
4

Normalisers and prefrattini subgroups

The aim of this chapter is to obtain information about the structure of a finite
group through the study of H-normalisers and subgroups of prefrattini type.

In the soluble universe, after the introduction of saturated formations and
covering subgroups by W. Gaschütz, R. W. Carter, and T. O. Hawkes in-
troduced in [CH67] a conjugacy class of subgroups associated to saturated
formations F of full characteristic, the F-normalisers, defined in terms of a
local definition of F, which generalised Hall’s system normalisers. The Carter-
Hawkes’s F-normalisers keep all essential properties of system normalisers
and, in the case of the saturated formation N of the nilpotent groups, the
N-normalisers of a group are exactly Hall’s system normalisers.

In this context, and having in mind the known characterisation of F-
normalisers by means of F-critical subgroups, it is natural to think about
H-normalisers associated with Schunck classes H for which the existence of
H-critical subgroups is assured in each soluble group not in H. A. Mann
[Man70] chose this characterisaton as his starting point and was able to ex-
tend introduced the normaliser concept to certain Schunck classes following
this arithmetic-free way.

Concerning the prefrattini subgroups, we said in Sections 1.3 and 1.4
that the classical prefrattini subgroups of soluble groups were introduced by
W. Gaschütz ([Gas62]). A prefrattini subgroup is defined by W. Gaschütz as
an intersection of complements of the crowns of the group. They form a char-
acteristic conjugacy class of subgroups which cover the Frattini chief factors
and avoid the complemented ones. Gaschütz’s original prefrattini subgroups
have been widely investigated and variously generalised. The first extension is
due to T. O. Hawkes ([Haw67]). He introduced the idea of obtaining analogues
to Gaschütz’s prefrattini subgroups, associated with a saturated formation F,
by taking intersections of certain maximal subgroups defined in terms of F
into which a Hall system of the group reduces. Note that Hawkes restricts
the set of maximal subgroups considered to the set of F-abnormal maximal
subgroups. He observed that all of the relevant properties of the original
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The extension of this theory to Schunck classes, still in the soluble realm,
was done by P. Förster in [För83].

Another generalisation of the Gaschütz work in the soluble universe is
due to H. Kurzweil [Kur89]. He introduced the H-prefrattini subgroups of a
soluble group G, where H is a subgroup of G. The H-prefrattini subgroups
are conjugate in G and they have the cover-avoidance property; if H = 1
they coincide with the classical prefrattini subgroups of Gaschütz and if F
is a saturated formation and H is an F-normaliser of G the H-prefrattini
subgroups are those described by Hawkes.

The first attempts to develop a theory of prefrattini subgroups outside the
soluble universe appeared in the papers of A. A. Klimowicz in [Kli77] and
A. Brandis in [Bra88]. Both defined some types of prefrattini subgroups in
π-soluble groups. They manage to adapt the arithmetical methods of soluble
groups to the complements of crowns of p-chief factors, for p ∈ π, of π-soluble

has to be mentioned.
All these types of prefrattini subgroups keep the original properties of

Gaschütz: they form a conjugacy class of subgroups, they are preserved by
epimorphic images and they avoid some chief factors, exactly those associated
to the crowns whose complements are used in their definition, and cover the
rest. Moreover, some other papers (see [Cha72, Mak70, Mak73]) analysed
their excellent permutability properties, following the example of the theorem
of factorisation of Hawkes.

At the beginning of the decade of the eighties of the past twentieth century,
when the classification of simple groups was almost accomplished, H. Wielandt
proposed, as a main aim after the classification, to progress in the universe
of non-necessarily soluble groups trying to extend the magnificent results ob-
tained in the soluble realm. As we have mentioned in Section 2.3, R. P. Erick-
son, P. Förster and P. Schmid answered this Wielandt’s challenge analysing
the projective classes in the non-soluble universe. It seems natural to progress
in that direction and think about normalisers and prefrattini subgroups in
the general finite universe. This was the starting point A. Ballester-Bolinches’
Ph. Doctoral Thesis at the Universitat de València in 1989 [BB89b].

This chapter has two main themes which are organised in three sections.
The first two sections are devoted to study the theory of normalisers of finite,
non-necessarily soluble, groups. The second subject under investigation is the
theory of prefrattini subgroups outside the soluble universe. This is presented
in Section 4.3.

factorisation of the F-normaliser and the new prefrattini subgroup associated
to the same Hall system.

groups. Also the extension of prefrattini subgroups to a class of non
finite groups with a suitable Sylow structure, made by M. J. Tomkinson in
[Tom75],
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4.1 H-normalisers

Obviously the definition of H-normalisers in the general universe has to be
motivated by the characterisation of H-normalisers of soluble groups by chains
of H-critical subgroups.

In this section, H will be a Schunck class of the form H = EΦF, for some
formation F. Thus, by Theorem 2.3.24, the existence of H-critical subgroups
is assured in every group which does not belong to H.

Here we present the extension of the theory of H-normalisers to general
non-necessarily soluble groups done by A. Ballester-Bolinches in his Ph. Doc-
toral Thesis [BB89b] and published in [BB89a]. Previous ways of extending
the soluble theory had been looked at. J. Beidleman and B. Brewster [BB74]
studied normalisers associated to saturated formations in the π-soluble uni-
verse, π a set of primes, and L. A. Shemetkov [She76] introduced normalisers
associated to saturated formations in the general universe of all finite groups
by means of critical supplements of the residual.

The definition of H-normaliser presented here is obviously motivated by
the most abstract characterisation of the classical H-normalisers.

Definition 4.1.1. Let G be a group. A subgroup D of G is said to be an
H-normaliser of G if either D = G or there exists a chain of subgroups

D = Hn ≤ Hn−1 ≤ · · · ≤ H1 ≤ H0 = G (4.1)

such that Hi is H-critical subgroup of Hi−1, for each i ∈ {1, . . . , n}, and Hn

contains no H-critical subgroup.

The condition on Hn is equivalent to say that D ∈ H. Moreover D = G if
and only if G ∈ H.

The non-empty set of all H-normalisers of G will be denoted by NorH(G).
If we restrict ourselves to the universe of soluble groups, this definition is

equivalent to the classical ones of R. W. Carter and T. O. Hawkes in [CH67]
and A. Mann in [Man70] (see [DH92, V, 3.8]).

In this section, we analyse the main properties of H-normalisers, primarily
motivated by their behaviour in the soluble universe. In particular, we study
their relationship with systems of maximal subgroups and projectors.

Each H-normaliser of a soluble group is associated with a particular Hall
system of the group ([Man70]). Obviously this is no longer true in the general
case. But bearing in mind the relationship between systems of maximal sub-
groups and Hall systems (see Theorem 1.4.17 and Corollary 1.4.18), it seems
natural to wonder about the relationship between H-normalisers and systems
of maximal subgroups.

Assume that D is an H-normaliser of a group G constructed by the chain

D = Hn ≤ Hn−1 ≤ · · · ≤ H1 ≤ H0 = G (4.2)
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such that Hi is H-critical subgroup of Hi−1, for each i ∈ {1, . . . , n}, and
Hn contains no H-critical subgroup. Let X(D) be a system of maximal sub-
groups of D. Applying several times Theorem 1.4.14, we can obtain a system
of maximal subgroups X of G such that there exist systems of maximal sub-
groups Xi of Hi, for i = 0, 1, . . . , n, with X0 = X, Xn = X(D) and for each
i, Hi ∈ Xi−1 and (Xi−1)Hi = {Hi ∩ S : S ∈ Xi−1, S 	= Hi} ⊆ Xi. This
motivates the following definition.

Definition 4.1.2. Let D be an H-normaliser of a group G constructed by a
chain (4.2) and let X be a system of maximal subgroups of G such that there
exist systems of maximal subgroups Xi of Hi, i = 0, 1, . . . , n, with X0 = X,
Xn = X(D) and for each i, Hi ∈ Xi−1 and (Xi−1)Hi = {Hi ∩ S : S ∈
Xi−1, S 	= Hi} ⊆ Xi. We will say that D is an H-normaliser of G associated
with X.

By the previous paragraph, every H-normaliser is associated with some
system of maximal subgroups. Next we see that every system of maximal
subgroups has an associated H-normaliser.

Proposition 4.1.3. Given a system of maximal subgroups X of a group G,
there exists an H-normaliser of G associated with X.

Proof. We argue by induction on the order of G. We can assume that G /∈
H. Let M be an H-critical maximal subgroup of G such that M ∈ X. By
Corollary 1.4.16, there exists a system of maximal subgroups Y of M , such
that XM ⊆ Y. By induction, there exists an H-normaliser D of M associated
with Y. Then D is an H-normaliser of G associated with X. ��

Remarks 4.1.4. 1. An H-normaliser can be associated with some different
systems of maximal subgroups. Consider the symmetric group of order 5,
G = Sym(5), and H = N the class of nilpotent groups. Write D = 〈(12), (45)〉.
The subgroups M1 = D〈(123)〉 and M2 = D〈(345)〉 are N-critical maximal
subgroups of G and X1 = {M1, Alt(5)} and X2 = {M2, Alt(5)} are systems of
maximal subgroups of G. Observe that D is an N-normaliser of G associated
with X1 and X2.

2. Given a system of maximal subgroups X of a group G, there is not a
unique H-normaliser of G associated with X. In the soluble group

G = 〈a, b : a9 = b2 = 1, ab = a−1〉,

the Hall system Σ = {G, 〈a〉, 〈b〉} reduces into the N-critical subgroup M =
〈a3, b〉 and then the N-normalisers D1 = 〈b〉 and D2 = 〈a3b〉 are associated
with the system of maximal subgroups defined by Σ: X(Σ) = {〈a〉, 〈a3, b〉}.

For a non-soluble example, consider the Example of 1 and observe that
D1 = 〈(12), (45)〉, D2 = 〈(13), (45)〉 and D3 = 〈(23), (45)〉 are N-normalisers
associated with X1.
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One of the basic properties of H-normalisers of soluble groups is that they
are preserved by epimorphic images (see [DH92, V, 3.2]). This is also true in
the general case.

Proposition 4.1.5. Let G be a group. Let N be a normal subgroup of G. If
D is an H-normaliser of G associated with a system of maximal subgroups X,
then DN/N is an H-normaliser of G/N associated with X/N .

In particular, the H-normalisers of a group are preserved under epimorphic
images.

Proof. We argue by induction on the order of G. Suppose first that N is
a minimal normal subgroup of G. If G ∈ H, D = G and there is nothing
to prove. If G /∈ H, then G has an H-critical subgroup M ∈ X such that
D is an H-normaliser of M associated with a system of maximal subgroups
Y of M and XM ⊆ Y. If N is contained in M , then DN/N is, applying
induction, an H-normaliser of M/N associated with the system of maximal
subgroups Y/N of M/N . Since X/NM/N = XM/N is contained in Y/N
and M/N is H-critical in G/N by Lemma 2.3.23, it follows that DN/N is
an H-normaliser of G/N associated with X/N . Suppose that G = MN . By
induction, D(M ∩N)/(M ∩N) is an H-normaliser of M/(M ∩N) associated
with Y/(M ∩N). Therefore, by virtue of the canonical isomorphism between
G/N and M/(M ∩ N), it follows that DN/N is an H-normaliser of G/N
associated with X/N (note that the image of X/N = {Y N/N : Y ∈ XM}
under the above isomorphism is just Y/(M ∩ N)).

Assume now that N is not a minimal normal subgroup of G and let A
be a minimal normal subgroup of G contained in N . Then, by induction,
DA/A is an H-normaliser of G/A associated with X/A and (DN/A)

/
(N/A) is

H-normaliser of (G/A)
/
(N/A) associated with (X/A)

/
(N/A). Consequently,

DN/N is an H-normaliser of G/N associated with X/N .
The proof of the proposition is now complete.

It is well-known that H-normalisers of soluble groups cover the H-central
chief factors and avoid the H-eccentric ones (see [DH92, V, 3.3]). The cover-
avoidance property is a typical property of the soluble universe that we cannot
expect to be satisfied in the general one.

We present here some results to show partial aspects of the cover-avoidance
property of H-normalisers in the general universe.

Lemma 4.1.6. Let M be an H-critical subgroup of a group G. If H/K is an
H-central chief factor of G, then M covers H/K and [H/K] ∗ G ∼= [(H ∩
M)/(K ∩ M)] ∗ M . In particular (H ∩ M)/(K ∩ M) is an H-central chief
factor of M .

Proof. If M does not cover H/K, then K = H ∩ CoreG(M) and M supple-
ments H/K. Moreover H CoreG(M)/ CoreG(M) is the socle of the monolithic
primitive group G/ CoreG(M). Since H CoreG(M)/ CoreG(M) ∼=G H/K, then
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G/ CoreG(M) ∼= [H/K] ∗ G ∈ H, contrary to the H-abnormality of M in G.
Hence M covers H/K. Since H/K is H-central in G, then CG(H/K) is not
contained in CoreG(M) and therefore G = M CG(H/K). Now the result fol-
lows from [DH92, A, 13.9]. ��

Corollary 4.1.7. Let D be an H-normaliser of a group G. If H/K is an H-
central chief factor of G, then D covers H/K and (H ∩D)/(K ∩D) is an H-
central chief factor of D. Moreover, AutG(H/K) ∼= AutD

(
(H ∩D)/(K ∩D)

)
.

Proposition 4.1.8. Let D be an H-normaliser of a group G. If H/K is a
supplemented chief factor of G covered by D, then [H/K]∗G ∼= [(H∩D)/(K∩
D)] ∗ D ∈ H.

Proof. If D = G the result is clear. Suppose that D is an H-critical subgroup
of G. Since H/K is avoided by Φ(G) and covered by D, then (H∩D)/(K∩D)
is a chief factor of D, AutG(H/K) ∼= AutD

(
(H∩D)/(K∩D)

)
and [H/K]∗G ∼=

[(H ∩D)/(K ∩D)] ∗D, by Statements (1), (2), and (3) of Proposition 1.4.11.
Thus, if H/K is non-abelian, then [H/K] ∗ G is isomorphic to a quotient
group of D and therefore [H/K] ∗ G ∈ H. If H/K is abelian, then H/K it
is complemented by a maximal subgroup M of G. By Proposition 1.4.11 (4),
we have that M ∩D is a maximal subgroup of D, and (H ∩D)/(K ∩D) is a
chief factor of D complemented by M ∩ D. Since D ∈ H, the primitive group
associated with (H ∩D)/(K ∩D) is isomorphic to a quotient group of D and
therefore [(H ∩ D)/(K ∩ D)] ∗ D ∈ H.

In the general case, we consider the chain (4.2) of subgroups of G. If H/K
is a supplemented chief factor of G covered by D, then H/K is covered by
H1 and avoided by Φ(G). By Proposition 1.4.11, (H ∩ H1)/(K ∩ H1) is a
supplemented chief factor of H1. Now, since D is an H-normaliser of H1, then
[(H ∩ H1)/(K ∩ H1)] ∗ H1

∼= [(H ∩ D)/(K ∩ D)] ∗ D by induction. Since
clearly [(H ∩ H1)/(K ∩ H1)] ∗ H1

∼= [H/K] ∗ G, we deduce that [H/K] ∗ G ∼=
[(H ∩ D/(K ∩ D)] ∗ D ∈ H. ��

Corollary 4.1.9. Let D be an H-normaliser of a group G. Then, among all
supplemented chief factors of G, D covers exactly the H-central ones.

We show next that nothing can be said about the H-eccentric chief factors
of G.

Example 4.1.10. Let S be the alternating group of degree 5. Consider the
class F =

(
G : S /∈ Q(G)

)
. Then b(F) =

(
S
)
. Hence F is a saturated formation

by Example 2.3.21. Let E be the maximal Frattini extension of S with 3-
elementary abelian kernel (see [DH92, Appendix β] for details). The group E
possesses a 3-elementary abelian normal subgroup N such that N ≤ Φ(E), and
E/N ∼= S. Let M be a maximal subgroup of E, such that M/N ∼= Alt(4). Then
M is F-critical in E and, since M is soluble, and then M ∈ F, we have that
M is an F-normaliser of E. Observe also that if a minimal normal subgroup
K of E in N is F-central in E, then K ≤ Z(E). Recall that N ∼= A3(S), the
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3-Frattini module, and we can think of N as an GF(3)[S]-module. If we denote
S(N) the socle of such module, we have that Ker

(
S onS(N)

)
= O3′,3(S) = 1,

by a theorem of R. Griess and P. Schmid [GS78]. Therefore there exists an
F-eccentric minimal normal subgroup K of E, such that K ≤ N . It is clear
that M covers K.

Note that the group E has at least three conjugacy classes of F-normalisers.
Moreover, none of these F-normalisers has the cover-avoidance property in E.

Lemma 4.1.11. Let G be a group. Consider a system of maximal subgroups X
of G and an H-normaliser D of G associated with X. Then, for any monolithic
H-abnormal maximal subgroup H ∈ X, we have that D is contained in H.

Proof. We prove the assertion by induction on |G|. Let H be a monolithic
H-abnormal maximal subgroup in X. Assume that G has an H-central min-
imal normal subgroup, N say. By Corollary 4.1.7, N is contained in D ∩ H.
Moreover, applying Proposition 4.1.5, D/N is an H-normaliser of G associ-
ated with X/N . By induction, D/N ≤ H/N and then D ≤ H. Thus, we can
assume that every minimal normal subgroup of G is H-eccentric in G. If N
is contained in H, then, again by Proposition 4.1.5 and induction, we have
that D ≤ DN ≤ H. Therefore we assume that CoreG(H) = 1 and G is a
monolithic primitive group. There exists a unique minimal normal subgroup
N of G. Observe that F′(G) = N and so H is H-critical in G. Since H ∈ X,
we have that D is contained in H by construction of D. ��

Lemma 4.1.12. If a maximal subgroup M of a group G contains an H-

Proof. Suppose that D is an H-normaliser of the group G and D is contained
in the maximal subgroup M of G. If H/K is a chief factor supplemented
by M and H/K is H-central in G, then D covers H/K, by Corollary 4.1.9,
and so does M , a contradiction. Hence H/K is H-eccentric in G and M is
H-abnormal in G. ��

The previous lemmas allow us to discover the relationship between H-
normalisers and monolithic maximal subgroups. The corresponding result in
the soluble universe is in [DH92, V, 3.4].

Corollary 4.1.13. Let M be a monolithic maximal subgroup of a group G.
Then M is H-abnormal in G if and only if M contains an H-normaliser of G.

It is not true in general that an H-abnormal maximal subgroup M of a
group G contains an H-normaliser of G.

Example 4.1.14. Consider the saturated formation F composed of all S-perfect
groups, for S ∼= Alt(5), the alternating group of degree 5 as in Example 4.1.10.
Let G be the direct product G = S1 × S2 of two copies S1, S2 of S. Clearly
each core-free maximal subgroup is F-abnormal in G. Suppose, arguing by

normaliser of G, then M is H-abnormal in G.
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contradiction, that U is a core-free maximal subgroup of G and there exists
E ∈ NorF(G) such that E is contained in U . Let M be an F-critical maximal
subgroup of G such that E is contained in M and E is an F-normaliser of
M . Since M is monolithic, we can assume that S1 = CoreG(M). Therefore
M = S1 × (M ∩ S2). It is clear that M ∩ S2 	= 1. Let N be a minimal normal
subgroup of M contained in M∩ S2. Since N is a supplemented F-central chief
factor of M , then N is covered by E by virtue of Corollary 4.1.9. Consequently,
N ≤ M ∩ S2 ∩ U = 1. This contradiction yields that no core-free maximal
subgroup of G contains an F-normaliser of G.

The fundamental connection between H-normalisers and H-projectors of a
soluble group is that every H-projector contains an H-normaliser (see [Man70,
Theorem 9] and [DH92, V, 4.1]). This is no longer true in the general case:
any Sylow 5-subgroup of G = Alt(5), the alternating group of degree 5, is an
N-projector of G and contains no N-normaliser of G.

However we can prove some interesting results that confirm the close rela-
tion between H-normalisers and H-projectors, especially when saturated form-
ations H are considered.

Definitions 4.1.15. Let G be a group.

1. A maximal subgroup M of G is said to be H-crucial in G if M is H-
abnormal and M/ CoreG(M) ∈ H.

2. If G /∈ H, an H-normaliser D of G is said to be H-crucial in G if there
exists a chain of subgroups

D = Hn ≤ Hn−1 ≤ · · · ≤ H1 ≤ H0 = G (4.3)

such that Hi is H-crucial H-critical subgroup of Hi−1, for each i ∈
{1, . . . , n}, and Hn contains no H-critical subgroup.

Proposition 4.1.16. If D is an H-crucial H-normaliser of a group G, then
D is an H-projector of G.

Proof. Clearly G /∈ H. Suppose first that D is maximal in G. Then we have
that D/ CoreG(D) is an H-maximal subgroup of the group G/ CoreG(D) and
G/ CoreG(D) is a primitive group in the boundary of H. Since D/ CoreG(D)
is an H-projector of G/ CoreG(D), then D is an H-projector of G by Propos-
ition 2.3.14.

Suppose that D is not maximal in G, and let M be an H-crucial H-critical
subgroup of G such that D is an H-crucial H-normaliser of M . By induction,
D is an H-projector of M . By Proposition 2.3.14, D is an H-projector of G. ��

Lemma 4.1.17. Let G be a group and E an H-maximal subgroup of G such
that G = E F(G), then E is an H-normaliser of G.
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Proof. We proceed by induction on |G|. If E = G, there is nothing to prove.
We can assume that G /∈ H and E is then a proper subgroup of G. Let M
be a maximal subgroup of G containing E. Since M = E F(M) and E is
H-maximal in M , then E is an H-normaliser of M , by induction. Applying
Proposition 2.3.17, E is an H-projector of G and then M is H-critical in G.
Therefore E is an H-normaliser of G. ��

Let F be a saturated formation. It is known that in a soluble group in
NF, the F-projectors and the F-normalisers coincide (see [DH92, V, 4.2]). The
above lemma allows us to extend this result to Schunck classes in the general
universe.

Theorem 4.1.18. If G is a group in NH, then the H-projectors and the H-
normalisers of G coincide.

Proof. We prove by induction on the order of G that the H-normalisers of
G are H-crucial in G. If G ∈ H, the result is trivial. Thus, we can assume
that G /∈ H. Let M be an H-critical subgroup of G. Then G = M F(G) and
M ∩ F(G) is contained in CoreG(M) because F(G)/Φ(G) is abelian. Hence
M/CoreG(M) is a quotient group of M/

(
M ∩ F(G)

) ∼= G/ F(G), and then
M/ CoreG(M) ∈ H. Therefore M is H-crucial in G. If D ∈ NorH(G), then
there exists an H-critical subgroup M of G such that D ∈ NorH(M). Since
M ∈ NH, we have that D is an H-crucial H-normaliser of M by induction.
Therefore D is an H-crucial H-normaliser of G.

Therefore we can apply Proposition 4.1.22 to conclude that each H-
normaliser of G is an H-projector of G.

Now, let E be an H-projector of G. Since G ∈ NH, it follows that G =
E F(G). By Lemma 4.1.17, E is an H-normaliser of G. ��

The previous result can be used to show that, for saturated formations F,
the F-normalisers of groups with soluble F-residual can be described in terms
of projectors. The corresponding result for soluble groups appears in [DH92,
V, 4.3].

Theorem 4.1.19. 1. Let F be a formation and H = EΦF. Then, for any
group G, if D is an NF-normaliser of G, the H-projectors of D are H-
normalisers of G.

2. Let F be a saturated formation and let G be a group such that the F-
residual GF is a soluble group of nilpotent length r. We construct the
chain of subgroups

Dr ≤ Dr−1 ≤ Dr−2 ≤ · · · ≤ D1 ≤ D0 = G

where Di is an Nr−iF-projector of Di−1, for i ∈ {1, . . . , r}. Then Dr is
an F-normaliser of G.
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Proof. 1. By Corollary 3.3.9, NF is a saturated formation. Moreover, H is
contained in NF.

If G ∈ NF, then G ∈ NH and so ProjH(G) = NorH(G) by Theorem 4.1.18.
Thus we can assume that G /∈ NF. Let D be an NF-normaliser of G. Then
there exists a chain of subgroups (4.2), such that Hi−1 is an NF-critical sub-
group of Hi, for each index i. Since H ⊆ NF, every H-normaliser of D is an
H-normaliser of G. Since D ∈ NF ⊆ NH, we have that ProjH(D) = NorH(D)
by Theorem 4.1.18. Hence each H-projector of D is an H-normaliser of G.

2. Let F be a saturated formation and let G be a group whose F-residual,
GF, is a soluble group of nilpotent length r. This is to say that G ∈ NrF. We
construct the chain of subgroups

Dr−1 ≤ Dr−2 ≤ · · · ≤ D1 ≤ D0 = G

where Di is an Nr−iF-projector of Di−1, for i ∈ {1, . . . , r − 1}. Since
G ∈ N(Nr−1F), then the Nr−1F-projectors and the Nr−1F-normalisers of G
coincide by Theorem 4.1.18. Therefore D1 is an Nr−1F-normaliser of G. By
Statement 1, the Nr−2F-projectors of D1 are Nr−2F-normalisers of G. Thus,
D2 is an Nr−2F-normaliser of G. Repeating this argument, we obtain that
Dr−1 is an NF-normaliser of G. Hence, every F-projector of Dr−1 is an F-
normaliser of G by Statement 1. Consequently Dr is an F-normaliser of G.

��

The next result yields a sufficient condition for a subgroup of a group in
NH to contain an H-normaliser.

Theorem 4.1.20. Let G be a group in NH and E a subgroup of G that covers
all H-central chief factors of a given chief series of G. Then E contains an
H-normaliser of G.

Proof. We argue by induction on the order of G. Clearly we can assume that
G /∈ H and that E is a proper subgroup of G. If M is a maximal subgroup of G
such that E ≤ M , then M is an H-abnormal subgroup of G and G = M F(G)
because E covers the section G/ F(G). This is to say that M is H-critical in
G. Moreover M is has the cover-avoidance property and the intersections of
M with all normal subgroups of a chief series of G give a chief series of M . If
H/K is a chief factor of G in that series covered by M , then (M∩H)/(M∩K)
is a chief factor of M such that [H/K] ∗ G ∼= [(M ∩ H)/(M ∩ K)] ∗ M by
Proposition 1.4.11. Consequently, E covers all H-central chief factors of a chief
series of M . By induction, E contains an H-normaliser of M which is an H-
normaliser of G. ��

We end this section with the analysis of the relation between the F-
normalisers and the F-hypercentre, F a saturated formation.

Recall that a normal subgroup N of a group G is said to be F-hypercentral
in G if every chief factor of G below N is F-central in G. The product of F-
hypercentral normal subgroups of a group is again an F-hypercentral normal
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subgroup of the group (see [DH92, IV, 6.4]). Thus every group G possesses
a unique maximal normal F-hypercentral subgroup called the F-hypercentre
of G and denoted by ZF(G).

Let G be a group. By Corollary 4.1.7, the F-hypercentre of G is contained
in every F-normaliser of G. Therefore ZF(G) is contained in CoreG(D), for
every H-normaliser D of G. However, the equality does not hold in general.

Example 4.1.21. Consider E and F as in Example 4.1.10. By [GS78, Example
1 (b)], ZF(E) = 1. If M is a maximal subgroup of E such that M/N ∼= Alt(4),
then M is an F-normaliser of E and CoreE(M) = N 	= 1.

In the next section, we shall see that the equality holds in groups with
soluble F-residual.

Next we describe the F-hypercentre of a group in terms of the F-residual
of the group and an F-normaliser. A similar description appears in [DH92,
IV, 6.14] for F-maximal subgroups supplementing the F-residual. Note that,
in general, the F-normalisers are not F-maximal subgroups.

Proposition 4.1.22. Let F be a saturated formation. If D is an F-normaliser
of a group G, then ZF(G) = CD(GF).

Proof. Applying [DH92, IV, 6.10]), we have that [GF, ZF(G)] = 1. There-
fore ZF(G) is contained in CD(GF). Next we prove that CD(GF) is an F-
hypercentral normal subgroup of G. Since G = DGF, the CD(GF) is normal
in G. Let H/K be a chief factor of G below CD(GF). Then GF ≤ CG(H/K).
This implies that G = D CG(H/K). Consequently H/K is a chief factor of D
by [DH92, A, 13.9]). Since D ∈ F, the chief factor H/K is F-central in D and
then in G by [DH92, A, 13.9]). Consequently CD(GF) is an F-hypercentral
normal subgroup of G and hence it is contained in ZF(G). ��

4.2 Normalisers of groups with soluble residual

In this section we assume that F is a saturated formation. Most of the prop-
erties of F-normalisers of soluble groups, such as conjugacy, cover-avoidance
property, relation with F-projectors, do not hold in the general case (see ex-
amples of the previous section). However F-normalisers of groups G in which
the F-residual GF is soluble (i.e. groups in the class SF) do really satisfy these
classical properties. The purpose of the section is to give a full account of these
results. We remark that no use of the corresponding results for soluble groups
occurs in our arguments.

The following elementary result will be used frequently in the section. Let
M be an F-abnormal maximal subgroup of a group G. Then G = MGF.
Assume, in addition, that GF is soluble. Then every chief factor of G sup-
plemented by M is abelian. In particular, M is a maximal subgroup of G of
type 1.
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Our starting point is a result of P. Schmid which proves that the F-
projectors of a group with soluble F-residual form a conjugacy class of sub-
groups.

Theorem 4.2.1 ([Sch74]). Let F be a saturated formation. Let G be group
whose F-residual GF is soluble. Then ProjF(G) is a conjugacy class of sub-
groups of G.

Proof. We argue by induction on |G|. Obviously we can assume that GF 	= 1.
Let N be a minimal normal subgroup of G such that N ≤ GF and suppose
that E and D are F-projectors of G. By induction, X = EN = DgN for
some g ∈ G. Since N is abelian, we have that E and Dg are F-projectors of
X, by Lemma 4.1.17 and Theorem 4.1.18. If X is a proper subgroup of G,
then E and Dg are conjugate in X by induction. Thus we can assume that
G = EN , for every minimal normal subgroup N which is contained in GF.
Since G/N ∼= E/(E ∩ N) ∈ QF = F, we have that N = GF. This is to say
that GF is an abelian minimal normal subgroup of G and every F-projector
of G is a maximal subgroup of G. Let p be the prime dividing |G|. Let F be
the canonical local definition of F = LF(F ), and consider the F (p)-residual
T = GF (p) of G. Clearly T contains N . Since G/N ∈ Ep′F (p) (see [DH92, IV,
3.2]), it follows that T/N is a p′-group. Moreover, since F is full, we have that
Op(T ) = T . Hence, for any E ∈ ProjF(G), we have that T = N(T ∩ E) and
T ∩E is a Hall p′-subgroup of T . By the Schur-Zassenhaus theorem [Hup67, I,
18.1 and 18.2], the Hall p′-subgroups of T are a conjugacy class of subgroups
of T . If T ∩E is normal in G, then T ∩E = Op(T ) = T . This is a contradiction.
Hence E = NG(T ∩ E) and then ProjF(G) is a conjugacy class of subgroups
of G. ��

Assume that G is a group with soluble F-residual, F a saturated forma-
tion. Then ProjF(G) = CovF(G). This can be proved by reducing the prob-
lem to the case G ∈ b(F) (note that if E is an F-projector of G, then E is
an F-projector of EN for every minimal normal subgroup N of G by Pro-
position 2.3.16). In such case, the equality is obviously true because G is a
primitive group of type 1 (see [DH92, III, 3.9]).

We show next that in groups with soluble F-residual, the F-normalisers
can be joined to the group by means of some special chains.

Lemma 4.2.2. Let G be a group whose F-residual GF is soluble. If D is an
F-normaliser of G, there exists a chain of subgroups

D = Hn ≤ Hn−1 ≤ · · · ≤ H1 ≤ H0 = G (4.4)

such that Hi is H-critical maximal subgroup of Hi−1 of type 1, for each i ∈
{1, . . . , n}, and Hn contains no F-critical subgroup.

Proof. We prove the assertion by induction on |G|. We can assume that G /∈ F.
If M is an F-critical subgroup of G containing D as F-normaliser, then M is
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a maximal subgroup of type 1. Moreover MF ≤ GF by Proposition 2.2.8 (3).
Hence MF is soluble. By induction, D can be joined to M by means of a
chain of F-critical maximal subgroups of type 1. This completes the proof the
lemma. ��

Lemma 4.2.3 (see [Ezq86]). If M is a maximal subgroup of a group G
which supplements the Fitting subgroup F(G), then every subgroup with the
cover-avoidance property in M is a subgroup with the cover-avoidance property
in G.

Proof. Let D be a subgroup with the cover-avoidance property in M . Let
H/K be a chief factor of G covered by M . Observe that G = M F(G) =
M CG(H/K). Then (H ∩ M)/(K ∩ M) is a chief factor of M . If D covers
(H∩M)/(K∩M), then H∩M = (K∩M)(H∩D). Since H = K(H∩M), we
have that H = K(H ∩D) and D covers H/K. If D avoids (H ∩M)/(K ∩M),
then D∩H ≤ K and D avoids H/K. Finally D avoids all chief factors avoided
by M . ��

Theorem 4.2.4. Let G be a group whose F-residual GF is soluble. If D is
an F-normaliser of G, then D covers all the F-central chief factors of G and
avoids all the F-eccentric ones.

Proof. We use induction on the order of G to prove that F-normalisers are
subgroups with the cover-avoidance property in G. Let D 	= G be an F-
normaliser of G and suppose that D is maximal in G. If H/K is a non-abelian
chief factor of G, then D covers H/K since D is of type 1. If H/K is abelian
and D does not cover H/K, then G = DH and K ≤ D. In the group G/K, the
minimal normal subgroup H/K is abelian and complemented by the maximal
subgroup D/K. Then D avoids H/K.

If D is not maximal in G, there exists an F-critical maximal subgroup M
of G such that D ∈ NorF(M). By induction, D has the cover-avoidance prop-
erty in M . Since M supplements F(G), D has the cover-avoidance property
in G by Lemma 4.2.3.

If H/K is an F-central chief factor of G, then, by Corollary 4.1.7, D covers
H/K. Suppose that H/K is an F-eccentric chief factor of G which is covered by
D. Suppose that D is defined by a chain (4.4) as in Lemma 4.2.2. Observe that
G = H1 F(G) = H1 CG(H/K) and H1 covers H/K. Hence, (H∩H1)/(K∩H1)
is a chief factor of H1 such that AutG(H/K) ∼= AutH1

(
(H ∩ H1)/(K ∩ H1)

)
.

By repeating the argument we obtain that (H ∩D)/(K ∩D) is an F-eccentric
chief factor of D. Since D ∈ F, all chief factors of D are F-central. This
contradiction yields that H/K is avoided by D. ��

Combining Corollary 4.1.7 and Theorem 4.2.4, a chief series of an F-
normaliser D of a group G with soluble F-residual can be obtained by in-
tersecting D with the members of a given chief series of G.

Our next result partially extends a result of J. D. Gillam (see [DH92, V,
3.3]) on the cover-avoidance property of F-normalisers. We wonder whether
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the cover-avoidance property characterises the F-normalisers of groups whose
F-residual is soluble. The answer in general is negative even in soluble groups
(see an example in [DH92, page 401]). Gillam’s result characterises the F-
normaliser of a soluble group associated with a particular Hall system by
the cover-avoidance property together with the permutability with the Hall
system. Obviously this is not possible in our context. However, Theorem 4.1.20
allows us to show that the characterisation of the F-normalisers by the cover-
avoidance property, holds in groups whose F-residual is nilpotent.

Corollary 4.2.5. If F is a saturated formation and G is a group in NF, then,
for a subgroup D of G, the following sentences are equivalent:

1. D is an F-normaliser of G,
2. D covers the F-central chief factors of G and avoids the F-eccentric ones.

We have seen in Example 4.1.21 that, in general, the F-hypercentre of a
group G is not the core in G of an F-normaliser of G. The equality in groups
with soluble F-residual follows from the cover-avoidance property of the
F-normalisers.

Proposition 4.2.6. Let G be a group such that the F-residual GF is a soluble
group. If D is an F-normaliser of G, then ZF(G) = CoreG(D).

Proof. If ZF(G) = 1, the core of any F-normaliser is trivial by Theorem 4.2.4.
If ZF(G) is non-trivial, the group G/ ZF(G) has trivial F-hypercentre and the
quotient D ZF(G)/ ZF(G) is an F-normaliser of G/ ZF(G) by Proposition 4.1.5.
Consequently CoreG(D) ≤ ZF(G). ��

Our next major objective is to show that the connections between F-
normalisers and F-projectors of groups with soluble F-residual are similar to
the ones of the soluble case. In particular every F-normaliser is contained in an
F-projector. Since, by Theorem 4.2.1, the F-projectors of groups in SF form
a conjugacy class of subgroups, every F-projector contains an F-normaliser.

Theorem 4.2.7. Let F be a saturated formation. If G ∈ NF and H is a
subgroup of G such that G = H F(G), then each F-projector of H is of the
form H ∩ E, for some F-projector E of G.

Proof. Clearly we can assume that F(G) 	= 1, G 	= H, and G /∈ F. Moreover,
arguing by induction on the order of G, we can assume that H is a maximal
subgroup of G. Since H/

(
H ∩ F(G)

)
∈ F, each F-projector D of H satisfies

H = D
(
H ∩ F(G)

)
. Then G = D F(G). If E is an F-maximal subgroup of G

such that D ≤ E, then E ∈ ProjF(G) by Proposition 2.3.17. It is rather easy
to show that D and E ∩ H cover and avoid the same chief factors of a given
chief series of G. Consequently D = E ∩ H. ��
Theorem 4.2.8. Let F be a saturated formation. If G is a group whose F-
residual GF is soluble, and H is a subgroup of G such that G = H F(G),
then there exist an F-projector A of H and an F-projector E of G such that
A = H ∩ E.



4.2 Normalisers of groups with soluble residual 183

Proof. By Theorem 4.2.7, we can assume that G /∈ NF. The quotient group
Ḡ = G/ F(G) has soluble non-trivial F-residual ḠF = GF F(G)/ F(G), Since
ḠF 	= 1, we can consider a chief factor of G of the form ḠF/K̄. Since F is sat-
urated, then ḠF/K̄ is a complemented abelian chief factor of Ḡ. Let M/ F(G)
be a complement of ḠF/K̄ in Ḡ. Then M is an F-crucial maximal subgroup
of G. If N/ CoreG(M) = Soc

(
G/ CoreG(M)

)
, then H covers N/ CoreG(M)

and (N ∩ H)/
(
CoreG(M) ∩ H

)
is an F-eccentric chief factor of H. Moreover,

H = (N ∩H)(M ∩H) and (N ∩ H)/
(
CoreG(M)∩H

)
is an abelian chief factor

of H. Consequently M ∩ H is an F-crucial maximal subgroup of H. On the
other hand, M = (M ∩H) F(M) and so MF F(M) = (M ∩H)F F(M) by Pro-
position 2.2.8 (2). Analogously GF F(G) = HF F(G). This implies that MF

is soluble. By induction, there exist A ∈ ProjF(M ∩ H) and E ∈ ProjF(M)
such that A = H ∩ E ∩ M = H ∩ E. By Proposition 2.3.16, the F-projectors
of any F-crucial monolithic maximal subgroup of a group are F-projectors of
the group. Since M ∩ H is F-crucial in H, we have that A is an F-projector
of H, and since M is F-crucial in G, then E is an F-projector of G. ��

Theorem 4.2.9. Let F be a saturated formation. Let G be a group whose
F-residual GF is soluble. Then each F-normaliser of G is contained in an
F-projector of G and each F-projector contains an F-normaliser.

Proof. We argue by induction of the order of G. We can assume that G /∈ F.
Let D be an F-normaliser of G. There exists an F-critical subgroup M of G
such that D ∈ NorF(M). Since MF is soluble, there exists an F-projector A
of M such that D is contained in A. Since M is critical in G, we can apply
Theorem 4.2.8 to conclude that there exist B ∈ ProjF(M) and E ∈ ProjF(G)
such that B = M∩E. By Theorem 4.2.1, the subgroups A and B are conjugate
in M . Hence there exists an element x ∈ M such that A = Bx. Thus, A =
M ∩ Ex and D is contained in Ex which is an F-projector of G.

By Theorem 4.2.1, the F-projectors of G form a conjugacy class of sub-
groups. Hence, every F-projector contains an F-normaliser. ��

Assume that F is a saturated formation. Let G be a group whose F-
residual GF is soluble. If Σ is a Hall system of GF, then we denote NG(Σ) =⋂{NG(H) : H ∈ Σ}. Sometimes NG(Σ) is said to be the absolute system
normaliser in G of Σ.

In [Yen70], it is proved that if G is a soluble group, then the F-projectors of
T are F-normalisers of G. Our next objective is to show that this result holds
not only in soluble groups but also in groups whose F-residual is soluble. As
a consequence we will obtain the conjugacy of F-normalisers in such groups.

In general, if N is a soluble normal subgroup of a group G and Σ is a Hall
system of N , then Σg is also a Hall system of N , for all g ∈ G. Since Hall
systems of a soluble group are conjugate, there exists an element x ∈ N such
that Σg = Σx. Hence, by the Frattini argument, we have that G = NG(Σ)N .
Then NG(Σ)∩N is a system normaliser of N . Hence NG(Σ)∩N is nilpotent
by [DH92, I, 5.4] and NG(Σ)/ NN (Σ) is isomorphic to G/N . If, in addition,
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N contains GF, it follows that G/N ∈ F and so NG(Σ) belongs to NF. In that
case, NG(Σ)F is contained in NN (Σ) and so Σ reduces into NG(Σ)F.

The next lemma will be used in subsequent proofs.

Lemma 4.2.10. Let G be a group whose F-residual GF is soluble. Consider
a Hall system Σ of GF and write T = NG(Σ). If N is a normal subgroup of
G, then TN/N = NG/N (ΣN/N).

Therefore, if E is an F-projector of T , then EN/N is an F-projector of
NG/N (ΣN/N).

Proof. We argue by induction on the order of G. Clearly TN/N is contained
in NG/N (ΣN/N). Assume that N is a minimal normal subgroup of G.

Suppose that N ∩GF = 1. Note that G acts transitively by conjugation on
the set of Hall systems of GFN/N . Hence |G/N : NG/N (ΣN/N)| is the number
of Hall systems of GFN/N . Moreover, by the same argument, the number of
Hall systems of GF is |G : T |. Hence |G/N : NG/N (ΣN/N)| = |G : T |. Now
|G : TN | ≤ |G : T | = |G/N : NG/N (ΣN/N)| ≤ |G/N : TN/N |. This implies
that TN/N = NG/N (ΣN/N).

Assume now that N ≤ GF = R. Since system normalisers are pre-
served under epimorphisms by [DH92, I, 5.8], we have that NR/N (ΣN/N) =
NR(Σ)N/N . Hence, since G = RT , we have that |G/N : NG/N (ΣN/N)| =
|R/N : NR/N (ΣN/N )| = |R : NR(Σ)N | = |R : (T ∩ R)N | = |R : R ∩ TN |
= |G : TN | = |G/N : TN/N | and then TN/N = NG/N (ΣN/N).

If N is not a minimal normal subgroup of G and A is a minimal normal
subgroup of G contained in N , it follows that TA/A = NG/A(ΣA/A). By
induction, (TN/A)

/
(N/A) = N(G/A)/(N/A)

(
(ΣN/A)/(N/A)

)
. Then TN/N =

NG/N (ΣN/N). ��

The following result is also useful.

Proposition 4.2.11 ([Hal37]). Let G be a soluble group and N a normal
subgroup of G. Let Σ∗ be a Hall system of N such that Σ∗ = Σ ∩N for some
Hall system Σ of G. Put M = NG(Σ∗). We have

1. NG(Σ) is contained in M ,
2. Σ1 = Σ ∩ M is a Hall system of M , and
3. NM (Σ1) = NG(Σ).

Proof. 1. For any Hall subgroup H∗ of N in Σ∗ , there exists a Hall
subgroup H of G in Σ such that H∗ = H ∩ N . If x ∈ NG(Σ), then
H∗x = (H ∩ N)x = Hx ∩ N = H ∩ N = H∗, since N is normal in G.
Then x ∈ NG(Σ∗). Hence NG(Σ) ≤ NG(Σ∗) = M .

2. Let p be any prime dividing the order of G, H the Hall p′-subgroup of N
in Σ∗ and P the Sylow p-subgroup of G in Σ. There exists a Hall p′-subgroup
S of G in Σ such that S ∩ N = H. Since S normalises H and G = PS,
it follows that T = NG(H) ∩ P is a Sylow p-subgroup of NG(H). Moreover,
for any prime q 	= p, P is contained in the Hall q′-subgroup Sq of G in Σ.



4.2 Normalisers of groups with soluble residual 185

Hence, T ≤ Sq. The subgroup Sq ∩ N is the Hall q′-subgroup of N in Σ∗

and Sq ∩N is normal in Sq. Therefore T normalises Sq ∩N . This means that
T ≤ NG(Σ∗) = M and T = M ∩ P .

For two different primes pi, i = 1, 2, dividing the order of G consider the
corresponding Sylow subgroups Pi ∈ Sylpi

(G) of G in Σ and Ti = Pi ∩ M ,
i = 1, 2. Note that P1P2 is a subgroup of G and 〈T1, T2〉 is contained in
P1P2 ∩ M . Hence, 〈T1, T2〉 is a {p1, p2}-subgroup and so 〈T1, T2〉 = T1T2.
Therefore Σ ∩ M = Σ1 is a Hall system of M .

3. Clearly, Σ∗g is a Hall system of N , for all g ∈ G. Therefore, there exists
x ∈ N , such that Σ∗g = Σ∗x. The Frattini argument implies that G = MN .
Therefore, if P ∈ Sylp(G) ∩ Σ, then (P ∩ M)N/N = PN/N ∈ Sylp(G/N).
Hence (P ∩ M)(P ∩ N) = P ∩ (P ∩ M)N = P ∩ PN = P .

If x ∈ NG(Σ), then x ∈ M and, for any Sylow subgroup P ∈ Σ, we
have that (P ∩ M)x = (P ∩ M). Hence NG(Σ) ≤ NM (Σ1). Conversely, if
x ∈ NM (Σ1), for any Sylow subgroup P ∈ Σ, we have that x ∈ NG(P ∩ M)
and x ∈ M ≤ NG(P ∩N). Hence x ∈ NG(P ). Consequently NM (Σ1) ≤ NG(Σ)
and the equality holds. ��

Lemma 4.2.12. Let G be a group with a soluble normal subgroup H such
that GF ≤ H. Let Σ be a Hall system of H. Denote R = NG(Σ). Then each
F-projector of R is contained in an F-projector of NG(Σ ∩ GF).

Proof. Assume that the result is not true and let G be a minimal counter-
example. Let H be a normal subgroup of G of minimal index |H : GF| among
all normal subgroups for which the assertion does not hold. Let H/K a chief
factor of G such that GF ≤ K. Note that Σ ∩ K is a Hall system of K and
denote B = NG(Σ ∩ K). Since the lemma is true for G, K, and Σ ∩ K, we
have that each F-projector of B is contained in an F-projector of NG(Σ ∩GF).
By Proposition 4.2.11 (2), we have that Σ∗ = Σ ∩ (H ∩ B) is a Hall system
of H ∩B = NH(Σ ∩K). On the other hand, since G = NG(Σ ∩K)K = BH,
and then B/(B ∩ H) ∼= G/H ∈ F, the subgroups B, H ∩ B, and the Hall
system Σ∗ satisfy the hypotheses of the lemma. If B is a proper subgroup
of G, each F-projector of Q = NB(Σ∗) is contained in an F-projector of
NB(Σ∗ ∩ BF). Note that NH∩B(Σ∗) = NH(Σ) by Proposition 4.2.11 (3).
Moreover NG(Σ) ≤ Q. Since G = H NG(Σ), we have that B = (H∩B) NG(Σ).
Consequently Q = NG(Σ)(Q ∩ H ∩ B) = NG(Σ) NH∩B(Σ∗) = NG(Σ) = R.
This contradiction yields B = G. In other words, every Sylow subgroup of K
is normal in G. In particular, G ∈ NF. Suppose that p is the prime divisor
of the order of H/K. If P is the Sylow p-subgroup of H in Σ, we have that
H = PK and R = NG(Σ) = NG(P ). Let E be an F-projector of R, then
G = HR = KR = K(ERF) = EK = E F(G) because RF is contained in GF.
By Theorem 4.2.7, E is contained in an F-projector of G = NG(Σ ∩GF). This
is the final contradiction. ��

Theorem 4.2.13. Let G be a group whose F-residual GF is soluble. Consider
a Hall system Σ of GF and denote T = NG(Σ ). Suppose that M is an
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abnormal maximal subgroup of G. If Σ reduces into M∩GF, then there exists
an F-projector of T contained in an F-projector of NM (Σ ∩ MF).

Proof. We split the proof in two steps.
1. There exists an F-projector of T contained in M .
We use induction on the order of G. Note that, by [DH92, I, 4.17a]

and Lemma 4.2.10, the hypotheses of the lemma hold in G/ CoreG(M) and
M/ CoreG(M). If CoreG(M) is non-trivial, then, by induction, there exists
an F-projector of T CoreG(M)/ CoreG(M), D/ CoreG(M) say, contained in
M/ CoreG(M). We know that the F-residual of T CoreG(M)/ CoreG(M) is
nilpotent and therefore the F-projectors of T CoreG(M)/ CoreG(M) are con-
jugate by Theorem 4.2.1. If E is an F-projector of T , then there exists g ∈ T
such that D = Eg CoreG(M). Hence Eg is an F-projector of T contained in
M . Assume now that CoreG(M) = 1. Since M is F-abnormal in G, the group
G is a primitive group of type 1 and G = MN , where N is the minimal normal
subgroup of G. Clearly we can assume that G is not an F-group. Then N ≤ GF

and, by Proposition 2.2.8 (3), M∩GF = MF. If MF = 1, then M is an F-group
and NM (Σ ∩MF) = M . Then M is an F-projector of G and G ∈ NF. In this
case G = T and our claim is true. Suppose that MF 	= 1. We see that in this
case T is contained in M . Consider an element am ∈ T , with a 	= 1, a ∈ N ,
and m ∈ M . If p is the prime divisor of |N | = |GF : MF| and Sp is the Hall p′-
subgroup of GF in Σ, then (Sp)am = Sp. Moreover, Sp ≤ MF ≤ M and then
(Sp)a ≤ M . If x ∈ Sp, then [x, a] ∈ M ∩ N = 1. Consequently a centralises
Sp and N ≤ Z(GF) by [DH92, I, 5.5]. Thus GF is contained in CG(N) which
is equal to N by Theorem 1. Hence MF ≤ N ∩ M = 1. This contradiction
shows that a = 1 and T is contained in M .

2. Conclusion.
Let D be an F-projector of T contained in M . Since TF ≤ GF, we have that

G = TGF = DGF. Put R = M ∩GF; by hypothesis Σ ∩R is a Hall system of
R. Then we have that D ≤ NM (Σ) ≤ NM (Σ ∩ R) = D

(
GF ∩ NM (Σ ∩ R)

)
=

D NR(Σ ∩ R). Since system normalisers of soluble groups are nilpotent, it
follows that NR(Σ ∩R) is a nilpotent normal subgroup of NM (Σ ∩R). Hence
NM (Σ ∩ R) ∈ NF and D supplements the Fitting subgroup of NM (Σ ∩ R).
By Theorem 4.2.8, D is contained in an F-projector E of NM (Σ ∩ R). Since
MF ≤ R and R is soluble, we can apply Lemma 4.2.12 to M , R, and Σ ∩ R
and deduce that each F-projector of NM (Σ ∩R) is contained in an F-projector
of NM (Σ ∩ MF). Therefore E, and then D, is contained in an F-projector of
NM (Σ ∩ MF). ��

Theorem 4.2.14. Let G be a group whose F-residual GF is soluble. Consider
a Hall system Σ of GF and denote T = NG(Σ). If D is an F-projector of T ,
then D covers all F-central chief factors of G and avoids the F-eccentric ones.

Proof. By Lemma 4.2.10, it is enough to prove that D covers the F-central
minimal normal subgroups of G and avoids the F-eccentric ones. Let N be
a F-central minimal normal subgroup of G. Then N ≤ CG(GF). It implies

F-
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that N is contained in T and G = DGF = D CG(N). Hence N is a minimal
normal subgroup of ND and [N ]∗ (ND) ∼= [N ]∗G ∈ F. Since F is a saturated
formation and ND/N ∈ F, we have that ND ∈ F. Since D is F-maximal
in T , we have that N ≤ D. Suppose now that N is F-eccentric in G. Then
N ≤ GF and N is abelian. If D does not avoid N , then N ∩D 	= 1. By [DH92,
I, 5.5], we deduce that N ≤ Z(GF), and then N is F-central in G, contrary to
supposition. Therefore N is avoided by D. ��

Now we can give a characterisation of the F-normalisers of a group G
whose F-residual is soluble in terms of the F-projectors of the absolute system
normalisers of the Hall systems of GF.

Theorem 4.2.15. Let G be a group whose F-residual GF is soluble. For every
Hall system Σ of GF, every F-projector of NG(Σ) is an F-normaliser of G.

Thus

NorF(G) =
⋃{

E ∈ ProjF
(
NG(Σ)

)
: Σ is a Hall system of GF

}
,

and NorF(G) is a conjugacy class of subgroups of G.

Proof. We can assume that G is not an F-group. Let Σ be a Hall system of GF

and let M be an F-critical subgroup of G such that Σ reduces into M ∩ GF.
By Theorem 4.2.13 there exists an F-projector D of NG(Σ) contained in an
F-projector D∗ of NM (Σ∩MF). Arguing by induction, D∗ is an F-normaliser
of M , and then of G. Applying Theorem 4.2.4, for D∗, and Theorem 4.2.14,
for D, we have that both cover simultaneously all F-central chief factors of G
and avoid the F-eccentric ones. Therefore D and D∗ have the same order and
D = D∗. Since NG(Σ) ∈ NF, the F-projectors of NG(Σ) are a conjugacy class
of subgroups by Theorem 4.2.1. Therefore, every F-projector of NG(Σ) is an
F-normaliser of G.

Conversely, if D is an F-normaliser of G and D 	= G, then D is an F-
normaliser of an F-critical subgroup M of G. By induction, there exists a
Hall system Σ∗ of MF such that D ∈ ProjF

(
NM (Σ∗)

)
. Since, by Proposi-

tion 2.2.8 (3), MF is contained in GF, we can find a Hall system Σ of GF

which reduces into M ∩ GF and Σ ∩ MF = Σ∗ by [DH92, I, 4.16].
ing Theorem 4.2.13, NM (Σ∗) contains an F-projector of NG(Σ ). Since
ProjF

(
NM (Σ∗)

)
is a conjugacy class of subgroups of NM (Σ∗), it follows that

there exists an F-projector E of NG(Σg), for some g ∈ G, contained in D.
Thus, D is an F-projector of NG(Σg) by Theorem 4.2.4 and Theorem 4.2.14.
Consequently,⋃{

E ∈ ProjF
(
NG(Σ)

)
: Σ is a Hall system of GF

}
= NorF(G). ��

Corollary 4.2.16. Let G be a group whose F-residual GF is soluble. If H is
an F-projector of G complementing GF in G, then H normalises some Sylow
p-subgroup of GF, for each prime p dividing the order of GF.

Apply-
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Proof. By Theorem 4.2.9, H contains an F-normaliser of G. Since in this case
both complement GF, then H is an F-normaliser of G. By Theorem 4.2.15,
there exists a Hall system Σ of GF such that H ≤ NG(Σ). This means that
H normalises every Sylow subgroup of GF in Σ. ��

The following useful splitting theorem is a generalisation of a theorem
due to G. Higman on complementation of abelian normal subgroups. The
corresponding result for finite soluble groups was obtained by R. W. Carter
and T. O. Hawkes (see [CH67] and [DH92, IV, 5.18]).

Theorem 4.2.17. Let F be a saturated formation and let G be group whose
F-residual GF is abelian. Then GF is complemented in G and two any com-
plements are conjugate in G. The complements are the F-normalisers of G.

Proof. First we prove that an F-normaliser of G is a complement of GF. Sup-
pose that this is not true and let G be a minimal counterexample. Put R = GF.
Then there exists D ∈ NorF(G) such that D ∩ R 	= 1. Observe that, since R
is abelian and G = RD, the subgroup R ∩ D is normal in G.

Assume that there exists an F-eccentric minimal normal subgroup N of G
such that N ≤ R. The quotient DN/N is an F-normaliser of G/N and R/N =
(G/N)F. By minimality of G, we have that R ∩ D = N . But then D covers
N and N has to be F-central in G by Theorem 4.2.4. This is a contradiction.
Hence every minimal normal subgroup of G below R is F-central in G. Then,
if N is any minimal normal subgroup of G below R, we have that N ≤ D
and, by minimality of G, R∩D = N . Consequently, N is the unique minimal
normal subgroup of G below R.

Let M be an F-critical subgroup of G such that D ∈ NorF(M). Since MF

is contained in R, we have that MF is an abelian normal subgroup of G. If
MF 	= 1, then N is contained in MF and, by minimality of G, we have that
MF ∩ D = 1. This is a contradiction. Hence M ∈ F and then M = D. This
implies that R/N is chief factor of G complemented by D. Let p be the prime
dividing the order of N . Then R is an abelian p-group. Suppose that F is
the integrated and full local definition of F. Then F (p) 	= ∅ and R ≤ GF (p).
Observe that F is contained in Ep′F (p) and that GF (p)/R is therefore a p′-
group. Thus R ∈ Sylp(GF (p)). By the Schur-Zassenhaus Theorem [Hup67, I,
18.1 and 18.2], there exists a complement Q of R in GF (p). Observe that R/N is
a chief factor avoided by D. Therefore R/N is F-eccentric in G. Consequently
G
/

CG(R/N) /∈ F (p), and GF (p) is not contained in CG(R/N). Consider the
p′-group Q acting on the normal p-subgroup R by conjugation. Then R =
[R,Q] × CR(Q) by [DH92, A, 12.5]. Observe that both CR(Q) = CR(QR) =
CR(GF (p)) and [R, Q] = [R, QR] = [R, GF (p)] are normal subgroups of G.
Since N is the unique minimal normal subgroup of G below R, then either
CR(Q) = 1 or [R, Q] = 1. Since N is F-central in G, we have that N ≤
CR(GF (p)) = CR(Q). Consequently, GF (p) = QR ≤ CG(R) ≤ CG(R/N),
contrary to supposition. Therefore each F-normaliser complements GF in G.
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Consider now a subgroup H of G such that G = HGF and H ∩ GF = 1.
Since every chief factor of G below GF is F-eccentric, the subgroup H covers
all F-central chief factors of a chief series of G through GF. By Theorem 4.1.20,
there exists D ∈ NorF(G) such that D ≤ H. Therefore D = H ∈ NorF(G).

Finally, by Theorem 4.2.15, NorF(G) is a conjugacy class of subgroups of
G. Hence the complements of GF are the F-normalisers of G and they are
conjugate. ��

A consequence of Theorem 4.2.17 is the following result due to P. Schmid.

Corollary 4.2.18 ([Sch74]). For every group G, we have that

GF ∩ ZF(G) ≤ (GF)′ ∩ Z(GF).

Proof. Theorem 4.2.17, applied to the group G/(GF)′, leads to ZF(G)∩GF ≤
(GF)′. By [DH92, IV, 6.10]), we have that [GF, ZF(G)] = 1. Therefore GF ∩
ZF(G) ≤ (GF)′ ∩ Z(GF). ��

Next, we use Corollary 4.2.18 to give a short proof of a well-known result
of L. A. Shemetkov ([She72]).

Theorem 4.2.19. Let G be a group such that for some prime p, the Sylow
p-subgroups of GF are abelian. Then every chief factor of G below GF whose
order is divisible by p is an F-eccentric chief factor of G.

Proof. Suppose that the theorem is false and let G be a minimal counter-
example. Then GF 	= 1. Let N be a minimal normal subgroup of G such that
N ≤ GF. From minimality of G, every chief factor of G between N and GF

whose order is divisible by p is F-eccentric, the prime p divides |N | and N is
an F-central chief factor of G. Then N ≤ GF ∩ ZF(G) ≤ (GF)′ ∩ Z(GF) by
Corollary 4.2.18. Let P be a Sylow p-subgroup of GF. Since P is abelian, we
have that N ≤ (GF)′ ∩ Z(GF) ∩ P = 1 by Taunt’s Theorem (see [Hup67, VI,
14.3]). This contradiction concludes the proof. ��

We round the section off with another interesting splitting theorem.

Theorem 4.2.20. Let G be a group such that every chief factor of G below
GF is F-eccentric. Assume that GF is p-nilpotent for every prime p in π =
π(|G : GF|), Then

1. (P. Schmid, [Sch74]) GF is complemented in G and any two complements
are conjugate;

2. (A. Ballester-Bolinches, [BB89a]) the complements of GF in G are the
(F ∩ Sπ)-normalisers of G.

Proof. First we note that the class L = F ∩ Sπ is a saturated formation and
GL = GF.

We argue by induction on the order of G. Consider N = Oπ(GF) and sup-
pose that N 	= 1. The quotient group GF/N = (G/N)F is a nilpotent π-group.
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By induction, GF/N is complemented in G/N and any two complements are
conjugate. If L/N is a complement of GF/N in G/N , then N is a normal
Hall π′-subgroup of L. By the Schur-Zassenhaus Theorem [Hup67, I, 18.1 and
18.2], there exists a Hall π-subgroup H of L and two Hall π-subgroups of L
are conjugate in L. Observe that H ∩ GF = 1 and then GF is complemented
in G. Moreover if A and B are two complements of GF in G, then AN/N
and BN/N are conjugate in G/N . Without loss of generality we can assume
that AN = BN . Since A and B are Hall π-subgroups of AN and N is a
normal Hall π′-subgroup of AN , it follows that A and B are conjugate by
the Schur-Zassenhaus Theorem. If E is an L-normaliser of G, then EN/N is
an L-normaliser of G/N by Proposition 4.1.5. By induction, E ∩ GF ≤ N .
Since E is a π-group and N is a π′-group, we have that E ∩ GF = 1 and E
complements GF in G.

Therefore we can assume that N = 1, i.e. GF is a nilpotent π-group, and
G is a π-group in NF. Here the L-normalisers and the F-normalisers of G
coincide. Since every chief factor of G below GF is F-eccentric in G, if D is an
F-normaliser of G, then D∩GF =1, by Corollary 4.2.5, and D is a complement
of GF in G. Any complement E of GF is an F-group. By Lemma 4.1.17, E
is contained in an F-normaliser. Hence E is an F-normaliser of G. Thus, the
complements of GF in G are the F-normalisers of G, and they are conjugate,
by Theorem 4.2.15. ��

Postscript

K. Doerk (see [DH92, V, 3.18]) used the F-normalisers to show that a saturated
formation F has a unique upper bound for all local definitions, that is, a
maximal local definition, in the soluble universe. In fact, he proved that the
formation function g given by

g(p) =
(
G : the F- normalisers of G are in F (p)

)
,

for all primes p, is the maximal local definition of F.
As we have seen in Chapter 3, the situation in the general finite universe

is not so clear cut. However, it is possible to use the F-normalisers of finite,
non-necessarily soluble, groups to give necessary and sufficient conditions for
a saturated formation F to have a maximal local definition ([BB89a], [BB91]).

4.3 Subgroups of prefrattini type

The introduction of systems of maximal subgroups in [BBE91] made pos-
sible the extension of prefrattini subgroups to finite, non-necessarily soluble,
groups. Later, in [BBE95], we introduced the concept of a weakly solid (or
simply w-solid) set of maximal subgroups following some ideas due to M. J.
Tomkinson [Tom75]. Equipped with these new notions, we were able to present
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a common generalisation of all prefrattini subgroups of the literature. These
new subgroups enjoy most of the properties of the soluble case, for instance
they are preserved by epimorphic images and enjoy excellent factorisation
properties. Unfortunately, we cannot expect to keep cover-avoidance property
and conjugacy. In fact, conjugacy characterises solubility, and conjugacy and
cover-avoidance property are equivalent in some sense (see Corollary 4.3.14).
In fact we can repeat here the comment said in the introduction of Section 1.4:
we lose the arithmetical properties, but we find deep relations between max-
imal subgroups which are general to all finite groups.

We present here a distillation of the preceding concepts. Observe, for in-
stance, that the definition of system of maximal subgroups given in [BBE91]
is different, but equivalent, to the one in Section 1.4. In fact this presentation
allows us to speak of a particular subgroup of prefrattini type, which is defined
by the intersection of all maximal subgroups in a subsystem of maximal sub-
groups. This point of view is new since all precedents of prefrattini subgroups
in the past were families of subgroups of the group. To recover this classical
idea of a set of prefrattini subgroups, we include the concept of w-solid set as
a union-set of subsystems of maximal subgroups.

Definitions 4.3.1. Let X be a (possibly empty) set of monolithic maximal
subgroups of a group G.

1. We will say that X is a weakly solid (w-solid) set of maximal subgroups
of G if

for any U , S ∈ X such that CoreG(U) 	= CoreG(S) and both
complement the same abelian chief factor H/K of G, then M =
(U ∩ S)H ∈ X. (4.5)

2. X is said to be solid if it satisfies (4.5) and whenever a chief factor is
X-supplemented in G, then all its monolithic supplements are in X.

Next we give a varied selection of examples of w-solid and solid sets.

Examples 4.3.2. 1. The set Max∗(G), of all monolithic maximal subgroups
of a group G, is solid.

2. Consider a subgroup L of a group G; the set XL of all monolithic
maximal subgroups of G containing L is w-solid.

3. Given a w-solid (respectively solid) set X of maximal subgroups of a
group G and a class H of groups, then the set Xa

H of all H-abnormal subgroups
in X and the set Xn

H of all H-normal subgroups in X are w-solid (respectively
solid) as well.

If X is a system of maximal subgroups, then Xa
H and Xn

H are subsystems
of maximal subgroups.

Let M be a monolithic maximal subgroup of G. Recall that the normal
index of M in G, defined by W. E. Deskins in [Des59] and denoted by η(G, M),
is indeed η(G,M) =

∣∣Soc
(
G/ CoreG(M)

)∣∣.
3. The following families of monolithic maximal subgroups of a group G

are w-solid:
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a) Fixed a prime p, the set Xp of all monolithic maximal subgroups M
of G such that |G : M | is a p-power. In fact, if G is p-soluble, then Xp is
indeed solid. However this is not true in the non-soluble case; in G = Alt(5)
the set X5 is composed of all maximal subgroups isomorphic to Alt(4) and
clearly it is not solid.

b) Fixed a set of primes π, the set Xπ of all monolithic maximal subgroups
M of G such that |G : M | is a π′-number.

c) the set of all monolithic maximal subgroups of G of composite index
in G.

d) the set of all monolithic maximal subgroups M of the group G such
that η(G,M) 	= |G : M |.

If G is a group, the set S(G) composed of all systems of maximal subgroups
of G is non-empty by Theorem 1.4.7. If X is a w-solid set of maximal subgroups
of G and Y ∈ S(G), then X ∩ Y is a subsystem of maximal subgroups of G.
Applying Theorem 1.4.7, we have that X =

⋃{X ∩ Y : Y ∈ S(G)}.
Definitions 4.3.3. 1. Let G be a group. Let X be a non-empty subsystem of

maximal subgroups of G. Define

W(G,X) =
⋂

{M : M ∈ X}.

For convenience, we define W(G, ∅) = G.
We will say that W is a subgroup of prefrattini type of G if W = W(G,X)
for some subsystem X of maximal subgroups of G.

2. If X be a w-solid set of maximal subgroups of G, we say that

PrefX(G) = {W(G,X ∩ Y) : Y ∈ S(G), X ∩ Y 	= ∅}

is the set of all X-prefrattini subgroups of G.

We show in the following that the known prefrattini subgroups are asso-
ciated with w-solid sets of maximal subgroups.

Examples 4.3.4. 1. The Max∗(G)-prefrattini subgroups are simply called
prefrattini subgroups of G. We write

Pref(G) = {W(G,X) : X ∈ S(G)}.

In other words, a prefrattini subgroup of a group G is a subgroup of the form
W(G,X), where X is a system of maximal subgroups of G. If G is a soluble
group, we can apply Corollary 1.4.18 and conclude that the prefrattini sub-
groups of G are those introduced by W. Gaschütz in [Gas62] which originated
this theory.

2. Let H be a Schunck class. The Max∗(G)a
H-prefrattini subgroups of a

group G are the H-prefrattini subgroups defined in [BBE91]. If G is soluble,
they are the H-prefrattini subgroups studied by P. Förster in [För83] and, if
H is a saturated formation, the Max∗(G)a

H-prefrattini subgroups of G are the
ones introduced by T. O. Hawkes in [Haw67].
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3. If G is a soluble group, then PrefXL
(G) is the set of all L-prefrattini

subgroups introduced by H. Kurzweil in [Kur89].
4. The Xp-prefrattini subgroups of a p-soluble group are the p-prefrattini

subgroups studied by A. Brandis in [Bra88].

Notation 4.3.5. If H is a Schunck class, G is a group, and X is a system of
maximal subgroups of G, we denote

W(G, H,X) = W(G,Xa
H),

and say that W(G, H,X) is the H-prefrattini subgroup of G associated with
X. We write

PrefH(G) = {W(G,H,X) : X ∈ S(G)}
for the set of all H-prefrattini subgroups of G.

Theorem 4.3.6. Consider a group G, X a subsystem of maximal subgroups
of G and W = W(G,X). Then

W =
⋂

{T(G,X, F ) : F is an X-supplemented chief factor of G}.

Moreover W has the following properties.

1. Let 1 = G0 < G1 < · · · < Gn = G be a chief series of G; write I =
{i : 1 ≤ i ≤ n such that Gi/Gi−1 is X-supplemented}; then, if I is non-
empty,

W =
⋂
i∈I

{Si : Si is an X-supplement of Gi/Gi−1}.

2. If N is a normal subgroup of G, then WN/N = W(G/N,X/N).

Proof. Applying Proposition 1.3.11, we can deduce that

W =
⋂

{T(G,X, F ) : F is an X-supplemented chief factor of G}.

Now Assertion 1 follows from Theorem 1.2.36 and Theorem 1.3.8.
In proving Assertion 2, suppose first that N is a minimal normal sub-

group of G and let 1 = G0 < G1 = N < · · · < Gn = G be a chief
series of G. Clearly we can assume that X is non-empty. Then I = {i :
1 ≤ i ≤ n such that Gi/Gi−1 is X-supplemented} is non-empty and W =⋂

i∈I{Si : Si is an X-supplement of G/Gi−1} by Statement 1. If N is an
X-Frattini, then N is contained in Si for all i ∈ I and then W/N =
W(G/N,X/N). Otherwise, N is contained in Si for all i ∈ I \ {1} and
G = NS1. The case I = {1} leads to W = S1 and X/N = ∅. Then
G = WN and WN/N = W(G/N,X/N). Suppose that I \ {1} 	= ∅. Then
WN =

⋂
i∈I\{1} Si and then WN/N = W(G/N,X/N). Therefore Assertion 2

holds when N is a minimal normal subgroup of G.
A familiar inductive argument proves the validity of Statement 2 for any

normal subgroup N of G. ��
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Remark 4.3.7. Theorem 4.3.6 does not hold when X is simply a JH-solid set
(see Example 1.3.10). This is the reason why we introduce the prefrattini
subgroups associated with subsystems of maximal subgroups and not with
JH-solid sets of maximal subgroups.

All classical examples of prefrattini subgroups in the soluble universe, in-
cluding Kurzweil’s, enjoy the conjugacy and the cover-avoidance property.
Now we prove that, roughly speaking, it can be said that conjugacy and
cover-avoidance property of soluble chief factors are equivalent properties for
subgroups of prefrattini type. In fact, conjugacy of prefrattini subgroups char-
acterises solubility. The consideration of primitive non-soluble groups, whose
core-free maximal subgroups are neither conjugate nor CAP-subgroups, causes
that in the general non-soluble universe these properties fail.

Proposition 4.3.8. Let G be a group and X a subsystem of maximal sub-
groups of G. Put W = W(G,X). Let H/K be a chief factor of G.

1. If H/K is X-Frattini, then W(G,X) covers H/K.
2. If H/K possesses X-complement in G, then W(G,X) avoids H/K.

Proof. Assume that H/K is an X-Frattini chief factor of G. Then H/K ≤
MK/K for all M ∈ X. Hence,

H/K ≤
⋂

{MK/K : M ∈ X} = W(G/K,X/K) = WK/K,

by Proposition 4.3.6, and W(G,X) covers H/K.
If a maximal subgroup M of G belongs to X, then W ≤ M . Hence, if M

complements H/K, W avoids H/K. ��

Corollary 4.3.9. Let G be a group, X a solid set of maximal subgroups of G
and H/K an abelian chief factor of G. Then

1. H/K is either covered or avoided by all W ∈ PrefX(G);
2. H/K is covered by some W ∈ PrefX(G) if and only if H/K is an X-

Frattini chief factor of G.

The above result justifies the following definition.

Definition 4.3.10. Let G be a group and X a w-solid set of maximal sub-
groups of G. We say that PrefX(G) satisfies ACAP if whenever F is an abelian
chief factor of G,

1. then F is either covered or avoided by all W ∈ PrefX(G), and
2. F is covered by some W ∈ PrefX(G) if and only if F is an X-Frattini

chief factor of G.

Clearly if PrefX(G) satisfies ACAP, any W ∈ PrefX(G) covers all abelian
X-Frattini chief factors of G and avoids all abelian X-complemented.

By the above corollary, if X is a solid set of maximal subgroups of a group
G, then PrefX(G) satisfies ACAP. We give some more examples.



4.3 Subgroups of prefrattini type 195

Examples 4.3.11. 1. By Lemma 1.5 of [Kur89], if L is a subgroup of a
soluble group G, the set PrefXL(G) of all L-prefrattini subgroups of G satisfies
ACAP (note that XL is w-solid, but not solid in general).

2. Let G be the group as in Example 1.3.10. We consider the set X =
{〈a, z〉, 〈b, z〉, 〈ab, z〉, 〈a2b, z〉}. Then X is a subsystem of maximal subgroups
of G and W(G,X) = 〈z〉. We consider the system Y of maximal subgroups
defined by the Hall system Σ = {N, 〈abz〉} (see Theorem 1.4.17). Then
W(G,X ∩ Y) = 〈ab, z〉. It is clear that the X-prefrattini subgroups of G
do not satisfy ACAP.

Proposition 4.3.12. Let G be a group, and let X be a w-solid set of maximal
subgroups of G. Assume that PrefX(G) satisfies ACAP. Let X1, X2 be two
systems of maximal subgroups of G and H/K an abelian chief factor of G.
Then, there exists an X-complement of H/K in X1 if and only if there exists
an X-complement of H/K in X2.

Proof. Put {i, j} = {1, 2}. Suppose that Mi is an X-complement of H/K in
Xi but for all maximal subgroups S ∈ X ∩ Xj such that K ≤ S, we have
H ≤ S. Denote by Wk the (X ∩ Xk)-prefrattini subgroup of G, k = 1, 2.
Applying Theorem 4.3.6, Wi ≤ Mi. Then K = WiK ∩ H. Since PrefX(G)
satisfies ACAP, we have K = WjK ∩ H. However WjK/K is the X/K-
prefrattini subgroup of G/K associated with Xj/K by Theorem 4.3.6 (2).
Then WjK/K =

⋂{S/K : S ∈ X ∩ Xj ,K ≤ S}. Our assumption implies
H/K ≤ WjK/K. This contradiction proves that H/K has an X-complement
in Xj . ��

Theorem 4.3.13. Let X be a w-solid set of maximal subgroups of group G.
For Y = Xn

S, the set of all S-normal maximal subgroups in X, the following
statements are equivalent:

1. PrefY(G) satisfies ACAP;
2. PrefY(G) is a set of conjugate subgroups of subgroups of G.

Proof. 1 implies 2. Assume that Assertion 2 does not hold and choose for G a
counterexample of least order. If H is any non-trivial normal subgroup of G,
then X/H is w-solid set of maximal subgroups of G/H and (X/H)n

S = Y/H.
It is clear that PrefY/H(G/H) satisfies ACAP. Hence the minimal choice of
G implies that PrefY/H(G/H) is a set of conjugate subgroups of G/H.

Let N be a minimal normal subgroup of G. If N is Y-Frattini, then N
is covered by every Y-prefrattini subgroup of G by Theorem 4.3.6. In that
case, the Since the theorem holds in G/N , PrefY(G) is a conjugacy class of
subgroups of G, contrary to supposition. Hence N is Y-supplemented in G.
In particular N is S-central in G and therefore N is abelian. Let M ∈ Y such
that G = MN and M ∩ N = 1, and let S be a system of maximal subgroups
of G such that M ∈ S (Theorem 1.4.7). Denote by A the (Y ∩ S)-prefrattini
subgroup of G. Then A ≤ M by Theorem 4.3.6. Since by hypothesis PrefY(G)
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is not a set of conjugate subgroups of G, there exists a system S0 of maximal
subgroups of G such that A0 = W(G,Y ∩ S0) and A are not conjugate in G.

Let ϕ be the isomorphism between G/N and M . We have (X/N)n
S =

Y/N and (Y/N)ϕ = (X ∩ M)n
S = Y ∩ M by Lemma 1.2.23. Denote C =

CoreG(M) = CM (N). Suppose that C 	= 1. Since the theorem holds in G/C,
there exists x ∈ G such that Ax

0C = AC ≤ M . Without loss of generality
we can assume that x = 1. In particular A0 ≤ M . Then AN ∩ M = A and
A0N∩M = A0 are (X ∩M)n

S-prefrattini subgroups of M. The minimal choice
of G implies that A and A0 are conjugate in M . This contradiction leads to
C = 1. Since M is S-normal in G, we have G is a primitive soluble group.
By Corollary 1.4.18, there exists g ∈ G such that Sg

0 = S. If U ∈ Y ∩ S, then
U complements the chief factor Soc

(
G/ CoreG(U)

)
. By Proposition 4.3.12,

there exists V ∈ Y ∩ S0 such that V complements Soc
(
G/ CoreG(U)

)
. Since

G/ CoreG(U) is a soluble primitive group, CoreG(U) = CoreG(V ) and U and
V are conjugate in G by Theorem 1.1.10. This implies that Y∩ S = Y∩ Sg

0 =
(Y ∩ S0)g. Applying Theorem 4.3.6, A =

⋂{U : U ∈ Y ∩ S} =
⋂{U : U ∈

(Y ∩ S0)g} =
⋂{V g : V ∈ Y ∩ S0} = Ag

0. This contradiction proves the
implication.

2 implies 1. Note that all non-abelian chief factors of G are Y-Frattini. This
means that Y-prefrattini subgroups are conjugate CAP-subgroups indeed.

��

Corollary 4.3.14. Let X be a w-solid set of maximal subgroups of a soluble
group G. The following statements are equivalent:

1. PrefX(G) is a set of conjugate subgroups of G, and
2. every W ∈ PrefX(G) is a CAP-subgroup of G which covers all X-Frattini

chief factors of G and avoids the X-complemented ones.

In general the prefrattini subgroups of a group are not conjugate: in any
non-abelian simple group the prefrattini subgroups are the maximal sub-
groups. We prove next that the solubility of a group is characterised by the
conjugacy of its prefrattini subgroups.

Theorem 4.3.15. A group G is soluble if and only if the set Pref (G) of all
prefrattini subgroups is a conjugacy class of subgroups of G.

Proof. If G is a soluble group, then the conjugation of the prefrattini sub-
groups of G follows directly from Theorem 4.3.6 and Corollary 1.4.18.

Conversely, assume that G is a group such that the set Pref (G) of all pre-
frattini subgroups of G is a conjugacy class of subgroups of G. We prove that
G is soluble by induction on the order of G. By Theorem 4.3.6 (2), we have
that, for every normal subgroup N of G, the set Pref (G/N) of all prefrat-
tini subgroups of G/N is a conjugacy class of subgroups of G/N . Therefore
G/N is soluble for each minimal normal subgroup N of G and G is a mono-
lithic primitive group. Suppose that G is not soluble. Then N = Soc(G)
is not abelian. Let W/N be a prefrattini subgroup of G/N associated with
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an arbitrary system of maximal subgroups X∗ of G/N . Let P1 be a non-
trivial Sylow p1-subgroup of N , for some prime p1; there exists a maximal
subgroup M of G such that NG(P1) ≤ M . Clearly CoreG(M) = 1. The set
X1 = {H ≤ G : N ≤ H, H/N ∈ X∗}∪{M} is a system of maximal subgroups
of G. Applying Theorem 4.3.6, W ∩ M is the prefrattini subgroup of G asso-
ciated with X1. Let P2 be a non-trivial Sylow p2-subgroup of N , for a prime
p2 such that p1 	= p2. This is always possible since N is non-abelian. Consider
now a maximal subgroup S of G such that NG(P2) ≤ S and the system of
maximal subgroups X2 = {H ≤ G : N ≤ H,H/N ∈ X∗} ∪ {S} of G. As
above, we have that W ∩ S = W(G,X2). Consequently W ∩M and W ∩ S are
conjugate in G. This implies that W ∩ M contains a Sylow p2-subgroup of N .
Since p2 is arbitrary, we have that W ∩M contains a Sylow p-subgroup of N
for any prime p dividing the order of N . This implies that N ≤ M , which is
a contradiction. Hence G is soluble. ��

Finally in this section, we touch on the question of the description of the
core and the normal closure of subgroups of prefrattini type. For solid sets X of
maximal subgroups, the core of the X-prefrattini subgroups is the X-Frattini
subgroup defined in Definition 1.2.18 (1).

Proposition 4.3.16. If X is a solid set of maximal subgroups of a group G
and W is an X-prefrattini subgroup of a group G, then CoreG(W ) = ΦX(G).

Proof. Let Y be a system of maximal subgroups of G. Consider W =
W(G,X ∩ Y). Since X is solid, we have that ΦX(G) =

⋂{CoreG(M) : M ∈
X ∩ Y} = CoreG(W ).

The classical Frattini subgroup of a group G, Φ(G), is clearly the Max∗(G)-
Frattini subgroup of G. The Max∗(G)a

N-Frattini subgroup is denoted by L(G)
in [Bec64]. H. Bechtell also denotes the Max(G)n

N-Frattini subgroup by R(G).
Following his notation, if H is a Schunck class and G is a group, we denote

LH(G) =
⋂

{M : M is H-abnormal monolithic maximal subgroup of G}

the Max∗(G)a
H-Frattini subgroup of G, and similarly

RH(G) =
⋂

{M : M is H-normal monolithic maximal subgroup of G}

the Max∗(G)n
H-Frattini subgroup of G.

Theorem 4.3.17. Let F be a saturated formation and let X be a system of
maximal subgroups of a group G, then

CoreG

(
W(G,Xa

F)
)

= ZF

(
G mod Φ(G)

)
= LF(G).

Proof. Denote W = W(G,Xa
F). Applying Theorem 4.3.6, LF(G) ≤ W . Hence

LF(G) is contained in CoreG(W ). Conversely, if S is an F-abnormal mono-
lithic maximal subgroup of G in X, then we have W ≤ S and CoreG(W ) ≤
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CoreG(S). Then CoreG(W ) is contained in every F-abnormal monolithic max-
imal subgroup of G. Hence CoreG(W ) ≤ LF(G).

To prove that ZF

(
G/Φ(G)

)
= LF(G)/Φ(G) suppose first that Φ(G) =

1. Since every chief factor of G below ZF(G) is F-central in G, it follows
that ZF(G) ≤ LF(G). To prove the converse observe that if Φ(G) = 1, then
LF(G) ∩ GF = 1. Assume not and let N be a minimal normal subgroup of G
such that N ≤ LF(G)∩GF. Since Φ(G) = 1, it follows that N is supplemented
in G by a monolithic F-normal maximal subgroup M . Hence GF ≤ M . This
contradiction leads to LF(G)∩GF = 1. Consider a chief factor H/K of G such
that H ≤ LF(G). Since GF ∩ LF(G) = 1, then HGF/KGF is a chief factor
of G which is G-isomorphic to H/K. This means that H/K is F-central in G.
Therefore LF(G) ≤ ZF(G) and equality holds.

If Φ(G) 	= 1, then consider the quotient group G∗ = G/Φ(G). Since
Φ(G∗) = 1, we obtain the required equality. ��

Proposition 4.3.18. Let G be a group. If F is a saturated formation and X
is a system of maximal subgroups of G, then

CoreG

(
W(G,Xn

F)
)

= RF(G) = Φ(G mod GF).

Proof. First notice that GF is contained in every F-normal maximal subgroup
of G and if G ∈ F, then every maximal subgroup of G is F-normal. Therefore,
RF(G)/GF = RF(G/GF) = Φ(G/GF). Since GF is contained in W(G,Xn

F),
we have W(G,Xn

F)/GF = W(G/GF,Xn
F/GF) by Theorem 4.3.6 (2) and so

CoreG

(
W(G,Xn

F)
)
/GF = Φ(G/GF). ��

Definition 4.3.19. Let G be a group and suppose that X is a solid set of
maximal subgroups of G. A normal subgroup N of G is said to be

1. an X-profrattini normal subgroup of G if either N = 1 or every chief
factor of G of the form N/K is an X-Frattini chief factor of G, and

2. an X-parafrattini normal subgroup of G if either N = 1 or every chief
factor of G of the form N/K is a non-X-complemented chief factor of G,
that is, no maximal subgroup in X is a complement of N/K in G.

For X = Max∗(G), the solid set of all monolithic maximal subgroups of G, we
say simply profrattini and parafrattini.

Examples and remarks 4.3.20. 1. If N is an X-profrattini normal sub-
group of G, then N is an X-parafrattini normal subgroup of G. The converse
does not hold in general. It is enough to consider a non-abelian simple group
S. It is clear that S is X-parafrattini for all solid sets X of maximal subgroups
of S. However S is not X-profrattini.

If N is soluble, N is X-profrattini if and only if N is X-parafrattini.
2. If F is a totally nonsaturated formation (see [BBE91]), then GF is a

profrattini normal subgroup of G for every group G.
3. If X is a solid set of maximal subgroups of a group G, a quasinilpotent

normal subgroup N of G is X-profrattini if and only if N ≤ ΦX(G).
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Proof. Assume that N is a quasinilpotent X-profrattini normal subgroup
of G but N 	≤ ΦX(G). Then there exists a maximal subgroup U of G
such that K ≤ U , U ∈ X and G = UN . We have that G/ CoreG(U) =(
N CoreG(U)/ CoreG(U)

)(
U/ CoreG(U)

)
and N CoreG(U)/ CoreG(U) is qua-

sinilpotent. Therefore

N CoreG(U)/ CoreG(U) = F∗(G/ CoreG(U)
)

= Soc
(
G/ CoreG(U)

)
.

But this contradicts N being X-profrattini. Hence N ≤ ΦX(G). The converse
holds trivially. ��

Theorem 4.3.21. Let G be a group and suppose that X is a solid set of
maximal subgroups of G.

1. If N , M are both X-profrattini normal subgroups of G, then NM is an
X-profrattini normal subgroup of G.

2. If N , M are both X-parafrattini normal subgroups of G, then NM is an
X-parafrattini normal subgroup of G.

Proof. Let (NM)/K be a chief factor of G. The normal subgroups KM and
KN lie between K and NM . If K = KN = KM , then NM ≤ K, which is im-

(the other case is analogous). By Lemma 1.2.16, if S supplements (respect-
ively, complements) NM/K = NK/K, then S also supplements (respectively,
complements) the chief factor N/(N ∩ K). If N is a X-profrattini (respect-
ively, X-parafrattini) normal subgroup of G, then S /∈ X. Hence MN is also
X-profrattini (respectively, X-parafrattini) normal subgroup of G. ��

Remark 4.3.22. Let G be a group and X be a solid set of maximal subgroups
of G. Suppose that N is a normal subgroup of G satisfying the property
that either N = 1 or every chief factor N/K of G is X-complemented in
G. If M is a normal subgroup of G with the same property, then MN does
not have this property in general. For instance, consider G = A × B where
A = 〈a : a4 = 1〉, B = 〈b : b2 = 1〉, and X = Max∗(G). Then B and D = 〈a2b〉
are two complemented minimal normal subgroups of G. However BD/B is a
Frattini chief factor of G.

Definitions 4.3.23. Let G be a group and X be a solid set of maximal sub-
groups of G.

1. The X-profrattini subgroup of G is the normal subgroup

ProX(G) = 〈N : N is an X-profrattini normal subgroup of G〉.

2. The X-parafrattini subgroup of G is the normal subgroup

ParaX(G) = 〈N : N is an X-parafrattini normal subgroup of G〉.

impossible. Hence, either NM = NK or NM = MK. Suppose that NM = NK
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For X = Max∗(G), the solid set of all monolithic maximal subgroups of G, we
write simply Pro(G) and Para(G).

It is clear that ProX(G) ≤ ParaX(G). If X is a solid set of maximal
subgroups of G composed of maximal subgroups of type 1, then ProX(G) =
ParaX(G). In particular, the equality holds when G is soluble. There are non-
soluble groups such that ProX(G) = ParaX(G). Consider a prime p and a
cyclic group Z of order p2. Let G = S � Z be the regular wreath product of
S with Z, where S is a non-abelian simple group. Then Pro(G) = Para(G) is
the unique maximal normal subgroup of G.

It is clear that for each normal subgroup ParaX(G) < N (respectively,
ProX(G) < N) there is at least one G-chief factor N/K which is X-supple-
mented (respectively, X-complemented) in G. We can say much more than
this.

Proposition 4.3.24. Let G be a primitive group of type 2 which splits over
Soc(G) = N by a maximal subgroup S of G. Then Soc(S) is non-abelian.

Proof. Let A be an abelian minimal normal subgroup of S. Then A is an
elementary abelian p-group for some prime p. Since S ≤ NG(A), then NG(A) =
S since proper containment leads to a contradiction that A is normal in G, by
maximality of S in G. Hence N ∩CG(A) = 1. If p divides |N |, a contradiction
arises since A would be contained in a Sylow p-subgroup P = [T ]A of NA
with T = P ∩ N. Hence, T ∩ Z(P ) 	= 1 and there exists an element x ∈ CN (A)
such that x 	= 1. This is not possible. Consequently p does not divide |N |. Let
q be a prime dividing |N |. By [Gor80, 6.2.2], there exists a unique A-invariant
Sylow q-subgroup Q of N . For any element s ∈ S, Qs is also A-invariant.
Consequently, Q = Qs and S ≤ NG(Q). Since N ∩ S = 1, Q is not contained
in S and so G = QS = NS. This implies N = Q, a contradiction. ��

Corollary 4.3.25. Denote by K the class of all groups G such that every
chief factor of G is complemented in G by a maximal subgroup of G. Then K
is composed of soluble groups.

Proof. Suppose that K is not contained in S and consider a group of minimal
order G ∈ K \ S. Then G ∈ b(S) and G is a primitive group of type 2. By
hypothesis, N = Soc(G) is a non-abelian minimal normal subgroup which
is complemented in G by a core-free maximal soluble subgroup S of G. But
Soc(S) abelian contradicts Proposition 4.3.24. ��

Proposition 4.3.26. Let G be a group and let X be a solid set of maximal
subgroups of G.

1. Denote by N the set of all normal subgroups N of G satisfying the property
that every chief factor of G between N and G is X-supplemented in G. If
N , M ∈ N , then N ∩ M ∈ N .
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2. Denote by K the set of all normal subgroups N of G satisfying the property
that every chief factor of G between N and G is X-complemented in G.
If N , M ∈ K, then N ∩ M ∈ K.

Proof. Consider a chief series of G from M to M ∩ N .

N ∩ M ≤ · · · ≤ M. (4.6)

1. Consider a chief factor H/K of G in (4.6). Then HN/KN is a chief
factor of G between N and G. Since N ∈ N , it follows that HN/KN is X-
supplemented in G by S ∈ X, say. This means that G = S(HN) and KN ≤
S ∩ NH . Hence G = SH and K ≤ S ∩ H. Hence H/K is X-supplemented in
G by S. Therefore Assertion 1 follows from Theorem 1.2.36.

2. Note that by Corollary 4.3.25, the groups G/N and G/M are soluble.
Then G/(N ∩ M) is soluble. Therefore all chief factors in (4.6) are abelian.

The Assertion 2 now follows by applying the same arguments as those used
in the proof of Statement 1 replacing “supplemented” by “complemented.”

��
Corollary 4.3.27. Let G be a group and X a solid set of maximal subgroups
of G. Then

1. ProX(G) =
⋂{N : N ∈ N} ∈ N and every chief factor of G between

ProX(G) and G is X-supplemented in G;
2. ParaX(G) =

⋂{N : N ∈ K} ∈ K and every chief factor of G between
ParaX(G) and G is X-complemented in G.

Proof. 1. Denote K =
⋂{N : N ∈ N}. By Proposition 4.3.26, K ∈ N . If

K/L is an X-supplemented chief factor of G, then L ∈ N by Theorem 1.2.34
and this is not possible. Therefore every chief factor of G of the form K/L is X-
Frattini. Hence K ≤ ProX(G). Assume that K < ProX(G). Let ProX(G)/N
be a chief factor of G such that K ≤ N . Then ProX(G)/N should be X-
Frattini. This contradicts Proposition 4.3.26.

The proof for 2 is analogous. ��
Corollary 4.3.28. If X is a solid set of maximal subgroups of a group G,
then G/ ParaX(G) is a soluble group.

Proof. Note that G/ ParaX(G) ∈ K. Apply now Corollary 4.3.25. ��
It is clear from the above result that GS, the soluble residual of G, is

contained in ParaX(G).

Corollary 4.3.29. Let X be a solid set of maximal subgroups of a group G.
Then ParaX(G) = ProX(G)GS.

Proof. It is clear that ProX(G)GS ≤ ParaX(G). Suppose there exists a chief
factor F = ParaX(G)/N of G with ProX(G)GS ≤ N . By definition of
ParaX(G), the chief factor F is non-X-complemented in G. On the other
hand, F is abelian and X-supplemented in G because ProX(G)GS ≤ N . Such
F cannot exist. Hence ParaX(G) = ProX(G)GS. ��
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Theorem 4.3.30. Let G be a group and let X be a solid set of maximal sub-
groups of G. Then N is an X-parafrattini normal subgroup of G if and only
if N = 〈N ∩ W g : g ∈ G〉 for each W ∈ PrefX(G).

Proof. Suppose that N = 〈N ∩ W g : g ∈ G〉 for each W ∈ PrefX(G). Let
N/K be a chief factor of G. Assume that N/K is X-complemented in G.
Then there exists a maximal subgroup M ∈ X of G such that G = MN and
N ∩ M = K. If W is an X-prefrattini subgroup of G such that W ≤ M , it
follows that W∩N ≤ M∩N = K. Hence N = 〈N∩W g : g ∈ G〉 ≤ K,contrary
to supposition. Therefore N/K is non-X-complemented in G. Hence N is X-
parafrattini.

Conversely, assume that N is an X-parafrattini normal subgroup of G. We
may suppose that N 	= 1. Let W ∈ PrefX(G) and L = 〈N ∩ W g : g ∈ G〉.
Suppose L < N . Let N/H be a chief factor of G such that L ≤ H. Since
N is X-parafrattini, we have that N/H is non-X-complemented in G. Note
that W ∩ N ≤ L ≤ H. Hence W avoids N/H. This implies that N/H is
X-supplemented. Let S be the system of maximal subgroups of G such that
W = W(G,X ∩ S) and M be an X-supplement of N/H in G such that
M ∈ S. Consider a chief series of G passing through H and N . Let S1, . . . , Sr

be the X-supplements of the chief factors of G above N such that Si ∈ S
(1 ≤ i ≤ r). Then WN/N =

⋂r
i=1 Si/N and WH/H =

⋂r
i=1(Si/H)∩ (M/H)

by Theorem 4.3.6. Therefore WH =
⋂r

i=1(Si∩M) = WN∩M = W (M∩N).
Since W ∩ N ∩ M = W ∩ N = W ∩ H, it follows that |H| = |M ∩ N | and so
H = M∩N. Hence M is an X-complement of N/H in G. This contradicts our
assumption. Consequently N = 〈N ∩Wg : g ∈ G〉 for each W ∈ PrefX(G). ��

The following result describes the normal closure of an X-prefrattini sub-
group.

Corollary 4.3.31. Let X be a solid set of maximal subgroups of group G. If
W ∈ PrefX(G), we have that 〈WG〉 = 〈W g : g ∈ G〉 = ParaX(G).

Proof. Write P = ParaX(G). Each abelian chief factor of G which is X-
complemented in G is avoided by every X-prefrattini subgroup of G by Co-
rollary 4.3.9. Since every chief factor H/K such that P ≤ K < H ≤ G is
abelian and X-complemented in G, it follows that W ≤ ParaX(G) for all
W ∈ PrefX(G). From Theorem 4.3.30, 〈WG〉 = P . ��

In [Haw67] an elegant theorem of factorisation of prefrattini subgroups of
soluble groups is proved. There T. O. Hawkes makes a strong use of the cover-
avoidance property. Here we present a similar factorisation in the general non-
soluble universe but, obviously, with no use of the cover-avoidance property.

Theorem 4.3.32. Let G be a group and let H be a Schunck class of the form
H = EΦ F, for some formation F. Consider a system of maximal subgroups X
of G. Then, if Y is a w-solid set of maximal subgroups of G, we have
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W
(
G, (X ∩ Y)a

H

)
= D W(G,X ∩ Y),

where D is an H-normaliser of G associated with X.

Proof. We argue by induction on the order of G. Obviously we can suppose
that Φ(G) = 1. Denote W ∗ = W

(
G, (X ∩ Y)a

H

)
and W = W

(
G,X ∩ Y

)
. By

Theorem 4.3.6, W ∗ is contained in W .
By Lemma 4.1.11, we know that D is contained in every H-abnormal max-

imal subgroup of G in X. Hence 〈D, W 〉 ≤ W ∗. If G ∈ H, then G = D and
(X ∩ Y)a

H = ∅. Thus, W ∗ = G = D. Therefore we may assume that G /∈ H.
Consider an H-critical maximal subgroup M of G in X such that D is an H-
normaliser of M associated with a system of maximal subgroups X(M) such
that XM ⊆ X(M). Then M supplements a minimal normal subgroup N of G.
If G is a simple group, then every maximal subgroup of G is H-abnormal and
then W ∗ = W and the theorem is true in this case. Hence we can assume that
N is a proper subgroup of G and N ∩ M 	= M .

If N is an (X∩Y)-Frattini minimal normal subgroup, then N ≤ W ≤ W ∗

and the assertion follows by induction. Hence we may suppose that M ∈X∩Y.
Moreover, arguing as in Lemma 1.2.23, we have that YM/(M ∩ N) =

{(S ∩ M)/(M ∩ N) : N ≤ S ∈ Y} is a w-solid set of maximal subgroups of
M/(M ∩ N). Thus YM = {S ∩ M : N ≤ S ∈ Y} is a w-solid set of maximal
subgroups of M . By induction,

W
(
M, (X(M) ∩ YM )a

H

)
= D W

(
M,X(M) ∩ YM

)
. (4.7)

Consider a chief series Γ of G through N . Then, by Theorem 4.3.6 (1), we
have that W = M ∩Si1 ∩ · · · ∩Sir , where the Sij are (X∩Y)-supplements of
chief factors in Γ over N . Observe that Γ ∩ M gives a piece of chief series of
M over N ∩ M . Moreover, again by Theorem 4.3.6 (1),

W
(
M,X(M) ∩ YM

)
(N ∩ M)/(N ∩ M) =

r⋂
j=1

(M ∩ Sij
)/(N ∩ M)

and then
W = W

(
M,X(M) ∩ YM

)
(N ∩ M).

Similarly,
W ∗ = W

(
M, (X(M) ∩ YM )a

H

)
(N ∩ M).

Hence, by taking the product with N ∩ M in both sides of the equality (4.7)
we obtain the required factorisation. ��

Motivated by [Tom75, Theorem 5.3], we present the following factorisation
involving H-normal maximal subgroups.

Theorem 4.3.33. Let G be a group and let F be a saturated formation. Con-
sider a system of maximal subgroups X of G. Then if Y is a w-solid set of
maximal subgroups of G we have that

W
(
G, (X ∩ Y)n

F

)
= W(G,X ∩ Y)GF.
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Proof. Since GF is contained in M , for every F-normal maximal subgroup M
of G, it follows that GF ≤ W

(
G, (X ∩ Y)n

F

)
. Since G/GF ∈ F, it is clear that

(X∩Y)n
F/GF = (X∩Y)/GF. Therefore W

(
G, (X∩Y)n

F

)
/GF = W

(
G/GF,(X∩

Y)n
F/GF

)
= W(G,X ∩ Y)GF/GF by Theorem 4.3.6 (2). ��

Corollary 4.3.34. Let G be a group and let F be a saturated formation. Con-
sider a system of maximal subgroups X of G. Then if Y is a w-solid set of
maximal subgroups of G we have that

G = W
(
G, (X ∩ Y)n

F

)
W
(
G, (X ∩ Y)a

F

)
.

Proof. Just notice that if D is an F-normaliser of G, then G = DGF. Now
apply the factorisations presented in Theorem 4.3.32 and Theorem 4.3.33. ��

The theory of prefrattini subgroups was continued by X. Soler-Escrivà in
her Ph. Doctoral Thesis at the Universidad Pública de Navarra, [SE02]. Her
work is another example of the progress produced by using non-arithmetical
properties, even in soluble groups. In its place all relations between maximal
subgroups of a group and maximal subgroups of its critical subgroups are
used thoroughly (see [ESE05]). This leads to the existence and properties
of some distributive lattices, generated by three types of pairwise permut-
able subgroups, namely hypercentrally embedded subgroups (see [CM98]),
F-normalisers, and subgroups of prefrattini type (see [ESE]).




