CHAPTER I

Groups

1.1 Definitions and Examples

Definition 1.1.1. A binary operation * on a set S is a function from $S \times S$ into S. (S, *) is then called a binary structure.

Definition 1.1.2. Let * be a binary operation on a nonempty set S.

- * is associative if $(a * b) * c = a * (b * c) \quad \forall a, b, c \in S$
- * is commutative if a * b = b * a $\forall a, b \in S$.

An element e of S is an **identity element** for * if

$$e * x = x = x * e \qquad \forall x \in S.$$

Definition 1.1.3. A binary structure (S, *) is called a **semigroup** if * is associative. A **monoid** is a semigroup that has an identity element.

Definition 1.1.4. A monoid (G, *) with the identity element is said to be a **group** if for each $a \in G$, there is $b \in G$ such that

$$a * b = e = b * a.$$

This element b is called an **inverse** of a.

Remark. It is customary to denote a group (G, *) by its underlying set G and x * y by xy if there is no ambuguity.

Definition 1.1.5. The order of a group G is the cardinality of the set G and denoted |G|.

Definition 1.1.6. A group (G, *) is a **abelian** if * is commutative (i.e. $a * b = b * a \quad \forall a, b \in G$).

Theorem 1.1.7. Let (G, *) be a semigroup. Then the following are equivalence

- (i) (G, *) is a group.
- (ii) there is $e_{\ell} \in G$ such that $e_{\ell}a = a$ for all $a \in G$, and for each $a \in G$, there is $a' \in G$ such that $a'a = e_{\ell}$.
- (iii) there is $e_r \in G$ such that $ae_r = a$ for all $a \in G$, and for each $a \in G$, there is $b \in G$, there is $b \in G$ such that $ab = e_r$.

1.2 Elementary Properties of Groups.

Theorem 1.2.1. In any group G, the following hold:

- (i) The identity element is unique.
- (ii) Each element a of G has a unique inverse. It will be denoted a^{-1} .

Theorem 1.2.2. Let a, b and c be elements of a group. ab = ac or ba = ca implies b = c.

Theorem 1.2.3. Let a and b be elements of a group G.

- (*i*) $e^{-1} = e$.
- (*ii*) $(a^{-1})^{-1} = a$.
- (*iii*) $(ab)^{-1} = b^{-1}a^{-1}$.

Notation. For each element a in a group G,

$$a^0 = e, \quad a^1 = a$$

 $a^{n+1} = (a^n)a \qquad \text{for all } n \in \mathbb{N}$
 $a^{-n} = (a^{-1})^n \qquad \text{for all } n \in \mathbb{N}$

Theorem 1.2.4. Let a and b be elements of a group.

- (i) $(a^{n})^{-1} = (a^{-1})^{n} (= a^{-n})$ for all $n \ge 0$. (ii) $a^{m}a^{n} = a^{m+n}$ for all $m, n \in \mathbb{Z}$. (iii) $(a^{m})^{n} = a^{mn}$ for all $m, n \in \mathbb{Z}$.
- (iv) If ab = ba, then $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$.

Theorem 1.2.5. Let G be a group and $a \in G$. If n is the smallest positive integer such that $a^n = e$, then

$$a^k = e$$
 if and only if $n \mid k$.

Theorem 1.2.6. Let a and b be elements of group G.

- (i) The equation ax = b has a unique solution $x = a^{-1}b$.
- (ii) The equation xa = b has a unique solution $x = b^{-1}a$.

1.3 Subgroups

Definition 1.3.1. If a subset H of a group G is itself a group under the operation of G, we say that H is a **subgroup** of G, denoted $H \leq G$.

Theorem 1.3.2. Let H be a subset of G. TFAE

- (i) H is a subgroup of G.
- (ii) $ab \in H$ for all $a, b \in H$ and $a^{-1} \in H$ for all $a \in H$.
- (iii) $ab^{-1} \in H$ for all $a, b \in H$.

Theorem 1.3.3. Let H be a nonempty finite subset of a group G. If H is closed under the operation of G, then $H \leq G$.

Theorem 1.3.4. Let a be an element of a group G. Then

$$\langle a \rangle = \{ a^n \mid n \in \mathbb{Z} \}$$

is the smallest subgroup of G containing a. It is called the **cyclic subgroup of** G generated by a.

Definition 1.3.5. Let a be an element of a group G. The **order** of a, denoted $\circ(a)$ is the smallest positive integer n such that $a^n = e$ (if it exist). If no such that integer exists, we say that a has **infinite order**.

Theorem 1.3.6. Let G be a group and $a \in G$. Then $|\langle a \rangle| = \circ(a)$. In particular

$$\langle a \rangle = \begin{cases} \{e, a, a^2, \dots, a^{n-1}\} & \text{if } \circ (a) = n, \\ \\ \{\dots, a^{-2}, a^{-1}, e, a, a^2, \dots\} & \text{if } \circ (a) \text{ is infinite.} \end{cases}$$

Theorem 1.3.7. Let a be an element of order n in a group G. Then

- (i) $a^k = e$ if and only if $n \mid k$.
- (ii) $a^k = a^m$ if and only if $k \equiv m \mod n$.

Theorem 1.3.8. The center of a group G, Z(G)

$$Z(G) = \{ g \in G \mid gx = xg \text{ for all } x \in G \}$$

is a subgroup of G.

Theorem 1.3.9. Let H and K be subgroups of a group G. Then

$$|HK| = \frac{|H||K|}{|H \cap K|} \; .$$

Theorem 1.3.10. Let H and K be subgroups of a group G. Then HK is a subgroup of G if and only if HK = KH.

1.4 Homomorphisms and Isomorphisms

Definition 1.4.1. Let (G, \circ) and (G', *) be groups. A mapping $\phi : G \to G'$ is called a **homomorphism** if

$$\phi(a \circ b) = \phi(a) * \phi(b) \text{ for all } a, b \in G.$$

Definition 1.4.2. Let $\phi : G \to G'$ be a group homomorphism. The **kernel** of ϕ , denoted Ker ϕ is defined by

$$Ker \ \phi = \{g \in G \mid \phi(g) = e'\}$$

where e' is the identity element of G'.

Definition 1.4.3. A bijective (1-1 and onto) homomorphism is called an *iso*morphism. G and G' is then said to be *isomorphic*, denoted $G \cong G'$. An isomorphism from a group G into it self is called an **automorphism**. The set of all automorphisma is denoted by Aut(G).

Isomorphism preserves **algebraic property** e.g. order of group, order of element, commutativity etc.

Theorem 1.4.4. For any group G, Aut(G) is a group under composition.

Theorem 1.4.5. The isomorphism relation \cong is an equivalence for groups.

Theorem 1.4.6. Cayley's Theorem

Every group is isomorphic to a subgroup of a permutation group. If a group is of order n, then it is isomorphic to a subgroup of S_n .

1.5 Cyclic Groups and generators

Definition 1.5.1. A group G is called a **cyclic group** if $G = \langle a \rangle$ for some $a \in G$. a is then called a **generator** of G.

Theorem 1.5.2. Every cyclic group is abelian.

Theorem 1.5.3. A subgroup of a cyclic group is cyclic.

Theorem 1.5.4. Let $G = \langle a \rangle$ be a cyclic group of order n.

$$(i) \ |\langle a^s \rangle| = \frac{n}{d} \ where \ d = g.c.d.(n,s), \quad 0 < s < n.$$

(ii) If k|n, then $\langle a^{\frac{n}{k}} \rangle$ is the unique subgroup of G of order k.

(iii) The set of generators of G is $\{a^k \mid g.c.d.(n,k) = 1\}$.

Theorem 1.5.5. (i) $(\mathbb{Z}, +)$ is the only infinite cyclic group.

(ii) $(\mathbb{Z}_n, +)$ is the only cyclic group of order n.

Definition 1.5.6. Let X be a nonempty subset of a group G. The smallest subgroup of G containing X, denoted $\langle X \rangle$ is called the **subgroup of** G generated by X.

Theorem 1.5.7. Let X be a nonempty subset of a group G. Then

$$\langle X \rangle = \{ x_1^{k_1} x_2^{k_2} \dots x_n^{k_n} | x_i \in X, k_i \in \mathbb{Z}, n \ge i \}.$$

Definition 1.5.8. A group G is called **finitely generated** if there is a finite subset X of G such that $G = \langle X \rangle$. We call X a set of generators for G. If X is finite, G is called a **finite generated group** and denoted $G = \langle x_1, x_2, ..., x_n \rangle$.

Theorem 1.5.9. Let $\sigma : G \to G_1$ and $\tau : G \to G_1$ be homomorphism. Assume that $G = \langle X \rangle$. Then

$$\sigma = \tau$$
 if and only if $\sigma(x) = \tau(x)$ for all $x \in X$.

A group homomorphism $\sigma : \langle X \rangle \to G_1$ is completely determined by its effect on X.

1.6 Direct Products

Theorem 1.6.1. Let G_1, G_2, \ldots, G_n be groups. Then $G_1 \times G_2 \times \cdots \times G_n$ is a group under the componentwise operation, that is

$$(a_1, a_2, \dots, a_n)(b_1, b_2, \dots, b_n) = (a_1b_2, a_2b_2, \dots, a_nb_n).$$

This group is called the (external) direct product of G_1, G_2, \ldots, G_n .

Theorem 1.6.2. Let G_1, G_2, \ldots, G_n be finite groups and (g_1, g_2, \ldots, g_n) be an element of the group $G_1 \times G_2 \times \cdots \times G_n$. Then

$$\circ ((g_1, g_2, \dots, g_n)) = l.c.m.(\circ(g_1), \circ(g_2), \dots, \circ(g_n)).$$

Theorem 1.6.3. Let G_1 and G_2 be finite cyclic groups. Then $G_1 \times G_2$ is cyclic if and only if $|G_1|$ and $|G_2|$ are relatively prime.

Corollary 1.6.4. The external direct product $G_1 \times G_2 \times \cdots \times G_n$ is cyclic if and only $|G_1|, |G_2|, \ldots, |G_n|$ are pairwise relatively prime.

Theorem 1.6.5. Let H and K be subgroups of a group G. Assume that

- (i) G = HK,
- $(ii) H \cap K = \{e\},\$
- (iii) hk = kh for all $h \in H, k \in K$.

Then $G \cong H \times K$.

In this case, we say that G is the **internal direct product** of H and K.

Definition 1.6.6. Let H_1, H_2, \ldots, H_n be subgroups of a group G. We say G is the *internal direct product* of H_1, H_2, \ldots, H_n if

$$(i) \ G = H_1 H_2 \cdots H_n,$$

(*ii*)
$$(H_1H_2\cdots H_i)\cap H_{i+1} = \{e\}$$
 for $i = 1, 2, \ldots, n-1$.

(iii) $h_i h_j = h_j h_i$ for all $h_i \in H_i, h_j \in H_j, i \neq j$.

1.7 Cosets and Lagrange's Theorem

Definition 1.7.1. Let H be a subgroup of a group G and $g \in G$. The **right** coset, Hg, of H generated by g and the **left coset**, gH, of H generated by g are defined as follows :

 $Hg = \{hg \mid h \in H\} \text{ and } gH = \{gh \mid h \in H\}.$

Theorem 1.7.2. Let H be a subgroup of a group G and $a, b \in G$.

(i) Ha = H iff $a \in H$ [aH = H iff $a \in H]$.

(ii) Ha = Hb iff $ab^{-1} \in H$ [aH = bH iff $a^{-1}b \in H]$.

(iii) If $a \in Hb$, then Ha = Hb. [If $a \in bH$, then aH = bH].

(iv) Either Ha = Hb or $Ha \cap Hb = \emptyset$ [Either aH = bH or $aH \cap bH = \emptyset$].

(v) The set of distinct right (left) cosets of H is a partition of G.

(vi) The set of all distinct right cosets and the set of all distinct left cosets have the same cardinality.

Definition 1.7.3. *let* H *be a subgroup of a group* G*. The index of* H*, denoted* [G:H] *is the cardinality of the set of all distinct right(left) cosets of* H*.*

Lemma 1.7.4. Let $H \leq G$ and $g \in H$. Then

$$card Hg = card H = card gH.$$

Theorem 1.7.5. Lagrange

Let H be a subgroup of a finite group G. Then |H| divides |G|. In particular,

$$|G| = [G:H] \cdot |H|.$$

Corollary 1.7.6. Let G be a group of order n.

- (i) $\circ(a)$ divides $n \quad \forall a \in G$.
- (ii) $a^n = e \quad \forall a \in G.$

Theorem 1.7.7. let H and K be subgroups of a group G.

- (i) If $H \subseteq K$, then [G:H] = [G:K][K:H].
- (*ii*) If g.c.d(|H|, |K|) = 1, then $H \cap K = \{e\}$.

1.8 Normal Subgroups and Factor Groups

Definition 1.8.1. A subgroup N of a group G is called a **normal subgroup** if gN = Ng for all $g \in G$. We write $N \triangleleft G$.

Theorem 1.8.2. Every subgroup of an abelian group is normal.

Theorem 1.8.3. Z(G) is normal in G.

Theorem 1.8.4. Let N be a subgroup of a group G. Then TFAE

- (i) N is normal in G.
- (ii) $gNg^{-1} = N$ for all $g \in G$.
- (iii) $gNg^{-1} \subseteq N$ for all $g \in G$.

Theorem 1.8.5. If H is a subgroup of index 2 in G, then H is normal in G.

Theorem 1.8.6. Let $N \triangleleft G$ and $G/N = \{Ng \mid g \in G\}$. Then G/N is a group under the operation

$$Na \cdot Nb = Nab.$$

This group is called the **factor group(quotient group) of** G by N. In addition, if G is finite, then $|G/N| = \frac{|G|}{|H|} = [G:H]$.

Theorem 1.8.7. Let $N \triangleleft G$.

- (i) $\phi: G \to G/N$ defined by $\phi(a) = Na$ is an onto homomorphism, called the natural homomorphism
- (ii) If G is abelian, then G/N is abelian.
- (iii) If $G = \langle a \rangle$, then $G/N = \langle Na \rangle$.
- (iv) \overline{H} is a subgroup of G/N if and only if $\overline{H} = H/N$ for some subgroup H of G containing N.
- (v) HN is a subgroup of G for all subgroups H of G.

Theorem 1.8.8. Let G be a group. If G/Z(G) is cyclic, then G is abelian.

Theorem 1.8.9. Let H and K be subgroups of a group G.

(i) If H or K is normal in G, then HK = KH is a subgroup of G.

(ii) If H and K are normal in G, then HK is normal in G.

Theorem 1.8.10. Let H and K be normal subgroups of G and $H \cap K = \{e\}$. Then hk = kh for all $h, k \in G$. Consequently, $G \cong H \times K$.

1.9 Cauchy's Theorem and Conjugates

Definition 1.9.1. Let a and b be elements of a group G. b is said to be a conjugate of a if $b = xax^{-1}$ for some $x \in G$.

Theorem 1.9.2. The relation \sim defined on a group G by

$$a \sim b$$
 if and only if $b = xax^{-1}$ for some $x \in G$

is an equivalence relation on G. The equivalence class of a, denoted Cl(a) is called a **conjugacy class** of a.

Theorem 1.9.3. Let G be a finite group. Then

$$|Cl(a)| = [G: C_G(a)]$$
 for all $a \in G$.

In particular, $a \in Z(G)$ if and only if $Cl(a) = \{a\}$.

Theorem 1.9.4. Let G be a finite group and $Cl(a_1), \ldots, Cl(a_n)$ be distinct nonsingleton conjugacy classes in G. Then

$$|G| = |Z(G)| + \sum_{i=1}^{n} [G: C_G(a_i)].$$

Theorem 1.9.5. Cauchy's Theorem

Let G be a group of order n. If p is a prime divisor of n, then G has an element of order p.

Theorem 1.9.6. If $G \neq \{e\}$ is a group of prime power order, then $Z(G) \neq \{e\}$.

Theorem 1.9.7. If G is a group of order p^2 , where p is a prime, then G is abelian.

CHAPTER II

Isomorphism Theorems

2.1 Properties of homomorphisms

Recall that a mapping $\phi: G \to G'$ is called a homomorphism if

$$\phi(xy) = \phi(x)\phi(y)$$
 for all $x, y \in G$.

The kernel, $Ker\phi$, of ϕ is $\phi^{-1}[\{e\}]$. An isomorphism is a bijective homomorphism.

Theorem 2.1.1. Let ϕ be a homomorphism from a group G to a group G'.

- (i) $\phi(e) = e'$ where e and e' are identities in G and G', respectively.
- (*ii*) $\phi(x^{-1}) = (\phi(x))^{-1}$ for all $x \in G$.
- (iii) $\phi(x_1x_2\cdots x_n) = \phi(x_1)\phi(x_2)\cdots\phi(x_n)$ for all $x_1, x_2, \ldots, x_n \in G$.
- (iv) If $H \leq G$, then $\phi[H] \leq G'$. In particular, $Im\phi$ is a subgroup of G'.
- $(v) \ {\it If} \ H' \leq G, \ then \ Ker \phi \subseteq \phi^{-1}[H] \leq G.$
- (vi) ϕ is 1-1 if and only if $Ker\phi = \{e\}$.

Corollary 2.1.2. Let $\phi : G \to G'$ be a group homomorphism and $g \in G$.

(i) $\phi(g^n) = (\phi(g))^n$.

(ii) If g has a finite order, then $\phi(g)$ has a finite order and $\circ(\phi(g))$ divides $\circ(g)$.

Theorem 2.1.3. if $\psi : G \to G'$ is a group homomorphism, then $Ker\psi$ is a normal subgroup.

2.2 Isomorphism Theorems

Theorem 2.2.1. First Isomorphism Theorem

Let $\phi: G \to G'$ be a group homomorphisms. Then $G/Ker\phi \cong Im\phi$.

Theorem 2.2.2. Second Isomorphism Theorem

Let H and N be subgroups of G with N normal. Then $H \cap N$ is normal in H and

$$H/H \cap N \cong HN/N.$$

Theorem 2.2.3. Third Isomorphism Theorem

Let $N \triangleleft G$. then the map $H \mapsto H/N$ gives a 1-1 correspondence between the set of subgroups of G containing N and the set of subgroups of G/N. Moreover, this correspondence carries normal subgroups to normal subgroups. If $H \triangleleft G$ and $N \subseteq H \subseteq G$, then

 $G/H \cong \left(G/N\right)/\left(H/N\right).$

CHAPTER III

Permutation Groups

3.1 Definitions and Notations

Definition 3.1.1. A permutation on a nonempty set X is a bijection on X. The set S(X) of all permutations on X is a group under composition, called the symmetric group on X. Any subgroup of S(X) is called a permutation group on X.

Remark. If sets A and B have the same cardinality, then $S(A) \cong S(B)$. When X is finite, S(X) can be consider as the symmetric group on $\{1, 2, ..., n\}$. It will be denoted by S_n , called the **symmetric group of degree** n. The order of S_n is n!. S_n is nonabelian where $n \ge 3$. Each σ in S_n can be represented in matrix from as

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Theorem 3.1.2. Cayley's Theorem

Every group is isomorphic to a permutation group.

3.2 Cycles

Definition 3.2.1. A permutation σ in S_n is a **cycle** if there exist a_1, a_2, \ldots, a_r in $\{1, 2, \ldots, n\}$ satisfying

- (i) $\sigma(a_i) = a_{i+1}$ for all $i \in \{1, 2, \dots, r-1\}$,
- (*ii*) $\sigma(a_r) = a_1$, and
- (*iii*) $\sigma(x) = x$ otherwise

r is then the **length of the cycle**. σ will be denoted by (a_1, a_2, \ldots, a_r) and sometimes referred to as r-cycle.

Remarks.

- (i) The identity permutation is the only cycle of length 1 and will be denoted (1).
- (ii) $(a_1, a_2, \dots, a_r) = (b_1, b_2, \dots, b_s)$ iff r = s and there exists t such that $b_i = a_{t+i}$ for all $i = 1, 2, \dots, r$.
- (iii) $(a_1, a_2, \dots, a_r)^{-1} = (a_r, a_{r-1}, \dots, a_1).$
- (iv) The order of r-cycle is r.

Definition 3.2.2. Let $\alpha = (a_1, a_2, \dots, a_r)$ and $\beta = (b_1, b_2, \dots, b_s)$ be nonidentity permutation in S_n . α and β are said to be **disjoint** if $a_i \neq b_j$ for all i, j.

Theorem 3.2.3. Disjoint cycles commute.

Theorem 3.2.4. The order of a product of disjoint cycle is the l.c.m. of the length of cycles.

3.3 Properties of Permutations

From now on permutations are in S_n where $n \ge 2$.

Theorem 3.3.1. Every permutation is a cycle or a product of disjoint cycles. This cycle decomposition is unique upto rearranging its cycles and cyclically permuting the numbers within each cycle.

Definition 3.3.2. A 2-cycle is called a transposition.

Theorem 3.3.3. Every permutation is either transposition or a product of transpositions.

3.4 Alternating Groups

Lemma 3.4.1. The identity permutation is always a product of an even number of transposition.

Theorem 3.4.2. If a permutation α is a product of an even number of transpositions, then every decomposition of α into a product of transpositions must have an even number of transpositions. α is then called an **even permutation**.

Definition 3.4.3. A permutation which can be decomposed into a product of an odd number of transpositions is called an odd permutation.

Theorem 3.4.4. The set of even permutations in S_n from a normal subgroup of order $\frac{n!}{2}$ of S_n called the **Alternating group of degree** n, denoted A_n .