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Preface

I am frequently asked questions such as “What are fractals?, “What is fractal
dimension?’, ‘How can one find the dimension of a fractal and what does it tell
us anyway? or ‘How can mathematics be applied to fractals?. This book
endeavours to answer some of these questions.

The main aim of the book is to provide a treatment of the mathematics
associated with fractals and dimensions at a level which is reasonably accessible
to those who encounter fractals in mathematics or science. Although basically
a mathematics book, it attempts to provide an intuitive as well as a mathematical
insight into the subject.

The book falls naturally into two parts. Part I is concerned with the general
theory of fractals and their geometry. Firstly, various notions of dimension and
methods for their calculation are introduced. Then geometrical properties of
fractals are investigated in much the same way as one might study the geometry
of classical figures such as circles or ellipses: locally a circle may be approximated
by a line segment, the projection or ‘shadow’ of a circle is generally an ellipse,
a circle typically intersects a straight line segment in.two points (if at all), and
so on. There are fractal analogues of such properties, usually with dimension
playing a key réle. Thus we consider, for example, the local form of fractals,
and projections and intersections of fractals.

Part II of the book contains examples of fractals, to which the theory of the
first part may be applied, drawn from a wide variety of areas of mathematics
and physics. Topics include self-similar and self-affine sets, graphs of functions,
examples from number theory and pure mathematics, dynamical systems, Julia
sets, random fractals and some physical applications.

There are many diagrams in the text and frequent illustrative examples.
Computer drawings of a variety of fractals are included, and it is hoped that
enough information is provided to enable readers with a knowledge of
programming to produce further drawings for themselves.

It is hoped that the book will be a useful reference for researchers, providing
an accessible development of the mathematics underlying fractals and showing
how it may be applied in particular cases. The book covers a wide variety of
mathematical ideas that may be related to fractals, and, particularly in Part II,
provides a flavour of what is available rather than exploring any one subject
in too much detail. The selection of topics is to some extent at the author’s
whim-——there are certainly some important applications that are not included.
Some of the material dates back to early in this century whilst some is very recent.

ix



Notes and references are provided at the end of each chapter. The references
are by no means exhaustive, indeed complete references on the variety of topics
covered would fill a large volume. However, it is hoped that enough information
is included to enable those who wish to do so to pursue any topic further.

It would be possible to use the book as a basis for a course on the mathematics
of fractals, at postgraduate or, perhaps, final-year undergraduate level, and
exercises are included at the end of each chapter to facilitate this. Harder sections
and proofs are marked with an asterisk, and may be omitted without interrupting
the development.

An effort has been made to keep the mathematics to a level that can be
understood by a mathematics or physics graduate, and, for the most part, by
a diligent final-year undergraduate. In particular, measure theoretic ideas have
been kept to a minimum, and the reader is encouraged to think of measures
as ‘mass distributions’ on sets. Provided that it is accepted that measures with
certain (intuitively almost obvious) properties exist, there is little need for
technical measure theory in our development.

.Results are always stated precisely to avoid the confusion which would
otherwise result. Our approach is generally rigorous, but some of the harder
or more technical proofs are either just sketched or omitted altogether.
(However, a few harder proofs that are not available in that form elsewhere
have been included, in particular those on sets with large intersection and on
random fractals.) Suitable diagrams can be a help in understanding the proofs,
many of which are of a geometric nature. Some diagrams are included in the
book; the reader may find it helpful to draw others.

Chapter 1 begins with a rapid survey of some basic mathematical concepts
and notation, for example, from the theory of sets and functions, that are used
throughout the book. It also includes an introductory section on measure theory
and mass distributions which, it is hoped, will be found adequate. The section
on probability theory may be helpful for the chapters on random fractals and
Brownian motion.

With the wide variety of topics covered it is impossible to be entirely consistent
in use of notation and inevitably there sometimes has to be a compromise
between consistency within the book and standard usage.

In the last few years fractals have become enormously popular as an art form,
with the advent of computer graphics, and as a model of a wide variety of
physical phenomena. Whilst it is possible in some ways to appreciate fractals
with little or no knowledge of their mathematics, an understanding of the
mathematics that can be applied to such a diversity of objects certainly enhances
one’s appreciation. The phrase ‘the beauty of fractals’ is often heard—it is the
author’s belief that much of their beauty is to be found in their mathematics.

It is a pleasure to acknowledge those who have assisted in the preparation
of this book. Philip Drazin and Geoffrey Grimmett provided helpful comments
on parts of the manuscript. Peter Shiarly gave valuable help with the computer
drawings and produced the cover photograph, and Aidan Foss produced some

xi

diagrams. I am indebted to Charlotte Farmer, Jackie Cowling and Stuart Gale
of John Wiley and Sons for overseeing the production of the book.

Special thanks are due to David Marsh—not only did he make many useful
comments on the manuscript and produce many of the computer pictures, but
he also typed the entire manuscript in a most expert way.

Finally, I would like to thank my wife Isobel for her support and
encouragement, which extended to reading various drafts of the book.

Kenneth J Falconer
Bristol, April 1989



Introduction

In the past, mathematics has been concerned largely with sets and functions to
which the methods of classical calculus can be applied. Sets or functions that
are not sufficiently smooth or regular have tended to be ignored as ‘pathological’
and not worthy of study. Certainly, they were regarded as individual curiosities
and only rarely were thought of as a class to which a general theory might be
applicable.

In recent years this attitude has changed. It has been realized that a great
deal can be said, and is worth saying, about the mathematics of non-smooth
sets. Moreover, irregular sets provide a much better representation of many
natural phenomena than do the figures of classical geometry. Fractal geometry
provides a general framework for the study of such irregular sets.

We begin by looking briefly at a number of simple examples of fractals, and
note some of their features.

The middle third Cantor set is one of the best known and most easily
constructed fractals; nevertheless it displays many typical fractal characteristics.
It is constructed from a unit interval by a sequence of deletion operations; see
figure 0.1. Let E, be the interval [0, 1]. (Recall that [a, b] denotes the set of real
numbers x such that a<<x<b.) Let E; be the set obtained by deleting the
middle third of E,, so that E, consists of the two intervals [0,3] and [3,1].
Deleting the middle thirds of these intervals gives E,; thus E, comprises the
four intervals [0,3], [2,1], [3,2], [3,1]. We continue in this way, with E,
obtained by deleting the middle third of each interval in E, _,. Thus E, consists
of 2* intervals each of length 37*. The middle third Cantor set F consists of the
numbers that are in E, for all k; mathematically, F is the intersection ﬂ Padpy DN
The Cantor set F may be thought of as the limit of the sequence of sets E, as
k tends to infinity. It is obviously impossible to draw the set F itself, with its
infinitesimal detail, so ‘pictures of F’ tend to be pictures of one of the E,, which
are a good approximation to F when k is reasonably large.

At first glance it might appear that we have removed so much of the interval
[0, 1] during the construction of F, that nothing remains. In fact, F is an infinite
(and indeed uncountable) set, which contains infinitely many numbers in any
neighbourhood of each of its points. The middle third Cantor set F consists
precisely of those numbers in [0, 1] whose base-3 expansion does not contain
the digit 1, i.e. all numbers a,3" '+ a,3724+a337 3+ --- with a;=0 or 2 for
each i. To see this, note that to get E, from E, we remove those numbers with
a; =1, to get E, from E, we remove those numbers with a, = 1, and so on.

xiii
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Figure 0.1 Construction of the middle third Cantor set F, by repeated removal of the middle third
of intervals. Note that £, and £y, the left and right parts of F, are copies of F scaled by a factor%

We list some of the features of the middle third Cantor set F; as we shall see,
similar features are found in many fractals.

(i) F is self-similar. It is clear that the part of F in the interval [0,4] and
the part of F in [2, 1] are geometrically similar to F, scaled by a factor
1. Again, the parts of F in each of the four intervals of E, are similar to
F but scaled by a factor §, and so on. The Cantor set contains copies of
itself at many different scales.

(i) The set F has a ‘fine structure’; that is, it contains detail at arbitrarily
small scales. The more we enlarge the picture of the Cantor set, the more
gaps become apparent to the eye.

(iii) Although F has an intricate detailed structure, the actual definition of
F is very straightforward.

(iv) F is obtained by a recursive procedure. Our construction consisted of
repeatedly removing the middle thirds of intervals. Successive steps give
increasingly good approximations E, to the set F.

(v) The geometry of F is not easily described in classical terms: it is not the
locus of the points that satisfy some simple geometric condition, nor is
it the set of solutions of any simple equation.

(vi) Itisawkward to describe the local geometry of F—near each of its points
are a large number of other points, separated by gaps of varying lengths.

(vii) Although F is in some ways quite a large set (it is uncountably infinite),
its size is not quantified by the usual measures such as length—by any
reasonable definition F has length zero.

Our second example, the von Koch curve, will also be familiar to many
readers; see figure 0.2. We let E, be a line segment of unit length. The set E,
consists of the four segments obtained by removing the middle third of E, and
replacing it by the other two sides of the equilateral triangle based on the
removed segment. We construct E, by applying the same procedure to each of
‘the segments in E,, and so on. Thus E, comes from replacing the middle third
of each straight line segment of E,_; by the other two sides of the equilateral
triangle. When k is large, the curves E,_, and E, differ only in fine detail and
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Figure 0.2 (a) Construction of the von Koch curve F. At each stage, the middle third of each interval

is replaced by the other two sides of an equilateral triangle. (b) Three von Koch curves fitted together
to form a snowflake curve

as k tends to infinity, the sequence of polygonal curves E, approaches a limiting
curve F, called the von Koch curve.

The von Koch curve has features in many ways similar to those listed for
the middle third Cantor set. It is made up of four ‘quarters’ each similar to the
whole, but scaled by a factor 4. The fine structure is reflected in the irregularities
at all scales; nevertheless, this intricate structure stems from a basically simple
construction. Whilst it is reasonable to call F a curve, it is much too irregular
to have tangents in the classical sense. A simple calculation shows that E, is of
length (3)*; letting k tend to infinity implies that F has infinite length. On the
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Figure 0.3 Construction of the Sierpifski gasket (dimy F= dimg F=1o0g 3/log2)

other hand, F occupies zero area in the plane, so neither length nor area provides
a very useful description of the size of F.

Many other sets may be constructed using such recursive procedures. For
example, the Sierpinski gasket is obtained by repeatedly removing (inverted)
equilateral triangles from an initial equilateral triangle; see figure 0.3. (For many
purposes, it is better to think of this procedure as repeatedly replacing an
equilateral triangle by three triangles of half the height.) A plane analogue of
the Cantor set, a ‘Cantor dust’ is illustrated in figure 0.4. At each stage each
rernaining square is divided into 16 smaller squares of which four are kept and
the rest discarded. (Of course, other arrangements or numbers of squares could
be used to get different sets.) It should be clear that such examples have properties
similar to those mentioned in connection with the Cantor set and the von Koch
curve. The example depicted in figure 0.5 is constructed using two different
sirnilarity ratios.

Figure 0.4 Construction of a ‘Cantor dust’ {dimy F= dimg F=1)

xvii
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Figure 0.5 Construction of a self-similar fractal with two different similarity ratios

There are many other types of construction, some of which will be discussed
in detail later in the book, that also lead to sets with these sorts of properties.
The highly intricate structure of the Julia set illustrated in figure 0.6 stems
from the single quadratic function f(z)=2z>+ ¢ for a suitable constant c.
Although the set is not strictly self-similar in the sense that the Cantor set and
von Koch curve are, it is ‘quasi-self-similar’ in that arbitrarily small portions
of the set can be magnified and then distorted smoothly to coincide with a large
part of the set.

Figure 0.7 shows the graph of the function f(f) =3 ,(2) *?sin((3)"1); the
infinite summation leads to the graph having a fine structure, rather than being
a smooth curve to which classical calculus is applicable.

Some of these constructions may be ‘randomized’. Figure 0.8 shows a ‘random
von Koch curve’—a coin was tossed at each step in the construction to

Figure 0.6 A Julia set
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t
Figure 0.7 Graph of £(1) = > (3)™ “sin ((2)*1)

determine on which side of the curve to place the new pair of line segments.
This random curve certainly has a fine structure, but the strict self-similarity
of the von Koch curve has been replaced by a ‘statistical self-similarity’.
These are all examples of sets that are commonly referred to as fractals. (The
word “ractal’ was coined by Mandelbrot in his fundamental essay from the
Latin fractus, meaning broken, to describe objects that were too irregular to
fit into a traditional geometrical setting.) Properties such as those listed for the
Cantor set are characteristic of fractals, and it is sets with such properties that
we will have in mind throughout the book. Certainly, any fractal worthy of the
name will have a fine structure, i.e. detail at all scales. Many fractals have some

Figure 0.8 A random version of the von Koch curve

XX
degree of self-similarity—they are made up of parts that resemble the whole
in some way. Sometimes, the resemblance may be weaker than strict geometrical
similarity; for example, the similarity may be approximate or statistical.

Methods of classical geometry and calculus are unsuited to studying fractals
and we need alternative techniques. The main tool of fractal geometry is
dimension in its many forms. We are familiar enough with the idea that a
(smooth) curve is a 1-dimensional object and a surface is 2-dimensional. It is
less clear that, for many purposes, the Cantor set should be regarded as having
dimension log2/log3 =0.631 and the von Koch curve as having dimension
log 4/log 3 = 1.262. This latter number is, at least, consistent with the von Koch
curve being ‘larger than 1-dimensional’ (having infinite length) and ‘smaller than
2-dimensional’ (having zero area).

The following argument gives one (rather crude) interpretation of the meaning
of these ‘dimensions’ indicating how they reflect scaling properties and
self-similarity. As figure 0.9 indicates, a line segment is made up of four copies
of itself, scaled by a factor ;. The segment has dimension —log4/logi=1. A
square, however, is made up of four copies of itself scaled by a factor £ (i.e. with
half the side length) and has dimension —log4/log$ = 2. In the same way, the
von Koch curve is made up of four copies of itself scaled by a factor 4, and
has dimension —log4/log3 =log4/log3, and the Cantor set may be regarded
as comprising four copies of itself scaled by a factor § and having dimension
—log4/log 5 =1log2/log 3. In general, a set made up of m copies of itself scaled
by a factor r might be thought of as having dimension —log m/log . The number
obtained in this way is usually referred to as the similarity dimension of the set.

Unfortunately, similarity dimension is meaningful only for a small class of
strictly self-similar sets. Nevertheless, there are other definitions of dimension
that are much more widely applicable. For example, Hausdorff dimension and
the box-counting dimensions may be defined for any sets, and, in these four
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Figure 0.9 Division of certain sets into four parts. The parts are similar to the whole with ratios:
% for line segment (a); % for square (b); % for middle third Cantor set (c); % for von Koch curve (d)
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examples, may be shown to equal the similarity dimension. The early chapters
of the book are concerned with the definition and properties of Hausdorff and
other dimensions, along with methods for their calculation. Very roughly, a
dimension provides a description of how much space a set fills. It is a measure
of the prominence of the irregularities of a set when viewed at very small scales.
A dimension contains much information about the geometrical properties of a
set.

A word of warning is appropriate at this point. It is possible to define the
‘dimension’ of a set in many ways, some satisfactory and others less so. It is
important to realize that different definitions may give different values of
dimension for the same set, and may also have very different properties.
Inconsistent usage has sometimes led to considerable confusion. In particular,
warning lights flash in my mind (as in the minds of other mathematicians)
whenever the term ‘fractal dimension’ is seen. Though some authors attach a
precise meaning to this, I have known others interpret it inconsistently in a
single piece of work. The reader should always be aware of the definition in
use in any discussion.

In his original essay, Mandelbrot defined a fractal to be a set with Hausdorff
dimension strictly greater than its topological dimension. (The topological
dimension of a set is always an integer and is 0 if it is totally disconnected, 1 if
each point has arbitrarily small neighbourhoods with boundary of dimension
0, and so on.) This definition proved to be unsatisfactory in that it excluded a
number of sets that clearly ought to be regarded as fractals. Various other
definitions have been proposed, but they all seem to have this same drawback.

My personal feeling is that the definition of a ‘fractal’ should be regarded in
the same way as the biologist regards the definition of ‘life’. There is no hard
and fast definition, but just a list of properties characteristic of a living thing,
such as the ability to reproduce or to move or to exist to some extent
independently of the environment. Most living things have most of the
characteristics on the list, though there are living objects that are exceptions
to each of them. In the same way, it seems best to regard a fractal as a set that
has properties such as those listed below, rather than to look for a precise
definition which will almost certainly exclude some interesting cases. From the
mathematician’s point of view, this approach is no bad thing. It is difficult to
avoid developing properties of dimension other than in a way that applies to
“fractal’ and ‘non-fractal’ sets alike. For ‘non-fractals’, however, such properties
are of little interest—they are generally almost obvious and could be obtained
more easily by other methods.

When we refer to a set F as a fractal, therefore, we will typically have the
following in mind.

(i) F has a fine structure, i.e. detail on arbitrarily small scales.
(ii) F is too irregular to be described in traditional geometrical language,
both locally and globally.
(iii) Often F has some form of self-similarity, perhaps approximate or
statistical.

xxi

(iv) Usually, the fractal dimension’ of F (defined in some way) is greater than
its topological dimension.

(v} In most cases of interest F is defined in a very simple way, perhaps
recursively.

What can we say about the geometry of as diverse a class of objects as
fractals? Classical geometry gives us a clue. In Part I of this book we study
certain analogues of familiar geometrical properties in the fractal situation. The
orthogonal projection, or ‘shadow’ of a circle in space onto a plane is, in general,
an ellipse. The fractal projection theorems tell us about the ‘shadows’ of a fractal.
For many purposes, a tangent provides a good local approximation to a circle.
Though fractals do tend not to have tangents in any sense, it is often possible
to say a surprising amount about their local form. Two circles in the plane in
‘general position’ either intersect in two points or not at all (we regard the case
of mutual tangents as ‘exceptional’). Using dimension, we can make similar
statements about the intersection of fractals. Moving a circle perpendicular to
its plane sweeps out a cylinder, with properties that are related to those of the
original circle. Similar, and indeed more general, constructions are possible with
fractals.

Although classical geometry is of considerable intrinsic interest, it is also
called upon widely in other areas of mathematics. For example, circles or
parabolae occur as the solution curves of certain differential equations, and a
knowledge of the geometrical properties of such curves aids our understanding
of the differential equations. In the same way, the general theory of fractal
geometry can be applied to the many branches of mathematics in which fractals
occur. Various examples of this are given in Part II of the book.

Historically, interest in geometry has been stimulated by its applications to
nature. The ellipse assumed importance as the shape of planetary orbits, as did
the sphere as the shape of the earth. The geometry of the ellipse and sphere
can be applied to these physical situations. Of course, orbits are not quite
elliptical, and the earth is not actually spherical, but for many purposes, such
as the prediction of planetary motion or the study of the earth’s gravitational
field, these approximations may be perfectly adequate.

' A similar situation pertains with fractals. A glance at the recent physics
literature shows the variety of natural objects that are described as
fractals—cloud boundaries, topographical surfaces, coastlines, turbulence in
ﬂpids, and so on. None of these are actual fractals—their fractal features
disappear if they are viewed at sufficiently small scales. Nevertheless, over certain
ranges of scale they appear very much like fractals, and at such scales may
usefully be regarded as such. The distinction between ‘natural fractals’ and the
mathematical ‘fractal sets’ that might be used to describe them was emphasized
in Mandelbrot’s original essay, but this distinction seems to have become
somewhat blurred. There are no true fractals in nature. (There are no true
straight lines or circles either!)

If the mathematics of fractal geometry is to be really worthwhile, then it
should be applicable to physical situations. Progress is being made in this



XXH

direction and some examples are given towards the end of this book. Although
there are natural phenomena that have been explained in terms of fractal
mathematics (Brownian motion is a good example), most applications tend to
be descriptive rather than predictive. Much of the mathematics used in the
study of fractals is not particularly new, though interest in it is. For further
progress to be made, development and application of appropriate mathematics
deserves a high priority.

Notes and references

Unlike the rest of the book, which consists of fairly solid mathematics, this
Introduction contains some of the author’s opinions and prejudices which may
well not be shared by other workers on fractals. Caveat emptor!

The basic treatise on fractals, which may be appreciated at many levels is
the scientific, philosophical and pictorial essay of Mandelbrot (1982) (developed
from the original 1975 version), containing a great diversity of natural and
mathematical examples of fractals. This essay, in its various versions, has been
the inspiration for much of the work that has been done on fractals.

Other books devoted to various aspects of fractals include the mathematical
treatment of Falconer (1985a), the beautifully illustrated survey of complex
dynamics by Peitgen and Richter (1986), the book by Feder (1988) largely
devoted to physical applications, the book edited by Peitgen and Saupe (1988)
on computer graphical aspects, and the course book by Barnsley (1988) largely
concerned with iterated function schemes. All these contain many further
references.

Part |
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Chapter 1 Mathematical background

This chapter reviews some of the basic mathematical ideas and notation that
will be used througout the book. Sections 1.1 on set theory and 1.2 on functions
are rather concise; readers unfamiliar with this type of material are advised to
consult a more detailed text. Measures and mass distributions play an important
part in the theory of fractals. A treatment adequate for our needs is given in
Section 1.3. By asking the reader to take on trust the existence of certain
measures, we can avoid many of the technical difficulties usually associated
with measure theory. Some notes on probability theory are given in Section
1.4; an understanding of this is needed in Chapters 15 and 16.

1.1 Basic set theory

In this section we recall some basic notions from set theory and point set
topology.

We generally work in n-dimensional Euclidean space, R", where R! = R is just
the set of real numbers or the ‘real line’, and R? is the (Euclidean) plane. Points in
R" will generally be denoted by lower case letters x,y, etc, and we will
occasionally use the coordinate form x =(xy,...,x,), ¥y =(y1,...,yn). Addition
and scalar multiplication are defined in the usual manner, so that
x+y=(x;+Yg,---s X, +y,)and Ax = (Ax,,..., Ax,), where A is a real scalar. We
use the usual Euclidean distance or metric) on R". So if x, y are points of R",
the distance between them is |x — y| = (7., |x; — y:l?)'/2.

Sets, which will generally be subsets of R", are denoted by capital letters
E,F,U, etc.. In the usual way, xe E means that the point x belongs to the set
E, and E c F means that E is a subset of the set F. We write {x:condition}
for the set of x for which ‘condition’ is true. Certain frequently occurring sets
have a special notation. The empty set, which contains no elements, is written
as ¢J. The integers are denoted by Z and the rational numbers by Q. We use
a superscript * to denote the positive elements of a set; thus R* are the positive
real numbers, and Z* are the positive integers. Occasionally we refer to the
complex numbers C, which for many purposes may be identified with the plane
R?, with x, + ix, corresponding to the point (x, x,).

The closed ball of centre x and radius r is defined by B,(x) = {y:|y — x| <r}.
Similarly the open ball is B2(x) = {y:|y — x| < r}. Thus the closed ball contains
its bounding sphere, but the open ball does not. Of course in R? a ball is a disc
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Figure 1.1 A set A and its J-paralle! body A;

and in R! a ball is just an interval. If a < b we write [a, b] for the closed interval
{x:a<x<b} and (a,b) for the open interval {x:a<x<b}. Similarly [a,b)
denotes the half-open interval {x:a < x < b}, etc.

The coordinate cube of side 2r and centre x=(x;,...,X,) i1s the set
{y=0p--yilyi—xil <rfori=1,...,n} (A cube in R? is just a square and
in R! is an interval.)

From time to time we refer to the d-parallel body, A;, of a set A, that is the
set of points within distance & of 4; thus 4, = {x:|x — y| < 6 for some y in A},
see figure 1.1.

We write 4 U B for the union of the sets 4 and B, i.e. the set of points belonging
to either A or B. Similarly, we write A B for their intersection, the points in
both 4 and B. More generally, | ], 4, denotes the union of an arbitrary collection
of sets {4,}, i.e. those points in at least one of the sets 4,, and (A, denotes
their intersection, consisting of the set of points common to all of the 4,. A
collection of sets is disjoint if the intersection of any pair is the empty set. The
difference A\B of A and B consists of the points in A but not B. The set R"\4
is termed the complement of A.

The set of all ordered pairs {(a,b):acA and beB} is called the (Cartesian)
product of A and B and is denoted by A x B. If AcR" and B<R™ then
AxBcR™™

If A and B are subsets of R” and A is a real number, we define the vector sum
of the sets as A + B={x + y:xeA and yeB} and we define the scalar multiple
as A4 = {Ax:xeA}.

An infinite set A4 is countable if its elements can be listed in the form x,, x,,...
with every element of A appearing at a specific place in the list; otherwise the
set is uncountable. The sets Z and Q are countable but R is uncountable.

If A is any set of real numbers then the supremum sup A is the least number
m such that x < m for every x in A4, or is o0 if no such number exists. Similarly,
the infimum inf A is the greatest number m such that m < x for all x in 4, or is
— 0. Intuitively the supremum and infimum are thought of as the maximum
and minimum of the set, though it is important to realize that sup A and inf 4
need not be members of the set A itself. We write sup,_g( ) for the supremum of
the quantity in brackets, which may depend on x, as x ranges over the set B.
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We define the diameter |A| of a (non-empty) subset of R" as the greatest
distance apart of pairs of points in A. Thus |A| =sup{|x — y|:x, yeA}. A set 4
is bounded if it has finite diameter, or, equivalently, if 4 is contained in some
(sufficiently large) ball.

Convergence of sequences is defined in the usual way. A sequence {x,} in R"
converges to a point x of R" as k— oo if, given ¢ > 0, there exists a number K
such that |x, — x| <& whenever k > K, that is if |x, — x| converges to 0. The
number x is called the limit of the sequence, and we write x, — x or lim, _, _ x, = x.

The ideas of ‘open’ and ‘closed’ that have been mentioned in connection with
balls apply to much more general sets. Intuitively, a set is closed if it contains
its boundary and open if it contains none of its boundary points. More precisely,
a subset A of R" is open if, for all points x in 4 there is some ball B,(x), centred
at x and of positive radius, that is contained in A. A set is closed if, whenever {x,}
1s a sequence of points of A converging to a point x of R”, then x is in A; see
figure 1.2. The empty set ¢J and R" are regarded as both open and closed.

It may be shown that a set is open if and only if its complement is closed.
The union of any collection of open sets is open, as is the intersection of any
finite number of open sets. The intersection of any collection of closed sets is
closed, as is the union of any finite number of closed sets.

A set A is called a neighbourhood of a point x if there is some (small) ball
B,(x) centred at x and contained in A.

The intersection of all the closed sets containing a set A is called the closure
of A, written A. The union of all the open sets contained in A is the interior
int (4) of A. The closure of A4 is thought of as the smallest closed set containing
A, and the interior as the largest open set contained in A. The boundary 0A of A
is given by 04 = A\int (A).

A set B is a dense subset of A if Bc A< B, ie. if there are points of B
arbitrarily close to each point of A.

A set A is compact if any collection of open sets which covers A (i.e. with
union containing A) has a finite subcollection which also covers 4. Technically,
compactness is an extremely useful property that enables infinite sets of
conditions to be reduced to finitely many. However, as far as most of this book

(o) {(£) (c)

Figure 1.2 (a) An open set—there is a ball contained in the set centred at each point of the set.
(6) A closed set—the limit of any convergent sequence of points from the set lies in the set.
(¢} The boundary of the set in {a) or (&)
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is concerned, it is enough to think of a compact subset of R” as one that is
both closed and bounded.

The intersection of any collection of compact sets is compact. It may be
shown that if 4, > A4, > --- is a decreasing sequence of compact sets then the
intersection (), 4, is non-empty. Moreover, if {}{2, A4, is contained in V for
some open set V, then then finite intersection ()., A; is contained in V for
some k.

A subset A of R" is connected if there do not exist open sets U and V such
that U L V contains A with AU and 4~V disjoint and non-empty. Intuitively,
we think of a set A as connected if it consists of just one ‘piece’. The largest
connected subset of A containing a point x is called the connected component of
x. The set A4 is totally disconnected if the connected component of each point
consists of just that point. This will certainly be so if for any pair of points x
and y in 4 we can find disjoint open sets U and V such that xeU, yeV and
AcUnV.

There is one further class of set that must be mentioned though its precise
definition is indirect and should not concern the reader unduly. The class of
Borel sets is the smallest collection of subsets of R" with the following properties:

(a) every open set and every closed set is a Borel set;

(b) the union of every finite or countable collection of Borel sets is a Borel
set, and the intersection of every finite or countable collection of Borel
sets is a Borel set.

Throughout this book, virtually all of the subsets of R” that will be of any
interest to us will be Borel sets. Any set that can be constructed using a sequence
of countable unions or intersections starting with the open sets or closed sets
will certainly be Borel. The reader will not go far wrong in work of the sort
described in this book by assuming that all the sets encountered are Borel sets.

1.2 Functions and limits

Let X and Y be any sets. A mapping, function or transformation f from X to
Y is a rule or formula that associates a point f(x) of Y with each point x of X.
We write f: X — Y to denote this situation; X is called the domain of f and Y is
called the codomain. If A is any subset of X we write f(A4) for the image of A4,
given by {f(x):xeA}. If B is a subset of Y, we write f ~ '(B) for the inverse image
or pre-image of B, i.e. the set {xe X : f(x)e B}; note that in this context the inverse
image of a single point can contain many points.

A function f:X — Y is called an injection or a one-to-one functionif f(x) # f(y)
whenever x # y, i.e. different elements of X are mapped to different elements of
Y. The function is called a surjection or an onto function if, for every y in Y,
* there is an element x in X with f(x)=y, i.e. every element of Y is the image
of some point in X. A function that is both an injection and a surjection is
called a bijection or one-to-one correspondence between X and Y. If f: X -Y
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is a bijection then we may define the inverse function f~1:Y — X by taking
/7'y as the unique element of X such that f(x)=y. In this situation,
ff(x))=xfor xin X and f(f " y))=yfor yin Y.

The composition of the functions f:X—Y and g:Y - Z is the function
gef:X—=Z given by (gef)(x)=g(f(x)). This definition extends to the
composition of any finite number of functions in the obvious way.

Certain functions from R" to R" have a particular geometric significance; often
in this context they are referred to as transformations and are denoted by capital
letters. Their effects are shown in figure 1.3. The transformation S:R"— R" is
called a congruence or isometry if it preserves distances, ie. if |S(x)— S(y)| =
|x — y| for x, y in R". Congruences also preserve angles, and transform sets into
geometrically congruent ones. Special cases include translations, which are of
the form S(x) = x + a and have the effect of shifting points parallel to the vector
a, rotations which have a centre a such that |S(x)—a}=]x —al for all x (for
convenience we also regard the identity transformation given by I(x)=x as a
rotation) and reflections which map points to their mirror images in some
(n — 1)-dimensional plane. A congruence that may be achieved by a combination
of a rotation and a translation, i.e. does not involve reflection, is called a rigid
motion or direct congruence. A transformation S:R"— R" is a similarity if there
is a constant ¢ such that |S(x) — S(y)| = c|x — y| for all x,y in R". A similarity
transforms sets into geometrically similar ones.

A transformation T:R"—>R" is linear if T(x+y)=T(x)+ T(y) and
T(Ax)= AT(x) for all x,yeR" and 4ieR; linear transformations may be
represented by matrices in the usual way. Such a linear transformation is

N

Direct congruence (Non-direct) congruence
or rigid motion

ANz

Similarities

Aﬁ

Affinities

Figure 1.3 The effect of various transformations on a set 4



non-singular if T(x)=0 if and only if x=0. If S:R">R" is of the form
S(x) = T(x) + a, where T is a non-singular linear transformation and a is a point
in R", then S is called an affine transformation or an affinity. An affinity may
be thought of as a shearing transformation; its contracting or expanding effect
need not be the same in every direction.

It is worth pointing out that such classes of transformation form groups
under composition of mappings. For example, the composition of two
translations is a translation, the identity transformation is trivially a translation,
and the inverse of a translation is a translation. Finally, the associative law
So(ToU)=(S>T)°U holds for all translations S, T, U. Similar group properties
hold for the congruences, the rigid motions, the similarities and the affinities.

A function f:X — Y is called a Hélder function of exponent o if

1) = fnl<clx—yl* (x,yeX)

for some constant c¢. The function f is called a Lipschitz function if « may be
taken to be equal to 1, and a bi-Lipschitz function if

clx =yl <)~ f < calx =yl (x,yeX)

for 0 <c; <cy; < 0.

We next remind readers of the basic ideas of limits and continuity of functions.
Let X and Y be subsets of R” and R™ respectively, let f:X — Y be a function,
and let a be a point of X. We say that f(x) has limit y (or tends to y, or converges
to y) as x tends to g, if, given ¢ > 0, there exists > 0 such that | f(x) —y| <e
for all xeX with |x — a| <J. We denote this by writing f(x)—y as x —a or by
lim,_,, f(x) = y. For a function f:X — R we say that f(x) tends to infinity (written
f(x) > ) as x —a if, given M, there exists § > 0 such that f(x) > M whenever
|x — a| < §. The definition of f(x)— — oo is similar.

Suppose, now, that f:R* — R. We shall frequently be interested in the values
of such functions for small positive values of x. Note that if f(x) is increasing
as x decreases, then lim,_,, f(x) exists either as a finite limit or as oo, and if
f(x) is decreasing as x decreases then lim,_, f(x) exists and is finite or — co.
Of course, f(x) can fluctuate wildly for small x and lim, ., f(x) need not exist
at all. We use lower and upper limits to describe such fluctuations. We define
the lower limit as

lim f(x) = lim (inf { f(x):0 < x <7r}).

x—0 x—=0

Since inf { f(x):0 < x <r} is either — oo for all positive r or else increases as r
decreases, lim, ., f(x) always exists. Similarly, the upper limit is defined as

lim f(x) = lim (sup {f(x):0 < x <r}).

x—0 x—=0

- The lower and upper limits exist (as real numbers or — co or oo) for any function
£, and are indicative of the variation in values of f for x close to 0; see figure 1.4.
If lim, ., f(x)=1lim,_ f(x) then lim,_, f(x) exists and equals this common

lim F(x)
x—+0

f{x)

tim £(x)
x—~0

(o] X

Figure 1.4 The upper and lower limits of a function

value. In the same way, it is possible to define lower and upper limits as x — a for
functions f:X — R where X is a subset of R" with a in X.

We often need to compare two functions f,g:R* — R for smalil values. We
write f(x)~ g(x) to mean that f(x)/g(x)—1 as x—0. We will often have that
f(x) ~ x% in other words that f obeys an approximate power law of exponent
s when x is small. We use the notation f(x) ~ g(x) more loosely, to mean that
f(x) and g(x) are approximately equal in some sense, to be specified in the
particular circumstances.

Recall that the function f:X — Y is continuous at a point a of X if f(x)— f(a)
as x —a, and is continuous on X if it is continuous at all points of X. If /: X - Y
is a continuous bijection with continuous inverse f~':Y — X then f is called
a homeomorphism, and X and Y are termed homeomorphic sets.

The function f:R — R is differentiable at x with the number f'(x) as derivative if

UALDIY

h—0

= f'(x).

In particular, the mean-value theorem applies: given a < b and f differentiable
on [a, b] there exists ¢ with a < ¢ b such that

J(b)—f(a)
b—a
(intuitively, any chord of the graph of f is parallel to the slope of f at some

intermediate point). A function f is continuously differentiable if f'(x) is
continuous in x.

More generally, if f :R" — R", we say that fis differentiable at x with derivative
the linear mapping f'(x):R" — R" if

lim Lf(x+m)— f(x)— S (x)h| _
1kl =0 {h]

=f'(c)

0.
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Occasionally, we shall be interested in the convergence of a sequence of
functions f,:X — Y where X and Y are subsets of Euclidean spaces. We say
that functions f, converge pointwise to a function f:X —Y if fillx)—>f(x) as
k—oo for each x in X. We say that the convergence is uniform if
SUP.ex | filx) —f(x)| =0 as k— cc. Uniform convergence is a rather stronger
property than pointwise convergence; the rate at which the limit is approached
is uniform across X. If the functions f, are continuous and converge uniformly
to f, then f is continuous.

Finally, we remark that logarithms will always be to base e. The identity
ab = cblogalloee will often be used.

1.3 Measures and mass distributions

Anyone studying the mathematics of fractals will not get far before encountering
measures in some form or other. Many people are put off by the seemingly
technical nature of measure theory—often unnecessarily so, since for most
fractal applications only a few basic ideas are needed. Moreover, these ideas
are often already familiar in the guise of the mass or charge distributions
encountered in basic physics.

We need only be concerned with measures on subsets of R". Basically a
measure is just a way of ascribing a numerical ‘size’ to sets, such that if a set
is decomposed into a finite or countable number of pieces in a reasonable way,
then the size of the whole is the sum of the sizes of the pieces.

We call p a measure on R" if u assigns a non-negative number, possibly oo,
to each subset of R” such that:

(@ WD) =0; (1.1)
() w(AY< u(B) ifAcB; (1.2)
(¢) If A,, A,,... is countable (or finite) sequence of sets then

u(@ A,~>< 3 (4 (13)

with equality in (1.3), i.e.
u(U A;>= Y w4y (14)

if the A4, are disjoint Borel sets.

We call p(A) the measure of the set A, and think of u(A) as the size of A
measured in some way. Condition (a) says that the empty set has zero measure,
condition (b) says ‘the larger the set, the larger the measure’ and (c) says that
if a set is a union of a countable number of pieces (which may overlap) then
the sum of the measure of the pieces is at least equal to the measure of the whole.
If a set is decomposed into a countable number of disjoint Borel sets then the
total measure of the pieces equals the measure of the whole.

Fechnical note. For the measures that we shall encounter, (1.4) generally holds
for a much wider class of sets than just the Borel sets, in particular for all
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images of Borel sets under continuous functions. However, for reasons that
need not concern us here, we cannot in general require that (1.4) holds for
every countable collection of disjoint sets A;. The reader who is familiar with
measure theory will realize that our definition of a measure on R" is the definition
of what would normally be termed ‘an outer measure on R" for which the Borel
sets are measurable’. However, to save frequent referral to ‘measurable sets’ it
is convenient to have u(A4) defined for every set A4, and, since we are usually
interested in measures of Borel sets, it is enough to have (1.4) holding for Borel
sets rather than for a larger class. If u is defined and satisfies (1.1)—(1.4) for the
Borel sets, the definition of 4 may be extended to an outer measure on all sets

in such a way that (1.1)—(1.3) hold, so our definition is consistent with the usual
one.

‘ If A = B then A may be expressed as a disjoint union A = BU(A\B), so it is
immediate from (1.4) that, if A and B are Borel sets,

WAN\B) = pu(A) — p(B). (1.5)
Similarly, if 4, © A, = --- is an increasing sequence of Borel sets then

lim p(4;) =u< U A.->- (1.6)

i—x i=1

To see this, note that { J2, A;= A4, U(A4,\4,)U(43\4;)u ..., with this union
disjoint, so that

N(igl Ai) = u(A,) + i (u(A; 4 1) — n(A))

i=1

k
= u(A,) + lim Z (u(A; 4 1) — 1(A))

k- =1
= him p(A4,).
k— oo
More generally, it follows that if, for 6 > 0, 4, are Borel sets that are increasing
as 6 decreases, i.e. A; « A, for 0 < < &', then

lim u(As) = y( U Aé). (1.7)
-0 >0

We think of the support of a measure as the set on which the measure is
concentrated. Formally, the support of u is the smallest closed set X such that
#(R™ X)= 0. The support of a measure is always closed and x is in the support
if and only if u(B,(x)) > O for all positive radii r. We say that u is a measure on
a set A if A contains the support of pu.

A measure on a bounded subset of R” for which 0 < u(R") < co will be called
a mass distribution, and we think of u(A) as the mass of the set 4. We often
think of this intuitively: we take a finite mass and spread it in some way across

a set X to get a mass distribution on X; the conditions for a measure will then
be satisfied.
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We give some examples of measures and mass distributions. In general, we
omit the proofs that measures with the stated properties exist. Much of technical
measure theory concerns the existence of such measures, but, as far as applica-
tions go, their existence is intuitively reasonable, and can be taken on trust.

Example 1.1. The counting measure

For each subset 4 of R" let u(A4) be the number of points in A if A is finite,
and oo otherwise. Then y is a measure on R".

Example 1.2. Point mass

Let a be a point in R" and define u(4) to be 1 if A contains a, and 0 otherwise.
Then p is a mass distribution, thought of as a point mass concentrated at a.

Example 1.3. Lebesgue measure on R

Lebesgue measure £ * extends the idea of ‘length’ to a large collection of subsets
of R that includes the Borel sets. For open and closed intervals, we take
LYa,b)= L' [a,b]=b—a. If A=|)[a,b] is a finite or countable union of
disjoint intervals, we let F(A)=Y(b; — a;) be the length of A thought of as
the sum of the length of the intervals. This leads us to the definition of the
Lebesgue measure £*(A) of an arbitrary set A. We define

S"(A)=inf{i (bi— a;):A < Q [ai,b]}

that is, we look at all coverings of A by countable coliections of intervals, and
take the smallest total interval length possible. It is not hard to see that (1.1)—(1.3)
hold; it is rather harder to show that (1.4) holds for disjoint Borel sets 4;, and
we avoid this question here. (In fact, (1.4) holds for a much larger class of sets
than the Borel sets, ‘the Lebesgue measurable sets’, but not for all subsets of
R.) Lebesgue measure on R is generally though of as ‘length’, and we often
write length(4) for £*(A4) when we wish to emphasize this intuitive meaning.

Example 1.4. Lebesgue measure on R”
If A={(xq,...,x)eR"a;<x; <b;} is a ‘coordinate parallelepiped’ in R", the
n-dimensional volume of A is given by

vol(A)= (b, —ay) (b, — a,)---(b, — a,)-

(Of course, vol is length, as in Example 1.3, vol? is area and vol® is the usual
3_dimensional volume.) Then n-dimensional Lebesgue measure £" may be
thought of as the extension of n-dimensional volume to a large class of sets. Just
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as in Example 1.3, we obtain a measure on R" by defining

2"(A):inf{ 3 vol"(A):A < @ Al}
=1

i=1

i

where the infimum is taken over all coverings of 4 by coordinate parallelepipeds
A;. We get that £"(A) = vol"(A4)if A is a coordinate parallelepiped or, indeed, any
set for which the volume can be determined by the usual rules of mensuration.
Again, to aid intuition, we sometimes write area(A4) in place of L2(A), vol(A)
for #3(A) and vol"(A) for £"(A).

Sometimes, we need to define ‘k-dimensional’ volume on a k-dimensional
plane X in R" this may be done by identifying X with R* and using .#* on
subsets of X in the obvious way.

Example 1.5. Uniform mass distribution on a line segment

Let L be a line segment of unit length in the plane. Define p(4) = & HLnA)ie.
the ‘length’ of intersection of 4 with L. Then y is a mass distribution with
support L, since u(A4) =0 if AnL = . We may think of y as unit mass spread
evenly along the line segment L.

Example 1.6. Restriction of a measure

Let u be a measure on R” and E a Borel subset of R". We may define a measure
v on R", called the restriction of u to E, by v(4) = (En A) for any set 4. Then
v is a measure on R" with support contained in E.

As far as this book is concerned, the most important measures we shall meet
are the s-dimensional Hausdorff measures #° on subsets of R", where 0 <s< n.
These measures, which are introduced in Section 2.1, are a generalization of
Lebesgue measures to dimensions that are not necessarily integral.

The following method is often used to construct a mass distribution on a
subset of R". It involves repeated subdivision of a mass between parts of a
bounded Borel set E. Let &, consist of the single set E. For k=1,2,... we let
&, be a collection of disjoint Borel subsets of E such that each set U in &} is
contained in one of the sets of & _, and contains a finite number of the sets in
&,.,- We assume that the maximum diameter of the sets in & tends to 0 as
k — c0. We define a mass distribution on E by repeated subdivision; see figure 1.5.
We let p(E) satisfy 0 < pu(E)< oo, and we split this mass between the sets
U,,...,Un in & by defining p(U;) in such a way that 37, u(U;) = pu(E).
Similarly, we assign masses to the sets of &, so that if U,,...,U,, are the sets
of &, contained in a set U of &y, then Y7o, (U} = u(U). In general, we assign
masses so that

> uU) =u(U) (1.8)
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Figure 1.5 Steps in the construction of a mass distribution u by repeated subdivision. The mass on
the sets of &, is divided between the sets of &, 4. so. for example, p{U) = u(U;) + pllh)

for each set U of &,, where the {U;} are the disjoint sets in & 4y contained in
U.Foreach k, we let E, be the union of the sets in &, and we let HW(RN\E)=0.

Let & denote the collection of sets that belong to &, for some k together with
the sets R"™\E,. The above procedure defines the mass u(4) of every set 4 in &,
and it should seem reasonable that, by building up sets from the sets in &, it
specifies enough about the distribution of the mass u across E to determine
p(A) for any (Borel) set 4. This is indeed the case, as the following proposition
states.

Proposition 1.7
Let p be defined on a collection of sets & as above. Then the definition of p may
be extended to all subsets of R" so that y becomes a measure. The value of ji(A4)
is uniquely determined if A is a Borel set. The support of wis contained in [\, Ex.
Note on Proof. If A is any subset of R", let

u(A)=inf{Zu(Ui):AcU U; and Uieéa}‘ 1.9

(Thus we take the smallest value we can of 2072, w(U,;) where the sets U; are in
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& and cover A; we have already defined u(U)) for such U.) It is not difficult to
see that if 4 is one of the sets in &, then (1.9) reduces to the mass u(4)
specified in the construction. The complete proof that 4 satisfies all the conditions
of a measure and that its values on the sets of & determine its values on the
Borel sets is quite involved, and need not concern us here. Since u(R™\E,) =0,
we have u(A4) =0 if A is an open set that does not intersect E, for some k, so
the support of y is in E, for all k. 0

Example 1.8

Let &, denote the collection of ‘binary intervals’ of length 2% of the form
[r27%, (r + 1)27%) where 0<r<2*—1. If we take u[r27%,(r+1)27%)=27"in
the above construction, we get that p is Lebesgue measure on [0,1].

Note on calculation. Clearly, if I is an interval in &, of length 27* and I,,I, are
the two subintervals of I in &, ., of length 27%~ 1, we have u(I)= u(I) + u(I,)
which is (1.8). By Proposition 1.7 u extends to a mass distribution on [0, 1].
We have u(I) = length(I) for I in &, and it may be shown that this implies that
u coincides with Lebesgue measure on any set. |

We say that a property holds for almost all x, or almost everywhere, (with
respect to a measure y) if the set for which the property fails has p-measure
zero. For example, we might say that almost all real numbers are irrational
with respect to Lebesgue measure. The rational numbers Q are countable; they
may be listed as x,,x,,..., say, so that p(@) =32 pu{x;}=0.

Although we shall usually be interested in measures in their own right, we
shall sometimes need to integrate functions with respect to measures. There are
technical difficulties concerning which functions can be integrated. We may get
around these difficulties by assuming that, for f:D— R a function defined on
a Borel subset D of R", the set f ~}( — 00,a] = {xeD: f(x) < a} is a Borel set for
all real numbers a. A very large class of functions satisfies this condition,
including all continuous functions (for whichf ~!(— oo, a] is closed and therefore
a Borel set). We make the assumption throughout this book that all functions
to be integrated satisfy this condition; certainly this is true of functions that are
likely to be encountered in practice.

To define integration we first suppose that f:D — R is a simple function, i.e.
one that takes only finitely many values a,,...,a,. We define the integral with
respect to the measure p of a non-negative simple function f as

k
[700= 5 aunte s -

The integral of more general functions is defined using approximation by simple
functions. If f:D — R is a non-negative function, we define its integral as

de#= Sup{Jgdu:g is simple, 0 < g <f}.
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To complete the definition, if / takes both positive and negative values, we let
f+(x)=max{f(x),0} and f_(x) =max {— f(x),0},s0 that f = f, — f_, and define

deu=ff+du—Jf~du

provided that | f, du and | f_ dp are both finite.
All the usual properties hold for integrals, for example,

J(f+g)d#=ffdu+Jgdu

Jifdy:/ljfdy

if Ais a scalar. We also have the monotone convergence theorem, that if f,:D — R
is an increasing sequence of non-negative functions converging (pointwise) to
f, then

and

lim Jfkdp=deu.

k= o

If A is a Borel subset of D, we define integration over the set 4 by

j fdu=foAdu

where y,:R" >R is the ‘indicator function’ such that y,(x)=1if x is in A and
¥ 4(x) = 0 otherwise.

Note that, if f(x) > 0 and {f du =0, then f(x) =0 for p-almost all x.

As usual, integration is denoted in various ways, such as §fdu, {f or
[ f(x)du(x), depending on the emphasis required. When g is n-dimensional
Lebesgue measure #", we usually write {f dx or | f(x)dx in place of {fdem

On a couple of occasions we shall need to use Egoroff's theorem. Let D be
a Borel subset of R" and p a measure with u(D) < co. Let fi,f2,-..and f be
functions from D to R such that f,(x)— f(x) for each x in D. Egoroif’s theorem
states that for any 6 > 0, there is a Borel subset E of D such that u(D\E)<é
and such that the sequence {f,} converges uniformly to f on E, ie. with
sup,g | filx) —f(x)| =0 as k— co. For the measures that we shall be concerned
with, it may be shown that we can always take the set E to be compact.

1.4 Notes on probability theory
For an understanding of some of the later chapters of the book, a basic

knowledge of probability theory is necessary. We give a brief survey of the
concepts needed.
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Probability theory starts with the idea of an experiment or trial; that is, an
action whose outcome is, for all practical purposes, not predetermined.
Mathematically, such an experiment is described by a probability space, which
has three components: the set of all possibie outcomes of the experiment, the
list of all the events that may occur as consequences of the experiment, and an
assessment of likelihood of these events. For example, if a die is thrown, the
possible outcomes are {1,2, 3,4, 5,6}, the list of events includes ‘a 3 is thrown’,
‘an even number is thrown’ and ‘at least a 4 is thrown’. For a ‘fair die’ it may
be reasonable to assess the six possible outcomes as equally likely.

The set of all possible outcomes of an experiment is called the sample space,
denoted by Q. Questions of interest concerning the outcome of an experiment
can always be phrased in terms of subsets of Q; in the above example ‘is an
odd number thrown? asks ‘is the outcome in the subset {1, 3, 5}?. Associating
events dependent on the outcome of the experiment with subsets of Q in this
way, it is natural to think of the union AU B as ‘either 4 or B occurs’, the
intersection AN B as ‘both 4 and B occur’, and the complement Q\A as the
event ‘4 does not occur’, for any events A and B. In general, there is a collection
F of subsets of Q that particularly interest us, which we call events. In the
example of the die, # would normally be the collection of all subsets of , but
in more complicated situations a relatively small collection of subsets might be
relevant. Usually, & satisfies certain conditions; for example, if the occurrence
of an event interests us, then so does its non-occurrence, so if 4 is in &, we
would expect the complement Q\A also to be in &#. We call a (non-empty)
collection & of subsets of the sample space Q an event space if

WM\ Ae# whenever AeF (1.10)

and

) 4ie# whenever 4;e# (1 <i< ). (1.11)
i=1

It follows from these conditions that ¢ and Q are in &, and that 4\B and
()2, A; are in & whenever A,B and 4, are in . As far as our applications
are concerned, we do not, in general, specify & precisely —this avoids technical
difficulties connected with the existence of suitable event spaces.

Next, we associate probabilities with the events of &, with P(4) thought of
as the probability, or likelihood, that the event 4 occurs. We call P a probability
or probability measure if P assigns a number P(A4) to each A in &, such that
the following conditions hold:

0<P(4)< 1 for all AeF (1.12)
P(Z)=0and P(Q)=1 (1.13)

and, if 4,, 4,,... are disjoint events in &,

P( O A.-)= i P(4). (1.14)
i=1 i=1
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It should seem natural for any definition of probability to satisfy these
conditions.

We call a triple (Q, %, P) a probability space if # is an event space of subsets
of Q and P is a probability measure defined on the sets of #.

For the die-throwing experiment we might have Q = {1,2,3,4,5, 6} with the
event space consisting of all subsets of Q, and with P(4) = 1 x number of elements
in A. This describes the ‘fair die’ situation with each outcome equally likely.

The resemblance of the definition of probability to the definition of a measure
in (1.1), (1.2) and (1.4) and the use of the term probability measure is no
coincidence. Probabilities and measures may be put into the same context,
with Q corresponding to R" and with the event space corresponding to the Borel
sets.

In our applications later on in the book, we shall be particularly interested
in events (on rather large sample spaces) that are virtually certain to occur. We
say that an event A occurs with probability 1, or almost surely if P(4)=1.

Sometimes, we may possess partial information about the outcome of an
experiment; for example, we might be told that the number showing on the die
is even. This leads us to reassess the probabilities of the various events. If A
and B are in & with P(B) > 0, the (conditional) probability of A given B, denoted
by P(A|B), is defined by

P(ANB)

P(B)
This is thought of as the probability of A given that the event B is known to
occur; as would be expected P(B|B) = 1. It is easy to show that (Q, #, P)isa
probability space, where P'(4) = P(4|B). We also have the partition formula: if

B,, B,,... are disjoint events with U,-B,- = and P(B;) > 0 for all i, then, for an
event A,

P(A|B) (1.15)

P(A4) = Z P(A|B)P(B). (1.16)

In the case of the ‘fair die’ experiment, if B, is the event ‘an even number is
thrown’ B, is ‘an odd number is thrown’ and A is ‘at least 4 is thrown’, then
P(A|B,)= P(4 or 6 is thrown)/P(2,4 or 6 is thrown) = 3/2 = 2
P(A|B,) = P(5 is thrown)/P(1,3 or 5 is thrown) = {/3 =3
from which (1.16) is easily verified.
‘We think of two events as independent if the occurrence of one does not
affect the probability that the other occurs, ie. if P(4{B) = P(4) and

P(B|A) = P(B). Using (1.15), we are led to make the definition that two events
A and B in a probability space are independent if

P(A  B) = P(4)P(B). (1.17)

More generally, an arbitrary collection of events is independent if for every
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finite subcollection {A4,:keJ} we have

P<ﬂ Ak>=HP(Ai). (1.18)
keJ keJ

In the die example, it is easy to see that ‘a throw of at least 5" and ‘an even
number is thrown’ are independent events, but ‘a throw of at least 4’ and ‘an
even number is thrown’ are not.

The idea of a random variable and its expectation (or average or mean) is
fundamental to probability theory. Essentially, a random variable X is a
real-valued function on a sample space. In the die example, X might represent
the score on the die. Alternatively it might represent the reward for throwing
a particular number, for example X(w)=0 if w=1,2,3, or 4, X(5)=1 and
X(6)=2. The outcome of an experiment determines a value of the random
variable. The expectation of the random variable is the average of these values
weighted according to the likelihood of each outcome.

The precise definition of a random variable requires a little care. We say that
X is a random variable on a probability space (Q, #,P) if X:Q— R is a function
such that X ~!'({ — o0, a])is an event in & for each real number g; in other words,
the set of w in Q with X{w) < a is in the event space. This condition is equivalent
to saying that X ~'(E) is in # for any Borel set E. In particular, for any such
E the probability that the random variable X takes a value in E, ie.
P({w: X (w)eE}), is defined. It may be shown that P({w: X(w)eE}) is determined
for all Borel sets E from a knowledge of P({t: X (w) < a}) for each real number
a. Note that it is usual to abbreviate expressions such as P({w:X(w)eE}) to
P(X€E).

It is not difficult to show that if X and Y are random variabies on (Q, %, P)
and A is a real number, then X + Y, X — Y, XY and AX are all random variables
(these are defind in the obvious way, for example (X + Y)(w) = X(w) + Y(w) for
each weQ). Moreover, if X,,X,,... is a sequence of random variables with
X (w)increasing and bounded for each w, then lim, _ ,, X, i1s arandom variable.

A collection of random variables {X,} is independent if, for any Borel sets
E,, the events {(XeE,)} are independent in the sense of (1.18); that is if, for
every finite set of indices J,

P(X,€E, for all keJ)=[] P(X,€E)).
keJ

Intuitively, X and Y are independent if the probability of Y taking any particular
value is unaffected by a knowledge of the value of X. Consider the probability
space representing two successive throws of a die, with sample space
{(x,y):x,y=1,2,...,6} and probability measure P defined by P{(x,y)} =+
for each pair (x,y). If X and Y are the random variables given by the scores
on successive throws, then X and Y are independent, modelling the assumption
that one throw does not affect the other. However, X and X + Y are not
independent—this reflects that the bigger the score for the first throw, the
greater the chance of a high total score.
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The formal definition of the expectation of a random variable is analogous
to the definition of the integral of a function; indeed, expectation is really the
integral of the random variable with respect to the probability measure. Let X
be a random variable on a probability space (Q,%,P). First suppose that
X(w) =0 for all w in Q and that X takes only finitely many values x,,..., Xy
we call such a random variable simple. We define the expectation, mean or
average E(X) of X as

k
EX)= ) x;P(X =x). (1.19)
i=1
The expectation of an arbitrary random variable is defined using approximation
by simple random variables. Thus for a non-negative random variable X

E(X) = sup {E(Y):Yis a simple random variable
with 0 < Y(w) < X(w) for all weQ}.

Lastly, if X takes both positive and negative values, we let X, = max {X,0}
and X _ =max{ - X,0}, so that X =X, — X _, and define

E(X)=E(X.)—EX_)

provided that both E(X ,) < cc and E(X _) < cc.
The random variable X representing the score of a fair die is a simple random
variable, since X(w) takes just the values 1,...,6. Thus

6
E(X)=) ixi=3L
i=1

Expectation satisfies certain basic properties, analogous to those for the
integral. If X,,X,,... are random variables then

E(X, + X,)=E(X )+ E(X,)

and, more generally,

k k
E(Z Xi>= Z E(X ).
i=1 i=1
If A is a constant
E(AX) = 2E(X)

and if the sequence of non-negative random variables X, X,,...1s increasing
with X =lim,_ X, a (finite) random variable, then

lim E(X,) = E(X).

k=

Provided that X, and X, are independent, we also have
E(X, X,) = B(X,)E(X,).

Thus if X, represents that kth throw of a fair die in a sequence of throws,
the expectation of the sum of the first k throwsis E(X; + --- + X;) = E(X,)+ -+
E(X,)=33xk
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We define the conditional expectation E(X|B) of X given an event B with
P(B) >0 in a similar way, but starting with

E(X|B) = i x;P(X = x;| B) (1.20)

i=1

in place of (1.19). We get a partition formula resembling (1.16)
E(X)=) E(X|B)P(B) (1.21)

where By, B,,... are disjoint events with { J;B; =Q and P(B;)> 0.

It is often useful to have an indication of the fluctuation of a random variable
across a sample space. Thus we introduce the variance of the random variable
X as

var(X) = E((X — E(X))*)
=E(X?) - E(X)?
by a simple calculation. Using the properties of expectation, we get
var(AX)=A%?var X
for any real number 4, and
var(X + Y) = var(X) + var(Y)

provided that X and Y are independent.
If the probability distribution of a random variable is given by an integral, i.e.

P(X < x)= J f(u)du (1.22)

the function f is called the probability density function for X. It may be shown
from the definition of expectation that

E(X)= jm uf(u)du

— o

and

E(X?) =j u? f(u)du
which allows var (X) = E(X?) — E(X)? to be calculated.

Note that the density function tells us about the distribution of the random
variable X without reference to the underlying probability space, which, for
many purposes, is irrelevant. We may express the probability that X belongs
to any Borel set E in terms of the density function as

P(XeE)= f f(u)du.
E
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We say that a random variable X has uniform distribution on the interval
(a,b) if

P(sz)=b—1 J du {fa<x<b) (1.23)
—al,
Thus the probability of X lying in an subinterval of (a,b) is proportional to
the length of the interval. In this case, we get that E(X)= 1(a+b) and
var(X) = &b —a)>.

A random variable X has normal or Gaussian distribution of mean m and
variance o2 if

P(X <x)=(2n) Y?¢! J exp(— (u—m)?/26%) du. (1.24)
It may be verified by integration that E(X) = m and var(X) = o2 If X, and X,
are independent normally distributed random variables of means m, and m,
and variances 62 and o2 respectively, then X ; + X, is normal with mean m, + m,
and variance ¢ + 0%, and AX, is normal with mean Am, and variance A*a?,
for any real number A. The property that sums and scalar multiples of normal
random variables are normal characterizes the normal distribution.

If we throw a fair die a large number of times, we might expect the average
score thrown to be very close to 3%, the expectation or mean outcome of each
throw. Moreover, the larger the number of throws, the closer the average should
be to the mean. This ‘law of averages’ is made precise as the strong law of large
numbers.

Let (Q, #, P) be a probability space. Let X |, X,,... be random variables that
are independent and that have identical distribution (i.e. for any set E, P(X,€E)
is the same for all i), with expectation m and variance 67, both assumed finite.
For each k we may form the random variable S, = X; + --- + X, so that the
random variable (1/k)S, is the average of the first k trials. The strong law of
large numbers states that, with probability 1,

lim lS,‘ =m. (1.25)
k-0
We can also say a surprising amount about the distribution of the random
variable S, when k is large. It may be shown that S, has approximately the
normal distribution with mean km and variance ko?. This is the content of the
central limit theorem, which states that, for any real number x,

P(Sk—lzmgx)ﬁj (2m)" 2 exp (— Lu?) du as k—oco. (1.26)
g

- o0
An important aspect of the normal distribution now becomes clear—it is the
form of distribution approached by sums of a large number of independent
identically distributed random variables.

We may apply these results to the experiment consisting of an infinite sequence
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of die throws. Let Q be the set of all infinite sequences {w = (v, w,,...}:w; =
1,2,...,6} (we think of w; as the outcome of the kth throw). It is possible to
define an event space # and probability measure P in such a way that for any
given k and sequence w,,...,w, (w;=1,2,...,6), the event ‘the first k throws
are wy, ..., w; is in & and has probability (1) *. Let X, be the random variable
given by the outcome of the kth throw, so that X ,(w) = w,. It is easy to see that
the X, are independent and identically distributed, with mean m =33 and
variance 233. The strong law of large numbers tells us that, with probability 1,
the average of the first k throws, (1/k)S,, converges to 31 as k tends to infinity,
and the central limit theorem tells us that, when k is large, the sum S, is
approximately normally distributed, with mean 3} x k and variance 235 x k.
Thus if we repeat the experiment of throwing k dice a large number of times,
the sum of the k throws will have a distribution close to the normal distribution,
in the sense of (1.26).

1.5 Notes and references

The material outlined in this chapter is covered at various levels of sophistication
in numerous undergraduate mathematical texts. Almost any book on
mathematical analysis, for example Apostol (1974), contains the basic theory
of sets and functions. A thorough treatment of measure and probability theory
may be found in Kingman and Taylor (1966) and in Billingsley (1979). For
probability theory, the book by Grimmett and Stirzaker (1982) may be found
helpful.

Exercises

The following exercises do no more than emphasize some of the many facts that have been

mentioned in this chapter.

1.1 Show that the union of any collection of open subsets of R” is open and that the
intersection of any finite collection of open sets is open. Show that a subset of R”
is closed if and only if its complement is open and hence deduce the corresponding
result for unions and intersection of closed sets.

1.2 Show that if 4, > A, > --- is a decreasing sequence of non-empty compact subsets
of R" then () o ; Ax is a non-empty compact set.

1.3 Show that the half-open interval {xeR:0 < x < 1} is a Borel subset of R.

1.4 Let F be the set of numbers in [0, 1] whose decimal expansions contain the digit
5 infinitely many times. Show that F is a Borel set.

1.5 Show that the composition of two rotations in the plane is either a rotation or a
translation.

1.6 Findlim _ f(x) and ﬂx_'of(x) where f(x) is given by: (i) sin(x); (i1) sin(1/x);
(iii) x2 + (3 + x)sin(1/x).
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1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

Let f,g:[0,1]— R be Lipschitz functions. Show that the functions defined on [0, 1]
by f(x) + g(x) and f(x)g(x) are also Lipschitz.

Let f:R— R be differentiable with | f'(x)] < c for all x. Show that fis a Lipschitz
function.

Let 4,, A,,...,be a decreasing sequence of Borel subsets of R" and let A = ()°., 4,
If u is a measure on R* with u(A4,) < co, show that u(4,) - u(A) as k— co.

Let f:[0,1]»>R be a continuous function. For 4 a subset of R? define
wA) = L{x:(x,f(x))eA}, where & is Lebesgue measure. Show that u is a mass
distribution on R? supported by the graph of f.

Let D be a Borel subset of R" and let x4 be a measure on D with u(D) < co. Let
fi:D—R be a sequence of functions such that f,(x) —»f(x) for all x in D. Prove
Egoroff’s theorem: that given ¢ > 0 there exists a Borel subset A of D with u(D\A) <&
such that f,(x) converges to f(x) uniformly for x in A.

Prove that if y is a measure on D and f:D — R satisfies f(x) > 0 for all x in D and
fofdu =0 then f(x) =0 for y-almost all x.

If X is a random variable show that E((X — E(X))?) = E(X?) — E(X)? (these numbers
equalling the variance of X).

Verify that if X has the uniform distribution (see (1.23)) then E(X) = %(a +b) and
var (X) = (b —a)?/12.

Let A,, A,,... be a sequence of independent events in some probability space such
that P(A4,) = p for all k, where 0 < p < 1. Let N, be the random variable defined by
taking N,(w) to equal the number of i with 1 <i < k for which we A;. Use the strong
law of large numbers to show that, with probability 1, N,/k— p as k — co. Deduce
that the proportion of occurrences of an event in a sequence of independent trials
converges to the probability of the event.

A fair die is thrown 6000 times. Use the central limit theorem to estimate the
probability that at least 1050 sixes are thrown. (A numerical method will be needed
if the integral obtained is to be evaluated).

Chapter 2 Hausdorff measure and
dimension

Of the wide variety of ‘fractal dimensions’ in use, the definition of Hausdorff,
based on a construction of Carathéodory, is the oldest and probably the most
important. Hausdorff dimension has the advantage of being defined for any set,
and is mathematically convenient, as it is based on measures, which are relatively
easy to manipulate. A major disadvantage is that in many cases it is hard to
calculate or to estimate by computational methods. However, for an
understanding of the mathematics of fractals, familiarity with Hausdorff measure
and dimension is essential.

2.1 Hausdorff measure

Recall that if U is any non-empty subset of n-dimensional Euclidean space, R",
the diameter of U is defined as |U|=sup{|x — y|:x,yeU}, ie. the greatest
distance apart of any pair of points in U. If {U;} is a countable (or finite)
collection of sets of diameter at most & that cover F, ie. F< (2, U; with
0 < |U;| <6 for each I, we say that {U,} is a d-cover of F.

Suppose that F is a subset of R” and s is a non-negative number. For any
4> 0 we define

H3(F) = inf{ S |U,J*:{U,} is a d-cover of F}. @.1)

i=1

Thus we look at all covers of F by sets of diameter at most & and seek to
minimize the sum of the sth powers of the diameters (figure 2.1). As  decreases,
the class of permissible covers of F in (2.1) is reduced. Therefore, the infimum
H5(F) increases, and so approaches a limit as 6 —0. We write
H5(F)=lim S5(F). (2.2)
3—+0
This limit exists for any subset F of R”, though the limiting value can be (and
usually is) 0 or co. We call #%(F) the s-dimensional Hausdorff measure of F.
With a certain amount of effort, #* may be shown to be a measure; see
section 1.3. In particular, #5(¢¥) = 0, if E is contained in F then #%(E) < 3#7%(F),
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Figure 2.1 A set F and two possible d-covers for £. The infimum of X|U,° over all such J-covers
{U;} gives #5(F)

and if {F;} is any countable collection of disjoint Borel sets, then

Hausdorff measures generalize the familiar ideas of length, area, volume, etc.
It may be shown that, for subsets of R", n-dimensional Hausdorff measure is,
to within a constant multiple, just n-dimensional Lebesgue measure, i.e. the
usual n-dimensional volume. More precisely, if F is a Borel subset of R", then

H"(F)=c, vol"(F) (24

where the constant ¢, = n*"/2"(1n)! is the volume of an n-dimensional ball of
diameter 1. Similarly, for ‘mice’ lower-dimensional subsets of R", we have that
#°(F) is the number of points in F; # '(F) gives the length of a smooth curve
F; #*(F)=1n x area(F) if F is a smooth surface; H¥F)y=%n x vol(F); and
H#™(F) = c,, x vol™(F) if F is a smooth m-dimensional submanifold of R" (i.e.
an m-dimensional surface in the classical sense).

The scaling properties of length, area and volume are well known. On
magpnification by a factor 4, the length of a curve is multiplied by 4, the area
of a plane region is multiplied by 1? and the volume of a 3-dimensional object
is multiplied by 4. As might be anticipated, s-dimensional Hausdorff measure
scales with a factor A° (figure 2.2). Such scaling properties are fundamental to
the theory of fractals.
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Figure 2.2 Scaling sets by a factor A increases length by a factor A, area by a factor 4%, and
s-dimensional Hausdorff measure by a factor 2°
Scaling property 2.1
If F<R" and A > 0 then
HAF) = A H5(F) 2.5

where AF = {Ax:xeF}, i.e. the set F scaled by a factor A.

Proof. 1f {U,} is a §-cover of F then {iU;} is a Ad-cover of AF. Hence
H5AF) S ZJAU = FZ| U
< AH(F)
since this holds for any 8-cover {U,}. Letting 6 — 0 gives that #(AF) < A°*H#(F).
Replacing A by 1/4 and F by AF gives the opposite inequality required. [

A similar argument gives the following basic estimate of the effect of more
general transformations on the Hausdorff measures of sets.

Proposition 2.2
Let F<R" and f:F — R™ be a mapping such that

()= fWI<elx—yl* (x,yeF) (2.6)
for constants ¢ >0 and o> 0. Then for each s

HHf(F)) < A (F). 2.7
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Proof. 1f {U,} is a 8-cover of F, then, since | f(FNU;)| <c|U,|*% it follows that
{f(F nU,)}isane-cover of f(F), where ¢ = c6*. Thus ;| f(F U< 3| UL,
so that #V*(f(F)) < ¢ #(F). As § -0, so ¢ 0, giving (2.7). 0

Condition (2.6) is known as a Holder condition of exponent u; such a condition
implies that f is continuous. Particularly important is the case « =1, i.e.

S — fnl<cix—yl (x, yeF) (2.8)
when f is called a Lipschitz mapping, and
H(f(E)) < CHF). (2.9)

Any differentiable function with bounded derivative is necessarily Lipschitz
as a consequence of the mean-value theorem. If f is an isometry, ie.
1 f(x)— f®)|=|x—yl, then H#(f(F))=H%F). In particular, Hausdorff
measures are translation invariant (ie. #(F + z)= #(F), where F +z=
{x + z:xeF}), and rotation invariant, as would certainly be expected.

2.2 Hausdorff dimension

Returning to equation (2.1) it is clear that for any given set F and 6 < 1, #7y(F)
is non-increasing with s, so by (2.2) #°5(F) is also non-increasing. In fact, rather
more is true: if ¢t > s and {U;} is a d-cover of F we have

IV <Y IUWF (2.10)

]

so, taking infima, S#(F) < 8'~*#(F). Letting § »0 we see that if #(F) < oo
then J'(F) = 0 for t > 5. Thus a graph of #°*(F) against s (figure 2.3) shows that
there is a critical value of s at which #5(F) ‘jumps’ from oo to 0. This critical
value is called the Hausdorff dimension of F, and written dimyF. (Note that

© -

FEA

[0} 1
(e} dimHF n
s

Figure 2.3 Graph of 5°(F) against s for a set F. The Hausdorff dimension is the value of s at which
the “jump’ from oo to 0 occurs
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some authors refer to Hausdorff dimension as Hausdorff—Besicovitch dimension.)
Formally

dimy F = inf{s:#°(F) = 0} = sup {s: #(F) = o0} (2.11)
so that
s < di
%”(F)={Oo s < dimy, F (2.12)
0 if s >dimy F.

If s=dimy F, then #%(F) may be zero or infinite, or may satisfy
0 < #%F) < c0.

A Borel set satisfying this last condition is called an s-set. Mathematically, s-sets
are by far the most convenient sets to study, and fortunately they occur
surprisingly often.

For a very simple example, let F be a flat disc of unit radius in R*. From
familiar proprties of length, area and volume, #'(F)=length(F)= co,
0 < #*(F)=4in x area(F) < oo and #*(F) =%n x vol(F) = 0. Thus dimy F =2,
with #(F)= oo if s<2 and #*(F)=01if s> 2.

Hausdorff dimension satisfies the following properties (which might well be
expected to hold for any reasonable definition of dimension).

Open sets. If F = R" is open, then dimy, F = n, since F contains a ball of positive
n-dimensional volume.

Smooth sets. If F is a smooth (i.e. continuously differentiable) m-dimensional
submanifold (i.e. m-dimensional surface) of R” then dimy F = m. In particular
smooth curves have dimension 1 and smooth surfaces have dimension 2.
Essentially, this may be deduced from the relationship between Hausdorff and
Lebesgue measures.

Monotonicity. If E < F then dimy E < dimy F. This is immediate from the
measure property that #°(E) < #°(F) for each s.

Countable stability. If F,, F,,... is a (countable) sequence of sets then
dimy ()2, Fi=sup, ¢, ., {dimy F;}. Certainly, dimy| )&, F,>dimyF; for
each j from the monotonicity property. On the other hand, if s> dimy F; for
all i, then #°(F)) =0, so that #°({ )72, F)) =0, giving the opposite inequality.

Countable sets. If F is countable then dimy F = 0. For if F; is a single point,
H#°(F)=1 and dimy F; =0, so by countable stability dimy | )2, F;=0.

The transformation properties of Hausdorff dimension follow immediately
from the corresponding ones for Hausdorff measures given in Proposition 2.2.

Proposition 2.3

Let F = R™ and suppose that f:F — R™ satisfies a Héolder condition
lf(x)—=f<clx—yl* (x, yeF).

Then dimy, f(F) < (1/2)dim F.

Proof. 1If s > dimy, F then by Proposition 2.2 #¥*(f(F)) < ¢**3#*(F) = 0, implying
that dimy f(F) < s/a for all s > dimy F. O
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Corollary 2.4

(a) Iff:F—R"isa Lipschitz transformation (see(2.8)) then dimy f(F) < dimy F.
(b) If f:F > R™ is a bi-Lipschitz transformation, i.e.

e lx =yl <)~ fI<ezlx =yl (x,yeF) (2.13)

where 0 < ¢, < ¢, < o, then dimy, f(F) = dimy F.

Proof. Part (a) follows from Proposition 2.3 taking o= 1. Applying this to
f L. f(F)—F gives the other inequality required for (b). O

This corollary reveals a fundamental property of Hausdorff dimension:
Hausdorff dimension is invariant under bi-Lipschitz transformations. Thus if two
sets have different dimensions there cannot be a bi-Lipschitz mapping from one
onto the other. This is reminiscent of the situation in topology where various
“invariants’ (such as homotopy or homology groups) are set up to distinguish
between sets that are not homeomorphic: if the topological invariants of two
sets differ then there cannot be a homeomorphism (continuous one-to-one
mapping with continuous inverse) between the two sets.

In topology two sets are regarded as ‘the same’ if there is a homeomorphism
between them. One approach to fractal geometry is to regard two sets as ‘the
same’ if there is a bi-Lipschitz mapping between them. Just as topological
invariants are used to distinguish between non-homeomorphic sets, we may
seek parameters, including dimension, to distinguish between sets that are not
bi-Lipschitz equivalent. Since bi-Lipschitz transformations (2.13) are necessarily
continuous, topological parameters provide a start in this direction, and
Hausdorff dimension (and other definitions of dimension) provide further
distinguishing characteristics between fractals.

In general, the dimension of a set alone tells us little about its topological
properties. However, any set of dimension less than 1 is necessarily so sparse
as to be totally disconnected; that is, no two of its points lie in the same
connected component.

Proposition 2.5

A set F < R" with dimy, F < 1 is totally disconnected.

Proof. Let x and y be distinct points of F. Define a mapping f:R*>[0, ) by
f(z) = |z — x|. Since f does not increase distances, i.e.| f(z) — f(W)| < |z — wi, we
have from Corollary 2.4(a) that dimy f(F) <dim, F <1. Thus f(F) is a subset

of R of #'-measure or length zero, and so has a dense complement. Choosing
r with r¢ f(F) and 0 < r < f(y) it follows that

F={zeF:|z—x|<rju{zeF:lz—-x|> ri.

Thus F is contained in two disjoint open sets with x in one set and y in the other,
so that x and y lie in different connected components of F. O

3
2.3 Calculation of Hausdorff dimension—simple examples

This section indicates how to calculate the Hausdorff dimension of some simple
fractals such as some of those mentioned in the Introduction. Other methods
will be encountered throughout the book.

Example 2.6

Let F be the Cantor dust constructed from the unit square as in figure 0.4. (At
each stage of the construction the squares are divided into 16 squares with a
quarter of the side length, of which the same pattern of four squares is retained.)
Then | < H'(F)< /2, so dimyF = 1.

Calculation. Taking the obvious covering of F by the 4* squares of side 47* (i.e.
of diameter 6 = 47%,/2) in E,, the kth stage of construction, we get an estimate -
A NF) <447 /2 for the infimum in (2.1). As k — 00 50 — 0 giving #"'(F) < J2.

For the lower estimate, let proj denote orthogonal projection onto the x-axis.
Orthogonal projection does not increase distances, i.e. |proj x — proj y| < |x — y|
if x, yeR?, so proj is a Lipschitz mapping. By virtue of the construction of F,
the projection or ‘shadow’ of F on the x-axis, proj F, is the unit interval [0, 1].
Using (2.9)

1 = length[0, 1] = # ([0, 11) = # (proj F) < #'(F). [

Note that the same argument and result hold for a set obtained by repeated
division of squares into m? squares of side length 1/m of which one square
in each column is retained.

This trick of using orthogonal projection to get a lower estimate of Hausdorf{f
measure only works in special circumstances and is not the basis of a more
general method. Usually we need to work rather harder!

Example 2.7

Let F be the middle third Cantor set (see figure 0.1). If s =log 2/log 3 = 0.6309...
then dimyF =s and $ < #5(F)< 1.

Heuristic calculation. The Cantor set F splits into a left part Fp = FU[0,4] and
a right part F = Fn[%,1]. Clearly both parts are geometrically similar to F
but scaled by a ratio 4, and F = F U F with this union disjoint. Thus for any s

HN(F) = HNFp) + HFy) =S AF)+ FH5(F)

by the Scaljng property 2.1 of Hausdorff measures. Assuming that at the critical
yalug s =dimy F we have 0 < #(F) < oo (a big assumption, but one that can be
justified) we may divide by #%(F) to get 1 =2(3)° or s =log2/log3.

Rigorous calculation. We call the intervals of length 37k (k=0,1,2,...) that make
up the sets E, in the construction of F basic intervals. The covering {U,} of F
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consisting of the 2* intervais of E; of length 37* gives that #5 .« (F) < Z|U,f* =
2%3 ~ks = 1 if s = log 2/log 3. Letting k — oo gives A (F) < 1.
To prove that #°(F) >3 we show that

VIV >5=3"° (2.14)

for any cover {U,} of F. Clearly, it is enough to assume that the {U,} are intervals,
and by expanding them slightly and using the compactness of F, we need only
verify (2.14) if {U} is a finite collection of closed subintervals of [0, 1]. For each
U,, let k be the integer such that

36D LU <37k (2.15)

Then U, can intersect at most one basic interval of E, since the separation of
these basic intervals is at least 37*. If j > k then, by construction, I/, intersects at
most 277k = 2737k < 2/3%| U,}* basic intervals of E;, using (2.15). If we choose j
large enough so that 37U*D <|U;| for all U,, then, since the {U;} intersect
all 2/ basic intervals of length 377, counting intervals gives 2/ <Y, 2/3°|U;J%,
which reduces to (2.14). O

With extra effort, the calculation can be adapted to show that #*(F) = 1.

It is already becoming apparent that calculation of Hausdorfl measures and
dimensions can be a little involved, even for simple sets. Usually it is the lower
estimate that is awkward to obtain.

The ‘heuristic’ method of calculation used in Example 2.7 gives the right
answer for the dimension of many self-similar sets. For example, the von Koch
curve is made up of four copies of itself scaled by a factor 1, and hence has
dimension log4/log3. More generally, if F=|J7 F, where each F; is
geometrically similar to F but scaled by a factor c; then, provided that the F;
do not overlap ‘too much’, the heuristic argument gives dimy F as the number
s satisfying 3™  c¥=1. The validity of this formula is discussed fully in
Chapter 9.

»2.4 Equivalent definitions of Hausdorff dimension

It is worth pointing out that there are other classes of covering set that define
measures leading to Hausdorff dimension. For example, we could use coverings
by spherical balls: letting

B5(F) = inf{Z|B,|*:{B,} is a 6-cover of F by balls} (2.16)

we obtain a measure #%F)=lim;_,%%F) and a ‘dimension’ at which %(F)
jumps from oo to 0. Clearly #3(F) < #3(F) since any d-cover of F by balls is
a permissible covering in the definition of J#7%. Also, if {U} is a é-cover of
" F, then so is {B;}, where, for each i, B; is chosen to be some ball containing
U, and of radius |U;|<é. Thus Z|B|*<ZQ2|U,|)=2Z|U,P, and taking
infima gives %5 ,(F) < 2°#°%(F). Letting 6 —0 it follows that H(FY< B(F) <
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225(F). In particular, this implies that the values of s at which #° and %#°
jump from 20 to 0 are equal, so that the dimensions defined by the two measures
are equal.

It is easy to check that we get the same values for Hausdorff measure and
dimension if in (2.1) we use d-covers of just open sets or just closed sets. Moreover,
if F is compact, then, by expanding the covering sets slightly to open sets, and
taking a finite subcover, we get the same value of #°(F) if we merely consider
o-covers by finite collections of sets.

Net measures are another useful variant. For the sake of simplicity let F
be a subset of the interval [0,1). A binary interval is an interval of the form
[r27%(r+1)27%) where k=0,1,2,... and r =0,1,...,2* — 1. We define

MYF) =inf{Z|U,|*:{U;} is a d-cover of F by binary intervals} (2.17)
leading to the net measures
M(F) = lim A(F). (2.18)
60
Since any interval U < [0, 1) is contained in two consecutive binary intervals
each of length at most 2| U | we see, in just the same way as for the measure %#°, that

HNF) < MF) < 25 L H(F). (2.19)

It follows that the value of s at which .#Z°(F) jumps from oo to 0 equals the
Hausdorff dimension of F, ie. both definitions of measure give the same
dimension.

For certain purposes net measures are much more convenient than Hausdorff
measures. This is because two binary intervals are either disjoint or one of them
is contained in the other, allowing any cover of binary intervals to be reduced
to a cover of disjoint binary intervals.

+2.5 Finer definitions of dimension

It is sometimes desirable to have a sharper indication of dimension than just a
number. To achieve this let i:R* - R™ be a function that is increasing and
continuous, which we call a dimension function. Analogously to (2.1) we define

HUF)=1inf{Zh(|U,|):{U,} is a d-cover of F} (2.20)

for F a subset of R". This leads to a measure, taking #*F) = lim;_, o #4F). (If
h(t) = * this is the usual definition of s-dimensional Hausdorff measure.) If h
and g are dimension functions such that h(t)/g(t) - 0 as t — 0 then, by an argument
similar to (2.10), we get that #"(F) = 0 whenever #%(F) < co. Thus partitioning
the dimension functions into those for which s#" is finite and those for which
it is infinite gives a more precise indication of the ‘dimension’ of F than just
the number dimy F.

An important example of this is Brownian motion in R* (see Chapter 16 for
further details). It may be shown that (with probability 1) a Brownian path has
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Hausdorff dimension 2 but with #?*-measure equal to 0. More refined
calculations show that such a path has positive and finite J#"-measure, where
h(t) = 1* log log (1/t). Although Brownian paths have dimension 2, the dimension
is, in a sense, logarithmically smaller than 2.

2.6 Notes and references

The idea of defining measures using covers of sets was introduced by
Carathéodory (1914). Hausdorff (1919) used this method to define the measures
that now bear his name, and showed that the middle third Cantor set has
positive and finite measure of dimension log 2/log3. Properties of Hausdorff
measures have been developed during the course of this century, largely by
Besicovitch and his students.

Technical aspects of Hausdorfl measures and dimensions, are discussed n
rather more detail in Falconer (1985a), and in greater generality in the books
of Rogers (1970) and Federer (1969).

Exercises

2.1 Verify that the value of #°(F) is unaltered if, in (2.1), we only consider d-covers by
sets {U,} that are all closed.

Show that .# °(F) equals the number of points in the set F.
Verify from the definition that #%({ ) * FISZ AR

24 Let f:R—R be a differentiable function with continuous derivatives. Show that
dimy, f(F) < dimy F for any set F. (Consider the case of F bounded first.)

2.5 Let f:R— R be the function f(x)= x?, and let F be any subset of R. Show that
dimy f(F) = dimy F.

26 Let F be the set consisting of the numbers between 0 and 1 whose decimal
expansions do not contain the digit 5. Use a ‘heuristic’ argument to show that
dimy F = log9/log 10. Can you prove this by a rigorous argument? Generalize this
result.

27 Let F consist of the points (x,y)eR? such that the decimal expansions of
neither x or y contain the digit 5. Use a ‘heuristic’ argument to show that
dimy F = 2log9/log 10.

2.8 Use a ‘heuristic’ argument to show that the Hausdorff dimension of the set depicted
in figure 0.5 is given by the solution of the equation 4(y + (3’ =1.

29 Let F be the set of real numbers with base-3 expansion b,,b,,_---b,-a,a,--- with
none of the digits b; or a; equal to 1. (Thus F is constructed by a Cantor-like process
extending outwards as well as inwards.) What is the Hausdorff dimension of F?

'2.10 What is the Hausdorff dimension of the set of numbers x with base-3 expansion
0-a,a,--- for which there is a positive integer k (which may depend on x) such that
a;# 1 foralliz2k?
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2.11 Show that there is a totally disconnected subset of the plane of Hausdorff dimension
sforevery 0<s<2.

2.12 Let S be the unit circle in the plane, with points on S parametrized by the angle
8 subtended at the centre with a fixed axis, so that 6, and 0, represent the same
point if and only if 8, and 0, differ by a multiple of 2r, in the usual way. Let
F={0eS5:0<3*0 < n(mod2m) for all k=1,2,...}. Show that dimy = log 2/log 3.

2.13 Show that if & and ¢ are dimension functions such that h(t)/g(t) — 0 as t — 0 then
HMF) =0 whenever #9(F) < .



Chapter 3 Alternative definitions of
dimension

Hausdorff dimension, discussed in the last chapter, is the principal definition
of dimension that we shall work with. However, other definitions are in
widespread use, and it is appropriate to examine some of these and their
inter-relationship. Not all definitions are generally applicable—some only
describe particular classes of set, such as curves.

Fundamental to most definitions of dimension is the idea of ‘measurement
at scale 5. For each 8§, we measure a set in a way that ignores irregularities of
size less than 8, and we see how these measurements behave as 6 —0. For
exampie, if F is a plane curve, then our measurement, M(F), might be the
number of steps required by a pair of dividers set at length ¢ to traverse F. A
dimension of F is then determined by the power law (if any) obeyed by M4F)
as 6—0. If

MyF)~c6™* 3.1

for constants ¢ and s, we might say that F has ‘dimension’ s, with ¢ regarded
as the ‘s-dimensional length’ of F. Taking logarithms

log M,(F) ~logc —slogd (3.2)
in the sense that the difference of the two sides tends to O with 4, and
log M4(F
s = lim 28 M) (3.3)
s-0 —logd

These formulae are appealing for computational or experimental purposes, since
s can be estimated as the gradient of a log-log graph plotted over a suitable
range of &; see figure 3.1. (Of course, for real phenomena, we can only work
with a finite range of 6; theory and experiment diverge before an atomic scale
is reached; see Chapter 18.)

There may be no exact power law for M (F), and the closest we can get to
(3.3) are the lower and upper limits.

For the value of s given by (3.1) to behave like a dimension, the method of
measurement needs to scale with the set, so that doubling the size of F and at
the same time doubling the scale at which measurement takes place does not
affect the answer; that is, we require M ;(6F) = M,(F) for all . If we modify our
example and redefine M 4F) to be the sum of the divider step lengths then My(F)
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Figure 3.1 Empirical estimation of a dimension of a set £, on the power-law assumption M;(F) ~ ¢0~°

is homogeneous of degree 1, i.e. M43F)=6'M (F) for 6 >0, and this must be
taken into account when definining the dimension. In general, if M4F) is
homogeneous of degree d, that is M;(6F) = 6°M (F), then a power law of the
form M(F)~ ¢d“~* corresponds to a dimension s.

There are no hard and fast rules for deciding whether a quantity may
reasonably be regarded as a dimension. There are many definitions that do not
fit exactly into the above, rather simplified, scenario. The factors that determine
the acceptability of a definition of a dimension are recognized largely by
experience and intuition. In general one iooks for some sort of scaling behaviour,
a naturalness of the definition in the particular context and properties typical
of dimensions such as those discussed below.

A word of warning: as we shall see, apparently similar definitions of dimension
can have widely differing properties. It should not be assumed that different
definitions give the same value of dimension, even for ‘nice’ sets. Such
assumptions have led to major misconceptions and confusion in the past. It is
necessary to derive the properties of any ‘dimension’ from its definition. The
properties of Hausdorff dimension (on which we shall largely concentrate in the
later chapters of this book) do not necessarily all hold for other definitions.

What are the desirable properties of a ‘dimension’? Those derived in the last
chapter for Hausdorff dimension are fairly typical.

Monotonicity. If E « F then dimy E < dimy F.

Stability. dimy(E U F) = max(dimy E, dimy F).

Countable stability. dimy({ )2, F)) =sup, <, ., dimyF;.

Geometric invariance. dimy f(F) = dimg F if f is a transformation of R" such
as a translation, rotation, similarity or affinity.

Lipschitz invariance. dimy f(F) = dimy F if f is a bi-Lipschitz transformation.

Countable sets. dimy F =0 if F is finite or countable.

Open sets. If F is an open gubset of R” then dimy F =n.

Smooth manifolds. dimy F = m if F is a smooth m-dimensional manifold.

All definitions of dimension are monotonic, most are stable, but, as we shall
see, some common definitions fail to exhibit countable stability and may have
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countable sets of positive dimension. All the usual dimensions are Lipschitz
invariant, and, therefore, geometrically invariant. The ‘open sets’ and ‘smooth
manifolds’ properties ensure that the dimension is an extension of the classical
definition. Note that different definitions of dimension can provide different
information about which sets are Lipschitz equivalent.

3.1 Box-counting dimensions

Box-counting or box dimension is one of the most widely used dimensions. Its
popularity is largely due to its relative ease of mathematical calculation and
empirical estimation. The definition goes back at least to the 1930s and it has
been variously termed Kolmogorov entropy, entropy dimension, capacity
dimension (a term best avoided in view of potential theoretic associations),
metric dimension, logarithmic density and information dimension. We shall
always refer to box or box counting dimension to avoid confusion.

Let F be any non-empty bounded subset of R" and let N;(F) be the smallest
number of sets of diameter at most 6 which can cover F. The lower and upper
box-counting dimensions of F respectively are defined as

dimg F = lim 2€Ns(F) (3.4)

— o0 —logd

Fimny F = Tim (08 NolF) (3.5)
50 — IOg o

If these are equal we refer to the common value as the box-counting dimension
or box dimension of F

dimg F = lim —=2 2, (3.6)

There are several equivalent definitions of box dimension that are sometimes
more convenient to use. Consider the collection of cubes in the d-coordinate
mesh of R”, i.e. cubes of the form

[(mé,(m, + )] x --- x [m,8,(m, + 1)0]

where m,,...,m, are integers. (Recall that a ‘cube’ is an interval in R! and a
square in R%) Let N(F) be the number of 3-mesh cubes that intersect F. They
obviously provide a collection of N(F) sets of diameter d,/n that cover F, so

N u(F) < N(F).

If 6./n <1 then
logN(,\/n(F)< log Ni(F)
—log(3./n)  —log./n—logé
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so taking limits as 6 -0
dimg F — lim 28 NotF) (3.7)
" -0 —logé
and
—_— —— log N'(F
dimy F < fim 28 NalF) (3.8)
50 — IOg )

On the other hand, any set of diameter at most ¢ is contained in 3" mesh cubes
of side ¢ (by choosing a cube containing some point of the set together with
its neighbouring cubes). Thus

N{(F) < 3N (F)

and taking logarithms leads to the opposite inequalities to (3.7) and (3.8). Hence
to find the box dimensions (3.4)—(3.6), we can equally well take N4(F) to be the
number of mesh cubes of side J that intersect F.

This version of the definitions is widely used empirically. To find the box
dimension of a plane set F we may draw a mesh of squares or boxes of side &
and count the number N,(F) that overlap the set for various small é (hence the
name ‘box counting’). The dimension is the logarithmic rate at which N(F)
increases as 0 — 0, and may be estimated by the gradient of the graph oflog N 45(F)
against — log .

This definition gives an interpretation of the meaning of box dimension. The
number of mesh cubes of side § that intersect a set is an indication of how
spread out or irregular the set is when examined at scale §. The dimension
reflects how rapidly the irregularities develop as 6 —0.

Another frequently used definition of box dimension is obtained by taking
N ;(F)in(3.4)—(3.6) to be the smallest number of arbitrary cubes of side § required
to cover F. The equivalence of this definition follows as in the mesh cube case,
noting that any cube of side 6 has diameter 6,/n, and that any set of diameter
of at most ¢ is contained in a cube of side §.

Similarly, we get exactly the same values if in (3.4)—(3.6) we take N (F) as the
smallest number of closed balis of radius ¢ that cover F.

A less obviously equivalent formulation of box dimension involves the largest
number of disjoint balls of radius é with centres in F. Let this number be N;(F),
and let By,..., BN;{ r be disjoint balls centred in F and of radius 6. If x belongs
to F then x must be within distance é of one of the B;, otherwise the ball of
centre x and radius & can be added to form a larger collection of disjoint balls.
Thus the N;(F) balls concentric with the B; but of radius 26 (diameter 46) cover
F, giving

NaooF) < Ny(F). (39)

On the other hand, suppose that Bl,...,BN;m are disjoint balls of radii é with

centres in F. Let U,,...,U, be any collection of sets of diameter at most
which cover F. Since the U; must cover the centres of the B;, each B; must
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contain at least one of the U;. As the B, are disjoint there are at least as many
U; as B;. Hence

N4(F) < N,(F). (3.10)

Taking logarithms of (3.9) and (3.10) shows that the values of (3.4)-(3.6) are
unaltered if N4(F) is replaced by this N(F).
These various definitions are summarized below and in figure 3.2.
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Figure 3.2 Five ways of finding the box dimension of F; see Equivalent definitions 3.1. The number

IV,,(F) is taken to be: {i} the least number of closed balls of radius J that cover F; {ii) the least number

of cubes of side & that cover F: (iii} the number of 5-mesh cubes that intersect F; {iv) the least

number of sets of diameter at most & that cover F: (v) the greatest number of disjoint balls of radius

& with centres in F

a1
Equivalent definitions 3.1

The lower and upper box-counting dimensions of a subset F of R" are given by

N
dim, F = fim 28N 3.11)
- 30 —logd
— ——log N4(F
dim,, F = iim 08N (3.12)
520 — IOg 1)
and the box-counting dimension of F by
. N
dimp F = lim 08 Vo) (3.13)
50 — lOg o

(if this limit exists), where Ns(F) is any of the following:

(i) the smallest number of closed balls of radius 6 that cover F;
(i) the smallest number of cubes of side 6 that cover F,
(iii) the number of d-mesh cubes that intersect F;
(iv) the smallest number of sets of diameter at most & that cover F;
(v) the largest number of disjoint balls of radius & with centres in F.

This list could be extended further; in practice one adopts the definition most
convenient for a particular application.

1t is worth noting that, in (3.11)~(3.13), it is enough to consider limits as ¢
tends to O through any decreasing sequence J, such that &, ,; = cd, for some
constant 0 < ¢ < 1;in particular for §, = ¢*. To see this, note thatif §, , | <6 < &,
then

logNJ(F)<10gNﬂk+1(F)< ]OgN6k+|(F) < logN6k+1(F)
—logd = —logdy \—log6k+1+log(6k+1/ék)\—log6k+1+logc

and so

HalogN‘;(F)< P logN&k(F)
s-0 —logé

~z

. 3.14
koo —logoy (.14

The opposite inequality is trivial; the case of lower limits may be dealt with in
the same way.

There is an equivalent definition of box dimension of a rather different form
that is worth mentioning. Recall that the §-parallel body Fj of F is

F;={xeR"|x — y| <6 for some yeF} (3.15)

i.e. the set of points within distance & of F. We consider the rate at which the
n-dimensional volume of F shrinks as 8 —0. In R3, if F is a single point then F,
is a ball with vol (F;) = §n6>, if F is a segment of length [ then Fj is ‘sausage-like’
with vol (F;) ~ nlé?, and if F is a flat set of area a then F; is essentially a
thickening of F with vol(F;)~ 2ad. In each case, vol(F;) ~ cd>~* where the
integer s is the dimension of F, so that exponent of ¢ is indicative of the
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dimension. The coefficient ¢ of 63, known as the Minkowski content of F, is a
measure of the length, area or volume of the set as appropriate.

This idea extends to fractional dimensions. If F is a subset of R" and, for
some s, vol" (F;)/0" ~* tends to a positive finite limit as 6 — 0, then it makes sense
to regard F as s-dimensional. The limiting value is called the s-dimensional
content of F—a concept of slightly restricted use since it is not necessarily
additive on disjoint subsets, i.e. is not a measure. Even if this limit does not
exist, we may be able to extract the critical exponent of é and this turns out
to be related to the box dimension.

Proposition 3.2
If F is a subset of R", then
—1 I"(F
dimgF=n— limw—(é—)
_ 6—-0 10g5
d—m—lsF —n— lim log vol .(F,,)
-0 logd
where F; is the d-parallel body to F.
Proof. If F can be covered by N(F) balls of radius 6 then F; can be covered
by the concentric balls of radius 25. Hence
vol*(F;) < N4(F)c,(20)"
where ¢, is the volume of the unit ball in R". Taking logarithms,

log vol"(F5) < log2"c, + nlogé + log Ns(F)

—logé —logé
gives
lim 98V FD) L dim, F (3.16)
30 —logéo -

with a similar inequality for the upper limits. On the other hand if there are
N,(F) disjoint balls of radius é with centres in F, then

N 4(F)e,(28) < vol* (F).

Taking logarithms gives the opposite inequality to (3.16), using Equivalent
definition 3.1(v). ]

Because of Proposition 3.2, box dimension is sometimes referred to as
Minkowski dimension.

It is important to understand the relationship between box-counting
dimension and Hausdorff dimension. If F can be covered by N(F) sets of
diameter 6, then, from definition (2.1),

HSF) < Ny(F)6.
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If 1 < #%(F)=1lim,_,, #5(F) then log N;(F) + slog é > 0 if § is sufficiently small.
Thuss < lim,_, ,log Ns(F)/—logé so

dimy F < dimg F <dimg F (3.17)

for any F = R". We do nor in general get equality here. Although Hausdorff
and box dimensions are equal for many ‘reasonably regular’ sets, there are
plenty of examples where this inequality is strict. ‘

Roughly speaking (3.6) says that N4(F)=~46"° for small §, where s =dimg F.
More precisely, it says that

Ns(F)o* > o0 if s<dimg F
and
Ns(F)o* -0 if s > dimg F.

But
Ns(F)o* = inf{ZéS:{Ui} is a (finite) d-cover of F},
which should be compared with
H5(F)= inf{ZlUilsz{Ui} is a d-cover of F},

which occurs in the definition of Hausdorff measure and dimension. In
calculating Hausdorff dimension, we assign different weights |U;|* to the
covering sets U,, whereas for the box dimensions we use the same weight &° for
each covering set. Box dimensions may be thought of as indicating the efficiency
with which a set may be covered by small sets of equal size, whereas Hausdorff
dimension involves coverings by sets of small but perhaps widely varying size.

There is a temptation to introduce the quantity v(F) = him ,_, , N;(F)é°, but this
does not give a measure on subsets of R". As we shall see, one consequence
of this is that box dimensions have a number of unfortunate properties, and
can be awkward to handle mathematically.

Since box dimensions are determined by coverings by sets of equal size they
tend to be easier to calculate than Hausdorff dimensions.

Example 3.3
Let F be the middle third Cantor set. Thendimy F = dimg F =log 2/log 3.

Calculation. The obvious covering by the 2* intervals of E, of length 37* gives
that N5(F)<2*if 37 ¥ <5 <37%*!. From (3.5)

— __1 _ k
dim, F = im ogN‘,(F)< i log2_ =log2.
50 —logd i-wlog3*T! log3

On the other hand, any interval of length & with 37%~! < § < 3~* intersects at
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most one of the basic intervals of length 37* used in the construction of F.
There are 2* such intervals so at least 2* intervals of length 6 are required to
cover F. Hence N4(F) > 2*leading to dimy F = log 2/log 3. O

Thus, at least for the Cantor set, dimy F = dimg F

3.2 Properties and problems of box-counting dimension

The following elementary properties of box dimension mirror those of Hausdorff
dimension, and may be verified in much the same way.

(i) A smooth m-dimensional submanifold of R" has dimy F =m.

(1i) dimp and dimg are monotonic.

(ix1) EB is finitely stable, i.e.

dimg (E U F) = max {EIEB E,dimy F}
though dimg is not.

(iv) dimg and dimg are Lipschitz invariant. This is so because, if
[ f(x)— f(»)i<clx—y| and F can be covered by N,(F) sets of diameter
at most J, then the N4(F) images of these sets under f form a cover by
sets of diameter at most cd, thus dimg f(F)<dimgF. Similarly, box

dimensions behave just like Hausdorff dimensions under bi-Lipschitz and
Holder transformations.

We now start to encounter the disadvantages of box-counting dimension. The
next proposition is at first appealing, but has undesirable consequences.

Proposition 3.4

Let F denote the closure of F (i.e. the smallest closed subset of R" containing F).
Then

dimg F = dimg F
and
dimg F = dimg F

Proof. Let By, ..., B, be a finite collection of closed balls of radii é. If the closed
set | J5_,B; contams F, it also contains F. Hence the smallest number of closed
balls of radlus & that cover F is enough to cover the larger set F. The result
follows. O

An immediate consequence of this is that if F is a dense subset of an open

region of R" thendimg F = dimg F = n. For example, let F be the (countable)
set of rational numbers between 0 and 1. Then F is the entire interval [0,1],

a5

sothatdimg F =dimg F = 1. Thus countable sets can have non-zero box
dimension. Moreover, the box-counting dimension of each rational number
regarded as a one-point set is clearly zero, but the countable union of these
singleton sets has dimension 1. Consequently, it is not generally true that
dimg { ), F; = sup;dimg F

This severely limits the usefulness of box dimension—introducing a smail,
i.e. countable, set of points can play havoc with the dimension. We might hope
to salvage something by restricting attention to closed sets, but difficulties still
remain.

Example 3.5

F=1{0,1,1,1,..} is a compact set with dimy F = 3.

Calculation. 1f|U| =& < and ks the integer satisfying 1/(k — Dk > 6 = 1/k(k + 1)
then U can cover at most one of the points {1,%,...,1/k}. Thus at least k sets
of diameter & are required to cover F, so
log N4(F ) logk
—logé logk(k +1y
Letting 3 —» 0 gives dim F = 3. On the other hand, if > & >0, take k such that
1/(k — 1)k > 8 = 1/k(k + 1). Then (k+ 1) intervals of length & cover [0, 1/k],
leaving k — 1 points of F which can be covered by another k — 1 intervals. Thus
log N,;(F) log(2k)
—logé log k(k—1)

giving

dim, F <1. a

No-one would regard this set, with all but one of its points isolated, as a
fractal, yet it has fractional box dimension.

Nevertheless, as well as being convenient in practice, box dimensions are very
useful in theory. If, as often happens, it can be shown that a set has equal box
and Hausdorff dimensions, the interplay of these definitions can be used to
powerful effect.

+3.3 Modified box-counting dimensions

There are ways of overcoming the difficulties of box dimension outlined in the
last section. However, they will probably not appeal to the user since they
re-introduce all the difficulties of calculation associated with Hausdorff
dimension and more.
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If F is a subset of R" we can try to decompose F into a countable number
of pieces F,, F,,...in such a way that the largest piece has as small a dimension
as possible. This idea leads to the following modified box-counting dimensions:

dimMBinnf{supdimBFi:Fc () F,-} (3.18)
”_ i T i=1

HEMBF-—— inf{ supairrﬁBF,-:F c

0r (3.19)

i=1

(In both cases the infimum is over all possible countable covers {F;} of F.)
Clearly dim g F < dimg F and dimyg F < dimg F. However, we now have that
dimyy F = MMB F =0if F is countable—just take the F; to be one-point sets.
Moreover, for any subset F of R",

0 < dimy F < dimyg F < dimyg F < dimg F < 1. (3.20)

It is easy to see that dimy and dimyg recover all the desirable properties of
a dimension, but they can be hard to calculate. However, there is a useful test
for compact sets to have equal box and modified box dimensions. It applies to
sets that might be described as ‘dimensionally homogeneous’.

Proposition 3.6

Let F = R be compact. Suppose that
dimy (F A V)=dimg F (3.21)

for all open sets V that intersect F. Then EB F= RMB F. A similar result holds
for lower box-counting dimensions.

Proof. Let F = | J2 | F; with each F; closed. A version of Baire’s category theorem
(which may be found in any text on basic general topology, and which we quote
without proof) states that there is an index i and an open set ¥ < R” such that

F AV cF;. For this i, dimg F; = dimg F. Using (3.19) and Proposition 3.4
dimyg F = inf{supmB F;:F < ) F; where the F; are closed sets}
i=1
> dimg F.
The opposite inequality is contained in (3.20). A similar argument deals with

the lower dimensions. |

For an application suppose that F is a compact set with a high degree of
self-similarity, for instance the middle third Cantor set or von Koch curve. If
V is any open set that intersects F, then FnV contains a geometrically similar
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copy of F which must have upper box dimension equal to that of F, so that
(3.21) holds.

+3.4 Packing measures and dimensions

Unlike Hausdorff dimension, neither the box dimensions or modified box
dimensions are defined in terms of measures, and this can present difficulties
in their theoretical development. Nevertheless, the circle of ideas in the last
section may be completed in a way that is, at least mathematically, elegant.
Recall that Hausdorff dimension may be defined using economical coverings
by small balls (2.16) whilst dim g may be defined using economical coverings by
small balls of equal radius (Equivalent definition 3.1(i)). On the other hand

dimg may be thought of as a dimension that depends on packings by disjoint
balls of equal radius that are as dense as possible (Equivalent definition 3.1(v})).
It is therefore natural to try to look for a dimension that is defined in terms of
dense packings by disjoint balls of differing small radii.

We try to follow the pattern of definition of Hausdorff measure and dimension.
Let

PyF) = sup{ZlBiP:{Bi} is a collection of disjoint balls of radii at

most ¢ with centres in F } (3.22)
Since #;(F) decreases with ¢, the limit
Pi(F) = lim P3(F) (3.23)
60

exists. At this point we meet the problems encountered with box-counting
dimensions. By considering countable dense sets it is easy to see that 2§ (F) is
not a measure. Hence we modify the definition to

P(F) = inf{z.@g(Fi):F <) F,-}. (3.24)
i i=1
It may be shown that 2%(F) is a measure on R", known as the s-dimensional
packing measure. We may define the packing dimension in the usual way:
dimp F = sup {s:P(F) = o0 } = inf {5:2(F) = 0}. (3.25)

The underlying measure structure immediatély implies that for a countable
collection of sets {F,}

dimp< U F,.> = supdim, F, (3.26)
i=1 i

since if s > dimy F, for alli, then 25(| J,F)) <3, 2%(F;) = 0,and dim, (| J;:F)) <s.
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We now investigate the relationship of packing dimension with other
definitions of dimension and verify the surprising fact that packing dimension
is just the same as the modified upper box dimension.

Lemma 3.7

dimp F < dim F. (3.27)

Proof. Choose any t and s with t <s < dimp F. Then #%(F) = 0, so Z(F) = .
Thus, given 0 < & < 1, there are disjoint balls { B;}, of radii at most é with centres
in F, such that 1 <Y 2 |B;|*. Suppose that, for each k,n, of these balls satisfy
27k~1 <|B;| <275 then

1< Y m27* (3.28)
k=0

There must be some k with n, > 2¥(1 — 2! %), otherwise (3.28) is contradicted,
by summing a geometric series. These n, balls all contain balls ofradii2 * 2 <
centred in F. Hence if N,(F) denotes the greatest number of disjoint balls of
radius 6 with centres in F, then

Ny ()R 272 > 2751 -277)
where 27572 < §. It follows that lim,_, Ns(F)&' > 0, so that dimg F > t. This is
true for any t < dim; F so (3.27) follows.
Proposition 3.8

If F < R" then dimp F = dimyg F.
Proof. If F < | )2 | F; then, by (3.26) and (3.27),
dimp F < supdimp F; < sup dimg F:.

Definition (3.19) now gives that dimp F < dimyg F. Conversely, if s> dimp F
then 2%(F) =0, so that F — UiFi for a collection of sets F; with 2§ (F;) < oo for
each i, by (3.24). Hence, for each i, if é is small enough, then Z4(F;) < 0, so by
(3.22) N4(F;)5° is bounded as 6 — 0, where N,(F;) is the largest number of disjoint
balls of radius & with centres in F;,. Thus dimg F; <s for each i, giving that

dimyg F < s by (3.19), as required.  [J

We have established the following relations:
dimy, F < dimyg F < dimyg F = dim, F < dimy F. (3.29)

Suitable examples show that none of the inequalities can be replaced by equality.
As with Hausdorff dimension, packing dimension permits the use of powerful
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measure theoretic techniques in its study. The recent introduction of packing
measures has led to a greater understanding of the geometric measure theory
of fractals, with packing measures behaving in a way that is ‘dual’ to Hausdorff
measures in many respects. Nevertheless, one cannot pretend that packing
measures and dimensions are easy to work with or to calculate; the extra step
(3.24) in their definition makes them more awkward to use than the Hausdorff
analogues.

This situation is improved slightly by the equality of packing dimension and
the modified upper box dimension. It is improved considerably for compact
sets with ‘local’ dimension constant throughout—a situation that occurs
frequently in practice, in particular in sets with some kind of self-similarity.

Corollary 3.9

Let F = R" be compact and such that
dimg(FNV)=dimg F (3.30)
for all open sets V that intersect F. Then dimp F = aTIEBF.

Proof. The is immediate from Propositions 3.6 and 3.8. O

The nicest case, of course, is of fractals with equal Hausdorff and upper box
dimensions, in which case equality holds throughout (3.29)—we shall see many
such examples later on. However, even the much weaker condition
dimy F = dim, F, though sometimes hard to prove, eases analysis of F.

3.5 Some other definitions of dimension

A wide variety of other definitions of dimension have been introduced, many
of them only of limited applicability, but nonetheless useful in their context.

The special form of curves gives rise to the several definitions of dimension.
We define a curve or Jordan curve C to be the image of an interval [a, b] under
a continuous bijection f:[a, b]— R" (Thus, we restrict attention to curves that
are non-self-intersecting.) If C is a curve and 6 > 0, we define M;(C) to be the
maximum pumber of points x,,Xx,,...,X,, on the curve C, in that order, such
that |x, —x,_|=0dfor k= 1,2,...,m. Thus (M;(C) — 1)6 may be thought of as
the ‘length’ of the curve C measured using a pair of dividers with points set a
distance & apart. The divider dimension is defined as

i 108 Mo(C)

3.31
s-0 —logd (3.31)

assuming the limit exists (otherwise we may define upper and lower divider
dimensions using upper and lower limits). It is easy to see that the divider
dimension of a curve is at least equal to the box dimension (assuming that they
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both exist) and in simple self-similar examples, such as the von Koch curve,
they are equal. The assertion that the coastline of Britain has dimension 1.2 is
usually made with the divider dimension in mind—this empirical value comes
from estimating the ratio in (3.31) for values of & between about 20 m and 200 km.

A variation of Hausdorfl dimension may be defined for curves by using
intervals of the curves themselves as covering sets. Thus we look at
inf{z:?:llf[ti-l,ti]ls} where the infimum is over ali dissections a=t, <
t, < --- <t,=>b such that the diameters | f([f;—,, t,1)! are all at most 6. We let
$ tend to 0 and deem the value of s at which this limit jumps from co to 0 to
be the dimension. For self-similar examples such as the von Koch curve, this
equals the Hausdorff dimension, but for ‘squeezed’ curves, such as graphs of
certain functions (see Chapter 11) we may get a somewhat larger value.

Sometimes, we are interested in the dimension of a fractal F that is the
boundary of a set 4. We can define the box dimension of F in the usual way,
but sometimes it is useful to take special account of the distinction between A4
and its complement. Thus the following variation of the ‘s-dimensional content’
definition of box dimension, in which we take the volume of the set of points
within 8 of F that are contained in 4 is sometimes useful. We define the one-sided
dimension of the boundary F of a set 4 in R" as

0 lim log vol (Ifér\ A)

3.32
50 log é ( )

where F; is the §-parallel body of F (compare Proposition 3.2). This definition
has applications to the surface physics of solids where it is the volume very
close to the surface that is important and also to partial differential equations
in domains with fractal bounderies.

It is sometimes possible to define dimension in terms of the complement of
a set. Suppose F is obtained by removal of a sequence of intervals I,1,,...
from, say, the unit interval [0, 1], as, for example, in the Cantor set construction.
We may define a dimension as the number s, such that the series

Y |I;|* converges if s < s, and diverges if s > s,. (3.33)
j=1

For the middle third Cantor set, this series is > ,27'37%, giving
s, =log2/log 3, equal to the Hausdorff and box dimensions in this case. In
general, s, equals the upper box dimension of F.

Dimension prints provide an interesting variation on Hausdorff dimension
of a rather different nature. Dimension prints may be thought of as a sort of
‘fingerprint’ that enables sets with differing characteristics to be distinguished,
even though they may have the same Hausdorff dimension. In particular they
reflect non-isotropic features of a set.

We restrict attention to subsets of the plane, in which case the dimension
print will also be planar. The definition of dimension prints is very similar to
that of Hausdorff dimension but coverings by rectangles are used with side
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lengths replacing diameters. Let U be a rectangle (the sides need not be parallel
to the coordinate axes) and let a(U) = b(U) be the lengths of the sides of U. Let
s,t be non-negative numbers. For F a subset of R?, let

i

HNF) = inf{Za(U,-)Sb(U,-)':{U,-} is a §-cover of F by rectangles}.
In the usual way, we get measures of ‘Hausdorff type’, #°, by letting 6 - 0:
HH(F) = lim #5(F).
-0

(Note that #*° is just the s-dimensional Hausdorff measure.) The dimension
Straight line
segment / 1
Solid square -

Perimeter of
circle or
circular arc

Product of

uniform Cantor sets

of Hausdorff
dimensions s and .
s< t (see Example 4.4)

‘Dust-like” set of o] 1 s+12

Hausdorff dimension 1%, HE G5 RE SR T
formed by the product UE 38 BNEE
of two uniform Cantor HN EH NE BN
sets of dimensions 3 spEy mmEw
0E 2= BE =%
‘Stratified’ set of 2]
Hausdorff dimension 13,
formed by the product
of a uniform Cantor set

of dimension  and
a line segment

Figure 3.3 A selection of dimension prints of plane sets
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print, print F, of F is defined to be the set of non-negative pairs (s, t) for which
H*HF)>0.

Using standard properties of measures, it is easy to see that we have
monotonicity

print F, < print F, if FicF, (3.34)
and countable stability

print( O Fi)= O print F;. (3.35)

i=1 i=1
Moreover, if (s, t) is a point in print F and (s',t') satisfies
S+t'<s+t

U<t

/

(3.36)

N

then (s, t') is also in print F.

Unfortunately, dimension prints are not particularly easy to calculate. We
display a few known examples in figure 3.3. Notice that the Hausdorff dimension
of a set is given by the point where the edge of its print intersects the x-axis.

Dimension prints are a useful and appealing extension of the idea of Hausdorff
dimension. Notice how the prints in the last two cases distinguish between two
sets of Hausdorffl (or box) dimension 1%, one of which is dust-like, the other
stratified.

One disadvantage of dimension prints defined in this way is that they are
not Lipschitz invariants. The straight line segment and smooth convex curve
are bi-Lipschitz equivalent, but their prints are different. In the latter case the
dimension print takes into account the curvature. It would be possible to avoid
this difficulty by redefining print F as the set of (s, ) such that H(F) >0 for
all bi-Lipschitz images F’ of F. This would restore Lipschitz invariance of the
prints, but would add further complications to their calculation.

Of course, it would be possible to define dimension prints by analogy with
box dimensions rather than Hausdorff dimensions, using covers by equal
rectangles. Calculations still seem awkward.

3.6 Notes and references

Many different definitions of ‘fractal dimension’ are scattered throughout the
mathematical literature. The origin of box dimension seems hard to trace—it
seems certain that it must have been considered by the pioneers of Hausdorft
measure and dimension, and was probably rejected as being less satisfactory
from a mathematical viewpoint. Bouligand adapted the Minkowski content to
non-integral dimensions in 1928, and the more usual definition of box dimension
was given by Pontrjagin and Schnirelman in 1932.

Packing measures and dimensions are much more recent, introduced by Tricot
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(1982). Their similarities and contrasts to Hausdorff measures and dimensions
are proving an important theoretical tool.
Dimension prints are a recent innovation of Rogers (1988).

Exercises

3.1 Let f:F - R"bea Lipschitz function. Show that dim f(F) < dimy F and dimg f(F) <
dimg F.

3.2 Verify directly from the definitions that Equivalent definitions 3.1(i) and (iii) give
the same values for box dimension.

3.3 Let F consist of those numbers in [0, 1] whose decimal expansions do not contain
the digit 5. Find dimg F, showing that this box dimension exists.

3.4 Verify that the set depicted in figure 0.4 has box dimension 1.

3.5 Use Equivalent definition 3.1(iv) to check that the upper box dimension of the
von Koch curve is at most log4/log3 and 3.1(v) to check that the lower box
dimension is at least this value.

3.6 Use convenient parts of Equivalent definition 3.1 to find the box dimension of the
Sierpinski gasket in figure 0.3.

3.7 Let F be the middle third Cantor set. For 0 < § < I, find the length of the d-parallel
body F; of F, and hence find the box dimension of F using Proposition 3.2.

3.8 Construct a set F for whichdimg F < d‘irr_xB F. (Hint: consider a variation on the
middle third Cantor set construction, with each interval in E,_, containing two
equal intervals of E,. Arrange for these intervals to be “long’ for k = 1,..., k;, ‘short’
fork=k, +1,...,k,, long for k=k, +1,...,ks, and so on)

3.9 Findsubsets E and F of R such that dim g (E U F) > max {dim E,dim F}.

3.10 What are the Hausdorff and box dimensions of the set {0,1,%, 1, %.,...}?

3.11 Find two disjoint Borel subsets E and F of R such that Z{(E U F) # 24 (E) + Z(F).
3.12 What is the packing dimension of the von Koch curve?

3.13 Show that the divider dimension (3.31) of a curve is greater than or equal to its
box dimension, assuming that they both exist.

3.14 Let 0 <A <1 and let F be the ‘middle 4 Cantor set’ obtained by repeated removal
of the middle proportion A4 from intervals. Show that the dimension of F defined
by (3.33) in terms of removed intervals equals the Hausdorff and box dimensions
of F.

3.15 Verify properties (3.34)—(3.36) of dimension prints. Given an example of a set with
a non-convex dimension print.



Chapter 4 Techniques for calculating
dimensions

A direct attempt at calculating the dimensions, in particular the Hausdorff
dimension, of almost any set will convince the reader of the practical limitations
of working from the definitions. Rigorous dimension calculations often involve
pages of complicated manipulations and estimates that provide little intuitive
enlightenment.

In this chapter we bring together some of the basic techniques that are
available for dimension calculations. Other methods, that are applicable in more
specific cases, will be found throughout the book.

4.1 Basic methods

For most fractals ‘obvious’ upper estimates of dimension may be obtained using
natural coverings by small sets.

Proposition 4.1

Suppose F can be covered by n, sets of diameter at most 6, with 0, —0as k— 0.
Then
logn,

dimy F <dimg F < lim
B i~ — logd,
and, if 8, ,, = ¢d, for some 0 <c <1,
— - 1
dimg F < lim —22%
k— oo —logék

Moreover, if n, 83 remains bounded as k— co, then H(F) < c0.

Proof. The inequalities for the box-counting dimension are immediate from the
definitions. For the last part, #75 (F) <6}, so #75 (F ) tends to a finite limit
H(F) as k— 0. (]

Thus, as we have seen already (Example 2.7), in the case of the middle third
Cantor set the natural coverings by 2* intervals of length 37 give
dimy, F <log2/log3.

Surprisingly often, the ‘obvious’ upper bound for the Hausdorff dimension
of a set turns out to be the actual value. However, demonstrating this can be
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difficult. To obtain an upper bound it is enough to evaluate sums of the form
S |U,|® for specific coverings {U;} of F, whereas for a lower bound we must
show that 3°|U,|* is greater than some positive constant for all 6-coverings of
F. Clearly an enormous number of such coverings are available. In particular,
when working with Hausdorff dimension as opposed to box dimension,
consideration must be given to covers where some of the U, are very small and
others have relatively large diameter—this prohibits sweeping estimates for
3| U,|* such as those available for upper bounds.

One way of getting around these difficulties is to show that no individual set
U can cover too much of F compared with its size measured as |U}*. Then if
{U,} covers the whole of F the sum >| U;|* cannot be too small. The usual way
to do this is to concentrate a suitable mass distribution ¢ on F and compare
the mass pu(U) covered by U with |U|* for each U. (Recall that a mass distribution
on F is a measure with support contained in F such that 0 < pu(F) < oo, see
Section 1.3.)

Mass distribution principle 4.2

Let u be a mass distribution on F and suppose that for some s there are numbers
¢ >0 and 3 > 0 such that

pU)<clUP 4.1)
for all sets U with |U| < 6. Then #°(F) =z u(F)/c and

s < dim,, F < dim < dimg F.
Proof. If { U} is any cover of F then
0<u(F)=,u<ki}Ui)ggu(Ui)<czi:|Ui|‘. 4.2)
Taking infima, #75(F) > u(F)/c if 8 is small enough, so H#(F) = u(F)/c. O

Notice that the conclusion #(F)> u(F)/c remains true if u is a mass
distribution on R" and F is any subset.

The mass distribution principle 4.2 gives a quick lower estimate for the
Hausdorff dimension of the middle third Cantor set F (figure 0.1). Let u be the
natural mass distribution on F, so that each of the 2* basic intervals of length
37*in E, in the construction of F, carry a mass 27k (We imagine that we start
with unit mass on E, and repeatedly divide the mass on each interval of E,
between its two subintervals in E, . ,; see Proposition 1.7.) Let U be a set with
|U| <1 and let k be the integer such that 3-**D < |U]| <37* Then U can
intersect at most one of the intervals of E,, so

#(U) S 2—k — (3—k)log2/log3 < (3‘ Ul)logl/logS

and hence #'°¢2°¢3(F)>0 by the mass distribution principle giving
dimyF > log 2/log 3.
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Example 4.3

Let F,=F x[0,1]1=R? be the product of the middle third Cantor set F
and the unit interval. Then dimgF, =dimyF,=1++log2/log3=s, with
0< #5(F,) < 0.

Calculation. For each k, there is a covering of F by 2¥ intervals of length 37% A
column of 3* squares of side 3~* (diameter 37*,/2) covers the part of F; above
each such interval, so taking these all together, F, may be covered by 2*3*
squares of side 3 7% Thus #73-+ ,(F,) < 3°2°(3 Tk J2F =22, 50 #(F )< 2*% and
dimy F, <dimgF{ <dimgF, <.

We define a mass distribution g on F, by taking the natural mass distribution
on F described above (each basic interval of F of side 37 having mass 27*) and
‘spreading it’ uniformly along the intervals above F. Thus if U is a rectangle,
with sides parallel to the coordinate axes, of height h, above a basic interval of
F of side 37%, then p(U)=h2"% Any set U is contained in a square of side |U]|
with sides parallel to the coordinate axes. If 3~ ** V< |U| <37 then U lies
above at most one basic interval of F of side 37%, so

u(U) < I U[2_" < | U‘3——klog2/log3 < | U|(3| Ui)logZ/logS < 3log2/log3| Uls
By the Mass distribution principle 4.2, 5#7°(F) > 0. O

Notice that in this example the dimension of the product of two sets equals
the sum of the dimensions of the sets. We study this is greater depth in Chapter 7.

The following general construction of a subset of R may be thought of as a
generalization of the Cantor set construction. Let [0,11=E; > E, D E; >... be
a decreasing sequence of sets, with each E, a union of a finite number of disjoint
closed intervals (called basic intervals), with each interval of E, containing at
least two intervals of E, , ,, and the maximum length of intervals in E, tending
to 0 as k—0. Then the set

F= () E 43)
k=0

is a totally disconnected subset of {0, 1] which is generally a fractal (figure 4.1).
Obvious upper bounds for the dimension of F are available by taking the

intervals of E, as covering intervals, for each k, but, as usual, lower bounds are

harder to find. Note that, in the following examples, the upper estimates for

£o
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Figure 4.1 An example of the general construction of a subset of R
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dim,, F depend on the number and size of the basic intervals, whilst the lower
estimates depend on their spacing. For these to be equal, the intervals of E, , ;
must be ‘nearly uniformly distributed’ inside the intervals of E,.

Example 4.4

Let s be a number strictly between 0 and 1. Assume that the E, in the general
construction (4.3) have the following property: for each basic interval I of E,, the
intervals 1,,...,1,,(m=2) of E,.., contained in I are of equal length and equally
spaced, the lengths being given by

1
ILP=—{1F  (<i<m (4.4)
m

with the left-hand ends of 1, and I coinciding, and the right-hand ends of 1, and
I coinciding. Then dimy F = s and 0 < #°(F) < co. (Notice that m may be different
for different intervals I in the construction, so that the intervals of E, may have
widely differing lengths.)

Calculation. With I,1;, as above,
= 3 L] 4.5)
i=1

Applying this inductively to the intervals of E, for successive k, it follows that,
for each k, 1 = °|1,|, where the sum is over all the intervals in E,. The intervals
of E, cover F; since the maximum interval length tends to 0 as k — co, we have
H3(F) < 1 for sufficiently small 6 giving #*(F)< 1.

Now distribute a mass p on F in such a way that u(I) =|I|* whenever [ is a
basic interval. Thus, starting with unit mass on [0,1] we divide this equally
between each interval of E,, the mass on each of these intervals being divided
equally between each subinterval of E,, and so on; see Proposition 1.7.
Equation (4.5) ensures that we get a mass distribution on F with u(I) = |I|* for
every basic interval. We estimate p(U) for any interval U with endpoints in F.
Let I be the smallest basic interval that contains U; suppose that I is an interval
of E,,and let I,,..., I, be the intervals of E, . ; contained in I. Then U intersects
a number j =2 of the I;, otherwise U would be contained in a smaller basic
interval. The spacing between consecutive I; is

(] —m|L)/(m—1) =11 —m|Lj/|1|)/(m — 1)
=I(1—m' " )/m—1)
= |l|/m

using (4.4), where ¢, = (1 — 2! ~1#). Thus

- .
U =11 > L1
m 2m
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Figure 4.2 Auniform Cantor set (Example 45)withm =3, A = “‘—5 dim, F= dimg F=log 3/ —log % =
0.831

By (4.5)

w(U) <ju(l) = jILI* =ims

. 1—s
<2Sc;5(i> |UPF<2e]*| U (4.6)
m

This is true for any interval U with endpoints in F, and so for any set U (by
applying (4.6) to the smallest interval containing U n F). By the Mass distribution
principle 4.2, s#%(F) > 0. 0

A more careful estimate of u(U) in Example 4.4 leads to #(F)=1.

We call the sets obtained when m is kept constant throughout the construction
of Example 4.4 uniform Cantor sets, see figure 4.2. These provide a natural
generalisation of the middle third Cantor set.

Example 4.5 Uniform Cantor sets

Let m = 2 be an integer and 0 < A < 1/m. Let F be the set obtained by the construc-
tion in which each basic interval I is replaced by m equally spaced subintervals of
lengths A|l|, the ends of I coinciding with the ends of the extreme subintervals.
Then dimy F = dimg F = logm/— log A, and 0 < 3#'°¢™ 718 *(F) < 0.

Calcutation. The set F is obtained on taking m constant and s =logm/(—log )
in Example 4.4. Equation (4.4) becomes (A|I|)*=(1/m)|I|*, which is satisfied
identically, so dimy F = s. For the box dimension, note that F is covered by the
m* basic intervals of length A~ in E, for each k, leading to dimg F < logm/—log A
in the usual way. ]

The next example is another case of the general construction.

. Example 4.6

Suppose in the general construction (4.3) each interval of E,_, contains at least
m, intervals of E(k =1,2,...) which are separated by gaps of at least g, where
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0<ég,.q, <& for each k. Then

dimy, F > Tim 28™ M=) 4.7)
kmwo  — log(mee,)

Calculation. We may assume that each set E, _, contains exactly m, intervals of
E,; if not we may throw out excess intervals to get smaller sets E, and F
for which this is so. We may define a mass distribution ¢ on F by assigning a
mass of (m,---m,)” ! to each of the m, ---m, basic intervals of E,.

Let U be an interval with 0 < |U| < g;; we estimate u(U). Let k be the integer
such that ¢ <{U| < g _,. The number of intervals of E, that intersect U is

(1) at most m, since U intersects at most one interval of E,
(ii) at most |U|/e, + 1 < 2{U|/g, since the intervals of E, have gaps of at least
& between them. Each interval of E, supports mass (m, ---m,)” ' so that
wU) < (my ---my)™ ' min {2{U|/e,, my}
<(my---my)” 1(2| U|/8k)sm; oS

forany 0<s< 1.
Hence

HU) _ 2°
(Ul (my---my_ ymieg,

which is bounded above by a constant provided that

s < limlog(m, --- my_,)/ —log(m,é&).

k— oo

The result follows by Principle 4.2. |

Now suppose that in Example 4.6 the intervals of E, are all of length J,, and
that each interval of E, _; contains exactly m, intervals of E,, which are ‘roughly
equally spaced’ in the sense that m,¢, > ¢d,_;, where ¢ > 0 is a constant. Then
(4.7) becomes

log(m, ---m;,)

1 e,
dimy F > lim = lim M
i~o—loge—10gd, -1 kmw —108dk—;

But E,_, comprises m,---m,_, intervals of length J,_;, so this expression

equals the upper bound for dimy F given by Proposition 4.1. Thus in the

situation where the intervals are well spaced, we get equality in (4.7).
Examples of the following form occur in number theory; see Section 10.3.

Example 4.7

Fix0<s<1 and let ny,n,,... be a rapidly increasing sequence of integers, say
ity = max {nk,3n}s} for each k. For each k let H, = R consist of equally spaced
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equal intervals of lengths n, 1s with the midpoints of consecutive intervals distance
n; ! apart. Then dimy F = dimg F = s, where F = O Hy.

Calculation. Since F <= H, for each k, the set Fn[0,1] is contained in at most

n,+ 1 intervals of length n,'”, so Proposition 4.1 gives dimg (F~[0,1]) <

lim, . log(n, + 1)/ —logn, ' =s. Similarly, dimg(Fn[nn+1])<s for any

neZ, so F, as a countable union of such sets, has dimg F <.

Now let E, =[0,1] and, for k > 1, let E, consist of the intervals of H, that
are completely contained in E,.,. Then each interval I of E,_, contains at
least n|I|—1>nn '’ —1>2intervals of E,, which are separated by gaps of
at least n, ' —n, ¥ > 1n 1 if k is large enough. Using Example 4.6, and noting
that replacing mn; /s — 1 by non, ' does not affect the limit,

o0 1-1/s
dimy F > dimy () E,= lim log((n, "“‘:2) ,A..,,;"_k:l,,)
k=1 iow  —log(mnin )

= Eln_log("1 "‘”k—z)lﬁl/s‘*‘lognk—x.

P log2 + (logn,_,)/s

Provided that n, is sufficiently rapidly increasing, the terms in logn,_, in the
numerator and denominator of this expression are dominant, so that dimy F > s,
as required. O

Although the Mass distribution principle 4.2 is based on a simple idea, we
have seen that it can be very useful in finding Hausdorff and box dimensions.
We now develop some important variations of the method.

It is enough for condition (4.1) to hold just for sufficiently small balls centred
at each point of F. This is expressed in Proposition 4.9(a). Although mass
distribution methods for upper bounds are required for less frequently, we
include part (b) because it is, in a sense, dual to (a). Note that density expressions,
such as lim,_ ,u(B,(x))/r* play a major role in the study of local properties of
fractals—see Chapter 5. (Recall that B,(x) is the closed ball of centre x and
radius r.)

We require the following covering lemma in the proof of Proposition 4.9(b).

Covering lemma 4.8

Let € be a family of balls contained in some bounded region of R”. Then there is
a (finite or countable) disjoint subcollection {B;} such that

\)B< B (4.8)

Be# i

where B, is the closed ball concentric with B; and of four times the radius.

Proof. For simplicity, we give the proof when € is a finite family; the basic idea
is the same in the general case. We select the {B;} inductively. Let B, be a ball
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in € of maximum radius. Suppose that B,,..., B,_, have been chosen. We take
B, to be the largest ball in ¥ (or one of the largest) that does not intersect
B,,...,B,_,. The process terminates when no such ball remains. Clearly the
balls selected are disjoint; we must check that (4.8) holds. If Be%, then either
B = B, for some i, or B intersects one of the B; with |B;| = |B|; if this were not
the case, then B would have been chosen instead of the first ball B, with
|B| <|B|. Either way, B < B;, so we have (4.8). (It is easy to see that the result
remains true taking B; as the ball concentric with B; and of 3 + ¢ times the
radius, for any ¢ > 0; if € 1s finite we may take ¢ = 0.) O

Proposition 4.9

Let p be a mass distribution on R", let F = R" be a Borel set and let 0 <c¢ < o0
be a constant.

(@) If @HO w(B(x))/r* < ¢ for all xeF then #5(F) = u(F)/c
(b) If lim,_  u(B,(x})/r* > ¢ for all xeF then H#*(F) < 2°u(R")/c.

Proof
(a) For each 6 >0 let

Fs= {xeF:u(B,(x)) < (c —¢)r* for all 0 <r < 6 for some ¢ > 0}.

Let {U;} be a d-cover of F and thus of F,;. For each U; containing a

point x of F;, the ball B with centre x and radius | U;| certainly contains
U,;. By definition of F,

Uy < p(B) <clU;°
so that
wF;) <Y {u(U;):U; intersects F,} <cY U

Since {U,} is any d-cover of F, it follows that u(F;) < c#5(F) < cH*(F).
But F; increases to F as 0 decreases to 0, so u(F) < cH#*(F) by (1.7).

(b} For simplicity, we prove a weaker version of (b) with 2° replaced by 8,
but the basic idea is similar. Suppose first that F is bounded. Fix 6 >0
and let € be the collection of balls

{B,(x):xeF,0 <r<d and u(B,(x))>cr‘}.

Then by the hypothesis of (b) F < | )p.¢B. Applying Covering lemma
4.8 to the collection €, there is a sequence of disjoint balls B;e% such that
{Usee B = i B; where B, is the ball concentric with B; but of four times the
radius. Thus {B;} is an 85-cover of F, so

H(F)<S LIBIF <4 |Bf

<87 ) u(By) <8 (R,
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Letting 6 — 0, we get H#°(F) <8¢ 1 (R") < co. Finally, if F is unbounded
and #5(F)> 8°c™ ' u(R"), the s#°-measure of some bounded subset of F
will also exceed this value, contrary to the above. O

Note that it is immediate from this Proposition 49 that dimyF =
lim, ., log p(B,(x))/logr if this limit exists.

Applications of Proposition 4.9 will occur throughout the book.

The densities lim, ¢ #(B,(x))/r* that occur in Proposition 4.9 are sometimes
used (often rather imprecisely) to define the dimension of a set. Often a fractal
F is naturally endowed with a mass distribution g, for example, an invariant
measure on the attractor of a dynamical system; see Section 13.7. If the mass
of small balls obeys a law log u(F n B,(x))/logr—s as r—0 for all x in F, then
the Hausdorff dimension of F equals s. This is sometimes used as a practical
method for estimating a ‘dimension’ of a set that carries a natural mass
distribution. For a ‘typical’ point x, we might estimate p(F n B,(x)) for a series
of small values of r, and read off the dimension as the gradient of the graph of
log u(F N B,(x)) against logr.

4.2 Subsets of finite measure

This section may seem out of place in a chapter about finding dimensions.
However, Theorem 4.10 is required for the important potential theoretic
methods developed in the following section. It also permits a simplification which
can be very useful in fractal analysis.

Theorem 4.10 guarantees that any (Borel) set F with s#*(F) = co contains a
subset E with 0 < #5(E) < co (i.e. with E an s-set). At first, this might seem
obvious—just shave pieces off F until what remains has positive finite measure.
Unfortunately it is not quite this simple—it is possible to jump from infinite
measure to zero measure without passing through any intermediate value.
Stating this in mathematical terms, it is possible to have a decreasing sequence
of sets E, o E, o... with #7(E,) = oo for all k, but with #°5((\;> 1 E) = 0. (For
a simple example, take E; =[0,1/k] = R and 0 < s < 1.) To prove the theorem
we need to look rather more closely at the structure of Hausdorff measures.
Readers mainly concerned with applications may prefer to omit the proof!

Theorem 4.10

Let F be a Borel subset of R" with #%(F) = . Then there is a compact set Ec F
such that 0 < #*(E) < c0.

~ *Sketch of proof. The complete proof of this is complicated. We indicate the ideas
involved in the case where F is a compact subset of [0,)cRand 0<s< 1.
We work with the net measures #° (2.17)~(2.18) which are defined using the

binary intervals [r2 7% (r + 1)27¥)and are related to Hausdorff measure by (2.19).
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We define inductively a decreasing sequence Eq > E; o E,>... of compact
subsets of F. Let E, = F. For k > 0 we define E, , ; by specifying its intersection
with each binary interval I of length 275 If M5 . (E,n]) <27 we let
E..inI=E.nI Then

‘/”Sz—(kn)(ElemI):'/”sz—k(Ean) 4.9)

since using I itself as a covering interval in calculating .#%_,. gives an estimate
at least as large as using shorter binary intervals. On the other hand, if
M i n(EpsynI)>27% we take E,, ;NI to be a compact subset of E,N1
with M5, er o (Exr NIy =27 Such a subset exists since A5 - wr (Ex NI N[O, ul)
is finite and continuous in u. (This is why we need to work with the . rather
than .#°) Since 5, _(E,n1)=2"%, (4.9) again holds. Summing (4.9) over all
binary intervals of length 2% we get

J”sz—(kn)(Ek+1)='/”sz—k(Ek)- 4.10)

Repeated application of (4.10) gives A5 _.(E,) = #(E,) for all k. Let E be the
compact set [ oE,. Taking the limit as k— oo gives M ¥(E)= #5(E,) (this
step needs some j‘ustiﬁcation). The covering of E, = F by the single interval
[Q, 1) gives .45 (Eq) < 1. Since M*(Ey) = #%(Ey) = co we have A5 _(Eo) >0 if
k is large enough, so A3 (E,) > min { A% _.(E,),27*} > 0. Thus 0 < #*(E) < oo,
and the theorem follows from (2.19). O

A number of results, for example those in Chapter 5, apply only to s-sets, i.e.
sets with 0 < #5(F) < co. One way of approaching s-dimensional sets with
H5(F) = oo is to use Theorem 4.10 to extract a subset of positive finite measure,
to study its properties as an s-set, and then to interpret these properties in the
context of the larger set F. Similarly, any set F of Hausdorff dimension ¢ >0
has #5(F)= o0 if 0 < s <t, and so contains an s-set.

The following proposition, really a corollary of Proposition 4.9, allows us to
strengthen Theorem 4.10 even further.

Proposition 4.11

Let F be a Borel set satisfying 0 < #(F) < co. There is a constant b and a
compact set E = F with #°(E)> 0 such that

HSEnB,(x))<br’ 4.11)
for all xeR" and r > 0.

Proof In Proposition 4.9(b) take u as the restriction of #° to F, ie
u(A) = H*(F n A). Then, if

F,= {xeR":m%s(FnB,(x))/r‘ > 2! “}

r—0

it follows that #5(F,) < 252~ 19 #5(F) < L#%(F). Thus #(F\F,) > 1 #%(F) >
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0,so if E; = F\F, then 3#%(E) > 0and lim,_,ojfs(FmB,(x))/rs <2'*sfor xeE,.
By Egoroff’s theorem (see page 16) it follows that there is a compact set
E c E, with #E)>0 and a number r, >0 such that #5(F A B,(x))/rs <2*7*
for all xeE and all 0 <r <rq. But #FB,(x))/r* < HNF)rs ifrzryso(4.11)
follows. O

Corollary 4.12

Let F be a Borel subset of R" with #5(F)= co. Then there is a compact set E < F
such that 0 < #5(E) < co and such that for some constant b

HNENB,(x))<br?

for all xeR" and r = 0.

Proof. Theorem 4.10 provides us with a subset of F of positive finite measure,
and applying Proposition 4.11 to this gives the result. O

4.3 Potential theoretic methods

In this section we introduce a technique for calculating Hausdorff dimensions
that is important both in theory and in practice. This replaces the need for
estimating the mass of a large number of small sets by a single check for the
convergence of a certain integral.

The ideas of potential and energy will be familiar to readers with a knowledge
of gravitation or electrostatics. For s > 0 the s-potential at a point x of R” due
to the mass distribution g on R” is defined as

dp(y)

ds(x)= J my % (4.12)
|x — |

(If we are working in R3 and s = 1 then this is essentially the familiar Newtonian

gravitational potential) The s-energy of pis

I(p)= jd&(X) du(x) = H(%x—)_dﬁ?—) (4.13)

The following theorem relates Hausdorff dimension to seemingly unconnected
potential theoretic ideas. In particular, if there is a mass distribution on a set
F which has finite s-energy, then F has dimension at least s.

Theorem 4.13
 Let F be a subset of R".

(@) If there is a mass distribution p on F with () < oo then #°(F)= o0 and
dimy F = s.
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(b) If F is a Borel set with 3#5(F)> 0 then there exists a mass distribution p
on F with I ()< oo forall t <s.

Proof

(a) Suppose that I (y)< oo for some mass distribution g with support
contained in F. Define

F, = {xeF: lim u(B,(x))/r* > 0}.
r—0

If xeF, we may find ¢ > 0 and a sequence of numbers {r;} decreasing to
0 such that u(B,(x)) = er{. Unless u({x}) > 0 (in which case it is clear that
I (1) = o0) it follows from the continuity of u that, by taking ¢q; (0 < g; <r,)
small enough, we get u(4,)>teri(i=1,2,...), where 4, is the annulus
B, (x)\B,,(x). Taking subsequences if necessary, we may assume that
rivq < g; for all i, so that the A; are disjoint annuli centred on x. Hence
for xeF,

bux) = duy) _ & du(y)

- =
Ix —yi* S Jalx—yl°
v o)
> )
i=1

since |x — y| 7* =7, * on A;. But I (1) = [ ,(x) dpu(x) < 0, 50 ¢(x) < oo for
u-almost all x. We conclude that u(F,)= 0. Since li—m,_,ou(B,(x))/rs =0 if
xeF\F,, the Proposition 4.9(a) tells us that, for all ¢ >0, we have

H(F)z HN(F\Fy) > p(F\F)/c = (WF) — p(F,))/c = p(F)/c.
Hence s#°5(F) = 0.
(b) Suppose that #5(F)>0. We use #* to construct a mass distribution p

on F with I,(u) < oo for any t <s.

By Corollary 4.12 there exists a compact set E < F with 0 < #°(E) < o0
such that

erir[*= o0

NS

#(EnB,(x) <br* (xeR")

for some constant b. Let p be the restriction of #* to E, so that
u(A) = #5(En A); then p is a mass distribution on F. Fix xeR" and write

m(r) = u(B.(x)) = #(EnB,(x)) < br'. 4.14)
Then, if 0 <t <s

500 = J duy) j du(y)
| |

x—y|s1|x_}’|' x—yl>l|x—y|‘

< J rtdm(r) + u(R?)

0
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=L e | ) dr )
0
1

<b +-btj rsT T dr + u(R")

0

s—t

=b<1 +~t—>+9f‘(F)

after integrating by parts and using (4.14). Thus ¢,(x) <c, say, so that
L(w=[ox)dp(x) <cp(R) < 0. O

Important applications of Theorem 4.13 will be given later in the book; for
example, in the proof of the projection theorems in Chapter 6 and in the
determination of the dimension of Brownian paths in Chapter 16. The theorem
is often used to find the dimension of fractals Fy which depend on a parameter
6. There may be a natural way to define a mass distribution u, on F, for each
@. If we can show, that for some s,

Jls(ue)de=mw<w
bx =yl

then I,(u) < oo for almost all 6, so that dimy Fy > s for almost all 6.
Readers familiar with potential theory will have encountered the definition
of the s-capacity of a set F:

C(F)=sup {1/I(u): u is a mass distribution on F with u(F)= 1}
un

(with the convention that 1/co=0). Thus another way of expressing
Theorem 4.13 is
dimy F = inf {5:C,(F) = 0} = sup {s:C,(F) > 0}.

Whilst this is reminiscent of the definition (2.11) of Hausdorff dimension in
terms of Hausdorff measures, it should be noted that capacities behave very
differently from measures. In particular, they are not generally additive.

+4.4 Fourier transform methods
In this section, we do no more than indicate that Fourier transforms can be a
powerful tool for analysing dimensions.

The n-dimensional Fourier transforms of an integrable function f and a mass
distribution p on R" are defined by

f(u)= J f(x)exp (ix-u)dx (ueR™ (4.15)
.
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ﬁ(u):f exp (ix-u)du(x) (ueR" (4.16)

where x-u represents the usual scalar product. (Fourier transformation extends
to a much wider class of function using the theory of distributions.)
The s-potential (4.12) of a mass distribution g is just the convolution

¢(x) = (|| *+m)(x) = JIX —yl 7 du(y).

Formally, the transform of | x| ~* may be shown to be c|u|*~", where ¢ depends
on n and s, so the convolution theorem, which states that the transform of the
convolution of two function equals the product of the transforms of the functions,
gives

¢s(u) = clul*""i(u).

Parseval’s theorem tells us that
Jqss(x) dp(x) = Qn)" j $(watw du
where the bar denotes complex conjugation, so
Is(u)=(27r)"CJ.IuIS‘"Iﬁ(u)|2du- (4.17)
This expression for I (u), which may be established rather more rigorously,
is sometimes a convenient way of expressing the energy (4.13) required in

Theorem 4.13. Thus if there is a mass distribution g on a set F for which the
integral (4.17) is finite, then dimy F > s. In particular, if

| Au)| < blu| =" (4.18)
for some constant b, then, noting that, by (4.16), | A(v)| < u(R") for all u, we have
IS(#)SQ‘[ Iuls_"du+02j [ul*~"ul ™" du
jul<1 jul> 1

which converges if s < t. Thus if (4.18) holds, any set F which supports u has
dimension at least t. The greatest value of ¢ for which there is a mass distribution
i on F satisfying (4.18) is sometimes called the Fourier dimension of F.

4.5 Notes and references

1 know of no systematic general account on calculating dimensions, although
there are a number that discuss particular cases in detail. Among these are the
papers of Eggleston (1952), Beardon (1965) and Peyriére (1977).

The potential theoretic approach was, essentially, due to Frostman (1935),



see Taylor (1961), Hayman and Kennedy (1976) or Carleson (1967) for more
recent accounts. For an introduction to Fourier transforms see Papoulis (1962).

The work on subsets of finite measure originates from Besicovitch (1952) and
a very general treatment is given in Rogers (1970). A complete proof of
Theorem 4.10 may be found in Falconer (1985a).

Exercises

4.1 What is the Hausdorff dimension of the ‘Cantor tartan’ given by {(x, y)eR?:either
xeF or yeF} where F is the middle third Cantor set?

42 FixO0< i< %, and let F be the set of real numbers

F={ i aia,=0o0r1 fork=1,2,...}_
k

=1
Find the Hausdorff and box dimensions of F.
43 Let F be the middle third Cantor set. What is the Hausdorff dimension of the plane
set given by {(x,y)eR?*:xeF and 0 <y < x*}?

4.4 Use the mass distribution method to show that the ‘Cantor dust’ depicted in figure 0.4
has Hausdorff dimension 1. (Hint: note that any two squares in the set E, of the
construction are separated by a distance of at least 47%)

4.5 Use a mass distribution method to obtain the result of Example 4.5 directly rather
than via Example 4.4.

4.6 Show that every number x > 0 may be expressed in the form

where m >0 is an integer and g, is an integer with 0 <a, <k—1 for each k. Let
F={x>0:m=0and g is even for k=2,3,...}. Find dimy F.

4.7 Show that there is a compact subset F of [0,1] of Hausdorff dimension 1 but with
A#'(F)=0. (Hint: try a ‘Cantor set’ construction, but reduce the proportion of
intervals removed at each stage.)

4.8 Deduce from Theorem 4.10 that if F is a Borel subset of R" with #*(F) = oo and ¢
is a positive number, then there is a Borel subset E of F with #*(E)=c.

4.9 Let u be the natural mass distribution on the middle third Cantor set F (see after
Principle 4.2). Estimate the s-energy of u for s<log2/log3 and deduce from
Theorem 4.13 that dimy, F > log2/log 3.

Chapter 5 Local structure of fractals

Classical calculus involves finding local approximations to curves and surfaces
by tangent lines and planes. Viewed on a large scale the neighbourhood of a
point on a smooth curve appears close to a line segment. Can we say anything
about the local structure of as diverse a class of objects as fractals? Surprisingly,
the answer in many cases is yes. We can go some way to establishing the form
of fractals in a neighbourhood of a general point. In particular, we can study
the concentration of fractals about typical points; in other words, their local
densities, and the directional distribution of fractals around points including
the question of whether tangents exist. A knowledge of the local form of a
fractal is useful both in developing theory and in applications.

In order to realize the power of Hausdorff measures, it is necessary to restrict
attention to s-sets, i.e. Borel sets of Hausdorff dimension s with positive finite
s-dimensional Hausdorff measure. (More generally, it is possible to work
with s-sets of positive finite #*-measure for some dimension function h; see
Section 2.5—we do not consider this generalization here.) This is not so
restrictive as it first appears. Many fractals encountered in practice are s-sets,
but even if #5(F)= oo then, by Theorem 4.10, F has subsets that are s-sets to
which this theory can be applied. Alternatively, it sometimes happens that a
set F of dimension s is a countable union of s-sets, and the properties of these
component sets can often be transferred to F.

The material outlined in this chapter lies at the heart of geometric measure
theory, a subject where rigorous proofs are often intricate and difficult. We omit
the harder proofs here; it is hoped that those included will be found instructive
and wili give the flavour of the subject. We generally restrict attention to subsets
of the plane—the higher-dimensional analogues, though valid, are often an
order of magnitude harder.

b.1 Densities

Let F be a subset of the plane. The density of F at x is

arca(FBY)_ i area(F 5, (0)

(5.1)
—o area(B,(x)) r—0 nr

where B,(x) is the closed disc of radius r and centre x. The classical Lebesgue
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density theorem tells us that, for a Borel set F, this limit exists and equals 1
when xeF and 0 when x¢F, except for a set of x of area 0. In other words, for
a typical point x of F, small discs centred at x are almost entirely filled by F,
but if x is outside F then small discs centred at x generally contain very little
of F; see figure 5.1.

Similarly, if F is a smooth curve in the plane and x is a point of F (other
than an endpoint), then, F N B,(x) is close to a diametrical chord of F for small
r and
.mlength (F nB,(x)) _

Ii
r—0 2r

1.

If x¢ F then this limit is clearly 0.

Density theorems such as these tell us how much of the set F, in the sense
of area or length, is concentrated near x. In the same way it is natural to
investigate densities of fractals—if F has dimension s, how does the
s-dimensional Hausdorff measure of F n B,(x) behave as r —»0? We look at this
question when F is an s-set in R? with 0 <s <2 (0-sets are just finite sets of
points, and there is little to say, and #? is essentially area, so if s =2 we are
in the Lebesgue density situation (5.1)).

We define the lower and upper densities of an s-set F at a point xeR" as

D(F, x) = h_mf(Fn_B'(’i)_) (5.2)
50 @ry
and
DS(F, x) = lim HF N B,(x)) (5.3)
r—0 (2r)s

respectively (note that {B,(x)| = 2r). If D’(F,x) = D*(F, x) we say that the density
of F at x exists and we write DS(F, x) for the common value.

A point x at which D*(F, x) = D*(F, x) = 1is called a regular point of F,otherwise
x is an irregular point. An s-set is termed regular if 3#°-almost all of its points

Figure 5.1 The Lebesgue density theorem. The point x is in F, and area (F B, (x})/area (B,{x)) is
close to 1 if ris small. The point yis outside F, and area (F~ B,{y) )/area (B,(y)) is close to 0 if ris small

n

are regular (i.e. all of its points except for a set of #°-measure 0), and irregular
if #*-almost all of its points are irregular. As we shall see a fundamental result
is that an s-set F must be irregular unless s is an integer. However, if s is integral
an s-set decomposes into a regular and an irregular part. Roughly speaking, a
regular 1-set consists of portions of rectifiable curves of finite length, whereas
an irregular 1-set is totally disconnected and dust-like, and typically of fractal
form.

By definition, a regular set is one for which the direct analogue of the Lebesgue
density theorem holds. However, even the densities of irregular sets cannot
behave too erratically.

Proposition 5.1
Let F be an s-set in R". Then

(a) D(F,x)= D*(F,x)=0 for #*-almost all x¢ F
(b) 27°< D¥(F,x)< 1 for #*-almost all xeF.

Partial proof

(@) If F is closed and x¢F, then B, (x)nF =¥ if r is small enough. Hence
lim, _, , 5 (F N B,(x))/(2r)> = 0. If F is not closed the proof is a little more
involved and we omit it here.

(b) This follows quickly from Proposition 4.9(a) by taking u as the restriction
of #° to F, ie u(A)=#FnA)if

F,= {xc—F:D_S(F, x)= ll‘mw < 2_‘c}
r0 (2r)y

then S (F,) = #5(F)/c. If ¢ <1 this is only possible if #°*(F,)=0; thus for

almost all xe F we have D¥(F, x) = 2. The upper bound follows in essentially
the same way using Proposition 4.9(b). O

Note that an immediate consequence of Proposition 5.1(b) is that an irregular
set has a lower density which is strictly less than 1 almost everywhere.

We will sometimes need to relate the densities of a set to those of certain
subsets. Let F be an s-set and let E be a Borel subset of F. Then

HAF B (x) _AAENB,X) HANEN\E)NB,(x)

(2ry @ry @r)
For almost all x in E, we have
H*((F\E)n B,(x)) 0
— asr—0
@2ry

by Proposition 5.1(a), so letting r — 0 gives
D*(F,x)=D*(E,x);  D*F,x)=D*E,x) (5:4)
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for #°5-almost all x in E. Thus, from the definitions of regularity, if E is a subset
of an s-set F with 2#%(E) >0, then E is regular if F is regular and irregular if
F is irregular. In particular, the intersection of a regular and an irregular set,
being a subset of both, has measure zero.

Estimates for lower densities are altogether harder to obtain, and we do not
pursue them here.

In general it is quite hard to show that s-sets of non-integral dimension are
irregular, but in the case 0 <s < 1 the following ‘annulus’ proof is appealing.

Theorem 5.2

Let F be an s-set in R?. Then F is irregular unless s is an integer.

Partial proof. We show that F is irregular if 0 < s < 1 by showing that the density
D(F, x) fails to exist almost everywhere in F. Suppose to the contrary: then there
is a set F, c F of positive measure where the density exists and therefore where
1 <27 <D¥F,x), by Proposition 5.1 (b). By Egoroff’s theorem (see page 16)
we may find r, >0 and a Borel set E < F; c F with #°(E) > 0 such that

HF AB,(x) > L2 (5.5)

for all xeE and r < r,. Let yeE be a cluster point of E (i.e. a point y with other
points of E arbitrarily close). Let n be a number with 0 <7 <1 and let 4, be

Figure 5.2 The "annulus’ proof of Theorem 5.2
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the annulus B, , . (¥\B, _,(y); see figure 5.2. Then
@) TH(F A, ,)=2r)  H(F B, ,,\(¥)— Q) H(FnB,,_, ()

= D¥(F, y (1 +n)* = (1 — n)) (5.6)
as r—0. For a sequence of values of r tending to 0, we may find xeE with
{x —yl=r. Then B, (x) = 4,  so by (5.5)

P < H(FNB,, (X)) SH(FnA,,).
Combining with (5.6) this implies that
27T P S DAFE (L + 0 = (1= 1))
= D*(F, y)(2sn + terms in #* or higher).

Letting #— 0 we see that this is impossible when s <1 and the result follows
by contradiction. O

5.2 Structure of 1-sets

As we have pointed out, sets of non-integral dimension must be irregular. The
situation for sets of integral dimension is more complicated. The following
decomposition theorem, indicated in figure 5.3, enables us to split a 1-set into
a regular and an irregular part, so that we can analyse each separately, and
recombine them without affecting density properties.

Decomposition theorem 5.3

Let F be a I-set. The set of regular points of F forms a regular set, the set of
irregular points forms an irregular set.

-
b
.o PPe. .

XN
oo es o ..

20
. " ®.

Figure 5.3 Decomposition of a 1-set into a regular "curve-like’ part and an irregular "curve-free’ part
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Proof. This is immediate from (5.4), taking E as the set of regular and irregular
points respectively. 0

Examples of regular and irregular 1-sets abound. Smooth curves are regular,
and provide us with the shapes of classical geometry such as the perimeters of
circles or ellipses. On the other hand the iterated construction of figure 0.4 gives
an irreguiar 1-set which is a totally disconnected fractal. This is typical—as we
shall see, regular 1-sets are made up from pieces of curve, whereas irregular
1-sets are dust-like and ‘curve-free’, i.e. intersect any (finite length) curve in
length zero.

To study 1-sets we need a few facts about curves. For our purposes a curve
or Jordan curve C is the image of a continuous injection (one-to-one function)
y:[a,b]— R?, where [a,b] < R is a proper closed interval. According to our
definition, curves are not sell-intersecting, have two ends, and are compact
connected subsets of the plane. The length £ (C) of the curve C is given by
polygonal approximation:

PO =sup 3 1xi—x,_,|
i=1

where the supremum is taken over all dissections of C by points X, X;, .-, Xp
in that order along the curve. If the length £(C) is finite we call C a rectifiable
curve.

As one might expect, the length of a curve equals its 1-dimensional Hausdorff
measure.

Lemma 5.4

If C is a rectifiable curve then #*(C) =%(C).

Proof. For x,yeC, let C,, denote that part of C between x and y. Since
orthogonal projection onto the line through x and y does not increase distances,

(2.9) gives #HC,,)=#"[x,y]=|x—y|, where [x,y] is the straight-line
segment joining x to y. Hence for any dissection xg,X;,...,X,, of C,

Y x—x < Y #UC,,,, )< HC)
i=1 i=1

so that #Z(C) < #°1(C). On the other hand, let f:[0, #(C)] — C be the mapping
that takes ¢ to the point on C at distance t along the curve from one of its ends.
Clearly | f(t) — f(w)| < |t —u| for 0< t,u < L(C), so #1(C) < L(C) by (2.9) as
required.

1t is straightforward to show that rectifiable curves are regular.

Lemma 5.5

A rectifiable curve is a regular 1-set.
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Proof. If C is rectifiable, #(C) < co, and since C has distinct endpoints p and
q, we get £(C)=|p—q|>0. By Lemma 54, 0 < #'(C) < 0, so C is a l-set.

A point x of C that is not an endpoint, divides C into two parts C, . and
C, o If r is sufficiently small, then moving away from x along the curve C, ,
we reach a first point y on C with |x — y| =r. Then C, , c B,(x) and

r=|x—yl<Z(C,,)=#C,,) < H(C, N B,(x)).

Similarly, r < #(C,.nB,(x)), so, adding, 2r < # ' (CnB,(x)), if r is small
enough. Thus

1
DHCx) = tim T LEOBLD
- r—0 2"

By Proposition 5.1(b) DY(C,x) < D¥C,x) < 1, so D(C, x) exists and equals 1
for all xeC other than the two endpoints, so C is regular. |

Other regular sets are easily constructed. By (5.4), subsets of regular sets, and
unions of regular sets should also be regular. With this in mind we define a
1-set to be curve-like if it is contained in a countable union of rectifiable curves.

Proposition 5.6
A curve-like set is a regular 1-set.
Proof. Tf F is curve-like then F < ()2, C; where the C; are rectifiable curves.

For each i and s#'-almost all xeFnC; we have, using Lemma 5.5 and
equation (5.4),

1=DYC;,x)=D'(FnC,x)<D'(F,x)

and hence 1<Q_‘(F,x) for almost all xeF. But for almost all xeF we
have D'(F,x)<D(F,x)<1 so D'(F,x)=1 almost everywhere, and F is
regular. O

It is natural to introduce a complementary definition: a 1-set is called
curve-free if its intersection with every rectifiable curve has # '-measure-zero.

Proposition 5.7
An irregular 1-set is curve-free.

Proof. If F is irregular and C is a rectifiable curve then F n C is a subset of both
a regular and an irregular set, so has zero 5 '-measure. O

These two propositions begin to suggest that regular and irregular sets might
be characterized as curve-like and curve-free respectively. This is indeed the
case, but it is far from easy to prove. The crux of the matter is the following
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lower-density estimate, which depends on an intricate investigation of the
properties of curves and connected sets and some ingenious geometrical
arguments.

Proposition 5.8

Let F be a curve-free 1-set in R%. Then D'(F,x) <} at almost all xeE.
Proof. Omitted. ]

Assuming this proposition, a complete characterization of regular and
irregular sets is relatively easy.

Theorem 5.9

(a) A l-set in R? is irregular if and only if it is curve-free.
(b) A 1-set in R? is regular if and only if it is the union of a curve-like set and a
set of #''-measure zero.

Proof

(a) A curve-free set must be irregular by Proposition 5.8. Proposition 5.7
provides the converse implication.

(b) By Proposition 5.6 a curve-like set is regular, and adding in a set of
measure zero does not affect densities or, therefore, regularity.

If F is regular, then any Borel subset E of positive measure is regular
with D!(E, x) = 1 for almost all xeE. By Proposition 5.8 the set E cannot
be curve-free, so some rectifiable curve intersects E in a set of positive
length. We use this fact to define inductively a sequence of rectifiable
curves {C;}. We choose C, to cover a reasonably large part of F, say

HYFNC,) = isup{s# 1 (FNC):C is rectifiable} > 0.

IfC,,..., C, have been selected and F, = F\| J{_, C; has positive measure,
let C, ., be a rectifiable curve for which

HUF,NCypy) = tsup{o#'(F,n C):C is rectifiable} > 0.  (5.7)

If the process terminates then for some k the curves C,,...,C; cover
almost all of F and F is curve-like. Otherwise,

00>3f1(F)>Z‘7f1(Fkﬁck+1)
*

since the F,nC,,, are disjoint, so that HYUF,nCyi)—0 as k— c0.
If #'(F\J2,C)>0 there is a rectifiable curve C such that
HH(F\ 2, C)nC)=d for some d>0. But HNFnCyyy) <3d for
some k, so, according to (5.7), C would have been selected in preference

77

to C,. . Hence #'(F\| J2,C) =0, and F consists of the curve-like set
Fn|J2, C; together with F\| J;2, C;, which is of measure zero. O

Thus regular 1-sets are essentially unions of subsets of rectifiable curves, but
irregular 1-sets contain no pieces of rectifiable curves at all. This dichotomy is
remarkable in that the definition of regularity is purely in terms of densities
and makes no reference to curves. Propositions 5.6 and 5.8 provide a further
contrast. Almost everywhere, a regular set has lower density 1, whereas an
irregular set has lower density at most 2. Thus in any 1-set F the set of points
for which 2 < D!(F,x) <1 has # '-measure zero.

Regular 1-sets may be connected but, like sets of dimension less than 1,
irregular 1-sets must be totally disconnected. We know at least that distinct
points cannot be joined by a rectifiable curve in an irregular set, and further
investigation shows that no two points can lie in the same connected component.

Further differences between regular and irregular sets include the existence
of tangents (see Section 5.3) and projection properties (see Chapter 6). In all
these ways, the classes of regular and irregular 1-sets are distanced from each
other. For the special case of 1-sets, it would make sense mathematically to
define fractals to be those sets which are irregular.

5.3 Tangents to s-sets

Suppose that a smooth curve C has a tangent (in the classical sense) at x. This
means that close to x the set C is concentrated in two diametrically opposite
directions. What can be said about the directional distribution of an s-set about
a typical point? Is there a meaningful definition of a tangent to an s-set, and when
do such tangents exist?

Any generalization of the definition of tangents should reflect the directional
distribution of sets of positive measure—for sets of the complexity that we have
in mind, there is no hope of a definition involving all nearby points; we must
be content with a condition on almost all points. We say that an s-set F in R" has
a tangent at x in direction 6 (8 a unit vector) if

D*(F,x)>0 (5.8)
and, for every angle ¢ > 0,

lim r *#°(F n (B, (x)\S(x, 0,9))) =0 (5.9)
r—0
where S(x, 8, ¢) is the double sector with vertex x, consisting of those y such
that the line segment [x,y] makes an angle at most ¢ with 8 or — @; see
figure 5.4. Thus, for a tangent, (5.8) requires that a significant part of F lies near
x, of which, by (5.9), a negligible amount lies outside any double sector S(x, 8, ¢);
see figure 5.5.



78

Figure 5.4 The double sector S(x, 8. ¢)

S(x,8,9) 8,(x)

Figure 5.5 For F to have a tangent in direction @ at x, there must be a negligible part of F in
B,(x\S(x. 8. ¢) (shaded) for small r

We first discuss tangents to regular 1-sets in the plane, a situation not far
removed from the classical calculus of curves.

Proposition 5.10

A rectifiable curve C has a tangent at almost all of its points.

Proof. By Lemma 5.5 the upper density DY(C,x) =1 >0 for almost all xeC. We
may reparametrize the defining function of C by arc length, so that
¥ [0, £(C)]— R? gives y(1) as the point distance ¢ along C from the endpoint
¥(0). To say that £(C) < co simply means that ¥ has bounded variation, in
other words sup ¥.7  |W(t;) — ¥(t,_,)| < oo where the supremum is over dis-
sections 0 = t, < t; < --- <t,, = Z£(C). We quote a standard result from the theory

ik

of functions, that functions of bounded variation are differentiable almost
everywhere, so () exists as a vector for almost all ¢. Because of the arc-length
parametrization, |y'(t)] = 1 for such t. Hence at almost all points Y(t) on C,
there exists a unit vector @ such that lim,__ (y/(u) — y(t))/(u — t) = 6. Thus, given
@ > 0, there is a number ¢ > 0 such that y(u)eS(¥(t), 6, ¢) whenever |u —t] <e.
Since C has no double points we may find r such that Y ()¢ B, (1)) if |u — t| > &,
so C(B,((£)\S(¥(t), 8, »)) is empty. By the definition (5.8) and (5.9), the curve
C has a tangent at y(¢). Such points account for almost all points on C. O

Just as with densities, we can transfer tangency properties from curves to
curve-like sets.

Proposition 5.11

A regular 1-set F in R? has a tangent at almost all of its points.

Proof. By definition of regularity, D!(F,x)=1>0 at almost all xeF.
If C is any rectifiable curve, then for almost all x in C there exists @ such
that if ¢ >0

lim r~* #1((F A C) (B, (x)\S(x, 8, ¢)))

r-* o

< lim r 1Y (CAB(N\S(x, 0,9)))=0

by Proposition 5.10. Moreover
lim r~ 1 (F\C) N (B(x)\S(x, 8,9))) < lim r ™! # ' (F\C)n B,(x)) = 0

for almost all xeC by Property 5.1(a). Adding these inequalities
lim r=* #(F A(B,(x)\S(x, 0, 9))) =0

r—+ oo

for almost all xeC and so for almost all xe F nC. Since a countable collection
of such curves covers almost all of F, the result follows. O

In contrast to regular sets, irregular 1-sets do not generally support tangents.
Proposition 5.12
At almost all points of an irregular 1-set, no tangent exists.

Proof. The proof, which depends on the characterization of irregular sets as
curve-free sets, is too involved to include here. O

We turn now to s-sets in R? for non-integral s, which, as we have seen, are
necessarily irregular. For 0 <s<1 tangency questions are not particularly



interesting, since any set contained in a smooth curve will automatically satisfy
(5.9) with 8 the direction of the tangent to the curve at x. For example, the
middle third Cantor set F regarded as a subset of the plane is a (log 2/log 3)-set
that satisfies (5.8) and (5.9) for all x in F and ¢ >0, where @ is a vector
pointing along the set. On the other hand, if F, say, is a Cartesian product of
two uniform Cantor sets, each formed by repeated removal of a proportion
a > 1 from the centre of intervals, then a little calculation (see Chapter 7) shows
that F is an s-set with s = 2log2/log(2/(1 — a)) < 1 with no tangents at any of
its points.

It is at least plausible that s-sets in R? with 1<s<2 do not have
tangents—such sets are so large that they radiate in many directions from a
typical point, so that (5.9) cannot hold. This is made precise in the following
proposition.

Proposition 5.12

IfF is an s-set in R? with 1 < s < 2, then at almost all points of F, no tangent exists.

Proof. For ry >0 let
E={yeF:#FnB,(»)<22ry for all r <ro}. (5.10)

For any xeF, any unit vector 8 and any angle ¢ with 0 <¢ < in, we estimate
how much of E lies in B,(x)S(x, 8, 9). For r <r,/20 and i =1,2,... let A4, be
the intersection of the annulus and the double sector given by

A; = (Biy o ()\Bi_ 1), (x) " S(x, 6, 0).

Then B,(x)nS(x,8,¢)c|)m, 4,0{x} for some integer m<2/¢. Each A;
comprises two parts, both of diameter at most 10r¢ <r,, so applying (5.10) to
the parts that contain points of E, and summing,

H*ENB,(x)nS(x, 0, 0)) < (40~ 1)2(20re)’
so that
@2r)" #5(E A B,(x) " S(x, 8, 9)) < 8.10°¢° ™ (5.11)

if r<ry/20. _
Now, almost all xeE satisfy DS(F\E,x)=0 by Proposition 5.1(a).
Decomposing Fn B,(x) into three parts we get

HS(F A B,(x)) = #°((F\E)nB,(x)) + #*(E N B,(x)nS(x, 6, ¢))
+ H(En(B(x)\S(x, 6,9))).
Dividing by (2r)° and taking upper limits as r —0,
D(F,x)<0+8.10°¢p° "' + lim (2r) > #°5(F ~(B,(x)\S(x, 8, ¢)))
r—0

for almost all xeE, using (5.11). Choosing ¢ sufficiently small, it follows that
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(5.8) and (5.9) cannot both hold for any 8, so no tangent exists at x. To complete
the proof, we note that almost all xeF belong to the set E defined in (5.10) for
some r, > 0, by Proposition 5.1(b). O

The results of this chapter begin to provide a local picture of fractals that
are s-sets. By taking these methods rather further, it is possible to obtain much
more precise estimates of densities and also of the directional distributions of
s-sets about typical points. For example, it may be shown that if s > 1, almost
every line through #*-almost every point of an s-set F intersects F in a set of
dimension s — 1.

Recently, packing measures (see Section 3.4) have been employed in the study
of local properties, and it has been shown that regularity of a set corresponds
closely to the equality of its packing measure and (slightly modified) Hausdorff
measure.

These ideas extend, albeit with considerable effort, to higher dimensions.
Regular s-sets in R" may be defined using densities and, again, s-sets can only
be regular if s is an integer. Regular s-sets have tangents almost everywhere,
and are ‘s-dimensional-surface-like’ in the sense that, except for a subset of
#S-measure zero, they may be covered by a countable collection of Lipschitz
images of subsets of R®.

5.4 Notes and references

This chapter touches the surface of a deep area of mathematics known as
geometric measure theory. It has its origins in the fundamental papers of
Besicovitch (1928, 1938) which contain a remarkably complete analysis of 1-sets
in the plane. The results on s-sets in the plane for non-integral s are due to
Marstrand (1954a). A succession of writers have extended this work to subsets
of higher-dimensional space, culminating in the paper of Priess (1987) which
solved many of the outstanding problems. A more detailed discussion of s-sets
in the plane may be found in Falconer (1985a), see also Federer (1969).

Exercises

5.1 By applying Proposition 5.1 with s=n=2, deduce the Lebesgue density theorem
(5.1).

52 Let f:R— R be a continuously differentiable function such that 0 <¢, < fl(x)<e,
for all x. Show that, if F is an s-set in R, then D*(f(F), f(x)) = D*(F, x) for all x in
R, with a similar result for upper densities.

5.3 Let F be the middle third Cantor set. Show that D*(F,x)<27* for all x, where
s =log2/log 3. Deduce that F is irregular.

5.4 Estimate the upper and lower densities at points of the t-set depicted in figure 0.4
and show that it is irregular.
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5.5

5.6

5.7

5.8

Adapt the proof of Theorem 5.2 to show that if F is an s-set with 0 <s < 1, then
DS(F,x)< (1 +2Y¢" Py~ ! for almost all x.

Construct a regular 1-set that is totally disconnected. (Hint: start with a rectifiable
curve.)

Let E and F be s-sets in R? such that for every disc B,(x) we have that
H(BAx)NE) < H#°(B,(x)n F). Show that s#°(E\F)=0. Need we have Ec F?

Let F,,F,,... be 1-sets in the plane such that F =7 , F; is a 1-set. Show that if
F, is regular for all k then F is regular, and if F, is irregular for all k then F is irregular.

Chapter 6 Projections of fractals

In this chapter we consider the orthogonal projection or ‘shadow’ of fractals
in R" onto lower-dimensional subspaces. A smooth (I-dimensional) curve in
R* generally has a (l-dimensional) curve as its shadow on a plane, but a
(2-dimensional) surface or (3-dimensional) solid object generally has a
2-dimensional shadow, as in the upper part of figure 6.1. We examine
analogues of this for fractals. Intuitively, one would expect a set F in R* to
have plane projections of dimension 2 if dimy F > 2 and of dimension dimy F
if dimyF <2, as in the lower part of figure 6.1. Roughly speaking this is
correct, but a precise formulation of the projection properties requires some
care.

We prove the projection theorems in the simplest case, for projection of
subsets of the plane onto lines, and then state the higher-dimensional
analogues.

6.1 Projections of arbitrary sets

Let L, be the line through the origin of R? that makes an angle § with the
horizontal axis. We denote orthogonal projection onto Ly by proj,, so that if
F is a subset of R?, then proj, F is the projection of F onto L,; see figure 6.2.
Clearly, |projex — proj,v| < |x — y| if x, yeR?, i.e. proj, is a Lipschitz mapping.
Thus

dimy(proje F)} < min {dimy F, 1} 6.1)

for any F and 0, by Corollary 2.4(a). (As proj, F is a subset of the line L,, its
dimension cannot be more than 1.) The interesting question is whether the
opposite inequality is valid. The projection theorems tell us that this is so for
almost all 6e[0, n); that is, the exceptional values of 8 for which inequality
(6.1) is strict form a set of zero length (1-dimensional Lebesgue measure).

Projection theorem 6.1
Let F = R? be a Borel set.
(a) If dimy F < 1 then dimy (proj, F) = dimy F for almost all 8€[0, 7).
(b) If dimy F > 1 then projy F has positive length (as a subset of L) and so
has dimension 1 for almost all 0€[0, ).
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Figure 6.1 Top: projections of classical sets onto a plane—a curve ‘typically’ has projection of
dimension 1, but the surface and cube have projections of dimension 2 and of positive area. Bottom:
projections of fractal sets onto a plane. If dimy /; <1 and dimy £, > 1 then “typically’ the projection
of £, has dimension equal to dim, £, (and zero area) and the projection of £, has dimension 2 and
positive area

Proof. We give a proof that uses the potential theoretic characterization of
Hausdorff dimension in a very effective way. If s<dimF <1 then by
Theorem 4.13(b) there exists a mass distribution u on (a compact subset of) F

with 0 < u(F) < oo and
” dudpy) _ o, 62)
Fdr Ix—yF

For each @ we ‘project’ the mass distribution p onto the line L, to get a mass

(2]
B

[}

Figure 6.2 Projection of a set Fonto a line L,
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distribution p, on proj, F. Thus u, is defined by the requirement that
no([a,b]) = pix:a < x-0<b}

for each interval [a, b], or equivalently,
f f(t)d/te(t)=j f(x-0)dpu(x)
— F

for each non-negative function f. (Here 6 is the unit vector in the direction 6, x
isidentified with its position vector and x- @is the usual scalar product.) Then

J [J j“’ d#a(u)dﬂa(l’):‘de: ”"IZJ du(x)giu(y)]de
lu—of Jo FJplx-@—y-8F

e
Jo FJellx— )’) o

[ fjdu(X)d#(y) 6.3)
vOlT 0 Jrlr |x—yI

for any fixed unit vector t. (Note that the integral of |(x — y)- 8| * with respect
to 6 depends only on |x — y|.) If s < 1 then (6.3) is finite by virtue of (6.2) and that

J"‘ de J‘" do
= < 0
o |70 Jo lcos(t —O)F

J J dpg(u) d pe(v) <o
Fdr  lu—0of

for almost all #[0,n). By Theorem 4.13(a) the existence of such a mass
distribution p, on proj, F implies that dimy (proj, F)>s. This is true for all
s < dimy F, so part (a) of the result follows.

The proof of (b) follows similar lines, though Fourier transforms need to be
introduced to show that the projections have positive length. dJ

Hence

These projection theorems generalize to higher dimensions in the natural
way. Let G,, be the set of k-dimensional subspaces or ‘k-planes through the
origin’ in IR" These subspaces are naturally parametrized by k(n — k) coordinates
(‘generalized direction cosines’) so that we may refer to ‘almost all’ subspaces
in a consistent way in terms of k(n — k)-dimensional Lebesgue measure. We
write projg for orthogonal projection onto the k-plane IL

Theorem 6.2. Higher-dimensional projection theorems.

Let F = R" be a Borel set.
(@) If dimy F < k then dimy(projy F)=dimy F for almost all I1eG,
(b) If dimy F > k then projg F has positive k-dimensional measure and so has
dimension k for almost all I1eG .



Proof. The proof of Theorem 6.1 extends to higher dimensions without
difficulty. 0

Thus if F is a subset of B3, the plane projections of F are, in general, of
dimension min {2, dim, F}. This result has important practical implications. We
can estimate the dimension of an object in space by estimating the dimension
of a photograph taken from a random direction. Provided this is less than 2,
it may be assumed to equal the dimension of the object. Such a reduction can
make dimension estimates of spatial objects tractable—box-counting methods
are difficult to apply in 3 dimensions but can be applied with reasonable success
in the plane.

6.2 Projections of s-sets of integral dimension

If a subset F of R? has Hausdorff dimension exactly 1, then Theorem 6.1 tells
us that the projections of F onto almost every L, have dimension 1. However,
in this critical case, no information is given as to whether these projections
have zero or positive length. In the special case where F is a 1-set, i.e. with
0 < #*(F) < co, an analysis is possible. Recall from Theorem 5.3 that a 1-set
may be decomposed into a regular curve-like part and an irregular curve-free
part. The following two theorems provide another sharp contrast between these
types of set.

Theorem 6.3

Let F be a regular 1-set in R2. Then proj, F has positive length except for at
most one 0€[0, ).

Sketch of proof. By Theorem 5.9(b) it is enough to prove the result if F is a subset
of positive length of a rectifiable curve C. Using the Lebesgue density theorem
to approximate to such an F by short continuous subcurves of C, essentially
all we need to consider is the case when F is itself a rectifiable curve C; joining
distinct points x and y. But clearly, the projection onto L, of such a curve is
an interval of positive length, except possibly for the one value of 6 for which
L, is perpendicular to the straight line through x and y. ]

(In general proj, F will have positive length for all §; there is an exceptional
value of 8 only if F is contained in a set of parallel line segments.)

Theorem 6.4

Let F be an irregular 1-set in R?. Then proj, F has length zero for almost all
[0, m).
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Proof. The proof is complicated, depending on the intricate density and angular
density structure of irregular sets. We omit it! O

These theorems may be combined in several ways.

Corollary 6.5

Let F be a 1-set in R?. If the regular part of F has #'-measure zero, then proj, F
has length zero for almost all 0; otherwise it has positive length for all but at most
one value of 6.

The following characterization of irregular sets is also useful.

Corollary 6.6

A 1-set in R? is irregular if and only if it has projections of zero length in at least
two directions.

Example 6.7
The set F of figure 0.4 is an irregular 1-set.

Calculation. In Example 2.6 we showed that F is a 1-set. It is easy to see that
the projections of F onto lines L, with tanf =3 and tanf = — 2 have zero
length (look at the first few iterations), so F is irregular by Corollary 6.6. O

The results of this section have been stated for sets for which 0 < #'(F) < oo,
which is rather a strong property for 1-dimensional sets to have, although one
which occurs surprisingly often. However, the theorems can be applied rather
more widely. If F is any set that intersects some rectifiable curve in a set of
positive length, so that F contains a regular subset, then proj, F has positive
length for almost all 6. Again, if F is a o-finite irregular set, i.e. one which may
be expressed as a countable union of irregular 1-sets each of finite measure, then
proj, F has zero length for almost all §; this follows by taking countable unions
of the projections of these component 1-sets.

For the record, we state the higher-dimensional analogue of Theorems 6.3
and 6.4, though the proofs are even more complicated than in the plane case.

Theorem 6.8

Let F be a k-set in R", where k is an integer.
(a) If F is regular then projp F has positive k-dimensional measure for almost
all TIeG, .
(b) If F is irregular then projg F has zero k-dimensional measure for almost all
eG,,,.
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6.3 Projections of arbitrary sets of integral dimension

The theorems of the last section, although mathematically elegant and
sophisticated, do not provide a complete answer to the question of whether
projections of plane sets onto lines have zero or positive length. A subset
F of R? of Hausdorff dimension 1 need not be a 1-set or even be of o-finite
#'-measure (i.e. a countable union of sets of finite # '-measure). Moreover
there need not be any dimension function h (see Section 2.5) for which
0 < #"(F) < o0, in which case mathematical analysis is extremely difficult. What
can be said about the projections of such sets? The surprising answer is that,
by working in this rather delicate zone of sets of Hausdorff dimension 1 but of
non-o-finite 3 !-measure, we can construct sets with projections more or less
what we please. For example, there is a set F in R? such that proj, F contains
an interval of length 1 for almost all 8 with 0 < 0 < 47 but with proj, F of length
zero for 1n < 8 < n. More generally, we have the following result which says that
there exist sets for which the projections in almost ali directions are, to
within length zero, anything that we care to prescribe. The measurability
condition in square brackets is included for completeness, but is best ignored
by non-specialists!

£,
///////////////////////// 2

(o)

///// P ///// . //// o //// o o

~ T

Projections
large

Projections
of small
tength

(5}

Figure 6.3 (a) The ‘iterated Venetian blind’ construction. (6} Projections in certain bands of directions
have farge lengths, whilst projections in other bands of directions have very small lengths
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Theorem 6.9

Let G, be a subset of Ly for each 6€[0, n) [such that the set Uo<e<x Go is plane
Lebesque measurable]. Then there exists a Borel set F < R? such that

(a) projs F o G, for all 0, and

(b) length (proj, F\Gg) =0 for almost all 6.
In particular, for almost all 6, the set of points of Lg belonging to either Gq or
proje F, but not both, has zero length.

Idea of proof. Without going into much detail, we indicate the basic building
block for such sets, which has been termed the ‘iterated Venetian blind’
construction. This is shown in figure 6.3. Let E be a line segment of length 4.
Let ¢ be a small angle and k a large number. We replace E by k line segments
of lengths roughly A/k, each at an angle ¢ to E and with endpoints equally
spaced along E to form a new set, E,;. We repeat this process with each segment
of E, to form a set E, consisting of k? line segments all of lengths about Alk?
and at angle 2¢ to E. We continue in this way, to get E,, a set of k" segments
all of lengths about i/k" and at angle re to E. We stop when r is such that re
is, say, about 1z. Comparing the projections of E, with that of the original line
segment E, we see that if 0 <8 <3in then proj, E and projy E, are nearly the
same (since lines perpendicular to L, that cut E also cut E,). However, if
—in<0<0 then proj,E, will have very smail length, since most lines
perpendicular to L, will pass straight between appropriately angled ‘slats’ of
the construction. Thus the projections of E, are very similar to those of E in
certain directions, but are almost negligible in other directions. This idea may
be adapted to obtain sets with projections very close to G, in a narrow band

Shadow that
changes as the
sun moves round
to give different
projections

Figure 6.4 A digital sundial
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of directions but with almost null projections in other directions. Taking unions
of such sets for various small bands of directions gives a set with approximately
the required property. Taking a limit of a sequence of sets which give increasingly
accurate approximations leads to a set with the properties stated. O

This construction may be extended to higher dimensions: there exists
a set F in R" such that almost all projections of F onto k-dimensional subspaces
differ from prescribed sets by zero k-dimensional measure. In particular there
exists a set in 3-dimensional space with almost all of its plane shadows anything
we care to prescribe to within zero area. By specifying the shadows to be the
thickened digits of the time when the sun is shining from a perpendicular
direction, we obtain, at least in theory, a digital sundial; see figure 6.4. As the
sun moves across the sky we get different projections of the set. It is perhaps
better to regard this as providing an intuitive view of the result, rather than as
a feasible method of chronography!

6.4 Notes and references

A geometric proof of the projection theorems for arbitrary subsets of the plane
was given by Marstrand (1954a); the potential theoretic proof was due to
Kaufman (1968). Mattila (1975) obtained various generalizations including
extensions to higher dimensions. The projection results for regular and irregular
1-sets in the plane are, surprisingly, older, dating back to Besicovitch (1939),
with the analogous results for s-sets in R” in the mammoth paper of Federer
(1947). A dual version of Theorem 6.9 was given by Davies (1952) and a direct
proof, with the higher-dimensional generalizations, by Falconer (1986a).

Exercises

6.1 For0 < s< 1, givean example of an s-set F in R? such that proj, F is an s-set for all 0.

62 Let E and F be subsets of R. Show that, for almost all real numbers 4,
dimy(E + AF) = min{1,dimy(E x F)}, where E + AF denotes the set of real numbers
{x+ Ay:xeE, yeF}.

6.3 Let E and F be subsets of R with Hausdorff dimension strictly between 0 and 1.
You are given that the subset E x F of R? has Hausdorff dimension at least
dimy E + dimy F (see Chapter 7). Show that the projections of E x F onto the
coordinate axes are always ‘exceptional’ as far Projection theorem 6.1 is concerned.

6.4 Let F be a connected subset of R? containing more than one point. Show that projs F

has positive length for all except possibly one value of . (Thus the projection
theorems in the plane are only really of interest for sets that are not connected.)

6.5 Show that the conclusions of Theorem 6.4 remain true if F is a countable union of
irregular 1-sets.

6.6 Let E and F be any subsets of R of length (1-dimensional Lebesgue measure) 0.
Show that any rectifiable curve in R? intersects the product E x FinasetoflengthO.

n

6.7 If F is a set and x is a point in R?, the projection of F at x, denoted by proj, F, is
defined as the set of 8 in [0, 2) such that the half-line emanating from x in direction 8
intersects F. Let L be a line. Show that if dimy F < 1 then dimy, proj, F = dimy F for
almost all x on L {in the sense of Lebesgue measure) and if dimy F > 1 then proj, F has
positive length for almost all x on L. (Hint: consider a sphere tangential to the plane
and a transformation that maps a point x on the plane to the point on the sphere
intersected by the line joining x to the centre of the sphere.)



Chapter 7 Products of fractals

One way of constructing ‘new fractals from old’ is by forming Cartesian products.
Indeed, many fractals that occur in practice are products or, at least, are locally
product-like. In this chapter we develop dimension formulae for products.

7.1 Product formulae

Recall that if E is a subset of R" and F is a subset of R™, the Cartesian product,
or just product, E x F is defined as the set of points with first coordinate in E
and second coordinate in F, i€

E x F={(x,y)eR"*™:xeE, yeF}. a.n

Thus if E is a unit interval in R, and F is a unit interval in R2, then E x F is
a unit square in R* (figure 7.1). Again, if F is the middle third Cantor set, then
F x F is the ‘Cantor product’ (figure 7.2) consisting of those points in the plane
with both coordinates in F.

In the first example above it is obvious that

dim (E x F) = dim E + dim F

using the classical defnintion of dimension. This holds more generally, in the
‘smooth’ situation, where E and F are smooth curves, surfaces or
higher-dimensional manifolds. Unfortunately, this equation is not always valid
for ‘fractal’ dimensions. For Hausdorff dimensions the best general result
possible is an inequality dimy(E x F)<dimy E + dimy F. Nevertheless, as we
shall see, in many situations equality does hold.

The proof of the product rule uses the Hausdorff measures on E and F to
define a mass distribution u on E x F. Density bounds on E and F lead to
estimates for p suitable for a mass distribution method.

Proposition 7.1
IfEcR,FcR" are Borel sets with #(E), #*(F) < o, then

HSHE x Fy= cH(E)H(F) (7.2)
where ¢ depends only on s and t.
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Figure 7.1 The Cartesian product of a unit interval in R and a unit interval in R?

Proof. For simplicity we assume that E,F =R, so that E x F < RZ?; the general
proof is almost identical. If either #(E) or #°'(F) is zero, then (7.2) is trivial,
so suppose that E is an s-set and F is a t-set, ie. 0 < #°(E), #'(F) <oo. We
may define a mass distribution p on E x F by utilizing the ‘product measure’
of % and #". Thus if I,J c R, we define u on the ‘rectangle’ I x J by

ul x J)= HENDHFAJ). (7.3)

It may be shown that this defines a mass distribution u on E x F with
H(R?) = H*(E)’'(F).

F.igure 7.2 The product Fx F, where F is the middle third Cantor set. In this case,
dimy F x F=2dimy F=2log 2/log 3
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By the density estimate Proposition 5.1(b) we have that

lim #5(EnB,(x))(2r) < 1 (7.4)

r—0
for #%-almost all xeE and

lim #'(FAB,(y))(2r) ' <1 (7.5)
r-0
for s#*-almost all ye F. (Of course, since we are concerned with subsets of R, B,(x)
is just the interval of length 2r with midpoint x.) From the definition of 4, both
(7.4) and (7.5) hold for p-almost all (x,y) in E x F. Since the disc B,(x,y) is
contained in the square B,(x) x B,(y) we have that

H(B,(x, y)) < (B,(x) x B(y)) = #*(EB,(x))#'(F N B,(y))
SO
HB,(x, 1)) _ #(EQB,(x)) #'(FB(y))
@yt @y @y

It follows, using (7.4) and (7.5), that lim, _, , u(B,(x, y))(2r)"¢*9 < 1 for p-almost
all (x, y)eE x F. By Proposition 4.9(a)

H(E x F)= 2 CPOu(E x F)=2"C*D E)# (F). [

Product formula 7.2
If EcR", F = R"™ are any Borel sets then
dimy(E x F)>dimy E + dimy F. (7.6)

Proof. If s,t are any numbers with s<dimyE and t<dimyF, then
M°(E) = #"'(F) = co. Theorem 4.10 implies that there are Borel sets F, < E and
FocF with 0< 3#%E,), #'(Fo) <oo. By Proposition7.1 #°"(E x F)>
HSYEy x Fo) = cH(Ey)3#'(Fy) > 0. Hence dimy(E x F) = s + t. By choosing
s and t arbitrarily close to dimy E and dimy F, (7.6) follows. O

Proposition 7.1 and Formula 7.2 are in fact valid for arbitrary (non-Borel)
sets.

1t follows immediately from (7.6) that the ‘Cantor product’ F x F, where F
is the middle third Cantor set, has Hausdorff dimension at least 2log2/log3
(see figure 7.2).

In general, inequality (7.6) cannot be reversed; see Example 7.8. However, if,
as often happens, either E or F is ‘reasonably regular’ in the sense of having
equal Hausdorff and upper box dimensions, then we do get equality.

Product formula 7.3
For any sets EcR" and F <« R™
dimy(E x F) < dimyE + dimg F. (7.7
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Proof. For simplicity take E = R and F c R. Choose numbers s > dimy E and

t >dimg F. Then there is a number 6, >0 such that F may be covered by
N,(F)< 67" intervals of length 6 for all 6 <d,. Let {U;} be any é-cover of E
by intervals with 3_;|U;|* < 1. For each i, let U, ; be a cover of F by Ny, (F)
intervals of length |U;|. Then U; x F is covered by N, (F) squares {U; x U, ;}
of side |U;|. Thus E x F = { J;{);(U; x U; ), so that

ff,j;(E x F) SZZ|Ui X Ui,j|s+' <ZN|UiI(F)2&(s+t)|Ui|s+x

i Jj i
< 2%(s+t)z I Uil_tl Uils+t < 2§(s+1).
Hence #°*'(E x F)<oo whenever s>dimyE and t>dimgF, giving
dimy(E x F)<s+1t. ]
Corollary 7.4

If dimy, F = dimg F then
dimy(E x F)=dimy E + dimy F.

Proof. Note that combining Product formulae 7.2 and 7.3 gives

dimy E + dimy F <dimy(E x F) <dimy E +dimgF. 3 (7.8)

It is worth noting that the basic product inequality for upper box dimensions
is opposite to that for Hausdorff dimensions.

Product formula 7.5

For any sets Ec R" and F = R™
dimg(E x F) <dimgE + dimg F. (7.9)

Proof. This is left as an exercise. The idea is just as in Formula 7.3—note
that if E and F can be covered by N4(E) and N,(F) intervals of side §, then
E x F is covered by the N #E)N4(F) squares formed by products of these
intervals. |

Example 7.6. Product with uniform Cantor sets
Let E, F be subsets of R with F a uniform Cantor set (see Example 4.5). Then
dimy(E x F)=dimy E + dimy F.

Calculation. Example 4.5 shows that uniform Cantor sets have equal Hausdorff
and upper box dimensions, so the result follows from Corollary 7.4. [}
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Thus the ‘Cantor product’ of the middle third Cantor set with itself has
dimension exactly 2log 2/log 3. Similarly, if E is a subset of R and F is a straight
line segment, then dimy(E x F) =dimy E + 1.

Many fractals encountered in practice are not actually products, but are
locally product-like. For example, the Hénon attractor (see (13.5)) looks locally
like a product of a line segment and a Cantor-like set F. More precisely, there
are smooth bijections from [0, 1] x F to small neighbourhoods of the attractor.
Such sets may be analysed as the image of a product under a suitable Lipschitz
transformation.

Example 7.7

The ‘Cantor target’ is the plane set given in polar coordinates by
F' = {(r,0):reF,0 < 0 <2n} where F is the middle third Cantor set; see figure 7.3.
Then dimy F' =1 + log 2/log 3.

Calculation. Let f:R? — R? be given by f(x, y) =(xcos y, xsin y). It is easy to see
that f is a Lipschitz mapping and F' = f(F x [0,2n]). Thus
dimy F’ = dimy f(F x [0,27]) < dimy(F x [0,27])
= dimy F + dimy [0, 27] = (log 2/log 3) + 1
by Corollary 2.4(a) and Example 7.6. On the other hand, if we restrict f to

[2,1]1 x[0,n] then f is a bi-Lipschitz function on this domain. Since
F > f((Fn[%,1]) x [0,7]) we have

dimy F’ > dimy f((Fn[3,1]) x [0,7])
=dimy ((Fn[%,1]) x [0,7])
=dimy(Fn [%, 1] + dimyz [0, 7]
=(log2/iog3)+1

Figure 7.3 The ‘Cantor target'—the set swept out by rotating the middle third Cantor set about an
endpoint
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by Corollary 2.4(b) and Example 7.6. This argument requires only minor
modification to show that F’ is an s-set for this value of s. |

The following example demonstrates that we do not in general get equality
in the product formula (7.6) for Hausdorff measures.

Example 7.8
There exist sets E, F — R with dimy E = dimy F =0 and dimy(E x F) > L.

Calculation. Let 0 =my, <m, < --- be a rapidly increasing sequence of integers
satisfying a condition to be specified shortly. Let E consist of those numbers
in [0,1] with a zero in the rth decimal place whenever m, +1<r<m,,, and
k is even, and let F consist of those numbers with zero in the rth decimal place
if m +1<r<m,,, and k is odd. Looking at the first m,, , decimal places for
even k, there is an obvious cover of E by 10/ intervals of length 10~ ™!, where
o =(my —m) + (my —m3) + -+ (m—m_,). Then log10*/—log10~ ™' =
jx/m, 4+, which tends to 0 as k— oo provided that the m, are chosen to increase
sufficiently rapidly. Thus dimy E < dimy E = 0. Similarly dimy F = 0.

If 0 <w <1 then we can write w = x + y where xeE and yeF; just take the
rth decimal digit of w from E if m, + 1 <r<m,,, and k is odd and from F if
k is even. The mapping f:R?— R given by f(x, y)=x+ y is easily seen to be
Lipschitz, so

dimy(E x F) > dimy f(E x F) 2dimy(0,1) =1
by Corollary 2.4(a). 0
A useful generalization of the product formula relates the dimension of a set

to the dimensions of parallel sections. We work in the (x, y)-plane and let L,
denote the line parallel to the y-axis through the point (x,0).

Proposition 7.9

Let F be a Borel subset of R%. If 1 <s<2 then

r #5"Y(F L) dx < #5(F). (7.10)

Proof. Given &> 0, let {U;} be a é-cover of F such that
YU < H5F) +e

Each U, is contained in a square S; of side |U;| with sides parallel to the
coordinate axes.



Let y; be the indicator function of S; (i.e. x;(x, y) =1 if (x, y)€S; and yx(x, y)=0
if (x, y)¢8S,). For each x, the sets {S;nL,} from a J-cover of FnL,, so

#HEOLY< Y ISAL !
= SIUF2Sn L,

= ZIUiI“fof(x, y)dy.

Hence

JW;_I(FﬁLx)dx < Z i Uiis_z JJX;‘(’@ y)dxdy

= Z | Uils
< #5(F) +e.

Since &>0 is arbitrary, [#5 '(FnL,)dx<#5(F). Letting 6—0 gives
(7-10). |

Corollary 7.10

Let F be a Borel subset of R2. Then, for almost all x (in the sense of 1-dimensional
Lebesgue measure), dimy (F N L,) < max {0,dimy F — 1}.

Proof. Take s> dimyF, then #*(F)=0 If s>1, formula (7.10) gives
H#* Y FnLy)=0 and so dimy(FnL,)<s— 1 for almost all x. O

We state, without proof, a further useful generalization.

Proposition 7.11

Let F be any subset of R?, and let E be any subset of the x-axis. Suppose that
there is a constant ¢ such that #(FnL,) = c for all xeE. Then

HSHYF) = beAH(E) (7.11)

where b depends only on s and t.

This result may be phrased in terms of dimensions.

% &
&
o o

x- NN
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./—'

Figure 7.4 Construction of a self-affine set, dim, F=1]

Corollary 7.12

Let F be any subset of R?, and let E be a subset of the x-axis. If dimy(FnL)>1
Jor all xeE, then dimy F 2t + dimy E.

The obvious higher-dimensional analogues of these results are all valid.
The following illustration of Proposition 7.9 is an example of a self-affine set,
a class of sets which will be discussed in detail in Section 9.4.

Example 7.13. A self-affine set

Let F be the set with iterated construction indicated in figure 7.4. (At the kth
stage each rectangle of E, is replaced with an affine copy of the rectangles in E .
Thus the contraction is greater in the ‘y’ direction than in the ‘x’ direction, with
the width to height ratio of the rectangles in E, tending to infinity as k — c0.)
Then dimy F = dimg F = 14.

Calculation. E, consists of 6* rectangles of size 37 x 4% Each of these rectangles
may be covered by at most (4/3) + 1 squares of side 4% by dividing the
rectangles using a series of vertical cuts. Hence E, may be covered by
6" x 2 x 4“ x 37% =2 x 8* squares of diameter 47%./2. In the usual way this
gives dimy F <dimg F < 13.

On the other hand, except for x of the form j3~* where j and k are integers,
we have that E, n L, consists of 2* intervals of length 4 ¥, A standard application
of the mass distribution method shows that #*(E,nL,)>1 for each such x
(Exercise). By Proposition 7.9, #'*(F) > 1. Hence dimy, F = dimy F = 11. |
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7.2 Notes and references

Versions of the product formula date from Besicovitch and Moran (1945). A
very general result, proved using net measures, was given by Marstrand (1954b).

Exercises

7.1 Show that there is a subset F of R? of Hausdorff dimension 2 with projections onto
both coordinate axes of length 0. (Hint: see Exercise 4.7.) Deduce that any 1-set
contained in F is irregular, and that any rectifiable curve intersects F in a set of
length O.

7.2 Derive Product formula 7.5.

7.3 What are the Hausdorff and box dimensions of the plane set {(x, y)eR?:x + yeF
and x — yeF}, where F is the middle third Cantor set?

7.4 Let FcR have equal Hausdorff and upper box dimensions. Let D be the
set {x—y:x,yeF}, known as the difference set of F. Show that dimyD<
min {1,2 dimy F}. (Hint: consider the set F x F)

7.5 Let F be any subset of [0, oc) and let F’ be the ‘target’ in R? given in polar coordinates
by {(r,0):reF,0 < 0 < 2n}. Show that dimy F' =1+ dimy F.

7.6 Find the Hausdorff and box dimensions of the plane set {(x, y):y — x*€F} where F
is the middle third Cantor set.

7.7 Let L, be as in Proposition7.9. Let F be a subset of R? and let
E, = {xeR:dimy(FNL,)>s} for 0<s< 1. Show that dimy F > sup{s + dimy E}.

7.8 Divide the unit square E, into a three column, five row array of rectangles
of sides § and 1, and let E, be a set obtained by choosing some four of the five
rectangles from each column. Let F be the self-affine set formed by repeatedly
replacing rectangles by affine copies of E, (compare Example 7.13). Adapt the method
of Example 7.13 to show that dimy F = 1 4 log4/log5.

7.9 Suppose that the construction of the previous exercise is modified so that E, contains
four rectangles from each of the first and third columns but none from the middle
column. Show that dimy F =1log 2/log 3 -+ log 4/log 5.

Chapter 8 Intersections of fractals

The intersection of two fractals is often a fractal; it is natural to try to relate
the dimension of this intersection to that of the original sets. It is immediately
apparent that we can say almost nothing in the general case. For if F is bounded,
there is a congruent copy F, of F such that dim (F nF,) = dimy F (take F, = F)
and another congruent copy with dimy(FnF,)= (J (take F and F disjoint).
However, if we consider the intersection of F and a congruent copy in a ‘typical’
relative position, then some progress is possible.

To illustrate this, let F be a unit line segment in the plane. If F, is a congruent
copy of F, then F ~n F, can be a line segment, but only in the exceptional situation
when F and F, are collinear. f F and F, cross at an angle, then FNF, is a
single point, but now the set F~F, is also a point for all congruent copies F,
of F close enough to F,. Thus, whilst ‘in general’ F~F, contains at most one
point, this situation occurs ‘frequently’.

We can make this rather more precise. Recall that a rigid motion or direct
congruence transformation o of the plane transforms any set E to a congruent
copy o(E) without reflection. The rigid motions may be parametrized by three
coordinates (x, y, 8) where the origin is transformed to (x, y) and 8 is the angle
of rotation. Such a parametrization provides a natural measure on the space
of rigid motions, with the measure of a set 4 of rigid motions given by the
3-dimensional Lebesgue measure of the (x, y, 8) parametrizing the motions in
A. For example, the set of all rigid motions which map the origin to a point
of the rectangle [1,2] x [0,3] has measure 1 x 3 x 2x.

In the example with F a unit line segment, the set of transformations o for
which Fno(F) is a line segment has measure 0. However, Fna(F) is a single
point for a set of transformations of positive measure, in fact a set of measure 4.

Similar results hold in higher dimensions. ‘Typically’, in R>, two surfaces
intersect in a curve, a surface and a curve intersect in a point and two curves
are disjoint. In R", if smooth manifolds E and F intersect at all, then ‘in general’
they intersect in a submanifold of dimension max {0, dim E + dim F — n}. More
precisely, if dim E + dim F — n > 0 then dim (Eno(F)) =dimE + dim F —nfora
set of rigid motions ¢ of positive measure, and is 0 for almost all other ¢. (Of
course, o is now measured using the in(n + 1) parameters required to specify a
rigid transformation of R".) ~

o “W 101
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Figure 8.1 The intersection of a "dust-like’ set £ with various congruent copies o(F) of a curve F.
We are interested in the dimension of £ o{F) for “typical’ ¢

8.1 Intersection formulae for fractals

Are there analogues of these formulae if E and F are fractals and we use
Hausdorff dimension? In particular, is it true that ‘in general’

dimH(Ena(F))Smax{O,dimHE+dimHF——n} (8.1)
and ‘often’
dimy(Eno(F)) = dimy E +dimy F —n (8.2)

as o ranges over a group G of transformations, such as the group of translations,
congruences or similarities (see figure 8.1)? Of course ‘in general’ means ‘for
almost all o and ‘often’ means ‘for a set of ¢ of positive measure’ with respect
to a natural measure on the transformations in G. Generally, G can be
parametrized by m coordinates in a straightorward way for some integer m and
we can use Lebesgue measure on the parameter space R™.

We obtain upper bounds for dimy(Eno(F)) when F is the group of
translations; these hold automatically for the larger groups of congruences and
similarities. We have already proved (8.1) in the special case in the plane where
one of the sets is a straight line; this is essentially Corollary 7.10. The general
result is easily deduced from this special case. Recall that F + x = {x + y:yeF }
denotes the translation of F by the vector x.

Theorem 8.1
If E, F are Borel subsets of R" then
' dimy (En(F + x)) < max {0,dimy(E x F)—n} (8.3)

for almost all xeR".
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Proof. We prove this when n=1; the proof for n>1 is similar, using a
higher-dimensional analogue of Corollary 7.10. Let L. be the line in the
{x, y)-plane with equation x = y + c. Assuming that dimy(E x F }> 1, it follows
from Corollary 7.10 (rotating the lines through 45° and changing notation
slightly) that

dimy ((E x F)n L) <dimy(E x F)—1 (8.4)

for almost all ceR. But a point (x, x — ¢)e(E x F)n L.ifand onlyif xe EN(F + ).
Thus, for each ¢, the projection onto the x-axis of (E x F)nL, is the set
E(F + ¢). In particular, dimy (E N(F + ¢)) = dimy ((E x F)nL,), so the result
follows from (8.4). O

Theorem 8.1 is some way from (8.1), but examples show that it is the best
that we can hope to achieve, even if the group of translations is replaced by
the group of all rigid motions. Unfortunately, inequality (7.6) is the opposite
to what would be needed to deduce (8.1) from (8.3). Nevertheless, in many
instances, we do have dimy(E x F)=dimyE 4 dimy F; for example, if
dimy F = dimg F; see Corollary 7.4. Under such circumstances we recover (8.1),
with ¢(F) as the translate F + x.

Lower bounds for dimy(E na(F)) of the form (8.2) are rather harder to obtain.
The main known results are contained in the following theorem.

Theorem 8.2

Let E, F = R" be Borel sets, and let G be a group of transformations on R". Then
dimy(Eno(F))zdimy E +dimy F —n (8.5)

for a set of motions ce€G of positive measure in the following cases:

(@) G is the group of similarities and E and F are arbitrary sets

(b) G is the group of rigid motions, E is arbitrary and F is a rectifiable curve,
surface, or manifold.

(¢) G is the group of rigid motions and E and F are arbitrary, with either
dimy E > 3(n+ 1) or dimy F > 3(n+ 1).

« Qutline of proof. The proof uses the potential theoretic methods of Section 4.3.
In many ways, the argument resembles that of Projection theorem 6.1, but
various technical difficulties make it much more complicated.

Briefly, if s < dimy E and ¢ < dimy F, there are mass distributions y on E and
v on F with the energies I,(¢) and I,(v) both finite. If v happened to be absolutely
continuous with respect to n-dimensional Lebesgue measure, i.e. if there were
a function f such that v(4) = [, f(x) dx for each set 4, then it would be natural
to define a mass distribution n, on Eno(F) by ,(4)= jAf(a_l((x))du(x). If
we could show that I ,,_,(n,) < co for almost ail o, Theorem 4.13(a) would
imply that dim(Eno(F)) = s+t —n if 1,(R")>0. Unfortunately, when F is a
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fractal, v is supported by a set of zero n-dimensional volume, so is anything
but absolutely continuous. To get around this difficulty, we can approximate
v by absolutely continuous mass distributions v, supported by the d-parallel
body to F. Then, if vi(A)=[,fsx)dx and na,‘,=§Af5(o’1(x))du(x), we can
estimate I ., .(n,,) and take the limit as 6—0. Simplifying the integral
I .. 4(n, s do isolates a term

Ps(w) = J J vs(y)vs(y +a(w))dydr
GoJR

where integration with respect to ¢ is now over the subgroup G, of F which
fixes the origin. Provided that

@;(w) < constant{w{ ™" (8.6)

for all w and §, it may be shown that (I, .(v,;)do <c<oo, where ¢ is
independent of 6. Letting 6 — 0, the measures 7, , ‘converge’ to measures 7, on
Ena(F), where [I_,,_.(n,)do <c. Thus I, ,(n,) < co for almost all g, so, by
Theorem 4.13(a), dimy(Eno(F))= s+t —n whenever #,(E no(F)) >0, which
happens on a set of positive measure.

It may be shown that (8.6) holds if I,(v) < co in the cases (a), (b) and (c) listed.
This is relatively easy to show for (a) and (b). Case (c) is more awkward; the
only known method uses Fourier transform theory. O

The condition that dimyE or dimy F > 3(n+1) in case (c) is a curious
consequence of the use of Fourier transforms. It is not known whether the
theorem remains valid for the group of congruences if n>2 and
In<dimyE, dimy F <3(n+1).

Example 8.3

Let F =R be the middle third Cantor set. For A, xeR write AF +x={ly+
x:xeF}. Then dimy (F N (F + x)) < 2(log2/log3)— 1 for almost all xeR, and
dimy (F n(AF + x)) = 2(log 2/log 3} — 1 for a set of (x, A)eR? of positive plane
Lebesgue measure.

Calculation. We showed in Example 7.6 that dimy (F x F) = 2(log 2/log 3), so the
stated dimensions follow from Theorems 8.1 and 8.2(a). (]

+8.2 Sets with large intersection

~ We have seen that (8.1) need not always hold; in this section we examine a class
of sets for which it fails dramatically. We construct a large class €° of subsets
of R of Hausdorff dimension at least s with the property that the intersection
of any countable collection of sets in ¢ still has dimension at least s. Sets of
this type occur naturally in number theory; see Section 10.3.
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The class €* is defined in terms of the sums (2.1) used in the definition of
Hausdorff measures. For any subset F of R we define

0

H:S (F)= inf{ Y. (Ul | U, is any cover of F}.
i=1 i=1
Thus % (F) is defined using covers of F without any diameter restriction. This
ensures that 5 (I) is finite if  is a bounded interval, which would not be the
case if we used 5. It is easy to see that stw(Flqu)séffn(Fl)+9f§0(F2)
and that 5 (F,) < H#5 (F,) if Fy < F,.
Recall that lim,_, E,= ()2, Ex is the set of points that belong to
infinitely many E,. Let 0 <s <1 and let [a,b] = R be a proper closed interval.
We say that a subset F of [a,b] is a member of the class €°[a,b] if

k— o
where {E,} is a sequence of subsets of [a,b], such that

(i) Each E, is a finite union of disjoint closed intervals, and
(1) lim,_  #% (INE)=|I} (8.8)

for every bounded closed interval I.

(Of course, we always have #° (InE,) <|I|") We define €°( — oo, o0) by saying
that F is in €% — o0, ) if Fn1€%°[a,b] for every bounded interval [a,b]. The
results below extend easily from ¢°[a, b] to €%(— oo, 00).

As an example of the sets we have in mind, we might take
E, = {x:|x—p/k| < k™? for some integer p}, so that F =lim,_,  E, consists of
the numbers which satisfy the inequality |x — p/k| < k73 for infinitely many
positive integers k. As we shall see, Fe%/*(—~ o0, c0).

Any set in ¥*[a,b] must be dense in [a,b]. For if F is in ¢’[a,b] and I is a
closed interval, then I N E,, contains a closed interval I, if k, is large enough,
by (8.8). Similarly, I, nE,, contains a closed interval I, for some k,>k;.
Proceeding in this way, we get a sequence of closed intervals I, oI, >
with I, c E,_for each r. Thus the non-empty set (=, 1, is contained in infinitely
many E,, so is contained in Fn 1.

By Proposition 3.4 any set in %°[a,b] has box-counting dimension 1. We
now show that these sets have Hausdorff dimension at least s. Moreover the
intersection of any countable collection of sets in €°[a,b] is also in ¥°[a,b]
and so has dimension at least s. Furthermore f(F) is in €°[ f(a), f(b)] i F is
in €*[a,b], for a large class of functions f. The proofs below might well be
omitted on a first reading. We require the following lemma; which extends (8.8)
to unions of closed intervals.

Lemma 8.4

Let {E,} be a sequence of subsets of R such that
lim #% (INE)= I’ (8.9)

k— o0



for every bounded closed interval 1. Then, if A is a bounded set made up of a
finite union of closed intervals,
lim #3 (ANE,) = A3 (A). (8.10)

k=

Proof. Suppose that 4 consists of mdisjoint intervals with minimum separation
d > 0. Given ¢ > 0 we may, using (8.9), choose k, such that if k > k,

H#5 (InE)>(1— eIl (8.11)

whenever |I|>ed and I < A. (Since #°_(E, N 1) varies continuously with I in
the obvious sense, we may find a k, such that (8.11) holds simuitaneously for
all such 1.) To estimate 5 (A E,) let {U,;} be a cover of A n E,. We may assume
that this cover is finite, since AN E, is compact (see Section 2.4) and also that
the U, are closed intervals with endpoints in 4, which are disjoint except possibly
at endpoints. We divide the sets U; into two batches according to whether
|U;| =d or |U,| <d. The set A\U‘U”%U,- consists of disjoint intervals V,,..., ¥,
where r <m, and

A< | UV, (8.12)

Uil zd i
Observe that any U; with |U;| <d is contained in an interval of 4, and so in
one of the V;. For each j the sets U, contained in V; cover V;nE,, so
Y Uz (VnE)>(1 =9IVl

{i:Uic V)

if |V;| = &d, by (8.11). Hence
ZIUiISZ YU+ Y Y Uz Y U+ Y (—glVls (8.13)

Uil zd IVilzed UicV; Uil > vz ed

From (8.12)

H(A Y UL+ 3 W+ 3 VIS Y WUF+ Y Vil +(edT.
Ud=d Wilzed IVjl<ed Ui =d IVl Zed

Combining with (8.13) we see that
H (A< =) P YU + (edfm

for any cover {U,} of AnE,. Thus
HE (A< (1 —&) ' A (ANEL) + (ed)’m
if k = k,, which implies (8.10). O

Proposition 8.5

If Fe¥°[a,b] then #°(F)> 0, and in particular dimy F > 5.

Proof. For simplicity of notation assume that [a,b}=[0,1]. Suppose
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imy. E,cFc {J: U; where the U; are open sets. Taking I =[0, 1] in (8.8) we
may find a number k, such that #* (E,,)> 3. Since E,, is a finite union of
closed intervals, Lemma 8.4 implies that there is a number k, >k, such that
HS (Ey, N E,) > %. Proceeding in this way, we get a sequence ky <k,<---such
that # (E,,n---nE,)>1 for all r. We have (|2, E, =Fc|);U; since
E;,n---nE,_is a decreasing sequence of compact (i.e. closed and bounded) sets
and | J,U; is open, there is an integer 7 such that E; 0 -0 E, < {J:U;. It follows
that Y;|U;|* > # (E,, n---nE,)>3 for any cover of F by open sets, so
H¥F)z3 O

Proposition 8.6
Let F;e¢*[a,b] for j=1,2,.... Then (2, F;e%°[a,b].

j=1

Proof. For each j there is a sequence of sets E;,, each a finite union of closed
intervals, such that F;>lim,, E;,, where lim, ., #%5 (INE;,) = #7(I) for
every interval I. By Lemma 8.4

lim o (ANE;,)=#"(A) (8.14)

k— oo
for any finite union of closed intervals A. There are countably many intervals
[c,d] < [a,b] with ¢ and d both rational: let I,,1,,... be an enumeration of all
such intervals.

For each r we define a set G, as follows. Using (8.14) we may choose k, =r
large enough to make
A (LN Ey )> A5 ,) — Vr

simultaneously for m = 1,...,r. Using (8.14) again, taking A = I,,n E, ;,, we may
find k, > r such that

HE (I E; 4 VEg ) > A% (1) —1/r

for m=1,...,r. Continuing in this way, we get kq,...,k, = r such that

%;(Imn N E,-,k}_) >H5 (L) — Ur (8.15)
i=1
for allm=1,...,r. For each r, let G, be the finite union of closed intervals
G.=[) E;,. (8.16)
ji=1

Let I < [a,b] be any closed interval. Given ¢ > 0, there is an interval I, <1
such that 5 (I,)>#5 (I)—¢/2. If r=m and r>2/e, (8.15) gives that
HS(UNG) =25 (I,nG)>H5 (1) — 1/r> A (I)—¢, s0

lim #° (InG,) = #° (I).

r—o

Let j be any positive integer. If 7 > j and xeG, then x€E, , by (8.16). Thus if
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xelim, , _ G,, then xeE;, for infinitely many kj, so xelim, E;, = F; Hence
lim, G, < F;for each j, so (|2, F,e¥[a,b]. [

Corollary 8.7
Let Fie€*[a,b] for j=1,2,.... Then dimy (2 F; = s.

Proof. This is immediate from Propositions 8.5 and 8.6. |

Clearly, if F 1s in €°(— oo, o0) then so is the translate F + x. Hence, given
a set F in 6°(— o0,0) and a sequence of numbers x,,x,,..., we have
2 (F + x;) a member of €*(— o0, 0), so that this intersection has dimension
atleast s. The same idea may be applied using more general transformations of F.

Proposition 8.8

Let f:[a,b] — R be a mapping with a continuous derivative such that | f'(x)| > ¢
Jor some constant ¢ > 0. If Fe¥*[a,b], then f(F)e¥°[f(a), f(b)]

Proof. This may be proved in the same sort of way as Proposition 8.4. We omit
the (rather tedious) details. O

In a typical ¢° set the E, are made up of intervals which have lengths and
spacings tending to 0 as k— oo.

Example 8.9

Fix o> 2. Let E, = {x:|x — p/k| < k™% for some integer p}, so that E, is a union

of equally spaced intervals of length 2k™* Then F =lim,_ , E, is a member of
&*(— o0, 00) for all s < 1/a.

Proof. Take 0 <5 < 1/x and a bounded closed interval I. We must show that

lim 5 (InE,) =11}~ (8.17)

k=0
The interval I contains m complete intervals of E,, each of length 2k % where
m = k|I| — 2. Let u be the mass distribution on I~ E, obtained by distributing
a mass 1/m uniformly across each complete interval of E, contained in I. To
estimate ¢ (I E,), let U be a set in a covering of I " E,; we may assume that
U is a closed interval and that the ends of U are points of InE,. Then U
intersects at most k|U| + 2 intervals of InE,. If 1/2k <|U| < |I| then

pU) < k|UL+2)/m < (k|U|+ k| -2 < (U] + 2" YA =2k
SIUPIUI ™+ 2k U™/ - 2k7Y)

109
S|UPQUP =S+ 22 e~ YT — 2k 1)
<‘U15(IU|1—SII|5—1+2s+lks—-1|1|s—1)
S (1—2k71117Y)
5 s+1ps—1 s—1
[UPA+2°7 K I 7). 8.18)

T (1 =2k YIY

If k is large enough and |U| < 2k, then U can intersect just one interval of E,
so |U| < 2k™? since the endpoints of U are in E,. A mass of 1/m is distributed
evenly across this interval of length 2k™% so

p(O)<S|U |2k m < |UPFU 2k~ m < |U Pk ™)' =52k~ *(k|1| - 2)
<|UP27sk=" /(1) — 2k~ 1) (8.19)
With I and ¢ > 0 given, then, provided k is sufficiently large,
pU) <A +UP/iIPe
for all covering intervals U, using (8.18) and (8.19). Hence if InE, = | J;U; then
l=plnE)<ymU)<(l+ s)|1|—s;|u,.|s

so #° (INE) =111+ ¢), from which (8.17) follows. O

In this example, F belongs to ¥*(— oo, ) if s < 1/a, so dimy F > 1/a, by
Proposition 8.5. Moreover, it is clear that the translate F + x is in €(— oo, 00)
for any real number x, so by Proposition 8.6 ﬂ 2 (F +x;) belongs to
@*(— o0, o) for any countable set x,, X,, ..., implying that dimy ()2, (F + x)) >
1/o. More generally, f(F) is in €“(— oo, o) for all ‘reasonable’ functions f by
Proposition 8.8, and this generates a large stock of @° sets, countable
intersections of which also have dimension at least 1/o.

In Section 10.3 we shall indicate how Example 8.9 may be improved to give
F in %(— ,) for all s<2/a, with corresponding consequences for
dimensions.

8.3 Notes and references

The study of intersections of sets as they are moved relative to one another is
part of the subject known as integral geometry. An full account in the classical
setting is given by Santal6 (1976). The main references for the fractal intersection
formulae of Section 8.1 are Kahane (1986) and Mattila (1984, 1985). There are
several definitions of classes of sets with large intersections such as those given
by Baker and Schmidt (1970), Falconer (1958b) and Dodson, Rynne and Vickers

(to appear).
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Exercises

8.1

8.2

83

8.4

85

8.6

87

Let E and F be rectifiable curves in R? and let ¢ be a rigid motion. Prove Poincaré’s
formula of classical integral geometry

4 x length(E)length(F) = J(number of points in (Eno(F)))de

where integration is with respect to the natural measure on the set of rigid motions.
(Hint: show this first when E and F are line segments, then for polygons, and obtain
the general result by approximation.)

Show that if a curve C bounds a (compact) convex set in the plane, then the length
of C is given by

1 2n
EJ length(proj, C) d0.

8=0
(Hint: take E as C and F as a long line segment in the result of Exercise 8.1.)

In the plane, let E be the product of two middle third Cantor sets and let F be (i)
a circle and (ii) the von Koch curve. In each case, what can be said about the Hausdorff
dimension of Eno(F) for congruence transformations ¢?

Show that the conclusion of Theorem 8.1 may be strengthened to give that En(F + x)
is empty for almost all x if dimy(E x F) <n.

By taking E as a suitable set dense in a region of R? and F as a unit line segment,
show that (8.5) fails if Hausdorff dimension is replaced by box dimensions, even for
the group of similarities.

Let 1 <s<?2. Construct a plane s-set F in the unit disc B such that if E is any
straight line segment of length 2 that intersects the interior of B then EnF is
an (s — 1)-set.

Let E, be the set of real numbers with base-3 expansion m-a,a,--- such that g, =0
or 2. Show that F =lim, , _ E, is in class €*(— o0, oo} for alt 0 <s < 1. (Note that F
is the set of numbers with infinitely many base-3 digits different from 1.) Deduce
that dimy F=1 and that dimu([}2,(F+x;))=1 for any countable sequence
X1y Xg5e .-

Part I

APPLICATIONS
AND EXAMPLES



Chapter 9 Fractals defined by
transformations—self-similar
and self-affine sets

9.1 Iterated function schemes

We begin this chapter by describing a general construction for fractals, of which
the Cantor set, von Koch curve and other standard examples are special cases.

Many fractals are made up of parts which are, in some way, similar to the
whole. For example, the middle third Cantor set is the union of two similar
copies of itself, and the von Koch curve is made up of four similar copies. These
self-similarities are not only properties of the fractals, they may actually be used
to define them-—an approach which is often extremely useful.

Let D be a closed subset of R". A mapping S:D — D is called a contraction
on D if there is a number ¢ with 0 < ¢ < 1 such that | S(x) — S(»)} < ¢|x — y| for all
x,y in D. Clearly any contraction is a continuous mapping. If equality holds,
ie. if [S(x)— S(»)] = c|x — y|, then § transforms sets into geometrically similar
ones, and we call S a similarity.

Let S,,...,S, be contractions. We call a subset F of D invariant for the
transformations §; if

S,(F). ©.1)

Cs

F =

1

1

As we shall see, such invariant sets are often fractals.

This is most easily illustrated when F is the middle third Cantor set. Let
S1,8;:R—R be given by S,(x) = 3x; S,(x) =1x +%. Then S,(F) and S,(F) are
just the left and right ‘halves’ of F, so that F = S (F)U S,(F). Thus F is invariant
for the mappings S, and S,, the two mappings which represent the fundamental
self-similarities of the Cantor set.

We show that families of contractions, or iterated function schemes as they
are sometimes known, define unique (non-empty) compact invariant sets. This
means, for example, that the middle third Cantor set is completely specified as
the compact invariant set of the mappings S, and §, given above.

We define a metric or distance between subsets of D. Let & denote the class
of all non-empty compact subsets of D. Recall that the é-parallel body of Ae ¥
is the set of points within distance J of 4, ie. A;={xeD:|x —a| < é for some

13
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Figure 9.1 The Hausdorff distance between the sets A and B is the least 6> 0 such that the
S-parallel body A, of A contains B and the 5-parallel body B; of B contains A

acA}. We make # into a metric space by defining the distance d(4, B) between
two sets 4, B to be the least & such that the -parallel body of 4 contains B
and vice-versa:

d(A,B)=inf{5:4 < B; and B c A} 9.2)

(see figure 9.1). A simple check shows that d is a metric or distance function,
known as the Hausdorff metric on &. Thus (i) d(4, B) = 0, with equality if and
only if A= B, (i) d(A4, B)=d(B, A), and (iii) d(4, B)< d(4, C) + d(C, B) for any
A,B and C in &. In particular, if d(A, B) is small then, in one sense, 4 and B
are close to each other.

Theorem 9.1
Let S,,...,S, be contractions on D c R" so that
[S:(x) - Siy)| < il x — (x,yeD)

with ¢; < 1 for each i. Then there exists a unique non-empty compact set F that
is invariant for the S,, i.e. which satisfies

F=1) S{F).

Moreover, if we define a transformation S on the class & of non-empty compact
sets by

S(B)= () 4E) ©3)

and write S* for the kth iterate of S given by S°(E) = E, SYE)= S(S*~(E)) for
k=1, then

F=() $® 94)
k=1

for any set E in & such that S(E) < E for each i.
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Proof. Note that sets in & are transformed by S into other sets in &. Let E be
any set in & such that S(E) < E for all i; for example D " B,(0) will do, provided
that r is sufficiently large. Then SXE) < S !(E) so that S¥E) is a decreasing
sequence of non-empty compact sets, which necessarily have non-empty compact
intersection F = ()=, SXE). Since SX(E) is a decreasing sequence, it follows that
S(F)=F, so F is invariant.

To show that the invariant set is unique, note that if 4, Be& then

d(S(A4), S(B)) = d( 0 Si(4), U S.-(B)> < max d(S{4),5,(B))
i=1 i=1 1<i€m
(since if & is such that the §-parallel body (S{A4)), contains S{B) for each i, then
(L™, S{A)); contains | J7_, S{B)). Thus

d(S(A),S(B)) < ( max ci>d(A, B). (9.5)
1<i€<m

It follows that if S(4) = 4 and S(B) = B are both invariant sets, then d(A,B)=0,

which implies that 4 = B. O

In fact, the sequence of iterates SX(E) converges to F for any initial set E in
&, in the sense that d(S%E),F)—0. This follows since (9.5) implies that
d(S(E), F) = d(S(E), S(F)) < cd(E, F), so that d(SYE), F) < c*d(E,F) where c¢=
max, ¢;<,¢: < 1. Thus the S*(E) provide increasingly good approximations to F.
(If F is a fractal these approximations are sometimes called pre-fractals for F.)

5,(5,(E)

5,(S,(EN
S, (S, (EN

5, (5,(E)

Figure 9.2 Construction of the invariant set £ for transformations S, and S, which map the large
ellipse F onto the ellipses S)(£) and Sy{£). The sets SHE) = U,,=,,28Ao ---0 8;(E) give increasingly
good approximations to F
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For each k
SHE) = 8,0 oS, (B) = U S50+~ (5u(B)) 9.6)

where the union is over the set J, of all k-term sequences (i,,...,5) with1 <i; <m;
see figure 9.2. (Recall that S; o---°S, denotes the composition of mappings, so
that (S;,0-++08;,)(x) = 8;,(Si, (- (8, (x))-)).) If S{E) is contained in E for each
i and x is a point of F, it follows from (9.4) that there is a (not necessarily
unique) sequence (iy, i, ...) such that xeS; c---°S; (E) for all k. Thus

F = U {xl'x.iz.,..}
where .
Xivin = () Siyo--oS,(E). 9.7)
k=1

This expression for x;
in E for all i.

Notice that if the union in (9.1) is disjoint then F must be totally disconnected,
since if x, , #x;, we may find k such that (iy,...,5) # (i},...,§) so that
the disjoint closed sets S; °---S,(F)and §; o---° S (F)disconnect the two points.

Again this may be illustrated by S,(x) = }x, S,(x) = $x + % and F the Cantor
set. If E=[0,1] then SXE)=E,, the set of 2 basic intervals of length 37*
obtained at the kth stage of the usual Cantor set construction; see figure 0.1.
Moreover, x, ;. _is the point of the Cantor set with base-3 expansion 0-a,a,. ..,
where q, =0 if i, = 1 and a, = 2 if i, = 2. The pre-fractals S%(E) provide the usual
construction of many fractals for a suitably chosen initial set E; the §; ©---° S, (E)

are called the basic sets of the construction.

.. is independent of E provided that S{(E) is contained

iz

5,(£)

'3 (5)

Figure 9.3 Two ways of computer drawing the fractal F, invariant under the three affine
transformations S, S, and S, which map the square onto the rectangles. In method (a) the 3%
paralielograms S;(S,(---(S;{£))---}) for /;=1,2,3 are drawn (k=6 here). In method {b), the
sequence of points x, is plotted by choosing S, at random from S,. S, and S for successive k and
letting x, = S, {x,—1)
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This theory provides us with two methods for computer drawing of invariant
sets in the plane, as indicated in figure 9.3. For the first method, take any initial
set E (such as a square) and draw the kth approximation S*(E) to F given by (9.6)
for a suitable value of k. The set S¥(E) is made up of m* small sets—either these
can be drawn in full, or a representative point of each can be plotted. If E can
be chosen as a line segment in such a way that S,(E),..., S,(E) join up to form
a polyvgonal curve with endpoints the same as those of E, then the sequence of
polygonal curves S¥(E) provides increasingly good approximations to the fractal
curve F. Taking E as the initial interval in the von Koch curve construction is
an example of this, with SE) just the kth step of the construction (E, in
figure 0.2). Careful recursive programming is helpful when using this method.

For the second method, take x, as any initial point, select a contraction S;,
from S,,...,S,, at random, and let x, = S; (x,). Continue in this way, choosing
S, from S,...,S,, at random (with equal probability) and letting x, = S (xx-1)
for k=1,2,... For large enough k, the points x, will be indistinguishably close
to F, with x, close to S, °---°S; (F), so the sequence {x,} will appear randomly
distributed across F. A plot of the sequence {x,} from, say, the hundredth term
onwards may give a good impression of F.

9.2 Dimensions of self-similar sets

One of the advantages of using an iterated function scheme is that the
dimension of the invariant set is often relatively easy to calculate or estimate in
terms of the defining contractions. In this section we discuss the case where
S1,...,S:R"— R" are similarities, i.e. with

[S1x) — Sy = cilx — ¥ (x,yeR") (9.8)

where 0 < ¢; < 1 (c; is called the ratio of S;). Thus each §; transforms subsets of
R" into geometrically similar sets. A set that is invariant under such a collection
of similarities is called a (strictly)-self-similar set, being a union of a number of
smaller similar copies of itself. Standard examples include the middle third
Cantor set, the Sierpinski gasket and the von Koch curve, see figures 0.1-0.5.
We show that, under certain conditions, a self-similar set F has Hausdorff and
box dimensions equal to the value of s satisfying

=1 9.9)

N

1

i

13

and further that F has positive and finite s#*-measure. A calculation similar to
the ‘heuristic calculation’ of Example 2.7 indicates that the value given by (9.9)

is at least plausible. If F = | /™, S{F) with the union ‘nearly disjoint’, we have
that
HF)=Yy HS{F))= ), c;H#(F) (9.10)
i=1 i=1



118

using (9.8) and Scaling property 2.1. On the assumption that 0 < #(F) < co at
the ‘jump’ value, s = dimy F, we get that s satisfies (9.9).

For this argument to give the right answer, we require a condition that ensures
that the components S{F) of F do no overlap ‘too much’. We say that the S;
satisfy the open set condition if there exists a non-empty bounded open set V
such that

va () s ©.11)

with the union disjoint. (In the middle third Cantor set example, the open set
condition holds for S, and S, with ¥ as the open interval (0, 1).) We show that,
provided that the S; satisfy the open set condition, the Hausdorff dimension of
the invariant set is given by (9.9).

We require the following geometrical result.

Lemma 9.2

Let {V;} be a collection of disjoint open subsets of R" such that each V; contains
a ball of radius a,r and is contained in a ball of radius a,r. Then any ball B of
radius r intersects at most (1 + 2a,)"a; " of the closures V.

Proof. If V, meets B, then ¥ is contained in the ball concentric with B of radius
(1 + 2a,)r. Suppose that g of the sets ¥, intersect B. Then, summing the volumes
of the corresponding interior balls of radii a,r, it follows that g(a;r)" <
(1 + 2a,)"r", giving the stated bound for g. 0

The derivation of the lower bound in the following theorem is a little awkward.
The reader may find it helpful to follow through the proof with the middle
third Cantor set in mind, or by referring to the ‘general example’ of figure 9.2.
Alternatively, the proof of Proposition 9.7 covers the case when the sets
S,(F),...,S,(F) are disjoint, and is rather simpler.

Theorem 9.3

Suppose that the open set condition (9.11) holds for the similarities S; on R" with
ratios c(1 <i<m). If F is the invariant set satisfying

F =

s

S{F) ©.12)

i=1

then dimy F = dimg F = s, where s is given by

M=

=1 9.13)

i=1

Moreover, for this value of s, 0 < H#°(F) < c0.
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Proof. Let s satisfy (9.13). For any set A we write A, , =S§;°---°S,(A). Let

ik

J, denote the set of all k-term sequences (iy,...,i) with 1 <i;<m. It follows,
by using (9.12) repeatedly, that

We check that these covers of F provide a suitable upper estimate for the
Hausdorff measure. Since the mapping S;,°---°S,, is a similarity of ratio ¢;, -~ ¢;,
then

by (9.13). For any & > 0, we may choose k such that |F
so J#%5(F) <|F|* and hence #*(F) <|F|".

The lower bound is more awkward. Let I be the set of all infinite sequences
I={(iyis.. ) 1<i;<m}, and let I, ., ={(1... i qysp--): 1 <q;<m} be
the ‘cylinder’ consisting of those sequences in I with initial terms (iy,.. ., i,). We
may put a mass distribution g on I such that u(l, .)=(c;---c,)" Since
(Ci, oy =T (ci, e el =270 pll;, i) it follows that p
is indeed a mass distribution on subsets of I with u(I)= 1. We may transfer
to a mass distribution /i on F in a natural way by defining ji(4) = w{liy, iy, .):
X; ;. €A} for subsets 4 of F. (Recall that x; ;= N Fi,. 5 It is easily
checked that i(F)=1.

We show that ji satisfies the conditions of the Mass distribution principle
42. Let V be the open set of (9.11). Since ¥ = S(V) = |7, S(¥), the decreasing
sequence of iterates S¥(V) converges to F; see (9.4). In particular Vo F and
V. . ..>F, ., for each finite sequence (is,..., ). Let B be any ball of radius
r<1. We estimate fi(B) by considering the sets V, ., with diameters
comparable with that of B and with closures intersecting Fn B.

We curtail each infinite sequence (i, i,,...)el after the first term i, for

which

o) <(max;c) <6,

<min c,-)rScilciz---ci,‘Sr 9-15)

1

and let Q denote the finite set of all (finite) sequences obtained in this way. Then
for every infinite sequence (i;,i,,...)€l there is exactly one value of k with
@iy,...,i)eQ. Since Vi,..., V,, are disjoint, soare V, . ,,...,V, ., . foreach
(iy,...,iy). Using this in a nested way, it follows that the collection of open sets
(V. _.iiy,...,i)eQ} is disjoint. Similarly F < | JoF,, ., = UoViiar

We choose a, and a, so that V contains a ball of radius a, and is contained
in a ball of radius a,. Then, for (i,...,i)€Q, the set ¥; . contains a ball of

radius c;, ---¢; a, and therefore one of radius (min, ¢))a,r, and is contained in a
ball of radius ¢;, ---¢;,a, and hence in a ball of radius a,r. Let @, denote those
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sequences (i, ...,i) in Q such that B intersects ¥, .. By Lemma 9.2 there
are at most g = (1 + 2a,)"a; "(min; ¢;) " sequences in Q. Then

J(B) = l(F nB) < p{(issin,. )%, 4,

since, if xihiz,meFchUQlI—/’.l _____ . then there is an integer k such that
(iss---,i)EQ,. Thus
aB) <Y uly, .)
Qi

= Z(Ci,'“cik)ss Z"Ssrsq
23} Q.

using (9.15). Since any set U is contained in a ball of radius |U|, we have
(U) < |U|*q, so the Mass distribution principle 4.2 gives HF)=q *>0,and
dimy F =s.

If Q is any set of infinite sequences such that for every (i, i,,...)€l there is
exactly one integer k with (i,...,i,)€Q, it follows inductively from (9.13) that
Yolcic,--c,. = 1. Thus, if Q is chosen as in (9.15), Q contains at most
(min;c) *r~* sequences. For each sequence (i;,...,i) in @ we have
Vi, al=c e |VI<riV], so F may be covered by (min;c)™"r ™" sets of
diameter r| V| for each r < 1. It follows from Equivalent definition 3.1(iv) that
dimg F < s5; since the Hausdorfl dimension is also s, this completes the proof.

O

If the open set condition is not assumed in Theorem 9.3, it may be shown
that we still have dimy F = dimg F though this value may be less than s.
Theorem 9.3 enables us to find the dimension of many self-similar fractals.

Example 9.4 Sierpinski gasket

The Sierpinski gasket F is constructed from an equilateral triangle by repeatedly
removing inverted equilateral triangles; see figure 0.3. Then dimy F = dimg F =
log 3/log 2.

Calculation. The gasket F is the invariant set under the three obvious similarities
of ratios § which map the triangle E, onto the triangles of E,. The open set
condition holds, taking V as the interior of E,. Thus, by Theorem 9.3,
dim, F = dimg F = log 3/log 2, which is the solution of 3} (3’ = 1. O

The next example involves similarity transformations of more than one ratio.

Example 9.5 Modified von Koch curve.

Fix 0<a<?} and construct a curve F by repeatedly replacing the middle
proportion a of each interval by the other two sides of an equilateral triangle; see
figure 9.4. Then dimy F =dimg F is the solution of 2a° + 23(1—a) =1
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£,
4
Figure 9.4 Construction of a modified von Koch curve—see Example 9.5 (£, is a generator for the
curve)

Generator

— e
£,

E,=F

Figure 9.5 Stages in the construction of a fractal curve from a generator. The lengths of the segments

in the generatorare 1,1, 1,11 and the Hausdorff and box dimensions of Fare given by 3(})° + 2(3)° =1

or s=1.34
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Figure 9.6 A fractal curve and its generator. The Hausdorff and box dimensions of the curve are
equal to log8/log4 =1}

Calculation. The curve F is invariant under the similarities that map the unit
interval onto each of the four intervals in E,. The open set condition holds,
taking V as an isosceles triangle of base length 1 and height ./3, so Theorem 9.3
gives the dimension stated. O

There is a convenient method of specifying certain self-similar sets
diagramatically, in particular self-similar curves such as Example 9.5. A
generator consists of a number of straight line segments and two points specially
identified. We associate with each line segment the similarity that maps the two
special points onto the endpoints of the segment. A sequence of sets
approximating to the self-similar invariant set may be built up by iterating the

Figure 9.7 A tree-like fractal and its generator. The Hausdorff and box dimensions are equal to
log 5/log 3 = 1.465
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process of replacing each line segment by a similar copy of the generator; see
figures 9.5-9.7 for some examples. Note that the similarities are defined by the
generator only to within a reflection, but the orientation may be specified by
displaying the first step of the construction.

9.3 Some variations

The calculations underlying Theorem 9.3 may be adapted to estimate the

dimension of the invariant set F of a collettion of contractions that are not

similarities.

Proposition 9.6

Let §,,...,S,, be contractions on a closed subset D of R" such that
IS:i(x) — Sy < cilx — yl (x, yeD)

with ¢; < 1 for each i. Then dimy F < s and dimg F < s, where >hieg=1

1

Proof. These estimates are essentially those of the first and last paragraphs
of the proof of Theorem 9.3, noting that we have the inequality |4, . |<
¢, €, | Al for any set A, rather than equality. [

We next obtain a lower bound for dimension in the case where the components
S;(F) of F are disjoint, in which case F must be totally disconnected. Note that
this will certainly be the case if there is some compact set E with S(E) < E for
all i and with the S,(E) disjoint.

Proposition 9.7
Let S,,...,S,, be contractions on a closed subset D of R such that
bilx — y| <|84x) — S:(»)] (x,yeD) (5.16)

with 0 < b; < 1 for each i. Suppose that F is invariant for the S,
F={) S«F), (9.17)
i=1
with this union disjoint. Then dimy F = s where

S b= 1. (9.18)
=1 ¢

Proof Let d >0 be the minimum distance between any pair of the disjoint
compact sets S,(F),...,S,(F), ie. d=min,,;inf{|x — y|:xeS(F),yeS;(F)}.
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Let Fi,,... 3 =Si,°"'°

Z pF;, D= Z (b;, -+~ by, b)Y
i=1 i=1

= (b, b )= #(Fil ik)

.....

k
= #(gl Fil ..... ik,i>

it follows that y is a mass distribution on F with u(F)=1.
If xeF, there is a unique infinite sequence i,,i,,... such that xeF, . for
each k. For 0 <r <d let k be the least integer such that

b b d<r<b b, _d

t k L3 -1

S:.(F) and define p by u(F; )= (bi,---by). Since

If i,...,5 is distinct from i,...,5, the sets F; . and Fy . are disjoint and
separated by a gap of at least bll by, d>r. (To see thls note that if j is the
least integer such that i;#i; then F,.., < F; and F; ,.;‘ c F, are separated by

d, so F, and F; are separated by at “least bll - d) It follows that

. -
..... i A4

,,,,,,

WF OB (x) < pF,, ) =(b; b, ) <d™°r

.....

If U intersects F, then U < B,(x)for some xe F withr = |U|. Thus u(U) <d *|U[’,
so by the Mass distribution principle 4.2 #(F)>0 and dimy F > s. O

Example 9.8 ‘Non-linear’ Cantor set

Let D=[(1+/3), (1 +/3)1 and let S1,5,:D > D be given by S, (x) = 1 + 1/x,

S,(x)=2+1/x. Then0.44 < dimy F < dimy F < dimg F < 0.66 where F is the
invariant set for S; and S,. (This example arises in connection with number theory;
see Section 10.2.)

Calculation. We note that Sy(D)=[4(1 +./3), /3] and 5,(D)=[i(3 +./3),
1+ f ] so we can use Propositions 9.6 and 9.7 to estimate dimy F. By the
mean-value theorem, if x # yeD, then (S{(x)— Si{(»))/(x — y) = Si(c,) for some
c;eD, for i=1,2. Thus for i=1,2.

Six)— S;
inf | S}(x)| < 1569 = SN  sup 8701
xeD |x a4 xeD

Since §(x)=S,(x)= — 1/x? it follows that
12— /3)x — I IS0 — S <22 — /3)x — )|

for both i =1 and i = 2. According to Propositions 9.6 and 9.7 lower and upper
bounds for the dimensions are given by the solutions of 2(3(2 — \/5))‘ =1 and
222 — \/3))3 =1 which are s =log2/log2(2 + \/5)) =0.34 and log2/log1(2 +
\/5)) = 1.11 respectively.
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For a subset of the real line, an upper bound greater than 1 is not of much
use. One way of getting better estimates is to note that F is also the invariant
set of the four mappings on [0, 1]

Sio8, =i+ 1/(j+ 1/x)=i+x/(jx+ 1) G,j=1,2).

By calculating derivatives and using the mean-value theorem as before, we get
that

(SieS;) (x)=(jx+1)7?
$0

G+ /3)+ )72 x =y <18:28;0) — Sio 8,00 < G + /3 + )72 x — yl.
Lower and upper bounds for the dimensions are now given by the solutions of
20432 +23+2/3)7F=1 and 203+.3)F+22+ /3 *=1,
giving 0.44 < dimy F <0.66, a considerable improvement on the previous

estimates. In fact dimy F = 0.531, a value that may be obtained by looking at
yet higher-order iterates of the S;. O

*[The rest of this subsection may be omitted.]

The technique used in Example 9.8 to improve the dimension estimates is
often usefu! for invariant sets of transformations that are not strict similarities.
If F is invariant for the contractions S,,..,S,, on D then F is also invariant for
the collection of m* transformations {S; o---S;} for each k. If the S; are, say,
twice differentiable on an open set containing F, it may be shown that when k
is large, the contractions S;,o--->S,_are in a sense, close to similarities on D. In
particular, for transformations on a subset D of R, if b =1nf,.5|(S;,¢---°S; ) (x)]
and ¢ = supstI l(Sil O OSik),(x)lﬁ then

blx —y| <[S;,0---28;,(x) = 8;, 028, (M < elx =yl (x,yeD)

If k is large then b/c will be close to 1, and applying Propositions 9.6 and 9.7
to the m* transformations S; =---°S;,, gives good upper and lower estimates for
the dimensions.

We may take this further. If the S; are twice differentiable on a subset D of R,

[Sion-o8,(x) — Si, 028, W)

Ix—yl
for large k, where x, y and w are any points of D. The composition of mappings
§;,0---o8, is close to a similarity on D, so by comparison with Theorem 9.3 we

would expect the dimension of the invariant set F to be close to the value of
s for which

[

~ (8,008 Y W)l

JZI(Sm oS YW =1 (9.19)

where the sum is over the set J, of all k-term sequences. This expectation
motivates the following theorem.
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Theorem 9.9

Let VR be an open interval. Let S,,...,S,, be contractions on V that are
twice differentiable on V with a <|Sy(w)| < ¢ for all i and weV, where 0 < a and
¢ < 1 are constants. Suppose that the S; satisfy the open set condition (9.11) with
open set V. Then the limit

1/k

lim [Zl(si,°-“°5ik)’(W)ls] = ¢(s) (9.20)
k—oo | Jk

exists for each s >0, is independent of weV, and is decreasing in s. If F is the

invariant set for the S; then dimy F = dimg F is the solution of ¢(s)=1, and, F

is an s-set, i.e. 0 < H#(F) < oo for this value of s.

Note on Proof. The main difficulty is to show that the limit (9.20) exists—this
depends on the differentiability condition on the S;. Given this, the argument
outlined above may be used to show that the value of s satisfying (9.19) is a
good approximation to the dimension when k is large; letting k — oo then gives
the result.

Similar ideas, but involving the rate of convergence to the limit in (9.20), are
needed to show that 0 < 3#*(F) < co. [} :

There are higher-dimensional analogues of Theorem 9.9. Suppose that the
contractions Sy, ..., S,, on a domain D in the complex plane are complex analytic
mappings. Then the S; are conformal, or in other words are locally like similarity
transformations, contracting at the same rate in every direction. We have

Si(z) = Si(zo) + Si(zo)(z — zo) + terms in (z — z,)* and higher powers

so that if z — z, is small
S(2) = Si(zo) + Si{zo)(z — 20) (9.21)

where Sj(z,) is a complex number with |Si(zo)| < 1. But the right-hand side of
(9.21) is just a similarity expressed in complex notation. In this setting,
Theorem 9.9 holds, by the same sort of argument as in the 1-dimensional case.

9.4 Self-affine sets

Self-affine sets form an important class of sets, which include self-similar sets
as a particular case. An affine transformation S:R"— R" is a transformation of
the form

S(x)=T(x)+b

where T is a linear transformation on R" (representable by an n x n matrix)
and b is a vector in R”. Thus an affine transformation S is a combination of a
translation, rotation, dilation and, perhaps, a reflection. In particular, S maps
spheres to ellipsoids, squares to parallelograms, etc. Unlike similarities, affine
transformations contract with differing ratios in different directions.
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S5(£)

Figure 9.8 A self-affine set invariant under the affine transformations S;, S, and S; that map the
square £ onto the rectangles shown

If S,,...,8S,, are affine contractions on R", the unique compact invariant set
F for the S; guaranteed by Theorem 9.1 is termed a self-affine set. An example
is given in figure 9.8:S,, S, and S; are defined as the transformations that map
the square E onto the three rectangles in the obvious way. (In the figure the
invariant set F is represented as the aggregate of S, o --- S, (E) over all sequences
(iy,...,i) with i;=1,2,3 for suitably large k. Clearly F is made up of the three
affine copies of itself: S, (F), S,(F) and S5(F).)

It is natural to look for a formula for the dimension of self-affine sets that
generalizes formula (9.13) for self-similar sets. We would hope that the dimension
depends on the affine transformations in a reasonably simple way, easily
expressible in terms of the matrices and vectors that represent the affine
transformation. Unfortunately, the situation is much more complicated than
this—the following example shows that if the affine transformations are varied
in a continuous way, the dimension of the self-affine set need not change
continuously.

Example 9.10

Let S,, S, be the affine contractions on R? that map the unit square onto the
rectangles R and R, of sides 3 and ¢ where 0 < ¢ < 3, as in figure 9.9. The rectangle
R, abuts the y-axis, but the end of R, is distance A from the y-axis. If F is the



128

_——l E .—_—l E
/?15 /?15
| et | b memen i |
1
3 z
1 1
2 . 2
2|e 2le
e Bl e ‘=
— \
proj F
(a) (5

Figure 9.9 Discontinuity of the dimension of self-affine sets. The affine mappings S, and S, map
the unit square £ onto Ry and A,. In (@) 1> 0 and dimy F > dim, proj F=1, but in (b)) A=10, and
dimy F=log2/—loge <1

invariant set for S, and S,, we have dimyF>1 when A1>0, but
dim, F =log2/-loge <1 when 1=0.

Calculation. Suppose A > 0 (figure 9.9(a)). Then the kth stage of the construction
E,=uUS; -8, (E) consists of 2k rectangles of sides 27* and & with the
projection of E, onto the x-axis, proj E,, containing the interval [0,24]. Since
F =\, E it follows that proj F contains the interval {0,21]. (Another way
of seeing thisis by noting that proj F must be invariant under the transformations
S.,S,:R— R given by S,(x)= X, S,(x)= 1x + A, for which the unique invariant
set is the interval [0,24].) Thus dimy F > dimy proj F = dimy [0,24] = 1.

If A =0, the situation changes (figure 9.9(b)). E, consists of 2* rectangles of
sides 2% and & which all have their left-hand ends abutting the y-axis, with
E, contained in the strip {(x,):0 <x <27*}. Letting k— oo we see that F is a
uniform Cantor set contained in the y-axis, which may be obtained by repeatedly
removing a proportion 1—2¢ from the centre of each interval. Thus
dimy F = log2/ —loge <1 (see Example 4.5). O

With such discontinuous behaviour, which becomes even worse for more
involved sets of affine transformations, it is likely to be difficult to obtain a
general expression for the dimension of self-affine sets. However, one situation
which has been completely analysed is the self-affine set obtained by the
following recursive construction; a specific case is illustrated in figures 9.10
and 9.11.

Example 9.11

Let the unit square E, be divided into a p x q array of rectangles of sides 1/p and
1/g where p and q are positive integers with p <q. Select a subcollection of these
rectangles to form E,, and let N; denote the number of rectangles selected from
the jth column for 1 <j < p; see figure 9.9. Iterate this construction in the usual
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—~r—>

Figure 9.10 Data for the self-affine set of Example 9.11. The affine transformations map the square
onto selected 1/p x 1/q rectangles from the p x g array

way, with each rectangle replaced by an affine copy of E,, and let F be the limiting
set obtained. Then

J

)4
dimy F =log ( N}ospllogq> 1
=1

logp
and

. 1 1 &
dimy F = ng1+log<— Y Nj)—1-
logp pij=1 "/logq

where p, is the number of columns containing at least one rectangle of E;.

Calcuation. Omitted. O

Notice in this example that the dimension depends not only on the number
of rectangles selected at each stage, but also on their relative positions. Moreover
dimy F and dimg F are not, in general, equal.

x[Rest of this subsection may be omitted.]

The above example is rather specific in that the affine transformations are all
translates of each other. Obtaining a dimension formula for general self-affine
sets is an intractable problem. We briefly outline an approach which leads to
an expression for the dimension of the invariant set for the affine contractions
8:ix) = Ti(x) + b; (1 < i< m) for almost all sequences of vectors b,,...,b,.

Let T:R"— R" be a linear mapping that is contracting and non-singular. The
singular values 1 > a, > a, > --- > o, > 0 of T may be defined in two ways: they
are the lengths of the principle semi-axes of the ellipsoid T(B) where B is the unit
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Figure 9.11 Construction of a seli-affine set of the type considered in Example 9.11. Such sets may
have different Hausdorff and box dimensions

ballin R", and they are the positive square roots of the eigenvalues of T*T, where
T* is the adjoint of T. Thus the singular values reflect the contractive effect of
T in different directions. For 0 < s < n we define the singular value function

@(T) = oy -0t qo8 7% 1 (9.22)

where r is the integer for which r —1 <s<r. Then ¢*(T) is continuous and
strictly decreasing in s. Moreover, for fixed s, ¢° may be shown to be submulti-
plicative, i.e.

P (TU) < (T 9*(U)

for any linear mappings T and U. We introduce the kth level sums
35 =Y, ¢%(T; 0---o T;,) where J, denotes the set of all k-term sequences (i, ..., i)
with 1 <i;<m. For fixed s

Ziz+q = z (ps(]—}lo.-.oTik+q)

Ji+q

< Y @ (T2 T )o)(T,

. -
b+
Jik+q

= (; (Ps(’TilO-..oTik)>(z (P-‘('T“o...o’Tl.q)> — Z‘S(Z;
K Tq

i.e. the sequence X is submultiplicative in k. By a standard property of
submultiplicative sequences, (Z5)!/* converges to a number X3, as k— co. Since
@* is decreasing in s, so is Z°,. Provided that £ <1, there is a unique s, which
we denote by d(Ty,..., T,), such that 1 =35 =1lim,_ (3, ¢*(T;° e TE
Equivalently

oT,

i)

d(Tl,...,Tm)=inf{s: $ Y g(Tyyo- o To) < oo}. (9.23)

k=1 Jy
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Theorem 9.12

Let T,,..., T,, be linear contractions and let b,,...,b,eR" be vectors. If F is the
affine invariant set satisfying

Cs

F=. (Ti(F)+bi)

i=1

then dimy F = dimg F = d(T,..., T,,) for almost all (by,...,b,)eR"™ in the sense
of nm-dimensional Lebesgue measure.

Partial Proof. We show that dimy F <d(T,,...,T,) for any b,,...,b,. Write §;
for the contracting affine transformation S;(x)= Ty(x)+ b, Let B be a large
ball so that S,(B)< B for all i. Given >0 we may choose k large enough
to get |S;,o---o8, (B)| < for every k-term sequence (is---si)€Jy. By (9.6)

Figure 9.12 Fach of the fractals depicted above is invariant under the set of transformations that
map the square onto the three rectangles. The affine transformations for each fractal differ oniy by
translations, so by Theorem 9.12 the three fractals all have the same dimension (unless we have

been very unlucky in our positioning!). A computation gives this common value of Hausdorff and box
dimension as about 1.42
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Fc|)nSio08,(B). But §;°--°S,(B) is a translate of the ellipsoid
T;,°---° T, (B) which has principal axes of lengths o, |B|, .. ., 0, Bl, where ay, ..., 0,

are the singular values of T;e°---°T;. Thus S;°---°S;,(B) is contained in
a rectangular parallelepiped P of side lengths o, |B|,...,,|B|. f 0 <s<n and
r is the least integer greater than or equal to s, we may divide P into at most

(2)(2) (5w
o, &€, o,

cubes of side «,|B| < . Hence S;,°---°S; (B) may be covered by a collection of
cubes U; with |U;| < 8,/n such that

Z Ul < 2%y "‘O‘r—1°‘,1'r“:|B‘s
<2'|BIf@*(Tio--°Ty)
Taking such a cover of S; o---oS, (B) for each (iy,..., )€y it follows that

A5 (F) < 27|BFY, ¢*(Ty,0+-o T,y
Ji

But k—o as 6—0, so by (9.23), #°(F)=0 if s>d(T,,...,T,). Thus
dimy F <d(Ty,..., T,)

The lower estimate for dim, F may be obtained using the potential theoretic
techniques of Section 4.3. We omit the somewhat involved details. O

One consequence of this theorem is that, unless we have been unfortunate
enough to hit on an exceptional set of parameters, the fractals in figure 9.12 all
have the same dimension, estimated at about 1.42.

9.5 Applications to encoding images

In this chapter, we have seen how a small number of contractions can determine
objects of a highly intricate fractal structure. This has applications to data
compression—if a complicated picture can be encoded by a small amount of
information, then the picture can be transmitted or stored very efficiently.

It is desirable to know which objects can be represented as, or approximated
by, invariant sets of an iterated function scheme, and also how to find functions
that provide a good representation of a given object. Clearly, the possibilities
using, say, three or four transformations are limited by the small number of
parameters at our disposal. Such sets are also likely to have a highly repetitive
structure.

However, a little experimentation drawing self-affine sets on a computer (see
end of Section 9.1) can produce surprisingly good pictures of naturally occurring
objects such as ferns, grasses, trees, clouds, etc. The fern and grass in figure 9.13
are invariant for just four and six affine transformations, respectively.
Self-similarity and self-affinity are indeed present in nature.

133

Figure 9.13 The fern (a) and grass (&) are the invariant sets of just four and six affine transfarmations, respectively
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The following theorem, sometimes known as the collage theorem, gives an.

idea of how good an approximation a set is to the invariant set of a collection
of contractions.

Theorem 9.13

Let Sy,...,S, be contractions on R" and suppose that |S{x) -S| <eclx—y|
for all x,yeR" and all i, where ¢ <1. Let E < R" be any non-empty compact
set. Then

m 1

d(E,F)< d(E, U Si(E)> - 9.24)
i=1 (1-o9

where F is the invariant set for the S;, and d is the Hausdorff metric (9.2).

Proof. Using the triangle inequality for the Hausdorff metric followed by the
invariance of F

13

d(E, F)<d(E, U S,-(E)>+d< $ S,-(E),F)

i=1

d(E
a(

by (9.5), as required. |}

Cs

S.-(E)) B d((') s48), 1) S.-(F))

1

s

A

1

Si(E)> + cd(E, F)

A consequence of Theorem 9.13 is that any compact subset of R" can be
approximated arbitrarily closely by a self-similar set.

Corollary 9.14

Let E be a non-empty compact subset of R". Given 6> 0 there exist contracting
similarities S, ...,S,, with invariant set F satisfying d(E, F) <.

Proof. Let By, ..., B,, be a collection of balls that cover E and which have centres
in E and radii at most 16. Then E < | J™ | B; < E,,, where E, is the ;d-parallel
body to E. For each i, let S; be any contracting similarity of ratio less than }
that maps E into B; Then S{(E)c B; = (S{E)),s SO (U, S{E)) < Ey; and
E = {J™ ,(S{E)),s By definition of the Hausdorff metric, d(E, Ur  S{E) <39

It follows from (9.24) that d(E, F) < § where F is invariant for the S;. O

The method of approximation by invariant sets used in the above proof is
rather coarse—it is likely to yield a very large number of transformations that
take little account of the fine structure of F. A rather more subtle approach is
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required to obtain convincing images with a small number of transformations.
One method which often gives good results is to draw a rough outline of the
object and then cover it, as closely as possible, by a number of smaller similar
or affine copies. The similarities thus determined may be used to compute an
invariant set which may be compared with the object being modelled. Theorem
9.13 guarantees that the invariant set will be a good approximation if the union
of the smaller copies is close to the object. A trial and error process allows
modification and improvements to the picture.

More complex objects may be built up by superposition of the invariant sets
of several different sets of transformations.

Ideally, it would be desirable to have a ‘camera’ which could be pointed at
an object to produce a ‘photograph’ consisting of a specified number of affine
transformations whose invariant set is a good approximation to the object.
Obviously, the technical problems involved are considerable, and at the moment
such a device is a long way from reality. One approach is to scan the object
to estimate various geometric parameters, and use these to impose restrictions
on the transformations.

For example, for a ‘natural fractal’ such as a fern, we might estimate the
dimension by a box-counting method. The assumption that the similarities or
affinities sought must provide an invariant set of this dimension gives, at least
theoretical, restrictions on the possible set of transformations, using results
such as Theorem 9.3 or 9.12. In practice, however, such information is rather
hard to utilise, and we certainly need many further parameters for it to be of
much use.

Very often, invariant sets in the plane that provide good pictures of physical
objects will have positive area, so will not be fractals in the usual sense.
Nevertheless, such sets may well be bounded by fractal curves, a feature that
adds realism to pictures of natural objects. However, fractal properties of
boundaries of invariant sets seem hard to analyse.

These ideas may be extended to provide shaded or coloured images, by
assigning a probability p; to each of the transformations §;, where 0<p; <1
and 3™ , p; = 1. Without going into details, these data define a mass distribution
u on the invariant set F such that u(4)=>", p;u(S; *(4)), and the set may
be shaded, or even coloured, according to the local density of p.

This leads to the following modification of the second method of drawing
invariant sets mentioned at the end of Section 9.1. Let x, be any initial point.
We choose S}, from S, ...,S,, at random in such a way that the probability of
choosing S; is p;, and let x; =S; (x,). We continue in this way, so that
X, = 8;,(x,— ;) where S;,_equals S; with probability p;, Plotting the sequence {x,}
(after omitting the first 100 terms, say) gives a rendering of the invariant set F,
but in such a way that a proportion p;, ---p;, of the points tends to lie in the
part S;,---°S; (F)foreachi,,...,i,. This variable point density provides a direct
shading of F. Alternatively, the colour of a point of F can be determined by
some rule, which depends on the number of {x,} falling close to each point.
The computer artist may care to experiment with the endless possibilities that



136

this method provides—certainly, some very impressive colour pictures have
been produced using relatively few transformations.

It is perhaps appropriate to end this section with some of the ‘pros and cons’
of representing images using iterated function schemes. By utilizing the
self-similarity and repetition in nature, and, indeed, in man-made objects, the
method often enables scenes to be described by a small number (perhaps fewer
than 100) of transformations and probabilities in an effective manner. This
represents an enormous compression of information compared, for example,
with that required to detail the colour in each square of a fine mesh. The
corresponding disadvantage is that there is a high correlation between different
parts of the picture—the method is excellent for giving an overall picture ofa
tree, but is no use if the exact arrangement of the leaves on different branches
is important. Given a set of affine transformations, reproduction of the image
is computationally straightforward, is well suited to parallel computation, and
is stable—small changes in the transformations lead to small changes in the
invariant set. The transformations define the image at arbitrarily small scales,
and it is easy to produce a close-up of a small region. At present, the main
disadvantage of the method is the difficulty of obtaining a set of transformations
to represent a given object or picture.

9.6 Notes and references

The first systematic account of iterated function schemes seems to be that of
Hutchinson (1981), though similar ideas were certainly around earlier. The
derivation of the formula for the dimension of self-similar sets is essentially
contained in Moran (1946). Computer pictures of self-similar and other invariant
sets are widespread, the works of Mandelbrot (1982), Dekking (1982), Barnsley
and Demko (1985) and Barnsley (1988) containing many interesting and
beautiful examples. For material relating to Theorem 9.9, see Ruelle (1983). Full
details of Example 9.11 are given in McMullen (1984) and of Theorem 9.12 n
Falconer (1988). A discussion of self-affine sets is given by Mandelbrot (1986).
Applications to image processing are described in Barnsley (1988) and Barnsley
and Sloan (1988).

Exercises

9.1 Verify that the Hausdorff metric (9.2) satisfies the conditions for a metric.

9.2 Find a pair of similarity transformations on R for which the interval [0,1] is the
(unique non-empty compact) invariant set. Now find infinitely many such pairs of
transformations.

'9.3  Find sets of (i) four and (ii) three similarity transformations on R for which the
middle third Cantor set is the invariant set. Check that (9.13) has
solution log 2/log 3 in each case.

94

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12
9.13

9.14
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Find an open set satisfying the open set condition for the four basic similarity
transformations that define the von Koch curve (figure 0.2). Deduce from
Theorem 9.3 that the von Koch curve does indeed have box and Hausdorff
dimension of log4/log 3.

Yerify that the set depicted in figure 0.5 has Hausdorff and box dimensions
given by 4Gy + &y =1.

Sketch the first few steps in the construction of a self-similar set with generator
o——e What are the Hausdorff and box dimensions of this fractal? (The stem of
the T is one quarter of the total length of the top.)

Let F be the set obtained by a Cantor-type construction in which each interval is
replaced by two intervals, one of a quarter of the length at the left-hand end, and
one of half the length at the right-hand end. Thus E, is the interval [0,1], E,

consists of the intervals [0,] and [, 1], etc. Find the Hausdorff and box dimensions
of F.

Show that any self-similar set F satisfying the conditions of Theorem 9.3
has ¢, < D(F, x) < D(F, x) < ¢, for all xeF, where ¢, and c, are positive constants.
(See equations (5.2) and (5.3) for the definition of the densities.)

Let §,, §,:[0,1]—[0,1] be given by S,(x)=x/2+x) and S,(x)=2/2 + x).
Show that the invariant set F associated with these transformations satisfies
0.53 < dimy F < 0.80.

Let Sl,..:,S,,, be bi-Lipschitz contractions on a subset D of R” and let F be the
compact invariant set satisfying (9.1). Show that, if V is any open set intersecting
F, then F and F nV have equal Hausdorff, equal upper box and equal lower box

dimensions. Deduce from Corollary 3.9 that dim, F = dimg F.

Verify the Hausdorff dimension formula in Example 9.11 in the cases (a) where
Nj=N fgr 1<j<p and (b) where N;=N or 0 for 1<j<p, where N is an
integer with 1 < N < gq. (Hint: see Example 7.13.)

Calculate the Hausdorff and box dimensions of the set in figure 9.11.

Write a computer program to draw self-similar sets in the plane, given a generator
of the set.

Write a computer program to draw the invariant set of a given collection of
transformations of a plane region (see the end of Section 9.1). Examine
the invariant sets of similarities, affinities and try some non-linear transformations.
If you are feeling really enterpising, you might write a program to estimate the
dimension of these sets using a box-counting method.



Chapter 10 Examples from number theory

Fractals can often be defined in number theoretic terms; for instance, the middle
third Cantor set consists of the numbers between 0 and 1 which have a base-3
expansion containing only the digits 0 and 2. We examine three classes of fractal
that occur in classical number theory—these examples serve to illustrate some
of the ideas encountered earlier in the book.

10.1 Distribution of digits of numbers

In this section we consider base-m expansions of real numbers, where m > 2 is
a fixed integer. Let pg,pi,....Pm—:1 be ‘proportions’ summing to 1, so that
0<p;<land X" 'p;=1 Let F(po,...,Pm-1) be the set of numbers x in [0, 1)
with base-m expansions containing the digits 0,1,...,m—1 in proportions
Dos---»Pm—1 Tespectively. More precisely, if nj(x|,) denotes the number of times

the digit j occurs in the first k places of the base-m expansion of x, then

F(Poy---»Pm—1) = {x€[0,1): lim ny(x|, Yk=p;forallj=1,...,m}. (10.1)
k— 0
Thus we think of F(,2) as the numbers with ‘two thirds’ of their base-2 digits
being 1 and the rest being 0.

It is well-known that almost all numbers (in the sense of Lebesgue measure)
are normal to all bases; that is, they have base-m expansions containing equal
proportions of the digits 0, 1,...,m — 1 for all m. In our notation, F(m™%,...,m™})
has Lebesgue measure 1, and therefore dimension 1, for all m. Paradoxically,
no specific example of a number that is normal to all bases has ever been
exhibited. We may use Hausdorff dimension to describe the size of the sets
F(Pos---»Pm-1) When the p; are not all equal. (Such sets are dense in [0, 1) so
have box dimension 1.

A mass distribution technique is used in the following proof—the mass
distribution occurs naturally as a probability measure. Note that we adopt the
usual convention that 0 x log0=0.

Proposition 10.1
With F = F(po,-..,Pm—1) as above,

1 m-1

Z pilogp;.

dlmHF - -
logm i=0
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Proof. The proof is best thought of probabilistically. We imagine that base-m
numbers x = 0.ii,... are selected at random in such a way that the kth digit
i, takes the value j with probability p;, independently for each k. Thus we take
[0, 1) as our sample space and define a probability measure P on subsets of
[0, 1) such that if I, _, is the ‘basic interval’ containing the numbers with

base-m expansion beginning 0.i, ---i, then the probability of a number being in
this interval is

P, o) =Py Py (10.2)

Given j, the events ‘the kth digit of x is a j* are independent for k=1,2,.... A
consequence of the strong law of large numbers (see Exercise 1.15) is that, with
probability 1, the proportion of occurrences of an event in a number of repeated

independent trials tends to the probability of the event occurring. Thus, with
probability 1,

nj(x|,)/k = (number of occurrences of j in the first k digits)/k — p;

as k— oo for all j. Hence P(F) = 1. We write I,(x) = I, . for the basic interval
of length m~* to which x belongs. For a fixed y, the probability that xel,(y)

is given by
log P(i(y)) = no(yl)log po + -+ 4 M- 1 (¥ ) 108 Pru—s
by taking logarithms of (10.2). If ye F then n;(y|,)/k — p; as k — oo for each j, so

1 PU(y)_1 1
“log kY _ T _Z ~ks
P o O klog P(I.(») klogm

m—1
- Y plogp;+slogm.
i=0

Hence, for all y in F, the ‘interval density’

PUL(Y)) _ {0 ifs<0

im .
= | L(VI® 0 ifs>@0
where
m—1
0= — ;log p;.
logm i=zo 4 gp

We are now virtually in the situation of Proposition 4.9. The same results hold
and may be proved in the same way, if the ‘spherical densities’ lim, _, , u(B,(x))/r*
are replaced by these interval densities. Thus #5(F) = o0 if s < 0 and S#(F) =0
if s> 0, as required. O

10.2 Continued fractions

Instead of defining sets of numbers in terms of base-m expansions, we may use
the continued fraction expansions. Any number x that is not an integer may
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be written as
x=aq+ 1/x,

where a, is an integer and x,; > 1. Similarly, if x; is not an integer, then
x, =ay + 1/x,
with x, > 1, so
x=aq+ 1/(a; + 1/x,).
Proceeding in this way,
x = ag+ 1f(a, + 1/(az + /(- + 1@y + 1/x))))

for each k, provided that at no stage is x, an integer. We call the sequence of
integers ag, a,,4a,, ... the partial quotients of x, and write

1 1 1
al+az+ a3+"'

x=a0+

for the continued fraction expansion of x. This expansion terminates if and only
if x is rational, otherwise taking a finite number of terms,

ao+ 1/(ay, + 1/(a, + 1/(--- + 1/ay)))

provides a sequence of rational approximations to x which converge to x as
k— oo. (Continued fractions are, in fact, closely allied to the theory of
Diophantine approximation; see Section 10.3.)

Examples of continued fractions include

Jicis Ll L1

242424
11

\/§ =14 i _.1__ N .
1+2+14+2+--
More generally, any quadratic surd (i.e. root of a quadratic equation with integer
coefficients) has eventually periodic partial quotients.
Sets of numbers defined by conditions on their partial quotients are often
fractals, as the following example illustrates.

Example 10.2

Let F be the set of positive real numbers x with infinite partial fraction expressions
which have all partial quotients equal to 1 or 2. Then F is a fractal with
0.44 < dimy F < 0.66.

Proof. 1t is easy to see that F is closed and bounded. Moreover, xeF precisely
when x=14+1/y or x=2+1/y with yeF. Letting S;(x)=1+1/x and
S,(x) =2 + 1/x, it follows that F = §,(F)u S,(F); in other words, F is invariant
for the S; in the sense of (9.1). In fact F is just the set analysed in Example 9.8
which we showed to have Hausdorff dimension between 0.44 and 0.66. O

m

Obviously, varying the conditions on the partial quotients will lead to other
fractals that are the invariant sets of certain transformations.

10.3 Diophantine approximation

How closely can a given irrational number x be approximated by a rational
p/q with denominator g no larger than ¢,? Diophantine approximation is the
study of such problems, which can crop up in quite practical situations (see
Section 13.6). A classical theorem of Dirichlet (see Exercise 10.7) states that for
any real number x, there are infinitely many positive integers q such that
x— Bl < iz

q] 4
for some integer p; such p/q are ‘good’ rational approximations to x.
Equivalently,

lgx<q*
for infinitely many ¢, where || y|| = min__,|m — y| denotes the distance from y
to the nearest integer.

There are variations on Dirichlet’s result that apply to almost all numbers x.
It may be shown that if /(q) is a decreasing function of g with 0 < yr(g) < 3 then

lgxll <yi(q) (10.3)

is satisfied by infinitely many g for almost all x or almost no x (in the sense of
1-dimensional Lebesgue measure) according to whether X Py(q) diverges or
converges. In the latter case, the set of x for which (10.3) does have infinitely
many solutions is often a fractal.

We speak of a number x such that

lgxll <gq'~® (10.4)

for infinitely many positive integers g as being a-well approximable. It is natural
to ask how large this set of numbers is when « > 2, and, indeed, whether such
irrational numbers exist at all. We prove Jarnik’s Theorem, that the set of a-well
approximable numbers has Hausdorff dimension 2/a.

It is almost immediate from Example 4.7 (check!) that the set of x-well
approximable numbers has dimension at least 1/x. An extra subtlety is required
to obtain a value of 2/x. The idea is as follows. Let G, be the set of xe[0, 1]
satisfying (10.4). A factorization argument shows that, if n is large and p,,p,
are primes with n < p,,p, < 2n, then G,, and G, are disjoint (except for points
very close to 0 or 1). Thus the set
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consists of, roughly, 3", _ ,<,,1/p =~ n?/log nreasonably regularly spaced intervals
of lengths at least 2(2n)”* We then show that if n, is a rapidly increasing
sequence, the intersection ﬂ *_,H,, has dimension at least 2/a, and note that
any number in this intersection lies in infinitely many G, and so is o-well-
approximable.

Jarnik’s theorem 10.3
Suppose o > 2. Let F be the set of real numbers xe[0, 1] for which the inequality
lgxli<gq'™* (10.5)

is satisfied by infinitely many positive integers q. Then dimy F = 2/a.

* Proof. For each g let G, denote the set of xe[0, 1] satisfying (10.5). Then G,
consists of g — 1 mtervals of length 2¢~* and two ‘end’ intervals of length ¢ “.
Clearly, F c U G, for each k, so taking the intervals of G, for g>k as a
cover of F gives that Jf SF)<ST2 (g + D277 if 2k~ * < 6. If s > 2/u the series
> (g + 1)(2g7*)° converges, so f‘(F) 0. Hence dimy F < 2/a.

Let G be the set of xe(q™% 1 — g% satisfying (10.5), so that G is just G,
with the end intervals removed Let n be a positive integer, and suppose D1 and
p, are prime numbers satisfying n <p, <p, <2n. We show that G, and G,
are disjoint and reasonably well separated. For if 1 <r; <p, and 1 < r, < pz,
then p,r, # p,r, since p; and p, are prime. Thus

- |p2r1—p1r2|>—~—>—1—2
P1 D2l PiP2 pip2 4n
that is, the distance between the centres of any pairs of intervals from G/, and
G, isatleast 1 /4n?. Since these intervals have lengths at most 2n77 the dlstance
between any point of G/, and any point of G, is at least in"2 —2n"*>4n"?
provided that n=n, for some sufficiently large ne. For such n the set

ry T2

!

H,= | G,
p prime
n<p<2n

is a disjoint union of the intervals in the G, so H, is made up of intervals of
lengths at least (2n) " which are separated by gaps of lengths at least in" 2. If
I =[0,1] is any interval with 3/|I| <n < p <2n then at least p|I|/3>n|I|/3 of
the intervals of G}, are completely contained in I. A version of the prime number
theorem states that the number of primes between 2 and n is asymptotically
n/logn, so there are at least n/(2logn) primes in the range (n,2n}, if n>n, for
some large n, > n,. Thus at Jeast

n*|I|
6logn

(10.6)

intervals of H, are contained in I provided that n>n, and |I| > 3/n.
To complete the proof, we use Example 4.6. With n; as above, let n, =
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max {nk_,,3.2%n;_,}, for k=2,3,...,where a>a is an integer. Let E;=[0, 1]
and for k=1,2,...let E, consist of those intervals of H,, that are completely
contained in E,_,. The intervals of E, are of lengths at least (2n,)”* and are
separated by gaps of at least ¢ =2n, . Using (10.6), each interval of E,_,
contains at least m, intervals of E,, where

= ny(2m_ )" C":"k_al
=

6logn, logn,
if k > 2, where ¢ =27%/6. (We take m, = 1.) By (4.7)

dimH< ﬁ Ek>
k=1

log [Ck_znfa(”z"'"k—z)z_a"f—1(10gn2)—l -(logme_ )]

=1
kK=o —log[en, *,(8logn)~ 1]

= lim log[c* ™2y %(ny---n_,)> “H(logn,) ™' ---(logn, )7+ 2logny
P —log(c/8) +logk(logn,_ () +alogn,_;

=2/a

since the dominant terms in numerator and denominator are those in logn, _,.
(Note that logn,=klogn,_, so logn,=ck! for k sufficiently large) If
xeE; = H,, for all k, then x lies in infinitely many of the G|, and so xeF. Hence
dimy F > 2/a. 0

*[The rest of this section may be omitted.]

Obviously, the set F of Jarnik’s theorem is dense in [0,1], with
dimy (F 1) = 2/a for any interval I. However, considerably more than this is
true, F is a ‘set of large intersection’ of the type discussed in Section 8.2, and
this has some surprising consequences. For the definition of ¢~ in the following
proposition, see (8.7) to (8.8).

Proposition 10.4

Suppose a>2. If F is the set of positive numbers such that ||gx| <q'~* for
infinitely many q, then Fe%*[0, o) for all s < 2/a.

Note on proof. This follows the proof of Jarnik’s Theorem 10.3 up to the definition
of H,. Then a combination of the method of Example 8.9 and prime number
theorem estimates are used to show that lim,_, ¢ (InH,)= 5 (I). Slightly

different methods are required to estimate the number of intervals of H, that
can intersect a covering interval U, depending on whether || < 1/nor|I| = 1/n.

The first deduction from Proposition 10.4 is that dimy F = 2/a, which we
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know already from Jarnik’s Theorem. However, Proposition 8.8 tells us that
smooth bijective images of F are also in ¢°. Thus if s <2/« then f(Fn[a,b])
is in €*[ f(a), f(b)] for any continuously differentiable function f:[a,b] — R with
| f/(x}] >c>0. Taking the functions given by f,(x)=x'" we have that
Sa(F)n[1,2] is in ¥°[1,2] for s <2/a. It follows from Proposition 8.6 that
N fuF)n[1,2] is in €°[1,2], so

dimg () fu(F) =2/

But
SumlF)={x:]lgx™|| <q'~* for infinitely many q}

so we have shown that the set of x for which all positive integral powers are
a-well-approximable has Hausdorff dimension 2/a.
Clearly, many variations are possible using different sequences of functions f,,,.

10.4 Notes and references

There are a wide range of introductory books on number theory, of which the
classic by Hardy and Wright (1960) is hard to beat. The dimensional analysis
of the distribution of base-m digits may be found in Billingsley (1965). Continued
fractions are discussed in most basic number theory texts, and Rogers (1970)
and Bumby (1985) discuss dimensional aspects. Full accounts of Diophantine
approximation are to be found in the books of Schmidt (1980) and Cassels
(1957). Proofs of Jarnik’s Theorem have been given by Jarnik (1931),
Besicovitch (1934), Eggleston (1952) and Kaufman (1981). See Dodson, Rynne
and Vickers (to appear) for relations to sets of large intersection.

Exercises

10.1 Show that the set F(py,...,Pm-) in (10.1) is invariant for a set of m similarity
transformations in the sense of (9.1). (It is not, of course, compact.)

10.2  Find the Hausdorff dimension of the set of numbers whose base-3 expansions have
‘twice as many 2s as 1s’ (i.e. those x such that 2lim, _, . n,(x|)/k = lim,_, , n,(x|,)/k
with both these limits existing).

10.3 Find the continued fraction representations of (i) 41/9 and (ii) \//5.
10.4 What number has continued fraction representation
1 1 4

1+——
T4+ 14+ L4

?

10.5 Use the continued fraction representation of \/ 2 (with partial quotients 1,2,2,2,..))

to obtain some good rational approximations to \/ 2. (In fact, the number obtained
by curtailing a partial fraction at the kth partial quotient gives the best rational
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approximation by any number with equal or smaller denominator.)

10.6 Obtain estimates for the Hausdorff and box dimensions of the set of positive
numbers whose continued fraction expansions have partial quotients containing
only the digits 2 and 3.

10.7 Let x be a real number and Q a positive integer. By considering the set of numbers
{rx(mod 1):r=0,1,...,Q}, prove Dirichlet’s theorem: i.e. that there is an integer
q with 0 < g < Q such that ||gx|| < Q' Deduce that there are infinitely many
positive integers g such that ||gx| <q~".

10.8 Let nand d be positive integers. Show that if the Diophantine equation x" — dy” = 1
has infinitely many solutions (x, y) with x and y positive integers, then d'/" must
be n-well-approximable.

109 Fixa> 3 let F be the set of (x, y) in R? such that | gx|| <q' *and | gyl <q'*
are satisfied simultaneously for infinitely many positive integers g. Show, in a
similar way to the first part of the proof of Theorem 10.3, that dimy F < 3/a. (In
fact, it may be shown, using a generalization of the remainder of the proof, that
dimy F = 3/a.)

10.10 Show that the set of real numbers x, such that (x +m)? is a-well-approximable
for all integers m, has Hausdorff dimension 2/



Chapter 11 Graphs of functions

A variety of interesting fractals, both of theoretical and practical importance,
occur as graphs of functions. Indeed, many phenomena display fractal features
when plotted as functions of time. Examples include atmospheric pressure, levels
of reservoirs and prices on the stock market, at least when recorded over fairly
long time spans.

11.1 Dimensions of graphs

‘We consider functions f:[a,b]— R. Under certain circumstances the graph

graph f = {(t, f(t)):a<t < b}

regarded as a subset of the (¢, x)-coordinate plane may be a fractal. (Note that
we work with coordinates (¢, x) rather than (x, y) for consistency with the rest
of the book, and because the independent variable is frequently time.) If f has
a continuous derivative, then it is not difficult to see that graph f has dimension
1 and, indeed, is a regular 1-set. The same is true if f is of bound variation;
that is, if 7' f(¢:) — f(t:+1)] < constant for all dissections 0=ty <t, < ---
<t,=1. However, it is possible for a continuous function to be sufficiently
irregular to have a graph of dimension strictly greater than 1. Perhaps the best
known example is

=3 A= sin (i
k=1

where 1 <5< 2 and 1> 1. This function, essentially Weierstrass’s example of a
continuous function that is nowhere differentiable, has box dimension s, and is
believed to have Hausdorff dimension s.

We first derive some simple but widely applicable estimates for the box
dimension of graphs. Given a function f and an interval [t,,t,], we write R,
for the maximum range of f over an interval,

Re[ty,t,]= sup |f(e)— f(w)]

n<tu<is

Proposition 11.1

Let f:[0,1] —» R be continuous. Suppose that 0 <6 < 1, and m is the least integer
greater than or equal to 1/5. Then, if N is the number of squares of the 5-mesh

1A8
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_x=£(r) M

N d VTR
'/V‘&] ﬂ

=N

T ¥

8 t

Figure 11.1 The number of 5-mesh squares in a column above an interval of width & that intersect
graph f is approximately the range of f over that interval divided by 5. Summing these numbers
gives estimates for the box dimension of graph £

that intersect graph f,

m-—1
8" UY R[i6,(i+1)8]<Ny<2m+ 81

i=0

"ffkf[ié,(iﬂ)a]. (11.1)

0o

Proof. The number of mesh squares of side § in the column above the interval
[i6,(i + 1)8] that intersect graph f is at least R [id,(i+ 1)6]/6 and at most
2+ R,[i6,(i + 1)61/6, using that f is continuous. Summing over all such
intervals gives (11.1). This is illustrated in figure 11.1. O

This proposition may be applied immediately to functions satisfying a Holder
condition.

Corollary 11.2
Let f:[0,1] - R be a continuous function.
(a) Suppose
/O - f@l<clt—ul>™>  (0<tu<l) (11.2)

where ¢>0 and 1<s<2 Then #(F)<oo and dimygraph f<
dimg graph f<s. This remains true if (11.2) holds when |t —u| < for
some &> 0.

(b) Suppose that there are numbers ¢>0,8,>0 and 1<s<2 with the
Jollowing property: for each te[0,1] and 0 < <, there exists u such
that |t —u| <6 and

[f(6)— fW)] = co* . (11.3)
Thens < dimggraph f.
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Proof.

(a) It is immediate from (11.2) that R [t;,t,] <clt, —t,]> " for 0<ty,2, < 1.
With notation as in Proposition 11.1, m < (1 + 6~ ') so

N;<(1+6 D2 +co 16> %)< 67°

where c, is independent of 8. The result now follows from Proposition 4.1.
(b) In the same way, (11.3) implies that R [t,,t,]>c|t; —£,|>7% Since
5”1 <m, we have from (11.1) that

N; 26716762 5=céd""°
so Equivalent definition 3.1(iii) gives s < dim y graph f. ]

Unfortunately, lower bounds for the Hausdorfl dimension of graphs are
generally very much more awkward to find than box dimensions.

Example 11.3. The Weierstrass function

Suppose A>1 and 1 <s < 2. Define f:.[0,1]-R by
f(@)= > A~ Pksin (k). (11.4)
k=1
T hen, provided 4 is large enough, dimg graph f =s.

Calculation. Given 0 < h <1, let N be the integer such that

ATWNID << AN, (11.5)
Then
N

Ift+h) — fOI< Y A~ DX sin (At + h)) — sin (A*1)]|
k

=1

+ 5 AT DXjsin (5 + b)) — sin (A1)

k=N+1
N ©
< 2 l(‘_z)klkh+ Z 2/1(3_2)"
k=1 k=N+1

using the mean-value theorem on the first N terms of the sum, and an obvious
estimate on the remainder. Summing these geometric series,

h).(s_l)N 2)’(5—2)(N+ 1)
+
1 —il it i 1 _ As—z

< Chz-s

fe+h—fOl<

where ¢ is independent of h, using (11.5). Corollary 11.2(a) now gives that

dimg graph f <s.
In the same way, but splitting the sum into three parts—the first N — 1 terms,
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Figure 11.2 The Weierstrass function £(f) = X °_ A%~ 2*sin (A*1) with 1 =1.5 and (a)s =1.1, ()
s=13,(c) s=15, (d) s=17
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the Nth term, and the rest—we get that

Lf(t + h) — f(t) — 2%~ 2(sin A¥(t + h) — sin AVt)]
l(s-Z)N—s+1 21(5—2)(1\14—1)

1_;1—5

=

T (11.6)
AN < h < AN
Suppose 4 > 2 is large enough for the right-hand side of (11.6) to be less than
A6~ PN for all N. For 6 < 271 take N such that A7¥ <6 <1~ ™~V For each
1, we may choose h with 1~ ™+ < h < 17" such that |sin A"(¢ + h) — sin ANt > 5.
so by (11.6)
£+ R) = FO] > 45257 > 5257252

It follows from Corollary 11.2(b) that dimg graph f = s. O

Various cases of the Weierstrass function are shown in figure 11.2.

It is immediate from the above estimate that the Hausdorff dimension of the
graph of the Weierstrass function (11.4) is at most s. It is widely believed that
it equals s, at least for ‘most’ values of A. This has not yet been proved
rigorously—it could be that there are coverings of the graph of the function
by sets of widely varying sizes that give a smaller value. Even to show that
dimygraph f > 1 is not trivial. The known lower bounds come from mass
distribution methods depending on estimates for £ {:(t, f(t))e B} where B is a
disc and .# is Lebesgue measure. The rapid small-scale oscillation of f ensures
that the graph is inside B relatively rarely, so that this measure is small. In this
way it is possible to show that there is a constant ¢ such that

s = dimy graph f = s — ¢/log A

Figure 11.3 Stages in the construction of a self-affine curve F£. The affine transformations S, and
S, map the triangle pyp, p, onto the triangles oy p; and py gy p,. respectively, and transform vertical
lines to vertical lines. The rising sequence of polygonal curves &, £.... are given by
Eeer = Si(Ec}U Sy(Ey) and provide increasingly good approximations to F (shown in figure 11.4(a)
for this case)

prrmm e N

e !
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%

(o) e

Figure 11.4 Self-affine curves defined by the two affine transformations that map the triangle gy, p,
onto pyq; py and p, g, p, respectively. In {a) the vertical contraction of both transformations is 0.7
giving dimg graph f=1.49, and in (b} the vertical contractions of both transformations are 0.8, giving
dimg graph f=1.68
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so when 4 is large the Hausdorff dimension cannot be much less than the
conjectured value.

The Weierstrass function (11.4) is representative of a much wider class of
functions to which these methods apply. If ¢ is a suitable periodic function, a
similar method can often show that

fO= 3 a6 2kg00) (11.7)
k=1

has dimg graph f =s. At first such functions seem rather contrived, but their
occurrence as repellers in certain dynamical systems (see Exercise 13.7) gives
them a new importance.

In Section 9.4 we saw that self-affine sets are often fractals; by suitable choice
of affine transformations, they can also be graphs of functions. Let S;(1 <i<m)
be affine transformations represented in matrix notation with respect to (¢, x)

coordinates by
Si[t]=[1/m 0][t:l+[(i—1)/m:|. (11.8)
x a; ¢ lLx b,

Thus the §; transform vertical lines to vertical lines, with the vertical strip
0 <t < 1 mapped onto the strip (i — 1)/m <t <i/m. We suppose that

I/m<c¢; <1 (11.9)

so that contraction in the t direction is greater than in the x direction.
Let p, =(0,b,/(1 —¢,)) and p,, =(1,(a,, + b,.)/(1 — c,,)) be the fixed points of
S, and S,,. We assume that the matrix entries have been chosen so that

Si{(Pm) = Si+1(p1) (I<ism-1) (11.10)

so that the segments [S;(p,), Si{(P..)] join up to form a polygonal curve E;. To
avoid trivial cases, we assume that the points S,(p,),...,S.(p1), P, are not all
collinear. The invariant set F of the S; (see (9.1)) may be constructed by repeatedly
replacing line segments by affine images of E,; see figures 11.3 and 114.
Condition (11.10) ensures that the segments join up with the result that F is
the graph of some continuous function f:[0, 1]— R.

Example 11.4 Self-affine curves

Let F =graph f be the self-affine curve described above. Then dimgF =1+
log(cy + -+ +c,)/logm.

Calculation. Let T, be the ‘linear part’ of S;, represented by the matrix

|:l/m 0]
q; Ci‘

LetI; . betheinterval of the t-axis consisting of those t with base-m expansion
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beginning 0.i' ---i} where i} = i;— 1. Then the part of F above I, _, is the affine
image S;c---°§,(F), which is a translate of T,o---°T,(F). The matrix

3

representing T; o---o T, is easily seen by induction to be

m™k 0 :|
m!ka, +m?he a4 o cy e C G € Gyt G

i -1 ik ix

This is a shear transformation, contracting vertical lines by a factor ¢;,¢;,---¢;,.
Observe that the bottom left-hand entry is bounded by
lm*“*a+m?*c,a+ - +¢;, ¢y al
<(me) 4+ (me)> F+ -+ )y, -0y

Lre;, ¢

where a =max |a;|, ¢ =min {¢;} > 1/m and r =a/(1 — (mc)”'). Thus the image
T, o---°T,(F) is contained in a rectangle of height (r + h)cy, ---c;,, where h is
the height of F. On the other hand, if q,,4,,49; are three non-collinear points
chosen from S;(p;)..»Sm(P1),Pm> then T;eo---°T;(F) contains the points
T;,°--°T,(q;)( = 1,2,3). The height of the triangle with these vertices is at least
c;, -+-¢,d where d is the vertical distance from g, to the segment [¢,,9s} Thus
the range of the function f, over I, ., satisfies

~~~~~ ¥

dC- e Ce $RI[II

i1 i
where r;=r+h.
For fixed k, we sum this over the m* intervals I,
using Proposition 11.1,

.. of lengths m™* to get,

..... i

mtdZc; -c; < N, _F)<2m* +mhr Zc; ¢y,

where N _.(F) is the number of mesh squares of side m~* that intersect F. For
each j the number c¢; ranges through the values cy,...,c,, so that

¢, ¢, =(cy + - +cp)t Thus
dmt(cy + - + Ca) S N o(F) < 2mF + rymf(cy + - + ¢

Taking logarithms and using Definition 3.1(iii) of box dimension gives the value
stated. O

Self-affine functions are useful for fractal interpolation. Suppose we wish to
find a fractal curve of a given dimension passing through the points (i/m, x;)
fori=0,1,...,m. By choosing transformations (11.8) in such a way that S; maps
the segment [p,, p,.] onto the segment [((i — 1)/m, x;_,),(i/m, x;)] for each i, the
construction described above gives a self-affine function with graph passing
through the given points. By adjusting the values of the matrix entries we can
ensure that the curve has the required box dimension,; there is also some freedom
to vary the apperance of the curve in other ways. Fractal interpolation has
been used very effectively to picture mountain skylines.

Of course, self-affine functions can be generalized so that the S; do not all
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Figure 11.5 Fractal interpolation on the northern and southern halves of a map of South-West
England,. using the vertices of the polygon in figure (a) as data points. The dimensions of the self-affine
curves fitted to these data points are (b) 1.1, (¢} 1.2 and (d) 1.3

(c)

have the same contraction ratio in the t direction. This leads to fractal
interpolation of points that are not equally spaced. With additional effort, the
box dimension of such curves may be found.

One example of fractal interpolation is illustrated in figure 11.5.

+11.2 Autocorrelation of fractal functions

As we have remarked, quantities varying with time often turn out to have fractal
graphs. One way in which their fractal nature is often manifested is by a
power-law behaviour of the correlation between measurements separated by
time h. In this section we merely outline the ideas involved; we make no attempt
to be rigorous. In particular, the limits used are all assumed to exist.

For convenience of analysis, we assume that f:(— o0, c0) = R is a continuous
bounded function and we consider the average behaviour of f over long periods
[ — T, T]. (Similar ideas hold if f is just defined on [0, o), or on a finite interval,
by extending f to R in a periodic manner). We write f for the average value
of f, ie.

— 1 T
f= lim 3T f®de.

T—w -T

A measure of the correlation between f at times separated by h is provided by



the autdcorrelation function

Cthy= tim = | (fe+m— D@ - Pt (1L1D)
T-*coZT -T
= 1!1_{!:0 '21?[_: ft+hfeyde — () (11.12)

From (11.11) we see that C(h) is positive if f(t+ h) — f and f(t).—f— tend to
have the same sign, and is negative if they tend to have opposite signs. If there
is no correlation, C(h) = 0. Since

J(f(t+h)—f(t))2dt= Jf(t+h)2dt+ Jf(t)zdt—ij(t+h)f(t)dt

we have

_ T
Cy= (P — [P =L lim — | (fe+h—f@)de
T—o0 2T -T
—C(O)—1 lim J—jr (f(t + B)— f(©)*dt (11.13)
T—w ZT -7

where

2 _ 1 i f T 2
f=lim | S
is the mean square of f, assumed to be positive and finite. With C(h) in the
form (11.13) we can infer a plausible relationship between the autocorrelation
function of f and the dimension of graph f. The clue is in Corollary 11.2.
Suppose that f is a function satisfying (11.2) and also satisfying (11.3) in a
‘reasonably uniform way’. Then, there are constants ¢, and ¢, such that

clh‘*—zsstT (f(t+ B~ F(£))*de < cph* > (11.14)
2T J-¢

for small h. Obviously, this is not directly equivalent to (11.2) and (1‘1.3), but
in many reasonably ‘time-homogeneous’ situations, the conditions do
correspond. Thus if the autocorrelation function of f satisfies

C(0) — C(h) = ch*~

it is not unreasonable to expect the box dimension of graph f to equal s.
The autocorrelation function is closely connected with the power spectrum
of f, defined by

2

(11.15)

1
S(w) = lim —
(@)= h T

T—wo

T
f fyetedt

-T

For functions with any degree of long-term regularity, S(w) is likely to exist.
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The power spectrum reflects the strength of the frequency w in the harmonic
decomposition of f.

We show that the power spectrum is the Fourier transform of the autocorrela-
tion function. By working with f(t) — f we may assume that f has zero mean.
Let f1(f) be given by f(¢) if |t] < T and be 0 otherwise, and define

Crlh) = 2—1T- f " Fa W (0 de

1
=57 r*/r(=h

where f 7 () = fr( —t) and = denotes convolution. By the convolution theorem
for Fourier transforms (see Section 4.4) this equation transforms to

A 1A .
Crlw) = ﬁf;(w)fr(w)

_v1~ 7 2
—2Tlfr(w)|

where Cr()=[*_Cr)e"dt and fr(w)=[®_fr()e*°dt are the usual
Fourier transforms. (Note that we cannot work with the transform of f itself,
since the integral would diverge.) Letting 7 co we see that Cp(h)— C(h) for
each h and Cp{w)— S(w) for each w. It may be shown that this implies that

C(w) = S(w).

Clearly S and C are both real and even functions, so the transforms are cosine
transforms. Thus

S(w) = j ) C(t)e"""dt=r C(t) cos (wt) dt (11.16)

— o — o0

and, by the inversion formula for Fourier transforms,

C(h) = %r S(w)e™**dw = %I J _w S(w) cos (wh)dw. (11.17)

In this analysis we have not gone into questions of convergence of the integrals
oo carefully, but in most practical situations the argument can be justified.

Autocorrelations provide us with several methods of estimating the dimension
of the graph of a function or ‘signal’ f. We may compute the autocorrelation
function C(h) or equivalently, the mean-square change in signal in time h over
a long period, so from (11.13)

T
2[C(0) — C(h)] ~ 2_lf J (f(t + h) — f(1))? dt. (11.18)
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If the power-law behaviour
C(0) — C(h) ~ch*~ % (11.19)

is observed for small 4, we might expect the box dimension of graph f to be
s. In other words,

dimggraph f =2 — lim w (11.20)

h—0 2 lOg h

if this limit exists. We might then seek functions with graphs known to have
this dimension, such as those of Examples 113 and 11.4 or the fractional
Brownian functions of Section 16.2 to provide simulations of signals with similar
characteristics.

Alternatively, we can work from the power spectrum S(w) and use (11.17) to
find the autocorrelation function. We need to know about C(0) —C (h) for small
h; typically this depends on the behaviour of its transform S(w) when w is large.
The situation of greatest interest is when the power spectrum obeys a power
law S(w) ~ c/w* for large w, in which case

C(0)— C(h) ~bh*! (11.21)
for small A, for some constant b. To see this formally note that from (11.17)

7(C(0) — C(h)) = r S(w)(1 — cos (wh)) dw = 2 J ” S(w)sin? Gwh)do

0 o]
and taking S{w) = w™* gives

o *sin? lohdo =h"" j u~“sin*3udu
o

4n(C(0) — C(h) = j
0
having substituted u = wh. It may be shown that (11.21) also holds if S is any
sufficiently smooth function such that S(w) ~ cw™*as w— oo. Comparing (11.19)
and (11.21) suggests that graph f has box dimension s where 4 —2s=a — 1, or
s =21(5—o). Thusitis reasonable to expect a signal with a 1/w® power spectrum
to have a graph of dimension 3(5 — ®).
In practice, curves of dimension 1(5 — «) often provide good simulations and
display similar characteristics to signals observed to have 1/w” power spectra.

11.3 Notes and references

The dimension of fractal graphs was first studied by Besicovitch and Ursell
(1937). For more recent work on Weierstrass-type curves see Berry and Lewis
(1980) (containing many computer drawings) and Mauldin and Williams {1986b).
Self-affine curves are discussed in Bedford (1989). The theory of autocorrelation
functions is given in most books on time series analysis, for example, Papoulis
(1962).
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Exercises

11.1  Verify that if f:[0,1]— R has a continuous derivative then graph f is a regular
1-set.

11.2 Let f,g:[0,1] - R be continuous functions and define the sum function f + g by
f + g)(_t) = f(t) + g(t} in the obvious way. Suppose that f is a Lipschitz function.
B_y setting up a Lipschitz mapping between graph (f + g) and graph g, show that
dimy graph (f + g) = dimy graph g, with a similar result for box dimensions.

11.3 Let f,g:[0,1] - R be continuous functions such that the box dimension of their
graphs exist. Use Proposition 11.1 to show that dimggraph(f + g) equals the
greater of dimggraph f and dimggraphg, provided that these dimensions are
unequal. Give an example to show that this proviso is necessary.

11.4 Show that. any function satisfying the conditions of Corollary 11.2(b) must be
nowhere differentiable. Deduce that the Weierstrass function of Example 11.3 and
the self-affine curves of Example 11.4, are nowhere differentiable.

11.5 For A>1and 1<s<2let f:[0,1]—- R be a Weierstrass function modified to
include ‘phases’ 0,:

fiy=3 A6~ D*sin (A1 + 6,).
k=1

Show that dimy graph f =s, provided that A is large enough.
11.6 Let g:R— R be the ‘zig-zag’ function of period 4 given by

t 0<t<l)
gldk +1)=< 2—t (1<t <3)
t—4 3<r<4)

where k is an integer and 0 <t<4. Let 1 <s<2and A>1 and let f:R—>R be
given by

=3 A= kg(akr)
k=1

Show that dimy graph f =s, provided that 4 is sufficiently large.

11.7 Suppose that the function f:[0,1]— R satisfies the Holder condition (11.2). Let
F be a subset of [0,1]. Obtain an estimate for dimy f(F) in terms of dimy F.

11.8 Let f:[0,1]— R be a function. Suppose that

b3 1
J j [1f@ — f@)? + e —u|*]"¥*drdu < o

0JO

for some s with 1 <s < 2. Show, using Theorem 4.13, that dimy graph f >s.

11.9 Let D be the unit square [0,1] x [0,1] and let f:D — R be a continuous function
such that

S —fMI<clx—yP™*  (x,yeD).
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Show that the surface {(x, f(x)):xeD} has box dimension at most s. Similarly,
find a surface analogue to part (b) of Corollary 11.2.

11.10 Investigate the graphs of Weierstrass-type functions (11.7) using a computer.
Examine the effect of varying s and A, and experiment with various functions g.

11.11 Write a computer program to draw self-affine curves given by (11.8). Investigate
the effect of varying the values of the c;.

Chapter 12 Examples from pure
mathematics

Fractal constructions have provided counterexamples, and sometimes solutions,
to a variety of problems where more regular constructions have failed. In this
chapter we look at several instances from differing areas of pure mathematics.

12.1 Duality and the Kakeya problem

The method of duality converts sets of points in the plane to sets of lines and
may be used to create new fractals from old. The techniques can be applied to
construct sets with particular properties; for example, to construct a plane set
of zero area that contains a line running in every direction.

For any point (a, b) of R?, we let L(a, b) denote the set of points on the line
y=a+ bx, see figure 12.1. If F is any subset of R? we define the line set L(F)
to be the union of the lines corresponding to the points of F, ie.
L(F)= w{L(a,b):(a,b)eF}. Writing L, for the vertical line x = ¢, we have

L(a,b)nL.=(c,a + bc) =(c,(a,b)(1,c)),
where ' is the usual scalar product in R?; thus for a subset F of R?
L(F)nL.={(c, (a,b)(1,¢)):(a,b)eF}.

Taking a scalar product with the vector (1, ¢) may be interpreted geometrically
as projecting onto the line in the direction of (1,¢) and stretching by a factor
(1 + ¢*)*2. Thus the set L{F)n L, is geometrically similar to proj, F, where proj,
denotes orthogonal projection onto the line through the origin at angle 8 with
¢ =tan#6. In particular,

dimy(L(F)n L,) = dimy (projs £) (12.1)
and
PUF)NL)=0

if and only if ZL(projy F)=0 (12.2)

where % denotes length. In this way, duality relates the projections of F (for
which we have the theory of Chapter 6) to the intersections of the line set L(F)
with vertical lines.

Projecting onto the y-axis also has an interpretation. The gradient of the line
L{a,b) is just b = proj,, (a,b), so, for any F, the set of gradients of the lines in
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Figure 12.1 The duality principle: (a) the point (a, b) corresponds to the line y= a + bx; (b) the
set F corresponds to the line set L {F); (c) the projection proj, F is geometrically similar to L(F)n L,
where c=tan6

the line set L(F) is given by proj,, F.

If F is a fractal its line set L(F) often has a fractal structure, albeit a highly
fibrous one. (In fact, L(F) need not be a Borel set if F is Borel, though it will
be if F is compact. We ignore the minor technical difficulties that this introduces.)
We have the following dimensional relationship.

Proposition 12.1
Let L(F) be the line set of a Borel set F < R%. Then

(@) dimy L(F) > min{2,1 +dimy F}, and
(b) if F is a 1-set then area(L(F)) =0 if and only if F is irregular.
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Proof.

(a) By the Projection theorem 6.1, dimy(proj, F)= min {1,dimy F} for
almost all 8¢[0, r), so from (12.1) dimy (L(F)n L) =min{1,dimy F} for
almost all — oo < ¢ < c0. Part (a) now foliows from Corollary 7.10.

(b) Let F be a 1-set. Corollary 6.5 tells us that if F is irregular then
L(projy F) =0 for almost all 8, otherwise £ (proj, F) > 0 for almost all
6. Using (12.2) we get the dual statement that if F is irregular then
L(IF)n L) =0 for almost all ¢, otherwise ZL(L(F)nL,) >0 for almost
all ¢. Since area(L(F)) = _f"_"w L(L(F)n L.)dc, part (b) follows. O

In 1917 Kakeya posed the problem of finding the plane set of least area inside
which a unit line segment could be reversed, i.e. manoeuvred continuously and
without leaving the set to reach its original position but rotated through 180°.
Essentially, this problem reduces to that of finding the smaliest region that
contains a unit line segment in every direction; certainly any set in which a
segment can be reversed must have this property. By 1928 Besicovitch had
found a surprising construction of a set of arbitrarily small area inside which
a unit segment could be reversed. Only many years later did he realize that the
method of duality gave a short and elegant solution to the problem.

Proposition 12.2

There is a plane set of zero area which contains a line in every direction. Any
Borel set with this property must have Hausdorff dimension 2.

Proof. Let F be any irregular 1-set such that the projection of F onto the y-axis,
proj,,, F, contains the interval [0,1]. (The set examined in Examples 2.6 and
6.7 certainly meets this requirement.) Since F is irregular, L(F) has zero area,
by Proposition 12.1(b). However, since [0, 1] < proj,, F, the set L(F) contains
lines that cut the x-axis at ali angles between 0 and n/4. Taking L(F), together
with copies rotated through n/4, n/2 and 3n/4, gives a set of area 0 containing
a line in every direction.
For the second part, suppose that E contains a line in every direction. If

F={(a,b):L(a,byc E}

then proj,, F is the entire y-axis. Projection does not increase dimension (see
(6.1)), so dimy F > 1. By Proposition 12.1(a) dimy L(F)=2; since L(F)c E it
follows that dimy E = 2. 0

Sets of this type provide important examples in functional analysis. Given a
function g: R? — R, write G(0, t) for the integral of g along the line making angle
6 with the x-axis and perpendicular distance t from the origin. Let F be a set
of zero area containing a line in every direction, and let g(x, y)=11if (x, y) is a
point of F and g(x, y) = 0 otherwise. It is clear that G(6,t) is not continuous in
t for any fixed value of 6. This example becomes significant when contrasted
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with the 3-dimensional situation. If g: D — R is a bounded function on a bounded
domain D in R3, and G(6,t) is the integral of f over the plane perpendicular
to the unit vector 8 and perpendicular distance ¢ from the origin, it may be
shown that G(0,t) must be continuous in ¢ for almost all unit vectors 6.

The Kakeya construction may be thought of as a packing of lines in all
directions into a set of area zero. Similar problems may be considered for
packings of other collections of curves. For example, there are sets of zero area
that contain the circumference of a circle of every radius. However, it has recently
been shown that any set that contains some circle circumference centred at each
point in the plane necessarily has positive area.

12.2 Vitushkin’'s conjecture

A longstanding conjecture of Vitushkin in complex potential theory was recently
disproved using a fractal construction.

Let F be a compact subset of the complex plane. We say that F is a removable
set if, given any bounded open domain V containing F and any bounded analytic
(i.e. differentiable in the complex sense) function f on the complement V\F,
then f has an analytic extension to the whole of V. Thus the functions that are
bounded and analytic on V are essentially the same as those that are bounded
and analytic on V\F; removing F makes no difference.

The problem of providing a geometrical characterisation of removable sets
dates back many years. The removability, or otherwise, of F has been established
in the following cases:

Removable Not Removable

dim, F <1 dimy F > 1
0 < #!(F)< oo and F irregular 0 < #Y(F)< oo and F not irregular

This table should remind the reader of the projection theorems of Chapter 6.
According to Theorem 6.1 and Corollary 6.5, if dimy F < 1 or if F is an irregular
1-set then the projection proj, F has length 0 for almost all 6. On the other
hand, if dimy F > 1 or if F is a 1-set that is not irregular, proj, F has positive
length for almost all §. The apparent correspondence between removability and
almost all projections having length 0, together with a considerable amount of
further evidence in the delicate cases where dimy F =1 and #}(F) = oo, led to
Vitushkin’s conjecture: F is removable if and only if proj, F = 0 for almost all
6e[0, n).

A fractal construction shows that Vitushkin’s conjecture cannot be true. Let
V be an open domain in C and let ¢:V — ¢(V) be a conformal mapping (i.c.
analytic bijection) on ¥ that is not linear, so that straight lines are typically
mapped onto (non-straight) curves; V as the unit disc and ¢(z) = (z + 2)* would
certainly be suitable. It is possible to construct a compact subset F of V such
that proj, F has zero length for almost all 8 but proj, ¢(F) has positive length
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proj F D"Ojeds(/'_)

Figure 12.2 ¢ is an analytic mapping such that proj, £ has zero length for almost all 8 but proj, ¢ (F)
has pasitive length for almost all 0

for almost all 6. This may be achieved using a version of the ‘iterated Venetian
blind’ construction, outlined in the proof of Theorem 6.9—it may be shown
that the ‘slats’ can be arranged so that they generally miss straight lines in V,
but tend to intersect the inverse images under ¢ of straight lines in ¢(V) (see
figure 12.2). It follows that the property ‘proj, F has zero length for almost all
& is not invariant under conformal transformations, since it can hold for F but
not ¢(F). However, removability is conformally invariant since the function
[f(2) is analytic on ¢(V) (respectively on ¢(V\F)) if and only if f(¢(z)) is analytic
on V (respectively on V\F). Therefore, the property of having almost all
projections of zero length cannot be equivalent to removability.

One of the curious features of this particular argument is that it leaves us
none the wiser as to whether sets with almost all projections of zero length
must be removable or vice versa. All we can deduce is that both cannot be true.

Very recently, a non-removable set with almost all projections of zero length
has been obtained using an iterated construction. The converse is still
unresolved.

12.3 Convex surfaces

A continuous function f:R?— R is convex if

fOx+(A=2)y)ZAf(x)+(1 =) ()

for all x,yeR? and 0 <A< 1. Geometrically, if S={(x, f(x)):xeR?} is the
surface in R® representing the graph of f, then f is convex if the line segment
joining any two points of S lies in or below S.

A convex function f need not be particularly smooth—there may be points
where f is not differentiable. Dimension may be used to describe the size of
the set of such ‘singular’ points. If f is not differentiable at x then the surface
S supports more than one tangent plane at (x, f(x)). Notice that if P, and P,
are distinct tangent planes at (x, f(x)) then there is a continuum of tangent
planes through this point, namely those planes ‘between P, and P,’ that contain
the line P, N P,.
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Theorem 12.3

Let f:R*—R be a convex function. Then the set of points at which f is not
differentiable is contained in a countable union of rectifiable curves, so in particular
has Hausdorff dimension at most 1.

Proof. Without loss of generality, we may assume that the maximum value of
f is strictly negative. Let S be the surface given by the graph of f and let
g: R? - S be the ‘nearest point’ mapping, so that if xeR? then g(x) is that point
of S for which the distance |g(x) — x| is least. Convexity of f guarantees that
this point is unique. If x, yeR? then the angles of the (possibly skew) quadrilateral
x, g(x),g(¥), ¥ at g(x) and g(y) must both be at least 7/2; otherwise the segment
[g(x), g(y)] will contain a point on or below S that is nearer to x or y. It follows
that g is distance decreasing, i.e.

lg) —gI<lx—yl  (x,yeR?). (12.3)

If f fails to be differentiable at x, then S supports more than one tangent plane
at (x, f(x)). Thus g~ *(x, f(x)), the subset of the coordinate plane R* mapped to
this point by g, is the intersection of R? with the normals to the tangent planes
to S at (x, f(x)) and so contains a straight line segment. Let {L,,L,,...} be the
(countable) collection of line segments in R? with endpoints having rational
coordinates. If f is not differentiable at x then g~ Yx, f(x)) contains a segment
which must cut at least one of the L;. Thus if F = {(x, f(x)): fis not differentiable
at x} then | 2, g(L;) > F. Using (12.3) it follows that g(L) is either a point or
a rectifiable curve with #1(g(L;)) < length(L;) < oo; see (2.9). Then { J2 ,g(L))
is a countable union of rectifiable curves containing F, which in particular has
dimension at most 1.

Since |x — y| <|(x, f(x)) — (3, f(Y))| for x, ye R2, the set of points x at which

Figure 12.3 The "nearest point mapping’ gfrom [R? to a convex surface z= f{x) is distance decreasing
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f is non-differentiable is also of dimension at most 1 and is contained in a
countable collection of rectifiable curves; again see (2.9). ]

Hausdorff dimension has been used in various other ways to quantify the
irregularity of surfaces. For example, a convex surface may contain line

segments; however, the set of directions of such line segments may be shown
to have dimension at most 1.

12.4 Groups and rings of fractional dimension

A subset F of R is a subgroup of the real numbers under the operation of addition if

(i) OeF,
(i) x + yeF whenever xeF and yeF, and
(iif) — xeF whenever xeF.

The set F is a subring of R under addition and multiplication if, also,

(iv) xyeF whenever xeF and yeF.

There are many simple examples of such structures: the integers, the rationals
and the set of numbers {r+sﬁ:r,sel} are all subrings (and therefore
subgroups) of R. These examples are countable sets and therefore have

Hausdorff dimension 0. Do there exist subgroups and subrings of R of
Hausdorff dimension s if 0 <s < 1?7

It is relatively easy to modify the earlier Example 4.7 to obtain a subgroup
of any given dimension.

Example 12.4

F1:x O0<s<1. Let ny,n,,... be a rapidly increasing sequence of integers, say
with n,, ; > max {nf,3nl°}. For r=1,2,... let

F,={xeR:|x — p/m| <rn_ " for some integer p, for all k}

andlet F = )2 | F,. Thendimy F = s, and F is a subgroup of R under addition.

Calculation. F, is essentially the set of Example 4.7, so dimy F, = s for all r (it is
easy to see that the value of r does not affect the dimension). Taking a countable
union, dimy F=5s.

Clearly 0eF, < F. If x, yeF then x, yeF, for some r, noting that F,. < F, if
r = r'. Thus, for each k, there are integers p, ¢ such that

[x —p/m| <rn ' ly —a/ml <rn'5.
Adding,

Ix+y—(p+q)/m|<2rn '

so x + yeF,, « F. Clearly, if xeF, then — xeF,, so F satisfies conditions (i)—(1i)
above. O
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Subrings are rather harder to analyse. One geometrical approach depends
on estimating the dimension of the set of distances realized by a plane set. If
E is a subset of R?, we define the distance set of E by

D(Ey={|x—y|:x,yeE} = R.

Theorem 12.5
Let E = R? be a Borel set. Then
dimy D(E) > min{ 1, dimy E — 1. (12.4)

Note on proof. The potential theoretic proof of this theorem is a little complicated.
Fourier transforms and the convolution theorem are used to examine the circles
with centres in E that intersect E. It is unlikely that (12.4) is the best inequality
possible. O

Assuming this theorem, it is not difficult to show that there are no subrings
of dimension s if f <s< 1.

Theorem 12.6

Let F be a subring of R under addition and multiplication. Then, if F is a Borel
set, it is not possible to have L <dimy F < 1.

Proof. Using (x,y) coordinates in R2, if (x;,y;), (x3,¥,)6F x F < R?, then
(g, ¥1)— (X2, ¥2)12 = (x; — x,)® + (¥, — y»)*€F, since F is a subring. Thus, if
D*(F x F) denotes the set of squares of distances between points of F x F, we
have D*(F x F) c F. Since the mapping ¢t — ¢ preserves Hausdorff dimension
(see Exercise 2.5) we have
dimy F = dimy D?(F x F) = dimy D(F x F)

2 min{1, dimy(F x F)—1}

> min{1,2dimy F — 1}
using Theorem 12.5 and Product formula 7.2. This inequality is satisfied if and
only if dimy F =1 or dimy F < 3. O

It is an unsolved problem whether there exist (Borel) subrings of R of
dimension between § and 1, though it secems rather unlikely.
12.5 Notes and references
- More detailed accounts of the Kakeya problem and its variants are given in

Besicovitch (1963), Cunningham (1971, 1974) and Falconer (1985a). The dual
approach was introduced by Besicovitch (1964).
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For problems related to Vitushkin’s conjecture see Harin, Hrus¢év and
Nikol’skii (1984). The construction outlined is due to Mattila (1986), and the
recent counterexample is due to Jones and Murai (1988).

For a general introduction to convex geometry see Eggleston (1958). The
result given here is due to Anderson and Klee (1952). For more recent results
involving Hausdorff dimension and convexity see Dalla and Larman (1980).

Examples of groups of fractional dimension were given by Erdés and
Volkmann (1966). They also raised the question of rings, which was addressed
by Falconer (1985c).

Exercises

12.1 Construct a plane set of zero area that contains a line at every perpendicular
distance from the origin between 0 and 1. (Hint: consider the image of the set
obtained in Theorem 12.2 under the transformation (x, y) - (x{1 + y2)'/2, y).)

12.2 By transforming the set obtained in the previous exercise by the mapping given in
polar coordinates by (r,8)— (1/r, 6), show that there exists a plane set of zero area
that contains a circle of radius r for all r > 0.

12.3 Show that there is a subset of the plane of area 0 that contains a different straight
line through every point on the x-axis.

124 Let A4 be a (Borel) subset of [0, 7). Let F be a subset of the plane that contains a
line running in direction 6 for every e A. Show that dimy F > 1 + dimy A.

12.5 Dualize Theorem 6.9 to show that any Borel set of finite area 2 may be completely
covered by a collection of straight lines of total area a.

12.6 Show that if a compact subset F of C supports a mass distribution p such that
f(@)=fp(z—w) ' du(w) is bounded then F is not removable in the sense of
Section 12.2. Show that this is the case if 1 <dimy F < 2. (Hint: see the proof of
Theorem 4.13(b).)

12.7 Let f:R— R be a convex function. Show that the set of points at which f is not
differentiable is finite or countable.

12.8 Show that any subgroup of R under addition has box dimension 0 or 1.



Chapter 13 Dynamical systems

Recently, there has been an explosion of interest in dynamical systems. This is
largely due to the availability of powerful computers, which has allowed
theoretical analysis to proceed alongside numerical investigation. It is also partly
because of the advent of ‘topological’ methods for studying the qualitative
behaviour of systems, such methods augmenting the more traditional
quantitative approach. The subject is receiving impetus from an increasingly
diverse range of applications—dynamical systems are now used to model
phenomena in biology, geography and economics as well as in the traditional
disciplines of engineering and physics. Volumes have been written on dynamical
systems and chaos. We make no attempt to provide a general account, which
would require excursions into ergodic theory, bifurcation theory and many
other areas, but we illustrate various ways in which fractals can occur in
dynamical systems.

Let D be a subset of R" (often R" itself), and let f:D— D be a continuous
mapping. As usual, f* denotes the kth iterate of f, so that f°(x) = x, f1(x) = f(x),
L3(x) = f(f(x)), etc.; note that f*(x) is in D for all k if x is a point of D. Typically,
X, f(x), f3(x),... are the values of some quantity at times 0,1,2,.... Thus the
value at time k + 1 is given in terms of the value at k by the function f. Examples
include biological populations, the value of an investment subject to certain
interest and tax conditions, and the position of a fluid particle in a steady flow.

An iterative scheme {f*} is called a discrete dynamical system. We are
interested in the behaviour of the sequence of iterates, or orbits, { f*(x)}-, for
various initial points xeD, particularly for large k. For example, if f(x) = cos x,
the sequence f*(x) converges to 0.739 as k— oo for any initial x: try pressing
the cosine button on a calculator repeatedly and see! Sometimes the distribution
of iterates appears almost random. Alternatively, f*(x) may converge to a fixed
point w, i.e. a point of D with f(w) = w. More generally, f*(x) may converge to
an orbit of period-p points {w, f(w),..., f?~'(w)}, where p is the least positive
integer with f?(w) = w, in the sense that | f*(x) — f{(w)| — 0 as k —» co. Sometimes,
however, f*(x) may appear to move about at random, but always remaining
close to a certain set, which may be a fractal. In this chapter we examine several
ways in which such ‘fractal attractors’ or ‘strange attractors’ can occur.

Roughly speaking, an attractor is a set to which all nearby orbits converge.
However, as frequently happens in dynamical systems theory, the precise
definition varies between authors. We shall call a subset F of D an attractor
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for f if F is a closed set that a invariant under f (i.e. f(F)=F) such that the
distance from f*(x) to F converges to zero as k tends to infinity for all x in an
open set V containing F. The set V is called the basin of attraction of F. It is
usual to require that F is minimal in the sense that it has no proper subset
satisfying these conditions. Similarly, a closed invariant set F from which all
nearby points not in F are iterated away is called a repeller; this is roughly
equivalent to F being an ‘attractor’ for the (perhaps multivalued) inverse f 1.
An attractor or repeller may just be a single point or a period-p orbit. However,
even relatively simple maps f can have fractal attractors.

Note that the set F =}, f*(D)is invariant under f. Since f*(x)e( -, /(D)
for any xeD, the iterates f*(x) approach F as k— oo, and F is often an attractor
of f.

Very often, if f has a fractal attractor or repeller F, then f exhibits ‘chaotic’
behaviour on F. There are various definitions of chaos; f would certainly be
regarded as chaotic on F if the following are all true.

(i) The orbit { f*(x)} is dense in F for some xeF.

(i)) The periodic points of f in F (points for which f?(x) = x for some positive
integer p) are dense in F.

(iii) f has sensitive dependence on initial conditions; that is, there is a number
4 >0 such that for any x in F there are points y in F arbitrarily close
to x such that | f*(x) — f*(y)] = 6 for some k. Thus points that are initially
close to each other do not remain close under iterates of f.

Condition (i) implies that F cannot be decomposed into smaller closed invariant
sets, (ii) suggests a skeleton of regularity in the structure of F, and (iii) reflects
the unpredictability of iterates of points on F. In particular, (iii) implies that
accurate long-term numerical approximation to orbits of f is impossible. Often
conditions that give rise to fractal attractors also lead to chaotic behaviour.

Dynamical systems are naturally suited to computer investigation. Roughly
speaking, attractors are the sets that are seen when orbits are plotted on a
computer. For some initial point x one plots the iterates f*(x) for k > 100, say,
on the assumption that they are indistinguishable from any attractor. If an
attractor appears fractal, a ‘box-counting’ method can be used to estimate its
dimension. However, computer pictures can be misleading, in that the
distribution of f*(x) across an attractor can be very uneven, with certain parts
of the attractor visited very rarely.

13.1 Repellers and iterated function schemes

Under certain circumstances, a repeller in a dynamical system concides with
the invariant set of a related iterated function scheme. This is best seen by an
example. The mapping f:R— R given by

fxy=3(1—{2x—1])
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Fx) =301-12x-1D

0.5 1

Figure 13.1 The tent map f. Notice that the middle third Cantor set F is mapped onto itse.lf by f
and is an invariant repeller. Notice, also, the chaotic nature of fon F. the iterates of a point are
indicated by the arrows

is called the tent map because of the form of its graph; see figure 13.1. Clearly,
f maps R in a two-to-one manner onto (— o0, 3). Defining S,,S,:{0,1]1-[0,1]
by

Si(x)=3x S,(x)=1—3x
we see that
O<x<)

F81(x)) = f(S2(x)) = x

Thus S, and S, are the two branches of f~ ! Since S, and S, are contractions

on [0, 1] Theorem 9.1 implies that there is a unique compact invariant set F
satisfying

F = S§,(F)uS,(F) (13.1)

which is given by F = ()2 ,S¥[0,1]) (writing S(E) = S;(E)u S,(E) for any set
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E). It is easy to see that F is the middle third Cantor set of Hausdorff and box
dimensions log 2/log 3.

It follows from (13.1) that f(F)= F. To see that f is a repeller, observe that
if x<O0 then f(x)<3x, so f¥(x)— —o0 as k—co. If x>1 then f(x)<0
and again f*(x)— — . If xe€[0,1]\F then for some k, we have x¢
u{S;,0-08,10,1]:i;= 1,2} so f*x)¢[0, 1], and again f*(x) > — oo as k— oo.
All points outside F are iterated to — co so F is a repeller.

With the notation of Section 9.1, the chaotic nature of /' on F is readily
apparent. Denoting the points of F by x; with i;=1,2, as in (9.7),
|xi|.iz,... in,iz,e.. Sil(xiz,ia,‘..)’ it
follows that f(x, ;, }=2x,, .Suppose that(i,i,,...}is an infinite sequence
with every finite sequence of Os and 1s appearing as a consecutive block of
terms; for example,

iz2,...
=X IS37F 0 iy =1, .. ig=i. Since x

0,1,0,0,0,1,1,0,1,1,0,0,0,0,0,1,...)

where the spacing is just to indicate the form of the sequence. Then, for
any point Xi i im F and any integer g, we may find k such that

(o iyse s b)) = (g 15e-or iy ) Thus f*(x, . Y=x, .. comes arbitrarily
close to each point of F for suitable large k, so that f has dense orbits in F.
Moreover, since x;, ;. , . is a periodic point of period k, the periodic
points of f are also dense in F. The iterates have sensitive dependence on initial
conditions, since f*(x;, , , )e[0,3Tbut f*(x; . , )e[3,1]. Weconclude
that F is a chaotic repeller for f. (The study of f by its effect on points of F
represented by sequences (i;,i,,...) is known as symbolic dynamics.)

In exactly the same way, the invariant sets of other iterated function scheme
correspond to repellers of functions. If S, ..., S, is a set of bijective contractions
on a domain D with invariant set F such that S,(F),..., S,(F) are disjoint, then
F is a repeller for any mapping f such that f(x)=S; '(x) when x is near
Si(F). Again, by examining the effect of f on the point x; ,, it may be shown
that f acts chaotically on F.

i2,...

13.2 The logistic map

The logistic map f:R— R is given by
fi(x)=Ax(1 —x) (13.2)

where A is a positive constant. This mapping was introduced to model the
population development of certain species—if the population is x at the end
of any year, it is assumed to be f,(x) at the end of the following year. Nowadays
the logistic map is studied intensively as an archetypal 1-dimensional dynamical
system. We content ourselves here with an analysis when 4 is large, and a briefl
discussion when A is small.

For a given 4>2+./Swritta=4—./1—1/iand | —a=4+ /1~ 1/ for
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the roots of f(x)=1. Each of the intervals [0,a] and [1—a,1] is mapped
bijectively onto [0,1] by f;. The mappings S;:[0,1]1—[0,a] and S,:[0,1]—

[1—a,1] given by
S, (x)=3~/5—x/4 Sy(x) =%+ /5k—x/4

are the restrictions of the inverse f;' to [0,a] and [l —a,1] with
S1(8,(x)) = f1(S2(x)) = x for each x in [0,1]. For i= 1,2 we have

t 1 -
|S3x)] = ﬁ(i —x/A)?
SO

1 1
SIS S =G -1/ 2 =124 - A7
A 1501 2,1(4 /A 2(4%/ )

if 0 < x < 1. By the mean-value theorem

1

zlx — ¥ <ISi(x) = S <32 /4 = 72| x -y O<x,y<1). (133)
Thus if A>2+ /5 the mappings S, and S, are contractions on [0, 1], so by
Theorem 9.1 there is a unique non-empty compact subset F of [0, 1] satisfying

F =S58,(F)uS,(F),

and it follows that f,(F)=F. Since this union is disjoint, F is totally
disconnected. In exactly the same way as for the tent map, F is a repeller, and
f is chaotic on F.

To estimate the dimension of F we proceed as in Example 9.8. Using
Theorem 9.6 and 9.7, it follows from (13.3) that

log2 . . T log?2
fog 4 < dimy F <dimg F <dimg F < Tog (A1 — PYE)

Thus, if 4 is large, the dimension of F is close to log 2/log 4.

For smaller values of 4, the dynamics of the logistic map (13.2) are subtle. If
0 < A< 4, the function f, maps [0, 1] into itself, and we can restrict attention
to the interval [0,1]. If x is a period-p point of f, i.e. f7(x)=x and p is the
least positive integer with this property, we say that x is stable or unstable
according to whether |(f?)(x)| < 1 or > 1. Stable periodic points attract nearby
orbits, unstable periodic points repel them. If 0 <A< 1, then f; has a fixed
point at 0 which is attractive, in the sense that f *{x)—0 for all xe[0,1]. For
1 < A < 3, the function f; has an unstable fixed point 0, and a stable fixed point
1—1/A, so f%(x)—1—1/2 for all xe(0,1). As 4 increases through the value
A, = 3, the fixed point at 1 — 1/4 becomes unstable, splitting into a stable orbit
of period 2 to which all but countably many points of (0, 1) are attracted (see
figure 13.2). When A reaches A, =1+ /6, the period-2 orbit becomes unstable
and is replaced by a stable period-4 orbit. As A is increased further, this period
doubling continues with a stable orbit of period 27 appearing at 1 =4, this
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r{x)

0 }

(0] X, X, i

Figure 13.2 The logistic map f{x} = Ax(1 — x) for 1=23.38. Note the period-2 orbit x;, x, with
fx)=x and f(x,) =x

orbit attracts all but countably many initial points in (0, 1). One of the surprising
features of this process is that the period doubling occurs more and more
frequently as 1 increases, and g— oo as A—1, where A,~3570. As 4
approaches 1, the repeated splitting of stable orbits of period 27 into nearby
stable orbits of period 22*! provides a sequence of attracting orbits which
approximate to a Cantor set; see figure 13.3. When A= 1, the attractor F
actually is a set of Cantor type. Then F is invariant under f;, with all except
a countable number of points of [0,1] approaching F under iteration by f,
(the exceptional points are those that iterate onto the unstable periodic orbitsio.
The effect of f,_ on F can be analysed by extrapolating from the periodic orbits
of f;, when g is large. There are dense orbits but no sensitive dependence
on initial conditions. It is possible to show that F is invariant in the sense of (9.1)
under a pair of contractions, and, using the method of Example 9.8, the
Hausdorff dimension may be estimated as 0.538.... A complete analysis of the
structure of this fractal attractor is beyond the scope of this book.

For A, < A <4 several types of behaviour occur. There is a set K such that
if AeK then f, has a truly chaotic attractor of positive length. Moreover, K
itself has positive Lebesgue measure. However, in the gaps or ‘windows’ of K,
period doubling again occurs. For example, when A~ 3.83 there is a stable
period-3 orbit; as A increases it splits first into a stable period-6 orbit, then into
a stable period-12 orbit, and so on. When A reaches about 3.855 the ‘limit’ of
these stable orbits gives a Cantor-like attractor. Similarly there are other
windows where period doubling commences with a 5-cycle, a 7-cycle and so on.

One of the most fascinating features of this subject is that the behaviour of
the logistic map as 1 increases is qualitatively the same as that of any family
of transformations of an interval f,;(x) = A f(x), provided that f is unimodal (i.e.



176

1.00r1

0.751

0.50r

0.257

0.00 -

N A3
Figure 13.3 For each A the iterates f*(x) are plotted for k between 150 and 300, for a suit:{ble
initial x. The intersection of the plot with vertical lines shows the periodic attractors for A<ig.
As 1 approaches 4, repeated splitting of the periodic orbits results in an attractor of Cantor-set
form at A=A,

has a single maximum). Although the values 4,,4,,... at which peripd dqublmg
occurs depend on f, the rate at which these values approach 1, is universal,
ie. A, — A ~cd* where §=4.6692... is the Feigenbaum constant and ¢
depends on f. Moreover, the Hausdorff dimension of the fractal att.ractor of
f,_is 0.538..., this same value occurring for any diff_erentlable apd ummoda! I

mMappings which have been used to model biological populations and which
exhibit similar features include the following:

fi(x) = Asinnx
(%)= xexp (1 —x)
fa(x)=x(1+ (1 = x))
£i(x) = Ax/(1 + ax)’.
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13.3 Stretching and folding transformations

One of the simplest planar dynamical systems with a fractal attractor is the
‘baker’s’ transformation, so-called because it resembles the process of repeatedly
stretching a piece of dough and folding it in two. Let E=[0,1] x [0, 1] be the
unit square. For fixed 0 < A < { we define the baker’s transformationf : E — E by

_ f(2x,4y) O<x<3)

This transformation may be thought of as stretching E into a 2 x A rectangle,
cutting it into two 1 x A rectangles and placing these above each other with a
gap of 3 — A in between; see figure 13.4. Then E, = f*(E)is a decreasing sequence
of sets, with E, comprising 2* horizontal strips of height A~* separated by gaps
of at least (3 — 2)A' . Since f(E,) = E,,,, the compact limit set F = (2., E,
satisfies f(F) = F. If (x, y)e E then f*(x, y)eE,, so f*(x, y) lies within distance 2%
of F. Thus all points of E are attracted to F under iteration by f.
If the initial point (x, y) has x =-a,qa,. .. in base 2, then it is easily checked that

(13.4)

fk(x,}’):('ak+1ak+z~~-,,Vk)

where y, is some point in the strip of E;, numbered a,a,_,...a, (base 2) counting
from the bottom. Thus when k is large the position of f*(x, y) depends largely
on the base-2 digits g; of x with i close to k. By choosing an x with base 2
expansion containing all finite sequences, we can arrange for f*(x, y) to be dense
in F for certain initial (x, y), just as in the case of the tent map.

Further analysis along these lines shows that f has sensitive dependence on

Figure 13.4 The baker’'s transformation: (a) its effect on the unit square; (#) its attractor
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initial conditions, and that the periodic points of f are dense in F, so that F
is a chaotic attractor for f. Certainly F is a fractal—it is the product [0,1] x F,,
where F, is a uniform Cantor set obtained by repeatedly replacing intervals [
by a pair of subintervals of lengths Al1\. Example 4.5 gives dimy I, = dimg F, =
log2/—log4, so dimy F =1+log2/— log A, using Corollary 7.6.

The baker's transformation is rather artificial, being piecewise linear and
discontinuous. However, it does serve to illustrate how the ‘stretching and
cutting’ procedure results in a fractal attractor.

The closely related process of ‘stretching and folding’ can occur for continuous
functions on plane regions. Let E=[0,1] x [0,1] and suppose that f maps E
in a one-to-one manner onto a horseshoe-shaped region f(E) contained in E.
Then f may be thought of as stretching E into a long thin rectangle which is
then bent in the middle. This figure is repeatedly stretched and bent by f so
that f*(E) consists of an increasing number of side-by-side strips; see figure 13.5.
We have E o f(E) > f*(E)> ---, and the compact set F = N\, f*(E) attracts
all points of E. Locally, F looks like the product of a Cantor set and an interval.

A variation on this construction gives a transformation with rather different
characteristics; see figure 13.6. If D is a plane domain containing the unit square

c d
£
b a' d c'
b (2) a
FE) FAE) F3(E)
(6

Figure 13.5 A horseshoe map. (a) The square E is transformed, by stretching and bending, to the
horseshoe F(£), with a, b, ¢, d mapped to @', ¥/, . d'. respectively. (b) The iterates of £ under f form
a set that is locally a product of a line segment and a Cantor set
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c d
£Fe) £
b a

® [
N FKE) nrXeE) F
k=1 k=0
(p)
Figure 13.6 An alternative horseshoe map. {a)} The square £ is transformed so that the ‘arch’

and ‘ends’ of f(E) lie outside £ (b) The sets ﬂf:| f~XF) and ﬂfzof"(f) are both products of a
Cantor set and a unit interval. Their intersection F is an unstable invariant set for f

E and f:D — D is such that f(E) is a horseshoe with ‘ends’ and ‘arch’ lying in
a part of D outside E that is never iterated back into E, then almost all points
of the square E (in the sense of plane measure) are eventually iterated outside
E by f. If f*(x, y)eE for all positive k, then (x, y)e();°, f ~*(E). With f suitably
defined, f ~*(E) consists of two horizontal bars across E, so (2. ,f "4E) is
the product of [0,1] and a Cantor set. The set F= ()= __ fYE)=
N ofMEYN (&S “ME) is compact and invariant for f, and is the
product of two Cantor sets. However, F is not an attractor, since points
arbitrarily close to F are iterated outside E.

A specific example of a ‘stretching and folding’ transformation is the Hénon
map f:R? - R?

fx,y)=(y+1-ax?bx) (13.5)

where a and b are constants. (The values a = 1.4 and b = 0.3 are usually chosen
for study. For these values there is a quadrilateral D for which f(D)< D to
wh.ich we can restrict attention.) This mapping has Jacobian —b for all (x, y),
$0 it contracts area at a constant rate throughout R?; to within a linear change
of coordinates, (13.5) is the most general quadratic mapping with this property.
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Area-preserving bend
(x,. 1) =x1—ax +y)

N

ZNS
/N

y o 1) = (- o)

]

Contraction in x direction
(Xz' Y2) = (bX,, Vi )

\/

X3

Figure 13.7 The Hénon map may be decomposed into an area-preserving bend, followed by a
contraction, followed by a reflection in the line y = x. The diagrams show the effect of these
successive transformations on a rectangle

The transformation (13.5) may be decomposed into an (area-preserving) bend,
a contraction, and a reflection, the net effect being ‘horseshoe-like’; see
figure 13.7. This leads us to expect f to have a fractal attractor, and this is
borne out by computer pictures. Detailed pictures show banding indicative of
a set that is locally the product of a line segment and a Cantor-like set. Numerical
estimates suggest that the attractor has box dimension of about 1.26 when

=14 and b=03.

Precise analysis of the Hénon map is quite difficult, and its dynamics are still
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Figure 13.8 Iterates of a point under the Hénon map (13.5) showing the form of the attractor. In
(b). a magnification of the square in (a). banding is becoming apparent

not fully understood. In particular the qualitative changes in behaviour
(bifurcations) that occur as a and b vary are highly complex.

Many other types of ‘stretching and folding’ are possible. Transformations
can fold several times or even be many-to-one; for example the ends of a
horseshoe might cross. Such transformations often have fractal attractors, but
their analysis tends to be difficult.
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13.4 The solenoid

Our next example is of a transformation of a 3-dimensional region—a solid
torus. If a unit disc B is rotated through 360° about an axis L in the plane of,
but not intersecting, B, a solid torus D is swept out. The torus D may be thought
of as the product of the circle C, of radius r > 1, obtained by rotating the centre
of B around L, and B. This gives a convenient parametrization of D as

{(¢,w)eC x B:0 < ¢ <2m,|w|< 1}

where the angle ¢ specifies a point on C, and where w is a position vector
relative to the centre of B; see figure 13.9.
Fix 0 <a <1 and define f:D—D by

f(¢,w) = (2¢(mod 27), aw + 3 &) (13.6)

where ¢ is the unit vector in B at angle ¢ to the outwards axis. Then f mapsD
onto a solid tube of radius a that traverses D twice. Note that (¢,w) and
(¢ + m,w) are mapped to points in the same half-plane bounded by L. The
second iterate f2(D) is a tube of radius a® going round f(D) twice, so around
D four times; f3(D) traverses D eight times, and so on. The intersection
F =, fD)is highly fibrous—locally it looks like a bundle of line segments
that cut any cross section of D in a Cantor-like set. The set F, called a solenoid,
is invariant under f, and attracts all points of D.

We may find the dimension of F by routine methods. Let P, be the half-plane
bounded by L and cutting C at ¢. Observe that f*(C) is a smooth closed curve
traversing the torus 2* times, with total length at most 2c where ¢ is independent
of k (f¥(C) cannot oscillate too wildly—the angle between every curve f k()
and every half-plane P, has a positive lower bound). The set f k(D) is a ‘fattening’
of the curve f*(C) to a tube of radius d, so it may be covered by a collection
of balls of radius 2a* spaced at intervals of a* along f*(C). Clearly 2 x 2*ca™*

Figure 13.9 Parametrization of the torus J
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(¥72]

(6)

Figure 13.10 The solenoid. (a) The torus U and its image under £. (6} A plane section through 0
intersects £ in a Cantor-like set

balls will suffice, so in the usual way we get dimy, F < dimg F < s and #5(F) < o0
fors=1+1log2/—loga.

To get a lower estimate for the dimension, we examine the sections FN P,
for each ¢. The set f(D)nP, consists of two discs of radius a situated
diametrically opposite each other with centres 1 apart inside D~ P,. Each of
these discs contains two discs of f2(D)n P, of radius a? and with centres 1a
apart, and so on. We may place a mass distribution y on Fn P, in such a way
that each of the 2* discs of f*(D)n P, has mass 27* If U < P, satisfies

ak(%— 20) < | Ul < ak"l(_lz_ . 2(1)
then U intersects at most one the discs of f¥D)n P 5 SO
,U(U) < 2—k — ak(logl/—loga) < ¢ | U‘lOEZI—loga

where ¢, is independent of | U |. It follows from the Mass distribution principle 4.2
that

log2/—1 —
HBTIBAE AP > o]

Since F is built up from sections FnP, (0 < ¢ <2n), a higher-dimensional
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modification of Proposition 7.9 implies that #°(F)>0, where s= 14
log 2/ — log a. We conclude that dimy F = dimg F =, and that 0 < J#%(F) < c0.

If ¢/2n=0-a,a,... to base 2, it follows from (13.6) that ¥, w) = (s, v5)
where ¢,/2n=0-a,, ,a,,,-.. and where the integer with base-2 representation
A0 1 -G _q+, determines which of the 24 discs of f4(D)N P, the point v, belongs
to. Just as in previous examples, suitable choice of the digits a,,4a,,... leads to
initial points (¢, w) with f*(¢, w) dense in F, or alternatively to periodic orbits,
so that f is chaotic on F.

13.5 Continuous dynamical systems

A discrete dynamical system may be thought of as a formula relating the value
of a quantity at successive discrete time intervals. If the time interval is allowed
to tend to 0, then the formula becomes a differential equation in the usual way.
Thus it is natural to regard an autonomous (time-independent) differential
equation as a continuous dynamical system.

Let D be a domain in R" and let f:D—R" be a smooth function. The
differential equation

#(t) = dx/dt = f(x) (13.7)

has a family of solution curves or trajectories which fill D. If an initial point x(0)
is given, the solution x(t) remains on the unique trajectory that passes through
x(0) for all time ¢; the behaviour of x(t) as t — + oo may be found by following
the trajectory. Given reasonable conditions on f, no two trajctories Cross;
otherwise the equations (13.7) would not determine the motion of x. Moreover,
the trajectories vary smoothly across D except at points where x(t) =f(x)=0
and the trajectories are single points.

As in the discrete case, continuous dynamical systems give rise to attractors
and repellers. A closed subset F of D might be termed an attractor with basin
of attraction V containing F if, for all initial points x(0) in the open set V, the
trajectory x(t) through x(0) approaches F as ¢ tends to infinity. Of course, we
require F to be invariant, so that if x(0) is a point of F then x(¢) is in F for
— o <t < oo implying that F is a union of trajectories. We also require F to
be minimal, in the sense that there is some point x(0) such that x(t) isdensein F.

When D is a plane domain, the range of attractors for continuous systems
is rather limited. The only attractors possible are isolated points (x for which
f(x) =0 in (13.7)) or closed loops. More complicated attractors cannot occur.
To demonstrate this, suppose that x(t) is a dense trajectory in an attractor and
that for t near ¢, it runs close to, but distinct from, its path when ¢ is near t,.
Since the trajectories vary smoothly, the directions of x(t) at t, and t, are almost
parallel (see figure 13.11). Thus for t>1, the trajectory x(t) is ‘blocked’ from
- ever getting too close to x(t;) so that x(t,) cannot in fact be a point on an
attractor. (The precise formulation of- this fact is known as the Poincaré—
Bendixson theorem.)
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Figure 13.11 A trajectory of a continuous dynamical system in the plane. Assuming that the

trfajectories vary smoothly, the trajectory shown is “cut off* from returning too close to x(1,) any time
after

Consequently, to find continuous dynamical systems with fractal attractors
we need to look at systems in 3 or more dimensions. Linear differential equations
(with f(x) a linear function of x in (13.7)) can be solved completely by classical
methods, the solutions involving periodic or exponential terms. However, even
simple non-linear terms can lead to trajectories of a highly intricate from.
Non-linear differential equations, particularly in higher dimensions, are
notoriously difficult to analyse, and present knowledge stems from a
combination of qualitative mathematical analysis and numerical study. One
standard approach is to reduce a 3-dimensional continuous system to a
2-dimensional discrete system by looking at plane ‘cross sections’. If P is a plane
region transverse to the trajectories, we may define the ‘first return’ mapg: P — P
by taking g(x) as the point at which the trajectory through x next intersects P;
see figure 13.12. Then g 1s a discrete dynamical system on P. If g has an attractor
E in P it follows that the union of trajectories through the points of E is an
attractor F of f. Locally F looks like a product of E and a line segment, and
typically dimy F = 1 4+ dimy E, by a variation on Corollary 7.4.

Perhaps the best known example of a continuous dynamical system with a

Figure 13.12 A continuous dynamical system in R® induces a discrete dynamical system on the plane
P by the ‘first return’ map g
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Cool upper boundary

Warm lower boundary

Figure 13.13 The Lorenz equations describe the behaviour of one of the rotating cylindrical rolls of
heat-conducting viscous fiuid

fractal attractor is the Lorenz system of equations. Lorenz studied thermal
convention of a horizontal layer of fluid heated from below: the warm fluid
may rise owing to its buoyancy and circulate in cylindrical rolls. Under certain
conditions these cells are a series of parallel rotating cylindrical rolls; see
figure 13.13. Lorenz used the continuity equation and Navier—Stokes equations
from fluid dynamics, together with the heat conduction equation to describe
the behaviour of one of these rolls. A series of approximations and simplifications
lead to the Lorenz equations

x=0(y—x)
)}zrx—y—xz (138)
zZ=xy— bz

The term x represents the rate of rotation of the cylinder, z represents the deviation
from a linear vertical temperature gradient, and y corresponds to the difference
in temperature at opposite sides of the cylinder. The constant ¢ is the Prandtl
number of the air (the Prandtl number involves the viscosity and thermal
conductivity), b depends on the width-to-height ratio of the layer, and r is a
control parameter representing the fixed temperature difference between the
bottom and top of the system. The non-linearity in the second and third
equations results from the non-linearity of the equations of flow.

Working in (x, y, z)-space, the first thing to notice is that the system (13.8)
contracts volumes at a constant rate. The differences in velocity between pairs
of opposite faces of a small coordinate box of side J are approximately
8(0%/dx), 8(dy/dy), 8(02/dz), so the rate of change of volume of the box is
53((8%/0x) + (8y/8y) + (82/9z)) = — (0 + b + 1)8* <0. Nevertheless, with ¢ =
10, b=%, r=28 (the values usually chosen for study) the trajectories are
concentrated onto an attractor of a highly complex form. This Lorenz attractor
consists of two ‘discs’ each made up of spiralling trajectories (figure 13.14).
Certain trajectories leave each of the discs almost perpendicularly and flow into
the other disc. If a trajectory x(t) is computed, the following behaviour is typical.
As ¢ increases, x(t) circles around one of the discs a number of times and then
‘flips’ over to the other disc. After a few loops round this second disc, it flips
back to the original disc. This pattern continues, with an apparently random
number of circuits before leaving each disc. The motion seems to be chaotic;
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Figure 13.14 A view of the Lorenz attractor for ¢ = 10, b= -g r=28. Note the spiralling round the
two discs and the "jumps’ from one disc to the other

in particular points that are initially close together soon have completely different
patterns of residence in the two discs of the attractor. One interpretation of
this sensitive dependence on initial conditions is that long-term weather
prediction is impossible.

The Lorenz attractor appears to be a fractal with numerical estimates
suggesting a dimension of 2.06 when ¢ =10, b =&, r = 28.

. . . 3
Other systems of differential equations also have fractal attractors. The

Figure 13.15 A view of the Rssler band attractor for a= 0.375, b =2, ¢ = 4. Note the banding.
suggestive of a set that is locally the product of a Cantor set and a line segment
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equations
X=—y—z
y=x+ay
z=b+z(x—c)

were studied by Rossler. Fixing b =2, ¢ =4, say, the nature of the attractor
changes as a is varied. When a is small the attractor is a simple closed curve,
but on increasing a this splits into a double loop, then a quadruple loop, and
so on. Thus a type of period doubling takes place, and when a reaches about
0.375 there is a fractal attractor in the form of a band (figure 13.15). The band
has a twist in it, rather like a Mobius strip.

At present, each continuous dynamical system must be studied individually;
there is little general theory available. Attractors of continuous systems are well
suited to computer study, and mathematicians are frequently challenged to
explain ‘strange’ attractors that are observed on computer screens.

+13.6 Small divisor theory

There are a number of important dynamical systems dependent on a parameter
w, which are, in some sense, stable provided that w is ‘not too close to a rational
number’, in other words if w is badly approximable in the sense of Section 10.3.
By Jarnik’s theorem 10.3 the well-approximable numbers are fractal sets, so
the stable parameters lie in sets with fractal complement.

The following simple example indicates how badly approximable parameters
can result in stable systems.

Let C be the infinite cylinder of unit radius {(f, y):0<0 <2r, —c0 <y < o0}
Fix weR and define a discrete dynamical system f:C—C by

£(8,y) = (6 + 2w (mod 27), y). (13.9)

Clearly, f just rotates points on the cylinder through an angle 2zw, and the
circles y = constant are invariant under f. It is natural to ask if these invariant
curves are stable—if the transformation (13.9) is perturbed slightly, will the
cylinder still be covered by a family of invariant closed curves (figure 13.16)?
The surprising thing is that this depends on the nature of the number w: if @
is ‘sufficiently irrational’ then invariant curves remain.

We modify transformation (13.9) to

£(8,y) = (0 + 2nw (mod 27), y + g(6)) (13.10)

where g is a C® function (ie. has continuous derivatives of all orders). It is
easy to show, using integration by parts, that a function is C* if and only if
its Fourier coefficients a, converge to 0 faster than any power of k, ie. if

g0)= 3 a,e™
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(a) ()

Figure 13.16 (a) Invariant circles for the mapping f({6.y} = (6 + 2rw (mod 27), y). (b) If w is not

‘too r'ational', a small perturbation of the mapping to £(6. y) = (6 + 2ncw(mod 27), y + g(0)) distorts
the circles to a family of smooth invariant curves

is the Fourier series of g, then for every positive integer m there is a constant
¢ such that for k #0

la] <clk|™™.

Suppose that y(0) has Fourier series

y@)= ), bye™.
If y(6) is an invariant curve, the point (8 + 2nw (mod 2x), y(6) + g(#)) must lie
on the curve whenever (6, y(8)) does; hence

(0 + 2nw (mod 27)) = y(0) + g(0)
or

- ik(@+2 & i O
Z bk el ( nw) Z bk elkﬂ + Z a elkl)‘
— - -

Equating terms in e™*® we get that

aQy

by=—— (k #0)

eZuikw —1

with b, arbitrary if w is irrational. Thus the invariant curves are given by

a .
YO =bot T e (13.11)

ikw__l

provided that this Fourier series converges to a continuous function. This will
happen if the denominators €?™*® — 1 are not ‘too small too often’. Suppose
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that o is not a-well-approximable for some « > 2; see (10.4). Then there is a
constant ¢, such that

le?* — 1] > | ko]l = ¢, k[ ™

for all k £0, so

ay -1 |ak|
‘gc‘ el

<CC;1|k|_m—l+a

eZnikm -1

for some constant ¢ for each m. Thus if g is a C* function and o is not
a-well-approximable for some o > 2, the function y(6) given by (13.11)is C*, so
that f has a family of C* invariant curves. We saw in Theorem 10.3 that the
set of numbers that are a-well-approximable for all « > 2 has dimension 0, so
for ‘most’ @ the invariant curves are stable.

The above example is a special case of a much more general class of
transformations of the cylinder known as twist maps. Define f:C—C by

(8, y) = (0 + 2nw(y) (mod 27), y). (13.12)

Again the circles y = constant are invariant, but this time the angle of rotation
w(y) is allowed to vary smoothly with y. We perturb f to

£(8,y) = (6 + 2nw(y) + €h(0, y) (mod 27), y + eg(6, ) (13.13)

where h and g are smooth functions and ¢ is small, and ask if the invariant
curves round C are preserved. Moser’s twist theorem, a very deep result, rough_ly
says that the invariant circles y = constant of (13.12), for which w(y) = o, will
deform into differentiable closed invariant curves of (13.13) if ¢ is small enough,
provided that |[kw| = c,|k|”** for all k#0 for some constant c;. Thu§ the
exceptional set of frequencies w has dimension £, by Theorem 10.3. Typically
C is filled by invariant curves corresponding to badly approximable o, where
the motion is regular, and regions in between where the motion is chaotic. The
chaotic regions grow as & increases. '
Perhaps the most important application of small divisor theory is to.the
stability of Hamiltonian systems. Consider a 4-dimensional space parametrized
by (6,,0,,j1,j2)- A Hamiltonian function H(0,,65,j1.J2) determines a con-
servative (volume-preserving) dynamical system according to the differential

equations
6, =0H/9j, 0,=0H/dj,  j=—0H/30,
Thusif H®,,9,,j1,j2) = Hol(j1,j») is independent of 6, 6,, we get the solution

j,=—8H/d6,.

61=U)1t+cl 02=C()2t+C2 j1=C3 Ja=¢Cy

where w, and w, are angular frequencies (which may depend on jy, j») and
¢y,....C4 are constants. A trajectory of the system remains on the same
2-dimensional torus, (j,,j,) = constant, for all time; such tori are called invariant.

It is important to know whether such invariant tori are stable under small
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perturbations of the system. If the Hamiltonian is replaced by

Ho(j1,J2) +eH(64,0;,)1,j2)

where ¢ is small, do the trajectories of this new system stay on new invariant
tori expressible as (j},,) = constant, after a suitable coordinate transformation
01,05,j1,2)— (07,65, /,,>)? In other words, do the invariant tori of the original
system distort slightly to become invariant tori for the new system, or do they
break up altogether? The celebrated Kolmogorov—Arnold—Moser (KAM)
theorem gives an answer to this question—essentially a torus is stable under
sufficiently small perturbations provided that the frequency ratio w, /w, is badly
approximable by rationals; more precisely it is stable if for some ¢ > 0 we have
[(wy/@,) — (p/g)| = ¢/q*-° for all positive integers p,q. The set of numbers that
fails to satisfy this condition is a fractal of dimension % by Theorem 10.3, so,
in particular, almost all frequency ratios (in the sense of Lebesgue measure)
have tori that are stable under sufficiently small perturbations. (In fact, the
condition can be weakened to |(w,/w,) —(p/q)| = ¢/q* for any « > 2.)

There is some astronomical evidence for small divisor theory. For example,
the angular frequencies w of asteroids tend to avoid values for which the ratio
w/wy is close to p/q where q is a small integer, where w; is the angular frequency
of Jupiter, the main perturbing influence. On the assumptions that orbits in the
Solar System are stable (which, fortunately, seems to be the case) and that we
can consider a pair of orbiting bodies in isolation (a considerable
oversimplification), this avoidance of rational frequency ratios is predicted by
KAM theory.

+13.7 Liapounov exponents and entropies

So far we have looked at attractors of dynamical systems largely from a
geometric point of view. However, a dynamical system f provides a much richer
structure than a purely geometric one. In this section we outline some properties
of f that often go hand in hand with fractal attractors.

The concept of invariant measures is fundamental in dynamical systems
theory. A measure p on D is invariant for a mapping f:D - D if for every subset
A of D we have

u(f 1 A)) = w(A). (13.14)

We assume that g has been normalized so that u(D)=1. Any attractor F
supports at least one invariant measure: for x in the basin of attraction of F
and A a Borel set, write

.1
u(A)= lim —#{k:1 <k <mand f*(x)ed} (13.15)
for the proportion of iterates in 4. It may be shown using ergodic theory that
this limit exists and is the same for y-almost all points in the basin of attraction
under very general circumstances. Clearly, u(4Au B) = u(4) + u(B) if A and B



192

are disjoint, and f*(x)eA if and only if ¥ Y(x)ef " '(A), giving (13.14). The
measure (13.15) is concentrated on the set of points to which f k(x) comes
atbitrarily close infinitely often; thus y is supported by an attractor of f. The
measure p(A) reflects the proportion of the iterates that lie in 4, and may be
thought of as the distribution that is seen when a large number of iterates f k(x)
are plotted on a computer screen. As far as the size of an attractor is concerned,
it is often the dimension of the set occupied by the invariant measure p that is
relevant, rather than the entire attractor. With this in mind, we define the
Hausdorff dimension of a measure p for which u(D)=1 as

dim, p = inf{dimy, E: pu(E) = 1}. (13.16)

If u is supported by F then clearly dimyp < dimy4 F, but we may have strict
inequality; see Exercise 13.8. However, if there are numbers s > 0 and ¢ > 0 such
that for any set U

w(U)<clUF (13.17)

then the Mass distribution principle 4.2 implies that for any set E with 0 < u(E)
we have #*(E) > u(E)/c > 0, so that dimy E > s. Hence if (13.17) holds

dimy p=s. (13.18)

Once f is equipped with an invariant measure pu several other dynamical
constants may be defined. For convenience, we assume that D is a domain in
®R2 and f:D— D is differentiable. The derivative (f *Y(x) is a linear mapping;
we write a,(x) and b,(x) for the lengths of the major and minor semi-axes of
the ellipse (f*Y(x)(B) where B is the unit ball. Thus the image under f* of a
small ball of radius r and centre x approximates to an ellipse with semi-axes
of lengths ra,(x) and rb,(x). We define the Liapounov exponents as the average
logarithmic rate of growth with k of these semi-axes:

Ai(x)= lim ilogak(x) A,(x)= lim %log b, (x). (13.19)
k= o k—
Techniques from ergodic theory show that if p is invariant for f, these exponents
exist and have the same values A,, 4, for u-almost all x. Hence in a system with
an invariant measure, we refer to 2, and 1, as the Liapounov exponents of the
system. The Liapounov exponents represent the ‘average’ rates of expansion of
f.1f B is a disc of small radius r, then f*(B) will ‘typically’ be close to an ellipse
with semi-axes of lengths re*'* and re*?*; see figure 13.17.
A related dynamical idea is the entropy of a mapping f:D—D. Write

Vix,e k)= {yeD:|fi(x) — fi(y)| <efor 0<i<k} (13.20)

for the set of points with their first k iterates within ¢ of those of x. If u is an
invariant measure for f, we define the u-entropy of f as

h,(f)=lim lim <-—£logu(V(x,s, k))). (13.21)

e—0 k>
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Figure 13.17 The definition of the Liapounov exponents A, and i,

Under reasonable conditions, this limit exists and has a constant value for
u-almost a}l x. The entropy h,(f) reflects the rate at which nearby points spread
out unQer iteration by f, or alternatively, the amount of extra information about
an‘orbxt {f“(x)}>, that is gained from knowing the position of an additional
point on the orbit.

The }:)aker’s transformation (13.4) provides a simple illustration of these ideas
There is a natural invariant mass distribution y on the attractor F such that.
each qf the 2* strips of E, has mass 2% with this mass spread uniformly across
the width of the E. Just as in Example 4.3 we get that u(U)<c|UJ® where
s=1+ lqg2/(—log/1) so by (13.17) and (13.18) s < dimy u < dimy F = s.

The Liapounov exponents are also easily found. The derivative of (13.4) is

0 :| (except where

. 20 .
f(x,}’)=[0 l:l (provided x#1) so (f")'(x,y)z[i: 1

x = p/2* for non-negative integers p and k). Hence a,(x, y) = 2* and b, (x, y) = ¥
By (13.19) 4,(x.y)=log2, A,(x,)=log4 for u-agm()))gt all (x,y) : ;ﬁﬁ tﬁé
LlaPounov exponents of the system are 1, =log2 and 4, = log /. ,

Sl'nce f* stretches by a factor 2* horizontally and contracts by a factor A*
vertically, we get, using (13.20) and ignoring the ‘cutting’ effect of f, that
V((x,y),& k) is approximately a rectangle with sides 2 %¢ and &, WhiCi‘l has
u-measure approximately ¢527%, if (x, y)eF. Thus

h,(f)=lm lim ( 1 log(s‘2_")> =log2.
£+0 k— o0 k

The Hausdorﬂ" and box dimensions, Liapounov exponents and entropies of
an invariant measure of a given dynamical system can be estimated comput-
ationally or experimentally and are often useful when comparing different
systems. However, the very nature of these quantities suggests that they may
not be completely independent of each other. One relationship that has been
derfved rigorously applies to a smooth bijective transformation f on a
2-dimensional surface. If p is an invariant measure for f with Liapounov



194

exponents A, >0> 4, then

1 1
i =h — =] (13.22)
dimy 4 ,,(f)(l11 /12>
It is easily seen that the exponents calculated for the baker’s transformation
satisfy this formula. . .
The following conjectured relationship is known to hold in many cases; if f
is a plane transformation with attractor F and Liapounov exponents A>0>2,,
then

dimg F <1 —(1,/4,). (13.23)

An argument to support this runs as follows. Let N4(F) be the least number (?f
discs of radius & that can cover F. If {U,} are N(F) such discs, then f kF )_ is
covered by the N(F) sets f“(U;) which are approximately elliptical with
semi-axis lengths & exp(4,k) and dexp(4,k). These ellipses may be covered by
about exp((1, — 4,)k) discs of radii 6 exp(4,k). Hence

Néexp(lzk)(F) <exp((4; — A )k)N5(F)

O
; 10g Ny expiamF) _ log(exp((A; — A2)k)N4(F))
_log(Sexp(Ak) —log(dexp(ik))
(A — A2k + log N4(F)
T T k—logs

Letting k — o0 gives RBF <1—(4,/4,). The drawback with this argument .is
that it assumes that the Liapounov exponents are constant across the domain
D, which need not be the case. .

The relationship between these and other dynamical parameters is not yet
fully understood. However, it is clear that such concepts are closely interrelated
with the chaotic properties of f and the fractal nature of the attractor.

Recently, the theory of multifractal measures has been introduced to analyse
measures such as the invariant measures of dynamical systems. This is discussed
in Chapter 17.

13.8 Notes and references

The literature on dynamical systems is enormous and growing rapidly. The
books by Guckenheimer and Holmes (1983), Bergé, Pomeau and Vidal (1934),
Schuster (1984), Devaney (1986) and Thompson and Stewart (1986) provide
accounts of differing aspects at a fairly basic level; see also Ruelle (%980). The
collections of papers edited by Cvitanovi¢ (1984), Fischer and Smlt.h (1985),
Holden (1986), Barnsley and Demko (1986) and Bedford and ~Sw1ft (1988)
highlight a variety of relevant aspects. The dimension of attractors is considered
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by Farmer, Ott and Yorke (1983). Accounts of the logistic map are contained
in May (1976) and Devaney (1986). The horseshoe attractor was introduced in
the fundamental paper by Smale (1967) and the Hénon attractor in Hénon and
Pomeau (1976).

The book by Sparrow (1982) contains a full account of the Lorenz equations,
and the paper by Holden and Muhamad (1986) has pictures of attractors of a
variety of continuous dynamical systems.

The main theory and applications of small divisor theory are brought together
in the collected papers on Hamiltonian dynamical systems edited by MacKay
and Meiss (1987). For results relating Liapounov exponents to dimensions see
the papers by Young (1982) and by Frederickson, Kaplan, Yorke and Yorke
(1983) and those in Mayer Kress (1986).

Exercises

13.1 Find a fractal invariant set F for the ‘tent-like’ map f:R—R given by
S(x)=2(1 —|2x — 1]). Show that F is a repeller for f and that f is chaotic on F.

13.2 Investigate the iterates f%(x) of x in [0, 1] under the logistic mapping (13.2) for
various values of A and initial points x. Show that if the sequence of iterates
converges then it converges either to 0 or to 1 — 1/2. Show that if A =% then, for
all x in (0, 1), the iterates converge to 0, but that if A = 2 they converge to % Show
that if A =4, then there are infinitely many values of x in (0, 1) such that f° ';(x)
converges to 0, infinitely many x in (0, 1) for which f ';(x) converges to ‘%, and
infinitely many x in (0, 1) for which f%(x) does not converge. Use a programmable
calculator or computer to investigate the behaviour of the orbits for other values
of 1. Investigate other transformations listed at the end of Section 13.2 in a similar
way.

13.3 Inthe cases 1 =2 and A =4 it is possible to obtain a simple formula for the iterates
of the logistic map f, on [0, 1]. For a given x = x, we write x, = f4(x).

(1) Show that if =2 and a is chosen so that x = i(expa — 1), then the iterates
are given by x, = 3(exp(2*a) — 1).

(i) Show that if 1=4 and 0<a<1 is chosen so that x =sin?(ra), then
x, = sin*(2*na). By writing a = 0-a,a,... in binary form, show that f, has
an unstable orbit of period p for all positive integers p and also has a dense

orbit.
13.4  Consider the modified baker’s transformation f: E — E, where E is the unit square,
given by
(2x, Ay) O<x<)
fxy)= N
2x—1Lpuy+3 G<x<1)

where 0 < A, u <§. Show that there is a set F that attracts all points of E, and
find the Hausdorff dimension of F.

13.5 Consider the Hénon mapping (13.5) with a=14 and b=0.3. Show that the
quadrilateral D with vertices (1.32,0.133), (—1.33,042), (—~1.06, —0.5) and
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(1.245, —0.14) is mapped into itself by f. Use a computer to plot the iterates of
a typical point in D.

13.6 With notation as in Section 13.4 consider the transformation f of the solid torus
D given by

f(¢,w) = (3¢ (mod 2r), aw + 1 )

where 0 <a< ;‘3. Show that f has an attractor F of Hausdorff and box dimensions
equal to 1+ log3/—loga, and verify that f is chaotic on F.

137 Let g:R— R be differentiable, and let h:R*> —R? be given by

h(t,x) = (at, > ~*(x — g(t)))

where 1> 1 and 0 < s < 2. Show that graph f is a repeller for h, where f is the
function

=73 A= kg k),

k=0
Thus functions of Weierstrass type (see (11.7)) can occur as invariant sets in
dynamical systems.

138 Give an example of a mass distribution g on [0,1] for which dimy < dimy F,
where F is the support of u. (Hint: see Section 10.1.)

139 Consider the mapping f:E— E, where E is the unit square, given by
f(x,¥) = (x + y(mod 1), x 4 2y(mod 1}).

(This mapping has become known as Arnold’s cat map.) Show that plane Lebesgue
measure is invariant for f (ie. f is area preserving), and find the Liapounov
exponents of f.

13.10 Write a computer program that plots the orbits of a point x under iteration by
a mapping of a region in the plane. Use it to study the attractors of the baker’s
transformation, the Hénon mapping and experiment with other functions.

13.11 Write a computer program to draw trajectories of the Lorenz equations (13.8).
See how the trajectories change as o,r and b are varied. Do a similar study for
the Rossler equations.

Chapter 14 Iteration of complex
functions—Julia sets

Julia sets provide some of the most striking illustrations of how an apparently
simple process can lead to highly intricate sets. Functions on the complex plane
C as simple as f(z) = z? + ¢, with ¢ a constant, can give rise to fractals of an
exotic appearance—look ahead to figure 14.7.

Julia sets arise in connection with the iteration of a function of a complex
variable f, so are related to the dynamical systems discussed in the previous
chapter—in general a Julia set is a dynamical repeller. However, by specializing
to functions that are analytic on the complex plane (i.e. differentiable in the
sense that f(z) =lim _ ,(f(z + w) — f(2))/w exists as a complex number, where
z,weC) we can use the powerful techniques of complex variable theory to obtain
much more detailed information about the structure of such repelling sets.

14.1 General theory of Julia sets

For convenience of exposition, we take f:C — C to be a polynomial of degree
n>=2 with complex coefficients, f(z)=aq,+a,z+ --- + a,z". Note that with
minor modifications the theory remains true if f is a rational function
f(2) = p(z)/q(z) (where p,q are polynomials) on the extended complex plane
Cu {0}, and much of it holds if f is any meromorphic function (that is a
function that is analytic on Cu {co} except at a finite number of poles).

As usual we write f* for the k-fold composition fe---c f of the function f,
so that f%(w) is the kth iterate f(f(---(f(w)))) of w. As before, if f(w)=w we
call w a fixed point of f, and if f?(w)=w for some integer p>1 we call w a
periodic point of f; the least p such that fP(w)=w is called the period of w. We
call w, f(w),...,f?(w) a period p orbit. Let w be a periodic point of period p,
with (fPY(w) = A, where the prime denotes complex differentiation. The point
w is called

superattractive ifA=0
attractive fo<|il<1
mdifferent iflAj=1
repelling if|Al> 1.

The Julia set J(f) of f may be defined as the closure of the set of repelling
197
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periodic points of f. (We write J for J(f) when the function is clear) The
complement of the Julia set is called the Fatou set or stable set F(f). This
chapter investigates the geometry and fractal nature of the Julia sets of
polynomials. We show that J(f) is both forwards and backwards invariant
under f,ie.J = f(J) = f ~!(J), and that J is non-empty and compact. Moreover,
f behaves ‘chaotically’ on J, and J is usually a fractal.

For the simplest example, let f(z) = z2, so that f*(z) = z*". The points satisfying
fP(2) = z are {exp (2mig/(2° — 1)):0 < g < 27 — 2}, which are certainly repelling, since
|(f?)(z)| = 2 at such points. Thus the Julia set J(f) is the unit circle |z] = 1.
Clearly J = f(J)= f ~}(J), with fXz)—0 as k— o0 if |z| <1 and fYz)— oo if
|z| > 1, but with f*(z) remaining on J for all k if |z| = 1. The Julia set J is the
boundary between the sets of points which iterate to 0 and oo. Of course, in
this special case J is not a fractal.

Suppose that we modify this example slightly, taking f(z) = z2 4 c where ¢ is
a small complex number. It is easy to see that we still have f Kz)—»w if z is
small, where w is the fixed point of f close to 0, and that f k(z) > oo if z is large.
Again, the Julia set is the boundary between these two types of behaviour, but
it turns out that now J is a fractal curve; see figure 14.1.

To establish the basic properties of Julia sets we cannot avoid the idea of
normal families of analytic functions and Montel’s theorem.

«[Readers who wish to omit this quite technical work involving complex
variable theory should skip to Summary 14.12.]

Let U be an open set in C, and let g,: U — C be a family of complex analytic
functions (ie. functions differentiable on U in the complex sense). The family
{gx} is said to be normal on U if every sequence of functions selected from {9}
has a subsequence which converges uniformly on every compact subset of U,
either to a bounded analytic function or to co. Notice that by standard complex

T
N

e

4

N

(a) (5)

Figure 14.1 (a) The Julia set of f(z) = 2 is the circle |2/ =1, with the iterates f¥{z)—0 if z is

*inside J. and | FX(2)] — oo if zis outside J. () If fis perturbed to the function f{z) = 2%+ ¢ for
small ¢ this picture distorts slightly, with a curve Jseparating those points z for which 4z) converges
to the fixed point w of £ near 0 from those points zwith |F*(z)] - co. The curve J is now a fractal
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variable theory this means that the subsequence converges either to a finite
analytic function or to oo on each connected component of U. In the former
case the derivatives of the subsequence must converge to the derivative of the
limit function. The family {g,} is normal at the point w of U if there is some
open subset ¥V of U containing w such that {g,} is a normal family on V.
Observe that this is equivalent to there being a neighbourhood V of w on which
every sequence from {g,} has a subsequence uniformly convergent to a bounded
analytic function or to co.

The fundamental result on which the theory of Julia sets hangs is due to
Montel. This deep theorem asserts that non-normal families of functions take
all except possibly one complex value near every point.

Montel’s theorem 14.1

Let {g,} be a family of complex analytic functions on an open domain U. If {g,}
is not a normal family, then for all weC with at most one exception we have
9:(2) = w for some zeU and some k.

Proof. Consult the literature on complex function theory. O

We examine the normality of the iterates of a complex polynomial f. Define
Jo(f) = {zeC:the family {f*},., is not normal at z}. (14.1)

Using Montel’s theorem, we shall show that Jo(f) is the same as the closure
of the repelling periodic points, J(f). In fact (14.1) is often taken as the definition
of the Julia set. Although our definition of J(f) is intuitively more appealing,
Jo(f) is rather easier to work with, since complex variable techniques are more
readily applicable. We derive some basic properties of J,(f), with the eventual
aim of showing that J(f) = Jy(f)-

Observe that the complement

Fo(f)=C\Jo(S)
= {zeC such that there is an open set V with
zeV and {f*} normal on V} (14.2)

is trivially an open set.

Proposition 14.2
If f is a polynomial, then Jy(f) is compact.

Proof By the above remark Jo(f) has open complement, so is closed. Since f
is a polynomial of degree at least 2, we may find r such that |f(z)| > 2|z| if
|z| > r, implying that | f%z)| > 2% if |z| >r. Thus f*(z)— co uniformly on the
openset V = {z:|z| > r}. By definition, { /*} is normal on V¥, so that V < C\J (/).
Thus J,(f) is bounded, and so is compact. H|
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(Note that if f:Cu{co}—Cu{oo} is a rational function then J, must be
closed, but need not be bounded. Indeed, it is possible for J, to be the whole
complex plane; for example, if f(z)=((z — 2)/2)%)

Proposition 14.3
Jo(f) is non-empty.

Proof. Suppose Jo(f) = &. Then, for every r >0, the family {/*} is normal on
the open disc B2(0) with centre the origin and radius r (since the closed disc
B,(0) is compact, it may be covered by a finite number of open sets on which

* is normal). Since fis a polynomial, taking r large enough ensures that B2(0)
contains a point z for which |f *(z)]— oo and also contains a fixed point w of
f with f¥w) = w for all k. Thus it is impossible for any subsequence of {f*} to
converge uniformly either to a bounded function or to infinity on any compact
subset of B°(0) which contains both z and w, contradicting the normality of

{rfy. 0O

Proposition 14.4
Jo(f) is forward and backward invariant, e Jo=fUo)=f"'Jo)

Proof. We show, equivalently, that the complement F o(f) is invariant. Let V be
an open set with {f*} normal on V. Since f is continuous, f~'(V) is open. Let
{f*} be a subsequence of {*}. Then {f*“*'} has a subsequence {5} that
is uniformly convergent on compact subsets of V. Thus if D is a compact subset
of f~*(V), then {f %+1} is uniformly convergent on the compact set f(D), so
{f%} is uniformly convergent on D. Thus {f*} is normal on f~'(V), so
Fo < f~}(F,). The other inclusions required may be obtained in a similar way,
using that a polynomial f:C—C is an open mapping, i.e. that f(V) is open
whenever V is open. O

Proposition 14.5
Jo(f?) = Jo(f) for every positive integer p.

Proof. Again we work with the complement F,. Clearly, if every subsequence
of { f*} has a subsequence uniformly convergent on a given set, the same is true
of {f%},5,. Thus Fo(f) = Fo(f*).

If D is compact and {g,} is a family of functions uniformly convergent on D
either to a bounded function or to co, then the same is true of {hog,} for any
polynomial h. Thus if {f"},,, is normal on an open sct V,sois {f™*} sy
for r=0,1,...,p— 1. But any subsequence of {f*}x», contains an infinite
subsequence of {f7**"},> for some integer r with 0 <r < p— 1, which has a
subsequence that is uniformly convergent on compact subsets of V. Hence {f*}
is normal, so Fo(f) > Fo(f?). O
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' Our next result.tells us that f is ‘mixing’; that is, neighbourhoods of points
in J, are spread right across the complex plane by iterates of f.

Lemma 14.6

Let— f bewa pc:clynomial, let weJo(f) and let U be any neighbourhood of w. Then
W= U o.f ((,]) is the whole of C, except possibly for a single point. Any such
exceptional point is not in Jo(f), and is independent of w and U.

f"rqaf. By definition of J,, the family {/*} is not normal at w, so the first part
is immediate from Montel’s theorem 14.1.

Suppose v¢ W.If f(z) = v, then, since f(W) < W, it follows that z¢ W. As C\W
consists of at most one point, then z =v. Hence f is a polynomial of degree n
such that the only solution of f(z)—v=0 is v, which implies that
f(z2) — v=c(z — v)" for some constant c.

I'f z is sufficiently close to v, then f*(z) —v—0 as k— oo, convergence being
qnlform on, say, {z:]z—v| <(2c)” V™~ Y}, Thus { f*} is normal at v, so the excep-
t10t.1al point v¢Jo(f). Clearly v only depends on the polynomial f. (In fact, if W
omits a point v of C, then J o(f) is the circle centre v and radius ¢~ /= 1)) , 0

The following corollary is the basis of many com . .
t .
see page 215. y puter pictures of Julia sets;

Corollary 14.7

(@) The follc.»wing holds for all zeC with, at most, one exception: if U is an
0})? set intersecting Jo( f) then f ~*(z) intersects U for infinitely many values
of k.

(b) If zeJo(f) then Jo(f) is the closure of | ), f *(2).

Proof.

(a) Provided z is not the exceptional point of Lemma 14.6, ze f5(U) so f ~%(2)
intersects U for some k. Using this repeatedly we get an infinite sequence
of k with f¥z) intersecting U.

(b) If zeJo(f) then f~*(z) = Jo(f), by Property 14.4, so that { > , f %z) and
therefore, its closure is contained in the closed set Jy(f). (—)ln the othe;
hand, if U is an open set containing zeJ,(f), then f ~¥(z) intersects U for

some k, by part (a); z cannot be the exceptional i
Lemma 14.6. n| P point by

. ‘A;(mther immediate consequence of Lemma 14.6 is that J,(f) cannot be ‘too
thick’.

Corollary 14.8
If fis a polynomial, Jo(f) has empty interior. ‘ R
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Proof. Suppose Jo(f) contains an open set U. Then Jo(f) = f4(U) for ali k, by
Proposition 14.4,s0 Jo(f) 2 U . f4U). By Lemma 14.6 Jo(f) is all of C except
possibly for one point, contradicting Property 14.2, that J( f)is bounded. O

Proposition 14.9

Jo(f) is a perfect set (i.e. closed and with no isolated points) and is therefore
uncountable.

Proof. Let veJo(f) and let U be a neighbourhood of v. We must show that U
contains other points of Jo(f). We consider three cases separately.

(i) v is not a fixed or periodic point of f. By Corollary 14.7(b) and
Property 14.4, U contains a point of f () = Jo(f) for some k > 1, and this
point must be different from v.

(ii) f(v) =v. If f(z) = v has no solution other than v, then, just as in the proof
of Lemma 14.6, v¢Jo(f). Thus, there exists w#v with f(w)=v. By
Corollary 14.7(b), U contains a point of f ~¥(w) for some k > 1. Any such
point is in J4(f) by backward invariance and is distinct from v, since
fHv)=v.

(iii) fP(v)=v for some p>1. By Proposition 14.5, Jo(f)=Jo(f?), so by
applying (ii) to /7 we see that U contains points of Jo(f?) = Jo(f) other
than v.

Thus Jo(f) has no isolated points; since it is closed, it is perfect. O

We can now prove the main result of this section, that J o(f), the set of points
of non-normality of { f*} is exactly the same as J(f), the closure of the repelling
periodic points of f.

Theorem 14.10
If f is a polynomial, J(f) = Jo(f)-

Proof. Let w be a repelling periodic point of f of period p, so w is a repelling
fixed point of g = f?. Suppose that {g*} is normal at w; then w has an open
neighbourhood ¥ on which a subsequence {g*} coverges to a finite analytic
function g, (it cannot converge to co since g*(w) = w for all k). By a standard
result from complex analysis, the derivatives also converge, (g*Y(2) > gplz) if
ze V. However, by the chain rule, |(g“)(w)| = |(g'(w))¥| — oo since w is a repelling
fixed point and |g'(w)| > 1. This contradicts the finiteness of gi(w), so {g*} cannot
be normal at w. Thus weJ o(g) = Jo(f?) = Jo(/), by Proposition 14.5. Since Jo(f)
is closed, it follows that J(f) < Jo(f)-

Let K = {weJ,(f) such that there exists z # w with f(z)=w and f’(z) #0}.
Suppose that we K. Then there is an open neighbourhood ¥ of w on which we
may find a local analytic inverse ™1V C\V so that f(f Uz2)) =z for zeV
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(just choose values of f ~!(z) in a continuous manner). Define a family of analytic
functions {h,} on V by

k,

)= L=

(f7H2)—2)
Let U be any open neighbourhood of w with U < V. Since weJ o(f) the family { f k3
and thus, from the definition, the family {h,} is not normal on U. By Montel’s
theorem 14.1, h,(z) must take either the value O or 1 for some k and zeU. In
the first case fz)=z for some zeU; in the second case f¥z)=f"'(z) so
f**1(z) = z for some zeU. Thus U contains a periodic point of f, so weJ(f).

We have shown that K < J(f); taking closures K = J(f) = J(f). However, K
contains all of J,(f) except for a finite number of points. Since Jo(f) contains
no isolated points, by Property 14.9, Jo(f) = K < J(f), as required. ]

If w is an attractive fixed point of f, we write
Aw)= {ZGCka(Z)——»w as k— OO}

for the basin of attraction of w. We define the basin of attraction of infinity,
A(c0), in the same way. Since w is attractive, there is an open set V containing
win A(w) (if w = oo, we may take {z:|z| > r}, for sufficiently large r). This implies
that A(w) is open, since if f(z)e V for some k, then zef ~*(V'), which is open. The
following characterization of J as the boundary of any basin of attraction is
extremely useful in determining Julia sets. Recall the notation 0A4 for the
boundary of the set A.

Lemma 14.11

Let w be an attractive fixed point of f. Then dA(w) = J(f). The same is true if
w= 0.

Proof. If zeJ(f) then fXz)eJ(f) for all k so cannot converge to an attractive
fixed point, and z¢ A(w). However, if U is any neighbourhood of z, the set f HU)
contains points of A(w) for some k by Lemma 14.6, so there are points arbitrarily
close to z that iterate to w. Thus ze A(w) and so zedA(w).

Suppose zedA(w) but z¢J(f) = Jo(f). Then z has a connected open neighbour-
hood V on which { /*} has a subsequence convergent either to an analytic function
or to oo. The subsequence converges to w on V' A(w), which is open and
non-empty, and therefore on V, since an analytic function is constant on a
connected set if it is constant on any open subset. All points of ¥ are mapped
into A(w) by iterates of f, so V = A(w), contradicting that zedA(w). O

For an example of this lemma, recall the case f(z) = z2. The Julia set is the
unit circle, which is the boundary of both A(0) and A(co).
We collect together the main points of this section.
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Summary 14.12

The Julia set J(f) is the closure of the repelling periodic points of the polynomial
f. It is an uncountable compact set containing no isolated points and is invariant
under f and f 1. If zeJ (f), then J(f) is the closure of \ )., f ~*(2). The Julia
set is the boundary of the basin of attraction of each attractive fixed point of f,
including oo, and J(f) = J(f?) for each positive integer p.

Proof. This collects together the results of this section, using that J(f) = Jo(f). O

It is possible to discover a great deal more about the dynamics of f on the
Julia set. It may be shown that ‘f acts chaotically on J’ (see Chapter 13). Periodic
points of f are dense in J, by definition. On the other hand, J contains points
z with iterates f*(z) that are dense in J. Moreover, f has ‘sensitive dependence
on initial conditions’ on J; thus |f*(z) — f%w)| will be large for certain k
regardless of how close z,weJ are, making accurate computation of iterates
impossible.

14.2 Quadratic functions—the Mandelbrot set

We now specialize to the case of quadratic functions on C. We study Julia sets
of polynomials of the form

fly=z*+c (14.3)
This is not as restrictive as it first appears: if h(z) = az + (o #0) then

h™Y(f(h(2))) = (@*2% + 2aBz + B + ¢ — B)/a.

By choosing appropriate values of «, f and ¢ we can make this expression into
any quadratic function f that we please. Then h™ e f.oh=f,s0 h™'o fioh= f*
for all k. This means that the sequence of iterates {f*(z)} of a point z under f
is just the image under h™* of the sequence of iterates {f*(h(z))} of the point
h(z) under f.. The mapping h transforms the dynamical picture of f to that of
f.- In particular, z is a period-p point of f if and only if h(z) is a period-p point
of f.; thus the Julia set of f is the image under h™! of the Julia set of f.

The transformation h is called a conjugacy between f and f.. Any quadratic
function is conjugate to f, for some ¢, so by studying the Julia sets of f, for
ceC we effectively study the Julia sets of all quadratic polynomials. Since h is
a similarity transformation, the Julia set of any quadratic polynomial is
geometrically similar to that of f, for some ceC.

It should be borne in mind throughout this section that f !(z) takes two
distinct values + (z — c)!/?, called the two branches of f [ !(z), except when z = c.

- Thus if U is a small open set with c¢U, then the pre-image f'(U) has two
parts, both of which are mapped bijectively and smoothly by f, onto U.
We define the Mandelbrot set M to be the set of parameters ¢ for which the
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Figure 14.2 The Mandelbrot set M in the complex plane
Julia set of f, is connected
M = {ceC:J(f,) is connected }. (14.4)

At first, M appears to relate to one rather specific property of J(f,). In fact, as
we shall see, M contains an enormous amount of information about the structure
of Julia sets.

The definition (14.4) is awkward for computational purposes. We derive an
equivalent definition that is much more useful for determining whether a
parameter c lies in M and for investigating the extraordinarily intricate form
of M; see figure 14.2.

To do this, we first need to know a little about the effect of the transformation
f. on smooth curves. For brevity, we term a smooth (i.e. differentiable), closed,
simple (i.e. non-self-intersecting) curve in the complex plane a loop. We refer to
the parts of C inside and outside such a curve as the interior and exterior of

the loop. A figure of eight is a smooth closed curve with a single point of
self-intersection.

Lemma 14.13
Let C be a loop in the complex plane.

(@) If c is inside C then f~*(C) is a loop, with the inverse image of the interior
of C as the interior of f 7*(C).

(b) If c lies on C then 7 (C) is a figure of eight, such that the inverse image
of the interior of C is the interior of the two loops.
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Proof. Note that f.”'(z) =(z —¢)*/* and (f,"')(z) = 4z — ¢)™'/*, which is finite
and non-zero if z # ¢. Hence, if we select one of the two branches of /!, the
set 7 1(C) is locally a smooth curve, provided c¢C.

(a) Suppose c is inside C. Take an initial point w on C and choose one of
the two values for f'(w). Allowing f!(z) to vary continuously as z
moves around C, the point f !(z) traces out a smooth curve. When z
returns to w, however, f_!(w) takes its second value. As z traverses C
again, f !(z) continues on its smooth path, which closes as z returns to
w the second time. Since c¢C, we have 0¢ £ 1(C), so fi(z) #0 on f'(C).
Thus f, is locally a smooth bijective transformation near points on f LC).
In particular ze f [ *(C) cannot be a point of self-intersection of f~ L),
otherwise f.(z) would be at a self-intersection of C.

Since f, is a continuous function that maps the loop f~ 1(C) and no
other points onto the loop C, the polynomial f, must map the interior
and exterior of f7(C) into the interior and exterior of C respectively.
Hence /! maps the interior of C to the interior of f (C).

(b) This is proved in a similar way to (a), noting that if C is a smooth piece
of curve through c, then f*(C,) consists of two smooth pieces of curve
through 0 which cross at right angles, providing the self-intersection of
the figure of eight. O

We now obtain the alternative characterization of the Mandelbrot set in
terms of the iterates of f_.

Theorem 14.14
M = {ceC:{f*(0)},>, is bounded} (14.5)
={ceC:f*0) 4 oo as k> o0}. (14.6)

Proof. Since there is a number r such that | f.(z)] > 2|z| if |z} > r, it is clear that
S*(0)-4 o if and only if {f¥(0)} is bounded, so (14.5) and (14.6) are equal.

(@) We first show that if {f*(0)} is bounded then J(f,) is connected. Let C
be a large circle in C such that all the points {/*(0)} lie inside C, such
that f71(C) is interior to C and such that points outside C iterate to oo
under f*. Since ¢ = f,(0) is inside C, Lemma 14.13(a) gives that f~ HO)
is a loop contained in the interior of C. Also, f(c)= f 2(0) is inside C and
f7! maps the exterior of C onto the exterior of f THC), so c is inside
f7HC). Thus f7%(C) is a loop contained in the interior of f L.
Proceeding in this way, we see that {f*(C)} consists of a sequence of
loops, each containing the next in its interior (figure 14.3(a)). Let K denote
the closed set of points that are on or inside the loops k(C) for all k.
If zeC\K some iterate f(z) lies outside C and so f%(z)— co. Thus

A(o0)={z: f¥z)> o0 as k—oo}=C\K.
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Figure 14.3 Inverse iterates of a circle ¢ under £, illustrating the two parts of the proof of
Theorem 14.14: (a) c= — 0.3+ 0.3i; (b)) ¢= — 0.9 + 0.5i



208

By Lemma 14.11 J(f,) is the boundary of C\K which is, of course, the
same as the boundary of K. But K is the intersection of a decreasing
sequence of closed simply connected sets (i.e. sets that are connected and
have connected complement), so, by a simple topological argument, K is
simply connected and therefore has connected boundary. Thus J(f,) is
connected.

(b) The proof that J(f,) is not connected if {f¥(0)} is unbounded is fairly
similar. Let C be a large circle such that f*(C) is inside C, such that all
points outside C iterate to co, and such that for some p, the point
77 Y(c) = f2(0)eC with f*(0) inside or outside C according as to whether
k is less than or greater than p. Just as in the first part of the proof, we
construct a series of loops { /7 *(C)}, each containing the next in its interior
(figure 14.3(b)). However, the argument breaks down when we get to the
loop f17#(C), since cef!~?(C) and Lemma 14.13(a) does not apply. By
Lemma 14.13(b) we get that E =f ~?(C) is a figure of eight inside the loop
f177(C), with f, mapping the interior of each half of E onto the interior
of f177(C). The Julia set J(f.) must lie in the interior of the loops of E,
since other points iterate to infinity. Since J(f,) is invariant under f Jh
parts of it must be contained in each of the loops of E. Thus this figure
of eight E disconnects J(f,). O

The reason for considering iterates of the origin in (14.5) and (14.6) is that the
origin is the critical point of f, for each ¢, i.e. the point for which f(z) =0. The
critical points are the points where f, fails to be a local bijection—a property
that was crucial in distinguishing the two cases in the proof of Theorem 14. 14.

The equivalent definition of M provided by (14.5) is the basis of computer
pictures of the Mandelbrot set.

Choose numbers r,k,, both of the order of 100, say. For each ¢ compute
successive terms of the sequence {f*(0)} until either | f¥(0)| > r, in which case
¢ is deemed to be outside M, or k =k, in which case we take ce M. Repeating
this process for values of ¢ across a region enables a picture of M to be drawn.
Often colours are assigned to the complement of M according to the first integer
k such that | f¥(0)| > r.

Pictures of the Mandelbrot set (see figure 14.2) suggest that it has a highly
complicated form. It has certain obvious features: a main cardioid to which a
series of prominent circular ‘buds’ are attached. Each of these buds is surrounded
by further buds, and so on. However, this is not all. In addition, fine, branched
‘hairs’ grow outwards from the buds, and these hairs carry miniature copies of
the entire Mandelbrot set along their length. It is easy to miss these hairs in
computer pictures. However, accurate pictures suggest that M is'a connected
set, a fact that has been confirmed mathematically.

14.3 Julia sets of quadratic functions

In this section we will see a little of how the structure of the Julia set J(f)
changes as the parameter ¢ varies across the complex plane. In particular, the
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significance of the various parts of the Mandelbrot set will start to become
apparent.

The attractive periodic points of f, are crucial to the form of J(f.). It may
be shown (see Exercise 14.8) that if w # co is an attractive periodic point of a
polynomial f then there is a critical point z (a point with f’(z) = 0) such that
f*(z) is attracted to the periodic orbit containing w. Since the only critical point
of f.1is 0, f, can have at most one attractive periodic orbit. Moreover, if c¢ M
thep, by Theorem 14.14, f%(0)— oo, so f, can have no attractive periodic orbit.
It is conjectured, but not yet proved, that the set of ¢ for which f, has an
attractive periodic orbit fills the interior of M. ’

It is natural to categorize f, by the period p of the {finite) attractive orbit, if
any; the values of ¢ corresponding to different p may be identified as different
regions of the Mandelbrot set M.

To begin with, suppose ¢ lies outside M, so f, has no attractive periodic
points. By definition, J(f,) is not connected. In fact, J(f.) must be totally
disconnected and expressible as the disjoint union J = §,(J)uS,(J), where S,
and S, are the two branches of ! on J. This means that J is invariant in the
sense of (9.1). Basically, this follows from the second half of the proof of
Theorem 14.14-—we get that f, maps the interior of each loop of a figure of
eight E onto a region D containing E. The mappings S; and S, may be taken
as thf: restrictions of 7! to the interior of each loop. Since S,(J) and S,(J) are
interior to the two halves of E, they are disjoint, so J must be totally
disconnected; see page 116.

We !ook at this situation in more detail when c is large enough to allow
some simplifications to be made.

Theorem 14.15

Supppse fel >45+ 2\/ 6). Then J(f,) is totally disconnected, and is the invariant
set (in the sense of (9.1)) of the contractions given by the two branches of f T2

Figure 14.4 Proof of Theorem 14.15
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for z near J. When |c| is large

dimg J(f,) = dimy J(f) ~ 2log 2/log|c|.

Proof. Let C be the circle |z| =|c| and D its interior |z| <|c|. Then
fIUC) = {(ce®—)'*:0< 6 < 4n}

which is a figure of eight with self-intersection point at 0, with the loops on
either side of a straight line through the origin (figure 14.4). Since |c|>2 we
have f[(C) = D. The interior of each of the loops of f7}(C) is mapped by f.
in a bijective manner onto D. If we define S;,S,:D — D as the branches of /7 '(2)
inside each loop, then S,(D) and S,(D) are the interiors of the two loops.

Let V be the disc {z:|z| <|2c|*/?}. We have chosen the radius of V' so that
V just contains f *(C), so S;(D),S,(D)=V <=D. Hence S,(V),S,(V) < V with
S,(V) and S,(V) disjoint. We have

S (=S, =)D =32z—0 1z,
Hence if zeV,
L(lel + 1212 < |SH2) < el — |2¢|1/%)" 12, (14.7)

The upper bound is less than 1 if |¢|> 5+ 2,/6), in which case S; and S, are
contractions on the disc V. By Theorem 9.1 there is a unique non-empty compact
invariant set F < V satisfying

S,(F)US,(F)=F. (14.8)

Since S,(V) and S,(V) are disjoint, so are §,(F) and S,(F), implying that F is
totally disconnected.

Of course, F is none other than the Julia set J = J(f,). One way to see this is
to note that, since ¥V contains at least one point z of J (for example, a repelling
fixed point of f,), we have J =closure(| J;2,f, “(z)) < ¥, since frHV) <V
Using further results from Summary 14.12, J is a non-empty compact subset
of V satisfying J = f'(J) or, equivalently, J =S (DU S,J). Thus J=F, the
unique compact set satisfying (14.8).

Finally, we estimate the dimension of J(f) = F. It may be shown, using (14.7)
and an appropriate complex ‘mean-value theorem’ that,

Siz,)—S; -
%(‘Cl + |20|1/2)—1/2 gwséﬂc‘ - |2clll2) 1/2

lzy — 25l
if z,, z, are distinct points of V. By Propositions 9.6 and 9.7 lower and upper
bounds for dim,,J(f,) are provided by the solutions of 2(;(l¢| + |2¢|H3)~ 12y = 1,
ie. by s=2log2/log4(|c|+|2c|"?), which gives the stated asymptotic
estimate. O

We next turn to the case where ¢ is small. We know that if ¢ =0 then J(f.)
is the unit circle. If ¢ is small and z is small enough, then f¥(z)»w as k— oo,
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where w is the attractive fixed point 3(1 —.,/1 —4c) close to 0. On the other
hand, f*(z) > oo if z is large. It is not unreasonable to expect the circle to ‘distort’
into a simple closed curve (i.e. having no points of self-intersection) separating
these two types of behaviour as ¢ moves away from 0.

In fact, this is the case provided that f, retains an attractive fixed point, i.e.
if |f2(z)] <1 at one of the roots of f.(z)=2z. Simple algebra shows that this
happens if ¢ lies inside the cardioid z = 1e®(1 —1e%)(0 < 6 < 2n)—this is the
main cardioid of the Mandelbrot set.

For convenience, we treat the case of |c| < %, but the proof is easily modified
if f. has any attractive fixed point.

Theorem 14.16

If lc| <L then J(f.) is a simple closed curve.

Proof. Let C, be the curve |z| = 1, which encloses both ¢ and the attractive fixed
point of f.. Then by direct calculation the inverse image f '(C,) is a loop C,
surrounding C,. We may fill the annular region 4, between C, and C, by a
continuum of curves, which we call ‘trajectories’, which leave C,, and reach C,
perpendicularly; see figure 14.5(a). For each 8 let y,(0) be the point on C, at
the end of the trajectory leaving C, at y/,(6) = 1e®. The inverse image [ *(4,)
is an annular region A, with outer boundary the loop C, =f_'(C,) and inner
boundary C,, with f, mapping A, onto A4, in a two-to-one manner. The inverse
image of the trajectories joining C, to C, provides a family of trajectories joining
C, to C,. Let y,(6) be the point on C, at the end of the trajectory leaving C,
at y,(6). We continue in this way to get a sequence of loops C,, each surrounding
its predecessor, and families of trajectories joining the points ¢,(6) on C; to
Yi+1(0) on Cp ., for each k.

As k— oo, the curves C, approach the boundary of the basin of attraction
of w; by Lemma 14.11 this boundary is just the Julia set J(f.). Since | f.(z)| >y
for some y > 1 outside C,, it follows that f ! is contracting near J. Thus the
length of the trajectory joining y/,(6) to ¥, . (6) converges to 0 at a geometric
rate as k — oo. Consequently ¥/,(6) converges uniformly to a continuous function
W(0) as k— oo, and J is the closed curve given by ¥(6)(0 <6 < 2n).

It remains to show that y represents a simple curve. Suppose that
Y(8,)=14(8,). Let D be the region bounded by C, and the two trajectories
joining ¥(68,) and ¥4(6,) to this common point. The boundary of D remains
bounded under iterates of f,, so by the maximum modulus theorem (that the
modulus of an analytic function takes its maximum on the boundary point of
a region) D remains bounded under iteration of f. By Lemma 14.6 the interior
of D cannot contain any points of J. Thus the situation of figure 14.5(b) cannot
occur, so that (8) = (8,) = ¥(0,) for all § between 0, and 8,. It follows that
¥(8) has no point of self-intersection. O

By an extension of this argument, if ¢ is in the main cardioid of M, then J(f,)
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Figure 14.5 Proof of Theorem 14.16

is a simple closed curve; such curves are sometimes referred to as quasi-circles.
Of course, J(f,) will be a fractal curve if ¢ > 0. It may be shown that, for small
¢, its dimension is given by

s =dimg J(f,) = dimg J(f.) = 1 +|c|*/410g 2 + termsin | c|> and higher powers.
(14.9)

Moreover, 0 < #%(J) < oo, with dimg J(f,) = dimy J(f.) given by a real analytic
function of c.

The next case to consider is when f, has an attractive periodic orbit of period
2. By a straightforward calculation this occurs if |¢ + 1| <%; that s, if z lies in
the prominent circular disc of M abutting the cardioid.

Since f? is a polynomial of degree 4, f, has two fixed points and two period-2
points. Let w; and w, be the points of the attractive period-2 orbit. It may be
shown, as in the proof of Theorem 14.16, that the basin of attraction for w; (i.e.
{z:f*(z) > w, as k— o0}) includes a region bounded by a simple closed curve
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Figure 14.6 Julia sets J ) for cat various points in the Mandelbrot set. The Julia sets are displayed in more detail in figure 14.7
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Figure 14.7 A selection of Julia sets of the quadratic function f,(z) = 2> + ¢. (@) c= — 0.1 + 0.1};
f, has an attractive fixed point, and J is a quasi-circle. (6) c= — 0.5 + 0.5i; £, has an attractive
fixed point, and J is a quasi-circle. (¢) ¢= —1+0.05i; f, has an attractive period-2 orbit.
" {d) e= —0.2+0.75i, , has an attractive period-3 orbit. (¢) ¢=0.25 + 0.52i; £ has an attractive
period-4 orbit, (f) c= — 0.5+ 0.55i; f, has an attractive period-5 orbit. {g) ¢=0.66i; 7. has no
attractive orbits and J is totally disconnected. (4) c= —i, £2(0) is periodic and J is a dendrite
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C; surrounding w;, for i=1,2. By Lemma 14.11 and Proposition 14.5,
C; < J(f?)=J(f.). The curves C; are mapped onto themselves in a two-to-one
fashion by f2, which implies that there is a fixed point of f2 on each C;. The
period-2 points are strictly inside the C;, so there is a fixed point of f, on each
C;; since the C; are mapped onto each other by f,, the only possibility is for
C, and C, to touch at one of the fixed points of f,. The inverse function f 1
is two-valued on C;. One of the inverse images is C, (which encloses w,).
However, the other branch of f(C,) is a further simple closed curve enclosing
the second value of f'(w,). We may continue to take inverse images in this
way to find that J(f,) is made up of infinitely many simple closed which enclose
the pre-images of w, and w, of all orders and touch each other in pairs at
‘pinch points’—see figure 14.7(c). Thus we get fractal Julia sets that are
topologically much more complicated than in the previous cases.

It is possible to use these sorts of ideas to analyse the case when f, has an
attractive periodic orbit of period p > 2. The immediate neighbourhoods of the
period-p points that are drawn in to the attractive orbits are bounded by simple
closed curves which touch each other at a common point. The Julia set consists
of these fractal curves together with all their pre-images under f*.

A variety of examples are shown in figures 14.6 and 14.7. The ‘buds’ on the
Mandelbrot set corresponding to attractive orbits of period p are indicated in
figure 14.8.

The Julia sets J(f,) that are most intricate, and are mathematically hardest
to analyse are at the ‘exceptional’ values of ¢ on the boundary of M. If ¢ is on
the boundary of the cardioid or a bud of M, then f. has an indifferent periodic
point. If ¢ is at a ‘neck’ where a bud touches a parent region, then J(f,) includes
a series of ‘tendrils’ joining its boundary to the indifferent periodic points. For
c elsewhere on the boundary of the cardioid the Julia set may contain ‘Siegel
discs’. The Julia set J(f,) consists of infinitely many curves bounding open
regions, with f, mapping each region into a ‘larger’ one, until the region
containing the fixed point is reached. Inside this Siegel disc, f, rotates points
on invariant circles around the fixed point.

There are still further possibilities. If ¢ is on one of the ‘hairs’ of M then J(f.)
may be a dendrite, i.e. of tree-like form. This occurs if an iterate of the critical
point 0 is periodic, i.e. if f¥(0) = f**%(0) for positive integers k and q.

We have mentioned that there are miniature copies of M located in the hairs
of M. If ¢ belongs to one of these, then J(f.) will be of dendrite form, but with
small copies of the Julia set from the corresponding value of ¢ in the main part
of M inserted at the ‘vertices’ of the dendrite.

A good way to explore the range of Julia sets and, indeed, the Julia sets of
other functions, is using a computer. There are two usual methods of drawing
Julia sets, based on properties that we have discussed.

For the first method, we choose a repelling periodic point z. For suitable k,
we may compute the set of inverse images J, = f ~¥(z). By Corollary 14.7(b)
these 2* points are in J, and should fill J as k becomes large. A difficulty with
picturing J in this way is that the points of J, need not be uniformly distributed
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Figure 14.8 The periods of the attractive orbits of £, for ¢ in various parts of the Mandelbrot set
M. If cis in the main cardioid, £, has an attractive fixed point, and the Julia set J(f,) is a quasi-circle.
For c¢in the buds of M, f_ has an attractive orbit with the period p shown, with p regions inside the
Julia set J(f,) meeting at each pinch point. Outside M, the function 7, has no attractive orbits and
J( £} is totally disconnected

across J—they may tend to cluster in some parts of J and be sparse in other
parts. Consequently, even with k quite large, parts of J can be missed altogether.
(This tends to happen for f, with ¢ close to the boundary of M.) There are
various ways of getting around this difficulty. For instance, with J, = {z}, instead
of taking J, = f ~'(J,-,) for each k, we can choose a subset J, of f~1(J,_)
by ignoring all but one of the points in every ‘small’ cluster. This ensures that
we are working with a reasonably well distributed set of points of J at each
step of the iteration, and also reduces the calculation involved.

A second method is to test individual points to see if they are close to the
Julia set. Suppose, for example, that f has two or more attractive fixed points
(now including oo if f is a polynomial). If z is a point of J(f) then there are points
arbitrarily close to z in the attractive basin of each attractive point by Lemma
14.11. To find J we divide a region of C into a fine mesh. We examine the
ultimate destination under iteration by f of the four corners of each mesh
square. If two of the corners are attracted to different points, we deem the mesh
square to contain a point of J. Often, the other squares, the ‘Fatou set’, are
coloured according to which point the vertices of the square is attracted to,

" perhaps with different shading according to how close the kth iterates are to
the attractive point for some fixed k.
Both of these methods can be awkward to use in certain cases. A knowledge
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of the mathematical theory is likely to be beneficial in overcoming the difficulties
that can occur.

14.4 Characterisation of quasi-circles by dimension

We saw in the previous section that, if ¢ is in the main cardioid of the Mandelbrot
set, then the Julia set of f.(z)=2z?+c is a simple closed curve. By similar
arguments, the Julia set of f(z) = 2"+ ¢ is a simple closed curve for any integer
n>2 provided that ¢ is small enough, and, indeed, the same is true for
f(z)=z* + g(z) for a wide variety of analytic functions g that are ‘sufficiently
small’ near the origin. Thus all these functions have Julia sets that are
topologically the same—they are all homeomorphic to a circle. The surprising
thing is that they are essentially the same as fractals, in other words are Lipschitz
equivalent, if and only if they have the same Hausdorff dimension. Of course,
if two sets have different dimensions they cannot be Lipschitz equivalent
(Corollary 2.4). However, in this particular situation the converse is also true.

We term a set F a quasi-self-similar circle or quasi-circle if the following
conditions are satisfied.

(1) F is homeomorphic to a circle (ie. F is a simple closed curve).
(i) 0 < #°(F) < o0 where s = dimy F.
(iii) There are constants a, b, r > 0 such that for any subset U of F with |U| <r
there is a mapping ¢:U — F such that

alx —y| <{Ullo(x) — o(»)| <b|x — y| (x,yeF). (14.10)
The ‘quasi-self-similar’ condition (iii) says that arbitrarily small parts of F are
‘roughly similar’ to a large part of F.

The following theorem depends on using s-dimensional Hausdorff measure
to measure ‘distance’ round a quasi-circle.

Theorem 14.17

Quasi-circles E and F are bi-Lipschitz equivalent if and only if dimy E = dimy F.

Sketch of proof. If there is a bi-Lipschitz mapping between E and F then
dimy E = dimy F by Corollary 2.4(b).

Suppose that dimy E = dimy F. Let E(x, y) be the ‘arc’ of E between points
x,y€E, taken in the clockwise sense, with a similar notation for arcs of F.
Conditions (ii) and (iii) imply that #(E(x, y)) is continuous in x, yeE and is
positive if x # y. We claim that there are constants c,, ¢, > 0 such that

H(E(x,
o, < ZEXI) ;v))<c2 (14.11)
[x —y|

whenever E(x, y) is the ‘shorter’ arc, ie. #(E(x, y)) < H(E(y, x)). Assume that
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Figure 14.9 Setting up a bi-Lipschitz mapping ¢ between two quasi-circles of Hausdorff dimension s

¢> 0 is sufficiently small. If [x — y| > ¢ then (14.11) is true by a continuity
argument for suitable constants. If |x — y| <& there is a mapping ¢:E(x,y)—>E
satisfying (14.10) such that |o(x) — ()| Z & Inequalities (14.10) .and (2.8) and
(2.9) imply that the ratio (14.11) changes by a bounded amount if x and y are
replaced by ¢(x) and @(y), so(14.11) holds for suitable ¢, and ¢, for all x, ye E.

Now choose base points peE, geF. Set y = H#(E)/# S(F) and define Yy:E—F
by taking y(x) to be the point of F such that

H(E(p, x)) = y#*(F(g,¥(x)))
(see figure 14.9). Then ¢ is a continuous bijection, and also
HE(x,y)) =y A (FW(x) ¥ (1) (x,yeE).
Using (14.11) together with similar inequalities for arcs of F, this gives

-y

3% — S¢

jx — yl

if x # y, so that ¥ is bi-Lipschitz, as required. O

Corollary 14.18

Suppose that the Julia sets J, and J, of the polynomials f, and f, are simple
closed curves. Suppose that f; is strictly repelling on J; (i.e. lf;(z)| > lff)r i=1,2)
Then J, and J, are bi-Lipschitz equivalent if and only if dimy J, = dimy J,.

Proof. Tt may be shown that if a polynomial f is strictly .rcpelling on its Julia
set J then 0 < #(J) < co, where s = dimy J. Moreover, given a subset U.of J,
we may choose k so that f *(U) has diameter comparable ‘_”"_h tt.nat of J itself,
and (14.10) holds taking ¢ = f k (this reflects the quasi-self—51m11anFy of J). Thus
J, and J, are quasi-circles to which Theorem 14.17 may be applied. O
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14.5 Newton’s method for solving polynomial equations

Anyone who has done any numerical analysis will have found roots of equations
using Newton’s method. Let p(x) be a function with continuous derivative. If
f(x)=x — p(x)/p'(x) then the iterates f*(x) converge to a solution of p{x)=0
provided that p'(x) # 0 at the solution and that the initial value of x is chosen
appropriately. Cayley suggested investigating the method in the complex plane,
and in particular which initial points of C iterate to which zero of p.

Let p:C — C be a polynomial with complex coeflicients, and form the rational
function f:Cu {0} -Cu{co}

f(@)=z—p(2)/p(2). (14.12)

Then the fixed points of f, given by p(z)/p'(z) =0, are the zeros of p together
with co. Differentiating, we find that

f(2) = p@2)p"(2)/p'(2)* (14.13)

so a zero z of p is a superattractive fixed point of f, provided that p'(z) #0. If
[z| is large, f(z) ~ z(1 — 1/n), where n is the degree of p, so oo is a repelling point
of f. As usual, we write

Aw) = {z: f¥z) > w} (14.14)

for the basin of attraction of the zero w, ie. the set of initial points which
converge to w under Newton iteration. Since the zeros are attractive, the basin
A(w) includes an open region containing w. We shall see, however, that 4(w)
can be remarkably complicated further away from w.

The theory of Julia sets developed for polynomials in Section 14.1 is almost
the same for a rational function, provided that the point {co} is included in
the natural way. The main differences are that if f is a rational function J(f)
need not be bounded (though it must be closed) and it is possible for J(f) to
have interior points, in which case J(f)=Cu{oc0}. However, Lemma 14.11
remains true, so that J(f) is the boundary of 4(w) for each attractive fixed point
w. Thus J(f) is likely to be important when analysing the domains of attraction
of the roots in Newton’s method.

A straightforward case is the quadratic polynomial

ple)=27—c

with zeros + \/c (as before, more general quadratic polynomials can be reduced
to this form by a conjugacy). Newton’s formula (14.12) becomes

f2)= (2% + ¢)2z.
f@ £ Je=(+Jepf2z

Fot (Y.

Thus

SO

(14.15)
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It follows immediately that if |z + \/c|/lz — \/c| < 1 then | f*(z) + /cl/| f(2) — Jel
-0 and f%z)-» —./c as k— o, and similarly if lz+Jcl/lz—+Jc|>1 then
f¥(z)—/c. The Julia set J(f) is the line |z + (/c| =]z — Jc¢l (the perpendicular
bisector of —,/c and \/c) and A(— /c) and A(/c) are the half-planes on either
side. (Letting h(z) = (z + \/c)/(z — \/¢) in (14.15) gives f(z) = h™(h(z))? so that
f is conjugate to, and therefore has similar dynamics to, the mapping g(z) = z.)
In this case the situation is very regular—any initial point is iterated by f to
the nearest zero of p.

The quadratic example might lead us to hope that the domains of attraction
under Newton iteration of the zeros of any polynomial are reasonably regular.
However, for higher-order polynomials the situation is fundamentally different.
Lemma 14.11 provides a hint that something very strange happens. If p has
ZEros z,,.. ., 2, wWith p'(z;) # 0, Lemma 14.11 tells us that the Julia set of f is the
boundary of the domain of the attraction of every zero:

J(f)=0A(z,) = --- = 0A(z,).

A point on the boundary of any one of the domains of attraction must be on
the boundary of all of them,; since J(f) is uncountable, there are a great many
such multiple boundary points. An attempt to visualize three or more disjoint
sets with this property will convince the reader that they must be very
complicated indeed.

Let us look at a specific example. The cubic polynomial

piz)=23—-1

has zeros 1,e'2™3 e*™3 and Newton function
2z +1
322

f@&)=

The transformation p(z) = ze'2¥3 is a rotation of 120° about the origin. It is
easily checked that f(p(z)) = p(f(2)), in other words p is a conjugacy of f to
itselfl. Tt follows that a rotation of 120° about the origin maps A(w) onto
A(we'2™3) for each of the three zeros w, so that the Julia set has threefold
symmetry about the origin. (Of course, these symmetries would be expected
from the symmetric disposition of the three zeros of p.) If z is real then f¥(z)
remains real for all k, and, by elementary arguments, f*(z) converges to 1 except
for countably many real z. Thus A(1) contains the real axis except for a countable
number of points, and, by symmetry, A(¢’**?) and A(e"*™?) contain the lines
through the origin making 120° and 240° to the real axis, again except for
countably many points. We also know that each A(w) contains an open region
round w, that any point on the boundary of one of the A(w) is on the boundary
of all three, and that there are uncountably many such ‘triple points’. Most
people require the insight of a computer drawing to resolve this almost
* paradoxical situation, see figure 14.10.

The domain A(1) is shown in black in figure 14.10(b); note that the basins of
attraction of the other two zeros, obtained by rotation of 120° and 240°, key
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Figure 14.10 Newton's method for p{z} = 2* — 1. The Julia set for the Newton function f2)=
{z + 1)/32% is shown in (a), and the domain of attraction of the zero z=1 is shown in black in (5}
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into the picture in a natural way. The Julia set shown in figure 14.10(a) is the
boundary of the three basins and is made up of three ‘chains’ leading away
from the origin. These fractal chains have a fine structure—arbitrarily close to
each point of J(f) is a ‘slightly distorted’ copy of the picture at the origin with
six components of the A(w) meeting at a point. This reflects Corollary 14.7(b):
J(f) is the closure of | 2, f~“(0), so that if z is in J(f) then there is a point
w arbitrarily close to z, and an integer k, such that f“(w)=0. But f * is locally
a conformal mapping, so that the local inverse (f ¥~! maps a neighbourhood
of O to an ‘almost similar’ neighbourhood of w. The Julia set J(f) exhibits
quasi-self-similarity.

This, of course, is just the beginning. The domains of attraction of the zeros
of other polynomials of degree 3 or more and, indeed, other analytic functions,
may be investigated using a combination of theory and computer graphics. This
leads to a wealth of sets of a highly intricate form that are still far from
understood.

In this chapter we have touched on what is a complicated and fascinating
area of mathematics in which fractals play a fundamental rle. It is an area in
which computer experiments often lead the way with mathematical theory trying
to keep up. The variations are endless—we can investigate the Julia set of
higher-order polynomials and of other analytic functions such as exp z, as well
as invariant sets of non-analytic transformations of the plane. With the advent
of relatively cheap colour computer graphics, these ideas have become the
basis of much computer art. A single function of simple form can lead to highly
intricate yet regular pictures—often very beautiful, sometimes almost weird.

14.6 Notes and references

Much of the basic theory of iteration of complex functions was developed by
Julia (1918) and Fatou (1919). For many years the subject lay almost dormant,
until computer graphics was sufficiently advanced to reveal the intricate form
of Julia sets. Recently, there has been an extraordinary interest in the subject.
Drawing Julia sets and the Mandelbrot set on computers has almost become
a craze, perhaps because of the feeling of creativity that it gives the programmer,
but also there have been considerable advances in the mathematical theory of
the subject.

For an account of basic complex variable theory, see Ahlfors (1979). The
book by Peitgen and Richter (1986) provides a richly illustrated account of
complex iteration. Blanchard (1984) provides a full survey of the mathematics
and the book by Devaney (1986) contains some detailed mathematical analysis.
Saupe (1987) discusses the computation of Julia sets. Mandelbrot (1980)
introduced the set bearing his name; the fundamental Theorem 14.14 is given
by Brolin (1965).

The formula (14.9) for the dimension of J(f.) is due to Ruelle (1982). For
details of the characterization of quasi-circles by dimension, see Falconer and
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Marsh (1989). Fractals associated with Newton’s method are discussed in

Peitgen and Richter (1986), Peitgen, Sau
, s pe and von Haeseler (1984
Garnett and Sullivan (1983). er(1984) and Curry,

Exercises

14.1 Show, directly, that, if f is a complex polynomial, then the family {f*}, is not
normal at any repelling periodic point of f.

142 Describe the Julia set of f(z) =22 + 4z + 2.

143 Show that the Julia set of f(z) =z? — 2 is contained in the real interval [ - 2,2].

Use.Theorem 14.14 to deduce that the Julia set is connected, and hence that it is
the interval [ —2,2].

144 Shovy -that f. has an attractive fixed point precisely when ¢ lies inside the main
cardioid of the Mandelbrot set given by z = }e”(1 — Le’®) where (0 < 8 < 2n).

14.5 Show_ that if ¢ is a non-real number with || <4and w=1(1+(1 —4c)"?) is the
repelling fixed point of f(z) = z2 4 ¢ then f “(w) is not real. Deduce that the simple

closed curve that forms the Julia set J(f,) cannot have a tangent at w. Hence
deduce that the curve contains no differentiable arcs.

14.6 Show that if |¢{ < 1 then the Julia set of f(z) = z* + ¢z is a simple closed curve.

147 i i i i i
Sﬁéil?c??s t;;trlg;ate for the Hausdorff dimension of the Julia set of f(z) =23+ ¢

148 Show that if w is a (finite} attractive fixed point of f, then the attractive basin
A(w) mus't _contain the point ¢. (Hint: show that otherwise there is a small open
set containing w on which the inverse iterates f ~* of f can be uniquely defined
and t:orm a normal family, which is impossible, since w is a repelling fixed point
of. /') Deduce that f, can have at most one attractive fixed point. Generalize
this t(? show that if w is an attractive fixed point of any polynomial f then A(w)
contains a point f(z) for some z with f'(z) = 0.

14.9 Let S be a quadratic polynomial. Show, by applying Exercise 14.8 to 7 for positive
integers p, that f can have at most one attractive periodic orbit.

14.10 Writ.e a computef program to draw Julia sets of functions (see the end of
Section 14.3). Try it put first on quadratic functions, then experiment with other
polynomials and rational functions, and then other functions such as exp z.

14.11 Use a computer to investigate the domains of attraction for the zeros of some

other polynomials under Newton’s method iteration; for example, for p(z) = z* — 1
or p(zy=z3—z.



Chapter 15 Random fractals

Many of the fractal constructions that have been encountered in this book hfive
random analogues. For example, in the von Koch curve copstructlon, eagh time
we replace the middle third of an interval by the other two md;; of an equilateral
triangle, we might toss a coin to determine whether to position the new part
‘above’ or ‘below’ the removed segment. After a few steps, we get a rgthet
irregular looking curve which nevertheless retains certain of the characteristics
of the von Koch curve; see figure 15.1.

£o

i

F

Figure 15.1 Construction of a ‘random von Koch curve’. At each step a coin is tossed to determine
on which side of the removed segment to place the new pair of segments
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The middle third Cantor set construction may be randomized in several ways
as in figure 15.2. Each time we divide a segment into three parts we could,
instead of always removing the middle segment, throw a die to decide which
parts to remove. Alternatively, we might choose the interval lengths at each
stage of the construction at random, so that at the kth stage we are left with
2* intervals of differing lengths, resulting in a rather trregular looking fractal.

Whilst such ‘random fractals’ do not have the self-similarity of their
non-random counterparts, their non-uniform appearance is often rather closer
to natural phenomena such as coastlines, topographical surfaces or cloud
boundaries. Indeed, random fractal constructions are the basis of many
impressive computer-drawn landscapes or skyscapes.

Most fractals discussed in this book involve a sequence of approximations
E,, each obtained from its predecessor by modification in increasingly fine detail,
with a fractal F as a limiting set. A random fractal worthy of the name should
display randomness at all scales, so it is appropriate to introduce a random
element at each stage of the construction. By relating the size of the random
variations to the scale, we can arrange for the fractal to be statistically self-similar
in the sense that enlargements of small parts have the same statistical distribution
as the whole set. This compares with (non-random) self-similar sets (see
Chapter 9) where enlargements of small parts are identical to the whole.

In order to describe fractal constructions involving infinitely many random

£l

£o
t £
} £,

-+ + - -- - A

(a)

e e e emem —_— —_ e = . F

(6)

Figure 15.2 Two random versions of the Cantor set. In (a) each interval is divided into three equal
parts from which some are selected at random. In (b) each interval is replaced by two subintervals of
random lengths
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steps with precision, we must use the language of probability theory, a brief
survey of which is given in Section 1.4.

15.1 A random Cantor set

We give a detailed analysis of a specific statistically self-similar construction. It
resembles that of the middle third Cantor set, except that the lengths of the
intervals at each stage are random.

Intuitively, we consider a construction F = (-1 Ex Where [0,11=E;>
E, > --+ is a decreasing sequence of closed sets, with E, a union of 2* disjoint
closed ‘basic’ intervals. We assume that each basic interval I in E, contains two
intervals I, and Iy of E, , ,, abutting the left-and right-hand ends of I respectively.
The lengths of the intervals are random, and we impose statistical self-similarity
by the requirement that the length ratios |I,|/|I| have the same probability
distribution independently for every basic interval I of the construction, and
similarly for the ratios |Igl/{I|. The ‘random Cantor set” F is statistically
self-similar, in that the distribution of the set F ~ I is the same as that of F, but
scaled by a factor |I|, for each I.

We describe this random construction in probabilistic terms. Let a,b be
constants with 0 <a<b<1. We let Q denote the class of all decreasing
sequences of sets [0,1]=E; 2 E; 2 E; o -+ satisfying the following conditions.
The set E, comprises 2 disjoint closed intervals I;, . where i;=1 or 2
(1 <j<k); see figure 15.3. The interval I, of E, contains the two intervals
I, sqand I ., 0of Epyy, with the left-hand ends of I, . and I; ., ;
and the right-hand ends of I, , and [, .., coinciding. We write
C, o=\ ., and suppose that a<C, , <bforallij....i

ifyeees i

We let F=ﬂ,:°=1 E,.

.....

.....

0 ! £

7 L, 5 1504 12,2

Loy Loz hezahee Loy apz 220 12,22

227

We take Q to be our sample space, and assume that a probability measure
P is defined on a suitably large family & of subsets of Q, such that the ratios
Ciin are random variables. We impose statistical self-similarity on the
construction by requiring C; __, , to have the same distribution as C, =|I,]
gnd C'i1 ,,,,, i.2 to have the same distribution as C, =|I,]| for every sequenlcej
iy,.... 4 We assume that the C; . are independent random variables, except
Fhat for each sequence i,,...,i, we do not require C,, . , and C. ’ to be
independent. It may be shown that dimy F is a randgﬁi”z(élriable v&:ﬂié}llk‘rznay be
expressed in terms of the C; ..

The following result is a random version of Theorem 9.3.

Theorem 15.1

With pr(.)bability 1, the random Cantor set F described above has dimy F =s
where s is the solution of the expectation equation ’

E(C3+C3)=1. (15.1)

* Proof. It. 1s easy to. see that E(C{ + C%) is strictly decreasing in s, so that (15.1)
has a unique solution.

By shgh} a'buse of notation, we write 1€ E, to mean that the interval I is one
,?f the basic intervals I, . of E;. For such an interval I we write I, and Iy
or I, . ,and [ , respectively. We write E(X|#,) for the conditional

Bty (8

expectatiog of a rapdom variable X given a knowledge of the C; . for all
sequences i,,..,i; with j < k. (Intuitively, we imagine that EO,...,E;"ﬁaJve been
'construc.ted, and we are analysing what happens thereafter.) Let I, . be an
interval in E,. Then e

BT, oiP I dPNFD=E(C i+ Gl

|3 PN Liseens

= E(C5 + C)II,,

by virtue of the identical distribution. Summing over all the intervals in E,

|S
,,,,, ix

E( D |1|s|3«“k>= Y HIPE(CS + C3). (15.2)

TeEx +1 IcEx
It follows that the unconditional expectation satisfies

E( > |I|‘> = E( Y |IP> E(CS + C3). (15.3)
IeEx+1 1cEx
If s is the solution of (15.1), equation (15.2) becomes

E IF|l#, )= s
( > Hh) I§k|1|. (15.4)

| =

Readers familiar with probability theory will recognise (15.4) as saying that the
sequence of random variables
Xe= ) P (15.5)

IeEy
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is a martingale with respect to &,. The crucial fact for our purposes, which we
ask other readers to take on trust, is that, in this situation, X, converges \smth
probability ! as k — co to a random variable X such that E(..X y=EX O)f E(1%) =
1. In particular 0 < X < oo with probability 1, and X = 0 with probability g < 1.
But X =0 if and only if 3,z ;11 and X,g, 1,1 1I° both converge to (.).as
k— oo, where I, and I, are the intervals of E;, and this happens with r;robablllty
g%, by virtue of the self-similarity of the construction. Henc'e q=q°,8049= 0,
and we conclude that 0 < X < co with probability 1. In particular, this implies
that with probability 1 there are (random) numbers M, M, such that

0<M,<X,=) IPS<M,;<© (15.6)
IcE;
for all k. We have [I|<27* for all I€E,, so, #5(F) <X g |I’<M, if
k> —logd/log2, giving #*(F) < M,. Thus dimy F <s with propablhty 1.
We use the potential theoretic method of Section 4.3 to dgnvg thfe almost
sure lower bound. To do this we introduce a random mass dlstrxbut}on u on
the random set F. Let s satisfy (15.1). For I e E; let u(I) be the random variable

u(l) = lim {Z|J|*:JeE; and J < I}.
jeo
As with (15.5) this limit exists, and is positive and finite with probability 1.
Furthermore, if I€E,,
E(u(DIF ) = 1" (15.7)
If I€E, then u(I)=p(Iy)+ pu(lg) and p is a mass distribution with support

contained in ﬂ 2o Ey=F; sce Proposition 1.7. (We ignore measure theoretic
questions connected with the definition of )

We fix 0 < t < s and estimate the expectation of the t-energy of e If x, yeF,
there is a greatest integer k such that x and y belong to a common interval of
E,; denote this interval by x Ay. If I is an interval of E,, the subintervals I,
and Iz of Iin E,_, , are separated by a gap ofatleastd|I|, whered = 1 — 2b. Thus

” |x —y| 7" dp(x)du(y) =2 f |x — y| 7" du(x)du(y)
xAy=1I yelr

xelyg,
<2471 I Duld)-
If IeE,,

E(” |x =y " dp(x)dp()| F o+ 1> <247 1T EUINF o E(UTRDIF 1)
xay=I

<247 TP RE
< 2d—x|”2s—-t

using (15.7). Using a variation of (1.21) this gives an inequality for the
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unconditional expectation
E(J‘J‘ ,x—yl—ldu(x)dﬂ(.V)>Szd"E(”,Zs—t)‘
xny=1I

Summing over IeE,,

E( > jf lx—YI"'du(x)d,u(y)><2d—tE< Y |1|ZS_'>=2d“)J‘
- D IeE;

where 4= E(C3*™'+ C2*7") < 1, using (15.3) repeatedly. Then

E(J J Ix—yl“du(x)du(y)>= E( i Y ” lx—yl"du(x)du(y)>
FJF k=0 IeE;x xAy=1I

<2474y A < o0,
0

so that the t-energy of u is finite, with probability 1. With probability 1,
0 < u(F) < oo, using (15.6), and dimy F =t by Theorem 4.13(a) O

This theorem and proof generalize in many directions. Each interval in E,
might give rise to a random number of intervals of random lengths in E, , .
Of course, the construction generalizes to R", and the separation condition
between different component intervals can be relaxed, provided some sort of
‘open set condition’ (see (9.11)) is satisfied. The following construction is a full
random analogue of the sets discussed in Section 9.2.

Let V be an open subset of R" with closure V, let m =2 be an integer, and
let 0<b<1. We take Q to be the class of all decreasing sequences
V=E,>E,>E,>-- ofclosed sets satisfying the following conditions. The set
E, is a union of the m* closed sets ¥, . where i;=1,...,m (1<j<k) and
V... 1s cither similar to V or is the empty set.

We assume that, for each iy, ..., i, theset V; , contains V, . . (1<i<m)
and that these sets are disjoint; this is, essentially, equivalent to the open set
condition. If ¥, is non-empty, we write C, . =|V,  |/IV, . | for
the similarity ratio between successive sets and we take C; , =01if V,, i 18
the empty set. We write F = (., E,.

Let P be a probability measure on a family of subsets of Q such that the

C,,...u are random variables. Suppose that given C; 5 >0, ie’ given that
V... isnon-empty, C; . . has identical distribution to C; for each sequence
i,..., 0 and for 1 <i<m. We assume that the C; » are independent, except
that, for each sequence i,,...,i, the random variables C, ., .....,C, . _

need not be independent. This defines a self-similar probability distribution on
the constructions in Q. We write N for the (random) number of the C,,...,C,
that are positive; that is, the number of the sets V.. ., V, that are non-empty.
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Theorem 15.2

The set F described above has probability q of being empty, where q is the smaller
non-negative root of the polynomial equation

1) = i P(N =)t =1. (1538)

With probability 1 — q the set F has Hausdorff and box dimensions given by the
solution s of

E( 3 cg): 1. (15.9)
j=o0

« Note on proof. Basically, this is a combination of the probabilistic argument
of Theorem 15.1 and the geometric argument of Theorem 9.3. Note that, if there
is a positive probability that N =0, then there is a positive probability that
E, = ¢ and therefore that F = ¢¥. This ‘extinction’ occurs if each of the basic
sets in E, becomes extinct. By the self-similarity of the process, the probability
g, of this happening is f(q¢), SO go = f(qo)- If ¢q is the least non-negative root
of f, then, using that f is increasing an inductive argument shows that
P(E,= &) = f(P(E,_, = &)) < f(g) = q for all k, so that g, < gq. Thus g, =g¢.

Observe that F has probability 0 of being empty, i.e. ¢ =0, if and only if
N >1 with probability 1. It is also not hard to show that F is empty with
probability 1, ie. g=1, if and only if either E(N)<1 or E(N)= 1 and
P(N = 1) < 1. (These extinction probabilities are closely related to the theory of
branching processes.) ]

Example 15.3. Random von Koch curve

Let C be a random variable with uniform distribution on the interval (0,%). Let
E, be a unit line segment in R*. We form E, by removing a proportion C from
the middle of E, and replacing it by the other two sides of an equilateral triangle
based on the removed interval. We repeat this for each of the four segments in
E, independently and continue in this way to get a limiting curve F. Then with
probability 1, dimy F = dimg F = 1.144.

Calculation. This is a special case of Theorem 15.2. The set V may be taken as
the isosceles triangle based on E, and of height /3. At each stage, a segment
of length L is replaced by four segments of lengths 3(1 — C)L,CL,CL and
11— C)L,so we have m=4 and C; =C,=3(1 —C)and C; = C;=C. Since C
is uniformly distributed on (0,%), expression (15.9) becomes

1/3
1=EQCL(1— O +209= J "3 x [ = o) + ¢ 1de

0
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or
s+H1=12x276*D_gx 376+

giving the dimension stated. O

15.2 Fractal percolation

Our discussion of percolation centres around certain random fractals of the
type discussed in the previous section.

Let p be a number with 0 < p < 1. We divide the unit square E, into 9 squares
of side  in the obvious way. We select a subset of these squares to form E, in
such a way that each square has independent probability p of being selected.
Similarly, each square of E, is divided into 9 squares of side 1, and each of
these has independent probability p of being chosen to be a square of E,. We
continue in this way, so that E, is a random collection of squares of side 37
This procedure, which depends on the parameter p, defines a random fractal
F,=(\roEs see figures 154 and 15.5. (It is not difficult to describe this
construction in precise probabilistic terms; for example, by taking the possible
nested sequences of squares E, as the sample space.)

%

T

g

£,

: R

Figure 15.4 Steps in the construction of the random fractal discussed in Section 15.2 with p=056.
The fractal obtained is shown in figure 15.5(a)



232
~ &
Y‘;ﬂv, ‘§‘¥|
u B :
e’
- SQ‘PQ m
e
T
%&ﬁ» oY,
', ;;Ef i ,i; '; ?.
'-V’:w
Ao
(a)
Figuse 15.

p=0.6 and (b) p=08

5 Random fractals realized by the percolation process discussed in Section 15.2 with (a)
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Proposition 15.4

Given p, let t = q be the least positive solution of the equation
t=(pt+1—-pp°

Then F, is empty with probability q. If p <1 then g = 1. Ifs<p<lthen0<g<1
and, wzth probability 1 — q, dimy F = dlmB =log9p/log 3.

Proof. Let N be the (random) number of squares in E,. Then P(N = j)=
9\ . .

(_)p’(l —p)° 77, where (n): n!/ri(n —r)! is the binomial coefficient, so the
j r

probability that F, = (¥ is, by (15.8), the smallest positive root of

° (9\ , -
=) ( .)p’(l =Pt =(pt+1-p)°.
j=o\J

Each square of E, has side 1, so (15.9) becomes

= E< i c;): E( f 3")=3”‘E(N)=3_S9p
j=0 i=0

(each of the nine squares of side 1 is selected with probability p, so the expected
number chosen is 9p). Thus by Theorem 15.2, the almost sure dimension of F,
given it is non-empty, is log 9p/log 3. 3

In this section we discuss briefly the qualitative way in which the random
set F, changes as p increases from 0 to 1. We have already noted that F, is
almost surely empty if 0 < p <3. If ; <p < we have, with probability 1, that
either F, = J or dimy F, = log 9p/log 3«1, so by Proposition 2.5 F, is totally
dlsconnected At the other extreme, if p is close to 1, it is plausible that such a
high proportion of the squares are retained at each stage of the construction
that F, will connect the left and right sides of the square E,; when this happens
we say that percolation occurs between the sides. We show that this is the case
at leastif p is very close to 1; the ridiculous bound 0.999 obtained can certainly be
reduced considerably.

Proposition 15.5

Suppose that 0.999 < p < 1. Then there is a positive probability (in fact bigger
than 0.9999) that the random fractal F, joins the left and right sides of E,.

* Proof. The proof depends on the observation that if I, and I, are abutting
squares in E, and both I, and I, contain either 8 or 9 subsquares of E,, ,, then
there is a subsquare in I, and one in I, that abut, with the squares of E, , ,
in I, and I, forming a connected unit.

We say that a square of E, is full if it contains either 8 or 9 squares of E, _ .
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We say that a square of E, is 2-full if it contains 8 or 9 full squares of E, , |,
and, inductively, that a square of E, is m-full if it contains either 8 or 9 squares
of E, , , that are (m — 1)-full. By the above remark, if E, is m-full, then opposite
sides of E, are joined by a sequence of abutting squares of E,,.

The square E, is m-full (m > 1) if either

(a) E, contains 9 squares all of which are (m — 1)-full, or
(b) E, contains 9 squares of which 8 are (m — 1)-full, or
(c) E, contains 8 squares all of which are (m — 1)-full.

Thus, if p,, is the probability that E is m-full, we get, summing the probabilities
of these three alternatives using (1.16), and using the self-similarity of the process,

Pm=0°D%_, +P°9p%_ (1 —p,_ )+ 9p%(1 — pp5_., =9P°p}_, — 8p9p£;’.1_5110)

if m > 2. Furthermore, p, = p° + 9p%(1 — p) = 9p® — 8p°®, so we have an iterative
scheme p,, = f(p,,_,) for m> 1, where p, =1 and

F(t) =9p%t® — 8p°r°. (15.11)
Suppose that p=0.999. Then (15.11) becomes
f(t) = 892825158 —7.92828741°

and a little calculation shows that t, =0.9999613 is a fixed point of f which
is stable in the sense that 0 < f(£) — to < 3(t — to) if £, <t < 1. It follows that p,,
is decreasing and converges to t, as m — o0, so there is a probability 1, > O that
E, is m-full for all m. When this happens, opposite sides of E, are joined .by a
sequence of squares in E,, for each m, so the intersection F = N0 Ex joins
opposite sides of E,. Thus, there is a positive probability of percolation occurring
if p=0.999, and consequently for larger values of p. O

We have seen that if 0 <p<1 then, with probability 1, F, is empty or
totally disconnected. On the other hand, if p>0.999 then there is a high
probability of percolation. The next theorem states that one or other of these
situations pertains for each value of p.

Theorem 15.6

There is a critical number p, with 0.333 < p. < 0.999 such that if 0 <p < p, then
F , is totally disconnected with probability 1, but if p. < p < 1 then there is positive
probability that F, connects the left and right sides of E,.

Idea of proof. Suppose p is such that there is a positive probability of F, not
being totally disconnected. Then there is positive probability of some two distinct
points of F being joined by a path in F. This implies that there is a positive
probability of the path passsing through opposite sides of one of the squares
in E, for some k; by virtue of the statistical self-similarity of the construction,
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there is a positive probability of a path crossing E, from left to right. Clearly,
if F, has probability 1 of being totally disconnected, the same is true of F, if
p’ < p. Thus the critical probability p, exists with the properties stated. O

Experiment suggests that 0.7 < p, < 0.8.

The change in form of F, as p increases through p, is even more dramatic
than Theorem 15.6 suggests. Let F/, be a random set obtained by tiling the
plane with independent random copies of F,,. If p < p then, almost surely, F’,
is totally disconnected. However, if p > p. then, with probability 1, F/, has a
single unbounded connected component. Thus as p increases through p_ there
is a ‘phase transition’ as the isolated points of F » suddenly coalesce to
form what is basically a single unit. The idea underlying the proof of this is
that, if p > p,, then given that parts of F » lie in two disjoint discs of unit radius,
there is a positive probability of them being joined by a path in F » There are
infinitely many such discs in an unbounded component of F ;, so if F " had two
unbounded components, there would be probability 1 of their being joined.

15.3 Notes and references

The main references on random fractals of the type discussed in Section 15.1
are Kahane (1974), Peyriére (1976), Falconer (1986b, 1987), Mauldin and
Williams (1986a), Graf (1987) and Graf, Mauldin and Williams (1988). An
interesting construction for fractals by random deletion is analysed by Zihle
(1984). The fractal percolation model was suggested by Mandelbrot (1974), and
detailed mathematical analysis was given by Chayes, Chayes and Durrett (1988).
Much has been written on ‘discrete’ percolation, where squares are selected at
random from a large square mesh (see Kesten (1982) or Grimmett (1989)) and
there are many parallels between this and the fractal case.

Exercises

15.1 Find the almost sure Hausdorff dimension of the random Cantor set constructed by
removing the middle third of each interval with probability 1 and the middle
two-thirds of the interval with probability 1 at each step of the construction.

15.2 Consider the following random version of the von Koch construction. We start
with a unit segment. With probability 4 we replace the middle third of the segment
by the other two sides of the (upwards pointing) equilateral triangle, and with
probability £ we remove the middle third altogether. We repeat this procedure with
the segments that remain, in the usual way. Show that, with probability 1, this
random fractal has Hausdorff dimension 1.

15.3 Show that the random von Koch curve depicted in figure 15.1 always has Hausdorff
dimension s =log4/log3 and, indeed, is an s-set. (This is not typical of random
constructions.)
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154 Let 0<p<1. We may randomize the construction .of the' Sierpinski gasl.cet
(figure 0.3) by selecting each of the three equilateral subtr}angles independently with
probability p at each step. (Thus we have a pfercolatlop process .based on_the
Sierpinski gasket.) Show thatif p < %then the limitlt}g set Fis ejmpty with probgblllty
1, but if % < p < 1 then there is a positive probabihty that F is non-empty. Fl.nd an
expression for this probability, and show that, given F is non-empty, dimy =
log 3p/log 2 with probability 1.

15.5 For the random Sierpinski gasket described in Exercise 15.4 show that F is totglly
disconnected with probability 1 for any p < 1. (We regard two triangles as being
joined if they touch at a vertex.) .

15.6 Consider the random Cantor set analysed in Theorem 15.1. With 7%, (F) denoting
the infimum of the sums in (2.1) over arbitrary coverings of F, show that

H5(F) =min{ 1, #%(F (1) + #%F (1)}

where s is the solution of (15.1). Use statistical self-similarity to deduce that, unless
P(Ci + C% = 1) = 1, then, almost surely, #%(F) =0, and thus s#*(F) = 0.

Chapter 16 Brownian motion and
Brownian surfaces

In 1827 the botanist R. Brown noticed that minute particles suspended in a
liquid moved on highly irregular paths. This, and a similar phenomenon for
smoke particles in air, was explained ultimately as resulting from molecular
bombardment of the particles. Einstein published a mathematical study of this
motion, which eventually led to Perrin’s Nobel Prize-winning calculation of
Avogadro’s number.

In 1923 Wiener proposed a rigorous mathematical model that exhibited
random behaviour similar to that observed in Brownian motion. The paths
described by this ‘Wiener process’ in 3-dimensional space are so irregular as to
have Hausdorff dimension equal to 2. This is a good example of a natural
phenomenon with a fractal appearance that can be explained by a simple
mathematical model.

A path may be described by a function f:R— R" where f(¢) is the position
of a particle at time t. We can study f from two differing viewpoints. Either
we can think of the path or trail f([t,,t,]) = {f():t, <1<t,} as a subset of R
with ¢ regarded merely as a parameter, or we can consider the graph of f,
graph f={(t, f(t)):t, <t<t,}, as a record of the variation of f with time.
Brownian paths and their graphs are, in general, fractals.

In this chapter, our aim is to define a probability measure on a space of
functions, such that the paths likely to occur resemble observed Brownian
motion. We begin by investigating the fractal form of classical Brownian motion,
and then we examine some variants that have been used to model a wide variety
of phenomena, from polymer chains to topographical surfaces.

16.1 Brownian motion

We first define Brownian motion in one dimension, and then extend the
definition to the higher-dimensional cases.

To motivate the definition, let us consider a particle performing a random
walk on the real line. Suppose at small time intervals © the particle jumps a
small distance &, randomly to the left or to the right. (This might be a reasonable
description of a particle undergoing random molecular bombardment in one
dimension.) Let X (¢) denote the position of the particle at time ¢. Then, given

237



238

the position X, (k7) at time kt, X ((k + 1)1) is equally l?kgly to be X, (kt)+
or X, (kt)— d. Assuming that the particle starts at the origin at time 0, then for
t > 0, the position at time ¢ is described by the random variable

X ty=00(Y;+ -+ Yym)

where Y, Y,,... are independent random variables, each having probability %
of equalling | and probability £ of equalling — 1. Here [¢/7] denotes the largest
integer less than or equal to t/t. We normalize the step length das\/tsothat

X (8) = /oYy + - + V) (16.1)

The central limit theorem (see (1.26)) tells us that, for fixed ¢, if T is small th'en
the distribution of the random variable X (f) is approximately normal with
mean 0 and variance t, since the Y; have mean 0 and variance 1. In the same
way, if t and h are fixed, and 7 is suﬁiciently_small, then X (t +h)— X.(2) is
approximately normal with mean 0 and variance h. We also note that, if
0<t, <t, <---<t,,, then the increments X .(¢) - X.(ty), X (1) — X,(t3),... .
X (tym) — X(t,,,_,) are independent random variables. We QCﬁne Brownian
motion with the limit of the random walk X (f) as T—0 in mind.

Let (X, %, P) be a probability space. For our purposes we call X a random
process or random function from [0, 0) to R if X(1) is a randqm variable fpr
each t with 0 <t < 0. Occasionally, we consider random.fupctlons on a finite
interval [t,,t,] instead, in which case the development is s1m11ar: (In the fqrmal
definition of a random process there is an additional ‘measurability condltlgn,
which need not concern us here.) Of course, we should think of X as defining
a sample function t— X(w,t) for each point ® in the sa_mple space Q. Thus we
think of the points of Q as parametrizing the functions X [0, 0) >R, and
we think of P as a probability measure on this class of functions.

We define Brownian motion or the Wiener process to be a random

process X such that:
(BM) (i) with probability 1, X(0) =0 (i.. the process starts at the origin) and
X(t) is a continuous function of t; '
(ii) for any t >0 and h> 0 the increment X(t + h) — X(t) 1s normally
distributed with mean 0 and variance h, thus
— Jdu; (16.2)
. exp( 2h ) (

x

P(X(t+h) —X(t)<x)= (2nh)'”2j
(i) if 0<t, <t, < --- < by, the increments X(t,) — X(ty),. .., X(t3) —
X(t,,,_,) are independent.

(There is some overkill in this definition: (iii) may be deduced from (i) anc'i (il) )-
Note that it is immediate from (i) and (i) that X(z) is itself normally distributed
with mean 0 and variance t for each t. Observe that the increments of X are
stationary; that is, X(t + h) — X(t) has distribution independent of 2
(On a point of notation: we write E(X(t)) to denote the expectation or mean
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value of X(); some readers may be used to seeing <{ X(t)), thought of as the
average of X(t) over the functions in the sample space.)

The first question that arises is whether there actually is a random function
satisfying the conditions (BM). It is quite hard to show that Brownian motion
does exist, and we do not do so here. The proof uses the special properties of
the normal distribution. For example, given that X(t,) — X(t,) and X(t;) — X(t,)
are independent and normal with means 0 and variances t,—t; and t5;—1t,
respectively, the sum X(r;) — X(¢,) is necessarily normal with mean O and
variance t; —t,; see (1.24) et seq. This is essential for the definition (BM) to be
self-consistent. It should at least seem plausible that a process X(t) satisfying
(BM) exists, if only as a limit of the random walks X, (t)as t—0.

Instead of proving existence, we mention two methods of constructing
Brownian sample functions, for example, with a computer. Both methods can,
in fact, be used as a basis for existence proofs. The first method uses the random
walk approximation (16.1). Values of 1 or — 1 are assigned by ‘coin tossing’ to
Y for 1 <i<m, where m is large, and X (1) is plotted accordingly. If t is small
compared with ¢, then this should give a good approximation to a Brownian
sample function.

Alternatively, the ‘random midpoint displacement’ method may be used to
obtain a sample function X:[0,1]— R. We define the values of X (k277) where
0 < k <2/ by induction on j. We set X(0) = 0 and choose X (1) at random from
a normal distribution with mean 0 and variance 1. Next we select X (3) from a
normal distribution with mean $(X(0) + X(1)) and variance 1. At the next step
X(3) and X(3) are chosen, and so on. At the jth stage the values X (k27%) for
odd k are chosen independently from a normal distribution with mean
HX((k— 1279 + X((k + 1)277)) and variance 277. This procedure determines
X(r) at all binary points t=k2 /. Assuming that X is continuous, then
X is completely determined. It may be shown, using properties of normal
distributions, that the functions thus generated have the distribution given by
(BM).

The graph of a Brownian sample function is shown in figure 16.1.

It is easy to extend the definition of Brownian motion from R to R™ we
just define Brownian motion on R" so that the coordinate components are
independent 1-dimensional Brownian motions. Thus X :[0, c0) - R* given by
X(0)=(X,(t),...,X, () is an n-dimensional Brownian motion on some
probability space if the random process X,(t) is a 1-dimensional Brownian
motion for each i, and X,(t,),..., X,(¢,) are independent for any set of times
ti;...,t, A sample path of Brownian motion in R? is shown in figure 16.2.

By definition, the projection of X(t) onto each of the coordinate axes is a
1-dimensional Brownian motion. However, the coordinate axes are not special
in this respect:n-dimensional Brownian motion is isotropic; that is, it has the
same characteristics in every direction. To see this, consider, for convenience,
the case of 2-dimensional Brownian motion X (t) = (X 1{t), X ,(t)). The projection
of X(¢) onto the line L, at angle 6 through the origin is X (tycos 8 + X,(t)sin 6.
Fort>0and h> 0 the random variables X ,(t + h) — X ,(t) and X, (¢t + h)— X,(1)
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Figure 16.1 Graph of a Brownian sample functon

Figure 16.2 A simulation of a Brownian path in R?

are independent and normally distributed with means 0 and variances h. Thus
the increments of the projection onto L, given by

(X ,(t + h) — X ,(t))cos 8 + (X (t + h) — X ,(1)) sin 0,

are normally distributed with mean 0 and variance hcos? 0+ hsin? 8 = h; see
(1.24) et seq. In a similar way, the increments of the projection are independent,
so the projection of X(¢) onto L, is 1-dimensional Brownian motion, for all
angles 6.

If y >0, replacing h by yh and x by y*/’x does not alter the value of the
right-hand side of (16.2) (by substituting u, = uy ™"/ 2 in the integral). Thus

P(X(t + b) — X (1) < x) = P(X;(yt + yh) — X(y1) <y'/?x)

for all x,. It follows that X (t) and y ~ /2 X (yt) have the same distribution, changing
the temporal scale by a factor y and the spatial scale by a factor y1/2 gives a
process indistinguishable from the original Thus the Brownian paths are
statistically self-similar, in that the paths X(t) and X(yt) (0 <t < o) are indis-
tinguishable, and the graphs are statistically self-affine, in that the scaling factor
is different in the t and x directions.
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.Suppose that X(¢) =(X 1(8),..., X (1)) is n-dimensional Brownian motion.
Since X (t + h) —.X it) has independent normal distribution for each i, it follows
from (16.2) that if [a, b;] are intervals, then

P(X(t + h) — X(vela, b;]) = (2nh)~ /2 Jbi exp < - ;C—;zl) dx;.

ai

Hence if E is the parallelepiped [a,,b,] x --- x [a,,b,]

P(X(t+ h)— X(t)eE) = f] [(Znh)_ 112 fbi exp ( — x_f) dx,-J

i=1 a; 2h

=Q2rh)™"? | exp P dx
i h (16.3)

where x = (x,...,x,). By approximatin i i

\ seves Xp)e g sets by unions of such parallelepipeds,
it follows that (16.3) holds for any Borel set E. (We sometimes say l:)that
X(t+ h) — X(¢) has multidimensional normal distribution.) Thus, taking E as the
ball B,,(0), and converting into polar coordinates,

P(IX(t+h) —X(@t)|<p)=ch™"? Jp

r=

1 r’
r"rexpl ——)d 16.
\ p( 2h> r (16.4)
when c is a constant depending only on n.

A fundamental property of a Brownian motion is that, with probability 1

the sample functions satisfy a Hélder condition of exponent 4 for each A <1
5
Proposition 16.1

Suepose 0 < A < 3. With probability 1 the Brownian sample function X:[0,1] > R"
satisfies ’

|X(+h) — X(@)| < b|h|* (1hl < Ho) (16.5)

for some H, >0, where b depends only on A.

Proof. If h > O we have, by (16.4),

P(IX(t + B) — X (1) > h*) = ch "2 Jw r"—lexp< — r2>dr
2h

h/l

© _u2
=c u"“exp( )du
hl—l/z 2

SCII exp(— u)du
b

A-1/2

=c,exp{—h*" 13

<c,h™? (16.6)
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after a substitution u = rh~ /2 and some sweeping estimates, where ¢, and c, do

not depend on h or t. Taking [t,t + h] as the binary intervals [(m — 1)27/,m277]
we have

P(IX((m—1)279)— X(m27J)|>2"/* forsome j=k and 1<m<2)

X . — .
<cp 3 227
i=k

=,2 k1
Thus with probability 1 there is an integer K such that
I X((m—1)27)—X(m2 )| <27/ (16.7)

forall j>K and 1<m<2’. If h < Hy=2"% the interval [, + h] may, except
possibly for the endpoints, be expressed as a countable union of contiguous
binary intervals of the form [(m — 1)277, m2 7] with 277 < h and with no more
than two intervals of any one length. (Take all the binary intervals in [t,t+h]
not contained in any other such intervals.) Then, using the continuity of X, if
k is the least integer with 27* < h,

2742 2h*

i-2 9 d-zny U

1X(@) - X +hI<2 3 274 =
i=k

Theorem 16.2

With probability 1, a Brownian sample path in R" (n = 2) has Hausdorff dimension
and box dimension equal to 2.

Proof. For each A <1 X:[0,1]— R" satisfies a Holder condition (16.5) with
probability 1, so by Proposition 2.3, dimy X([0,1]) <(1/4)dimy [0,1] < 1/4,
with a similar inequality for box dimensions. Thus, almost surely, Brownian
paths have dimension at most 2.

For the lower bound we use the potential theoretic method. Take 1 <s<2.
For given t and h let p(p) denote the expression in (16.4). Averaging over all
functions, it follows that

el

E(IX(+h— X0 = J r=*dp(r)

0

© 2
=ch™"? r_”"_lexp(_r )dr
. 2h

=1ch™*? on win=s=2)2 exp(%w)dw

0

=c,h™5? (16.8)
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after substituting w = r?/h, where ¢, is independent of h and ¢. Then
1 1 1 1
E(J J |X(t)—X(u)|‘sdtdu>=J '[ E|X(t)— X(u)|"*dtdu
0 Jo 0 Jo

1 1

=J f ¢, lt—u{™¥*dtdu
o Jo

< o0

(16.9)

since s < 2. There is a natural way of defining a mass distribution u - on a path
S, with the mass of a set equal to the time the path spends in the set, ie.
pd)=ZL{t:0<t<1 and f()eA} where & is Lebesgue measure. Then
fg(x)du (x) = j(‘)g( f(1))dt for any function g, so (16.9) becomes

E(jflx =y dux(x) dux(y)> < o0.

Hence if s <2 then [f}x — y|"*duy(x)duy(y) < oo almost surely, where uy is a
mass distribution on X(t), so dimy X([0, 1]) > s by Theorem 4.13(a). [

In fact, with probability 1, Brownian paths in R" (n > 2) have 2-dimensional
Hausdorff measure 0. More delicate arguments involving the finer definitions
of dimension given in Section 2.5 show that, with probability 1, the paths
X([0,1]) have positive finite measure with respect to the function
h(t) = t*1og (1/t) logloglog (1/t), if n = 2, and with respect to h(t) = t2 loglog(1/1),
if n > 3. In this sense, Brownian paths have a dimension that is ‘logarithmically
smaller’ than 2.

An obvious qualitative question about Brownian paths is whether they are
simple curves, or whether they are self-intersecting. Given a function f, we say
that x is a point of multiplicity k if f(t) = x for k distinct values of ¢. Dimensional
methods may be used to determine whether Brownian functions have multiple
points.

Theorem 16.3

With probability 1, a Brownian sample function B:[0, co)— R" has multiple points
as follows:

n=2: there are points of multiplicity k for every positive integer k;

n=3: there are double points but no triple points;

n = 4: there are no multiple points.

Idea of proof. One approach is to use the intersection theorems of Chapter 8.
For the case n = 3, suppose that dimy (X ([0, 1)~ X ([2, 3])) < 1 with probability
1. Using isotropy and scaling of Brownian motion it is not difficult to see that
this implies that dimy (X([0, 1])ne(X([2,3]))) <1 with probability 1 for any
similarity transformation o. It follows that, with probability 1, dimy, (X([0, 1])
o(X([2,3]))) <1 for almost all similarities ¢. Since, by Theorem 16.2,
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dimyg X([0,1]) =dimy X([0,1])=2 with probability 1, this contradicts
Theorem 8.2(a), and we conclude that dimy(X([0,1])nX([2,3]))=1 with
positive probability, p say. Using the statistical self-similarity of X (¢) it follows
that dimy (X ([t,t + 61X ([t + 26, + 35])) =1 with probability p for any ¢
and 4, so, since the increments are independent, the set of double points of F
has Hausdorff dimension 1 with probability 1.

Similar techniques may be used to prove the other results. O

The derivation of the almost sure dimension of Brownian graphs is similar
to that for Brownian paths.

Theorem 16.4

With probability 1, the graph of a Brownian sample function X:[0,1]1— R has
Hausdorff and box dimension 1%.

Proof. From the Holder condition (16.5) and Corollary 11.2(a) it is clear that,
with probability 1, graph X has Hausdorff dimension and upper box dimension
at most 2 — A for every A <13, so has dimensions at most 15. For the lower
estimate, as in the proof of Theorem 16.2,

E((X(t+h) =~ XOF + )~ = j "2 + h) 2 dp(r)
0

© 2
—_—ch‘”zjlo (r2+h2)_s/2cxp( 2; )dr

=§cj (uh+h2)"‘/2u‘”2exp<j>du
o 2

h
S%CJ (h?)"2u"12du

0

+ %CJ (uh) ™52y~ 12 dy
h

< Clhl/Z—s

on splitting the range of integration and estimating the integral in two ways.
We may lift Lebesgue measure from the ¢ axis to get a mass distribution u, on
the graph of a function f given by u (4)= £L{t:0 <t <1 and (z, f(t))e 4}. Using
Pythagoras’s Theorem,

1 1
E(JJIX —YI_‘dux(X)dux(Y)> =f J E(1X(2) — X (){* + |t — ul?)~**)dt du

0 JvoO

1 1
gj j cy |t —u|?"*dtdu
0 Jo

< 0
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if s < 1. With probability 1, the mass distribution Uy on graph X is positive
and finite and has finite s-energy, so Theorem 4.13(a) gives dim,graph X
> 14 a

Since, with probability 1, the graph of X over any interval has dimension 11,
it is immediate that Brownian functions, though continuous, are not
continuously differentiable. In fact, with probability 1, a Brownian function is
nowhere differentiable.

As with Brownian paths, Brownian graphs have dimension logarithmically
smaller than 15: with probability 1, the graph of X over the range [0, 1] has
positive finite measure with respect to the function h(t) = t32 log log 1(/s).

The sets of times at which a Brownian sample function takes particular values
are often of interest. If f:[0,1]—- R is a function, we define the level sets
S Ye)y={t:f(t)=c} for each value of c. The level sets are, essentially, the
intersections of the graph of f with lines parallel to the t-axis.

Proposition 16.5

With probability 1, a Brownian sample function X:[0,1]-R satisfies
dimy X ~!(c) < for almost all ¢ (in the sense of 1-dimensional Lebesgue measure).
Moreover, for any given c, dimy X ~!(c) = 1 with positive probability.

Note on proof. With probability 1, dimggraph X =14, by Theorem 16.4.
Thus dimy((graph X)n L)<} for almost all ¢, where L_ is the line y=c;
otherwise Corollary 7.10 would imply that dimygraph X > 11.

It is much harder to show that dimy X ~'(c) =3 with positive probability.
The argument is not unlike that indicated for the proof of Theorem 8.2. O

16.2 Fractional Brownian motion

Brownian motion, although of central theoretical importance, is, for many
purposes, too restrictive. A Brownian sample function is often regarded as a
‘typical’ random function, although its graph has dimension 1} almost surely.
However, random functions with graphs of other dimensions are required for
a variety of modelling purposes.

It may be shown that the Brownian process is the unique probability
distribution of functions, which has independent increments that are stationary
and of finite variance. To obtain sample functions with different characteristics
it is necessary to relax one or more of these conditions.

There are two usual variations. Fractional Brownian motion has increments
which are normally distributed but no longer independent. Stable processes, on
the other hand, dispense with the finite-variance condition and this can lead to
discontinuous functions. For simplicity, we just discuss the graphs of these
processes in the 1-dimensional case; analogous processes may be defined in
n-dimensions.
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Fractional Brownian motion of index-o (0 < a < 1) is defined to be a random
process X:[0, o0) —» R on some probability space such that:

(FBM) (i) with probability 1, X(¢) is continuous and X(0)=0;
(ii) for any t > 0 and h > O the increment X (¢t + h) — X(t) has the normal
distribution with mean zero and variance 42% so that

X

PX(t+ h)— X(f) < x) =(n)~ ”Zh-“J exp (— u?/2h**) du. (16.10)

It may be shown that, for 0 <« < 1, a process satisfying (FBM) exists.

It is implicit in the above definition that the increments X(t + h) — X(¢) are
stationary; that is, they have probability distribution independent of . However,
the distribution of functions specified by (FBM) cannot have independent
increments except in the Brownian case of a=3. By condition (ii),
E((X(t + h) — X(1))*) = h**, from which it may be shown that

E(X(O)(X(t + B) — X () = L[ (¢ + h)>* — £2% — k2] (16.11)

which is non-zero if « # 1. Hence E((X(t) — X(0))(X (¢ + k) — X(1))) is positive or
negative according to whether « > or a <. Thus the increments are not
independent—if o > 1 then X () — X(0) and X(¢ +h) — X(t) tend to be of the
same sign, so that X (¢) tends to increase in the future if it has had an increasing
tendency in the past. Similarly, if o <3 then X(f) — X(0) and X(t +h) — X(1)
tend to be of opposite sign. Note also that it may be deduced from condition
(16.10) that the scaled paths y~*X(yz} have the same statistical distribution as
X(t) for y>0.

The almost sure dimension of fractional Brownian graphs may be determined
in a similar way to the strict Brownian case.

Proposition 16.6

Suppose 0 < A <a. With probability 1, an index-o Brownian sample function
X:[0,1] — R satisfies

IX(t + h) — X(£)] < blh)? (16.12)

if |h| < Hy, for some Hy >0 and b>0.

Note on proof. Provided that 1<%, the proof goes through as in
Proposition 16.1, using (16.10) instead of (16.4). However, if « > 4 > 1 this leads
to an estimate c,h'?>”* in place of (16.6) and rather more sophisticated
techniques from probability theory are required to show that the Holder
condition (16.12) is valid uniformly for all ¢. O

. Theorem 16.7

With probability 1 an index-o Brownian sample function X:]0,1]— R has graph
with Hausdorff and box dimensions 2 — a.
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Praaﬁ‘ Corqllary 11.2(a) together with the Hélder condition (16.12) show that
Fhe dimension is almost surely at most 2 — «. The lower bound is obtained as
in Theorem 16.4 using the probability distribution (16.10). O

Tl}e autocorrelation theory discussed in Section 11.2, may be applied to
fract'lonal.Brownian functions. It is convenient to assume that X is defined for
all tx.rrTe, Le. X:(—o0,00)—R. This requires only trivial modification to the
definition (FBM). Since the variance E(| X (t + h) — X(1))?) tends to infinity with

h, we have
1 L
im E{ — X(1)? =
Tow (2Tf_r (@ dt) «©

so the sample functions tend to have an infinite mean square. Nevertheless,

1 [T 1 (T
E(ﬁ f_T(X(t-f- h)—X(t))Zdt) =EJ_T E(X(t +h) — X (1)) dt = h?®

It may be deduced that ‘on average’ the sample functions satisfy
T

1
5T _T(X(t+h)-—X(t))2dt_~_ch2“‘

and,. according to (11.18) and (11.19), this does indeed correspond to a graph
of dimension 2 — «. Taking this parallel further, we might expect X () to have
a power spectrum (11.15) approximately 1/w!* 2=,

chause of the correlations between the increments, simulating index-o
fr:actlonal Brownian motion can be awkward. The random midpoint
dlsplace.:ment method for constructing graphs of Brownian motion does not
gc‘ane.rahz.e to the fractional case. If we take X(k27J) to have the normal
dlstrll?utlon of variance 27 2% for k odd and independent for each k and J» the
resultmg function fails to have stationary increments. It is possible’: to
approximate X by a ‘random walk’ using certain sums of normal random
variables, but the formula is quite complicated.

An alternative method of constructing functions with characteristics similar

to inc.iex-oc Brownian functions is to randomize the Weierstrass function (11.4).
Consider the random function

X(@)y= Y C A *sin(At + 4,) (16.13)
k=1

w_her'e A > 1 and where the C, are independent random variables with the normal
distribution of zero mean and variance one, and the ‘phases’ 4, are independent,

each having the uniform distribution on [0, 2n). Clearly E(X(f + h)— X(t))=0.
Furthermore

E(X(t + h)— X ()2 = E( $ Cod™ 2 sin (LAh) cos (15(t + 1ny+ Ak)>2
k=1

=2y A72%sin2 (L 1kh)
k=1
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using that E(C,C;) =1 or 0 according as to whether k = or not, and that the
mecan of cos?(a + A4,) is 3. Choosing N so that ™" <h <A™V, gives

N 0
E(X(t + h)— X(t))z :% Z ,1_2"‘"12"}12 +2 Z A—zak
k=1 =N

k=N+1
~ )7 2N

~ ch**

in the sense that 0 < ¢, < E(X(t 4+ h) — X(1))*/h** < ¢, < co for h < 1. Thus (16.13)
has certain statistical characteristics resembling index-a fractional Brownian
motion, and provides a usable method for drawing random graphs of various
dimensions. Such functions are often used in fractal modelling. A value of o = 0.8,
corresponding to a graph of dimension 1.2, is about right for a ‘mountain
skyline’.

As might be expected, the level sets of index-a Brownian sample functions
are typically of dimension 1 —a. Proposition 16.5 generalizes to give that, with
probability 1, dimy X " '(c)<1—« for almost all ¢, and that, for given c,
dimy X ~!(c) =1 — « with positive probability.

16.3 Stable processes

An alternative generalization of Brownian motion gives the stable processes
introduced by Lévv. A stable process is a random function X:[0, o) — R such
that the increments X(t+h)— X(¢) are stationary, ie. with distribution
depending only on h, and independent, i.e. with X(t,)— X(t,),..., X (tam)— XU ym—1)
independent if 0 <t, <t,--- <t,,. However, except in very special cases such
as Brownian motion, stable processes have infinite variance and are dis-
continuous with probability 1.

It is not, in general, possible to specify the probability distribution of stable
processes directly. Fourier transforms are usually used to define such
distributions, and analysis of the dimensions of graphs and paths of stable
processes requires Fourier transform methods.

The probability distribution of a random variable Y may be specified by its
characteristic function, i.e. the Fourier transform E(exp (iuY)) for ueR. To define
a stable process, we take a suitable function :R— R and require that the
increments X (t + h) — X(¢) satisfy

E(exp (iu(X(t + h) — X()))) = exp( — hy (1)) (16.14)

with X(t;) — X(t)),. .., X({3m) — X (t3p,-,) independent if 0 <t <t < Sl

" Clearly the increments are stationary. This definition is, at least, consistent in
the following sense. If ¢, <t, <t;, then, averaging over all paths, and using
indpendence,
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Elexp (u(X(t3) — X(t,)))) = E(exp (X (t3) — X(£,)) + (X(t,) — X(t,))))
= E(expiu(X(t3) — X(¢2))) E(expiu(X(t,) — X(t,)))
=exp(—(t; — )¢ W) exp(— (2, — £, (w)
=exp(—(t3 — 1)y u)).
It may be shown that, for suitable ¥, stable processes do exist.
. Taking (u) = clul* with 0 <a <2, gives the stable symmetric process of
index-a. Replacing h by yh and u by y~ /%y leaves the right-hand side of (16.14)

unaltered, so it folloxys that y~*X(yt) has the same statistical distribution as
X(1). The case a =2 is standard Brownian motion.

Theorem 16.8

With probability 1, the graph of the stable symmetric process of index-o has
Hausdorff and box dimension max {1,2 — 1/a}.

Par{ial proof. We show that dim,, graph X <dimg graph X <max {1,2— 1/o}.
Wntg R [t),t,]= spp{lf(t) —fWl:t, <t,u<t,} for the maximum range of a
function f over the interval [t,,¢,]. By virtue of the statistical self-similarity of
the process X, for any ¢ and § > 0

E(Ry[1, ¢ + 8]) = 5Y*E(R,[0, 1]).

If N, squares of the -coordinate mesh are intersected by graph X, it follows
from Proposition 11.1 that

E(N)<2m+ 67 1Y E(R[id,(i + 1)5])
i=0

=2m + mé~1§V*E(R,[0, 1])

yvhere m is the lgast integer greater than or equal to 1/8. It may be shown, and
1s at liast plausible, that E(R4[0,1]) < oo, so there is a constant ¢ such that
E(N;0°) < c for all small 3, where  =max {1,2 — 1/a}. Then E(N,6%*%) < c5® if
e>0, so that

O

E( 5 Nz_k(z—")ﬂ“)gc Y (279 < co.

k=1 k=1

It follows that, with probability 1, 32 N, (2% *<oco. In particular
N;6f7¢—0as 6 =27%-0, so dim, graph X < § with probability 1. O

If o < 1 then almost surely dimy, graph X = 1, the smallest dimension possible
for the graph of any function on [0,1]. This reflects the fact that the sample
paths are constant except between certain jump discontinuities. The image of
X, thatis {X(¢):0 < t < 1}, has dimension a with probability 1, which is indicative
of the distribution of the jumps. It may be shown that the probability of there
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being k jumps of absolute value at least a in the interval [f,z+h] is
(ha™ %) exp (— ha~*)/k!, corresponding to a Poisson distribution of mean ha™*.
If 1 < a < 2 the stable symmetric process combines a ‘continuous’ component

and a ‘jump’ component.

16.4 Brownian surfaces

We end this chapter with a brief discussion of fractional Brownian surfaces
which have been used so effectively in creating computer-generated landscapes.
We replace the time variable ¢ by coordinates (x, y) so the random variable
X(x,y) may be thought of as the height of a surface at the point (x, y).
For 0 <a <1 we define an index-« Brownian function X:R*—>R to be a
random function such that:

(FBS) (i) with probability 1, X(0,0)=0, and X(x, y) is a continuous function
of (x, y)
(i) for (x,y), (h,k)eR? the height increments X(x +h,y + k) — X(x,)
have the normal distribution with mean zero and variance (h? + k2,
thus

P(X(x+hy+k —X(x,y)<2)

- P —r?
= (27[) 1/2(1’!2 + kz) a2 J_ exp<m>dr. (1615)

Some effort is required to demonstrate the existence of a process satisfying these
conditions. The correlations between the random variables X(x, y) at different
points are quite involved.

We term {(x,y,X(x,¥)):(x,y)eR?} an index-o Brownian surface. Some
sample surfaces are depicted in figure 16.3.

Comparing (16.15) with the distribution (16.10) we see that the graph obtained
by intersecting X(x, y) with any vertical plane is that of a 1-dimensional index-«
Brownian function (after adding a constant to ensure X(0) =0). We can often
gain information about surfaces by considering such vertical sections.

Theorem 16.9
With probability 1, an index-o. Brownian sample surface has Hausdorff and box
dimensions equal to 3 — a.
Proof. It may be shown that if A <a then, with probability 1, an index-a
Brownian function X:[0, 1] x [0, 1] — R satisfies

|X(x + h,y + k) — X(x,y)| < b(h? + K22 = bl (h, k)*
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provided that (h, k) is sufficiently small. The analogue of Corollary 11.2(a) for
a function of two variables (see Exercise 11.9) then gives 3 — 1 as an upper
bound for the upper box dimension of the surface.

If we fix xo, then X (xo, ¥) — X (xo,0) is an index-« Brownian function on [0, 1],
so by Theorem 16.7 X(xo,y) has graph of Hausdorfl dimension 2 —a with
probability 1. Thus, with probability 1, the graph of X(xo,y) has dimension
2 — o for almost all 0 < x, < 1. But these graphs are just parallel sections of the
surface given by X, so by the obvious analogue of Corollary 7.10 in R? the
surface has Hausdorff dimension at least (2 — o) + 1. O

The level sets X ~(c)= {(x,y):X(x,y)=c} are the contours of the random
surface. Proposition 16.5 extends to index-a surfaces. It may be shown that,
with probability 1, dimy X ~'(c)<2—a for almost all ¢ (in the sense of
1-dimensional measure), and that dimy X ~*(c) = 2 — « with positive probability.
Thus the contours of index-o surfaces have, in general, dimension 2 —a.

The problems of generating sample surfaces for index-o Brownian functions
are considerable, and we do not go into details here. However, we remark that
an analogue of (16.13) for index-« surfaces, is

X(x,y)= Y. CA™*sin(A*(xcos B, + ysin B)) + A4y)
k=1

where the C, are independent having the normal distribution of mean zero
and variance 1, and the 4, and B, are independent with the uniform distribution
on [0, 27). Such functions provide one possible approach to computer generation
of random surfaces.

The ideas in this chapter may be extended in many directions and combined
inmany ways. Fractional Brownian motion and stable processes may be defined
from R" to R™ for any n, m and there are many other variations. Questions of
level sets, multiple points, intersections with fixed sets, the images X(F) for
various fractals F, etc, arise in all these situations. Analysis of such problems
often requires sophisticated probabilistic techniques alongside a variety of
geometrical methods.

16.5 Notes and references

Details of the probabilistic theory of Brownian motion may be found in the
books by Carlin and Taylor (1975, 1981) and Billingsley (1979). Fractional
Brownian motion was introduced by Mandelbrot and Van Ness (1968), and
properties of stable processes were first studied by Lévy. The surveys by Taylor
(1973, 1986) mention many dimensional properties of such processes. The books
by Adler (1981) and Kahane (1985) are basic references for the mathematics of
fractional Brownian functions and surfaces and their dimensions. Computational
methods for generating Brownian paths and surfaces are discussed in Voss
(1985), Feder (1988) and Peitgen and Saupe (1988).
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Exercises

16.1 Use the stat‘istical self-similarity of Brownian motion to show that, with probability
1, a Brownian sample path in R? has box dimension of at most 2.

16.2 Let X:[0,00)— R3 be‘ usual Brownian motion. Show that, with probability 1, the
;mage X(F) of the middle third Cantor set F has Hausdorff dimension at r;lost
og4/log 3. (Harder: show that it is almost surely equal to log4/log 3.) What is the
analogous result for index-« Brownian motion?

16.3 th X:[0, c0)— R? be usual Brownian motion, and let F be a compact subset of
R>. Use Theorem 8.2 to show that if di i

. my F > 1 then th iti il
of the Brownian path X(r) hitting F. ! r fherels @ positive probabilly

164 Show that, with probability 1, the Brownian sample function X: [0,00) >R is not

monotonic on any interval [t, u].
16.5 Derive (16.11) from the definition of fractional Brownian motion
16. L .
6.6 Take 1 <o, <a, <1 and let X ((¢) and X,(¢) be independent Brownian functions

from [0,1] to R of indices a, and a, respectively. Show that, with probability 1

the path in R? given b . .
of (1 +a,— aj/l;,:n y {(X1(0, X2(0):0< 1 < 1} has Hausdorff and box dimensions



Chapter 17 Multifractal measures

A mass distribution p may be spread over a region in such a way that the
concentration of mass varies widely. If often happens that the sets where the
mass concentration has a given density, say where p(B/(x))=~r* for small r,
display fractal-like features, with different sets corresponding to different «. A
mass distribution or measure p with this sort of property is called a multifractal
measure. As with fractals, an exact definition of muitifractal measures tends to
be avoided.

An important class of multifractal occurs in connection with attractors in
dynamical systems, see Section 13.7. If f:D — D is a mapping on a domain D,
we can define a measure by letting

u(A) = lim l#{k:l <k<mand f¥x)eA}
m—oo M

for subsets A of D, where x is some given initial point of D. Then u(A) represents
the ‘proportion of time’ that the iterates of x spend in A. We have seen that
the support of u is often an attractor of f and may be a fractal. However the
non-uniformity of the distribution of g may highlight further subsets of the
attractor. The irregularity of distribution of y contains much information about
the system which can conveniently be recorded and analysed using multifractal
theory.

Multifractals represent a move from the geometry of sets as such to geometric
properties of measures. However, in view of the widespread recent interest in
multifractals, and the ‘fractal ideas’ that are involved, it is appropriate to include
a note on multifractals in this book. It could reasonably be argued that this chapter
belongs to Part I of the book, on Foundations, since the theory may be applied
in many different areas of mathematics. However, it has been left until now for
reasons of exposition and pedagogy. Familiarity with a variety of fractals, many
of which have multifractal counterparts, should make multifractal theory appear
more natural. Moreover, multifractal measures are sometimes regarded as a
device to generate a spectrum of fractals, though, as we shall see, this approach
requires considerable care.

A number of approaches to multifractal measures have been presented; none
have been entirely satisfactory from the mathematical point of view, in that
they tend to lack rigour and to apply to restricted classes of measures. Our
treatment brings out some of the main ideas of the subject, but it should be
empbhasized that it is not the only approach.
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17.1 A multifractal formalism

Lgt # be a measure supported by a bounded region of R”, with total mass
u(R") = 1. The support of u itself may or may not be a fractal.

Foreach0 < J < 1, let { B;} be the cubes of the §-coordinate mesh that intersect
_the support of u. We count the number of these 6-mesh cubes where the measure
is ‘reasonably large’. For — oo <o < oo let

Ny(o) = #{i:u(B) = 6°}. (17.1)

(Note that our notation differs slightly from that of some other authors.)
Althoggh Ns(2) is obtained by ‘box counting’ and it is natural to examine thL—‘:
behawqur of log N4(a)/ —log 6 as 6 — 0, caution is required in interpreting this
limit—it need not be the box dimension of any particular set, since the boxes
counted when § is small need not be contained in those co;mted when o is
much larger.

We also define the sums over the d-mesh cubes
Sslg) =3 u(B) (17.2)

for — 00 <g<co. Since S;0)=Nsupport u) i the number of 6-mesh cubes
requnreq to cover the support of y, in one sense the limits lim,_, , log S,(g)/ —log &
gf:neral}ze the idea of box dimension. It is worth noting that, just as with box
dlmenS}ons (see (3.14)), the limiting behaviour of log S,(q)/ —logd as § -0 is
determined by that of logS; (q)/—logd, for any sequence ,—0 such that
Oy 4 1/0x = ¢ for some ¢ > 0.

Observe that, for each 8, we have that Ny(a) increases as « increases, and
S;5(q) decreases as g increases.

The theory of multifractals depends on the fact that, in many cases, N 5(@)
and _Sa(q). obey power laws as 6-—0; moreover there are fundamental
relationships between the power-law exponents.

The following example of a ‘self-similar’ measure has features that are typical
of multifractal measures.

Example 17.1

Let 0 < p <1 be given. We construct a measure yu on the middle third Cantor set
F =\, E as follows. (As usual, E, contains 2* intervals of length 37*) Split
a unit mass so that the left interval of E, has mass p and the right interval has
mass 1 — p. Divide the mass on each interval of E, between the two subintervals
of E, in the ratio p: 1 — p. Continue in this way, so that the mass on each interval
of E, is divided in the ratio p:1 —p between its two subintervals in E, . see
figure 17.1. This defines a mass distribution y on F. Then S s(g@)and N ‘,(o:‘)+sltz,tisfy
power laws for small 8, for each — 00 < g < 0 and « = 0.

Calculation (first part). The set E, is made up of 2* intervals of length 37 and

3

f k k
or each r, a number of these have mass p"(1 — p)* ™7, where (
r
r

) is the usual
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Figure 17.1 Construction of the self-similar measure analysed in Example 17.1. The mass on each
interval of £, in the construction of the Cantor set, indicated by the area of the rectangle, .is divided
in the ratio p:1 — p (in this case %:%) between the two subintervals of £, ;. Continuing this process
yields a mass distribution g on the Cantor set F

binomial coefficient. By the binomial theorem,

S,-lg) = Ek: <I:)p"'(l —py* " =(p?+ (1 —p*

r=0

SO
Ss(q) = Slog (pa+ (1 —p)3)/log 3

at least when & = 37* Thus
iy 108Ss(@) _log(p* + (1 —p))

1
51..0 —logd log3

Direct evaluation of N,(x) is rather harder. Assuming, without loss of
generality, that 0 < p <3, we have
mo(k
N, o)=Y, < ) (17.3)
r=0 \T
where m is the largest integer such that

m ~k(10g(1 —p)+alog3)

ml__ k—m>3—ka’
pr=p) log(1 —p)—1logp

assuming this lies between 0 and k.
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It is now possible, but tedious, to use (17.3) to estimate N 3-« () and thus examine
its power-law exponent. We prefer to adjourn the calculation until we have
developed some general theory enabling an indirect approach. O

We now assume that, for small ¢ the number of S-mesh cubes B; with
0*** < u(B;) < 6% is roughly of the order &~/ for small 8. (It is tempting to
interpret this as meaning that a set such as

{ x:lim E’%ﬁ@(ﬁ) —

o where B(x) is the 6-mesh cube containing x}
s~0 —logéd

has box dimension f(x). However, this interpretation is misleading—such sets
are often dense in support p and so have box dimension equal to that of
support p). A crude estimate based on such an assumption gives

Ss(q) ~f R A

0

- [Tomrada

0

For small 6, the dominant contribution to this integral comes from the value
of a for which f(a) — ga is greatest. Writing t(q) for this maximum value, gives
a power law S (q) ~ 6 "9,

This handwaving argument may be made precise under the following
hypothesis on N(): for 0 <a < oo the following double limit exists:

im lim log (Nsa+ &) — Nyl —e)
£=05-+0 —logé

)
= f(a). (17.4)
(We allow the possibility that f(x) = — 00.) This implies that, given 5 > 0, for
small enough ¢ > 0 we have
ST NS a4+ 6)—Nya—g) <5~ f@n (17.5)

for all sufficiently small §.

Proposition 17.2
Assume that N s(a) satisfies (17.4), and define

©(q)= sup (f(a)— qu). (17.6)
O0fa<w
Then
t(q) = lim 28 54®) (17.7)
s~0 —logé

and, in particular, this limit exists.
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«Proof. We give the proof where ¢ > 0. For each a >0, if n>0 there exists ¢
with 0 < ¢ < n/q such that, if 0 < <,

S~ T@+n < Na(“""g)_ Na(a-—e)S N‘;(O(-i-s)
Then

S5(q) = N o + g)d7@*9
> 5—f(<z)+2q+qu.

It follows that

lim —=—— = f(@) —qa—2n

= t(q) — 21. (17.8)

For the opposite inequality, let >0 be given. Choose B large enough to
ensure that n — gB < 1(g) (n is just the dimension of the space R"). Using (17.5),
a simple compactness argument gives a sequence o; < -+ <, and ¢ < n/q such
that [0, 8] = r_ (& — & o + €) and such that foreach k (1 <k<m)

Ny(o, + &) — Nylo —g) <o~/ (17.9)

if & is sufficiently small. Thus, since the number of 6-mesh cubes is at most ¢ ™"
for some constant c,

Siq) < Z (N 5oty + €) — Noloy — 5))5‘1(%_5) + co "o
1

k=

< i 5—f(ak)+qak~2n+c5—n(§qﬁ
k=1
L(m+c)d @2
for all small enough 6. Thus,

im log Ss(q)

-0 — Og5

Inequality (17.8) also holds for all n >0, so we get (17.7). d

< t(q) + 21.

The assumption (17.4), that the number of d&-mesh cubes with u(B;)
approximately equal to 6 obeys a power law, is at least plausible, and may
be shown to be valid in many cases of interest. In such cases (17.7) relates the
power-law exponents

S{q)~6""@ and Nyo+e)— Nyox—e~7®,

Additional assumptions on the form of f enable further relationships between

. the various exponents to be deduced. We assume from now on what is often the

case in practice: that f is a differentiable function of « where f(a) >0, and is
strictly convex, ie. f(o) is strictly decreasing with o.
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Suppose that, for each g, the supremum in (17.6) is attained at o = a(g) > 0.
Then at afq)

d
—( —qa)=0
i (f (o) — go) (17.10)
giving
df
=4 (a(q))- (17.11)
Thus a(q) is the value of « at which the graph of f has slope ¢g. From (17.6)
™(q) = f(a(q)) — q(q) (17.12)
so, if a is differentiable as a function of g,
dt dfde do
=g
dg dadg dg

On putting o = a(g) we get, using (17.11), that
. (@)= —alg)

o(g)- 7.13

dg (17.13)

Equations (17.12) and (17.13) are, essentially, a Legendre transform pair
relating the independent variables g and ¢ to the independent variables o and
/. In mathematical examples, it is usually easiest to find ©(q) as g varies, and
then «(q) and f(x(g)) may be found using (17.13) and (17.12), enabling a graph
of f() against « to be plotted via the parameter q. For practical estimations,
this procedure can present difficulties, and other methods of finding the graph
of f(a) are often better. This f(«) curve is sometimes referred to as the multifractal
spectrum of the measure y; see figure 17.2.

There are a number of notable values of the parameter g. When g =0, we
have 540) = Ny(support y), the number of 5-mesh cubes required to cover
the support of pu, so 7(0)=dimg(support )= f(«(0)), by (17.12). Since
df(x(0))/de =0 by (17.11), this corresponds to the maximum of f.

Turning to the value g =1, we have S;(1)= 1, so that 7(1)=0. Moreover,

Line of siope 1

dim_(support u}
8 70
information dimension g=1
7 (a)

0

o} Information a

dimension

Figure 17.2 Features of the multifractal spectrum—the graph of f(x) against «
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fle(1)) = af1), with df((1))/do = 1, using (17.12) and (17.11). From (17.2)
2 u(B) log p(By)
2 (B
where the sums are over the é-mesh cubes B, so, at g =1,

d logS,(q) _ Y u(Bi)log WB:)

d
—log 8§ =
dg 2S5(9)

dg —logé —logé
Assuming convergence of the derivatives as 6 — 0, (17.7) and (17.13) imply that
B))1 B;
()= — Tty = lim (M—)> (17.14)
dq 50 IOg S

The expression — Y u(B;)log u(B;), where the sum is over the mesh cubes of
side 8, is called the entropy of the partition of the measure y by the d-mesh
cubes. It indicates the average amount of information about the location of a
point x, measured by g, that is provided by knowledge of which cube B; the
point x belongs to. Thus «(1), the rate at which this entropy scales with §, is
often called the information dimension of p.

The number a(1) = f(x(1)) has a further important interpretation—it reflects
the size of the set on which the measure u is concentrated. To see this, let h >.0
and take n >0 such that if 0 <a<oa(l)—h then f(a) —a < —n. Just as in
the proof of Proposition 17.2, we may find e <n/4 and 0 <o, < --- <@, <afl)—h
such that [0, (1) — h] = | Jy_ (o — & o + ¢) and

Nyoy + &) — Nyoy —g) < 5~ S@—n/2
for all sufficiently small é. Then,
p{{) B;:B;is a é-cube and pu(B) = 6*V 7"} < kzl (N 5ot + &) — Ng(oy — £))o™ ¢

< i 5 S ta=n2=e
k=1

< momE 4
if & is small enough, so that
u{{JB;:B; is a é-cube and p(B) = 5"V} -0
as 60— 0. A similar argument shows that
u{{JB;:B; is a 5-cube and p(B) < 5*V**} -0
as 6 0. Thus
p{{JB;:B,; is a 6-cube with 6" ** < (B) <V 7"} > 1

as 6 —0. This means that the measure u is concentrated on the d-mesh cubes
B; with p(B) close to . Thus the ‘set of concentration of y at scale §
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may be covered by N1} + h) — Nya(1) — h) = & /1) = §~=1) mesh cubes
of side 6.

We now continue the analysis of our example.
Continued Calculation of Fxample 17.1. We have already shown that
t(q) = log (p* + (1 — p))/log 3. (17.15)
Let us assume that (17.4) holds and the above theory is valid. By (17.13)
_(p*logp + (1 — p)*log(1 — p))
(p?+(1—p)f)log3
with (17.12) giving the corresponding value of f in terms of the parameter g
“logp + (1 —p)log(l — p))
(log(pq+(1 _ pyy_4"logp + (1 —pylog(l - p) )

flatg) = S b
og3

a(q) =

(17.16)

(17.17)
The graph of the multifractal spectrum f(«) when p = 1isdisplayed in figure 17.3.

*[The remainder of this calculation may be omitted.] This approach to finding
f(2) avoids the considerable calculation that would be required working from
(17.3). Nevertheless, for it to be valid, we still need to show that the limit (17.4)
exists. One way of doing this that avoids excessive calculation is to appeal to
Chernoff’s Theorem for large deviations, from probability theory. Let X be a
random variables and let X, X,,... be independent random variables, all with
the same distribution as X. A version of Chernoff’s Theorem states that, if y is
such that E(log X) <logy and P(X > ) > 0, then

im P(X, X, X, > )= sup E(X9y". (17.18)

k—w 0sg<ow

For each j, let X; = p with probability 4 and X;=1— p with probability 1
0.87

log2/log 3

0.61

f(a)
0.4 1

0.21

Figure 17.3 The multifractal spectrum of Example 17.1 with p=%
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Since the 2* intervals of E, have masses X, X, - X, for each of t_he 2% possible
assignments X;=por 1 —p (1<j<k), equation (17.18) may be interpreted as,
taking y =379

lim 27*N, ()= sup E(X%)3*

k— o 0<g<co

= sup 3(p*+ (1 —p)*)3~

0<g<w

or

—_ p¥
Hm %‘@ = sup <lgg_(p_"i(_l_m + ocq) = g(a), (17.19)
koo —10837%F  pggew log3

say, provided that 4(log p +log(1 — p)) < —alog3 < max {log kp,.lo‘g(l — p)} By
comparing -mesh intervals with nearby intervals of lengths 3%, it is not difficult
to see that this implies

. log Nx(«)
lm ————=

o)
i g()

It follows that

log(Nyfa + &) — No{x — 8)) _log (N +2) + log (1 — Nofor = &)/ Nofo + 2))
“logé - —logd

which tends to g(«) as  —0. A very similar argument using an ‘opposite’ version
of Chernoff’s Theorem shows that the limit exists when Hlog p'+ log(1 - p) >
— alog3 > min {log p,log(1 — p)}. Thus the lim%t ‘(17.4) does mdeed.exxst for
« = 0. As might be anticipated, the value of ‘fﬁgng the supremum in (17.19)
onds to the maximizing value of « in (17.6).

corSr:tStri)ng g=0 in (17.15) gives dimg(support w = 1(0) =log zﬂog 3, Fhe
dimension of the middle third Cantor set F. If g=1, we get the mforrqahon
dimension a(l)= — (plogp + (1 — p)log(l — p))/log 3, which has a maximum
value of log2/log 3 when p = 3. For this value of pa knowledge of the m_tirval
of E, that a point x belongs to locates x to within a set of u-measure 27%; for
other p rather less information is provided. ' N

It is not hard to see from (17.17) that f(x(g)) is positive for —-20 <g<aoo
and tends to 0 as g— + co. Moreover, noting that for 6k= 3 " we have
min, u(B;) = (min {p,1 — p})* and max; u(B;) = (max {p,1—p}), a little calcu-
lation using (17.16) shows that

I in; p(B;
lim «(g) =lim M (17.20)
4=~ -0 logé
and
1 X 4(B;
lim o(q) = lim 28 MaxB:) (17.21)

q— 0 a0 logé
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These expressions provide an interpretation of the points at which the f(o)
curve meets the axes; by (17.11) the curve has infinite slope at these points. [}

Although Example 17.1 seems rather specific, it is typical of a wide class of
self-similar measures. With the notation of Section 9.1, let F be the invariant
set for the similarity transformations S,..., S,, where S; has ratio 0 <¢; < 1;
for convenience we take the components S;(F) to be disjoint. Let p,,...,p,, be
positive numbers with Y ™ , p, = 1. The mass distribution x on F defined by
setting  pu(S;,°---S; (F)) =p;,---p;, exhibits multifractal properties; these
self-similar measures are a measure analogue of self-similar sets. Using ideas in
the proof of Theorem 9.3, an adequate estimate for S,(g) is given by >(pi, - p)%
where the sum is over all sequences i,,...,i, with 1 <i;<m and such that
Ci Gy, >0 =0y ;. Probabilistic techniques such as Chernoff’s Theorem
may be used to estimate such sums; in particular it may be shown that the limit
(17.4) exists so that the general theory is valid, with formulae such as (17.10)
to (17.13) also holding.

There is an alternative approach in this situation, which is computationally
simpler, and which takes into account the differing values of c;, We may form
sums over all k-term sequences

Sz(4)= ) Z ) #(Si,°"'°Sik(F))q(Ci, "'Cik)d

= > ) (pi, - Pa)(es, - ¢i)! (17.22)

.....

and define 7(g) by the requirements that lim,_ _ S¥(q)= oo if d <t(q) and
lim, , _Si(g) = 0 if d > t(g). This provides a basis for an alternative multifractal
theory.

It should be pointed out that rigorous derivation of the results that form the
basis of multifractal theory is non-trivial, and here we have done no more than
take a few first steps. To treat even self-similar measures, when the full theory
can be justified, requires sophisticated techniques from probability theory and
the laws of large numbers. Nevertheless, precise use of multifractal mathematics
gives a powerful technique in the study of measures.

We end by remarking that multifractal techniques may be employed to
advantage in computer and practical experiments. Let f: D — D be a dynamical
system in the plane with u as the ‘residence time’ measure

1(A)= lim l#{k:l <k<mand f¥x)eA}.

m~— oo

By choosing a suitable range of small 8, and counting the number of times
Sf¥(x) lies in each square B; of the §-mesh for a large number of iterates, u(B;)

and thus N«) may be estimated so that the multifractal spectrum f(«) may be
plotted.
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A similar procedure may be followed where f*(x) is.replaced by, say, a
sequence of experimental observations made at interval§ in time. Corpparlson
of the multifractal spectrum obtained experimentally w1th‘t.hat resulting from
a theoretical model provides a method of assessing the suitability of the model.

We have said little about the physical meaning of the f(x) and t(g) curves;
indeed, there are considerable problems associated with their interpretation.
For example, it is often desirable to extend the multifractjal spectrum to allow
() to take negative values (which corresponds to regarding the measure as a
low dimensional section of a higher dimensional measure). However, this is
beyond the scope of this book.

17.2 Notes and references

For other recent accounts of multifractal measures see Té! (1988), Mandelbr(zt
(1988) and Feder (1988). For the theory of large deviations and Chernoff’s
theorem, see Billingsley (1979).

Exercises

17.1 Assume that u is a measure on a compact region D of R" for which the thgor){ of
Section 17.1 is valid. Let f:D—R be a continwous function satisfying
0 < ¢, < f(x) <c, for constants ¢, and c, and such that [, f(x) du(x) = 1. Define a
mass distribution v on D by v(4) = |, f(x)du(x) for Borel sets A. Show that the
exponents t(q) and f(x) corresponding to the measures x and v are equal.

17.2 Let p, and pu, be measures, each of total mass 1, on a bounded region of R” 'a.nd
define u by u(4)=3i(u (A)+ p,(A)). Show that for each g > 0 there are positive
numbers ¢, and c,, independent of J, such that

cymax {S}(q), S}(q)} < S;(q) < c2max {S}(q), S;(9)}

where §,(q), S 3(q) and S%(g) are the sums corresponding to u, 4 and p, respectiv«?ly.
Deduce that t(g) = max {t,(g), 72(¢) }, where the © are the exponents corresponding
to the three measures given by (17.7).

17.3 Let p be a number with 0 < p < 1 and let u be the mass Qistribution o‘r’n( the inter\izzl
[0, 1] obtained by repeatedly splitting the mass on binary mEer:lals [m2 ,(n_1k+_ 11)2 )
in the ratio p:1 — p between the binary subintervals [2m2™*"1,(2m + 1)2 ) and
[@m+ 1275, (2m+2)27%"!). Find f(o) and « in terms of the parameter g for
this multifractal measure.

17.4 Let F be the set of Exercise 9.7. For 0 <p <1 let u be the mass distribu?ion on F
obtained by repeatedly splitting the mass on each interval of E; in th.e rat}o p:l—p
between the two subintervals of E, , ;. Find t(q) defined by (17.22) in this case.

Chapter 18 Physical applications

Cloud boundaries, mountain skylines, coastlines, forked lightning, ...; these,
and many other natural objects have a form much better described in fractal
terms than by the straight lines and smooth curves of classical geometry. Fractal
mathematics ought, therefore, to be well suited to modelling and making
predictions about such phenomena.

There are, however, considerable difficulties in applying the mathematics of
fractal geometry to real-life examples. We might estimate the box dimension of,
say, the coastline of Britain by counting the number N s of mesh squares of side
0 intersected by the coastline. For a range of § between 20m and 200 km the
graph of log N, against —logé is closely matched by a straight line of slope
about 1.2. Thus the power law N, ~ constant x 6~ *-2 is valid for such & and it
makes sense to say that the coastline has dimension 1.2 over this range of scales.
However, as § gets smaller, this power law first becomes inaccurate and then
meaningless. Similarly, with other physical examples, estimates of dimension
using boxes of side & inevitably break down well before a molecular scale is
reached.

The theory of fractals studied in Part I of this book depends on taking limits
as 6 >0, which cannot be achieved in reality. There are no true fractals in
nature—for that matter, there are no inextensible strings or frictionless pulleys
either! .

Nevertheless, it should be possible to apply the mathematical theory of ‘exact’
fractals to the ‘approximate’ fractals of nature, and this has been achieved
convincingly in many situations. This is analogous to the well established use
of classical geometry in science—for example, regarding the earth as spherical
provides a good enough approximation for many calculations involving its
gravitational field.

Perhaps the most convincing example of a physical phenomenon with a
fractal model is that of Brownian motion; see Chapter 16. The underlying
physical assumption, that a particle subject to random molecular bombardment
moves with increments distributed according to a normal distribution, leads to the
conclusion that the particle path has dimension 2. This can be checked
experimentally using box-counting methods. The motion can also be stmulated
on a computer, by tracing a path formed by a large number of small random
increments. The dimension of such computer realisations can also be estimated
by box counting. Brownian motion, which may be observed in reality or on a
computer, has a fractal form predicted by a theoretical model. (It should,
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perhaps, be pointed out that even Brownian paths fail to be described by fractals
on a very small scale, since infinite energy would be required for a particle to
follow a nowhere-differentiable path of dimension 2.) Linking up experiment,
simulation and theory must surely be the aim with other physical manifestations
of fractals.

The study of fractals in nature thus proceeds on these three fronts: experiment,
simulation and theory. Physical objects are observed and measured, dimensions
and, perhaps, multifractal spectra are estimated over an appropriate range of
scales, and their dependence on various parameters noted. Theoretical
techniques, such as assuming the Projection theorem 6.1 to estimate the
dimension of an object from a photograph, are sometimes used here. Of course,
for a dimension to have any significance, repeating an experiment must lead to
the same value.

Whilst a dimension may have some interest purely as a physical constant, it
is much more satisfying if fractal properties can be explained in physical terms.
Therefore, the next stage is to devise some sort of mechanism to explain the
natural phenomena. Computational simulation then permits evaluation of
various models by comparing characteristics, such as dimension, of the
simulation and reality. Computational methods are always approximate; this
can actually be an advantage when modelling natural rather than exact fractals
in that very small-scale effects will be neglected.

It is desirable to have a theoretical model that is mathematically manageable,
with basic physical features, such as the apparent dimension, derivable from a
mathematical argument. The model should account for the dependence of these
features on the various parameters, and, ideally, be predictive as well as
descriptive. Fractal phenomena in pature are often rather complicated to
describe, and various assumptions and approximations may be required in
setting up and analysing a mathematical model. Of course, the ability to do
this in a way that preserves the physical content is the mark of a good theoretical
scientist! Sometimes differential equations may describe a physical situation,
and fractal attractors can often result; see Section 13.5. On the other hand,
analysis of differential equations where the boundary conditions are fractal can
present problems of an entirely different nature.

There is a vast literature devoted to examining fractal phenomena in these
ways; often agreement of dimension between experiment, simulation and theory
is surprisingly good. Moreover, analysis of dimension has been used effectively
to isolate the dominant features underlying certain physical processes.
Nevertheless, there is still a long way to go. Questions such as “Why do
projections of clouds have perimeters of dimension 1.35 over a very wide range
of scales?, ‘How does the dimension of the surface of a metal affect the physical
properties such as radiation of heat or the coefficient of friction? and “What
are the geological processes that lead to a landscape of dimension 2.2?" should

" be answered in the framework of fractal modelling.

For most experimental purposes, box-counting dimension has to be used.
With N; defined by one of the Equivalent Definitions 3.1, the dimension of an
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object is usually found by estimating the gradient of a graph of log N, against
—logd. We often wish to estimate the dimension of a theoretical exact fractal
F by box counting on a physical approximation E. To do this, boxes that are
large compared with the accuracy of the approximation must be used. More
precisely, if d(E, F) < ¢ where d denotes Hausdor{f distance, and N(E) and N4F)
are the number of balls of radius & required to cover the sets, it is easy to see that

N (E) < Ny(F)< N,_ (E)

and this may be taken into account when estimating dimy F from log — log
plots Qf measurements of E. It is also worth remembering, as we have indicated
in various instances throughout the book, that there are often theoretical reasons
for suppqsing that exact fractals have equal box and Hausdorff dimensions.

Sometimes other quantities are more convenient to measure than dimension.
For example, in the case of a time-dependent signal, the autocorrelation function
(see Section 11.2) might be measured, with equation (11.20) providing an
indication of the dimension.

We now examine in more detail some specific physical examples where fractal
analysis can aid understanding of physical processes.

18.1 Fractal growth

Many natural objects grow in an apparently fractal form, with branches
repeatedly splitting and begetting smaller side branches. When viewed at
apprgPriate scales, certain trees, root systems and plants (in particular more
primitive ones such as lichens, mosses and seaweeds) appear as fractals. Forked
patterns of lightning or other electrical discharges, and the “viscous fingering’
that occurs when water is injected into a viscous liquid such as oil also have a
branched fractal form. During electrolysis of copper sulphate solution, the
copper deposit at the cathode grows in a fractal pattern.

The biological laws that govern plant growth are far too complex to be used
as a basis for a mathematical model. However, other phenomena may be
modelled by relatively simple growth laws and we examine some of these.

A simple experiment demonstrates fractal growth by electrolysis of copper
sulphate (CuSO,); see figure 18.1. The bottom of a circular dish is covered with
a little copper sulphate solution. A copper cathode is suspended in the centre
of the dish and a strip of copper is curved around the edge of the dish to form
an anode. If a potential of a few volts is applied between the electrodes, then,
after a few minutes, a deposit of copper starts to form around the cathode.
After half an hour or so the copper deposit will have extended into fractal
fingers several inches long.

The mechanism for this electrolysis is as follows. In solution, the copper
sulphate splits into copper Cu®?* ions and sulphate SO,2~ ions which drift
aFound in a random manner. When the voltage is applied, the copper ions that
hit the cathode receive two electrons, and are deposited as copper. Copper ions
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Copper cathode

Deposition
of copper —
% |
Thin layer of Copper anode

copper sulphate solution

Figure 18.1 Electrolysis of copper sulphate leads to fractal-like deposits of copper growing outwards
from the cathode

that hit any copper already formed are also deposited as copper, so the residue
grows away from the cathode. Assuming that the copper ions move in a
sufficiently random manner, for example, following Brownian paths (see
Chapter 16), ions are more likely to hit the exposed finger ends than the earlier
parts of the deposition which tend to be ‘protected’ by subsequent growth. Thus
itis at least plausible that growth of the copper deposit will be in thin, branching
fingers rather than in a solid ‘block’ around the cathode.

In the experiment described, the Cu?* jons follow a Brownian path with a
drift towards the cathode superimposed as a result of the electric field between
cathode and anode. Enriching the sulphate in the solution, for example, by
addition of sodium sulphate, screens the copper ions from the electric field.
Fractal deposits still occur, but this situation is more convenient for
mathematical modelling since the Cu®* ions may be assumed to follow
Brownian paths.

The diffusion-limited aggregation (DLA) model provides a convincing
simulation of the growth. The model is based on a lattice of small squares. An
initial square is shaded to represent the cathode, and a large circle is drawn
centred on this square. A particle is released from a random point near the
perimeter of the circle, and allowed to perform a Brownian motion until it
either leaves the circle, or reaches a square neighbouring a shaded one, in which
case that square is also shaded. As this process is repeated a large number of
times, a connected set of squares grows outward from the initial one. It is
computationally more convenient to let the particle follow a random walk
(which gives an approximation to a Brownian path), so when the particle is
released, it moves, with probability i each, left, right, up or down to a
neighbouring square, continuing until it leaves the circle or occupies a square
next to a shaded one; sce figure 18.2. (There are ways of shortening the
computation required; for example, if the particle is k squares away from the
shaded part the particle might as well move k steps at once.)

Running the model for, say, 10000 shaded squares gives a highly branched
picture (figure 18.3) that resembles the patterns in the electrolysis experiment.
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Figure 18.2 The diffusion-limited aggregation (DLA) model. A particle is released from a random
point a on the circle and performs a random watk until it either leaves the circle or reaches a square
b next to one that has already been shaded, in which case this square is also shaded

Figure 18.3 A computer realization of diffusion-limited aggregation. The square was divided into a
700 x 700 mesh from which 16 000 squares were selected using the method described
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Main branches radiate from the initial point and bifurcate as they grow, giving
rise to subsidiary side branches, all tending to grow outwards. It is natural to
use box-counting methods to estimate the dimension of these structures on
scales larger than a square side, and there is a remarkably close agreement
between the electrolysis experiment and the simulation, with a value for the
dimension of about 1.70, or 2.43 for the 3-dimensional analogue.

The DLA model may be thought of as a representation of a succession of
ions released from a distance one after another. Whilst this provides a good
model for the form of the deposit, it gives little idea of its development with
time, which depends on a large number of ions in simultaneous random motion
that adhere to the copper deposit on meeting it. Therefore, a ‘continuous’ version
of this ‘discrete’ model is useful. Suppose that the large number of copper ions
in the solution have density w(x, t) at point x and time t, so that the number of
ions in a very small disc of area éx and centre x is u(x, )dx. Assuming that the
ions follow independent Brownian paths, the ions that are in this small disc at
time ¢t will have spread out to have density at time t+h given by the
2-dimensional normal distribution

Su(x',t + h) =) *h™ Lexp(— (x — x)2/2h)u(x, t)dx
{see (16.3)) and so
u(x',t +hy=Q2n)"'h~? Jexp(— (x — x'Y?/2h)u(x, t)dx

where integration is across the fluid region. This assumes that h is small relative
to the distance of x’ from the deposit and the boundary, so that the effect of
the introduction or removal of ions can be neglected. Differentiating under the
integral sign with respect to x’ and & gives

du/ot = 1v2y (18.1)

as the differential equation governing the change of the ion density in the
solution. This is the well known diffusion equation or heat equation in two
dimensions.

We need to specify the boundary conditions for this differential equation. At
the outer boundary, ions are supplied at a constant rate, so

u=1u, on |[x|=r,. (18.2)

Denote the boundary of the copper deposit at time ¢ by F,. Sufficiently close
to this boundary, virtually all the ions lose their charge, so

u=0 (18.3)

on F,. Since the discharged ions are deposited as metallic copper, the rate of
advance v of the boundary F, must equal the derivative of the concentration
in a direction n normal to F,. Thus, for a constant k,

v, =kn-Vu (18.4)

2n

on F, (We are assuming that F, is actually smooth on a very small scale.)

Provided that the growth remains a long way from the outer electrode, the
diffusion rate is, to a good approximation, time independent, so (18.1) may be
replaced by Laplace’s equation

V2u=0. (18.5)

Solving this with boundary conditions (18.2) and (18.3) allows the rate of
growth of the deposit to be found, using (18.4).

These equations alone are too idealized to provide an accurate model. First,
to prevent the equation being unstable with respect to surface irregularities, a
short scale ‘cut-off’ for the equations is required. This is provided in the
square-lattice DLA model—if a particle gets close enough, it sticks to the
aggregate. Second, our derivation of the differential equations assumed a
continuously varying particle density, rather than a large number of discrete
particles. It is the random variation in motion of these individual particles that
creates the irregularities that are amplified into the branching fingers. Thus
(18.4) needs to be modified to include a random perturbation

v,=knVu+p (18.6)

where p may be thought of as a ‘noise’ term. Both of these features are present
in the square-lattice DLA model, which is consequently more suitable for
simulation of the growth form than direct numerical attempts to solve the
differential equations.

One interpretation of the square-lattice DLA model is as providing a spatial
solution of equations (18.2)—(18.5) subject to a small random perturbation of
the boundary F,. Surprisingly, the same differential equations and boundary
conditions describe several rather different physical phenomena. The DLA
model may therefore be expected to apply to some degree in these different
cases.

The growth of viscous fingers in a fluid is an example. Suppose two glass
plates are fixed a small distance apart (perhaps £ mm) and the region in between
is filled with a viscous liquid such as an oil. (This apparatus is called a Hele-Shaw
cell.) If a low-viscosity liquid such as water is injected through a small hole in
one of the plates, then, under certain conditions, the water spreads out into the
oil in thin highly-branched fingers. The patterns resemble closely the deposits
of copper in the electrolysis experiment.

Lubrication theory tells us that in this situation the velocity of flow v of the
oil is proportional to the pressure gradient.

v=—cVp (18.7)

where p(x) is the pressure at x. The oil is assumed incompressible, so the velocity
has zero divergence Vv =0, giving

Vip=0

throughout the oil. If the viscosity of the water is negligible compared with that
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of the oil, then the pressure throughout the water is effectively constant. Thus
we have the boundary conditions

p(x) = po
at the fluid interface, and
p(x)=0

at a large distance r, from the point of injection. Thus the pressure difference
u(x) = po — p(x) satisfies the differential equation (18.5) and boundary conditions
(18.2) and (18.3) of the electrolysis example. Furthermore, at the fluid interface,
the pressure gradient in the oil is normal to the boundary (since the pressure
is constant on the boundary), so (18.4) gives the rate of advance of the boundary,
v, = — kn-Vp, with short-range cut-off provided by surface tension effects. The
pressure is analogous to the ion density in the electrolysis example.

1t is perhaps, therefore, not surprising that under certain conditions the viscous
fingers resemble the patterns produced by the square-lattice DLA model. Whilst
the element of randomness inherent in the electrolysis example is lacking,
irregularities in the interface are nevertheless amplified to give the fingering effect.

A very similar situation pertains for fluid flow through a porous
medium—(18.7) is Darcy’s law governing such flow. Fractal fingering can also
occur in this situation.

Electrical discharge in a gas provides a further example. The electrostatic
potential u satisfies Laplace’s equation V2u =0 away from the ionized region
of discharge. The ionized path conducts well enough to be regarded as being at
constant potential, so u satisfies the same boundary conditions as in the viscous
fingering example. The {questionable) assumption that the rate of breakdown
is proportional to the electric field gives equation (18.4). This is another example
with similar differential equations, for which the square-mesh DLA model
provides a realistic picture.

Under suitable experimental conditions, the growth patterns in electrolysis,
viscous fingering and electrical discharge have a dimension of about 1.7 when
estimated over a suitable range of scales. This coincides with the value obtained
from computer studies of square-mesh DLA. Although the theoretical
explanations of such phenomena are not always entirely satisfactory, the
universality of this dimension is very striking.

18.2 Singularities of electrostatic and gravitational potentials

The electrostatic potential due to a charge distribution u or the gravitational
potential due to a mass distribution p in R? is given by

H(x) = jM. (18.8)
x—yl

We show that the dimension of the singularity set of the potential, i.e. the set
of x for which ¢{x)= oo cannot be too large.
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Proposition 18.1

Let y be a mass distribution of bounded support on R3. Suppose that the potential
(18.8) has singularity set F = {x:¢(x) = c0}. Then dim, F < 1.

Proof. Let xeR> and write m(r) = u(B,(x)) for r > 0. Suppose that for s > 1 there
are numbers a > 0, ¢ > 0 such that m(r) < cr* for all 0 < r < a. Then

S00) = f dux) f du(x)
! |

x—y|$a‘x—y| x—y|>a‘x—y|

< J “ dm(r) N J du(x)
Ix—y|l>a

r=0 r a

<0 'm(r)]d + Jh r 2m(r)dr + a” ' w(R3)

0
<cl+(—1)"Ya* ' +a 'u(R? < co.

Hence, if xe F, we must have that ﬁ,_,m (i(B(x))/r*) = ¢ for all ¢ > 0. It follows
from Proposition 4.9(b) that s#5(F)=0 for s > 1, as required. O

Often u s expressible in terms of a “density function’ f, so that u(A)= j 4 f(x)dx
for Borel sets A, and (18.8) becomes

$(x) = f UGN (18.9)
[x—yl

Given certain conditions on f, for example, if fIf(x)]Pdx < o for some p>1,
similar methods can be used to place further bounds on the dimension of the
singularity set.

It is easily verified that, if f is a sufficiently smooth function, then (18.9) is
the solution of Poisson’s equation

Vip= —dnf

satisfying ¢(x) >0 as | x| — co. For a general integrable function f the potential
¢ need not be differentiable. Nevertheless (18.9) may be regarded as a weak
solution of Poisson’s equation in a sense that can be made precise using the
theory of distributions. This technique extends, in a non-trivial way, to give
bounds for the dimension of the singularity sets of weak solutions of other
partial differential equations.

18.3 Fluid dynamics and turbulence

Despite many years of intense study, turbulence in fluids is still not fully
understood. Slowly moving fluids tend to flow in a2 smooth unbroken
manner, which is described accurately by the Navier-Stokes equations— the
fundamental differential equations of fluid dynamics. Such smooth flow is termed
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laminar. At higher speeds, the flow often becomes turbulent, with the fluid
particles following convoluted paths of rapidly varying velocity with eddies and
irre gularities at all scales. Readers will no doubt be familiar with the change
frorm laminar to turbulent flow as a tap is turned from low to full. Although the
exact form of turbulent flow is irregular and unpredictable, its overall features
are consistently present.

There ts no uniformly accepted definition of turbulent flow—this has the
advantage that it can reasonably be identified with any convenient ‘singular
feature’ of a flow description. We consider a model in which turbulence is
manifested by a significant local generation of heat due to viscosity, ie. ‘fluid
friction’, at points of intense activity.

At reasonably small scales, turbulence may be regarded as isotropic, i.e.
direction independent. Our intuitive understanding of isotropic turbulence stems
largely from the qualitative approach of Kolmogorov rather than from an
analysis of differential equations. Kolmogorov’s model is based on the idea that
kinetic energy is introduced into a fluid on a large scale, such as by stirring.
However, kinetic energy can only be dissipated (in the form of heat) on very
small scales where the effect of viscosity becomes important. At intermediate
scales dissipation can be neglected. If there are circulating eddies on all scales,
then energy is transferred by the motion of the fluid through a sequence of
eddies of decreasing size, until it reaches the small eddies at which dissipation
occurs. If, as Kolmogorov assumed, the fluid region is filled by eddies of all
scales, then dissipation of energy as heat should occur uniformly throughout the
fluid.

Let g(x) be the rate of dissipation per unit volume at the point x, so that the
heat generated in a small volume 6V around x in time 6t is &(x)dVét. Then, on
these assumptions

ex)=¢ for all x in D

where £ is the rate of input of energy into the fluid region D, assumed to have
unit volume.

Although such *homogeneous’ turbulence is appealing in its simplicity, it is
not supported by experimental observations. Measurements using a hot-wire
anemometer show that in a turbulent fluid the rate of dissipation differs greatly
in different parts of the fluid. This is the phenomenon of intermittency.
Dissipation is high in some regions and very low in others, whereas the
Kolmogorov model requires it to be constant. This variation can be quantified
using correlation functions. For a small vector h the correlation of dissipation
rates between points distance h apart is given by

Ce(x)e(x + h)) (18.10)

where angle brackets denote the average over all x in D. If dissipation were
‘constant we would have (g(x)e(x + h)> = £2. However, experiment indicates that

Ce(x)e(x + h)> =~ 82| k|~ (18.11)

for a value of d between 0.4 and 0.5.
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The Kolmogorov model can be modified to explain the intermittency by
assuming that, instead of the eddies at each scale filling space, the eddies fill a
successively smaller proportion of space as their size decreases. Kinetic energy
is introduced into the largest eddy and passed through eddies of decreasing size
until it is dissipated at the smallest scale. Now, however, the energy and
dissipation is concentrated in a small part of the fluid. The cascade of eddies
may be visualized as the first k stages E; of the construction of a self-similar
fractal F (see Chapter 9) where k is quite large, with dissipation occuring across
the kth stage E,. For convenience, we assume that each basic set of E; is replaced
by a constant number of sets of equal size to form E,, ,.

If A is a subset of D, we define u(A4) = [ ,&(x)dx as the total rate of dissipation
of energy in the set 4; thus u(D) = g, the rate of energy input. Then p has the
properties of a mass distribution on D. Moreover, if we assume that the rate
of dissipation in each component of E; is divided equally between the equal-sized
subcomponentsin E; , ,, we have, as a simple consequence of F being self-similar
of Hausdorff or box dimension s, that

¢ &r® < u(B,(x)) < ¢ erf

if x is in F, where ¢, and ¢, are positive constants (see Exercise 9.8). These
inequalities hold for the limit F as the size of the dissipation eddies tends to 0,
but also for the physical approximation E,, provided that r is larger than the
dissipation scale.

Then

J Ce(x)e(x + h))dh=J J g(x)e(x + h)ydhdx
lh| <r xeD J|h|<r
= J e(x)u(B,(x))dx
xeD

=J e(x)u(B,(x)) dx
xeEj
since dissipation is concentrated on E,, so
clézr‘sj {e(x)e(x + h)D> dh < c,8%r°. (18.12)
lj<r

This is achieved if the correlation satisfies a power law
Ce(x)e(x + h)) = &2{h)~3

for then the integral in (18.12) becomes

4n f 215732 dr = Ana?r'/s.
t

=0

Comparison with (18.11) suggests that s = 3 —d, so the hypothesis of ‘fractally
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homogeneous turbulence’, that dissipation is concentrated on an approximate
fractal of dimension between 2.5 and 2.6, is consistent with experimental results.

I't is natural to seek theoretical reasons for the turbulent region to have a
fractal form. One possible explanation is in terms of the vortex tubes in the
fluid. According to Kelvin’s circulation theorem, such tubes are preserved
throughout the motion, at least in the approximation of inviscid flow. However,
the vortex tubes are stretched by the fluid motion, and become long and thin.
Repeated folding is necessary to accommodate this length, so the tubes might
assume an approximate fractal form not unlike the horseshoe example in
Figure 13.5.

The behaviour of a (viscous) fluid should be predicted by the Navier-Stokes
equation

u

> +WwVu—wW2u+Vp = f (18.13)

where u is the velocity, p is the pressure, v is viscosity and f is the applied force
density. Deducing the existence of fractal regions of activity from the
Navier-Stokes equation is far from easy. Nevertheless, the method indicated
in Section 18.2 may be generalized beyond recognition to demonstrate
rigorously that, for example, the set on which a solution u(x,t) of (18.13) fails
to be bounded for all ¢ has dimension at most 24. Thus it is possible to show
from the equations of fluid flow that certain types of ‘intense activity’ must be
concentrated on sets of small dimension.

18.4 Notes and references

A wide variety of physical applications of fractals are given in the books by
Mandelbrot (1982) and Feder (1988) and in the volumes of collected papers
edited by Pietronero and Tosatti (1986), Shlesinger, Mandelbrot and Rubin
(1984) and Pietronero (1989). For applications to geophysics see Scholz and
Mandelbrot (1989) and for applications to chemistry see Avinor (1989). Stanley
and Ostrowsky (1986,1988) and Viesek (1989) contain surveys and papers on
fractal growth. Feder (1988) includes a more detailed account of viscous
fingering. For an introduction to the ideas of turbulence see Leslie (1973). The
homogeneous model of Kolmogorov (1941) was adapted to the fractally
homogeneous model by Mandelbrot (1974); see also Frisch, Sulem and Nelkin
(1978). Collections of papers relevant to fractal aspects of turbulence include
Temam (1976) and Barenblatt, looss and Joseph (1983). The book by Temam
(1983) discusses the dimension of sets related to solutions of the Navier—Stokes
equations.
There are an enormous number of papers on other physical applications. To
mention a very few, Nye (1970) applies fractals to glaciology, Berry (1979)
“considers the effect of fractals on waves, Burrough (1981) discusses the
dimensions of landscapes and environmental data, Lovejoy (1982) considers
fractal aspects of clouds and Bale and Schmidt (1984) investigate fractal
properties of microscopic porosity of surfaces.
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Exercises

18.1 Suppose that the DLA square-lattice model is run for a large number of very small
squares. Suppose that the set obtained is an approximate fractal of dimension s.
What power law would you expect the number of shaded squares within distance
r of the initial square to obey? Assuming that during the process squares tend to
be added to parts of the set further away from the initial square, how would you
expect the ‘radius’ of the growth after k squares have been added to depend on k?

18.2 Let m(t) be the mass of copper that has been deposited and r(t) be the ‘radius’ of
the copper deposit after time ¢ in the electrolysis experiment described in
Section 18.1. It may be shown that the current flowing, and thus, by Faraday’s law,
the rate of mass deposition, is proportional to r(t). On the assumption that the
growth forms an approximate fractal of dimension s, so that m(t) ~ cr(t)’, give an
argument to suggest that that r(t) ~ c,t1/6~ B,

18.3 Verify that u(x’, 1) satisfies the partial differential equation (18.1).

184 Verify that the potential in (18.9) satisfies Poisson’s equation if, say, f is a twice
continuously differentiable function with f(x) =0 for all sufficiently large x.

18.5 Show that, if f(x)=0 for all sufficiently large x and [|f(x)|?>dx < oo, then the
singularity set of ¢, given by (18.9), is empty.

18.6 Show that the argument leading to (18.12) can be adapted to the case when, say,
D is the unit cube in R® and F is the product of the Cantor dust of figure 0.4 and
a unit line segment L. (Dissipation is assumed to occur on the set E, x L, where
E, is the kth stage in the construction of the Cantor dust for some large k)
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autocorrelation function 156
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compact set §
complement of a set 4
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conformal mapping 126, 222
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convergence 5, 8

pointwise 10
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convolution theorem 67, 157
copper sulphate 267 —272
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curve-free set 75, 75—77
curve-like set 75, 75—-77

Darcy’s law 272
data compression 132 —137
decomposition of 1-sets 73
dendrite 215
dense set §
density 60—62, 69, 69—73, 77, 81 —82
139
lower 69-77, 70
upper 69-77, 70
derivative 9
diameter §, 25
difference of sets 4
differentiability 9, 7779, 146, 159,
165—167, 223, 245, 266
continuous 9
diffusion equation 270
diffusion limited aggregation 267 ~272,
277
digital sundial 89 —90
dimension xix —xxi, 36 —53
approximations to 267
box(-counting) 38, 38—49, 41, 255,
259, 267
calculation of 54 —-68, 117—132
capacity 38
divider 36, 49, 49—50
entropy 38
experimental estimation of 36~37,
265—-267
finer definitions 33 —34
Fourier 67
Hausdorff 28 ~33, 29, 37
Hausdorff —Besicovitch 29

’
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Hausdorff dimension of a measure
192
information 38, 260
lower box(-counting) 38, 3849, 41
metric 38
Minkowski 42
modified box-counting 45—49, 46
of attractors and repellers 170—188,
191196
of graphs of functions 146 —155
of intersections 101 —110
of products 92 —100
of projections 8391
of random sets 224 —231, 237—-253
of self-affine sets 99, 126—133
of self-similar sets xix, 117—123
one-sided 50
packing 47, 47 —-49
similarity xix
upper box(-counting) 38, 38 —49, 41
dimension function 33
dimension print 50—52, 51
dimensionally homogeneous set 46
Diophantine approximation 108 —109,
141145
Diophantine equations 145
distance set 168
distribution
Gaussian 22
multidimensional normal 241
normal 22
uniform 22
distribution of digits 34, 138—139
domain 6
duality 161 —164
dynamical systems 170—196, 254, 263
continuous 184 —188
discrete 170, 170—184, 188—196

Egoroff’s theorem 16
electrical discharge 272
electrostatic potential 64, 272 —273
electrolysis 267—-272
(s-)energy 64
entropy 38, 192, 192—-194, 260
Euclidean space 3
Euclidean distance 3
event space 17
expectation 20

conditional 21
expectation equation 227, 230
experiment (probabilistic) 17
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experimental approach to fractals 36 -37,
263, 265267

Fatou set 198, 198 —223
figure of eight 205
first return map 185
fixed point 170, 197
fluid dynamics 273 —-276
Fourier series 188 —190
Fourier transform 66, 66—67, 157—158
fractal
definition of xviii —xxii
fractal growth 267—-272
fractional Brownian motion 245 —248
full square 233

function 6, 6—10
functional analysis 163 —164

Gaussian distribution 22

general construction 56, 56— 60
generator 122

geometric measure theory 49, 69—82
graphs of functions 146, 146 —160, 237
gravitational potential 64, 272 —273
group 167168

group of transformations 8, 101 —104
growth 267—-272

Hamiltonian 190—191

Hamilton’s equations 190

Hausdorff measure 25, 2528

Hausdorff dimension 28—33, 29, 37
of a measure 192

Hausdorff metric 114

Hénon map 179—181, 195

heuristic calculation 3132, 117—118

Holder function 8, 27 —29, 28, 147, 241,

246, 250
homeomorphism, 9, 30
horseshoe 178 179

image 6
image encoding 132 —137
independence

of events 18

of random variables 19
independent increments 238, 248
indifferent point 197
infimum 4
injection 6
integral 15—-16
integral geometry 109—110
interior §

intermittency 274276
interpolation 154
intersection 4, 101 —110, 243
large 104109, 143—144
interval 4
invariance
geometric 37
Lipschitz 37, 217
invariant measure 191, 191 —194
invariant set 113, 131—-137, 171 -174,
200, 209
invariant tori 190—191
inverse function 7
inverse image 6
irregular point 70, 73
irregular set 70, 70—82, 86—87, 164
isometry 7
isotropic 239
iterated function scheme 113, 131—-137,
171-174, 209
iterated Venetian blind construction
88—-90, 165
iteration 170—-184, 191-223

Jarnik’s theorem 142 —143, 190
Jordan curve 49, 74
Julia set xvii, 197, 197—223, 204

Kakeya problem 161 —164

KAM theorem 191

Kolmogorov entropy 38

Kolmogorov model of turbulence 274
Koch curve see von Koch curve

laminar flow 274
Laplace’s equation 271
Lebesgue density theorem 69
Lebesgue measure 12, 15, 26

n-dimensional 12
Legendre transform pair 259
length 12, 26, 74
level sets 245, 248, 252
Liapounov exponents 191194, 192
limit 5, 6—10, 8

lower 8

upper 8
line set 161, 161 —164
linear transformation 7
Lipschitz function 8, 28, 30
Lipschitz invariance 37, 217
local product 96, 180, 185
local structure 69— 82

logarithmic density 38
logarithms 10

logistic map 173—-176, 195
loop 205

Lorenz attractor 186
Lorenz equations 186

Mandelbrot set 204, 204—217
mapping 6
martingale 228
mass distribution 10—16, 11
construction by repeated subdivision
13—-15
mass distribution principle 55
mean 20
mean value theorem 9
measure 10, 1016
counting 12
Hausdorff 25, 25-28
Lebesgue 12, 15, 26
net 33, 62
n-dimensional Lebesgue 12
onaset 11
packing 47, 47—49, 81
restriction of 13
Minkowski content 42
monotonicity 37
Montel’s theorem 199
Moser’s twist theorem 190
multifractal measures 254 —264
multifractal spectrum 259, 261
multiple points 243

natural fractals xxi, 135, 265—267
Navier — Stokes equation 186, 273, 276
neighbourhood §
net measure 33, 62
Newton’s method 219 —222
normal distribution 22
normal family 198, 198 —204
at a point 199
normal numbers 138
number theory 138—145

one-to-one correspondence 6
one-to-one function 6

onto function 6

open ball 3

open set §

open set condition 118, 118—120, 229
orbit 170, 197, 209, 212215
orthogonal projection 83 -91
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packing measure 47, 47 —49, 81
packing dimension 47, 47 —-49
(6-)parallel body 4, 41, 113
Parseval’s theorem 67
partial quotients 140
path 237
percolation 231 —236, 233
perfect set 202
period-p point 170, 197
period doubling 174—176
phase transition 235
physical applications xxi, 263, 265 —-277
Poincaré —Bendixson theorem 184
Poisson’s equation 273
polynomial 197217, 219-222
population dynamics 173, 176
porous flow 272
(s-)potential 64
potential theory 64—66, 84, 103,

272273

power spectrum 156, 156 —158, 247
pre-fractal 115, 116
pre-image 6
probability density function 21
probability measure 17
probability space 18
probability theory 16—23
product, Cartesian 4, 56, 92, 92—100
projection 83 —91

at a point 91
projection theorems 83 —86

quadratic functions 204—217, 219-220
quasi-circles 211, 217, 217218

random fractal 224 236
random function 238
random mid-point displacement 239
random process 238
random variable 19

simple 20
random walk 237 —-239
range, maximum 146, 146 —147
rational function 197, 219
rectifiable curve 74, 74 —78, 166
reflection 7
regular point 70, 73
regular set 70, 70 —-82, 86—87, 164
removable set 164, 164 —165, 169
repelling point 197
repeller 171, 171176, 196, 198, 218
rigid motion 7, 101 -104
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ring 167—168
rotation 7
Rossler band 187 —188

sample function 238, 238 —253

sample space 17

scaling property 27

section 97 —-98, 250

sector, double 77

self-affine curve 153155

self-affine set 99, 100, 126—132, 127

self-similar measure 255, 261, 263

self-similar set 117, 117—-123, 275

sensitive dependence on initial conditions
171

s-set 29, 63, 69—73, 77, 80

1-set 73—-77, 7980, 86—87

set theory 3—-6

Siegel disc 215

Sierpinski gasket xvi, 120, 236

sigma-finite measure 87

similarity 7, 101 —104, 113, 117

simple function 15

simulation 265 —-266

singular values 129

singular value function 130

singularity set 272 -273

small divisors 188191

solenoid 182184

solution curves 184

stable point 174

stable process 248 —250

stable set 198

stable symmetric process 249

stability 37

countable 37

stationary increments 238, 246, 248

statistically self-affine set 240, 246, 249

statistically, self-similar set 224 —236,
240, 246, 249

stretching and folding or cutting
transformations 177 —181

strong law of large numbers 22, 24, 139

subgroup 167, 167—169

submanifold 26, 29, 37, 101, 103

submultiplicative sequence 130

subring 167, 167 -169

subset of finite measure 62 —64
superattractive point 197
support of a measure 11
supremum 4

surface, convex 165, 165 —167
surjection 6

symbolic dynamics 173

tangent 77, 7781
tangent plane 165
tends to 8
tent map 172
thermal convection 186
torus 182—184
totally disconnected 6, 30, 77, 116, 234
trail 237
trajectories 184
transformation 6, 7
translations 7, 101 — 104
trial 17
turbulence 273 -277
homogeneous 274
fractally homogeneous 274—-276
twist map 190

uncountable set 4

uniform convergence 10, 16
uniform distribution 22
union 4

unstable point 174

variance 21

vector sum 4

viscous fingering 271 —272

Vitushkin’s conjecture 164 —165

volume 13, 26, 42

von Koch curve xiv—xvi, 113, 117
random xvii, 224 —225, 230, 235
modified 120121

weak solutions 273, 276
Weierstrass function xvii, 148—152,
159-160
random 247
(a-)well approximable numbers 141,
141—-145, 190—191
Wiener process 238
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