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Abstract

These are the notes to four one-hour lectures I delivered at
the spring school “Geometric Measure Theory: Old and New” that
took place in Les Diablerets, Switzerland, from April 3–8, 2005 (see
http://igat.epfl.ch/diablerets05/). The first three of these lec-
tures were intended to provide the fundamentals of the “old” theory of
rectifiable sets and currents in euclidean space as developed by Besi-
covitch, Federer–Fleming, and others. The fourth lecture, independent
of the previous ones, discussed some metrique space techniques that
are useful in connection with the new metric approach to currents by
Ambrosio–Kirchheim. Other short courses were given by G. Alberti,
M. Csörnyei, B. Kirchheim, H. Pajot, and M. Zähle.
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Lecture 1: Rectifiability

Lipschitz maps

Let X, Y be metric spaces, and let λ ∈ [0,∞). A map f : X → Y is λ-
Lipschitz if

d(f(x), f(x′)) ≤ λ d(x, x′) for all x, x′ ∈ X;

f is Lipschitz if

Lip(f) := inf{λ ∈ [0,∞) : f is λ-Lipschitz} < ∞.

The following basic extension result holds, see [McS] and the footnote
in [Whit].

1.1 Lemma (McShane, Whitney)
Suppose X is a metric space and A ⊂ X.
(1) For n ∈ N, every λ-Lipschitz map f : A → Rn admits a

√
nλ-Lipschitz

extension f̄ : X → Rn.
(2) For any set J , every λ-Lipschitz map f : A → l∞(J) has a λ-Lipschitz

extension f̄ : X → l∞(J).

Proof : (1) For n = 1, put

f̄(x) := inf{f(a) + λ d(a, x) : a ∈ A}.

For n ≥ 2, f = (f1, . . . , fn), extend each fi separately.

(2) For f = (fj)j∈J , extend each fj separately. 2

In (1), the factor
√

n cannot be replaced by a constant < n1/4, cf. [JohLS]
and [Lan]. In particular, Lipschitz maps into a Hilbert space Y cannot be
extended in general. However, if X is itself a Hilbert space, one has again
an optimal result:

1.2 Theorem (Kirszbraun, Valentine)
If X, Y are Hilbert spaces, A ⊂ X, and f : A → Y is λ-Lipschitz, then f has
a λ-Lipschitz extension f̄ : X → Y .

See [Kirs], [Val], or [Fed, 2.10.43]. A generalization to metric spaces with
curvature bounds was given in [LanS].

The next result characterizes the extendability of partially defined Lips-
chitz maps from Rm into a complete metric space Y ; it is useful in connection
with the definition of rectifiable sets (Def. 1.13). We call a metric space Y
Lipschitz k-connected if there is a constant c ≥ 1 such that every λ-Lipschitz
map f : Sk → Y admits a cλ-Lipschitz extension f̄ : Bk+1 → Y ; here Sk and
Bk+1 denote the unit sphere and closed ball in Rk+1, endowed with the in-
duced metric. Every Banach space is Lipschitz k-connected for all k ≥ 0.
The sphere Sn is Lipschitz k-connected for k = 0, . . . , n− 1.
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1.3 Theorem (Lipschitz maps on Rm)
Let Y be a complete metric space, and let m ∈ N. Then the following
statements are equivalent:
(1) Y is Lipschitz k-connected for k = 0, . . . ,m− 1.
(2) There is a constant c such that every λ-Lipschitz map f : A → Y ,

A ⊂ Rm, has a cλ-Lipschitz extension f̄ : Rm → Y .

The idea of the proof goes back to Whitney [Whit]. Compare [Alm1,
Thm. (1.2)] and [JohLS].

Proof : It is clear that (2) implies (1). Now suppose that (1) holds, and
let f : A → Y be a λ-Lipschitz map, A ⊂ Rm. As Y is complete, assume
w.l.o.g. that A is closed. A dyadic cube in Rm is of the form x + [0, 2k]m

for some k ∈ Z and x ∈ (2kZ)m. Denote by C the family of all dyadic cubes
C ⊂ Rm \ A that are maximal (with respect to inclusion) subject to the
condition

diam C ≤ 2 d(A,C).

They have pairwise disjoint interiors, cover Rm \A, and satisfy

d(A,C) < 2 diam C,

for otherwise the next bigger dyadic cube C ′ containing C would still fulfill

diam C ′ = 2diam C ≤ 2(d(A,C)− diam C) ≤ 2 d(A,C ′).

Denote by Σk ⊂ Rm the k-skeleton of this cubical decomposition. Extend f
to a Lipschitz map f0 : A∪Σ0 → Y by precomposing f with a nearest point
retraction A ∪ Σ0 → A. Then, for k = 0, . . . ,m − 1, successively extend fk

to fk+1 : A∪Σk+1 → Y by means of the Lipschitz k-connectedness of Y . As
A ∪ Σm = Rm, f̄ := fm is the desired extension of f . 2

Differentiability

Recall the following definitions.

1.4 Definition (Gâteaux and Fréchet differential)
Suppose X, Y are Banach spaces, f maps an open set U ⊂ X into Y , and
x ∈ U .
(1) The map f is Gâteaux differentiable at x if the directional derivative

Dvf(x) exists for every v ∈ X and if there is a continuous linear map
L : X → Y such that

L(v) = Dvf(x) for all v ∈ X.

Then L is the Gâteaux differential of f at x.
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(2) The map f is (Fréchet) differentiable at x if there is a continuous linear
map L : X → Y such that

lim
v→0

f(x + v)− f(x)− L(v)
‖v‖

= 0.

Then L =: Dfx is the (Fréchet) differential of f at x.

The map f is Fréchet differentiable at x iff f is Gâteaux differentiable
at x and the limit in

L(u) = lim
t→0

(f(x + tu)− f(x))/t

exists uniformly for u in the unit sphere of X, i.e. for all ε > 0 there is a
δ > 0 such that

‖f(x + tu)− f(x)− tL(u)‖ ≤ ε|t|

whenever |t| ≤ δ and u ∈ S(0, 1) ⊂ X.

1.5 Lemma (differentiable Lipschitz maps)
Suppose Y is a Banach space, f : Rm → Y is Lipschitz, x ∈ Rm, D is a
dense subset of Sm−1, Duf(x) exists for every u ∈ D, L : Rm → Y is linear,
and L(u) = Duf(x) for all u ∈ D. Then f is Fréchet differentiable at x with
differential Dfx = L.

In particular, if f : Rm → Y is Lipschitz and Gâteaux differentiable at
x, then f is Fréchet differentiable at x.

Proof : Let ε > 0. Choose a finite set D′ ⊂ D such that for every u ∈ Sm−1

there is a u′ ∈ D′ with |u− u′| ≤ ε. Then there is a δ > 0 such that

‖f(x + tu′)− f(x)− tL(u′)‖ ≤ ε|t|

whenever |t| ≤ δ and u′ ∈ D′. Given u ∈ Sm−1, pick u′ ∈ D′ with |u−u′| ≤ ε;
then

‖f(x + tu)− f(x)− tL(u)‖
≤ ε|t|+ ‖f(x + tu)− f(x + tu′)‖+ |t|‖L(u− u′)‖
≤ (1 + Lip(f) + ‖L‖)ε|t|

for all |t| ≤ δ. 2

1.6 Theorem (Rademacher)
Every Lipschitz map f : Rm → Rn is differentiable at Lm-almost all points
in Rm.

This was originally proved in [Rad].
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Proof : It suffices to prove the theorem for n = 1; in the general case,
f = (f1, . . . , fn) is differentiable at x iff each fi is differentiable at x.

In the case m = 1 the function f : R → R is absolutely continuous and
hence L1-almost everywhere differentiable.

Now let m ≥ 2. For u ∈ Sm−1, denote by Bu the set of all x ∈ Rm

where Duf(x) exists and by Hu the linear hyperplane orthogonal to u. For
x0 ∈ Hu, the function t 7→ f(x0 + tu) is L1-almost everywhere differentiable
by the result for m = 1, hence

H1((x0 + Ru) \Bu) = 0.

Since Bu is a Borel set, Fubini’s theorem implies

Lm(Rm \Bu) = 0.

Now choose a dense countable subset D of Sm−1. Then it follows that for
Lm-almost every x ∈ Rm, Duf(x) and Deif(x) exist for all u ∈ D and
i = 1, . . . ,m; in particular, the formal gradient

∇f(x) := (Deif(x), . . . , Demf(x))

exists. We show that for Lm-almost all x ∈ Rm we have, in addition, the
usual relation

Duf(x) = 〈∇f(x), u〉 for all u ∈ D.

The theorem then follows from Lemma 1.5. Let ϕ ∈ C∞
c (Rm). By

Lebesgue’s bounded convergence theorem,

lim
t→0+

∫
f(x + tu)− f(x)

t
ϕ(x) dx =

∫
Duf(x)ϕ(x) dx,

lim
t→0+

∫
f(x)

ϕ(x− tu)− ϕ(x)
t

dx = −
∫

f(x)Duϕ(x) dx.

Substituting x + tu by x in the term f(x + tu)ϕ(x) we see that the two
left-hand sides coincide. Hence,∫

Duf(x)ϕ(x) dx = −
∫

f(x)Duϕ(x) dx,

and similarly ∫
〈∇f(x), u〉ϕ(x) dx = −

∫
f(x)〈∇ϕ(x), u〉 dx.

Now the right-hand sides of these two identities coincide. As ϕ ∈ C∞
c (Rm)

is arbitrary, we conclude that Duf(x) = 〈∇f(x), u〉 for Lm-almost every
x ∈ Rm. 2
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1.7 Theorem (Stepanov)
Every function f : Rm → Rn is differentiable at Lm-almost all points in the
set

L(f) :=
{
x : lim supy→x |f(y)− f(x)|/|y − x| < ∞

}
.

This generalization of Rademacher’s theorem was proved in [Ste]. The
following elegant argument is due to Malý [Mal].

Proof : It suffices to consider the case n = 1. Let (Ui)i∈N be the family of all
open balls in Rm with rational center and radius such that f |Ui is bounded.
This family covers L(f). Let ai : Ui → R be the supremum of all i-Lipschitz
functions ≤ f |Ui, and let bi : Ui → R be the infimum of all i-Lipschitz
functions ≥ f |Ui. Note that ai, bi are i-Lipschitz and ai ≤ f |Ui ≤ bi. Let

Ai := {x ∈ Ui : both ai and bi are differentiable at x}.

By Rademacher’s theorem, Z :=
⋃∞

i=1 Ui \ Ai has measure zero. Let x ∈
L(f) \ Z. We show that for some i, x ∈ Ai and ai(x) = bi(x); then f
is differentiable at x. Since x ∈ L(f), there is a radius r > 0 such that
|f(y) − f(x)| ≤ λ|y − x| for all y ∈ B(x, r) and for some λ independent of
y. Choose i such that i ≥ λ and x ∈ Ui ⊂ B(x, r). Since x 6∈ Z, x ∈ Ai. By
the definition of ai and bi,

f(x)− i|y − x| ≤ ai(y) ≤ f(y) ≤ bi(y) ≤ f(x) + i|y − x|

for all y ∈ Ui. Hence, ai(x) = bi(x). 2

Generalizations of these results to maps between Banach spaces or even
more general classes of metric spaces are a topic of current research.

Finally, we state Whitney’s extension theorem for C1 functions and an
application, cf. [Whit], [Fed, 3.1.14] and [Sim, 5.3], [Fed, 3.1.16].

1.8 Theorem (Whitney)
Suppose f : A → R is a function on a closed set A ⊂ Rm, g : A → Rm is
continuous, and for all compact sets C ⊂ A and all ε > 0 there is a δ > 0
such that

|f(y)− f(x)− 〈g(x), y − x〉| ≤ ε|y − x|

whenever x, y ∈ C and |y−x| ≤ δ. Then there exists a C1 function f̄ : Rm →
R with f̄ |A = f and ∇f̄ |A = g.

1.9 Theorem (C1 approximation of Lipschitz functions)
If f : Rm → R is Lipschitz and ε > 0, then there is a C1 function f̄ : Rm → R
such that

Lm({x ∈ Rm : f(x) 6= f̄(x)}) < ε.
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Proof : By Rademacher’s theorem, f is almost everywhere differentiable,
and g := ∇f is a measurable function. According to Lusin’s theorem, there
is a closed set B ⊂ Rm with Lm(Rm \B) < ε/2 such that g|B is continuous.
For x ∈ B and i ∈ N, let

ri(x) := sup |f(y)− f(x)− 〈g(x), y − x〉| / |y − x|,

the supremum taken over all y ∈ B with 0 < |y − x| ≤ 1/i. We know that
ri → 0 pointwise on B as i → ∞. By Egorov’s theorem, there is a closed
set A ⊂ B with Lm(B \ A) < ε/2 such that ri → 0 uniformly on compact
subsets of A. Now extend f |A to Rm by means of 1.8. 2

Area formula

The next goal is to prove Theorem 1.12 below. We start with a technical
lemma, cf. [Fed, 3.2.2], [EvaG, p. 94].

1.10 Lemma (Borel partition)
Suppose f : Rm → Rn is Lipschitz, and B is the set of all x where Dfx exists
and has rank m. Then for every λ > 1 there exist a Borel partition (Bi)i∈N
of B and a sequence of euclidean norms ‖ · ‖i on Rm (i.e. ‖ · ‖i is induced by
an inner product), such that

λ−1‖v‖i ≤ |Dfx(v)| ≤ λ‖v‖i,

λ−1‖y − x‖i ≤ |f(y)− f(x)| ≤ λ‖y − x‖i

for all x, y ∈ Bi and v ∈ Rm.

Proof : Choose a sequence of euclidean norms ‖ · ‖j on Rm such that for
every euclidean norm ‖ · ‖ on Rm and for every ε > 0 there is a j ∈ N with

(1− ε)‖v‖j ≤ ‖v‖ ≤ (1 + ε)‖v‖j for all v ∈ Rm.

Given λ > 1, pick δ > 0 such that λ−1 + δ < 1 < λ− δ. For j, k ∈ N, denote
by Bjk the Borel set of all x ∈ B with

(i) (λ−1 + δ)‖v‖j ≤ |Dfx(v)| ≤ (λ− δ)‖v‖j for v ∈ Rm,

(ii) |f(x + v)− f(x)−Dfx(v)| ≤ δ‖v‖j for |v| ≤ 1/k.

To see that the Bjk cover B, let x ∈ B, choose j ∈ N such that (i) holds, let
cj > 0 be such that |v| ≤ cj‖v‖j for all v ∈ Rm, and pick k ∈ N such that

|f(x + v)− f(x)−Dfx(v)| ≤ (δ/cj)|v|

whenever |v| ≤ 1/k; then x ∈ Bjk. Now if C ⊂ Bjk is a set with diam C ≤
1/k, then

|f(x + v)− f(x)| ≤ |Dfx(v)|+ δ‖v‖j ≤ λ‖v‖j ,

|f(x + v)− f(x)| ≥ |Dfx(v)| − δ‖v‖j ≤ λ−1‖v‖j
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whenever x, x + v ∈ C. By subdividing and relabeling the sets Bjk appro-
priately we obtain the result. 2

1.11 Definition (jacobian)
Let L : X → Y be a linear map between two inner product spaces, where
dim X = m. The m-dimensional jacobian Jm(L) of L is the number satis-
fying

Jm(L) = Hm(L(A))/Hm(A) =
√

det(L∗ ◦ L)

for all A ⊂ X with Hm(A) > 0, where L∗ : Y → X is the adjoint map.

If ‖ · ‖ is a euclidean norm on Rm, we write Jm(‖ · ‖) for Jm(L) where
L : Rm → (Rm, ‖ · ‖) is the identity map.

1.12 Theorem (area formula)
Suppose f : Rm → Rn is Lipschitz with m ≤ n.
(1) If A ⊂ Rm is Lm-measurable, then∫

A
Jm(Dfx) dx =

∫
Rn

#(f−1{y} ∩A) dHm(y).

(2) If u is an Lm-integrable function, then∫
Rm

u(x)Jm(Dfx) dx =
∫

Rn

∑
x∈f−1{y}

u(x) dHm(y).

Cf. [Fed, 3.2.3], [EvaG, Sect. 3.3]. The formula says, in particular, that
the differential geometric volume of an injective C1 map f : U → Rn, U an
open subset of Rm, equals Hm(f(U)). For a metric space version, see [Kir].

Proof : (1) We assume w.l.o.g. that Lm(A) < ∞.
Case 1: A ⊂ {x : Dfx exists and has rank m}. Let λ > 1. Using

Lemma 1.10 we find a measurable partition (Ai)i∈N of A and a sequence
of euclidean norms ‖ · ‖i on Rm such that f |Ai is injective,

λ−mHm
‖·‖i

(Ai) ≤ Hm(f(Ai)) ≤ λmHm
‖·‖i

(Ai),

and λ−1‖ · ‖i ≤ |Dfx(·)| ≤ λ‖ · ‖i for all x ∈ Ai. This last assertion yields
λ−mJm(‖ · ‖i) ≤ Jm(Dfx) ≤ λmJm(‖ · ‖i). We conclude that

Hm(f(Ai)) ≤ λmHm
‖·‖i

(Ai) = λmJm(‖ · ‖i)Lm(Ai)

≤ λ2m

∫
Ai

Jm(Dfx) dx.

Since each f |Ai is injective, summation over i gives∫
Rn

#(f−1{y} ∩A) dHm(y) ≤ λ2m

∫
A

Jm(Dfx) dx.
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Similarly,

λ−2m

∫
A

Jm(Dfx) dx ≤
∫

Rn

#(f−1{y} ∩A) dHm(y).

As this holds for all λ > 1, the two integrals are equal.
Case 2: A ⊂ {x : Dfx exists and has rank < m}. Then Jm(Dfx) = 0

for all x ∈ A. For ε > 0, consider the map F : Rm → Rn × Rm, F (x) =
(f(x), εx). For x ∈ A, it follows that ‖DFx‖ ≤ Lip(f) + ε and

Jm(DFx) ≤ ε(Lip(f) + ε)m−1.

Applying the result of the first case to F , we get

Hm(F (A)) =
∫

A
Jm(DFx) dx ≤ ε(Lip(f) + ε)m−1Lm(A).

Since Hm(f(A)) ≤ Hm(F (A)) for all ε > 0, it follows that Hm(f(A)) = 0.
Thus both integrals equal 0.

Case 3: A ⊂ {x : Dfx does not exist}. Then

Hm(f(A)) ≤ Lip(f)mHm(A) = Lip(f)mLm(A) = 0

by Rademacher’s theorem. Thus both integrals equal 0.

(2) follows from (1) by approximation. 2

Rectifiable sets

The following notion is fundamental in geometric measure theory.

1.13 Definition (countably rectifiable set)
Let Y be a metric space. A set E ⊂ Y is countably Hm-rectifiable if there
is a sequence of Lipschitz maps fi : Ai → Y , Ai ⊂ Rm, such that

Hm
(
E \

⋃
ifi(Ai)

)
= 0.

It is often possible to take w.l.o.g. Ai = Rm, e.g. if Y is a Banach space
(recall Theorem 1.3).

1.14 Theorem (countably rectifiable sets in Rn)
A set E ⊂ Rn is countably Hm-rectifiable if and only if there exists a se-
quence of m-dimensional C1 submanifolds Mk of Rn such that

Hm
(
E \

⋃
kMk

)
= 0.

See [Fed, 3.2.29], [Sim, 11.1].
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Proof : Suppose that Hm(E \
⋃

ifi(Rm)) = 0 for a sequence of Lipschitz
maps fi : Rm → Rn. By Theorem 1.9, we assume w.l.o.g. that the fi are
C1. Let Ui ⊂ Rm be the set of all x ∈ Rm where Dfx has rank m. By the
area formula, Hm(fi(Rm \ Ui)) = 0. Hence, Hm(E \

⋃
ifi(Ui)) = 0. Finally,

it follows from the inverse function theorem that each fi(Ui) is a countable
union of C1 submanifolds.

The other implication is clear. 2

1.15 Theorem (bi-Lipschitz parametrization)
Suppose E ⊂ Rn is countably Hm-rectifiable and Hm-measurable. Then for
every λ > 1 there exists a sequence of λ-bi-Lipschitz maps fi : Ci → fi(Ci) ⊂
E, with Ci ⊂ Rm compact, such that the fi(Ci) are pairwise disjoint and

Hm
(
E \

⋃
ifi(Ci)

)
= 0.

See [Fed, 3.2.18] and [AmbK2, 4.1].

Proof : First we assume that E is a Borel set contained in the image of a
single Lipschitz map h : Rm → Rn. Using Lemma 1.10 (Borel partition),
the area formula 1.12, and the inner regularity of Lm, we find a sequence of
λ-bi-Lipschitz maps gk : Dk → gk(Dk) ⊂ E, with Dk ⊂ Rm compact, such
that Hm(E \

⋃
k gk(Dk)) = 0. Consider the Borel sets

D′
k := Dk \ g−1

k

(⋃k−1
j=1gj(Dj)

)
.

Then
⋃

k gk(D′
k) =

⋃
k gk(Dk), and the gk(D′

k) are pairwise disjoint. For
every k, choose a sequence of pairwise disjoint compact sets Ck,l ⊂ D′

k such
that Lm(D′

k \
⋃

l Ck,l) = 0. It follows that Hm(E \
⋃

k,l gk(Ck,l)) = 0, and
the gk(Ck,l) are pairwise disjoint.

To prove the general result, partition E into a sequence of Hm-
measurable sets Ej with Hm(Ej) < ∞ and Ej ⊂ hj(Rm) for some Lipschitz
map hj : Rm → Rn. Then Ej contains an Fσ set Fj with Hm(Ej \ Fj) = 0.
Now apply the above result to each Fj . 2

Suppose X is a metric space, A ⊂ X, and x ∈ X. Recall that the
m-dimensional upper density and lower density of A at x are defined by

Θ∗m(A, x) = lim sup
r↓0

Hm(A ∩ B(x, r))
αmrm

,

Θm
∗ (A, x) = lim inf

r↓0

Hm(A ∩ B(x, r))
αmrm

,

where αm := Lm(Bm). If the two coincide, then the common value Θm(A, x)
is the density of A at x.
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If A,B ⊂ X are two Hm-measurable sets with A ⊂ B and Hm(B) < ∞,
then

2−m ≤ Θ∗m(B, x) ≤ 1

for Hm-almost all x ∈ B,
Θm(B, x) = 0

for Hm-almost all x ∈ X \B, and

Θ∗m(A, x) = Θ∗m(B, x), Θm
∗ (A, x) = Θm

∗ (B, x)

for Hm-almost all x ∈ A. (See e.g. [Mat, 6.2, 6.3].)
Also recall Lebesgue’s theorem: If u ∈ L1(Rm), then Lm-almost every

point x is a Lebesgue point of u, i.e.

lim
r↓0

1
αmrm

∫
B(x,r)

|u(y)− u(x)| dy = 0.

For x ∈ Rn and r > 0, define Tx,r : Rn → Rn, Tx,r(y) = (y − x)/r. Note
that Tx,r takes B(x, r) to B(0, 1) = Bn.

1.16 Definition (approximate tangent space)
Suppose E ⊂ Rn is a Hm-measurable set with Hm(E) < ∞. Let x ∈ X.
An m-dimensional linear subspace L ⊂ Rn is called the (Hm-)approximate
tangent space of E at x if

lim
r↓0

∫
Tx,r(E)

ϕ dHm =
∫

L
ϕ dHm

for all ϕ ∈ Cc(Rn). Then we write L =: Tanm(E, x).

Clearly Tanm(E, x) is uniquely determined if it exists. There are various
definitions of approximate tangent spaces in the literature, compare [Sim,
11.2], [Fed, 3.2.16], and [Mat, 15.17].

1.17 Theorem (existence of tangent spaces)
Suppose E ⊂ Rn is a countably Hm-rectifiable and Hm-measurable set with
Hm(E) < ∞. Then for Hm-almost every x ∈ E, Tanm(E, x) exists and
Θm(E, x) = 1.

For this result and Theorem 1.18 below, see [Fed, 3.2.19], [Sim, 11.6],
and [Mat, 15.19].

Proof : Choose a sequence of m-dimensional C1 submanifolds Mk of Rn such
that Hm(E\

⋃
k Mk) = 0, cf. 1.14. Put Ek := E∩Mk; then Hm(E\

⋃
k Ek) =

0. Since Mk is C1, it follows that for Hm-almost every x ∈ Ek, we have
Θm(Ek, x) = 1 and Tanm(Ek, x) = TxMk. Moreover, for Hm-almost every
x ∈ Ek, Θm(E \ Ek, x) = 0. Combining these two properties we conclude
that for Hm-almost every x ∈ Ek, Θm(E, x) = 1 and Tanm(E, x) = TxMk.

2
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The following two converses to 1.17 hold. The second is a deep result
of Preiss [Pre]; an account of the theorem and its history is given in [Mat,
Sect. 17].

1.18 Theorem
Suppose E ⊂ Rn is a Hm-measurable set with Hm(E) < ∞. If Tanm(E, x)
exists for Hm-almost every x ∈ E, then E is countably Hm-rectifiable.

1.19 Theorem (Preiss)
Suppose E ⊂ Rn is a Hm-measurable set with Hm(E) < ∞. If the density
Θm(E, x) exists for Hm-almost every x ∈ E, then E is countably Hm-
rectifiable.

Finally, we state the Besicovitch–Federer projection theorem which
played a very important role in the development of the theory of currents.
This deep result was proved in [Bes] for m = 1 and n = 2 and in [Fed0]
for general dimensions. See [Fed, 3.3.13] and [Mat, 18.1]. A set F ⊂ Rn

is purely Hm-unrectifiable if Hm(F ∩ f(Rm)) = 0 for every Lipschitz map
f : Rm → Rn. Every set A ⊂ Rn with Hm(A) < ∞ can be written as
the disjoint union of a countably Hm-rectifiable set E and a purely Hm-
unrectifiable set F (cf. [Mat, 15.6]).

1.20 Theorem (Besicovitch, Federer)
Suppose F ⊂ Rn is a purely Hm-unrectifiable set with Hm(F ) < ∞. Then
for γn,m-almost every L ∈ G(n, m), Hm(πL(F )) = 0. Here γn,m denotes the
Haar measure on G(n, m), and πL : Rn → L is orthogonal projection.
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Lecture 2: Normal currents

Vectors, covectors, and forms

Denote by e1, . . . , en the standard basis for Rn and by e∗1, . . . , e
∗
n the dual

basis for the dual space (Rn)∗ = {f : Rn → R linear}, such that e∗i (ej) = δij

for all i, j.
For m ∈ N, ΛmRn and ΛmRn denote the vector spaces of m-vectors and

m-covectors of Rn, respectively. In case 1 ≤ m ≤ n, a basis of ΛmRn is
given by

{eλ := eλ(1) ∧ . . . ∧ eλ(m) : λ ∈ Λ(n, m)},

where Λ(n, m) denotes the set of all strictly increasing maps from {1, . . . ,m}
into {1, . . . , n}. Similarly,

{e∗λ = e∗λ(1) ∧ . . . ∧ e∗λ(m) : λ ∈ Λ(n, m)}

is a basis of ΛmRn. For m > n, ΛmRn = ΛmRn = {0}. By convention,
Λ0Rn = Λ0Rn = R.

An m-vector τ is simple if it can be written as a product of m vectors,
τ = v1 ∧ . . . ∧ vm. Simple covectors are define analogously.

We write 〈τ, ω〉 for the duality product of τ ∈ ΛmRn and ω ∈ ΛmRn,
thus 〈eλ, e∗µ〉 = δλµ for λ, µ ∈ Λ(n, m).

The standard inner product 〈·, ·〉 and euclidean norm | · | on Rn induce
corresponding inner products and norms on ΛmRn and ΛmRn such that the
above bases are orthonormal. They will be denoted by the same symbols
〈·, ·〉 and | · |. For τ = v1 ∧ . . . ∧ vm ∈ ΛmRn,

|τ | =
√

det(〈vi, vj〉).

The comass norm of an m-covector ω is defined by

‖ω‖ = sup{〈τ, ω〉 : τ ∈ ΛmRn is simple and |τ | ≤ 1}.

Always ‖ω‖ ≤ |ω|, with equality iff ω is simple. The mass norm of an
m-vector τ is defined by

‖τ‖ = sup{〈τ, ω〉 : ω ∈ ΛmRn and ‖ω‖ ≤ 1}.

Always ‖τ‖ ≥ |τ |, with equality iff τ is simple.

By a C∞ differential m-form ω on Rn we mean an m-covectorfield ω ∈
C∞(Rn,ΛmRn). We denote by

Dm(Rn) := C∞
c (Rn,ΛmRn)

14



the vector space of all m-forms on Rn with compact support. As usual, we
write dxλ = dxλ(1) ∧ . . . ∧ dxλ(m) for the constant covectorfield mapping x
to e∗λ = e∗λ(1) ∧ . . . ∧ e∗λ(m); then ω ∈ Dm(Rn) is of the form

ω =
∑

λ∈Λ(n,m)

ωλ dxλ, ωλ ∈ C∞
c (Rn).

We equip Dm(Rn) with the topology in which

ωi =
∑

λ

ωi
λdxλ → 0 for i →∞

if and only if there exists a compact set C ⊂ Rn with sptωi ⊂ C for all i
and

sup
x

∣∣Dαωi
λ(x)

∣∣ → 0 for i →∞

whenever λ ∈ Λ(n, m), α = (α1, . . . , αn), αk ∈ N ∪ {0},

Dαωi
λ =

∂α1 · · · ∂αn

(∂x1)α1 · · · (∂xn)αn
ωi

λ.

Currents

General currents were introduced by deRham, cf. [deR]. The 0-dimensional
currents are exactly the distributions in the sense of Schwartz [Sch].

2.1 Definition (current)
An m-dimensional current or m-current in Rn is a continuous linear func-
tional on Dm(Rn). Dm(Rn) denotes the vector space of all m-currents in
Rn.

A sequence (Ti)i∈N in Dm(Rn) converges weakly to a current T ∈ Dm(Rn)
if limi→∞ Ti(ω) = T (ω) for all ω ∈ Dm(Rn); we then write

Ti ⇀ T.

The support spt T of a current T ∈ Dm(Rn) is the smallest closed set C ⊂
Rn with the property that T (ω) = 0 for all ω ∈ Dm(Rn) with sptω ∩C = ∅.

2.2 Definition (boundary of a current)
Let T ∈ Dm(Rn), m ≥ 1. The boundary of T is the current ∂T ∈ Dm−1(Rn)
defined by

∂T (π) := T (dπ) for all π ∈ Dm−1(Rn).

Clearly ∂ ◦ ∂ = 0 since d ◦ d = 0, spt ∂T ⊂ spt T , and Ti ⇀ T implies
∂Ti ⇀ ∂T .
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2.3 Definition (total variation measure and mass)
Let T ∈ Dm(Rn). For U ⊂ Rn open and A ⊂ Rn arbitrary, put

‖T‖(U) := sup{T (ω) : sptω ⊂ U, supx‖ω(x)‖ ≤ 1},
‖T‖(A) := inf{‖T‖(U) : U is open, A ⊂ U}.

This defines a Borel regular outer measure ‖T‖ on Rn.

M(T ) := ‖T‖(Rn) ∈ [0,∞]

is the mass of T . We denote by Mm(Rn) the vector space of all T ∈ Dm(Rn)
with M(T ) < ∞. A current T ∈ Dm(Rn) has locally finite mass if ‖T‖ is a
Radon measure, i.e. if it is finite on compact sets, and Mm,loc(Rn) denotes
the vector space of all such currents.

Compare [Fed, 4.1.7] and [Sim, 26.6]. For a fixed open set U ⊂ Rn, the
map T 7→ ‖T‖(U) is lower semicontinuous on Dm(Rn) with respect to weak
convergence, i.e.,

‖T‖(U) ≤ lim inf
i→∞

‖Ti‖(U) for Ti ⇀ T .

The space Mm(Rn) endowed with the norm M is a Banach space. Note
that

|T (ω)| ≤ supx‖ω(x)‖M(T )

for all ω ∈ Dm(Rn).

2.4 Example
Suppose M ⊂ Rn is an oriented m-dimensional C1-submanifold with bound-
ary (possibly ∂M = ∅), and M is a closed subset of Rn. We view the ori-
entation of M as a continuous function τ : M → ΛmRn such that for every
x ∈ M , τ(x) is simple and represents the tangent space TxM , and |τ(x)| = 1.
Then

[M ](ω) :=
∫

M
〈τ(x), ω(x)〉 dHm(x)

defines an m-current [M ] = [M, τ ] ∈ Dm(Rn). Note that this integral corre-
sponds to the usual

∫
M ω in the notation of differential geometry.

Suppose ∂M is equipped with the induced orientation τ ′ : ∂M →
Λm−1Rn, i.e. τ = η ∧ τ ′ for the exterior unit normal η. Then we have

∂[M ](π) = [M ](dπ) =
∫

M
〈τ, dπ〉 dHm

=
∫

∂M
〈τ ′, π〉 dHm−1 = [∂M ](π)

for all π ∈ Dm−1(Rn) by the Theorem of Stokes.
The measure ‖[M ]‖ is simply the restriction of Hm to M , ‖[M ]‖(A) =

(Hm M)(A) = Hm(A ∩M).
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Whenever µ is a Radon measure on Rn and τ : Rn → ΛmRn is locally
µ-integrable, then we obtain a current T = [µ, τ ] ∈ Dm(Rn) by defining

T (ω) :=
∫

Rn

〈τ(x), ω(x)〉 dµ(x).

We say that a current T ∈ Dm(Rn) is representable by integration if it admits
such a representation; then clearly T ∈ Mm,loc(Rn). In fact, Mm,loc(Rn) is
precisely the set of m-currents representable by integration:

2.5 Theorem (integral representation)
Let T ∈ Mm,loc(Rn). There is a ‖T‖-measurable function ~T : Rn → ΛmRn

such that ‖~T (x)‖ = 1 for ‖T‖-almost every x ∈ Rn and

T (ω) =
∫

Rn

〈~T (x), ω(x)〉 d‖T‖(x) for all ω ∈ Dm(Rn).

In brief, T = [‖T‖, ~T ]. This follows from an appropriate version of the
Riesz respresentation theorem, cf. [Fed, 4.1.5], [Sim, 26.7].

The restriction of T = [µ, τ ] ∈ Mm,loc(Rn) to a function u ∈ L1
loc(µ) is

the current T u ∈ Mm,loc(Rn) defined by

(T u)(ω) :=
∫

Rn

〈τ(x), ω(x)〉u(x) dµ(x).

If B ⊂ Rn is a Borel set and χB is the characteristic function, then we write
T B for T χB. (A general current T ∈ Dm(Rn) can be restricted to a
function f ∈ C∞(Rn): (T f)(ω) := T (fω).)

2.6 Theorem (weak compactness in Mm,loc)
Suppose (Ti)i∈N is a sequence in Mm,loc(Rn) with supi ‖Ti‖(U) < ∞ for all
open sets U ⊂ Rn with compact closure. Then there is a subsequence (Tij )
and a T ∈ Mm,loc(Rn) such that Tij ⇀ T .

This is an application of the Banach–Alaoglu theorem.

2.7 Example
Choose η ∈ C∞

c (R) with η ≥ 0 and
∫

η dx = 1, and let ηi(x) := iη(ix) for
i = 1, 2, . . . . Define Ti ∈ D1(R) by Ti := [R] ηi, i.e.

Ti(ω) =
∫
〈1, ω(x)〉ηi(x) dx.

Then M(Ti) =
∫

ηi dx = 1 for all i, and Ti ⇀ T for the current T satisfying

T (ω) = 〈1, ω(0)〉.

Note that

∂Ti(f) = Ti(df) =
∫
〈1, df〉ηi dx =

∫
f ′ηi dx = −

∫
fη′i dx,

M(∂Ti) =
∫
|η′i| dx, and ∂T (f) = f ′(0), M(∂T ) = ∞.
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2.8 Definition (push-forward)
The push-forward of a current T ∈ Dm(Rn) under a C∞ map f from Rn into
Rp is defined as follows. Suppose f | spt T is proper, i.e. spt T ∩ f−1(C) is
compact whenever C ⊂ Rp is compact. Given a form ω ∈ Dm(Rp), consider
its pull-back f#ω, pick a function ζω ∈ C∞

c (Rn) such that ζω ≡ 1 in a
neighborhood of the compact set spt T ∩ spt(f#ω) ⊂ spt T ∩f−1(sptω), and
put

(f#T )(ω) := T (ζωf#ω).

This defines a current f#T ∈ Dm(Rp); the definition is independent of the
choice of the functions ζω.

The following properties hold:

∂(f#T ) = f#(∂T ), spt(f#T ) ⊂ f(sptT ),

and (g ◦ f)#T = g#(f#T ) whenever g is a C∞ map from Rp into Rq such
that g ◦ f | spt T is proper. If T ∈ Mm,loc(Rn), T = [‖T‖, ~T ], then

f#T (ω) =
∫

Rn

〈
Dfx#

~T (x), ω(f(x))
〉
d‖T‖(x)

for all ω ∈ Dm(Rp), hence

‖f#T‖(V ) ≤
∫

f−1(V )
‖Dfx#

~T (x)‖ d‖T‖(x)

for all open sets V ⊂ Rp. Thus f#T ∈ Mm,loc(Rp). See [Fed, p. 359], [Sim,
26.21].

Normal currents

The theory of normal and integral currents was initiated by [FedF].

2.9 Definition (normal current)
Let T ∈ Dm(Rn), m ≥ 1. Put

N(T ) := M(T ) + M(∂T ).

T is called normal if N(T ) < ∞ and locally normal if ‖T‖ + ‖∂T‖ is
a Radon measure. The respective vector spaces are denoted Nm(Rn)
and Nm,loc(Rn). For m = 0, N(T ) := M(T ), N0(Rn) := M0(Rn) and
N0,loc(Rn) := M0,loc(Rn).

Note that the space Nm(Rn) endowed with the norm N is a Banach
space, and the compactness theorem 2.6 holds with Mm,loc(Rn) and ‖Ti‖(U)
replaced by Nm,loc(Rn) and (‖Ti‖ + ‖∂Ti‖)(U). (In [Fed], T ∈ Nm(Rn)
means in addition that spt T is compact.)
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For a compactly supported current T ∈ Nm(Rn), the definition of f#T
given in 2.8 can be extended to the case that f : Rn → Rp is a locally
Lipschitz map (cf. [Fed, 4.1.14], [Sim, 26.25]). The idea is as follows. Pick
a symmetric mollifier η ∈ C∞

c (Rn) (so that η ≥ 0, spt η ⊂ B(0, 1), η(−x) =
η(x), and

∫
η dx = 1). For ε > 0, put ηε(x) = η(x/ε)/εn and consider the

mollified functions f (ε) := ηε ∗ f ,

(ηε ∗ f)(x) :=
∫

ηε(x− y)f(y) dy.

Now show that, as ε → 0, f
(ε)
# T converges weakly to a current S ∈ Nm(Rp)

that does not depend on the choice of η. Then define f#T := S. The
properties

∂(f#T ) = f#(∂T ), spt(f#T ) ⊂ f(sptT ),

and (g ◦ f)#T = g#(f#T ) then hold for all locally Lipschitz maps f : Rn →
Rp and g : Rp → Rq, and

M(f#T ) ≤ Lip(f | spt T )M(T ).

The proof of the existence of f#T uses homotopies of currents, which we
describe next.

We need some notation for 0- and 1-dimensional currents. For a ∈ Rn

we define [a] ∈ D0(Rn) by

[a](f) := f(a) for f ∈ D0(Rn) = C∞
c (Rn);

[a] corresponds to δa in the notation of distribution theory. For [a, b] ⊂ R
we denote by [a, b] ∈ D1(R) the current satisfying

[a, b](ϕ dt) =
∫ b

a
ϕ(t) dt for all ϕ ∈ C∞

c (R).

We have ∂[a, b](f) = [a, b](df) = [a, b](f ′ dt) =
∫ b
a f ′ dt = f(b) − f(a) =

[b](f)− [a](f) for all f ∈ D0(R), i.e.

∂[a, b] = [b]− [a].

Next, for [a, b] ⊂ R, we define the cartesian product of [a] ∈ D0(R) or
[a, b] ∈ D1(R) with a current T ∈ Dm(Rn). We put

[a]× T := ia#T ∈ Dm(R× Rn),

where ia : Rn → R× Rn, ia(x) = (a, x). In case m ≥ 1,

∂([a]× T ) = ∂(ia#T ) = ia#(∂T ) = [a]× ∂T.
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To define [a, b]× T ∈ Dm+1(R×Rn), denoting the canonical coordinates on
R× Rn by (t, x), we write ω ∈ Dm+1(R× Rn) in the form dt ∧ ω′ + ω̄ such
that dt ∧ ω′ collects all terms containing dt; then

([a, b]× T )(ω) :=
∫ b

a
([t]× T )(ω′) dt.

Cartesian products of two general currents are defined in [Fed, 4.1.8]
and [Sim, 26.16].

2.10 Lemma (interval × current)
Let T ∈ Dm(Rn). Then spt([a, b]× T ) = [a, b]× spt T ,

∂([a, b]× T ) = [b]× T − [a]× T − [a, b]× ∂T

for m ≥ 1, and ∂([a, b]×T ) = [b]×T − [a]×T for m = 0. If T ∈ Mm,loc(Rn),
then ‖[a, b]× T‖ = ‖[a, b]‖ × ‖T‖.

Now suppose f, g : Rn → Rp are two C∞ maps. Let h be a smooth
homotopy from f to g, i.e. a C∞ map from an open neighborhood of [0, 1]×
Rn in R×Rn into Rp with h(0, x) = f(x) and h(1, x) = g(x) for all x ∈ Rn.

2.11 Theorem (homotopy formula)
Suppose T ∈ Dm(Rn), and h|([0, 1]× spt T ) is proper. Then

g#T − f#T = ∂h#([0, 1]× T ) + h#([0, 1]× ∂T )

for m ≥ 1, and g#T − f#T = ∂h#([0, 1] × T ) for m = 0. If moreover
T ∈ Mm(Rn), ‖Dfx‖, ‖Dgx‖ ≤ λ for all x ∈ spt T , and h is the affine
homotopy from f to g, i.e. h(t, x) = (1− t)f(x) + tg(x), then

M(h#([0, 1]× T )) ≤ sup
x∈spt T

|g(x)− f(x)|λmM(T ).

See [Fed, 4.1.9], [Sim, 26.22, 26.23].
Finally, we define the cone [a]××T ∈ Dm+1(Rn) from a point a ∈ Rn over

a current T ∈ Dm(Rn) with compact support. Let h(t, x) := (1 − t)a + tx.
Then

[a]×× T := h#([0, 1]× T ) ∈ Dm+1(Rn).

From 2.11 we get

∂([a]×× T ) = T − h#([0, 1]× ∂T ) = T − [z]×× ∂T

for m ≥ 1, in particular, ∂([a]×× T ) = T if ∂T = 0.
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Suppose T ∈ Nm(Rn), m ≥ 1. Recall that then the restrictions T B
and (∂T ) B are defined for every Borel set B ⊂ Rn. If f : Rn → R is
Lipschitz and s ∈ R, define the slices

〈T, f, s+〉 := (∂T ) {f > s} − ∂(T {f > s})
= ∂(T {f ≤ s})− (∂T ) {f ≤ s},

〈T, f, s−〉 := ∂(T {f < s})− (∂T ) {f < s}
= (∂T ) {f ≥ s} − ∂(T {f ≥ s}).

For all but countably many s it is true that

(‖T‖+ ‖∂T‖)(f−1{s}) = 0, so 〈T, f, s+〉 = 〈T, f, s−〉.

Note that ∂〈T, f, s+〉 = −〈∂T, f, s+〉 if m ≥ 2.

2.12 Theorem (slices of normal currents)
(1) For all s ∈ R, spt〈T, f, s+〉 ⊂ f−1{s} ∩ spt T .
(2) For all s ∈ R,

M(〈T, f, s+〉) ≤ Lip(f) lim inf
h→0+

‖T‖({s < f < s + h})/h.

(3) Whenever −∞ ≤ a < b ≤ ∞, then∫ ∗b

a
M(〈T, f, s+〉) ds ≤ Lip(f)‖T‖({a < f < b}).

(4) For almost all s ∈ R, 〈T, f, s+〉 ∈ Nm−1(Rn).

See [Fed, 4.2.1], [Sim, 28.6–28.10].

Results for n-currents in Rn

We mention two special results for n-dimensional currents in Rn.

2.13 Theorem (constancy theorem)
Suppose U ⊂ Rn is open and connected, T ∈ Dn(Rn), and spt ∂T ⊂ Rn \U .
Then there exists a constant c ∈ R such that spt(T − c[U ]) ∩ U = ∅.

Here [U ] := [U, e1 ∧ . . . ∧ en], i.e.

[U ](ω) =
∫
〈e1 ∧ . . . ∧ en, ω〉 dx =

∫
f dx

for ω = f dx1 ∧ . . . ∧ dxn ∈ Dn(Rn). See [Fed, p. 357], [Sim, 26.27].

2.14 Theorem (characterizing Nn,loc(Rn))
Suppose T ∈ Dn(Rn). Then T ∈ Nn,loc(Rn) if and only if T = [Rn] u for
some u ∈ BVloc(Rn), in which case ‖∂T‖ = |Du|.

Cf. [Sim, 26.28], [GiaMS, p. 454].
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Lecture 3: Integral currents

Integer rectifiable currents

The following definition generalizes Example 2.4 and relies on Theorem 1.17
(existence of tangent spaces).

3.1 Definition (integer rectifiable current)
A current T ∈ Dm(Rn) is called locally integer rectifiable if it admits a
representation of the form

T (ω) =
∫

E
〈τ(x), ω(x)〉θ(x) dHm(x) where

(1) E ⊂ Rn is a countably Hm-rectifiable and Hm-measurable set,
(2) θ is a locally Hm-integrable positive integer-valued function on E,
(3) τ is an Hm-measurable ΛmRn-valued function on E such that for Hm-

almost every x ∈ E, τ(x) is simple, |τ(x)| = 1, and τ(x) represents the
approximate tangent space Tanm(E, x) ∈ G(n, m).

We then write T = [E, τ, θ], or just T = [E, τ ] in case θ ≡ 1 Hm-almost
everywhere on E. The set of locally integer rectifiable currents in Rn is
denoted by Im,loc(Rn). An integer rectifiable current in Rn is an element of
Im(Rn) := Im,loc(Rn) ∩Mm(Rn).

Here we follow the presentation in [Sim, Sect. 27]. (In [Fed], the space
Im,loc(Rn) is denoted by Rloc

m (Rn).) If T, T ′ ∈ Im,loc(Rn), then T + T ′ ∈
Im,loc(Rn). The mass of T = [E, τ, θ] ∈ Im,loc(Rn) in an open set U is given
by

‖T‖(U) =
∫

U∩E
θ dHm.

Note that this is finite if the closure of U is compact, thus Im,loc(Rn) ⊂
Mm,loc(Rn).

If T ∈ Im,loc(Rn) and f : Rn → Rp is a locally Lipschitz map such that
f | spt T is proper, then f#T can be defined, and f#T ∈ Im,loc(Rp). Cf. [Sim,
27.2], [Fed, 4.1.30].

The boundary of an integer rectifiable current need not be integer recti-
fiable.

3.2 Definition (integral current)
The space of locally integral currents in Rn is defined by

Im,loc(Rn) := {T ∈ Im,loc(Rn) : ∂T ∈ Im−1,loc(Rn)}

if m ≥ 1, and I0,loc(Rn) := I0,loc(Rn). An integral current in Rn is an
element of Im(Rn) := Im,loc(Rn) ∩Nm(Rn).
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The following result supplements the slicing theorem 2.12, cf. [Sim, 28.1–
28.5], [Fed, 4.3.6].

3.3 Theorem (slices of integral currents)
If T ∈ Im(Rn), m ≥ 1, and f : Rn → R is Lipschitz, then 〈T, f, s+〉 ∈
Im−1(Rn) for almost all s ∈ R.

The compactness theorem

We list three fundamental results in the theory of integer rectifiable currents,
cf. [Fed, 4.2.15, 4.2.16], [Sim, 32.2].

3.4 Theorem (boundary rectifiability)
If T ∈ Im(Rn) and M(∂T ) < ∞, then ∂T ∈ Im−1(Rn), i.e. T ∈ Im(Rn).

3.5 Theorem (rectifiable slices implies rectifiable)
Suppose T ∈ Mm(Rn) and ∂T = 0. Suppose further that for every z ∈ Rn,
∂(T B(z, r)) ∈ Im−1(Rn) for almost all r. Then T ∈ Im(Rn).

3.6 Theorem (closure theorem)
Suppose T1, T2, . . . ∈ Im(Rn), supi N(Ti) < ∞, and

⋃
i spt Ti ⊂ C for some

compact set C ⊂ Rn. If Ti ⇀ T for some T ∈ Dm(Rn), then T ∈ Im(Rn).

The original proof of 3.5 relied on the difficult structure theorem 1.20.
In [Whi], White gave a simultaneous inductive proof of the above three
theorems that does not use structure theory.

By combining 3.6 with the compactness theorem for normal currents one
obtains the celebrated result for integral currents:

3.7 Theorem (compactness theorem)
Suppose T1, T2, . . . ∈ Im(Rn), supi N(Ti) < ∞, and

⋃
i spt Ti ⊂ C for some

compact set C ⊂ Rn. Then there is a subsequence Ti1 , Ti2 , . . . and a T ∈
Im(Rn) such that Tij ⇀ T .

See [Fed, 4.2.17], [Sim, 27.3].

Minimizing currents

From Theorem 3.7 one easily obtains various existence results for area min-
imizing currents. In general, a current T ∈ Im,loc(Rn) is called (absolutely
area) minimizing if

M(S) ≤ M(S′)

whenever S, S′ ∈ Im(Rn), ‖T‖ = ‖S‖ + ‖T − S‖, and ∂S′ = ∂S. The
assumption ‖T‖ = ‖S‖+ ‖T − S‖ means that S is a piece of T .
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3.8 Theorem (Plateau problem)
Suppose R ∈ Im−1(Rn), spt S is compact, and ∂S = 0. Then there is current
T ∈ Im(Rn) with ∂T = R such that M(T ) ≤ M(T ′) for all T ′ ∈ Im(Rn)
with ∂T ′ = R.

Of course T is minimizing in the sense defined above.

Proof : Let T := {T ′ ∈ Im(Rn) : ∂T ′ = R}; T is non-empty since it contains
e.g. the cone [0]×× T . Choose a sequence T1, T2, . . . in T such that

lim
i→∞

M(Ti) = b := inf{M(T ′) : T ′ ∈ T }.

Let C ⊂ Rn be a compact ball that contains spt R, and let π : Rn → C denote
the nearest point retraction; π is 1-Lipschitz. Since M(π#Ti) ≤ M(Ti) and
spt(π#Ti) ⊂ C for all i, we assume w.l.o.g. that sptTi ⊂ C for all i. Since
supi N(Ti) < ∞, by Theorem 3.7 there exist a subsequence Ti1 , Ti2 , . . . and
a T ∈ Im(Rn) such that Tij ⇀ T . Then also R = ∂Tij ⇀ ∂T , thus ∂T = R,
and

M(T ) ≤ lim inf
j→∞

M(Tij ) = b.

This proves the result. 2

Let M ⊂ Rn+k be a compact C1 submanifold of dimension n. For m ≥ 1,
define the abelian groups

Zm(M) := {T ∈ Im(Rn+k) : sptT ⊂ M, ∂T = 0},
Bm(M) := {∂S : S ∈ Im+1(Rn+k), spt S ⊂ M} ⊂ Zm(M).

Two cycles T, T ′ ∈ Zm(M) are homologous if T − T ′ ∈ Bm(M).

3.9 Theorem (homologically minimizing cycles)
Suppose M ⊂ Rn+k is as above and T ′ ∈ Zm(M). Among all cycles in
Zm(M) homologous to T ′ there is one with minimal mass.

See [Fed, 5.1.6], [Sim, 34.3].

Next, we mention the most important regularity results for minimizing
currents in Rn.

3.10 Theorem (hypersurface interior regularity)
Suppose T ∈ In−1,loc(Rn) is minimizing. There is a set Σ of Hausdorff
dimension at most n−8 such that (sptT \ spt(∂T ))\Σ is a C∞ submanifold
of Rn.

This is due to Federer [Fed1]. It was known previously that the
bound n − 8 is optimal, by the following example of Bombieri–De Giorgi–
Giusti [BomDG].
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3.11 Example (minimizing cone)
Let V := {(x, y) ∈ R4 × R4 : |x|2 < |y|2}. Then ∂[V ] ∈ I7, loc(R8) is a
minimizing hypersurface with an isolated singular point at 0.

For currents of arbitrary codimension, the following deep result of Alm-
gren holds, cf. [Alm2], [Alm3].

3.12 Theorem (interior regularity)
Suppose T ∈ Im,loc(Rn) is minimizing. There is a set Σ of Hausdorff dimen-
sion at most m− 2 such that (sptT \ spt(∂T )) \Σ is an m-dimensional C∞

submanifold of Rn.

The bound m− 2 is optimal;

T = [E12, e1 ∧ e2] + [E34, e3 ∧ e4] ∈ I2,loc(R4)

is a minimizing 2-current in R4 with an isolated singular point at 0. Here
Eij denotes the coordinate plane spanned by ei and ej . To show that T
is minimizing, let S ∈ I2(R4) be a piece of T , and let S′ ∈ I2(R4) be an
arbitrary current with ∂S′ = ∂S. Then S = [A, e1 ∧ e2] + [A′, e3 ∧ e4] for
some H2-measurable sets A ⊂ E12 and A′ ⊂ E34. By (a special case of)
Wirtinger’s inequality [Fed, p. 40], the form ω = dx1 ∧ dx2 + dx3 ∧ dx4 has
comass norm ‖ω(x)‖ = 1. Since ω is exact and ∂S = ∂S′, one concludes
that

M(S) = S(ω) = S′(ω) ≤ M(S′),

proving that T is minimizing.
A most useful tool in regularity theory is the following property of min-

imizing currents, cf. [Fed, 5.4.3–5.4.5], [Sim, 35.1].

3.13 Theorem (monotonicity formula)
Suppose T ∈ Im,loc(Rn) is minimizing.
(1) For all x ∈ Rn, the function r 7→ M(T B(x, r))/rm is (non-strictly)

increasing on (0, d(x, spt ∂T )).
(2) For all x ∈ spt T and r ∈ (0, d(x, spt ∂T )),

M(T B(x, r)) ≥ αmrm = Lm(Bm(r)).

Proof : (1) For r ∈ (0, d(x, spt ∂T )), put Sr := T B(x, r) and f(r) :=
M(Sr). For almost every r, f is differentiable at r, and

M(∂Sr) = M(〈T, d(x, ·), r+〉) ≤ f ′(r)

by Theorem 2.12(2). The cone S′r := [x] ×× ∂Sr from x over ∂Sr has mass
M(S′r) = r

mM(∂Sr). Thus, by minimality,

f(r) = M(Sr) ≤ M(S′r) ≤
r

m
f ′(r)

25



for almost every r ∈ (0, d(x, spt ∂T )). Integrating the inequality

f ′(r)
f(r)

≥ m

r

from r1 to r2 one obtains the result.

(2) is a consequence of (1) and the fact that if T = [E, τ, θ], where θ > 0,
then sptT is the closure of the set {y ∈ Rn : Θm(E, y) = 1}. 2
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Lecture 4: Some metric space techniques

In this last lecture, we discuss some metric space techniques that are useful in
connection with the new metric approach to currents developed in [AmbK1],
[AmbK2], and [Wen]. Indispensable tools in modern geometry, they are also
of independent interest.

Embeddings

We start with some basic and well-known isometric embedding theorems for
metric spaces.

4.1 Lemma (Kuratowski, Fréchet)
(1) Every metric space X admits an isometric embedding into l∞(X) =

({s : X → R : s bounded}, ‖ · ‖∞).
(2) Every separable metric space admits an isometric embedding into l∞ =

l∞(N).

Proof : (1) Fix z ∈ X and define X → l∞(X),

x 7→ sx, sx(y) = d(x, y)− d(y, z).

Note that ‖sx‖∞ = supy |sx(y)| ≤ d(x, z). Moreover,

‖sx − sx′‖∞ = supy |d(x, y)− d(x′, y)| ≤ d(x, x′),

and equality occurs for y = x′.
(2) Embed a dense countable subset of X into l∞ by means of (1). This

extends to an isometric embedding of X. 2

Note that if X is bounded, we do not need to subtract the term d(y, z)
in the definition of sx. In this case, the embedding is canonical.

Recall that a metric space X is said to be precompact or totally bounded
if for every ε > 0, X can be covered by a finite number of closed balls of
radius ε. We call a set Y ⊂ X ε-separated if d(y, y′) ≥ ε whenever y, y′ ∈ Y ,
y 6= y′. Note that X is precompact if and only if for every ε > 0, all ε-
separated subsets of X are finite. A metric space is compact if and only if
it is precompact and complete.

4.2 Definition (uniformly precompact family)
A family (Xj)j∈J of metric spaces is called uniformly precompact if for all
ε > 0 there exists a number n = n(ε) ∈ N such that each Xj can be covered
by n closed balls of radius ε. The family (Xj)j∈J is uniformly bounded if
supj∈J diam Xj < ∞.
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4.3 Theorem (Gromov embedding)
Suppose that (Xj)j∈J is a uniformly precompact and uniformly bounded
family of metric spaces. Then there is a compact metric space Z such that
each Xj admits an isometric embedding into Z.

We follow essentially the original proof from [Gro1].

Proof : For i ∈ N, let εi := 2−i and pick ni ∈ N such that each Xj can be
covered by ni closed balls of radius εi. Choose a partition of N into sets Ni,
i ∈ N, with cardinality #Ni = n1n2 . . . ni, and define a map π : N \N1 → N
such that for each i ∈ N,

π−1(Ni) = Ni+1 and #π−1{k} = ni+1 for all k ∈ Ni.

In each Xj , we construct a sequence (xj
k)k∈N according to the following

inductive scheme. For i = 1, the points xj
k with k ∈ Ni = N1 are chosen

such that the n1 balls B(xj
k, ε1) cover Xj . For i ≥ 1, if the n1 . . . ni centers

xj
k with k ∈ Ni are selected, the n1 . . . nini+1 points xj

l with l ∈ Ni+1 are
chosen such that for each k ∈ Ni, the ball B(xj

k, εi) is covered by the ni+1

balls
B(xj

l , εi+1) ⊂ B(xj
k, 2εi)

with l ∈ π−1{k}. This way we obtain for every j ∈ J a dense sequence
(xj

k)k∈N in Xj which gives rise to an isometric embedding fj : Xj → l∞,
mapping x to (d(x, xj

k))k∈N. Whenever i ∈ N, k ∈ Ni, and l ∈ π−1{k}, then

|d(x, xj
k)− d(x, xj

l )| ≤ d(xj
k, x

j
l ) ≤ 2εi.

Hence, each fj(Xj) lies in the set Z of all sequences (sk)k∈N with 0 ≤ sk ≤
supj diam Zj for all k ∈ N and

|sk − sl| ≤ 2εi whenever i ∈ N, k ∈ Ni, and l ∈ π−1{k}.

Since the sequence (εi)i∈N is summable, Z is a compact subset of l∞. 2

For further reading on geometric embedding theorems and detailed ref-
erences we refer to [Hei].

Gromov–Hausdorff convergence

For subsets A,B of a metric space X we denote by Nδ(A) the closed δ-
neighborhood of A and by

dH(A,B) = inf{δ ≥ 0: A ⊂ Nδ(B), B ⊂ Nδ(A)}

the Hausdorff distance of A and B; dH defines a metric on the set C of
non-empty, closed and bounded subsets of X.
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4.4 Theorem (Blaschke)
Suppose that X = (X, d) is a metric space and C is the set of non-empty,
closed and bounded subsets of X, endowed with the Hausdorff metric dH .
(1) If X is complete, then C is complete.
(2) If X is compact, then C is compact.

This was first proved by Blaschke [Bla] for compact convex bodies in R3

to settle the existence question in the isoperimetric problem.

Proof : (1): Let (Ci)i∈N be a Cauchy sequence in C. Then the set

C :=
⋂∞

i=1

⋃
j≥iCj

is closed and bounded. We show that

lim
i→∞

dH(Ci, C) = 0.

Let ε > 0. Choose i0 such that dH(Ci, Cj) ≤ ε/2 whenever i, j ≥ i0. Suppose
x ∈ C. Since C ⊂

⋃
j≥i0

Cj there exists an index j ≥ i0 with d(x, Cj) ≤ ε/2.
Hence d(x,Ci) ≤ d(x,Cj) + dH(Ci, Cj) ≤ ε for all i ≥ i0. This shows that
C ⊂ Nε(Ci) for i ≥ i0.

Now suppose x ∈ Ci for some i ≥ i0. Pick a sequence i = i1 < i2 < . . .
such that dH(Cm, Cn) ≤ ε/2k whenever m,n ≥ ik, k ∈ N. Then choose a
sequence (xk)k∈N such that x1 = x, xk ∈ Cik and d(xk, xk+1) ≤ ε/2k. As X
is complete, the Cauchy sequence (xk) converges to some point y. We have

d(x, y) = lim
k→∞

d(x, xk) ≤
∞∑

k=1

d(xk, xk+1) ≤ ε,

and y belongs to the closure of Cik ∪ Cik+1
∪ . . . for all k. Thus y ∈ C and

d(x,C) ≤ ε. This shows that Ci ⊂ Nε(C) whenever i ≥ i0.

(2): We know that C is complete since X is, so it suffices to show that C
is precompact. Let ε > 0. Since X is precompact we find a finite set Z ⊂ X
with Nε(Z) = X. We show that every C ∈ C is at Hausdorff distance at
most ε of some subset of Z, namely ZC := Z ∩ Nε(C). For every x ∈ C
there exists a point z ∈ Z with d(x, z) ≤ ε, so z ∈ ZC . This shows that
C ⊂ Nε(ZC). Since also ZC ⊂ Nε(C), we have dH(C,ZC) ≤ ε. As there are
only finitely many distinct subsets of Z, we conclude that C is precompact.

2

4.5 Definition (Gromov–Hausdorff distance)
The Gromov–Hausdorff distance of two metric spaces X, Y is the number

dGH (X, Y ) = inf dZ
H(X ′, Y ′),

where the infimum is taken over all triples (Z,X ′, Y ′) such that Z = (Z, dZ)
is a metric space, X ′ ⊂ Z is an isometric copy of X, and Y ′ ⊂ Z is an
isometric copy of Y .
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Cf. [Gro1], [Gro2]. Alternatively, call a metric d̄ on the disjoint union
X t Y admissible for the given metrics d = dX and d = dY on X and Y if
d̄|X ×X = dX and d̄|Y × Y = dY ; then

dGH (X, Y ) = inf d̄H(X, Y )

where the infimum is taken over all admissible metrics d̄ on X t Y .
For instance, suppose that diam(X),diam(Y ) ≤ D < ∞. Setting

d̄(x, y) = D/2 for x ∈ X and y ∈ Y we obtain an admissible metric on
X t Y , in particular dGH (X, Y ) ≤ D/2.

We call a subset X ′ of a metric space X ε-dense in X if dH(X, X ′) ≤ ε,
i.e. Nε(X ′) = X. By a correspondence ∼ between two sets X, Y we mean
a symmetric relation between points in X and points in Y such that every
element of X is related to at least one element of Y and vice-versa.

4.6 Lemma
Suppose X, Y are two metric spaces and ε > 0.
(1) If dGH (X, Y ) < ε, then there is a correspondence ∼ between X and Y

such that
|d(x, x′)− d(y, y′)| < 2ε

whenever x, x′ ∈ X, y, y′ ∈ Y , and x ∼ y, x′ ∼ y′.
(2) Suppose X ′ ⊂ X is ε-dense in X, Y ′ ⊂ Y is ε-dense in Y , and there is

a correspondence ∼ between X ′ and Y ′ such that

|d(x, x′)− d(y, y′)| ≤ ε

whenever x, x′ ∈ X ′, y, y′ ∈ Y ′, and x ∼ y, x′ ∼ y′. Then dGH (X, Y ) <
2ε.

Proof : (1): Let d̄ be an admissible metric on XtY such that d̄H(X, Y ) < ε.
Then for every x ∈ X there is a y ∈ Y with d̄(x, y) < ε, and vice-versa.
Define a correspondence in this manner.

(2): Define an admissible metric d̄ on X t Y such that d̄(x, y) =
inf d(x, x′) + d(y, y′) + ε/2 for all x ∈ X and y ∈ Y , where the infimum
is taken over all pairs of points x′ ∈ X ′ and y′ ∈ Y ′ with x′ ∼ y′. 2

4.7 Theorem
(1) dGH satisfies the triangle inequality, i.e. dGH (X, Z) ≤ dGH (X, Y ) +

dGH (Y, Z) for all metric spaces X, Y, Z.
(2) dGH defines a metric on the set of isometry classes of compact metric

spaces.

See [BurBI, 7.3.16, 7.3.30]. Assertion (2) is no longer true if ’compact’
is replaced by ’complete and bounded’.
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4.8 Theorem (Gromov compactness criterion)
Suppose that (Xi)i∈N is a uniformly precompact and uniformly bounded
sequence of metric spaces. Then there exist a subsequence (Xij )j∈N and a
compact metric space Z such that (Xij ) Gromov–Hausdorff converges to Z,
i.e. limj→∞ dGH (Xij , Z) = 0.

This was proved in [Gro1].

Proof : Combine Theorems 4.3 (Gromov embedding) and 4.4(b) (Blaschke).
2

Ultralimits

By a filter φ on a set I we mean a monotonous set function φ : 2I → {0, 1}
with φ(∅) = 0, φ(I) = 1, and φ(A ∩ B) = 1 whenever φ(A) = φ(B) = 1.
An ultrafilter is a filter that is maximal with respect to the partial order ≤.
Equivalently, a function φ : 2I → {0, 1} is an ultrafilter iff φ(I) = 1 and φ is
finitely additive, i.e.,

φ(A) + φ(B) = φ(A ∪B) whenever A ∩B = ∅.

An ultrafilter φ is called free or non-principal if it is zero on finite sets; in
the opposite case, φ has a unique atom and is said to be fixed or principal.
To prove the existence of a free ultrafilter φ on an infinite set I, start with
the Fréchet filter which is one exactly on complements of finite sets and
apply Zorn’s lemma within the class of filters that vanish on finite sets.

In the following φ denotes a free ultrafilter on N. Given a sequence
(xi)i∈N in a topological space X, we call a point x ∈ X a φ-limit of (xi),
and we write limφxi = x, if

φ({i ∈ N : xi ∈ U}) = 1

for every neighborhood U of x.
In case X is a metric space, limφxi = x is equivalent to

φ({i ∈ N : d(x, xi) < ε}) = 1 for all ε > 0

and hence to limφd(x, xi) = 0.
If X is a compact topological Hausdorff space and (xi)i∈N is a sequence in

X, then there exists a uniquely determined point x ∈ X such that limφxi =
x. Since φ is free, every neighborhood of x contains infinitely many elements
of (xi). In particular, for every bounded sequence (ai)i∈N of real numbers
there is a unique point a such that limφai = a, and a is the limit of some
subsequence. One has

limφai + limφbi = limφ(ai + bi), λlimφai = limφ(λai)
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for all bounded sequences (ai), (bi) and all λ ∈ R. If ai ≤ bi for all i, then
limφai ≤ limφbi. It follows that if (xi) and (yi) are two bounded sequences
in a metric space X, with limφxi = x and limφyi = y, then

limφd(xi, yi) = d(x, y)

since |d(x, y)− limφd(xi, yi)| ≤ limφd(x, xi) + limφd(y, yi) = 0.

4.9 Definition (ultralimit)
Suppose (Xi)i∈N is a sequence of pointed metric spaces Xi = (Xi, d, ∗i) and
φ is a free ultrafilter on N. Denote by (Xi)∞ the set of all sequences (xi)
with xi ∈ Xi and supi d(xi, ∗i) < ∞. For (xi), (yi) ∈ (Xi)∞ the sequence
(d(xi, yi)) is bounded, and d((xi), (yi)) := limφdi(xi, yi) defines a pseudo-
metric on (Xi)∞. The ultralimit (or ultraproduct) (Xi)φ of the sequence
(Xi) is the set of equivalence classes (xi)φ of elements (xi) ∈ (Xi)∞, where

(xi) ∼ (yi) if and only if d((xi), (yi)) = 0,

endowed with the metric defined by d((xi)φ, (yi)φ) := d((xi), (yi)).

4.10 Lemma
The ultralimit X̄ = (Xi)φ of a sequence (Xi) of pointed metric spaces is
complete.

Proof : Pick a Cauchy sequence (x̄γ)γ∈N in X̄ and represent each x̄γ by an
element (xγ

i )i∈N ∈ (Xi)∞. By induction, choose sets N = N1 ⊃ N2 ⊃ . . .
with φ(Nγ) = 1 for all γ such that

|d(x̄α, x̄β)− d(xα
i , xβ

i )| < 2−γ

whenever i ∈ Nγ and α, β ∈ {1, 2, . . . , γ}. Then define an element (yi)i∈N ∈
(Xi)∞ such that yi = xγ

i for i ∈ Nγ \Nγ+1. Now x̄γ → ȳ := (yi)φ as γ →∞.
2

If each Xi is a Banach or Hilbert space, then (Xi)φ has a canonical
Banach or Hilbert space structure, respectively.

The ultralimit (X)φ of a constant sequence (X), X = (X, d, ∗), is also
called the ultracompletion (or ultrapower) of X. It is independent of the
choice of the basepoint ∗, and the map that assigns to each x ∈ X the
equivalence class (x)φ of the constant sequence (x) is a canonical isometric
embedding of X into (X)φ. Ultrapowers have applications e.g. in Banach
space theory, see [Hein], [HeinM].

For a fixed metric space (X, d), a sequence of basepoints ∗i ∈ X, and a
sequence of scale factors λi > 0 with limi→∞ λi = ∞, the ultralimit (Xi)φ

of the sequence of rescaled metric spaces Xi = (X, 1
λi

d, ∗i) is referred to as
an asymptotic cone of X. This construction has played a significant role
in recent proofs of rigidity theorems in the theory of nonpositively curved
spaces, see e.g. [KleL].
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4.11 Theorem (GH-limit versus ultralimit)
Suppose (Xi)i∈N is a uniformly precompact and uniformly bounded sequence
of metric spaces.
(1) The ultralimit (Xi)φ is isometric to the Gromov-Hausdorff limit of some

subsequence (Xik) of (Xi).
(2) If the sequence (Xi) Gromov–Hausdorff converges to some metric space

Y , and if each Xi is contained in a pointed metric space Zi = (Zi, ∗i)
with ∗i ∈ Xi, then Y isometrically embeds into the ultralimit (Zi)φ.

Proof : (1) We use Theorem 4.3 (Gromov embedding) and assume that each
Xi belongs to the set C of all non-empty compact subsets of some fixed
compact metric space Z. Then the map f : (Xi)φ → Z that assigns to each
class (xi)φ the limit limφxi is a well-defined isometric embedding since

d(limφxi, limφyi) = limφd(xi, yi) = d((xi)φ, (yi)φ).

By Theorem 4.4(2) (Blaschke), (C, dH) is compact, hence the sequence (Xi)
has a unique φ-limit limφXi = Y ∈ C with respect to dH . We show that
f((Xi)φ) coincides with Y ; then (Xi)φ is isometric to the Gromov-Hausdorff
limit of some subsequence of (Xi) as claimed.

Let y ∈ Y . For every i, choose xi ∈ Xi such that d(xi, y) ≤ dH(Xi, Y ).
Since limφXi = Y , limφd(xi, y) ≤ limφdH(Xi, Y ) = 0 and hence limφxi = y.
This shows that Y ⊂ f((Xi)φ).

To prove the reverse inclusion, let (xi) be a sequence with xi ∈ Xi for all
i. Choose yi ∈ Y such that d(xi, yi) ≤ dH(Xi, Y ). Then d(limφxi, limφyi) =
limφd(xi, yi) ≤ limφdH(Xi, Y ) = 0, hence limφxi ∈ Y .

(2) Using (1) we see that the completion Ȳ of Y is isometric to (Xi)φ,
and (Xi)φ canonically embeds into (Zi)φ. 2

33



References

[Alm1] F. J. Almgren, Jr., The homotopy groups of the integral cycle
groups, Topology 1 (1962), 257–299.

[Alm2] F. J. Almgren, Jr., Q-valued functions minimizing Dirichlet’s in-
tegral and the regularity of area minimizing rectifiable currents
up to codimension two, Bull. Amer. Math. Soc. 8 (1983), 327–328.

[Alm3] F. J. Almgren, Jr., Almgren’s big regularity paper (J. E. Taylor,
V. Scheffer, Eds.), World Scientific Publ. Co., River Edge 2000.

[AmbK1] L. Ambrosio, B. Kirchheim, Rectifiable sets in metric and Banach
spaces, Math. Ann. 318 (2000), 527–555.

[AmbK2] L. Ambrosio, B. Kirchheim, Currents in metric spaces, Acta
Math. 185 (2000), 1–80.

[Bes] A. S. Besicovitch, On the fundamental geometric properties of lin-
early measurable plane sets of points III, Math. Ann. 116 (1939),
349–357.

[Bla] W. Blaschke, Kreis und Kugel, Veit 1916, de Gruyter 1956.

[BomDG] E. Bombieri, E. De Giorgi, E. Giusti, Minimal cones and the
Bernstein problem, Invent. Math. 7 (1969), 243–268.

[BurBI] D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry,
Graduate Studies in Math., Vol. 33, Amer. Math. Soc. 2001.

[deR] G. de Rham, Variétés différentiables, formes, courants, formes
harmoniques, Actualités scientifiques et industrielles, Vol. 1222,
Hermann, Paris 1955.

[EvaG] L. C. Evans, R. E. Gariepy, Measure Theory and Fine Properties
of Functions, Boca Raton, CRC Press 1992.

[Fed0] H. Federer, The (φ, k) rectifiable subsets of n space, Trans. Amer.
Math. Soc. 62 (1947), 114–192.

[Fed] H. Federer, Geometric Measure Theory, Springer 1969, 1996.

[Fed1] H. Federer, The singular sets of area minimizing rectifiable cur-
rents with codimension one and of area minimizing flat chains
modulo two with arbitrary codimension, Bull. Amer. Math. Soc.
76 (1970), 767–771.

[FedF] H. Federer, W. Fleming, Normal and integral currents, Ann.
Math. 72 (1960), 458–520.

[GiaMS] M. Giaquinta, G. Modica, J. Soucek, Cartesian Currents in the
Calculus of Variations, I: Cartesian Currents, II: Variational In-
tegrals, Springer 1998.

34



[Gro1] M. Gromov, Groups of polynomial growth and expanding maps,
Publ. Math. IHES 53 (1981), 53–73.

[Gro2] M. Gromov, with Appendices by M. Katz, P. Pansu, and S.
Semmes, Metric Structures for Riemannian and Non-Riemannian
Spaces, Birkhäuser 1999.
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