Binary Error Correcting Codes

1 Basic concepts of Error correcting Codes

In communication system, we represent an information as a sequence of 0 an 1 (binary form). For a convenience, let $B = \{0, 1\}$. Then we define B^2, B^3, \ldots, B^n as follows :

$$B^{2} = \{00, 01, 10, 11\},\$$

$$B^{3} = \{000, 001, 010, 100, 011, 101, 110, 11\},\$$

$$\vdots$$

$$B^{n} = \{b_{1}b_{2} \dots b_{n} | b_{i} \in B\}$$

A symbol $b_1b_2...b_n \in B^n$ is called a *word*. We always denote **0** and **1** for 00...0 and 11...1, respectively.

We define binary operations $+, \cdot : B \times B \to B$ as follows :

+	0	1	•	0	1
0	0	1	0	0	0
1	1	0	1	0	1

Clearly, (B, +) is an abelian group.

Exercise 1.1. Let $b_1b_2...b_n, c_1c_2...c_n \in B^n$ and for each i = 1, 2, ..., n, let $d_i = b_i + c_i$ as above table. Define a binary operation $+ : B^n \times B^n \to B^n$ by

$$(b_1b_2\ldots b_n, c_1c_2\ldots c_n) \mapsto d_1d_2\ldots d_n.$$

- i) verify that $(B^n, +)$ is an abelian group,
- ii) for each $b_1b_2...b_n \in B^n$, determine its inverse.

The following diagram provides a rough idea of general information transmitted system.

Fig.1 : The communication channel

From above figure, we give concepts of a binary (n, m) code as follows:

Definition 1.1. Let $k, n \in \mathbb{N}$ be such that m < n. A binary (n, m) code (or *code*) compose of :

- 1. an injective function $E: B^m \to B^n$, called an *encoding function*,
- 2. a function $D : B^n \to B^m$ such that D(E(w)) = w for all $w \in B^m$, called a *decoding function*.

We call a set $M \subseteq B^m$ a set of massage, $w \in M$ a message word, $\mathcal{C} := E(M)$ a code, $c \in \mathcal{C}$ a code word, $r \in Dom(D)$ a received word. In general, $M \neq B^m$. WLOG, we assume for a convenience that $M = B^m$. Then a code $\mathcal{C} := E(M) = E(B^m)$ and $|\mathcal{C}| = 2^m$.

Definition 1.2. Let $C \subseteq B^n$ be a code and $c \in C$. If a word r is received (from c) and $e \in B^n$ is such that r = c + e, we call e an *error* (or *error* pattern).

Example 1.1 (Even parity-check code). We define

$$E: B^m \to B^{m+1}$$
 by $b_1 b_2 \dots b_m \mapsto b_1 b_2 \dots b_m b_{m+1}$

where

$$b_{m+1} = \begin{cases} 0 \text{ if the number of } 1s' \text{ in } b_1 b_2 \dots b_m \text{ is even} \\ 1 \text{ if the number of } 1s' \text{ in } b_1 b_2 \dots b_m \text{ is odd} \end{cases}$$

and

$$D: B^{m+1} \to B^m$$

by

$$b_1 b_2 \dots b_m b_{m+1} \mapsto \begin{cases} b_1 b_2 \dots b_m & \text{if the number of } 1s' \text{ in } b_1 b_2 \dots b_m \text{ is even} \\ 00 \dots 0 & \text{if the number of } 1s' \text{ in } b_1 b_2 \dots b_m \text{ is odd} \end{cases}$$

Then even parity-check code is an (m + 1, m) code. For example, B^3 is encoded as follow :

message word	000	001	010	100	011	101	110	111
code word	0000	0011			0110			

The following received words are decoded as in the table :

received word	1110	0101	0110	0001	1010	1101
message word	000				101	

Example 1.2 (Triple-repetition code). Triple-repetition code is (3m, m) code such that an encoding function

$$E: B^m \to B^{3m}$$

is defined by

$$b_1b_2\ldots b_m \mapsto b_1b_2\ldots b_mb_1b_2\ldots b_mb_1b_2\ldots b_m$$

and a decoding function

$$D: B^{3m} \to B^m$$

is defined by

$$x_1x_2\ldots x_my_1y_2\ldots y_mz_1z_2\ldots z_m \mapsto b_1b_2\ldots b_m$$

where

$$b_i \mapsto \begin{cases} 0 & \text{if } 0 \text{ occurs in } x_i y_i z_i \text{ at least twice} \\ 1 & \text{if } 1 \text{ occurs in } x_i y_i z_i \text{ at least twice} \end{cases}$$

For example, B^3 is encoded as follow :

message	000	001	010	100	011	101	110	111
code word	000 000 000		010 010 010					

The following received words are decoded as in the table :

received word	101 101 101	010 111 110	011 101 110	001 101 001	111 000, 101
message word	101				

Moreover, n-repetition code is defined similarly.

Nearest Neighbor Decoding : For a code C, if a word r is received, it is decoded as the code word in C closest to it.

Complete Nearest Neighbor Decoding : If more than one candidate appears, choose arbitrarily.

Incomplete Nearest Neighbor Decoding : If more than one candidate appears, request a retransmission.

To measure a distance between any two code words, we introduce the Hamming distance as follow :

Definition 1.3. Let $u = u_1 u_2 \dots u_n$, $v = v_1 v_2 \dots v_n \in B^n$. The distance d(u, v) of u and v is defined by

$$d(u, v) = |\{i \in \{1, 2, \dots, n\} | u_i \neq u_i\}|.$$

The weight w(u) of u is defined by

$$w(u) = |\{i \in \{1, 2, \dots, n\} | u_i \neq 0\}|$$

The distance and weight defined above are called the *Hamming-distance* and *Hamming-weight*, respectively.

Lemma 1.1. Let $u, v \in B^n$. Then w(u) = d(u, 0) and d(u, v) = w(u + v).

Lemma 1.2. Let $u, v, w \in B^n$. Then

- i) $d(u,v) \ge 0$,
- *ii)* d(u, v) = 0 *iff* u = v,
- $iii) \ d(u,v) = d(v,u),$
- *iv*) $d(u, v) \le d(u, w) + d(w, v)$,

and hence (B^n, d) is a metric space.

Example 1.3. Let $C = \{0000000, 1001100, 1101101, 0110011\}$ be a (7, 2) code.

The following table displays Hamming weight of each code word in C:

code word v	Hamming weight $w(v)$
0000000	
1001100	3
1101101	
0110011	

The follow	ina tahl	e displaus	H-distance	between	anų two	code	words	in C	· ·
The jouou	ing iuon	e uispiuys	11-415141100	06106611	ung iwo	coue	worus	m c	· •

d	0000000	1001100	1101101	0110011
0000000	0	3		
1001100				
1101101				
0110011			5	

Assume that complete nearest neighbor decoding is used. We introduce two methods to decode received words. Let r be a received word.

- 1. Find the closest code word $v \in C$ such that $d(r, v) \leq d(r, u)$ for all $u \in C$:
- 2. Since d(r,b) = w(r+b) for all $b \in B^n$, r is decoded to $v \in C$ such that $w(r+v) \le w(r+u)$ for all $u \in C$

Assume that 0001001, 1010100, 1001001, 0100101, 1110100, 1111111 are received words. We decode them as follows :

By 1^{st} method,

d	0000000	1001100	1101101	0110011	decode to
0001001	2				
1010100	3	<u>2</u>	4	5	1001100
1001001					
0100101					
1110100					
1111111					

By 2^{nd} method,

+	0000000	1001100	1101101	0110011	decode to
0001001	0001001	1000101	1100100	0111010	0000000
1010100	1010100	0011000	0111001	1100111	1001100
1001001			0101101	1110011	
0100101					
1110100					
1111111					

Example 1.4. Let

 $\mathcal{C} = \{0111000, 0010010, 1101101, 1001000, 1100010, 0011101, 0110111, 1000111\} \\ be\ a\ (7,4)\ code.\ Assume\ that \quad 0001001, 1010100, 1001001, 0100101, 1110100, 1111111 \\ are\ received\ words.\ We\ decode\ them\ by\ 2^{nd}\ method, \\ \end{cases}$

+	0111000	0010010	1101101	1001000	1100010	0011101	0110111	1000111	decode to
0001001									
1010100									
1001001									
0100101									
1110100									
1111111									

Definition 1.4. Let C be a code such that $|C| \neq 1$. The minimum distance d(C) of C is

$$d(\mathcal{C}) = \min\{d(u, v) | u, v \in \mathcal{C}, u \neq v\}.$$

The minimum weight $w(\mathcal{C})$ of \mathcal{C} is

$$w(\mathcal{C}) = \min\{w(u) | u \in \mathcal{C} \setminus \{\mathbf{0}\}\}.$$

The minimum distance of a code tell me about the correction (and detection) capability of its.

Theorem 1.3. Let $C \in B^n$ be a code. Assume that nearest neighbor decoding is used. Then

- 1) If $t + 1 \leq d$, then C can detect t-errors.
- 2) If $2l + 1 \leq d$, then C can correct l-errors.

Example 1.5. Refer to codes in above examples.

- Even parity check code in Example 1.1 has the minimum distance 2 and hence it can detect at most 1-error but cannot correct any error. (Verify !)
- 2. Triple-repetition code in Example 1.2 has the minimum distance 3 and hence it can detect at most -error(s) and can correct at most -error(s). (Verify !)
- A code C in Example 1.4 has the minimum distance □ and hence it can detect at most □-error(s) and can correct at most □-error(s).

d	00000000	11101011	01011110	10110101
00000000	0	6	5	5
11101011	6	0	5	5
01011110	5	5	0	6
10110101	5	5	6	0

Example 1.6. Let $C = \{0000000, 11101011, 01011110, 10110101\}$ be a (8, 2)

code. Distance between any two code words display on the table :

Then C has the minimum distance 5. This means that can correct at most 2-errors.

Assume complete nearest neighbor decoding is used. If words 11111111,00001011 and 11110000 are received, we can decode as follow :

+	00000000	11101011	01011110	10110101	decode to	describtion
11111111	11111111	00010100	10100001	01001010	11101011	can correct 2–errors
00001011	00001011	11100000	01010101	10111110	choose arbitrarily	cannot correct some 3–errors
11110000	11110000	00011011	10101110	01000101	10110101	can correct some 3–errors

When size of code is large, the minimum distance of code is hard to compute. Next, we introduce you a more efficiency code which is called a linear code (or group code).

2 Linear Codes (group codes)

Recall that $(B^n, +)$ is an abelian group.

Definition 2.1. A (n, k) code $C \subseteq B^n$ is called a *linear code* (or *group code*) if for all $u, v \in C$, $u + v \in C$.

Exercise 2.1. Let $C \subseteq B^n$ be a code. Verify that "C is a linear code if and only if C is a subgroup of B^n ".

Since C is a subgroup of B^n , by Lagrange's Theorem $|C|||B^n| = 2^n$ and hence $|C| = 2^k$ for some $k \in \{0, 1, 2, ..., n\}$. This means that C contain 2^k words of length n.

Definition 2.2. We call a linear code $C \subseteq B^n$ with $|C| = 2^k$ an [n, k] code. If an [n, k] code C has the minimum distance C, we call C an [n, k, d] code.

Example 2.1. Refer to codes in above examples.

- Even parity check code in Example 1.1 is a linear code with the minimum distance 2. Hence it is a [m + 1, m, 1] code. (Verify !)
- Triple-repetition code in Example 1.2 is a linear code with the minimum distance 3. Hence it is a [3m, m, 3] code. (Verify !)
- 3. A code C in Example 1.6 is a [8,2,5] code. (Verify !)

Theorem 2.1. Let $C \subseteq B^n$ be a linear code. Then d(C) = w(C).

Example 2.2. Consider the code

 $C = \{000000, 001110, 010101, 011011, 100011, 101101, 110110, 111000\}.$ Then C is a linear code (verify!) and hence C has the minimum distance d(C) = w(C) = 3, i.e., C is a [6,3,3] code. **Example 2.3.** Consider the code $C = \{111111, 100110, 010001, 011010\}$. Then C has the minimum distance d(C) = 3 is not equal to w(C) = 2. Why?

For any code, we can decode by methods which described in Example 1.3. Now, If C is a linear code, we have more efficiency methods.

2.1 Cosets and Coset Decoding

Since an [n, k] code C is a subgroup of B^n , for $u \in B^n$, $u + C = \{u + v | v \in C\}$ is called a *coset of* C *generated by* u. Clearly, the number of all (distinct) coset of C is $[B^n : C] = \frac{2^n}{2^k} = 2^{n-k}$.

Definition 2.3. For a coset u + C, we call $v \in u + C$ a coset leader if $w(v) \leq w(u + C)$.

Note that a coset leader may not unique.

Example 2.4. Consider a code $C = \{0000, 0110, 1011, 1101\}$. Then C is a linear [4,2,2] code. Then we obtain cosets and coset leaders (underline words) :

C + 0000	C + 0100	$\mathcal{C} + 1000$	C + 0001
0000	<u>0100</u>	<u>1000</u>	<u>0001</u>
0110	<u>0010</u>	1110	0111
1011	1111	0011	1010
1101	1001	0101	1100

The above table is called the standard decoding array (or standard array).

Coset Decoding: Let C be an [n, k] code. If a word $r \in B^n$ is received and v is the coset leader for r + C, then decode r as r + v. **Theorem 2.2.** Coset decoding is nearest neighbor decoding.

Proof. Let \mathcal{C} be an [n, k] code, $u \in B^n$ and v be a coset leader for $u + \mathcal{C}$. Since $v \in u + \mathcal{C}$, $u + \mathcal{C} = v + \mathcal{C}$ and hence $v := u + v \in \mathcal{C}$. Let $x \in \mathcal{C}$. Then $u + x \in u + \mathcal{C} = v + \mathcal{C}$, i.e., $w(v) \leq w(u + x)$. Thus

$$d(v, u) = w(u + v) = w(v) \le w(u + x) = d(u, v).$$

Example 2.5. Consider the standard array

C + 0000	C + 0100	C + 1000	C + 0001
0000	<u>0100</u>	<u>1000</u>	<u>0001</u>
0110	<u>0010</u>	1110	0111 .
1011	1111	0011	1010
1101	1001	0101	1100

Assume that coset decoding is used. If words 0101, 1010, 1111, 1011, 0111 are received, then we decode them as r + v where r is a received word and v is a coset leader :

received word (r)	decode to $(r+e)$
0101	0101 + 1000 = 1101
1010	
1111	
1011	
0111	

Example 2.6. Construct the standard array for the linear [6, 3, 3] code

$\mathcal{C} + 000000$	$\mathcal{C}+$						
000000							
001110							
010101							
011011							
100011							
101101							
110110							
111000							

 $\mathcal{C} = \{000000, 001110, 010101, 011011, 100011, 101101, 110110, 111000\}.$

Assume that coset decoding is used. Decode followings received words :

received word (r)	decode to $(r+v)$
010101	
101011	
111111	
101100	
011110	
000111	
111110	

 $Describe \ about \ correction \ capability \ ?$

2.2 Generator Matrix, Parity-check Matrix and Decoding

For a convenience, we consider a word $w = w_1 w_2 \dots w_k \in B^k$ as a matrix $w = [w_1 \ w_2 \ \dots \ w_k]$. Let G be a binary $k \times n$ matrix such that k < n. Then $wG = [w_1 \ w_2 \ \dots \ w_k] \in B^n$ for all $w \in B^k$.

Definition 2.4. Let G be a binary $k \times n$ matrix such that k < n and the first k columns is an identity matrix I_k . Define $E : B^k \to B^n$ by E(w) = wG. Then $\mathcal{C} := \{wG | w \in B^k\}$ is called a *code generated by* G and G is called the *(standard) generator matrix* for \mathcal{C} .

From the above definition, we write $G = [I_k \ A]$ for some $(k \times (n-k))$ matrix A. Then for each message word $u \in B^k$, $uG = [uI_k \ uA] = [u \ uA]$ which is easy to retrieve.

Exercise 2.2. Verify the followings :

- i) E is an encoding function (i.e., E is injective).
- ii) C is a linear code.

Definition 2.5. A binary $(n - k) \times n$ matrix H with k < n is called the *(standard) parity-check matrix for a linear* [n, k] *code* C if the last n - k columns is an identity matrix I_{n-k} and $Hv^t = [\mathbf{0}]$ for all $v \in C$.

Lemma 2.3. If G and H are generator matrix and parity-check matrix for a linear code C, respectively, then $HG^t = [\mathbf{0}]$ **Theorem 2.4.** If $G = [I_k \ A]$ is a generator matrix for a linear [n, k] code C, then $H = [A^t \ I_{n-k}]$ is a parity check matrix for C. Conversely, if $H = [B \ I_{n-k}]$ is a parity check for a linear [n, k] code C, then

 $G = \begin{bmatrix} I_k & B^t \end{bmatrix}$ is a generator matrix for \mathcal{C} .

Example 2.7. Even parity check code in Example 1.1 is a linear code with the generator matrix

$$G = \left[\begin{array}{c} 1 \\ I_m \\ \vdots \\ 1 \end{array} \right].$$

Determine the parity-check matrix for even parity check code? Triple-repetition code in Example 1.2 is a linear code with the generator matrix

$$G = \left[\begin{array}{c|c} I_m & I_m & I_m \end{array} \right].$$

Determine the parity-check matrix for triple-repetition code code?

Example 2.8. Let

	1	0	0	0	1	1	
G =	0	1	0	1	0	1	
	0	0	1	1	1	0	

Then

1. The linear code

$$\mathcal{C} := \{ wG | w \in B^3 \}$$
$$= \{ \}.$$

 ${\it 2.} \ The \ parity-check \ matrix$

$$H = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$

3. All cosets and coset leaders

.

$\mathcal{C} + 000000$	$\mathcal{C}+$						

Example 2.9. Let

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}.$$

Then

1. The linear code

$$C := \{wG | w \in B^4\}$$
$$= \{$$

2. The parity-check matrix

$$H = \begin{bmatrix} & & \\ & &$$

}.

C + 000000	$\mathcal{C}+$						

3. All cosets and coset leaders

.

Definition 2.6. Let H be the parity-check matrix for a linear [n, k] code C. For each $v \in B^n$, the syndrome S(v) of v is defined by $S(v) = Hv^t$

Theorem 2.5. Let H be the parity-check matrix for a linear [n, k] code Cand $u, v \in B^n$. Then

- i) S(u+v) = S(u) + S(v),
- ii) $S(v) = [\mathbf{0}]$ if and only if $v \in \mathcal{C}$,
- iii) S(u) = S(v) if and only if u and v are in the same coset.

Definition 2.7. A table which matches each coset leader *e* with its syndrome is called a *syndrome look-up table*.

Syndrome Decoding Let H be the parity-check matrix for a linear [n, k]code C. If $r \in B^n$ is received, compute S(r) and find v (in a syndrome look-up table) such that S(r) = S(v). Decode r as r + v.

Example 2.10. Construct a syndrome look-up table for a [6,3] code in Example 2.8.

coset leader v	syndrome $S(v)$

Assume that syndrome decoding is used. Decode following received words :

received word (r)	S(r)	decode to	(r+v) s.t. $S(r) = S(v)$
010101			
101011			
111111			
101100			
011110			
000111			
111110			

Exercise 2.3. Construct a syndrome look-up table for a [7,4] code in Example 2.9. Assume that syndrome decoding is used. Then decode following received words : 0001001, 1010100, 1001001, 0100101, 1110100, 111111.

Parity-heck Matrix Decoding Let H be the parity-check matrix for a linear [n, k] code C. If $r \in B^n$ is received, compute $S(r) = Hr^t$.

1. If $S(r) = [\mathbf{0}]$, then $r \in \mathcal{C}$ and hence decode r as r.

.

- 2. If $S(r) \neq [\mathbf{0}]$ and S(r) is column *i* of *H*, decode by changing its *i*th bit.
- 3. If $S(r) \neq [0]$ and S(r) is not a column of H, request a retransmission.

Exercise 2.4. For a [7,4] code in Example 2.9. Assume that parity-check matrix decoding is used. Then decode followings received words :

0001001, 1010100, 1001001, 0100101, 1110100, 1111111

References

- F.J. MacWilliams and N.J.A. Sloan, The Theory of Error-Correcting Codes. New York:Elsevier/North Halland, 1977.
- [2] San Ling and Chaoping Xing, Coding Theory : A First Course. Cambridge University Press, 2004.
- [3] Vera Pless, Introduction to the Theory of Error-Correcting Codes., John Wiley and Son, 1990.
- [4] J.H. Van Lint, Graduate Texts in Matematics : Introduction to Coding Theory. Spriger-Verlag, 1982.
- [5] D.G. Hoffman et al, Algebraic Coding Theory. Winnipeg/Canada, 1987.
- [6] W.K.Nicholson, Introduction to Abstract Algebra Algebra. John Wiley & Sons, 1999.