
Chapter 13

Fourier Series, Fourier
Transform and Laplace
Transform

13.1 Introduction

In the previous chapter, we discussed the Fourier series

f(x) =
∞∑

n=−∞
cne

−inπx/L, −L < x < L, (13.1)

for f(x) in the interval −L < x < L where

cn =
1

2L

∫ L

−L
f(x)einπx/Ldx. (13.2)

Previously, when sine and cosine series were discussed, we alluded to Dirich-
let’s Theorem, which tells us conditions under which Fourier series is a sat-
isfactory representation of the original function f(x). The full Dirichlet’s
Theorem is stated below.

13.2 Dirichlet Theorem

If f(x) is a bounded and piecewise continuous function in −L < x < L, its
Fourier series representation converges to f(x) at each point x in the interval
where f(x) is continuous, and to the average of the left- and right-hand limits
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of f(x) at those points where f(x) is discontinuous. If f(x) is periodic with
period 2L, the above statement applies throughout −∞ < x <∞.

This theorem is easy to understand. The Fourier series, consisting of
sines and cosines of period 2L, has period 2L. If f(x) itself is also has the
same period, then the Fourier series can be a good representation of f(x)
over the whole real axis −∞ < x <∞. If on the other hand, f(x) is either
not periodic, or not defined beyond the interval −L < x < L, the Fourier
series gives a good representation of f(x) only in the stated interval. Beyond
−L < x < L, the Fourier series is periodic and so simply repeats itself, but
f(x) may or may not be so. The above statements apply where f(x) is
continuous. When f(x) takes a jump at a point, say x0, the value of f(x) at
x0 is not defined. The value which the Fourier seris of f(x) converges to is
the average of the value immediately to the left of x0 and to the right of x0,
i.e. to limε→0

1
2(f(x0− ε)+ 1

2f(x0 + ε)). We have already demonstrated this
with the Fourier sine series. The same behavior applies to the full Fourier
series.

13.3 Fourier integrals

Unless f(x) is periodic, the Fourier series representation of f(x) is an appro-
priate representation of f(x) only over the interval −L < x < L. Question:
Can we take L → ∞, so as to obtain a good representation of f(x) over
the whole interval −∞ < x <∞? The positive answer leads to the Fourier
integral, and hence the Fourier transform, provided f(x) is “integrable” over
the whole domain.

We first rewrite (13.1) as a Riemann sum by letting

∆ω = π/L and ωn = nπ/L.

Thus, (13.1) becomes

f(x) =
1
2π

∞∑
n=−∞

∆ωFn · e−iωnx, (13.3)

where

Fn ≡ (2Lcn) =
∫ L

−L
f(x′)eiωnx′

dx′. (13.4)

[We have changed the dummy variable in (13.4) from x to x′, to avoid
confusion later.]
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In the limit L→∞, ωn becomes ω, which takes on continuous values in
−∞ < ω <∞. So Fn → F (ω), where

F (ω) =
∫ ∞

−∞
f(x′)eiωx′

dx′, (13.5)

and (13.3) becomes the integral:

f(x) =
1
2π

∫ ∞

−∞
F (ω)e−iωxdω. (13.6)

Substituting (13.5) into (13.6) leads to the Fourier integral formula:

f(x) =
1
2π

∫ ∞

−∞

[∫ ∞

−∞
f(x′)eiωx′

dx′
]
e−iωxdω . (13.7)

The validity of the formula (13.7) is subject to the integrability of the func-
tion f(x) in (13.5). Furthermore, the left-hand side of (13.7) must be modi-
fied at points of discontinuity of f(x) to be the average of the left- and right-
hand limits at the discontinuity, because the Fourier series, upon which the
(13.7) is based, has this property.

The formula shows that the operation of integrating f(x)eiωx over all x
is “reversible”, by multiplying it by e−iωx and integrating over all ω. (13.7)
allows us to define Fourier transforms and inverse transforms.

13.4 Fourier transform and inverse transform

Let the Fourier transform of f(x) be denoted by F [f(x)]. We should use
(13.5) for a definition of such an operation:

F (ω) = F [f(x)] ≡
∫ ∞

−∞
f(x)eiωxdx . (13.8)

Let F−1 be the inverse Fourier transform, which recovers the original func-
tion f(x) from F (ω). (13.6) tells us that the inverse transform is given
by

f(x) = F−1[F (ω)] ≡ 1
2π

∫ ∞

−∞
F (ω)e−iωxdω . (13.9)
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Equations (13.8) and (13.9) form the transform pair. Not too many integrals
can be “reversed”. Take for example∫ ∞

−∞
f(x)dx.

Once integrated, the information about f(x) is lost and cannot be recovered.
Therefore the relationships such as (13.8) and (13.9) are rather special and
have wide application in solving PDEs.

Note that our definition of the Fourier transform and inverse transform
is not unique. One could, as in some textbooks, put the factor 1

2π in (13.8)
instead of in (13.9), or split it as 1√

2π
in (13.8) and 1√

2π
in (13.9). The

only thing that matters is that in the Fourier integral formula there is the
factor 1

2π when the two integrals are both carried out. Also, in (13.7), we
can change ω to −ω without changing the form of (13.7). So, the Fourier
transform in (13.8) can alternatively be defined with a negative sign in front
of ω in the exponent, and the inverse transform in (13.9) with a positive
sign in front of ω in the exponent. It does not matter to the final result as
long as the transform and inverse transform have opposite signs in front of
ω in their exponents.

13.5 Laplace transform and inverse transform

The Laplace transform is often used to transform a function of time, f(t)
for t > 0. It is defined as

L[f(t)] =
∫ ∞

0
f(t)e−stdt ≡ f̃(s) . (13.10)

Mathematically, it does not matter whether we denote our independent vari-
able by the symbol t or x; nor does it matter whether we call t time and
x space or vice versa. What does matter for Laplace transforms is the in-
tegration ranges only over a semi-infinite interval, 0 < t < ∞. We do not
consider what happens before t = 0. In fact, as we will see, we need to take
f(t) = 0 for t < 0.

Functions which are zero for t < 0 are called one-sided functions. For
one-sided f(t), we see that the Laplace transform (13.10) is the same as the
Fourier transform (13.8) if we replace x by t and ω by is. That is, from
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(13.8)

F (is) =
∫ ∞

−∞
f(t)e−stdt =

∫ ∞

0
f(t)e−stdt

≡ f̃(s). (13.11)

Since the Laplace transform is essentially the same as the Fourier transform,
we can use the Fourier inverse transform (13.9) to recover f(t) from its
Laplace transform f̃(s). Let

f(t) = L−1[f̃(s)].

Then the operation L−1, giving the inverse Laplace transform, must be
defined by

f(t) =
1

2πi

∫ i∞

−i∞
f̃(s)estds. (13.12)

This is because

f(t) = F−1[F (ω)] =
1
2π

∫ ∞

−∞
F (ω)e−iωtdω

=
1

2πi

∫ i∞

−i∞
f̃(s)estds

through the change from ω to is. Since the inverse Laplace transform in-
volves an integration in the complex plane, it is usually not discussed in
elementary mathematics courses which deal with real integrals. Tables of
Laplace transforms and inverse transforms are used instead. Our purpose
here is simply to point out the connection between Fourier and Laplace
transform, and the origin of both in Fourier series.

Note: The inverse Laplace transform formula in (13.12) was obtained
from the Fourier integral formula, which applies only to integrable functions.
For “nonintegrable”, but one-sided f(t), (13.12) should be modified, with
the limits of integration changed to α − i∞ and α + i∞, where α is some
positive real constant bounding the exponential growth of f allowed.

To show this, suppose f(t) is not integrable because it grows as t→∞.
Suppose that for some positive α the product

g(t) ≡ f(t)e−αt → 0 as t→∞
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and is thus integrable. We proceed to find the Laplace transform of g(t):

g̃(s) ≡ L[g(t)] =
∫ ∞

0
f(t)e−αte−stdτ

=
∫ ∞

0
f(t)e−(α+s)tdt.

Thus if
f̃(s) = L[f(t)] =

∫ ∞

0
f(t)e−stdt,

then
g̃(s) = f̃(α+ s).

The inverse of g̃(s) is

g(t) = L−1[g̃(s)] =
1

2πi

∫ i∞

−i∞
g̃(s)estds

=
1

2πi

∫ i∞

−i∞
f̃(α+ s)estds

=
1

2πi

∫ α+i∞

α−i∞
f̃(s′)e−αtes

′tds′

where we have made the substitution s′ = α+ s. Since g(t) ≡ f(t)e−αt, we
obtain, on cancelling out the e−αt factor:

f(t) =
1

2πi

∫ α+i∞

α−i∞
f̃(s′)es

′tds′.

This is a modified, and more general, formula for Laplace transform of a
one-sided function f(t), whether or not it decays as t → ∞, as long as
f(t)e−αt is integrable.

f̃(s) = L[f(t)] =
∫ ∞

0
f(t)e−stdt, Re s ≥ α

f(t) = L−1[f̃(s)] =
1

2πi

∫ α+i∞

α−i∞
f̃(s)estds.


