) Apply (c) to the sets A1 −Ai, i = 1, 2, . . .. �

Definition. A probability or probability measure is a measure such that µ(X) = 1. In this case we usually
write (Ω,F , P) instead of (X,A, µ).

2. Construction of Lebesgue measure.
Define m((a, b)) = b − a. If G is an open set and G ⊂ R, then G = ∪∞i=1(ai, bi) with the intervals

disjoint. Define m(G) =
∑∞

i=1(bi − ai). If A ⊂ R, define

m∗(A) = inf{m(G) : G open, A ⊂ G}.

We will show the following.

(1) m∗ is not a measure on the collection of all subsets of R.

(2) m∗ is a measure on the σ-algebra consisting of what are known as m∗-measurable sets.

(3) Let A0 be the algebra (not σ-algebra) consisting of all finite unions of sets of the form [ai, bi). If A is
the smallest σ-algebra containing A0, then m∗ is a measure on (R,A).

We will prove these three facts (and a bit more) in a moment, but let’s first make some remarks about
the consequences of (1)-(3).

If you take any collection of σ-algebras and take their intersection, it is easy to see that this will again
be a σ-algebra. The smallest σ-algebra containing A0 will be the intersection of all σ-algebras containing
A0.

Since (a, b] is in A0 for all a and b, then (a, b) = ∪∞i=i0
(a, b − 1/i] ∈ A, where we choose i0 so that

1/i0 < b − a. Then sets of the form ∪∞i=1(ai, bi) will be in A, hence all open sets. Therefore all closed sets
are in A as well.

The smallest σ-algebra containing the open sets is called the Borel σ-algebra. It is often written B.
A set N is a null set if m∗(N) = 0. Let L be the smallest σ-algebra containing B and all the null sets.

L is called the Lebesgue σ-algebra, and sets in L are called Lebesgue measurable.
As part of our proofs of (2) and (3) we will show that m∗ is a measure on L. Lebesgue measure is

the measure m∗ on L. (1) shows that L is strictly smaller than the collection of all subsets of R.

Proof of (1). Define x ∼ y if x − y is rational. This is an equivalence relationship on [0, 1]. For each
equivalence class, pick an element out of that class (by the axiom of choice) Call the collection of such points
A. Given a set B, define B +x = {y +x : y ∈ B}. Note m∗(A+ q) = m∗(A) since this translation invariance
holds for intervals, hence for open sets, hence for all sets. Moreover, the sets A + q are disjoint for different
rationals q.
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Now
[0, 1] ⊂ ∪q∈[−2,2](A + q),

where the sum is only over rational q, so 1 ≤
∑

q∈[−2,2] m
∗(A + q), and therefore m∗(A) > 0. But

∪q∈[−2,2](A + q) ⊂ [−6, 6],

where again the sum is only over rational q, so 12 ≥
∑

q∈[−2,2] m
∗(A + q), which implies m∗(A) = 0, a

contradiction. �

Proposition 2.1. The following hold:

(a) m∗(∅) = 0;

(b) if A ⊂ B, then m∗(A) ≤ m∗(B);
(c) m∗(∪∞i=1Ai) ≤

∑∞
i=1 m∗(Ai).

Proof. (a) and (b) are obvious. To prove (c), let ε > 0. For each i there exist intervals Ii1, Ii2, . . . such that
Ai ⊂ ∪∞j=1Iij and

∑
j m(Iij) ≤ m∗(Ai) + ε/2i. Then ∪∞i=1Ai ⊂ ∪i,jIij and∑

i,j

m(Iij) ≤
∑

i

m∗(Ai) +
∑

i

ε/2i =
∑

i

m∗(Ai) + ε.

Since ε is arbitrary, m∗(∪∞i=1Ai) ≤
∑∞

i=1 m∗(Ai). �

A function on the collection of all subsets satisfying (a), (b), and (c) is called an outer measure.

Definition. Let m∗ be an outer measure. A set A ⊂ X is m∗-measurable if

m∗(E) = m∗(E ∩A) + m∗(E ∩Ac) (2.1)

for all E ⊂ X.

Theorem 2.2. If m∗ is an outer measure on X, then the collection A of m∗ measurable sets is a σ-algebra

and the restriction of m∗ to A is a measure. Moreover, A contains all the null sets.

Proof. By Proposition 2.1(c),
m∗(E) ≤ m∗(E ∩A) + m∗(E ∩Ac)

for all E ⊂ X. So to check (2.1) it is enough to show m∗(E) ≥ m∗(E ∩A)+m∗(E ∩Ac). This will be trivial
in the case m∗(E) = ∞.

If A ∈ A, then Ac ∈ A by symmetry and the definition of A. Suppose A,B ∈ A and E ⊂ X. Then

m∗(E) = m∗(E ∩A) + m∗(E ∩Ac)

= (m∗(E ∩A ∩B) + m∗(E ∩A ∩Bc)) + (m∗(E ∩Ac ∩B) + m∗(E ∩Ac ∩Bc)

The first three terms on the right have a sum greater than or equal to m∗(E ∩ (A ∪ B)) because A ∪ B ⊂
(A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B). Therefore

m∗(E) ≥ m∗(E ∩ (A ∪B)) + m∗(E ∩ (A ∪B)c),

which shows A ∪B ∈ A. Therefore A is an algebra.
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Let Ai be disjoint sets in A, let Bn = ∪n
i=1Ai, and B = ∪∞i=1Ai. If E ⊂ X,

m∗(E ∩Bn) = m∗(E ∩Bn ∩An) + m∗(E ∩Bn ∩Ac
n)

= m∗(E ∩An) + m∗(E ∩Bn−1).

Repeating for m∗(E ∩Bn−1), we obtain

m∗(E ∩Bn) =
n∑

i=1

m∗(E ∩Ai).

So

m∗(E) = m∗(E ∩Bn) + m∗(E ∩Bc
n) ≥

n∑
i=1

m∗(E ∩Ai) + m∗(E ∩Bc).

Let n →∞. Then

m∗(E) ≥
∞∑

i=1

m∗(E ∩Ai) + m∗(E ∩Bc)

≥ m∗(∪∞i=1(E ∩Ai)) + m∗(E ∩Bc)

= m∗(E ∩B) + m(E ∩Bc)

≥ m∗(E).

This shows B ∈ A.
If we set E = B in this last equation, we obtain

m∗(B) =
∞∑

i=1

m∗(Ai),

or m∗ is countably additive on A.
If m∗(A) = 0 and E ⊂ X, then

m∗(E ∩A) + m∗(E ∩Ac) = m∗(E ∩Ac) ≤ m∗(E),

which shows A contains all null sets. �

None of this is useful if A does not contain the intervals. There are two main steps in showing this.
Let A0 be the algebra consisting of all finite unions of intervals of the form (a, b]. The first step is

Proposition 2.3. If Ai ∈ A0 are disjoint and ∪∞i=1Ai ∈ A0, then we have m(∪∞i=1Ai) =
∑∞

i=1 m(Ai).

Proof. Since ∪∞i=1Ai is a finite union of intervals (ak, bk], we may look at Ai ∩ (ak, bk] for each k. So we
may assume that A = ∪∞i=1Ai = (a, b].

First,

m(A) = m(∪n
i=1Ai) + m(A− ∪n

i=1Ai) ≥ m(∪n
i=1Ai) =

n∑
i=1

m(Ai).

Letting n →∞,

m(A) ≥
∞∑

i=1

m(Ai).

Let us assume a and b are finite, the other case being similar. By linearity, we may assume Ai =
(ai, bi]. Let ε > 0. The collection {(ai, bi + ε/2i)} covers [a + ε, b], and so there exists a finite subcover.
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Discarding any interval contained in another one, and relabeling, we may assume a1 < a2 < · · · aN and
bi + ε/2i ∈ (ai+1, bi+1 + ε/2i+1). Then

m(A) = b− a = b− (a + ε) + ε

≤
N∑

i=1

(bi + ε/2i − ai) + ε

≤
∞∑

i=1

m(Ai) + 2ε.

Since ε is arbitrary, m(A) ≤
∑∞

i=1 m(Ai). �

The second step is the Carathéodory extension theorem. We say that a measure m is σ-finite if there
exist E1, E2, . . . , such that m(Ei) < ∞ for all i and X ⊂ ∪∞i=1Ei.

Theorem 2.4. Suppose A0 is an algebra and m restricted to A0 is a measure. Define

m∗(E) = inf
{ ∞∑

i=1

m(Ai) : Ai ∈ A0, E ⊂ ∪∞i=1Ai

}
.

Then

(a) m∗(A) = m(A) if A ∈ A0;

(b) every set in A0 is m∗-measurable;

(c) if m is σ-finite, then there is a unique extension to the smallest σ-field containing A0.

Proof. We start with (a). Suppose E ∈ A0. We know m∗(E) ≤ m(E) since we can take A1 = E and
A2, A3, . . . empty in the definition of m∗. If E ⊂ ∪∞i=1Ai with Ai ∈ A0, let Bn = E ∩ (An − ∪n−1

i=1 Ai). The
the Bn are disjoint, they are each in A0, and their union is E. Therefore

m(E) =
∞∑

i=1

m(Bi) ≤
∞∑

i=1

m(Ai).

Thus m(E) ≤ m∗(E).
Next we look at (b). Suppose A ∈ A0. Let ε > 0 and let E ⊂ X. Pick Bi ∈ A0 such that E ⊂ ∪∞i=1Bi

and
∑

i m(Bi) ≤ m∗(E) + ε. Then

m∗(E) + ε ≥
∞∑

i=1

m(Bi) =
∞∑

i=1

m(Bi ∩A) +
∞∑

i=1

m(Bi ∩Ac)

≥ m∗(E ∩A) + m∗(E ∩Ac).

Since ε is arbitrary, m∗(E) ≥ m∗(E ∩A) + m∗(E ∩Ac). So A is m∗-measurable.
Finally, suppose we have two extensions to the smallest σ-field containing A0; let the other extension

be called n. We will show that if E is in this smallest σ-field, then m∗(E) = n(E).
Since E must be m∗-measurable, m∗(E) = inf{

∑∞
i=1 m(Ai) : E ⊂ ∪∞i=1Ai, Ai ∈ A0}. But m = n on

A0, so
∑

i m(Ai) =
∑

i n(Ai). Therefore n(E) ≤
∑

i n(Ai), which implies n(E) ≤ m∗(E).
Let ε > 0 and choose Ai ∈ A0 such that m∗(E) + ε ≥

∑
i m(Ai) and E ⊂ ∪iAi. Let A = ∪iAi and

Bk = ∪k
i=1Ai. Observe m∗(E) + ε ≥ m∗(A), hence m∗(A− E) < ε. We have

m∗(A) = lim
k→∞

m∗(Bk) = lim
k→∞

n(Bk) = n(A).
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Then
m∗(E) ≤ m∗(A) = n(A) = n(E) + n(A− E) ≤ n(E) + m(A− E) ≤ n(E) + ε.

Since ε is arbitrary, this completes the proof. �

We now drop the ∗ from m∗ and call m Lebesgue measure.

3. Lebesgue-Stieltjes measures. Let α : R → R be nondecreasing and right continuous (i.e., α(x+) =
α(x) for all x). Suppose we define mα((a, b)) = α(b) − α(a), define mα(∪∞i=1(ai, bi)) =

∑
i(α(bi) − α(ai))

when the intervals (ai, bi) are disjoint, and define m∗
α(A) = inf{mα(G) : A ⊂ G, G open}. Very much as in

the previous section we can show that m∗
α is a measure on the Borel σ-algebra. The only differences in the

proof are that where we had a+ε, we replace this by a′, where a′ is chosen so that a′ > a and α(a′) ≤ α(a)+ε

and we replace bi + ε/2i by b′i, where b′i is chosen so that b′i > bi and α(b′i) ≤ α(bi) + ε/2i. These choices are
possible because α is right continuous.

Lebesgue measure is the special case of mα when α(x) = x.
Given a measure µ on R such that µ(K) < ∞ whenever K is compact, define α(x) = µ((0, x]) if x ≥ 0

and α(x) = −µ((x, 0]) if x < 0. Then α is nondecreasing, right continuous, and it is not hard to see that
µ = mα.

4. Measurable functions. Suppose we have a set X together with a σ-algebra A.

Definition. f : X → R is measurable if {x : f(x) > a} ∈ A for all a ∈ R.

Proposition 4.1. The following are equivalent.

(a) {x : f(x) > a} ∈ A for all a;

(b) {x : f(x) ≤ a} ∈ A for all a;

(c) {x : f(x) < a} ∈ A for all a;

(d) {x : f(x) ≥ a} ∈ A for all a.

Proof. The equivalence of (a) and (b) and of (c) and (d) follow from taking complements. The remaining
equivalences follow from the equations

{x : f(x) ≥ a} = ∩∞n=1{x : f(x) > a− 1/n},
{x : f(x) > a} = ∪∞n=1{x : f(x) ≥ a + 1/n}.

�

Proposition 4.2. If X is a metric space, A contains all the open sets, and f is continuous, then f is

measurable.

Proof. {x : f(x) > a} = f−1(a,∞) is open. �

Proposition 4.3. If f and g are measurable, so are f + g, cf , fg, max(f, g), and min(f, g).

Proof. If f(x)+g(x) < α, then f(x) < α−g(x), and there exists a rational r such that f(x) < r < α−g(x).
So

{x : f(x) + g(x) < α} =
⋃

r rational
({x : f(x) < r} ∩ {x : g(x) < α− r}).

f2 is measurable since {x : f(x)2 > a) = {x : f(x) >
√

a} ∪ {x : f(x) < −
√

a}. The measurability of
fg follows since fg = 1

2 [(f + g)2 − f2 − g2].
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{x : max(f(x), g(x)) > a} = {x : f(x) > a} ∪ {x : g(x) > a}. �

Proposition 4.4. If fi is measurable for each i, then so is supi fi, infi fi, lim supi→∞ fi, and lim infi→∞ fi.

Proof. The result will follow for lim sup and lim inf once we have the result for the sup and inf by using
the definitions. We have {x : supi fi > a} = ∩∞i=1{x : fi(x) > a}, and the proof for inf fi is similar. �

Definition. We say f = g almost everywhere, written f = g a.e., if {x : f(x) 6= g(x)} has measure zero.
Similarly, we say fi → f a.e., if the set of x where this fails has measure zero.

5. Integration. In this section we introduce the Lebesgue integral.

Definition. If E ⊂ X, define the characteristic function of E by

χE(x) =
{ 1 x ∈ E;

0 x /∈ E.

A simple function s is one of the form

s(x) =
n∑

i=1

aiχEi
(x)

for reals ai and sets Ei.

Proposition 5.1. Suppose f ≥ 0 is measurable. Then there exists a sequence of nonnegative measurable

simple functions increasing to f .

Proof. Let Eni = {x : (i − 1)/2n ≤ f(x) < i/2n} and Fn = {x : f(x) ≥ n} for n = 1, 2, . . . , and
i = 1, 2, . . . , n2n. Then define

sn =
n2n∑
i=1

i− 1
2n

χEni
+ nχFn

.

It is easy to see that sn has the desired properties. �

Definition. If s =
∑n

i=1 aiχEi is a nonnegative measurable simple function, define the Lebesgue integral of
s to be ∫

s dµ =
n∑

i=1

aiµ(Ei). (5.1)

If f ≥ 0 is measurable function, define∫
f dµ = sup

{∫
s dµ : 0 ≤ s ≤ f, s simple

}
. (5.2)

If f is measurable and at least one of the integrals
∫

f+ dµ,
∫

f− dµ is finite, where f+ = max(f, 0) and
f− = −min(f, 0), define ∫

f dµ =
∫

f+ dµ−
∫

f− dµ. (5.3)

A few remarks are in order. A function s might be written as a simple function in more than one way.
For example χA∪B = χA +χB is A and B are disjoint. It is clear that the definition of

∫
s dµ is unaffected by

how s is written. Secondly, if s is a simple function, one has to think a moment to verify that the definition
of

∫
s dµ by means of (5.1) agrees with its definition by means of (5.2).

Definition. If
∫
|f | dµ < ∞, we say f is integrable.

The proof of the next proposition follows from the definitions.
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Proposition 5.2. (a) If f is measurable, a ≤ f(x) ≤ b for all x, and µ(X) < ∞, then aµ(X) ≤
∫

f dµ ≤
bµ(X);

(b) If f(x) ≤ g(x) for all x and f and g are measurable and integrable, then
∫

f dµ ≤
∫

g dµ.

(c) If f is integrable, then
∫

cf dµ = c
∫

f dµ for all real c.

(d) If µ(A) = 0 and f is measurable, then
∫

fχA dµ = 0.

The integral
∫

fχA dµ is often written
∫

A
f dµ. Other notation for the integral is to omit the µ if it

is clear which measure is being used, to write
∫

f(x) µ(dx), or to write
∫

f(x) dµ(x).

Proposition 5.3. If f is integrable, ∣∣∣∫ f
∣∣∣ ≤ ∫

|f |.

Proof. f ≤ |f |, so
∫

f ≤
∫
|f |. Also −f ≤ |f |, so −

∫
f ≤

∫
|f |. Now combine these two facts. �

One of the most important results concerning Lebesgue integration is the monotone convergence
theorem.

Theorem 5.4. Suppose fn is a sequence of nonnegative measurable functions with f1(x) ≤ f2(x) ≤ · · · for

all x and with limn→∞ fn(x) = f(x) for all x. Then
∫

fn dµ →
∫

f dµ.

Proof. By Proposition 5.2(b),
∫

fn is an increasing sequence of real numbers. Let L be the limit. Since
fn ≤ f for all n, then L ≤

∫
f . We must show L ≥

∫
f .

Let s =
∑m

i=1 aiχEi be any nonnegative simple function less than f and let c ∈ (0, 1). Let An = {x :
fn(x) ≥ cs(x)}. Since the fn(x) increases to f(x) for each x and c < 1, then A1 ⊂ A2 ⊂ · · ·, and the union
of the An is all of X. For each n, ∫

fn ≥
∫

An

fn ≥ c

∫
An

sn

= c

∫
An

m∑
i=1

aiχEi

= c

m∑
i=1

aiµ(Ei ∩An).

If we let n →∞, by Proposition 1.1(c), the right hand side converges to

c

m∑
i=1

aiµ(Ei) = c

∫
s.

Therefore L ≥ c
∫

s. Since c is arbitrary in the interval (0, 1), then L ≥
∫

s. Taking the supremum over all
simple s ≤ f , we obtain L ≥

∫
f . �

Once we have the monotone convergence theorem, we can prove that the Lebesgue integral is linear.

Theorem 5.5. If f1 and f2 are integrable, then∫
(f1 + f2) =

∫
f1 +

∫
f2.

Proof. First suppose f1 and f2 are nonnegative and simple. Then it is clear from the definition that the
theorem holds in this case. Next suppose f1 and f2 are nonnegative. Take sn simple and increasing to f1
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and tn simple and increasing to f2. Then sn + tn increases to f1 +f2, so the result follows from the monotone
convergence theorem and the result for simple functions. Finally in the general case, write f1 = f+

1 − f−1
and similarly for f2, and use the definitions and the result for nonnegative functions. �

Suppose fn are nonnegative measurable functions. We will frequently need the observation

∫ ∞∑
n=1

fn =
∫

lim
N→∞

N∑
n=1

fn = lim
N→∞

∫ ∞∑
n=1

fn (5.4)

= lim
N→∞

N∑
n=1

∫
fn =

∞∑
n=1

∫
fn.

We used here the monotone convergence theorem and the linearity of the integral.

The next theorem is known as Fatou’s lemma.

Theorem 5.6. Suppose the fn are nonnegative and measurable. Then∫
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn.

Proof. Let gn = infi≥n fi. Then gn are nonnegative and gn increases to lim inf fn. Clearly gn ≤ fi for each
i ≥ n, so

∫
gn ≤

∫
fi. Therefore ∫

gn ≤ inf
i≥n

∫
fi.

If we take the supremum over n, on the left hand side we obtain
∫

lim inf fn by the monotone convergence
theorem, while on the right hand side we obtain lim infn

∫
fn. �

A second very important theorem is the dominated convergence theorem.

Theorem 5.7. Suppose fn are measurable functions and fn(x) → f(x). Suppose there exists an integrable

function g such that |fn(x)| ≤ g(x) for all x. Then
∫

fn dµ →
∫

f dµ.

Proof. Since fn + g ≥ 0, by Fatou’s lemma,∫
(f + g) ≤ lim inf

∫
(fn + g).

Since g is integrable, ∫
f ≤ lim inf

∫
fn.

Similarly, g − fn ≥ 0, so ∫
(g − f) ≤ lim inf

∫
(g − fn),

and hence
−

∫
f ≤ lim inf

∫
(−fn) = − lim sup

∫
fn.

Therefore ∫
f ≥ lim sup

∫
fn,

which with the above proves the theorem. �
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Example. Suppose fn = nχ(0,1/n). Then fn ≥ 0, fn → 0 for each x, but
∫

fn = 1 does not converge to∫
0 = 0. The trouble here is that the fn do not increase for each x, nor is there a function g that dominates

all the fn simultaneously.

If in the monotone convergence theorem or dominated convergence theorem we have only fn(x) → f(x)
almost everywhere, the conclusion still holds. For if A = {x : fn(x) → f(x)}, then fχA → fχA for each x.
And since Ac has measure 0, we see from Proposition 5.2(d) that

∫
fχA =

∫
f , and similarly with f replaced

by fn.

Later on we will need the following two propositions.

Proposition 5.8. Suppose f is measurable and for every measurable set A we have
∫

A
f dµ = 0. Then

f = 0 almost everywhere.

Proof. Let A = {x : f(x) > ε}. Then

0 =
∫

A

f ≥
∫

A

ε = εµ(A)

since fχA ≥ εχA. Hence µ(A) = 0. We use this argument for ε = 1/n and n = 1, 2, . . . , so µ{x : f(x) >

0} = 0. Similarly µ{x : f(x) < 0} = 0. �

Proposition 5.9. Suppose f is measurable and nonnegative and
∫

f dµ = 0. Then f = 0 almost everywhere.

Proof. If f is not almost everywhere equal to 0, there exists an n such that µ(An) > 0 where An = {x :
f(x) > 1/n}. But then since f is nonnegative,∫

f ≥
∫

An

f ≥ 1
n

µ(An),

a contradiction. �

6. Product measures. If A1 ⊂ A2 ⊂ · · · and A = ∪∞i=1Ai, we write Ai ↑ A. If A1 ⊃ A2 ⊃ · · · and
A = ∩∞i=1Ai, we write Ai ↓ A.

Definition. M is a monotone class is M is a collection of subsets of X such that
(a) if Ai ↑ A and each Ai ∈M, then A ∈M;
(b) if Ai ↓ A and each Ai ∈M, then A ∈M.

The intersection of monotone classes is a monotone class, and the intersection of all monotone classes
containing a given collection of sets is the smallest monotone class containing that collection.

The next theorem, the monotone class lemma, is rather technical, but very useful.

Theorem 6.1. Suppose A0 is a algebra, A is the smallest σ-algebra containing A0, and M is the smallest

monotone class containing A0. Then M = A.

Proof. A σ-algebra is clearly a monotone class, so A ⊂M. We must show M⊂ A.
Let N1 = {A ∈M : Ac ∈M}. Note N1 is contained in M, contains A0, and is a monotone class. So

N1 = M, and therefore M is closed under the operation of taking complements.
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Let N2 = {A ∈ M : A ∩B ∈ M for all B ∈ A0}. N2 is contained in M; N2 contains A0 because A0

is an algebra; N2 is a monotone class because (∪∞i=1Ai) ∩B = ∪∞i=1(Ai ∩B), and similarly for intersections.
Therefore N2 = M; in other words, if B ∈ A0 and A ∈M, then A ∩B ∈M.

Let N3 = {A ∈ M : A ∩ B ∈ M for all B ∈ M}. As in the preceding paragraph, N3 is a monotone
class contained in M. By the last sentence of the preceding paragraph, N3 contains A0. Hence N3 = M.

We thus have that M is a monotone class closed under the operations of taking complements and
taking intersections. This shows M is a σ-algebra, and so M⊂ A. �

Suppose (X,A, µ) and (Y,B, ν) are two measure spaces, i.e., A and B are σ-algebras on X and Y ,
resp., and µ and ν are measures on A and B, resp. A rectangle is a set of the form A×B, where A ∈ A and
B ∈ B. Define a set function µ× ν on rectangles by

µ× ν(A×B) = µ(A)ν(B).

Lemma 6.2. Suppose A×B = ∪∞i=1Ai ×Bi, where A,Ai ∈ A and B,Bi ∈ B. Then

µ× ν(A×B) =
∞∑

i=1

µ× ν(Ai ×Bi).

Proof. We have

χA×B(x, y) =
∞∑

i=1

χAi×Bi(x, y),

and so

χA(x)χB(y) =
∞∑

i=1

χAi(x)χBi(y).

Holding x fixed and integrating over y with respect to ν, we have, using (5.4),

χA(x)ν(B) =
∞∑

i=1

χAi(x)ν(Bi).

Now use (5.4) again and integrate over x with respect to µ to obtain the result. �

Let C0 = {finite unions of rectangles}. It is clear that C0 is an algebra. By Lemma 6.2 and linearity,
we see that µ× ν is a measure on C0. Let A× B be the smallest σ-algebra containing C0; this is called the
product σ-algebra. By the Carathéodory extension theorem, µ× ν can be extended to a measure on A×B.

We will need the following observation. Suppose a measure µ is σ-finite. So there exist Ei which have
finite µ measure and whose union is X. If we let Fn = ∪n

i=1Ei, then Fi ↑ X and µ(Fn) is finite for each n.
If µ and ν are both σ-finite, say with Fi ↑ X and Gi ↑ Y , then µ × ν will be σ-finite, using the sets

Fi ×Gi.

The main result of this section is Fubini’s theorem, which allows one to interchange the order of
integration.

Theorem 6.3. Suppose f : X × Y → R is measurable with respect to A × B. If f is nonnegative or∫
|f(x, y)| d(µ× ν)(x, y) < ∞, then

(a) the function g(x) =
∫

f(x, y)ν(dy) is measurable with respect to A;

(b) the function h(y) =
∫

f(x, y)µ(dx) is measurable with respect to B;
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(c) we have ∫
f(x, y) d(µ× ν)(x, y) =

∫ ( ∫
f(x, y) dµ(x)

)
dν(y)

=
∫ ( ∫

f(x, y) dν(y)
)

µ(dx).

Proof. First suppose µ and ν are finite measures. If f is the characteristic function of a rectangle, then
(a)–(c) are obvious. By linearity, (a)–(c) hold if f is the characteristic function of a set in C0, the set of finite
unions of rectangles.

Let M be the collection of sets C such that (a)–(c) hold for χC . If Ci ↑ C and Ci ∈ M, then (c)
holds for χC by monotone convergence. If Ci ↓ C, then (c) holds for χC by dominated convergence. (a) and
(b) are easy. So M is a monotone class containing A0, so M = A× B.

If µ and ν are σ-finite, applying monotone convergence to C ∩ (Fn ×Gn) for suitable Fn and Gn and
monotone convergence, we see that (a)–(c) holds for the characteristic functions of sets in A×B in this case
as well.

By linearity, (a)–(c) hold for nonnegative simple functions. By monotone convergence, (a)–(c) hold
for nonnegative functions. In the case

∫
|f | < ∞, writing f = f+− f− and using linearity proves (a)–(c) for

this case, too. �

7. The Radon-Nikodym theorem. Suppose f is nonnegative, measurable, and integrable with respect
to µ. If we define ν by

ν(A) =
∫

A

f dµ,

then ν is a measure. The only part that needs thought is the countable additivity, and this follows from
(5.4) applied to the functions fχAi . Moreover, ν(A) is zero whenever µ(A) is.

Definition. A measure ν is called absolutely continuous with respect to a measure µ if ν(A) = 0 whenever
µ(A) = 0.

Definition. A function µ : A → (−∞,∞] is called a signed measure if µ(∅) = 0 and µ(∪∞i=1Ai) =
∑∞

i=1 µ(Ai)
whenever the Ai are disjoint and all the Ai are in A.

Definition. Let µ be a signed measure. A set A ∈ A is called a positive set for µ if µ(B) ≥ 0 whenever
B ⊂ A and A ∈ A. We define a negative set similarly.

Proposition 7.1. Let µ be a signed measure and let M > 0 such that µ(A) ≥ −M for all A ∈ A. If

µ(F ) < 0, then there exists a subset E of F that is a negative set with µ(E) < 0.

Proof. Suppose µ(F ) < 0. Let F1 = F and let a1 = sup{µ(A) : A ⊂ F1}. Since µ(F1 −A) = µ(F1)− µ(A)
if A ⊂ F1, we see that a1 is finite. Let B1 be a subset of F1 such that µ(B1) ≥ a1/2. Let F2 = F1 −B1, let
a2 = sup{µ(A) : A ⊂ F2}, and choose B2 a subset of F2 such that µ(B2) ≥ a2/2. Let F3 = F2 − B2 and
continue.

One possibility is that this procedure stops after finitely many steps. This happens only if for some i

every subset of Fi has nonpositive mass. In this case E = Fi is the desired negative set.
The other possibility is if this procedure continues indefinitely. In this case, let E = ∩∞i=1Fi. Note

E = F − (∪∞i=1Bi), and the Bi are disjoint. So

µ(E) = µ(F )−
∞∑

i=1

µ(Bi),
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and µ(E) ≤ µ(F ) < 0. Also
∞∑

i=1

µ(Bi) = µ(F )− µ(E) ≤ M.

This implies the series converges, so µ(Bi) → 0. Since µ(Bi) ≥ ai/2, then ai → 0. Suppose E is not a
negative set. Then there exists A ⊂ E with µ(A) > 0. Choose n such that an < µ(A). But A is a subset of
Fn, so an ≤ µ(A), a contradiction. Therefore E is a negative set. �

Proposition 7.2. Let µ be a signed measure and M > 0 such that µ(A) ≥ −M for all A ∈ A. There exist

sets E and F that are disjoint whose union is X and such that E is a negative set and F is a positive set.

Proof. Let L = inf{µ(A) : A is a negative set}. Choose negative sets An such that µ(An) → L. Let
E = ∪∞n=1An. Let Bn = An − (B1 ∪ · · · ∪Bn−1) for each n. Since An is a negative set, so is each Bn. Also,
the Bn are disjoint. If C ⊂ E, then

µ(C) = lim
n→∞

µ(C ∩ (∪n
i=1Bi)) = lim

n→∞

n∑
i=1

µ(C ∩Bi) ≤ 0.

So E is a negative set.
Since E is negative,

µ(E) = µ(An) + µ(E −An) ≤ µ(An).

Letting n →∞, we obtain µ(E) = L.
Let F = Ec. If F were not a positive set, there would exist B ⊂ F with µ(B) < 0. By Proposition

7.1 there exists a negative set C contained in B with µ(C) < 0. But then E ∪ C would be a negative set
with µ(E ∪ C) < µ(E) = L, a contradiction. �

We now are ready for the Radon-Nikodym theorem.

Theorem 7.3. Suppose µ is a σ-finite measure and ν is a finite measure such that ν is absolutely continuous

with respect to µ. There exists a µ-integrable nonnegative function f such that ν(A) =
∫

A
f dµ for all A ∈ A.

Moreover, if g is another such function, then f = g almost everywhere.

Proof. Let us first prove the uniqueness assertion. For every set A we have∫
A

(f − g) dµ = ν(A)− ν(A) = 0.

By Proposition 5.8 we have f − g = 0 a.e.
Since µ is σ-finite, there exist Fi ↑ X such that µ(Fi) < ∞ for each i. Let µi be the restriction of

µ to Fi, that is, µi(A) = µ(A ∩ Fi). Define νi, the restriction of ν to Fi, similarly. If fi is a function such
that νi(A) =

∫
A

fi dµi for all A, the argument of the first paragraph shows that fi = fj on Fi if i ≤ j. If
we define f by f(x) = fi(x) if x ∈ Fi, we see that f will be the desired function. So it suffices to restrict
attention to the case where µ is finite.

Let
F =

{
g : 0 ≤ g,

∫
A

g dµ ≤ ν(A) for all A ∈ A
}

.

F is not empty because 0 ∈ F . Let L = sup{
∫

g dµ : g ∈ F}, and let gn be a sequence in F such that∫
gn dµ → L. Let hn = max(g1, . . . , gn).
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If g1 and g2 are in F , then h2 = max(g1, g2) is also in F . To see this,∫
A

h2 dµ =
∫

A∩{x:g1(x)≥g2(x)}
h2 dµ +

∫
A∩{x:g1(x)<g2(x)}

h2 dµ

=
∫

A∩{x:g1(x)≥g2(x)}
g1 dµ +

∫
A∩{x:g1(x)<g2(x)}

g2 dµ

≤ ν(A ∩ {x : g1(x) ≥ g2(x)}) + ν(A ∩ {x : g1(x) < g2(x)}) = ν(A).

By an induction argument, hn is in F .
The hn increase, say to f . By the monotone convergence theorem,

∫
f dµ = L and∫

A

f dµ ≤ ν(A) (7.1)

for all A.
Let A be a set where there is strict inequality in (7.1); let ε be chosen sufficiently small so that if π

is defined by

π(B) = ν(B)−
∫

B

f dµ− εµ(B),

then π(A) > 0. π is a signed measure; let F be the positive set as constructed in Proposition 7.2. In
particular, π(F ) > 0. So for every B∫

B∩F

f dµ + εµ(B ∩ F ) ≤ ν(B ∩ F ).

We then have, using (7.1), that∫
B

(f + εχF ) dµ =
∫

B

f dµ + εµ(B ∩ F )

=
∫

B∩F c

f dµ +
∫

B∩F

f dµ + εµ(B ∩ F )

≤ ν(B ∩ F c) + ν(B ∩ F ) = ν(B).

This says that f + εχF ∈ F . However,

L ≥
∫

(f + εχF ) dµ =
∫

f dµ + εµ(F ) = L + εµ(F ),

which implies µ(F ) = 0. But then ν(F ) = 0, and hence π(F ) = 0, contradicting the fact that F is a positive
set for F with π(F ) > 0. �

8. Differentiation of real-valued functions.
Let E ⊂ R be a measurable set and let O be a collection of intervals. We say O is a Vitali cover of

E if for each x ∈ E and each ε > 0 there exists an interval G ∈ O containing x whose length is less than ε.
m will denote Lebesgue measure.

Lemma 8.1. Let E have finite measure and let O be a Vitali cover of E. Given ε > 0 there exists a finite

subcollection of disjoint intervals I1, . . . , In such that m(E − ∪n
i=1In) < ε.

Proof. We may replace each interval in O by a closed one, since the set of endpoints of a finite subcollection
will have measure 0.
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Let O be an open set of finite measure containing E. Since O is a Vitali cover, we may suppose
without loss of generality that each set of O is contained in O. Let a1 = sup{m(I) : I ∈ O}. Let I1 be an
element of O with m(I1) ≥ a1/2. Let a2 = sup{m(I) : I ∈ O, I disjoint from I1},and choose I2 ∈ O disjoint
from I1 such that m(I2) ≥ a2/2. Continue in this way, choosing In+1 disjoint from I1, . . . , In and in O with
length at least one half as large as any other such interval in O that is disjoint from I1, . . . , In.

If the process stops at some finite stage, we are done. If not, we generate a sequence of disjoint
intervals I1, I2, . . . Since they are disjoint and all contained in O, then

∑∞
i=1 m(Ii) ≤ m(O) < ∞. So there

exists N such that
∑∞

i=N+1 m(Ii) < ε/5.
Let R = E − ∪N

i=1Ii; we will show m(R) < ε. Let Jn be the interval with the same center as In but
five times the length. Let x ∈ R. There exists an interval I ∈ O containing x with I disjoint from I1, . . . , IN .
Since

∑
m(In) < ∞, then

∑
an ≤ 2

∑
m(In) < ∞, and an → 0. So I must either be one of the In for some

n > N or at least intersect it, for otherwise we would have chosen I at some stage. Let n be the smallest
integer such that I intersects In; note n > N . We have m(I) ≤ an−1 ≤ 2m(In). Since x is in I and I

intersects In, the distance from x to the midpoint of In is at most m(I) + m(In)/2 ≤ (5/2)m(In). Therefore
x ∈ Jn.

Then R ⊂ ∪∞i=N+1Jn, so m(R) ≤
∑∞

i=N+1 m(Jn) = 5
∑∞

i=N+1 m(In) < ε. �

Given a function f , we define the derivates of f at x by

D+f(x) = lim sup
h→0+

f(x + h)− f(x)
h

, D−f(x) = lim sup
h→0−

f(x)− f(x− h)
h

D+f(x) = lim inf
h→0+

f(x + h)− f(x)
h

, D−f(x) = lim inf
h→0−

f(x)− f(x− h)
h

.

If all the derivates are equal, we say that f is differentiable at x and define f ′(x) to be the common value.

Theorem 8.2. Suppose f is nondecreasing on [a, b]. Then f is differentiable almost everywhere, f ′ is

measurable, and
∫ b

a
f ′(x) dx ≤ f(b)− f(a).

Proof. We will show that the set where any two derivates are unequal has measure zero. We consider the
set E where D+f(x) > D−f(X), the other sets being similar. Let Eu,v = {x : D+f(x) > u > v > D−f(x)}.
If we show m(Eu,v) = 0, then taking the union of all pairs of rationals with u > v rational shows m(E) = 0.

Let s = m(Eu,v), let ε > 0, and choose an open set O such that Eu,v ⊂ O and m(O) < s+ε. For each
x ∈ Eu,v there exists an arbitrarily small interval [x− h, x] contained in O such that f(x)− f(x− h) < vh.
Use Lemma 8.1 to choose I1, . . . , In which are disjoint and whose interiors cover a subset of A of Eu,v of
measure greater than s− ε. Suppose In = [xn − hn, xn]. Summing over these intervals,

N∑
n=1

[f(xn)− f(xn − hn)] < v

n∑
n=1

hn < vm(O) < v(s + ε).

Each point y ∈ A is the left endpoint of an arbitrarily small interval (y, y + k) that is contained in
some In and for which f(y + k) − f(y) > u(k). Using Lemma 8.1 again, we pick out a finite collection
J1, . . . , JM whose union contains a subset of A of measure larger than s− 2ε. Summing over these intervals
yields

M∑
i=1

[f(yi + ki)− f(yi)] > u
∑

ki > u(s− 2ε).

Each interval Ji is contained in some interval In, and if we sum over those i for which Ji ⊂ In we find∑
[f(yi + ki)− f(yi)] ≤ f(xn)− f(xn − hn),
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since f is increasing. Thus

N∑
n=1

[f(xn)− f(xn − hn)] ≥
M∑
i=1

[f(yi + ki)− f(yi)],

and so v(s + ε) > u(s− 2ε). This is true for each ε, so vs ≥ us. Since u > v, this implies s = 0.
This shows that

g(x) = lim
h→0

f(x + h)− f(x)
h

is defined almost everywhere and that f is differentiable wherever g is finite. Define f(x) = f(b) if x ≥ b.
Let gn(x) = n[f(x + 1/n) − f(x)]. Then gn(x) → g(x) for almost all x, and so g is measurable. Since f is
increasing, gn ≥ 0. By Fatou’s lemma∫ b

a

g ≤ lim inf
∫ b

a

gn = lim inf n

∫ b

a

[f(x + 1/n)− f(x)]dx

= lim inf
[
n

∫ b+1/n

b

f − n

∫ a+1/n

a

f
]

= lim inf
[
f(b)− n

∫ a+1/n

a

f
]

≤ f(b)− f(a).

This shows that g is integrable and hence finite almost everywhere. �

A function is of bounded variation if sup{
∑k

i=1 |f(xi) − f(xi−1)|} is finite, where the supremum is
over all partitions a = x0 < x1 < · · · < xk = b of [a, b].

Lemma 8.3. If f is of bounded variation on [a, b], then f can be written as the difference of two nonde-

creasing functions on [a, b].

Proof. Define

P (y) = sup
{ k∑

i=1

[f(xi)− f(xi−1)]+
}

, N(y) = sup
{ k∑

i=1

[f(xi)− f(xi−1)]−
}

,

where the supremum is over all partitions a = x0 < x1 < · · · < xk = y for y ∈ [a, b]. Since

k∑
i=1

[f(xi)− f(xi−1)]+ =
k∑

i=1

[f(xi)− f(xi−1)]− + f(y)− f(a),

taking the supremum over all partitions of [a, y] yields

P (y) = N(y) + f(y)− f(a).

Clearly P and N are nondecreasing in y, and the result follows by solving for f(y). �

Define the indefinite integral of an integrable function f by

F (x) =
∫ x

a

f(t) dt.

Lemma 8.4. If f is integrable, then F is continuous and of bounded variation.

Proof. The continuity follows from the dominated convergence theorem The bounded variation follows from

k∑
i=1

|F (xi)− F (xi−1)| =
k∑

i=1

∣∣∣∫ xi

xi−1

f(t) dt
∣∣∣ ≤ k∑

i=1

∫ xi

xi−1

|f(t)| dt ≤
∫ b

a

|f(t)| dt
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for all partitions. �

Lemma 8.5. If f is integrable and F (x) = 0 for all x, then f = 0 a.e.

Proof. For any interval,
∫ d

c
f =

∫ d

a
f −

∫ c

a
f = 0. By dominated convergence and the fact that any open set

is the countable union of disjoint open intervals,
∫

O
f = 0 for any open set O.

If E is any measurable set, take On open that such that χOn decreases to χE a.e. By dominated
convergence, ∫

E

f =
∫

fχE = lim
∫

fχOn = lim
∫

On

f = 0.

This with Proposition 5.8 implies f is zero a.e. �

Proposition 8.6. If f is bounded and measurable, then F ′(x) = f(x) for almost every x.

Proof. By Lemma 8.4, F is of bounded variation, and so F ′ exists a.e. Let K be a bound for |f |. If

fn(x) =
F (x + 1/n)− F (x)

1/n
,

then

fn(x) = n

∫ x+1/n

x

f(t) dt,

so |fn| is also bounded by K. Since fn → F ′ a.e., then by dominated convergence,∫ c

a

F ′(x) dx = lim
∫ c

a

fn(x) dx = lim
∫ c

a

[F (x + 1/n)− F (x)] dx

= lim n

∫ c+1/n

c

F (x) dx− n

∫ a+c

a

F (x) dx = F (c)− F (a) =
∫ c

a

f(x) dx,

using the fact that F is continuous. So
∫ c

a
[F ′(x) − f(x)] dx = 0 for all c, which implies F ′ = f a.e. by

Lemma 8.5. �

Theorem 8.7. If f is integrable, then F ′ = f almost everywhere.

Proof. Without loss of generality we may assume f ≥ 0. Let fn(x) = f(x) if f(x) ≤ n and let fn(x) = n

if f(x) > n. Then f − fn ≥ 0. If Gn(x) =
∫ x

a
[f − fn], then Gn is nondecreasing, and hence has a derivative

almost everywhere. By Lemma 8.6, we know the derivative of
∫ x

a
fn is equal to fn almost everywhere.

Therefore

F ′(x) = G′
n(x) +

[ ∫ x

a

fn

]′
≥ fn(x)

a.e. Since n is arbitrary, F ′ ≥ f a.e. So
∫ b

a
F ′ ≥

∫ b

a
f = F (b) − F (a). On the other hand, by Theorem 8.2,∫ b

a
F ′(x) dx ≤ F (b) − F (a) =

∫ b

a
f . We conclude that

∫ b

a
[F ′ − f ] = 0; since F ′ − f ≥ 0, this tells us that

F ′ = f a.e. �

A function is absolutely continuous on [a, b] if given ε there exists δ such that
∑k

i=1 |f(x′i)−f(xi)| < ε

whenever {xi, x
′
i)} is a finite collection of nonoverlapping intervals with

∑k
i=1 |x′i − xi| < δ.
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Lemma 8.8. If F (x) =
∫ x

a
f(t) dt for f integrable on [a, b], then F is absolutely continuous.

Proof. Let ε > 0. Choose a simple function s such that
∫ b

a
|f − s| < ε/2. Let K be a bound for |s| and let

δ = ε/2K. If {(xi, x
′
i)} is a collection of nonoverlapping intervals, the sum of whose lengths is less than δ,

then set A = ∪k
i=1(xi, x

′
i) and note

∫
A
|f − s| < ε/2 and

∫
A

s < Kδ = ε/2. �

Lemma 8.9. If f is absolutely continuous, then it is of bounded variation.

Proof. Let δ correspond to ε = 1 in the definition of absolute continuity. Given a partition, add points if
necessary so that each subinterval has length at most δ. We can then group the subintervals into at most
K collections, each of total length less than δ, where K is an integer larger than (1 + b− a)/δ. So the total
variation is then less than K. �

Lemma 8.10. If f is absolutely continuous on [a, b] and f ′(x) = 0 a.e., then f is constant.

Proof. Let c ∈ [a, b], let E = {x ∈ [a, c] : f ′(x) = 0}, and let ε > 0. For each point x ∈ E there exists
arbitrarily small intervals [x, x+h] ⊂ [a, c] such that |f(x+h)−f(x)| < εh. By Lemma 8.1 we can find a finite
collection of such intervals that cover all of E except for a set of measure less than δ, where δ is the δ in the
definition of absolute continuity. If the intervals are [xi, yi] with xi < yi ≤ xi+1, then

∑
|f(xi+1)−f(yi)| < ε

by the definition of absolute continuity, while
∑
|f(yi)− f(xi)| < ε

∑
(yi − xi) ≤ ε(c− a). So adding these

two inequalities together,

|f(c)− f(a)| =
∣∣∣∑[f(xi+1)− f(yi)] +

∑
[f(yi)− f(xi)]

∣∣∣ ≤ ε + ε(c− a).

Since ε is arbitrary, then f(c) = f(a), which implies that f is constant. �

Theorem 8.11. F is an indefinite integral if and only if it is absolutely continuous.

Proof. One direction was Lemma 8.11. Suppose F is absolutely continuous on [a, b]. Then F is of bounded
variation, F = F1−F2 where F1 and F2 are nondecreasing, and F ′ exists a.e. Since |F ′(x)| ≤ F ′

1(x)+F ′
2(x),

then
∫
|F ′(x)| dx ≤ F1(b) + F2(b) − F1(a) − F2(a), then F ′ is integrable. If G(x) =

∫ x

a
F ′(t) dt, then G is

absolutely continuous by Lemma 8.11, so F − G is absolutely continuous. Then (F − G)′ = 0 a.e., and
therefore F −G is constant. Thus F (x) =

∫ x

a
F ′(t) dt + F (a). �

9. Lp spaces.
For 1 ≤ p < ∞, define the Lp norm of f by

‖f‖p =
( ∫

|f(x)|pdµ
)1/p

.

For p = ∞, define the L∞ norm of f by

‖f‖∞ = inf{M : µ({x : |f(x)| ≥ M}) = 0}.

For 1 ≤ p ≤ ∞ the space Lp is the set {f : ‖f‖p < ∞}.
The L∞ norm of a function f is the supremum of f provided we disregard sets of measure 0.
It is clear that ‖f‖p = 0 if and only if f = 0 a.e.
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Proposition 9.1. (Hölder’s inequality) If 1 < p, q < ∞ and p−1 + q−1 = 1, then∫
f(x)g(x)dµ ≤ ‖f‖p‖g‖q.

This also holds if p = ∞ and g = 1.

Proof. If M = ‖f‖∞, then
∫

fg ≤ M
∫
|g| and the case p = ∞ and q = 1 follows. So let us assume

1 < p, q < ∞. If ‖f‖p = 0, then f = 0 a.e and
∫

fg = 0, so the result is clear if ‖f‖p = 0 and similarly if
‖g‖q = 0. Let F (x) = |f(x)|/‖f‖p and G(x) = |g(x)|/‖g‖q. Note ‖F‖p = 1 and ‖G‖q = 1, and it suffices to
show that

∫
FG ≤ 1.

The second derivative of the function ex is again ex, which is positive, and so ex is convex. Therefore
if 0 ≤ λ ≤ 1, we have

eλa+(1−λ)b ≤ λea + (1− λ)eb.

If F (x), G(x) 6= 0, let a = p log F (x), b = q log G(x), λ = 1/p, and 1− λ = 1/q. We then obtain

F (x)G(x) ≤ F (x)p

p
+

G(x)q

q
.

Clearly this inequality also holds if F (x) = 0 or G(x) = 0. Integrating,∫
FG ≤

‖F‖p
p

p
+
‖G‖q

q

q
=

1
p

+
1
q

= 1.

�

One application of Hölder’s inequality is to prove Minkowski’s inequality, which is simply the triangle
inequality for Lp.

Proposition 9.2. (Minkowski’s inequality) If 1 ≤ p ≤ ∞, then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. Since |(f + g)(x)| ≤ |f(x)| + |g(x)|, integrating gives the case when p = 1. The case p = ∞ is also
easy. So let us suppose 1 < p < ∞. If ‖f‖p or ‖g‖p is infinite, the result is obvious, so we may assume both
are finite. The inequality (a + b)p ≤ 2pap + 2pbp with a = |f(x)| and b = |g(x)| yields, after an integration,∫

|(f + g)(x)|pdµ ≤ 2p

∫
|f(x)|pdµ + 2p

∫
|g(x)|pdµ.

So we have ‖f + g‖p < ∞. Clearly we may assume ‖f + g‖p > 0.
Now write

|f + g|p ≤ |f | |f + g|p−1 + |g| |f + g|p−1

and apply Hölder’s inequality with q = (1− 1
p )−1. We obtain∫

|f + g|p ≤ ‖f‖p

( ∫
|f + g|(p−1)q

)1/q

+ ‖g‖p

( ∫
|f + g|(p−1)q

)1/q

.

Since p−1 + q−1 = 1, then (p− 1)q = p, so we have

‖f + g‖p
p ≤

(
‖f‖p + ‖g‖p

)
‖f + g‖p/q

p .

Dividing both sides by ‖f + g‖p/q
p and using the fact that p− (p/q) = 1 gives us our result. �

Minkowski’s inequality says that Lp is a normed linear space, provided we identify functions that are
equal a.e. The next proposition says that Lp is complete. This is often phrased as saying that Lp is a Banach
space, i.e., a complete normed linear space.

Before proving this we need two easy preliminary results. The first is sometimes called Chebyshev’s
inequality.
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Lemma 9.3. If 1 ≤ p < ∞,

µ({x : |f(x)| ≥ a}) ≤
‖f‖p

p

ap
.

Proof. If A = {x : |f(x)| ≥ a}, then

µ(A) ≤
∫

A

|f(x)|p

ap
dµ ≤ 1

ap

∫
|f |pdµ.

�

The next lemma is sometimes called the Borel-Cantelli lemma.

Lemma 9.4. If
∑

µ(Aj) < ∞, then

µ(∩∞j=1 ∪∞m=j Am) = 0.

Proof.

µ(∩∞j=1 ∪∞m=j Am) = lim
j→∞

µ(∪∞m=jAm) ≤ lim
j→∞

∞∑
m=j

µ(Am) = 0.

�

Proposition 9.5. If 1 ≤ p ≤ ∞, then Lp is complete.

Proof. We do only the case p < ∞; the case p = ∞ is easy. Suppose fn is a Cauchy sequence in Lp. Given
ε = 2−(j+1), there exists nj such that if n, m ≥ nj , then ‖fn − fm‖p ≤ 2−(j+1). Without loss of generality
we may assume nj ≥ nj−1 for each j.

Set n0 = 0 and define f0 ≡ 0. If Aj = {x : |fnj (x) − fnj−1(x)| > 2−j/2, then from Lemma 9.3,
µ(Aj) ≤ 2−jp/2. By Lemma 9.4, µ(∩∞j=1 ∪∞m=j Am) = 0. So except for a set of measure 0, for each x there
is a last j for which x ∈ ∪∞m=jAm, hence a last j for which x ∈ Aj . So for each x (except for the null set)
there is a j0 (depending on x) such that if j ≥ j0, then |fnj (x)− fnj−1(x)| ≤ 2−j .

Set

gj(x) =
∞∑

m=1

|fnm(x)− fnm−1(x)|.

gj(x) increases for each x, and the limit is finite for almost every xby the preceding paragraph. Let us call
the limit g(x). We have

‖gj‖p ≤
j∑

m=1

2−j + ‖fn1‖p ≤ 2 + ‖fn1‖p

by Minkowski’s inequality, and so by Fatou’s lemma, ‖g‖p ≤ 2 + ‖fn1‖p < ∞. We have

fnj (x) =
j∑

m=1

(fnm(x)− fnm−1(x)).

Suppose x is not in the null set where g(x) is infinite. Since |fnj (x) − fnk
(x)| ≤ |gnj (x) − gnk

(x)| → 0 as
j, k → ∞, then fnj (x) is a Cauchy series (in R), and hence converges, say to f(x). We have ‖f − fnj‖p =
limm→∞ ‖fnm − fnj‖p; this follows by dominated convergence with the function g defined above as the
dominating function.

We have thus shown that ‖f − fnj‖p → 0. Given ε = 2−(j+1), if m ≥ nj , then ‖f − fm‖p ≤
‖f − fnj‖p + ‖fm − fnj‖p. This shows that fm converges to f in Lp norm. �

The following is very useful.
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Proposition 9.6. For 1 < p < ∞ and p−1 + q−1 = 1,

‖f‖p = sup
{∫

fg : ‖g‖q ≤ 1
}

. (9.1)

When p = 1 (9.1) holds if we take q = ∞, and if p = ∞ (9.1) holds if we take q = 1.

Proof. The right hand side of (9.1) is less than the left hand side by Hölder’s inequality. So we need only
show that the right hand side is greater than the left hand side.

First suppose p = 1. Take g(x) = sgn f(x), where sgn a is 1 if a > 0, is 0 if a = 0, and is −1 if a < 0.
Then g is bounded by 1 and fg = |f |. This takes care of the case p = 1.

Next suppose p = ∞. Since µ is σ-finite, there exist sets Fn increasing up to X such that µ(Fn) < ∞
for each n. If M = ‖f‖∞, let a be any finite real less than M . By the definition of L∞ norm, the measure
of A = {x ∈ Fn : |f(x)| > a} must be positive if n is sufficiently large. Let g(x) = (sgn f(x))χA(x)/µ(A).
Then the L1 norm of g is 1 and

∫
fg =

∫
A
|f |/µ(A) ≥ a. Since a is arbitrary, the supremum on the right

hand side must be M .
Now suppose 1 < p < ∞. We may suppose ‖f‖p > 0. Let qn be a sequence of nonnegative

simple functions increasing to f+, rn a sequence of nonnegative simple functions increasing to f−, and
sn(x) = (qn(x) − rn(x))χFn(x). Then sn(x) → f(x) for each x, |sn(x)| ≤ |f(x)| for each x, sn is a simple
function, and ‖sn‖p < ∞ for each n. If f ∈ Lp, then ‖sn‖p → ‖f‖p by dominated convergence. If

∫
|f |p = ∞,

then
∫
|sn|p →∞ by monotone convergence. For n sufficiently large, ‖sn‖p > 0.
Let

gn(x) = (sgn f(x))
|sn(x)|p−1

‖sn‖p/q
p

.

Since (p− 1)q = p, then

‖gn‖q =
(
∫
|sn|(p−1)q)1/q)

‖sn‖p/q
p

=
‖sn‖p/q

p

‖sn‖p/q
p

= 1.

On the other hand, since |f | ≥ |sn|,∫
fgn =

∫
|f | |sn|p−1

‖sn‖p/q
p

≥
∫
|sn|p

‖sn‖p/q
p

= ‖sn‖p−(p/q)
p .

Since p− (p/q) = 1, then
∫

fgn ≥ ‖sn‖p, which tends to ‖f‖p. �

The above proof also establishes

Corollary 9.7. For 1 < p < ∞ and p−1 + q−1 = 1,

‖f‖p = sup{
∫

fg : ‖g‖q ≤ 1, g simple}.

The space Lp is a normed linear space. We can thus talk about its dual, namely, the set of bounded
linear functionals on Lp. The dual of a space Y is denoted Y ∗. If H is a bounded linear functional on Lp,
we define the norm of H to be ‖H‖ = sup{H(f) : ‖f‖p ≤ 1}.

Theorem 9.8. If 1 < p < ∞ and p−1 + q−1 = 1, then (Lp)∗ = Lq.

Proof. If g ∈ Lq, then setting H(f) =
∫

fg for f ∈ Lp yields a bounded linear functional; the boundedness
follows from Hölder’s inequality. Moreover, from Hölder’s inequality and Proposition 9.6 we see that ‖H‖ =
‖g‖q.
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Now suppose we are given a bounded linear functional H on Lp and we must show there exists g ∈ Lq

such that H(f) =
∫

fg. First suppose µ(X) < ∞. Define ν(A) = H(χA). If A and B are disjoint, then

ν(A ∪B) = H(χA∪B) = H(χA + χB) = H(χA) + H(χB) = ν(A) + ν(B).

To show ν is countably additive, it suffices to show that if An ↑ A, then ν(An) → ν(A). But if An ↑ A, then
χAn → χA in Lp, and so ν(An) = H(χAn) → H(χA) = ν(A); we use here the fact that µ(X) < ∞. Therefore
ν is a countably additive signed measure. Moreover, if µ(A) = 0, then χA = 0 a.e., hence ν(A) = H(χA) = 0.
By writing ν = ν+ − ν− and using the Radon-Nikodym theorem for both the positive and negative parts,
we see there exists an integrable g such that ν(A) =

∫
A

g for all sets A. If s =
∑

aiχAi is a simple function,
by linearity we have

H(s) =
∑

aiH(χAi) =
∑

aiν(Ai) =
∑

ai

∫
gχAi =

∫
gs.

By Corollary 9.7,

‖g‖q = sup
{∫

gs : ‖s‖p ≤ 1, s simple
}
≤ sup{H(s) : ‖s‖p ≤ 1} ≤ ‖H‖.

If sn are simple functions tending to f in Lp, then H(sn) → H(f), while by Hölder’s inequality
∫

sng →
∫

fg.
We thus have H(f) =

∫
fg for all f ∈ Lp, and ‖g‖p ≤ ‖H‖. By Hólder’s inequality, ‖H‖ ≤ ‖g‖p.

In the case where µ is σ-finite, but not finite, let Fn ↑ X be such that µ(Fn) < ∞ for each n. Define
functionals Hn by Hn(f) = H(fχFn). Clearly each Hn is a bounded linear functional on Lp. Applying
the above argument, we see there exist gn such that Hn(f) =

∫
fgn and ‖gn‖q = ‖Hn‖ ≤ ‖H‖. It is

easy to see that gn is 0 if x /∈ Fn. Moreover, by the uniqueness part of the Radon-Nikodym theorem, if
n > m, then gn = gm on Fm. Define g by setting g(x) = gn(x) if x ∈ Fn. Then g is well defined. By
Fatou’s lemma, g is in Lq with a norm bounded by ‖H‖. Since fχFn → f in Lp by dominated convergence,
then Hn(f) = H(fχFn) → H(f), since H is a bounded linear functional on Lp. On the other hand
Hn(f) =

∫
Fn

fgn =
∫

Fn
fg →

∫
fg by dominated convergence. So H(f) =

∫
fg. Again by Hölder’s

inequality ‖H‖ ≤ ‖g‖p. �
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