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X-local formations

In 1985 P. Förster [För85b] presented a common extension of the Gaschütz-
Lubeseder-Schmid and Baer theorems (see Section 2.2). He introduced the
concept of X-local formation, where X is a class of simple groups with a com-
pleteness property. If X = J, the class of all simple groups, X-local formations
are exactly the local formations and when X = P, the class of all abelian
simple groups, the notion of X-local formation coincides with the concept of
Baer-local formation. P. Förster also defined a Frattini-like subgroup Φ∗

X(G)
in each group G, which enables him to introduce the concept of X-saturation.
Förster’s definition of X-saturation is not the natural one if our aim is to gen-
eralise the concepts of saturation and soluble saturation. Since OJ(G) = G
and OP(G) = GS, we would expect the X-Frattini subgroup of a group G
to be defined as Φ

(
OX(G)

)
, where OX(G) is the largest normal subgroup of

G whose composition factors belong to X. We have that Φ
(
OX(G)

)
is con-

tained in Φ∗
X(G), but the equality does not hold in many cases. Nevertheless,

Förster proved that X-saturated formations are exactly the X-local ones. If
X = J, then we obtain as a special case the Gaschütz-Lubeseder-Schmid the-
orem. When X = P, Baer’s theorem appears as a corollary of Förster’s result.
Since Φ

(
OX(G)

)
is contained in Φ∗

X(G) for every group G, we can deduce from
Förster’s theorem that every X-local formation fulfils the following property:

A group G belongs to F if and only if G/Φ
(
OX(G)

)
belongs to F. (3.1)

Therefore from the very beginning the following question naturally arises:

Open question 3.0.1. Let F be a formation with the property (3.1). Is F
X-local?

After studying general properties of X-local formations in Section 3.1, we
draw near the solution of Question 3.0.1 in Section 3.2. Products of X-local
formations are the theme of Section 3.3, whereas some partially saturated
formations are studied in Section 3.4.

Throughout this chapter, X denotes a fixed class of simple groups sat-
isfying π(X) = charX.
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126 3 X-local formations

3.1 X-local formations

This section is devoted to study some basic facts on X-local formations. We
investigate the behaviour of X-local formations as classes of groups, focus-
sing our attention on some distinguished X-local formation functions defining
them.

We begin with the concept of X-local formation due to Förster [För85b].
Denote by J the class of all simple groups. For any subclass Y of J, we

write Y′ = J \ Y. Let E Y be the class of groups whose composition factors
belong to Y. It is clear that E Y is a Fitting class, and so each group G has
a largest normal E Y-subgroup, the E Y-radical OY(G). A chief factor of G
which belongs to E Y is called a Y-chief factor , and if, moreover, p divides
the order of a Y-chief factor H/K of G, we shall say that H/K is a Yp-chief
factor of G.

Sometimes it will be convenient to identify the prime p with the cyclic
group Cp of order p.

Definition 3.1.1 (P. Förster). An X-formation function f associates with
each X ∈ (charX) ∪ X′ a formation f(X) (possibly empty). If f is an X-
formation function, then the X-local formation LFX(f) defined by f is the
class of all groups G satisfying the following two conditions:

1. if H/K is an Xp-chief factor of G, then G
/

CG(H/K) ∈ f(p), and
2. G/K ∈ f(E), whenever G/K is a monolithic quotient of G such that the

composition factor of its socle Soc(G/K) is isomorphic to E, if E ∈ X′.

Remarks 3.1.2. 1. It is obvious from the definition that LFX(f ) is Q-closed.
2. Applying Theorem 1.2.34, it is only necessary to consider the Xp-chief

factors of a given chief series of a group G in order to check whether or not
G satisfies Condition 1.

3. If, for some prime p ∈ charX, f(p) = ∅, then every X-chief factor of a
group G ∈ LFX(f) is a p′-group.

4. If, for some S ∈ X′, f(S) = ∅, then a group G ∈ LFX(f) cannot have a
monolithic quotient whose socle is in E(S). Consequently LFX(f) ⊆ E

(
(S)′

)
.

5. If f(S) 	= ∅ for some S ∈ X′, then LFX(f) ⊆ E
(
(S)′

)
◦ f(S).

Remark 3.1.2 (5) is a consequence of the following lemma:

Lemma 3.1.3. Let G be a group and let {Mi : 1 ≤ i ≤ s} be the set of all
minimal normal subgroups of G. Then, for each 1 ≤ i ≤ s, G has a normal
subgroup Ni such that G/Ni is monolithic and Soc(G/Ni) is G-isomorphic to
Mi. Moreover G ∈ R0({G/Ni : 1 ≤ i ≤ s}).

Proof. For each 1 ≤ i ≤ s, we consider an element Ni of maximal order of
the family {Ti � G : Ti ∩ Mi = 1}. Then G/Ni is monolithic, Soc(G/Ni) is
G-isomorphic to Mi and G ∈ R0({G/Ni : 1 ≤ i ≤ s}). ��
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Proof (of Remark 3.1.2 (5)). Assume that G ∈ LFX(f) and f(S) 	= ∅ for some
S ∈ X′. Then every minimal normal subgroup of G/N , for N = O(S)′(G), is
in E(S). Therefore G/N ∈ f(S) by the above lemma. In particular, G ∈
E
(
(S)′

)
◦ f(S). Remark 3.1.2 (5) is proved. ��

We can now deduce the following result.

Theorem 3.1.4. Let f be an X-formation function. Then LFX(f) is a form-
ation.

Proof. We prove that LFX(f) is R0-closed. Let N1 and N2 be two different
minimal normal subgroups of a group G such that G/Ni ∈ LFX(f) (i = 1, 2).
We see that G satisfies Condition 1 of Definition 3.1.1. If N1 ∈ E(X′), then
clearly G ∈ LFX(f). Hence we may assume that N1 ∈ E X. Let p be a prime
dividing |N1|. Then N1N2/N1 is an Xp-chief factor of G/N2 and AutG(N1) ∼=
AutG/N2(N1N2/N2) and G/N2 ∈ LFX(f). Therefore G/ CG(N1) ∈ f(p). Since
G/N1 ∈ LFX(f), by appealing to the generalised Jordan-Hölder theorem
(1.2.34), we infer that G satisfies Condition 1.

Consider now a monolithic quotient G/K of G such that Soc(G/K) ∈ E(S)
for some simple group S ∈ X′. If f(S) = ∅, then LFX(f) ⊆ E

(
(S)′

)
by

Remark 3.1.2 (4). Therefore G/Ni ∈ E
(
(S)′

)
for i ∈ {1, 2}. This implies G ∈

E
(
(S)′

)
, contrary to supposition. Hence f(S) 	= ∅ and so G/Ni ∈ E

(
(S)′

)
◦f(S)

by Remark 3.1.2 (5). In particular, G/K ∈ E
(
(S)′

)
◦ f(S) because the latter

class is a formation. Since O(S)′(G/K) = 1, it follows that G/K ∈ f(S).
Hence G satisfies Condition 2 of Definition 3.1.1.

Consequently G ∈ LFX(f). Applying Remark 3.1.2 (1) and [DH92, II, 2.6],
LFX(f) is a formation. ��

Definition 3.1.5. A formation F is said to be X-local if F = LFX(f) for some
X-formation function f . In this case we say that f is an X-local definition of
F or f defines F.

Examples 3.1.6. 1. Each formation F is X-local for X = ∅ because F =
LFX(f), where f(S) = F for all S ∈ J.

2. If X = J, then an X-formation function is simply a formation function
and the X-local formations are exactly the local formations.

3. If X = P, then an X-formation function is a Baer function and the
X-local formations are exactly the Baer-local ones.

Remarks 3.1.7. Let f and fi be X-formation functions for all i ∈ I.
1.
⋂

i∈I LFX(fi) = LFX(g), where g(S) =
⋂

i∈I fi(S) for all S ∈ (charX)∪
X′.

2. Let N � G and G/N ∈ LFX(f). If N ∈ E X and G/ CG(N) ∈ f(p) for
all p | |N |, then G ∈ LFX(f).
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2. If H/K is an Xp-chief factor of G above N , then G
/

CG(H/K) ∈ f(p)
because G/N ∈ LFX(f). Let H/K be an Xp-chief factor of G below N . Then
CG(N) ≤ CG(H/K) and so G

/
CG(H/K) ∈ Q f(p) = f(p). By the general-

ised Jordan-Hölder theorem (1.2.34), we have that G satisfies Condition 1 of
Definition 3.1.1.

Let K be a normal subgroup of G such that G/K is a monolithic group
with Soc(G/K) ∈ E(S), S ∈ X′. Then, since N ∈ E X, we have that N ≤ K.
Therefore G/K ∈ f(S) because G/N ∈ LFX(f).

Consequently G ∈ LFX(f). ��
Definition 3.1.8. Let p ∈ charX. Then the subgroup CXp(G) is defined to be
the intersection of the centralisers of all Xp-chief factors of G, with CXp(G) =
G if G has no Xp-chief factors.

Remark 3.1.9. Let LFX(f) be an X-local formation. Then G satisfies Condi-
tion 1 of Definition 3.1.1 if and only if G/ CXp(G) ∈ f(p) for all p ∈ char X
such that f(p) 	= ∅.

Note that
(
CXp(G)

)θ is contained in CXp(Gθ) for every epimorphism θ

of G. Therefore, by [DH92, IV, 1.10], the class Q
(
G/ CXp(G) : G ∈ F

)
is a

formation, for each formation F.
Let N be a normal subgroup of G and let H/K be a chief factor of G below

N . Then, by [DH92, A, 4.13 (c)], H/K is a direct product of chief factors of
N . Therefore we have

Proposition 3.1.10. CXp(G) ∩ N = CXp(N) for all normal subgroups N
of G.

Let f1 and f2 be two X-formation functions. We write f1 ≤ f2 if f1(S) ⊆
f2(S) for all S ∈ (charX) ∪ X′. Note that in this case LFX(f1) ⊆ LFX(f2).
By Remark 3.1.7 (1), each X-local formation F has a unique X-formation
function f defining F such that f ≤ f for each X-formation function f such
that F = LFX(f). We say that f is the minimal X-local definition of F. This
X-local formation function will always be denoted by the use of a “lower bar.”

Moreover if Y is a class of groups, the intersection of all X-local forma-
tions containing Y is the smallest X-local formation containing Y. Such X-
local formation is denoted by formX(Y). If X = J, we also write lform(Y) =
formJ(Y), and if X = P, formP(Y) is usually denoted by bform(Y).

Theorem 3.1.11. Let Y be a class of groups. Then F = formX(Y) = LFX(f),
where

f(p) = Q R0

(
G
/

CG(H/K) : G ∈ Y and H/K is an Xp-chief factor of G
)
,

if p ∈ charX, and

f(S) = Q R0

(
G/L : G ∈ Y, G/L is monolithic, and Soc(G/L) ∈ E(S)

)
,

if S ∈ X′. Moreover f(p) = Q
(
G/ CXp(G) : G ∈ F

)
for all p ∈ charX such

that f(p) 	= ∅.

Proof. .1. This follows immediately from the definition of X-local formation.-
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Proof. Let g be an X-formation function such that F = LFX(g). Since LFX(f)
is an X-local formation containing Y, we have F ⊆ LFX(f). Assume that
LFX(f) 	= F. Then LFX(f) \ F contains a group G of minimal order. Such a
G has a unique minimal normal subgroup N by [DH92, II, 2.5] and G/N ∈ F.
If N is an X′-chief factor of G, then G ∈ f(S) for some S ∈ X′. This implies
that G ∈ Q R0 Y ⊆ F, a contradiction. Therefore N ∈ E X. Let p be a prime
divisor of |N |. Then G/ CG(N) ∈ f(p). Now if X is a group in Y and H/K is
an Xp-chief factor of X, then X

/
CX(H/K) ∈ g(p) because Y ⊆ F. Therefore

f(p) ⊆ g(p), and so G/ CG(N) ∈ g(p). Applying Remark 3.1.7 (2), G ∈ F,
contrary to hypothesis. Consequently F = LFX(f).

Let p ∈ charX and t(p) = Q
(
G/ CXp(G) : G ∈ F

)
. We know that t(p)

is a formation. Moreover, if G ∈ F and f(p) 	= ∅, then G/ CXp(G) ∈ f(p).
Therefore t(p) ⊆ f(p). On the other hand, if X ∈ Y, then X/ CXp(X) ∈ t(p).
Hence X

/
CX(H/K) ∈ t(p) for every Xp-chief factor H/K of X. This means

that f(p) ⊆ t(p) and the equality holds. This completes the proof of the
theorem. ��

Remark 3.1.12. If F is a local formation and f is the smallest local definition
of F, then f(p) = Q

(
G/ Op′,p(G) : G ∈ F

)
for each p ∈ charF (cf. [DH92,

IV, 3.10]). The equality f(p) = Q
(
G/ Op′,p(G) : G ∈ F

)
does not hold for

X-local formations in general: Let X = (C2) and consider F = LFX(f), where
f(2) = S and f(S) = E for all S ∈ X′. Then Alt(5) ∈ F and so Alt(5) ∈
Q
(
G/ O2′,2(G) : G ∈ F

)
. Since f(2) ⊆ S, it follows that Alt(5) /∈ f(2).

Consequently f(2) 	= Q
(
G/ O2′,2(G) : G ∈ F

)
.

Corollary 3.1.13. Let X and X̄ be classes of simple groups such that X̄ ⊆ X.
Then every X-local formation is X̄-local.

Proof. Let F = LFX(f) be an X-local formation. Since char X̄ ⊆ charX, we
can consider the X̄-formation function g defined by

g(p) = f(p) if p ∈ char X̄,

g(E) = F if E ∈ X̄′.

It is clear that F ⊆ LFX̄(g). Suppose that F 	= LFX̄(g), and choose a group
Y of minimal order in LFX̄(g) \ F. Then Y has a unique minimal normal
subgroup N , and G/N ∈ F. If N ∈ E(X̄′), then G ∈ F, which contradicts
the choice of G. Therefore N ∈ E X̄ and G/ CG(N) ∈ f(p) for each prime p
dividing |N |. Applying Remark 3.1.7 (2), we conclude that G ∈ F, contrary
to supposition. Hence F = LFX̄(g) and F is X̄-local. ��

By [DH92, IV, 3.8], each local formation F = LF(f) can be defined by
a formation function g given by g(p) = F ∩ Spf(p) for all primes p. The
corresponding result for X-local formations is the following:
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Theorem 3.1.14. Let F = LFX(f) be an X-local formation defined by the
X-formation function f . Set

f∗(p) = F ∩ Spf(p) for all p ∈ charX,
f∗(S) = F ∩ f(S) for all S ∈ X′.

Then:

1. f∗ is an X-formation function such that F = LFX(f∗).
2. Spf

∗(p) = f∗(p) for all p ∈ charX.

Proof. 1. It is clear that f∗ is an X-formation function. Let F∗ = LFX(f∗)
and let G ∈ F∗. If H/K is an Xp-chief factor of G, then G

/
CG(H/K) ∈

F ∩ Spf(p). Since, by [DH92, A, 13.6], Op

(
G
/

CG(H/K)
)

= 1, it follows
that G

/
CG(H/K) ∈ f(p). Now if G/L is a monolithic quotient of G with

Soc(G/L) ∈ E(S) for some S ∈ X′, it follows that G/L ∈ f(S). Therefore
G ∈ F.

Now if H/K is an Xp-chief factor of a group A ∈ F, then A
/

CA(H/K) ∈
Q F∩f(p) ⊆ f∗(p). If A/L is a monolithic quotient of A with Soc(A/L) ∈ E(S),
S ∈ X′, then A/L ∈ Q F ∩ f(S) ⊆ f∗(S). This implies that A ∈ F∗ and
therefore F = F∗.

2. Let G ∈ Spf
∗(p), p ∈ charX. Then G/ Op(G) ∈ f∗(p) and so G ∈

Spf(p) because Op

(
G/ Op(G)

)
= 1. Moreover G/ Op(G) ∈ F. If H/K is an

Xp-chief factor of G below Op(G), then Op(G) ≤ CG(H/K) by [DH92, B, 3.12
(b)] and so G

/
CG(H/K) ∈ Q f(p) = f(p). If G/L is a monolithic quotient of

G such that Soc(G/L) ∈ E(S), S ∈ X′, it follows that Op(G) ≤ L. Therefore
G/L ∈ Q f∗(p) = f∗(p) ⊆ F and so G/L ∈ f(S). This proves that G ∈ F.
Consequently G ∈ f∗(p) and Spf

∗(p) = f∗(p). ��

Definition 3.1.15. Let f be an X-formation function defining an X-local
formation F. Then f is called:

1. integrated if f(S) ⊆ F for all S ∈ (charX) ∪ X′,
2. full if Spf(p) = f(p) for all p ∈ charX.

Let F = LFX(f) be an X-local formation. Then the X-formation function g
given by g(S) = F ∩ f(S) for all S ∈ (charX) ∪ X′ is an integrated X-local
definition of F. Moreover f∗ is, according to the above theorem, an integrated
and full X-local definition of F.

It is known (cf. [DH92, IV, 3.7]) that if X = J, then every X-local formation
has a unique integrated and full X-local definition, the canonical one. This is
not true in general. In fact, if ∅ 	= X 	= J, we can find an X-local formation
with several integrated and full X-local definitions.

Example 3.1.16. Let ∅ 	= X 	= J. Then we can consider X ∈ J \X and a prime
p ∈ charX. The formation F = Sp is an X-local formation which can be
X-locally defined by the following integrated and full X-formation functions:
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f1(S) =

{
Sp if S ∼= Cp,

∅ if S 	∼= Cp,

and

f2(S) =

⎧⎪⎨⎪⎩
Sp if S ∼= Cp,
Sp if S ∼= X,
∅ otherwise

for all S ∈ (charX) ∪ X′.

We say that an X-formation function f defining an X-local formation F
is a maximal integrated X-formation function if g ≤ f for each integrated
X-formation function g such that F = LFX(g).

The next result shows that every X-local formation can be X-locally defined
by a maximal integrated X-formation function F . Moreover F is full.

Theorem 3.1.17. Let F = LFX(f) be an X-local formation. Then:

1. F is X-locally defined by the integrated and full X-formation function F
given by F (p) = Spf(p) for all p ∈ charX and F (S) = F for all S ∈ X′.

2. For each p ∈ char X, F (p) = (G : Cp � G ∈ F).
3. If F = LFX(g), then F (p) = F ∩ Spg(p) for all p ∈ charX.

Proof. 1. Since f ≤ F , it follows that F ⊆ LFX(F ). Suppose, by way of
contradiction, that the equality does not hold and let G be a group of minimal
order in LFX(F )\F. Then the group G has a unique minimal normal subgroup,
N say, and G/N ∈ F. Furthermore N ∈ E X because otherwise G ∈ F (S) for
some S ∈ X′ and then G ∈ F, contrary to supposition. Let p be a prime
dividing |N |. Then G/ CG(N) ∈ Spf(p) and so G/ CG(N) ∈ f(p) because
Op

(
G/ CG(N)

)
= 1 by [DH92, A, 13.6 (b)]. Then Remark 3.1.7 (2) implies

that G ∈ F. This contradiction yields LFX(F ) ⊆ F and then F = LFX(F ). It
is clear that F is full. Let p ∈ charX. If possible, choose a group G of minimal
order in F (p) \F. We know that G has a unique minimal normal subgroup N
and, since f(p) ⊆ F, Op(G) 	= 1. Hence N is a p-group. Moreover G/N ∈ F
and G/ CG(N) ∈ f(p) because Op(G) centralises N . But then G ∈ F. This
contradicts the choice of G, and so we conclude that F (p) ⊆ F.

2. Let p ∈ charX and let F̄ (p) denote the class (G : Cp � G ∈ F). If
G ∈ F (p), then Cp � G ∈ SpF (p) = F (p) ⊆ F by Statement 1. Hence
G ∈ F̄ (p) and so F (p) ⊆ F̄ (p). Now consider a group G ∈ F̄ (p) and set
W = Cp � G. Denote B = C�

p the base group of W and A =
⋂{CW (H/K) :

H ≤ B and H/K is a chief factor of W}. Since W ∈ F, it follows that W/A ∈
F (p). On the other hand, A acts as a group of operators for B by conjugation
and A stabilises a chain of subgroups of B. Applying [DH92, A, 12.4], we have
that A/ CA(B) is a p-group. Then A is itself a p-group because CA(B) = B
by [DH92, A, 18.8]. Consequently W ∈ F (p) and G ∈ Q F (p) = F (p). This
proves that F̄ (p) = F (p).
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3. Let g be an X-formation function such that F = LFX(g). Since f ≤ g,
it follows that F (p) = Spf(p) ⊆ F ∩ Spg(p) = g∗(p) for all p ∈ charX. Let
X be a group in g∗(p) and set W = Cp � X. As above, denote by B = C�

p

the base group of W . Then W/B ∈ g∗(p). Moreover W/B ∈ F = LFX(g∗) by
Theorem 3.1.14. Applying Remark 3.1.7 (2), we conclude that W ∈ F. Hence
X ∈ F (p) and F (p) = g∗(p). ��

Let g be an integrated X-formation function defining an X-local formation
F. Then g(p) ⊆ F ∩ Spg(p) = F (p) for all p ∈ charX by Theorem 3.1.17 (3).
Therefore g ≤ F . We shall say that F is the canonical X-local definition
of F = LFX(F ). As in the case of local formations, the canonical X-local
definition will be identified by the use of an uppercase Roman letter. Hence
if we write F = LFX(F ), we are assuming that F is the canonical X-local
definition of F.

Corollary 3.1.18. Let F be an X-local formation and Y ⊆ X. Let F1 and
F2 be the canonical Y-local and X-local definitions of F, respectively. Then
F1(p) = F2(p) for all p ∈ charY.

Proof. Applying Corollary 3.1.13, we know that F is Y-local. Let p be a prime
in charY. Then p ∈ char X and by Theorem 3.1.17 (2) we have that F1(p) =
(G : Cp � G ∈ F) = F2(p). ��

Taking Y = (Cp), p ∈ charX in Corollary 3.1.18 and, applying The-
orem 3.1.11 and Theorem 3.1.17, we have:

Corollary 3.1.19. Let F be an X-local formation. If p ∈ charX, then

F (p) = Sp Q R0

(
G
/

CG(H/K) : G ∈ F, H/K is an abelian

p-chief factor of G
)
.

Corollary 3.1.20. Let F = LFX(f) = LFX(F ) and G = LFX(g) = LFX(G)
be X-local formations. Then any two of the following statements are equivalent:

1. F ⊆ G
2. F ≤ G
3. f ≤ g

Corollary 3.1.21 ([BBCER05, Lemma 4.5]). Let F be a formation and let
{Xi : i ∈ I} be a family of classes of simple groups such that π(Xi) = charXi

for all i ∈ I. Put X =
⋃

i∈I Xi. If F is Xi-local for all i ∈ I, then F is X-local.

Proof. First of all, note that π(X) = charX.
Applying Theorem 3.1.17, F = LFXi

(Fi), where

Fi(S) =

{
(G : Cp � G ∈ F) if S ∼= Cp, p ∈ charXi,
F if S ∈ X′

i,
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for all i ∈ I.
Let f be the X-formation function defined by

f(S) =

{
(G : Cp � G ∈ F) if S ∼= Cp, p ∈ charX,
F if S ∈ X′.

It is clear that F ⊆ LFX(f). Assume that the inclusion is proper and derive
a contradiction. Let G ∈ LFX(f) \ F of minimal order. Then G has a unique
minimal normal subgroup N such that G/N ∈ F. It is clear that N ∈ E X
because otherwise G ∈ F. Hence N ∈ E Xi for some i ∈ I and G/ CG(N) ∈
f(p) = Fi(p) for all p ∈ π(N). Therefore G ∈ LFXi

(Fi) = F. This is a
contradiction. Consequently F = LFX(f) and F is an X-local formation. ��

When X is the class of all abelian simple groups, we have X =
⋃

p∈P
(Cp).

Therefore

Corollary 3.1.22 ([BBCER05, Corollary 4.6]). A formation F is Baer-
local if and only if F is (Cp)-local for every prime p.

A natural question arising from the above discussion is whether an X-local
formation has a unique upper bound for all its X-local definitions, that is, if
F can be X-locally defined by an X-formation function F 0 such that f ≤ F 0

for each X-local definition f of F. If such F 0 exists, we will refer to it as the
maximal X-local definition of F.

In [Doe73], K. Doerk presented a beautiful result showing that in the
soluble universe each local formation has a maximal local definition (see also
[DH92, V, 3.18]). The same author, P. Schmid [Sch74], and L. A. Shemetkov
[She78] posed the problem of whether every local formation of finite groups
has a maximal local definition. The answer is “no” as the following example
shows:

Example 3.1.23 ([Sal85]). Let F = S be the local formation of all soluble
groups. Then F = LF(f1) = LF(f2), where f1 and f2 are the formation
functions defined by

f1(2) = D0

(
S, Alt(5)

)
,

f1(p) = S for each prime p 	= 2,

f2(3) = f2(5) = D0

(
S, Alt(5)

)
,

f2(p) = S for each prime p 	= 3, 5.

Assume that F has a maximal local definition, F 0 say. Then fi ≤ F 0 for
i = 1, 2. This implies that Alt(5) ∈ LF(F 0) = F, a contradiction. Therefore F
does not have a maximal local definition.

Perhaps the most simple example of a local formation with a maximal
local (J-local) definition is given by the class Eπ of all π-groups for a set of
primes π. It is rather clear that
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F̂ (p) =

{
E if p ∈ π,
∅ if p /∈ π,

defines the maximal local definition of Eπ.
In the following we shall give a description of X-local formations with a

maximal X-local definition. The main source for this description is P. Förster
and E. Salomon [FS85].

The following concept, introduced for local formations in [Sal85], turns out
to be crucial.

Definition 3.1.24 ([FS85]). Let F = LFX(F ) be an X-local formation. De-
note by bX(F) the class of all groups G ∈ b(F) such that Soc(G) ∈ E X. A
group G ∈ bX(F) is called X-dense with respect to F if G ∈ b

(
F (p)

)
for each

prime p dividing |Soc(G)|. Further, b(F) is said to be X-wide if there does not
exist an X-dense group G ∈ bX(F).

Note that a group G ∈ bX(F) with abelian socle cannot be X-dense because
F is full.

Remark 3.1.25. Let F = LFX(F ) and G ∈ bX(F). G is X-dense with respect to
F if and only if there exists an X-formation function f such that F = LFX(f)
and G ∈ b

(
f(p)

)
for all primes p dividing |Soc(G)|.

Proof. If G is X-dense with respect to F, then we take f = F . Conversely,
assume that G ∈ b

(
f(p)

)
for all p ∈ π

(
Soc(G)

)
for some X-formation function

f such that F = LFX(f). Then G/ Soc(G) ∈ F ∩ Spf(p) = F (p) for all p ∈
π
(
Soc(G)

)
by Theorem 3.1.17 (3). Since G /∈ F, it follows that G ∈ b

(
F (p)

)
for every prime p dividing |Soc(G)|. This is to say that G is X-dense with
respect to F. ��

Examples 3.1.26. 1. Suppose that X contains a non-abelian group S. Then
S is X-dense with respect to any X-local formation F satisfying S /∈ F and
Cp ∈ F for all p ∈ π(S). For example, F = N or S.

2. Let F = NF0 for some formation F0. Let RX denote the class of all
X-groups without abelian chief factors; it is clear that RX = R2

X is a Fitting
formation. It follows that F = LFX(F ) where F (p) = SpF0 for all p ∈ charX,
and F (S) = F for all S ∈ X′. Then b(F) is X-wide if and only if RXF0 = F0.

Proof. 1. It is obvious.
2. It is rather clear that F = LFX(F ). Suppose that b(F) is X-wide and

RXF0 	= F0. Let G ∈ RXF0 \ F0 be a group of minimal order. Then G has a
unique minimal normal subgroup N such that G/N ∈ F0. Since G /∈ F0, then
N is a non-abelian X-group. If G ∈ F, then G ∈ F0 because F(G) = 1, contrary
to supposition. Hence G ∈ b(F). Moreover G /∈ SpF0 for all p ∈ π(N). This
means that G ∈ b

(
F (p)

)
for all p ∈ π(N) and so G is X-dense with respect

to F. This is a contradiction. Hence RXF0 ⊆ F0 and the equality holds.
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Conversely, assume that RXF0 = F0 and suppose that there exists
G ∈ bX(F) such that G ∈ b

(
F (p)

)
= b(SpF0) for each p ∈ π

(
Soc(G)

)
. Let p

and q be two different primes dividing |Soc(G)|. Then G/N ∈ SpF0 ∩ SqF0.
Therefore G ∈ RXF0 = F0. This contradicts the fact that G ∈ b(F). Con-
sequently b(F) is X-wide. ��

For each prime p, denote E(p) the class of all groups such that p divides
the order of every chief factor of G. Then it is clear that E(p) =

(
E(p)

)2 is a
Fitting formation and E(p) ∩ S = Sp.

Note that if p ∈ charX, then E(p) ∩ E X = E(Xp).

Remark 3.1.27. Let F = LFX(f) = LFX(F ) be an X-local formation. Then
F (p) = F ∩ E(p)f(p) for each p ∈ charX.

Proof. Let p ∈ charX. By Theorem 3.1.17 (3), F (p) = F ∩Spf(p). Therefore
F (p) ⊆ F ∩ E(p)f(p). Assume that the equality does not hold and let G ∈(
F∩E(p)f(p)

)
\F (p) of minimal order. Then G has a unique minimal normal

subgroup N such that N ∈ E(p) and G/N ∈ F (p). Since F is full, we have
that N is not a p-group. Hence CG(N) = 1 and so G ∈ F (p) because G ∈ F.
This contradiction yields F (p) = F ∩ E(p)f(p). ��

Let F = LFX(f) be an X-local formation. Denote f̄ the following X-
formation function:

f̄(p) =

{
E(p)f(p) if p ∈ charX,
f(S) if S ∈ X′.

In general, F 	= LFX(f̄); take F = N, X = J, and f(p) = (1) for all p ∈ P.
However:

Theorem 3.1.28. Let F = LFX(f) = LFX(F ) be an X-local formation with
f integrated. The following statements are pairwise equivalent:

1. F = LFX(f̄);
2. F = LFX(F̄ );
3. b(F) is X-wide.

Proof. 1 implies 2. Let p ∈ char X. Then, by Theorem 3.1.17 (3) F (p) =
F ∩ Spf(p) ⊆ E(p)f(p). Consequently E(p)F (p) ⊆ E(p)f(p). It is then clear
that F = LFX(F̄ ).

2 implies 3. Let G ∈ bX(F) be an X-dense group with respect to F. Then
Soc(G) ∈ E X and so Soc(G) ∈ E(p) for all primes p dividing |Soc(G)|. There-
fore G ∈ E(p)F (p). Applying Remark 3.1.7 (2), we have that G ∈ LFX(F̄ ) =
F, contrary to the choice of G. Hence bX(F) is wide.

3 implies 1. Suppose that bX(F) is X-wide. Since f ≤ f̄ , it follows that F ⊆
LFX(f̄). Hence the burden of the proof is to show that LFX(f̄) ⊆ F. Assume
that this is not true, and let G be a group of minimal order in LFX(f̄) \ F.
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It follows easily that G has a unique minimal normal subgroup, N say, and
G/N ∈ F. If N ∈ E(X′), then G ∈ f̄(S) = F for some simple group S ∈ X′,
contrary to supposition. Hence N ∈ E X and so G/ CG(N) ∈ E(p)f(p) for each
prime p dividing |N |. If N is abelian, then G/ CG(N) ∈ F∩E(p)f(p) = F (p) by
Remark 3.1.27. Now applying Remark 3.1.7 (2), G ∈ F, which is not the case.
Hence N is non-abelian and then CG(N) = 1. Then G/N ∈ F ∩ E(p)f(p) =
F (p) for all primes p dividing |N |. Since G /∈ F (p), we have that G is X-
dense with respect to F, and we have reached a final contradiction. Therefore
LFX(f̄) ⊆ F and the equality holds. ��

The next result shows that the X-local formations of X-wide boundary are
precisely those for which a partial converse of Theorem 3.1.17 (3) holds.

Theorem 3.1.29. Let F = LFX(F ) be an X-local formation. Then the follow-
ing statements are equivalent:

1. b(F) is X-wide.
2. If f is an X-formation function such that F ∩ Spf(p) = F (p) for all

p ∈ charX, and f(S) = F for all S ∈ X′, then F = LFX(f).

Proof. 1 implies 2. Let f be an X-formation function such that F∩Spf(p) =
F (p) for all p ∈ charX and f(S) = F for all S ∈ X′. Denote F1 = LFX(f).
It is clear that F ⊆ F1 because F (p) ⊆ Spf(p) for all p ∈ char X. Suppose
that F1 is not contained in F and let G ∈ F1 \ F of minimal order. As usual,
G has a unique minimal normal subgroup N such that G/N ∈ F. Moreover
N ∈ E X and G/ CG(N) ∈ f(p) for all p ∈ π(N). If N were abelian, then
G/ CG(N) ∈ F∩ f(p) ⊆ F (p) and we would have G ∈ F by Remark 3.1.7 (2).
This would contradict the choice of G. Hence N should be non-abelian and
so G ∈ f(p) for all p ∈ π(N). This implies that G/N ∈ F ∩ f(p) ⊆ F (p).
Since G ∈ b(F), we have that G /∈ F (p). Hence G is X-dense with respect to
F and b(F) is not X-wide. This is a contradiction. Consequently F1 ⊆ F and
the equality holds.

2 implies 1. Let f be the X-formation function given by f(p) = E(p)F (p)
for all p ∈ charX and f(S) = F (S) = F for all S ∈ X′. Then, by Re-
mark 3.1.27, we have F ∩ Spf(p) = F ∩ E(p)F (p) = F (p) for all p ∈ charX.
Consequently F = LFX(f) by Statement 2. Applying Theorem 3.1.28, we con-
clude that b(F) is X-wide. ��

Theorem 3.1.30. Let F = LFX(F ) be an X-local formation with a maximal
X-local definition. Then b(F) is X-wide.

Proof. Let p ∈ charX and define the following X-formation function: Fp(p) =
E(p)F (p) and Fp(S) = F (S) for every S ∈ (charX) ∪ X′ such that S 	∼= Cp.
Then F ≤ Fp. Hence F ⊆ LFX(Fp). We suppose that F 	= LFX(Fp) and derive
a contradiction. Let G ∈ LFX(Fp) \ F be a group of minimal order. Then G
has a unique minimal normal subgroup N and G/N ∈ F. If N ∈ E(X′), then
G ∈ F (S) for some S ∈ X′ and so G ∈ F, which is a contradiction. Hence
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N ∈ E X. Suppose that N is abelian. Since G /∈ F, we conclude that N is a
p-group. But in this case G/ CG(N) ∈ E(p)F (p)∩F = F (p) by Remark 3.1.27.
Hence G ∈ F by Remark 3.1.7 (2). Consequently N should be non-abelian.
Let q be a prime different from p such that q divides the order of N . Then
G ∈ Fp(q) = F (q) ⊆ F. This is the desired contradiction.

Therefore Fp = LFX(Fp) = F for all p ∈ charX. Let g be the maximal X-
local definition of F. Then E(p)F (p) ⊆ g(p) for all p ∈ charX. Consequently
F = LF(F̄ ). Applying Theorem 3.1.28, b(F) is X-wide. ��

Let F = LFX(F ) be an X-local formation. Define

F (S) =

{
h
(
b
(
F (p)

)
∩ F

)
if S = p ∈ charX,

h
(
bS(F)

)
if S ∈ X′

F̂ (S) =

⎧⎪⎪⎨⎪⎪⎩
(
G : Q R0

(
F (p) ∪ {G}

)
⊆ F (p)

)
if S = p ∈ charX,

h
(
bS(F)

)
if S ∈ X′ \ P,(

G : Q R0

(
F (q) ∪ {G}

)
⊆ F (q)

)
if S ∈ X′ ∩ P.

Note that h
(
bS(F)

)
is a saturated formation for all S ∈ X′ \ P by Ex-

ample 2.3.21. Moreover Q F̂ (p) = F̂ (p) for each prime p.

Lemma 3.1.31. F (p) ∩ F = F̂ (p) ∩ F = F (p) for each prime p.

Proof. F (p) ⊆ F̂ (p)∩ F ⊆ F (p) ∩ F. Now if p ∈ charX, then F (p) ∩ F ⊆ F (p)
by using familiar arguments. If p ∈ X′, then F (p) = F. Therefore in both cases
F (p) ∩ F ⊆ F (p) and F (p) = F (p) ∩ F. ��

Lemma 3.1.32. Let p be a prime. If L is a formation contained in F (p), then
Q R0

(
F (p) ∪ L

)
is contained in F (p).

Proof. It is enough to prove R0

(
F (p) ∪ L

)
⊆ F (p) since F (p) is a

morph. Suppose that R0

(
F(p) ∪ L

)
is not contained in F (p) and take

G ∈ R0

(
F (p) ∪ L

)
\ F (p) of minimal order. Then GF (p) 	= 1 	= GL and

G /∈ F (p). Furthermore, there exists a normal subgroup K of G such that
G/K ∈ b

(
F (p)

)
∩ F or G/K ∈ bp(F) according whether p ∈ charX or p ∈ X′.

Suppose that K∩GF (p) 	= 1 and let N be a minimal normal subgroup of G such
that N is contained in K ∩ GF (p). By the choice of G, we have G/N ∈ F (p).
Hence G/K ∈ F (p). This is impossible. Consequently K ∩ GF (p) = 1 and,
analogously, K ∩ GL = 1. Assume that p ∈ charX. Then G/K ∈ F. Thus
G ∈ R0 F = F. This implies that G/GL ∈ L ∩ F ⊆ F (p) ∩ F = F (p) by
Lemma 3.1.31 and so GF (p) ≤ GL. Since GF (p) ∩ GL = 1, it follows that
G ∈ F (p). This contradicts the choice of G. Now suppose that p ∈ X′. In
this case G/K ∈ bp(F). Let L/K = Soc(G/K). Then L = GFK = GF × K
and so GF is a minimal normal subgroup of G. Let B be a minimal normal
subgroup contained in GL. Then G/B ∈ h

(
bp(F)

)
by the choice of G. Suppose

homo-
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that G/B /∈ F. Then G has a factor group, G/T say, such that B ≤ T and
G/T ∈ b(F). Set M/T = Soc(G/T ). Then M = GFT because GF is a minimal
normal subgroup of G. Therefore M/T is a p-group and G/T ∈ bp(F). This
is a contradiction. Consequently Q R0

(
F (p) ∪ L

)
is contained in F (p). ��

Theorem 3.1.33 ([FS85]). Let F = LFX(F ) be an X-local formation. Then
F possesses a maximal X-local definition if and only if b(F) is X-wide and,
for each prime p, there exists a unique maximal formation contained in F (p).
In this case, F̂ is an X-formation function and F̂ is the maximal X-local
definition of F.

Proof. First, suppose that F possesses a maximal X-local definition, g say.
Then b(F) is X-wide by Theorem 3.1.30. Let p be a prime in charX. Then
g(p) ∩ F is contained in F (p) by Theorem 3.1.17 (3). Hence g(p) is contained
in h

(
b(F (p)

)
∩ F

)
= F (p).

Assume now that p ∈ X′ ∩P and g(p) is not contained in F (p). Let G be a
group of least order in g(p) \F (p). Then G ∈ bp(F), and from F = LFX(g) we
readily get that G ∈ F, the desired contradiction. Consequently g(p) ⊆ F (p).
Let L be a formation contained in F (p). By Lemma 3.1.32, Q R0

(
F (p)∪L

)
⊆

F (p). Consider the X-formation function defined by setting

g1(q) =

{
Q R0

(
F (p) ∪ L

)
if p = q,

F (q) if p 	= q

and g1(S) = g(S) for every S ∈ X′\P. Since g1(p)∩F ⊆ F (p) by Lemma 3.1.31
and Lemma 3.1.32, we immediately have that F = LFX(g1). The maximal
character of g implies that g1(p) ⊆ g(p). Thus L ⊆ g(p). Consequently, g(p)
is the unique maximal formation contained in F (p).

Conversely, suppose that b(F) is X-wide and for each prime p, there exists a
unique maximal formation, g(p), contained in F (p). Consider the X-formation
function g1 defined by g1(p) = g(p) for every prime p and g1(S) = h

(
bS(F)

)
for every S ∈ X′ \ P. Clearly F ⊆ LFX(g1) because F (S) ⊆ g(p) for all p and
F ⊆ g1(S) for all S ∈ X′ \P. If F 	= LFX(g1), then a group G ∈ LFX(g1) \F of
minimal order would be an X-dense group. Since b(F) is X-wide, we conclude
that F = LFX(g1). On the other hand, let j be an X-formation function such
that F = LFX(j). Then, for all p, we have j(p) ∩ F ⊆ F (p). Consequently,
j(p) ⊆ F (p) and then j(p) ⊆ g(p). Furthermore, it is clear that j(S) ⊆ g1(S)
for every S ∈ X′ \ P. Consequently, g1 is the maximal X-local definition of F.

Note that in this case g(p) = F̂ (p) and g(S) = F̂ (S) for all S ∈ X′ \ P.
Therefore F̂ is an X-formation function and it is actually the maximal X-local
definition of F. ��
Proposition 3.1.34. Let Y ⊆ X be classes of simple groups. If F = LFX(F )
has a maximal X-local definition, then F has a unique maximal Y-local defin-
ition. If, in addition, charX = charY, then the converse is valid if, and only
if, b(F) is X-wide.
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Proof. Note that F = LFY(F1), where F1(p) = F (p) for all p ∈ charY
and F1(S) = F for all S ∈ Y′ (see Corollary 3.1.13). Therefore if F has
a maximal X-local definition, then b(F) is X-wide (and so b(F) is Y-wide)
and F̂ (p) = F̂1(p) for all p ∈ charY is a formation. We are left to show
that F̂1(p) is a formation for all p ∈ (charX) ∩ Y′. To see this, we prove
that F 1(p) = G = h

(
bq(F)

)
contains a unique maximal formation. Set

H = f(G) = (G : H/K is G-central in G for every chief factor of G). Apply-
ing Theorem 2.3.20, H is a formation. Suppose that H is not contained in G
and let G ∈ H \ G be a group of minimal order. Then G ∈ b(G) = bq(F) and
so G is a monolithic group. Moreover X = [N ]

(
G/ CG(N)

)
∈ G. If X /∈ F,

then X ∈ bq(F), because G/ CG(N) ∈ F. Hence X ∈ G ∩ bq(F) = ∅. This
is a contradiction. Therefore X ∈ F and G/ CG(N) ∈ F (p). Applying Re-
mark 3.1.7 (2), we conclude that G ∈ LFX(F ) = F. We have obtained a
contradiction. Consequently H ⊆ G. Let now L be a formation contained in
G. Then by Theorem 2.3.20 (2), L ⊆ H. This means that F̂1(p) is a formation.
By Theorem 3.1.33, it follows that F has a maximal Y-local definition.

Now if charX = charY, then F (p) = F1(p) for all p ∈ charX. Con-
sequently if F has a maximal Y-local definition, then F̂ (p) is a formation for
all p ∈ charX. By Theorem 3.1.30, F has a maximal X-local definition if, and
only if, b(F) is X-wide. ��

Examples 3.1.35. 1. Let F = S be the J-local (local) formation of all sol-
uble groups. Then F = LFJ(F ) where F (p) = F for all p ∈ P. Hence F̂ (p) = E

and so F̂ is a J-formation function. However, F does not have a maximal
J-local definition (see Example 3.1.23).

This example shows that the requirement that b(F) be X-wide cannot be
removed from Theorem 3.1.33.

2. Let F0 be the class of all groups whose Frattini chief factors have odd
order. Then F0 is a formation and RJF0 = F0. Let F = NF0. Applying Ex-
ample 3.1.26 (2), we have that F is a J-local formation with J-wide boundary.
Assume that F 	= S2F0 and let G ∈ F\S2F0 be a group of minimal order. Then
G has a unique minimal normal subgroup N . Moreover G/N ∈ S2F0. Since
G /∈ F0, we conclude that N is a p-group for some odd prime p. Hence F(G) is
a p-group. This implies that G ∈ F0 because G/ F(G) has no Frattini 2-chief
factors. This is a contradiction. Consequently F = S2F0 and F = LFJ(F ),
where

F (p) =

{
F if p = 2,
F0 if p 	= 2.

Then F (q) = h
(
b
(
F (q)

)
∩ F

)
= h

(
b(F0) ∩ F

)
= h

(
b(F0)

)
= F0 for each odd

prime q (note b(F0) ⊆ F). Consequently

F (p) = F̂ (p) =

{
E if p = 2,
F0 if p 	= 2
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and F = F̂ is a J-formation function. Applying Theorem 3.1.33, we have that
F is the maximal J-local definition of F.

Let F = LFX(F ) be an X-local formation. In contrast to the condition
that b(F) is X-wide, the other condition from Theorem 3.1.33 — namely, that
F̂ (X) be a formation for all X ∈ P — is not always easy to check when a
concrete formation F is given. We give an example of a local formation for
which F̂ is not a formation function.

Example 3.1.36 ([FS85]). Let R = RJ be the formation composed of all
groups whose chief factors are non-abelian. Consider the local formation
F = NRN. Then the canonical definition F of F is given by F (p) = SpRN
for all p. Applying Examples 3.1.26 (2), we have that b(F) is J-wide because
RJ(RN) = RN.

Let S = SL(2, 5). By [DH92, B, 10.9], S has an irreducible module V over
GF(p) such that Ker(S onV ) = CS(V ) = Z(S). Let X = [V ]S be the corres-
ponding semidirect product, and let Y = S �Z(X) X be the wreath product of
S with respect to the permutation representation of S with X with respect to
the permutation representation of X on the set of cosets of Z(X) = Z(S) in X.
As usual, for any subgroup U of S, U � = U × · · · ×U (|X/ Z(X)| copies of U)
shall denote the canonical subgroup of S�, the base group of Y , isomorphic
to a direct product of |X/ Z(X)| copies of S. Note that Z(X) ≤ Z(Y ) and
Z(S)�X/ Z(X) is X-isomorphic to the regular wreath product C2 �reg X/ Z(X)
and this is isomorphic to the semidirect product of the regular X/ Z(X)-
module over GF(2) with X/ Z(X). Therefore there exists a normal subgroup
Z of Y such that Z ≤ Z(S)� and Z(S)�/Z is a cyclic group of order 2.

We consider now G = Y/Z. It is clear that S is isomorphic to a quotient
of G. Let A = Z(X)Z/Z and B = Z(S)�/Z. It is clear that A and B are
subgroups of order 2 contained in Z(G) such that A ∩ B = 1. Hence there
exists D ≤ Z(G) of order 2 such that D ∩ A = D ∩ B = 1. In particular
G ∈ R0(G/A,G/D).

Assume that p is a prime and p > 5. Then Förster and Salomon [FS85,
Example 4.1] proved that G/A, G/D ∈ F̂ (p).

However since F̂ (p) is Q-closed, S is isomorphic to a quotient of G and
S ∈ b

(
F (p)

)
∩ F, it follows that G /∈ F̂ (p). This shows that F̂ (p) is not a

formation and hence F = NRN does not have a maximal J-local definition as
J-local formation.

The above example can be modified to show that h
(
bq(F)

)
, F an X-local

formation and q ∈ X′∩P, does not always contain a unique largest formation.

Example 3.1.37. Let F = SpRN as in the above example. Suppose that X =
∅. Put q = 2 and take G, A, D as in Example 3.1.36. Then Q R0(G/A) ∪
Q R0(G/D) ⊆ h

(
b2(F)

)
, but G ∈ R0(G/A,G/D) does not belong to h

(
b2(F)

)
.

Consequently F is an ∅-local formation without a maximal ∅-local definition.
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Proof. First of all, we know that S = SL(2, 5) is a quotient of G and S ∈ b2(F).
Therefore G /∈ h

(
b2(F)

)
. Moreover, G ∈ R0(G/A,G/D). Now let B1 = b2(F)∩

NRN and B2 = b2(F)\NRN. Thus b2(F) = B1∪B2 and h
(
b2(F)

)
= h(B1)∩

h(B2). Förster and Salomon [FS85, Example 4.1] proved that Q R0(G/A) ∪
Q R0(G/D) ⊆ h(B1). Moreover B2 is a class composed by primitive groups.
Hence h(B2) is a Schunck class by Corollary 2.3.11. Note that [H/K]∗(G/A) ∈
h(B2) for each chief factor H/K of G/A (and the same applies to G/D). This
implies that G/A and G/B belong to f

(
h(B2)

)
, which is the largest formation

contained in h(B2) by Theorem 2.3.20 (3). Hence Q R0(G/A) ∪ Q R0(G/D) ⊆
h(B2). ��

In [DH92, pages 364 and 365], the authors study the effect of some closure
operations on a local formation. More precisely, they prove:

Let F = LF(f) be a local formation and let C be one of the closure
operations S, Sn, or N0.
1. If f(p) = C f(p) for all p ∈ P, then F = C F, and
2. if F = C F, and F is the canonical local definition of F, then

F (p) = C F (p) for all p ∈ P.

The natural question is: can the above results be extended to X-local forma-
tions? If C = S, 1 is not always true (compare with [För85b, Lemma 3.13]).

Example 3.1.38. Let X = (C2) and F = LFX(f), where f(2) = (1) and f(S) =
E if S 	∼= C2. It is clear that S f(S) = f(S) for all S ∈ (charX) ∪ X′, but F is
not S-closed because Alt(5) ∈ F but Alt(4) /∈ F.

Our next result shows that 1 is true for C = Sn or N0.

Proposition 3.1.39. Let F = LFX(f) be an X-local formation and let C be
one of the closure operations Sn or N0. If f(S) = C f(S) for all S ∈ (charX)∪
X′, then F = C F.

Proof. Let C = Sn. Let G ∈ F, and let N be a normal subgroup of G. We prove
that N ∈ F by induction on |G|. Let A be a minimal normal subgroup of G.
Then NA/A ∈ F. If B were another minimal normal subgroup of G, then
NB/B ∈ F. This would imply N ∈ F. Consequently we may assume that
A = Soc(G) is the unique minimal normal subgroup of G. Let p ∈ charX.
Then N/

(
N ∩ CXp(G)

) ∼= N CXp(G)/ CXp(G) and N CXp(G)/ CXp(G) is a
normal subgroup of G/ CXp(G) ∈ f(p). Since N ∩ CXp(G) = CXp(N) by
Proposition 3.1.10, it follows that N/ CXp(N) ∈ f(p).

Assume now that N/L is a monolithic quotient of N such that T/L =
Soc(N/L) ∈ E(S) for some simple group S ∈ X′. If A is not contained in L,
then T/L is contained in AL/L 	= 1 and so A ∈ E(S). Since G is a monolithic
F-group, it follows that G ∈ f(S). Hence N ∈ Sn f(S) = f(S) and N/L ∈
Q f(S) = f(S). Suppose that A is contained in L. We have that N/A ∈ F by
induction. Therefore N/L ∈ f(S) because N/L is isomorphic to a monolithic
quotient of N/A whose socle belongs to E(S). Therefore N ∈ F and F = Sn F.
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Now suppose C = N0. Applying [DH92, II, 2.11], it is enough to show that
G ∈ F provided that G = N1N2, where Ni is a normal subgroup of G and Ni ∈
Fi, i ∈ {1, 2}. We argue by induction on |G|. It is rather clear that we may as-
sume that G has a unique minimal normal subgroup, A say, and G/A ∈ F. Let
p ∈ charX. Then G/ CXp(G) =

(
N1 CXp(G)/CXp(G)

)(
N2 CXp(G)/ CXp(G)

)
.

Moreover Ni CXp(G)/ CXp(G) ∼= Ni/
(
Ni ∩ CXp(G)

)
= Ni/ CXp(Ni) ∈ f(p).

Hence G/ CXp(G) ∈ N0 f(p) = f(p).
Suppose that G/L is a monolithic quotient of G such that Soc(G/L) ∈

E(S) for some simple group S ∈ X′. If L 	= 1, then G/L ∈ F by induction.
This implies G/L ∈ f(S). Thus we may assume that L = 1. In this case
A ∈ E(S). It is clear that Soc(Ni) ∈ E(S) for i ∈ {1, 2}. Therefore, applying
Remark 3.1.2 (5), Ni ∈ f(S) because Ni ∈ F, i ∈ {1, 2}. Consequently G ∈
N0 f(S) = f(S) and G ∈ F. We conclude that F is N0-closed. ��

The next proposition shows that Statement 2 holds for X-local formations.

Proposition 3.1.40. Let F = LFX(F ) be an X-local formation. If C is one of
the closure operations S, Sn, or N0 and F = C F, then F (S) = C F (S) for all
S ∈ (charX) ∪ X′.

Proof. If S ∈ X′, then F (S) = F. Hence we have to prove that F (p) = C F (p)
for all p ∈ charX.

Assume C = S and p ∈ charX. Let G ∈ F (p), and let H be a subgroup
of G. Then if W = Cp �G, we know that W ∈ F. Hence BH ∈ F, where B is the
base group of W . Therefore BH/ CXp(BH) ∈ F (p). Now CXp(BH) centralises
every chief factor of BH below B. Since B ≤ CXp(BH) and CW (B) = B, we
have that CXp(BH)/B is a p-group by [DH92, A, 12.4]. Thus H ∈ F (p) and
F (p) is subgroup-closed.

The case C = Sn is analogous.
Now assume that C = N0. By [DH92, II, 2.11], it will suffice to show that

if G = N1N2 with Ni a normal subgroup of G and Ni ∈ F (p), i = 1, 2,
then G ∈ F (p). Let W = Cp � G with B as the base group of W . Note that
W = (BN1)(BN2), BNi � W , and BNi ∈ SpF (p) = F (p) ⊆ F for i = 1, 2.
Therefore W ∈ N0 F = F. By Theorem 3.1.17 (3), G ∈ F (p). ��

Given a group G, denote by SX(G) the set of all subgroups H of G such
that H ∈ E X. If L is a class of groups, write L(X) =

(
G : SX(G) ⊆ L

)
.

It is clear that L(X) is the unique largest subgroup-closed class such that
L(X) ∩ E X ⊆ L.

If F is a formation, then F(X) is clearly a formation, but if F is an X-
local formation, then F(X) is not an X-local formation in general as the next
example shows.

Example 3.1.41. Consider X = J, the class of all simple groups, let G = Alt(5),
and let F = N2

D0(1, G). In this case, F(X) is the class of all groups U such
that every subgroup of U belongs to F. Hence G belongs to F(X). If F(X) were
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an X-local formation, then [V ]G would be an F(X)-group for every irreducible
and faithful GF(2)G-module V . In particular, if D is the dihedral group of
order 10, then V D ∈ F. This would be a contradiction. Hence F(X) is not an
X-local formation.

The next result provides precise conditions to ensure that F(X) is again
an X-local formation.

Theorem 3.1.42 ([BB91]). Let F be an X-local formation. The following
statements are pairwise equivalent:

1. For each primitive group G of type 2 in F(X) such that Soc(G) ∈ E X, and
for every irreducible and faithful G-module V over GF(p), p ∈ π

(
Soc(G)

)
,

the corresponding semidirect product [V ]G is an F(X)-group.
2. For each primitive group G of type 2 in F(X) such that Soc(G) ∈ E X and

for every irreducible and faithful G-module V over GF(p), p ∈ π
(
Soc(G)

)
,

and for every X ∈ SX(G) such that G = X Soc(G), the semidirect product
[V ]X is an F-group.

3. F(X) is an X-local formation.

Proof. 2 implies 3. Suppose F = LFX(F ). Define F ∗(p) = F (p)(X), for each
prime p ∈ charX and F ∗(E) = F (E)(X), for every E ∈ X′. Then F ∗ is
an X-formation function. We see that F(X) = LFX(F ∗). Assume that F(X)
is not contained in LFX(F ∗) and derive a contradiction. We choose a group
G ∈ F(X)\LFX(F ∗) of minimal order. Using familiar arguments, we have that
G is a monolithic group. Denote N = Soc(G). If N ∈ E(X′), then G ∈ F (E)(X)
for some E ∈ X′ and so G ∈ LFX(F ∗), which is a contradiction. Hence
N ∈ E X. Suppose that N is abelian. Then N is a p-group for some prime
p ∈ charX. Let X be a subgroup of G such that X ∈ E X. Without loss of
generality, we may assume that N is contained in X. Certainly X ∈ F(X) as
F(X) is subgroup-closed. If X is a proper subgroup of G, then X ∈ LFX(F ∗)
by the choice of G. This implies that X/ Ch

X(N) ∈ F ∗(p), where Ch
X(N) is the

intersection of the centralisers in X of all chief factors of X below N . Applying
[DH92, A, 2.11], Ch

X(N)/ CX(N) is a p-group. Hence X/ CX(N) ∈ F ∗(p)
and so X/ CX(N) ∈ F (p). If X = G, then G/ CG(N) ∈ F (p) because F is
X-local. Consequently G/ CG(N) ∈ F ∗(p). Applying Remark 3.1.7 (2), we
have that G ∈ LFX(F ∗) and we have the desired contradiction. Therefore
N is a non-abelian group. Let p be a prime dividing the order of N and
let X ∈ E X. Assume that T = XN is a proper subgroup of G. Arguing
as above, T = XN ∈ LFX(F ∗) and Ch

T (N) ∼= Ch
T (N)/ CT (N) is a p-group

(note that CT (N) = 1). Hence T/ Ch
T (N) ∈ F ∗(p). Since X Ch

T (N)/ Ch
T (N) ∈

SX

(
T/ Ch

T (N)
)
, it follows that X Ch

T (N)/ Ch
T (N) is in F (p) and so X ∈ F (p).

Suppose that T = G and consider an irreducible and faithful G-module V
over GF(p) (such V exists by [DH92, B, 10.9]). By Statement 2, the semidirect
product [V ]X is an F-group. It implies that X ∈ F (p). Therefore G ∈ F ∗(p)
and G ∈ LFX(F ∗) and we have the desired contradiction.
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On the other hand, taking into account that LFX(F ∗) is subgroup-closed,
it is easy to see that LFX(F ∗) is contained in F(X). Consequently F(X) is an
X-local formation.

3 implies 1. Taking into account that the F(X) can be locally defined by
an X-formation function, it is clear that if G is a primitive group of type 2 in
F(X) and Soc(G) ∈ E X, then the semidirect product [V ]G is an F(X)-group
for every irreducible and faithful G-module V over GF(p), p ∈ π

(
Soc(G)

)
.

Hence Statement 1 holds.
Finally, it is clear that 1 implies 2. The circle of implications is now com-

plete. ��

Example 3.1.43. Assume that X is the class of all simple groups and consider
the class F =

(
G : Alt(5) /∈ Q(G)

)
. Then b(F) =

(
Alt(5)

)
. Hence F is a

saturated formation by Example 2.3.21. If G is a primitive group of type 2 in
F(X), then every subgroup of [V ]X is an F-group, for every subgroup X of G
such that G = X Soc(G) and for every irreducible and faithful G-module V
over GF(p), p ∈ π

(
Soc(G)

)
. Consequently F(X) is a saturated formation. It

is clear that F(X) is the largest subgroup-closed formation contained in F.

3.2 A generalisation of
Gaschütz-Lubeseder-Schmid-Baer theorem

In this section we study two different Frattini-like subgroups associated with a
class of simple groups which lead to the corresponding notion of saturation. We
then present an extension of Gaschütz-Lubeseder-Schmid and Baer theorems.

We begin with the following definition due to P. Förster.

Definition 3.2.1 ([För85b]). Let G be a group. For a prime p, we define
Φp

X(G) as follows:

• If Op′(G) = 1,

Φp
X(G) =

{
Φ(G) if Soc

(
G/Φ(G)

)
and Φ(G) belong to E X,

Φ
(
OX(G)

)
otherwise.

• In general, Φp
X(G) is the subgroup of G such that Φp

X(G)/ Op′(G) =
Φp

X

(
G/ Op′(G)

)
.

• Finally put Φ∗
X(G) = OX(G) ∩⋂p∈char X Φp

X(G).

If q is a prime such that q /∈ charX, then Φ∗
X(G) is a q′-group because

π(X) = charX. Hence Φ∗
X(G) ≤ Oq′(G) ≤ Φq

X(G). Consequently Φ∗
X(G) =

OX(G) ∩⋂p∈P
Φp

X(G).
The basic properties of Φ∗

X(G) are displayed in the next result.
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1. Φ∗
X(G) and Φp

X(G), p a prime, are characteristic subgroups of G.
2. Φ

(
OX(G)

)
≤ Φ∗

X(G) ≤ OX(G) ∩ Φ(G).
3. Let p be a prime. If Op′(G) = 1, then Φ∗

X(G) = Φp
X(G).

4. Let p be a prime. If N is a normal subgroup of G contained in Φp
X(G),

then Op′(G/N) = Op′(G)N/N .
5. If N is a normal subgroup of G contained in Φ∗

X(G), then Φ∗
X(G/N) =

Φ∗
X(G)/N .

Proof. 1. It is clear.
2. Let p be a prime. Then Φ∗

X(G) Op′(G)/Op′(G) is isomorphic to a sub-
group of Φ

(
G/ Op′(G)

)
, which is a p-group. Hence Φ∗

X(G)∩Op′(G) is a normal
Hall p′-subgroup of Φ∗

X(G) and so Φ∗
X(G) is p-nilpotent. Therefore Φ∗

X(G) is
nilpotent.

Assume, arguing by contradiction, that Φ∗
X(G) is not contained in Φ(G).

Then there exists a maximal subgroup M of G such that G = MΦ∗
X(G).

Since Φ∗
X(G) is nilpotent, we can find a prime p and a Sylow p-subgroup

P of Φ∗
X(G) such that G = MP . In particular, Op′(G) is contained in M .

Hence Φp
X(G)/ Op′(G) is a subgroup of M/ Op′(G) and so Φ∗

X(G) ≤ M . This
contradiction leads to Φ∗

X(G) ≤ Φ(G). Now

Φ
(
OX(G)

)
Op′(G)/ Op′(G) ≤ Φ

(
OX(G) Op′(G)

)
Op′(G)/ Op′(G)

≤ Φ
(
OX(G) Op′(G)/Op′(G)

)
≤ Φ OX

(
G/ Op′(G)

)
≤ Φp

X(G)/ Op′(G)

for each prime p. Consequently Φ
(
OX(G)

)
≤ Φ∗

X(G).
3. Suppose that Op′(G) = 1 for some prime p. Since Φp

X(G) is contained
in Φ(G), it follows that Φp

X(G) is a p-group. Hence if q is a prime, q 	= p,
we have that Φp

X(G) ≤ Oq′(G) ≤ Φq
X(G). Therefore Φp

X(G) ≤ Φ∗
X(G) and so

Φ∗
X(G) = Φp

X(G).
4. Let N be a normal subgroup of G such that N ≤ Φp

X(G) for some prime
p. Put Q/N = Op′(G/N) and M = N ∩ Op′(G). Then N Op′(G)/ Op′(G) ≤
Φp

X(G)/ Op′(G) ≤ Φ
(
G/ Op′(G)

)
, which is a p-group. Therefore N/M is

a p-group. Since (Q/M)
/
(N/M) is a p′-group, it follows that Q/M =

(N/M)(H/M) for some Hall p′-subgroup H/M of Q/M . It is clear that H is a
Hall p′-subgroup of Q � G. Moreover the Hall p′-subgroups of Q are conjugate.
Therefore G = NG(H)N by the Frattini argument. Since N Op′(G)/ Op′(G)
is contained in Φ

(
G/ Op′(G)

)
, it follows that G = NG(H) and H ≤ Op′(G).

Consequently Q/N = Op′(G)N/N .
5. Let N be a normal subgroup of G contained in Φ∗

X(G). Let p be a prime.
Suppose that Op′(G/N) = 1. Then Op′(G) is contained in N by Statement 4.
Moreover Φp

X(G/N) is Φ(G/N) = Φ(G)/N or Φ
(
OX(G/N)

)
= Φ

(
OX(G)/N

)
.

Suppose that Φp
X(G/N) 	= Φ

(
OX(G)/N

)
. Then Soc (G/N)

/(
Φ(G)/N

)
and Φ(G)/N belongs to E X and for Soc

(
G/ Op′(G)

)/(
Φ(G)/Op′(G)

)
and

Φ
(
G/ Op′(G)

)
the same is true. Hence we have that Φp

X

(
G/ Op′(G)

)
=

Φ(G)/Op′(G) and Φp
X(G/N) = Φp

X(G)/N .

Proposition 3.2.2. Let G be a group.

( )

)(( )
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Assume now that Φp
X(G/N) = Φ

(
OX(G)/N

)
. Then Φp

X(G)/ Op′(G) =
Φ
(
OX(G)/ Op′(G)

)
. By [DH92, A, 9.3 (c)], it follows that Φp

X(G) is nilpotent.
Hence Φp

X(G) is contained in Φ
(
OX(G)

)
Op′(G) by [DH92, A, 9.11]. Therefore

Φp
X(G)/N is contained in Φ

(
OX(G)

)
N/N ≤ Φ

(
OX(G/N)

)
. Since N/ Op′(G)

is contained in Φ
(
OX(G)/ Op′(G)

)
, it follows that Φp

X(G/N) is isomorphic to
Φp

X(G)/N . It leads to Φp
X(G)/N = Φp

X(G/N).
Assume now that Op′(G/N) = Op′(G)N/N 	= 1. Denote with bars

the images in Ḡ = G/ Op′(G). Since Op′(Ḡ/N̄) = 1 and N̄ ≤ Φp
X(Ḡ),

it follows that Φp
X(Ḡ/N̄) = Φp

X(Ḡ)/N̄ . By definition of Φp
X(G), we have

that Φp
X(Ḡ) = Φp

X(G). Therefore the image of Φp
X(Ḡ/N̄) under the nat-

ural isomorphism between Ḡ/N̄ and G/N Op′(G) is Φp
X(G)/N Op′(G). This

implies that Φp
X

(
G/N Op′(G)

)
= Φp

X(G)/N Op′(G). On the other hand,
by definition we have Φp

X(G/N)/ Op′(G/N) = Φp
X(G/N)/N Op′(G)/N =

Φp
X (G/N)

/(
N Op′(G)/N

)
. Now the image of Φp

X (G/N)
/(

N Op′(G)/N
)

under the natural isomorphism between the groups (G/N)
/(

N Op′(G)/N
)

and G/N Op′(G) is the subgroup Φp
X

(
G/N Op′(G)

)
. Therefore we have that

Φp
X(G)/N = Φp

X(G/N).
Consequently Φp

X(G)/N = Φp
X(G/N) for all primes p and so Φ∗

X(G)/N =
Φ∗

X(G/N). ��

Remark 3.2.3. If N is a normal subgroup of a group G, then Φ(G)N/N ≤
Φ(G/N) and Φ(N) ≤ Φ(G) ([DH92, A, 9.2]). This is not true for Φ∗

X(G) in
general, as the next examples show.

Examples 3.2.4. 1. Let H = SL(2, 5). Then H has an irreducible module
V over GF(2) such that Ker(H on V ) = Z(H) (cf. [DH92, B, 10.9]). Let G =
[V ]H be the corresponding semidirect product. Put X = (C2). Then Φ∗

X(G) =
Φ(G) = Φ(H) and Φ∗

X(G/V ) = 1.
2. If G1 = G × Alt(5), where G and X are as in 1, it follows that Φ(H) =

Φ∗
X(G) 	≤ Φ∗

X(G1) = 1.

If X = J, then Φ∗
X(G) = Φ(G) for every group G by Proposition 3.2.2 (2).

However, if ∅ 	= X 	= J, then we can find a group G such that Φ
(
OX(G)

)
is a

proper subgroup of Φ∗
X(G) as the next example shows.

Example 3.2.5 ([BBCER05]). Assume that ∅ 	= X 	= J. Then there exist a
non-abelian simple group S ∈ X′ and a prime p ∈ π(S) such that p ∈ charX.
It is certainly true that charX is the set of all prime numbers. Suppose that
charX 	= P and take p ∈ charX and q /∈ charX. If S is the alternating
group of degree p + q, then S ∈ X′ and p ∈ charX ∩ π(S). Let T be the
group algebra GF(p)S and consider G = [T ]S, the corresponding semidirect
product. It is rather clear that Φ(G) = Rad T . Since Op′(G) = 1 and Φ(G)
and Soc

(
G/Φ(G)

)
belong to E X, we have that Φ∗

X(G) = Φp
X(G) = Φ(G) by

Proposition 3.2.2 (3). It is certainly true that Φ(G) 	= 1 because Rad T 	= 1.
However, OX(G) = T and Φ(T ) = 1.

( ) )(
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This example shows, in particular, that Φ∗
X(G) is not always the Frattini

subgroup of the soluble radical when X is the class of all abelian simple groups.

In [BBCER05] another Frattini-like subgroup associated with a class of
simple groups is introduced and analysed. It is smaller than Förster’s one and
coincides with the Frattini subgroup of the E X-radical except in a very few
number of cases. We present here a slight variation of this subgroup as it
appears in [BBCER05].

Definition 3.2.6. Let p be a prime. A group G belongs to AXp
(P2) provided

that G is monolithic and there exists an elementary abelian normal p-subgroup
N of G such that

1. N ≤ Φ(G) and G/N is a primitive group of type 2,
2. Soc(G/N) ∈ E X \ Ep′ , and
3. Ch

G(N) ≤ N , where

Ch
G(N) :=

⋂
{CG(H/K) : H/K is a chief factor of G below N}.

The next result shows that AXp(P2) 	= ∅ if X contains non-abelian simple
groups.

Proposition 3.2.7. Let G be a primitive group of type 2 such that Soc(G) ∈
E X. Then, for each prime p ∈ π

(
Soc(G)

)
, there exists a group Ep ∈ AXp

(P2)
and a minimal normal p-subgroup Tp of Ep contained in Φ(Ep) such that
Ep/ CEp(Tp) is isomorphic to G.

Proof. Note that p ∈ charX because π(X) = charX. Let Ep be the max-
imal Frattini extension of G with p-elementary abelian kernel Ap(G).Then
Ep/ Ap(G) ∼= G and Ap(G) = Φ(Ep) (see [GS78]). Moreover, by [GS78,
Theorem 1], we have that Ker G on Soc

(
Ap(G)

)
= Op′,p(G) = 1. Hence

there exists a minimal normal subgroup Tp of Ep such that Tp ≤ Ap(G) and
CEp

(Tp) = Ap(G). If Ep is monolithic, then clearly Ep ∈ AXp
(P2) and the

proposition is proved. Suppose that Ep is not monolithic. By Lemma 3.1.3,
there exists a normal subgroup N of Ep such that N ∩Tp = 1, Ep/N is mono-
lithic, and Soc(Ep/N) = TpN/N . Now N ≤ CEp

(Tp) = Ap(G) = Φ(Ep)
and CEp/N (TpN/N) = CEp

(Tp)/N = Φ(Ep)/N = Φ(Ep/N). Therefore
Ep/N ∈ AXp

(P2) and TpN/N is a minimal normal subgroup of Ep/N such
that (Ep/N)

/
CEp/N (Tp/N) ∼= Ep/ CEp(T ) ∼= G. ��

Definition 3.2.8. The X-Frattini subgroup of a group G is the subgroup
ΦX(G) defined as follows:

ΦX(G) :=

{
Φ
(
OX(G)

)
if G /∈ AXp

(P2) for all p ∈ charX,
Φ(G) otherwise.

( )



148 3 X-local formations

It is clear that ΦX(G) is a characteristic subgroup of G. Moreover if X = J,
then obviously ΦX(G) = Φ(G) and if X = P, then AXp(P2) = ∅ for all
p ∈ charX. Hence ΦX(G) = Φ(GS) for every group G. Moreover,

Proposition 3.2.9. Let G be a group. Then ΦX(G) is contained in Φ∗
X(G).

Proof. We know, by Proposition 3.2.2 (2), that Φ
(
OX(G)

)
is contained in

Φ∗
X(G). Suppose now that G ∈ AXp(P2) for some prime p ∈ charX. Then

Op′(G) = 1 and Φ(G) is a p-group. Since Φ(G) and Soc
(
G/Φ(G)

)
belong to

E X, Φp
X(G) = Φ(G). In addition, Φp

X(G) = Φ∗
X(G) by Proposition 3.2.2 (3).

Therefore Φ(G) = ΦX(G) = Φ∗
X(G). ��

Remarks 3.2.10. 1. Example 3.2.5 shows that the equality ΦX(G) = Φ∗
X(G)

does not hold in general.
2. If X1 ⊆ X2, then ΦX1(G) ≤ ΦX2(G) for all groups G.

By definition, if G /∈ AXp
(P2) for p ∈ charX, then ΦX(G) = Φ

(
OX(G)

)
.

We do not know whether in groups belonging to AXp
(P2) for some p ∈ charX

the above equality holds. This raises the following question:

Open question 3.2.11. Let X be a class of simple groups such that charX =
π(X) and let p ∈ charX. If G ∈ AXp

(P2), is it true that Φ(G) = Φ
(
OX(G)

)
?

Moreover, the compatibility of ΦX(G) with quotients of G is not visible and
doubtful. In fact, we do not know whether ΦX(G/N) = ΦX(G)/N for N � G
such that N ≤ ΦX(G).

In the sequel, using the ideas contained in the paper [BBCER05], we
shall prove that the X-local formations are exactly those formations which
are closed under extensions by the Frattini-like subgroups studied above. It
leads to extensions of the Gaschütz-Lubeseder-Schmid and Baer theorems.

We begin with the following definitions.

Definitions 3.2.12. Let F be a formation. We say that:

1. F is X-saturated (N) if F contains a group G whenever it contains
G/Φ

(
OX(G)

)
.

2. F is X-saturated (F) if G ∈ F provided that G/Φ∗
X(G) ∈ F.

3. F is X-saturated if G ∈ F provided that G/ΦX(G) ∈ F.
4. G has property X∗ if F contains every group G ∈ AXp(P2), p ∈ charX,

whenever it contains G/Φ(G).

Remarks 3.2.13. Let F be a formation.
1. F is X-saturated if and only if F is X-saturated (N) and F has prop-

erty X∗.
2. If F is X-saturated (F), then F is X-saturated.
3. If X = J, then F is X-saturated if and only if F is saturated.
4. If X ⊆ P, then F is X-saturated if and only if F is X-saturated (N).

The main result in this section is the following.
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Theorem 3.2.14. Let F be a formation. The following statements are pair-
wise equivalent:

1. F is X-local.
2. F is X-saturated (F).
3. F is X-saturated.
4. F is X-saturated (N) and F has property X∗.

We begin with some preliminary results.

Lemma 3.2.15. Let p be a prime in charX, let G be a group, and let N
be a normal subgroup of G such that N ≤ OX(G). Then CXp

(
G/Φ(N)

)
=

CXp(G)/Φ(N).

Proof. Put A/Φ(N) = CXp
(
G/Φ(N)

)
. It is clear that A is a normal subgroup

of G such that Φ(N) ≤ Op′,p(G) ≤ CXp(G) ≤ A. We prove that A ≤ CXp(G);
we consider A acting on G and N by conjugation, and define the following
formation function:

f(q) =

{
(1) for q = p,
E for q 	= p.

Next we see that A acts f -hypercentrally on N (cf. [DH92, IV, 6.2]). Let H/K
be an A-composition factor of G between A∩N and N . Since [A, N ] ≤ A∩N , it
is true that CA(H/K) = A. Let H/K be a chief factor of G between Φ(N) and
A∩N such that p divides |H/K|. Then H/K is an Xp-chief factor of G because
N ≤ OX(G). Hence CA(H/K) = A and so A centralises every A-composition
factor of N between K and H. It yields that A acts f -hypercentrally on
N/Φ(N). By [DH92, IV, 6.7], A acts f -hypercentrally on N .

Let H/K be an Xp-chief factor of G below Φ(N). Since H/K is a minimal
normal subgroup of G/K and H/K ≤ A/K, we can apply [DH92, A, 4.13]
to conclude that H/K = L1/K × · · · × Lr/K, where Li/K is a minimal
normal subgroup of A/K for all 1 ≤ i ≤ r. Since Li/K is an A-composition
factor of N and p divides |Li/K|, it follows that A ≤ CG(Li/K). Hence
CA(H/K) = A. Consequently A centralises all Xp-chief factors of G below
Φ(N) and so A ≤ CXp(G). ��

Theorem 3.2.16. If F is an X-local formation, then F is X-saturated (F).

Proof. Let G be a group such that G/Φ∗
X(G) ∈ F. We prove that G ∈ F

by induction on |G|. Let p be a prime in charX. Then G/Φp
X(G) ∈ F and

Φp
X(G)/ Op′(G) = Φ∗

X

(
G/ Op′(G)

)
by Proposition 3.2.2 (3). Consequently,

if Op′(G) 	= 1, we have G/ Op′(G) ∈ F. This implies that every Xp-chief
factor H/K of G is G-isomorphic to an Xp-chief factor of G/ Op′(G). Hence
G
/

CG(H/K) ∈ F (p), where F is the canonical X-local definition of F.
We may assume that Op′(G) = 1 for some prime p ∈ charX. In this

case Φp
X(G) = Φ∗

X(G) is a p-group. Suppose that Φ∗
X(G) = Φ

(
OX(G)

)
.

Then p divides
∣∣OX(G)

/
Φ
(
OX(G)

)∣∣ and so G has an Xp-chief factor above
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Φ
(
OX(G)

)
. In particular, F (p) 	= ∅. Since G/Φ

(
OX(G)

)
∈ F, we have that(

G/Φ
(
OX(G)

))/
CXp

(
G/Φ

(
OX(G)

))
∈ F (p). By Lemma 3.2.15, it follows

G/ CXp(G) ∈ F (p). We conclude then that G satisfies Condition 1 in Defini-
tion 3.1.1.

Assume now that Φ∗
X(G) 	= Φ

(
OX(G)

)
, then Φ(G) and Soc

(
G/Φ(G)

)
=

F′(G)/Φ(G) belong to E X and Φ∗
X(G) = Φ(G). Note that in this case p divides

the order of every X-chief factor of G below F′(G). Let T be the intersec-
tion of the centralisers in G of the Xp-chief factors of G between Φ(G) and
F′(G). Then G/T ∈ F (p) because G/Φ(G) ∈ F. Moreover, T/Φ(G) centralises
F′(G)/Φ(G) because F′(G)/Φ(G) is a direct product of Xp-chief factors of G.
By [För85b, Satz 1.2], T/Φ(G) is a p-group. This yields T is a p-group and so
G ∈ F (p).

Consequently, in both cases, G satisfies Condition 1 in Definition 3.1.1.
Let L be a normal subgroup of G such that G/L is monolithic and

Soc(G/L) belongs to E(S) for some S ∈ X′. Then Φ∗
X(G) ≤ OX(G) ≤ L

and so G/L ∈ F = F (S). Hence G satisfies Condition 2 in Definition 3.1.1
and therefore G ∈ F. This is to say that F is X-saturated (F). ��

Lemma 3.2.17. Let p be a prime and let F be a (Cp)-saturated formation.

1. Let X be a group, and let M , N be GF(p)X-modules with N irreducible
and X acting faithfully on M . If [M ]X ∈ F, then [N ]X ∈ F.

2. Let N be an elementary abelian normal p-subgroup of a group G. Assume
that [N ](G/N) ∈ F and that Cp ∈ F. Then G ∈ F.

Proof. 1 and 2 follow from the proofs of [DH92, IV, 4.1] and [DH92, IV, 4.15],
respectively, taking into account that the Hartley group used there plays the
role of the normal p-subgroup. ��

Lemma 3.2.18. Let F be a (Cp)-saturated formation, p a prime. If X ∈
R0

(
G
/

CG(H/K) : G ∈ F and H/K is an abelian p-chief factor of G
)
, then

[N ]X ∈ F for every irreducible GF(p)X-module.

Proof. The group X has a set {N1, . . . , Nn} of normal subgroups satisfying:

1. X/Ni is isomorphic to Gi

/
CGi

(Hi/Ki), where Gi ∈ F and Hi/Ki is an
abelian p-chief factor of Gi,

2.
⋂n

i=1 Ni = 1.

By Corollary 2.2.5, [Hi/Ki](X/Ni) ∈ F, 1 ≤ i ≤ n. Note that Hi/Ki can be
regarded as X-modules over GF(p) and Ker(X on Hi/Ki) = Ni, 1 ≤ i ≤ n.
Moreover, the semidirect product [Hi/Ki]X has normal subgroups Hi/Ki and
Ni satisfying [Hi/Ki]X

/
(Hi/Ki), [Hi/Ki]X/Ni ∈ F. Therefore [Hi/Ki]X ∈

R0 F = F, 1 ≤ i ≤ n. Put M = H1/K1 × · · · × Hn/Kn. Then M is an
X-module and Ker(X onM) =

⋂n
i=1 Ni = 1. Hence X acts faithfully on

M . Consider the set {M1, . . . , Mn} of normal subgroups of [M ]X: M1 =
H2/K2 × · · · × Hn/Kn, . . . , Mn = H1/K1 × · · · × Hn−1/Kn−1 and Mi =
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H1/K1 × · · · ×Hi−1/Ki−1 ×Hi+1/Ki+1 × · · · ×Hn/Kn, 2 ≤ i ≤ n− 1. Then⋂n
j=1 Mj = 1 and [M ]X/Mj

∼= [Hj/Kj ]X ∈ F. Therefore [M ]X ∈ R0 F = F.
By Lemma 3.2.17, [N ]X ∈ F for every irreducible GF(p)X-module. ��
Theorem 3.2.19. If F is an X-saturated formation, then F is X-local.

Proof. By Remark 3.2.10 (3.2), F is a (Cp)-saturated formation for all p ∈
charX.

Bearing in mind Theorem 3.1.17, the natural candidate f for an X-local
definition of F is given by

f(p) = Sp Q R0

(
G
/

CG(H/K) : G ∈ F and

H/K is an abelian p-chief factor of G
)

for p ∈ charX,

f(S) = F for S ∈ X′.

It is clear that f is an X-formation function.
Put H = LFX(f). Suppose that F is not contained in H and let G ∈ F \ H

of minimal order. We shall show that this supposition leads to a contradic-
tion. Since H is a formation, it follows that G has a unique minimal normal
subgroup, N say, and that G/N ∈ H. If N has composition type S ∈ X′, then
G ∈ f(S) = F. This is impossible. Therefore N is an X-chief factor of G. If N
is non-abelian, then G is a primitive group of type 2. Let p be a prime divisor
of |N |. Then p ∈ charX and, by Proposition 3.2.7, there exists E ∈ AXp

(P2)
such that E/ CE(T ) ∼= G for some minimal normal subgroup T of G. Moreover
T is a p-group. Since Φ(E) = CE(T ) = ΦX(E) and F is X-saturated, it follows
that E ∈ F. This means that G ∈ f(p). Then we conclude that G ∈ F because
Op(G) = 1. But G /∈ F by supposition, and so we must have that N is a
p-group for some prime p ∈ charX. In this case, G/ CG(N) ∈ f(p) and so
G ∈ H by Remark 3.1.7 (2), and we reach a contradiction. Therefore F ⊆ H.

Suppose that H is not contained in F, and let G be a group of minimal
order in H \ F. Then, as usual, G has a unique minimal normal subgroup
N and G/N ∈ F. Moreover neither N ∈ E(X′) nor N is a non-abelian E X-
group because G /∈ F. Consequently, N is an abelian p-group for some prime
p ∈ charX. In particular, f(p) 	= ∅ and therefore H contains the cyclic group
of order p. By Corollary 2.2.5, A = [N ](G/N) ∈ H. Assume that N < CG(N).
Then M = (G/N) ∩ CA(N) is a non-trivial normal subgroup of A. Since
|A/M | < |G|, we have that A/M ∈ F by minimality of G. Hence A ∼= A/(N ∩
M) ∈ R0 F = F. We can apply Lemma 3.2.17 (2) and deduce that G ∈ F.
This is a contradiction. Hence we must have CG(N) = N and so G/N ∈
f(p). Since Op(G/N) = 1 by [DH92, B, 3.12 (b)], it follows that G/N ∈
Q R0

(
B
/

CB(H/K) : B ∈ F and H/K is an abelian p-chief factor of B
)
. This

yields that G/N ∼= X/T for some normal subgroup T of

X ∈ R0

(
B
/

CB(H/K) : B ∈ F and H/K is an abelian p-chief factor of B
)
.

Now N can be regarded as an irreducible X-module over GF(p) such that
T = Ker(X onN). By Lemma 3.2.18, we have [N ]X ∈ F. Consequently G ∼=
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[N ](G/N) ∼= [N ](X/T ) belongs to F. We have reached a contradiction. Hence
H ⊆ F and the equality holds. ��

Return for the moment to Theorem 3.2.14. It can be deduced at once from
Theorem 3.2.16, Theorem 3.2.19, and Remarks 3.2.13.

Note that the Gaschütz-Lubeseder-Schmid theorem is a special case of
Theorem 3.2.14 when X = J, the class of all simple groups.

Another generalisation of Gaschütz’s concept of local formation in the
general finite universe is due to L. A. Shemetkov, who introduced in 1973 the
notion of composition formation. The most general version of these kind of
formations was presented in [She01]. Let us describe Shemetkov’s approach.
Let Y 	= ∅ be a class of simple groups. A function which associates with every
group A ∈ Y a formation f(A) and with every group B ∈ Y′ a formation
∅ 	= f(Y′) is called a CY-satellite. If f is a CY-satellite, then the class CFY(f)
of all groups G satisfying:

1. if H/K is a Y-chief factor of G and S is the composition factor of H/K,
then G

/
CG(H/K) ∈ f(S), and

2. G/ OY(G) ∈ f(Y′)

is a formation.
We say that a formation F is a Y-composition formation if F = CFY(f)

for some CY-satellite f .

Remark 3.2.20. Let ∅ 	= Y be a class of simple groups. Denote X = charY =
{Cp : p ∈ charY}. Then the Y-composition formations are exactly the
X-saturated ones.

Proof. Let F = CFY(f) be a Y-composition formation. Then it is clear that
F = LFX(f0), where f0 is the X-formation function defined by

f0(S) =

{
f(p) if S ∼= Cp ∈ X,
F if S ∈ X′.

By Theorem 3.2.14, F is X-saturated.
Conversely, suppose that F is an X-saturated formation. Then, by The-

orem 3.2.14, F = LFX(F ), where F is the canonical X-local definition of F.
We define a CY-satellite f by the following formula:

f(S) =

{
F (p) if S ∼= Cp ∈ X,
F if S ∈ X′.

Then F = CFY(f). ��

Assume that X ⊆ P, then F is X-saturated if and only if F is (Cp)-saturated
for all p ∈ charX by Theorem 3.2.14, Corollary 3.1.13 and Corollary 3.1.21.
Therefore we have:
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Corollary 3.2.21 ([She97, Theorem 3.2], [She01, Lemma 7]). Let F be
a formation, ∅ 	= Y a non-empty class of simple groups and π = charY. The
following statements are pairwise equivalent:

1. F is closed under extensions by the Frattini subgroup of a normal soluble
π-subgroup.

2. F contains each group G provided that F contains G/Φ
(
F(G)π

)
, where

F(G)π is the Hall π-subgroup of the Fitting subgroup of G.
3. A group G belongs to F if and only if G/Φ

(
Op(G)

)
belongs to F for all

p ∈ π.
4. F is a Y-composition formation.

When Y = P, the class of all abelian simple groups, we have:

Corollary 3.2.22 ([För84a, Korollar 3.11]). Let F be a formation. The
following statements are pairwise equivalent:

1. F is solubly saturated.
2. A group G belongs to F if and only if G/Φ

(
F(G)

)
∈ F.

3. F contains a group G provided that F contains G/Φ
(
Op(G)

)
for every

prime p.

Final remark 3.2.23. In the sequel we make use of the fact that the concepts
of “X-saturated formation” and “X-local formation” are equivalent without
appealing to Theorem 3.2.14.

3.3 Products of X-local formations

As a point of departure, consider the following observations: if F and G are
saturated formations, then the formation product F ◦ G is again saturated
([DH92, IV, 3.13 and 4.8]). However, the formation product of two solubly
saturated formations is not solubly saturated in general as the following

Example 3.3.1 ([Sal85]). Let F = D0

(
1, Alt(5)

)
and G = S2. Then it is clear

that F and G are solubly saturated. Assume that H = F ◦ G is solubly sat-
urated. Then H = LFP(H), where H is the canonical P-local definition of
H. Since G ⊆ H, it follows that H(2) 	= ∅. Consider G = SL(2, 5). Then
G/ Z(G) ∈ H and G/ CG

(
Z(G)

)
∈ H(2). Applying Remark 3.1.7 (2), we have

that G ∈ H. This is not true. Hence H is not solubly saturated.

Taking the above example into account, the following question arises:

Which are the precise conditions on two X-local formations F and G
to ensure that F ◦ G is an X-local formation?

example shows.
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The problem of the existence of solubly saturated factorisations of solubly
saturated formations was taken up by Salomon [Sal85]. A complete answer to
the general question was obtained in [BBCER06].

In the first part of the section we are concerned with the above question.
We stay close to the treatment presented in [BBCER06].

In the following F and G are formations and H = F ◦ G

If p ∈ char X, denote

GX(p) = Sp Q R0

(
G
/

CG(H/K) : G ∈ G and

H/K is an Xp-chief factor of G
)
.

By Theorem 3.1.11, the smallest X-local formation formX(G) containing
G is X-locally defined by the X-formation function G given by G(p) = GX(p),
p ∈ charX, and G(S) = F for every S ∈ X′.

The next theorem provides an X-local definition of formX(H).

Theorem 3.3.2. Assume that F is an X-local formation defined by an integ-
rated X-formation function f . Then the smallest X-local formation formX(H)
containing H is X-locally defined by the X-formation function h given by

h(p) =

{
f(p) ◦ G if Sp ⊆ F

GX(p) if Sp 	⊆ F
p ∈ charX

h(S) = H S ∈ X′

Proof. It is clear that h is an X-formation function. We set H̄ = LFX(h) and
first prove that H ⊆ H̄. Assume that H \ H̄ contains a group G of minimal
order. Then G has a unique minimal normal subgroup N and G/N ∈ H̄. Let
A = GG � G. If A = 1, then G ∈ G ⊆ H̄, contrary to supposition. Therefore
N is contained in A. If N were an X′-chief factor of G, since G/N ∈ H̄, G would
satisfy the first condition to belong to H̄. Since G ∈ H, the second condition
would also be satisfied, bearing in mind that h(S) = H for every simple group
S ∈ X′. This would imply that G ∈ H̄. Hence N ∈ E X. Applying [DH92,
A, 4.13], N = N1 × · · · × Nn, where Ni is a minimal normal subgroup of A,
1 ≤ i ≤ n. Since A ∈ F, it follows that f(p) 	= ∅ for each prime p dividing |N |.
Moreover A/ CN (Ni) ∈ f(p), for all i ∈ {1, . . . , n}, and p | |N |. Consequently(
G/ CG(N)

)G ∼= A/ CA(N) ∈ R0 f(p) = f(p) and so G/ CG(N) ∈ f(p) ◦ G =
h(p) for all p | |N |. Hence, applying Remark 3.1.7 (2), we have that G ∈ H̄.
This contradiction proves that H ⊆ H̄. Since H̄ is X-local, it follows that
formX(H) ⊆ H̄.

On the other hand, we know by Theorem 3.1.17 that formX(H) = LFX(H),
where H is the X-formation function defined by{

H(p) = HX(p) if p ∈ char(X)
H(E) = H if E ∈ X′
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Suppose that H̄ is not contained in formX(H) and choose a group Z ∈
H̄ \ formX(H) of minimal order. Then Z has a unique minimal normal sub-
group N and Z/N ∈ formX(H). Moreover it is clear that N ∈ E X. Let p be
a prime dividing |N |. If Sp 	⊆ F, then h(p) = GX(p). Since Z ∈ H̄, we have
that Z/CZ(N) ∈ GX(p) ⊆ H(p). Assume we are in the case Sp ⊆ F. Then
Z/ CZ(N) ∈ h(p) = f(p)◦G and Cp�

(
Z/CZ(N)

)
∈ Sp

(
f(p)◦G

)
⊆ Spf(p)◦G.

By Theorem 3.1.17, we know that Spf(p) ⊆ F and, hence, Cp �
(
Z/ CZ(N)

)
∈

F ◦ G ⊆ formX(H). This implies that Z/CZ(N) ∈ HX(p) = H(p) by The-
orem 3.1.17. Applying Remark 3.1.7 (2), we can conclude that Z ∈ formX(H).
This contradiction shows that H̄ ⊆ formX(H) and, hence, H̄ = formX(H). ��

The following definition was introduced in [Sal85] for Baer-local forma-
tions.

Definition 3.3.3. We say that the boundary b(H) is XG-free if every group
G ∈ b(H) such that Soc(G) is a p-group for some prime p ∈ charX satisfies
that G/ CG

(
Soc(G)

)
/∈ GX(p).

Remark 3.3.4. Note that in Example 3.3.1, b(H) is not PG-free.

The next result provides a test for X-locality of H in terms of its boundary.

Theorem 3.3.5. Assume that F is X-local. Then H is an X-local formation
if and only if b(H) is XG-free.

Proof. Suppose that H is X-local. Then H = LFX(H), where H is the canonical
X-local definition of H. Let G be a group in b(H) such that Soc(G) is a p-group
for some p ∈ charX. If G/ CG

(
Soc(G)

)
were in GX(p), then we would have that

G/ CG

(
Soc(G)

)
∈ HX(p) = H(p), since G ⊆ H. By Remark 3.1.7 (2), it would

imply that G ∈ H. This would be a contradiction. Therefore G/ CG

(
Soc(G)

)
/∈

GX(p) and b(H) is XG-free.
Conversely, suppose that b(H) is XG-free. Consider an integrated X-local

definition f of F. By Theorem 3.3.2, formX(H) = LFX(h), where

h(p) =

{
f(p) ◦ G if Sp ⊆ F

GX(p) if Sp 	⊆ F
p ∈ charX

h(S) = H S ∈ X′

We shall prove that H = formX(H). Assume that this is not the case and
choose a group G of minimal order in formX(H) \ H. Then G ∈ b(H) and
so G has a unique minimal normal subgroup, N say, and G/N ∈ H. If N
were an X′-group, we would have that G ∈ h(S) for some S ∈ X′. This
would imply that G ∈ H, contrary to supposition. Hence N is an X-chief
factor of G. Let p be a prime dividing |N |. Since p ∈ charX, it follows that
G/ CG(N) ∈ h(p). Since h(p) ⊆ SpH and Op

(
G/ CG(N)

)
= 1, we have that

G/ CG(N) ∈ H. Therefore CG(N) 	= 1 and so N is an abelian p-group.
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Assume that Sp is not contained in F. Then h(p) = GX(p). We conclude that
b(H) is not XG-free. This contradiction shows that Sp is contained in F. Then
G/ CG(N) ∈ f(p) ◦ G. It follows that GG/ CGG(N) ∈ f(p). Since GG/N ∈ F,
we can apply Remark 3.1.7 (2) to conclude that GG ∈ F, that is, G ∈ H.
This contradiction shows that formX(H) is contained in H and, therefore, H
is X-local. ��

Example 3.3.6. Let S be a non-abelian simple group with trivial Schur mul-
tiplier. Consider F = D0(1, S), the formation of all groups which are a direct
product of copies of S together with the trivial group. Let X be a class of simple
groups such that S /∈ X. Notice that F is X-local. Let G be any formation. Sup-
pose that G ∈ b(H), N = Soc(G) is the minimal normal subgroup of G, and
N is a p-group for some p ∈ charX. If G/ CG(N) ∈ GX(p), then N ≤ Z(GG)
because 1 	= GG ≤ CG(N). Since G/N ∈ H, it follows that GG/N ∈ F. As-
sume that GG/N 	= 1. This implies that GG/N , a direct product of copies of
S, has non-trivial Schur multiplier, contrary to [Suz82, Exercise 4 (c), page
265]. Thus GG = N and then G ∈ formX(H) by Remark 3.1.7 (2). There-
fore if formX(G) ⊆ Np′G for all primes p ∈ char(X), it follows that G ∈ G,
and this contradicts our choice if G. Hence b(H) is XG-free and H is X-local
by Theorem 3.3.5. Consequently, H is X-local for all formations G satisfying
formX(G) ⊆ Np′G for all primes p ∈ char(X).

As an application of Theorem 3.3.5 we have:

Theorem 3.3.7. Assume that F is X-local and G is a formation satisfying
one of the following conditions:

1. G is X-local, or
2. SpG = G for all p ∈ charX \ charF.

Then H is X-local if F and G satisfy the following condition:

If p ∈ charX ∩ π(F) and Sp ⊆ G, then Sp ⊆ F. (3.2)

Proof. Consider the canonical X-local definition F of F. We will obtain a
contradiction by assuming that H is not X-local. Then, by Theorem 3.3.5,
there exists a group G ∈ b(H) such that N = Soc(G) is the unique min-
imal normal subgroup of G, N is a p-group for some prime p ∈ charX and
G/ CG(N) ∈ GX(p). Since GX(p) ⊆ SpG and Op

(
G/ CG(N)

)
= 1, it follows

that G/ CG(N) ∈ G. Then GG ≤ CG(N). Since GG 	= 1, it follows that
N ≤ GG. Hence N ≤ Z(GG). Moreover GG/N ∈ F because G/N ∈ H. Sup-
pose that N is not contained in Φ(GG). Then there exists a maximal subgroup
M of GG such that GG = MN . Notice that M is normal in GG. Then Op(GG)
is contained in M and is a normal subgroup of G. If Op(GG) 	= 1, it follows
that N ≤ Op(GG) ≤ M . This contradiction proves that GG is a p-group. As-
sume that p /∈ charF. In this case, since GG/N ∈ F, it follows that N = GG.
This means that G/N ∈ G. If G is X-local, we conclude that G ∈ G by Re-
mark 3.1.7 (2). If G is not X-local, we have G ∈ SpG = G because p /∈ charF.
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In both cases, we reach a contradiction. Hence we have that p ∈ charF. In
this case F (p) 	= ∅. In particular, Sp ⊆ F as F is X-local. Therefore GG ∈ F.
This contradiction proves that N is contained in Φ(GG). This implies that p
divides |GG/N | and so p ∈ π(F). If p ∈ charF, then F (p) 	= ∅ and GG ∈ F as
F is X-local and Remark 3.1.7 (2) can be applied. Suppose that p /∈ charF.
If G is X-local, we have that Sp ⊆ G because GX(p) 	= ∅. The same holds
if SpG = G. Hence if p /∈ charF, we have that Sp is contained in G. By
Condition (3.2), Sp ⊆ F. This contradiction completes the proof. ��

Since local formations are X-local for every class of simple groups X (see
Corollary 3.1.13), we obtain as a special case of Theorem 3.3.7 the following
results:

Corollary 3.3.8. Suppose that either of the following conditions is fulfilled:

1. F is local and G is X-local.
2. F is local and SpG = G for all p ∈ charX \char F.

Then H is an X-local formation.

Proof. If F is local, then condition (3.2) in Theorem 3.3.7 is satisfied, since
Sp ⊆ F for every p ∈ π(F). ��

Corollary 3.3.9 ([DH92, IV, 3.13 and 4.8]). H is a local formation if
either of the following conditions is satisfied:

1. F and G are both local.
2. F is local and SpG = G for all p /∈ charF.

Example 3.3.6 shows that there are cases in which a product of an X-local
formation and a non X-local formation is X-local. This observation leads to
the following question:

Are there X-local products of non X-local formations?

The local version of the above question is the one appearing in The Kour-
ovka Notebook ([MK90]) as Question 9.58. It was posed by L. A. Shemetkov
and A. N. Skiba and answered affirmatively in several papers (see [BBPR98,
Ved88, Vor93]).

The next example gives a positive answer to the above question when
|charX| ≥ 2.

Example 3.3.10 ([BBPR98]). Assume that p and q are different primes in
charX. Consider the formations F = SpAq ∩ AqSp and G = SqAp, where
Ar denotes the formation of all abelian r-groups for a prime r. F is not (Cq)-
local and G is not (Cp)-local. Therefore, by Corollary 3.1.13, F and G are not
X-local. However H = F ◦ G is local and so it is X-local.



158 3 X-local formations

Note that if the formation of all p-groups, p a prime, were a product of two
proper subformations, Question 9.58 in [MK90] would be solved automatic-
ally. Perhaps it was the reason to put forward the following question in The
Kourovka Notebook [MK90]:

Question 10.72 (Shemetkov). To prove indecomposability of Sp, p a
prime, into a product of two non-trivial subformations.

This question was solved positively by L. A. Shemetkov and A. N. Skiba in
[SS89].

We present a general version of this conjecture as a corollary of a more
general result at the end of the section.

On the other hand, bearing in mind Example 3.3.10, the following question
naturally arises:

Which are the precise conditions on two formations F and G to ensure
that H = F ◦ G is X-local?

Our next results answer this question.

Notation 3.3.11. If Y is a class of groups, denote YG = (Y G : Y ∈ Y).

Lemma 3.3.12. If T is a group such that T /∈ G and Sp(T ) ⊆ H for some
prime p, then Sp(TG) ⊆ F.

Proof. Let Z be a group in Sp(TG). Then Z has a normal subgroup P such
that P is a p-group and Z/P is isomorphic to TG 	= 1. Assume that ps is
the exponent of the abelian p-group P/P ′. Consider Q = P �nat H, where
H = 〈(1, 2, . . . , ps)〉 is a cyclic group of order ps regarded as a subgroup of the
symmetric group of degree ps. Here the wreath product is taken with respect to
the natural permutation representation of H of degree ps. Set D = {(a, . . . , a) :
a ∈ P} the diagonal subgroup of P �, the base group of Q. Since aps ∈ P ′,
we have that D is contained in [P �,H] by [DH92, A, 18.4]. In particular D
is contained in Q′. Let Y = Q � T be the regular wreath product of Q with
T . Since Q ∈ Sp(T ) ⊆ H, it follows that Q ∈ H. Therefore Y G ∈ F. Now, by
Proposition 2.2.8, we know that Y G = (B∩Y G)TG, where B = Q� is the base
group of Y . Now, by [DH92, A, 18.8], BTG is isomorphic to (Qn) �TG, where
n = |T : TG| and C ′ ≤ [C, TG], for C = (Qn)�, by virtue of [DH92, A, 18.4].
This implies that B′ = [B, TG] ≤ [B, Y G] ≤ B∩Y G. Hence B′TG is contained
in Y G. Applying Theorem 2.2.6, B′TG ∈ F. Therefore

(
Q′)n

)
� TG ∈ F.

Since P is isomorphic to a subgroup of Q′, it follows that Pn � TG ∈ F by
Theorem 2.2.6. Since P can be regarded as a subgroup of Pn, we have that
P �TG is a subgroup of Pn �TG supplementing the Fitting subgroup of Pn �TG.
Applying again Theorem 2.2.6, we have that P � TG ∈ F. By [DH92, A, 18.9],
Z is isomorphic to a subgroup of P � TG supplementing the Fitting subgroup
of P � TG. Therefore Z ∈ F by virtue of Theorem 2.2.6. This completes the
proof of the lemma. ��
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Theorem 3.3.13. H is an X-local formation if and only if the following two
conditions hold:

1. If p ∈ (charX) ∩
(
char formX(H)

)
and HX(p) is not contained in G, then

SpHX(p)G ⊆ F.
2. If p ∈ (charX) ∩

(
char formX(H)

)
, G ∈ b(H), and N = Soc(G) is a

p-group, then [N ](G/N) /∈ H.

Proof. Assume that H is an X-local formation, that is, H = formX(H). We
know that H = LFX(H), where H is the X-formation function defined in
Theorem 3.1.17. Consider a prime p ∈ char(X) and assume there exists a
group T ∈ HX(p) \G. We have that Sp(T ) ⊆ SpHX(p) = HX(p) ⊆ H. Hence,
by Lemma 3.3.12, we have that Sp(TG) ⊆ F. Now consider a group G in
SpHX(p)G. Then G has a normal p-subgroup N such that G/N ∼= T̄G, where
T̄ ∈ HX(p). If T̄G 	= 1, we have just proved that Sp(T̄G) ⊆ F and, therefore,
G ∈ F. If T̄G = 1, then G ∈ Sp. Consider the group A := G × TG. We
have that A ∈ Sp(TG) ⊆ F and, therefore, G ∈ Q(F) = F. We conclude that
SpHX(p)G ⊆ F and Statement 1 holds.

Let G be a group in b(H) such that N = Soc(G) is a p-group for a prime p ∈
(charX)∩

(
char formX(H)

)
. Note that N is a minimal normal subgroup of G. If

H := [N ](G/N) ∈ H, we would have that H/ CH(N) ∈ HX(p) and, therefore,
G/ CG(N) ∈ HX(p). Since G/N ∈ H, this would imply by Remark 3.1.7 (2)
that G ∈ LFX(H) = H. This contradiction proves Condition 2.

To prove the sufficiency, assume that H is the product of F and G and
H satisfies Conditions 1 and 2. We will obtain a contradiction by supposing
that formX(H) \ H contains a group G of minimal order. Such a G has a
unique minimal normal subgroup, N , and G/N ∈ H. This is to say that
G ∈ b(H). If N ∈ E(X′), then there exists S ∈ X′ such that G ∈ H(S) = H,
contrary to supposition. Therefore N ∈ E X. Let p be a prime dividing |N |.
Then G/ CG(N) ∈ HX(p). In particular p ∈ (charX) ∩

(
char formX(H)

)
. If N

were non-abelian, then CG(N) = 1 and G ∈ HX(p). This would imply that
G ∈ H because Op(G) = 1. It would contradict the choice of G. Therefore N
is an abelian p-group. Applying Corollary 2.2.5, A = [N ](G/N) ∈ formX(H).
Suppose that the intersection B of CA(N) with G/N is non-trivial. Then
B � A and A/B ∈ H by the choice of G. Since G/N ∈ H, we have that
A ∈ R0 H = H. This contradicts Statement 2. Hence B = 1 and N = CG(N).
In particular G ∈ HX(p)\G. Applying Statement 1, we have that SpHX(p)G ⊆
F. We deduce then that GG ∈ F and so G ∈ H. We have reached a final
contradiction. Therefore formX(H) ⊆ H and H is X-local. ��

Remark 3.3.14. If X = J, then Condition 1 implies Condition 2 in the above
theorem.

Proof. Assume that H satisfies Condition 1. Let G ∈ b(H) such that N =
Soc(G) is the unique minimal normal subgroup of G. Suppose that N is a
p-group for some p ∈ (charX) ∩

(
char formX(H)

)
.
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Suppose that Φ(G) = 1. Then G is a primitive group, CG(N) = N and G
is isomorphic to [N ](G/N). Therefore, [N ](G/N) /∈ H and the remark follows.
Now assume that Φ(G) 	= 1. Consider T/N := Op′(G/N). Since T/N is
p-nilpotent and N ≤ Φ(G), we have by [Hup67, VI, 6.3] that T is p-nilpotent.
This implies that T = N because otherwise we would find a non-trivial normal
p′-subgroup of G. Hence, Op′(G/N) = 1. Consequently, G ∈ HX(p) by [DH92,
IV, 3.7]. By Condition 1, Sp(GG) ⊆ F. In particular, GG ∈ F. We conclude
that G ∈ H, which contradicts our supposition. ��

Corollary 3.3.15 ([BBPR98, Theorem A]). A formation product H of
two formations F and G is local if and only if H satisfies the following condi-
tion:

If p ∈ char lform(H) and HJ(p) is not contained in G, then

SpHJ(p)G ⊆ F.

When a product is X-local, the formation G has a very nice property.

Corollary 3.3.16. If H = F ◦ G is X-local, then formX(G) ⊆ Np′G for all
primes p ∈ char(X) \ π(F).

Proof. Let p ∈ char(X) \ π(F). By Theorem 3.3.13, we have that HX(p) ⊆ G.
Consider the canonical X-formation function G defining formX(G). Suppose
that formX(G) is not contained in Np′G, and let G ∈ formX(G) \ Np′G be a
group of minimal order. Then G ∈ H and G has a unique minimal normal sub-
group, N say. In addition, N ≤ GG and G/N ∈ Np′G. If N ∈ E X′, it follows
that G ∈ G(S) for some S ∈ X′. But, in this case, G ∈ G. This is a contra-
diction. Hence N is an E X-group. Consider q ∈ π(N). If N were non-abelian,
then G would belong to G(q) ⊆ SqG. Hence G ∈ G because Oq(G) = 1.
This would contradict our assumption. Therefore N is an elementary abelian
q-group for some prime q ∈ charX. Assume that Φ(G) = 1. Then G is a prim-
itive group and N = CG(N). Therefore G ∈ G(q). If p 	= q, then G ∈ Np′G
because G(q) ⊆ SqG and if p = q, then G ∈ SpHX(p) = HX(p) ⊆ G. In both
cases, we reach a contradiction. Hence N is contained in Φ(G). If p 	= q, then
F(G) is a p′-group and G/ F(G) ∼= (G/N)

/
F(G/N) ∈ G. Hence, G ∈ Np′G,

contrary to supposition. Assume that p = q. Then, since G/N ∈ Np′G, it
follows that (G/N)G = GG/N is a p′-group. Thus GG/N is contained in
Op′(G/N) which is trivial by [Hup67, VI, 6.3]. Hence N = GG. Since G ∈ H,
we have that GG = N ∈ F and p ∈ π(F). This final contradiction proves that
formX(G) ⊆ Np′G. ��

If X = J, we have:

Corollary 3.3.17 ([She84]). If H = F◦G is local, then lform(G) is contained
in Np′G for all primes p /∈ π(F).

This result motivates the following definition.
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Definition 3.3.18. Let ω be a non-empty set of primes, and let F be a form-
ation.

1. (see [She84]) F is said to be ω-local if lform(F) is contained in Nω′F.
2. (see [SS00a]) F is called ω-saturated if the condition G/

(
Φ(G)∩Oω(G)

)
∈

F always implies G ∈ F.

When ω = {p}, we shall say p-local (respectively, p-saturated) instead of
{p}-local (respectively, {p}-saturated).

Remarks 3.3.19. Let ∅ 	= ω be a set of primes and let F be a formation.
1. F is ω-local if and only if F is p-local for all p ∈ ω. Hence F is local if

and only if F is p-local for all primes p.
2. If F is an ω-local formation, then F is ω-saturated.
3. If F is ω-saturated, then Nω′F is local. Therefore every ω-saturated

formation is ω-local (see [SS95]).
4. Every formation composed of ω′-groups is ω-saturated.
5. Every ω-saturated formation is Xω-saturated, where Xω is the class of

all simple ω-groups.

Proof. 1, 2, and 4 are clear. To prove Statement 3, suppose that F is ω-
saturated. If q is a prime such that q ∈ ω′, then H = Nω′F is q-saturated.
Assume that p is a prime in ω such that H is not p-saturated. Then there
exists a group G such that G/

(
Φ(G) ∩ Op(G)

)
∈ H but G /∈ H. Let us choose

G of least order. Then G has a unique minimal normal subgroup N , N is
contained in Φ(G) ∩ Op(G), and G/N ∈ H. Since F is contained in H, it
follows that GF 	= 1 and so N is also contained in GF. Now Op′(G/N) = 1 and
GF/N is a p′-group because G/N ∈ H. This implies that GF = N . But then
G/N ∈ F and so G ∈ F because F is p-saturated. This contradiction shows
that H is p-saturated for all p ∈ ω. Therefore H is saturated. In particular,
lform(F) ⊆ Nω′F and F is ω-local.

5 follows directly from the fact that ΦXω
(G) ⊆ Φ(G) ∩ Oω(G) for every

group G. ��

The family of Xω-saturated formations does not coincide with the one of
ω-saturated formations in general. This follows from the fact that there exist
Baer-local formations which are not ω-saturated for any non-empty set of
primes ω.

Example 3.3.20 ([BBCER03]). Let Y = {Alt(n) : n ≥ 5} and F = E Y. It is
clear that F is a Baer-local formation. In particular, F is X-saturated for every
X ⊆ P by Corollary 3.1.13.

Assume that F is p-saturated for a prime p. If p ≥ 5, set k := p; other-
wise, set k := 5. As p divides |Alt(k)|, there exists a group E with a normal
elementary abelian p-subgroup A 	= 1 such that A ≤ Φ(E) and E/A ∼= Alt(k)
([DH92, B, 11.8]). Then E/

(
Φ(E) ∩ Op(E)

) ∼= E/A ∈ F. Therefore E ∈ F,
and we have a contradiction.
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This implies that F is not ω-saturated for any non-empty set of primes ω.
In particular, F is (C2)-saturated but not 2-saturated.

Suppose that G is a p-saturated formation, p a prime. Then lform(G) ⊆
Np′G. Therefore G(p) ⊆ Np′G and so G(p) = GJ(p) ⊆ G. The converse is
also true as the following lemma shows.

Lemma 3.3.21. G is p-saturated if and only if G(p) ⊆ G.

Proof. Only the sufficiency is in doubt. Suppose that G is not p-saturated and
GJ(p) ⊆ G. Let G be a group of minimal order satisfying G/

(
Φ(G) ∩ Op(G)

)
∈

G and G /∈ G. G is a monolithic group and N := Soc(G) ≤ Φ(G)∩Op(G). We
have that Op′,p(G/N) = Op′,p(G)/N , since N ≤ Φ(G). Moreover, G/N ∈ G
and, therefore, G/ Op′,p(G) ∈ GJ(p), bearing in mind that p ∈ π(G/N). Since
Op′,p(G) = Op(G), G ∈ GJ(p) ⊆ G. This is not possible. ��

Theorem 3.3.22. Let F and G be formations. Let M be a p-saturated form-
ation contained in F ◦G, where p is a prime. If MJ(p) is not contained in G,
then SpMJ(p)G ⊆ F.

Proof. Assume that M is p-saturated. Then MJ(p) is contained in M by
Lemma 3.3.21. There exists a group T ∈ MJ(p) \ G. We have that Sp(T ) ⊆
MJ(p) ⊆ M ⊆ F ◦ G. Hence Sp(TG) ⊆ F by Lemma 3.3.12.

Now consider a group G in SpMJ(p)G. Then G has a normal p-subgroup
N such that G/N ∼= T̄G, where T̄ ∈ MJ(p). If T̄G 	= 1, we have just proved
that Sp(T̄G) ⊆ F and, therefore, G ∈ F. If T̄G = 1, then G ∈ Sp. Consider
the group A := G × TG. We have that A ∈ Sp(TG) ⊆ F and, therefore,
G ∈ Q(F) = F. We conclude that SpMJ(p)G ⊆ F. ��

Corollary 3.3.23. Let F and G be formations and let p be a prime. Then the
following statements are equivalent:

1. H = F ◦ G is a p-saturated formation.
2. If HJ(p) is not contained in G, then SpHJ(p)G ⊆ F.

Proof. 1 implies 2 by virtue of Theorem 3.3.22. Let us prove that 2 implies
1. We shall derive a contradiction by supposing that HJ(p) \ H contains a
group G of minimal order. Then G has a unique minimal normal subgroup
N , and G/N ∈ H. Since HJ(p) is contained in SpH, it follows that N is a
p-group. It is clear that HJ(p) is not contained in G. Hence SpHJ(p)G ⊆ F.
Note that N ≤ GG and GG/N ∈ HJ(p)G. Therefore GG ∈ SpHJ(p)G ⊆
F. This contradiction shows that HJ(p) ⊆ H and that H is p-saturated by
Lemma 3.3.21. ��

Theorem 3.3.22 also confirms a more general version of the abovementioned
conjecture of L. A. Shemetkov concerning the non-decomposability of the
formation of all p-groups (p a prime) as formation product of two non-trivial
subformations.
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Corollary 3.3.24. Let F, G, and M be formations such that M is contained
in F ◦ G and M is p-saturated. If F ⊆ Sp and F 	= Sp, then M ⊆ G.

Proof. If MJ(p) = ∅, it follows that M ⊆ Ep′ . In this case, we have that
M ⊆ Ep′ ∩ (F◦G) ⊆ Ep′ ∩ (Sp ◦G). Therefore, M ⊆ G. If MJ(p) 	= ∅, we have
that M ⊆ Ep′MJ(p). If MJ(p) is contained in G, then M ⊆

(
Ep′MJ(p)

)
∩

(SpG) ⊆ (Ep′G) ∩ (SpG) = G and the result holds. Suppose that MJ(p) is
not contained in G. Then SpMJ(p)G is contained in F by Theorem 3.3.22. In
particular, Sp ⊆ F, and we have a contradiction. ��

3.4 ω-local formations

The family of ω-local formations, ω a set of primes, emerges naturally in
the study of local formations that are products of two formations as it was
observed in Section 3.3. There it is also proved that the ω-local formations are
exactly the ones which are closed under extensions by the Hall ω-subgroup
of the Frattini subgroup. In this section ω-saturated formations are studied
by using a functional approach. This method was initially proposed by L. A.
Shemetkov in [She84] for p-local formations, and further developed in [SS00a,
SS00b, BBS97].

The second part of the section is devoted to study the relation between
ω-saturated formations and X-local formations, where X is a class of simple
groups which is naturally associated with ω.

Definition 3.4.1 ([SS00a]). Let ω be a non-empty set of primes. Every func-
tion of the form

f : ω ∪ {ω′} −→ {formations}
is called an ω-local satellite.

If f is an ω-local satellite, define the class

LFω(f) =
(
G : G/Gωd ∈ f(ω′) and G/ Op′,p(G) ∈ f(p) for all p ∈ ω ∩ π(G)

)
,

where Gωd is the product of all normal subgroups N of G such that every
composition factor of N is divisible by at least one prime in ω (Gωd = 1 if
π
(
Soc(G)

)
∩ ω = ∅).

If f is an ω-local satellite, we write Supp(f) =
{
p ∈ ω ∪ {ω′} : f(p) 	= ∅

}
.

Denote π1 = Supp(f) ∩ ω, π2 = ω \ π1. Then LFω(f) =
⋂

p∈π2
Ep′ ∩⋂

p∈π1
Ep′Sp ◦ f(p) ∩Eωd ◦f(w′). Here Eωd is the class of all groups G such

that every composition factor of G is divisible by at least one prime in ω.
Since the intersection and the formation product of two formations are again
formations, the above formula implies that LFω(f) is a formation.

Theorem 3.4.2 ([SS00a]). Let ω be a non-empty set of primes and let F be
a formation. The following statements are equivalent:

( ( ))
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1. F is ω-saturated.
2. F = LFω(f), where f(p) = FJ(p), p ∈ ω, and f(ω′) = F.

Proof. 1 implies 2. It is clear that F ⊆ LFω(f). Suppose that the equality
does not hold and derive a contradiction. Choose a group G ∈ LFω(f) \ F
of minimal order. Then, as usual, G has a unique minimal normal subgroup
N and G/N ∈ F. Since G/Gωd ∈ f(ω′) = F, it follows that Gωd 	= 1. This
implies that π(N) ∩ ω 	= ∅. Let p ∈ ω be a prime dividing |N |. If N were
non-abelian, then G ∈ FJ(p). Since, by Lemma 3.3.21, FJ(p) ⊆ F, we would
have G ∈ F. This would be a contradiction. Therefore N is an abelian
p-group. Moreover N ∩Φ(G) = 1 because F is ω-saturated. Hence N = CG(N)
and G/N ∈ FJ(p). This implies that G ∈ SpFJ(p) = FJ(p), and we have a
contradiction. Consequently F = LFω(f).

2 implies 1. Suppose that F is not ω-saturated. Then there exists a prime
p ∈ ω and a group G such that G/

(
Φ(G) ∩ Op(G)

)
∈ F but G /∈ F. Denote

L = Φ(G)∩Op(G). Then (G/L)ωd = Gωd/L and Oq′,q(G/L) = Oq′,q(G)/L for
all primes q. Hence G/Gωd ∈ f(ω′) and G/ Oq′,q(G) ∈ f(q) for all q ∈ ω∩π(G)
because G/L ∈ F. Consequently G ∈ F. This contradiction completes the
proof of the theorem. ��

Remark 3.4.3. An ω-saturated formation can be ω-locally defined by two dis-
tinguished ω-local satellites: the minimal ω-local satellite and the canonical
one. Moreover, if Y is a class of groups, the intersection of all ω-local form-
ations containing Y is the smallest ω-local formation containing Y. Such ω-
local formation is denoted by lformω(Y). It is clear that lformω(Y) = LFω(f),
where f is given by:

f(p) = Q R0

(
G/ Op′,p(G) : G ∈ Y

)
if p ∈ π(Y) ∩ ω,

f(p) = ∅, p ∈ ω \ π(Y),
f(ω′) = Q R0(G/Gωd : G ∈ Y)

(see [SS00a] for details).

Let ω be a non-empty set of primes. One can ask the following question:

Is it possible to ensure the existence of a class X(ω) of simple groups
such that charX(ω) = π

(
X(ω)

)
satisfying that a formation is ω-

saturated if and only if it is X(ω)-saturated?

The following example shows that the answer is negative.

Example 3.4.4 ([BBCER03]). Consider the formation

F := (G : all abelian composition factors of G are isomorphic to C2).

Suppose that F is X-saturated for a class X containing a non-abelian simple
group E and π(X) = charX. Let p 	= 2 be a prime dividing |E|. Then p ∈
charX. Since E ∈ F, it follows that if F = LFX(f), then f(p) 	= ∅. This means
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that Cp ∈ F. This is a contradiction. Hence X should be composed of abelian
simple groups. Since F is solubly saturated, we have that F is X-saturated
exactly for the classes of simple groups X contained in P by Corollary 3.1.13.
Since F is clearly 2-saturated, if we assume the existence of a class X(2)
fulfilling the property, it follows that X(2) ⊆ P. This is not possible because
the formation in Example 3.3.20 is X(2)-saturated but not 2-saturated.

The following theorem shows that an X-local formation always contains a
largest ω-local formation for ω = charX.

Theorem 3.4.5 ([BBCS05]). Let X be a class of simple groups such that
ω = charX = π(X). Let F = LFX(F ) be an X-local formation. Then the
ω-local formation Fω = LFω(f), where f(p) = F (p) for every p ∈ ω and
f(ω′) = F, is the largest ω-local formation contained in F.

Proof. Suppose, for a contradiction, that Fω is not contained in F. Let G be
a group of minimal order in Fω \ F. Then, as usual, G has a unique minimal
normal subgroup N , and G/N ∈ F. If Gωd = 1, we would have that G ∈
f(ω′) = F, contradicting the choice of G. Assume that Gωd 	= 1. Then N is
contained in Gωd. This means that there exists a prime p ∈ ω dividing |N |.
Hence G/ CG(N) ∈ f(p) = F (p). If N is a p-group, it follows that N is an
X-chief factor of G. By Remark 3.1.7 (2), we conclude that G ∈ LFX(F ) = F,
against the choice of G. Hence N is non-abelian and so CG(N) = 1 and
G ∈ F (p). Since F (p) = Spf(p) and Op(G) = 1, it follows that G ∈ f(p) ⊆ F.
This contradiction proves that Fω ⊆ F.

Now let G = LFω(g) be an ω-local formation contained in F. Suppose, if
possible, that G is not contained in Fω and let A be a group of minimal order
in the supposed non-empty class G\Fω. Then A has a unique minimal normal
subgroup B, and A/B ∈ Fω. Since A ∈ G ⊆ F, we have that A/Aωd ∈ F =
f(ω′). Suppose that p ∈ ω∩π(B). If B is an X-chief factor of A, it follows that
A/ CA(B) ∈ F (p) = f(p). If B is an X′-chief factor of A, then B is non-abelian
and A ∼= A/ CA(B) ∈ g(p). Then Op(A) = 1 and so, by [DH92, B, 10.9], A has
a faithful irreducible representation over GF(p). Let M be the corresponding
module and G = [M ]A the corresponding semidirect product. Let us see that
G ∈ G. Since M is contained in Gωd, it follows that G/Gωd ∈ g(ω′) because
A/Aωd ∈ g(ω′). Moreover, we have that G/ CG(M) ∼= A ∈ g(p). We can
conclude that G ∈ G and, consequently, G = [M ]A ∈ F. This implies that
A ∼= G/ CG(M) ∈ f(p). Now we can state that A ∈ Fω, contradicting the
choice of A. Therefore G is contained in Fω. ��

An immediate application of Theorem 3.4.5 is the following corollary:

Corollary 3.4.6 ([BBCER03]). Let ω be a set of primes and let Xω be the
class of all simple ω-groups. If F is an Xω-local formation composed of
ω-separable groups, then F is ω-local.
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Proof. Suppose that F is an Xω-local formation. According to Theorem 3.4.5,
F = LFXω (F ) contains a largest ω-local formation Fω, where f(p) = F (p)
for every p ∈ ω and f(ω′) = F. Suppose that the inclusion is proper, and
let G be a group of minimal order in F \ Fω. Then G has a unique minimal
normal subgroup N , and G/N ∈ Fω. It is clear that G/Gωd ∈ f(ω′) = F. If
p ∈ π(N) ∩ ω, it follows that N is an ω-group, since G is ω-separable. Hence,
N is an Xω-chief factor of G and, therefore, G/ CG(N) ∈ F (p) = f(p). Taking
into account that G/N ∈ Fω, we conclude that G ∈ Fω. This contradiction
proves that F = Fω is ω-local. ��

Corollary 3.4.7 ([BBCER03]). Let F be a formation composed of ω-separ-
able groups. Then F is ω-saturated if and only if F is Xω-saturated, where Xω

is the class of all simple ω-groups.

The following consequence of Theorem 3.4.5 is of interest.

Corollary 3.4.8 ([Sal85]). Every solubly saturated formation contains a
maximal saturated formation with respect to inclusion.

Remarks 3.4.9. 1. The converse of Corollary 3.4.8 does not hold. It is
enough to consider F = D0

(
S2, Alt(5)

)
. By Lemma 2.2.3, F is a formation.

The group SL(2, 5) shows that F is not solubly saturated. However S2 is the
maximal saturated formation contained in F.

2. There exist formations not containing a maximal saturated formation as
the Example 5.5 in [Sal85] shows: Let F be the class of all soluble groups G such
that Sylow subgroups corresponding to different primes permute. By [Hup67,
VI, 3.2], F is a formation. Let q be a prime and consider the formation function
fq given by: fq(p) = S{p,q} for all p ∈ P. Then the saturated formation
Fq = LF(fq) is contained in F by [Hup67, VI, 3.1]. Let q1 and q2 be two
different primes and let Fq1,q2 be the smallest saturated formation containing
Fq1 and Fq2 . Then Cq1 × Cq2 ∈ F (p) for all p ∈ P, where F is the canonical
local definition of Fq1,q2 . This is due to the fact that Cq1 ∈ Fq1(p) and Cq2 ∈
Fq2(p), where Fq1 and Fq2 are the canonical local definitions of Fq1 and Fq2 ,
respectively. Let q3 be a prime, q3 	= q1, q2. By [DH92, B, 10.9], Cq1 ×Cq2 has
an irreducible and faithful module M over GF(q3). Let G = [M ](Cq1 × Cq2)
be the corresponding semidirect product. Then G ∈ Fq1,q2 , but G /∈ F. This
shows that F does not contain a maximal saturated formation with respect to
the inclusion.

A natural question arising from the above results is the following:

What are the precise conditions to ensure that an X-local formation is
ω-local for ω = charX?

The next result gives the answer.

Theorem 3.4.10. Let F = LFX(f) = LF(F ) be an X-local formation and
ω = charX. The following conditions are pairwise equivalent:
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1. F is ω-local.
2. f(S) ⊆ f(p) for every S ∈ X′ and p ∈ π(S) ∩ ω.
3. Spf(S) ⊆ F for every S ∈ X′ and p ∈ π(S) ∩ ω.

Proof. 1 implies 2. Assume that F is ω-local. Then, by Theorem 3.4.5, F =
LFω(f), where

f(p) = F (p) = Spf(p) if p ∈ ω,

f(ω′) = F.

Let S ∈ X′ and p ∈ π(S) ∩ ω. Then S is non-abelian. By Theorem 3.1.11,
f(S) = Q R0

(
G/L : G ∈ F, G/L is monolithic, and Soc(G/L) ∈ E(S)

)
.

Let G be a group in F and let L be a normal subgroup of G such that G/L
is monolithic and Soc(G/L) ∈ E(S). Since G/L is a primitive group of type 2,
L = CG

(
Soc(G/L)

)
. Moreover G/L ∈ F. This implies that G/L ∈ F (p) =

Spf(p). Hence G/L ∈ f(p) because Op(G/L) = 1. Consequently f(S) ⊆ f(p)
for all p ∈ π(S) ∩ ω.

2 implies 3. Let S ∈ X′ and p ∈ π(S) ∩ ω. Then Spf(S) ⊆ Spf(p) =
F (p) ⊆ F.

3 implies 2. Applying Theorem 3.4.5, it is known that Fω = LFω(f), where

f(p) = F (p) if p ∈ ω, and
f(ω′) = F,

is the largest ω-local formation contained in F. Suppose, by way of contra-
diction, that F is not ω-local. Then Fω 	= F. Let G be a group of minimal
order in F \ Fω. By a familiar argument, G has a unique minimal normal
subgroup N , and G/N ∈ Fω. If π(N) ∩ ω = ∅, then Gωd = 1 and so G ∈ Fω,
which contradicts the fact that G /∈ Fω. Therefore π(N) ∩ ω 	= ∅. Let p be a
prime in π(N)∩ω. If N is an Xp-chief factor of G, G/ CG(N) ∈ F (p) = f(p).
Assume that N is an X′-chief factor of G and N ∈ E(S). Then S is non-
abelian and so Op(G) = 1. By [DH92, B, 10.9], G has an irreducible and
faithful module M over GF(p). Let Z = [M ]G be the corresponding semi-
direct product. Since G ∈ f(S), it follows that Z ∈ Spf(S) ⊆ F. This implies
that G ∼= Z/CZ(M) ∈ F (p) = f(p). Consequently G/ CG(N) ∈ f(p) for all
p ∈ π(N)∩ ω and G ∈ Fω. This contradicts our initial supposition. Therefore
F = Fω and F is ω-local. ��




