
CLASSICAL GEOMETRY — LECTURE NOTES

DANNY CALEGARI

1. A CRASH COURSE IN GROUP THEORY

A group is an algebraic object which formalizes the mathematical notion which ex-
presses the intuitive idea ofsymmetry. We start with an abstract definition.

Definition 1.1. A groupis a setG and an operationm : G×G→ G calledmultiplication
with the following properties:

(1) m is associative. That is, for anya, b, c ∈ G,

m(a,m(b, c)) = m(m(a, b), c)

and the product can be written unambiguously asabc.
(2) There is a unique elemente ∈ G called the identitywith the properties that, for

anya ∈ G,
ae = ea = a

(3) For anya ∈ G there is a unique element inG denoteda−1 calledthe inverseof a
such that

aa−1 = a−1a = e

Given an object with some structural qualities, we can study the symmetries of that
object; namely, the set of transformations of the object to itself which preserve the structure
in question. Obviously, symmetries can be composed associatively, since the effect of a
symmetry on the object doesn’t depend on what sequence of symmetries we applied to the
object in the past. Moreover, the transformation which does nothing preserves the structure
of the object. Finally, symmetries are reversible — performing the opposite of a symmetry
is itself a symmetry. Thus, the symmetries of an object (also called theautomorphismsof
an object) are an example of a group.

The power of the abstract idea of a group is that the symmetries can be studied by
themselves, without requiring them to be tied to the object they are transforming. So for
instance, the same group can act by symmetries of many different objects, or on the same
object in many different ways.

Example1.2. The group with only one elemente and multiplicatione × e = e is called
thetrivial group.

Example1.3. The integersZ with m(a, b) = a+ b is a group, with identity0.

Example1.4. The positive real numbersR+ with m(a, b) = ab is a group, with identity1.

Example1.5. The group with two elementseven andodd and “multiplication” given by
the usual rules of addition of even and odd numbers; hereeven is the identity element.
This group is denotedZ/2Z.

Example1.6. The group of integers modn is a group withm(a, b) = a + b mod n and
identity0. This group is denotedZ/nZ and also byCn, thecyclic group of lengthn.
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Definition 1.7. If G andH are groups, one can form theCartesian product, denotedG⊕H.
This is a group whose elements are the elements ofG×H wherem : (G×H)×(G×H)→
G×H is defined by

m((g1, h1), (g2, h2)) = (mG(g1, g2),mH(h1, h2))

The identity element is(eG, eH).

Example1.8. Let S be a regular tetrahedron; label opposite pairs of edges byA,B,C.
Then the group of symmetries which preserves the labels isZ/2Z ⊕ Z/2Z. It is also
known as theKlein 4–group.

In all of the examples above,m(a, b) = m(b, a). A group with this property is called
commutativeor Abelian. Not all groups are Abelian!

Example1.9. Let T be an equilateral triangle with sidesA,B,C opposite verticesa, b, c
in anticlockwise order. The symmetries ofT are the reflections in the lines running from
the corners to the midpoints of opposite sides, and the rotations. There are three possible
rotations, through anticlockwise angles0, 2π/3, 4π/3 which can be thought of ase, ω, ω2.
Observe thatω−1 = ω2. Let ra be a reflection through the line from the vertexa to
the midpoint ofA. Thenra = r−1

a and similarly forrb, rc. Thenω−1raω = rc but
raω
−1ω = ra so this group isnot commutative. It is callec thedihedral groupD3 and has

6 elements.

Example1.10. If P is an equilateraln–gon, the symmetries are reflections as above and
rotations. This is called thedihedral groupDn and has2n elements. The elements are
e, ω, ω2, . . . , ωn−1 = ω−1 andr1, r2, . . . , rn wherer2

i = e for all i, rirj = ω2(i−j) and
ω−1riω = ri−1.

Example1.11. The symmetries of an “equilateral∞–gon” (i.e. the unique infinite2–valent
tree) defines a groupD∞, theinfinite dihedral group.

Example1.12. The set of2 × 2 matrices whose entries are real numbers and whose de-
terminants do not vanish is a group, where multiplication is the usual multiplication of
matrices. The set ofall 2×2 matrices isnotnaturally a group, since some matrices are not
invertible.

Example1.13. The group of permutations of the set{1 . . . n} is called thesymmetric group
Sn. A permutation breaks the set up into subsets on which it acts by cycling the members.
For example,(3, 2, 4)(5, 1) denotes the element ofS5 which takes1 → 5, 2 → 4, 3 →
2, 4 → 3, 5 → 1. The groupSn hasn! elements. Atranspositionis a permutation which
interchanges exactly two elements. A permutation isevenif it can be written as a product
of an even number of transpositions, andoddotherwise.

Exercise 1.14.Show that the symmetric group is not commutative forn > 2. IdentifyS3

and S4 as groups of rigid motions of familiar objects. Show that an even permutation is
not an odd permutation, and vice versa.

Definition 1.15. A subgroupH of G is a subset such that ifh ∈ H thenh−1 ∈ H, and
if h1, h2 ∈ H thenh1h2 ∈ H. With its inherited multiplication operation fromG, H is
a group. Theright cosetsof H in G are the equivalence classes[g] of elementsg ∈ G
where the equivalence relation is given byg1 ∼ g2 if and only if there is anh ∈ H with
g1 = g2h.

Exercise 1.16. If H is finite, the number of elements ofG in each equivalence class are
equal to|H|, the number of elements inH. Consequently, if|G| is finite,|H| divides|G|.
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Exercise 1.17.Show that the subset of even permutations is a subgroup of the symmetric
group, known as thealternating groupand denotedAn. IdentifyA5 as a group of rigid
motions of a familiar object.

Example1.18. Given a collection of elements{gi} ⊂ G (not necessarily finite or even
countable), thesubgroup generated by thegi is the subgroup whose elements are obtained
by multiplying togetherfinitelymany of thegi and their inverses in some order.

Exercise 1.19.Why are only finite multiplications allowed in defining subgroups? Show
that a group in which infinite multiplication makes sense is a trivial group. This fact is not
as useless as it might seem . . .

Definition 1.20. A group iscyclic if it is generated by a single element. This justifies the
notationCn for Z/nZ used before.

Definition 1.21. A homomorphismbetween groups is a mapf : G1 → G2 such that
f(g1)f(g2) = f(g1g2) for anyg1, g2 in G1. Thekernelof a homomorphism is the sub-
groupK ⊂ G1 defined byK = f−1(e). If K = e then we sayf is injective. If every
element ofG2 is in the image off , we say it issurjective. A homomorphism which is
injective and surjective is called anisomorphism.

Example1.22. Every finite groupG is isomorphic to a subgroup ofSn wheren is the
number of elements inG. For, letb : G → {1, . . . , n} be a bijection, and identify an
elementg with the permutation which takesb(h)→ b(gh) for all h.

Definition 1.23. An exact sequenceof groups is a (possibly terminating in either direction)
sequence

· · · → Gi → Gi+1 → Gi+2 → . . .

joined by a sequence of homomorphismshi : Gi → Gi+1 such that theimageof hi is
equal to thekernelof hi+1 for eachi.

Definition 1.24. If a, b ∈ G, thenbab−1 is calledthe conjugateof a by b, andaba−1b−1

is calledthe commutatorof a andb. Abelian groups are characterized by the property that
a conjugate ofa is equal toa and every commutator is trivial.

Definition 1.25. A subgroupN ⊂ G is normal, denotedN C G if for any n ∈ N and
g ∈ G we havegng−1 ∈ N . A kernel of a homomorphism is normal. Conversely, ifN
is normal, we can define thequotient groupG/N whose elements are equivalence classes
[g] of elements inG, and two elementsg, h are equivalent iffg = hn for somen ∈ N .
The multiplication is given bym([g], [h]) = [gh] and the fact thatN is normal says this is
well–defined. Thus normal subgroups are exactly kernels of homomorphisms.

Example1.26. Any subgroup of an abelian group is normal.

Example1.27. Z is a normal subgroup ofR. The quotient groupR/Z is also calledthe
circle groupS1. Can you see why?

Example1.28. LetDn be the dihedral group, and letCn be the subgroup generated byω.
ThenCn is normal, andDn/Cn ∼= Z/2Z.

Definition 1.29. If G is a group, the subgroupG1 generated by the commutators inG is
called thecommutator subgroupof G. LetG2 be the subgroup generated by commutators
of elements ofG with elements ofG1. We denoteG1 = [G,G] andG2 = [G,G1]. Define
Gi inductively byGi = [G,Gi−1]. The elements ofGi are the elements which can be
written as products of iterated commutators of lengthi. If Gi is trivial for somei — that



4 DANNY CALEGARI

is, there is somei such that every commutator of lengthi in G is trivial — we sayG is
nilpotent.

Observe that everyGi is normal, and every quotientG/Gi is nilpotent.

Definition 1.30. If G is a group, letG0 = G1 and defineGi = [Gi−1, Gi−1]. If Gi is
trivial for somei, we say thatG is solvable. Again, everyGi is normal and everyG/Gi is
solvable. Obviously a nilpotent group is solvable.

Definition 1.31. An isomorphism of a groupG to itself is called anautomorphism. The set
of automorphisms ofG is naturally a group, denoted Aut(G). There is a homomorphism
from ρ : G → Aut(G) whereg goes to the automorphism consisting ofconjugation by
g. That is,ρ(g)(h) = ghg−1 for anyh ∈ G. The automorphisms in the image ofρ are
calledinner automorphisms, and are denoted by Inn(G). They form a normal subgroup of
Aut(G). The quotient group is called the group ofouter automorphismsand is denote by
Out(G) = Aut(G)/Inn(G).

Definition 1.32. Suppose we have two groupsG,H and a homomorphismρ : G →
Aut(H). Then we can form a new group calledthe semi–direct product ofG andH
denotedGnH whose elements are the elements ofG×H and multiplication is given by

m((g1, h1), (g2, h2)) = (g1g2, h1ρ(g1)(h2))

Observe thatH is a normal subgroup ofGnH, and there is an exact sequence

1→ H → GnH → G→ 1

Example1.33. The dihedral groupDn is equal toZ/2Z n Cn where the homomorphism
ρ : Z/2Z→ Aut(Cn) takes the generator ofZ/2Z to the automorphismω → ω−1, where
ω denotes the generator ofCn.

Example1.34. The groupZ/2Z n R where the nontrivial element ofZ/2Z acts onR
by x → −x is isomorphic to the group ofisometries(i.e. 1–1 and distance preserving
transformations) of the real line. It containsD∞ as a subgroup.

Exercise 1.35. Find an action ofZ/2Z on the groupS1 so thatDn is a subgroup of
Z/2Z n S1 for everyn.

Example1.36. The group whose elements consist of words in the alphabeta, b, A,B sub-
ject to the equivalence relation that when one ofaA,Aa, bB,Bb appear in a word, they
may be removed, so for example

aBaAbb ∼ aBbb ∼ ab

A word in which none of these special subwords appears is calledreduced; it is clear that
the equivalence classes are in1–1 correspondence with reduced words. Multiplication is
given by concatenation of words. The identity is the empty word,A = a−1, B = b−1. In
general, the inverse of a word is obtained by reversing the order of the letters and changing
the case. This is called thefree groupF2 on two generators, in this case the lettersa, b.
It is easy to generalize to thefree groupFn on n generators, given by words in letters
a1, . . . , an and their “inverse letters”A1, . . . , An. One can also denote the lettersAi by
the “letters”a−1

i .

Exercise 1.37.LetG be an arbitrary group andg1, g2 . . . gn a finite subset ofG. Show
that there is auniquehomomorphism fromFn → G sendingai → gi.
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Example1.38. If we have an alphabet consisting of lettersa1, . . . , an and their inverses,
we can consider a collection of words in these lettersr1, . . . , rm. If R denotes the subgroup
of Fn generated by theri and all their conjugates, thenR is a normal subroup ofFn and
we can form the quotientFn/R. This is denoted by

〈a1, . . . , an|r1, . . . , rm〉
and an equivalent description is that it is the group whose elements are words in theai
and their inverses modulo the equivalence relation that two words are equivalent if they
are equivalent in the free group, or if one can be obtained from the other by inserting or
deleting someri or its inverse as a subword somewhere. Theai are thegeneratorsand
theri therelations. Groups defined this way are very important in topology. Notice that a
presentationof a group in terms of generators and relations is far from unique.

Definition 1.39. A groupG is finitely generatedif there is a finite subset ofG which
generatesG. This is equivalent to the property that there is a surjective homomorphism
from someFn to G. A groupG is finitely presentedif it can be expressed as〈A|R〉 for
some finite set of generatorsA and relationsR.

Exercise 1.40.LetG be any finite group. Show thatG is finitely presented.

Exercise 1.41. Let F2 be the free group on generatorsx, y. Let i : F2 → Z be the
homomorphism which takesx → 1 and y → 1. Show that the kernel ofi is not finitely
generated.

Exercise 1.42.(Harder). Leti : F2 ⊕ F2 → Z be the homomorphism which restricts on
either factor toi in the previous exercise. Show that the kernel ofi is finitely generated but
notfinitely presented.

Definition 1.43. Given groupsG,H the free product ofG andH, denotedG ∗H, is the
group of words whose letters alternate between elements ofG andH, with concatenation as
multiplication, and the obvious proviso that the identity is in eitherG orH. It is the unique
group with theuniversal propertythat there are injective homomorphismsiG : G→ G∗H
andiH : H → G ∗H, and given any other groupI and homomorphismsjG : G→ I and
jH : H → I there is auniquehomomorphismc fromG ∗H to I satisfyingc ◦ iG = jG
andc ◦ iH = jH .

Exercise 1.44.Show that∗ defines an associative and commutative product on groups up
to isomorphism, and

Fn = Z ∗ Z ∗ · · · ∗ Z
where we taken copies ofZ in the product above.

Exercise 1.45.Show thatZ/2Z ∗ Z/2Z ∼= D∞.

Remark1.46. Actually, one can extend∗ to infinite (even uncountable) products of groups
by the universal property. If one has an arbitrary setS thefree group generated byS is the
free product of a collection of copies ofZ, one for each element ofS.

Exercise 1.47.(Hard). Every subgroup of a free group is free.

Definition 1.48. A topological groupis a group which is also a space (i.e. we understand
what continuous maps of the space are) such thatm : G × G → G andi : G → G, the
multiplication and inverse maps respectively, arecontinuous. If G is a smooth manifold
(see appendix for definition) and the mapsm andi are smooth maps, thenG is called aLie
group.
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Remark1.49. Actually, the usual definition of Lie group requires thatG be areal analytic
manifoldand that the mapsm and i be real analytic. A real analytic manifold is like a
smooth manifold, except that the co–ordinate transformations between charts are required
to be real analytic, rather than merely smooth. It turns out that anyconnected, locally
connected, locally compact(see appendix for definition) topological group is actually a
Lie group.

2. MODEL GEOMETRIES IN DIMENSION TWO

2.1. The Euclidean plane.

2.1.1. Euclid’s axioms.

Notation 2.1. The Euclidean plane will be denoted byE2.

Euclid, who taught at Alexandria in Egypt and lived from about 325 BC to 265 BC,
is thought to have written 13 famous mathematical books called theElements. In these
are found the earliest (?) historical example of theaxiomatic method. Euclid proposed
5 postulates or axioms of geometry, from which all true statements about the Euclidean
plane were supposed to inevitably follow. These axioms were as follows:

(1) A straight line segment can be drawn joining any two points.
(2) Any straight line segment is contained in a unique straight line.
(3) Given any straight line segment, a circle can be drawn having the segment as radius

and one endpoint as center.
(4) All right angles are congruent.
(5) One and only one line can be drawn through a point parallel to a given line.

The termspoint, line, planeare supposed to be primitive concepts, in the sense that they
can’t be described in terms of simpler concepts. Since they are not defined, one is not
supposed to use one’s personal notions or intuitions about these objects to prove theorems
about them; one strategy to achieve this end is to replace the terms by other terms (Hilbert’s
suggestion isglass, beer mat, table; Queneau’s isword, sentence, paragraph) or even
nonsense terms. The point is not that intuition is worthless (it isnot), but that by proving
theorems about objects by only using the properties expressed in a list of axioms, the proof
immediately applies to any other objects which satisfy the same list of axioms, including
collections of objects that one might not have originally had in mind. In this way, our
ordinary geometric intuitions of space and movement can be used to reason about objects
far from our immediate experience. One important remark to make is that, by modern
standards, Euclid’s foundations are far from rigorous. For instance, it is implicit in the
statement of the axioms thatangles can be added, but nowhere is it said what properties
this addition satisfies; angles arenotnumbers, neither are lengths, but they have properties
in common with them.

2.1.2. A closer look at the fourth postulate.Notice that Euclid does not define “congru-
ence”. A working definition is that two figuresX andY in a spaceZ arecongruentif there
is a transformation ofZ which takesX to Y . But which transformations are allowed? By
including certain kinds of transformations and excluding others, we can drastically affect
the flavor of the geometry in question. If not enough transformations are allowed, distinct
objects are incomparable and one cannot say anything meaningful about them. If too many
transformations are allowed, differences collapse and the supply of distinct objects to in-
vestigate dries up. One way of reformulating the fourth postulate is to say that space is
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homogeneous: that is, the properties of an object do not depend on where it is placed in
space. Most of the spaces we will encounter in the sequel will be homogeneous.

2.1.3. A closer look at the parallel postulate.The fifth axiom above is also known as the
parallel postulate. To decode it, one needs a workable definition of parallel. The “usual”
definition is that two distinct lines are parallel if and only if they do not intersect. So the
postulate says that given a linel and a pointp disjoint from l, there is a unique linelp
throughp such thatlp andl are disjoint. Historically, this axiom was seen as unsatisfying,
and much effort was put into attempts to show that it followed inevitably as a consequence
of the other four axioms. Such an attempt was doomed to failure, for the simple reason
that there are interpretations of the “undefined concepts” point, line, plane which satisfy
the first four axioms but which donot satisfy the fifth. If we say that givenl andp there
is no line lp throughp which does not intersectl, we getelliptic geometry. If we say that
given l andp there areinfinitely manylines lp throughp which do not intersectl, we get
hyperbolic geometry. Together with Euclidean geometry, these geometries will be the main
focus of this course.

2.1.4. Symmetries ofE2. What are the “allowable” transformations in Euclidean geome-
try? That is, what are the transformations ofE2 which preserve the geometrical properties
which characterize it? These special transformations are called thesymmetries(also called
automorphisms) of E2; they form agroup, which we will denote by Aut(E2). A symmetry
of E2 takes lines to lines, and preserves angles, but a symmetry ofE

2 doesnot have to
preserve lengths. A symmetry can either preserve or reverse orientation. Basic symmetries
includetranslations, rotations, reflections, dilations. It turns out that all symmetries ofE2

can be expressed as simple combinations of these.

Exercise 2.2.Letf : E2 → E
2 be orientation–reversing. Show that there is a unique line

l such thatf can be written asg ◦ r wherer is a reflection inl andg is an orientation–
preserving symmetry which fixesl, in which caseg is either a translation parallel tol or a
dilation whose center is onl. A reflection inl followed by a translation parallel tol is also
called aglide reflection.

Denote by Aut+(E2) the orientation–preserving symmetries, and by Isom+(E2) the
orientation–preserving symmetries which are also distance–preserving.

Exercise 2.3.Supposef : E2 → E
2 is in Aut+(E2) but not in Isom+(E2). Then there is a

unique pointp fixed byf , and we can writef asr ◦ d whered is a dilation with centerp
andr is a rotation with centerp.

Exercise 2.4.Supposef ∈ Isom+(E2). Then eitherf is a rotation or a translation, and it
is a translation exactly when it does not have a fixed point. In either case,f can be written
asr1 ◦ r2 whereri is a reflection in some lineli. f is a translation exactly whenl1 and l2
are parallel.

These exercises show that any distance–preserving symmetry can be written as a prod-
uct of at most3 reflections. An interesting feature of these exercises is that they can be
establishedwithout using the parallel postulate. So they describe true facts (where rele-
vant) about elliptic and about hyperbolic geometry. So, for instance, a distance preserving
symmetry of the hyperbolic plane can be written as a productr1 ◦ r2 of reflections in lines
l1, l2, and this transformation has a fixed point if and only if the linesl1, l2 intersect.

Exercise 2.5. Verify that the group oforientation–preservingsimilarities ofE2 which fix
the origin is isomorphic toC∗, the group of non–zero complex numbers with multiplication
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as the group operation. Verify too that the group of translations ofE
2 is isomorphic toC

with addition as the group operation.

Exercise 2.6.Verify that the group Aut+(E2) of orientation–preserving similarities ofE2 is
isomorphic toC∗nC whereC∗ acts onC by multiplication. In this way identify Aut+(E2)
with the group of2× 2 complex matrices of the form[

α β
0 1

]
and Isom+(E2) with the subgroup where|α| = 1.

2.2. The 2–sphere.

2.2.1. Elliptic geometry.

Notation 2.7. The2–sphere will be denoted byS2.

A very interesting “re–interpretation” of Euclid’s first4 axioms gives us elliptic geom-
etry. A point in elliptic geometry consists oftwo antipodal pointsin S2. A line in elliptic
geometry consists of agreat circlein S2. Theantipodalmapi : S2 → S

2 is the map which
takes any point to its antipodal point. A “line” or “point” with the interpretation above is
invariant (as a set) underi, so we may think of the action as all taking place in the “quotient
space”S2/i. An object in this quotient space is just an object inS2 which is invariant as
a set byi. Any two great circles intersect in a pair of antipodal points, which is a single
“point” in S2/i. If we think of S2 as a subset ofE3, a great circle is the intersection of the
sphere with a plane inE3 through the origin. A pair of antipodal points is the intersection
of the sphere with a line inE3 through the origin. Thus, the geometry ofS2/i is equivalent
to the geometry of planes and lines inE3. A plane inE3 through the origin is perpen-
dicular to a unique line inE3 through the origin, and vice–versa. This defines a “duality”
between lines and points inS2/i; so for any theorem one proves about lines and points in
elliptic geometry, there is an analogous “dual” theorem with the idea of “line” and “point”
interchanged. Letd denote the transformation which takes points to lines and vice versa.

Circles and angles make sense on a sphere, and one sees that the first4 axioms of Euclid
are satisfied in this model.

As distinct from Euclidean geometry where there are symmetries which change lengths,
there is a natural length scale on the sphere. We set the diameter equal to2π.

2.2.2. Spherical trigonometry.An example of this duality (and a justification of the choice
of length scale) is given by the following

Lemma 2.8(Spherical law of sines). If T is a spherical triangle with side–lengthsA,B,C
and opposite anglesα, β, γ, then

sin(A)
sin(α)

=
sin(B)
sin(β)

=
sin(C)
sin(γ)

Notice that the triangled(T ) has side lengths(π − α), (π − β), (π − γ) and angles
(π − A), (π − B), (π − C). Notice too thatsin(t) ≈ t for small t, so that ifT is a
very small triangle, this formula approximates the sine rule for Euclidean space. LetS

2
t

denote the sphere scaled to have diameter2πt; then the termsin(A)
sin(α) in the spherical sine

rule should be replaced witht sin(t−1A)
sin(α) . In this way we may think ofE2 as the “limit” as

t→∞ of S2.
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Exercise 2.9.Prove the spherical law of sines. Think of the sides ofT as the intersection
ofS2 with planesπi through the origin inE3, intersecting in linesli in E3. Then the lengths
A,B,C are the angles between theli and the anglesα, β, γ are the angles between the
planesπi.

2.2.3. The area of a spherical triangle.If L is a lune ofS2 between the longitude0 and
the longitudeα, then the area ofL is 2α.

Now, letT be an arbitrary spherical triangle. IfT is bounded by sidesli which meet
at verticesvi then we can extend the sidesli to great circles which cut upS2 into eight
regions. Each pair of lines bound two lunes, and the six lunes so produced fall into two
sets of three which intersect exactly along the triangleT and the antipodal trianglei(T ). It
follows that we can calculate the area ofS as follows

4π = area(S2) =
∑

area(lunes)− 4 area(T ) = 4(α+ β + γ)− 4 area(T )

In particular, we have the beautiful formula, which is a special case of the Gauss–Bonnet
theorem:

Theorem 2.10. LetT be a spherical triangle with anglesα, β, γ. Then

area(T ) = α+ β + γ − π

Notice that asT gets very small and the area→ 0, the sum of the angles ofT approach
π. Thus in the limit, we have Euclidean geometry in which the sum of the angles of
a triangle areπ. The angle formula for Euclidean triangles is equivalent to the parallel
postulate.

Exercise 2.11.Derive a formula for the area of a spherical polygon withn vertices in
terms of the angles.

Exercise 2.12.Using the spherical law of sines and the area formula, calculate the area
of a regular sphericaln–gon with sides of lengtht.

2.2.4. Kissing numbers — the Newton–Gregory problem.How many balls of radius1 can
be arranged inE3 so that they all touch a fixed ball of radius1? It is understood that the
balls are non–overlapping, but they may touch each other at a single point; figuratively,
one says that the balls are “kissing” or “osculating” (from the Latin word for kiss), and that
one wants to know thekissing numberin 3–dimensions.

Exercise 2.13.What is the kissing number in2–dimensions? That is, how many disks of
radius1 can be arranged inE2 so that they all touch a fixed disk of radius1?

This question first arose in a conversation between Isaac Newton and David Gregory in
1694. Newton thought12 balls was the maximum; Gregory thought 13 might be possible.
It is quite easy to arrange12 balls which all touch a fixed ball — arrange the centers at
the vertices of a regular icosahedron. If the distance from the center of the icosahedron
to the vertices is2, it turns out the distance between adjacent vertices is≈ 2.103, so this
configuration can be physically realized (i.e. there is no overlapping). The problem is that
there is some slack in this configuration — the balls roll around, and it is unclear whether
by packing them more tightly there would be room for another ball.

Suppose we have a configuration of non–overlapping spheresSi all touching the central
sphereS. Letvi be the points onS where they all touch. The non–overlapping condition is
exactly equivalent to the condition that no two of thevi are a distance of less thanπ3 apart.
If some of theSi are loose, roll them around on the surface until they come into contact
with otherSj ; it’s clear that we can roll “loose”Si around until everySi touchesat least
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two otherSj , Sk. If Si touchesSj1 , . . . , Sjn then joinvi to vj1 , . . . , vjn by segments of
great circles onS. This gives a decomposition ofS into spherical polygons, every edge of
which has lengthπ3 . It’s easy to see that no polygon has6 or more sides (why?).

Let fn be the number of faces withn sides. Then there are32f3 +2f4 + 5
2f5 edges, since

every edge is contained in two faces. Recall Euler’s formula for a polygonal decomposition
of a sphere

faces− edges+ vertices= 2
so the number of vertices is2 + 1

2f3 + f4 + 3
2f5

Exercise 2.14.Show that the largest spherical quadrilateral or pentagon with side lengths
π
3 is the regular one. Use your formula for the area of such a polygon and the fact above
to show that the kissing number is12 in 3–dimensions. This was first shown in the 19th
century.

Exercise 2.15.Show what we have implicitly assumed: namely that a connected nonempty
graph inS2 with embedded edges, and no vertices of valence1, has polygonal complemen-
tary regions.

Remark2.16. In 1951 Schutte and van der Waerden ([8]) found an arrangement of 13 unit
spheres which touches a central sphere of radiusr ≈ 1.04556 wherer is a root of the
polynomial

4096x16 − 18432x12 + 24576x10 − 13952x8 + 4096x6 − 608x4 + 32x2 + 1

This r is thought to be optimal.

2.2.5. Reflections, rotations, involutions;SO(3). By thinking of S2 as the unit sphere in
E

3, and by thinking of points and lines inS2 as the intersection of the sphere with lines and
planes inE3 we see that symmetries ofS2 extend to linear maps ofE3 to itself which fix
the origin. These are expressed as3 × 3 matrices. The condition that a matrixM induce
a symmetry ofS2 is exactly that it preserves distances onS2; equivalently, it preserves the
angles between lines through the origin inE3. Consequently, it takes orthonormal frames
to orthonormal frames. (Aframeis another word for abasis.)

Any frame can be expressed as a3 × 3 matrixF , where the columns give each of the
vectors.F is orthonormal ifF tF = id. If M preserves orthonormality, thenF tM tMF =
id for every orthonormalF ; in particular,M tM = FF t = id. Observe that each of these
transformations actually induces a symmetry ofS

2; in particular, we can identify the set of
symmetries ofS2 with the set of orthonormal frames inE3, which can be identified with
the set of3×3 matricesM satisfyingM tM = id. It is easy to see that such matrices form
a group, known as theorthogonal groupand denotedO(3). Thesubgroupof orientation–
preserving matrices (those with determinant1) are denotedSO(3) and called thespecial
orthogonal group.

Exercise 2.17.Show that every element ofO(3) has an eigenvector with eigenvalue1 or
−1. Deduce that a symmetry ofS2 is either a rotation, a reflection, or a products◦r where
r is reflection in some great circlel ands is a rotation which fixes that circle. (How is this
like a “glide reflection”?) In particular, every symmetry ofS2 is a product of at most three
reflections. Compare with the Euclidean case.

2.2.6. Algebraic groups.Once we have “algebraized” the geometry ofS
2 by comparing it

with the group of matricesO(3) we can generalize in unexpected ways. LetA denote the
fieldof real algebraic numbers. That is, the elements ofA are the real roots of polynomials
with rational coefficients. Ifa, b ∈ A andb 6= 0 thena+ b, a− b, ab, a/b are all inA (this
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is the defining property of a field). There is a natural subgroup ofO(3) denotedO(3,A)
called the3–dimensional orthogonal group overA which consists of the3× 3 matricesM
with entries inA satisfyingM tM = id. Observe that this, too is a group. Ifp = (0, 0, 1)
we can consider the subsetS2(A), the set of points inS2 which are translates ofp by
elements ofO(3,A).

We think ofS2(A) as the points in a funny kind of space. Let

S1(A) = S2(A) ∩ {z = 0}

and define the set oflines in S2(A) as the translates ofS1(A) by elements ofO(3,A).
First observe that ifq, r are any two points inS2(A) thought of as vectors inE3 then the

length of their vector cross–product is inA. If q, r are two points inS2(A) then together
with 0 they lie on a planeπ(q, r). Then the triple(

q, q × q × r
‖q × r‖

,
q × r
‖q × r‖

)
is an orthonormal frame with co–ordinates inA. If we think of this triple as an element of
O(3,A) then the image ofS1(A) containsq andr. Thus there is a “line” inS2(A) through
q andr. (Here× denotes the usual cross product of vectors.)

Exercise 2.18.Show that the setS2(A) is exactly the set of points inS2 ⊂ E3 with co–
ordinates inA.

Exercise 2.19.Explore the extent to which Euclid’s axioms hold or fail to hold forS2(A)
or S2(A)/i. What if one replacesA with another field, likeQ?

Let O(2,A) be the subgroup ofO(3,A) which fixes the vectorp = (0, 0, 1). Then if
M ∈ O(2,A) andN ∈ O(3,A), N(p) = NM(p). So we can identifyS2(A) with the
quotient spaceO(3,A)/O(2,A), which is the set of equivalence classes[N ] whereN ∈
O(3,A) and[N ] ∼ [N ′] if and only if there is aM ∈ O(2,A) withN = N ′M . In general,
if F denotes an arbitrary field, we can think of the groupO(3, F ) as the set of3×3 matrices
with entries inF such thatM tM = id. This containsO(2, F ) naturally as the subgroup
which fixes the vector(0, 0, 1), and we can study the quotient spaceO(3, F )/O(2, F ) as a
geometrical space in its own right. Notice thatO(3, F ) acts by symmetries on this space,
byM · [N ]→ [MN ]. The quotient space is called ahomogeneous space ofO(3, F ).

Exercise 2.20.Let F be the field of integers modulo multiples of2. What is the group
O(3, F )? How many points are in the spaceO(3, F )/O(2, F )?

In general, if we have a group of matrices defined by some algebraic condition, for

instancedet(M) = 1 orM tM = id orM tJM = J for J =
[

0 I
−I 0

]
etc. then we can

consider the group of matrices satisfying the condition with coefficients in some field. This
is called analgebraic group. Many properties of certain algebraic groups are independent
of the coefficient field. An algebraic group over a finite field is a finite group; such finite
groups are very important, and form the building blocks of “most” of finite group theory.

2.2.7. Quaternions and the groupS3. Recall that thequaternionsare elements of the4–
dimensional real vector space spanned by1, i, j, k with multiplication which is linear in
each factor, and on the basis elements is given by

ij = k, jk = i, ki = j, i2 = j2 = k2 = −1
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This multiplication is associative. Thenormof a quaternion, denoted by

‖a1 + a2i+ a3j + a4k‖ = (a2
1 + a2

2 + a2
3 + a2

4)1/2

is equal to the length of the corresponding vector(a1, a2, a3, a4) in R4. Norms are mul-
tiplicative. That is,‖αβ‖ = ‖α‖‖β‖. The non–zero quaternions form agroup under
multiplication; the unit quaternions, which correspond exactly the to the unit length vec-
tors inR4, are a subgroup which is denotedS3. Letπ be the set of quaternions of the form
1 + ai+ bj + ck. Thenπ is a copy ofR3, and is thetangent spaceto the sphereS3 of unit
norm quaternions at1. The groupS acts onπ by

α · z = α−1zα

for z ∈ π. Since it preserves lengths, the image is isomorphic to a subgroup ofSO(3,R),
which can be thought of as the group of orthogonal transformations ofπ. In fact, this
homomorphism issurjective. Moreover, the kernel is exactly the center ofS3, which is
±1. That is, we have the isomorphismS3/± 1 ∼= SO(3,R).

Exercise 2.21.Write down the formula for an explicit homomorphism, in terms of standard
quaternionic co–ordinates forS3 and matrix co–ordinates forSO(3,R).

In general, the conjugation action of a Lie group on its tangent space at the identity is
called theadjoint actionof the group. Since the group of linear transformations of this
vector space is a matrix group, this gives a homomorphism of the Lie group to a matrix
group.

2.3. The hyperbolic plane.

2.3.1. The problem of models.

Notation 2.22. The hyperbolic plane will be denoted byH2.

The sphere is relatively easy to understand and visualize because there is a very nice
model of it in Euclidean space: the unit sphere inE3. Symmetries of the sphere extend
to symmetries of the ambient space, and distances and angles in the sphere are what one
expects from the ambient embedding. No such model exists of the hyperbolic plane. Bits of
the hyperbolic plane can be isometrically (i.e. in a distance–preserving way) embedded, but
not in such a way that the natural symmetries of the plane can be realized as symmetries of
the embedding. However, if we are willing to look at embeddings which distort distances,
there are some very nice models of the hyperbolic plane which one can play with and get
a good feel for.

2.3.2. The Poincaŕe Model: Suppose we imagine the world as being circumscribed by the
unit circle in the plane. In order to prevent people from falling off the edge, we make
the edges very cold. As everyone knows, objects shrink when they get cold, so people
wandering around on the disk would get smaller and smaller as they approached the edge,
so that its apparent distance (to them) would get larger and larger and they could never
reach it. Technically, the “length elements” at the point(x, y) are(

2dx
(1− x2 − y2)

,
2dy

(1− x2 − y2)

)
or in polar co–ordinates, the “length elements” at the pointr, θ are(

2dr
(1− r2)

,
2rdθ

(1− r2)

)
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This is called thePoincaŕe metricon the unit disk, and the disk with this metric is called
the Poincaŕe model of the hyperbolic plane. With this choice of metric, the length of a
radial line from the origin to the point(r1, 0) is∫ r1

0

2dr
(1− r2)

= log

(
1 + r

1− r

)∣∣∣∣∣
r1

0

= log

(
1 + r1

1− r1

)
If γ is any other path from the origin to(r1, 0) whose Euclidean length isl, then its length
in the hyperbolic metric is

hyperbolic length ofγ =
∫ l

0

2dt
(1− r2(γ(t)))

wherer(γ(t)) is the distance from the pointγ(t) to the origin. Obviously,l ≥ r1 and
r(γ(t)) ≤ t with equality if and only ifγ is a Euclidean straight line. This implies that the
shortest curvein the hyperbolic metricfrom the origin to a point in the disk is the Euclidean
straight line.

Notice that for a pointp at Euclidean distanceε from the boundary circle, the ratio of
the hyperbolic to the Euclidean metric is

2
1− (1− ε)2

≈ 1
ε

for sufficiently smallε.

Exercise 2.23.(Hard). LetE be a simply–connected (i.e. without holes) domain inR2

bounded by a smooth curveγ. Define a “metric” onE as follows. Letf be a smooth,
nowhere zero function onE which is equal to 1

dist(p,γ) for all p sufficiently close toγ. Let
the length elements onE be given by(dxf, dyf) where(dx, dy) are the usual Euclidean
length elements. Show that there is a continuous,1–1 mapφ : E → D which distorts the
lengths of curves by a bounded amount. That is, there is a constantK > 0 such that for
any curveα in E,

1
K

lengthD(φ(α)) ≤ lengthE(α) ≤ K lengthD(φ(α))

Definition 2.24. The circle∂D is called thecircle at infinityof D, and is denotedS1
∞. A

point inS1
∞ is called anideal point.

Now think of the unit diskD as the set of complex numbers of norm≤ 1. Letα, β be
two complex numbers with|α|2 − |β2| = 1. The set of matrices of the form

M =
[
α β̄
β ᾱ

]
form a group, called thespecial unitary groupSU(1, 1). This is exactly the group of
complex linear transformations ofC2 which preserves the functionv(z, w) = |z|2 − |w|2

and have determinant1. These are the matricesM of determinant1 satisfyingM
t
JM = J

whereJ =
[
1 0
0 −1

]
.

Exercise 2.25.DefineU(1, 1) to be the group of2×2 complex matricesM withM
t
JM =

J with J as above, and no condition on the determinant. Find the most general form of a
matrix inU(1, 1). Show that these are exactly the matrices whose column vectors are an
orthonormal basis for the “norm” defined byv.
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Now, there is a natural action ofSU(1, 1) onD by[
α β̄
β ᾱ

]
· z → αz + β̄

βz + ᾱ

Observe that two matrices which differ by±1 act onD in the same way. So the action
descends to the quotient groupSU(1, 1)/ ± 1 which is denoted byPSU(1, 1) for the
projective special unitary group.

Observe that this transformation preserves the boundary circle. Furthermore it takes
lines and circles to lines and circles, and preserves angles of intersection between them; in
particular, it permutes segments of lines and circles perpendicular to∂D.

Exercise 2.26.Show that there is a transformation inPSU(1, 1) taking any point in the
interior ofD to any other point.

Exercise 2.27.Show that the subgroup ofPSU(1, 1) fixing any point is isomorphic to a
circle. Deduce that we can identifyD with the coset spacePSU(1, 1)/S1; i.e. D is a
homogeneous space forPSU(1, 1).

Exercise 2.28.Show that the action ofPSU(1, 1) preserves the Poincaré metric inD2.
Deduce that the shortest hyperbolic path between any two points is through an arc of a
circle orthogonal to∂D or, if the points are on the same diameter, by a segment of this
diameter.

2.3.3. The upper half–space model.Theupper half–space, denotedH, is the set of points
x, y ∈ R2 with y > 0. Suppose now that the real line is chilled, so that distances in
this model are scaled in proportion to the distance to the boundary. That is, in(x, y) co–
ordinates the “length elements” of the metric are(

dx

y
,
dy

y

)
Observe that translations parallel to thex–axis preserve the metric, and are therefore isome-
tries. Also, dilations centered at points on thex–axis preserve the metric too. The length
of a vertical line segment from(x, y1) to (x, y2) is∫ y2

y1

dy

y
= log

y2

y1

A similar argument to before shows that this is the shortest path between these two points.
The group of2×2 matrices with real coefficients and determinant1 is called thespecial

linear group, and denotedSL(2,R) or SL(2) if the coefficients are understood. These
matrices act on the upper half–plane, thought of as a domain inC, by[

α β
γ δ

]
· z → αz + β

γz + δ

Again, two matrices which differ by a constant multiple act onH in the same way, so the
action descends to the quotient groupSL(2,R)/ ± 1 which is denoted byPSL(2,R) for
theprojective special linear group.

As before, these transformations take lines and circles to lines and circles, and preserve
the real line.

Exercise 2.29.Show that the action ofPSL(2,R) preserves the metric onH. Deduce that
the shortest hyperbolic path between any two points in the upper half–space is through an
arc of a circle orthogonal toR or, if the points are on the same vertical line, through a
segment of this line.
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Exercise 2.30.Find a transformation fromD to H which takes the Poincaré metric on
the disk to the hyperbolic metric onH. Deduce that these models describe “the same”
geometry. Find an explicit isomorphismPSL(2,R) ∼= PSU(1, 1).

2.3.4. The hyperboloid model.In R3 letH denote the sheet of the hyperboloidx2 + y2 −
z2 = −1 with z positive. LetO(2, 1) denote the set of3 × 3 matrices with real entries
which preserve the functionv(x, y, z) = x2 + y2 − z2, andSO(2, 1) the subgroup with
determinant1. Equivalently,O(2, 1) is the group of real matricesM such thatM tJM = J
where

J =

1 0 0
0 1 0
0 0 −1


ThenSO(2, 1) preserves the sheetH.

Definition 2.31. A vector v in R3 is timelike if vtJv < 0, spacelikeif vtJv > 0 and
lightlike if vtJv = 0. TheLorentz lengthof a vector is(vtJv)1/2, denoted‖v‖, and can
be positive, zero, or imaginary. Thetimelike anglebetween two timelike vectorsv, w is

η(v, w) = cosh−1

(
vtJw

‖v‖ ‖w‖

)
Compare this with the usual angle between two vectors inR

3:

ν(v, w) = cos−1

(
vtw

‖v‖ ‖w‖

)
where in this equation‖·‖ denotes the usual length of a vector. Notice thatH is exactly the
set of vectors of Lorentz lengthi, just asS2 is the set of vectors of usual length1 (this has
led some people to comment that the hyperbolic plane should be thought of as a “sphere of
imaginary radius”). Since distances between points inS

2 are defined as the angle between
the vectors, it makes sense to define distances inH as the timelike angle between vectors.
For two vectorsv, w ∈ H the formula above simplifies to

η(v, w) = cosh−1(−vtJw)

Exercise 2.32.LetK be the group of matrices of the form cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1


andA the group of matrices of the formcosh(γ) 0 sinh(γ)

0 1 0
sinh(γ) 0 cosh(γ)


Show that every element ofSO(2, 1) can be expressed ask1ak2 for somek1, k2 ∈ K and
a ∈ A; that is, we can writeSO(2, 1) = KAK. How unique is such an expression?

Notice the groupK above is precisely the stabilizer of the point(0, 0, 1) ∈ H. Thus we
can identifyH with the homogeneous spaceSO(2, 1)/K.

Exercise 2.33.LetK ′ be the subgroup ofPSL(2,R) consisting of matrices of the form[
cos(α) sin(α)
− sin(α) cos(α)

]
andA′ the subgroup of matrices of the form

[
s 0
0 s−1

]
. Find an
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isomorphism fromSO(2, 1) to PSL(2,R) takingK to K ′ andA to A′. (Careful! The
isomorphismK → K ′ might not be the one you first think of . . .)

Remark2.34. The isomorphismsPSU(1, 1) ∼= PSL(2,R) ∼= SO(2, 1) are known as
exceptional isomorphisms, and one should not assume that the matter is so simple in higher
dimensions. Such exceptional isomorphisms are rare and are a very powerful tool, since
difficult problems about one of the groups can become simpler when translated into a
problem about another of the groups.

After identifyingPSL(2,R) with SO(2, 1) we can identify their homogeneous spaces
PSL(2,R)/K ′ andSO(2, 1)/K. This identification ofH with H shows thatH is an
equivalent model of the hyperbolic plane. The straight lines inH are the intersection of
planes inR3 through the origin withH. In many ways, the hyperboloid model of the
hyperbolic plane is the closest to the model ofS

2 as the unit sphere inR3.

Exercise 2.35.Show that the identification ofH withH preserves metrics.

Two vectorsv, w ∈ R3 areLorentz orthogonalif vtJw = 0. It is easy to see that ifv is
timelike, any orthogonal vectorw is spacelike. Ifv ∈ H andw is a tangent vector toH at
v, thenvtJw = 0, since the derivativeddt‖v + tw‖ should be equal to0 at t = 0 (by the
definition of a tangent vector). For two spacelike vectorsv, w which span a spacelike vector
space, the value ofv

tJw
‖v‖ ‖w‖ < 1, soη(v, w) is an imaginary number. Thespacelike angle

betweenv andw is defined to be−iη(v, w). It is a fact that the hyperbolic angle between
two tangent vectors at a point inH is exactly equal to their spacelike angle. The “proof”
of this fact is just that the symmetries of the spaceH preserve this spacelike angle, and
the total spacelike angle of a circle is2π. Since these two properties uniquely characterize
hyperbolic angles, the two notions of angle agree.

The fact that hyperbolic lengths and angles can be expressed so easily in terms of
trigonometric functions and linear algebra makes the hyperboloid model the model of
choice for doing hyperbolic trigonometry.

2.3.5. The Klein (projective) model.Let D1 be the disk consisting of points inR3 with
x2 +y2 ≤ 1 andz = 1. Then we can projectH toD1 along rays inR3 which pass through
the origin.

Exercise 2.36.Verify that this stereographic projection is1–1 and onto.

This projection takes the straight lines inH to (Euclidean) straight lines inD1. This
gives us a new model of the hyperbolic plane as the unit disk, whose points are usual
points, and whose lines are exactly the segments of Euclidean lines which intersectD1.
One should be wary that Euclidean angles in this model do not accurately depict the true
hyperbolic angles. In this model, two linesl1, l2 are perpendicular under the following
circumstances:

• If l1 passes through the origin,l2 is perpendicular tol1 if any only if it is perpen-
dicular in the Euclidean sense.
• Otherwise, letm1,m2 be the two tangent lines to∂D1 which pass through the

endpoints ofl1. Thenl1 andl2 are perpendicular if and only ifl2,m1,m2 intersect
in a point.

Exercise 2.37.Verify thatl1 is perpendicular tol2 if and only ifl2 is perpendicular tol1.

It is easy to verify in this model that all Euclid’s axioms but the fifth are satisfied.
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The relationship between the Klein model and the Poincaré model is as follows: we
can map the Poincaré disk to the northern hemisphere of the unit sphere by stereographic
projection. This preserves angles and takes lines and circles to lines and circles. In this
model, the straight lines are exactly the arcs of circles perpendicular to the equator. Then
the Klein model and this (curvy) Poincaré model are related by placing thinking of the
Klein disk as the flat Euclidean disk spanning the equator, and mappingD1 to the upper
hemisphere by projecting points along lines parallel to thez–axis. This takes lines inD1

to the intersection of the upper hemisphere with vertical planes. These intersections are
the circular arcs which are perpendicular to the equator, so this map takes straight lines to
straight lines as it should.

Exercise 2.38.Write down the metric inD1 for the Klein model. Using this formula,
calculate the hyperbolic distance between the center and a point at radiusr1 in D1.

Exercise 2.39.Show thatPappus’ theoremis true in the hyperbolic plane; this theorem
says that ifa1, a2, a3 and b1, b2, b3 are points in two linesl1 and l2, then the six line
segments joining theai to thebj for i 6= j intersect in three points which are collinear.

2.3.6. Hyperbolic trigonometry.Hyperbolic and spherical geometry are two sides of the
same coin. For many theorems in spherical geometry, there is an analogous theorem in
hyperbolic geometry. For instance, we have the

Lemma 2.40(Hyperbolic law of sines). If T is a hyperbolic triangle with sides of length
A,B,C opposite anglesα, β, γ then

sinh(A)
sin(α)

=
sinh(B)
sin(β)

=
sinh(C)
sin(γ)

Exercise 2.41. Prove the hyperbolic law of sines by using the hyperboloid model and
trying to imitate the vector proof of the spherical law of sines.

2.3.7. The area of a hyperbolic triangle.The parallels between spherical and hyperbolic
geometry are carried further by the theorem for the area of a hyperbolic triangle. We relax
slightly the notion of a triangle: we allow some or all of the vertices of our triangle to be
ideal points. If all three vertices are ideal, we say that we have anideal triangle. Notice
that since every hyperbolic straight line is perpendicular toS1

∞, the angle of a triangle at
an ideal point is0.

Theorem 2.42. LetT be a hyperbolic triangle with anglesα, β, γ. Then

area(T ) = π − α− β − γ

Proof: In the upper half–space model, letT be the triangle with one ideal point at∞
and two ordinary points at(cos(α), sin(α)) and(cos(π−β), sin(π−β)) in Euclidean co–
ordinates, whereα, β are both≤ π/2. Such a triangle has angles0, α, β. The hyperbolic
area is ∫ cos(α)

x=cos(π−β)

(∫ ∞
y=1−x2

1
y2
dy

)
dx

=
∫ cos(α)

x=cos(π−β)

1
1− x2

dx

= −cos−1(x)
∣∣∣cos(α)

cos(π−β)
= π − α− β
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In particular, a triangle with one or two ideal points satisfies the formula. Now, for an
arbitrary triangleT with anglesα, β, γ we can dissect an ideal triangles with all angles0
intoT and three triangles, each of which has two ideal points, and whose third angle is one
of π − α, π − β, π − γ. That is,

area(T ) = π − (π − (π − α))− (π − (π − β))− (π − (π − γ)) = π − α− β − γ

2.3.8. Projective geometry.The groupPSL(2,R) acts in a natural way on another space
called theprojective line, denotedRP1. This is the space whose points are the lines through
the origin inR2. Equivalently, this is is the quotient of the spaceR2 − 0 by the equiva-
lence relation that(x, y) ∼ (λx, λy) for anyλ ∈ R∗. The unit circle maps2–1 to RP1,
so one sees thatRP1 is itself a circle. The natural action ofPSL(2,R) on RP1 is the
projectivizationof the natural action ofSL(2,R) onR2. That is,[

α β
γ δ

]
·
[
x
y

]
=
[
αx+ βy
γx+ δy

]
We can write an equivalence class(x, y) unambiguously asx/y, where we write∞

when y = 0; in this way, we can naturally identifyRP1 with R ∪ ∞. One sees that
in this formulation, this is exactly the action ofPSL(2,R) on the ideal boundary ofH2

in the upper half–space model. That is,the geometry ofRP1 is hyperbolic geometry at
infinity. Observe that for any two triples of pointsa1, a2, a3 andb1, b2, b3 in RP1 which
are circularly ordered, there is auniqueelement ofPSL(2,R) taking ai to bi. For a
four–tupleof pointsa1, a2, a3, a4 let γ be the transformation takinga1, a2, a3 to 0, 1,∞.
Thenγ(a4) is an invariant of the4–tuple, called thecross–ratioof the four points, denoted
[a1, a2, a3, a4]. Explicitly,

[a1, a2, a3, a4] =
(a1 − a3)(a2 − a4)
(a1 − a2)(a3 − a4)

The subgroup ofPSL(2,R) which fixes a point inR ∪ ∞ is isomorphic to the group of
orientation preserving similarities ofR, which we could denote by Aut+(R). This group
is isomorphic toR+

n R. whereR+ acts onR by multiplication. We can think ofRP1 as
the homogeneous spacePSL(2,R)/R+

nR.
Projective geometry is the geometry ofperspective. Imagine that we have a transparent

glass pane, and we are trying to capture a landscape by setting up the pane and painting
the scenery on the pane as it appears to us. We could move the pane to the right or left;
this would translate the scene left or right respectively. We could move the pane closer or
further away; this would shrink or magnify the image. Or we could rotate the pane and
ourselves so that the sun doesn’t get in our eyes. The horizon in our picture isRP

1, and the
transformations we can perform on the image is precisely the projective groupPSL(2,R).

2.3.9. Elliptic, parabolic, hyperbolic isometries.There are three different kinds of trans-
formations inPSL(2,R) which can be distinguished by their action onS1

∞.

Definition 2.43. A non–trivial elementα ∈ PSL(2,R) is elliptic, parabolicor hyperbolic
if it has respectively0, 1 or 2 fixed points inS1

∞. These cases can be distinguished by the
property that|tr(γ)| is<,= or> 2, wheretr denotes the trace of a matrix representative
of γ.

An elliptic transformation has a unique fixed point inH2 and acts as a rotation about
that point. A hyperbolic transformation fixes the geodesic running between its two ideal
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fixed points and acts as a translation along this geodesic. Furthermore, the points inH
2

moved the shortest distance by the transformation are exactly the points on this geodesic.
A parabolic transformation has no analogue in Euclidean or Spherical geometry. It

has no fixed point, but moves points an arbitrarily short amount. In some sense, it is
like a “rotation about an ideal point”. Two elliptic elements are conjugate iff they rotate
about their respective fixed points by the same amount. This angle of rotation is equal
to cos−1(|tr(γ)/2|). Two hyperbolic elements are conjugate iff they translate along their
geodesic by the same amount. This translation length is equal tocosh−1(|tr(γ)/2|). If
a, b are any two parabolic elements then eithera and b are conjugate ora−1 and b are
conjugate.

Exercise 2.44.Prove the claims made in the previous paragraph.

Exercise 2.45.Recall the subgroupsK ′ andA′ defined in the prequel. LetN denote the

group of matrices of the form

[
1 t
0 1

]
. Show that every element ofPSL(2,R) can be

expressed askan for somek ∈ K ′, a ∈ A′ andn ∈ N . How unique is this expression?
This is an example of what is known as theKAN or Iwasawa decomposition.

Exercise 2.46. Consider the groupSL(n,R) of n × n matrices with real entries and
determinant1. LetK be the subgroupSO(n,R) of real n × n matricesM satisfying
M tM = id. Let A be the subgroup of diagonal matrices. LetN be the subgroup of
matrices with1’s on the diagonal and0’s below the diagonal. ShowA is abelian andN is
nilpotent. Further,K is compact(see appendix), thought of as a topological subspace of
the spaceRn

2
of n×n matrices. Show that there is aKAN decomposition forSL(n,R).

2.3.10. Horocircular geometry.In the Poincaŕe disk model, the Euclidean circles inD
which are tangent toS1

∞ are special; they are calledhorocirclesand one can think of
them ascircles of infinite radius. If the point of tangency is taken to be∞ in the upper
half–space model, these circles correspond to the horizontal lines in the upper half–plane.
Observe that a parabolic element fixes the family of horocircles tangent to its fixed ideal
point, and acts on each of them by translation.

3. TESSELLATIONS

3.1. The topology of surfaces.

3.1.1. Gluing polygons.Certain computer games get around the constraint of a finite
screen by means of a trick: when a spaceship comes to the left side of the screen, it
disappears and “reappears” on the right side of the screen. Likewise, an asteroid which
disappears beyond the top of the screen might reappear menacingly from the bottom. The
screen can be represented by a square whose sides arelabelled in pairs: the left and right
sides get one label, the top and bottom sides get another label. These labels are instructions
for obtaining an idealized topological space from the flat screen: the left and right sides
can be glued together to make a cylinder, then the top and bottom sides can be glued to-
gether to make a torus (the surface of a donut). Actually, we have to be somewhat careful:
there aretwoways to glue two sides together; an unambiguous instruction must specify the
orientation of each edge.

If we have a collection of polygonsPi to be glued together along pairs of edges, we can
imagine a graphΓ whose vertices are the polygons, and whose edges are the pairs of edges
in the collection. We can glue in any order. If we first glue along the edges corresponding
to a maximal treein Γ, the result of this first round of gluing will produce a connected
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polygon. Thus, without loss of generality, it suffices to consider gluings of the sides of a
single polygon.

Definition 3.1. A surfaceis a2–dimensional manifold. That is, a Hausdorff topological
space with a countable basis, such that every point has a neighborhood homeomorphic to
the open unit disk inR2 (see appendix for definitions). Apiecewise–linear surfaceis a
surface obtained from a countable collection of polygons by glueing together the edges in
pairs, in such a way that only finitely many edges are incident to any vertex.

Exercise 3.2.Why is the finiteness condition imposed on vertices?

The following theorem was proved by T. Rado in 1924 (see [6]):

Theorem 3.3. Any surface is homeomorphic to a piecewise–linear surface. Any compact
surface is homeomorphic to a piecewise–linear surface made from only finitely many poly-
gons.

Definition 3.4. A surface isorientedif there is an unambiguous choice of “top” and “bot-
tom” side of each polygon which is compatible with the glueing. i.e. an orientable surface
is “two–sided”.

3.1.2. The fundamental group.The definition of the fundamental group of a surfaceΣ
requires a choice of abasepointin Σ. Let p ∈ Σ be such a point.

Definition 3.5. DefineΩ1(Σ, p) to be the space of continuous mapsc : S1 → Σ sending
0 ∈ S1 to p ∈ Σ (here we think ofS1 asI/0 ∼ 1). Two such mapsc1, c2 are called
homotopicif there is a mapC : S1 × I → Σ such that

(1) C(·, 0) = c1(·).
(2) C(·, 1) = c2(·).
(3) C(0, ·) = p.

Exercise 3.6. Show that the relation of being homotopic is anequivalence relationon
Ω1(Σ, p).

In fact, Ω1(Σ, p) has the natural structure of a topological space; with respect to this
topological structure, the equivalence classes determined by the homotopy relation are the
path–connected components.

The importance of the relation of homotopy equivalence is that the equivalence classes
form agroup:

Definition 3.7. The fundamental groupof Σ with basepointp, denotedπ1(Σ, p), has as
elements the equivalence classes

π1(Σ, p) = Ω1(Σ, p)/homotopy equivalence

with the group operation defined by

[c1] · [c2] = [c1 ∗ c2]

wherec1 ∗ c2 denotes the mapS1 → Σ defined by

c1 ∗ c2(t) =

{
c1(2t) for t ≤ 1/2
c2(2t− 1) for t ≥ 1/2

where the identity is given by the equivalence class[e] of the constant mape : S1 → p, and
inverse is defined by[c]−1 = [i(c)], wherei(c) is the map defined byi(c)(t) = c(1− t).
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Exercise 3.8.Check that[c][c]−1 = [e] with the definitions given above, so thatπ1(Σ, p)
really is a group.

ForΣ apiecewise–linear surfacewith basepointv a vertex ofΣ, defineO1(Σ) to be the
space of polygonal loopsγ from v to v contained in the edges ofΣ. Such a loop consists
of a sequence of oriented edges

γ = e1, e2, . . . , en

wheree1 starts atv anden ends there, andei ends whereei+1 starts. Letr(e) denote the
same edgee with the opposite orientation. For a polygonal pathγ (not necessarily starting
and ending atv) let γ−1 denote the path obtained by reversing the order and the orientation
of the edges inγ.

One can perform anelementary moveon a polygonal loopγ, which is one of the fol-
lowing two operations:

• If there is a vertexw which is the endpoint of someei, andα is any polygonal
path beginning atw, we can insert or deleteγγ−1 betweenei andei+1. That is,

e1, e2, . . . , ei, γ, γ
−1, ei+1, . . . , en ←→ e1, e2, . . . , en

• If γ is a loop which is the boundary of a polygonal region, and starts and ends at a
vertexw which is the endpoint of someei, then we can insert or deleteγ between
ei andei+1. That is,

e1, e2, . . . , ei, γ, ei+1, . . . , en ←→ e1, e2, . . . , en

Definition 3.9. Define thecombinatorial fundamental groupof Σ, denotedp1(Σ, v), to be
the group whose elements are the equivalence classes

O1(Σ, v)/elementary moves

With the group operation defined by[α][β] = [αβ], where the identity is given by the
“empty” polygonal loop0 starting and ending atv, and with inverse given byi(γ) = γ−1.

Exercise 3.10.Check that the above makes sense, and thatp1(Σ, v) is a group.

Now suppose thatΣ is obtained by glueing up the sides of a single polygonP in pairs.
Suppose further that after the result of this glueing, all the vertices of this polygon are
identified to a single vertexv. Let e1, . . . , en be the edges and

γ = e±1
i1
e±1
i2
. . . e±1

im

the oriented boundary ofP . Then there is a natural isomorphism

p1(Σ, v) = 〈e1, . . . , en|γ〉

that is,p1 can be thought of as the groupgenerated bythe edgesei subject to therelation
defined byγ. Notice that each of theei appears twice inγ, possibly with distinct signs. If
Σ is orientable, eachei appears with opposite signs.

Example3.11. Let T denote the surface obtained by glueing opposite sides of a square
by translation. Thus the edges of the square can be labelled (in the circular ordering) by
a, b, a−1, b−1 and a presentation for the group is

p1(T, v) = 〈a, b|[a, b]〉

It is not too hard to see that this is isomorphic to the groupZ⊕ Z.
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3.1.3. Homotopy theory.The following definition generalizes the notation of homotopy
equivalence of mapsS1 → Σ:

Definition 3.12. Two continuous mapsf1, f2 : X → Y arehomotopicif there is a map
F : X × I → Y satisfyingF (·, 0) = f1 andF (·, 1) = f2. If M ⊂ X andN ⊂ Y with
f1|M = f2|M andfi(M) ⊂ N , thenf1, f2 arehomotopic relative toM if a mapF can
be chosen as above withF (m, ·) constant for everym ∈M .

The set of homotopy classes of maps fromX to Y is usually denoted[X,Y ]. If these
space have basepointsx, y the set of maps takingx to y modulo the equivalence relation
of homotopy relative tox is denoted[X,Y ]0.

We can define a very important category whose objects are topological spaces and
whose morphisms arehomotopy equivalence classes of continuous maps. A refinement
of this category is the category whose objects are topological spaces with basepoints, and
whose morphisms arehomotopy equivalence classes of continuous maps relative to base
points.

Definition 3.13. Thefundamental groupπ1(X,x) of an arbitrary topological space with a
basepointx as the group whose elements are homotopy classes of maps(S1, 0)→ (X,x),
where multiplication is defined by[c1][c2] = [c1 ∗ c2]. In the notation above, the elements
of π1(X,x) correspond to elements of[S1, X]0.

Lemma 3.14. Let f : X → Y be a continuous map takingx to y. Thenf induces a
natural homomorphismf∗ : π1(X,x)→ π1(Y, y).

Definition 3.15. A path–connected spaceX is simply–connectedif π1(X,x) is the trivial
group.

Observe that a path–connected space is simply–connected if and only if every loop in
X can be shrunk to a point.

3.1.4. Simplicial approximation.The following is known as thesimplicial approximation
theorem:

Theorem 3.16. Let K,L be two simplicial complexes. Then any continuous mapf :
K → L is homotopic to asimplicial mapf ′ : K ′ → L whereK ′ is obtained fromK by
subdividing simplices. Furthermore, ifC ⊂ K is a simplicial subset, andf : C → L is
simplicial, then we can requiref ′ to agree withf restricted toC.

Exercise 3.17.Using this theorem, show that by choosingp = v, every continuous map
c : S1 → Σ taking the base point tov is homotopic through basepoint–preserving maps to
a simplicial loopγ ⊂ Σ which begins and ends atv. Moreover, two such simplicial loops
are homotopic if and only if they differ by a sequence of elementary moves. Thus there is a
natural isomorphismπ1(Σ, p) ∼= p1(Σ, v).

This is actually a very powerful observation: the groupπ1(Σ, p) is a priori very difficult
to compute, but manifestly doesn’t depend on a piecewise linear structure onΣ. On the
other hand,p1(Σ, v) is easy to compute (or at least find a presentation for), but it isa priori
hard to see that this group, up to isomorphism, doesn’t depend on the piecewise linear
structure.

Exercise 3.18.SupposeK is a simplicial complex. LetK2 denote the union of the sim-
plices ofK of dimension at most2. Use the simplicial approximation theorem to show that
for any vertexv ofK, π1(K, v) ∼= π1(K2, v).
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3.1.5. Covering spaces.

Definition 3.19. A spaceY is acovering spacefor X if there is a mapf : Y → X (called
acovering projection) with the property that every pointx ∈ X has an open neighborhood
x ∈ U such thatf−1(U) is a disjoint union of open setsUi ⊂ Y , andf maps eachUi
homeomorphically toU . The universal coverof a spaceX (if one exists) is a simply–
connected spacẽX which is a covering space ofX.

An open neighborhoodU of a pointx of the kind provided in the definition is said to
beevenly coveredby its preimagesf−1(U). If X is locally connected, we can assume that
the open neighborhoods which are evenly covered are connected.

For a pathI ⊂ X we can find, for each pointp ∈ I an open neighborhoodUp of
p which is evenly covered. SinceI is compact(see appendix) only finitely many open
neighborhoods are needed to coverI; call theseU1, . . . , Un. If we let V1 denote some
component off−1(U1) which maps homeomorphically toU1. Then there is a unique map
g : I∩U1 → V1 such thatfg = id. Moreover, there is a unique choice ofV2 from amongst
the components off−1(U2) such thatg can be extended tog : I ∩ (U1 ∪ U2) → V1 ∪ V2

with fg = id. Continuing inductively, we see that the choice ofV3, V4, . . . , Vn are all
uniquely determined by the original choiceV1.

Exercise 3.20.Modify the above argument to show that for every mapg : I → X any
everyp ∈ f−1g(0) there is a uniquelift g̃ : I → Y such that̃g(0) = p andfg̃ = g.

Exercise 3.21.Supposeg1, g2 : I → X with g1(0) = g2(0) and g1(1) = g2(1) are
homotopicthrough homotopies which keep the endpoints ofI fixed. Letg̃1 be some lift of
g1. Show that the lift̃g2 of g2 with g̃1(0) = g̃2(0) also satisfies̃g1(1) = g̃2(1), and these
two lifts are also homotopic rel. endpoints. (Hint: letG : I × I → X be a homotopy
betweeng1 and g2. Try to “lift” G to a mapG̃ : I × I → X satisfying appropriate
conditions.)

Let p ∈ X be a basepoint, and let̃p ∈ f−1(p). Then the projectionf : Y → X
induces a homomorphismf∗ : π1(Y, p̃)→ π1(X, p). LetK ⊂ π1(X, p) denote the image
of f∗. Then a loopα : S1 → X with [α] ∈ K can be lifted to a loop̃α : S1 → Y , by
the argument of the previous exercise. Conversely, if two loopsα, β represent the same
element ofK, then their lifts represent the same element ofπ1(Y, p̃). Thus we may identify
π1(Y, p̃) with the subgroupK.

Exercise 3.22.Show that for a spaceZ and a mapg : Z → X there is alift of g to
g̃ : Z → Y with fg̃ = g if and only ifg∗(π1(Z)) ⊂ K.

Definition 3.23. A space issemi–locally simply–connectedif every pointp has a neigh-
borhoodU so that every loop inU can be shrunk to a point in a possibly larger open
neighborhoodV .

Informally, a space is semi–locally simply–connected if sufficiently small loops in the
space are homotopically inessential.

Theorem 3.24.LetX be connected, locally connected and semi–locally simply–connected.
For any subgroupG ⊂ π1(X,x) there is a covering spaceXG of X and a pointy ∈
f−1(x) such thatf∗(π1(XG, y)) = G.

Sketch of proof: Let Ω(X) be the space of pathsγ : I → X which start atx. We
induce an equivalence relation onΩ(X) where we say two pathsγ1, γ2 are equivalent if
[γ−1

2 ∗ γ1] ∈ G. SetXG = Ω(X)/ ∼. SinceX is semi–locally simply connected, for
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sufficiently small pathsγ1, γ2 between pointsx1, x2 ∈ X the loopγ−1
2 ∗γ1 is contractible.

So any two paths which differ only by substitutingγ1 in one forγ2 in the other will be
equivalent inΩ(X), and this says that the equivalence classes ofΩ(X) are parameterized
locally by points inX; that is,XG is a covered space ofX. It can be verified thatXG is
simply connected, and that it satisfies the conditions of the theorem.

Exercise 3.25.Fill in the gaps in the sketch of the proof above.

Exercise 3.26.Show that the universal cover of a spaceX, it if exists, is unique, by using
the lifting property.

3.1.6. Discrete groups.

Definition 3.27. Let Γ be a group of symmetries of a spaceX which is one ofSn,En,Hn

for somen. Γ is properly discontinuousif, for each closed and bounded subsetK of X,
the set ofγ ∈ Γ such thatγ(K) ∩ K 6= ∅ is finite. Γ actsfreely if no γ ∈ Γ has a fixed
point; that is, ifγ(p) = p for anyp, thenγ = id.

For a pointp ∈ X, the subgroup ofΓ which fixesp is called thestabilizerof p, and is
typically denoted byΓ(p). If Γ acts properly discontinuously, thenΓ(p) is finite for anyp.

Definition 3.28. A subgroupΓ of a Lie groupG is discreteif K ∩ Γ is finite for any
compact subsetK ⊂ G.

Exercise 3.29.Show that ifG is a Lie group of symmetries of a spaceX as above, then a
subgroupΓ is discrete iff it acts properly discontinuously onX.

SupposeΓ acts onX freely and properly discontinuously. We can define a quotient
spaceM = X/Γ where two pointsx, y ∈ X are identified exactly when there is some
γ ∈ Γ such thatγ(x) = y.

Theorem 3.30. If Γ acts onX freely and properly discontinuously, whereX is one of
S
n,En,Hn for somen, then the projectionX → X/Γ is a covering space, andX is the

universal cover ofX/Γ.

Proof: Pick a pointx ∈ X and letU be a neighborhood ofx which intersects only
finitely many translatesγ(U). Then there is a smallerV ⊂ U which is disjoint from all its
translates. Then under the quotient map, each translateγ(V ) is mapped homeomorphically
to its image. ThusX is a covering space ofX/Γ, and since it is simply–connected, it is
the universal cover.

3.1.7. Fundamental domains.Let Γ act onX properly discontinuously, whereX is one
of the spacesSn,En,Hn.

Definition 3.31. A fundamental domainfor the action ofΓ is a polygonP ⊂ X such that
for all p in the interior ofP , α(p) ∩ P = ∅ unlessα = id, and such that the faces ofP are
paired by the action ofΓ.

The translates of a fundamental domain are disjoint except along their boundaries.
Moreover, these translates cover all ofX. Thus they give a tessellation ofX, whose sym-
metry group containsΓ as a subgroup. For “generic” fundamental domains, there are no
“accidental” symmetries, and the group of symmetries of the tessellation is exactlyΓ. In
general, fundamental domains can bedecoratedwith some extra marking which destroys
any additional extra symmetries of a fundamental domain.
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Definition 3.32. Choose a pointp ∈ X. TheDirichlet domain ofΓ centered atp, is the
set

D = {q ∈ X such thatd(p, q) ≤ d(p, α(q)) for all α ∈ Γ}

In dimension2, 3, in the cases we are interested in,D will be a locally finite polygon in
X whose faces are paired by the action ofΓ; but in general,D might not be a polygon.

A Dirichlet domain is a fundamental domain forΓ.

3.2. Lattices in E2.

3.2.1. Discrete groups in Isom(E2). Perhaps the most important theorem about discrete
subgroups of Isom(En) is Bieberbach’s theorem, that such a group has a free abelian sub-
group of finite index. In dimension two, this can be refined as follows:

Theorem 3.33. Let Γ act properly discontinuously onE2 by isometries. ThenΓ has a
subgroupΓ+ of index at most2 which is orientation–preserving. Moreover,Γ+ is one of
the following:

• Γ+ is a subgroup of stab(p) for somep. In this case,Γ+ ∼= Z/nZ consists of
powers of a single rotation.
• Γ+ is a semi–direct product

Γ+ = Z/nZ n Z

where theZ factor is generated by a translation, andn is 1 or 2. In the second
case, the conjugation action takesx→ −x.
• Γ+ is a semi–direct product

Γ+ = Z/nZ n (Z⊕ Z)

where theZ⊕ Z factor is generated by a pair of linearly indpendent translations,
andn = 1, 2, 3, 4 or 6. If n = 4, theZ⊕Z is conjugate to the group of translations
of the formz → z+n+mi for integersn,m. If n = 3 or 6, theZ⊕Z is conjugate
to the group of translations of the formz → z + n+m 1+i

√
3

2 for integersn,m.

Proof: First, there is a homomorphism

o : Isom(E2)→ Z/2Z

whereo(α) is 0 or 1 depending on whether or notα is orientation preserving. The in-
tersection ofΓ with the kernel ofo is Γ+, and it has index at most2. Next, there is a
homomorphism

a : Isom+(E2)→ S1

given by the action of isometries on equivalence classes of parallel lines, where the image
is the angles of rotation. There is an induced homomorphism

a : Γ+ → S1

The kernelK of a in Γ+ consists of a group of translations, and is therefore abelian.
Supposeθ = a(α) for someα ∈ Γ+, andθ nonzero. Thenα is a rotation, and therefore

fixes somep. SinceΓ+ is properly discontinuous, eitherΓ+ ⊂ stab(p) in which caseΓ+

is cyclic and consists of the powers of a fixed rotation, or there is a (non–unique) closest
imageq 6= p of p under someβ. Sinceq = β(p), no translate ofp is closer toq thanp. If
|θ| < 2π

6 , then

0 < d(q, α(q)) = 2 sin
(θ

2

)
d(p, q) < d(p, q)
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which is a contradiction. Since the same must also be true for each power ofα, the order
of α is ≤ 6. If the order is5, then0 < d(α(q), βα−1β−1(p)) < d(p, q), which is a
contradiction. Hence the imagea(Γ+) is Z/nZ wheren = 1, 2, 3, 4 or 6. In any case, the
image is cyclic, and is therefore generated by a singlea(α) whereα is a rotation, soΓ+ is
a semi–direct product.

The kernelK of a in Γ+ is a properly discontinuous group of translations. IfK is
nontrivial and the elements ofK are linearly dependent, they are all powers of the element
α of shortest translation length. The imagea(Γ+) must preserve the translation ofα; in
particular, this image must be trivial orZ/2Z.

If K is nontrivial and the elements ofK are linearly independent, they are generated
by two elements of shortest translation length. The imagea(Γ+) must preserve the set of
nonzero elements of shortest length, so if this image isZ/4Z the groupK is generated by
two perpendicular vectors of equal length. If the image isZ/3Z or Z/6Z, K is generated
by two vectors at angle2π6 of equal length.

The two special lattices (i.e. groups of translations generated by two linearly indepen-
dent elements) appearing in theorem 3.33 are often called thesquareandhexagonallattices
respectively.

3.2.2. Integral quadratic forms.A good reference for the material in this and the next
section is [2].

Definition 3.34. A quadratic formis a homogeneous polyonomial of degree2 in some
variables. That is, a function of variablesx1, . . . , xn such that

f(λ1x1, . . . , λnxn) =
n∏
i=1

λ2
i f(x1, . . . , xn)

A quadratic form isintegral if its coefficients as a polynomial are integers.

We will be concerned in the sequel with integral quadratic forms of two variables, such
as3x2 + 2xy − 7y2 or−x2 − 3xy.

Notice for every quadratic formf(·, ·) there corresponds uniquely a symmetric matrix

Mf such thatf(x, y) =
[
x y

]
Mf

[
x
y

]
. In particular, iff(x, y) = ax2 + bxy + cy2 then

Mf =
[
a b

2
b
2 c

]
Definition 3.35. We say that a quadratic formf(x, y) representsan integern if there is
some assignment of integer valuesn1, n2 to x, y for which

f(n1, n2) = n

Given an integral quadratic form, it is a natural question to ask what interger values
it represents. Observe that there are some elementary transformations on quadratic forms
which do not change the set of values represented. If we substitutex→ x±y or y → y±x
we get a new quadratic form. Since this substitution isinvertible, the new quadratic form
obtained represents exactly the same set of values as the original. For instance,

x2 + y2 ←→ x2 + 2xy + 2y2

This substitution defines an equivalence relation on quadratic forms.
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The most general form of substitution allowed is a transformation of the form

x→ px+ qy, y → rx+ sy

For integersp, q, r, s. Again, since this substitution must be invertible, we should have

ps − qr = ±1. That is, the matrix

[
p q
r s

]
is in ±SL(2,Z). Since these forms are

homogeneous of degree2, the substitutionx → −x, y → −y does nothing. One can
easily check that every other substitution has a nontrivial effect on some quadratic form.

In particular, we have the following theorem:

Theorem 3.36. Integral quadratic forms up to equivalence are parameterized by equiva-

lence classes of matrices of the form

[
a b

2
b
2 c

]
for integersa, b, c modulo the conjugation

action ofPSL(2,Z).

Observe that what is really going on here is that we are evaluating the quadratic formf
on the integral latticeZ ⊕ Z. The groupSL(2,Z) acts by automorphisms of this lattice,
and therefore permutes the set of values attained by the formf .

There is nothing special about the integral lattice here; it is obvious thatSL(2,Z) acts

by automorphisms ofany latticeL. In particular, ifL = 〈e1, e2〉 thenM =
[
α β
γ δ

]
∈

SL(2,Z) acts on elements of this lattice by

M · re1 + se2 → (αr + βs)e1 + (γr + δs)e2

3.2.3. Moduli of tori, continued fractions andPSL(2,Z).

Definition 3.37. Let r be a real number. Acontinued fraction expansionof r is an expres-
sion ofr as a limit of a (possibly terminating) sequence

n1, n1 +
1
m1

, n1 +
1

m1 + 1
n2

, n1 +
1

m1 + 1
n2+ 1

m2

, . . .

where each of theni,mi is a positive integer.

A continued fraction expansion ofr can be obtained inductively by Euclid’s algorithm.
First, n1 is the biggest integer≤ r. So0 ≤ r − n1 < 1. If r − n1 = 0 we are done.
Otherwise,r′ = 1

r−n1
> 1 and we can definem1 as the biggest integer≤ r′. So0 ≤

r′ −m1 < 1. continuing inductively, we produce a series of integersn1,m1, n2,m2, . . .
which is thecontinued fraction expansion ofr. If r is rational, this procedure terminates at
a finite stage. The usual notation for the continued fraction expansion of a real numberr is

r = n1 +
1

m1+
1

n2+
1

m2+
1

n3+
. . .

The following theorem is quite easy to verify:

Theorem 3.38. If n1,m1, . . . is a continued fraction expansion ofr, then the successive
approximations

n1, n1 +
1
m1

, n1 +
1

m1 + 1
n2

, . . .

denotedr1, r2, r3, . . . satisfy
|r − ri| ≤ |r − p/q|

for any integers(p, q), whereq < the denominator ofri+1.
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Thus, the continued fraction approximations ofr are the best rational approximations
to r for a given bound on the denominator.

Let T be a flat torus. Then the isometry group ofT is transitive (this is not too hard
to show). Pick a pointp, and cutT up along the two shortest simple closed curves which
start and end atp. This produces a Euclidean parallelogramP . After rescalingT , we can
assume that the shortest side has length1. We placeP in E2 so that this short side is the
segment from0 to 1, and the other side runs from0 to z where Im(z) > 0. By hypothesis,
|z| ≥ 1. Moreover, if|Re(z)| ≥ 1

2 we can replacez by z + 1 or z − 1 with smaller norm,
contradicting the choice of curves used for the decomposition. LetD be the region in the
upper half–plane bounded by the two vertical lines Re(z) = 1

2 , Re(z) = − 1
2 and the circle

|z| = 1.
The groupPSL(2,Z) acts naturally onH as a subgroup ofPSL(2,R). The action there

is properly discontinuous. The action ofPSL(2,Z) permutes the sides ofD. The element[
1 1
0 1

]
pairs the two vertical sides, and the element

[
0 1
−1 0

]
preserves the bottom side,

interchanging the left and right pieces of it. In particular,D is a fundamental domain for
PSL(2,Z). The quotient is topologically a disk, but with two “cone points” of order2 and
3 respectively, which correspond to the pointsi and 1+i

√
3

2 respectively, whose stabilizers
areZ/2Z andZ/3Z respectively.

This quotient is an example of anorbifold.

Definition 3.39. An n–dimensionalorbifold is a space which is locally modelled onRn

modulo some finite group.

A 2–dimensional orbifold looks like a surface except at a collection of isolated points
pi where it looks like the quotient of a disk by the action ofZ/niZ, a group of rotations
centered atpi. The pointpi is acone point, sometimes also called anorbifold point. The
finite group is part of the data of the orbifold. One can think of the orbifold combinatorially
as a surface (in the usual sense) with a finite number of distinguished points, each of which
has an integer attached to it. Geometrically, this point looks like a “cone” made from a
wedge of angle2π/ni.

We can define anorbifold fundamental groupπo1(·) for a surface orbifold. Thinking
of our orbifoldΣ asX/Γ for the moment whereΓ acts properly discontinuously but not
freely, the orbifold fundamental group ofΣ should be exactlyΓ. This means that a small
loop around an orbifold pointpi should have orderni in πo1(Σ). Note that we are being
casual about basepoints here, so we are only thinking of these groups up to isomorphism.

In any case, the orbifoldH2/PSL(2,Z) should have orbifold fundamental group iso-
morphic toPSL(2,Z). There is an element of order2 corresponding to the loop around

the order2 point; a representative of this element inPSL(2,Z) is

[
0 1
−1 0

]
. There is an

element of order3 corresponding to the loop around the order3 point; a representative

of this element inPSL(2,Z) is

[
1 1
−1 0

]
. Note that these elements have order2 and3

respectively inPSL(2,Z), even though the corresponding matrices have orders4 and6
respectively inSL(2,Z).

Every loop in the disk can be shrunk to a point; it follows that every loop in the orbifold
H

2/PSL(2,Z) can be shrunk down to a collection of small loops around the two cone
points in some order. That is, the groupPSL(2,Z) is generated by these two elements.
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Theorem 3.40. A presentation forPSL(2,Z) is given by

PSL(2,Z) ∼= 〈α, β|α2, β3〉 = Z/2Z ∗ Z/3Z

where representatives ofα andβ are the two matrices given above.

Proof: By the discussion above, all that needs to be established is that there are no
other relations that do not follow from the relationsα2 = id andβ3 = id. That is, there
is a homomorphismφ : G → PSL(2,Z) sendingα, β to the two matrices given; all we
need to check is that the kernel of this homomorphism consists of the identity element.

A general element ofG = 〈α, β|α2, β3〉 is a productαa1βb1αa2βb2 . . . αanβbn where
each of theai, bi are integers. We reduce theai mod2 and thebi mod3; after rewriting of
this kind, we are left with a product of the form above where everyai = 1 and everybi is 1
or 2. We writeL = αβ andR = αβ2, so that every nontrivial element ofG is of the form
w, β±1w,wα, β±1wα wherew is a word in the lettersL andR. Furthermore, we have the
relation(αβαβ2)3

We show that no wordw in the lettersL andR is trivial in the groupPSL(2,Z). A
similar argument works for elements ofG of the other forms.

Now,φ(L) =
[
1 0
1 1

]
andφ(R) =

[
1 1
0 1

]
in PSL(2,Z). Suppose that

w = Lm1Rn1Lm2Rn2 . . . LmkRnk

where all themi, ni are nonzero, say. Then we can calculate

φ(w) =
[
p r
q s

]
where

p

q
=

1
m1+

1
n1+

1
m2+

1
n2+

. . .
1
mk

r

s
=

1
m1+

1
n1+

1
m2+

1
n2+

. . .
1

mk+
1
nk

where the notation is for a continued fraction expansion. That is, the alternating coefficients
mi, ni give the continued fraction expansions ofp

q and rs . In particular,φ(w) 6= Id unless
w is the empty word, andφ is an isomorphism.

Notice actually that this method of proof does considerably more. We have shown that
every element obtained by a product ofpositivemultiples ofL andR is non–trivial. It is
not true that thegroupgenerated byL andR is free, sinceLR−1 has order3. In fact,L
andR together generate the entire groupPSL(2,Z). But the group generated byL2 and
R2 is free, since a fundamental domain for its action is the domainD′ bounded by the lines

Re(z) = 1, Re(z) = −1

and the semicircles
|z − 1/2| = 1/2, |z + 1/2| = 1/2

Let Γ denote this subgroup ofPSL(2,Z). The domainD′ is a regular ideal hyperbolic
quadrilateral; the quotientH2/Γ is therefore topologically a punctured torus. By the argu-
ment of the previous section, a presentation is

π1(punctured torus) ∼= 〈α, β| 〉

That is,Γ ∼= Z ∗ Z.
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Another description ofΓ is the following: there is an obvious homomorphismψ :
PSL(2,Z) → PSL(2,Z/2Z) given by reducing the entries mod2. The image group
has order6 and the surjection is onto, so the kernel is a subgroup of index6. Since the
fundamental domainD′ can be made from6 copies ofD, it follows that the index ofΓ in
PSL(2,Z) is 6. Moreover,Γ is certainly contained in the kernel ofψ. It follows thatΓ is
exactly equal to this kernel.

Γ is sometimes also denoted byΓ(2) (for “reduction mod2”) and is of considerable
interest to number theorists, who like to refer to it as theprincipal congruence subgroup of
level2.

Notice that the domainD′ is obtained from two ideal triangles. The union of all the
translates ofD′ by Γ(2) gives a tessellation ofH2 by regular ideal quadrilaterals; a sub-
division ofD′ into two ideal triangles gives a subdivision ofH2 into ideal triangles. If
we choose the subdivision along the line Re(z) = 0, the ideal triangulationT of H2 so
obtained admits reflection symmetry along every edge. The1–skeleton of the dual cell–
decomposition to this ideal triangulation is theinfinite3–valent tree. There is a natural ac-
tion ofPSL(2,Z) on this tree, where the elements of order3 are the stabilizers of vertices
and the elements of order2 are the stabilizers of edges. This description ofPSL(2,Z)
as a group of automorphisms of a tree gives another way to see that it is isomorphic to
Z/2Z ∗ Z/3Z.

For a rational pointp/q we can consider the straight linel perpendicular to the real
axis given by Re(z) = p/q. As this linel moves from∞ to p/q it crosses through many
different triangles ofT , and therefore determines a wordw in the lettersR,L and their
inverses. By induction, it is easy to show that the wordw is of the form

w = Lm1Rn1Lm2Rn2 . . . LmkRnk

where
p

q
=

1
m1+

1
n1+

1
m2+

1
n2+

. . .
1
mk

An irrational pointr determines an infinite word

w = Lm1Rn1Lm2Rn2 . . .

where

r =
1

m1+
1

n1+
1

m2+
1

n2+
. . .

is an infinite continued fraction expansion ofr.
Notice that this wordw is eventually periodicexactly whenr is of the forma+

√
b for

rational numbersa, b.

3.3. Finite subgroups ofSO(3) and S3.

3.3.1. The “fair dice”. A die is a convex3–dimensional polyhedron. We can ask under
what conditions a die isfair — that is, the probability that the die will land on a given
side is1/n wheren is the number of sides. This is a very hard problem to treat in full
generality, since it is very hard to calculate these probabilities for a generic polyhedron.
But there are certain circumstances under which it is easy to show that these probabilities
are all equal; if for any two facesf1, f2 of a dieD there is a symmetry ofD to itself taking
f1 to f2 then the die is manifestly fair. The groupG of all symmetries ofD is a subgroup
of the group of permutations of the vertices. Any symmetry ofD extends to an isometry
of E3, in particular it is an affine map. It follows that if the vertices ofD are at the vectors
v1, v2, . . . , vn then the images of these vertices under a symmetryσ are the same set of
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vectors in permuted order. Thus the symmetry fixes the center of gravity ofD; as a vector
this is

∑n
i=1 vi
n .

Translating this center of gravity to the origin inE3, we see thatG is a finite subgroup
of O(3). That is,G is a properly discontinuous group of isometries ofS

2.

3.3.2. Spherical orbifolds.Of course, any properly discontinuous groupΓ of isometries
of S2 has a subgroupΓ+ of index at most two which consists of orientation–preserving
elements. Every orientation–preserving isometry ofS

2 has a fixed point, soΓ+ does not
act freely unless it is trivial. In any case, the quotientS

2/Γ+ will be aspherical orbifoldΣ.
This orbifold is topologially a surface with finitely many cone pointsp1, . . . , pm of orders
n1, . . . , nm. The Gauss–Bonnet formula gives

area(Σ) =
∫

Σ

κ = 2π

(
χ(Σ)−

m∑
i=1

ni − 1
ni

)
Since the area is positive,Σ must be topologically a sphere, since that is the only surface
with positive Euler characteristic. Eachni−1

ni
term is at least1/2, so it follows that there can

be at most3 cone points. Notice too that ifΣ has two cone points, small loops around them
are isotopic, and therefore should represent the same element of the orbifold fundamental
group; in particular, they should have the same order. Similarly,Σ cannot have a single
cone point, since a nontrivial element of the orbifold fundamental group could be shrunk
to a point.

We therefore have the following theorem:

Theorem 3.41. Let Γ be a properly discontinuous group of isometries ofS
2. ThenΓ has

a subgroupΓ+ of index at most2 which is orientation–preserving. The following are the
possibilities forΓ+:

• Γ+ fixes a pair of antipodal points.Γ+ ∼= Z/nZ and is generated by a single
rotation.
• Γ+ is generated by two rotationsr1, r2 of order2 whose axes are at an angle of

2π
n to each other. The groupΓ+ = 〈r1, r2〉 is the dihedral groupDn.

• The quotientS2/Γ+ is a sphere with3 cone points of orders(2, 3, 3), (2, 3, 4) or
(2, 3, 5). Γ+ in these cases is the group of orientation–preserving symmetries of
the regular tetrahedron, octahedron, and dodecahedron respectively. As a group,
Γ+ is isomorphic toA4, S4, A5 respectively.

An orbifold Σ whose underlying surface is a sphere with three cone pointsp1, p2, p3

is called atriangle orbifold. For the sake of generality, we can think of a puncture as a
“cone point of order∞”, so thatH2/PSL(2,Z) is the triangle orbifold with cone points
of order(2, 3,∞). The triangle orbifold with cone points of order(p, q, r) will be denoted
∆(p, q, r).

A presentation for the triangle orbifold with cone points(p, q, r) is

πo1(∆(p, q, r)) ∼= 〈α, β|αp, βq, (αβ)r〉
Lemma 3.42. For r = 3, 4, 5 there is an isomorphism

πo1(∆(2, 3, r))→ PSL(2,Z/rZ)

where in each case, the image of the small loopsα, β around the cone points of order2, 3
correspond to the equivalence classes of matrices

α→
[

0 1
−1 0

]
, β →

[
1 1
−1 0

]
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Proof: There are certainly homomorphisms fromπo1(∆(2, 3, r)) ontoPSL(2,Z/rZ)
determined by the maps in question, since the relationsα2 = id andβ3 = id hold in

PSL(2,Z/nZ) for anyn, andαβ =
[
1 0
1 1

]
which has orderr in PSL(2,Z/rZ).

To see that these maps are injective, observe that the orders of the groups forr = 3, 4, 5
are both equal to12, 24 and60 respectively, so the maps are isomorphisms.

For r > 5, the groupπo1(∆(2, 3, r)) is infinite, and therefore cannot be isomorphic to
PSL(2,Z/rZ). But for r =∞ we have seen

πo1(∆(2, 3,∞)) ∼= PSL(2,Z)

The homomorphismPSL(2,Z) → PSL(2,Z/rZ) for 3 ≤ r ≤ 5 is induced by the map
from ∆(2, 3,∞) to ∆(2, 3, r) which is the identity away from the special points, sends
the order2, 3 points to order2, 3 points respectively, and “sends the puncture” to the cone
point of orderr.

3.3.3. Reflection groups, Coxeter diagrams.If P is a polyhedron inX one ofSn,En,Hn

whose dihedral angles between top dimensional faces are all of the formπ/mi for integers
mi, the groupGP generated by reflections in these faces ofP acts properly discontin-
uously onX with fundamental domainP . GP has a subgroup of index2 consisting of
orientation preserving elements, which has as fundamental domain a copy ofP and its
mirror imageP ′. This follows from a theorem calledPoincaŕe’s polyhedron theorem. A
precise statement and discussion are found in [7].

If X = S
n, we can think ofSn ⊂ R

n+1 as the unit sphere, and reflections through
hyperplanes inSn correspond to reflections in hyperplanes through the origin inR

n+1. If
πi, πj are two of these hyperplanes, and the corresponding reflections are denotedri, rj
then the compositionri, rj is a rotation through an angle2θij , whereθij is the angle
between the planesπi andπj , and the rotation is in the plane spanned by the two perpen-
diculars toπi, πj . A presentation for the groupG generated by reflections in the sides of
P is

GP ∼= 〈r1, r2, . . . , rn|(r1)2, (r2)2, . . . , (rn)2, (r1r2)m12 , . . . , (rirj)mij , . . . 〉

where the angle betweenπi andπj is π/mij .
The subgroupG+

P of orientation–preserving elements ofGP is generated by the el-
ements of the formrirj , which is to say,G+

P consists of products of even numbers of
reflections.

Definition 3.43. A Coxeter groupG is an abstract group defined by a group presentation
of the form〈ri|(rirj)kij 〉 where

• the indices vary over some index setI
• the exponentkij = kji is either a positive integer or∞ for each pairi, j
• kii = 1 for eachi
• kij > 1 for eachi 6= j

If kij =∞ for somei, j then the corresponding relation is meaningless and may be deleted
from the presentation.

Definition 3.44. The Coxeter graphof the Coxeter groupG is a labelled graphΓ with
vertices corresponding to the index setI and edges〈(i, j) : kij > 2〉 labelled bykij .

For simplicity, edges withkij = 3 are usually left unlabelled.
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Theorem 3.45.Finite Coxeter groups can be realized as properly discontinuous spherical
reflection groups.

Notice that fundamental groups of triangle orbifolds are index2 subgroups of reflection
groups whose Coxeter graphs have three vertices.

3.3.4. “Bad” orbifolds. If Σ is a spherical orbifold with two cone points of orderp, q > 1
wherep 6= q, the orbifold Euler characteristic ofΣ is 2− p−1

p −
q−1
q > 0, so the universal

cover ofΣ should beS2. But we have seen that this is impossible; the loop around the
point of orderp is freely homotopic to the loop of orderq, so a presentation forπo1(Σ) is
〈α|αp, αq, αp−q〉. This group isZ/dZ whered is the greatest common divisor ofp andq;
but everyZ/dZ subgroup ofSO(3,R) has as quotient the spherical orbifold with two cone
points of orderd.

ThusΣ is not obtained from a smooth surface by the action of a properly discontinuous
group. An orbifold with no manifold cover is called abad orbifold. A spherical orbifold
with two cone points of unequal order is a bad orbifold; similarly, a spherical orbifold with
one cone point is a bad orbifold.

It turns out that any orbifold whose underlying surface is not the sphere, but a surface of
higher genus, is a good orbifold, and is obtained as a quotientX/Γ forX one ofS2,E2,H2

andΓ a properly discontinuous group of isometries.

3.4. Discrete subgroups ofPSL(2,R).

3.4.1. Glueing hyperbolic polygons.Gluing up hyperbolic polygons to make a closed hy-
perbolic surface is not essentially different from glueing up spherical or flat polygons. If
Σg denotes the unique (up to homeomorphism) closed orientable surface of genusg > 1,
then we can decomposeΣg (nonuniquely) intopairs of pants.

Definition 3.46. A pair of pantsis the topological surface obtained from a disk by remov-
ing two subdisks — that is, a disk with two holes.

A pair of pants can also be thought of as a sphere minus three subdisks. The Euler
characteristic of a pair of pants is−1. Since the Euler characteristic of its boundary is0, a
surface obtained from glueingn pairs of pants has Euler characteristic−n. SoΣg can be
decomposed (in many different ways) into2g − 2 pairs of pants.

Exercise 3.47.Show that the number of decompositions ofΣg into pairs of pants, up to
combinatorial equivalence, is equal to the number of graphs with2g − 2 vertices with3
edges at every vertex. Such graphs are calledtrivalent graphs. Show that the number of
such graphs is positive forg > 1, and enumerate such graphs forg ≤ 5 (you might need
to write a computer program . .)

For α a closed loop inΣg, a choice of hyperbolic metric onΣg determines a unique
shortest loopαg — a geodesic — which is homotopic toα. For, if p ∈ α andα̃ denotes
an arc inH2, the universal cover ofΣg, whose endpoints project top and such that̃α
projects toα under the covering map, then there is a unique isometryγ ∈ PSL(2,R)
corresponding to an element ofπ1(Σg) taking one end of̃α to the other. If̃αg denotes the
invariant axis ofγ, thenα̃g/γ = αg a geodesic inΣg.

Exercise 3.48.If α is an essential simple closed curve inΣg — that is, it is embedded and
does not bound a disk, thenαg is also simple. Furthermore, ifα, β are disjoint essential
simple closed curves, their geodesic representativesαg, βg are disjoint.
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By the exercise, a combinatorial decomposition ofΣg into pairs of pants determines, for
a hyperbolic metric onΣg, a (combinatorially equivalent) decomposition of that surface
into hyperbolic pairs of pants with geodesic boundary. Call such an object ageodesic pair
of pants.

Let P be a geodesic pair of pants with boundary circlesα, β, γ, andδ an embedded
arc joining two distinct boundary componentsα, β. Then we can letQ be the surface,
topologically a torus with two disks removed, obtained from two copies ofP with opposite
orientations glued along the pairs of circles corresponding toα, β. Then the two copies of
δ make up a closed loop̂δ which has a unique geodesic representativeδ̂g ⊂ Q. There
is an orientation–reversing mapi from Q to itself which fixesα ∪ β. By uniqueness,
δ̂g is invariant underi, and therefore it intersects the boundary curves in right angles.
We obtain an arcδg in P perpendicular toα andβ. There are two other arcsεg, λg in
P perpendicular toα, γ andβ, γ. These decomposeP into two right angled hyperbolic
hexagonsH1,H2. The alternate sides ofH1 andH2 are equal, and therefore they are
isometric, by an orientation–reversing isometry.

Exercise 3.49.Prove the claim made in the previous paragraph. That is, show that a right–
angled hyperbolic hexagon is determined up to isometry by the lengths of three nonadja-
cent sides. Conversely show that for any three numberp, q, r > 0 there is a right–angled
hexagon with three nonadjacent sides with those lengths.

In short we have proved the following fact:

Lemma 3.50. LetΣg be a surface of genusg. A combinatorial decomposition into pairs of
pants and a hyperbolic metric onΣg determine a decomposition ofΣg into 2g−2 geodesic
pairs of pants. The geometry of these pairs of pants is determined uniquely by the lengths
of the closed geodesics along whichΣg was decomposed.

It remains to understand how the pairs of pants can be put back together to giveΣg.
For P1, P2 a pair of geodesic pairs of pants with boundary componentsα1 ⊂ ∂P1 and
α2 ⊂ ∂P2 with the same length, for any two pointsp1 ∈ α1 andp2 ∈ α2 there is a
unique way to glueP1 to P2 by identifying α1, α2 so thatp1, p2 match up. There is
a 1–parameter family of glueings, parameterized by the amount of “twisting” of these
geodesics. In particular, the geometry ofΣg is determined uniquely by the3g − 3 lengths
of the geodesics along which it is decomposed, together with3g − 3 twist parameters.

Thus we have a correspondence:

(metric onΣg,pair of pants decomposition)←→ (R+)3g−3 × (R/Z)3g−3

Here the pair of pants decomposition is thought of asordered, in the sense that the3g − 3
curves are given specific labels, which correspond to the3g − 3 co–ordinates on the right.

Although this is a nice characterization, the information contained in a pair of pants
decomposition is both too little and too much — too little because we have not resolved
theZ–ambiguity in the twist parameters, and too much because it does not answer the
question of what the space of hyperbolic structures on a surface is parameterized by. We
address these issues now.

Definition 3.51. Fix a base surfaceΣ of genusg > 1. The space ofmarked hyperbolic
structures onΣ, denotedMH(Σ) is the space of equivalence classes of pairs(f,Σ′) where
Σ′ is a hyperbolic surface andf : Σ → Σ′ is a homeomorphism, and two such pairs
(f1,Σ1) and(f2,Σ2) are equivalent if there is an isometryi : Σ1 → Σ2 such thatf1 ◦ i is
homotopic tof2 as a map fromΣ to Σ2.
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Exercise 3.52.Show that the relation defined in the definition of marked hyperbolic struc-
ture is really an equivalence relation. That is, show it is symmetric, reflexive and transitive.

Theorem 3.53. For Σ a surface of genusg, there is a1–1 correspondence

MH(Σ)←→ (R+)3g−3 × R3g−3

The correspondence is defined as follows: there is a pair of pants decomposition along es-
sential simple closed curvesα1, . . . , α3g−3 for Σ, and a collection of loopsβ1, . . . , β3g−3

transverse to theαi such that if(f,Σ′) is an element inMH(Σ), the corresponding co–
ordinates are given by

(length((f(α1))g), . . . , length((f(α3g−3))g), twist((f(α1))g), . . . , twist((f(α3g−3))g))

where the twist parameters are normalized so that twist0 corresponds, for fixed lengths of
(f(αi))g, to the unique marked surface for which the length ofβi is minimized.

This requires some explanation. The image of a fixed pair of pants decomposition of
Σ underf determines one inΣ′, and therefore the lengths of the decomposed geodesics
are well–defined and the twist parameters are well–defined mod2π. Let P1, P2 be two
geometric pairs of pants glued along boundaries to make a sphere with4 disks removed
Q. If αi is the common loop in∂P1 ∩ ∂P2, thenβi is a dual curve which cutsQ into
two other pairs of pantsP ′1, P

′
2 such thatP ′1 has one boundary component in common with

each ofP1, P2 and similarly forP ′2. Then twistingαi through2π replacesβi with a new
curvetαi(βi), the curve obtained by aDehn twist aroundαi. Briefly: βi decomposes into
two arcsδ, ε alongαi, andαi decomposes into two arcsµ, ν alongβi. Thentαi(βi) is the
simple closed curve homotopic toδ∗µ∗ε∗ν, wher∗ denotes concatenation of arcs. Imagine
βi as a rubber band on the surfaceQ. When the two sidesP1, P2 are twisted independently
alongαi, the rubber band becomes twisted up, and whenP1 andP2 return to their original
configuration, the rubber band detects how many full rotations the two sides went through.
It is true, though we don’t prove it here, that there is a unique rotation for which the length
of the geodesic representative ofβi is minimized. For a reference, see [1]. Thus for fixed
sets of lengths of the geodesic representatives of all theαj , we have well–defined twist
parameters which detect the amount of twisting relative to this minimal twist. This shows
the map to parameter space is well–defined. Conversely, such a collection of parameters
defines a collection of geodesic pairs of pants and instructions for glueing them together to
give a marked hyperbolic structure onΣ. Thus the two sets are the same and the theorem
is proved.

Definition 3.54. Let Σ be a closed surface. Themapping class groupof Σ, denoted
MC(Σ), is defined to be the quotient group

MC(Σ) = Homeo(Σ)/Homeo0(Σ)

where Homeo0(Σ) denotes the normal subgroup of self–homeomorphisms ofΣ which are
homotopic to the identity.

Exercise 3.55.Show Homeo0(Σ) is a normal subgroup of Homeo(Σ).

Notice that Homeo(Σ) acts onMH(Σ) by

ψ : (f,Σ′)→ (ψ ◦ f,Σ′)

Moreover, ifψ ∈ Homeo0(Σ), then

ψ(f,Σ′) ∼ (f,Σ′)
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with respect to the equivalence relation defined on representatives. That is, MC(Σ) acts
onMH(Σ). Moreover, the quotient space is exactly the space of equivalence classes
of elements inMH(Σ) where(f1,Σ1) ∼ (f2,Σ2) if and only if there is an isometry
i : Σ1 → Σ2. That is, two marked hyperbolic structures have the same orbits under
MC(Σ) if and only if the underlying hyperbolic structures (forgetting the marking) are
equivalent. In particular, there is a corresponding action of MC(Σ) on (R+)3g−3 ×R3g−3

and therefore a correspondence

hyperbolic structures onΣ←→ {(R+)3g−3 × R3g−3}/MC(Σ)

The action of MC(Σ) onR6g−6 is properly discontinuous, but it is not free. Thus the space
of hyperbolic structures onΣ is best thought of as an orbifold. This quotient space is also
known asmoduli space.

Exercise 3.56.Verify the claims made above. In particular, show that the action of MC(Σ)
onMH(Σ) is well–defined, independently of the choice of representative of an element in
MH(Σ).

The spaceMH(Σ) is also known as theTeichm̈uller spaceof Σ, and denoted Teich(Σ).

Definition 3.57. Let Σ be a closed surface.
Let Homeo+(Σ) denote the subgroup ofΣ consisting oforientation–preservinghome-

omorphisms. Then define

MC+(Σ) = Homeo+(Σ)/Homeo0(Σ)

Notice that in this definition we use implicitly the fact that for aclosedsurface, the sub-
group of self–homeomorphisms homotopic to the identity are all orientation–preserving.
This is not true for surfaces with boundary without some extra constraints on the boundary
behaviour of these homeomorphisms.

Exercise 3.58. Let Σ be the unit disk. Find a self–homeomorphism homotopic to the
identity which is orientation–reversing. Do the same withΣ an annulus. What about ifΣ
is a punctured surface of genusg ≥ 2?

3.5. Dehn twists and Lickorish’s theorem.

Definition 3.59. An oriented (polyhedral) simple closed curvec in a surfaceΣ and an
annulus neighborhoodA of c parameterized asS1×I define a homeomorphismtc : Σ→ Σ
by

tc :

{
x→ x for x outsideA

(θ, t)→ (θ − 2tπ, t) for (θ, t) ∈ A
This homeomorphism is known as aDehn twistaboutc. As an element of MC(Σ), it
depends only on the isotopy class ofc.

Note that[tc]−1 = [tc′ ] wherec′ denotesc with the opposite orientation.

Exercise 3.60. If h : Σ → Σ is a homeomorphism,p a simple closed loop inΣ, and
h(p) = q, then

tp = h−1tqh

The following theorem is proved in [4], and is often referred to as theLickorish twist
theorem:

Theorem 3.61(Lickorish). If Σg denotes the oriented surface of genusg, then the group
MC+(Σg) is generated by Dehn twists in3g − 1 (explicitly described) simple closed
curves. In particular, this group is finitely generated.
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Sketch of proof: The method of proof proceeds as follows: letc be a simple closed
curve inΣ, and letA be a collection of simple closed curves inΣ. Then eitherc intersects
each elementα of A not at all, exactly once, or exactly twice with opposite orientations,
or there exists a loopd which intersectsα fewer times thanc, and each element ofA
at most as many times asc, such thattα(c) has fewer intersections withα and the same
number or fewer intersections with each other element ofA. Proceeding inductively, we
see that ifC is a maximal collection of disjoint essential simple closed curves andψ is
a homeomorphism ofΣ, then there are a sequence of Dehn twistst1, t2, . . . such that
tntn−1 . . . t1ψ(C) intersectsC in one of finitely many possibilities. After twisting some
more in elements ofC, we can assume the image ofC is one of finitely many possibilities,
which can be explicitly identified. In short,ψ can be written as a product of Dehn twists.

Now, for each such twisttc, we can replacetc by tdttd(c)t
−1
d where eachd, td(c) in-

tersectC more simply thanc. In this way, eachtc can be expanded as a product of Dehn
twists in curves which intersectC very simply. After twisting inC, it follows that these
involve only finitely many possibilities, which can be explicitly enumerated.

Remark3.62. Casson has shown that the number of twist generators required is at most
2g+ 2. Furthermore, it is known that MC+(Σ) is generated by only2 elements (which are
not Dehn twists).

4. APPENDIX — WHAT IS GEOMETRY?

Geometry is a beast that can be approached from many angles. Four of the most impor-
tant concepts that arise from our different primitive intuitions of geometry aresymmetry,
measurement, analysis, and continuity. We briefly discuss these four faces of geometry,
and mention some fundamental concepts in each. Don’t worry if these concepts seem very
technical or abstract — think of this section as an abstraction of the concrete notions found
in the main body of the text.

4.1. Klein’s “Erlanger Programm”. At an address at Friedrich–Alexander–Universitaet
in Erlangen Germany on December 17 1872, Felix Klein proposed a program to unify
the study of geometry by the use of algebraic methods, more specifically, by the use of
group theory. In particular, the geometrical properties of a space can be understood and
explored by a study of thesymmetriesof that space. These symmetries can be organized
into a natural algebraic object — a group. Conversely, this group can often be given a
natural geometric structure, and investigated in its turn as a geometric space! The interplay
between geometry and algebra leads to an enrichment of both structures.

4.1.1. Category theory.

Example4.1. This is not really an example, but rather atemplatefor the examples we
will meet that fit into Klein’s program. We are given a spaceX together with some sort of
structure. Astructure–preserving mapfromX to itself is called amorphism. The map from
X to itself which does nothing is a distinguished morphism, theidentity morphism, denoted
1X . A morphismf is invertible if there is another morphismf−1 such thatf ◦ f−1 =
f−1 ◦ f = 1X . The invertible morphisms are also calledautomorphisms. The set of
automorphisms ofX is a group called Aut(X), with 1X as the identity, and composition
as multiplication. Observe that a structure on a space can bedefinedby the admissible
morphisms. This is a simple example of what is known as acategory; in particular, it is a
category with one objectX.
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Definition 4.2. More generally, acategorycan be thought of as a collection ofobjects
(denotedO) and a collection ofmorphismsor admissible maps between objects (denoted
M). Every morphismm has asourceobjects(m) and atargetobjectt(m), which might
be the same object. For every objecto, there is a special morphism called theidentity
morphism

1o : o→ o

which acts like the usual identity: i.e.

1xm = m for anym with t(m) = x

m1x = m for anym with s(m) = x

The composition of two morphisms is another morphism, and this composition is associa-
tive; composition can be expressed as a functionc :M×M→M. That is,c satisfies

c(m, c(n, r)) = c(c(m,n), r) for anym,n, r ∈M
Sometimes a category is written as a5–tuple(O,M, s, t, c), but in practice it is frequently
sufficient to specify the objects and the morphisms.

A category is something like aclassin an object–oriented programming language like
C++; one defines at the same time thedata types(the objects in the category) and the
admissible functionswhich operate on them (the morphisms).

Example4.3. The category whose objects are all sets and whose morphisms are all func-
tions between sets is a category calledSET. If X is an object inSET (i.e. a set) then
Aut(X) is the group of permutations ofX.

Example4.4. The category whose objects are all groups and whose morphisms are all
homomorphisms between groups is calledGROUP.

A very readable introduction to category theory, with numerous exercises, are the notes
by John Stallings [9].

4.2. Metric geometry. One of our basic intuitions in geometry is that ofdistance. In fact
the word geometry literally means “measuring the earth”. Metric geometry is the study of
the concept of distance, and its various generalizations and abstractions. A beautiful (but
quite advanced) reference for this subject is [3].

4.2.1. Metric spaces.

Definition 4.5. A metric spaceX, d is a setX together with a function

d : X ×X → R
+
0

whereR+
0 denotes the non–negative real numbers, with the following properties:

(1) d is symmetric. That is,

d(x, y) = d(y, x)

(2) d is nondegeneratein the sense that

d(x, y) = 0 iff x = y

(3) d satisfies thetriangle inequality. That is,

d(x, y) + d(y, z) ≥ d(x, z)

for all triplesx, y, z ∈ X.
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Example4.6. The real lineR is a metric space with

d(x, y) = |x− y|
Example4.7. The planeR2 is a metric space with

d((x1, y1), (x2, y2)) = (x1 − x2)2 + (y1 − y2)2

Example4.8. The planeR2 is a metric space with

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|
This metric is known as theManhattan metric. Can you see why?

Definition 4.9. An isometryof a metric spaceX is a 1–1 and onto transformation ofX
to itself which preserves distances between points. The set ofisometriesof a spaceX is a
group Isom(X), where multiplication in the group is composition of symmetries, ande is
the trivial symmetry which fixes everyx in X. This is an example of a group of the form
Aut(X) where the relevant structure onX is that of thecategory of metric spacesMET
whose objects are metric spaces and whose morphisms are isometries.

Definition 4.10. Isometries are frequently too restrictive for many circumstances; a typical
metric space of study might admit no non–trivial isometries at all. We can enrich the
structure by allowing as morphisms those maps which, though they don’t literallypreserve
distances between points, at least don’t increase distances between points by too much.
Such a map is called aLipschitzmap, and metric spaces with these as morphisms define a
categoryLIP which is in many ways a much more interesting object thanMET.

A mapf : X → Y between metric spaces isbilipschitzif there is aK > 1 so that
1
K
dY (f(x), f(y)) ≤ dX(x, y) ≤ KdY (f(x), f(y))

One may think of this as a map which only distorts distances up to a bounded factor.
A bilipschitz map is1–1, since metrics are nondegenerate. An invertible Lipschitz map
with Lipschitz inverse is bilipschitz, so that the automorphisms in the categoryLIP are
bilipschitz. Moreover, the composition of two bilipshitz maps is bilipschitz.

Exercise 4.11. (1) Show that the set of bilipschitz self–maps is a group forX = R

with the Euclidean metric.
(2) (Harder) Show that the set of bilipschitz self–maps is a group forX = R

2 with
the Euclidean metric, and also with the Manhattan metric.

(3) Show that the bilipschitz self–maps ofR2 with the Euclidean or the Manhattan
metric are the same

4.3. Differential geometry. Differential geometry is the abstraction of calculus and anal-
ysis onn–dimensional Euclidean space to generalized geometric spaces called “smooth
Riemannian manifolds”. These are spaces which look like Euclidean space on a small
scale, but on larger scales they are deformed or “curved”. Einstein’s theory of general
relativity says that our own universe is a certain kind of curved space, where the curva-
ture is proportional to the strength of the gravitational force; on the human scale it looks
Euclidean, but near massive objects like neutron stars, the “curvature” of the space is evi-
denced by the bending of light rays. The concept of curvature is a very important connec-
tion between geometry and topology.

Since calculus and analysis are basicallylocal, one can do calculus on such spaces,
since on smaller and smaller scales they look more and more likeR

n so that limits, deriva-
tives, differentiability etc. all make sense, and the tools of multivariable calculus can be
transplanted to this setting.
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The morphisms which preserve the structure used to do differential geometry are the
smooth maps, generalizations of differentiable functions.

4.3.1. Smooth Manifolds.A manifold is a space which, on a small scale, resembles Eu-
clidean space of some dimension. The dimension is usually assumed to be constant over
the space, and is called thedimension of the manifold.

A circle or a line is an example of a1–dimensional manifold. A sphere or the surface
of a donut is an example of a2–dimensional manifold. Our universe, or the space outside
a knot or link are examples of3–dimensional manifolds.

Definition 4.12. A smooth manifoldis a manifold on which one can do Calculus. One
covers the space with a collection of little snapshots called “charts” which are meant to
be all the different possible choices of local parameters for the space. Technically one has
a collection of charts, which are subsetsUi of the manifoldM , and a collection of ways
of parameterizing these charts as subsets of Euclidean space; that is, mapsφi : Ui → Vi
which are continuous and have continuous inverses, whereVi is some open region in some
R
n. These maps should be compatible, in the sense that if two chartsUi, Uj overlap, the

mapρ = φjφ
−1
i between the appropriate subsets ofR

n (whereρ is defined) should be
smooth (i.e. it should have continuous partial derivatives of all orders), and it should be
locally invertible; that is, the matrix of partial derivatives

dρ =


∂ρ(x1)
∂x1

∂ρ(x2)
∂x1

. . . ∂ρ(xn)
∂x1

∂ρ(x1)
∂x2

∂ρ(x2)
∂x2

. . . ∂ρ(xn)
∂x2

. . . . . . . . . . . .
∂ρ(x1)
∂xn

∂ρ(x2)
∂xn

. . . ∂ρ(xn)
∂xn


should be invertible at every point.

This definition seems bulky but it is actually quite elegant. When doing multivariable
calculus, we are used to switching back and forth between local co–ordinates which might
only be defined on certain subsets ofRn.

Example4.13. In the planeR2, we might switch betweenx, y Cartesian co–ordinates and
r, θ polar co–ordinates. Note thatθ is not really a “co–ordinate” on the whole ofR2, since
its value is only well–defined up to multiples of2π, and at the origin there is no sensible
value for it. These co–ordinates are actually maps from subsets of the manifoldR

2 to the
“standard” Euclidean space, which in this case also happens to beR

2. The first chartU1

can be taken to be all ofR2, and the functionφ1 is just the identityφ1 : (x, y) → (x, y).
The second functionφ2 is not defined on all ofR2, and might be given in the chartU2 =
{x, y > 1} for instance, by

φ2 : (x, y)→
(√

x2 + y2, arctan
x

y

)
Definingρ = φ2φ

−1
1 = φ2 as above, check thatdρ is invertible everywhere in the overlap

of the two charts.

The charts on a smooth manifold are just the collection of all the possible local co–
ordinates for subsets of the manifold; this collection of charts is called anatlas.

Example4.14. The spacesRn are smooth manifolds for anyn.

Example4.15. An open subset of a smooth manifold is itself a smooth manifold, by re-
striction of charts and functions.
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In differential geometry, the allowable morphisms are typically thesmooth maps. A map
f : Mm → Nn is smoothif for chartsUi ⊂M,Uj ⊂ N , the compositionφj ◦f ◦φ−1

i is a
smooth map from the appropriate subset ofR

m to the appropriate subset ofRn. That is, the
co–ordinate maps have continuous partial derivatives of all orders. Thecategory of smooth
manifolds, denotedDIFF has as objects smooth manifolds, and as morphisms smooth
maps. An invertible smooth map is called adiffeomorphism; the group of diffeomorphisms
of a smooth manifold is typically a huge, unmanageable object, but certain features of it
can be studied.

4.4. Topology. Basic notions of incidence or connectivity are part of our fundamental
geometric intution. Concepts such as “inside” and “outside”, or “bounded” and “un-
bounded” are topological. Topology can be thought of as the study of thequalitative
properties of a space that are left unchanged under continuous deformations of the space;
that is, deformations which may bend or stretch the space but do not cut or tear it. An
allowable morphism between topological spaces is just a continuous map; invertible mor-
phisms are calledhomeomorphisms.

4.4.1. Continuous maps.Topologists frequently discuss spaces far more abstract than man-
ifolds. The concept of continuity in this general context relies on the definition of the
following structure on a space.

Definition 4.16. A topologyon a setX is a collection of subsets ofX

U ⊂ {U ⊂ X}
with the following properties:

• The empty set andX are both inU .
• If U1, . . . , Un are a finite collection of elements inU then∩iUi is in U .
• If V ⊂ U is an arbitrary collection of elements inU , then∪V ∈VV is in U .

Thus, a topology is a system of subsetsX which includes the empty set andX, and is
closed under finite intersections and arbitrary unions. The sets inU are called theopensets
in X. Their complements are called theclosedsets. From the definition, finite unions and
arbitrary intersections of closed sets are closed.

Remark4.17. It suffices, when defining a topology, to give a set of subsets of the space
which are supposed to be open, and then let the open sets be the smallest collection of
subsets, including the given sets, which satisfy the axioms of a topology. We call the given
colletion of sets abasisfor the topology. Most of the spaces we will encounter have a
countablebasis.

Definition 4.18. Given a setY ⊂ X, the closureof Y is the intersection of the closed
subsets ofX containingY . Given a setY , the interior of Y is the complement of the
closure of the complement ofY . It is the union of all the open sets inX contained inY .

Example4.19. LetY ⊂ X be a subset. Thesubspacetopology onY is the topology whose
open sets are the intersectionsU ∪ Y whereU is open inX.

We will not discuss topological spaces in general in the sequel and stick only to some
very concrete examples.

Let’s suppose we have two spacesX andY where we understand what the open sets
are. For instance, inR the open sets are the unions of intervals of the kind(a, b), where
we don’t include the endpoints. In this context we can define abstractly what is meant by a
continuous map.
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Definition 4.20. A map fromX to Y is continuousif the inverse of any open set is open.

Example4.21. Let ∼ be an equivalence relation onX, and letπ : X → X/ ∼ be the
quotient map to the space of equivalence classes. Thequotienttopology onX/ ∼ is the
topology whose open sets are thoseU ⊂ X/ ∼ such thatπ−1(U) is open inX. Thus,
X/ ∼ has as many open sets as it is allowed subject to the condition thatπ is continuous.

Definition 4.22. A homeomorphism fromX to Y is a continuous map which is invertible
and has a continuous inverse.

The category of topological manifolds is denotedTOP and has as objects topological
manifolds and as morphisms all continuous maps.

The group of homeomorphisms of a space are typically even larger and harder to under-
stand than groups of diffeomorphisms. The advantage of working with arbitrary continuous
maps is that many natural maps and constructions are on the face of them continuous rather
than smooth, and one can accomplish more by allowing oneself greater flexibility.

We list some frequently encountered topological concepts:

Definition 4.23. A neighborhoodof a pointp ∈ X is any open setU ∈ X containingp.

Definition 4.24. A topological space isHausdorffif for any two distinct pointsp, q ∈ X
there are neighborhoods ofp and ofq which are disjoint.

Definition 4.25. A manifold is defined much as a smooth manifold, with chartsUi and
functionsφi : Ui → R

n for some (typically fixed)n, but now we don’t require that the
transition functionsφjφ

−1
i be smooth, merely homeomorphisms. Formally, a manifold is

a Hausdorff topological space with a countable basis, such that every point has a neighbor-
hood homeomorphic to an open subset ofR

n for some (usually fixed)n.

Definition 4.26. A spaceX is connectedif there are no proper nonempty subsetsU ⊂ X
which are bothclosedandopen. A space islocally connectedif for any pointp and any
open setO ⊂ X there is anotherU ⊂ O such thatU is connected, as a subspace ofX.

Definition 4.27. A subsetX ⊂ Y (perhaps all ofY ) is compactif it is closed, and for
every collectionU of open sets inY whose union containsX, there is afinite subcollection
whose union containsX. A spaceX is locally compactif everyp ∈ X has a neighborhood
whose closure is compact.
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