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1 Topological preliminaries

This chapter is a brief introduction to general topology. Topological spaces consist of a set and a subset of
the set of all subsets of this set called the open sets or topology which satisfy certain axioms. Like other
areas in mathematics the abstraction inherent in this approach is an attempt to unify many different useful
examples into one general theory.

For example, consider R® with the usual norm given by

n 1/2
x| = (z w) |
i=1

We say a set U in R™ is an open set if every point of U is an “interior” point which means that if x €U,
there exists § > 0 such that if |y — x| < J, then y €U. It is easy to see that with this definition of open sets,
the axioms 1.1 - 1.2 given below are satisfied if 7 is the collection of open sets as just described. There are
many other sets of interest besides R however, and the appropriate definition of “open set” may be very
different and yet the collection of open sets may still satisfy these axioms. By abstracting the concept of
open sets, we can unify many different examples. Here is the definition of a general topological space.

Let X be a set and let 7 be a collection of subsets of X satisfying

ber, Xer, (1.1)
IfC Cr, then UCET

IfA,Ber, then ANB€T. (1.2)

Definition 1.1 A set X together with such a collection of its subsets satisfying 1.1-1.2 is called a topological
space. T is called the topology or set of open sets of X. Note 7 C P(X), the set of all subsets of X, also
called the power set.

Definition 1.2 A subset B of T is called a basis for T if whenever p € U € T, there exists a set B € B such
that p € B CU. The elements of B are called basic open sets.



The preceding definition implies that every open set (element of 7) may be written as a union of basic
open sets (elements of B). This brings up an interesting and important question. If a collection of subsets
B of a set X is specified, does there exist a topology 7 for X satisfying 1.1-1.2 such that B is a basis for 77

Theorem 1.3 Let X be a set and let B be a set of subsets of X. Then B is a basis for a topology T if and
only if whenever p € BNC for B,C € B, there exists D € B such thatp € D C CNB and UB = X. In this
case T consists of all unions of subsets of B.

Proof: The only if part is left to the reader. Let 7 consist of all unions of sets of B and suppose B satisfies
the conditions of the proposition. Then () € 7 because ) C B. X € 7 because UB = X by assumption. If
C C 7 then clearly UC € 7. Now suppose A,B € 7, A =US, B =UR, SR C B. We need to show
ANBerT. If ANB =), we are done. Suppose p € AN B. Then p € SN R where S € S, R € R. Hence
there exists U € B such that p € U C SN R. It follows, since p € AN B was arbitrary, that A N B = union
of sets of B. Thus AN B € 7. Hence 7 satisfies 1.1-1.2.

Definition 1.4 A topological space is said to be Hausdorff if whenever p and q are distinct points of X,
there exist disjoint open sets U,V such that p e U,q € V.

RN " Hausdorff

Definition 1.5 A subset of a topological space is said to be closed if its complement is open. Let p be a
point of X and let E C X. Then p is said to be a limit point of E if every open set containing p contains a
point of E distinct from p.

Theorem 1.6 A subset, E, of X is closed if and only if it contains all its limit points.

Proof: Suppose first that E is closed and let z be a limit point of E. We need to show z € E. If ¢ E,
then E¢ is an open set containing x which contains no points of E, a contradiction. Thus z € E. Now
suppose E contains all its limit points. We need to show the complement of E is open. But if z € E®, then
z is not a limit point of E and so there exists an open set, U containing z such that U contains no point of
E other than z. Since = ¢ E, it follows that z € U C E® which implies EC is an open set.

Theorem 1.7 If (X, 1) is a Hausdorff space and if p € X, then {p} is a closed set.

Proof: If x # p, there exist open sets U and V such that x € U,p € V and U NV = (). Therefore, {p}o
is an open set so {p} is closed.

Note that the Hausdorff axiom was stronger than needed in order to draw the conclusion of the last
theorem. In fact it would have been enough to assume that if x # y, then there exists an open set containing
2 which does not intersect y.

Definition 1.8 A topological space (X,T) is said to be regular if whenever C' is a closed set and p is a point
not in C, then there exist disjoint open sets U and V such that p € U, C C V. The topological space, (X, T)
is said to be normal if whenever C' and K are disjoint closed sets, there exist disjoint open sets U and V
such that C CU, K CV.



Regular

Normal

Definition 1.9 Let E be a subset of X. E is defined to be the smallest closed set containing E. Note that
this is well defined since X is closed and the intersection of any collection of closed sets is closed.

Theorem 1.10 E = E U {limit points of E}.

Proof: Let z € E and suppose that = ¢ E. If x is not a limit point either, then there exists an open
set, U,containing = which does not intersect E. But then U is a closed set which contains E which does
not contain z, contrary to the definition that E is the intersection of all closed sets containing E. Therefore,
 must be a limit point of E after all.

Now E C E so suppose z is a limit point of E. We need to show = € E. If H is a closed set containing
E, which does not contain x, then H® is an open set containing = which contains no points of F other than
x negating the assumption that z is a limit point of E.

Definition 1.11 Let X be a set and let d : X x X — [0,00) satisfy

d(z,y) = d(y,z), (1.3)
d(z,y) + d(y, z) > d(z, z), (triangle inequality)

d(z,y) = 0if and only if x = y. (1.4)
Such a function is called a metric. For r € [0,00) and z € X, define

B(z,r) ={y e X :d(z,y) <r}
This may also be denoted by N(x,r).

Definition 1.12 A topological space (X, 7) is called a metric space if there exists a metric, d, such that the
sets {B(x,r),x € X, r > 0} form a basis for 7. We write (X,d) for the metric space.

Theorem 1.13 Suppose X is a set and d satisfies 1.3-1.4. Then the sets {B(z,r) :r >0, x € X} form a
basis for a topology on X.

Proof: We observe that the union of these balls includes the whole space, X. We need to verify the
condition concerning the intersection of two basic sets. Let p € B (x,r1) N B (z,r2) . Consider

r =min (ry — d(z,p) ,r2 —d(z,p))



and suppose y € B (p,r) . Then
d(y,l‘) S d(y)p) + d(p,l‘) <r— d(l’,p) + d(l’,p) =T

and so B (p,r) C B (x,r1) . By similar reasoning, B (p,r) C B (z,r2) . This verifies the conditions for this set
of balls to be the basis for some topology.

Theorem 1.14 If (X, 1) is a metric space, then (X,7) is Hausdorff, reqular, and normal.

Proof: It is obvious that any metric space is Hausdorff. Since each point is a closed set, it suffices to
verify any metric space is normal. Let H and K be two disjoint closed nonempty sets. For each h € H, there
exists r, > 0 such that B (h,r,) N K = 0 because K is closed. Similarly, for each k € K there exists ry > 0
such that B (k,r;) N H = (). Now let

U=U{B(h,rp/2):h€ H}, V=U{B(k,r/2): k€ K}.

then these open sets contain H and K respectively and have empty intersection for if z € U NV, then
x € B (h,ry/2) N B (k,r,/2) for some h € H and k € K. Suppose rj, > r. Then

d(h,k) <d(h,z) +d(z,k) <rp,
a contradiction to B (h,7,) N K = (). If 7, > r},, the argument is similar. This proves the theorem.

Definition 1.15 A metric space is said to be separable if there is a countable dense subset of the space.
This means there exists D = {p;}$2, such that for all z and r > 0, B(z,r) N D # (.

Definition 1.16 A topological space is said to be completely separable if it has a countable basis for the
topology.

Theorem 1.17 A metric space is separable if and only if it is completely separable.

Proof: If the metric space has a countable basis for the topology, pick a point from each of the basic
open sets to get a countable dense subset of the metric space.

Now suppose the metric space, (X, d), has a countable dense subset, D. Let B denote all balls having
centers in D which have positive rational radii. We will show this is a basis for the topology. It is clear it
is a countable set. Let U be any open set and let z € U. Then there exists > 0 such that B (z,r) CU. In
B (z,r/3) pick a point from D, z. Now let r; be a positive rational number in the interval (r/3,2r/3) and
consider the set from B, B (z,r1). If y € B (x,r;) then

d(y,z) <d(y,z) +d(z,z) <r +r/3<2r/3+7r/3=r.

Thus B (z,71) contains z and is contained in U. This shows, since z is an arbitrary point of U that U is the
union of a subset of B.
The concept of a Cauchy sequence is very important. This is defined next.

Definition 1.18 A sequence {p,}32, in a metric space is called a Cauchy sequence if for every € > 0 there
exists N such that d(pn,pm) < € whenever n,m > N. A metric space is called complete if every Cauchy
sequence converges to some element of the metric space.

Example 1.19 R" and C* are complete metric spaces for the metric defined by d(x,y) = |[x — y| = AT
|2)1/2 =t
Yi -

Not all topological spaces are metric spaces and so the traditional € — § definition of continuity must be
modified for more general settings. The following definition does this for general topological spaces.



Definition 1.20 Let (X,7) and (Y,n) be two topological spaces and let f : X — Y. We say f is continuous
at x € X if whenever V is an open set of Y containing f(x), there exists an open set U € T such that x € U
and f(U) CV. We say that f is continuous if f~*(V) € 7 whenever V € n.

Definition 1.21 Let (X,7) and (Y,n) be two topological spaces. X XY is the Cartesian product. (X xY =
{(z,y) :z € X, y € Y}). We can define a product topology as follows. Let B={(Ax B): A€ 1, B€n}.
B is a basis for the product topology.

Theorem 1.22 B defined above is a basis satisfying the conditions of Theorem 1.3.

More generally we have the following definition which considers any finite Cartesian product of topological
spaces.

Definition 1.23 If (X;,7;) is a topological space, we make H?:l X; into a topological space by letting a
basis be [];—, A; where A; € 7;.

Theorem 1.24 Definition 1.23 yields a basis for a topology.

The proof of this theorem is almost immediate from the definition and is left for the reader.
The definition of compactness is also considered for a general topological space. This is given next.

Definition 1.25 A subset, E, of a topological space (X, T) is said to be compact if whenever C C 7 and
E C UC, there exists a finite subset of C,{Uy - - - Uy,}, such that E C U™, U;. (Every open covering admits
a finite subcovering.) A topological space is called Locally Compact if it has a basis B, with the property that
B is compact for each B € B.

Examples of locally compact topological spaces are R or C.

In general topological spaces there may be no concept of “bounded”. Even if there is, closed and bounded
is not necessarily the same as compactness. However, we can say that in any Hausdorff space every compact
set must be a closed set.

Theorem 1.26 If (X, 1) is a Hausdorff space, then every compact subset must also be a closed set.
Proof: Suppose p ¢ K. For each x € X, there exist open sets, U, and V, such that
x€eU,, peVy,
and
U: NV, = 0.

Since K is assumed to be compact, there are finitely many of these sets, U,,," - -,U,,, which cover K. Then
let V.=nN7,V,,. It follows that V' is an open set containing p which has empty intersection with each of the
U,,. Consequently, V' contains no points of K and is therefore not a limit point. This proves the theorem.

Lemma 1.27 Let (X,7) be a topological space and let B be a basis for 7. Then K is compact if and only if
every open cover of basic open sets admits a finite subcover.

The proof follows directly from the definition and is left to the reader. A very important property enjoyed
by a collection of compact sets is the property that if it can be shown that any finite intersection of this
collection has non empty intersection, then it can be concluded that the intersection of the whole collection
has non empty intersection. If every finite subset of a collection of sets has nonempty intersection, we say
the collection has the finite intersection property.



Theorem 1.28 Let K be a set whose elements are compact subsets of a Hausdorff topological space, (X, 7).
Suppose K has the finite intersection property. Then () # NK.

Proof: Suppose to the contrary that ) = NK. Then consider
C= {KO K € /C} .

It follows C is an open cover of Ky where K is any particular element of K. But then there are finitely many
KeKk, Ky, -, K, such that Ky C UleKiC implying that NI_,K; = 0, contradicting the finite intersection
property.

2 Compactness in metric space

Many existence theorems in analysis depend on some set being compact. Therefore, it is important to be
able to identify compact sets. The purpose of this section is to describe compact sets in a metric space. The
most famous description is that contained in the Heine Borel theorem which states that the compact sets
in R are those which are closed and bounded. However, this result is certainly not true in general metric
space. For example, let X be any infinite set and let

d(w,y):{ éiiig . (2.1)

We leave it as an exercise to verify that d is a metric and that “closed and bounded” is not the same as
compact for this example. We will have need of theorems which will give compactness for spaces of continuous
functions later on. For these spaces, compactness is also not equivalent to closed and bounded. In fact, it can
be shown that the two concepts are the same for a normed linear space exactly when the normed linear space
is finite dimensional. Thus the Heine Borel theorem is a very specialized result and must not be confused
with the general topological concept of compactness. What follows is a general result for compactness in an
arbitrary metric space. We will prove this result, use it to get a proof of the Heine Borel theorem and then
apply it to an infinite dimensional space to obtain the very significant Arzela Ascoli theorem.

Definition 2.1 In any metric space, we say a set E is totally bounded if for every e > 0 there exists a finite
set of points {1, --,x,} such that

E C UL B(z,e¢).
This finite set of points is called an € net.
The following proposition tells which sets in a metric space are compact.

Proposition 2.2 Let (X,d) be a metric space. Then the following are equivalent.

(X,d) is compact, (2.2)
(X,d) is sequentially compact, (2.3)
(X,d) is complete and totally bounded. (2.4)

Recall that X is “sequentially compact” means every sequence has a convergent subsequence converging
so an element of X.



Proof: Suppose 2.2 and let {z;} be a sequence. Suppose {z} has no convergent subsequence. If this
is so, then {zj} has no limit point and no value of the sequence is repeated more than finitely many times.
Thus the set

Cp =U{zg : k> n}
is a closed set and if

U, =C¢,

n

then
X - U?Lozl Un

but there is no finite subcovering, contradicting compactness of (X, d).
Now suppose Formula 2.3 and let {z,,} be a Cauchy sequence. Then z,, — z for some subsequence. Let

e > 0 be given. Let ng be such that if m,n > ng, then d(z,,z,,) < 5 and let [ be such that if & > [ then
d(Tn,,r) < §. Let ny > max (ng,no). If n > ny, let k> 1 and ng > no.

d(Tn, ) < d(Tp,2n,)+d(2n,,)

< 6+6_
5 2—6.

Thus {z,} converges to z and this shows (X,d) is complete. If (X, d) is not totally bounded, then there
exists € > 0 for which there is no e net. Hence there exists a sequence {x;} with d (zy,2;) > € for all | # k.
This contradicts Formula 2.3 because this is a sequence having no convergent subsequence. This shows
Formula 2.3 implies Formula 2.4.

Now suppose Formula 2.4. We show this implies Formula 2.3. Let {p,} be a sequence and let {z};2" be
a2 ™ net forn=1,2,---. Let

B, =B (z},27")

be such that B, contains py, for infinitely many values of k¥ and B,, N Bp41 # 0. Let p,, be a subsequence
having

Py € By..

Then if k > 1,
k—1
d(pnk:pnl) < Z d (pni+1:pni)
i=l
k—1
B S s PP
i=l

Consequently {py, } is a Cauchy sequence. Hence it converges. This proves Formula 2.3.
Now suppose Formula 2.3 and Formula 2.4. Let D,, be a n~! net for n = 1,2,-- - and let
D =U%,D,.
Thus D is a countable dense subset of (X, d). The set of balls

B={B(q,r):q€ D, r€QnN(0,00)}



is a countable basis for (X, d). To see this, let p € B (z,€) and choose r € @ N (0, 00) such that
e—d(p,z) > 2r.
Let g € B(p,r)ND. If y € B(q,r), then

d(y,z) < d(y,q)+d(qg,p)+d(p,=)
< r4+r4+e—2r=ce.

Hence p € B(q,7) C B(z,¢) and this shows each ball is the union of balls of 5. Now suppose C is any open
cover of X. Let B denote the balls of B which are contained in some set of C. Thus

UB = X.
For each B € [57’ pick U € C such that U O B. Let C be the resulting countable collection of sets. Then Cis
a countable open cover of X. Say C = {U,}52,. If C admits no finite subcover, then neither does C and we

can pick p, € X \ Up_,Ux. Then since X is sequentially compact, there is a subsequence {py, } such that
{pn, } converges. Say

p = lim py,.
k—o00
All but finitely many points of {py, } are in X \ Up_, U. Therefore p € X \ U}_, Uy, for each n. Hence
p ¢ U Uk

contradicting the construction of {U,}>2,. Hence X is compact. This proves the proposition.
Next we apply this very general result to a familiar example, R”. In this setting totally bounded and
bounded are the same. This will yield another proof of the Heine Borel theorem.

Lemma 2.3 A subset of R is totally bounded if and only if it is bounded.

Proof: Let A be totally bounded. We need to show it is bounded. Let x1,---,x, be a 1 net for A. Now
consider the ball B (0,r + 1) where r > max (||x;|| : 4 =1,---,p). If z €A, then z €B (x;, 1) for some j and
so by the triangle inequality,

||z = Of| < |z = xj{| + [Jx;]] <1+

Thus A C B(0,r + 1) and so A is bounded.

Now suppose A is bounded and suppose A is not totally bounded. Then there exists € > 0 such that
there is no € net for A. Therefore, there exists a sequence of points {a;} with ||a; — a;|| > € if i # j. Since
A is bounded, there exists r > 0 such that

AC[-rr)™

(x €[—r,r)™ means x; € [—r,r) for each i.) Now define S to be all cubes of the form

[T lax, bx)

k=1
where
ap = —1+i27Pr, by = —r+ (1 +1)27Pr,
for i € {0,1,---,2P"* —1}. Thus S is a collection of (2”*1)n nonoverlapping cubes whose union equals

[-7,7)™ and whose diameters are all equal to 27Pry/n. Now choose p large enough that the diameter of
these cubes is less than €. This yields a contradiction because one of the cubes must contain infinitely many
points of {a;}. This proves the lemma.

The next theorem is called the Heine Borel theorem and it characterizes the compact sets in R™.



Theorem 2.4 A subset of R" is compact if and only if it is closed and bounded.

Proof: Since a set in R™ is totally bounded if and only if it is bounded, this theorem follows from
Proposition 2.2 and the observation that a subset of R™ is closed if and only if it is complete. This proves
the theorem.

The following corollary is an important existence theorem which depends on compactness.

Corollary 2.5 Let (X, 1) be a compact topological space and let f : X — R be continuous. Then max {f (z):z € X}
and min {f (z) : € X} both exist.

Proof: Since X is compact, it follows that f (X) is compact. (See Problem 4 in the next exercise set.)
From Theorem 2.4 f (X) is closed and bounded. This implies it has a largest and a smallest value. This
proves the corollary.

2.1 Compactness in spaces of continuous functions

Let (X,7) be a compact space and let C (X;R"™) denote the space of continuous R” valued functions. For
feC(X;R") let

£ lloo = sup{[f (x) | : 2 € X}

where the norm in the parenthesis refers to the usual norm in R™.
The following proposition shows that C' (X;R") is an example of a Banach space.

Proposition 2.6 (C (X;R"),|| ||«) s a Banach space.

Proof: It is obvious || || is a norm because (X, 7) is compact. Also it is clear that C (X;R™) is a linear
space. Suppose {f,} is a Cauchy sequence in C' (X;R™). Then for each z € X, {f. (z)} is a Cauchy sequence
in R*. Let

f @) = Jim fi ().

Therefore,

sup |f () — fi () | = sup lim |fp (z) — fi (z) |
reX r€X M0

<lim sup [[fm — filloo < €
m—0o0

for all k£ large enough. Thus,

lim sup | (2) — fi (2) | = 0.

k—o00 zeX

It only remains to show that f is continuous. Let
sup |f (z) — fi (x) | < €/3
zeX

whenever k > ko and pick k& > k.

[f (@)= FW| < |f@) = fe@) | +1fe(@) = fi )|+ () = F )]
< 26/3+|fr (@) — fre (y) |

10



Now f;, is continuous and so there exists U an open set containing x such that if y € U, then

|fr () = fr (y) | <€/3.

Thus, for all y € U, |f () — f (y) | < € and this shows that f is continuous and proves the proposition.

This space is a normed linear space and so it is a metric space with the distance given by d(f,g) =
I|f — gll. - The next task is to find the compact subsets of this metric space. We know these are the subsets
which are complete and totally bounded by Proposition 2.2, but which sets are those? We need another way
to identify them which is more convenient. This is the extremely important Ascoli Arzela theorem which is
the next big theorem.

Definition 2.7 We say F C C (X;R") is equicontinuous at zo if for all € > 0 there exists U € T, xg € U,
such that if x € U, then for all f € F,

|f (%) = f (o) | <e

If F is equicontinuous at every point of X, we say F is equicontinuous. We say F is bounded if there exists
a constant, M, such that ||f||lcc < M for all f € F.

Lemma 2.8 Let F C C (X;R") be equicontinuous and bounded and let € > 0 be given. Then if {f.} C F,
there ezists a subsequence {gi}, depending on ¢, such that

||gk _gm”oo <e

whenever k, m are large enough.

Proof: If z € X there exists an open set U, containing x such that for all f € F and y € U,,

[f (2) = f(y) | <e/4. (2.5)

Since X is compact, finitely many of these sets, U,,,- - -,Us,,, cover X. Let {fix} be a subsequence of
{fr} such that {fix (z1)} converges. Such a subsequence exists because F is bounded. Let {f2r} be a
subsequence of {fix} such that {far (x;)} converges for i = 1,2. Continue in this way and let {gr} = {fpr }-
Thus {gx (x;)} converges for each z;. Therefore, if € > 0 is given, there exists m. such that for k,m > m,

€

max {|gg (¥;) — gm (vi)| :i=1,---,p} < 5

Now if y € X, then y € U,, for some z;. Denote this z; by z,. Now let y € X and k,m > m.. Then by 2.5,

L9k () = gm W] < 19k () — gk ()| + gk () = gm ()| + |gm (Ty) — g (V)]

€ . €
< Z+max{|gk (l‘l)—gm(ml” ;Z:]_’...,p}_+_Z < e,

It follows that for such &, m,

||gk _gm”oo <e

and this proves the lemma.

Theorem 2.9 (Ascoli Arzela) Let F CC (X;R"™). Then F is compact if and only if F is closed, bounded,
and equicontinuous.

11



Proof: Suppose F is closed, bounded, and equicontinuous. We will show this implies F is totally
bounded. Then since F is closed, it follows that F is complete and will therefore be compact by Proposition
2.2. Suppose F is not totally bounded. Then there exists € > 0 such that there is no € net. Hence there
exists a sequence {fr} C F such that

| fe — fill > €

for all k£ # [. This contradicts Lemma 2.8. Thus F must be totally bounded and this proves half of the
theorem.

Now suppose F is compact. Then it must be closed and totally bounded. This implies F is bounded.
It remains to show F is equicontinuous. Suppose not. Then there exists x € X such that F is not
equicontinuous at z. Thus there exists € > 0 such that for every open U containing z, there exists f € F
such that |f (z) — f (y)| > € for some y € U.

Let {h1,-- -, hp} be an €/4 net for F. For each z, let U, be an open set containing z such that for all
y e,

|hi (z) — hi (y)| < ¢€/8

foralli =1,---,p. Let Uy,, -+, U,,, cover X. Then x € U,, for some z; and so, for some y € U,, there exists
f € Fsuchthat |f (z) — f (y)| > e. Since {hy,---, h,} is an €/4 net, it follows that for some j, || f — h;|| < §
and so

e <|f(2) = FWI <|f (=) = hj (@) + |hj (x) = hy ()] +
hi (y) = f ()| < €/2+ |hj (x) = hy (y)] < e/2+

|hj (x) = hj (z:)] + |hy (2:) = hy (y)] < 3e/4,

a contradiction. This proves the theorem.

2.2 Exercises

1. Let (X,7),(Y,n) be topological spaces and let A C X be compact. Then if f: X — Y is continuous,
show that f (A) is also compact.

2. 1 In the context of Problem 1, suppose R = Y where the usual topology is placed on R. Show f
achieves its maximum and minimum on A.

3. Let V be an open set in R™. Show there is an increasing sequence of compact sets, K,,, such that
V =U5_ Kp,- Hint: Let

Cn = {x € R" : dist (X,VC) > i}
m

where
dist (x,5) = inf {|y — x| such that y € S}.

Consider K,,, = Cy, N B (0,m).

4. Show that if X is compact and f: X — Y is continuous, then f (X) is also compact.
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5. Let B (X;R") be the space of functions f, mapping X to R" such that
sup{|f (x)] : x € X} < 0.
Show B (X;R"™) is a complete normed linear space if
|Ifl] = sup{|f (x)] : x € X}.

6. Let H and K be disjoint closed sets in a metric space, (X, d), and let

2 1
=-h - =
9(@)=3h(z) -3
where
dist (z,H)
h = .
(@) dist (z, H) + dist (z, K)
Show g (z) € [—%, 1] for all z € X, g is continuous, and g equals = on H while g equals + on K.

7. 1 Suppose M is a closed set in X where X is the metric space of problem 6 and suppose f : M — [—1,1]
is continuous. Show there exists g : X — [—1,1] such that g is continuous and ¢ = f on M. Hint:
Show there exists

nec) e |3

and |f (z) — g1 (x)| < 2 for all 2 € H. To do this, consider the disjoint closed sets

e ((23]) ks ()

and use Problem 6 if the two sets are nonempty. When this has been done, let

(@) - 91 (@)

play the role of f and let g» be like g;. Obtain

-3 (2) aw

i=1

1)

v0=%(2) 0w

i=1

and consider

8. 1 Let M be a closed set in a metric space (X, d) and suppose f € C (M). Show there exists g € C' (X)
such that g () = f (z) for all z € M and if f (M) C [a,b], then g (X) C [a,b]. This is a version of the
Tietze extension theorem. Is it necessary to be in a metric space for this to work?

9. Let X be a compact topological space and suppose {f,} is a sequence of functions continuous on X
having values in R”. Show there exists a countable dense subset of X, {z;} and a subsequence of {f,},
{fn.}, such that {fy,, (z;)} converges for each z;. Hint: First get a subsequence which converges at
z1, then a subsequence of this subsequence which converges at xo and a subsequence of this one which
converges at x3 and so forth. Thus the second of these subsequences converges at both z; and zs
while the third converges at these two points and also at z3 and so forth. List them so the second
is under the first and the third is under the second and so forth thus obtaining an infinite matrix of
entries. Now consider the diagonal sequence and argue it is ultimately a subsequence of every one of
these subsequences described earlier and so it must converge at each x;. This procedure is called the
Cantor diagonal process.

13



10.

11.

12.

13.

2.3

1 Use the Cantor diagonal process to give a different proof of the Ascoli Arzela theorem than that
presented in this chapter. Hint: Start with a sequence of functions in C'(X;R") and use the Cantor
diagonal process to produce a subsequence which converges at each point of a countable dense subset
of X. Then show this sequence is a Cauchy sequence in C' (X;R"™).

Let (X, d) be a metric space where d is a bounded metric. Let C denote the collection of closed subsets
of X. For A, B € C, define

p(A,B)=inf{d >0: A; O B and B; D A}
where for a set S,
Ss ={x : dist (x,S) =inf {d(z,s) : s € S} < d}.

Show x — dist (z,S) is continuous and that therefore, S; is a closed set containing S. Also show that
p is a metric on C. This is called the Hausdorff metric.

1Suppose (X, d) is a compact metric space. Show (C, p) is a complete metric space. Hint: Show first
that if W,, | W where W, is closed, then p (W,,,W) — 0. Now let {A,} be a Cauchy sequence in
C. Then if € > 0 there exists N such that when m,n > N, then p (4,, An) < e. Therefore, for each
n >N,

(An). U, A
Let A= ﬁ;l”:lm. By the first part, there exists Ny > N such that for n > Ny,
o (A7 4) <, and (4,), 2 U, A,
Therefore, for such n, Ac D W, D A, and (W,,), 2 (4,), 2 A because

1 Let X be a compact metric space. Show (C, p) is compact. Hint: Let D,, be a 27" net for X. Let £,
denote finite unions of sets of the form B (p,2—") where p € D,,. Show K, is a 2=(=1) net for (C, p).

Connected sets

Stated informally, connected sets are those which are in one piece. More precisely, we give the following
definition.

Definition 2.10 We say a set, S in a general topological space is separated if there exist sets, A, B such

that

S=AUB, A,B#0, and ANB=BnA=0.

In this case, the sets A and B are said to separate S. We say a set is connected if it is not separated.

One of the most important theorems about connected sets is the following.

Theorem 2.11 Suppose U and V are connected sets having nonempty intersection. Then U UV is also
connected.

14



Proof: Suppose UUV = AU B where AN B = BN A= (. Consider the sets, ANU and B UU. Since

(ANU)N(BNU)=(AnU)N(BNT) =0,

It follows one of these sets must be empty since otherwise, U would be separated. It follows that U is
contained in either A or B. Similarly, V' must be contained in either A or B. Since U and V have nonempty
intersection, it follows that both V and U are contained in one of the sets, A, B. Therefore, the other must
be empty and this shows U UV cannot be separated and is therefore, connected.

The intersection of connected sets is not necessarily connected as is shown by the following picture.

Theorem 2.12 Let f : X — Y be continuous where X and Y are topological spaces and X is connected.
Then f (X) is also connected.

Proof: We show f (X) is not separated. Suppose to the contrary that f(X) = AU B where A and B
separate f (X). Then consider the sets, f=! (4) and f~! (B).If z € f~'(B), then f(z) € B and so f (2)
is not a limit point of A. Therefore, there exists an open set, U containing f (z) such that U N A = ). But
then, the continuity of f implies that f~! (U) is an open set containing z such that f= (U) N f~1(4) = 0.
Therefore, f~! (B) contains no limit points of f~! (4). Similar reasoning implies f~' (A) contains no limit
points of f~! (B). It follows that X is separated by f~! (4) and f~! (B), contradicting the assumption that
X was connected.

An arbitrary set can be written as a union of maximal connected sets called connected components. This
is the concept of the next definition.

Definition 2.13 Let S be a set and let p € S. Denote by C, the union of all connected subsets of S which
contain p. This is called the connected component determined by p.

Theorem 2.14 Let C, be a connected component of a set S in a general topological space. Then C) is a
connected set and if C, N Cy # 0, then C), = C.

Proof: Let C denote the connected subsets of S which contain p. If C, = AU B where
ANB=BnA=1,

then p is in one of A or B. Suppose without loss of generality p € A. Then every set of C must also be
contained in A also since otherwise, as in Theorem 2.11, the set would be separated. But this implies B is
empty. Therefore, C) is connected. From this, and Theorem 2.11, the second assertion of the theorem is
proved.

This shows the connected components of a set are equivalence classes and partition the set.

A set, I is an interval in R if and only if whenever z,y € I then (z,y) C I. The following theorem is
about the connected sets in R.

Theorem 2.15 A set, C in R is connected if and only if C is an interval.
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Proof: Let C' be connected. If C' consists of a single point, p, there is nothing to prove. The interval is
just [p,p]. Suppose p < q and p,q € C. We need to show (p,q) C C. If

re€(p,qg\C

let CN(—o00,2) = A, and C N (z,00) = B. Then C = AU B and the sets, A and B separate C contrary to
the assumption that C is connected.

Conversely, let I be an interval. Suppose I is separated by A and B. Pick ¢ € A and y € B. Suppose
without loss of generality that z < y. Now define the set,

S={telz,y]: [z, t] C A}

and let I be the least upper bound of S. Then [ € A so [ ¢ B which implies [ € A. But if [ ¢ B, then for
some 6 > 0,

(,LI+6)NB=10

contradicting the definition of I as an upper bound for S. Therefore, | € B which implies I ¢ A after all, a
contradiction. It follows I must be connected.
The following theorem is a very useful description of the open sets in R.

o)
i=1

Theorem 2.16 Let U be an open set in R. Then there exist countably many disjoint open sets, {(a;,b;)}
such that U = U2, (a;,b;).

Proof: Let p € U and let z € (), the connected component determined by p. Since U is open, there
exists, 0 > 0 such that (z — §,z + ) C U. It follows from Theorem 2.11 that

(2_672+6) gcp

This shows C), is open. By Theorem 2.15, this shows C), is an open interval, (a,b) where a,b € [—00, 00].
There are therefore at most countably many of these connected components because each must contain a
rational number and the rational numbers are countable. Denote by {(a;,b;)};—, the set of these connected
components. This proves the theorem.

Definition 2.17 We say a topological space, E is arcwise connected if for any two points, p,q € E, there
exists a closed interval, [a,b] and a continuous function, v : [a,b] = E such that v (a) = p and v (b) = q. We
say E is locally connected if it has a basis of connected open sets. We say E is locally arcwise connected if
it has a basis of arcwise connected open sets.

An example of an arcwise connected topological space would be the any subset of R™ which is the
continuous image of an interval. Locally connected is not the same as connected. A well known example is
the following.

{(a:,sini) e (0,1]} U{0,y) :y € [-1,1]} (2.6)

We leave it as an exercise to verify that this set of points considered as a metric space with the metric from
R? is not locally connected or arcwise connected but is connected.

Proposition 2.18 If a topological space is arcwise connected, then it is connected.

Proof: Let X be an arcwise connected space and suppose it is separated. Then X = A U B where
A, B are two separated sets. Pick p € A and ¢ € B. Since X is given to be arcwise connected, there
must exist a continuous function + : [a,b] — X such that vy (a) = p and 7 (b) = ¢. But then we would have
v ([a, b]) = (v ([a,b]) N A) U (v ([a, b]) N B) and the two sets, v ([a,b]) N A and ~ ([a, b]) N B are separated thus
showing that v ([a, b]) is separated and contradicting Theorem 2.15 and Theorem 2.12. It follows that X
must be connected as claimed.
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Theorem 2.19 Let U be an open subset of a locally arcwise connected topological space, X. Then U is
arcwise connected if and only if U is connected. Also the connected components of an open set in such a
space are open sets, hence arcwise connected.

Proof: By Proposition 2.18 we only need to verify that if U is connected and open in the context of this
theorem, then U is arcwise connected. Pick p € U. We will say x € U satisfies P if there exists a continuous
function, v : [a,b] = U such that v (a) = p and v (b) = x.

A = {z € U such that z satisfies P.}

If z € A, there exists, according to the assumption that X is locally arcwise connected, an open set, V,
containing z and contained in U which is arcwise connected. Thus letting y € V, there exist intervals, [a, b]
and [e,d] and continuous functions having values in U, v,n such that v (a) = p,v(b) = z,n(c) = z, and
7 (d) = y. Then let v, : [a,b+ d — ] = U be defined as

_ (t) if t € [a,b]
M (t)z{ 77(,5) if t € [b,b+d—c]

Then it is clear that v, is a continuous function mapping p to y and showing that V' C A. Therefore, A is
open. We also know that A # () because there is an open set, V' containing p which is contained in U and is
arcwise connected.

Now consider B = U \ A. We will verify that this is also open. If B is not open, there exists a point
z € B such that every open set containing z is not contained in B. Therefore, letting V' be one of the basic
open sets chosen such that z € V' C U, we must have points of A contained in V. But then, a repeat of the
above argument shows z € A also. Hence B is open and so if B # ), then U = BU A and so U is separated
by the two sets, B and A contradicting the assumption that U is connected.

We need to verify the connected components are open. Let z € C}, where C), is the connected component
determined by p. Then picking V an arcwise connected open set which contains z and is contained in U,
Cp UV is connected and contained in U and so it must also be contained in C),. This proves the theorem.

Corollary 2.20 Let U be an open subset of R™. Then U is arcwise connected if and only if U is connected.
Also the connected components of an open set in R are open sets, hence arcwise connected. Also, there are
at most countably many components of U.

Proof: This follows from Theorem 2.19 by observing that R™ is locally arcwise connected due to the
convexity of balls. Since Q" is a dense countable subset of R™ it follows that there are at most countably
many components because these components are disjoint and each, being an open set, contains a point of
the countable dense open set, Q.

2.4 Exercises

1. Prove the definition of distance in R” or C" satisfies 1.3-1.4. In addition to this, prove that ||-|| given
by [|x]| = (X0, |#:]*)'/? is a norm. This means it satisfies the following.

[Ix|| >0, ||x|| =0 if and only if x = 0.
[lax|| = |a|||x]|| for @ a number.

I+ yll <IIx[[ +[l¥l].

2. Completeness of R is an axiom. Using this, show R" and C" are complete metric spaces with respect
to the distance given by the usual norm.
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10.

11.

12.
13.
14.

15.

16.

17.
18.
19.

Verify that for the metric given in 2.1 defined on any infinite set, closed and bounded does not imply
compact.

Verify that Q" = {x € R* : x = {z1, -, zn},zr € Q} is a countable and dense subset of R".
Verify that R™ is locally arcwise connected. Show, in particular, that the balls are all arcwise connected.

Prove Urysohn’s lemma. A Hausdorff space, X, is normal if and only if whenever K and H are disjoint
nonempty closed sets, there exists a continuous function f : X — [0, 1] such that f(k) =0forall k € K
and f(h) =1for all h € H.

Prove that f: X — Y is continuous if and only if f is continuous at every point of X.

Suppose (X, d), and (Y, p) are metric spaces and let f : X — Y. Show f is continuous at z € X if and
only if whenever z,, = z, f (z,) = f (z). (Recall that x,, — z means that for all € > 0, there exists n
such that d (z,, ) < € whenever n > n..)

If (X,d) is a metric space, give an easy proof independent of Problem 6 that whenever K, H are
disjoint non empty closed sets, there exists f : X — [0, 1] such that f is continuous, f(K) = {0}, and

f(H) ={1}.

Let (X, 7) (Y,n)be topological spaces with (X, 7) compact and let f : X — Y be continuous. Show
f (X) is compact.

(An example ) Let X = [—o00, 0o] and consider B defined by sets of the form (a, b), [—c0,b), and (a, 00].
Show B is the basis for a topology on X.

1 Show (X, 7) defined in Problem 11 is a compact Hausdorff space.
1 Show (X, 7) defined in Problem 11 is completely separable.

1 In Problem 11, show sets of the form [—o0o,b) and (a, oc] form a subbasis for the topology described
in Problem 11.

Let (X,7) and (Y,n) be topological spaces and let f : X — Y. Also let S be a subbasis for . Show
f is continuous if and only if f='(V) € 7 for all V € S. Thus, it suffices to check inverse images of
subbasic sets in checking for continuity.

Show the usual topology of R” is the same as the product topology of
ﬁ]RE]Rx]Rx---x]R.
i=1
Do the same for C".
If M is a separable metric space and T' C M, then T is separable also.
Show the rational numbers, Q, are countable.

Verify that the set of 2.6 is connected but not locally connected or arcwise connected.
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3 The complex numbers

In this chapter we consider the complex numbers, C and a few basic topics such as the roots of a complex
number. Just as a real number should be considered as a point on the line, a complex number is considered
a point in the plane. We can identify a point in the plane in the usual way using the Cartesian coordinates
of the point. Thus (a,b) identifies a point whose z coordinate is @ and whose y coordinate is b. In dealing
with complex numbers, we write such a point as a + ib and multiplication and addition are defined in the
most obvious way subject to the convention that > = —1. Thus,

(a+ib)+ (c+id) = (a+c)+i(b+d)
and
(a +1ib) (¢ + id) = (ac — bd) + i (bc + ad) .

We can also verify that every non zero complex number, a + ib, with a? 4+ b? # 0, has a unique multiplicative
inverse.

1 a—1b a . b

at+ib aZ+b  a+b? _la2+b2'

Theorem 3.1 The complex numbers with multiplication and addition defined as above form a field.

The field of complex numbers is denoted as C. An important construction regarding complex numbers
is the complex conjugate denoted by a horizontal line above the number. It is defined as follows.

a+ib=a—1b.

What it does is reflect a given complex number across the z axis. Algebraically, the following formula is
easy to obtain.

(a+1b) (a+ib) = a® + b*.
The length of a complex number, refered to as the modulus of z and denoted by |z| is given by
2| = (a:2 +y2)1/2 _ (22)1/2,
and we make C into a metric space by defining the distance between two complex numbers, z and w as
d(z,w) = |z —w|.
We see therefore, that this metric on C is the same as the usual metric of R?>. A sequence, z, — z if and
only if z,, & z in R and y, — vy in R where z = = + iy and z,, = x,, + iy,. For example if z, = 2 + i%,

n+1
then z, - 1+ 0i = 1.

Definition 3.2 A sequence of complex numbers, {z,} is a Cauchy sequence if for every € > 0 there exists
N such that n,m > N implies |z, — zp| < €.

This is the usual definition of Cauchy sequence. There are no new ideas here.
Proposition 3.3 The complex numbers with the norm just mentioned forms a complete normed linear space.

Proof: Let {z,} be a Cauchy sequence of complex numbers with z,, = z, + iy,. Then {z,} and {y,}
are Cauchy sequences of real numbers and so they converge to real numbers, z and y respectively. Thus
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Zn = Tp + 1Yy, — x + 1y. By Theorem 3.1 C is a linear space with the field of scalars equal to C. It only
remains to verify that | | satisfies the axioms of a norm which are:

|2+ w| < |z] + |w]
|z| > 0 for all z
|z| = 0 if and only if 2 =0

laz] = |af[2].
We leave this as an exercise.

Definition 3.4 An infinite sum of complex numbers is defined as the limit of the sequence of partial sums.
Thus,

Just as in the case of sums of real numbers, we see that an infinite sum converges if and only if the
sequence of partial sums is a Cauchy sequence.

Definition 3.5 We say a sequence of functions of a complex variable, {f,} converges uniformly to a func-
tion, g for z € S if for every € > 0 there exists N. such that if n > N, then

[fn(z) —g(z)] <e

for all z € S. The infinite sum Y .-, fn converges uniformly on S if the partial sums converge uniformly on

S.

Proposition 3.6 A sequence of functions, {f,} defined on a set S, converges uniformly to some function,
g if and only if for all € > 0 there exists N. such that whenever m,n > N¢,

[[fn = fmllo <e.
Here ||f||., =sup{|f ()| : z € S}.

Just as in the case of functions of a real variable, we have the Weierstrass M test.

Proposition 3.7 Let {f,} be a sequence of complex valued functions defined on S C C. Suppose there exists
M, such that || fn|| < M, and ) M, converges. Then ) f, converges uniformly on S.

Since every complex number can be considered a point in R?, we define the polar form of a complex
number as follows. If z = z + ¢y then (%, gy‘) is a point on the unit circle because

(&) + () =

<£, i) = (cosf,sind).

21" |2

Therefore, there is an angle 6 such that

It follows that
z=ux+1iy = |z| (cosf +isinf).

This is the polar form of the complex number, z = z + iy.
One of the most important features of the complex numbers is that you can always obtain n nth roots
of any complex number. To begin with we need a fundamental result known as De Moivre’s theorem.
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Theorem 3.8 Let r > 0 be given. Then if n is a positive integer,
[r (cost +isint)]" = r"™ (cosnt + isinnt) .
Proof: It is clear the formula holds if n = 1. Suppose it is true for n.
[r (cost +isint)]"™" = [r (cost +isint)]" [r (cost + isint)]
which by induction equals

= "1 (cosnt + isinnt) (cost + isint)

= "1 ((cosnt cost — sinntsint) + i (sinnt cost + cosntsint))

=" (cos(n + 1)t +isin(n + 1)t)
by standard trig. identities.

Corollary 3.9 Let z be a non zero complex number. Then there are always exactly k kth roots of z in C.

(&) + () =

Thus (|’”7|, %) is a point on the unit circle and so

Proof: Let z = 2 4+ iy. Then

and from the definition of |z|,

. T
— =sint, — = cost
|| ||

for a unique t € [0,27). By De Moivre’s theorem, a number is a kth root of z if and only if it is of the form

|Z|1/k (COS (t—l—k2l7r> + 281n <t+k2l7r>>

for [ an integer. By the fact that the cos and sin are 27 periodic, if [ = k in the above formula the same
complex number is obtained as if [ = 0. Thus there are exactly k& of these numbers.

IfSCCand f:S— C, wesay f is continuous if whenever z, — z € S, it follows that f (z,) = f(2).
Thus f is continuous if it takes converging sequences to converging sequences.

3.1 Exercises
1. Let z = 3 + 44. Find the polar form of z and obtain all cube roots of z.
2. Prove Propositions 3.6 and 3.7.

3. Verify the complex numbers form a field.
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10.

11.

12.
13.

14.
15.

16.

17.

Prove that [[,_, 2r = [[j—; Zx- In words, show the conjugate of a product is equal to the product of
the conjugates.

Prove that >, _, zx = > p_; Zk- In words, show the conjugate of a sum equals the sum of the conjugates.
Let P (z) be a polynomial having real coefficients. Show the zeros of P (z) occur in conjugate pairs.
If A is a real n x n matrix and Ax = \x, show that AX = AX.

Tell what is wrong with the following proof that —1 = 1.
1= =V=1V=1=\/(-1)’=V1=1.

If z=|z|(cosf + isinf) and w = |w| (cosa + i sin @) , show
zw = |z| |w| (cos (8 + a) +isin (8 + a)).
Since each complex number, z = z + iy can be considered a vector in R?, we can also consider it a

vector in R® and consider the cross product of two complex numbers. Recall from calculus that for
x =(a,b,c) and y =(d, e, f), two vectors in R?,

k
X Xy = det c

U -
D Y e

f

and that geometrically |x X y| = |x]| |y]| sind, the area of the parallelogram spanned by the two vectors,
x,y and the triple, x,y,x X y forms a right handed system. Show

z1 X zo =Im (212’2) k.
Thus the area of the parallelogram spanned by z; and z» equals |Im (Z;22)] .

Prove that f : S C C — C is continuous at z € S if and only if for all € > 0 there exists a § > 0 such
that whenever w € S and |w — z| < 4, it follows that |f (w) — f (2)] < e.

Verify that every polynomial p(z) is continuous on C.

Show that if {f,} is a sequence of functions converging uniformly to a function, f on S C C and if f,
is continuous on S, then so is f.

Show that if 2| < 1, then 350 2% = +1-.

Show that whenever Y a, converges it follows that lim, . a, = 0. Give an example in which
limy, o anp =0, ay, > apt1 and yet Y a, fails to converge to a number.

Prove the root test for series of complex numbers. If a; € C and r = limsup,,_, |an|1/" then
converges absolutely if r < 1

Z ag diverges if r > 1
k=0 test fails if r = 1.

Does lim,_o0 1 (25£)" exist? Tell why and find the limit if it does exist.
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18. Let Ap = 0 and let A, =3"}_, ai if n > 0. Prove the partial summation formula,

q—1

q
D agby = Agby — Ap_iby + Y Ap (br — bira)
k=p

k=p

Now using this formula, suppose {b,} is a sequence of real numbers which converges to 0 and is
decreasing. Determine those values of w such that |w| = 1 and Y, byw"* converges. Hint: From
Problem 15 you have an example of a sequence {b,} which shows that w = 1 is not one of those values
of w.

19. Let f: U C C — C be given by f (z +iy) = u (z,y) + iv (z,y) . Show f is continuous on U if and only
ifu:U — R and v:U — R are both continuous.

3.2 The extended complex plane

The set of complex numbers has already been considered along with the topology of C which is nothing but
the topology of R?. Thus, for 2z, = z, + iy, we say z, — z = z + iy if and only if z,, — x and y,, — y. The
norm in C is given by

o+ iy| = (& + iy) (@ — iy)/? = (2* +¢°) "

which is just the usual norm in R? identifying (z,y) with x + iy. Therefore, C is a complete metric space
and we have the Heine Borel theorem that compact sets are those which are closed and bounded. Thus, as
far as topology is concerned, there is nothing new about C.

We need to consider another general topological space which is related to C. It is called the extended
complex plane, denoted by C and consisting of the complex plane, C along with another point not in C known
as 0o. For example, oo could be any point in R®. We say a sequence of complex numbers, z,, converges to
oo if, whenever K is a compact set in C, there exists a number, N such that for all n > N, z, ¢ K. Since
compact sets in C are closed and bounded, this is equivalent to saying that for all R > 0, there exists N
such that if n > N, then z, ¢ B (0, R) which is the same as saying lim,_,~ |25| = 0o where this last symbol
has the same meaning as it does in calculus.

A geometric way of understanding this in terms of more familiar objects involves a concept known as the
Riemann sphere.

Consider the unit sphere, S? given by (2 — 1)2 +9% + 2% = 1. We define a map from the unit sphere with
the point, (0,0,2) left out which is one to one onto R? as follows.

f(p)

We extend a line from the north pole of the sphere, the point (0,0, 2), through the point on the sphere,
p, until it intersects a unique point on R?. This mapping, known as stereographic projection, which we will
denote for now by #, is clearly continuous because it takes converging sequences, to converging sequences.
Furthermore, it is clear that # ' is also continuous. In terms of the extended complex plane, C, we see a
sequence, z, converges to oo if and only if 'z, converges to (0,0,2) and a sequence, z, converges to z € C
if and only if 8" (2,,) = 6" (2).
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3.3 Exercises
1. Try to find an explicit formula for 8 and 87",
2. What does the mapping 8" do to lines and circles?

3. Show that S? is compact but C is not. Thus C # S2. Show that a set, K is compact (connected) in C
if and only if ' (K) is compact (connected) in S? \ {(0,0,2)}.

4. Let K be a compact set in C. Show that C\ K has exactly one unbounded component and that this
component is the one which is a subset of the component of S? \ K which contains co. If you need to
rewrite using the mapping, # to make sense of this, it is fine to do so.

5. Make C into a topological space as follows. We define a basis for a topology on C to be all open sets
and all complements of compact sets, the latter type being those which are said to contain the point
0. Show this is a basis for a topology which makes C into a compact Hausdorff space. Also verify that
C with this topology is homeomorphic to the sphere, S2.

4 Riemann Stieltjes integrals

In the theory of functions of a complex variable, the most important results are those involving contour
integration. Before we define what we mean by contour integration, it is necessary to define the notion of
a Riemann Steiltjes integral, a generalization of the usual Riemann integral and the notion of a function of
bounded variation.

Definition 4.1 Let vy : [a,b] — C be a function. We say 7y is of bounded variation if

sup{Z|fy(ti)—'y(ti_1)| ta=ty <---<tn:b} =V (v,[a,b]) <

where the sums are taken over all possible lists, {a =tg < --- < t, = b}.

The idea is that it makes sense to talk of the length of the curve v ([a, ]) , defined as V' (v, [a, b]) . For this
reason, in the case that v is continuous, such an image of a bounded variation function is called a rectifiable
curve.

Definition 4.2 Let v : [a,b] = C be of bounded variation and let f : [a,b] — C. Letting P = {to, - -,tn}
where a = tg < t; < --- < t, =b, we define

[IP]| = max{|t]- —t]',1| ij=1,---,n}

and the Riemann Steiltjes sum by

S(P) =

J

F() (v (85) =7 (1))
=1
where T; € [tj_1,t;]. (Note this notation is a little sloppy because it does not identify the specific point, T;
used. It is understood that this point is arbitrary.) We define fvf (t)dy (t) as the unique number which

satisfies the following condition. For all € > 0 there exists a 6 > 0 such that if ||P|| < J, then

/f(t)dv(t)—S(P) <e.
~
Sometimes this is written as

/ B dy(t) = lim

[IP[|—0

24



The function, 7 ([a, b]) is a set of points in C and as ¢ moves from a to b, v (t) moves from v (a) to v (b) .
Thus 7 ([a, b]) has a first point and a last point. If ¢ : [¢,d] — [a,b] is a continuous nondecreasing function,
then yo ¢ : [¢,d] — C is also of bounded variation and yields the same set of points in C with the same first
and last points. In the case where the values of the function, f, which are of interest are those on v ([a, b]),
we have the following important theorem on change of parameters.

Theorem 4.3 Let ¢ and v be as just described. Then assuming that
[
-
exists, so does
| 1a@endees )
Yo

and

/fwmmwwz/ FOr (@) d(v0)(s). (4.1)

oo
Proof: There exists 0 > 0 such that if P is a partition of [a, b] such that ||P|| < 0, then

[raman-se)<-

By continuity of ¢, there exists o > 0 such that if Q is a partition of [¢,d] with ||Q]| < 0,Q = {so, - -, $n},
then |¢ (s;) — ¢ (sj—1)| < 6. Thus letting P denote the points in [a, b] given by ¢ (s;) for s; € Q, it follows
that ||P|| < d and so

n

L/f@@ﬂiﬂﬂ—EijONUDHWWEH)—7@®¢nﬂ <e

Jj=1

where 7; € [sj_1,s;]. Therefore, from the definition we see that 4.1 holds and that

F(r(¢(s)))d(yee)(s)

Yo

exists.

This theorem shows that fv f (v (t))dy(t) is independent of the particular v used in its computation to
the extent that if ¢ is any nondecreasing function from another interval, [¢, d] , mapping to [a, b], then the
same value is obtained by replacing v with 7 o ¢.

The fundamental result in this subject is the following theorem.

Theorem 4.4 Let f : [a,b] = C be continuous and let v : [a,b] — C be of bounded variation. Then
fv f () dy (t) exists. Also if 6, > 0 is such that |t — s| < 6, implies |f (t) — f (s)| < =, then

[rwavo-sp)| < 2o

whenever ||P|| < dm.
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Proof: The function, f , is uniformly continuous because it is defined on a compact set. Therefore, there
exists a decreasing sequence of positive numbers, {d,,} such that if |s — ¢| < d,,, then

F0 &)<

Let

Fn={S(P):||P|| < dm}-

Thus F,, is a closed set. (When we write S (P) in the above definition, we mean to include all sums
corresponding to P for any choice of 7;.) We wish to show that

2V (v, [a, b])

diam (F,,) <
m

(4.2)

because then there will exist a unique point, I € NS°_, Fy,,. It will then follow that I = fw ft)dy(t). To
verify 4.2, it suffices to verify that whenever P and Q are partitions satisfying ||P|| < d,, and ||Q|| < Iy,

2
1S(P) =S| < —V(v,]a,b]) - (4.3)
Suppose ||73|| < 0 and @ D P. Then also || Q|| < &, To begin with, suppose that P = {to,- - -, tp,- - -, tn}
and Q = {to,- - -, tp_1,t",tp, - -,tn} . Thus Q contains only one more point than P. Letting S (Q) and S (P)

be Riemann StelltJes sums,

= Zf (05) (v (£5) =7 (t=1)) + [ (02) (v () =7 (tp-1))

+f () (7 (8) =7 D+ D f (15) (v (85) =7 (1)) -

Jj=p+1

Therefore,
1S (P) |<Z (tj— 1)|+—|7( ) = (1) +

n

1 X 1 1
Sy ) =@+ Y ) =y )] < Vo fab) (49
j=p+1
Clearly the extreme inequalities would be valid in 4.4 if Q had more than one extra point. Let S (P) and
S (Q) be Riemann Steiltjes sums for which ||P|| and ||Q|| are less than d,, and let R = P U Q. Then

1S(P) =S(QI<IS(P)=SR)+IS(R) =S (Q)I < 3V(% [a,]).

and this shows 4.3 which proves 4 2. Therefore, there exists a unique complex number, I € NS°_, F},, which
satisfies the definition of f f (t)d~ (t) . This proves the theorem.
The following theorem follows easily from the above definitions and theorem.
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Theorem 4.5 Let f € C ([a,b]) and let 7y : [a,b] = C be of bounded variation. Let

M > max{|f (t)| : t € [a,b]}. (4.5)
Then
[ 1@d 0| <27 (). (4.
Y
Also if {fn} is a sequence of functions of C ([a,b]) which is converging uniformly to the function, f, then
lim n t)d 4.7
Jm [ i = [ 10 (47)

Proof: Let 4.5 hold. From the proof of the above theorem we know that when ||P|| < .,

010~ 5 (P)| < 2V (1 [a.1)

and so

[r06 0| <is@i+ 2 e

< ZMW (tji—)|+ — V('y,[a b))

< Mv (77 [avb]) + EV (7) [a)b]) :

This proves 4.6 since m is arbitrary. To verify 4.7 we use the above inequality to write

) dy (¢ /fn ) (1 ‘

< max{|f(t) = fu ()] : € [a, 0]} V (7, [a, b]) -

Since the convergence is assumed to be uniform, this proves 4.7.

It turns out that we will be mainly interested in the case where  is also continuous in addition to being
of bounded variation. Also, it turns out to be much easier to evaluate such integrals in the case where ~ is
also C* ([a,b]) . The following theorem about approximation will be very useful.

(f (t) = fn (£)) dy (1)

Theorem 4.6 Let : [a,b] — C be continuous and of bounded variation, let f : [a,b] x K — C be continuous
for K a compact set in C, and let ¢ > 0 be given. Then there exists 1 : [a,b] = C such that n(a) =

vy (a), y(b) =n (), n € C'([a,b]), and

Iy —mll <e, (4.8)
/f(tzd7 /ftzdn()‘<€, (4.9)
V (n,[a,0]) <V (v,[a,b]), (4.10)

where ||y — i = max{|y (t) = n (8)] : ¢ € [a, 5]}
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Proof: We extend 7 to be defined on all R according to v (¢t) = v (a) if t < a and v (¢t) = v(b) if t > b.

Now we define
1 t+%(t7a)
w=g [ ¥ (s) ds.

2h —2h+t4 2oy (t—a)

where the integral is defined in the obvious way. That is,

/aba(t)+iﬁ(t)dtz/aba(t)dt+i/abﬁ(t)dt.

b+2h
by =gz [ A= 0),

w@=gp [ aGds =1,

Therefore,

Also, because of continuity of v and the fundamental theorem of calculus,

b= s o) (4, 2)-
(e o) -2

and so v, € C! ([a,b]) . The following lemma is significant.
Lemma 4.7 V (’7h> [a> b]) S Vv ('77 [av b]) :

Proof: Let a =ty < t1 < --- < t, = b. Then using the definition of v, and changing the variables to
make all integrals over [0, 2h],

Z 17n () — v (Ei-1)] =

I 2h
Zﬁ/o |:’)/<S—2h+t]+m(t]—a)>—

2h
¥ (S — 2h+tj_1 + '—a (tj_l — a)>:| ‘

1 2h n
<mlh &

2h
(S—Qh-{-t] 1+b a(tj_l—a)>

2h
(8—2h+tj+m(tj—a)>—

ds.
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For a given s € [0,2h], the points, s —2h+1t;+ ;= 2h —(t; —a) for j = 1,---,n form an increasing list of points in
the interval [a — 2h, b+ 2h] and so the 1ntegrand is bounded above by V (7, [@ — 2h,b+ 2h]) = V (v,][a,b]) .
It follows

Zh/h =7 (t-1)| <V (v, [a,0])

which proves the lemma.
With this lemma the proof of the theorem can be completed without too much trouble. First of all, if
e > 0 is given, there exists d; such that if h < 1, then for all ¢,

t+ 2y
ho-nol < 5 [ 1 () =7 ()] ds
2h+t+(b2h —a)
t+(b a) t a
< / eds =¢ (4.11)
2h 2htt+ 52y (t—a)

due to the uniform continuity of . This proves 4.8. From 4.2 there exists d» such that if ||P|| < 2, then for
all z € K,

(t,2) dyp, (1) = Sk (P)] <

Wl m

[1anmo-sm)| <5

for all h. Here S (P) is a Riemann Steiltjes sum of the form

n

Y F(ri2) (v () = 7 (ti-1))

i=1

and Sp, (P) is a similar Riemann Steiltjes sum taken with respect to <y, instead of . Therefore, fix the
partition, P, and choose h small enough that in addition to this, we have the following inequality valid for
all z € K.

S (P) = $u(P)] <

We can do this thanks to 4.11 and the uniform continuity of f on [a,b] x K. It follows

ftzd7 /ftzdyh)

/f(t,zm(t)—S<P>‘+|S<P>—sh )

<e.

1S (P) - / £ (t,2) doy (1)

h

Formula 4.10 follows from the lemma. This proves the theorem.

Of course the same result is obtained without the explicit dependence of f on z.

This is a very useful theorem because if v is C! ([a,b]), it is easy to calculate fv f(t)dy(t). We will
typically reduce to the case where « is C! by using the above theorem. The next theorem shows how easy
it is to compute these integrals in the case where v is C!.
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Theorem 4.8 If f : [a,b] — C and v : [a,b] — C is in C' ([a,b]), then

b

[toa@=[ oy o (4.12)

Proof: Let P be a partition of [a,b], P = {to," - -, tn} and ||P|| is small enough that whenever |t — s| <
1Pl

FB =) <e (4.13)

and
JRCLICE ST EEURY) B
Now
n b n
S £ () =7 (65m)) = [ D0 F () Xy ()7 (5)ds

and thanks to 4.13,

/:znjf(rj) s € ds—/f
</abs|v'<s>|ds.
[ s

Since € is arbitrary, this verifies 4.12.

It follows that

<5/ [ (s)| ds + €.

Definition 4.9 Let v : [a,b] — U be a continuous function with bounded variation and let f : U — C be a
continuous function. Then we define,

Af(z)dzz/j@(t))dv(t)

The expression, [ f(z)dz, is called a contour integral and vy is referred to as the contour. We also say that
a function f : U — C for U an open set in C has a primitive if there exists a function, F, the primitive, such
that F' (z) = f(2). Thus F is just an antiderivative. Also if vy, : [ar,br] = C is continuous and of bounded

variation, for k =1,---,m and v (br) = 74, (ar) , we define
/ f2)dz=>" | f(2)dz. (4.14)
k=1 Yk k=1""k

In addition to this, for v : [a,b] = C, we define —v : [a,b] = C by —y(t) = v(b+a —t). Thus v simply
traces out the points of v ([a,b]) in the opposite order.
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The following lemma is useful and follows quickly from Theorem 4.3.

Lemma 4.10 In the above definition, there exists a continuous bounded variation function, v defined on
some closed interval, [c,d], such that v ([c,d]) = U, v, ([ak, be]) and v (c) = v, (a1) while v (d) = ,, (bm) -

Furthermor e,
/ 7 Z /
v

If v : [a,b] — C is of bounded variation and continuous, then

/vf(z)dz:— M{f(z)dz

Theorem 4.11 Let K be a compact set in C and let f : U x K — C be continuous for U an open set in C.
Also let 7 : [a,b] = U be continuous with bounded variation. Then if r > 0 is given, there existsn : [a,b] = U
such that 11(a) = (@), 1 (b) = (b) 1 s C" ([a,]), and

<, ln—=nll <

Vf(z,w)dz—/nf(z,w)dz

Proof: Let £ > 0 be given and let H be an open set containing 7 ([a, b]) such that H is compact. Then
f is uniformly continuous on H x K and so there exists a § > 0 such that if z; € H,j = 1,2 and w; € K for
j = 1,2 such that if

|21 — 22| + |w1 —w2] <6,
then
|f (21,w1) = f (22, w2)] < e.

By Theorem 4.6, let n [a,b] — C be such that n([a,b]) C H, n(z) = v (z) for x = a,b, n € C*([a,b]),
I =l <min (8,r), V (n,[a,b]) <V (v,[a,b]), and

/ﬂf /f ()‘<e

for all w € K. Then, since |f (v (t),w) — f (n(t),w)| < ¢ for all ¢t € [a,b],

dn (t) — /f(n (t),w)dn (t)‘ <eV(n,la,b]) <eV(v,[a,b])-
Therefore,

/nf(z,w)dz—/vf(z,w)dz

/f(n(t),w)dn(t)—/f(v(t),w)dv(t)‘ <eteV (vl b)).

Since € > 0 is arbitrary, this proves the theorem.

We will be very interested in the functions which have primitives. It turns out, it is not enough for f to
be continuous in order to possess a primitive. This is in stark contrast to the situation for functions of a real
variable in which the fundamental theorem of calculus will deliver a primitive for any continuous function.
The reason for our interest in such functions is the following theorem and its corollary.
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Theorem 4.12 Let 7y : [a,b] — C be continuous and of bounded variation. Also suppose F' (z) = f (z) for
all z € U, an open set containing v ([a,b]) and f is continuous on U. Then

[ £ =F o ®) - P ).
-
Proof: By Theorem 4.11 there exists n € C* ([a, b]) such that v (a) = n (a), and v (b) = 1 (b) such that

[yf(z)dz—/nf(z)dz

Then since 7 is in C* ([a, b]) , we may write

b
/nf(2>dz = /af(n(t))n’(t)dtz/a gt
F(n(b) = F(n(a) = F(y(b) - F(y(a).

<e.

Therefore,

<e

kaw»—mem—/&@mZ

and since € > 0 is arbitrary, this proves the theorem.

Corollary 4.13 If v : [a,b] — C is continuous, has bounded variation, is a closed curve, v (a) =y (b), and
v ([a,b]) CU where U is an open set on which F'(z) = f(z), then

Lf(z)dzzo.

4.1 Exercises
1. Let 7 : [a,b] — R be increasing. Show V (v, [a,b]) = v (b) — v (a).

2. Suppose v : [a,b] — C satisfies a Lipschitz condition, |y (£) — v (s)] < K|s — t|. Show 7 is of bounded
variation and that V (v, [a,b]) < K |b—al.

3. We say v : [co,cm] — C is piecewise smooth if there exist numbers, cx, k = 1,---,m such that
co < cp < -+ < Cpmo1 < ey such that v is continuous and 7 : [cx,cxr1] — C is Ct. Show that such
piecewise smooth functions are of bounded variation and give an estimate for V (v, [co, ¢in]) -

dz

4. Let v : [0,27] — C be given by v (t) = r (cosmt + isinmt) for m an integer. Find [ .

5. Show that if v : [a,b] — C then there exists an increasing function h : [0,1] — [a,b] such that
7o h((0,1]) = v ([a, b)) -

6. Let v : [a,b] = C be an arbitrary continuous curve having bounded variation and let f, g have contin-
uous derivatives on some open set containing v ([a, b]) . Prove the usual integration by parts formula.

/fg’dz =f(v(0)g (v () = F(v(a))g(y(a) —/f’gdZ-

~

7. Let f (z) = |2| "/ =15 where 2z = |z| ei. This function is called the principle branch of z=(1/2). Find
fw f (2) dz where ~ is the semicircle in the upper half plane which goes from (1,0) to (—1,0) in the
counter clockwise direction. Next do the integral in which v goes in the clockwise direction along the
semicircle in the lower half plane.
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8. Prove an open set, U is connected if and only if for every two points in U, there exists a C' curve
having values in U which joins them.

9. Let P, Q be two partitions of [a,b] with P C Q. Each of these partitions can be used to form an
approximation to V (v, [a, b]) as described above. Recall the total variation was the supremum of sums
of a certain form determined by a partition. How is the sum associated with P related to the sum
associated with Q7 Explain.

10. Consider the curve,

t+it?sin (1) if t € (0,1
7(t):{om:o(t) o1

Is v a continuous curve having bounded variation? What if the ¢ is replaced with ¢? Is the resulting
curve continuous? Is it a bounded variation curve?

11. Suppose 7 : [a,b] = R is given by v (¢) = t. What is f7 f(t) dy? Explain.

5 Analytic functions
In this chapter we define what we mean by an analytic function and give a few important examples of
functions which are analytic.

Definition 5.1 Let U be an open set in C and let f : U — C. We say f is analytic on U if for every z € U,

h—0 h

exists and is a continuous function of z € U. Here h € C.

Note that if f is analytic, it must be the case that f is continuous. It is more common to not include the
requirement that f’ is continuous but we will show later that the continuity of f’ follows.
What are some examples of analytic functions? The simplest example is any polynomial. Thus

n
p(z) = Z apz"
k=0

is an analytic function and
n
P (2) = Z apkz*"1.
k=1

We leave the verification of this as an exercise. More generally, power series are analytic. We will show
this later. For now, we consider the very important Cauchy Riemann equations which give conditions under
which complex valued functions of a complex variable are analytic.

Theorem 5.2 Let U be an open subset of C and let f: U — C be a function, such that for z =z + iy € U,
() =u(z,y) +iv(z,y).
Then f is analytic if and only if u,v are C* (U) and
Oou Ov OJu v

o5 oy o
Furthermore, we have the formula,

ou ov

72 = 5o (wy) i @,y).-
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Proof: Suppose f is analytic first. Then letting ¢ € R,

by G —F(E)
f (z)—hmf

t—0

t t

lim

u(z+ty) +iv(z+ty) u(z,y)+iv(z,y)
i )

_ Oulwy)  0v(z,y)

ox ox
But also

lim u(@,y+t)+iv(z,y+t) ulzy) +iv(z,y)
t—0 it 1t

1 ou (z,y) .0v(z,y)
z( dy e Oy

_Ov(y) Ou(z,y)
dy oy

This verifies the Cauchy Riemann equations. We are assuming that z — f' (z) is continuous. Therefore, the
partial derivatives of w and v are also continuous. To see this, note that from the formulas for f'(z) given
above, and letting z1 = 1 + i1

B 0
é:;y) B v(gly’yl) <If' () £ (=1)],

showing that (z,y) — %”;’y) is continuous since (z1,y1) — (x,y) if and only if z; — 2. The other cases are

similar.

Now suppose the Cauchy Riemann equations hold and the functions, v and v are C'* (U). Then letting
h = hy +iho,

f(z+h)—f(z)=u(@+hi,y+ h)

+v (Z’+h1,y+h2) - (U (1‘,y) +iv (may))

We know u and v are both differentiable and so

Fe4m) =1 () = 5 @)+ 5o (o) he +

(g_ (m,y>h1+g—Z<x,y>h2) Fo(h.
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Dividing by h and using the Cauchy Riemann equations,

Flz+h) —f(z) 34 (@y)hi+i8 (z,9) hs

h = h *
h h
_ ou h1 + Zh2 _81} h1 + Zh2 o (h)

Taking the limit as h — 0, we obtain

ou ov

It follows from this formula and the assumption that u,v are C' (U) that f’ is continuous.
It is routine to verify that all the usual rules of derivatives hold for analytic functions. In particular, we
have the product rule, the chain rule, and quotient rule.

5.1

1.

Exercises

Verify all the usual rules of differentiation including the product and chain rules.

Suppose f and f' : U — C are analytic and f(2) = u(z,y) + iv(z,y). Verify uys + uyy = 0
and vz, + vy, = 0. This partial differential equation satisfied by the real and imaginary parts of
an analytic function is called Laplace’s equation. We say these functions satisfying Laplace’s equa-
tion are harmonic functions. If w is a harmonic function defined on B (0,r) show that v (z,y) =
JJ ug (2, t)dt — [ uy (t,0)dt is such that u + iv is analytic.

Define a function f (z) =%z = x — iy where z = z + iy. Is f analytic?
If f(2) =u(x,y) +iv(z,y) and f is analytic, verify that

det( o ) =If' ().

Show that if u (z,y) + v (z,y) = f (2) is analytic, then Vu - Vv = 0. Recall
V’LL (1’, y) = <uz (1’, y) :“y (1‘, y)>

Show that every polynomial is analytic.

If v (t) = = (t) +iy (t) is a C* curve having values in U, an open set of C, and if f : U — C is analytic,
we can consider f oy, another C' curve having values in C. Also, 7/ (t) and (f o)’ (t) are complex
numbers so these can be considered as vectors in R? as follows. The complex number, z+iy corresponds
to the vector, (x,y). Suppose that v and 7 are two such C! curves having values in U and that
v (to) =1 (s0) = z and suppose that f : U — C is analytic. Show that the angle between (f o) (to)
and (f on)' (so) is the same as the angle between ~/ (t5) and 7’ (sp) assuming that f’(z) # 0. Thus
analytic mappings preserve angles at points where the derivative is nonzero. Such mappings are called
isogonal. . Hint: To make this easy to show, first observe that (z,y) - (a,b) = (2w + Zw) where
z=x+ 1y and w = a + b.
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8. Analytic functions are even better than what is described in Problem 7. In addition to preserving
angles, they also preserve orientation. To verify this show that if z = = + iy and w = a + ib are
two complex numbers, then (z,y,0) and (a,b,0) are two vectors in R®. Recall that the cross product,
(z,y,0) x {a,b,0), yields a vector normal to the two given vectors such that the triple, (z,y,0), (a, b, 0},
and (z,y,0) x (a,b,0) satisfies the right hand rule and has magnitude equal to the product of the
sine of the included angle times the product of the two norms of the vectors. In this case, the
cross product either points in the direction of the positive z axis or in the direction of the nega-
tive z axis. Thus, either the vectors (z,v,0),{(a,b,0),k form a right handed system or the vectors
(a,b,0), (z,y,0),k form a right handed system. These are the two possible orientations. Show that
in the situation of Problem 7 the orientation of v (to),n’ (s0) , k is the same as the orientation of the
vectors (f o) (to),(fon) (so0),k. Such mappings are called conformal. Hint: You can do this by
verifying that (f o)’ (to) x (f on) (so) = 7' (to) x 1’ (so). To make the verification easier, you might
first establish the following simple formula for the cross product where here z +iy = z and a + ib = w.

(z,y,0) x {(a,b,0) = Re (ziw) k.

9. Write the Cauchy Riemann equations in terms of polar coordinates. Recall the polar coordinates are
given by

x =rcosf, y=rsind.

5.2 Examples of analytic functions

A very important example of an analytic function is e* = e” (cosy +isiny) = exp(z). We can verify
this is an analytic function by considering the Cauchy Riemann equations. Here w(z,y) = e” cosy and
v (z,y) = e siny. The Cauchy Riemann equations hold and the two functions u and v are C* (C) . Therefore,
z — €7 is an analytic function on all of C. Also from the formula for f' (z) given above for an analytic function,

d z T s at z

—e* = ¢e” (cos s =e".

¢ =e (cosy +isiny) =e

We also see that e* = 1 if and only if z = 27k for k£ an integer. Other properties of e* follow from the
formula for it. For example, let z; = x; + iy; where j = 1, 2.

e“te®™ = e" (cosy; +isinyy)e®® (cosys +isinys)

€172 (cosy; cos s — siny; sinys) +

€172 (sin y; cosys + sinys cosy;)

= €™ (cos (y1 + y2) +isin (y1 +y2)) = ™7

Another example of an analytic function is any polynomial. We can also define the functions cosz and
sin z by the usual formulas.

. eiz _ e—iz eiz + e—iz
smz =——,C082 = ————
2i ’ 2

By the rules of differentiation, it is clear these are analytic functions which agree with the usual functions
in the case where z is real. Also the usual differentiation formulas hold. However,

. e v+ e”
cosix = —s = coshz

and so cos z is not bounded. Similarly sin z is not bounded.
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A more interesting example is the log function. We cannot define the log for all values of z but if we
leave out the ray, (—oo, 0], then it turns out we can do so. On R + i (—7, ) it is easy to see that e* is one
to one, mapping onto C\ (—o0,0]. Therefore, we can define the log on C\ (—00,0] in the usual way,

elogz =, = eln|z|eiarg(z)’
where arg (z) is the unique angle in (—m, ) for which the equal sign in the above holds. Thus we need

logz =1In|z| +iarg(z). (5.1)

There are many other ways to define a logarithm. In fact, we could take any ray from 0 and define a
logarithm on what is left. It turns out that all these logarithm functions are analytic. This will be clear
from the open mapping theorem presented later but for now you may verify by brute force that the usual
definition of the logarithm, given in 5.1 and referred to as the principle branch of the logarithm is analytic.
This can be done by verifying the Cauchy Riemann equations in the following.

logz:ln(m2+y2)1/2+i — arccos T if y <0,
/1’2 + y2

logz =1n (:v2 + y2)1/2 + 4 | arccos _r ify >0,
/1-2 + y2

logz =In (z° + y2)1/2 +i (arctan (%)) if x> 0.

With the principle branch of the logarithm defined, we may define the principle branch of z® for any a € C.
We define

22 = % log(z) .

5.3 Exercises
1. Verify the principle branch of the logarithm is an analytic function.
2. Find 4’ corresponding to the principle branch of the logarithm.
3. Show that sin (z + w) = sin z cosw + cos z sin w.

4. If f is analytic on U, an open set in C, when can it be concluded that |f] is analytic? When can it be
concluded that |f| is continuous? Prove your assertions.

5. Let f(z) =% where z = © — iy for z = x + iy. Describe geometrically what f does and discuss whether
f is analytic.

6. A fractional linear transformation is a function of the form

az+b
cz+d

fz)=

where ad — be # 0. Note that if ¢ = 0, this reduces to a linear transformation (a/d) z + (b/d) . Special
cases of these are given defined as follows.

- . . 1
dilations: z — 0z, 6 # 0, inversions: z — —,
z
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10.

6

translations: z — z + p.

In the case where ¢ # 0, let Sy (2) =z + 4, Sy (2) = 1, S5 (2) = (bcc_—zad)z and Sy (z) = z + 2. Verify

that f (z) =S4 08530855 085;. Now show that in the case where ¢ = 0, f is still a finite composition of
dilations, inversions, and translations.

Show that for a fractional linear transformation described in Problem 6 circles and lines are mapped
to circles or lines. Hint: This is obvious for dilations, and translations. It only remains to verify this
for inversions. Note that all circles and lines may be put in the form

«a (a:2 +y2) —2az — 2by = r* — (a2 + b2)
where a = 1 gives a circle centered at (a,b) with radius r and a = 0 gives a line. In terms of complex
variables we may consider all possible circles and lines in the form
azZ+ Pz+pZ+v=0,

Verify every circle or line is of this form and that conversely, every expression of this form yields either
a circle or a line. Then verify that inversions do what is claimed.

It is desired to find an analytic function, L (z) defined for all z € C\ {0} such that e(*) = 2. Is this
possible? Explain why or why not.

If f is analytic, show that z — f (Z) is also analytic.

Find the real and imaginary parts of the principle branch of z'/2.

Cauchy’s formula for a disk

In this chapter we prove the Cauchy formula for a disk. Later we will generalize this formula to much more
general situations but the version given here will suffice to prove many interesting theorems needed in the
later development of the theory. First we give a few preliminary results from advanced calculus.

Lemma 6.1 Let f : [a,b] — C. Then f'(t) exists if and only if Re f' (t) and Im f' (t) exist. Furthermore,

&) =Ref' (t)+ilm f'(t).

Proof: The if part of the equivalence is obvious.
Now suppose f' (t) exists. Let both ¢ and ¢ + h be contained in [a, b]

Ref(t+hf)L—Ref(t) _Re(f'(t))‘

and this converges to zero as h — 0. Therefore, Re f’ (t) = Re (f' (¢)) . Similarly, Im f' (¢) = Im (f' (¢)) .

Lemma 6.2 If g : [a,b] = C and g is continuous on [a,b] and differentiable on (a,b) with ¢' (t) = 0, then
g (t) is a constant.

Proof: From the above lemma, we can apply the mean value theorem to the real and imaginary parts

of g.

Lemma 6.3 Let ¢ : [a,b] X [¢,d] = R be continuous and let

b
() = / 6 (s,1) ds. (6.1)
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Then g is continuous. If % exists and is continuous on [a,b] x [c,d], then

R LI C))
g (t)—/a Tds.

6.2)

Proof: The first claim follows from the uniform continuity of ¢ on [a, b] X [¢, d] , which uniform continuity
results from the set being compact. To establish 6.2, let ¢ and ¢ + h be contained in [¢,d] and form, using

the mean value theorem,

_ b

1 (" 0¢(s,t+6h)
E/a 7815 hdS
_ /bw

ot ds,

where # may depend on s but is some number between 0 and 1. Then by the uniform continuity of

follows that 6.2 holds.

Corollary 6.4 Let ¢ : [a,b] X [¢,d] = C be continuous and let

E/abqb(s,t)ds

Then g is continuous. If % exists and is continuous on [a,b] x [c,d], then

v [T 00 (s, 1)
g= [P0,

Proof: Apply Lemma 6.3 to the real and imaginary parts of ¢.
With this preparation we are ready to prove Cauchy’s formula for a disk.

Theorem 6.5 Let f : U — C be analytic on the open set, U and let
B (z,r) CU.
Let y (t) = 2o + rett for t €[0,27]. Then if z € B (z0,7),

27rz/f—z '

27’f(z—l—a(,zo—l-re“—
0 reit + 29—z

Proof: Consider for « € [0,1],

Z)) rietdt.

g(a) =

If « equals one, this reduces to the integral in 6.5. We will show ¢ is a constant and that g (0) =

First we consider the claim about g (0).

g(0)

2m T@it )
([ =)

re”

2 0
= if(2) /0 Z et (2 — o) dt
n=0
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Z—Z0
rett

because | | < 1. Since this sum converges uniformly we may interchange the sum and the integral to

obtain

9O = i@ e [ e
= 2mif(z)

because fozn e tdt =0 if n > 0.
Next we show that ¢ is constant. By Corollary 6.4, for « € (0,1),

T (2 + (20 + ret — 2)) (ref + 2o — 2)
0 rett + 29 — 2

2T
/ f'(z+a(z0 +re — 2)) rie™dt
0

27
= /0 %(f(z—{—a(zo—l-re“—z))l)dt

o'
1

= f(z—l—a(zo-i—rei%—z))E—f(z-{—a(zo-i—reo—z))

rie’tdt

g (a)

=0.

QI+

Now ¢ is continuous on [0,1] and ¢’ (¢) = 0 on (0, 1) so by Lemma 6.2, g equals a constant. This constant
can only be g (0) = 2wif (z). Thus,

g = [ L0 = g0 = 2mis ),

This proves the theorem.
This is a very significant theorem. We give a few applications next.

Theorem 6.6 Let f : U — C be analytic where U is an open set in C. Then f has infinitely many derivatives
on U. Furthermore, for all z € B (zo,r),

F (2) = n_'/ (wf (“;)n+1 dw (6.6)

- 27 —z
where v (t) = 2o + ret,t € [0,27] for r small enough that B (zg,7) C U.

Proof: Let z € B(29,r) C U and let B (zp,r) C U. Then, letting v () = 29 + rei,t € [0,27], and h

small enough,
1 f(w) 1 f(w)
= — [ —~dw, +h)=— | —4——"_d
f(z) Ky w, f(z ) /y " w

S 2mi ) w—2 27i —z—h
Now
I h
w—2z—h w-—2z (~w+z+h)(—w+z2)
and so
feen o) _ L B () .
h 2rwhi /)., (—w+z+h) (—w + 2)

_ 1 f (w)
B %/W(—w+z+h)(—w+z)dw'
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Now for all h sufficiently small, there exists a constant C' independent of such h such that
1 1
(—w+z+h)(~w+2z) (—w+2z2)(—w+2)
h

(w—2z—h)(w-=2)

5| < Clhl

and so, the integrand converges uniformly as h — 0 to
_ fw)
(w —z)’
Therefore, we may take the limit as h — 0 inside the integral to obtain
1 / f(w)
"(2) = — | —5dw.
HORT = s

Continuing in this way, we obtain 6.6.

This is a very remarkable result. We just showed that the existence of one continuous derivative implies
the existence of all derivatives, in contrast to the theory of functions of a real variable. Actually, we just
showed a little more than what the theorem states. The above proof establishes the following corollary.

Corollary 6.7 Suppose f is continuous on 0B (zo,r) and suppose that for all z € B (zo,r),

f@z%/ﬂwm

w—2z

where v (t) = z + re®,t € [0,2n]. Then f is analytic on B (20,7) and in fact has infinitely many derivatives
on B (zo,1) .

We also have the following simple lemma as an application of the above.

Lemma 6.8 Let v (t) = 29 + re't, for t € [0,2n], suppose fn — f uniformly on B (zo,7), and suppose

_ 1 fn (w)
Faz) = 5 A 1) (6.7)
for z € B(zo,r). Then

f(z)= QLTF’L/ %dw, (6.8)

implying that f is analytic on B (zo,r) .

Proof: From 6.7 and the uniform convergence of f,, to f on 7 ([0, 27]) , we have that the integrals in 6.7

converge to
1
f/ﬂﬂm
2mi ), w— 2

Therefore, the formula 6.8 follows.

41



Proposition 6.9 Let {a,} denote a sequence of complex numbers. Then there ezists R € [0,00] such that

o0

k
Z ay (z — 20)
k=0

converges absolutely if |z — zo| < R, diverges if |z — zo| > R and converges uniformly on B (zo,r) for all
r < R. Furthermore, if R > 0, the function,

fz)= Zak (z — zo)k
k=0

is analytic on B (2o, R) .

Proof: The assertions about absolute convergence are routine from the root test if we define

-1
R= (hm sup |an|1/">

n—o0

with R = oo if the quantity in parenthesis equals zero. The assertion about uniform convergence follows
from the Weierstrass M test if we use M,, = |an|r". ( _or; lan|r™ < 0o by the root test). It only remains
to verify the assertion about f(z) being analytic in the case where R > 0. Let 0 < r < R and define
fn(2) = X oar(z— zo)]c . Then f, is a polynomial and so it is analytic. Thus, by the Cauchy integral

formula above,
O
v

211 w—z

where 7 (t) = 2o + e, for t € [0,27]. By Lemma 6.8 and the first part of this proposition involving uniform

convergence, we obtain
L [ f(w)
=— | —Zdw.
1) 211 L w—z v

Therefore, f is analytic on B (zg,r) by Corollary 6.7. Since r < R is arbitrary, this shows f is analytic on
B (2’0, R) .

This proposition shows that all functions which are given as power series are analytic on their circle
of convergence, the set of complex numbers, z, such that |z — 29| < R. Next we show that every analytic
function can be realized as a power series.

Theorem 6.10 If f : U — C is analytic and if B (zo0,7) C U, then
f(2) =) an(z—2)" (6.9)
n=0

for all |z — z9| < r. Furthermore,

_ F™ (20)

e (6.10)
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Proof: Consider |z — zo| < r and let 7 (t) = 2o + re®, t € [0,27]. Then for w € v ([0, 27]),

Z — Z
0l <1

w — Zp
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and so, by the Cauchy integral formula, we may write
_ f(w
fz) = 27 / — z

2m v (w

fw
_zo)( w)

- % (ngzo)i<2:zzz>"dw_

v n=0

Since the series converges uniformly, we may interchange the integral and the sum to obtain

= 1 w n
o = (i )

Z an (z — 20)"

n=0

By Theorem 6.6 we see that 6.10 holds.
The following theorem pertains to functions which are analytic on all of C, “entire” functions.

Theorem 6.11 (Liouville’s theorem) If f is a bounded entire function then f is a constant.

Proof: Since f is entire, we can pick any z € C and write

f(z) = i/y de

2mi R (’LU - Z)2
where 5 (t) = z + Re' for t € [0, 27]. Therefore,
1
! <C—
Fel<os

where C' is some constant depending on the assumed bound on f. Since R is arbitrary, we can take R — 0o to
obtain f'(z) = 0 for any z € C. It follows from this that f is constant for if z; j = 1,2 are two complex num-
bers, we can consider h (t) = f (21 +t (22 — 21)) fort € [0,1]. Then b’ (t) = f' (21 +t (22 — 21)) (22 — 21) = 0.
By Lemma 6.2 h is a constant on [0, 1] which implies f (z1) = f (22) .

With Liouville’s theorem it becomes possible to give an easy proof of the fundamental theorem of algebra.
It is ironic that all the best proofs of this theorem in algebra come from the subjects of analysis or topology.
Out of all the proofs that have been given of this very important theorem, the following one based on
Liouville’s theorem is the easiest.

Theorem 6.12 (Fundamental theorem of Algebra) Let
p(z)=2"+a,_12" '+ +arz+ao

be a polynomial where n > 1 and each coefficient is a complex number. Then there exists zg € C such that
p(z0) = 0.

Proof: Suppose not. Then p (z)_1 is an entire function. Also
() > |2" = (Jonal |27 + - + [aal 2] + |ao])

and so lim ;| |p(2)| = oo which implies lim|;|_, ‘p (z)fl‘ = 0. It follows that, since p(z)71 is bounded

for z in any bounded set, we must have that p(z)~" is a bounded entire function. But then it must be
constant. However since p(z)”" — 0 as |z| = oo, this constant can only be 0. However, p( y is never equal
to zero. This proves the theorem.
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6.1
1.

Exercises

Show that if |ex| < &, then |Ek m ek (rF — r’”+1)| <eif 0 <r < 1. Hint: Let |#| =1 and verify that

o0
Z (rk _ Tk+1)
k=m

6 Z e (rF —r*1) = = Z Re (fey,) (rF —r**1)

k=m

where —e < Re (fe;) < e.

Abel’s theorem says that if > a, (2 — a)" has radius of convergence equal to 1 and if A = °  a,,
then lim,,1— > oo a,r™ = A. Hint: Show Y o2 apr® = 302 Ay (r* — r¥*1) where A, denotes the
kth partial sum of )" a;. Thus

Zakrk = Z Ay (rk — rk+1) + ZAk (rk — rk+1) ,
k=0

k=m+1 k=0

where |4, — A| < ¢ for all k& < m. In the first sum, write Ay, = A + e;, and use Problem 1. Use this

theorem to verify that arctan (1) = 352 (1) SEET-

Find the integrals using the Cauchy integral formula.

(a) [, SinZJ» where v (t) = 1t €10,27].

(b) [, s25dz where v (t) = et 1t €[0,2n]

(c) fv 032 dz where 7 (t) = e’ : t € [0, 2]

(d) f, 82 dz where v (t) = 1+ Lei* : t € [0,2a] and n = 0,1,2.

Let v (t) = 4’ : t € [0,27] and find [ Z(Z;'Tl)dz.

Suppose f (z) =Y 02, an,z™ for all |z| < R. Show that then

oo
1 2T

i i\ |2 _ 2 2n
o7 J, |f(7"e )| d9—Z|an|

n=0

for all 7 € [0,R). Hint: Let f, (2) = Y ;_, arz", show 5 f02ﬁ | fr (rei9)|2d9 = S0, lag)* r?* and
then take limits as n — oo using uniform convergence.

The Cauchy integral formula, marvelous as it is, can actually be improved upon. The Cauchy integral
formula involves representing f by the values of f on the boundary of the disk, B (a,r) . It is possible
to represent f by using only the values of Re f on the boundary. This leads to the Schwarz formula .
Supply the details in the following outline.

Suppose f is analytic on |z| < R and

o0
=> anz" (6.11)
n=0
with the series converging uniformly on |z| = R. Then letting |w| = R

2u (w) = f (w) + f (w)
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and so

_ Zakwk T Zﬁ(w)k ] (6.12)
k=0 k=0

Now letting v (t) = Re, t € [0, 27]

/2“11()“’)dw - (a0+a_o)/%dw

= 2’/Ti((lo +(l_[))

Thus, multiplying 6.12 by w1,

1
—,/u(w)dw:a0+a_0.
), w

Now multiply 6.12 by w—("*1) and integrate again to obtain

1 u (w)
ayp = - ; wn+1dw.

Using these formulas for a,, in 6.11, we can interchange the sum and the integral (Why can we do
this?) to write the following for |z| < R.

1 [ 1N z\ktL _
fz) = E/y;]?:o(a) u (w) dw — ag
A O
™ Vw—z

L) gy and @ = Reag — i Im ag. Therefore, we can

which is the Schwarz formula. Now Reao = 5 W

also write the Schwarz formula as

1
:2_/“ w” dw + i Tm ao. (6.13)

. Take the real parts of the second form of the Schwarz formula to derive the Poisson formula for a disk,

1 27 U (Reie) (R2 _ 7.2)

u (re ):% o R?2+1r2—2Rrcos(f—a)

df. (6.14)

. Suppose that u (w) is a given real continuous function defined on B (0, R) and define f (z) for |z| < R
by 6.13. Show that f, so defined is analytic. Explain why u given in 6.14 is harmonic. Show that
li o) e .
r_l}r}gl_u(re ) u(Re )

Thus v is a harmonic function which approaches a given function on the boundary and is therefore, a
solution to the Dirichlet problem.

. Suppose f(z) = Y52 ax (z — 20)* for all |z — z5| < R. Show that f'(z) = S350, ark (z — 20)* " for
all |z — zo| < R. Hint: Let f, (z) be a partial sum of f. Show that f] converges uniformly to some
function, g on |z — zg| < r for any r < R. Now use the Cauchy integral formula for a function and its
derivative to identify ¢ with f’.
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10. Use Problem 9 to find the exact value of )= k? (%)k :
11. Prove the binomial formula,

(1+2)* = i <Z>z”

n=0

where

n!

(Z>:a---(a—n+1)

Can this be used to give a proof of the binomial formula, (a + b)" = Y";_ (})a™ *b¥? Explain.

7 The general Cauchy integral formula

7.1 The Cauchy Goursat theorem

In this section we prove a fundamental theorem which is essential to the development which follows and is
closely related to the question of when a function has a primitive. First of all, if we are given two points in
C, z1 and 25, we may consider 7y (t) = z1 + t (22 — z1) for ¢t € [0, 1] to obtain a continuous bounded variation
curve from z; to z3. More generally, if 2y, -, z,,, are points in C we can obtain a continuous bounded variation
curve from z; to z,, which consists of first going from z; to z> and then from z, to z3 and so on, till in
the end one goes from z,,—1 to z,. We denote this piecewise linear curve as v (z1,+ -+, zm) - Now let T be a
triangle with vertices z1, z2 and z3 encountered in the counter clockwise direction as shown.
23

1 22

Then we will denote by faT f (2) dz, the expression, fw(m 22,%) f (2) dz. Counsider the following picture.

22
By Lemma 4.10 we may conclude that
4
f(z)dz = f(z)dz. (7.1)

On the “inside lines” the integrals cancel as claimed in Lemma 4.10 because there are two integrals going in
opposite directions for each of these inside lines. Now we are ready to prove the Cauchy Goursat theorem.

Theorem 7.1 (Cauchy Goursat) Let f : U — C have the property that f' (z) exists for all z € U and let T
be a triangle contained in U. Then

f(w)dw = 0.
oT
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Proof: Suppose not. Then

f(w)dw‘ =a#0.
oT

From 7.1 it follows
4
a<)
k=1

and so for at least one of these Tkl, denoted from now on as 77, we must have

f(w) dw
T}

OT»

Continue in this way, obtaining a sequence of triangles,
Ty D Try1,diam (Ty,) < diam (T) 27F,
and

a
> —.
(w)du| 2 5

8Tk
Then let z € N2, T}, and note that by assumption, f'(z) exists. Therefore, for all k large enough,
(w) dw = (2) + f'(2) (w = 2) + g (w) dw
0Ty 0Ty

where |g (w)| < € |w — z|. Now observe that w — f (z) + f' () (w — z) has a primitive, namely,

F(w)=f(2)w+f(2) (w—2)" /2.
Therefore, by Corollary 4.13.
f(w)dw = / g (w) dw.
0Ty 0Ty
From the definition, of the integral, we see

(07

4k

IN

/8T g (w) dw‘ < ediam (Ty) (length of dT})
< 52_kk(1ength of T) diam (T) 27F,

and so

a < ¢ (length of T') diam (T') .

Since € is arbitrary, this shows o = 0, a contradiction. Thus [,,. f (w)dw = 0 as claimed.
This fundamental result yields the following important theorem.
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Theorem 7.2 (Morera) Let U be an open set and let f ' (z) exist for all z € U. Let D = B (zp,r) C U.
Then there exists € > 0 such that f has a primitive on B (zo,7 + €).

Proof: Choose € > 0 small enough that B (zg,r + ) C U. Then for w € B (29,7 + €), define
F (w) = / I (u) du.
v(20,w)

Then by the Cauchy Goursat theorem, and w € B (zo, r +¢), it follows that for |h| small enough,

F(w+h) — / "
h h (w w+h)

1 1 1
== h) hdt = h)d
P [ fwrmnde= [ ma

which converges to f (w) due to the continuity of f at w. This proves the theorem.
We can also give the following corollary whose proof is similar to the proof of the above theorem.

Corollary 7.3 Let U be an open set and suppose that whenever

7(217227237'21)

is a closed curve bounding a triangle T, which is contained in U, and f is a continuous function defined on
U, it follows that

/ f(2)dz =0,
7(21722723721)

Then f is analytic on U.

Proof: As in the proof of Morera’s theorem, let B (29,7) C U and use the given condition to construct
a primitive, F' for f on B (zo,r). Then F is analytic and so by Theorem 6.6, it follows that F' and hence f
have infinitely many derivatives, implying that f is analytic on B (zo,r) . Since zg is arbitrary, this shows f
is analytic on U.

Theorem 7.4 Let U be an open set in C and suppose f : U — C has the property that f' (2) exists for each
z € U. Then f is analytic on U.

Proof: Let zp € U and let B (zp,r) C U. By Morera’s theorem f has a primitive, F' on B (2, r) . It follows
that F' is analytic because it has a derivative, f, and this derivative is continuous. Therefore, by Theorem
6.6 F has infinitely many derivatives on B (zo,r) implying that f also has infinitely many derivatives on
B (zp,7) . Thus f is analytic as claimed.

It follows that we can say a function is analytic on an open set, U if and only if f'(z) exists for z € U.
We just proved the derivative, if it exists, is automatically continuous.

The same proof used to prove Theorem 7.2 implies the following corollary.

Corollary 7.5 Let U be a convez open set and suppose that f' (z) exists for all z € U. Then f has a primitive
on U.

Note that this implies that if U is a convex open set on which f’ (z) exists and if 7 : [a,b] = U is a closed,
continuous curve having bounded variation, then letting F' be a primitive of f Theorem 4.12 implies

/f(Z)dzzF(v(b))—F(v(a)) ~0.
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Notice how different this is from the situation of a function of a real variable. It is possible for a function
of a real variable to have a derivative everywhere and yet the derivative can be discontinuous. A simple
example is the following.

_f 2?sin(L) ifz#£0
f(x):{ 0ifz =0

Then f (z) exists for all z € R. Indeed, if z # 0, the derivative equals 2zsin 1 — cos 2 which has no limit
as ¢ — 0. However, from the definition of the derivative of a function of one variable, we see easily that

71(0) = 0.

7.2 The Cauchy integral formula

Here we develop the general version of the Cauchy integral formula valid for arbitrary closed rectifiable
curves. The key idea in this development is the notion of the winding number. This is the number defined
in the following theorem, also called the index

Theorem 7.6 Let v : [a,b] = C be continuous and have bounded variation with v (a) =y (b). Also suppose
that z ¢ ~ ([a,b]) . We define

Tomi Jow—2z

n(y,2) = L/ o (7.2)

Then n (7,-) is continuous and integer valued. Furthermore, there exists a sequence, 1, : [a,b] = C such
that n,, is C* ([a,b]),

= < o @) = (8) =7 (@) = 4 (8)

and n (ny,z) = n(y,2) for all k large enough. Also n (y,-) is constant on every component of C\ v ([a, b])
and equals zero on the unbounded component of C\ v ([a, b)) .

Proof: First we verify the assertion about continuity.

1 1
[t
J\w—z w-—2

< C (Length of v) |z — 2]

In(y,2) =n(y,21)] < C

whenever 2; is close enough to z. This proves the continuity assertion.
Next we need to show this equals an integer. To do so, use Theorem 4.11 to obtain n,, a function in
C" ([a,b]) such that z ¢ 5, ([a,b]) for all k large enough, 7, (z) = v (z) for z = a,b, and

1/ dw 1 dw
27i S W= 2 2m m W— %

<L me-ll< s
k? nk ’y k_'

We will show each of - fn d—“’z is an integer. To simplify the notation, we write 7 instead of 7.

27i r W—
/ dw _/b n' (s)ds
pW—2 a 77(5)—2

g(t) = / 1o, (7.3)

We define



Then

!

(efg“)(n(t)——z)) = e 4Oy (t)—e D9 (t) (n(t) — 2)
= e 9Oy (1) — e~ 9Dy () = 0.
It follows that e~ 9() (5 (t) — 2) equals a constant. In particular, using the fact that 7 (a) = n (b),
e 9(b) (n)—2)= e 9(a) (n(a) —z) =(n(a) —2z) =(n() —2)

and so e 9(®) = 1. This happens if and only if —g (b) = 2mi for some integer m. Therefore, 7.3 implies

b 1
2m7m':/ n (s) ds :/ dw .
o N(s)—z g W—2

1
273

Therefore, QLM fnk ujii"z is a sequence of integers converging to

be an integer and n (9, z) = n (v, z) for all k large enough.
Since n (v, ) is continuous and integer valued, it follows that it must be constant on every connected

component of C\ v ([a,b]). It is clear that n (v, z) equals zero on the unbounded component because from

the formula,

fv 4w = (v,2) and so n (v, z) must also

hmmmdﬁjgvmmw< 1)

z—00 |z] — ¢
where ¢ > max {|w| : w € v ([a,b])} .This proves the theorem.

It is a good idea to consider a simple case to get an idea of what the winding number is measuring. To
do so, consider 7 : [a,b] — C such that v is continuous, closed and bounded variation. Suppose also that - is
one to one on (a,b). Such a curve is called a simple closed curve. It can be shown that such a simple closed
curve divides the plane into exactly two components, an “inside” bounded component and an “outside”
unbounded component. This is called the Jordan Curve theorem or the Jordan separation theorem. For a
proof of this difficult result, see the chapter on degree theory. For now, it suffices to simply assume that
is such that this result holds. This will usually be obvious anyway. We also suppose that it is possible to
change the parameter to be in [0,27], in such a way that v (¢) + A (z + re® —y (t)) —z # 0 for all ¢ € [0, 27]
and A € [0,1]. (As t goes from 0 to 27 the point vy (¢) traces the curve v ([0, 27]) in the counter clockwise
direction.) Suppose z € D, the inside of the simple closed curve and consider the curve 6 (t) = z + re® for
t € [0,2x] where r is chosen small enough that B (z,7) C D. Then we claim that n (4,2) = n (v, 2).

Proposition 7.7 Under the above conditions, n (5,z) =n(y,2z) and n (0,z) = 1.

Proof: By changing the parameter, we may assume that [a,b] = [0, 27] . From Theorem 7.6 it suffices to
assume also that y is C1. Define hy (t) = (t) + A (2 + re' — v (¢)) for X € [0,1]. (This function is called a
homotopy of the curves v and 48.) Note that for each A € [0,1],¢ — hy (t) is a closed C* curve. Also,

1 1 1 [ A )+ X(rie —+' (1))
2mi Jp, w—z 2mi Jo (&) + A (z +ret —y(t) —z

We know this number is an integer and it is routine to verify that it is a continuous function of A. When
A =0 it equals n (v, z) and when A = 1 it equals n (4, z). Therefore, n (4, z) = n (7, z) . It only remains to
compute n (4, z) .

This proves the proposition.
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Now if v was not one to one but caused the point, v (t) to travel around v ([a, b]) twice, we could modify
the above argument to have the parameter interval, [0,4n] and still find n (d,2) = n(y,z) only this time,
n (9, z) = 2. Thus the winding number is just what its name suggests. It measures the number of times the
curve winds around the point. One might ask why bother with the winding number if this is all it does. The
reason is that the notion of counting the number of times a curve winds around a point is rather vague. The
winding number is precise. It is also the natural thing to consider in the general Cauchy integral formula
presented below.

Theorem 7.8 Let U be an open subset of the plane and let f : U — C be analytic. If vy, : [ag,b] = U, k =
1,---,m are continuous closed curves having bounded variation such that for all z ¢ U,

m
Zn ’Yka - 07
k=1

then for all z € U \ U vy, ([ak, bi]),

m m 1
Z)Zn('yk, Z%/ )Zdw.
k=1 k=1

Proof: Let ¢ be defined on U x U by

(w Z)lfw#z
f’( ) 1fw—z

Then ¢ is analytic as a function of both z and w and is continuous in U x U. The claim that this function
is analytic as a function of both z and w is obvious at points where z # w, and is most easily seen using
Theorem 6.10 at points, where z = w. Indeed, if (z, z) is such a point, we need to verify that w — ¢ (z, w)
is analytic even at w = z. But by Theorem 6.10, for all A small enough,

¢(2,24+h)—¢(z,2) 1[f(z+h)—f(2)
h E[ h _f(z)]

6w = {

> (k)z L ",
_ lzf o ]%f;! )

Similarly, 2 = ¢ (2, w) is analytic even if z = w.
We define

271'12 ¢ (zw)d
k=1" "k

We wish to show that A is analytic on U. To do so, we verify

h(z)dz=0
aT

for every triangle, T, contained in U and apply Corollary 7.3. To do this we use Theorem 4.11 to obtain for
each k, a sequence of functions, 1, € C* ([ax,bx]) such that

Mn (%) = 7y, (2) for = € {ax, by}
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and

1
M ([, 06]) S U, Nlign = vill <

1
— 4
< (7.4)

/nknab(z,w)dw—/%ab(z,w)dw

for all z € T. Then applying Fubini’s theorem, we can write

/ ¢ (z,w) dwdz = / ¢ (z,w) dzdw =0
oT J ny,, Ngen J OT

because ¢ is given to be analytic. By 7.4,

/ / ¢ (z,w)dwdz = lim / ¢ (z,w) dwdz =0
oT J, n=ee Jor J,

and so h is analytic on U as claimed.
Now let H denote the set,

m
HE{ZE(C\Uk 1 Y ([ak, br)) Zn Vi # }
k=1

We know that H is an open set because z = Y-, n (7}, 2) is integer valued and continuous. Define

z

_ | hG) el
9() = { 2mzk 1Jy, wo W g if e H - (7.5)

We need to verify that g (z) is well defined. For z € U N H, we know 2z ¢ Uj v, ([ak, bx]) and so

N R

=177
1 & f(z)
= - — ~—=2d
27rzz 27riz/ w—zw
k=1""k k=1""k
- 27rzz
k=1 ’Yk

because z € H. This shows g (z) is well defined. Also, g is analytic on U because it equals h there. It is
routine to verify that g is analytic on H also. By assumption, U C H and so U U H = C showing that g is
an entire function.

Now note that Y.;* | n(v;,2) = 0 for all z contained in the unbounded component of C\ U7 ; v, ([ax, bx])
which component contains B (0, r)c for r large enough. It follows that for |z| > r, it must be the case that
z € H and so for such z, the bottom description of g (z) found in 7.5 is valid. Therefore, it follows

lim |g(2)] =0

|z| =00

and so ¢ is bounded and entire. By Liouville’s theorem, g is a constant. Hence, from the above equation,
the constant can only equal zero.
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For z € U\ U™, v, ([ak, br]) »

(w)—f(z)
2m Z 7dw -

k=1""%

m m
) e U (D SULAE

kl’Yk

This proves the theorem.

Corollary 7.9 Let U be an open set and let v, : [ag,br] = U, k = 1,---,m, be closed, continuous and of
bounded variation. Suppose also that

Z n ’7k> =0
k=1
for all z ¢ U. Then if f : U — C is analytic, we have

f(w)dw = 0.

NE
—

k=1" "k

Proof: This follows from Theorem 7.8 as follows. Let
g (w) = f (w) (w—z)
where z € U \ U7, v;, ([ak, bx]) . Then by this theorem,

S g [ =552 [ s

Yk

Another simple corollary to the above theorem is Cauchy’s theorem for a simply connected region.

Definition 7.10 We say an open set, U C C is a region if it is open and connected. We say U is simply
connected if C \U is connected.

Corollary 7.11 Let v : [a,b] — U be a continuous closed curve of bounded variation where U is a simply
connected region in C and let f : U — C be analytic. Then

Afwmwz&

Proof: Let D denote the unbounded component of (C\y([a b]). Thus oo € @\7([(1 b]) .Then the
connected set, C \ U is contained in D since every point of C \ U must be in some component, of (C\7 ([a,b])
and oo is contained in both C\U and D. Thus D must be the component that contains C \ U. It follows that
n (7,-) must be constant on C \ U, its value being its value on D. However, for z € D,

1 1
- d
n(7,2) QWiLw—zw
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and so lim|| o, 1 (7, 2) = 0 showing n (7, 2) = 0 on D. Therefore we have verified the hypothesis of Theorem
7.8. Let z € UN D and define

Thus g is analytic on U and by Theorem 7.8,

0=n(96) =50 [ 20 = o= [ fw)aw.

w—2z

This proves the corollary.
The following is a very significant result which will be used later.

Corollary 7.12 Suppose U is a simply connected open set and f : U — C is analytic. Then f has a
primitive, F, on U. Recall this means there ezists F' such that F' (z) = f (z) for all z € U.

Proof: Pick a point, zp € U and let V denote those points, z of U for which there exists a curve,
v : [a,b] = U such that v is continuous, of bounded variation, v (a) = 29, and v (b) = z. Then it is easy to
verify that V' is both open and closed in U and therefore, V' = U because U is connected. Denote by 7, .
such a curve from zp to z and define

F(z)= / f(w) dw.
V=g,
Then F'is well defined because if v;, j = 1,2 are two such curves, it follows from Corollary 7.11 that
(w) dw + f(w)dw =0,
Y1 Y2

implying that

Now this function, F' is a primitive because, thanks to Corollary 7.11

(F(z+h)—F(2))h™" = %/7 f (w) dw

z,z+h
1 1

- _/ f (2 + th) hdt
h Jo

and so, taking the limit as h — 0, we see F' (z) = f (2).

7.3 Exercises

1. If U is simply connected, f is analytic on U and f has no zeros in U, show there exists an analytic
function, F, defined on U such that ef" = f.

2. Let U be an open set and let f be analytic on U. Show that if a € U, then f (2) = > peg bk (z — a)®
whenever |z — a] < R where R is the distance between a and the nearest point where f fails to have
a derivative. The number R, is called the radius of convergence and the power series is said to be
expanded about a.
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with the function, ﬁ when considered as a function of a real variable, x for any value of z. However,
if we insist on using power series, we find that there is a limitation on the values of x for which the
power series converges due to the presence in the complex plane of a point, i, where the function fails

to have a derivative.

3. Find the radius of convergence of the function expanded about a = 2. Note there is nothing wrong

4. What if we defined an open set, U to be simply connected if C\ U is connected. Would it amount to
the same thing? Hint: Consider the outside of B (0,1).

5. Let v(t) = e : t € [0,2n]. Find fv Ldzforn=1,2,--

6. Show ifozn (2cos0)*" df = [, (= + l)2n (1) dz where v (t) = e : t € [0,27]. Then evaluate this

z
integral using the binomial theorem and the previous problem.

7. Let f: U — C be analytic and f (z) = u (z,y) + iv (z,y) . Show u,v and uv are all harmonic although
it can happen that u? is not. Recall that a function, w is harmonic if wg; + wy, = 0.

8. Suppose that for some constants a,b # 0, a,b € R, f(z+ib) = f(z) forallz € Cand f (2 +a) = [ (2)
for all z € C. If f is analytic, show that f must be constant. Can you generalize this? Hint: This
uses Liouville’s theorem.

8 The open mapping theorem

In this chapter we present the open mapping theorem for analytic functions. This important result states
that analytic functions map connected open sets to connected open sets or else to single points. It is very
different than the situation for a function of a real variable.

8.1 Zeros of an analytic function

In this section we give a very surprising property of analytic functions which is in stark contrast to what
takes place for functions of a real variable. It turns out the zeros of an analytic function which is not constant
on some region cannot have a limit point.

Theorem 8.1 Let U be a connected open set (region) and let f : U — C be analytic. Then the following
are equivalent.

1. f(z)=0foralzeU
2. There exists zo € U such that f™ (z0) = 0 for all n.

3. There exists zo € U which is a limit point of the set,

Z={2€U: f(z)=0}.

Proof: It is clear the first condition implies the second two. Suppose the third holds. Then for z near
zg we have

= £ (2 N
fe =Y Lo o gy
n=~k

where k > 1 since zq is a zero of f. Suppose k < co. Then,

f2)=(z=20)"g(2)
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where g (z0) # 0. Letting z, — zo where z,, € Z, 2, # 2o, it follows

0= (2n— ZO)k g (zn)

which implies g (z,) = 0. Then by continuity of g, we see that g (z9) = 0 also, contrary to the choice of k.
Therefore, k cannot be less than co and so zg is a point satisfying the second condition.
Now suppose the second condition and let

SE{zeU:f(”)(z)zoforalln}.

It is clear that S is a closed set which by assumption is nonempty. However, this set is also open. To see
this, let z € S. Then for all w close enough to z,

(k) (,
fw =3z =0

k=0

Thus f is identically equal to zero near z € S. Therefore, all points near z are contained in S also, showing
that S is an open set. Now U = S U (U \ S), the union of two disjoint open sets, S being nonempty. It
follows the other open set, U \ S, must be empty because U is connected. Therefore, the first condition is
verified. This proves the theorem. (See the following diagram.)

1.)
2. — 3.)

Note how radically different this from the theory of functions of a real variable. Consider, for example
the function

_f @?sin(L) ifz#£0
f("’”):{ Oifa:(:())

which has a derivative for all x € R and for which 0 is a limit point of the set, Z, even though f is not
identically equal to zero.
8.2 The open mapping theorem

With this preparation we are ready to prove the open mapping theorem, an even more surprising result than
the theorem about the zeros of an analytic function.

Theorem 8.2 (Open mapping theorem) Let U be a region in C and suppose f : U — C is analytic. Then
f(U) is either a point or a region. In the case where f (U) is a region, it follows that for each zo € U, there
exists an open set, V containing zo such that for all z € V,

f(2)=f(z0)+ ()" (8.1)

where ¢ : V. — B(0,68) is one to one, analytic and onto, ¢ (20) =0, ¢' (2) #0 on V and ¢~" analytic on
B(0,8). If f is one to one, then m = 1 for each zo and f~1: f (U) — U is analytic.

Proof: Suppose f (U) is not a point. Then if zy € U it follows there exists r > 0 such that f (2) # f (z0)
for all z € B (z9,7) \ {20} . Otherwise, zp would be a limit point of the set,

{z€eU: f(2)— f(20) =0}
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which would imply from Theorem 8.1 that f(z) = f(z0) for all z € U. Therefore, making r smaller if
necessary, we may write, using the power series of f,

f(2)=1f(20)+(z—20)" 9 (2)

for all z € B(zp,7), where g(z) # 0 on B (zp,r). Then % is an analytic function on B (zg,r) and so
by Corollary 7.5 it has a primitive on B (29,7), h. Therefore, using the product rule and the chain rule,
(ge*h)l = 0 and so there exists a constant, C' = e**% such that on B (zo,7),

geh = eatid

Therefore,

g (Z) — eh(z)+a+ib

and so, modifying h by adding in the constant, a + ib, we see g (z) = e(*) where b’ (z) = i]’((;)) on B (z,r).
Letting

we obtain the formula 8.1 valid on B (z9,r) . Now

h(z0)

¢ (20) =e ™ #0

and so, restricting r we may assume that ¢’ (z) # 0 for all z € B (29,r). We need to verify that there is an
open set, V' contained in B (zg,r) such that ¢ maps V onto B (0, ) for some ¢ > 0.
Let ¢ (2) = u(x,y) + iv (z,y) where z = x + iy. Then

u (2o, Yo) _(0

v (%o, Yo) 0
because for zo = x¢ + iy, ¢ (20) = 0. In addition to this, the functions u and v are in C* (B (0,r)) because
¢ is analytic. By the Cauchy Riemann equations,

Uz (0,%0) Uy (%o, Y0) _
vz (To,%0) vy (%o, Yo0)

Uy (xo,yo) —Ug (550,3/0)
Vg (wo,yo) Ug (350,210)

= u2 (20,y0) + v2 (0, 90) = |¢' (2’0)|2 # 0.

Therefore, by the inverse function theorem there exists an open set, V, containing zg and 6 > 0 such that
(u,v)” maps V one to one onto B (0,8). Thus ¢ is one to one onto B (0,8) as claimed. It follows that ¢™
maps V onto B (0,8™) . Therefore, the formula 8.1 implies that f maps the open set, V, containing zy to an
open set. This shows f (U) is an open set. It is connected because f is continuous and U is connected. Thus
f(U) is a region. It only remains to verify that ¢ ' is analytic on B (0,d). We show this by verifying the

Cauchy Riemann equations.
u(z,y) \ _ [ v
(v )=(7) (82

Let
for (u,v)” € B(0,8). Then, letting w = u + iv, it follows that ¢ ' (w) = z (u,v) + iy (u,v) . We need to
verify that

Ty = Yvy Ty = —Yu- (83)

o7



The inverse function theorem has already given us the continuity of these partial derivatives. From the
equations 8.2, we have the following systems of equations.

Ug Ty + UylYy =1 UgTy + UyYy =0
VpZy + VY =0 7 Uy + 0y, =1 7

Solving these for ., y,, Ty, and y,, and using the Cauchy Riemann equations for v and v, yields 8.3.
. . . . 27i
It only remains to verify the assertion about the case where f is one to one. If m > 1, then e’ # 1 and
so for z; €V

27i

e ¢(z1) # ¢ (1)

27i

But e ¢ (z1) € B (0,0) and so there exists z» # 21 (since ¢ is one to one) such that ¢ (z2) = e ¢ (21) . But
then

27i

b(2)" = (¥ ()" =6 ()"

implying f (22) = f (21) contradicting the assumption that f is one to one. Thus m = 1 and f’ (z) = ¢' (2) #
0 on V. Since f maps open sets to open sets, it follows that f~' is continuous and so we may write

F7H(f () = 71 (f (2)
fz1)—=£(2) f(z) = f(2)

z21— 2 1

L e e R e

ey =

This proves the theorem.

One does not have to look very far to find that this sort of thing does not hold for functions mapping R
to R. Take for example, the function f (z) = z2. Then f (R) is neither a point nor a region. In fact f (R)
fails to be open.

8.3 Applications of the open mapping theorem

Definition 8.3 We will denote by p a ray starting at 0. Thus p is a straight line of infinite length extending
in one direction with its initial point at 0.

As a simple application of the open mapping theorem, we give the following theorem about branches of
the logarithm.

Theorem 8.4 Let p be a ray starting at 0. Then there exists an analytic function, L (z) defined on C\ p
such that

el® = 4.
We call L a branch of the logarithm.

Proof: Let 6 be an angle of the ray, p. The function, e® is a one to one and onto mapping from
R +i(h,0+27) to C\ p and so we may define L (z) for = € C\ p such that e*(*) = 2z and we see that L
defined in this way is analytic on C\ p because of the open mapping theorem. Note we could just as well
have considered R + i (f — 27, 8) . This would have given another branch of the logarithm valid on C\ p.
Also, there are infinitely many choices for 8, each of which leads to a branch of the logarithm by the process
just described.

Here is another very significant theorem known as the maximum modulus theorem which follows imme-
diately from the open mapping theorem.
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Theorem 8.5 (mazimum modulus theorem) Let U be a bounded region and let f : U — C be analytic and
f:U — C continuous. Then if z € U,

| (2)] < max{|f (w)| : w e U} (8.4)

If equality is achieved for any z € U, then f is a constant.

Proof: Suppose f is not a constant. Then f (U) is a region and so if z € U, there exists r > 0 such that
B(f(z),r) C f(U). It follows there exists z; € U with |f (21)| > |f (2)|. Hence max {|f (w)| :w € U} is
not achieved at any interior point of U. Therefore, the point at which the maximum is achieved must lie on
the boundary of U and so

max {|f (w)| : w € OU} = max {|f (w)| :w € U} > |f (2)|

for all z € U or else f is a constant. This proves the theorem.

8.4 Counting zeros

The above proof of the open mapping theorem relies on the very important inverse function theorem from
real analysis. The proof features this and the Cauchy Riemann equations to indicate how the assumption
f is analytic is used. There are other approaches to this important theorem which do not rely on the
big theorems from real analysis and are more oriented toward the use of the Cauchy integral formula and
specialized techniques from complex analysis. We give one of these approaches next which involves the notion
of “counting zeros”. The next theorem is the one about counting zeros. We will use the theorem later in the
proof of the Riemann mapping theorem.

Theorem 8.6 Let U be a region and let v : [a,b] — U be closed, continuous, bounded variation, and

n(y,z) =0 for all z ¢ U. Suppose also that f is analytic on U having zeros ay,- - -, a,, where the zeros are
repeated according to multiplicity, and suppose that none of these zeros are on v ([a,b]) . Then
f '(2) <
2m (z) ~ Z n (7, a)

=1

Proof: We are given f (z) = H;n 1 (= a;) g (2) where g(z) # 0 on U. Hence

zz z; z— aJ (j))

and so

L PE) RN e
%Lf<z>dz—2 Y ])+2m/g(z)d

Jj=1

But the function, z — %ZZ)) is analytic and so by Corollary 7.9, the last integral in the above expression

equals 0. Therefore, this proves the theorem.

Theorem 8.7 Let U be a region, let v : [a,b] = U be continuous, closed and bounded variation such that
n(y,z) =0 for all z ¢ U. Also suppose f : U — C be analytic and that « ¢ f (v ([a,b])). Then foy :[a,b] = C
is continuous, closed, and bounded variation. Also suppose {ay,---,an,} = f~1 () where these points are
counted according to their multiplicities as zeros of the function f — a Then

f o, Z ’%ak
k=1
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Proof: It is clear that f o+ is closed and continuous. It only remains to verify that it is of bounded

variation. Suppose first that v ([a,b]) C B C B C U where B is a ball. Then

If(y@®) = f(v ()] =

(v () =7 () (v (£) = 7 (s)) dX

< C Iv t) = (s)|
where C' > max {|f' (z)| : = € B} . Hence, in this case,

V(fola,b]) <CV(v,[a,b]).

Now let ¢ denote the distance between «y ([a,b]) and C\ U. Since v ([a,b]) is compact, £ > 0. By uniform

continuity there exists § = b;% for p a positive integer such that if |s — t| < 0, then |y (s)

(it +e) CB(v(1),5) CU.

—7(t)| < 5. Then

Let C' > max {|f’ (2)|:z2€ U_\B (v (t5), %)} where t; = Il; (b — a) + a. Then from what was just shown,

1

=
|

V(fovlab]) <

™

JI
S I ]

V(forltjtit1])

|
-

< C Vv (77 [tjvtj+1]) < o0
j:

o

showing that f o~y is bounded variation as claimed. Now from Theorem 7.6 there exists n € C! ([a, b]) such

that
n(a) =v(a) =7~ () =n (), n(a,b]) CU
and
n(n,ar) =n(v,ar), n(fey,a) =n(fon,a)
for k=1,---,m. Then
n(fov,a)=n(fon,a)

1 dw
21

fon W— @&

_ @)

N 271'1/ f(n t) n () dt
_ f'(2)

o 27rz/f dz

= S nlnw)

k=1

By Theorem 8.6. By 8.5, this equals Y ;- n (7, ax) which proves the theorem.
The next theorem is very interesting for its own sake.
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Theorem 8.8 Let f: B(a, R) = C be analytic and let
fR)—a=(z-a)"g(z), 0>m2>1

where g (z) # 0 in B(a,R). (f (2) — « has a zero of order m at z = a.) Then there exist €,6 > 0 with the
property that for each z satisfying 0 < |z — a| < 0, there ezist points,

{ala' : '7am} g B(G,,E),

such that

fil (Z) nB (a,g) = {ala' ' '7a'm}
and each ay, is a zero of order 1 for the function f (-) — z.

Proof: By Theorem 8.1 f is not constant on B (a, R) because it has a zero of order m. Therefore, using
this theorem again, there exists £ > 0 such that B (a,2¢) C B (a, R) and there are no solutions to the equation
f(z) —a=0for z € B(a,2) except a. Also we may assume ¢ is small enough that for 0 < |z — a| < 2e,
f'(2) # 0. Otherwise, a would be a limit point of a sequence of points, z,, having f’ (z,) = 0 which would
imply, by Theorem 8.1 that f' = 0 on B (0, R), contradicting the assumption that f has a zero of order m
and is therefore not constant.

Now pick 7 (t) = a + ee?,t € [0,27]. Then a ¢ f (v ([0, 27])) so there exists § > 0 with

B (a,8) N f (v ([0,27])) = 0. (8.6)

Therefore, B (a, d) is contained on one component of C\ f (v ([0, 27])) . Therefore, n (f oy,a) =n(fo~,z2)
for all z € B («a,d). Now consider f restricted to B (a,2¢). For 2z € B (a,6), f~!(z) must consist of a finite
set of points because f'(w) # 0 for all w in B (a,2¢) \ {a} implying that the zeros of f(-) — z in B (a, 2¢)
are isolated. Since B (a,2¢) is compact, this means there are only finitely many. By Theorem 8.7,

14

n(foy,2) =Y n(y,ar) (8.7)

k=1

where {a1,---,a,} = f~' (2). Each point, aj of f~! (z) is either inside the circle traced out by 7, yielding
n (v,ar) = 1, or it is outside this circle yielding n (v, ar) = 0 because of 8.6. It follows the sum in 8.7 reduces
to the number of points of f~!(z) which are contained in B (a,e). Thus, letting those points in f~! (2)
which are contained in B (a,¢) be denoted by {a1,---,a,}

n(fov,a)=n(for,2)=r.

We need to verify that » = m. We do this by computing n (f o, «). However, this is easy to compute by
Theorem 8.6 which states

n(foy,a)=3 n(y,a)=m.

k=1

Therefore, r = m. Each of these ay is a zero of order 1 of the function f(-) — z because f' (ax) # 0. This
proves the theorem.

This is a very fascinating result partly because it implies that for values of f near a value, «a, at which
f(-) — a has a root of order m for m > 1, the inverse image of these values includes at least m points, not
just one. Thus the topological properties of the inverse image changes radically. This theorem also shows
that f (B (a,e)) D B(a,d).

Theorem 8.9 (open mapping theorem) Let U be a region and f : U — C be analytic. Then f (U) is either
a point of a region. If f is one to one, then f~1: f(U) — U is analytic.
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Proof: If f is not constant, then for every a € f (U), it follows from Theorem 8.1 that f (-) —«a has a zero
of order m < oo and so from Theorem 8.8 for each a € U there exist €, > 0 such that f (B (a,e)) D B («,0)
which clearly implies that f maps open sets to open sets. Therefore, f (U) is open, connected because f is
continuous. If f is one to one, Theorem 8.8 implies that for every a € f (U) the zero of f (-) — « is of order
1. Otherwise, that theorem implies that for z near a, there are m points which f maps to z contradicting
the assumption that f is one to one. Therefore, f' (z) # 0 and since f~! is continuous, due to f being an
open map, it follows we may write

L - FH(f(z) = f 1 (f(2)
e = m SRR
. -z 1
lelr_r>12 f (21) - f (Z) f, (Z)

This proves the theorem.

8.5

1.

Exercises
Use Theorem 8.6 to give an alternate proof of the fundamental theorem of algebra. Hint: Take a
contour of the form 7, = re® where t € [0,27]. Consider I, 2((5)) dz and consider the limit as r — oco.

. Prove the following version of the maximum modulus theorem. Let f : U — C be analytic where U is

a region. Suppose there exists a € U such that |f (a)| > |f ()] for all z € U. Then f is a constant.

Let M be an n x n matrix. Recall that the eigenvalues of M are given by the zeros of the polynomial,
pum (z) = det (M — 2I) where T is the n x n identity. Formulate a theorem which describes how the
eigenvalues depend on small changes in M. Hint: You could define a norm on the space of n x n
matrices as ||M|| = tr (MM*)I/2 where M* is the conjugate transpose of M. Thus

1/2

1M = | > M

3.k

Argue that small changes will produce small changes in pas (2). Then apply Theorem 8.6 using ;. a
very small circle surrounding 2y, the kth eigenvalue.

. Suppose that two analytic functions defined on a region are equal on some set, S which contains a

limit point. (Recall p is a limit point of S if every open set which contains p, also contains infinitely
many points of S. ) Show the two functions coincide. We defined e* = e® (cosy + isiny) earlier and
we showed that e®, defined this way was analytic on C. Is there any other way to define e* on all of C
such that the function coincides with e® on the real axis?

We know various identities for real valued functions. For example cosh®? z — sinh? z = 1. If we define

coshz = % and sinhz = £ ’2672, does it follow that

cosh? z —sinh? z = 1
for all z € C? What about
sin (z + w) = sin z cos w + cos z sin w?

Can you verify these sorts of identities just from your knowledge about what happens for real argu-
ments?
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6. Was it necessary that U be a region in Theorem 8.17 Would the same conclusion hold if U were only
assumed to be an open set? Why? What about the open mapping theorem? Would it hold if U were
not a region?

7. Let f : U — C be analytic and one to one. Show that f'(z) # 0 for all z € U. Does this hold for a
function of a real variable?

8. We say a real valued function, u is subharmonic if ., + u,y > 0. Show that if u is subharmonic on a
bounded region, (open connected set) U, and continuous on U and u < m on U, then u < m on U.
Hint: If not, u achieves its maximum at (o, yo) € U. Let u (xg,yo) > m+ 6 where § > 0. Now consider
ue (z,y) = ex? +u (x,y) where € is small enough that 0 < ex? < § for all (z,y) € U. Show that u. also
achieves its maximum at some point of U and that therefore, u.;; + usyy < 0 at that point implying
that ug, + uyy < —¢, a contradiction.

9. If w is harmonic on some region, U, show that u coincides locally with the real part of an analytic
function and that therefore, u has infinitely many derivatives on U. Hint: Consider the case where
0 € U. You can always reduce to this case by a suitable translation. Now let B (0,7) C U and use the
Schwarz formula to obtain an analytic function whose real part coincides with u on 9B (0,r) . Then
use Problem 8.

10. Show the solution to the Dirichlet problem of Problem 8 in the section on the Cauchy integral formula
for a disk is unique. You need to formulate this precisely and then prove uniqueness.

9 Singularities

9.1 The Laurent series

In this chapter we consider the functions which are analytic in some open set except at isolated points. The
fundamental formula in this subject which is used to classify isolated singularities is the Laurent series.

Definition 9.1 We define ann (a, Ri, R2) = {z : R1 < |z —a| < R2}.

Thus ann (a, 0, R) would denote the punctured ball, B (a, R)\ {0} . We now consider an important lemma
which will be used in what follows.

Lemma 9.2 Let g be analytic on ann (a, Ry, R2). Then if v, (t) = a+re® fort € [0,27] and r € (Ry, Ry),
then fv g (z)dz is independent of r.

Proof: Let Ry <, <7y < Ry and denote by —v, () the curve, —v, (t) = a + re'>™= for ¢ € [0, 27].
Then if z € B (a, Ry), we can apply Proposition 7.7 to conclude n (=7, ,2) +n (v,,,2) = 0. Also if z ¢

B (a, R»), then by Corollary 7.11 we have n (%J, , z) = 0 for j = 1,2. Therefore, we can apply Theorem 7.8
and conclude that for all 2 € ann (a, R, Rp) \ U3_,7,, ([0, 27]),

0(n (v5,02) + 1 (=7r,,2)) =

which proves the desired result.
With this preparation we are ready to discuss the Laurent series.
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Theorem 9.3 Let f be analytic on ann (a, Ry, R2). Then there exist numbers, a, € C such that for all
z € ann (a, Ry, R»),

oo

fl2)= > an(z—0a)", (9.1)

n=-—00
where the series converges absolutely and uniformly on ann (a,r1,72) whenever Ry <1y < ry < Ra. Also

L[ W, 9.2)

T ) -

where v (t) = a + e’ t € [0,27] for any r € (Ry, Ry). Furthermore the series is unique in the sense that if
9.1 holds for z € ann (a, Ry, Rz) , then we obtain 9.2.

Proof: Let Ry < r; < ry < Ry and define v, (t) = a + (r; —¢) e and v, (t) = a + (ry +¢) e for
t € [0,27] and e chosen small enough that Ry <r; —e <12+ < Ro.

Then by Proposition 7.7 and Corollary 7.11, we see that
n(=71,2) +n(72,2) =0
off ann (a, Ry, R») and that on ann (a,r1,r2),
n(=71,2) +n(ys2) = 1.
Therefore, by Theorem 7.8,

16 = [ f

M dw]

2

- i f (w) w f(w) w
= omi /h(z—a)[l—%]d +/y2(w_a)[l_ﬁ]d

1 fw) e~ [z—a\"
_%/sz—a;:%(w—c) dw +

i/y (£ (_wC)L) i (Z:Z)ndw (9.3)

n=0

From the formula 9.3, it follows that for z € ann (a,r1,72), the terms in the first sum are bounded by an
n n
expression of the form C ( 2 ) while those in the second are bounded by one of the form C (u) and

rote r1
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so by the Weierstrass M test, the convergence is uniform and so we may interchange the integrals and the
sums in the above formula and rename the variable of summation to obtain

n=0

n=-—oo

i (i/ %) (z—a)". (9.4)

By Lemma 9.2, we may write this as

where r € (Ry, R») is arbitrary.
If f(2) =507 ___an(z—a)" onann(a, Ry, Ry) let

n=—oo

n

for each k € [—n,n]. However,

- I\ =
2mi ), (w—a) " 2mi

because if I > n or [ < —n, then it is easy to verify that

/ az(w—a)ldwzo

(w —a)**

r

for all k € [—n,n]. Therefore,
1 w
ap = —/ L)k“dw
7. (W —a)
and so this establishes uniqueness. This proves the theorem.

Definition 9.4 We say f has an isolated singularity at a € C if there exists R > 0 such that f is analytic
on ann (a,0, R) . Such an isolated singularity is said to be a pole of order m if a—p # 0 but ar, = 0 for all
k < m. The singularity is said to be removable if a,, = 0 for all n < 0, and it is said to be essential if apm # 0
for infinitely many m < 0.
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Note that thanks to the Laurent series, the possibilities enumerated in the above definition are the only
ones possible. Also observe that a is removable if and only if f (z) = g (z) for some ¢ analytic near a. How
can we recognize a removable singularity or a pole without computing the Laurent series? This is the content
of the next theorem.

Theorem 9.5 Let a be an isolated singularity of f. Then a is removable if and only if

lim (z —a) f(2) =0 (9.7)
and a is a pole if and only if
lim |/ ()| = oo. 9.8)

The pole is of order m if

lim (z —a)™" f(z) =0

z—a

but

lim (= — a)" £ (2) 0.
Proof: First suppose a is a removable singularity. Then it is clear that 9.7 holds since a,, = 0 for all
m < 0. Now suppose that 9.7 holds and f is analytic on ann (a,0, R). Then define

h(z)z{ (z—a)f(z) ifz#a

Oif z=a

We verify that h is analytic near a by using Morera’s theorem. Let T be a triangle in B (a,R). If T' does
not contain the point, a, then Corollary 7.11 implies fE)T h(z)dz = 0. Therefore, we may assume a € T. If a
is a vertex, then, denoting by b and c the other two vertices, we pick p and ¢, points on the sides, ab and ac
respectively which are close to a. Then by Corollary 7.11,

/ h(z)dz=0.
v(g,¢,b,p,9)

But by continuity of h, it follows that as p and ¢ are moved closer to a the above integral converges to
Jor I (2) dz, showing that in this case, [y, h(z)dz = 0 also. It only remains to consider the case where a
is not a vertex but is in 7" In this case we subdivide the triangle 7" into either 3 or 2 subtriangles having a
as one vertex, depending on whether @ is in the interior or on an edge. Then, applying the above result to
these triangles and noting that the integrals over the interior edges cancel out due to the integration being
taken in opposite directions, we see that fE)T h(z)dz =0 in this case also.

Now we know h is analytic. Since h equals zero at a, we can conclude that

h(z) = (2 - a) g (2)

where g (z) is analytic in B (a, R). Therefore, for all z # a,

(z—a)g(z)=(z-0a) f(2)

showing that f (z) = g (2) for all z # a and ¢ is analytic on B (0, R). This proves the converse.

It is clear that if f has a pole at a, then 9.8 holds. Suppose conversely that 9.8 holds. Then we know
from the first part of this theorem that 1/f (z) has a removable singularity at a. Also, if g (z) = 1/f (2) for
z near a, then g (a) = 0. Therefore, for z # a,

1/f(2) =(z=a)" h(2)
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for some analytic function, h (z) for which h (a) # 0. It follows that 1/h = r is analytic near a with r (a) # 0.
Therefore, for z near a,

f@=(-a) ™Y az-a), a#0
k=0

showing that f has a pole of order m. This proves the theorem.

Note that this is very different than what occurs for functions of a real variable. Consider for example,
the function, f (z) = z=/2. We see z (|m|_1/2) — 0 but clearly |z|™"/? cannot equal a differentiable function
near 0.

What about rational functions, those which are a quotient of two polynomials? It seems reasonable to
suppose, since every finite partial sum of the Laurent series is a rational function just as every finite sum of
a power series is a polynomial, it might be the case that something interesting can be said about rational
functions in the context of Laurent series. In fact we will show the existence of the partial fraction expansion
for rational functions. First we need the following simple lemma.

Lemma 9.6 If f is a rational function which has no poles in C then f is a polynomial.

Proof: We can write
l In
_po(z=b)" - (z—bn)
(z—a)" - (z—ap)™’
where we can assume the fraction has been reduced to lowest terms. Thus none of the b; equal any of the

ay. But then, by Theorem 9.5 we would have poles at each aj. Therefore, the denominator must reduce to
1 and so f is a polynomial.

f(z)

Theorem 9.7 Let f () be a rational function,

)" (b))

£ = s 99)

where the expression is in lowest terms. Then there exist numbers, bf and a polynomial, p (2), such that

m T bl-
J

f@ZZZ——Vw@- (9.10)

=1 j=1 (z —a

Proof: We see that f has a pole at a; and it is clear this pole must be of order r; since otherwise we
could not achieve equality between 9.9 and the Laurent series for f near a; due to different rates of growth.
Therefore, for z € ann (a1, 0, R;)

F@) =Y —L—=+p(2)
jz:; (z —ar)’

where p; is analytic in B (a1, R1) . Then define

r 1

1 bij

o (r—a)

so that f; is a rational function coinciding with p; near a; which has no pole at a;. We see that f; has a pole
at ao or order 72 by the same reasoning. Therefore, we may subtract off the principle part of the Laurent
series for f; near ay like we just did for f. This yields

o g

FE)=) ——=+> —L—+m(2).

o (E-a) I (- a2)




Letting

T1 b; T2 b2

f(z) - —t—+) —— | =f@),
]Z::l (z —ay)’ ; (z —as)’
and continuing in this way we finally obtain
m T bl
f(z) = = fm (2)
=1 j=1 (2 —ar)’

where f,, is a rational function which has no poles. Therefore, it must be a polynomial. This proves the
theorem.

How does this relate to the usual partial fractions routine of calculus? Recall in that case we had to
consider irreducible quadratics and all the constants were real. In the case from calculus, since the coefficients
of the polynomials were real, the roots of the denominator occurred in conjugate pairs. Thus we would have
paired terms like

b c

-+ .
(z-a)  (z-a)

occurring in the sum. We leave it to the reader to verify this version of partial fractions does reduce to the
version from calculus.

We have considered the case of a removable singularity or a pole and proved theorems about this case.
What about the case where the singularity is essential? We give an interesting theorem about this case next.

Theorem 9.8 (Casorati Weierstrass) If f has an essential singularity at a then for all r > 0,
f(ann(a,0,7)) =C

Proof: If not there exists ¢ € C and r > 0 such that ¢ ¢ f (ann(a,0,r)). Therefore,there exists ¢ > 0
such that B (c,e) N f (ann (a,0,7)) = (. It follows that

. —1 _
lim [z — a| ' |f (2) ~ o] = o0

and so by Theorem 9.5 z = (z — a) ™' (f (2) — ¢) has a pole at a. It follows that for m the order of the pole,

showing that f has a pole at a rather than an essential singularity. This proves the theorem.
This theorem is much weaker than the best result known, the Picard theorem which we state next. A
proof of this famous theorem may be found in Conway [1].

Theorem 9.9 If f is an analytic function having an essential singularity at z, then in every open set
containing z the function f, assumes each complexr number, with one possible exception, an infinite number
of times.
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9.2 Exercises

1. Classify the singular points of the following functions according to whether they are poles or essential
singularities. If poles, determine the order of the pole.

(a) C(;szz
.3
(b) z?ztﬁ)

(c) cos (L)
2. Suppose f is defined on an open set, U, and it is known that f is analytic on U \ {zo} but continuous

at zo. Show that f is actually analytic on U.

3. A function defined on C has finitely many poles and lim,.|_, f (2) exists. Show f is a rational function.
Hint: First show that if h has only one pole at 0 and if lim|.|_, h (2) exists, then h is a rational
function. Now consider

ney = i

where zy is a pole of order ry.

9.3 Residues and evaluation of integrals
It turns out that the theory presented above about singularities and the Laurent series is very useful in

computing the exact value of many hard integrals. First we define what we mean by a residue.

Definition 9.10 Let a be an isolated singularity of f. Thus

oo

fR= 3 au(z-a)"

n=-—oo

for all z near a. Then we define the residue of f at a by

Res(f,a) =a_;.
Now suppose that U is an open set and f : U \ {ay,- -+, a,} — C is analytic where the a;, are isolated
singularities of f.
72

v

Let v be a simple closed continuous, and bounded variation curve enclosing these isolated singulari-
ties such that v ([a,b]) C U and {ai,---,an} € D C U, where D is the bounded component (inside) of
C\ v ([a,b]) . Also assume n (y,2z) = 1 for all z € D. As explained earlier, this would occur if 7 (¢) traces out
the curve in the counter clockwise direction. Choose r small enough that B (aj,r) N B (ax,r) = () whenever
j #k, B(ag,r) CU for all k, and define

— (1) = ag, + e 1 € [0,27].
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Thus n (—v;, a;) = —1 and if z is in the unbounded component of C\y ([a,b]),n (v,z) = 0 and n (—y,,z) = 0.
If 2z ¢ U\ {a1, -, am}, then z either equals one of the ay or else z is in the unbounded component just
described. Either way, >", n (v, 2) + v (v, 2) = 0. Therefore, by Theorem 7.8, if z ¢ D,

mL w(w—z)w 1 w(w—z)w _
;m‘/w“ ) w—2)" *m/ﬂ“ s L
;%m/_mf(w)dwjt%m/vf(w)dw

(Zn(_')/k:z)+7(77z)>f(z)(z_z) = 0.

k=1

and so, taking r small enough,

1 1
3wt | Fwdn = Y5 [ s
j=1 J
iaf/ —ak dw

Tk

— 00
1
1 —ak dw
e

k

k

i
-
N

I
¥~ §[~T
Ms

| =

a

I
NE

192

B
Il

1

m

= Za’il :iRes frar).

k=1 1

Now we give some examples of hard integrals which can be evaluated by using this idea. This will be
done by integrating over various closed curves having bounded variation.

Example 9.11 The first example we consider is the following integral.

< 1
—d
/,Oo T+t
One could imagine evaluating this integral by the method of partial fractions and it should work out by

that method. However, we will consider the evaluation of this integral by the method of residues instead.
To do so, consider the following picture.

Let v, (t) = re,t € [0,7] and let o, (t) =t : t € [-r,7]. Thus v, parameterizes the top curve and o,
parameterizes the straight line from —r to r along the z axis. Denoting by I',. the closed curve traced out
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by these two, we see from simple estimates that

1
lim —4dz =0.
r—00 ~, 1 + z

1
/ 1dz| <
v, L+z

This follows from the following estimate.

Therefore,
< 1 . 1
[m T 21 +x4dm = rlggo . T30 Z4dz.

We compute fr dz using the method of residues. The only residues of the integrand are located at

1+ 422
points, z where 1 + z* = 0. These points are
1 1. 1 1.
z = —5 2—52 2,2—5\/_—52\/5,
1 1. 1 1.
z = 5\/54‘52 2,2——5\/54‘52\/5

and it is only the last two which are found in the inside of I',.. Therefore, we need to calculate the residues
at these points. Clearly this function has a pole of order one at each of these points and so we may calculate
the residue at « in this list by evaluating

. 1
fim (2 — @) 577

Thus

o5 <f, ey lm)

1 1
lim ( (\/_+—Z\/_>> — = =2
z=1v2+1ive 1+z2 8 8
Similarly we may find the other residue in the same way
1 1.
es <f,——\/§+—zx/§> =
1. 1
lim - ——\/_+ V2 = —<ivV2+ V2

1+ 1+24 8 8

z—)—f\/_+ ivV2

Therefore,

[ e =2mi (~gives VB4 (~gva-5ive) ) = ave,
T, 1+ 24 2
Thus, taking the limit we obtain 7r\/_ f_oo 1+z4 dx.

Obv10usly many different varlatlons of this are possible. The main idea being that the integral over the
semicircle converges to zero as  — oo. Sometimes one must be fairly creative to determine the sort of curve
to integrate over as well as the sort of function in the integrand and even the interpretation of the integral
which results.
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Example 9.12 This example illustrates the comment about the integral.

0o .
sinT
dx
0 T
sin x

By this integral we mean lim,_, for ——dz. The function is not absolutely integrable so the meaning of
the integral is in terms of the limit just described. To do this integral, we note the integrand is even and so
it suffices to find

R el
lim —dx
R—oo _R T

called the Cauchy principle value, take the imaginary part to get

. B oging
lim dx
R—00 —R xr

and then divide by two. In order to do so, we let R > r and consider the curve which goes along the z
axis from (—R,0) to (—r,0), from (—r,0) to (r,0) along the semicircle in the upper half plane, from (r,0)
to (R,0) along the x axis, and finally from (R,0) to (—R,0) along the semicircle in the upper half plane as
shown in the following picture.

ANNA N

ei®

On the inside of this curve, the function, <~ has no singularities and so it has no residues. Pick R large
and let » =+ 0 4. The integral along the small semicircle is

0 _rett . it 0 .
/%dt:/ e dt.
s ”"el s

and this clearly converges to — as r — 0. Now we consider the top integral. For z = Re',
eifie’’ — g~ Rsint oqq (Rcost) 4+ ie ®5"gin (R cost)
and so

eiRe“ < o Rsint

Therefore, along the top semicircle we get the absolute value of the integral along the top is,
T . T
/ eiRe”dt‘ < / e—Rsintdt
0 ~Jo
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IN

T—0 . T . [ .
/ e—R51n6dt + / e—Rsmtdt + / G_Rsmtdt
[ T—0 0

S 6_R51n671'+8

whenever § is small enough. Letting § be this small, it follows that

™ - it
/ eifte dt‘ <e
0

and since ¢ is arbitrary, this shows the integral over the top semicircle converges to 0. Therefore, for some
function e (r) which converges to zero as r — 0,

iz R iz —r iz
e e e
6(7“)2/ —dz—7r+/ —da:+/ —dx
top semicircle 2 r T _R T

ei® R et
= / —dz + / —dx
top semicircle z -R T

. R gin . Bging
m = lim —dzr =2 lim ,
R—o0 _R T R—o0 0 x

lim
R— 0

Letting r — 0, we see

and so, taking R — oo,

showing that & = fooo Si%dm with the above interpretation of the integral.
Sometimes we don’t blow up the curves and take limits. Sometimes the problem of interest reduces
directly to a complex integral over a closed curve. Here is an example of this.

/ cosf 40
o 2+ cosf

This integrand is even and so we may write it as

1 [T cosf
§/ﬁ2+c050d0'

Example 9.13 The integral is

For z on the unit circle, z = ¢, 7 = % and therefore, cosf = % (z + %) . Thus dz = ie*?df and so df = %.

Note that we are proceeding formally in order to get a complex integral which reduces to the one of interest.
It follows that a complex integral which reduces to the one we want is

1/ ;(z+1) d- 1/ 22 +1 p
a - 17 1N = 3 — 5 a2
2 ) 243 (z+1) 2 2/, z(4z+2241)

where v is the unit circle. Now the integrand has poles of order 1 at those points where z (4z + 22+ 1) =0.
These points are

0,—2+3,—2 — V3.

Only the first two are inside the unit circle. It is also clear the function has simple poles at these points.
Therefore,

. 2241
Res (£,0) = lim » (m) =1
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Res (f,—2+\/§) =

i (2 (~2+v3)) (—“ _2A

2 —24+/3 dz+22+1) 3
It follows
T cosf 1 22 +1

ek A R R i
/0 2 + cosf 2i[,z(4z+22+1) *

1 2

= —omi1-2

5 m< 3\/§>

n(1—§\/§>.

Other rational functions of the trig functions will work out by this method also.
Sometimes we have to be clever about which version of an analytic function that reduces to a real function
we should use. The following is such an example.

o0
/ %dm.
0 +x

We would like to use the same curve we used in the integral involving % but this will create problems
with the log since the usual version of the log is not defined on the negative real axis. This does not need
to concern us however. We simply use another branch of the logarithm. We leave out the ray from 0 along
the negative y axis and use Theorem 8.4 to define L (z) on this set. Thus L (z) = In|z| + i arg; (z) where
arg, (z) will be the angle, 6, between —2 and 2 such that z = |z| €. Now the only singularities contained
in this curve are

Example 9.14 The integral here is

1 1 1 1
FV2H 5iV2 —oV2+ Siv2

and the integrand, f has simple poles at these points. Thus using the same procedure as in the other
examples,

e (184 ) -

1 1
—\or — —iV2
32‘[7T 32“[”
and

Res (f, _71\/§+ %zﬁ) =

3 3.
ﬁ\/ﬁﬂ' + ﬁl\/ﬁﬂ'.
We need to consider the integral along the small semicircle of radius 7. This reduces to
0 .
1 t ;
/ Inlrl 4 it ey gy

1+ (reit)?
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which clearly converges to zero as r — 0 because rInr — 0. Therefore, taking the limit as r — 0,

L " In (—t) +
/ ®) 42+ tim In (=) +im g, |
1 r—0+ —R ].+t4

4
arge semicircle 1+z

i [ 2 g —oni (3 et BivEn s LvEr - Liva
1m _— = — — — - A
r50t ) T4 48 TV T R VAT T VAT T gtV

Observing that flarge somicircle ﬂ—ildz — 0 as R — oo, we may write

R

1 o 1 11
e(R) +2 lim Ltdt-{—iﬂ'/ dt = <—§+ Zz) V2

r—0+ [, 141t o L+ 14

where e (R) — 0 as R — oo. From an earlier example this becomes

R
Int 2 1 1
e(R) +2 lim 2Lt + i (%ﬂ') = <—§ + Zz) V2.

r—0+ /, 1+t*

Now letting » — 0+ and R — oo, we see

> Int 1.1 V2
2 ——dt = ——+ i) V2 —ir | ==
/0 1+ < 8+4z>7r\/_ z7r<47r>

1
_g\/@rz,

and so

> Int 1
O = —
/0 5Y2r

1+¢4

which is probably not the first thing you would thing of. You might try to imagine how this could be obtained
using elementary techniques.

Example 9.15 The Fresnel integrals are

o0 [ee]
/ cos z2dz, / sin z%dz.
0 0

To evaluate these integrals we will consider f (z) = ei** on the curve which goes from the origin to the
point r on the z axis and from this point to the point r (1—\;%’) along a circle of radius r, and from there back

to the origin as illustrated in the following picture.
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N x

Thus the curve we integrate over is shaped like a slice of pie. Denote by 7, the curved part. Since f is

analytic,
) ro ro. 14i\\2 /1 .
0 = /e”zdz—k/ e”zda:—/ el(t( ) <_+Z> dt
Y 0 0 \/5
. T . T 1 -
- /e”zdz—k/ e’ da — et2< “) dt
Y 0 0 V2
= / eizzdz—l-/re”zdm——ﬂ- <1+i> +e(r)
0 2 \ V2

r

S

where e (r) — 0 as r — co. Here we used the fact that fooo e tdt = 4 Now we need to examine the first
of these integrals.
/ e dz

r

jus

/ ’ ei(’"eit )* rie’tdt
0

< r/Z 67T2Sin2tdt
a 0

rofl e ru

— —du
2 /0 V1 —u?

- (3/2)
<

[ e ()

which converges to zero as r — 0o. Therefore, taking the limit as r — oo,

(5)- [ e

and so we can now find the Fresnel integrals

o0 o0
/ sinz2dz = ﬁ = / cos z2dz.
0 2v/2 0

The next example illustrates the technique of integrating around a branch point.

N3

Example 9.16 fooo ﬁ:__; dz, p € (0,1).
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Since the exponent of z in the numerator is larger than —1. The integral does converge. However, the
techniques of real analysis don’t tell us what it converges to. The contour we will use is as follows: From
(€,0) to (r,0) along the z axis and then from (r,0) to (r,0) counter clockwise along the circle of radius r,
then from (r,0) to (g,0) along the z axis and from (g, 0) to (g,0), clockwise along the circle of radius €. You
should draw a picture of this contour. The interesting thing about this is that we cannot define zP~! all the
way around 0. Therefore, we use a branch of zP~! corresponding to the branch of the logarithm obtained by
deleting the positive z axis. Thus

1 — Gzl +iA(2) (p—1)

where 2z = |2|e*4(*) and A(z) € (0,27). Along the integral which goes in the positive direction on the z
axis, we will let A (z) = 0 while on the one which goes in the negative direction, we take A (z) = 27. This is
the appropriate choice obtained by replacing the line from (g,0) to (r,0) with two lines having a small gap
and then taking a limit as the gap closes. We leave it as an exercise to verify that the two integrals taken
along the circles of radius € and r converge to 0 as € — 0 and as 7 — oo. Therefore, taking the limit,

e’} xpfl 0 mpfl .
d (> 1)) dz = 27mi Res (f, —1).
/0 T a:+/ 1+m(e ) x = 2mi Res (f, —1)

oo

Calculating the residue of the integrand at —1, and simplifying the above expression, we obtain

oo .p—1
(1 — 627”.(1)71)) / f: dx = 2mie® Vi,
0 m

Upon simplification we see that

oo gp—l T
/ dr = — .
o l+=z sin pm
The following example is one of the most interesting. By an auspicious choice of the contour it is possible
to obtain a very interesting formula for cot 7z known as the Mittag Leffler expansion of cot 7z.

Example 9.17 We let v be the contour which goes from —N — % — N1t horizontally to N + % — Ni and from
there, vertically to N + % + Ni and then horizontally to —N — % + Ni and finally vertically to —N — % — Ni.
Thus the contour is a large rectangle and the direction of integration is in the counter clockwise direction.
We will look at the following integral.

T COSTZ
4y sinTz (a2 — 22)
N

where a € R is not an integer. This will be used to verify the formula of Mittag Leffier,

2

(9.11)

1 i 2 T cot T

a2 —n? e
n=1

(07

We leave it as an exercise to verify that cot 7z is bounded on this contour and that therefore, Iy — 0 as
N — o0o. Now we compute the residues of the integrand at +a and at n where |n| < N + £ for n an integer.
These are the only singularities of the integrand in this contour and therefore, we can evaluate Iy by using
these. We leave it as an exercise to calculate these residues and find that the residue at +a« is

—T COS T
2asin T

while the residue at n is

a? —
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Therefore,

N

. . . 1 T cot T
0:]\}23’100[]\[:1\;5110027{'2 ; aQ—nQ B (0%
which establishes the following formula of Mittag Leffler.
N
1 T cot T
li = .
N E;N a? —n? !

Writing this in a slightly nicer form, we obtain 9.11.

9.4 The argument principle and Rouche’s theorem

This technique of evaluating integrals by computing the residues also leads to the proof of a theorem referred
to as the argument principle.

Definition 9.18 We say a function defined on U, an open set, is meromorphic if its only singularities are
poles, isolated singularities, a, for which

lim | (2)[ = oo.
Theorem 9.19 (argument principle) Let f be meromorphic in U and let its poles be {p1,---,pm} and its
zeros be {z1,---,zn}. Let z, be a zero of order vy, and let p, be a pole of order li. Let vy : [a,b] — U be
a continuous simple closed curve having bounded variation for which the inside of «y ([a,b]) contains all the

poles and zeros of f and is contained in U. Also let n (vy,z) =1 for all z contained in the inside of v ([a,b]) .
Then

Proof: This theorem follows from computing the residues of f'/f. It has residues at poles and zeros. See
Problem 4.

With the argument principle, we can prove Rouche’s theorem . In the argument principle, we will denote
by Z; the quantity Y ;" , rr and by Py the quantity Y ;_, lx. Thus Z; is the number of zeros of f counted
according to the order of the zero with a similar definition holding for P;.

1 !
—/Yf (Z)dZ:Zf—Pf

27t J., f(2)

Theorem 9.20 (Rouche’s theorem) Let f,g be meromorphic in U and let Zy and Py denote respectively
the numbers of zeros and poles of f counted according to order. Let Z, and P, be defined similarly. Let
v : la,b] = U be a simple closed continuous curve having bounded variation such that all poles and zeros
of both f and g are inside v ([a,b]) . Also let n(vy,z) =1 for every z inside v ([a,b]). Also suppose that for
2 € 7 ([a,b])

|f () + g ()] <|f ()] + |g (2)]-
Then

Z;—P;=2,-P,.
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Proof: We see from the hypotheses that

i

which shows that for all z € v ([a, b]),

f(2)
g(2)

Letting ! denote a branch of the logarithm defined on C\ [0, 00), it follows that [ (f (z)) is a primitive for

9(2)
the function, ((’;//Z ))’. Therefore, by the argument principle,

0 = % V%dz:%[y<f—l—g—l>dz

= Zy—Pr—(Z,-P).

€ C\ [0, 00).

This proves the theorem.

9.5 Exercises

1. In Example 9.11 we found the integral of a rational function of a certain sort. The technique used in
this example typically works for rational functions of the form g g; where deg (g (z)) > deg f (z) + 2
provided the rational function has no poles on the real axis. State and prove a theorem based on these

observations.

2. Fill in the missing details of Example 9.17 about Iy — 0. Note how important it was that the contour
was chosen just right for this to happen. Also verify the claims about the residues.

3. Suppose f has a pole of order m at z = a. Define g (z) by

g(2)=(z—a)" f(2).
Show

1

Res (f,a) = mg(mfl) (a).

Hint: Use the Laurent series.

4. Give a proof of Theorem 9.19. Hint: Let p be a pole. Show that near p, a pole of order m,

f'(z) _ —m+ Y o0 b (z—p)*
& P+, a(z-p"
Show that Res (f,p) = —m. Carry out a similar procedure for the zeros.

5. Use Rouche’s theorem to prove the fundamental theorem of algebra which says that if p(z) = 2™ +
an_12""1---+a1z + ag, then p has n zeros in C. Hint: Let q(2) = —2" and let y be a large circle,
v (t) = re® for r sufficiently large.

6. Consider the two polynomials 2% + 322 — 1 and z° + 32%. Show that on |z| = 1, we have the conditions
for Rouche’s theorem holding. Now use Rouche’s theorem to verify that z° + 322 — 1 must have two
zeros in |z] < 1.
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10.

11.

12.

13.
14.

15.

16.

9.6

Consider the polynomial, z'' + 7z% + 322 — 17. Use Rouche’s theorem to find a bound on the zeros of
this polynomial. In other words, find r such that if z is a zero of the polynomial, |z| < r. Try to make
r fairly small if possible.

Verify that fooo e tdt = @ Hint: Use polar coordinates.

Use the contour described in Example 9.11 to compute the exact values of the following improper
integrals.

(a) fix;o mdﬂf

() fy* Grimyrde

(c) [T m,a,b >0
Evaluate the following improper integrals.

cosazrx
(a) J° et de

(b) [y Egmde

Find the Cauchy principle value of the integral

o0 sin x
/_oo @@

defined as

lim /1_8 sin x dr + /oo sin z s
e=0+ \J_o (2 +1)(z—1) 14e (@2 +1)(z—-1) )

de —t where n is a nonnegative integer.

Find a formula for the integral ffo ETsa

Using the contour of Example 9.12 find [>°_ 822 g

If m < n for m and n integers, show

/OO x2m i T 1
r = — .
2n H 2m—+1
o l1+=x nsm( o 71')

Find foo i‘;(; dr =0

The Poisson formulas and the Hilbert transform

In this section we consider various applications of the above ideas by focussing on the contour, v shown
below, which represents a semicircle of radius R in the right half plane the direction of integration indicated
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by the arrows.

We will suppose that f is analytic in a region containing the right half plane and use the Cauchy integral

formula to write
1 1
2m e W2 2m v WtZ

the second integral equaling zero because the integrand is analytic as indicated in the picture. Therefore,
multiplying the second integral by a and subtracting from the first we obtain

2m/ fw (wﬂ )?Z:;Z> dw. (9.12)

We would like to have the integrals over the semicircular part of the contour converge to zero as R — oo.
This requires some sort of growth condition on f. Let

M (R) :max{|f (Reit)| te [—g g]}

We leave it as an exercise to verify that when

. M(R) _ _
and
lim M (R) =0 for a # 1, (9.14)
R—o00

then this condition that the integrals over the curved part of vy converge to zero is satisfied. We assume
this takes place in what follows. Taking the limit as R — oo

[ ()

the negative sign occurring because the direction of integration along the y axis is negative. If @ = 1 and

z = x + iy, this reduces to
/ £ ( ) d, (9.16)
— ig?

which is called the Poisson formula for a half plane.. If we assume M (R) — 0, and take « = —1, 9.15 reduces

to
/ f ( —zf| )df (9.17)
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Of course we can consider real and imaginary parts of f in these formulas. Let

fi€) = u (&) +iv (§).

From 9.16 we obtain upon taking the real part,

1 [ x
w@p =z [ u© <ﬂ> 3 919)
Taking real and imaginary parts in 9.17 gives the following.
_ L y=€
w@n) =1 [ 0@ <|Z_i€|2> de, (919
R -y
v =z [ u <|Z _Z_£|2> de. (920

These are called the conjugate Poisson formulas because knowledge of the imaginary part on the y axis leads
to knowledge of the real part for Re z > 0 while knowledge of the real part on the imaginary axis leads to
knowledge of the real part on Rez > 0.

We obtain the Hilbert transform by formally letting z = iy in the conjugate Poisson formulas and picking
x = 0. Letting u (0,y) = u (y) and v (0,y) = v (y), we obtain, at least formally

I G
Lo ()%

Of course there are major problems in writing these integrals due to the integrand possessing a nonintegrable
singularity at y. There is a large theory connected with the meaning of such integrals as these known as the
theory of singular integrals. Here we evaluate these integrals by taking a contour which goes around the
singularity and then taking a limit to obtain a principle value integral.

The case when o = 0 in 9.15 yields
_ 1= @)

We will use this formula in considering the problem of finding the inverse Laplace transform.
We say a function, f, defined on (0, 00) is of exponential type if

<
—~
<
~

I

If ()] < Ae™ (9.22)

for some constants A and a. For such a function we can define the Laplace transform as follows.

F(s) = / f(t)e ®dt = Lf. (9.23)
0
We leave it as an exercise to show that this integral makes sense for all Res > a and that the function so

defined is analytic on Re z > a. Using the estimate, 9.22, we obtain that for Res > a,
A

s—a

. (9.24)

[F(s)] <
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We will show that if f (¢) is given by the formula,

e (a+5tf()_i/oo eiﬁtF(i£+a+5)df,

2r J_

then Lf = F for all s large enough.
L( aJrE)tf / 7st/ lgtF Z€+a+5) dé-dt
~ o
Now if
o0
/ |F (i€ +a+¢)|dE < oo, (9.25)
—00

we can use Fubini’s theorem to interchange the order of integration. Unfortunately, we do not know this.
The best we have is the estimate 9.24. However, this is a very crude estimate and often 9.25 will hold.
Therefore, we shall assume whatever we need in order to continue with the symbol pushing and interchange
the order of integration to obtain with the aid of 9.21 the following;:

L(ee4f (1) ;ﬂ m(/m ) F (i +a+ )

_ X F(if+a+e)
N 271' s — € e %

= s+a+5)

for all s > 0. (The reason for fussing with £ + a + € rather than just £ is so the function, £ - F (£ +a +¢)
will be analytic on Re§ > —e, a region containing the right half plane allowing us to use 9.21.) Now with
this information, we may verify that L (f) (s) = F (s) for all s > a. We just showed

o0
/ e Wte (0T () dt = F (w + a + )
0

whenever Rew > 0. Let s = w + a +¢. Then L (f)(s) = F (s) whenever Res > a + €. Since ¢ is arbitrary,
this verifies L (f) (s) = F (s) for all s > a. It follows that if we are given F'(s) which is analytic for Res > a
and we want to find f such that L (f) = F, we should pick ¢ > a and define

e tf(t) = % /OO e F (i€ + c) d¢.

— 00

Changing the variable, to let s = i{ + ¢, we may write this as

1 c+ioco
t) = — StF d , 9.26
0 =g= [ P (9.26)
and we know from the above argument that we can expect this procedure to work if things are not too
pathological. This integral is called the Bromwich integral for the inversion of the Laplace transform. The
function f (¢) is the inverse Laplace transform.

We illustrate this procedure with a simple example. Suppose F' (s) = %1)2 In this case, F' is analytic

(s
for Res > 0. Let ¢ = 1 and integrate over a contour which goes from ¢ — iR vertically to ¢ + iR and then
follows a semicircle in the counter clockwise direction back to ¢ — iR. Clearly the integrals over the curved
portion of the contour converge to 0 as R — oco. There are two residues of this function, one at 7 and one at

—i. At both of these points the poles are of order two and so we find the residue at i by

5 = g L (=)
Res(f,i) = lim ( & 117 )




and the residue at —i is

. . d [e®s(s+i)
Res (f,—i) = SllfI_IiE (W
_ ite
- 4

Now evaluating the contour integral and taking R — oo, we find that the integral in 9.26 equals

o ite™ N —ite i in t
i = imtsin
4 4

and therefore,

You should verify that this actually works giving L (f)

9.7

1.

f@= %tsint.

— S
= 2412

Exercises

Verify that the integrals over the curved part of y5 in 9.12 converge to zero when 9.13 and 9.14 are
satisfied.

Obtain similar formulas to 9.18 for the imaginary part in the case where a = 1 and formulas 9.19 -
9.20 in the case where a = —1. Observe that these formulas give an explicit formula for f (z) if either
the real or the imaginary parts of f are known along the line z = 0.

Verify that the formula for the Laplace transform, 9.23 makes sense for all s > a and that F' is analytic
for Rez > a.

. Find inverse Laplace transforms for the functions,

a a 1 s
s2+a2’ s2(s2+a?)’ 57 (s2+4a2)2"

Consider the analytic function e™?. Show it satisfies the necessary conditions in order to apply formula
9.16. Use this to verify the formulas,

1 o0
e cosy = _/ %d@
T oo+ (y —§)

1 [ i
e siny = —/ %df.
T Jooow? +(y =€)

The Poisson formula gives

1 [ x
u(z,y) = — u (0, — | d
@n=1[" (0£)<x2+(y_£)>£

whenever u is the real part of a function analytic in the right half plane which has a suitable growth

condition. Show that this implies
1 o0
1=-— / % d¢.
T /oo \2* + (y — &)



7. Now consider an arbitrary continuous function, u (§) and define

u(z,y) = %/_"o u (§) <m> dg.

Verify that for u (x,y) given by this formula,

zllf&- |’LL (1‘,y) —u (y)| = 0>

and that u is a harmonic function, v, + uyy = 0, on z > 0. Therefore, this integral yields a solution
to the Dirichlet problem on the half plane which is to find a harmonic function which assumes given
boundary values.

8. To what extent can we relax the assumption that £ — u (§) is continuous?

9.8 Infinite products

In this section we give an introduction to the topic of infinite products and apply the theory to the Gamma
function. To begin with we give a definition of what is meant by an infinite product.

Definition 9.21 [[°7, (14 uy,) = limpyoo [15—, (1 +ug) whenever this limit ewists. If up, = uy (2) for
z € H, we say the infinite product converges uniformly on H if the partial products, [[,_; (1 + uk (2))
converge uniformly on H.

Lemma 9.22 Let Py = Hiv:l (14 ug) and let Qn = Hi\le (14 |ug|). Then

N
Qn < exp <Z|uk|>, Py — 1] <Qn —1

k=1

Proof: To verify the first inequality,

N N N
Qn = [T A+ ful) < T el = exp <Z|Uk|> :
k=1

k=1 k=1
The second claim is obvious if N = 1. Consider N = 2.
|(].+’LL1) (1+’LL2)—].| = |U2+U1 +U1’LL2|
L4 Jui| + Juz| + Jui] Juz| — 1
= (I+]u]) X+ |us|) — 1

IN

Continuing this way the desired inequality follows.
The main theorem is the following.

Theorem 9.23 Let H C C and suppose that 5., |uy (2)| converges uniformly on H. Then
o0
P(z) = H (14 up (2))
n=1
converges uniformly on H. If (ny,ne,---) is any permutation of (1,2,---), then for all z € H,
P(z) = [ (0 +un (2))
k=1
and P has a zero at zo if and only if u, (20) = —1 for some n.
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Proof: We use Lemma 9.22 to write for m < n, and all z € H,

n m
H 1+ ug (2 H 1+ ug (2 ‘
k=1 =

< H1+|Uk [T G+uw(z)-1
= k=m+1
< exp (Zm (z>|> I () -1
k=1 k=m-+1
< C (eXD< > (Z)I> - 1)
k=m-+1
< Cef—1)

whenever m is large enough. This shows the partial products form a uniformly Cauchy sequence and hence
converge uniformly on H. This verifies the first part of the theorem.

Next we need to verify the part about taking the product in different orders. Suppose then that
(n1,ne,- - +) is a permutation of the list, (1,2, ) and choose M large enough that for all z € H,

o) M
H 1+ ug (2 H 1+ ug (2

Then for all N sufficiently large, {nl,ng,- ,nn} 2 {1,2,---,M}. Then for N this large, we use Lemma
9.22 to obtain

<

N
(L4 () = JT 1+ un, (2))

I=F

?..
Il
-
o~
Il
-

(T+ug (2))||1 - H (14 up, (2))

=

ES
I
ES
A
=
S

=

4
S

(1 + g (2)) I[I G+l G)-1

IN
B
ﬂ‘
=
AN
2
s
i\
S

IN
=

(Lt ()| [T] @+l () -
=M

(1 +uy (2)) (exp (Z |y (z)|> - 1)
=M

B
Il
MR
=

IN
-

k=1
M

< [0 +u @) E@pe—1) (9.27)
k=1

< |TT @+ lue D] (expe — 1) (9.28)
k=1

whenever M is large enough. Therefore, this shows, using 9.28 that

N 00
IT 0+ wne (2)) = T (1 + e (2))
k=1 k=1

IN
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+
k=1 k=1
M o]
IT 0+ we (2) = TT (1 + un ( ))‘
k=1 k=1

§s+<H (14 |ug (2

which verifies the claim about convergence of the permuted products.

It remains to verify the assertion about the points, zo, where P (z9) = 0. Obviously, if u,, (z0) = —1, then
P (zp) = 0. Suppose then that P (z9) = 0. Letting ny = k and using 9.27, we may take the limit as N — oo
to obtain

+ E) (expe — 1)

If £ is chosen small enough in this inequality, we see this implies Hiwzl (1+ug (2)) = 0 and therefore,
ug (20) = —1 for some k < M. This proves the theorem.

Now we present, the Weierstrass product formula. This formula tells how to factor analytic functions into
an infinite product. It is a very interesting and useful theorem. First we need to give a definition of the
elementary factors.

Definition 9.24 Let Ey (2) =1 — 2z and for p > 1,

22 P
Ep(Z)E(l—z)exp<z+7+...+;>

The fundamental factors satisfy an important estimate which is stated next.
Lemma 9.25 For all |z| <1 andp=0,1,2,-- -
1= By (2)] < |2

Proof: If p = 0 this is obvious. Suppose therefore, that p > 1.

22 zP
E;(z):—exp<z+?+---+;>+

2

P
(1—z)exp<z+%+---+zp>(l+z+ 4 2271
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and so, since (1 —z) (1+ 2+ +2P71) =1—2P,

22 2P
E;(z):—zpexp<z+7+---+—>
p

which shows that E;, has a zero of order p at 0. Thus, from the equation just derived,

E' = —szakz

where each ap > 0 and ag = 1. This last assertion about the sign of the a; follows easily from differentiating

the function f(z) = exp (z + i +- -+ %) and evaluating the derivatives at z = 0. A primitive for E, ()

is of the form — Y 77 ax k’rpl:l and so integrating from 0 to z along v (0, z) we see that

E,(2) — E,(0) =

S+l

E (2)—1 = — =
»(2) kzo kk+p+1

= —Zp+1 A
kZ:O "Erprl

which shows that (E, (z) — 1) /2P! has a removable singularity at z = 0.
Now from the formula for E, (2),

2

z 2P
E,(z)—1=(1-2z)exp z+?+...+; -1

and so

1
E, (1 —1_——1_——2 ap——
p() P kk:+p+1

Since each ay > 0, we see that for |z| =1,

1-— 1
S < e =
Now by the maximum modulus theorem,
11— E, (2)] < |2
for all |z| < 1. This proves the lemma.

Theorem 9.26 Let z, be a sequence of nonzero complex numbers which have no limit point in C and suppose
there exist, p,, nonnegative integers such that

n=1
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for allr € R. Then

P(z) = i[l E,, (i)

is analytic on C and has a zero at each point, z, and at no others. If w occurs m times in {z,}, then P has
a zero of order m at w.

Proof: The series

o0

>

n=1

14+pn

Zn

converges uniformly on any compact set because if |z| < r, then

< . >1+Pn ( r >1+Pn
- S -
1+pn

and so we may apply the Weierstrass M test to obtain the uniform convergence of EZOZI (Zi) on |z| <.

Also,
pn+1
‘ pn<z> 1‘<<|Z|>

by Lemma 9.25 whenever n is large enough because the hypothesis that {z,} has no limit point requires
that lim,,,« |2n| = 00. Therefore, by Theorem 9.23,

converges uniformly on compact subsets of C. Letting P, (z) denote the nth partial product for P (z), we

have for |z| <r
1 P,
P, (z) = — / (w) dw
gl

21 w—z
”

where 7, (t) = re®, t € [0,27]. By the uniform convergence of P, to P on compact sets, it follows the same
formula holds for P in place of P, showing that P is analytic in B (0,r) . Since r is arbitrary, we see that P
is analytic on all of C.

Now we ask where the zeros of P are. By Theorem 9.23, the zeros occur at exactly those points, z, where

E,, (;) —1=-1.

In that theorem E,,, (i) — 1 plays the role of uy (z). Thus we need E,, (Zi) = 0 for some n. However,

Zn
this occurs exactly when = =1 so the zeros of P are the points {z,} .
If w occurs m times in the sequence, {z,}, we let ny,- - -, n,, be those indices at which w occurs. Then
we choose a permutation of (1,2, --) which starts with the list (n1,- - -, nm) . By Theorem 9.23,

P(z) = If[lEpnk (i) = (1 - %)mg(Z)

where ¢ is an analytic function which is not equal to zero at w. It follows from this that P has a zero of
order m at w. This proves the theorem.

The next theorem is the Weierstrass factorization theorem which can be used to factor a given function,
f, rather than only deciding convergence questions.
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Theorem 9.27 Let f be analytic on C, f(0) # 0, and let the zeros of f be {z1}, listed according to order.
(Thus if z is a zero of order m, it will be listed m times in the list, {z;}.) Then there exists an entire
function, g and a sequence of nonnegative integers, p, such that

Fz) =es® jj[l E,. <i> . (9.30)

Note that e9(*) #£ 0 for any z and this is the interesting thing about this function.

Proof: We know {z,} cannot have a limit point because if there were a limit point of this sequence, it
would follow from Theorem 8.1 that f (z) = 0 for all z, contradicting the hypothesis that f (0) # 0. Hence
lim,, 0 |2n| = 00 and so

by the root test. Therefore, by Theorem 9.26 we may write
o z
P(z)= E —
@ =115 (Z)

a function analytic on C by picking p,, = n — 1 or perhaps some other choice. (We know p, = n — 1 works
but we do not know this is the only choice that might work.) Then f/P has only removable singularities
in C and no zeros thanks to Theorem 9.26. Thus, letting h (2) = f (2) /P (z), we know from Corollary 7.12
that h'/h has a primitive, g. Then
N
(he_g) =0

and so
h(z) = e tibed(2)

for some constants, a, b. Therefore, letting g (2) = § () +a+ib, we see that h (z) = e9(*) and thus 9.30 holds.
This proves the theorem.

Corollary 9.28 Let f be analytic on C, f has a zero of order m at 0, and let the other zeros of f be {2z},
listed according to order. (Thus if z is a zero of order [, it will be listed | times in the list, {z1}.) Then there
exists an entire function, g and a sequence of nonnegative integers, p, such that

f(z) =zmed?) ﬁ E,, (f) .
n=1 n

Proof: Since f has a zero of order m at 0, it follows from Theorem 8.1 that {z;} cannot have a limit
point in C and so we may apply Theorem 9.27 to the function, f (z) /2™ which has a removable singularity
at 0. This proves the corollary.

9.9 Exercises

1. Show [, (1 — #) = % Hint: Take the In of the partial product and then exploit the telescoping
series.
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2. Suppose P (z) = [[,—; fr (2) # 0 for all z € U, an open set, that convergence is uniform on compact
subsets of U, and f}, is analytic on U. Show

o0
P =) fi ][] fal)-
k=1 n#k
Hint: Use a branch of the logarithm, defined near P (z) and logarithmic differentiation.

3. Show that s‘ﬁ% has a removable singularity at z = 0 and so there exists an analytic function, ¢, defined
on C such that 272 = ¢ (2) and ¢ (0) = 1. Using the Weierstrass product formula, show that

q(z) = 9 H (1—%)6%

kEZ k#0
- T 22
- 0I5
k=1
for some analytic function, g (z) and that we may take g (0) = 0.
4. 1 Use Problem 2 along with Problem 3 to show that
cosmz  sinmz o 22
_ — ey () [ (1 _ ﬁ> _

z w22
k=1

=1 22
Now divide this by ¢ (z) on both sides to show
1 — 1
mootms =2 =g (94220 5y

Use the Mittag Leffler expansion for the cot 7z to conclude from this that ¢’ (2) = 0 and hence, g (z) = 0
so that

sinmz ﬁ 1 i
Tz K2/
k=1

5. 1 In the formula for the product expansion of S"ﬁ%, let z = % to obtain a formula for 3 called Wallis’s
formula. Is this formula you have come up with a good way to calculate 7?

6. This and the next collection of problems are dealing with the gamma function. Show that

003)% 1|52

= TL2

and therefore,

> z
E ‘(I—F—)GT—I‘ < 00
n
n=1
with the convergence uniform on compact sets.
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10.

11.

12.

13.

14.

t Show [],°, (1 + %) e converges to an analytic function on C which has zeros only at the negative
integers and that therefore,

00 N
TH(].‘Fﬁ) en

is a meromorphic function (Analytic except for poles) having simple poles at the negative integers.

TShow there exists v such that if

then T'(1) = 1. Hint: [[2°, (1+n)e /" =c=¢".
TNow show that
1
7=l [Zz —1“"]
k=1
Hint: Show y=3> " [In(1+1)-1] =" [In(1+n)—Inn—1].

TJustify the following argument leading to Gauss’s formula

r(z) = lim (ﬁ (kf_z>e> e—:z

k=1
n! "1 e 7*
— 1 Z(Zk:l E)
ni‘ﬂo<<1+z><2+z>---<n+z>e 2
— lim n! oA (Sisi B) 2T, £ o]

n—soo (1+2)(2+2)---(n+2)
nln®
B ey I Sy o

1 Verify from the Gauss formula above that I' (z + 1) = ' (2) z and that for n a nonnegative integer,
'(n+1)=nl

1 The usual definition of the gamma function for positive x is

I (z) = / et dt.
0

Show (1 — )" < e~t for ¢ € [0,n]. Then show

/0” (1 - %)ntzldt EICE: IT)L!'T?‘ (w+n)

Use the first part and the dominated convergence theorem or heuristics if you have not studied this
theorem to conclude that

nin®
Fl(x):nlggow(w-i—l)---(w-i—n) =TI

Hint: To show (1 — %)n < e tfort €[0,n], verify this is equivalent to showing (1 —u)" < e " for
u € [0,1].

1Show I' (z) = fooo e~tt*~1dt. whenever Rez > 0. Hint: You have already shown that this is true for
positive real numbers. Verify this formula for Re z yields an analytic function.

1Show I (L) = /7. Then find T (3)
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10 The Riemann mapping theorem

We know from the open mapping theorem that analytic functions map regions to other regions or else to
single points. In this chapter we prove the remarkable Riemann mapping theorem which states that for every
simply connected region, U there exists an analytic function, f such that f (U) = B (0, 1) and in addition to
this, f is one to one. The proof involves several ideas which have been developed up to now. We also need
the following important theorem, a case of Montel’s theorem.

Theorem 10.1 Let U be an open set in C and let F denote a set of analytic functions mapping U to
B (0,M). Then there exists a sequence of functions from F, {fn}r—, and an analytic function, f such that

fr(Lk) converges uniformly to f*®) on every compact subset of U.

Proof: First we note there exists a sequence of compact sets, K,, such that K, C int K41 C U for
all n where here int K denotes the interior of the set K, the union of all open sets contained in K and
UX K, = U. We leave it as an exercise to verify that B (0,n) N {z € U : dist (z, Uo) < %} works for K.
Then there exist positive numbers, d,, such that if z € K, then B (z,d,) C int K,,11. Now denote by F, the
set of restrictions of functions of F to K,. Then let z € K,, and let v (t) = z + d,e',t € [0,27]. It follows

that for z; € B(z,0,), and f € F,
1 1 1
— - d
27ri[7f(w)<w—z w—21> w‘

Af(w)de\

(w—2)(w—21)

I (z) = f(z)l =

1
< N
- 27

Letting |21 — 2| < %", we can estimate this and write

M |z — z1]
_ < =
ST < g
|z — 21]
< .
< 2M 5

It follows that F,, is equicontinuous and uniformly bounded so by the Arzela Ascoli theorem there exists a
sequence, {fn}re; C F which converges uniformly on K. Let {fi},—, converge uniformly on K;. Then
use the Arzela Ascoli theorem applied to this sequence to get a subsequence, denoted by { ka}zozl which
also converges uniformly on K,. Continue in this way to obtain {f,x};., which converges uniformly on
Ki,- -+, K,. Now the sequence {fn,},.,, is a subsequence of {fr} 32, and so it converges uniformly on
K,, for all m. Denoting f,, by f, for short, this is the sequence of functions promised by the theorem. It is
clear {f,},2, converges uniformly on every compact subset of U because every such set is contained in K,
for all m large enough. Let f (z) be the point to which f, (2) converges. Then f is a continuous function
defined on U. We need to verify f is analytic. But, letting T" C U,

(2)dz = lim fn(2)dz =0.
aT n—oo Jar

Therefore, by Morera’s theorem we see that f is analytic. As for the uniform convergence of the derivatives
of f, this follows from the Cauchy integral formula. For 2 € K,,, and 7 (t) = z + d,e®,t € [0,27],

[zt
v (w — 2)2

1

o

FE =A@ < 5

IN

1
| fe — fll %27“%
1
= |fx — fll —,
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where here ||fr — f|| = sup{|fr () — f (2)| : 2 € K,}. Thus we get uniform convergence of the derivatives.
The consideration of the other derivatives is similar.
Since the family, F satisfies the conclusion of Theorem 10.1 it is known as a normal family of functions.
The following result is about a certain class of so called fractional linear transformations,

Lemma 10.2 For a € B(0,1), let

Then ¢, maps B (0,1) one to one and onto B (0,1), ¢,* = ¢_,,, and

4 (@) = —

1o

Proof: First we show ¢, (2) € B(0,1) whenever z € B (0,1). If this is not so, there exists z € B (0,1)
such that

|z —a> > |1 —az”.
However, this requires
|2* + laf” > 1+ [af |2
and so
2> (1= lof*) > 1~ |af?

contradicting |z] < 1.

It remains to verify ¢, is one to one and onto with the given formula for ¢_'. But it is easy to verify
¢q (¢_o (w)) = w. Therefore, ¢, is onto and one to one. To verify the formula for ¢/, just differentiate the
function. Thus,

o (2) = (z—a) (1) (1 —@z) " (@) + (1 —@z) "

and the formula for the derivative follows.
The next lemma, known as Schwarz’s lemma is interesting for its own sake but will be an important part
of the proof of the Riemann mapping theorem.

Lemma 10.3 Suppose F': B (0,1) — B(0,1), F is analytic, and F (0) = 0. Then for all z € B(0,1),

| (2)| < 2], (10.1)
and

|F'(0)] < 1. (10.2)
If equality holds in 10.2 then there exists A € C with |A\| =1 and

F(z) =)z (10.3)

Proof: We know F'(z) = zG (z) where G is analytic. Then letting |z| < r < 1, the maximum modulus
theorem implies

|G (2)] < sup
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Therefore, letting r — 1 we get
G ()] <1 (10.4)

It follows that 10.1 holds. Since F' (0) = G (0), 10.4 implies 10.2. If equality holds in 10.2, then from the
maximum modulus theorem, we see that G achieves its maximum at an interior point and is consequently
equal to a constant, A, |A| = 1. Thus F' (z) = zA which shows 10.3. This proves the lemma.

Definition 10.4 We say a region, U has the square root property if whenever f, % : U — C are both analytic,
it follows there exists ¢ : U — C such that ¢ is analytic and f (z) = ¢* (2).

The next theorem will turn out to be equivalent to the Riemann mapping theorem.

Theorem 10.5 Let U # C for U a region and suppose U has the square root property. Then there exists
h:U — B(0,1) such that h is one to one, onto, and analytic.

Proof: We define F to be the set of functions, f such that f: U — B (0,1) is one to one and analytic.
We will show F is nonempty. Then we will show there is a function in F, h, such that for some fixed z9 € U,
[W (z0)] > |1/J' (z0)| for all ¢ € F. When we have done this, we show h is actually onto. This will prove the
theorem.

Now we begin by showing F is nonempty. Since U # C it follows there exists £ ¢ U. Then letting
f(z) =z —¢, it follows f and % are both analytic on U. Since U has the square root property, there exists
¢ : U — C such that ¢* (z) = f (2) for all z € U. By the open mapping theorem, there exists a such that for
some r < |a|,

B(a,r) Co(U).

It follows that if z € U, then ¢ (z) ¢ B (—a,r) because if this were to occur for some z; € U, then —¢ (z1) €
B (a,r) and so there exists zo € B (a,r) such that

—¢(21) = ¢ (22) -

Squaring both sides, it follows that z; — & = zo — £ and so z; = z,. Therefore, we would have ¢ (22) = 0 and
so 0 € B (a,r) contrary to the construction in which r < |a|. Now let
r

¢(2) +a

1 is well defined because we just verified the denominator is nonzero. It also follows that |1 (2)| < 1 because
if not,

¥(z) =

r>|p(z) +al

for some z € U, contradicting what was just shown about ¢ (U) N B (—a,r) = (). Therefore, we have shown
that F # 0.
For zy € U fixed, let

nEsup{|z/1' (zo)| tp € F}.

Thus > 0 because ' (zp) # 0 for ¢ defined above. By Theorem 10.1, there exists a sequence, {t,,}, of
functions in F and an analytic function, h, such that

|4 (20)] = 1 (20) (10.5)
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and
G, = hytby, = 1, (10.6)

uniformly on all compact sets of U. It follows

! — ! —

W (z0)] = lim |4, (z0)| =7

and for all z € U,

h(2)] = lim [, (2)] < 1.

n—o0

We need to verify that h is one to one. Suppose h (z1) = a and z2 € U. We must verify that h (z22) # a. We
choose r > 0 such that h — a has no zeros on 0B (z2,7), B (22,7) C U, and

B (z2,7) N B (z1,7) = 0.

We can do this because, the zeros of h — « are isolated since h is not constant due to the fact that b’ (z9) =

n # 0. Let ¢, (21) = ay. Thus 9, —a, has a zero at z; and since 1,, is one to one, it has no zeros in B (z2,7).
Thus by Theorem 8.6, the theorem on counting zeros, for v (t) = 23 + re't, t € [0, 27],

which shows that h — « has no zeros in B (22, 7) . This shows that h is one to one since 2z, # z; was arbitrary.
Therefore, h € F. This completes the second step of the proof. It only remains to verify that h is onto.

To show h is onto, we use the fractional linear transformation of Lemma 10.2. Suppose h is not onto.
Then there exists « € B (0,1)\ h (U). Then 0 ¢ ¢, o h because a ¢ h (U) . Therefore, since U has the square
root property, there exists g, an analytic function defined on U such that

9° =g oh.
The function g is one to one because if g (z1) = g (22) , then we could square both sides and conclude that
¢a ° h(zl) = ¢a ° h(Zg)

and since ¢, and h are one to one, this shows z; = z». It follows that g € F also. Now let ¢ = ¢, )0g. Thus

¥ (29) = 0. If we define s (w) = w?, then using Lemma 10.2, in particular, the description of (b;l =¢_,, we
obtain

9= P—g(z0) OV

and therefore,

h(z) = ¢ 4(9°(2)
= ¢7a 0so stg(zo) o 1*/]) (Z)
= (Foy)(2)

Now F (0) = 65" (6,2) (0)) = 62" (9° (20)) = h (z0).
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There are two cases to consider. First suppose that h (z9) # 0. Then define
G = ¢h(20) oF.

Then G : B(0,1) — B(0,1) and G (0) = 0. Therefore by the Schwarz lemma, Lemma 10.3,

G (0)] = ‘(ﬁ) F' (0)

which implies |F' (0)] < 1. In the case where h(zp) = 0, we note that because of the function, s, in the
definition of F, F is not one to one and so we cannot have F'(z) = Az for some |A| = 1. Therefore, by the
Schwarz lemma applied to F, we see |F’ (0)| < 1. Therefore,

no= | (20)| = |F' (¢ (20))] [¢' (20)]
= |F'(0)] [¢' (20)] < |[¢' (20)]

contradicting the definition of 7. Therefore, h must be onto and this proves the theorem.
We now give a simple lemma which will yield the usual form of the Riemann mapping theorem.

<1

Lemma 10.6 Let U be a simply connected region with U # C. Then U has the square root property.

Proof: Let f and % both be analytic on U. Then fTI is analytic on U so by Corollary 7.12, there exists
~ ~ , —\/ — .
F, analytic on U such that F' = fT on U. Then (fe_F) = 0 and so f(z) = Cef = eatel Now let
F = F +a+ib. Then F is still a primitive of f'/f and we have f (z) = ef'*). Now let ¢ (z) = e2¥(*). Then

¢ is the desired square root and so U has the square root property.

Corollary 10.7 (Riemann mapping theorem) Let U be a simply connected region with U # C and let a € U.
Then there exists a function, f : U — B (0, 1) such that f is one to one, analytic, and onto with f (a) = 0.
Furthermore, f~1 is also analytic.

Proof: From Theorem 10.5 and Lemma 10.6 there exists a function, g : U — B (0,1) which is one to
one, onto, and analytic. We need to show that there exists a function, f, which does what ¢ does but in
addition, f (a) = 0. We can do so by letting f = ¢,(,) o g if g(a) # 0. The assertion that f~!is analytic
follows from the open mapping theorem.

10.1 Exercises
1. Prove that in Theorem 10.1 it suffices to assume F is uniformly bounded on each compact subset of U.

2. Verify the conclusion of Theorem 10.1 involving the higher order derivatives.

3. What if U = C? Does there exist an analytic function, f mapping U one to one and onto B (0, 1)?
Explain why or why not. Was U # C used in the proof of the Riemann mapping theorem?

4. Verify that |¢, (z)| =1 if |z| = 1. Apply the maximum modulus theorem to conclude that |¢, (z)] <1
for all |z| < 1.

5. Suppose that |f(z)] < 1 for |z2] =1 and f(a) = 0 for |a| < 1. Show that |f (z)| < |¢, (2)| for all
z € B(0,1). Hint: Consider w which has a removable singularity at «. Show the modulus of
this function is bounded by 1 on |z| = 1. Then apply the maximum modulus theorem.
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11 Approximation of analytic functions

Consider the function, 1 = f (z) for z defined on U = B (0,1) \ {0} . Clearly f is analytic on U. Suppose we

I3
12714
exist a suitable polynomial p(z), such that ‘2%” fv f(z)—p(2) dz‘ < 75 where here 7 is a circle of radius

could approximate f uniformly by polynomials on ann (0 ), a compact subset of U. Then, there would

2. However, this is impossible because 7 fv f(2)dz = 1 while ;- fvp(z) dz = 0. This shows we cannot

expect to be able to uniformly approximate analytic functions on compact sets using polynomials. It turns
out we will be able to approximate by rational functions. The following lemma is the one of the key results
which will allow us to verify a theorem on approximation. We will use the notation

I1f = 9llk oo =sup{lf(2) —g(2)| : 2 € K}
which describes the manner in which the approximation is measured.

Lemma 11.1 Let R be a rational function which has a pole only at a € V, a component of C \ K where K
is a compact set. Suppose b € V. Then for € > 0 given, there exists a rational function, @), having a pole
only at b such that

1R~ Qllg o < (1L.1)
If it happens that V is unbounded, then there exists a polynomial, P such that
||R—P||K7oo <eE. (11.2)

Proof: We say b € V satisfies P if for all € > 0 there exists a rational function, @)y, having a pole only
at b such that

1R — Q| o0 -
Now we define a set,
S ={beV :0bsatisties P }.

We observe that S # () because a € S.
We now show that S is open. Suppose b; € S. Then there exists a 6 > 0 such that

by —b 1
- 11.3
z—b ‘ < 2 ( )
for all z € K whenever b € B (b1,9) . If not, there would exist a sequence b,, — b for which % > %

Then taking the limit and using the fact that dist (b, K) — dist (b, K) > 0, (why?) we obtain a contradiction.
Since b; satisfies P, there exists a rational function @y, with the desired properties. We will show we can
approximate )y, with @ thus yielding an approximation to R by the use of the triangle inequality,

1R = Qb [k 0o T 1@ — Qbllg oo = 1R — Qbllx oo -

Since @)y, has poles only at by, it follows it is a sum of functions of the form (Zfb"l)n . Therefore, it suffices to

assume @Qp, is of the special form

@, (2) = m
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However,

1 1
AR (T

b
1 & by —b\"*
m,;Ak<z—b> . (11.4)

We leave it as an exercise to find A and to verify using the Weierstrass M test that this series converges
absolutely and uniformly on K because of the estimate 11.3 which holds for all z € K. Therefore, a suitable

partial sum can be made as close as desired to ﬁ This shows that b satisfies P whenever b is close

enough to by verifying that S is open.
Next we show that S is closed in V. Let b,, € S and suppose b,, — b € V. Then for all n large enough,

1
5 dist (b, ) > b, = b]

and so we obtain the following for all n large enough.

b—0b,

<1
z — by, 2’

for all z € K. Now a repeat of the above argument in 11.4 with b, playing the role of b; shows that b € S.
Since S is both open and closed in V' it follows that, since S # @, we must have S = V. Otherwise V' would
fail to be connected.

Now let b € V. Then a repeat of the argument that was just given to verify that S is closed shows that
b satisfies P and proves 11.1.

It remains to consider the case where V' is unbounded. Since S =V, pick b € V = S large enough that

‘%‘ < % (11.5)

for all z € K. As before, it suffices to assume that @ is of the form

1

Qb(z)zm

Then we leave it as an exercise to verify that, thanks to 11.5,

1 ()& Z\k
(z—b" b kZ:OA’“ (Z) (11.6)

with the convergence uniform on K. Therefore, we may approximate R uniformly by a polynomial consisting
of a partial sum of the above infinite sum.

The next theorem is interesting for its own sake. It gives the existence, under certain conditions, of a
contour for which the Cauchy integral formula holds.

Theorem 11.2 Let K C U where K is compact and U is open. Then there exist linear mappings, v, :
[0,1] = U\ K such that for all z € K,

f(z)= QLM > L“’)Zdw. (11.7)

k=1""7k w=
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Proof: Tile R? = C with little squares having diameters less than § where 0 < § < dist (K,U°) (see
Problem 3). Now let {R; };n:l denote those squares that have nonempty intersection with K. For example,
see the following picture.

/’\
4
/
/BN "
//
17
L~

K

Let {Uf}izl denote the four vertices of R; where vjl- is the lower left, v]2 the lower right, UJB. the upper

right and v;-l the upper left. Let 7;? : [0,1] = U be defined as

Vi) = of +t(oft —0f) if k<4,

'y;l-(t) = v§+t(v}—v§) if k=4

Define
4
g (w)dw = /gwdw.
/Mj W=y [ gw

Thus we integrate over the boundary of the square in the counter clockwise direction. Let {%’}5: , denote
the curves, v¥ which have the property that +% ([0, 1)) N K = 0.

Claim: ) 7, fBRJ- g(w)dw=3"_, fvj g (w) dw.

Proof of the claim: If v% ([0,1]) N K # 0, then for some r # j,

7 ([0,1]) = 5 ([0, 1])

but 7, = —%(The directions are opposite.). Hence, in the sum on the left, the only possibly nonzero

contributions come from those curves, % for which 4% ([0,1]) N K = §) and this proves the claim.
Now let z € K and suppose z is in the interior of R, one of these squares which intersect K. Then by

the Cauchy integral formula,

fe=gm [ LW

o 2mi R, W— 2

Ozi_/ f(w)dw.
2mi Jop, w — 2

Y

and if j # s,
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Therefore,
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This proves 11.7 in the case where z is in the interior of some R,. The general case follows from using the
continuity of the functions, f (z) and

15~ [ f(w)
j=1 Vi
This proves the theorem.

11.1 Runge’s theorem

With the above preparation we are ready to prove the very remarkable Runge theorem which says that we
can approximate analytic functions on arbitrary compact sets with rational functions which have a certain
nice form. Actually, the theorem we will present first is a variant of Runge’s theorem because it focuses on
a single compact set.

Theorem 11.3 Let K be a compact subset of an open set, U and let {b;} be a set which consists of one
point from the closure of each bounded component of C\ K. Let f be analytic on U. Then for each ¢ > 0,
there exists a rational function, ) whose poles are all contained in the set, {b;} such that

IQ — fllk oo <e- (11.8)

Proof: By Theorem 11.2 there are curves, v, described there such that for all z € K,

z) = QLM I;/M %dw. (11.9)

Defining g (w, z) = % for (w,z) € Uk_,v; ([0,1]) x K, we see that g is uniformly continuous and so there
exists a 0 > 0 such that if ||P|| < d, then for all z € K,

1 zp:zn:f Vi (75)) (v (8) = v (Ei=1)) <

€
=1 j—1 Vi (T5) — 2 2’

The complicated expression is obtained by replacing each integral in 11.9 with a Riemann sum. Simplifying
the appearance of this, it follows there exists a rational function of the form

Zwk_z

k=1

where the wy, are elements of components of C \ K and Aj, are complex numbers such that

I3

R- =
IR = flloe < 5
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Consider the rational function, Ry (z) = ﬁ where wy, € Vj, one of the components of C\ K, the given
point of VJ being b; or else V; is unbounded. By Lemma 11.1, there exists a function, ()x which is either a

rational function having its only pole at b; or a polynomial, depending on whether V; is bounded, such that

13
1Bk = Qrllk 00 < 577
Letting Q (2) = Yol Qk (2),
&
1R = Qllg,o0 < 5

It follows

1F = Qllkco SIIf = Bl oo + 1B = Qllg oo <

This proves the theorem.

Runge’s theorem concerns the case where the given points are contained in C\ U for U an open set
rather than a compact set. Note that here there could be uncountably many components of C\ U because
the components are no longer open sets. An easy example of this phenomenon in one dimension is where
U = 1[0,1]\ P for P the Cantor set. Then you can show that R\ U has uncountably many components.
Nevertheless, Runge’s theorem will follow from Theorem 11.3 with the aid of the following interesting lemma.

Lemma 11.4 Let U be an open set in C. Then there ezists a sequence of compact sets, {K,} such that
U=Uil, K, - K, Cint K, 41 - -, (11.10)
and for any K C U,
K CK,, (11.11)

for all n sufficiently large, and every component of C \ K,, contains a component of@ \U.

Proof: Let

Vo={z:]z2| >n}u UBG,%).

2¢U

Thus {z : |z| > n} contains the point, co. Now let
K,=C\V,=C\V, CU.

We leave it as an exercise to verify that 11.10 and 11.11 hold. It remains to show that every component of
C\ K, contains a component of C\ U. Let D be a component of C\ K,, = V},.

If oo ¢ D, then D contains no point of {z : |z| > n} because this set is connected and D is a component.
(If it did contain a point of this set, it would have to contain the whole set..) Therefore, D C |J B (z,1)

2¢U

and so D contains some point of B (z, %) for some z ¢ U. Therefore, since this ball is connected, it follows
D must contain the whole ball and consequently D contains some point of U®. (The point z at the center
of the ball will do.) Since D contains z ¢ U, it must contain the component, H,, determined by this point.
The reason for this is that

H.CC\UCC\K,

and H. is connected. Therefore, H, can only have points in one component of C \ K,,. Since it has a point in
D, it must therefore, be totally contained in D. This verifies the desired condition in the case where co ¢ D.

Now suppose that oo € D. We know that oo ¢ U because U is given to be a set in C. Letting H,, denote
the component of C\ U determined by oo, it follows from similar reasoning to the above that Hy, C D and
this proves the lemma.
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Theorem 11.5 (Runge) Let U be an open set, and let A be a set which has one point in each bounded

component of C \ U and let f be analytic on U. Then there exists a sequence of rational functions, {R,}
having poles only in A such that R, converges uniformly to f on compact subsets of U.

Proof: Let K, be the compact sets of Lemma, 11.4 where each component of @\K » contains a component
of C\ U. It follows each bounded component of C\ K,, contains a point of A. Therefore, by Theorem 11.3
there exists R, a rational function with poles only in A such that

1
1R = flli 0 < 5

It follows, since a given compact set, K is a subset of K, for all n large enough, that R, — f uniformly on
K. This proves the theorem.

Corollary 11.6 Let U be simply connected and f is analytic on U. Then there exists a sequence of polyno-
mials, {pn} such that p, — f uniformly on compact sets of U.

Proof: By definition of what is meant by simply connected, C \ U is connected and so there are no
bounded components of C\ U. Therefore, A = @) and it follows that R, in the above theorem must be a
polynomial since it is rational and has no poles.

11.2 Exercises
1. Let K be any nonempty set in C and define
dist (2, K) = inf {|z —w| : w € K}.
Show that z — dist (2, K) is a continuous function.

2. Verify the series in 11.4 converges absolutely on K and find Ay. Also do the same for 11.6. Hint: You
know that for |z| < 1,1 = 377 z*. Differentiate both sides as many times as needed to obtain a
formula for Ajy. Then apply the Weierstrass M test and the ratio test.

3. In Theorem 11.2 we had a compact set, K contained in an open set U and we used the fact that
dist (K,UY) =inf {|z —w| :w € U“,z € K} > 0.
Prove this.

4. For U = [0,1] \ P for P the Cantor set, show that R\ U has uncountably many components. Hint:
Show that the component of R\ U determined by p € P, is just the single point, p and then show P is
uncountable.

5. In the proof of Lemma 11.4, verify that 11.10 and 11.11 are satisfied for the given choice of K.
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