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Quotes from pre-publication reviews

‘This book will undoubtedly be welcomed by the extensive engineering community
concerned with the impact of ocean waves on ships, off-shore structures, coastal
protection, dikes, harbours, beaches and tidal basins . . . The book contains a trove
of practical information on all aspects of waves in the open ocean and coastal
regions . . . providing an invaluable source of information.’
K. Hasselmann, Director (retired) of the Max-Planck-Institut für Meteorolo-
gie, Hamburg, and Emeritus Professor of Theoretical Geophysics, University of
Hamburg, Germany

‘The author, well-known for his work in wave modeling and the development of the
SWAN model, provides a valuable introduction to ocean wave statistics, generation
by wind, and modeling in deep and shallow water. . . . The book will be very helpful
to students, as well as professionals, interested in wind-wave wave modeling. All
SWAN users will want a copy.’
R.A. Dalrymple, Williard & Lillian Hackerman Professor of Civil Engineering,
Johns Hopkins University, USA

‘. . . the best introduction to practical engineers to grasp the directional spectral
wave approach. . . . The book is excellent not only as a textbook for students but
also as a reference book for professionals.’
Y. Goda, Executive Advisor to ECOH CORPORATION, Emeritus Professor of Civil
Engineering, Yokohama National University, Director-General (retired) of the Port
and Airport Research Institute, Japan

‘. . . ideally suited as a reference work for advanced undergraduate and graduate
students and researches. . . . The book is a “must have” for engineers and scien-
tists interested in the ocean. . . . The book explains quite complex processes with
remarkable clarity and the use of informative examples. Drawing on the author’s
international reputation as a researcher in the field, the book brings together classical
theory and state of the art techniques in a consistent framework. It is an invaluable
reference for students, researchers and practitioners.’
I. Young, Vice-Chancellor and President of Swinburne University of Technology,
Australia



‘This is a great book. The author is one of the leading experts in the field of waves
who has taught the subject for over 20 years – and it shows. The book has a broad
scope, which would be of interest to students just learning the subject, as well as
professionals who wish to broaden their range of knowledge or who want to refresh
their memory . . . recommended for introductory as well as advanced students and
professionals.’
J. W. Kamphuis, Emeritus Professor of Civil Engineering, Queen’s University,
Canada

‘This book presents an original and refreshing view on nearly all topics which are
required nowadays to deal with wind generated waves at the sea surface. . . . The
logical structure . . . and the fact that it avoids complex numbers and vector notation
will . . . facilitate its comprehension.’
A. Sánchez-Arcilla, Professor of Coastal Engineering, Universitat Politècnica de
Catalunya, Spain

‘. . . highlights key concepts, unites seemingly unconnected theories, and unlocks
the complexity of the sea. [This book] will become an important reference for
students, coastal and ocean engineers, and oceanographers.’
J. Smith, Editor, International Conference on Coastal Engineering, US Army Engi-
neer Research and Development Center, USA

‘. . . Although several books on waves already exist, I find this new contribution
particularly valuable . . . I will thus particularly recommend [it] for people wishing to
acquire and understand the key-concepts and essential notions on waves in oceanic
and coastal waters.’
M. Benoit, Research Engineer, Laboratoire National d’Hydraulique, France

‘This book is exceptionally well organized for teachers who want a thorough intro-
duction to ocean waves in nature. It fills a key gap in text books, between overly
simplistic treatments of ocean waves and detailed theoretical/mathematical trea-
tises beyond the needs of most students. I found the text very clear and readable.
Explanations and derivations within this book are both innovative and instructive
and the focus on key elements required to build a strong foundation in ocean waves
remains strong throughout the book.’
D. T. Resio, Chief Research and Development Advisor, US Army Engineer Research
& Development Center, USA
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Waves in Oceanic and Coastal Waters describes the observation, analysis and prediction
of wind-generated waves in the open ocean, in shelf seas, and in coastal regions. The
book brings graduate students, researchers and engineers up-to-date with the science and
technology involved, assuming only a basic understanding of physics, mathematics and
statistics.

Most of this richly illustrated book is devoted to the physical aspects of waves. After
introducing observation techniques for waves, both at sea and from space, the book defines
the parameters that characterize waves. Using basic statistical and physical concepts, the
author discusses the prediction of waves in oceanic and coastal waters, first in terms of
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their propagation into coastal waters (shoaling, refraction, diffraction and reflection), the
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Early in his career, the author was involved in the development of techniques to measure
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Preface

In my position as associate professor at Delft University of Technology and as
a guest lecturer at UNESCO-IHE (Delft, the Netherlands), I have for more than
20 years, with great pleasure, supported students and professionals in their study of
ocean waves. At Delft University I have had, in addition, the opportunity to work
with colleagues, notably Nico Booij, on developing numerical wave models, one
of which (SWAN) has widely been accepted as an operational model for predicting
waves in coastal waters.

Over the years, I have made notes to assist these professionals, students and
myself, during courses, workshops and training sessions. With the growing interest
and willingness of others to formalise these (mostly handwritten) notes, I found
that I should make the effort myself. The result is this book Waves in Oceanic and
Coastal Waters, which provides an introduction to the observation, analysis and
prediction of wind-generated waves in the open ocean, in shelf seas and in coastal
regions. The title of the book is a little prosaic because I want to focus directly on
the subject matter of the book. A more poetic title would be Waves of The Blue
Yonder, which would convey better the awe and mystery that I feel when watching
waves at sea, wondering where they come from and what they have seen on their
journey across the oceans. The cover photo illustrates this feeling beautifully.

Understanding the text of the book requires some basic knowledge of physics,
mathematics and statistics. The text on observing waves (Chapter 2) is descriptive;
no mathematics or statistics is used. Understanding the text on describing ocean
waves (Chapters 3 and 4) does require some knowledge of mathematics and statis-
tics, since concepts of analytical integration and probabilities are used. The text
on the linear theory of surface gravity waves (Chapters 5 and 7) and the text on
modelling wind-generated waves (Chapters 6 and 8) rely heavily on the concepts
of conservation of mass, momentum and energy. Therefore, some background in
physics is needed. These concepts are expressed with partial differential equa-
tions, so some background in mathematics is also needed. Finally, the book ends
in Chapter 9 with a description of the fundamentals of SWAN (both its physical
principles and numerical techniques).

I first treat waves in oceanic waters and later in coastal waters. The reason for this
separation is both didactic and practical: the physical processes increase in number

xiii



xiv Preface

and complexity as waves move from the ocean into coastal waters. Describing
waves in the oceans therefore gives a good introduction to the more challenging
subject of waves in coastal waters. In addition, many readers will be interested only
in the ocean environment and need not be bothered with the coastal environment.

I am well aware that many formulations in this book can be written in vector or
complex notation. Such notation would make for compact reading for those who are
familiar with it. However, students who are not familiar with it would not readily
absorb the material presented, so I have chosen not to use it. With a few exceptions,
I have written in terms of components rather than vectors and real quantities rather
than complex quantities. Concerning the references in the book: I have used a fair
number of these, to (a) refer to specific information, (b) indicate where issues are
being discussed and (c) refer to books and articles for further reading. I have not
tried to be complete in this. That would be nearly impossible, if only because of
the continual appearance of new publications. Moreover, any subject is accessible
on the Internet, which is completely up to date, including electronic versions of
scientific and engineering journals.

If this book helps professionals to enjoy their work more, students to pursue their
interest in waves and others to look at waves with an informed eye, it has more than
served its purpose.

L. H. Holthuijsen, Delft
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van der Westhuysen and Marcel Zijlema of the Delft University of Technology.
Mrs. Paula Delhez and her colleagues of the Delft University Library helped me
find the references in this book. I am very grateful to all of them because their help
greatly improved the quality of the book. Still, any errors that are left (and fate
dictates that some will be) are wholly mine.

In the book I have used data provided by the Royal Netherlands Meteorological
Institute (the Netherlands), Fugro Oceanor AS (Norway), the National Oceanic and
Atmospheric Administration (USA) and Statoil Norge AS (Norway). I am grateful
for their permission to use these data (further acknowledgements are given in the
text). I am also grateful to the copyright holders for permission to use the figures
listed below.

xv



xvi Acknowledgements

Datawell, the Netherlands: Fig. 2.3.
Institute of Marine Sciences, Italy: Fig. 2.4.
Det Norske Veritas, Norway: Fig. 3.3.
American Society of Civil Engineers, USA: Fig. 4.1.
Royal Society of London, UK: Fig. 4.16.
Springer Science and Business Media, Germany: Fig. 5.12.
World Scientific, Singapore, www.worldscibooks.com/engineering/4064.html:
Fig. 5.12.
Elsevier, the Netherlands: Figs. 6.18 and 8.9.

I am deeply indebted to Philip Plisson for his gracious permission to use his poetic
photo for the cover of the book.



1

Introduction

1.1 Key concepts

� This book offers an introduction to observing, analysing and predicting ocean waves for university

students and professional engineers and, of course, others who are interested. Understanding the

text of the book requires some basic knowledge of physics (mechanics), mathematics (analytical

integrals and partial differential equations) and statistics (probabilities).
� The book is structured from observing to describing to modelling ocean waves. It closes with a

description of the physics and numerics of the freely available, open-source computer model SWAN

for predicting waves in coastal waters.
� Ocean waves (or rather: wind-generated surface gravity waves) can be described at several spatial

scales, ranging from hundreds of metres or less to thousands of kilometres or more and at several

time scales, ranging from seconds (i.e., one wave period) to thousands of years (wave climate).

(a) On small space and time scales (less than a dozen wave lengths or periods, e.g., the surf zone at

the beach or a flume in a hydraulic laboratory), it is possible to describe the actual sea-surface

motion in detail. This is called the phase-resolving approach.

(b) On intermediate space and time scales (from dozens to hundreds of wave lengths or periods,

e.g., a few kilometres or half an hour at sea), the wave conditions are described with average

characteristics, the most important of which is the wave spectrum. This requires the wave

conditions to be constant in a statistical sense (stationary and homogeneous).

(c) On large space and time scales (from hundreds to hundreds of thousands of wave lengths or

periods, e.g., oceans or shelf seas), space and time should be divided into segments, with the

waves in each described with one spectrum. The sequence of segments allows the spectrum to

be treated as varying in space and time.

(d) On a climatological time scale (dozens of years or more), usually only the statistical properties

of a characteristic wave height (the significant wave height) are considered.

1.2 This book and its reader

Waves at the surface of the ocean are among the most impressive sights that Nature
can offer, ranging from the chaotic motions in a violent hurricane to the tranquillity
of a gentle swell on a tropical beach. Everyone will appreciate this poetic aspect but
scientists and engineers have an additional, professional interest. The scientist is
interested in the dynamics and kinematics of the waves: how they are generated by
the wind, why they break and how they interact with currents and the sea bottom.
The engineer (variously denoted as ocean engineer, naval architect, civil engineer,
hydraulic engineer, etc.) often has to design, operate or manage structures or natural
systems in the marine environment such as offshore platforms, ships, dykes, beaches

1



2 Introduction

and tidal basins. To a greater or lesser extent, the behaviour of such structures and
systems is affected by the waves and some basic knowledge of these waves is
therefore required. This book offers an introduction to this fascinating subject for
engineers and university students, particularly those who need to operate numerical
wave models. Others may be interested too, if only out of pure curiosity.

The book starts where anyone interested in ocean waves should start: with observ-
ing waves as they appear in Nature, either in the open sea or along the shore.1 Take
the opportunity to go out to sea or wander along the shores of the ocean to expe-
rience the beauty and the cruelty of waves, and to question the ‘where and why’
of these waves. The book therefore starts with observation techniques, before con-
tinuing with the question of how to describe these seemingly random motions of
the sea, which we call waves. Only then does the book present a truly theoretical
concept. It is the variance density spectrum of the waves that is used to describe the
waves. This, in its turn, is followed by the linear theory of surface gravity waves (as
they are formally called). This theory gives the interrelation amongst such physical
characteristics as the surface motion, the wave-induced pressure in the water and the
motion of water particles. It beautifully supplements the concept of the spectrum.
Initially, the book treats only open-water aspects of the linear wave theory, in other
words, deep-water conditions without currents or a coast. This provides, together
with the spectral description of the waves, an introduction to the energy balance of
waves in oceanic waters. Sources and sinks are added to this balance, to represent
the generation (by wind), the interaction amongst the waves themselves (wave–
wave interactions) and the dissipation of the waves (by white-capping). Although
several theories for these processes have been developed, the actual formulations
in numerical wave models are still very much empirical and therefore relatively
simple and descriptive. I will use these model formulations so that the reader will
quickly become familiar with the basic ideas and results of these theories. This will
satisfy many students of waves in oceanic waters. For those interested in waves in
coastal waters, the book proceeds by adding the effects of sea-bottom topography,
currents and a coast (shoaling, refraction, diffraction and reflection). The corre-
sponding formulations of the generation, wave–wave interactions and dissipation
in coastal waters are more diverse and empirical than those for oceanic waters and
the presentation is consequently even more descriptive.

The text of the book provides an insight into basic theories and practical results,
which will enable the reader to assess the importance of these in his or her field of
engineering, be it coastal engineering, ocean engineering, offshore engineering or
naval architecture. I have tried to balance the presentation of the material in a manner
that will, I hope, be attractive to the practical engineer rather than the theoretically

1 Reading a brief history of wave research may also be interesting (e.g., Phillips, 1981; Tucker and Pitt, 2001).



1.3 Physical aspects and scales 3

minded scientist. I am well aware that some basic knowledge that is required to
understand certain parts of the text has sunken deep into the recesses of the reader’s
memory (statistics is a notorious example). In such cases, the required information
is briefly reviewed in separate notes and appendices, which are intended as prompts
rather than as true introductions. I hope that the scientifically minded reader may
find the book sufficiently intriguing that it will lead him to more fundamental and
advanced books (for instance Geernaert and Plant, 1990; Goda, 2000; Janssen,
2004; Komen et al., 1994; Lavrenov, 2003; LeBlond and Mysak, 1978; Phillips,
1977; Sawaragi, 1995; Svendsen, 2006; and Young, 1999).

1.3 Physical aspects and scales

If the word ‘waves’2 is taken to mean ‘vertical motions of the ocean surface’,3 then
wind-generated gravity waves are only one type amongst a variety that occur in
the oceans and along the shores of the world. All these waves can be ordered in
terms of their period or wave length (see Fig. 1.1). The longest waves are trans-tidal
waves, which are generated by low-frequency fluctuations in the Earth’s crust and
atmosphere. Tides, which are slightly shorter waves, are generated by the interaction
between the oceans on the one hand and the Moon and the Sun on the other. Their
periods range from a few hours to somewhat more than a day and their wave lengths
accordingly vary between a few hundred and a few thousand kilometres. This is
(very) roughly the scale of ocean basins such as the Pacific Ocean and the Northern
Atlantic Ocean and of shelf seas such as the North Sea and the Gulf of Mexico.
Although tides may be called waves, they should not be confused with ‘tidal waves’,
which is actually a misnomer for tsunamis (see below).

The wave length and period of storm surges are generally slightly shorter than
those of tides. A storm surge is the large-scale elevation of the ocean surface in
a severe storm, generated by the (low) atmospheric pressure and the high wind
speeds in the storm. The space and time scales of a storm surge are therefore
roughly equal to those of the generating storm (typically a few hundred kilome-
tres and one or two days). When a storm surge approaches the coast, the water
piles up and may cause severe flooding (e.g., the flooding of New Orleans by
hurricane Katrina in August of 2005, or the annual flooding of Bangladesh by

2 Waves are basically disturbances of the equilibrium state in any given body of material, which propagate
through that body over distances and times much larger than the characteristic wave lengths and periods of the
disturbances.

3 Waves beneath the ocean surface, for instance at the interface between two layers of water with different densities,
are called ‘internal waves’. They will not be considered in this book.



10
−3

10
−4

10
−5

su
rg

es

ti
de

s

se
ic

he
s

10
−2

10
−1

10
0

10
+1

w
in

d-
ge

ne
ra

te
d 

w
av

es

ca
pi

ll
ar

y
w

av
es

10
−6

ar
bi

tr
ar

y 
en

er
gy

 s
ca

le

fr
eq

ue
nc

y
(H

z)

pe
ri

od
0.

1 
s

10
 s

10
0 

s
15

 m
in

3 
h

24
 h

1 
s

sw
el

l

tr
an

s-
ti

da
l w

av
es

in
fr

a-
gr

av
it

y 
w

av
es

 ts
un

am
is

w
in

d 
se

a

Fi
gu

re
1.

1
Fr

eq
ue

nc
ie

s
an

d
pe

ri
od

s
of

th
e

ve
rt

ic
al

m
ot

io
ns

of
th

e
oc

ea
n

su
rf

ac
e

(a
ft

er
M

un
k,

19
50

).



1.3 Physical aspects and scales 5

cyclones4). The next, somewhat smaller scale of waves is that of tsunamis. These
are waves that are generated by a submarine ‘land’ slide or earthquake. They have
a bad reputation, since they are difficult to predict and barely noticeable in the open
ocean (due to their low amplitude there) but they wreak havoc on unsuspecting
coastal regions as they increase their amplitude considerably on approaching the
coast (the Christmas tsunami of 2004 in the Indian Ocean being the worst in living
memory). The waves at the next scale are even more difficult to predict. These are
standing waves, called seiches, with a frequency equal to the resonance frequency
of the basin in which they occur (in harbours and bays or even at sea, for instance
in the Adriatic Sea). In a harbour, the amplitude of a seiche may be large enough
(1 m is no exception) to flood low-lying areas of the harbour, break anchor lines and
otherwise disrupt harbour activities. These waves are usually generated by waves
from the open sea, the source of which is not well understood (although some,
at least, are generated by storms). Next is the scale of infra-gravity waves. These
waves are generated by groups of wind-generated waves, for instance in the surf
zone at the beach, where these waves are called surf beat, with periods of typically
a few minutes. The period of the next category, wind-generated waves, is shorter
than 30 s. When dominated by gravity (periods longer than 1/4 s), they are called
surface gravity waves (the subject of this book). While they are being generated by
the local wind, they are irregular and short-crested, and called wind sea. When they
leave the generation area, they take on a regular and long-crested appearance and are
called swell (the beautiful swell on a tropical beach is generated in a distant storm).
Waves with periods shorter than 1/4 s (wave lengths shorter than about 10 cm), are
affected by surface tension and are called capillary waves.

The above types of waves are defined in terms of their wave period or wave length.
Wind-generated surface gravity waves are thus characterised by their period of
1/4–30 s and corresponding wave length of 0.1–1500 m (in deep water). For describ-
ing the variation in space and time of these waves, other scales are used: the scales
at which the processes of their generation, propagation and dissipation take place.

(1) On small scales, of the order of a dozen or fewer wave periods or wave lengths (however
loosely defined), in other words, dimensions of about 10–100 s and 10–1000 m in real
life (e.g., the dimension of the surf zone or a small harbour), waves can be described
in great detail with theoretical models (details down to small fractions of the period or
wave length). In these models, the basic hydrodynamic laws can be used to estimate

4 Hurricanes occur in many parts of the world under different names. For the Atlantic Ocean and the eastern
Pacific Ocean the term hurricane is used, whereas for the western Pacific Ocean, the term typhoon is used. In the
Indian Ocean the term cyclone is used. A tornado is something entirely different. It denotes the much smaller
atmospheric phenomenon of a relatively small but severe whirlwind (a diameter of a few hundred metres or
less, whereas the scale of a hurricane is hundreds of kilometres with an eye of about 25 km) with a vertical axis
extending from the clouds to the ground, usually occurring in thunderstorms, with much higher wind speeds
and a much lower atmospheric pressure in the centre than in hurricanes.
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the motion of the water surface, the velocity of the water particles and the wave-
induced pressure in the water at any time and place in the water body, e.g., to compute
the impact of a breaking wave on an offshore structure. Nothing in these models is
left to chance; the Newtonian laws of mechanics control everything. In other words,
in this approach the description and modelling of the waves are fully deterministic.
Rapid variations in the evolution of the waves can be computed, e.g., waves breaking
in the surf zone at the beach. Since this approach provides details with a resolution
that is a small fraction of the wave length or period, it is called the phase-resolving
approach.

(2) On a somewhat larger scale, of the order of a hundred wave periods or wave lengths, in
other words, dimensions of about 100–1000 s and 100–10 000 m in real life, the above
phase-resolving approach is not used. The reasons are as follows:
(a) the sheer amount of numbers needed to describe the waves would be overwhelming;
(b) details of the wind that generates the waves cannot be predicted at this scale and

therefore the corresponding details of the waves cannot be predicted either;
(c) even if such details could be observed or calculated, they would be incidental to that

particular observation or calculation and not relevant for any predicted situation;
and

(d) the engineer does not require such details at this scale.
The description of ocean waves at this scale need therefore not be aimed at such details.
Rather, such details should be ignored and the description should be aimed at character-
istics that are relevant and predictable. This can be achieved by taking certain averages
of the waves in space and time. This is the phase-averaging approach, in which statis-
tical properties of the waves are defined and modelled. Meaningful averaging requires
that, in some sense, the wave situation is constant within the averaging interval, i.e., the
situation should be homogeneous and stationary in the space and time interval consid-
ered. If the waves are not too steep and the water is not too shallow, the physically and
statistically most meaningful phase-averaged characteristic of the waves is the wave
spectrum. This spectrum is based on the notion that the profile of ocean waves can be
seen as the superposition of very many propagating harmonic waves, each with its own
amplitude, frequency, wave length, direction and phase (the random-phase/amplitude
model).

(3) Next are the three scales of coastal waters (of the order of one thousand wave lengths
and periods), shelf seas (of the order of ten thousand wave lengths and periods) and
oceans (of the order of a hundred thousand wave lengths and periods). In oceans and
shelf seas, the time and space scales are generally determined by the travel time of
the waves through the region, the spatial scale of the region itself and the scales of
the wind and tides. In coastal waters, the space scale is also determined by coastal
features such as beaches, bays and intricate topographical systems, such as tidal basins
with barrier islands, channels and flats. For instance, a string of barrier islands may be
50–100 km long with a tidal basin behind it that is 10–20 km wide. The travel time
to the mainland behind the islands is then typically only 15–30 min. In shelf seas and
oceans, the space scale is determined by the size of the basin itself and by the space
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scale of the weather systems. For instance, the North Sea is roughly 500 km wide and
1500 km long, while the weather systems there are only slightly smaller. The travel
time across the North Sea for waves with period 10 s is typically 24 h, which is of
the same order as the time scale of the storms there. The scale of the Pacific Ocean
is roughly 10 000 km, and a 20-s swell takes about a week to travel that distance. All
these scales are too large to use only one spectrum to characterise the waves. Instead,
the spectrum under these conditions is seen as a function that varies in space and
time. It can be forecast with numerical wave models, accounting for the generation,
propagation and dissipation of the waves. The spectrum is thus determined in a deter-
ministic manner from winds, tides and seabed topography. Note that we thus compute
statistical characteristics of the waves (represented by the spectrum) in a deterministic
manner.

(4) On a time scale of dozens of years (or more) the wave conditions can be characterised
with long-term statistics (called wave climate) obtained from long-term wave observa-
tions or computer simulations. Acquiring a wave climate is basically limited to sorting
and extrapolating a large number of such observations or simulations.

In summary: ocean waves are generally not observed and modelled in all their detail
as they propagate across the ocean, into shelf seas and finally into coastal waters.
Such details are generally not required and they are certainly beyond our capacity
to observe and compute (except on a very small scale). The alternative is to consider
the statistical characteristics of the waves. In advanced techniques of observing and
modelling, these statistical characteristics are represented by the wave spectrum,
which can be determined either from observations or with computer simulations
based on wind, tides and seabed topography.

1.4 The structure of the book

The structure of the book follows roughly the above sequence of the various aspects
of ocean waves, i.e., from observing ocean waves with instruments to predicting
waves with computer models:

CHAPTER 1 INTRODUCTION
The present, brief characterisation of this book and its contents.

CHAPTER 2 OBSERVATION TECHNIQUES
The phenomenon of ocean waves is introduced by describing
techniques to observe waves with in situ instruments or remote-
sensing instruments. In situ instruments float on the ocean surface
(buoys and ships), pierce the water surface (e.g., wave poles) or are
mounted under water (e.g., pressure transducers). Remote-sensing
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instruments, with their lenses or antennas, are usually located high
above the oceans (e.g., laser or radar in airplanes and satellites).

CHAPTER 3 DESCRIPTION OF OCEAN WAVES
Having introduced the techniques used to observe the apparent
chaos of ocean waves in the previous chapter, the techniques to
describe this phenomenon are introduced. The basic concept for
this is the random-phase/amplitude model. It leads to the definition
of the variance density spectrum. Interpreted as the energy den-
sity spectrum, this spectrum provides the basis for modelling the
physical aspects of the waves.

CHAPTER 4 STATISTICS
All short-term statistical characteristics of the waves can be
expressed in terms of the spectrum (within the linear approach of
the random-phase/amplitude model). Here, ‘short-term’ should be
interpreted as the time during which the wave condition is, sta-
tistically speaking, stationary. This property of the spectrum is
exploited to estimate, theoretically, important statistical parameters
such as the significant wave height and the maximum individual
wave height within a given duration (e.g., a storm). Long-term
wave statistics can be arrived at only by collecting observations
or by computing many wave conditions from archived wind data.
Extrapolating such long-term statistical information to estimate
extreme conditions, for instance to determine design conditions of
an offshore structure, was, until recently, more an empirical art than
a well-founded science.

CHAPTER 5 LINEAR WAVE THEORY (OCEANIC WATERS)
The linear theory of surface gravity waves is the basis for deriving
the physical characteristics of wind-generated waves. This linear
approach beautifully supplements the concept of the wave spectrum
which assumes linear waves. The theory, as treated in this chapter for
oceanic waters, addresses only local characteristics such as wave-
induced orbital motions, wave-induced pressure fluctuations in the
water and wave energy, together with such aspects as phase veloc-
ity and the propagation of wave energy. Only the simplest condi-
tions are considered: the water has a constant depth, there are no
obstacles, currents or coastlines and the wave amplitude is constant
in space and time. The theory, being linear, ignores the effect of
wind, dissipation and other nonlinear effects (these are treated in
Chapters 6 and 8).
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CHAPTER 6 WAVES IN OCEANIC WATERS
The concept of the wave spectrum, combined with the linear wave
theory for oceanic waters, is the basis for describing the propa-
gation of the waves on an oceanic scale with the spectral energy
balance. Obviously, such modelling requires additional informa-
tion on the generation of the waves (by wind), their dissipation (by
white-capping) and other nonlinear effects (quadruplet wave–wave
interactions).

CHAPTER 7 LINEAR WAVE THEORY (COASTAL WATERS)
In this chapter, the linear wave theory is continued for the more
complex conditions of coastal waters with variable water depth,
currents, obstacles, coastlines and rapidly varying wave amplitudes
(compared with oceanic conditions). The corresponding phenom-
ena of shoaling, refraction, diffraction, reflection, radiation stresses
and wave-induced set-up are introduced.

CHAPTER 8 WAVES IN COASTAL WATERS
The modelling of waves in coastal waters, including the surf zone,
is considerably more challenging than that in oceanic waters, not
only because the propagation of the waves is more complicated, but
also because the processes of generation, dissipation and nonlinear
wave–wave interactions increase in number and complexity. The
processes that dominate in oceanic waters are slightly modified
in coastal waters but, more importantly, the processes of bottom
friction, surf-breaking and triad wave–wave interactions are added.

CHAPTER 9 THE SWAN WAVE MODEL
To illustrate one application of the concepts and theories that are
presented in this book, and to provide SWAN users with background
information, the formulations and techniques of the third-generation
SWAN model for waves in coastal waters are given in this final
chapter.
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Observation techniques

2.1 Key concepts

� Visual observations are often the only source of wave information available to the engineer. Some-

times measurements made with instruments are available.
� Measurement techniques can be divided into in situ techniques (instruments deployed in the water)

and remote-sensing techniques (instruments deployed at some distance above the water).
� The most common in situ instruments are wave buoys and wave poles. Other in situ instruments

are inverted echo-sounders, pressure transducers and current meters. These instruments need to

be mounted on some structure at sea.
� The most common remote-sensing technique is radar, which is based on actively irradiating the sea

surface with electro-magnetic energy and detecting the corresponding reflection. Radar may be

deployed from the coast (e.g., with a receiving station in the dunes), from fixed platforms (e.g.,

oil-production platforms) or from moving platforms at relatively low altitude (airplanes) or high

altitude (satellites).
� Radar can be used to obtain images of the sea surface, but it can also be used as a distance meter

or as a surface-roughness meter.
� Each measurement technique has its own peculiarities as regards operational performance, accu-

racy, maintenance, cost and reliability.
� The most common result of a wave measurement is a time record of the sea-surface elevation at a

fixed (horizontal) location.

2.2 Introduction

Waves are not only observed by surfers, swimmers or tourists from the beach.
Experienced crew members onboard voluntary observing ships (VOS; or volun-
tary observing fleet, VOF), too, observe the waves and report wave height, period
and direction daily to meteorological institutions around the world. Scientists and
engineers too are watching waves. They want to quantify what they see; they want
to record every detail of the moving sea surface to study and eventually predict
waves. They therefore need to record the up-and-down motion of the surface,
as a function of time (see Fig. 2.1), or as a function of horizontal co-ordinates
(see Fig. 2.2).

Such detail is not available in visual observations but visual observations of the
height of waves are fairly reliable if carried out by experienced observers who
follow specific instructions (this is not true for the wave period) but they have
their own peculiarities. For instance, ships try to avoid heavy weather and storms

10
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Figure 2.1 The up-and-down motion of the sea surface in a storm, as experienced
by a buoy, i.e., the sea-surface elevation at one location as a function of time.

Figure 2.2 A bird’s eye view of ocean waves, as recorded with stereo-photography
with cameras looking down from two helicopters, i.e., the sea-surface elevation
as a function of horizontal co-ordinates at one moment in time (the contour line
interval is 0.20 m, shaded areas are below mean sea level; from the files of the
author, see Holthuijsen, 1983a, 1983b).

and such conditions are therefore not properly represented in the statistics of wave
observations from ships. Moreover, not all observers are qualified and their subjec-
tive assessments of wave conditions may well underestimate or overestimate the
true wave conditions (e.g., high waves seem more impressive at night than during
daytime). Still, visual observations should be treasured, because they are often the
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only source of information (albeit that measurements from satellites are emerging
as an alternative source on a global scale).

To avoid the inherent problems of visual observations, one usually prefers mea-
surements made with instruments. These are objective and seem to have little or
no bias. That is generally true, but instruments have their own peculiarities too.
The two most important are (a) limitations of the basic principle of the instru-
ment (e.g., a buoy floating at the sea surface may swerve around or capsize
in a very steep wave) and (b) sensitivity to the aggressive marine environment
(e.g., mechanical impacts, marine fouling and corrosion1). The latter is certainly
true for in situ techniques based on instruments positioned in the water. The alter-
native of remote sensing, which relies on instruments that are positioned above
the water, is generally not sensitive to the marine environment but it may be
sensitive to the atmospheric environment (e.g., rain, clouds, water vapour). This
chapter treats the various observation techniques briefly, with references for further
reading.

Literature:
Aage et al. (1998), Allender et al. (1989), COST (2005), Earle and Malahoff (1977), Tucker
and Pitt (2001), Wyatt and Prandle (1999).

2.3 In situ techniques

An in situ instrument may be located at the sea surface (e.g., a floating surface
buoy), or below the sea surface (e.g., a pressure transducer mounted on a frame at
the sea bottom), or it may be surface-piercing (e.g., a wire mounted on a platform
from above the sea surface, extending to some point below the sea surface). Most
of these instruments are used to acquire time records of the up-and-down motion
of the surface at one (horizontal) location. Sometimes a pier, extending from the
beach across the surf zone, is used (e.g., the Field Research Facility of the U.S.
Army Engineer Research & Development Center in Duck, North Carolina, USA
or the Hazaki Oceanographical Research Facility of the Port and Airport Research
Institute near Kashima, Japan) or a movable sled pulled along the seabed is used to
acquire wave data along a transect or in a small area.

Literature:
Nakamura and Katoh (1992), Sallenger et al. (1983)

1 To illustrate another type of marine aggression: greedy bounty hunters will ‘salvage’ a wave-recording buoy
from the sea and sell it for scrap metal or collect the lost-and-found reward. Little do these vandals know that
the buoy motions are continuously monitored (the buoy records tell revealing stories).
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2.3.1 Wave buoys

One obvious way of measuring waves is to follow the three-dimensional motion
of the water particles at the sea surface. This can be done with a buoy that closely
follows the motion of these water particles by floating at the surface.2 The most
common technique for such a buoy is to measure its vertical acceleration with
an onboard accelerometer (supplemented with an artificial horizon to define the
vertical). The buoy also moves horizontally, but only over a small distance (roughly
equal to the wave height), which is usually ignored. By integrating the vertical accel-
eration twice, the vertical motion of the buoy (the heave motion, see Note 2A) and
thus of the sea-surface elevation is obtained as a function of time. Owing to the
simultaneous horizontal motion of the buoy, the waves in the record tend to look
more symmetrical (around the mean sea level) than they actually are. In reality,
the crests are slightly sharper than measured and the troughs are slightly flatter. In
addition, a buoy has a finite mass and size, causing the buoy generally to under-
estimate short waves and to resonate at its natural frequency (the eigenfrequency;
thus overestimating waves near this frequency). For instance, the diameter of the
NDBC3 buoys in the USA, which usually carry a large array of meteorological sen-
sors, may be as large as 10 m, whereas the diameter of the WAVERIDER buoy4 (of
Datawell, the Netherlands, which is the most commonly used buoy, see Fig. 2.3)
is less than 1 m. In addition, a spherical buoy tends to avoid the steep parts of
waves, circling around the crests of steep waves and thus avoiding maxima in the
surface elevation. A buoy with a flat hull (e.g., a disc-shape) may even capsize
in a steep wave. Some of these effects are known and can be corrected for in the
analysis of the wave records. In spite of these shortcomings, buoys perform well in
general.

The buoys are usually provided with radio communication to send their signals
to a land- or platform-based receiving station. These links used to be based on
ultra-high-frequency (UHF) radio (line-of-sight range ≈ 20 km) but new buoys
are now often supplemented with satellite communication and position detection
by the Global Positioning System (GPS, based on triangulation between dedicated
satellites). As a matter of fact, GPS has become so accurate that, with some addi-
tional facilities, it can be used to measure waves: the Doppler shift of the satellite
signal provides the velocity of the buoy. The accuracy can be enhanced by including
a nearby fixed station in the GPS measurement (this mode is called ‘differential

2 Sometimes a ship is used as a wave-measuring ‘buoy’: measure its vertical motion and supplement this with a
shipborne wave recorder (Haine, 1980; Tucker, 1956).

3 National Data Buoy Centre of NOAA (National Oceanic and Atmospheric Administration, USA).
4 To illustrate still another type of marine aggression: excited gun-toting crew members of a passing ship may use

a WAVERIDER buoy as an interesting shooting target (it is after all a bright yellow circle moving up and down
on the waves). This is, of course, anecdotal, but bullet scars on the buoy can be rather impressive (I have seen
the evidence; whoever said that wave research is a safe occupation?).
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Figure 2.3 The WAVERIDER buoy at sea. The buoy measures its own verti-
cal acceleration to estimate the sea-surface motion (photo courtesy of Datawell,
Haarlem, the Netherlands).

GPS’ or D-GPS). This provides a new approach to wave measurements that is
already being exploited by the SMART buoy of OCEANOR (Norway) and the
GPS-WAVERIDER of Datawell.

The above heave buoys do not provide directional information. To obtain such
information, two other types of buoys have been developed. The first type measures
the slope of the sea surface. It is a relatively flat buoy (disc-shaped or doughnut-
shaped) and it measures, in addition to its heave, its own pitch-and-roll motion (see
Note 2A). This requires extra sensors (inclinometers) in the buoy to detect the tilt
of the buoy in two orthogonal directions and a sensor to monitor the direction to
geographic North. From these measurements, the mean wave direction and also the
degree of short-crestedness of the waves can be determined. A commercial version
of this buoy is the WAVEC buoy (WAve-VECtor, of Datawell). The second type of
buoy that can measure wave directions, measures its own horizontal motion (surge
and sway, see Note 2A). Similarly to the pitch-and-roll motion of the buoy, this
(horizontal) surge-and-sway motion of the buoy indicates the mean wave direc-
tion and the degree of short-crestedness. The DIRECTIONAL WAVERIDER (of
Datawell) is such a buoy. It uses the Earth’s magnetic field to measure the surge
and sway. The SMART buoy and the GPS-WAVERIDER use GPS for the same
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purpose. An even more sophisticated buoy is the cloverleaf buoy, which measures
not only the surface elevation and its slope in two orthogonal directions but also
the curvature of the surface in these two directions (the buoy actually consists of
three pitch-and-roll buoys fixed to one another in a frame; it has only been used
occasionally in scientific experiments).

NOTE 2A The six degrees of freedom

The motion of a rigid body has six degrees of
freedom: three translations and three rotations:

Translation:
surge = forward / backward
sway = left / right
heave = up / down

Rotation:
pitch = say ‘yes’
roll = say ‘so-so’
yaw = say ‘no’

sway

surge

heave

yaw

roll

pitch

Literature:
Allender et al. (1989), de Vries et al. (2003), Holthuijsen and Herbers (1986), James
(1986), Jeans et al. (2003a, b), Krogstad et al. (1997, 1999), Longuet-Higgins et al. (1963),
Mitsuyasu et al. (1975, 1980), Nagai et al. (2004), Neumann and Pierson (1966), van der
Vlugt et al. (1981).

2.3.2 Wave poles

When an offshore platform is available or purpose-built, a wire can be suspended
vertically from that platform from above the water surface to a point somewhere
beneath the water surface (see Fig. 2.4).5 The vertical position of the water sur-
face can then be measured as it moves along the wire (the instrument is called a
‘wave pole’ or a ‘wave staff’). An obvious technique is to measure the length of the
wire above the surface, e.g., by measuring the electrical resistance of this ‘dry’ part

5 Sometimes a tall and slender buoy, floating vertically in the water, is used to provide a stable platform. The
buoy is so long that it penetrates beneath the wave action, thus providing stability for sensors near the water
surface. The generic name for such a buoy is a ‘spar buoy’ (e.g., Cavaleri, 1984; Tucker, 1982). Like many large
buoys, spar buoys are also used to mount other instruments for oceanographic or meteorological observations.
A famous example is the specially designed ship ‘Flip’ (Floating Instrument Platform) that floats horizontally
to the required location where it is flipped vertically to provide the platform for observations (e.g., Fisher and
Spiess, 1963; Snodgrass et al., 1966).
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Figure 2.4 Two measurement techniques with a wave pole: electrical resistance and
electrical capacitance (photo courtesy of the Institute of Marine Sciences, Venice,
Italy).

of the wire. In practice two wires or one wire with a string of electrodes is used,
which short-circuit at the water surface. Another technique is to measure the elec-
trical capacitance of two parallel electric wires or of a single electric wire within
an insulating rubber cord. It is also possible to send a high-frequency electrical
signal down the wire, which will reflect at the water surface, again determining the
position of the water surface. To illustrate that each in situ technique has its own
peculiarities, it may be noted that the water surface, when moving down, tends to
leave a thin film of water on the wire with a cusp-like edge between the wire and the
sea surface. The dropping sea surface is therefore measured at a somewhat higher
level than it would be in the absence of the wire. The error may occasionally be as
large as several decimetres in rough seas, but normally the effect is relatively small
and it introduces no problems.

Like a heave buoy, these wire techniques do not provide directional wave infor-
mation. To obtain such information, one may use a group of vertical wires or poles.
For instance, three poles at the corners of a small triangle can be used to estimate
the slope of the surface (the triangle needs to be small compared with the lengths
of the waves but not so small that measurement errors dominate; this set-up is
called a slope array). The information is essentially the same as obtained with a
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pitch-and-roll buoy. When located at the corners of a larger triangle, the poles can
be used to detect phase differences between the poles (this set-up is called a phase
array with a size of the order of the wave length). For instance, if the crest of a
(harmonic) wave passes through two poles simultaneously, the phase difference
between these two poles is zero. A zero phase difference therefore indicates a wave
direction normal to the fictitious line connecting the two poles. A third pole is
needed to determine from which side the wave is approaching (left or right, in other
words, there is a 180o ambiguity in the wave direction without the third pole). Any
deviation from zero phase provides the wave direction relative to this reference
direction. More advanced analysis techniques and more poles can provide more
details of the directional character of the waves.

Literature:
Allender et al. (1989), Cavaleri (1979, 2000), Davis and Regier (1977), Donelan et al.
(1985), Russell (1963), Young et al. (1996).

2.3.3 Other in situ techniques

The above buoys and poles are the most popular instruments used to observe waves.
However, for many reasons (operational, financial etc.) one may want to use other
techniques, which are less common but perfectly feasible in their own setting.
Some are relatively well known. These are the inverted echo-sounder, the pressure
transducer and the current meter (see Fig. 2.5). The inverted echo-sounder is an
instrument, located at some depth beneath the sea surface, which measures the
position of the water surface with a narrow, upward-looking sonic beam. A pressure
transducer, located at some depth below the sea surface, can measure wave-induced
pressure fluctuations. These fluctuations, combined with the linear wave theory (see
Chapter 5), can be used to estimate wave characteristics. When deployed in a spatial
pattern, a set of (at least three) inverted echo-sounders or pressure transducers can
provide directional wave information. A current meter, mounted at some depth
below the surface, measuring the wave-induced orbital motion, can also be used to
estimate wave characteristics. With this instrument, directional information of the
waves can be deduced without additional instrumentation, because the current is
measured as a (horizontal) vector, i.e., with direction and magnitude. Sometimes, a
combination of instruments is used (e.g., an inverted echo-sounder with an acoustic
current meter or a set of inverted echo-sounders radiating at slightly different angles
upwards from one under-water support; see Fig. 2.5).

A very refined instrument is the wave-follower, which consists of a small instru-
ment package close to the water surface on a wave pole that moves up and down
with the waves: the pole is carried vertically along a supporting structure by a small
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Figure 2.5 A pressure transducer, current meter or inverted echo-sounder mounted
at the sea bottom (they may also be mounted at some depth on a platform piercing
the water surface).

motor that is controlled by a wave sensor on the pole. It moves in such a way that
the instrument package remains roughly at a fixed position above the sea surface.
Sensors in the instrument package may then be used to measure the position of the
sea surface more accurately or they may be used to measure other parameters, such
as the air pressure just above the (moving) sea surface. It is a rather delicate set-up
and it has been used only occasionally in scientific experiments.

Literature:
Bishop and Donelan (1987), Hashimoto et al. (1996), Hashimoto (1997), Hsiao and Shemdin
(1983), Jeans et al. (2003a), Snyder et al. (1981), Takayama et al. (1994).

2.4 Remote-sensing techniques

Instruments that are mounted above the water surface on a fixed or moving platform
are called remote-sensing instruments. The platform may be an observation tower
at sea, a ship, an airplane or a satellite. Some instruments need not look downwards
and these may therefore be located on land. The principle of these remote-sensing
techniques is to receive reflections off the sea surface of visible or infra-red light
or radar energy. The most important operational difference from in situ techniques
is that large areas can be covered (nearly) instantaneously or in a short period of
time, particularly if the platform is a satellite. However, remote sensing is often
experimental and rather more expensive than in situ measurements. Then again,
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Figure 2.6 Stereo-photography from two airplanes with three-dimensional surface
information where the two photographs overlap.

governments and international organisations often subsidise remote sensing and
the costs of remote sensing are usually shared with many other users so that remote
sensing may still be financially feasible for the individual user.

Literature:
Hwang et al. (1998).

2.4.1 Imaging techniques

Stereo-photography

Photography is an obvious technique to observe waves. With stereo-photography
it is actually possible to obtain a three-dimensional image of the surface. It is an
old and well-established technique for measuring terrestrial topography: a high-
quality camera looking vertically down from an airplane takes photographs every
few seconds of overlapping sections of the terrain below. The differences (parallax)
in the overlapping photos can be converted into elevations, thus creating a three-
dimensional image of the terrain. When this technique is applied to the moving sea
surface, one camera is not enough because the surface itself would change between
one photo and the next – if these photos were taken in sequence. For applications at
sea, therefore, two synchronised cameras are required, usually operated from two
airplanes flying in formation (see Fig. 2.6).

Literature:
Banner et al. (1989), Cote et al. (1960, also in Kinsman, 1965), Holthuijsen (1983a),
Neumann and Pierson (1966).
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Imaging and non-imaging radar

Conventional ship’s radar is normally used to detect hard obstacles around a ship,
i.e., obstacles that are potentially dangerous to the ship (marine radar, with its
well-known screen, called the Plan Position Indicator or PPI, showing a scanning,
map-like image of the surroundings). These radars are therefore always set to
show the reflections off such hard surfaces. However, they can also be set to show
the reflections off softer surfaces such as a beach or waves (which are normally
considered to be ‘clutter’). Such reflection off the waves is mostly due to resonance
between the radar waves and features at the water surface (Bragg scatter). Since the
radar wave length is usually in the centimetre range, only very short water waves
reflect the radar waves (capillary waves, which are generated by wind, current or
by breaking waves, but otherwise dominated by surface tension). These very short
waves are modulated by longer waves (the waves that engineers are interested
in) because, due to the orbital motion of the water particles in the longer waves,
they are slightly shorter at the crest than in the troughs of these longer waves (see
Section 5.4.4). The radar ‘sees’ this modulation and it is the modulation pattern
that creates the image of the longer waves on the radar screen.

Radars that are based on the same principle have been built into airplanes and
satellites to observe waves on a regional or oceanic scale. The problem for appli-
cations from high altitude is that the antenna needs to be very large in order to
distinguish the individual longer waves in the modulation pattern.6 However, by
transmitting and receiving a properly programmed signal from the antenna (moving
along the path of the airplane or satellite), such a large antenna can be simulated
with a small one. Such radar with a programmed signal is called synthetic aper-
ture radar (SAR). The SAR images are realistic enough: everyone who sees such
an image is convinced that it shows ocean waves. These images can be analysed,
to obtain not the surface elevation itself7 but statistical characteristics thereof in
selected areas of limited size in the form of the two-dimensional wave-number
spectrum (see Section 3.5.8). The data stream generated by a SAR is so large that
the instrument cannot continuously send data to the receiving stations on Earth as
the satellite orbits the Earth. It operates on request.

Other radar techniques are based on non-imaging returns of radar signals from the
ocean surface (for instance, the frequency shift between the radiated and reflected
signal). This can be exploited in various radar frequency bands, each providing
operationally different (land-based or airborne) systems. One such radar can observe
ocean waves from a long distance. This (low-frequency) radar is looking up, towards

6 In general, for any antenna or lens; the larger the antenna or lens, the smaller the details that can be observed.
7 One group of researchers (e.g., Borge et al., 2004; Schulz-Stellenfleth and Lehner, 2004) claims to have retrieved

the surface elevation of ocean waves from SAR images but I have not (yet) seen any validation of this.
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the sky, with the radar energy reflecting off the ionosphere to the ocean surface
and back. This can give a range of several thousand kilometres: sky-wave radar.
Other, high-frequency (HF) radar can observe ocean waves at shorter ranges (up
to just over the horizon): HF radar or ground-wave radar. Other non-imaging radar
instruments are used as vertical distance meters (altimeters). These are treated
below.

Literature:
Alpers et al. (1981), Borge et al. (1999), Georges and Harlan (1994), Hasselmann et al.
(1985b), Hasselmann and Hasselmann (1991), Hasselmann et al. (1996), Heathershaw et al.
(1980), Hessner et al. (2001), Kobayashi et al. (2001), Lehner et al. (2001), McLeish and
Ross (1983), Schulz-Stellenfleth and Lehner (2004), Tomiyasu (1978), Wyatt and Ledgard
(1996), Wyatt (1997, 2000), Wyatt et al. (1999), Young et al. (1985).

2.4.2 Altimetry

Laser altimetry

Another technique than photography that uses (visible or infra-red) light is the
laser. As a distance meter, or rather, as an altimeter, a downward-looking laser
can measure the vertical distance from the instrument to the sea surface rather
accurately. It may be mounted on a fixed platform or in an airplane, but not on
a satellite where its operation would be hindered too much by the weather. The
deployment from an airplane has some special features, because the sea surface is
measured along a line (the flight path of the airplane) and the airplane and the surface
elevation move during the observation. Another technique by which to operate a
laser altimeter from an airplane is to scan the sea surface with a moving laser beam
(for instance, reflecting off a rotating mirror), along closely spaced lines at the sea
surface, normal to the flight path or in a (forward-moving) circular pattern beneath
the airplane. This technique provides a three-dimensional image of the sea surface,
practically ‘frozen’ in time like in a stereo-photo (some distortions occur because
the scanner needs time to build up the image and both the sea surface and airplane
move in the time during which the scanner builds up the image). This system is
called the airborne topographic mapper (ATM). These altimeter techniques are
less cumbersome than stereo-photography but they share many of the operational
problems (e.g., they both require a platform above the sea surface, airborne or not,
and are weather-dependent).

Literature:
Allender et al. (1989), Hwang et al. (2000a), Ross et al. (1970), Schule et al. (1971).
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Acoustic altimetry

Echo-sounders are not used only as in situ instruments (see Section 2.3.3) but also as
remote-sensing instruments. When mounted above the water looking downwards,
with a narrow beam, they can be used to measure the distance to the sea surface.
This technique is operational at some sites in Japanese waters.

Literature:
Kuriyama (1994), Sasaki et al. (2005).

Radar altimetry

A narrow-beam radar, looking down at the sea surface, can also be used as an
altimeter. If the radar is located near the water surface (at a fixed platform or in a
low-flying airplane), the radar is accurate enough to measure the actual sea-surface
elevation directly beneath the instrument. A variation of this technique is to scan
the sea surface with the radar beam, in a manner almost identical to that of the laser-
based airborne topographic mapper (ATM; see above). Such a system is called a
surface-contouring radar or scanning radar altimeter.

From a larger distance, in particular from a satellite, the mode of operation of the
radar altimeter is rather different. For such applications the (non-scanning) radar
beam is pointing downwards to the sea surface, but its footprint (the spot at the
sea surface that is ‘illuminated’ by the radar beam) is typically a few kilometres
in diameter, which is too large to resolve individual waves. However, the radar
signal that is reflected from the footprint to the satellite is somehow distorted by
the presence of the waves in the footprint. This distortion can be used to estimate
the roughness of the surface, which in turn can be converted into a characteristic
wave height (the significant wave height, see Section 3.3.2). To explain this, con-
sider a radar instrument transmitting a pulse of electromagnetic energy from the
satellite to the sea surface (Fig. 2.7). This pulse, when originating from a suffi-
ciently high altitude, arrives at the ocean surface as a (nearly) horizontal and flat
front. When the water surface is horizontal and flat too, the reflection of the radar
pulse is instantaneous and it is received by the satellite as a pulse. However, in the
presence of waves, reflections occur first at the highest wave crests. This gives a
weak onset of the reflection received by the satellite. As the radar front at the sea
surface propagates further downwards, into the wave troughs, it meets more and
more surface area and eventually it arrives at the bottom of the wave troughs. The
reflection correspondingly builds up and dies down as it is received by the satellite.
When the waves are very low, the distortion of the pulse is small and the return
signal is short (narrow in time). If the waves are higher, the distortion is larger and
the return signal broadens. This broadening is therefore a measure of the roughness
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Figure 2.7 Radar altimetry from a satellite. Note that in this figure the time axes
are interrupted to separate the time scale of the arrival of the radar return at the
satellite (distance to mean sea surface) from the time scale of the shape of the radar
return (giving sea-surface roughness).

of the sea surface and hence of some characteristic wave height in the footprint of
the radar beam. In practice, the slope of the leading edge of the return signal (the
angle α in Fig. 2.7) is used as a measure of the sea-surface roughness.

Literature:
Barrick (1968), Walsh et al. (1985, 1989).
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Description of ocean waves

3.1 Key concepts

� The conventional short-term description of ocean waves requires statistical stationarity. A time

record of actual ocean waves (the fluctuating sea-surface elevation as a function of time at one

location) needs therefore to be as short as possible. However, characterising the waves with any

reliability requires averaging over a duration that is as long as possible. The compromise at sea is a

record length of 15–30 min. If the record is longer, it should be divided into such segments (possibly

overlapping; each assumed to be stationary).
� The wave condition in a stationary record can be characterised with average wave parameters,

such as the significant wave height and the significant wave period.
� The significant wave height is fairly well correlated with ‘the’ wave height as estimated visually by

experienced observers. This is not true for the significant wave period.
� A more complete description of the wave condition is obtained by approximating the time record

of the surface elevation as the sum of a large number of statistically independent, harmonic waves

(wave components). This concept is called the random-phase/amplitude model.
� The random-phase/amplitude model leads to the concept of the one-dimensional variance den-

sity spectrum, which shows how the variance of the sea-surface elevation is distributed over the

frequencies of the wave components that create the surface fluctuations.
� If the situation is stationary and the surface elevations are Gaussian distributed, the variance density

spectrum provides a complete statistical description of the waves.
� The concept of the random-phase/amplitude model can be extended to the three-dimensional,

moving sea surface, which is then seen as the sum of a large number of statistically indepen-

dent, harmonic waves propagating in all directions across the sea surface. The corresponding two-

dimensional variance density spectrum shows how the variance is distributed over the frequencies

and directions of these harmonic wave components.
� The one-dimensional spectrum can be obtained from the two-dimensional spectrum by integration

over all directions.
� The variance density spectrum provides also a description in a physical sense when multiplied with

ρg (ρ is the density of water, g is the gravitational acceleration). The result is the energy density

spectrum. It shows how the energy of the waves is distributed over the frequencies (and directions).
� The analysis of a time record of the sea-surface elevation, to obtain an estimate of the one-

dimensional spectrum, is treated in Appendix C.

3.2 Introduction

The first step in describing wind waves is to consider the vertical motion of the
sea surface at one horizontal position, for instance along a vertical pole at sea as
addressed in the previous chapter. The ocean waves then manifest themselves as
a surface moving up and down in time at that one location. It may sound odd,

24
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but it would be entirely legitimate to conclude from such motion, and from such
motion alone, that the sea surface is a perfectly smooth, horizontal plane that moves
vertically in a rather random manner. This of course is not the case, but we know that
only because we have all seen real, three-dimensional, moving ocean waves. Such
chaotic motion of ocean waves seems to defy any rational approach (see Fig. 2.1).
In three dimensions, the situation looks even more problematic (see Fig. 2.2).
However, a rational approach to describe this apparent chaos is entirely possible,
as will be shown in this chapter.

To estimate wave conditions visually, even the most casual observer tends to
concentrate his/her attention on the highest waves in the wave field. For instance,
the estimates of the observers who report daily to the meteorological network of
the World Meteorological Organisation (WMO) are based on ‘. . . the average
height and period of 15 to 20 well defined, higher waves of a number of wave
groups . . .’ (guidelines of the WMO). These average wave characteristics are called
the significant wave height and the significant wave period, denoted as Hs and Ts ,
respectively (or Hv and Tv to indicate that they have been estimated visually).
The concept of the significant wave height and period is very useful in many
situations. However, two wave parameters give only a limited description of the
wave conditions. For instance, wave conditions may well be similar in the sense
that the significant wave height and period are equal, but they may still be very
different in detail: a mixed sea state of wind sea (short, irregular, locally generated
waves) and swell (long, smooth waves, generated in a distant storm) may have
the same significant wave height and period as a slightly higher wind sea without
swell. To distinguish such conditions, more parameters are needed, for instance,
a significant wave height and period for wind sea and swell separately. This is
sometimes done and it may be adequate in some cases, but any small number of
parameters would not, in general, completely characterise the wave conditions.
For a complete description (in a statistical sense), another technique, the spectral
technique, is required. It is based on the notion that the random motion of the
sea surface can be treated as the summation of a large number of harmonic wave
components.

3.3 Wave height and period

3.3.1 Waves

Before we can objectively define a wave height or period, we need to define more
precisely what a wave is. This seems trivial but many people consider any elevation
of the sea surface to be a wave. In the present context, this is not correct: we need to
distinguish between the surface elevation and a wave. In a time record, the surface
elevation is the instantaneous elevation of the sea surface (i.e., at any one moment
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Figure 3.1 The definition of a ‘wave’ in a time record of the surface elevation with
downward zero-crossings (upper panel) or upward zero-crossings (lower panel).

in time) relative to some reference level. In such a record, a wave is the profile
of the surface elevation between two successive downward zero-crossings of the
elevation (zero = mean of surface elevations, see Fig. 3.1). A surface elevation can
be negative, whereas a wave cannot. Alternatives for defining a wave are possible,
e.g., the profile between two successive upward zero-crossings (see Fig. 3.1).

If the surface elevation, denoted as η(t), is seen as a Gaussian1 process (see
Appendix A), it does not matter whether the definition with downward zero-
crossings or upward zero-crossings is used, because the statistical characteristics
would be symmetrical. However, many prefer the definition with the downward
crossings because in visual estimates the height of the crest relative to the preced-
ing trough is normally considered to be the wave height. In addition, in a breaking

1 Johann Carl Friedrich Gauss (1777–1855) was a German scientist with a wide range of interests. He had
a passion for numbers and calculations (theory of numbers, algebra, analysis, geometry, probability and the
theory of errors). He was also active in astronomy, celestial mechanics, surveying and geodesy. He made his
fortune with shares in private companies.
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Figure 3.2 The definition of wave height and wave period in a time record of the
surface elevation (the wave is defined with downward zero-crossings).

wave, the (steep) front, which is most relevant for the breaking process, is included
in the definition with downward crossings (under such conditions, the waves are
not symmetrical and the differences between the definition of a wave with zero-up
or zero-down crossings becomes relevant). Characterising the waves in the wave
record is based on averaging all of the individual wave heights and periods in the
record. This requires the duration of the record to be short enough to be stationary
but also long enough to obtain reasonably reliable averages. The commonly used
compromise at sea is 15–30 min.

Literature:
Buckley et al. (1984), Goda (1986).

3.3.2 Wave height

It is natural to define the wave height H as the vertical distance between the highest
and the lowest surface elevation in a wave (see Fig. 3.2). A wave will thus have
only one wave height. In a wave record with N waves, the mean wave height H is
then readily defined as

H = 1

N

N∑
i=1

Hi (3.3.1)

where i is the sequence number of the wave in the record (i.e., i = 1 is the first
wave in the record, i = 2 is the second wave, etc.).
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Sometimes a quadratically weighted averaged value is used to define the root-
mean-square wave height Hrms :

Hrms =
(

1

N

N∑
i=1

H 2
i

)1/2

(3.3.2)

Such a measure of wave heights may be relevant for energy-related projects because
the wave energy is proportional to the square of the wave height (see Section 5.5).

These characteristic wave heights H and Hrms seem to be rather obvious to define,
but they are not very often used, probably because they bear little resemblance to the
visually estimated wave height. Instead, another wave height, called the significant
wave height Hs ( just as in visual observations) is used. It is defined as the mean of
the highest one-third of waves in the wave record:2

significant wave height = H1/3 = 1

N/3

N/3∑
j=1

Hj (3.3.3)

where j is not the sequence number in the record (i.e., sequence in time) but the
rank number of the wave, based on wave height (i.e., j = 1 is the highest wave,
j = 2 is the second-highest wave, etc.). This seems to be an odd way of defining a
characteristic wave height but experiments have shown that the value of this wave
height is close to the value of the visually estimated wave height (see Section 3.4).
It is somewhat confusing that both the visually estimated characteristic wave height
and this measured characteristic wave height are called the ‘significant wave height’.
To distinguish them from one another, the visually estimated significant wave height
is therefore denoted here as Hv and the measured significant wave height (from a
time record) as H1/3 (pronounced as H-one-third). The significant wave height can
also be estimated from the wave spectrum. It will be denoted as Hm0 (H-m-zero;
see Section 4.2.2). Sometimes the mean of the highest one-tenth of waves is used
to define H1/10 (H-one-tenth),

H1/10 = 1

N/10

N/10∑
j=1

Hj (3.3.4)

but it has no obvious relation to the visually estimated significant wave height. It
must be noted that, if the waves are not too steep and not in very shallow water,
there is a (theoretically based) constant ratio between the various characteristic
wave heights (e.g., Hrms = 1

2

√
2 H1/3; see Section 4.2.2).

2 If you are interested in history: this definition seems to have been introduced by Sverdrup and Munk (1946).
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3.3.3 Wave period

It is equally natural to define the period T of a wave as the time interval between
the start and the end of the wave (the interval between one zero-down crossing and
the next; see Fig. 3.2). Since this wave period is defined with zero-crossings, it is
called the zero-crossing period, T0. The mean of this zero-crossing wave period,
denoted as T 0, is then defined, in analogy with the mean wave height H , as

mean zero-crossing wave period = T 0 = 1

N

N∑
i=1

T0,i (3.3.5)

where i is the sequence number of the wave in the time record. In analogy with
the significant wave height, the significant wave period Ts is defined as the mean
period of the highest one-third of waves, T1/3 (pronounced as T-one-third):

significant wave period = T1/3 = 1

N/3

N/3∑
j=1

T0, j (3.3.6)

where, again, j is not the sequence number but the rank number of the wave,
based on wave height (it is the same j as in the definition of the significant wave
height, Eq. 3.3.3). To distinguish, in the notation, the visually estimated significant
wave period from the measured significant wave period (obtained directly from the
time record), the former is denoted as Tv and the latter as T1/3. As with the wave
heights, sometimes the mean of the highest one-tenth of waves is used to define
T1/10 (T-one-tenth):

T1/10 = 1

N/10

N/10∑
j=1

T0, j (3.3.7)

Other characteristic wave periods are also used, but these are defined in terms of
the wave spectrum. They will be treated in Chapter 4.

3.4 Visual observations and instrumental measurements

Wave measurements (i.e., recordings made with instruments) are routinely car-
ried out at only a few locations in the world’s oceans: mostly along the coasts of
Europe, the USA, Canada and Japan (although satellite measurements are rapidly
supplementing this on a worldwide scale). In most other places, the engineer has
to find wave information from other sources. There are three alternatives (apart
from starting a dedicated measurement campaign): visual observations, satellite
measurements and computer simulations.



30 Description of ocean waves

T1/3 = Tv

T1/3

TvHv

H1/3

H1/3 = Hv

2

0 2 4 6 8 10 m
0

4

6

8

10 m
mean of H1/3 per value of Hv

0
0

10

15 s

15 s5 10

5

mean of T1/3 per value of Tv

H1/3 = 1.67 Hv
0.77

T1/3 = 2.83 Tv
0.44

Figure 3.3 The relationship between the visually estimated significant wave height
and period and the measured significant wave height and period (after Nordenstrøm,
1969). The standard deviation of the measured values is about 15% of the mean of
the measurements at every value of Hv or Tv .

It is therefore of obvious interest to the engineer to know to what extent
visual observations resemble estimates obtained from instrument measurements.
To that end, one can carry out an experiment in which waves are visually esti-
mated and simultaneously measured with instruments. The results of one such
study are shown in Fig. 3.3. The agreement between the visually estimated sig-
nificant wave height (Hv) and the measured significant wave height (H1/3) is rea-
sonable. The relationship can be represented by the best-fit power law for these
data:

H1/3 = 1.67H 0.77
v (in m) (3.4.1)

so that H1/3 ≈ Hv.
In contrast to this, the visually estimated significant wave period does not agree

well with the instrumental measurement. The best-fit power-law relationship in the
same study is

T1/3 = 2.83T 0.44
v (in s) (3.4.2)

so that T1/3 �= Tv (see Fig. 3.3).

Literature:
Battjes (1984).
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3.5 The wave spectrum

3.5.1 Introduction

The aim of describing ocean waves with a spectrum is not so much to describe
in detail one observation of the sea surface (i.e., one time record), but rather to
describe the sea surface as a stochastic process, i.e., to characterise all possible
observations (time records) that could have been made under the conditions of
the actual observation. An observation is thus formally treated3 as one realisation
of a stochastic process (see Appendix A). Here, we base this treatment on the
random-phase/amplitude model, which leads to the wave spectrum, which is the
most important form in which ocean waves are described.4

The basic concept of the wave spectrum is simple, but its many aspects make it
seem rather complicated. To distinguish the essence from these additional aspects,
consider first a wave record, i.e., the surface elevation η(t) at one location as a
function of time, with duration D, obtained at sea with a wave buoy or a wave pole
(see Fig. 3.4).

We can exactly reproduce that record as the sum of a large number of harmonic
wave components (a Fourier series):

η(t) =
N∑

i=1

ai cos(2π fi t + αi ) (3.5.1)

where ai and αi are the amplitude and phase, respectively,5 of each frequency
fi = i/D (i = 1, 2, 3, . . .; the frequency interval is therefore � f = 1/D). With
a Fourier analysis, we can determine the values of the amplitude and phase for
each frequency and this would give us the amplitude and phase spectrum for this
record (see Fig. 3.4). By substituting these computed amplitudes and phases into
Eq. (3.5.1), we exactly reproduce the record.

For most wave records, the phases turn out to have any value between 0 and 2π
without any preference for any one value. Since this is almost always the case in deep

3 The theory is taken from the description of noise (Tukey and Hamming, 1948) with some of the first applications
to ocean waves by Barber and Ursell (1948) and Deacon (1949).

4 For the alternative wavelet description, see the footnote in Appendix C.
5 The Greek alphabet:

Notation Name Notation Name Notation Name Notation Name

A α alpha H η eta N ν nu T τ tau
B β beta � θ theta 
 ξ xi ϒ υ upsilon
� γ gamma I ι iota O o omicron � φ, ϕ phi
� δ delta K κ kappa � π pi X χ chi
E ε epsilon � λ lambda P ρ rho � ψ psi
Z ζ zeta M µ mu � σ sigma ! ω omega
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Figure 3.4 The observed surface elevation and its amplitude and phase spectrum.

water (not for very steep waves), we will ignore the phase spectrum ( just keep this
uniform distribution in mind and apply that knowledge when called for). Then, only
the amplitude spectrum remains to characterise the wave record. If we were to repeat
the experiment, i.e., measure the surface elevation again under statistically identical
conditions (e.g., in an exact copy of the storm in which the first observation was
made), the time record would be different and so would be the amplitude spectrum.
To remove this sample character of the spectrum, we should repeat the experiment
many times (M) and take the average over all these experiments, to find the average
amplitude spectrum:

a i = 1

M

M∑
m=1

a i,m for all frequencies fi (3.5.2)

where a i,m is the value of a i in the experiment with sequence number m. For large
values of M the value of a i converges (approaches a constant value as we increase
M), thus solving the sampling problem. However, it is more meaningful to distribute
the variance of each wave component 1

2a2
i (see Note 3A). There are two reasons for

this. First, the variance is a more relevant (statistical) quantity than the amplitude.
For instance, the sum of the variances of the wave components is equal to the
variance of the sum of the wave components (i.e., the random surface elevation).6

In contrast to this, the sum of the amplitudes is not equal to the amplitude of the sum
(there is no such thing as the amplitude of a random sea-surface elevation). Second,
the linear theory for surface gravity waves (see Chapter 5) shows that the energy of
the waves is proportional to the variance. This implies that, through the variance, a
link is available to such physical properties as wave energy, but also wave-induced
particle velocity and pressure variations. The variance spectrum 1

2a2
i is discrete,

i.e., only the frequencies fi = i/D are present, whereas in fact all frequencies are
present at sea. A first step to resolve this problem would be to distribute the variance

6 Also, the square root of the variance is the standard deviation ση of the surface elevation, which can be seen as
a vertical scale of the wave heights, for instance, the significant wave height Hs ≈ 4ση (see Section 4.2.2).
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1
2a2

i over the frequency interval � f = 1/D, giving a variance density 1
2a2

i/� f at
each frequency (i.e., it is constant within the frequency band � f ). All frequencies
would thus be represented because they have all been assigned a variance density.
The variance is now distributed over all frequencies but its value still ‘jumps’ from
one frequency band to the next (it is discontinuous). This is resolved by letting
the frequency interval � f approach zero (� f → 0). The definition of the variance
density spectrum thus becomes

E( f ) = lim
� f → 0

1

� f
1
2a2 or E( f ) = lim

� f → 0

1

� f
E{ 1

2 a2} (3.5.3)

(in the formal definition, to be treated below, the average 1
2a2

i will be replaced
with the expected value E{ 1

2 a2} and the frequency band need not be the same for
all frequencies). The underscore of a indicates that the amplitude will be treated
as a random variable. This (one-dimensional) frequency spectrum E( f ) has been
introduced here with only a brief explanation using the analysis of a measured time
series and only to give the essence of the concept of the spectrum. It will be treated
more extensively in the next sections.

3.5.2 The random-phase/amplitude model

The basic model for describing the moving surface elevation η(t) is the random-
phase/amplitude model, in which the surface elevation is considered to be the sum
of a large number of harmonic waves, each with a constant amplitude and a phase
randomly chosen for each realisation of the time record (for the concept of random
variables and realisations, see Appendix A7):

η(t) =
N∑

i=1

a i cos(2π fi t + α i ) (3.5.4)

where N is a large number (of frequencies) and the underscores of amplitude a i

and phase α i indicate that these are now random variables (see Fig. 3.5).
The phases and amplitudes, being random variables, are fully characterised with

their respective probability density functions. In this model, the phase at each
frequency fi is uniformly distributed between 0 and 2π (see Fig. 3.6):

p(α i ) = 1

2π
for 0 < α i ≤ 2π (3.5.5)

7 If you are not familiar with these concepts, you should read this appendix.
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Figure 3.5 The summation of many harmonic waves, with constant but randomly
chosen amplitudes and phases, creates a random sea surface.

and the amplitude a i is at each frequency Rayleigh8 distributed (with only one
parameter µ i varying over the frequencies; see Fig. 3.6):9

p(a i ) = π

2

a i

µ2
i

exp

(
−πa2

i

4µ2
i

)
for a i ≥ 0 (3.5.6)

where µ i is the expected value of the amplitude µi = E{a i } (see Appendix A
for the notion of a mean value as an expected value). The exact values of the
frequencies fi in the summation of Eq. (3.5.4) are not important as long as (a)
the frequencies are densely distributed along the frequency axis (i.e., the dif-
ference between two sequential frequencies fi and fi+1 should be small com-
pared with some characteristic wave frequency) and (b) they should be in the
correct range (typically 0.05–1.0 Hz for waves at sea). Since µi = E{a i } is the
only parameter in Eq. (3.5.6), the statistical characteristics of a i are completely
given by this one parameter (per frequency). The function that shows this mean
amplitude along the frequency axis is called the amplitude spectrum E{a i } (see
Fig. 3.6).

For a given amplitude spectrum, a realisation of η(t) can be created with
Eq. (3.5.4) by drawing sample values of the amplitudes a i and phases α i from
their respective probability density functions, at each frequency separately and

8 John William Strutt, Third Baron Rayleigh (1842–1919), was an English physicist whose work on gases (the
discovery of argon) earned him the Nobel prize in 1904. He also worked in the field of acoustics, optics and
wave propagation in fluids.

9 The harmonic component may also be written as η(t) = Ai cos(2π fi t) + Bi sin(2π fi t). In the random-
phase/amplitude model, Ai and Bi would each be Gaussian distributed (with the same mean and standard

deviation). Since from basic trigonometry a i =
√

A2
i + B2

i and αi = arctan(−Bi/Ai ), the amplitude a i is
Rayleigh distributed and the phase αi is uniformly distributed. The distribution of the square of the amplitude,
a2

i (to be considered later), is aχ2-distribution with two degrees of freedom (which is an exponential distribution;
see also the footnote in Appendix C, Section 3).
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Figure 3.6 The random-phase/amplitude model: at every frequency there is one
uniform distribution for the random phase and one Rayleigh distribution for the
random amplitude (characterised by the expected value E{ai}). Top panels: for a
series of frequencies, fi , i = 1, 2, 3, 4, 5 etc. Bottom panel: the expected value of
the amplitude as a function of frequency, i.e., the amplitude spectrum.

independently. A wave record at sea can be seen as one such realisation. For each
new realisation of η(t), the sample values of a i and α i are again randomly drawn
from these probability density functions. It is thus (hypothetically) possible to create
a (large) set of realisations of the sea surface (this is called an ensemble).

Regarding the applicability of the random-phase/amplitude model to real ocean
waves, the following remarks should be made.

� First, the random-phase/amplitude model generates a stationary (Gaussian) process. To
use this approach for conditions at sea, which are never really stationary, a wave record
needs to be divided into segments that are each deemed to be approximately stationary (a
duration of 15–30 min is commonly used for wave records obtained at sea; these may be
overlapping segments). In addition, at sea the wave components are not really independent
from one another (as in the random-phase/amplitude model) because they interact to
some degree. However, if the waves are not too steep and not in very shallow water,
these interactions are weak and they can be ignored, leaving the random-phase/amplitude
model in place as the basic model to describe ocean waves.
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� Second, the random-phase/amplitude model is a summation of wave components at dis-
crete frequencies fi , whereas, in fact, a continuum of frequencies is present at sea. This
aspect is the subject of the next section.

3.5.3 The variance density spectrum

The amplitude spectrum provides enough information to describe the sea-surface
elevation realistically as a stationary, Gaussian process. However, for several rea-
sons (see Section 3.5.1) it is more relevant to present the information in this spectrum
in a different way: consider the variance E{ 1

2 a2
i} rather than the above-introduced

expectation of the amplitude E{a i }. In other words, consider the variance spec-
trum instead of the amplitude spectrum (see Fig. 3.7 and Note 3A). This seems
trivial and also enough to characterise the sea-surface elevation. However, both the
amplitude and the variance spectrum are based on discrete frequencies, whereas
Nature does not select such discrete frequencies. All frequencies are present at sea.
The random-phase/amplitude model needs therefore to be modified. This is done
by distributing the variance E{ 1

2a2
i } over the frequency interval � fi at frequency

fi . The resulting variance density spectrum E∗( fi ) is then10

E∗( fi ) = 1

� fi
E
{

1
2 a2

i

}
for all fi (3.5.7)

and � fi is the interval between the frequencies. This spectrum is defined for all
frequencies, but it still varies discontinuously from one frequency band to the next
(see Fig. 3.7). A continuous version is obtained by having the width of the frequency
band � fi approach zero (see Fig. 3.7):

E( f ) = lim
� f → 0

1

� f
E
{

1
2 a2

}
(3.5.8)

This function E( f ) is called the variance density spectrum.
It is the single most important concept in this book.

The variance density spectrum gives a complete description of the surface elevation
of ocean waves in a statistical sense, provided that the surface elevation can be seen
as a stationary, Gaussian process. This implies that all statistical characteristics
of the wave field can be expressed in terms of this spectrum (this is shown in
Section 3.5.5).

10 Note that the symbols for variance density E∗( . ) and E( . ) are different from the symbol for expected value
E{ . }.
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Figure 3.7 The transformation of the discrete amplitude spectrum of the random-
phase/amplitude model to the continuous variance density spectrum.
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The dimension and S.I. unit of the variance density E( f ) follow directly from
its definition (Eq. 3.5.8): the dimension of the amplitude a is [length] and its S.I.
unit is [m]; the dimension of the frequency band � f is [time]−1 and its S.I. unit is
[s−1], or rather [Hz]. The dimension of E( f ) is therefore [length2/(1/time)] and
its unit is either

[
m2 s

]
or

[
m2/Hz

]
(personally, I prefer the unit [Hz], because it

shows better that frequencies are involved, rather than some time interval).

NOTE 3A The variance of the sea-surface elevation

The variance of the surface elevation η(t) is, by definition, the average of the
squared surface elevation (relative to its mean) η2 (the overbar indicates time-
averaging). For a harmonic wave with amplitude a, the variance is η2 = 1

2 a2.
In the random-phase/amplitude model for random ocean waves, a large number of

harmonic waves is added and the variance of this sum, i.e., the random surface elevation
η(t), is equal to the sum of the individual variances (‘the variance of the sum is the sum
of the variances’):

variance = η2 = E{η2} =
N∑

i=1

E{ 1
2 a2

i } for E{η} = 0

The square root of this variance is the standard deviation ση of the surface elevation,
which can be seen as a vertical scale of the wave heights. For instance, the significant
wave height Hs ≈ 4ση (see Section 4.2.2).

3.5.4 Interpretation of the variance density spectrum

The variance density spectrum was introduced in the previous section by transform-
ing the discrete amplitude spectrum into a continuous distribution of the variance
over frequencies. This spectrum shows how much �var a frequency band � f
contributes to the total variance (see Fig. 3.8):

�var =
∫
� f

E( f )df (3.5.9)

It follows that the total variance η2 (see Note 3A) of the sea-surface elevation is the
sum of the variances of all frequency bands � f , or, for a continuous spectrum,11

total variance = η2 =
∫ ∞

0
E( f )df (3.5.10)

11 Another way of finding the unit of E( f ) is to note that the S.I. unit of the total variance of the sea-surface
elevation is

[
m2

]
. Since the unit along the horizontal axis in Fig. 3.8 (frequency f ) is [Hz], it follows that the

unit along the vertical axis (variance density E( f )) should be
[
m2/Hz

]
to arrive at unit

[
m2

]
for the integral.
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Figure 3.8 The interpretation of the variance density spectrum as the distribution
of the total variance of the sea-surface elevation over frequencies.

Note that, in a random wave field, the contribution of a single frequency to the total
variance is infinitely small, because the spectral bandwidth of a single frequency is
zero: � f → 0 and its contribution �var = E( f )� f → 0. However, the spectrum
of one harmonic wave, i.e., a wave with only one frequency, contains a finite energy.
Its spectrum therefore consists of a delta function at that frequency (infinitely narrow
and infinitely high, with an integral equal to the variance of the harmonic wave, see
Fig. 3.9).

The variance density spectrum E( f ), showing how the variance of the sea-surface
elevation is distributed over the frequencies, is rather difficult to conceive: a sta-
tistical characteristic (variance) is distributed over the frequencies of the harmonic
components that make up the process. It may help if we multiply the spectrum by
ρg. We then obtain the energy density spectrum (see below). This spectrum shows
how the wave energy is distributed over the frequencies, which seems to be easier
to comprehend.

The overall appearance of the waves can be inferred from the shape of the
spectrum: the narrower the spectrum, the more regular the waves are. This is shown
for three different wave conditions in Fig. 3.9. The narrowest spectrum corresponds
to a harmonic wave. As indicated above, the spectrum then degenerates to a delta-
function at one frequency. Distributing the variance over a slightly wider frequency
band gives a slowly modulating harmonic wave because the components involved
differ only slightly in frequencies and therefore get out of phase with one another
only slowly, thus creating a fairly regular wave field. Distributing the wave variance
over a wider frequency band gives a rather chaotic wave field (irregular waves),
because the components in the time record get out of phase with one another rather
quickly.
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Figure 3.9 The (ir)regular character of the waves for three different widths of the
spectrum.

As indicated above, the energy of the waves can be expressed in terms of the
variance of the surface elevation because the energy of a harmonic wave (per unit
horizontal ocean surface area) is equal to the mean-square elevation times the
gravitational acceleration g and the density of water ρ (see the linear theory of
surface gravity waves in Chapter 5), so the total energy (i.e. summed over all
components; per unit horizontal ocean surface area) is

Etotal = ρgη2 (3.5.11)

We can therefore multiply the variance density spectrum Evariance( f ) =
E( f ) by ρg and obtain the energy density spectrum as

Eenergy( f ) = ρgEvariance( f ) (3.5.12)

This close relationship leads to a rather inaccurate use of the word ‘spectrum’. It
refers to both the variance density spectrum and the energy density spectrum.
Very often, the two terms are used indiscriminately, with the context indicat-
ing which of the two is actually meant. Just as the variance density spectrum is
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used to describe the statistical aspects of the waves, so can the energy density
spectrum be used to describe the physical aspects of waves (within the limita-
tions of the stationary, Gaussian model and the linear theory of surface grav-
ity waves). In the above rationale of the spectrum, the wave components are
assumed to be statistically independent. In other words, the wave components
are assumed not to affect one another (they should behave as linear waves).
This is usually quite realistic for wind-generated waves and it greatly simplifies
the interpretation of the spectrum because the behaviour of linear waves is well
understood.

3.5.5 Alternative definitions

The variance density spectrum can be defined in other ways than the one given
above. The differences may relate to (a) the spectral domain or (b) the formal
definition.

The spectral domain

The variance density has been defined in Section 3.5.4 above in terms of frequency
f = 1/T (where T is the period of the harmonic wave), but it can equally well be
formulated in terms of radian frequency ω = 2π/T . The corresponding spectrum
E(ω) is then defined in the same manner as E( f ); the only difference being that
cos(2π ft + α) is replaced with cos(ωt + α). These spectra are obviously related:
E(ω) can be expressed in terms of E( f ) and vice versa, but it must be borne in
mind that the total variance η2 should be conserved in such transformations. In
other words,

η2 =
∫ ∞

0
E(ω)dω =

∫ ∞

0
E( f )df (3.5.13)

which is readily achieved by taking

E(ω)dω = E(f )df (3.5.14)

or

E(ω) = E( f )
df

dω
= E( f )J (3.5.15)
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where J = df/dω is called the Jacobian.12 In this case, that of transforming E( f )
into E(ω), it has the value J = 1/(2π ). Therefore, one must not only transform the
frequencies f into ω, but also transform the density E( f ) into the density E(ω).

Formal definition

The variance density spectrum has been defined above in terms of the random-
phase/amplitude model. An alternative definition of the spectrum, which has exactly
the same interpretation in the sense that it shows the distribution of the total variance
over the frequencies, is based on the Fourier transform of the auto-covariance func-
tion of the sea-surface elevation:

Ẽ( f ) =
∫ ∞

−∞
C(τ )cos(2π f τ )dτ for −∞ ≤ f ≤ ∞ (3.5.16)

where the auto-covariance function C(τ ) is defined as the average product of the
elevations at moments t and t + τ (each relative to its mean; see Appendix A).
For a stationary process, the value of t is not relevant (by definition all statistical
characteristics are then constant in time) and the auto-covariance function depends
only on the time difference τ :

C(τ ) = E{ η(t) η(t + τ )} for E{η(t)} = 0 (3.5.17)

For a stationary wave condition, both Ẽ( f ) and C(τ ) are even functions, i.e.,
Ẽ(− f ) = Ẽ( f ) and C(−τ ) = C(τ ). The variance density spectrum E( f ) is then
defined as

E( f ) = 2Ẽ( f ) for f ≥ 0 (3.5.18)

Since C(τ ) contains all covariances of the joint probability density functions of
η(t) and η(t + τ ) for any t and τ , it provides a complete description of the

12 More generally, transforming one (density) function F(x) into another F(y), where y is a function of x , i.e.,
y = f (x), under the condition that the integral is conserved, can be achieved with F(x) = F(y)J , in which J =
dy/dx is the (one-dimensional) Jacobian. This applies to all density functions of which the integral needs to be
conserved in the transformation (i.e., not only spectra but also probability density functions). The transformation
of a two-dimensional density function requires a two-dimensional Jacobian: F(x1, x2) = F(y1, y2) J , where
the Jacobian J is the determinant of the matrix∣∣∣∣∣∣∣∣

∂y1

∂x1

∂y2

∂x1
∂y1

∂x2

∂y2

∂x2

∣∣∣∣∣∣∣∣
which is

J = ∂y1

∂x1

∂y2

∂x2
− ∂y2

∂x1

∂y1

∂x2
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process in a statistical sense (if the process is stationary and Gaussian and its
mean is zero). It has been noted in Section 3.5.3 (without proof) that the vari-
ance density spectrum, too, provides such a complete description. This state-
ment is based on the fact that the Fourier transform is reversible, so that, from
Eq. (3.5.16): C(τ ) = ∫ ∞

−∞ Ẽ( f ) cos(2π f τ )df . This reversibility implies that the
one function can be expressed in terms of the other without loss of informa-
tion. The variance density spectrum therefore contains the same information as
the auto-covariance function and it describes a stationary, Gaussian process as
completely as the auto-covariance function does. It also follows that the total vari-
ance is η2 = C(0) = ∫ ∞

−∞Ẽ( f )df = ∫ ∞
0 E( f )df , which indicates that the spectrum

E( f ) gives the distribution of the total variance over the frequencies. Note that
these definitions do not require the assumption of independent wave components
(but it is usually quite realistic for wind-generated waves and it greatly simplifies
the interpretation of the spectrum).

This definition of the variance density spectrum, which is based on the auto-
covariance function, is not used very often because the corresponding computations
(first, of the auto-covariance function and then of its Fourier transform) are rather
inefficient compared with the calculation of the amplitudes of Eq. (3.5.8) directly
from a wave record (with a technique called the Fast Fourier Transform, FFT; see
Appendix C).

3.5.6 The frequency–direction spectrum

The above one-dimensional variance density spectrum characterises the stationary,
Gaussian surface elevation as a function of time (at one geographic location). To
describe the actual, three-dimensional, moving waves, the horizontal dimension
has to be added. To that end we expand the random-phase/amplitude model by
considering a harmonic wave that propagates in x,y-space, in direction θ relative
to the positive x-axis (we use ω instead of f for the sake of brevity in the notation):

η(x, y, t) = a cos(ω t − kx cos θ − ky sin θ + α) (3.5.19a)

or

η(x, y, t) = a cos(ωt − kx x − ky y + α) (3.5.19b)

where the wave number k = 2π/L (where L is the wave length of the harmonic
wave), kx = k cos θ , ky = k sin θ and θ is the direction of wave propagation (i.e.,
normal to the wave crest of each individual component). Analogously to the
one-dimensional model, the corresponding three(!)-dimensional random-phase/
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Figure 3.10 The random waves moving in time, i.e., the sum of a large number
of harmonic wave components, travelling across the ocean surface with different
periods, directions, amplitudes and phases (after Pierson et al., 1955).

amplitude model (in x , y and t-space) is the sum of a large number of such propa-
gating harmonic waves (see Fig. 3.10):

η(x, y, t) =
N∑

i=1

M∑
j=1

a i, j cos(ωi t − ki x cos θ j − ki y sin θ j + α i, j ) (3.5.20)

Adding two dimensions to the original one-dimensional random-phase/
amplitude model (dimensions x and y, added to time t , or, equivalently, wave
number k and direction θ , added to frequency ω) would result in two more indices
in the summation of Eq. (3.5.20). However, the index for wave number k is equal
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to the index for frequency ω because frequency and wave number are uniquely
related (through the dispersion relationship of the linear theory for surface grav-
ity waves; see Chapter 5: ω2 = gk tanh(kd), where d is the water depth). Every
wave number k thus corresponds to one frequency ω and vice versa. The seem-
ingly three-dimensional random-phase/amplitude model therefore reduces to a two-
dimensional model in terms of frequency (or wave number) and direction. Each
wave component is therefore indicated in Eq. (3.5.20) with only two indices: i (for
the frequency or wave number) and j (for the direction).

As in the one-dimensional model, every individual wave component in this
two-dimensional model has a random amplitude a i, j (Rayleigh distributed) and a
random phase α i, j (uniformly distributed). Furthermore, analogously to the defi-
nition of the one-dimensional spectrum, the exact values of the frequencies ω i and
the directions θ j are not important as long as their interval is small (e.g. a small
fraction of a characteristic wave period and a small fraction of 360◦, respectively),
the frequencies are in the range of wind-generated waves and the directions cover
the full circle. This two-dimensional random-phase/amplitude model represents
a Gaussian process that is stationary in time and homogeneous in x, y-space: a
spatial pattern of chaotically moving surface elevations, seen as the sum of many
wave components propagating with various amplitudes, phases and frequencies (or
wave lengths) in various directions across the ocean surface. The effect is a realistic
representation of random, short-crested waves (see Fig. 3.10).

By using the same techniques as before, the discrete two-dimensional amplitude
spectrum can be transformed into a continuous two-dimensional variance density
spectrum so that, for all i and j (see Fig. 3.11),

E(ω, θ ) = lim
�ω→ 0

lim
�θ→ 0

1

�ω�θ
E
{

1
2 a2

}
(3.5.21)

or, in terms of frequency f ,

E( f, θ ) = lim
� f → 0

lim
�θ→ 0

1

� f �θ
E
{

1
2 a2

}
(3.5.22)

Obviously (using the proper Jacobian; see Section 3.5.5),

E(ω, θ ) = 1

2π
E( f, θ ) (3.5.23)

The dimension and S.I. unit of E( f, θ ) follow directly from its definition:13 the
dimension of the amplitude a is [length] and its S.I. unit is [m]. The dimension of

13 Phillips (1977) defines a frequency–direction spectrum �0( f, θ ) as �0( f, θ ) = E( f, θ )/ f . This is unusual and
confusing and Phillips (1985) carefully points out the difference between �0( f, θ) and E( f, θ ).
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Figure 3.11 The two-dimensional spectrum of wind-generated waves (shown in
polar co-ordinates).

the frequency band � f is [time]−1 and its S.I. unit is [s−1] or [Hz]. The direction
band �θ is dimensionless but its units are either radians or degrees. The dimen-
sion of E( f, θ) is therefore (from Eq. 3.5.22) [length2/(1/time)] and its unit is
[m2/Hz/radian] or [m2/Hz/degree].

The two-dimensional spectrum E( f, θ ) shows how the variance of η(x, y, t)
is distributed over frequencies and directions just as the one-dimensional fre-
quency spectrum shows how the variance is distributed over frequencies. The
volume of E( f, θ ) is therefore equal to the total variance η2 of the sea-surface
elevation:

η2 =
∫ ∞

0

∫ 2π

0
E( f, θ )dθ df (3.5.24)

The contribution of a spectral bin (� f,�θ ) to the total variance is (see Fig. 3.12
and also Eq. 3.5.9)

�var =
∫
� f

∫
�θ

E( f, θ )dθ df (3.5.25)
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Figure 3.12 The contribution �var of a spectral bin (� f,�θ ) to the total variance
of the waves.

The one-dimensional frequency spectrum E( f ), which does not contain any direc-
tional information, can be obtained from the frequency-direction spectrum E( f, θ )
by removing all directional information by integration over all directions (per
frequency):

E( f ) =
∫ 2π

0
E( f, θ ) dθ (3.5.26)

3.5.7 The spectrum at sea

Suppose that a storm in the Norwegian Sea generates swell travelling south into
the North Sea (see Fig. 3.13). That swell will arrive one or two days later off
the Dutch coast, where it may meet a young sea state being generated by a local
breeze from westerly directions. The spectrum off the Dutch coast will then rep-
resent two wave systems: swell from the north and young wind sea from the
west.

Swell is generally of a much lower frequency than a young wind sea, so in this
case the two wave systems are well separated, both in frequency and in direction.
Moreover, swell is rather regular and long-crested, so its spectrum is narrow (both in
frequency and in direction; see Section 6.4.2 for an explanation of this). In contrast
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Figure 3.13 An interpretation of the wave spectrum off the Dutch coast when a
northerly swell, generated by a storm off the Norwegian coast, meets a locally
generated westerly wind sea.

to this, a young wind sea is irregular and short-crested and its spectrum is therefore
much broader. The spectrum off the Dutch coast will therefore be rather distinctive
in this situation: a narrow, low-frequency spectrum oriented in southerly directions
(the direction of propagation) representing the swell and a much broader spectrum
at higher frequencies oriented towards easterly directions, representing the locally
generated wind sea. The one-dimensional spectrum obtained by integrating this
two-dimensional spectrum over the directions is equally distinctive because the
swell and the local wind sea are well separated in frequency.

3.5.8 Wave-number spectra

In the previous sections, the surface elevation was considered as a spatial, moving
surface, i.e., as a function of space and time: η(x, y, t). It can also be considered
as a function of space alone, i.e., at one moment in time (a ‘frozen’ surface). The
surface elevation can then be a function either of two spatial horizontal co-ordinates;
η(x, y), for instance, in a pair of stereo-photographs (see Fig. 2.2), or of one spatial
(horizontal) co-ordinate only; η(x), for instance in a photograph of the water surface
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seen through the glass side-wall of a wave flume. The description then requires either
a one- or a two-dimensional wave-number spectrum.

The moving, spatial, sea surface η(x, y, t) can also be described without assum-
ing that the dispersion relationship of the linear wave theory is valid (as was done
above). The description then requires a three-dimensional frequency–wave-number
spectrum.

The one-dimensional wave-number spectrum

The rationale of the definition of the one-dimensional wave-number spectrum is
identical to that of the one-dimensional frequency spectrum except that time t is
replaced with the horizontal co-ordinate x and that radian frequency ω is corre-
spondingly replaced with wave number k. The one-dimensional variance density
spectrum in terms of wave number, E(k), is then defined as

E(k) = lim
�k→ 0

1

�k
E
{

1
2 a2

}
(3.5.27)

where�k is the wave-number bandwidth. Since frequenciesω and wave numbers k
are related through the dispersion relationship of the linear theory for surface gravity
waves, the wave-number spectrum can be obtained from the frequency spectrum
with

E(k) = E(ω)
dω

dk
(3.5.28)

where dω/dk is the Jacobian needed to transform from radian frequency to wave-
number domain (see Section 3.5.5; note that the value of this Jacobian happens to
be equal to the velocity at which a group of waves propagates, cg = dω/dk; see
Section 5.4.3), so that

E(k) = cg E(ω) (3.5.29)

All characteristics of this one-dimensional wave-number spectrum are identical or
analogous to those of the frequency spectrum, e.g., the total wave variance is given
by

η2 =
∫ ∞

0
E(k)dk (3.5.30)

The two-dimensional wave-number spectrum

The harmonic wave components underlying the spectral description of the frozen
sea surface, in two spatial dimensions x and y, can be written as

η(x, y) = a i, j cos(kx,i x + ky, j y + α i, j ) (3.5.31)



50 Description of ocean waves

and the corresponding two-dimensional wave-number spectrum E(kx , ky) is
defined,14 analogously to the above definitions of the various spectra, as

E(kx , ky) = lim
�kx → 0

lim
�ky→ 0

1

�kx �ky
E{ 1

2 a2} (3.5.32)

where �kx and �ky are the spectral bandwidths. Obviously, kx = k cos θ and ky =
k sin θ , where k =

√
k2

x + k2
y and θ = arctan(ky/kx ), so that an equivalent two-

dimensional spectrum can be defined as

E(k, θ ) = lim
�k→ 0

lim
�θ→ 0

1

�k�θ
E{ 1

2 a2} (3.5.33)

where �k and �θ are the spectral bandwidths. The two spectra are related by

E(k, θ ) = E(kx , ky)J (3.5.34)

where J = k is the Jacobian used to transform the spectrum from the two-
dimensional �k-domain to the two-dimensional k, θ -domain (see footnote in Sec-
tion 3.5.5). The two-dimensional frequency–direction spectrum E(ω, θ ) is obtained
from E(k, θ ), simply with

E(ω, θ ) = E(k, θ )J (3.5.35)

where the Jacobian is J = dk/dω = 1/cg (see above). Similarly, we can find with
c = ω/k that

E(kx , ky) = ccg

ω
E(ω, θ ) (3.5.36)

The one-dimensional wave-number spectrum is obtained from E(k, θ ) by integrat-
ing over all directions:

E(k) =
∫ 2π

0
E(k, θ )dθ (3.5.37)

The three-dimensional frequency–wave-number spectrum

In the previous sections, it was assumed that the dispersion relationship of the lin-
ear wave theory provides a unique relationship between the frequency ω and the
wave number k. The spectra can thus be transformed from wave-number space to
frequency space (and vice versa) and it allows the use of a two-dimensional rather
than a three-dimensional spectrum to represent the moving, three-dimensional sur-
face of ocean waves η(x, y, t). If the dispersion relationship is not assumed a priori

14 The spectrum E(kx , ky ) may also be written as E(�k) = E(kx , ky ), where �k = (kx , ky ) is called the wave-number
vector.



3.5 The wave spectrum 51

(for instance to verify this relationship with observations), then these transforma-
tions cannot be made. The random sea surface should then be seen as the sum of a
large number of propagating harmonic waves for which the frequencies and wave
numbers are independent:

η(x, y, t) =
N∑

i=1

M∑
j=1

P∑
l=1

a i, j,l cos(ω i t − k j x cos θ l − k j y sin θ l + α i, j,l)

(3.5.38)

There are now three indices in this summation: the frequencies in this model have
an index i that is different from the index of the wave number j. By using the same
techniques as before, the three-dimensional variance density spectrum can now be
defined as

E(ω, k, θ) = lim
�ω→ 0

lim
�k→ 0

lim
�θ→ 0

1

�ω�k �θ
E{ 1

2 a2} (3.5.39)

The alternative frequency–wave-number vector spectrum E(ω, kx , ky) = E(ω, �k)
can be transformed to this three-dimensional spectrum E(ω, k, θ ) with the proper
Jacobian (see above) because the relationship between wave-number k and direction
θ on the one hand and wave-number vector �k = (kx , ky) on the other is retained
(see Eq. 3.5.34). The definition of this spectrum E(ω, kx , ky) is based on the same
model as used to define E(ω, k, θ ), with k j cos θl and k j sin θl replaced with kx, j

and ky,l .
If the waves do behave as linear waves, then the spectrum E(ω, kx , ky) collapses

onto a curved plane in the spectral ω, kx , ky-space (the dispersion relationship).
Deviations from the theoretical dispersion relationship (without ambient current)
are then probably due to an ambient current. The current speed and direction can
thus be inferred from observations of E(ω, kx , ky).

3.5.9 Spectrum acquisition

The techniques used to acquire the one- or two-dimensional spectrum are essentially
the following:

measure the sea-surface elevation with in situ or remote-sensing techniques and analyse
the records (see Appendix C), or

predict the spectrum with numerical wave models using wind, tide and seabed-
topography information.

The three-dimensional spectrum is hardly ever acquired since it would involve
measuring the sea surface as a three-dimensional, moving surface (but it is some-
times done e.g., with a stereo- or radar-film, involving techniques described in
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Section 2.4.1). Operational spectral wave models always assume linear waves and
predict the two-dimensional spectrum (usually E( f, θ )). In-situ measurements (e.g.,
with a heave buoy), followed by an appropriate spectral analysis can provide rea-
sonable estimates of the one-dimensional frequency spectrum E ( f ) or E(ω). The
mean direction and the directional spreading per frequency can also be determined
if additionally some spatial characteristics of the waves are measured (e.g., with
a pitch-and-roll buoy; see Section 6.3.4 for the concept of directional spreading).
Remote-sensing and numerical wave models can estimate the full two-dimensional
spectrum, usually the wave-number spectrum E(kx , ky) (remote sensing) or E( f, θ )
(wave models), from which the one-dimensional frequency spectrum E( f ) can
readily be obtained.

3.6 Transfer functions and response spectra

In Section (3.5.5), we considered the transformation of a wave spectrum from
frequency f -space to the radian-frequencyω-space. This involved the simultaneous
transformation of f to ω and of E( f ) to E(ω), using a Jacobian. Such transform-
ations concern the spectrum in various forms, without changing the random variable
considered (the surface elevation). It is also possible to transform the spectrum of
the surface elevation to the spectrum of some other wave variable, for instance, the
wave-induced pressure in some point below the water surface. Such a transformation
is not carried out with a Jacobian but with a transfer function. It requires that
the relationship between the two variables can be treated as a linear system (a
simple analytical expression suffices, but a complicated numerical model may also
constitute a linear system). The word ‘linear’ is crucial here. It means the following:
consider a system that,

on excitation with input x(t), responds with output X(t): x(t) → X (t) and

on excitation with input y(t), responds with output Y(t): y(t) → Y(t)

then the system is called linear, if a linear combination of these excitations gives
the corresponding linear combination of the responses:

ax(t) + by(t) → aX (t) + bY (t) (3.6.1)

It shows that an amplification of the excitation gives an equal amplification of the
response. It also shows that the responses to the excitations are independent: the
response to excitation x(t) is not affected by the response to excitation y(t) and vice
versa. The linear theory for surface gravity waves provides such a linear system.
For instance, in this theory, the relationship between a sinusoidal wave surface
elevation – the excitation x(t) – and the corresponding sinusoidal water pressure at
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some point in the water – the response X(t) – is a simple linear relationship in the
above sense: if the amplitude of the wave is doubled, then the resulting pressure is
doubled, independently of other excitations.

One characteristic of a time-constant, linear system is that, when the excitation
is harmonic, with a given frequency, the response too is harmonic, with the same
frequency:15

x(t) = x̂ sin(2π f t + αx ) → linear system
constant in time → X(t) = X̂ sin(2π f t + αX )

The response X(t) = X̂sin(2π f t + αX ) differs from the excitation x(t) =
x̂ sin(2π f t + αx ) only in amplitude and phase. For a linear system therefore, the
response can be described simply with the ratio of the amplitudes and the phase
differences, which generally depend on the frequency of the excitation:

R̂( f ) = X̂( f )

x̂( f )
amplitude response function (3.6.2)

and

Rα( f ) = αX( f ) − αx( f ) phase response function (3.6.3)

The spectrum of the response EX( f ) is readily obtained as the product of the
excitation spectrum Ex( f ) and the square of the amplitude response function R̂( f )
(the square is used because the spectral density is a measure of the square of the
amplitude):

EX( f ) = [R̂( f )] 2 Ex( f ) response spectrum (3.6.4)

The two functions R̂( f ) and Rα( f ) are called frequency response functions (they
are the amplitude and phase response function, respectively). If the sea-surface
elevation is stationary and Gaussian and the system is constant in time and lin-
ear, then the response too is stationary and Gaussian and as much characterised
by its spectrum EX( f ) as the excitation is characterised by its spectrum Ex( f ).
In the linear theory of surface gravity waves, the response functions are simple
linear analytical relationships, so the above transformation technique can then be
used to transform spectra of one wave characteristic into that of another, e.g., to
transform the surface-elevation spectrum into the spectrum of the wave-induced
pressure.

If the response is direction-sensitive, two-dimensional response functions are
required. For the amplitude this function is defined in the same way as the frequency

15 In the random-phase/amplitude model, I used the cosine representation for the harmonic wave. Here and in
many other places in the book I use the sine representation. This illustrates nicely that it is often immaterial
whether the sine or cosine representation is used.



54 Description of ocean waves

amplitude response function:

R̂( f, θ ) = X̂ ( f, θ )

x̂( f, θ )
amplitude response function (3.6.5)

where R̂( f, θ ) is the two-dimensional frequency–direction amplitude response func-
tion. The amplitudes are the amplitude of the exciting harmonic wave x̂( f, θ) and
the response wave X̂( f, θ ), respectively. The two-dimensional response spectrum
is then readily calculated as

EX( f, θ ) = [R̂( f, θ )]2 Ex( f, θ ) (3.6.6)

This transformation seems obvious because it is totally analogous to the one-
dimensional situation above. The exciting harmonic wave, being an ocean wave,
is readily seen as a wave with a direction of propagation. However, the response
is often not a wave propagating with a certain direction or the response has only
one, fixed direction. For instance, the wave-induced motion of the water particles
normal to a pipeline on the sea floor (exerting the wave-induced force normal to that
pipeline), has a fixed direction by definition. Nonetheless, the amplitude of such a
response (non-directional or fixed-directional) can be defined. It is simply the ampli-
tude of the response when the system is excited by an ocean wave from a certain
direction (even if the response itself has no direction or a fixed direction). In such
cases the computation is carried out in two phases. First, the above two-dimensional
response spectrum EX( f, θ ) is computed, and then the one-dimensional frequency
response spectrum is calculated by integrating over all directions:

EX( f ) =
∫ 2π

0
EX( f, θ )dθ (3.6.7)

The above introduction of response functions and response spectra has been
given in the context of transforming the spectrum of the surface elevation into
that of another wave variable. Such transformations are possible as long as the
relationships involved are linear (in amplitude). The process can be inversed: from
the spectrum of a (sub-surface) wave variable, the spectrum of the surface elevation
can be obtained. This approach is exploited in wave measurements.

The notion of transforming the spectrum of the excitation to obtain the spectrum
of the response is rather general; it applies to any linear system, for instance to
compute stresses in or motions of structures in response to waves or wind. Here
too, if the excitation is stationary and Gaussian, and the system is linear (which is
generally true for small forces and motions) and constant in time, then the response
(force or motion) too is stationary and Gaussian. The required response functions
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can sometimes be computed analytically but they can often also be measured, in
actual structures in the field or in the laboratory. One technique is to excite the
structure with one frequency after another, and measure the amplitude and phase
response for all these frequencies separately. Another technique is to excite the
structure with random waves and to divide the response spectrum by the excitation
spectrum. More advanced techniques account for unrelated effects in such measure-
ments (e.g., instrument errors, also called noise) but these require a more advanced
spectral analysis: a cross-spectral analysis, which falls outside the scope of this
book.
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Statistics

4.1 Key concepts

Short-term statistics
� The theory describing short-term statistical characteristics of wind waves is based on the assumption

that the surface elevation is a stationary, Gaussian process.
� For such a process, Rice (1944, 1945) has given an analytical expression for the mean frequency of

level crossing in terms of the variance density spectrum.
� With this expression it can be shown that, for waves with a narrow spectrum, the crest height and

the wave height are Rayleigh distributed with the zeroth-order moment m0 of the wave spectrum

as the only parameter. Observations have shown that this is also the case for waves with a broader

spectrum.
� The significant wave height is readily estimated from the spectrum as Hm0 = 4

√
m0. This is typically

5%–10% larger than the value of H1/3 estimated directly from measured time series.
� Observations show that, for wind-sea spectra, the significant wave period is typically 5% shorter

than the peak period of the spectrum.
� The maximum individual wave height in a given duration (under stationary conditions) is a random

variable, with a corresponding probability density function that can be estimated from the wave

spectrum and the duration. In most storms, this maximum individual wave height is about twice

the significant wave height.
� The mean length of a wave group, in terms of the number of waves, can be estimated from the

width of the variance density spectrum.

Long-term statistics
� Long-term wave statistics (relating to dozens of years or more) can be obtained from observations or

from computer simulations. Some theoretical support to analyse such observations and simulations

is provided by the extreme-value theory.
� Long-term extreme values of the significant wave height (the probability of exceedance or return

periods) can be estimated with three approaches: the initial-distribution approach, the peak-over-

threshold approach and the annual-maximum approach.
� The long-term distribution of the individual wave height can be obtained from a combination of

short-term and long-term statistics.

4.2 Short-term statistics

In this chapter some statistical characteristics of wind waves are considered on a
short-term and a long-term scale. The short-term characteristics are treated here,
under the assumption that the surface elevation is a stationary, Gaussian process
(see Appendix A). This is usually a reasonable assumption for the duration of a
wave record (typically 15–30 min) but sometimes it is also assumed for the duration
of a storm (typically 6–12 h), which is almost always an over-simplification. The

56
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statistics relate (a) to cumulative effects of the waves, such as the fatigue in struc-
tures, and (b) to extreme values of individual waves, such as occur in survival
conditions that are used in the design of a structure. For these effects, some of
the most relevant quantities are the instantaneous surface elevation, crossings of
the surface elevation through certain levels, the crest heights and wave groups. For
extreme values, relevant quantities are the largest crest height or wave height within
a certain duration (e.g., a storm).

Literature:
Cartwright and Longuet-Higgins (1956), Huang et al. (1990b), Kimura (1981), Longuet-
Higgins (1957, 1975, 1984), Ochi (1998), Price and Bishop (1974), Soares (2003), Srokosz
(1990).

4.2.1 Instantaneous surface elevation

In the linear approximation of ocean waves (the random-phase/amplitude model),
the instantaneous sea-surface elevation as it appears at an arbitrary moment t1
in time η(t) = η(t1), is Gaussian distributed. Assuming the mean to be zero, the
Gaussian probability density function can be written as

p(η) = 1

(2πm0)1/2 exp

(
− η2

2m0

)
for a zero-mean: E{η} = 0 (4.2.1)

where m1/2
0 is the standard deviation σof the surface elevation (see Note 4A).

NOTE 4A The moments of the wave spectrum

When the random sea-surface elevation is treated as a stationary, Gaussian process,
then all its statistical characteristics are determined by the variance density spectrum
E( f ). These characteristics will be expressed in terms of the moments of that spectrum,
which are defined as

mn =
∫ ∞

0
f n E( f )df for n = ...,−3,−2,−1, 0, 1, 2, 3, . . .

The moment mn is called the ‘nth-order moment’ of E( f ). For example, the variance
of the surface elevation η2 is equal to the zeroth-order moment:

variance = E{η2} =
∫ ∞

0
E( f )df = m0 for µη = E{η} = 0

An empirical confirmation that this is true would require obtaining a large set
of wave records at sea under statistically identical conditions (an ensemble; i.e., a
large number of identical storms) to obtain a large number of sample values of η
at time t1 to compare with the Gaussian distribution. This of course is impossible.
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Figure 4.1 Histograms of the observed surface elevation and the corresponding
Gaussian probability density functions. Panel a: steep waves in deep water (sig-
nificant wave height 2.70 m, mean period 5.3 s, steepness 0.06, depth 70 m; data
courtesy of FUGRO-OCEANOR Trondheim, Norway). Panels b1 and b2: high
waves in shallow water (significant wave height 3.55 m, depth 8.8 m, significant
wave height/depth ratio 0.44; after Ochi and Wang, 1984; same observations in
panels b1 and b2). The Gram–Charlier series provides a better fit for the strongly
nonlinear waves in shallow water.

Instead therefore, we consider the surface elevation as a function of time in one, sta-
tionary wave record (assuming that the process is ergodic, i.e., ensemble averages
are equal to time averages, see Appendix A). The values of the surface elevation
η(t j ), η(t j+1), η(t j+2), . . . then replace the ensemble values of the surface elevation
η(t1) at time t1. Usually, the agreement between the observed and theoretical prob-
ability density functions thus obtained is good, at least in open sea (deep water),
but high crests are observed slightly more frequently than according to the Gaus-
sian model and deep troughs slightly less frequently. For steep waves or in shallow
water the discrepancies are larger because the waves are more nonlinear. Two such
observations, with a fairly strong nonlinear character, one with rather steep waves,
steepness1 = 0.06, in deep water and one with a relatively large wave height in
shallow water, Hm0 = 0.44d, where d is depth, are compared with the Gaussian
distribution in Fig. 4.1.

1 Steepness is defined here as a characteristic wave height divided by a characteristic wave length:

Hm0/[gT
2
/(2π )], where Hm0 = 4

√
m0 is an estimate of the significant wave height and the wave length is

based on the mean wave period T = m0/m1 (the zeroth- and first-order moments of the spectrum).
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Figure 4.2 The analogy of the difference between a harmonic wave and a real
(Stokes-type) wave (panel a) and the corresponding difference between a Gaus-
sian distribution and the real (observed) probability density function of the sur-
face elevation η at sea (panel b). Note that the axes in panel (b) are rotated 90◦
counter-clockwise relative to the usual orientation (to show η vertically, as in
panel a).

The deviations are due to nonlinear processes that generally make the wave
crests higher and sharper and the wave troughs shallower and flatter. The analogous
differences between a harmonic wave and a nonlinear wave (e.g., a Stokes wave;
see Section 5.6.2) are shown in Fig. 4.2.

It is obvious, because of the sharp and high crests in the nonlinear wave, that the
surface elevation remains longer at the higher levels for the nonlinear wave than for
the harmonic wave (near A in Fig. 4.2). Such a larger fraction of time corresponds
to a larger probability that the surface elevation is located at these higher levels.
This explains why the Gaussian model underestimates the observed high values
of the random surface elevation. In contrast to this, for the large, negative values,
the relatively shallow and flat troughs of the nonlinear wave (near B in Fig. 4.2)
correspond to a smaller fraction of time than for the harmonic wave. Near the mean
of the record (η = 0; near C in Fig. 4.2), the relatively steep slope of the surface
of the real wave reduces the fraction of time of the elevation around the zero level
and hence reduces the probability of occurrence in this interval. The total effect
is a probability density function of the real surface elevation that is skewed to the
negative values (‘leaning’ towards negative values; see Fig. 4.2, panel b) but its
extremes, both positive and negative, are shifted upwards. This skewed character
is also evident on visually inspecting a wave record on paper. It is immediately
obvious (from the steeper crests and flatter troughs) whether the record is oriented
upside-down or not. A probability density function that takes such skewness into
account is Edgeworth’s form of the type-A Gram–Charlier series (Longuet-Higgins,
1963; see Fig. 4.1 panel b2).



60 Statistics

TηTη Tη
η

( )tη

t

level up-crossing

Figure 4.3 The up-crossings of the sea-surface elevation through level η and the
corresponding time intervals Tη in a (statistically) stationary wave record.

Literature:
Cramer (1946), Edgeworth (1908), Longuet-Higgins (1963), Ochi and Wang (1984).

4.2.2 Wave height and period

The statistical characteristics of the wave height, which is probably the most impor-
tant wave parameter for engineers, can be obtained theoretically from the wave
spectrum. The derivation that is shown here is based on an expression due to
Rice (1944, 1945, 1954), for the average time interval between level crossings in
a stationary Gaussian process (see Fig. 4.3 for its application to the sea-surface
elevation). The probability density function of the crest height and wave height can
readily be derived from this expression if the spectrum is narrow.

Literature:
Cavanié et al. (1976), Longuet-Higgins (1952, 1983).

Wave period

The integral of the Gaussian probability density function gives the probability that
η(t) is below a certain level η, or the fraction of time that η(t) is below that level.
This fraction of time, by itself, does not give any information as to how often the
surface elevation crosses that level or what the time interval between such crossings
is (see Fig. 4.3).

The average of this time interval (T η between successive up or down crossings
through level η) can readily be expressed in terms of the spectrum as (Rice, 1944,
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1945, 1954)

T η =
√

m0

m2

/
exp

(
− η2

2m0

)
(4.2.2)

where m0 and m2 are the zeroth- and second-order moment (see Note 4A), respec-
tively, of the variance density spectrum E( f ). The mean frequency of these level

crossings f η = T
−1
η is correspondingly

f η =
√

m2

m0
exp

(
− η2

2m0

)
(4.2.3)

A special case is the mean zero-crossing period T 0 (see Section 3.3.3), which can
be obtained from Eq. (4.2.2) with η = 0:

T 0 =
√

m0

m2
(4.2.4)

It is sometimes denoted as T 0 = Tm02 . The reciprocal of this, the mean zero-crossing

frequency f 0 = T
−1
0 , is obviously

f 0 =
√

m2

m0
(4.2.5)

Unfortunately, the value of m2 (and therefore also the estimates of T 0 and f 0 with
Eqs. 4.2.4 and 4.2.5) is sensitive to small errors or variations in the measurement
or analysis technique. For instance, the integration interval used to compute m0

and m2 from the spectrum should strictly range from f = 0 to f = ∞, whereas in
actual practice it is from 0 to some practical upper limit (e.g., the Nyquist frequency;
see Appendix C). Moreover, in the definition of the moments of the spectrum, the
energy density at high frequencies is enhanced, and more so the higher the order
of the moment. This shows that the values of higher-order moments are rather
sensitive to noise in the high-frequency range of the spectrum (where noise is
usually relatively large). Similarly, if the wave record itself is used to estimate T 0

directly (instead of using the moments of the spectrum), the definition says that
all waves in the wave record should be included in the averaging procedure (see
Section 3.3.3). In actual practice, a (low) threshold value is used (typically a few
centimetres), to avoid including non-physical variations near the zero-level of the
wave record (e.g., related to instrument noise). These considerations suggest that T 0

is not always the most reliably estimated characteristic wave period. Another mean
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period is therefore sometimes used, which is less dependent on high-frequency
noise. It is defined as the inverse of the mean frequency of the wave spectrum:

Tm01 = f −1
mean =

(
m1

m0

)−1

(4.2.6)

Yet another characteristic wave period is the significant wave period T1/3 (see
Section 3.3.3). Like the mean period Tm01 , it is less dependent on high-frequency
noise since it depends only on the higher waves. A theoretical expression for T1/3

in terms of the spectrum is available but it is rather complicated and it will not
be treated here (see Kitano et al., 2001). The following relationships are empirical
(i.e., based on observations or computer simulations, e.g., Goda, 1988a). For swell
(or more precisely: waves with a narrow spectrum), T1/3 is practically equal to the
peak period of the spectrum (the inverse of the peak frequency):

T1/3 ≈ Tpeak for swell (4.2.7)

For wind sea, this is not the case, but it has been found empirically (Goda, 1978)
that, if a wind-sea spectrum is unimodal, the average period of the higher waves
T H is somewhat shorter than the inverse of the peak frequency f peak :

TH ≈ 0.95Tpeak for wind sea and H ≥ 1.5H (4.2.8)

where H is the mean wave height. Since the significant wave period T1/3 is taken
from these higher waves:

T1/3 ≈ 0.95Tpeak for wind sea (4.2.9)

Crest height

It seems natural to define crests as maxima in the surface elevation and one might
expect the corresponding heights η

crest
to be always positive; after all, each crest is

a maximum. If the spectrum is narrow, this is certainly true. For such a spectrum,
the derivation of the statistical characteristics of the crest height is relatively simple.
However, if the spectrum is wide, i.e., the waves are irregular, a crest height thus
defined may well be negative (the definition allows local maxima to be counted; see
Fig. 4.4). This difference shows that the width of the spectrum affects the statistics
of crest heights: a narrow spectrum corresponds to positive crest heights only; a
wide spectrum corresponds to positive and negative crest heights (if the definition
allows local maxima to be counted).

For waves with a narrow spectrum, the total number of crests is equal to the
number of up-crossings through the zero level. The number of high crests, i.e.,
those above a positive level η, is equal to the number of up-crossings through that
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Figure 4.4 The exclusively positive crest heights under wave conditions with a
narrow spectrum and the positive and negative crest heights under wave conditions
with a wide spectrum.

level (see Fig. 4.5). For a duration D, the relative number of crests with height
η

crest
> η can then be estimated, from these numbers, as

number of crests with (η
crest

> η) in duration D

total number of crests in duration D
= D/T η

D/T 0
= f η

f 0

(4.2.10)

Interpreting this relative number (fraction) as the probability of η
crest

exceeding

the level η and substituting the expressions for f η and f 0, Eqs. (4.2.3) and (4.2.5),
into the right-hand side of Eq. (4.2.10) gives

Pr{η
crest

>η} = f η
f 0

=

√
m2

m0
exp

(
− η2

2m0

)
√

m2

m0

= exp

(
− η2

2m0

)
(4.2.11)
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Figure 4.5 For waves with a narrow spectrum, the probability of a crest exceeding
a certain level is equal to the relative number of crests above that level.

so the cumulative distribution function Pr{η
crest

<η} = 1 − Pr{η
crest

>η} is

Pη
crest

(η) = Pr{ η
crest

≤ η} = 1 − exp

(
− η2

2m0

)
(4.2.12)

The probability density function of η
crest

is obtained as the derivative of Pη
crest

(η)
(see Appendix A):

pη
crest

(η) = η

m0
exp

(
− η2

2m0

)
(4.2.13)

which is shown in Fig. 4.6 (see Note 4B for the notation in Eqs. 4.2.12 and 4.2.13).
These functions are of the Rayleigh type (i.e., the independent variable η in the
cumulative distribution function occurs to the second power in the exponent). A
Rayleigh distribution has only one parameter, which in this case happens to be the
zeroth-order moment m0 of the variance density spectrum (and not the zeroth-
order moment of the Rayleigh distribution or any other function!), which is equal
to the variance of η(t). Since all statistical characteristics of the crest heights are
determined by this distribution, they can all be expressed in terms of this moment m0

alone (provided that the spectrum is narrow). For instance, the mean and standard
deviation of the crest height for waves with such a narrow spectrum are

µcrest = E{η
crest

} =
√
π

2

√
m0

(4.2.14)

σηcrest =
√

E
{
η2

crest

} − E2{η
crest

} =
√

2 − π

2

√
m0
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Figure 4.6 The Rayleigh probability density function of the crest height ηcrest for
wave conditions with a narrow spectrum.
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Figure 4.7 There is only one maximum crest height between two successive zero
down-crossings, even for waves with a wide spectrum.

For waves with a wide spectrum, i.e., with an irregular appearance of the sea-
surface elevation (see Note 4C for how to quantify the width of the spectrum),
the probability density function is not readily derived. However, if we consider
the maximum crest height per wave η̂

crest
(i.e., the maximum elevation between

two consecutive zero up crossings; see Fig. 4.7; note the ˆ in the notation), then
observations have shown that the distribution function of this maximum is practi-
cally a Rayleigh distribution (at least for values of η̂

crest
that are not too low, e.g.,

η̂
crest

≥ √
m0).
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NOTE 4B The notation in probability functions

The probability functions that we consider here relate to certain random variables,
e.g., the cumulative distribution function of the surface elevation η. This distribution
function gives the probability that the surface elevation η is lower than some given level
η: P(η) = Pr{η<η}. Note that in this notation, the random variable η is underscored
whereas the level η is not (the level under consideration is not a random variable).
Strictly speaking we should make that distinction in the notation of P(η). This function
should therefore be written as Pη (η): the random variable as a subscript and the level as
the argument. However, when the random variable and the level are indicated with the
same symbol (as in this example), the subscript is ignored: Pη(η) → P(η). Sometimes
the random variable is indicated with another symbol than the level. For instance,
the crest height, η

crest
, may or might not exceed a certain level η. In such cases, we

must retain the distinction, hence the notation Pη
crest

(η) for the cumulative distribution
function of η

crest
.

NOTE 4C Spectral width parameters

The probability density functions of the crest height, defined as a maximum in the wave
record, and of the wave height depend on the spectral width, which can be quantified
with a parameter ε defined by Cartwright and Longuet-Higgins (1956) as

ε =
(

1 − m2
2

m0m4

)1/2

For ε → 0 (i.e., a very narrow spectrum, for which m0m4 → m2
2 ), pη

crest
(η) and p(H )

approach the Rayleigh distribution, whereas for ε → 1 (i.e., a very wide spectrum),
the distribution approaches a Gaussian distribution (a very irregular appearance of the
waves with as many positive as negative crest heights). Note that this is a theoretical
result for a spectrum with an arbitrary shape.

The spectrum of ocean waves very often has a tail with a shape given by αg2 f −5

(where α is a constant and g is gravitational acceleration; see Section 6.3.3). The
value of the fourth-order moment m4, which is required to estimate ε, is then domi-
nated by the upper limit of the integration to determine m4 (usually the Nyquist fre-
quency, see Appendix C). This, of course, is undesirable. Moreover, m4 is a high-order
moment of the spectrum and its estimation is therefore rather sensitive to noise in the
spectrum at high frequencies (or the presence of nonlinear effects, which also distort the
high-frequency tail of the spectrum). In actual practice, the value of ε therefore depends
not only on the shape of the spectrum, but also, and to a high degree, on the high-
frequency cut-off, errors and nonlinear distortions in the high-frequency part of the
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spectrum. The parameter ε should therefore be used with great care. An alternative
spectral width parameter ν is given by Longuet-Higgins (1975):

ν =
(

m0m2

m2
1

− 1

)1/2

=
(

T 2
m 02

T 2
m 01

− 1

)1/2

which suffers to a lesser degree from the same problem. Another spectral width param-
eter, due to Battjes and van Vledder (1984), is defined as

κ2 = 1

m2
0

{[∫ ∞

0
E( f )cos

(
2π f

f̄ 0

)
df

]2

+
[∫ ∞

0
E( f )sin

(
2π f

f̄ 0

)
df

]2
}

with f̄ 0 =
√

m2/m0

That this parameter κ represents a spectral width is not so obvious. When the two
integrals are interpreted as weighted surface areas of the spectrum (see illustration
below), it is readily seen that the value of the first integral decreases as the width
of the spectrum increases (the positive lobe of the cosine wave below the spectral
peak dominates the value of this integral). The value of the second integral is zero for
symmetrical spectra (symmetrical around f 0) and deviates further from zero the more
asymmetrical the spectrum.

( )E f

f

0f

0

0

cos 2

sin 2

f

f

f

f

π

π

=

=

( )

( )

The weight functions in the two integrals in the definition of the spectral width/
groupiness parameter κ .

The above spectral-width parameters also control the groupiness character of the waves
(see Section 4.2.3). In this role, κ is superior in several respects to ε and ν (see van
Vledder, 1992).

Literature:
Forristall (2000), Rayleigh (1880).



68 Statistics

2 crestH η≈

crestη
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zero down-crossing

0

narrow spectrum

Figure 4.8 For wave conditions with a narrow spectrum, the wave height H is
approximately equal to twice the crest height.

Wave height

For waves with a narrow spectrum in deep water, the height of the wave is practically
equal to twice the height of the crest: H ≈ 2η

crest
(the appearance of the sea-surface

elevation is fairly regular; see Fig. 4.8). The probability density function of H is
then readily determined from the probability density function of η

crest
with a simple

transformation, using a Jacobian as explained in Section 3.5.5:

p(H ) = pη
crest

(η)
dη crest

dH
(4.2.15)

so that, with Eq. (4.2.13), the probability density function of the wave height H is

p(H ) = ηcrest

m0
exp

(
−η2

crest

2m0

)
dηcrest

dH
(4.2.16)

and with ηcrest = 1
2 H this is

p(H ) = H

4m0
exp

(
− H 2

8m0

)
(4.2.17)

which is also a Rayleigh distribution (see Fig. 4.9). The cumulative distribution
function of H can be obtained by integrating the above probability density function.
It can also be obtained from the cumulative distribution function of η

crest
(Eq.

4.2.12; which is not a density function and the transformation does not require a
Jacobian). Just substituting η

crest
= H /2 into this distribution gives the cumulative
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Figure 4.9 The significant wave height in the Rayleigh probability density function.

distribution function for the individual wave height H :

Pr{H ≤ H} = 1 − exp

(
− H 2

8m0

)
(4.2.18)

All statistical characteristics of H follow from the Rayleigh distribution, e.g.,
the mean and the root-mean-square (rms) value of the wave height are

H = E{H} =
√

2πm0 (4.2.19)

and

Hrms = E{H 2}1/2 =
√

8m0 (4.2.20)

As indicated in Section 3.3.2, the significant wave height is defined as the
mean value of the highest one-third of wave heights. This fraction of the waves
can be identified in the Rayleigh distribution, so the significant wave height can
be determined from that distribution. The wave heights that are involved in this
definition are located in the highest third of the Rayleigh distribution, i.e., where
H > H∗, with H∗ defined by (see Fig. 4.9):2∫ ∞

H∗
p(H )dH = 1

3
(4.2.21)

2 Since H =
√

ln(Q−1)Hrms (where Q = Pr{H > H} from Eqs. 4.2.18 and 4.2.20), it follows that H∗ =√
ln (1/3)−1 Hrms ≈ 1.048Hrms.
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The mean value of these wave heights is by definition the significant wave height.
It can be determined as an expected value, i.e., with the zeroth- and first-order
moments of the highest third of the distribution. We will denote this estimate of
the significant wave height as Hm0 (which is analogous to the notation of the mean
zero-crossing period Tm02 ), to distinguish it from the visually obtained estimate and
that obtained directly from the time record. It is given by

Hm0 = E{H}H≥H∗ =

∫ ∞

H∗
Hp(H )dH∫ ∞

H∗
p(H )dH

(4.2.22)

Substituting Eq. (4.2.21) and the analytical expression for the Rayleigh distribution
gives the following result:

Hm0 = 4.004 . . .
√

m0 (4.2.23)

or, for all practical purposes,

Hm0 ≈ 4
√

m0 deep water (4.2.24)

where m0 is the zeroth-order moment of the variance density spectrum E( f ).

This estimate of the significant wave height
is the second most important concept in this book.

The significant wave height Hm0 can thus be estimated from the spectrum, which in
turn can be obtained from a time series of the sea-surface elevation (see Appendix C)
or from wind information with a numerical wave-prediction model (see Chapters 6
and 8).

Substituting this expression back into the Rayleigh distribution shows that 13.5%
of the wave heights exceed this value. For the Rayleigh distribution, the ratio
between Hm0 and other characteristic wave heights is fixed, for instance:

H = E{H} =
√
π

8
Hm0 (4.2.25)

and

Hrms = 1

2

√
2Hm0 (4.2.26)

Observations have shown that wave heights in deep water are indeed almost
Rayleigh distributed (if the waves are not too steep). This is illustrated in Fig. 4.10
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Figure 4.10 The short-term distribution function of observed individual wave
heights H, normalised with the standard deviation of the surface elevation

√
m0,

from five hurricanes in the Gulf of Mexico (data from Forristall, 1978), with
Rayleigh scales and the suggestion of Longuet-Higgins (1980) that one should
re-scale the Rayleigh distribution for these observations with a factor of 0.925.

with a cumulative distribution of observed wave heights from five hurricanes in the
Gulf of Mexico, plotted with Rayleigh scales.3 The clustering of the observations
around a straight line in Fig. 4.10 shows that these observations are indeed nearly
Rayleigh distributed (i.e., the shape of the observed distribution is close to the shape
of the Rayleigh distribution).

Although these and other observations confirm the applicability of the shape
of the Rayleigh distribution, they show that the waves are somewhat smaller than
those predicted with Hm0 = 4

√
m0. There are several reasons for this. One is that,

in the above theoretical derivation, a narrow spectrum was assumed and it was

3 Plot {−ln[1 − P(x)]}1/2 against x .
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1/3H
H1/3 = Hm0

Hm0

0

2

4

6

8 m

0 2 4 6 8 m

relation between significant wave heights

H1/3 = 0.927 Hm0

Figure 4.11 The significant wave height H1/3 estimated directly with a zero-
crossing analysis from the time records of the waves, compared with the theoretical
estimate Hm0 = 4

√
m0 from the spectrum of each record. Data are from location

K13 in the southern North Sea (53.13◦ N, 03.13◦ E) during December 2003,
courtesy of the Royal Netherlands Meteorological Institute. The best-fit linear
approximation (least-squares fit) is close to the suggestion of Longuet-Higgins
(1980) for the hurricane data of Forristall (1978), see Fig. 4.10.

assumed that H ≈ 2η
crest

, which is not entirely correct. In addition, the surface
elevation is not perfectly Gaussian distributed due to nonlinear processes such as
wave breaking and nonlinear wave–wave interactions. The consequence is that the
significant wave height estimated from a zero-crossing analysis, H1/3, is 5%–10%
lower than the significant wave height estimated from the spectrum with Hm0 =
4
√

m0. Longuet-Higgins (1980) suggests H1/3 = 0.925Hm0 for the observations of
Fig. 4.10. This is in close agreement with the results from other observations (see
Fig. 4.11). Numerical simulations based on a linear superposition of independent
wave components give slightly higher values than these findings from the field
(H1/3 = 0.95Hm0 ; Goda, 1988a). A formulation of the Rayleigh distribution that is
independent of such a discrepancy would be the following self-scaling formulation
(substitute Eq. 4.2.24 into Eq. 4.2.18):

Pr{H < H} = 1 − exp

[
−2

(
H

H1/3

)2
]

(4.2.27)
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Figure 4.12 The probability density function of the wave height in shallow water
according to Battjes and Groenendijk (2000).

The corresponding probability density function can be obtained by differentiating
this cumulative distribution (or by substituting Eq. 4.2.24 into Eq. 4.2.17):

p(H ) = 4H

H 2
1/3

exp

[
−2

(
H

H1/3

)2
]

(4.2.28)

Since the shape of the distribution function is not altered by this substitution, all
relationships between characteristic values of the wave height H are unaffected and
therefore still valid for real ocean waves (to the extent that the Rayleigh distribution
applies).

In shallow water the distribution of the wave height deviates from the distribution
in deep water, due to the effects of nonlinear phenomena, of which the most extreme
example is wave breaking, particularly in the surf zone. Generally accepted theoret-
ical derivations, such as those that lead to the Rayleigh distribution in deep water,
are not available for shallow water. It appears that, in spite of this, the Rayleigh
distribution fits the observations of waves in shallow water reasonably well. How-
ever, a closer inspection reveals that the distribution is affected at the higher values
of the wave heights. This has led Battjes and Groenendijk (2000) to replace the tail
of the Rayleigh distribution with the tail of the more general Weibull distribution
(the Rayleigh distribution is a special case of the Weibull distribution):

Pr{H < H} = 1 − exp

[
−2

(
H

Hch,i

)ki
]

all individual waves in shallow water

(4.2.29)

For wave heights lower than a transition wave height Htr , the index i = 1, the
characteristic wave height is Hch,1 and the power in the exponent is k1 (see Fig. 4.12).
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Figure 4.13 Histograms and fitted distributions (Eqs. 4.2.30 and 4.2.31) of the
observed normalised wave height H/H0 in the surf zone of individual breaking
waves p∗(H/H0) and of all individual waves p(H/H0) (H0 is the offshore rms
wave height). The function p∗(H/H0) is scaled such that

∫ ∞
0 p∗(H/H0)d(H/H0)

equals the probability of breaking (after Thornton and Guza, 1983).

For H > Htr , the index i = 2, the characteristic wave height is Hch,2 and the power
is k2. The values for the powers suggested by Battjes and Groenendijk (2000)
are k1 = 2 (which makes the expression a Rayleigh distribution for H ≤ Htr ) and
k2 = 3.6. The values of the characteristic wave heights follow from the values of
Hrms and the transition wave height Htr , which depend on the zeroth-order moment
of the wave spectrum, the local water depth and the local bottom slope.

Sometimes the probability density function of breaking waves (rather than all
waves) is required, for instance to estimate the dissipation of waves in the surf zone
(see Section 8.4.5). Thornton and Guza (1983) fitted a Rayleigh distribution to
their observation of breaking wave heights (see Fig. 4.13) but found that a Rayleigh
distribution weighted with a function W (H ) fitted these observations better:

p∗
Hbr

(H ) = 2H

H 2
rms

exp

[
−
(

H

Hrms

)2
]
W (H ) for individual breaking waves

in shallow water (4.2.30)

with

W (H ) =
(

Hrms

γ d

)n
{

1 − exp

[
−
(

H

γ d

)2
]}

(4.2.31)

where p∗
Hbr

(H ) is a density function, the surface area of which is the probability of
breaking (not unity; it should therefore not properly be called a probability density
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function; hence the asterisk ∗ in the notation). Thornton and Guza (1983) suggested
γ ≈ 0.42 and n = 4 for their observations.

Literature (including the joint probability density function of wave height and period):
Ahn (2000), Arhan and Ezraty (1978), Baldock et al. (1998), Buccino and Calabrese (2002),
Cai et al. (1992), Forristall (1978, 1984, 2000), Goda (1975, 1988a), Haring et al. (1976),
Hughes and Borgman (1987), Klopman and Stive (1989), Longuet-Higgins (1980), Mendez
et al. (2004), Shum and Melville (1984), Soares (2003), Srokosz and Challenor (1987),
Srokosz (1988), Stansell (2005), Tayfun (1981, 1990, 2004), Thornton and Schaeffer (1978),
Thornton and Guza (1983), Tucker and Pitt (2001), Weggel (1972).

4.2.3 Wave groups

For some engineering problems, the arrival of a series of high waves (a wave group)
is of some importance, for instance, for the stability of a rubble-mound breakwater
or the overtopping of a dyke by waves. A wave group can be defined more precisely
as an uninterrupted sequence of waves with wave heights higher than an arbitrarily
chosen, but usually high, threshold value Hgr . The length of such a wave group is,
by definition, the number of waves ( N ) in the group.

To derive the probability that the length of an arbitrarily chosen wave group is
larger than a value N , imagine a wave group, starting at wave height Hi and ending
at wave height Hj , in a long, (statistically) stationary time series of wave heights:

. . ., H i−1, H i , H i+1, H i+2, . . . , H j−1, H j , H j+1, H j+2, . . .← →
group

The wave group starts at wave height H i because this wave height is larger than
the threshold value Hgr and the preceding wave height is smaller than the threshold
value H gr. The group ends at H j because this wave is still higher than the threshold
value but the following wave height is smaller than that value. In other words, the
wave group starts when H i > Hgr and H i−1 < Hgr and it ends when H j > Hgr

and H j+1 < Hgr .
If j = i , that is, the first wave of the group is also the last wave of the group,

the length of the group is obviously N = 1. This is rather trivial but by definition
this single wave is a group. The probability of this occurring is given by the prob-
ability that H i+1 < Hgr (given that a group has been encountered, i.e., given that
H i > Hgr ):

Pr{ N = 1} = Pr{H i+1 < Hgr | H i > Hgr} (4.2.32)

This is a conditional probability (the probability that H i+1 < Hgr may depend on
the value of H i ). If such dependence does not exist, in other words, the wave
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heights are statistically independent (this is not quite true but I will modify the
results later), it does not matter what the value of H i+1 is and the probability in
Eq. (4.2.32) may be written as

Pr{N = 1} = Pr{H i+1 < Hgr }
= 1 − Q H (4.2.33)

where Q H = Pr{H i+1 ≥ Hgr } and i is the sequence number (in the time series)
of the first wave of the group (remember, this is a probability, given that a group
has been encountered; it does not relate to the probability that a group will be
encountered).

If the second wave is also high, i.e., H i+1 > Hgr , and the next wave is low,
i.e., H i+2 < Hgr , then the length of the group is N = 2. The probability of this
occurring is given (if the wave heights are statistically independent) by

Pr{N = 2} = Pr{H i+1 ≥ H and H i+2 < H}
(4.2.34)= Pr{H i+1 ≥ H} · Pr{H i+2 < H} = Q H (1 − Q H )

In the same way, the probability that the group length N = 3 is given by

Pr{ N = 3} = Pr{ H i+1 ≥ Hgr and H i+2 ≥ Hgr and H i+3 < Hgr }
= Pr{ H i+1 ≥ Hgr } · Pr{H i+2 ≥ Hgr } · Pr{ H i+3 < Hgr }
= Q 2

H (1 − Q H ) (4.2.35)

The probability N = N is similarly given by

Pr{ N = N } = QN−1
H (1 − Q H ) (4.2.36)

These estimates are based on the assumption that the wave heights are statistically
independent. However, wave heights are to some degree correlated. A high wave
is generally followed by another high wave and a low wave generally by another
low wave (i.e., they are not independent). The probability Q H must therefore be
replaced with a probability that involves the effect of the preceding wave height.
This is a conditional probability, which in the present context is the probability that
H i+1 > Hgr , under the condition that the preceding wave height H i > Hgr . The
notation of this conditional probability is Pr{ H i+1 > Hgr|H i > Hgr } = RH . The
probability of the group length being equal to N = N would then be, with the same
rationale as above, but now with this correlation between wave heights taken into
account (compare with Eq. 4.2.36),

Pr{N = N } = RN−1
H (1 − RH ) (4.2.37)
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The mean length of a wave group N , expressed in terms of the number of waves in
the group, is then given by (see Kimura, 1980)

N = lhigh waves = (1 − RH )−1 (4.2.38)

It is likewise possible to define a group of low waves (i.e., a sequence of wave
heights lower than a certain threshold Hgr ). The average length of a group of such
low waves is

l low waves = (
1 − R∗

H

)−1
(4.2.39)

where

R∗
H = Pr{H i+1 < Hgr|H i < Hgr } (4.2.40)

It is remarkable that, for typical wind-sea conditions (with a JONSWAP spectrum,
see Section 6.3.3), the mean distance between two consecutive groups of high
waves, i.e., the length of a group of high waves plus the length of a group of low
waves: l = lhigh waves + l low waves, is approximately seven (for a threshold value Hgr

between the mean wave height H and the significant wave height H1/3). In spite
of the scepticism of some wave researchers, this corresponds nicely to the old
rule-of-thumb: ‘every seventh wave is the highest’ (e.g., Rudyard Kipling, in The
First Jungle Book, quoting the white seal saying that the seventh wave always goes
farthest up the beach; and Henri Charrière in Papillon escaping from Devil’s Island
by jumping off the cliffs into a seventh wave).

Even a casual observation shows that, under conditions with relatively regular
waves (a narrow spectrum), the wave groups are relatively long, whereas under
conditions with irregular waves (a wide spectrum), the wave groups are relatively
short. The groupiness of waves and the probability RH depend therefore on the
width of the spectrum (expressed in terms of the spectral width parameter κ; see
Note 4C).

Literature:
Battjes and van Vledder (1984), Elgar et al. (1984), Ewing (1973), Goda (2000), Johnson
et al. (1978), Kimura (1980), Longuet-Higgins (1984), Rye (1974), Soares (2003), van
Vledder (1992).

4.2.4 Extreme values

For many engineering problems it is important to understand the statistical charac-
teristics of extremes, in particular of the maximum surface elevation η

max
within

a certain duration D (e.g. in a storm; see Fig. 4.14) or the maximum wave height
H max within that duration (we are still considering stationary conditions).
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D
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Figure 4.14 The maximum crest height in a duration D of stationary wave
conditions.

The statistical characteristics of these maxima are fully described by the cumula-
tive distribution functions of these maxima: for the maximum elevation Pη

max
(η)D =

Pr{η
max

<η}D and for the maximum wave height PH max
(H )D = Pr{H max <H}D.

Note that the maximum elevation is equal to the maximum crest height within that
duration. Also, the probability that the surface elevation η itself remains below level
η within duration D is equal to the probability that the maximum elevation remains
below that level, so that

Pr{η
max,crest

< η}D = Pr{η
max

< η}D = Pr{η<η}D (4.2.41)

Extreme elevations

The rationale for arriving at the cumulative distribution function of the maximum
crest height Pr{η

max, crest
<η}D is the following. The probability that an arbitrarily

chosen crest height exceeds a level η in a given sea state (i.e., one arbitrarily chosen
crest height in a stationary sea state) is given by Pr{η

crest
>η}. For the sake of

brevity, I will denote this probability as Qcrest = Pr{η
crest

>η}, which normally
is taken to be a Rayleigh distribution. The probability that this arbitrarily chosen
crest height does not exceed the level η is then 1 − Qcrest. The probability that
two arbitrarily chosen crest heights in the wave record do not exceed the level η is
given by (1 − Qcrest)2 (if the crest heights are statistically independent, which is not
entirely true, but the errors involved are acceptable, see below). For the same reason
and under the same conditions: the probability that all crest heights in duration D
do not exceed the level η is given by

Pr{all η
crest

≤ η}D = (1 − Qcrest)
N (4.2.42)

where N is the total number of crests in duration D. If all crest heights are lower
than the level η, then the maximum crest height and all elevations, including the
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maximum elevation, are lower than this level, so that4

Pr{all η
crest

< η}D = Pr{η
max,crest

< η}D = Pr{all η< η}D

= Pr{η
max

< η}D = Pr{η < η}D = (1 − Qcrest)N

(4.2.43)

The probability that one or more crest heights will be larger than the level η within
duration D is equal to the probability that not all crests heights are lower than level
η (from Eq. 4.2.43):

Pr{η
max,crest

> η}D = 1 − (1 − Qcrest)
N (4.2.44)

(see Note 4D for an approximation). Note that the Gaussian distribution of the
surface elevation η does not appear in this derivation but it is implicit if Qcrest is
taken to be a Rayleigh distribution.

NOTE 4D An approximation for (1 − Qcrest)N

If the number of crests is large (as in any duration of reasonable length, e.g., in a storm)
(N>>1) and the probability of exceedance Qcrest is small (of the order of 1/N ), then
(1 − Qcrest)N ≈ exp(−N Qcrest).

All that remains to be determined to compute the probability in Eq. (4.2.44), for a
given value of Qcrest, is the total number of crests N within duration D. This can
be done by noting that, for a narrow spectrum, the number of crests is equal to the
number of upward or downward zero-crossings, which is determined by the mean
zero-crossing frequency and the duration:

N = f 0 D =
√

m2

m0
D (4.2.45)

The corresponding probability density function of the maximum crest height within
duration D is the derivative of Pr{η

max,crest
< η}:

pη
max,crest

(η) = d(1 − Qcrest)N

dη
(4.2.46)

which is shown in Fig. 4.15. The maximum value of this probability density function
is located at the mode of η

max,crest
(which is interpreted as the most probable value

4 Note that Pr{η ≤ η}D = Pr{all η ≤ η}D �= Pr{ η ≤ η}; the first two give the probability of non-exceedance of
all surface elevations within a duration D (the above distribution), whereas the last gives the probability of non-
exceedance of one arbitrarily chosen surface elevation somewhere within duration D (the Gaussian distribution).
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Figure 4.15 The distribution functions and probability density functions of η
crest

and η
max,crest

.
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Table 4.1. The sensitivity of mod(η
max,crest

) and E{η
max,crest

} to errors in
estimating the number of crests N

N
√

2 ln N

2000 (real value) 3.90 (real value)
2500 (error relative to 2000 = 25%) 3.96 (error relative to 3.90 = 1.5%)
4000 (error relative to 2000 = 100%) 4.07 (error relative to 3.90 = 4.3%)

of the maximum crest height η
max,crest

). It can be shown that this most probable
value is

mod(η
max,crest

) ≈
√

2 ln N
√

m0 (4.2.47)

The expected value (i.e., the mean) of the maximum crest height is slightly higher:

E{η
max,crest

} ≈
(

1 + 0.29

ln N

)√
2 ln N

√
m0 (4.2.48)

Obviously, with more waves in a storm, the values of mod (η
max,crest

) and
E{η

max,crest
} increase but Eqs. (4.2.47) and (4.2.48) show that the increase is only

very slow because of the logarithm and the square root in these expressions. In
other words, these values are rather insensitive to the value of N . An error in
estimating the value of N therefore usually has no serious consequences for esti-
mating mod(η

max,crest
) and E{η

max,crest
} (see Table 4.1). This illustrates that these

results are also rather insensitive to the earlier condition that wave crests should be
statistically independent.

It is generally not wise to use the value of mod( η
max,crest

) to base a design of
a structure at sea on, because the probability that the actually occurring maximum
elevation exceeds mod(η

max,crest
) is considerable; it is equal to 0.63. This implies

that there is a probability of 0.63 that the actual maximum crest height within the
duration will exceed its most probable value (but not by much, since the probability
density function is rather narrow, see Fig. 4.15).

The agreement between observed values and the above theoretical estimate
of the maximum crest height is generally good, as shown in Fig. 4.16, where the
theoretical estimate (Eq. 4.2.48) is compared with measurements as a function of
the number of waves per record (mean values from many wave records).

Literature:
Cartwright and Longuet-Higgins (1956).
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Figure 4.16 Measured and theoretically estimated values of the mean maximum
crest height E{η

max,crest
} in records with N waves (normalised with the stan-

dard deviation
√

m0). These maxima were obtained from very long sequences
constructed by concatenating normalised time series. After Cartwright (1958, his
Fig. 7a).

Extreme wave heights

The cumulative distribution function of the maximum individual wave height within
a duration D can be derived with the same rationale as the above for the maximum
crest height, with the following results:

Pr{H max ≤ H} = (1 − Q H )N (4.2.49)

where Q H = Pr{H > H}. The mode of H max, i.e., the most probable value of
H max, is

mod(H max) ≈ Hm0

√
1

2
ln N (4.2.50)

The probability density function of H max is just as narrow as the probability density
function of η

max,crest
(see Fig. 4.15), so for a given wave record H max ≈ mod(H max)

(see Note 4E). Again, however (as with the most probable crest height), it is gener-
ally not wise to use mod(H max) as the design wave height in engineering practice
because the actually occurring maximum wave height has a probability of 0.63 of
exceeding mod(H max).

An easy rule-of-thumb based on Eq. (4.2.50) is that, in many storms, the maxi-
mum wave height is approximately equal to twice the significant wave height (see
Note 4E):

H max ≈ 2Hs (4.2.51)
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Very occasionally, very high waves occur, much higher than the above theory pre-
dicts. These waves are called ‘freak’ waves or ‘rogue’ waves and their origin is still
a mystery (although some theoretical progress is being made; see Note 4E).

It is important to note that it is assumed in the above that the crest heights and
wave heights are Rayleigh distributed. In water with a limited depth, this is not
always the case and the statistical characters of the waves should be estimated on
the basis of a slightly different distribution (see for instance Eq. 4.2.29), generally
resulting in lower extremes.

Literature:
Borgman (1973), Cartwright and Longuet-Higgins (1956).

NOTE 4E The maximum wave height and freak waves
(or rogue waves)

The fact that the probability density function of H max is narrow is sometimes used to
estimate H max rapidly from the value of the significant wave height Hs (which is often
the wave height predicted by a meteorological centre). If the duration of a storm is 6 h
and the average zero-crossing wave period is about 10 s, then N = 2160 and it follows
from Eq. (4.2.50) that

H max ≈ mod(H max ) = 1.96Hm0 ≈ 2Hs

Since this theoretical estimate of H max is just as insensitive to the value of N as the
theoretical estimate of mod(η

max,crest
), this simple relationship between H max and Hs

is sometimes inverted by engineers to estimate the significant wave height Hs quickly
from a wave record:

Hs ≈ 1

2
H max

They need only look up the maximum wave height in the wave record and presto, they
have estimated Hs! Tall tales, with a statement that ‘the waves were . . . metres high!’
often relate to the maximum wave height, so the significant wave height is often only
half the stated value.

The above estimate of the maximum wave height in a storm of twice the significant
wave height is only an estimate of the most probable maximum. In actual storms,
the value will be somewhat higher or lower, but not by much because the probability
density function of the maximum wave height is rather narrow. The occurrence of a very
large wave height (larger than 2.5 times the significant wave height, say) is therefore
exceptional. If such an exceptionally high wave occurs, one would expect a certain
build-up towards such an event: the wave would probably be preceded by one or two or
perhaps even three other high waves. However, that is not always the case. Sometimes,
an extremely high wave occurs without any such warning. It appears out of nowhere,
seemingly without any relation to the prevailing wave conditions. For a long time, tales
of the sea about such monster waves crashing against ships were regarded as sailors’
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fantasy. However, extensive measurements at sea now available have revealed that at
least some of these tales reflect actual facts. An example of a measurement of such a
wave, with a crest height of 18.5 m when the significant wave height was ‘only’ 12 m,
is given below.
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A freak wave measured (by laser altimeter) at the Draupner platform in the central
North Sea on 1 January 1995. The crest height and the wave height of this wave
were about 18.5 m and 26 m, respectively, whereas the significant wave height
was ‘only’ about 12 m (courtesy of Statoil Norge AS; see for instance Haver and
Andersen, 2000).

Such waves are called ‘freak’ waves or ‘rogue’ waves. The preceding trough is often
very pronounced and it is sometimes referred to as ‘a hole in the sea’. There is no
consensus as to what exactly a freak wave is. I favour the description of survivors who
have seen one and lived to tell the tale: an exceptionally high, steep breaking wave
with an unusually long crest with an almost vertical front preceded by a deep trough.
It seems to have a fairly stable form and it suddenly appears out of nowhere. This
wave definitely stands out against its background. Here is an eyewitness account of
such a wave: a single wave with a crest height of about 7 m in a situation in which
the significant wave height was about 4 m. It is from Luigi Cavaleri, who operates an
oceanographic observation tower in the Adriatic Sea just south of Venice (and helped
me write this book; see the introduction):

We were on the tower during the night in the middle of a storm with about 4 m significant wave
height. I was fixing an instrument at about 7 metres above the sea level, on a long horizontal
extension of the platform. Suddenly I heard something like a train coming, and, looking in the
dark, I could spot the whitish crest of a wave running against the tower at my height. There was
nothing I could do. The crest passed barely below my feet before exploding against the structure.
When I turned towards the tower, for a couple of seconds I could see only water. My colleagues,
who were watching from an upper deck, were soaked. I was dry.

Focusing of wave energy by a meandering strong current (current refraction; see Section
7.3.5) has been suggested to explain accidents involving large waves in certain areas. A
classical example is the Agulhas Current, off the southern tip of South Africa. However,
energy focusing may lead to exceptionally high sea conditions in a certain area, but not
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necessarily to a single extremely high wave. A more promising and solid approach is
based on theories that explain the instability of the sea surface under certain conditions.
In a random sea we find sequences of larger and smaller waves. It may happen that, in a
sequence of steep and fairly regular waves (a local inhomogeneity), a single large wave
begins to extract energy from its neighbours, growing at their expense. As a matter
of fact, one of the characteristics of a freak wave is that smaller waves and a deep
trough precede the freak wave. This makes freak waves even more dangerous, since
their occurrence surprises the crew of the unhappy ship that encounters such an event.
A crew is generally not able to respond fast enough to avoid considerable damage,
to the point of complete disaster (loss of the ship without trace). After a while, the
wave dies down and returns its energy to its surroundings. Such a development of a
single wave can be modelled numerically in great detail. However, it should be stressed
that the occurrence of a freak wave is governed by statistics. There is no way we can
predict where and when it will happen. At most we can estimate the probability of
its appearance.

Literature:
Atkins (1977), Buckley (1983), Buckley et al. (1984), Draper (1965), Earle (1975), Godden
(1977), Gumbley (1977), Günther and Rosenthal (2002), Haver and Andersen (2000), Janssen
(2003), Lehner et al. (2001), Onorato et al. (2001, 2002, 2004), Osborne et al. (2000), Sand et al.
(1990), Skourup et al. (1997), Stansell (2005).

4.3 Long-term statistics (wave climate)

In the previous sections, the statistical characteristics of the waves were considered
for short-term, stationary conditions, usually for the duration of a wave record and
sometimes for a storm. For long-term statistics, e.g., statistics over durations of
a few dozen years or more, the conditions are not stationary and the problem of
describing waves needs to be approached in an entirely different way. For these
long time scales, it is not feasible to present the waves as a time series of the surface
elevation itself. Instead, each stationary condition (with a duration of 15–30 min,
say) is replaced with its values of the significant wave height, period and mean
wave direction. This gives a long-term sequence of these values with a time interval
of typically 3 h (see Fig. 4.17), which can be analysed to estimate the long-term
statistical characteristics of the waves, for instance to obtain design conditions for
marine structures. Usually the analysis is limited to the significant wave height, in
particular its long-term distribution, and its return period. These long-term statistics
can be estimated at a geographic location from (a) all available observations at that
location (the initial-distribution approach), (b) the maximum value in storms at that
location (the peak-over-threshold approach, or (c) the maximum value per year at
that location (the annual-maximum approach).
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Figure 4.17 The significant wave height Hm0 = 4
√

m0 over a ten-year period
(1980–1989; NODC buoy 46005, position 131◦W, 46◦N, i.e., in the northern
Pacific Ocean 600 km south-west of Seattle, data from the American National
Oceanographic Data Center, downloaded from http://www.nodc.noaa.gov/BUOY/
46005.html). Note the unusually high value in early 1988 and the gaps in other
years. These data, supplemented with the mean zero-crossing period and with the
years 1990–2003, will be used to illustrate various aspects of long-term statistics
in this chapter.

A remarkable difference from the short-term statistics of waves is that there is no
theoretical model for the basic long-term time series (e.g., of the significant wave
height) such as a random-phase/amplitude model or a Gaussian model. However,
long-term series can be analysed and interpreted using results of the extreme-value
theory if certain fundamental conditions are fulfilled. The most important of these
are that the values in the time series must be statistically independent from one
another and they must be identically distributed (abbreviated to i.i.d.), i.e., each
value should be an independent, random sample from one and the same population.
These conditions can pose serious problems for real ocean waves because consec-
utive values in the time series, e.g., of the significant wave height, are usually not
independent (they are correlated, i.e., a large value of the significant wave height is
usually preceded and followed by another high value, at least when the time interval
between the observations is less than a day or so).

To achieve statistical independence one should consider only values that are suf-
ficiently far separated in time. This problem is often ignored, notably in the initial-
distribution approach, to be described next. It can be solved by selecting values at
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large intervals, e.g., one value per storm, as in the peak-over-threshold approach, or
one value per year, as in the annual-maximum approach, both to be described next.
In addition, the values are often not identically distributed, because waves may have
different sources. For instance, swell is generated in distant storms and wind sea is
generated by local winds. For many oceanic locations, therefore, the wave climate
should be separated into a swell climate and a wind-sea climate. Such distinction
(which is also often ignored) might not be sufficient: each of these climates may
have to be split again into two or more climates because swell may originate from
different parts of the ocean, each with its own swell-generating weather patterns.
For instance, swell off the Californian coast is generated in the northern hemisphere
but also in the southern hemisphere with different weather climates. Wind sea may
be generated by hurricanes in an area where the daily weather is dominated by trade
winds, requiring different climate descriptions for the common, daily conditions
and the extreme conditions of the hurricanes. In coastal waters, the situation is even
more complicated, since the physical mechanisms that affect the waves may change
as the significant wave height and period increase, due to the effect of the limited
water depth (possibly imposing a maximum on the significant wave height due to
depth-induced wave breaking). Such a physically imposed upper limit of the wave
heights might not be noticeable in observed or numerically simulated wave heights
because these may be too low, but such an upper limit would be very relevant when
extrapolating to extreme conditions.

Literature:
Bauer and Staabs (1998), Castillo (1988), Coles (2001), Dacunha et al. (1984), Ewing
et al. (1979), Goda and Kobune (1990), Goda (1992), Goda et al. (1993), Gorshkov (1986),
Gumbel (1958), Hogben (1988, 1990a, 1990b), Kamphuis (2000), Leadbetter et al. (1983),
Muir and El-Shaarawi (1986), Neu (1984), Peters et al. (1993), Petruaskas and Aagaard
(1970), Repko et al. (2000), Soares (2003), van Vledder et al. (1993), WMO (1998).

4.3.1 The initial-distribution approach

Often, the first step in analysing the long-term time series of the significant wave
height Hs , mean wave period T 0 and mean wave direction θ is to estimate the joint
probability density function p(Hs, T 0, θ ), usually by sorting the observed values
and presenting the results in two-dimensional histograms of Hs and T 0 per direc-
tional sector, �θ . The (actual or relative) number of observations is then presented
(instead of the probability density) in bins of size�Hs,�T 0 (per directional sector,
typically�θ = 30◦ or 45◦). These histograms may be given per season or per month
(accumulated or averaged over a large number of years). By adding the numbers
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Figure 4.18 The histogram of the long-term, joint occurrence of significant wave
height Hm0 = 4

√
m0 and mean wave period T 0 = √

m0/m2 for the years 1980–
2003 for NODC buoy 46005 of Fig. 4.17, representing the long-term joint prob-
ability density function p(Hs, T 0) (the frequency of occurrence is in units of 1 :
100 000). The dashed lines are lines of constant wave steepness 2πHs/(gT

2
0).

over the directional sectors one obtains the histogram for the significant wave height
and period irrespective of direction, representing the joint distribution p(Hs, T 0).

Such a joint distribution is given in Fig. 4.18, which also shows that the observed
wave steepness 2πHs/(gT

2
0) is limited to steepness ≤ 1 : 15 approximately (this

is a universal, physical limitation in deep water, imposed by wave breaking), while
on average, in this example, steepness ≈ 1 : 30 (it generally depends on the mix of
swell and wind sea in the area). By summing the numbers for the mean period in
the histogram for a given significant wave height or the numbers for the significant
wave height for a given mean wave period, one obtains the histogram for either the
significant wave height or the mean period separately, representing the probability
density functions p(Hs) and p(T 0), respectively (see Fig. 4.19).

For many applications, the histograms are adequate because only the statistics
of the sorted values within the range of observed values are needed, e.g., to analyse
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Figure 4.19 The histogram of the significant wave height for the years 1980–2003
for NODC buoy 46005 of Fig. 4.17 (n is the percentage of the total number of
occurrences in the interval �Hs = 0.5 m).

fatigue effects in a structure. However, extreme conditions usually fall outside the
observed range and to estimate these one needs to extrapolate the observations
(typically only for the significant wave height). This is usually done by fitting
some curve through the histogram and extrapolating that curve to the desired low
probability of occurrence. In the absence of any theory, the choice of the curve
is entirely empirical: several candidate distributions (analytical expressions), each
with several free parameters, are chosen, and the values of these parameters are
estimated by fitting the candidate distributions to the data. The distribution that fits
the data best is then used for the extrapolation. To facilitate judging such a fit by eye,
it is convenient to use the cumulative distribution function P(Hs) = Pr{H s ≤ Hs},
rather than the probability density function p(Hs), because, when plotted on paper
with proper scales, the cumulative distribution function will appear as a straight
line around which the data should cluster (if the candidate distribution fits the
data; see for instance Fig. 4.20). Alternatively; objective goodness-of-fit tests are
also available, e.g., the χ2-test, the Kolmogorov–Smirnov test and the Anderson–
Darling test.

The choice of the candidate distributions is rather arbitrary but past experience
helps to limit the choice to only a few. A two-parameter distribution is the most
convenient for a fit by eye, because a straight line on paper has only two free
parameters (i.e., intercept and slope). However, it is obvious that a distribution
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Figure 4.20 The long-term Weibull distribution of the significant wave height, for
the years 1980–2003 for NODC buoy 46005 of Fig. 4.17 (note that more years
are included than in Fig. 4.17; all values below 1.00 m, i.e., 2.3% of the data,
have been removed). The straight line represents the best-fit candidate distribution
(maximum likelihood). The position of the exceptional storm of early 1988 is not
obvious (see Fig. 4.17).

with more free parameters would generally provide a better fit because it has more
degrees of freedom. It is therefore advisable to consider also distributions with
three free parameters. For an objective fit (see below), any number of parameters is
permitted (within reason, and certainly considerably less than the number of data
points). Two distributions that are widely used for the long-term distribution of the
significant wave height are given in Note 4F: the log-normal distribution and the
Weibull distribution.

To fit the candidate distributions to the observations requires that a probability of
non-exceedance be assigned to each observed value. There are two procedures for
this: (a), when the number of observations is large, one ‘bins’ the observations (i.e.,
one determines the numbers of observations falling within certain intervals, i.e.,
the ‘bins’ of a histogram; see Fig. 4.19); or (b), when the number of observations
is small, one assigns a probability to each observation individually. In the bin
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option, the probability of H s,i not exceeding the value Hs,i (the lower limit of bin
number i) is

Pr{H s,i < Hs,i } = ni/N (4.3.1)

where ni is the number of observations lower than Hs,i and N is the total number
of observations.

When the number of observations is small, the intuitive estimate of the probability
per individual observation would be Pr{H s,i < Hs,i } = 1 − i/N (where i is the
ranking number of the observation; ranking the highest observation as i = 1; this

NOTE 4F Long-term distributions for the significant wave height Hs

The log-normal distribution is given by

Pr{H s ≤ Hs} = 1

2π

∫ ln Hs−A
B

−∞
exp

(
−1

2
x2

)
dx

The Weibull distribution (this distribution is called the Weibull distribution for minima,
although it is not used for minima here) is given by

Pr{H s ≤ Hs} =




1 − exp

[
−

(
Hs − A

B

)C
]

for Hs > A and C > 0

0 for Hs ≤ A

The parameter A is a location parameter (the position of the distribution on the Hs-
axis). In the Weibull distribution this parameter also represents the lower limit of the
significant wave height (a permanent minimum background sea). The parameter B (>0)
provides a normalisation (scaling), which determines the width of the distribution. The
parameter C is a shape parameter. For A = 0, the Weibull distribution is called the two-
parameter Weibull distribution. For C = 1, it reduces to an exponential distribution and
for C = 2 to a Rayleigh distribution.

is called the ‘plotting position’). Actually, statisticians tell us that, due to effects of
sample variability of the observed values (slightly different results if the analysis
were repeated with other samples from the same population), the plotting position
depends on the distribution from which the observation is assumed to be taken,
e.g., for the Weibull distribution, Goda (1988b, based on Petruaskas and Aagaard,
1970) recommends for the least-squares fitting technique

Pr{H s,i < Hs,i } = 1 − i − α

N + β
with α = 0.20 + 0.27/

√
C and

β = 0.20 + 0.23/
√

C (4.3.2)

where C is the shape parameter of the distribution (see Note 4F).
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Having thus established the probability values of the observations, one can then
fit the various candidate distributions, subjectively by eye or objectively with a
formal procedure, e.g., with the least-squares technique (i.e., minimise the sum of
the squared differences between the observations and the candidate distribution), a
maximum-likelihood technique (i.e., maximise the probability that the observations
are taken from the candidate distribution), or a moments technique (i.e., compute
the parameters of the candidate distribution such that the lower-order moments or
the L-moments5 of the observed distribution and of the candidate distribution are
equal). The most primitive procedure seems to be the fit by eye: plot the values on
paper with proper scales along the axes and, if the data belong to the distribution
that corresponds to the scales, they should arrange themselves along a straight line
(scatter will always remain because of sample variability). For the distributions con-
sidered in this chapter, such scales are readily constructed (except for the log-normal
distribution) as log or double-log scales, depending on the distribution considered,
e.g., plotting y = ln[−ln(1 − Pr{H s < Hs})] against x = C ln[(Hs − A)/B] gives
a straight line6 for the Weibull distribution (see Fig. 4.20;7 this particular data set is
also well approximated by the log-normal distribution when the seasonal variation
in the significant wave height is removed, except for the high values of Hs , for
which the fit remains poor; see Note 4G). The advantage of a fit by eye is that
the engineer is able to favour the higher values in the data set at his professional
discretion. The alternative, i.e., fitting the distribution with an objective procedure,
is not as objective as it may sound because, without a theoretical basis, the choice
of the technique is still subjective. In any case, an objective fit should always be
inspected by eye to verify that the fit is reasonable, in particular for the high observed
values in which engineers are usually most interested (results may unintentionally
be seriously biased to the low values of the data, of which there are many). Assign-
ing more importance to higher observed values can also be achieved in an objective
fit, by properly weighting these higher values or by ignoring the lower values
(which is called ‘censoring’; see Fig. 4.20 where the low values Hs < 1 m were
removed).

5 Moments that are based on the quantile function (see Appendix A and Pandey et al., 2004).
6 There are several methods by which to represent the data as straight lines. Statisticians and mathematicians tend

to plot the observed values of Hs against the fitted value of Hs (at given values of non-exceedance of the fitted
candidate distribution; for a perfect fit, this would give a straight line). These plots are called quantile–quantile
plots (or, Q–Q plots; see Note 4G). The traditional technique in engineering is different: plot, in one figure, both
the observed and the candidate probabilities along the vertical axis and Hs along the horizontal axis, using log
or double-log scales (see Fig. 4.20). The candidate values always appear as a straight line (due to the scaling),
whereas the observed values will appear as a straight line only in the case of a perfect fit. Such a figure can
be used for estimating by eye the parameters of a two-parameter distribution (from the slope and intercept of a
straight line that is fitted through the observed values).

7 With many thanks to Sofia Caires (see the acknowledgements), who did all the calculations for the long-term
statistics in this book.
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NOTE 4G Seasonal variation removed from the long-term distribution of the
significant wave height (the initial-distribution approach)

The fit of the log-normal distribution to the observations of Fig. 4.20 is given in
the left-hand illustration below. This fit is reasonable for the middle section of the
observed significant wave heights (1.5 m < Hs < 7.5 m, say) but rather poor for the
lower and higher sections. When the seasonal variation is removed from the time series
of Hs (by scaling the values of Hs in the time series with a harmonic component with
a period of 365 days, resulting in the scaled significant wave height H∗

s ), then the fit
of the log-normal distribution improves markedly for most of the observations, but it
is still not good for the high section (ln H∗

s > 1.2):

sH

*ln sH*ln sH
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The long-term, log-normal distribution of the significant wave height (Q–Q plots),
for the years 1980–2003 for NODC buoy 46005 of Fig. 4.17. Left-hand panel: no
seasonal scaling; right-hand panel: seasonally scaled values. The straight lines
represent the best-fit (maximum-likelihood) candidate distributions.

The extrapolation of the long-term distribution provides the probability that
an (unobserved) high value of the significant wave height is exceeded. It does not
indicate when such an event will happen. That of course is unpredictable (in the long-
term), but with some extra information it is possible to determine how often it will
happen. In many engineering design procedures this is expressed in terms of a return
period, i.e., the average time interval between occurrences of an extreme significant
wave height, or, better stated: the average time interval between successive up
crossings of the significant wave height through a chosen level (see Fig. 4.21). This
return period can be estimated from the long-term cumulative distribution function
P(Hs) = Pr{H s ≤ Hs}, if also the average duration of exceedance per event is
known (an event, corresponding to a storm, is defined as a series of consecutive
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Figure 4.21 The up-crossing of the significant wave height through a high level
(observations of Fig. 4.17, supplemented with an artists impression of hindcast
results).

values of Hs that are all above a chosen level, preceded and followed by lower
values; the duration of an event is also known as its ‘persistence’). To obtain this
estimate of the return period, consider a long period of N years during which the
significant wave height crosses the chosen level n times (in the upward direction
only).

The average time interval between these up crossings is, by definition, the return
period RPH s>Hs ≈ N/n years. For estimating the number of these up-crossings n,
we first need to interpret the probability of exceedance Pr{H s > Hs} as the fraction
of time during which H s > Hs . For instance, if the probability of exceedance of the
level 10 m is 0.001 83, then the total duration D during which the significant wave
height exceeds this level of 10 m is D = 16 h per year on average (i.e., averaged over
many years). If the average duration per event (d H s>10 m) is 8 h, then, obviously,
the up crossing through the level of 10 m occurs twice per year (on average). This
frequency of occurrence (number of occurrences per year) is apparently determined
from 0.001 83 × 24 × 365/8 (year −1), when d H s>10 m is expressed in hours. The
return period is the inverse of this frequency, RPH s>10 m = 8/(0.001 83 × 24 ×
365) = 4371 h, about half a year. Expressed analytically:

RPH s>Hs = d H s>Hs

Pr{H s > Hs} × 24 × 365
year

when dH s>Hs is in hours, with the initial-distribution approach
(4.3.3)
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or

RPH s>Hs = d H s>Hs

Pr{H s > Hs} = d H s>Hs

1 − P(Hs)
(unit of d H s>Hs )

initial-distribution approach (4.3.4)

where P(Hs) is the cumulative distribution function: P(Hs) = Pr{H s < Hs}. This
estimation of the return period requires information about d H s>Hs , which can be
obtained only from observed or simulated time series of Hs . Strangely enough,
the return period is sometimes estimated as RPH s>Hs = �tHs/ [1 − P(Hs)], where
�tHs is the time interval between the observations of Hs , typically 3 h, or even
as RPH s>Hs = 1/ [1 − P(Hs)], which implies that d H s>Hs would be unity (the
dimension and unit of this estimate of RPH s>Hs being mysterious because it has the
same dimension and unit as d H s>Hs , which has been replaced by unity). Needless
to say, the return period thus estimated is seriously wrong or even nonsensical.

The return period of calms, i.e., the periods during which H s < Hs , which
is important for activities such as towing an offshore platform to its location of
operation, is estimated similarly:

RPH s<Hs = d H s<Hs

Pr{H s < Hs} = d H s<Hs

P(Hs)
(unit of d H s<Hs )

calms in the initial-distribution approach (4.3.5)

Literature:
Battjes (1972a), Gerson (1975), Goda (1992, 1988b), Graham (1982), Gringorten (1963),
Kuwashima and Hogben (1986), Ochi (1992), Salih et al. (1988), Tucker and Pitt (2001).

4.3.2 The peak-over-threshold approach

The statistics of extreme values of the significant wave height can also be estimated
with another approach than the above. In the peak-over-threshold (POT) approach
considered here, only the maximum value of Hs in each of a large number of storms
is considered (see Fig. 4.22). A storm is defined here as an uninterrupted sequence
of values of Hs all exceeding a certain, fairly high value (threshold value Hs,threshold),
preceded and followed by a lower value.8 The value to be chosen for this threshold
depends very much on the local conditions. For severe climates, a threshold value
of 5 m may be needed, whereas for calm climates, a value of 1 m may be better
suited. The criterion is that a sufficient number of storms (preferably several dozen
or more) can be identified in the long-term time record. For each such storm the
maximum significant wave height is then identified as the highest (i.e., peak) value
in that storm: Hs,peak (the peak over threshold).

8 Sometimes small gaps between such storms are ignored, to avoid breaking up a phenomenon that obviously is
one storm, seen from a meteorological point of view.
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Figure 4.22 A storm between two successive crossings of the significant wave
height through a threshold level.

The extreme-value theory (e.g., Castillo, 1988; Coles, 2001) tells us that the
distribution of the maximum in such a sequence of values above a threshold is
the generalised Pareto distribution (see Note 4H). In other words, the maximum
significant wave height in a storm should be Pareto distributed (under certain con-
ditions, e.g., the values must be independent and identically distributed (i.i.d.) and
the threshold value must be relatively high; see Fig. 4.23).9

This POT approach has two important advantages over the initial-distribution
approach treated in the previous section: (a) if the wave climate contains more
than one distribution due to the occurrence of different physical regimes, selection
of only the high values of the significant wave height tends to concentrate the
analysis on the regime that dominates the (high) extremes; and (b) the storms
are statistically independent events, providing a more solid theoretical base and
simplifying the interpretation of the results of the analysis (e.g., estimating the
sample errors involved).

Once the parameters of the distribution of H s,peak have been determined by
fitting the distribution to the data, an estimate of the return period RPH s,peak

can
be made. This return period is defined in analogy with the return period in the
initial-distribution approach: it is the average time interval between storms during
which H s,peak > Hs,peak. To introduce the estimation of this return period, consider,
in a long-term time series, all storms for which Hs > Hs,threshold (= 4 m, say) and
suppose that the peak value in these storms exceeds the level of 9 m with a probability
of Pr{H s,peak > 9 m}threshold=4 m = 0.005. It then follows that one out of every 200

9 Stated differently: the distribution of the maximum of a large set of independent and identically distributed
(i.i.d.) random variables xi larger than some threshold value xthreshold is a generalised Pareto distribution (GPD),
or, in mathematical terms, the (convergence) theorem is max{x1, . . ., xn|xi > xthreshold} → GPD for n → ∞.
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Figure 4.23 The long-term generalised Pareto distribution of the peak-over-
threshold significant wave height for threshold value A = Hs,threshold = 5 m
(resulting in 24 storms per year on average), for the years 1980–2003 for NODC
buoy 46005 of Fig. 4.17. The straight line represents the best-fit candidate distribu-
tion (maximum likelihood; C = 0 would correspond to an exponential distribution;
the indicated value of C = −0.17, estimated with a standard deviation of 0.04, is
so far from zero that the observed values are probably not taken from such an
exponential distribution). The position of the exceptional storm of early 1988 is
obvious.

storms has such a peak value (a severe storm). Suppose that the average interval
between all storms (defined by Hs > 4 m) is �Tstorm = 16 weeks, then the average
interval between severe storms (i.e., with Hs,peak > 9 m) is 200 × 16 weeks ≈ 60
years. Expressed analytically:

RPH s,peak>Hs,peak = �Tstorm

Pr{H s,peak > Hs,peak}threshold
= �Tstorm

1 − P(Hs,peak)threshold

(units of �Tstorm) the POT approach (4.3.6)

where P(Hs,peak)threshold is the cumulative distribution function: P(Hs,peak)threshold =
Pr{H s,peak < Hs,peak}threshold. One advantage of the POT approach is that it has some
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theoretical basis – the extreme-value theory – and that only storms with the sig-
nificant wave height higher than the threshold value need to be considered (thus
reducing any numerical simulation efforts to these storms only). This approach
therefore seems to be an attractive compromise between, on the one hand, the
initial-distribution approach, in which a very large number of values of the signifi-
cant wave height is used but which has no theoretical basis, and on the other hand, the
annual-maximum approach (to be treated next) which also has the theoretical sup-
port of the extreme-value theory, but for which usually only a small number of
observations is available (equal to the number of years in the long-term time record).

NOTE 4H Long-term distribution for the maximum significant wave height
per storm (the peak-over-threshold approach)

The generalised Pareto distribution is given by

Pr{H s,peak ≤ Hs,peak}threshold = 1 −
(

1 + C
Hs,peak − A

B

)−1/C

for H s,peak ≥ A if C > 0

for A ≤ H s,peak ≤ A − B/C if C < 0

The parameter A is the threshold value A = Hs,threshold. The parameter B (>0) provides
a normalisation (scaling) and the parameter C is a shape parameter. For C → 0, the
distribution reduces to a shifted exponential distribution:

Pr{H s,peak ≤ Hs,peak}threshold = 1 − exp

(
− Hs,peak − A

B

)
for H s,peak > A

Literature:
Caires and Sterl (2003, 2005), Ferreira and Soares (1998), Goda (1992), van Gelder and
Vrijling (1999).

4.3.3 The annual-maximum approach

Occasionally, another approach, the annual-maximum approach, is used. Consider
a population of random values (its distribution is called the parent distribution)
from which a set of samples is arbitrarily drawn. The extreme-value theory tells
us that (a), under fairly general conditions, the distribution of the maximum of that
set is the generalised extreme-value (GEV) distribution;10 and (b), if the parent
distribution is a Weibull or log-normal distribution, the GEV distribution of this

10 The distribution of the maximum of a large set of independent and identically distributed (i.i.d.) random
variables is a generalised extreme-value distribution. Stated in mathematical terms: the convergence theorem
is that max{x1, . . ., xn} → GEV for n → ∞.
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Figure 4.24 The annual maxima in a long-term time record of the significant wave
height (observations as in Fig. 4.17, supplemented with an artist’s impression of
hindcast results).

maximum reduces to a Gumbel distribution11 (e.g., Castillo, 1988; Coles, 2001;
see Note 4I). To use these theoretical findings in a wave-climate analysis, consider
the original population (the parent distribution) to be the significant wave height
over many years and the set of samples to be one year of these significant wave
heights. The maximum of this sample set is then the maximum significant wave
height per year Hs,AM . A time series of N years thus gives N values of Hs,AM

(see Fig. 4.24). Since the parent distribution of the significant wave height is often
close to a Weibull or log-normal distribution (see Section 4.3.2), it follows that
Hs,AM should be (nearly) Gumbel distributed (see Fig. 4.25). The parameters of
this GEV distribution can be estimated from the observed values of Hs,AM with any
of the methods mentioned earlier in Section 4.3.2.

To introduce the estimation of the return period in this approach, consider a
situation in which the probability of Hs,AM exceeding the level of 7.5 m is 0.02.
This exceedance then occurs (on average) twice every hundred samples. Since one
sample corresponds to one year, the exceedance occurs twice in every hundred
years, or once in every fifty years. The return period RPH s,AM>Hs,AM can apparently
be estimated with

RPH s,AM>Hs,AM = 1

Pr{H s,AM > Hs,AM} (year) annual-maximum approach
(4.3.7)

11 Statisticians say that, under these conditions, the Gumbel distribution is the domain of attraction both of the
Weibull and of the log-normal distribution (e.g., Castillo, 1988, p. 120).
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Figure 4.25 The long-term generalised-extreme-value (GEV) distribution of the
annual maximum significant wave height, for the years 1980–2003 for NODC
buoy 46005 of Fig. 4.17. The straight line represents the best-fit candidate distri-
bution (maximum likelihood); C = 0 would correspond to a Gumbel distribution;
the standard deviation of the estimated value of C is 0.12, so the value of C = 0 is
located in the 95% confidence interval of C = −0.17. The position of the excep-
tional storm of early 1988 is obvious: the fitted distribution (i.e., the solid straight
line) suggests that the value of 13.6 m in this storm would occur only once in 70
years (on average), as shown by the vertical dashed line.

or

RPH s,AM>Hs,AM = 1

1 − P(Hs,AM )
(years) annual-maximum approach

(4.3.8)

where P(Hs,AM ) is the cumulative distribution function P(Hs,AM ) =
Pr{H s,AM < Hs,AM}. One advantage of this approach is that basic support
is provided by the extreme-value theory and that only the highest value in a year
needs to be considered (thus reducing any numerical simulation effort to only a few
storms). A serious disadvantage is that generally not enough years of observations
or hindcasts are available to estimate the parameters of the distribution and hence
the return period with reasonable reliability.
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Literature:
Goda et al. (1993), Goda (2000), Mathiesen et al. (1994).

NOTE 4I Long-term distribution for the annual maximum significant wave
height (the annual-maximum approach)

The generalised extreme-value (GEV) distribution is given by

Pr{H s,AM ≤ Hs,AM} = exp

[
−
(

1 + C
Hs,AM − A

B

)−1/C
]

for B > 0

For C < 0, this distribution is also known as the Weibull distribution (for maxima,
with an upper bound Hs,AM ≤ A − B/C), which is usually written as

Pr{H s ≤ Hs} = exp

[
−
(

− Hs − A∗

B∗

)C∗]

with A∗ = A − B∗, B∗ = −B/C and C∗ = −1/C . For C > 0 this distribution is also
known as the Fréchet distribution or Fisher–Tippett II distribution (with a lower bound
Hs,AM ≥ A − B/C). For C → 0 (which is often the case at sea), the distribution reduces
to the Gumbel distribution or Fisher–Tippett I distribution:

Pr{H s,AM ≤ Hs,AM} = exp

[
− exp

(
− Hs,AM − A

B

)]
for B > 0

The parameter A is a location parameter (the position of the distribution on the Hs-axis).
The parameter B provides a normalisation (scaling) and the parameter C is a shape
parameter.

4.3.4 Individual wave height

The long-term distribution of the individual wave height can be determined from
a combination of the short-term statistics and the long-term statistics (the Battjes
method, see Battjes, 1972a, and Tucker and Pitt, 2001). As shown in Section 4.2.2,
the short-term distribution of the individual wave height (in deep water) is usually
a Rayleigh distribution, with only the significant wave height as parameter. In the
long term, the conditions are not stationary and the significant wave height varies
with time. To determine the long-term statistical properties of the individual wave
height we must therefore account for this (random) variation of the significant
wave height.
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Consider a duration D, during which the wave condition is stationary (the short
term). The number of waves NH>Hstationary with a wave height H that is higher than
a certain level H , is then given by

NH>H,stationary = Ntotal · Pr{H > H} (4.3.9)

where the total number of individual waves Ntotal = D/T 0 = D T
−1
0 (in which T 0

is the mean zero-crossing wave period) and the probability that the wave height H is
higher than H is given by the Rayeigh distribution Pr{H > H} = exp[−2(H/Hs)2],
so that

NH>H,stationary = D T
−1
0 exp[−2(H/Hs)2] (4.3.10)

If the wave conditions are not stationary, then the total number of waves during the

duration D can be estimated with the long-term average (expected value) of DT
−1
0

Ntotal,non-stationary =
∫ ∞

0
DT

−1
0 p(T 0)dT 0 (4.3.11)

The total number of waves with a wave height above H under these conditions
NH>H,non-stationar y can be estimated with Eq. (4.3.9) as the average (expected value)
of Ntotal · Pr{H > H} over that duration:

NH>H,non-stationary = E{Ntotal · Pr{H > H}} (4.3.12)

Since Ntotal · Pr{H > H} in this expression depends on the mean zero-crossing
wave period T 0 and on the significant wave height Hs , estimating NH>H,non-stationary

requires the long-term joint probability density function of Hs and T 0 (compare
with Eq. 4.3.10):

NH>H,non-stationary =
∫ ∞

0

∫ ∞

0
D T

−1
0 exp

[−2(H/Hs)2
]
P(Hs, T 0)dHs dT 0

(4.3.13)

The distribution of the individual wave height can then be determined as the relative
number of high waves (from Eqs. 4.3.11 and 4.3.13):

Pr{H > H}non-stationary = NH>H,non-stationary

Ntotal,non-stationary

=

∫ ∞

0

∫ ∞

0
D T

−1
0 exp[−2(H/Hs)2]P(Hs, T 0)dHs dT 0∫ ∞

0
DT

−1
0 p(T 0)dT 0

(4.3.14)
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Figure 4.26 The long-term distribution of the individual wave height computed
with the Battjes method, for the years 1980–2003 for NODC buoy 46005 of Figs.
4.17 and 4.18 (not censored) and plotted with Weibull scales. The straight line
represents the best-fit candidate distribution (least-squares). The value of the shape
parameter C = 0.91, reduces this Weibull distribution to nearly an exponential
distribution (for which C = 1).

The duration itself is immaterial since it appears as a constant in the denominator
and the numerator and this result can be applied to long-term situations:

Pr{H > H}long-term =

∫ ∞

0

∫ ∞

0
T

−1
0 exp[−2(H/Hs)2]P(Hs, T 0)dHs dT 0∫ ∞

0
T

−1
0 p(T 0)dT 0

(4.3.15)

The distribution of the individual wave height H thus obtained from observed joint
distributions P(Hs, T 0) turns out to be very close to a Weibull distribution (see Note
4F and Fig. 4.26) with the value of the shape parameter C ≈ 1 (Battjes, 1972a),
which reduces it to an exponential distribution.
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NOTE 4J Long-term distributions for the individual wave height H

The Weibull distribution (it differs from the one in Note 4F only in that Hs has been
replaced with H ) is given by

Pr{H ≤ H}long-term




= 1 − exp

[
−
(

H − A

B

)C
]

for H > A and C > 0

= 0 for H ≤ A

The parameter A is a location parameter (the position of the distribution on the
H -axis). In the Weibull distribution this parameter also represents the lower limit of
the wave height (a permanent minimum background sea). The parameter B provides a
normalisation (scaling), which determines the width of the distribution. The parameter
C is a shape parameter. For A = 0, the Weibull distribution is called the two-parameter
Weibull distribution. For C = 1, it reduces to an exponential distribution and for C = 2
to a Rayleigh distribution.

To estimate the long-term return period of the individual wave height, we interpret
the probability of exceedance Pr{H > H}long-term as the fraction of waves higher
than H . For instance, if the probability of exceeding the value of 20 m is 10−6, then
one out of 1 000 000 waves is higher than 20 m. The number of waves between
such high waves would therefore be 1 000 000 on average. This number of waves
can be converted to a time interval with the mean wave period that was used in the
analysis, giving the return period RPH>H for the individual wave height:

RPH>H = E{T 0}
Pr{H > H}long-term

(unit of T 0)

long-term return period of individual wave height (4.3.16)

where E{T 0} = ∫ ∞
0 T 0 p(T 0)dT 0 is the long-term average value of the mean zero-

crossing period. Since the value of exceedance of 30 m (!) for the individual wave
height in the data set of Fig. 4.26 is 10−9 (the NODC buoy 46005 in the North
Pacific Ocean) and the average zero-crossing period for this data set is 6.8 s (see
Fig. 4.18), we find with Eq. (4.3.16) that the return period of this extreme individual
wave height is approximately 200 years. Similarly, an individual wave height of
more than 25 m would occur about twice a year. Obviously, the location of this
buoy is a most interesting place for a marine architect or ocean engineer.

Literature:
Battjes (1972a), Tucker and Pitt (2001).
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4.3.5 Wave atlases

Long-term wave statistics are often based on wave observations carried out in
the context of routine observation programmes of government agencies or private
industry, using buoys, wave poles or ocean-looking satellites. Some of these obser-
vations are used only for operational purposes and are never stored, or are stored only
for a short period of time. Other observation programmes are specifically aimed at
acquiring and storing data to provide a basis for estimating long-term wave statistics.
An alternative to these long-term observation programmes is provided by computer
simulations. Such simulations (called ‘hindcasts’; see Chapters 6 and 8) are based
on archived wind fields that are available at national or international meteorological
institutes. These hindcasts can often provide wave information over much longer
periods than observations can, because meteorological (wind) archives are gener-
ally much older than wave archives. Moreover, such hindcast studies can be carried
out within one or two years whereas an equivalent observation programme would
require dozens of years.

The results of the statistical analysis, usually histograms that represent long-
term probability distribution functions (see Fig. 4.18), are sometimes published as
wave atlases. Some cover all the world’s oceans; others cover only selected regions.
Examples of such atlases are the following:

those based on (visual) observations:
– Ocean Wave Statistics (Hogben and Lumb, 1967)
– Global Wave Statistics (Hogben et al., 1985)
– Wind and Wave Climate in the Netherlands Sector of the North Sea between 53◦ and

54◦ North Latitude(Bouws, 1978)
one based on satellite observations:
– Atlas of the Oceans: Wind and Wave Climate (Young and Holland, 1996, 1998),
those based on hindcasts:
– Marine Climatic Atlas of the World (U.S. Navy, 1974 etc.)
– Navy Hindcast Spectral Ocean Wave Model Climatic Atlas: North Atlantic Ocean (US

Navy, 1983),
– Statistical Database of Winds and Waves around Japan (NMRI, 2005),
– European Wave Energy Atlas (WERATLAS, Pontes et al., 1996)
– Statistica delle onde estreme Mare Tirreno (Tosi et al., 1984)
– Medatlas (Stefanakos et al., 2004a, 2004b)
and those based on mixed sources:
– Wind and Wave Climate Atlas of Canada (MacLaren Plansearch Limited, 1991)
– World Wave Atlas (Barstow, 1996)

Occasionally the actual time series of the significant wave height are published on
the Internet (see Fig. 4.17 for an example).
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Linear wave theory (oceanic waters)

5.1 Key concepts

� In this book, oceanic waters are deep waters (such that the waves are unaffected by the seabed)

with straight or gently curving coastlines, without currents or obstacles such as islands, headlands

and breakwaters. In anticipation of the treatment of waves in coastal waters (see Chapter 7), a

limited but constant water depth (i.e., a horizontal bottom) is also considered here.
� The linear theory of surface gravity waves that is considered here applies, strictly speaking, only

to water with idealised physical properties and motions and with gravitation as the only external

force.
� This theory (also known as the Airy wave theory) is based on only two equations: a mass balance

equation and a momentum balance equation. Both can be expressed in terms of an auxiliary

function φ (the velocity potential function). This results in the Laplace and Bernoulli equations.
� For certain (linearised) kinematic boundary conditions, a propagating harmonic wave with constant

and relatively small amplitude is one of the solutions of the Laplace equation. This wave is the basic

component of the random-phase/amplitude model of Chapter 3.

– For this harmonic wave, the Laplace equation provides expressions for the wave-induced motions

of the water particles (velocity and path).

– In combination with a dynamic boundary condition (free-wave condition), the Laplace equation

also provides a relationship between wave period and wave length (the dispersion relationship).

This in turn provides an expression for the propagation speed of the wave (the phase speed),

which in turn provides an expression for the propagation speed of a group of waves (the group

velocity).
� The Bernoulli equation, in linearised form, in combination with the above results of the Laplace

equation, provides expressions for the wave-induced pressure in the water beneath the wave.
� Wave energy and its (horizontal) transport are nonlinear properties of the harmonic wave, which

can be estimated with the above results of the linear wave theory. The propagation speed of wave

energy turns out to be equal to the group velocity.
� Very short waves (wave length shorter than a few centimetres) are affected by surface tension

(capillary waves).
� The linear theory should not be used for steep waves or waves in very shallow water. For these

waves, nonlinear theories are available, such as the Stokes wave theory, cnoidal wave theory and

the stream-function theory.
� The linear and nonlinear wave theories introduced here apply to waves with a constant profile in

water with a constant depth (permanent waves). These are local theories in the sense that they

can be used only to compute local wave characteristics (on the scale of one wave length or period).

Computing the evolution of the waves over time or distance requires additional modelling (see

Chapter 6 for oceanic waters and Chapters 7 and 8 for coastal waters).

106
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5.2 Introduction

As shown in the previous chapters, describing random ocean waves is based on the
notion of summing a large number of independent harmonic waves. Understanding
random waves is correspondingly based on understanding these harmonic waves.
This is possible with the linear theory for surface gravity waves, which describes
in detail such harmonic waves. It is based on only two fundamental equations
and some simple boundary conditions, describing certain kinematic and dynamic
aspects of the waves. When these equations and boundary conditions are linearised,
freely propagating, harmonic waves are solutions of these equations. This linear
character implies that these waves do not affect one another while they travel
together across the water surface, in perfect agreement with the basic assumption
underlying the random-phase/amplitude model for random waves (see Chapter 3).
The main requirement for the linear theory to apply is that the amplitudes of the
waves are small, i.e., small compared with the wave length and small compared with
the water depth. This is the small-amplitude approximation. This linear theory is
also known as the Airy wave theory1 (Airy, 1845) and the harmonic wave involved
is therefore sometimes called the Airy wave. Nonlinear wave theories are briefly
addressed in Section 5.6.

The linear theory of surface gravity waves has been the basic theory for ocean
waves for about 150 years. It is presented in many books; usually with a scientific
or engineering approach against the background of mathematics, physics, oceanog-
raphy, ocean engineering or coastal engineering. The approach here is definitely
that of an engineer. The theory is treated in two parts. The first part relates to waves
in oceanic waters (this chapter), i.e., waters that are deep enough not to affect the
waves, without currents or obstacles such as islands, headlands and breakwaters. In
anticipation of the treatment of waves in coastal waters (Chapter 7), a finite water
depth with a horizontal seabed is also considered.

Literature:
Barber (1969), CEM (2002), Crapper (1984), Dean and Dalrymple (1998), Dingemans
(1997a, 1997b), Goda (2000), Herbich (1990), Kamphuis (2000), Kinsman (1965), Lamb
(1932), Leblond and Mysak (1978), LeMéhauté (1976), Lighthill (1978), Massel (1996),
Mei (1989), Mei et al. (2006), Phillips (1977), Rahman (1995), Sorensen (1993), Stoker
(1957), Svendsen (2006), Tucker and Pitt (2001), Whitham (1974), Wiegel (1964), Young
(1999).

5.3 Basic equations and boundary conditions

To develop the linear theory for surface gravity waves, the water is assumed to be
an ideal fluid with only the Earth’s gravitation inducing the forces that control the
1 George Biddell Airy (1801–1892), was an English professor of mathematics and astronomy. He improved the

theory of the orbital motions of Venus and the Moon. He also studied optics, e.g., astigmatism (the eye defect)
and the rainbow.
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motions of the water particles. Of course, water is not an ideal fluid, but we will
tend to ignore this when applying the results of the theory to real ocean waves.
This usually has no serious consequences (the results of the theory are surprisingly
robust). However, in extreme situations some of the idealisations are violated too
severely and the theory no longer applies (e.g., when waves are steep).

5.3.1 Idealisations of the water and its motions

As an ideal fluid, the water is assumed to be incompressible, to have a constant
density (i.e., constant in space and time) and to have no viscosity. In addition, the
water body must be continuous. The first of these conditions (incompressibility)
seems to be reasonable, since the forces involved are so small that the corresponding
compression of water can be ignored. With respect to the idealisation of constant
density, the horizontal distances over which it normally varies in the ocean or in
coastal waters (due to variations in temperature and salinity; usually over dozens
of kilometres or more) are much larger than the scales at which the linear theory is
applied (usually over a distance of only a few wave lengths; at least with constant
parameters). Locally, the density and viscosity can therefore be considered to be
constant (horizontally). The vertical variations are usually also ignored, but, in river
estuaries, with salt water from the sea moving upriver during an incoming tide,
beneath the fresh water moving downriver, the vertical variations may be relevant.
In such cases the linear theory, as presented here, should be applied only with due
caution. Time variations in density and viscosity are usually so slow that these too
can be ignored. The effect of (viscosity-induced) internal forces is usually negligible
for the wave lengths considered. The condition of continuity of the water seems to
be a strange condition because water is normally quite continuous. However, water
may contain discontinuities in the form of air bubbles. When this happens to any
significant degree, e.g., when waves break, the linear theory does not apply (the
waves would probably be too steep for the linear theory to apply anyway).

The next assumed idealisations relate to the motion of the water particles. Water
particles may neither leave the surface nor penetrate the (fixed) bottom. A porous or
moving bottom is therefore not admissible in the conventional linear wave theory
(as treated here), but it is admissible in other versions of the linear wave theory
(e.g., Dean and Dalrymple, 1984).

The water should be subjected to only one external force: gravitation. Wind-
induced pressure is therefore excluded and wave generation by wind is not part
of the linear wave theory (it will be treated separately in Chapter 6). Excluding
another external force, surface tension, implies that the waves in the linear wave
theory should be longer than a few centimetres, say. However, this force is readily
included in the linear wave theory. Excluding another external force, the Coriolis
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force (acceleration), implies that the waves should be shorter than a few kilometres,
say. The wave length of surface gravity waves is therefore limited to the range of
a few centimetres to a few kilometres. Excluding bottom friction is not a serious
limitation for the linear wave theory because its local effect (the generation of
turbulence) is not transported into the main water body anyway.2 The large-scale
effect of bottom friction (energy dissipation) is treated in Chapter 8.

For the theory to be linear, certain aspects of the wave kinematics (motion)
and wave dynamics ( forces) need to be neglected. For this, it is enough that the
amplitude of the waves is small, relative to the wave length and to the water depth.
Normally the linearisation is introduced after the basic equations have been treated
with the nonlinear terms still in place. This leads to some tedious reading, which
can be avoided by introducing the linearisation much earlier. I have done this so
as to present simpler equations and shorter explanations. For readers who are more
inquisitive, I have given the conventional treatment in Appendix B.

The linear wave theory gives the harmonic wave as its most interesting result. The
corresponding analytical expressions for the particle velocities and wave-induced
pressure in the water are found with an elegant mathematical technique that uses
a rather abstract mathematical concept. It is the velocity potential function, which
is a scalar function representing the particle velocities in the water. The use of this
function requires the motion of the water particles to be irrotational (the particles
may not rotate around their own axis). The concepts of rotation (for fluid motions
also called vorticity) and the velocity potential function are explained in Appendix
B. The assumption that the motion of the water particles is irrotational is reasonable
because, in the present context, vorticity can be generated only by turbulence at the
bottom, and, as indicated above, this turbulence does not penetrate very far into the
main water body. The expressions for particle velocities and wave-induced pressure
are used to find expressions for other wave characteristics, such as phase speed and
wave energy.

5.3.2 Balance equations

As usual in fluid mechanics, we will consider balance equations as the basis for
the linear wave theory. Here, only two are needed: a mass balance equation and
a momentum balance equation. Since the derivation for these equations is nearly
identical, I will give only one general derivation for the balance equation of an

2 Turbulence (in the absence of wave breaking) is continuously generated and dissipated near the bottom by the
wave-induced motion of the water particles (if the water is sufficiently shallow). This turbulence cannot travel
very far from the bottom because the (thin) layer of turbulence near the bottom that the wave-induced velocities
have built up in a quarter of the wave cycle is destroyed in the following quarter of the cycle. It is built up again
during the next quarter of the cycle, when the water motion turns back, but it is destroyed again when the cycle
is completed.
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Figure 5.1 A property µ being transported by the water in the x-direction, through
a volume �x�y�z in a three-dimensional situation.

arbitrary property µ, which we can subsequently interpret as either mass density
or momentum density.

Consider a body of fluid in x, y, z-space (the orthogonal x- and y-axes form the
horizontal plane and the z-axis is directed vertically upwards; see Fig. 5.1). The fluid
transports some arbitrary, conservative property3 through a volume �x �y �z (it
could be a scalar property, such as heat, or a vector property, such as the momentum
of the water itself). The property will be indicated by its density µ (i.e., per unit
volume).

The derivation of the balance equation essentially involves balancing the local
storage of the property µ in volume �x �y �z against the sum of inflow, outflow
and local production over a time interval �t :

storage of µ during time interval �t

= net import of µ during time interval �t

+ local production ofµduringtime interval �t (5.3.1)

The storage term on the left-hand side is equal to the quantity of µ at the end of the
time interval, minus the quantity of µ at the start of the time interval:

storage of µ during time interval �t

= quantity at end of interval − quantity at start of interval

=
(
µ�x�y�z + ∂(µ�x�y�z)

∂t
�t

)
− µ�x�y�z

= ∂µ

∂t
�x �y �z �t (5.3.2)

The first term on the right-hand side of the balance equation Eq. (5.3.1) is the net
import of µ (during interval �t). For the x-direction it is equal to the import in the
x-direction, through the left-hand side of the volume (with surface area = �y �z),

3 A property that can change in quantity only by external factors.
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minus the export in the x-direction, through the right-hand side of the volume.
Assuming that µ is transported with the velocity of the water particles �u =
(ux , uy, uz), the net import in the x-direction, with velocity component ux , can
then be written as

net import ofµ in the x-direction during time interval�t

= import − export

= µux �y �z �t −
(
µux + ∂µ ux

∂x
�x

)
�y �z �t

= −∂µ ux

∂x
�x �y �z �t (5.3.3)

The net imports in the y- and z-directions during interval �t are similarly

net import ofµ in the y-direction during time interval�t

= −∂µ uy

∂y
�x �y �z �t (5.3.4)

net import ofµ in the z-direction during time interval�t

= −∂µ uz

∂z
�x �y �z �t (5.3.5)

The second term on the right-hand side of the balance equation Eq. (5.3.1) is the
local production of µ in the volume, during interval �t :

local production of µ during time interval�t

= S �x �y �z �t (5.3.6)

where S is the production of µ per unit time, per unit volume. Substituting Eqs.
(5.3.2)–(5.3.6) into Eq. (5.3.1) gives

∂µ

∂t
�x �y �z �t = −∂µ ux

∂x
�x �y �z �t − ∂µ uy

∂y
�x �y �z �t

−∂µ uz

∂z
�x �y �z �t + S �x �y �z �t (5.3.7)

Dividing all terms by�x �y �z �t and moving the transport terms to the left-hand
side gives the balance equation for µ per unit volume, per unit time:

∂µ

∂t
+ ∂µ ux

∂x
+ ∂µ uy

∂y
+ ∂µ uz

∂z
= S (5.3.8)

The first term on the left-hand side represents the local rate of change ofµ. The three
following terms represent the effect of transportation and are called the advective
terms (or sometimes convective terms, but convection usually refers to vertical
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transport only, at least in oceanography and meteorology). Lastly, the term on the
right-hand side is called the source term, (or sometimes the sink term when it is
negative). It represents the generation (or dissipation) of µ (per unit volume per
unit time).

Mass balance and continuity equations

If we take the mass density of water as µ = ρ (≈1025kg/m3 for sea water) and
substitute this into Eq. (5.3.8), we obtain the mass balance equation:

∂ρ

∂t
+ ∂ρux

∂x
+ ∂ρuy

∂y
+ ∂ρuz

∂z
= Sρ (5.3.9)

Since we assume the mass density to be constant (i.e., all derivatives of ρ are zero)
and we assume that there is no production of water (i.e., Sρ = 0) this equation
reduces to the following equation, which is known as the continuity equation:

∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0 continuity equation (5.3.10)

The continuity equation is thus derived from the mass balance equation, but mass
or mass density as such has disappeared from the equation. It is a linear equation
in terms of the water particle velocities ux , uy and uz .

Momentum balance

If we want to obtain the momentum balance equation, we take µ as the momentum
density of the water, which by definition is the mass density of water times the
velocity of the water particles (a vector quantity), µ = ρ�u = (ρux , ρuy, ρuz). This
balance equation is therefore a vector equation. When it is written in terms of
components, we need three component equations (one for each component of the
vector). By substituting µ = ρux into Eq. (5.3.8), we find the balance equation for
the x-component:

∂(ρux )

∂t
+ ∂ux (ρux )

∂x
+ ∂uy(ρux )

∂y
+ ∂uz(ρux )

∂z
= Sx (5.3.11)

where Sx is the production of momentum in the x-direction. Such production of
momentum per unit time is by definition a force acting on the volume (i.e., the force
per unit volume). (Remember that the second law of mechanics of Newton4 states

4 Sir Isaac Newton (1642–1727) was an English mathematician and physicist. He studied the refraction of light
by a glass prism and discovered the gravitational force (and much more). It was he, who, as the story goes, upon
seeing an apple fall from a tree, concluded that the motion of the apple and the motion of the Moon are governed
by the same force.



5.3 Equations and boundary conditions 113

Figure 5.2 The horizontal pressure gradient in the water beneath a wave.

that K dt = d(mv), or K = d(mv)/dt , where K is the force, m is the mass and v

is the velocity of the body so that mv is momentum, and, consequently, force is
the rate of change of momentum.) Equation (5.3.11) may therefore also be written
as

∂(ρux )

∂t
+ ∂ux (ρux )

∂x
+ ∂uy(ρux )

∂y
+ ∂uz(ρux )

∂z
= Fx (5.3.12)

where Fx is the body force in the x-direction per unit volume. The advective terms
(the second, third and fourth terms on the left-hand side of Eq. 5.3.12) contain the
velocities in quadratic combinations (nonlinear terms). They should therefore be
removed to make the theory linear, so that the momentum balance equation Eq.
(5.3.12) reduces to the linearised momentum balance equation:5

∂(ρux )

∂t
= Fx (5.3.13)

For the situation considered here, this horizontal force Fx is due solely to the
horizontal pressure gradient ∂p/∂x in the water (see Fig. 5.2). The pressure is due to
gravitation (see Eq. 5.4.33), which conforms to the condition that gravitation should
be the only external force. The total horizontal force on the volume �x �y �z is
equal to the pressure-induced force on the left-hand side of the volume minus the
pressure-induced force on the right-hand side:

p �y �z −
(

p + ∂p

∂x
�x

)
�y �z (5.3.14)

5 In conventional presentations of the linear wave theory, the narrative continues from here while retaining these
nonlinear terms (resulting in an equation that is called the Bernoulli equation for unsteady fluid motion). This
conventional approach, in which these terms are removed at a later stage, is given in Appendix B.
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Per unit volume this is (divide by �x �y �z)

Fx = −∂p

∂x
(5.3.15)

If we take the mass density of water to be constant and substitute this force into the
momentum balance equation, Eq. (5.3.13), the result is

∂ux

∂t
= − 1

ρ

∂p

∂x
momentum balance in the x-direction (5.3.16)

The corresponding momentum balance equations for the y- and z-directions can
likewise be derived, so the linearised momentum balance equations for the x-, y-
and z-directions are, respectively,

∂ux

∂t
= − 1

ρ

∂p

∂x

∂uy

∂t
= − 1

ρ

∂p

∂y

∂uz

∂t
= − 1

ρ

∂p

∂z
− g

linearised momentum balance (5.3.17)
equations for the x-, y- and z-direction

Note that the equation for the z-direction contains the term −g and the other two
equations do not. The reason is obvious: the weight of the volume, ρg �x �y �z,
should be added as an external force in the z-direction (which was defined earlier
as positive upwards so g appears with a minus sign).

5.3.3 Boundary conditions

To find expressions for such aspects as the propagation speed of the wave and the
wave-induced pressure in the water, we must solve the above continuity equation
and momentum balance equations for specific boundary conditions. These boundary
conditions are of a kinematic nature (related to the motions of the water particles)
and of a dynamic nature (related to forces acting on the water particles).

The lateral boundaries i.e., at the up-wave side and down-wave side of the x-
domain, will be controlled by the assumption that the wave is periodic with infinitely
long crests in the y-direction. This reduces the wave to be described by this theory
to a periodic two-dimensional wave (i.e., there exist only variations in the x- and
z-directions; there is no variation in the y-direction). The remaining boundaries to
be considered are the water surface and the bottom.

At the water surface, the kinematic boundary condition is that particles may
not leave the surface. In other words, the velocity of the water particle normal to
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the surface is equal to the speed of the surface in that direction. In the linearised
approach, this is expressed as (for the nonlinear version see Appendix B)

uz = ∂η

∂t
at z = 0 (5.3.18)

where η is the surface elevation, measured vertically upwards from z = 0 (located in
the still-water level; see Fig. 5.2). At the bottom, the kinematic boundary condition
is that particles may not penetrate the (fixed, horizontal) bottom:

uz = 0 at z = −d (5.3.19)

To ensure that the wave is a free wave,6 i.e., subject only to gravity, the (atmospheric)
pressure at the water surface is constant (we will take it to be zero). This is the
dynamic surface boundary condition:

p = 0 at z = 0 (5.3.20)

5.3.4 The velocity potential function

Finding analytical solutions for the above balance equations and boundary con-
ditions seems a daunting task, but mathematicians have found an elegant way to
approach this problem. It requires the use of a rather abstract function, the velocity
potential function φ = φ (x, y, z, t), which is defined as a function of which the
spatial derivatives are equal to the velocities of the water particles:

φ(x, y, z, t) defined such that ux = ∂φ

∂x
, uy = ∂φ

∂y
and uz = ∂φ

∂z

(5.3.21)
but which can exist only if the motion of the water particles is irrotational (see
Appendix B). If this is the case (and it generally is; see Section 5.3.1), we can write
the continuity equation Eq. (5.3.10) in terms of this function φ by substituting the
spatial derivatives of Eq. (5.3.21) into Eq. (5.3.10), giving

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= 0 from the continuity equation (5.3.22)

This equation is called the Laplace equation. Remember that it is derived from the
mass balance equation, but mass or mass density as such has disappeared from the
equation.

6 In contrast to ‘forced’ water waves, which are affected by other external forces; for instance, waves generated
by a corrugated metal sheet moving horizontally in the water surface.
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The kinematic boundary conditions at the surface and at the bottom can also
be expressed in terms of the velocity potential function (just substitute the spatial
derivatives of Eq. 5.3.21 into Eqs. 5.3.18 and 5.3.19):

∂φ

∂z
= ∂η

∂t
at z = 0 (5.3.23)

∂φ

∂z
= 0 at z = −d (5.3.24)

The three momentum balance equations Eq. (5.3.17) can also be expressed in
terms ofφ by substituting the spatial derivatives of Eq. (5.3.21) into these equations.
For the momentum in the x-direction, the result is

∂

∂t

(
∂φ

∂x

)
= − 1

ρ

∂p

∂x
(5.3.25)

Changing the order of differentiation and moving the term on the right-hand side
to the left-hand side allows us to write this equation as

∂

∂x

(
∂φ

∂t

)
+ ∂

∂x

(
p

ρ

)
= 0 → ∂

∂x

(
∂φ

∂t
+ p

ρ

)
= 0 (5.3.26)

We can add a term gz between the brackets without altering the meaning of the
equation because this term would disappear when the derivative in the x-direction is
taken. The other two momentum balance equations can be treated likewise (except
that for the momentum balance in the z-direction the term gz does not disappear on
taking the derivative in the z-direction; it represents gravitation, as in Eq. 5.3.17),
with the result that

∂

∂x

(
∂φ

∂t
+ p

ρ
+ gz

)
= 0

∂

∂y

(
∂φ

∂t
+ p

ρ
+ gz

)
= 0 (5.3.27)

∂

∂z

(
∂φ

∂t
+ p

ρ
+ gz

)
= 0

The sum of terms between brackets appears in all three equations, expressing that
this sum is not a function of x , y or z. It can therefore be only an (arbitrary) function
of time t: f (t), for which we take the simplest possible, f (t) = 0, so that

∂φ

∂t
+ p

ρ
+ gz = 0 from the momentum balance equations (5.3.28)
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Figure 5.3 The (linearised) basic equations and boundary conditions for the linear
wave theory, in terms of the velocity potential.

This is the linearised Bernoulli7 equation for unsteady flow (for the nonlinear
version, see Appendix B)

The dynamic surface boundary condition can, like the kinematic surface bound-
ary condition, also be expressed in terms of the velocity potential. Taking the
linearised Bernoulli equation at the surface z = η (but in the linear approximation
at z = 0), with p = 0 (see Eq. 5.3.20), gives

∂φ

∂t
+ gη = 0 at z = 0 (5.3.29)

(note that we take the surface elevation η into account in the equation, but apply
the boundary condition at z = 0). The above equations and boundary conditions
are summarised in Fig. 5.3.

The Laplace equation and the kinematic boundary conditions will be used in the
following to obtain the solution for the velocity potential and hence all kinematic
aspects of the waves. The momentum balance equations and the dynamic boundary
conditions are not required for this! The linearised Bernoulli equation and the
linearised dynamic boundary condition will subsequently be used, in combination
with the solution for the velocity potential, to obtain the expressions for some
dynamic aspects of the waves.

7 Daniel Bernoulli (1700–1782) was a Swiss scientist (born in the Netherlands) who started his career in medicine
but, shortly after receiving his doctorate, published his first mathematical work applied to fluid dynamics. He won
the Grand Prize of the Paris Academy ten times, for work on tides ( jointly with Euler), magnetism, measuring
time at sea, ocean currents, forces on ships and the pitch and roll of ships. See Kinsman (1965, p. 104) for a
very brief but interesting family history.
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5.4 Propagating harmonic wave

5.4.1 Introduction

One of the analytical solutions of the Laplace equation with the above kinematic
boundary conditions is a long-crested harmonic wave propagating in the positive
x-direction (see Note 5A):8

η (x, t) = a sin(ωt − kx) (5.4.1)

with the following velocity potential function (see textbooks that give more details
on this subject, e.g., Dean and Dalrymple, 1998; Dingemans, 1997a; Kinsman,
1965; Lamb, 1932; Leblond and Mysak, 1978; LeMéhauté, 1976; Lighthill, 1978;
Massel, 1996; Mei, 1989; Mei et al., 2006; Phillips, 1977):

φ = φ̂ cos(ωt − kx) with φ̂ = ωa

k

cosh[k(d + z)]

sinh(kd)
(5.4.2)

This is the first time that the harmonic wave appears in the linear wave the-
ory. Remember that the linear wave theory is based on the small-amplitude
approximation (see Section 5.2), i.e., the amplitude of the wave should be small
compared with the wave length and the water depth (ak 
 2π and a 
 d ,
respectively).

NOTE 5A A propagating harmonic wave

The solution to the Laplace equation shown here is a cylindrical wave with constant
wave height, propagating in the positive x-direction (i.e., a wave without variations
normal to the direction of propagation and therefore having infinitely long crests). We
will take the following sine wave as representing this wave (we might equally well
have chosen a cosine wave; it would have made no difference in the results, except that
everywhere sin is replaced with cos, which implies a 90o phase difference, which is
immaterial here):

η(x, t) = H

2
sin

(
2π

T
t − 2π

L
x

)

where H is the wave height, T is the wave period and L is the wave length (see
illustration below). It is usually more convenient to express the wave in terms of ampli-
tude a = H/2, radian frequency ω = 2π/T and wave number k = 2π/L , so that the

8 In the random-phase/amplitude model, I used the cosine representation for the harmonic wave, but, as I said
earlier, in Section 3.6, it is often immaterial whether the sine or cosine representation is used.
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propagating harmonic wave can be written as

η(x, t) = a sin(ωt − kx)

The sine wave.

That this wave is a propagating wave (in the positive x-direction) is readily
shown as follows. The propagation of a wave is best ‘seen’ by an observer riding
at a crest of the wave. His forward speed, i.e. the speed of a fixed position in the
moving surface profile, is by definition the forward speed of the wave, i.e., where
the phase of the wave remains constant, or, expressed differently, where the time
derivative of the phase ωt − kx is zero:

∂(ωt − kx)

∂t
= 0 or

∂(ωt)

∂t
− ∂(kx)

∂x

dx

dt
= 0 or ω − k

dx

dt
= 0

(5.4.3)

where x is the position of the point with constant phase, so that the forward speed
(called the phase speed for obvious reasons) c = dx/dt , from Eq. (5.4.3), is

c = dx

dt
= ω

k
(5.4.4)

which, of course, is identical to the well-known expression for the propagation
speed of harmonic waves in general, c = L/T .

5.4.2 Kinematics

No dynamic aspects of the wave were considered in the derivation of the velocity
potential function φ of Eq. (5.4.2). It is solely based on the Laplace equation and
the kinematic boundary conditions. This is quite remarkable, since it implies that
all kinematic aspects, i.e., velocities, accelerations etc., can be derived (as will be
shown next) without considering any dynamic aspects, i.e., without the Bernoulli
equation or the dynamic surface boundary condition. The expression for the velocity
potential function φ applies therefore both to free and to forced waves, as long as
the surface wave is the harmonic wave of Eq. (5.4.1).
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Particle velocity

The particle velocities can readily be obtained from the velocity potential φ, just by
using the definition of φ: the spatial derivatives of φ are the velocity components
∂φ/∂x = ux and ∂φ/∂z = uz , so that, from Eq. (5.4.2), the particle velocities are
given by

ux = ωa
cosh[k(d + z])

sinh(kd)
sin(ωt − kx) (5.4.5)

uz = ωa
sinh[k(d + z)]

sinh(kd)
cos(ωt − kx) (5.4.6)

or

ux = ûx sin(ωt − kx) with ûx = ωa
cosh[k(d + z)]

sinh(kd)
(5.4.7)

uz = ûz cos(ωt − kx) with ûz = ωa
sinh[k(d + z)]

sinh(kd)
(5.4.8)

The velocity in the y-direction is zero since the long-crested, harmonic wave is prop-
agating in the (positive) x-direction. These velocities are called ‘orbital velocities’
because they correspond to motion of the particles in closed, circular or elliptical
orbits as shown for deep water in Fig. 5.4. Note that the velocities in the crest of the
wave (η > 0) are always oriented in the down-wave direction of wave propagation
and that the velocities in the trough of the wave (η < 0) are always oriented in the
up-wave direction. This is very noticeable at sea: in the trough of the wave you are
always pulled towards the crest that is approaching you and you are thrown back
by the crest.

In deep water, i.e., when kd → ∞, the expressions for the amplitudes of the
velocity components ûx and ûz (Eqs. 5.4.7 and 5.4.8) reduce to

ûx = ωaekz and ûz = ωaekz deep water (5.4.9)

and the total velocity, i.e., the magnitude u, is independent of time (because ûx = ûz

and always sin2(ωt − kx) + cos2(ωt − kx) = 1 in Eqs. 5.4.7 and 5.4.8):

u =
√

u2
x + u2

z = ωaekz deep water (5.4.10)

These expressions show that, for deep water, the wave-induced velocities decrease
exponentially with the distance to the surface (z < 0 below the still-water surface).
At the surface, where z = 0, the total orbital velocity is

u = ωa deep water, at the surface (5.4.11)
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Figure 5.4 The orbital motion of the water particles under a harmonic wave that
moves from left to right in deep water.

This is a rather natural result, because, if the particles move in circles (see below),
the radius of the circle at the water surface is equal to the amplitude a of the wave.
The particles travel along the circumference of that circle (of lenght 2πa) in the
period T of the wave, so that the (constant) velocity along that circle must be
u = 2πa/T = ωa.

In very shallow water, i.e., when kd → 0, the expressions for the amplitudes of
the velocities reduce to

ûx = ωa

kd
and ûz = ωa

(
1 + z

d

)
very shallow water (5.4.12)

The first of these two expressions shows that, in very shallow water, the amplitude
of the horizontal velocity is constant over the vertical, whereas the second expres-
sion shows that the amplitude of the vertical velocity varies linearly along the
vertical.

Particle path

In general, the path of a particle is obtained by integrating the velocity of the particle
in time. A convenient approximation here is to consider a particle located near an
arbitrarily chosen position (which we will indicate with x, z), and take the velocity
at this location. With local co-ordinates x ′ and z′ (centred on x, z), the integration
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z

x

z = −d

z = −d

wave direction

bottom

intermediate depthdeep water very shallow water

bottom

wave direction wave direction

Figure 5.5 The orbital motion in deep water, intermediate-depth water and very
shallow water.

yields, for the sinusoidal surface wave of Eq. (5.4.1),

x ′ = −a
cosh[k(d + z)]

sinh(kd)
cos(ωt − k x)

(5.4.13)

z′ = a
sinh[k(d + z)]

sinh(kd)
sin(ωt − k x)

Since the horizontal position x ′ varies as a cosine and the vertical position z′ as a
sine, each particle goes through an ellipse:

x ′ 2

A2
+ z′ 2

B2
= 1 (5.4.14)

with horizontal and vertical semi-main axes

A = a
cosh[k(d + z)]

sinh(kd)
(horizontal semi-main axis)

(5.4.15)

B = a
sinh[k(d + z)]

sinh(kd)
(vertical semi-main axes)

In deep water (when kd → ∞), the lengths of the two axes are equal, A = B,
so that the particles move through circles with the radius decreasing exponentially
with the distance to the surface (see Fig. 5.4; z < 0 below the still-water surface):

r = aekz deep water (5.4.16)

In very shallow water (when kd → 0), the lengths of the axes are A = a/(kd)
and B = a(1 + z/d), and the particles move in ellipses growing flatter towards
the bottom, B → 0 as z → −d, with constant horizontal axis A = a/(kd). At the
bottom, the ellipse degenerates into a straight, horizontal line (see Fig. 5.5).

A detailed analysis (not given here) of the motion of the particles at the sur-
face of a finite-amplitude wave shows that the particles crowd together somewhat
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(horizontally) near the crest, whereas in the trough they separate. In other words,
the surface ‘shrinks’ at the crest and ‘expands’ in the trough. This is evident in
the position of the surface particles in Fig. 5.4 (which is obviously drawn for a
wave with finite amplitude). Short waves riding on top of a longer wave will there-
fore shorten (and thus grow steeper) at the crest of the long wave, and lengthen in
the trough. Such modulation of capillary waves is the feature that is observed with
imaging radar (e.g., the satellite-borne SAR; see Section 2.4.1).

5.4.3 Dynamics

The dispersion relationship

The above results for the kinematic aspects apply to any harmonic wave propagating
at the water surface, be it a free wave (subject only to gravitation; travelling at a
precise speed, see below), or a forced wave (subject to additional external forces; it
may travel at any speed, depending on the forcing). For the harmonic wave to be a
free wave, we need to invoke the free-wave condition: the atmospheric pressure at
the water surface, p = constant = 0. Substituting the harmonic surface profile
(Eq. 5.4.1) and the corresponding velocity potential function (Eq. 5.4.2) into the
expression for this boundary condition of zero atmospheric pressure (Eq. 5.3.29)
gives a relationship between radian frequencyω and wave number k (see Fig. 5.6):

ω2 = gk tanh(kd) or L = gT 2

2π
tanh

(
2πd

L

)
arbitrary depth

(5.4.17)

This is called the dispersion relationship for reasons to be given in Section 6.4.2.
For deep water (tanh(kd) → 1 for kd → ∞) the dispersion relationship

approaches9

ω =
√

gk0 or L 0 = gT 2/(2π ) (or L 0 ≈ 1.56T 2 [m, s]) deep water

(5.4.18)

where k0 and L 0 are the deep-water wave number and wave length, respectively.
The dispersion relation for arbitrary depth can consequently also be written as

k0 = k tanh(kd) or L = L 0 tanh(2πd/L) arbitrary depth

(5.4.19)

with k0 and L0 related to the radian frequency or period as in Eq. (5.4.18).

9 This deep-water relationship was derived much earlier by Gerstner (1802) in his trochoidal wave theory (see
Section 5.6.2).
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Figure 5.6 The dispersion relationship, the phase velocity c and the group velocity
cg (depth 100 m).

For very shallow water (tanh(kd) → kd for kd → 0), the dispersion relationship
approaches

ω = k
√

gd or k = ω/
√

gd or L = T
√

gd very shallow water

(5.4.20)

The dispersion relationship of Eq. (5.4.17) is an implicit expression in terms of
wave number, which requires an iteration procedure to calculate the wave number
for a given frequency and depth. An alternative is to use a look-up table or to use
an explicit expression that approximates the solution closely. A good example is
given by Eckart (1952):

kd ≈ α(tanhα)−1/2 with α = k0d = ω2d/g (5.4.21)

This expression is exact for the limits of deep and shallow water (kd → ∞ and
kd → 0). For all other situations, the error in k is less than 5%. A refinement of
this approximation is given by Fenton (1988):

kd ≈ α + β2(coshβ)−2

tanhβ + β(coshβ)−2 with β = α(tanhα)−1/2 (5.4.22)
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which is also exact in the deep-water and shallow-water limits and its error in k is
less than 0.05% in all other situations.

Literature:
Fenton and McKee (1990), Goda (2000), Hunt (1979), Wiegel (1964).

Phase velocity and group velocity

The propagation speed of the surface wave profile, i.e., the phase speed (see Section
5.4.1), is readily obtained from the dispersion relationship Eq. (5.4.17) with c =
L/T = ω/k:

c = g

ω
tanh(kd) =

√
g

k
tanh(kd) arbitrary depth

(5.4.23)

This expression shows that, in general, the phase speed depends on wave number
and therefore on frequency (see Fig. 5.6): long waves travel faster than short waves.
Such waves, the propagation speed of which depends on wave length or frequency,
are called dispersive waves (for reasons to be given in Section 6.4.2). In deep water
(tanh(kd) → 1 for kd → ∞), this expression reduces to

c0 =
√

g

k0
or c0 = g

ω
or c0 = g

2π
T (or c0 ≈ 1.56T [m, s])

deep water (5.4.24)

where k0 is the deep-water wave number. In very shallow water (tanh(kd) → kd
for kd → 0), it reduces to

cshallow =
√

gd very shallow water

(5.4.25)

Equation (5.4.25) shows that, in very shallow water, the phase speed does not
depend on wave length or frequency. Under these conditions, the waves are said to
be non-dispersive.

If we add two harmonic waves (η1 and η2, see Fig. 5.7), with slightly different
frequencies, travelling in the same direction, then these two waves will reinforce
each other at one moment (when they are in phase; i.e., when the crests of the two
component waves coincide) but cancel each other at another moment (when they
are 180◦ out of phase, i.e., when the crest of one wave coincides with the trough
of the other). This will repeat itself over and over again, in other words, we create
a series of wave groups. Taking the amplitudes of the two waves to be equal, the
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space or time

group group

h1 and h2

h = h1 + h2 = series of groups

Figure 5.7 Two harmonic waves with slightly different frequencies (or wave
numbers) add up to a series of wave groups.

resulting surface elevation is

η = η1 + η2 = a sin(ω1t − k1x) + a sin(ω2t − k2x) (5.4.26)

The group has its maximum surface elevation where η1 and η2 are in phase. The
propagation speed of this point is by definition the group velocity (it is the phase
speed of the envelope of the surface elevations). It can be determined by first writing
the sum of the two component waves (using standard trigonometric relationships)
as

η = 2a cos

(
ω1t − k1x − ω 2t + k2x

2

)
sin

(
ω1t − k1x + ω 2t − k2x

2

)
(5.4.27)

or, by re-arranging the various terms,

η = 2a cos

(
ω1 − ω 2

2
t − k1 − k2

2
x

)
sin

(
ω1 + ω 2

2
t − k1 + k2

2
x

)
← →← → (5.4.28)

envelope carrier wave
← →

modulating amplitude

where the sine wave is the carrier wave (with a frequency and wave number equal to
the averages of the original values) and the cosine wave is the envelope of the waves
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(with the difference frequency and difference wave number), which modulates the
amplitude of the carrier wave.

The phase speed of the carrier wave is (from the frequency and the wave number
of the sine wave in Eq. 5.4.28)

ccarrier = (ω1 + ω 2)/2

(k1 + k2)/2
≈ ω1

k1
(5.4.29)

and the phase speed of the envelope, called the group velocity for obvious reasons,
is (from the frequency and the wave number of the cosine wave in Eq. 5.4.28)

cenvelope = cgroup = (ω1 − ω 2)/2

(k1 − k2)/2
= �ω

� k
(5.4.30)

It follows that, if the difference between the frequencies (and therefore also between
the wave numbers) is infinitely small, the group velocity is (see Fig. 5.6)

cgroup = cg = ∂ω

∂k
= nc (5.4.31)

where c is the phase speed of the wave and n is (from the dispersion relationship,
Eq. 5.4.17)

n = 1

2

(
1 + 2kd

sinh(2kd)

)
(5.4.32)

Since 0 ≤ kd ≤ ∞ and therefore 0 ≤ 2kd/sinh(2kd) ≤ 1, this expression for n
shows that n varies between n = 1

2 (deep water) and n = 1 (very shallow water).
This implies that the speed of an individual wave (the phase speed) is always larger
than or equal to the speed of the group: c ≥ cg. One consequence of this is that
each wave travels forwards through the group, until it reaches the front of the
group, where it disappears. This is quite remarkable, but that is not all. The group
is kept alive by new waves that are continuously formed at the tail of the group!
All this seems odd, but even a casual look at actual waves in a wave group at sea
or in a channel, or even in a pond or a wave flume, shows that this theoretical
result is correct. Of course, it is the propagating wave energy that keeps the group
alive. Since waves propagate across the ocean as groups, travel times of ocean
waves should be calculated with the group velocity, not with the phase speed. In
deep water, n = 1

2 , so the group velocity is half the phase speed, cg = 1
2 c. In very

shallow water, n = 1 and the group velocity is equal to the phase speed, cg = c, so
the individual waves travel as fast as the group. This means that, in very shallow
water, each wave maintains its position in the group (no waves disappear at the
front, and no waves are generated in the tail).

One important effect of the dependence of the group velocity on frequency
is that a field of waves with various frequencies, as is normal for ocean waves,
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disintegrates slowly into a sequence of wave fields with the longer waves travelling
ahead of the shorter waves: the wave energy disperses across the ocean. This phe-
nomenon is therefore called frequency-dispersion (and hence the name ‘dispersion’
relationship for Eq. 5.4.17 and the term ‘dispersive’ waves). When storm-generated
waves travel across the ocean, it is this frequency-dispersion that transforms the
irregular storm waves into regular swell. This phenomenon will be treated further in
Section 6.4.2.

Wave-induced pressure

The above motions of the water particles in circles or ellipses imply accelerations
that can be caused only by forces acting on these particles. These forces are provided
in this case by gradients in the (wave-induced) pressure in the water. The analytical
expression for this pressure is readily derived by substituting the solution for the
velocity potential (Eq. 5.4.2) into the Bernoulli equation (Eq. 5.3.28), with the result
that the total pressure is

p = −ρgz + ρga
cosh[k(d + z)]

cosh(kd)
sin(ωt − kx) (z < 0 below still-water level)

(5.4.33)

(Remember that, in the linear wave theory, the only external force is gravitation.
This is evident here by virtue of the presence of g in this expression.) The first
term on the right-hand side is the hydrostatic pressure. It is obviously independent
of the presence of the wave (at least in the linear approximation; a second-order
refinement is given in Section 7.4.2). The second term is due to the wave and
therefore represents the wave-induced pressure, denoted as pwave:

pwave = p̂wave sin(ωt − kx) with p̂wave = ρga
cosh[k(d + z)]

cosh(kd)

(5.4.34)

This is a propagating pressure wave in the water body, in phase with the surface
elevation and with vertically decreasing amplitude. The expression is valid in the
small-amplitude approximation of the linear wave theory, but actual waves will
always have finite amplitude, for which the theory breaks down near the surface.
Above the still-water line, the pressure is then sometimes, crudely, approximated
as hydrostatic (see Fig. 5.8).

This pressure distribution does indeed provide vertical accelerations beneath
the crest and in the trough of the wave and horizontal accelerations beneath the
zero-crossings of the wave surface (corresponding exactly to the orbital motion
of the water particles). Note the similarity with the expressions for the orbital
velocities.
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Figure 5.8 The wave-induced pressure superimposed on the hydrostatic pressure
along the vertical, beneath a wave crest and beneath a wave trough (amplitude
exaggerated for illustrative purposes) with a crude approximation above the still-
water line (e.g., the kink in the pressure at z = 0 is not realistic).

In deep water the amplitude of the wave-induced pressure is (z < 0 below the
still-water line)

p̂wave = ρgaekz deep water (5.4.35)

which represents the same exponential reduction with the distance to the surface as
for the orbital velocities and the radius of the particle path (Eqs. 5.4.9 and 5.4.16).
In very shallow water the wave-induced pressure amplitude is constant along the
vertical:

p̂wave = ρga very shallow water (5.4.36)

5.4.4 Capillary waves

So far we have assumed that the pressure at the surface is constant (zero) because we
wanted the wave to be a free wave, i.e., free of imposed forces such as that exerted
by wind. However, for very small waves (centimetre wave length), the water surface
itself imposes a force that acts normal to the surface, due to surface tension. It is
essentially a force that acts in the water surface, but it has a component normal to
the surface if that surface is curved (see Fig. 5.9):

psurface tension = −τs
∂2η

∂x2
(5.4.37)
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Figure 5.9 Surface tension induces a pressure normal to a curved surface.

where τs is the surface-tension coefficient. For a harmonic wave, this can be written
as

psurface tension = +τsk2η (5.4.38)

It can be included in the dynamic surface boundary condition (see Eq. 5.3.29), with
the result that

∂φ

∂t
+ (g + τsk2/ρ)η = 0 at z = 0 (5.4.39)

This dynamic surface boundary condition is identical to the dynamic surface bound-
ary condition for a free wave, with g replaced with g + τsk2/ρ. The other (kine-
matic) boundary conditions (at the surface and at the bottom) are the same as for a
free wave, so all expressions for the kinematic and dynamic aspects of the wave are
the same as for a free wave with gravitational acceleration g replaced by g + τsk2/ρ.
For instance, the dispersion relationship becomes

ω2 = (g + τsk2/ρ)k tanh(kd) (5.4.40)

and the phase velocity becomes

c =
√

g + τsk2/ρ

k
tanh(kd) (5.4.41)

For a wave length of 0.017 m, the term representing the effect of surface tension is
approximately equal to the gravitational acceleration τsk2/ρ ≈ g (for clean, fresh
water at 20 ◦C, so that τs ≈ 0.073 N/m). For shorter waves (larger wave numbers)
the effect of surface tension will increase. For instance, the phase speed, instead
of continuing to decrease for shorter wave lengths, will increase. Waves that are
dominated by surface tension are called capillary waves or ‘ripples’. They can be
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Figure 5.10 The column in the harmonic wave that is used in deriving the expres-
sions for wave energy.

important for remote sensing, since some radar applications operate in the centi-
metre range. It is the modulation of these capillary waves by the longer waves that
creates the image of wind waves on radar (e.g., the satellite-borne SAR; see Sections
2.4.1 and 5.4.2). For waves that engineers are generally interested in (wave lengths
longer than 1 m, say) the effect of surface tension is negligible because the value of
τsk2/ρ for these waves is very much less than g (for wave lengths longer than 1 m,
τsk2/ρ < 0.0003g).

5.5 Wave energy (transport)

5.5.1 Wave energy

The presence of a wave at the water surface implies that water particles were
moved from their position at rest to some other position. This change of position
requires work done against gravitation and this represents potential energy. In
addition, the wave particles move, which represents kinetic energy. To estimate
the potential energy, consider a slice of water with thickness �z in a column with
horizontal surface area �x �y (see Fig. 5.10). The instantaneous potential energy
(i.e., mass × elevation, at a given moment in time) of this slice of water, relative to
z = 0, is then ρgz �x �y �z. The corresponding wave-induced potential energy
in the entire column, from bottom to surface, is equal to the potential energy in the
presence of the wave minus the potential energy in the absence of the wave. Per
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unit horizontal surface area (divide by the horizontal surface area of the column
�x �y) and time-averaged over one period, it is

Epotential =
∫ η

−d
ρgz dz −

∫ 0

−d
ρgz dz =

∫ η

0
ρgz dz (5.5.1)

where the overbar represents time-averaging. For a harmonic wave with amplitude
a, the outcome of this integral is

Epotential = 1
2ρgη2 = 1

4ρga2 (5.5.2)

The instantaneous kinetic energy in the same slice of water as above (i.e., 1
2 ×

mass × velocity squared, at a given moment in time) is 1
2ρ �x �y �z u2 (where

u2 = u2
x + u2

z ). The corresponding time-averaged (over one period) kinetic energy
in the entire column, from bottom to surface, is then, per unit surface area,

Ekinetic =
∫ η

−d

1
2ρu2dz (5.5.3)

The result of this integral, for a harmonic wave with amplitude a, using the expres-
sions for ux and uz from the linear theory (accurate to second order, see Note 5B)
is

Ekinetic = 1
4ρga2 (5.5.4)

so that, within the approximations of the linear wave theory, Epotential = Ekinetic. The
total time-averaged wave-induced energy density E = Epotential + Ekinetic is then

E = 1
2ρga2 time-averaged, wave-induced energy (potential plus kinetic)

per unit horizontal area (5.5.5)

Note that energy is proportional to the square of the amplitude; it is therefore
a second-order property of the wave, estimated with results of the linear wave
theory.

5.5.2 Energy transport

As the waves travel across the ocean surface, they carry their potential and kinetic
energy with them. To estimate this energy transport (also called energy flux),
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consider the left-hand vertical side of the same slice of water in the column as
above (a window with cross-section �z �y). The bodily transport of the potential
energy ρgz, through that window, in the x-direction (with the water particles and
therefore with velocity ux ), in a time interval �t , is (ρgz)ux �z �y �t . Over the
entire depth, from bottom to surface, this transport is

f1 =
(∫ η

−d
(ρgz)ux dz

)
�y �t (5.5.6)

The bodily transport of the kinetic energy 1
2ρu2, integrated over the entire depth, is

similarly

f2 =
(∫ η

−d
( 1

2ρu2)ux dz

)
�y �t (5.5.7)

NOTE 5B Integration to second-order accuracy

Determining the order of accuracy of an integral over the vertical beneath a harmonic
wave in the linear wave theory is relatively easy with an essentially geometric rationale.

The integral from bottom to surface of a function f (z) beneath a wave, divided into two
integrals (amplitude of wave greatly exaggerated): one below the mean surface (z = 0)
and one above.

Consider a function that varies over the vertical f (z), which depends on the wave
amplitude to a certain power (the order of the function). Interpret the integral of this
function from the bottom to the instantaneous surface

∫ η

−d f (z)dz as the surface area of
the function. This integral can be divided into an integral from the bottom to the mean
surface and an integral from that mean surface to the instantaneous surface (see the
illustration in this note):

∫ η

−d
f (z)dz =

∫ 0

−d
f (z)dz +

∫ η

0
f (z)dz
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The scale of each of these two surface areas is equal to the vertical scale of the integration
interval, times the scale of the function f (z) itself. For the first integral

∫ 0
−d f (z) dz, the

vertical scale is the average depth, which is independent of the wave amplitude. The
corresponding surface area is therefore proportional to the wave amplitude to the same
degree (i.e., the same power) as is the function f (z) itself. In other words: the order of
the integral

∫ 0
−d f (z) dz, in terms of the amplitude, is equal to the order of the function

f (z). If, for instance, f (z) is of second order in amplitude, then this integral too is of
second order. For the second integral, the integration interval is the distance between
the mean surface and the moving free surface, and, in contrast to the first integral, this
scale is proportional to the amplitude. The scale of this surface area is therefore not
only proportional to the wave amplitude to the same power as the function f (z) but also
proportional to the amplitude of the wave itself. In other words: the order of the second
integral

∫ η

0 f(z)dz is equal to the order of the function f (z) plus one. For instance, if
f (z) is of second order in amplitude, then this second integral is of third order. In the
integrals in the text of Section 5.5.2, the following functions appear:
(a) f (z) = 1

2ρu2, so the integral (averaged over time) can be written as

∫ η

−d
f (z)dz =

∫ η

−d

1
2ρu2 dz =

∫ 0

−d

1
2ρu2dz +

∫ η

0

1
2ρu2dz

≈
∫ 0

−d

1
2ρu2dz = 1

4ρga2

Since f (z) = 1
2ρu2 is of second order in amplitude (the orbital velocity is propor-

tional to the amplitude), it follows that the first integral is of second order and that
the second integral is of third order. The second integral can therefore be ignored
in a second-order approximation. Using the expression for u from the linear wave
theory gives the result indicated.

(b) f (z) = ( 1
2ρu2)ux , so the integral (averaged over time) can be written as

∫ η

−d
f (z)dz =

∫ η

−d
( 1

2ρu2)ux dz =
∫ 0

−d
( 1

2ρu2)ux dz +
∫ η

0
( 1

2ρu2)ux dz ≈ 0

Since f (z) = ( 1
2ρu2)ux is of third order in amplitude (the orbital velocity is pro-

portional to the amplitude), it follows that the first integral is of third order and that
the second integral is of fourth order. Both integrals can therefore be ignored in a
second-order approximation.

(c) f (z) = (pwave) ux , so the integral (averaged over time) can be written as∫ η

−d
f (z)dz =

∫ η

−d
(pwave)ux dz =

∫ 0

−d
(pwave)ux dz +

∫ η

0
(pwave)ux dz

≈
∫ 0

−d
(pwave)ux dz = ( 1

2ρga2)
1

2

(
1 + 2kd

sinh(2kd)

)
ω

k

Since f (z) = (pwave)ux is of second order in amplitude (both the wave-induced
pressure and the orbital velocity are proportional to the amplitude), it follows that
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the first integral is of second order and that the second integral is of third order.
The second integral can therefore be ignored in a second-order approximation.
Using the expressions for pwave and ux from the linear wave theory gives the result
indicated.

In addition to this bodily transport of potential and kinetic energy (i.e., with the
orbital motion of the water particles), energy is transferred horizontally by work
done by the pressure in the direction of wave propagation. This horizontal transfer
through a vertical plane (i.e., the left-hand side of the column) in a time interval
�t is equal to the pressure pwave times the distance moved in that interval (in the
x-direction = ux �t). Integrated from the bottom to the surface, this is

f3 =
(∫ η

−d
(p ux )dz

)
�y�t (5.5.8)

With p = −ρgz + pwave (from Eqs. 5.4.33 and 5.4.34), we find

f3 =
(∫ η

−d
(−ρgz + pwave)ux dz

)
�y�t (5.5.9)

Per unit crest length and per unit time (i.e., divided by�y �t) and time-averaged,
the total energy transport Penergy is then the sum of these three contributions:

Penergy = f1 + f2 + f3

=
∫ η

−d
(ρgz)ux dz +

∫ η

−d
( 1

2ρu2)ux dz +
∫ η

−d
(−ρgz + pwave)ux dz

=
∫ η

−d
( 1

2ρu2)ux dz +
∫ η

−d
(pwave)ux dz (5.5.10)

The first integral on the right-hand side of the last expression ( f2) is of third order in
amplitude (see Note 5B) and may therefore be ignored in a second-order approxima-
tion. The second integral is of second order and is therefore the only integral retained
in a second-order approximation. This shows that, in such an approximation, all
wave energy is transported only by the work done by the wave-induced pressure
pwave. This wave-induced pressure is in phase with the horizontal orbital motion
and with the surface elevation (see Fig. 5.11): if the water particles move in the
wave direction, the surface elevation is higher than when the water particles move
against the wave direction. The net time-averaged effect is therefore a transport of
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Figure 5.11 The asymmetric, instantaneous transport of wave energy by the wave-
induced pressure (forward transport over larger water depth than backward trans-
port), results in a net time-averaged energy transport in the wave direction.

energy in the wave direction. The value of the corresponding integral is, accurate
to second order in amplitude (see Note 5B),

Penergy ≈
∫ 0

−d
(pwave ux )dz = ( 1

2ρga2)
1

2

(
1 + 2kd

sinh(2kd)

)
ω

k
(5.5.11)

or, since E = 1
2ρga2 and c = ω/k,

Penergy = Enc with n = 1

2

(
1 + 2kd

sinh(2kd)

)
(5.5.12)

energy transport per unit time per unit crest length

Note that the propagation speed nc in this expression is exactly equal to the group
velocity (see Eq. 5.4.31). The term ‘group velocity’ is often used indiscriminately
for either the group velocity proper or the transport velocity of the energy. It is
therefore widely accepted that one writes

Penergy = Ecg in the wave direction (5.5.13)

The direction of energy transport is normal to the wave crest because the water
particles move in that direction. This seems trivial, but in the presence of an ambient
current this is generally not the case (see Section 7.3.5). Another important effect
of an ambient current on the energy transport is readily demonstrated by replacing
the particle velocity ux in the above expressions with ux + Ux (where Ux is the
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horizontal component of the ambient current in the x-direction). This adds extra
terms to the results of the integrals, which represent (a) the transfer of energy
between wave and current and (b) the modified transports of the energies both of
the wave and of the current.10

5.6 Nonlinear, permanent waves

5.6.1 Introduction

The linear theory of surface gravity waves, as presented in the previous sections,
is a theory that matches the spectral description of ocean waves perfectly, because
the spectral description is based on the assumption that the wave components are
harmonic and independent, in other words, they behave as linear harmonic waves.
However, this perfect match also limits the application of the spectral description
to the conditions of the linear theory. When the waves are too steep or the water is
too shallow, the linear wave theory is no longer valid and the spectrum no longer
provides a complete statistical and physical description of the waves. Usually there
is no easy alternative. When nonlinear effects are weak, or strong but occur only
intermittently, then the waves can be treated on a large scale as linear waves, with
relatively small, nonlinear corrections at these scales (hundreds of wave lengths or
more). For instance, the process of white-capping (wave breaking in deep water)
is locally highly nonlinear, but the related energy dissipation on a larger scale may
be treated as a process that is weak in the mean. When nonlinear effects are to be
considered on a small scale (a few wave lengths or less, for instance to compute wave
forces on a marine structure), then the waves need to be considered locally with a
nonlinear theory. A conventional approach is then to treat each wave individually
and independently: the wave characteristics are computed on a wave-by-wave basis
with a nonlinear theory and the computational results for a large number of such
individual waves are analysed statistically to arrive at average characteristics.

In classical nonlinear wave theories, each wave is assumed to be one wave in a
train of periodic (but not harmonic) waves, with a constant shape, amplitude and
length (permanent waves, i.e., waves that do not evolve as they propagate). These
theories are essentially analytical in nature. Here, we introduce three such classical
nonlinear theories: the theories of Stokes (1847) and Dean (1965) for steep waves
and the cnoidal theory for waves in shallow water (Korteweg and de Vries, 1895).
More recent nonlinear theories are based on partial differential equations (rather

10 The transfer of energy between the wave and the current is evident in the expressions by virtue of the appearance
of the cross product (ρu2

x + pwave)Ux in the integrals, which can be interpreted as work done by the current
Ux against a stress with magnitude ρu2

x + pwave. Integrated over depth and averaged over time, this work

(i.e., energy transfer) is Sxx Ux , where Sxx = ∫ η

−d

(
ρu2

x + pwave
)
dz (also known as radiation stress; see Section

7.4.2).
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Figure 5.12 The ranges of applicability of the various wave theories (after
LeMéhauté, 1976, Kamphuis, 2000, and SPM, 1973; see also Note 5C).

than analytical expressions) that allow the waves to evolve, e.g., as they propagate
from deep into shallow water. These theories of evolving waves are introduced in
Chapter 7.

The degree of nonlinearity of waves is often quantified with the Ursell number
NUrsell, which combines wave steepness and relative water depth (see e.g., Dinge-
mans, 1997a, 1997b and Note 5C):

NUrsell = steepness/(relative depth)3 = (H/L)/(d/L)3 = H L2/d3 (5.6.1)

where H is wave height and L is wave length. The cnoidal theory is applicable for
NUrsell > 26, while the theory of Stokes is applicable for NUrsell < 10. Both apply
equally well for 10 < NUrsell < 26. However, this division that is often used by
engineers ignores the emergence of breaking when waves grow too steep, in deep
or in shallow water. A more detailed division between the applicabilities of Airy,
Stokes and cnoidal theories is given in Fig. 5.12.

Literature:
Fenton (1990, 1999).
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NOTE 5C The Ursell number

The Ursell number is essentially the ratio of the amplitude of a harmonic wave and
the amplitude of its second-order Stokes correction (see Section 5.6.2). This ratio is
approximately equal to

NUrsell = H L2/d3

which can be re-written in different ways, for instance as the ratio of wave steepness
over relative depth to the third power, as in Eq. (5.6.1). It can also be written as (with
L = cT , where the shallow-water phase speed is c = √

gd)

N ∗
Ursell = gH T 2

d2
= H/(gT 2)

(d/gT 2)2

The numerator and the (square root of the) denominator of this ratio have been used as
the variables to characterise the region of applicability of the various wave theories in
Fig. 5.12. Another definition, with essentially the same variables, is

N ∗∗
Ursell = a/d

(kd)2 = H/L

8π2 (d/L)3

where a = H/2 is amplitude and k = 2π/L is wave number. A similar definition is
used in Section 9.3.4. Obviously, many variations of the basic definition can thus be
found.

5.6.2 Stokes’ theory and Dean’s stream-function theory

In the linear wave theory, a wave with a harmonic surface profile that conforms to the
linearised basic equations and boundary conditions is found. It only approximates
the nonlinear equations and boundary conditions. A better approximation can be
found by adding corrections to the harmonic wave profile. This is done in the
theories of Stokes (1847) and Dean (1965) by adding extra harmonic waves to
the basic harmonic. The differences between these two theories are as follows.
First, that the corrections in the theory of Stokes are successive (every higher-
order correction is obtained on the basis of the previously obtained lower-order
corrections), whereas in the theory of Dean they are obtained simultaneously (and
satisfy the dynamic boundary condition exactly). Secondly, the theory of Stokes
is formulated in terms of the velocity potential, whereas Dean uses another, but
closely related function (the stream function). Neither the theory of Stokes (1847)
nor the theory of Dean (1965) performs well in very shallow water (water depth of
the order of the wave height or less). For such conditions, the cnoidal theory should
be used (see Fig. 5.12 and Section 5.6.3).
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In the theory of Stokes (1847), the basic harmonic is written with the wave
steepness ε = ak explicitly represented (the cosine notation for the harmonic wave
is more convenient here than the sine notation due to the occurrence of higher
harmonics):

η(x, t) = a cos(ωt − kx) = εη1(x, t) (5.6.2)

where η1(x, t) = k−1 cos(ωt − kx). The first correction in the Stokes theory is an
‘extra’ harmonic wave, written with the wave steepness raised to the second power
(it is therefore a second-order correction, i.e. second order in wave steepness ε):

η(x, t) = εη1(x, t) + ε2η2(x, t) (5.6.3)

where ε2η2 represents the extra harmonic wave. Using the solution of the linear
theory, the nonlinear basic equations are now solved for this extra wave, with the
nonlinear boundary conditions (see Appendix B for these equations and boundary
conditions). The result is

η(x, t) = a cos(ωt − kx) + ka2 cosh(kd)

4 sinh3(kd)
[2 + cosh(2kd)]cos[2(ωt − kx)]

(5.6.4)

where the first term on the right-hand side is the Airy wave of the linear wave theory
and the second term is the second-order Stokes correction.

The wave represented by Eq. (5.6.4) is called a second-order Stokes wave. The
phase speed of the extra harmonic (it is called the second harmonic) is equal to the
phase speed of the linear wave. It is therefore a bound second harmonic (it travels at
the speed of the Airy wave, which is called the primary wave). The amplitude being
constant, and the phase speeds being equal, implies that the surface profile does not
evolve in time or space; it is constant. The wave is horizontally symmetrical (around
the wave crest) and vertically asymmetrical (around the mean sea level): the wave
crest is a little sharper and the wave trough is a little flatter than in a harmonic wave
(see Fig. 5.13). In addition, the crests are located at more than half the wave height
above the mean water level. This asymmetry is an important deviation from the
Gaussian model that is used in the spectral description of ocean waves and it should
be considered when determining the maximum crest height in a random sea state
(see also Sections 4.2.2 and 4.2.4).

The Stokes expansion can be continued by adding a third harmonic:

η(x, t) = εη1(x, t) + ε2η2(x, t) + ε3η3(x, t) (5.6.5)

and the technique is repeated: use the solution of the linear theory and the above
second harmonic to solve the nonlinear basic equations for this third harmonic with
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Figure 5.13 The surface profile of a second-order Stokes wave.

the nonlinear boundary conditions. This gives the third-order Stokes correction,
which is also a bound harmonic and its wave length and period are a third of those
of the basic harmonic wave.11 The approximation can be expanded indefinitely, so
the Stokes theory can be developed to any degree of expansion to get (omitting the
dependence on x and t in the notation)

η = εη1 + ε2η2 + ε3η3 + ε4η4 + ε5η5 + · · · (5.6.6)

In practice the expressions become very complicated very rapidly.
In the stream-function theory of Dean (1965), as in the theory of Stokes (1847),

the velocity components and the surface profile are written in terms of a series of
harmonics (the number of harmonics determining the desired order of approxima-
tion) but the nonlinear basic equations are not solved with the velocity potential
but with another, closely related function: the stream function ψ . This function is
defined in a similar manner to the velocity potential function (but it exists only for

11 The surface profile of this third-order Stokes wave is almost identical to the surface profile of the trochoidal
wave in the theory of Gerstner (1802), which is easily constructed graphically as a trochoidal curve turned
upside-down (the motion of a point on the side of a wheel rolling over a horizontal surface). However, in the
trochoidal wave, the rotation of the water particles is opposite to what it should be; this is perhaps the reason
why this theory has not been generally accepted (see Lamb, 1932).
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two-dimensional flow, e.g., in the vertical x, z-plane):

∂ψ

∂z
= ux

(
= ∂φ

∂x

)
(5.6.7)

−∂ψ

∂x
= uz

(
= ∂φ

∂z

)

If the stream function is visualised as a hill above a horizontal x, z-plane, then
the particle velocities are oriented along the contour lines of the hill, and their
magnitudes are equal to the slope of the hill in the direction normal to these contour
lines. The existence of a stream function implies that the continuity of the water
mass in two dimensions is always guaranteed, because

∂ux

∂x
+ ∂uz

∂z
= ∂2ψ

∂z∂x
− ∂2ψ

∂x∂z
= 0 (5.6.8)

(compare this with the Laplace equation, Eq. 5.3.22). In addition, because the water
surface is a streamline (i.e., a line along which ψ = constant), the kinematic sur-
face boundary condition is always satisfied. The mathematics for the nonlinear
cases is a little easier with this stream function than with the velocity potential
but, like the velocity potential, it is only an auxiliary function without any phys-
ical meaning in itself. Similarly to the technique of Stokes, Dean develops the
stream function as a sum of harmonics, but, unlike Stokes, Dean determines all
coefficients simultaneously. All wave characteristics then follow from this stream
function.

Literature:
Cokelet (1977), Dean (1974), Fenton (1985), LeMéhauté (1976), Sakai and Battjes (1980),
Skjelbreia and Hendrickson (1960).

5.6.3 Cnoidal and solitary waves

In the above wave theories, the velocity potential function or the stream function
is expanded in terms of the wave steepness ε = ak. However, if the depth is small,
these theories do not apply. Therefore, in addition to, or instead of, considering
nonlinear corrections due to wave steepness, corrections need to be applied to
account for finite-depth effects. In the theory of cnoidal waves (also referred to as
the KdV theory after Korteweg and de Vries, 1895), this is done in a manner very
similar to that of the Stokes theory and the stream-function theory of Dean: the
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Figure 5.14 The surface profiles of a cnoidal wave, depending on the degree of
nonlinearity (after Wiegel, 1960).

Figure 5.15 The surface profile of a cnoidal wave train and of a solitary wave.

velocity potential is developed in terms of a small parameter (the ratio of amplitude
over depthβ = a/d in this case). Omitting the dependence on x and t in the notation,
the surface elevation is then written as

η = βη1 + β2η2 + β3η3 + β4η4 + β5η5 + · · · (5.6.9)

where, however, the basic wave η1 and the extra waves η2, η3, η4, η5, . . . are not
harmonic waves but cnoidal waves. Cnoidal waves are expressed with standard



144 Linear wave theory (oceanic)

mathematical functions in terms of Jacobian elliptic functions12 (these are standard
functions, just like the sine and cosine functions, i.e., mathematically well-defined
functions that can be computed to any degree of accuracy and can be found in
standard tables).

The velocity potential, and hence all wave characteristics, can be derived for
any given wave amplitude, length and water depth (e.g., the surface profile,
Fig. 5.14). As the water depth decreases, the wave crest sharpens and the trough
flattens, which is similar to the nonlinear effect of wave steepness. As the
depth approaches zero (actually, L/d → ∞), the wave length and period become
infinitely long. This wave is called a solitary wave or soliton, Fig. 5.15; it rides
completely above the mean sea level.

Literature:
CEM (2002), Chappelear (1962), Herman (1992), Isobe (1985), Laitone (1960), Mase and
Kirby (1992), Munk (1949a), SPM (1973, 1984), Wiegel (1960, 1964), Yamaguchi (1992).

12 The notation that is used in Jacobian elliptic functions includes the notations cn, sn and dn, hence the name
cnoidal wave, in analogy with sinusoidal wave, which is written with the notation sin.
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Waves in oceanic waters

6.1 Key concepts

� In this book, oceanic waters are deep waters (such that the waves are unaffected by the seabed)

with straight or gently curving coastlines, without currents or obstacles such as islands, headlands

and breakwaters.
� Under certain idealised conditions (constant wind blowing perpendicularly off a long and straight

coastline over deep water), the significant wave height is determined by the wind, the distance

to the upwind coastline (fetch) and the time since the wind started to blow (duration). So are the

significant wave period and the energy density spectrum.
� Under these idealised conditions, the one-dimensional frequency spectrum has a universal shape:

the JONSWAP spectrum for young sea states or the Pierson–Moskowitz spectrum for fully developed

sea states. The (one-sided) directional width of the corresponding two-dimensional spectrum is

typically 30◦.
� To model waves under more realistic, arbitrary oceanic water conditions, the concepts of fetch

and duration cannot be used. Instead, the spectral energy balance of the waves is used. It repre-

sents the time evolution of the wave spectrum, based on the propagation, generation, wave–wave

interactions and dissipation of all individual wave components at the ocean surface.
� Conceptually, a Lagrangian approach (based on wave rays) or an Eulerian approach (based on a

grid that is projected onto the ocean) can be used to formulate this energy balance. Owing to

the interaction amongst the various wave components, the Eulerian approach is better suited for

computations than the Lagrangian approach.
� Waves are generated by air-pressure fluctuations at the sea surface (not by wind friction), which

are almost entirely due to wave-induced variations in the airflow (wind) just above the waves.
� In deep water, wave energy is dissipated only by breaking (white-capping).
� In deep water, quadruplets of wave components interact by resonance.

– These quadruplet wave–wave interactions redistribute the wave energy over the spectrum. They

do not add or remove energy from the spectrum as a whole (the redistribution is said to be

conservative).

– For sufficiently steep waves (waves being generated by wind, i.e., wind sea), the quadruplet

wave–wave interactions cause a downshifting of the peak frequency of the spectrum and stabilise

the spectral shape (the JONSWAP spectrum).

– The shape-stabilising capacity of the quadruplet wave–wave interactions is the reason why the

JONSWAP spectrum is characteristic for wind sea in oceanic waters. This spectrum is therefore

widely accepted as the design spectrum in the engineering community.
� Outside their generation area, the waves degenerate into swell, due to frequency- and direction-

dispersion. Swell is not steep enough for the quadruplet wave–wave interactions to be effective.

The shape of a swell spectrum is therefore not a JONSWAP spectrum. A swell spectrum is narrow

in both frequency and direction, but it depends otherwise entirely on the characteristics of the

generating storm and the distance to that storm.

145
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6.2 Introduction

Wave observations that are required to estimate past, present or future wave con-
ditions are not always available, either because no instrument was operating at the
required time and location (e.g., to investigate an accident) or because the required
conditions have not (yet) occurred (e.g., extreme design conditions). The only
alternative in the absence of observations is to simulate the wave conditions, using
wind information. For the short term, waves can be forecast with forecast winds
(over a period of several days, after which the wind forecasts are no longer reliable),
for instance to plan offshore activities such as salvage operations, coastal activities
such as dredging, or recreational activities such as surfing. Wave conditions can also
be hindcast, i.e., computed with archived wind field or wind fields that have been
reconstructed by meteorologists in hindsight. With this hindcasting technique, wave
conditions in the past can be simulated to generate long-term wave information (see
Section 4.3) or to reconstruct special conditions (e.g. an accident at sea). The choice
of a wave model to carry out such forecasts or hindcasts depends on the complexity
of the case. For a first impression in relatively simple situations, one can use a model
that is essentially a generalisation of observations made under idealised conditions.
It is simple in the sense that only a few variables are involved and it can be applied
without the use of computers. Usually though, the wind, the seabed topography or
the tides vary in space or time and hence numerical models that take these varia-
tions into account need to be used. These models require a computer and trained
personnel.

The wind, on which all forecasts and hindcasts depend, is a complex phenomenon
to describe because it is a three-dimensional vector that varies randomly in three
space dimensions and time. However, for the purpose of wave modelling, this vector
is described by only one horizontal component, averaged over some time interval
(typically 10 min) at a fixed elevation above the mean sea surface. The elevation is
usually 10 m and the wind is accordingly denoted as �U10. Such a fixed elevation
is rather impractical: the anemometer on board a ship can often not be located at
that elevation due to structural limitations on the ship and in heavy seas a ship
may move vertically over a considerable distance, rendering the notion of a fixed
elevation above mean sea level most improbable. Atmospheric models that are used
by meteorologists, too, do not always provide the wind at elevation 10 m but instead
give it at a level that is consistent with the discretisation of their numerical models,
e.g., at levels of constant atmospheric pressure. In actual practice therefore, the
wind at elevation 10 m is often estimated from the wind at other levels (e.g., by
extrapolation with an assumed vertical wind profile). The (horizontal) wind at 10-m
elevation is only a function of the two horizontal space dimensions x and y and
time t , so �U10 = �U10 (x, y, t).
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Sometimes the wind is characterised by an alternative, purely fictitious wind
speed (in the sense that it cannot be measured), which is directly related to the
shear stress τ of the wind on the ocean surface.1 It is called the friction velocity
and it is denoted by u∗. The relationships are τ = ρairu2

∗ = ρairCdU 2
10, where ρair

is the density of air and Cd is called the drag coefficient. An expression relating
Cd to U10 and a model to compute u∗ from the dynamic interaction between wind
and waves are given in Section 9.3.2. In this book, we will come across this wind
friction velocity only occasionally. Sometimes the use of yet another alternative is
advocated: the wind speed Uλ at a dynamically chosen elevation that is a constant
fraction of the wave lengths of the ocean waves or U∞ at the top of the atmospheric
boundary layer (the lower part of the atmosphere where the presence of the Earth’s
surface is noticeable with its upper limit typically at altitude 150–500 m), but that
is rarely done.

Literature:
Bidlot et al. (1996), CEM (2002), Charnock (1955), Janssen (2004), Kinsman (1965),
Phillips (1977), Resio et al. (1999), Komen et al. (1994), WMO (1998).

6.3 Wave modelling for idealised cases (oceanic waters)

The wave model that is considered first is very simple. It is essentially a gener-
alisation of wave observations under conditions that approximate the following
idealisation (see Fig. 6.1): a constant wind (constant in space and time) is blowing
over deep water, perpendicularly off a straight and infinitely long coastline (‘deep’
is taken to mean so deep that the waves are not affected by the bottom, i.e., typically
more than half the wave length). The waves are described with only a characteristic
wave height (e.g., the significant wave height) and a characteristic period (e.g., the
significant wave period or the peak period, i.e., the inverse of the peak frequency
of the spectrum) or with a universal one- or two-dimensional spectrum. In this
approach of idealised conditions, the waves depend only on the wind speed and the
distance to the upwind coastlines (fetch) or the time elapsed since the wind started
to blow (the duration; there is no wind before this time). Usually the duration is
taken to be infinitely long (in practical applications, sufficiently long that the pre-
cise duration is irrelevant), so that wind speed and fetch are the only determining
factors.

An entirely different idealised wind field relates to hurricanes.2 The defining
parameters are usually the position, direction and velocity of the centre of the

1 The concept of surface shear stress (friction) in the case of wind-generated waves is not trivial. Actually, the
shear stress represents the vertical transport of horizontal momentum from the atmosphere to the ocean in which
the waves play a crucial role (see Section 6.4.3).

2 See Section 1.3 for the alternative terms typhoon and cyclone.
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Figure 6.1 The ideal situation of a constant wind blowing over deep water, per-
pendicularly off a straight and infinitely long coastline.

hurricane (the eye), the atmospheric pressure at the sea surface in the eye relative to
the ambient pressure and the radius to maximum wind (i.e., the horizontal dimension
of the hurricane eye). The wave field is then only a function of these parameters.
This approach to hurricanes will not be considered further.

Literature:
Bretschneider (1959), CEM (2002), Ochi (2003), SPM (1973, 1984).

6.3.1 Idealised wind

In the idealised situation of wave generation described above, the wind is assumed
to be constant. However, even a constant wind blowing off a coast develops an
internal atmospheric boundary layer starting at the coastline (mostly because the
sea surface is much smoother than the land, thus creating an inherent variation in
the wind speed as a function of the distance offshore). These and other deviations
from the ideal case are usually ignored. The only parameters that are assumed
to affect the waves, in addition to the wind, are then fetch (F), duration (t , no
wind or waves for t < 0) and gravitational acceleration (g). Other parameters that
may be relevant, such as the viscosity of the water, turbulence in the airflow,
gustiness and atmospheric stability, are usually ignored, thus introducing errors
in estimating the significant wave height of up to 20%, even in such idealised
situations.

In practical applications, the four parameters F, t,U10 and g are often reduced
to three by expressing the duration t in terms of an equivalent fetch Feq as follows.
Consider a forecast location P at some distance F from the coast (see Fig. 6.2).
A wave component from an arbitrary direction θ , which arrives at that location P
at time t , has travelled a distance cgt from that direction since the wind started
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Figure 6.2 The concept of equivalent fetch Feq under the idealised conditions of
wind-wave generation.

to blow (cg is the group velocity of the wave component being considered). If
such an individual wave component were to develop independently of the rest of
the spectrum, the situation for that component would be equivalent to having the
wind blow forever (infinite duration), with the coast at a distance of s = cgt cos θ
(see Fig. 6.2). The distance s to this imaginary coast can therefore be seen as an
equivalent fetch Feq for that component:

Feq = s = cgt cos θ (6.3.1)

The essence here of the equivalence between fetch and duration is that the wind
has had the same time to transfer energy to the wave component considered. Such
equivalence exists for each wave component individually. It is different for each
component, because the direction and frequency, and therefore group velocity, are
different for each component. For the spectrum as a whole, therefore, there is no
such unique relationship between fetch and duration. However, one could take the
wave component at the peak of the spectrum as the carrier component of the total
wave energy and assign an equivalence to this component. This approach is justified
in the sense that the energy of young sea states is concentrated around a fairly sharp
peak (see Section 6.3.3). The direction of the peak component is equal to the wind
direction and therefore constant, but its frequency fpeak is not; it evolves over the
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duration and the simple expression of Eq. (6.3.1) should therefore be replaced with
an integral:

Feq =
∫ t

0
cg,peak(t)dt (6.3.2)

where cg,peak is the group velocity of the (evolving) peak frequency. If the actual
fetch is shorter than the equivalent fetch, then the fetch is the limiting factor and the
condition is said to be fetch-limited. If the actual fetch is longer than the equivalent
fetch, the duration is the limiting factor and the condition is said to be duration-
limited.

With the above transformation of duration into equivalent fetch, the number
of parameters has been reduced from four (F, t,U10, g) to three (F,U10, g),
which can be combined into one dimensionless parameter, the dimensionless
fetch F̃ :

F̃ = gF

U 2
10

(6.3.3)

Literature:
Cavaleri (1994), CEM (2002), Donelan et al. (1985), Hurdle and Stive (1989), Kahma and
Calkoen (1992), SPM (1973, 1984), Taylor and Lee (1984), Voorrips et al. (1994), Wilson
(1965), Young and Verhagen (1996a), Young (1998).

6.3.2 The significant wave

The significant wave height and the significant wave period have been observed
under conditions that only approximate the idealised situation. Obviously, actual
field conditions are never ideal in the sense that the coastline is never infinitely long
and straight and the wind is never constant and perpendicular to the coastline. The
observations therefore will always have some scatter. However, the observations do
reveal some universal relationships, indicating that the chosen parameters of fetch,
wind speed and gravitational acceleration are indeed the dominating parameters.
These observations have been generalised, not only by using the dimensionless
fetch F̃ , but also by using a dimensionless significant wave height,

H̃1/3 = gH1/3

U 2
10

or H̃m0 = gHm0

U 2
10

(6.3.4)

and dimensionless significant wave period or peak period,

T̃1/3 = gT1/3

U10
or T̃peak = gTpeak

U10
(6.3.5)
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(In addition to this notation, I will also use H̃ and T̃ , with the context indicating
whether these are based on a zero-crossing analysis, H̃1/3 and T̃1/3 or on a spec-
trum, H̃m0 and T̃peak, or leaving this indeterminate.) The use of these dimensionless
parameters generalises the observations since it renders the observations indepen-
dent of the scale of the observation: the dimensionless conditions in a severe storm
at sea would be identical to those in a breeze over a lake, or even in a gentle wind in
a laboratory flume, as long as the ratio of fetch over the wind speed squared is the
same. This idea has been used extensively in developing this approach: observa-
tions are made under relatively mild conditions; they are then made dimensionless
and the results can be applied to conditions of a totally different scale.

At short fetches, the waves grow fairly rapidly (young sea states), but gradually
the growth slows down until it eventually stops (the wave speed of the longest waves
approaches the wind speed, and wave breaking balances the energy transfer from
wind to waves). In this final stage, the waves are said to be fully developed.3 Pierson
and Moskowitz (1964) analysed observations of such fully developed waves in the
North Atlantic Ocean. Since fetch is not relevant in such cases (it is sufficiently
large that the exact value is irrelevant; it is nominally infinite: F̃ = ∞) and the
ocean is so deep that depth does not affect the waves, the significant wave height
and period depend only on the local wind speed. This implies that, under these
fully developed conditions, the dimensionless significant wave height and period
are universal constants (the wind speed is included in the definitions). Pierson and
Moskowitz (1964) used the wind speed at the anemometer elevation of the weather
ships at which the observations were taken (19.5 m) and they found gHm0,∞/U 2

19.5 =
0.21 and gTpeak,∞/U19.5 = 7.14 (the subscript ∞ indicates the fully developed
state; see also Note 6A). The generally accepted corresponding values in terms of
U10 are (assuming that U19.5 ≈ 1.075U10, which is very reasonable)

H̃∞ = 0.24 and T̃∞ = 7.69 deep-water, fully developed sea state,

based on Hm0 and Tpeak (6.3.6)

NOTE 6A Fully developed sea state in deep water

It seems reasonable to assume that the waves stop growing when the phase speed of the
waves approaches the wind speed (the relative wind speed is then zero). This implies that
cpeak → U10 for fully developed waves (cpeak is the phase speed at the peak frequency
of the wave spectrum). In deep water, the phase speed can be estimated from linear

3 There is some doubt as to the existence of the fully developed state, although observations seem to be fairly
conclusive (see Ewing and Laing, 1987, and Walsh et al., 1989). The uncertainty is of a theoretical nature:
wave–wave interactions (see Section 6.4.4) may continue to transfer energy from higher frequencies to ever
lower wave frequencies, even if the wave height no longer evolves.
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wave theory as cpeak = gTpeak/(2π ), so

gTpeak

2π
→ U10 from which

gTpeak

U10
→ 2π or T̃∞ → 2π

deep water, fully developed

which is in qualitative agreement with the value T̃∞ = 7.69 observed by Pierson and
Moskowitz (1964).

The first systematic observations of the significant wave height and period under
fetch-limited conditions (on lakes and reservoirs) were made by Sverdrup and Munk
(1946, 1947) and, somewhat later, by Bretschneider (1952). Their results have been
used widely and, in honour of their contribution, the corresponding parameterisa-
tions (analytical functions approximating such data) are called SMB (Sverdrup–
Munk–Bretschneider) growth curves. For short fetches, simple power laws are
commonly used:

H̃ = a1 F̃b1

deep water, short fetches
(i.e., young sea states)

(6.3.7)

T̃ = a2 F̃b2

Later, such observations were carried out by many others. An excellent compilation
and re-analysis of a number of such studies has been given by Kahma and Calkoen
(1992), who found from the composite data set thus obtained that a1 = 2.88 × 10−3,
a2 = 0.459, b1 = 0.45 and b2 = 0.27 (see Fig. 6.3).4 To represent these young sea
states and the fully developed sea state, and also the transition between them, a
tanh function is often used because this function has the property that, for small
arguments, it approaches its argument: tanh x → x for x 
 1; and for large values
of its argument, it approaches unity: tanh x → 1 for x � 1. Most investigators in
this field have therefore fitted the following functions through their observations:

H̃ = H̃∞ tanh(k1 F̃m1 )

deep water, all sea states (6.3.8)

T̃ = T̃∞ tanh(k2 F̃m2 )

4 Toba (1972, 1973, 1997) used such relationships to propose the following universal relationship between the
dimensionless significant wave height and period (for wind sea): H̃∗ = β (T̃∗)3/2, where H̃∗ = gH1/3/u2∗, T̃∗ =
gT1/3/u∗ and β is a universal constant. These findings are supported by many field observations. With the results
of Kahma and Calkoen (1992), the power in this expression of Toba (expressed in terms of U10 rather than u∗
would be b1/b2 = 1.7 instead of 3/2.
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Figure 6.3 The dimensionless significant wave height and period (see Eqs. 6.3.4
and 6.3.5) as a function of dimensionless fetch of Kahma and Calkoen (1992),
Pierson and Moskowitz (1964) and Young and Verhagen (1996a; as modified by
Breugem and Holthuijsen, 2006).

For long fetches, these expressions reduce to H̃ = H̃∞ and T̃ = T̃∞ respec-
tively (compare with Eq. 6.3.6); and for short fetches, to H̃ = H̃∞k1 F̃m1 and
T̃ = T̃∞k2 F̃m2 , respectively (compare with Eq. 6.3.7). Some recent results are
given in Fig. 6.3 and Note 6B.

NOTE 6B Growth curves of significant wave height and peak
period (deep water)

Young and Verhagen (1996a), added two parameters, p and q, to the tanh expressions
of Eq. (6.3.8) to control the transition from young sea states to the fully developed sea
state:

H̃ = H̃∞[tanh(k1 F̃m1 )]p and T̃ = T̃∞[tanh(k2 F̃m2 )]q

They estimated the values of these transition parameters from their observations in
Lake George (Australia) using the mean wind over the upwind fetch, instead of the
local wind speed. Breugem and Holthuijsen (2006) corrected their results by removing
observations that seemed to have been affected by the shadowing effect of the lateral
coastlines of Lake George. These modified growth curves of Young and Verhagen
(1996a) reduce to those of Kahma and Calkoen (1992) for short fetches and to the
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limit values of Pierson and Moskowitz (1964) for long fetches. The corresponding
values of the coefficients5 are summarised in the following table. The growth curves
are given in Fig. 6.3.

The coefficients representing idealised wind-wave growth in deep water

Pierson and Moskowitz
(1964) fully developed
sea state, Eqs. (6.3.8)
and this note

Kahma and Calkoen
(1992)
young sea states, Eqs.
(6.3.7)

Young and Verhagen
(1996a)
modified by Breugem
and Holthuijsen (2006)
all sea states, this note

H̃ = H̃m0 H̃∞ = 0.24 a1 = 2.88 × 10−3

b1 = 0.45
H̃∞ = 0.24
k1 = 4.14 × 10−4

m1 = 0.79
p = 0.572

T̃ = T̃peak T̃∞ = 7.69 a2 = 0.459
b2 = 0.27

T̃∞ = 7.69
k2 = 2.77 × 10−7

m2 = 1.45
q = 0.187

An intriguing aspect of the idealised case is the applicability of the growth curves
to conditions under which the upwind coastline is not straight and perpendicular
to the wind. A special case occurs when the coastline is straight but slants across
the wind direction. Observations show that the mean direction of the waves at the
high frequencies is then aligned with the wind direction (these frequencies are fully
developed and are affected only by the wind) but the mean wave direction at the
lower frequencies tends to be oriented parallel to the coast (these frequencies are
affected by the coastline, which is asymmetrical with respect to the wind direction).
A closely related phenomenon is the slower growth of the waves if the lateral
coastline limits the width of the fetch, for instance in a narrow bay or fjord with the
wind blowing along the axis of the bay or fjord (see the comments on Lake George
in Note 6B).

It may be noted that fully developed wave conditions are almost unrealisable
because very long fetches would be needed. For instance, the dimensionless fetch for
fully developed conditions is approximately 2 × 104 (see Fig. 6.3). This corresponds
to a fetch of 1800 km for a wind speed of 30 m/s, 460 km for a wind speed of
15 m/s, or 115 km for a wind speed of 7.5 m/s. These fetches are unrealistically
large for these (constant) wind speeds. However, fully developed conditions may

5 These coefficients relate to conditions with neutral atmospheric stability. Young (1998) gives corrections for
non-neutral atmospheric conditions.



6.3 Wave modelling for idealised cases 155

occur when the wind speed suddenly drops at some point along the fetch. The value
of the dimensionless significant wave height (the significant wave height made
dimensionless with the lower wind speed) at that point then increases, possibly to
a value higher than the nominal fully developed value of about 0.24 (the waves are
said to be over-developed).

Literature:
CEM (2002), Donelan et al. (1985), Holthuijsen (1983b), Kahma (1981), Kahma and Pet-
tersson (1994), Kawai et al. (1977), Seymour (1977), SPM (1973, 1984), Wyatt (1995),
Young and Verhagen (1996a).

6.3.3 The one-dimensional wave spectrum

In many of the above studies, not only were H̃ and T̃ obtained as a function of
F̃ , but so was also the wave spectrum E( f ). The most important contribution in
this context is from the JOint North Sea WAve Project (JONSWAP; Hasselmann
et al., 1973). An example observation obtained during JONSWAP is shown in
Fig. 6.4. The upper panel of Fig. 6.4 shows that, under idealised conditions of wave
generation, the spectrum evolves from the high frequencies to lower frequencies.
A remarkable feature of this evolution is that the spectrum retains its shape along
the fetch. At first glance, the spectral shape seems to sharpen with increasing fetch,
but normalising the observed spectra reveals the evolution of the shape of the
spectrum. This is shown in the lower panel of Fig. 6.4, where the same spectra as
in the upper panel are normalised with the maximum variance density E( fpeak) and
peak frequency fpeak.

The high-frequency tails of these fetch-limited spectra have the same shape
as the tails of the fully developed spectra observed by Pierson and Moskowitz
(1964). This shape was suggested as early as 1958 by Phillips (1958), who derived
this supposedly universal characteristic with a dimensional analysis based on an
assumed behaviour of the high frequencies. His hypothesis was that wave breaking
limits the spectral level of the high frequencies. Since breaking is dominated by
gravitational acceleration, the variance density would then depend only on the
frequency ( f ) and the gravitational acceleration (g):

E( f ) ∼ ga f b high-frequency tail, deep water (6.3.9)

Since the dimension of the variance density E( f ) is [m2/Hz] = [m2 s], it follows
from Eq. (6.3.9) that

[m2s] = [ms−2]a [s−1]b (6.3.10)
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Figure 6.4 Spectra observed during the Joint North Sea Wave Project (JON-
SWAP) under idealised, deep-water conditions: upper panel, observed spectra (after
Hasselmann et al., 1973); lower panel, same spectra but normalised.

Since the powers of the units m and s should be equal on both sides of the = sign, it
follows that a = 2 and b = −5. The expression for a breaking-dominated spectral
tail would therefore be6

E( f ) ∼ g2 f −5 high-frequency tail, deep water (6.3.11)

It must be stressed that these arguments are based on a plausible but unsubstantiated
physical argument, namely that the shape of the tail of the spectrum is dominated

6 An alternative reasoning, with the same result, is given by Thornton (1977), who argued that breaking occurs when
the forward speed of the water particles at the surface exceeds the propagation speed of the wave itself. This leads
to a shape of the spectral tail E( f ) ∼ c2 f −3, which in deep water, with c2 = g2 (2π f )−2, is E( f ) ∼ g2 f −5.
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by wave breaking. We will see that the truth is more complicated than that (other
processes are involved too; see Section 6.4). The result of the analysis of Phillips
(1958) may well therefore be invalid; in fact, Phillips has repeatedly expressed
his surprise that his arguments are still considered valid after all these years (e.g.,
Phillips, 1985). However, the analysis of Phillips is a nice illustration of a dimen-
sional analysis and, in spite of its flawed basis, the conclusion that the shape of the
tail is f −5 has been confirmed in many studies, including Pierson and Moskowitz
(1964) and JONSWAP (Hasselmann et al., 1973). However, others have argued
that the high-frequency tail depends not only on g but also on the wind speed. For
instance, Toba (1973) included the friction velocity u∗ and found

E( f ) ∼ gu∗ f −4 high-frequency tail, deep water (6.3.12)

The question of whether the shape of the spectral tail under these idealised deep-
water conditions is f −5 or f −4 is still being discussed (see Note 6C), but the answer
to this question does not seem to be important for engineering applications because
the effect is often barely noticeable. The engineering community has always used
the f −5-tail and will presumably do so for the foreseeable future.

NOTE 6C The f −4-shape of the spectral tail

The theoretical grounds for the f −4-shape of the spectral tail are based on the physical
processes of generation, wave–wave interactions and dissipation involved (e.g., Kitaig-
orodskii, 1983; Phillips, 1985; Resio, 1987; Young and van Vledder, 1993; Komatsu
and Masuda, 1996; Perrie and Zakharov, 1999; Resio et al., 2004). There is also an abun-
dance of observations that supports the f −4-shape (e.g., Kawai et al., 1977; Mitsuyasu,
1977; Mitsuyasu et al., 1980; Kahma, 1981; Forristall, 1981; Donelan et al., 1985;
Hwang et al., 2000a; Resio et al. 2004). Even the original observations of JONSWAP
and Pierson and Moskowitz agree better with the f −4-shape than with the f −5-shape
(see Battjes et al., 1987; Alves et al., 2003). Others have found values of the power
of f between 2 and 10 (e.g., Mitsuyasu, 1977; Forristall, 1981; Huang et al., 1981;
Hansen et al., 1990). Banner (1990a) finds the f −4-tail for the frequency spectrum but
an f −5-tail for those wave components in the two-dimensional spectrum that travel
downwind.

If the spectral tail were indeed proportional to f −4, then the proportionality coef-
ficient αToba in E (ω) = αTobagu∗ω−4 (as originally formulated by Toba, 1973) would
be a universal constant. This seems to be supported by the review of Battjes
et al. (1987), who found for the spectra observed in JONSWAP and six other field
studies αToba = 0.096 (average of their Table 2 for field observations) and no depen-
dence on the dimensionless peak frequency (see also Phillips, 1985 and Janssen, 2004;
but Donelan et al., 1985 did find a dependence).
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In view of the support for the f −4-tail, Donelan et al. (1985) suggested modify-
ing the JONSWAP spectrum (see Eq. 6.3.15) accordingly, simply by replacing f −5

with f −4 fpeak (and replacing the coefficient 5/4 with unity to retain fpeak as the peak
frequency):

EDonelan( f ) = αDonelang2(2π )−4 f −4 f −1
peak exp

[
−
(

f

fpeak

)−4]

×γ
exp

[
− 1

2

(
f/ fpeak−1

σDonelan

)2]
Donelan

Comparing this expression with the above expression of Toba (1973) (remember to
include the Jacobian when transforming the expression of Toba from the ω-domain
to the f -domain) shows that αDonelan = αTobau∗ωpeak/g. Other alternatives to the JON-
SWAP spectrum have also been proposed, e.g., the Mitsuyasu spectrum and the Wallops
spectrum (see Huang et al., 1990a). However, the JONSWAP spectrum is still by far
the most widely used spectrum.

The variance density in the above expression for the spectral tail has no upper
limit: it approaches infinity for low frequencies (see Fig. 6.5). To approximate
observed spectra therefore, over the entire frequency range, the f −5-expression
needs to be cut off at some low frequency. Pierson and Moskowitz (1964) used a
smooth cut-off function, which is zero at low frequencies and unity at high frequen-
cies (thus retaining the f −5-shape for these high frequencies). The fully developed
spectrum, called the Pierson–Moskowitz spectrum, thus obtained (see Fig. 6.5) is7

EPM( f ) = αPMg2(2π )−4 f −5 exp

[
−5

4

(
f

fPM

)−4
]

(6.3.13)

fully developed spectrum in deep water

where αPM and fPM are the energy scale and the peak frequency, respectively.8

Since the Pierson–Moskowitz spectrum (or PM spectrum) is assumed to represent
fully developed conditions in deep water, the peak frequency can depend only on

7 The original expression was formulated in terms of the radian frequency ω. If re-written in terms of frequency
f , the transformation factor is (2π )−5 multiplied by a Jacobian of 2π, giving the factor (2π )−4 in Eq. (6.3.13).

8 This expression can be generalised, using the peak frequency to retain the proper dimensions:
E( f ) = αg2(2π )1−m f m−5

peak f −m exp[− (m/n)( f/ fpeak)−n] with the zeroth-order moment m0 = �[(m − 1)/n]

×[αg2 f −4
peak (2π )1−m (n/m)(m−1)/n/n], where �[.] is the gamma function, which is available in any math-

ematical reference book, e.g., Abramowitz and Stegun (1965). Alternatively, the expression can also
be generalised by using the wind speed: E( f ) = αgm−3U 5−m (2π )1−m f −m exp[− (m/n) ( f/ fpeak)−n],
where U is a wind speed (it may be U10 or u∗). The zeroth-order moment then is m0 =
�[(m − 1)/n]

[
αgm−3U 5−m f 1−m

peak (2π )1−m (n/m)(m−1)/n/n
]
. The coefficient α is not necessarily identical in

these two generalisations. For a Pierson–Moskowitz-type spectrum (m = 5, n = 4), both expression for m0

reduce to m0 = (1/5) αg2(2π )−4 f −4
peak .
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Figure 6.5 The high-frequency tail for the wind-sea spectrum suggested by Phillips
(1958) and the smooth low-frequency cut-off suggested by Pierson and Moskowitz
(1964), creating the Pierson–Moskowitz spectrum.

the wind speed. By fitting Eq. (6.3.13) to their observations, Pierson and Moskowitz
(1964) found αPM = 0.0081 and the dimensionless peak frequency fPMU19.5/g =
0.14. For U19.5 ≈ 1.075 U10 (see Section 6.3.2), it follows that f̃PM = fPMU10/g =
0.13. The corresponding values for the dimensionless significant wave height and
period are H̃∞ = 0.24 and T̃∞ = 1/ f̃PM = 7.69 (see Section 6.3.2). Alves et al.
(2003) carefully re-analysed the observations of Pierson and Moskowitz (1964) and
confirmed these values in these observations. Ewing and Laing (1987) found from
other observations that these values overestimate fully developed wave conditions
for wind speeds lower than 16 m/s.

The spectra observed during JONSWAP appear to have a sharper peak than
the Pierson–Moskowitz spectrum. To account for this in a parameterisation of
the observations, the scientists of JONSWAP chose to take the shape (!) of the
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Pierson–Moskowitz spectrum (not its energy scale or frequency scale, of course)
and to enhance its peak with a peak-enhancement function G( f ):

G( f ) = γ
exp

[
− 1

2

(
f/ fpeak−1

σ

)2
]

(6.3.14)

in which γ is a peak-enhancement factor and σ is a peak-width parameter (σ = σa

for f ≤ fpeak and σ = σb for f > fpeak to account for the slightly different widths
on the two sides of the spectral peak; see Fig. 6.6). This sharpens the spectral peak,
but has no effect on other parts of the spectrum. This idealised spectrum is called
the JONSWAP spectrum. Its complete expression is9

EJONSWAP( f ) = αg2(2π )−4 f −5 exp

[
−5

4

(
f

fpeak

)−4
]
γ

exp

[
− 1

2

(
f/ fpeak−1

σ

)2
]

← →
Pierson–Moskowitz shape

← →
JONSWAP

fetch-limited in deep water (6.3.15)

Since the fetch during JONSWAP was rather limited, no transition of the spec-
trum to the fully developed sea state was observed. However, results from many
studies have confirmed this result of JONSWAP over fetches that are most rele-
vant to the engineer. In addition, the JONSWAP spectrum has been shown to be
rather universal, not only for idealised fetch-limited conditions but also for arbi-
trary wind conditions in deep water, including storms and hurricanes. The reason
for this is that, for sufficiently steep waves, the quadruplet wave–wave interactions
(see Section 6.4.4) tend to stabilise the shape of the spectrum into the JONSWAP
shape.10 Since design conditions are often storm conditions (i.e., with relatively
steep waves), the JONSWAP spectrum is the design spectrum for many engineers.
The JONSWAP spectrum does not apply to swell11 because the steepness of swell
is low and the shape-stabilising capacity of the quadruplet wave–wave interactions
is therefore weaker or practically absent.

The values of the energy scale parameter α, the frequency scale parameter fpeak

and the shape parameters γ , σa and σb develop as the spectrum develops.

9 To the best of my knowledge, this expression cannot be integrated analytically. However, good approximations
for zero-, first- and second-order moments, m−2, m−1, m0, m1 and m2, are given by Yamaguchi (1984)
for σa = 0.07, σb = 0.09 and γ = 1−10, e.g., m0 = αg2(2π )−4 f −4

peak(0.065 33γ 0.8015 + 0.134 67), which is
accurate to within 0.25% for 1 ≤ γ ≤ 10.

10 Actually, the Donelan spectrum with an f −4-tail (see Note 6C), but for engineering purposes this spectrum
closely resembles the JONSWAP spectrum.

11 See Section 6.4.2.
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Figure 6.6 The Pierson–Moskowitz spectrum, the shape of the Pierson–Moskowitz
spectrum and the shape of the JONSWAP spectrum.

Kahma and Calkoen (1992), on the basis of their compilation (see Section 6.3.2),
suggested the following dependence of f̃peak = f̃peakU10/g on dimensionless
fetch F̃:

f̃peak = 2.18F̃− 0.27 (6.3.16)

which does not account for the transition to the fully developed situation, in which
f̃peak = 0.13. Instead, Eq. (6.3.8) with f̃peak = 1/T̃peak may be used for this. The
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energy scale parameter α is equally a function of dimensionless fetch F̃ but it can
also be expressed in terms of the dimensionless peak frequency, e.g., from Lewis
and Allos (1990):

α = 0.0317 f̃ 0.67
peak (6.3.17)

In JONSWAP, the scatter in the values of the shape parameters γ , σa and σb was
so large that no dependence on the dimensionless fetch could be discerned. The
average values were γ = 3.3, σa = 0.07 and σb = 0.09. Others have repeated the
JONSWAP study at different times and locations with essentially the same results.
The transition to fully developed sea states is apparently poorly defined but, if
required, it can be obtained with (Lewis and Allos, 1990; see also Eqs. 8.3.10
and 8.3.11)

γ = 5.870 f̃ 0.86
peak

σa = 0.0547 f̃ 0.32
peak (6.3.18)

σb = 0.0783 f̃ 0.16
peak

These relationships are consistent with the JONSWAP observations but they have
been forced to be equal to the values of α = 0.0081 and γ = 1.0 for the Pierson
and Moskowitz spectrum at f̃peak = 0.13 (the values of σa and σb are irrelevant
when γ = 1.0).

Literature:
Alves et al. (2003), Ewing and Laing (1987), Huang et al. (1981, 1990a), Mitsuyasu
(1968, 1969), Mitsuyasu et al. (1980), Phillips (1985), Resio et al. (1999), Toba (1973,
1997).

6.3.4 The two-dimensional wave spectrum

The two-dimensional frequency–direction spectrum is difficult to observe, as noted
in Chapter 2. Usually, only some overall directional characteristics are observed,
notably the mean direction and the directional width of the spectrum (representing
the degree of short-crestedness of the waves). This concept of directional width
requires the introduction of the directional distribution D(θ ; f ). It is essentially
the cross-section through the two-dimensional spectrum at a given frequency,
normalised such that its integral over the directions is unity. In other words,
it is a normalised, circular transect through the two-dimensional spectrum (see
Fig. 6.7):

D(θ ; f ) = E( f, θ )

E( f )
(6.3.19)
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Figure 6.7 The directional energy distribution at a given frequency under arbitrary
conditions and its (one-sided) directional width σθ .

That the integral over directions of this function is unity is readily shown as
follows:

∫ 2π

0
D(θ ; f ) dθ=

∫ 2π

0

E( f, θ )

E( f )
dθ =

∫ 2π

0
E( f, θ ) dθ

E( f )
= E( f )

E( f )
= 1 (6.3.20)

Note that the directional distribution D(θ ; f ) gives the normalised distribution
of the wave energy density over directions at one frequency, whereas the two-
dimensional spectrum E( f, θ ) gives the non-normalised distribution over both
frequency and direction. Obviously D(θ ; f ) may vary with frequency. Very often
such frequency-dependence is ignored in the notation, so that D(θ ; f ) is often writ-
ten as D(θ ) = D(θ ; f ). Strictly speaking D(θ ; f ) is dimensionless, but it can be
considered to have a unit of [1/angle], i.e., [1/rad] or [1/degree].

The directional spreading of the waves can be defined as the (one-sided) direc-
tional width of D(θ), denoted as σθ (see Fig. 6.7), in analogy with the conventional
definition of standard deviation: σ 2

θ = ∫ +π

−π
θ2 D(θ )dθ (where θ is taken relative to

the mean wave direction). However, for various reasons, it is better to replace θ

with sin θ , or better still, by 2 sin
(

1
2θ

)
, so that

σ 2
θ =

∫ +π

−π

[
2 sin

(
1
2θ

)]2
D(θ) dθ (6.3.21)

Young et al. (1996) and Ewans (1998) have published a large number of obser-
vations of σθ , which are summarised in Fig. 6.8, showing that σθ varies from
approximately 30◦ at the peak frequency fpeak to about 60◦ at 3 fpeak (but the scatter
in the observations is rather large). They report finding little or no dependence of
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Figure 6.8 The directional width (one-sided) of the directional energy distribution
D (θ ; f ) as a function of normalised frequency and the expression of Eq. 6.3.22.
Observations of Young et al. (1996) and Ewans (1998).

σθ on wind speed. A reasonable fit to their observations is

σθ =
{

26.9( f/ fpeak)− 1.05 in degrees, for f < fpeak

26.9( f/ fpeak)0.68 in degrees, for f ≥ fpeak
(6.3.22)

The shape of the distribution D(θ ) is not well known, not even in the idealised
situation that we consider here. It is usually speculated that this distribution has a
maximum in the wind direction (most of the wave energy travelling downwind) and
that it falls off gradually to the offwind directions (see Fig. 6.9, but see Note 6D).
Several expressions with this character have been suggested to describe D(θ ). The
best-known and probably most widely used is the cos2θ model (e.g., Pierson et al.,
1952):

D(θ ) =
{ 2

π
cos2θ for |θ | ≤ 90◦

0 for |θ | > 90◦
(6.3.23)

where the direction θ is taken relative to the mean wave direction. Its directional
width σθ ≈ 30◦. As Eqs. (6.3.22) show, this value agrees well with observations
near the peak frequency. Moreover, it is a constant, i.e., independent of wind and
frequency, which is convenient for many engineering applications. To obtain more
flexibility, this model has been generalised to the cosmθ model:

D(θ ) =
{

A1 cosmθ for |θ | ≤ 90◦

0 for |θ | > 90◦ (6.3.24)
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Figure 6.9 The cos2s( 1
2θ ) model for the directional energy distribution under

idealised conditions.

where A1 = �( 1
2 m + 1)/[�

(
1
2 m + 1

2

)√
π ] is a normalisation coefficient (in which

� (.) is the gamma function, see footnote in Section 6.3.3) so as to have∫ 2π
0 D(θ )dθ = 1. The power m in this model controls the width of the distribu-

tion. A similar model for the directional distribution is (e.g., Longuet-Higgins
et al., 1963; Mitsuyasu et al., 1975)

D (θ ) = A2 cos2s
(

1
2θ

)
for −180◦ < θ ≤ 180◦ (6.3.25)

where A2 = �(s + 1)/[�
(
s + 1

2

)
2
√
π ] and the power s controls the width of the

distribution (see Fig. 6.9).
The relationship between the directional width σθ and the width parameter

s is

σθ =
√

2

s + 1
in radians (6.3.26)

The variation of s over frequencies is readily determined from Eqs. (6.3.22)
and (6.3.26). The most remarkable difference between the cosmθ model and the
cos2s( 1

2θ ) model is that the former limits wave propagation to a sector of 90◦ on
either side of the mean wave direction,whereas the latter allows waves to propagate
against the wind (i.e., θ larger than 90◦). Which of the two directional models is
better in this respect is simply not known, because observations and theory are not
clear on this issue. Other models for the directional distribution have also been
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suggested, e.g., the wrapped-normal distribution, which has the shape of the Gaus-
sian distribution (see Note 6D).

Literature:
Apel (1994), Banner and Young (1994), Benoit et al. (1997), Cote et al. (1960), Donelan
et al. (1985), Elfouhaily et al. (1997), Ewans (1998), Forristall and Ewans (1998), Goda
(1997), Hasselmann et al. (1980), Holthuijsen (1983b), Hwang et al. (2000b), Kuik et al.
(1988), Mardia (1972), Mitsuyasu et al. (1975), Pierson et al. (1955), Tucker and Pitt (2001),
Young (1994), Young et al. (1995).

NOTE 6D The bimodal directional distribution of wave energy

Observations show that the directional distribution at the peak frequency in the
two-dimensional wave spectrum is relatively sharp and unimodal, but that it flat-
tens towards higher frequencies and becomes bimodal at frequencies higher than
approximately twice the peak frequency, i.e., the directional distribution at these fre-
quencies has maxima in two symmetrical directions slightly off the wind direction
(see illustration below; e.g., Holthuijsen, 1983b; Jackson et al., 1985; Banner and
Young, 1994; Young et al., 1995; Ewans, 1998; Hwang et al., 2000b; Wang and
Hwang, 2001a, 2001b). This corresponds well to the visual impression of waves
that are being generated by a local wind. Under these conditions, the waves seem
to create a diamond pattern of wave crests and troughs (I spent many hours fly-
ing over the sea surface, watching waves under such conditions and found this con-
firmed in stereo-photographs taken during these flights; e.g. Holthuijsen, 1983b). Sver-
drup and Munk (1946) already alluded to this phenomenon when they observed that
‘. . . the waves travel in different directions . . . and the consequent crisscross-
ing leads to a checkerboard pattern of crests and troughs . . .’ This bimodality
seems to be generated by the quadruplet wave–wave interactions (see Section 6.4.4,
e.g., Longuet-Higgins, 1976; Young and van Vledder, 1993; Banner and Young,
1994).

Ewans (1998) proposed to parameterise the directional distribution correspondingly
as the sum of two identical wrapped-around Gaussian distributions, each symmetrically
shifted relative to the mean wave direction. The expression for this model is (slightly
simplified, for didactic reasons only; see the illustration below)
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for − ∞ < θ < ∞

where θ∗
peak

is the direction of each of the two directional peaks, relative to the mean wave
direction, and σ ∗

θ
is the directional width of each of the two Gaussian distributions. From
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his observations, Ewans (1998) deduced (see also Wang and Hwang, 2001a, 2001b and
Hwang and Wang, 2001), in degrees,

for f < fpeak: θ∗
peak

= 7.5

σ ∗
θ = 11.4 + 5.4

(
f

fpeak

)−7.9

for f ≥ fpeak : θ∗
peak

= 0.5 exp

[
5.45 − 2.75

(
f

fpeak

)−1
]

σ ∗
θ = 32.1 − 15.4

(
f

fpeak

)−2

Such a function, composed of two Gaussian distributions, is relatively sharp and uni-
modal if the peak directions are relatively close together (θ∗

peak
< σ ∗

θ ), rather flat for
θ∗

peak
≈ (1−2) σ ∗

θ and bimodal for θ∗
peak

> 2σ ∗
θ :

The directional energy distribution of ocean waves deduced by Ewans (1998).

6.4 Wave modelling for arbitrary cases (oceanic waters)

Wave predictions are hardly ever required in the above idealised situation. Such
a situation is normally considered only in order to get a first estimate of wave
conditions in simplified situations or to calibrate and verify theoretical or numerical
wave models. This may be reasonable for small scales or in trade-wind or monsoon
areas where the wind is more or less constant but, in the most energetic ocean
regions of the world, the wind varies rather rapidly in both time and space. This
simple approach is then totally inadequate. This is certainly true for the mid-latitude
(extra-tropical) storms and obviously also for hurricanes.
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Figure 6.10 Following all wave components, as they travel across the ocean, along
wave rays, to a prediction point, while accounting for all processes of generation,
wave–wave interactions and dissipation, gives the spectrum at that location (on an
oceanic scale, the wave rays are great-circles, which appear as straight lines on a
great-circle map).

To introduce wave modelling for arbitrary cases, we will assume the random-
phase/amplitude model (the sea-surface elevation is the summation of a large
number of independent wave components; see Section 3.5.2 and Fig. 6.10). A
wave prediction is then based on predicting each of these independent wave
components individually: the spectral density E = E( f, θ ) of each wave com-
ponent is considered as it varies in time (t) and horizontal position12 (x, y):
E( f, θ ) = E( f, θ ; x, y, t).

If we wish to predict the spectrum at a certain location in the ocean (see Fig.
6.10), we need only follow each and every wave component across the ocean from
its point of inception (at a coastline) to the prediction point and account for all
effects of generation, wave–wave interaction and dissipation that it encounters.
More properly formulated: we need to integrate the evolution equation of the wave
energy, while travelling along the wave ray at the group velocity, from the coast to
the prediction point.

Literature:
Donelan and Hui (1990), Komen et al. (1994), Sobey (1986).

12 On a large scale we should interpret the horizontal co-ordinates as spherical co-ordinates; on a smaller scale
we may use Cartesian co-ordinates. For convenience’s sake, I will use Cartesian co-ordinates and show the
slightly more complicated spherical alternative only when required.
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6.4.1 The energy balance equation

The evolution of the energy density of each wave component ( f, θ ) can be obtained
by integrating an energy evolution equation while propagating with the group veloc-
ity along a wave ray:

dE( f, θ ; x, y, t)

dt
= S( f, θ ; x, y, t) (6.4.1)

where the term on the left-hand side is the rate of change of the energy density, and
dx/dt = cg,x and dy/dt = cg,y (where cg,x and cg,y are the x- and y-components of
the group velocity of the wave component under consideration), and frequency and
direction are constant (in deep water). The term on the right-hand side (called the
source term) represents all effects of generation, wave–wave interactions and dis-
sipation. Conceptually this (Lagrangian) approach is very straightforward because
in deep water the wave rays are straight lines or great-circles13 and Eq. (6.4.1)
needs only to be integrated along these lines. For one prediction point, the set of
all relevant wave rays (all directions and frequencies) is a fan of straight lines or
great-circles centred at that prediction point (see Fig. 6.10).

The integration of the source term along each of these rays would not be difficult
if that term were known along the rays. That, unfortunately, is not the case: it will be
shown later that, at each point along the ray, the source term depends not only on the
component that is being followed, but also on the entire, two-dimensional spectrum,
at that point, i.e., on wave components that cross the wave ray (on their way across
the ocean). The energy densities of these other components are not known (they
travel along other wave rays), so the Lagrangian approach cannot be used for
computations. It is conceptually attractive, but we need to use another approach
for computations. Two alternatives are available: (a) use another formulation that
avoids the problem or (b) simplify the source term so that it is independent of the
other wave components. The first alternative is provided by the Eulerian approach,
in which the spectrum is computed not only at a single prediction point but rather
at a large number of locations in the ocean simultaneously with a local energy
balance at each of these locations. This approach is fundamentally correct and it
is used in advanced wave modelling (second- and third-generation wave models;
see Section 6.4.7). The second alternative is to formulate the source term such that
it depends only on the wave component that is being followed along the ray and
on external parameters such as the wind but not on other wave components (first-
generation wave models; see Section 6.4.7). This is a rather simple and economical

13 On large (oceanic) scales, the straight lines should be interpreted as great-circles (the cross-section of the globe
with a flat plane through the centre of the globe; the shortest distance between two points on the globe is
measured along a great-circle). The wave direction, in the corresponding system of spherical co-ordinates, then
slowly varies along a great-circle as the wave travels across the ocean (due to the convergence of the meridians
towards the poles); thus, for spherical propagation, the wave direction cannot be said to be constant.
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Figure 6.11 A regular (longitude, latitude) grid for the Eulerian approach of wave
modelling in oceanic waters. The energy balance is considered for each individual
wave component in each individual geographic cell.

approach and it does provide reasonable results, but with present-day computers it
is no longer needed and it will not be treated here.14

The Eulerian formulation treats the energy balance of the waves on a regular
geographic grid, either a Cartesian x, y-grid (for small areas) or a longitude-latitude
λ, ϕ-grid (for larger areas; see Fig. 6.11). To derive the local energy balance for
this approach, consider one cell of the geographic grid (size �x in the x-direction
and �y in the y-direction); see Fig. 6.12. The energy balance for this cell (and all
others in the grid) is essentially the bookkeeping of the energy of an arbitrary wave
component ( f, θ ) travelling through this cell, i.e., balancing the change of energy
in the cell over time interval �t against the net import and the local generation of
energy:

change of energy in cell = net import of energy

+ local generation of energy (6.4.2)

The term on the left-hand side of this balance is equal to the energy in the cell
at the end of the interval, minus the energy in the cell at the start of the interval.

14 Another alternative, which is not used very often, is a hybrid approach, which combines the Lagrangian approach
(for propagating the waves) with an Eulerian approach (to determine the source term).
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Figure 6.12 The energy propagation through one cell of the regular grid projected
onto the ocean in the Eulerian approach.

Ignoring the dependence on x, y and t in the notation, this can be written as (see
Fig. 6.12)

change of energy in cell =
(

E( f, θ )�x �y + ∂E( f, θ )

∂t
�x�y�t

)
− E( f, θ)�x�y

= ∂E( f, θ )

∂t
�x�y�t (6.4.3)

The first term on the right-hand side of the energy balance of Eq. (6.4.2) is the
net import of energy into the cell during interval �t . For the x-direction it is
equal to the energy import through the left-hand side of the cell (with propagation
speed cg,x = cg cos θ ; the cell width is �y) minus the energy export through the
right-hand side of the cell (with an energy transport that has evolved over the
distance �x ; see Fig. 6.12):

net import of energy in the x-direction = cg,x E( f, θ )�y�t

−
(

cg,x E( f, θ ) + ∂cg,x E( f, θ )

∂x
�x

)
�y�t

= −∂cg,x E( f, θ )

∂x
�x�y�t (6.4.4)
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Similarly, the net import of energy in the y-direction during the interval �t is

net import of energy in the y-direction = −∂cg,y E( f, θ )

∂y
�x�y�t (6.4.5)

The second term on the right-hand side of the energy balance of Eq. (6.4.2) repre-
sents the locally generated energy in the cell, during the time interval �t :

locally generated energy = S( f, θ )�x�y�t (6.4.6)

where S( f, θ ) is the source term, representing all effects of generation, wave–wave
interactions and dissipation per unit time per unit surface area. So, in total, the
energy balance for the cell �x�y over the time interval �t is (substitute Eqs.
6.4.3–6.4.6 into Eq. 6.4.2)

∂

∂t
E( f, θ)�x�y�t = −∂cg,x E( f, θ)

∂x
�x�y�t

− ∂cg,y E( f, θ )

∂y
�x�y�t + S( f, θ )�x�y�t (6.4.7)

where cg,x = cg cos θ and cg,y = cg sin θ and cg is the propagation speed of wave
energy (the group velocity, see Eqs. 5.4.31 and 5.5.13). Dividing all terms by
�x �y �t and moving the transport terms to the left-hand side gives the Eulerian
spectral energy balance equation for each wave component, each cell, at each
moment in time. Adding the dependence on time and horizontal space again in the
notation gives

∂E( f, θ ; x, y, t)

∂t
+ ∂cg,x E( f, θ ; x, y, t)

∂x
+ ∂ cg,y E( f, θ ; x, y, t)

∂y
= S( f, θ ; x, y, t) deep water

(6.4.8)

This spectral energy balance is the third most important concept in this book.

In deep water (not in shallow water), the propagation speeds cg,x and cg,y are
independent of x and y, and they can be taken out of the derivatives (in Eq. 6.4.8):

∂E( f, θ )

∂t
+ cg,x

∂E( f, θ )

∂x
+ cg,y

∂E( f, θ )

∂y
= S( f, θ ) (6.4.9)

This equation is mathematically identical to the energy evolution equation along
a wave ray in deep water (see Eq. 6.4.1): dE( f, θ ; x, y, t)/dt = S( f, θ ; x, y, t). In
coastal waters, where the wave length and direction are affected by the bottom
topography, see Chapters 7 and 8, such an identity does not exist.
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The source term S = S( f, θ ; x, y, t) is often written as

S = Sin + Snl4 + Swc (6.4.10)

with Sin , Snl4 and Swc representing, separately, the processes of wave generation
by wind, quadruplet wave–wave interaction and dissipation by white-capping (see
Note 6E). These processes will be treated in the following but it must be noted
that our understanding of these processes is far from complete. The quadruplet
wave–wave interactions in deep water are well understood; the generation by wind
is only reasonably well understood; and dissipation by white-capping is barely
understood. The formulations that represent the last two processes in operational
wave models are therefore to a large extent empirical (i.e., based on observations,
intuition, speculation and calibrations).

NOTE 6E Nonlinear processes and the random-phase/amplitude model
(oceanic waters)

The source term S = Sin + Snl4 + Swc represents two types of processes:
(a) Wind–wave interaction, i.e., the process of wave generation by wind (Sin), which

is usually represented by the feedback theory of Miles (1957; see Section 6.4.3).
In this theory, the wave components are treated as independent, in compliance with
the random-phase/amplitude model of the waves (see Section 3.5.2). The extension
of this theory by Janssen (1991a) involves some degree of wave–wave interaction
(the energy transfer from wind to one wave component depends on other wave com-
ponents). Strictly speaking, this violates the basis of the random-phase/amplitude
model.

(b) Wave–wave interactions are processes that, for fairly steep waves, only, (1) transfer
energy from one wave component to another and (2) may couple the phases of the
wave components involved. In deep water, these processes are mostly quadruplet
wave–wave interactions and white-capping (Snl4 + Swc). Such energy transfer and
phase-coupling is a violation of the random-phase/amplitude model, in which the
components are assumed to be independent. An obvious example is provided by the
Stokes wave (see Section 5.6.2), in which the phases of the primary harmonic and
its higher harmonics are equal. Such phase-coupling is also evident in the shape of
breaking waves (sharp crests) and in the deviation from the Gaussian model for the
instantaneous surface elevation (see Section 4.3).

In advanced wave-prediction models (the third generation, see Section 6.4.7), energy
transfer is accounted for with a separate source term in the spectral energy balance
equation, but phase-coupling is not. Ignoring the phase-coupling may be locally impor-
tant for describing the shape of individual waves and for the short-term statistics of the
waves. However, considering the very reasonable results of these oceanic wave models,
it does not seem to be important on a larger scale, in deep water.
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For larger areas and certainly for global scales, where longitude–latitude co-
ordinates are required, the formulation of the energy balance of Eq. (6.4.8) needs
to be modified to account for the effects of propagation on a sphere (i.e., great-
circle propagation). The energy balance equation is then formulated, in spherical
co-ordinates, as

∂E( f, θ ; λ, ϕ, t)

∂t
+ ∂cg,λ E( f, θ ; λ, ϕ, t)

∂λ
+ (cosϕ)−1 ∂cg,ϕ cosϕ E( f, θ ; λ, ϕ, t)

∂ϕ

+ ∂cθ E( f, θ ; λ, ϕ, t)

∂θ
= S( f, θ ; λ, ϕ, t) (6.4.11)

where λ and ϕ are longitude and latitude, respectively, and cg,λ and cg,ϕ are the
group velocity components in longitude and latitude directions respectively, cg,λ =
(cg sin θ)/(R cosϕ) and cg,ϕ = (cg cos θ)/R, and cθ is the turning rate of the wave
direction due to the change in (nautical) direction as the wave travels along a great-
circle: cθ = cg sin θ tanϕ/R, where R is the Earth’s radius (the oblateness of the
Earth is normally ignored in wave models).

The above Eulerian approach of modelling waves in the ocean is represented
by only one equation: the energy balance equation Eq. (6.4.8) or Eq. (6.4.11), but
the integration of this equation over space and time involves a very large number
of points in geographic space and time and a large number of wave components.
For each combination of these points and components this equation must be com-
puted. This number of equations is very large: it is equal to the number of frequen-
cies in the spectrum (≈30, say), times the number of directions in the spectrum
(≈36, say), times the number of grid points in the geographic grid (≈10 000, say).
The total is therefore easily 10 000 000 equations, which need to be computed at
every time step of (typically) 15 min for the integration in time (i.e., about 500 times
for a five-day forecast)! This illustrates the considerable computing power that is
needed for an Eulerian oceanic wave model. The problem of the wave components
being interdependent, which forced the move from a Lagrangian approach to this
Eulerian approach, is now properly solved, but at a considerable price.

Literature:
Cavaleri and Malanotte-Rizzoli (1981), Gelci et al. (1956), Komen et al. (1994), Lavrenov
(2003), Snodgrass et al. (1966), SWAMP (1985).

6.4.2 Wave propagation and swell

The linear theory of surface gravity waves shows that in deep water the propagation
speed of the wave energy depends on the frequency of the wave component consid-
ered. The energy of low-frequency waves therefore travels faster than the energy of
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Figure 6.13 The frequency–direction dispersion of ocean waves transforms irregu-
lar, short-crested wind-sea waves in a storm into regular, long-crested swell outside
the storm.

high-frequency waves. The initially random wave field, as generated in a storm, will
therefore disintegrate when it moves out of the storm. It will disintegrate in fields
of more regular waves in the direction of propagation, with the low frequencies in
the lead and the high frequencies in the trailing edge (see Fig. 6.13). This process
is called frequency-dispersion. In addition to growing more and more regular, the
waves will also change from short-crested to long-crested because the waves in the
storm travel in a range of directions and the initial wave field will disintegrate in
these directions (see Fig. 6.13). This is called direction-dispersion. Waves that have
thus dispersed across the ocean are called ‘swell’.

To illustrate these dispersion phenomena with a simple, qualitative model, con-
sider a storm off the coast of Florida with a dominant westerly wind direction and
no wind outside that storm (see Fig. 6.13). Each wave component that is generated
in the storm leaves the storm more or less as a rectangular field of wave energy
with a width that is roughly equal to the width of the storm and a length that is
determined by the length and duration of the storm. Each such wave field leaving
the storm travels at the group velocity of the corresponding wave component and
in the direction of that component. The fastest travelling waves (i.e., the lowest
frequencies) will lead the forward propagation, while the directional spreading in
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Figure 6.14 The transformation by frequency dispersion and directional dispersion
of a wind-sea spectrum (dashed lines; in a storm) into a swell spectrum (solid
blocks; at geographic location P in Fig. 6.13).

the storm spreads the wave fields laterally. The initially random, short-crested wave
field therefore disintegrates into a large number of individual regular, long-crested
wave fields due to these differences in propagation speed and direction.15

At some moment in time, the leading low-frequency wave components have
arrived at an arbitrarily chosen point P in the ocean (see Fig. 6.13). After some
time, these components have passed that point, to be followed by other components
with slightly higher frequencies. These too will pass. After a while, therefore, all
components with frequencies lower than f1, say, have passed point P, whereas wave
components with higher frequencies (higher than f2, say) have not yet arrived. Only
components with frequencies between f1 and f2 are present at point P. This implies
that, at point P, wave energy is present only in the frequency range f1− f2 (see
Fig. 6.14). This causes the waves at point P to be much more regular than those
in the storm. Since frequency-dispersion becomes more pronounced as the waves
travel further across the ocean, this regular character increases with distance from
the storm. A beautifully regular swell on a sunny tropical beach (to make it a little
poetic) is the result of this frequency-dispersion of waves that have been generated
in a far-away storm.

15 This would be the case if the spectrum consisted of discrete frequencies and directions, as in numerical wave
models. This effect is called the ‘garden-sprinkler effect’ (SWAMP, 1985; Booij and Holthuijsen, 1987). In
the real ocean, the spectrum is continuous and the disintegration is evident only as a continuous spreading of
the wave field.
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The direction-dispersion has a similar filtering effect. The wave fields that spread
out across the ocean are generated in the storm in many different directions (cen-
tred on some mean wind direction). Depending on their direction of propagation,
some of these wave fields will pass south of point P (all wave fields with direc-
tions south of θ1; see Figs. 6.13 and 6.14), while others will pass north of point
P (all wave fields with directions north of θ2). This implies that, at point P, wave
energy is present only between directions θ1 and θ2, i.e., only in the angle of view
from point P to the storm. This limited directional sector θ1−θ2 causes the waves
to be more long-crested at point P than they were in the storm. Since this direc-
tional dispersion is more pronounced as the waves travel further across the ocean,
this long-crested character increases with distance from the storm. The beautifully
regular swell on the sunny tropical beach is therefore not only regular but also
long-crested.

Frequency- and direction-dispersion implies that, at any one time, the spectrum
at point P contains energy only within a narrow frequency band and a narrow
directional sector. The energy in this narrow spectrum is therefore only a fraction
of the energy in the initial, broader spectrum in the storm. The waves at point
P are therefore (much) lower than those in the storm, solely due to dispersion;
no dissipation is involved.16 This relatively simple model of frequency–direction-
dispersion without dissipation has been well verified by tracking swell across the
ocean, sometimes over more than half the Earth’s circumference, e.g., from the
southern Indian Ocean (near Antarctica) to Alaska along great-circles that pass
through the gap between Australia and New Zealand.

Literature:
Barber and Ursell (1948), Barber (1969), Booij and Holthuijsen (1987), Gelci et al. (1964,
1970), Munk et al. (1963), Snodgrass et al. (1966).

6.4.3 Generation by wind

One candidate model for the initial generation of waves is the instability of the
water surface layer in which the wind generates a current. Two fluids with different
speeds, i.e., water and air in this case, will generate instabilities at their interface if
the densities and current speeds differ enough (e.g., Lamb, 1932). This is obvious
when the wind starts to blow over still water: the first waves to appear are small
and very short, slowly getting longer and higher. Another candidate is a mechanism
suggested by Phillips (1957), in which waves are generated by resonance between

16 Ocean waves barely lose energy outside storms, because the waves are not steep enough to break and the effects
of the viscosity of water are negligible. Early attempts at ocean-wave forecasting (in the 1950s) often ignored
the dispersion effect and (erroneously) simulated the reduction in wave height with dissipation.
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propagating wind-induced pressure waves (i.e., air pressure) at the water surface
and freely propagating water waves. The actual situation is not well understood, but
such understanding is fortunately not crucial for wave predictions since these are
not very sensitive to the initial conditions (as long as some initial waves are present).
When initial waves have thus been generated, Miles (1957) finds that these waves
modify the airflow and hence the wind-induced pressure at the water surface in such
a way that they enhance their own growth. Waves are therefore generated by wind-
induced surface pressure, not by wind-induced surface friction.17 Janssen (1991a,
1991b) extended the theory of Miles (1957) to include the effect of the waves on the
entire lower atmosphere, which in turn affects the waves again. Advanced wave-
prediction models are based on the Miles theory, sometimes supplemented with
this extension of Janssen. Of these models, some also include Phillips’ theory, but
only to initiate wave growth.

Phillips’ theory can be briefly summarised as follows. Initially, i.e., when the
water surface is flat, the wind, by its very nature, induces a turbulent pressure on
the water surface, propagating as a nearly frozen (random) field (see Fig. 6.15). In
analogy with the random-phase/amplitude model of the water waves, this pressure
field can be seen as the superposition of many harmonic air-pressure waves, all
oriented in many different directions but all propagating in the wind direction (in
contrast to the water waves, each of which travels in its own direction, normal
to its crest). In the moving but (nearly) frozen pattern of wind pressure, some
pressure components have the same speed, wave length and direction (i.e., normal
to the pressure crest) as freely propagating water-wave components. These matching
pressure waves transfer energy to their counterpart water waves by resonance. For a
constant wind, Phillips (1957) estimates this transfer to be constant in time, resulting
in a linear growth in time:18

Sin,1( f, θ ) = α with α = α( f, θ ; �Uwind) (6.4.12)

In most operational wave models, this resonance mechanism is ignored because,
as in the real ocean, small waves are always present in these models to trigger wave
growth. Alternatively, initial, small waves can simply be imposed in the model,
or an empirical expression to generate initial waves can be used, for instance, the

17 This statement should be a little more subtle than that. The atmosphere exerts a certain friction on the ocean
surface (generating currents and a tilt of the mean ocean surface) and the ocean surface exerts a correspond-
ing friction on the atmosphere (generating an atmospheric boundary layer). The problem is in the defini-
tion of ‘friction’. It is essentially (in this case) the transfer of horizontal momentum in the vertical direction
across the ocean/atmosphere interface. For instance, in a breaking wave, a mass of water with a horizontal
velocity component is injected into the upper layer of the ocean, with a vertical movement. This, and many
similar motions on (much) larger and smaller scales, may be seen as a horizontal ‘friction’ on the ocean
surface.

18 There is no relation between this coefficient α and the energy-scale parameter α of the high-frequency tail of
the spectrum of Phillips (see Section 6.3.3).
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Figure 6.15 The normal wind-induced pressure moving as a (nearly) frozen dis-
tribution across the water surface.

expression of Cavaleri and Malanotte-Rizzoli (1981):

Sin,1( f, θ ) =
{

Cα[u∗ cos(θ − θwind)]4 for |θ − θwind| ≤ 90◦ and f ≥ fPM

0 for all other wave components

(6.4.13)

where fPM is the Pierson–Moskowitz peak frequency (see Section 6.3.3), Cα is
a (tunable) coefficient (see also Section 9.3.2), u∗ is the (friction-) wind velocity
(see Section 6.2) and θwind is the wind direction. The frequencies and directions are
limited in range here, to ensure that only waves that are affected by the wind are
generated by this mechanism.

In Phillips’ theory it is assumed that the wind-induced surface pressure is a natural
aspect of the wind itself, without influence of the waves. However, such influence
is unavoidable and will increase as the waves evolve. Consider (as in Phillips’
theory) only one wave component independently of the others (this makes it a linear
approximation of the problem). The average wind profile above the water surface
will then be disturbed by this harmonic water wave (see Fig. 6.16), the disturbance
being greatest at the water surface itself and rather smaller at higher elevations. In
his theoretical model, Miles (1957) finds that the air pressure at the water surface
attains a maximum on the windward side of the wave crest and a minimum on the
leeward side of the wave crest.19 This implies that the wind effectively pushes the
water surface down where the wave surface is moving down (the windward side of
the crest) and pulls the water surface up where the surface is moving up (the leeward
side of the crest). This out-of-phase coupling between pressure and surface motion
transfers energy to the waves. Since this transfer depends on the amplitude of the
water wave, it becomes more effective as the wave evolves. In other words, as

19 Jeffreys (1925, 1926) suggested such a mechanism in a much-simplified form (with the wave-induced pressure
being proportional to the local surface slope, i.e., 180◦ out of phase with the surface elevation) but it did not
compare well with observations and has been abandoned.
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Figure 6.16 The wave-induced wind-pressure variation over a propagating
harmonic wave.

the wave grows by this mechanism, the mechanism becomes more effective, so
the wave can therefore grow faster, which in turn makes the mechanism even more
effective, etc.

The process enforces itself: it is a positive-feedback mechanism. Miles (1957)
formulated it as

Sin,2( f, θ ) = βE( f, θ ) (6.4.14)

where the coefficient β depends on the speed and direction of the wind and the
wave: β ∼ [U cos(θ − θwind)/c]2, where U is a reference wind speed (not nec-
essarily U10) and c is the phase speed of the water-wave component. Since this
source term depends on the energy density itself, this formulation results in an
exponential growth of E( f, θ ) in time (for a constant wind). Measurements have
qualitatively confirmed this effect and the coefficient β has been estimated from
such measurements, for example as (see Fig. 6.17)

β = ε1
ρair

ρwater

[
u∗ cos(θ − θwind)

c

]2

2π f Plant (1982) (6.4.15a)

or

β = ε2
ρair

ρwater

[
28

u∗
c

cos(θ − θwind) − 1
]
2π f Snyder et al. (1981)

(6.4.15b)
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Figure 6.17 The coefficient of wind-induced wave growth (the Miles theory and
inferred from measurements; after Hsiao and Shemdin, 1983; Belcher et al., 1994
and Young**, 1999). * The solid line representing the Miles–Janssen theory is the
line originally computed by Janssen (the line published in Janssen, 1991a, inadver-
tently deviates slightly from the above original line; personal communication P. A.
E. M. Janssen, 2005). ** Wind Generated Ocean Waves, Elsevier Ocean Engineer-
ing Book Series, Vol. 2, by I. R. Young, p. 52, Copyright 1999, with permission
from Elsevier.

where ρair and ρwater are the densities of air and water, respectively, and ε is a
tunable coefficient. Most wave models cut off the value of β in Eq. (6.4.15b) at
β = 0, so as to avoid negative growth (i.e., energy transfer from the waves to the
wind).20

In the above theory of Miles (1957), the wind is decoupled from the waves in the
sense that the waves do not affect the mean wind (they affect only the wind-pressure
fluctuations in the surface layer). Janssen (1991a) has developed a version of this
theory in which the wave–atmosphere system is treated as a coupled system and
shows that the waves actually have some influence on the entire lower atmosphere

20 A negative value would imply transfer of wave energy to the wind, i.e., waves would generate wind. This may
well be realistic, although the transfer would be only a small fraction of the energy transfer from wind to waves.
To illustrate this: I felt a light but noticeable breeze when standing at the end of the 80 m × 50 m indoor Ocean
Basin of the Norwegian Marine Technology Research Institute (Trondheim), in which breaking waves of height
0.5–1 m were being generated mechanically (with computer-controlled flaps). Such transfer of energy from
waves to wind is predicted by some alternative wave-generation theories, e.g., Chalikov (1986).
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Figure 6.18 The wind input source term, for a JONSWAP spectrum in deep water
(computed with the initial-growth formulation of Cavaleri and Malanotte-Rizzoli,
1981, and the feedback model of Miles, 1957; for Hm0 = 3.5 m, Tpeak = 7 s and
U10 = 20 m/s).

(the wave-induced surface friction for the lower atmosphere is larger for young
sea states than for older sea states), thus somewhat affecting the evolution of mid-
latitude storms.

In summary, the source term for the generation of waves by wind can be written
as

Sin( f, θ ) = α + βE( f, θ ) (6.4.16)

The shape of this source term (integrated over directions) for a JONSWAP spectrum
is shown in Fig. 6.18, using the formulations of Cavaleri and Melanotte-Rizzoli
(1981) and Snyder et al. (1981). Apparently, most of the energy transfer from wind
to waves occurs at the spectral peak and on its high-frequency side.

The observed total input of energy to the waves seems to be explained sufficiently
well by the above theory of Miles. However, the measurements that were used to
validate the theory (measuring the wave-induced variations of the wind-induced
air pressure at the wave surface, using such instruments as a wave follower; see
Section 2.3.3) are very difficult to carry out and a fairly large uncertainty still exists.
For instance, the scatter in the values of β inferred from such measurements is of
the order of a factor of ten (see Fig. 6.17), which illustrates the uncertainty in
our understanding of the generation of wind waves and the room that is still left
for alternative or supplementary theories. For instance, wave breaking induces flow
separation of the air motion at the crest of the wave, which locally strongly enhances
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the transfer of energy from wind to waves. Another example is the result of detailed
numerical simulations of the airflow in the lower atmospheric boundary layer (the
layer just above the waves with a thickness of about the significant wave height).
This work has shown that the turbulence of the airflow (which in turn is determined
by the atmospheric stability) is important and that the actual energy transfer to the
waves would be only a fraction of the energy transfer given by Eqs. (6.4.15). Such
lower transfer would be compensated by less dissipation due to white-capping to
achieve the same overall wave growth.
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6.4.4 Nonlinear wave–wave interactions (quadruplet)

The second mechanism that affects wave growth in deep water is the transfer of
energy amongst the waves, i.e., from one wave component to another, by resonance.
To visualise such nonlinear wave–wave interactions, consider a large wave tank
with constant water depth (Fig. 6.19). One machine generates harmonic waves in
one corner of the tank. Another machine generates waves in another corner with
a different frequency and in a different direction. The resulting waves in the tank
create a diamond pattern of crests and troughs, which has its own wave length,
speed and direction (and hence its own wave number; see Fig. 6.19).

Such a diamond pattern would interact with a third, freely propagating wave
component (i.e., one obeying the dispersion relationship of the linear wave theory)
if this third wave had the same wave length, speed and direction as the diamond
pattern. The original pair of wave components would thus interact with this third
wave component if the proper conditions were met (triad wave–wave interaction).
Such interaction between freely propagating waves is called resonance. At the
end of the tank we would see emerging not only the two mechanically generated
waves but also the third wave generated by the resonance interaction. Or, if the
third wave already existed, the three waves would have exchanged energy amongst
themselves. Each of the components would thus have lost or gained energy, but
the total energy (the sum of the energy of the three components at each point
in the tank) would remain constant. Now, this was only to visualise this type of
nonlinear wave–wave interaction. In deep water, the resonance conditions (the
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Figure 6.19 Triad wave–wave interactions (not realisable in deep water). A hypo-
thetical wave-tank experiment with one pair of mechanically generated, freely
propagating waves, interacting with a third, freely propagating wave. The wave-
number vectors of the three wave components and of the diamond pattern are shown
in the right-hand panel in wave-number space: the wave-number vector of the third
wave is equal to the wave number of the diamond pattern, which is equal to the
sum of the wave numbers of the original two wave components: �k3 = �k1 + �k2. (For
the concept of wave-number vectors, see Section 3.5.8).

matching of wave speed, length and direction) cannot be met by three freely prop-
agating wave components. Triad wave–wave interactions therefore do not occur in
deep water. However, it is possible in deep water to have one pair of wave compo-
nents interacting with another pair, if the wave numbers (and frequencies) of the
two corresponding diamond patterns match (see Fig. 6.20). The reason is that, in
deep water, two such pairs, i.e., four wave components, can fulfil the resonance
conditions and can thus resonate. This matching of frequencies and wave numbers
is expressed with the resonance conditions:

f1 + f2 = f3 + f4
(6.4.17)�k1 + �k2 = �k3 + �k4

(For the concept of wave-number vectors, see Section 3.5.8.)
These resonance conditions state that, if the frequency, wave number and direc-

tion of one diamond pattern coincide with those of another diamond pattern, then
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Figure 6.20 Quadruplet wave–wave interactions (realisable in deep water). Two
pairs of wave components can create two diamond patterns with identical wave
lengths and directions and therefore identical wave numbers. When the four waves
are superimposed (not shown here), they can thus resonate. The wave-number
vectors of the four wave components are shown in the right-hand panel in wave-
number space with �k1 + �k2 = �k3 + �k4.

energy is transferred amongst the four free components involved. Such a set of four
wave components is called a quadruplet and the interactions are called quadruplet
wave–wave interactions. The full expressions for these interactions have been given
by Hasselmann (1962). They can be written in the following form (a Boltzmann
integral; see Hasselmann, 1960, 1962, 1968):

Snl4(�k4) =
∫∫∫∫

T1(�k1, �k2, �k1 + �k2 − �k4)E(�k1)E(�k2)E(�k1 + �k2 − �k4)d�k1d�k2

− E(�k4)
∫∫∫∫

T2(�k1, �k2, �k4)E(�k1)E(�k2)d�k1d�k2

(6.4.18)

where �k4 is the vector wave number of the wave component considered in the
source term, �k1, �k2 and �k3 = �k1 + �k2 − �k4 are the three other wave components
involved, subject to the resonance conditions of Eq. (6.4.17), and T1 and T2 are
transfer coefficients, which are complicated functions of the wave-number vectors
involved. The first integral represents the ‘passive’ part of the interactions, i.e., it is
independent of the energy density E �(k4) of wave component �k4. The second integral
corresponds to the ‘active’ part, i.e., it does depend on E �(k4). Whether the energy
of the wave component �k4 grows or decays depends on the balance between the
active and passive terms.
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Figure 6.21 The source term for quadruplet wave–wave interactions, for a JON-
SWAP spectrum in deep water (computed with the near-exact WRT technique
coded by van Vledder, 2006, see also van Vledder and Bottema, 2002; for
Hs = 3.5 m and Tpeak = 7 s). The pronounced ‘deficit’ of interactions, in this exam-
ple around 0.165 Hz, occurs at the transition between the peak enhancement func-
tion and the f −5-tail of the spectrum (see Section 6.3.3). It indicates that the
quadruplet wave–wave interactions are trying to smooth this transition. The WRT
technique is named after the developers, Webb, Resio and Tracy (see Webb, 1978,
and Tracy and Resio, 1982; see also Resio and Perrie, 1991).

It should be emphasised that the quadruplet wave–wave interactions only redis-
tribute energy over the spectrum. No energy is added or withdrawn from the spec-
trum as a whole. The shape of this source term (integrated over directions) for a
JONSWAP spectrum is shown in Fig. 6.21.

The + / – / + character of this source term, at least for a JONSWAP-type spec-
trum (with zero at the peak frequency; see Fig. 6.21), implies that the quadruplet
interactions transfer a significant fraction of the wind input from the mid-range
frequencies to lower frequencies and a small fraction to higher frequencies. At the
high frequencies, white-capping dissipates this energy. At the low frequencies, the
energy is absorbed without appreciable dissipation. The energy at the low frequen-
cies therefore grows, shifting the peak of the spectrum to lower frequencies, and
thus dominating the evolution of the spectrum.

A remarkable property of the quadruplet interactions is their capacity to stabilise
the shape of the spectrum of steep waves, i.e., waves that are being generated by
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Figure 6.22 For sufficiently steep waves, the quadruplet wave–wave interactions
will force a non-JONSWAP spectrum into a JONSWAP spectrum (deep water).

wind.21 If, for instance, the tail of the spectrum deviates locally from a smooth
f −4-shape (e.g., there is a small hump in the tail), the quadruplet interactions
will smooth the tail back to approximately the universal f −4-shape. Alternatively,
if the shape deviates considerably from the JONSWAP shape (see Fig. 6.22),
the quadruplet interactions will force it (back) into a JONSWAP shape (with an
f −4-tail, see Note 6C). This is the main reason why the JONSWAP spectrum is
often observed in storms, which do not even approximate the idealised situation in
which the JONSWAP spectrum was first observed (see Section 6.3.3). Of course, it
is the balance amongst the wind input, the quadruplet wave–wave interactions and
the white-capping that determines the actual shape of the spectrum. If the wind is
strong and highly variable (in speed or direction), the wind input may have a stronger
effect on the shape of the spectrum than the quadruplet wave–wave interactions and
a non-JONSWAP spectrum may evolve. However, if the wind varies sufficiently
slowly, the quadruplet wave–wave interactions will dominate and a JONSWAP
spectrum evolve. This is usually the case in a storm and even in large parts of a hur-
ricane (at distances from the hurricane’s centre less than about ten times the radius
to maximum wind; at larger distances the wave field is a mix of wind sea and swell).

This shape-stabilising effect of the quadruplet wave–wave interactions is the
reason why the JONSWAP spectrum is widely accepted as the design spectrum

21 The quadruplet interactions seem to be also responsible for the directional bimodal shape of the wave spectrum
under idealised conditions; see Note 6D.
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for engineering purposes (see also Section 6.3.3). However, if the wind drops, or
the waves leave their generation area, the steepness of the waves reduces sharply
(due to frequency-dispersion and direction-dispersion; see Section 6.4.2) and the
quadruplet wave–wave interactions decrease accordingly. Under swell conditions,
therefore, a JONSWAP spectrum is not be expected. In fact, the spectral shape then
depends entirely on the history of the individual wave components, which may be
very different for different portions of the spectrum. At sea, this usually results in
a spectrum with multiple swell peaks and a locally generated JONSWAP spectrum
at higher frequencies.

The computation of the quadruplet wave–wave interactions requires consider-
able computer resources because of the large number of quadruplets involved (each
wave component interacts in a large number of quadruplet combinations). Con-
siderable efforts have therefore been devoted to finding approximations that will
reduce such computer requirements but retain the basic characteristics of these inter-
actions. One of these approximations has been adopted by advanced operational
wave models, namely the discrete-interaction approximation (DIA) of Hasselmann
et al. (1985a), which considers the interactions of each wave component in the
spectrum in only two quadruplets. For each of these two quadruplets, one com-
putes the interactions between the wave component under consideration and itself
(self–self interaction) and two other components (bringing the total formally to four
wave components). The two quadruplets differ only in that the directions of two of
the four components have reversed sign (i.e., mirror directions with respect to the
first quadruplet). Both quadruplet configurations are applied to all wave compo-
nents in the spectrum. The DIA thus reduces the computational time to manageable
proportions and enables operational wave models to incorporate these interactions.
Such explicit calculation of the quadruplet wave–wave interactions is the factor
discriminating between third-generation wave models on the one hand and first-
and second-generation wave models on the other (in which these interactions are
absent or severely parameterised; see Section 6.4.7).

Literature:
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Young (1997, 1999).

6.4.5 Dissipation (white-capping)

Wave breaking in deep water (called white-capping) is a very complicated phe-
nomenon, which so far has defied theoretical understanding. It involves highly
nonlinear hydrodynamics on a wide range of scales, from gravity surface waves to
capillary waves, down to turbulence. A complicating factor is that there is no gener-
ally accepted precise definition of breaking and quantitative observations are very
difficult to carry out. Not surprisingly, therefore, breaking is the least understood of
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Figure 6.23 The distribution of observed steepness (s = H/L) of individual
breaking and non-breaking waves under high-wind conditions in deep water (both
probability density functions have been scaled such that

∫
p∗(s)ds is the probability

of breaking or non-breaking; after Holthuijsen and Herbers, 1986). The average
steepness of non-breaking waves is 0.036; the average steepness of breaking waves
is 0.042; the probability of breaking is 0.12.

all processes affecting waves. Some speculations as to what controls wave breaking
have been made and it seems reasonable to assume that it is the wave steepness.
For instance, Miche (1944) has shown theoretically that the maximum wave height
Hmax for a fixed-form, periodic wave (i.e. the maximum wave height of an individ-
ual wave) is determined by the fact that the particle velocity ux in the crest cannot
be larger than the forward speed of the wave c (i.e., always ux ≤ c). This results in

Hmax ≈ 0.14L tanh

(
2πd

L

)
(6.4.19)

which for deep water gives a maximum steepness of the individual wave smax =
Hmax/L ≈ 0.14 (wave breaking in shallow water is addressed in Section 9.3.4).
However, observations at sea (deep water) have shown that whether an individual
wave is breaking or not is almost independent of the steepness of that wave (but
H/L = 0.14 seems to be an upper limit; see Fig. 6.23). Perhaps the degree of
randomness or short-crestedness is just as important as steepness.
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Figure 6.24 The visually estimated fraction n of breaking waves as a function of
wind speed (n is the number of observed breaking waves/total number of observed
waves, at a fixed horizontal position); after Holthuijsen and Herbers (1986).

The breakers in the open ocean are called ‘white-caps’ and sometimes ‘white
horses’ (in other languages, other poetic names are used, e.g., ‘jumping rabbits’
in Japanese). The occurrence of white-caps is essentially a characteristic of the
sea state itself, but white-capping is obviously closely related to the wind (see
Fig. 6.24). In fact, the Beaufort wind-force scale is based, to a large extent, on
the white-cap coverage of the ocean surface. White-caps are not only important
for the evolution of ocean waves; they also play a key role in the exchange of gas
across the air–sea interface and the production of airborne droplets and aerosols
(which are needed as condensation particles for precipitation over the ocean and
over land; see Monahan and MacNiocaill, 1986).

The (dissipative) effect of white-capping on the evolution of the waves is locally
highly nonlinear, but on average, i.e., averaged over a large number of waves,
it is rather weak. In wave models it is therefore represented as a source term in
the energy balance of the waves. In spite of the uncertainty about the relevance
of wave steepness, several approaches to deriving such a source term are based
on this assumption. The best-known is the theory of Hasselmann (1974) in which
each white-cap acts as a pressure pulse on the sea surface, just downwind of the
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Figure 6.25 The white-cap as a pressure pulse at the lee-wind side of the crest of
a breaking wave.

crest (see Fig. 6.25). At that location in the wave, the weight of the white-cap acts
against the rising sea surface, thus draining energy from the wave. This is almost
the mirror-image of the feedback mechanism for wind-induced growth proposed by
Miles (1957): the white-cap drains energy from the wave (transporting it to surface
currents and turbulence) at roughly the same location as where the wind transfers
energy to the wave. In other words, the weight of the white-cap counteracts, to
some extent, the pulling effect of the deficit in air pressure on the lee side of the
wave crest.

The theory of Hasselmann (1974) gives only a general form for the white-capping
source term:

Swc( f, θ ) = −µk E( f, θ ) (6.4.20)

where k is the wave number and µ is a coefficient representing some statistical
property of the white-caps. The value of µ is expressed in terms of (unknown)
integrals over the entire spectrum:

µ = µ

[∫∫
· · · E( f, θ )dθ df

]
(6.4.21)

which makes the source term for white-capping quasi-linear: Eq. (6.4.20) is linear
in the spectral density but the coefficient µ depends on the entire spectrum. The
value of the white-capping coefficient µ has been estimated with some informed
speculation on its character (e.g., that it should depend on the overall wave
steepness) and by calibrating a numerical wave model with observed wave con-
ditions (Bouws and Komen, 1983; Komen et al., 1984):

µ = Cwc

(
s̃

s̃PM

)4 f̃

k̃
(6.4.22)

where Cwc is a tunable coefficient, s̃ is the overall wave steepness (involving integrals
over the spectrum), s̃PM is the value of s̃ for the Pierson–Moskowitz spectrum and f̃
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Figure 6.26 The white-capping source term, for a JONSWAP spectrum in deep
water (computed with the pulse model of Hasselmann, 1974; for Hs = 3.5 m and
Tpeak = 7 s).

and k̃ are the mean frequency and wave number, respectively (see details in Section
9.3.4). The corresponding shape of the source term is shown in Fig. 6.26 for a
JONSWAP spectrum.
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6.4.6 Energy flow in the spectrum

The source terms have been illustrated in the above Sections for a JONSWAP
spectrum as functions of frequency at one moment in time. A summary of this
is given in Fig. 6.27. The transfer of energy from the wind to the waves occurs
mostly near the peak of the spectrum and at the mid-range frequencies but the cor-
responding energy gain at these frequencies is rapidly removed by white-capping
and quadruplet wave–wave interactions (transporting the energy to the higher and
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Figure 6.27 The flow of energy through an evolving JONSWAP spectrum
(deep water).

lower frequencies). The total effect for the mid-range frequencies is negative: they
lose energy. At the higher frequencies, where energy is received from the mid-range
frequencies, white-capping immediately dissipates this energy, thus balancing, at
these frequencies, the three processes of generation, quadruplet wave–wave inter-
actions and white-capping. The energy level at these frequencies is therefore more
or less in equilibrium (it slowly oscillates a little). At the low frequencies (below
the peak frequency), the energy that is received from the mid-range frequencies is
absorbed. Together with some energy transfer from the wind, this makes the spec-
tral peak migrate towards these frequencies. Surprisingly, therefore, the spectral
growth is not due to a direct interaction with the wind (that is only a minor con-
tribution). Rather, it is due to an indirect interaction: the wind energy is received
by the mid-range frequencies and then transferred by the quadruplet wave–wave
interactions to the lower frequencies, where the spectrum grows.

It is also possible to consider the evolution of a single wave component sepa-
rately, as a function of time. If one such wave component is followed as it travels
through the area of generation (take one fixed frequency f0 and one fixed direction
θ0), its evolution follows directly from the above (see Fig. 6.28). Initially, the
wave component is in the low-frequency range of the spectrum (because the initial
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Figure 6.28 An artist’s impression of the evolution of the energy density of a
wave component under constant-wind conditions, as a function of time or distance
(deep water).

spectrum is located at high frequencies). As the spectrum evolves, i.e., migrates to
lower frequencies, the frequency under consideration (which remains constant)
becomes the peak frequency and then enters the mid-frequency range of the
spectrum. Eventually it ends up in the high-frequency range of the evolving spec-
trum (all relative to the ever-decreasing peak frequency). As a low-frequency com-
ponent in the spectrum, it grows exponentially due to the feedback wind-generation
mechanism and the quadruplet wave–wave interactions which are being fed by
energy from higher frequencies, but only up to a certain maximum when the fre-
quency under consideration becomes the peak frequency of the evolving spectrum.
The energy then decays to a lower level, due to wave–wave interactions (transporting
energy to higher and lower frequencies) and white-capping. Eventually, the fre-
quency under consideration ends up in the high-frequency tail of the spectrum,
which is more or less in equilibrium (with small oscillations). The phenomenon of
the temporary high level of energy (when the component considered is at or near
the peak frequency) is called ‘overshoot’.

6.4.7 First-, second- and third-generation wave models

Wave models in which the above theories of generation, quadruplet wave–wave
interactions and white-capping are explicitly implemented demand considerable
computer capacity, mostly because of, as mentioned earlier, the large number of
wave components that have to be considered for the wave–wave interactions (even
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if the DIA approximation is used for this). Other models try to avoid this problem
by exploiting a similarity between the effect of these interactions and the effect of
the feedback wind-generation mechanism: both give exponential growth but with
different growth rates (as numerical experiments have shown). By adjusting the
coefficients for the wind-induced growth (see Eq. 6.4.14), the measured net growth,
which includes the effect of the wave–wave interactions, can be approximated with
this term alone. The combined source term, assuming that white-capping is included
for the growing waves, is then

Sin+nl4+wc = A + BE( f, θ ) for E( f, θ ) ≤ Elim( f, θ ) (6.4.23)

in which the values of A and B are chosen such that a credible approximation of
the observed growth of waves is obtained. As indicated earlier, in many operational
oceanic wave models, linear growth is ignored so that A = 0. The value of B is
typically B = 5β, with β from Eqs. (6.4.15), which indicates that the effect of
the quadruplet wave–wave interactions is about four times as strong as the effect
of the direct wind input (if we ignore white-capping for these growing waves).
The expression of Eq. (6.4.23) would be valid as long as the wave component
grows, i.e., as long as the energy density is less than some upper limit Elim( f, θ )
(see Fig. 6.28). This level is usually assumed a priori to be the level of the f −5-
tail of the JONSWAP or Pierson–Moskowitz spectrum, with a certain directional
spreading, e.g., the cos2s (θ/2) distribution, centred on the local wind direction.
Once this level has been reached, the growth is terminated:

Sin+nl4+wc = 0 for E( f, θ ) ≥ Elim( f, θ ) (6.4.24)

White-capping is thus simulated by imposing a maximum on the energy level
of the spectrum. This approach does not allow the phenomenon of overshoot to
occur and the universal shape of the spectral tail is imposed rather than computed
(thus losing the ability to adjust the spectral shape to the actual balance amongst
the three processes of wind generation, quadruplet wave–wave interactions and
white-capping). Some of these models permit some dissipation for over-developed
waves, i.e., Sin+nl4+wc < 0 if E( f, θ ) > Elim( f, θ ), which can happen when the
wind speed drops or the wind direction changes and the value of Elim ( f, θ ) corre-
spondingly drops. Wave models that are based on this approach of enhancing the
wind input and imposing a high-frequency tail to simulate the effects of quadruplet
wave–wave interactions and white-capping are called first-generation wave models.

Another approach that allows one to avoid computing the quadruplet wave–wave
interactions explicitly is to use an approximation that is much simpler than that of the
DIA. For instance, by using pre-computed quadruplet wave–wave interactions for a
JONSWAP spectrum for non-JONSWAP spectra. This may be supplemented in the
wave model by imposing the universal f −5 -or f −4-tail, or numerically smoothing
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the computed tail into this shape. These models are called second-generation mod-
els. Alternatively, if for the wind sea (and not for the swell) a JONSWAP spectrum is
assumed a priori, only the parameters of this spectrum need to be computed, while
the rest of the spectrum (swell) only needs to be propagated in the model (wind sea
may be conveniently defined as those wave components that are directly affected
by the local wind, e.g., those propagating slower than the wind speed, within 90◦ of
the wind direction; swell is then the remaining part of the spectrum). This approach
leads to a combination of a model in which, for the wind-sea part, the energy bal-
ance equation is replaced with evolution equations for the JONSWAP parameters
and another model for swell propagation (the combination is therefore called a
hybrid model). In such a hybrid model, transition from wind sea to swell and back
occurs when the wind moves the boundaries between wind sea and swell (in fre-
quency and direction). These models are also considered to be a second-generation
models.

The most advanced operational wave models compute the quadruplet wave–
wave interactions explicitly with the DIA of Hasselmann et al. (1985a). In such
models the spectrum is free to develop without any shape imposed a priori. The
prototype of these models, which are called third-generation wave models, is the
WAM model (WAMDI group, 1988; Komen et al., 1994). Some experimental
models use near-exact computations of the quadruplet wave–wave interactions,
e.g., the WRT technique in the Xnl code of van Vledder (2006).
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First-generation models: Cardone et al. (1976), Cavaleri and Malanotte-Rizzoli (1981),
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Linear wave theory (coastal waters)

7.1 Key concepts

� In this book, coastal waters are waters that are shallow enough to affect the waves, adjacent to a

coast, possibly with (small) islands, headlands, tidal flats, reefs, estuaries, harbours or other features,

with time-varying water levels and ambient currents (induced by tides, or river discharge).
� Horizontal variations in water depth cause shoaling and refraction. Horizontal variations in ampli-

tude cause diffraction.
� Shoaling is the variation of waves in their direction of propagation due to depth-induced changes

of the group velocity in that direction. These changes in group velocity generally increase the wave

amplitude as the waves propagate into shallower water (the propagation of wave energy slows

down, resulting in ‘energy bunching’).
� Refraction is the turning of waves towards shallower water due to depth- or current-induced

changes of the phase speed in the lateral direction (i.e., along the wave crest). For harmonic, long-

crested waves in situations with parallel depth contours, Snel’s law can be used to compute the

wave direction. If the depth contours are not parallel, the wave direction should be computed with

wave rays.
� Diffraction is the turning of waves towards areas with lower amplitudes due to amplitude changes

along the wave crest. Diffraction is particularly strong along the geometric shadow line of obstacles

such as islands, headlands and breakwaters. For long-crested, harmonic waves, propagating over

a horizontal bottom, Huygens’ principle, or a generalisation thereof, can be used to compute the

diffraction pattern.
� A long-crested, harmonic wave that reflects off an obstacle, with or without energy dissipation,

creates a (partially) standing wave.
� The simultaneous occurrence of shoaling, refraction, diffraction and reflection of long-crested,

harmonic waves can be computed with the mild-slope equation.
� Waves transport not only energy but also momentum. This momentum transport acts as a horizontal

stress in the water (radiation stress). Gradients in these stresses act as forces that may generate a

slope of the mean water surface (set-up or set-down ) or a current.
� In the surf zone, the combination of wave-induced set-up and wave groupiness generates low-

frequency waves that radiate out to sea as infra-gravity waves (surf beat).
� When waves enter water that is so shallow that the linear wave theory no longer holds, the non-

linear Boussinesq equations are available. These equations implicitly include shoaling, refraction,

diffraction and reflections and also nonlinear wave–wave interactions. Even depth-induced break-

ing can be included.

7.2 Introduction

When ocean waves enter coastal waters, their amplitude and direction will be
affected by the limited water depth. The phenomenon of the waves changing in

197
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the longitudinal direction (i.e., in the direction of propagation) due to variations in
the group velocity in that direction is called shoaling. Near the coast, it generally
results in an increase in wave height. The phenomenon of the wave direction chang-
ing due to depth-induced variations in the phase speed in the lateral direction (i.e.,
along the wave crest) is called refraction. It turns the wave direction towards shal-
lower water and results in either an increase or a decrease in wave height, depending
on the actual changes in wave direction. These depth-induced changes in ampli-
tude and direction are usually sufficiently slow (small over the distance of one wave
length) that locally the linear wave theory for waters with a horizontal bottom can be
used. However, occasionally the variations in amplitude are not slow and the linear
wave theory, as given in Chapter 5, needs to be expanded. This is particularly true
for waves propagating around obstacles such as small islands, reefs and headlands,
or breakwaters, where the wave amplitude may vary rapidly across the geometric
shadow line of such obstacles. This rapid variation in amplitude causes the waves
to turn into the areas with lower amplitude. This phenomenon is called diffraction.
Such horizontal variations of the wave amplitude, in both forward and lateral direc-
tions, also affect the transport of momentum of the waves. This in turn may generate
currents and a set-up or set-down of the mean water surface, particularly in the surf
zone. All these phenomena are due to transportation characteristics of the waves.
They can be accommodated by the linear wave theory as long as the waves are not
too steep or not in very shallow water. When nonlinear effects have to be accounted
for, two alternatives are available. If these effects are strong, Boussinesq models, in
which the actual surface elevation is computed with high spatial resolution (a small
fraction of the wave length), can be used (the phase-resolving approach; see Section
1.3). If these effects are sufficiently weak, it is possible to compute the spectrum
of the waves at each point of the area of interest with a spectral energy balance,
with nonlinear sources and sinks to represent effects of generation, wave–wave
interactions and dissipation (see Chapter 8). In these models, the wave spectrum is
computed with low spatial resolution (usually several dozen wave lengths; this is
the phase-averaged approach; see Section 1.3).

Literature:
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(1957), Svendsen (2006), Tucker and Pitt (2001), Whitham (1974), Wiegel (1964), Young
(1999).
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Figure 7.1 The phase speed and group velocity of a harmonic wave as the wave
approaches the coast over a flat, gently sloping bottom (c∞ and cg,∞ are the phase
speed and group velocity in deep water). Deep water, where cg,∞ = 1

2 c∞, is far to
the left of this picture (indicated by the interruption in the horizontal axis).

7.3 Propagation

7.3.1 Shoaling

A harmonic wave, propagating over a fixed seabed topography with gentle slopes
and no currents, retains its frequency, but, since the dispersion relationship remains
valid (repeated from Chapter 5),

ω2 = gk tanh(kd) (7.3.1)

its wave length will decrease, if the depth decreases and the phase speed will
correspondingly decrease (repeated from Chapter 5; see Fig. 7.1):

c =
√

g

k
tanh(kd) (7.3.2)

Initially, the group velocity cg increases slightly, but then it also decreases (repeated
from Chapter 5; see Fig. 7.1):

cg = nc with n = 1

2

(
1 + 2kd

sinh(2kd)

)
(7.3.3)

As the wave propagates into shallower water, the phase speed approaches the
group velocity and the wave becomes less and less dispersive (phase speed becomes
less dependent on frequency). Both the phase speed and the group velocity approach
zero at the waterline. This has serious consequences for the applicability of the linear
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Figure 7.2 A wave approaching a straight coastline at normal incidence under
stationary conditions. Under such conditions, in the absence of wave generation
or dissipation, the wave energy leaving volume G through plane 2 is equal to the
wave energy entering volume G through plane 1.

wave theory under such conditions because it causes the wave amplitude to go to
infinity (see below).

Such variations in the group velocity cause variations in local wave energy and
hence in amplitude. To illustrate this, consider a wave propagating through shallow
water towards a straight coastline (i.e., parallel bottom contours) at normal incidence
(i.e., perpendicular to the coastline; see Fig. 7.2). Since for normal incidence no
variations occur along the wave crest, refraction is absent and the wave direction
remains perpendicular to the coastline (the bottom need not be flat; gentle depth
variations in the wave direction are allowed). In this situation, which we will assume
to be stationary, the variation of the wave amplitude can be determined from a simple
energy balance. To that end, consider a volume G that is defined by two vertical
sides in the wave direction (see Fig. 7.2) plus two vertical planes, one on the seaward
side and another on the beachward side, both normal to the wave direction (planes
1 and 2 in Fig. 7.2), and the bottom and the mean water surface. In the absence of
any generation or dissipation of wave energy, no energy enters volume G through
the water surface or the bottom. In addition, no energy enters or leaves through
the lateral sides (the direction of energy transport is in the wave direction). Wave
energy can therefore only enter the volume through plane 1 and leave through plane
2 (at rates P1b and P2b per unit time, respectively, where P = Ecg is the energy
transport per unit crest length and b is the distance between the two lateral sides).
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Figure 7.3 The amplitude evolution due to shoaling as a harmonic wave approaches
the coast at normal incidence over a flat, gently sloping bottom (a is the amplitude;
a∞ is the amplitude in deep water). Deep water, where a/a∞ = 1, is far to the left
of this picture.

Because of the conservation of energy, P2b = P1b and the amplitude in plane 2 can
be readily obtained from the amplitude in plane 1:

P2b = P1b →[Ecg]2 = [Ecg]1 → 1

2
ρga2

2cg,2 = 1

2
ρga2

1cg,1 (7.3.4)

so that

a2 =
√

cg,1

cg,2
a1 (7.3.5)

If we take the up-wave boundary in deep water, and correspondingly replace the
index 1 with ∞, and drop the index 2, then, the coefficient Ksh = √

cg,∞/cg is
called the shoaling coefficient.

The effect of shoaling (isolated from all other effects of propagation, generation
and dissipation) over a flat, sloping bottom is initially to decrease but then to increase
the amplitude (see Fig. 7.3). This effect may be referred to as ‘energy bunching’ (the
horizontal compacting of energy; just like the compacting of a traffic jam when the
cars are slowing down). The above energy balance shows that, as the group velocity
approaches zero at the waterline, the wave amplitude theoretically goes to infinity.
Obviously, the theory breaks down long before that. In addition, other processes
such as refraction and wave breaking may well cause a totally different evolution
of the waves over an arbitrary seabed topography.
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Figure 7.4 A wave always turns to the region with lower propagation speed, i.e.,
a wave generally turns towards the coast.

7.3.2 Refraction

If a harmonic wave approaches the same straight coast as in the situation above,
but now at an angle (oblique incidence), the wave will slowly change direction as
it approaches the coast (refraction; see Fig. 7.4). This is due to the depth variation
along the wave crest with a corresponding variation in phase speed along that crest
(repeated from Chapter 5):

c =
√

g

k
tanh(kd) (7.3.6)

This is readily seen as follows. The crest moves faster in deeper water than it
does in shallow water (see Fig. 7.5) so that, in a given time interval, the crest moves
over a larger distance in deeper water than it does in shallower water. The effect
is that the wave turns towards the region with shallower water, i.e., towards the
coast. This is a universal characteristic of waves: a wave always turns towards the
region with lower propagation speed. This is true for water waves but also for sound
waves, light waves and any other kind of wave. It is also true when the medium in
which the waves propagate is moving, e.g., when an ambient current is present (see
Section 7.3.5). The corresponding rate of directional turning (the speed at which
the wave direction changes) can be derived with a physically oriented, geometric
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Figure 7.5 The turning of a wave crest towards the region with lower phase speed
(i.e., shallower water).

argument. Such a treatment of wave propagation without diffraction is called ‘the
geometric-optics approximation’.

Consider, in an arbitrary situation, a line of equal phase of the wave (an iso-
phase line: a crest is a special iso-phase line; see Fig. 7.5), along which the phase
speed varies. For the derivation, we will use a local, left-turning system of orthog-
onal m, n co-ordinates (counter-clockwise rotations are positive), with m along the
iso-phase line (call it a crest) and n along a line oriented normal to the crest (this
line is called an orthogonal or wave ray). Two points A and B on the crest, sepa-
rated by a distance �m, move normal to the crest, i.e., in the wave direction. In a
time interval �t they move over distances �n A = c�t and �nB = (c + �c)�t ,
respectively; point A along its orthogonal and point B along its orthogonal. If the
phase speed increases along the crest (i.e., �c positive with increasing m), then
the corresponding directional turning of the crest �θ is clockwise (negative), so
�θ = −(�nB − �n A)/�m = −�c�t/�m (see Fig. 7.5). This turn in direction
of the crest is obviously equal to the turn of the wave direction (the two directions
being normal to each other). The spatial rate of turning, i.e., the change in direc-
tion per unit forward distance �θ/�n (which is the curvature of the wave ray)
is correspondingly �θ/�n = −�c�t/(�m�n). Or, since �n = c�t , the spatial
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turning rate is �θ/�n = −(�c/c) /�m. For infinitesimally small differences, this
becomes1(

dθ

dn

)
re f

= −1

c

∂c

∂m
along a wave ray (stationary, spatially

variable depth; no currents) (7.3.7)

(the effects of time-variable depths and of currents will be treated in Section 7.3.5).
The minus sign in this expression shows that, when the phase speed increases
along the wave crest (in the positive m-direction), the wave turns clockwise. It may
be noted that the phase speed c need not be taken from the linear wave theory; it
may also be taken from a nonlinear theory such as the cnoidal wave theory (see
Section 5.6.3).

By computing and integrating the curvature dθ/dn along the ray, starting from
any given initial location and direction, the wave ray can be constructed for any
incident (harmonic) wave approaching a coast. Usually this is done for an incident
wave that is long-crested in deep water (where all wave rays have the same direction;
see Fig. 7.6). The nature of the equations allows the computations to be reversed,
i.e., the ray can also be constructed from a point near the coast towards deep water.
This reverse-refraction technique (also called ‘back tracing’) is sometimes used
as an alternative for computing the refraction effects for a single location on the
coast, by computing the set of wave rays fanning out in many different directions
from that location to deeper water (see Dorrestein, 1960). Wave rays used to be
constructed manually, with pen and ink on paper, but computers are now used for
this task (although mostly for illustrative purposes, because the computation of
wave refraction is more and more based on an alternative, Eulerian, approach; see
below). For a situation with parallel depth contours, there is the simple alternative
of Snel’s Law2 (see Note 7A):

d

dn

(
sin θ

c

)
= 0 (7.3.8)

or

sin θ

c
= constant along a wave ray for parallel depth contours (7.3.9)

where the angle of propagation θ is taken between the ray and the normal to the depth
contours (see Fig. 7.7). In such a case of parallel depth contours, the wave direction

1 With c = ω/k and ω = constant substituted into Eq. (7.3.7), the spatial turning rate can also be written as
(dθ/dn)ref = (1/k)∂k/∂m. Note that the minus sign is absent from this expression (because c is inversely
proportional to k or, to put it differently, k is larger in shallower water, in contrast to c, which is smaller).

2 Willebrod Snel van Royen (1580–1626) was a Dutch scientist (concerned with mathematics, optics, cartography,
astronomy and navigation) who is best known by the Latin version of his name Snellius. The sine law which
describes refraction and carries his name is therefore properly referred to as Snel’s Law (not Snell’s Law).
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Figure 7.6 Wave rays for a harmonic wave with an initially straight crest over a
simple seabed topography.

θ

n

x

y

beach

sea

wave ray

Figure 7.7 The angle θ in Snel’s Law is taken between the wave ray and the normal
to the straight and parallel depth contours.
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Figure 7.8 Under stationary conditions, in the absence of wave generation or dis-
sipation, the wave energy leaving volume G through plane 2 is equal to the wave
energy entering volume G through plane 1.

at any location (i.e., any depth) can readily be obtained from the deep-water wave
direction since, from Eq. (7.3.9),

sin θ = c

cdeep water
sin θdeep water along a wave ray for parallel depth contours

(7.3.10)

This expression shows that, when the wave approaches the waterline, where the
phase speed c = 0, the wave direction will be θ = 0. In other words, all ocean
waves always reach the shore at a right angle, independently of their direction in
deeper water (this, of course, is a theoretical result; actually the wave direction,
for instance at the outer edge of the surf zone, will not be exactly normal to the
shore).

To determine the effect of refraction on the wave amplitude, consider again the
above one-dimensional situation but now for oblique incidence. The volume G is
now defined by two curved, vertical sides through two parallel neighbouring wave
rays and two vertical planes normal to the wave direction (planes 1 and 2 in Fig.
7.8), and the bottom and the mean sea surface.

Again, the direction of energy propagation is in the wave direction, so no energy
enters or leaves through the lateral sides. Therefore, in a stationary situation and



7.3 Propagation 207

in the absence of any generation or dissipation of wave energy, the energy that is
leaving volume G per unit time through plane 2, P2b2, is equal to the energy that
is entering the volume per unit time through plane 1, P1b 1 (where P is the energy
transport per unit crest length, see Section 5.5, and b is the distance between the

NOTE 7A Snell’s Law

The rate of change of the wave direction θ along a wave ray can be written as (see Eq.
7.3.7)

dθ

dn
= −1

c

∂c

∂m
= −1

c

(
− ∂c

∂x
sin θ + ∂c

∂y
cos θ

)

Consider now a situation with parallel depth contours, normal to the x-axis (see Fig. 7.7).
In this one-dimensional situation, all derivatives in the y-direction are zero, so dθ/dn =
(1/c)(dc/dx) sin θ . In general we have dc/dn = (∂c/∂x)(dx/dn) + (∂c/∂y)(dy/dn),
which in this case reduces to dc/dn = (dc/dx)(dx/dn) = dc/dx cos θ , so that dc/dx =
(1/ cos θ )dc/dn and we find by substitution

dθ

dn
= 1

c

dc

dn

sin θ

cos θ

Multiplying the left- and right-hand sides by cos θ/c gives

1

c
cos θ

dθ

dn
= 1

c2
sin θ

dc

dn
so

1

c

d(sin θ )

dn
+ sin θ

d (1/c)

dn
= 0

Inversing the rule of chain differentiation gives Snell’s Law:

d(sin θ/c)

dn
= 0 or sin θ/c = constant

A shorter derivation can be based on the fact that the wave-number field is rotation-free
(see the note in Appendix D):

∂ky

∂x
− ∂kx

∂y
= 0

Since all derivatives in the y-direction are zero, it follows from this expression that
dky/dx = 0. With a constant frequency ω and ky = k sin θ we find from this that
d(k sin θ/ω) /dx = 0. The phase velocity is c = ω/k, so d(sin θ/c) /dx = 0. If sin θ/c
is constant in the x-direction (in other words, everywhere), as stated by this expres-
sion, it is also constant along the wave ray (in this one-dimensional situation), so
d(sin θ/c)/dn = 0.
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two wave rays). The amplitude in plane 2 can therefore be readily obtained from
the amplitude in plane 1:

P2b2 = P1b1 → [Ecg]2b2 = [Ecg]1b 1 → 1

2
ρga2

2cg,2 = 1

2
ρga2

1cg,1
b 1

b2

(7.3.11)

so

a2 =
√

cg,1

cg,2

√
b 1

b2
a 1 (7.3.12)

If we take the up-wave boundary in deep water, and correspondingly replace the
index 1 with ∞, and drop the index 2 then the coefficient

√
b1/b2 → Kref =√

b∞/b is called the refraction coefficient (the shoaling coefficient Ksh was defined
earlier, see Section 7.3.1). .

The above approach of estimating the wave amplitude from wave rays (called
the Lagrangian approach) is simple and effective if the seabed topography is fairly
smooth. However, the seabed topography near a coast is often rather complicated.
It may contain large-scale features such as sub-marine canyons or shoals, like the
Hudson Canyon off New York, the Dogger Bank in the central North Sea and the
Grand Banks off the east coast of Canada. Such large-scale features will cause large-
scale refraction. The seabed may also contain small-scale features such as shoals and
channels in coastal regions. This will result in local, small-scale refraction. Over
long distances the effects of such local, small-scale refraction may accumulate
and result in a scattering of the rays (K. Hasselmann calls this scintillation, in
analogy with the passage of light from a star through the Earth’s atmosphere, making
the stars scintillate in the night sky). In all these cases, irrespective of whether
the bottom features are large, small, well defined or more or less random, many
wave rays will generally cross many other wave rays at many different locations
(see Figs. 7.9 and 8.8).

The distance between initially adjacent wave rays approaches zero at the inter-
sections of such rays, and the refraction coefficient in Eq. (7.3.12) approaches
infinity: Kref → ∞. In other words, the wave amplitude grows infinitely large at
these intersections. Under some conditions, the crossing wave rays create an enve-
lope, called a caustic, where the wave height would theoretically approach infinity
along a line (see the lower-right-hand corner in Fig. 7.9). Obviously, the theory
breaks down near such points and caustics. Decreasing the initial distance between
the rays in the computations does not solve the problem (on the contrary, it usually
makes the situation worse).
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Figure 7.9 Wave rays for a harmonic wave over a complicated bottom topography.

We have seen earlier that, for oceanic waters, the Lagrangian approach to wave
computations is not suited because of the computation of nonlinear source terms
in the spectral energy balance equation (see Section 6.4.1). In coastal waters this
appears to be also unsuited, for the same reason, but also because of the crossing of
wave rays. Again, as in oceanic waters, the Eulerian approach offers an alternative
by discretising the geographic space in cells. This gives an average wave condition
per geographic cell, thus avoiding the crossing of wave rays and smoothing the wave
conditions in each cell.3 The mathematical formulation of this Eulerian approach
requires the determination of the turning rate of the wave direction per unit time,
dθ/dt moving with the wave energy (rather than per unit distance, dθ/dn; see Eq.
7.3.7). The expression for dθ/dt can be obtained from the expression for dθ/dn,
using the propagation speed of the wave energy, i.e., the group velocity cg. Consider
two positions of the crest at a distance �n in the forward direction (see Fig. 7.5).
The directional turn of the crest over this distance is �θ = dθ/dn�n. This dis-
tance is travelled by the wave energy in a time interval �t = �n/cg, so �n =
cg�t and, therefore, �θ = dθ/dn cg�t . Taking infinitesimally small intervals

3 However, the proper solution is to take diffraction effects into account; see Section 7.3.3.
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and substituting in the expression for dθ/dn of Eq. (7.3.7) gives the turning rate in
time in a frame of reference moving with the wave energy cθ,re f = dθ/dt :4

cθ,re f = −cg

c

∂c

∂m
stationary, spatially variable depth; no currents

(7.3.13)

This expression will be used to represent refraction in the spectral energy balance
for coastal waters (in Chapter 8).

Literature:
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7.3.3 Diffraction

To introduce the phenomenon of diffraction, consider a harmonic, long-crested
wave, travelling in water of constant depth, around a headland or breakwater (see
Fig. 7.10). In the absence of refraction (since the bottom is horizontal), the waves
will travel into the shadow of the obstacle in an almost circular pattern of crests with
rapidly diminishing amplitudes. Owing to the shadowing effect of the headland,
large variations in amplitude will occur across the geometric shadow line of the
headland. If diffraction were ignored, the wave would propagate along straight
wave rays (since depth is constant), no energy would cross the shadow line and
no waves would penetrate the shadow area behind the headland. With diffraction
accounted for, the wave rays (defined here as orthogonals of the wave crests) curve
into the shadow area behind the headland (see Fig. 7.11).

In the above derivation of the refraction expressions, the linear theory was used
for a wave with constant amplitude. We now consider a case in which the amplitude
varies rapidly in horizontal space and we need to include spatial derivatives of the
amplitude in the Laplace equation of the linear wave theory (see Section 5.4).
This extension of the Laplace equation gives rise to subsequent extra terms in

4 An alternative expression is found as follows: in the absence of an ambient current, the frequency (which depends
on wave number k and depth d) is constant along a wave crest:

dω

dm
= ∂ω

∂k

∂k

∂m
+ ∂ω

∂d

∂d

∂m
= 0 so

∂ω

∂k

∂k

∂m
= − ∂ω

∂d

∂d

∂m

From Eq. (7.3.13) and the footnote near Eq. (7.3.7), we find:

cθ,ref = cg

k

∂k

∂m
= 1

k

∂ω

∂k

∂k

∂m

Substitution then gives

cθ,ref = − 1

k

∂ω

∂d

∂d

∂m
.
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Figure 7.10 Diffraction around a headland with a circular wave pattern in the
shadow zone (constant depth and no reflections).

Figure 7.11 Diffraction represented with wave rays curving around a headland
(constant depth, no reflections).

the analytical expressions of the linear wave theory. For instance, the phase speed
becomes

C = c(1 + δa)−1/2 (7.3.14)

where c is the phase speed of the harmonic wave without the effect of diffraction
and C is the phase speed with the effect of diffraction. The parameter δa is the
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diffraction parameter, containing a normalised second-order spatial derivative of
the wave amplitude:

δa = ∇2a

k2a
where ∇2a = ∂2a

∂x 2 + ∂2a

∂y2 (7.3.15)

and k is the wave number as given by the dispersion relationship (see Eqs. 5.4.17
and 7.3.1). The group velocity becomes

Cg = cg(1 + δa)1/2 (7.3.16)

where cg is the group velocity without the effect of diffraction and Cg is the group
velocity with the effect of diffraction.

The spatial turning rate (the curvature of the wave ray) is given by the same
equation as for refraction (Eq. 7.3.7), but now with C and Cg replacing c and cg,
respectively. After some algebra, we find(

dθ

dn

)
dif

= 1

2(1 + δa)

∂δa

∂m
diffraction for constant depth (7.3.17)

and the turning rate in time (travelling with the energy along the wave ray) is

cθ,dif = Cg

2(1 + δa)

∂δa

∂m
diffraction for constant depth (7.3.18)

The above conceptual approach to diffraction, which is based on wave rays, is
unconventional, probably because computational problems arise: the computation
of the wave rays requires the amplitudes, which in turn requires the wave rays (the
computations cannot be based on treating the rays as characteristics of the basic
equations, which they are in refraction computations). This problem can perhaps
be solved with some iterative or implicit numerical scheme, but to the best of
my knowledge that has never been tried. Moreover, diffraction may turn initially
unidirectional, long-crested waves into different directions in different areas. In
regions where such waves meet again (for instance, behind shoals or islands), this
would give cross-seas. In such regions, the harmonic wave at a given location
is the sum of two (or more) harmonic waves from different directions, requiring
phase information to determine the amplitude. This complicates the computations
further. However, an approximation will be given later for the Eulerian approach of
the energy balance equation for random short-crested waves (the phase-decoupled
refraction–diffraction approximation in Section 8.4.2).

Because of the need for phase information, diffraction is more conveniently com-
puted with phase-resolving models (see Section 1.3) based on Huygens’5 principle.

5 Christiaan Huygens was a Dutch scientist (1629–1695) who spent a great deal of his time on observations with
telescopes (he discovered the first moon and the rings of Saturn) and on the development of the clock so as to
help maritime navigation (the longitude problem).
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Figure 7.12 The effect of diffraction on the wave field behind a headland estimated
with Huygens’ principle.

Consider a point of interest A, in the sheltered region behind the headland in the
above example, and an incident wave crest up-wave from that point extending from
the tip of the headland to infinity (see Fig. 7.12).

Each segment of this up-wave crest is considered to be a source, sending infor-
mation on amplitude and phase along straight lines (water of constant depth) to
point A. All fictitious crest segments on the headland (if the crest were to extend
over land) obviously do not send that information. In other words, wave informa-
tion, up-wave from the headland, is blocked from propagating to point A. It is the
removal of this information that causes diffraction effects at point A. The wave at
point A can be reconstructed by adding the wave information that does arrive at
point A (amplitudes and phases), radiating from the up-wave crest. Repeating this
reconstruction for all points in the area down-wave from the incident crest gives the
entire wave field in this area, including the shadow area. Since this approach pro-
vides both the amplitude and the phase of the wave at all points in the down-wave
area, it also provides the wave direction in the down-wave area (the wave direction
being normal to lines of equal phase by definition).

An analytical solution to the diffraction problem is available for the simple
case of a straight, semi-infinite breakwater in water of constant depth (with reflec-
tions off the breakwater but no other reflections, such as off a nearby coastline;
this solution was originally developed for light waves by Sommerfeld in 1896).
The solution depends on the wave direction relative to the breakwater, which is
modelled as a straight, thin, rigid, reflecting, vertical screen. For each point in the
domain of interest, the solution is formulated as an integral that represents the
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Figure 7.13 Diffraction (normalised wave height) of a normal incident, harmonic
wave around a semi-infinite, straight breakwater in water with constant depth (Som-
merfeld solution; L is the wave length and H is the wave height).

contributions (amplitude and phase) of the up-wave sources along the wave crest
(as in Huygens’ principle), including the wave that is reflecting off the breakwa-
ter and subsequently diffracting around the tip of the breakwater into the shadow
area. In this manner the wave height can be found at any location affected by the
breakwater (see Fig. 7.13). Without the reflected wave, the integral can be rep-
resented graphically, providing an approximate graphical solution to this simple
diffraction problem (the Cornu spiral, e.g., Lacombe, 1951, 1965). It is possible
to compute the wave conditions for slightly more complex situations by combin-
ing Sommerfeld solutions for several individual breakwaters, e.g., to simulate a
gap in a breakwater. Alternatively, diagrams and tables with computed or observed
diffraction patterns for situations with simple layouts of breakwaters have been
published widely. However, it must be stressed that the diffraction patterns for
harmonic, long-crested waves as treated here are rather different from those for
random, short-crested waves. The reason is that, in the summation of many dif-
ferent harmonic waves (to simulate random, short-crested waves), the diffraction
effects of the individual harmonic waves are partially cancelled out. Random, short-
crested waves therefore create smoother diffraction patterns of the significant wave
height than would an equivalent harmonic, long-crested wave (see Goda, 2000 and
Section 8.4.2).
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For situations with a more complicated layout of obstacles, a numerical com-
puter model is needed. It is based on the same principle as above, but instead of
considering the crest of the incident wave as the only source of amplitude and phase
information, it considers all points on a closed boundary encompassing the area
of interest as sources of wave amplitude and phase, i.e., all points on the open-
sea boundary and on the obstacle(s) and the coast. This method is known as the
boundary-element method. The model computes the effect of these sources on all
points of the boundary and on any arbitrarily chosen point within the enclosed area.
In this approach, all effects of reflections off obstacles and the coast can be taken
into account. This is particularly important for computing wave penetration into a
harbour where vertical walls may reflect 100% of the wave energy, thus creating
patterns of standing waves, which are properly accounted for in such a model. The
basic equation for this type of model is relatively simple to derive. Instead of the
harmonic wave with a straight crest in the y-direction, which was considered in
the derivation of the linear wave theory in Chapter 5, with a constant amplitude a
and a phase that varies horizontally as −kx (so as to have a wave propagating every-
where in the positive x-direction), consider now a harmonic wave with amplitude
a and phase α that both vary arbitrarily horizontally, a(x, y) and α(x, y):

η(x, y, t) = a(x, y)sin[ωt + α(x, y)] (7.3.19)

This harmonic wave may propagate in any direction, depending onα(x, y), and need
therefore not be cylindrical (i.e., need not have an infinitely long, straight crest).
The velocity potential function for this wave (for a horizontal bottom) would be
(analogously to Section 5.4.1)

φ(x, y, z, t) = ω a(x, y)

k

cosh[k(d + z)]

sinh(kd)
cos[ωt + α(x, y)] (7.3.20)

The diffraction computation consists essentially of solving, for any particular layout
of the coastline and obstacles and constant depth, the Laplace equation, expressed
in terms of this potential function (repeated from Eq. 5.3.22):

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= 0 (7.3.21)

For the solution in terms of a propagating harmonic wave, it is convenient to separate
the dimensions, i.e., to separate the horizontal x, y-dimension from the time t-
dimension (the vertical z-dimension is already separated in Eq. 7.3.20). This is
readily achieved by re-writing the expression for the harmonic wave (see Eq. 7.3.19)
as

η(x, y, t) = A(x, y)cos(ωt) + B(x, y)sin(ωt) (7.3.22)



216 Linear wave theory (coastal)

with6 a = √
A2 + B2, A = a sinα and B = a cosα, so that tanα = A/B. Writing

the velocity potential function correspondingly and substituting it into the Laplace
equation gives

(
∂2 A

∂x2
+ ∂2 A

∂y2
+ k2 A

)
f (z)cos(ωt) −

(
∂2 B

∂x2
+ ∂2 B

∂y2
+ k2 B

)
f (z)sin(ωt) = 0

(7.3.23)

where f (z) = (ω/k)cosh[k(d + z)]/sinh(kd). This equation can be true for all val-
ues of t only if the expressions between large parentheses in this equation are equal
to zero:

∂2 A

∂x2
+ ∂2 A

∂y2
+ k2 A = 0

(7.3.24)
∂2 B

∂x2
+ ∂2 B

∂y2
+ k2 B = 0

These equations are called the Helmholtz7 equations8 and they can be solved with
numerical models with the proper boundary conditions (vertical walls, where the
wave may reflect but not penetrate, and free radiation of wave energy back to open
sea). As indicated above, the numerical techniques for solving these equations are
based on Huygens’ principle. A more advanced model, in the sense that the depth
need not be constant (the bottom need not be horizontal), so that refraction and
diffraction need to be combined, is briefly introduced in the next section.

Literature:
Battjes (1968), Booij et al. (1997), Briggs et al. (1995), CEM (2002), Dean and Dalrymple
(1998), Dingemans (1997a), Goda et al. (1978), Goda (2000), Holthuijsen et al. (2003),
Lacombe (1951, 1965), Penney and Price (1952), Rivero et al. (1997), SPM (1973, 1984),
Wiegel (1964).

6 To find this, consider x(t) = a sin(ω t + α), which may also be written (standard trigonometry) as x(t) =
a[sin(ωt) cosα + cos(ωt) sinα], so that, if we write x(t) = A cos(ωt) + B sin(ωt), then A = a sinα and
B = a cosα. From this we find a = √

A2 + B2 and tanα = A/B.
7 Hermann Ludwig Ferdinand von Helmholtz (1821–1894) was a German scientist who (like Daniel Bernoulli,

see Section 5.3.4) started his career in medicine, showing that muscle force was derived from chemical and
physical principles rather than from vital (non-physical) forces as it was fashionable to believe at that time. His
work then took him more and more to physiology (acoustics, optics) and physics (hydromechanics, electrody-
namics) based on mechanical principles and mathematics. He established the principle of the conservation of
energy.

8 The equations are usually written in complex notation resulting in one complex differential equation of the same
appearance: ∂2G/∂x2 + ∂2G/∂y2 + k2G = 0, or, in vector notation, ∇2G + k2G = 0, where G = A + iB is
a complex wave function with A and B defined as in the main text, so that η (t) = Re{Ge−iωt }. This differential
equation is called ‘the’ Helmholtz equation (at least in the world of hydromechanics).



7.3 Propagation 217

7.3.4 Refraction and diffraction

If the waves propagate in shallow water over a non-horizontal bottom, with rapid
spatial variations in wave amplitude, both refraction and diffraction need to be
accounted for. Conceptually, this is readily achieved by combining the effects of
varying water depth and varying amplitude in the computation of the wave rays (see
Eq. 7.3.7 and its footnote, and Eq. 7.3.17). The spatial turning rate (the curvature
of the wave ray) is then(

dθ

dn

)
ref +dif

= 1

k

∂k

∂m
+ 1

2(1 + δa)

∂δa

∂m
(7.3.25)

with a modified diffraction parameter δa:

δa = ∇ccg∇a

k2ccga
with ∇ccg∇a = ∂

∂x

(
ccg

∂a

∂x

)
+ ∂

∂y

(
ccg

∂a

∂y

)
(7.3.26)

The turning rate in time, while travelling with the wave energy, is obtained from
Eq. (7.3.25) and dn = Cgdt as

dθ

dt
= cθ,ref +dif stationary, spatially variable

depth and amplitude; no
currents (7.3.27)= Cg

(
1

k

∂k

∂m
+ 1

2(1 + δa)

∂δa

∂m

)

An approximation of this expression is used in the Eulerian approach of the
energy-balance equation for short-crested, random waves (see Section 8.4.2). How-
ever, the established manner in which to compute combined refraction and diffrac-
tion (at least for harmonic, long-crested incident waves) is based on equations that
are similar to the Helmholtz equations (Eqs. 7.3.24). Only the product of phase
speed and group velocity ccg is added, resulting in equations that are called the
mild-slope equations9 (Berkhoff, 1972):

∂

∂x

(
ccg

∂A

∂x

)
+ ∂

∂y

(
ccg

∂A

∂y

)
+ k2ccg A = 0

(7.3.28)∂

∂x

(
ccg

∂B

∂x

)
+ ∂

∂y

(
ccg

∂B

∂y

)
+ k2ccg B = 0

Adding ccg to the Helmholtz equations seems trivial but the numerical techniques
to solve the mild-slope equations for a given situation (finite-element methods)
are considerably more complicated than the technique for solving the Helmholtz

9 These equations too (like the Helmholtz equations) are usually written in complex notation, resulting in one
complex differential equation of the same appearance: ∂(ccg∂G/∂x)/∂x + ∂(ccg∂G/∂y)/∂y + k2ccg G = 0,
or, in vector notation, ∇(ccg∇G) + k2ccg G = 0, where G = A + iB is a complex wave function (see the
previous footnote). This equation is called ‘the’ mild-slope equation.
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equations (with the boundary-element method). The reason is that, with a varying
water depth, the amplitude and phase information does not travel (radiate) to a point
in the computational area along straight lines, as in the solution of the Helmholtz
equations. The velocity potential (see Eq. 7.3.20) needs therefore to be computed at
a large number of points in the computational area simultaneously. A numerically
more economic approach is provided by a parabolic version of the mild-slope
equation, in which the wave condition is computed line-by-line, marching in the
forward direction, (only for waves travelling towards a non-reflecting coast, in a
directional sector of 60◦–90◦ on either side of some main wave direction that is
constant over the computational region). More advanced models (Boussinesq-type
models), in which the waves may be random, short-crested and nonlinear, are briefly
introduced in Section 7.5.2.

Literature:
Beji and Nadaoka (1997), Berkhoff (1972), Booij (1981), Dalrymple and Kirby (1988),
Dalrymple et al. (1989), Dingemans (1997a), Ebersole (1985), Holthuijsen et al. (2003),
Kaihatu and Kirby (1995), Kirby (1984, 1986), Maa et al. (2002), Mei (1989), Mei et al.
(2006), Radder (1979), Sawaragi (1995), Vincent and Briggs (1989).

7.3.5 Tides and currents

Tides and currents, or, more specifically, time-varying water depths and ambient
currents, which may be due to tides, storm surges or river discharge, may change
the amplitude, frequency and direction of an incoming harmonic wave. The first
phenomenon (the change in amplitude) has several causes: energy bunching (as
in shoaling), current-induced refraction and transfer of energy between wave and
current. The second phenomenon (the change in frequency) is closely related to
the well-known Doppler effect. The third phenomenon (the change in direction)
is refraction, induced by current-related changes in propagation speed. All these
phenomena are due to the bodily transport of the wave by the ambient current with
a varying speed (horizontally and in time).

If the harmonic wave propagates in an area with constant depth across a constant
ambient current (constant in space and time), the linear theory is still valid in its
entirety in a frame of reference moving with the current (the wave doesn’t ‘know’
that it moves in an ambient current, it just moves with it as if in a water tank that is
carried with the ambient current). In this case, all results of the linear wave theory
can therefore be applied in a frame of reference moving with the current. The
frequency of the wave in this moving frame of reference is called the relative
or intrinsic frequency, denoted as σ , and the relationship with wave number and
depth (the dispersion relationship; see Eqs. 5.4.17 and 7.3.1) is retained:

σ 2 = gk tanh(kd) (7.3.29)



7.3 Propagation 219

U
g, absolutec

c

wave crest

current

wave  (relative  group  velocity)

energy (absolute group velocity)
→

→
g, relative

Figure 7.14 The energy propagation speed is the sum of the current vector and the
vector of the group velocity (relative to the current).

In a fixed frame of reference (fixed to the stationary bottom), the frequency of the
wave is called the absolute frequency and denoted as ω (as observed, for instance,
with a wave pole fixed to the bottom). It is related to the relative frequency (this
follows directly from the bodily transport of the wave by the current) as

ω = σ + kUn (7.3.30)

where Un is the component of the current in the wave direction (i.e., normal to
the wave crest). The propagation velocity of the wave energy in this fixed frame
of reference, i.e., relative to the bottom, �cg,absolute, is obtained by adding as vectors
the current velocity �U to the group velocity relative to the current, �cg,relative (see
Fig. 7.14):

�cg,absolute = �cg,relative + �U (7.3.31)

The direction of wave energy transport is therefore generally not normal to the wave
crest in the presence of an ambient current (some energy propagates parallel to the
wave crest).

In these circumstances, of a constant current in water with a constant depth, both
the relative and the absolute frequencies are constant. If, however, the water depth or
the ambient current varies horizontally or in time, these frequencies will generally
also vary. Determining the rate of this (relative-) frequency change in time, when
travelling with the wave energy, requires a distinction amongst the wave ray (the line
with co-ordinate r , along which the wave energy propagates), the wave orthogonal
(the line with co-ordinate n normal to the crest) and the streamline of the current
with co-ordinate s (see Fig. 7.15).
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Figure 7.15 An ambient current generally deflects the propagation direction of the
wave energy away from the wave direction and a distinction must be made between
the wave direction (normal to the wave crest; the wave orthogonal) and the direction
of energy propagation (the wave ray). In general, some wave energy travels parallel
to the wave crest in the presence of an ambient current (the m-component of the
energy transport).

With a current or water depth varying horizontally or in time, the rate of change of
relative frequency, denoted as dσ/dt = cσ , in a frame of reference moving with the
wave energy along the wave ray, is given by (for the derivation, see Appendix D):

dσ

dt
= cσ = ∂σ

∂d

(
∂d

∂t
+ U

∂d

∂s

)
− cgk

∂Un

∂n
(7.3.32)

The first term in the brackets relates to the time variation in the depth and the second
term in these brackets to the effect of the current bodily moving the wave across a
horizontally varying bottom. The second term on the right-hand side represents the
effect of the wave moving with a horizontally varying current. The corresponding
variations in absolute frequency ω and wave number k follow directly from the
variation in the relative frequency σ with Eqs. (7.3.29) and (7.3.30), without any
additional computations (the time variation of the current is thus accounted for).

In addition to changing the frequency of the waves, currents can also change the
direction of the waves. This phenomenon of current-induced refraction is essentially
the same as depth-induced refraction: the wave turns towards the area with lower
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(absolute) propagation speed of the crest (i.e., relative to the fixed bottom), which is
now affected not only by the depth but also by the ambient current (the component
of the current in the wave direction Un). The rate of change of the wave direction
(i.e., of the normal to the wave crest) due to depth- and current-induced refraction
is then (for the derivation, see Appendix D)

cθ,ref ,depth+current = −cg

c

∂c

∂m
− ∂Un

∂m
(7.3.33)

where obviously the term ∂Un/∂m represents current-induced refraction and the
term with ∂c/∂m represents depth-induced refraction (see Eq. 7.3.13).

The current interacts with the waves also by exchanging energy (work done
by the current against the radiation stress, see footnote in Section 5.5.2; e.g.,
Longuet-Higgins and Stewart, 1960, 1961, 1962, 1964). This implies that the wave
energy is not conserved as the wave propagates through a current field. Instead,
another, closely related quantity, action, is conserved. It is defined as energy divided
by relative frequency A = E/σ (e.g., Bretherton and Garrett, 1969; Mei et al.,
2006). Wave models that account for wave–current interactions are therefore often
based on an action balance equation rather than an energy balance equation (see
Chapter 8).
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7.3.6 Reflections

The coast to which the waves propagate will very probably reflect waves to some
degree. A vertical cliff may well reflect 100% of the incoming wave energy, whereas
a gentle beach will barely reflect energy. Computing the effect of such reflection
on the wave field is generally complicated, even if the incoming wave is a simple
long-crested, harmonic wave. At each point in front of the reflecting coast, the
wave motion would be the sum of the incoming wave and one or more reflected
waves (a geometrically intricate rocky coast may well reflect in many different
directions). The type of wave model that should be used to compute the wave field
under such conditions depends very much on the nature of the reflection. If the coast
has many rocky outcrops with a horizontal scale roughly equal to or smaller than
the wave length, the situation may well be beyond any mathematical modelling. If
the reflections are somewhat less intricate, but still rather variable, for instance, a
length of dyke, a breakwater or some other line-barrier, a wave diffraction model
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Figure 7.16 A standing wave due to the full reflection of an incident wave against
a vertical wall. The short straight arrows are the trajectories of the water particles
as they undergo their motion in one wave period.

may be required. If the reflection is fairly homogeneous, a wave model based on the
spectral energy balance equation may be used with reflective boundary conditions.
However, reflection is very often ignored, particularly near sandy, beach-like coasts,
where wave reflection is often deemed to be insignificant (and certainly in wave
models operating on an oceanic scale).

One of the most notable phenomena of reflecting waves is the standing wave
(also called clapotis). To introduce this phenomenon, consider a one-dimensional
situation with a long-crested wave at normal incidence, reflecting off a vertical wall
at location x = 0 (see Fig. 7.16). The resulting wave profile is the summation of
two waves: the incident wave, propagating towards the wall, and the reflected wave,
propagating away from that wall:

η(x, t) = a i sin(ωt − kx) + ar sin(ωt + kx) (7.3.34)

with amplitudes ar and a i of the reflected and incident waves, respectively. In the
case of 100% reflection, the two amplitudes are equal, ar = a i , and the wave may
also be written (with standard trigonometric rules) as

η(x, t) = 2a i cos(kx)sin(ωt) (7.3.35)

The surface elevation of this standing wave (it does not propagate) fluctuates as
a sine wave in time. Its amplitude is modulated horizontally with a cosine, from a
minimum of 0 at locations x = 1

4 L + (n/2)L (where n is an integer; these points
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are called ‘nodes’; see Fig. 7.16) to a maximum of 2a i at locations x = (n/2)L
(these points are called ‘antinodes’). The corresponding wave-induced pressure and
orbital velocities are, according to the linear wave theory,

pwave = 2ρga i
cosh[k(d + z)]

cosh(kd)
cos(kx)sin(ωt) (7.3.36)

ux = −2ωa i
cosh[k(d + z)]

sinh(kd)
sin(kx)cos(ωt) (7.3.37)

uz = 2ωa i
sinh[k(d + z)]

sinh(kd)
cos(kx)cos(ωt) (7.3.38)

In engineering practice, nonlinear estimates, not given here, are often used instead,
e.g., Sainflou (1928). These expressions Eqs. (7.3.36)–(7.3.38) show that the verti-
cal structure of this standing wave is the same as in a propagating wave, but that the
horizontal structure is very different. Under a node (i.e., a point with zero surface
elevation) of the standing wave, the orbital velocity is always horizontal, whereas
it is always vertical in a propagating wave (under the propagating point of zero
surface elevation). Under an antinode (i.e., a point with maximum elevation) of the
standing wave, the orbital velocity is always vertical, whereas it is always horizontal
in a propagating wave (under the propagating point of maximum surface elevation,
i.e., the crest).

Very often, the reflection is (far) less than 100% and the resulting wave is not
a perfectly or fully standing wave but a partially standing wave (see Fig. 7.17).
If no phase shift occurs at reflection, such a wave can be written as the sum of a
propagating wave travelling towards the obstacle (with an amplitude equal to that
of the incident wave minus that of the reflected wave) and a fully standing wave
(with a maximum amplitude equal to twice the reflected amplitude):

η(x, t) = (a i − ar )sin(ωt − kx) + 2ar cos(kx)sin(ωt) (7.3.39)

The maximum amplitude amax (at the quasi-antinodes) and the minimum amplitude
amin (at the quasi-nodes) of the partially standing wave are then, respectively,

amax = a i + ar

(7.3.40)amin = a i − ar

The reflection coefficient Krefl = ar/a i can readily be measured in a laboratory
flume by measuring these maximum and minimum amplitudes along the flume
(this is the most common way to determine reflection coefficients). In real life,
the waves are almost always random and short-crested and, in addition, a coast
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Figure 7.17 A partially standing wave due to the (partial) reflection of an incident
wave against an obstacle. The ellipses are the trajectories of the water particles as
they undergo their motion in one wave period.

or reflecting structure always has a finite length. This complicates the pattern of
reflecting waves (e.g., diffraction will occur at the tips of a reflecting structure), but
it also limits the area of large amplitudes in front of such a structure: the standing-
wave patterns of the individual harmonic, long-crested wave components overlap in
a random, short-crested wave field. The wave field is therefore smoothed by adding
randomness and short-crestedness to the waves (maximum amplitudes are reduced
and minimum amplitudes are enhanced).

The mechanisms involved in the reflection off a structure or coast are usually
so complex that the reflection coefficient cannot be determined theoretically (it
may well involve wave breaking). It requires observations. Such observations have
been generalised to some extent for various types of coasts and coastal struc-
tures using a parameter called the Iribarren parameter or surf similarity parameter,
which is defined in terms of the bottom slope and the wave steepness (see also
Section 7.6):

ξ = tanα/
√

H/L 0 (7.3.41)

where α is the bottom slope, H is the incident wave height and L0 is the deep-water
wave length (L0 = gT 2/(2π ), where T is the wave period). For gentle slopes
or steep waves (i.e., ξ < 2.5) on flat, smooth, impermeable, inclined surfaces,
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observations show that

Krefl ≈ 0.1ξ 2 for ξ < 2.5 (i.e., gentle slopes or steep waves) (7.3.42)

Under the same conditions, i.e., ξ < 2.5, but with surfaces that are rough or
permeable, the reflection is less (by as much as 50%). Under other conditions, i.e.,
with steep slopes or mild wave steepness (i.e., ξ > 2.5), the waves tend to reflect
without breaking and with a higher reflection coefficient:

Krefl > 0.1ξ 2 for ξ > 2.5 (i.e., steep slopes or gentle wave steepness)

(7.3.43)

Observations in real Nature off natural sandy beaches exhibit a corresponding
frequency dependence: reflection practically absent for wind-sea frequencies (fre-
quencies > 0.1 Hz; steep waves) but significant at swell frequencies (frequencies
0.05–0.1 Hz; gentle wave steepness ) and strong for infra-gravity waves (frequen-
cies <0.05 Hz; very gentle wave steepness).

Literature:
Allsop and Hettiarachchi (1988), Battjes (1974a, 1974b), Goda (2000), Herbers et al. (1999),
Seelig and Ahrens (1981).

7.4 Wave-induced set-up and currents

7.4.1 Introduction

Waves transport not just energy; they also transport momentum. Such momentum
transport is equivalent to a stress and horizontal variations in this stress act as
forces on the water (body forces; gravitation is another body force) and may thus
tilt the mean sea level or generate currents. In oceanic waters, these forces are
generally too weak to be relevant in an engineering context, except that they may
generate long waves that are bound beneath wave groups. These long waves, with
a wave length equal to the wave length of the groups, are usually well outside the
frequency range of wind-generated waves and they will not be considered here.
In contrast to this, in coastal waters these forces can be rather large, particularly
in the surf zone, where they may induce considerable changes in mean sea level
and strong currents (long-shore currents, sometimes breaking out to sea as rip
currents).

7.4.2 Wave momentum and radiation stress

Wave momentum is a vector property: it is the product of the mass and the wave-
induced velocity of the water particles. It is represented here by its densityρ�u, where
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Figure 7.18 The slice of water that is used in the derivation of the horizontal
momentum under a wave.

ρ is the mass density and �u is the particle velocity. To estimate the total amount
of momentum beneath a wave per unit horizontal area (i.e., integrated over depth;
e.g., per m2 sea surface), consider a long-crested (i.e., cylindrical) wave propagat-
ing in the positive x-direction and a column of water beneath that wave, from the
bottom to the sea surface with horizontal surface area �x�y (see Fig. 7.18). Con-
sider next the wave-induced x-momentum in a horizontal slice in the column with
thickness �z. The amount of x-momentum in this slice is equal to ρux�x�y�z.
The total amount of x-momentum in the column qx is obtained by integrating
from the bottom to the instantaneous water surface (note the upper limit of the
integration):

qx =
(∫ η

−d
ρux dz

)
�x�y (7.4.1)

Per unit surface area (i.e., divided by �x�y) and averaged over time, the amount
of x-momentum then is

Qx =
∫ η

−d
ρux dz (7.4.2)

where the overbar denotes averaging over one wave period.
For a wave propagating in the positive x-direction, the result of this integration (to

second-order accuracy; see Note 7B), with ux taken from the linear wave theory, is

Qx = ρa2

2 tanh(kd)
ω (7.4.3)
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Figure 7.19 The horizontal transport of wave-induced x-momentum in the x-
direction through a vertical window parallel to the wave crest with height �z
and width �y.

For this wave, the other horizontal component of wave momentum, ρuy , i.e., that
parallel to the wave crest, is zero (the wave-induced y-momentum, i.e., directed
along the crest), because the orbital velocity uy is zero, so

Qy = 0 (7.4.4)

These two expressions give the total amount of horizontal momentum beneath the
waves per unit horizontal surface area.

The transport of wave-induced momentum is equivalent to a stress (consisting
of normal stresses and shear stresses) and it is called radiation stress (Longuet-
Higgins and Stewart, 1960, 1961, 1962, 1964). To find the expressions for this stress,
we first consider the horizontal transport in the wave direction of x-momentum
(ρux ), i.e., through a vertical plane, parallel to the wave crests (see Fig. 7.19). The
transport through a vertical window with surface area �y�z, by bodily motion
with the particle velocity ux in a time interval �t is (ρux )ux �y�z�t . In addition
to this, wave momentum is also transferred by the wave-induced pressure pwave in
the water (see Section 5.3.2 for the relation between force and momentum). This
adds a transport pwave�y�z�t . The total transport through the vertical window
�y �z in a time interval �t is therefore (ρux ux + pwave)�z�y�t . The transport
sxx through the entire vertical plane, from the bottom to the instantaneous surface,
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is obtained by integrating between these two limits:

sxx =
(∫ η

−d
(ρ ux ux + pwave)dz

)
�y�t (7.4.5)

or, per unit width (that is, per unit crest length, i.e., divided by �y) and per unit
time (i.e., divided by �t) and averaged over time:

Sxx =
∫ η

−d
(ρ ux ux + pwave)dz (7.4.6)

NOTE 7B Integration to second-order accuracy

Determining the order of accuracy of an integral over the vertical beneath a harmonic
wave in the linear wave theory is explained in general terms in Note 5B. In the text of
Section 7.4.2. the following integrals appear:

(a) f (z) = ρux , so the integral (averaged over time) can be written as

∫ η

−d
f (z)dz =

∫ η

−d
ρux dz =

∫ 0

−d
ρux dz +

∫ η

0
ρux dz =

∫ η

0
ρux dz = ρa2

2 tanh(kd)
ω

Since f (z) = ρux is of first order in amplitude (the orbital velocity is proportional
to the amplitude), it follows that the first integral is of first order and that the
second integral is of second order. Therefore, both need to be accounted for in a
second-order approximation. However, the outcome of the first integral (averaged
over time) is zero. Using the expression for u from the linear wave theory gives
the result for the second integral as indicated.

(b) f (z) = ρu2
x , so the integral (averaged over time) can be written as

∫ η

−d
f (z)dz =

∫ η

−d
ρu2

x dz =
∫ 0

−d
ρu2

x dz +
∫ η

0
ρu2

x dz ≈
∫ 0

−d
ρu2

x dz = nE

Since f (z) = ρu2
x is of second order in amplitude (the orbital velocity is propor-

tional to the amplitude), it follows that the first integral is of second order and that
the second integral is of third order. The second integral can therefore be ignored
in a second-order approximation. Using the expression for ux from the linear wave
theory gives the result indicated (where E is the wave energy and n is the ratio of
the group velocity over the phase speed; see Eqs. 5.5.5 and 5.5.12 or 7.3.3).

(c) f (z) = −ρu2
z , so the integral, with upper limit 0 (and averaged over time) can be

written as

∫ 0

−d
f (z)dz = −

∫ 0

−d
ρu2

z dz = (n − 1)E
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Since f (z) = −ρu2
z is of second order in amplitude (the orbital velocity is pro-

portional to the amplitude), it follows that this integral is of second order in ampli-
tude. Using the expression for uz from the linear wave theory gives the result
indicated.

(d) f (z) = pwave, so the integral (averaged over time) can be written as∫ η

0
f (z)dz =

∫ η

0
pwavedz = 1

2
E

Since f (z) = pwave is of first order in amplitude (the wave-induced pressure is
proportional to the amplitude), it follows that this integral is of second order. Using
the expression for pwave from the linear wave theory gives the result indicated.

which can be split into (note the upper limits of the integrals)

Sxx =
∫ η

−d
ρu2

x dz +
∫ 0

−d
pwavedz +

∫ η

0
pwavedz

=
∫ η

−d
ρu2

x dz +
∫ 0

−d
pwavedz +

∫ η

0
pwavedz

(7.4.7)

In the linear wave theory, the average wave-induced pressure pwave (the second
integral on the right-hand side of Eq. 7.4.7) is zero. However, in a second-order
approximation it is not, due to the vertical motion of the water particles; to second-
order accuracy (see Note 7C) it is

∫ 0
−d pwavedz = − ∫ 0

−d ρu2
z dz, so

Sxx =
∫ η

−d
ρ u2

x dz −
∫ 0

−d
ρu2

z dz +
∫ η

0
pwavedz (7.4.8)

The outcome of the integrals in Eq. (7.4.8), to second-order accuracy is (see
Note 7B)

∫ η

−d ρu2
x dz = nE , −∫ 0

−d ρu2
z dz = (n − 1)E and

∫ η

0 pwavedz = 1
2 E (where

n is the ratio of group velocity over phase speed, see Eq. 7.3.3; and E is the
wave energy, see Eq. 5.5.5). With these results, the time-averaged transport of x-
momentum in the x-direction per unit width and per unit time, i.e., the radiation
stress component Sxx , is (by substitution into Eq. 7.4.8)

Sxx =
(

2n − 1

2

)
E if the wave direction is the direction

of the positive x-axis (7.4.9)

The double x in the subscript of Sxx denotes that x-momentum is transported in the
x-direction (for the notation, see Note 7D). We may also say that Sxx is equivalent
to a normal stress acting in the x-direction (i.e., like σxx in Note 7D).
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The transport of y-momentum in the y-direction Syy can be expressed as in
Eq. (7.4.7), with the subscripts x replaced with y. However, the orbital motion in

the y-direction is zero, so that only
∫ 0
−d pwavedz = −∫ 0

−d ρu2
z dz = (n − 1)E and∫ η

0 pwavedz = 1
2 E remain. The sum of these two expressions is the time-averaged

transport of y-momentum in the y-direction per unit width and per unit time, i.e.,
the radiation stress component Syy , which is given by

Syy =
(

n − 1

2

)
E if the wave direction is the direction

of the positive x-axis (7.4.10)

NOTE 7C The average wave-induced pressure (second-order accurate)

Consider the balance of vertical momentum ρuz (z-momentum) in the column beneath
the wave, from a certain level z = z1 below the mean water surface, to the surface (take
the x-direction in the wave direction; see illustration below).

The balance of vertical momentum for a column from level z1 to the surface.

In analogy with the other derivations of balances of properties (e.g., Section 5.3.2 but
now for the column between z = z1 and z = η, with horizontal surface area �x�y, so
that integrals

∫ η

z1
. . . dz�x�y appear in the balance) and treating forces as the generation

or transfer of momentum (vertical forces only: the pressure at the underside of the
column and the weight of the water in the column; see the above illustration and also
Section 5.3.2), we find for the balance of z-momentum ρuz (ignoring vertical shear
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stresses, not only because we are considering idealised water but also because the
horizontal gradients in vertical velocity are small)

∂

∂t

∫ η

z1

ρ uzdz�x�y = − ∂

∂x

∫ η

z1

ρuzux dz�x�y + ρuzuz �x�y

−ρg(η − z1)�x�y + p �x�y

The left-hand side represents the rate of change of vertical momentum in the column.
On the right-hand side; the first term represents the net import of vertical momentum
through the vertical sides of the column (in this situation, with uy = 0, no transport
occurs in the y-direction), the second term represents the net import of vertical momen-
tum through the underside of the column (where z = z1), the third term represents the
weight of the column and the fourth term represents the force at the underside of the
column due to the pressure in the water. Per unit horizontal surface area this is (divide
by �x�y)

∂

∂t

∫ η

z1

ρuzdz = − ∂

∂x

∫ η

z1

ρuzux dz + ρu2
z − ρg(η − z1) + p

If we average over time, we can write

∂

∂t

∫ η

z1

ρuzdz = − ∂

∂x

∫ η

z1

ρuzux dz + ρu2
z − ρg(η − z1) + p

Assuming the effect of the waves on the mean surface elevation to be small, so that we
can take η = 0 here, and considering stationary conditions, so that the average rate of
change ∂../∂ t = 0, we find

0 = − ∂

∂x

∫ η

z1

ρuzux dz + ρu2
z + ρgz1 + p

Moreover, in propagating, harmonic waves uz and ux are 90◦ out of phase so that
uz ux = 0. Substituting this into the above gives

0 = ρu2
z + ρgz1 + p

The average pressure in the water at z = z1 is therefore p = −ρgz1 − ρu2
z , in which

−ρgz1 is the mean hydrostatic pressure (for η = 0; z is negative below the mean water
surface) and −ρu2

z is the time-averaged wave-induced pressure pwave:

pwave = −ρu2
z

Syy is equivalent to a normal stress acting in the y-direction (i.e., like σyy in
Note 7D). In addition to these transports of x-momentum in the x-direction and
of y-momentum in the y-direction, there is also transport of x-momentum in the
y-direction (Sxy) and of y-momentum in the x-direction (Syx ). The definition of
these additional transports is analogous to those of Sxx and Syy (compare with
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Eq. 7.4.6):

Sxy =
∫ η

−d
(ρux uy + τxy)dz (7.4.11)

and

Syx =
∫ η

−d
(ρuyux + τyx )dz (7.4.12)

where τxy and τyx are equivalent to the shear stresses in the water in the x- and y-
directions, respectively (i.e., like σxy and σyx in Note 7D). However, in the idealised
fluid that we consider here, such shear stresses are assumed to be zero. Moreover,
the orbital velocities in the y-direction uy are zero, so these transports of momentum
are zero:

Sxy = 0 if the wave direction is the direction

of the positive x-axis (7.4.13)

and

Syx = 0 if the wave direction is the direction

of the positive x-axis (7.4.14)

If the wave direction is not in the x-direction (i.e., the wave travels in a direction
θ relative to the positive x-direction), then ux needs to be replaced with ux cos θ
and uy by uy sin θ in the above expressions, so that

Sxx =
(

n − 1

2
+ n cos2θ

)
E

Syy =
(

n − 1

2
+ n sin2θ

)
E (7.4.15)

Sxy = n cos θ sin θE

Syx = n sin θ cos θE

if the wave direction is θ

(relative to the positive x-axis)

where Sxx and Syy are equivalent to normal stresses and Sxy and Syx to shear stresses
(this set of stresses is called the radiation stress tensor, see Note 7D).

NOTE 7D Scalar, vector and tensor

I am considering here the concepts of scalar, vector and tensor in a physical context,
in Cartesian co-ordinates (with x-, y- and z-co-ordinates). I must emphasise this, since
these concepts have a more general meaning in mathematics and non-Euclidian space.
An excellent introduction to this subject is given by Aris (1962).
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A scalar is a property, e.g., mass density ρ, that is characterised by only one number:
the magnitude of the property. It may, but need not, be dimensionless, e.g., mass density
ρ is a scalar with dimension mass per volume (in S.I. units this is [kg m−3]), whereas
the ratio of wave length over depth is a dimensionless scalar. A scalar may well vary
with space or time but, at each location or moment in time, it is characterised by only
one number, e.g., ρ = ρ(x, y, z, t).

A vector is a property with a direction and a magnitude, e.g., the velocity of a particle
�u. It is characterised by a set of orthogonal reference directions (unit vectors) and mag-
nitudes (numbers). A vector too may, but need not, be dimensionless, e.g., velocity �u is
a vector with dimension length per time (in S.I. units [m s−1]). In three spatial dimen-
sions it is characterised by a set of three orthogonal unit vectors �ex , �ey and �ez oriented in
the positive x-, y- and z-directions, respectively (they define the reference directions)
and a set of three numbers {ux , uy, uz}. These directions and magnitudes define the
three components of �u in the x-, y- and z-directions, which are denoted as �ux = ux�ex ,
�uy = uy�ey and �uz = uz�ez . The vector �u is the vector sum of these components:
�u = �ux + �uy + �uz . A vector can vary with space and time, e.g., �u = �u(x, y, z, t).

The stress tensor in a point.

A tensor is a property describing a state at a point with a set of vectors (e.g., the
stress in a point). This set consists of normal vectors and tangential vectors. For instance,
the stress in a point in a two-dimensional x, y-plane can be characterised by a tensor
consisting of two normal stresses, σxx and σyy (loosely called tension or pressure; see
the next paragraph), and two tangential (i.e., shear) stresses, σxy and σyx (see the above
illustration). The convention for the notation of these vectors used here is that the first
subscript denotes the direction of the vector, while the second subscript denotes the
direction of the normal of the surface on which or in which the vector acts. Obviously,
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a tensor may also vary in space and time, e.g., σi j = σi j (x, y, t), where i = x or y and
j = x or y. Since these stresses are vectors, they are described with unit vectors and
magnitudes.

The average of the normal stresses is usually called tension (when positive; usually
in solids only, because fluids support tension poorly) or pressure (when negative; in
both solids and fluids). In an ideal or stationary fluid there are no shear stresses: σxy =
σyx = 0; and the normal stresses are equal: σxx = σyy .

7.4.3 Wave-induced set-up, set-down and currents

As indicated in the introduction of this chapter, horizontal variations in the trans-
port of wave-induced momentum, i.e., horizontal variations in the radiation stress,
may affect the mean sea level and generate currents, particularly in the surf zone.
The reason for this is that an increase of momentum transport, i.e., an increase
in radiation stress over a horizontal distance is equivalent to exerting an opposite
force on the water body (which is similar to a situation in which an increase in
water pressure in the positive x-direction induces a net force on the water body in
the negative x-direction). The corresponding wave-induced radiation force per unit
horizontal surface area in the x-direction is (see Fig. 7.20)

Fx = −∂Sxx

∂x
− ∂Sxy

∂y
in the x-direction (7.4.16)

where obviously −∂Sxx/∂x represents the effect of variations in the x-directed
radiation normal stresses and −∂Sxy/∂y the effect of variations in the x-directed
radiation shear stress.

Note that the first index of Sxx and Sxy indicates that the x-momentum is con-
sidered. The minus sign in this expression indicates that, if the radiation stress
increases in the positive x-direction, the corresponding force is oriented in the
negative x-direction, and also the reverse: if the radiation stress decreases in the
positive x-direction, the corresponding force is oriented in the positive x-direction
(e.g., in the surf zone, the wave heights generally decrease towards the shore, and
the radiation stress correspondingly decreases, resulting in a force on the water
body directed towards the shore; see below). Similarly for the y-direction:

Fy = −∂Syy

∂y
− ∂Syx

∂x
in the y-direction (7.4.17)

These forces generally cause currents and changes in the mean water level.10

10 In numerical, hydrodynamic models, which are used to compute these currents and sea-level changes, these
forces Fx and Fy are usually treated as a horizontal shear stress at the water surface ( just like the wind stress,
which is often used in such models to drive wind-induced currents and storm surges).
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Figure 7.20 The gradients of the wave-induced x-momentum transport Sxx and
Syy (plan view of sea surface) and the corresponding force Fx in the opposite
direction.

To illustrate this with a simple but important application, consider the one-
dimensional situation of a long-crested harmonic wave approaching a beach at nor-
mal incidence. In a stationary situation, the (vertically averaged) current is zero,11

because the water has piled up against the coast until the hydrostatic pressure gra-
dient under the tilting (mean) water surface balances the driving radiation stress
gradient. The corresponding change in the mean water level (indicated as η above
still-water depth d) is readily computed with a momentum balance equation. To
that end, consider a vertical water column with horizontal surface area �x�y
(see Fig. 7.21).

For the x-momentum Qx in this column, the momentum balance equation gives
the balance amongst the change of x-momentum over time interval �t , the net
import of x-momentum and the local generation of x-momentum (i.e., forces in the
x-direction):

storage of momentum Qx during time interval �t

= net import of Qx during time interval �t

+ local production of Qx during time interval �t (7.4.18)

The amount of x-momentum in the column is Qx�x�y. Its change during the
time interval �t is (∂Qx/∂t)�x�y�t . The net import of Qx during that time
interval is −(∂Sxx/∂x)�x�y�t (note that (∂Sxy/∂y)�x�y�t = 0 because we

11 In a situation with oblique wave incidence, a horizontal current along the shore would be generated with
occasional outbreaks to sea that are called rip currents (caused by hydrodynamic instability or variations along
the coast in the seabed topography or in the incident wave field).
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Figure 7.21 The balance of gradients of the radiation stress and the hydrostatic pres-
sure on a vertical column under a wave with varying wave amplitude approaching
a beach at normal incidence.

consider a one-dimensional case in which, by definition, all derivatives in the
y-direction are zero). Ignoring bottom friction and other horizontal forces, the local
production of x-momentum (per unit time) is the net hydrostatic horizontal force
(hydrostatic pressure over the depth and width of the column and along the bottom;
see Section 5.3.2 for the interpretation of force as a source of momentum), which is
equal to the hydrostatic force on the left-hand side of the column 1

2ρgD2�y, where
D = d + η, minus that force on the right-hand side of the column (i.e., between
point A in Fig. 7.21 and the mean surface elevation, 1

2ρg[D + (∂D/∂x)�x]2�y),
and minus the horizontal component of the hydrostatic force along the bottom
(i.e., between points A and B, ρg[D + 1

2 (∂D/∂x)�x](∂d/∂x)�x�y). Ignoring
second-order terms (i.e., second-order in �x), the resulting net horizontal force
is −ρg(d + η)∂η/∂x�x�y, so the balance equation, after dividing by �x�y�t ,
is

∂Qx

∂t
= −∂Sxx

∂x
− ρg(d + η)

∂η

∂x
(7.4.19)

For a stationary situation, i.e., when all time derivatives are zero, this reduces to
(the derivatives in x may be written as d../dx since the only variations now occur
in the x-dimension)

dSxx

dx
+ ρg(d + η)

dη

dx
= 0 (7.4.20)
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or, assuming that η 
 d,

dη

dx
= − 1

ρgd

dSxx

dx
(7.4.21)

This implies that, if the radiation stress gradient is positive, dSxx/dx > 0, the slope
of the mean surface is negative, dη/dx < 0 (resulting in a set-down): and, if the
radiation stress gradient is negative, dSxx/dx < 0, the slope of the mean surface is
positive, dη/dx > 0 (resulting in a set-up).

If no energy dissipation occurs (in this one-dimensional case of a harmonic
wave at normal incidence), then the variation of the wave amplitude is due solely to
shoaling. Integrating Eq. (7.4.20), taking η = 0 in deep water, and using the energy
balance equation for a shoaling wave (see Eq. 7.3.5) and the expression for Sxx (see
Eq. 7.4.9), we find (e.g., Longuet-Higgins and Stewart, 1962)

η = −1

2

a2k

sinh(2kd)
set-down, without energy dissipation (7.4.22)

Apparently, the average water level η depends, in this one-dimensional stationary
situation, not on the bottom profile but only on the local parameters, water depth
d, wave amplitude a and wave number k. The minus sign in this expression shows
that shoaling lowers the mean sea level: in other words, a set-down occurs. For
very shallow water (where sinh (2kd) ≈ 2kd), the set-down can be written, with
a = 1

2 H , as (from Eq. 7.4.22):

η ≈ − 1

16

H 2

d
set-down, without energy dissipation
in very shallow water (7.4.23)

This equation shows that the set-down is proportional to the square of the wave
height H (which is generally increasing towards the coast, if the waves do not break)
and inversely proportional to the water depth (which is generally decreasing), so
that the set-down generally increases as the wave propagates without dissipation
towards the coast. At the location where the waves start to break (the point of
incipient breaking, i.e., the outer edge of the surf zone), the wave height-to-depth
ratio is typically Hbr/dbr ≈ 0.8 (where Hbr and dbr are the wave height and local
water depth at incipient breaking, respectively), so that the set-down at this point
is 4%–5% of the local water depth or the local wave height (see Fig. 7.22). At
the point of incipient breaking, the amplitude starts to decrease and so does the
radiation stress. This implies that dSxx/dx < 0 and the slope of the mean water
surface changes sign and the character of set-down changes to that of set-up (see
Fig. 7.22). In the simple case considered here, this set-up can be readily estimated as
follows. Assuming that the water is shallow enough that the wave is non-dispersive
(so that n = 1 and therefore, from Eq. 7.4.9, Sxx = 3

2 E = 3
16ρgH 2 and also that
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Figure 7.22 The simple theoretical approximations (see the text) of the set-down
and set-up (Eqs. 7.4.22 and 7.4.25), induced by waves approaching a very steep
beach, in a one-dimensional laboratory situation with a harmonic wave at normal
incidence (the bottom slope is 1 : 12; γ = 1.2), compared with observations of
Bowen et al. (1968; shown with distorted scales).

the wave height remains equal to a fixed fraction of the local water depth (so that
H = γ (d + η), with constant γ , implying the assumption that the water depth
decreases monotonically towards the beach), it follows from these two equations
that Sxx = 3

16ρgγ 2(d + η)2. Substituting this result into the stationary momentum
balance of Eq. (7.4.21), gives

dη

dx
= −3

8
γ 2 d(d + η)

dx
or

dη

dx
= −K

dd

dx
(7.4.24)

with K = 3
8γ

2/(1 + 3
8γ

2).
Since the water depth decreases towards the shore (dd/dx < 0), the mean sur-

face elevation in the surf zone tilts up towards the shore (dη/dx > 0). Integrating
Eq. (7.4.24) from the point of incipient breaking (where d = dbr and where the
mean surface elevation is ηbr ≈ − 1

16 H 2
br/dbr gives the set-up as a function of the

local water depth:

η = ηbr + K (dbr − d) set-up with energy dissipation (7.4.25)

With the wave height and set-down at incipient breaking Hbr = γ dbr and ηbr =
− 1

16 H 2
br/dbr , it follows that the set-up at the mean waterline, where D = d + η = 0,
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is

ηwaterline = 5

16
γ Hbr at mean waterline waterdepth, where D = d + η = 0,

relative to still-water level (7.4.26)

With γ varying between 0.5 and 1.5 (approximately; see Note 8G), the proportion-
ality coefficient in Eq. (7.4.26) varies accordingly between 0.15 and 0.45:

0.15Hbr < ηwaterline < 0.45Hbr set-up at mean waterline,
for 0.5 < γ < 1.5 (7.4.27)

which represents a significant set-up at the beach for high incoming waves. This
rising of the mean sea level at the beach implies that, in the presence of high
waves, the mean waterline moves up the beach over a considerable vertical and
horizontal distance (depending on the bottom slope and the incoming wave height).
Despite the fairly simple assumptions in the above (e.g., n = 1 and H = γ (d + η)),
these results are realistic, as shown in Fig. 7.22 in which the theoretical results of
Eqs. (7.4.22) and (7.4.25) are compared with laboratory observations.

The set-up depends on the incoming wave height and, if this wave height is
stationary, then the set-up is stationary. At an actual beach, the waves tend to arrive
in groups and the incoming wave height correspondingly fluctuates more or less
periodically with the period of the wave groups. This causes the set-up to fluctuate
accordingly, so that the surf zone moves periodically up and down as the wave
groups arrive one after another, generating low-frequency waves that travel out to
sea. This phenomenon is called surf beat (one of the forms of infra-gravity waves;
see Section 1.3).

Literature:
Arcilla and Lemos (1990), Battjes (1972b), Gourlay (1992), Longuet-Higgins and Stewart
(1962, 1963), Munk (1949b), Phillips (1977), Svendsen et al. (2003), Tucker (1950).

7.5 Nonlinear, evolving waves

7.5.1 Introduction

The three nonlinear wave theories that were introduced in Chapter 5 (Stokes, 1847;
the stream-function theory of Dean, 1965; and the cnoidal theory of Korteweg and
de Vries, 1895) are essentially theories for waves that do not change their charac-
teristics horizontally or in time. In other words, these theories consider only local
characteristics of permanent waves. For evolving waves, other nonlinear theories
have been developed. Most of these are based on the same nonlinear equations as
those which underlie the linear wave theory (sometimes extended to the Navier–
Stokes equations; see Appendix B), but usually only in two spatial dimensions:
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either the vertical plane or the horizontal plane. Because of the considerable com-
puting power that is needed, computations based on these theories can be carried
out only over short distances, typically only a dozen wave lengths or so.

For most of the theories that are formulated in the vertical x, z-plane (no varia-
tions in the y-dimension, i.e., the waves are assumed to be long-crested and trav-
elling in the x-direction), the nonlinear equations, with nonlinear boundary condi-
tions, are not solved analytically but with advanced numerical techniques, in which
the free surface is tracked as part of the solution. Examples are the marker-and-cell
(MAC) method, the volume-of-fluid (VOF) method, the boundary-element method
and mesh-free methods (based on particle-tracking). Three-dimensional versions
have also been developed (e.g., Broeze et al., 1993). These methods provide real-
istic images of waves under a wide variety of conditions (including breaking and
the presence of structures) but we will not consider such techniques here.

The most widely accepted nonlinear theory for the two-dimensional horizontal
x, y-plane (assuming a vertical profile of the velocity potential) is the theory of
Boussinesq (1872),12 originally for one-dimensional propagation over a horizontal
bottom; which later was extended to two-dimensional propagation over mildly
sloping bottoms by Peregrine (1967) and further extended by many others, mostly to
expand the region of applicability to deeper water.13 The equations of this approach
are essentially the shallow-water equations for the water motion (a one-layer model;
see Appendix E), supplemented with corrections for vertical accelerations. A recent
and promising discovery is that, instead of adding these corrections, discretising
the water into two or more layers and using the Euler equations (see Appendix B)
instead of the shallow-water equations gives a model with characteristics similar
to those of extended Boussinesq-models (Stelling and Zijlema, 2003; Zijlema and
Stelling, 2005).

Literature:
Agnon et al. (1993), Battjes (1994), Broeze et al. (1993), Eldeberky and Madsen (1998),
Fenton (1999), Hirt and Nichols (1981), Kaihatu and Kirby (1995), Kirby (1990), Lin and
Liu (1999), Longuet-Higgins and Cokelet (1976), Nadaoka et al. (1997), Peregrine (1990),
Rogers and Dalrymple (2004), Yamaguchi (1986), Wei et al. (1995).

7.5.2 The Boussinesq model

If waves enter very shallow water, the particle motions become more and more
horizontally oriented and eventually (when the water is very shallow) all vertical

12 Valentin Joseph Boussinesq (1842–1929) was a French physicist and mathematician who contributed greatly
to our understanding of hydraulics, in particular turbulence in fluids. He was a professor at the Sorbonne (Paris)
and a member of the French Academy of Sciences.

13 A nonlinear version of the mild-slope equation (see Section 7.3.3) can also be used, but that is rarely done.
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accelerations may be ignored. The wave can then be described with the shallow-
water equations (see Appendix E). However, before this stage has been reached,
the wave motion is not yet horizontal and the shallow-water equations do not apply,
but neither does the linear wave theory (the ratio of depth over amplitude is too
small). The transition between these two regions of application is covered by the
theory of Boussinesq. In this theory, the vertical structure of the velocity is not
an exact solution of the basic nonlinear balance equations. Instead, it is imposed
(horizontal velocity constant over the vertical and vertical velocity varying nearly
linearly along the vertical). Substituting the corresponding velocity potential func-
tion into the nonlinear dynamic and kinematic surface boundary conditions, for a
one-dimensional situation with a horizontal bottom, gives the original Boussinesq
equations (see Dingemans, 1997b, his Eqs. 5.6a and 5.6b). For a non-horizontal bot-
tom, the Boussinesq equations are (Peregrine, 1967, his Eqs. 13 and 14; Dingemans,
1997b, his Eqs. 5.73)

∂η

∂t
+ ∂

∂x
[(d + η) ux ] = 0 (7.5.1)

and

∂ux

∂t
+ ux

∂ux

∂x
+ g

∂η

∂x
= 1

2
d
∂3(dux )

∂t ∂x2
− 1

6
d2 ∂3ux

∂t ∂x2
(7.5.2)

where ux is the vertically averaged, horizontal particle velocity. These equations
are the one-dimensional shallow-water equations (see Eqs. E.8, E.15 and E.20),
supplemented with corrections for the vertical accelerations under the wave (the
terms on the right-hand side of Eq. 7.5.2). The remarkable third-order derivatives
∂3../∂t ∂x2 in these terms are caused by the fact that the Laplace equation (Eq.
5.3.22) forces the (imposed) vertical structure of the velocity potential function to be
expressed in terms of the horizontal structure of the velocity potential function (i.e.,
the second-order horizontal derivative ∂2../∂x2). The (nonlinear) dynamic surface
boundary condition takes the time derivative of this function, thus producing the
mixed third-order derivatives ∂3../∂t ∂x2. Note that the above Boussinesq equations
are one-dimensional but they can readily be expanded to two horizontal dimensions.

Many investigators have modified the original Boussinesq equations to improve
various desired characteristics of the corresponding wave (these modified versions
are known as extended Boussinesq equations or Boussinesq-like equations). One of
the most successful results is due to Madsen and Sørensen (1992), who extended
the applicability of the Boussinesq equations to deeper water and were also able
to include (empirically) the process of breaking in their Boussinesq model by
imposing a separate body of fluid (also called the ‘roller’) on the wave surface,
simulating the breaker in real life. An important development was the introduction of
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spectral versions of the Boussinesq models (frequency-domain Boussinesq models),
in terms of the phase and amplitude of a harmonic wave. This has led to an exchange
of source terms between Boussinesq models and spectral energy balance models:
surf-breaking from spectral energy balance models to Boussinesq models and triad
wave–wave interactions from Boussinesq models to spectral energy balance models
(see Chapter 8).

Literature:
Abbott et al. (1978), Battjes et al. (1993), Dingemans (1997b), Freilich and Guza (1984),
Madsen and Schäffer (1999), Madsen and Sørensen (1993), Nwogu (1993, 1994), Svendsen
(1984), Liu et al. (1985).

7.6 Breaking waves

The most nonlinear process affecting waves in coastal waters is depth-induced
breaking, also called surf-breaking. This process is poorly understood, certainly
the violent breaking of waves against rocks is beyond any theoretical modelling,
although the numerical models mentioned earlier, in which the motion of small
parcels of fluid is computed with two-dimensional (vertical) Navier–Stokes equa-
tions (see Section 7.5.1), produce remarkably realistic pictures of the water sur-
face and particle motions. In practical terms, however, all that is available to the
scientist and engineer on breaking waves is empirical information (occasionally
supplemented with some clever speculations; see also Section 8.4.5).

If the shore is a flat beach, the type of breaker can be predicted on the basis of
the Iribarren number or surf similarity parameter ξ = tanα/

√
H/L ∞ (Iribarren

and Nogales, 1949; Battjes, 1974b; see also Section 7.3.6). If we take the value
of this parameter in deep water, ξ0 = tanα/

√
H∞/L ∞, where H∞ is the deep-

water wave height and L ∞ = gT 2/2π , or at the point of incipient breaking ξbr =
tanα/

√
Hbr/L ∞, where Hbr is the wave height at the point of incipient breaking,

then observations show the following types of breaking (see Fig. 7.23 and Battjes,
1974b):

spilling: if ξ∞ < 0.5 or ξbr < 0.4
plunging: if 0.5 < ξ∞ < 3.3 or 0.4 < ξbr < 2.0
collapsing or surging: if ξ∞ > 3.3 or ξbr > 2.0

Battjes (1974b) shows that the value of ξ characterises not only the type of
breaking, but also the reflection of waves off the beach, the run-up of waves up a
beach or a dyke and the stability of the armour of a breakwater (concrete blocks or
rubble).

The process of breaking limits the wave height in shallow water. This is of
obvious interest to the engineer who wants to estimate the maximum wave height
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Figure 7.23 The four main types of breaking waves (after Galvin, 1968). All
intermediate states may appear on a real beach.

at a certain coastal location, e.g., to formulate design conditions. The individual
wave height in an irregular (!) wave field in shallow water cannot exceed some
maximum Hmax , which can be roughly estimated from the local depth. The value
of Hmax is typically a factor 0.75 times the local water depth:14

Hmax/d ≈ 0.75 (7.6.1)

However, under exceptional conditions that factor may be as low as 0.5 or as high
as 1.5 (depending on the bottom slope and wave steepness, wind etc.; see Section
8.4.5).

Literature:
Battjes (1974a, 1974b), Fenton (1999), Galvin (1968), Harlow and Welch (1965), Hirt and
Nichols (1981), Iribarren and Nogales (1949), Lin and Liu (1999), Liu (2001), Nelson
(1994, 1997).

14 This ratio should not be confused with the ratio of maximum significant wave height over depth Hs,max/d,
which for wind sea over an extended horizontal bottom is approximately 0.45.
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Waves in coastal waters

8.1 Key concepts

� In this book, coastal waters are waters that are shallow enough to affect the waves, adjacent

to a coast, possibly with (small) islands, headlands, tidal flats, reefs, estuaries, harbours or other

features, with time-varying water levels and ambient currents (induced by tides, storm surges or

river discharge).
� Under certain idealised conditions (constant wind blowing perpendicularly off a long and straight

coastline, over shallow water with a constant depth), the significant wave height is determined

by the wind speed, the distance to the upwind coastline (fetch), the time elapsed since the wind

started to blow (duration) and the depth. So are the significant wave period and the energy density

spectrum.
� Under these idealised conditions, the spectrum has a universal shape: the TMA spectrum, which

is a generalised version of the JONSWAP spectrum (see Chapter 6). The directional width of this

spectrum seems to be the same as in deep water (30◦, one-sided width).
� Under more realistic, arbitrary coastal-water conditions, the spectral energy balance of the

waves is used to compute the wave conditions. This shallow-water version of the energy bal-

ance is conceptually a straightforward extension of the energy balance in oceanic waters

(see Chapter 6). It represents the time evolution of the wave spectrum, based on the prop-

agation, generation, wave–wave interactions and dissipation of all spectral wave components

individually.
� As in oceanic waters, an Eulerian representation (based on a computational grid projected onto

the coastal region) should be used for computations with the spectral energy balance.
� Ambient currents can be accounted for by replacing the energy density with the action density (i.e.,

the energy density divided by the relative frequency) in the energy-balance equation and taking

some other relatively simple (conceptually) measures.
� Refraction is readily accounted for in the energy or action balance equation with an extra transport

term. The presentation of diffraction is only experimentally formulated in the energy balance

equation.
� As the water depth decreases, the processes of wave generation by wind, quadruplet wave–wave

interactions and dissipation by white-capping intensify and are joined by the process of bottom

dissipation. In very shallow water ( just outside and in the surf zone), triad wave–wave interactions

and depth-induced breaking are added. These two processes dominate the wave evolution in the

surf zone.
� In general, the combination of triad wave–wave interactions and depth-induced wave breaking

seems to stabilise the shape of the spectrum in the universal shape of the TMA spectrum. However,

the triad wave–wave interactions may create an additional (secondary) high-frequency peak in the

spectrum under fully developed, shallow-water conditions and near the outer edge of the surf

zone.

244
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Table 8.1. The relative importance of the various processes affecting the
evolution of waves in oceanic and coastal waters (after Battjes, 1994)

Oceanic waters Coastal waters

Process Shelf seas Nearshore Harbour

Wind generation � � � � � � � �

Quadruplet wave–wave interactions � � � � � � � �

White-capping � � � � � � � �

Bottom friction � � � � � �

Current refraction / energy bunching �/ � � � � �

Bottom refraction / shoaling � � � � � � � �

Breaking (depth-induced; surf) � � � � � �

Triad wave–wave interactions � � � � �

Reflection � � �/ � � � � �

Diffraction � � � � � �

� � � = dominant, � � = significant but not dominant, � = of minor importance, � =
negligible.

8.2 Introduction

In the previous chapter it was shown how, in coastal waters, the propaga-
tion of waves is affected by a limited water depth and varying wave ampli-
tude (shoaling, refraction and diffraction). However, a limited water depth also
affects the generation, nonlinear wave–wave interactions and dissipation. Battjes
(1994) has given a review of the relative importance of the various processes in
deep and shallow water (see Table 8.1), which shows that modelling waves in
coastal waters needs to take into account many more processes than in oceanic
waters.

The processes of generation, wave–wave interactions and dissipation that are
important in deep water tend to intensify in shallow water, but other processes
become active that tend to be even stronger. As waves enter shallow water, they
slow down, thus increasing the ratio of wind speed over wave phase speed (there
is more transfer of energy from wind to waves) and the waves steepen, thus
enhancing quadruplet wave–wave interactions and white-capping. These are the
same processes as those which affect the waves in deep water. The additional
processes in shallow water are related to propagation (shoaling and refraction),
wave–wave interactions (shallow water permits near-resonance of three wave
components, resulting in triad wave–wave interactions) and dissipation (bottom
friction and depth-induced breaking). In very shallow water the triad interactions
seem to be as important as the quadruplet wave–wave interactions are in deep water.
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Figure 8.1 The ideal situation of wave growth in limited-depth water with a constant
wind blowing over water with a constant depth, perpendicularly off a straight and
infinitely long coastline.

The processes of reflection and diffraction dominate the evolution of waves in front
of and behind breakwaters and other obstacles, such as rocks and (small) islands,
and in harbours. Bottom friction is important only over long distances.

Literature:
Battjes (1988, 1994), WMO (1998).

8.3 Wave modelling for idealised cases (coastal waters)

The idealised case for wave growth in shallow water is essentially the same as for
deep water (see Section 6.3), except that a water depth d is added as an extra parame-
ter (see Fig. 8.1): a constant wind (constant in space and time) is blowing perpendic-
ularly off a straight and infinitely long coastline, over water with a limited, constant
depth. The waves are described with only the significant wave height and significant
wave period (or peak period, i.e., the inverse of the peak frequency of the wave spec-
trum) or with a universal one- or two-dimensional spectrum. In this approach, the
waves depend only on the distance to the upwind coastline (fetch), the time elapsed
since the wind started to blow (duration), the wind speed and the water depth. Usu-
ally the duration is taken to be infinitely long (in practical applications this means
sufficiently long that the precise duration is irrelevant). The transformation from
duration to equivalent fetch has been treated in Section 6.3.1 and it will not
be repeated here, leaving only fetch, wind speed and depth as the independent
variables.
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8.3.1 The significant wave

In water with a limited, constant depth, observations indicate that initially, i.e., at
short fetches, the water depth has no effect on the waves. This is to be expected. The
wave lengths at short fetches are so short that the depth/wave-length ratio is large
and the water is relatively deep. As the waves grow along the fetch, the wave length
becomes longer and the depth becomes more and more important (the waves start to
‘feel’ the bottom). At very large fetch (F → ∞) the waves are fully developed but
with lower values of the corresponding significant wave height and period than in
deep water. Observations show that these limit values depend on the dimensionless
water depth d̃ = gd/U 2

10, where d is depth, U10 is the wind speed at elevation 10 m
and g is the gravitational acceleration. This dependence can be approximated with
tanh expressions:

H̃∞,d = H̃∞ tanh(k3d̃m3 ) (8.3.1)
fully developed in limited-depth water

T̃ ∞,d = T̃ ∞ tanh(k4d̃m4 ) (8.3.2)

where H̃∞,d and T̃ ∞,d are the limit values of the dimensionless significant wave
height and period, respectively. Note the subscript∞, d in the notation to distinguish
these limit values from the deep-water limit values H̃∞ and T̃ ∞ (see Section 6.3.2).
The coefficients k3, k4, m3 and m4 are tunable coefficients, to be determined from
observations.

To obtain the shallow-water growth curves, it seems obvious to replace the deep-
water limits H̃∞ and T̃ ∞ in the deep-water growth curves (Eqs. 6.3.8) with the
shallow-water limits H̃∞,d and T̃ ∞,d . However, such re-scaling would apply to all
fetches and thus reduce the significant wave height and period at short fetches in
the same proportion as at long fetches, which would not be correct: as indicated
above, the waves retain their deep-water character at short fetches. To achieve this,
the reduction at short fetches is compensated by the following double (!) inclusion
of the depth dependence

H̃ = H̃∞ tanh(k3d̃m3 )tanh

(
k1 F̃m1

tanh(k3d̃m3 )

)
limited-depth water, all (8.3.3)
sea states

T̃ = T̃ ∞ tanh(k4d̃m4 )tanh

(
k2 F̃m2

tanh(k4d̃)m4

)

where F̃ is the dimensionless fetch (see Section 6.3.1). That the waves thus retain
their deep-water character at short fetches is shown in Note 8A. Some recent results
from observations are given in Note 8B and Fig. 8.2.
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Figure 8.2 The dimensionless significant wave height and period (left-hand vertical
axes; see Eqs. 6.3.4 and 6.3.5) as a function of dimensionless fetch (horizontal
axes) and depth (right-hand vertical axes, with deep water d̃ at the top in each
panel; Kahma and Calkoen, 1992, Pierson and Moskowitz, 1964, and Young and
Verhagen, 1996a; modified by Breugem and Holthuijsen, 2006).
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NOTE 8A Limiting values of the depth-limited wave-growth curves

One property of the tanh function is that tanh x ≈ x for x 
 1. In this case, the effect is
that, for short fetches, where F̃ 
 1, tanh[k1 F̃m1/ tanh(k3d̃m3 )] ≈ k1 F̃m1/ tanh(k3d̃m3 ).
For the significant wave height, therefore,

H̃ = H̃∞ tanh(k3d̃m3 )tanh

(
k1 F̃m1

tanh(k3d̃m3 )

)
≈ H̃∞k1 F̃m1 for F̃ 
 1

which is the deep-water expression for short fetches (as required; see Eq. 6.3.7). Since
tanh x → 1 for x → ∞, we have for large fetches, where F̃ → ∞,

H̃ = H̃∞ tanh(k3d̃m3 )tanh

(
k1 F̃m1

tanh(k3d̃m3 )

)
≈ H̃∞ tanh(k3d̃m3 ) for F̃ → ∞

(i.e., fully developed for a given value of d̃)

The same applies, of course, to the significant wave period.

NOTE 8B The growth curves of the significant wave height and peak period
(all depths)

Probably the best shallow-water data set that is at present available to determine the coef-
ficients of the tanh-expressions of Eq. (8.3.3) is that obtained by Young and Verhagen
(1996a) in Lake George, Australia (see Section 6.3.2). To control the transition from
a young sea state to the fully developed sea state, Young and Verhagen (1996a) added
two extra parameters, p and q, to these expressions:

H̃ = H̃∞

[
tanh(k3d̃m3 ) tanh

(
k1 F̃m1

tanh(k3d̃m3 )

)]p

T̃ = T̃ ∞

[
tanh(k4d̃m4 ) tanh

(
k2 F̃m2

tanh(k4d̃m4 )

)]q

They used the wind, averaged over the upwind fetch (Taylor and Lee, 1984; see Section
6.3.2). As indicated in Section 6.3.2, Breugem and Holthuijsen (2006) re-analysed
the data of Young and Verhagen (1996a). The resulting coefficients1 are summarised
below with the corresponding dimensionless growth curves given in Fig. 8.2. It may
be noted that Young and Babanin (2006) recently showed that replacing the expression
for the limit value T̃ ∞, d (Eq. 8.3.2) with an expression in terms of the dimensionless

1 These coefficients relate to conditions with neutral atmospheric stability. Young (1998) gives corrections for
non-neutral atmospheric conditions.
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peak wave number k̃ peak,∞,d = kpeak,∞,dU 2
10/g would improve the fit to observations,

in particular for very shallow water (d̃ < 0.1, say).

The coefficients representing wind-wave growth in the idealised situation
(see also Note 6B)

Deep water and finite-depth water

Pierson and Moskowitz
(1964) fully developed sea
states, deep water, Eqs. (6.3.8)
and (8.3.3) and this note

Kahma and Calkoen
(1992)
young sea states, deep
water, Eqs. (6.3.7)

Young and Verhagen
(1996a) modified by
Breugem and Holthuijsen
(2006) all sea states, all
water depths, equations of
this note

H̃ = H̃ m0 H̃∞ = 0.24 H̃∞ = a1 F̃b1

a1 = 2.88 × 10−3

b1 = 0.45

H̃∞ = 0.24
k1 = 4.14 × 10−4

m1 = 0.79
p = 0.572
k3 = 0.343
m3 = 1.14

T̃ = T̃ peak T̃ ∞ = 7.69 T̃ ∞ = a2 F̃b2

a2 = 0.459
b2 = 0.27

T̃ ∞ = 7.69
k2 = 2.77 × 10−7

m2 = 1.45
q = 0.187
k4 = 0.10
m4 = 2.01

Literature:
Bretschneider (1958), CEM (2002), SPM (1973, 1984), Thijsse and Schijf (1949), Thijsse
(1948, 1952).

8.3.2 The one-dimensional wave spectrum

Under the idealised shallow-water conditions considered here, the wave spec-
trum evolves essentially as in deep water: from the high frequencies to lower
frequencies while the area under the spectrum increases (and therefore also the
significant wave height). However, in contrast to the situation in deep water, the
spectrum does not retain its shape along the fetch. Instead, observations show
that the high-frequency tail grows flatter as the waves evolve along the fetch; it
changes from an f −5-shape to an f −3-shape. This corresponds very well to the
hypothesis of Kitaigorodskii et al. (1975) that the shape of the spectral tail of a
young sea state is more universally characterised in terms of wave number (k)
than in terms of frequency ( f ). To show the effect of this, consider first the tail
of the spectrum in deep water. The formulation in terms of wave number follows
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Figure 8.3 The shift of the peak wave number as the waves propagate into shallower
water with constant peak frequency, resulting in a decrease of total energy and
significant wave height.

directly from the (Phillips) f −5-shape (see Section 6.3.3) by transforming from
frequency f -space to wave-number k-space with the corresponding Jacobian
(d f/dk)∞ for deep water (see Section 3.5.8 and the footnote in Section 3.5.5).
The tail of the spectrum in k-space is then

EPhillips,∞(k) = αg2(2π )−4 f −5

(
df

dk

)
∞

for deep water (8.3.4)

where the subscript ∞ indicates deep water. With the dispersion relationship of the
linear wave theory in deep water, this can be written as

EPhillips,∞(k) = 1
2αk−3 for deep water (8.3.5)

The hypothesis of Kitaigorodskii et al. (1975) implies that this expression would
apply in any depth, so that the deep-water restriction may be removed (drop the
subscript ∞):

EPhillips(k) = 1
2αk−3 for arbitrary-depth water (8.3.6)

The corresponding frequency spectrum for arbitrary-depth water can now be
obtained by simply transforming EPhillips(k) back to frequency f -space with the
Jacobian for arbitrary-depth water, dk/df = 2π/cg. The result of this transforma-
tion can be written as (see Note 8C and Fig. 8.3)

EPhillips( f ) = EPhillips,∞( f )φ( f, d) (8.3.7)
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Figure 8.4 The transformation of the deep-water JONSWAP spectrum into the
shallow-water TMA spectrum (the same scales are used in the upper and lower
panels).

where φ( f, d) is a simple transformation function (see Fig. 8.4):

φ( f, d) = 1

2n
tanh2(kd) (8.3.8)

where n is the ratio of group velocity over phase velocity (see Note 8C). In shallow
water, this transformation gives E( f ) ∼ f −3 (a dimensional analysis,2 see Section
6.3.3, would give E( f ) ∼ g d f −3).
2 An alternative reasoning, leading to the same result, is given by Thornton (1977), who argued that breaking

occurs when the forward speed of the water particles at the surface exceeds the speed of propagation of the wave
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These transformations from f -space to k-space and back to f -space are conser-
vative (no energy is lost) since the Jacobians are properly included.3 However, with
a low-frequency cut-off in deep water, as required for real waves, the transforma-
tions are no longer conservative. For instance, when the wave-number spectrum is
approximated simply by cutting the k−3-tail off at a (peak) wave number k = kpeak ,
(see Fig. 8.3) then m0 = ∫ ∞

kpeak

1
2αk−3dk = 1

4αk−2
peak , and, since Hm0 = 4

√
m0, it fol-

lows that Hm0 = 2
√
α k−1

peak. With a constant α and peak wave number kpeak, the total
energy or Hm0 would be constant. However, as the waves propagate into shallower
water, the peak wave number is not constant. It increases because, in general, the
peak frequency remains (nearly) constant. The energy at wave numbers lower than
kpeak is correspondingly removed in the transformation (see Fig. 8.3). For a constant
value of α, this implies a decreasing significant wave height.

NOTE 8C The transformation of a deep-water f −5-spectrum
to shallow water

The shape of the spectral tail of waves in arbitrary-depth water suggested by Kitaigorod-
skii et al. (1975) can be derived as follows. Multiply the right-hand side of Eq. (8.3.6)
by 1 = [αg2(2π )−4 f −5]/

[
1
2α(k−3dk/df )∞

]
(from Eqs. 8.3.4 and 8.3.5), so that

EPhillips(k) = 1
2αk−3 αg2(2π )−4 f −5

1
2α

(
k−3dk/df

)
∞

Transform this expression to frequency space (include the proper Jacobian):

EPhillips( f ) = 1
2αk−3 αg2(2π)−4 f −5

1
2α

(
k−3dk/df

)
∞

dk

df

Re-arranging the factors gives

EPhillips( f ) = αg2(2π )−4 f −5 k−3dk/df(
k−3dk/df

)
∞

which can be written as

EPhillips( f ) = EPhillips,∞( f )φ( f, d)

where

φ( f, d) = (
k−3dk/df

)
/
(
k−3dk/df

)
∞

itself. This leads to a shape of the spectral tail E( f ) ∼ c2 f −3, which, in very shallow water, with c2 = gd, is
E( f ) ∼ gd f −3 (see also footnote in Section 6.3.3).

3 The fact that φ( f, d) is less than unity, see Fig. 8.4, is compensated by the transformation of the k-axis to the
f -axis, as implied in the use of the Jacobian.
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is the function that transforms the deep-water Phillips spectrum EPhillips,∞ ( f ) into the
arbitrary-depth Phillips spectrum EPhillips( f ). This function can also be written (with
phase speed c = ω/k and group velocity cg = dω/dk) as

φ( f, d) = (c3/cg)/(c3/cg)∞ = 1

2n
tanh(kd)

where n is the ratio of group velocity over phase velocity (see Eq. 5.4.31).

Instead of the discontinuous cut-off at the peak wave number, Bouws et al. (1985)
proposed to use the more elegant low-frequency cut-off of the JONSWAP spectrum
and also its peak-enhancement function (see Section 6.3.3). The result is called the
TMA spectrum (thereby generalising the applicability of the JONSWAP spectrum
from deep water to arbitrary-depth water; the name TMA derives from the names
of the data sets TEXEL, MARSEN and ARSLOE that were used by Bouws et al.,
1985, to verify this idea):

ETMA( f ) = EJONSWAP( f ) φ( f, d) (8.3.9)

This transformation is shown in Fig. 8.4. As waves move from deep water to
shallow water, the f −3-shape slowly replaces the f −5-shape, starting at the lower
frequencies (where the depth effects take hold first). Apparently a universal f −n-
tail of the spectrum would be valid only either in deep water (with a frequency-
independent value of n, e.g., n = 5) or in very shallow water (e.g., n = 3). The
shape of the TMA spectrum has been verified with a large number of observations
by Bouws et al. (1985) and independently by Young and Verhagen (1996b). Results
of other studies indicate a slightly different shape (see Note 8D).

The hypothesis of Kitaigorodskii et al. (1975), on which the TMA spectrum is
based, implies that the evolution of the waves is more universally described in wave-
number space than in frequency space. This has led Young and Verhagen (1996b)
to relate the values of the JONSWAP parameters4 α, γ and σ to the dimensionless
peak wave number k̃peak = kpeakU 2

10/g in water of arbitrary depth, rather than the
dimensionless peak frequency f̃ peak = fpeakU10/g as was done earlier for deep
water (see Section 6.3.3). From their spectra observed in Lake George, they found

α = 0.0091k̃ 0.24
peak for arbitrary-depth water (8.3.10)

They also showed that these values of α as a function of k̃peak were consistent
with the values found in JONSWAP (when the transformation of f̃ peak to k̃peak is
carried out), thus further supporting the hypothesis of Kitaigorodskii et al. (1975).
The values of σ were too scattered for Young and Verhagen to find any systematic

4 They did not distinguish between σa and σb as defined for the JONSWAP spectrum (see Section 6.3.3).
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dependence on k̃peak (the average value was σ = 0.12), but they suggested for γ that

γ = −5.8 log10 d̃ + 1.1 for 0.05 < d̃ < 1 (8.3.11)

Unfortunately, this is not consistent with deep-water observations such as those
of JONSWAP (for which γ = 3.3 for young sea states, on average). For depth-
limited, fully developed conditions, alternative relationships are given by Young
and Babanin (2006); see also Note 8D.

It must be noted that, just outside and in the surf zone, the tail of the spectrum
may develop a secondary, high-frequency peak due to triad wave–wave interactions
(the second harmonic of the incident spectral peak; see Section 8.4.4), but such a
peak seem to disappear over fairly short distances (within a few characteristic wave
lengths, as the waves break and nonlinear interactions restore the smooth tail).

Literature:
Battjes (1984), Resio (1987), Smith and Vincent (2002, 2003), Smith (2004), Suh et al.
(1994), Tucker (1994), Vincent (1985), Vincent and Hughes (1985), Zakharov (1999).

NOTE 8D The FRF spectrum

The derivation of the TMA spectrum depends critically on the assumption that the high-
frequency tail of the JONSWAP spectrum in deep water is proportional to f −5. However,
as shown earlier (see Section 6.3.3), a better approximation to observed spectra in deep
water is obtained with an f −4-tail. The corresponding tail of the wave-number spectrum
in deep water would be proportional to k−5/2. This, in turn, corresponds in shallow water
to an f −5/2-tail of the frequency spectrum. Miller and Vincent (1990) verified this with
observations and suggested a corresponding adaptation of the TMA spectrum. They
baptised this spectrum ‘the FRF spectrum’ (after the location of their observations, the
Field Research Facility of the U.S. Army Engineer Research & Development Center):

EFRF(k) = αFRFg−1/2U10k−5/2exp

[
−
(

f

fpeak

)−4
]
γ

exp

[
− 1

2

(
f/ fpeak−1

σFRF

)2
]

FRF

where σFRF = σFRF,a for f ≤ fpeak and σFRF = σFRF,b for f > fpeak. One result of
this study was that the FRF shape and the TMA shape fitted the observations equally
well but the FRF shape provided a constant value αFRF = 0.0029 and a relationship
between the peak enhancement coefficient γFRF and the overall wave steepness: γFRF =
1.03 × 104s 2 . 25, where the overall steepness s = Hm0/Lpeak. Like the authors of all
other similar studies, they did not find any correlation between the values of σFRF,a or
σFRF,b on the one hand and any other wave parameter on the other (the mean values
were σFRF,a = 0.115 and σFRF,b = 0.114). The k−5/2-shape was later found to be forced
by the quadruplet wave–wave interactions in shallow water (but not so shallow that the
waves break; Resio et al., 2001). Later still, Smith and Vincent (2002) found, from
observations in the field and in the laboratory, supported by the theory of Zakharov
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(1999), that, for very shallow water (kd < 1, i.e., the lower frequencies) the wave-
number spectrum is proportional to E(k) ∼ k−4/3. For higher frequencies (kd ≥ 1), the
k−5/2-shape of the FRF spectrum would apply (see also Smith and Vincent, 2003, and
Smith, 2004).

Note that a spectrum similar to the FRF spectrum may be found by applying the
Kitaigorodskii scaling of Eq. (8.3.8) to the Donelan spectrum of Note 6C. It must
also be noted that near the outer edge of the surf zone, a secondary, high-frequency
peak may evolve due to nonlinear triad wave–wave interactions (see Section 8.4.4).
This secondary peak disappears when the waves propagate further into the surf zone.
Recent observation of Young and Babanin (2006) have shown that, also under the above
idealised conditions with a constant depth, the depth-limited, fully developed spectrum
generates a second harmonic at frequencies slightly lower than twice the peak frequency
(presumably due to triad wave–wave interactions). This spectrum can be approximated
as a Donelan spectrum (as in deep water) with a second, high-frequency Donelan
spectrum superimposed to represent the second harmonic.

8.3.3 The two-dimensional wave spectrum

The only systematic observations of the two-dimensional frequency–direction spec-
trum in water of limited depth seem to be those of Young et al. (1996), in the same
study in Lake George as referred to earlier. They report that there is no clear vari-
ation in the directional spreading σθ (see Section 6.3.4) as a function of kpeakd.
However, they also note that (a) the scatter in their observations may be too large
and the range of kpeakd too small to detect such variation and (b) numerical exper-
iments indicate that the quadruplet wave–wave interactions in shallow water tend
to broaden the spectrum directionally.5 Such being the uncertain state of affairs,
nothing better can be concluded than that the directional width, in water of limited
depth, is about equal to that in deep water as given in Section 6.3.4.

8.4 Wave modelling for arbitrary cases (coastal waters)

Modelling waves in coastal waters is conceptually as straightforward as modelling
waves in deep water: we need only follow each and every single wave component
from deep water to a coastal location and account for all effects of propagation,
generation, wave–wave interactions and dissipation. However, as in deep water,
the nonlinear character of the processes involved does not allow the computation
of the wave field to follow this Lagrangian approach. In coastal waters there is
even more reason why this approach cannot be used. In general, a harmonic wave

5 This is in contrast with the observation of Young et al. (1996) that, at high wind speeds, the waves were distinctly
long-crested, which implies a directional narrowing of the spectrum.
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does not propagate in shallow water along straight wave rays, but rather along wave
rays that are curved due to refraction and diffraction. When diffraction, as usual, is
ignored in the computations, these wave rays often cross one another. An energy
balance of the waves, based on the distance between (initially) adjacent wave rays,
cannot then be used because the wave energy, being inversely proportional to this
distance, would go to infinity at the crossing points. Transporting the energy along
each individual wave ray (rather than between the rays) seems to solve this problem,6

but (a) diffraction would still be ignored and (b) it does not solve the problem of
nonlinear source terms. In coastal waters, therefore, the Eulerian approach should
be used, just as in oceanic waters. Note that the difference between the Lagrangian
approach and the Eulerian approach is only in the technique of computation. Both
should converge to the same solution for finer and finer geographic resolution of
the computational grids involved.

The fact that coastal waters cover a smaller geographic area than oceanic waters
suggests that the number of equations involved would also be smaller: the horizon-
tal scale of an ocean is of the order of 1000–10 000 km, whereas it is typically only
10 km for a coastal region. However, in coastal waters, a much higher spatial reso-
lution is needed in the computations. It is of the order of 100 km for oceanic waters
and typically only 100 m for coastal waters. This higher resolution for coastal
regions thus compensates for the smaller scale of these regions. The number of
equations to be integrated in coastal wave models is therefore roughly equal to
that in oceanic wave models (it is of the order of 10 000 000 per time step in the
integration; see Section 6.3.4).

Literature:
Ardhuin et al. (2001), Benoit et al. (1996), Booij et al. (1999), Bouws and Battjes
(1982), Brink-Kjaer (1984), Cavaleri and Malanotte-Rizolli (1981), Cavaleri et al . (1989),
Hasselmann et al. (1973), Karlsson (1969), LeMéhauté and Wang (1982), O’Reilly and
Guza (1991), Piest (1965), Smith et al. (2000), Southgate (1984), Yamaguchi (1988).

8.4.1 The energy/action balance equation

The Eulerian spectral energy balance is formulated for coastal waters in the same
manner as it is for oceanic waters. The only differences are that (1) it involves a
more complicated formulation for the propagation of the wave energy, which now
also needs to account for shoaling, refraction and diffraction, and (2) the number
and complexity of the source terms are greater, since, in addition to the processes of

6 The wave energy density formulated in �k-space is conserved along a wave ray. This approach can be supplemented
with averaging over small regions the energy allocated to individual rays (e.g., Bouws and Battjes, 1982).
Another alternative, which is not used very often, is a hybrid approach that combines the Lagrangian approach
(for propagating the waves) with an Eulerian approach (to determine the source terms).
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Figure 8.5 Refraction turns the waves towards the coast (the vectors in the right-
hand panel represent the wave direction of a harmonic, unidirectional wave propa-
gating across the North Sea from west to east). The turning of the waves is exagger-
ated here for illustrative purposes. In the Eulerian energy balance, the directional
turning is considered as a transport of energy from one direction to another in each
cell of the geographic grid (solid cell: see Fig. 8.6).

wave generation by wind, quadruplet wave–wave interactions and white-capping,
we now need to represent also triad wave–wave interactions, bottom friction and
depth-induced (i.e., surf-)breaking. The only simplification is that, in view of the
scale of coastal regions, a wave model for coastal waters need not account for
propagation on a sphere. Wave reflection off obstacles or a coastline is usually
treated as a boundary condition, if it is considered at all.

In the energy balance equation for coastal waters, shoaling is readily accounted
for by using the depth-dependent group velocity in the equation. Refraction and
diffraction are not so easily dealt with. They require an additional propagation term
in the equation. The essence of deriving this extra term is that, as the energy density
of an individual wave component travels through the coastal region, it changes
direction. In other words, while the wave energy propagates through x, y-space it
simultaneously propagates through θ -space (it thus propagates through the three-
dimensional x, y, θ-space; see Figs. 8.5 and 8.6). For a non-stationary situation,
we need to add the time domain, so the energy balance needs to be formulated
in the four-dimensional t, x, y, θ -space7. The derivation of the energy balance in
x, y, t-space has already been given for oceanic waters (see Section 6.4.1). For
coastal waters this derivation is identical except that the energy propagation speed
may now not be taken out of the derivatives of Eq. (6.4.8), because in coastal

7 If the ambient current or the water depth vary horizontally, or the water depth varies in time, the frequency of
an individual wave component may also change, and an additional term to propagate wave energy in f -space is
needed. The energy balance is then formulated in the five-dimensional t, x, y, σ, θ -space (the relative frequency
σ replaces the frequency f in the presence of an ambient current; see Section 7.3.5 and Eq. 8.4.4).
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Figure 8.6 Upper panel: the directional distribution of wave energy at one fre-
quency, at one geographic location, at one moment in time (continuous, with the
solid line, and approximated with directional bins). Lower panel: refraction- or
diffraction-induced turning of the wave direction, represented as propagation of
wave energy through a bin in directional space. Compare with Fig. 6.12.

waters that speed generally varies with x and y. Here, we need to address only the
derivation in θ-space.

For this derivation, the directional energy distribution at each frequency in the
spectrum (see Fig. 6.7) is discretised into directional bins, each with a width�θ (see
Fig. 8.6). In the energy balance, the directional turning of the waves is presented
as energy moving from one directional bin to the next as follows: the net import of
energy into a directional bin during a time interval �t is equal to the energy import
through the left-hand side of the bin minus the energy export through the right-
hand side of the bin during that interval (note that the propagation speed through
the directional space is the refraction- or diffraction-induced rate of turning cθ as
derived in Section 7.3):

net import of energy = cθ E( f, θ )�x�y�t

−
(

cθ E( f, θ ) + ∂cθ E( f, θ )

∂θ
�θ

)
�x�y�t

= −∂cθ E( f, θ )

∂θ
�θ�x�y�t (8.4.1)
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Note that, if cθ were constant over the directions (it generally is not), the direc-
tional energy distribution would shift along the directions without changing form.
Adding the result of Eq. (8.4.1) to the deep-water energy balance of Eq. (6.4.7)
gives

∂

∂t
E( f, θ)�x�y�θ�t = − ∂cg,x E( f, θ )

∂x
�x�y�θ�t

− ∂cg,y E( f, θ )

∂y
�x�y�θ�t

− ∂cθ E( f, θ )

∂θ
�x�y�θ�t

+ S( f, θ)�x�y�θ�t (8.4.2)

Dividing by�x�y�θ�t and moving the transport terms to the left-hand side gives
the Eulerian spectral energy balance equation for arbitrary depth, which applies to
all wave frequencies, all directions, all locations (geographic cells) and all points
in time, including the effects of directional turning (in Cartesian co-ordinates and
adding the x, y, t-dependence in the absence of an ambient current):

∂E( f, θ ; x, y, t)

∂t
+ ∂cg,x E( f, θ ; x, y, t)

∂x
+ ∂cg,y E( f, θ ; x, y, t)

∂y

+ ∂cθ E( f, θ ; x, y, t)

∂θ
= S( f, θ ; x, y, t) shallow water (8.4.3)

where cθ is the refraction- or diffraction-induced turning rate of the individual
wave components. This equation is identical to the energy balance equation for
deep water (Eq. 6.4.8) except for the fourth term on the left-hand side that has been
added. Note that including this term implies a horizontally variable water depth
(refraction) or wave height (diffraction) and therefore a horizontally variable group
velocity, so that, in an energy balance equation with this term included, the group
velocity cg may not be taken outside the derivatives (as in deep water with slowly
varying wave heights).

If ambient currents are present, the energy balance equation needs to be supple-
mented with terms representing the energy transfer between waves and currents and
the effects on the propagation of the waves. The effects on propagation are refrac-
tion, energy bunching (similar to shoaling, which is also a form of energy bunching,
see Section 7.3.1) and frequency–shifting (related to the Doppler effect). The latter
phenomenon can be accounted for by adding a propagation term in frequency space.
The derivation of this extra propagation term is essentially the same as the above
derivation of the refraction–diffraction term (the only difference is that direction
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needs to be replaced with frequency). The energy transfer between the waves and the
current is not so easily represented; it involves adding terms to the energy balance
equation that represent the effect of work done by the current against the radiation
stresses (see Sections 5.5.2 and 7.4.2). A much simpler approach is to consider
the action balance of the waves. The corresponding equation is identical to the
energy balance equation with the energy density E(σ, θ ) replaced with the action
density N (σ, θ ) = E(σ, θ )/σ , where σ is the relative radian frequency (the radian
frequency in a system moving with the current; see Section 7.3.5). The reason is
that, in contrast to wave energy, wave action is conserved in the presence of currents.
The current-induced energy bunching and refraction are accounted for by using the
proper expressions for the propagation speeds cg and cθ in the action balance equa-
tion (see Eqs. 7.3.31, 7.3.32 and 7.3.33, possibly with additional terms to account
for diffraction; see below). The action balance equation, with frequency-shifting
included, is then

∂N (σ, θ ; x, y, t)

∂t
+ ∂cg,x N (σ, θ ; x, y, t)

∂x
+ ∂cg,y N (σ, θ ; x, y, t)

∂y

+ ∂cθ N (σ, θ ; x, y, t)

∂θ
+ ∂cσ N (σ, θ ; x, y, t)

∂σ
= S(σ, θ ; x, y, t)

σ
(8.4.4)

where the fifth term on the left-hand side represents the frequency-shifting of the
waves.

The theories of the generation, nonlinear wave–wave interactions and dissipation
of waves in finite-depth water are, as for deep water, generally rather complicated,
and a full treatment is outside the scope of this book. Instead, only the essence
of each theory and its results will be given. The source term S( f, θ ) can again, as
for deep water, be divided into terms representing generation by wind Sin( f, θ ),
nonlinear wave–wave interactions Snl( f, θ ) and dissipation Sdiss( f, θ ):

S( f, θ ) = Sin( f, θ ) + Snl( f, θ ) + Sdiss( f, θ ) (8.4.5)

These source terms should now be subdivided to represent more processes than
in deep water. The source term representing the nonlinear wave–wave interactions
should represent not only quadruplet wave–wave interactions Snl4( f, θ ), but also
triad wave–wave interactions Snl3( f, θ). The source term for dissipation should
represent not only white-capping Swc( f, θ ) but also bottom friction Sbfr( f, θ ) and
depth-induced (surf-)breaking Ssurf ( f, θ ). Other processes of wave dissipation may
be added. For instance, under some conditions, dissipation is caused by the penetra-
tion of water into the bottom (also called percolation, e.g., over a pebble or gravel
bottom), by bottom motion (e.g., muddy bottoms), by vegetation or other marine
life (e.g., mangroves, kelp, coral or mussels) or by current-induced turbulence in
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the water (e.g., near strong gradients in an ambient current). These processes will
be ignored here because they are important only in exceptional situations.8

The inclusion of nonlinear processes in (very) shallow water is stretching the
applicability of the linear theory of the waves even further than is the case in deep
water (see Note 8E). However, the computational results obtained with the model
approach described here are very reasonable when compared with observations, at
least in terms of overall wave parameters such as the significant wave height, period
and mean wave direction, even in the surf zone.

The processes of generation by wind, quadruplet wave–wave interactions and
white-capping have been treated in Chapter 6 and need not be addressed again,
except to indicate the effect of the finite depth and (where possible) ambient currents
on these processes.

NOTE 8E Nonlinear processes and the random-phase/amplitude model
(coastal waters)

In Note 6E it was observed that the occurrence of nonlinear processes in deep water
is, strictly speaking, at odds with the random-phase/amplitude model for ocean waves.
However, such nonlinear processes are to some extent accounted for in deep-water ocean
wave models. In shallow water, and in particular in very shallow water ( just outside and
in the surf zone), the nonlinear processes are much stronger. Spectral energy-balance
models based on the random-phase/amplitude model should then perhaps be abandoned,
the more so since nonlinear, phase-resolving models (such as Boussinesq-like models;
see Section 7.5.2) provide excellent alternatives. Unfortunately, such phase-resolving
models are generally not operationally feasible when the area of interest is large (a dozen
wave lengths or more; the required computer capacity would be very considerable). It
is for this reason that, in spite of these fundamental objections, spectral energy-balance
models are used in shallow water, for instance when the waves approach the coast over
an extended shallow foreshore (e.g., tidal flats or reefs). Engineering practice shows
that this does provide reasonable estimates of the significant wave height, period and
mean direction, but the interpretation of the spectrum is not a trivial matter, since phase-
coupling between the wave components may be important, and requires considerable
skill and care.

Literature:
Ardhuin et al. (2001), Bretherton and Garrett (1969), Elwany et al. (1995), Garrett (1967),
Shemdin et al. (1977), Sheremet and Stone (2003), Whitham (1974).

8 Another process that seems to dissipate energy is backscatter of wave energy off the bottom due to resonance
with features in the seabed topography (see Section 8.4.4). It causes a decay of wave energy in the wave direction
and therefore seems to be dissipation (i.e., the wave height decreases) but it is not, since the energy is conserved
during the backscatter.
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8.4.2 Wave propagation

The propagation of waves in shallow water is well understood (at least within the
approximation of the linear wave theory) and also well represented in the energy
balance equation, except for diffraction:

(1) shoaling is represented in the energy balance equation by the depth- and current-related
variation of propagation speeds cg,x and cg,y determined with the linear wave theory
(Eqs. 7.3.3 and 7.3.31),

(2) refraction is represented in the energy balance equation by the refraction-induced direc-
tional turning rate cθ = cθ,ref from the linear wave theory (Eq. 7.3.13 or 7.3.33), but

(3) diffraction is not properly represented, because the expression for the diffraction-
induced turning rate cθ,dif (see Eq. 7.3.18) is formulated in terms of the wave amplitude
of a harmonic wave, which for random waves is not defined (but an approximation is
available; see below).

The effect of shoaling on a harmonic wave is generally, as noted in Section
7.3.1, to enhance the wave height as the wave approaches the coast. This is also
the case for random waves. The frequency of a shoaling harmonic wave remains
constant (in the absence of an ambient current) and one would therefore perhaps
expect also the (mean) wave frequency of random waves to remain constant when
they shoal, but that is only approximately true (even in the linear approximation).
Since shoaling is stronger for the lower frequencies than for the higher frequencies,
the low-frequency part of the spectrum is affected more than the high-frequency
part (see Fig. 8.7). In fact, the highest frequencies might not be affected at all,
because the water depth may be relatively large for these frequencies.9 The net
result of this (frequency-dependent) effect is therefore to shift the mean frequency
slightly to lower values as the waves approach the coast. When random waves enter
deeper water again, for instance after travelling over a sand bar, the opposite effect
occurs (de-shoaling). It must be stressed that these effects of shoaling may well be
dominated by other effects of propagation, generation and dissipation.

An opposing current may have the same effect as depth-induced shoaling (in
addition to various other effects to be addressed later). If an opposing current
increases its velocity as the waves propagate up-current, then the forward speed
(relative to the fixed bottom) of the wave energy is increasingly reduced and wave
energy (per unit surface area) is enhanced in the same way as in shoaling. We may
therefore call this phenomenon current-induced energy bunching (just as shoaling
is depth-induced energy bunching). One marked difference is that shoaling affects
the low frequencies more than the high frequencies, whereas the opposite is true

9 Before shoaling increases the wave height (for a harmonic wave), it slightly decreases the wave height (see
Section 7.3.1). Within a certain frequency range, the spectral density may therefore slightly decrease, rather than
increase, as the waves move into shallower water.
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Figure 8.7 The general effect of shoaling on the wave spectrum as it approaches
the coast (in the absence of other processes): the lower frequencies are enhanced
more than the higher frequencies, resulting in a higher significant wave height and
a slight frequency-down-shifting of the spectrum.

for current-induced energy bunching because, in the case of an ambient current, the
ratio of current speed over group velocity Ucurrent/cg is the controlling parameter.
For frequencies propagating in an opposing current, this ratio may approach unity
(Ucurrent/cg → 1), resulting in blocking and reflection of the energy at the high fre-
quencies. In addition, the waves have usually steepened enough that wave breaking
occurs. One situation in which this occurs is when waves propagate into an estuary.
The waves, propagating against the increasing river current in the estuary, may
enhance their wave height to a point at which they will break, thus creating a zone
of breaking waves at the seaward edge of the outgoing flow. Another situation in
which such current-induced energy bunching with enhanced breaking may occur
is in tidal eddies, for instance near intricate coastal features, or in narrow straits, or
along the edges of major ocean currents such as the Agulhas Current and the Gulf
Stream.

Near a smoothly curved coastline, with regular bottom topography, refraction
turns all wave components to roughly the same direction at the outer edge of the
surf zone. This implies that the waves there will be more long-crested than those
in deeper water, i.e., the two-dimensional wave spectrum becomes directionally
narrower as the waves approach the surf zone. Near such a gently varying coast,
this would indeed be the case. However, near a somewhat less gently varying
coast, refraction tends to create rather chaotic wave ray patterns (see Fig. 8.8 and
Section 7.3.2), implying many different wave directions (cross-seas) and extreme
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Figure 8.8 Panel a: the chaotic wave-ray pattern for a unidirectional, harmonic,
wave of period 7 s from a westerly direction in the Haringvliet bay (the Nether-
lands). Panels b–d: the results for an incident, two-dimensional JONSWAP spec-
trum with the same peak period and mean wave direction and a cos2θ -directional
distribution (propagation only, all processes of generation, dissipation and wave–
wave interactions are ignored). The geographic size of the area shown is approx-
imately 15 km × 15 km, which is approximately 300L × 300L (where L is the
spatially averaged peak wave length in the wave spectrum). The reason for the
decrease of the significant wave height towards the shores, in this case, is the shad-
owing effect of the lateral coastlines of the bay and the turning of individual wave
components towards these coastlines.
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variations of wave heights, even under swell conditions. For wind-sea conditions,
with random, short-crested incident waves, one would expect the situation to be
even more chaotic. However, the opposite is true: due to the mixing of the refraction
effects of the many different frequencies and directions that are present in a wind-sea
spectrum, the wave conditions in terms of overall parameters such as the significant
wave height and mean wave direction are spatially smoothed: the high values of the
(significant) wave height are lower and the low values are higher. It is remarkable
that the mean wave direction in such situations is affected only by the large-scale
features of the seabed topography. This is not to say that a confused sea state does not
occur: the wave ray patterns indicate that individual wave components do generally
have a large variation in direction. However, this affects primarily the directional
spreading of the waves and not so much the mean direction (see Fig. 8.8(c)).

In Section 7.3.3 it was shown that the effect of diffraction on a harmonic, unidi-
rectional wave is to turn the wave towards regions with lower amplitude. The wave
thus turns around obstacles, such as small islands, or around the tip of a break-
water. This effect occurs also for random, short-crested waves, but, since these
waves approach an obstacle from many different directions simultaneously, the
variations in (significant) wave height behind an obstacle are smoothed. Diffrac-
tion effects are therefore much reduced in random, short-crested seas. This can
be readily demonstrated by superimposing many Sommerfeld solutions for unidi-
rectional, harmonic waves with various frequencies from various directions (see
Section 7.3.3). The result is, as usual with the introduction of randomness and
short-crestedness, a smoother wave field: the high values of the (significant) wave
height are lower and the low values are higher.

The differences between the solution for a unidirectional, harmonic wave (which
is often presented in diagrams) and the solution for random, short-crested waves
are rather marked. Goda (2000) warns therefore that the direct application of such
diagrams to real situations should be avoided, because they can lead to erroneous
results. It should also be noted that, because diffraction depends on the wave length
(and thus on the wave period), adding randomness to the waves changes not only
the pattern of the significant wave height, but also that of the significant wave period
(different frequencies turn at different rates, thus affecting the energy at different
frequencies differently). Goda (2000) provides diagrams for random, short-crested
waves.

Diffraction is usually not represented in operational wave models that are based
on the spectral energy balance. The directional turning rate cθ that is used in these
models represents only refraction. This implies that these models should not be used
where the wave height varies rapidly in geographic space, i.e., behind obstacles
such as breakwaters and headlands and certainly not in harbours. The reason for
not representing diffraction in these models is two-fold. First, the formulation of
diffraction as a directional turning of the waves, as presented in Sections 7.3.3
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Figure 8.9 Diffraction of random, unidirectional waves propagating through a gap
in an infinitely long, straight breakwater (JONSWAP spectrum; unidirectionality
is used here only to emphasise diffraction effects; adding short-crestedness would
have given more realistic results but the resulting smoothing effect on the wave
field would have made diffraction effects barely visible). The left-hand panel is
a plan view with the half-plane solution for each approximation. The right-hand
panel gives the cross section at y/L p = 4.5 (right-hand side only), where L p is
the peak wave length of the incident spectrum. Dashed lines: computed with the
phase-decoupled diffraction approximation in SWAN. Solid lines: Sommerfeld-
based solution (for random waves propagating through a gap between two wave
breakwaters; see also Fig. 7.13). Dots: laboratory observations of Yu et al. (2000).

and 7.3.4, applies to a harmonic wave, not to random waves (it is formulated in
terms of an amplitude, which cannot be defined for random waves). Second, a
numerical implementation would be difficult because the inclusion of diffraction
in the energy balance equation would transform that equation from a first-order
differential equation into a fourth-order differential equation (Eq. 7.3.27, or an
energy-based equivalent version thereof, would introduce higher-order derivatives
into the energy balance equation). In addition, the tips of breakwaters or other
sharp coastal features of obstacles create singularities in the wave field, which are
notoriously difficult to handle in numerical models. In spite of these problems,
numerical experiments have been carried out with the amplitude a in Eq. (7.3.26)
replaced with the square root of the energy density

√
E( f ), which implies ignoring

the wave phases. The results of numerical experiments with the SWAN model
(see Chapter 9), obtained on the basis of such a phase-decoupled approach are
reasonable, as shown in Fig. 8.9.10 However, this approach should not be used

10 The numerical problems mentioned here have been solved in SWAN by using under-relaxation in the iterative
computational procedure of SWAN (see Section 9.5.2).
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Figure 8.10 The wind input source term, for a JONSWAP spectrum in deep
and shallow water (computed with the initial-growth formulation of Cavaleri and
Malanotte-Rizzoli, 1981, and the feedback model of Miles, 1957; for Hm0 = 3.5 m,
Tpeak = 7 s and U10 = 20 m/s).

in front of reflecting obstacles where standing waves can appear, in particular in
harbours, because phase information, which is not available in this approach, would
be crucial.
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8.4.3 Generation by wind

The formulations that represent the generation of waves by wind (Section 6.4.3)
show that the essential parameter in this process is the ratio of wind speed over the
phase speed of the waves. Finite depth reduces the phase speed, thus increasing
this ratio and, consequently, enhancing the transfer of energy to the waves (see
Fig. 8.10; see also Young, 1999). In operational wave models, the effect of an
ambient current is usually taken into account by replacing the absolute wind speed
(i.e., that relative to the fixed bottom) with the relative wind speed (i.e., the relative
to the current) in the expressions of the wind input source term (Eq. 6.4.15a or
Eq. 6.4.15b).
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Figure 8.11 The source term for quadruplet wave–wave interactions, for a
JONSWAP spectrum in deep and shallow water (near-exact computations with
the Xnl code of van Vledder, 2006; for Hs = 3.5 m and Tpeak = 7 s).

8.4.4 Nonlinear wave–wave interactions

Quadruplet wave–wave interactions

The expression for the quadruplet wave–wave interactions (see Eq. 6.4.18) is uni-
versal in the sense that it applies to any wave components that fulfil the reso-
nance condition for four wave components, be it in deep water or in finite-depth
water. In finite-depth water, the configurations of the quadruplets change and the
corresponding wave–wave interactions are stronger than in deep water and their
low-frequency lobe (see Fig. 6.21) shifts slightly to lower frequencies. In fact,
these interactions may grow so strong that the assumptions underlying the theory
of quadruplet wave–wave interactions do not hold (e.g., small corrections to the
linear wave theory). The effect of a finite depth is illustrated in Fig. 8.11, which
shows also the frequency up-shifting of the high-frequency lobe (white-capping
will dissipate this transferred energy).

The estimate of the source term in Fig. 8.11 is based on the full expression for
the quadruplet interactions (near-exact computations). In operational wave models,
with a large number of geographic computational cells, this is not an economically
feasible option. Instead, these models first compute the source term as for deep
water with the DIA approximation (see Section 6.4.4) and then scale the results to
account for the finite depth with a coefficient that is constant for all frequencies and
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Figure 8.12 The parameterised enhancement of the quadruplet wave–wave inter-
actions as waves enter shallow water (see also Section 9.3.3) with a shallow-water
cut-off at kpeakd = 0.5.

directions in the spectrum (which has been determined empirically for a JONSWAP
spectrum for various water depths; see Herterich and Hasselmann, 1980, Fig. 8.12
and Section 9.3.3).

Triad wave–wave interactions

In analogy with the resonance conditions for four wave components, the resonance
conditions for three wave components require that the sums of frequencies and
wave-number vectors of two freely propagating wave components are equal to
the frequency and wave number, respectively, of a third freely propagating wave
component (see Section 6.4.4 and Note 8F):11

f1 + f2 = f3
(8.4.6)�k1 + �k2 = �k3

These triad resonance conditions cannot be complied with in deep water (i.e., such a
combination of wave components cannot be created with the dispersion relationship
of the linear wave theory for deep water). Triad wave–wave interactions are therefore

11 An entirely different type of triad interactions occurs between two wave components and a feature in the seabed
topography (i.e., a harmonic component in this topography; see Ardhuin and Herbers, 2002). Energy is then
transferred from one water wave component to another with a harmonic in the seabed topography acting as a
sort of catalyst. The effect of this wave–wave–seabed interaction (also known as Bragg scatter) is to scatter
wave energy backwards or forwards. It may increase the directional spreading of swell propagating across
the continental shelf, depending on the spectrum of the seabed features (in the same range as the water wave
length). This Bragg scatter is ignored in operational wave models.
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not relevant in deep water. The resonance conditions can be complied with only
in extremely shallow water, where the waves are non-dispersive. In slightly deeper
but still very shallow water, these conditions can nearly be complied with, so that
near-resonance occurs, resulting in energy transfer and phase-coupling between
the wave components involved. The magnitude of the energy transfer depends on
the phase differences of the three wave components involved, which are quantified
with the biphase β1,2:

β1,2 = ϕ1 + ϕ 2 − ϕ1+2 (8.4.7)

in which the phases ϕ 1, ϕ 2 and ϕ 1+2 = ϕ 3 are the phases of the three interacting
wave components. This biphase is a characteristic of the triad and it evolves over
time and distance, just as the energy of the waves evolves during propagation. In
fact, the evolution of the biphase depends on the evolution of the wave energy and
vice versa. Properly determining triad wave–wave interactions therefore requires
coupled evolution models both for the biphase (a biphase evolution equation) and
for the wave energy (the energy balance equation). This greatly complicates the
modelling of waves in very shallow water.

When random waves, with a unimodal spectrum, approach very shallow water,
e.g., the surf zone, the triad wave–wave interactions often generate a secondary
peak in the spectrum, at twice the peak frequency, and sometimes also peaks at
higher multiples of the peak frequency (see below; in addition to a low-frequency
peak, which we ignore here, see Note 8F). However, these secondary peaks seem
to persist only a short distance into the surf zone (several wave lengths at most).
As the waves propagate further into the surf zone, the same interactions remove
these peaks and force the spectral tail into a smooth, universal shape: k−4/3 for
kd < 1 (these components are in relatively shallow water) and k−5/2 for kd > 1
(these components are in relatively deep water and k−5/2 corresponds to f −4;
see Notes 6C and 8D). Observations and computations with extended Boussinesq
models indicate that this forcing to a universal tail in very shallow water applies
not only to a unimodal incident spectrum but also to a wide variety of other spectral
shapes. In the case of initially mixed sea states (wind sea with substantial swell),
the universal shape of the tail that is generated extends from the swell peak to
the higher frequencies. The wind-sea peak has then completely disappeared. This
smoothing effect is similar to the effect of the quadruplet wave–wave interactions
in deep water, forcing the spectral tail into an f −4- or k−5/2-shape (see Note 6C;
but only for wind sea in deep water). If the surf zone is narrow and followed by
deeper water (which may occur when waves propagate across a narrow shoal) the
energy from the secondary peak may return to the primary peak or the secondary
peak may be released as freely propagating energy, at twice the peak frequency,
depending on the degree of nonlinearity and the seabed topography.
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NOTE 8F Generation of subharmonics and superharmonics
by triad wave–wave interactions

When the wave components with subscripts 1 and 2 in the resonance conditions of Eq.
(8.4.6) are located at or near the peak of a unimodal incident spectrum, they will, in
shallow water where the triad interactions become important, transfer energy to lower
frequencies (the difference frequency f3 = f1 − f2) and to higher frequencies (the sum
frequency f3 = f1 + f2). Since, in a (narrow) unimodal wave spectrum, f1 − f2 is
small for the energy-rich part of the spectrum, the difference-frequency interactions
generate low-frequency waves, i.e., subharmonic or infra-gravity waves (surf beat;
see Section 1.3). They are oriented in the direction of the difference of the wave-
number vectors �k1 and �k2, i.e., usually at a large angle to the directions of the two
generating wave components. In the main text we do not consider these difference-
frequency interactions because infra-gravity waves fall outside the frequency range
of wind-generated waves. The sum-frequency interactions transfer energy to higher
frequencies, thus generating, in a unimodal spectrum, a high-frequency, superharmonic
peak at twice the peak frequency. A sum component is always oriented in the direction
of the sum of the wave-number vectors �k1 and �k2, i.e., between the directions of the two
generating components. This secondary high-frequency peak is therefore generated in
the same direction as the primary peak. One consequence is that the high frequencies
seem to refract more strongly than they would if Snel’s law alone were applicable (their
direction follows the refracting direction of the spectral peak; this of course applies
only to the bound energy at these high frequencies). This effect has been confirmed
with measurements in the field.
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A special case occurs when a unidirectional harmonic wave enters very shallow
water. Such a wave can interact with itself (self–self interaction: f1 = f2) to cre-
ate a second harmonic, at twice its frequency, f3 = 2 f1 (thus creating a nominal
triad, even if only two components are involved). The effect of this interaction is
visible as a distortion of the basic harmonic: as the wave propagates, it evolves
into a wave with sharper crests and flatter troughs (a Stokes-like wave; see Sec-
tion 5.6.2). This is possible only if the second harmonic propagates with the same
phase speed as does the basic harmonic, i.e., the energy of the second harmonic
is bound to the basic harmonic. When the wave continues to propagate in ever
shallower water, it pitches forwards and breaks: it creates a steep forward face
and a gentler backward slope. This implies that the phase of the second harmonic
shifts in relation to the phase of the basic harmonic (while propagating at the same
speed).
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Figure 8.13 The observed evolution of the biphase of the self–self interaction at
the peak frequency of a unimodal incident frequency spectrum as the waves enter
shallow water (i.e., as a function of the Ursell number NUrsell, see also Sections
5.6.1 and 9.3.3). The solid line represents Eq. (8.4.8) with δ = 0.63.

Similarly, when random waves with a unimodal spectrum approach the surf
zone, the wave components at or near the peak of the spectrum create Stokes-like
wave profiles, generating the secondary peak at twice the peak frequency referred to
above. This added energy is superimposed on the freely propagating energy at this
frequency, but it is bound to the primary peak. This distinction between bound and
freely propagating energy is not evident in the spectrum since a variance density
spectrum does not provide such a distinction. When the random waves propagate
further into the surf zone, essentially the same happens as with a harmonic wave:
they pitch forwards and break. Breaking reduces the energy scale of the spectrum
and is therefore quite evident in the spectrum but the forward pitching is not because
phase information is not provided by the spectrum. It is evident in, for instance, the
biphase of the self–self interaction at the peak frequency β fpeak = 2ϕ fpeak − ϕ2 fpeak .
Measurements in the field and under laboratory conditions show that, in deep water,
where the waves behave reasonably linearly, this biphase is more or less uniformly
distributed between −180◦ and +180◦ (as one may expect of freely propagating
random waves) but, as the waves propagate into shallower and shallower water, the
biphase concentrates more and more around a value decreasing from 0◦ to –90◦

(see Fig. 8.13).
This implies that, also for random waves, the shape of the wave profile evolves,

as observed, from a fairly symmetrical (horizontally and vertically) shape in deep
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water to a shape with a steeper forward pitching face and a more gently sloping
backward face (the biphase of a saw-tooth-shaped wave too is −90◦). This observed
behaviour of the biphase for the self–self interaction at the peak frequency can be
roughly approximated by its mean value β fpeak

as a function of the Ursell number
(see Fig. 8.13):

β fpeak
= −90◦ + 90◦ tanh(δ/NUrsell) (8.4.8)

in which the degree of nonlinearity of the waves is represented by the Ursell number
NUrsell (see Section 5.6.1 and Fig. 8.13) and δ is a tunable coefficient. The value
of δ varies considerably in the measurements (δ ≈ 0.2−0.6), illustrating the uncer-
tainty of the parameterisation.

Most of the theoretical modelling of triad wave–wave interactions is based on
the various Boussinesq equations that have been developed (see Section 7.5.2).
These equations, which are fundamentally nonlinear and include the triad wave–
wave interactions implicitly, are usually formulated in the time domain but they
can be transformed to the frequency domain. Such a transformation gives cou-
pled equations for the evolution of the amplitudes and biphases of the harmonic
components involved. These coupled equations can, in turn, be transformed into
a biphase evolution equation and an energy balance equation with corresponding
coupling terms (which in the energy balance equation is the source term for the
triad wave–wave interactions Snl3). This creates a totally new approach to modelling
nonlinear waves in the spectral domain, because it adds a completely new type of
wave model (the biphase evolution equation). Such transformation of a Boussi-
nesq equation, from the time domain to the spectral domain, is complicated and
has successfully been carried out only for special conditions (a one-dimensional
geographic situation; Herbers and Burton, 1997). In anticipation of a complete
transformation, some operational wave models have been provided with a source
term for the triad wave–wave interactions, Snl3( f, θ ) without a biphase evolution
equation. Instead, the biphase in these models is estimated from the spectrum and
the local water depth (e.g., Becq et al., 1999). The simplest of these approaches is
the lumped-triad approximation (LTA) of Eldeberky (1996):

Snl3( f, θ ) = S +
nl3( f, θ ) + S −

nl3( f, θ ) (8.4.9)

with

S +
nl3( f, θ ) = Cnl3ccg|sinβpeak|[E2( f/2, θ ) − 2E( f/2, θ )E( f, θ )] (8.4.10)

and

S −
nl3( f, θ ) = −2S +

nl3(2 f, θ ) (8.4.11)
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Figure 8.14 The source term for triad wave–wave interactions, for a JONSWAP
spectrum in shallow water (computed with the LTA approximation of Eldeberky,
1996; for Hs = 3.5 m and Tpeak = 7 s).

with a minimum value of S +
nl3( f, θ ) = 0. The value of the biphase in these expres-

sions is estimated as β fpeak = β fpeak
of Eq. (8.4.8). The coefficient Cnl3 is a coupling

coefficient that depends on the local depth, frequency and wave number (see Sec-
tion 9.3.3). The term S +

nl3( f, θ ) represents the energy received from frequency f/2
and the term S −

nl3( f, θ ) represents energy lost to frequency 2 f . Because S +
nl3( f, θ )

is always positive, each wave component in this approach receives energy from
a component with half its frequency (energy: f/2 → f ) and loses energy to a
component with double its frequency (energy: f → 2 f ). This ensures that, in this
approach, energy is always transported to higher frequencies and that no restitution
of energy to lower frequencies occurs. It also implies that no subharmonics (i.e.,
infra-gravity waves, such as surf beat) are generated by the LTA.

The LTA describes the essential features of the energy transfer for waves entering
the surf zone with a unimodal spectrum, i.e., it transfers energy from the primary
peak to its superharmonic, resulting in a secondary peak at twice the peak frequency
(this secondary peak, in its turn, generates its second harmonic at f = 4 fpeak,
which generates its second harmonic at f = 8 fpeak etc., but these peaks are usually
outside the frequency range of numerical wave models). The corresponding source
term for a JONSWAP spectrum is shown in Fig. 8.14. This rather simple approx-
imation seems to give reasonable results near the outer edge of the surf zone (for
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swell or wind sea, but not for a mix of these two). If the waves continue to propagate
in deeper water again (e.g., behind a shoal), the energy at the secondary peaks will
propagate freely in the LTA computations and will not return to the primary peak.
This too is often realistic. However, if instead the waves propagate further into
shallow water (an extended surf area), or if the incident spectrum is multimodal,
the LTA does not reproduce the transition to the smooth, universal spectral tail.
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8.4.5 Dissipation

White-capping

The proportionality coefficient in the expression for white-capping in deep water,µ
(see Eq. 6.4.21), depends on the overall steepness of the waves and does not depend
directly on the water depth. However, when waves enter coastal waters, shoaling
tends to increase their steepness, so white-capping tends to gain importance in
coastal waters (but refraction and diffraction may well induce the opposite effect).
The effect may be considerable, as demonstrated in Fig. 8.15; see also Young (1999).
The effects of an ambient current are equally indirect, e.g., an increasing opposing
current will increase the wave steepness and thereby enhance white-capping. In
fact, the steepness may thus grow much steeper than is usual for wind-generated
waves and results of numerical experiments show that, under these conditions,
the white-capping formulation of Komen et al. (1984; see Eqs. 6.4.20 and 6.4.22)
underestimates the dissipation (Ris and Holthuijsen, 1996).

Bottom friction

For continental shelf seas with a sandy seabed, the dominant mechanism for bottom
dissipation appears to be bottom friction. The term ‘bottom friction’ covers the
rather complicated mechanisms in the relatively thin (compared with the water
depth) turbulent boundary layer at the bottom that is created by the wave-induced
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Figure 8.15 The white-capping source term, for a JONSWAP spectrum in deep
and shallow water (computed with the pulse model of Hasselmann, 1974; for Hs
= 3.5 m and Tpeak = 7 s).

motion of the water particle. It is essentially a transfer of energy and momentum
from the orbital motion of the water particles just above that layer to the turbulent
motion in that layer. Such transfer depends therefore on the wave field itself and
on characteristics of the bottom. These bottom characteristics in turn may well be
affected by the waves. For instance, a smooth and flat sandy bottom may develop
ripples under certain wave conditions (which would enhance the bottom friction)
but these ripples may be washed away again by subsequent more severe wave
conditions (which would reduce the bottom friction; the flow regime is then called
‘sheet-flow’).

If the velocity of the water particles �ubottom and the shear stress �τbottom just above
the turbulent bottom boundary layer are oriented in the same direction, then the
time-averaged energy-dissipation rate at the bottom Dbfr (per unit bottom surface
area) can be written as

Dbfr = −τbottomubottom (8.4.12)

where τbottom and ubottom are the magnitudes of the (time-varying) shear stress and
particle velocity, respectively. The characteristics of the particle velocity ubottom are
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readily obtained with the linear wave theory from the wave spectrum and the local
depth. Obtaining a reasonable estimate of the shear stress τbottom is not so easy.
Two types of models have been developed for this. In the first type (the drag-law
models), the dissipative character of the turbulent boundary layer is represented by
one coefficient, which needs to be determined empirically for every wave condition
and bottom condition (e.g., Collins, 1972). This type of model uses a quadratic law
to estimate the magnitude of the shear stress:

τbottom = ρwaterCbfru
2
bottom (8.4.13)

where ρwater is the density of water and Cbfr is a bottom-friction (or drag) coefficient,
so that the energy-dissipation rate becomes (from Eqs. 8.4.12 and 8.4.13)

Dbfr = −ρwaterCbfru2
bottomubottom (8.4.14)

For random waves this is often approximated as (e.g., Collins, 1972)

Dbfr = −ρwaterCbfru
2
rms,bottomurms,bottom (8.4.15)

where urms,bottom is the root-mean-square orbital velocity at the bottom. Distributing
u2

rms,bottom over frequency and direction with the linear wave theory, in other words,
replacing u2

rms,bottom with [2π f /sinh(kd)]2 E( f, θ) and estimating urms,bottom from the
wave spectrum with the same theory gives the spectral distribution of the dissipation
(in terms of energy density):

S∗
bfr( f, θ ) = −ρwaterCbfr

[
2π f

sinh(kd)

]2

E( f, θ )urms,bottom (8.4.16)

with

urms,bottom =
{∫ ∞

0

∫ 2π

0

[
2π f

sinh(kd)

]2

E( f, θ ) dθdf

}1/2

(8.4.17)

or, in terms of variance density (divide by ρwaterg),

Sbfr( f, θ ) = −Cbfr

g

[
2π f

sinh(kd)

]2

E( f, θ )urms,bottom (8.4.18)

In the second type of model (eddy-viscosity models, which are based on
turbulent-boundary-layer models for permanent flow), the dissipative character
of the turbulent boundary layer is formulated in terms of basic bottom parame-
ters such as the grain size of the sand (e.g., Madsen et al., 1988; Weber, 1989,
1991a, 1991b). The results of the eddy-viscosity models can also be formulated as
Eq. (8.4.18) but with different estimates for the bottom-friction coefficient Cbfr.
The only parameters that seem to determine the friction (at least for sandy bottoms)
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Figure 8.16 The bottom-friction coefficient Cbfr as a function of normalised bottom
roughness k̃N and normalised Shield’s parameter ψ/ψcritical (for swell conditions
with frequency 0.1 Hz, grain diameter Dgrain = 0.1 mm, kN ,skin = 0.01 m and
ψcritical = 0.05). After Tolman (1994).

are a normalised bottom roughness k̃N (defined as k̃N = kN/arms,bottom, where kN is
a bottom roughness length, also called the Nikuradse equivalent sand-grain rough-
ness, and arms,bottom is the root-mean-square amplitude of the near-bottom orbital
excursion) and a parameter representing the capacity of the waves to set the bottom
in motion (to create sand ripples or cause sheet-flow), called the Shields parameter
ψ (e.g., Tolman, 1995):

ψ = Cbfr,skin

u2
rms,bottom

(ρsand/ρwater − 1) gDgrain
(8.4.19)

where ρsand and ρwater are the densities of sand and water, respectively, Dgrain

is a representative grain diameter and Cbfr,skin is the coefficient for skin friction
(i.e., for a smooth bottom, when kN = kN,skin = Dgrain). For a certain situation, the
dependence of the friction coefficient Cbfr on k̃N and ψ is shown in Fig. 8.16,
which shows clearly the increase of the friction coefficient with increasing bottom
roughness and the sudden appearance of ripples on a smooth bottom when the
Shields parameter exceeds a certain value.

A simple, often-used, alternative to the above two models is due to Hasselmann
et al. (1973; JONSWAP, see Section 6.3.3), who represented their observations of
swell dissipation with Cbfr = χ/(gurms,bottom) in Eq. (8.4.18) and χ = 0.038 m2 s−3.
For fully developed wind-sea conditions in shallow water, Bouws and Komen (1983)
suggest that one should use χ = 0.067 m2 s−3. This approach seems to work rea-
sonably well in operational wave models for many different situations, as long
as a suitable value of χ is chosen.12 This is also true for the other friction models

12 Tolman (1994) notes that this success may be due to the fact that wave conditions dominate the dissipation
(rather than movable-bed effects) and that an increase in the orbital motion is often accompanied by a decrease
in friction, such that the coefficient χ is fairly constant for many wave conditions.
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Figure 8.17 The bottom-friction source term, for a JONSWAP spectrum in shallow
water (χ = 0.038 m2 s−3, for Hs = 3.5 m and Tpeak = 7 s).

mentioned above, i.e., they seem to perform reasonably well, as long as suitable val-
ues for the relevant coefficients are chosen. This implies that, given the uncertainty
of this choice (information on bottom material is often rather poor), no preference
can be given to any of these models from an operational point of view. However,
it must be noted that the eddy-viscosity model of Weber (1989, 1991a, 1991b) has
the best physical basis. The general character of the bottom-friction source term
for a JONSWAP spectrum is given in Fig. 8.17.

The effect of an ambient current on the wave-energy dissipation due to bot-
tom friction is often not taken into account. The reasons for this are given by
Tolman (1992b), who argues that state-of-the-art expressions that nominally rep-
resent the effect of a current vary too widely in their effects to be acceptable.
He also notes that the error in finding a correct estimate of the bottom rough-
ness has a much larger impact on the dissipation than does the effect of a mean
current.

Literature:
Bertotti and Cavaleri (1994), Bouws and Komen (1983), Cavaleri and Lionello (1990),
Graber and Madsen (1988), Grant and Madsen (1982), Hasselmann and Collins (1968),
Herbers et al. (2000a), Hsiao and Shemdin (1978), Hwang et al. (1998), Li and Mao
(1992), Luo and Monbaliu (1994), Madsen et al. (1988), Padilla-Hernández and Monbaliu
(2001), Putnam and Johnson (1949), Resio (1988), Shemdin et al. (1977), Tolman (1992b),
Weber (1989, 1991a, 1991b).
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Depth-induced (surf-)breaking

A classical and widely accepted model for depth-induced wave breaking (surf-
breaking) is due to Battjes and Janssen (1978). In this model the average energy
loss in a single breaking wave (per unit time, per unit horizontal bottom area) is
modelled in analogy with the dissipation in a bore (a hydraulic jump) as

Dsurf ,wave = −1

4
αBJ ρg f0 H 2

br (8.4.20)

where αBJ ≈ 1 is a tunable coefficient (not related to earlier notations that use α),
f0 is the inverse of the (zero-crossing) wave period f0 = 1/T0 and Hbr is the height
of the breaking wave. In a field of random waves, Dsurf ,wave is a random variable
Dsurf ,wave, the average of which can be estimated as an expected value:

Dsurf ,wave = E{Dsurf ,wave} = −1

4
αBJρg

∫ ∞

0

∫ ∞

0
f0 H 2

br p(Hbr , f0) df0d Hbr

(8.4.21)

where p(Hbr, f0) is the joint probability density function of the wave height and
zero-crossing frequency of the breaking waves. The average for all waves (breaking
and non-breaking) is then

Dsurf = Qb Dsurf ,wave (8.4.22)

where Qb is the fraction of breaking waves. Little is known about Qb and p(Hbr , f0),
although some observations of the probability density function of the breaking
wave heights p(Hbr ) = ∫ ∞

0 p(Hbr , f0) df0 have been made (see Fig. 4.13). It is
remarkable that this probability density function of the breaking waves overlaps
the probability density function of the non-breaking waves, just as in deep water
(see Section 6.4.5). Battjes and Janssen (1978), noting that details of p(Hbr , f0)
are not required for estimating integral properties used a distribution in which the
wave height of all breaking waves is equal to some maximum wave height Hmax

correspondingly. They correspondingly replaced
∫ ∞

0

∫ ∞
0 f0 H 2

br p(Hbr , f0) df0d Hbr

with f 0 H 2
max, so (dividing by ρg to express the result in terms of variance)

Dsurf = −1

4
αBJ Qb f 0 H 2

max (8.4.23)

where f 0 is the mean zero-crossing frequency of the breaking waves. The fraction
Qb of breakers is estimated by additionally assuming that the wave heights of all
unbroken waves, i.e., those with heights below the maximum wave height Hmax, are
Rayleigh distributed (i.e., the Rayleigh distribution is truncated at H = Hmax).13

13 Observations have shown that assuming a full Rayleigh distribution (not truncated) for all waves, in which the
waves above a critical value Hcr are breaking, may provide a better estimate of the fraction of breakers (see
Baldock et al., 1998): Qb =∫ ∞

Hcr
p(H )dH = exp[−(Hcr/Hrms)2]. The corresponding dissipation is Dsurf =
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The fraction Qb can then be estimated with

1 − Qb

ln Qb
= −

(
Hrms

Hmax

)2

(8.4.24)

where Hrms is the root-mean-square wave height Hrms = √
8m0, and m0 is the

zeroth-order moment of the wave spectrum. The maximum wave height Hmax under
such conditions (of depth-induced breaking)14 is generally expressed as a fraction
γ of the local water depth (including wave-induced set-up):

Hmax = γ (d + η) (8.4.25)

where the value of the breaking index γ may depend on the wave steepness and
bottom slope (see Note 8G).

NOTE 8G The breaker index

Battjes and Stive (1985) re-analysed wave data of a number of laboratory and field exper-
iments for various types of bottom topography and found values of the breaker index γ
between 0.6 and 0.83 with an average of 0.73. Later, Kaminsky and Kraus (1993) found,
from a compilation of data obtained in a large number of experiments, values in the range
0.6–1.59 with an average of 0.78. Obviously, γ is not a universal constant. Babanin
et al. (2001) show that less than 10% of the breakers can be predicted to break solely on
the basis of a constant wave-height-to-depth ratio. Its value seems to depend on bottom
slope and incident wave steepness and even on the wind. For instance, Battjes and
Stive (1985) suggest γ = 0.5 + 0.4 tanh(33s0), where s0 is the incident wave steepness
(s0 = Hrms/Lpeak,deep water, where Lpeak,deep water is the wave length at the peak of the
incident spectrum, i.e., in deep water). A dependence on such incident wave steepness
is inconvenient for a spectral wave model because these models are locally defined.
Alternative expressions, which include a dependence on bottom slope, have been pro-
posed by Bowen et al. (1968), Nelson (1987), Kaminsky and Kraus (1993) and Baldock
et al. (1998). Nelson (1997) argues convincingly that, over an extended region with a
horizontal bottom (bottom slope considerably less than 1 : 100), the value of γ will not
exceed 0.55.

Literature:
Battjes and Janssen (1978), Battjes and Stive (1985), Douglass and Weggel (1988), Galvin
(1972), Goda (1975, 2000), Goda and Morinobu (1998), Kaminsky and Kraus (1993), Nelson
(1987, 1994), Smith (2001), Raubenheimer et al. (1996).

1
4αBJ f 0 exp[−(Hcr/Hrms)2](H2

cr + H2
rms). Babanin et al. (2001) give explicit expressions for Qb , derived from

observations in the field, as a function of wave steepness, peak frequency, wind speed, normalised ambient
surface current and the ratio of the significant wave height over depth. However, this estimate is not (yet) used
in operational spectral wave models.

14 The original model of Battjes and Janssen (1978) includes also steepness-induced breaking, i.e., white-capping.
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Figure 8.18 The depth-induced-breaking (surf-breaking) source term, for a
JONSWAP spectrum in shallow water (computed with the spectral bore model
based on Battjes and Janssen, 1978; for Hs = 3.5 m and Tpeak = 7 s).

The above dissipation rate is the total, depth-induced dissipation rate of the
waves, i.e., integrated over all frequencies and directions in the spectrum. The
corresponding source term for the energy balance equation is the spectral distri-
bution of this dissipation. It has been estimated from observations in laboratory
flumes, which show that the shape of unimodal spectra of long-crested waves is
barely affected by this type of breaking. Such a shape-conserving character can be
achieved with a source term that is proportional to the energy density E( f, θ ) itself:

Ssurf ( f, θ ) = Dsurf E( f, θ )/m0 (8.4.26)

The shape of the source term is then trivial (it is identical to the shape of the
spectrum; see Fig. 8.18). However, it has been shown with observations in the
field and in the laboratory that Ssurf ( f, θ) is additionally proportional to f 2.
The effect of such an additional dependence is not noticeable in the evolution of the
spectrum because the triad wave–wave interactions tend to compensate for errors in
the precise frequency dependence (thus supporting the idea of the shape-stabilising
ability of the triad wave–wave interactions).
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Figure 8.19 The energy flow through the spectrum in (very) shallow water: from the
wind, through triad and quadruplet wave–wave interactions to (a) absorption at the
lower frequencies (shifting the peak frequency and generating infra-gravity waves)
and higher frequencies (possibly creating a secondary peak) and (b) dissipation by
white-capping and (c) surf-breaking at all frequencies and bottom friction at the
low and mid-range frequencies.

Literature:
Babanin et al. (2001), Baldock et al. (1998), Battjes (1972c), Battjes and Janssen (1978),
Battjes and Beji (1992), Beji and Battjes (1993), Bertotti and Cavaleri (1985), Booij
et al. (1999), Chen et al.. (1997), Collins (1970), Dally et al. (1984, 1985), Douglass
and Weggel (1988), Elgar et al. (1997), Herbers et al. (1999, 2003), Kirby and Kaihatu
(1996), Larson (1995), Le Méhauté (1962), LeMéhauté and Koh (1967), Longuet-Higgins
(1969), Mase and Iwagaki (1982), Peregrine (1999), Roelvink (1993), Southgate and Nairn
(1993), Svendsen (1984), Thornton and Guza (1983).

8.4.6 Energy flow in the spectrum

The source terms have been illustrated above for a JONSWAP spectrum, at one arbi-
trary moment in time. A summary of this is given in Fig. 8.19. As in deep water, the
transfer of wind energy to the waves occurs mostly near the peak of the spectrum and
at the mid-range frequencies. The corresponding energy gain at these frequencies
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is rapidly removed by wave–wave interactions (triad and quadruplet) to lower
and higher frequency and by white-capping. In addition (in very shallow water),
the energy at these intermediate frequencies is dissipated by bottom friction and
surf-breaking. At the higher frequencies, most of the energy that is received from the
mid-range frequencies is also dissipated, by white-capping and surf-breaking (high
frequencies are barely affected by bottom friction), but it is not quite clear what
happens additionally. Near the outer edge of the surf zone, the transfer of energy
from the spectral peak to its second harmonic by triad wave–wave interactions is
so strong that a secondary high-frequency peak is created, but, deeper inside the
surf zone, it disappears. At the lower frequencies (below the peak frequency) the
energy that is received from the mid-range frequencies is absorbed: just below
the peak frequency by the quadruplet wave–wave interactions (thus down-shifting
the peak frequency); and at still lower frequencies by the triad wave–wave interac-
tions (creating infra-gravity waves or surf beat).



9

The SWAN wave model

9.1 Key concepts

� SWAN is a freely available, open-source computer model that is based on the theories that are

presented in this book. It is widely used for wave research and consultancy practice by scientists

and engineers.
� Since the model accounts for wave–current interactions, the basic equation of SWAN is the spectral

action balance equation. It is formulated in Cartesian co-ordinates and optionally in spherical co-

ordinates to accommodate small- and large-scale computations.
� To accommodate variable-resolution grids or boundary-fitting grids (e.g., to accommodate the

results of numerical hydrodynamic flow models), curvilinear grids can be used as an alternative

to the standard rectilinear grid. Nested grids permit zooming-in of computations to ever smaller

regions.
� Computations with SWAN may vary from complex cases that require the full, time-dependent, two-

dimensional action balance equation in spherical co-ordinates to simple one-dimensional cases that

require only a stationary, one-dimensional energy balance equation in Cartesian co-ordinates.
� Bottom- and current-induced shoaling (energy bunching) and refraction are properly accounted

for, but diffraction only approximately.
� SWAN accommodates transmission through, and reflection against, obstacles such as breakwaters

and cliffs.
� Wave generation by wind is based on the feedback mechanism of Miles (Miles, 1957; Janssen 1991a).

Initial waves are imposed or generated in an ad-hoc manner.
� Dissipation of wave energy is based on

white-capping, with the pulse-model of Hasselmann (1974);

bottom dissipation, with

– the empirical JONSWAP model of Hasselmann et al. (1973), or

– the drag-law model of Collins (1972), or

– the eddy-viscosity model of Madsen et al. (1988); and

surf-breaking, with the bore model of Battjes and Janssen (1978).
� The quadruplet wave–wave interactions are computed with the DIA of Hasselmann et al. (1985a)

and the triad wave–wave interactions with the LTA of Eldeberky (1996).
� Wave–induced set-up is computed with exact computations in stationary, one-dimensional cases

and with approximate computations in non-stationary or two-dimensional cases.

9.2 Introduction

The SWAN model (Booij et al., 1999) is a freely available, open source computer
modelthat is based on the theories that are presented in this book. It is a third-
generation wave model (see Section 6.4.7 for this concept) that is used widely by
scientists and engineers for research and consultancy practice (see the preface).

286
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To support these professional users of SWAN and to demonstrate, for students, the
considerations that underlie the development of such a model, the basic formulations
and the numerical techniques that are used in SWAN are described here in some
detail. The website from which SWAN can be downloaded can be reached through
the portal website for this book at Cambridge University Press (see page vi of this
book).

One of the important considerations in designing a numerical wave model for
operational use is the computing time that is required for routine applications.
This computing time is greatly affected by the numerical schemes that are used,
particularly the schemes to propagate the waves through geographic space. These
schemes are usually explicit, finite-difference schemes, which are simple, robust
and economical for applications in oceanic waters. In coastal waters such schemes
are not so economical, because the time step �t in such schemes would be very
small. The reason for this is that it is subject to the Courant criterion, which states
that the wave energy may not travel more than one geographic cell in one time step.
This implies that

�t < �x/cg,x and �t < �y/cg,y (9.2.1)

where �x and �y are the sizes of the geographic cell in the x- and y-directions,
respectively (the discretisation steps in geographic space, also called the geographic
resolution), and cg is the group velocity of the lowest frequency of the waves in
the model. For oceanic waters, the value of �x ≈ �y is typically 25–100 km (it
is determined by the commonly used resolution for the wind fields that generate
the waves in the model). This gives a time step �t of between 20 and 80 min for a
lowest wave frequency of 0.04 Hz. This is operationally acceptable. However, for
applications in coastal waters, the value of �x ≈ �y is often as small as 100 m
and sometimes as small as 10 m (it is determined by the scale of the features in the
seabed topography or the coastline), whereas the lowest wave frequency is the same
as in oceanic waters. For such low frequencies, the value of �t would be 1.5–15 s
(in a water depth of 5 m, say). This is operationally unacceptable and another
numerical approach has to be chosen.1 The SWAN model is therefore based on
implicit propagation schemes, which are always numerically stable, independently
of the values of �t , �x and �y.2 This does not imply that these values can be
chosen arbitrarily. Although the computations will be stable for any value of �t ,

1 If the required resolution is larger than about 1 km, the third-generation open source wave models WAM (WAMDI
group, 1988; Komen et al., 1994) and WAVEWATCH (Tolman, 1991; Tolman and Chalikov, 1996) can be used.
They are both based on explicit propagation schemes but they do account for such shallow-water processes
as depth- and current-induced refraction, bottom friction and depth-induced breaking (e.g., Monbaliu et al.,
2000).

2 An alternative approach, which is based on a Lagrangian approach for propagating wave energy and an Eulerian
approach for computing the source terms, is used in the third-generation wave model TOMAWAC of Benoit
et al. (1996). Recently, another alternative, which is based on an unstructured finite-volume approach, has been
developed (Hsu et al., 2005 for a SWAN version and Sørensen et al., 2004).
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�x or �y, in order to obtain accurate results it is required that these values are
much smaller than the time and space scales of the phenomena to be computed. For
instance, the space scale of the surf zone is of the order of 100–1000 m, and so, the
value of �x or �y must be of the order of 10–100 m (in the surf zone).

The formulations in SWAN representing the processes of generation by wind,
quadruplet wave–wave interactions, white-capping and bottom friction are identical
to those of the WAM model (of which there are two versions: WAM Cycle III,
the WAMDI group, 1988; and WAM Cycle IV, Günther et al., 1992, and Komen
et al., 1994). They are supplemented in SWAN with the processes of depth-induced
breaking and triad wave–wave interactions.

9.3 Action balance

9.3.1 The action balance equation

Since SWAN accounts for wave–current interactions, it is based on the action bal-
ance equation rather than the energy balance equation and in terms of relative radian
frequency σ rather than absolute radian frequencyω. For small-scale computations,
the formulation in Cartesian co-ordinates (repeated from Eq. 8.4.4) is therefore

∂N (σ, θ ; x, y, t)

∂t
+ ∂cg,x N (σ, θ ; x, y, t)

∂x
+ ∂cg,y N (σ, θ ; x, y, t)

∂y

+ ∂cθ N (σ, θ ; x, y, t)

∂θ
+ ∂cσ N (σ, θ ; x, y, t)

∂σ
= S(σ, θ ; x, y, t)

σ
(9.3.1)

which reduces to the energy balance equation in the absence of an ambient current
(no frequency-shifting; repeated from Eq. 8.4.3, with f replaced by ω):

∂E(ω, θ ; x, y, t)

∂t
+ ∂cg,x E(ω, θ ; x, y, t)

∂x
+ ∂cg,y E(ω, θ ; x, y, t)

∂y

+ ∂cθ E(ω, θ ; x, y, t)

∂θ
= S(ω, θ ; x, y, t) (9.3.2)

where N (σ, θ ) is the action density spectrum and E(ω, θ ) is the energy density
spectrum. The first term on the left-hand side of each of these equations repre-
sents the local rate of change of action (or energy) density in time, the second
and third terms represent propagation of action (or energy) in geographic space
(with propagation velocities cg,x and cg,y in x- and y-space, respectively, thus
accounting for shoaling; see Sections 5.5.2 and 7.3.5). The fourth term represents
depth-induced and current-induced refraction (with propagation velocity cθ in θ-
space; diffraction is optionally included; see Sections 7.3.2 – 7.3.5). The fifth term
(Eq. 9.3.1 only) represents shifting of the relative frequency due to variations in
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depth and currents (with propagation velocity cσ in σ -space; see Section 7.3.5).
The term S(σ, θ ) or S(ω, θ) is the source term in terms of energy density (both in
the action balance equation and in the energy balance equation; the division by σ

makes S(σ, θ )/σ the source term for the action density). It represents the effects of
generation, nonlinear wave–wave interactions and dissipation.

For large-scale computations, including global scales, the spectral action bal-
ance equation in SWAN is optionally formulated in terms of spherical co-ordinates
(analogously to Eq. 6.4.11, for arbitrary depth and ambient currents):

∂ N (σ, θ ; λ, ϕ, t)

∂t
+ ∂cg,λN (σ, θ ; λ, ϕ, t)

∂λ

+ (cosϕ)−1 ∂cg,ϕ cosϕN (σ, θ ; λ, ϕ, t)

∂ϕ
+ ∂cθ N (σ, θ ; λ, ϕ, t)

∂θ

+ ∂cσ N (σ, θ ; λ, ϕ, t)

∂σ
= S(σ, θ ; λ, ϕ, t)

σ
(9.3.3)

with longitude λ and latitude ϕ (see Section 6.4.1).
In stationary situations, time is removed from the formulations (the first term on

the left-hand side of each of the above balance equations) and, in one-dimensional
situations,3 the variation in the y-direction is removed. For such situations, the
computations in SWAN are carried out with the much reduced one-dimensional
energy balance equation:

∂cg,x E(ω, θ ; x, y, t)

∂x
+ ∂cθ E(ω, θ ; x, y, t)

∂θ
= S(ω, θ ; x, y, t)

stationary, one-dimensional, no currents (9.3.4)

which saves considerably on computer requirements. Computations with SWAN
may therefore vary from large-scale, time-dependent computations with the full,
two-dimensional action balance equation in spherical co-ordinates (see Eq. 9.3.3)
to small-scale, stationary computations with the one-dimensional energy balance
equation in Cartesian co-ordinates (see Eq. 9.3.4).

9.3.2 Generation by wind

The wind speed that is used to drive SWAN (user input) is the wind speed at
10-m elevation U10, but, in the actual computations, it is converted into the friction

3 Here, a one-dimensional situation is by definition a situation without variations in the y-direction, in other words,
without variations along the coastline if the x-axis is taken normal to the coastline. This implies that the seabed
topography may vary in the direction normal to the coast but not along the coast (the coastline and the depth
contours must be parallel straight lines). It also implies that oblique incidence and short-crestedness of the
waves are allowed, as long as the incident mean wave direction and short-crestedness are constant along the
coast (they may vary normal to the coast).
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velocity u∗ with

u2
∗ = CDU 2

10 (9.3.5)

in which CD is the wind-drag coefficient (see Section 6.2). For the WAM Cycle III
formulations in SWAN, the value of CD is determined with an expression due to
Wu (1982):

CD =
{

1.2875 × 10−3 for U10 < 7.5 m/s

(0.8 + 0.065U10) × 10−3 for U10 ≥ 7.5 m/s
(9.3.6)

For the WAM Cycle IV formulations in SWAN, the computation of u∗ is an integral
part of computing the wave generation by wind (see below).

The wave generation by wind is described with the feedback mechanism of
Miles, supplemented with initial wave growth (see Section 6.4.3):

Sin(σ, θ ) = α + βE(σ, θ ) (9.3.7)

For the initial wave growth (the term α), the empirical expression of Cavaleri
and Malanotte-Rizzoli (1981) is used, with a cut-off to avoid growth at frequen-
cies lower than the Pierson–Moskowitz frequency (Tolman, 1992a; compare with
Eq. 6.4.13):

α =



1.5 × 10−3

g22π
[u∗ cos(θ − θwind)]4 G for |θ − θwind| ≤ 90◦

0 for |θ − θwind| > 90◦
(9.3.8)

where the cut-off function G is

G = exp
[−(σ/σ ∗

PM)−4
]

with σ ∗
PM = 2π

0.13g

28u∗
(9.3.9)

θwind is the wind direction and σ ∗
P M is the peak frequency of the Pierson and

Moskowitz (1964) spectrum, reformulated in terms of friction velocity. The effects
of currents are accounted for in SWAN by using the relative local wind speed and
direction (i.e., the wind-speed vector minus the current vector). The user can also
choose to impose initial wave conditions with a JONSWAP spectrum and a cos2θ

directional distribution centred on the local wind direction (the significant wave
height and peak frequency are obtained from the local wind and a fictitious fetch
equal to the numerical grid steps �x and �y averaged over the computational
domain used in the growth curve of Kahma and Calkoen, 1992, see Eqs 6.3.7).

For the WAM Cycle III formulations in SWAN, the coefficient β for exponential
wave growth is taken from Snyder et al. (1981) and Komen et al. (1984; compare
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with Eq. 6.4.15b):

β = max

{
0, 0.25

ρair

ρwater

[
28

u∗
c

cos[θ − θwind) − 1
]}

σ (9.3.10)

where c is the phase velocity and ρair and ρwater are the densities of air and water,
respectively. For the WAM Cycle IV formulations in SWAN, the value of the
coefficient β is taken from Komen et al. (1994; compare with Eq. 6.4.15a):

β = max

{
0, γ

ρair

ρwater

(u∗
c

)2
cos2(θ − θwind)

}
σ (9.3.11)

where γ is due to Janssen (1991a):

γ = 1.2

κ2
λ ln4λ (9.3.12)

where

λ = gze

c2
exp[κc/| u∗ cos(θ − θwind)|] for λ ≤ 1 (9.3.13a)

and

β = 0 for λ > 1 (9.3.13b)

and κ is the von Kármán constant, equal to 0.41, and ze is the effective surface
roughness (see next). The friction velocity u∗ is computed with (Janssen, 1991a;
see Mastenbroek et al, 1993)

U10 = u∗
κ

ln

(
10 + ze − z0

ze

)
(9.3.14)

in which z0 is the surface-roughness length and ze is the effective surface-roughness
length:

z0 = 0.001
u2

∗
g

and ze = z0√
1 − τwave/τ

(9.3.15)

where τ is the total surface stress (τ = ρairu2
∗; see Section 6.2) and τwave is the

wave-induced stress, which is given by

τwave = ρwater

∫ 2π

0

∫ ∞

0
σβE(σ, θ )dθ dσ (9.3.16)

For a given wind speed U10 and a given wave spectrum E(σ, θ ), the value of u∗ can
thus be determined. In SWAN, the iterative procedure of Mastenbroek et al. (1993)
is used.
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9.3.3 Nonlinear wave–wave interactions

Quadruplet wave–wave interactions

The computations of the quadruplet wave–wave interactions are carried out in
SWAN with the discrete-interaction approximation (DIA ) of Hasselmann et al.
(1985a; see Section 6.4.4).4 The computations of the triad wave–wave interactions
are carried out with the lumped-triad approximation (LTA ) of Eldeberky (1996;
see Section 8.4.4).

Two configurations of quadruplets of wave numbers are considered in the DIA,
each with the following frequencies:

σ1 = σ2 = σ

σ3 = σ (1 + λ) = σ+

σ4 = σ (1 − λ) = σ−
(9.3.17)

where λ= 0.25 is a constant (not related to λ in the previous paragraph). To satisfy
the resonance conditions for quadruplet wave–wave interactions in deep water, the
wave-number vectors with frequencies σ3 and σ4 lie at angles of θ1 = −11.5◦ and
θ2 = 33.6◦ to the other two wave-number vectors that are identical to each other
in frequency, wave number and direction. The second quadruplet is the mirror of
this first quadruplet in the sense that θ1 = 11.5◦, θ2 = −33.6◦ and λ = 0.25. The
corresponding source term in deep water for the quadruplet wave–wave interactions
Snl4(σ, θ ) is

Snl4(σ, θ ) = S∗
nl4(σ, θ ) + S∗∗

nl4(σ, θ ) (9.3.18)

where S∗
nl4(σ, θ ) refers to the first quadruplet configuration and S∗∗

nl4(σ, θ ) to the
second. The contribution of each of these quadruplets can be written as

S∗
nl4(σ, θ ) = 2δSnl4(α1σ, θ ) − δSnl4(α2σ, θ ) − δSnl4(α3σ, θ ) (9.3.19)

where each term is

δSnl4(αiσ, θ ) = Cnl4(2π )2g−4
( σ

2π

)11

×
{

E2(αiσ, θ )

[
E(αiσ

+, θ )

(1 + λ)4 + E(αiσ
−, θ )

(1 − λ)4

]

− 2
E(αiσ, θ )E(αiσ

+, θ )E(αiσ
−, θ)

(1 − λ2)4

}
for i = 1, 2, 3

(9.3.20)

4 The near-exact Xnl code of the WRT approach developed by van Vledder (2006; see Section 6.4.4) is optionally
available in SWAN from version 40.41 onwards for research purposes (for operational use it is too demanding
in terms of computer requirements).
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in which α1 = 1, α2 = (1 + λ), α3 = (1 − λ) and the constant Cnl4 = 3×107. The
expressions for S∗∗

nl4(σ, θ) are identical to those for S∗
nl4(σ, θ ) for the mirror direc-

tions.
Following Hasselmann and Hasselmann (1981), the source term for the quadru-

plet interactions in finite water depth is taken to be identical to that in deep water,
multiplied by a scaling factor R (see Fig. 8.12):5

Snl4, finite depth = R(kpeak,JONSWAPd)Snl4,infinite depth (9.3.21)

where R is given by

R(kpeak,JONSWAPd) = 1 + C1

kpeak,JONSWAPd
(1 − C2kpeak,JONSWAPd)

× exp(C3kpeak,JONSWAPd) (9.3.22)

in which kpeak,JONSWAP is the peak wave number of the JONSWAP spectrum for
which the original computations were carried out. In SWAN with arbitrarily shaped
spectra, the peak wave number kpeak,JONSWAP is replaced with 0.75 times the mean
wave number: kpeak,JONSWAP → kp = 0.75k̃ (Komen et al., 1994; where k̃ is the
mean wave number, see Eq. 9.3.28). The values of the coefficients are C1 = 5.5,
C2 = 6

7 and C3 = −1.25. To avoid unrealistically high values of R, a maximum
value of R = 4.43 is imposed (as in WAM Cycle IV).

Triad wave–wave interactions

The lumped-triad approximation (LTA) of Eldeberky (1996) is applied to all wave
components in each of the spectral wave directions separately, with the expressions
of Section 8.4.4 in terms of σ, and

Cnl3 = αEB2π J 2 (9.3.23)

in which αEB is a tunable coefficient (the default value in SWAN is αEB = 0.1)
and the biphase β is approximated with Eq. (8.4.8) using Ursell number (see Note

5C) N ∗∗∗
Ursell = gHm0 T

2
/(8

√
2π2d2), with T = m0/m1, where m0 and m1 are the

zeroth and first moments of the variance density spectrum E( f ) and δ = 0.2. The
triad wave–wave interactions are calculated only for N ∗∗∗

Ursell > 0.1. The interaction
coefficient J is taken from Madsen and Sørensen (1993):

J = k2
σ/2(gd + 2c2

σ/2)

kσd

(
gd + 2

15
gd3k2

σ − 2

5
σ 2d2

) (9.3.24)

5 The near-exact Xnl code, mentioned earlier, accommodates finite-depth water conditions properly, i.e., without
scaling.
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where the subscripts σ and σ/2 of wave number k and phase speed c refer to the
wave number and phase speed at frequencies σ/2 and σ , respectively.

9.3.4 Dissipation

Dissipation is represented in SWAN by white-capping Swc(σ, θ ), bottom friction
Sbfr(σ, θ ) and depth-induced breaking Ssurf (σ, θ ). In addition, partial absorption
(which implies partial reflection) by line structures (such as breakwaters, a group
of sub-grid islands, and coastlines) is also represented in SWAN by numerically
blocking energy propagating through such structures (obstacles).

White-capping

White-capping is represented by the pulse-based model of Hasselmann (1974; see
Section 6.4.5), as suggested by the WAMDI group (1988):

Swc(σ, θ ) = −µk E(σ, θ ) (9.3.25)

where

µ = Cwc

(
(1 − n) + n

k

k̃

)(
s̃

s̃PM

)p
σ̃

k̃
(9.3.26)

where the overall wave steepness s̃ (Janssen, 1991a; Günther et al., 1992)6 is defined
as s̃ = k̃

√
m0 and s̃PM is the value of s̃ for the Pierson–Moskowitz spectrum (1964;

s̃PM = √
3.02 × 10−3). The coefficients Cwc, n and p are tunable coefficients. The

mean frequency and mean wave number, σ̃ and k̃, respectively, are defined (WAMDI
group, 1988) as

σ̃ =
[

m−1
0

∫ 2π

0

∫ ∞

0
σ−1 E(σ, θ )dθdσ

]−1

(9.3.27)

k̃ =
[

m−1
0

∫ 2π

0

∫ ∞

0
k−1/2 E(σ, θ )dθdσ

]−2

(9.3.28)

For the WAM Cycle III formulations in SWAN, n = 0 and, for the WAM Cycle
IV formulations, n = 0.5. The values of the coefficient Cwc and exponent p were
obtained by Komen et al. (1984) by closing the energy balance of the waves in
idealised deep-water wave-growth conditions. The result for the WAM Cycle III
formulations is (Komen et al., 1984) Cwc = 2.36 × 10−5 and p = 4, whereas for
the WAM Cycle IV formulations it is (Günther et al., 1992) Cwc = 4.10 × 10−5

(assuming p = 4). These tuning results depend critically on the high-frequency

6 One remarkable effect of using such an overall steepness is that adding some swell to wind sea reduces the
overall wave steepness and thus also the white-capping of the wind sea. This enhances the net growth of the
wind sea in the presence of swell which does not seem to be very realistic (e.g., Booij et al., 2001).
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cut-off that was used for the spectra (Young and Banner, 1992; Banner and Young,
1994) and, since this cut-off is different in SWAN from that in WAM (see Section
9.5.1), differences in the overall wave growth rates between the WAM and SWAN
models are to be expected.

Bottom friction

Bottom friction is the dominant bottom dissipation mechanism for continental shelf
seas with sandy bottoms and the corresponding source term may generally be
represented (see Section 8.4.5) as

Sbfr(σ, θ ) = −Cbfr

g

[
σ

sinh(kd)

]2

E(σ, θ )urms,bottom (9.3.29)

in which Cbfr is a bottom-friction coefficient and urms,bottom is the root-mean-square
orbital bottom velocity. Considering the large variations in bottom conditions in
coastal areas (bottom material, bottom roughness length, ripple height, etc.), there
is no field data evidence indicating that one should give preference to a particu-
lar model with which to estimate Cbfr (see Luo and Monbaliu, 1994). Movable-
bed effects are ignored in SWAN and three bottom-friction models have been
implemented: the drag-law model of Collins (1972), the eddy-viscosity model of
Madsen et al. (1988) and the empirical JONSWAP model of Hasselmann et al.
(1973).

The JONSWAP model is simply Cbfr = CJONSWAP = 0.038/urms,bottom for swell
conditions (Hasselmann et al., 1973) and Cbfr = CJONSWAP = 0.067/urms,bottom for
wind-sea conditions (Bouws and Komen, 1983). The coefficient in the drag model
of Collins (1972) is Cbfr = CCollins = 0.015. The model of Madsen et al. (1988)
gives

Cbfr = CMadsen = fw√
2

(9.3.30)

where fw is a non-dimensional friction factor estimated with the formulation of
Jonsson (1966, 1980; cf. Madsen et al., 1988):

fw = 0.30 for ab/kN < 1.57

(hydraulic rough bottom) (9.3.31)

1

4
√

fw
+ log10

(
1

4
√

fw

)
= m f + log10

(
ab

kN

)

for ab/kN ≥ 1.57

(hydraulic smooth bottom) (9.3.32)



296 The SWAN wave model

where m f = −0.08 (Jonsson and Carlsen, 1976) and ab is a representative near-
bottom excursion amplitude:

a2
b = 2

∫ ∞

0

∫ 2π

0

1

[sinh(kd)]2 E(σ, θ )dθ dσ (9.3.33)

and kN is the bottom-roughness length scale, which of course depends on the actual
bottom condition.

Depth-induced (surf-)breaking

The total dissipation (i.e., integrated over the spectrum) due to depth-induced wave-
breaking (surf-breaking ) can be modelled well with the dissipation of a bore, applied
to the breaking waves in a random field in shallow water (Battjes and Janssen, 1978;
see Section 8.4.5). The mean zero-crossing frequency in that model, f 0, is replaced
in SWAN with f = m1/m0 (where m0 and m1 are the zeroth and first moments of
the variance density spectrum E( f )), and the maximum possible wave height in
the local water depth Hmax is determined from Hmax = γ D, where D is the total
water depth, including the wave-induced set-up, and γ is the breaker parameter (a
tunable coefficient, with a default value of 0.73 in SWAN).

Reflection, transmission and absorption

To accommodate situations with line structures such as breakwaters (i.e., dimen-
sions in one direction smaller than the geographic resolution in the model), SWAN
can reflect wave energy off and transmit wave energy through or over such struc-
tures. The difference between the incident energy on the one hand and the sum
of reflected and transmitted energy on the other, is absorbed by the structure (or
coast). This option can also be used to simulate the absorbing effect of (a group
of) sub-grid islands. Reflection is modelled as specular reflection (angle of inci-
dence equals angle of reflection) and it is assumed that the wave frequencies remain
unchanged during transmission (only the energy scale of the spectrum is affected,
not the spectral shape).

9.4 Wave-induced set-up

The gradients in the wave-induced radiation stresses, which generally cause cur-
rents and set-up, are standard output of SWAN and can be used for further com-
putations with a separate hydrodynamic model (see Appendix E). The result of
such computations can be returned to SWAN as input for the wave computa-
tions to achieve the feedback between waves on the one hand and set-up and
currents on the other. For stationary cases, this may be iterated; for non-stationary
cases, the computational results can be exchanged between the models at regular
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intervals. As an alternative to computations with a separate hydrodynamic model,
the wave-induced set-up can also be estimated with SWAN. The corresponding
SWAN computations are exact for stationary, one-dimensional cases (‘exact’ in the
sense that conventional equations and numerical techniques are used) and approxi-
mate for non-stationary or two-dimensional cases (see below). SWAN cannot com-
pute wave-induced currents.

In one-dimensional situations,7 the computation of the wave-induced set-up in
SWAN is based on the vertically integrated momentum balance equation, which
represents a balance between the wave-induced force (the radiation stress gradient
normal to the coast) and the vertically integrated hydrodynamic pressure gradient,
as given by (repeated from Eq. 7.4.20; the x-axis is taken normal to the coastline)

dη

dx
= − 1

ρg(d + η)

dS̃xx

dx
(9.4.1)

The radiation stress is defined for random, short-crested waves as (see Eqs. 7.4.15,
but now integrated over the spectrum)

S̃xx =
∫ ∞

0

∫ 2π

0

(
n − 1

2
+ n cos2θ

)
E(σ, θ )dθ dσ (9.4.2)

This approach is exact in the context of the linear wave theory for stationary condi-
tions. The same equation is used for non-stationary, one-dimensional conditions,
making such computations a quasi-stationary approximation.

For stationary, two-dimensional situations, Dingemans et al. (1987) have shown
that the wave-induced set-up is mainly due to the rotation-free part of the
wave-induced forces,8 i.e., given by the divergence ∂Fx/∂x + ∂Fy/∂y, whereas
the wave-induced currents are mainly driven by the divergence-free part, i.e., by
the rotation ∂Fx/∂y − ∂Fy/∂x , where

Fx = −∂ S̃xx

∂x
− ∂ S̃xy

∂y
in the x-direction

(9.4.3)
Fy = −∂ S̃yy

∂y
− ∂ S̃yx

∂x
in the y-direction

7 Here, a one-dimensional situation is by definition a situation without variations along a straight coastline. This
implies that the seabed topography may vary in the direction normal to the coast but not along the coast (the
coastline and the depth contours must be parallel straight lines). It also implies that oblique incidence and
short-crestedness of the waves are allowed, as long as the incident mean wave direction and short-crestedness
are constant along the coast (they may vary normal to the coast).

8 Dingemans et al. (1987) also show (on the basis of Longuet-Higgins, 1973) that, under certain conditions, a
numerically more robust estimate of the radiation stress gradient can be obtained from the dissipation source
term in the energy balance equation of the waves.
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with the radiation stresses for random, short-crested waves defined as (see Eqs.
7.4.15, but now averaged over the spectrum)

S̃xx =
∫ ∞

0

∫ 2π

0

(
n − 1

2
+ n cos2θ

)
E(σ, θ )dθ dσ

S̃yy =
∫ ∞

0

∫ 2π

0

(
n − 1

2
+ n sin2θ

)
E(σ, θ )dθ dσ

S̃xy =
∫ ∞

0

∫ 2π

0
(n cos θ sin θ)E(σ, θ )dθ dσ

S̃xy =
∫ ∞

0

∫ 2π

0
(n sin θ cos θ) E(σ, θ )dθ dσ

(9.4.4)

Computations that are based only on the divergence of the vertically integrated
momentum balance equations (the shallow-water equations) would therefore give a
reasonable estimate of the set-up. If, correspondingly, this divergence is balanced by
the hydrostatic forces, then the following Poisson equation applies (if the divergence
of the acceleration terms is ignored; see Appendix E):

∂Fx

∂x
+ ∂Fy

∂y
+ ∂

∂x

[
ρg(d + η)

∂η

∂x

]
+ ∂

∂y

[
ρg(d + η)

∂η

∂y

]
= 0 (9.4.5)

which is used in SWAN to compute the wave-induced set-up for random, short-
crested waves (it reduces to Eq. 9.4.1 in one-dimensional situations). Note that this
is only an approximation, even for stationary conditions.

9.5 Numerical techniques

9.5.1 Introduction

For small-scale computations (i.e., sufficiently small that Cartesian co-ordinates can
be used), the geographic space is discretised in SWAN with a rectangular grid, with
constant resolutions �x and �y in the x- and y-directions, respectively (�x may
differ from �y). For large-scale computations, the resolution is constant in terms
of longitude and latitude, with resolutions �λ and �ϕ, respectively (�λ may differ
from�φ). Time is discretised with a constant time step�t for the simultaneous inte-
gration of the propagation terms and the source terms (for stationary computations,
time is removed from the equations). The spectral space is discretised with a constant
directional resolution�θ and a constant relative resolution for the radian frequency
�σ/σ (which gives a logarithmic frequency distribution). When a coastal region
is considered, with waves propagating only towards the coast, then (for reasons of
economy) the option of computing only wave components travelling in a pre-defined
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(user-provided) directional sector (θmin < θ < θmax ) is available. The frequencies
are defined between a fixed (user-provided) low-frequency cut-off fmin and a fixed
(user-provided) high-frequency cut-off fmax (this range fmin < f < fmax is called
the prognostic range of the spectrum; typically fmin = 0.04 Hz and fmax = 1 Hz for
conditions at sea). In this range, the spectral density is free to develop (i.e., without
a-priori-imposed restraints). Outside this range, the spectrum is imposed: below
the low-frequency cut-off, the spectrum is set to zero; above the high-frequency
cut-off, an f −m-tail is imposed (this range of frequencies f < fmin and f > fmax

is called the diagnostic range of the spectrum; it is used to compute nonlinear wave–
wave interactions at the high frequencies and to compute integral wave parameters).
SWAN uses m = 4 if the WAM Cycle III wind-generation formulation of Komen
et al. (1984) is used, and m = 5 if the WAM Cycle IV wind-generation formulation
of Janssen (1991a) is used. The reason for using a fixed high-frequency cut-off
rather than a dynamic cut-off frequency that depends on the wind speed or on the
mean frequency, as in the WAM model, is that, in coastal regions, mixed sea states
with rather different characteristic frequencies may occur. For instance, a local wind
may generate a very young wind sea behind an island, which is totally unrelated to,
but superimposed on, a simultaneously occurring swell. In such cases, a dynamic
cut-off frequency may be too low to account properly for the locally generated sea
state.

9.5.2 Propagation

Wave energy (or wave action) always propagates down-wave (by definition), even
in the presence of an ambient current, so that the state at a geographic grid point
in SWAN is determined by the state at the up-wave geographic grid points. This
is also the case in spectral space. The most robust numerical propagation scheme
would therefore be an implicit up-wind scheme.9 The adjective ‘implicit’ is used
here to indicate that, in such a scheme, all derivatives of the action density (in
time t and horizontal co-ordinates x and y) are formulated10 at one and the same
computational level, it or ix or iy , except the derivative in the integration dimension
in which also the previous or up-wave level is used: it − 1 or ix − 1 or iy − 1 (see
Fig. 9.1). Implicit schemes are always unconditionally stable and the values of the
discrete steps �x , �y and �t in space and time can be chosen independently,
allowing relatively large time steps (larger than the Courant criterion of Eq. 9.2.1
would allow) in the computations. However, for reasons of computational accuracy,

9 Up-wind is the common term in numerical analysis, but ‘up-wave’ would be more appropriate in the case of
wave models.

10 I will use Cartesian co-ordinates in treating the numerical techniques of SWAN, but these techniques apply
also when spherical co-ordinates are used.
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Figure 9.1 The definition of the adjective ‘implicit’ in time (upper panel) and in
horizontal space (lower panels), using all (up-wave) derivatives at the same level,
except in the integration direction.

they must be much smaller than the space and time scales of the phenomena to be
computed (see Section 9.2). For small-scale computations (coastal regions, smaller
than 25 km, say), an implicit first-order up-wind difference scheme in geographic
space seems to be accurate enough (on the basis of several years of experience
with the second-generation HISWA shallow-water wave model; Holthuijsen et al.,
1989). For large-scale computations, higher-order implicit schemes are needed (to
reduce diffusion effects). In directional space, the same experience with HISWA
shows that a first-order scheme is not suitable and a higher-than-first-order scheme
is required.

The use of geographic up-wind schemes calls for the direction space to be decom-
posed into four quadrants at each grid point of the geographic space (see Fig. 9.2).
In each of these quadrants, the computations can be carried out independently of
the other quadrants, except for energy or action that is moving across the directional
boundaries between the quadrants (where θ = n × 90◦, with n = 0, 1, 2 and 3) due
to refraction or diffraction (turning of wave direction) and nonlinear wave–wave
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Figure 9.2 The waves propagate in all directions, divided into four quadrants. The
local x- and y-co-ordinates for grid point xi , yi are indicated by x ′ and y′.

interactions (transfer of energy or action between wave components from different
directions). Such exchange between quadrants is formulated in terms of corre-
sponding conditions at the boundary directions between the quadrants. To account
properly for these boundary conditions, the computations are carried out iteratively
(also for each time step in the case of non-stationary computations).

Three alternative up-wind schemes for propagation in geographic space can be
used in SWAN, each in a rotating sequence of four forward-marching sweeps (one
sweep per quadrant) using the following schemes:

(A) for stationary and non-stationary cases, the first-order BSBT scheme (backward space,
backward time) with considerable diffusion (diffusion is first order in �x and �y);

(B) for non-stationary cases, the second-order S&L scheme (Stelling and Leendertse, 1992),
with very little diffusion (diffusion is third order in �t , �x and �y); and

(C) for stationary cases, the second-order SORDUP scheme (Rogers et al., 2002), with
little diffusion (diffusion is second order in �x and �y).

Near open boundaries (e.g., the open ocean), coastlines and obstacles (e.g., break-
waters), the computations revert to the BSBT scheme (for the SORDUP scheme
in the last two grids adjoining the corresponding boundary, coast or obstacle grid
points and for the S&L scheme, the last three grids adjoining such grid points).
This scheme has a larger numerical diffusion but that is usually acceptable over the
small distances involved.

Numerical schemes

For non-stationary conditions, the integration in time is carried out with a simple
backward finite-difference scheme. The corresponding discretisation of the action
balance equation for the BSBT scheme (for positive propagation speeds; including
the propagation in spectral space and the computation of the source terms but
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ignoring their discretisation) is

[
N it − N it −1

�t

]n

ix ,iy ,iσ ,iθ

+
[

(cg,x N )ix − (cg,x N )ix −1

�x

]it ,n

iy ,iσ ,iθ

+
[

(cg,y N )iy − (cg,y N )iy−1

�y

]it ,n

ix ,iσ ,iθ

+
[

(1 − ν)(cσ N )iσ+1 + 2ν(cσ N )iσ − (1 + ν)(cσ N )iσ−1

2�σ

]it ,n

ix ,iy ,iθ

+
[

(1 − η)(cθ N )iθ+1 + 2η(cθ N )iθ − (1 + η)(cθ N )iθ−1

2�θ

]it ,n

ix ,iy ,iσ

=
[

S

σ

]it ,n∗

ix ,iy ,iσ ,iθ

(9.5.1)

where it is the time-level index, ix , iy , iσ and iθ are grid counters and �t , �x ,
�y, �σ and �θ are the increments in time, geographic space and spectral space,
respectively. The iterative nature of the computation is indicated with the iteration
index n (the iteration index for the source terms n∗ is equal to n or n − 1, depending
on the source term, see below). Because of the iterations, the scheme is approxi-
mately implicit for the source terms. For negative propagation speeds, appropriate +
and − signs are required in Eq. (9.5.1). The coefficients ν and η in this equation
determine the degree to which the scheme in spectral space is up-wind or central
(the signs of these coefficients depend on the signs of the corresponding propaga-
tion speeds). These coefficients thus control the numerical diffusion in frequency
space and direction space, respectively. A value of ν = 0 or η = 0 corresponds
to central schemes, which have the largest accuracy (numerical diffusion ≈ 0).
Values of |ν| = 1 or |η| = 1 correspond to up-wind schemes, which are somewhat
more diffusive and therefore less accurate but more robust. If large gradients of the
action density in frequency space or direction space are present (i.e., discontinuities
in the two-dimensional spectrum), numerical oscillations can arise (especially with
the central-difference schemes), resulting in negative values of the action density.
In each sweep, such negative values are removed from the two-dimensional spec-
trum by setting these values equal to zero and by re-scaling the remaining positive
values such that the frequency-integrated action density per spectral direction is
conserved.

The depth derivatives and current derivatives required to compute cσ and cθ (see
Eqs. 7.3.32 and 7.3.33) are calculated with a first-order up-wind scheme.

Diffraction is implemented in SWAN (from version 40.41 onwards) by adding
a diffraction parameter δE to the expressions for the group velocity components,
cg,x and cg,y and to the turning rate cθ in the above propagation schemes. This
parameter is equal to δa of Eq. (7.3.26) with the amplitude a replaced with the
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square root of the energy density
√

E(σ ) (see Section 8.4.2). This option should
not be used in front of reflecting obstacles where standing waves can appear (for
instance, in harbours; phase information is then required, but is not available; see
Section 7.3.3). In each of the iterations of the propagation scheme, the second-
order derivative ∇(ccg ∇√

E(σ ) in the expression for δE is obtained with a simple,
second-order central scheme based on the results of the previous iteration. For the
x-dimension, the estimation is

{
∂

∂x

(
CCg

∂
√

E

∂x

)}n

≈ 1

2�x2

{[
(CCg)i + (CCg)i−1

]√
Ei−1

−
[

(CCg)i−1 + 2(CCg)i + (CCg)i+1

]√
Ei

+
[

(CCg)i + (CCg)i+1

]√
Ei+1

}n−1

(9.5.2)

where E = E(σ ), i is a grid counter in the x-dimension and n is the iteration number.
For the y-dimension, the expression is identical, with y replacing x . The estimation
of δE is thus based on the values of the energy density E obtained from the preceding
iteration of the geographic propagation (the value of δE is cut off at the low side
at −1 to avoid having imaginary propagation speeds; there is no upper bound).
The problem of the singularity at the tips of breakwaters (see Holthuijsen et al.,
2003, and Section 8.4.2) has been solved by using an optional frequency-dependent
under-relaxation in the iterative procedure of the computations (see Zijlema and
van der Westhuysen, 2005).

For more accurate computations under non-stationary conditions, the two terms
that represent propagation in geographic space in Eq. (9.5.1) are replaced with
the Stelling and Leendertse (S&L) scheme with the following discretisation in
geographic space:

[
5
6 (cg,x N )ix − 5

4 (cg,x N )ix −1 + 1
2 (cg,x N )ix −2 − 1

2 (cg,x N )ix −3

�x

]it ,n

iy ,iσ ,iθ

+
[

5
6 (cg,y N )iy − 5

4 (cg,y N )iy−1 + 1
2 (cg,y N )iy−2 − 1

2 (cg,y N )iy−3

�y

]it ,n

ix ,iσ ,iθ

+
[

1
4 (cg,x N )ix +1 − 1

4 (cg,x N )ix −1

�x

]it ,n−1

iy ,iσ ,iθ

+
[

1
4 (cg,y N )iy+1 − 1

4 (cg,y N )iy−1

�y

]it ,n−1

ix ,iσ ,iθ

(9.5.3)
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The numerical diffusion of the S&L scheme is so small that the so-called garden-
sprinkler effect (GSE) is noticeable in wave propagation over large distances (see
the footnote in Section 6.4.2). It can be counteracted by using the following diffusion
terms in the action balance equation (see Booij and Holthuijsen, 1987):

Dxx
∂2 N (σ, θ )

∂x2
+ Dyy

∂2 N (σ, θ )

∂y2
+ Dxy

∂2 N (σ, θ )

∂x∂y
(9.5.4)

The values of the diffusion coefficients Dxx , Dyy and Dxy depend on the spectral
resolution and the propagation time of the waves. In the propagation direction and
normal to that direction, the diffusion coefficients are, respectively,

Dss = �c2W/12
(9.5.5)

Dnn = c2�θ2W/12

where W is the wave age (the time elapsed since the generation of the wave energy
for the frequency and direction considered, not to be confused with the ratio of
phase speed over wind speed c/U10, which is also called wave age). In terms of the
x- and y-directions, the coefficients are

Dxx = Dss cos2θ + Dnn sin2θ

Dyy = Dss sin2θ + Dnn cos2θ

Dxy = (Dss − Dnn) cos θ sin θ (9.5.6)

The numerical scheme used to compute these diffusion terms at the time level
it−1 is a simple, central, first-order, finite-difference scheme. This (explicit) finite-
differencing is fast (having little impact on computation time) but it is only con-
ditionally stable. With a mathematical analysis (not given here) it can be shown
that a likely stability condition for the one-dimensional S&L scheme with this GSE
correction is D�t/(�r2) ≤ 0.5 (where D is the maximum of Dxx , Dyy and Dxy

and �r is the minimum of �x and �y). It can also be shown that the S&L scheme
with this GSE correction is stable for typical ocean cases. For shelf-sea and also for
small-scale computations the GSE tends to be small and this form of GSE correction
should not be used, in order to retain unconditional numerical stability.

For stationary conditions, SWAN can be run in stationary mode with the BSBT
scheme (see Eq. 9.5.1). Time is then removed as a variable but the integration (in
geographic space) is still carried out iteratively. The propagation scheme is still
implicit (see Fig. 9.1) and the values of �x and �y can therefore still be chosen
independently of each other. For more accurate computations under stationary
conditions, the SORDUP scheme with the following discretisation in geographic
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space is used, instead of the BSBT scheme:[
1.5(cg,x N )ix − 2(cg,x N )ix −1 + 0.5(cg,x N )ix −2

�x

]it ,n

iy ,iσ ,iθ

+
[

1.5(cg,y N )iy − 2(cg,y N )iy−1 + 0.5(cg,y N )iy−2

�y

]it ,n

ix ,iσ ,iθ

(9.5.7)

which replaces the two corresponding terms in Eq. (9.5.1).

Solvers, grids and boundaries

To explain the above numerical solution techniques in terms of matrix solutions,
first ignore the decomposition into quadrants. The propagation of the waves in
both geographic and spectral space would then be described with one large basic
matrix. Removing refraction, frequency-shifting and nonlinear source terms from
this basic matrix permits a matrix solution with a Gauss–Seidel technique (e.g.,
Golub and van Loan, 1986) in which the matrix is decomposed into four sections
(the above four quadrants), which are each solved in one step (super-convergence).
Restoring refraction and frequency-shifting to the matrix requires the solution of
a sub-matrix for each geographic grid point. If no currents are present and the
depth is stationary, this is readily done with a Thomas algorithm (e.g., Abbott and
Basco, 1989; Ferziger and Perić, 2002), because cσ = 0 and the sub-matrix is a
simple tri-diagonal matrix. If currents are present or the depth is not stationary, the
sub-matrix is a band matrix. It is solved with an iterative ILU-CGSTAB method
(see Vuik, 1993; van der Vorst, 1992) or the strongly implicit procedure (SIP; see
Ferziger and Perić, 2002; from SWAN version 40.20 onwards). Restoring refraction
and frequency-shifting also introduces coefficients in each quadrant that cause a
mutual dependence of matrix sections. The same happens when nonlinear source
terms are added. The basic matrix as a whole needs therefore to be solved iteratively
until some break-off criteria are met (see Zijlema and van der Westhuysen, 2005).
To reduce the number of iterations in stationary mode with wind generation, SWAN
starts with a reasonable first guess of the wave field (which is based on the second-
generation source terms of Holthuijsen and De Boer, 1988, adapted for shallow
water). It reduces the number of iterations typically by a factor of two. In non-
stationary mode, a very reasonable first guess is available for each time step from
the previous time step and the required number of iterations is usually small (one
or two). If in this mode no iterations are used, the computations of propagation are
still implicit and therefore still unconditionally stable.

The above descriptions are based on a rectangular grid in all five dimensions
(x , y, t , σ and θ ). Actually, the propagation scheme in SWAN for geographic
space is formulated on a curvilinear grid (irregular, quadrangular, not necessarily
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orthogonal; such a grid may be used as a boundary-fitting grid to accommodate
the water levels and currents computed with a hydrodynamic model). The above
regular grid is only a special case of this curvilinear grid. The finite differences
for the curvilinear grid are based on approximating the geographic distribution of
the energy (action) density in the area enclosed by three neighbouring grid points
with a flat triangle. The gradient at each grid point at location xi , y j is then readily
approximated from the up-wind grid points. For the x-direction this is for grid point
i, j (the grid points are ordered in x, y-space with labels i and j , respectively):

∂cx N

∂x
≈ (cg,x N )i, j − (cg,x N )i−1, j

�x̃1
+ (cg,x N )i, j − (cg,x N )i, j−1

�x̃2
(9.5.8)

where �x̃1 = �x1 − (�y1/�y2)�x2 and �x̃2 = �x2 − (�y2/�y1)�x1. The
increments are �x1 = xi, j − xi−1, j , �x2 = xi, j − xi, j−1, �y1 = yi, j − yi−1, j and
�y2 = yi, j − yi, j−1. The gradient in the y-direction is similarly estimated. This
curvilinear option operates both in Cartesian and in spherical co-ordinates. In addi-
tion to these options of the propagation schemes, SWAN permits zooming-in of the
computations to ever smaller areas with geographically nested computational grids.

The boundary conditions in geographic space are fully absorbing for wave energy
that is leaving the computational domain (to open sea) or crossing a coastline
(unless that coastline has been defined as a reflecting obstacle). The wave energy
entering the computational domain along open geographic boundaries needs to be
prescribed by the user. For coastal regions such incoming energy is usually provided
along the deep-water boundary (which is usually taken more or less parallel to
the coastline). Along the lateral boundaries (which are usually taken more or less
perpendicular to the coastline), the spectral densities are usually set equal to zero by
the user. Such erroneous lateral boundary conditions are practically unavoidable but
they propagate into the computational area, affecting the computational results in
triangular areas with the apex of each triangle at the corners between the deep-water
boundary and the lateral boundaries. The angle of the apex is 30o–45o (for wind-sea
conditions) on either side of the deep-water mean wave direction (the angle is less
for swell conditions; it is essentially equal to the one-sided width of the directional
distribution of the incoming wave spectrum). For this reason the lateral boundaries
should be sufficiently far away from the area where the computational results need
to be reliable.

9.5.3 Generation, wave–wave interactions and dissipation

The numerical estimations of the source terms in SWAN are essentially implicit, i.e.,
based on the wave conditions at the time level at which the wave conditions are being
computed. This is achieved with implicit or iterative explicit schemes to compute
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the source terms, which, in the limit of a large number of iterations, always result in
implicit estimates. In actual computations, final convergence is never achieved and
the schemes used to compute the source terms are therefore, strictly speaking, only
approximately implicit. In the following the adjectives ‘explicit’ and ‘implicit’ refer
to the approximations of the source terms within each iteration of the propagation
scheme (i.e., at one location, at one moment in time).

The linear term α in the source term that represents initial wave generation by
wind (see Eq. 9.3.8) is independent of the spectrum, so it can be readily computed
from other information than the spectrum, such as the wind speed and direction. All
other source terms depend on energy density and can be written as (quasi-)linear
terms: S = φE , in which φ is a coefficient that generally depends on (integral)
wave parameters (e.g., m0, σ̃ , k̃, σ , k etc.) and action densities of other spectral
components. In SWAN, the coefficient φ is always determined at the previous
iteration level: φ = φn−1. Whether the scheme for computing the source term is
explicit (with the energy density for S = φE taken from the previous iteration)
or implicit (with the energy density estimated from the previous and the present
iteration) depends on whether the source term is positive or negative.

Positive source terms

For positive source terms (wave generation by wind and the triad and quadruplet
wave–wave interactions when they are positive), the integration is generally more
stable if an explicit scheme is used (i.e., the source term depends on the energy
density in the previous iteration En−1 rather than on the energy density in the
present iteration En) rather than an implicit scheme (in which the source term
would depend also on En). The explicit scheme for these source terms is therefore

Sn ≈ φn−1 En−1 = Sn−1 for all source terms when they are positive (9.5.9)

In SWAN versions prior to version 40.41, this explicit scheme is also used for the
formulation of the quadruplet wave–wave interactions when they are negative. This
is considered reasonable since Tolman (1992a) has shown that using an explicit
scheme in combination with a limiter (see below) gives results similar to those
obtained with the following more expensive implicit scheme (such an implicit
formulation is optionally available in SWAN).

Negative source terms

For negative source terms (white-capping, bottom friction, surf-breaking and the
triad and quadruplet wave–wave interactions when they are negative, but see above)
the integration is generally more stable if an implicit scheme is used. Two versions
are used, depending on whether the source term is strongly nonlinear or weakly
nonlinear. If a negative source term is strongly nonlinear (surf-breaking only), it is
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estimated at iteration level n with a linear extrapolation from the previous iteration
(n − 1):

Sn ≈ Sn−1 +
(
∂S

∂E

)n−1

(En − En−1) for surf-breaking (9.5.10)

However, to achieve even more stable computations, the term Sn−1 = φn−1 En−1 in
this formulation is replaced with Sn−1 = φn−1 En (making the scheme somewhat
more implicit and thus more robust; note that in the limit the solution is the same).
Since this process of surf-breaking has been formulated such that S = aStot and
E = aEtot, the derivative ∂S/∂E is analytically determined as ∂Stot/∂Etot (where
a is identical in these two expressions, Etot and Stot are the integrated spectrum and
source term, respectively; see Eq. 8.4.26).

If the negative source term is weakly nonlinear (white-capping, bottom fric-
tion and negative triad and quadruplet wave–wave interactions), a similar accu-
racy of estimating Sn can be achieved by replacing (∂S/∂E)n−1 in Eq. (9.5.10)
with (S/E)n−1. This gives the following simpler and therefore more economical
scheme:

Sn ≈ φn−1 En−1 +
(

S

E

)n−1

(En − En−1) all source terms when they are
negative (except surf-breaking)

(9.5.11)

With S = φE , this reduces to

Sn ≈ φn−1 En for all source terms when they are
negative (except surf-breaking)

(9.5.12)

These estimates of the source terms are added to the elements of the matrix for the
propagation.

Numerical stability

Although the computation schemes for propagation in SWAN are inherently sta-
ble, the integration of the source terms is not. This may lead to numerical insta-
bilities, which are suppressed or avoided either with a limiter (default) or with
under-relaxation (optional). The limiter suppresses the development of numerical
instabilities by limiting the maximum total change of action density per iteration
of the propagation scheme at each discrete wave component to a fraction (0.1) of
the Phillips (1957) equilibrium level, reformulated in terms of wave number (see
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Section 8.3.2) in order to be applicable in water of arbitrary depth:

|�N (σ, θ )|max = 0.1
(

1
2αk−3

)
J/σ (9.5.13)

where 1
2αk−3 is the Phillips equilibrium level, formulated in wave number k-

space (see Section 8.3.2), J = ∂k/∂σ = c−1
g is the Jacobian used to transform

from k-space to σ -space and α = αPM = 0.0081 is the Phillips ‘constant’ of the
Pierson–Moskowitz (1964) spectrum (this does not impose a shape of the spec-
tral tail; it merely dampens the change from one iteration to the next). In versions
prior to version 40.31 of SWAN, this limiter is not applied in the surf zone (in
SWAN: Hrms/Hmax < 0.2 with Hrms = √

8Etot, which implies a fraction of break-
ers Qb > 10−5). From version 40.31 of SWAN onwards, the limiter is always used,
irrespective of whether the waves break or not (giving a slightly slower, but more
robust convergence). When the optional under-relaxation is sufficiently strong (the
relaxation coefficient and effect are to be determined by the user with trial compu-
tations), no limiter is needed (see Zijlema and van der Westhuysen, 2005).

9.5.4 Wave-induced set-up

For geographically one-dimensional situations, the wave-induced set-up is com-
puted in SWAN with the momentum balance equation in which the gradient of the
radiation stress balances the gradient of the hydrostatic pressure (see Eq. 7.4.20).
The integration in the x-direction in this one-dimensional situation is carried out
with a simple trapezoidal rule. In geographically two-dimensional cases, the Pois-
son equation of the divergence-free force field (see Eq. 9.4.5) is used. It is solved
with the same technique as that which is used for wave propagation with ambient
currents (Vuik, 1993; van der Vorst, 1992, prior to version 40.41 of SWAN; or
Ferziger and Perić, 2002, from that version onwards). The boundary conditions
for this elliptic partial differential equation are (1) at the deepest boundary point
the set-up is set at zero; (2) at open boundaries, equilibrium between the radia-
tion stress gradient and the hydrodynamic pressure gradient normal to the model
boundary; and (3) at the coastline, equilibrium between the radiation stress gradient
and the hydrodynamic pressure gradient normal to the coastline. The coastline in
SWAN moves as dictated by the wave-induced set-up (i.e., drying and flooding are
accounted for).
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Random variables

1 One random variable

1a Characterisation

The surface elevation in the presence of waves, at any one location and at any one moment
in time, will be treated as a random variable (a variable the exact value of which cannot be
predicted). For instance, consider a laboratory flume with water in which a wind generates
waves (Fig. A.1). Somewhere in the flume, at location A, a wave gauge measures the surface
elevation as a function of time. At some moment in time t1 (after the wind has started from
zero), the surface elevation at that location has a value 1η(t1). The superscript 1 indicates
the experiment number (more experiments will follow).

If the experiment were repeated, this value (at the same location and same moment in
time after the wind has started to blow) would be 2η(t1). If the experiment were repeated
again, the surface elevation would be 3η(t1), and so on and so forth. This value of the surface
elevation at time t1 obviously cannot be predicted and is therefore a random variable. It
will be denoted as η(t1) (underscored to show that it is a random variable). Of course, the
surface elevations at other times t2, t3, . . . etc. are equally unpredictable and therefore also
random variables η(t2), η(t3), . . . This is just an example with the surface elevation as the
random variable. In the following, an unspecified random variable will be denoted as x .

A random variable x is fully characterised by its probability density function p(x), which
is defined such that the probability of x attaining a value between x and x + dx is given by
(see Fig. A.2)

Pr{x < x ≤ x + dx} =
∫ x+dx

x
p(x)dx (A.1)

It follows that the probability of x being less than or equal to x (the probability of
non-exceedance; see Fig. A.3) is

Pr{x ≤ x} =
∫ x

−∞
p(x)dx = P(x) (A.2)

P(x) is called the (cumulative) distribution function of x .
The above probability density function can be obtained as the derivative of this distribution

function: p(x) = dP(x)/dx . Obviously, the value of a random variable is always less than
infinity, so the probability that the value of x is less than ∞ is 1. This implies that the
maximum value of the distribution function P(x) is 1 and that the surface area of a probability
density function p(x) is always 1:

Pr{x ≤ ∞} = P(∞) =
∫ ∞

−∞
p(x)dx = 1 (A.3)

Note that statisticians express probabilities in terms of fractions, rather than in terms of
percentages, as you would do when talking to a friend. The inverse of the distribution

310
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Figure A.1 One value of the surface elevation 1η(t1) at one location, one moment
in time, in one experiment, in a wind-wave flume.

Figure A.2 The probability density function p(x) of a random variable x .

Figure A.3 The (cumulative) distribution function P(x) of a random variable x
(the probability of non-exceedance).
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function, i.e., the function that gives the value of the random variable x for a given probability
of non-exceedance, is written as x(P) = P−1(x) and is called the quantile function.

The average or mean value of x can be defined in terms of the probability density function
p(x) as the first-order moment,1 divided by the zeroth-order moment of p(x), and it is called
the ‘expected value’ or ‘expectation’ of x , denoted as E{x}:

expected value of x = E{x} = µx = m 1/m0 =
∫ +∞

−∞
xp(x)dx

/∫ +∞

−∞
p(x)dx (A.4)

Since
∫ +∞
−∞ p(x)dx = 1, it follows that

E{x} = µx =
∫ +∞

−∞
xp(x)dx (A.5)

This average may be interpreted as the location of the probability density function on
the x-axis. The probability density function may be further characterised by increasingly
higher-order moments. The second-, third- and fourth-order moments are thus used to define
the width, skewness and kurtosis of the function respectively. For instance,

σ 2
x = E{(x − µx )2} =

∫ +∞

−∞
(x − µx )2 p(x)dx = E{x2} − µ2

x = m2 − m2
1 (A.6)

σ 2
x is called the variance and σx the standard deviation of x , which represents the width of

the probability density function. Alternative measures of the mean, width, skewness and
kurtosis can be based on the moments of the quantile function βr = ∫ 1

0 Pr x(P)dP (the
probability-weighted moments). These measures βr are called L-moments.

Averages of functions of x can also be defined as expected values. For instance, the above
variance σ 2

x of x can be seen as the average of the function f (x) = (x − µx )2. In general,
the expected value of a function f (x) is defined as

E{ f (x)} =
∫ +∞

−∞
f (x)p(x)dx (A.7)

1b Gaussian probability density function

Many processes in Nature behave in such a way that the well-known Gaussian probability
density function applies:

p(x) = 1√
2πσx

exp

[
− (x − µx )2

2σ 2
x

]
(A.8)

A theoretical explanation of this almost universal applicability is provided by the central
limit theorem, which, simply formulated, says that the sum of a large number of independent
random variables (not necessarily Gaussian distributed, and without one being dominant)
is Gaussian distributed. Since many natural phenomena result from a large number of
causes, it is reasonable to find the Gaussian probability density function to apply so often.
The Gaussian probability density function is also called the normal probability density
function. It is by no means the only one that applies to natural phenomena. Many others
may also apply, e.g., the Rayleigh, exponential and Weibull probability density functions, to

1 The nth-order moment of a function h(x) is by definition mn = ∫ ∞
−∞ xnh(x)dx . The function h(x) may be any

function, not necessarily a probability density function.



Appendix A 313

name only a few. Note that the definition of the standard deviation σx is independent of the
specific probability density function and therefore independent of the Gaussian probability
density function.

1c Estimation

An average of a random variable x is often not determined from the probability density
function p(x), but estimated from a set of sample values of x (called realisations, e.g.,
observations in an experiment). Such a set of sample values is called an ensemble, and the
average is called an ensemble average, denoted as 〈.〉. For instance,

mean = µx ≈ 〈x〉 = 1

N

N∑
i=1

xi (A.9)

variance = σ 2
x ≈ 〈(x − 〈x〉)2〉

= 1

N

N∑
i=1

(xi − 〈x〉)2 = 1

N

N∑
i=1

〈xi 〉2 − 〈x〉2 (A.10)

where N is the number of samples. Note that these are only estimates, which will always
differ from the expected values. These differences are called (statistical) sampling errors.

2 Two random variables

2a Characterisation

A pair of random variables (x, y) is fully characterised by its joint probability density
function: p(x, y). This two-dimensional function is defined, in analogy with the above, such
that the probability of x attaining a value between x and x + dx and of y (simultaneously)
attaining a value between y and y + dy is given by

Pr{x < x ≤ x + dx and y < y ≤ y + dy} =
∫ x+dx

x

∫ y+dy

y
p(x, y)dy dx (A.11)

The two random variables may be unrelated to one another. They are then called independent.
Alternatively, they may well be related. One variable is then said to be dependent on the
other. When they are linearly related they are said to be correlated (they cluster around a
straight line, when one is plotted against the other). Note that two random variables can be
related but uncorrelated (see Fig. A.4). Unrelated variables are obviously uncorrelated.

The degree of correlation (the degree to which the pairs of (x, y) cluster around a straight
line) is quantified with the correlation coefficient γx,y, which is defined as the normalised
covariance Cx,y of the two variables:

γx,y = Cx,y/(σxσy) with −1 ≤ γx,y ≤ 1 (A.12)

where the covariance is the average product of x and y, each taken relative to its mean:

Cx,y = E{(x − µx )(y − µy)} (A.13)
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Figure A.4 (In)dependent, (un)related and (un)correlated random variables.

2b Two-dimensional Gaussian probability density function

The two-dimensional Gaussian probability density function for two random variables x and
y is

p(x, y) = 1

2πσxσy
(
1 − γ 2

x,y

)1/2

× exp

{
− 1

1 − γ 2
x,y

[
(x − µx )2

2σ 2
x

− γx,y
(x − µx )(y − µy)

σxσy
+ (y − µy)2

2σ 2
y

]}

(A.14)

3 Stochastic processes

3a Characterisation

Random variables may not only be dependent, related or correlated. They may also be
ordered in some sense, i.e., the variables exist in some kind of sequence. This is a useful
notion when (many) more than two variables are considered. For instance, bottles pro-
duced by a machine appear one by one from that machine. Their exact length (which
is a random variable) is therefore ordered in their sequence of appearance. In this exam-
ple, the ordering is one-dimensional, but that need not always be the case. For instance, the
length of a student (a random variable!) in a lecture room is ordered by the (two-dimensional,
horizontal) position of the students in the room. The weight of leaves on a tree is ordered
in three-dimensional space. Such an ordered set of random variables is called a stochastic
process.

A stochastic process in one-dimension can readily be visualised with the wind-generated
waves in the flume of Section 1a of this appendix. The measurement starts at t = 0 when the
wind starts to blow over still water and the subsequent (very large) set of surface elevations
η observed at location A is a function of time. The values are unpredictable and this set is
therefore an example of an ordering of very many random variables in time. (Note that, in
a time sequence x(ti ), the random variable x at time t1 is another random variable than x
at time t2, which is another random variable than x at time t3, etc.). One such experiment
is one realisation of the stochastic process η(t1), η(t2), η(t3), . . ., η(ti ), . . . . Obviously,
when the surface elevation at some moment in time is large, then, a fraction of a second
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Figure A.5 A set of four realisations of the surface elevation as a function of time, at
location A, in the laboratory flume of Fig. A.1 (statistically identical experiments,
but with the same wind speed etc.). The waves grow as time increases until some
sort of equilibrium (in a statistical sense) is reached (i.e., stationarity).

later, the surface elevation will also be large: the surface elevations at short time intervals
are related and even correlated. Only after some lapse of time will the relation between the
two surface elevations η(ti ) and η(t j ) be lost, i.e., when the time interval t j − t i is large
(compared with a characteristic wave period). The experiment can be repeated at will: the
wind machine is turned off and, after the water surface has returned to its still level, the
wind machine is turned on again (at t = 0), which starts the next experiment. Obviously,
there are as many realisations of the stochastic process η(t1), η(t2), η(t3), . . ., η(ti ), . . . as
there are experiments (see Fig. A.5).

Like any random variable, η(ti ) is fully characterised by its probability density function.
This implies that, to characterise the surface elevation statistically at that moment in time,
this probability density function is required at each moment in time ti . To characterise the
surface elevations as a process, we need additionally, at that moment in time ti , all joint
probability density functions, i.e., the joint probability p(η(ti ), η(t j )) for all t j . There is an
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infinite number of moments in time ti , each requiring an infinite number of such functions,
since there are infinitely many moments t j !

3b Stationary processes

If, after some time, the surface elevation at location A in the flume is constant in some
statistical sense (see Fig. A.5), then all statistical characteristics of the waves are independent
of time and the process is said to be stationary (but the statistical characteristics may
still depend on time intervals t j − ti ). The stationarity of a process greatly simplifies the
description, since only the statistical characteristics for one moment in time are required
(including the relationships with the random variables at all time intervals). The analogous
condition for variables that are ordered in space is called homogeneity. If only the averages
and the variances of the variables are constant in time or space, the process is called weakly
stationary or weakly homogeneous.

3c Gaussian processes

If all ( joint) probability density functions of a process (stationary or not) are Gaus-
sian, the process is called a Gaussian process. A Gaussian process is relatively sim-
ple to describe, since only the averages of each pair of variables and their covariance
are required. Writing the variables of one such pair (see Eq. A.13) as x = x (t1) = x (t)
and y = x(t2) = x(t + τ ), we may write the covariance as Cx,x = E{[x(t) − µx (t)] ×
[x(t + τ ) − µx (t + τ )]} = C(t, τ ). The covariance may therefore also be seen as a function
of time t and time interval τ : the covariance function. Since the two variables are from the
same process, C(t, τ ) is also called the auto-covariance function.

3d Stationary, Gaussian processes

A stationary, Gaussian process is even simpler to describe: only the mean and the covariances
for one moment in time are required (because they are identical at all other times). The auto-
covariance is then (only) a function of the time interval τ and, if the average of the variable
is taken to be zero (as usual for the surface elevation of waves), it can be written as

C(τ ) = E{x(t) x(t + τ )} if µx (t) = µy(t) = 0 (A.15)

Note that the auto-covariance for τ = 0 is the variance of this process: E{x2(t)} = C(0).

3e Ergodic processes

If averaging over time (or space) gives the same results as averaging over an ensemble of
realisations, the process is said to be ergodic. The mean and variance of a zero-mean ergodic
process can then be estimated as

µx ≈ 〈x(ti )〉 = 1

D

∫
D

x(t)dt (the mean) (A.16)

σ 2
x ≈ 〈[x(ti )]

2〉 = 1

D

∫
D

[x(t)]2dt (the variance) if µx = 0 (A.17)

and the auto-covariance as

C(τ ) ≈ 〈x(t)x(t + τ )〉 = 1

D

∫
D

[x(t)x(t + τ )]dt if µx = 0 (A.18)
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where the brackets 〈.〉 denote ensemble averaging and D is the length of the time interval
(duration) over which the time average is taken. More generally, for the average of a function
f [x(ti )]

〈 f [x(ti )]〉 = 1

D

∫
D

f [x(t)]dt for an ergodic process (A.19)

It follows that such a process is stationary.2 The surface elevation of random, wind-generated
waves under stationary conditions happens to be ergodic (in the linear approximation of
these waves), so all averages needed to describe waves can be estimated as time-averages.
This is fortunate because we would not be able to obtain an ensemble in Nature it would
require Nature repeating, over and over again, identical conditions, in a statistical sense, at
sea.

4 The sea-surface elevation

The surface elevation of wind-generated waves as a function of time is often treated as a
Gaussian process. Measurements have shown this to be very reasonable (see Section 4.3),
but there are also theoretical grounds: the surface elevation at any one moment in time ti
can be seen as the sum of the elevations at that time of a large number of harmonic wave
components that have been generated independently of each other (by a turbulent wind,
possibly at very different locations) and that have travelled independently of each other
across the sea surface (in the linear approximation of waves). The central limit theorem
(see Section 1b of this appendix) shows that therefore the sea-surface elevation should
be Gaussian distributed – but not always. Steep waves, or high waves in shallow water, do
interact and are therefore not independent. Deviations from the Gaussian model do therefore
occur at sea, particularly in the surf zone.

2 The reverse is not true: not all stationary stochastic processes are ergodic, for instance, switching on an electric
circuit that produces an unpredictable but constant current (which may well be Gaussian distributed, i.e., the
constant value is drawn from a Gaussian distribution every time the circuit is activated) gives a stationary,
stochastic process (after all, the values are unpredictable and the statistical characteristics are constant in time).
However, it is not an ergodic process because the time-average in each realisation is different from the time-
average in another realisation, and is therefore (in general) not equal to the ensemble average.
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Linear wave theory

1 Introduction

Here we continue with the linear theory of surface gravity waves at the point where in
Chapter 5 the basic equations are linearised (Section 5.3), to see what terms are actually
removed by the linearisation. The end results, in terms of the linearised equations and
linearised boundary conditions, are identical to those in Chapter 5.

2 Conservation equations (1)

The basic equations, in their nonlinear form, are the continuity equation and the momentum
balance equations (for constant density; see Section 5.3.2):

∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0 continuity (B.1)

∂ux

∂t
+ ∂(ux ux )

∂x
+ ∂(uyux )

∂y
+ ∂(uzux )

∂z
= − 1

ρ

∂p

∂x
momentum in the x-direction

(B.2)

∂uy

∂t
+ ∂(ux uy)

∂x
+ ∂(uyuy)

∂y
+ ∂(uzuy)

∂z
= − 1

ρ

∂p

∂y
momentum in the y-direction

(B.3)

∂uz

∂t
+ ∂(ux uz)

∂x
+ ∂(uyuz)

∂y
+ ∂(uzuz)

∂z
= − 1

ρ

∂p

∂z
− g momentum in the z-direction

(B.4)

If we apply the chain rule of differentiation to the momentum equation for the x-direction
(Eq. B.2) and subsequently subtract from the result the equation of continuity (Eq. B.1),
multiplied by ux :

∂ux

∂t
+ ux

∂ux

∂x
+ ux

∂ux

∂x
+ ux

∂uy

∂y
+ uy

∂ux

∂y
+ ux

∂uz

∂z
+ uz

∂ux

∂z
= − 1

ρ

∂p

∂x
(B.5)

minus

ux
∂ux

∂x
+ ux

∂uy

∂y
+ ux

∂uz

∂z
= 0 (B.6)
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Figure B.1 A particle in the water surface remains in the surface, when it moves
from a position A at time t1 to a position B at time t2 if the velocity component of
the particle normal to the surface uz cosα − ux sinα (left-hand panel) is equal to
the velocity of the surface in that direction (∂η/∂t) cosα (right-hand panel).

then the result is the equation of motion for the x-direction:

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z
= − 1

ρ

∂p

∂x
(B.7)

Performing the same operation on the momentum balance equations for the y- and z-
directions gives the other two equations of motion. These three equations of motion are also
called the Euler equations. If we had included viscosity (internal friction in the water)
by adding the terms ν(∂2ux/∂x2 + ∂2ux/∂y2 + ∂2ux/∂z2), ν(∂2uy/∂x2 + ∂2uy/∂y2+
∂2uy/∂z2) and ν(∂2uz/∂x2 + ∂2uz/∂y2 + ∂2uz/∂z2) to the right-hand side of each of these
equations, respectively, where ν represents the viscosity of water (called the kinematic vis-
cosity coefficient and closely related to the molecular viscosity coefficient µ = ρν), the
equations would be called the Navier–Stokes equations.

3 Boundary conditions (1)

The kinematic surface boundary condition relates the velocity of a particle in the sur-
face to the motion of the surface. If we consider, for the sake of simplicity, a (verti-
cally) two-dimensional situation, then it is readily seen from the geometry of the situation
(Fig. B.1) that, if a particle is to remain in the surface, then the velocity component of that
particle, in the direction normal to the surface uz cosα − ux sinα, should be equal to the
velocity of the surface in that direction (∂η/∂t) cosα (the particle may move in the surface):

uz cosα − ux sinα = ∂η

∂t
cosα at z = η (B.8)

where η is the surface elevation above some reference level and α is the slope of the surface.
This can be re-written as

uz = ∂η

∂t
+ ux tanα = ∂η

∂t
+ ux

∂η

∂x
at z = η (B.9)
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Figure B.2 Rotation ! is twice the average rotation speed of the two main axes of
an infinitesimally small rectangle (in two dimensions).

For a three-dimensional situation, this kinematic boundary condition at the surface can
be written similarly as

uz = ∂η

∂t
+ ux

∂η

∂x
+ uy

∂η

∂y
at z = η (B.10)

The kinematic bottom boundary condition is simply that the water may not penetrate the
fixed, horizontal bottom, so that

uz = 0 at z = −d (B.11)

The dynamic surface boundary condition (pressure is zero) is simply

p = 0 at z = η (B.12)

4 Rotation or vorticity

Consider an infinitesimally small rectangle in the vertical plane with dimension �x,�z
(representing a small volume of water; Fig. B.2). Along the right-hand side of the
rectangle, the vertical velocity (i.e., the velocity in the z-direction; near point B in
Fig. B.2) will generally differ from the vertical velocity along the left-hand side (near
point A) by (∂uz/∂x)�x . This difference makes the horizontal main axis AB rotate at a
rotation speed of +∂uz/∂x (counter-clockwise for positive ∂uz/∂x). The horizontal veloc-
ity (i.e., the velocity in the x-direction) along the upper side of the rectangle (near point
D) will likewise differ from the horizontal velocity along the lower side (near point C)
by (∂ux/∂z)�z. This difference will make the vertical main axis CD rotate at a rotation
speed of −∂ux/∂z (i.e., clockwise for positive ∂ux/∂z). The average rotation speed of
the rectangle is then 1

2 (∂uz/∂x − ∂ux/∂z). Vorticity, i.e., the property of having rotating
water particles, is expressed in terms of this concept of rotation. In the two-dimensional
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situation considered here, rotation is defined as twice the rotation speed of the rectangle
(a small volume of water, or a water particle):

! = ∂uz

∂x
− ∂ux

∂z
(B.13)

The motion is called irrotational (or vorticity-free ) if

! = 0 (B.14)

For a three-dimensional situation, rotation is expressed in terms of a vector �! =(
!x , !y, !z

)
with

!x = ∂uz

∂y
− ∂uy

∂z
, !y = ∂ux

∂z
− ∂uz

∂x
and !z = ∂uy

∂x
− ∂ux

∂y
(B.15)

The motion in three dimensions is called irrotational (or vorticity-free ) if

!x = 0, !y = 0 and !z = 0 or �! = �0 in vector notation (B.16)

5 The velocity potential function

The velocity potential function φ is defined as a function in x, y, z and t having the property
that its spatial derivatives are the particle velocities in x, y, z-space (this is possible only
for irrotational motions):

φ = φ(x, y, z, t) defined such that ux = ∂φ

∂x
, uy = ∂φ

∂y
and uz = ∂φ

∂z

or, in vector notation,

�u = ∇φ (B.17)

6 Conservation equations (2)

We can express the continuity equation in terms of the velocity potential by substituting the
expressions for ux , uy and uz of Eqs. (B.17) into Eq. (B.1):

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= 0 or, in vector notation, ∇2φ = 0 (B.18)

We can also express the equations of motion in terms of the velocity potential function. To
that end, we first invoke the condition that the water motion is irrotational, so that

!x = ∂uz

∂y
− ∂uy

∂z
= 0 → ∂uy

∂z
= ∂uz

∂y
(B.19)

!y = ∂ux

∂z
− ∂uz

∂x
= 0 → ∂ux

∂z
= ∂uz

∂x
(B.20)

!z = ∂uy

∂x
− ∂ux

∂y
= 0 → ∂ux

∂y
= ∂uy

∂x
(B.21)
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The equation of motion in the x-direction (Eq. B.7) may then be written as

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂uy

∂x
+ uz

∂uz

∂x
= − 1

ρ

∂p

∂x
(B.22)

or, moving ux , uy and uz behind the differentiations,

∂ux

∂t
+ ∂

∂x

(
1

2
u2

x + 1

2
u2

y + 1

2
u2

z

)
= − 1

ρ

∂p

∂x
(B.23)

This equation of motion can be expressed in terms of the velocity potential merely by
substituting into it the expressions for ux , uy and uz of Eq. (B.17), with the following
result:

∂

∂t

(
∂φ

∂x

)
+ ∂

∂x

{
1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]}

= − 1

ρ

∂p

∂x
(B.24)

Changing the order of differentiation in the first term and moving the term on the right-hand
side to the left-hand side allows us to write this equation as

∂

∂x

{
∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]

+ p

ρ

}
= 0 (B.25)

The corresponding equations for the momentum in the y- and z-directions may similarly
be written as

∂

∂y

{
∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]

+ p

ρ

}
= 0 (B.26)

∂

∂z

{
∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]

+ p

ρ
+ gz

}
= 0 (B.27)

Note that the equation for the z-direction contains the term gz and the other two equations
do not. The reason is obvious: gravitation works only in the z-direction. We can add the
term gz to the other two equations without altering the meaning of these equations because
this term would disappear when the derivative in the x- or y-direction is taken:

∂

∂x

{
∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]

+ p

ρ
+ gz

}
= 0 (B.28)

∂

∂y

{
∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]

+ p

ρ
+ gz

}
= 0 (B.29)

∂

∂z

{
∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]

+ p

ρ
+ gz

}
= 0 (B.30)

The sum of terms between the curly brackets appears in all three equations, in each case
expressing the fact that this sum of terms is not a function of x , y or z. This sum can
therefore be only an (arbitrary) function of time t, f (t), for which we take the simplest
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possible: f (t) = 0. We therefore find, from the equations of motion,

∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]

+ p

ρ
+ gz = 0

or, in vector notation,
∂φ

∂t
+ 1

2
|∇φ|2 + p

ρ
+ gz = 0 (B.31)

This is the Bernoulli equation for unsteady motion. Removing the quadratic terms makes
this equation the linearised Bernoulli equation for unsteady motion (see also Eq. 5.3.28):

∂φ

∂t
+ p

ρ
+ gz = 0 (B.32)

7 Boundary conditions (2)

The kinematic boundary condition at the surface (see Eq. B.10), in terms of the velocity
potential function (obtained by merely substituting the expressions for ux , uy and uz of Eq.
B.17), is

∂φ

∂z
= ∂η

∂t
+ ∂φ

∂x

∂η

∂x
+ ∂φ

∂y

∂η

∂y
at z = η (B.33)

Removing the nonlinear terms (the last two terms on the right-hand side) makes this bound-
ary condition linear (see also Eq. 5.3.23):

∂φ

∂z
= ∂η

∂t
at z = 0 (B.34)

The dynamic boundary condition at the surface, expressed in terms of the velocity potential,
is obtained by taking the Bernoulli equation (Eq. B.31) at the surface z = η, with p = 0,
so that

∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]

+ gη = 0 at z = η

or, in vector notation,
∂φ

∂t
+ 1

2
|∇φ|2 + gη = 0 (B.35)

Removing the quadratic terms makes this equation linear (see Eq. 5.3.29):

∂φ

∂t
+ gη = 0 at z = 0 (B.36)

The kinematic boundary condition at the bottom, in terms of the velocity potential function,
is (see also Eq. 5.3.24)

∂φ

∂z
= 0 at z = −d (B.37)

The above linearised equations and boundary conditions are the equations and boundary
conditions that are used in the linear theory of surface gravity waves (see Chapter 5).
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Spectral analysis

1 Introduction

Measurements of the sea-surface elevation are almost always obtained with an electri-
cal current in some instrument. This analogue signal can be transformed into an esti-
mate of the variance density spectrum of the waves, using analogue systems, such as
electronic circuits or optical equipment. However, with today’s small and fast comput-
ers the analogue signal can also be transformed into a digital signal for a subsequent
numerical analysis. The latter option has been accepted widely and it will be treated here.

The numerical analysis depends on the type of measurement. The most common and
simplest measurement in this respect is a record of the sea-surface elevation at one location
as a function of time (i.e., a one-dimensional record). Records like these are produced by
instruments such as a heave buoy, a wave pole or a low-altitude altimeter. These can be
analysed with a one-dimensional Fourier transform.1 Other types of measurements generate
multivariate signals (i.e., several, simultaneously obtained, time records), e.g., the two
slope signals of a pitch-and-roll buoy. Such signals require a cross-spectral analysis (e.g.,
Tucker and Pitt, 2001), or some other, advanced method (e.g., Hashimoto, 1997; Young,
1994; Pawka, 1983; Lygre and Krogstad, 1986 and many others). Two-dimensional images,
e.g., from a surface-contouring radar, require a two-dimensional Fourier transform (e.g.,
Singleton, 1969) and moving images (e.g., those produced by a ship’s radar) require a three-
dimensional Fourier transform. Here, we consider only the simplest possible measurement:
the sea-surface elevation at one location as a function of time.

The estimation of the wave spectrum from such a measurement can be based on two
numerical approaches. In the first approach the auto-covariance function of the surface
elevation is computed and then Fourier-transformed (see Section 3.5.5). This method was
commonly used in the 1950s and 1960s. The second approach is to Fourier-transform
directly the wave record itself. This is the preferred technique today. It is usually carried
out with the numerical Fast Fourier Transform (FFT), which was introduced about 1970
(it is far more efficient, i.e., faster than the ‘old’ technique based on the auto-covariance
function). This approach will be treated here without mathematical proofs and ignoring all
mathematical details. Excellent references for the spectral analysis of random signals are

1 An alternative type of analysis that is slowly gaining popularity as a supplement to the Fourier analysis is
the wavelet analysis (e.g., Farge, 1992; Foufoula-Georgiou and Kumar, 1994; Mallat, 1998). It is essentially
a variation on the Fourier analysis that is considered here. The main difference is that the wavelet analysis
provides a time-varying spectral estimate, on a time scale that depends on the phenomenon to be described.
It is therefore particularly suited for identifying events or transient phenomena against a random background
(e.g., breaking waves or freak waves in a wave record; Liu, 1994; Liu and Mori, 2000; Liu and Babanin, 2004).
Similar information can also be obtained with conventional Fourier analysis by dividing the time record into
short, overlapping segments of equal duration, and Fourier-analysing these segments in sequence. The wavelet
analysis is more subtle: the duration of the (overlapping) segments is equal to a fixed number of wave periods
(typically only a few) of the harmonic component that is being analysed. This implies that, at each moment at
which the wavelet spectrum is computed, a segment of different duration is used for each wave period separately.
In addition, each of these segments is multiplied by a standard function that has the same shape for all wave
periods. This function is called the mother wavelet, after which this technique is named.
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Blackman and Tukey (1958), Jenkins and Watts (1968), Bendat and Piersol (1971), Goda
(2000) and Tucker and Pitt (2001).

2 Basic analysis

The spectrum has been defined in the main text in terms of amplitudes of harmonic com-
ponents (see Section 3.5.3):

E( f ) = lim
� f → 0

1

� f
E
{

1
2 a2

}
(C.1)

where a is the amplitude of the harmonic component and �f is an arbitrarily chosen fre-
quency band. The spectral analysis of a wave record is essentially the elaboration of this
definition. It involves estimating the amplitude a, determining the expectation E{ 1

2 a2},
dividing this expectation by the frequency interval � f and then taking the limit � f → 0.
However, as always in real life, estimations replace these exact definitions.

The estimation of the amplitude per frequency requires the sea-surface elevation to be
written as a Fourier series with unknown amplitudes and phases:2

η(t) =
N∑

i=1

ai cos(2π fi t + αi ) with fi = i

D
so that �f = 1

D
(C.2)

where η(t) is the record of the surface elevation. This is a non-random version of the
random-phase/amplitude model that underlies the definition of the spectrum (for a given
wave record, the phases and amplitudes are not random because they can be computed from
the record). Using trigonometric identities, Eq. (C.2) may also be written as3

η(t) =
N∑

i=1

[Ai cos(2π fi t) + Bi sin(2π fi t)] (C.3)

with amplitude ai and phase αi :

ai =
√

A2
i + B2

i (C.4)

and

tanαi = − Bi

Ai
(C.5)

The amplitudes Ai and Bi can be determined from the record with Fourier integrals (see
Note C1):

Ai = 2

D

∫
D
η(t)cos(2π fi t) dt for fi = i/D (C.6)

Bi = 2

D

∫
D
η(t)sin(2π fi t) dt for fi = i/D (C.7)

2 Usually a Fourier series starts with i = 0 to include the mean value of the time series, but that has been taken to
be zero here.

3 The harmonic x(t) = a cos(ωt + α) may be written (standard trigonometry) as x(t) = a[cos(ωt) cosα −
sin(ωt) sinα], so that, if we write x(t) = A cos(ωt) + B sin(ωt), then A = a cosα and B = −a sinα. From
this we find a2 = A2 + B2 and tanα = −B/A.
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This operation on the wave record to obtain the amplitudes is called the Fourier transform
(Ai and Bi are called the Fourier coefficients). By applying this operation to all frequen-
cies (i.e., all i), all values of Ai and Bi can be computed, and subsequently all values
of amplitude ai and phase αi . Now, the next steps would be to estimate the expectation
E{ 1

2 a2}, divide this by the frequency interval � f and then take the limit of � f → 0. How-
ever, apart from the division by � f = 1/D, this is not possible because of some practical
problems.

NOTE C1 The Fourier transform (1)

The two Fourier integrals of Eqs. (C.6) and (C.7) that determine the values of the amplitudes Ai

and Bi from a wave record η(t) can be interpreted as filters, which filter, from the wave record,
the one component with frequency fi = i/D (this implies that the duration D is a multiple of the
wave period Ti because D = i/ fi = iTi ). The user who performs the Fourier transform chooses
i = 1, 2, 3, . . . in sequence, to filter all components fi . In this manner, all amplitudes (Ai and Bi )
are obtained and therefore all amplitudes ai and phases αi . This filtering is readily demonstrated
by replacing the time series η(t) with its representation as a Fourier series in the integral of
Eq. (C.6). It is shown here for the integral for Ai only; essentially the same is true for the integral
for Bi .

The integral of Eq. (C.6) is

FT( fi ) = 2

D

∫
D
η(t) cos(2π fi t) dt

With the Fourier series representation η(t) = ∑P
p=1 [Ap cos(2π f pt) + Bp sin(2π f pt)] of

Eq. (C.3) substituted, this becomes

FT( fi ) = 2

D

∫
D

P∑
p=1

[
Ap cos(2π f pt) + Bp sin(2π f pt)

]
cos(2π fi t) dt

Since the contributions of sin(2π f pt)cos(2π fi t) and cos(2π f pt)cos(2π fi t) to this integral are
zero for all p and i, except for cos(2π f pt)cos(2π fi t) when p = i , the integral reduces to

FT( fi ) = 2

D

∫
D

Ai cos2(2π fi t) dt = 2Ai

D

∫
D

cos2(2π fi t) dt

Since the duration of the wave record is a multiple of the period Ti , the outcome of the integral∫
D cos2(2π fi t) dt = D/2 so that

FT( fi ) = Ai

Therefore

Ai = 2

D

∫
D
η(t)cos(2π fi t) dt

which is identical to Eq. (C.6) in the main text of this appendix.
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The Fourier transform (2)

The structure of the integral in the Fourier transforms of Eqs. (C.6) and (C.7) is very simple to
remember: the integral is twice the (time-)averaged product of the surface elevation η(t) and the
cosine (or sine) for each frequency fi . To show this, define the time-averaged product of x(t) and
y(t) as

xy = 1

D

∫
D

x(t)y(t) dt

Then, taking x(t) = η(t) and y(t) = cos(2π fi t), the Fourier transform to compute Ai can be
written as

Ai = 2 η(t)cos(2π fi t)

and similarly

Bi = 2 η(t)sin(2π fi t)

3 Practical problems

An actual wave record differs in several respects from the surface elevation in the definition
of the spectrum that underlies the analysis:

the duration of the wave record is finite;
there is usually only one record;
the wave record is discretised in time; and
the observation of the surface elevation is contaminated with instrument and processing

errors.

3a The finite duration of the wave record

In the Fourier transform of a wave record, the frequency interval � f has a constant value
determined by the given duration D of the record:� f = 1/D (see Eq. C.2). Taking the limit
� f → 0 (as in the definition of the spectrum, implying D → ∞) is therefore not possible
with the finite duration of a given wave record. The estimation of the spectrum, of necessity,
therefore becomes

E( f ) = lim
� f → 0

1

� f
E
{

1
2 a2

} ≈ 1

� f
E
{

1
2 a2

i

}
with � f = 1

D
(C.8)

The finite frequency interval � f = 1/D implies that details of the spectrum within this
spectral interval� f cannot be seen. In other words, details on a frequency scale� f = 1/D
are lost (see Fig. C.1). The duration D should therefore be chosen long enough that details
that are relevant can be seen. The capacity to resolve such spectral details is called frequency
resolution and it is quantified with the frequency bandwidth:

� f = 1

D
(C.9)
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Figure C.1 The finite frequency resolution, due to the finite duration of the wave
record, removes details from the spectrum.

(Resolution is actually defined as the frequency interval between independent estimates
of the spectral density, which in more advanced spectral-analysis techniques may differ
slightly from 1/D.)

The frequency resolution can be improved only by taking a longer duration of the wave
record. However, the wave records should also be stationary to give the spectrum any
meaning. The actual duration is therefore always a compromise. On the one hand it should
be sufficiently short that the assumption of a stationary situation is reasonable, on the other
hand it should be sufficiently long that the frequency resolution is adequate. In addition, it
should be long enough to allow one to obtain statistically reliable estimates (see below).

3b One wave record

The fact that usually only one wave record is available for the spectral analysis (at least for
measurements at sea) means that the variance density must be estimated (at least initially)
from just one amplitude, i.e., from 1

2 a2
i , rather than from E{ 1

2 a2
i }. This gives the so-called

‘raw’ estimate of E( f ):

E( f ) ≈ 1

� f
E
{

1
2 a2

i

} → 1

� f

(
1
2 a2

i

)
with resolution � f = 1

D
(C.10)
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Figure C.2 The raw spectrum looks ‘grassy’, because the variance density is
estimated from only one amplitude per frequency (the error is of the order of
100%).

This raw estimate would be acceptable if the error (the difference between the expected
value E{ 1

2 a2} and the computed value 1
2 a2

i ) were relatively small, but that is not the case;4

it is of the order of 100% (we can therefore not say E( f ) ≈ 1
2 a2

i /� f ). This large error is
obvious from the rather ‘grassy’ look of the raw spectrum (see Fig. C.2). This poor reliability
is unacceptable and it therefore needs to be improved (for the given wave record). This can
be achieved only at the cost of something else.

There are several techniques to do this, but they all come at the expense of the spectral
resolution. One of the simplest is to divide the time record into a number (p) of non-
overlapping segments, each with a duration D∗ = D/p. Each of these segments is then
Fourier-analysed (as above) to obtain values of 1

2 a2
i with a resolution δf determined by the

duration of the segment: δf = 1/D∗ = 1/(D/p) = p � f . The expectation E{ 1
2 a2

i } is then
estimated as the average of these values (for each frequency separately; this is called the
quasi-ensemble average, indicated with〈.〉):

E
{

1
2 a2

i

} ≈ 〈
1
2 a2

i

〉
(C.11)

4 The amplitude ai is Rayleigh distributed, so the distribution of 1
2 a2

i is an exponential distribution with a mean
value E{ 1

2 a2
i } and a width equal to E{ 1

2 a2
i }. In other words, the error associated with estimating E{ 1

2 a2
i } as 1

2 a2
i

is of the same order as the mean.
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Figure C.3 The (quasi-)ensemble-averaged spectrum of Fig. C.2 and its 90%
confidence interval.

By this quasi-ensemble averaging, the error5 is reduced by a factor
√

p:

E( f ) ≈ 1

δf

〈
1
2 a2

i

〉
with resolution δf = p� f and error ≈ 100%√

p
(C.12)

Obviously, this improved reliability has come at the expense of the spectral resolution, which
has been reduced by a factor of p. A compromise is therefore always required, in order
to balance an acceptable spectral resolution against an acceptable reliability. A duration of
15−30 min and a value of p = 20–30 are typical for observations at sea. The corresponding
frequency resolution is then δf ≈ 0.01−0.02 Hz and the error in the spectral densities is
about 20%. The reliability may also be quantified with a confidence interval. This is the
interval, within which the expected value is located with a certain probability, e.g., the 90%
confidence interval (see Figs. C.3 and C.4).

3c The discrete wave record

In practice, the wave records are discretised by sampling the original signal of the wave
sensor at a fixed time interval �t . This interval is usually 0.5 s for wave observations at
sea. A direct consequence of this discretisation is that the integrals in the above Fourier
transforms are replaced with discrete sums, giving an error that is not so obvious. To illustrate
this, consider a harmonic wave with frequency f1 that is sampled at a constant interval �t

5 The distribution of this ensemble average 〈 1
2 a2

i 〉 is a χ2-distribution with 2p degrees of freedom.
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Figure C.4 The 90% confidence interval from the χ2-distribution.

(the solid line, long wave in Fig. C.5). The only data available in the discrete record of
this wave are the values at equidistant times (indicated with dots). However, it is entirely
possible to have another harmonic wave (with frequency f2: the dashed line, short wave
in Fig. C.5) with the same values at the same discrete moments in time (the same dots). A
Fourier analysis, using these sampled elevations, therefore cannot distinguish the two wave
components.

Figure C.5 Two harmonic waves with frequencies f1 and f2 that are given at
discrete, constant time intervals �t = 1/( f1 + f2) are indistinguishable at these
discrete times (as indicated by the dots).
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NOTE C2 The Nyquist frequency

The discretised wave record can be seen as the ‘true’ surface elevation multiplied by a delta series,
i.e., a series of delta functions at interval �t (see the left-hand column in the figure below). Since
multiplication in the time domain corresponds to convolution in the spectral domain, the wave
spectrum should be convoluted with the spectrum of the delta series. Briefly stated, convolution
is that each value of the one function is distributed in the shape of the other. Since the spectrum
of the surface elevation is, strictly speaking, an even function (see Eq. 3.5.18) and the spectrum
of a delta series is another delta series with interval � f = 1/�t , the result is a repetition of
the (even) spectrum of the waves, with interval � f = 1/�t (see the right-hand column in the
figure below). The effect is that the tails of the repeating spectra overlap, giving the impression
that the frequencies 1/(2�t), 1/�t, 3/(2�t), 2/�t, 5/(2�t), . . . etc. (multiples of the Nyquist
frequency 1/(2�t)) are mirror frequencies.

The consequence is that, in the spectral analysis, the energy density of the (high) fre-
quency f2 is added to the energy density of the (low) frequency f1. It is as if the energy
density of these high frequencies were mirrored around a frequency called the Nyquist
frequency (or ‘mirror’ frequency; see Fig. C.6). The value of this Nyquist frequency is
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Figure C.6 Aliasing in the spectrum of a wave record with discrete time intervals
�t is equivalent to mirroring the spectrum around the Nyquist frequency fNyquist =
1/(2�t).

(see Note C2)

fNyquist = fN = 1

2�t
(C.13)

The high-frequency energy thus appears at other frequencies than those at which it should,
in other words, under an ‘alias’. The phenomenon is therefore called ‘aliasing’.

The aliasing phenomenon will always cause a relatively large error (about 100%) near
the Nyquist frequency, but, with the rapidly decreasing energy densities in the tail of ocean
wave spectra, it usually does not seriously affect the main part of the spectrum if the Nyquist
frequency is chosen to be much higher than a characteristic frequency of the spectrum. The
Nyquist frequency should therefore be chosen wisely, for instance more than four or five
times the mean frequency (for measurements at sea, usually fNyquist = 1 Hz, corresponding
to �t = 0.5 s).

It can be shown with a formal analysis that the aliasing effect is due to a periodic repetition
in the frequency domain of the true spectrum (see Note C2). It can also be illustrated with a
phenomenon that is well known from old movies in which the wheels of a car have spokes.
In such movies the wheels often seem to turn in the wrong direction. In Fig. C.7, four
consecutive frames in such a movie are shown with the wheel slightly turned from one
frame to the next (the time interval between the frames is 1/24 s). One would expect spoke
A in the first frame to be recognised as the same turning spoke A in frames 2, 3 and 4
(the real forward-turning wheel in Fig. C.7). However, the human brain identifies spoke B
in frame 2 with spoke A in frame 1 (because they are nearest to one another). The same
happens between the other frames. The effect is that the wheel is interpreted as turning
slowly backwards instead of quickly forwards (the perceived backward-turning wheel in
Fig. C.7).
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Figure C.7 The illusion of a backward-turning wheel in four frames of an old
movie (aliasing). The spoke indicated with B, jumping from one spoke to the next,
counter-clockwise (indicated with B1, B2 and B3), is erroneously interpreted as
the continually clockwise-rotating spoke A.

3d Instrument and processing noise

Measurements of the sea-surface elevation are always based on some physical characteristic
of the water (surface) that is transformed by some instrument into numbers. These numbers
do not exactly give the sea-surface elevation; they are always contaminated to some extent
by the measurement technique, the instrument and the processing of the original signal.
The extent of this contamination is often not precisely known. At best, a comparison with
superior instruments or processing is available. Owing to such contamination, the observed
time series differs from the actual surface elevation, sometimes even considerably. The
variance density spectrum, which is estimated from such a contaminated time series, is
therefore always, one hopes only slightly, different from the true variance density spectrum.
This difference is referred to as ‘observation noise’ or ‘instrument noise’. This subject is
important for measuring ocean waves, but it is mentioned here only to make the reader
aware of the problem.
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Tides and currents

1 Introduction

Variations in time of the water depth or the presence of an ambient current (e.g., due to
tides or a storm surge) may change the amplitude, frequency and direction of waves. This is
generally due to energy bunching, transfer of energy between waves and currents, frequency
shifting (including Doppler shifting) and current-induced refraction. Energy bunching (the
shoaling-like effect of the current on the waves) is readily accounted for in the energy
balance equation of the waves by using the proper velocity of wave energy propagating
across a current (see Section 7.3.5). The energy transfer between waves and currents is
readily accounted for by replacing the energy balance by the action balance (see Section
8.4.1). In the following, we consider only current-induced refraction and the frequency
shifting.

2 Refraction

In modelling waves in the presence of an ambient current, we must make a distinction
amongst various directions: the direction of the current (along the streamline; see Fig. D.1),
the direction of the wave orthogonal (normal to the wave crest) and the direction of energy
propagation (along the wave ray). In the absence of an ambient current, the energy travels
in the same direction as the wave (wave ray = wave orthogonal) but, in the presence of
an ambient current, this is not the case (wave ray �= wave orthogonal); the energy is then
transported in a direction given by the vector sum of the relative group velocity �cg (along
the orthogonal) and the ambient current velocity �U (along the streamline). Wave energy is
therefore generally not transported in the wave direction if an ambient current is present
(some energy travels along the crest).

The propagation of a wave across an ambient current can be seen as the sum of the
propagation of the wave in the absence of the current and the bodily transport of the wave
by the current (during which the wave does not propagate relative to the current). Here,
we need to consider only this bodily transport, because the propagation in the absence of
the current (including refraction) has been treated in Section 7.3.2 (only the result will be
used here).

If the ambient current is not uniform, the bodily transport of the wave (i.e., the wave
propagates only with the water and not through the water) induces a change in wave direction.
This is called current-induced refraction. The current moves the water particles, and hence
the iso-phase lines (e.g., a crest), in the direction of the current, i.e., in the direction of
the streamline (see Fig. D.2). If the motion is parallel to the crest, the wave direction does
not change. If the motion has a component normal to the crest, the direction generally
does change. More specifically, the variation along the crest of the current normal to the
crest changes the wave direction, i.e., current-induced refraction is due to the along-crest
variation of Un = U cosα (where U is the current speed and α is the angle between the
wave direction and the current direction, see Fig. D.1). This variation of the current along

335
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Figure D.1 An ambient current generally deflects the propagation direction of
the wave energy away from the wave direction and a distinction must be made
between the wave direction (normal to the wave crest; the wave orthogonal) and
the direction of energy propagation (which is affected by the ambient current; the
wave ray).

the crest makes the wave change direction in precisely the same manner as a variation
in water depth along the crest does in the case of depth-induced refraction. To find the
corresponding current-induced turning rate, consider a crest along which the current speed
varies (see Fig. D.2).

For the derivation, we will use a local, left-turning system of orthogonal m, n co-ordinates
(counter-clockwise rotations are positive), with m along an iso-phase line (call it a crest)
and n along a line oriented normal to the crest (the wave orthogonal). The crest moves
in the direction of the current but we consider a point A that moves with the crest along
an orthogonal (the point A thus shifts along the crest). This point moves during a time
interval �t over a distance �n A = Un�t . During the same time interval, a similar point B
on the crest moves over a distance �nB = (Un + �Un)�t . If the distance along the crest
between these two points is �m, then the corresponding directional turning of the crest
�θ is �θ = −(�nB − �n A)/�m = −�Un�t/�m. During the same time interval, the
energy travels with the crest along a streamline with the same turning of wave direction
�θ (assuming a locally straight crest), so the rate of change of the wave direction while
travelling with the wave energy (i.e., with the current) is �θ/�t = −�Un/�m, or, for
infinitesimal differences,

dθ

dt
= cθ,ref = −∂Un

∂m
(D.1)
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Figure D.2 The turning of a wave crest towards the region with lower current speed
(in the wave direction).

Superimposing the propagation of the wave through the water (depth-induced refraction,
see Eq. 7.3.13) and the above bodily transport with the water (current-induced refraction,
see Eq. D.1) gives the total rate of directional change:

cθ,ref ,depth+current = −cg

c

∂c

∂m
− ∂Un

∂m
(D.2)

A more physically based derivation is given by Jonsson (1990). A mathematically more
formal derivation is referred to at the end of Section 3 of this appendix.

3 Frequency-shifting

We consider the effect of the ambient current on the frequency of the waves in three frames
of reference: one that is moving with the current, one that is fixed to the bottom and one that
moves with the wave energy or action; and we assume that the parameters of the harmonic
wave vary only slowly (in space and time).

In a frame of reference moving with the current, all results of the linear wave theory can
be applied without modification (within the approximations of the linear theory, of course).
The frequency of the wave in this moving frame of reference is then called the relative
frequency, denoted as σ . The dispersion relationship is accordingly written as (see Eq.
7.3.29)

σ 2 = gk tanh(kd) (D.3)
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The frequency of the wave in a fixed frame of reference (i.e., fixed to the stationary bottom)
is called the absolute frequency, denoted as ω. It is related to the relative frequency by (see
Eq. 7.3.30)

ω = σ + kUn or ω = σ + �k · �U in vector notation (D.4)

The difference between σ and ω thus follows directly from the bodily transport of the wave
by the current. The term kUn may be seen as a Doppler shift.

In a frame of reference moving with the wave energy or action (as used in the spectral
energy or action balance), the relative frequency σ evolves, depending on variations in
depth and current as the wave is transported by the varying current over a varying seabed
topography. To determine the corresponding rate of change of σ , consider the general
expression for a change �σ in a time interval �t as the wave propagates in the n, s-co-
ordinates system:

�σ = dσ

dt
�t = ∂σ

∂t
�t + ∂σ

∂n
�n + ∂σ

∂s
�s (D.5)

where �n is the propagation distance relative to the current, normal to the crest, and �s is
the propagation distance due to the bodily transport of the wave energy (or action) with the
current (along the streamline). After some algebra, using Eqs. (D.4) and (D.5), the definition
of the group velocity Eq. (5.4.31) and the fact that σ depends on the water depth, we find

dσ

dt
= cσ = ∂σ

∂d

(
∂d

∂t
+ U

∂d

∂s

)
+ cg

(
∂k

∂t
+ ∂ω

∂n
− ∂(kUn)

∂n
+ U

∂k

∂s

)
(D.6)

where cg = ∂σ/∂k. To simplify this expression, we need to invoke the concept of conser-
vation of wave crests (or wave-number density): ∂k/∂t + ∂ω/∂n = 0 (see Eq. b in Note
D). Substituting this into Eq. (D.6) gives

cσ = ∂σ

∂d

(
∂d

∂t
+ U

∂d

∂s

)
+ cg

(
−∂(kUn)

∂n
+ U

∂k

∂s

)
(D.7)

The term U∂k/∂s in Eq. (D.7) can be written differently, as U∂k/∂s = (�k/k)U∂�k/∂s in
vector notation or, in terms of components, as

U
∂k

∂s
= kx

k

(
Ux

∂kx

∂x
+ Uy

∂kx

∂y

)
+ ky

k

(
Ux

∂ky

∂x
+ Uy

∂ky

∂y

)
(D.8)

Substituting ∂ky/∂x = ∂kx/∂y (which follows from the irrotationality of the wave-number
vector field; see Note D) into Eq. (D.8) gives

U
∂k

∂s
= kx

k

(
Ux

∂kx

∂x
+ Uy

∂ky

∂x

)
+ ky

k

(
Ux

∂kx

∂y
+ Uy

∂ky

∂y

)
(D.9)

which may also be written as U∂k/∂s = �U ·∂�k/∂n in vector notation. Substituting this
result into the second term on the right-hand side of Eq. (D.7) gives

−∂(kUn)

∂n
+ U

∂k

∂s
= −∂(�k · �U )

∂n
+ �U · ∂

�k
∂n

= −�k · ∂
�U

∂n
− �U · ∂

�k
∂n

+ �U · ∂
�k

∂n

= −�k · ∂
�U

∂n
(D.10)
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So Eq. (D.7) may also be written as

cσ = ∂σ

∂d

(
∂d

∂t
+ U

∂d

∂s

)
− cg �k · ∂

�U
∂n

(D.11)

which is used in spectral wave models (Rivero et al., 1997; Booij et al., 1999). The first
term in the brackets represents the effect of the time variation of the depth. The second
term in the brackets represents the effect of the current bodily moving the wave over a
horizontally varying depth. The second term on the right-hand side represents the effect
of the wave moving with a horizontally varying current. The corresponding variations in
absolute frequency ω and wave number k follow directly from the variation in the relative
frequency σ with Eqs. (D.3) and (D.4), without any additional computations (the time
variation of the current is accounted for).

NOTE D Conservation and rotation of wave number

Conservation of wave number (also called conservation of wave-number density or conser-
vation of crests)

The fact that a harmonic wave does not create crests leads to a convenient relationship between
the time derivative of wave number ∂k/∂t and the spatial derivative of frequency ∂ω/∂x (if we
consider a one-dimensional situation with the wave propagating in the x-direction). There are
many ways to derive this relationship. Here follow a few.

Balance of number of waves
To arrive at the relationship, consider a one-dimensional situation in which a (quasi-)harmonic
wave with a slowly varying wave length and period travels in the positive x-direction through a
box with length �x (see the figure below).

The number of waves in the box is N = �x/L (where L is the average wave length in the
box). During a time interval �t this number changes by [∂N/∂t]�t = [∂(�x/L)/∂t]�t . Since
a harmonic wave does not create wave crests, the number of waves in the box can change only
by a net import of waves. This net import is equal to the number of waves �t/T which enter
through the left-hand side of the box during the time interval �t (where T is the average wave
period), minus the number of waves which leave the box through the right-hand side of the box
during this interval, �t/T + [∂(�t/T )/∂x]�x . The net import of waves is then − [∂(�t/T )/
∂x]�x . Since the change of number of waves in the box during the time interval �t is equal to
the net import of waves, it follows that

∂(�x/L)

∂t
�t = −∂(�t/T )

∂x
�x (a)

Dividing by�t and�x , multiplying by 2π and recognising that k = 2π/L andω = 2π/T gives

∂k

∂t
+ ∂ω

∂x
= 0 (b)

which represents the conservation of wave crests.
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Wave-number balance
The derivation can also be formulated in terms of a balance equation for the wave number k,
propagating with the phase speed c (k may be interpreted as wave-number density, since it is the
number of waves per unit horizontal distance, multiplied by 2π ). Substituting µ = k and ux = c
into the one-dimensional version of the general balance equation (Eq. 5.3.8 of Chapter 5) gives

∂k

∂t
+ ∂(ck)

∂x
= 0 (c)

or, since c = ω/k,

∂k

∂t
+ ∂ω

∂x
= 0 (d)

which is identical to Eq. (b).

Mathematical formalism
The phase of a harmonic wave travelling in the x-direction can be written (see the main text,
Eq. 5.4.1) as ψ = ωt − kx . The frequency and the wave number are then ω = ∂ψ/∂t and k =
−∂ψ/∂x , respectively. Taking the space derivative of the former and the time derivative of the
latter gives

∂2ψ

∂x ∂t
= ∂ω

∂x
= −∂k

∂t
(e)

so
∂k

∂t
+ ∂ω

∂x
= 0 (f)

which is also identical to Eq. (b).

Ambient current
In the presence of an ambient current, the absolute propagation speed of the wave is c + Un

(where Un is the component of the current speed in the wave direction), so, from Eq. (c), we find

∂k

∂t
+ ∂ [(c + Un)k]

∂x
= 0 (g)

or, since ω = σ + kUn and c = σ/k, so (c + Un)k = ω, we find

∂k

∂t
+ ∂ω

∂x
= 0 (h)

which shows that this relationship also holds for situations with ambient currents.
These results are readily extended to a two-dimensional situation of a harmonic wave prop-

agating in an arbitrary direction. The phase can then be written as ψ = ωt − kx x − ky y and the
result is
∂kx

∂t
+ ∂ω

∂x
= 0

and (i)

∂ky

∂t
+ ∂ω

∂y
= 0

or

∂k

∂t
+ ∂ω

∂n
= 0 (j)

if n is the horizontal co-ordinate, as in the main text of this appendix.
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Rotation of wave number

Another convenient property of the (two-dimensional) wave-number field �k = (kx , ky) is that
it is irrotational. For two-dimensional situations, this relates the wave-number component in
the x-direction kx to the wave-number component in the y-direction ky . The simplest derivation
is equivalent to the above mathematical formalism. On writing the phase ψ of a propagating
harmonic wave in a two-dimensional situation as ψ = ωt − kx x − ky y, the wave number in the
x-direction is kx = −∂ψ/∂x and the wave number in the y-direction is ky = −∂ψ/∂y. It follows
then that −∂2ψ/∂x∂y = ∂ky/∂x = ∂kx/∂y, so

∂ky

∂x
− ∂kx

∂y
= 0 (k)

which expresses the fact that the wave-number vector field �k = (kx , ky) is irrotational (see
Appendix B).

A similar derivation is given by Christoffersen (1982). An alternative derivation can
be based on considering the wave rays as characteristics (in a mathematical sense)1 of
the dispersion relationship ω = [gk tanh(kd)]1/2 + kUn . This derivation is rather formal:
writing a harmonic wave component as a wave with phase ψ = ωt − kx x − ky y allows
us to define the absolute radian frequency ω and the wave-number vector �k = (kx , ky)
as derivatives of the phase function, i.e., ω = ∂ψ/∂t , kx = −∂ψ/∂x and ky = −∂ψ/∂y.
Substituting these derivatives into the dispersion relationship makes this relationship a
nonlinear, first-order, partial differential equation. The change of frequency per unit time
along a characteristic (i.e., a wave ray) of this equation is then given by the same expression
as above (Eq. D.11; for a general treatment of such equations, see for instance Webster, 1955,
his Eq. 45, Section 24). The directional rate of turning of the wave along the characteristic
(the current-induced refraction) too is a universal property of the partial differential equation
and its expression is identical to Eq. (D.2).

1 A characteristic is a line (in this case called a wave ray) along which a partial differential equation reduces to
an ordinary differential equation.
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Shallow-water equations

1 Introduction

In very shallow water, where vertical accelerations in the water can be ignored (the waves
are called long waves), the wave profile and its propagation can be computed with verti-
cally integrated mass- and momentum-balance equations. These equations can be derived
formally from the three-dimensional equations of Section 5.3.2 or they can be derived from
basic considerations in which the vertical variations are ignored a priori (only vertical
averages are considered). The latter approach is shown here.

2 The vertically integrated balance equation (general)

Consider a body of fluid with a free surface and some arbitrary conservative property of
that fluid, represented by its density µ (it could be salinity, mass, heat etc.) in a vertical
column with horizontal width �x in the x-direction, unit width in the y-direction and
height D = η + d , where d is the still-water depth and η is the surface elevation above the
still-water level (see Fig. E.1).

Deriving the (one-dimensional) balance equation of the property µ in the column is anal-
ogous to deriving the three-dimensional balance equations in Section 5.3.2. It is essentially
the bookkeeping of the quantity of this property in the column over a time interval �t :

storage of µ in the column during time interval �t

= net import of µ + local production of µ during time interval �t (E.1)

The first term on the left-hand side of this balance equation is equal to the quantity of µ in
the column at the end of the interval minus the quantity of µ at the start of the interval (per
unit column width):

storage of µ in column =
(
µD �x + ∂(µD)

∂t
�x�t

)
− µD�x

= ∂(µD)

∂t
�x�t (E.2)

The first term on the right-hand side of the balance equation Eq. (E.1) is the net import of
the property µ in the x-direction (during the interval �t). It is equal to the import in the
x-direction through the left-hand side of the column minus the export in the x-direction
through the right-hand side of the column (per unit width; see Fig. E.1):

net import of µ in the x-direction = uxµD �t −
(

uxµD + ∂(uxµD)

∂x
�x

)
�t

= −∂(uxµD)

∂x
�x�t (E.3)

where ux is the water velocity, averaged over the total depth D. The second term on the
right-hand side of the balance equation Eq. (E.1) is the local production of property µ in
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Figure E.1 A property µ being transported by the water in the x-direction through
a column, and the hydrostatic pressure on that column.

the column during the time interval �t (per unit width):

local production of µ = S �x �t (E.4)

where S is the production of µ per unit time, per unit horizontal surface area. Substituting
Eqs. (E.2)–(E.4) into Eq. (E.1) gives the balance equation for the property µ for the column
over the time interval �t :

∂(µD)

∂t
�x�t = −∂(uxµD)

∂x
�x�t + S �x�t (E.5)

Dividing by �x�t and moving the transport term to the left-hand side gives the (one-
dimensional) balance equation for the property µ:

∂(µD)

∂t
+ ∂(uxµD)

∂x
= S (E.6)

The first term on the left-hand side is the local rate of change of the quantity of property
µ. The term following this is the advective term. It represents the effect of transporting
the property µ. Lastly, the term on the right-hand side is called the source term since it
represents the generation of the property µ (per unit horizontal surface area, per unit time;
if negative, it represents dissipation).

3 The vertically integrated mass-balance equation

If we want to obtain the mass balance equation, we take µ as the density of water, µ = ρ,
and substitute this into Eq. (E.6):

∂(ρD)

∂t
+ ∂(uxρD)

∂x
= S (E.7)

If we assume that the water density is constant (∂ρ/∂t = 0 and ∂ρ/∂x = 0), the bottom is
fixed (∂d/∂t = 0, so that ∂D/∂t = ∂(d + η)/∂t = ∂η/∂t), and there is no production of
water (S = 0), this equation reduces to the continuity equation:

∂η

∂t
+ ∂(ux D)

∂x
= 0 one-dimensional continuity equation (E.8)
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4 The vertically integrated momentum-balance equation

If we want to obtain the momentum balance equation, we takeµ as the momentum density of
the water,µ = ρux , substitute this into Eq. (E.6), and interpret S as a force in the x-direction
Fx , with the result that (see Section 5.3.2 for the relation between force and momentum)

∂(ρux D)

∂t
+ ∂ux (ρux D)

∂x
= Fx (E.9)

If the water density ρ is constant, this reduces to

∂(ux D)

∂t
+ ∂ux (ux D)

∂x
= Fx

ρ
(E.10)

and, if we then apply the product rule for differentiation, we find

ux
∂D

∂t
+ D

∂(ux )

∂t
+ ux

∂(ux D)

∂x
+ ux D

∂ux

∂x
= Fx

ρ
(E.11)

Since, for a fixed bottom, ∂D/∂t = ∂η/∂t (see above), Eq. (E.11) may be written as

ux
∂η

∂t
+ D

∂ux

∂t
+ ux

∂(ux D)

∂x
+ ux D

∂ux

∂x
= Fx

ρ
(E.12)

Subtracting the equation of continuity, multiplied by ux ,

ux
∂η

∂t
+ ux

∂(ux D)

∂x
= 0 (E.13)

gives the equation of motion:

D
∂ux

∂t
+ ux D

∂ux

∂x
= Fx

ρ
(E.14)

or

∂ux

∂t
+ ux

∂ux

∂x
= Fx

ρD
one-dimensional shallow-water (E.15)
equation of motion

The continuity equation Eq. (E.8) and the equation of motion Eq. (E.15) are called the
one-dimensional shallow-water equations. These equations are readily extended to two-
dimensional x , y-space:

∂η

∂t
+ ∂(ux D)

∂x
+ ∂(uy D)

∂y
= 0 two-dimensional shallow-water

continuity equation
(E.16)

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
= Fx

ρD
the two-dimensional shallow-water
equation of motion in the x-direction

(E.17)
∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
= Fy

ρD
the two-dimensional shallow-water
equation of motion in the y-direction

(E.18)
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which are the two-dimensional shallow-water equations on which many numerical hydrody-
namic models are based. These models are usually driven by hydrostatic pressure gradients
but also by other forces, such as wind stress, bottom friction, the Coriolis force (accelera-
tion), atmospheric-pressure gradients and gradients of the wave-induced radiation stresses.

5 Wave-induced set-up and set-down

The above equations can be used to estimate the wave-induced set-up and set-down (but
not the wave-induced currents) with a relatively simple extension of a conventional wave
model, without the help of a hydrodynamic model. To that end, the force in Eq. (E.18)
should represent the hydrostatic force and the radiation-stress gradients.

Consider first the one-dimensional situation of Fig. E.1. The net horizontal force acting
on the column is equal to the hydrostatic force (per unit width) on the left-hand side of the
column, minus the hydrostatic force on the right-hand side and the horizontal component
of the hydrostatic force along the bottom (for a bottom sloping upwards in the x-direction,
∂d/∂x is negative):

Fx = 1

2
ρgD2 −

[
1

2
ρg

(
D + ∂D

∂x
�x

)2

− ρg

(
D + 1

2

∂D

∂x
�x

)
∂d

∂x
�x

]
(E.19)

which, after some algebra and ignoring all second-order terms (i.e., terms with (�x)2) and
dividing by �x , gives

Fx

ρD
= −g

∂η

∂x
(E.20)

Substituting this into Eq. (E.15) and adding the wave-induced force (the gradient of the
radiation stress) gives (compare with Eq. 7.4.20)

∂ux

∂t
+ ux

∂ux

∂x
+ g

∂η

∂x
= − 1

ρD

∂Sxx

∂x
(E.21)

where η is now (in the presence of waves) the surface elevation averaged over a duration that
is long compared with the wave period but short compared with the time scale of variations
in Sxx . The corresponding two-dimensional equations (including the continuity equation)
are

∂η

∂t
+ ∂(ux D)

∂x
+ ∂(uy D)

∂y
= 0 continuity equation (E.22)

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ g

∂η

∂x
= − 1

ρD

(
∂Sxx

∂x
+ ∂Sxy

∂y

)
equation of motion

in the x-direction (E.23)

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ g

∂η

∂y
= − 1

ρD

(
∂Syy

∂y
+ ∂Syx

∂x

)
equation of motion

in the y-direction (E.24)
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where Sxx , Syy , Sxy and Syx are the wave-induced radiation stresses (see also Eqs. 7.4.16.
and 7.4.17). If we substitute the equations of motion for stationary conditions (Eqs.
E.23 and E.24 with time removed) into the divergence of the forces (div(�F) = ∂Fx/∂x+
∂Fy/∂y), and neglect the divergence of all advective acceleration terms (i.e.,
div (acceleration) = ∂acceleration/∂ x + ∂acceleration/∂ y ≈ 0), we find (see Eq. 9.4.5)

∂

∂x

(
ρgD

∂η

∂x

)
+ ∂

∂y

(
ρgD

∂η

∂y

)
= − ∂

∂x

(
∂Sxx

∂x
+ ∂Sxy

∂y

)

− ∂

∂y

(
∂Syy

∂y
+ ∂Syx

∂x

)
(E.25)

This shows that, if we ignore the divergence of the acceleration (i.e., consider only slowly
varying current fields), the wave-induced set-up (on the left-hand side of Eq. E.25) is
determined by the divergence of the driving force field (i.e., the right-hand side of this
equation, which is the divergence of the radiation stress gradients; see Dingemans et al.,
1987, and Section 9.4). This divergence of the driving force field is the rotation-free part of
the radiation stress gradients.1 This approximation leads to a numerically entirely different
type of model from that normally used for the shallow-water equations (Eqs. E.16–E.18).
For instance, the wave-induced set-up can now be computed without considering the wave-
induced currents, which in a full hydrodynamic model is not possible. Equation (E.25) is
a Poisson equation for which standard computational techniques are available. This allows
estimating the wave-induced set-up with a relatively small extension of a numerical wave
model with a Poisson-solver (but it is an approximation for slow variations; it is not valid
near sharp features in the coastline or obstacles such as headlands or breakwaters). For
one-dimensional cases (in which all ∂./∂y are zero), Eq. (E.25) reduces to

dη

dx
= − 1

ρgD

dSxx

dx
(E.26)

(which can also be arrived at with a simpler derivation; see Eq. 7.4.20) which can be solved
with a simple numerical scheme (e.g., the trapezoidal rule). In SWAN, the above radiation
stresses are replaced with their spectral versions (see Section 9.4),

1 A force field �F(x, y) can always be seen as the sum of one part �F1(x, y) with divergence only (i.e., with-
out rotation: rotation = curl ( �F1) = ∂F1,x/∂y − ∂F1,y/∂x = 0), and another part �F2(x, y) with rotation only
(i.e., without divergence: div( �F2) = ∂F2,x/∂x + ∂F2,y/∂y = 0). The part with divergence only is therefore the
rotation-free part and vice versa.



References

Aage, C., T. D. Allen, D. J. T., Carter, G. Lindgren and M. Olagnon, 1998, Oceans from
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Gelci, R., E. Devillaz and P. Chavy, 1964, Évolution de l’état de la mer, calcul numérique
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York, John Wiley & Sons Inc., 9A, pp. 293–333

Holthuijsen, L. H., 1983a, Stereophotography of ocean waves, Appl. Ocean Res., 5, 4,
204–209

—1983b, Observations of the directional distribution of ocean wave energy in fetch-limited
conditions, J. Phys. Oceanogr., 13, 2, 192–207

Holthuijsen, L. H. and T. H. C. Herbers, 1986, Statistics of breaking waves observed as
whitecaps in the open sea, J. Phys. Oceanogr., 16, 2, 290–297

Holthuijsen, L. H. and S. de Boer, 1988, Wave forecasting for moving and stationary targets,
Proc. Computer Modelling in Ocean Engineering (Venice), eds. B. A. Schrefler and
O. C. Zienkiewicz, Rotterdam, Balkema, pp. 231–234



360 References

Holthuijsen, L. H., N. Booij and T. H. C. Herbers, 1989, A prediction model for stationary,
short-crested waves in shallow water with ambient currents, Coastal Engineering, 13,
23–54

Holthuijsen, L. H. and H. L. Tolman, 1991, Effects of the Gulf Stream on ocean waves,
J. Geophys. Res., 96, C7, 12 755–12 771

Holthuijsen, L. H. and N. Booij, 1994, Bottom induced scintillation of long- and short-
crested waves, Proc. Int. Symp.: Waves – Physical and Numerical Modelling, eds. M.
Isaacson and M. Quick, Vancouver, University of British Columbia, II, pp. 604–613

Holthuijsen L. H., A. Herman and N. Booij, 2003, Phase-decoupled refraction–diffraction
for spectral wave models, Coastal Engineering, 49, 4, 291–305

Houmb, O. G. and H. Rye, 1973, Analyses of wave data from the Norwegian continental
shelf, Proc. 2nd Int. on Conf. Port and Ocean Engineering under Arctic Conditions,
Reykjavı́k, University of Iceland, Department of Engineering and Science, pp. 780–
788

Hsiao, S. V. and O. H. Shemdin, 1978, Bottom dissipation in finite-depth water waves, Proc.
16th Conf. Coastal Engineering (Hamburg), New York, ASCE, pp. 434–448

—1983, Measurements of wind velocity and pressure with a wave follower during
MARSEN, J. Geophys. Res., 88, C14, 9841–9849

Hsu, T.-W., S.-H. Ou and J.-M. Liau, 2005, Hindcasting nearshore wind waves using a FEM
code for SWAN, Coastal Engineering, 52, 177–195

Huang, N. E., S. R. Long, C.-C. Tung, Y. Yuen and L. F. Bliven, 1981, A unified
two-parameter wave spectral model for a general sea state, J. Fluid Mech., 112,
203–224

Huang, N. E., C.-C. Tung and S. R. Long, 1990a, Wave spectra, in The Sea, eds. B. Le
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Index

absorption 294, 296
accelerometer 13
acquisition (spectrum) 51
action 221

balance (equation) 257, 261, 288, 335
density (spectrum) 261

advective 111, 343
air 177

bubble 108
flow 178, 182, 183
motion 182
pressure 18, 178, 179

airplane 19, 20, 21
Airy (wave theory) 53, 107, 138
aliasing 333
alphabet, Greek 31
altimeter

acoustic 22
laser 21
radar 22

altimeter (radar)
footprint (satellite) 22
wave height 22

amplitude
random 33, 45
response 53, 54, 55
spectrum 34, 45

analysis
cross-spectral 324
spectral 324

Anderson–Darling test 89
anemometer, wind 146, 151
annual-maximum approach (long-term statistics) 85,

98
array

phase 17
slope 16

atlas 105
ATM (airborne topographic mapper) 21, 22
auto-covariance (function) 42, 316, 324

back scatter 262, 270
back tracing 204
balance (equation)

action 257, 261, 288, 335
energy 174, 200, 242, 289, 301
mass 112, 343
momentum 112, 114, 318, 344
of number of waves 339
wave number 340

barrier 221
basin (wave-, tank) 181, 183
Battjes method 101
Beaufort wind scale 190
Berkhoff mild-slope equation 217
Bernoulli equation 117

linearised 117
nonlinear 323

biphase 271, 273, 274
blocking, current-induced 264
Boltzmann integral 185
bore 281
bottom

friction 109, 276, 295
roughness 279, 296
slope 74, 224, 243, 282
boundary condition 115, 116, 320, 323

boundary condition
kinematic, bottom 115, 116, 320, 323
kinematic, surface 114, 116, 319, 323
dynamic, surface, bottom 115, 117, 130, 142, 170,

320
boundary-element method 215, 240
boundary layer

atmospheric 147, 183
atmospheric (internal) 148
bottom 109, 276, 278

Boussinesq (equations, model) 198, 241
Bragg scatter 20, 270
breaking 188, 242, 276

criterion 189
index 282
wave types 242

breakwater 210, 213, 266, 288, 296
breeze 151, 181
bunching 201, 203, 218, 260, 263, 335
buoy 13

cloverleaf 15
heave 13, 14
pitch-and-roll 14
SMART 13, 14
spar 15
WAVEC 14
WAVERIDER (directional, GPS) 13, 14

capacitance 16
caustic 208
censoring 92
central limit theorem 312, 317
characteristic (ray) 203, 341
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clapotis 222
climate (wave) 7, 85, 87, 96, 105
cloverleaf buoy 15
cnoidal wave 142, 204
coast

lateral 153, 154
slanting 154
upwind 147, 246

confidence interval 330
conservation (equations)

action 257, 261, 288, 335
energy 174, 200, 242, 289, 301
mass 112, 343
momentum 112, 114, 344
of number of waves 339
wave number 340

continuity 108, 142
equation 112, 318, 343, 345

convection 111
convolution 332
co-ordinates (grid)

Cartesian 170, 260, 298
spherical 174, 289

Coriolis force (acceleration) 108, 345
correlation coefficient 313
Courant criterion 287
covariance (auto-, function) 42, 316, 324
crest 58, 62, 179, 339

maximum crest height 64, 79, 81, 84
current 218, 335

induced refraction 221, 261, 335
meter 17
rip 226, 236
wave–current interaction 288

cyclone (hurricane, typhoon) 147, 160,
187

degrees of freedom 15, 330
delta function 39, 217, 332
depth

dimensionless 247, 291
induced refraction 147, 181, 198, 202, 217, 258,

263, 264, 288, 300
induced wave breaking 237, 281, 296
limited wave growth 246

DIA (discrete-interaction approximation) 188, 196,
269, 292

diamond pattern 166, 183
of quadruplets 185
of triads 183

diffraction 30
diagrams 214, 266
parameter 115, 212, 266, 302
refraction 17, 217

diffusion
coefficient 304
garden-sprinkler effect 176, 304
numerical 300, 301

direction
bimodal directional distribution 166
directional distribution 162, 164, 259
directional spectrum 43

directional spreading 52, 163, 175, 212, 256
directional turning rate 174, 212, 263, 336
directional width 163, 256

discrete-interaction approximation (DIA) 188, 196,
269, 292

dispersion
direction 175, 177
frequency 128, 175
frequency-direction 177, 188
relationship 51, 123, 130, 218, 341

dissipation
white-capping 173, 188, 276, 293, 294
bottom friction 109, 276, 295
(surf-)breaking 281, 285, 296

distance meter 21
distribution

chi-square (χ2) 330
exponential 91, 98, 103, 104, 320
1D Gauss 312
2D Gauss 314
Fisher–Tippett I 101
Fisher–Tippett II 101
generalised extreme value (GEV) 98, 101
generalised Pareto 96, 98
Gram–Charlier 59
Gumbel 99, 101
joint 313
log-normal 91, 93, 98, 99
normal 312
Rayleigh 64, 68, 71, 91, 104, 254, 279
truncated Rayleigh 281, 291
Weibull 91, 99, 101, 103, 104, 299
wrapped-normal 166

Donelan spectrum 157, 256
Doppler (shift) 13, 218, 260, 335
drag

coefficient 147, 278
law 278, 295

droplet 190
duration

limited (condition) 150
measurement 27, 326, 327, 329
wind 147, 148, 246

echo-sounder (inverted) 17
electrical resistance 15
elevations, sea-surface

extreme 78
instantaneous 25, 57

energy 131
balance equation 174, 200, 242, 289, 301
bunching 201, 218, 260, 335
density 39, 40, 132
density spectrum 40
dissipation 177, 188, 293
flow in spectrum 192, 284
flux 132
kinetic 132
potential 131
propagation 132, 174, 199, 299, 335
scale (spectrum) 158, 160, 254, 273

ensemble 313
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equation
energy balance 174, 200, 242, 289, 301
mass balance 112, 343
momentum balance 112, 114, 235, 238, 298, 318,

344
of motion 319, 322, 323

equilibrium spectral level 193, 194, 308
Euler

equations 240, 319
Eulerian balance 172, 260

evolution (equation) 169
excitation 52
expectation 312

expected value 312
extreme-value theory 86, 96, 98

fetch 147
dimensionless 150, 247
equivalent 149
infinite 151
laws 152, 247
limited wave growth 150
limited wind-sea spectrum 160

Fisher–Tippett I distribution 101
Fisher–Tippett II distribution 101
FLIP 15
flow

energy flow in spectrum 192
air flow (separation) 178, 182, 183

flume (wind-wave) 31, 223, 283
Fourier

analysis 31, 324
1D, 2D and 3D Fourier transform 324
fast fourier transform (FFT) 43, 324
integral 325
series 325, 326
transform 42, 43, 326

forecast 146, 174
freak wave 83
free wave 115, 123
frequency

absolute 219, 220, 338, 339
aliasing 333
cut-off 294, 299
dimensionless peak 157, 159, 161, 162,

254
direction response 54
directional spectrum 43
dispersion 128, 175
eigen 13
mean 61, 192, 263, 294
mirror 332
Nyquist 61, 66, 332
peak 62, 158, 163, 166, 253, 272, 273, 290
Pierson–Moskowitz 159, 179
radian 41, 118, 261
relative 218, 220, 221, 261, 337
resolution 298, 327, 329
resonance 5, 184, 270, 272
response 53
shifting 186, 260, 263, 288, 337
spectrum 33, 36

FRF spectrum 255
friction

bottom 109, 276, 295
skin 279
surface 178, 182
velocity 147, 157, 179, 289
wind 147, 178

garden-sprinkler effect (GSE) 176, 304
Gauss

distribution 312, 314
Gaussian process 316
Gauss–Seidel model 41, 59, 140, 173,

317
instantaneous sea-surface elevation 57
probability density function 312, 314

generation
first-, second- and third-generation wave

models 194
generation of waves by wind 177, 268, 289

Gerstner wave theory 123
global positioning system (GPS) 13
global scale 174
Gram–Charlier distribution 59
great-circle

definition 169
wave propagation 169, 174, 177

grid
boundary-fitting 307
curvilinear 305
nesting 306
rectangular 298

group 49, 75, 225, 239
groupiness 67, 77
groupiness parameter 67
velocity 125, 136, 168, 199

growth
curve 152, 153, 247, 249
exponential 180, 194, 195, 290
initial 177, 193, 247, 290
measurements 182, 272
wave growth by wind 177, 180, 193, 194, 195,

247, 290
GSE (garden-sprinkler effect) 176, 304
Gumbel distribution 99, 101
gustiness (wind) 148

harmonic
component 25, 31, 272
super 182, 272, 275
wave 118

heave
buoy 13, 14
motion 15

Helmholtz equations 216, 217
hindcast 105, 146
HISWA wave model 300
hole-in-the-sea 84
homogeneous

weakly 316
H1/10 28
H1/3 28
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hurricane (typhoon, cyclone) 5, 147, 160, 187
Huygens’ principle 212, 216

idealisations
of the water and its motions 108
of the wave generation 147, 246
of the wind 148

ILU-CGSTAB solver 305
initial-distribution approach of the long-term

statistics 85, 87
instrument measurements 12, 29, 160
integral, order of 133, 228
interactions

quadruplet wave–wave 166, 183, 192, 196, 269,
285, 292

self–self 188, 272, 273
triad wave–wave 270, 283, 285, 293
wind–wave 173

Internet 105
interpretation of the variance density spectrum 38

Jacobian 42
Jeffreys’ theory 179
JONSWAP spectrum 160

KdV (Korteweg–de Vries) equation 142
kinematics 119

kinematic surface boundary condition 114, 116,
142, 170, 319, 323

Kitaigorodskii
scaling 256
spectral tail 250

Kolmogorov–Smirnov test 89
Korteweg–de Vries equation 142
kurtosis 312

Lagrangian approach 169, 174, 208, 209, 256
Laplace equation 115, 118, 119, 210, 215
laser 21
latitude 20, 142, 170, 174, 242, 289, 298
linearisation 113, 114, 115, 117, 323
linear system 52, 54
linear wave theory 197, 318, 337
L-moment 92, 312
log-normal distribution 91, 93, 98, 99
long-term statistics 85
longitude 170, 174, 289, 298
LTA (lumped-triad approximation) 274, 293
lumped-triad approximation (LTA) 274, 293

marker-and-cell (MAC) 240
mass balance 112, 343
maximum

crest height 64, 79, 81, 84
individual wave height 82
likelihood 92
significant wave height 95, 98, 99, 100
surface elevation 65, 77, 78, 79

Miche criterion 189
mild-slope equation 217
Miles’ theory 178, 179, 191, 290

mirror frequency 332
Mitsuyasu spectrum 158
mode 79, 82

stationary 304
modulation (of capillary waves) 20, 123, 131
moments

of arbitrary functions 312
of probability density function 312
of spectra 57, 66

momentum
balance equation 112, 114, 318, 344
transfer 178, 227, 230
transport 225

motion
air 182
buoy 13
orbital 17, 20, 120, 122, 135
wave-induced particle 109, 114, 120, 121, 223,

229, 335

National Data Buoy Centre (NDBC) 13
National Oceanic and Atmospheric Administration

(NOAA) 13
Navier–Stokes equations 242, 319
NDBC (National Data Buoy Centre) 13
near-resonant triad wave–wave interactions 245,

271
nest (grid) 306
Newton’s Laws 6, 112
NOAA (National Oceanic and Atmospheric

Administration) 13
noise 55, 61, 66, 334
normal stress 233

normal radiation stress 230
numerics

accuracy 299, 300, 302, 303, 304
boundary-element method 215, 240
BSBT scheme 301
discretisation 146, 287, 301, 303, 304
explicit scheme 287, 304, 307
four-sweep technique 301
ILU-CGSTAB solver 305
implicit scheme 287, 299, 302, 304, 305, 306
limiter 307, 308
marker-and-cell (MAC) method 240
mesh-free 240
particle-tracking 240
Poisson solver 346
resolution 198, 257, 287, 298, 299, 304, 327, 329
S&L scheme 301, 303
SIP solver 305
SORDUP scheme 301, 304
stability 304, 305, 308
upwind scheme 300, 301, 302, 306
volume-of-fluid (VOF) method 240

Nyquist frequency 61, 66, 332

observation
instrument 12, 29, 160
satellite 105
techniques (in situ) 12
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techniques (remote-sensing) 18
visual 25, 28, 29, 105

obstacle 198, 210, 215, 223, 268
order of integral 133, 228
orthogonal 210, 219, 335
overshoot 194, 195

Pareto distribution (generalised) 96, 98
particle

path 121
velocity 120, 121, 189, 226, 227, 277, 319
wave-induced motion 109, 114, 120, 121, 223,

229, 335
peak

enhancement 160, 254
frequency 62, 158, 163, 166, 253, 272, 273, 290
high-frequency 255, 272, 285
period 62, 150, 153, 249
primary 271, 272, 273
secondary 255, 271, 272, 273, 275, 276, 285
spectral 149, 159, 182, 186, 255, 272, 284
wave number 251, 293

peak-over-threshold (POT) approach of long-term
statistics 85, 95

persistence 94
phase 31

iso-phase line 203, 335
random 33, 45
random-phase/amplitude model 33, 42, 107, 168,

173, 262, 325
response 53
speed 119, 125, 127, 151, 180, 202, 211, 268, 272

Phillips
constant 309
mechanism of wave generation by wind 177
spectrum 155, 251, 254

photography
stereo- 19

Pierson–Moskowitz
energy scale (spectrum) 158
frequency 159, 179
limit values 151, 154, 159, 162, 250
period 152
significant wave height 151
spectrum 158, 162, 195

pitch motion 15
pitch-and-roll buoy 14
plotting position 91
Poisson

equation 298, 309, 346
solver 346

pole (gauge, staff) 15, 17
POT (peak-over-threshold) approach of long-term

statistics 95
pressure

air 18, 178, 179
surface 115, 123, 129, 148, 178, 179, 182, 190
transducer 17
wave-induced 128, 136, 223, 227, 229, 230
wind (induced) 129, 178, 179, 181

probability density function

chi-square (χ2) 330
exponential 91, 98, 103, 104, 320
1D Gauss 312
2D Gauss 314
Fisher–Tippett I 101
Fisher–Tippett II 101
generalised extreme value (GEV) 98, 101
generalised Pareto 96, 98
Gram–Charlier 59
Gumbel 99, 101
joint 313
log-normal 91, 93, 98, 99
normal 312

process
ergodic 58, 316
Gaussian 36, 43, 45, 56, 316
random 31, 314
realisation of a random 31, 314
stationary (random) 31, 314, 316
stationary, Gaussian process 36, 43, 56, 316
stochastic (random) 31, 314

propagation
caustic 208
diffraction 17, 115, 191, 210, 212, 214, 217, 263,

266, 288, 302
energy 132, 171, 174, 199, 263, 299, 335
group 125, 136, 175
momentum 113, 225
scheme (numerical) 287, 299
swell 174

pulse model for white-capping dissipation 190, 294

quadruplet wave–wave interactions 166, 183, 192,
196, 269, 285, 292

quantile function 312

radar 21
altimeter (low-altitude) 22
altimeter (satellite) 22
clutter 20
ground-wave 21
HF 21
imaging 20
non-imaging 20
sky-wave 21
surface contouring 22
synthetic-aperture radar (SAR) 20, 123

radiation stress 225, 234, 261, 296, 309, 345
tensor 233

radius to maximum wind 148
random-phase/amplitude model 33, 42, 107, 168,

173, 262, 325
random variables 310
Rayleigh distribution 64, 68, 71, 91, 104, 254,

279
ray (wave-) 168, 169, 203, 210, 217, 219, 257, 264,

335
realisation

of a random variable 313
of a stochastic process 31, 314

reflection 221, 264, 296
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refraction
coefficient
current-induced 221, 261, 335
depth-induced 147, 181, 198, 202, 217, 258, 263,

264, 288, 300
diffraction 17, 191, 210, 217, 288

remote-sensing (techniques) 18
resistance gauge (staff, pole) 15, 17
resolution

directional 298
frequency (logarithmic) 298, 327, 329
geographic 198, 257, 287, 298, 299
spatial 198, 257, 287, 298, 299
spectral 304

resonance
conditions 184, 270, 292
near-resonant wave–wave interactions 245, 271
resonant wave–wave interactions 183
wind-wave resonance mechanism 178

response
function 53, 54, 101
spectrum 53

return period
maximum significant wave height per storm 95
maximum significant wave height per year 98
significant wave height 54, 101

rip current 225, 235
ripple 130, 277
rogue wave 83
roll motion 15
rotation 109, 115, 207, 297, 320, 338, 339, 346
roughness

bottom 279, 296
sea surface 22

sampling 32, 313, 330
sand 276, 278, 295
SAR (synthetic-aperture radar) 20, 123
satellite 13, 18, 20, 21, 22, 29, 105
scalar 232
scaling 256, 293
scatter

back 262, 270
Bragg 20, 270
ray 208

scintillation 208
season 87

seasonal scaling 92
sea state

fully developed 151, 152, 155, 158, 247
mixed 25, 88, 187, 271, 299
swell 5, 25, 47, 62, 87, 174, 188, 196, 279, 295
wind sea 5, 25, 47, 62, 87, 196, 295
young 47, 149, 151, 152, 182, 249, 250, 255

seiche 5
set-down 225, 234, 296, 309
set-up 225, 234, 296, 309
seventh wave 77
shallow-water equations 240, 241, 342
shape

spectral shape parameters 160, 254, 255, 345

stabilisation 160, 186
universal spectral 157, 158, 160, 254, 255

shear stress
bottom 277
radiation 232
wind 147

sheet-flow 277, 279
sheltering 179
Shields parameter 279
shifting (frequency) 13, 20, 186, 260, 263, 288,

337
shoaling 198, 199, 201, 218, 258, 263

coefficient 201
short-term statistics 56, 58, 101
significant wave height

from spectrum 70
from time record 28
visually observed 25

significant wave period
from spectrum 61
from time record 29
visually observed 25

similarity (surf) 224, 242
skewness 59, 312
SMB (Sverdrup–Munk–Bretschneider) curves 152
Snel’s Law 207
solitary wave 142
soliton 144
solver

ILU-CGSTAB 305
SIP 305

Sommerfeld diffraction solution 213, 214, 266
source term 169, 173, 192, 261, 284

absorption 294, 296
bottom friction 109, 276, 295
depth-induced (surf-)breaking 237, 281, 296
first-, second- and third-generation 194
quadruplet wave–wave interactions 166, 183, 192,

196, 269, 285, 292
reflection 296
scattering 270
transmission 296
triad wave–wave interactions 270, 283, 285,

293
white-capping 173, 188, 276, 293, 294
wind generation 177, 268, 289

spectral analysis 324
cross 324

spectrum
1D 36, 47, 49
2D 43, 49
3D 50
action density 261
alternative definitions 41
amplitude 34, 45
definition 41
arbitrary-depth 250
bimodal 166, 273
deep-water 155, 162, 187
design 160, 187
directional 43
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Donelan 157
energy density 39, 40
fetch-limited 160
finite-depth 250
frequency 36
frequency–direction 43
FRF 255
fully developed 158
JONSWAP 160
Mitsuyasu 158
phase 31
Phillips 254
PM (Pierson–Moskowitz) 158
spectral tail 155, 157, 187, 250, 253, 254, 255, 271,

276
TMA 157, 255
Toba 157, 255
variance density 33, 36
Wallops 158
wave number 48

spectrum
diagnostic range 299
prognostic range 300

speed
propagation 125, 136
wind 146, 148, 157, 178, 180, 190, 289

spreading
directional 148, 163, 165, 175, 212, 256
function 164
waves spreading across the ocean 175

stability
atmospheric 154, 183
numerical 304, 305, 308

standard deviation 38, 57, 312
stationarity

stationary process 35, 36, 316
weakly stationary 316

statistics
long-term 85
short-term 56

steepness (wave) 138, 140, 189, 224, 294
stereo-photography 19
Stokes

theory 138, 139
wave 59, 139, 273

storm 10, 82, 95, 160, 175, 187
surge 3

streamline 142, 219, 335
stress 233

normal 233
radiation 225
shear 233
tensor 232

surf
beat 5, 239, 275
breaking 237, 281, 285, 296
similarity 224, 242
zone 225, 271

surge
motion 15
storm 3

SWAN wave model (numerical techniques) 298
negative source terms 307
numerical stability 308
positive source terms 307
wave-induced set-up 309

SWAN wave model (physics) 288
action balance 288
bottom friction 295
depth-induced (surf-)breaking 296
quadruplet wave–wave interactions 269
reflection, transmission and absorption 296
triad wave–wave interactions 293
wave generation by wind 289
wave-induced set-up 296
white-capping 294

sway motion 15
swell 47, 62, 87, 188, 279, 295

origin of 5, 25, 174
propagation 174, 196

tank (wave-, basin) 181, 183
tension 233

surface 5, 20, 129
tensor 233
tide 218, 335
time-domain analysis 25, 56
TMA spectrum 157, 255
Toba

constant 157, 255
law 152
spectrum 157, 255

TOMAWAC wave model 287
T1/10 29
T1/3 29
transmission 296
trans-tidal wave 3
travel time (swell) 6, 127
triad wave–wave interaction 270, 283, 285, 293
tsunami 5
turbulence 109, 183
typhoon (hurricane, cyclone) 5, 147, 160, 187

up-wind fetch average 153
Ursell parameter 138, 271

variance
definition 312
density 312
density spectrum 36

vector 233
vegetation 261
velocity

group 125, 136, 168, 199
orbital 120
potential function 115, 118, 143, 215, 240, 321

viscosity
eddy 278, 295
kinematic 321
molecular 321

voluntary observation fleet (VOF) 10
volume of fluid (VOF) 240
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von Kármán constant 291
vorticity 109, 115, 207, 297, 320, 338, 339, 346

Wallops spectrum 158
WAM wave model 196, 288

Cycle III 288
Cycle IV 288

wave
age 304
atlas 105
climate 7, 85, 87, 96, 105
definition of 25
forecast 146, 174
hindcast 105, 146
linear wave theory 197, 318, 337
motion 120
nonlinear wave theories 137, 239, 242
prediction, see forecast
tank (basin) 181, 183

wave (linear)
carrier 126
dispersive 125
harmonic 118
non-dispersive 125
standing 5, 215, 222, 268, 303
surface gravity 107
capillary 5, 20, 129

wave (nonlinear)
cnoidal 142, 204
evolving 239
infra-gravity 5, 239, 272, 275, 285
permanent 137, 242
solitary 142
Stokes 59, 138, 139, 273
tidal 3
trans-tidal 3
trochoidal 141

wave (descriptive)
arbitrary-depth water 120, 122, 128, 246, 255
deep water 58, 70, 120, 122, 129, 147, 158,

160
depth-limited 58, 73, 121, 122, 246, 255
duration-limited 150
fetch-limited 150
freak 83
free 115, 123
rogue 83
seventh 77
shallow-water 58, 73, 121, 122, 246, 255
unidirectional 212, 266, 272

wave (instrument)
array 16, 17
buoy 13, 14, 15
follower 17, 182, 341
pole (gauge, staff) 15, 17

wave (parameters, physical)
action 257, 261, 288, 335
direction (mean) 14, 17, 154, 163, 202, 213,

221
energy 131
group 49, 75, 225, 239

height 27
momentum 112

wave (parameters, statistical)
annual maximum wave height 99
maximum individual wave height in storm 82
maximum significant wave height 95
mean wave height 27, 69
root-mean-square wave height 28, 69
significant 25, 28
spectrum 36
variance 38

wave (geometry, single)
direction 213
frequency 118
height 118
length 118
number 118
period 118

wave (geometry, compound)
crest 62
group 75
ray 203, 341
short-crestedness 14, 162
slope 14, 16, 272
steepness 138, 140, 189, 224, 294

wave (physical processes, sources)
absorption 294, 296
breaking 188, 242, 276
current interaction 288
dissipation 188, 276, 281, 293
generation by wind 177, 268, 289
transmission 296
wave–wave interactions 183, 270

wave (physical processes, properties)
diffraction 210
propagation 299
reflection 221
refraction 147, 202, 335

wave (physical, compound)
decay 194
evolution 152, 155, 247, 250
growth 177, 180, 247

wave (induced)
force 234
kinetic energy 132
orbital motion 122
potential energy 131
pressure 128
radiation stress 225
set-up/set-down/ currents 225

wave (model)
Boussinesq 241
first-generation 194
second-generation 194
third-generation 194

wave theory
Airy 107
cnoidal 142
Gerstner 123
nonlinear 137, 239, 242
Stokes 138, 139
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wavelet 324
WAVERIDER 13, 14

directional 15
Weibull distribution 91
white-capping 188, 293
white horse 190
wind 146

direction 179, 195
effect on surf breaking 282
friction 178
friction velocity 147
induced pressure 108, 178
input 177

sea 5
speed 146

WRT 196

Xnl 292, 293

yaw motion 15
young sea 151

zero-crossing
analysis 25, 56
mean zero-crossing wave period 61
wave period 29
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