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Fitting classes and injectors

7.1 A non-injective Fitting class

After B. Fischer, W. Gaschütz, and B. Hartley’s result about the injective
character of the Fitting classes of soluble groups (Theorem 2.4.26), and bear-
ing in mind the extension of the projective theory to the general universe
of finite groups, it seemed to be reasonable to think about the validity of
Theorem 2.4.26 outside the soluble realm. It was conjectured then that if
F is an arbitrary Fitting class and G is a finite group, then InjF(G) 	= ∅.
In the eighties of the last century, a big effort of some mathematicians was
addressed to find methods to obtain injectors for Fitting classes in all finite
groups. These efforts were successful for a big number of Fitting classes and
they will be presented in Section 7.2. In this atmosphere, the construction of
E. Salomon [Sal] of an example of a non-injective Fitting class caused a deep
shock.

Salomon’s construction, never published, is based in a pull-back construc-
tion of induced extensions due to F. Gross and L. G. Kovács (see Section 1.1).
The aim of this section is to present the Salomon’s example in full detail.

We begin with a quick insight to the group A = Aut
(
Alt(6)

)
. Let D denote

the normal subgroup of inner automorphisms D ∼= Alt(6) of A. It is well-
known that the quotient group A/D is isomorphic to an elementary abelian
2-group of order 4 and A does not split over D, i.e. there is no complement of
D in A (see [Suz82]).

If u is an involution of Sym(6), the symmetric group of degree 6, then 〈u〉
is a complement of Alt(6) in Sym(6) and the element u acts on Alt(6) as an
outer automorphism.

Likewise, Alt(6) ∼= PSL(2, 9) but Sym(6) 	∼= PGL(2, 9) (see [Hup67, pages
183 and 184]). There exist elements of order 2 in PGL(2, 9) which are not

in PSL(2, 9) (for instance the coclass of the matrix
(

1
−1

)
in the quotient

group GL(2, 9)/ Z
(
GL(2, 9)

) ∼= PGL(2, 9)). If v is one of these involutions,
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310 7 Fitting classes and injectors

then 〈v〉 is a complement of PSL(2, 9) in PGL(2, 9) and the element v acts on
Alt(6) ∼= PSL(2, 9) as an outer automorphism.

The subgroup B = D〈u〉 ∼= Sym(6) and the subgroup C = D〈v〉 ∼=
PGL(2, 9) are normal subgroups of A of index 2. Clearly A = BC and
B ∩ C = D.

Let S be a non-abelian simple group. If x is an involution in S, define the
group homomorphism

α1 : B −→ S such that Ker(α1) = D, Bα1 = 〈x〉,

Put |S : Im(α1)| = |S|/2 = n1, and consider the right transversal

T1 = {s1 = 1, s2, . . . , sn1},

of Im(α1) in S and the transitive action

ρ1 : S −→ Sym(n1)

on the set of indices I1 = {1, . . . , n1}. For each i ∈ I1 and each s ∈ S,
sis = xi,ssj , for some xi,s ∈ Im(α1) and is

ρ1 = j. Write PS = Sρ1 ≤ Sym(n1)
and consider the monomorphism (see Lemma 1.1.26)

λ1 = λT1 : S −→ Im(α1) �ρ1 PS ,

defined by sλ1 = (x1,s, . . . , xn1,s)sρ1 , for any x ∈ S, and the epimorphism

ᾱ1 : W1 = B �ρ1 PS −→ Im(α1) �ρ1 PS

defined by
(
(b1, . . . , bn1)τ

)ᾱ1 = (bα1
1 , . . . , bα1

n1
)τ , for b1, . . . , bn1 ∈ B and τ ∈

PS . Write M1 = Ker(ᾱ1) = Dn1 ∼= Alt(6)n1 .
Construct the induced extension G1, defined by α1 (see Definition 1.1.27),

Eλ1 : 1 −→ M1 −→ G1
σ1−→S −→ 1

Recall that

G1 = {w ∈ W1 : wᾱ1 = sλ1 for some s ∈ S},

and
σ1 : G1 −→ S defined by wσ1 = s, where wᾱ1 = sλ1 .

The following diagram is commutative:

Eλ1 : 1 �� M1
��

id

��

G1
σ1 ��

��

S

λ1

��

�� 1

E : 1 �� M1
�� W1

ᾱ1 �� Im(α1) �ρ1 Ps
�� 1
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Then, applying Theorem 1.1.35, G1 splits over M1, since B splits over D.
For the group C we repeat the previous arguments to construct a similar

group G2. Let T be a non-abelian simple group. If y is an involution in T ,
define the group homomorphism

α2 : C −→ T such that Ker(α2) = D, Cα2 = 〈y〉.

Put |T : Im(α2)| = |T |/2 = n2, and consider the right transversal

T2 = {t1 = 1, t2, . . . , tn2}

of Im(α2) in T and the transitive action

ρ2 : T −→ Sym(n2)

on the set of indices I2 = {1, . . . , n2}. For each i ∈ I2 and each t ∈ T ,
tit = yi,ttj , for some yi,t ∈ Im(α2) and it

ρ2 = j.
With the obvious changes of notation, construct the induced extension

defined by α2 as in Definition 1.1.27. Then, for G2 = {w ∈ W2 = C �ρ2 PT :
wᾱ2 = tλ2 for some t ∈ T} and σ2 : G2 −→ T defined as above, we also have
that the following diagram is commutative

Eλ2 : 1 �� M2
��

id

��

G2
σ2 ��

��

T ��

λ2

��

1

E2 : 1 �� M2
�� W2

ᾱ2 �� Im(α2) �ρ2 PT
�� 1

Then, again by Theorem 1.1.35, G2 splits over M2 since C splits over D.
Finally, consider the homomorphism α : A −→ S × T such that bα =

(bα1 , 1), cα = (1, cα2) for any b ∈ B, c ∈ C. Then, Ker(α) = D and Im(α) =
Im(α1)× Im(α2). Put |S ×T : Im(α)| = |S|

2
|T |
2 = n1n2, and consider the right

transversal of Im(α) in S × T

T = T1 × T2

= {(s1, t1) = (1, 1), (s1, t2), . . . , (s1, tn2), (s2, t1), (s2, t2), . . . , (sn1 , tn2)}.

The transitive action ρ : S × T −→ Sym(n1n2) on the set of indices I = I1 ×
I2 = {(1, 1), . . . , (n1, n2)} (lexicographically ordered) gives P = (S × T )ρ =
PS × PT .

Consider the monomorphism

λ = λT : S × T −→ Im(α) �ρ P,

defined by

(s, t)λ =
(
(x1,s, y1,t), (x1,s, y2,t), . . . , (xn1,s, yn2,t)

)
(s, t)ρ
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for any s ∈ S, t ∈ T , the epimorphism

ᾱ : W = A �ρ P −→ Im(α) �ρ P

defined by(
(a(1,1), a(1,2), . . . , a(n1,n2))τ

)ᾱ = (aα
(1,1), a

α
(1,2), . . . , a

α
(n1,n2)

)τ

for a(1,1), a(1,2), . . . , a(n1,n2) ∈ A and τ ∈ P , and write M = Ker(ᾱ) = D� =
Dn1n2 ∼= Alt(6)n1n2 .

Construct the induced extension defined by the homomorphism α : A −→
S × T :

Eλ : 1 �� M ��

id

��

G

��

σ �� S × T ��

λ

��

1

E : 1 �� M �� W
ᾱ �� Im(α) �p (PS × PT ) �� 1

Then,

G = {w ∈ W = A �ρ P : wᾱ = (s, t)λ for some (s, t) ∈ S × T}

and σ : G −→ S × T defined by wσ = (s, t) such that wᾱ = (s, t)λ, for all
w ∈ G. Now applying Theorem 1.1.35, the group G does not split over M ,
since A does not split over D.

Every element w ∈ W can be written uniquely as

w = (a(1,1), . . . , a(n1,n2))(τ1, τ2)

where a(1,1), a(1,2), . . . , a(n1,n2) ∈ A for all (i, j) ∈ I, τ1 ∈ PS and τ2 ∈ PT . If
w ∈ G, and wᾱ = (s, t)λ, then

wᾱ = (aα
(1,1), . . . , a

α
(n1,n2)

)(τ1, τ2)

= wσλ

=
(
(x1,s, y1,t), (x1,s, y2,t), . . . , (xn1,s, yn2,t)

)
(s, t)ρ

and aα
(i,j) = (xi,s, yj,t), for all (i, j) ∈ I, sρ1 = τ1 and tρ2 = τ2.

Proposition 7.1.1. The group W possesses subgroups W(1) and W(2) which
are isomorphic to W1 and W2, respectively.

Proof. Let W(1) be the subset of all elements w in W such that

1. a(i,1) = a(i,2) = · · · = a(i,n2), for all i = 1, . . . , n1,
2. a(i,j) ∈ B, for all (i, j) ∈ I, and
3. τ2 = 1.
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Then W(1) is a subgroup of W and the map ψ1 : W1 −→ W(1) such that(
(b1, . . . , bn1)τ

)ψ1 is the element w ∈ W(1) such that

1. a(i,1) = a(i,2) = · · · = a(i,n2) = bi, for all i = 1, . . . , n1,
2. τ1 = τ and τ2 = 1,

is a group isomorphism. Put M(1) = Mψ1
1 .

A similar argument and construction holds for W2. ��

Proposition 7.1.2. The group G possesses two subgroups which are iso-
morphic to G1 and G2, respectively.

Proof. Consider the subgroup G(1) = W(1) ∩ G and note that

G(1) = {x ∈ W(1) : xᾱ = (s, 1)λ for some s ∈ S}.

Note that the kernel of the group epimorphism

σ(1) = σπ1 : G(1) −→ S,

where π1 : S × T −→ S is the canonical projection, is M(1) = Mψ1
1 , as in

Proposition 7.1.1. Define the group homomorphism

β1 = ι(1)ψ
−1
1 : G(1) −→ W1,

where ι(1) : G(1) −→ W(1) is the canonical inclusion and ψ1 as in Proposi-
tion 7.1.1.

Consider an element x = (a(1,1), . . . , a(n1,n2))(τ1, 1) ∈ G(1). Then, if xᾱ =
(s, 1)λ, we have that sρ1 = τ1 and aα

(i,j) = (xi,s, 1) ∈ S×1, for all i = 1, . . . , n1,
i.e. a(i,j) ∈ B and aα1

(i,j) = xi,s, for all i = 1, . . . , n1. Observe that

xᾱ = (s, 1)λ =
(
(x1,s, 1), (x1,s, 1) . . . , (xn1,s, 1)

)
(sρ1 , 1),

and

xβ1ᾱ1 = xι(1)ψ
−1
1 ᾱ1 = xψ−1

1 ᾱ1 =
(
(a(1,1), . . . , a(n1,1))τ1

)ᾱ1 =
= (aα1

(1,1), . . . , a
α1
(n1,1))τ1 = (x1,s, . . . , xn1,s)sρ1 =

= sλ1 = (s, 1)π1λ1 = xσπ1λ1 = xσ(1)λ1 .

Then the diagram

1 �� M1
��

id

��

G(1)

σ(1)
��

β1

��

S ��

λ1

��

1

1 �� M1
�� W1

ᾱ1 �� Im(α1) �ρ1 Ps
�� 1

is commutative.
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By the universal property, Theorem 1.1.23 (2), we have that G(1) is iso-
morphic to G1.

Analogously we can proceed with G2 and it appears a subgroup G(2) in
W(2) which is isomorphic to G2. ��

Let S and T be two non-abelian simple groups. Recall that the class F =
D0(S, T, 1) composed by the trivial group and all groups which are direct
products of the form

S1 × · · · × Sn × T1 × · · · × Tm,

where Si
∼= S, Tj

∼= T , 1 ≤ i ≤ n, 1 ≤ j ≤ m, for some positive integers n and
m, is a Fitting formation (see Lemma 2.2.3).

Theorem 7.1.3. Let S and T be two non-abelian simple groups. Suppose that
S and T satisfy the three following conditions:

1. no subgroup of S is isomorphic to T ,
2. no subgroup of T is isomorphic to S, and
3. either S or T are isomorphic to no subgroup of a direct product of copies

of the alternating group Alt(6) of degree 6.

Consider the Fitting formation F = D0(S, T, 1). Then the group G, constructed
above, has no F-injectors.

Proof. The group G possesses two subgroups, S̃ and T̃ , which are isomorphic
to S and T , respectively. Write G/M = (H1/M) × (H2/M), with H1/M ∼= S
and H2/M ∼= T . Observe that S̃M/M ∼= S̃/(S̃∩M) = S̃, since S̃∩M = 1, by
condition 3. If (H1/M)∩(S̃M/M) = 1, then the group G/H1

∼= T would have
a subgroup isomorphic to S, and this is not possible by Condition 2. Hence
H1 = S̃M . A similar argument with T̃ and H2 leads to H2 = T̃M . Both H1

and H2 are maximal normal subgroups of G.
We observe that MaxF(S̃M) = {U : UM = S̃M,U ∼= S}. If U ∈

MaxF(S̃M), then U ∩ M = 1 by condition 3. Since U ∈ F and UM ≤ S̃M ,
we have that U ∼= S and UM = S̃M .

Similarly MaxF(T̃M) = {V : V M = T̃M, V ∼= T}.
Suppose that X is an F-injector of G. Then, the subgroup X∩ S̃M = R1 is

F-maximal in S̃M . Hence R1
∼= S. Likewise, X∩ T̃M = R2

∼= T . Hence R1×R2

is a normal subgroup of X and R1×R2
∼= S×T . Moreover, (R1×R2)∩M = 1.

Since |G| = |M ||S × T | = |M ||R1 × R2|, we conclude that R1 × R2 is a
complement of M in G, i.e. G splits over M . But this is not true. Therefore
the group G has no F-injectors and F is a non-injective Fitting class. ��

Remark 7.1.4. The simple groups S = Alt(7) and T = PSL(2, 11) satisfy the
above conditions 1, 2, and 3.



7.2 Injective Fitting classes 315

7.2 Injective Fitting classes

We have proved in Corollary 2.4.28 that every Fitting class F is injective in
the universe FS. In fact, in the attempt of investigating classes of groups,
larger than the soluble one, in which there exist F-injectors for a particular
Fitting class F, the first remarkable contribution comes from A. Mann in
[Man71]. There, following some ideas due to B. Fischer and E. C. Dade (see
[DH92, page 623]), it is proved that in every N-constrained group G, there
exists a single conjugacy class of N-injectors and each N-injector is an
N-maximal subgroup containing the Fitting subgroup. A group G is said to
be N-constrained if CG

(
F(G)

)
≤ F(G). It is well-known that every soluble

group is N-constrained (see [DH92, A, 10.6]).
In [BL79] D. Blessenohl and H. Laue proved that the class Q of all quasin-

ilpotent groups is an injective Fitting class in E. In fact they prove something
more (see [DH92, IX, 4.15]).

Theorem 7.2.1 (D. Blessenohl and H. Laue). Every finite group G has
a single conjugacy class of Q-injectors, and this consists of those Q-maximal
subgroups of G containing F∗(G).

In the decade of the eighties of the last century there was a considerable
amount of contributions to obtain more injective Fitting classes. P. Förster
proved the existence of a certain non-empty characteristic conjugacy class
of N-injectors in every finite group in [För85a]. Later M. J. Iranzo and F.
Pérez-Monasor obtained the existence of injectors in all finite groups with
respect to various Fitting classes, including a new type of N-injectors. Their
investigations, together with M. Torres, gave light to a “test” to prove the
injectivity of a number of Fitting classes. Some of the most interesting res-
ults obtained from this test have been published recently by M. J. Iranzo, J.
Lafuente, and F. Pérez-Monasor. Their achievements illuminate the validity
of a L. A. Shemetkov conjecture saying that any Fitting class composed of
soluble groups is injective.

We present here some of the fruits of these investigations.

Proposition 7.2.2. Let F be a Fitting class and G be a group.

1. A perfect comonolithic subnormal subgroup E of G is an F-component of
G if and only of EGF/GF is a component of G/GF.

2. If E is an F-component of G, the F-maximal subgroups of E containing
EF are F-injectors of E.

Proof. 1. Let E be a perfect comonolithic subnormal subgroup of a group G.
Suppose that E is an F-component of G. Then N(E) is a subnormal
F-subgroup of G, i.e. N(E) ≤ GF. Therefore EGF/GF is isomorphic to a
quotient group of E/ N(E), and then EGF/GF is a quasisimple subnormal
subgroup of G/GF. Conversely, if EGF/GF is a component of G/GF, then
E/(E ∩GF) is a quasisimple group. Since E is subnormal in G, EF = E ∩GF
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by Remark 2.4.4. If E ∈ F, then E is contained in GF, contrary to supposi-
tion. Hence EF ≤ Cosoc(E). Moreover, Cosoc(E)/EF = Z(E/EF). Therefore
N(E) = [E, Cosoc(E)] ≤ EF. Hence N(E) ∈ F.

2. Suppose E is an F-component of G and V is an F-maximal subgroup of
E such that EF ≤ V . Since N(E) ≤ EF ≤ Cosoc(E) and Cosoc(E)/ N(E) is
abelian, EF is the F-injector of Cosoc(G). Moreover, V ∩ Cosoc(E) is normal in
Cosoc(E) and then is a subnormal F-subgroup of E. Hence V ∩ Cosoc(E)=EF

and V is an F-injector of E. ��

Proposition 7.2.3. Let K be a subnormal subgroup of a group G. If E is an
F-component of G such that E is not contained in K, we have that [K, E] ≤
N(E).

Proof. Denote M = Cosoc(E). By Theorem 2.2.19, the subgroup K normal-
ises E. Therefore K normalises M . Clearly K is subnormal in KE and KM
is normal in KE. Since K ∩E is subnormal in the comonolithic group E and
E 	≤ K, we have that K ∩ E ≤ M . Therefore

[K, E] ≤ [KM, E] ≤ KM ∩ E = M(K ∩ E) ≤ M.

Hence
[K,E, E] = [E, K,E] ≤ [M, E] = N(E)

and the Three-Subgroups Lemma (see [KS04, 1.5.6]) yields that [E,K] =
[E,E,K] ≤ N(E). ��

Now we are ready to state and prove the result of Iranzo, Pérez-Monasor,
and Torres.

Theorem 7.2.4 ([IPMT90]). Let F be a Fitting class and G a group. Let
{E1, . . . , En} be a set of F-components of G which is invariant by conjugation
of the elements of G. For each i = 1, . . . , n, let Ji be an F-injector of Ei.
Consider the subgroup J = 〈J1, . . . , Jn〉.

Then InjF
(
NG(J)

)
⊆ InjF(G).

Proof. Note that, by Proposition 7.2.2 (2) and Proposition 7.2.3, J is a normal
product J = J1 · · ·Jn, and therefore J ∈ F. Let H be an F-injector of NG(J).
We have to prove that for any subnormal subgroup S of G, the subgroup
H ∩ S is F-maximal in S. To do that we consider an F-subgroup K of S such
that H ∩ S ≤ K and argue that H ∩ S = K.

We may assume without loss of generality that the F-components E1, . . . ,
Em are those contained in S, for m ≤ n, and the other ones are not in S. This
implies that {E1, . . . , Em} is a set of F-components of S which is invariant by
conjugation of the elements of S.

Observe that J ≤ NG(J)F ≤ H. Therefore, for any i = 1, . . . , m, we have
that

Ji ≤ J ∩ Ei ≤ H ∩ Ei ≤ H ∩ S ∩ Ei ≤ K ∩ Ei ∈ F,
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since K ∩ Ei is subnormal in K. Therefore

Ji = J ∩ Ei = H ∩ Ei = K ∩ Ei,

since Ji ∈ MaxF(Ei), i = 1, . . . , m.
Observe that if x ∈ K, for every i ∈ {1, . . . , m}, there exists an index

j ∈ {1, . . . , m} such that

Jx
i = (J ∩ Ei)x = K ∩ Ex

i = K ∩ Ej = Jj .

Choose now j ∈ {m+1, . . . , n}. Applying Proposition 7.2.3, it can be deduced
that [Jj , S] ≤ [Ej , S] ≤ N(Ej) ≤ Jj . This is to say that S normalises Jj for
every j ∈ {m + 1, . . . , n}. Therefore

K ≤ NS(J1 . . . Jm) ≤ NS(J).

Hence H ∩ S ≤ K ≤ NS(J) and then H ∩ S = H ∩ NS(J).
The subgroup NS(J) is subnormal in NG(J). Since H ∈ InjF

(
NG(J)

)
, we

have that H∩ S ∈ MaxF(NS(J)). This implies that H ∩ S = K, as desired. ��

Theorem 7.2.4 is a crucial result when proving the injectivity of a Fitting
class by inductive arguments: with the above notation, if InjF

(
NG(J)

)
	= ∅,

then the group G possesses F-injectors. Equipped with this theorem we can
obtain several results of M. J. Iranzo, J. Lafuente, and F. Pérez-Monasor in
[ILPM03] and [ILPM04], which go much further on the theorems about the
existence of injectors.

Lemma 7.2.5 (see [ILPM03]). Let G be a group and m a preboundary of
perfect groups. Set B = Fit

(
Cosoc(Z) : Z ∈ m

)
.

1. If X, Y ∈ bm(G), then
a) Cosoc(X) = XB, [X,Y ] ≤ X ∩ Y and (XY )B = XBYB,
b) X 	= Y if and only if XGB/GB 	= Y GB/GB.

2. Suppose that bm(G) = {X1, . . . , Xn} 	= ∅ and write E = Em(G); then
a) E = X1 . . . Xn and EB = (X1)B . . . (Xn)B,
b) E/EB

∼= X1/(X1)B × · · · × Xn/(Xn)B is a direct product of non-
abelian simple groups.

Proof. 1a. By definition of B, we have that Cosoc(X) ∈ B. Assume that
X ∈ B. Then X ∈ Sn

(
Cosoc(Z) : Z ∈ m

)
, by [DH92, XI, 4.14]. But this is

not possible since m is subnormally independent. Therefore Cosoc(X) = XB.
Trivially, if X = Y , then [X, Y ] ≤ X ∩ Y . Suppose that X 	= Y . Observe

that, since m is subnormally independent, we have that X 	≤ Y and Y 	≤ X. By
Theorem 2.2.19, Y normalises X and X normalises Y . Hence [X,Y ] ≤ X ∩Y .

If X 	= Y , then X ∩ Y ≤ Cosoc(X) ∩ Cosoc(Y ) = XB ∩ YB. Moreover,

XYB ∩ Y XB = (X ∩ Y XB)YB = (X ∩ Y )XBYB = XBYB
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and then
XY/XBYB = XYB/XBYB × Y XB/XBYB

is a direct product of non-abelian simple groups. Since (XY )B/XBYB ≤
Z(XY/XBYB) by [DH92, IX, 1.1], we conclude that (XY )B = XBYB.

1b. Observe that XGB/GB
∼= X/(X ∩ GB) = X/XB is a non-abelian

simple group. Suppose that X 	= Y and XGB/GB = Y GB/GB. No-
tice that [X, Y ] ≤ X ∩ Y ∈ B, and then, XGB/GB = (XGB/GB)′ =
[XGB/GB, Y GB/GB] = [X, Y ]GB/GB = 1. This is a contradiction.

Part 2 follows immediately from 1. ��

Lemma 7.2.6 (M. J. Iranzo, J. Lafuente, and F. Pérez-Monasor, un-
published). Let F be a Fitting class and n a subclass of b̄(F). Then

Fit(F, n) = F · Fit n =
(
G ∈ E : G = GF En(G)

)
.

Proof. Let G be a group. If X ∈ bn(G), then clearly Cosoc(X) = XF.
Write X =

(
G ∈ E : G = GF En(G)

)
and Y = Fit n. For each group G,

the subgroup En(G) is in Fit n, i.e. En(G) ≤ GY. Therefore X ⊆ F · Fit n ⊆
Fit(F, n). Let us prove that X is a Fitting class.

If G ∈ X, then G/GF
∼= En(G)/En(G)F is a direct product of non-abelian

simple groups by Lemma 7.2.5 (2b). Let N be a normal subgroup of G. Then
bn(N) ⊆ bn(G). Thus, if bn(N) = {X1, . . . , Xr}, then

NGF/GF = X1GF/GF × · · · × XrGF/GF

and then N = N∩NGF = N∩X1 . . . XrGF = N∩En(N)GF = En(N)NF ∈ X.
If N and M are normal subgroups of a group G = NM and N, M ∈ X,

then G = NM = NF En(N)MF En(M) ≤ GF En(G). Hence G ∈ X.
Therefore X is a Fitting class. It is clear that F and n are contained in X.

Hence X = Fit(F, n). ��

Lemma 7.2.7. Let T be a Fitting class such that T = TS. Consider F =
Tb = Fit

(
Cosoc(X) : X ∈ b(T)

)
. Then b(T) = b̄(T) ⊆ b̄(F).

Proof. Let G be a group in b(T). Then G is a comonolithic perfect group
and Cosoc(G) ∈ F. If G ∈ F, then G ∈ Sn

(
Cosoc(X) : X ∈ b(T)

)
by [DH92,

XI, 4.14]. This is to say that there exists a group X ∈ b(T) such that G is a
proper subnormal subgroup of X. In particular G ∈ T, and this contradicts
our assumption. Hence G ∈ b̄(F). ��

Theorem 7.2.8. Let T be a class of groups. The following statements are
equivalent:

1. T is a Fitting class such that T = TS.
2. T = (G ∈ E : GX ∈ F) for a pair of Fitting classes X and F such that

F = X ∩ FA.

In this case, for each group G, we have GT = CG(GX/GF).
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Proof. 1 implies 2. Set m = b(T), and consider the Fitting classes F = Tb and
X = Fitm. Clearly F ⊆ X∩T. Since T = TS, we have that m = b̄(T) ⊆ b̄(F),
by the above lemma. Then we can apply Lemma 7.2.6 and conclude that

X = Fit(F,m) =
(
G ∈ E : G = GF Em(G)

)
.

If G ∈ X∩FA, then G/GF
∼= Em(G)/

(
Em(G)∩GF

)
and this group is abelian

and a direct product of non-abelian simple groups, by Lemma 7.2.5 (2b).
Hence G ∈ F, and then F = X ∩ FA.

Set H = (G ∈ E : GX ∈ F). If a group G ∈ H \T, there exists a subnormal
subgroup N of G such that N ∈ m. Thus N ≤ GX ∈ F ⊆ T, and this is a
contradiction. Hence H ⊆ T. Conversely if G is a group in T and N = GX,
then N = NFEm(N). But since T is a Fitting class, Em(G) = 1 = Em(N).
Then N ∈ F. Therefore G ∈ H. Hence H = T.

2 implies 1. We see that, under these hypotheses, the class T is a Fitting
class. Let N be a normal subgroup of a T-group G. Clearly NX ≤ GX ∈ F, and
then N ∈ T. Consider now a group G = NM such that N and M are normal
T-subgroups of G. Then NX, MX ∈ F and the subgroup F = NXMX ∈ F. By
[DH92, IX, 1.1], we have that GX/F ≤ Z(G/F ), and then GX ∈ X ∩ FA = F.
Therefore G ∈ T. Thus, T is a Fitting class.

Suppose that N is a normal T-subgroup of a group G, such that G/N ∈ A.
Then NX ∈ F. Since GX/NX = GX/(N ∩ GX) ∼= NGX/N ∈ A, we have that
GX ∈ X ∩ FA = F. Therefore G ∈ T. This implies that T = TS.

Finally, observe that in this situation F = X∩T. Therefore GF = GT ∩ GX.
Thus GT ≤ CG(GX/GF) = C. Obviously (C ∩ GX)/GF is an abelian group
and then CX = C ∩GX ∈ F, since F = X∩FA. Therefore C ∈ T and C = GT.

��

Corollary 7.2.9. Let T be a Fitting class such that T = TS. Then

Fit
(
b(T)

)
∩ T = Tb.

Proof. Set m = b(T) and consider again the Fitting classes F = Tb and
X = Fit m. By the above arguments, if a group G is in X ∩ T, then G =
GF Em(G) ∈ T. Hence Em(G) ∈ T, and this implies that Em(G) = 1. Thus
G ∈ F. Therefore X ∩ T = F. ��

The following proposition is motivated by a result due to W. Gaschütz
(see [DH92, X, 3.14]).

Proposition 7.2.10. Let F and G be two Fitting classes in the same Lockett
section such that F ⊆ G. For each group G denote

ψ : GG/GF −→ (GGG′)/(GFG′)

the natural epimorphism. If p is a prime divisor of |Ker(ψ)|, then GSp 	= G.



320 7 Fitting classes and injectors

Proof. Observe that Ker(ψ) = (GG/GF)∩(G/GF)′. Let p be a prime divisor of
|Ker(ψ)| and suppose that GSp = G. If P/GF is a Sylow p-subgroup of G/GF,
then P ∈ FSp ⊆ GSp = G. Since F and G are in the same Lockett section
and F ⊆ G, the groups P/PF and GG/GF are abelian, by [DH92, X, 1.21].
Thus P ′ ≤ PF and P ∩ GG is a normal subgroup of GG. Hence P ′ ∩ GG ∈ F
and P ′ ∩ GG is subnormal in GG. Therefore P ′ ∩ GG ≤ (GG)F = GF. Then
(P/GF)′ ∩ (GG/GF) = 1. By [DH92, X, 1.21] again, GG/GF ≤ Z(G/GF) and
then

(P/GF) ∩ (G/GF)′ ∩ (GG/GF) ≤ (P/GF) ∩ (G/GF)′ ∩ Z(G/GF) ≤ (P/GF)′

by [Hup67, IV, 2.2]. Thus, (P/GF) ∩ (G/GF)′ ∩ (GG/GF) = 1 and this con-
tradicts the choice of P . ��

Lemma 7.2.11. Let T be a Fitting class such that TS = T. Then

Tb ⊆ T∗ ⊆ T = T∗.

Proof. By [DH92, X, 1.8], we have that T = T∗. If X ∈ b(T), then X is perfect.
By Proposition 7.2.10, XT = XT∗ . Then Cosoc(X) ∈ T∗ and Tb ⊆ T∗. ��

Theorem 7.2.12 (see [ILPM04]). Let T be a Fitting class such that TS =
T. The correspondence F −→ F · Fit

(
b(T)

)
, for every Fitting class F ∈

Sec(Tb,T), defines a bijection

Sec(Tb, T) −→ Sec Fit
(
b(T)

)
,T · Fit

(
b(T)

)
whose inverse is defined by G −→ G ∩ T, for every G ∈ Sec Fit

(
b(T)

)
, T ·

Fit
(
b(T)

)
.

Moreover, the restriction of this bijection to the Lockett section Locksec(T)
gives a bijection

Locksec(T) −→ Locksec T · Fit
(
b(T)

)
.

Proof. Set m = b(T), M = Fitm, B = Tb and R = T · M.
If F ∈ Sec(B,T), then F · M is a Fitting class by [DH92, XI, 4.7] and

Lemma 7.2.6. Obviously F · M ∈ Sec(M, R) and F ⊆ F · M ∩ T. Let G be
a group in F · M ∩ T. Then GM ∈ M ∩ T = B, by Corollary 7.2.9. Hence
G = GFGM ∈ F. Thus, F = F · M ∩ T.

On the other hand, if G ∈ Sec(M, R), then T ∩ G ∈ Sec(B,T) by Corol-
lary 7.2.9 and (T ∩ G) · M ⊆ G. Let G be a group in G. Then GT = GT∩G

and, since G ⊆ R, we have that

G = GTGM = GT∩GGM ∈ (T ∩ G) · M

and then G = (T ∩ G) · M.

(
(

(

)
)

)
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Hence it only remains to prove the properties of the second bijection. We
have to prove that R is a Lockett class and R∗ = T∗ · M.

If G and H are groups, then it is clear that Em(G×H) = Em(G)×Em(H).
Since T is a Lockett class, by Theorem 7.2.11, we also have that (G×H)T =
GT × HT. Hence

(G × H)R = (G × H)T Em(G × H) = GT Em(G) × HT Em(H) = GR × HR,

and R is a Lockett class.
Let s(R) denote the largest Fitting subclass of R which has a generating

system of perfect groups. Then M ⊆ s(R) ⊆ R∗. Hence T∗ ·M ⊆ R∗. On the
other hand, for an arbitrary group G, we have that

[GR, G] = [GTGM, G] = [GT, G][GM, G] ≤ GT∗GM,

by [DH92, X, 1.3]. Hence T∗ ·M ∈ Locksec(R) by [DH92, X, 1.21]. Therefore
T∗ · M = R∗ and we conclude the proof. ��

Lemma 7.2.13. Let T be a Fitting class such that T = TS.

1. Set M = Fit
(
b(T)

)
. If U is an M-subgroup of a group G containing GM,

then U is a subgroup of GMGT.
2. The class T · Fit

(
b(T)

)
is a normal Fitting class.

Proof. Denote m = b(T) and B = Tb.
1. We can assume that G /∈ T and then bm(G) = {X1, . . . , Xn} is

a non-empty set and Em(G) = X1 · · ·Xn ≤ GM ≤ U . Hence bm(U) =
{X1, . . . , Xn, . . . , Xt}, for n ≤ t, and Em(U) = Em(G)L, for L = Xn+1 · · ·Xt.
As in the proof of Theorem 7.2.8, GM = GB Em(G) and U = UB Em(U).

Since Xi 	≤ UB for each index i, we have that [UB, Xi] ≤ UB∩ Xi ≤ (Xi)B.
Thus

[Em(G), UB] = [X1, UB] · · · [Xn, UB] ≤ (X1)B · · · (Xn)B = Em(G)B,

by Lemma 7.2.5 (2a). Analogously, by Lemma 7.2.5 (1a), [Xi, L] ≤ Xi ∩ L ≤
(Xi)B, for each i. Hence [Em(G), L] ≤ Em(G)B. Therefore

[GM, UBL] = [GB Em(G), UBL] ≤ GB[Em(G), UB][Em(G), L] ≤ GB.

By Theorem 7.2.8, UBL ≤ GT and U = UB Em(G)L ≤ Em(G)GT = GMGT.
2. To see that the class R = T · M is a normal Fitting class consider a

group G and suppose that U is an R-subgroup such that GR ≤ U ≤ G. By
Statement 1, UM ≤ GMGT = GR. On the other hand, using the arguments
of the proof of Statement 1, [Em(G), UT] ≤ UT ∩ Em(G) ≤ Em(G)B. Then

[GM, UT] = [GB Em(G), UT] ≤ GB[Em(G), UT] ≤ GB Em(G)B ≤ GB.

Hence UT ≤ CG(GM/GB) = GT, by Theorem 7.2.8. Thus, U = UMUT ≤ GR

and U = GR. ��
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Lemma 7.2.14. If T is a Fitting class such that T = TS, X is a group in
b(T) and F ∈ Locksec(T), then XF is not F-maximal in X.

Proof. If F ∈ Locksec(T), then, in particular, Tb ⊆ F ⊆ T by Lemma 7.2.11.
Moreover b(T) ⊆ b(F) by [DH92, XI, 4.7]. Since X ∈ b(T), then Cosoc(X) =
XF. Suppose that XF is F-maximal in X. Consider a soluble subgroup Y/XF

of X/XF. Then Y ∈ TS = T, and by maximality of XF in X, we have that
XF = YF. Since F ∈ Locksec(T), the quotient Y/XF is abelian, by [DH92, X,
1.21]. Then X/XF is soluble, and this is a contradiction. ��

Theorem 7.2.15 (see [ILPM04]). Let T be a Fitting class such that T =
TS. If H ∈ Sec T∗, T · Fit

(
b(T)

)
, then

1. H is an injective Fitting class;
2. H is a normal Fitting class if and only if H ∈ Locksec T · Fit

(
b(T)

)
.

Proof. 1. Write m = b(T), F = T ∩ H and G = F · Fit m. If H ∈ H, then
H = HT Em(H), by Lemma 7.2.6, since H ⊆ T ·Fitm. Thus, HT ∈ H∩T = F.
Hence H = HF Em(H) ∈ F · Fit m = G. Hence H ⊆ G.

To see that H is injective, let G be a group and let us prove that G possesses
H-injectors. If bm(G) = ∅, then G ∈ T. Hence GF = GH. Since F ∈ Locksec(T)
by Theorem 7.2.12, the quotient G/GH is abelian. Therefore GH is a normal
H-injector of G.

Assume that bm(G) 	= ∅. Since GH is a normal subgroup of G we can
assume that bm(GH) = {X1, . . . , Xr} and bm(G) = {X1, . . . , Xn}, for r ≤ n.
If r = n, then GH = GF Em(GH) = GF Em(G) = GG. By Theorem 7.2.12,
G ∈ Locksec T ·Fit

(
b(T)

)
. Since, by Lemma 7.2.13, T ·Fit

(
b(T)

)
is a normal

Fitting class , we deduce that so is G , by [DH92, X, 3.3]. Therefore GG is
G-injector of G and GH is H-injector of G.

Now assume that r < n. Fix an index i ∈ {r + 1, . . . , n}. Clearly, Xi is
a perfect comonolithic group such that Xi /∈ H. In addition, Cosoc(Xi) ∈
H, by virtue of Lemma 7.2.11. In particular, Xi is an H-component of G,
By Proposition 7.2.2, Xi possesses H-injectors. Consider H = Hr+1 · · ·Hn,
with Hi ∈ InjH(Xi) (note that Hi normalises Hj , i, j ∈ {r + 1, . . . , n}, by
Lemma 7.2.3). By induction on the order of G, if NG(H) is a proper subgroup
of G, then NG(H) possesses H-injectors. Then G possesses H-injectors by
Theorem 7.2.4. Therefore we can suppose that H is a normal subgroup of G.
Then Hi is a normal subgroup of Xi and then Hi = Cosoc(Xi) = (Xi)H. Thus
(Xi)H is an F-maximal subgroup of Xi, which contradicts Lemma 7.2.14.

2. It is shown in Theorem 7.2.12 that T·Fitm is a Lockett class. Moreover,
by Lemma 7.2.13, it is a normal Fitting class. If H ∈ Locksec(T · Fitm), then
H is also a normal Fitting class by [DH92, X, 3.3]. For the converse, consider
H /∈ Locksec(T·Fitm). Observe that (T·Fitm)∗ = T∗·Fitm, by Theorem 7.2.12
and then Fitm 	⊆ H. Let X be a group in m \ H. Then X is a perfect and
comonolithic group and Cosoc(X) ∈ H∩T = F. Hence XF = Cosoc(X). Since

)
)

)

(
(

(
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T∗ is contained in F, it follows that F ∈ Locksec(T). By Lemma 7.2.14, XF is
not F-maximal in X. Therefore H is not a normal Fitting class. ��

Corollary 7.2.16 (see [ILPM04]). If F is a Fitting class in Locksec(S),
then F is injective.

Proof. If F ∈ Sec S∗,S · Fit
(
b(S)

)
= Sec S∗, S∗ · Fit

(
b(S)

)
, then F is

an injective Fitting class. In particular if F ∈ Locksec(S) = {F : S∗ ⊆ F ⊆
S = S∗}, then F is injective. ��

Remarks 7.2.17. The example of a non-injective Fitting class in Section 7.1
affords counterexamples to possible extensions of Theorem 7.2.15:

1. Fitting classes H ∈ Sec Tb,Fit
(
b(T)

)
need not be injective;

2. if T = TS, then Fit
(
b(T)

)
need not be injective;

3. Fitting classes H ∈ Sec Tb, Fit
(
b(T)

)
need not be normal. There are

normal Fitting classes which does not belong to Sec Tb, Fit
(
b(T)

)
.

Proof. Let S and T be non-abelian simple groups such that D0(S, T, 1) is a
non-injective Fitting class.

1. Let R be a non-abelian simple group and consider the regular wreath
product W = (S×T ) �R. Then W is a perfect comonolithic group (see [DH92,
A, 18.8]). Hence m = (W ) is a preboundary and T = h(m) is a Fitting class
such that T = TS by Theorem 2.4.12 (3). Note that Tb = Fit

(
Cosoc(W )

)
=

D0(S, T ) is not injective.
2. If m = (S, T, 1) and T = h(m), then T = TS and Fit

(
b(T)

)
=

D0(S, T, 1) is a non-injective Fitting class.
3. Let D denote the class of all direct products of non-abelian simple

groups. Let E and F be any two non-abelian simple groups. The regular
wreath product W = E � F is a perfect comonolithic group. Set m = (W ),
T = h(m) and H = S∗D. Then Tb = D0(E, 1) ⊆ H. Moreover, H is the
smallest normal Fitting class, by [DH92, X, 3.27], and then H ⊆ T ·Fit

(
b(T)

)
by Lemma 7.2.13. If R is a non-abelian simple group, R 	∼= F , then the regular
wreath product G = E �R ∈ T. The base subgroup is E� = GH and G/GH

∼= R
is non-abelian. Therefore T∗ 	⊆ H, by [DH92, X, 1.2]. Clearly Fit

(
b(T)

)
=

Fit(W ) 	⊆ H. Note that Tb is not normal. ��

Corollary 7.2.18. If F is a Fitting class such that FS = F, then F is inject-
ive. In particular, the class S of all soluble groups is injective.

Corollary 7.2.19. A group G possesses a single conjugacy class of S-inject-
ors if and only if G is soluble.

Proof. Applying Theorem 2.4.26, only the necessity of the condition is in
doubt. Assume that a group G possesses a single conjugacy class of
S-injectors. Let p and q be two different primes dividing the order of ES(G)

( (

(
( (

) )

)
) )
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and let P and Q be a Sylow p-subgroup and a Sylow q-subgroup of ES(G)
respectively. Applying Proposition 7.2.2 (2) and Theorem 7.2.4, there exist
S-injectors V and W of G such that P ≤ V and Q ≤ W . Since V and W are
conjugate in G and ES(G) is normal in G, it follows that V ∩ES(G) contains
a Sylow q-subgroup of ES(G) for each prime q dividing |ES(G)|. Therefore
ES(G) is contained in V and so ES(G) = 1. This yields that G is soluble. ��

Theorem 7.2.20. Let X be a class of quasisimple groups and consider the
class

K(X) = (G : every component of G is in X).

Then K(X) is an injective Fitting class.

Proof. Let X be a class of quasisimple groups and denote K = K(X). We first
prove that K is a Fitting class.

If G ∈ K and N is a normal subgroup of G, then every component of N is
a component of G. Hence every component of N is in X and then N ∈ K.

Suppose that a group G is product G = NM , where N and M are normal
K-subgroups of G. Let E be a component of G. Assume that E is not contained
in M and E is not contained in N . Applying Proposition 7.2.3, it follows that
E centralises MN . Hence E is central in G. This is a contradiction. Therefore
either E is contained in M or E is contained in N . Hence E belongs to X. It
implies that G ∈ K.

Let E be a component of a group G ∈ KS. Then E ∈ KS. Since E is
perfect, it follows that E ∈ K. Hence K = KS and therefore K is injective by
Corollary 7.2.18. ��

Let K be a Fitting class as in Theorem 7.2.20. By Proposition 2.4.6 (5)
and Proposition 2.4.6 (2), F �K �S = F �K for each Fitting class F. Hence we
have the following:

Corollary 7.2.21. Let X be a class of quasisimple groups and consider the
class K = K(X) as in Theorem 7.2.20. Then F �K is an injective Fitting class
for any Fitting class F.

Note that [För87, 2.5(b)] is a consequence of the above corollary.
In the following, we describe another injective Fitting class, the class of

all F-constrained groups.

Proposition 7.2.22. Let F be a Fitting class. In a group G, the following
statements are equivalent:

1. CG(GF) ≤ GF,
2. F∗(G) ∈ F.

Proof. 1 implies 2. Suppose that E is a component of G such that E 	≤ GF.
Then [GF, E] = 1, by Proposition 7.2.3. Therefore E ≤ CG(GF) ≤ GF. This
contradiction yields E(G) ≤ GF.
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Denote π = charF. Applying Proposition 2.2.22 (2) we have that F∗(G) =
F(G) E(G) = Oπ′

(
F(G)

)
Oπ

(
F(G)

)
E(G). On the other hand, the normal F-

subgroup Oπ′
(
F(G)

)
∩GF is a nilpotent π′-group. Hence Oπ′

(
F(G)

)
∩GF = 1

and then Oπ′
(
F(G)

)
≤ CG(GF) ≤ GF. Therefore Oπ′

(
F(G)

)
= 1 and F(G) =

Oπ

(
F(G)

)
∈ F. Then F∗(G) ∈ F.

2 implies 1. Since F∗(G) ∈ F, it follows that F∗(G) ≤ GF. Thus, by
Proposition 2.2.22 (4),

CG(GF) ≤ CG

(
F∗(G)

)
≤ F∗(G) ≤ GF. ��

Corollary 7.2.23. Let F be a Fitting class. Let G be a group such that
CG(GF) ≤ GF. Then for any subnormal subgroup S of G, we have that
CS(SF) ≤ SF.

Corollary 7.2.24 ([IPM86]). Let F be a Fitting class and π = charF. For
any group G, write Ḡ = G/ Oπ′(G) and adopt the “bar convention:” if H ≤ G,
then H̄ = H Oπ′(G)/ Oπ′(G).

The following statements are pairwise equivalent:

1. CḠ(ḠF) ≤ ḠF,
2. E(Ḡ) ∈ F,
3. F∗(Ḡ) ∈ F.

Definition 7.2.25. For a Fitting class F, a group G is said to be F-con-
strained if G satisfies one condition of Corollary 7.2.24.

Note that every group is Q-constrained by Proposition 2.2.22 (4) and a
group G is N-constrained if CG(F (G)) ≤ F (G).

Corollary 7.2.26. Let F be a Fitting class. The class of all F-constrained
groups is an injective Fitting class.

Proof. Let X be the class of all quasisimple F-groups and consider the Fitting
class K = K(X). A group G is F-constrained if and only if E

(
G/ Oπ′(G)

)
∈ F.

This is equivalent to say that every component of the group G/ Oπ′(G) ∈ X.
This happens if and only if G/ Oπ(G) ∈ K, or, in other words, if and only if
G ∈ Eπ′ �K. Therefore the class of all F-constrained groups is the Fitting class
Eπ′ � K. By Corollary 7.2.21, is an injective Fitting class. ��

Recall that the first result of existence and conjugacy of N-injectors in
larger that the soluble groups is due to Mann working on

N-
Q-constrained group, possesses a unique conjugacy class of Q-injectors. Thus
it seems that for every Fitting class F, the property of being an F-constrained
group is closely related to the conjugacy of F-injectors. In general the equival-
ence does not hold as we observed in Corollary 7.2.19 inasmuch as the class
S of all soluble groups is properly contained in the class of all S-constrained
groups (which is the same as the class of all N-constrained groups). For Fitting
classes F such that N ⊆ F ⊆ Q, we have the following result.

constrained groups [Man71].Theorem 7.2.1 proves that every group, i.e. every
a universe
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Proposition 7.2.27 ([IPM86]). Let F be a Fitting class such that N ⊆ F ⊆
Q.

If G is an F-constrained group, then

1. G possesses a single conjugacy class of F-injectors, and
2. the F-injectors and the Q-injectors of G coincide.

Conversely, if G is a group such that the Q-injectors are in F, then G is
an F-constrained group.

Proof. Let G be an F-constrained group. Then, since charF = P, we have
that F∗(G) = GF, by Corollary 7.2.24. Let V be an Q-injector of G. Then
V is an Q-maximal subgroup containing F∗(G) [BL79]. Observe that, since
F∗(G) ≤ VF, we have that

CV (VF) ≤ CV

(
F∗(G)

)
≤ F∗(G) ≤ VF,

and V is an F-constrained group. Thus V = F∗(V ) = VF and V is an
F-maximal subgroup of G.

If S is a subnormal subgroup of G, then V ∩S is an Q-injector of S. Since
F is contained in Q, we have that V ∩ S is F-maximal in S.

In order to obtain the conjugacy of all F-injectors of G, it is enough to
prove that each F-injector of G is an Q-injector of G. Let H be an F-injector
of G, then H is an F-maximal subgroup of G containing GF = F∗(G). Hence
H is an Q-subgroup of G containing F∗(G) and there exists a Q-injector V
of G such that H ≤ V . By the previous arguments, V = H.

The converse is obvious. ��

Lemma 7.2.28. Let H and F be Fitting classes and let G be a group such that

CG(GH�F/GH) ≤ GH�F.

Let J be subgroup of G containing GH�F. Then

1. J ∈ MaxH�F(G) if and only if J/GH ∈ MaxF(G/GH).
2. J ∈ InjH�F(G) if and only if J/GH ∈ InjF(G/GH).

Proof. The condition CG(GH�F/GH) ≤ GH�F is equivalent to CḠ(ḠF) ≤ ḠF

for the quotient group Ḡ = G/GH. Let S be a subnormal subgroup of G.
By Corollary 7.2.23 we have that CS̄(S̄F) ≤ S̄F, for S̄ = SGH/GH. But, since
SH = GH∩S, we have that S̄ ∼= S/SH. Therefore, for any subnormal subgroup
S of G, CS(SH�F/SH) ≤ SH�F.

Let K be a subgroup of G such that GH�F ≤ K. Observe that GH ≤ K
implies that GH ≤ KH ∩ GH�F. On the other hand KH ∩ GH�F is a normal
H-subgroup of K and then of GH�F, i.e.

KH ∩ GH�F ≤ (GH�F)H ≤ GH

and therefore GH = KH ∩ GH�F. Thus [KH, GH�F] ≤ GH. This implies that
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KH ≤ CG(GH�F)/GH ≤ GH�F

and then GH = KH.
Using this fact, the proof is a routine checking. ��

Corollary 7.2.29. Let F be a Fitting class containing the class of all nilpotent
groups N. Assume that every F-constrained group possesses F-injectors.

Then, for every Fitting class H, the class H � F is injective.

Proof. We have to prove that InjH�F(G) 	= ∅ for every group G. Let G be

F- H/GH is a component
of G/GH such that EGH/GH /∈ F.

Let E = {E1, . . . , En} be the set of all H � F-components of G such that
N(Ei) ∈ H and suppose that E 	= ∅. For Ji ∈ InjH�F(Ei), i = 1, . . . , n,
construct the product J = J1 · · ·Jn. If NG(J) is a proper subgroup of G,
then InjH�F

(
NG(J)

)
	= ∅, by minimality of G. Since the set E is invariant

by conjugation of the elements of G, we can apply Theorem 7.2.4 and then
InjH�F(G) 	= ∅. This contradicts our assumption. Therefore J is a normal
subgroup of G and then each Ji is normal in Ei, for i = 1, . . . , n. This implies
that Ji ≤ Cosoc(Ei).

Let P/(Ei)H be a Sylow subgroup of Ei/(Ei)H. Then P ∈ H � F. Observe
that, since Ji/ N(Ei) ≤ Z

(
Ei/ N(Ei)

)
, the subgroup P is normal in PJi.

Then PJi ∈ H � F. By maximality of Ji, we have that P ≤ Ji. Since this
happens for any Sylow subgroup of Ei, we have that Ei ≤ Ji, which is a
contradiction. Hence E = ∅ and every component of G/GH is in F. Therefore
E(G/GH) ∈ F. This implies that G/GH is F-constrained, i.e. CG(GH�F)/GH ≤
GH�F H, possesses
F-injectors. By Lemma 7.2.28, the group G possesses H�F-injectors. This is
the final contradiction. ��

Corollary 7.2.30 (M. J. Iranzo and F. Pérez-Monasor). Let F be a
Fitting class such that N ⊆ F ⊆ Q. Then, for every Fitting class H, the class
H � F is injective.

In particular, the class N of all nilpotent groups is injective (P. Förster
[För85a]).

Observe that Eπ′Nπ = Eπ′N. This leads us to the following.

Corollary 7.2.31. Let π be a set of prime numbers. The Fitting class Eπ′Nπ

is injective.
In particular, for any prime p, the Fitting class Ep′Sp of all p-nilpotent

groups is injective.

Remark 7.2.32. Let p be a prime. We say that a group G is p-constrained if
G is Sp-constrained group. M. J. Iranzo and M. Torres proved in [IT89] that

component of G such that N(E) ∈ H if and only if EG
a minimal counterexample. First we notice that a subgroup E is an H�

by Corollary 7.2.24 . By hypothesis, the group G/G
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a group G possesses a unique conjugacy class of p-nilpotent injectors if and
only if G is p-constrained. Moreover, in this case,

InjEp′Sp
(G) = {Op′,p(G)P : P ∈ Sylp(G)},

and the p-nilpotent injectors of G are the p-nilpotent maximal subgroups of
G containing Op′,p(G).

Theorem 7.2.33 ([IPM88]). Every extensible saturated Fitting formation
is injective.

Proof. Assume the result is false and let G be counterexample of least order.
Clearly π = charF = π(F) and Nπ ⊆ F ⊆ Eπ since F is saturated.

Assume the result is false and let G be counterexample of least order.
Since G possesses F-injectors if and only if G/ Oπ′(G) possesses F-injectors,
it follows that Oπ′(G) = 1. Also, since F is an extensible homomorph, G has
F-injectors if and only if G/GF possesses F-injectors. Therefore GF = 1.

Consider, as in Theorem 7.2.4, the set E = {E1, . . . , En} of all
F-components of G and suppose that E 	= ∅. Observe that, since GF = 1,
the F-components of G are just the components. Let i = 1, . . . , n. Then every
F-maximal subgroup Ji of Ei containing the F-radical of Ei is an F-injector
of Ei by Proposition 7.2.2 (2). Consider the subgroup J = 〈J1, . . . , Jn〉. By
Theorem 7.2.4, we have that J is normal in G. Moreover, J is an F-group.
Hence J is contained in GF and then Ji = 1. This implies that Ei ∈ Eπ′

and, since Ei is subnormal in G, we obtain that Ei = 1. Then E(G) = 1
and F∗(G) = F(G) = Oπ

(
F(G)

)
× Oπ′

(
F(G)

)
. But Oπ

(
F(G)

)
≤ GF = 1 and

Oπ′
(
F(G)

)
≤ Oπ′(G) = 1. Hence F∗(G) = 1. This contradiction proves the

theorem. ��

It is not difficult to prove that every extensible saturated Fitting formation
F is of the form

F =
(
G : all composition factors of G belong to F ∩ J

)
.

The most popular extensible saturated Fitting formations are the class
Eπ, π a set of primes, and the class S of all soluble groups.

Applying the above result, every finite group possesses Eπ-injectors. In
general, if V is an Eπ-injector of a group G, then V is a maximal π-subgroup
of G containing Oπ(G); but |G : V | need not to be a π′-number. If G possesses
Hall π-subgroups, in particular if G is soluble, then the Eπ-injectors of G are
the Hall π-subgroups of G.

Concluding Remarks 7.2.34. There are many other injective Fitting classes
closely related to the ones presented in the section. For instance, for each
prime p, let us consider the class Ep∗p, the p∗p-groups, defined by H. Bender
(see [HB82b]). This is the class composed by all groups G factorising as G =
N C∗

G(P ) for any normal subgroup N and any P ∈ Sylp(N), where C∗
G(P )
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is the largest normal subgroup of NG(P ) acting nilpotently on P . A group
G ∈ Ep∗p such that Op(G) = G is said to be a p∗-group and the class of all
p∗-groups is denoted by Ep∗ . The class Ep∗p is an injective Fitting class and, in
fact, any Fitting class F such that Ep∗p ⊆ F ⊆ Ep∗Sp is injective (see [IT89]).

p′Q of all
p-quasinilpotent groups and the class Op = G : G/ CG

(
Op(G)

) ∈ Sp (see
[MP92]). These classes satisfy the following chain

Ep′Q ⊂ Ep∗p ⊂ Ep∗Sp ⊂ Op

where all containments are strict.
Finally let us mention the contribution of M. J. Iranzo, J. Medina, and

F. Pérez-Monasor in [IMPM01] that, using that the class Eπ is injective, proves
that the class of all p-decomposable groups is an injective Fitting class.

Bearing in mind Salomon’s example in Section 7.1 and the results of the
present section, the following question arises:

Open question 7.2.35. Is it possible to characterise the injective Fitting
classes?

7.3 Supersoluble Fitting classes

It is well-known that the product of two supersoluble normal subgroups of
a group need not to be supersoluble. In other words, the class U of all su-
persoluble groups is not a Fitting class, although U is closed for subnormal
subgroups. This failure is the starting point of two fruitful lines of research.

1. Obviously the direct product of supersoluble subgroups is always super-
soluble; hence the study of different types of products, with extra conditions,
such that those special products of supersoluble subgroups give a new super-
soluble subgroup makes sense; following these ideas a considerable amount
of papers has been published in the last years dealing with totally permut-
able products, mutually permutable products, . . . (see, for instance, [AS89],
[BBPR96a])

2. On the other hand we can analyse the properties of supersoluble Fitting
classes, i.e. those Fitting classes contained in the class U of all supersoluble
groups. This investigation was encouraged by the excellent results obtained
in metanilpotent Fitting classes due to T. O. Hawkes, T. R. Berger, R. A.
Bryce, and J. Cossey (see [DH92, XI, Section 2]).

The question of the existence of Fitting classes composed of supersoluble
groups was settled by M. Menth in [Men95b]. In this paper he presented a
family of supersoluble non-nilpotent Fitting classes. These Fitting classes are
constructed via Dark’s method (see [DH92, IX, Section 5]). Terminology and
notation are mainly taken from [DH92, IX, Sections 5 and 6] and the papers
of Menth [Men94, Men95b, Men95a, Men96].

EOther examples of injective Fitting classes are the class )(
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Following Dark’s strategy, we start with a identification of the universe
of groups to consider. Let p be a prime such that p ≡ 1 (mod 3), and n a
primitive 3rd root of unity in the field GF(p). The universe to consider will
be the class SpS3.

Now the ingredients are:

1. The key section κ(G) of a group G ∈ SpS3 is κ(G) = Op(G).
2. The associated class X. Consider the groups

T = 〈a, b : ap = bp = [a, b, a, a] = [a, b, a, b] = [a, b, b, b] = 1〉

and
V = 〈T, s : s3 = 1, as = an, bs = bn〉.

These groups have the following properties:
a) |T | = p5, T ′ = Z2(T ) and the factors of the central series are T/T ′ ∼=

Cp × Cp, T ′/ Z(T ) ∼= Cp, and Z(T ) ∼= Cp × Cp;
b) Z(V ) = Z(T ) and the conjugation by s induces on T/T ′ the power

automorphism x �−→ xn, on T ′/ Z(T ) the power automorphism x �−→
xn2

, and centralises Z(T );
c) every extension of T by an elementary abelian 3-group is supersoluble;

in particular V is supersoluble.
Let V0 be the class of all finite groups G which can be factorised as
G = XY where
a) X = Op(G) is a central product of copies Ti of T (the empty product,

i.e. the case Op(G) = 1, is admitted);
b) Y ∈ Syl3(G) and for every index i, we have that Y/ CY (Ti) ∼= C3 and

[Ti]
(
Y/CY (Ti)

) ∼= V .
3. The class V = Dp(V0) =

(
G ∈ SpS3 : κ(G) ∈ V0

)
.

The following result is due to Menth. We quote it here without proof.

Theorem 7.3.1 ([Men95b, 4.2]). The class V = Fit(V ) is the Fitting class
generated by V . If G ∈ V and write P = Op(G), V0 = Op(G), and C =
O3

(
Z∞(V0)

)
, then

1. G is supersoluble;
2. F(G) = PC and G/ F(G) is an elementary abelian 3-group;
3. G = CP (Y )V0 for every Sylow 3-subgroup Y of G;
4. Soc(G) ≤ Z(G).

Moreover, V is a Lockett class ([Men94, 2.2]).

This supersoluble Fitting class is contained in SpS3. The above construc-
tion can be generalised to include examples of supersoluble Fitting classes in
SpSq for other odd primes q. In [Tra98], G. Traustason gives an example of
a supersoluble Fitting class in SpS2. This class is also constructed following
Dark’s strategy.
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In contrast with metanilpotent Fitting classes, supersoluble Fitting classes
are extremely restricted in additional closure properties. This is also proved
by M. Menth in [Men95a]. In this section we will present the most relevant
results of this paper.

Lemma 7.3.2. Let G be a supersoluble group. Then, Fit(G) is supersoluble if
and only if Fit(G) ⊆ lform(G).

Proof. Denote G = lform(G). Since G is supersoluble, G ⊆ U. Hence Fit(G)
is a supersoluble Fitting class.

For the converse, observe that since G is supersoluble, the quotient group
G/ Op′,p(G) is an abelian group of exponent e(p) dividing p−1 for each prime p
by [DH92, IV, 3.4 (f)]. Applying Theorem 3.1.11, the saturated formation G is
locally defined by the formation function f , where f(p) = form

(
G/ Op′,p(G)

)
,

if p divides |G|, and f(p) = ∅ if p does not divide |G|. It is rather easy to
see that f(p) = A

(
e(p)

)
, where A(m) denotes the class of all abelian groups

of exponent dividing m. Since f(p) is subgroup-closed for all primes p, the
formation G = LF(f) is subgroup-closed by [DH92, IV, 3.14]. Hence the class
Fit(G) ∩ G is Sn-closed.

Let X be a group which is the product of two normal subgroups N1, N2 of
X such that N1, N2 ∈ Fit(G)∩G. For each prime p, we have that X/ Op′,p(X)
is the normal product of N1 Op′,p(X)/ Op′,p(X) and N2 Op′,p(X)/ Op′,p(X).
Since X ∈ Fit(G), then X is supersoluble and so X/ Op′,p(X) is abelian by
[DH92, IV, 3.4 (f)]. Moreover, for i = 1, 2, we have that

Ni Op′,p(X)/ Op′,p(X) ∼= Ni/ Op′,p(Ni) ∈ A
(
e(p)

)
,

since Ni ∈ LF(f). Hence X/ Op′,p(X) ∈ A
(
e(p)

)
. Hence X ∈ G. This is to say

that the class Fit(G) ∩ G is N0-closed.
Therefore Fit(G) ∩ G is a Fitting class containing G. Thus, Fit(G) ⊆

lform(G). ��

Lemma 7.3.3. Let X be a group such that the regular wreath product W =
X �C is a supersoluble group for some non-trivial group C. Then X is nilpotent.

Proof. Suppose that the result is false and let X be a counterexample of min-
imal order. Then X is a non-nilpotent group and the regular wreath product
W = X � C is a supersoluble group for some non-trivial group C. Denote
by X� the base of group of W . If Y is a subgroup of X, denote by Y � the
corresponding subgroup of X�. Let N be a minimal normal subgroup of X.
Then (X/N) � C ∼= W/N � by [DH92, A, 18.2(d)]. Moreover (X/N) � C is su-
persoluble. By minimality of X, we have that X/N is nilpotent. Since X is
non-nilpotent, it follows that X ∈ b(N) and so X is a primitive group. Since
X is a supersoluble non-nilpotent primitive group, then X possesses a unique
minimal normal subgroup Y which is a cyclic group of prime order, q say,
and Z(X) = 1. Then Y � is a minimal normal subgroup of W by [DH92, A,
18.5(a)]), and W is primitive by [DH92, A, 18.5(b)]. In particular, the order
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of the minimal normal subgroup of W is a prime. Note that the order of Y �

is q|C|. This contradiction proves the lemma. ��

Theorem 7.3.4. Let F be a supersoluble Fitting class. Assume that X is a
group and p is a prime such that the regular wreath product X �Cp ∈ F. Then
X is a p-group.

Proof. Set G = X � Cp ∈ F. We can assume, without loss of generality that
F = Fit(G). By Lemma 7.3.2, F ⊆ lform(G). We can apply now some results
due to P. Hauck (see [DH92, X, 2.9 and 2.10]) to deduce that X � P ∈ F ⊆
lform(G), for every p-group P .

Suppose further that X is not a p-group. Then there exists a prime divisor
q 	= p of |X|. Since X � Cp is supersoluble, it follows that X is nilpotent by
Lemma 7.3.3. Therefore X = Oq′,q(X).

Applying Theorem 3.1.11, lform(G) = LF(f) is locally defined by the
formation function f , where f(r) = form

(
G/ Or′,r(G)

)
, if r divides |G|, and

f(r) = ∅ if r does not divide |G|. Then P ∈ f(q) for all p-groups P . Hence
Sp ⊆ f(q) = form

(
G/ Oq′,q(G)

)
.

Observe that for every natural number e, the class S
(e)
p =

(
G ∈ Sp :

exp(G) ≤ pe
)

is a subformation of Sp. Hence form
(
G/ Oq′,q(G)

)
has infinitely

many subformations, and this contradicts the theorem of R. M. Bryant, R. A.
Bryce, and B. Hartley ([DH92, VII, 1.6]). ��

Fitting classes with the property of Theorem 7.3.4 are called abstoßend by
P. Hauck. This term is translated into English as repellent (see [DH92, X, 2,
Exercise 4]).

Proposition 7.3.5. Let F be a Fitting class of soluble groups. Suppose that
the group G is a semidirect non-direct product G = [N ]A of the normal sub-
group N by a q-subgroup A, q a prime. Suppose that A induces the automorph-
ism group A∗ on N and consider the semidirect product G∗ = [N ]A∗. Then
G ∈ F if and only if G∗ ∈ F.

Proof. First observe that A∗ ∼= A/ CA(N) and C = CA(N) is a normal
subgroup of G. Thus, the group G∗ ∼= G/C is an epimorphic image of G.
Moreover, since the semidirect product is non-direct, C 	= A.

Suppose that G ∈ F. Then Sq ⊆ F, by [DH92, IX, 1.9], and G/N ∼= A ∈ F.
Moreover N ∩ C = 1 and G/NC ∼= A∗ is nilpotent. By Lemma 2.4.2, the
G∗ ∼= G/C ∈ F.

The same arguments show that G is in F if G∗ ∼= G/C ∈ F. ��

Proposition 7.3.6. Let F be a Fitting class and suppose that G is an F-group
such that G is the semidirect product G = [N ]〈s〉 where N = N1 × · · · × Nn,
Ni normal in G, 1 ≤ i ≤ n. Let σi be the automorphism of Ni induced
by conjugation of s. For each i = 1, . . . , n, consider a copy Ni

∼= Ni and
construct the semidirect product Hi = [Ni ×Ni]〈s〉, where s induces on Ni the
automorphism σ−1

i . Then Hi ∈ F.
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Proof. Without loss of generality, we can argue with the normal subgroup N1.
Consider the direct product N∗ = N1×N1×· · ·×Nn and a cyclic group 〈t〉 such
that 〈s〉 ∼= 〈t〉. Construct the semidirect product G∗ = [N∗](〈s〉 × 〈t〉), where
N1 and all factors Ni are normal in G∗ and the operation of s and t on the Ni

is as follows: s centralises N1 and acts on Ni in the same way as σi; t centralises
N1, operates on Ni in the same way as σi for 2 ≤ i ≤ n and on N1 as σ1. Since
N1 ∈ F, we have that N1 ∈ F. Therefore 〈N∗, s〉 ∼= 〈N∗, t〉 ∼= N1 × G ∈ F.
Then G∗ ∈ F. The normal subgroup 〈N∗, st−1〉 of G∗ is an F-group. Finally,
observe that H1

∼= 〈N1 × N1, st
−1〉 and this is normal in 〈N∗, st−1〉. Hence

H1 ∈ F. ��

Remarks and notation 7.3.7. Let p and q be different primes, p odd, such that
q divides p − 1. Let e and r be natural numbers.

1. Recall that Aut(Cpe) ∼= Cpe−1(p−1) (see [DH92, A, 21.1]). Each natural
number m, with gcd(m, p) = 1 and 1 ≤ m ≤ pe can be uniquely written
in the form m = tp + k, for 0 ≤ t ≤ pe−1 − 1 and 1 ≤ k ≤ p− 1. The pair
(t, k) uniquely determines the automorphism σ(t, k) of the cyclic group
Cpe = 〈x〉 of order pe, defined by xσ(t,k) = xtp+k = xm.

2. Therefore there exists an automorphism α = σ(t, k) of Cpe of order q.
This means that n = tp + k 	= 1 is an integer such that nq ≡ 1 (mod
pe). Moreover any automorphism of Cpe of order q is of the form αt for
1 ≤ t ≤ q − 1. If x is a generator of the cyclic group Cpe , then xαt

= xnt

.
3. Let Xr be the direct product of r copies of the cyclic group of order pe.

Construct the semidirect product Gr = [Xr]C of Xr and a cyclic group
C = 〈s〉 ∼= Cq where s raises all elements of Xr to the same n-th power.
If {x1, . . . , xr} is a set of r generators (a basis) of Xr, observe that all
subgroups of the form 〈xi, s〉, for i = 1, . . . , r, are isomorphic to E(q|pe)
(see [DH92, B, 12.5]).

Lemma 7.3.8. Consider the Fitting class, Fit(Gr), generated by the group
Gr. For any natural number k, let Hk = [Xk]C denote a group which is a
semidirect product of the homocyclic abelian group Xk of exponent pe and
rank k ≥ 1 by a cyclic group C = 〈α〉 such that α is an automorphism of Xk

of order q and det(α) = 1. Then Hk ∈ Fit(Gr).

Proof. The prime q is a divisor of p − 1 and then gcd(q, p) = 1. By [DH92,
A, 11.6], Xk has a direct decomposition Xk = Xk(1) × · · · × Xk(s) into 〈α〉-
admissible subgroups Xk(i) with the following properties for each i = 1, . . . , s:

1. Xk(i) is indecomposable as a 〈α〉-module;
2. Yk(i) = Xk(i)/Φ(Xk(i)) is an irreducible GF(p)〈α〉-module.

The finite field GF(p) contains a primitive q-th root of unity n. This implies
that every irreducible representation of the cyclic group Cq over the field
GF(p) is linear ([DH92, B, 8.9 (d)]). Therefore Yk(i)

∼= Cp for each i = 1, . . . , s.
Therefore Xk(i)

∼= Cpe for each i = 1, . . . , s. This is to say that there exists a
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basis of Xk such that the action of α on Xk, according to this basis, can be
written as a diagonal matrix diag(nλ1 , . . . , nλk−1 , nλ), where λ = −(λ1 + · · ·+
λk−1).

Consider the homocyclic group Xk+r−1 of exponent pe and rank k + r− 1
and fix a basis {x1, . . . , xk, y1, . . . , yr−1} of Xk+r−1. For each j = 1, . . . , k−1,
consider the extension Lj = [Xk+r−1]〈αj〉 of Xk+r−1 such that x

αj

j = xnλj

j ,

x
αj

l = xl, if l ∈ {1, . . . , k} \ {j}, and y
αj
s = ynλj

s , for s = 1, . . . , r− 1. Consider
also the extension Lk = [Xk+r−1]〈αk〉 of Xk+r−1 such that xαk

k = xnλ

k , xαk

l =
xl, if l ∈ {1, . . . , k − 1}, and yαk

s = ynλ

s , for s = 1, . . . , r − 1.
In other words, the action of the automorphism αj on Xk+r−1, in the fixed

basis, can be written as a diagonal matrix

αj = diag(1, . . . , 1︸ ︷︷ ︸
j−1

, nλj , 1, . . . , 1︸ ︷︷ ︸
k−j

, nλj , . . . , nλj︸ ︷︷ ︸
r−1

), if 1 ≤ j ≤ k − 1,

and
αk = diag(1, . . . , 1︸ ︷︷ ︸

k−1

, nλ, . . . , nλ︸ ︷︷ ︸
r

).

Hence, for all j = 1, . . . , k, we have that Lj
∼= Gr × Xk−1 and therefore

Lj ∈ Fit(Gr).
Set L = [Xk+r−1]〈α1, . . . , αk〉. Clearly L is a normal product of L1, . . . , Lk.

Hence L ∈ Fit(Gr). Consider the product

α =
k∏

j=1

αj = diag(nλ1 , nλ2 , . . . , nλk−1 , nλ, 1, . . . , 1︸ ︷︷ ︸
r−1

)

and the normal subgroup L0 = [Xk+r−1]〈α〉 of L. Identify Xk = 〈x1, . . . , xk〉
and observe that the subgroup 〈Xk, α〉 is isomorphic to Hk and L0

∼= Hk ×
Xr−1. Therefore Hk is isomorphic to a subnormal subgroup of L. Hence Hk ∈
Fit(Gr). ��

Lemma 7.3.9. Let α be any nontrivial automorphism of Xr of order a power
of q and write G = [Xr]〈α〉. Then Gq ∈ Fit(G).

Proof. If the order of α is qm and m > 1, then the order of αqm−1
is q.

Since 〈Xr, α
qm−1〉 is normal in G, then 〈Xr, α

qm−1〉 ∈ Fit(G). Therefore
we can assume that the order of α is q. As in Lemma 7.3.8, there ex-
ists a basis {x1, . . . , xr} of Xr such that the matrix of α with respect to
this basis is diagonal and α = diag(nλ1 , . . . , nλr ). Since α 	= id, not all
λi are equal to 0. Without loss of generality we can assume that λ1 = 1.
As a consequence of Proposition 7.3.6, the class Fit(G) contains the group
E1 = [Xq]〈β1〉 which is an extension of Xq by the automorphism β1 such
that in a fixed basis of Xq has a diagonal matrix expression as follows:
β1 = diag(n, n−1, 1, . . . , 1). Clearly, this group is isomorphic to E2 = [Xq]〈β2〉,



7.3 Supersoluble Fitting classes 335

where the automorphism β2 in the fixed basis of Xq has a diagonal matrix ex-
pression β2 = diag(1, n2, n−2, 1, . . . , 1). Hence E2 belongs to Fit(G). Therefore
the class Fit(G) contains the extensions of Xq by the automorphisms βj , for
j = 1, . . . , q − 1 such that in the fixed basis have diagonal matrix expressions
as follows:

β1 = diag(n, n−1, 1, . . . , 1)

β2 = diag(1, n2, n−2, 1, . . . , 1)
. . .

βq−1 = diag(1, . . . , 1, nq−1, n)

Thus Fit(G) contains the extension of Xq by the automorphism

β =
q−1∏
i=1

βi = diag(n, . . . , n)

and then Gq = [Xq]〈β〉 ∈ Fit(G). ��

Lemma 7.3.10. Let X be a homocyclic group of exponent pe and let G =
[X]Q be a semidirect non-direct product of X and a q-group Q.

1. If q ≥ 3, then Cpe � Cq ∈ Fit(G).
2. If q = 2, then Fit(G) contains the extension of X4 by 〈α, β〉, where α

and β are automorphisms of X4, i.e. members of the group GL(4, Z/peZ),
such that in a fixed basis {x1, x2, x3, x4} of X4 have matrix expressions

α =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ , β =

⎛⎜⎜⎝
−1

−1
1

1

⎞⎟⎟⎠
3. In both cases 1 and 2 the Fitting class Fit(G) is not supersoluble.

Proof. By Proposition 7.3.5, we can assume that Q is a group of automorph-
isms of X. Since the semidirect product is non-direct, there exists an element
s ∈ Q which is a non-trivial automorphism of X of order a power of q. It is
clear that [X]〈s〉 is subnormal in G and then H = [X]〈s〉 ∈ Fit(G).

By Lemma 7.3.9, we have that Fit(Gq) ⊆ Fit([X]〈s〉) ⊆ Fit(G). By
Lemma 7.3.8, the class Fit(G) contains all extensions of a homocyclic group
X of exponent pe by α ∈ Aut(X) of order q such that detα = 1.

1. Suppose that q is odd. Observe that the regular wreath product Cpe �Cq

is isomorphic to a extension of the homocyclic group Xq of exponent pe and
rank q by an automorphism α of order q whose action on Xq has matrix
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0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
...

...
0 0 0 0 . . . 0 1
1 0 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
whose determinant is (−1)q−1 = 1. Hence Cpe � Cq ∈ Fit(G).

2. Since α and β have both order 2 and determinant 1, the extensions
〈X4, α〉 and 〈X4, β〉 are in Fit(G). The group 〈α, β〉 is isomorphic to a dihedral
group of order 8. Therefore the extension H = [X4]〈α, β〉 is a subnormal
product of 〈X4, α〉 and 〈X4, β〉 and then H ∈ Fit(G).

3. In Case 1, the Fitting class Fit(G) is not supersoluble by Theorem 7.3.4.
In Case 2, suppose that the group H is supersoluble and consider the

Frattini quotient Y4 = X4/Φ(X4). The group H∗ = [Y4]〈α, β〉 is an epimorphic
image of H and then H∗ is supersoluble. Denote Y4 = 〈y1, y2, y3, y4〉, where
yi = xiΦ(X4), for i = 1, 2, 3, 4. Now the respective actions of α and β on the
4-dimensional GF(p)-vector space Y4 have the same matrix representation,
but now considered in GL(4, p). Let N be a minimal normal subgroup of H∗

contained in Y4. Since H∗ is supersoluble, the group N is cyclic, N = 〈y〉 say.
This is to say that y is an eigenvector for α and for β. Since y is an eigenvector
for β, then either y = xn1

1 xn2
2 or y = xn3

3 xn4
4 . But then y is not an eigenvector

for α. Hence H is not supersoluble and Fit(G) is not a supersoluble Fitting
class. ��

Theorem 7.3.11. If F is a supersoluble Fitting class, then every metabelian
F-group is nilpotent.

Proof. Assume that the result is not true and let G be a metabelian non-
nilpotent F-group of minimal order. Note that N = G′ is abelian. For every
element x /∈ N , N〈x〉 is a metanilpotent normal subgroup of G. If N〈x〉 were
a proper subgroup of G for each element x ∈ G, then G would be nilpotent.
This would contradict the choice of G. Therefore G = N〈x〉, for some element
x /∈ N . By the same argument, we can assume that x is a q-element for some
prime q. Clearly N is not a q-group and G = Oq′(N)Q for some Q ∈ Sylq(G)
such that x ∈ Q. The subgroup G0 = Oq′(N)〈x〉 is subnormal in G. Hence
G0 ∈ F. If G0 were nilpotent, then G = NG0 would be a product of two
subnormal nilpotent subgroups and therefore G would be nilpotent, contrary
to supposition. The minimal choice of G implies that G = G0, i. e., we can
assume that N is a q′-group. We also may suppose that x is of order q. For
a prime p with p 	= q, the subgroup Op(N) is normal in G. If Op(N)〈x〉 is
nilpotent, then x centralises Op(N). In this case G = N∗〈x〉 × Op(N), where
N∗ is the Hall p′-subgroup of N . By minimality of G, N∗〈x〉 is nilpotent. Thus
G is nilpotent, and this contradicts our choice of G. Hence, we can assume
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that N = N1 × · · · × Nn, where Ni ∈ Sylpi
(N), for all primes pi dividing

|N |, and x induces on each Ni a non-trivial automorphism σi. Since x does
not centralise N1, it follows that x does not centralise some chief factor of G
below N1. This implies that q divides p1 − 1 since G is supersoluble.

Consider the semidirect product H = [P ]C, where P = N0 × N1, with
N0

∼= N1, and C = 〈x〉. Suppose that x induces on N1 the automorphism σ1

and on N0 the automorphism σ−1
1 . By Proposition 7.3.6, we have that H ∈ F

and H is non-nilpotent.
By [DH92, A, 11.6], we have that N0 has a direct decomposition N0 =

A1(0) × · · · × Ak(0) with the following properties for each i = 1, . . . , k:

1. Ai(0) is indecomposable as a C-module;
2. Ai(0)/Φ(Ai(0)) is an irreducible GF(p1)C-module;
3. Ai(0) is homocyclic.

Note that Ai(0)/Φ(Ai(0)) is a faithful C-module and so its dimension is
1 because q divides p1 − 1 ([DH92, B, 8.9 (d)]). Therefore Ai(0)

∼= Cpe
1

for
each i = 1, . . . , k. Moreover x induces on each Ai(0) an automorphism σ−1

1 .
Analogously N1 = A1(1) × · · · × Ak(1), Ai(1)

∼= Cpe
1

for each i = 1, . . . , k and
x induces on each Ai(1) the automorphism σ1. By Lemma 7.3.6, we have that
[A1(0) ×A1(1)]C ∈ F. Hence Lemma 7.3.10 implies that F is not supersoluble.
This contradiction proves the theorem. ��

Theorem 7.3.12. Let F be a supersoluble non-nilpotent Fitting class. Then
F is not closed with respect to any of the operators Q, S, and EΦ.

Proof. Assume that F is a Q-closed non-nilpotent supersoluble Fitting class.
Let H be a supersoluble non-nilpotent F-group of minimal order. Then H/N is
nilpotent F-group for every minimal normal subgroup N of H. Consequently
H ∈ b(N) and so H is a primitive group. Then, by Theorem 1, N = Soc(H)
is a minimal normal subgroup of H and N = CH(N) and N is cyclic of
prime order. In particular, H is metabelian. This contradicts Theorem 7.3.11.
Therefore the class F is not Q-closed.

Suppose that F is an EΦ-closed supersoluble non-nilpotent Fitting class.
Since F is composed of metanilpotent groups we can apply the theorem [DH92,
XI, 2.16] to conclude that F is S-closed. Applying Theorem 2.5.2, F is a sat-
urated formation. In particular, F is Q-closed. This contradiction proves that
F is not EΦ-closed. Note that F cannot be subgroup-closed either. ��

Recall that a Fischer class is a Fitting class F satisfying the following
property: if G is a group in F and H/K is a normal nilpotent subgroup of
G/K for some normal subgroup K of G, it follows that H ∈ F. These classes
were originally introduced by Fischer in the soluble universe. If F is a Fischer
class of soluble groups, then the F-injectors of a soluble group are exactly
the Fischer F-subgroups, which are the natural duals of Gaschütz’s covering
subgroups (see [DH92, IX, Section 3]).
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Corollary 7.3.13. Let F be a supersoluble non-nilpotent Fitting class. Then
F is not a Fischer class.

Proof. Assume that F is a Fischer class. We shall prove that F is subgroup-
closed. Suppose that this is not true and let G be a group of minimal order such
that G ∈ F but M /∈ F for some subgroup M of G. Among the subgroups of
G which are not in F, we choose M of maximal order. Clearly M is a maximal
subgroup of G. If G′ is contained in M , then M is normal and so M ∈ F,
contrary to supposition. Consequently, G = MG′. Since, by [DH92, VII, 2.2],
M has prime index, it follows that M/M ∩G′ is a cyclic group of prime order.
Note that G′ is nilpotent and M ∩ G′ has prime index in G′. This implies
that M ∩ G′ is normal in G′. Therefore M ∩ G′ is normal in G. Since F is a
Fischer class, we have that M ∈ F, contrary to the choice of M . Then F is
subgroup-closed. This contradicts Theorem 7.3.12. Consequently, F is not a
Fischer class.

Since metanilpotent R0-closed Fitting classes need not be Q-closed, the
exclusion of the R0-closure cannot be argued in the same way. What Menth
shows is that the supersoluble Fitting class V introduced at the beginning of
the section is not R0-closed.

Theorem 7.3.14. The class V is not R0-closed.

Proof. We will use the notation introduced at the beginning of the section.
Let us consider the direct product W = V × V ϕ of two copies of V . The
diagonal subgroup D = {(x, xϕ) : x ∈ V } of W is isomorphic to V . The
subgroups A = {(x, 1) : x ∈ T ′} and B = {(1, xϕ) : x ∈ T ′} are normal in
W and A∩B = (1, 1). Observe that the subgroup G = 〈A,D〉 is a semidirect
product G = [A]D = [B]D and G/A ∼= G/B ∼= V ∈ V. Next we see that
G /∈ V.

The element (s, sϕ) is a 3-element and then (s, sϕ) ∈ Op(G). Hence the
commutator [(a, aϕ), (s, sϕ)] = (a, aϕ)n−1 ∈ Op(G) and also (b, bϕ)n−1 ∈
Op(G) for the generators a, b of T . Therefore D is contained in Op(G). There
exists an element t ∈ T ′ \ Z(T ) such that ts = tn

2
. Hence [(t, 1), (s, sϕ)] =

([t, s], 1) = (tn
2−1, 1) ∈ Op(G). Since n is a primitive cube root of unity

in GF(p), we have that p divides n3 − 1 but gcd(p, n2 − 1) = 1. Therefore
(t, 1) ∈ Op(G). Then [(t, 1), (a, aϕ)] = ([t, a], 1) and [(t, 1), (b, bϕ)] = ([t, b], 1)
are in Op(G). Then A ≤ Op(G). Therefore G = Op(G) and the group G is
p-perfect.

Observe that the subgroup Z(T ) × Z(T )ϕ is a subgroup of Z
(
Op(G)

)
of

order p4. If we suppose that G ∈ V, then G ∈ V0 and then Op(G) is a central
product of copies of T . Since |Op(G)| = p8, we need exactly two copies of T ,
T1, T2 say, such that |T1 ∩ T2| = p2. Therefore Z(T1) = Z(T2) = Z

(
Op(G)

)
has order p2. This contradicts the previous observation. Hence G /∈ V. We
conclude then that V is not R0-closed. ��
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Let F be a Fitting class of soluble groups. If π is a set of primes, F is said
to be Hall-π-closed provided that whenever H is a Hall π-subgroup of G and
G ∈ F, then H ∈ F. The class F is said to be Hall-closed if it is Hall-π-closed
for all sets of primes π.

Theorem 7.3.15. Every metanilpotent Lockett class is Hall-closed.

Proof. Assume that the result is false and let F be a metanilpotent Fitting
class that is not Hall-closed. There exists a set π of primes and a group G ∈ F
such that G has a Hall π-subgroup H /∈ F. Set F = F(G), and let p1, . . . ,
pn be the prime divisors of |F |. Then F is the direct product of its Sylow
pi-subgroups Pi, 1 ≤ i ≤ n, and G/F is nilpotent. Having numbered the
primes suitably, there is an integer k (1 ≤ k ≤ n) such that p1, . . . , pk are
elements of π. Note that k < n because otherwise H would be subnormal
in G. Then P = H ∩ F = P1 · · ·Pk. The quotient H/P is isomorphic to a
subgroup of G/F and therefore nilpotent. Hence H/P is generated by cyclic
subgroups 〈xiP 〉. At least one of the subgroups 〈P, xi〉 is not an F-group.
Let us choose H∗ = 〈P, x〉 such that |H∗| is of minimal order. Then H∗

F

is a normal maximal subgroup of H∗. Now we replace G by G∗ = 〈F, x〉,
because G∗ ∈ F and H∗ is a Hall π-subgroup of G∗. Set Q = Pk+1 · · ·Pn. We
define a direct product D = 〈P, x1〉 × 〈Q, x2〉, where 〈P, x1〉 is a copy of H∗

and 〈Q, x2〉 is a copy of Q〈x〉. Then K = PQ〈x1x2〉 is a normal subgroup
of D isomorphic to G∗. Hence K is contained in DF = 〈P, x1〉F × 〈Q, x2〉F.
Since |〈P, x1〉 : 〈P, x1〉F| = P and |〈Q, x2〉 : 〈Q, x2〉F| = p, it follows that
|D : DF| = p2. However |D : K| = p. This contradiction proves the theorem.

��

Not every supersoluble Fitting class is a Lockett class ([Men96, Example
1]). In the following we shall prove that every supersoluble Fitting class is
contained in a supersoluble Lockett class.

Theorem 7.3.16. Every supersoluble Fitting class is contained in a supersol-
uble Lockett class.

Proof. Assume that F is a supersoluble Fitting class. If G ∈ F∗, then D =
{(g, g−1) : g ∈ G} is a subgroup of (G×G)F by [DH92, X, 1.5, 1.9]. Therefore
D is supersoluble. Since G is an epimorphic image of D, it follows that G is
supersoluble. Therefore F∗ is a supersoluble Lockett class. ��

7.4 Fitting sets, Fitting sets pairs, and outer Fitting sets
pairs

This section has two main themes. The first is connected with Fitting sets
and injectors. The second subject under investigation is the localised theory
of Fitting pairs and outer Fitting pairs developed in [AJBBPR00].
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As mentioned in Section 2.4, the theory of Fitting classes has been enriched
by the introduction of Fitting sets by W. Anderson in [And75]. Recall that
a subgroup H of a group G is an injector of G if H is an F-injector of G
for some Fitting set F of G. One the most important motivating questions in
the theory of Fitting sets is to determine which subgroups are injectors. Some
results in this direction are presented in [DH92, VIII, Section 3]. There Doerk
and Hawkes proposed the problem of describing injectors of soluble groups
without explicit use of the concept of a Fitting set.

This problem is complicated by the general nature of injectors: there are
likely to be many Fitting sets for a given group, often leading to different sets
of injectors. For example, the set of injectors of a soluble group includes all
its normal subgroups, all its Hall subgroups, and all its maximal subgroups
[DH92, VIII, 3.5]. An injector A of a finite soluble group B must have rather
strong properties that can be described without direct reference to Fitting
sets: A ∩ K must be a CAP subgroup of K and pronormal (see [DH92, Sec-
tion I, 6]) in B for each normal subgroup K of B [DH92, VIII, 2.14]. However,
these properties are inadequate to characterise injectors [DH92, Exercise 2,
p. 553]. We present here the best attempt to accomplish that task. This char-
acterisation, unpublished at the moment of writing this, was communicated
privately by its authors, R. Dark and A. Feldman ([DF]), to us.

If G is a group, denote by Inj(G) the set of all injectors of G. The following
result is a very useful characterisation of this set. Recall that if H is a subgroup
of G then

Sn HG = {S ≤ G : S is a subnormal subgroup of Hg, for some g ∈ G}.

Lemma 7.4.1 ([DH92, VIII, 3.3]). Let G be a soluble group and H a sub-
group of G. Then any two of the following statements are equivalent

1. H ∈ Inj(G)
2. Sn HG is a Fitting set of G.
3. Sn HG is the smallest Fitting set of G which contains H.

Lemma 7.4.2. Suppose S and T are pronormal subgroups of a soluble group
G and x, y ∈ G. If S and T are subnormal in 〈S, T 〉 and Sx and T y are
subnormal in 〈Sx, T y〉, then there exists z ∈ G with Sx = Sz and T y = T z.

Proof. Let Σ be a Hall system of G which reduces into 〈S, T 〉. Applying [DH92,
I, 6.3], S and T are normal in 〈S, T 〉 = ST . By [DH92, I, 4.21], Σ reduces
into both S and T . Analogously, Sx and T y are normal in 〈Sx, T y〉 = SxT y.
Then by [DH92, I, 6.11], SxT y = (ST )z for some z ∈ G. This implies that Σz,
which reduces into (ST )z, reduces into the subnormal subgroups Sx and Sz

and T y and T z of that group. But the pronormality of S and T then implies,
by [DH92, I, 6.6], that Sx = Sz and T y = T z, as claimed. ��

Now we prove a result that will supply the inductive step in our eventual
characterisation of injectors:



7.4 Fitting sets, Fitting sets pairs, and outer Fitting sets pairs 341

Theorem 7.4.3. Let G be a soluble group and suppose H is a subgroup of G
and M is a normal subgroup of G. Assume that the following condition holds:

Whenever S is a subnormal subgroup of H, g ∈ G, Sg ≤ HM and
S1 = H ∩ SgM is subnormal in H, then S1 and Sg are conjugate in
J = 〈S1, S

g〉. (7.1)

Then

1. if S is a subnormal subgroup of H, then S is pronormal in NG(SM) and
2. if HM ∈ Inj(G), then H ∈ Inj(G).

Proof. 1. Let g be an element of NG(SM), so that SgM = (SM)g = SM.
Note that if S is subnormal in H, then SM is subnormal in HM , and therefore
S1 = H ∩ SgM = H ∩ SM = S(H ∩ M) is subnormal in H. Applying (7.1)
with g = 1 yields S and S1 = S(H ∩ M) are conjugate. Now, by order
considerations, S = S1. By (7.1) then, S and Sg are conjugate in 〈S, Sg〉; i.e.
S is pronormal in NG(SM).

2. Suppose that S and T are subnormal subgroups of H and a, b ∈ G with
Sa and T b normal in SaT b. By Lemma 7.4.1, it suffices to find an element w
such that SaT b is subnormal in Hw. Now SM and TM are subnormal sub-
groups of HM and SaM and T bM are normal in Y = SaT bM = SaMT bM ,
and because HM ∈ Inj(G), there exists c ∈ G such that Y is subnormal in
(HM)c = HcM . Let H0 = Hc and S0 = Sc. Note that condition (7.1) still
holds when H is replaced by the conjugate H0. Replacing S and g by S0 and
c−1a we have S0 is subnormal in H0, Sg

0 = Sa ≤ H0M , and Sg
0M = SaM is

normal in Y which is subnormal in H0M . Hence Sg
0M is subnormal in H0M ,

and S1 = H0 ∩ Sg
0M is subnormal in H0. Then by (7.1), S1 and Sa are con-

jugate in 〈S1, S
a〉 ≤ SaM ≤ Y . Similarly, T1 = H0 ∩ T bM is subnormal in

H0, and T b is conjugate in Y to T1; hence there are elements x, y ∈ Y such
that Sx

1 = Sa and T y
1 = T b.

Now SaM = H0M ∩ Sg
0M = (H0 ∩ Sg

0M)M = S1M and then Y ≤
NG(SaM) = NG(S1M), and if follows from Assertion 1 that S1 is pronormal in
Y . Similarly, T1 is pronormal in Y . We also have that S1 and T1 are subnormal
in 〈S1, T1〉 and Sx

1 , T y
1 normal in Sx

1 T y
1 . By Lemma 7.4.2, there exists z ∈ Y

with Sx
1 = Sz

1 and T y
1 = T z

1 . Hence SaT b = Sx
1 T y

1 = (S1T1)z is subnormal in
Hz

0 = Hcz, so setting w = cz yields our result. ��

Now we are ready to prove that two properties that do not involve Fitting
sets are equivalent to that of being an injector. Not surprisingly, conjugation,
which is crucial to the definition of Fitting set and normality (and there-
fore indirectly, subnormality) play an important role in these properties. In
particular, for convenience we introduce the following definition:

Definition 7.4.4. If H and X are subgroups of a soluble group G and g ∈ G,
we say H is (X, g)-pronormal if H ∩ X and Hg ∩ X are conjugate in J =
〈H ∩ X, Hg ∩ X〉.
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Note that H is a pronormal subgroup of G if and only if H is (G, g)-
pronormal for all g ∈ G.

We now can prove:

Theorem 7.4.5 (R. Dark and A. Feldman). Let G be a soluble group, and
suppose that H is a subgroup of G. Then any two of the following conditions
are equivalent:

1. H is an injector of G;
2. whenever H ≤ K ≤ G, g ∈ G, and X and Xg−1

are subnormal subgroups
of K, then H is (X, g)-pronormal;

3. whenever M/N is a chief factor of G which is not covered by H, S is a
subnormal subgroup of H such that H ∩ N ≤ S, g ∈ G, and Sg ≤ HM
with S1 = H ∩ SgM subnormal in H, then S1 and Sg are conjugate in
J = 〈S1, S

g〉.

Proof. 1 implies 2. Suppose that H is an F-injector of G for some Fitting
set F of G. Then, with K and X as in 2 and J as in the definition of (X, g)-
pronormal, H is an FK-injector of K by [DH92, VIII, 2.13], and then H∩X is
an FX -injector of X by [DH92, VIII, 2.6], and hence H ∩X is an FJ -injector
of J by [DH92, VIII, 2.13] again. Similarly, Hg is an FKg -injector of Kg, and
X is subnormal in Kg by hypothesis, and then Hg ∩ X is an FX -injector of
X, and Hg ∩ X is an FJ -injector of J . Thus by Theorem 2.4.26, H ∩ X and
Hg ∩ X are conjugate in J , establishing 2.

2 implies 3. First observe that, in these hypotheses, we certainly have
that H avoids M/N . With X = M , we see that H ∩ M and Hg ∩ M are
conjugate in J = 〈H ∩ M,Hg ∩ M〉, and then (H ∩ M)N and (Hg ∩ M)N
are conjugate in JN . But JN/N ≤ M/N , which is abelian, and it follows
that (H ∩ M)N = (Hg ∩ M)N . This holds for all g ∈ G because X = M is
normal in G, and then (H ∩M)N is normal in G. Since H does not cover the
chief factor M/N of G, we have that (H ∩M)N < M . Then (H ∩M)N = N ,
establishing the result.

Assume the hypotheses of 3 and take X = SgM . Then X is subnormal
in HgM and Xg−1

is subnormal in HM . Also, X ≤ HM , and X = HM ∩
SgM = (H ∩ SgM)M = S1M is subnormal in HM . Moreover, H ∩ X =
S1 by definition, and Hg ∩ X = Hg ∩ SgM = Sg(Hg ∩ M), which equals
Sg(Hg ∩ N) inasmuch as Hg avoids M/N . But H ∩ N ≤ S by hypothesis,
and then Hg ∩ N ≤ Sg, and Hg ∩ X = Sg. Thus 2 yields that S1 and Sg are
conjugate in 〈S1, S

g〉, as claimed.
To see that 3 implies 1, we pass through an intermediate Step 4.

4. Whenever M/N is a chief factor of G which is not covered by H, and
such that CoreG(H) ≤ N < M ≤ 〈HG〉, and S is a subnormal subgroup
of H such that H ∩ N ≤ S, g ∈ G, and Sg ≤ HM with S1 = H ∩ SgM
subnormal in H, then S1 and Sg are conjugate in J = 〈S1, S

g〉.
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It is clear that 3 implies 4. Hence we have to prove that 4 implies 1.
Note first that if C = CoreG(H), it is easy to see that if 4 holds for

H ≤ G, then 4 also holds for H/C ≤ G/C. Moreover, if H/C ∈ Inj(G/C),
then H ∈ Inj(G) by [DH92, VIII, 2.17]. Thus it suffices to prove that if 4 holds
for H/C in G/C, then H/C ∈ Inj(G/C), and we may assume that C = 1, i.e.
H is core-free in G.

We proceed by induction on the index |〈HG〉 : H|. If |〈HG〉 : H| = 1,
then H = 1 inasmuch as H is core-free. In this case H is obviously an injector
of G. Hence we may assume that |〈HG〉 : H| > 1. Let M1 be a minimal normal
subgroup of G such that M1 ≤ 〈HG〉. Since H is core-free, H does not cover
M1. We see next that because 4 holds for H, it also holds for HM1.

Suppose that M/N is a chief factor of G which 1 < M1 ≤ CoreG(HM1) ≤
N < M ≤ 〈(HM1)G〉 = 〈HG〉 and M/N is not covered by HM1.

Now suppose that g ∈ G and S̄ is a subnormal subgroup of HM1 such
that HM1 ∩ N ≤ S̄, g ∈ G, and S̄g ≤ (HM1)M with S̄1 = HM1 ∩ S̄gM
subnormal in HM1,

Consider S = H∩S̄. Then S is subnormal in H. Since M1 ≤ HM1∩N ≤ S̄,
then S̄ = HM1 ∩ S̄ = (H ∩ S̄)M1 = SM1, and then S̄gM = SgM . Observe
also that H ∩N = H ∩HM1 ∩N ≤ H ∩ S̄ = S and Sg ≤ S̄g ≤ HM . Finally,
it is clear that S1 = H ∩ SgM = H ∩ (HM1 ∩ S̄gM) = H ∩ S̄1 is subnormal
in H.

Thus the hypotheses of 4 hold, implying S1 and Sg are conjugate in J =
〈S1, S

g〉. Moreover, S̄ = SM1, and S̄g = SgM1, and S̄1 = HM1 ∩ S̄gM =
(H ∩ SgM)M1 = S1M1, and J̄ = 〈S̄1, S̄

g〉 = JM1. Hence S̄1 and S̄g are
conjugate in J̄ .

Observe that |〈HG〉| = |〈(HM1)G〉 : HM1| < |〈HG〉 : H|. Thus the in-
duction hypothesis implies that HM1 ∈ Inj(G). To complete the proof, we
apply Theorem 7.4.3 (2) with M = M1. With N = 1, and by 4 applied to
the chief factor M1/N , Condition (7.1) of Theorem 7.4.3 holds. Thus, The-
orem 7.4.3 (2) shows that H ∈ Inj(G). ��

Corollary 7.4.6. Let G be a soluble group. Suppose that H is an injector of
G and M a normal subgroup of G. Then H ∩ M is pronormal in G.

Applying [DH92, VIII, 3.5], a maximal subgroup of a group is always an
injector. Hence, in particular, in a soluble group the intersection of a maximal
subgroup and a normal subgroup is pronormal in the group.

By [DH92, VIII, 3.8] every normally embedded subgroup of a soluble group
is an injector. In the following we give a proof of this fact using Theorem 7.4.5.

Corollary 7.4.7. Suppose H is a normally embedded subgroup of a soluble
group G. Then H ∈ Inj(G).

Proof. Assume that H is normally embedded in G, H ≤ K ≤ G, and X,Xg−1

are subnormal in K for some g ∈ G. We shall show that H is (X, g)-pronormal.
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First we show that H ∩X and Hg ∩X are locally conjugate in X. For an
arbitrary prime, p, let P ∈ Sylp(H); let P1 ∈ Sylp(K) such that P1 ∩ H = P .
Because X is subnormal in K, P1 ∩ X ∈ Sylp(X), by [DH92, I, 4.21]. Also,
H ∩X is subnormal in H, and P ∩X = P ∩ (H ∩X) ∈ Sylp(H ∩X). Now H

normally embedded in G implies P ∈ Sylp(〈PG〉), and P ≤ 〈PG〉∩P1 ≤ 〈PG〉,
and then P = 〈PG〉 ∩ P1. Because 〈PG〉 ∩ X is normal in X, (P1 ∩ X) ∩
(〈PG〉 ∩ X) ∈ Sylp(〈PG〉 ∩ X). But (〈PG〉 ∩ X) ∩ (P1 ∩ X) = (〈PG〉 ∩ P1) ∩
X = P ∩ X ∈ Sylp(H ∩ X). Hence any Sylow p-subgroup of H ∩ X is a
Sylow p-subgroup of 〈PG〉 ∩X. By similar arguments, P g ∈ Sylp(Hg) implies
P g ∩X ∈ Sylp

(
〈(P g)G〉 ∩X

)
= Sylp(〈PG〉 ∩X) and P g ∩X ∈ Sylp(Hg ∩X).

g ∩ X that are Sylow
p-

Now note that 〈PG〉∩X is normal in X, and since this works for all primes
p, H ∩X and Hg ∩X are normally embedded in X. Thus H ∩X and Hg ∩X
are locally pronormal [DH92, I, 7.13] and therefore pronormal [DH92, I, 6.14]
in X. Thus H ∩ X and Hg ∩ X are locally conjugate and locally pronormal
subgroups in X, and they are conjugate in X [DH92, I, 6.16]. Finally, the
pronormality of H ∩ X in X implies that H ∩ X and Hg ∩ X are conjugate
in their join; i.e. H is (X, g)-pronormal, establishing the result. ��

Let F be a Fitting class. Blessenohl and Gaschütz [BG70] introduced the
notion of F-Fitting pair which turns out to be useful for the construction of
normal Fitting classes in the Lockett section of F.

We need to deal with arbitrary (possibly infinite) groups. Hence if we
denote a group by G, we are assuming that the group G is finite. Otherwise,
we put G.

Definition 7.4.8. If N and M are groups, an embedding is a group mono-
morphism ν : N −→ M .

If Nν is a normal subgroup of M , then ν is said to be a normal embedding.

Definition 7.4.9 ([BG70]). Let F be a Fitting class. An F-Fitting pair is
a pair (d,A) which consists of a group A and a family

(
dU ∈ Hom(U,A) :

U ∈ F
)

such that for each normal embedding ν : U −→ V ∈ F, the assertion
dU = νdV holds.

It can be proved that in this case {(g)dG : g ∈ G,G ∈ F} is an abelian
subgroup of A ([DH92, IX, 2.12 (b)]). Hence, without loss of generality, we
may assume that A is abelian.

In the same paper, Blessenohl and Gaschütz gave examples of Fitting
pairs and proved the following result, which remains valid in the general finite
universe.

Proposition 7.4.10 (see [DH92, IX, 2.11]). Let F be a Fitting class and
let (d,A) be an F-Fitting pair. Then the class R = Ker(d,A) of all groups
G ∈ F such that GdG = 1 is a normal Fitting class such that F∗ ⊆ R ⊆ F.

subgroups of the same subgroup of X, and they are conjugate in X, as desired.
Thus we have Sylow p-subgroups of H ∩ X and H
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Lausch [Lau73] showed that every non-trivial normal Fitting class in the
soluble universe can be described as the kernel of a Fitting pair. He also
described a universal F-Fitting pair, leading to the so-called Lausch group.
He carried out the construction for the case F = S, but as Bryce and Cossey
pointed out in [BC75], Lausch’s method applies to an arbitrary Fitting class
(see [DH92, X, Section 4] for details).

Pense, in his Dissertation [Pen87], generalised the concept of an
F-Fitting pair to that of outer F-Fitting pair.

Definition 7.4.11 (see [Pen88]). Let F be a Fitting class. An outer
F-

(
dU ∈

Hom(U,A) : U ∈ F
)

such that for each normal embedding ν : U −→ V ∈ F,
there exists an inner automorphism α of A such that dUα = νdV .

Obviously, if A is an abelian group, then an outer F-Fitting pair is just an
F-Fitting pair.

Pense extended the definition of a Fitting set to an infinite group by requir-
ing it to mean a set of finite subgroups closed under conjugation and under
the usual operations of taking normal subgroups and forming finite normal
products. He also introduced the concept of F-Fitting sets pair (d,A), where
A is an abelian group, to develop a local version of the Lausch group in certain
type of groups ([Pen87]).

Definition 7.4.12. If N and M are finite subgroups of G, a G-embedding
is a group monomorphism ν : N −→ M which is the restriction to N of an
inner automorphism of G.

If Nν a normal subgroup of M , then ν is said to be a normal
G-embedding.

Definition 7.4.13. Let F be a Fitting set of a group G. An F-Fitting sets
pair relative to G is a pair (d,A) which consists of a group A and a family(
dU ∈ Hom(U,A) : U ∈ F

)
such that for each normal G-embedding ν : U −→

V ∈ F , the assertion dU = νdV holds.

Note that, in our definition of F-Fitting sets pair, we do not require that
A is an abelian group. An outer F-Fitting sets pair is defined as follows:

Definition 7.4.14 ([AJBBPR00]). Let F be a Fitting set of a group G.
An outer F-Fitting sets pair relative to G is a pair (d,A) which consists of a
group A and a family

(
dU ∈ Hom(U,A) : U ∈ F

)
such that for each normal

G-embedding ν : U −→ V ∈ F , there exists an inner automorphism α of A
such that dUα = νdV .

If F is a Fitting class, then TrF(G) is a Fitting set of the group G, and if
(d,A) is an (outer) F-Fitting pair, then the pair (d,A), for

(
dU ∈ Hom(U,A) :

U ∈ TrF(G)
)
, is an (outer) TrF(G)-Fitting sets pair relative to G.

J.

Fitting pair is a pair (d,A) which consists of a group A and a family

is
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Definition 7.4.15. Two outer F-Fitting sets pairs (di,Ai), i = 1, 2, are equi-
valent if there exists an isomorphism σ : A1 −→ A2, such that for each U ∈ F ,
there exists αU ∈ Inn(A2) such that d2U = d1UσαU .

In [AJBBPR00], P. Arroyo-Jordá, A. Ballester-Bolinches, and M. D. Pérez-
Ramos made a complete study of outer Fitting sets pairs. In the sequel, we
will present the main results of this paper.

To begin with, we point out that there are some differences between Fitting
pairs and Fitting sets pairs. We shall show two of them.

Remarks 7.4.16. 1.
assumed abelian without loss of generality. This is not true for Fitting sets
pairs in general.

Let G be the alternating group of degree 5, G = Alt(5), and F the trace
in G of the Fitting class F = S3S5S2. In other words, the Fitting set F is
composed of all subgroups of G of prime-power order, and the normalisers of
the Sylow 5- and 3-subgroups. Consider the symmetric group S = Sym(3) of
degree 3. If X is a subgroup of prime-power order of G, then put dX : X −→ S
to be the trivial homomorphism: xdX = 1 for all x ∈ X. If P ∈ Syl3(G) and
N3 = NG(P ), then put dN3 : N3 −→ S to be a homomorphism such that
P = Ker(dN3) and Im(dN3) = 〈(12)〉. If Q ∈ Syl5(G) and N5 = NG(Q), then
put dN5 : N5 −→ S to be a homomorphism such that Q = Ker(dN5) and
Im(dN5) = 〈(23)〉.

The pair ({dH : H ∈ F}, S) is an F-Fitting sets pair relative to G.
Observe that S is not abelian and S = 〈hdH : H ∈ F , h ∈ H〉.
2. Pense [Pen87, Kollollar 3.30] shows that if (d, A) is a outer Fitting pair

with A finite, then it is equivalent to a Fitting pair. This is not true for outer
Fitting sets pairs.

Let Q = 〈x, y : x4 = 1, x2 = y2, xy = x−1〉 be a quaternion group of
order 8 and fix a subgroup C = 〈x〉 of order 4 of Q. The set of all subgroups
of C is a Fitting set F of Q. The inclusion ι : C −→ Q induces a family of
monomorphisms between the members of F and Q. The pair (ι, Q) is an outer
F-Fitting sets pair relative to Q. The inner automorphism αy of Q induced
by y gives a normal Q-embedding of ν : C −→ C such that xν = x−1 and
ιαy = νι.

If (ι, Q) were equivalent to a F-Fitting sets pair (d, A), there would exist
an isomorphism ψ : Q −→ A such that for each subgroup T of C there would
exist αT ∈ Inn(A) such that dT = ιT ψαT . Since dC = νdC , we have that
x2 ∈ Ker(dC). But ιCψαC is a monomorphism and therefore dC 	= ιCψαC .
Thus (ι, Q) cannot be equivalent to an F-Fitting sets pair (d, A).

The following result is the “Fitting sets” version of [Pen87, Satz 3.2].

Theorem 7.4.17. Let (d,A) be an outer F-Fitting sets pair relative to G
and let H be a Fitting set of A.

In Definition 7.4.9 of Fitting pair, the group A can be
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1. The collection Hd−1 = {U ∈ F : UdU ∈ H} of finite subgroups of G is a
Fitting set of G.

2. If U ∈ F , then UHd−1 =
(
(UdU )H

)d−1
U .

Proof. 1. If N is a normal subgroup of U ∈Hd−1, then NdN is conjugate in
A to the normal subgroup NdU of UdU ∈ H. Thus N ∈ Hd−1.

Assume that N1 and N2 are subgroups of G which are normal in T = N1N2

and Ni ∈ Hd−1, for i = 1, 2. Then T dT = NdT
1 NdT

2 and NdT
i is normal in T dT ,

for i = 1, 2. Moreover, NdT
i is conjugate in A to N

dNi
i , for i = 1, 2. Therefore

T ∈ Hd−1.
2. Let C =

(
(UdU )H

)d−1
U . By Statement 1, C is a normal Hd−1-subgroup

of U . If M is a normal subgroup of U , with M ∈ Hd−1, then MdM ∈ H and
it is conjugate in A to MdU . Hence MdU ≤ (UdU )H and then M ≤ C. ��

Definition 7.4.18. For an outer F-Fitting sets pair relative to G, (d,A),
and a homomorphism ϕ : A −→ B, we define the induced outer F-Fitting
pair relative to G, (dϕ,B), by (dϕ)T = dT ϕ, for every T ∈ F .

The next theorem provides a criterion for the Fitting sets constructed by
means of outer Fitting sets pairs to be injective.

Theorem 7.4.19 ([AJBBPR00]). Let G be a group and denote by EG the
Fitting set composed of all finite subgroups of G. Let (d,A) be an outer EG-
Fitting sets pair relative to G. Suppose that F is a Fitting set of A and the
pair (d,A) satisfies the following condition:

For each G-embedding ν : V −→ U , for U , V ∈ EG such that UFd−1 ≤
V ν , there exists η ∈ Inn(A) such that νdU = dV η. (7.2)

Let X ∈ EG. If the group XdX possesses a single conjugacy class of
F-injectors, then X also possesses a single conjugacy class of Fd−1-injectors.

Proof. Let X be a subgroup of G and assume that T is an F-injector of
XdX . Denote by U = T d−1

X . We shall see that U is an Fd−1-injector of X.
Since T is an F-injector of XdX , it follows that (XdX )F is a subgroup of
T . Hence XFd−1 = ((XdX )F)d−1

X by Theorem 7.4.17 (2) and it is contained
in U . By property (7.2) there exists a ∈ A such that (UdU )a = UdX . Since
T = UdX ∈ F it follows that U ∈ Fd−1.

Let N be a subnormal subgroup of X and suppose that U ∩N ≤ W ≤ N ,
where W ∈ Fd−1. Since N is a subnormal subgroup of X, it holds that
NFd−1 = N ∩XFd−1 ≤ N ∩U ≤ W . By (7.2), the subgroup W dN is conjugate
in A to W dW which is in F . On the other hand, since (d,A) is an outer
EG-Fitting sets pair relative to G, there exists θ ∈ Inn(A) such that dN is
dXθ restricted to N . Hence W dN is conjugate in A to W dX . Consequently
W dX ∈ F . Now Ker(dX) ≤ XFd−1 ≤ U . Hence (U ∩ N)dX = T ∩ NdX which
is contained in W dX ≤ NdX . Since T is an F-injector of XdX and W dX ∈ F ,
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it follows that T ∩ NdX = W dX . Therefore W ≤ U and U ∩ N = W . This
means that U is an Fd−1-injector of X.

Suppose now that XdX has a single conjugacy class of F-injectors. Let U
and Ũ be two Fd−1-injectors of X. A straightforward proof using analogous
arguments provides that UdX and ŨdX are F-injectors of XdX . By hypothesis,
there exists x ∈ X such that UdX = (Ũx)dX . Since Ker(dX) ≤ U∩Ũ , it follows
that U = Ũx. ��

The rest of the section is devoted to construct injective Fitting sets using
outer Fitting sets pairs. We shall give some examples of outer Fitting sets
pairs which are local versions of the outer Fitting pairs constructed in [Pen88,
Sections 4 and 5]. These local constructions provide further information and
show that Fitting sets pairs are worth investigating.

Our first example leads to a p-supersoluble Fitting set, p a prime, in every
group. This Fitting set is dominant in the set of all p-constrained groups (see
Definition 2.4.29).

Example 7.4.20. Let G be a group and let J be a simple group. Suppose
that nG is the largest natural number such that |J |nG divides |G|. Denote
by DJ(nG) the direct product of nG copies of J . If nG = 0, we agree that
DJ(nG) = 1. Let AJ(nG) = Aut

(
DJ(nG)

)
and OJ(nG) = Out

(
DJ(nG)

)
. It is

known that
1. if J is non-abelian, then AJ(nG) is isomorphic to the natural wreath

product

AJ (nG) ∼= Aut(J) �nat Sym(nG) and OJ (nG) ∼= Out(J) �nat Sym(nG).

2. if J ∼= Cp, for a prime p, then

AJ(nG) ∼= GL(p, nG).

Also let DJ be the restricted direct product of countably infinitely many
copies of J and let AJ = Aut0(DJ) be the group of all automorphisms of DJ

with finite support Denote OJ the group of outer automorphisms of DJ with
finite support.

Let F and G be two Fitting classes such that G ⊆ F.
1. ([Pen88, Theorem II]) For any group G and any chief series Γ of G

through GF and GG, let DJ(Γ, F/G) be the direct product of all the J-chief
factors of Γ between GF and GG, taken in the order of occurrence in Γ .
We consider this group as the subgroup of DJ consisting of the first direct
components of DJ . The group G operates on every such DJ(Γ, GF/GG) and
by identical continuation also on DJ . This action defines a homomorphism

d
J,F/G
G : G −→ AJ .

Then the pair (dJ,F/G, AJ) is an outer E-Fitting pair. This is called the chief
factor product Fitting pair .

The construction is dependent on the inherent choices only within equi-
valence of outer Fitting pairs.
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2. ([AJBBPR00, Ex. IV]) Let G be a group. Let EG denote the Fitting set
composed of all subgroups of G. For each T ∈ EG, i.e. for each subgroup T of G,
we consider a chief series ΓT of T through TF and TG. Let DJ(ΓT ) be the direct
product of all the J-chief factors of T taken in the order of occurrence in ΓT .
We consider this group as the subgroup of DJ(nG) consisting of the first direct
components of DJ(nG). T acts by conjugacy on DJ(ΓT ) and in trivial way on
the rest of components of DJ(nG). This action defines a homomorphism

d
J,F/G
T : T −→ AJ(nG).

Then the pair
(
dJ,F/G,AJ (nG)

)
is an outer EG-Fitting sets pair relative to G.

This is called the chief factor product Fitting sets pair relative to G.
The construction is dependent on the inherent choices only within equi-

valence of outer Fitting sets pairs.

Remark 7.4.21. With the above notation, if F is a Fitting set of AJ , then
F = Fd−1 is a Fitting class defined by the chief factor product Fitting pair
by [Pen87, Satz 3.2]. Then TrF(G) is the Fitting set of G defined by the chief
factor product Fitting sets pair relative to G (see Theorem 7.4.17).

There exist Fitting sets associated with chief factor product Fitting sets
pairs which cannot be obtained in this way.

Let G be a group and p a prime dividing |G|. Following the notation the
above example, we take J = Cp, the cyclic group of order p, F = E the class of
all finite groups, and G = (1), the trivial class. Let nG be the natural number
such that pnG is the order of a Sylow p-subgroup of G. Then DJ(nG) is an
elementary abelian p-group of order pnG and AJ (nG) = GL(nG, p). Denote
by
(
d, GL(nG, p)

)
the chief factor product Fitting sets pair relative to G of

Example 7.4.20 (2), that is d = dCp,E/(1).
Let F =

{
U ≤ GL(nG, p) : U ≤ Z

(
GL(nG, p)

)}
. Since Z

(
GL(nG, p)

)
is a

normal subgroup of GL(nG, p), it is clear that F is a Fitting set of GL(nG, p).
By Theorem 7.4.17 we have that FZ = Fd−1 is a Fitting set of G.

It is proved in [AJBBPR00, Ex. VI]) that there exist groups G for which
FZ is not the trace in G of any Fitting class. In particular, FZ is not the trace
in G of the Fitting class obtained by the inverse image of a Fitting set of ACp

through the chief factor product Fitting pair.
We study the Fitting set FZ in a group G. We assume that nG 	= 0. For

any subgroup B ≤ G, write pnB the order of a Sylow p-subgroup of B. If
x ∈ B, then

xdB =
(

M(x) 0
0 InG−nB

)
,

where M(x) ∈ GL(nB , p) is the matrix of the action of x on the p-chief factors
of a fixed chief series of B.

If B ∈ FZ , then xdB = λInG
, for some non-zero scalar λ of GF(p). Hence,

the p-chief factors of B are simple and all of them are B-isomorphic. In particu-
lar, Ker(dB) = Op′,p(B). Moreover, B/Ker(dB) is a subgroup of Z

(
GL(nG, p)

)
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and then it is isomorphic to a cyclic group of order dividing p − 1. If B
does not contain any Sylow p-subgroup of G, then B is p-nilpotent; that is,
B = Ker(dB).

Note that all p-nilpotent subgroups of G are in FZ . If H is a subgroup of
G, the order of a Sylow p-subgroup of H is denoted by |H|p.

Lemma 7.4.22. Let H be a subgroup of G. Assume that H is a p-soluble
group of p-length at most 1. Then:

1. HFZ is the unique FZ-maximal subgroup of H containing Op′,p(H); in
particular HFZ

is the unique FZ-injector of H.
2. If |H|p < pnG , then HFZ

= Op′,p(H).
3. If |H|p = pnG , then HFZ

is the set of all m ∈ H such that m has scalar
action on the direct product of the p-chief factors of H in a chief series
of H.

Proof. 1. Let M be an FZ -subgroup of H containing O p′,p(H).We claim that
M is normal in H, so that the conclusion is clear.

Since the p-length of H is smaller than or equal to 1, then M/ Op′,p(H)
is a p′-group. Consequently the p-chief factors of H are completely reducible
GF(p)M -modules. Hence the direct product of the p-chief factors of H in a

M-
M . Since M ∈ FZ , then M has scalar action on the above mentioned direct
product of the p-chief factors of H. Therefore [M, H] ≤ Op′,p(H) ≤ M . In
particular M is normal in H.

2. If |H|p < pnG , it is clear that HFZ
is p-nilpotent and then HFZ

=
Op′,p(H).

3. Assume now that |H|p = pnG . Denote by S the set of all m ∈ H such
that m has scalar action on the direct product of the p-chief factors of H
in a chief series of H. It is clear that S is a normal subgroup of H contain-
ing Op′,p(H). Note that the p-chief factors of H are completely reducible as
GF(p)HFZ

-modules and also as GF(p)S-modules because HFZ
and S are nor-

mal subgroups of H. Moreover, since |H|p = pnG we can easily deduce that
S ∈ FZ and also that S = HFZ

. ��

Recall that the class Ep′Sp of all p-nilpotent groups is injective, and a
group G possesses a unique conjugacy class of Ep′Sp-injectors if and only if G
is p-constrained (see Corollary 7.2.31 and Remark 7.2.32). Moreover, in this
case,

InjEp′Sp
(G) = {Op′,p(G)P : P ∈ Sylp(G)},

and the p-nilpotent injectors of G are the p-nilpotent maximal subgroups of
G containing Op′,p(G).

Lemma 7.4.23. Let H be a p-constrained subgroup of G such that |H|p =
pnG . Suppose that M is an FZ-maximal subgroup of H containing Op′,p(H).

isomorphic to the direct product of the p-chief factors of M in a chief series of
chief series of H , viewed as a GF(p)M -module in the natural way, is GF(p)
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1. There exists a p-nilpotent injector I of H such that I = Op′,p(M).
2. Moreover, M is the FZ-radical of NH(I) and is the set of all elements

m ∈ NH(I) such that m has scalar action on the direct product of the
p-chief factors of NH(I) in a chief series of NH(I).

Proof. Suppose that |M |p < pnG . In this case since M ∈ FZ , we have that
M is a p-nilpotent group and then M is contained in a p-nilpotent injector,
X say, of H, because Op′,p(H) ≤ M . But clearly X ∈ FZ , which implies
X = M . In particular M = Op′(H)Hp for some Hp ∈ Sylp(H), which is a
contradiction. Consequently there exists a Sylow p-subgroup Hp of H such
that Op′,p(H)Hp ≤ Op′,p(M). But I = Op′,p(H)Hp is a p-nilpotent injector
of H, which implies that I = Op′,p(M).

Observe that I ≤ M ≤ NH(I) and I = Op′,p
(
NH(I)

)
. Since NH(I) is a p-

soluble group of p-length at most 1, the conclusion follows from Lemma 7.4.22.
��

Theorem 7.4.24. Let H be a p-constrained subgroup of G. Then H has a
unique conjugacy class of FZ-injectors. Moreover, the FZ-injectors of H are
exactly the FZ-maximal subgroups of H containing Op′,p(H), or equivalently,
the FZ-radical of H.

Moreover, we have:

1. If |H|p < pnG , then the FZ-injectors of H are exactly the p-nilpotent
injectors of H.

2. If |H|p = pnG , then the set of FZ-injectors of H is exactly

InjFZ
(G) =

{(
NH(I)

)
FZ

: I ∈ InjEp′Sp
(H)

}
In particular, the FZ-injectors of H are the subgroups composed of all
elements m ∈ NH(I) such that m has scalar action on the direct product
of the p-chief factors of NH(I) in a chief series of NH(I), where I is a
p-nilpotent injector of H.

Proof. Note that if |H|p < pnG , then the FZ-subgroups of H are exactly
the p-nilpotent subgroups. On the other hand, if |H|p = pnG , it is clear by
Lemma 7.4.23 that the set of FZ-maximal subgroups of H containing Op′,p(H)
is exactly the set

{(
NH(I)

)
FZ

: I ∈ InjEp′Sp
(H)

}
which is a conjugacy class of

subgroups of H. Since Op′,p(H) ≤ HFZ , we deduce that this set also coincides
with the set of all FZ-maximal subgroups of H containing HFZ

.
Therefore the Fitting set FZ is dominant in the set X = {H ≤ G :

H is p-constrained}. ��

J. Pense ([Pen87, 4.14]) presented a type of Fitting classes, constructed by
means of Fitting pairs, with respect to which every finite group has a unique
conjugacy class of injectors. An improved version of this result is presented
in [Pen90c]. We shall show in the sequel that Pense’s result is actually a
particular case of a more general one.
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Definition 7.4.25. Let G be a group and let S be a perfect comonolithic group
whose head is isomorphic to a simple group J . Let L be the subgroup generated
by all subnormal subgroups of G isomorphic to S

L = 〈T : T is subnormal in G and T ∼= S〉

and let
M = 〈Cosoc(T ) : T is subnormal in G and T ∼= S〉

(which is a normal subgroup of L by Theorem 2.2.19). The factor group L/M
is called the S-head-section of G.

By Theorem 2.2.19, L = T1 · · ·Tm, where all Ti are normal subgroups of
L and Ti

∼= S. Note that if S a perfect comonolithic subnormal subgroup
of a group which is the join of two subnormal subgroups S1 and S2, then
either S is contained in S1 or S is contained in S2 ([Wie39]). This implies
that Ti ∩ M = Cosoc(Ti) and then TiM/M ∼= J . Hence L/M is a group in
the Fitting class Fit(J) generated by J , i.e. L/M is isomorphic to a direct
product of copies of J , by Example 2.2.3 (1).

Example 7.4.26. Let G be a group and let S be a perfect comonolithic group
whose head is isomorphic to a simple group J . Let DJ(nG), AJ(nG), F, and
G be as in Example 7.4.20.

head-section of GF/GG as the first components of DJ . Then G operates on
DJ via this embedding, and therefore we have a homomorphism

H
S,F/G
G : G −→ AJ .

The pair (HS,F/G,AJ) is an outer E-Fitting pair.
2. ([AJBBPR00, Ex. V] )
For each subgroup T of the group G, we fix an embedding of the S-head-

section of TF/TG as the first components of DJ(nG). Then T operates on
DJ(nG) via this embedding, and therefore we have a homomorphism

h
S,F/G
T : T −→ AJ(nG).

Denote by EG the Fitting set of all subgroups of G. Thus the pair(
hS,F/G,AJ (nG)

)
is an outer EG-Fitting sets pair relative to G.

Let S be a perfect comonolithic group whose head is isomorphic to a non-
abelian simple group J . Consider the Fitting classes F = E, the class of all
finite groups, and G = (1), the trivial class. Write HS,F/G = HS . Then it
appears the outer E-Fitting pair, (HS ,AJ) say. Consider the projection from

1. ([Pen88, Theorem III]) For any group G fix an embedding of the
S-
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AJ to OJ and let (H̃S ,OJ) be the induced outer Fitting pair from the pair
(HS ,AJ ).

Analogously, if we consider the projection from AJ(nG) onto OJ (nG) =
Out

(
DJ (nG)

)
and let

(
h̃S , OJ(nG)

)
be the induced outer Fitting sets pair

relative to G from the pair
(
hS , AJ(nG)

)
.

Theorem 7.4.27. With the notation introduced above, let F be a Fitting set
of OJ(nG) all whose elements are subgroups of the base group of OJ(nG) and
let T = F(h̃S)−1 be the Fitting set corresponding to the pair

(
h̃S , OJ (nG)

)
.

If Out(J) is soluble, then each subgroup of G has exactly a conjugacy class
of T -injectors.

Proof. Note that for every subgroup B of OJ(nG), the F-injectors of B ∩
Out(J)�, where Out(J)� is the base group of OJ(nG), are exactly the
F- J(nG

class of F-injectors by Theorem 2.4.26. Then it is enough to show that the
pair

(
h̃S , OJ (nG)

)
satisfies the property (7.2) of Theorem 7.4.19.

Write f = h̃S . Let ν : V −→ U be a G-embedding between subgroups
U and V of G such that UT ≤ V ν . We consider LU/MU and LV ν /MV ν the
S-head-section of U and V ν respectively. It is clear that LU/MU is the S-head-
section of LU and so L

fLU

U = 1 ∈ F . Then LU ∈ Ff−1 = T and LU ≤ UT and
so also LU ≤ V ν . This implies that LU ≤ LV ν . Now suppose that there exists
a subnormal subgroup X of V ν such that X ∼= S and X is not subnormal in
U . Then, for any subnormal subgroup T of U such that T ∼= S, we have that
X and T are normal in XT , by Theorem 2.2.19, and then [X,T ] ≤ Cosoc(T ).
Hence [X,LU ] ≤ MU . Therefore X ≤ CV ν

(
LU/MU

)
≤ CU

(
LU/MU

)
. Since

CU (LU/MU ) ≤ Ker(fU ) ≤ UT ≤ V ν , it follows that X is subnormal in
CU (LU/MU ) and also is in U , contrary to supposition.

Therefore the S-head-section of V ν coincides with the S-head-section of U
and then it is conjugate to the S-section of V . By construction of the Fitting
sets pair, it follows that there exists η ∈ Inn

(
OJ(nG)

)
, such that νfU = fV η.

��

Now we deduce the aforesaid result of J. Pense.

Theorem 7.4.28 ([Pen90c]). Let S be a perfect comonolithic group with
head J . Consider the outer Fitting pair (H̃S ,OJ ). Let F be a Fitting set in
the base group of OJ and let F = F(H̃S)−1 be the corresponding Fitting class.
If the outer automorphism group of J is soluble, then every finite group has
exactly a conjugacy class of F-injectors.

Proof. First of all, note that AJ = limn→∞
(
Aut(

(n copies)︷ ︸︸ ︷
J × · · · × J)

)
and so AJ is

the (restricted, natural) wreath product limn→∞
(
Aut(J) �nat Sn

)
with base

group Aut(J)�. Then OJ is AJ/ Inn(J)� with base group Out(J)�.

injectors of B.Therefore each subgroup of O ) possesses a single conjugacy
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For each group G we consider OJ(nG) as a subgroup of OJ . With respect
to the outer EG-Fitting sets pair relative to G,

(
h̃S ,OJ(nG)

)
and for each

subgroup T of G, we have

(t)h̃S
T = (t)H̃S

T ∈ OJ(nG) ≤ OJ for every t ∈ T .

Therefore it follows that TrG(F) =
(
TrOJ (nG)(F)

)
(H̃S)−1. Applying The-

orem 7.4.27, G has a conjugacy class of F-injectors. ��

Recall finally Schreier’s conjecture, whose validity has been proved using
the classification of finite simple groups, which states that the group Out(J),
of all outer automorphisms of a non-abelian simple group J , is always soluble
(see [KS04, page 151]).




