
Properties of the Classical Fourier Transform;

Some Examples

De�nition of the Classical Fourier Transform Let f(x) be a (possibly

complex-valued) function de�ned for �1 � x � 1 and square integrable,

i.e., Z 1
�1

jf(x)j2 dx < 1:

There are certain regularity requirements inherent in this de�nition which we

do not want to get into right now; we comment further on this in the section

on proof of Fourier transform properties. The transform produces from

f(x), another function, f̂(�), by the formula

f̂(�) =
1p
2�

Z 1
�1

e�i�xf(x) dx:

It turns out that the transform is invertible, with the inverse transform being

given by

f(x) =
1p
2�

Z 1
�1

ei�xf̂(�) d�:

Minor variations common in the literature involve replacement of the factor
1p
2�

common to both of our formulas with 1
2�

in one of the formulas and just

1 in the other formula. The factor 1p
2�

plays much the same role for the

classical, or continuous Fourier transform as the factor 1p
N

does in the case

of the discrete Fourier transform. With the transform as we have de�ned

it, the function f̂(�) is square integrable just in case f(x) is square integrable

and we have the Plancherel identity

Z 1
�1

jf(x)j2 dx =
Z 1
�1

���f̂(�)���2 d�:
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It is also true that if f(x) and g(x) are both square integrable functions and

f̂(�) and ĝ(�) are their respective transforms, then

hf; gi �
Z 1
�1

f(x)g(x) dx =
Z 1
�1

f̂(�)ĝ(�) d� =
D
f̂ ; ĝ

E
:

The second property reduces to the �rst when we set g(x) = f(x), of course.

We express both of these properties by saying that the Fourier transform is

unitary.

Fourier Transform Properties The properties of the Fourier transform

are much the same as, but not identical to, the properties of the Laplace

transform. This is to be expected because, as shown in the section on the

relationship between the two, the Laplace transform is just a special case

of the Fourier transform together with a change of variable in the complex

plane. In many cases the proofs of the Fourier transform properties are

essentially the same as those given for the Laplace transform; we do not

repeat those here. The property of linearity is more or less obvious; we refer

the reader to the Laplace transform discussion. In the subsequent discussion

of the Fourier transform and its properties we will use the symbols f̂(�) or

calF (f) (�), whichever is more convenient under the circumstances.

Property I: Fourier Transform of eiax f(x). We have

calF
�
eiax f(x)

�
(�) =

1p
2�

Z 1
�1

e�i�x eiax f(x) dx

=
Z 1
�1

e�i(��a)x f(x) dx = calF (f) (� � a):

Property II: Fourier Transform of (ix)n f(x)

calF (((ix)n f(x))) (�) =
1p
2�

Z 1
�1

e�i�x (ix)n f(x) dx
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= (�1)n dn

d�n

 
1p
2�

Z 1
�1

e�i�x f(x) dx

!
= (�1)n dn

d�n
calF (f) (�):

Property III: Fourier Transform of F(x) =
R
x

0
f(y)dy If f(x) and

F (x), as indicated, lie in L2(�1;1) then calF (f)(�)
�

lies in L2(�1;1) and,

using integration by parts, we have

calF (F ) (�) =
1p
2�

Z 1
�1

e�i�x
Z x

0
f(y) dy dx

=
1p
2�

Z 1
�1

 
e�i�x

i�

!
f(x) dx =

1

i�
calF (f) (�):

Property IV: Fourier Transform of f
0

(x); f (k)(x) If f(x) and f
0

(x)

lie in L2(�1;1) then � calF (f) (�) lies in L2(�1;1) and, again using

integration by parts,

calF
�
f

0
�
(�) =

1p
2�

Z 1
�1

e�i�x f
0

(x) dx

=
1p
2�

Z 1
�1

i� e�i�x f(x) dx = i� calF (f) (�):

This process can be repeated to see that if f(x); f
0

(x); :::; f (k)(x) all lie in

L2(�1;1) then �j calF (f) (�) lies in L2(�1;1); j = 1; 2; :::; k and

calF
�
f (j)

�
(�) = (i�)j calF (f) (�); j = 1; 2; :::; k:

Property V: Fourier Transform of f(x� a) The behavior of the Fourier

transform with respect to shifted functions is simpler than the corresponding

behavior of the Laplace transform. No distinction needs to be made between

the de�nitions of right and left hand shifts; we simply observe that for any

real number a

calF (f(x� a)) (�) =
1p
2�

Z 1
�1

e�i�x f(x� a) dx
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= e�ia�
1p
2�

Z 1
�1

e�i�(x�a) f(x� a) d(x� a) = e�ia� calF (f) (�):

Property VI: Fourier Transform of the Convolution (f � g)(x) The

convolution product of two functions f(x); g(x) in L2(�1;1) is de�ned by

(f � g)(x) =
Z 1
�1

f(y) g(x� y) dy:

The integral is de�ned for all real x because f(y) and g(x�y) lie in L2(�1;1)

if f(x) and g(x) lie in that space and the Schwarz inequality then shows

the product f(y) g(x� y) to be (absolutely) integrable. However, (f � g)(x)
does not necessarily lie in L2(�1;1). In fact we have the result: (f�g)(x) 2
L2(�1;1) if and only if the product calF (f) (�) calF (g) (�) 2 L2(�1;1)

and, with the change of variable r = x� y,

calF ((f � g)(x)) (�) =
1p
2�

Z 1
�1

e�i�x
Z 1
�1

f(y) g(x� y) dy dx

=
1p
2�

Z 1
�1

Z 1
�1

e�i�(r+y) f(y) g(r) dy dr

=
p
2�

 
1p
2�

Z 1
�1

e�i�y f(y) dy

! 
1p
2�

Z 1
�1

e�i�r f(r) dr

!

=
p
2� calF (f) (�) calF (g) (�):

Computing the Fourier Transform A major distinction between the

Fourier transform and its Laplace counterpart lies in the fact that many, in

some sense most, of the familiar elementary functions do not have Fourier

transforms in the standard sense of that term. That is true because, in

most cases, they do not decay rapidly enough at �1 for the Fourier integral

to be de�ned. Thus we do not have standard Fourier transforms, e.g., for

f(x) = xn; f(x) = eax; f(x) = sin ax, etc. (it is possible to interpret the
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transforms of the �rst and second of these as distributions, however). Even

the transforms of such functions such as f(x) = 1
1+x2

, which are de�ned in

the standard sense, turn out to involve combinations of di�erent elementary

functions. As a consequence, while the Laplace and Fourier transforms are,

mathematically, very closely related they are, in fact, used in rather di�erent

contexts. Nevertheless, we begin with some examples where the Fourier

transform can be computed without too much di�culty.

Example 1 We compute the Fourier transform of f(x) = e�ax
2

; a > 0.

In this case

f̂(�) =
1p
2�

Z 1
�1

e�i�x e�ax
2

dx =
1p
2�

Z 1
�1

e�(ax
2+i�x) dx

=
1p
2�

Z 1
�1

e
�a
�
x2+i

�

a
x� �2

4a2

�
e�

�2

4a dx =
1p
2�

e�
�2

4a

Z 1
�1

e�a(x+i
�

2a)
2

dx:

Using the methods of contour integration in the complex plane one can show

that Z 1
�1

e�a(x+i
�
2a)

2

dx =
Z 1
�1

e�ax
2

dx

for any real �. To compute the last integral we note that

�Z 1
�1

e�ax
2

dx

�2

=
Z 1
�1

e�ax
2

dx �
Z 1
�1

e�ay
2

dy

=
Z 1
�1

Z 1
�1

e�a(x
2+y2) dx dy =

Z 2�

0

Z 1
0

e�ar
2

r dr d�;

the last identity following from conversion to polar coordinates in the plane.

Then Z 2�

0

Z 1
0

e�ar
2

r dr d� =
1

2a

Z 2�

0

Z 1
0

e�ar
2

2ar dr d�

=
�

a

Z 1
0

� d

dr

�
e�ar

2
�
dr =

�

a

�
�e�ar

2
� ���1

0
=

�

a
:
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Thus we obtain

f̂(�) =
1p
2�

r
�

a
e�

�2

4a =
1p
2a

e�
�2

4a :

When we take a = 1
2
corresponding to f(x) = e�

x2

2 we �nd, signi�cantly,

that f̂(�) = e�
�2

2 . This shows that f(x) = e�
x2

2 is an eigenfunction of the

Fourier transform operator corresponding to the eigenvalue � = 1.

Example 2 Let us de�ne

f(x) =
�
e�ax; x > 0;
eax; x < 0:

Then

f̂(�) =
1p
2�

Z 0

�1
e�i�x eax dx +

1p
2�

Z 1
0

e�i�x e�ax dx

=
1p
2�

Z 0

�1
e(a�i�)x dx +

1p
2�

Z 1
0

e�(a+i�)x dx

=
1p
2�

 
1

a� i�
+

1

a+ i�

!
=

s
2

�

a

a2 + �2
:

Example 3 Observing that the result of the previous example is un-

changed if we replace �� by ]xi, we have, with f(x) as given in that example,s
2

�

a

a2 + �2
=

1p
2�

Z 1
�1

ei�x f(x) dx:

Interchanging the roles of � and x we have

g(x) � a

a2 + x2
=

1p
2�

Z 1
�1

r
�

2
f(�) d�:

Applying the Fourier transform to both sides and using property i) stated in

the introductory Fourier transform section, we obtainr
�

2
f(�) =

1p
2�

Z 1
�1

e�i�x g(x) dx:
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Thus, with

ĝ(�) �
r
�

2
f(�) =

8<
:
q

�
2
e�ax; x � 0;q
�
2
eax; x < 0

;

we have

ĝ(�) =
1p
2�

Z 1
�1

e�i�x
a

a2 + x2
dx:

This example illustrates the point, made earlier, that the Fourier trans-

form of a function having a simple algebraic expression may turn out not

to be expressible in terms of a single elementary function. In other cases

the Fourier transform may have no expression in terms of any number of

elementary functions.
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