CHAPTER I

Groups

1.1 Definitions and Examples

Definition 1.1.1. A binary operation $*$ on a set S is a function from $S \times S$ into S. $(S, *)$ is then called a **binary structure**.

Definition 1.1.2. Let $*$ be a binary operation on a nonempty set S.

- *∗ is associative if* $(a * b) * c = a * (b * c) \forall a, b, c \in S$
- *∗ is* **commutative** if $a * b = b * a$ $\forall a, b \in S$.

An element e of S is an **identity element** for $*$ if

$$
e * x = x = x * e \qquad \forall x \in S.
$$

Definition 1.1.3. A binary structure $(S, *)$ is called a **semigroup** if $*$ is associative. A **monoid** is a semigroup that has an identity element.

Definition 1.1.4. A monoid $(G, *)$ with the identity element is said to be a group if for each $a \in G$, there is $b \in G$ such that

$$
a * b = e = b * a.
$$

This element b is called an **inverse** of a .

Remark. It is customary to denote a group $(G, *)$ by its underlying set G and $x * y$ by xy if there is no ambuguity.

Definition 1.1.5. The **order** of a group G is the cardinality of the set G and denoted $|G|$.

Definition 1.1.6. A group $(G, *)$ is a **abelian** if $*$ is commutative (ie. $a * b =$ $b * a \quad \forall a, b \in G$).

Theorem 1.1.7. Let $(G, *)$ be a semigroup. Then the following are equivalence

- (i) $(G, *)$ is a group.
- (ii) there is $e_{\ell} \in G$ such that $e_{\ell}a = a$ for all $a \in G$, and for each $a \in G$, there is $a' \in G$ such that $a'a = e_{\ell}$.
- (iii) there is $e_r \in G$ such that $ae_r = a$ for all $a \in G$, and for each $a \in G$, there is $b \in G$, there is $b \in G$ such that $ab = e_r$.

1.2 Elementary Properties of Groups.

Theorem 1.2.1. In any group G , the following hold:

- (i) The identity element is unique.
- (ii) Each element a of G has a unique inverse. It will be denoted a^{-1} .

Theorem 1.2.2. Let a, b and c be elements of a group. $ab = ac$ or $ba = ca$ implies $b = c$.

Theorem 1.2.3. Let a and b be elements of a group G .

- (*i*) $e^{-1} = e$.
- (ii) $(a^{-1})^{-1} = a.$
- $(iii) (ab)^{-1} = b^{-1}a^{-1}.$

Notation. For each element a in a group G ,

$$
a^{0} = e, \quad a^{1} = a
$$

$$
a^{n+1} = (a^{n})a \qquad \text{for all } n \in \mathbb{N}
$$

$$
a^{-n} = (a^{-1})^{n} \qquad \text{for all } n \in \mathbb{N}
$$

Theorem 1.2.4. Let a and b be elements of a group.

- (i) $(a^n)^{-1} = (a^{-1})^n \ (= a^{-n})$ for all $n \ge 0$. (ii) $a^m a^n = a^{m+n}$ for all $m, n \in \mathbb{Z}$. (iii) $(a^m)^n = a^{mn}$ for all $m, n \in \mathbb{Z}$.
- (iv) If $ab = ba$, then $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$.

Theorem 1.2.5. Let G be a group and $a \in G$. If n is the smallest positive integer such that $a^n = e$, then

$$
a^k = e \quad \text{if and only if} \quad n \mid k.
$$

Theorem 1.2.6. Let a and b be elements of group G .

- (i) The equation $ax = b$ has a unique solution $x = a^{-1}b$.
- (ii) The equation $xa = b$ has a unique solution $x = b^{-1}a$.

1.3 Subgroups

Definition 1.3.1. If a subset H of a group G is itself a group under the operation of G, we say that H is a **subgroup** of G, denoted $H \leq G$.

Theorem 1.3.2. Let H be a subset of G . TFAE

- (i) H is a subgroup of G .
- (ii) ab \in H for all $a, b \in H$ and $a^{-1} \in H$ for all $a \in H$.
- (iii) $ab^{-1} \in H$ for all $a, b \in H$.

Theorem 1.3.3. Let H be a nonempty finite subset of a group G . If H is closed under the operation of G , then $H \leq G$.

Theorem 1.3.4. Let a be an element of a group G . Then

$$
\langle a \rangle = \{ a^n \mid n \in \mathbb{Z} \}
$$

is the smallest subgroup of G containing a. It is called the **cyclic subgroup of** G generated by a .

Definition 1.3.5. Let a be an element of a group G . The **order** of a, denoted \circ (a) is the smallest positive integer n such that $a^n = e$ (if it exist). If no such that integer exists, we say that a has **infinite** order.

Theorem 1.3.6. Let G be a group and $a \in G$. Then $|\langle a \rangle| = \circ(a)$. In particular

$$
\langle a \rangle = \begin{cases} \{e, a, a^2, \dots, a^{n-1}\} & \text{if } \circ (a) = n, \\ \{\dots, a^{-2}, a^{-1}, e, a, a^2, \dots\} & \text{if } \circ (a) \text{ is infinite.} \end{cases}
$$

Theorem 1.3.7. Let a be an element of order n in a group G . Then

- (i) $a^k = e$ if and only if $n \mid k$.
- (ii) $a^k = a^m$ if and only if $k \equiv m \mod n$.

Theorem 1.3.8. The **center** of a group $G, Z(G)$

$$
Z(G) = \{ g \in G \mid gx = xg \text{ for all } x \in G \}
$$

is a subgroup of G.

Theorem 1.3.9. Let H and K be subgroups of a group G . Then

$$
|HK| = \frac{|H||K|}{|H \cap K|}.
$$

Theorem 1.3.10. Let H and K be subgroups of a group G . Then HK is a subgroup of G if and only if $HK = KH$.

1.4 Homomorphisms and Isomorphisms

Definition 1.4.1. Let (G, \circ) and $(G', *)$ be groups. A mapping $\phi : G \to G'$ is called a homomorphism if

$$
\phi(a \circ b) = \phi(a) * \phi(b) \text{ for all } a, b \in G.
$$

Definition 1.4.2. Let ϕ : $G \rightarrow G'$ be a group homomorphism. The **kernel** of ϕ , denoted Ker ϕ is defined by

$$
Ker \phi = \{ g \in G \mid \phi(g) = e' \}
$$

where e' is the identity element of G' .

Definition 1.4.3. A bijective (1-1 and onto) homomorphism is called an iso**morphism**. G and G' is then said to be **isomorphic**, denoted $G \cong G'$. And isomorphism from a group G into it self is called an **automorphism**. The set of all automorphisma is denoted by $Aut(G)$.

Isomorphism preserves algebraic property e.g. order of group, order of element, commutativity etc.

Theorem 1.4.4. For any group G , $Aut(G)$ is a group under composition.

Theorem 1.4.5. The isomorphism relation \cong is an equivalence for groups.

Theorem 1.4.6. Cayley's Theorem

Every group is isomorphic to a subgroup of a permutation group. If a group is of order n, then it is isomorphic to a subgroup of S_n .

1.5 Cyclic Groups and generators

Definition 1.5.1. A group G is called a **cyclic group** if $G = \langle a \rangle$ for some $a \in G$. a is then called a **generator** of G .

Theorem 1.5.2. Every cyclic group is abelian.

Theorem 1.5.3. A subgroup of a cyclic group is cyclic.

Theorem 1.5.4. Let $G = \langle a \rangle$ be a cyclic group of order n.

- (i) $|\langle a^s \rangle| = \frac{n}{l}$ d where $d = g.c.d.(n, s), \; 0 < s < n.$
- (ii) If $k|n$, then $\langle a^{\frac{n}{k}} \rangle$ is the unique subgroup of G of order k.
- (iii) The set of generators of G is $\{a^k \mid g.c.d.(n,k) = 1\}.$

Theorem 1.5.5. (i) $(\mathbb{Z}, +)$ is the only infinite cyclic group.

(ii) $(\mathbb{Z}_n, +)$ is the only cyclic group of order n.

Definition 1.5.6. Let X be a nonempty subset of a group G . The smallest subgroup of G containing X, denoted $\langle X \rangle$ is called the **subgroup of** G **generated** by X .

Theorem 1.5.7. Let X be a nonempty subset of a group G . Then

$$
\langle X \rangle = \{ x_1^{k_1} x_2^{k_2} \dots x_n^{k_n} | x_i \in X, k_i \in \mathbb{Z}, n \ge i \}.
$$

Definition 1.5.8. A group G is called **finitely generated** if there is a finite subset X of G such that $G = \langle X \rangle$. We call X a set of generators for G. If X is finite, G is called a **finite generated group** and denoted $G = \langle x_1, x_2, \ldots, x_n \rangle$.

Theorem 1.5.9. Let $\sigma: G \to G_1$ and $\tau: G \to G_1$ be homomorphism. Assume that $G = \langle X \rangle$. Then

$$
\sigma = \tau \quad \text{if and only if} \quad \sigma(x) = \tau(x) \quad \text{for all } x \in X.
$$

A group homomorphism $\sigma : \langle X \rangle \to G_1$ is completely determined by its effect on X .

1.6 Direct Products

Theorem 1.6.1. Let G_1, G_2, \ldots, G_n be groups. Then $G_1 \times G_2 \times \cdots \times G_n$ is a group under the componentwise operation, that is

$$
(a_1, a_2, \ldots, a_n)(b_1, b_2, \ldots, b_n) = (a_1b_2, a_2b_2, \ldots, a_nb_n).
$$

This group is called the (external) direct product of G_1, G_2, \ldots, G_n .

Theorem 1.6.2. Let G_1, G_2, \ldots, G_n be finite groups and (g_1, g_2, \ldots, g_n) be an element of the group $G_1 \times G_2 \times \cdots \times G_n$. Then

$$
\circ ((g_1,g_2,\ldots,g_n)) = l.c.m.(\circ (g_1),\circ (g_2),\ldots,\circ (g_n)).
$$

Theorem 1.6.3. Let G_1 and G_2 be finite cyclic groups. Then $G_1 \times G_2$ is cyclic if and only if $|G_1|$ and $|G_2|$ are relatively prime.

Corollary 1.6.4. The external direct product $G_1 \times G_2 \times \cdots \times G_n$ is cyclic if and only $|G_1|, |G_2|, \ldots, |G_n|$ are pairwise relatively prime.

Theorem 1.6.5. Let H and K be subgroups of a group G . Assume that

- (i) $G = HK$,
- (ii) $H \cap K = \{e\},\$
- (iii) $hk = kh$ for all $h \in H, k \in K$.

Then $G \cong H \times K$.

In this case, we say that G is the **internal direct product** of H and K .

Definition 1.6.6. Let H_1, H_2, \ldots, H_n be subgroups of a group G. We say G is the **internal direct product** of H_1, H_2, \ldots, H_n if

$$
(i) G = H_1 H_2 \cdots H_n,
$$

- (ii) $(H_1H_2\cdots H_i)\cap H_{i+1} = \{e\}$ for $i = 1, 2, \ldots, n-1$.
- (iii) $h_i h_j = h_j h_i$ for all $h_i \in H_i, h_j \in H_j, i \neq j$.

1.7 Cosets and Lagrange's Theorem

Definition 1.7.1. Let H be a subgroup of a group G and $g \in G$. The right coset, Hq , of H generated by q and the **left coset**, qH , of H generated by q are defined as follows :

 $Hg = \{hg \mid h \in H\}$ and $gH = \{gh \mid h \in H\}.$

Theorem 1.7.2. Let H be a subgroup of a group G and $a, b \in G$.

(i) $Ha = H$ iff $a \in H$ [aH = H iff $a \in H$].

(ii) $Ha = Hb$ iff $ab^{-1} \in H$ [aH = bH iff $a^{-1}b \in H$].

(iii) If $a \in Hb$, then $Ha = Hb$. [If $a \in bH$, then $aH = bH$].

(iv) Either $Ha = Hb$ or $Ha \cap Hb = \varnothing$ [Either $aH = bH$ or $aH \cap bH = \varnothing$].

(v) The set of distinct right(left) cosets of H is a partition of G .

(vi) The set of all distinct right cosets and the set of all distinct left cosets have the same cardinality.

Definition 1.7.3. let H be a subgroup of a group G . The **index** of H , denoted $[G : H]$ is the cardinality of the set of all distinct right(left) cosets of H.

Lemma 1.7.4. Let $H \leq G$ and $g \in H$. Then

$$
card Hg = card H = card gH.
$$

Theorem 1.7.5. Lagrange

Let H be a subgroup of a finite group G. Then |H| divides $|G|$. In particular,

$$
|G| = [G : H] \cdot |H|.
$$

Corollary 1.7.6. Let G be a group of order n .

- (i) \circ (a) divides $n \ \forall a \in G$.
- (ii) $a^n = e \ \forall a \in G$.

Theorem 1.7.7. let H and K be subgroups of a group G .

- (i) If $H \subseteq K$, then $[G : H] = [G : K][K : H]$.
- (ii) If g.c.d(|H|, |K|) = 1, then $H \cap K = \{e\}.$

1.8 Normal Subgroups and Factor Groups

Definition 1.8.1. A subgroup N of a group G is called a **normal subgroup** if $gN = Ng$ for all $g \in G$. We write $N \lhd G$.

Theorem 1.8.2. Every subgroup of an abelian group is normal.

Theorem 1.8.3. $Z(G)$ is normal in G.

Theorem 1.8.4. Let N be a subgroup of a group G . Then TFAE

- (i) N is normal in G.
- (ii) $gNg^{-1} = N$ for all $g \in G$.
- (iii) $gNg^{-1} \subseteq N$ for all $g \in G$.

Theorem 1.8.5. If H is a subgroup of index 2 in G, then H is normal in G.

Theorem 1.8.6. Let $N \triangleleft G$ and $G/N = \{Ng \mid g \in G\}$. Then G/N is a group under the operation

$$
Na \cdot Nb = Nab.
$$

This group is called the **factor group(quotient group) of** G by N. In addition, if G is finite, then $|G/N| =$ $|G|$ $|H|$ $=[G:H].$

Theorem 1.8.7. Let $N \lhd G$.

- (i) $\phi : G \to G/N$ defined by $\phi(a) = Na$ is an onto homomorphism, called the natural homomorphism
- (ii) If G is abelian, then G/N is abelian.
- (iii) If $G = \langle a \rangle$, then $G/N = \langle Na \rangle$.
- (iv) \overline{H} is a subgroup of G/N if and only if $\overline{H} = H/N$ for some subgroup H of G containing N.
- (v) HN is a subgroup of G for all subgroups H of G .

Theorem 1.8.8. Let G be a group. If $G/Z(G)$ is cyclic, then G is abelian.

Theorem 1.8.9. Let H and K be subgroups of a group G .

(i) If H or K is normal in G, then $HK = KH$ is a subgroup of G.

(ii) If H and K are normal in G, then HK is normal in G.

Theorem 1.8.10. Let H and K be normal subgroups of G and $H \cap K = \{e\}.$ Then $hk = kh$ for all $h, k \in G$. Consequently, $G \cong H \times K$.

1.9 Cauchy's Theorem and Conjugates

Definition 1.9.1. Let a and b be elements of a group G . b is said to be a conjugate of a if $b = xax^{-1}$ for some $x \in G$.

Theorem 1.9.2. The relation \sim defined on a group G by

$$
a \sim b
$$
 if and only if $b = xax^{-1}$ for some $x \in G$

is an equivalence relation on G. The equivalence class of a, denoted $Cl(a)$ is called a conjugacy class of a.

Theorem 1.9.3. Let G be a finite group. Then

$$
|Cl(a)| = [G : C_G(a)] \quad for all a \in G.
$$

In particular, $a \in Z(G)$ if and only if $Cl(a) = \{a\}.$

Theorem 1.9.4. Let G be a finite group and $Cl(a_1), \ldots, Cl(a_n)$ be distinct nonsingleton conjugacy classes in G. Then

$$
|G| = |Z(G)| + \sum_{i=1}^{n} [G : C_G(a_i)].
$$

Theorem 1.9.5. Cauchy's Theorem

Let G be a group of order n. If p is a prime divisor of n, then G has an element of order p.

Theorem 1.9.6. If $G \neq \{e\}$ is a group of prime power order, then $Z(G) \neq \{e\}$.

Theorem 1.9.7. If G is a group of order p^2 , where p is a prime, then G is abelian.

CHAPTER II

Isomorphism Theorems

2.1 Properties of homomorphisms

Recall that a mapping $\phi : G \to G'$ is called a homomorphism if

 $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$.

The kernel, $Ker\phi$, of ϕ is $\phi^{-1}[\{e\}]$. An isomorphism is a bijective homomorphism.

Theorem 2.1.1. Let ϕ be a homomorphism from a group G to a group G'.

- (i) $\phi(e) = e'$ where e and e' are identities in G and G', respectively.
- (*ii*) $\phi(x^{-1}) = (\phi(x))^{-1}$ for all $x \in G$.
- (iii) $\phi(x_1x_2\cdots x_n) = \phi(x_1)\phi(x_2)\cdots\phi(x_n)$ for all $x_1, x_2, \ldots, x_n \in G$.
- (iv) If $H \leq G$, then $\phi[H] \leq G'$. In particular, Im ϕ is a subgroup of G' .
- (v) If $H' \leq G$, then $Ker \phi \subseteq \phi^{-1}[H] \leq G$.
- (vi) ϕ is 1-1 if and only if $Ker \phi = \{e\}.$

Corollary 2.1.2. Let ϕ : $G \rightarrow G'$ be a group homomorphism and $g \in G$.

$$
(i) \phi(g^n) = (\phi(g))^n.
$$

(ii) If g has a finite order, then $\phi(g)$ has a finite order and $\circ(\phi(g))$ divides $\circ(g)$.

Theorem 2.1.3. if $\psi : G \to G'$ is a group homomorphism, then Ker ψ is a normal subgroup.

2.2 Isomorphism Theorems

Theorem 2.2.1. First Isomorphism Theorem

Let $\phi : G \to G'$ be a group homomorphisms. Then $G/Ker \phi \cong Im \phi$.

Theorem 2.2.2. Second Isomorphism Theorem

Let H and N be subgroups of G with N normal. Then $H \cap N$ is normal in H and

$$
H/H \cap N \cong HN/N.
$$

Theorem 2.2.3. Third Isomorphism Theorem

Let $N \triangleleft G$. then the map $H \mapsto H/N$ gives a 1-1 correspondence between the set of subgroups of G containing N and the set of subgroups of G/N . Moreover, this correspondence carries normal subgroups to normal subgroups. If $H \lhd G$ and $N \subseteq H \subseteq G$, then

$$
G/H \cong (G/N) / (H/N).
$$

CHAPTER III

Permutation Groups

3.1 Definitions and Notations

Definition 3.1.1. A **permutation** on a nonempty set X is a bijection on X . The set $S(X)$ of all permutations on X is a group under composition, called the symmetric group on X. Any subgroup of $S(X)$ is called a permutation group on X.

Remark. If sets A and B have the same cardinality, then $S(A) \cong S(B)$. When X is finite, $S(X)$ can be consider as the symmetric group on $\{1, 2, \ldots, n\}$. It will be denoted by S_n , called the **symmetric group of degree** n. The order of S_n is n!. S_n is nonabelian where $n \geq 3$. Each σ in S_n can be represented in matrix from as

$$
\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}
$$

Theorem 3.1.2. Cayley's Theorem

Every group is isomorphic to a permutation group.

3.2 Cycles

Definition 3.2.1. A permutation σ in S_n is a **cycle** if there exist a_1, a_2, \ldots, a_r in $\{1, 2, \ldots, n\}$ satisfying

- (i) $\sigma(a_i) = a_{i+1}$ for all $i \in \{1, 2, ..., r-1\},$
- (ii) $\sigma(a_r) = a_1$, and
- (iii) $\sigma(x) = x$ otherwise

r is then the **length of the cycle**. σ will be denoted by (a_1, a_2, \ldots, a_r) and sometimes refered to as r-cycle.

Remarks.

- (i) The identity permutation is the only cycle of length 1 and will be denoted (1).
- (ii) $(a_1, a_2, \ldots, a_r) = (b_1, b_2, \ldots, b_s)$ iff $r = s$ and there exists t such that $b_i = a_{t+i}$ for all $i = 1, 2, ..., r$.
- (iii) $(a_1, a_2, \ldots, a_r)^{-1} = (a_r, a_{r-1}, \ldots, a_1).$
- (iv) The order of r-cycle is r .

Definition 3.2.2. Let $\alpha = (a_1, a_2, \ldots, a_r)$ and $\beta = (b_1, b_2, \ldots, b_s)$ be nonidentity permutation in S_n . α and β are said to be **disjoint** if $a_i \neq b_j$ for all i, j.

Theorem 3.2.3. Disjoint cycles commute.

Theorem 3.2.4. The order of a product of disjoint cycle is the l.c.m. of the length of cycles.

3.3 Properties of Permutations

From now on permutations are in S_n where $n \geq 2$.

Theorem 3.3.1. Every permutation is a cycle or a product of disjoint cycles. This cycle decomposition is unique upto rearranging its cycles and cyclically permuting the numbers within each cycle.

Definition 3.3.2. A 2-cycle is called a transposition.

Theorem 3.3.3. Every permutation is either transposition or a product of transpositions.

3.4 Alternating Groups

Lemma 3.4.1. The identity permutation is always a product of an even number of transposition.

Theorem 3.4.2. If a permutation α is a product of an even number of transpositions, then every decomposition of α into a product of transpositions must have an even number of transpositions. α is then called an even permutation.

Definition 3.4.3. A permutation which can be decomposed into a product of an odd number of transpositions is called an **odd permutation**.

Theorem 3.4.4. The set of even permutations in S_n from a normal subgroup of order $\frac{n!}{\infty}$ $\frac{a}{2}$ of S_n called the **Alternating group of degree** n, denoted A_n .