
CHAPTER 1

Number Fields

1. Example : Quadratic number fields

Before we consider number fields in general, let us begin with the fairly concrete
case of quadratic number fields. A quadratic number field is an extension K of Q
of degree 2. The fundamental examples (in fact, as we shall see in a moment the
only example) are fields of the form

Q(
√

d) = {a + b
√

d | a, b ∈ Q}
where d ∈ Q is not the square of another rational number.

There is an issue that arises as soon as we write down these fields, and it is
important that we deal with it immediately: what exactly do we mean by

√
d?

There are several possible answers to this question. The most obvious is that by√
d we mean a specific choice of a complex square root of d. Q(

√
d) is then defined

as a subfield of the complex numbers. The difficulty with this is that the notation
“
√

d” is ambiguous; d has two complex square roots, and there is no algebraic way
to tell them apart.

Algebraists have a standard way to avoid this sort of ambiguity; we can simply
define

Q(
√

d) = Q[x]/(x2 − d).

There is no ambiguity with this notation;
√

d really means x, and x behaves as a
formal algebraic object with the property that x2 = d.

This second definition is somehow the algebraically correct one, as there is no
ambiguity and it allows Q(

√
d) to exist completely independently of the complex

numbers. However, it is far easier to think about Q(
√

d) as a subfield of the complex
numbers. The ability to think of Q(

√
d) as a subfield of the complex numbers also

becomes important when one wishes to compare fields Q(
√

d1) and Q(
√

d2) for
two different numbers d1 and d2; the abstract algebraic fields Q[x]/(x2 − d1) and
Q[y]/(y2−d2) have no natural relation to each other, while these same fields viewed
as subfields of C can be compared more easily.

The best approach, then, seems to be to pretend to follow the formal algebraic
option, but to actually view everything as subfields of the complex numbers. We
can do this through the notion of a complex embedding; this is simply an injection

σ : Q[x]/(x2 − d) ↪→ C.

As we have already observed, there are exactly two such maps, one for each complex
square root of d.

Before we continue we really ought to decide which complex number we mean
by
√

d. There is unfortunately no consistent way to do this, in the sense that we
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can not arrange to have √
d1

√
d2 =

√
d1d2

for all d1, d2 ∈ Q. In order to be concrete, let us choose
√

d to be the positive
square root of d for all d > 0 and

√
d to be the positive square root of −d times i

for all d < 0. (There is no real reason to prefer these choices, but since it doesn’t
really matter anyway we might as well fix ideas.)

With this choice, our two complex embeddings are simply

σ1 : Q[x]/(x2 − d) ↪→ C

σ2 : Q[x]/(x2 − d) ↪→ C
defined by

σ1(a + bx) = a + b
√

d;

σ2(a + bx) = a− b
√

d.

Given any a + bx ∈ Q[x]/(x2− d), we define its conjugates to be the images σ1(a +
bx) = a + b

√
d and σ2(a + bx) = a− b

√
d.

Note that these maps have the same image. This gives us yet another way to
view the ambiguity: we can take Q(

√
d) to be the subfield {a + b

√
d | a, b ∈ Q} of

C, and we remember that Q(
√

d) has an automorphism

a + b
√

d 7→ a− b
√

d.

This is the approach we will take; that is, we will regard Q(
√

d) as a subfield of
C via our choice of

√
d, but we always remember that

√
d is ambiguous, and thus

that we have an automorphism of this field exchanging
√

d and −
√

d. From this
point of view, the conjugates of an element a + b

√
d are a + b

√
d and a− b

√
d.

Let us now analyze these fields K = Q(
√

d). Note first that every α ∈ K has
degree either 1 or 2 over Q, and it has degree 1 if and only if it is actually in Q. In
particular, if α /∈ Q then we must have K = Q(α).

Let us now compute the norms and traces from K to Q. We take 1,
√

d as our
basis for K over Q. Multiplication by α = a + b

√
d takes 1 to a + b

√
d and

√
d to

bd + a
√

d, so the matrix for the linear transformation mα is[
a bd
b a

]
.

The characteristic polynomial of this matrix is

x2 − 2ax + (a2 − bd2).

Thus
NK/Q(α) = a2 − bd2

and
TrK/Q(α) = 2a.

Note also that we have

NK/Q(α) = (a + b
√

d)(a− b
√

d)

and
TrK/Q(α) = (a + b

√
d) + (a− b

√
d).

That is, the norm of α is the product of its conjugates and the trace of α is the
sum of its conjugates. This follows immediately from the fact that the conjugates
of α are the two roots of the characteristic polynomial of α.
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It turns out that every quadratic field is of the form Q(
√

d) for some d ∈ Q.
In fact, in the case of quadratic fields it is actually possible to give a complete
classification, as described in the following theorem.

Theorem 1.1. Let K be a number field of degree 2. Then K is isomorphic to
Q(
√

d) for a unique squarefree integer d 6= 1.

Proof. First we will show that every extension of Q of degree 2 is isomorphic
to one of the desired form. So let K/Q have degree 2 and choose a primitive element
α for K, with minimal polynomial

f(x) = x2 + ax + b,

a, b ∈ Q. By the quadratic formula we have

α =
−a±√a2 − 4b

2
;

put differently, (
2α + a

)2 = a2 − 4b.

Thus K contains an element β = 2α + a of square a2 − 4b ∈ Q. Note also that
a2− 4b is not a square in Q, for otherwise f(x) would not be irreducible. It follows
that β has degree 2 and thus is a primitive element for K. a2 − 4b may not be a
squarefree integer, but one sees easily from unique factorization in Z that we can
find some rational number c such that c2(a2 − 4b) is a squarefree integer. cβ still
generates K over Q, and it is now in the form we considered above. This shows
that every extension of Q of degree 2 can be generated by the square root of a
squarefree integer.

We now show that no two fields Q(
√

d) with d a squarefree integer (other than
1) are isomorphic. So let d1 and d2 be distinct squarefree integers and suppose that
there is an isomorphism

ϕ : Q(
√

d1)
∼=→ Q(

√
d2).

We will show that d1 = d2. Consider the element α = ϕ(
√

d1) ∈ Q(
√

d2). α has
minimal polynomial x2 − d1, so we read off that

NK2/Q(α) = −d1

and
TrK2/Q(α) = 0.

Writing α = a + b
√

d2, our formulas for the norm and trace imply that a = 0 and
b2d2 = d1. One now shows easily that the fact that d1 and d2 are squarefree integers
implies that b = 1 and d1 = d2, as claimed.

This sort of analysis does not work for any degree other than 2; even the cubic
and quartic “formulas” are too complicated to use, and beyond that there aren’t
any formulas at all.

2. Complex embeddings

A number field is a finite extension of the rational numbers Q. (This is not
quite the same as the definitions given in [9] and [13], but it seems to be the most
common definition.) We define the degree of a number field K to be the positive
integer [K : Q]. The fundamental examples are fields of the form

Q[x]/(f(x))
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where f(x) ∈ Q[x] is an irreducible polynomial. In fact, Proposition A.2.3 shows
that every number field K is isomorphic to one of this form: simply choose a
primitive element α ∈ K with minimal polynomial f(x) ∈ Q[x]. Then K = Q(α)
and Lemma A.2.1 shows that K is isomorphic to Q[x]/(f(x)).

Let K and K ′ be number fields and suppose that there is a homomorphism

ϕ : K → K ′.

Then ϕ is automatically Q-linear: this is because it must send 1 to 1; it follows
from the fact that it is an additive homomorphism that it must be the identity on
all of Z, and it follows from the fact that it is a multiplicative homomorphism that
it must be the identity on all of Q.

We now investigate complex embeddings of arbitrary number fields. That is,
for a number field K we wish to determine all of the possible injections K ↪→ C.
Recall that in the quadratic case we did this by exhibiting complex square roots.
We will use the same method in the general case, although of course the polynomials
of interest will now have larger degree.

Fix a number field K of degree n and choose a primitive element α ∈ K with
minimal polynomial f(x) ∈ Q[x]. Since C is algebraically closed, f(x) splits into n
linear factors over C; since f(x) is irreducible over Q, these linear factors must be
distinct (see Problem 1.12), and thus f(x) has n distinct roots α1, . . . , αn ∈ C.

For each root αi we define a (necessarily Q-linear) map

σi : K
∼=−→ Q(αi) ⊆ C

sending α to αi; that is,

σi

(
a0 + a1α + a2α

2 + · · ·+ an−1α
n−1

)
= a0 + a1αi + a2α

2
i + · · ·+ an−1α

n−1
i

where the ai are all in Q. This map is well-defined since αi satisfies f(x), it is
injective since all non-zero maps of fields are injective, and it is surjective since αi

generates Q(αi) over Q.
We have now embedded K as a subfield of C in n distinct ways. (Note that we

mean that the maps are distinct; the images of the embeddings could still be the
same.) We claim that the σi are the only embeddings of K into C. To see this, let
σ : K ↪→ C be any such map. Then σ(α) must have the same minimal polynomial
f(x) over Q as α; thus σ(α) must be one of the complex roots of f(x), which are
precisely the αi. Therefore σ(α) = αi for some i, and since α generates K over Q,
this implies that σ = σi. This proves the claim.

In particular, this implies that the embeddings σi are independent of the choice
of primitive element α, since any other choice would yield n embeddings of K into
C which by the above argument must be the same as the σi. Combining all of this,
we see that there are exactly n distinct embeddings of K into C. We state this as
a proposition.

Proposition 2.1. Let K be a number field of degree n. Then K has exactly n
distinct complex embeddings.

Example 2.2. Consider the number field Q[x]/(x3 − 2). This has degree 3
over Q, so there should be three complex embeddings. These are determined by
the three roots of x3 − 2 in C. If we let α be the real cube root of 2 and let ζ be
a third root of unity in C, then these roots are α, ζα and ζ2α. The three complex
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embeddings are then the three maps

Q[x]/(x3 − 2)→ C
sending x to α, ζα and ζ2α respectively. Note that in contrast to the case of
Q[x]/(x2 − 2) these maps have different images; for example, the first map has
image inside of R, while the other two do not.

Let α be an arbitrary element of K with minimal polynomial f(x) ∈ Q[x] of
degree d. We define the conjugates of α to be the d complex roots of f(x); that
is, they are simply the complex numbers which behave exactly the same as α does
algebraically. Alternately, if τ1, . . . , τd are the d complex embeddings of the subfield
Q(α) of K (which is a number field since K is), the conjugates are precisely

τ1(α), . . . , τd(α),

as is clear from the above discussion. In particular, if α is a primitive element for
K, then its conjugates are the n complex numbers

σ1(α), . . . , σn(α).

As with the quadratic case we would like to be able to think of number fields as
specific subfields of the complex numbers. As we have just seen, we can do this in
n different ways, where n is the degree of the number field K. In general, however,
these embeddings have different images. Thus, although it is often useful to think
of K in terms of these complex images, there is no single field that one can point
to and say is the best choice for a complex version of K. We will always attempt to
be careful about this point. For example, when we write Q( 3

√
2), we do not mean

to single out any of the three complex versions of it; if we wish to do so, we will
make it explicit.

This sets up a slightly strange situation: whenever we say “let K be a number
field”, we want to regard K independent of any complex embedding of K. On the
other hand, our examples will usually involve specific subfields of C in order to
fix ideas. In particular, keep in mind that a subfield of C can still have complex
embeddings, just like any number field.

The one case where one can safely identify a number field with the images of
its complex embeddings are when all of these complex embeddings are the same.
In this case we will say that K is Galois (over Q). We will return to the theory of
Galois extensions later.

3. Example : Cyclotomic fields

3.1. Cyclotomic polynomials. Before we define cyclotomic fields abstractly,
let us work with subfields of the complex numbers. Recall that a complex number
ζ is an mth root of unity if ζm = 1; it is a primitive mth root of unity if m is the
smallest positive integer which works. The complex mth roots of unity are precisely
the numbers

e2πik/m

for k = 0, 1, . . . , m− 1, and the primitive mth roots of unity are those for which k
and m are relatively prime. In particular, there are m complex mth roots of unity
and ϕ(m) complex primitive mth roots of unity, where ϕ(m) is the Euler ϕ-function.
(See Appendix B.)

Let ζm be a fixed complex primitive mth root of unity. ζm is a root of xm − 1,
but for m > 1 this can not be its minimal polynomial, as it is not irreducible. We
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wish to determine the minimal polynomial f(x) ∈ Q[x] of ζm; we will do this by
determining the complex roots of f(x).

Proposition 3.1. If p is a prime not dividing m, then ζp
m is a root of f(x).

Proof. f(x) divides xm − 1 in Q[x]; thus we can write

xm − 1 = f(x)g(x)

for some monic g(x) ∈ Q[x], and by Exercise 1.4 we actually have f(x), g(x) ∈ Z[x].
Since ζp

m is a root of xm − 1, to show that it is a root of f(x) it will suffice to show
that it is not a root of g(x).

So suppose that g(ζp
m) = 0. Let h(x) ∈ Z[x] be the monic polynomial g(xp).

Then h(ζm) = 0, so f(x) divides h(x) inQ[x]. Writing h(x) = f(x)q(x), Exercise 1.4
again shows that q(x) is actually in Z[x].

We now work modulo p. For any polynomial s(x) ∈ Z[x], we denote by s̄(x) its
image in Fp[x] after reducing the coefficients modulo p. We have h̄(x) = f̄(x)q̄(x);
also,

h̄(x) = ḡ(xp) = ḡ(x)p

by Exercise 1.15. Thus f̄(x) divides ḡ(x)p in Fp[x]. Since Fp[x] is a unique fac-
torization domain, this implies that f̄(x) and ḡ(x) have a monic common factor of
positive degree, say r̄(x).

We have f̄(x)ḡ(x) = xm − 1 ∈ Fp[x], so r̄(x)2 divides xm − 1 in Fp[x]. By
Exercise 1.11, this implies that r̄(x) divides mxm−1. Since p does not divide m (this
is the only place where we use that hypothesis), mxm−1 is a non-zero monomial,
so r̄(x) must also be a non-zero monomial. But r̄(x) also divides xm − 1; the only
monic monomial with this property is 1, so r̄(x) = 1. This contradicts the fact that
r̄(x) has positive degree, so the initial assumption that g(ζp

m) = 0 must be false.
Thus f(ζp

m) = 0, which completes the proof.

Corollary 3.2. The conjugates of ζm are precisely the other primitive mth

roots of unity.

Proof. As before let f(x) be the minimal polynomial of ζm. Let ζk
m be any

other primitive mth root of unity. Then k is relatively prime to m, so it is divisible
only by primes not dividing m. Write k = p1p2 · · · pn, with the pi not necessarily
distinct. Then Proposition 3.1 shows that ζp1

m is a root of f(x). In particular, f(x)
is also the minimal polynomial of ζp1

m . Applying Proposition 3.1 with respect to
the primitive mth root of unity ζp1

m shows that ζp1p2
m is also a root of f(x), and

continuing in this way we see that ζk
m is a root of f(x). Thus all primitive mth

roots of unity are roots of f(x), and therefore conjugates of ζm.
To complete the proof we must show that ζm has no other conjugates. But if

α is any other conjugate of ζm, then there is an isomorphism of Q(ζm) and Q(α)
sending ζm to α; it follows that α must also be a primitive mth root of unity, as
claimed.

We now define the mth cyclotomic polynomial Φm(x) ∈ Z[x] to be the minimal
polynomial of the complex primitive mth roots of unity. Since it is a minimal
polynomial Φm(x) is irreducible, and our above arguments show that it has degree
ϕ(m).

Since we have now shown that all primitive mth roots of unity are essentially
“the same” from the point of view of algebraic number theory, we might as well fix
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specific complex values for each ζm. Let us take

ζm = e2πi/m ∈ C
for all m. These roots of unity have the nice property that

ζn/m
n = ζm

whenever m divides n. (While it may appear to be true even if m doesn’t divide
n, one then has all sorts of multiple-valued function stuff to worry about.) More
generally, any choice of ζm with this compatibility would be fine, but we will stick
with these for concreteness.

Corollary 3.2 gives the expression

Φm(x) =
∏

1≤k<m
(k,m)=1

(x− ζk
m).

However, this formula is not very useful for actually computing the Φm(x) by hand.
For this we have the following result, which gives an expression for Φm(x) entirely
in terms of integer arithmetic.

Proposition 3.3. We have

xm − 1 =
∏

d|m
Φd(x)

and
Φm(x) =

∏

d|m
(xd − 1)µ(m/d)

where µ is the Mobius function.

Proof. The first equality is clear since each side has exactly the same complex
roots; namely, each mth root of unity is a root of exactly one of the Φd(x) with
d dividing m. The second equality comes from Mobius inversion of the first. See
Example B.2.5.

Using this formula we see immediately that for any prime p,

Φp(x) =
xp − 1
x− 1

= xp−1 + xp−2 + +xp−3 · · ·+ x + 1.

The first few cyclotomic polynomials are

Φ1(x) = x− 1

Φ2(x) = x + 1

Φ3(x) = x2 + x + 1

Φ4(x) = x2 + 1

Φ5(x) = x4 + x3 + x2 + x + 1

Φ6(x) = x2 − x + 1

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x + 1

Φ8(x) = x4 + 1
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Φ9(x) = x6 + x3 + 1

Φ10(x) = x4 − x3 + x2 − x + 1

Φ11(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

Φ12(x) = x4 − x2 + 1

There are many patterns which can be found among the cyclotomic polynomials;
we leave these to the reader. (We will at least point out that it is not true that
every Φm has only coefficients ±1 and 0, although Φ105 is the first which violates
this.)

3.2. Abstract cyclotomic fields. We define the mth cyclotomic field to be
the field

Q[x]/(Φm(x))
where Φm(x) is the mth cyclotomic polynomial. Q[x]/(Φm(x)) has degree ϕ(m)
over Q since Φm(x) has degree ϕ(m). The roots of Φm(x) are just the primitive
mth roots of unity, so the complex embeddings of Q[x]/(Φm(x)) are simply the
ϕ(m) maps

σk : Q[x]/(Φm(x)) ↪→ C,

1 ≤ k < m, (k, m) = 1, where
σk(x) = ζk

m,

ζm being our fixed choice of primitive mth root of unity. Note that ζk
m ∈ Q(ζm)

for every k; it follows that Q(ζm) = Q(ζk
m) for all k relatively prime to m. In

particular, the images of the σi coincide, so Q[x]/(Φm(x)) is Galois over Q. This
means that we can write Q(ζm) for Q[x]/(Φm(x)) without much fear of ambiguity;
we will do so from now on, the identification being ζm 7→ x. One advantage of this
is that one can easily talk about cyclotomic fields being extensions of one another,
or intersections or compositums; all of these things take place considering them as
subfields of C.

We now investigate some basic properties of cyclotomic fields. The first issue
is whether or not they are all distinct; to determine this, we need to know which
roots of unity lie in Q(ζm). Note, for example, that if m is odd, then −ζm is a 2mth

root of unity. We will show that this is the only way in which one can obtain any
non-mth roots of unity.

Lemma 3.4. If m divides n, then Q(ζm) is contained in Q(ζn).

Proof. Since ζ
n/m
n = ζm, we have ζm ∈ Q(ζn), so the result is clear.

Lemma 3.5. If m and n are relatively prime, then

Q(ζm, ζn) = Q(ζmn)

and
Q(ζm) ∩Q(ζn) = Q.

(Recall that Q(ζm, ζn) is the compositum of Q(ζm) and Q(ζn).)

Proof. One checks easily that ζmζn is a primitive mnth root of unity, so that
Q(ζmn) ⊆ Q(ζm, ζn). Furthermore, by Lemma A.3.3,

[Q(ζm, ζn) : Q] ≤ [Q(ζm) : Q][Q(ζn) : Q] = ϕ(m)ϕ(n) = ϕ(mn);
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since [Q(ζmn) : Q] = ϕ(mn), this implies that

Q(ζm, ζn) = Q(ζmn).

We now have a field diagram

Q(ζm, ζn)

ppppppppppp

NNNNNNNNNNN

Q(ζm)

NNNNNNNNNNN

ϕ(m)

>>
>>

>>
>>

>>
>>

>>
>>

>>
Q(ζn)

ppppppppppp

ϕ(n)

¢¢
¢¢

¢¢
¢¢

¢¢
¢¢

¢¢
¢¢

¢¢

Q(ζm) ∩Q(ζn)

Q

We know that Q(ζm, ζn) has degree ϕ(mn) over Q, so we must have

[Q(ζm, ζn) : Q(ζm)] = ϕ(n)

and
[Q(ζm, ζn) : Q(ζn)] = ϕ(m).

Now Lemma A.3.3 shows that

[Q(ζm) : Q(ζm) ∩Q(ζn)] ≥ ϕ(m)

and thus that Q(ζm) ∩Q(ζn) = Q.

Proposition 3.6. For any m and n,

Q(ζm, ζn) = Q(ζ[m,n])

and
Q(ζm) ∩Q(ζn) = Q(ζ(m,n));

here [m,n] and (m,n) denote the least common multiple and the greatest common
divisor of m and n, respectively.

Proof. Write m = pe1
1 · · · pek

k and n = pf1
1 · · · pfk

k where the pi are distinct
primes. (We allow ei or fi to be zero.) By Lemma 3.5 we have

Q(ζm) = Q(ζp
e1
1

)Q(ζp
e2
2

) · · ·Q(ζp
ek
k

)

and
Q(ζn) = Q(ζ

p
f1
1

)Q(ζ
p

f2
2

) · · ·Q(ζ
p

fk
k

).

Thus

Q(ζm, ζn) = Q(ζp
e1
1

) · · ·Q(ζp
ek
k

)Q(ζ
p

f1
1

) · · ·Q(ζ
p

fk
k

)

= Q(ζp
e1
1

)Q(ζ
p

f1
1

) · · ·Q(ζp
ek
k

)Q(ζ
p

fk
k

)

= Q(ζ
p
max{e1,f1}
1

) · · ·Q(ζ
p
max{ek,fk}
k

)

= Q(ζ
p
max{e1,f1}
1 ···pmax{ek,fk}

k

)

= Q(ζ[m,n]);
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the third equality uses Lemma 3.4, the fourth uses Lemma 3.5 and the last uses a
standard expression for least common multiples. An entirely similar computation
shows that Q(ζm) ∩Q(ζn) = Q(ζ(m,n)).

Corollary 3.7. If m is even, then the only roots of unity in Q(ζm) are the
mth roots of unity. If m is odd, then the only roots of unity in Q(ζm) are the 2mth

roots of unity.

Proof. Suppose that ζn ∈ Q(ζm). Then ζmζn is a [m,n]th root of unity, so
Q(ζ[m,n]) ⊆ Q(ζm). Thus

ϕ([m,n]) ≤ ϕ(m).
One easily shows that this can happen only if m is odd and n divides 2m, or if m
is even and n divides m. This proves the corollary.

Corollary 3.8. If m < n and Q(ζm) = Q(ζn), then m is odd and n = 2m.

4. Galois theory of number fields

Let K be a Galois extension of Q of degree n. Recall that this means that
if σ1, . . . , σn denote the complex embeddings of K, then the σi all have the same
image in C. Let us denote this image by K0 for the remainder of this section. We
wish to reinterpret the complex embeddings as automorphisms of K. To do this,
fix one embedding, say σ1 : K → K0. Consider the n maps

σ−1
1 ◦ σi : K → K.

These maps are all automorphisms of K (that is, isomorphisms from K to K) since
the σi are all isomorphisms from K to K0.

We claim that in fact these are all of the automorphisms of K. So suppose that
σ : K → K is any automorphism of K. Then σ1 ◦ σ : K → K0 ↪→ C is a complex
embedding of K, and thus equals one of the σi. Thus σ = σ−1

1 ◦ σi, as claimed.
In general, if M is any sort of object, then the set of automorphisms of M form

a group with composition as the group law; this is because the composition of two
automorphisms and the inverse of an automorphism are again automorphisms. We
define the Galois group Gal(K/Q) of K over Q to be the group of automorphisms
of K; our above arguments show that as a set Gal(K/Q) is just the maps σ−1

1 ◦σi :
K → K. Note in particular that

(σ−1
1 ◦ σi) ◦ (σ−1

1 ◦ σj)

and
(σ−1

1 ◦ σi)−1 = σ−1
i ◦ σ1

are again of the form σ−1
1 ◦ σk for some k, although it is not at all clear which k it

is.
Note that Gal(K/Q) has order n; even if K is not Galois one could still consider

the automorphisms of K, but the above construction no longer works and it is
somewhat harder to determine how many automorphisms there are.

When one actually computes Galois groups, it is usually much simpler to con-
sider the fields as subfields of C. So let K be a Galois number field which is also
a subfield of C. The automorphisms of K are now simply its complex embeddings
σi : K → K ⊆ C. (With our earlier notation, we really are just considering the
case where σ1 is the identity map.) Note in particular that σi ◦σj and σ−1

i are also
complex embeddings of K, although it is not immediately clear which.
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To determine which, let α be a primitive element for K over Q and let α1 =
α, α2, . . . , αn be its conjugates, so that the complex embeddings of K are given by
σi(α) = αi. We can now determine σi ◦ σj simply by determining for which k we
have

σi ◦ σj(α) = αk;
we then have σi ◦ σj = σk.

Example 4.1. Let d be a squarefree integer (other than 1) and consider the
field Q(

√
d). This has the two embeddings σ1 and σ2 characterized by

σ1(
√

d) =
√

d

and
σ2(
√

d) = −
√

d.

We find that
σ2σ2(

√
d) = σ2(−

√
d) = −σ2(

√
d) =

√
d;

that is, σ2
2 = σ1. This confirms that

Gal(Q(
√

d)/Q) ∼= Z/2Z
as it must be; σ1 is the identity element and σ2 is the non-trivial element.

Example 4.2. Consider the field Q(
√

2,
√

3). This field has degree 4 over Q,
with complex embeddings characterized by

σ1(
√

2) =
√

2, σ1(
√

3) =
√

3

σ2(
√

2) = −
√

2, σ2(
√

3) =
√

3

σ3(
√

2) =
√

2, σ3(
√

3) = −
√

3

σ4(
√

2) = −
√

2, σ4(
√

3) = −
√

3

One computes easily that each of σ2, σ3 and σ4 have square σ1 and that the
product of any two of them is the third, so that Gal(Q(

√
2,
√

3)/Q) is isomorphic
to Z/2Z× Z/2Z.

Example 4.3. Consider the cyclotomic field Q(ζm). This has ϕ(m) complex
embeddings σk (for (k, m) = 1), where σk(ζm) = ζk

m. We compute

σkσj(ζm) = σk(ζj
m) = σk(ζm)j = ζjk

m ;

if jk ≡ l (mod m), then this shows that σkσj = σl. In particular, we obtain a map

Gal(Q(ζm)/Q)→ (Z/mZ)∗

sending σk to the class of k in (Z/mZ)∗; the above calculation shows that this is a
group homomorphism. It is also clearly bijective by our characterization of the σk.
Thus we have obtained an isomorphism

Gal(Q(ζm)/Q)
∼=−→ (Z/mZ)∗.

Note that if ζ = ζi
m is any mth root of unity in Q(ζm), then

σk(ζ) = σk(ζi
m) = σk(ζm)i = ζki

m = ζk.

This means that the above isomorphism is completely canonical, in the sense that
the automorphism corresponding to k ∈ (Z/mZ)∗ has the effect of exponentiation
by k on any mth root of unity in Q(ζm). Note also that Gal(Q(ζm)/Q) is abelian;
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in some sense this is the fact which will make all of the applications in this class
work.

Example 4.4. For a non-abelian example, let 4
√

2 be the positive real fourth
root of 2 and consider the fieldQ(

√−1, 4
√

2). The conjugates of 4
√

2 are 4
√

2,
√−1 4

√
2,

− 4
√

2, −√−1 4
√

2. This field has degree 8 over Q, with embeddings σ0, . . . , σ7 char-
acterized by

σi(
4
√

2) =
√−1

i 4
√

2
and

σi(
√−1) =

{√−1 i = 0, 1, 2, 3;
−√−1 i = 4, 5, 6, 7.

(To see that this field has degree 8, it is enough to show that [Q( 4
√

2) : Q] = 4 and
that

√−1 /∈ Q( 4
√

2). The first of these follows from Exercise 1.8 and the second can
be done in the same way as Exercise 1.16.)

We compute easily

σiσj(
√−1) =

{√−1 both i, j ∈ {0, 1, 2, 3} or both i, j ∈ {4, 5, 6, 7};
−√−1 otherwise.

On the other hand,

σiσj(
4
√

2) = σi(
√−1

j 4
√

2)

= σi(
√−1)jσi(

4
√

2)

=

{√−1
j√−1

i 4
√

2 i ∈ {0, 1, 2, 3};
(−√−1)j

√−1
i 4
√

2 i ∈ {4, 5, 6, 7};

=

{√−1
i+j 4
√

2 i ∈ {0, 1, 2, 3};√−1
i−j 4
√

2 i ∈ {4, 5, 6, 7}.
For example,

σ3σ5(
√−1) = −

√
1

and
σ3σ5(

4
√

2) =
√−1

8 4
√

2 = 4
√

2,

so σ3σ5 = σ4. On the other hand,

σ5σ3(
√−1) = −√−1

and
σ5σ3(

4
√

2) =
√−1

2 4
√

2 = − 4
√

2
so σ5σ3 = σ6. Thus Gal(Q( 4

√
2, i)/Q) is non-abelian; with a little squinting one

discovers that it is isomorphic to the dihedral group of order 8.

5. Relative extensions

5.1. Relative embeddings. Let L and K be two number fields such that
L ⊇ K; set n = [L : Q], m = [K : Q], d = [L : K] = n/m. We wish to relate the
complex embeddings of L to those of K. Let us fix an embedding

σ : K ↪→ C
and determine how many complex embeddings of L restrict to σ on K. (Such an
embedding of L is said to extend σ.)
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Choose a primitive element α for L/K and let f(x) ∈ K[x] be its minimal
polynomial. Let g(x) = σ(f(x)) ∈ C[x]. Since C is algebraically closed and g(x) is
irreducible in K[x], g(x) has d distinct roots α1, . . . , αd in C. For each such root
we can define a map

τi : L ↪→ C
to be σ on K and to send α to αi. This procedure yields exactly d distinct embed-
dings of L into C, all of which restrict to σ on K. Explicitly, we have

τi

(
a0+a1α+a2α

2+· · ·+an−1α
n−1

)
= σ(a0)+σ(a1)αi+σ(a2)α2

i +· · ·+σ(an−1)αn−1

where the ai are all in K.
We can actually conclude that these are all of the embeddings of L into C

extending σ by a counting argument. Specifically, for any of the m complex em-
beddings σ′ of K the above procedure yields d complex embeddings of L restricting
to σ′ on K. In this way we can therefore obtain md = n distinct complex embed-
dings of L. But these are then all of the n complex embeddings of L; this implies
that each embedding of K has exactly d extensions to L, as if it had any more then
we would obtain too many complex embeddings of L.

Summarizing our work to this point, we have shown that each complex embed-
ding of K extends to d complex embeddings of L. In the case that K = Q, σ must
be the unique embedding of Q into C, and this all reduces to our original discussion
of complex embeddings.

We extend some of our earlier terminology to this situation. Given α ∈ L with
minimal polynomial f(x) over K of degree e, we say that the σ-K-conjugates of α
are the e (distinct) complex roots of σ(f(x)). Continuing to let τ1, . . . , τd be the
extensions of σ to L, we find that each σ-K-conjugate of α occurs precisely d/e
times among the numbers τ1(α), . . . , τd(α). To see this, fix a σ-K-conjugate α1 of
α and consider the embedding ρ : K(α) ↪→ C given by σ on K and sending α to
α1. By the above discussion applied to L/K(α), there are exactly [L : K(α)] = d/e
embeddings of L extending ρ, which means that there are exactly d/e embeddings
of L extending σ and sending α to α1, as claimed. In particular, in the case K = Q
we find that each conjugate of α appears exactly d/e times among the images of α
under the complex embeddings of L.

Example 5.1. Let K = Q(
√

2), L = Q(
√

2,
√

3). Let σ1 : K ↪→ C be the
complex embedding

σ1(a + b
√

2) = a + b
√

2.

The two extensions τ1, τ2 : L ↪→ C of σ to L are given by

τ1(a + b
√

2 + c
√

3 + d
√

6) = a + b
√

2 + c
√

3 + d
√

6

τ2(a + b
√

2 + c
√

3 + d
√

6) = a + b
√

2− c
√

3− d
√

6.

Similarly, the two embeddings extending the other embedding σ2 of K are

τ3(a + b
√

2 + c
√

3 + d
√

6) = a− b
√

2 + c
√

3− d
√

6

τ2(a + b
√

2 + c
√

3 + d
√

6) = a− b
√

2− c
√

3 + d
√

6.

Let α =
√

2 +
√

3 ∈ K. The σ1-K-conjugates of α are τ1(α) =
√

2 +
√

3
and τ2(α) =

√
2 − √3. The σ2-K-conjugates of α are τ3(α) = −√2 +

√
3 and

τ4(α) = −√2−√3. Together these give the four conjugates of α.
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5.2. Relations to characteristic polynomials. Our next goal is to relate
complex embeddings to norms and traces. We first work with characteristic poly-
nomials.

Lemma 5.2. Let L/K be an extension of number fields of degree d and let α
be a primitive element for L/K. Let σ be a fixed complex embedding of K and
let τ1, . . . , τd be the extensions of σ to L. Let g(x) ∈ K[x] be the characteristic
polynomial (and thus the minimal polynomial) of α for L/K. Then

σ(g(x)) =
d∏

i=1

(x− τi(α)) ∈ C[x].

Proof. We know that the τi are constructed by taking the complex roots
α1, . . . , αd of σ(g(x)) and mapping α to each αi; that is, we have τi(α) = αi. Thus
the τi(α) are precisely the complex roots of σ(g(x)), which is the statement of the
lemma.

Proposition 5.3. Let L/K be an extension of number fields of degree d and
let α be an arbitrary element of L. Let σ be a fixed complex embedding of K and
let τ1, . . . , τd be the extensions of σ to L. Let g(x) be the characteristic polynomial
of α for L/K. Then

σ(g(x)) =
d∏

i=1

(x− τi(α)).

Proof. Let α have minimal polynomial f(x) of degree e over K and consider
the tower of fields L/K(α)/K. Let ρ1, . . . , ρe be the extensions of σ to K(α). By
Lemma 5.2 we know that

σ(f(x)) =
e∏

i=1

(x− ρi(α)).

By Corollary A.4.4 we know that g(x) = f(x)d/e. We also know, from the discussion
of the previous section, that each σ-K-conjugate ρi(α) of α occurs exactly d/e times
among τ1(α), . . . , τd(α). Combining all of these facts yields the proposition.

The next result gives the fundamental connection between embeddings and
norms and traces.

Corollary 5.4. Let L/K be an extension of number fields of degree d. Let
σ : K ↪→ C be a complex embedding of K and let τ1, . . . , τd be the d complex
embeddings of L extending σ. Then for any α ∈ K,

σ(NL/K α) = τ1(α) · · · τd(α)

and
σ(TrL/K α) = τ1(α) + · · ·+ τd(α).

Proof. This is immediate from Proposition 5.3 and the definitions of the norm
and trace in terms of characteristic polynomials.

For convenience, let us restate our main results in the case of an extension
K/Q.
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Corollary 5.5. Let K be a number field of degree n with complex embeddings
σ1, . . . , σn. Let α be an element of K with characteristic polynomial g(x). Then

g(x) =
n∏

i=1

(x− σi(α)).

Furthermore,
NK/Q α = σ1(α) · · ·σn(α)

and
TrK/Q α = σ1(α) + · · ·+ σn(α).

5.3. Relative Galois extensions. Let L/K be an extension of number fields
of degree d. Fix a complex embedding σ of K with image K0, and let τ1, . . . , τd be
the extensions of σ to L. If the τi all have the same image L0 in C, we will say that
L is Galois over K. (We will check in a moment that this definition is independent
of the choice of σ.)

Let us define the Galois group Gal(L/K) to be the group of K-linear auto-
morphisms of L; that is, it is the group of automorphisms of L which fix every
element of K. As with Galois groups over Q, we can describe Gal(L/K) in terms
of embeddings. Specifically, fix the embedding τ1 and consider the d maps

τ−1
1 ◦ τi : L→ L.

These are automorphisms of L, since the τi are all isomorphisms; furthermore, they
are the identity on K, since both τi and τ1 act on K as σ. Thus we have exhibited
d K-linear automorphisms of L.

We claim that all K-linear automorphisms of L are of this form. So suppose
that τ : L→ L is another such automorphism. Then τ1 ◦ τ : L→ L0 is a complex
embedding of L. Furthermore, it is simply σ on K, since τ is the identity on K.
Thus τ1 ◦ τ must be one of the τi, so that τ = τ−1

1 ◦ τi, as claimed.
Notice now that the definition of Gal(L/K) made no mention of σ. In particu-

lar, let σ′ : K → C be another complex embedding of K with extensions τ ′1, . . . , τ ′d.
We claim that the τ ′i all have the same image. To see this, note that for every
ρ ∈ Gal(L/K), τ ′1 ◦ ρ is a complex embedding of L which extends σ. The d dif-
ferent elements of Gal(L/K) yield d different such embeddings, all with the same
image τ ′1(L); these must be nothing more than τ ′1, . . . , τ ′d, since those are all of the
embeddings of L which extend σ. In particular, this shows that the property of L
being Galois over K is independent of the choice of embedding of K.

As before, one can actually compute Gal(L/K) by considering L and K as
specific subfields of C and then considering the action on σ-K-conjugates of gener-
ators.

Example 5.6. Take L = Q(
√

2,
√

3) and K = Q(
√

2). We computed Gal(L/Q)
in Example 4.2. Of the four automorphisms given there, σ1 and σ3 are the identity
on K, so we can identify

Gal(L/K) = {σ1, σ3} ∼= Z/2Z.

Notice in particular that if L/Q is Galois, then Gal(L/K) is a subgroup of
Gal(L/Q). The main theorem of Galois theory is a generalization of this fact.
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Theorem 5.7. Let L/K be a Galois extension of number fields. There is a
bijective correspondence between subgroups of Gal(L/K) and subfields of L, given
by

H ⊆ Gal(L/K)→ LH = {x ∈ L;h(x) = x for all h ∈ H}
{σ ∈ Gal(L/K); σ|L′ = id} ← L′.

This correspondence is inclusion reversing, and L is Galois over each subfield LH

with Galois group Gal(L/LH) = H. Lastly, LH is Galois over K if and only if H
is a normal subgroup of Gal(L/K), in which case Gal(LH/K) ∼= Gal(L/K)/H.

Corollary 5.8. Let L/K be a Galois extension and let α be an element of L.
Then α ∈ K if and only if σ(α) = α for all σ ∈ Gal(L/K).

Proof. The fact that σ(α) = α for all α ∈ K and all σ ∈ Gal(L/K) is part of
the definition of the Galois group. Conversely, by Theorem 5.7, the subfield K of L
must correspond to the largest subgroup of Gal(L/K); that is, it corresponds to the
entire group G = Gal(L/K), and thus by the definition of the Galois correspondence
we find that K = LG, as claimed.

We conclude with the promised strengthening of Lemma A.3.3.

Lemma 5.9. Let M/K be an extension of number fields and let L1 and L2 be
subfields of M containing K. Suppose that L2 is Galois over L1 ∩ L2. Then L1L2

is Galois over L1 and

Gal(L1L2/L1) ∼= Gal(L2/L1 ∩ L2).

In particular,
[L1L2 : L1] = [L2 : L1 ∩ L2]

and
[L1L2 : L2] = [L1 : L1 ∩ L2].

Proof. Set d = [L2 : L1 ∩ L2]. Let σ be an element of Gal(L2/L1 ∩ L2). We
define an automorphism σ̃ of L1L2 to act as σ on L2 and to be the identity on L1;
one checks easily that this is well-defined, since σ is the identity on L1∩L2. Applying
this construction to every element of Gal(L2/L1 ∩L2), we obtain d automorphisms
of L1L2 fixing L1.

Let now τ : L1 ↪→ C be a complex embedding and let ρ : L1L2 ↪→ C extend τ .
Then the d maps ρ ◦ σ̃ are all distinct complex embeddings of L1L2 extending τ ,
and they all have the same image. By Lemma A.3.3,

[L1L2 : L1] ≤ d,

so the existence of these embeddings implies both that

[L1L2 : L1] = d

and that L1L2 is Galois over L1, since we have exhibited d automorphisms of L1L2

over L1.
Our map σ 7→ σ̃ can now be interpreted as a map

Gal(L2/L1 ∩ L2)→ Gal(L1L2/L1).

One checks immediately that the map restricting an automorphism of L1L2 to L2

gives an inverse map, so they must both be isomorphisms. This proves everything
but the last equality of the lemma; this follows from Lemma A.1.1 and the second
to last equality.



CHAPTER 2

Rings of Integers

1. Unique factorization

1.1. Factorization in subrings of number fields. Let K be a number field.
Although there is much information which can be obtained just by considering K,
answering many of the most interesting questions will require some sort of notion
of factorization into primes. Factorization in K itself is not very interesting: every
non-zero element is a unit, so there are no primes at all. In order to obtain these
primes we must somehow define a special subring of K; this ring should have lots
of primes, and factorizations in it should hopefully yield interesting arithmetic
information.

Example 1.1. As a first example of the useful of factorizations, let us solve
the diophantine equation

x2 − y2 = 105.

(When we speak of solving a diophantine equation, we always mean that we are
interested in solutions with x, y ∈ Z, or occasionally Q.) We can solve this equation
by first factoring it as

(x + y)(x− y) = 105.

Since both x + y and x − y are integers, we see that we are searching for pairs of
integerss d = x + y, e = x − y such that de = 105. The fact that x and y are
integers implies that d and e must be congruent modulo 2, so we are really looking
for complimentary pairs of divisors of 105 which are congruent modulo 2. These
pairs (up to reordering and negation) are

(d, e) = (105, 1), (35, 3), (21, 5), (15, 7);

they yield the solutions

(x, y) = (53, 52), (19, 16), (13, 8), (11, 4)

and their negatives. This example illustrates the usefulness of factorizations for
solving diophantine equations. On the other hand, when one has an equation like
x2+y2 = p which can not be factored over Z, it becomes necessary to add additional
numbers with which to factor. In this case, x2 + y2 does factor over Z[i].

The question, then, is which subring. We take as our model the subring Z of
the number field Q. Of course, we have a very good theory of factorization in Z:
every non-zero n ∈ Z factors uniquely as a product

n = ±pe1
1 · · · pek

k

where the pi are distinct positive primes and all ei ≥ 0. This sort of factorization
actually extends to the field Q : any non-zero rational number m

n ∈ Q can be

23
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uniquely written as a product
m

n
= ±pe1

1 · · · pek

k

where now we allow the ei to be negative as well. Of course, the pi are not really
prime in Q, but so long as we remember that they come from Z we can still consider
them as distinguished elements to be used in factorizations. In any event, note that
this sort of factorization shows that we have an isomorphism

Q∗ ∼= Z/2Z×
⊕

p

Z

where the direct sum is over all positive primes p of Z.
It is probably worth pausing a moment here to clarify the sign issue. In Z

we have two “copies” p and −p of each prime. They behave exactly the same in
factorizations (the ± sign absorbing any changes), and there is no real reason to
prefer one over the other. For the time being just assume that we have chosen one
of them to use in factorizations; in the case of Z, the positive primes are the natural
choice, but later on, when we have rings with lots of non-trivial units, there will be
no obvious natural choices. Fortunately, all of this confusion will go away as soon
as we begin working with ideals rather than elements.

Returning to the previous discussion of factorization in Z, our first requirement
must be that we have some sort of good factorization theory in our special subring
R of K. We shall see later that it is unreasonable to ask for unique factorization,
but we would like something close.

First condition (vague): R should have a good theory of factorization.
Our second requirement should be that the factorizations in R should extend

to K in some way. The easiest way to insure this is to require that K be the field of
fractions of R; this just means that every element of K can be written as a quotient
of two elements of R. In particular, the subring Z of K, while a wonderful ring in
many ways, has field of fractions Q, so it is not suitable for a theory of factorization
in any number field larger than Q.

Second condition: The field of fractions of R should be K.
We will in fact obtain a stronger version of the second condition, and since it

is easier to check we state it as well.
Second condition (strong form) : Every α ∈ K can be written as α′/n
where α′ ∈ R and n ∈ Z.

All of the above conditions amount to asking that R be “big enough”; this is
clear for the second condition, while for the first we will see that in order to get a
good factorization theory one must not leave out too many elements of K.

Now, it happens that Q has lots of subrings with all of Q as field of fractions.
For example, for any set of primes S we have the ring.

S−1Z =
{a

b
∈ Q | all prime factors of b are in S

}
.

In terms of unique factorization in Z, rational numbers are in S−1Z if and only if
they can be written as

±pe1
1 · · · pek

k

where we allow ei to be any integer for pi ∈ S, but we require ei to be positive if
pi /∈ S. Of course, these rings seem somewhat contrived; we are really just adding
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some denominators to Z. In fact, it is easy to see that all p ∈ S are now units in
S−1Z, so the primes of S−1Z are just the primes of Z not in S. Thus factorizations
into primes of S−1Z contains less information than those in Z. Somehow, then, in
order to get the most information we want to choose for R the smallest subring of
K which satisfies the first two conditions.

Taking advantage of our knowledge that Z is a good prototype for R, one
possibility for this third condition is to require that R ∩Q = Z.

Third condition: R ∩Q = Z.
Our goal, then, is to find a good interpretation of the first condition, and then

we will hope that there is a natural subring of K satisfying the three conditions.

1.2. First attempts. In order to help us figure out what interpretations to
give to our first condition, let us begin by making some guesses. Let K be a
quadratic number field. We know that we can write K = Q(

√
d) for a unique

squarefree integer d. Let us take our guess for the special subring to be

R = Z[
√

d].

Now, while there are many other d′ ∈ Q such that K = Q(
√

d′), this ring R has
several things recommending it. First of all, if d′ is not an integer, then d′ ∈ Z[

√
d′]∩

Q, so this intersection is larger than Z; this would violate our third condition. Also,
if d′ is a non-squarefree integer, then we can write d′ = e2d, so

√
d′ ∈ R

but √
d /∈ Z[

√
d′].

Thus Z[
√

d′] seems to missing the element
√

d which it really ought to contain,
while R does not appear to be missing anything. (Later we will see that sometimes
R is missing some non-obvious elements, but let us not worry about this yet.)
Considering all of this, then, Z[

√
d] seems to be the most natural choice for special

subring R.
As a second example, take K = Q(ζm). This time there is really only one

obvious ring to write down, that being R = Z[ζm]. (Note that R is independent
of the choice of primitive mth root of unity ζm since every primitive mth root of
unity is a power of every other one. One can also check that if m is odd, then
Z[ζm] = Z[ζ2m], so that we have defined the same ring no matter which m is used
to define K.) So for lack of any better choices, we will take R = Z[ζm] to be our
guess for Q(ζm).

The astute reader will have noticed that we have now made two different choices
for the special subring of K = Q(

√−3). On the one hand, K is a quadratic field,
so we have chosen R = Z[

√−3]. On the other hand, K is also a cyclotomic field:
we have K = Q(ζ3), since

ζ3 =
−1 +

√−3
2

.

In this case we have the choice R′ = Z[−1+
√−3
2 ], which is actually larger than R.

Right away we see that one of these must be wrong. We will figure out which one
it is a bit later.

Ignoring that issue, note that at the very least these choices all satisfy the
strong form of our second condition, and one can show without too much difficulty
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that they satisfy the third condition. The main remaining consideration is the
factorization condition.

1.3. Example : the Gaussian integers. Just to see that at least sometimes
we have obtained the nice theory we were looking for, let us analyze in detail the
case of K = Q(i) and R = Z[i], where i =

√−1. Since i2 = −1, we have

Q(i) = {a + bi | a, b ∈ Q}
and

Z[i] = {a + bi | a, b ∈ Z}.
We claim that Z[i] is a unique factorization domain. The proof of this rests

upon the fact that there is a division algorithm. In order to state it we need some
measure of the size of a Gaussian integer; the most natural measure is the norm
NQ(i)/Q, which explicitly is just

NQ(i)/Q(a + bi) = a2 + b2.

Let us just write N for this norm for the remainder of the section; we also write
a + bi for the conjugate a − bi (recalling our earlier conventions, this is just the
image of a + bi under the other complex embedding), so that

N(α) = α · ᾱ
for all α ∈ Q(i). Note also that

N(α) = N(ᾱ),

and that if α ∈ Z[i], then N(α) ∈ Z.

Lemma 1.2. For any α, β ∈ Z[i] with β 6= 0, there exists q, r ∈ Z[i] such

α = βq + r

and
0 ≤ N(r) ≤ 1

2
N(β).

The key here is to reduce to a division problem in Z. Specifically, the equation

α = βq + r

is equivalent to
αβ̄ = ββ̄q + β̄r,

and now ββ̄ ∈ Z.

Proof. Write
αβ̄ = a + bi

with a, b ∈ Z; by division in Z we can write

a = N(β)q1 + r1

and
b = N(β)q2 + r2

with q1, q2, r1, r2 ∈ Z and 0 ≤ r1, r2 < N(β). In fact, replacing the qi by qi + 1 and
the ri by ri −N(β), if necessary, we can obtain the stronger bound

0 ≤ |r1|, |r2| ≤ 1
2

N(β).
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We now have

a + bi = N(β)(q1 + q2i) + (r1 + r2i)

αβ̄ = ββ̄(q1 + q2i) + (r1 + r2i)

α = β(q1 + q2i) +
r1 + r2i

β̄
.

Note that this equation implies in particular that
r1 + r2i

β̄
= α− β(q1 + q2i) ∈ Z[i].

Write r ∈ Z[i] for this quotient and set q = q1 + q2i, so that we have

α = βq + r.

It remains to show that r satisfies the desired bound. We calculate

β̄r = r1 + r2i

N(β̄)N(r) = N(r1 + r2i)

N(r) =
N(r1 + r2i)

N(β̄)

=
r2
1 + r2

2

N(β̄)

≤
1
4 N(β)2 + 1

4 N(β)2

N(β̄)

=
1
2

N(β)2

N(β)

=
1
2

N(β)

as claimed.

Since Z[i] is obviously noetherian (it is a quotient of the noetherian ring Z[x]),
this shows that Z[i] is Euclidean. By Proposition C.4.7 we conclude that Z[i] is a
unique factorization domain.

Before we begin actually factoring elements of Z[i], we should determine the
units.

Lemma 1.3. u ∈ Z[i] is a unit if and only if N(u) = 1; in particular, the only
units are ±1 and ±i.

Proof. Suppose first that N(u) = 1. Then uū = 1 and ū ∈ Z[i], so u is a
unit. Conversely, if u ∈ Z[i] is a unit, then there exists v ∈ Z[i] with uv = 1. Thus
N(u)N(v) = 1. Since N(u) and N(v) are integers, this implies that N(u) = ±1.
Since it is not possible in Z[i] to have N(u) = −1, this proves the first statement
of the lemma. Writing u = x + yi with x, y ∈ Z, the last statement of the lemma
amounts to solving the equation x2 + y2 = 1.

The key to the determination of the primes of Z[i] is to use our knowledge of
the primes of Z. The connection comes from the next lemma.

Lemma 1.4. Let π ∈ Z[i] be a prime element. Then π divides (in Z[i]) some
prime p of Z.
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Proof. Note that N(π) = ππ̄ ∈ Z and π divides this integer. If N(π) is prime,
then the lemma is immediate. If N(π) is not prime, then factor N(π) as a product
of primes of Z; since π is prime in Z[i], the definition of prime implies that π must
divide one of these factors.

Lemma 1.4 implies that we can determine all primes of Z[i] by determining how
all primes of Z factor in Z[i]. Later on we will see a general method for approaching
this problem, but for now let us not worry about motivating our next few steps.
So let p be a positive prime in Z such that p ≡ 3 (mod 4). Suppose that p factors
over Z[i], say as αβ, with α and β not units. Then

p2 = N(p) = N(α)N(β),

so Lemma 1.3 implies that
N(α) = N(β) = p.

Writing α = a + bi, this implies that p = a2 + b2. But this is impossible, since
modulo 4 all sums of two squares are congruent to 0, 1 or 2. Thus p is still prime
as an element of Z[i].

Now let p be such that p ≡ 1 (mod 4) and suppose that p does not factor in
Z[i]. By Exercise 2.2 we have that there exists a ∈ Z such that

a2 ≡ −1 (mod p).

Thus p divides a2 +1 in Z. Factoring a2 +1 as (a+ i)(a− i) over Z[i], we have that
p divides the product (a + i)(a − i). Our assumption that p is prime in Z[i] now
implies that p divides one of these factors. But this is absurd, since p would then
divide the coefficient of i, which is ±1. This is a contradiction, so such a p is not
prime. We summarize all of this in the next proposition.

Proposition 1.5. Let π be a prime of Z[i]. Then one of the three following
conditions holds:

1. π is associate to a rational prime p such that p ≡ 3 (mod 4);
2. N(π) = p where p is a rational prime such that p ≡ 1 (mod 4). In this case

every prime of norm p is associate to exactly one of π and π̄;
3. π is associate to 1 + i.

Proof. By Lemma 1.4 we know that π divides some rational prime p. If
p ≡ 3 (mod 4), then p itself is prime in Z[i], so π must be associate to p. The
p ≡ 1 (mod 4) case is Exercise 2.3. Lastly, if p = 2, then the fact that 2 factors as
−i(1 + i)2 shows that π must be associate to 1 + i.

Example 1.6. Let us factor α = −133− 119i ∈ Z[i]. We compute that

N(α) = 31850 = 2 · 52 · 72 · 13.

Since 2 divides N(α), we know that 1 + i divides α. Since 7 ≡ 3 (mod 4), we
know that 7 is prime in Z[i], so we must have that 7 divides α. To determine what
happens with the primes of norm 5 and 13 we must determine what these primes
are. We have

5 = (2 + i)(2− i)

and
13 = (3 + 2i)(3− 2i).
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To finish the factorization we simply have to figure out which of the prime factors
of 13 divides α and whether one or both of the prime factors of 5 divide α. One
finds that (2 + i)2 and 3 + 2i divide α. Up to a unit, then, the factorization of α is

(1 + i) · (2 + i)2 · 7 · (3 + 2i);

multiplying it out we find that the unit is i, so that

−133− 119i = i · (1 + i) · (2 + i)2 · 7 · (3 + 2i).

Our analysis of factorization in Z[i] seems to have suggested some connection
with primes of the form x2 + y2. In fact, using our knowledge of the arithmetic of
Z[i], we can easily obtain the full result.

Proposition 1.7. A positive rational prime p can be written as x2 + y2 with
x, y ∈ Z if and only if p factors in Z[i].

Proof. Suppose that p = x2 + y2. Then p = (x + yi)(x− yi), and one easily
checks that neither factor could be a unit; thus p factors in Z[i]. Conversely, if p
factors in Z[i], say as αβ, then N(α) = N(β) = p. If α = x + yi, then we conclude
that p = x2 + y2, as desired.

Corollary 1.8. A positive rational prime p can be written as x2 + y2 with
x, y ∈ Z if and only if p = 2 or p ≡ 1 (mod 4). Furthermore, this decomposition is
unique up to switching x and y and negating either (or both) x or y.

Proof. Everything but uniqueness is immediate from Proposition 1.5 and
Proposition 1.7. In fact, uniqueness also follows easily, since there are exactly 8
primes x + yi dividing any p ≡ 1 (mod 4) (two conjugates times four units) and
these all have x and y the same up to negation and switching the factors.

1.4. Failure of unique factorization. Having given one example where ev-
erything works perfectly, let us now give several where things do not work. Before
we do, we state a simple lemma which is extremely useful in factoring and finding
irreducibles.

Lemma 1.9. Let R be a subring of a number field K such that NK/Q(α) is an
integer for every α ∈ R. Let α and β be elements of R such that α divides β in
R. Then NK/Q(α) divides NK/Q(β) in Z. In particular, if NK/Q(α) is prime in Z,
then α is irreducible in R. Also, α is a unit if and only if NK/Q(α) = ±1.

We leave the proof to the reader.
Let us begin with the field K = Q(

√−5) and the ring R = Z[
√−5]. Consider

the factorization of 6 in Z[
√−5]. On the one hand, 6 = 2 · 3. Both 2 and 3 are

irreducible in R, as is easy to check using Lemma 1.9. On the other hand,

6 = (1 +
√−5)(1−√−5),

and both of these factors are also irreducible. R has only the two units ±1 (use
Lemma 1.9 to prove this), so none of these are associates. (This could also be seen
directly from the norms.) Thus R is not a UFD.

All is not lost, however. The problem, as Kummer realized, is simply that R is
missing some “elements”. He repaired unique factorization with his theory of ideal
numbers. In modern terms, we use the somewhat simpler method of factorization
into ideals. Specifically, the factorizations above are only using principal ideals,
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and it turns out that R is not a principal ideal domain. We need the non-principal
ideals in order to solve our factorization problem.

The ideals we want (we will see later how to compute them) are

a1 =
(
2, 1 +

√−5
)

a2 =
(
3, 1 +

√−5
)

a3 =
(
3, 1−√−5

)
.

Note that we can also write

a1 =
(
2, 1−√−5

)

since 2 ∈ a1. We now find that

a2
1 =

(
2 · 2, 2 · (1−√−5), (1 +

√−5) · 2, (1 +
√−5) · (1−√−5)

)

=
(
4, 2− 2

√−5, 2 + 2
√−5, 6

)

=
(
2
)

since 2 = 6− 4 ∈ a2
1 and every generator is divisible by 2. Similarly, one finds that

a1a2 =
(
1 +

√−5
)

a1a3 =
(
1−√−5

)

a2a3 =
(
3
)
.

In particular, (
6
)

=
(
2
)(

3
)

= (a1a1)(a2a3)
and (

6
)

=
(
1 +

√−5
)(

1−√−5
)

= (a1a2)(a1a3)
are really the same factorization in terms of ideals. The two different factorizations
in terms of elements comes from regrouping the non-principal factors in two different
ways. (Before it becomes too confusing let us acknowledge the fact that it can often
be difficult to tell in an equation when symbols like (2) are ideals or simply elements.
We will usually try to write principal ideals with slightly large parentheses, like

(
2
)
,

if there is any chance of confusion. Fortunately, it rarely matters very much whether
one is working with principal ideals or with actual elements, and hopefully whenever
it does matter it will be clear which is being done.)

So, then, while we do not have unique factorization of elements in Z[
√

5], we
can still hope that we have unique factorization of ideals. This is not perfect, but
it is a pretty good substitute.

Let us now consider K = Q(ζ) and R = Z[ζ] where ζ = ζ23. Here things are
much more complicated (K has degree 22 over Q), but we should at least state
Kummer’s famous counterexample to unique factorization. He found that

(1 + ζ2 + ζ4 + ζ5 + ζ6 + ζ10 + ζ11)(1 + ζ + ζ5 + ζ6 + ζ7 + ζ9 + ζ11)

is divisible by 2. (Work it out. It’s not nearly as bad as it looks. You will need to
use the identity

ζ22 = −1− ζ − ζ2 − · · · − ζ21,

which is just the statement that Φ23(ζ) = 0.) He also showed that 2 is irreducible
in R (a non-trivial fact in this situation), and that 2 doesn’t divide either factor.
Thus R can not possibly be a UFD.
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Here again one can show that unique factorization is restored if factorizations
are considered as factorizations of ideals. We will not even attempt to write them
down, however. (One might ask why we went all the way up to Q(ζ23) to give our
counterexample. The answer is fairly remarkable: for m ≤ 22, every ring Z[ζm] is
a UFD.)

Let us consider one last example. Take K = Q(
√−3) and R = Z[

√−3]. Recall
that for this field we already suspected that something was wrong, as we had another
possible choice for R. It turns out that in this ring things go very wrong. First of
all, we have

4 = 2 · 2 = (1 +
√−3)(1−√−3),

and 2, 1 +
√−3 and 1 − √−3 are all easily checked to be irreducible. Thus R is

not a UFD.
This time, however, we do not even have unique factorization of ideals. Let a

be the ideal
(
2, 1 +

√−3
)
. Then we compute

a2 =
(
4, 2 + 2

√−3, (1 +
√−3)2

)

=
(
4, 2 + 2

√−3,−2 + 2
√−3

)

=
(
4, 2 + 2

√−3
)

=
(
2
)(

2, 1 +
√−3

)

=
(
2
)
a.

But a 6= (2), since 1 +
√−3 /∈ (2). Thus we have an example of non-unique

factorization of ideals.
Luckily, we did have another choice for this ring. In fact, the ring R′ =

Z[−1+
√−3
2 ] not only has unique factorization of ideals, it is actually a UFD. (See

Exercise 2.5. Note that in this ring,
(
2, 1 +

√−3
)

=
(
2
)

since now 2 does divide 1 +
√−3.) Thus it is certainly a much better choice than

R. The problem with R is that it is missing certain elements; we will see the full
solution in the next section.

2. Algebraic integers

2.1. Integrally closed rings. The key to our search for the right special
subring of a number field K is the “good factorization theory” condition. As we
have seen, it is unreasonable to expect unique factorization, although there is still
some hope that we may be able to get unique factorization of ideals. What we
need, then, is some condition which is weaker than UFD but still strong enough
to eliminate the problem case of Z[

√
3]. The correct condition turns out to be the

following.

Definition 2.1. Let R be an integral domain contained in some field K. An
element α ∈ K is said to be integral over R if it satisfies some monic polynomial in
R[x]. R is said to be integrally closed in K if every element in K which is integral
over R actually lies in R.

Note that the definition says nothing about monic polynomials in R[x] actually
having roots in K; it says only that if they do have roots in K, then these roots
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lie in R. Note also that there is nothing about the minimal polynomial of α in the
definition; any monic polynomial at all will do, irreducible or not.

Example 2.2. Let R = Z and K = Q. Suppose that there is some r
s ∈ Q

(with r and s assumed to be relatively prime) satisfying some monic polynomial

xn + an−1x
n−1 + · · ·+ a0 ∈ Z[x].

Then (r

s

)n

+ an−1

(r

s

)n−1

+ · · ·+ a0 = 0,

so

rn + an−1sr
n−1 + · · ·+ a0s

n = 0

s(−an−1r
n−1 − san−2r

n−2 − · · · − a0s
n−1) = rn.

Thus s divides rn. Since r and s were assumed to be relatively prime, this implies
that s = 1. Thus r

s ∈ Z. This shows that if a monic polynomial with integer
coefficients has a rational root, then the root is actually an integer; in other words,
Z is integrally closed in Q.

The exact same proof works for any UFD R with field of fractions K, thus
yielding the desired connection between integrally closed rings and UFDs.

Proposition 2.3. Let R be a UFD with field of fractions K. Then R is inte-
grally closed in K.

Example 2.4. The converse of Proposition 2.3 is false. For example, it is not
too hard to show that Z[

√−5] is integrally closed in Q(
√−5) (we will do this soon),

but as we saw before Z[
√−5] is not a UFD.

Example 2.5. Proposition 2.3 does not hold if K is replaced with a larger
field. For example, take R = Z and K = Q(i). Then the element i ∈ Q(i) satisfies
the monic polynomial x2 + 1 ∈ Z[x], but i /∈ Z; thus Z is not integrally closed in
Q(i).

Example 2.6. Let R = Z[
√−3] and K = Q(

√−3). Consider the polynomial

x2 + x + 1 ∈ R[x].

By the quadratic formula this has roots

α =
−1±√−3

2
∈ K.

These roots are not in R, so R is not integrally closed in K. On the other hand,
R′ = Z[−1+

√−3
2 ] is integrally closed in K, as we will show shortly. We have therefore

found a way to distinguish between these two choices for special subring of K.

Note that as promised the property of being integrally closed corresponds to R
being “large enough” in K; that is, R can not leave out any elements of K which
are integral over R. What we are looking for, then, is a ring R which has K as its
field of fractions, which is integrally closed in K, and which is as small as possible
given the first two conditions. That such a ring exists is not immediately clear; we
will show that it does and give a more concrete description of it in the next section.
In order to do this we first should define the notion of integral closure of a ring in
a field.
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Definition 2.7. Let R be a subring of a field K. The integral closure of R in
K is defined to the subset of K of elements which are integral over R.

Note that it is not at all clear that the integral closure R′ of R is even a ring,
let alone integrally closed if it is. (R′ contains all elements which are roots of
monic polynomials with coefficients in R, but what about monic polynomials with
coefficients in R′?)

2.2. Rings of integers. Let K be a number field. We define the ring of
integers OK of K to be the integral closure of Z in K. Thus OK consists of all
elements of K which satisfy monic polynomials in Z[x]. (While every element of
K satisfies a monic polynomial with rational coefficients and also satisfies a not
necessarily monic polynomial with integral coefficients, it is not true that every
element of K satisfies a monic polynomial with integer coefficients.) An element of
OK will be called an algebraic integer. Note that by Example 2.2, we have OQ = Z.
From now on, in order to avoid confusion we will refer to elements of Z as rational
integers.

Example 2.8. Let K = Q(
√

d) with d a squarefree integer. Then
√

d ∈ OK ,
since it satisfies the monic polynomial x2 − d ∈ Z[x]. More generally, if a, b ∈ Z,
then a + b

√
d ∈ OK , as it satisfies the polynomial

x2 − 2ax + (a2 − db2) ∈ Z[x].

Thus Z[
√

d] ⊆ OK . We will see later that this is the entire ring of integers if d ≡ 2, 3
(mod 4), but that there are more integers if d ≡ 1 (mod 4).

Our first goal is to prove that OK really is a ring. To do this we must find ana-
logues for algebraic integers and Z-modules of the fundamental relations between
algebraic numbers and Q-vector spaces. Recall that a Z-module A is said to be
finitely generated if there is some finite set a1, . . . , am ∈ A such that every element
of A can be written as a Z-linear combination of the ai.

Proposition 2.9. Let K be a number field. For any α ∈ K, the following are
equivalent:

1. α is an algebraic integer;
2. The minimal polynomial of α has coefficients in Z;
3. The ring Z[α] is a finitely generated Z-module;
4. α is contained in some subring A of K which is a finitely generated Z-module;
5. There is some finitely generated Z-submodule A of K such that αA ⊆ A.

Proof. We show first that each statement implies the next. For (1) implies
(2), suppose that α is an algebraic integer, so that it satisfies some monic polynomial
f(x) ∈ Z[x]. Let g(x) ∈ Q[x] be the minimal polynomial of α. Then g(x) divides
f(x) in Q[x]. By Exercise 1.4, g(x) actually lies in Z[x], as claimed.

To show that (2) implies (3), note that

Z[x]/(g(x)) ∼= Z[α]

where g(x) is the minimal polynomial of α. (Just consider the map sending x to
α, which is easily seen to be an isomorphism.) Since g(x) is monic, the elements
1, x, . . . , xn−1 (where n is the degree of g(x)) are a Z-basis for Z[x]/(g(x)). (This
is certainly not true if g(x) is not monic, since then, while some multiple of xn

can be written in terms of 1, x, . . . , xn−1, the power xn itself can not be. For an



34 2. RINGS OF INTEGERS

example, compare Z[x]/(x2 +1), which is generated as a Z-module by 1 and x, with
Z[x]/(2x − 1), which requires infinitely many Z-generators.) Thus 1, α, . . . , αn−1

is a Z-basis for Z[α], so Z[α] is a finitely generated Z-module. That (3) implies (4)
and (4) implies (5) is clear.

It remains to show that (5) implies (1). So suppose that there exists a finitely
generated Z-submodule A of K such that αA ⊆ A. Since A is a submodule of K
and K is Z-torsion-free (being a field of characteristic 0), A is also torsion-free.
Since A is finitely generated by hypothesis, it follows that it is a free Z-module of
finite rank. (See Appendix C, Section 5.) Let a1, . . . , am be a Z-basis for A. Since
multiplication by α maps A to itself we can view it as a map

mα : A → A;

expressing this in terms of the Z-basis a1, . . . , am, we can represent mα as an m×m
matrix M with coefficients in Z. Let f(x) be the characteristic polynomial of mα,
which is just the determinant of xI−M . The Cayley-Hamilton theorem shows that
f(M) = 0 (if you are uncomfortable with the Cayley-Hamilton theorem over rings,
note that for this calculation we can consider M as a matrix over the rationals and
apply Cayley-Hamilton there); since the map f(M) : A → A is just multiplication
by f(α) and A is torsion free, this implies that f(α) = 0. But f(x) is clearly a
monic polynomial with coefficients in Z (every characteristic polynomial is monic,
and f(x) has integer coefficients since M has integer entries), so α is an algebraic
integer, as claimed.

From this proposition it is easy to obtain the fundamental properties of OK .
Note first that the fact that the minimal polynomial of an algebraic integer has
rational integer coefficients implies that its norm and trace are rational integers.
In particular, Lemma 1.9 applies. The next lemma is just the strong form of our
second condition on the special subring.

Lemma 2.10. Let α ∈ K. Then there is some a ∈ Z such that aα ∈ OK .

Proof. Let f(x) = xn+an−1x
n−1+· · ·+a0 ∈ Q[x] be the minimal polynomial

of α. Let a ∈ Z be some integer such that af(x) ∈ Z[x]. (Such an a clearly exists.)
Let g(x) be the monic polynomial

xn + aan−1x
n−1 + a2an−2x

n−2 + · · ·+ ana0,

which is in Z[x] since af(x) is. We have

g(aα) = anαn + anan−1x
n−1 + · · ·+ ana0 = anf(α) = 0.

Thus aα satisfies a monic polynomial with integral coefficients, and therefore lies
in OK .

We next show that OK really is a ring. The proof of this is quite similar to the
proof that the set of algebraic elements of a field form a field.

Lemma 2.11. Let α, β be elements of OK . Then Z[α, β] is a finitely gener-
ated Z-submodule of K. More generally, if α1, . . . , αm are elements of OK , then
Z[α1, . . . , αm] is a finitely generated Z-submodule of K.

Proof. If a1, . . . , am are Z-generators of Z[α] and b1, . . . , bn are Z-generators
of Z[β], one shows easily that the products aibj are Z-generators of Z[α, β]. The
general case is similar.
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Proposition 2.12. The sum and product of algebraic integers of K are again
algebraic integers of K. In particular, OK is a ring.

Proof. Let α, β be in OK . By Lemma 2.11 the ring Z[α, β] is a finitely-
generated Z-module. This ring contains α + β and αβ; it now follows from Propo-
sition 2.9 that α + β and αβ are algebraic integers, and therefore that OK is a
ring.

Next we show that OK is integrally closed in K; this is our first condition.

Lemma 2.13. Let f(x) be a monic polynomial with coefficients in OK . Let
α ∈ K be a root of f(x). Then α ∈ OK . In particular, OK is integrally closed in
K.

Proof. Let f(x) = xn + an−1x
n−1 + · · · + a0 with ai ∈ OK . Let S be the

ring Z[a0, . . . , an−1]; Lemma 2.11 show that S is a finitely generated Z-module.
Now, since f(x) is monic with coefficients in S, the ring S′ = S[α] will be finitely
generated over S, with generators 1, α, . . . , αn−1 (not necessarily a basis). Thus
S′ is finitely generated over S, which in turn is finitely generated over Z; it follows
easily that S′ is finitely generated over Z. Since α ∈ S′, we now conclude by
Proposition 2.9 that α is an algebraic integer.

The last thing we need to show is that OK satisfies the third condition.

Lemma 2.14. OK ∩Q = Z.

Proof. Let α be a rational number which is integral over Z. Then by Propo-
sition 2.9 the minimal polynomial x− α has coefficients in Z; that is, α ∈ Z.

More generally, we have the following.

Lemma 2.15. Let K and L be number fields such that K ⊆ L. Then

OK = OL ∩K.

Proof. OL is the subset of L of elements which satisfy monic integer poly-
nomials. Therefore, OL ∩ K is just the set of elements of K which satisfy monic
integer polynomials; in other words, OK .

We have seen, then, that OK satisfies all of the conditions which we had set
down. In the next section we give the fundamental algebraic description of OK .

2.3. Integral bases. Let K be a number field of degree n. Recall that K is
a Q-vector space of dimension n. A natural question is whether or not a similar
statement can be made about OK as a Z-module. Remarkably, it turns out that
the strongest analogue of the Q-statement is true: OK is a free Z-module of rank
n. We will prove this fact in this section. (Note that if we knew that OK was a
finitely-generated Z-module, then the fact that it was a free Z-module would follow
immediately from the fact that it was torsion-free. However, the fact that OK is a
finitely-generated Z-module is not immediately clear. Even if we knew it was, and
thus that A is a free Z-module, it still would not be obvious that it actually had
rank n.)

To begin with, let α1, . . . , αn be a Q-basis for K. Further assume that the αi

are all algebraic integers; this can be done by applying Lemma 2.10 to any Q-basis
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for K. Since the αi satisfy no linear dependence with Q-coefficients, they certainly
satisfy no linear dependence with Z-coefficients; thus

Zα1 + Zα2 + · · ·+ Zαn

is a free Z-module of rank n. Furthermore, it is clearly contained in OK ; thus OK

contains a free Z-module of rank n. To complete the proof we will just need to find
some free Z-module of rank n which contains OK .

This direction requires a bit more care. Our basic strategy is the following: let
α1, . . . , αn be a Q-basis for K consisting entirely of algebraic integers. Then any
α ∈ K can be written uniquely as

a1α1 + · · ·+ anαn

for some ai ∈ Q. We want to find some bound on the possible denominators for the
ai in the case that α is an algebraic integer; the desired result will follow easily from
this. The bound in question is a number which comes up very often in algebraic
number theory.

Definition 2.16. Let K be a number field of degree n with complex embed-
dings σ1, . . . , σn. Let α1, . . . , αn be elements of K. The discriminant ∆(α1, . . . , αn)
of this n-tuple is defined to be the square of the determinant of the n× n matrix(

σi(αj)
)
.

Example 2.17. Take K = Q(
√

2) and α1 = 1, α2 =
√

2. Then

∆(1,
√

2) = det
(

1
√

2
1 −√2

)2

= (−
√

2−
√

2)2 = 8.

Note that the squaring kills any −1 factors coming from changing the order of
the αi, so that ∆(α1, . . . , αn) depends only on the numbers themselves and not on
the order. The discriminant has a second fundamental expression.

Lemma 2.18. Let K be a number field as above and let α1, . . . , αn be elements
of K. Then ∆(α1, . . . , αn) is equal to the determinant of the n× n matrix(

TrK/Q(αiαj)
)
.

Proof. Let A = (σi(αj)). Since det At = det A (where At is the transpose of
A), we see that ∆(α1, . . . , αn) is equal to the determinant of At · A. The ij entry
of this matrix is

n∑

k=1

σk(αi)σk(αj) =
n∑

k=1

σk(αiαj) = TrK/Q(αiαj)

by Corollary I.5.5. This proves the lemma.

Corollary 2.19. ∆(α1, . . . , αn) ∈ Q; if the αi are all algebraic integers, then
∆(α1, . . . , αn) ∈ Z.

Proof. This follows immediately from Lemma 2.18 and the corresponding
results for the trace.

Example 2.20. We will use Lemma 2.18 to recompute the discriminant of
Example 2.17. We have TrQ(

√
2)/Q(a + b

√
2) = 2a, so

∆(1,
√

2) = det
(

Tr(1) Tr(
√

2)
Tr(

√
2) Tr(2)

)
= det

(
2 0
0 4

)
= 8
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as before.

The first use of the discriminant is in determining if a collection of elements of
K is a basis; that is, α1, . . . , αn is a Q-basis for K if and only if ∆(α1, . . . , αn) is
non-zero. (See Exercise 2.20.) The second use of the discriminant is the following
result.

Proposition 2.21. Let K be a number field of degree n and let α1, . . . , αn be
a Q-basis for K consisting entirely of algebraic integers. Set ∆ = ∆(α1, . . . , αn).
Fix α ∈ OK and write

α = a1α1 + . . . + anαn

with each ai ∈ Q. Then ∆ai ∈ Z for all i.

Proof. Note that by Corollary 2.19 and Exercise 2.20 ∆ is a non-zero integer,
so the statement of the proposition makes sense. To prove the proposition, apply
the embedding σi to the expression for α, yielding

σi(α) = a1σi(α1) + · · ·+ anσi(αn).

This can be considered to be a system of n linear equations in the n “unknowns”
a1, . . . , an; that is, we have the matrix equation



σ1(α)
σ2(α)

...
σn(α)


 =




σ1(α1) σ1(α2) · · · σ1(αn)
σ2(α1) σ2(α2) · · · σ2(αn)

...
...

...
σn(α1) σn(α2) · · · σn(αn)







a1

a2

...
an




By Cramer’s rule, this has the unique solution

ai = γi/δ

where δ is the determinant of A = (σi(αj)) (so that δ2 = ∆; in particular, the
solution is unique since ∆ 6= 0) and γi is the determinant of the matrix obtained
from A by replacing the ith column by (σj(α)). Note that both γi and δ are algebraic
integers, since each entry in each matrix is. Since δ2 = ∆, we have

∆ai = δγi.

The left-hand side is rational and the right-hand side is an algebraic integer, so both
sides must be rational integers by Lemma 2.14. This proves the proposition.

Theorem 2.22. Let K be a number field with ring of integers OK . Let n =
[K : Q]. Then OK is a free Z-module of rank n.

Proof. Let α1, . . . , αn be a Q-basis for K consisting entirely of algebraic
integers. We have

Zα1 + · · ·Zαn ⊆ OK ,

and by Proposition 2.21 we have

OK ⊆ 1
∆

(Zα1 + · · ·Zαn)

where ∆ = ∆(α1, . . . , αn). Thus we have shown that OK lies between two free
Z-modules of rank n; it follows from Appendix C, Section 5 that OK itself is free
of rank n.

Corollary 2.23. Let K be a number field with ring of integers OK . Then
OK is noetherian.



38 2. RINGS OF INTEGERS

Proof. By Theorem 2.22 we can find a Z-basis α1, . . . , αn for OK . Thus, in
particular,

OK = Z[α1, . . . , αn].
(This is far weaker than Theorem 2.22, but it is all that we need at the moment.)
This allows us to define a surjective homomorphism

Z[x1, . . . , xn] ³ OK

sending xi to αi. Since Z[x1, . . . , xn] is noetherian (see Example C.3.2) and quo-
tients of noetherian rings are noetherian (see Exercise 2.8), this implies that OK is
noetherian.

A Z-basis for OK is called an integral basis. In contrast to the situation
with number fields, it is not always possible to find an integral basis of the form
1, α, α2, . . . , αn−1; that is, one can not always write OK = Z[α] for some α. This
tends to complicate things quite a bit; fortunately, in the situations we will be most
interested in we will always have an expression of this form.

We conclude with one last definition. We define the discriminant ∆K of the
number field K to be the discriminant of any integral bases of K; that this is
independent of the choice of integral basis is Exercise 2.21. The discriminant is an
extremely useful invariant of the number field, although we will not make much use
of it in this course.

2.4. Integers in quadratic fields. Let K = Q(
√

d) be a quadratic field,
where d is a squarefree integer distinct from 1. In this section we will determine
the ring of integers OK .

Lemma 2.14 tells us that OK ∩Q = Z, so we need only consider α ∈ K which
do not lie in Q. We can write such an α as α = a + b

√
d with b 6= 0. Since α is

automatically a primitive element for K, its minimal polynomial is the same as its
characteristic polynomial. This we computed in Section I.3; it is just

x2 − 2ax + (a2 − b2d).

By Proposition 2.9, α is an algebraic integer if and only if

2a ∈ Z and a2 − b2d ∈ Z.

It is immediately clear from this that Z[
√

d] ⊆ OK , as then both a, b ∈ Z; however,
it is still possible that there are additional integral elements.

Suppose first that a ∈ Z. Then a2 ∈ Z, so b2d ∈ Z. Since d is squarefree this
implies that b ∈ Z; thus we do not get any additional integers in this case.

The other case is that a = a1/2, where a1 ∈ Z is odd. Since

a2
1

4
− b2d ∈ Z

we must have b = b1/2 where b1 in Z is also odd. Substituting this in, we find that

a2
1 − b2

1d ≡ 0 (mod 4),

this being an ordinary congruence over the integers. Now, since a1 and b1 are both
odd,

a2
1 ≡ b2

1 ≡ 1 (mod 4).
Substituting these in, we find that

1− d ≡ a2
1 − b2

1d ≡ 0 (mod 4),
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so
d ≡ 1 (mod 4).

Thus in the case that d ≡ 2, 3 (mod 4) there are no algebraic integers with a half
an odd integer; if d ≡ 1 (mod 4), then there are additional integers of the form

a1 + b1

√
d

2
where a1 and b1 are odd. (Note that d ≡ 0 (mod 4) can not happen since d is
squarefree.) We summarize this in the following proposition.

Proposition 2.24. Let K = Q(
√

d) be a quadratic field with d a squarefree
integer. If d ≡ 2, 3 (mod 4), then OK = Z[

√
d] ∼= Z[x]/(x2 − d) and OK is free

of rank 2 over Z with basis 1,
√

d. If d ≡ 1 (mod 4), then OK = Z[ 1+
√

d
2 ] ∼=

Z[x]/(x2 − x + 1−d
4 ) and OK is free of rank 2 over Z with basis 1, 1+

√
d

2 .

Proof. The previous discussion makes the proposition clear in the case that
d ≡ 2, 3 (mod 4); it is easy to see that Z[

√
d] is free of rank 2 over Z with the

asserted basis. If d ≡ 1 (mod 4), then we have

OK =
{

a + b
√

d | a, b ∈ Z
}
∪

{
a + b

√
d

2
| a, b ∈ Z, a, b odd

}
.

One can then check that OK = Z[ 1+
√

d
2 ] by direct computation; we leave this to the

reader. The minimal polynomial of 1+
√

d
2 is x2 − x + 1−d

4 , which yields the other
expression for OK .

2.5. More examples of rings of integers. Given an arbitrary number field
K it is a difficult computational task to determine the ring of integers. There are
several very clever algorithms available; see [5]. We will content ourselves with
stating a few more examples.

We first consider the case of biquadratic fields; these are fields of the form K =
Q(
√

d,
√

e) = Q[x, y]/(x2− d, y2− e) where d and e are distinct squarefree integers.
That such a field has degree 4 was (pretty much) shown in Exercise 1.17. Note first
that K contains the square root of one other squarefree integer: f = de/(d, e)2.
Note also that if one starts with e and f , the third integer computed is d, and
similarly if one starts with d and e.

Proposition 2.25. Let K = Q(
√

d,
√

e,
√

f) be a biquadratic field as above.
Then we have the following possibilities for the ring of integers OK :

1. If d ≡ 3 (mod 4) and e, f ≡ 2 (mod 4), then

1,
√

d,
√

e,

√
e +

√
f

2
is an integral basis for OK .

2. If d ≡ 1 (mod 4) and e, f ≡ 2 or 3 (mod 4), then

1,
1 +

√
d

2
,
√

e,

√
e +

√
f

2
is an integral basis for OK .
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3. If d, e, f ≡ 1 (mod 4), then

1,
1 +

√
d

2
,
1 +

√
e

2
,

(
1 +

√
d

2

)(
1 +

√
f

2

)

is an integral basis for OK .

Proof. See Exercise 2.11 for the case of Q(
√

2,
√

3). The general case is sim-
ilar. Note that despite appearances the cases listed cover all possible cases, up to
re-ordering of d, e, f .

Next we consider the case of a pure cubic field K = Q( 3
√

d) ∼= Q[x]/(x3 − d)
where d is a cubefree integer. (In contrast to the quadratic case, not all cubic fields
are of this form.) Write d = ef2 where e and f are squarefree and relatively prime;
this amounts to grouping all of the p such that p2 divides d into f and putting the
rest in e.

Proposition 2.26. Let K = Q( 3
√

d) be a pure cubic field as above. Then we
have the following possibilities for the ring of integers OK .

1. If d ≡ 0, 2, 3, 4, 5, 6, 7 (mod 9), then

1,
3
√

d,
3
√

d
2

f

is an integral basis for OK .
2. If d ≡ 1 (mod 9), then

1,
3
√

d,
3
√

d
2

+ f2 3
√

d + f2

3f

is an integral basis for OK .
3. If d ≡ 8 (mod 9), then

1,
3
√

d,
3
√

d
2 − f2 3

√
d + f2

3f

is an integral basis for OK .

Proof. We omit the proof. For a sketch see [13, Chapter 2, Exercise 41].

As a final example we consider cyclotomic fields. In this case, thankfully, things
work out to be somewhat simpler.

Proposition 2.27. Let K = Q(ζm) be the mth cyclotomic field. Then OK =
Z[ζm]; thus OK has integral basis

1, ζm, . . . , ζϕ(m)−1
m .

We will prove this proposition in the case that m is a prime (which is the only
case we will need in the applications) in Section 4.
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3. Unique factorization of ideals in Dedekind domains

3.1. Dedekind domains. Our next goal is to prove that rings of integers of
number fields have unique factorization into ideals. The proof we will give works
for a larger class of rings called Dedekind domains; as is often the case in algebra,
the proof becomes somewhat easier to follow when abstracted to the appropriate
axiomatic setting.

Definition 3.1. Let R be an integral domain with field of fractions K. R is
said to be a Dedekind domain if it has the following three properties.

1. R is noetherian;
2. R is integrally closed in K;
3. Every non-zero prime ideal of R is a maximal ideal. (R is said to have

dimension ≤ 1.)

Of course, in order for this to be useful to us we must show that rings of integers
are Dedekind domains. We will need the following useful lemma in the proof.

Lemma 3.2. Let K be a number field and let a be a non-zero ideal of OK . Then
a ∩ Z is non-zero; that is, a contains some non-zero integer.

Proof. Let α be any non-zero element of a; in particular, α is an algebraic
integer. We claim that NK/Q(α) ∈ a; since it is a rational integer, this will prove
the lemma.

In order to prove this we will need to consider K as a subfield of the complex
numbers. So let σ : K ↪→ C be some fixed complex embedding of K. Let α1, . . . , αn

be the images of α under the different complex embeddings of K, ordered so that
α1 = σ(α). By Corollary I.5.5 we have

NK/Q(α) = α1 · · ·αn.

Set α′ = α2 · · ·αn. α′ is an algebraic integer since it is a product of algebraic
integers, and it is in σ(K) since

α′ =
NK/Q(α)

α1

and both factors on the right are in σ(K). Thus α′ is in σ(OK). Let α′′ ∈ OK be
such that σ(α′′) = α′. Since a is an ideal and α ∈ a we have

α′′α ∈ a;

since α′′α = NK/Q(α) this completes the proof.

Proposition 3.3. Let K be a number field. Then the ring of integers OK is a
Dedekind domain.

Proof. ThatOK is noetherian is Corollary 2.23, and that it is integrally closed
in K is Lemma 2.13. Thus it remains to show that every non-zero prime ideal of
OK is maximal. So let p be a non-zero prime ideal of OK . By Lemma 3.2 there is
some non-zero rational integer m in p. (We will see later that m could be taken to
be a prime number, but we don’t need this at the moment.) Thus there is a natural
surjection

OK/
(
m

)
³ OK/p.

Now, by Theorem 2.22, OK is a free Z-module of rank n = [K : Q]. It follows
easily that OK/(m) is finite and has size mn. Since this ring surjects onto OK/p,
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it follows that OK/p is finite. Finally, since p is prime OK/p is an integral domain;
since it is also finite, Exercise 2.6 implies that it is actually a field, so that p is a
maximal ideal, as claimed.

There are other examples of Dedekind domains that come up in mathemat-
ics (for example, the local ring of a nonsingular point on an algebraic curve is a
Dedekind domain), but we will not take the time to consider them here.

Before we begin the proof of unique factorization into ideals, let us consider
briefly some of the peculiarities of ideal arithmetic. The main issue is that every-
thing seems to happen backwards. For example, let (m) and (n) be ideals in Z.
Then the ideal (m)(n) = (mn) is smaller (as a set) than either of the ideals (m)
and (n), although the integer mn is larger in absolute value than either m or n.
Thus the larger the number, the smaller the ideal. The same sort of behavior holds
in arbitrary Dedekind domains, and one must always remember to take it into ac-
count. In particular, in a Dedekind domain the prime ideals are the largest ideals
even though one would usually think of them as being the “smallest” elements.

3.2. Invertible ideals. Let R be a Dedekind domain with field of fractions K
and let a be a non-zero ideal of R. The key step in the proof of unique factorization
of ideals is to show that there is some other ideal b of R such that ab is principal;
after we prove this result, the remainder of the proof is pretty easy, as it is easy to
do manipulations with principal ideals.

We will eventually need to prove that every ideal of R equals a product of prime
ideals. We begin with a weaker statement.

Lemma 3.4. Let a be a non-zero ideal of R. Then there exist (not necessarily
distinct) non-zero prime ideals p1, . . . , pk of R such that

a ⊇ p1 · · · pk.

Proof. Let S be the set of non-zero ideals of R which do not contain a product
of non-zero prime ideals. Suppose that S is non-empty. Since R is noetherian S
has a maximal element, say a. a is certainly not prime, since then it would contain
a product of prime ideals (namely, itself). Thus there exist α, β ∈ OK such that
α, β /∈ a but αβ ∈ a. Consider now the ideals a+

(
α
)

and a+
(
β
)
, which are strictly

larger than a and thus not in S. Therefore a +
(
α
)

and a +
(
β
)

both contain a
product of non-zero prime ideals, by the definition of S. But then the same is true
of (

a + (α)
)(

a + (β)
)

= a · a + αa + βa + αβ ⊆ a.

This is a contradiction, so S is empty; this proves the lemma.

Note that the proof of this lemma is very similar to the proof of Proposi-
tion C.3.3.

The next step is to show that pairs of ideals of R can be distinguished from
each other by a single element of K, even though the ideals themselves may not be
principal. We will only need this at the moment in the case that one of the ideals
is all of R, so we prove only this version.

Lemma 3.5. Let a be a non-zero ideal of R such that a 6= R. Then there exists
γ ∈ K such that γ /∈ R and γa ⊆ R.
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The lemma just says that a is significantly distinct from R in the sense that
there is some non-integral element of K we can multiply it by which will not cause
the ideal to become non-integral. R itself certainly does not have this property, for
example.

Proof. Fix any non-zero α in a. By Lemma 3.4 the principal ideal
(
α
)

contains
some product of non-zero prime ideals; choose (not necessarily distinct) primes
p1, . . . , pk such that (

α
) ⊇ p1 · · · pk

and k is as small as possible. Since R is noetherian, it is also true that a is contained
in some maximal ideal p. (Some might claim that this statement is true independent
of whether or not R is noetherian.) Thus

p ⊇ a ⊇ (
α
) ⊇ p1 · · · pk.

It follows from Exercise 2.9 that p contains one of the pi; we assume without loss
of generality that it is p1. Since R is Dedekind, p1 is a maximal ideal, and thus
p = p1.

Now, since
(
α
)

contains no product of k − 1 prime ideals, there must exist
some β ∈ p2 · · · pk such that β /∈ (

α
)
. Set γ = β/α. We claim that γ satisfies the

conditions of the lemma. First of all, γ /∈ R since β /∈ (
α
)
. For the other part, if

α′ ∈ a, then

γα′ =
βα′

α
.

But α′ ∈ a ⊆ p = p1, so
βα′ ∈ p1p2 · · · pk ⊆

(
α
)
;

thus γα′ = βα′/α ∈ R, as claimed.

We are now in a position to prove that every ideal of R is “invertible”, using
the above two lemmas and the fact that R is integrally closed in K. (Note that we
used the fact that R is noetherian very explicitly in Lemma 3.4 and the fact that
R has dimension ≤ 1 in Lemma 3.5.)

Proposition 3.6. Let R be a Dedekind domain and let a be a non-zero ideal
of R. Then there is some non-zero ideal b of R such that ab is principal.

Proof. Fix any non-zero α ∈ a and set

b = {β ∈ R | βa ⊆ (
α
)}.

One checks easily that b is a non-zero ideal, and by definition we have ab ⊆ (
α
)
.

We will prove that we have equality.
To do this, we consider

c =
1
α

ab.

One checks immediately that c is an ideal of R, and to show that ab =
(
α
)

is visibly
the same as to show that c = R. So suppose that c 6= R. Then by Lemma 3.5 we
can find γ ∈ K such that γ /∈ R and γc ⊆ R. We will show that γ is satisfies a
monic polynomial with coefficients in R; since R is integrally closed in K, this will
imply that γ ∈ R, which is a contradiction.



44 2. RINGS OF INTEGERS

We want to apply the methods of Proposition 2.9 (5) ⇒ (1). At the moment
we have a submodule c of K such that γc ⊆ R, which isn’t quite good enough.
Note, however, that b ⊆ c since α ∈ a. Thus

γb ⊆ γc ⊆ R.

We will show that γb ⊆ b.
So, take an arbitrary element β ∈ b. We want to show that γβ ∈ b. To do this

we will show that for all α′ ∈ a, we have

γβα′ ∈ (
α
)
;

this will imply that γβ ∈ b by the definition of b. (Note that γβ ∈ R since
γβ ∈ γb ⊆ γc ⊆ R.) So fix α′ ∈ a. Then βα′ ∈ (

α
)

by definition of b, so we can
write βα′ = αδ for some δ ∈ R. Now, visibly δ ∈ c, so γδ ∈ γc ⊆ R. So, finally,

γβα′ = (γδ)α ∈ (
α
)
.

Thus γβ ∈ b; since this is true for all β ∈ b, we have γb ⊆ b. But b is an ideal of R,
and thus finitely generated over R. We can not directly apply Proposition 2.9, since
that requires that b be finitely generated over Z, but the same method as used there
constructs a monic polynomial with coefficients in R which γ satisfies. Specifically,
let b1, . . . , bk be a finite R-generating set for b (we do not require that they are
a basis; this is important, since b need not be free), and let A be the matrix for
multiplication by γ with respect to this basis. The Cayley-Hamilton theorem still
applies to show that γ satisfies the characteristic polynomial of this matrix, which
is a monic polynomial with coefficients in R. (Convince yourself that it doesn’t
matter that the bi are not a basis.) Since R is integrally closed, this implies That
γ ∈ R, which is the desired contradiction.

3.3. Factorizations of ideals. With Proposition 3.6 in hand it will not be
difficult to prove unique factorization of ideals. We first give some useful preliminary
results. We continue to let R be a Dedekind domain with field of fractions K.

Lemma 3.7. Let a, b, c be ideals of R. Suppose that ab = ac. Then b = c.

Proof. Let a′ be an ideal of R such that aa′ is principal; a′ exists by Propo-
sition 3.6. Let α be a generator of aa′. Then

a′ab = a′ac

αb = αc

which implies that b = c.

This lemma is not true if R is not a Dedekind domain; see the case of Z[
√−3]

in Section 1.4.
If a and b are ideals of R, we say that b divides a if there is some third ideal

c such that a = bc. Note in particular that this implies that b ⊇ a; in Dedekind
domains these statements are actually equivalent.

Lemma 3.8. Let a and b be ideals of R. Then b divides a if and only if b ⊇ a.

Proof. We have already seen one direction, so suppose that b ⊇ a. Let b′ be
such that bb′ is principal, say bb′ =

(
β
)
. One verifies easily that c = 1

β b′a is an
ideal of R (using the fact that b ⊇ a). We compute

bc =
1
β

bb′a =
1
β

(
β
)
a = a,
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so b divides a, as claimed.

We now prove the unique factorization theorem. We will say that an ideal a of
R factors into primes if we can write

a = p1 . . . pk

where the pi are non-zero prime ideals of R. We will say that a factors uniquely
into primes if any two such factorizations are the same up to rearrangement of
the factors. (Note that the whole business of units and associates does not enter
into these definitions since units are irrelevant on the level of ideals and associates
generate the same ideal.)

Theorem 3.9. Let R be a Dedekind domain. Then every non-zero ideal of R
factors uniquely into prime ideals.

Proof. We first show that every non-zero ideal of R actually factors into
primes. Let S be the set of non-zero ideals of R which do not factor into primes.
Suppose that S is non-empty. Since R is noetherian, S has a maximal element,
say a. We know that a is contained in some maximal ideal p; by Lemma 3.8 this
implies that a = pb for some ideal b. Lemma 3.8 now implies that b ⊇ a; in fact,
we also have b 6= a since if it did, Lemma 3.7 would imply that R = p, which it
does not. Thus b /∈ S, since a is a maximal element of S, so it factors into primes;
now so does a = pb, which is a contradiction. Thus S is empty, so every non-zero
ideal of R factors into primes.

We now show that this factorization is unique. Let a be an ideal with two
factorizations, say

p1 · · · pr = a = q1 · · · qs.

Lemma 3.8 shows that p1 ⊇ q1 . . . qs, and now Exercise 2.9 implies that p1 ⊇ qi

for some i. Reordering the qj if necessary, we assume that p1 ⊇ q1. Since every
non-zero prime of R is maximal, this implies that p1 = q1. Using Lemma 3.7 we
can cancel p1 = q1 from both sides, leaving us with

p2 · · · pr = q2 · · · qs.

Continuing in this way we find that r = s and that the factors on each side are
identical. This proves the theorem.

4. Rings of integers in cyclotomic fields

Let p be a rational prime and let K = Q(ζp). We write ζ for ζp for this section.
Recall that K has degree ϕ(p) = p − 1 over Q. We wish to show that OK = Z[ζ].
Note that ζ is a root of xp − 1, and thus is an algebraic integer; since OK is a ring
we have that Z[ζ] ⊆ OK . We need to show the other inclusion.

Following [14], we give a proof without assuming unique factorization of ideals.
We begin with some norm and trace computations. Let j be any integer. If j is
not divisible by p, then ζj is a primitive pth root of unity, and thus its conjugates
are ζ, ζ2, . . . , ζp−1. Therefore

TrK/Q(ζj) = ζ + ζ2 + · · ·+ ζp−1 = Φp(ζ)− 1 = −1.

If p does divide j, then ζj = 1, so it has only the one conjugate 1, and

TrK/Q(ζj) = p− 1.
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By linearity of the trace, we find that

TrK/Q(1− ζ) = TrK/Q(1− ζ2) = · · · = TrK/Q(1− ζp−1) = p.

We also need to compute the norm of 1− ζ. For this, we use the factorization

xp−1 + xp−2 + · · ·+ 1 = Φp(x) = (x− ζ)(x− ζ2) · · · (x− ζp−1);

plugging in x = 1 shows that

p = (1− ζ)(1− ζ2) · · · (1− ζp−1).

Since the 1− ζj are the conjugates of 1− ζ, this shows that

NK/Q(1− ζ) = p.

The key result for determining the ring of integers OK is the following.

Lemma 4.1.
(1− ζ)OK ∩ Z = pZ.

Proof. We saw above that p is a multiple of 1− ζ in OK , so the inclusion

(1− ζ)OK ∩ Z ⊇ pZ

is immediate. Suppose now that the inclusion is strict. Since (1− ζ)OK ∩ Z is an
ideal of Z (check the definition) containing pZ and pZ is a maximal ideal of Z, we
must have

(1− ζ)OK ∩ Z = Z.

Thus we can write
1 = α(1− ζ)

for some α ∈ OK . That is, 1 − ζ is a unit in OK . But this is impossible by
Lemma 1.9, since we know that 1− ζ has norm p, while units have norm ±1. This
is a contradiction, which proves the lemma.

Corollary 4.2. For any α ∈ OK ,

TrK/Q
(
(1− ζ)α

) ∈ p · Z.

Proof. We have

TrK/Q
(
(1− ζ)α

)
= σ1((1− ζ)α) + · · ·+ σp−1((1− ζ)α)

= σ1(1− ζ)σ1(α) + · · ·+ σp−1(1− ζ)σp−1(α)

= (1− ζ)σ1(α) + · · ·+ (1− ζp−1)σp−1(α)

where the σi are the complex embeddings of K (which we are really viewing as
automorphisms of K) with the usual ordering. Furthermore, by Exercise 2.12 1−ζj

is a multiple of 1− ζ in OK for every j 6= 0. Thus

TrK/Q
(
α(1− ζ)

) ∈ (1− ζ)OK .

Since the trace is also a rational integer, Lemma 4.1 completes the proof.

Proposition 4.3. Let p be a prime number and let K = Q(ζp) be the pth

cyclotomic field. Then
OK = Z[ζp] ∼= Z[x]/(Φp(x));

thus 1, ζp, . . . , ζp−2
p is an integral basis for OK .
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Proof. Let α ∈ OK and write

α = a0 + a1ζ + · · ·+ ap−2ζ
p−2

with ai ∈ Q. Then

α(1− ζ) = a0(1− ζ) + a1(ζ − ζ2) + · · ·+ ap−2(ζp−2 − ζp−1).

By the linearity of the trace and our above calculations we find that

TrK/Q
(
α(1− ζ)

)
= pa0.

By Corollary 4.2 we also have

TrK/Q
(
α(1− ζ)

) ∈ pZ,

so a0 ∈ Z.
Next consider the algebraic integer

(α− a0)ζ−1 = a1 + a2ζ + · · ·+ ap−2ζ
p−3;

this is an algebraic integer since ζ−1 = ζp−1 is. The same argument as above shows
that a1 ∈ Z, and continuing in this way we find that all of the ai are in Z. This
completes the proof.

One can use an almost identical proof in the case where ζ is a pk-root of unity
for some k. The case of ζm where m has multiple prime factors is usually handled
by a general lemma on rings of integers in compositums of number fields (see [13,
Chapter 2, Theorem 12]).



CHAPTER 3

Prime Splitting

In this chapter we will investigate how to explicitly factor ideals in rings of
integers of number fields. A common theme will be considering ideals of one ring
in another. Specifically, we will often have the following situation: K and L will
be number fields with K ⊆ L (so OK ⊆ OL), a will be an ideal of OK , and we will
consider the ideal aOL of OL generated by a. We will be especially interested in
the case where a = p is a prime of OK ; determining how pOL factors into primes
of OK (even though p is prime in OK , it doesn’t still have to be prime in OL) will
be the key to our factorization results.

One other construction which is sometimes useful is to take a prime P of OL

and to consider the ideal P ∩ OK of OL; this ideal is necessarily prime since there
is an injection

OK/P ∩ OK ↪→ OL/P

and subrings of integral domains are again integral domains.
Very often we will be considering the case of an extension K/Q, in which case

the relevant ideals are of the form pOK for rational primes p. Note that we could
also write these ideals as

(
p
)
, assuming that the ring the principal ideal is formed

in is clear from context.

1. Example : Quadratic number fields

1.1. The prime ideals. Before we restrict to the case of quadratic number
fields, we prove the following useful fact about prime ideals.

Lemma 1.1. Let K be a number field and let p be a non-zero prime ideal of
OK . Then p contains a rational prime.

Proof. By Lemma II.3.2 we know that p contains a non-zero integer. Let n
be the smallest positive integer in p; n is not 1 since p 6= OK . Suppose that n is
not prime in Z. Then n factors as ab for some a, b ∈ Z+; since p is a prime ideal
it must contain at least one of a and b. But both of these factors are smaller than
n, which contradicts the definition of n. Thus n must be prime, which proves the
lemma.

Lemma 1.1 tells us that every prime of OK contain a rational prime; it then
follows from Lemma II.3.8 that all non-zero primes of OK divide an ideal of the
form pOK for some prime p of Z. In particular, we can determine all primes of OK

simply by determining the factorization of these ideals pOK . Our main results will
be explicit determinations of these factorizations.

In the calculations below we will be working with polynomials both in Z[x] and
in Fp[x]. We will write ḡ(x) for polynomials in Fp[x], and we will then let g(x)

51
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denote some choice of a polynomial in Z[x] reducing modulo p to ḡ(x); the precise
choice of g(x) will never matter.

We now restrict to the case of quadratic number fields. Let K = Q(
√

d) be
a quadratic number field, where d is a squarefree integer. Set α =

√
d if d ≡ 2, 3

(mod 4) and α = 1+
√

d
2 if d ≡ 1 (mod 4), so that OK = Z[α]. Let f(x) be the

minimal polynomial of α, so that f(x) = x2 − d if d ≡ 2, 3 (mod 4) and f(x) =
x2 − x + 1−d

4 if d ≡ 1 (mod 4).
Let p be a rational prime. To determine the factorization of the ideal pOK in

OK we will compute in an easier setting. Specifically, pOK is the kernel of the map

OK → OK/pOK ,

and we will find a second expression for this kernel. To do this, recall that OK
∼=

Z[x]/(f(x)), where under the isomorphism α corresponds to x. We now have

OK/pOK
∼=

(
Z[x]/f(x)

)
/p ∼= Z[x]/(p, f(x)).

This last ring is isomorphic to

Fp[x]/(f̄(x)),

and here we can finally compute easily.
There are three possibilities for the factorization of f̄(x) in Fp[x]. First of

all, f̄(x) could be irreducible. Second, f̄(x) could factor as a product of distinct,
monic linear (and therefore irreducible) polynomials. Third, f̄(x) could factor as
the square of a single monic linear polynomial. We will consider all three cases
separately.

Suppose first that f̄(x) is irreducible in Fp[x]. Then Fp[x]/(f̄(x)) is a field, so
OK/pOK is as well. pOK is therefore a prime ideal of OK , by the definition of
prime ideal, so it does not factor any further.

Before we do the next case, let us determine exactly what all of these maps are,
since this will be important in determining the kernel. The sequence of maps is

OK
//

∼=
²²

OK/pOK

∼=
²²

Z[x]/(f(x)) // Z[x]/(p, f(x))
∼= // Fp[x]/(f̄(x))

Both of the horizontal maps of the square are the natural quotient maps, and the
two vertical isomorphisms send α to x. The last horizontal isomorphism simply
sends x to x. (All maps always send 1 to 1, of course, which determines what
happens to all of Z.) The ideal pOK has now been expressed as the kernel of the
map

OK → Fp[x]/(f̄(x))

sending α to x.
Suppose now that f̄(x) factors as ḡ(x)h̄(x) in Fp[x], where ḡ(x) and h̄(x) are

distinct, monic, linear polynomials. Then the Chinese remainder theorem (see
Exercise 3.5) gives an isomorphism

Fp[x]/(f̄(x))
∼=−→ Fp[x]/(ḡ(x))× Fp[x]/(h̄(x))

sending x to (x, x). Note that both of these factors are fields since ḡ(x) and h̄(x)
are irreducible in Fp[x]; in fact, they are both isomorphic to Fp.
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Consider now the composite map

OK → Fp[x]/(ḡ(x))× Fp[x]/(h̄(x))

sending α to (x, x), which still has kernel pOK . The kernel into the first factor is
the ideal

(
p, g(α)

)
of OK (since α maps to x in this factor), and the kernel into the

second factor is
(
p, h(α)

)
. Thus the kernel of the map (which by construction is

just pOK) can also be written as
(
p, g(α)

) ∩ (
p, h(α)

)
;

however, these ideals are easily seen to be relatively prime (see Exercise 3.3), so
Exercise 3.4 shows that

(
p, g(α)

) ∩ (
p, h(α)

)
=

(
p, g(α)

)(
p, h(α)

)
.

Furthermore, both of these ideals are prime, since as we saw above

OK/(p, g(α)) ∼= Fp[x]/(ḡ(x)), OK/(p, h(α)) ∼= Fp[x]/(h̄(x))

are fields. Thus we have determined the prime factorization

pOK =
(
p, g(α)

)(
p, h(α)

)

of pOK . (Note that it does not matter which lifts of ḡ(x) and h̄(x) are chosen, since
any two lifts differ by multiples of p and p lies in these ideals.)

The last case is the case where f̄(x) = ḡ(x)2 for some monic, linear polynomial
ḡ(x) ∈ Fp[x]. In this case the above analysis does not quite work since the Chinese
remainder theorem does not apply. However, it suggests strongly that

pOK =
(
p, g(α)

)2
,

and this we can check directly. We check the case where d ≡ 2, 3 (mod 4) and
p 6= 2; the other cases are similar. We have that f̄(x) = x2− d is a square in Fp[x].
One checks easily that this implies that p divides d (since p 6= 2), so we can take
g(x) = x. Thus the claim is that

pOK =
(
p, α

)2
.

To check this, we simply compute
(
p, α

)(
p, α

)
=

(
p2, pα, α2

)
.

Since α2 = d is divisible by p, every generator of the ideal is divisible by p. Fur-
thermore, since d is squarefree, p2 does not divide d; it follows that p is a linear
combination of p2 and d, so that p lies in the ideal. Thus the ideal is simply pOK

as claimed.
We summarize our results in a proposition.

Proposition 1.2. Let K = Q(
√

d) be a quadratic number field with d a square-
free integer and let

f(x) =

{
x2 − d d ≡ 2, 3 (mod 4);
x2 − x + 1−d

4 d ≡ 1 (mod 4).

Let p be a rational prime and let

f̄(x) = ḡ1(x)e1 · · · ḡr(x)er
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be the factorization of f̄(x) in Fp[x]. (Of course, we have r = 1 or 2 and ei = 1 or
2.) Then the factorization of pOK into primes of OK is

pOK =
(
p, g1(α)

)e1 · · · (p, gr(α)
)er

.

We will say that pOK is inert in K if it is a prime ideal in OK ; that it splits
in K if it is a product of distinct prime ideals in OK ; and that it ramifies in K
if it is the square of a prime ideal. Our above results show that pOK is inert if
and only if f(x) is irreducible modulo p; it splits if and only if f(x) factors into
distinct linear factors; and it ramifies if and only if f(x) is the square of a linear
polynomial. Determination of the ramification in a number field turns out to be of
great importance, and our above analysis yields the following result.

Corollary 1.3. Let K = Q(
√

d) be a quadratic number field with d a square-
free integer. If d ≡ 1 (mod 4), then a prime of Z is ramified in OK if and only if
it divides d. If d ≡ 2, 3 (mod 4), then a prime of Z is ramified in OK if and only
if it is 2 or it divides d.

Proof. First take d ≡ 2, 3 (mod 4). Modulo 2 we have

x2 − d ≡ (x− d)2 (mod 2),

so p = 2 is always ramified. It was shown above that otherwise ramification occurs
if and only if p divides d, which completes the analysis in this case.

When d ≡ 1 (mod 4), x2−x+ 1−d
4 is never a square modulo 2, since all squares

have no linear term. Thus p = 2 never ramifies. The fact that all p dividing d do
ramifiy follows from the determination of the roots of x2−x+ 1−d

4 by the quadratic
formula; we leave the details to the reader.

Example 1.4. Let K = Q(
√−5) and OK = Z[

√−5]. Let us factor the first
few primes. First take p = 2. Then

x2 + 5 ≡ (x + 1)2 (mod 2),

so 2OK ramifies:
2OK =

(
2,
√−5 + 1

)2
.

For p = 3, we have
x2 + 5 ≡ (x + 1)(x + 2) (mod 3),

so 3OK splits as
3OK =

(
3,
√−5 + 1

)(
3,
√−5 + 2

)
.

(Note that these factorizations agree with those in Chapter 2, Section 1.4.) For
p = 5,

x2 + 5 ≡ x2 (mod 5),
so

5OK =
(
5,
√−5

)2
.

Note that the second ideal is just the principal ideal
(√−5

)
, since

√−5 divides 5
in Z[

√−5]. This illustrates the general fact that the above algorithm does not tell
you whether or not the factors are principal ideals. Note also that 2OK and 5OK

are the only primes which ramify in K, as we proved above that in this case that
either p = 2 or p divides d = −5.

Continuing,
x2 + 5 ≡ (x + 3)(x + 4) (mod 7),
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so
7OK =

(
7,
√−5 + 3

)(
7,
√−5 + 4

)
.

Next, x2 + 5 is irreducible in F11[x], so 11OK is still a prime ideal in Z[
√−5]. For

a final example, take p = 29. Then

x2 + 5 = (x + 13)(x + 16) (mod 29),

so
29OK =

(
29,

√−5 + 13
)(

29,
√−5 + 16

)
.

In this case, however, we also find the element factorization

29 = (3− 2
√−5)(3 + 2

√−5).

One can show with a little calculation that
(
29,

√−5 + 13
)

=
(
3− 2

√−5
)

(
29,

√−5 + 16
)

=
(
3 + 2

√−5
)
,

so we actually have the ideal factorization
(
29

)
=

(
3− 2

√−5
)(

3 + 2
√−5

)

of
(
29

)
into principal ideals.

1.2. Quadratic forms. There are many deep and important connections be-
tween quadratic forms and the splitting of primes in quadratic fields. In this section
we investigate some of the simplest; for more information on this subject, see [7].

We begin by refining our results of the previous section. Let K = Q(
√

d)
and let p be a a rational prime. Recall that the behavior of the prime ideal pOK

was determined by the factorization of a certain polynomial in Fp[x]. The various
behaviors of pOK are captured well by the Legendre symbol.

Definition 1.5. Let p be an odd prime. We define the Legendre symbol
( ·

p

)
: Z/pZ→ {0,±1}

by

(
a

p

)
=





1 if a is a non-zero square modulo p;
0 if a ≡ 0 (mod p);
−1 if a is not a square modulo p.

By abuse of notation we use the same symbol for a ∈ Z.

The fundamental properties of the Legendre symbol are in Exercise 3.9 and
Exercise 3.10. It is possible to extend the definition of the Legendre symbol to
include the case p = 2, but we will not do so here.

Proposition 1.6. Let K = Q(
√

d) be a quadratic number field and let p be an
odd rational prime. Then the prime ideal pOK splits in K if and only if

(
d
p

)
= 1; it

ramifies in K if and only if
(

d
p

)
= 0; and it is inert in K if and only if

(
d
p

)
= −1.
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Proof. First suppose that d ≡ 2, 3 (mod 4). Then the behavior of pOK is
determined by the factorization of the polynomial x2−d in Fp[x]. If d ≡ 0 (mod p),
then this polynomial has the repeated factor x, so pOK ramifies; if d is a non-zero
square modulo p, then it splits into distinct linear factors, so pOK splits; and if d
is not a square modulo p, then it does not factor, so pOK is inert. This is precisely
the statement of the proposition in this case.

Now take d ≡ 1 (mod 4). This time the behavior is determined by the factor-
ization of the polynomial x2 − x + 1−d

4 in Fp[x]. By the quadratic formula (which
applies since p 6= 2), this polynomial has roots

1±
√

d

2
,

from which the same analysis as above proves the proposition.

We now turn to quadratic forms. Recall that in the cases of Q(i),Q(
√−2)

and Q(ζ3) = Q(
√−3) the natural quadratic form to study were the “norm forms”

x2 + y2, x2 + 2y2 and x2 − xy + y2. If d ≡ 2, 3 (mod 4), then the appropriate
quadratic form is

NK/Q(x + y
√

d) = x2 − dy2,

while if d ≡ 1 (mod 4), then it is

NK/Q

(
x + y

1 +
√

d

2

)
= x2 + xy +

1− d

4
y2.

(We get a different quadratic form for Q(
√−3) here because we are using a different

generator of the field; we nevertheless will obtain an equivalent result.) Write
qK(x, y) for the quadratic form attached to K. Then an integer n can be written
as qK(x, y) if and only if n is the norm of some element of OK .

Note in particular that we can not at the moment study “natural” quadratic
forms like x2+3y2; the correct quadratic form for Q(

√−3) is x2+xy+y2. To study
other quadratic forms one must work in certain subrings of OK , where factorization
is more complicated; we won’t go into it here.

The basic result is the following.

Proposition 1.7. Let K = Q(
√

d) be a quadratic number field and let qK(x, y)
be its norm quadratic form. Let p be a positive rational prime number. Then (at
least) one of ±p is of the form qK(x0, y0) for some x0, y0 ∈ Z if and only if p splits
(or ramifies) in K into principal ideals. If d < 0, then it is always p which is of
this form, and never −p.

Proof. Suppose first that p factors into principal ideals in OK , say pOK =(
π
)(

π′
)
. Then ππ′ is an associate of p, say ππ′ = up for some unit u. Thus

N(π)N(π′) = N(u)N(p) = ±p2

by Lemma II.1.9. It follows that N(π) = ±N(π′) = ±p, which gives the desired
expression for p.

Now suppose that ±p is of the form qK(x0, y0) for some x0, y0 ∈ Z. By the
definition of qK(x, y),

±p = NK/Q(x0 + y0α),

where α is
√

d or 1+
√

d
2 , as appropriate. This implies that

pOK =
(
x0 + y0α

)(
x0 + y0ᾱ

)
,
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where ᾱ is the conjugate of α. Thus pOK splits (or possibly ramifies) into principal
ideals. The fact that p must be positive for d < 0 follows immediately from the
fact that qK(x, y) is positive definite in that case.

Corollary 1.8. With the above notation, ±p = qK(x0, y0) for some x0, y0 ∈
Z only if

(
d
p

)
= 0 or 1. The converse is also true if OK is a PID.

In non-PID cases our answer is still far from complete. We will return to this
question and give some surprising results in the next chapter.

2. Abstract factorization of primes

2.1. Factorization of rational primes. Before we extend the methods of
Section 1 to more general number fields, it will be useful to give the abstract
factorization results. We begin with the factorization of rational primes in number
fields. Let K be a number field of degree n. If p is a prime ideal of OK and p is a
rational prime, we say that p lies above p if p∩Z = pZ. It is clear from Lemma 1.1
that every non-zero prime of OK lies above a unique prime of Z, and it follows
from Lemma II.3.8 that the primes of OK lying above p are precisely those ideals
occurring in the prime factorization of pOK .

Let p be a prime of OK lying over p ∈ Z. Let e be the exact power of p
dividing pOK . We call e the ramification index of p/p and write it as e(p/p). The
factorization of pOK is thus

pOK =
∏

p∩Z=pZ
pe(p/p).

We will also need a way to measure the relative “sizes” of ideals. The most natural
way to do this is to consider the residue field OK/p, which we proved earlier is a
finite field. Since it clearly has characteristic p, it must have order pf for some f .
We define the inertial degree f(p/p) of p/p to be this integer f .

Example 2.1. Take K = Q(
√−5). Our calculations in Example 1.4 yield the

following values for e and f :

e
(
(2,
√−5 + 1)/2

)
= 2 f

(
(2,
√−5 + 1)/2

)
= 1

e
(
(3,
√−5 + 1)/3

)
= 1 f

(
(3,
√−5 + 1)/3

)
= 1

e
(
(3,
√−5 + 2)/3

)
= 1 f

(
(3,
√−5 + 2)/3

)
= 1

e
(
(5,
√−5)/5

)
= 2 f

(
(5,
√−5)/5

)
= 1

e
(
(7,
√−5 + 3)/7

)
= 1 f

(
(7,
√−5 + 4)/7

)
= 1

e
(
(11)/11

)
= 1 f

(
(11)/11

)
= 2

The values of f can be computed using expressions for quotients of Fp[x]; for
example,

OK/
(
3,
√−5 + 1

) ∼= F3[x]/
(
x + 1) ∼= F3.

It is useful to have a notion of the size of an ideal for non-prime ideals. Since
in this case we can no longer isolate a specific rational prime of interest, we define
the norm N′K/Q(a) of an ideal a to be the size of the quotient ring OK/a; that this
is finite follows easily from Lemma II.3.2 and Theorem II.2.22. (We will prove later
that the ideal norm agrees with the absolute value of the usual element norm in the
case that a is a principal ideal; hopefully this notation should cause no confusion



58 3. PRIME SPLITTING

until then.) It follows immediately from the definition of inertial degree that if p is
a prime of OK such that p ∩ Z = pZ, then

N′K/Q(p) = pf(p/p).

A first indication that the ideal norm behaves like the usual norm is given by the
following lemma.

Lemma 2.2. The ideal norm is multiplicative; that is,

N′K/Q(ab) = N′K/Q(a)N′K/Q(b)

for any non-zero ideals a, b of OK .

Proof. Suppose first that a and b are relatively prime. Then by the Chinese
remainder theorem (see Exercise 3.5) we have

OK/ab ∼= OK/a×OK/b,

from which the lemma follows immediately. It will therefore be enough to prove
that for any prime p of OK we have

N′K/Q(pm) = N′K/Q(p)m;

the lemma will then follow from unique factorization of ideals and the relatively
prime case.

Note that it is immediate from elementary group theory that

N′K/Q(pm) = #(OK/pm) = #(OK/p) ·#(p/p2) ·#(p2/p3) · · ·#(pm−1/pm).

(All quotients here are simply as abelian groups.) Thus it will suffice to show that

#(pk/pk+1) = #(OK/p)

for any k. To do this let γ be any element of pk which does not lie in pk+1; such a
γ must exist since if the containment pk ⊇ pk+1 were an equality it would violate
unique factorization of ideals. We claim that the map

OK/p // pk/pk+1

α Â // γα

is an isomorphism; we leave the details to the reader.

We can now give the fundamental relationship between the numbers e(p/p),
f(p/p) and the degree n of K/Q.

Proposition 2.3. Let K be a number field of degree n and let p be a rational
prime. Let

pOK = pe1
1 · · · per

r

be the factorization of pOK into primes of OK . (Thus ei = e(pi/p).) Set fi =
f(pi/p). Then

r∑

i=1

eifi = n.
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Proof. Both pOK and pe1
1 · · · per

r have the same norm, so by Lemma 2.2

N′K/Q(pOK) = N′K/Q(p1)e1 · · ·N′K/Q(pr)er

= pf1e1 · · · pfrer

= pf1e1+···+frer .

On the other hand, we know that OK/pOK has pn elements, since OK is a free Z-
module of rank n. Thus N′K/Q(pOK) = pn and the proposition follows immediately.

Example 2.4. Let K be a quadratic number field and let p be a rational prime.
We saw that there were three possibilities for the factorization of p: first of all, pOK

could still be prime, in which case f(pOK/p) = 2 and e(pOK/p) = 1. Next, pOK

could factor as p1p2 where f(p1/p) = f(p2/p) = 1 and e(p1/p) = e(p2/p) = 1.
Lastly, pOK could ramify as p2, in which case f(p/p) = 1 and e(p/p) = 2. In all
three cases we do indeed have the equality of Proposition 2.3.

2.2. Localizations of integer rings. Before we extend the above results to
the case of relative extensions we will need to introduce an additional piece of
machinery. Very often in algebraic number theory it is convenient to work “one
prime at a time”. More precisely, given a number field K with ring of integers OK

and given a prime p, we would like to find a larger subring of K in which the only
non-zero prime ideal is p. We will construct such a ring in this section.

The definition of the ring is actually fairly simple. We define the local ring of
OK at p to be the ring

OK,p =
{

α

β
∈ K | α ∈ OK , β ∈ OK − p

}
.

That is, OK,p consists of all elements of K which can be written as ratios of integers
with the denominator not in p. (The terminology here is influenced by algebraic
geometry. In fact, in a suitably general setting one can think of a ring of integers
OK as a curve, where the points are the non-zero prime ideals. In this setting the
ring OK,p really is the ring of regular functions on the curve OK at the point p.)
One can check easily that OK,p is actually a ring.

Example 2.5. Let K = Q. Then the local ring Z(p) is simply the subring of Q
of rational numbers with denominator relatively prime to p. (We considered such
rings in Chapter 2, Section 1.) Note that this ring Z(p) is not the ring Zp of p-adic
integers; to get Zp one must complete Z(p), which is a process which we will not go
into here.

The usefulness of OK,p comes from the fact that it has a particularly simple
ideal structure. Let a be any proper ideal of OK,p and consider the ideal a∩OK of
OK . We claim that

a = (a ∩ OK)OK,p;

that is, that a is generated by the elements of a in a ∩ OK . It is clear from the
definition of an ideal that a ⊇ (a ∩ OK)OK,p. To prove the other inclusion, let α
be any element of a. Then we can write α = β/γ where β ∈ OK and γ /∈ p. In
particular, β ∈ a (since β/γ ∈ a and a is an ideal), so β ∈ a∩OK . Since 1/γ ∈ OK,p,
this implies that α = β/γ ∈ (a ∩ OK)OK,p, as claimed.
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We can use this fact to determine all of the ideals of OK,p. Let a be any ideal
of OK,p and consider the ideal factorization of a ∩ OK in OK . Write it as

a ∩ OK = pnb

for some n and some ideal b, relatively prime to p. We claim first that bOK,p =
OK,p. To see this, note that b is not contained in p since b is assumed to be relatively
prime to p, and thus is not divisible by it. In particular, b contains elements of
OK − p; these are units in OK,p, so bOK,p = OK,p.

We now find that

a = (a ∩ OK)OK,p = pnbOK,p = pnOK,p

since bOK,p = OK,p. Thus every ideal of OK,p has the form pnOK,p for some n; it
follows immediately that OK,p is noetherian.

It is also now clear that pOK,p is the unique non-zero prime ideal in OK,p.
Furthermore, the inclusion OK ↪→ OK,p induces an injection

OK/p ↪→ OK,p/pOK,p

since pOK,p∩OK = p, as the reader can easily check. This map is also a surjection,
since the residue class of α/β ∈ OK,p (with α ∈ OK and β /∈ p) is the image of
αβ−1 in OK/p, which makes sense since β is invertible in OK/p. Thus the map
is an isomorphism. In particular, it is now abundantly clear that every non-zero
prime ideal of OK,p is maximal.

To show that OK,p is a Dedekind domain, it remains to show that it is integrally
closed in K. So let γ ∈ K be a root of a polynomial with coefficients in OK,p; write
this polynomial as

xm +
αm−1

βm−1
xm−1 + · · ·+ α0

β0

with αi ∈ OK and βi ∈ OK − p. Set β = β0β1 · · ·βm−1. Multiplying by βm we find
that βγ is the root of a monic polynomial with coefficients in OK . Thus βγ ∈ OK ;
since β /∈ p, we have βγ/β = γ ∈ OK,p Thus OK,p is integrally closed in K.

Let us summarize our results in a proposition.

Proposition 2.6. Let K be a number field and let p be a non-zero prime of
OK . Then OK,p is a Dedekind domain and every ideal of OK,p has the form pnOK,p

for some n ≥ 0. In particular, pOK,p is the only prime ideal of OK,p.

We have now shown that OK,p is a Dedekind domain with a unique non-zero
prime ideal. Such a ring is called a discrete valuation ring or a DVR. These rings
will be useful to us for the following reason.

Proposition 2.7. Let R be a discrete valuation ring. Then R is a principal
ideal domain.

Proof. Let p be the unique non-zero prime ideal of R. By unique factorization
of ideals, every ideal of R has the form pn for some n; thus it will suffice to show
that p itself is principal. Let π be any element in p but not in p2. By unique
factorization of ideals, we have πR = pn for some n ≥ 1. But we can not have
n ≥ 2, since then π would lie in p2. Thus πR = p, so p is indeed principal.

A generator of the unique non-zero prime ideal of a DVR R is called a uni-
formizer. R has a particularly simple sort of unique factorization: every α ∈ R can
be written as uπn, where u ∈ R∗ and n ≥ 0.



2. ABSTRACT FACTORIZATION OF PRIMES 61

The usefulness of OK,p comes from the fact that it has all of the information
about the prime p, but it has no other prime ideals to clutter things up. This makes
OK,p much simpler than OK , but also still useful for studying the prime p.

Example 2.8. Let p be a rational prime and consider the ring Z(p). The units
of this ring are

Z∗(p) =
{m

n
| (m, p) = (n, p) = 1

}
.

The unique prime ideal of Z(p) is
(
p
)
, and every α ∈ Z(p) can be written uniquely

as
α = upn

where u ∈ Z∗(p) and n ≥ 0.

Now let L/K be an extension of number fields of degree n. Let p be a prime
ideal of OK ; denote by OL,p the ring

{
α

β
∈ L | α ∈ OL, β ∈ OK − p

}
.

OL,p is not quite a discrete valuation ring, since we allow only denominators in
OK − p, but it will suffice for our purposes. We will need to know two key facts
about OL,p. First of all, note that pOL,p ∩ OL = pOL. Thus the natural inclusion
OL ↪→ OL,p induces an injection

OL/pOL ↪→ OL,p/pOL,p.

We claim that this map is an isomorphism. So let α/β represent a residue class
in the range, where α ∈ OL and β ∈ OK − p. We know that OK/p injects into
OL/pOL; thus β is invertible in OL/pOL. It follows that the element αβ−1 is well-
defined in OL/pOL, and it maps to α/β. Thus the map is surjective, and therefore
an isomorphism.

The second fact we need is that OL,p is a free OK,p-module of rank n. The
proof of this fact is exactly the same as the proof that OL is a free OK-module of
rank n. One begins with a basis α1, . . . , αn for L/K with each αi ∈ OL,p. Next,
the discriminant ∆ = ∆(α1, . . . , αn) lies in OK,p (using Lemma II.2.18). The same
proof as in Proposition II.2.21 shows that

OL,p ⊆ 1
∆

(OK,pα1 + . . . +OK,pαn),

and we obviously have

OK,pα1 + · · ·+OK,pαn ⊆ OL,p.

Since OK,p is a PID, these two facts combine to show that OL,p is a free OK,p-
module of rank n. (See Appendix C, Section 5.)

The fact we actually need from all of this is contained in the next proposition.

Proposition 2.9. Let L/K be an extension of number fields of degree n and
let p be a non-zero prime of OK . Then

#(OL/pOL) =
(
#(OK/pOK)

)n
.

Proof. We saw above that OL,p is a free OK,p-module of rank n. Thus
OL,p/pOL,p is a free OK,p/pOK,p-module of rank n as well. Therefore

#(OL,p/pOL,p) = #(OK,p/pOK,p)n.
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But these residue rings are isomorphic to OL/pOL and OK/pOK respectively, so
the proposition follows.

Corollary 2.10. Let L/K be an extension of number fields of degree n and
let a be a nonzero ideal of OK . Then

N′L/Q(aOL) = N′K/Q(a)n.

Proof. Since each side of the desired equality is multiplicative in a, it will
suffice to prove the result in the case that a = p is a prime of OK . In this case the
corollary is precisely Proposition 2.9.

Corollary 2.11. Let K be a number field of degree n and let α be in OK .
Then

N′K/Q(αOK) = |NK/Q(α)|.
Proof. We assume a bit more Galois theory than usual for this proof. Assume

first that K/Q is Galois. Let σ be an element of Gal(K/Q). It is clear that
σ(OK)/σ(α) ∼= OK/α; since σ(OK) = OK , this shows that

N′K/Q(σ(α)OK) = N′K/Q(αOK).

Taking the product over all σ ∈ Gal(K/Q), we have

N′K/Q(NK/Q(α)OK) = N′K/Q(αOK)n.

Since NK/Q(α) is a rational integer and OK is a free Z-module of rank n,

OK/ NK/Q(α)OK

will have order NK/Q(α)n; therefore

N′K/Q(NK/Q(α)OK) = NK/Q(αOK)n,

which completes the proof.
In the general case, let L be the Galois closure of K and set [L : K] = m. The

above argument shows that

N′L/Q(αOL) = NL/Q(α).

By Corollary 2.10 the first term is equal to N′K/Q(αOK)m, and it is easy to see that
the second term is just NK/Q(α)m. This establishes the corollary.

From now on we will often write NK/Q for both the ideal norm and the element
norm; no confusion should result.

2.3. Relative factorizations. We now extend our earlier factorization re-
sults to arbitrary extensions of number fields. Let L/K be an extension of number
fields of degree n. We first need to extend the notion of a prime of OL lying over
a prime of OK .

Lemma 2.12. Let p a non-zero prime of OK and let P be a non-zero prime of
OL. The following five conditions are equivalent.

1. P divides pOL;
2. P ⊇ pOL;
3. P ⊇ p;
4. P ∩ OK = p;
5. P ∩K = p.

Furthermore, if any of the above are satisfied, then p ∩ Z = P ∩ Z.
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Proof. See Exercise 3.7.

If p and P satisfy any of the equivalent conditions of Lemma 2.12, we say that
P lies over p and that p lies under P. Exercise 3.8 shows that every prime of OL

lies over a unique prime of OK , and that every prime of OK lies under at least one
prime of OL. Note also that by Lemma II.3.8 the primes lying over p are precisely
the primes occurring in the ideal factorization of pOL.

Now, let p and P be as above and suppose that P lies over p. We denote by
e(P/p) the exact power of P dividing pOL; it is called the ramification index of
P/p. Thus we can write

pOL =
∏

P∩OK=p

Pe(P/p).

Next, let p be the unique positive rational prime contained in p and P. Then
OK/p and OL/P are finite fields of characteristic p. Furthermore, the natural
injection OK ↪→ OL induces an injection

OK/p ↪→ OL/P,

since P ∩ OK = p by Lemma 2.12. Thus OL/P is an extension field of OK/p. We
define the inertial degree f(P/p) to be the degree [OL/P : OK/p] of this extension.
Note that

NL/K(P) = NK/Q(p)f(P/p).

We can now state and prove our fundamental result.

Theorem 2.13. Let L/K be an extension of number fields of degree n and let
p be a prime of OK . Let

pOL = Pe1
1 · · ·Per

r

be the factorization of pOL into primes of OL. Set fi = f(Pi/p). Then
r∑

i=1

eifi = n.

Proof. Taking ideal norms of both sides of the factorization of pOL, we find
that

NL/Q(pOL) = NL/Q(P1)e1 · · ·NL/Q(Pr)er

= NK/Q(p)f1e1 · · ·NK/Q(p)frer

by the definition of the fi. By Corollary 2.10 we know that NL/Q(pOL) = NK/Q(p)n,
from which the theorem now follows immediately.

Let us finish this section with some additional facts and terminology. First of
all, let M/L/K be number fields, let pK be a prime of OK , let pL be a prime of
OL lying over pK , and let pM be a prime of OM lying over pL. Then clearly pM

lies over pK , and it follows immediately from the definitions that we have

e(pM/pK) = e(pM/pL)e(pL/pK)

and
f(pM/pK) = f(pM/pL)f(pL/pK).

Next return to the case of an extension L/K of degree n and let p be a prime
of OK . Let

pOL = Pe1
1 · · ·Per

r
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be the factorization of pOL into primes of OL. Set fi = f(Pi/p). If any of the ei

are not equal to 1, then we say that p ramifies in L/K. (It is an important fact
that only finitely many primes ramify in an extension, and which primes these are
and how badly they ramify is an essential invariant of the extension.) If r = 1 and
e1 = n (so that f1 = 1), then p is said to be totally ramified in L/K:

pOL = Pn.

If r = 1 and e1 = 1 (so that f1 = n), we say that p is inert or remains primes in
L/K; this is the case where pOL is still prime. Lastly, if ei = fi = 1 for all i, we
say that p splits completely in L/K:

pOL = P1 · · ·Pn.

2.4. Factorization in Galois extensions. Let L/K be a Galois extension.
The presence of automorphisms of K causes factorizations to behave much more
regularly than in arbitrary extensions, for the simple reason that if two primes
are mapped to each other by an element of Gal(L/K), then the primes must have
isomorphic residue fields. The key fact is the following.

Lemma 2.14. Let L/K be a Galois extension and let p be a prime of OK . Let
P1, . . . , Pr be the primes of L lying over p. Then Gal(L/K) acts transitively on
this set of primes; that is, for any i and j, there exists σ ∈ Gal(L/K) such that
σ(Pi) = Pj.

Proof. Fix distinct primes P and P′ lying over p. Suppose that

σ(P) 6= P′

for all σ ∈ Gal(L/K). Using this hypothesis, by the Chinese remainder theorem
(see Exercise 3.6), we can find α ∈ OL such that

α ≡ 0 (mod P′)

and
α ≡ 1 (mod σ(P))

for all σ ∈ Gal(L/K). Consider

NL/K(α) =
∏

σ∈Gal(L/K)

σ(α) ∈ OK .

Since α ∈ P′, this norm must lie in P′ ∩ OK = p.
On the other hand, since α ≡ 1 (mod σ(P)) for all σ, we also have α /∈ σ(P);

thus
σ−1(α) /∈ P

for any σ ∈ Gal(L/K). Since as σ runs through Gal(L/K), σ−1 also runs through
Gal(L/K), we find that

NL/K(α) =
∏

σ∈Gal(L/K)

σ−1(α).

Since none of the factors lie in P and P is prime, this implies that NL/K(α) /∈ P.
Thus NL/K(α) /∈ P ∩ OK = p. But thus is a contradiction, which proves the
lemma.
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Corollary 2.15. Let L/K be a Galois extension of degree n and let p be a
prime of OK . Let

pOL = Pe1
1 · · ·Per

r

be the factorization of p in OL, and set fi = f(Pi/p). Then

f1 = f2 = · · · = fr

and

e1 = e2 = · · · = er.

In particular, reifi = n for all i.

Proof. If r = 1 then the corollary is trivial, so we assume that r ≥ 2. We will
prove that e1 = e2 and f1 = f2; the general case is the same. By Lemma 2.14 we
can find σ ∈ Gal(L/K) such that σ(P1) = P2. Applying σ to our factorization,
and using the fact that σ(p) = p since σ fixes K, we find that

pOL = σ(P1)e1σ(P2)e2 · · ·σ(Pr)er

= Pe1
2 σ(P2)e2 · · ·σ(Pr)er .

Furthermore, if σ(Pi) = P2, then Pi = σ−1(P2) = P1; thus σ(Pi) 6= P2 for i 6= 1.
Therefore Pe1

2 is the only factor of P2 occurring in this factorization of pOK ; by
unique factorization of ideals we now see that e1 must equal e2.

The fact that f1 = f2 is immediate from the fact that σ induces an isomorphism

OL/P1
∼= OL/P2.

3. Explicit factorization of ideals

3.1. Factorization of primes. Let K be a number field of degree n. For this
section we make the additional hypothesis that OK = Z[α] for some α ∈ OK , with
minimal polynomial f(x) ∈ Z[x]. (We have in mind the case K = Q(ζm), in which
case this hypothesis is satisfied.) The general case is somewhat more complicated
and we will not treat it here. Let p be a prime of Z. We wish to explicitly determine
the factorization of the ideal pOK of OK .

We will mimic the method we used in the quadratic case. Let

f̄(x) = ḡ1(x)e1 · · · ḡr(x)er

be the factorization of f̄(x) into irreducibles in Fp[x]. (As usual we will write gi(x)
for any lift of ḡi(x) to Z[x].) Let fi be the degree of ḡi(x); we have

∑
eifi = n.

We claim that each ideal

pi =
(
p, gi(α)

)

of OK is prime, and that

pOK = pe1
1 · · · per

r

We further claim that

f(pi/p) = fi.
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Some of these assertions are immediate. First of all,

OK/pi = Z[α]/(p, gi(α))
∼= Z[x]/(f(x), p, gi(x))
∼= Fp[x]/(f̄(x), ḡi(x))
∼= Fp[x]/(ḡi(x))

since ḡi(x) divides f̄(x) in Fp[x]. Since ḡi(x) is an irreducible polynomial of degree
fi, Fp[x]/(ḡi(x)) is a field of order pfi , which shows both that pi is prime and that
f(pi/p) = fi. Note also that it follows from Exercise 3.3 that the pi are relatively
prime.

Let us now relate these to the factorization of pOK . We will determine the
kernel of the quotient map

OK → OK/pOK ,

which of course is just pOK , in a different way. Note that

OK/pOK = Z[α]/pZ[α] ∼= Z[x]/(p, f(x)) ∼= Fp[x]/(f̄(x)).

The Chinese remainder theorem shows that

Fp[x]/(f̄(x)) ∼= Fp[x]/(ḡ1(x)e1)× · · · × Fp[x]/(ḡr(x)er );

thus we can consider the map OK → OK/pOK as the map

OK → Fp[x]/(ḡ1(x)e1)× · · · × Fp[x]/(ḡr(x)er

sending α to (x, . . . , x). The kernel into each factor is just
(
p, gi(α)

)
, so the kernel

of the map (which is just pOK) is
(
p, g1(α)e1

) ∩ · · · ∩ (
p, gr(α)er

)
.

Furthermore, Exercise 3.3 shows that all of these ideals are pairwise relatively prime,
so that by Exercise 3.4 the kernel is just the product

(
p, g1(α)e1

) · · · (p, gr(α)er
)
.

This shows that
pOK =

(
p, g1(α)e1

) · · · (p, gr(α)er
)
.

However, these factors are not yet primes for any i such that ei > 1.
It remains to “pull out” the ei. First, pei

i divides (p, gi(α)ei). To see this, note
that every generator of

pei
i =

(
p, gi(α)

)ei

is divisible by p except for gi(α)ei . This shows that every generator of pei
i lies in(

p, gi(α)ei
)
, so pei

i itself is contained in
(
p, gi(α)ei

)
. Lemma II.3.8 now gives the

asserted division.
We now know that pe1

1 · · · per
r divides pOK . The norm of the first term is

pf1e1 · · · pfrer = pn;

this is also the norm of pOK . This implies that the two ideals must be equal, since
if one ideal contains another and has the same norm they must be equal. This
completes the proof of the explicit factorization of pOK .
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Example 3.1. Let α be a root of the polynomial f(x) = x3 + 2x + 1 and let
K = Q(α). Exercise 3.18 shows that OK = Z[α], so we may apply the methods
of this section. Let us factor some small rational primes. Note that factoring f(x)
modulo primes is easy, since if f(x) has any factors then it will have roots; this is
no longer true for degree 4 and higher.

When p = 2, we find that

x3 + 2x + 1 ≡ (x + 1)(x2 + x + 1) (mod 2),

so
2OK =

(
2, α + 1

)(
2, α2 + α + 1

)
.

Here the first factor has inertial degree 1 and the second factor has inertial degree
2. For p = 3, f(x) is irreducible in F3[x], so 3OK factors as

(
3, f(α)

)
= (3); that is,

3OK remains prime. The reader can easily check that 5OK and 7OK also remain
prime. For p = 11, we find that

x3 + 2x + 1 ≡ (x + 2)(x2 − 2x + 6) (mod 11),

so
11OK =

(
11, α + 2

)(
11, α2 − 2α + 6

)
.

13OK also remains prime, while

x3 + 2x + 1 ≡ (x− 3)(x− 5)(x− 9) (mod 17),

so 17OK splits completely as

17OK =
(
17, α− 3

)(
17, α− 5

)(
17, α− 9

)
.

Since K has discriminant −59, Exercise 3.16 shows that 59 will be the only
prime which ramifies. One finds that

x3 + 2x + 1 ≡ (x− 14)2(x− 31) (mod 59),

so
59OK =

(
59, α− 14

)2(59, α− 31
)
.

3.2. Factoring cyclotomic polynomials. The methods of the previous sec-
tion give us a computational procedure for determining prime splitting in many
number fields, but it becomes difficult to carry out in practice as soon as the degree
of the number field becomes large. Luckily, in the important case of cyclotomic
fields we can give a good description of the factorization of cyclotomic polynomi-
als, even if it is difficult to write down the actually factors. The key result is the
following lemma, which says that the mth cyclotomic polynomial is the “universal”
polynomial for testing if an element of a field is a primitive mth root of unity.

Lemma 3.2. Let m be a positive integer and let K be a field of characteristic
not dividing m. Let α be an element of K. Then Φm(α) = 0 if and only if α is a
primitive mth root of unity.

Proof. Recall that
xm − 1 =

∏

d|m
Φd(x).

Since this factorization is in Z[x], it also makes sense in K[x]. Note also that xm−1
has no multiple roots in K, as follows immediately from the derivative test. (This
is the only place where we will use the assumption on the characteristic of K.)



68 3. PRIME SPLITTING

Suppose first that α is a primitive mth root of unity. Then α is a root of xm−1,
so it must be a root of some Φd(x) with d dividing m. Suppose that α is a root of
Φd(x) with d < m. Then, since Φd(x) divides xd − 1, αd = 1. This contradicts the
fact that α is a primitive mth root of unity, so α must be a root of Φm(x).

Conversely, suppose that Φm(α) = 0. Since Φm(x) divides xm− 1, this implies
that αm = 1; that is, α is an mth root of unity. Suppose that α is actually a
primitive dth root of unity for some divisor d of m with d < m. Then the argument
in the first half of the proof shows that Φd(α) = 0. But then α would be a double
root of xm − 1, which is a contradiction since xm − 1 does not have multiple roots.
Thus α is a primitive mth root of unity.

Let K = Q(ζm) be a cyclotomic field and let p be a rational prime. Let p
be any prime of OK = Z[ζm] lying over p. We wish to determine e = e(p/p) and
f = f(p/p). Note that by Corollary 2.15 these numbers are independent of the
choice of prime p. Put differently, in Fp[x] Φm(x) factors as

Φm(x) =
(
g1(x) · · · gr(x)

)e

where deg gi = f for all i and efr = ϕ(m).
We begin with the case that p does not divide m. Since xm−1 has no repeated

factors in Fp[x], Φm(x) doesn’t either; in particular, we must have e = 1. Thus we
are left to determine f and r. Before we do the general case, we examine the case
f = 1 to illustrate the idea. If f = 1, then Φm(x) splits into linear factors in Fp[x];
thus Φm(x) has roots in Fp. By Lemma 3.2, this implies that Fp has primitive mth

roots of unity. But F∗p is a cyclic group of order p − 1, so it has elements of exact
order m if and only if m divides p− 1; that is, if and only if

p ≡ 1 (mod m).

The above argument is reversible, so we have shown that a rational prime p splits
completely in Q(ζm) if and only if p does not divide m and p ≡ 1 (mod m).

In the general case we must go to an extension of Fp to find a primitive mth

root of unity. Let g(x) be one of the irreducible factors of Φm(x) in Fp[x]; g(x)
has degree f . Let α be a root of g(x) and set F = Fp(α) ∼= Fp[x]/(g(x)); this is
an extension of Fp of degree f . Note that α is a primitive mth root of unity since
it satisfies g(x) and thus Φm(x). Furthermore, F is clearly the smallest extension
of Fp containing a primitive mth root of unity (since it is just Fp adjoined a mth

root of unity), so we have shown that f is the degree of the smallest extension of
Fp containing a primitive mth root of unity.

Let us now determine this extension in another way. Let Fi be the unique
extension of Fp of degree i. Then F ∗i is cyclic of order pi − 1, so it contains a
primitive mth root of unity if and only if m divides pi − 1. Thus the smallest
extension of Fp containing a primitive mth root of unity will be Fi, where i is the
smallest positive integer such that

pi ≡ 1 (mod m);

that is, i is the order of p in (Z/mZ)∗. Combining this with our earlier arguments,
we obtain the following result.

Proposition 3.3. Let p be a rational prime not dividing m and let p be a prime
of Z[ζm] lying over p. Then e(p/p) = 1, f(p/p) is the order of p in (Z/mZ)∗, and
there are exactly ϕ(m)/f(p/p) primes of Z[ζm] lying over p.
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Example 3.4. Let K = Q(ζ5). The behavior of a rational prime p in OK is
determined entirely by the residue class of p in (Z/5Z)∗. If p ≡ 1 (mod 5) (for
example, p = 11), then p splits completely in OK . If p ≡ 4 (mod 5), then p splits
into 2 prime factors, each with inertial degree 2. If p ≡ 2, 3 (mod 5), then p remains
prime in OK .

For some explicit examples, we consider the primes 3, 7, 11, 19. For p = 3, 7 the
above argument shows that Φ5(x) = x4 + x3 + x2 + x + 1 is irreducible modulo p,
so 3OK and 7OK are both prime ideals of OK . For p = 19, we find that

x4 + x3 + x2 + x + 1 ≡ (x2 + 5x + 1)(x2 + 15x + 1) (mod 19),

so (
19

)
=

(
19, ζ2

5 + 5ζ5 + 1
)(

19, ζ2
5 + 15ζ5 + 1

)
.

Lastly, modulo 11 we have

x4 + x3 + x2 + x + 1 = (x + 2)(x + 6)(x + 7)(x + 8) (mod 11),

so (
11

)
=

(
11, ζ5 + 2

)(
11, ζ5 + 6

)(
11, ζ5 + 7

)(
11, ζ5 + 8

)
.

The ramified case works out somewhat differently. We will only consider the
case of the splitting of pOK in Q(ζp), which is by far the most important.

We must determine the factorization of

Φp(x) =
xp − 1
x− 1

= xp−1 + xp−2 + · · ·+ 1

in Fp[x]. By Exercise I.1.15, we see that

xp − 1 ≡ (x− 1)p (mod p),

so
Φp(x) = (x− 1)p−1

in Fp[x]. Thus
pOK =

(
p, ζp − 1

)p−1
.

Furthermore,
OK/

(
p, ζp − 1

)
= Z[ζp]/(p, ζp − 1) ∼= Z/pZ,

so
(
p, ζp − 1

)
is prime with inertial degree 1. Thus pOK is totally ramified. Note

that we actually already had a better form of this result; see Exercise 2.13.

3.3. Applications to quadratic fields. There are some very interesting ap-
plications of the arithmetic of cyclotomic fields to quadratic fields. Consider the
field Q(ζp) for some odd prime p. Recall that this is a Galois extension of Q with
Galois group isomorphic to (Z/pZ)∗, where the automorphism corresponding to
a ∈ (Z/pZ)∗ is σa characterized by

σa(ζp) = ζa
p .

Since (Z/pZ)∗ is cyclic of order p − 1, it contains a unique subgroup of index 2,
consisting of all of the squares in (Z/pZ)∗. Denote by S the corresponding subgroup
of Gal(Q(ζp)/Q). Let K be the fixed field of S; that is, K is the subfield of Q(ζp)
of elements fixed by all of S. Galois theory tells us that [K : Q] = 2; thus K is a
quadratic field. It remains to determine which quadratic field it is.

We can do this by considering ramfication. Recall that p is totally ramified in
Q(ζp); that is, there is a unique prime P of Q(ζp) lying over p, and (p) = Pp−1.
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Let p be any prime of K lying over p. Then P lies over p (since P is the only prime
of K lying over p) and

e(P/p) = e(P/p)e(p/p);

since e(P/p) = p − 1 and ramification indices are bounded by the degrees of the
extensions, this implies that e(P/p) = p−1

2 and e(p/p) = 2. In particular, p is the
only prime of K lying over p, and it is totally ramified.

Let Q be any other prime of Q(ζp), let q be the prime of K which it lies over,
and let q be the prime of Z which it lies over. A similar argument, using the fact
that e(Q/q) = 1, shows that e(q/q) = 1, so that q is not ramified in K. We conclude
that p is the only prime of Z which ramifies in K.

Now, we have already determined the ramification in every quadratic field, and
the only quadratic field in which only p ramifies is Q(

√
εp), where ε = ±1 is such

that
εp ≡ 1 (mod 4).

(See Corollary 1.3.) We can take ε = (−1)(p−1)/2. We have therefore established
the following distinctly non-obvious fact.

Proposition 3.5. The field Q(ζp) contains the quadratic field Q(
√

εp), where
ε = (−1)(p−1)/2. In particular,

√
εp can be written as a rational linear combination

of pth roots of unity.

We are now in a position to prove the celebrated quadratic reciprocity law.

Theorem 3.6 (Quadratic Reciprocity). Let p and q be distinct, positive odd
primes. Then (

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

Proof. We showed above that
√

εp ∈ Q(ζp). Denote this element by τ . Con-
sider the automorphism σq ∈ Gal(Q(ζp)/Q); it is defined by σq(ζp) = ζq

p . Since the
conjugates of τ are simply ±τ , we must have

σq(τ) = ±τ.

Furthermore, letting S be the subgroup of Gal(Q(ζp)/Q) defined above, σq(τ) = τ if
and only if σq ∈ S. (This is because Q(τ) is the fixed field of S by definition.) Under
the identification of Gal(Q(ζp)/Q) and (Z/pZ)∗, S corresponds to the subgroup of
squares; combining all of this, we see that σq(τ) = τ if and only if q is a square in
(Z/pZ)∗; that is,

σq(τ) =
(

q

p

)
τ.

Now let q be a prime of OK lying over q. Write τ = a0 + a1ζp + · · ·+ ap−2ζ
p−2
p

with ai ∈ Z. (Note that τ is visibly an algebraic integer.) Using that σq(ζp) = ζq
p

and aq = a for all a ∈ Fq, we find that

σq(τ) = a0 + a1ζ
q
p + a2ζ

2q
p + · · ·+ ap−2ζ

(p−2)q
p

≡ aq
0 + aq

1ζ
q
p + aq

2ζ
2q
p + · · ·+ aq

p−2ζ
(p−2)q
p (mod q)

≡ (a0 + a1ζp + a2ζ
2
p + · · ·+ ap−2ζ

p−2
p )q (mod q)

≡ τ q (mod q).
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Combining this with our other expression for σq(τ) yields(
q

p

)
τ ≡ τ q (mod q).

Since q is prime and we clearly have τ /∈ q, we can cancel τ modulo q; we conlude
that (

q

p

)
≡ τ q−1 ≡ (εp)(q−1)/2 (mod q).

By Exercise 3.9, this shows that(
q

p

)
≡

(
εp

q

)
(mod q).

By definition, this means that (
q

p

)
−

(
εp

q

)
∈ q;

since
(

q
p

)
and

(
εp
q

)
are integers, this difference is actually contained in q∩Z = qZ.

In fact,
(

q
p

)
and

(
εp
q

)
are just ±1, so the difference is certainly smaller than ±q.

It follows that we actually have an equality(
q

p

)
=

(
εp

q

)
.

The fact that (
ε

q

)
=

(
(−1)(p−1)/2

q

)
= (−1)

p−1
2

q−1
2

completes the proof.



CHAPTER 4

The Ideal Class Group

1. Definitions

1.1. Fractional ideals. In order to keep the algebra somewhat more pleas-
ant, it will be useful to introduce the notion of fractional ideals. Specifically, the
ideals of the ring of integers of a number field do not form a group, as there are
no inverses. Fractional ideals, on the other hand, form a group; the relationship
between fractional ideals and ideals is quite similar to the relationship between a
number field and its ring of integers.

Let K be a number field with ring of integers OK . Let r be a non-zero subset
of K which is an OK-module; that is, r is closed under addition and under multi-
plication by elements of OK . Such an r is said to be a fractional ideal if there exist
γ1, . . . , γm ∈ r such that

r = {α1γ1 + · · ·+ αmγm | αi ∈ OK};
that is, r is generated over OK by the γi. (The relevant thing here is that r is
finitely generated over OK . Not every OK-submodule of K has this property; see
Exercise 4.1.)

There are two fundamental examples of fractional ideals. First of all, every
non-zero ideal a of OK is also a fractional ideal: a is an OK-module by definition
and it has a finite generating set since OK is noetherian. To avoid confusion, we
shall refer to ideals of OK as integral ideals from now on.

The second sort of example are fractional ideals of the form γOK for some
γ ∈ K∗. (One checks easily that γOK is an OK-module, and it has the single
generator γ.) Such a fractional ideal is called a principal fractional ideal. Note that
the principal ideals of OK are precisely the integral principal fractional ideals.

More generally, let a be any ideal of OK and let γ be any element of K∗.
Then γ−1a is a fractional ideal. (γa has a finite generating set since if α1, . . . , αm

generate a, then γα1, . . . , γαm generate γa.) The converse of this statement is also
true.

Lemma 1.1. Let r be an OK-submodule of K. Then r is a fractional ideal if
and only if there exists γ ∈ K∗ such that γr is an integral ideal. (In fact, one can
actually take γ to be a rational integer.)

Proof. We saw above that if a is an integral ideal and γ ∈ K∗, then γa is a
fractional ideal. Conversely, if r is a fractional ideal, then we can write

r = {α1γ1 + . . . + αmγm | αi ∈ OK}
for some γ1, . . . , γm ∈ r. By Lemma II.2.10 there exist a1, . . . , am ∈ Z such that
aiγi ∈ OK . One now easily checks that a1 · · · amr is an integral ideal, which proves
the lemma with γ = a1 · · · am.

75
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We will denote by IK the set of all fractional ideals of K. If r, s ∈ IK , then we
define the product rs to be the OK-module generated by all products of pairs of
elements of r and s. Note that if r is generated by γ1, . . . , γm and s is generated
by δ1, . . . , δk, then rs is generated by the products γiδj . In particular, rs is also a
fractional ideal.

Corollary 1.2. The set IK is an abelian group under multiplication of frac-
tional ideals.

Proof. We saw above that IK is closed under multiplication. That this mul-
tiplication is commutative and associative is clear. The identity element is easily
checked to be the unit ideal OK . It remains to find inverses. So let r be a fractional
ideal and choose γ ∈ K∗ such that γr is an integral ideal. By Proposition II.3.6
there is an integral ideal b such that γrb is principal, say generated by α ∈ O∗K .
Take s = γ

αb. Then s is a fractional ideal, and we have

rs =
γrb

α
= OK .

Thus s is an inverse for r in IK .

Note that it is clear from the proof of Proposition II.3.6 that if r is a fractional
ideal, then its inverse is given by

r−1 = {γ ∈ K | γr ⊆ OK}.
We can also characterize fractional ideals in terms of unique factorization of

ideals.

Proposition 1.3. Every fractional ideal r can be written as

r = pe1
1 · · · per

r

where the pi are distinct primes of OK and the ei are integers. (Note that we allow
the ei to be negative.) This expression is unique up to reordering of the factors.
Thus IK is the free abelian group on the set

{p | p a prime of OK}.
Finally, r is an integral ideal if and only if each ei is non-negative.

Proof. Let r be a fractional ideal and choose a non-zero rational integer a ∈ Z
such that that ar is an integral ideal. Then we can write (uniquely up to reordering
and adding factors with zero exponent)

aOK = p
e′1
1 · · · pe′r

r

ar = p
e′′1
1 · · · pe′′r

r ;
here we allow some e′i and e′′i to be zero. Thus, since IK is a group,

r = p
e′′1−e′1
1 · · · pe′′r−e′r

r .

This shows that r has such an expression; the fact that it is unique follows from
the fact that the factorizations of aOK and ar were unique. The fact that r is an
integral ideal if and only if each ei is positive is clear from unique factorization of
ideals.

Notice that this decomposition of fractional ideals in terms of prime ideals is
completely analogous to the decomposition of rational numbers in terms of rational
primes; see Section 1.1 of Chapter 2.



1. DEFINITIONS 77

1.2. The ideal class group. Let K be a number field with ring of integers
OK . We have seen that OK may not be a unique factorization domain, although
it will have unique factorization of ideals. We have also seen (see Exercise II.2.10)
that OK is a UFD if and only if it is a PID; that is, if and only if every ideal is
principal. Furthermore, even when OK is not a PID it is often useful to know when
ideals are principal; see, for example, Proposition III.1.7.

These facts suggest that it would be useful to have some way to determine if an
ideal is principal. Although in practice this is often quite difficult, we can proceed
abstractly fairly well. Define PK to be the subgroup of IK of principal fractional
ideals. Note that the integral ideals in PK are precisely the principal ideals of OK .
We define the ideal class group CK of K to be the quotient

CK = IK/PK .

CK naturally relates to the issues raised above. First of all, CK is the trivial group
if and only if IK = PK ; that is, if and only if every fractional ideal of K is actually
principal. Since the integral ideals in PK are precisely the principal ideals, this is
equivalent to OK being a PID, which in turn is equivalent to OK being a UFD.
That is, CK is trivial if and only if OK is a UFD. Secondly, note that a fractional
ideal r is principal if and only if it maps to 0 in CK . Thus, if one could obtain a
good description of CK , one would have a method to determine if an arbitrary ideal
is principal.

We will call the elements of CK ideal classes; thus an ideal class A is simply a
coset of PK . By definition of CK , two fractional ideals a and b lie in the same ideal
class if and only if there is some γ ∈ K∗ with

γa = b.

We will write this relation as a ∼ b. The following reinterpretation of Lemma 1.1
shows that fractional ideals are not really essential to the definition of the ideal
class group.

Lemma 1.4. Let A be an ideal class. Then there exists an integral ideal a in
the coset A.

Proof. Let r be any fractional ideal in A. Then by Lemma 1.1 there exists
γ ∈ K∗ such that γr is an integral ideal. Since γOK ∈ PK , we have γr ∈ A, which
proves the lemma.

Example 1.5. Take K = Q(
√−5) and consider the two ideals

(
2, 1−√−5

)
,
(
3, 1 +

√−5
)
.

Note that (
2, 1−√−5

)
= γ

(
3, 1 +

√−5
)

where

γ = −
√−5

3
+

1
3
.

Thus (
2, 1−√−5

) ∼ (
3, 1 +

√−5
)
.

As we saw in Section 4 of Chapter 2, the presence of non-principal ideals is
closely related to the production of counterexamples to unique factorization. Thus
the ideal class group is some sort of measure of how far OK is from being a UFD.
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The determination of the ideal class group of a number field is a central problem
in algebraic number theory; it is also an extremely difficult problem in most cases.
We will prove in the next section that it is finite, and often it is slightly easier to
determine the class number hK = #CK . Later we will explain how to compute it
in the case of quadratic imaginary fields and give an idea of the state of knowledge
concerning ideal class groups of cyclotomic fields.

1.3. The unit group and the class number formula. We will never ac-
tually need the results of this section, but we state them for completeness. The
second fundamental invariant of a number field K is the group of units O∗K . The
importance of O∗K stems from the fact that the units are precisely the ambiguity in
moving from factorizations into principal ideals to factorizations of elements. This
group is essentially as difficult to compute as the ideal class group, and they are
closely related. We will try in this section to describe some of those relations.

To see the first relation, note that there is a natural surjection

K∗ ³ PK

sending γ ∈ K∗ to the principal fractional ideal γOK . The kernel of this map is
just the set of γ ∈ K∗ for which γOK = OK ; these γ are easily seen to be precisely
the units O∗K .

We also have a natural injection PK ↪→ IK . The cokernel of this map is the
ideal class group CK , by definition. In particular, if we consider the composite map

K∗ ³ PK ↪→ IK ,

we see that it has kernel O∗K and cokernel CK . Thus we have exhibited a single
map which connects these two fundamental invariants.

From here we omit all proofs. In order to state the second (much deeper)
connection we need to know a bit more about the unit group. The fundamental
theorem is due to Dirichlet. We first need to analyze the complex embeddings a
bit. We will say that a complex embedding σ : K ↪→ C is real if it has image
in R; otherwise it is imaginary. If σ is imaginary, then its complex conjugate σ̄
is a different imaginary complex embedding of K. We let r be the number of
real embeddings of K and s the number of complex conjugate pairs of imaginary
embeddings of K. Thus r + 2s = n, where n is the degree of K over Q.

Example 1.6. If K = Q(
√

d) is quadratic with d > 0, then r = 2 and s = 0.
Such a K is called a real quadratic field. If K = Q(

√
d) with d < 0, then r = 0

and s = 1; K is called a imaginary quadratic field. If K = Q(ζm) with m > 2, then
every embedding is imaginary (since R contains no roots of unity of order > 2), so
r = 0 and s = ϕ(m)/2. Note that in all of these cases we have one of r and s equal
to 0; this is because the fields are Galois, and thus all embeddings have the same
image. For a non-Galois example, take K = Q( 3

√
2): then r = 1 and s = 1.

Theorem 1.7 (Dirichlet Unit Theorem). Let K be a number field with r real
embeddings and s complex conjugate pairs of imaginary embeddings. Let W be the
subgroup of O∗K of roots of unity. Then

O∗K ∼= W × Zr+s−1.

Note that this theorem implies that O∗K is finite if and only if r + s = 1; this
occurs if and only if K is Q or an imaginary quadratic field. It is not a coincidence
that these are the number fields of which we have the greatest understanding.
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The proof of Theorem 1.7 rests upon the logarithmic embedding of K∗. This is
a map

K∗ → Rr+s

defined as follows: let σ1, . . . , σr be the real embeddings of K and let σr+1, . . . , σr+s

be a set of imaginary embeddings of K containing one of each complex conjugate
pair. (Thus σ1, . . . , σr, σr+1, . . . , σr+s, σ̄r+1, . . . , σ̄r+s are the n complex embed-
dings of K.) The logarithmic embedding is defined by sending α ∈ K∗ to the
(r + s)-tuple

(
log |σ1(α)|, . . . , log |σr(α)|, 2 log |σr+1(α)|, . . . , 2 log |σr+s(α)|).

One shows (using the fact that the norm of a unit is ±1) that the image of O∗K lies
entirely within the hyperplane

x1 + · · ·+ xr+s = 0.

Furthermore, by Exercise 2.16 one sees that the kernel of the logarithmic embedding
is precisely the group of roots of unity W . The remainder of the proof of the theorem
involves showing that the image of K∗ is a lattice of maximal rank in the r + s− 1
dimensional hyperplane x1 + · · ·+ xr+s = 0.

We need the logarithmic embedding to define an important invariant of K. Let
ε1, . . . , εr+s−1 be a basis for the free part of O∗K ; thus every element of O∗K can be
written uniquely as

ζεn1
1 · · · εnr+s−1

r+s−1

with ζ ∈ W and each ni ∈ Z. We define the regulator RK of K to be the determinant
of the matrix (

σi(αj)
)r+s−1

i,j=1
.

(It in fact doesn’t matter which embedding σi one omits from the matrix, as each
row can be written in terms of the other r+s−1 rows.) The Dirichlet class number
formula states that, if K/Q is Galois with abelian Galois group (for example, a
quadratic field or a cyclotomic field), then

hK =
w|∆K |

2r+sπsRK
lim
s→1

(s− 1)ζK(1).

Here w is the number of roots of unity in K, ∆K is the discriminant of OK , r and
s are the number of real and pairs of complex conjugate imaginary embeddings
respectively, and ζK is the Dedekind zeta function, defined for Re(s) > 1 by

ζK(s) =
∑

a an ideal of OK

NK/Q(a)−s,

which is a meromorphic function with an analytic continuation to the entire complex
plane, with a simple pole at s = 1.

All of these terms turn out to be reasonably easy to compute except for the
regulator and the class number. One sees, therefore, that determination of the
regulator is essentially the same as determination of the class number. Since to
compute the regulator one virtually needs to know precisely what the units are,
this means that computing the ideal class group and the unit group are almost the
same problem.
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2. Finiteness of the ideal class group

2.1. Norm bounds. The fact that the ideal class group is finite indicates
that unique factorization never fails too spectacularly in rings of integers of number
fields, and is perhaps the most important single fact in algebraic number theory.
In this section we will give a surprisingly simple proof.

Theorem 2.1. Let K be a number field. There exists a number λK , depending
only on K, such that every ideal non-zero a of OK contains a non-zero element α
with

|NK/Q(α)| ≤ λK NK/Q(a).

Proof. Let α1, . . . , αn be an integral basis for OK and let σ1, . . . , σn be the
complex embeddings of K. We will show that one can take

λK =
n∏

i=1




n∑

j=1

|σi(αj)|

 .

Let a be a non-zero ideal of OK and let m be the unique positive integer such
that

mn ≤ NK/Q(a) < (m + 1)n.

Consider the (m + 1)n elements



n∑

j=1

mjαj | 0 ≤ mj ≤ m,mj ∈ Z


 .

Since OK/a has order less than (m + 1)n, two of these elements must be congruent
modulo a. Taking their difference we find an element

α =
n∑

j=1

m′
jαj ∈ a

with |m′
j | ≤ m. We compute

|NK/Q(α)| =
n∏

i=1

|σi(α)|

=
n∏

i=1

∣∣∣∣∣∣
σi




n∑

j=1

m′
jαj




∣∣∣∣∣∣

=
n∏

i=1

∣∣∣∣∣∣

n∑

j=1

m′
jσi(αj)

∣∣∣∣∣∣

≤
n∏

i=1

n∑

j=1

|m′
j ||σi(αj)|

≤
n∏

i=1

n∑

j=1

m|σi(αj)|

= mnλK

≤ λK NK/Q(a)
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as claimed.

Corollary 2.2. Let A be an ideal class of CK . Then A contains an integral
ideal of norm ≤ λK .

Proof. Let b be any integral ideal in A−1. By Theorem 2.1 we can find β ∈ b
with |NK/Q(β)| ≤ λK NK/Q(b). The principal ideal βOK is contained in b, so
by Lemma II.3.8 there is an integral ideal a such that ab = βOK . Since βOK is
principal we have a ∈ A, and we compute

NK/Q(a) =
|NK/Q(β)|
NK/Q(b)

≤ λK .

Corollary 2.3. The ideal class group CK is finite.

Proof. By Corollary 2.2 every ideal class contains an ideal of norm at most
λK . By Exercise 4.2 there are only finitely many ideals of norm ≤ λK , so this
means that every ideal class contains one of a finite set of ideals. In particular, CK

must be finite.

The bound given above is not terribly useful in actually computing the ideal
class group, both because it is difficult to compute and because it gets large fairly
fast. A much better bound can be obtained using Minkowski’s theorem in the
geometry of numbers; we state it here and will use it in the next section to compute
ideal class groups of imaginary quadratic fields.

Theorem 2.4 (Minkowski bound). Let K be a number field of degree n. Then
every ideal class of OK contains an ideal a satisfying

NK/Q(a) ≤ µK =
n!
nn

(
4
π

)s √
|∆K |.

Here s is the number of conjugate pairs of imaginary embeddings of K.

2.2. Computations of ideal class groups of cyclotomic fields. There
are some immediate applications of the Minkowski bound. For example, take K =
Q(ζ5). This field has discriminant ∆K = 53 and s = 2, so the Minkowski bound
shows that every ideal class contains an ideal of norm at most

µK =
4!
44

(
4
π

)2√
125 ≈ 1.6992079064.

Thus every ideal class contains an ideal of norm 1. But the only ideal of norm 1 is
OK , so every ideal class contains OK ; thus there is only one ideal class, and CK is
trivial. It follows immediately that Z[ζ5] is a UFD.

For a slightly more involved example, take K = Q(ζ7). This time we compute
that the Minkowski bound is µK ≈ 4.12952833191. Thus every ideal class contains
an ideal of norm at most 4. Let a be such an ideal, and assume that a 6= OK .
Since the only possible prime factors of NK/Q(a) are 2 and 3, every prime factor of
a must lie over 2 or 3.

Let us now determine these primes. Since 2 has order 3 in (Z/7Z)∗, the primes
lying over 2 will have inertial degree 3. In particular, they will have norm 23 = 8;
thus they can not appear as prime factors of a. Similarly, since 3 has order 6 in
(Z/7Z)∗, it actually remains prime in OK and has norm 36 = 729. It can not occur
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as a factor of a either; thus a must be OK . It follows that CK is trivial and Z[ζ7] is
a UFD.

Even the Minkowski bound becomes somewhat difficult to use past this point;
this again illustrates how difficult it can be to compute ideal class groups.

We will conclude this section with a few comments on the study of ideal class
groups of cyclotomic fields; this remains an important and active area of number
theory. The determination of all cyclotomic fields of class number 1 was completed
in 1971 by Masley, using work of Siegel, Montgomery and Uchida. Recall that if m
is odd then Q(ζm) = Q(ζ2m), so we can restrict our attention to those m which are
not congruent to 2 modulo 4.

Theorem 2.5 (Masley). Let m be an integer which is not congruent to 2 mod-
ulo 4. Then Q(ζm) has trivial ideal class group (and thus Z[ζm] is a UFD) if and
only if

m =1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28,

32, 33, 35, 36, 40, 44, 45, 48, 60, 84.

Proof. The proof is quite intricate; see [20, Chapter 11].

The first cyclotomic field with non-trivial ideal class group is Q(ζ23), which has
class number 3.

In the general case the first step is to break the ideal class group into smaller
pieces. Let us write hm for the class number of Q(ζm) and h+

m for the class number
of the real subfield Q(ζm)+. One can show that h+

m divides hm (the proof of this
is an easy application of class field theory, but, being an application of class field
theory, is not easy); set h−m = hm/h+

m. h−m turns out to be easy to compute in
terms of certain Bernoulli numbers; it’s fine structure is now very well understood
through the efforts of Herbrand, Ribet, Iwasawa, Mazur, Wiles, Thaine, Kolyvagin
and Rubin, although we can not really state their results here.

Much less is known about h+
m. We will return to it in the next chapter.

3. Ideal class groups of imaginary quadratic fields

3.1. Lattices. We turn now to the case of imaginary quadratic fields, where
it is actually possible to give a reasonably straightforward algorithm for computing
the ideal class group. For this section fix an imaginary quadratic field K = Q(

√
d)

with d a negative squarefree integer. We assume as usual that we have fixed an
embedding of K into C. Set

α =

{√
d d ≡ 2, 3 (mod 4);

1+
√

d
2 d ≡ 1 (mod 4);

which has minimal polynomial

f(x) =

{
x2 − d d ≡ 2, 3 (mod 4);
x2 − x + 1−d

4 d ≡ 1 (mod 4).

Consider an ideal a of OK . Let a be any rational integer lying in a; then

aOK ⊆ a ⊆ OK ,

so a lies between two free Z-modules of rank 2 and thus must itself be a free Z-
module of rank 2. Recall also that two ideals a and b of OK lie in the same ideal
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class if and only if there is some γ ∈ K∗ such that γa = b. Such submodules of
C are called complex lattices; two lattices related by multiplication by a scalar are
said to be homothetic. In this section we shall give the classification of complex
lattices up to homothety; later we will use this to determine when two ideals lie in
the same ideal class.

We omit all proofs; for the details, see [17, Chapter 7, Section 1]. Let Λ ⊆ C
be a free Z-module of rank 2 which contains an R-basis for C. (This last condition
merely says that Λ does not lie entirely in a single line.) Thus we can write

Λ = {aλ1 + bλ2 | a, b ∈ Z}
for some λ1, λ2 ∈ Λ; the condition that Λ is free of rank 2 amounts to the ratio

λ1

λ2

not lying in Q, and the condition that Λ contains a R-basis for C amounts to this
ratio not lying in R. We will call such a Λ a complex lattice. Two lattices Λ1 and
Λ2 are said to be homothetic if there is some α ∈ C∗ such that αΛ1 = Λ2. We wish
to give a method to determine when two complex lattices are homothetic.

We begin by picking a basis: let λ1, λ2 be a Z-basis for Λ as above. We assume
throughout that all bases are ordered so that Im(λ1/λ2) > 0. (As we said above,
we can not have Im(λ1/λ2) = 0, since then Λ would not contain an R-basis for C.
Thus, if Im(λ1/λ2) < 0, we can switch the order of the λi to get the imaginary part
positive.) Let H = {z ∈ C | Im z > 0} be the upper half-plane and define

j(λ1, λ2) =
λ1

λ2
∈ H.

Note that for any α ∈ C∗,
j(αλ1, αλ2) = j(λ1, λ2),

which suggests that j is a decent place to start in the classification of lattices up to
homotopy.

Unfortunately, j(λ1, λ2) depends not only on Λ but also on the choice of basis
λ1, λ2. In order to use j to classify lattices up to homothety we must remove this
basis dependence.

We do this by determining the other possible bases for Λ and seeing how j
depends upon the choice. By standard linear algebra, the bases for Λ are of the
form

λ′1 = aλ1 + bλ2, λ
′
2 = cλ1 + dλ2

where (
a b
c d

)
∈ GL2(Z),

the integer matrices of determinant ±1. However, as above we want to restrict to
only the bases λ′1, λ

′
2 of Λ ordered so that Im(λ′1/λ′2) > 0. One checks easily that

the matrices which preserve this condition are precisely those in SL2(Z); that is,
those of determinant 1. We compute for these bases

j(aλ1 + bλ2, cλ1 + dλ2) =
aλ1 + bλ2

cλ1 + dλ2
=

aj(λ1, λ2) + b

cj(λ1, λ2) + d
.
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These computations suggest the following approach. We define an action of
SL2(Z) on H by (

a b
c d

)
z =

az + b

cz + d
;

we leave it to the reader to check that this really is a group action. Let us denote
by Y the quotient space of H by this action. Recall that this means that Y consists
of the orbits of the SL2(Z) action on H: for any z ∈ H, its orbit is simply the set

{γz | γ ∈ SL2(Z)}.
This action of SL2(Z) is defined in such a way that if λ1, λ2 and λ′1, λ

′
2 are two

correctly ordered bases of a lattice Λ, then j(λ1, λ2) and j(λ′1, λ
′
2) will lie in the same

SL2(Z) orbit of H; that is, they will be equal in Y.
This tells us that if we compose our map

j : ordered bases of lattices → H

with the quotient map H → Y, we obtain a map

j : lattices → Y;

the basis dependence disappears in Y by our argument above. Furthermore, we
saw above that j is invariant under multiplying bases by constants; it follows that
j yields a well-defined map

j : homothety classes of lattices → Y.

By this we mean that if Λ and Λ′ are homothetic, then j(Λ) = j(Λ′).
This map j is easily seen to be surjective and it can also be shown to be injective.

Thus j establishes a set bijection between homothety classes of lattices and Y. This
means that if we have a good description of Y then we will have a good classification
of lattices up to homothety. This description comes from the following result.

Proposition 3.1. Define

Y =
{

z ∈ C; Im z > 0,
−1
2

< Re(z) <
1
2
, |z| > 1

}
∪

{
z ∈ C; |z| = 1, 0 ≤ Re(z) <

1
2

}
∪

{
z ∈ C; Re(z) =

1
2
, Im(z) ≥

√
3

2

}
.

Then Y contains exactly one element of each SL2(Z) orbit of H; that is, Y is in
natural bijection with Y.

Proof. See [17, Chapter 7, Section 1.2] or [18, Proposition 1.5].

The last thing we need is a good way to determine which element of Y an
element of H corresponds to.

Proposition 3.2. Set

S =
(

0 −1
1 0

)
, T =

(
1 1
1 0

)
.

Then S and T generate SL2(Z).

Proof. See [17, Chapter 7, Section 1.2] or [18, Proposition 1.5].
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Figure 1. The fundamental domain Y for the SL2(Z) action on H

Note that S(z) = − 1
z and T (z) = z + 1.

These results give us the following algorithm for determining the homothety
class of a lattice Λ with basis λ1, λ2. First, compute j = j(Λ) = λ1/λ2. We want to
modify j by S and T to get it into Y . If Im j < 0, replace j by 1/j; this corresponds
to swapping the two basis elements. Now, if j is in Y , then we are done. If j is not
in Y , then first add an integer m to j so that

−1
2

< Re(j + m) ≤ 1
2
.

If j + m ∈ Y , then we are done. If not, replace j + m by − 1
j+m and start over.

Proposition 3.2 (or more honestly its proof) guarantees that this will eventually
yield an element of Y .

Example 3.3. Let Λ = 5Z+ (1 + i)Z. We compute

j(Λ) =
5

1 + i
=

5
2
− 5

2
i,

so we replace it by
1

j(Λ)
=

1
5

+
1
5
i ∈ H

This does not yet lie in Y , as it has absolute value < 1. Since its real part is already
between − 1

2 and 1
2 , we replace it by its negative reciprocal, which is

−5
2

+
5
2
i.

Adding 3 to this we obtain the element
1
2

+
5
2
i

of Y .
Suppose that we used the basis 23+3i = 4(5)+3(1+ i), 17+2i = 3(5)+2(1+ i)

of Λ instead. We compute

j(Λ) =
23 + 3i

17 + 2i
=

397
293

+
5

293
i.
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Subtracting 1 yields 104
293 + 5

293 i, which has absolute value < 1. Its negative
reciprocal is

−104
37

+
5
37

i;

adding 3 yields
7
37

+
5
37

i,

which still has absolute value < 1. Its negative reciprocal is

−7
2

+
5
2
i;

adding 4 yields
1
2

+
5
2
i ∈ Y,

as before.

3.2. Ideal generators and lattice generators. In order to take advantage
of our lattice classification of the previous section we need a method to go from ideal
generators to lattice generators. That is, given an ideal a = (a1, a2) we want to find
a Z-basis for a. The general algorithm is little more than Gaussian elimination: we
know that a1, a2 form a set of Z[α]-generators for a, so a1, a1α, a2, a2α form a set of
Z-generators for a. Write all four out in terms of the basis 1, α of OK . Now perform
your favorite Gaussian elimination algorithm on these four vectors to obtain a two
vector basis; one must remember that since we are working only with Z-modules
and not with vector spaces, the only scalars allowed are integers.

Example 3.4. Take K = Q(
√−5) and a = (10, α + 5), where α =

√−5. Then
10, 10α, 5 + α, (5 + α)α = −5 + 5α are Z-generators for a; thus we wish to perform
Gaussian elimination on the matrix

[
10 0 5 −5
0 10 1 5

]
.

Adding −5 times the third column to the last column yields
[

10 0 5 20
0 10 1 0

]
.

Subtracting twice the first column from the last column now eliminates the last
column. Subtracting 10 times the third column from the second column yields

[
10 −50 5
0 0 1

]
.

Finally, adding 5 times the first column to the second column shows that the ideal
generators 10, α + 5 are also a lattice basis for a.

In fact, it very often (but possibly not always; I haven’t yet found a coun-
terexample, but it seems that there could be one) happens that the “natural”
ideal generators are also a lattice basis. For example, Exercise 4.3 shows that if
p = (p, α + m) is a prime ideal of OK , then p and α + m are a lattice basis for p.

Note also that if a =
(
a
)

is a principal ideal, then a has lattice basis a, aα.
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3.3. Computing ideal class groups. We now have all of the tools we will
need to compute ideal class groups of imaginary quadratic fields. Let K = Q(

√
d)

and define α and f(x) as before. The first step is to determine generators for
the ideal class group. To do this, compute the Minkowski bound: for imaginary
quadratic fields, it works out as

µK =

{
4
π

√−d d ≡ 2, 3 (mod 4)
2
π

√−d d ≡ 1 (mod 4).

Next, for every positive rational prime p ≤ µK , determine the factorization of p
into primes of OK as in Chapter 3, Section 1.1. If p is inert, then the ideal pOK is
principal, so it is irrelevant in computing the ideal class group. Thus we need only
consider those p which split or ramify. Let P0 be the set of primes of OK lying over
these p.

We claim that P0 contains generators for the ideal class group CK . To see this,
let A be any ideal class. We know that there is some a ∈ A with NK/Q(a) ≤ µK .
By unique factorization of ideals, a factors into prime ideals, and each such prime
must have norm ≤ µK . Thus a can be written as a product of primes of norm
≤ µK ; this shows that the ideal class A is generated by ideal classes of primes in
P0, and thus that P0 generates CK .

The next step is to determine which of these generators are equal in the ideal
class group. First one computes j(OK) ∈ Y and j(p) ∈ Y for each p ∈ P0. If for
any p, q ∈ P0 one has j(p) = j(q), then we know that p and q are homothetic as
complex lattices. That is, there is an α ∈ C∗ such that p = αq. One shows easily
that α must actually lie in K∗ (see Exercise 4.4) so p ∼ q. Thus p and q are equal
in CK , and one must only include one of p and q as a generator of CK . Similarly, if
j(p) = j(OK), then p is trivial in CK , and thus irrelevant to the computation. Let
P1 be a set containing one element of P0 for each j-value obtained; P1 still generates
CK and its elements are distinct in CK .

From here one needs to compute the full group CK simultaneously with a multi-
plication table. Note first of all that we already know the inverses of every element
of P1, since for each p ∈ P1 there is a p′ ∈ P0 such that pp′ = (p) is principal. If p
and q are two primes of P1 which are not inverses, we compute first ideal generators
of pq, and from these we compute a lattice basis. We then determine j(pq) ∈ Y . If
this equals j(a) for some ideal we have already computed, then we have pq ∼ a in
CK . Otherwise we obtain a new element of CK which we add to the multiplication
table. From here one continues until every possible product has been determined;
often one can use previously determined relations to determine others and thus
simplify the computations. The end result is a multiplication table for the ideal
class group CK , together with the j-invariants of each ideal class.

Note that as a special case of this algorithm we get a simple method to deter-
mine if an ideal is principal: simply compute a lattice basis, from that compute its
j-invariant, and compare it to j(OK); they will be equal if and only if the ideal is
principal. More generally one can determine which element of the ideal class group
a given ideal is equivalent to in the same manner.

3.4. Example : Q(
√−14). Take K = Q(

√−14). In this section we will
compute CK . We compute µK ≈ 4.764026148, so the only primes we need consider
are 2 and 3. 2OK factors as

2OK =
(
2,
√−14

)2
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and 3OK factors as

3OK =
(
3,
√−14 + 1

)(
3,
√−14 + 2

)
.

Set a1 = OK , a2 =
(
2,
√−14

)
, a3 =

(
3,
√−14 + 1

)
, a′3 =

(
3,
√−14 + 2

)
.

We now compute j of each of these ideals. We have

j(a1) =
√

14i.

By Exercise 4.3 we know that 2 and
√−14 are a lattice basis for a2, so we find that

j(a2) =
√

14
2

i.

Similar computations for a3 and a′3 yield

j(a3) =
1
3

+
√

14
3

i;

j(a′3) = −1
3

+
√

14
3

i.

Thus all three generators are distinct in CK .
We now compute products. We already have the multiplication table

a1 a2 a3 a′3
a1 a1 a2 a3 a′3
a2 a2 a1

a3 a3 a1

a′3 a′3 a1

We compute

a2a3 =
(
2, α

)(
3, α + 1

)

=
(
6, 2α + 2, 3α, α2 + α

)

=
(
6, 2α + 2, 3α, α− 14

)

=
(
6, α + 4

)
.

Call this ideal a. One easily checks that 6 and α + 4 are a lattice basis of a, so we
compute

j(a) = −1
3

+
√

14
2

i.

Thus a2a3 ∼ a′3 in CK . This also allows us to compute

(a′3)
2 ∼ a2a3a

′
3 ∼ a2;

a2a
′
3 ∼ a2

2a3 ∼ a3;

a2
3 ∼ a2a

′
3a3 ∼ a2.

Thus we can fill in our multiplication table:

a1 a2 a3 a′3
a1 a1 a2 a3 a′3
a2 a2 a1 a′3 a3

a3 a3 a′3 a2 a1

a′3 a′3 a3 a1 a2

Since every possible product of generators is now accounted for, we find that CK
∼=

Z/4Z and hK = 4.
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3.5. Example : Q(
√−119). For a second example, take K = Q(

√−119), so
that α = 1+

√−119
2 and f(x) = x2 − x + 30. (In particular, α2 = α − 30.) The

Minkowski bound is µK ≈ 6.94470182322, so we must check the rational primes 2,
3 and 5. We find that

(2) =
(
2, α

)(
2, α + 1

)
;

(3) =
(
3, α

)(
3, α + 2

)
;

(5) =
(
5, α

)(
5, α + 4

)
.

Set a1 = OK , a2 =
(
2, α

)
, a′2 =

(
2, α + 1

)
, a3 =

(
3, α

)
, a′3 =

(
3, α + 2

)
, a5 =

(
5, α

)
,

a′5 =
(
5, α+4

)
. We compute (since by Exercise 4.3 we know that the ideal generators

are a lattice basis)

j(a1) =
1
2

+
√

119
2

i;

j(a2) =
1
4

+
√

119
4

i;

j(a′2) = −1
4

+
√

119
4

i;

j(a3) =
1
6

+
√

119
6

i;

j(a′3) = −1
6

+
√

119
6

i;

j(a5) =
1
10

+
√

119
10

i;

j(a′5) = − 1
10

+
√

119
10

i.

Let us begin by determining the powers of a2. We find that

a2
2 =

(
4, 2α, α2

)
=

(
4, 2α, α− 30

)
=

(
4, α + 2

)
.

Call this ideal a4. One checks easily that it has lattice basis 4, α + 2, so that we
can compute

j(a4) = −3
8

+
√

119
8

i.

Next, we have

a3
2 = a2a4 =

(
2, α

)(
4, α + 2

)
=

(
8, 4α, 2α + 4, α2 + 2α

)

=
(
8, 4α, 2α + 4, 3α− 30

)
=

(
8, α + 6

)
.

Call this ideal a8. It has lattice basis 8, α + 6, so we compute

j(a8) =
3
8

+
√

119
8

i.

Next, we have

a4
2 = a2a8 =

(
2, α

)(
8, α + 6

)
=

(
16, 2α + 12, 8α, α2 + 6α

)

=
(
16, 2α + 12, 8α, 7α− 30

)
=

(
16, α− 2

)
.
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This ideal has lattice basis 16, α− 2, so we compute that it has j-invariant

−1
4

+
√

119
4

i.

Thus a4
2 ∼ a′2. This also implies that a5

2 ∼ a1, so we have found a subgroup of order
5 in CK .

We next compute the powers of a3. We have

a2
3 =

(
9, 3α, α− 30

)
=

(
9, α + 6

)
;

this has lattice basis 9, α + 6, and we compute that it has j-invariant

−3
8

+
√

119
8

i,

so a2
3 ∼ a4. Thus we immediately know the even powers of a3: a4

3 ∼ a2
4 ∼ a′2

(compute this in the cyclic group generated by a2), a6
3 ∼ a3

4 ∼ a2, a8
3 ∼ a4

4 ∼ a8,
a10
3 ∼ a5

4 ∼ a1. To compute the odd powers of a3 we simply need to multiply each
of these by a3.

We find that

a3
3 ∼ a3a4 =

(
3, α

)(
4, α + 2

)
=

(
12, 3α + 6, 4α, α2 + 2α

)

=
(
12, 3α + 6, 4α, 3α− 30

)
=

(
12, α + 6

)
.

This has lattice basis 12, α + 6, and j-invariant

1
10

+
√

119
10

i,

so a3
3 ∼ a5. Since a3 has order 10 and a−1

5 = a′5, this also tells us that a7
3 ∼ a′5.

Since we also have a9
3 = a′3, every generator is a power of a3; thus CK is cyclic of

order 10 with generator a3.
The only remaining power to explicitly compute is a5

3. We find that

a5
3 ∼ a3a

′
2 =

(
3, α

)(
2, α + 1

)
=

(
6, 2α, 3α + 3, α2 + α

)

=
(
6, 2α, 3α + 3, 2α− 30

)
=

(
6, α + 3

)
.

Call this ideal a6. It has lattice basis 6, α + 3, and

j(a6) =
5
12

+
√

119
12

i.

This completes the calculation of CK .

3.6. Imaginary quadratic fields of class number 1. We have already seen
a few imaginary quadratic fields with class number 1: Q(i), Q(

√−2), and Q(
√−3).

It turns out that there are exactly 6 more imaginary quadratic fields of class number
1. They are Q(

√−7), Q(
√−11), Q(

√−19), Q(
√−43), Q(

√−67) and Q(
√−163).

It is quite easy using our techniques to show that these all have class number 1.
We will do the case of K = Q(

√−163), which is the most interesting.
In this case we find that µK ≈ 8.12781715683, so we must check the primes 2,

3, 5 and 7. Recall that an odd rational prime p is inert in OK if and only if we have
( − 163

p

)
= −1.
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We compute
( − 163

3

)
=

(
2
3

)
= −1;

( − 163
5

)
=

(
2
5

)
= −1;

( − 163
7

)
=

(
5
7

)
= −1.

Thus none of these primes split in OK . For p = 2, we need to determine the
factorization of x2−x+41 in F2[x]; it is irreducible, so 2 doesn’t split either. Thus
our set of generators of CK is trivial, so CK itself must be trivial.

Continuing the Legendre symbol calculations above, one finds that
(
−163

p

)
=

−1 for all p ≤ 37. This has an amusing consequence. Consider the polynomial
f(x) = x2 − x + 41. It has been observed that this polynomial yields primes with
remarkable frequency; in fact, it yields a prime for each of x = 1, . . . , 40. Using the
Legendre symbol calculations we can give a quick proof of this.

Let x0 be an integer and suppose that some prime p divides f(x0). Then

x2
0 − x0 + 41 ≡ 0 (mod p).

Thus
(2x0 − 1)2 ≡ −163 (mod p),

so
(
−163

p

)
= 0 or 1. But we have shown that this does not happen for any p ≤ 37.

Thus no p ≤ 37 divides f(x0) for any x0.
Next, note that f(x) is positive and increasing for x > 1/2 and f(40) = 1601 <

412; thus |f(x)| < 412 for all 1 ≤ x ≤ 40. It follows that if f(x) is not prime for
such x, then f(x) is divisible by some prime ≤ 37. Since we showed above that this
does not happen, every value f(x) with 1 ≤ x ≤ 40 must be prime. More generally,
the fact that values f(x) are not divisible by any small primes suggests that they
should be prime unusually often.

It is much harder to show that the above are the only imaginary quadratic
fields with class number 1; this was proved only in 1967 by Stark.

The case of real quadratic fields is quite different; in fact, it is conjectured that
most real quadratic fields have class number 1.

4. Applications to quadratic forms

4.1. Example : Q(
√−5). Our explicit calculations of ideal class groups of

imaginary quadratic fields can be used to yield some interesting refinements of our
earlier results on quadratic forms. We begin with the case K = Q(

√−5) to illustrate
the basic idea. Recall that we related this field to the quadratic form x2 + 5y2; we
showed that an (unramified) positive rational prime p could be represented by this
quadratic form if and only if it split into principal primes in OK . Unfortunately,
we had no good characterization of which primes these were; that

(
−5
p

)
= 1 is a

necessary condition, but it is not sufficient.
We will approach this problem from a different point of view in this section.

Specifically, we will construct a second quadratic form which will represent any
p with

(
−5
p

)
= 1 which x2 + 5y2 does not represent. In other words, we will
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show that there is a second quadratic form q′(x, y) such that every positive rational
prime p with

(
−5
p

)
= 1 can be represented by at least one of x2 + 5y2 and q′(x, y).

Furthermore, no primes with
(
−5
p

)
= −1 will be represented by either quadratic

form.
We assume throughout this section that all primes are distinct from 2 and 5,

the two primes which ramify in K/Q.
We first need to compute the ideal class group. One checks easily that hK = 2,

with a2 =
(
2,
√−5 + 1

)
a representative of the non-trivial element of CK . In

particular, we have the j-invariants

j(OK) =
√

5i;

j(a2) =
1
2

+
1
2

√
5i.

Now, let p be a prime of Z which splits in OK ; recall that we know that this
occurs if and only if

(
−5
p

)
= 1. Let p =

(
p,
√−5 + m

)
be one of the primes of

OK lying over p. Recall that to compute j(p) (using Exercise 4.3) we begin by
computing √−5 + m

p
=

m

p
+

1
p

√
5i

and then applying appropriate elements of SL2(Z) to get the value into the funda-
mental domain Y .

Suppose first that p is actually principal. This means that p ∼ OK , so j(p) =√
5i in the quotient space Y. By definition of Y this means that there is some

matrix (
a b
y x

)
∈ SL2(Z)

(the reason that we have chosen these strange variable names will become apparent
later) such that (

a b
y x

) (√
5i

)
=

m

p
+

1
p

√
5i.

Expanding out the SL2(Z) action, this tells us that

m

p
+

1
p

√
5i =

a(
√

5i) + b

y(
√

5i) + x

=
(a
√

5i + b)(−y
√

5i + x)
(y
√

5i + x)(−y
√

5i + x)

=
5ay + bx

x2 + 5y2
+

ax− by

x2 + 5y2

√
5i.

Equating imaginary parts and using the fact that ax− by = 1 now tells us that

x2 + 5y2 = p.

That is, if p is principal then we can find integer solutions to the quadratic form
x2+5y2 = p. Of course, this isn’t terribly surprising; it just duplicates one direction
of Proposition III.1.7.
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More interesting is the case where p is not principal. This time we have p ∼ a2,
so j(p) = 1

2 + 1
2

√
5i in Y. Again, this tells us that there is a matrix

(
a b
y x

)
∈ SL2(Z)

such that (
a b
y x

)(
1
2

+
1
2

√
5i

)
=

m

p
+

1
p

√
5i.

Expanding this out we find that

m

p
+

1
p

√
5i =

a
(

1
2 + 1

2

√
5i

)
+ b

y
(

1
2 + 1

2

√
5i

)
+ x

=

(
a
2 + b

)
+ a

2

√
5i(

y
2 + x

)
+ y

2

√
5i

=

[(
a
2 + b

)
+ a

2

√
5i

] [(
y
2 + x

)− y
2

√
5i

]
[(

y
2 + x

)
+ y

2

√
5i

] [(
y
2 + x

)− y
2

√
5i

]

=
·(

y
2 + x

)2 + 5
4y2

+

(
a
2 + b

) −y
2 + a

2

(
y
2 + x

)
(

y
2 + x

)2 + 5
4y2

√
5i

where the · is some real number which we don’t need to evaluate. Equating imagi-
nary parts gives

1
p

=

(
a
2 + b

) −y
2 + a

2

(
y
2 + x

)
(

y
2 + x

)2 + 5
4y2

(y

2
+ x

)2

+
5
4
y2 = p

((a

2
+ b

) −y

2
+

a

2

(y

2
+ x

))

1
4
y2 + xy + x2 +

5
4
y2 = p

(−ay

4
+
−by

2
+

ay

4
+

ax

2

)

x2 + xy +
3
2
y2 = p

(
ax− by

2

)

x2 + xy +
3
2
y2 =

p

2
.

Thus

2x2 + 2xy + 3y2 = p.

In particular, p can be represented by the quadratic form 2x2 + 2xy + 3y2.
Let us summarize our results to this point. We begin with any positive rational

prime p such that
(
−5
p

)
= 1; it necessarily splits as pp′ for some prime ideal p, p′ of

OK . These ideals must either both be in the ideal class of a1 or in the ideal class
of a2; in the first case we have shown that we can write

p = x2 + 5y2

and in the second case we have shown that we can write

p = 2x2 + 2xy + 3y2.
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Thus, if all we know is that
(
−5
p

)
= 1 but not which ideal class p actually belongs

to, we can already say that p can be represented by at least one of these two
quadratic forms.

Let us now show that these are the only p which are represented by these
quadratic forms. That is, we want to show that if p is represented by one of these
quadratic forms, then

(
−5
p

)
= 1. (Remember that we are assuming p 6= 2, 5.) We

already know this for x2 + 5y2, so we just need to show it for 2x2 + 2xy + 3y2. The
case p = 3 is easy, so we assume p 6= 3. Suppose that we have

2x2 + 2xy + 3y2 = p.

We can not have x or y divisible by p, for the other would then have to be divisible
by p as well (this is where we use p 6= 3), and then the entire left-hand side would
be divisible by p2. In particular, y must be invertible modulo p, so

0 ≡ 2x2 + 2xy + 3y2 (mod p)

≡ 2
(

x

y

)2

+ 2
(

x

y

)
+ 3.

That is, the quadratic equation 2t2 + 2t + 3 has a root modulo p. On the other
hand, the quadratic formula tells us that the roots of this equation are

−4±√4− 24
4

= −1±√−5.

Thus 2t2 + 2t + 3 has roots if and only if −5 is a square modulo p; that is, if and
only if

(
−5
p

)
= 1. Combining these two facts shows that if p can be represented by

2x2 + 2xy + 3y2, then
(
−5
p

)
= 1.

To make this result slightly better, let us determine which primes p have(
−5
p

)
= 1. We have

( − 5
p

)
=

( − 1
p

) (
5
p

)
.

Since 5 ≡ 1 (mod 4), quadratic reciprocity tells us that
(

5
p

)
=

(
p
5

)
; thus

( − 5
p

)
=

( − 1
p

) (
p

5

)
.

These Legendre symbols evaluate as
( − 1

p

)
=

{
1 p ≡ 1 (mod 4);
−1 p ≡ 3 (mod 4);

and (
p

5

)
=

{
1 p ≡ 1, 4 (mod 5);
−1 p ≡ 2, 3 (mod 5).

Combining these two computations we find that
( − 5

p

)
=

{
1 p ≡ 1, 3, 7, 9 (mod 20);
−1 p ≡ 11, 13, 17, 19 (mod 20).

Put together, our above computations yield the following theorem.
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Theorem 4.1. Let p 6= 2, 5 be a positive rational prime. Then p can be repre-
sented by at least one of the quadratic forms

x2 + 5y2, 2x2 + 2xy + 3y2

if and only if
p ≡ 1, 3, 7, 9 (mod 20).

In fact, it turns out that the first form represents those p such that p ≡ 1, 9
(mod 20) and the second those such that p ≡ 3, 7 (mod 20), but the best proof of
this requires class field theory.

4.2. The general case. The arguments of the previous section generalize
easily. Let K = Q(

√
d) be an imaginary quadratic field; we begin with the case

d ≡ 2, 3 (mod 4). Suppose that a1, . . . , ah are ideal representatives for its ideal
class group. Let p be any positive rational prime such that

(
d
p

)
= 1 and let

p =
(
p,
√

d + m
)

be one of the primes of OK lying over p.
By the definition of the ideal class group we have p ∼ ai for a unique i. Note

that it is clear from our definition of j that j(ai) ∈ K; thus we can write

j(ai) = r + s
√

d

for some r, s ∈ Q. Since p ∼ ai, the definition of j tells us that there is some
(

a b
c d

)
∈ SL2(Z)

such that (
a b
y x

) (
r + s

√
d
)

=
m

p
+

1
p

√
d.

Expanding out the SL2(Z) action yields

m

p
+

1
p

√
d =

a(r + s
√

d) + b

y(r + s
√

d) + x

=
(ar + b) + as

√
d

(yr + x) + ys
√

d

=

(
(ar + b) + as

√
d
)(

(yr + x)− ys
√

d
)

(
(yr + x) + ys

√
d
)(

(yr + x)− ys
√

d
)

=
·

(yr + x)2 − dy2s2
+

(ar + b)(−ys) + as(yr + x)
(yr + x)2 − dy2s2

√
d

where · is some real number. Equating imaginary parts yields

p =
(yr + x)2 − dy2s2

(ar + b)(−ys) + as(yr + x)
p ((ar + b)(−ys) + as(yr + x)) = (yr + x)2 − dy2s2

p(−arsy − bsy + arsy + asx) = r2y2 + 2rxy + x2 − ds2y2

ps(ax− by) = r2y2 + 2rxy + x2 − ds2y2

p =
1
s
x2 +

2r

s
xy +

r2 − ds2

s
y2,
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using the fact that ax − by = 1. Note that the quadratic form depends only on r
and s; that is, only on j(ai). We have therefore shown that if p ∼ ai, then p can be
represented by the quadratic form

1
s
x2 +

2r

s
xy +

r2 − ds2

s
y2.

Since every prime p lying over a rational prime p with
(

d
p

)
= 1 is equivalent to

some aj , we obtain the following theorem. We will say that a prime p is relatively
prime to a rational number q if p does not divide the numerator or denominator of
q (in lowest terms).

Theorem 4.2. Let d ≡ 2, 3 (mod 4) be a negative integer and let a1, . . . , ah be
representatives for the ideal classes in Q(

√
d). Write

j(ai) = ri + si

√
d.

Then every positive rational prime p such that
(

d
p

)
= 1 can be represented by at

least one of the h quadratic forms

1
si

x2 +
2ri

si
xy +

r2
i − ds2

i

si
y2.

Furthermore, let p be a prime which is relatively prime to all of the coefficients of
all of these quadratic forms and which is not ramified in Q(

√
d). If for such a p we

have
(

d
p

)
= −1, then p can not be represented by any of these quadratic forms.

Proof. The only new information is the last statement. So let p be a positive
rational prime which is relatiely prime to all of the coefficients. Suppose that p can
be represented as

1
s
x2 +

2r

s
xy +

r2 − ds2

s
y2 = p

for some x, y ∈ Z, with (r, s) = (ri, si) for some i. We must show that
(

d
p

)
= 1.

Note that under the hypothesis that p is relatively prime to the coefficients
we must have both x and y relatively prime to p; if one were not, then the other
would also be divisible by p and the entire left-hand side of the expression would
be divisible by p2. In particular, we must have that y is invertible modulo p. The
representation above yields a solution to the congruence

0 ≡ 1
s
x2 +

2r

s
xy +

r2 − ds2

s
y2 (mod p)

0 ≡
(

x

y

)2

+ 2r

(
x

y

)
+ r2 − ds2.

(We can cancel the 1
s since by hypothesis p is relatively prime to all of the coefficients

of all of the quadratic forms and the coefficient of x2 is 1
s .) By the quadratic formula,

the roots of this are
−2r ±

√
4r2 − 4(r2 − ds2)

2
= −r ±

√
4ds2

2
= −r ± s

√
d.

In particular, if p can be represented by the quadratic form, then

1
s

(
x

y
+ r

)
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will be a square root of d modulo p. Thus,
(

d
p

)
= 1.

The analysis in the d ≡ 1 (mod 4) case is entirely similar, except that we begin
with the ideal

p =
(

p,m +
1
2

+
1
2

√
d

)
.

The only effect this has is removing an additional factor of 2.

Theorem 4.3. Let d ≡ 1 (mod 4) be a negative integer and let a1, . . . , ah be
representatives for the ideal classes in Q(

√
d). Write

j(ai) = ri + si

√
d.

Then every positive rational prime p such that
(

d
p

)
= 1 can be represented by at

least one of the h quadratic forms

1
2si

x2 +
ri

si
xy +

r2
i − ds2

i

2si
y2.

Furthermore, let p be a prime which is relatively prime to all of the coefficients of
all of these quadratic forms and which is not ramified in Q(

√
d). If for such a p we

have
(

d
p

)
= −1, then p can not be represented by any of these quadratic forms.

Example 4.4. Take d = −14. We have already computed the ideal class group
of Q(

√−14); the possible j-invariants are
√−14,

1
2
√−14,

1
3

+
1
3
√−14,−1

3
+

1
3
√−14.

Plugging into our formula, we find that every p such that
(
−14

p

)
can be represented

by at least one of the quadratic forms

x2 + 14y2

2x2 + 7y2

3x2 + 2xy + 5y2

3x2 − 2xy + 5y2.

In fact, we can do slightly better. Note that if p factors as pp′ and j(p) = 1
3 + 1

3

√−14,
then we must have j(p′) = − 1

3 + 1
3

√−14, since p and p′ are inverses in CK . This
tells us that p can be represented by both

3x2 + 2xy + 5y2

and
3x2 − 2xy + 5y2,

so we only need one of those quadratic forms to represent all such p. (Note that
this is obvious on replacing x by −x, as well.)

One can easily use quadratic reciprocity to characterize those p such that(
−14

p

)
= 1; one finds that this occurs if and only if

p ≡ 1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45 (mod 56).

We conclude that for p 6= 2, 3, 5, 7, p can be represented by at least one of

x2 + 14y2, x2 + 7y2, 3x2 + 2xy + 5y2
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if and only if

p ≡ 1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45 (mod 56).



CHAPTER 5

Fermat’s Last Theorem for Regular Primes

1. The theorem

Let p be an odd prime and let K = Q(ζp). We will write ζ for ζp for this section.
It was observed early in the 19th century that this field is intimately connected with
Fermat’s last theorem. Specifically, if one has an equality

xp + yp = zp

with x, y, z ∈ Z, one can use the factorization

xp + yp = (x + y)(x + ζy)(x + ζ2y) · · · (x + ζp−1y)

to conclude that

(x + y)(x + ζy)(x + ζ2y) · · · (x + ζp−1y) = zp.

From here, one shows (with appropriate conditions on x, y, z) that the factors on the
left side are pairwise relatively prime. If OK is a UFD, it follows that each x + ζiy
is a pth power in OK , since their product is. From here one can easily obtain a
contradiction, which shows that Fermat’s equation has no non-trivial solution in
this case.

This argument was first successfully carried out by Kummer in the mid 19th

century. He realized that his proof applied to not only those p for which Z[ζp] is a
UFD, but also to a much larger class of primes. The key property turned out to be
that p not divide the class number hQ(ζp). Kummer called such primes regular; if a
prime is not regular, then it is said to be irregular.

We will prove Kummer’s theorem with the additional simplifying hypothesis
that p not divide xyz; this is classically referred to as Case I. Case I contains most
of the interesting content of the general case and has the advantage of being far
simpler technically.

Theorem 1.1 (Kummer). Let p ≥ 5 be a regular prime. Then the equation

xp + yp = zp

has no solutions with x, y, z ∈ Z and p not dividing xyz.

Proof. To begin, note that by Exercise 5.1 we can assume that x and y are
not congruent modulo p.

Let K = Q(ζp). Suppose that there is a solution xp + yp = zp. As above we
write

(x + y)(x + ζy) · · · (x + ζp−1y) = zp.

We first show that the principal ideals
(
x + ζiy

)
and

(
x + ζjy

)
have no common

factors for i 6= j.

101



102 5. FERMAT’S LAST THEOREM FOR REGULAR PRIMES

Lemma 1.2. Suppose xp + yp = zp and p does not divide xyz. Then the ideals(
x + ζiy

)
are pairwise relatively prime for i = 0, . . . , p− 1.

Proof. Let i and j be distinct integers between 0 and p− 1 and suppose that
there is some prime ideal q of OK which divides both

(
x + ζiy

)
and

(
x + ζjy

)
. q

therefore also divides the principal ideals
(
(x + ζiy)− (x + ζjy)

)
=

(
(ζi − ζj)y

)

and (
(x + ζiy)− ζi−j(x + ζjy)

)
=

(
(1− ζi−j)x

)
.

(See Exercise 5.2. Note that ζi−j(x+ ζjy) generates the same ideal as x+ ζjy since
ζi−j is a unit.) Recall that since i 6= j, ζi− ζj = ζi(1− ζj−i) and 1− ζi−j are both
associate to 1− ζ. We conclude that q divides the ideals

(
1− ζ

)(
x
)

and
(
1− ζ

)(
y
)
.

However, since x and y are relatively prime in Z it follows that they can have no
prime ideal factors in common in OK ; therefore, the only possibility is q =

(
1− ζ

)
.

Suppose, then, that
(
1 − ζ

)
divides

(
x + ζiy

)
and

(
x + ζjy

)
as ideals. This

implies immediately that 1−ζ divides x+ζiy and x+ζjy as elements of OK . Thus

x + ζiy ≡ 0 (mod 1− ζ).

We also have ζi ≡ 1 (mod 1− ζ), so we conclude that

x + y ≡ 0 (mod 1− ζ).

However, x + y is a rational integer, so if it is divisible by 1 − ζ, then it must be
divisible by p. (See Lemma II.4.1.)

We have now that p divides x + y in Z. Since

xp + yp ≡ x + y (mod p),

it follows that p divides xp + yp, and therefore that p divides z. This contradicts
our assumption that p does not divide xyz (or our assumption that x and y are
relatively prime), so we conclude that

(
x + ζi

)
and

(
x + ζjy

)
are relatively prime

ideals, as claimed.

Let (
z
)

= qn1
1 · · · qnr

r

be the ideal factorization of
(
z
)

in OK . The equality of ideals
(
x + y

)(
x + ζy

) · · · (x + ζp−1y
)

=
(
z
)p

.

shows that (
x + y

)(
x + ζy

) · · · (x + ζp−1y
)

= qpn1
1 · · · qpnr

r .

Since the ideals
(
x + ζiy

)
are pairwise relatively prime, each qi must occur in the

factorization of exactly one of them. As each qi occurs with multiplicity divisible
by p, it follows that every prime factor of each

(
x + ζiy

)
occurs with multiplicity

divisible by p. Put differently, each
(
x + ζiy

)
is the pth power of some ideal ai of

OK : (
x + ζiy

)
= ap

i .

We now use the hypothesis that p is regular to conclude that the ai are all
principal. Specifically, note that ap

i is trivial in CK , since it is just the principal
ideal

(
x + ζiy

)
. Since p does not divide the order of CK , this implies that ai itself

must be trivial in CK (since if CK had an element of order p then it would have
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order divisible by p), and thus principal. Therefore we can write ai =
(
αi

)
for some

αi ∈ OK , and we have the equality of principal ideals.

(x + ζiy) = (αi)p.

This implies that
x + ζiy = uαp

i

for some u ∈ O∗K . The next step is to get a little more information on the unit u.

Lemma 1.3. Let u be a unit of OK . Then u can be written as ζaε with ε a unit
of the maximal real subfield of K.

Proof. By Exercise II.2.17 we know that u/ū = ζb for some b, where ū is
the complex conjugate of u. Now choose a ∈ Z such that 2a ≡ b (mod p) and set
ε = ζ−au. Then u = ζaε, and

ε̄ = ζaū = ζaζ−bu = ζ−au = ε,

so ε is real and thus lies in the maximal real subfield of K.

We now take i = 1; by our results to this point we can write

x + ζy = ζaεαp

for some integer a, some real unit ε and some α = α1 ∈ OK . By Exercise 5.3 we
have that αp ≡ b (mod p) for some rational integer b, so we conclude that

x + ζy ≡ ζaεb (mod p).

Since ε, b and p are all real, taking complex conjugates yields

x + ζy ≡ ζ−aεb (mod p).

As x + ζy = x + ζ−1y, we find that

x + ζ−1y ≡ ζ−aεb (mod p).

Combining these equations we conclude that

ζ−a(x + ζy) ≡ ζa(x + ζ−1y) (mod p)

which simplifies to

x + ζy − ζ2a−1y − ζ2ax ≡ 0 (mod p).

We can use this congruence to obtain our desired contradiction. Suppose first
that none of the pth roots of unity 1, ζ, ζ2a−1 and ζ2a are equal. Since p ≥ 5 this
implies that these elements are part of an integral basis of OK . Now the fact that

x + ζy − ζ2a−1y − ζ2ax

is divisible by p in OK implies that x and y must be divisible by p in Z; this
contradicts our assumption that p does not divide xyz, which finishes this case.

This leaves the cases where some of 1, ζ, ζ2a−1, ζ2a are equal. The possibilities
are:

1. 1 = ζ2a−1. Then ζ = ζ2a, so we find that

(x− y) + (y − x)ζ ≡ 0 (mod p).

This p divides (x−y)(1−ζ). As we assumed that x and y were not congruent
modulo p, x − y is relatively prime to p; since also p does not divide 1 − ζ
(they aren’t relatively prime, but it doesn’t matter) this implies that p can
not divide (x− y)(1− ζ); this is the desired contradiction.
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2. 1 = ζ2a. Then ζ2a−1 = ζ−1, so the congruence reduces to

ζy − ζ−1y ≡ 0 (mod p).

This implies that p divides y(ζ− ζ−1) = −yζ−1(1− ζ2); the fact that p does
not divide y now yields a contradiction as in the previous case.

3. ζ = ζ2a−1. Then ζ2a = ζ2 and the congreunce reduces to

(1− ζ2)x ≡ 0 (mod p).

This time p divides x(1 − ζ2); the fact that p does not divide x now yields
the contradiction.

This completes the proof.

We used the fact that p does not xyz in an essential way, but Kummer was
able to extend the theorem to the case p|xyz; see [20, Chapter 9] for a proof.

2. Regular primes

We have not yet given any methods for determining whether or not a prime is
regular. In this section we will state some results of Kummer’s which give easily
computible criteria for regularity.

Define the Bernoulli numbers Bn ∈ R by the formula

t

et − 1
=

∞∑
n=0

Bn
tn

n!
.

Exercise 5.4 shows that Bn = 0 if n is odd and > 1. One also has the formula
n−1∑

k=0

(
n

k

)
Bk = 0

of Exercise 5.5, which makes them easy to compute explcitly and also shows that
they are actually in Q. We include a short table; for a more extensive table, see
[20, pp. 407–409].

Kummer’s main results on regular primes are the following theorems. Let hp

be the class number of Q(ζp) and let h+
p be the class number of the maximal real

subfield Q(ζp + ζ−1
p ). Recall that h+

p divides hp, and we set h−p = hp/h+
p . In

the theorems below, whenever we speak of an integer dividing the numerator of a
rational number, we assume that the rational number is written in lowest terms.

Theorem 2.1 (Kummer). Let p be an odd prime. Then p divides h−p if and
only if p divides the numerator of some Bernoulli number Bj with j = 2, 4, . . . , p−3.

Proof. See [8] for Kummer’s original proof or [20, Theorem 5.16] for a proof
using p-adic L-functions. This theorem has been strengthened by Herbrand, Ri-
bet and Kolyvagin; they have shown that which Bernoulli number p divides gives
information on how the Galois group acts on the ideal class group.

Theorem 2.2 (Kummer). If p divides h+
p , then p divides h−p .

Proof. See [8] for Kummer’s original proof or [20, Theorem 5.34] for a proof
using the p-adic class number formula. Although there are infinitely many primes
for which p divides h−p , there are no known p for which p divides h+

p . It has been
conjectured by Vandiver that this never occurs, although this conjecture is not
universally believed.
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n Numerator Denominator
0 1 1
1 −1 2
2 1 6
4 −1 30
6 1 42
8 −1 30

10 5 66
12 −691 2, 730
14 7 6
16 −3, 617 510
18 43, 867 798
20 −174, 611 330
22 854, 513 138
24 −236, 364, 091 2, 730
26 8, 553, 103 6
28 −23, 749, 461, 029 870
30 8, 615, 841, 276, 005 14, 322
32 −7, 709, 321, 041, 217 510
34 2, 577, 687, 858, 367 6

Corollary 2.3 (Kummer). p divides hp if and only if p divides the numerator
of some Bernoulli number Bj with j = 2, 4, . . . , p− 3.

Using these results we find that 37 is the first irregular prime; it divides the
numerator of B32. The next few irregular primes are 59, 67, 101, 103, 131, 149 and
157. For a longer list see [20, pp. 410–411].

We can give a heuristic argument for the percentage of primes which are irreg-
ular. Define the index of irregularity i(p) to be the number of Bernoulli numbers Bj

with j = 2, 4, . . . , p−3 for which p divides the numerator of Bj ; thus i(p) = 0 if and
only if p is regular. Assuming that the Bernoulli numbers are randomly distributed
modulo p (meaning that p divides Bj with probability 1/p), the probability that
i(p) = k for some k is

(
(p− 3)/2

k

) (
1− 1

p

) p−3
2 −k (

1
p

)k

.

As p grows this approaches the Poisson distribution
(

1
2

)k
e−1/2

k!
.

Taking k = 0 we find that the proportion of regular primes should be e−1/2, which
is approximately 60.65%. This result agrees very closely with numerical evidence.

Strangely, even though no one has been able to prove that there are infinitely
many regular primes, Kummer did succeed in proving that there are infinitely many
irregular primes. His proof is based on the following theorems.
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Theorem 2.4 (von Staudt-Clausen). Let n be even and positive. Then

Bn +
∑

(p−1)|n

1
p

is an integer.

Proof. See [20, Theorem 5.10].

Theorem 2.5 (Kummer). Let p be a prime and let m and n be even positive
integers, not divisible by p− 1, with

m ≡ n (mod p− 1).

Then neither Bm

m nor Bn

n has any factors of p in the denominator, and

Bm

m
≡ Bn

n
(mod p).

Proof. See [20, Corollary 5.14].

Corollary 2.6 (Kummer). There are infinitely many irregular primes.

Proof. We will suppose that there are only finitely many irregular primes
p1, p2, . . . , pr and obtain a contradiction. Set

m = (p1 − 1)(p2 − 1) · · · (pr − 1).

By Exercise 5.9, |B2n/n| goes to infinity as n goes to infinity, so there must be some
multiple M of m such that

|BM/M | > 1.

Thus there exists some prime p dividing the numerator of |BM/M |. Since pi − 1
divides M for all i, Theorem 2.4 shows that each pi is in the denominator of BM ;
this means that there is no way that pi could be in the numerator of BM/M , and
thus that p 6= pi for any i. Similarly, if p− 1 were to divide M , then Theorem 2.4
would imply that p was in the denominator of BM , which can not occur since p is
in the numerator of BM/M . Thus p− 1 does not divide M .

We can now apply Theorem 2.5. Specifically, choose M ′ with 2 ≤ M ′ ≤ p− 3
which is congruent to M modulo p−1. Since p−1 does not divide M we can apply
Theorem 2.5 to conclude that

BM ′

M ′ ≡
BM

M
≡ 0 (mod p),

since p divides the numerator of BM/M by assumption. Thus p divides the numer-
ator of BM ′ , so by Corollary 2.3 it is irregular. This contradicts our assumption
that there were finitely many irregular primes, and thus proves the corollary.
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