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PREFACE

ANALYTIC GEOMETRY, if properly taught, is a difficult
subject, and concentration on a few of its important princi-
ples is necessary if mastery is the aim. I have cut out, or
put in small type (or in late chapters which may be easily
omitted) what seems to me less essential. With very few
exceptions I have used methods so straightforward that they
can serve as models for the student in his own work. Neither
the notation of determinants nor (except in Chapters XII,
XIII) that of the calculus has been used, since a difficult
new subject is only obscured by a notation which has not
already become thoroughly familiar, and I am old-fashioned
enough to believe in handling one difficulty at a time. |

It need hardly be said that in teaching it may not be
advisable to follow everywhere the order of the book, which
is meant to serve not merely as a text-book from day to day
but as a permanent book of reference. At Harvard, where
most of the work here given is taken up in the Freshman
class, a considerable part of Chapter X and the whole of
Chapter XI are postponed till the Sophomore year, thus
making room for Chapters XII and XIII. 'This introduction
of a little calculus, not hashed fine but put squarely as a
new subject, during the last six weeks of the Freshman year
has been most successful. The parts of the calculus thus
introduced are easier than the parts of analytic geometry
they replace, and, to the average student, more interesting s
and the student who has got somewhat beyond his depth

has a chance for a new start. This book, however, is equally
v
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adapted to a course which includes no calculus if Chapters
XII and XIII are omitted.

I have said that if properly taught analytic geometry is
difficult. It is only by degrading it to a course in graphics
(curve plotting, numerical problems, ete.) that a course in
analytic geometry can be made easy to the average student.
I have followed the Harvard tradition, inaugurated nearly
forty years ago by Professor Byerly (whose courses are
represented in a general way by the older editions of the
text-books of Briggs and Ashton) that the one aim should
be to put the student into possession of an instrument which
he can himself use in proving new geometrical theorems or
solving new problems. The specific geometric knowledge
gained is of far less importance. In particular, if time re-
quires, he may omit everything on conic sections except what
is contained in Chapter IX. I have been at pains to collect
a large number of problems for such a student.

The Exercises at the end of each section are largely nu-
merical, and almost invariably of a very simple character.
The more substantial problems, which give the better student
his main chance of learning something worth while, will be
found at the ends of the chapters. |

The sources of the best problems in analytic geometry are,
to.a surprisingly large extent, the English text-books of
sixty years ago by Salmon, Puckle, and Todhunter. These
are now public property, and I have used them freely. Be-
sides similar sources for calculus problems in Chapter XIII,
I have, with the author’s permission, made free use of the
first chapters of Professor Byerly’s Differential Calculus and
‘of his Problems in Differential Calculus (both published by
Ginn and Co.). I have followed Professor Byerly, and the
further developments of the same idea in Professor Osgood’s
Caleulus, in introducing a variety of applications of the cal-
culus at a very early stage. The excellent collection of
problems on Curve Tracing in L. S. Hulburt’s Calculus
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(Longmans, Green, & Co.) has been useful to me, and will
prove valuable to the teacher who wishes to emphasize this
subject even more than I have done here.

The most fundamental formule are printed in black type.
These, at least, should be committed to memory by all

students.
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ANALYTIC GEOMETRY

INTRODUCTION

POSITIVE AND NEGATIVE SEGMENTS. PROJECTIONS

1. Positive and Negative Segments on a Line. Analytic
geometry is a method of applying in a systematic manner
algebra to geometry. It was invented by René Descartes,
and published in his Géométrie in 1637. One of its essential
elements is the free use it makes of negative as well as posi-
tive quantities. We will consider in this section a simple case
in which the advantage of the use of negative quantities in
geometry becomes apparent.

Let AB, BC, etc. be segments on a straight line. KEach
of these segments we suppose to have a definite direction,
and we indicate this direction by
the order in which the ends are ‘;4 ]? , (-J
written. Thus if we write AB, '
we understand that the segment is
taken as running from A to B, while if we wish to take the
same segment in the opposite direction, we should write it
BA.

By the side of the segments AB, B(, etc. we consider their
numerical measures, which we will denote by AB, BC, etc.
For this purpose we must first select a unit of length (centi-
meter, inch, etc.) and AB then indicates the number of times
this unit is contained in AB. We will agree that segments
measured in one direction (for instance to the right) shall
have a positive numerical measure, those in the opposite
direction, a negative measure. Thus if the points 4, B, ¢
lie as in Figure 1, AB, B(, A(C are positive numbers, and

1

Fic. 1




2 INTRODUCTION

BA, OB, CA are negative numbers. In particular we note
the general formula

N BA=—AB.
Now let 4, B, (' be any three points on a straight line.

If these points lie as in Figure 1, the two numbers AB and
B( are positive and their sum is evidently 4C':

(2) AB+ BC=AC.
Suppose, however, that these three points lie in the order
indicated in Figure 2. Here AB is positive, B( negative.
Consequently, when we add BC 4 C B
to AB we are really subtracting — :
a positive quantity from AB, and
the result is the positive quantity AC. Hence, in this case
also, formula (2) is correct.

The student should examine in a similar way all other
possible figures and satisfy himself that in all cases formula

(2) holds without change. We have thus proved the fol-
lowing result:

TaEorEM 1. If A, B, C are three points situated on a
straight line tn any order, formula (2) s always correct pro-

vided we regard segments measured in one direction as positive,
those in the opposite direction as negative.

1
[ ]

Fic. 2

This result shows clearly the advantage of the use of
negative quantities in geometry, since in this way we get a
single formula which applies to all cases.

The result just established may readily be extended to
more than three points. If we have four points, 4, B, C, D,
on a straight line, then, no matter in what order these points
may lie,

(3 AB+ BC+ CD=AD.

To prove this we notice that, by (2), the sum of the first
two terms is AC. If we now apply (2) with a change of
letters to the three points 4, C, D, we have
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AC+ OD = AD,
and this establishes our formula.

Similarly if we have five points on a line, 4, B, (, D, E,
€)) AB+ BC+ 0D+ DE=AFE,

a formula which is correct no matter in what order the five
points lie. Ete.

Throughout this section we have carefully distinguished
between the segment A.B (a directed piece of a line) and the
numerical measure, AB, of this segment. In future, how-
ever, we shall use the notation AB indifferently for both
purposes, since no real confusion is likely to result.

2. The Projection of a Broken Line. A very simple, and at
the same time very useful, application of the principle of
§ 1 is the following. Let P P, P,P,P, be a broken line,
and let AB be an in-
definite straight line.
If from the points 2P,
P, etc. we drop per-

Q
:
|
i
|
|
|
|

Rl —————

i
1
i
i !
pendiculars on AB P ! | \P,
meeting it in M, M, i i i :
"] A N l
My, My, M, N, these “—3 3 M, N M. I >

points are called the Fic. 3

projections of P, P,

etc. on AB. The projections of the segments PP, P,P,,
etc. on AB are the segments MM,, M| M,, etc. If we select
one direction on AB as the positive divection, and consider,
as in § 1, the various segments on it as positive or negative
as the case may be, we have by formule (3), (4), ete. of § 1,

MM, + MM, + MMy + MM, + M,N = MN.

But MN is the projection of the segment P¢ on AB.
Consequently the projection of a segment, PQ), on a line, AB,
s equal to the algebraic sum of the projections of the segments
PP, PP, etc. of any broken line connecting P and @.



CHAPTER 1

COORDINATES OF POINTS

3. Rectangular Codrdinates. A second essential element
of analytic geometry is the systematic use of codrdinates, that
is, numbers which determine the position of a point in the
plane. We consider in this section the simplest, and by far
the most important, system of codrdinates.*

We start from two indefinite straight lines at right angles
to each other which we call the coordinate azes. Their point
of intersection, O, is called the origin. One direction on
each axis is taken as the positive direction, not only for the
axes themselves but for all lines parallel to them. Let us
denote these positive directions as OX and OY respectively.
If these directions are so chosen that a rotation through a
posttive right angle carries the direction OX into the direc-
tion OY, we say that we have a right-handed system, other-
wise a left-handed system. In this book we shall always
suppose, unless the contrary is explicitly stated, that the co-
ordinate systems are right-handed. If we take counter-
clockwise rotation as positive,  we may therefore take the
direction OX as extending to the right, OY as extending up-
ward, and this is the position in which we shall most com-
monly draw our axes. The line OX is called the axis of
(or the axis of abscigsas), OY is called the axis of y (or the
axis of ordinates). It should be noticed that for a line par-
~allel to neither axis no convention of sign has been made.
Segments on such lines will usually be regarded as essentially
positive, as is done in elementary plane geometry.

* These rectangular coordinates, together with the oblique system of § 9, are
called Cartesian coordinates from the latinized form (Cartesius) of Descartes’
namec

4



" RECTANGULAR COORDINATES d

Now let P be any point in the plane, and consider the
segment OP. The lengths of the projections of OF on the
x and y axes respectively we call v
the # and y codrdinates of P and
denote them by x and y:

x= O, y= ON.

In place of the terms: z coor- 0 X
dinate and y coordinate, the
words abscissa and ordinate are
sometimes used. It should be
noticed that =z and y may be
either positive or nega,tlve ; for instance, in Figure 4 they
are both positive, in Figure 5 # is negative, y is positive.

N P

Fic. 4

In practice one of the two - Y
projecting lines may be dis-
pensed with, and, of course, P N

the line OP need not be drawn.
It is often convenient to draw

only the perpendicular MP, M O X
and to write
2= OM, y= MP. Fic. 5

When a point, P, is given we can, then, by simple measure-
ment, determine the values of its codrdinates. Conversely,
it is a simple matter to construct, or plot, the point when its
cobrdinates are given. For instance, to plot the point for
which z=2, y=—3, or as we say for brevity, the point
(2, — 3), we start from the origin and lay off a distance OM
two units long and running to the right along the axis of .
From M we lay off a segment three units long, parallel to
the axis of y, and downward (since y is to be negative).
The point, P, thus reached is the point (2, —3). The
labor of this process of plotting may be considerably lightened
by using squared paper, that is, paper ruled into small squares
of equal size by means of two sets of parallel lines. If one
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line of each set is taken as a coordinate axis, and the unit of
length is taken either as one side of a square or as some mul-
tiple of this length, points may be plotted by counting off
squares and estimating fractions.

If, in particular, a point lies on the axis of z, its y coordi-
nate is zero; if it lies on the axis of g, its # coordinate is
zero. The origin is the point (0, 0). |

If we wish to deal with several points at once, it is often
convenient to denote them as* P,, P,, P, or, perhaps asf
P, P, P, Their coérdinates will then ordinarily be called

(Zys ¥1)s (@a» Y2)s (%5 Y3), OT @, y'), (5’7”2 ¥, @ y''h.
EXERCISES

Plot the points (2, 5), (7, 3), (9, — 2), (— 8, — 5), (— 5,4),
(3% 28), (5.2, —9.3), (4 — ), (T, 4.25).

4. Projections of a Segment on the Axes. Let Py, P, be any
two points in the plane, and call y
their codrdinates (z;, ¥,), (% Ys)-
If we project the segments of the
broken line .P; OP, on the axis of z,
we have, by § 2,

Proj. of PP,

= Proj. of P;0+ Proj. of 0P,

= Proj. of OP,— Proj. of OP;.
But these projections are, by defi-
nition, precisely z, and z;. Hence
(1) Projection on z-axis of PP,

Similarly, by projecting the O |
broken line P, OP, on the axis of y, Fic. 6
(2 Projection on y-axis of PPy = y, — y;-

Formula (1) may also be used if, instead of the projection

* Read P-one, P-two, P-three.
T Read P-prime, P-second, P-third.
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of P, P, on the axis of z, we want its projection on some line
parallel to this axis, since these two projections are evidently
equal. . Similarly formula (2) may be used to find the pro-
jection of P, P, on any line parallel to the axis of y.

/5. Distance Between Two Points. Given two points P, P,
with coordinates (z;, ;) and (z, ¥,). Through P; draw a
line parallel to the z-axis and through P, a line parallel to
the y-axis, and let @ be the point
where these lines meet. Then
P, @ is the projection of P, P, on
the axis of z, and @P, its projec-
tion on the axis of y, and con- ‘
sequently, by § 4, | o _ x
— o

(1) Pl = x2 v Fia. 7

. QP, =y, — Y-

But P;@ and QP are the two sides of a rlght triangle of
which P, P is the hypotenuse. Hence

(2) P\ P,=(:— 1) + (Y2 — Y1)*

This is the formula which we shall constantly have to use
to find the distance between two given points. It should be
noticed that the reasoning by which we have established this
formula is entirely general and applies not merely to the fig-
ure we have drawn but to any position whatever of the
points P, P,. It is true that the formulae (1) give, in some
cases, negative values for the sides of the triangle P;QP,,
but since it is merely the squares of these sides we use, this
will make no difference.

Y
| 12

EXERCISES
1. Find the distances between the following pairs of
points :
(2,39, 1D; @ —1D(=5 —2); (—2 —3) (—4,-0).
Express the results in decimals correct to three significant
figures.
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2. Find the lengths of the sides of the triangle whose ver-
tices are the points (4, 6), (—1, —6), (2, — 2).

3. Find the distances from the origin to the vertices of the
triangle of Exercise 2.

6. Slope of Line Through Two Points. Besides the length
of the segment P, P, we must also consider its direction.

This direction may be determined by means of the angle be-
tween P, P, and the axis of . We will call this angle 6,
and we will suppose it measured from the positive direction
of the axis of = to the direction P P, That is, 6 is the
angle through which the direction OX must be turned in
. order to bring it parallel to, and wn the same direction as,
PP, Instead of this angle, 6§, which may be called the in-
clz'fnation of P P,, it is usually more convenient to use its

tangen: A= tan 6.

This quantity, A, is called the slope of P, P,. From Figure
T we see at once that

_QP,

P Q

a formula which, from the definition of the tangent of an
angle in the second, third, or fourth quadrant, is seen to be
correct in all cases. If we replace P,;¢ and @QFP, by their
values from (1), § 5, we find

D A=Y Y1,

From this formula, or, if we prefer, from the definition of
tan 6, it is evident that the slopes of PP, and of P,P, are
the same. We may, therefore, speak of A as the slope of the
indefinite straight line through P, and P, without regard to
direction.

Finally we note that the slope of a stralght line is positive
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or negative according as the smallest angle through which
the axis of # can be revolved to make it parallel to this line
is positive or negative.

EXERCISES

1. Find the slopes of the lines mentioned in Exercise 1, § 5.
2. Find the inclinations of the sides of the triangle of Ex-
ercise 2, § 5, and hence find the angles of this triangle.

7. The Mid-Point of a Segment. If P, with cosrdinates
(@, ¥), 1s the middle point of the y '
segment P, P,, the two segments
PP and PP, are equal both in | p
magnitude and in direction, and p /2
consequently their projections, B_—"
M, M and MM,, on the axis of « ‘
are equal. By § 4 these projec-
tions have the values z — z; and
x, — x respectively. Hence

A x
or, solving for z, | Fic. 8
1 § _ X1 + o, .
@Y) a >
Similarly, by projecting P, P, P, on the axis of y, we find
Y1+ Y-
@ y=tt Y,

By means of (1) and (2) we can find the coérdinates of
the point halfway between any two given points.

EXERCISES

1. Find the codrdinates of the middle pomts of the three
segments of Exercise 1, § 5.

2. Find the coordinates of the middle points of the sides
of the triangle of Exercise 2, § 5.

3. A quadrilateral has its vertices at the points (2, 1),
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(7, ), (9, 3), (4, 3). Show that the middle points of its
diagonals coincide. |

8. Division of a Segment in Any Ratio. Let us try to find
the coordinates of the point, P, which divides the segment
PP, internally in the ratio my : my,

PP my
| PP, my

The projections of the segments P; P and PP, are evidently
in the same ratio as these segments. That is,

Solving this equation for », we find

Moy + My,
(1) xr — ,2”&1 - ml 2,
| 2 1
Similarly, by considering the projections on the axis of y,

we find
(2) y = MoYy + MY

mq -+ my

These formule reduce, as they should, to the formul® of
the preceding section when m; = m,.

In applying (1) and (2), we must remember that m; and
m, need not be the exact lengths PP and PP, but may be
any quantities proportional to these lengths. Furthermore
we must always take m, proportional to P, P, i.e. to that
~one of the two segments nearest P;, and m, to that one
nearest P,. "
~ We leave it for the student to show, by a method similar
to that used above, that if P divides the segment P, P, exter-
nally in the ratio m, : m,, we have the formula*

(3) = Te®y — My y = oY1 — "M1Y2

= . = .

~ *These formule may be included as a special case under (1) and (2) if we
agree to regard external division as division in a negative ratio.



OBLIQUE COORDINATES 11

EXERCISES

1. Find the coordinates of the two points which divide the
segment (— 2, 3), (5, 7) internally in the ratio 2: 3, and
indicate which of these points is nearer to the first end of
the segment. |

2. Find the coordinates of the two points of trisection of
the segment of Exercise 1. Plot the segment and these two
points. -

8. A triangle has its vertices at the points (3, 7), (5, — 3),
(1, 1). Find the codrdinates of the points two thirds of the

way from each vertex to the middle point of the opposite
side, and show that these three points all coincide.

4. The sides of the triangle of Exercise 3 which meet at the
point (1, 1) are extended away from this point to three times
their original length. Find the coérdinates of the points
thus reached, and find the coordinates of the point halfway
between them. Show that this last point is the same as the
one obtained by extending to three times its original length

the line joining the ‘vertex (1, 1) with the middle point of
the opposite side.

9. Oblique Codrdinates. Occasionally it is convenient to use a system
of cosrdinates in which the axes are not perpendicular to each other.
We speak of the z-axis and the y-
axis, and, as before, we call their
point of intersection, O, the origin.

We also make a convention, as
above, concerning the sign of seg-
ments on the codrdinate axes or
parallel to them. The angle from -
the positive half of the axis of x to

the positive half of the axisof y we 5
call w.* ) Fig. 9

)

* We do not assume that w is 'necessa,rily positive. If w = + 90°, we have or-
dinary rectangular coordinates. If w = -—90° we have the left-handed rec-
tangular system mentioned in § 3, '
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In connection with oblique coérdinates we use not ordinary (or- or-
thogonal) projections made by perpendicular lines, but oblique projec-
tions made by lines parallel to the
coordinate axes. Thus the oblique
projections of the points 4 and B
(see Figure 10) on the axis of = are the /
points M and R, and the projection of N
the segment AB is the segment MER.
Similarly the projection of the segment
. AB on the axis of y is the segment
NS. The theorem of §2 is readily &7 M R
seen to hold for oblique as well as for Fia. 10
orthogonal projections. '

We define the oblique codrdinates of a point P as the projections
of the segment OP on the axes of z and y:

OM = z, ON =y, (see Figure 9).

It is now clear, as.in § 4, that if P, and P, are any two points, the
oblique projections of the segment P, P, on the axes of x and y respec-
tively (or on lines parallel to them) are z, — z; and y, — ;.

The work and formule of §§ 7, 8 apply without change to oblique
coordinates since no use was
made in those sections of the Y,
fact that we were dealing with
rectangular projections.

On the other hand, §§ 5, 6
depended essentially on the
fact that the triangle P,QP,
was a right triangle. These
sections, therefore, require
modification.

In the triangle P,QP,, Fig-
ure 11, the angle Qis 180° — w.
Consequently, by the law of
cosines, w

PP} = P,Q* + QP of M, M,
+ 2 P1Q * QP, cos w. Fia. 11

[ _ B

X

W

-:U

Hence
1) PP,= \/(x2 — 2%+ (Y — Yy + 2(x — ) (Y — Y1) €08 o

The student may satisfy himself that this formula holds in all cases
by dl'@wing other figures,
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The formula just obtained is more complicated than the formula for
the distance between two points in rectangular coérdinates, to which it
reduces when w = 90°. It will be found that in problems in which it is
necessary to express the length of a segment which is not parallel to one
of the codrdinate axes it is almost invariably preferable to use rectangu-
lar coérdinates. '

In the same way the slope of the line P,P, is no longer given by for-
mula (1), § 6 when the coérdinate axes are oblique, and consequently, in
problems involving the slopes of lines, rectangular codrdinates are almost
always preferable. '

Even when we use oblique coérdinates it will be desirable to define a
quantity A by means of the equation

(2) A=%"9N.
: Ty — X,

We will call A the direction-ratio of the line P;P,. It should be noticed
that this direction-ratio will serve just as well to determine the direction
of a line as its slope.

EXERCISES

1. Plot the triangle whose vertices are the points (2, 3), (5, 7),
(4, — 2) in the three systems of coérdinates in which w = 60°, 90°, 120°
respectively.

2. Find the lengths and the direction-ratios of the sides of the three
triangles of Exercise 1.

8. Find the coordinates of the middle points of the sides of the tri-
angles of Exercise 1.

4. If o = 45°, plot the lines through the point (2, 1) whose direction-
ratios are 2 and — %. Find the slopes of these lines. '

10. Applications of Analytic Geometry to the Proofs of
Geometric Theorems. Analytic geometry gives us, as we
shall repeatedly find in subsequent chapters, a powerful
method for treating all kinds of geometrical questions. We
give a few elementary illustrations of this fact in this section.

Exainple 1. To prove that the diagonals of a rectangle
are equal.
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~ Let ABCD be any rectangle. In order to apply the
methods of analytic geometry, we must first of all select our
codrdinate axes. Any pair of perpendicular lines may be
taken for this purpose, but the work will be simplified if we
take two lines which have a simple connection with the figure.
In the present case we will take as our axes two adjacent
sides, AB and AD, of the rectangle. - Let us call the length
AB, a, the length AD, 5. Then

the codrdinates of the four vertices Y

of the rectangle are D C
A 0, 0
B (a, 0)
C (a, &) a B~
D 0, 5 Fie. 12

Conse(iuently, by formula (2), §5, the lengths of the
diagonals are

AC=~(a - 0)2+ (b —0)2 = Va2 + %
BD =~V (a—0) + (0—=0)2= Va2 + B2

Hence the diagonals are equal, as was to be proved.

 Example 2. To prove that Y
the diagonals of a parallelogram
bisect each other.

Let ABCD be the parallelo-
gram. We take the point A as | B__x
origin and the side AB as the 4% (a,0)
axis of z. The codrdinates of Fre. 13 |
A and B are then (0, 0) and (a, 0) respectively. Let us
call the coordinates of D (b, ¢) so that ¢ is the altitude of
the parallelogram and & the distance D lies to the right of 4.
Since C lies as far to the right of B as D lies to the right of
A, the coordinates of € will be (a + b, ¢).

. (b - +b,¢
D(,C) (a C)
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The coordinates of the middle point of AC will then, by
formule (1) and (2), §7, be

S
2 °2)
and the coordinates of the middle point of BD are exactly
the same, as we see by using the same formule. Consequently,

since this point is the middle point of both diagonals, it must
be their point of intersection, and the theorem is proved.

It would have been a little simpler to have used oblique codérdinates
in this problem, taking two adjacent sides of the parallelogram as co-
ordinate axes.

Example 8. To prove that the lines joining the vertices
of a triangle to the middle points of the opposite sides meet
in a point and trisect each other.

Let us take one side, AB, of
the triangle as axis of x and the cp(0:¢)
perpendicular dropped from the
opposite vertex, ¢, as axis of y.
The coordinates will be taken as
indicated in ‘the figure.* The élo) 5 — 01)3 X
middle points of the sides 4B, Fre. 14 ’
BC, CA are then

@ﬂ®@%@f
2 bl 9 252 9 292

We now apply formula (1), § 8, and find as the z-coordi-
nate of the point two thirds of the way from A to the middle
point of B(C

Y

*If the triangle is shaped as in the figure, a is a negative quantity. It should
be noticed that the demonstration about to be given applies equally well to the
case where a is positive, i.e. where 4 or B is obtuse. It is one of the great ad-
vantages of analytic geometry that separate proofs need not be given for different

forms of the figure.
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| ;
1. 2.=

“TE9 avs
1+2 — 38 °

Similarly, by (2), § 8, the y-codrdinate of this point is

T =

1.042.¢
B + 2__0
¥y=71¥2 7%

In the same way we find as the point two thlI’dS of the way
from B to the middle point of CA

1.642.%
. + 2 a+b
r="73x32 T 3°
1.042.52
B _+ 2 e
Yy=—"T7x2 3’

Finally, as the point two thirds of the way from C to the
middle point of 4B

1-0+2.“+b

. 2 _a+b
TETT 112 =3
=1-c+2.0=£
14+2 3
Hence, since the point
<a+bg_
3 3

is a point of trisection of each of the lines joining the vertices
to the middle points of the opposite sides, these lines all pass
through this point and trisect each other.

Here too the use of oblique coérdinates would slightly simplify the
algebra.le work if we took two sides of the triangle as coérdinate axes.
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PROBLEMS TO CHAPTER I

1. Prove that the line joining the vertex of any right-
angled triangle to the middle point of the hypotenuse is
equal to half the hypotenuse.

2. Prove that the line joining the middle points of two
sides of a triangle is equal to half the third side.

3. In any quadrilateral the lines joining the middle points
of the opposite sides and the line joining the middle points
of the diagonals meet in a point and bisect each other.

4. M is the middle point of the side AB of the parallelo-
gram ABCD. Prove that the line M and the diagonal
BD trisect each other.

6. Prove that the lines which join the middle points of
adjacent sides of any quadrilateral form a parallelogram.

[SuccEsTION. Show that the slopes (or the direction-
ratios) of opposite sides are equal. ] |

6. Prove that the sum of the squares of the sides of any
quadrilateral is equal to the sum of the squares of the diag-
onals plus four times the square of the distance between the
middle points of the diagonals.

7. Prove that if the lines joining two vertices of a tri-
angle to the middle points of the opposite sides are equal,
the triangle is isosceles.

8. Prove that the distance between the middle points of
the non-parallel sides of a trapezoid is equal to half the
sum of the parallel sides.

9. If P is any point in the plane of a rectangle, prove
that the sum of the squares of the distances from P to two
opposite vertices of the rectangle is equal to the sum of the
squares of the distances from P to the other two vertices.

~ 10. Prove .that if the diagonals of a parallelogram are
equal, the figure is a rectangle.
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The following problems illustrate the advantage in in-
creased symmetry which may sometimes be secured by
taking coordinate axes having no relation to the figure.

11. By the barycenter (or center of gravity) of three
points is meant the point two thirds of the distance from
any one of these points to the point halfway between the
other two. See Example 3,§ 10. Show that the barycenter

of the points (zy, ¥1), (% ¥a)»> (¥, ¥3) is
Gy + 2+ 75), $(Y1 + Y+ ¥s))-

12. By the barycenter of four points is understood the
point halfway between the middle points of two opposite
sides of the quadrilateral formed by the points. See Prob-
lem 3 above. Show that the barycenter of the points

(@ Y1)s (Zay Ya)» (Tgs Y3)s (g Yy 18
G+ o+ 23+ 20, (Y1 + Y2+ Ys+ Yu))-
13. By means of the results of Problems 11 and 12, show
that the barycenter of four points divides in the ratio 3:1

the line joining any one of them to the barycenter of the
other three.

14. If @, is the barycenter of P,P,P,, @, of P, PP, @
of P, P,P,, and @, of P, P,P, prove that ©,0,¢;¢, have
the same barycenter as P, P, P;P,.

15. Given five points Py, P,, P, P, P, with coordinates
(zy Y1)y -+ (Z5 yg). Show that the point four fifths of
the way from P, to the barycenter of P, P,; P, P is
Gty + o+ g+ o), Py + Y+ ¥s+ys+ys)).  This
point, @, is called the barycenter of the five points P, P,
Pg, P,, P,. Prove that we reach the same point, ¢, if we
start from P,, or any of the other points, instead of P;.

16. Prove that the barycenter of five points lies three
fifths of the distance from the point halfway between any
two of them and the barycenter of the other three.



CHAPTER II

THE LOCUS OF AN EQUATION

11. First Illustrations. The position of the point (z, ¥) is

completely determined if the values of both 2 and y are
given. Suppose we give the Value of only one coordinate,
for instance
(1D z=c.
This equation tells us that the point is situated ¢ units to
the right* of the axis of y, but gives us no information as
to how far it is from the axis of z. In fact, if the point
(z, y) moves along the line parallel to the axis of y and
lying ¢ units to its right, the equation (1) will always be
fulfilled, and hence we speak of this line as being the locus
of the equation (1), and, conversely, we call (1) the equa-
teon of the line in question.

Similarly, the equation
(2) v ' Yy=~c¢
has as its locus the straight line parallel to the axis of # and
lying ¢ units above it.

Again, suppose we have the equation

C) R z=y. ¥
A point (z, y) for which this equation
is true lies just as far above the axis
of z as it lies to the right of the axis
of y; or else just as far below the axis
of  as it lies to the left of the axis of
y. In either case it fies on that bi- ,
sector, OA, of the angle between the Fra. 15

coordinate axes which passes through the first and third
quadrants. Conversely, if the point (z, ¥) moves along this

*If cis a negative quantity, this, of course, means that the point is to the left
of the axis of y.

19
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line, its two codrdinates will always be equal, and (3) is ful-
filled. Consequently equation (3) has as its locus the in-
definite straight line OA.

The other bisector of the angle between the coérdinate
axes, lying in the second and fourth quadrants, is seen in the
same way to have as its equation
(€))] = —1y.

As a last example we take the circle of radius ¢ whose
center is at the origin. Let P be the moving point (2, )

which describes this circle.* The v

distance from P to the origin is, |

by formula (2), § 5, V24 g2 P

Hence, for any position of P on c

the circle, : 5 X
'\/_x_z—i-—yz = C,

and therefore

(5) x? + y? = .

Conversely, if (2, y) satisfies this F1a. 16

equation, its distance from the origin is ¢, that is, it lies on
the circle. Consequently, the circle has (5) as its equation.

These examples illustrate the general fact that if a curve
~ (under which generic term we shall in future always include
the straight line as a special case) is regarded as the locus of
a moving point, P, the coordinates (z, ) of this point will
satisfy a certain equation as long as P lies on the curve, but
will not satisfy it if 2 moves off the curve. This equation is
called the equation of the curve.

Conversely, if an equation in z, y iggiven, it determines a
definite locus. This will become more evident in the next
- section.

It is essential to understand that the quantities z and y
which occur in the equations of curves are variables.

* By a circle we understand throughout this book the curved line, not the part
of the plane bounded by this line.
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12. Curve Plotting. We will explain in this section how,
when a numerical equation in z and y is given, its locus can
be drawn or plotted.

Example 1. As a first illustration we take the equation
(1 y:=4z.

This equation does not determine the value of either z or
y, but if either one of these quantities is given, the other is
determined by it. Thus

ifz=0, y=0,

if z= 1, Y= 2,

ifz=2 y=+2V2=22.83,
if x=38, y=+42V3=t38.46,
ife=4, y==x4,

ife=5, y=+2V5=444T,
if =6, y=+2V6=+4.90,
ifz="T y=+2V7=4+5.29,
if z= 8, Yy == 2'\/_8-= 15.66,
if =9, Yy == 6.

We have thus found
nineteen points on the
curve, and ' these are
plotted in Figure 17.
For negative values of =,
y is imaginary. That is,
the curve does not extend
to the left of the axis of y.
We can now draw the
curve free-hand, or with
the help of a French
Curve, through the suc-
cessive points we have
found. The only place
where we are thus left in
any doubt as to the shape Fia. 17
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of the curve is near the origin, where the gap between suc-
cessive points is rather large. This gap we can fill in to
any extent we please. For instance, we find

if 2=0.5, y=+2v0.5=x141,
if t=0.2, y=42v0.2=+0.89,
if o=0.1, y=+2v0.1=+ 0.683.

By means of these points, we can easily draw the curve as
indicated in the figure. 'The curve does not, of course, stop
when z =9 but goes on indefinitely to the right both above
and below the axis of =.

An alternative way of plotting this curve is to assign
arbitrarily the values of y instead of those of z. Thus

if y=0, z=0,
if y=1, x=0.25,

if y =2, z=1.00,

if y=3, x=2.25,

etc. The points we get in this way are, in the main, wholly
different from those we got before; but they serve equally
- well to determine the curve. One of these two methods
will often be much simpler than the other, though in this
case there is not much to choose between them.

Example 2. As a second illustration we take the equation
(2) (2= 1)y — 2= 0.

If, here, we assign a definite value to y, we shall have an
equation of the fourth degree for determining 2, and such
equations cannot be solved by elementary algebra. If we
assign the value of z, y is determined by an equation of the
first degree. Instead of substituting in (2) in succession
various values for z and solving each time the resulting
equation for y, it will be better to solve the equation (2)
once for all for y, thus:

SIDS
) V@
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We substitute here in succession various values for z.
One of the first values we should naturally try would be
The second member of (3) then takes the form J,
which is meaningless since it is impossible to divide by zero.*
Consequently there is no point on this curve for which
z=1. It is, however, customary to write & = oo, and there
is no objection to this if we understand that it is merely a
short way of expressing the fact that if we divide 1 not by 0
but by a very small quantity (say 0.01) we get a large
result (100), and that if we then allow the denominator to
become smaller and approach zero as a limit, the value of the
fraction increases beyond all limits. With this understand-
ing, we may make the following table:

z=1.

if z=0, y=0,

if e=1, y=3%=0.22

if =%, y=18=2.20,
if z=1, y= oo,

if e=4, y=35%+=2.16,
if =2, y=%=0.89,

if z=38, y=21=0.42,
if =4, y= 82 =0.28,
if =5, y=128=0.22,
if =10, y=1339=0.10.

This table enables us to plot the curve so far as it lies to

the right of the axis of y.

It will be noticed that the curve

rises indefinitely as # approaches the value 4+ 1 from either

side.

The line z = 4+ 1 is what is called an asymptote of the

curve, that is a line which the curve approaches indefinitely

but never reaches.

* When we perform the division indicated by the equation %: ¢, we have to

determine the quantity ¢ which when multiplied by & gives a.

The division 1 re-

quires us to determine a quantity which when multiplied by O gives 1; an im-
possibility. On the other hand $=0, since 0 X 1= 0.
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Beyond this point, + 1, the curve falls off and comes
nearer and nearer to the axis of z, approaching it as its limit
but never reaching it.
The axis of « is there-
fore another asymp-
tote of the curve.

Finally, if we give

to # a negative value,
we find for the second o/ |«

member of (3) the — r X<

Y

value with its sign re-
versed that we should
have got if we had
taken for = the corre-
sponding positive
value. We thus ob-
tain the part of the Fia. 18

curve to the left of the

axis of y, as drawn in Figure 18. There are in all three
asymptotes, the lines # = 4- 1 and the axis of z.

We see also that the locus consists of three separate pieces,
and we might be inclined to say that the locus of the equa-
tion is not one curve but three. It is, however, customary
in such a case to say that we have a single curve consisting
of three branches.

Example 3. Consider finally the equation
@ 22+ y2+1=0.

If we try to plot the locus of this equation as we plotted
the loci of (1) and (2), we find that whatever value we give
to x, y is always imaginary. Consequently there are no
points in the plane whose cosrdinates satisfy (4). This isa
case of an equation which has no locus.

Other cases of this sort sometimes occur, and still other
equations occasionally present themselves which have only
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one or more points as their loci. In the great majority of
cases, however, we shall find that the equations that present
themselves in practice have as their loci true curves (under
which term, as has already been said, straight lines are in-

cluded).

EXERCISES
Plot the following curves:
1. 2z=3y. 8. a2=4y. b. zy=1.
2. 3x+4+2y=12. 4. y=2® 6. 422+ 942 = 36.

13. Test that a Point Lie on a Curve. As has been said, the
equation of a curve is an equation connecting the coordinates
(z, y) of a variable point which is of such a sort that when
this point lies on the curve the equation is satisfied, while
when it does not lie on the curve the equation is not satis-
fied. If, then, we wish to determine whether a given point
does or does not lie on a given curve whose equation is
known, we substitute the coordinates of the given point in place
of the variables (z, y) wn the equation of the curve and see
whether the equation is satisfied or not.

For instance, to determine whether the point (31, 4) lies
on the curve y?2=42, we substitute in this equation the
values z = 3%, y = 4. The first member becomes 16, the sec-
ond 14. The equation is not satisfied; and the point does
not lie on the curve. |

If, in particular, we want to determine whether a given
curve passes through the origin, we have merely to let z =0
and y = 0 in the equation of the curve and see whether the
resulting equation is true. If the equation of the curve is
an algebraic equation cleared of fractions and cleared of
radicals (and hence containing no fractional or negative ex-
ponents), all the terms which contain z or y reduce to zero
when we let z =y =0. Consequently the locus of such an
equation passes through the origin when (and only when)
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the equation contains no constant term (¢.e. no term inde-
pendent of z and ). Thus the two curves (1) and (2) in
§ 12 are seen to pass through the origin, as we found was
the case in plotting them. On the other hand, the curves of
Exercises 2, 5, 6, § 12 do not pass through the origin since
they have constant terms.

EXERCISES

1. Do the points (— 1, 2), (0, 3) lie on the curves
Y¥+4x=0,r—y+3=0,92245y2=45, y3 = 24?

2. Which of the curves of Exercise 1 pass through the
origin ?

14. Intercepts. If a curve meets the axis of z in a point
4, the distance OA, which may be either positive or nega-
tive, is called the entercept of
this curve on the axis of .
Similarly the distance OB from B
the origin to a point B where
the curve meets the axis of y is
called an intercept on the axis
of y. A curve may have sev- AN X
eral intercepts on either or both Fic. 19
axes, as 1is illustrated by the
circle of radius ¢ whose center is at the origin. This circle
has two intercepts, + ¢, on each axis.

If the equation of a curve is given, we can find the inter-
cepts as follows : |

The intercept OB on the axis of y is simply the y-codrdi-
nate of the point B. This point on the curve may be ob-
tained, exactly as when we are plotting the curve, by letting
x =0 in the equation of the curve and solving the :esulting
equation for y. Similarly, OA is the z-codérdinate of the
point A and may be found by letting ¥ =0 in the equation
of the curve and solving the resulting equation for z,

Y,
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Suppose, for instance, we want the intercepts of the curve
Sz—5y— 15=0.

Letting z = 0, we find y = — 3, so that the intercept on the
axis of y is — 3. Letting ¥y = 0, we find as the intercept on
the axis of z the value + 5.

If the curve has two or more mtercepts, they will all be
given by this method.

EXERCISES

1. Find the intercepts of the curves of the Exercises in
§ 12.

2. Find the intercepts of the curves in Exercise 1, § 13.

15. Points of Intersection of Two Curves. It frequently
happens that in a single problem we have to deal with two
or more curves given by their equations. Suppose, for in-
stance, we had the two curves

(1) - .y2 = 4x,
(@ | 2? + y?2=16
(see equation (1), § 12 and equation (5), § 11). It must
be clearly understood that the letters z and y do not mean
the same thing in these two equations. In (1) they repre-
sent the coordinates of a moving point which traces out the
first curve; in (2), the codrdinates of a moving point which
traces out the second curve. At the points of intersection
of these two curves, and only there, can these two points
coincide. Consequently, these points, and no other points
in the plane, have coordinates which satisfy both (1) and
(2). Thus we see that the coordinates of the points of inter-
section of (1) and (2) will be found if we solve (1) and (2)
as simultaneous algebraic equations.
This can be done by substituting in (2) the value of y?2
from (1), which gives
| x2 4+ 4z =16.
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This quadratic equation has the two roots
r=2[+~5—1].

Substituting these values in (1), we find as the equation
for determining y

y2=8[+£V5b-—-1].

The lower sign gives us a negative value for %% and hence
an imaginary value for y. Consequently, this value is im-
possible, and we have only two points of intersection

(2[V5—1], £2V2[Vb—1]);

or, reduced to decimals,
(2.47, +£3.14).

The accuracy of this result may readily be tested by
means of Figure 17 if we remember that (2) is the circle of
radius 4 described about the origin as center.

The method here illustrated is readily seen to be entirely
general. 70 find the points of intersection of two curves we
need merely to solve their equations as simultaneous equations.

EXERCISES

Find the codrdinates of the points of intersection of the
curves given in

1. Exercises 1 and 2, § 12. 8. Exercises 2 and 6, § 12.
Exercises 1 and 3, § 12. 9. Exercises 3 and 4, § 12.
Exercises 1 and 4, § 12. 10. Exercises 3 and 5, § 12.
Exercises 1 and 5, § 12. 11. KExercises 3 and 6, § 12.
Exercises 1 and 6, § 12. 12. Exercises 4 and 5, § 12.
. Exercises 2and 3, § 12. 13. Exercises 5 and 6, § 12.
Exercises 2 and 5, § 12.

N ok ® N

16. Oblique Codrdinates. Everything of importance said in this
chapter holds for oblique coordinates as well as for rectangular. It
should be noticed, however, that a particular equation has a different
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locus in oblique codrdinates from what it had in rectangular codérdinates.
Thus, the equation (5), § 11, no longer represents a circle if the axes
are oblique. What was said about equations (1), (2), (3) (4) of §11
remains true here without change, except that the ¢ units the line (2)
lies above the axis of  must now be measured, not Vertlca,lly, but in a
direction parallel to the axis of y.

EXERCISES
1. Plot the curve
22+ y?2 =25
first when the angle between the axes is 60°, secondly when it is 120°.

2. Plot the curve
y?=4z
if the angle between the axes is 45°.

3. Plot the curve
xy =1

if the angle between the axes is 30°. If this angle is 150°.

4. Find the intercepts of the curve of Exercise 1. Does it make any
difference whether the angle between the axes is 60° or 120°?

6. Show that the answers to Exercise 1,§ 13 and to 'Exercisés 1-2,
§ 14 are the same for oblique as for rectangular coérdinates.

PROBLEMS TO CHAPTER II

Plot the following curves, noting in each case the values
of the intercepts, and also any asymptotes you can find :

1., 22 — 42 =0. 3. 22y —y+ 1=
2. z3—5x—y50. 4. 2t + yt=1.
5. 2104y = 1.
6. 22— 22y + 42— 22— 2y +1=0.

7. 28 —y? — 2= 0. 11. y = 2=

8. y?= a3 12, y = log=.

9. 28 — 22 — y2=0. 13. 22y —2y —1=0.
10. 28 + 2% — y2= 0. 14. 2y — 22+ y = 3.

15, 22 +4y?2= 0. Ans. A single point.
16. 322 4+542+1=0. Ans. Nolocus. Why?



CHAPTER III

THE STRAIGHT LINE

17. Equation in Terms of Point and Slope. We have seen
in Chapter II how to plot a curve when its equation is given.
The converse problem is: given a curve, to find its equation.
We now consider the simplest case of this problem, namely
that in which the given curve is a straight line.

In this section we suppose the slope, A, of the line to be
known and also a point (2, y;) through which it passes.

Let (2, ¥) be the moving point which traces out the line
For every position of this point v
the slope of the line connecting it
with (4, ¥,) is, by hypothesis, A
Consequently, by formula (1),
§ 6,

A=Y =Y.
& M= r — 1y O X
Fia. 20

(x,y)

(x,9,)

Moreover (1) is not only an
equation which is true just as long as (2, y) remains on the
given line, but it ceases to be true when (z, ) is not on the
line. This, however, is what we mean when we say that (1)
is the equation of the line.

By clearing (1) of fractions, we find

(2) Y~ Y= \ (2 — a¢),

and this is the standard form of the equation of a line in
terms of its slope and of the coordinates of a point through
which it passes.

30
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An important special case is obtained by letting z,= 0,
y;=">56. Equation (2) then be-

comes Y
C)) y=Ar+b,
and this is the standard form of /
the equation of a line in terms —
of its slope, A, and its intercept, b
b, on the axis of y.
The axis of y, and lines paral- 9 X

lel to it, are the only lines whose
equations cannot be written in
the forms (2) and (3) of this section, then slopes being in-
finite. The equation of the line parallel to the axis of y and
passing through the point (#;, y,) is obviously, see §11,
formula (1),

4) x = 2.
In the analogous case of the line through (zy, y;) parallel
to the axis of # the equation is |

(5) Y=Yy

EXERCISES

Fic. 21

Find the equation of the line
‘1. Through the point (3, 5) and with the slope 2.

2. Through the point (— 1, — 3) and making an angle of
45° with the axis of =.

3. Through the point (— 1, — 8) and making an angle of
135° with the axis of z.

4. Whose intercept on the axis of y is 5 and slope — 3.

5. Whose intercept on the axis of y is — 3 and which
makes an angle of 60° with the axis of z.

6. Whose intercept on the axis of z is 2 and slope
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18. Line Through Two Points. A second way in which a
line may be determined is by giving two points, (z;, ;) and
(zy ¥,), through which it is to pass. The slope is not here
given but may be computed by formula (1), §6. Putting
this value into (2), § 17, we find as the desired equation of
the line -

M I S CEEN

Lo — 24

This is the standard form of the equation of a line in terms
of two points. Unless the line is parallel to the axis of v,
its equation can always be written in this form.

An important special case is that in which the two inter-
cepts, @ and b, of the line on the axes of # and y are given.
Here the points where the line cuts the codrdinate axes are
(a, 0) (0,6). Wemay, then, leta; =0a,y; =0,2,=0, y, =5
in (1), and we find as the desired equation

b
| ¥y=—"—4 (z — a),
or, after dividing by & and transposing,

2 23— —y—=,
(2) < —t+s=1

and this is the standard form of the equation of a line in
terms of its intercepts.

EXERCISES
Find the equation of the line
Through the points (3, 2) and (5, 7).
Through the points (2, — 5) and (— 3, 7).
W ith intercepts 5 and 2.
With intercepts 3 and — 1. ,
5. Through the points (3, 5) and (3, 7). Ans. z=3.

[In problems like this no formula should be used since the
line is obviously parallel to the axis of y.]

mow oo



THE GENERAL EQUATION OF THE FIRST DEGREE 33

6. Through the points (— 2, — 1) and (— 2, 4).
7. Through the points (2, 3) and (— 2, 3).

19. The General Equation of the First Degree. We have
now found various forms of equation for straight lines,
namely (2), (8), (4), (5) in §17 and (1), (2) in §18. All
of these-forms, it will be noticed, are of the first degree in
the variables (#z, y). Consequently, since the equation of
every line can be written in at least one of these forms, we see
that the equation of every straight line is of the first degree.
We will now prove the converse of this, namely, that every
equation of the first degree tn (x, y) repesents a straight line.

If in an equation in (2, y) we collect all the terms in =

into a single term, also all the terms in y, and, finally, all
the constant terms, the equation may be written
(1D | Az + By + = 0.
This is what is called the general equation of the first degree
in (&, y) since, by assigning to the constants A4, B, (' suitable
values, (1) may be made to reduce to any particular equation
of the first degree we please.

In order to prove that (1) always represents a straight
line, we will try to throw it into a form more closely resem-
bling one of our standard forms. For this purpose we select
equation (3), §17. To reduce (1) to this form, we first
transpose everything except the y-term to the becond member,
and then divide by B':

A ¢

y=—"52—2

B B’
This is, however, precisely the equation we obtain if we use
formula (3), § 17 to find the equation of the line for which

(D ' A=—"7, b=— ",

Thus we have not merely proved that (1) always represents
a straight line but we have found exactly what line it repre-
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sents, namely that one for which A and b have the values
given by (2).* To these formule (2) we may add the value
of the intercept, a, on the axis of z, obtained by letting y = 0
in equation (1), as in § 14. We thus find

(3) a,=—%.

There is one case to which the above proof that (1) always
represents a straight line does not apply, namely that in which
the coefficient B in equation (1) is zero, since we could not
here divide by B. In this case, (1) may be written

r=——

A

It therefore represents a line perpendicular to the axis of z.

EXERCISES

Find the 1ntercepts and slopes- of the lines represented by
the following equations:

1. 228y +5=0. 4. 52417 =0.
2. 83z—5y—1=0. 5. 24 — 3 =0.
3. 2z+y=0. 6. z—y+3=0.

7. Find the intercepts and slope of the line through the
points (9, 7) and (4, — 2).

20. Parallel and Perpendicular Lines. Angle Between Two
Lines. Suppose we have two lines which make with the axis of
x angles 0, and 6, respectively, these being the angles through

* The first of formulae (2) is very important. Instead of learning it by heart,
it is better to become so familiar with the method of deducing it that this method
can be applied at a moment’s notice to any special case which may arise. Thus,
to find the slope of 32+ 2y —T7=0. Transpose and divide by 2: y=—32 + 3.
Hence A = — 3. '
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which the axis of z must be revolved to take the directions of
the lines in question.* The slopes of these lines are then
A, = tan 6, A, = tan 6,.
- It is clear that these lines will be parallel when, and only
when,

If the lines are perpendicular, we may suppose that
| 0, =0, + 90°.
Hence " {
A, = tan (0, + 9O°)=—ctn91=——tan91=_x:

Conversely, if this formula is satisfied, the lines are
evidently perpendicular.

Hence two lines are perpendicular when and only when
: 1

(2) A\, = — v ‘

The formule (1) and (2) are the tests for parallelism and
perpendicularity which are of constant use.

Without assuming that the lines are either parallel or per-
pendicular, let us determine the angle, ¢, between them.
We will suppose that ¢ is the angle from the first line Zo the
second, that is, the angle through which the first line must be

turned to take the direction of the second.* We may then
suppose that b=0,—0,.
Consequently ,
tan ¢ = tan (6, — 0,) =
We thus have the formula
©)) tan ¢ = 1};—7\?{“

where ¢ is the angle from the line with slope X, to the line
with slape A,

tan 6, — tan 0,
1 4+ tan 6, tan 92'

* An infinite number of choices for these angles are possible, the values differ-
ing by 180°. Since only the tangents of the angles are used, it makes no difference
which values we take.
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EXERCISES
Are the following pairs of lines parallel or are they perpen-
~ dicular? |
' 1. 3z2—y+2=0, 62—2y—-1=0.
zr+y+1=0, zr—y—1=0.
22+3y+56=0,22z4+3y—1=0.
224+8y+5=0,32—2y+1=0.
Srx+2y—3=0, 2z4+5y+ 3=0.
z+2y=0, x— 2y =0.
7. Find the angle in degrees and fractions of a degree be-
tween the lines
(@) 220—y=0, 24+y=0.
(5) s¢+2y+3=0, 2¢+y—4=0,
Check your result in each case by drawing a careful figure
and measuring the angle.
8. Prove that the two lines
Az + By + 0, =0,
Az + Byy + O, =0

@ o b ow o

are parallel when, and only when,
9. Prove that the two lines of Exercise 8 are perpendic-
ular to each other when and only when,

AA, + BB, =0.
10. Prove that, if ¢ is the angle from the first line of
Exercise 8 to the second,

A A, + BB,

21. Line Through Given Point Parallel or Perpendicular to
Given Line. The formulee we have obtained enable us to
solve at once the problem here suggested.
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' Suppose, for instance, we wish to find the equation of the
line through the point (2, 8) parallel to the line

@H) | Te—y+8=0.

The slope of this line is 7. Consequently we have to find
the line with slope 7 through the point (2, 3), and this, by
(2), §17, is

y—8="T(x—2),
or

Tx—y—11=0.

If, on the other hand, we wanted the line through (2, 3)
perpendicular to (1), we should say that, since the slope of
(1) is 7, the slope of the desired line, by (2), § 20, is — 1.
Hence the line is

Yy—3=—+(z—2),

x—f—7y——23=0.

or

This method is always available except when the given
line is parallel to one of the coordinate axes, in which case
the other line is also parallel to one or the other of the
coordinate axes, and the problem is so simple that it should
be solved by inspection without reference to any formula.

EXERCISES

1. Find the equations of the lines through the point
(5, — 3) parallel and perpendicular to the line

2. Find the.equations of the lines through the origin
parallel and perpendicular to the line
22—y+3=0.

8. Find the equations of the altitudes of the triangle whose
vertices are at the points (0, 0), (3, 0), (2, 2).
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4. Prove that the equations of the lines through the point
(x4, y,) parallel and perpendicular to the line

Ax+ By + =0
are respectively
Ax + By = Az, + By,
Br — Ay = Bz, — Ay,.

22. Distance from a Point to a Line. Let us find the dis-
tance from the point P, with codrdinates (z;, ,), to the line

(1) Az + By + C=0.

For this purpose we drop a perpendicular from 2, on (1),
and call its foot (z, ¥,), or
P,. Since the slope of (1) is

— %, the slope of PP, is g
- That is,
Y2—Y _ B

Ty — 2, A X
or | 0
902—931:92—91_ Fic. 22
A B
Call the value of these two equal fractions A. Then
(2) ‘ xy — ;= Abh,
(3 Yo — Y1 = Bh.

Hence, letting 6 = P, P, be the distance desired,
O = (23— 2)? + (Y — y)? = (A* + BHI™
It remains, then, merely to find for A an expression which

does not involve the unknown quantities (2, %,). For this
purpose, multiply (2) by 4, (3) by B and add:

Az, + By, — Az, — By, = (A% + B%)h.
Since (2, ¥,) lies on (1), we have
sz + Byz = — C',
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which, substituted in the preceding equation, gives
7 — _ Az, + By, + ¢
A2+ B2
Using this value for A in the expression for 6% we find as
the final formula for the distance from a point to a line

Aocl + Byl -+ C.

VIt B

For most purposes it is desirable to regard & as essentially
positive, the line PP, not being, in general, parallel to either
coordinate axis. If this is the understanding, we must
choose the sign in (4) so as to make the value of & positive.

We have established formula (4) on the assumption that
neither A nor B is zero, since in the course of our work we
divided by both of these quantities. The reader may readily
verify, however, that formule (2) and (3) hold even if one
of the quantities 4 or B is zero. It follows that formula
(4) is valid in all cases. In practice, however, we should
never use this formula to find the distance from a point to a
line parallel to one of the codrdinate axes since, in this case,

the distance in question may be read off at once from the
figure.

4) 6 =+

While, as has just been said, it is usually desirable to regard the dis-
tance from a point to a line as being essentially positive, there are some
cases in which it is convenient to distinguish, here too, between positive
and negative distances. This may be done in various ways.

Suppose, first, that the line is not parallel to the axis of z. It then
divides the plane into a right-hand half and a left-hand half. Let us
agree that if the point lies to the right of the line, the distance shall be
called positive, if to the left, negative. The question then is: how must
the sign in formula (4) be determined ?

Through (z,, y,) draw a line parallel to the axis of  and call the point
where it meets the line (1) (z, 7,). Then

. Ax2+By1+O:O.
Consequently

Az, + By, + C = (dzy + By, + C) —(Azy + By, + () = A(z; — 2).
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This shows that if (z,, y,) lies to the right of (1), the numerator in
(4) has the same sign as 4, otherwise the opposite sign. Hence, if we
agree that the distance between a point and a line shall be positive when the
point lies to the right of the line, negative when it lies to the left, the doubtful

- sign in (4) must be taken as positive when A is positive, negative when A is
negative.

It must be remembered that what has just been said does not apply to
lines parallel to the axis of z, that is, to lines for which 4 = 0. For
such lines we should naturally agree that the distance ‘is positive if the
point lies above the line, negative if it lies below. If we do this, how-
ever, a very slight change in the position of the line may suddenly change
the distance of a pomt from it from a large positive to a large negative
value. This makes the above convention (or any other one which could
be made) not very satisfactory.

What is of real importance here is that the numerator in (4) is posi-

) tive for all points (z,, y;) on one side of the line (1), negative for all
points on the other side.

EXERCISES

1. Find the distance from the point (3, 2) to the line
4—y+2=0.

2. Find the distance from the point (— 1, 3) to the line
42— y=0.

3. How far is the origin from the line 2 +y — 8 =107

4. Find the lengths of the three altitudes of the triangle
whose vertices are (1, 2), (— 1, 2), (— 2, — 3).

6. How far is the point (3, 1) from the line whose inter-
cepts are a =3, b6=17?

23. The Area of a Triangle. Let us find the area of the
triangle whose vertices are (2y, ¥,), (% ¥5)> (23, ¥3), or, for
“brevity, Py, Py P, The equation of PP, is given by (1),
§ 18, which, when cleared of fractions, becomes

The distanee, P;3Q, from P; to this line is, by (4), §22,
(2) (¥, — Yo) g + (4 —'xl) Yg + 1Yy — oY1

£V (Y — Yg)? + (2 — 2,)?
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But the area, A, of the triangle is } P, P, - P3¢, which,
when we use for P P, its value (2), § 5, reduces to

B A=+3[—9)%+ Y — ¥ 21+ (Y3 — Y1) %]

For most purposes we regard areas as essentially positive.
The sign in (3) is then to be y
so determined as to make A
positive. - B,

Sometimes, however, it is desir-
able to distinguish between positive
and negative areas. For this pur- Q
pose, note the sense in which the
perimeter of the triangle is described
as we go from P, to P,, from there P,
to P; and then back to P,. If this P
sense of description is in the positive
direction of rotation (counter-clock-
wise), that is, if as we go around the
triangle in this way we leave the
interior of the triangle to the left,
we regard the area of P,P,P, as positive, in the opposite case, as negative.

With this definition, it may be shown that formula (3) will be correct
if the double sign is omitted, that is, if the plus sign is used.

To prove this, let us first assume that the line PP, is not parallel to
the axis of x, and that, as in Figure 28, y,>y,. If, as in the figure,
P, lies to the left of the line P;P,, the plus sign must be used in the
denominator of (2) in order to make the value of (2) positive, since the
coefficient of = in (1) is negative and P; lies to the left of the line (1);
see the closing paragraphs of §22. Consequently, if we use the plus
sign in (3), A will be positive; and this is as it should be since, as we
see from the figure, the area P,P,P; is positive in this case. On the
other hand, if, Pv P, being 51tuated as before, P, lies to the r1ght of
P,P,, the plus sign in (2) makes the value of (2) negative, as we see
from §22. Consequently, the plus sign in (3) will make A negative,
and this is again as it should be. Finally if P,P, are reversed in posi-
tion, so that y, > y,, the coefficient of z in (1) is positive. Hence, if we
take the positive sign in (3), A is positive if P, lies to the right of P,P,,
negative if it lies to the left. This, again, is seen by a figure to be in
accordance with the definition of positive and negative areas given
above,

0 X

Fic. 23
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We leave it for the reader to show that the plus sign in (3) gives the
proper sign for A in the cases in which the line PP, is parallel to the
axis of z. -

EXERCISES

Find the areas of the triangles whose vertices are

1. (3, D), (g 1), (0, 0).

2. (—5,1D, (=13, A, —2).

3. (1.5, 2.38), (2 3.5), (3, —1).

4. Find the area of the triangle whose sides are the lines
8z +56y—2=0, 20—y4+28=0, z—y—1=0.

5. Find the area of the quadrilateral whose vertices are

(2, 3), (4, 5), (T, 6), (6, — 3).

[SucaEsTION. Divide the quadrilateral into triangles.]

24. Two Equations of the First Degree with the Same Locus. If one
.equation of the first degree can be obtained from another by multiplica-
tion by a constant, the two equations obviously represent the same line,
since if the codrdinates of a point satisfy one equation, they also satisfy
the other. We wish, in the present section, to prove the convers: of
this, namely :

If two equations of the first degree,

(1) Alx -+ Bly “+ Ci = O,

(2) » Ayx + By + C, =0,

represent the same line, either one can be obtained from the other by multiplica-
tion by a constant.

Suppose, first, that neither B, nor B, is zero. Then (1) and (2) can
~ be written in the forms

A C
1/ i 1V
( ) ‘ Y ‘le Bl’
. A C
! —_ T2, _ .2,

Since, by hypothesis, these two equatibns represent the same line,
the slope of this line may be computed either from (1) or from (2/).
Hence

Al_._
®) -

S
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In the same way, by computing the intercept on the axis of y, first
from (1’) and then from (2’), we find
c,_ C
€3 1= 2
. B, B,
Now multiply (1) by %2 This gives

1

Béx—{—Bzy—i—B ¢y 0.

2Bl 2E —
If the fractions which occur here are replaced by their values from (3)
and (4), this last equation becomes identical with (2). Thus our state-
ment is established.
We leave it for the reader to show that it is still true if B, or B, is
zero.

25. Hesse’s Normal Form. Besides the four standard forms for the
equation of a straight line given in §§ 17, 18 there is a fifth form which
is sometimes useful and which is known as Hesse’s Normal Form, hav-
ing been used systematically by the German geometer Hesse.*

Let us drop a perpendicular, OQ, on the given line, from the
origin. Let p be the length of y
this perpendicular, and let «
be the angle it makes with the Q
axis of z. We wish to find the
equation of the line in terms of p
and e¢. For this purpose, let P be
any position of the moving point @
(2, y) which traces out this line; @ M <
and draw the cooérdinates OM = x, Fic. %

MP = y. The projection of the

broken line OMP on the indefinite line OQ is p. The projections of the
parts, OM and MP, are, by trigonometry, respectively x cos « and y sin «.
Consequently, by § 2,

@9) xcos o -+ y sin ¢ = p.
On the ovher hand, if P does not lie on the line 4B, the projection of

OMP on 0Q will not be equal to p, and therefore (1) will not be satis-
fied. Hence (1) is the equation of the line in the desired form.

* 1811-1874. The word ‘‘ normal’’ is here used in the sense of ¢ standard.”
It has nothing to do, as some American text-books have implied, with the normal
to a curve or line (see § 38).
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The quantity p may be taken as positive, in which case o is the angle
through which the positive half of the axis of x must be turned to coin-
cide with 0Q. If we prefer, we may, however, take p as negative, in
which case ¢ is the angle through which the positive half of the axis of
x must be turned to coincide with the portion of OQ extended beyond O.

26. Reduction to Hesse’s Normal Form. Suppose we have given the
line

(1) Ax + By + C = 0.

Let the equation of this line in Hesse’s normal form be
(2) zecosa + ysino — p = 0.

Since, by hypothesis, (1) and (2) represent the same line, it must be
possible, as we see from § 24, to obtain (2) by multiplying (1) by a
suitable constant, R. We have, then,

RA =cosee, RB =sina, RC =—p.

Squaring and adding the first two of these equations, we find

| R2(A? + B?) =1,
or : R et __i_]'__ .
VA2 + B2

The equation (1) can be reduced to Hesse’s Normal Form by being divided
by + VA2 + B2

We have, then,

(3) cos“:__._ﬁ.__,ﬂ Sin“:__—:té__, p:__:FQ__
VA2 + B2 VA?2?+ B2 VA? 4+ B?
We may take either the upper or the lower sign here, one giving a

positive and the other a negative value for p. See the last paragraph
of § 25.

EXERCISES

Reduce the fdllowing equations to Hesse’s Normal Form, and find in
each case the numerical values of p and «:

1. 3z+4y —5=0.
‘z+y—T7=0.
2z —y+4=0.
The line through the points (2, 3), (— 1, 5).
The line through the point (— 3, 1) with slope 2.
The line whose intercepts are 5 and — 2.
3r=2y. 8. 2z =05, 9. 5y +2=0.

NI o
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27. The Straight Line in Oblique Codrdinates. If we use oblique co-
ordinates, and understand by A not the slope but the direction-ratio,
as explained in § 9, it will be seen that the work of §§ 17, 18 requires
no change, and that the four standard forms there given for the equa-
tion of a straight line remain valid in oblique coérdinates. Similarly,
§ 19 requires no modification except replacing the word slope by direc-
tion-ratio. : L

On the other hand, the greater part of § 20 is no longer valid since it
depends essentially on the fact that A = tan §. It may be readily seen,
however, that the results here obtained concerning parallel (but not
those concerning perpendicular) lines are still true in the case of oblique
codrdinates. Similarly § 21, so far as it refers to parallel lines, requires
no change.

Of the remainder of this chapter only § 24 applies without change to
oblique coérdinates. All the other formule and results given require
change, and for the most part the modified results are so unimportant
(since it will almost always be better to use rectangular cooérdinates
when questions of distances or angles are to be involved) that it would be
a waste of time for us to deduce them here. The only exception is in
the case of the area of a triangle, § 23, where the modification necessary

is very slight. We give the result, reserving the proof to a later chap-
ter (§ 46):

A‘::}:Slnw

) [y — y2)xs + (Y2 — Y3)%; + (U3 ”"v?/1)x2]'

What has been said concerning the latter part of this chapter applies
to most of the later sections of this book. We shall therefore refer to
oblique coérdinates in future only in the comparatively few cases where
their use is of some importance.

28. Illustrative Applications. We take up in this section
the proofs of a few simple geometrical theorems by the
method of analytic geometry.

Example 1. To prove that the lines joining the vertices of
a triangle to the middle points of the opposite sides meet in
a point. |

This is a part of the theorem we proved in § 10, Example
3. We were there asked in addition to prove that these
lines trisect each other. If we had not known this addi-
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tional fact, the
method of proof
there wused could
‘not possibly have
occurred tous. We
should then proceed
as follows:

We take the co-
ordinate axes and
the coordinates as (a,0) 0 9-;’—@- ,0) (b,0)
in § 10 (see Figure fre. 95
25). The equations
of the lines joining the vertices to the middle points of the
opposite sides are, by (1), § 18,*

4
=0
;Z‘ a
. =
BE y——O——‘a (x_'b)s
5~

0—e¢
CF Yy— =773 (z — 0).

o — 0
These equations reduce to the forms
AD cx+(2a—b)yy — ac=0,
BE cx+(2b—a)y —be=0,

CF 2¢x+(a+b)y—(a+ b)e=0.

The point of intersection of AD and B is obtained by
solving the first two of these equations as simultaneous.

- % For the line CF, equation (2), § 18 may be used instead.
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(5 5)
3 > 8/

Our theorem will be proved if we can show that the line
CF passes through this point. For this purpose we substi-
tute in the equation of CF the valuesz=31(a+bd),y=1c;
and since the equation is then seen to be satisfied, the
theorem is proved. |

In the course of this proof we have again determined the
coordinates of the point of intersection of these lines.

This gives the point

~ Example 2. Prove that the diagonals of a square are per-
pendicular to each other.

Taking two adjacent sides of the square as codrdinate
axes, and calling the length of a side a, the codrdinates of
the vertices are (0, 0), (a, 0), (a, @), (0, ). The slopes
of the two diagonals are therefore

a—0 . a—0
= = = - - 1
M=o = b=,
Consequently A, = — il——, and the lines are perpendicular by
1
§ 20, formula (2). Y C(b’C) (a+b,c)
, ~ B

Example 3. To prove that the
diagonals of a rhombus are per-
pendicular to each other.

We take the coordinate axes
and the notation as indicated in
Figure 26. The slopes of the
diagonals are

ML

‘We wish to prove that one of these quantities is the negative
of the reciprocal of the other; or, what amounts to the
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same thing, that their product
| 2
1 AAg =

b% — a?
has the value — 1. This does not, at first, seem to be the
case, but we still have to make use of the fact that the figure
is a rhombus, not merely a parallelogram, which is all our
algebraic notation has implied.
Since the length of one side, OA, is a, the same must be
true of each of the other sides. By (2), § 5, 0C= Vb2 4 2.

Hence a? = 4% + ¢% and, this value being substituted in (1),
reduces the value of A A, to — 1.

PROBLEMS TO CHAPTER III

1. Prove that the three altitudes of a triangle meet in a
point. Show that, using the same coodrdinates and notation
as in Example 1, § 28, the coordinates of this point are

(() _ ab\
c
2. Prove that the perpendicular bisectors of the sides of

a triangle meet in a point. Show that, using the same coordi-
. nates and notation as in Problem 1, the coordinates of this

point are 2+ b, a62+ o .
: ¢

8. Prove that in any triangle the point of intersection of
the lines joining the vertices to the middle points of the
opposite sides, the point of intersection of the perpendicular
bisectors of the sides, and the point of intersection of the alti-
tudes lie on a line; and that the first is one third of the way
from the second towards the third.

4. Prove that in a trapezoid the diagonals and the line
joining the middle points of the parallel sides meet in a point.
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6. Prove that the non-parallel sides of a trapezoid and
the line joining the middle points of the parallel sides meet
in a point.

6. Prove that any line parallel to the line

Az + By + C=0
may be written in the form
Az + By + " =0.

7. Prove that when two parallel lines are given by equa-
tions in the form of Problem 6, the distance between them is

c—
VA?+ B? |
8. If we agree that, for lines not passing through the
origin, the distance from a point to a line shall be taken as
positive when the point lies on the same side of the line as
the origin, negative when it lies on the opposite side, show

that in formula (4), § 22 the doubtful sign must be taken as
positive when (' is positive, negative when ('is negative.

9. What condition must be satisfied in order. that the
three points (2, ¥1), (g ¥5), (%3, y3) should lie on a straight
line ? Obtain the answer to this question first by using the
equation of the line connecting two of the points and expres-
sing the fact that the third shall lie upon it; secondly by
expressing the fact that the area of the triangle which has
the three points as vertices shall be zero. Show that these
two methods lead to the same result.

10. If the equations of the sides of a triangle are
Ax+ By + C;=0,
A,z + Byy + O, =0,
Aaﬂﬁ -+ B3:I/ -+ 03 = O,
prove that the area of the triangle is
[A,(B,0;— B;0)) + Ay( B, C,— B, () + Ag(B, 0, —B,CD1?
2 (A By — A;B)) (A3 B; — AgBy) (A By — 4, 8y)
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11. The vertices of a quadrilateral are the points
@1 91> (@ ¥2)> (@ Y3)> (@ Y-

Prove that its area is
+ 3 [(@a—2) (Y3 — Y1) — (Y2 — y)(@s — 2 ].
12. Internal division being regarded as positive, external
division as negative, prove that the ratio in which the line

| Az + By +' C=0
divides the segment (z;, ¥;), (%4 ¥5) 18

___A:v1 + By, + 0.
Az, + By, + C

[SucaEsTION. By remembering that the ratio of the
segments of a line is equal to the ratio of their projections on
either axis, this formula may readily be established for oblique
as well as for rectangular coordinates. ]

13. [Theorem of Menelaos.|] A straight line cuts the
sides P, Py, P, P,, P, P, of a triangle in the points @, ¢,, @,
respectively. = Segments which lie wholly on the sides ez--
tended being taken as negative, those which lie partly or
wholly on the sides themselves as positive, prove that

Q1P2' szs‘ Q3P1= — Q1P3' Q2P1' Q:;Pz'
[SucersTIiON. Use the result of Problem 12.]

14. [Theorem of Ceva.] A point, R, is joined with the
vertices, P, P,, P, of a triangle and the joining lines meet
the opposite sides in @, €y, 5, respectively. With the same
convention of sign as in Problem 13, prove that

| Q1 Py+ @ Ps - Q3P = @ Pg- Py - Q5P
15. If two opposite sides of a quadrilateral meet in the
point M and the other pair of opposite sides in &V, prove that

the middle point of MV and the middle points of the diagonals
of the quadrilateral lie on a straight line.

[SucaEsTiON. Use oblique codrdinates. ]
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16. By regarding the bisectors of the angles between two
lines as the locus of the points equidistant from the two lines,
prove that the equations of the bisectors of the angles be-
tween the lines

Ax+ By + O, =0,
Ayx + Byy + 0, =0
are

Az + By + O A,z + Byy + C,
-7 4 —27 72,
VA2 + B2 V A2+ B2

17. By means of the formula of Problem 16, prove that
the bisectors of the angles between two intersecting lines are
perpendicular to each other.

18. Prove that the bisectors of the angles of a triangle
meet in a point; and also that the external bisectors of two
angles and the internal bisector of the third meet in a point.

19. A line (1) has slope A. The tangent of the angle
JSrom the line (1) to the line (2) is u. Prove that the slope -
A+ p

Hence find the equations of the line which passes through
the point (2, 3) and makes with the line 52 +y — 3= 0 an
angle of 110°.



CHAPTER 1V
THE CIRCLE

29. Equation in Terms of Center and Radius. In § 11,
formula (5), we found the equation of the circle having its
center at the origin and given radius. If we call this
radius p, the equation of this circle is

(L o’ + Y = p*.

More generally, suppose we want the equation of the circle
whose center is at the point C with codrdinates (&, B), and
whose radius is p. The distance CP is V(z — )2+ (y — B)%
and, consequently, the equation of the circle is
(2) (@ —a)'+(y—PB)=p
a formula which, of course, reduces to (1) when e =8 =0.

EXERCISES

- Find the equations of the following circles and reduce them
to their simplest forms:

1. Center at (2, 0), radius 2. Ans. 22+ y?2 =4 .

Center at (3, 4), radius 5. Ans. 22+ y2 -6z — 8 y=0.
Center at (0, 3), radius 3. |

Center at (— 2, 5), radius 6.

Center at (— 1, 0), radius 2.

Center at (0, 0), radius 4.

Center at (1, 1), radius 13.

Center at (— %, 3), radius 3.
52
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30. The Expanded Form of the Equation of the Circle. If
equation (2), § 29 is expanded, it takes the form

(1) o xX’+y*+ax+by+c=0.

The equation of every circle can therefore be written in
this form (1). We wish now to examine whether the con-
verse is also true, that is, whether every equation of the form
(1) represents a circle.

Let us arrange the terms of (1) as follows:

. ?>?+ar +y? +by =—c.

We complete the square in the first group of two terms by
adding } a2, and in the second group by adding } 4% These
two quantities must, of course, also be added on the right-
hand side. The equation then becomes

2 AR b\? __ a? b2
@ +aw+<~2—> +y +by+<—) =—c+ —+—

2 4 4
or

| 2 b\N2 a2+ 082—4¢
@) <x+2 +(y+5 .

This reduces to equation (2), § 29 if we let

a=——%’-, ,8:—%, p=%—\/a2+b2—4c.

Hence, if a? 4+ 62 —4 ¢ is positive, equation (1) repre-

. v . a b ..
sents a circle whose center is (——- 5 -2—> and whose radius is

IVaRF b2 _4e.

If a? 4 b2 — 4 ¢ is negative, equation (2) has no locus, since
its left-hand side is not negative for any values of (z, ) and,
hence, can never be equal to its right-hand side.

Finally, if a%2 + 82 —4¢=0, equation (2) can be fulfilled
only when both squares on the left are zero, since these
squares cannot add up to zero in any other way. That is,

a

the point = — 5 Y= —% is the only point of the locus in
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this case. This may be regarded as the limit of a circle as
the radius approaches zero, and thus we may say that the
locus in this case is a null circle, or circle of zero radius,
instead of saying, what amounts to the same thing, that the
locus is a point.

If we agree to speak of the case in which a2 + 8% — 4¢ is
negative as an maginary circle, understanding thereby
merely that the equation has no locus, we may summarize
by saying :

The equation (1) represents a circle which is real, null, or
tmaginary according as a? + b2 — dc s positive, zero, or
negative. |

More generally, we may consider an equation of the form
3 A+ Ay? + Dz + Hy + F = 0.

If A= 0, this, of course, represents a straight line. Other-
wise, we may divide by A4 and thus reduce (3) to the
form (1).

It should be noticed that, if 4 is not zero, (3) is an equa-
tion of the second degree in (2, y), but not the general
equation of the second degree ; for in (3) the coefficients of
the 22 and %2 terms are the same, and there is no zy term.
The general equation is

@ Ax?®+ Bxy + Cy2+ Do+ By + F = 0.
This general equation of the second degree represents a
circle, real, null, or imaginary when B=0and 4= C. In

other cases it represents, in general, a more complicated
locus, as we shall see later.

EXERCISES

Determine what the following equations represent. In
doing this the method of this section (completing the square)
should be used, not the formulae found.

1. R4y tdo—2y+1=0.

Ans. Circle, radius 2, center (— 2, 1).
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:v2+y2+6x——4y+13=0.
Ans. The point (— 3, 2).
2?2+ y?+ 22 4+2y +6 =0. Ans. No locus.
224 y2— 2z 4+ 6y + 9=0.
2?4+ y? +4x 4+ 4y +8=0.
422 +4y2—42+ 12y + 9= 0.
P+y — 22+ 4y +2=0.

. 2?4+t 42r— 8y +21=0.

31. The Tangent to the Circle. I.et us consider the circle
with center at the origin and y

radius p : AN

D

and let P, with coordinates
(x4, ¥1), be any fixed point

on this circle. [9) \B
Since P, lies on the circle,
its coordinates satisfy (1),

and we have *

(2)

2? + y? = p?,

2 2 _ 2 Fia. 27
T+ Yo = P

Let us now find the equatioﬁ of the tangent, AB, at P;.

This line, as we know from elementary geometry, is perpen-

dicular to the radius OP,. The slope of OP;, by (1), § 6, is

N, Consequently, the slope of AB, by (2), § 20, is — %1,
The equation of AB, by (2), § 17, is

Y1

'. Y —U =—ﬁ(97 — 1),
Y1

or, simplified,

x + Yy = 2% + Yy,

* It should be clearly understood that (2) is not¢ the equation of the circle.

The equation of a curve always contains the wariable coordinates (x, y) of the

point which traces out the curve, while equation (2) contains nothing but

constants. - S E
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This is the desired equation of the tangent. It can be
still further simplified by replacing z,2 4+ y,2 by its value from
(2). We thus get

(3) X% + Yy = p?
as the standard form of the equation of the tangent to (1)
at (zy, ¥y)-

Precisely the method here used can be employed to find
the tangent at the point (@, y;) to the circle with center at
(, 8) and radius p (equation (2), §29). We give merely
the result, leaving the details of the work to the reader:

@ (0, —a)(x — )+ — By — P =p"
Finally, suppose the equation of the circle is given in the
form |
2+ >+ ar+by+c=0.

This reduces to the case just considered, as we saw in § 30,
if we let |

a b
“=—3, B=———2—, p=%Va2+ b% — 4e.

Consequently, by (4), the equation of the tangent at
(21, yy) 18

. 2 2 __ .
(e o) 2+ o )= 2=

or, simplified,

) wxw+yly+g(w+ml)+g—(fy+yl)+c=0.

These equations, (3), (4), (5), are the standard forms of
the equation of the tangent to a circle. Of them, (3) may
be regarded as a special case of either (4) or (5).

EXERCISES

Find the equations of the tangents to the following circles
at the points indicated :

1. 224 y2=25, at (8, 4); at (4, — 3); at (0, 5).
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2. 22+ y?=2z; at (1, 1); at (0, 0); at a point whose
abscissa is 11.

3. The circle whose center is (5, 3) and radius 13, at the
point (10, 15). |

32. Tangents to a Circle from a Point Outside. In § 31
we assumed that (z;, ;) was a point on the circle, and it is
only in that case that the formule we have obtained are
valid. |

Suppose, now, that (zy, y;) is a point outside of the circle,
and that we wish to find the equation of the tangent drawn
from this point. In the first place, we see geometrically that
there -are two answers, v
and this must, of course N
show itself in the alge-
braic solution of the
problem. We explain
the method to be used
by means of a numerical
example.

Let us find the equa-
tions of the tangents to
the circle

1) 22+y*=4
from the point (2, 1).
Let (23, w;) be the Fre. 28

point of contact of one of the tangents drawn from this point.
Then the equation of this tangent is, by (3), § 31,

2 | zyx + Yy =4

Here #; and y, are unknown constants which are to be
determined by means of the following two facts : first, that,
by hypothesis, (2) passes through (2, 1) and that, conse-
quently, r=2, y= 1 batlshes (2) |

(3) 2x,+y1_4




58 THE CIRCLE

and secondly, that, by hypothesis, (z;, ;) is on the circle (1),
and hence |

€] 22+ y,2 =4 |

In (3) and (4) we have two equations * for determining the
two unknowns (zy, ;). If we eliminate y; between (3) and
(4) by substituting its value from (3) in (4), we find for z,
the equation

5.x12—16 :I:'l—l— 12=0.
Hence @y =2 or 1.
Substituting these values in (3), we find
¥, =0 or 13.

Consequently, there are two pcints («;, y¥,), namely the
points (2, 0) and (14, 12), and these are the points of contact
of the two tangents drawn from (2, 1) to the circle (1).

These points being found, the equations of the tangents
can be immediately written down by means of (2), viz.

z= 2, and 3 z+ 4 y = 10.

This illustration is typical except in one respect: the
work of solving the simultaneous equations like (3), (4)
will usually lead to incommensurable values for z; and y;,
so that these quantities must be expressed by means of
radicals or, if we prefer, approximately by means of decimals.
If the point from which the tangents are to be drawn lies
within the circle, the problem has no answer, and this fact
will show itself by the wvalues for (z;, y;) coming out
imaginary.

It is not necessary that the circle have its center at the
origin. If its equation is given in either of the forms (2),
§ 29 or (1), §30, the method will apply without change

* We again remind the reader that (3) and (4) are not the equations of lines or
curves, since they involve no variables. They are simply equations for deter-
mining unknown constants of exactly the kind with which we are familiar from
elementary algebra. :
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provided we use the correct form for the tangent as given
in § 31.

- It would, of course, be possible to work out general
formulae for the equations of tangents drawn to a circle
from a point outside; but these formule would be so com-
plicated and so seldom used that it is better to work out
every case which presents itself by the method just explained,
which is known as the method of undetermined constants.

EXERCISES

Find the equations of the tangents drawn to the following
circles:

1. 22+ y? = 25, from the point (1, 7).

Ans. 4z +8y =25, —3 x4+ 4y =25.

2?2 + y? = 169, from the point (17, 7).
x? + y2 = 13, from the point (5, 1).
2?2 + y? = 25, from the point (6, 0).
22+ y2+ 42— 6 y= 0, from the point (3, 2).
(x — 4)2 4+ (y — 5)2 = 25, from the point (3, — 2).
2+ y?—10x—24 y =0, from the pomt (—5,2);
from the point (— 3, 2).

R A o o

33. Circle Through Three Points. What was said at the
close of the last section applies also to the problem to be
considered here. The general formula would be too com-
plicated to be of much value,* but the method of undeter-
mined constants, which we illustrate by a numerical example,
can always be easily applied.

Let us find the equation of the circle which passes through
the three points (5, 10), (6, 9), (— 2, 3). We know that
the equation of the circle through these points can be
written in the form

€Y 2%+ y2+ ax + by + ¢ = 0.

* Unless we use the notation of determinants.
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If we only knew the values of the constants a, b, ¢, we should
have solved our problem. These three unknowns* we
determine by making use of the fact that (1) is, by hypoth-
esis, to pass through each of the three given points.
Substituting in (1) in succession the coérdinates of the three
points, we find
126 +6a+10b 4+ ¢ =0,
(2) 11T +6a4+9b 4 ¢=0,
‘ 13 —-2a+3b +e¢=0.
If we solve this system of equations, we find
a=-—4, b=——12, c=15.
Consequently, the desired circle is
2+y?—42—-12y+15=0,
an equation which, by completing the square as in § 30,
may be reduced to the form
(z— 2)% + (y — 6)2 = 25,
and, hence, represents the circle whose center is at (2, 6)
and whose radius is 5.

This method will always be applicable unless the three
given points lie on a straight line, in which case the problem
evidently has no solution. This will show itself when we
try to solve the equations like (2), which will then be found
to be inconsistent.

EXERCISES

Find the equations of the circles through the following
sets of points :

1. (3,5), (3, —1),(4,0). Ans. 22+4+y?—22x—4y—8=0.

2. (3,4), (5, 2), (1, —2).

3. (6,1, (3,2, (1, 3).

* Notice that «, b, ¢ are unknowns of exactly the sort we are constantly deter-
mining in elementary algebra, while © and y are variables which it would be

quite impossible to determine since they have no fixed values but vary as (¥, ¥)
moves around the curve,
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4. Find -the equation of the circle circumscribed about
the triangle formed by the codrdinate axes and the line

6. Find the equation of the circle circumsecribed about
the triangle formed by the lines z=y, 2z—y=2,
22+3y—3=0.

6. Find the equation of the circle circumscribed about
the triangle whose vertices are (a, 0), (4, 0), (0, ¢). Check
your answer by showing that the center of this circle is the
point determined in Problem 2 at the close of Chapter 11I.

PROBLEMS TO CHAPTER IV

1. Prove by analytic geometry that every angle inscribed
in a semicircle is a right angle. |

[SuceesTiON. Take the codrdinate axes so that the
origin falls at the center of the circle and the two ends of
the semicircle fall on the axis of z. ]

2. Prove that if a perpendicular is dropped from a point
on a circle to a diameter, the length of this perpendicular is
a mean proportional between the segments it cuts off on the
diameter.

3. Prove that the middle point of an arc of a circle is at
the same distance from the chord of this arc as from the
tangent drawn at one end of the arc.

4. Prove that the line
y=Ar+b
is tangent to the circle
| 22 + 42 = p?
‘when and only when
b2 = p2(1 4 A?).
5. Prove that the line

+

SR

>R
{
ot
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is tangent to the circle
2 + y2 — p2
when and only when

1,1 1
2T E A
6. Let O and P be the points where the line y = Az cuts
the circle 22 + y2=2ax. On OP as diameter a second circle
is described. Find its equation.

7. CM is a radius of a circle whose center is . On OM
as diameter a second circle is drawn. Prove that any chord
of the first circle through M is bisected by the second circle.

[SuccEsTION. Take M as origin and CM as axis of z.
The equation of the chord may then be written y = Az. ]

8. Two circles are tangent to each other at M and two
straight lines through M meet the first circle in 4, B, the
second in A’, B'. Prove that the lines AB and A’'B’ are
parallel. Show that your work covers both the case in which
the circles are tangent internally and that in which they are
tangent externally.

9. At the ends of a chord of a circle tangents are drawn.
- Prove that the distance from any point, P, of the circle to
the chord is a mean proportional between the distances from
P to the tangents. |

10. Show that the equation of the circle through the
middle points of the sides of the triangle whose vertices are

(a, 0), (b, 0), (0, ¢) is
9 o _a+b ab — ¢
Y Tt g,

y=0.

11. Hence prove that in every triangle the circle through
the middle points of the sides passes through the feet of the
perpendiculars dropped from the vertices on the opposite
sides, and also through the points halfway between the
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vertices and the point of intersection of the altitudes. This
circle is called the Nine Point Circle of the triangle.

12. A chord is drawn through a point, P, on a diameter,
AB, of a circle, and its extremities are joined to one end, A,
of the diameter. These joining lines meet the diameter per-
pendicular to AB in ¢ and R. Prove that, as the chord re-
volves about P, the product of the distances from the center
of the circle to @ and R is constant, and has the value
p2PB/PA, where p is the radius of the circle.

13. If the equations

2+ y:+ax+by+e=0,

22+ y2 + agx + by + ¢, =0
represent intersecting circles, show that they intersect a#
right angles when and only when

s + 0.6, =2c¢; 4 2 ¢,

[SuceEsTION. Notice that, if the circles intersect at right
angles, the triangle whose vertices are the centers of the circles
and one of their points of intersection is a right triangle.]

Show that two real non-intersecting circles never satisfy
this condition.

14. By using the result of Problem 13, find the equation of
the circle which passes through the points (8, 9) (1, 2) and
cuts the circle 22 4 y% = 25 at right angles.

15. Find under what conditions the circle

22+y?+arv+by +c=0
cuts the line
Ax+ By + C=0
at right angles. ,

Hence find the equation of the circle which cuts both the

circle
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and the line
2+ y=2

at right angles, and also passes through the point (3, 0).

16. Is there any circle which cuts at right angles the three
circles

x2+y2=4’
22+ y? =4,
22+ yl=6y?

If so, find its equation, and draw an accurate figure.



CHAPTER V
POLAR COORDINATES

34. Definition of Polar Coordinates. Let us take a point,
O, as origin or pole, and a straight line, OA, — the initial
line, — running out to infinity in one direction from 0. Any
point, P, in the plane may be deter- P
mined by its distance, », from O and
by the angle, ¢, which the line OP P
makes' with the initial line; that is, O 4
the angle through which 04 must be Fra. 29
revolved in order to come into the position OP. This angle,
in Figure 29, may be taken as a positive acute angle; but it
may also, if we prefer, be increased or decreased by any mul-
tiple of 360°. o

We may also allow the coordinate » to be negative. Thus
if, in Figure 30, P is the point r =5, ¢ = 45°, — or, as we
will say for brevity,* the point (5, 45°), p
—the point (—5,45°) will be P/, it
being agreed that when 7 is negative 45°

this distance must be laid off, not along 6
' the terminal side of the angle ¢, but /
P'

along this side produced backward.
According to this understanding, the F1c. 30
point P of Figure 30 may also be des-
ignated as ( — 5, 225°) and P’ as ( + 5, 225°).

It will be seen that in polar codrdinates each point has an
infinite number of sets of coérdinates. Conversely, however,
and this is the important thing, when the values of » and ¢

* The degree mark (°) makes it impossible to mlstake this notation for
coordinates in a Cartesian system.

65
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are given, the point is uniquely determined, since all we have
to do is to lay off the angle ¢ with a protractor starting from
OA, and on its terminal side lay off the length » starting
from O and measuring along the terminal side itself if » is
positive, along this side extended backward if » is negative.

This work of plotting can be considerably simplified by
the use of what is called Polar Coordinate Paper, on which
lines radiating from O are ruled at intervals of 5° or 10°,
and also circles with centers at O and whose radii are suc-
cessive multiples of the radius of the smallest one. See, for
example, Figure 31.

- EXERCISES

Plot the following points:

1. (3, 30°). 6. (5, 17°).
2. (5, 120°). 7. (7.8, 63°).
3. (—10, 80°). 8. (—4.9,111°),
4. (8, —20°). 9. (&, 180°).
5. (—5, —145°). 10. (12, 0°).

11. Indicate in each of the Exercises 1-10 two other pairs
of coordinates which determine the same point; showing, in
particular, how the sign of » can be changed.

35. Plotting of Curves in Polar Coérdinates. We have
seen that when we use Cartesian codrdinates an equation in
z and y represents a curve.

Similarly, if we have an equation between the polar
coordinates (7, ¢) of a variable point, this point will be
restricted to a certain locus, which may be plotted very
much as in the case of Cartesian coordinates. The following
example will make this clear.

Let us plot tha curve

@Y 72 =144 cos 2 ¢.
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- This equation may be written
(2) | r= +12Vcos 2 ¢.

We now assign to ¢ in succession the values 0°, 10°, 20°,
ete. and compute the corresponding values of » by means of
a table of cosines. Unless our figure is drawn on a very
large scale, it will be sufficient to get our results correct to
two significant figures, since this is as accurately as we can
use them in plotting. We find

$=0°  r=£12.0, ¢ =30°  r= 8.5
6=10°, r=+11.6, & = 40°, r= + 5.0,
¢ =20° r=+10.5, $=45°,  r=0.
1100 1% s,
120° 60°
o | Ry
130° XA A 50
402 0’,“ #@\\ 8
ST IR
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When ¢ is greater than 45° 2 ¢ is greater than 90° and,
consequently, its cosine is negative. The value of » in (2)
thus becomes imaginary. This is true as long as 2 ¢ remains
in the second or third quadrant, that is, while ¢ increases
from 45° to 135°. After this point, 2 ¢ comes into the
fourth quadrant, its cosine is positive, and » is real. From
this point on we get the following values for », which are
the same as those obtained above taken in the reverse order’:

¢ =135°, r =0, ¢ = 160°, = + 10.5,
¢) = 14;00, r = + 5.0, ¢ = 1700, r = L 11.6,
b =150° 7= 8.5, b =180°, = +12.0.

If we were to go farther, we should get exactly the same
points over again. For instance, when ¢ = 190° » = + 11.6,
and these are the same two points which we found by letting
¢ =10°. If we were to take negative values for ¢, we should
get no new points of the curve. |

Plotting the points whose codrdinates we have now com-
puted, we can draw in the curve of Figure 31. This curve
is called a Lemniscate. 1t crosses itself at the origin. Such
a point is called a double point of a curve.

One of the chief difficulties the beginner finds in plotting
curves in polar coordinates is to know how far he must go
with the values of ¢. In the example just given, it was
sufficient to consider values from ¢ =0° to ¢ =180° In
other cases we shall find that we must go up to 860°, or even
farther, if we wish to get the whole curve. No general rule
can be given except that in each case we must go so far that
the curve repeats itself from this point on.

’ EXERCISES
Plot the following curves, using polar coérdinate paper :
1. r=>. 3. r=10sin¢. 5. 22=100 sin 2 ¢.

2. ¢ =10°. 4. r=10cos ¢. 6. r=10cos 3 ¢.
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36. Transformation from Rectangular to Polar Coordinates,
and Vice Versa. Letus consider, by the side of the system of
polar coordinates so far used in this chapter, a system of
rectangular coordinates having the same origin, and having
the initial line as the positive half

of the axis of z. If the polar codr- 1
dinates of a point, P, are (7, ¢) and P
its rectangular coérdinates (z, y), 7 y
we shall have (see Figure 32)
: X
Y % | v

GOSQ{’:;’ SIn ¢ ="~ Fia. 32

Moreover, this will be true not merely when ¢ is in the
first quadrant, but in all cases, as becomes evident when we
recall the definitions of the sine and cosine of an angle in
the second, third, or fourth quadrant.

Clearing of fractions, we may write
@) ax =17 cos ¢, . Yy =17 sin .

These formulae enable us, when the polar codrdinates of a
point are known, to find its rectangular codrdinates.

Conversely, either from the figure or by squaring and add-
ing equations (1), we find
(2)  r=+ Va2 + g5
from which, by means of (1), the angle ¢ may be deter-
mined. Thus, knowing (#, y), we can find (7, ¢).

The most important application of these formule is to pass
from the equation of a curve in one system of coérdinates to
its equation in the other system.

Suppose, for instance, that we have the straight line

| Tz —3 Y + 2=0,
and wish to find its equation in polar codrdinates. Substi-

tuting for z and y their values from (1), we find as the de-

sired equation
(Tcosdp —3singd)r+2=0.
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The transformation of the equation of any curve from
rectangular to polar coordinates is performed with the same
ease.

The converse problem is hardly less simple.

Suppose, first, that we wish to transform the equation

5)
(3 "= sin b

to rectangular coordinates. Clearing this equation of frac-
tions, and replacing 7sin ¢ by its value from (1), we find
y =5. Hence (3) represents a straight line parallel to the
initial line and at a distance of 5 units from it.

As a second example, we consider the curve (1) of § 35.
The equation in polar cooérdinates of this curve may, by
trigonometry, be written

72 =144 (cos? p — sinZ P).
Replacing cos¢ and sin¢ by their values from (1), and
clearing of fractions, gives
rt =144 (2? — y?).
Here the value of » from (2) must be substituted, giving
2t + 2 2%y?% 4+ yt = 144 (a? — y?)

as the equation of the lemniscate in rectangular coordinates.

EXERCISES

1. Find the rectangular coordinates of the points of the
exercises at the end of § 34.

2. Find the polar cooérdinates of the points of the exer-
cises at the end of § 3. |

3. Transform to polar coordinates the curves of the exer-
cises at the end of § 12.

4. Transform to rectangular coérdinates the curves of the
exercises at the end of § 35.



PROBLEMS : 71

PROBLEMS TO CHAPTER V

Plot the following curves, assuming that a stands for a
positive constant :

1. r=asin 3 ¢. 6. fr=acos—§.

2. r=a(l—cosdo). 7. r=acos§.

3. r=acos2d¢. 8. rcos ¢ =acos2d.
4. 7%= a?cos 3. 9. 72sin?2¢ =a®cos 2¢.
5. r= acos % 10. 7%2= a? ctn ¢.

11. What changes will be produced in the curves of Prob-
lems 1-10 if a is a negative constant?

12. Find the equations in rectangular coordinates of the
curves of Problems 1-5.

13. Find the equations in rectangular coordinates of the
curves of Problems 8-10, and get, in this way, what addi-
tional information you can concerning the shape of the dis-
tant parts of these curves.



CHAPTER VI

SOME GENERAL METHODS

- 37. The Tangent as the Limit of the Secant. We were
able to find the equation of the tangent to the circle in § 31
on account of a particular property of the tangent with
which we were familiar from elemen- 5

tary geometry, namely, that it is per- <
pendicular to the radius drawn to P

the point of contact. This method,
however, will not be open to us when
we come to other curves which have 5 X
not been studied in elementary ge-
ometry. In such cases we shall be
obliged to fall back directly on the
definition of the tangent.

In elementary geometry, where Fia. 33
we are dealing with the circle alone,
we define a tangent as a line which
meets the curve in one and only one
point. Simple examples show that B
this definition is not a satisfactory /
one in many other cases. For in- /
stance, in the case of the curve 19) X
y?=4z, plotted in § 12, a line
through a point, P, of the curve and
parallel to the axis of z will meet
the curve at no other point, and yet
we shall surely not wish to call such
a line a tangent (see Figure 33).
On the other hand, the curve y =23 is shaped as indicated
in Figure 34, and the line AB, which we should naturally

72

F1c. 34
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wish to speak of as tangent to the curve at P, will, if ex-
tended, meet it again in another point.

We might be tempted, in view of these examples, to de-
fine a tangent to a curve at P as a line through # which
in the immediate neighborhood of this point lies wholly on one
side of the curve. Apart from the fact that even this defi-
nition will not give us exactly what we want in all cases,
there is the very serious practical objection to it that it would
not be an easy definition upon which to base mathematical
reasoning. It has therefore been found desirable in all the
“higher parts of mathematics to approach the subject of
tangency in quite a different manner.

If we think of a curve as traced out by a moving point,
we shall say that at any moment the point is moving in a
definite direction, which we can speak of as the direction of
the curve at this point. By the tangent to the curve at P
we shall understand the straight line through P whose
direction is the direction of the curve at P.

This, however, does not really advance us much, for it
simply throws us back on the question of how the direction
of the curve at P is to be deter-
mined. If P’ is a point a little
farther along the curve, the direc-
tion PP’ is obviously not quite the
direction of the curve at P. If |
instead of P’ we take P'', a point Fia. 35
on the curve between P and P/,
the direction PP'’, while still not the direction of the curve at
P, is a better approximation to it than was PP/, and if we take
P on the curve still nearer to P, PP is a still closer -
approximation to the direction of the curve at 2. We thus
determine the direction of the curve at P as the l¢met of the
direction from P to a neighboring point on the curve, as this
neighboring point moves down the curve towards P.

It is now easy to state our definition of a tangent in the
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following form, which is practically the most convenient
one: | |

By the tangent to a curve at a point P is meant the limiting
position approached by a secant which connects P with a neigh-
boring point, Q, on the curve as @ moves along the curve and
approaches P as its limat.

38. Method of Finding Equation of Tangent and Normal.
If we have a curve given by its equation and a point, Py,
with codrdinates (z;, ¥;), on the curve, the problem of finding
the equation of the tangent at P, is clearly solved as soon
as we have found the slope, A, of the tangent, for the equa-
tion of the tangent will then, by (2), § 17, be

ey Yy —y1=r(z—2z).

To find the slope of the tangent, we take a point P,, with
coordinates (z, %,), on the
curve near P,. The slope of

the secant connecting these
points is, by (1), § 6,

Ya — Y1,

Ly — Ty

If, now, we take the limit as
P, moves along the curve and

approaches P;, we see from the definition at the close of
§ 37 that

Fic. 36

(2) A=1lim Y2 "Y1,

Lo — 21
It is in determining this limit that the difficulty of the
problem lies; for as P, approaches P,, both y, —y, and
x, — x; approach zero. Now when the numerator of a frac-
tion approaches zero, the value of the fraction approaches
zero; while when the denominator approaches zero, the
fraction becomes infinite. When, however, both of these
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things happen at once, it is impossible to see, without further
examination, how these two opposite tendencies balance up.
A moment’s consideration will show whence this difficulty
comes. We have said that the point P, is to remain on the
curve as it moves towards ;. We cannot, however, hope
‘to carry through the algebraic work unless in some way we
make use algebraically of this fact, and also of the fact that
P, lies on the curve. We will show in a moment by con-
crete examples how this is to be done. First, however, we
will make a change in notation which, while not necessary,
is very convenient. Let us denote the numerator and de-
nominator of the fraction in (2) by % and A, respectively :

zy—wy=hy, Yy— Yy ==r
The point (2, y,) can then be written

,Pz (991+k,y1+7ﬂ),
and we have to determine
. k
A=1 Z).
(3) im ( k)

In this notation we can dispense entirely with the letters

Ty Yo
Let us begin by finding the tangent to the circle

4 2?2+ y? = p?
at the point (24, y;)-

Since both this point and the point (z; + A, y; + k) lie on
(4), we have

() | 72 + yi* = P
(6) | (zy + 2%+ (y, + k) = p*
By making use of these two equations, we wish to find an

alternative expression for the fraction % which will enable

us to evaluate its limit. On expanding (6) we find
22+ 2hw, + B2+ y 2+ 2y, + kP = p%
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From this we subtract (5) and get
2hxy + M+ 2ky, + k2= 0,

which, after division by A, becomes

2x1+k+%(2y1+k)=0.

Hence
k__2un+h
™ 2y +k
This is the alternative expression for ]f, which, though

h
more complicated than the original one, has the great advan-
tage that its limit, as £ and A both approach zero, can be at
once determined : |
2z, + h) zy

0 2yt k Y1

This being the slope of the tangent, the equation of the
tangent is

— y=—4 x— ),
Y= Y 3/1( L.

and the further reduction and simplification is precisely as in
§ 31. |

As a second example, let us find the tangent at (zy, y;) to
the curve

The points (2, ;) and (x;+ h, y; + k%) both lying on
- (8), we have
(9 Y1 = 2
(10) Y+ k= (2, + h)>
Expanding (10) and subtracting (9) from it gives

k=3 x?h + 3z A% + h®
or

%:39312 + 8ok + A2
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Hence

A= 1im<%> = 3 z,%

Consequently, the equation of the tangent is
| Y — Y1 =32 (x — 2y,
which reduces, when we make use of (9), to
(11) Sz —y — 223 =

This is the general formula for the tangent to this special
curve. In particular, we see that the tangent at the origin
is the line y = 0, that is, the axis of 2. This line, as we see
from Figure 84, crosses the curve at the origin. A point
like this at which the tangent crosses the curve is called a
point of inflection.*

DEFINITION. By the normal to a curve at a point P on
the curve is meant the line through P perpendicular to the tan-
gent to the curve at P.

We can obviously write down at once the equation of the
normal to a curve at a point (z;, ¥;) as soon as we have found
the slope of the tangent at this point. For instance, in the
case of the circle (4), the slope of the tangent is given by

(7). Consequently, the slope of the normal is %1, and the
1
equation of the normal is

Yy — Y =3§(w—fv1)
1 :
or
21Y = Y@

This is a line through the origin, as we know from ele-
mentary geometry should be the case.

* The tangent at a cusp (see Problem 2 at the end of this chapter) will also, in
general, cross the curve at this point.
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EXERCISES

Find the equations of the tangents to the following curves
at the point (zy, y,) :

1. ¥’ =4u=. | Ans. yy=2(x+=z,).
2. 22+ y? =2aux.
8. zy=1. Ans. yx+xy=2.

4. 2224 342=6.
5. Find the equations of the normals at the point (z;, ¥,)
to the curves of Exercises 1-4.

39. Tangents to Curves of the Second Degree. The most general
equation of the second degree in (z, y) is
(1) , Az? ++ Bzxy 4 Cy?+ Dx + Ey + F = 0.

Although we do not as yet know what kind of curve is represented
by this equation, this does not prevent us from finding the equation of
its tangent.

Let (z;, y;) be a point on (1), and let (x, + A, y, + k) be a neighbor-
ing point on this curve. Then

) Ax? + Bry, + Cy® + Dxy + By + F =0,
(3) - |
A2+ B2 B+ ) (g + 8 + C(yy+ B)2+ D(2,+ 1) + E(y, + ) + F=0.
By expanding (3) and subtracting (2) from it, we find
2 Axh + Ah? + By,h + Bxk + Bhk + 2 Cy,k + Ck? + Dh + Ek = 0,
which, after division by %, becomes

2Ax1+Ah+By1+Bk+D+%(Bxl+2C'y1+ Ck + E) =0.

Hence
_2Ax, + Ak 4 By, + Bk + D

. Bz, +2Cy, + Ck + E
We thus find as the slope of the tangent

A= lim(@) =242+ By, + D,
h Bx, +2Cy, + E
The equation of the tangent is, therefore,

2Az, + By, + D
Bz, +2Cy,+ E

kE_
h

¥ —y)=— (& — 2,
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or, cleared of fractions,

(4) 2Azz+ B(xy + ynix)+2Cyy + D(x — 2)+ E(y—y,)
=2 Axz?+ 2 Bxyy, + 2 Cy,?

By means of (2), we see that the second member of (4) isequal to
—2Dx,— 2FEy, —2F.

If we make use of this value, transpose, and divide by 2, (4) becomes
5 Adzzx+ g(xﬂ + %) + Cyy + -g(x + z) + g(.’.’/ +9) + F=0.

This is the final form for the equation of the tangent to the curve (1)
at the point (z;, y;)- It may be easily remembered as follows:
Write equation (1) in the form

Azz +E @y +ap+ Cyy + D@+ + Z @+ 9) + F =0,

where x2 and 2 are split up into two equal factors, while every other
term (except the constant term) is split up into the sum of two equal
halves. If, in the equation thus written, we put a subscript 1 to one
of the two variables in each term (but not to the same one in the two
zy-terms), we get precisely the equation of the tangent.

EXERCISES

Write down, by the rule just given, the equations of the tangents to
the curves in the Exercises to § 38.

'40. Addition or Subtraction of the Equations of Two Curves.
Suppose that

(D Az + By + ¢, =0,
(2) Agz+ Byy + O =0

are two straight lines which intersect in the point (z;, ¥;).
Let us inquire what curve is represented by the equation

(3) (A, + Az +(By+ By + (01 + =0
obtained by adding together equations (1) and (2). Since

this is an equation of the first degree,* it represents a

* The only way in which it could possibly not be of the first degree would be if
Ay = — Ay, By = — B,. But this would make (1) and (2) parallel (or coincident),
whereas we have assumed that they intersect.



80 SOME GENERAL METHODS

straight line. To get further information, let us write (3)
in the form |

(4) (A + By + O+ (dyz+ By + ) = 0.

To find out whether (2, y;) lies on (4), we substitute its
coordinates in (4) in place of (#, y) and see whether the
resulting equation is fulfilled. In this substitution, the first
‘parenthesis in (4) reduces to zero since it is the first mem-
ber of (1), and (#;, y,) lies on (1) by hypothesis. For a
similar reason, the second parenthe'sis in (4), which is the
first member of (2), reduces to zero. Consequently, the
line (4) does pass through (2, ;). Hence

If the equations of two lines which intersect in P, are added
together, the resulting equation represents a straight line which
also passes through P;.

It would seem, at first sight, that we ought to be able to
state just what one of the infinitely many lines through 2 is
represented by (8). This, however, is impossible for a rea-
son which will be apparent later. We can, however, make
one additional statement ; namely, that (3) will not represent
either of the lines (1) or (2). For suppose (2, y,) 1s any
point on (1) other than the intersection of (1) and (2).
Then, since (2, y,) lies on (1),

Ayzy + By, + ¢ =0,
and since it does not lie on (2),
Agzy + Boy, + Cy 0.

If we test (z,, y,) to see whether it lies on (4), we see
that it does not, since the first parenthesis reduces to zero
but not the second. Hence (38) cannot coincide with (1).
By similar reasoning, we see that it cannot coincide with (2).

As a second illustration of the principle here involved, let
us now consider two circles, ‘

@) Ax? + Ayy? + Diw + By + F; =0,
(6) Agz? + Ay? + Doz + Eyy + F, = 0.
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By adding these equations together, we get
(M A+ A+ (A + APy + (D + D)z + (B + Ey)y
+ (Fl + Fz) = 0.

This is a circle, real, null, or imaginary, except when
A, =— A,, when it is, in general, a straight line. If (5)
and (6) intersect in two points, (7) passes through these
points. For if (2, y,) is either one of these points, we have

(& - A + Ay + Dywy + By, + F; =0,
©)) Ayw? + Ay + Dy, + Bpy, + Fp = 0.
Now equation (7) may be written
(10)  (Ap@2?+ Ayy* + Dyw + By + Fy)
+ (A2? + A2 + Doz + Eoy + Fy) = 0.

If we test the point (#;, y;) to see whether it lies on (10),
we see that it does do so since, by (8) and (9), both paren-
theses reduce to zero.

On the other hand, if (#,, ¥,) is a point lying on (5) but
not on (6), we see, by testing it in (10), that it does not lie
on (7). Similarly, (7) does not pass through any point of
(6) which does not lie on (5).

The reasoning we have here used in the case of straight
lines and circles applies in the same way to other curves, and
we thus get the result:

If the equations of two curves which meet in one or more
points are added together, the locus of the resulting equation
passes through all the poz’nts of meeting of the two given curves
and meets neither of them in any other point.

If the two given curves do not meet, the sum of their equatwns
etither has no locus, or ts locus does not meet either of the
curves.

Before applying this principle, we may, of course, multiply
one or both of the given equations by any constants other
than zero. The curve which we then get by adding the two
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equations will have all the properties we have just stated,
but it will, in general, be a different curve from the one we
should have obtained by simply adding the equations as they
stood. For instance, if we add the equations

x—2y+3=0,
r+2y—1=0,

we get the line parallel to the axis of y through their point
of intersection ( — 1, 1), while if we first multiply the second
equation by 3 and then add, we get the line connecting this
point with the origin. We see now why it was that we were
unable to state which line through the point of intersection
of two given lines we get by adding their equations,—it will
all depend on which particular forms of equation we use.

We may, if we please, multiply one of the equations by
— 1 before adding. In other words, the results stated
above remain true if we subtract the equations instead of
adding.

In conclusion, we make an application of this principle to
the problem of finding the equation of the common chord of
two intersecting circles.

Let us write the equations of these circles in the forms

(11D P4y +ax+by+ =0,
(12) 22+ y? 4+ ayx + by + ¢, = 0.

If we subtract these equations, we evidently get an
equation which is of the first degree and therefore represents
a straight line. By our general principle, this line must
pass through both points of intersection of the given circles.
The equation obtained by subtracting ome of the egquations
(11), (12) from the other is therefore the equation of their com-
mon chord. This is by far the simplest way of finding the
equation of this line since it avoids the necessity of finding
the codrdinates of the points of intersection of the circles.
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EXERCISES

Find the equations of the common chords of the following
pairs of circles:

1. 24+ 92 —22—2y=0,224+9y2—424+3=0,

2. 22+ y2=25, 22+ y2 =6 =.

8. 22+ y2+42r—2y—4=0,224+4y2—-22—y+1=0.

4. 2+y2+42—2y—4=0,

86224+ 36y2—T22— 24y + 31 = 0.

5. (z—3)?2+(y—2)2=4, (z—2)24+ (y+1)2=09.

6. Find the equation of thé straight line which connects
the origin with the point of intersection of the lines

1524+Ty—7T=0,32+Ty—3=0.
[SucgesTION. Multiply the equations by constants in

such a way that, when they are added, the constant term is
eliminated. ]

7. Find the equation of the straight line parallel to the
axis of ¥ and passing through the point of intersection of
the lines of Problem 6.

8. Find the equation of the circle which passes through
the origin and also through the points of intersection of the
circles of Problem 3.

41. Multiplication of the Equations of Two or More Curves.
If we start from the two lines

@ Aw+ By + 0, =0,
(2) A A,z + By 4 =0,

and multiply their equations together, we get the equation
of the second degree '

3) (A + By + CD(Asz + By + Cp) = 0.
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This equation has as its locus the two lines (1) and (2).

For, if (z,, ;) is any point on (1), we have
Ay + By, + 0 =0.

Consequently, if we substitute (zy, ;) in (3), the first
factor of (3) becomes zero, and we see that (z;, v,) lies on
(3). Similarly, any point (z, y,) of (2) also lies on (3).
On the other hand, if (&, y3) is a point which lies on neither

(2) nor (3),
Az + Byys + C+0.

Ayzg + Byys + O+ 0.

Hence, when (z,, y,;) is substituted in (3), neithsi factor is
zero, and (3) is not satisfied. Thus we have shown that all
the points of (1) and (2), but no other points, lie on (3);
that is, that the locus of (3) consists of the whole lines (1)
and (2) and of nothing else. |

The same reasoning applies without change if instead of
starting from straight lines we start from any other curves,
the general result being :

If the equations of two curves are written so that their right-
hand members are zero,* the equation formed by multiplying
them together represents the two given curves and nothing else.

This same principle may be looked at from the point of
view of factoring rather than that of multiplication. If we
have an equation in the variables (2, y) written in a form
where its second member is zero, and if its first member can
be resolved into the product of two factors, the locus of the
original equation will consist of two parts; namely, the loci of
the two equations obtained by equating each factor to zero.
In this way we can sometimes determine the locus of a com-
plicated equation.

% This restriction is essential. If, for instance, we take the lines * =y and
x = — y (the bisectors of the angles between the coordinate axes) and multiply

them together as they stand, we get the equation 2= — y2, a null circle at the
origin. : '
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EXERCISES

Determine by factoring the loci of the following equa-
tions : - »

1. zy=0.

2. 22 —y?=0.

8. zy+2y%2=0.

4. 222 —axy —3y2=0.

202 — 3xy + 2= 0.
2+ xy? — 2z = 0.
ot —yt—4 22 +4y2=0.

2y = xy?.

® = oo

42. Oblique Coordinates. If in § 38 we replace the word slope by
direction ratio, everything in this chapter applies to oblique coordinates
except the application in § 40 to the problem of finding the common
chord of two circles, — the equations there used no longer representing
circles in oblique coérdinates. |

PROBLEMS TO CHAPTER VI

1. Find the equation of the tangent to the curve y = 23 at
the point (—1, — 1), and determine the other point at
which this tangent meets the curve.

2. Prove that the slope of the tan-
gent to the curve y? = 23 at the point
(%3, ¥) is 3¥y,;. Hence show that,
“near the origin, the curve is shaped
as in Figure 37. The origin is- called
a cusp of the curve.

Y

Sl

3. Find the equation of the tangent
to the curve

Y2=a"+ 22— 62
at the point (z;, ¥,)-
4. Plot the curve of Problem 3,

making the diagram more accurate by
drawing the tangent at each point you plot.

Fic. 37

5. Find the equation of the tangent to the curve
y2 = 3 + 8 2
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at the point (z;, ¥y), and use these ta,ngents in plottmg the
curve. |

6. Prove that the three lines
Sz— y+5=0,
2x+3y+2=0,
:1;——-43/—]—3::0,
meet in a point. ,

[SuceESTION. Show that the third equation may be ob-
tained by multiplying the first two equations by suitable con-
stants and adding them together.]

7. Prove that the three lines of Example 1, § 28 meet in
a point by the method of Problem 6.

8. Prove Problems 1 and 2 at the end of Chapter III by
the method of Problem 6.

9. Prove that the common chords of any three intersect-
ing circles meet in a point.

10. If the equations
x? + y? +a1x+bly+cl_0
2% + y? +a2x+bzy+cz_0 |
represent two circles which are tangent to each other, prove

that their difference represents the tangent at their point of -
contact.

11. If the second equation of Problem 10 represents a
“null circle which lies on the circle represented by the first
equation, prove that their difference represents a tangent to
the first circle. Show that this gives us a new method for
establishing the formula for the tangent to a given circle at
a given point.

12. Prove that the equatlon
a2 +bxr+c=0

either has no locus, or represents one straight line parallel to
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the y-axis, or represents two straight lines parallel to the
y-axis.

13. Prove that the equation
az? + bzy + cy =0

either represents a single point, or a single straight line, or
two intersecting straight lines.



CHAPTER VII

TRANSFORMATION OF COORDINATES

43. Shifting Axes Without Change of Direction. It some-
times happens that we wish to change from one system of
coordinate axes to another. We consider in this section the
simplest case, in which any point (z, y,) is taken as new
origin, O, while the new coor- v
dinate axes, O'X' and O'Y’, Y(
are parallel to the old axes of z P
"and y respectively and have
their positive directions in the
same directions as the old axes. o'
Let the coordinates of any =3 X
point, P, be (x, y) when re- Fic. 38
ferred to the old axes, (2/, ¥')
when referred to the new. The projections of O’ P on the
new coordinate axes are, by definition, 2’/ and y'. These pro-
jections are equal to the projections of O'P on the axes of
and y respectively, and these, by § 4, are z — 2, and y — y,,.
Consequently

v =x— x, x = + z,

1 { or (2
()Ly’=y—yo» & Y=Y +Yo
These are the formule for transformation of codrdinates.
In the form (1) they express the new coordinates in terms of
the old; while in the form (2) they express the old in terms
of the new. Both forms are useful.
For instance, if the new origin is at (3, 1) and the coérdi-
nates of P in the old system were (— 1, 2), we find as the
coordinates in the new system, by using (1),

r=—1—38=—4, y=2—-1=+1.
88
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On the other hand, if we have the line whose equation in
the old system was
: 20—y + T =0,

we use (2) and find as its equation in the new system
| 2@ +3) - @+ +T=0

or, simplified,
| 2%’——y’+12=0.

EXERCISES

1. Find the coordinates of the points (2, 3), (—486, 1),
(0, 2) in a system of codrdinates whose origin is the point
(1, 3).

2. Find the co6rdinates of the points (1, 0), (0, 0), (0, 1)
in a system of codrdinates whose origin is the point (2, — 1).

3. Find the equations of the curves
Sx+2y—5=0,
Sx—y+2=0,
22+ y? —6z+4y+12=0,
x? + y? = 25

in a system of coordinates whose origin is the point (3, — 2).

4. Find the equations of the curves of Exercise 3 in a
system of codrdinates whose origin is the point (5, 0).

44. Turning the Axes. v Y

Let us turn the positive
halves, OX and 0Y, of
the coordinate axes about
the origin through the
angle 6 into the positions
OX' and OY'. These two
- lines we use as a new set
of coordinate axes.

- Let P be any point in Fra. 39
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the plane and call its codrdinates referred to the old system
(z, y), to the new system (2, y'). Let M' be the foot of the
perpendicular dropped from P on the new axis of z. Then

OM' =/, M'P=y.

Now consider the projections on the old axes of the seg-
ments OM', M'P, and OP:

Proj. on z-axis of OP = z,
Proj. on z-axis of OM' = OM' cos 8 =2’ cos 0,
Proj. on z-axis of M'P = M'P cos (XO0)Y")
=y’ cos (0 4+ 90°) = — ' sin 6.
Similarly, -
Ptoj. on y-axis of OP =y,
Proj. on y-axis of OM' = OM' sin 8 =2’ sin 6,
Proj. on y-axis of M'P = M'P sin (X0Y")
=y’ sin (0 + 90°) = y' cos 6.
Hence, applying to the broken line OM'P the principle of

§ 2, we find .
a x=2a cos 8 — y' sin 6,
») y=2 sin 8 + y' cos 6,

~and these are the formuls for expressing the old codrdinates
in terms of the new. The formule for expressing the new
coordinates in terms of the old can be found either by solving
the equations (1) for 2/, g’, or directly from the figure.
They are

@ {

2! =x cos 04 y sin 0,
y = —xsin 0+ ycosb.

The general transformation from one system of rectangular
coordinates to another will be one in which we have both a
new origin and new directions for the codrdinate axes. It
would be easy to write down the formulae for such a trans-
formation, but it is hardly worth while to do so, since the
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transformation can easily be performed in two steps: we can
first shift the coordinate axes without turning them until the
origin comes to the desired position, using for this purpose
the formule of § 43 ; and then turn the axes about the new
origin until they have the desired directions,* using for this
purpose the formule (1) and (2) above.

EXERCISES
1. Find the coordinates of the points (1, 0), (2,2), (— 3,4)
referred to a system of rectangular coordinates obtained by
turning the codrdinate axes through an angle of 45°; of 30°.

2. Find the equation of the curve zy =1 after the coor-
dinate axes have been turned through an angle of 45°.

8. Find the equation of the curve 2 22 = xy after the coor-
dinate axes have been turned through the angle tan-1 2.

4. Show, by actually performing the transformation of
coordinates, that the equation of a circle whose center is at
- the origin will not be changed by turning the coérdinate axes
through any angle.

5. Transform the équation of the curve
22— 22y +y? —22—2y+1=0

to a new pair of coordinate axes whose origin is the point
(3}, P and which make angles of 45° with the old axes.

45. Order of Curves. It is clear that the degree of the
equation of a curve cannot be raised by a transformation
from one system of rectangular coordinates to another ; for,
whether we are using formula (2), § 48 or formula (1), § 44,
the values we have to substitute for # and y in the given
equation are of only the first degree in #' and g/, and, con-
 sequently, no terms of higher degree will appear than those
that were already present. |

* This is’poss'ible since we consider only right-handed systems of rectangular
coordinates (see § 3).
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It is not so clear that the degree of the equation might
not sometimes be lowered, since it would be conceivable
that after the transformation all the terms of highest degree
might destroy one another. Further consideration, however,
'shows that this is impossible. For suppose it did happen that
an equation of the nth degree in (#z, y) were reduced after
the transformation to one of the mth degree in (2/, ¥').
Then start afresh with the last-mentioned equation, — that
in (#/, ¥'),—and make the transformation which takes us
back to the original (=, ) system. This transformation, of
course, takes the equation back to its original form, that is,
it raises its degree again to n. We have just seen, however,
that no transformation can ever raise the degree of an equa-
tion. Consequently, the assumption that a transformation
could lower the degree of an equation has led to a contra-
diction, and we see that every transformation leaves the
degree unchanged.

We thus see that the degree of the equation which repre-
sents a given curve does not depend at all on the particular
system of rectangular codrdinates selected, but merely on
the curve itself.* We may therefore use the degree of the
equation as a means of classifying curves. The degree of
the equation is called the order of the curve (or sometimes
the degree of the curve), and thus we speak of curves of order
one, of order two, etc. We know that straight lines con-
stitute the class of curves of order one. Circles, we have
seen, are curves of order two, but, as we shall see later, there
are many other curves of order two which are not circles.

The classification just explained applies only to what are
called algebraie curves, that is, curves whose equations,

* It is true that the same curve may be represented by equations of various -
degrees. For instance, the axis of y may be represented not merely by the
equation » = 0 but also by the equation 2= 0 ; the pair of coordinate axes not
merely by 2y =0 but also by 22y =0 and also by xy2=0; etc. We usually

represent the curve by the equation of lowest possible degree, and it is this degree
we call the order of the curve, ,
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when simplified as far as possible (cleared of fractions and
of radicals), consist only of terms each of which is of the
form Cz*yf, where « and B are zero or positive integers.
Other curves, of which y =1log z and y = 2° are simple ex-
amples, are called transcendental curves, and have no orders.

EXERCISES

What are the orders of the following curves ?

1. 22+ y?2 =2z + 3. 5. Ve+1+Ve—1=uy.
2. xy:l 6. 2% 27 =2,
3. y— 1 7. 2%+ yi = as.
r—1 8 1 + 1
4. z=Vy. ' y_:r;—l—l x— 2

46. Transformations of Oblique Co0rdinates. The formul®e of § 43 for
changing from a first system of codérdinates to a second system whose
axes have the same directions as the old apply to the case of oblique
codérdinates precisely as they do to the case where the codrdinates are
rectangular.

Let us, then, consider the other case, in which the origin is not changed
but the directions of the axes are altered. The formulee in the general
case here would be a little complicated and not very useful. We will there-
fore deduce the formulse first in a special case, that in which the (2/, y')
system is rectangular and the 2'-axis coincides both in position and

direction with the z-axis. In Figure 40, ,

let OM =2, MP =y, angle X0Y =w, Y| Y,
and consider the following orthogonal P
projections :
- Proj. of OM on z'-axis = OM = «z,
Proj. of M P on z'-axis = y cos w,
Proj. of OP on z/-axis = /, @ /
Proj. of OM on y'-axis = 0, o M XX
Proj. of MP on y'-axis = ysin o, Fia. 40
Proj. of OP on y'-axis = y'.
Consequently, by the principle of § 2,
) {x’:x—i—ycosw,or @) Jx:x'—y’ctnw,

y' = y sin o, | ¥ = ¥’ csc .



94 TRANSFORMATION OF COORDINATES

By combining these formule with those of §§ 43, 44, we can pass
from any system of Cartesian codrdinates to any other such system. For
this purpose we can first use formule (1) or (2) to pass to a rectangular
system having the same origin and the same axis of z as the first given
system. Then, by the formule of §§ 43, 44, we can pass to a new rec-
tangular system having the same origin and the same axis of z as the
second given system. Then, by means of (1) or (2), we pass to this
system itself.

Since, in (1) and (2), one set of variables is replaced by expressions
of the first degree in terms of the other set, the reasoning of § 45 is ap-
plicable, and we see that the degree of an equation is not changed by a
transformation from any system of Cartesian codérdinates to any other
system.

The transformation (1) or (2) of this section may be used to deduce
formule of various sorts referring to oblique codrdinates when the cor-
responding formule for rectangular coordinates are known. We illus-
trate this by finding the formula for the area of a triangle whose vertices
 in oblique coordinates are (xy, ¥1)s (Zg ¥5), (%35 Y3)-

By (1), these vertices in rectangular coérdinates are

(%, + ¥y, €08 w, ¥, 8in w), (2, + ¥, €08 w, ¥,8in w), (3 + Y3 o8 w, Y3 sin w).
The area of the triangle is, then, by formula (3), § 23,

+3[(%1 — ¥2) sin 0 (73 + Y3 €08 @) + (Y5 — ¥3) 8i0 @ (2, + Y, cO80)
+ (Y3 — ¥ sin 0 (2, + yycos )],
and this reduces to the value given in § 27.

In conclusion we will deduce the formule, which are sometimes use-
ful, for transforming from a system of rectangular coordinates to any
system of oblique codrdinates having the same origin. Let (z, ) be the
rectangular system and (', ') the oblique system. The angle from the
positive half of the axis of x to the positive half of the axis of 2/ we call
0, the angle from the positive half of the axis of 2/ to the positive half
of the axis of y/, . We first turn the (z, y) system through the angle
0, thus getting a new rectangular system (z'/, y'’):

z = z'' cos § — y''sin 6,
y = z''sin 6 + y' cos 6.

Since the axis of z// and the axis of z/ coincide, we can now pass to

the (2!, y') system by means of formula (1) of this section, which now
become
2 = a! + y' cos w,

Yy = y'sin w.
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Combining these formule, we readily find, on letting 6 + o = 6,,
| x = ' cos 6 + y' cos 6,
) { y =x'sin @ + y'sin 6.

These are the formule for transforming from a rectangular system
(z, y) to an oblique system (z/, y’) with the same origin, where the angles
from the axis of z to the axes of 2/ and 3’ are 6 and 8, respectively.

The general formulse for transforming from oblique coérdinates to
oblique co6rdinates with the same origin will be found in Exercise 4.

EXERCISES

1. By using the method of transformation of cosrdinates, deduce the
formula for the distance between two points in oblique cosérdinates.
(See formula (1), § 9.)

2. Find the slope of the segment which connects the points whose .

oblique coérdinates are.(x;, y,) and (x,, ¥,)-
- 8. The z and y' axes of a system of oblique codrdinates make angles
— 0@ and + 6, respectively, with the z-axis of a system of rectangular co-
ordinates. Show that the formule for transformation of coérdinates
are

z = (z' + y') cos 6,

y=(—a' + y')siné.

4. Show that the formule for transforming from any system of ob-
lique codérdinates to any other having the same origin are

= 51ngxy)+y,sin(y’y)

sin (zy) sin (zy)’
g=a sin (zx') + y,sin (zy')
sin (zy) sin (zy)

Here (zy) means the angle from the axis of x to the axis of 7 ; (x'y) the
angle from the axis of 2/ to the axis of y; etc. v



CHAPTER VIII

PROBLEMS IN THE DETERMINATION OF LOCI

47. Some Simple Cases. We have already determined the
equations of certain simple loci. Thus in §17 we found the
equation of the locus of a point which moves so that the slope
of the line connecting it with a fixed point is constant; and,
in § 11, the locus of a point which moves so that its distance
from a fixed point is constant. In these cases we had simply
to express in algebraic language the law according to which
the point moves. This same method can be employed in
many other cases. We illustrate this by two examples.

Example 1. To find the locus of a point which moves so
that the sum of the squares of its distances from two fixed
points is a constant, which we will call 2 a2.

Let us take the line con- v
necting the two fixed points | (%,9)
as axis of # and the point

halfway between them as
origin, so that the coordi- /
nates of the fixed points may ¥
be called (¢, 0) and (— ¢, 0). (60 O (c,0)
Let (z, y) be the moving Fric. 41
point. The squares of the
distances from this point to the two fixed points are

(xz— )2+ y? and (z 4+ ¢)? + y2
Hence, for any position of the moving point,

(1) (@— P+ P+ (v + )+ y2 =244
or

(2) - 2224+ 242+ 202 =24d2

or

3 22 + y2=a? — 2.

96
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Conversely, if (, y) satisfies (3), it satisfies (2) and hence
also (1); and this equation tells us that the sum of the
squares of the distances of the moving point from the two
fixed points is 2 @2. Hence, not only does every point of the
locus satisfy (38), but, conversely, every point which satisfies
(3) is a point of the locus. In other words, (8) is the equa-
tion of the locus. Hence, if a2 > ¢, the locus i1s a circle with
center halfway between the two fixed points. If a2 =2, the
locus is a single point, namely, the point halfway between
the two fixed points. If a?< ¢?, there is no locus; that is, it
is impossible for a point to be so situated that the sum of the
squares of its distances from two fixed points should be less
than twice the square of half the segment connecting them.

Example 2. To find the locus of a point which moves so
that the sum of its distances from two fixed points is a con-
stant, 2 @, greater than the distance between the points.*

We choose our axes as before and find, precisely as above,
that for every point of the locus

) Vz—2f i+ V@t o)t yi=2a,
and that, conversely, any point («, y) which satisfies (4) is
‘a point of our locus. |

Let us see if we cannot get an equation for the locus in a
form free from radicals. Transposing the second radical in
(4) and squaring, we find
(5) (z—e)2+y2=4a?—4aV(z+c)2+y2+ (z+ )2+ ¥4
or |
(6) 4davV(x+c)2+yi=4a2+1cx.

If we divide this by 4 and square, we get

2(x + )%+ a?y? = a* + 2 a?cx + %3,

or
(D (a% —c?)a? + a?y? = a?(a%— c?).

* If 2a were less than the distance between the points, there would evidently
be no locus, while if it were equal to this distance, the locus would clearly be the
segment connecting the points.
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This is an equation of the sort we want which is satisfied
by the coordinates of every point on the locus. It is not so
obvious, however, that every point whose codrdinates satisfy
(7) is a point of the locus.* For if (2, y) satisfies (7), we
cannot infer that it necessarily satisfies (6), but merely that
it must satisfy one of the relations

j:4a\/(x+c)2+g/2=4a2+4cx,
and from this we work back, by means of an equation anal-
ogous to (), not to (4) but to

® tV@—of+ V@t +yi=2a

an equation in which there is no necessary connection, so far
as we can yet see, between the two ambiguous signs. Since
- 2a is positive, these signs cannot both be minus. On the
other hand, one cannot be plus and the other minus for then
the difference of the distances from (z, y) to the two fixed
points would be 2a, and this quantity, by hypothesis, is
greater than the distance between the points. This, by ele-
mentary geometry, is impossible. Hence both signs in (8)
‘are plus, and (2, y) is really a point of the locus. The equa-
tion of the locus can therefore be written not only in the
irrational form (4) but equally well in the rational form (7).
The locus is therefore a curve of the second order. It is the
curve which we shall define in § 52 as the ellipse.

EXERCISES

Find the locus of a point which moves in each of the fol-
lowing ways:

1. So that the difference of the squares of its distances
from two fixed points.is constant.

2. So that the sum of the squares of its distances from
the vertices of a square is constant. '

* When we clear of radicals, as we have done here, it will frequently happen
that the resulting equation gives us not merely the locus we want but also certain
extraneous loci, just as, in elementary algebra, when we have a radical equation,
the effect of clearing of radicals is often to introduce certain extraneous roots.
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3. Sothat it is twice as far from a first fixed point as from
a second.

4. So that the sum of the squares of its distances from
the sides, or sides produced, of a square is constant.

48. The Use of Auxiliary Variables. In many cases the
method so far used becomes difficult if not impossible to
apply. We may then proceed as follows:

Example 1. A variable line is drawn parallel to the base,
AB, of a fixed triangle, AB(, and meets the sides in the

points D, FE. These vy
points are joined cross-
wise with the ends of Cp(;¢)

the base. To find the
locus of the point of in-

tersection of these join- D E
ing lines. | S
We choose the coor-
dinates as indicated in 4 | B +
i (a,0) O (b,0)
Figure 42. Let (X, ¥) ’ e 42 ,
I1G.

be the point of inter-

section, P, of AFE and BD. The coordinates X, Y of the
point whose locus we want to find we shall call the principal
vartables, and we now introduce as auailiary variable, s, the
distance the moving line DZ# lies above the axis of . As
the line DE moves, all three quantities X, Y, s vary. Let
us first regard the line DA as having a fixed but arbitrary
position, so that, for the moment, X, ¥, s are constants.
The equations of the lines AC, B(, DE are

AC f+ﬁ=1’
a c

BC Y1,
b ¢

DEH y‘= 8.
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Solving the last of these equations as simultaneous with
each of the first two, we find as the codrdinates of D and #,

respectively,
(g(c— 8), s), (é (c—s), s)-
¢ ¢

Hence, we find as the equations of the lines A& and BD
AE csx +[bs +(a—b)ecly — acs =0,
BD csz +[as + (b — a)e]y — bes= 0.

Since (X, ¥) lies on both of these lines, we have

esX +[bs+ (a—b)e]Y —aes=0,
esX+[as+(b—a)e]lY — bes=0.

These are relations which are always satisfied by the
variables X, ¥, s. Let us eliminate s between these equa-
tions. This can be done in this case by adding the equa-
tions and dividing by s:

4 2e X+ (a+b0)Y —(a+b)e=0,
or .

_.gg. + ..Z: 1,
| a+b ¢
Consequently, the point P always lies on the line
2z
1 Y =1,
L a+b + ¢

that is, the line through the vertex (' of the triangle and
the middle point of the base. |

It would be a mistake to think that we have proved that
this line (1) is the locus required, for we have not proved
that P can occupy every position on it, but merely that it
can never move off this line. What we have proved, then,
is that the desired locus forms the whole or some part of this
indefinite line. As a matter of fact, it is easy to see from
the figure that the locus is not the whole line (1) but merely
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the segment between the vertex (' and the middle point of
the base.*

Example 2. A right triangle moves so that the ends of its
hypotenuse rest on two fixed lines at right angles to each
other. Find the locus of the vertex
of the right angle.

We take the two fixed lines as co- (0,q)
ordinate axes and call the intercepts
of the hypotenuse p and ¢. These
quantities are therefore auxiliary vari-
ables. The codrdinates of P are the
principal variables (z, y). Let us call
the lengths of the two sides of the A
triangle, as indicated in Figure 43, a 1) (P,0)
and b. These must be regarded as Fic. 43
known constants. By expressing the
fact that AB, AP, BP have respectively the lengths
Va2 + b2, b, o, we find

B_a P

X

(1) pz + q2 = q2 + 62,
(2) (z —p)P+y? = b%
(3 2? +(y — q)?= ™

Between these equations we must eliminate the auxiliary
variables p, ¢. From (2) and (3) we find

p=xx \/m,
=y * Va2 — a2,
“which, substituted in (1), give
+ V2 — o2 — +yVa2— a2,
Squaring this, we find
b2® — o?y? = 0.

* If we modify our problem by allowing the moving line to meet the sides of
the triangle or the sides produced in D, E, the analytic work of our solution will
not be in any way affected, but the locus will now be the whole line (1).
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By factoring, we see that this equation represents the two
straight lines |
€)) bx + ay = 0, br — ay =0,

which pass through the origin and have slopes =+ 8.
@

The desired locus therefore consists of these two lines or
some parts of them. It is easy to see geometrically, or from
equations (2) and (3), that in any position of the moving
triangle 22 < a2, y2 S0%.  Consequently, the distance from P
to the origin can never exceed Va2 + b2; that is, the locus
cannot extend away from the origin beyond the points
(xa, +b6). Since the triangle can evidently be so placed
as to bring P into any one of these four positions, and can
then be moved gradually, A and B always remaining on the
axes of xz and y respectively, until P coincides with the
origin, we see that the locus consists of that part of the two
lines (4) which lies at a distance from the orlgln not greater
than Va2 + b2

The general principle involved in the foregoing examples
may be formulated as follows: If we introduce a number of
auxiliary variables in treating a locus problem, we must de-

duce from the data of our problem a number of equations
~ connecting these auxiliary variables with each other or with
the principal variables (the coordinates of the point which
traces the locus). There must be found one more such equa-
tion than there are auxiliary variables, and the auxiliary
variables must be eliminated between them. The equation
thus obtained must involve only the principal variables and
constants, and represents a curve which, or some p(mt of
which, is the desired locus. \

If, in the course of the work, we use the equations of cer-
tain lines or curves in the figure, which will then involve
the variables (z, ), these letters cannot safely be used for
the principal variables, which may then conveniently be de-

noted by (X, ¥Y).
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EXERCISES

1. Find the locus of the foot of the perpendicular dropped
from a fixed point on a line revolving about another fixed
point.

[SucaEsTION. Take the line connecting the fixed points
as axis of z and one of these points as origin. Use the slope
of the revolving line as auxiliary variable. ]

2. Find the locus of the middle point of a line of constant
length which moves so that its ends rest on two indefinite
fixed lines at right angles to each other.

49. Use of Formule for Sum and Product of Roots of a Quad-
ratic Equation. It is proved in elementary algebra that if
¥y, 4 are the roots of the equation

ar? 4+ bx 4+ ¢ =0,
then xl_l_%:__z’ x1x2=§--

These formulae are often useful in analytic geometry, both
in solving locus problems and elsewhere. This is illustrated

by the following

Example. A chord of a fixed circle swings around a fixed
point. Find the locus of its mid- Ve

dle point. (2,9,)
Let us take the fixed point, O, /
Q

as origin, and the diameter
through it as axis of z. Let (a, 0) _— A
be the center, A, of the circle. o
The equation of the circle may,

then, be written Frc. 44

@Y (z—a)’ + y2 =12
- We introduce the slope, A, of the moving chord as auxili-

ary variable. The equation of this chord in any one of its
positions is, then,

©)) Y = 7\:2:;
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The extremities of this chord we will call (#;, y;) and
(%4 9;). These coordinates will be found by solving (1)
and (2) as simultaneous equations. Substituting the value
of y from (2) in (1), we find on collecting terms
(3) (1 +AD2?2 — 2 azx + (a? — r?) =0,
an equation whose roots are z; and x,.

By the property of quadratic equations referred to above,
we have

SR BTy

If now we denote by (X, ¥) the coordinates of the point

P whose locus we are seeking, we have

4 X=x1+xz= a )
& , 2 1 4 A2

A second equation connecting X, ¥, A may be found by
using the fact that P lies on (2), so that
€©)) Y=xX. |

We now eliminate A between (4) and (5) by finding its
value from (5) and substituting it in (4). This gives

a
x=_1_
1 +X2
oY
Y2
X4 L7
tTx=

Clearing of fractions, and replacing the large letters by
small ones, we get, finally,
(6) 22+ y? = ax
as the equation of the locus. This equation represents the
circle described on OA as diameter, and it is easily seen that
the whole of this circle is the locus if O lies within the circle

(1), while if O lies outside of (1), only so much of (6) as
lies inside of (1) is the locus.
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EXERCISES

1. Find the locus of the middle ploint of a chord of the
circle 22 + y2 = a2 which moves so that it always has slope 2.

[SucersTiON. Take the equation of the moving chord in
the form y =2z + b, where b is an auxiliary variable. ]

2. Find the locus of the middle point of a moving chord
of the curve zy = 1 which has the constant slope A.

50. Polar Coordinates. Some locus problems admit of
particularly simple solution by the use of polar codrdinates.

Example. OA is a fixed diameter of a g
fixed circle. At A4 a tangent is drawn, I
while about O a secant revolves which
meets the tangent in & and the circle | A
in B. Find the locus of the point, P,
so situated on the segment OS that
OP = RS. |

We take O as origin and OA as initial
line of a system of polar codrdinates.
The length OA we denote by a, and the polar cotrdinates of
P by (7, ¢). Then, since the angle ORA is a right angle,

PS=OR = a cos ¢.
On the other hand,

Fia. 45

o8 =—2_.
cos ¢

Hence

p= OP=0S—PS=—"__ acos &

cos ¢

Thus the equation of the desired locus is
@ sin? ¢
r= ,
cos ¢
which, when transformed to rectangular coérdinates, becomes
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This is a curve of the third order, known as the Ctssoid of
Diocles. 1t may be plotted from the equation, or directly
from the statement of the locus problem given above. It
will be found to have a cusp at O, and the line A8 as
asymptote.

EXERCISES

1. A chord, OA, swings about a fixed point, O, on a circle.
A constant length is laid off in both directions along this
chord from the point A. Find the locus of the two points
thus reached. This locusis known as the Limagon of Pascal.

2. A straight line revolves about a fixed point, O, and
meets a fixed straight line in £. From R a fixed length is
laid off in both directions along OR. Find the locus of the
two points thus reached. This locus is called the Conchoid
of Nicomedes.

51. Oblique Coordinates. The advantage which may sometimes be
gained Ly the use of oblique coérdinates in solving locus problems is that
the coordinate axes may frequently be chosen in a more intimate relation
to the figure if it is not necessary to take them at right angles to each
other. This advantage, however, is usually very dearly bought if, in the
course of the work, formule have to be used which are less simple for
oblique than for rectangular systems. As a rule, therefore, problems in-
volving lengths of lines or magnitudes of angles (including right angles)
had better be treated by rectangular coérdinates.

‘Where oblique coérdinates are used, the method of work will be ex-
actly the same as that explained in the present chapter for rectangular
codrdinates.

PROBLEMS TO CHAPTER VIII

In the following problems it must be remembered that the
coordinate axes used are merely an instrument for getting
a geometric result.* The axes may be chosen at pleasure,
“but the final result must be stated in a form which has no
reference to these axes. In particular, merely giving the

* Except in Problem 8, where g formula is called for,
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equation of the locus is not sufficient; this equation must be
interpreted.

1. Find the locus of a point the sum of the squares of
whose distances from the sides, or sides preduced, of an equi-
lateral triangle is equal to the square of the altitude of the
triangle.

Ans. The circle circumscribed about the triangle.

2. Find the locus of the point the ratio of whose distances
from two fixed points has a given constant value.

Ans. A circle described on a segment as diameter whose
ends divide the segment connecting the given points inter-
nally and externally in the given ratio.

8. Find the locus of a point the ratio of the square of
whose distance from a fixed point to its distance from a fixed
line has a given constant value.

4. Two vertices of a triangle are fixed, and the length of
the line joining one of these vertices to the middle of the op-
posite side is constant. Find the locus of the third vertex.

5. A rectangle is constructed by drawing a variable line
parallel to the base of a fixed triangle and dropping perpen-
diculars on the base from the points where this variable line
meets the sides of the triangle. Find the locus of the center
of this rectangle.

6. A moving line is drawn parallel to the base of a fixed
triangle and is terminated by its sides. Find the locus of
the point which divides this line in a given ratio.

7. Two straight lines revolve in a plane about two fixed
points, one revolving twice as fast as the other. They start
in coincidence. Find the locus of their intersection.

8. Find the equation of the perpendicular bisector of the
segment from (z;, y,) to (2, y,) by regarding this line as
the locus of a point equidistant from the two given points,
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9. APB is a fixed diameter of a circle, and R a moving
point on the circle. At R a tangent is drawn, and a per-
pendicular is dropped on this tangent from B. Find the
locus of the point of intersection of this last line with the

line AR.

10. AB is a fixed chord of a circle, and R a moving point
on this circle. Find the locus of the point of intersection
of the altitudes of the triangle ABR.

11. A chord revolves about a fixed point, A, of a circle
and meets a fixed chord perpendicular to the diameter
through 4 in B. Find the locus of a point on the revolving
chord whose distance from A4 is a mean proportional between
the length of the revolving chord and the length AR.

12. Find the locus of the intersection of perpendiculars
erected to the sides of a fixed triangle at points equidistant
from the ends of the base.

13. A line revolves about a point, 4, and meets a fixed
circle in P, and P,. Find the locus of a point, P, so situated
on this line that the reciprocals of the segments AP, 4P,
AP, are in arithmetical progression. |

[SuccEsTION. The projections of these segments on the
axis of z also have the property that their reciprocals are in
arithmetical progression. ]

14. A line revolves about a point, A, and meets a fixed
circle in "P; and P, Find the locus of a point, P, so
situated on this line that AP is a mean proportional between

AP, and AP,.



CHAPTER IX

THE CONIC SECTIONS —THEIR SHAPES AND THEIR
STANDARD EQUATIONS

'52. Definitions. Three curves, the ellipse, the hyperbola,
and the parabola, are commonly grouped together under the
name conic section, since they can all be obtained as plane
sections of a right circular cone, and it was from this point
of view that they were first studied by the Greek geometers.*
In the present chapter we shall study these curves individ-
ually, starting from the following definitions:

AN ErLripsk is the locus of a point which moves in-a
plane so that the sum of its distances from two fixed points
of the plane, called the foci, is a constant greater than the
~ distance between the foci.

A HyprERBOLA is the locus of a point which moves in a
plane so that the difference of its distances from two fixed
points of the plane, called the foci, is a positive constant less
than the distance between the foci.

A PaArABOLA is the locus of a point which moves in a
plane so that it is always at the same distance from a fixed
point of the plane, called the focus, as from a fixed line of
the plane, called the directrix, which does not pass through
the focus.

Any circle may clearly be regarded as the special case of
an ellipse in which the two foci coincide at the center of the
circle. ,

The foci of a hyperbola cannot coincide, since the differ-
ence of the distances of a point on the locus would then be

* Apollonius (B.c. 200, approximately) is the greatest of the Greek geometers
who made a special study of conic sections.

109
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zero, which is not ¢“a positive constant less than the distance
between the foci.” |

53. Equation and Shape of Ellipse. Center, Axes, Eccen-
tricity, Vertices. In § 47, Example 2, we found the equation
of the ellipse taking as

axis of z the line con- B Y

necting the foci, and as ~ ‘

origin the point halfway

between the foci. Call- { . . e
ing the distance between 4\ F’ 0 F ]A
the foci 2 ¢, and the sum

of the distances from =t

any point of the ellipse e 45

2 a, the equation was

2 2

The intercepts of this curve on the axis of z are + «, those
on the axis of y, + b, where

(2) b=Va2—
In terms of @ and &, equation (1) becomes
w? /I 2
3) poes + %2“ = 1,

which is the standard form for the equation of the ellipse.

In the special case when the foci coincide, ¢ = 0 ; so that,
by (2), b=a. Equation (38) then reduces to the standard
form of the equation of the circle with center at the origin
and radius a.

Let us, however, assume that ¢ > 0. Then the indefinite
straight line connecting the foci is called the transverse axis,
the perpendicular bisector of the segment terminated by the
foci is called the conjugate axis of the ellipse. The lengths
of the portions of these axes included within the curve are
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called the lengths of the transverse and conjugate axes
respectively : |

A'A=2a, B'B=25.

Since, oy (2), 6 < a, we see that the length of the transverse
axis is always greater than the length of the conjugate
axis. Consequently the segments A’A and B’'B are com-
monly spoken of as the major and menor axes respectively ;
a and b are called the semi-major and the semi-minor axes.

The curve is evidently symmetrical with regard to both of
these axes.

The point, O, halfway between the fociis called the center
of the ellipse. It is clear that any chord through the center
is bisected there.

The two points A’ and A where the transverse axis meets
the ellipse are called the vertices of the ellipse.
~ The curve can readily be described by fastening the ends of
a string of length 2« to pins inserted at the foci and press-
ing the point of the pencil against this string so as to keep it
taut.* The pencil can then slip along the string and de-
scribe a curve, which will be the desired ellipse, since the
sum of the distances from the pencil-point to the two foci is
always equal to the whole length of the string, 2 a. The
curve is thus seen to have the shape indicated in Figure 46.
It is clear that the shape of the curve (as distinguished from
its size) depends only on the ratio of the length of the string
to the distance between the foci. For instance, we shall
have an ellipse of the same shape if we take a string three
inches long and fasten its ends at points two inches apart
as if we take a string three feet long and fasten its ends
at points two feet apart. This ratio

c Var— b2
S °“a”  a

* Or, better still, by tying together the two ends of a string of length 2 (¢ + ¢)
and placing the loop thus formed around the pins at the foci.
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which determines the shape of the ellipse is called its eccen
tricity. In the case of the circle it is zero ; otherwise, it is a
positive constant less than one.

EXERCISES

2 2
1. Find the values of a, b, ¢, ¢ for the ellipse :2% + i:% =1

What are the coordinates of its foci and vertices?

2. Find the equation of the ellipse whose foci are the
- points (£ 2, 0), and one of whose vertices is the point (3, 0).

3. The length of the major axis of an ellipse is 6. Find
the equation of the ellipse and the codrdinates of its foci if

(a) e=1, (b) e=3-/5, (¢) e=0.
Draw the figure of the ellipse in each case.

4. What are the major and the minor axes of the ellipses
4224+2542—-100=0, 222+542—-10=0, 38a24+1y2—-5=0?

[SucGcEsTION. Transpose the constant term, and divide
by it. ]

54. The Equation of the Hyperbola. Let us take the line
connecting the foci as axis of # and the point halfway be-
tween the foci as origin; and call the distance between
the foci 2 ¢ and the difference of the distances from the
moving point to the foci 2a. The equation

(D V(z+e)2+9y2— V(z—e)2 4+ y?=2a
represents those parts of the curve nearer to (¢, 0) than to
(— ¢, 0), while the remainder of the curve is represented by

(2) V@—eR + -V (@ + )P+ yi=2a
If we clear equation (1) of radicals, as in § 47, Example 2,

we find 22 o
@ RN

and this equation is also found by clearing (2) of radicals.
Thus the single equation (8) represents all parts of the
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curve. It also represents all curves whose equations are
obtained from (1) by changing the signs of the radicals in
any way ; that is, not merely (2), but also

€ V(i + e+ 2 +V(e—e)l+ yi=2a,

(5) —V(@+e)+y2—V(z— )+ y:=2a.

These equations, however, have no locus; for, since by
hypothesis a < ¢ (see the definition of the hyperbola), (4)
demands that £ move so that the sum of two sides of a tri-
angle be less than the third side, while (5) requires that the
sum of two negative quantities be positive. Thus, finally,
we see that (8) has as its locus the whole hyperbola and
nothing else.

- This result seems, at first sight, paradoxical, since (3) is
identical with equation (1), § 53, and that equation repre-
sented an ellipse. This paradox is resolved by noticing that
there we had @ > ¢, whereas now a < ¢, so that in (1), § 53,
the denominator of the second term was positive, while now

it is negative. In view of this fact, we will write (3) in the
form

(6) > __¥ 1.

By letting y = 0, we find as the intercepts on the axis of z
the values +a. By letting « = 0, we see that the curve
does not meet the axis of y at all, as is also obV1ous from the
definition.

If we use the letter & to mdlca,te the value of the real
positive quantity

M b=vVe?2 — a2
equation (6) takes the form

: . a2 /y2
®) B

which is the standard form for the equation of the hy-
perbola.
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It should be noticed that, in the case of the hyperbola, b is
not the intercept on the axis of y, there being no such inter-
cept; and also that the formula (7) for & is different from
the corresponding formula in the case of the ellipse ; namely,

(2), § 53.

55. Shape of Hyperbola. Center, Axes, Eccentricity, Ver-
tices. In order to examine the shape of the hyperbola, we
solve equation (8), § 54 for y, getting
(D y== % Vat —aZ
- The double sign here shows that the curve is symmetrical
with regard to the axis of z. From the fact that only the
square of z enters, so that the value of y will be the same
whether we assign to x a positive or the corresponding nega-
tive value, we see that the curve is also symmetrical with
respect to the axis of y. Hence it will be sufficient to
examine the shape of the curve in the first quadrant. We
therefore suppose « positive, and use the upper sign in (1).

When z <a, y is imaginary. When z=a, y =0. When
x > a, y is real, and, as z, starting from the value @, increases
indefinitely, y, starting from the value zero, also increases
indefinitely. We Y
thus see that the
hyperbola is
shaped as indi-
cated in Figure ; .

47. It eonsis%s of Fj4 o ANF x
two branches, one 1p’

to the right of the
axis of ¥, the other
to the left. The Hae. 41

points, 4 and A’, where the curve crosses the axis of x are
called its vertices. Sincec > a (see § 51), the foci lie, as indi-
cated in the figure, further from the origin than the vertices.

1B
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The indefinite straight line connecting the foci (here the
axis of z) is called the transverse azis of the hyperbola; a
term which is also used for the segment A’A, and also for
the length, 2a, of this segment. The point halfway be-
tween the foci (the origin, O, in Figure 47) is called the
center of the hyperbola. The indefinite straight line through
the center perpendicular to the transverse axis is called the
coyugate axts. On this line we lay off the distances OB,
OB’ equal to b; and the segment B’'B is also referred to as
the conjugate axis, as is also its length, 2 6.

It is clear that, as in the case of the ellipse, the shape of
the hyperbola will not depend on the magnitudes of @ and ¢,
but merely on their ratio 4

c Vai+b
(2) e=_=——

This ratio, which in the case of the hyperbola is greater
than 1 while for the ellipse it was less than 1, is called the
eccentricity of the hy- <
perbola. N p

The following device N -7
makes it possible to de-
scribe the hyperbola by
continuous motion of a
pencil-point : tie a pen-
cil, P, firmly at a point
near the middle of a
string, and pass the two
parts of the string around two pegs at #’ and #. Holding
both parts of the string together at A, pull them downward.
The point P then describes an arc of a hyperbola.

Fic. 48

EXERCISES

1. The difference of the distances of a point on a hyper-
bola from the foci is 6, and the foci are the points ( £ 5, 0).
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Find the equation of the curve, the lengths of the transverse
and conjugate axes, the value of the eccentricity, and the
coordinates of the vertices.

2. Solve Exercise 1 if the coodrdinates of the foci are
changed to (6, 0). |
3. What are the foci, vertices, and eccentricities of the
hyperbolas
22 g2 1 22 g2 19

—_—— T TN s

25 16 16 25

4. TFind the axes and foci for the following hyperbolas:
2?2 —4y:l=4, 222—-3y% =6, H22—06y%2=1.

5. Find the equation of the hyperbola whose foci are the
points (£3, 0), and whose eccentricity is 2.

6. Find the equation of the hyperbola whose vertices are
the points (£3, 0), and whose eccentricity is 2.

7. An ellipse and hyperbola with eccentricities e; and e,
have the same foci, (¢, 0). Prove the « codrdinates of
their points of intersection are + <.

€12

56. The Asymptotes of the Hyperbola. We can get im-
portant new information about the shape of the hyperbola
by using polar coordinates.

Equation (8), § 54, when transformed to polar coordinates
with origin at O and with the positive half of the axis of x as
initial line, becomes

r2cos’ risin?¢ _ 4
2 b2 -
a
or, solved for 7»,
ab

r==x .
Vb2 cos? p — a? sin? ¢

We will consider only points in the first quadrant; that is,
we restrict ourselves to values of the angle ¢ in the first
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quadrant and to positive values of ». After taking out the
factor a? cos? ¢ from under the radical sign, we may then write

b ]
r = 152
COS (b\/c—z—z — tan2 ¢

As ¢ increases, starting from the value zero, tan ¢ in-
creases, and consequently the radical in the denominator of »
decreases. The other factor in the denominator, cos ¢, also
decreases. Consequently 7 increases. This increase goes
on until the radical has decreased to the value zero, that is,
until tan qb=é When ¢ has a greater value than this,

“ B
the quantity under the radical sign is negative, and 7 is
imaginary. Thus we see that, in the first quadrant, the
hyperbola lies wholly below the line through the origin with

slope 2, that is, the line
a
(L | b — ay = 0.
We will now show that this line is an asymptote of the
hyperbola. For this purpose we must prove that if a point

(x;, y;) moves out along the hyperbola, its distance, 8, from
the line (1) approaches zero. By formula (4), § 22,

S = 4 07— Yy,
Va? + b?
Since (#;, ¥,) lies on the hyperbola, we have
b%x,2 — a?y,? = a?b?.

Hence 22b2
bry — ay, = ————.
1T by + ay,
Consequently 272
, S— 4 @ b 1

Va? + 52 bu, + ay,

Now, as (z;, y,) moveés out along the curve, both z; and y,
increase indefinitely, and the same is therefore true of
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bz, + ay,. Consequently, & approaches zero, as was to be
proved. | ‘

From the fact that the curve is symmetrical both with re-
gard to the axis of z and with regard to the axis of y, we see
that the hyperbola approaches the line (1) as an asymptote
not only in the first but also in the third quadrant, while in
the second and fourth quadrants it approaches the line

through the origin with slope — é, that 1s,
A a

(2) | bz + ay = 0.

These two lines are, then, the asymptotes of the hyperbola.
The two together may be represented by the single equation

b2%? — ay? = 0,

which becomes, after dividing by 282

2
(3) 2 _ 9o,

This equation (8) may be easily remembered since it
differs from equation (8), § 54 only in having 0 as 1ts sec-
ond member instead v
of 1.

The conjugate axis
B'B (Fig. 47, § 55)
can now be brought
into closer relation to A 5D A
the hyperbola. If
through its extremi- 2%
ties, B!, B, lines are
drawn parallel to the
transverse axis, and
through the extremities, 4’, 4, of the transverse axis lines
are drawn parallel to the conjugate axis, a rectangle is
formed whose diagonals are precisely the asymptotes of the
hyperbola.

B

Fic. 49
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The quantity b was defined in § 54, formula (7), by the
equation

b=V — a2

Since ¢ may be any quantity greater than a, it is clear that
b may be either less than, equal to, or greater than a. In
the first case, the asymptote in the first quadrant is inclined

to the axis of z at an angle less than 45° (since its slope is é),
a

in the second.case at exactly 45°, and in the third case at an
angle greater than 45°. If by the angle between the asymp-
totes we mean the positive angle less than 180° through
which the asymptote in the fourth quadrant must be revolved
to coincide with the other asymptote, we may, therefore,
classify hyperbolas, according as this angle is less than, equal
- to, or greater than 90°, as follows:

Acute-angled hyperbolas a>b;
Rectangular hyperbolas a="b;
Obtuse-angled hyperbolas  a<{b.

Since the two axes of a rectangular hyperbola are equal,
such a hyperbola is also spoken of as an equilateral hyper-
bola. Its equation may be written

€)) 2? — y? = a?,

whence it appears that the rectangular hyperbola is the
simplest of hyperbolas just as the circle is the simplest of
ellipses.

EXERCISES

1. Find the equations of the asymptotes of the hyperbolas
of Exercise 3, § 656. What are the angles between these
asymptotes in degrees ?

2. Draw the asymptotes of the hyperbolas of Exercise 4,
§ 55; and by their aid draw in as accurately as possible the
curves themselves.
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8. Find the equation of the hyperbola which has the
points (+ 2, 0) as foci and the line y = 22 as an asymptote.

4. Find the equation of the hyperbola whose vertices are
the points (+3, 0) and the angle between whose asymptotes
is 60°.

5. Show that the eccentricity of every rectaﬂgular hyper-
bola is V2.

6. Prove that the distance from a focus of a hyperbola to
an asymptote is equal to the semi-conjugate axis.

57. Equation and Shape of Parabola. Axis, Latus Rectum.
Let AB be the directrix and # the focus of a parabola
(see § 52), and call the distance v
between focus and directrix m. B
We will take as axis of « the
perpendicular dropped from #
on AB, and as origin, the point
halfway from # to AB. If we
take UF as the positive direction
of the axis of z, the coordinates

of # are (anj’ O); and, if the co- ) a X

ordinates of a moving point, P,
on the curve are (2, y), the
length of the perpendicular

dropped from P on AB is

x+—7§’. The equation of the 4

curve is, therefore Fic. 50

S \/(93-'%>2+y2=w+%,

or, when cleared of radicals and simplified,
2 Y'=2max,
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which is the standard form for the equation of the
parabola.*

In using this form it must be remembered that m repre-
sents the distance between focus and directrix, so that the
focus is the point (%Z, O) and the directrix the line z = — %b .
From (2) we have

Yy =+ V2 maz.

Consequently, when z is negative y is imaginary. When
z=0, y=0. As z increases indefinitely, starting from the
value zero, y also increases indefinitely through both positive
and negative values, the curve being symmetrical with
regard to the axis of z. The parabola, therefore, has the
shape indicated in Figure 50, consisting of one open branch
which runs out to infinity.

It is clear from the definition that all parabolas are of the
same shape, — whether the distance from focus to directrix
is one foot or one inch can obviously make a difference only
in the scale on which the curve is drawn, not in its shape.
The figure plotted in § 12 for the case m = 2 will, therefore,
serve to represent any parabola.

The indefinite straight line through the focus perpendic-
ular to the directrix is called the transverse azis (or simply
the axis) of the parabola, the point where it meets the curve,
the vertex.

By the latus rectum of a parabola is understood the chord
through the focus perpendicular to the transverse axis.
This same term is also applied to the ellipse and hyperbola,
each of which curves, therefore, has two latera recta, one
through each focus.

* From the method of deduction, it is clear that the complete locus of (2) is
the parabola (1) and also the curve obtained from (1) by changing the sign of the
radical. This last-mentioned equation, however, has no locus, as is easily seen
from the fact that no point on the parabola can lie to the left of the directrix,
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EXERCISES

1. What are the codrdinates of the foci and the equations
of the directrices of the parabolas

=4z =z 3y?—5z2=07?
2. What are the lengths of the latera recta of the three
parabolas of Exercise 17

3. Find the equation of the parabola whose focus is at the
point (3, 0) and whose vertex is at the origin.

4. Find the equation of the parabola whose transverse
axis is the axis of =z, whose vertex is the origin, and the
length of whose latus rectum is 2.

5. Find the 1engths of the latera, recta of the ellipses

Y —1 ¥ _
5+ ’ 10+5
6. Find the lengths of the latera recta of the hyperbolas
22 2 Y
25 16 10 5

7. Deduce from the definition of the parabola, without
reference to equation (2), the equation of the parabola whose
focus is the origin and whose directrix is the line z + y = 1.

58. Conics whose Transverse Axis is the Axis of y. When
we deduced the equation of the ellipse, we might have taken
the line connecting the foci as axis of y instead of as axis of
z. The foci would then have been the points (0, + ¢), and
the only change necessary in deriving the equation is easily
seen to be the interchange of the letters z and y wherever
they occur. The equation of the ellipse is, therefore,

(D elz+£2=1.

The only difference between this and the form of §53 is
that here the larger denominator occurs in the y? instead of
in the 22 term,
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Suppose, for instance, that we are given the equation
9 2% + 4 y? = 16.

This may be written

9 a2 |y
AN A |
6 Ty o
2y
or 3)&—}—7_1.

This equation, therefore, represents an ellipse whose semi-
major axis, a:Q, lies along the axis of y, while its semi-
minor axis, b = &, lies along the axis of z. Here ¢ =~/a2— 52

/4 — 16 =2+/5. Consequently, the foci are the points
(O7 = ;_;"/D).

Similarly, if the foci of a hyperbola lie on the axis of y
w .le its conjugate axis is the axis of 2, its equation is

‘ az B2
obtained from the equation of § 54 by merely interchanging
r and y.

The difference between this equation and equation (&),
§ 54 has nothing to do with the relative magnitudes of the
denominators, since either ¢ or 6 may be the larger ; it con-
sists in the fact that here the negative term is the 22 instead
of the »? term.

Since the transverse axis, 2 @, now lies on the axis of ,
the conjugate axis, 256, on the axis of z, it is clear from the
rectangle construction explained in § 56 (see Figure 49) that

the slopes of the asymptotes are :{:%. Hence the pair of

asymptotes are given by the equation formed from (2) by
replacing the 1 in the second member by 0.
We turn, finally, to the parabola. The standard equation,

(3) Y2 = 2 max,
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was obtained by taking the focus <gj, O> on the positive half

of the axis of z. T'he quantity m was positive. In order to
have the focus lie on the negative half of the axis of =z, it is
clearly sufficient to take m as a negative quantity.

On the other hand, if we wish to get a parabola whose
transverse axis is the axis of y and whose vertex is at the
origin, we need, obviously, simply to interchange x and # in
the work of §57. We thus find as the desired equation
4) % = 2 my.

The focus is al the point ((), _7;1

>. This is on the positive or
negative half of the axis of x according as m is positive or
negative. IHence, if m is positive, the parabola extends up-
ward from the origin, if negative, downward.

In all cases it must be remembered that the origin is ne
vertex of every parabola represented by an equation of .he
form (3) or (4).

EXERCISES

So far as the following curves have any, determine the
lengths of their axes, the coordinates of their foci, and tie
position of their asymptotes. Draw a figure to scale for
each curve, marking foci and asymptotes.

1. 422+ 89?2 —12= 0. 6. 2+ 22=0.

2. 42— 3¢y2+12=0. 7. 3a22=12 — ¢2

3. 22 —4y=0. 8. y2=1+4 a2

4. 2>+4y=0. 9. 2224 9y=0.

5. 6a2%=y?4 4. 10. 222 —-542+10=0.

11. Find the equation of the ellipse whose foci are at the
points (0, + 3) and whose eccentricity is 4.

12. Iind the equation of the hyperbola whose foci aire
the points (0, + 3) and one of whose vertices is the point

0, 2).
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13. Find the equation of the parabola whose vertex is at
the origin and whose focus is the point (0, — 2).

59. The Parabola as Limit of Ellipse or Hyperbola. About
the focus # of an ellipse as center, describe a circle with radius
equal to the length of the major axis. Let P be any point
on the ellipse, and produce the line #P until it meets the circle
in M. The shortest dis-
tance from P to the.
circle 18 P M, since this
distance 1s megsured M
along the radius. We
may speak of it simply /
as the distance from P
to the circle. Since

FP + _PM= 2a
and also
FP 4+ PFH' =2 a,
it follows that
PM = PF'.

That is, every point on the ellipse is equally distant from #”
and from the circle. Conversely, it is clear that if a point,
P, is equally distant from #’ and from the circle, the sum

of the distances PF and PF' is 2a. Hence

The locus of a point which moves itn a plane so as to be al-
ways at the same distance from a given circle and from a given
point within the circle s an ellipse having the given point and
the center of the circle as foci, and the radius of the circle as
the length of its major axis.

Fia. 51

On account of the similarity of this result to the definition
of the parabola, the circle of Figure 51 is called a derector
circle of the ellipse. There are, of course, two director
circles, one with center at #, the other with center at #'.

Of the two points where the transverse axis cuts the
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director circle let ¢ be the one which lies nearest to #.
Keeping the points ¢ and F” fixed, let us allow # to move
off to the right along the line CF'. At the same time, we
suppose the radius of the circle to increase so that it is
always equal to CF. As F.moves off to infinity, the circle,
which always passes through €, approaches as its limit the
straight line through (' perpendicular to C'#’. The ellipse, at
the same time, becomes longer and longer ; and, since at any
stage of this process it is the locus of a point which is equi-
distant from #’ and from the circle, the limit it approaches
will be the locus of a point equidistant from #’ and from
the limit of the director circle ; that is, a parabola having
F' as focus and the perpendicular to CF’ at ( as directrix.
Thus the parabola may be obtained as the limiting form of
an ellipse which becomes infinitely long.

The value of the eccentricity of the ellipse is

, 2 _¥'F_CFr—dF _, CF
a 2a CF CF CF

Hence, as the ellipse approaches the parabola, e approaches
1 as its limit (since OF' remains constant, and C'# becomes
infinite). = We shall, therefore, say that the parabola has
eccentricity 1. |

For the minor axis, 8, of the ellipse, we may write

B=a?—c?=3(2a —2c)(a+c)= % OF'(a + o),

-~ and, since, as the ellipse approaches the parabola, both a and
¢ become infinite, we see that the minor axis of the ellipse
as well as its major axis becomes infinite. The minor axis,
however, becomes infinite much more slowly than the major
axis; for we have

—=1—Z=1—¢€2

. | | b
and since, as we have seen, e approaches 1, — approaches
a
zero. Hence
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If one focus and the adjacent vertex of an elltpse are held
fast while the other focus and vertex move off to infinity, the
ellipse approaches a parabola as its limit, one of the director
circles approaches the directriz of the parabola as its limit, and
the minor axis of the ellipse also becomes infinite, but so much
more slowly than the major axis that b/a approaches zero.

What we have just said concerning the ellipse may be
adapted with only slight changes to the hyperbola. The
circle described about a focus,
F',ascenter with radius equal
to the transverse axis, 2 a, is
called a director circle of the
hyperbola. If, as in Figure
52, F' is the left-hand focus, yal
the right-hand branch of the
hyperbola is clearly the locus
of a point, P, equidistant
from this circle and from the |
other focus, #. By the dis- Fia. 52
tance from P to the circle is |
meant the shortest distance, PM; that is, the distance
measured along the radius produced.

If, now, holding fast the focus # and the point (' where
the director circle cuts the segment FF', we allow F' to
move off to infinity, it is readily seen that the branch of the
hyperbola approaches a parabola as its limit. Since, at the
same time, the other branch of the hyperbola is moving off
to infinity with #', we may regard the parabola as the limit-
ing form of the hyperbola. We leave the details to the
reader ; see the following exercises.

EXERCISES

1. Prove that, as #’ goes to infinity, the eccentricity of
the hyperbola approaches 1 as its limit.
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2. Prove that, as F’ goes to infinity, the asymptotes of
the hyperbola become more and more nearly horizontal, and,
at the same time, move off to infinity, one upward and the
other downward.

8. What happens to the length, 25, of the conjugate axis
as F' goes to infinity ?

4. Prove that the left-hand branch of the hyperbola
(Figure 52) is the locus of a point which moves so that its
greatest distance from the director circle of the figure is
always equal to its distance from the point 7.

60. Hyperbola Referred to Asymptotes as Coodrdinate
Axes. Let us start from y ,
. . Y
the equation of the equi-
lateral hyperbola

1) 2P—y?=a?

and turn the coordinate
axes through the angle
0 =—45°. By (1), § 44, 5

we have

Fic. 53
The equation (1) thus becomes

(2) 22y = a?,

which is the standard form of the equation of the rectangu-
lar hyperbola referred to its asymptotes as coordinate axes.

On the other hand, if we had turned the axes in (1)
through the angle 4 45°, the equation would have taken the
form

(3) 2ay = — a?
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Consequently, an equation of the form
(4) xy =k,

when £ is positive, represents a rectangular hyperbola lying
in the first and third quadrants; when £ is negative, a rec-
tangular hyperbola in the second and fourth quadrants; the
coordinate axes being in both cases the asymptotes.

To get a similar form for hyperbolas which are not rectangular, we
must use oblique coérdinates. We start from the standard equation of
the hyperbola referred to rectangular coérdinates

(5) b2? — a2y? = a%?,

and use formule (3), § 46 in which we let

0 =tan—1 (— Zi), 61 = tan—1 (é)
a a

We have, then,
b

— (@' + "), y

e —_ e ( — ! l‘
Va? 4 b2 \/a2+b2( R

x

Equation (5), therefore, becomes after the transformation
(6) 4 xy = a? + b

If we reverse the positive direction on the axis of z, this equation
becomes
(7) 4 xy = — (a? + b?).

Consequently, equation (4), in the case of oblique codrdinates, always
represents a hyperbola whose asymptotes are the coérdinate axes, except
when £ = 0.

PROBLEMS TO CHAPTER IX

1. A chord of a parabola, perpendicular to the transverse
axis, subtends a right angle at the vertex. How many times
as long as the latus rectum is the chord, and how many
times as far from the vertex is it as the focus?

2. Prove that in any ellipse or hyperbola the conjugate
axis is a mean proportional between the transverse axis and
the latus rectum.

Apply this to the circle and to the rectangular hyperbola.
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3. A point is so situated on a parabola that this point,
the foot of the perpendicular dropped from it on the directrix,
and the focus form the vertices of an equilateral triangle.
Prove that the length of each side of this triangle is equal
to the latus rectum.

4. Prove that the line through the vertex of a parabola
which makes with the transverse axis the angle tan™!2 meets
the curve at the end of the latus rectum.

5. The latus rectum of a hyperbola is extended by the
amount %k so that it just reaches the asymptote. Prove that
k is equal to the radius of the circle inscribed in the triangle
formed by the asymptotes and the tangent at a vertex.

6. The lines joining a point on an ellipse with the ends
of the minor axis meet the transverse axis in & and 7.
Prove that the semi-major axis is a mean proportional be-
tween OS and O7, O being the center of the ellipse.

Does this theorem remain true if in the above statement
the major and minor axes are interchanged ?

7. Through a point, P, on a hyperbola a line is drawn
parallel to the transverse axis meeting the asymptotes in &
and 7. Prove that the semi-transverse axis is a mean pro-
portional between P.§ and P7.

State and prove a similar theorem if the line through P
is parallel to the conjugate axis.

8. Prove that the diameter of the largest circle which
can be inscribed in a semi-ellipse bounded by the minor axis
is a fourth proportional to the major axis, the minor axis,
and the distance between the foci.

= 9. Find the equation of the parabola whose vertex and
focus are at the points (p, 0), (g, 0). |

10. The vertex of a parabola is O, and P is any other
point on the curve. Through P two lines are drawn, one
perpendicular to the transverse axis and the other perpen-
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dicular to OP. These lines meet the transverse axis in
and R. Prove that the distance QR is equal to the latus
rectum.

11. Prove that if a point moves along a hyperbola, the
product of its distances from the two asymptotes remains
constant.

12. Let O be the vertex and F the focus of a parabola.
A circle described about O as center and with 38 OF as

diameter cuts the parabola in 8 and 7" Prove that the line
ST bisects OF.

13. Prove that if two ellipses have the same major axis
(both in magnitude and in position) perpendiculars erected
to this axis at any point and terminated by the curves are
to each other as the minor axes.

14. Prove that the areas of two ellipses having the same
major axis are to each other as the minor axes.

[SuccEsTIiON. Place the ellipses as in Problem 13 and
divide them (or the first quadrant of each) into strips by a
large number of lines parallel to the minor axis and equally
spaced. KEach of these strips is approximately a rectangle
whose base is the breadth of the strip and whose altitude is
the length of the left-hand side of the strip. The desired
proportion is established for these rectangles. The propor-
tion for the ellipses is then obtained as a limit. ]

156. Prove that the area of an ellipse whose semi-axes are
a and b is wab.

[SuceEsTION. Apply the result of Problem 14 to the
ellipse and a circle of radius a.]

16. Prove that a line drawn through a vertex of a hyper-
bola, and terminated by two lines parallel to the asymptotes
and passing through the other vertex, is bisected by the
other point where it meets the hyperbola.
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17. Prove that if a point, P, moves along an ellipse, start-
ing from a vertex, its distance from the center continually
decreases until the point reaches the end of the minor axis.

'18. Prove that the quantity

Y
_L+blz_1

is negative if the point (xl, y,) lies within the ellipse
Y2 _
+ b2 1,
positive if it lies outside.

19. State and prove a similar proposition for the hyper-
bola; for the parabola.

20. A chord of an ellipse moves so as always to subtend
~a right angle at the center. Prove that its distance from
the center is constant.

[SuceEsTION. Let A be the slope of the line connecting
one end of the chord with the center, and express in terms
of A the coordinates of the ends of the chord.]

21. Prove that the sum of the squares of the reciprocals
of the distances from the center of the ellipse to the ends of
the chord of Problem 20 is constant.

22. Prove that the chords of a parabola which subtend a
right angle at the vertex all pass through a fixed point.

23. In an ellipse, a =26, P is a point on the upper half
of the ellipse, @ a point on the lower half of the minor axis,
and P@Q.= a. Prove that P is bisected by the transverse
axis.

24. The three vertices of a triangle lie on an equilateral
hyperbola. Prove that the point of intersection of perpen-
diculars dropped from the vertices on the opposite sides also
lies on this hyperbola.
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26. Let @ be the point on the axis of a parabola so situ-
ated that the focus lies half-way between ¢ and the vertex.
Prove that if 7; and [, are the 1engths of the segments of a
chord through €, then

1 1

2tz

has the same value for all directions of the chord.
[SuccEsTION. Use polar codrdinates with ¢ as origin. ]
26. A chord of a parabola passes through the focus. Prove

that the circle described on this chord as diameter is tan-
gent to the directrix.

SUGGESTION. Show that the equation of the circle is
q
9 2 m(Q—}-)\z) _2m 3 m?
r+y % R

where A is the slope of the chord.]

— 0,

Locus Problems

27. Find the locus of the points of trisection of the chords
of a given parabola which are perpendicular to the trans-
verse axis.

28. A line of constant length moves with its ends on two
fixed lines at right angles to each other. Prove that the
locus of any point on this line (or on the line extended) is
an ellipse.

This fact is used in constructing an instrument, known as
an elliptic compass, for drawing ellipses of different sizes
and shapes. |

29. A line moves with its ends on two indefinite straight
lines at right angles to each other, and its length varies in
such a way that the area of the triangle cut off is constant.
Find the locus of the point of the moving line Whlch divides
1t in a given ratio.
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30. Solve Problem 29 if the two indefinite lines are not
at right angles to each other.

[SucaesTION. Use oblique codrdinates. ]

-81. Two parabolas have the same transverse axis and the
same vertex, but different foci. Find the locus of the middle
point of a line which moves with one end on each parabola
and remains parallel to the transverse axis.

32. Two equal rulers, AB, BC(, are connected by a pivot
at B. The point A is fixed, while the point ¢ moves along
a fixed straight line through A. Find the locus of a fixed
point, P, on BC(.

33. A point, @, moves around an ellipse whose foci are #”’
and #. Find the locus of the center of the circle inscribed
in triangle #" Q#.

[SuceEsTION. This problem may be much simplified by
the use of a little trigonometry. In the triangle # QF, ex-
press by the trigonometric formula the tangents of half the
base angles in terms of the sides, and thus show that the
product of these tangents is constant. From this property,
the locus can be found by analytic geometry. ] |

34. A variable chord, @R, of a fixed ellipse is perpendicu-
lar to the major axis. ¢ is connected by a straight line
with one vertex and R with the other. Find the locus of
the point of intersection of these lines.

36. A point, @, moves around an ellipse. Perpendiculars
are dropped from each vertex on the line connecting @ with
the other vertex. Find the locus of the point of intersection
of the two perpendiculars.

86. A variable circle through the vertices of a fixed hy-
perbola cuts the hyperbola in the points @, @'. Find the
locus of the points P, P’ in which lines through @, @' par-
allel to the conjugate axis meet the circle again.
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37. Find the locus of the middle points of chords of a
parabola which pass through the vertex.

38. Two fixed points, 4 and B, lie within a fixed circle
at equal distances from its center and on the same diameter.
A parabola moves in such a way as always to pass through
the points 4 and B and to have a directrix which is tangent
to the given circle. Find the locus of the focus of this
parabola. |

[SucGESTION. Since the parabola does not, in most of its
positions, have the standard position with regard to any
fixed system of coordinates, we must go back to the defini-
tion of the parabola in order to get its equation. ]



CHAPTER X

PROPERTIES OF CONIC SECTIONS

61. Equations of Tangent at a Point. The equation of the
tangent to the ellipse

y? _
+b2 1

at the point (z,, ;) is found by the method of § 88, or by an
application of the rule of § 39, to be

(D | T %Y 1.

a2 b2

Similarly, the tangent to the hyperbola

2 y2 '
| @2 B
at (2, y1) 18
2 az yblg/ 1;

and the tangent to the parabola
| Y2 = 2 me

at (zg, y1) 18

(3 Yy = m(z + zy).

In case the axis of y is the transverse axis (see § 58), we
have, of course, entirely similar formulse, which need not be
explicitly written down.

In the case of the rectangular hyperbola

axy=~F
(see (4), § 60), the formula for the tangent is found, in the
same way, to be
@ 2y + Yo =2 k.

This last formula applies also to the case of oblique coérdinates, when
the hyperbola is not rectangular. See the closing lines of § 60.

136
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EXERCISES

1. Find the equation of the tangent to the ellipse

2 g
33T 18

at the point (4, 8); at the point whose « coérdinate is 2.

2. Find the tangent to the parabola y? = 8 x at the point
whose y codrdinate is .

8. Find the tangents to the parabola y? = 2 mx
(a) at the vertex;
(b) at the ends of the latus rectum.

4. Find the angle at which the two curves 22 + 2 2= 9
and y? = 4 z intersect, in degrees and fractions of a degree.

5. Find the equations of the tangents at the ends of the
right-hand latus rectum of the hyperbola

?/__
az b2 1.

6. Find the equation of the tangent to the hyperbola
zy = 1 at the point whose « codrdinate is 10.

7. Find the equations of the tangents drawn to the
hyperbola 22 — 2 y2 = 1 from the point (7, 5).

[SuccEsTION. Use the method of § 32.]

8. Find the.equations of the tangents to the parabola
y? = 4z from the point (0, 3). -

9. Two ellipses have the same major axis both in magni-
tude and in position. A line perpendicular to this axis
meets these ellipses in the points P, Q,@,P,. Prove that the
tangents at these points all meet on the transverse axis.

10. State and prove results analogous to that of Problem 9
for the hyperbola and the parabola.
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62. Equations of Tangents in Terms of Their Slopes. From

the shape of the ellipse Y
e ~ |
\ /X

Ay
it is clear that two
tangents can be
drawn to it having

any desired slope, - ©
A. To find the ~
equations of these '

tangents, let wus
call the unknown s
point of contact
of one of them

(zy, ;). In terms of these two unknowns, the tangent may,
by § 61, be written

Fic. 54

or, after transposing and dividing by %é,
o b2 B2
(3 : = — __1x + —-
) @Y1 Y
Since the slope of this line is, by hypothesis, A, we have
b2z
4 A= — A,
4) 2y
so that (3) becomes
2
G y= o+ .
Y1

This would be the desired equation if it were not for the
unknown quantity y; which still appears in it. 1t remains
to find the value of this unknown. For this purpose we
must use the equation

(6) LI =1,
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which expresses the fact that (24, y,) lies on the ellipse. The
two unknowns (@;, ;) may be determined from the two
simultaneous equations (4), (6). Eliminating z; between
them, we find for y, the value |
B2
N=E Vo

which, when substituted in (5), gives
(N ¥ =Ax £ Va2 + b2,

and this is the final formula for the tangent to (1) with slope
A. The double sign is due to the fact, already noted, that
there are two tangents with slope A. Since (7) is in the
form (3), §17, the radical is the intercept of the tangent on
the axis of y. Hence, the plus sign gives the tangent which
passes above the ellipse, the minus sign, the tangent which
passes below. ”

By precisely similar reasoning, which we leave to the
reader, it will be found that the equation of the tangent Wlth
slope A to the hyperbola

2 2
® 2 p=1
18
¢)) Y = Az Va2 — b2,

The expression under the radical sign is positive provided

2
7\2>32-, negative in the opposite case. Hence there is no

tangent which makes with the transverse axis an acute angle,
positive or negative, less than the angle made by the asymp-
totes with the transverse axis ; while there are two tangents,
given by (9), making any larger acute angle than this. The
reader should corroborate this fact by drawing a figure.

In the case of the parabola,

(10) | | y? = 2 maz,
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it turns out that there is always just one tangent with a given
slope, A, not zero, and that this tangent has as its equation
11 | = AT + —
We leave it to the reader to establish this formula.

EXERCISES
1. Establish formule (9) and (11).

2. Find the equations of the tangents to the ellipse
2 22 4+ 3 y2 = 6 whose inclination to the axis of z is 185°.

3. Has the hyperbola 2?2 — »? = 1 any tangents whose in-
clination to the axis of z is 60°? Whose inclination is 30°?
If so, find their equations. |

4. Find the equations of the tangents to the parabola
y2 = 4 z which are inclined to the axis of z at angles of 30°
and 120°. Show that these tangents intersect on the direc-
trix.

5. Prove tha,t the line # — 20 y + 27 = 0 is tangent to the
ellipse 224 5 y2 = 9. _

[SvcamsTION. Throw the equation of the line into the
form y = Az + B, thus determining the value of A, and then
compare 3 with the value of the radical in (7).]

6. Is the linez— 2y + 5 =0 tangent to the parabola
yy2=4x2?

63. The Optical Property of the Foci. Suppose that 2P,
with coordinates (a, yl), is any point on the ellipse
(D) + 722 =1,
and -that 7 is the focus (c, 0).

Let us determine the angle from the focal radius #P; to
the tangent, AB, at P, :

2 | +yg:’ 1,
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The slope of Y
FP,is ’

A =21 .

The slope of B

(2) IS v F | O R X
Y
@’y

Hence, by (3),
§ 20, F1a. 55.

tan FP,B = —00(&—0)— @yt — a2  Blow,
[a*(z; — &) — b2, ]y, (% — aPo)yy
. the last reduction being performed by means of the two rela-

tions b2 2 + a?y,% = a2b?,

We get, finally, after canceling the factor cz; — a2,

3) tan FP,B= ..
cyl
This result depends on the value y; but not on the
value of z;. Consequently, if we construct the point £’ on
the ellipse with coordinates (— z;, %), the tangent of the
angle FP,/A’ is also given by the second member of (3).

Hence angle #P,B = angle FP,'A’.

But, by the symmetry of the figure,
angle FP,/A' = angle AP F’.
Combining these last two results, we see that
The tangent drawn at any point of an ellipse makes equal
angles with the focal radii drawn to this point.
The same thing may be put a little differently by saying:
If the focal radii are drawn to any point on an ellipse, the

angles between these lines produced are bisected by the tangent
and normal drawn at the point.
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It is from this important property of the ellipse that the
name jfocus is derived, since rays of light starting from #
and striking a reflecting surface curved in the form of an
arc of an ellipse will be reflected back to #’; so that Z#
appears as a true optical focus.

Since, as we saw in § 59, the parabola may be regarded as
an infinitely long ellipse, that is, as the limit of an ellipse as
one focus moves off to infinity, it fol-
lows that the focal radii of an ellipse
have as their limits the focal radius
drawn to a point, P, of the parabola
and the line drawn through this point
parallel to the transverse axis. These F
two lines must, therefore, make equal
angles with the tangent to the parab-
ola at P. Hence, if rays parallel to
the transverse axis fall on a parabolic F1c. 56
mirror, they will be concentrated at
the focus, #. Conversely, if.a light is placed at the focus
of a parabolic mirror, the rays, after reflection, will all go off
in a direction parallel to the axis of the parabola. It is on
this principle that the use of parabolic reflectors for the head-
lights of locomotives is based.

EXERCISES

1. Prove that the tangent and normal to a hyperbola at
any point bisect the angles between the focal radii drawn to
this point. |

2. Prove directly (that is, without regarding the parabola
as an infinitely long ellipse) that the tangent and normal at
any point of a parabola bisect the angles between the focal
radius to this point and the line through this point parallel
to the transverse axis.
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64. Lengths of Focal Radii. Since, by the definition of
eccentricity, ¢ = ae, the coordinates of the foci of an ellipse

may be written (& ae, 0). The lengths of the focal radii to
the point (z, y,) of the ellipse are, therefore,
(D FP =~ (x;—ae)?+y?

(2) F' Py =~ (2 + ae)® + y.
These expressions can be considerably simplified by using
the fact that 2, lies on the ellipse.

By combining the two formulse ¢= ae and ¢ = a? — 8%, we
find

(3) b% = a?(1 — €?).
Hence, the equation of the ellipse may be written *
2 2
4 r y __=1.
) a? + a?(1 — e2)

Consequently, since (z;, y;) lies on (4), we have
yiP=1A —eH(a® — 2.
Substituting this value in (1) and (2), we find

©)) FP,=Ve2r? — 2aex, + a? = + (ex; — a),
(6) PP, = %2.512 + 2 aex; + a? = * (ex; + ),

where the sign must be determined in each case so that FP;
and #" P, have positive values.

Since, for every position of P, on the ellipse, z; is numeri-
cally less than a, while e is a pObltIVB quantity less than 1,
it follows that ez; is numerically less than a; and conse-
quently, whether z; is positive or negative, ex; + @ is posi-
‘tive, and the upper sign must be used in (6). On the other
hand, ex; —a is, for the same reason, always negative.
Hence, the lower sign must be used in (5). Finally, there-

* This formula is an important one since, as we shall see later in this section,
it is applicable both to the ellipse and to the hyberbola.
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fore, we have the formulse *

In the case of the hyperbola, the work is very similar.
We find, in place of (3), the formula

(8 b?2 = a?(e? — 1),

and, consequently, the equation of the hyberbola is precisely
(4). Equations (1) and (2), and hence also (5) and (6),
require no change. It is merely in the determination of the
signs in these last formule that a change is necessary, since
now e > 1 and z; is numerically greater than a. It will be
seen that the formule are different according as P, is on one

or the other branch of the hyberbola; namely:
If P, is on the right-hand branch,

(9 FP,=ex,—a, FP =cx +a.
If P, is on the left-hand branch,
(10) FP{=a—ex F'P,=—a— ex,.

In the case of the parabola, the formula for the 1ength of
the focal radius to a point P; on the curve is most readily
obtained by noticing that, by the definition of the parabola,

it is equal to the distance from P, to the directrix, z = — %&_
Hence, the formula is
(11) FP, = Z;E + 2.

EXERCISES

1. Establish (11) by using the method used above for the
ellipse.

2. What are the lengths of the focal radii of the ellipse
922 4+ 25 42 = 225
at a point whose z codrdinate is 23 ?

* A simple check on these formule is given by the definition of the ellipse:
FPy+ F'P{=2a.
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3. What are the lengths of the focal radii of the'hyberbola
22— y2=1 at the point (§, —4)? At the point (— 4, §)?

4. Prove that the distance of any point on an equilateral
hyberbola from the center is a mean proportional between
the focal radii drawn to this point.

65. Directrices. Definition and Equations. One end of the

latus rectum of the parabola y? = 2maz is the point (%, m).
The tangent at this point, by (3), § 61, is

my = m(x +%).

This tangent meets the transverse axis in the point (— 272?’—, 0),

that is, precisely where the transverse axis is crossed by the
directrix. This property of the directrix of the parabola
suggests that we use a similar construction for defining the
directrices of the other conics.

DEFINITION. If F is a focus of any conic, and we draw the
tangent at one end of the latus rectum through this focus, a line
perpendicular to the transverse axis at the point where this
tangent meets the transverse azis s called a directrixz of the
conze.

~Since the transverse axis is an axis of symmetry, it clearly
makes no difference which end of the latus rectum we use in
applying this definition. It does, however, make a differ-
ence which focus we use; so that an-ellipse or hyperbola has
two directrices, one corresponding to each focus, while a
parabola has only one.
The tangent

T,

i
to the ellipse or hyperbola meets the transverse axis at the
point (a%/z;, 0). If the point of contact, (2, ¥,), is the end
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of the latus rectum through the focus (ae, 0), we have z;=ae,
and the point where the tangent meets the transverse axis
becomes (a/e, 0). From symmetry, it is clear that the point
where the tangent at the end of the other latus rectum meets
the transverse axis is (— a@/e, 0). Consequently, the equa-
tions of the two directrices of the ellipse or hyperbola are

(1) z=+2

e

It will be seen that the more nearly circular the ellipse,
that is, the smaller e, the farther off do the directrices lie.
- The circle itself clearly has no directrices, since the tangents
at the ends of the latus rectum then become parallel to the
transverse axis.

EXERCISES

Find the equations of the directrices of the following
conics, and draw a figure of the conic to scale in each case,
marking foci and directrices: -

1. 1622 + 25 y? = 400. 4. 1622 — 9 y% = 225.
2. 2224 3y%2=0. 5. 1622 — 9 y2%2 4 225 =0.
8. 2522+ 9 y% = 225.

Find the equations of the conics which have as their foci
and directrices the following points and lines:

6. (+£3,0),z=+6. 8. (0, +4), y==+5.
7. (£8,0), =212 9. (0, +4), y=+83.

10. Prove that the foot of a perpendicular dropped from
a focus of a hyperbola on an asymptote lies on the directrix
corresponding to that focus, and also on the circle described
on the transverse axis of the hyperbola as diameter.

66. A Fundamental Property of Directrices. In the case of
the parabola, the fundamental property of the directrix is
- that every point on the curve is equidistant from the direc-
trix and from the focus.
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Let us, then, compare the distance of a point (z;, y;) on
the ellipse from a focus v
with its distance from the 5

corresponding directrix. .
The distance, #P;, from
the focus (ae, 0) is, by (7), 5 i X
§ 64,
FPl =a — exry.
The distance to the direc-
Fia. 57

o a .
trix £ == 18
e

PM=2—2z = s
e e
Consequently,

FP,
M Poir

= é.

This same formula will, of course, hold on account of the
symmetry of the figure, if we use the other focus and direc-
trix. We leave it for the reader to show that it holds with-
out change in the case of the hyperbola.

If we regard the parabola as having eccentricity 1, as we
have already done in § 59, formula (1) holds also in the case
of the parabola.

Hence, we may say generally :

The distance from a point on any conic to a focus of the
conte divided by its distance from the corresponding directrix
18 equal to the eccentricity of the conze.

67. Boscovich’s Definition of Conics. Resulting Equations.
The property of conics just obtained is often used as a basis
for the following new definition of conics known as

BoscovicH’s DEFINITION. A conic is either a circle or
the locus of a point which moves so that the ratio of its dis-
tance from a fixed point, called the focus, to its distance
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from a fixed line not passing through the focus, called the
directrix, is a constant, called the eccentricity. The conic
is called an ellipse, a parabola, or a hyperbola according as
the eccentricity is less than, equal to, or greater than 1.

It is clear that this definition is equivalent to the defini-
tions we originally adopted. It has the advantage of includ-
ing ‘all the conics, except the circle, under a single point of
‘view, whereas for us they appeared as three distinct kinds
of curves between which only gradually there appeared cer-
tain analogies. . All the properties of conics which we have
found might, of course, be de- v
veloped by starting from this
definition. Instead of this, we M P/
will derive from it two new
formulee.

Let us find the equation of a X
conic referred to a directrix as
axis of y and to the transverse
axis as axis of z. Let # be the
focus corresponding to the di-
rectrix OY, and call its distance Fic. 58
from this directrix m. Then, if
P is the point (2, y) which traces out the curve, and we use
the notation of Figure 58,

MP =2z, FP =~ (z— m)?+ 32

Hence, the equation of the curve is

V(z—m)® + 42
T

=e,

or
(D) (1 — e®H)z?+ y?2 — 2ma + m?2 = 0.

- This is the equation sought.
As a second application, let us find the equation of a conic
in polar codrdinates referred to a focus as origin and to that
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part of the transverse axis which runs from this focus away
from the nearest vertex * as initial line. Then, using the
notation of Figure 58,

FP =r, angle XFP = ¢,
MP = m + r cos ¢.

Hence, the desired equation is

r e,
m + r cos ¢
or |
2 | = om .
(,), 1 —ecosd

It should be understood that every conic except a circle
may be represented by equations (1) and (2).

EXERCISES

1. Obtain equation (1) by starting from the standard
form of
(a) the ellipse,
() the parabola,
(¢) the hyperbola,
and making a suitable transformation of coérdinates.

2. Obtain equation (2) in the case of the parabola by a
transformation of codrdinates.

8. Starting from Boscovich’s definition, find the equation
of the conic of eccentricity 2 which has the line 224+ 3y =6
as directrix and the point (5, 2) as the corresponding focus.

68. Diameters. Any line through the center of an ellipse
or hyperbola is called a diameter of the curve. KEvery
diameter of an ellipse and some diameters of a hyperbola
meet the curve in two points, called the extremities of this

* Or, what amounts to the same thing, away from the nearest directrix.
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diameter, and the distance between these points is called the
length of the diameter.

Since the parabola may be regarded as an infinitely long
ellipse, whose center has receded to infinity along the trans-
verse axis, the lines parallel to the transverse axis of the
parabola are the limiting positions of diameters of the ellipse.
We shall, therefore, define the term diameter in the case of a
parabola to mean the transverse axis or any line parallel to it.

The diameters of conic sections are intimately associated,
as we shall see, with the problem of finding the locus of the
middle points of a set of parallel chords of the conic.

We first suppose that the conic is an ellipse or hyperbola.
Its equation can, by (4), § 64, be written in the form
ay 22 N 32

a? a?(1l— e2)=

If A is the slope of the parallel chords, the equation of any
one of them may be written

(2) Y=+ 8,

and, as B is allowed to vary, this line takes on in succession
the positions of all the parallel chords.

To find the codrdinates of the ends, (z;, ;) and (x4, ¥,),
of the chord, we solve (1) and (2) as simultaneous equa-
tions. Eliminating y between them, we have *

(3) AM2+1—e2)a2+4 2ABx+ B2 —a?(1l — e2)=0.
Consequently, if we denote the middle point of the chord
by (X, YY), we have, by the principle used in § 49,

___—MB
TAZ4 1 — 2

* The coefficient of x2 in this equation can never be zero if (1) is an ellipse.
If (1) is a hyperbola, it is zero when A\ =+Ve2—1=+4 b/a, that is, if the chords
are parallel to one of the asymptotes. Such lines, therefore, meet the curve in
only one point, since (1) is then of the first degree. We have assumed, however,
that we had to deal with chords, that is, with lines meeting the hyperbola in two
points.
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On the other hand, since (X, V") lies on the line (2),
Y=AX+ 8.

Eliminating the auxiliary variable 8 between these two equa-
tions, we find
@ A—e2)z+ Ay =0,
as the equation of the locus. This equation represents a
straight line through the
origin, that is, a diameter
of the conic (1). Hence:

The locus of the middle
points of a set of parallel X
chords of an ellipse or hy-
perbola is a diameter of the
curve, or a part of a di-
ameter. ' | Fra. 59

It is clear from Figures
59—61 that the locus consists, in the case of the ellipse, of so
much of the diameter as is included within the curve; in the

YV

Y

—

Fic. 60 Fia. 61

case of the hyperbola, of the whole diameter, if the chords to
be bisected run across from one branch to the other, and of
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so much of the diameter as is not included between the
branches, if the chords connect points on the same branch.
Since the parabola is the limiting form of an ellipse, it is

clear that the locus of the middle points of a set of its

parallel chords is that part of a diameter which lies on the
concave side of the curve. The equation, if A is the slope
of the chords, will be found to be

5 =",
©)) | y=x
EXERCISES

1. Establish formula (5).
2. Find the equation of the diameter of the elhpse
2224+ 3y2=5
which bisects the chords which are inclined at an anglelof
45° to the axis of z.

- 3. Find the equation of the diameter of the parabola,
y2 = 4z which bisects the chords whose slope is 2.

69. Conjugate Diameters. Let A, be the slope of a diame-
‘ter of the conic (ellipse or hy perbola) represented by equa-
tion (1), §68. The middle points of chords having this
same slope, A, determine, as we saw in § 68, a second diame-
ter, whose slope, as we see from (4), § 68, is
| e2 — 1

®» M=
This second diameter is called the conjugate of the first.
If, now, we determine the slope, A,;, of the diameter conju-
gate to the one with slope A,, we have, by (1),
e2—-1 e2—-1

Aoy T e2—1
so that we come back to the original diameter. The rela-
tion between the two diameters is therefore a reciprocal one
— each is the conjugate of the other.

‘x3 =

Xl - 7\.1,
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The relation between the slopes of two conjugate diame-
- ters, as we see from (1), is

This formula applies equally to the ellipse and hyperbola.
a2 — b2

If the curve is an ellipse, €2 =
2=Vt

, while for a hyperbola,

Hence, for the ellipse,

a,2
b2
© Ahy = — 23
for the hyperbola,
b2

Either from (2) or from (3) and (4) we see that two con-
jugate diameters always lie in different quadrants if the
curve is an ellipse, in the same quadrant if it is a hyperbola.

Moreover, in this latter case the slope ;}:é is seen to be a
a

mean proportional between the slopes of any two conjugate
diameters. Consequently, two conjugate diameters of a
hyperbola are always separated by an asymptote which lies
in the same quadrants with them, and the nearer one diame-
ter lies to the asymptote on one side, the nearer will the
other diameter lie to it on the other. An asymptote, there-

Y

Fiac. 62 Fic. 63

fore, regarded as a diameter, is often spoken of as being its
own conjugate, although, strictly speaking, it has no conju-
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gate, since, as we have seen, lines parallel to an asymptote
meet the curve in only one point. The figures for conjugate
diameters are given on the preceding page.

In what has been said it has been assumed that neither of
the conjugate diameters is parallel to either .co6rdinate axis,
since in that case the slope of one of them would be infinite.
It is clear, however, without any formula, that the trans-
verse and conjugate axes of an ellipse or hyperbola form a
pair of conjugate diameters.

EXERCISES

1 Why are there no such things as con]ugate diameters
in the case of a parabola ?

2. Prove that every pair of conjugate diameters of a circle
are perpendicular to each other; and that no other conic
has more than one pair of perpendicular conjugate dlameters,
namely, the conjugate and transverse axes.

3. Prove that in the case of an equilateral hyperbola the
angle between every pair of conjugate diameters is bisected
by an asymptote.

70. Conjugate Hyperbolas. Two hyperbolas so related to
each other that the transverse axis of each is the conjugate
axis of the other, both in magnitude and in position, are
called conjugate hyperbolas.*

If one hyperbola is given by the equation

22 o2
(D o }%" =1,
the other will, by § 58, be given by the equation
y?
e

* Theve is no such thing as a ‘‘ conjugate hyperbola.”” A hyperbola is simply
a hyperbola, no matter how it is situated with reference to the coordinate axes.
The curve (2) is no more a ‘‘ conjugate hyperbola’’ than the curve (1). Each is
the conjugate of the other,
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or, if we prefer, after changing signs,

22 o2
@ 672—%é.:-.-l.

From the construction for the asymptotes indicated in Fig-
ure 49, it is clear that two conjugate hyperbolas have the
same asymptotes, '
one hyperbola

being acute-an-

gled, the other ob- \
tuse-angled, unless
they are both rec-

tangular. This is O
indicated in Fig-

X
ure 64. / \
Except the

asymptotes, every
diameter meets one F1c. 64

or the other of the

two hyperbolas in two points. No matter whether the line is
regarded as a diameter of one hyperbola or of the other,
these points where it meets one of the hyperbolas are called
the extremities of the diameter, and the distance between
them is called its length. Thus we have extended the con-
ception of the length of a diameter so that it is applicable to
every diameter of a hyperbola except the asymptotes.

A property of conjugate hyperbolas, and one on which
much of the importance of the conception depends, is that
two lines which are conjugate diameters of one hyperbola
are also conjugate diameters of the conjugate hyperbola.
(See Exercise 1.)

Y
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EXERCISES

1. Prove the theorem stated in the last paragraph of this
section. |

2. Prove that zy = k and #y = — k are conjugate hyper-
bolas, both when the codrdinate axes are rectangular and
when they are oblique.

3. Prove that the distance between the foeci is the same
for a hyperbola as for its conjugate.

4. Compare the ratio of the eccentricities of two conju-
gate hyperbolas to the ratio of their transverse axes.

71. Harmonic Division. Any point, ¢,, on the segment
PP, extended divides this segment externally in a certain
ratio. Let us construct . - .
the point ¢, which divides  p Qz pf Q,
PP, internally in the Fic. 65
same ratio. The points |
@, @, are said to divide the segment P, P, harmonically, and
we have the proportion |

PN

P,Q, PQ
1 1v2 2 1%l
& YA X}
This proportion may also be written in the form
P,Q, PQ
9 31 __ T 1%l
< ®L,~ Py,

and consequently, P, P, divide the segment ¢, ¢, harmoni-
cally. Hence '

If two points, @, @, divide a segment, P P,, harmonically,
then conversely, the two points, P, Py, divide the segment Q¢
harmonzcally.

Let us now suppose that the coordinates of P, and P, are
(2 ;) and (@4 ¥,), respectively. The coordinates of ¢y, @,
will be given by formulse (3) and (1)-(2), respectively, of
§ 8. Dividing numerators and denominators of the fractions
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in these formule by m,, we find as the codrdinates of @,

and Qz, if we let pu = ™,

m2
Q | (?’_1;/5”_2_ @1,1%)
1 = =)
Q (xl + pay %&ﬁgg),
: 1+ p 1+ p

Whatever the value of u, positive or negative,* these
formulee give two points dividing the segment PP,
harmonically.

EXERCISES

Answer the following questions on the supposition that
P, P, are the points (— 1, 2), (3, 4):

1. Find two points, both in the first quadrant, which
divide £, P, harmonically.

2. Find two points, both in the second quadrant, which
divide P1P2' harmonically.

8. Prove that the points (— 13, —4), (&, 2%°) divide
PP, harmonically.

4. Find the point which, together with the point (0, 21),
divides PP, | Y
harmonically.

2. Polés and

Polars. Let a '

secant = revolve P

about a point P, @,
!

T~

with coordinates
(zy ¥1)» an d

meet the ellipse

(D—~+y—1

in the points @, Fr1a. 66

.- * Except the values of + 1, which make the denominators zero.
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and @,. On this secant we construct the point P, so that
P and P, divide the segment @, @, harmonically.* We will
find the locus of P, whose coordinates we call (X, ¥).
Since, as we saw in § 71, the points ¢;, ¢, also divide the
segment ;P harmonically, their coordinates may be written

(xl +pX g+ l“'Y), (‘”1 2 G /"Y)
14w 1+ p 1—pw 1—p

where p is an auxiliary variable. By substituting the
coordinates of @, and ¢, in (1) and clearing of fractions, we
get

b3y + pX)?+ a*(yy + n ¥)? = a26%(1 + p)%

b () — pX)? + a®(yy — p ¥ )%= a®b*(1 — p)*
Now subtract one of these equations from the other, getting

4 ub?2, X + 4 paty, Y =4 pa2b?
Canceling out the factor 4 u, we have left an equation in-
volving only the principal variables (X, ¥Y), which we now
replace by (2, y). This equation, which when divided by
a?b? becomes
X,
represents a straight line, which, or some part of which, is
the desired locus.t This straight line (2) is called the
polar of the point P, with regard to the ellipse (1). The
form of the equation (2) is identical with the form of the
equation of the tangent to (1) at the point (z;, y;) (see (1),
§ 61). The difference between the present formula and the
earlier one is, of course, that (z;, ;) is not now a point on
the ellipse.
* This is impossible if P is the center of the ellipse, since every chord through

P is then bisected by P, and there is, of course, no point on the chord extended

which is equally distant from its ends. The center of the ellipse has no polar, as
is also evident from formula (2).

T It is readily seen from the figure that if P, lies outside of the ellipse, the locus
consists of so much of (2) as lies within the ellipse, while if P, lies within the
ellipse, the whole line (2), which will then not meet the ellipse, is the locus.
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On account of the identity of the form of the equation, we
shall define the polar of a point on the ellipse as the tangent
at this point. Formula (2) then gives the polar in all cases.

What has been said in this section concerning the ellipse
can be applied with slight changes to the hyperbola and the
parabola. In this way we find that the polar of the point
(4, y,) with regard to the hyperbola

a2 2

x

(3) ﬁ_%=1
is

T WY 1.
o e
and that the polar of this point with regard to the parabola
() Y2 =2 mzx
s
(6) Y1y = m(z + 213

in each case precisely the same formula we found in § 61 for
the tangent.

In conclusion, we consider the subject of poles; a point
being said to be the pole of a line if the line is its polar.

Suppose, for definiteness, that we are considering poles and
polars with regard to the ellipse (1). Formula (2) shows
us that the polar of a point never passes through the origin,
that is, that a line through the origin has no pole. The
equation of any line not through the origin may be written

Comparing this with (2), we see that it is the polar of (z,. Yy
when and only when (see § 24)

A=% B=2%.

o9
a2 62

Thus the point (a24, $2B), and no other point, has (7) as its
polar; that is, (7) has this point and no other as its pole.



160 PROPERTIES OF CONIC SECTIONS

EXERCISES
1. Establish formule (4) and (6).
2. Find the pole of the line 7Tz — y + 2 = 0 with regard to
(a) the ellipse #? + 2 2 = 3,
(6) the hyperbola 9 22 — 16 y2 = 144,
(¢) the parabola y? =4 .

3. Find the equatlon of the polar of the pomt (2 Y1)
Wlth regard to

(a) the hyperbola zy = £,

(6) the conic (1 —e*)2? 4+ y? — 2 ma + m?2 = 0.

4. Prove that in any conic the polar of a focus is the
corresponding directrix.

73. Properties of Poles and Polars. The most important
property is the following :

If two points, P, and P,, are so situated that P, lies on the
polar of Py, then, conversely, P, lies on the polar of P,.

We will prove this theorem merely in the case of the
ellipse, the proof for the hyperbola or parabola being pre-
cisely similar. The coordinates of P; and P, we call (x4, y,)
and (2, ¥,), respectively. The polars of 2; and P, are

) et T
Lol 1
€ b+ =1

a2
Since, by hypothesis, P, lies on (1),

Y1Ya
=1
This, however, is precisely the relation we need in order to
prove that P lies on (2). Thus our theorem is proved.
A special case of this theorem is that if the polar of P,
meets the conic in £, the tangent at P, passes through 2.
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In other words, tle points where the polar of P2, meets the
conic are precisely the points of contact of tangents drawn
to the conic from v
P,. This gives R
a convenient
way of locating

the polar when L

it meets the

conic, namely, \
& i

by drawing tan-
gents tothe conic
from P; and con-
necting their
points of con- Fic. 67

tact, P,P;. Or,

on the other hand, if we want the pole of a line which cuts
the conic, we get it as the intersasction of the tangents drawn
at the points where the line meets the conic.

EXERCISES

1. Establish the results of this section for the hyperbola
and the parabola.

2. Prove, by applying the results of this section, that if a
secant revolve about a point, &, and tangents are drawn at
the points where it meets a conic, the locus of the point of
intersection of these tangents is the polar of R or some part
of it. 'Which part will it be ?

8. Prove that the polar of .any point on a directrix of a
conic passes through the corresponding focus. See Exer-
cise 4, § T2.

4. A rectangle is circumscribed about an ellipse by draw-
ing tangents at the ends of the major and minor axes. Find
the polars of its vertices.
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PROBLEMS TO CHAPTER X*

1. A chord of a parabola, perpendicular to the transverse
~axis, meets this axis in A4, the tangents at its extremities
meet the axis in B, and the normals at its extremities meet
the axis in C. Prove that the vertex of the parabola lies
halfway between 4 and B; and that AC is equal to the dis-
tance between focus and directrix. What is the middle
point of B(C?

2. Prove that a tangent to a parabola meets the directrix
and the latus rectum produced in points which are equidis-
tant from the focus. |

8. A triangle is formed by the asymptotes of a hyperbola
~and a variable tangent. Prove that the area of this triangle
1s constant.

4. Prove that two equilateral hyperbolas which are so
situated that the axes of one are the asymptotes of the other
intersect at right angles.

5. A first tangent.to a hyperbola meets the asymptotes in
the points A and B; a second tangent meets the asymptotes

in A’ and B’. Prove that the lines AB' and A’'B are
parallel.

6. Tangents are drawn to the parabola y? = 2maz at the
points (2y, y;) and (2, ¥5). Show that the point of inter-
section of these tangents is

QM,%+%>
2m 2

7. Prove that the area of the triangle formed by any
three tangents to a parabola is one half the area of the tri-
angle whose vertices are the points of contact of these
tangents.t .

#* Problems 1-32 may be taken up after the completion of §§ 61-67. The use of
equation (1), § 68 will, however, frequently facilitate the work.

r . . (,“""QZ (92—'_,23 . —_
1 This last area will be found to have the value 4+ : ) 4m2 ) (Ya —y1) .
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8. Establish the correctness of the following construction
for drawing a normal at a point, P, of an equilateral hyper-
bola :

About P as center, draw a circle passing through the
center of the hyperbola. Let & be the point where it cuts
the traverse axis again. Then PR is the desired normal.

9. Given a hyperbola, the tangents at its vertices, and
any third tangent.” On the part of this last tangent inter-
cepted between the first two, as diameter, a circle is desecribed.
Prove that this circle passes through the foci of the hyper-
bola.

10. Tangents are drawn to an ellipse from a point on the
conjugate axis whose distance from the center is equal to the
semi-major axis. Determine the points at which these
tangents touch the ellipse.

Ans. The ends of the latera recta.

11. Show that the line

| §+%=1
is tangent to the evllipse
ﬁ+%=1
when, and only when,
g+g=L

12. Obtain results similar to those of Problem 11 for the
hyperbola and the parabola.

13. A rectangle is inscribed in an ellipse with sides parallel
to the axes of the ellipse. A second ellipse is inscribed in
this rectangle with axes along the axes of the first ellipse.
Prove that a line connecting ends of the major and minor
axes of the first ellipse is tangent to the second.
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14. Deduce the results of § 62 by expressing the fact that

the line y =Xz + B is to meet the conic at two coincident
points.

15. Prove that an ellipse and a hyperbola having the
same foci (confocal conics) intersect at right angles.

[SuceeEsTION. Use the result of § 63.]

16. By allowing one of the two foci to recede to infinity,
obtain, as a limiting case of Problem 15, a theorem concern-
ing parabolas.

17. Prove the theorem of Problem 16 directly, without
the use of limits.

18. A perpendicular is dropped from a focus, #, of an
ellipse or hyperbola on a tangent. Prove that this line, the
directrix corresponding to the focus #, and the line connect-
ing the center with the point of contact of the tangent meet
in a point.

19. What is the theorem for the parabola corresponding
to Problem 18? Prove this theorem without regarding the
parabola as the limit of an ellipse or hyperbola.

20. Through a point, P, on an ellipse a line is drawn
parallel to the minor axis, meeting the major axis in D and
the tangent at the end of the latus rectum in #. Prove that
DUF is equal to the focal radius to P.

In order that this theorem be correct, from which focus
must the radius be drawn, and which end of which latus
rectum must be used ?

21. At a point, D, on the major axis of an ellipse a per-
pendicular is erected, meeting the ellipse in P and the circle
described on the major axis of the ellipse as diameter in Q.
Prove that the distance from the focus to P is equal to the
distance from the focus to the tangent to the circle at @.

Which focus must be used here?
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22. Find the equation of a parabola referred to the tangents
at the ends of the latus rectum as codrdinate axes.

23. Show that the equation of a parabola referred to any
point on the curve as origin, the tangent at this point as axis
of », and the line parallel to the transverse axis as axis of z is

Y2 = 2 my,
where m, is twice the distance of the focus from the origin.

24. At what points of the ellipse, hyperbola, and parabola
is the tangent equally inclined to the axes?

25. KFind the equations of the common tangents of the
ellipses
Y 22 yz
Q‘S“""g‘—la 1b+ 17

and check your results by drawing a figure.
[ SucGEsTION. Use the formula of § 62.]

26. Find the equation of the common tangents of the
curves '
8%+ 49?2 =12, y?=4z.

27. Prove that the circle described on a focal radius of an
ellipse or hyperbola as diameter is tangent to the circle de-
scribed on the transverse axis as diameter.

28. State and prove the theorem for the parabola which
corresponds to Problem 27.

29. A number of ellipses or hyperbolas have the same
transverse axis both in magnitude and in position. At the
upper end of the right-hand latus rectum of each a tangent
is drawn. Prove that these tangents all pass through a
point.

How must this statement be modified if the curves are
partly ellipses and partly hyperbolas?

80. Show that from some points on the axis of a parabola
three normals can be drawn to the parabola, and from some
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only one. Describe accurately the positions of the points ot
the first kind and of those of the second.

31. If 2¢ is the distance between the foeci of an ellipse and
e the eccentricity, prove that from a point on the transverse
axis at a distance from the center greater than ce only one
normal can be drawn to the ellipse. How many normals
can be drawn from other points on the transverse axis?
From points on the conjugate axis?

32. Two parabolas of the same size have the same trans-
verse axis and face in the same direction. From a point, P,
on one of them tangents are drawn to the other touching it
in P; and P,. Prove that as P moves along the first parab-
ola, the area of the triangle PP, P, does not change.

[SuccEsTION. Use the formula of Problem 6. ]

Conjugate Diameters

33. Prove that if (2, y,) is an extremity of a diameter of
the ellipse

Y _
+ % 1,
the equation of the conjugate diameter is
Yy _
gt
and one of its ends is
<_ Yy éﬁ)
b a

34. Prove that if (2, ;) is an extremity of a diameter of
the hyperbola,

_a? Iz
the equation of the conjugate diameter is

T _YY_ o
a? b2 ’
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and one of its ends is

(%6_%)
b’ a)

The proof should be made to cover both the case in which
(2, y1) lies on the hyperbola itself, and that in which it lies
on the conjugate hyperbola.

35. What interpretation can you give to the similarity
between the equations for the conjugate diameter found in
Problems 33, 34 and the ordinary formule for the tangents?

36. If 2 a, is the length of the diameter through the point
(4, y;) on the ellipse of eccentricity e, and 26, the length
of the conjugate diameter, prove that

2 __ 72 2., 2 2__ 2 2., 2
a2 =b% 4 e%x 2, b2=a ez,

87. Hence, prove that in an ellipse, the sum of the squares
of any two conjugate diameters is equal to the sum of the
squares of the major and minor axes; and that the product
of the focal radii drawn to any point on the ellipse is equal
to the square of the semi-diameter conjugate to the diameter
through that point.

38. State and prove properties of the hyperbola analo-
gous to those stated in Problems 36, 37 for the ellipse.

'89. Prove that if two lines are conjugate diameters of a
hyperbola, they are also conjugate diameters of every hyper-
bola which has the same asymptotes as the first.

40. How must two ellipses be related in order that every
pair of conjugate diameters of one should also be conjugate
diameters of the other ?

41. Two lines connecting a point on a conic with the ends
of a diameter are called supplemental chords. Prove that
such chords are always parallel to a pair of conjugate di-
ameters.
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42. In an ellipse which is not a circle, prove that the only
pair of equal conjugate diameters are the diagonals of the

rectangle formed by tangents at the ends of the major and
minor axes.

43. Prove that, in an equilateral hyperbola, focal chords
parallel to conjugate diameters are equal.

44. Parallelograms are circumscribed about an ellipse by
drawing tangents at the ends of pairs of conjugate diameters.
Prove that all these parallelograms have the same area.

45. Prove that the diagonals of any parallelogram formed
as in Problem 44 are themselves conjugate diameters.

46. If a parallelogram is formed by drawing tangents to
a hyperbola and its conjugate, respectively, at the ends of
two conjugate diameters, prove that the diagonals of this
parallelogram are the asymptotes of the hyperbola.

47. Prove that, for a given hyperbola, all parallelograms
formed as in Problem 46 have the same area.

48. If 2a, and 24, are the lengths of a pair of conjugate
diameters of an ellipse or hyperbola, show that the equation
of the curve, referred to these lines as codrdinate axes, is

2 2
LY 1.

a2 b2
49. If @ is the acute angle between a focal radius of an
ellipse or hyperbola and the tangent at its extremity, /P,

prove that sin 6 =ﬁb—, where 26 is the conjugate axis of the
1
conic, and 26, the length of the diameter conjugate to the

diameter through ;.

50. From the result of Problem 49, deduce formule for
the distances from the foci to the tangent to an ellipse or
hyberbola at the point (xy, y;). |

Hence, prove that the semi-conjugate axis is a mean pro-
portional between these distances.
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61. Prove that if a parallelogram is inscribed in an ellipse,
its sides are parallel to conjugate diameters.

Is the same thing true for parallelograms circumsecribed
about an ellipse ?

52. Two focal chords revolve about a focus, always re-
maining parallel to conjugate diameters. Prove that the
sum of their lengths is constant.

[SuceesTION. Use the polar equation of the conic re-
ferred to the focus as pole. ] |

53. An ellipse is drawn on paper. Devise a method for
constructing by means of ruler and compass (a) the center,
(b) the axes, (¢) the foci, (d) the directrices.

64. Solve the same problem for the hyperbola and the
~ parabola, constructing, in the case of the hyperbola, the
asymptotes in addition to what is asked for in Problem 53.

55. An arc of a conic is drawn on paper. Devise a con-
struction for determining whether the arc belongs to an
ellipse, to a hyperbola, or to a parabola.

Poles and Polars

656. Prove that the tangent to a parabola parallel to a line
ARB lies halfway between this line and its pole with regard
to the parabola.

57. From a point, P, a perpendicular is droppcd on its
polar with regard to an ellipse or hyperbola. This perpen-
dicular meets the transverse axis in 4 and the conjugate
axis in B. Prove that PA: PB = b%: a2

State the special case in which P lies on the curve.

58. Prove that the polars of all points on a diameter of
an ellipse or hyperbola are parallel to the conjugate diameter.

What can you say about the polars of points on a diameter
of a parabola ?

69. Prove that the polar of a point, P, with regard to a
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circle with center O is perpendicular to the line OP, and cuts
it in the point, @, situated on the same side of O as P and so
that the radius of the circle is the mean proportional between

OP and 0Q.

60. Show that the equation of the polar of the point
(%, y,) with regard to the curve represented by equation
(1), § 39 is given by equation (5) of that section. |

61. Prove that the polars of a point with regard to two

conjugate hyperbolas are parallel, and that the center of the
hyperbolas lies halfway between them.

62. Two rectangular hyperbolas are so situated that the
axes of one are the asymptotes of the other. Prove that
- the polars of a point with regard to these hyperbolas are
perpendicular to each other.

Obtain, as a special case, the result in Problem 4.

63. Prove that a focal chord of a conic is perpendicular
to the line joining its pole to the focus.

64. Prove that the polar of a point on a hyperbola with
regard to the conjugate hyperbola is tangent to the first
curve. What is the point of contact of this tangent ?

65. Show that the result stated in Problem 64 remains
correct if the polar is taken, not with regard to the conju-
gate hyperbola, but with regard to an ellipse which has the
same transverse and conjugate axes as the original hyperbola,
both in magnitude and position.

Locus Problems

66. Two tangents to a fixed ellipse move in such a way
that they always remain at right angles to each other. Find
the locus of their point of intersection.

[SuacEesTiON. Use as auxiliary variable the slope, A, of
one of the tangents. It will be found that A may be elim-
inated by simply adding the two equations which express
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the fact that the pomt lies on the two tangents, after they
have been cleared of fractions and of radicals. ]

67. Solve Problem 66 if the ellipse is replaced by a parabola.

68. Find the locus of the foot of a perpendicular dropped
from a focus of an ellipse or hyperbola on a moving tangent.

69. Solve Problem 68 if the curve is a parabola.

70. Find the locus of the point of intersection of two per:

pendicular lines, one tangent to one ellipse and the other to
a confocal ellipse.

71. Solve Problem 70 if one or both of the curves are
hyperbolas, the two curves being still confocal.

72. State and solve a locus problem similar to Problems
70, 71 in which the curves are parabolas.

73. Find the locus of the middle points of chords which

connect the ends of pairs of conjugate diameters of a fixed
ellipse or hyperbola.

74. To a set of confocal ellipses and hyperbolas, tangents
are drawn from a point on the transverse axis. Find the
locus of their points of contact. Ans. A circle. .

76. Two fixed ellipses have axes lying along the same
lines. A moving line is tangent to one of them. Find the
locus of its pole with regard to the other.

76. A parabola starts from a certain initial position and
moves, without changing its size or the direction of its trans-
verse axis, so that its vertex describes the original curve.
Tangents are drawn to the moving parabola from the vertex
of the initial parabola. Find the locus of their points of
contact. Ans. Two parabolas.

77. A parallelogram circumscribed about a fixed ellipse
moves so that one of its vertices traces out a directrix.
Find the locus of each of the other vertices.

Ans. The other directrix, and the circle on the major axis
of the ellipse as diameter.



'CHAPTER XI

THE GENERAL EQUATION OF THE SECOND DEGREE

74. Certain Simple Cases. We begin with the equation
(D) Aa?+ Cy?2 + F =0, |
and, first, assume that none of its coefficients are zero. It
may, then, be written
22 y?
FTF

A ¢

If the two denominators here are positive, we have an
ellipse whose transverse axis lies along the axis of x or the
axis of y according to the relative magnitudes of the denomi-
nators. If one denominator is positive, the other negative,
we have a hyperbola whose transverse axis lies along the
axis of x or the axis of y according as the first or the second
denominator is positive. If both denominators are negative,
there is no locus, since the left-hand side of the equation is
negative or zero, the right-hand side positive.

‘Turning, now, to the case in which #= 0 while neither
A nor ( is zero, it is clear that equation (1) has a single
point (the origin) as its locus if 4 and ( have the same sign,
while, if 4 and ¢ have opposite signs, the equation breaks
up into two of the form |

= 1.

ar + by =0, ar— by =0,
and, therefore, represents two straight lines intersecting at
the origin and so situated that the coordinate axes bisect
the angles between them. |
If A= 0 but Cis not zero, (1) may be written

7

2=____,
4 o’
172
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and, hence, has no locus if # and ( have the same sign;
while, if # and (' have opposite signs, it represents the two

lines parallel to the axis of z: y= =+ —-%- If =0, it

represents a single line, namely, the axis of z.

Similar statements evidently apply if (= 0 while 4 is not
Zero. |

The case 4 = =0 need not be considered, since we are
concerned with equations of the second degree only.

Summarizing, we may say

AC>0, AF <0, Ellipse.

AC>0, AF >0, No Locus (imaginary ellipse).

AC <O, Fz 0, Hyperbola.

AC>0, F=0, Point (null ellipse).

AC< 0, F=0, Intersecting Lines.

AC=0,(A+C)F>0, No Locus (imaginary parallel
lines).

AC=0, (A+ (C)F <0, Parallel Lines.

AC=0, F=0, One Line.

Besides the equation (1), we mention also equations of
the forms ’ |

&) Cy2+ Dx =0,
(3) Aa?+ Ky =0,
where we may assume that 0 and & are not zero, as other-
wise the equation would come under the form (1), and also
that neither A nor (' is zero, as otherwise the equation would

not be of the second degree. Under these circumstances, it
is clear that (3) and (4) represent parabolas.

75. The Equation Without the xy-Term. In the equation
(D Ax? 4 Cy2+ Dx+ By + F= 0

we assume, first, that neither 4 nor ( is zero. The equa-
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tion may, then, be written
A(x2+§x >+ 0<y2+%y >=-—F.

We now complete the squares in each of these parentheses,
and get

D \2 BN\ D2 B2
il =\ = /.
Awsz)+0<y+20 +-

T4AAQ

Let us make the transformation of coordinates
N R /)
TEEtoy YTV T o0

that is, shift the axes without turning until the origin comes
to the point
D v
9 v &)
<> (~54" ~30)
Equation (1) then becomes
4 ACF — CD?— AK?
12 4 (2 —
AeT+ G TAC

This equation is of the form (1), § 74. Hence we see
that if neither A nor C is zero, equation (1), if it has any
locus, represents either an ellipse, a hyperbola, a single point, !
or two intersecting straight lines; the center of the ellipse
or hyperbola, the position of the single point, or the point of
intersection of the lines being the point (2).

This method of completing the square applies also to the
case in which the a?-term is wanting (4 =0) provided the
z-term is also wanting (D = 0), since then we need merely
to complete the square for the y-terms. Similarly, if
C = F =0, we need merely to complete the square for the
z-terms. In both of these cases, by a mere shifting of the
codrdinate axes, we reduce equation (1) to the form of equa-
tion (1), § 74, where, however, either 4 or (' is zero.

There remain, then, only two cases of equation (1) to be
considered, namely, that in which 4 =0, D0, and that

0.
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in which ¢=0, £+ 0. In the first case, by completing the
square for the y-terms, we reduce equation (1) to the form

C’<y+§%>2+ D<x+40F"E2>=o.

4 OD
If we now make the transformation of coordinates
41 CF — K2 Y
r I —
v=r+—yop YTV e
that is, if without turning the axes, we take as new origin
4 OF — K2 F
3 - s T o)
) ( 40D 2 0')
‘the equation becomes '
Cy'? + Dx' = 0,

which is of the form (2), § 74. Consequently, (1), in this
case, represents a parabola whose vertex is at the point (3)
and whose transverse axis is parallel to the axis of .

Similarly, if ¢'=0, F=0, we reduce (1) to

Az?+ Fy' = 0,

which, again, represents a parabola.

Thus, we can easily, in every case, determine not merely
what kind of a locus (1) has, but exactly how it is situated.

EXERCISES

Determine what curves are represented by the following
equations, drawing a figure to scale in each case which shows
not only the size and shape of the curve but also its position
with reference to the original codrdinate axes :

1. 4224+ 942—162+18y— 11=0.
2 —4y2—62x+8y+9=0.
2224+42x+4+383y—4=0. |

2224+ 5y2°+3x+y+2=0.

1222 —-18y2—-122—- 24y —56=0.
2245y +32x—3y=0.

322 —2—2=0.

Noo s W
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76. The General Equation. We come, now, to the general
equation of the second degree |

D Ax?+ Bxy + Oy?2+ Dz + Ey + F=0.
We assume that B0, as otherwise we should have the
~equation of § 75, and we wish to prove that by turning the
axes through a suitable angle we can get rid of the zy-term.
If we turn the axes through an angle € by means of for-
mule (1), § 44, equation (1) becomes
A(Z cos 0 — y' sin 8)2
+ B(2' cos 8 — y' sin €) (2’ sin 0 + y' cos 6)
+ C(2' sin & 4 3’ cos 0)2 »
4+ D(@' cos 0 — gy sin )+ F(2' sin 6 + y' cos 0) + F =0,
or, expanded, ,
Acos?0|2'2—2AsinBcos 0|2y + Asin?2 @ | y'2
+ B sin 6 cos 6 + B cos? 0 — B sin 0 cos 6
4+ (O'sin%2 0 — Bsin26 + CcosZ 0
+ 2 (O'sin 6 cos 6

2 +Dcosb |2 —Dsinb |y + F=0.
g + K sin 6 + # cos 0
We wish to choose @ so that the coefficient of z'y’ in this
equation shall be zero. This coefficient may be more simply
expressed in terms of 2 6, and we thus get for determining
the angle € the equation
(C—A)sin260 4 Bcos20=0,

A—C.

or

| (3) ctn 2 0=

There are an infinite number of values of € which satisfy
this equation, but a single one of them is all we require.
There is evidently just one value of 2 € between 0° and 180°
which satisfies (38), and, hence, just one value of € between
0° and 90°. This positive acute angle we call 6,

If we turn the axes through this angle 6, equation (1)
reduces to the equation of § 75, and we can determine its
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locus by the method of that section. Referring to the results
of §§ 74, 75, we see that

An equation of the second degree either has no locus, or <t
represents an ellipse, a hyperbola, a parabola, two straight lines,
one straight line, or a single point.

This same result holds true if the codrdinate axes are oblique, since
the degree of the equation is not changed if we transform to a system of
rectangular coordinates.

EXERCISES
Determine the curves represented by the following equa-
tions, and draw a figure in each case, as in the Exercises

to § 7o.
522422y +5y2—122—12y =0.

22— 22y + y2—8x+ 16 =0.
522 —daey+y —4ax+2y+2=0.
4. 22+4day+y:—ax—y+4=0.

WP

77. The Invariants. If we turn the codrdinate axes
through an angle 6, the equation (1), § 76, takes the form
(D A2+ Blay+ C'y?2 + D'+ Ky + F' =0,
where, as we see from (2), § 76,

A’ A cos2 0+ B sin 6 cos 0 4+ C sin2 0,
=(C—A)sin20+ B cos280,
2 | O” A sin2 § — B sin 0 cos 6 + O cos? 6,
D'= D cos 0 + FE sin 6,
V' =— D sin € + K cos 0,
| £ =F.

On the other hand, if we shift the coodrdinate axes to the
new origin (#, y,) without turning, the equation takes the
form (1) where |
(A’ =A, B =B, ('=C,

D' =2 Azxy+ By,+ D,
| B' = Bay+ 2 Cy, + E,
|\ F' = Az 2+ By, + Cy 2 + Dxy+ Ky, + F.

(3)
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Thus, while shifting the axes does not change 4, B, or C,
and turning them does not change #, a general transforma-
tion of coordinates will change all the coefficients of the
equation. There are, however, certain combinations of the
coefficients whose values are not changed by any transfor-
mation of coordinates. Such combinations of coefficients
are called envariants.

The simplest of these is

€D ®@=A+C.
That this is not changed when we shift the axes without
turning is evident, since, from (8), neither A nor (' is then

changed. On the other hand, when we turn the axes, we
have, by (2),
A +0C"' =4+ C.
Consequently, since the value of ® is not changed either by
a shifting or by a turning of the axes, it is not changed by
the most general transformation to a new system of rectan-
gular coordinates.
A second important invariant is

(5 b=PB2—-4AC.

The value of ® is obviously unchanged by a shifting of the
axes, since this leaves the values of A, B, and (' unchanged.
It remains to show that ® is unchanged when we turn the
axes through any angle 6. For this purpose, we write,
from (2), o

(6) A — C'=(A—C) cos 20+ Bsin 26.

Squaring this and adding it to the value of B’2 from (2),

we find |
(A — 024 B'2= (A— C)2+ B2

Finally, subtracting from this the equation
(A" + 02 = (A + )2,
which we know is true since ® is an invariant, we find

B2 _4 4'C"=B2—4 AC.
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A third invariant is *
(D A=4 ACF+~ BDE — A.-F2—-C.D*—F.B.

We first prove that the value of A is not changed by turn-
ing the axes about the origin through any angle 6. For
this purpose, we rearrange the terms of A as follows:

A=— (B*—4 AC)F— (A + O)(E*+ D%
+ BDE — y\(A — CO) (B2 — D?).

Since, by (2),
F'=F, H?+ D?2=FE?+ D2

and since, as we have seen, B2—4 AC and A + C are inva-
riants, neither of the first two terms in the last written ex-
pression for A are changed when we turn the coodrdinate
axes. It remains, then, to show that the aggregate of the
last two terms is not changed. For this purpose, we first
deduce from (2) the relations

D'E' = DE cos 2 0 + 3(B*— D?) sin 24,
1(E'? — D'?) = }(E?— D?) cos 20 — DE sin 2 0.

Using these values, the value of B’ from (2), and the value
of A" — ' from (6), we easily obtain the formula

B'D'E'—1(A'— C")(E"”— D?=BDE — }(A— C)(E2— D?).

This completes the proof that the value of A is not changed
by turning the axes.

In shifting the axes, we may suppose Yo =0 in formule
(3), since the axes may first be turned so that the shifting
we wish to perform is in the direction of the axis of =z, and,
after the shifting, turned back to the original directions.

* In the notation of determinants we may write

24 B D
B 2C K|
D E 2F

A=}
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Then, using (3), we find
4 A'C'F'+ B DE' —A' . E?—-C'.D'2—F'. B"?
=(4 AC — B?)(Az 2+ Dz, + F)
+ B2 Azxy+ D) (Bxy+ E) — A(Bzy + H)?
— (2 Axy + D)%,

from which all the terms in z, and 2 cancel out, leaving
precisely the value of A. Thus the invariance of A is com-
pletely established.

78. Use of Invariants to Determine Nature of Curve. In
§§ 75, 76, we found that every equation of the second degree
can be reduced by a transformation of coérdinates to one of
the three forms (1), (2), (3), § 74. Moreover, the last of
these forms obviously reduces to the next to the last by
a rotation of the axes through 90°. Hence, any equation
of the second degree,

(D Ax? + Bzxy + Cy?+ Dx+ By + F =0,

can be reduced to one or the other of the two forms

(2) A'z?2+ Cy?2+ F' = 0. _

3) C"y2 + D'e=0. (C"+%0, D"+0.)

If (1) can be reduced to the form (3), we see, on account
of the invariance of ® and A, that

€)) D=0, A=—0"D"?2£0.
On the other hand, if (1) can be reduced to the form (2),
K6 OP=—4A4A'0, A=4A4"C'F =—DF.

Hence, (1) can be reduced to the form (3) when, and only
when, ® is zero but A is not. Kquation (3) represents a
parabola, while (2) never does. Consequently

FEguation (1) represents a parabola when, and only when,

D=0, A=+0.

Consider, next, the case ® > 0. Since we cannot now
reduce to the form (3), it must be possible to reduce to the
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form (2), and we see by (5) that 4’ and ¢’ have opposite
signs ; and also that #” is zero when, and only when, A = 0.
A reference to the summary in § 74 enables us to infer that

Fauation (1) represents a hyperbola 1f & >0, Az 0; two
intersecting lines ¢of € >0, A=0.

In both cases we may say that the locus of (1) belongs to the
hyperbolic type, since two intersecting lines are the limit of a
hyperbola as the transverse and conjugate axes both approach
zero while retaining a constant ratio; the curve fitting more
and more closely into the angle between its asymptotes.

If ® <0, A’ and (" have the same sign, and we may say that
our curve is of the elliptic type, since, by the summary of § 74,
it may be described as an ellipse real, null, or imaginary.
Here, as before, #' is zero when, and only when, A =0, and
this is the case of the null ellipse. If A == 0, we have an imagi-
nary or a real ellipse according as #' has the same sign as 4’
and O’ or the opposite sign; that is, by (5), according as
® = A" + C'" and A have the same or opposite signs. Hence

If ® < 0, we have an ellipse if OA < 0, a point (null ellipse)
if A =0, no locus (an imaginary ellipse) if @A > 0.

There remains only the case ® =A = 0 to consider. Here,
too, since we cannot reduce to the form (3), it must be pos-
sible to reduce to the form (2), and we see from (5) that
either A’ or (' is equal to zero. By the summary in § 74, the
equation either has no locus or represents two parallel lines,
or a single line: we may say, for brevity, two parallel lines
real, coincident, or imaginary. We will designate all these
cases, along with the parabola, as curves of the parabolic type.*

* These curves may readily be obtained as the limits of parabolas. Thus, if

m approaches zero, the parabola

Y2 =2mx -+ ¢
approaches the two parallel lines y¥2 = ¢, which are real or imaginary according
as ¢ is positive or negative. The parabola

Y2 = 2mz +Vm
approaches the single line ¥2 = 0. The reader should consider carefully the geo-
metrical figures corresponding to these equations.
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We may summarize as follows:
I. ® <0, Elliptic Type.

(a) ®A <0, Ellipse.
() ®A >0, No Locus (imaginary ellipse).
(e) A=0, Point (null ellipse).

II. ® > 0, Hyperbolic Type.
(a) A== 0, Hyperbola.
() A=0, Two Intersecting Lines.

ITI. & = 0, Parabolic Type.
(a) A=0, Parabola.
() A=0, Two Parallel Lines (real and distinct,

real and coincident, or imaginary).

It is not possible to distinguish between the three cases in-
cluded under the last item, I1I1 (6), of this summary by the
use of the values of ®, ®, A alone.* Owur failure to dis-
tinguish between these cases is not of much practical impor-
tance, since, in all cases III (b), the first member of (1) can
be factored into two real or imaginary factors of the first
degree, and the actual determination of these factors usually
presents no difficulty. See Example 2, § 80. |

EXERCISES

Determine, by the use of the invariants, the nature of the
curves represented by the following equations. In Case 111
(b) distinguish between the different subcases by factoring :

1. 24+ dzy+342+22—8y+1=0.

4 22 + 12xy+9y2~x+29—3=0.
522+ 102y + 1042+ 82+ 2y + 5= 0.
Sa?2+14dz2y +842+10y — 3 =0.

2622 — 102y + 92+ 652 — 13 y + 36 = 0.
S22 —4day+5y2+T2z—y=0.

o n e

¥ See, however, Problem 8 at the end of this chapter.
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7. 422 +4zy+ y?2+8x+4y+13=0.

8. 922 —1Tzy— 242+ 3T2x+ 21y —40=0.
9. 222—-82y+2y2+2z—y+1=0.

10. 22— 6z2y +9y2+42x—-12y+4=0.

79. Improved Method of Transforming Coordinates. If, as
isusually the case, we wish to determine the exact position with
regard to the coordinate axes of the curve represented by an
equation of the second degree, we must actually determine
the transformation of codrdinates which reduces the equation
to one of the standard forms. If the equation contains no
zy-term, the method of § 75 is as good as any. If there is
such a term, the method of § 76 may be somewhat improved.

- Consider, first, the case ® = 0. After turning the axes
through any angle, 6, we have B'?2—-4 A4'C' =0. Conse-
quently, if we choose € so that A’ = 0, we also have B = 0.
The equation for determining 6 is, then (see formula (2),

§77),
A cos2 0+ Bsin 0 cos 0 + (' sin2 6 = 0,

or,* replacing (' by its value A
dividing by sin? 6, |
4 A% ctn? 0 +4 AB ctn 6 4+ B2=0.

Since its first member is a perfect square, this equation re-
duces to

W ctn 0 = —5%.

, clearing of fractions, and

It is from (1) that the angle 6 is to be determined. The
equation then becomes

Oly’2+ _D’z/ + E/y’ + F= O’
and the further reduction may be effected as in § 75.
In the case ® == 0 it is better not to turn the axes first and

*We assume that 4 =0, as otherwise B would be zero, and no turning would
be necessary.
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then shift, as we did in § 76, but to reverse the order of these
processes, and first shift without turning so as to get rid of
the z and y terms.* We see from formule (3), § 77, that
the coordinates (2, y,) of the new origin must be determined
to satisfy the equations

2 Az, + By, + D =0,

) Bay+ 2 Cyy + B = 0.
Solving these equations for (z, y,), we find
20D — BF 2AFK— BD
() 2y = =

B_440 NPT R _440°

and the assumption, ® == 0, which we have made prevents
these denominators from being zero.

This point (z, y,) being taken as origin, our equation
becomes
@ Az?+ Bzxy + Cy?+ F' =0,
where, by (3), § 77,

F'= Ax? + Bryy, + Cy? + Dzxy+ Ly, + F.

The further reduction by turning the axes is effected as
in § 76. It should be noticed that this reduction will not
introduce any z or y terms into equation (4).

If the curve is an ellipse or hyperbola, the point (3) is its
center, since equation (4) represents a curve whose center
is at- the origin, as we see by reducing it to the form (1),
§ 74, by turning the axes.

80. Further Use of the Invariants. In the case ® =0,
A+0 (Case III (a), § 78), the values of the coefficients in
the reduced equation (3), § 78, can be found without going
through the transformation. The values of ®  and A, as
computed from this reduced equation, are

(D O=0" A=— C'D'2=_@D"2,

*The reason is that the coefficients 4, B, C which determine the amount of
turning are not affected by a preliminary shifting, whereas the coefficients which
determine the shifting are affected, and may be much complicated, by a turning.
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Hence, in this case, the reduced equation may be written

Oy? + —%x:O.

Either sign may be used here, since the angle € determined
by equation (1), § 79, may be increased by 180° thus re-
versing the positive direction on the new axis of z.

A similar use of the invariants is not possible in the case
®d = A =0 (Case III (b), § 78), but it has already been seen
that this case is best treated by the method of factoring.

On the other hand, in the cases ® =0 the invariants are
extremely useful. Here, the reduced equation is (2), § 78,
and we have
(2) O=A"+0C, ®D=—4A4'0C, A=4 ACF=—-DF.
Hence, #” may be computed from the formula

A
3 b =—=,
© &
while A’ and ' are to be found from the first two equations
(2). Tt follows that 4’ and ¢’ are the roots of the quadratic
equation :
€) 22— 0@z — 1D =0,

since this is an equation the sum of whose roots is ® and the
product of whose roots is — 1 ®.

Which root of (4) is to be taken as A’ and which as (' is
not at once obvious. To determine this, we refer to formula
(6), § 77, which may be written

A — O=[(A—C)ctn20+ B] sin 2 0.

Since 6 is to be determined from equation (3), § 76, we may
write the last formula

(5 CB(A'— OH=[(A— O)*+ B?] sin 2 6.

- We agreed in § 76 to choose for 6 the positive acute angle
which satisfies equation (3) of that section. Consequently,
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the second factor in the second member of (5) is positive as
well as the first factor. Hence,

B and A’ — C' have the same sign.*

This is just what we need in order to decide which root of
(4) shall be taken as A'.

Example 1. Let us determine the .nature and position of
‘the curve

1822 +T22y+ 52y + T4 —32y—47=0.
We first compute the values |
® =125, & =— 10,000, A =— 1,000,000.

The equation, therefore, belongs to Case I (a) of § 78, and
represents an ellipse. Equation (4) now becomes

22 — 125 24 2500 = 0,

whose roots we find to be Y
100 and 25. Since B is Y.
positive, A’ — €’ is posi-
tive, and hence,
A =100, O = 25.
By formula (3), we have
A
F=——=-—100,
| D
and the reduced equation is
100 22 + 25 y2 — 100 =0,

g |
or 1'+4_ .

Thus we have an ellipse

whose semi-axes are 1
Fic. 68 -
and 2.

* If we used a positive obtuse angle ¢, just the reverse would be true: B and
- A’ — " would have opposite signs.
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We next locate the center of this ellipse by means of
formule (3), § 79 (or equations (2) of that section, if we
prefer), getting

Ty= — 1, Yo = 1.

The angle, 6, through which we must turn the axes is given
by the equation

Whence, we find
0, = 36.87°.

We are now able to construct Figure 68.

Example 2. 222+ 8zy+84y2+32+6y+1=0.

Here ® =0, A = 0, and we have Case 1II (b), that is, two
parallel lines real, coincident, or imaginary. It must be
possible to factor the first member of the equation into two
factors of the first degree, and the coefficients of 2 and y in
these two factors should be the same, since the lines are
parallel. This is in accord with the fact that the first three
terms form a perfect square: |

2224+ 8zy+8y2=(V2zx4+ 2V2y)2
The two factors, therefore, have the form
(\/?2x+ 2V§y+ u)(\/§w+ 2\/§y + B3).

From the constant term, we see that ,8=-1-; from - the
z-term, that * |

\/Q(a—i-%:): 3,

which, when solved, gives a=V —‘Zor 1v/2. Hence, the two
factors are

(V224 2V y +V2) (V2 2+ 2vV3 g + 1VD),
and our locus consists of the two lines
z+ 2y + 1=0,
2z4+4y+1=0,
which may be readily located.
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In such a simple case as this, the factoring could easily
have been done by inspection without the introduction of
radicals, but the method just explained may always be used
if we are unable to detect the factors by inspection.

EXERCISES

Draw an accurate figure for the following curves, indicat-
ing the original codrdinate axes in it :
1. 1122+6zy+3 42 +2+6y=0.
2. 22+ 22y —y?2+8x4+4y—8=0.
3. 222—b5zy+5y—1=0.
4. 2+ 4y +492—-2224+6y—29=0.
5. 2224+ a2y + 2+ T2+ T7=0.
6. 2zy+42—6y+1=0.
7 x2+3xy+y2+x—y~150.

81. Determination of Conics Satisfying Five Conditions.
The method of undetermined constants, which we used in
§ 33 to find the equation of the circle through three given
points, applies, with no essential change, to the problem of
passing a conic through five points.

Example 1. Suppose the points are (5, 0), (3, 4), (4, 3),
0, 5), (— 5, 0). |

After the general equation of the second degree has been
divided by the coefficient of 22, it becomes |

(D 2?2+ bxy + cy? + doe + ey +f = 0.
The coordinates of the five given points are to satisfy this
equation, and we thus get the relations

254+5d —|-f= 0,

941264+ 16c+3d+4e+f=0,

16 +126+9¢+4d+3e+f=0,

25¢+5e+f=0,
20 -5d+f=0.
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From the first and last of these equations, we find d=0,
f=—25. Substituting these values in the three middle
equations, we easily get ¢=1, e=0, 6=0. Hence, the
desired conic is the circle

2 4 g2 — 25 =0,

Instead of dividing the general equation of the second
degree by the coefficient of 2%, we might equally well divide
by any of the other coefficients. There is, however, always
the danger that we may, without knowing it, divide by a
coefficient whose true value is zero, and this is, of course,
impossible. This will show itself by our getting a system
of equations for determining the coefficients which lead to
a contradiction when we try to solve them:.® If this occurs,
we must go back and divide by some other coefficient.

If three or more of the points lie on a straight line, there
will be no conic through them.

The reason we were able to pass the conic through just
five points is that this gives us five equations, which is just
enough to determine the five coeflicients. 1t is possible to
determine the conic in many other ways by imposing on it
five conditions ; for instance, we can attempt to pass a pa-
rabola through four points. We have, then, four equations
exactly like those we used in Example 1, that is, equations
of the first degree for determining the unknown coefficients j
while our fifth equation will be

(2) B4 A0=0.

This last equation being quadratic, we shall expect two an-
swers to our problem. These may, however, be imaginary.

It should be noticed that (2) expresses, not that the curve
is to be a parabola, but merely that it is to be of the parabolic

* This will be illustrated if, in Example 1, we first divide by the coefficient of
the xy-term, and thus write the equation in the form

a'xt4axy +c'y2t-de+ey+f =0.
The reader should attempt to carry the work through in this way.
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type. We shall, then, get among our answers not merely
all parabolas that can be passed through the four points, but
also all pairs of parallel lines; and these latter must be dis-
carded as not being answers to our problem. We take as
an illustration a case which brings out the various difficul-
ties which may arise.

Example 2. Find all parabolas through the points (0, 0)
(1’ 2)’ (1’ — O)’ (4’ 4)'
Writing the equation of the conic in the form (1), we
find as our five equations
J=0,
1+2b6+4c+d+2e+f=0,
1—-2b+4+4c+d—2e+f=0,
164+166+4+16c+4d+4e+f=0,
b2 —4c¢=0.
- We easily find, as the only solution of these equations,
" b=—1l,¢e=1d=—2,e=1,f=0.
Consequently, the only curve of the parabolic type through
the four points whose equation can be written in the form (1)

is
3) P—axy+ 1y — 2+ y =0,
and this curve is readily seen to consist of the parallel lines
r—ry=0, z—3y—2=0.
We infer that there is no parabola of the form (1) which
passes through the four points.
There may, however, be a parabola for which 4 =0, and,

hence, also B=0. In this case, ¢ cannot be zero, and we
can surely divide by C, getting the equation in the form

v:+dx+ey+ f=0.
The fifth equation is now identically satisfied. The other
four can easily be written out and solved; and we find the

parabola
€)) y2—42=0.
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In this case, then, there is only one parabola through the
four given points, though there are two curves of the para-
bolic type, (3) and (4). We should have found these curves
at one stroke if we had divided by ( at the start.

EXERCISES

Find the equations of the conies through each of the fol-
lowing sets of five points:

1. (2, 2), (8, 2), (10, 0), (9 D, 5, — .

2. (0, 0), (0, 1), (1, 0.5), (0.6, 0.9), (— 0.6, 0.1).
3. (0, 3), (1, 6), (—8, 3), (1, 0), (—9, 6).

4. (0,0), (0, 1), (2 2), & 8), (—6, —2).

5. (2,7), (3,4), (4, 8), (—5,0), (—1, —2).

Find all the parabolas through each of the following sets
of four points:

0, 0, (—2,2), (—3, 1), (0, 4).

7. (0, 0), (2, 0), (2, 4), (8, 4).
8. (0,0), (0, 1), (1, 0), (2, 3).
9. (0,0), (1, D, (1, —1), (—1,0).

PROBLEMS TO CHAPTER XI

1. Prove that ® = 0 if the locus of an equation of the
second degree is a rectangular hyperbola or two perpendicu-
1ar lines, and that these are the only curves for which ® = 0.

2. If the equation
A2? 4+ Bzy + Cy? +F 0

represents a hyperbola, prove that the asymptotes are repre-
sented by

- Ax?+ Bry + Cy?2= 0.
What is the equation of the conjugate hyperbola ?
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8. Find the equation of the rectangular hyperbola
through the points

(1, 1), (2, 0), (1, —2), (3, — 3).
[SucGEsTION. Use the result of Problem 1.]

4. Determine all the conics through the points
(0, 1), (3, 3), (4, 4), (0, 5)

which are tangent to the axis of .

5. Determine all the conics through the points

1, 3), (4, 4), 3, 1)

which are tangent to both codrdinate axes.

6. If an equation of the second degree represents a
hyperbola, prove that the equation of the asymptotes may
be obtained by suitably altering the constant term. Express
by means of the invariants the change which must be made
in the constant term.

Find the equation of the conjugate hyperbola.

7. Determine all the hyperbolas which have the lines
x—y +1=0, y=3
as asymptotes and pass through the point (0, 2).
‘[SucaesTION. Use the results of Problem 6.]
8. Assuming that ® = A =0, so that the equation of
the second degree represents two parallel lines, show that
(@) These lines are real and distinct, real and coincident,
or imaginary according as the quantity
D4 B2 —4(A+ O)F
is positive, zero, or negative.
(b) Provided A ==0, the expression in (a) may be re-
placed by D?— 4 AF; and, provided '+ 0, by #2— 4 COF.

[SucGcEsTION. It may be found convenient to use the re-
lation A E?= CD?% If so, this relation should be established. ]
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9. If the equation
Aa? + By + Cy?°+ F =0

represents a hyperbola or an ellipse which is not a circle,
show that the transverse and conjugate axes together are
represented by the equation

Ba? 4 2(C — A)zy — By2 =0.

Locus Problems

10. A chord moves so as to remain parallel to the horizon-
tal diameter of a fixed circle. A first line connects the right-
hand end of the moving chord with the center of the circle;
a second connects the right-hand end of the horizontal
diameter with the middle point of the moving chord. Find
the locus of the point of intersection of these two lines.

11. A family of ellipses and hyperbolas have the same
transverse axis both in magnitude and in position. Find the
locus of the extremities of their latera recta.

12. A line swings around a fixed point and meets two
fixed perpendicular lines in 4 and B. Find the locus of the
middle point of the segment AB.

13. Solve Problem 12 if the two fixed lines are not
assumed to be perpendicular.

14. A moving line, which always retains the same direc-
tion, touches in succession a set of confocal ellipses and
hyperbolas. Find the locus of the point of contact.

15. Two vertices of a triangle of fixed size and shape
move along two perpendicular lines. Show that the locus
of the third vertex is, in general, two ellipses. Consider
special cases.



CHAPTER XII

ELEMENTS OF THE DIFFERENTIAL CALCULUS.
DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

82. Functions. If two quantities are such that when the
first is given the value of the second is thereby determined,
the second quantity is said to depend on the first, or to be a
SJunction of the first.

Thus, for instance, at a given spot on the earth’s surface,
the distance, s, a heavy body falls from rest depends on the
time, ¢, during which it has been falling, and we say: s is a
function of ¢. Or, again, the temperature, %, in a deep mine
depends on the depth, s, below the surface of the earth, and
we say that » is a function of s.

As a third example, consider the parabola

y=4x2.

If (z, y) is a point which traces out this curve, it is clear
that y is a function of =z, since when z is given, y is thereby
determined.

As the first and third of the above examples show, we
frequently have a mathematical formula for expressing the
dependence of the second quantity on the first : in the case
of the falling body s =1 gt%. This is, however, not necessary,
as the second example shows.

If y is a function of z, we write y = f(2), which is to be
read : y equals f of «.

In different problems the symbol f(z) will stand for
different functions. 1If in a single problem several functions
occur, we use different symbols for them, such as f(z), #(x),
¢(x), ¥ (x), etc.

194
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If y =f(2), then by f(3), f(—1), f(a), etc., are meant
the values y takes on when z= 3, —1, a, etc. Thus if

F@=5"1,
then £(8) = 8, £(— 1) =0, f(a) = %:_I% etc.

When we have a function of =z, z itself is called the znde-
pendent vartable. Other letters can, of course, be used for
the independent variable. Thus in the first of the above
illustrations, the time, ¢, is the independent variable ; in the
second, the distance, s.

In conclusion, we note that if we lay off the value of the
independent variable as abscissa, and the corresponding
value of the function as ordinate, the function will be repre-
sented graphically by a curve, called sometimes the graph of
the function.

EXERCISES
1. If f(z) =222+ 8, find £(1), £(0), £(— 10).
2. (=1, find F(3), S F(— D).

3. If ¢(2)=V22+ 1, find $(0), $(1), $(— 3).

4. If F(z)=52—=, find F(a), F(—a). Prove that
F(a)+ F(—a)=0.

5. If f(x)=22%4 3, find f(a + b).

6. If* f(x)=1logux, find £(1), f£(37.42).

7. If f(x)=log z, prove that f(a)+ f(b) =f(ad).

8. If f(2)= 2% prove that f () - f(y) =S (= + ¥).

83. Increments. One frequently has occasion to consider
the change produced in the value of a function by a certain
change in the independent variable. For instance, if at a
depth of 1000 feet in a mine we go down a further distance

* The ordinary, denary, logarithm is meant.
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of 10 feet, by what fraction of a degree will the temperature
be raised ? Such changes are called increments, since the
change is regarded as positive when it is an increase, as
negative when a de-

crease. of

Let y =f(z), and —
suppose that to the 4y
value z; corresponds a7

the value y, = f(z,).
Now give to « the in-
crement* Az. To
the value «;+ Az
thus reached corre- ol =, X
sponds the value
Sz, +Az) of y.
The increment of y, which we denote by Ay, is therefore

(L Ay =f(z; + Az) — f(zy).-

If, here, we replace f(z;) by its value y, and transpose, we
find

(2) Y+ Ay =f(z + AZ).

These two forms, (1) and (2), are equivalent to each
other. Sometimes one and sometimes the other is the more
convenient.

It should be noticed that Ay, which may be computed
from (1), depends not merely on the magnitude of Az but
also on the value, z,, from which we start.

Fic. 69

EXERCISES

1. If f(z)=22+1 and z;=1, find Ay when Az=1;
when Az = 0.1; when Az = 0.01. Ans. 3; 0.21; 0.0201.

- * Read: delta x. The letter A alone has here no meaning. Ax must be re-
garded as a symbol for a single quantity, just hke various other symbols consist-
ing of two characters like ;.
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2. If s=16¢and ¢;=2, find As when A¢=1; when A¢=0.1;
when A¢ = 0.01; and interpret the results for falling bodies.

84. Derivatives. The fundamental conception of thé dif-
ferential calculus* is the derivative of a function, defined, if
we use the notation of § 83, as the limit approached by the

quotient %% as Ax approeiohes zero. If we represent the
function y = f(2) Y

graphically by a

curve, see Figure 70, ‘Pzr;

the quantity Y s / £Y

P
Az AT
seen to be the slope |
yl

of the secant P P,.
If, now, Az ap-
proaches zero, the
point P; remains O] =
fixed, while 27, Fic. 70
moves down the
curve and approaches P; as a limit. Consequently, the
secant P P, approaches as its limit the tangent at P,
(see + § 387), and the slope of the secant approaches the
slope of the tangent. Hence, the slope of the tangent is
given by precisely the quantity which we called above the
derivative. |

The notation we shall use for the derivative is one due to
Cauchy,i D,y, so that §

. (A
D,y =Ilim (__1/ .
. Azx=0 Ax

*The- conceptioné of the differential calculus were developed gradually
throughout the 17th century. They were consolidated into a science and further
developed by Newton (1642-1727) in England and Leibniz (1646-1716) in Germany.

T See also § 38, where 2 and X% are precisely the quantities we now call Az and
Ay.

i A French mathematician, 1789-1857.
§ The symbol Al\;l:ﬁ is to be read : limit as A% approaches zero.
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This notation must, of course, be suitably modified if other
letters are used. Thus, if # is a function of ¢, we should

write
Au
= 1i
Dtu Altg: (At)

85. The Evaluation of Derivatives by the Fundamental
Method. In this section we will show how the derivative
can be actually found in the case of a few simple functions
which we take as illustrations.

Example 1. y =22 Here

.f(xl) = x12’
J(x,+ Ax) = (¢, + Ax)?2 = 22+ 2 2,Ax 4+ (Az)2
Hence, Ay =f(z; + Ax) — f(x)) = 2 z;Az + (Ax)?,
A” — 22, + Az,

hm( )—11n1(2:1:1+Aa9)—-2x1
Ax=0 Axr=0

Hence, the value of the derivative when z has the value z,
is 22,. Inasmuch as z; is any value, we may drop the sub-
script and write

D, x?= 2 x.
Example 2. g=1-
x
fle) =2, floy+As)=—21_,
1 xy 1 ry + Az
1 1 — Az
A = . —— == N
Ay =Floy+A0) o) = = o=

. (Ay —1 -1
lim -—-—) = 11m< —
az=0\Az)  az=0\z,(z; + AZ) xlz
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Hence, dropping subscripts,
1 1
1),(_> 1
z x>
To find the derivative of a function is technically called
to differentiate the function. The method of differentiation
explained in this section shall be called the fundamental

method, and consists simply in a direct application of the
definition of the derivative.

EXERCISES

Differentiate by the fundamental method the following
functions:

1. 28. Ans. 3 22. 5. 3224 1.
2. zt. Ans. 4 2. 6 1
-
3. 22+ 3. Ans. 2. 7. 28— 324 5.
1—=z — 2 1
4. . Ans. ————. .
1+« (1 4 z)? 8. 1—=z

86. Derivatives of x and ¢c. The variable may itself be
regarded as a function of z. Since the curve y=o is a
straight line with slope 1, we have the formula

¢ D, o =1.
A constant, ¢, can also be regarded as a function of z;

and, since y = ¢ is a line parallel to the axis of z, its slope is
at every point zero. Consequently

(2) - D,c=0.

EXERCISES

1. Deduce formule (1) and (2) by the fundamental
method.

2. Use the method of this section to establish the result
of Exercise 3, § 85.
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87. Differentiation of a Constant Times a Function and a
Sum of Functions. The process of differentiation is greatly
facilitated by a few rules, the two simplest of which we shall
obtaln in this section.

- If we know the value of the derivative of a certain func-

tion u = f(x), we can easily find the derivative of y = ¢ f(z).
For let |

Y1 = c¢f (%),
Y+ Ay = cf (2, + Aw),
Ay = cf (xy + Az) — cf (zy) = cAu,

Ay _ A%
Az Ax
lim (é—y->= clim <é—z—l’> =c D, u.
ar=0 \Ax az=0 \Ax |
Thus ‘
¢H) , Dy(cu) = cDsu.

It must be carefully noticed that this formula is correct
only if ¢ is a constant. It does not, for instance, enable us
to differentiate zu or z?u.

- A second important formula is obtained by supposing that
we have two functions

u=f(x), v=¢(x)
which we know how to differentiate, and wish to differen-
tiate their sum y = f(x) + ¢(x). Let

Y1 :f(xl) + p(xy),
Y1 +Ay=f (o, + Ax) + ¢(zy + Az).

Then |
Ay =f (x4 Az) — f(z)) + ¢ (2 + Az) — p(2y) = Au + Av,
Ay _Au  Av | -
Ar Az Az’

azr=0 \Az Aarz=0\AZ

lim <ﬂ> = lim (—A——Qf + lim‘(‘—A—v =D, u+ D,v.
ar=0 \AZ A
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Hence the =formula,
@ Dy(w + v)= D,u + Dyv.

~To get the derivative of the sum of three function_s,
% + v+ w, we may first group » and v together, regarding
(u + v), for the moment, as a single function:

D (u+v+w)y=D,[(u+v)+w].

This, by (2), equals
D(u+)+D,w=D,u+ D,v+ D,w.
Hence
(3) D (u+v+w)y=D,u+ D,v+ D, w.
In the same way, if we have the sum of four functions, we

may write

u+v+w+r=@+v+w)+rr.
This, being the sum of two functions, can be differentiated
by (2), and the result reduced by (3). We can proceed in
the same way with any larger number of functions, and
thus we see that to differentiate the sum of any number of

Sunctions we mneed merely to differentiate each function sepa-
rately and add the results together :

(4:) _Dw(u + v + "')=Dwu + _Dmv + *ece

EXERCISES

In the following Exercises the results of §§ 85, 86, and of
the Exercises in § 85 should be used.
Differentiate, without using the fundamental method :

1. 522 —22% Ans. 102, — 828.

2. 328, —u.
3. 224 a8. Ans. 2z + 3 2.
4. 2*4- x4 3.
5. _‘5:, _%.1"”.
x 14+ 2

6. 5t +208~22 -4+ 2
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88. Differentiation of a Product of Functions. Let

w=Jf(x), v=¢(@)

be two functions. It is required to find the derivative of
their product |
y =S (@) - ().

Yy1=S(2) - ¢(zy),
Y1+ Ay =f(z; + Az) - $(z; + Az),
Ay =f(z,+ Az) - $(z; + Az) — f(=)) - $(zy)-

We write

But
uy =f(2y), vy = p(zy),
uy + Au = f(z; + Az), v, + Av = ¢(2; + Ax).
Hence
Ay = (uy + Au) (vy + Av) — u vy
= %;,Av + v;Au + Aulv,
Ay Av Au Av
Y _ .20 AU, Au2?.
x ulAaz+ le:v + qu
Now as Az approaches zero, both Auw and Aw approach
zero, while A% ana B approach D,u and D, v respectively.
H z Az
ence

. (A
lim (ﬁ): uy D, v + vy D, u.

Az=0

Consequently, dropping subscripts,
(1) Dx(uv)=uDyv + v Dyu.

We next differentiate the product of three factors, y =wuvw.

D, y = D [(uw)w]=uv)D,w+ D,(uv)w.

Hence
(2) D, (uvw) = wv(D,w) + u(D v)w + (D, w)vw.

Again, if we have four factors, y = wovwr,

D,y = D, [ (uvw)r] = (uvw) D, r + D . (uvw)r,
which, by (2), gives us
(3) D, (uvwr)
= ww(D,r) +uww(D,w)r+u(D,v)wr 4+ (D, u)vwr.
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Proceeding in this way, we see that to differentiate the
product of any number of factors we must form a sum of the
same number of terms, each term being obtained from
the original product by differentiating one factor and leaving
all the others unchanged :

(4) Dy(uvw )
= (Det)VW - + U(D )W - + UC(D ) =+ + ®

EXERCISES

Differentiate the following functions by using the Ex-
amples and Exercises in § 85 :

2(1— 2)

. at . 3. T .
1. 2¢(2z+ 3). 152

2. 1_1 11 4. -z
2 x z = z(1 + )

89. Differentiation of u* and x*. If u=f(2), and we wish
to differentiate the function u? we may write y = u-.u, and
then, using (1), § 88, we find

D, w2 =u(D,uw) + (D,u)u=2uD, u.
Similarly, to differentiate u® we write u>=u.u .% and
use (2), § 88:
D,wi=u-u(D,u) +u(Du)u+ (D u)u - uw=3 u2D, u.

In the same way we may regard u*, if » is any positive
integer, as the product of n factors u, and using (4), § 88,
we find

€)) D u”™ =nu" D, u,
a formula which, it should be noticed, has been established
so far only when = is a positive integer. It is obviously
true when n =1, and when n = 0 it reduces to (2), § 86.

In particular, this formula may be applied to the differen-
tiation of z». Here u =2, D,u= D, x=1. Hence

(@ D™ =na 1,
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~ The difference between (2) and (1) is that (2) merely
enables us to differentiate a power of the independent vari-
able, while (1) enables us to differentiate a power of any
funetion of z provided we know how to differentiate the
function itself. =
We can now differentiate any polynomial in z, that is, the
sum of a number of terms each of which is a constant, or
the product of a constant by a positive integral power of z.
Thus |
D,(225—322+42—-1) S
=D,2H+D(—82)+D,(42)+ D, (—1)
=2D.2°5—-3 D, 22+ 4 D,z
=10zt — 6 z + 4.
If we have the product of two or more polynomials, as
(222 —z + 3) (2t + 22— 1),
to differentiate, we may either expand before differentiating,
or we may differentiate without expanding, by means of the

formule of § 88.

EXERCISES
Differentiate the following functions:
z7. Ans. T8 4. 2284+ 22—3 x+ 5.
210, 5. (32%2—2)".
212 4 26 4 2. 6. (2z+1)(z—3).

(2 +3ax— 1)@ — 224 3z + 2).
Bxz— 22522+ 2 — 1)

e B ol A .

90. Differentiation of Implicit Algebraic Functions. The
great majority of functions of z which occur in analytic
- geometry and elsewhere are not polynomials. For instance,
the equation of the circle 224 y2=25 determines y as a
function of 2, or more accurately, the upper half of the
circle gives y as one function of z (y = V25 — 2?), the lower
half as another (y =—+/25—2?%). In this case it is possible
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to solve the equation for y and thus express y explicitly as a
function of z. In more complicated cases this is not possi-
ble, as, for instance, when we have the curve

4+ yt+ 2+ y=0.

Nevertheless, since to each value of z there correspond
one or more values of y, the various parts of the curve really
determine y as functions of z. Such functions, for which
we cannot or do not care to determine explicit expressions,
are called ¢mplicit functions. If the equation which deter-
mines the function is an algebraic equation (as distin-
guished, for instance, from a logarithmic or a trigonometric
one) the function is called an implicit algebraic function.
Every algebraic equation in (2, y) by clearing of fractions
and of radicals, can be so expressed that each member is a
sum of terms of the forms

¢, c¢cx®, cy™, cx"ym™,

where n and m are positive integers, and ¢ is a constant.
We shall, in this section, suppose the equation reduced to
this form. |

" Every implicit algebraic function may be easily differen-
tiated, as will be clear from the following illustrations:

Example 1. 22+ y2=25.

Since, as - we have said, this equation determines y as a
function of #z, ¥? is also a function of #, and consequently the
whole first member is a function of z. The second member,
25, may also be regarded as a function of 2. Since these
two members are equal for all values of 2, that is, since they
are the same function, their derivatives are equal. The
derivative of the first member is 22 + 2 yD,y, while the
derivative of the second is 0. Hence,

22+ 2yD,y=0.

Therefore D,y=—=%.

Yy
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In this case, since we can express y explicitly as a func-
tion of z, y =+ V25 — 2%, we can express D,y in terms of z

alone, namely z

V25 — 22

the upper sign referring to the upper half of the circle, the
lower sign to the lower half. In general, however, the
value of D,y will have to be left in a form involving both
z and y. We shall see, when we come to the applications,
that this form is usually entirely satisfactory.

Example 2. 2+ y*4 2+ y=0.
Here, again, since g is a function of z, the two members

can be regarded as different expressions for the same func-
tion of . Their derivatives are, therefore, equal:

43 +4y3D,y+1+D,y=0.

D,y=7F

o —4 23 -1
Hence D, = oy ek
EXERCISES

Differentiate the functions y determined by the following
equations:

1. zy=1. 5. 22% — 3 zy?+ 2y—3=0.
2. zy?=1. 6. y¥®+222y+5=0.
3. 22— y?=1. 7. 22— 3 azy+ y2=0.

4. y? =22 8. Ax2+Bxy+ Cy?+ F=0.
9. Express the values of D,y in Exercises 1-4 in terms
of z alone. |

91. Fractional Powers and Radicals. Suppose u = f(x),
and we wish to differentiate »
y = u,
where p and ¢ are positive integers. Raising both sides of
this equation to the power ¢, we have

yq —— up.
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Here, as in § 90, the two sides of this equation are merely
two different expressions for the same function of z. Hence
their derivatives are equal :

qy? D,y = pur~' D, u.

1 -1 P_
Consequently, ny—p ur D, u= pur” D,u="Lus lDﬁu.

gy gu;)(q ) 9
If we let n =2, we may write this result in the form
7
@) D, ur = nu"'D,u.

Hence, this formula, which is identical with formula (1),
§ 89, is valid not merely when » is a positive integer, but
also when it is a positive fraction.*
The special case (2), § 89, is, of course, also valid under
these more general conditions.
If » =1, formula (1) may be written
1

2 D ~Nu=— D, u.
, 2V'u
Here, too, we have the speclal case
3 D, ~NVz= 5\—/—5
EXERCISES
Differentiate the following functions:
1. z%.  Ans. %x-§‘=__3g:‘ 4. V222 4+ 3z+5.
. Vo 5 vigxz+vVi—a.
2. V. g
3. 22+t 6. V2z— 3.

92. Negative Exponents. Let % be a function of x, and
consider the function
. y — u——-m,
*If n is an irrational number, for instance /2, formula (1) is still valid.
This is what we should expect, since such a number can be approximated to as

closely as we please by a fraction p/q- We shall however, give no proof of for-
mula (1) in this case. :
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where 7 is a positive integer or a positive fraction. Multi-
plying both sides of this equation by u™, we find
yu™ = 1.
Differentiate both sides of this equation :
myuw™ D, u + w" D,y = 0.
mywn1 |

Hence D,y= — - D,u=—myu'D,u =—mu ™ 1D, u.
If, now, we let n = — m, this result may be written
(D) D u" =nu"1D, u.

Hence this formula (identical with (1), § 89 and (1), § 91)
is valid not merely when » is a positive integer or a positive
fraction but also when it is a negative integer or fraction.
The same is, of course, also true of the special case u =z,
formula (2). § 89.

These formulwe are, in fact, true for all real values of n.
See the footnote to § 91.

- EXERCISES

Differentiate the following functions:
1. 2z+3)73% Ans. —6(2xz+4 3)~4

2. (22+1)2 5 1
3. % S @P—1)F
1 e
4. —- 6. \/1—— -3,
- (VI=2)

93. Differentiation of Fractions. Let # and » be two
functions of z, and consider the function

Y=

v

Since this fraction may be written « .71, it may be differ-
entla,ted by formula, 1, § 88:
D,y=uD (v )+v1D,u
= —wv 2D, v + v 1D, u.
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Hence |
1 D[ =V Dsu — uD.v
€» (%) =
EXERCISES
Differentiate the following functions :
1—2 x 2
1. — . 3. . 6., ———;-
142 22—3 (1 + 23)2
2 2t x
2. —Z . 4. . 6. -
1+ 22 122 Vi—w

PROBLEMS TO CHAPTER XII

Differentiate the follewing functions :
1. 522 —-2bx+ 3 2.

11, ——= .
2. (a+ bx). Va2 — s?
3. (2t—1DP(Bt+2)T. 19 @@ +b
2224+3x—1 cx + d
4. 3 ' Ans. _Ad—be
Ans. Lz +38. (ex + d)?
-8 13 N
5. 2t +tbt +c. L V(1 =223
' 2
A e Amns. "*—“‘—"“‘“3 i 5 *
ns. a'—t—z‘ (1___22)7
6 ar?+br+ ¢ 14. 2"’2:3.
: 272 Ve
7. (bz+3)3 15. (as% + a%)%.
8 B 16. z(a?+ 22)Va?— 22
8. (2—2)Va. Mg, @0 — 4ot
9. (3-]-:&)\/-3—39.3 ; ) N
— 3z

Ans. ———- -
e N

1 1_x>7
Y . 180 1 M
10 s (14N




210 ELEMENTS OF THE DIFFERENTIAL CALCULUS

Obtain D,y in each of the following problems, first by using
the method of implicit functions, and secondly by expressing
y as an explicit function of z and differentiating y in that
form. Show, in each case, that the two answers are equiva-
lent to each other.

19. 22zy—2+3y+1=0.

Ans. _1-2y_ 5

D,y = = .
| - Y s +3 (2wt 32
20. 2224+3¢2=6. 21. y2=4=x  22. 2%y?—2?+ y2=0.




CHAPTER XIII

SIMPLE APPLICATIONS OF THE DIFFERENTIAL
CALCULUS

94. Slopes and Tangents. We have seen that D,y is the
slope of the curve * y = f(#). Thus if the curve is

M y=2"
(see § 37, Figure 34), its slope is
(2 A=D,y= 322

This slope is, of course, different at different points of the
curve, and if we want the slope at some particular point, we
must substitute in (2) the special value of z. Thus the
slope of (1) at the point (2, 8) is A =12. The slope at
(%, 1) is A =3 z2 The equation of the tangent at (2, y;)
is

Yy — Y1 =32 (@ — ),
which can, of course, be reduced as in § 38, formula (11).

What has just been said applies also to the case in which
y is given not explicitly but only implicitly as a function of
z. Thus the general formula for the slope of the circle
(3 2 + y* = a?
is, by § 90, Example 1,

A=D,y=—2.

=Y v

Consequently, the slope at (24, y;) is —=2;/¥y;, and the equa-
tion of the tangent at this point is

Ly
— Yy, =—2(x—2),
Yy—U 91( 1)

which can be reduced, as in § 31, to the ordinary form.

* By the slope of the curve at a point we mean the slope of the tangent to the
curve at that point.

211
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The value A = D,y for the slope of the curve also enables

us to find the slope, —1/A, of the normal.

- If we use oblique coérdinates, it is clear that —i—gis the direction ratio
of the secant, and, consequently, that D,y is the direction ratio of the
tangent. The methods of the calculus may be used freely in connection
with oblique codrdinates provided we remember this fact.

EXERCISES

Find by differentiation the slopes of the following curves
at the points indicated :

1. y=2a*tat (1, 1); at (—1, 1); at (&, 16).
2. y=22—2zat (0,0); at (1, —1); at (2, 0).
8. y=x(x—1)(x— 2)(z— 3) at the origin; at (2, 0).
4. P’=22(x—1) at (2, 2); at (2, —2).
5. 2*+ y*+ 2 + y =0 at the origin; at the points whose
abscissas are — 1.
Find, by the use of derivatives, the equations of the tan-
 gents to the following curves at the points indicated :
6. y=2a*at (x, yy).
7. y?=2a%at (2. y;)-
8. y=22—2zat (0,0); at (1, — 1).
9. g—}-%;::l at (zy, ¥1)-
10. Ax*+ Bzy + Cy?+ Dz + By + F=0at (25 y;)-
11. y2=2%(z—1) at (2, — 2).

' 95. The Highest and Lowest Points of Curves. Let us
consider the curve
¢H) y=z(x+1)(z — 2).
It crosses the axis of z at the points z=—1,2=0, z= 2.
Between the first two of these points the first and last
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factors in (1) are negative, the second positive. Hence,
from z=—1 to the origin the |
curve lies above the axis of =z.
Similarly we find that from z =0
to z =2, y is negative; when
xz > 2, y is positive; and when (~0.55,0.65)
z < —1, y is negative. Conse- (2.0) |
quently, the curve is shaped as (1,0 o X
indicated in Figure 71. ' -
We now ask ourselves: how
high does the curve rise between
z=—1 and z=0, and how low (1.2,=2.1)
does it fall between z=0 and
x=2? It isclear from the figure
that these highest and lowest
points are the points where the tangent is horizontal, that
is, where D,y = 0. On differentiating, we find

D,y=322—2z— 2.

Equating this to zero, we have a quadratic equation, whose
roots we find to be

— 1—V7 = —0.549, :v2=1 + V7T
3 3

These are the z coordinates of the two points we are seek-

ing. Their y coodrdinates are found, by substituting these

values in (1), to be

| Y1=+0.638, y,=—2.1.

g

Fic. 71

= 4 1.215.

Ty

These are the maximum and minimum values of the func-
tion y. |

The method, here used, of finding these maximum and
minimum values by equating D,y to zero is not always
applicable, since the curve may reach its highest and lowest
points at corners or cusps, as is indicated in Kigure 72.
These, however, are exceptional points at ‘which the deriva-
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tive becomes infinite or has no meaning; and the formula
for D,y in any given case y

will usually, as in the ex-
ample just given, make it
clear that there are no

such points.

Another matter to be \ /
noticed is that all points / O X
at which D,y is zero are
not necessarily maxima or
minima, though in the
particular example we fra. T2
have just considered, this
was the case. For the curve y = % for instance, the only
point where D,y is zero is the origin, and this, as we see
from Figure 34, § 37, is neither a maximum nor a minimum.

The value x = — 0.55, in the example above considered,
while it gives us what we have called a maximum, does not
give us the largest value of the function. For instance,
when z = 3, the function has a much larger value, 12. In
this case, there is no largest value of the function, since
y becomes positively infinite when z increases indefinitely.
The maxima and minima we have considered in this sec-
tion are, for this reason, sometimes called 7relative maxima
and minima to indicate that they are merely greater (or
‘less) than the values of the function at nearby points.

On the other hand, if we restrict ourselves to negative
values of z, we should say that the function has not merely

a relative, but an absolute maximum at the point z = — 0.55.
Again, if we consider values of z from z = — 1 toz =+ 3,
we have merely a relative maximum at z = — 0.55, the abso-

lute maximum being at the point x =+ 3. If, then, for any
reason, we restrict ourselves to a limited range of values of
z, the absolute maximum of the function is either one of the
relative maxima in this interval, or ‘it is situated at one end
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of the interval, where, of course, D,y will not usually be
ZeTo.
Similar remarks apply to relative and absolute minima.

"~ The method we have used to determine maxima and min-
ima seems, at first sight, rather unsatisfactory since, in the
first place, it gives no means of distinguishing between max-
ima and minima, or even of distinguishing these from cer-
tain points which are neither maxima nor minima; and, in
the second, the maxima and minima which it gives may be
merely relative. Nevertheless, as we shall see in the next
section, these objections are, in a great many cases, more
apparent than real.

EXERCISES

Sketch roughly the following curves, and locate accu-
rately their highest and lowest points (relative maxima and
minima). If any of these points give absolute maxima or
minima, state the fact.

4 4 =T
‘1. 1Gy=32$—$. * y—1+$2
1
. = 3— . 5' -
2. 4y=2>—12¢2 Y S o(l —z)
1
- =4'-— 3. 60 2=
3. Yy==z 4z Y »(1— o)

Mark all the points where the slopes of the following
curves are 0 or oo, and use the information thus gained in
making the drawing of the curve more accurate:

7. y?=a*— 25 8. y?=2a%—at - 9. yt=a®— 2t

96. Problems in Maxima and Minima. We illustrate the
methods to be used by two typical examples.

Example 1. A piece of cardboard six inches square is to
be made into an open box by cutting out equal squares at
the four corners and bending up the sides. 1t is desired that
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this box have as large a capacity as possible. What should
its dimensions be ?

Let 2 inches be the length of a side of each of the small
squares cut out at the corners. The length of a side of the
bottom of the box is, then, 6 — 2, and the height of the
box is z. Its contents, measured in cubic inches, is there-
fore, u =2(6 — 22)2. It is this function we wish to make
as large as possible.

u=423— 24 22 4+ 36 x.
D,u=122%2 — 48 x 4 36.

Equating’ this to zero, in order to determine relative max-
ima or minima, gives =38 or 1. The first of these values
is surely not what we want, since then the whole cardboard
would be cut away and we should get no box at all.

The true answer to our problem is z=1. In order to see
this, let us consider the problem on its merits, apart from any
mathematics. If the corners cut out are very small, the con-
_tents of the box will also be very small since, though its bottom
is almost 6 in. square, its height is very small. If, on the
other hand, the corners are very large (nearly 3 in. square)
the height of the box will be fairly large (nearly 3 in.), but
the bottom will be very small, so that, again, the capacity
of the box is very small. Somewhere between these two very
unfavorable extremes there must be a most favorable size
for the corners, that is, the maximum must be reached for
some value of z between 0 and 3. Such a value is a relative
maximum, and since the only possible relative maximum is,
as we have seen, x = 1, it follows that this is the answer to
our problem:.

The dimensions of the box in inches are, therefore, 4, 4
1; its contents, 16 cubic inches.

Example 2. }Find’ the rectangle of largest area which can
be inscribed in a given circle.
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Let a be the radius of the circle and 2« and 2 y the dimen-
sions of an inscribed rectangle. Then

e 2+ y? = @,

so that we might express y in terms of z and thus dispense
with the letter y altogether. It is, however, here and in
many similar cases, more convenient to retain y as an

auziliary variable.
The area of the rectangle is

u=4zy,
and this to be made a maximum. Differentiation gives
D, u= 4:6ny -+ 43/.
To find D,y, we differentiate (1):
| 22+ 2yD,y =0,
or |
_D_,vy = — g .
Y
Hence
22
Du=—4=—+4y.
Y
Equating this to zero in order to get relative maxima or
minima, we find 22 = »?, and consequently, since z and y are
both essentially positive, z=y. Hence we infer that the
rectangle of largest area is the inscribed square.

That this is the true answer is seen as in Example 1; if
either dimension, 2z or 2y, is very small, the area of the
rectangle is very small. Hence there must be a largest
rectangle, and the only possible maximum is when z = y.

EXERCISES

1. Divide the number 10 into two parts in such a way
that the product of the first by the square of the second is
as large as possible.

2. Find the largest rectangle whose perimeter is e.
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3. Prove that of all circular sectors of given perimeter the
greatest is that in which the arc is double the radius.

4. What is the most economical shape for a cylindrical
tin cup which is to hold half a pint?

Ans. Height = radius.

5. What is the most economical shape for a cylindrical
tin tomato can? Ans. Height = diameter.

6. A Norman window consists of a rectangle surmounted
by a semicircle. If the perimeter is given, find the shape in
order that the amount of light admitted shall be as great as
possible. Ans. Height = breadth.

7. A man can walk five miles an hour and row four miles
an hour. He is in a rowboat three miles off shore and
wishes to reach as quickly as possible a point on the beach
five miles from the point nearest to him. Towards what
point of the beach should he row?

97. Increasing and Decreasing Functions. Concavity. A
very useful principle is the following, whose truth is at once
evident when we consider the graph of the function and
remember that the derivative is equal to the slope of this
graph:

1If the deritvative of a function s positive, the function in-
creases as the independent variable increases; if the derivative
is megative, the function decreases. |

The slope, A, of a curve may itself be regarded as a func-
tion of z. Hence, by the principle just stated, if D, A > 0, A
increases with z, so that the curve rises more and more
steeply (or falls off less and less steeply) as z increases. In
other words, the curve is concave upward. Similarly, if
D, is negative, the curve is concave downward. The de-
rivative of the slope may be written

ED;&)\' = Dx(Dmg/)a
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and is called the second derivative of y and denoted, for
brevity, by D,2y. Thus we have the

TEsT For Concavriry. If D2y > 0, the curve y =f(x) is
concave upward. If D22y < 0, it is concave downward.

It should be clearly understood that the question as to
whether a curve is rising or falling (sign of D, y) has nothing
whatever to do with whether it is concave upward or down-
ward (sign of D 2y).

Example. Consider the curve y = 28 (see Figure 34, § 37).
Here D,y = 3 2% which is positive for all values of = (except
"2 =0). Hence this curve is constantly rising. The second
derivative is D2y = 6 z, which has the same sign as . Hence
this curve is concave upward to the right of the axis of y,
concave down- Vv |
ward to the left.

Since at a maxi-
mum (see A, Fig-
ure 73) a curve
is concave down-
ward, at a mini-
mum (), con-
cave upward,
while at a point
where D,y = 0 but which is neither a maximum nor a mini-
mum (see B and D, Figure 73) the curve is concave upward
on one side, concave downward on the other, we deduce the
following :

TEST FOR DISTINGUISHING MAXIMA FROM MINIMA. At
a point where D,y =0, if D2y < 0, we have a maximum ; if

2y >0, a minimum. :

1f D2y = 0, this test gives us no information. See, how-
ever, the closing lines of § 98.
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EXERCISES

Where do the following curves rise and where do they
fall ; where are they concave upward and where concave
downward ?

1. y=z(+1)(z—2). See § 95, Figure 71.

8 |
2. y=@3—x_—-1—)-2- See § 12, Figure 18.
ot __r . -1
3. y =ux° 4. y_1+w2 6. y 12

98. Points of Inflection. A point of a curve on one side of
which the curve is concave upward, on the other concave
downward, is called a point of inflection.* It is clear from
this definition that the tangent at a point of inflection always
crosses the curve at the point of contact; see Figure 84,
§ 87, where the origin is a point of inflection and the axis of
z the tangent there.

Since D,y is positive on one side of a point of inflection,
negative on the other, it follows that at a point of inflection
we usually + have D2y = 0. It is not true that every root of
this equation. is a point of inflection, but we evidently have
the following :

First TeEST FOR A PoiNT oOF INFLECTION. A point
where D2y =0 is a point of inflection if D, 2y is positive on
one side of it and negative on the other. If D 2y has the
same sign on both sides, it is not a point of inflection.

Example y=82—5a2t4+22—1.
D,y=152*— 2023 + 2.
- D2y =602%— 60 22=6022(x —1).

* We assume in this definition, and throughout this section, that the curve
has no corner at the point. The maximum in Figure 72, § 95, is not a point of
inflection.

+ Namely when D,2y varies continuously, as will usually be the case. Dz%y
may, however, become infinite at a point of inflection, even in very simple cases
such as the curve x =y3,
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Equating this to zero, we find as the only possible points
of inflection, =0, z=1. For small positive as also for
small negative values of z we see that D,2y is negative.
Consequently, =0 is not a point of inflection. On the
other hand, as  passes from a value a little less than 1 to a
value a little greater, D, 2y changes sign; and 1 is the z co-
ordinate of a point of inflection. The pointitself is (1, —1).
The slope of the curve at this point of inflection is A =— 3.

Another test for a point of inflection consists in examin-
ing the third derivative of y:

D,(D,2y) = D,3y.

If this derivative is positive at a point, x;, where D2y =0,
we infer, by the principle stated at the beginning of § 97,
that D, 2%y is increasing, and consequently, as we pass through
x4, D%y changes sign. Similarly, if D3y is negative at z,
D2y is decreasing and therefore, since it vanishes at =z,
changes sign there. Thus, whenever DJ3y=+0 at =, D2y
changes sign there. Hence

SECOND TEST FOR A POINT OF INFLECTION. A point
where D2y = 0 is a point of inflection provided D, 3y = 0.

In particular, if, in searching for maxima and minima, we
find a point where D,y =0 and also D2y =0, so that the
test at the close of § 97 gives us no information, we may go
on and compute D3y, and if this value is different from
zero, we have a point of inflection, and hence neither a
maximum nor a minimum.

EXERCISES

Find all the points of inflection of the following curves,
and the slopes of the curves at these points:

1. y=2—=. 4. y=(2%2—-1)3
2. y=2x6—5:v4+3w+1. b. y=(a:2—1)4.
3. y=ab.
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99. Curve Tracing. It is always well to get such a gene-
ral idea of a curve as is possible before beginning the work
of plotting individual points. For this purpose we should
consider first how many real values of y correspond to each
value of z, and, in particular, whether there are some values
of 2 to which no real values of y correspond. Then we
should locate any values of z for which y becomes infinite
(vertical asymptotes) and we should also consider how the
‘curve runs when z has very large positive or negative
values. We illustrate this last point by two examples.

Example 1. y =

z—1

Here, to each value of z corresponds one real value of y,
except when z=1, when we have a vertical asymptote.
When = becomes infinite, both numerator and denominator
become infinite, and we cannot see directly how the value
of the fraction is changing. However, if we divide numer-
ator and denominator by z, we get

1+1

y = T
11

T

and the limit as = becomes infinite, either through positive
or negative values, is now obviously 4+ 1. Hence the curve
has the line y = + 1 as an asymptote.
2241
x— 1

Here we divide numerator and denominator by 2. Then
we see that as # becomes positively infinite ¥ becomes posi-
tively infinite, and when 2 becomes negatively infinite y
becomes negatively infinite.

Example 2. y =

After this general investigation of a curve, we begin plot-
ting.points. Instead of taking these points at random, as we
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did in § 12, it is desirable to plot, first, points which are really
characteristic of the shape or position of the curve, such as
(1) Points where the curve meets the codrdinate axes ;
(2) Maximum and minimum points ;
(3) Points where the tangent is vertical ;
(4) Points of inflection.

It should be noted where the curve is concave upward
and where concave downward; and the tangent at each
point of inflection should be drawn before the curve is
drawn. The arc of the curve should then be drawn so as
really to touch and cross the tangent at the point of inflec-
tion and to be concave on the two sides of it in the right
directions.

Example 8. y =223 — 2%,

To each value of # corresponds just one value of y, and
this is always real. When 2 becomes positively infinite, y
- becomes negatively infinite since the negative term — at is
then very much larger than the positive term 222 When
z becomes negatively infinite, y also becomes negatively
infinite. There are, therefore, neither vertical nor horizon-
tal asymptotes. y

The curve meets the axis of
in the points (0, 0) and (2, 0).

On differentiating we find
D, ,y=62%2—423=222(83—22).
D2y=122—-1222=122(1 —2z).
Dx3y=12 — 24 z.

We infer that the curve
has a maximum at the point
(3, 20), no minimum, and two
points of inflection, namely,
the origin and the point (1, 1).
At the origin the axis of z is
the tangent, at (1, 1) the slope of the tangent is A= 2.

(1.50, 1.69)

(2,0

Fig. 74
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Between these points of inflection the curve is concave up-
ward, everywhere else concave downward.
We can now draw in the curve as indicated in Figure 74.

EXERCISES

Trace the following curves, plotting only characteristic
points, and being careful to make the curves have the right
directions at each point of inflection:

1. y=2a224+6224 9. 5. 4y=1+ 1 .
2. 4dy=at—4a%—5. rz x—1
3. 24+ ¢y2=1. 6. y?=a3+4 a2

4. 3y =2ab(x—05).

100. Parametric Representation of Curves. If the coordi-
nates of a moving point are expressed in terms of an auxil-
iary variable, or parameter, t,

) z=f(1), y=¢@,
then, as ¢ varies, the point (z, ) describes a certain locus
whose equation might be obtained by eliminating ¢ between
these equations. It is, however, in many cases, better not
to perform this elimination, but to take the equations (1) as
they stand to represent the curve. We have, then, what is
‘called a parametric representation as distinguished from the
representation by a single equation. It is easy, in any
special case, to plot the curve directly from equations (1)
by giving to ¢t in succession different numerical values and
computing the corresponding values of x and y.

In order to find the slope of the curve, D,y, we start from
a value ¢; and give to £ the increment A¢. The increments
this produces in z and y we call Az and Ay; and we write
the identity

Ay
Ay At
(2) Ar— Az’
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Now let At approach zero. Az and Ay will also approach
zero, and the limiting form approached by (2) is

D,y
3 D oy ==t
( ) 4 y D,:v
Example. _ A
@ =t(t+ 1), y=1t(t+2).
De=2¢t+1, Dy=2¢t+2 A=D,y=2t+2

2¢+1°
Now give to ¢ the values indicated below, and compute
the corresponding values of z, ¥, A :

i=—g = y=4 r=1
t=—2,  2=2 y =0, A =3,
t=—%, x =4, - =—.—-%—, 7\.=%,
t=-—1, x = 0, y=—1, A =0,

t=—4 = — ¥ Y=—1& A=—1,
=—-%, :v=——}p y:-——%, A = o0,
t=0, z =0, y =0, A =2,
i=f ==t y=1 =1

We plot these points, and draw through each a line having
the computed slope, A ; see Figure 756. The curve can then
readily be drawn.

| Y

The curve is a parabola, whose equation we find, by elimi-
nating ¢ between equations (4), to be

a?—2xy +y2—2x+y=0.
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- If we wish to go a step further and find the value of D,%y
= D,\, we may write

A

M _ At

Az~ Az’

At

from which, by taking the limit, we find,
5 D= D,

y D,z

EXERCISES

Plot each of the following curves from its paramétric rep-
resentation, drawing the tangent at each point which is
plotted ; and find the equation of each curve:

_ t 12

1. o=((t—1)2% y=t(t—1)2 8. z=—"—,y= :

e= DR y=tt- D) o= V=T

- y=— L=t y=tt— 2
-1y YT 4o Y

101. Velocities. If we note how far a moving body goes
during a certain interval of time, the ratio of this distance
to the time elapsed is what is known as the average velocity
of the body during this interval of time:

. Distance
1) Average velocity = T Time

For instance, if a steamer makes a trip of 3000 miles
across the ocean in 6 days, its average velocity for the
whole trip is 500 miles a day. If during a single hour of

one of the days it goes 20 miles, its average velocity during

that hour is glq = 480 miles a day.
27 -
In general, this average velocity will be greater for some
intervals of time than for others. The actual velocity at

any moment of time is obtained by first finding the average
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velocity for a short interval of time just following this mo-
ment, and then taking the limit of this average velocity as
the interval of time becomes shorter and shorter.

This may be expressed in symbols as follows: Let s be
the distance the body has moved from some initial position
in the time ¢. Then

s = f(¢).

Let ¢, be the time at which we wish to find the velocity,
and let At be the length of a short interval of time follow-
ing the moment ¢;. Then, As being the distance gone dur-

ing the time Atf, the average velocity is Aas, Hence the
. . At
velocity at the moment ¢, is
(2 v = lim (é_S): D,s.
at=0\ At
We illustrate all this by the case of a body falling from

rest, in which case, if we measure distance in feet and time
in seconds, we have approximately

s = 16¢.

At the end of 2 seconds, s =64. At the end of 2.1 seconds,
8=16(2.1)2="70.56. Hence, if we let t; =2, At =0.1, we
have As=6.56. Hence the average velocity during this
6.56
0.1
better approximation to the actual velocity by taking a smaller
value of At, say At =0.01. We readily compute As = 0.642.

Hence, for this shorter interval, the average velocity is

0*660412=64.2 feet per second. The actual velocity is ob-

tained by differentiation :
DtS == 32 t.

Letting ¢ = 2, we find as the velocity at the end of 2 sec-
onds v = 64, to which it will be seen that the average veloci-
ties computed above are approximations.

tenth of a second 1is

= 65.6 feet per second. We get a
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It must be understood that the average velocity during a
certain interval of time is not, in general, the average of the
velocities at the two ends of the interval,* but must be com-
puted by formula (1). The actual velocity (or simply the
velocity) must be computed by (2).

EXERCISES

1. Assuming it to be known that a stone thrown down-

ward with a certain velocity goes a distance of
s=16¢2+4+40¢

feet in ¢ seconds measured from the moment it is thrown,
find

(a) its average velocity during the first five seconds

(6) its average velocity during the second five seconds;

(e¢) its average velocity during the tenth of a second fol-
lowing the end of the third second ;

(d) its velocity at the end of ¢ seconds;

(e) its velocity at the end of 8 seconds;

(f) its velocity at the moment it is thrown.

2. A man 6 ft. high walks directly away from a lamp-
post 10 feet high with a uniform velocity of 4 miles an hour.
How fast does the end of his shadow move along the
pavement ?

- 102. Rates of Change. By the average rate at which a
function u = f(z) increases as x varies from z; to z; + Az is
meant the total increase of the function divided by the
increase of the variable : |

J(x;+ Az) — f(z) _ Au

Az Ax

By the actual rate of increase when z = z; is meant the limit,
D, u, of this fraction as Az approaches zero.

* The steamer mentioned at the beginning of this section starts from its dock
with velocity zero, and ends up on the other side with the velocity zero. Never-
theless, its average velocity for the trip is not zero.
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The derivative of any function may, therefore, be re-
garded as giving the rate at which the function is increasing
per unit increase of the independent variable. If the func-
tion is decreasing, this will, of course, be shown by the de-
rivative being negative. _.

It is merely a special case of this when we say, as in § 101,
that if s is the distance a moving body has gone and ¢ the
time, D,s is the velocity, that is, the rate of increase of s per
unit time.

Let v be the velocity of a moving body, ¢ the time, and s
the distance traversed. Then D,v = D32s is the rate at which
the velocity is increasing, that is, it is the acceleration of
the moving body.

Example 1. In the case of a body falling from rest

s =162
Velocity = D, s =32¢.
Acceleration = Dj2s = 32.

Thus we see that while the velocity of a falling body in-
creases with the time, i1ts acceleration is constant.

It must not be supposed that rates necessarily refer to the
time as independent variable. If, for instance,  denotes the
distance measured in feet down from the surface of the earth
into a mine, and u = f () is the temperature measured in de-
grees at any point of the mine, then D, u is the rate in
degrees per foot that the temperature increases as we go
down the mine.

Again, the slope, D,y, of a curve gives the rate at which
the curve is rising per unit of advance along the axis of z;
and D 2y= D\ gives the rate at which the slope is increasing.

Example 2. Two ships start together. One sails due east
at the rate of 12 miles an hour and the other due south at
the rate of 8 miles an hour. How fast are they separating
at the end of two hours?
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At the end of ¢ hours the first ship has sailed 12 ¢, the sec-
ond 8 ¢ miles. Their distance apart is, therefore,

s=V(120)2+ (8 )2 =413 ¢.

The rate at which they are separating is, therefore, in miles
per hour, |

D,s = 4V13 =14.4.

It happens that this does not contain ¢, so that this is the
rate at which the ships are separating at any time, and,
therefore, in particular, at the end of two hours. If the
value of D,s had contained ¢, we should have substituted
t =2 in it to get our answer.

It should be noticed that the special value ¢= 2 is not to
be used until we are at the very end of our problem. We
must always firs¢ work out the rate at the time ¢, even if we
are not asked for this.

EXERCISES

1. Two ships start abreast half a mile apart and sail due
east at the rates of 10 and 12 miles an hour, respectively.
How far apart are they at the end of half an hour, and how
fast are they separating at that time ?

2. A locomotive running 380 miles an hour over a high
bridge dislodges a stone lying near the track. The stone
begins to fall just as the locomotive passes the point where
it lay. How fast are the stone and the locomotive separating
2 seconds later ?

PROBLEMS TO CHAPTER XIII

1. The curves y2= 2 and y = 2® intersect in two points.
Find the angles they make with each other at each of these
points. Ans. 90° and 456°.

2. Find the angle, in degrees and fractions of a degree,
which the curve
y=z(x — 1)2(z — 3)
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makes with the axis of z at each point where it meets the
axis.

3. Find all the points where the curves
Yy=12a% —z, 6y=23
intersect ; and find the angles in degrees and fractions of a

degree which the curves make with one another at each of
these points.

4. A point moves along the curve
Vz+Vy=Va.
Prove that the sum of the intercepts of the tangent at this
point is constant.
5. A point moves along the curve
2t + gyt = at.
Prove.that the part of the tangent at this point intercepted

between the codrdinate axes is of constant length.
Trace the following curves:

6. y=225+4 2t + 228

7. 4dy=25—62*+12 22— 8.

8. »—2a2y—4y=0.

9. 45y +325— 56522+ 270 x=0.

10. 12y =225— 9a* 4 18 22

11. 1042 =3 & — 23,

12. y2=28(z+ 1)2 Note that the point (— 1, 0) lies on
this curve.

13. 2= (2% + 1)2%(4 — 22)3.

14. Prove that the equation

325—10224+152—2=0

has only one real root, and that this root is positive and less
than 1.

[SucaEsTION. Consider the shape of the curve
y=32>—1022+ 152 — 2.]
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'16. Prove that the equation
Sat—423+122—-3=0
has just one positive and just one negative root.
16. Prove that the equation
4+ 4B8+4224+¢=0
has no real root if ¢ > 0, two real roots if ¢ < — 1, and four
real roots if ¢ has a value between zero and — 1.

17. What can you say about the number, sign, and size
of the roots of the equation

900 2t — 80023 +1=107?

Trace the curves which are represented in parametric
form as follows:

18. z=8—1, y=28(2—-1).

19. z=1683(t—-1), y=8¢(—1).

20, z=1—1¢, y=(1—-0D*1+1¢)3

Maxima and Minima

21. The radius of the base of a cone of revolution is a,
_its altitude 4. Find the volume of the greatest cylinder
which can be inscribed in this cone. Ans. & mab.

22. Find the altitude of the cylinder of greatest curved
surface which can be inscribed in the cone of Problem 21.

23. Find the altitude of the cylinder of greatest total sur-
face which can be inscribed in:the cone of Problem 21.
Explain your result when 2 a > b.

24. Find the altitude of the greatest cone of revolution
that can be inscribed in a sphere of radius e. Ans. £ ec.

256. What are the most economical proportions for an
open cylindrical water tank if the cost of the sides per
square foot is two thirds the cost of the bottom per square
foot?
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26. What are the most economical proportions for a
cylindrical tin tomato can if the round ends are cut out of
a sheet of tin in such a way that a regular hexagon circum-
scribing the required circle is used up for each?

27. If the strength of a rectangular beam is proportional
to the product of its breadth by the square of its depth, find
the dimensions, in inches, of the strongest beam that can be
cut from a log one foot in diameter.

28. From a given circular piece of paper it is desired to
remove a sector in such a way that when the rest of the
paper is bent into the form of a cone, the volume of this
cone shall be as large as possible. Find (a) the altitude of
this cone; and (b) the angle (in degrees) of the sector
which should be removed.

29. A physical measurement is made a number of times,
with results which differ slightly. It is customary to take
the average of these results as the most probable value for
the quantity measured. Show that of all possible values,
this one makes the sum of the squares of the errors of obser-
vation smaller than any other.

80. One end of a crow-bar is pushed in horizontally 11
feet under the lowest part of a rock weighing 100 pounds
and finds there a firm support. A man pulls up at the
other end, and thus raises the rock. What is the most ad-
vantageous length for the crow-bar if it is made of material
weighing 2 pounds to the foot? How much force will the
‘man have to exert if he is fortunate enough to have a crow-
bar of just the best length?

31. What is the shortest distance from the point (1, 0)
to the curve y%2 = 23?

32. A point is at distances « and & from two mutually
perpendicular lines. Show how to draw the shortest line
through the point terminated by the gwen lines; and prove

that the length of this shortest line is (a? 4 bﬁ)ir
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88. An ellipse has semi-axes a and b. Determine the
shortest line which can be drawn tangent to the ellipse and
terminated by the transverse and conjugate axes. Show
that this line is of length @ + b, and find the lengths of the
segments into which it is divided by the point of contact.

384. The cost per hour of running a certain steamboat is
proportional to the cube of its velocity in still water. At
what speed should it be run to make a trip up stream against
a four-mile current most economically ?

Ans. Six miles an hour.

85. Assuming that the amount of coal burned in running
a steamboat is proportional to the cube of the velocity, and
that 156 dollars’ worth of coal is burned each hour if the boat
is run at the rate of 10 miles an hour, find the most economi-
cal rate at which to run the boat in still water if all ex-
penses of running the boat besides coal amount to 300 dollars
a day.

86. What is the most economical rate at which to run the
steamboat of Problem 85 against a four-mile current ?

Rates and Velocities

87. Two straight railway tracks intersect at right angles
at a point A. A train on one of these tracks passes A at
12 o’clock running 30 miles an hour. A train on the other
track passes 4 at five minutes past twelve, running 40 miles
an hour. How fast are the trains separating at ten minutes
past twelve? |

88. Are the trains of Problem 37 approaching one another

or separating at three minutes past twelve, and at what
rate ?

89. A ladder 25 feet long rests against a house. A man
takes hold of the bottom of the ladder and walks off with it
at the uniform rate of 2 feet per second. What is the ve-
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locity of the top of the ladder when the man is 4 feet from
the house? The acceleration?

40. A man fishing in 20 feet of water feels a bite, and at
the same moment notices that his cable has come loose-and
that he is drifting to leeward at the rate of 11 miles an hour.
He drops the fish-line to secure the cable, and the fish be-
gins swimming along the bottom at the rate of 6 miles an
hour in a direction at right angles to the wind. How fast is
the fish-line going overboard three seconds later?

41. A lamp-post stands on the edge of the sidewalk
10 feet from the end, O, of a street crossing, and 60 feet from
the houses across the street. A man walks towards  on the
crossing at the rate of 4 miles an hour. How fast is his

shadow moving on the houses opposite when he is 40 ft.,
20 ft., 5 ft. from C7?

42. A June-bug is two feet from a light and his shadow,
thrown on the wall of the room, covers two square inches.
He is flying directly towards the light in a horizontal direc-
tion at right angles to the wall at the rate of 4 feet per
second. The light is 6 feet from the wall. How fast is his
shadow increasing at this moment ?

| Ans. 8 sq. in. per second.


























