
CHAPTER I

Groups

1.1 Definitions and Examples

Definition 1.1.1. A binary operation ∗ on a set S is a function from S × S

into S. (S, ∗) is then called a binary structure.

Definition 1.1.2. Let ∗ be a binary operation on a nonempty set S.

∗ is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀a, b, c ∈ S

∗ is commutative if a ∗ b = b ∗ a ∀a, b ∈ S.

An element e of S is an identity element for ∗ if

e ∗ x = x = x ∗ e ∀x ∈ S.

Definition 1.1.3. A binary structure (S, ∗) is called a semigroup if ∗ is asso-

ciative. A monoid is a semigroup that has an identity element.

Definition 1.1.4. A monoid (G, ∗) with the identity element is said to be a group

if for each a ∈ G, there is b ∈ G such that

a ∗ b = e = b ∗ a.

This element b is called an inverse of a.

Remark. It is customary to denote a group (G, ∗) by its underlying set G and

x ∗ y by xy if there is no ambuguity.
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Definition 1.1.5. The order of a group G is the cardinality of the set G and

denoted |G|.

Definition 1.1.6. A group (G, ∗) is a abelian if ∗ is commutative (ie. a ∗ b =

b ∗ a ∀a, b ∈ G).

Theorem 1.1.7. Let (G, ∗) be a semigroup. Then the following are equivalence

(i) (G, ∗) is a group.

(ii) there is e` ∈ G such that e`a = a for all a ∈ G, and for each a ∈ G, there is

a′ ∈ G such that a′a = e`.

(iii) there is er ∈ G such that aer = a for all a ∈ G, and for each a ∈ G, there

is b ∈ G, there is b ∈ G such that ab = er.

1.2 Elementary Properties of Groups.

Theorem 1.2.1. In any group G, the following hold:

(i) The identity element is unique.

(ii) Each element a of G has a unique inverse. It will be denoted a−1.

Theorem 1.2.2. Let a, b and c be elements of a group. ab = ac or ba = ca

implies b = c.

Theorem 1.2.3. Let a and b be elements of a group G.

(i) e−1 = e.

(ii) (a−1)−1 = a.

(iii) (ab)−1 = b−1a−1.



3

Notation. For each element a in a group G,

a0 = e, a1 = a

an+1 = (an)a for all n ∈ N

a−n = (a−1)n for all n ∈ N

Theorem 1.2.4. Let a and b be elements of a group.

(i) (an)−1 = (a−1)n (= a−n) for all n ≥ 0.

(ii) aman = am+n for all m,n ∈ Z.

(iii) (am)n = amn for all m,n ∈ Z.

(iv) If ab = ba, then (ab)n = anbn for all n ∈ Z.

Theorem 1.2.5. Let G be a group and a ∈ G. If n is the smallest positive integer

such that an = e, then

ak = e if and only if n | k.

Theorem 1.2.6. Let a and b be elements of group G.

(i) The equation ax = b has a unique solution x = a−1b.

(ii) The equation xa = b has a unique solution x = b−1a.
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1.3 Subgroups

Definition 1.3.1. If a subset H of a group G is itself a group under the operation

of G, we say that H is a subgroup of G, denoted H ≤ G.

Theorem 1.3.2. Let H be a subset of G. TFAE

(i) H is a subgroup of G.

(ii) ab ∈ H for all a, b ∈ H and a−1 ∈ H for all a ∈ H.

(iii) ab−1 ∈ H for all a, b ∈ H.

Theorem 1.3.3. Let H be a nonempty finite subset of a group G. If H is closed

under the operation of G, then H ≤ G.

Theorem 1.3.4. Let a be an element of a group G. Then

〈a〉 = {an | n ∈ Z}

is the smallest subgroup of G containing a. It is called the cyclic subgroup of

G generated by a.

Definition 1.3.5. Let a be an element of a group G. The order of a, denoted

◦(a) is the smallest positive integer n such that an = e (if it exist). If no such

that integer exists, we say that a has infinite order.

Theorem 1.3.6. Let G be a group and a ∈ G. Then |〈a〉| = ◦(a). In particular

〈a〉 =


{e, a, a2, . . . , an−1} if ◦ (a) = n,

{. . . , a−2, a−1, e, a, a2, . . . } if ◦ (a) is infinite.
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Theorem 1.3.7. Let a be an element of order n in a group G. Then

(i) ak = e if and only if n | k.

(ii) ak = am if and only if k ≡ m mod n.

Theorem 1.3.8. The center of a group G,Z(G)

Z(G) = {g ∈ G | gx = xg for all x ∈ G}

is a subgroup of G.

Theorem 1.3.9. Let H and K be subgroups of a group G. Then

|HK| = |H||K|
|H ∩K|

.

Theorem 1.3.10. Let H and K be subgroups of a group G. Then HK is a

subgroup of G if and only if HK = KH.

1.4 Homomorphisms and Isomorphisms

Definition 1.4.1. Let (G, ◦) and (G′, ∗) be groups. A mapping φ : G → G′ is

called a homomorphism if

φ(a ◦ b) = φ(a) ∗ φ(b) for all a, b ∈ G.

Definition 1.4.2. Let φ : G→ G′ be a group homomorphism. The kernel of φ,

denoted Ker φ is defined by

Ker φ = {g ∈ G | φ(g) = e′}

where e′ is the identity element of G′.
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Definition 1.4.3. A bijective (1-1 and onto) homomorphism is called an iso-

morphism. G and G′ is then said to be isomorphic, denoted G ∼= G′. An

isomorphism from a group G into it self is called an automorphism. The set of

all automorphisma is denoted by Aut(G).

Isomorphism preserves algebraic property e.g. order of group, order of

element, commutativity etc.

Theorem 1.4.4. For any group G,Aut(G) is a group under composition.

Theorem 1.4.5. The isomorphism relation ∼= is an equivalence for groups.

Theorem 1.4.6. Cayley’s Theorem

Every group is isomorphic to a subgroup of a permutation group. If a group is of

order n, then it is isomorphic to a subgroup of Sn.

1.5 Cyclic Groups and generators

Definition 1.5.1. A group G is called a cyclic group if G = 〈a〉 for some a ∈ G.

a is then called a generator of G.

Theorem 1.5.2. Every cyclic group is abelian.

Theorem 1.5.3. A subgroup of a cyclic group is cyclic.

Theorem 1.5.4. Let G = 〈a〉 be a cyclic group of order n.

(i) |〈as〉| = n

d
where d = g.c.d.(n, s), 0 < s < n.

(ii) If k|n, then 〈an
k 〉 is the unique subgroup of G of order k.

(iii) The set of generators of G is {ak | g.c.d.(n, k) = 1}.
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Theorem 1.5.5. (i) (Z,+) is the only infinite cyclic group.

(ii) (Zn,+) is the only cyclic group of order n.

Definition 1.5.6. Let X be a nonempty subset of a group G. The smallest sub-

group of G containing X, denoted 〈X〉 is called the subgroup of G generated

by X.

Theorem 1.5.7. Let X be a nonempty subset of a group G. Then

〈X〉 = {xk1
1 x

k2
2 . . . xkn

n |xi ∈ X, ki ∈ Z, n ≥ i}.

Definition 1.5.8. A group G is called finitely generated if there is a finite

subset X of G such that G = 〈X〉. We call X a set of generators for G. If X is

finite, G is called a finite generated group and denoted G = 〈x1, x2, . . . , xn〉.

Theorem 1.5.9. Let σ : G → G1 and τ : G → G1 be homomorphism. Assume

that G = 〈X〉. Then

σ = τ if and only if σ(x) = τ(x) for all x ∈ X.

A group homomorphism σ : 〈X〉 → G1 is completely determined by its effect

on X.
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1.6 Direct Products

Theorem 1.6.1. Let G1, G2, . . . , Gn be groups. Then G1 × G2 × · · · × Gn is a

group under the componentwise operation, that is

(a1, a2, . . . , an)(b1, b2, . . . , bn) = (a1b2, a2b2, . . . , anbn).

This group is called the (external) direct product of G1, G2, . . . , Gn.

Theorem 1.6.2. Let G1, G2, . . . , Gn be finite groups and (g1, g2, . . . , gn) be an

element of the group G1 ×G2 × · · · ×Gn. Then

◦ ((g1, g2, . . . , gn)) = l.c.m.(◦(g1), ◦(g2), . . . , ◦(gn)).

Theorem 1.6.3. Let G1 and G2 be finite cyclic groups. Then G1 × G2 is cyclic

if and only if |G1| and |G2| are relatively prime.

Corollary 1.6.4. The external direct product G1 ×G2 × · · · ×Gn is cyclic if and

only |G1|, |G2|, . . . , |Gn| are pairwise relatively prime.

Theorem 1.6.5. Let H and K be subgroups of a group G. Assume that

(i) G = HK,

(ii) H ∩K = {e},

(iii) hk = kh for all h ∈ H, k ∈ K.

Then G ∼= H ×K.

In this case, we say that G is the internal direct product of H and K.
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Definition 1.6.6. Let H1, H2, . . . , Hn be subgroups of a group G. We say G is

the internal direct product of H1, H2, . . . , Hn if

(i) G = H1H2 · · ·Hn,

(ii) (H1H2 · · ·Hi) ∩Hi+1 = {e} for i = 1, 2, . . . , n− 1.

(iii) hihj = hjhi for all hi ∈ Hi, hj ∈ Hj, i 6= j.

1.7 Cosets and Lagrange’s Theorem

Definition 1.7.1. Let H be a subgroup of a group G and g ∈ G. The right

coset, Hg, of H generated by g and the left coset, gH, of H generated by g are

defined as follows :

Hg = {hg | h ∈ H} and gH = {gh | h ∈ H}.

Theorem 1.7.2. Let H be a subgroup of a group G and a, b ∈ G.

(i) Ha = H iff a ∈ H [aH = H iff a ∈ H].

(ii) Ha = Hb iff ab−1 ∈ H [aH = bH iff a−1b ∈ H].

(iii) If a ∈ Hb, then Ha = Hb. [If a ∈ bH, then aH = bH].

(iv) Either Ha = Hb or Ha ∩Hb = ∅ [Either aH = bH or aH ∩ bH = ∅].

(v) The set of distinct right(left) cosets of H is a partition of G.

(vi) The set of all distinct right cosets and the set of all distinct left cosets have

the same cardinality.

Definition 1.7.3. let H be a subgroup of a group G. The index of H, denoted

[G : H] is the cardinality of the set of all distinct right(left) cosets of H.

Lemma 1.7.4. Let H ≤ G and g ∈ H. Then

card Hg = card H = card gH.
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Theorem 1.7.5. Lagrange

Let H be a subgroup of a finite group G. Then |H| divides |G|. In particular,

|G| = [G : H] · |H|.

Corollary 1.7.6. Let G be a group of order n.

(i) ◦(a) divides n ∀a ∈ G.

(ii) an = e ∀a ∈ G.

Theorem 1.7.7. let H and K be subgroups of a group G.

(i) If H ⊆ K, then [G : H] = [G : K][K : H].

(ii) If g.c.d(|H|, |K|) = 1, then H ∩K = {e}.

1.8 Normal Subgroups and Factor Groups

Definition 1.8.1. A subgroup N of a group G is called a normal subgroup if

gN = Ng for all g ∈ G. We write N �G.

Theorem 1.8.2. Every subgroup of an abelian group is normal.

Theorem 1.8.3. Z(G) is normal in G.

Theorem 1.8.4. Let N be a subgroup of a group G. Then TFAE

(i) N is normal in G.

(ii) gNg−1 = N for all g ∈ G.

(iii) gNg−1 ⊆ N for all g ∈ G.

Theorem 1.8.5. If H is a subgroup of index 2 in G, then H is normal in G.
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Theorem 1.8.6. Let N � G and G/N = {Ng | g ∈ G}. Then G/N is a group

under the operation

Na ·Nb = Nab.

This group is called the factor group(quotient group) of G by N . In addition,

if G is finite, then |G/N | = |G|
|H|

= [G : H].

Theorem 1.8.7. Let N �G.

(i) φ : G → G/N defined by φ(a) = Na is an onto homomorphism, called the

natural homomorphism

(ii) If G is abelian, then G/N is abelian.

(iii) If G = 〈a〉, then G/N = 〈Na〉.

(iv) H is a subgroup of G/N if and only if H = H/N for some subgroup H of

G containing N .

(v) HN is a subgroup of G for all subgroups H of G.

Theorem 1.8.8. Let G be a group. If G/Z(G) is cyclic, then G is abelian.

Theorem 1.8.9. Let H and K be subgroups of a group G.

(i) If H or K is normal in G, then HK = KH is a subgroup of G.

(ii) If H and K are normal in G, then HK is normal in G.

Theorem 1.8.10. Let H and K be normal subgroups of G and H ∩ K = {e}.

Then hk = kh for all h, k ∈ G. Consequently, G ∼= H ×K.
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1.9 Cauchy’s Theorem and Conjugates

Definition 1.9.1. Let a and b be elements of a group G. b is said to be a con-

jugate of a if b = xax−1 for some x ∈ G.

Theorem 1.9.2. The relation ∼ defined on a group G by

a ∼ b if and only if b = xax−1 for some x ∈ G

is an equivalence relation on G. The equivalence class of a, denoted Cl(a) is called

a conjugacy class of a.

Theorem 1.9.3. Let G be a finite group. Then

|Cl(a)| = [G : CG(a)] for all a ∈ G.

In particular, a ∈ Z(G) if and only if Cl(a) = {a}.

Theorem 1.9.4. Let G be a finite group and Cl(a1), . . . , Cl(an) be distinct non-

singleton conjugacy classes in G. Then

|G| = |Z(G)|+
n∑

i=1

[G : CG(ai)].

Theorem 1.9.5. Cauchy’s Theorem

Let G be a group of order n . If p is a prime divisor of n, then G has an element

of order p.

Theorem 1.9.6. If G 6= {e} is a group of prime power order, then Z(G) 6= {e}.

Theorem 1.9.7. If G is a group of order p2, where p is a prime, then G is abelian.



CHAPTER II

Isomorphism Theorems

2.1 Properties of homomorphisms

Recall that a mapping φ : G→ G′ is called a homomorphism if

φ(xy) = φ(x)φ(y) for all x, y ∈ G.

The kernel, Kerφ, of φ is φ−1[{e}]. An isomorphism is a bijective homomor-

phism.

Theorem 2.1.1. Let φ be a homomorphism from a group G to a group G′.

(i) φ(e) = e′ where e and e′ are identities in G and G′, respectively.

(ii) φ(x−1) = (φ(x))−1 for all x ∈ G.

(iii) φ(x1x2 · · ·xn) = φ(x1)φ(x2) · · ·φ(xn) for all x1, x2, . . . , xn ∈ G.

(iv) If H ≤ G, then φ[H] ≤ G′. In particular, Imφ is a subgroup of G′.

(v) If H ′ ≤ G, then Kerφ ⊆ φ−1[H] ≤ G.

(vi) φ is 1-1 if and only if Kerφ = {e}.

Corollary 2.1.2. Let φ : G→ G′ be a group homomorphism and g ∈ G.

(i) φ(gn) = (φ(g))n.

(ii) If g has a finite order, then φ(g) has a finite order and ◦(φ(g)) divides ◦(g).

Theorem 2.1.3. if ψ : G → G′ is a group homomorphism, then Kerψ is a

normal subgroup.
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2.2 Isomorphism Theorems

Theorem 2.2.1. First Isomorphism Theorem

Let φ : G→ G′ be a group homomorphisms. Then G/Kerφ ∼= Imφ.

Theorem 2.2.2. Second Isomorphism Theorem

Let H and N be subgroups of G with N normal. Then H ∩N is normal in H and

H/H ∩N ∼= HN/N.

Theorem 2.2.3. Third Isomorphism Theorem

Let N � G. then the map H 7→ H/N gives a 1-1 correspondence between the set

of subgroups of G containing N and the set of subgroups of G/N .

Moreover, this correspondence carries normal subgroups to normal subgroups.

If H �G and N ⊆ H ⊆ G, then

G/H ∼= (G/N) / (H/N) .



CHAPTER III

Permutation Groups

3.1 Definitions and Notations

Definition 3.1.1. A permutation on a nonempty set X is a bijection on X.

The set S(X) of all permutations on X is a group under composition, called the

symmetric group on X. Any subgroup of S(X) is called a permutation

group on X.

Remark. If sets A and B have the same cardinality, then S(A) ∼= S(B). When

X is finite, S(X) can be consider as the symmetric group on {1, 2, . . . , n}. It will

be denoted by Sn, called the symmetric group of degree n. The order of Sn

is n!. Sn is nonabelian where n ≥ 3. Each σ in Sn can be represented in matrix

from as  1 2 . . . n

σ(1) σ(2) . . . σ(n)


Theorem 3.1.2. Cayley’s Theorem

Every group is isomorphic to a permutation group.
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3.2 Cycles

Definition 3.2.1. A permutation σ in Sn is a cycle if there exist a1, a2, . . . , ar

in {1, 2, . . . , n} satisfying

(i) σ(ai) = ai+1 for all i ∈ {1, 2, . . . , r − 1},

(ii) σ(ar) = a1, and

(iii) σ(x) = x otherwise

r is then the length of the cycle. σ will be denoted by (a1, a2, . . . , ar) and

sometimes refered to as r-cycle.

Remarks.

(i) The identity permutation is the only cycle of length 1 and will be denoted

(1).

(ii) (a1, a2, . . . , ar) = (b1, b2, . . . , bs) iff r = s and there exists t such that bi = at+i

for all i = 1, 2, . . . , r.

(iii) (a1, a2, . . . , ar)
−1 = (ar, ar−1, . . . , a1).

(iv) The order of r-cycle is r.

Definition 3.2.2. Let α = (a1, a2, . . . , ar) and β = (b1, b2, . . . , bs) be nonidentity

permutation in Sn. α and β are said to be disjoint if ai 6= bj for all i, j.

Theorem 3.2.3. Disjoint cycles commute.

Theorem 3.2.4. The order of a product of disjoint cycle is the l.c.m. of the

length of cycles.
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3.3 Properties of Permutations

From now on permutations are in Sn where n ≥ 2.

Theorem 3.3.1. Every permutation is a cycle or a product of disjoint cycles. This

cycle decomposition is unique upto rearranging its cycles and cyclically permuting

the numbers within each cycle.

Definition 3.3.2. A 2-cycle is called a transposition.

Theorem 3.3.3. Every permutation is either transposition or a product of trans-

positions.

3.4 Alternating Groups

Lemma 3.4.1. The identity permutation is always a product of an even number

of transposition.

Theorem 3.4.2. If a permutation α is a product of an even number of transpo-

sitions, then every decomposition of α into a product of transpositions must have

an even number of transpositions. α is then called an even permutation.

Definition 3.4.3. A permutation which can be decomposed into a product of an

odd number of transpositions is called an odd permutation.

Theorem 3.4.4. The set of even permutations in Sn from a normal subgroup of

order
n!

2
of Sn called the Alternating group of degree n, denoted An.


