1. Show that the set $G = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \middle| a, b, c \in \mathbb{R} \right\}$ is a group under matrix multiplication.

2. Let \mathcal{U} be a set and $G = \{A \mid A \subseteq \mathcal{U}\}$. Show that G is an abelian group under the operation \oplus defined by

$$A \oplus B = (A \smallsetminus B) \cup (B \smallsetminus A).$$

3. In each case, determine whether G is a group with the given operation.

3.1 $G = n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}, n \in \mathbb{Z} ; \text{addition}$ 3.2 $G = \mathbb{R} ; a \cdot b = a + b + 1.$ 3.3 $G = \mathbb{R} ; a \cdot b = a + b - ab.$ 3.4 \mathbb{Q}^+ ; multiplication. 3.5 $G = \{\sigma : \mathbb{N} \to \mathbb{N} \mid \sigma \text{ is } 1\text{-}1\}, \text{ composition.}$

4. For each $n \geq 2$, the multiplication modulo n is defined on \mathbb{Z}_n by

$$\overline{a} \cdot \overline{b} = \overline{ab}$$
 for all $\overline{a}, \overline{b} \in \mathbb{Z}_n$.

- 4.1 Show that (\mathbb{Z}_n, \cdot) is a monoid. Give an example to show that (\mathbb{Z}_n, \cdot) may not be a group.
- 4.2 Let $\mathcal{U}(n) = \{ \bar{a} \in \mathbb{Z}_n \mid \text{g.c.d.}(a, n) = 1 \}$. Show that $\mathcal{U}(n)$ is a group under the multiplication modulo n.

- 1. Let G be a group and $a \in G$. Show that
 - (i) The map $L_a: G \to G$ defined by $L_a(x) = ax$ is a bijection.
 - (ii) The map $R_a: G \to G$ defined by $R_a(x) = xa$ is a bijection.
- 2. Let G be a group. For each $a \in G$, define $\phi_a : G \to G$ by

$$\phi_a(x) = axa^{-1}$$
 for all $x \in G$.

Show that

- (i) ϕ_a is a bijection for all $a \in G$, and
- (ii) $\phi_a \phi_b = \phi_{ab}$ for all $a, b \in G$.
- 3. Let a and b be elements of G. Show that

ab = ba if and only if $a^{-1}b^{-1} = b^{-1}a^{-1}$.

- 4. Let G be a group. Show that TFAE :
 - (i) G is abelian.
 - (ii) $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.
 - (iii) $(ab)^2 = a^2b^2$ for all $a, b \in G$.
- 5. Let G be a group. Show that if $a^2 = e$ for all $a \in G$, then G is abelian. Give an example to show that the converse is not necessary true.

- 1. Let H and K be a subgroups of a group G. Show that $H \cap K$ is also a subgroup of G. Given an example to show that $H \cup K$ is necessary a subgroup of G.
- 2. Draw the lattice of subgroups of the following groups :

(2.1) \mathbb{Z}_8 (2.2) \mathbb{Z}_{24} (2.3) $\mathbb{Z}_2 \times \mathbb{Z}_2$ (2.4) $\mathbb{Z}_4 \times \mathbb{Z}_{12}$.

- 3. Find order of each element of groups in Problem 2.
- 4. Determine whether the following sets are subgroups of $GL_3(\mathbb{R})$:

$$(4.1) \quad H_{1} = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \middle| a, b, c \in \mathbb{R} \right\}.$$

$$(4.2) \quad H_{2} = \left\{ \begin{bmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}.$$

$$(4.3) \quad H_{3} = \left\{ \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \middle| abc \neq 0 \right\}.$$

$$(4.4) \quad H_{4} = \left\{ \begin{bmatrix} a & b & c \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \middle| a, b, c \in \mathbb{R} \right\}.$$

- 5. If H and K are subgroups of G. Show that
 - (5.1) $H \cup K$ is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$.
 - (5.2) gHg^{-1} is a subgroup of G for all $g \in G$.
 - (5.3) $(gHg^{-1}) \cap (gKg^{-1}) = g(H \cap K)g^{-1}$ for all $g \in G$.
- 6. If G is an abelian group and $n \ge 2$ is an integer. Show that the following sets are subgroups of G.
 - (6.1) $G^n = \{g^n \mid g \in G\}.$
 - (6.2) $G(n) = \{g \in G \mid g^n = e\}.$
- 7. If G is an abelian group, show that

$$\tau(G) = \{ g \in G \mid g^k = e \text{ for some } k \in \mathbb{N} \}$$

is a subgroup of G.

- 1. In each case determine whether α is a homomorphism. If it is determine its kernel and its image.
 - 1.1 $\alpha : \mathbb{Z} \to GL_2(\mathbb{Z})$ defined by $\alpha(n) = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$. 1.2 $\alpha : GL_2(\mathbb{Q}) \to \mathbb{Q}^*$ defined by $\alpha(A) = detA$. 1.3 $\alpha : \mathbb{C} \to M_2(\mathbb{R})$ defined by $\alpha(a + bi) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. 1.4 $\alpha : G \to G \times G$ defined by $\alpha(g) = (g, g)$. 1.5 $\alpha : \mathbb{R} \to \mathbb{R}$ defined by $\alpha(x) = \lfloor x \rfloor$.
 - 1.6 $\alpha : \mathbb{R} \to \mathbb{R}$ defined by $\alpha(x) = 2x + 1$.
- 2. Given a group G, define $\phi : G \to G$ by $\phi(g) = g^{-1}$. Show that G is an abelian if and only if ϕ is a homomorphism.
- 3. Show that $\mathbb{Z}_2 \times \mathbb{Z}_2$ and K_4 , the Klien-4 group are isomorphic.
- 4. Show that if σ is an isomorphism, then σ^{-1} is an isomorphism.
- 5. Let G be a group and $g \in G$. Define $\sigma_g : G \to G$ by

$$\sigma_g = gxg^{-1}$$
 for all $x \in G$.

Show that

- 5.1 $\sigma_g \in Aut(G)$, called the **inner automorphism determined** by g.
- 5.2 $Inn(G) = \{\alpha_g \mid g \in G\}$ is a subgroup of Aut(G), called the inner automorphism group of G.

- 6. Let G_1 and G_2 be groups. Show that
 - (i) $G_1 \times G_2 \cong G_2 \times G_1$.
 - (ii) The maps $\pi_1: G_1 \times G_2 \to G_1$ and $\pi_2: G_1 \times G_2 \to G_2$ defined by

$$\pi_1(a_1, a_2) = a_1$$
 and $\pi_2(a_1, a_2) = a_2$

are homomorphism. Find their kernels.

7. Show that

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

is a subgroup of $G_2(\mathbb{Z})$ isomorphic to the subgroup $U_4 = \{1, -1, i, -i\}$ of \mathbb{C}^* .

8. Show that $\mathcal{U}(15) \cong \mathcal{U}(16)$ but $\mathcal{U}(10)$ is not isomorphic to $\mathcal{U}(12)$.

- 1. Show that any group of prime order must be cyclic.
- 2. Let m and n be integers. Find a generator of the group $m\mathbb{Z} \cap m\mathbb{Z}$.
- 3. Show that $\mathbb{Z}_2 \times \mathbb{Z}_3$ is a cyclic but $\mathbb{Z}_2 \times \mathbb{Z}_4$ is not.
- 4. Assume that G is a group that has only two subgroups $\{e\}$ and G. Show that G is a finite cyclic group of order 1 or a prime.
- 5. $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic if and only if g.c.d.(m, n) = 1.

- 1. Find the left cosets and the right cosets of $\langle (12) \rangle$ in S_3 .
- 2. Find all the right cosets of $\{1, 11\}$ in $\mathcal{U}_{30} = \{\bar{a} \in \mathbb{Z}_{30} \mid (a, 30) = 1\}.$
- Let G ≠ {e} be a group. Assume that G has no proper nontrivial subgroups.
 prone that |G| is prime.
- 4. Give an example to show that a group of order 8 need not have an element of order 4.
- 5. Let G be a group of order pq where p and q are primes. Show that every proper subgroup of G is cyclic.
- 6. Show that if H is a subgroup of index 2 of a finite group G, then every left coset of H is also a right coset of H.

- 1. Show that $\langle (123) \rangle$ is the only normal subgroup of S_3 .
- 2. If H and K are normal subgroup of G, show that $H \cap K$ is a normal subgroup of G.
- 3. If $K \triangleleft H$ and $H \triangleleft G$, show that $aKa^{-1} \triangleleft H$ for all $a \in G$.
- 4. Give an example to show that the normality need not be transitive.
- 5. If $G = H \times K$, find normal subgroups H_1 and K_1 of G such that $H_1 \cong H, K_1 \cong K, H_1 \cap K_1 = \{e\}$ and $G = H_1K_1$.
- 6. Let H be a subgroup of a group G. Show that

6.1 $h \triangleleft N_G(H)$. $(N_G(H)$ is the largest subgroup of G in which H is normal). 6.2 If $H \triangleleft K$, where K is a subgroup of G, then $K \subseteq N_G(H)$.

- 7. Let G be a group of order pq where p and q are distinct primes. Show that if G has a unique subgroup of order p and a unique subgroup of order q, then G is cyclic.
- 8. Let G be a group and $D = \{(g,g)|g \in G\}$. Show that D is a normal subgroup of G if and only if G is abelian.
- 9. Show that Inn(G) is normal in Aut(G).
- 10. Let $G = S_3$ and $H = \langle (123) \rangle$. Tubulate the operation of G/H.
- 11. Let N be a normal subgroup of prime index in a group G. Show that G/N is cyclic.

- 12. Let a be an element of order 4 in a group G of order 8. Let $b \in G \smallsetminus \langle a \rangle$. Show that
 - 12.1 $b^2 \in \langle a \rangle$.

12.2 If $\circ(b) = 4$, then $b^2 = a^2$.

- 13. Let G be a group. If G/Z(G) is cyclic, show that G is abelian.
- 14. Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G.
- 15. Let N be a normal subgroup of G and let m = [G : N]. Show that $a^m \in N$ for every $a \in G$.
- 16. Let $H \triangleleft G$ and $H' \triangleleft G'$. Let $\phi : G \to G'$ be a homomorphism. Show that ϕ induces a homomorphism $\phi_a : G/H \to G'/H'$ if $\phi[H] \subseteq H'$.

1. Calculate all conjugacy classes of the following groups :

1.1 Q_8 1.2 K_4 1.3 A_4 1.4 S_4 .

- 2. Decribe the conjugacy classes of an abelian group.
- 3. Show that *ab* and *ba* are conjugate in any group.
- 4. If a subgroup H of G is a union of conjugacy classes in G, show that $H \triangleleft G$.
- 5. Show that, up to isomorphism, there are exactly two groups of order 4.

1. Determine whether groups in each problem are isomorphic.

1.1	\mathbb{Q}_8 and \mathbb{Z}_8	1.2	\mathbb{Z}_4 and K_4
1.3	S_3 and \mathbb{Z}_6	1.4	$\mathbb{Z}_2 \times \mathbb{Z}_3$ and \mathbb{Z}_6 .

- 2. Let G be a group. Show that $G/Z(G) \cong Inn(G)$.
- 3. Show that $SL_n(\mathbb{Q})$ is a normal subgroup of $GL_n(\mathbb{Q})$.
- 4. Let M and N be normal subgroups of G such that G = MN. Prove that

$$G/(M \cap N) \cong G/M \times G/N.$$

- 5. Let $S = \{z \in \mathbb{C}^* \mid |z| = 1\}$. Show that
 - 5.1 S is a subgroup of the multiplicative group of nonzero complex numbers \mathbb{C}^* .
 - 5.2 $\mathbb{R}/\mathbb{Z} \cong S$ where \mathbb{R} is the additive group of real numbers.

- 1. Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 4 & 6 & 5 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 2 & 1 & 6 & 4 \end{pmatrix}$.
 - (i) Compute α^{-1} , $\alpha\beta$, $\beta\alpha$ and $\alpha\beta^{-1}$.
 - (ii) Write α and β in cycle form and as product of transpositions.
 - (ii) Find orders of α , α^{-1} and $\alpha\beta$
- 2. Write the lattice of subgroups of A_4 .
- 3. Prove that the subgroup of order 4 in A_4 is normal and is isomorphic to K_4 , the Klien 4-group.
- 4. Prove that $\langle (13), (1234) \rangle$ is a proper subgroup of S_4 .
- 5. Prove that σ^2 is an even permutation for every permutation σ .
- 6. Show that $sgn(\sigma) = sgn(\sigma^{-1})$ for all $\sigma \in S_n$.
- 7. Show that $\alpha^{-1}\beta^{-1}\alpha\beta$ is an even permutation for all $\alpha, \beta \in S_n$.
- 8. Show that A_5 contains an element of order 6.
- 9. Is the product of two odd permutation an even or an odd permutation.
- 10. Determine whether the following permutations are even or odd.
 - (i) (237) (ii) (12)(34)(153) (iii) (1234)(5321)
- 11. Do the odd permutations in S_n from a group ? justify your answer.
- 12. Show that A_n is generated by the set of 3-cycles.
- 13. Show that $S_n = \langle (12), (12 \dots n) \rangle$ for all $n \ge 2$.
- 14. Show that any two elements of S_n are conjugate in S_n if and only if they have the same cycle type.

- 15. Find all conjugacy classes of S_4 .
- 16. Find all left cosets and right cosets of $H = \{(1), (12)(34), (13)(24), (14)(23)\}$ in A_4 .