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CONVERSIONS BETWEEN U.S. CUSTOMARY UNITS AND SI UNITS (Continued)

Times conversion factor
U.S. Customary unit Equals SI unit
Accurate Practical

Moment of inertia (area)

inch to fourth power in4 416,231 416,000 millimeter to fourth

power mm?*

inch to fourth power in4 0.416231 X 1076 0.416 X 107 | meter to fourth power m*
Moment of inertia (mass)

slug foot squared slug-ft2 1.35582 1.36 kilogram meter squared kg-m?2
Power

foot-pound per second ft-1b/s 1.35582 1.36 watt (J/s or N-m/s) w

foot-pound per minute ft-1b/min 0.0225970 0.0226 watt W

horsepower (550 ft-1b/s) hp 745.701 746 watt w
Pressure; stress

pound per square foot psf 47.8803 47.9 pascal (N/m?) Pa

pound per square inch psi 6894.76 6890 pascal Pa

kip per square foot ksf 47.8803 479 kilopascal kPa

kip per square inch ksi 6.89476 6.89 megapascal MPa
Section modulus

inch to third power in3 16,387.1 16,400 millimeter to third power ~mm?

inch to third power in.3 16.3871 X 1076 16.4 X 1079 meter to third power m3
Velocity (linear)

foot per second ft/s 0.3048* 0.305 meter per second m/s

inch per second in./s 0.0254* 0.0254 meter per second m/s

mile per hour mph 0.44704* 0.447 meter per second m/s

mile per hour mph 1.609344%* 1.61 kilometer per hour km/h
Volume

cubic foot ft3 0.0283168 0.0283 cubic meter m3

cubic inch in3 16.3871 X 107° 16.4X107¢ | cubic meter m3

cubic inch in.3 16.3871 16.4 cubic centimeter (cc) cm?

gallon (231 in.3) gal. 3.78541 3.79 liter L

gallon (231 in.3) gal. 0.00378541 0.00379 cubic meter m3

*An asterisk denotes an exact conversion factor
Note: To convert from SI units to USCS units, divide by the conversion factor

Temperature Conversion Formulas  7(°C) = —g[T("F) —32]1=T(K) — 273.15

T(K) = —S—[T("F) —32] +273.15 = T(°C) + 273.15

T(°F) = —g—T("C) +32= —z—T(K) —459.67
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research work on topics in vibrations and solid mechanics. Dr. Kelly is also the author of
System Dynamics and Response, Advanced Vibration Analysis, Advanced Engineering
Mathematics with Modeling Applications, Fundamentals of Mechanical Vibrations (First
and Second Editions) and Schaum’s Outline in Theory and Problems in Mechanical
Vibrations.
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This edition of Mechanical Vibrations: Theory and Applications has been adapted to
incorporate the International System of Units (Le Systeme International d’Unités or SI)
throughout the book.

Le Systéme International d'Unités

The United States Customary System (USCS) of units uses FPS (foot-pound-second) units
(also called English or Imperial units). SI units are primarily the units of the MKS (meter-
kilogram-second) system. However, CGS (centimeter-gram-second) units are often accepted
as SI units, especially in textbooks.

Using SI Units in this Book

In this book, we have used both MKS and CGS units. USCS units or FPS units used in
the US Edition of the book have been converted to SI units throughout the text and prob-
lems. However, in case of data sourced from handbooks, government standards, and prod-
uct manuals, it is not only extremely difficult to convert all values to SI, it also encroaches
upon the intellectual property of the source. Also, some quantities such as the ASTM grain
size number and Jominy distances are generally computed in FPS units and would lose
their relevance if converted to SI. Some data in figures, tables, examples, and references,
therefore, remains in FPS units. For readers unfamiliar with the relationship between the
EPS and the SI systems, conversion tables have been provided inside the front and back
covers of the book.

To solve problems that require the use of sourced data, the sourced values can be con-
verted from FPS units to SI units just before they are to be used in a calculation. To obtain
standardized quantities and manufacturers’ data in SI units, the readers may contact the
appropriate government agencies or authorities in their countries/regions.

Instructor Resources

A Printed Instructor’s Solution Manual in SI units is available on request. An electronic
version of the Instructor’s Solutions Manual, and PowerPoint slides of the figures from the
SI text are available through http://login.cengage.com.

The readers’ feedback on this ST Edition will be highly appreciated and will help us improve
subsequent editions.

The Publishers
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ngineers apply mathematics and science to solve problems. In a traditional under-

graduate engineering curriculum, students begin their academic career by taking

courses in mathematics and basic sciences such as chemistry and physics. Students
begin to develop basic problem-solving skills in engineering courses such as statics, dynam-
ics, mechanics of solids, fluid mechanics, and thermodynamics. In such courses, students
learn to apply basic laws of nature, constitutive equations, and equations of state to devel-
op solutions to abstract engineering problems.

Vibrations is one of the first courses where students learn to apply the knowledge obtained
from mathematics and basic engineering science courses to solve practical problems. While the
knowledge about vibrations and vibrating systems is important, the problem-solving skills
obtained while studying vibrations are just as important. The objectives of this book are two-
fold: to present the basic principles of engineering vibrations and to present them in a frame-
work where the reader will advance his/her knowledge and skill in engineering problem solving.

This book is intended for use as a text in a junior- or senior-level course in vibrations. It
could be used in a course populated by both undergraduate and graduate students. The latter
chapters are appropriate for use as a stand-alone graduate course in vibrations. The prerequi-
sites for such a course should include courses in statics, dynamics, mechanics of materials, and
mathematics using differential equations. Some material covered in a course in fluid mechan-
ics is included, but this material can be omitted without a loss in continuity.

Chapter 1 is introductory, reviewing concepts such as dynamics, so that all readers are
familiar with the terminology and procedures. Chapter 2 focuses on the elements that com-
prise mechanical systems and the methods of mathematical modeling of mechanical systems.
It presents two methods of the derivation of differential equations: the free-body diagram
method and the energy method, which are used throughout the book. Chapters 3 through 5
focus on single degree-of-freedom (SDOF) systems. Chapter 6 is focused solely on two
degree-of-freedom systems. Chapters 7 through 9 focus on general multiple degree-of-freedom
systems. Chapter 10 provides a brief overview of continuous systems. The topic of Chapter 11
is the finite-element methods, which is a numerical method with its origin in energy meth-
ods, allowing continuous systems to be modeled as discrete systems. Chapter 12 introduces
the reader to nonlinear vibrations, while Chapter 13 provides a brief introduction to random
vibrations.

The references at the end of this text list many excellent vibrations books that address
the topics of vibration and design for vibration suppression. There is a need for this book,
as it has several unique features:

e Two benchmark problems are studied throughout the book. Statements defining the
generic problems are presented in Chapter 1. Assumptions are made to render SDOF
models of the systems in Chapter 2 and the free and forced vibrations of the systems
studied in Chapters 3 through 5, including vibration isolation. Two degree-of-freedom
system models are considered in Chapter 6, while MDOF models are studied in
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Chapters 7 through 9. A continuous-systems model for one benchmark problem is
considered in Chapter 10 and solved using the finite-element method in Chapter 11.
A random-vibration model of the other benchmark problem is considered in Chapter 13.
The models get more sophisticated as the book progresses.

*  Most vibration problems (certainly ones encountered by undergraduates) involve the
planar motion of rigid bodies. Thus, a free-body diagram method based upon
D’Alembert’s principle is developed and used for rigid bodies or systems of rigid bod-
ies undergoing planar motion.

*  An energy method called the equivalent systems method is developed for SDOF sys-
tems without introducing Lagrange’s equations. Lagrange’s equations are reserved for
MDOF systems.

*  Most chapters have a Further Examples section which presents problems using con-
cepts presented in several sections or even several chapters of the book.

© MATLAB® is used in examples throughout the book as a computational and graphi-
cal aid. All programs used in the book are available at the specific book website acces-
sible through www.cengage.com/engineering.

*  The Laplace transform method and the concept of the transfer function (or the impul-
sive response) is used in MDOF problems. The sinusoidal transfer function is used to
solve MDOF problems with harmonic excitation.

*  The topic of design for vibration suppression is covered where appropriate. The design
of vibration isolation for harmonic excitation is covered in Chapter 4, vibration isola-
tion from pulses is covered in Chapter 5, design of vibration absorbers is considered
in Chapter 6, and vibration isolation problems for general MDOF systems is consid-

ered in Chapter 9.

To access additional course materials, please visit www.cengagebrain.com. At the
cengagebrain.com home page, search for the ISBN of your title (from the back cover of
your book) using the search box at the top of the page. This will take you to the product
page where these resources can be found.

The author acknowledges the support and encouragement of numerous people in the
preparation of this book. Suggestions for improvement were taken from many students
at The University of Akron. The author would like to especially thank former students
Ken Kuhlmann for assistance with the problem involving the rotating manometer in
Chapter 12, Mark Pixley for helping with the original concept of the prototype for the soft-
ware package available at the website, and J.B. Suh for general support. The author also
expresses gratitude to Chris Carson, Executive Director, Global Publishing; Chris Shortt,
Publisher, Global Engineering; Randall Adams, Senior Acquisitions Editor; and Hilda
Gowans, Senior Developmental Editor, for encouragement and guidance throughout the
project. The author also thanks George G. Adams, Northeastern University; Cetin
Cetinkaya, Clarkson University; Shanzhong (Shawn) Duan, South Dakota State
University; Michael J. Leamy, Georgia Institute of Technology; Colin Novak, University of
Windsor; Aldo Sestieri, University La Sapienza Roma; and Jean Zu, University of Toronto,
for their valuable comments and suggestions for making this a better book. Finally, the
author expresses appreciation to his wife, Seala Fletcher-Kelly, not only for her support and
encouragement during the project but for her help with the figures as well.

S. GRAHAM KELLY
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11 THE STUDY OF VIBRATIONS

Vibrations are oscillations of a mechanical or structural system about an equilibrium posi-
tion. Vibrations are initiated when an inertia element is displaced from its equilibrium
position due to an energy imparted to the system through an external source. A restoring
force, or a conservative force developed in a potential energy element, pulls the element
back toward equilibrium. When work is done on the block of Figure 1.1(a) to displace it
from its equilibrium position, potential energy is developed in the spring. When the block
is released the spring force pulls the block toward equilibrium with the potential energy
being converted to kinetic energy. In the absence of non-conservative forces, this transfer
of energy is continual, causing the block to oscillate about its equilibrium position. When
the pendulum of Figure 1.1(b) is released from a position above its equilibrium position
the moment of the gravity force pulls the particle, the pendulum bob, back toward equi-
librium with potential energy being converted to kinetic energy. In the absence of non-con-
servative forces, the pendulum will oscillate about the vertical equilibrium position.

Non-conservative forces can dissipate or add energy to the system. The block of
Figure 1.2(a) slides on a surface with a friction force developed between the block and the
surface. The friction force is non-conservative and dissipates energy. If the block is given a
displacement from equilibrium and released, the energy dissipated by the friction force
eventually causes the motion to cease. Motion is continued only if additional energy is
added to the system as by the externally applied force in Figure 1.2(b).
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(a) When the block is displaced T
from equilibrium, the force
developed in the spring (as a o
result of the stored potential g_/\/\/\/\_ D E—
energy) pulls the block back k
toward the equilibrium posi- /77977ﬁ77
tion. (b) When the pendulum is (a) (b) mg
rotated away from the vertical

equilibrium position, the

moment of the gravity force

about the support pulls the

pendulum back toward the

equilibrium position. =

3w Al

\\‘u T<_ umg

™

(@)

(a) Friction is a non-conserva- l

. . . kx

tive force which dissipates }W — F P —F
the total energy of the

system. (b) The external force ~— lmg
is a non-conservative force T

which does work on the
system (b)

Vibrations occur in many mechanical and structural systems. If uncontrolled, vibration
can lead to catastrophic situations. Vibrations of machine tools or machine tool chatter can
lead to improper machining of parts. Structural failure can occur because of large dynamic
stresses developed during earthquakes or even wind-induced vibration. Vibrations induced
by an unbalanced helicopter blade while rotating at high speeds can lead to the blade’s fail-
ure and catastrophe for the helicopter. Excessive vibrations of pumps, compressors, turbo-
machinery, and other industrial machines can induce vibrations of the surrounding
structure, leading to inefficient operation of the machines while the noise produced can
cause human discomfort.

Vibrations can be introduced, with beneficial effects, into systems in which they would
not naturally occur. Vehicle suspension systems are designed to protect passengers from dis-
comfort when traveling over rough terrain. Vibration isolators are used to protect structures
from excessive forces developed in the operation of rotating machinery. Cushioning is used
in packaging to protect fragile items from impulsive forces.

Energy harvesting takes unwanted vibrations and turns them into stored energy. An
energy harvester is a device that is attached to an automobile, a machine, or any system that
is undergoing vibrations. The energy harvester has a seismic mass which vibrates when
excited, and that energy is captured electronically. The principle upon which energy har-
vesting works is discussed in Chapter 4.

Micro-electromechanical (MEMS) systems and nano-electromechanical (NEMS) sys-
tems use vibrations. MEMS sensors are designed using concepts of vibrations. The tip of
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an atomic force microscope uses vibrations of a nanotube to probe a specimen.
Applications to MEMS and NEMS are sprinkled throughout this text.

Biomechanics is an area where vibrations are used. The human body is modeled using
principles of vibration analysis. Chapter 7 introduces a three-degree-of-freedom model of
a human hand and upper arm proposed by Dong, Dong, Wu, and Rakheja in the journal
of Biomechanics.

The study of vibrations begins with the mathematical modeling of vibrating systems.
Solutions to the resulting mathematical problems are obtained and analyzed. The solutions
are used to answer basic questions about the vibrations of a system as well as to determine
how unwanted vibrations can be reduced or how vibrations can be introduced into a
system with beneficial effects. Mathematical modeling leads to the development of princi-
ples governing the behavior of vibrating systems.

The purpose of this chapter is to provide an introduction to vibrations and a review of
important concepts which are used in the analysis of vibrations. This chapter begins with
the mathematical modeling of vibrating systems. This section reviews the intent of the
modeling and outlines the procedure which should be followed in mathematical modeling
of vibrating systems.

The coordinates in which the motion of a vibrating system is described are called the
generalized coordinates. They are defined in Section 1.3, along with the definition of
degrees of freedom. Section 1.4 presents the terms which are used to classify vibrations and
describe further how this book is organized.

Section 1.5 is focused on dimensional analysis, including the Buckingham Pi theorem.
This is a topic which is covered in fluid mechanics courses but is given little attention in
solid mechanics and dynamics courses. It is important for the study of vibrations, as is
steady-state amplitudes of vibrating systems are written in terms of non-dimensional vari-
ables for an easier understanding of dependence on parameters.

Simple harmonic motion represents the motion of many undamped systems and is pre-
sented in Section 1.6.

Section 1.7 provides a review of the dynamics of particles and rigid bodies used in this
work. Kinematics of particles is presented and is followed by kinematics of
rigid bodies undergoing planar motion. Kinetics of particles is based upon Newton’s second
law applied to a free-body diagram (FBD). A form of D’Almebert’s principle is used to ana-
lyze problems involving rigid bodies undergoing planar motion. Pre-integrated forms of
Newton’s second law, the principle of work and energy, and the principle of impulse and
momentum are presented.

Section 1.8 presents two benchmark problems which are used throughout the book to
illustrate the concepts presented in each chapter. The benchmark problems will be reviewed
at the end of each chapter. Section 1.9 presents further problems for additional study. This
section will be present at the end of most chapters and will cover problems that use con-
cepts from more than one section or even more than one chapter. Every chapter, including
this one, ends with a summary of the important concepts covered and of the important
equations introduced in that chapter.

Differential equations are used in Chapters 3, 4, and 5 to model single degree-of-freedom
(SDOF) systems. Systems of differential equations are used in Chapters 6, 7, 8, and 9 to
study multiple degree-of-freedom systems. Partial differential equations are used in
Chapter 10 to study continuous systems. Chapter 11 introduces an approximate method
for the solution of partial differential equations. Chapter 12 uses nonlinear differential
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CHAPTER 1

equations to model nonlinear systems. Chapter 13 uses stochastic differential equations to
study random vibrations. Differential equations are not the focus of this text, although
methods of solution are presented. The reader is referred to a text on differential equations
for a more thorough understanding of the mathematical methods employed.

AEEEEEER————————————
1.2 MATHEMATICAL MODELING

Solution of an engineering problem often requires mathematical modeling of a physical
system. The modeling procedure is the same for all engineering disciplines, although the
details of the modeling vary between disciplines. The steps in the procedure are presented
and the details are specialized for vibrations problems.

1.2.1 PROBLEM IDENTIFICATION

The system to be modeled is abstracted from its surroundings, and the effects of the sur-
roundings are noted. Known constants are specified. Parameters which are to remain vari-
able are identified.

The intent of the modeling is specified. Possible intents for modeling systems under-
going vibrations include analysis, design, and synthesis. Analysis occurs when all parame-
ters are specified and the vibrations of the system are predicted. Design applications include
parametric design, specifying the parameters of the system to achieve a certain design
objective, or designing the system by identifying its components.

1.2.2 ASSUMPTIONS

Assumptions are made to simplify the modeling. If all effects are included in the modeling
of a physical system, the resulting equations are usually so complex that a mathematical
solution is impossible. When assumptions are used, an approximate physical system is
modeled. An approximation should only be made if the solution to the resulting approxi-
mate problem is easier than the solution to the original problem and with the assumption
that the results of the modeling are accurate enough for the use they are intended.

Certain implicit assumptions are used in the modeling of most physical systems. These
assumptions are taken for granted and rarely mentioned explicitly. Implicit assumptions
used throughout this book include:

1. DPhysical properties are continuous functions of spatial variables. This continnum
assumption implies that a system can be treated as a continuous piece of matter. The
continuum assumption breaks down when the length scale is of the order of the mean
free path of a molecule. There is some debate as to whether the continuum assump-
tion is valid in modeling new engineering materials, such as carbon nanotubes.
Vibrations of nanotubes where the length-to-diameter ratio is large can be modeled
reasonably using the continuum assumption, but small length-to-diameter ratio nan-
otubes must be modeled using molecular dynamics. That is, each molecule is treated
as a separate particle.

2. The earth is an inertial reference frame, thus allowing application of Newton’s laws in
a reference frame fixed to the earth.
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3. Relativistic effects are ignored. (Certaintly, velocities encountered in the modeling of
vibrations problems are much less than the speed of light).

4. Gravity is the only external force field. The acceleration due to gravity is 9.81 m/s* on
the surface of the earth.

5. The systems considered are not subject to nuclear reactions, chemical reactions, exter-
nal heat transfer, or any other source of thermal energy.

All materials are linear, isotropic, and homogeneous.

7.  The usual assumptions of mechanics of material apply. This includes plane sections
remaining plane for beams in bending and circular sections under torsional loads do
not warp.

Explicit assumptions are those specific to a particular problem. An explicit assumption
is made to eliminate negligible effects from the analysis or to simplify the problem while
retaining appropriate accuracy. An explicit assumption should be verified, if possible, on
completion of the modeling.

All physical systems are inherently nonlinear. Exact mathematical modeling of any
physical system leads to nonlinear differential equations, which often have no analytical
solution. Since exact solutions of linear differential equations can usually be determined
easily, assumptions are often made to /inearize the problem. A linearizing assumption leads
either to the removal of nonlinear terms in the governing equations or to the approxima-
tion of nonlinear terms by linear terms.

A geometric nonlinearity occurs as a result of the system’s geometry. When the dif-
ferential equation governing the motion of the pendulum bob of Figure 1.1(b) is
derived, a term equal to sin 6 (where 6 is the angular displacement from the equilib-
rium position) occurs. If 0 is small, sin § = 0 and the differential equation is linearized.
However, if acrodynamic drag is included in the modeling, the differential equation is
still nonlinear.

If the spring in the system of Figure 1.1(a) is nonlinear, the force-displacement relation
in the spring may be F = £ x + k,x?. The resulting differential equation that governs the
motion of the system is nonlinear. This is an example of a material nonlinearity. The
assumption is often made that either the amplitude of vibration is small (such that
k3x3 << k,x and the nonlinear term neglected).

Nonlinear systems behave differently than linear systems. If linearization of the differ-
ential equation occurs, it is important that the results are checked to ensure that the lin-
earization assumption is valid.

When analyzing the results of mathematical modeling, one has to keep in mind that
the mathematical model is only an approximation to the true physical system. The actual
system behavior may be somewhat different than that predicted using the mathematical
model. When aerodynamic drag and all other forms of friction are neglected in a mathe-
matical model of the pendulum of Figure 1.1(b) then perpetual motion is predicted for the
situation when the pendulum is given an initial displacement and released from rest. Such
perpetual motion is impossible. Even though neglecting aerodynamic drag leads to an
incorrect time history of motion, the model is still useful in predicting the period, fre-
quency, and amplitude of motion.

Once results have been obtained by using a mathematical model, the validity of all
assumptions should be checked.
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1.2.3 BASIC LAWS OF NATURE

A basic law of nature is a physical law that applies to all physical systems regardless of the
material from which the system is constructed. These laws are observable, but cannot be
derived from any more fundamental law. They are empirical. There exist only a few basic
laws of nature: conservation of mass, conservation of momentum, conservation of energy,
and the second and third laws of thermodynamics.

Conservation of momentum, both linear and angular, is usually the only physical law
that is of significance in application to vibrating systems. Application of the principle of
conservation of mass to vibrations problems is trivial. Applications of the second and third
laws of thermodynamics do not yield any useful information. In the absence of thermal
energy, the principle of conservation of energy reduces to the mechanical work-energy
principle, which is derived from Newton’s laws.

1.2.4 CONSTITUTIVE EQUATIONS

Constitutive equations provide information about the materials of which a system is made.
Different materials behave differently under different conditions. Steel and rubber behave
differently because their constitutive equations have different forms. While the constitutive
equations for steel and aluminum are of the same form, the constants involved in the equa-
tions are different. Constitutive equations are used to develop force-displacement relation-
ships for mechanical components that are used in modeling vibrating systems.

1.2.5 GEOMETRIC CONSTRAINTS

Application of geometric constraints is often necessary to complete the mathematical mod-
eling of an engineering system. Geometric constraints can be in the form of kinematic rela-
tionships between displacement, velocity, and acceleration. When application of basic laws
of nature and constitutive equations lead to differential equations, the use of geometric
constraints is often necessary to formulate the requisite boundary and initial conditions.

1.2.6 DIAGRAMS

Diagrams are often necessary to gain a better understanding of the problem. In vibrations,
one is interested in forces and their effects on a system. Hence, a free-body diagram (FBD),
which is a diagram of the body abstracted from its surrounding and showing the effect of
those surroundings in the form of forces, is drawn for the system. Since one is interested
in modeling the system for all time, a FBD is drawn at an arbitrary instant of time.

Two types of forces are illustrated on a FBD: body forces and surface forces. A body
force is applied to a particle in the interior of the body and is a result of the body existence
in an external force field. An implicit assumption is that gravity is the only external force
field surrounding the body. The gravity force —(mg) is applied to the center of mass and is
g directed toward the center of the earth, usually taken to be the downward direction, as
shown in Figure 1.3.

The gravity force is directed Surface forces are drawn at a particle on the body’s boundary as a result of the interaction

toward the center of the between the body and its surroundings. An external surface force is a reaction between the
earth, usually taken as the body and its external surface. Surface forces may be acting at a single point on the boundary
vertical direction. of the body, as shown in Figure 1.4(a), or they may be distributed over the surface of the
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. ; FIGURE 1.4
lFsma)t ﬂ% (a) A surface force applied to the beam
may be concentrated at a single point.
@ /gyg 9 9 (b) A surface force also may be a distrib-
uted load, as shown on the beam.
(@) (b)

body, as illustrated in Figure 1.4(b). Surface forces also may be the resultant of a stress
distribution.

In analyzing vibrations, FBDs are generally drawn at an arbitrary instant in the motion
of the body. Forces are labeled in terms of coordinates and system parameters. Constitutive
laws and geometric constraints are taken into consideration. An FBD drawn and annotated
as described, is ready for the basic laws of nature to be applied.

1.2.7 MATHEMATICAL SOLUTION

The mathematical modeling of a physical system results in the formulation of a mathemat-
ical problem. The modeling is not complete until the appropriate mathematics is applied
and a solution obtained.

The type of mathematics required is different for different types of problems. Modeling
of many statics, dynamics, and mechanics of solids problems leads only to algebraic equa-
tions. Mathematical modeling of vibrations problems leads to differential equations.

Exact analytical solutions, when they exist, are preferable to numerical or approximate
solutions. Exact solutions are available for many linear problems, but for only a few non-
linear problems.

1.2.8 PHYSICAL INTERPRETATION OF MATHEMATICAL RESULTS

After the mathematical modeling is complete, there is still work to be done. Vibrations is
an applied science—the results must mean something. The end result may be generic: to
determine the frequency response of a system due to a harmonic force where a non-dimen-
sional form of the frequency response would be a great help in understanding the behavior
of the system. The reason for the mathematical modeling may be more specific: to analyze
a specific system to determine the maximum displacement. It only remains to substitute
given numbers. The objective of the mathematical modeling dictates the form of the phys-
ical interpretation of the results.

The mathematical modeling of a vibrations problem is analyzed from the beginning
(where the conservation laws are applied to a FBD) to the end (where the results are used).
A variety of different systems are analyzed, and the results of the modeling applied.

I — ]
1.3 GENERALIZED COORDINATES

Mathematical modeling of a physical system requires the selection of a set of variables that
describes the behavior of the system. Dependent variables are the variables that describe the
physical behavior of the system. Examples of dependent variables are displacement of a par-
ticle in a dynamic system, the components of the velocity vector in a fluid flow problem,
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the temperature in a heat transfer problem, or the electric current in an AC circuit prob-
lem. Independent variables are the variables with which the dependent variables change.
That is, the dependent variables are functions of the independent variables. An independ-
ent variable for most dynamic systems and electric circuit problems is time. The temper-
ature distribution in a heat transfer problem may be a function of spatial position as well
as time. The dependent variables in most vibrations problems are the displacements of
specified particles from the system’s equilibrium position while time is the independent
variable.

Coordinates are kinematically independent if there is no geometric relationship
between them. The coordinates in Figure 1.5(a) are kinematically dependent because

x=r0 (1.1)
and
-
y=n0= 71 (1.2)
2

In Figure 1.5(b), the cables have some elasticity which is modeled by springs. The coordi-
nates x, y, and 6 are kinematically independent, because Equations (1.1) and (1.2) are not
applicable due to the elasticity of the cables.

The number of degrees of freedom for a system is the number of kinematically inde-
pendent variables necessary to completely describe the motion of every particle in the
system. Any set of 7 kinematically independent coordinate for a system with 7 degrees of
freedom is called a set of generalized coordinates. The number of degrees of freedom used in
analyzing a system is unique, but the choice of generalized coordinates used to describe the
motion of the system is not unique. The generalized coordinates are the dependent vari-
ables for a vibrations problem and are functions of the independent variable, time. If the
time history of the generalized coordinates is known, the displacement, velocity, and accel-
eration of any particle in the system can be determined by using kinematics.

A single particle free to move in space has three degrees of freedom, and a suitable choice
of generalized coordinates is the cartesian coordinates (x, y, z) of the particle with respect to
a fixed reference frame. As the particle moves in space, its position is a function of time.

A unrestrained rigid body has six degrees of freedom, three coordinates for the dis-
placement of its mass center, and angular rotation about three coordinate axes, as shown in
Figure 1.6(a). However constraints may reduce that number. A rigid body undergoing
planar motion has three possible degrees of freedom, the displacement of its mass center in

(a) The coordinates x, y, and
0 are kinematically depend-
ent, because there exists a
kinematic relationship
between them. (b) The coor-
dinates x, y, and 6 are kine-
matically independent,
because there is no kinematic
relation between them due
to the elasticity of the cables
modeled here as springs. (a) (b)
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FIGURE 1.6

(a) The general three-dimen-
sional motion of a rigid body
has six degrees of freedom. Its
mass center is free to move in
three coordinate directions,
and rotation may occur about
three axes. (b) A rigid body
undergoing planar motion has
at most three degree of free-
dom. Its mass center can move
z (b) in two directions, and rotation
occurs only about an axis per-
pendicular to the plane of
motion.

xi+yj+zk

a plane, and angular rotation about one axis, as illustrated in Figure 1.6(b). Two rigid
bodies undergoing planar motion have six degrees of freedom, but they may be connected
in a manner which constrains them and reduces the number of degrees of freedom.

Each of the systems of Figure 1.7 is in equilibrium in the position shown and undergoes
planar motion. All bodies are rigid. Specify, for each system, the number of degrees of free-
dom and recommend a set of generalized coordinates.

SOLUTION
(a) The system has one degree of freedom. If 6, the clockwise angular displacement of the
bar from the system’s equilibrium position, is chosen as the generalized coordinate, then a

L

Q) ) Yo l 145 INNY.

(a) (b)

Te

(©) (d)
FIGURE 1.7
(a) through (d) Systems of Example 1.1. Possible generalized coordinates are indicated.
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particle initially a distance « from the fixed support has a horizontal position  cos 6 and a
vertical displacement 4 sin 6.

(b) The system has two degrees of freedom, assuming it is constrained from side-to-
side motion. If 6, the clockwise angular displacement of the bar measured from its equilib-
rium position, and x, the displacement of the bar’s mass center measured from equilibrium,
are chosen as generalized coordinates, then the displacement of a particle a distance d to
the right of the mass center is x + & sin 6. An alternate choice for the generalized coordi-
nates is x,, the displacement of the right end of the bar, and %) the displacement of the left
end of the bar, both measured from equilibrium.

(c) The system has two degrees of freedom. The sliding block is rigidly connected to
the pulley, but the pulley is connected by a spring to the hanging block. Two possible
degrees of freedom are x; (the displacement of the sliding block from equilibrium) and x,
(the displacement of the hanging mass from the system’s equilibrium position). An alter-
nate choice of generalized coordinates are 6 (the clockwise angular rotation of the pulley
from equilibrium) and x,.

(d) The system has four degrees of freedom. The sliding block is connected by an
elastic cable to the pulley. The pulley is connected by an elastic cable to bar AB, which is
connected by a spring to bar CD. A possible set of generalized coordinates (all from equi-
librium) is x, the displacement of the sliding block; 6, the clockwise angular rotation of the
pulley; ¢, the counterclockwise angular rotation of bar AB; and ¢, the clockwise angular
rotation of bar CD.

The systems of Example 1.1 are assumed to be composed of rigid bodies. The rela-
tive displacement of two particles on a rigid body remains fixed as motion occurs.
Particles in an elastic body may move relative to one another as motion occurs. Particles
A and C'lie along the neutral axis of the cantilever beam of Figure 1.8, while particle B
is in the cross section obtained by passing a perpendicular plane through the neutral
axis at A. Because of the assumption that plane sections remain plane during displace-
ment, the displacements of particles A and B are related. However, the displacement of
particle C relative to particle A depends on the loading of the beam. Thus, the displace-
ments of A and C are kinematically independent. Since 4 and C represent arbitrary par-
ticles on the beam’s neutral axis, it is inferred that there is no kinematic relationship
between the displacements of any two particles along the neutral axis. Since there are
an infinite number of particles along the neutral axis, the cantilever beam has an infi-
nite number of degrees of freedom. In this case, an independent spatial variable x,
which is the distance along the neutral axis to a particle when the beam is in equilib-
rium, is defined. The dependent variable, displacement, is a function of the independ-
ent variables x and time, w(x, #).

The transverse displacements of particles A and B are
equal from elementary beam theory. However, no kine-
matic relationship exists between the displacements of

o

1

1

2 X particle A and B particle C. The beam has an infinite

7 A ¢ number of degrees of freedom and is a continuous
w(x, 1) system.
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]
1.4 CLASSIFICATION OF VIBRATION

Vibrations are classified by the number of degrees of freedom necessary for their modeling,
the type of forcing they are subject to, and the assumptions used in the modeling.
Vibrations of systems that have a finite number of degrees of freedom are called discrete
systems. A system with one degree of freedom is called a single degree-of-freedom (SDOF)
system. A system with two or more degrees of freedom is called a multiple degree-of-freedom
(MDOEF) system. A system with an infinite number of degrees of freedom is called a contin-
uous system or distributed parameter system.

If the vibrations are initiated by an initial energy present in the system and no other
source is present, the resulting vibrations are called free vibrations. If the vibrations are
caused by an external force or motion, the vibrations are called farced vibrations. If the
external input is periodic, the vibrations are harmonic. Otherwise, the vibrations are said to
be transient. If the input is stochastic, the vibrations are said to be random.

If the vibrations are assumed to have no source of energy dissipation, they are called
undamped. 1f a dissipation source is present, the vibrations are called damped and are fur-
ther characterized by the form of damping. For example, if viscous damping is present, they
are called viscously damped.

If assumptions are made to render the differential equations governing the vibrations
linear, the vibrations are called /inear. If the governing equations are nonlinear, then so are
the vibrations.

Mathematical modeling of SDOF systems is the topic of Chapter 2. Free vibrations of
SDOF systems are covered in Chapter 3 (first undamped, then viscously damped, and finally
with other forms of damping). Forced vibrations of SDOF systems are covered in Chapter 4
(harmonic) and Chapter 5 (transient). Chapter 6 discusses the special case of two degree-of-
freedom systems from the derivation of the differential equations to forced vibrations. The
more general MDOF systems are considered in Chapters 7 through 9. Chapter 7 focuses on
the modeling of MDOF systems, Chapter 8 on the free vibration response of undamped and
damped systems, and Chapter 9 on the forced response of MDOF systems. Chapters 10 and
11 consider continuous systems. The exact free and forced response of continuous systems is
covered in Chapter 10, while Chapter 11 presents a numerical method called the finite-
element method, which is used to approximate continuous systems with a discrete systems
model. Chapter 12 covers nonlinear vibrations. Finally, Chapter 13 covers random vibrations.

I — ]
1.5 DIMENSIONAL ANALYSIS

An engineer want to run tests to find the correlation between a single dependent variable
and four independent variables,

¥ =[x, x5 x5 x) (1:3)

There are ten values of each independent variable. Changing one variable at a time requires
10,000 tests. The expense and time required to run these tests are prohibitive.

A better method to organize the tests is to use non-dimensional variables.
The Buckingham Pi theorem states that you count the number of variables, including the

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CHAPTER 1

dependent variable: call it 7. Then count the number of basic dimensions involved in the
variables; call it » Then you need 7» — r dimensionless variables or 7 groups. If » = 6 and
n = 3 there are three 7 groups, and the relation has a non-dimensional form of

m, = flw,m,) (1-4)

where 77, is a dimensionless group of parameters involving the dependent variable and 7r,
and 77, are dimensionless groups that involve only the independent parameters.
Usually, the dimensionless parameters have physical meaning. For example, in fluid

mechanics when it is desired to find the drag force acting on an airfoil, it is proposed that
D = f(l/, L3 p) /-Ly C) (1‘5)

where D is the drag force, v is the velocity of the flow, L is the length of the airfoil, p is the
mass density of the fluid, u is the viscosity of the fluid, and ¢ is the speed of sound in the
fluid. There are six variables which involve three dimensions. Thus, the Buckingham Pi
theorem yields a formulation involving three 7 groups. The result is

C, = f(Re, M) (1.6)
where the drag coefficient is
D
C,= T (1.7)
Epvzl,
the Reynolds number is
L
Re=P% (1.8)
m
and the Mach number is
v
M=- (1.9)

The drag coefficient is the ratio of the drag force to the inertia force, the Reynolds number
is the ratio of the inertia force to the viscous force, and the Mach number is the ratio to
the velocity of the flow to the speed of sound.

Dimensional analysis also can be used when a known relationship exists between a
single dependent variable and a number of dimensional variables. The algebra leads to a
relationship between a dimensionless variable involving the dependent parameter and non-
dimensional variables involving the independent parameters.

A dynamic vibration absorber is added to a primary system to reduce its amplitude. The
absorber is illustrated in Figure 1.9 and studied in Chapter 6. The steady-state amplitude
of the primary system is dependent upon six parameters:

*  m,, the mass of the primary system

*  m,, the absorber mass

*  k,, the stiffness of the primary system
*  k,, the absorber stiffness

* F,, the amplitude of excitation

* o, the frequency of excitation
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Fy sinwt
m, Primary
system
k k
il ks il
2 2
my
FIGURE 1.9
/7T /7T Example 1.2 is to determine the non-dimen-
sional form of the steady-state amplitude
Absorber of the primary system when an absorber
system system is added.

The equation for the dimensional amplitude is

. ky, = m,w?
= a
1 N m myw® — (kym, + kym, + kym)w? + kk, (2)

Non-dimensionalize this relationship.

SOLUTION

The dimensional variables involve three independent basic dimensions: mass, length, and
time. The Buckingham Pi theorem predicts that the non-dimensional relationship between
X, and the parameters involve 7 — 3 = 4 non-dimensional parameters. Factor £, out of the
numerator and /elle2 out of the denominator, resulting in

. m,w*
£ ky
1T 7 (b)
ky | m m,w’ m,m, m,
—— |+ =+ — |+ 1
ki, ky ky k
ky kyx)
Multiply both sides by 7 making both sides dimensionless. Define 7, = = and
0 0
m,w*
= leading to
2
1—-m
_ 2
" mlwzﬂ'-ﬂ'—i— ﬁ—I—ﬁwz-l—l ©
kol ’ ky ky
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m,w?
Define 7, = /; . The final dimensional term in Equation (c) becomes
1
(m‘ + mZ) (1 + m2) 1+ ) (d)
—+ o, =7 — = T,
kl /el 2 3 m, 3
The non-dimensional form of Equation (a) is
1 —m,
™, = — (e)
mam, — 7, + (1 +m) my + 1

.
1.6 SIMPLE HARMONIC MOTION

Consider a motion represented by

x(¢) = Acoswt + Bsinwt (1.10)

Such a motion is referred to as simple harmonic motion. Use of the trigonometric identity
sin (wt + ¢) = sinwtcos P + cos wtsin P (1.11)

in Equation (1.10) gives
x(t) = Xsin (0t + ¢) (1.12)
where

X=VA>+ B (1.13)

- )

Equation (1.12) is illustrated in Figure 1.10. The amplitude, X; is the maximum displace-

and

ment from equilibrium. The response is cyclic. The period is the time required to execute
one cycle, is determined by
2

T= 7 (1.15)

and is usually measured in seconds (s). The reciprocal of the period is the number of cycles
executed in one second and is called the frequency

w

f=— (1.16)

2T

The unit of cycles/second is designated as one hertz (Hz). As the system executes
one cycle, the argument of the trigonometric function goes through 27 radians. Thus,
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FIGURE 1.10

3 — .
lllustration of simple har-
monic motion in which ¢ > o
2 and the response lags a pure
sinusoid.
1 -
T o
02 03 04 05 6 07 08
-1 A
2 -

-3

1 cycle = 2 radians and the frequency becomes

f= <2(:T cycle/s>(27r rad/cycle) = w rad/s (1.17)

Thus, w is the circular frequency measured in rad/s. The frequency also may be
expressed in term of revolutions per minute (rpm) by noting that one revolution is the
same as one cycle and there are 60 s in one minute,

o rpm/s = (@ rad/s)<21 = ) ( 60.5 ) (1.18)
T

rad 1 min

The phase angle ¢ represents the lead or lag between the response and a purely sinusoidal
response. If ¢p > 0, the response is said to “lag” a pure sinusoid, and if ¢ < 0, the response
is said to “lead” the sinusoid.

The response of a system is given by
x(2) = 0.003 cos (302 + 0.004 sin(304) m (a)

Determine (a) the amplitude of motion, (b) the period of motion, (c) the frequency in
Hz, (d) the frequency in rad/s, (e) the frequency in rpm, (f) the phase angle, and (g) the
response in the form of Equation (1.12)

SOLUTION
(a) The amplitude is given by Equation (1.13) which results in

= V/0.0032 + 0.004> m = 0.005 m (b)

(b) The period of motion is

2
T= 3% s = 0.209 s ()
(c) The frequency in hertz is
1 1
=—=——"—"=477H d
S= 7 " o9~ A7 @
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(d) The frequency in rad/s is
w = 2mf'= 30 rad/s (e)

(e) The frequency in revolutions per minute is

—<2oﬂ)<“€v)(605)—1910 )
@ s 27 rad 1 min i

(f) The phase angle is
0.003
= -1 =
¢ = tan <0.004) 0.643 rad (g)

(g) Written in the form of Equation (1.12), the response is
x(2) = 0.005sin(30¢ + 0.643) m (h)

.
1.7 REVIEW OF DYNAMICS

A brief review of dynamics is presented to familiarize the reader with the notation and
methods used in this text. The review begins with kinematics of particles and progresses to
kinematics of rigid bodies. Kinetics of particles is presented, followed by kinetics of rigid
bodies undergoing planar motion.

1.7.1 KINEMATICS

The location of a particle on a rigid body at any instant of time can be referenced to a fixed
cartesian reference frame, as shown in Figure 1.11. Let i, j, and k be unit vectors parallel
to the x, y, and z axes, respectively. The particle’s position vector is given by

r=x@i + y@)j + 29k (119)

from which the particle’s velocity and acceleration are determined

L i+ 50 + 20k (1.20)

v =

=x@®i+ yj + z(0k (1.21)

a=

dr
dav
dr

r=xi+yj+zk

P, y,2)

FIGURE 1.11
lllustration of the position vector for a particle
in three-dimensional space.
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(b)

(a) The position vector for a particle moving in a circular path. (b) The velocity for such a particle is
instantaneously tangent to the path of motion. (c) The particle has two components of acceleration.
One component is instantaneously tangent to the path, while the other is directed from the particle to
the center of rotation.

where a dot above a quantity represents differentiation of that quantity with respect
to time.

The motion of a particle moving in a circular path centered at A is illustrated in
Figure 1.12. The motion is characterized by an angular coordinate # measured positive
counterclockwise. The rate of rotation

6=0w (1.22)

is called the angular speed and has units of rad/s, assuming the unit of time is in seconds.
The angular acceleration is defined by

a=4 (1.23)
and has units of rad/s?.
The position vector of the particle is
r= Ri_ (1.24)
where R is the radius of the circle and i_ is a unit vector instantaneously directed toward

the particle from the center of rotation. Define i, as the unit vector instantaneously tangent
to the circle in the direction of increasing 6 and instantaneously perpendicular to i .

i di
Noting that 7; = —wi_ and 7; = —wi, the velocity is
. din .
v=1= R; = Rwi, (1.25)
The particle’s acceleration is
- dRwi) do> di, . .
a=v=—01—= RZ .t Rw;= Roi, — Rw’i | (1.26)

Now consider a rigid body undergoing planar motion. That is (1) the mass center
moves in a plane, say the x-y plane and (2) rotation occurs only about an axis perpendicu-
lar to the plane (the z axis), as illustrated in Figure 1.13. Consider two particles on the rigid
body, A and B, and locate their position vectors r, and r, The relative position vector ry,,
lies in the x-y plane. The triangle rule for vector addition yields

rp =1, g, (1.27)
Differentiation of Equation (1.27) with respect to time yields

Vg = Vy T vy, (1.28)
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(@) The triangle rule for
vector addition is used to
define the relative position
vector. (b) For a rigid body
undergoing planar motion,
the velocity of B viewed from
Ais that of a particle moving
in a dircular path centered at
A. () The relative acceleration
is that of a particle moving in
a drcular path centered at A.

X X

(b)

Since rotation occurs only about the z axis, the motion of B (as viewed from A) is that

of a particle moving in a circular path of radius |ry,,| Thus, the magnitude of relative veloc-

B/A
ity is given by Equation (1.25) as

Upa |rB/A|w (1.29)

and its direction is tangent to the circle made by the motion of particle B, which is perpen-
dicular to ry,,. The total velocity of particle B is given by Equation (1.28) and lies in the
x-y plane.

Differentiating of Equation (1.28) with respect to time yields

ag =a, + ag, (1.30)

The acceleration of particle B viewed from particle A is the acceleration of a particle
moving in a circular path centered at 4 as

ag = |1'B/A\o¢it — rof, (1.31)

Equations (1.28) and (1.30) are known as the relative velocity and relative acceleration
equations, respectively. They and Equations (1.29) and (1.31) are the only equations nec-
essary for the study of rigid-body kinematics of bodies undergoing planar motion.

1.7.2 KINETICS

The basic law for kinetics of particles is Newton’s second law of motion

>F = ma (1.32)

where the sum of the forces is applied to a free-body diagram of the particle. A rigid body
is a collection of particles. Writing an equation similar to Equation (1.32) for each particle
in the rigid body and adding the equations together leads to

>F = ma (1.33)

where @ is the acceleration of the mass center of the body and the forces are summed on a
free-body diagram of the rigid body. Equation (1.33) applies to all rigid bodies.

A moment equation is necessary in many problems. The moment equation for a rigid
body undergoing planar motion is

>SM, = Ia (1.34)

where G is the mass center of the rigid body and 7 is the mass moment of inertia about an
axis parallel to the z axis that passes through the mass center.
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0 (@)
B
A c
(a) Rotation about a fixed axis at O. (b) AB has
a fixed axis of rotation at A, but BC does not
(b) have a fixed axis of rotation.

Equations (1.33) and (1.34) can be used to solve rigid-body problems for planar
motion. In general, the force equation of Equation (1.33) yields two independent equa-
tions, and the moment equation of Equation (1.35) yields one. If the axis of rotation is
fixed, Equation (1.33) may be replaced by

SM,= I (1-35)

where /,, is the moment of inertia about the axis of rotation. In Figure 1.14(a), O is a fixed
axis of rotation, and Equation (1.35) is applicable. In Figure 1.14(b), link BC has does not
have a fixed axis of rotation, and Equation (1.35) is not applicable.

Recall that a system of forces and moments acting on a rigid body can be replaced by
a force equal to the resultant of the force system applied at any point on the body and a
moment equal to the resultant moment of the system about the point where the resultant
force is applied. The resultant force and moment act equivalently to the original system
of forces and moments. Thus Equations (1.33) and (1.34) imply that the system of exter-
nal forces and moments acting on a rigid body is equivalent to a force equal to 7za applied
at the body’s mass center and a resultant moment equal to /a. This latter resultant system
is called the system of effective forces. The equivalence of the external forces and the effec-
tive forces is illustrated in Figure 1.15.

The previous discussion suggests a solution procedure for rigid-body kinetics problems.
Two free-body diagrams are drawn for a rigid body. One free-body diagram shows all exter-
nal forces and moments acting on the rigid body. The second free-body diagram shows the

The system of external forces
and moments acting on a
rigid body undergoing planar
motion is equivalent to the
system of effective forces, a
force equal to m a applied at
the mass center, and a
moment equal to /a.
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effective forces. If the problem involves a system of rigid bodies, it may be possible to draw
a single free-body diagram showing the external forces acting on the system of rigid bodies
and one free-body diagram showing the effective forces of all of the rigid bodies. Equations
(1.33) and (1.34) are equivalent to

EFext = EFeff (1.36)

and
2 Moext - E MOeff (1 '37)

taken about any point O on the rigid body. Equations (1.36) and (1.37) are statements of
D’ Alembert’s principle applied to a rigid body undergoing planar motion.

The slender rod (I = ﬁmLz) AC of Figure 1.16(a) of mass 7 is pinned at B and held hor-
izontally by a cable at C. Determine the angular acceleration of the bar immediately after
the cable is cut.

SOLUTION
Immediately after the cable is cut, the angular velocity is zero. The bar has a fixed axis of
rotation at B. Applying Equation (1.35)

EMB = 2130‘ (a

to the FBD of Figure 1.16(b) and taking moments as positive clockwise, we have

L
mg — = la (b)
4
The parallel-axis theorem is used to calculate 7, as
_ 1 L\ 7
Iy=1+ deZEmLz-i— m(4> Z&mlf ()
Substituting into Equation (b) and solving for « yields
12¢
S d
a=—_ (d)

ALTERNATIVE METHOD
Free-body diagrams showing effective and external forces are shown in Figure 1.16(c). The
appropriate moment equation is

(ZMy),, = (ZMp) (e)
leading to
L 1 L L
L_ 1 n = £
mgL =1 ml* + (m4a>(4> )
12
and a = J
7L
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A B C
C O\ D)
AL 3L .
4 4 '
(@)
G
C A ! D
RI lmg
(b) X
2
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C i 1 o = C 1 D)
R‘|I lmg lm%a
©
FIGURE 1.16

(a) System of Example 1.4 where the slender rod is pinned at B and held by the cable at C. (b) FBD
of bar immediately after cable is cut. The problem involves rotation about a fixed axis at B, so
EM s = lza. (c) FBD’s showing external forces and effective forces immediately after cable is cut.

Determine the angular acceleration of the pulley of Figure 1.17.

SOLUTION
Consider the system of rigid bodies composed of the pulley and the two blocks. If « is the
counterclockwise angular acceleration of the pulley, then, assuming no slip between the
pulley and the cables, block A has a downward acceleration of 7 g and block B has an
upward acceleration of 7.

Summing moments about the center of the pulley, neglecting axle friction in the
pulley, and using the free-body diagrams of Figure 1.17(b) assuming moments are positive
counterclockwise yields

EMOW = E‘,MoeFf

_ — 2 2
m, e, Mgty = ]fpz + myryo + myria

Substituting given values leads to & = 7.55 rad/s?.
Ipa
=30 s
A cm s

rg=20cm
ﬁ’ Ip=0.6kg-m? -
my =5kg

mp=3kg

R
| | || i I | || \ |
my8 mp8 MpTpA O mprp
External forces External forces
(a) (b)
FIGURE 1.17
(a) System of Example 1.4. (b) FBDs showing external forces and effective forces.
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1.7.3 PRINCIPLE OF WORK AND ENERGY

The kinetic energy of a rigid body undergoing planar motion is the sum of the translational
kinetic energy and the rotational kinetic energy

1 1 -
T= Emﬁz + 5 Iw? (1.38)

If the body has a fixed axis of rotation at O, the kinetic energy is
T= [ (1.39)

The work done by a force, F, acting on a rigid body as the point of application of the
force travels between two points described by position vectors r, and r, is

s
Uy pz= / F - dr (1.40)
Ty
where dr is a differential position vector in the direction of motion. The work done by a
moment acting on a rigid body in planar motion is

61?
U= l Mdo (1.41)

If the work of a force is independent of the path taken from A to B, the force is called
conservative. Examples of conservative forces are spring forces, gravity forces, and normal
forces. A potential energy function, V'(r), can be defined for conservative forces. The work
done by a conservative force can be expressed as a difference in potential energies

U = Vi~ Vp (1-42)

Since the system of external forces is equivalent to the system of effective forces, the
total work done on a rigid body in planar motion is

Tp 0y
U= / ma - dr + / I df (1.43)
r 0

A A

When integrated, the right-hand side of Equation (1.43) is equal to the difference in the
kinetic energy of the rigid body between A and B. Thus Equation (1.43) yields the princi-
ple of work-energy,

Ty—T,= Uy (1.44)

If all forces are conservative, Equation (1.42) is used in Equation (1.44) and the result
is the principle of conservation of energy

LA Vi=sTyt (1-45)

If some external forces are conservative and some are non-conservative, then
Upsp = Vi = Vot Uy, (1.46)
where U,_, , is the work done by all non-conservative forces. Equation (1.44) becomes
LAVt U =i+ V (1.47)

Equation (1.47) is the most general form of the principle of work and energy.
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Express the kinetic energy of each of the systems of Figure 1.18 in terms of the specified
generalized coordinates at an orbitrary instant.

SOLUTION )

(a) The system is a SDOF system. The angular velocity of the bar is 6. The velocity of the
mass center of the bar is related to the angular velocity of the bar using the relative veloc-
ity equation v = ¢ L. The kinetic energy of the system is calculated using Equation (1.38)
as

1 (L-\* 1/1 . 1 .
T= —m(—@) + —(—mL2>02 = —ml*6? ()
2 \6 2\ 12 18

(b) The system has two degrees of freedom. The kinetic energy is calculated using
Equation (1.38) as

1 1/ 1 .
T=—mx?+ —<—mL2>02 (b)
2 2\ 12

Slender bar
V/ of mass m

C o
(@)
Slender bar
of mass m

| DAY

FIGURE 1.18

Systems of Example 1.6: (a) SDOF system; (b) two

m degree-of-freedom system with one rigid body; and
Ty (c) two degree-of-freedom system composed of

(c) three rigid bodies.
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CHAPTER 1

(c) The system has two degrees of freedom. The angular rotation of the pulley is related to
the displacement of the sliding block by 6 = <. The displacement of the hanging mass is
independent of x. The kinetic energy is the sum of the kinetic energies of the sliding mass,
the pulley, and the hanging mass:

1 . 1 [ x\? 1 . 1 1Y\, 1 .
T= 5(27)’1)962 + 2[<}’) + Emyz = 2<2m + 72>x2 + Emyz (C)

1.7.4 PRINCIPLE OF IMPULSE AND MOMENTUM

The impulse of the force F between #, and ¢, is defined as

12
I_,= / Fdr (1.48)
t,

1

The total angular impulse of a system of forces and moments about a point O is

Jo, = / D M, dr (1.49)

The system momenta at a given time are defined by the system’s linear momentum
=mv (1.50)

and its angular momentum about its mass center for a rigid body undergoing planar
motion

H, = I (1.51)
Integrating Equations (1.33) and (1.34) between arbitrary times 7, and ¢, leads to

L +I_,=L, (1.52)
and

Ho + ], = Hg (1.53)

Equations (1.52) and (1.53) summarize the principle of impulse and momentum for
a system. For a particle application, Equation (1.52) is usually sufficient. For a rigid body
undergoing planar motion, Equation (1.52) can be written (in general) in component
form as two scalar equations. Equation (1.53) is not a vector equation and represents one
equation.

Using an equivalent force system argument similar to that used to obtain Equations
(1.36) and (1.37), it is deduced from Equations (1.52) and (1.53) that the system of
applied impulses is equivalent to the difference between the system momenta at ¢, and the
system momenta at £,. This form of the principle of impulse and momentum, convenient
for problem solution, is illustrated in Figure 1.19 for a rigid body undergoing planar
motion.
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t FIGURE 1.19
X F, dr lllustration of the principle of
1

J 2M1 dt v, impulse and momentum.
Ul
- _ - mv,
lao, le
J I M, dr
F2 dt

1
2F3 dt

External impulses apphed = System momenta _ System momenta
between ¢ and 1, at t, att

The slender rod of mass  of Figure 1.20 is swinging through a vertical position with an
angular velocity @, when it is struck at 4 by a particle of mass 7/4 moving with a speed
v, Upon impact the particle sticks to the bar. Determine () the angular velocity of the bar
and particle immediately after impact, () the maximum angle through which the bar and
particle will swing after impact, and (¢) the angular acceleration of the bar and particle
when they reach the maximum angle.

SOLUTION

(a) Let 7, occur immediately before impact and #, occur immediately after impact. Consider
the bar and the particle as a system. During the time of impact, the only external impulses
are due to gravity and the reactions at the pin support. The principle of impulse and
momentum is used in the following form:

External angular Angular momentum Angular momentum
impulses about O | = about O - about O
between #,and 7, atz, at f,

Using the momentum diagrams of Figure 1.20(b), this becomes
m o, 5 4 aw, |(a 2™ )
L L 1
— _ _ + — 2
[<m2w1><2) <4 P)(a) lsz } )

which is solved to yield
4l0, — 3va

— 7 b
@2 417 + 342 ()
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il

m m-= @, m—=
4
Ok ||l = -
. t | —_—
Pl &
\ 1
m J 2m gdt
W, h W, W,
1 2 </ 1 2
— mL*w — mL“w
- 2" 2"
1
(a) External impulses _ System momenta ~_ System momenta
during impact - after impact before impact
(b)

m % o |

|

|

= m |

I ao Bmax

1 2
— mL

External forces Effective forces
(©
FIGURE 1.20

(a) Slender rod of Example 1.7 swinging through the vertical position with angular velocity w, when it
is struck by a particle moving with a velocity »_a distance a from the pin support. (b) Impulse and
momentum diagrams for the time immediately before impact and the time immediately after impact.
(c) FBDs when the bar swings through its maximum angle.

(b) Let #, be the time when the bar and particle assembly artains its maximum angle.
Gravity forces are the only external forces that do work; hence conservation of energy
applies between ¢, and #,. Thus, from Equation (1.45),

L+V=T+1V (c)

2 2 3 3

The potential energy of a gravity force is the magnitude of the force times the distance
its point of application is above a horizontal datum plane. Choosing the datum as the
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horizontal plane through the support, using Equation (1.38) for the kinetic energy of a
rigid body, and noting 7} = 0 yields

1 (L \ 11 1 m L mg
5’”(5‘”2) Ty pbes Ty e mmey — e

L
= —mg~ cos 0 . — %gd cosf (d)
which is solved to yield

(41 + 3a*)w;
T (e)

0 — —1 1 —
max €08 { 2(12L + 64)

(c) The bar attains its maximum angle at 7, @, = 0. Summing moments about O using
the free-body diagrams of Figure 1.20(c) assuming moments and positive clockwise gives

(2%) = (2%) (f)

ext eff

_ (mg)<§sin0max) — <%g>(asin0max)
L L 1
= <m5a><5) + (%m)(ﬂ) + EmLza (8)

which is solved to yield

(6L + 3a4)gsin0
a = (h)
412 + 342

R
1.8 TWO BENCHMARK EXAMPLES

Two benchmark examples will be followed throughout the text. The basic problems are
introduced here. Their mathematical models, assuming a SDOF system, are constructed in
Chapter 2 and analyzed under various forcing conditions in Chapters 3 through 5. Two
degree-of-freedom models are introduced in Chapter 6, and more general MDOF system
models are introduced in Chapter 7 and analyzed in Chapters 8 and 9. The first example
continues into Chapters 10 and 11 using a continuous system analysis. The second exam-
ple is continued into Chapter 13 using a random excitation.

1.8.1 MACHINE ON THE FLOOR OF AN INDUSTRIAL PLANT

A 4500-N machine is placed on the floor of an industrial plant, as shown in Figure 1.21(a).
The floor is supported by a W14 X 30 steel beam. The beam is 6 m long, fixed at one
end, and pinned at the other. The machine is placed 3.6 m from the fixed end, as shown

in Figure 1.21(b). The beam has a cross-sectional area of 57 cm? and a cross-sectional
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(a) The analysis of a machine Floor Machine
placed on a floor in an indus- Machine |
trial plant is one of the bench- J w14x30 steel beam Q

mark problems. (b) The
problem has been idealized (a) (b)
as a machine mounted on a

fixed-pinned beam. (c) SODF

model of mass on beam ) Machine
accounting for inertia effects EQUI"alent
of beam. (d) A two degree- stiffness of beam % |J_|
offreedom model of the |
machine when a vibration
isolator is placed between Machine and Beam
the machine and the beam. equivalent mass ,J—|
of beam
(©) (d)

moment of inertia of 12,112 cm*. The beam’s weight per unit meter is 438 N. Steel has an
elastic modulus of 210 GPa. The basic model is that of a machine on an elastic beam.

Initially, the beam is modeled as a mass-less spring whose stiffness is calculated from
static-beam deflection theory. The inertia of the spring is then taken into account by cal-
culating an equivalent mass for the beam such that its kinetic energy is approximately that
of the kinetic energy of a particle lumped at the location of the machine. This model is
shown in Figure 1.21(c). In Chapter 3, the natural frequency of the system is calculated,
and the free response of the system is examined when subject to an impulsive load.

First, the beam is modeled without damping. Then the hysteretic damping is modeled
by an equivalent viscous damping model. The machine develops a harmonic force while
operating and the steady-state vibrations of the beam are examined. Then the beam is
assumed to be rigid, and a vibration isolator is designed to protect the beam from large
forces generated during operation of the machine. The machine could be subject to a har-
monic excitation (Chapter 4) or an impulsive loading (Chapter 5).

The inertia of the beam is lumped at the location of the mass and a two-degree-of-
freedom system is assumed as shown in Figure 1.21(d). Natural frequencies of the two
degree-of-freedom system are determined, and the forced response is calculated (Chapter 6).
The same vibration isolator designed for the rigid beam is placed between the machine and
the beam, a multiple degree-of-freedom model is assumed (Chapter 7), and the natural fre-
quencies and mode shapes are calculated (Chapter 8). Then the performance of the vibration
isolator is evaluated (Chapter 9).

A continuous system model is described in Chapter 10, when natural frequencies are
approximated using the Rayleigh-Ritz method. The forced response is obtained by a finite-
element method in Chapter 11.

1.8.2 SUSPENSION SYSTEM FOR A GOLF CART

The design of a suspension system for an automobile is complicated. Some models require
up to eighteen degrees of freedom. The suspension system must be able to handle a wide
variety of road contours. Suspension system performance is often analyzed using random
vibration theory. Thus, a complete analysis is beyond the scope of this book. The focus is
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FIGURE 1.22
-V (a) A suspension system for a
small vehicle such as a golf

’J_‘ cart is the second benchmark
problem. (b) In early chap-
ters, the golf cart is modeled
as a SDOF system. (c) The

(b)

analysis grows in complexity

(@) as the chapters progress. In
later chapters, the mass of
the wheel is taken into

— account. (d) The distribution

of mass on the body is

| = considered.
TR
Y Y

instead on a simplified model of the suspension system, as shown in Figure 1.22, where this

(c)

could serve as the model of a suspension system for a golf cart.

The mass of the empty golf cart is 300 kg. Two golfers and their clubs could add an
addition 300 kg to the mass of the vehicle.

A simplified model for the suspension system is developed in Chapter 2. The analysis
of the golf cart when it encounters a sudden change in terrain contour is analyzed in
Chapter 3, while its performance under a sustained bumpy terrain contour is considered
in Chapter 4. Its performance when it encounters a hole in the road considered in Chapter 5.
A two degree-of-freedom model (which includes the mass of the axle and wheels) is used
in Chapter 6. In Chapter 7, a multiple degree-of-freedom model is developed for the vehi-
cle assuming the front wheels are independent of the rear wheels and the body has a distri-
bution of mass, as shown in Figure 1.22(c). The natural frequencies of the MDOF model
are calculated in Chapter 8, while the forced response is considered in Chapter 9. The effect
of a random input is described in Chapter 13.

1.9 FURTHER EXAMPLES

EXAMPLE 1.8
The slender bar of Example 1.4 and Figure 1.16 is pinned at A and held in the horizon-

tal position by a cable. The cable is cut at # = 0.

(a) What is the bar’s angular velocity after it has rotated through 10°?
(b) What are the reactions at the pin support after it has rotated through 10°?
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SOLUTION

(a) Let position 1 refer to the bar immediately after the cable is cut. Let position 2 refer to
the bar after it has rotated through 10°. All external forces are conservative; thus, conserva-
tion of energy applies between positions 1 and 2 as

L+ R=T+Y @
Take the datum for potential energy calculations for the gravity force to be position 1, then
V,=0,and V, =— L%LL sin 10°. The kinetic energy in position 1 is zero, and

1 _ 1/ 1
7; = Emvzz + 2<12mL2>w§ (b)

Kinematics (the relative velocity equation) is used to relate the velocity of the mass center to
. Y L .
the angular velocity of the bar so that v = . Substituting into Equation (a), we have

1 (L \V 1/1 mglL
0= m(w> + (m]])w% - isin 10° (<)
2 \3 2\ 12 3

which is solved to yield

2
0= =Lsn10° = 0.818\/E (d)
7L L

(b) Summing moments about the pin support on the free-body diagrams after the body
has rotated through 10° are illustrated in Figure 1.23. Taking moments about the pin
support yields & = %Lg’ which is the same as the initial value. This is to be expected, as the
external forces are constant, which implies uniformly accelerated motion. Summing forces

using the free-body diagrams according to (EF)ext = (EF)eff give
L 12¢g
Ri+ (R — mgj = m\ oL (—sin10°1 — cos10°j)
L( 24g
+ m—| —sin 10° |(—cos 10°i + sin 10°%) (e)
3\ 7L
By equating coefficients of the unit vectors, the reactions are determined as
4mg
R = —7sin 10°(1 + 2cos 10°) = —0.295mg )
4 8 .,
R = mg( 1~ — cos 10° + - 8in 10° | = 0.472mg (8)
mL @?
3
L oni’e
12
wla )
3
External forces Effective forces
FIGURE 1.23

FBDs after bar of Example 1.8 has rotated through 10°.
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Determine the acceleration of the block Figure 1.24(a).

SOLUTION
The acceleration of the block is assumed to be upward, which is consistent with the assumed
direction of the angular acceleration of the disk. The point on the disk where the cable is
in contact with it has the same acceleration (r@) as the cable. Assuming the cable is inex-
tensible, it has the same acceleration as the block. Summing moments about the mass

center by applying (XM,)_ = (XM ) g to the FBDs shown in Figure 1.24(b) leads to
M — mgr = mra(r) + I (a)
Solving for a gives

M — mgr B (18 N - m) — (1.3 kg)(9.81 m/s?)(0.3 m)

= 68.5rad/s*> (b)

«- I+ mr? 0.09 kg * m? + (1.3 kg)(0.3 m)?
The acceleration of the block is
a = ra = (0.3 m)(68.5 rad/s?) = 20.5 m/s* (c)
M
/ M=18N-m
m=13kg
r=30cm
/) 1=0.09 kg - m?

(a)
/ M / lo
m,g
R
o FIGURE 1.24
e ) mr (@) System of Example 1.9. (b) FBDs drawn
External forces Effective forces at an arbitrary instant showing the external
(b) forces and the effective forces.
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A thin disk of mass 5 kg, radius 20 c¢m, and attached to a spring of stiffness 2000 N/m is
in equilibrium when it is subject to an applied force P = 10 N. The coefficient of friction
between the disk and the surface is 0.1.

(a) What is the maximum displacement of the disk from its equilibrium position, assum-
ing no slipping between the disk and the surface?

(b) What is the angular acceleration of the disk immediately after it reaches its maximum
displacement?

(c) Is the no-slip assumption correct?

SOLUTION

(a) Let position 1 refer to the position when the disk is in equilibrium, and let position 2
refer to the position when the disk reaches its maximum displacement. Application of the
principle of work and energy between position 1 and position 2 for the disk gives

L+ W+ U, = L+ (a)

The kinetic energy of the disk in position 1 is zero, because the disk is at rest. The kinetic
energy of the disk in position 2 is zero, because the disk reaches its maximum displacement.
The only source of potential energy is the spring force. The potential energy in the spring
in position 1 is zero, as the spring is unstretched. Letting x be the maximum displacement,
the potential energy in position 2 is

1
Vz = Ekxz (b)

The friction force does no work, since the disk rolls without slipping. Thus, the velocity of
the point where the friction force is applied is zero. The only non-conservative force is the
applied force P. Its work is

Uu._., = / Pdx = Px ()
NC 0
Substituting into Equation (a),
Px = l/e 2 (d)
w = ke
or
2P 2(10 N)
=S =" =0l
£ 2000 N/m m (®)

(b) Summing moments about the contact point as (XM ), = (X M) and using the
free-body diagrams drawn immediately after the disk reaches its maximum displacement
(illustrated in Figure 1.25) yields

1
—kxr + Pr= Emrza + mar f)

If the disk rolls without slipping, the velocity of the point of contact is identically zero,
and its acceleration only has an upward component of 7w?*. Application of the horizontal
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mg —mrta
\\2 m
FIGURE 1.25

kx P P FBDs of system in Example 1.10.
= = Summing moments about the
ma = mra point of contact helps to solve for
the angular acceleration assuming
-— F no slipping. Summing moments
about the mass center finds the
N friction force which is checked

against the maximum value to
External forces Effective forces determine if slipping occurs.

component of the relative acceleration equation between the point of contact and the mass
center yields 2 = . Substituting this result into Equation (b) leads to

B 2(P — Fkx) B Z[ION — (2000 N/m)(0.01 m)]
T T 3w 3(5 kg)(0.2 m)

(c) Summing moments about the mass center as (XM )

= 6.67 rad/s? (g)

= (XM ) 4 and using the

ext

free-body diagrams of Figure 1.25 yields

1 1
Fr=—mr’*a=F = —mra (h)
2 2

The maximum value of & from when the motion is initiated to when the disk reaches its
maximum displacement should be used in the calculation. The maximum value occurs in
position 1 when

2P 2(10 N)
= o S 667 radls? i
T S 3G kg2 m | O ©
and
1 1
F=—mra = —(5 kg)(0.2 m)(6.67 rad/s?) = 3.33 N M

2 2

The maximum available friction force is wmg = 0.1(5 kg) (9.81 m/s?) = 4.91 N. Since
the friction force is less than the maximum allowable friction force, the disk rolls without

slipping.

A baseball player holds a bat with a centroidal moment of inertia 7 a distance # from the
bats mass center. His “bat speed” is the angular velocity with which he swings the bat. The
pitched ball is a fastball which reaches the batter with a velocity v. Assuming his swing is a
rigid-body rotation about an axis perpendicular to his hands, where should the batter hit
the ball to minimize the impulse felt by his hands?

SOLUTION
When the better hits the ball, it exerts an impulse on the bat: call it B. Since the batter is
holding the bat, he feels an impulse as he hits the ball: call it P. The effect of hitting the
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—e P
1 wl\> —f 1 a)z\>
a
+ b =
maw,
maw;
B
-

Momenta of bat External impulses System momenta
immediately before + during striking ball = immediately after
striking ball striking ball

FIGURE 1.26
Impulse momentum diagrams for Example 1.11 as batter hits ball.

ball is to change the bat speed from w, to w,. The impulse momentum diagrams of the bat
during the time are shown in Figure 1.26.
Applying the principle of linear impulse and momentum to Figure 1.26 leads to

maw, + P — B = maw, (a)

Application of the principle of angular impulse and angular momentum about an axis

through the batter’s hands yields

ia)l + maw (a) — B(b) = fwz + maw,(a) (b)

Solving Equation (b) for B, we have
I+ ma?)

B= T(w2 - ) ()

Substituting Equation (c) into Equation (a) and solving for P leads to
I+ ma*

P= (0w, — w2)<Tmﬂ - ma> (d)

Thus, P =0 if
7
b=a+ o (e)

Thus, the angular impulse felt by the batter is zero if & satisties Equation (e). The location
of b is called the center of percussion.

e
1.10 SUMMARY
| 1.10.1 IMPORTANT CONCEPTS

* Vibrations are oscillations about an equilibrium position.

+ Assumptions may be implicit (such as the continuum assumption) or explicit (such as
neglecting all forms of friction).
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- The number of degrees of freedom used in a system model is the number of kinematically
independent coordinates necessary to describe the motion of every particle in the system.

 Vibrations are classified as free or forced, damped or undamped, linear or nonlinear,
continuous or discrete, and deterministic or random.

* The Buckingham Pi theorem allows calculation of the number of dimensionless param-
eters which are involved in the non-dimensional formulation of an equation derived
from a physical law.

+ Kinematics of particles tracks the motion of particles through space through their posi-
tion vector, velocity vector, and acceleration.

¢ A particle moving in a circular path has a velocity that is instantaneously tangent to the
circle at the point where the particle is located.

A particle moving in a circular path has two components of acceleration: a tangential
component and a normal component.

A rigid body undergoes planar motion in the x-y plane if the path of the mass center lies
in x-y plane, and rotation occurs only about the z axis.

+ The relative velocity and relative acceleration equations are used to analyze rigid body
dynamics.

A free-body diagram (FBD) is a diagram of the body, which has been abstracted from
its surroundings, showing the effect of the surroundings in the form of forces.

* Body forces are forces that are applied within the body and are due to an external force

field such as gravity.

*  Surface forces are applied to the boundary of the body as a result of contact between the
body and its surroundings.

* Newton’s second law is a basic law of nature written for a particle.

« D’Alembert’s principle applied to a rigid body undergoing planar motion reveals that
the system of external forces is equivalent to the system of effective forces. The effective
forces are a force equal to 7ma applied at the mass center and a couple equal to /.

+ The principle of work and energy is a pre-integrated form of Newton’s second law, The
integration occurs over the path of motion.

+ Conservative forces are forces whose work is independent of the path. A potential
energy function, which is a function of position, is defined for conservative forces such
that the work done by the force is the difference in potential energies.

¢+ The principle of impulse and momentum is a pre-integrated form of Newton’s second
law, The integration occurs over time.

1.10.2 IMPORTANT EQUATIONS

Simple harmonic motion

x(8) = A sin (wt + ) (1.12)
Velocity and acceleration of a particle

v=xi+yj+zk (1.20)

a=xi+yj+zk (1.21)
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Velocity and acceleration of a particle moving in a circular path

v = Rwi, (1.25)

a = Rai, — Rw’i (1.26)
Relative velocity equations

Vg = Va T Vg (1.28)

7 |rB/A|w (1.29)

Relative acceleration equations

ag =a, + ag, (1.30)

ag = [1g), |oi, — i, (1.31)

Newton’s second law as applied to a particle

>F = ma (1.32)
Newton’s second law for a rigid body

>F = ma (1:33)
Moment equation for a rigid body undergoing planar motion

SM, = o (1.34)
D’Alembert’s principle for rigid bodies undergoing planar motion

(2F) = (2F) 4 (1.36)

(XM, = (EMp) 4 (1.37)
Work done by a force

U p= / F - dr (1.40)

Principle of work and energy

LAVt Uy =T+ (1.47)

Impulse due to a force

tZ
Il_)2=/th (1.48)
2

1

Principle of impulse and momentum

IL+1_,=1, (1.52)
Principle of angular impulse and angular momentum
He =g = Hg (1.53)
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PROBLEMS
SHORT ANSWER PROBLEMS

For questions 1.1 through 1.10, indicate whether the statement presented is true or false.
If true, state why. If false, rewrite the statement to make it true.

1.1 The earth can be taken to be an inertial reference frame.

1.2 Systems undergoing mechanical vibrations are not subject to nuclear reactions is
an example of an explicit assumption.

1.3 A basic law of nature is proven only empirically.

1.4 The point of application of surface forces is anywhere in the body.

1.5 The number of degrees of freedom necessary to model a mechanical system is
not unique.

1.6 Distributed parameter systems are another name for discrete systems.

1.7 The Buckingham Pi theorem is used to predict how many non-dimensional
variables are used in a dimensionless formulation of a dimensional relationship.

1.8 A rigid body undergoing planar motion has at most three degrees of freedom.

1.9 A particle traveling in a circular path has a velocity which is in the direction of
the radius.

1.10  The principle of work and energy is derived from Newton’s second law

integrated over time.

Questions 1.11 through 1.25 require a short answer.

1.11 What is the continuum assumption, and what does it imply?

1.12 What is the difference between explicit and implicit assumptions?

1.13 How are constitutive equations used in vibrations modeling?

1.14 What is a free-body diagram (FBD)? How is it used in modeling mechanical
systems?

1.15  What does the following equation represent
x(#) = Xsin (wt + ¢)

1.16 In the equation of Problem 1.15 define (a) X, (b) w, and () ¢.

1.17  The phase angle for a mechanical system is calculated as 26°. Does the response
lead or lag a pure sinusoid?

1.18  What is the distinction between a particle and a rigid body?

1.19  What are the criteria for a rigid body to undergo planar motion?

1.20  The acceleration of a particle traveling in a circular path has two components.
What are they?

1.21 Particle A and particle B are fixed particles on a rigid body undergoing planar
motion. Describe the motion of particle B by an observer fixed at particle A.

1.22 How is the equation 2 F = ma applied to a vibrating particle?

1.23  What are the effective forces for a rigid body undergoing planar motion?

1.24  The kinetic energy of a rigid body undergoing planar motion consists of two
terms. What are they? What does each represent?

1.25 State the principle of impulse and momentum.
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126-1.33 How many degrees of freedom are required to model the system of

F—AA—

FIGURE SP 1.26

FIGURE SP 1.28

:

Figures SP 1.26 through 1.33? Identify a set of generalized coordinates which
can be used to analyze the system’s motion for each system.

m_/\/\/\,_E

D]

o
i

FIGURE SP 1.27

/////// 7777777

&

FIGURE SP 1.29

:

C

D,

Rigid link

() )

FIGURE SP 1.30

i

FIGURE SP 1.31
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Beam

AN

FIGURE SP 1.32

M, fingers

pal

M, palm

M, hand

FIGURE SP 1.33

Questions 1.34 through 1.43 require short calculations.

1.34 A particle has a uniform acceleration of 2 m/s?. If the particle starts from rest
at = 0.

(a) Determine the velocity of the particle at 7 = 5 s.
(b) Determine how far the particle travels in 5 s.

1.35 A particle starts at the origin of a Cartesian coordinate system and moves with a
velocity vector v = 2 cos 2¢i + 3 sin 2¢j + 0.4 k m/s.

(a) Determine the magnitude and direction of the particle’s acceleration at
t = 1TTs.
(b) Determine the particle’s position at # = 77 s.

1.36 A particle is traveling in a circular path of radius 3 m. The particle starts at
6 = 0 at + = 0 and has a constant speed of 2 m/s.

(a) Where is the particle at 7 = 2 s?
(b) What is the acceleration of the particle at r = 2 s?
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1.37 A rigid body of mass 2 kg undergoes planar motion. At a given instant, the
acceleration of its mass center is (5i + 3j) m/s? and it rotates about the z, axis
with a clockwise angular acceleration of 10 rad/s?. What are the effective forces
at this instant? Where on the body are they applied?

1.38 The velocity of a particle of mass 0.1 kg is (9i + 11j) m/s. Calculate the kinetic
energy of the particle.

1.39  The velocity of the mass center of a rigid body of mass 3 kg undergoing planar
motion is (3i + 4j) m/s. The mass center is 20 cm from the fixed axis of
rotation. Calculate the angular velocity of the body at this instant.

1.40 The kinetic energy of a body that rotates about its centroidal axis is 100 J. The
centroidal mass moment of inertia is 0.03 kg « m?. Calculate the angular
velocity of the body.

1.41 The speed of the mass center of a rigid body undergoing planar motion of mass
5 kg is 4 m/s. It rotates about the z axis with a clockwise angular velocity
of 20 rad/s. The mass moment of inertia of the body about its centroidal axis is
0.08 kg « m?. Calculate the kinetic energy of the body.

1.42  An impulsive force of magnitude 12,000 N is applied to a particle for 0.03 s.
What is the total impulse imparted by this force?

1.43  The force of Figure SP1.43 is applied to a particle of mass 3 kg at rest in
equilibrium.

(a) What is the total impulse imparted to the particle?

(b) What is the velocity of the particle at # = 2 s?
(c) What is the velocity of the particle at 5 s?

F
100 N
I's 2s 3s !
1.44 A particle of mass 2 kg is subject to a constant force of 6 N, as shown in

Figure SP1.44. How far has the particle traveled after 10 s if the particle’s
velocity is 4 m/s initially?

2kg —= 6N

A

1.45 Match the quantity with the appropriate units (units may be used more than
once, and some units may not be used).
(a) acceleration, # (i) N s
(b) velocity, v (ii) m/s?
(c) impulse, / (iii) rad/s?
(d) kinetic energy, T (iv) m/s
(e) linear momentum, L ) ]
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(f) work done by a force, W,_,, (vi) rad/s
(g) angular velocity, (vii) m
(h) angular acceleration, (viii) rad
(i) force, F (ix) N

CHAPTER PROBLEMS

1.1 The one-dimensional displacement of a particle is
x()) = 0.5¢7%%sin 5t m
(a) What is the maximum displacement of the particle?

(b) What is the maximum velocity of the particle?
(c) What is the maximum acceleration of the particle?

1.2 The one-dimensional displacement of a particle is
x() = 0.5¢%%sin (5¢ + 0.24) m

(a) What is the maximum displacement of the particle?
(b) What is the maximum velocity of the particle?
(c) What is the maximum acceleration of the particle?

1.3 At the instant shown in Figure P1.3, the slender rod has a clockwise angular
velocity of 5 rad/s and a counterclockwise angular acceleration of 14 rad/s*. At
the instant shown, determine (a) the velocity of point P and (b) the acceleration
of point P.

Srad/s

14 rad/s?

1.4 At =0, a particle of mass 1.2 kg is traveling with a speed of 10 m/s that is
increasing at a rate of 0.5 m/s®. The local radius of curvature at this instant is
50 m. After the particle travels 100 m, the radius of curvature of the particle’s
path is 50 m.

(a) What is the speed of the particle after it travels 100 m?

(b) What is the magnitude of the particle’s acceleration after it travels 100 m?
(c) How long does it take the particle to travel 100 m?

(d) What is the external force acting on the particle after it travels 100 m?
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1.5 The machine of Figure P1.5 has a vertical displacement x(z). The machine has a
component which rotates with a constant angular speed w. The center of mass
of the rotating component is a distance e from the axis of rotation. The center
of mass of the rotating component is as shown at # = 0. Determine the vertical
component of the acceleration of the rotating component.

x(1) —
(@)

177777 77777 (b

1.6 The rotor of Figure P1.6 consists of a disk mounted on a shaft. Unfortunately,
the disk is unbalanced, and the center of mass is a distance e from the center of
the shaft. As the disk rotates, this causes a phenomena called “whirl”, where the
disk bows. Let 7 be the instantaneous distance from the center of the shaft to
the original axis of the shaft and 6 be the angle made by a given radius with the
horizontal. Determine the acceleration of the mass center of the disk.

1.7 A 2 tonne truck is traveling down an icy, 10° hill at 80 km/h when the driver
sees a car stalled at the bottom of the hill 76 m away. As soon as he sees the
stalled car, the driver applies his brakes, but due to the icy conditions, a braking
force of only 2000 N is generated. Does the truck stop before hitting the car?

1.8 The contour of a bumpy road is approximated by

y(x) = 0.03sin (0.125x) m

What is the amplitude of the vertical acceleration of the wheels of an automobile
as it travels over this road at a constant horizontal speed of 40 m/s?

1.9 The helicopter of Figure P1.9 has a horizontal speed of 33 m/s and a
horizontal acceleration of 1 m/s*. The main blades rotate at a constant speed
of 135 rpm. At the instant shown, determine the velocity and acceleration of
particle A.
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FIGURE P1.9

1.10 For the system shown in Figure P1.10, the angular displacement of the thin
disk is given by 6(z) = 0.03 sin (307 + %) rad. The disk rolls without slipping
on the surface. Determine the following as functions of time.

(a) The acceleration of the center of the disk.
(b) The acceleration of the point of contact between the disk and the surface.
(c) The angular acceleration of the bar.

(d) The vertical displacement of the block.

(Hint: Assume small angular oscillations ¢ of the bar. Then sin ¢ = ¢.)

6(f) = 0.03 sin(307 + g)

f Rigid link
AY

T

30 cm

Thin disk of °

radius 10 cm ,~ Rigid link

20cm  |[=—

FIGURE P1.10
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1.11 The velocity of the block of the system of Figure P1.11 is y = 0.02 sin 20# m/s
downward.

(a) What is the clockwise angular displacement of the pulley?
(b) What is the displacement of the cart?

1.12 A 30-kg block is connected by an inextensible cable through the pulley to the
fixed surface, as shown in Figure P1.12. A 20 kg weight is attached to the pulley,
which is free to move vertically. A force of magnitude P = 500(1 + ¢7*) N tows
the block. The system is released from rest at # = 0.

(a) What is the acceleration of the 30-kg block as a function of time?
(b) How far does the block travel up the incline before it reaches a velocity of
60 cm/s?

ry =10 cm
r, =30 cm
)

20 kg

v =0.02sin207 m/s

1.13 Repeat Problem 1.12 for a force of P = 100z N.

1.14  Figure P1.14 shows a schematic diagram of a one-cylinder reciprocating one-
cylinder engine. If at the instant of time shown the piston has a velocity v and
an acceleration 4, determine (a) the angular velocity of the crank and (b) the
angular acceleration of the crank in terms of v, 4, the crank radius 7, the
connecting rod length €, and the crank angle 6.

1.15 Determine the reactions at A for the two-link mechanism of Figure P1.15. The
roller at C rolls on a frictionless surface.
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v a

1.4 m/s?

[T7T77T7777777777777

FIGURE P1.14 FIGURE P1.15

1.16 Determine the angular acceleration of each of the disks in Figure P1.16.

4 kg-m? 4 kg-m?

20 kg 30 kg 180N 270 N

(a) (b)
FIGURE P1.16

1.17  Determine the reactions at the pin support and the applied moment if the bar
of Figure P1.17 has a mass of 50 g.
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1.18 The disk of Figure P1.18 rolls without slipping. Assume if 7 = 18 N.

(a) Determine the acceleration of the mass center of the disk.
(b) Determine the angular acceleration of the disk.

6=10°
1 1.8 kg
m M
\%\ o= 14 rad/s?
301\/ P

=5 rad/s

1.19 The coefficient of friction between the disk of Figure P1.18 and the surface is
0.12. What is the largest force that can be applied such that the disk rolls
without slipping?

1.20 The coefficient of friction between the disk of Figure P1.18 and the surface is
0.12. If P = 22 N, what are the following?

(a) Acceleration of the mass center.

(b) Angular acceleration of the disk.
1.21 The 3 kg block of Figure P1.21 is displaced 10 mm downward and then

released from rest.

(a) What is the maximum velocity attained by the 3-kg block?
(b) What is the maximum angular velocity attained by the disk?

0.25 kg - m?
20 cm

Ske 3ke

4000 N/m
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1.22 The center of the thin disk of Figure P1.22 is displaced 15 mm and released.
What is the maximum velocity attained by the disk, assuming no slipping
between the disk and the surface?

k

3 m=2kg
777777777777

1.23  The block of Figure P1.23 is given a displacement & and then released.

(a) What is the minimum value of & such that motion ensues?
(b) What is the minimum value of § such that the block returns to its
equilibrium position without stopping?
1.24  The five-blade ceiling fan of Figure P1.24 operates at 60 rpm. The distance
between the mass center of a blade and the axis of rotation is 0.35 m. What is

its total kinetic energy?
I1=0.96 kg - m2

Blade

@ 60 rpm

s 13 mm
o -

! m=4.7kg

I Ye!

' I=5.14kg - m?
Motor

1.25 The U-tube manometer shown in Figure P1.25 rotates about axis A-A at a
speed of 40 rad/s. At the instant shown, the column of liquid moves with a

s 40 rad/s v =20 m/s

\J ] Specific gravity = 1.4
Area=3x 10~ m?

E 100 cm

20 cm +—=—— 60 cm —
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speed of 20 m/s relative to the manometer. Calculate the total kinetic energy of
the column of liquid in the manometer.
1.26  The displacement function for the simply supported beam of Figure P1.26 is

EI
y(x 9 = csin(ﬂ-x)cos(ﬁ'z1 / t)
L pAL

where ¢ = 0.003 m and ¢ is in seconds. Determine the kinetic energy of the beam.

I 3.1m I

e x

E =200 x 10* N/m?
I =173%x10" m*
p = 7400 kg/m3
A=16x10"*m?

1.27  The block of Figure P1.27 is displaced 1.5 cm from equilibrium and released.

(a) What is the maximum velocity attained by the block?
(b) What is the acceleration of the block immediately after it is released?

12,000 N/m

65 kg

1.28 The slender rod of Figure P1.28 is released from the horizontal position when the
spring attached at A is stretched 10 mm and the spring attached at B is unstretched.

(a) What is the acceleration of the bar immediately after it is released?
(b) What is the maximum angular velocity attained by the bar?

1111

1200 N/m
B 1000 N/m

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Introduction

1.29  Let x be the displacement of the left end of the bar of the system in Figure P1.29.
Let 6 represent the clockwise angular rotation of the bar.

(a) Express the kinetic energy of the system at an arbitrary instant in terms of x
and 6.

(b) Express the potential energy of an arbitrary instant in terms of xand 6.

. 3L | F(o)
| 1 |
T ~Js
Xk k
1.30 Repeat Problem 1.29 using as coordinates x,, which is the displacement of the

mass center, and x,, which is the displacement of the point of attachment of
the spring that is a distance 3L/4 from the left end.

1.31 Let 0 represent the clockwise angular displacement of the pulley of the system
in Figure P1.31 from the system’s equilibrium position.

(a) Express the potential energy of the system at an arbitrary instant in terms of 6.
(b) Express the kinetic energy of the system at an arbitrary instant in terms of 6.

\9
k 2r

m
g—’\/\N\N\/\/\/V - )

1.32 A 20 tonne railroad car is coupled to a 15 tonne car by moving the 20 tonne
car at 8 km/h toward the stationary 15 tonne car.

(a) What is the resulting speed of the two-car coupling?
(b) What would the resulting speed be if the 15 tonne car is moving at 8 km/h
toward a stationary 20 tonne car?
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1.33 The 15 kg block of Figure P1.33 is moving with a velocity of 3 m/satz= 0
when the force F(#) is applied to the block.

(a) Determine the velocity of the block at 7 = 2 s.
(b) Determine the velocity of the block at # = 4 s.
(c) Determine the block’s kinetic energy at # = 4 s.

F(1)

[T7777777777777 p=0.08

1.34 A 400 kg forging hammer is mounted on four identical springs, each of stiffness
k = 4200 N/m. During the forging process, a 110 kg hammer, which is part
of the machine, is dropped from a height of 1.4 m onto an anvil, as shown in
Figure P1.34.

(a) What is the resulting velocity of the entire machine after the hammer is
dropped?

(b) What is the maximum displacement of the machine?

E ( Drop hammer

" | Workpiece

Anvil

1.35 The motion of a baseball bat in a ballplayer’s hands is approximated as a rigid-
body motion about an axis through the player’s hands, as shown in Figure P1.35.
The bat has a centroidal moment of inertia 7. The player’s “bat speed” is w, and
the velocity of the pitched ball is ». Determine the distance from the player’s
hand along the bat where the batter should strike the ball to minimize the
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impulse felt by the his/her hands. Does the distance change if the player
“chokes up” on the bat, reducing the distance from G to his/her hands.

1.36 A playground ride has a centroidal moment of inertia of 23 km - m?. Three
children of weights 222 N, 222 N, and 222 N are on the ride, which is rotating
at 60 rpm. The children are 76 cm from the center of the ride. A father stops
the ride by grabbing it with his hands. What is the impulse felt by the father?

Problems 1.37 through 1.39 present different problems that are to be formulated in non-
dimensional form. For each problem answer the following.

(a) What are the dimensions involved in each of the parameters?

(b) How many dimensionless parameters does the Buckingham Pi theorem predict are in
the non-dimensional formulation of the relation between the natural frequencies and
the other parameters?

(c) Develop a set of dimensionless parameters.

1.37  The natural frequencies of a thermally loaded fixed-fixed beam (Figure P1.37)
are a function of the material properties of the beam, including:

E, the elastic modulus of the beam
p, the mass density of the beam
a, the coefficient of thermal expansion

The geometric properties of the beam are

A, its cross-sectional area
1, its cross section moment of inertia

L, its length
Also,

AT, the temperature difference between the installation and loading

E,ILA, P, o, AT
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1.38  The drag force F on a circular cylinder due to vortex shedding is a
function of

U, the velocity of the flow

W, the dynamic viscosity of the fluid
p, the mass density of the fluid

L, the length of the cylinder

D, the diameter of the cylinder

1.39 The principal normal stress o due to forcing of a beam with a concentrated
harmonic excitation is a function of

F,, the amplitude of loading

w, the frequency of the loading

E, the elastic modulus of the beam

p, the mass density of the beam

A, the beam’s cross-sectional area

I, the beam’s cross-sectional moment of inertia

L, the beam’s length

4, the location of the load along the axis of the beam

1.40 A MEMS system is undergoing simple harmonic motion according to
x(¢) = [3.1sin (2 X 10°¢ + 0.48) + 4.8 cos (2 X 10°¢ + 1.74)] um

(a) What is the period of motion?

(b) What is the frequency of motion in Hz?
(c) What is the amplitude of motion?

(d) What is the phase and does it lead or lag?
(e) Plot the displacement.

1.41 The force that causes simple harmonic motion in the mass-spring system of
Figure P1.41 is F(z) = 35 sin 30¢ N. The resulting displacement of the mass is
x(#) = 0.002 sin (30 — 77)m.
(a) What is the period of the motion? E
(b) The amplitude of displacement is X = zOM where £ is the amplitude of
the force and M is a dimensionless factor called the magnification factor.

Calculate M.
(c) M has the form

1

n

M=

where @ is called the natural frequency. If o < w, then ¢ = 7; otherwise
¢ = 0. Calculate w .
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3.5 X 10* N/m
m
35 sin 30¢
FIGURE P1.41
1.42  The displacement vector of a particle is

r() = [2sin20¢i + 3 cos20¢ j] mm

(a) Describe the trajectory of the particle.
(b) How long does it take the particle to make one circuit around the path?
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MODELING OF
SDOF SYSTEMS

R
2.1 INTRODUCTION

The basic components of a mechanical system are inertia, stiffness, damping, and a source
of work or energy. Inertia components store kinetic energy. Stiffness components store poten-
tial energy. Damping components dissipate energy. Energy sources provide energy to the
system.

This chapter begins with a discussion of potential energy sources, mainly springs.
Springs store potential energy, but they don't require motion to do so. The helical coil
spring serves as the model for all linear springs. Structural components, such as bars under-
going longitudinal motion, shafts under rotational motion, and beams undergoing trans-
verse vibrations, all store potential energy and can be modeled as springs. Combinations of
springs may be replaced by a single spring of an equivalent stiffness. Hanging springs acting
under gravity store potential energy when in static equilibrium. However, the potential
energy stored in the spring due to deflection from its equilibrium position cancels with the
potential energy due to gravity for a linear system, when modeling a linear system.

Viscous damping refers to any form of damping in which the friction force is propor-
tional to the velocity. Viscous dampers are inserted into mechanical systems because they
add a linear term in the differential equation. The energy dissipated due to the viscous
damping force is considered and an equivalent viscous damping coefficient is calculated for
a combination of viscous dampers.

An inertia element is anything that has mass or stores kinetic energy. The principles of
dynamics reviewed in Chapter 1 govern the motion of inertia elements. An equivalent mass
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can be calculated for a SDOF system when it includes several inertia elements. The inertia
effects of springs and entrained fluids are taken into account with an equivalent
mass model.

The energy source could be an initial energy present in the system, or it could be an
input to the system in terms of an external force or an imposed motion.

The derivation of differential equations governing the motion of a SDOF is consid-
ered. The free-body diagram method applies Newton’s second law or D’Alembert’s
principle to free-body diagrams drawn at an arbitrary instant. Nonlinear differential
equations are linearized through application of a small angle or small displacement
assumption.

The equivalent systems method only applies for linear systems. It uses the model of a
linear mass-spring and viscous-damper system for any linear SDOF system. The kinetic
energy calculated at an arbitrary instant is used to determine an equivalent mass. The
potential energy is used to determine an equivalent stiffness. The work done by viscous
damping forces is used to calculate an equivalent viscous damping coefficient. The work
done by external forces is used to calculate an equivalent force.

A second-order linear ordinary differential equation which governs the motion of a
SDOF system results from either method. The equation may be homogeneous (in the case
of free vibrations) or non-homogeneous (in the case of forced vibrations).

—
2.2 SPRINGS

2.2.1 INTRODUCTION

A spring is a flexible mechanical link between two particles in a mechanical system. In real-
ity a spring itself is a continuous system. However, the inertia of the spring is usually small
compared to other elements in the mechanical system and is neglected. Under this assump-
tion the force applied to each end of the spring is the same.

The length of a spring when it is not subject to external forces is called its unstretched
length. Since the spring is made of a flexible material, the force F that must be applied to
the spring to change its length by x is some continuous function of x,

F= f(x (21)

The appropriate form of f(x) is determined by using the constitutive equation for the
spring’s material. Since f'(x) is infinitely differentiable at x = 0, it can be expanded by a
Taylor series about x = 0 (a MacLaurin expansion):

F=ky + ket kpx? + b + o (2.2)

Since x is the spring’s change in length from its unstretched length, when x = 0, # = 0.
Thus k£, = 0. When x is positive, the spring is in tension. When x is negative, the spring
is in compression. Many materials have the same properties in tension and compression.
That is, if a tensile force F is required to lengthen the spring by 8, then a compressive force
of the same magnitude F is required to shorten the spring by 6. For these materials,
f(=x) = —f(x), or fis an odd function of x. The Taylor series expansion of an odd func-

tion cannot contain even powers. Thus, Equation (2.2) becomes

F=kx+ kx’+ kx®+ - (2:3)
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£ tangent df
0/k= e (0) = slope of The spring stiffness is the derivative of the
tangent force displacement relation at x = 0.
Actual
force deflection
curve
X

All springs are inherently nonlinear. However in many situations x is small enough that the
nonlinear terms of Equation (2.3) are small compared with kx. A linear spring obeys a
force-displacement law of

F= kx (2.4)
where £ is called the spring stiffness or spring constant and has dimensions of force per length.
Thus, for a linear spring, £ = Zx‘xZO’ which is illustrated in Figure 2.1.

The work done by a force is calculated according to Equation (1.40). For a linear
system where the spring force is applied to a particle whose displacement is x, in the hori-
zontal direction the force is represented by —kxi, and the differential displacement vector is
dxi. The work done by the spring force as its point of application moves from a position
described by x| to a position described by x, is

" 0
U_, = / (—ks)dx = k- — (2.5)

Since the work depends upon the initial and final position of the point of application of
the spring force and not the path of the system, the spring force is conservative. A poten-
tial energy function can be defined for a spring as

Vix) = %/exz (2.6)

where x is the change in the length of the spring from its unstretched length.

A torsional spring is a link in a mechanical system where application of a torque leads to
an angular displacement between the ends of the torsional spring. A linear torsional spring
has a relationship between an applied moment M and the angular displacement 6 of

M= ko (2.7)

where the torsional stiffness k, has dimensions of force times length. The potential energy
function for a torsional spring is

1
V= ke (2.8)

2.2.2 HELICAL COIL SPRINGS

The helical coil spring is used in applications such as industrial machines and vehicle sus-
pension systems. Consider a spring manufactured from a rod of circular cross section of
diameter D. The shear modulus of the rod is G. The rod is formed into a coil of V turns
of radius 7 It is assumed that the coil radius is much larger than the radius of the rod and
that the normal to the plane of one coil nearly coincides with the axis of the spring.
Consider a helical coil spring when subject to an axial load £ Imagine cutting the rod
with a knife at an arbitrary location in a coil, slicing the spring in two sections. The cut

exposes an internal shear force F and an internal resisting torque F7, as illustrated in
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F A spring is subject to a force F along its axis. A section
F cut of the spring reveals its cross section has a shear
force Fand a torque Fr where ris the coil radius.

Figure 2.2. Assuming elastic behavior, the shear stress due to the resisting torque varies
linearly with distance from the center of the rod to a maximum of
FrD 16Fr

T = =
mx o7 D3

(2.9)

where / = (mD%)/32 is the polar moment of inertia of the rod. The shear stress due to the
shear force varies nonlinearly with distance from the neutral axis. For 7/D >=> 1 the maxi-
mum shear stress due to the internal shear force is much less than the maximum shear stress
due to the resisting torque, and its effect is neglected.

Principles of mechanics of materials can be used to show that the total change in length
of the spring due to an applied force F is

_ G4 Fr3N
GD*

Comparing Equation (2.10) with Equation (2.4) leads to the conclusion that under the
assumptions stated a helical coil spring can be modeled as a linear spring of stiffness

G
64 Nr3

x (2.10)

b (2.11)

A tightly wound spring is made from a 20-mm-diameter bar of 0.2% C-hardened steel
(G = 80 X 10° N/m?). The coil diameter is 20 cm. The spring has 30 coils. What is the
largest force that can be applied such that the elastic strength in shear of 220 X 10° N/m?
is not exceeded? What is the change in length of the spring when this force is applied?

SOLUTION
Assuming the shear stress due to the shear force is negligible, the maximum shear stress in
the spring when a force F is applied is

FrD _ F(O.l m)(0.02 m)

T = = 6.37 X 10%F
27 2
—(0.02 m)*
32
Thus the maximum allowable force is
220 X 10° N/m?
=222 T 345 X 10°N

" 6.37 X 10*
The stiffness of this spring is calculated by using Equation (2.11):

80 X 10°N/m?)(0.02m)* N
- m)OOm _ 667 % 100N
(64)(30)(0.1m?) m
The total changes in length of the spring due to application of the maximum allowable force is
F
A= % = 0.518 m
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2.2.3 ELASTIC ELEMENTS AS SPRINGS

Application of a force F to the block of mass 7 of Figure 2.3 results in a displacement x. The
block is attached to a uniform thin rod of elastic modulus £, unstretched length Z, and cross-
sectional area A. Application of the force results in a uniform normal strain in the rod of

F X
e=— == (2.12)
AE L
The strain energy per volume is the area under the stress—strain curve, which for an elastic bar:
1 1
= —geg = —E¢? 2.1
§=5 5 (2.13)
The total strain energy is
1 1
S=sV= EEezAL = E(EA/L)x2 (2.14)

If the force is suddenly removed, the block will oscillate about its equilibrium position. The
initial strain energy is converted to kinetic energy and vice versa, a process which contin-
ues indefinitely. If the mass of the rod is small compared to the mass of the block, then
inertia of the rod is negligible and the rod behaves as a discrete spring. From strength of
materials, the force F required to change the length of the rod by x is

AE

F= = (2.15)

A comparison of Equation (2.15) with Equation (2.4) implies that the stiffness of the rod is
AE

k= — 2.16

/ (2.16)

The motion of a particle attached to an elastic element can be modeled as a particle
attached to a linear spring, provided the mass of the element is small compared to the mass
of the particle and a linear relationship between force and displacement exists for the ele-
ment. In Figure 2.4, a particle of mass 7 is attached to the midspan of a simply supported
beam of length Z, elastic modulus £, and cross-sectional moment of inertia /. The trans-
verse displacement of the midspan of the beam due to an applied static load F is

L3
= ——F
48ET

Thus a linear relationship exists between transverse displacement and static load. Hence if

(2.17)

X

the mass of the beam is small, the vibrations of the particle can be modeled as the vertical
motion of a particle attached to a spring of stiffness

_ 48EI
-

k (2.18)

'/A,E |—>X

Longitudinal vibrations of a mass
attached to the end of a uniform thin rod
can be modeled as a linear mass-spring
L | system with k = AE/L.

AN
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FIGURE 2.4
m The transverse vibrations
of a machine attached to
[ l the midspan of a simply
x supported beam (a) mod-
[ L2 ' L2 ] eled by a mass-spring
(a) system and the stiffness
of the spring is 48 EI/L3.
(b) provided the mass of
the beam is small in com-
parison to the mass of the
machine.

4= 48E
L3

-7

(b)

In general the transverse vibrations of a particle attached to a beam can be modeled as
those of a particle attached to a linear spring. Let w(z) represent the displacement function of
the beam due to a concentrated unit load applied at z = a. Then the displacement at z = «
due to a load Fapplied at z = a is

x= wla)F (2.19)
Then the spring stiffness for a particle placed at z = a is
1
= 2.20
() (2-20)

A 200-kg machine is attached to the end of a cantilever beam of length L = 2.5 m, elastic
modulus £ = 200 X 10° N/m?, and cross-sectional moment of inertia 1.8 X 107° m4.
Assuming the mass of the beam is small compared to the mass of the machine, what is the
stiffness of the beam?

SOLUTION
From Table D.2 the deflection equation for a cantilever beam with a concentrated unit load
atz = Lis

w(zg) = 1(—1z3 + Lzz) €))

EI 6 2
The deflection at the end of the beam is
1 V& L L
D=—-—+212)=— b
w(l) E[< 6 2 > 3E] ®)

The stiffness of the cantilever beam at its end is

, = 3EL_ 3(200 X 10° N/m?) (1.8 X 107° m?)
S 2.5 m)?

= 6.91 X 10* N/m ()
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Equation (2.18) is used for the stiffness of a pinned-pinned beam at its midspan. The
equation for the stiffness of a cantilever beam at its end is

3EI
k= N (2.21)
The equivalent stiffness of a fixed-fixed beam at its midspan is
192E7
k= B (2.22)

2.2.4 STATIC DEFLECTION

When a spring is not in its unstreched length when a system is in equilibrium, the spring
has a static deflection. When the system of Figure 2.5(b) is in equilibrium a static force in
the spring is necessary to balance the gravity force. From the FBD of Figure 2.5(b) the force
in the spring is 7. = mg. Since the force is the stiffness times the change in length from its
unstretched length, the static deflection is calculated as

.

A
B 4

(2-23)

Determine the static deflection of the spring in the system of Figure 2.6(a).

SOLUTION
The FBD:s of the system in its equilibrium position are shown in Figure 2.6(b). Summing
forces to zero on the FBD of the left hand block 2F = 0 leads to

T, = mg— kA, (@)
Summing moments about the center of the disk leads to 2M, = 0, as
mygr, — (m,g — kAS)rl =0 (b)

from which the static deflection is determined as

mET T hET

A= ()
: ker,
(& :
T, f f T,
L] L] g [ ]
kAs my8
FIGURE 2.6
(a) System of Example 2.3. (b) FBDs of system
(a) (b) when it is in equilibrium.

61

TkAS
" |
tme
(@) (b)
FIGURE 2.5

(a) The spring has a static
spring force when the system
is in static equilibrium.

(b) FBD of the mass when the
system is in equilibrium.
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FIGURE 2.7
0 The rotational motion of the thin disk
g J,G attached to the shaft are modeled by the tor-
A sional oscillations of a disk attached to a tor-
g sional spring of stiffness k, = %
- 1

L |

Torsional oscillations occur in the system of Figure 2.7. A thin disk of mass moment
of inertia / is attached to a circular shaft of length L, shear modulus G, and polar moment
of inertia /. When the disk is rotated through an angle 6 from its equilibrium position, a
moment

JG

M= .
70 (2.24)

develops between the disk and the shaft. Thus, if the polar mass moment of inertia of the
shaft is small compared with 7, then the shaft acts as a torsional spring of stiffness

_/C

k
L

(2.25)

—

|—>x
keq
F—AM—
FIGURE 2.8

Combination of springs
replaced by a single spring so
that the system behaves iden-
tically to the original system.

e x

FIGURE 2.9

Each of the n springs in the
parallel combination has the
same displacement, but the
resultant force acting on the
FBD of the block is the sum of
the individual spring forces.
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2.3 SPRINGS IN COMBINATION

Often, in applications, springs are placed in combination. It is convenient, for purposes of
modeling and analysis, to replace the combination of springs by a single spring of an equiv-
alent stiffness, k., The equivalent stiffness is determined such that the system with a com-
bination of springs has the same displacement, x, as the equivalent system when both
systems are subject to the same force, . A model SDOF system consisting of a block
attached to a spring of an equivalent stiffness is illustrated in Figure 2.8. The resultant force
acting on the block is

F= /eeqx (2.26)

2.3.1 PARALLEL COMBINATION

The springs in the system of Figure 2.9 are in parallel. The displacement of each spring in
the system is the same, but the resultant force acting on the block is the sum of the forces
developed in the parallel springs. If x is the displacement of the block, then the force devel-
oped in the 7th spring is #,x and the resultant is

F=lx+ kx+-+ kx= <2/ei>x (2.27)
=1
Equating the forces from Equations (2.26) and (2.27) leads to
ke = zlei (2.28)

2.3.2 SERIES COMBINATION

The springs in Figure 2.10 are in series. The force developed in each spring is the same and
equal to the force acting on the block. The displacement of the block is the sum of the
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ky ky k3 Ky
g AAA AAA AAA o © 6 0 oA m The springs in the series combination each
develop the same force, but the total displace-
ment of the combination is the sum of the indi-
vidual changes in length.

changes in length of the springs in the series combination. If x; is the change in length of
the 7th spring, then

x=x b x, o A x = Dx, (2.29)
i=1
Since the force is the same in each spring, x, = F/k and Equation (2.29) becomes

x =

(2:30)

o F
=%,

Since the series combination is to be replaced by a spring of an equivalent stiffness,
Equation (2.26) is used in Equation (2.30), leading to

by == (2.31)

Electrical circuit components also can be placed in series and parallel and the effect of the
combination replaced by a single component with an equivalent value. The equivalent capac-
itance of capacitors in parallel or series is calculated like that of springs in parallel or series. The
equivalent resistance of resistors in series is the sum of the resistances, whereas the equivalent
resistance of resistors in parallel is calculated by using an equation similar to Equation (2.31).

Model each of the systems of Figure 2.11 by a mass attached to a single spring of an
equivalent stiffness. The system of Figure 2.11(c) is to be modeled by a disk attached to a
torsional spring of an equivalent stiffness.

SOLUTION

(a) The steps involved in modeling the system of Figure 2.11(a) by the system of Figure 2.8
are shown in Figure 2.12. Equation (2.28) is used to replace the two parallel springs by an
equivalent spring of stiffness 34. The three springs on the left of the mass are then in series,
and Equation (2.31) is used to obtain an equivalent stiffness.

If the mass in Figure 2.11(a) is given a displacement x to the right, then the spring
on the left of the mass will increase in length by x, while the spring on the right of the
mass will decrease in length by x. Thus, each spring will exert a force to the left on the
mass. The spring forces add; the springs behave as if they are in parallel. Hence
Equation (2.28) is used to replace these springs by the equivalent spring shown in
Figure 2.12(c).

(b) The deflection of the simply supported beam due to a unit load at x = 2 m is cal-
culated using Table D.2

L) AL @

oz =2m) = w( 3 ) " 243ET
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2k
k 3k 2k
n W
k
(a)
E =210 x 10° N/m?
I 2m t I m—» I=5x 10 m*
k=1x 108 N/m
k
m
(®)
) ) AB: Steel shaft
) 30.em i 20em with aluminum core
% _________ == A $’_4_ -
An 2 473 BC: Hollow steel
% ——————————————————————————— shaft
A B C
7, =20 mm ry= 18 mm Gy =80 x 107 N/m?
ry =25 mm r4 =30 mm Gy =40 x 10° N/m?
(©
.f hy =20 mm
————————— T hy=25mm
h
! e D 2 p=13mm
' b b= E=210x 10° N/m?
I 2m |
()
FIGURE 2.11
Systems for Example 2.4.
—x
k 3k 3k 2k
W W
(a)
—x
3k/5 2k
i g
(®)
—
13k/5 FIGURE 2.12
m Steps in replacing the combination of springs in

g Figure 2.11 (a) using a single spring of an equivalent

(©) stiffness.
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from which the equivalent stiffness is obtained

_ 243E]  243(210 X 10° N/m?)(5 X 104 m%)
L4 4(3m)?
The displacement of the block of mass 72 equals the displacement of the beam at the location
where the spring is attached plus the change in length of the spring. Hence the beam and spring
act as a series combination. Equation (2.31) is used to calculate their equivalent stiffness

1
- — 7
k, 1 1 7.03 X 107 N/m (©)
+
2.36 X 108N/m 1 X 108 N/m

(c) The aluminum core of shaft AB is rigidly bonded to the steel shell. Thus the angu-
lar rotation at B is the same for both materials. The total resisting torque transmitted to
section BC'is the sum of the torque developed in the aluminum core and the torque devel-
oped in the steel shell. Thus the aluminum core and steel shell of shaft AB behave as two
torsional springs in parallel. The resisting torque in shaft AB is the same as the resisting
torque in shaft BC. The angular displacement at C'is the angular displacement of B plus
the angular displacement of C'relative to B. Thus shafts AB and BC behave as two torsional
springs in series. In view of the preceding discussion and using Equations (2.28) and
(2.31), the equivalent stiffness of shaft AC is

1
k= d
T “
o+ kO k

ABy| By

k

— 236 X 108 N/m  (b)

Ipc

where the torsional stiffness of a shaft is £, = /G/L and

N
0.4 m)4<40 X 107 2)
32 m

N.m
k, = = 3.35 X 10* ——
fan, 0.3m 335 rad (®)
N
Z10.05 m)* — (0.04 m)4](80 X 1092>
32 m N-m
k.= = 9.66 X 10* —— (f
fan, 0.3 m ra
N
21006 m)* — (0.036m)4](80 X 1o9>
o= =2 ™ a3 x 100N (g
s 0.2m ’ rad &
Substitution of these values into the equation for £, gives
k,. = 1.01 X 10°N-m/rad (h)
eq

(d) Under the assumption that the rate of taper of the bar is small the following
mechanics of materials equation is used to calculate the change in length of the bar due to
a unit load applied at its end:

L e

a- 0)
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The area varies linearly over the length of the bar A = (/Jl - %z) b. The change in

length is
L
1 d: 1/ —-L hy=hy \ |2 L b
s =35 ] i =l )| = ()
bE J, P bE\ h,— h, L o CE(h —h) h,
1 L
2m 0.025 m

N (0.013 m) (210 X 10°N/m?)(0.025 m — 0.02 m) B 0.02 m

=327 X 10*m/N )

Thus, the equivalent stiffness of the shaft is

po—t o L e x 10N (k)
W@ A 327X 10°m/N m

2.3.3 General Combination of Springs

A single degree-of-freedom (SDOF) system is defined such that every particle is kinemati-
cally related to every other particle. Consider a system with 7 springs of stiffnesses
/el, /ez, ..., kn. Assume the jth spring is attached at a point where the relation between the
displacement of the point of attachment and the generalized coordinate x is x; =y jx for

j=1,2,..., n The potential energy in a spring is V' = %kxz where x is the change in
length of the spring from its unstretched length. The total potential energy in the 7
springs is
701
V= |:/€i(’yz'x)2:|
=2
1 n
= ( > ka?)xz
2 e 11
1,
- 2 eqx (2.32)

Equation (2.32) shows that (for analysis purpose) it is possible to replace a combination of
springs in a linear SDOF system by a single spring of equivalent stiffness at the location
described by the generalized coordinate x. The criterion for the equivalent stiffness is that
the potential energy of the equivalent spring and the potential energy of the original system
be equivalent at all times.

When using an angular coordinate as the generalized coordinate, the potential energy
of a SDOF linear system is

1
-~ 9
V= 2/€t‘qu (2:33)

where £ seq is an equivalent, torsional viscous-damping coefficient.
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The system of Figure 2.13 moves in a horizontal plane. Replace the system of springs by
(a) a single spring of equivalent stiffness when x is the displacement of the block of mass 2 kg
and is used as the generalized coordinate and (b) a spring of an equivalent torsional stiff-
ness when the clockwise angular rotation of the disk 6 is used as the generalized coordinate.

SOLUTION

(a) When the block of mass 2 kg moves through a displacement x, as shown in Figure 2.13,
and assuming the cable connecting the block to the disk is inextensible, the point of con-
tact between the disk and the cable have the same velocity. The velocity of the cable is x,
and the velocity of a point on the outer edge of the inner disk is 76 . Thus,

x= rf (a)

Let y be the displacement of the cable attached to the 1 kg block. Its direction is opposite
that of the other block. Assuming the cable is inextensible, the velocity of the cable 7 is the
same as the velocity of the point on the disk in contact with the cable which
is %rﬂ leading to

Equations (a) and (b) are combined, leading to
3
=S (©)
which is true for all time. Integrating and setting y(0) = x(0) = 0 leads to
3
y=ox (d)

The total potential energy developed in the system at an arbitrary time in terms of x is
the sum of the potential energies in the springs

V=

1 1 3 \?
= 24 -1 2
3 (3000 N/m)x 5 (1000 N/m)(2x>

= % (5250N/m)x? (e)

’ lkg ‘ly FIGURE 2.13

| 2k |

X

I System of Example 2.5 is in a horizontal plane. The combina-
tion of springs are replaced by a single spring of an equivalent
stiffness, so the potential energy of the original system is
equal to the potential energy of the equivalent spring at any
instant.

3000 N/m 1000 N/m
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CHAPTER 2

The equivalent stiffness of a spring placed on the 2 kg block to model the potential energy
of the system is 5250 N/m.

(b) Using Equations (a) and (b) to give relations between x and 6 and y and 6 leads to the
total potential energy in the system, which is written using 0 as the generalized coordinate as

_1 1 3.)
V=~ (B000N/m)(r6)* + - (10001\1/m)<2 70) (f)

Substituting » = 0.1 m gives

1 N-m
V= E (52.5 —7>02 ()

Thus, the equivalent torsional stiffness of the system when using 6 as the generalized coor-
dinate is 52.5 N-m/rad, which implies that the springs can be replaced by a single torsional
spring of stiffness 52.5 N-m/rad attached to the pulley.

e
2.4 OTHER SOURCES OF POTENTIAL ENERGY

Any conservative force has an associated potential energy function. In addition to the spring
force, this includes gravity, buoyancy, and a parallel-plate capacitor. Gravity and buoyancy
are considered.

2.4.1 GRAVITY

The force due to the presence of a body of mass 7 in a gravitational field is mg directed
toward the center of the earth applied at the mass center of the body. Gravity is a conser-
vative force with a potential energy of

V= mgh (2:34)

where 4 is the distance of the mass center above a reference position (the datum). The
potential energy is a function of only the vertical position of the mass center.

A bar is hanging in equilibrium in the position shown in Figure 2.14(a). Determine the
potential energy of the bar in terms of 6 the counterclockwise angular position of the bar
from its equilibrium position when (a) the datum is taken to be the horizontal plane at
the bottom of the bar when in equilibrium, (b) the datum is taken as the horizontal plane
through the mass center when the bar is in equilibrium, and (c) the datum is taken to be
the horizontal plane through the pin support.

SOLUTION
(a) As the bar swings through an angle 6, as illustrated in Figure 2.14(b), the mass center
is a distance

L L
==4+2Q-
h ) (1 — cos6) (a)

and has a potential energy with respect to the datum of

V= mgé (2 — cos6) (b)
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AN

2

% G FIGURE 2.14

B (a) The point of application of the gravity force

> mg is at the mass center of the bar.

¥ (b) Diagram of a bar for an arbitrary value of 6,

illustrating the geometry used in the calcula-

(a) (b) tion of the potential energy.

(b) Using a horizontal plane through G as a datum, we have
L
V= mg= (I — cos6) (c)
(c) Using a horizontal plane through O as a datum, we have

L
V= —mggcosﬁ (d)

Calculate the total potential energy of the system of Figure 2.15 as the mass is displaced a
distance x downward form the system’s equilibrium position. Use a horizontal plane
through the mass when the system is in equilibrium as the datum.

SOLUTION

When the system is in equilibrium, the spring has a static deflection, A = “%. Thus, as the
mass moves down a distance x from the equilibrium position, the potential energy in the
spring is

1
V= E/e(x + A)? (@)
Adding to this, the potential energy due to gravity Vg = — mgx yields

1
V= Ek(x + A)? — mgx

1 mg\2
= — + — —
2k<x k> mgx

1 . mg?
5 kex —ngx-f-T — mgx

"
X

FIGURE 2.15

The potential energy due to

gravity cancels with the

potential energy of the static

spring force as the mass
moves from equilibrium.

1
Ekxz +V (b)

0

where V.

0
Thus, the total potential energy is expressed as the potential energy of the spring with

respect to the equilibrium position plus the potential energy of the system when it is in

m2g> . . . . .. el
= 25 is the potential energy in the spring when the system is in equilibrium.

equilibrium.
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2.4.2 BUOYANCY

When a solid body is submerged in a liquid or floating on the interface of a liquid and
air, a force acts vertically upward on the body because of the variation of hydrostatic pres-
sure. This force is called the buoyant force. Archimedes’ principle states that the buoyant
force acting on a floating or submerged body is equal to the weight of the liquid displaced

by the body.

EXAMPLE 2.8

A sphere of mass 2.5 kg and radius 10 cm is hanging from a spring of stiffness 1000 N/m
in a fluid of mass density 1200 kg/m?. What is the static deflection of the spring?

SOLUTION
The spring force must balance with the gravity force and the buoyancy force as shown on
the free-body diagram in Figure 2.16.

kASt-i-FB— mg = 0

Archimedes’ principle is used to calculate the buoyant force as

F

Fp B
The static deflection is calculated as
- F 2.5ke)(9.81 m/s?) — 49.3 N
FBD of a sphere attached to a A = e 5 _ @5 g)(9 m/s) 23

spring and submerged in a * k 1000 N/m
liquid.

4 4
= gpgwﬁ =3 (1200 kg/m?)7(9.81 m/s*)(0.1m)* = 49.3N

= —0.0185m

Consider a body floating stably on a liquid-air interface. The buoyant force balances
with the gravity force. If the body is pushed farther into the liquid, the buoyant force
increases. If the body is then released, it seeks to return to its equilibrium configuration.
The buoyant force does work, which is converted into kinetic energy and oscillations about
the equilibrium position ensue.

The circular cylinder of Figure 2.17 has a cross-sectional area A and floats stably on
the surface of a fluid of density p. When the cylinder is in equilibrium, it is subject to a
buoyant force mg and its center of gravity is a distance A from the surface. Let x be the
vertical displacement of the center of gravity of the cylinder from this position. The additional

_ |
x+A
P LXE:
Oscillations of a cylinder on a free
surface can be modeled by a SDOF
b S 0 (P system where the buoyant force is
the source of potential energy.
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volume displaced by the cylinder is x4. According to Archimedes™ principle, the buoyant
force is

Fy = mg + pgAx (2:35)

Calculations show that the work done by the buoyant force as the cylinder’s center of grav-
ity moves between positions x; and x, is

1 1
U_, = EpgAxf - EpgAx% (2.36)

and is independent of path. Hence the buoyant force is conservative. Its effect on the cylin-
der is the same as that of a linear spring of stiffness pgA. The oscillations of the cylinder on
the liquid-gas interface can be modeled by a SDOF mass-spring system.

R
25 VISCOUS DAMPING

Viscous damping occurs in a mechanical system when a component of the system is in con-
tact with a viscous liquid. The damping force is usually proportional to the velocity

F=cv (2.37)

where ¢ is called the viscous damping coefficient and has dimensions of (force)(time)/ (length).

Viscous damping is often added to mechanical systems as a means of vibration control.
Viscous damping leads to an exponential decay in amplitude of free vibrations and a reduc-
tion in amplitude in forced vibrations caused by a harmonic excitation. In addition, the
presence of viscous damping gives rise to a linear term in the governing differential equa-
tion, and thus does not significantly complicate the mathematical modeling of the system.
A mechanical device called a dashpor is added to mechanical systems to provide viscous
damping. A schematic of a dashpot in a one degree-of-freedom system is shown in
Figure 2.18(a). The free-body diagram of the rigid body, Figure 2.18(b), shows the viscous
force in the opposite direction of the positive velocity.

A simple dashpot configuration is shown in Figure 2.19(a). The upper plate of the
dashpot is connected to a rigid body. As the body moves, the plate slides over a reservoir of
viscous liquid of dynamic viscosity w. The area of the plate in contact with the liquid is 4.
The shear stress developed between the fluid and the plate creates a resultant friction force
acting on the plate. Assume the reservoir is stationary and the upper plate slides over the

i .
m cx —— FIGURE 2.18
(a) Schematic of SDOF mass-spring-dashpot

c

system. (b) Dashpot force is cx and
(@) (b) opposes the direction of positive velocity.
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g v (a) Simple dashpot model where
plate slides over a fixed reservoir of
a viscous liquid. (b) Since his small, a
’ linear velocity profile is assumed in
(@) L
the liquid.

Plate of area A
/ v

T Viscous fluid
vy
L a— u(y) = m

Pl

[-— =

(b)

liquid with a velocity ». The reservoir depth /4 is small enough that the velocity profile in
the liquid can be approximated as linear, as illustrated in Figure 2.19(b). If y is a coordi-
nate measured upward from the bottom of the reservoir,

J
u(y) = z/Z (2.38)
The shear stress developed on the plate is determined from Newton’s viscosity law
du v (239)
T = —_— = — .
% 4 3 39
The viscous force acting on the plate is
A
F=1A= %v (2.40)
Comparison of Equation (2.40) with Equation (2.37) shows that the damping coefficient
for this dashpot is
nA
= — 2.4
c== (2.41)

Equation (2.41) shows that a large damping force is achieved with a very viscous fluid, a
small 4, and a large A. A dashpot design with these parameters is often impractical and thus
the device of Figure 2.19(a) is rarely actually used as a dashpot.

This analysis assumes the plate moves with a constant velocity. During the motion of
a mechanical system, the dashpot is connected to a particle which has a time-dependent
velocity. The changing velocity of the plate leads to unsteady effects in the liquid. If the
reservoir depth 4 is small, the unsteady effects are small and can be neglected.

A more practical dashpot is a piston-cylinder arrangement, as shown in Figure 2.20.
The piston slides in a cylinder of viscous liquid. Because of the motion, a pressure difference

A piston and cylinder device that
serves as a viscous damper.

AN
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2] A disk rotates in a dish of a viscous
&_) liquid, producing a moment about the
axis of the shaft and acting as a
torsional viscous damper.

is formed across the head of the piston which is proportional to the velocity of the piston.
The pressure times the area of the head is the damping force.

A torsional viscous damper is illustrated in Figure 2.21. The shaft is rigidly connected
to a point on a body undergoing torsional oscillations. As the disk rotates in a dish of vis-
cous liquid, a net moment due to the shear stresses developed on the face of the disk acts
about the axis of rotation. The moment is proportional to the angular velocity of the shaft

M= Qé (2.42)

where ¢, is the torsional viscous damping coefficient and has dimensions of force-length-time.

Any form of damping where the damping force is proportional to the velocity is
referred to as viscous damping. Viscous damping can be produced by a body moving
through a magnetic field, a body oscillating on the surface of a lake, or by the oscillations
of a column of liquid in a U-tube manometer.

The schematic representation for viscous damping when present in mechanical systems
is shown in Figure 2.22. The force developed in the dashpot is equal to and opposite of the
force from the damper on the body. The force resists the motion of the system and is drawn
to show it acting in the opposite direction of the velocity. The direction of the force takes
care of itself. If the velocity is negative, the actual damping force is acting in the direction
of positive velocity. However, it is drawn on the FBD in the direction of negative velocity
and has a negative value, thus being in the positive direction.

The viscous damping force is the damping coefficient times the velocity of the point
where the dashpot is attached acting in the opposite direction of the positive velocity of
that point.

(a) Schematic of a viscous damper in

a mechanical system. (b) The viscous
f—x ——X X damping force is always drawn as the
opposite of the direction of positive
g I:C— x>0 cx<0 velocity. (c) When velocity is nega-

tive, the viscous clamping force is still

drawn to the left, but since it is nega-
@ (b) © tive, it goes toward the right.
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Draw a FBD for the system of Figure 2.23(a) at an arbitrary instant using 6 as the depend-
ent variable and labeling the forces in terms of 6

SOLUTION
The FBD is shown in Figure 2.23(b). The velocity of particle 4 at an arbitrary instant is
%0 upward, while the velocity of particle B is %0 downward.

¢ o D<to

(a)

L .
c=6
j 4 FIGURE 2.23
(a) System of Example 2.9. (b) FBD of system. The

Eé force from the viscous damper on the body is

4 equal to and opposite the force from the body on
the viscous damper. The force is always drawn
opposite to the positive velocity of the point to

c
R
(b) which it is attached.

.
2.6 ENERGY DISSIPATED BY VISCOUS DAMPING

Rewriting the principle of work and energy, Equation (1.47) applied to a system is

U, =T+ V= (T +V) (243)

12,0 2

and shows that work done by non-conservative forces is the difference in total energies.

Viscous damping is a non-conservative force. After application of viscous damping,
I, + V, <1 + V, and the work done by viscous damping is negative. The viscous
damping force always opposes the direction of motion. The work done by a viscous damper
between the initial position is described by x = 0 and an arbitrary position

U_,=— / chdx (2.44)
0

The work done by discrete viscous dampers in a SDOF system is the sum of the work
done by individual dampers. For a SDOF system, the displacement of all particles is kine-
matically related. In a system with 7 viscous dampers, the displacement of the ith viscous
damper is related to the generalized coordinate by x, = 7y,x. The total work done by the
viscous dampers is

U, = _E

X;
i=1J0

cxdx, (2.45)
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Equation (2.45) is rewritten by introducing the relationship between x, and x as

Uy = =2 | ety dy
i=1J0
= - E c(yix)dx (2.46)
i=1J0

Now that the integrals all have the same variable of integration and limits, the order of
summation and integration are interchanged to yield

U, = _/ (Eci'yzi )xdx
0 Nj=1

= —/ c. xdx (2.47)
o @

Hence, an equivalent viscous-damping coefficient can be determined for any SDOF
system.
If an angular coordinate 6 is used as a generalized coordinate, Equation (2.47) is mod-

ified as

U_,= —[ ,eq 00 (2.48)

where ¢, is an equivalent, torsional viscous-damping coefficient.

The system of Figure 2.24 moves in a horizontal plane.

(a) Determine the equivalent viscous-damping coefficient for the system if x is the dis-
placement of the 2 kg block and is used as the generalized coordinate.

(b) Determine the equivalent, torsional viscous-damping coefficient 6 if the clockwise
angular displacement of the disk is used as the generalized coordinate.

I=0.04 kg-m?
r=10cm

ly
2 kg 1 kg
XI | I

1000 N/m
3000 N/m 200 N - s/m 400 N - s/m

FIGURE 2.24
System for Examples 2.10 and 2.11.
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SOLUTION

(a) Using kinematics, it is found that the relation between the downward displacement of
the 2 kg block x and the upward displacement of the 1 kg block y is y = %x Calculating
the work done by the viscous dampers as the system moves between the initial position and
an arbitrary position, we have

U_, = —/ (200 N:s/m) x dx — /(400N-s/m) <Sk)d<3x)
0 0 2 2

= —/ (1100 N-s/m) & d (a)
0
Thus, Coq = 1100 N-s/n
(b) Kinematics is used to determine that x = 76 and y = % 760 where » = 0.1 m.

Calculating the work done by the viscous dampers as the system moves from an initial posi-
tion to an arbitrary position, we have

0 0
U_,=— / (200 N+s/m)[(0.1m)6] 4[(0.1 m)6] — / (400N°s/m)[2(0.1m)9]
0 0

[’
X 4{3(0.1@0} - —/ (11N'm's>éd¢9 (b)
2 0 l‘ad

Thus, Crog = 11 N.m-s/rad

e
2.7 INERTIA ELEMENTS

A particle’s mass is the only inertia property for the particle. The distribution of mass about
the mass center is also important for a rigid body undergoing planar motion. It is described
by a property of the rigid body called the centroidal moment of inertia, defined by

1= /[(x ="+ =D 4 (2-49)
when the coordinates of the rigid body’s mass center are (x, y). The integration is carried
out over the entire mass of the rigid body. The centroidal moment of inertia has been cal-
culated for common shapes, and the results are tabulated in Table 2.1.

2.7.1 Equivalent Mass
The kinetic energy of a particle is %mz/z. The kinetic energy of a rigid body undergoing

planar motion is %m&z + %7 . For a linear SDOF system, the displacement of any parti-
cle in the system is kinematically dependent upon x. Consider a system composed of 7
bodies, particle, and rigid bodies undergoing planar motion. There exists a 8, such that
the displacement of the mass center of the 7th body is x, = B,x, and there exists a v, such
that the angular rotation of the ith body is 6, = v,x. If the ith body is a particle, then
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LABEE 2.1 Moments of inertia of three-dimensional bodies

Body General Shape Centroidal Moments of Inertia

General shape y 7 /(yz + 2 dm

1;= /(x2 + 2% dm

/(x2 + ) dm

2~
W~
Il

Slender rod I =0
- 1
[ = —ml?
712
1
[ = —ml?
12
L _ 1
Thin disk y I = —m?
r : 2
-1
L2
]y 4mr
-1
I = —mr?
X 4
Z
Thin plate .
p I = —mw?* + h?
1 * 12
h - 1
I = —muw?
] 712
- 1
I = —mh?
z 12
. . . 1
Circular cylinder I = Emrz

<N
Il

1
I m(3r? + I[?)

- 1
[Z = Em(?vrz + 1?)

Sphe _ 2
phere Y [ = —mr?
5
-2
r [ = —mr?
7
jz = —mr?
z
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v, = 0. The total kinetic energy of the system is the sum of the kinetic energies of all bodies
in the system:

i Bmi(ﬁiic)2 + ;]l,(via'c)z}

S+ 1 e
i=1

= —m_x? (2.50)

Thus, any single degree-of-freedom system has an equivalent mass defined by Equation
(2.50).

If an angular coordinate is used as the generalized coordinate, the kinetic energy is written as

1 .
T= Eleqez (2.51)

where [eq is an equivalent moment of inertia.

The system of Figure 2.24 moves in a horizontal plane.

(a) Determine the equivalent mass when x (the displacement of the 2 kg block) is used
as the generalized coordinate.

(b) Determine the equivalent moment of inertia when 6 (the clockwise angular rota-
tion of the disk) is used as the generalized coordinate.

SOLUTION
During the solution of Example 2.10, it is determined that if y is the upward displace-
ment of the 1 kg block, then y = %x and § = 7 = 57— = 10x. The total kinetic energy

is the kinetic energy of the blocks plus the kinetic energy of the disk:

1 1 1 :
T= 5 (2 kg)x* + 5 (1 kg)y? + 5 (0.0 4 kg - m?)6?

1 1 3.\% .1
- 2+ = =x ] + =(0. - m?)(10xm™")?
5 (2 kg)x 5 (1 kg)(2x> 2(0 04 kg - m*)(10xm™")

1
5 (8.25 kg)x? (a)
Thus, the equivalent mass is 8.25 kg.

(b) During the solution of Example 2.10, it is shown that y = %r@ = %(0.1 m)6

1 1 1 .
T= 5(2 kg)x2 + 5(1 kg))/z + 5(0.04 kg * m2)02
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l(zk )[(0.1m)A]? + l(1k )[3(0 1 m)év]2 + l(o 04 kg - m)0”
2L 2 F 2 e

1 .
5(0.0825 kg - m?)6* (b)

Thus, if all of the inertia were concentrated on the disk, the disk would have a moment
of inertia of 0.0825 kg . m?.

- x

k
2.7.2 INERTIA EFFECTS OF SPRINGS M U
When a force is applied to displace the block of Figure 2.25(a) from its equilibrium posi- @
tion, the work done by the force is converted into strain energy stored in the spring. If the
block is held in this position and then released, the strain energy is converted to kinetic f—x
energy of both the block and the spring. If the mass of the spring is much smaller than the k
mass of the block, its kinetic energy is negligible. In this case the inertia of the spring has g_/\/\/\/‘— Meq

negligible effect on the motion of the block, and the system is modeled using one degree
of freedom. The generalized coordinate is usually chosen as the displacement of the block. (b)

If the mass of the spring is comparable to the mass of the block, the single degree-of-
freedom assumption is not valid. The particles along the axis of the spring are kinemati-
cally independent from each other and from the block. The spring should be modeled as a

(a) Potential energy devel-
oped in the spring is con-
verted into kinetic energy for

continuous system. both the block and the
If the mass of the spring is much smaller than the mass of the block, but not negligi- spring. (b) An equivalent
ble, a reasonable one degree-of-freedom approximation can be made by approximating the =~ mass is used to approximate

spring’s inertia effects. The actual system of Figure 2.25(a) is modeled by the ideal system ~ nertia effects of the spring.

of Figure 2.25(b) in which the spring is massless. The mass of the block in Figure 2.25(a)
is greater than the mass of the actual block to account for inertia effects of the spring. The
value of m,, is calculated such that the kinetic energy of the system of Figure 2.25(b) is the
same as the kinetic energy of the system of Figure 2.25(a) including the kinetic energy of
the spring, when the velocities of both blocks are equal. Unfortunately, calculation of the
exact kinetic energy of the spring requires a continuous system analysis. Thus, an approx-
imation to the spring’s kinetic energy is used.

Let x(#) be the generalized coordinate describing the motion of both the block of Figure 2.25(a)
and the block of Figure 2.25(b). The kinetic energy of the system of Figure 2.25(a) is

1
=T+ Ema’cz (2.52)

where T is the kinetic energy of the spring. The kinetic energy of the system of
Figure 2.25(b) is
T= %meqfﬂ (2.53)
The spring in Figure 2.25(a) is uniform, has an unstretched length /and a total mass 72
Define the coordinate z along the axis of the spring, measured from its fixed end, as defined
in Figure 2.26. The coordinate z measures the distance of a particle from the fixed end in
the spring’s unstretched state. The displacement of a particle on the spring, #(z), is assumed
explicitly independent of time and a linear function of z such that #(0) = 0 and «(/) = «x,

wz) = i;z (2.54)
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[ l | x
dz
Z
(a)
u(l)=x
u(©0)=0 u@ = Iz

g_._/\/\/\/\/\/\/\/\/\/_ (a) The coordinate zis measured along the axis of
the spring form its fixed end when the system is in

equilibrium, 0 = z = {. (b) The displacement
(b) of the spring is assumed as a linear function of z.

Equation (2.54) represents the displacement function of a uniform spring when it is stati-
cally stretched. Consider a differential element of length dz, located a distance z from the
spring’s fixed end. The kinetic energy of the differential element is

AT = L dm = Lir (2.55)
[ = S @dm = —iX(e)—de .55

= ;(?):ﬂ (2.56)

Equating 7" from Equations (2.52) and (2.53) and using 7, from Equation (2.56) gives

The total kinetic energy of the spring is

Wom (N, am 2
7= lar= [ 25 (Z) pe=L D0
: /df [ﬂ(z)d‘z 2" 3

0

m
My = m+ ?’ (2.57)
Equation (2.57) can be interpreted as follows: The inertia effects of a linear spring with one
end fixed and the other end connected to a moving body can be approximated by placing
a particle whose mass is one-third of the mass of the spring at the point where the spring
is connected to the body.

The preceding statement is true for all springs where use of a linear displacement func-
tion of the form of Equation (2.54) is justified. This is valid for helical coil springs, bars
that are modeled as springs for longitudinal vibrations, and shafts acting as torsional
springs.

The springs in the system of Figure 2.27(a) are all identical, with stiffness # and mass 2.
Calculate the kinetic energy of the system in terms of 6 (t), including the inertia effects of
the springs.

SOLUTION

Each spring is replaced by a massless spring and a particle of mass 72/3 at the point on the
bar where the spring is attached as shown in Figure 2.27(b). The total kinetic energy of the
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(b)
FIGURE 2.27

(a) System of Example 2.12. (b) Inertia effects of springs are approximated by placing a particle of
mass m_/3 at locations where springs are attached.

system of Figure 2.27(b) is the kinetic energy of the bar plus the kinetic energy of each of
the particles
1

_ 1_.
F=omi2 4 —T76*+ T, + T, + T,

9 1 2

1 (L.\, 11 o Am(LN2 o 1m (L2 1 m (312
—m\—0) +—-—ml*0* + -+ o) |0
2 4 212 23\4 2 3 \4 23 \4

1<7m+ 11m> .
= | - LZOZ
2 48

The simply supported beam of Figure 2.28 is uniform and has a total mass of
100 kg. A machine of mass 350 kg is attached at B, as shown. What is the mass of a parti-
cle that should be placed at B to approximate the beam’s inertia effects?

SOLUTION

Since the exact expression for the dynamic beam deflection is hard to obtain, an approxi-
mate displacement function is used in the calculation of the beam’s kinetic energy. Let z be
a coordinate along the beam’s neutral axis. Assume that the time-dependent displacement
of any particle a long the beam’s neutral axis can be expressed as

(% 0 = x()w(2) (@

where x(2) is the deflection of B. An appropriate approximation for w(z) is the static deflection
of the beam due to a concentrated load, P, applied at B, such that B has a unit deflection.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CHAPTER 2

(@)

P FIGURE 2.28
(a) System of Example 2.13.

(b) Static deflection of beam
(b due to concentrated load at B.

By using the methods of Appendix D, the static deflection due to a concentrated load
at B is found to be

P (s 21

ey " R
W@ = p 4 8\ 2L ®)

<2z3 — 622L + —zl* — L3> — =z=17

18 E1 9 9 3
The load required to cause a unit deflection at z = 2L/3
243E]

=D ()

Consider a differential element of length dz, located a distance z from the left support.
The kinetic energy of the element is
1 1
dT = Ejz(z, )dm = Ejlz(z, D) pA dm (d)
where p is the mass density of the beam and A4 is its cross-sectional area. The beam’s total
kinetic energy is calculated by integrating d7 over the entire beam. Substituting the previ-
ous results for w(x, #) in this integral leads to

1 1 [ 243E1\ 2173 <8L2 )2
T=—pAd — 2 2= — 2 ) 4
2P {18E]( 40 )} X [% g )% (e)

I
44 8 2
+ / <2z3 — 622 + —zI[* — L3> dz}
21/3 9 9

The integral is evaluated yielding

1
T = 2 0.586pAL 32 f)

Noting that the total mass of the beam is pAL, a particle of mass 58.6 kg should be added
at B to approximate the inertia effects of the beam. The system of Figure 2.28(a) is mod-
eled as a SDOF system with a particle of 408.6 kg located at B.
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/—x Oscillations of a submerged body create kinetic energy
in a fluid. The inertia of the fluid can be approximated
by a particle added to the mass of the body.

2.7.3 ADDED MASS

Consider a mass-spring system immersed in an inviscid fluid, as shown in Figure 2.29. The
spring is stretched from its equilibrium configuration and the mass released. The ensuing
motion of the mass causes motion in the surrounding fluid. The strain energy initially
stored in the spring is converted to kinetic energy for both the mass and the fluid. Since
the fluid is inviscid, energy is conserved

T + 7} +V=2C (2.58)

The inertia effects of the fluid can be included in an analysis by using a method similar to
that used in Section 2.7.2 to account for the inertia effects of springs. An imagined parti-
cle is attached to the mass such that the kinetic energy of the particle is equal to the total
kinetic energy of the fluid. If x is the displacement of the mass, the total kinetic energy of
the system is %meqfcz, where

me = m + m, (2.59)

The mass of the particle is called the added mass.

The kinetic energy of the fluid is difficult to quantify. The motion of the body theo-
retically entrains fluid infinitely far away in all directions. The total kinetic energy of the
fluid is calculated from

I,= ;///pyzdv (2.60)

where v is the velocity of the fluid set in motion by the motion of the body. The inte-
gration is carried out from the body surface to infinity in all directions. If the integration
of Equation (2.60) is carried out, the added mass is calculated from

m =— (2.61)

Potential flow theory can be used to develop the velocity distribution in a fluid for a body
moving through the fluid at a constant velocity. This velocity distribution is used in
Equations (2.60) and (2.61) to calculate the added mass. Table 2.2 is adapted from Wendel
(1956) and Patton (1965) and presents the added mass for common body shapes.
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TABEE 2.2 Added mass for common

two- and three-dimensional
bodies (pis the mass density

TABLE 2.3 Added moments of inertia

for common bodies (p is
the mass density of the

of the fluid) fluid)
Body Added Mass Body Added moment of inertia
Sph.ere of iﬁp > SPhere . 0
diameter D 12 Circular cylinder 0
Thin Circular 1 Any body rotating about 0
disk of diameter D ng3 axis of symmetry
Thin square plate Thin plate of length L, 0.00781257pL*
of side h 0.1195mpk? rotating about axis in
Circular cylinder of 1 the plane of the surface
length L, diameter D 4P DL area of plate, perpendi-
Thin flat plate 1 cular to direction for
of length L, width w —mpw’L which Lis defined 1
- 4 . ) 5P D’
Square cylinder of Disk of diameter D
side h, length L 0.3775pm L rotating about a diameter
Cube of side h 2.33ph

Rotational motion of a body in a fluid also imparts motion to the fluid resulting in
rotational kinetic energy of the fluid. The inertia effects of the fluid are taken into account
by adding a disk of an appropriate moment of inertia to the rotating body. If w is the angu-
lar velocity of the body, the added mass moment of inertia is calculated from

T
I = T f (2.62)
2

Note that the added mass moment of inertia is zero if the body is rotating about an axis
of symmetry. Both the added mass and added moment of inertia terms are negligible for
bodies moving in gases. Table 2.3 presents added moments of inertia for a few common

bodies. It is adapted from Wendel (1956).

—
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2.8 EXTERNAL SOURCES

A non-conservative force is one whose work depends upon the path traveled by the particle
to which the force is attached. Viscous damping and externally applied forces are examples
of non-conservative forces. The work done by an external force is

U_, = / F(t)de/F(t))&dt

1 1

(2.63)

where x(¢,) = x, and x(z)) = x,.

Let x represent the generalized coordinate defined for a SDOF system. Suppose 7 exter-
nal forces are applied to the system whose points of application are x, = €,x,7 = 1,2, -+, n.
The total work by the external forces are
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U_,= 2| FWx,de= > | Flt)e, ids = / (EsiFl.(t)) i dr
i=1Jy i=1J1 n o Ni=1
= / Feq(t)a'cdt (2.64)
The power delivered by an external force F(z) is
dU
P=2L = (2.65)

dt
Work is a cumulative effect, whereas power is instantaneous.

Sinusoidal forces are easy to generate by an actuator. Sometimes the dynamics of the
system provides harmonic forces, such as reciprocating engines or any type of rotating
machinery. Impulsive forces are large forces generated over a short period of time, such as
the action of a hammer. Transient forces are generated over a period of time.

An applied force has the form F(z) = 100 sin(507) N.

(a) Determine the work done by the force between time 0 and an arbitrary time 7 if
x(#) = 0.002 sin(50# — 0.15) m.

(b) Determine the work done by the force between 0 s and 0.01 s.

(c) Determine the power delivered by the force at 0.01 s.

SOLUTION
(a) The work done by the force is

Wz / (100 sin 50¢ N)(0.002 m)(50 rad/s) cos (50 — 0.15)dt
0

10/ sin (50%) cos (50¢ — 0.15)dt
0

20
0.049 + 0.747r—0.05 cos (1007 — 0.15)

(b) The work between 0 s and 0.01 s is W(0.01)

1 1
——cos (1002 — 0.15) + %cos(O.IS) + 5sin (0.15)¢

1 1 1
01) = ——c0s(0.85) + — cos(0.15) + — sin(0.15) = 0. .
W (0.01) 20 cos(0.85) 20 cos(0.15) 20 sin(0.15) = 0.0239 N * m
(c) The power delivered to the system at # = 0.01 s is
P = F(r)x = [100 sin(O.S)N][(0.002m)(50 rad/s) cos (0.5 — 0.15)]

= 4.50 N - m/s

Motion input is generated by kinematic mechanism, such as a cam and follower system or
a Scotch yoke. Motion input also occurs through the wheels on a car following the road con-
tour. The work done by the motion input depends upon the system. Consider a mass-spring
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and viscous-damper system of Figure 2.30. The spring and viscous damper are connected to a

m moveable support which has a prescribed displacement y(#). The motion causes work in the
Tx spring and viscous damper. If x is the chosen generalized coordinate and represents the dis-

placement of the mass, the change in length of the spring is y — x and the velocity developed

k ¢ in the viscous damper is y — x. The work done by the parallel combination of the spring and
viscous damper on the body is
0 U, = / [k(y — 2 + c(j — D]dx
FIGURE 2.30 *

A mass-spring and viscous-
damper system with the
spring and viscous damper

/(—kx—cic)dx-‘r / (ky + cj)dx

attached to a moveable sup-

X
port. The motion of the sup- =V-Vv+U,, + +/ (ky + cy)dx (2.66)
. . NCd
port induces both the spring ’ x
force and viscous-damping . . .
force to do work on the where U,_,, is the work done by the non-conservative damping force. Hence, the
NCd

system. equivalent force due to the motion input is

E =ky+g (2.67)

A car is traveling on a bumpy road that is approximated by
y(2) = 0.002sin(272) m (a)

The car has a constant horizontal velocity of 60 m/s. The car is modeled using a simplified
suspension system consisting of a mass attached to a spring in parallel with a viscous
damper. The spring and viscous damper combination is attached to the wheels’ axis which
follow the road contour.

(a) What is the time dependent displacement imparted to the suspension system?

(b) What is the acceleration imparted to the suspension system?

(c) What is the equivalent force felt by the vehicle through a suspension system of
stiffness 20,000 N/m and damping coefficient 1000 N - s/m?

SOLUTION
(a) The car is traveling at a constant speed of 60 m/s; thus, in time it travels z = 60z
The displacement imparted to the vehicle is

y(® = 0.002sin[27(609)] = 0.002sin(120777) (b)
(b) The acceleration imparted to the suspension system is
y = —(0.002)(1207)?sin (1207r7) = —2.84 X 10%sin(1207%) m/s? (c)
(c) The equivalent force is given by Equation (2.65) as
£, = (20000N/m)[0.002 sin(120) m] + (1000N - s/m) (120)[0.002cos(1202)m/s]

= [40sin(1209) + 240cos(1205)] N (d)
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]
2.9 FREE-BODY DIAGRAM METHOD

Newton’s laws, as formulated in Chapter 1, are applied to free-body diagrams of vibrating
systems to derive the governing differential equation. The following steps are used in appli-
cation to a SDOF system.

1. A generalized coordinate is chosen. This variable could represent the displacement of
a particle in the system. If rotational motion is involved, the generalized coordinate
could represent an angular displacement.

2.  Free-body diagrams are drawn showing the system at an arbitrary instant of time. In
line with the methods of Section 1.7, two free-body diagrams are drawn. One free-
body diagram shows all external forces acting on the system. The second free-body dia-
gram shows all effective forces acting on the system. Recall that the effective forces are
a force equal to ma, applied at the mass center and a couple equal to la.

The forces drawn on each free-body diagram are annotated for an arbitrary
instant. The direction of each force and moment are drawn consistent with the posi-
tive direction of the generalized coordinate. Geometry, kinematics, constitutive equa-
tions, and other laws valid for specific systems can be used to specify the external and
effective forces.

3. The appropriate form of Newton’s law is applied to the FBD. If the FBD is that of a
particle, the appropriate conservation law is ZF = ma. If the FBD is that of a rigid
body undergoing planar motion, the conservation laws are XF = ma and
3M, = Ja. If the external and effective force method is used, the appropriate
equations are (ZF)_ = (2F) .

4. Applicable assumptions are used along with algebraic manipulation. The result is a
governing differential equation.

Forces are drawn on the FBDs at an arbitrary instant. The force from the spring on the
FBD (from Newton’s third law) is equal and opposite to the force from the body on
the spring. If the spring is stretched, it is in tension, and the force in the spring pulls
on the spring, as shown in Figure 2.31(a). Equal and opposite to it is the spring force acting
away from the body. If the spring is in compression, the force in the spring pushes against

— NN—— — x<0

FIGURE 2.31
(b) L . .
(@) Spring is in tension where force from a spring on

o - a block is away from the block. (b) Spring is in com-
50N N . .

_ pression were the force from a spring on a block
pushes on the block. (c) A — 50 N force pulling on
the block is equivalent to a 50 N force pushing on

© the block.
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—=x
— m
c
(a)
— X
CX ~——i
()
D ]
lex!
oh = The sign of the viscous-damping force takes care of itself if
it is drawn to the opposite of the positive motion of the
(c) point to which the viscous damper is attached.

the spring, as shown in Figure 2.31(b). Equal and opposite again, the spring force is acting
against the body. Let x represent the displacement of the particle to which the spring is
attached. If the spring force is drawn for a positive value of x, it is labeled /x and is drawn
acting away from the body. Now if the spring is in compression, x takes on a negative value.
If the spring force is drawn acting away from the body and x is negative, it is actually acting
against the body as shown in Figure 2.31(c). Thus, the spring force is always drawn in the
direction opposite to the that of positive displacement of the point to which it is attached.
Then the direction of the spring force always takes care of itself.

The force from a viscous damper always opposes the direction of motion of the point
to which it is attached on a FBD of a SDOF system. If x represents the displacement of the
particle to which a viscous damper is attached, then its velocity is x. The force from the vis-
cous damper drawn on the FBD opposes the direction of positive k. If the velocity of the
particle is in the opposite direction and X is negative, it is the same situation shown
Figure 2.32(c) where a negative force on a FBD is actually in the opposite direction. Thus,
the force from a viscous damper always opposes the direction of positive motion of the par-
ticle to which it is attached. Like the spring force, the direction always takes care of itself.

When the effective force diagram is drawn, the effective forces are drawn to be consis-
tent with the positive direction of the generalized coordinates.

The block of Figure 2.33(a) slides on a frictionless surface. Derive the differential equation
governing the motion of the system using x as the displacement of the system from its equi-
librium position and as the generalized coordinate.

SOLUTION

The free-body diagram of Figure 2.33(b) shows the forces acting on the block at an arbi-
trary instant. The spring force is kx and is drawn away from the block, indicating the spring
is in tension for a positive x. The damping force is labeled cxand is drawn opposite the pos-
itive direction of motion.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Modeling of SDOF Systems 89

(a)

™

k
m = F(t)
gﬂj—
c
kx

cx l — F(t)

P

T FIGURE 2.33
(a) System of Example 2.16. Mass-spring and viscous-damper
(b) system sliding on a frictionless surface with an external force.

Applying Newton’s law to the free-body diagram in the x direction leads to

—kx—cx + F(t) = mx (@)
Rearranging the equation so that all terms involving the generalized coordinate are on one
side yields

mx + cx+ kx = F(2) (b)

Equation (b) is the governing differential equation. The values of x(0) and x(0) must be
specified before solving.

A thin disk of mass moment of inertia / is attached to a fixed shaft of length L. The polar
moment of inertia of the shaft is / and it is made from a material of shear modulus G, as
shown in Figure 2.34(a). A moment M(?) is applied to the disk. Derive the differential

equation governing the clockwise angular displacement of the disk 6. M(t)
7 [
SOLUTION ; (‘
The effect of the shaft is to produce a resisting moment - @
JG
M= T 0 (a) M)
o
on the disk. The disk undergoes pure rotational motion about the axis of the shaft. é L
FBD of the disk at an arbitrary time is shown in Figure 2.34(b). Applying ZM . = I« to
) (b)

the disk and noting that @ = 6 leads to
FIGURE 2.34

(a) System of Example 2.17.
The angular displacement of
the disk 6 is the chosen gen-
eralized coordinate. (b) FBD
of the system at an arbitrary
instant.

JG 5
=0+ M = 10 (b)

.. JG
16 + 79 = M ()
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EXAMPLE 2.18

The system of Figure 2.35 lies in a horizontal plane on a frictionless surface. Derive the dif-
ferential equation governing the displacement of the mass.

SOLUTION

Let x represent the displacement of the mass. The disks move together. Assuming the cable
connecting the block to the disk is inextensible, the change in length of the cable is x,
which must be the amount of cable taken up or let out by the disk. If 6 represents the
clockwise angular rotation of the disk, the amount of cable let out is equal to the arc length

subtended by 6 as
x= 70 (a)

Equation (a) is valid for all time. It can be differentiated leading to x = 70 and X = 76.
This is consistent with use of the relative velocity and relative acceleration equations
applied between the center of the disk and the point instantaneously releasing the cable.
The acceleration of the point also has a component equal to 76* directed toward the center
of rotation. Using the same principle, the spring is stretched by 2x.

;
e -
2kx
F() FIGURE 2.35
mx (a) System of Example 2.18 lies in a horizontal

E 1 fi Effective f plane. (b) FBDs of the system at an arbitrary

e forees ective forces instant. The system consists of the disk and the

® © block.
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FBD’s illustrating the external forces for the system and the effective forces are shown

in Figure 2.35(b). Applying (2M ) . = (EM ) 4 to these FBDs yields

ext

— 2027 + rRp = 1(’:> + mx(n) (b)

which is rearranged to

<i + mr)k + dkrx = rF(2) ()

A thin disk of mass 7 and radius , 7 = % mr?, has a spring of stiffness 4, and has a viscous
damper of damping coefficient ¢ attached at its mass center, as shown in Figure 2.36(a). The
disk rolls without slipping. Derive a differential equation governing the displacement of the
mass center.

SOLUTION

Let x be the displacement of the disk’s mass center. When the disk rolls without slipping
the friction force is less than the maximum available friction force w/V where IV is the
normal force. The point of contact between the disk and the surface has a velocity of zero.
Use of the relative velocity equation between the point of contact and the center of mass
yields

V=t Voo = rwi @)

The mass center only has a velocity and an acceleration in the horizontal direction; thus,
Equation (a) can be differentiated to yield

a=ra (b)

When the disk rolls without slipping, the kinematic condition of Equation (b) exists
between the disk’s angular acceleration and the acceleration of the mass center. Noting that

Thin disk of
k
mass m and
radius r
c
No slip
u
né 1,.2%
2™"F  FIGURE 2.36
(a) System of Example 2.19. The disk
kx4 i _ i rolls without sllpplng. (b) FBDs of the
system at an arbitrary instant. The
friction force is less than the maxi-
< F mum available friction, and a kine-
N matic relationship exists between the
angular acceleration and the acceler-
External forces Effective forces ation of the mass center.
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a = x, FBDs of the disk at an arbitrary instant are shown in Figure 2.36(b). Summing
moments on these FBDs according to (2M ), = (2M) 4 leads to

€X1

—kx(r) —cx (r) = %mﬂ(i:) + mx(r) ()

%mk'-i— cx+ kx=0 (d)

An accelerometer used in micro-electromechanical (MEMS) applications is shown in
Figure 2.37(a). The accelerometer consists of a rigid bar between two massless fixed-fixed
beams that are acting like springs. The bar is free to vibrate in the surrounding medium,
which provides viscous damping. Derive a differential equation for the free vibrations of
the accelerometer using a one degree-of-freedom model.

SOLUTION
The system is modeled, as in Figure 2.37(b), as a rigid bar attached to two identical springs.

The mass of the bar is

Top view Cross-section of mass
silicone

g 20 ym
g mass

=)

S

N

E=1.9x 10" N/m? 0.5 um
~—200 um—-m

§ } Cross-section of beams
beams I pm
0.5 um —|

(a)
¢ LIJ k
m
(b)
Side view
FIGURE 2.37
(a) MEMS accelerometer
hy =15 um consists of a rigid bar
between two fixed-fixed
T i beams which vibrates in a
v _ viscous liquid. (b) SDOF
Direction hy =10 um model of system.
of vibration (c) Calculation of viscous
(© damping coefficient.
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Moy = pdtL
100ecm \? [ 1k
= (2.3 g) ( Cm) ( g >(20>< 10-5m)(0.5 X 1079)
cm? m 1000g
X (200 X 107°m) = 4.6 X 10 '*kg a)
The moment of inertia of the cross section of one beam is

1 1

1= Eﬂﬁ = E(O.S X 1079)(1.0 X 107°m)3 = 4.17 X 10726 m* (b)

The equivalent stiffness is twice the stiffness of a fixed-fixed beam at its midspan. From
Appendix D, it is calculated as

< 192E1)
k=2
eq L3

192(1.9 X 10"'N/m?)(4.17 X 10**m?)
=2 - = 0.380N/m
(200 X 107¢ m)3
An equivalent viscous-damping coefficient is calculated using an approximate linear veloc-
ity profile in the surrounding fluid. The fluid on the top and bottom of the beam is in
motion due to the vibrations of the beam as shown in Figure 2.37(c). The fluid above the
beam has a velocity profile of

u(y) = ljly (d)

where y is a coordinate into the fluid from the fixed surface. The shear stress acting on the

()

beam is calculated using Newton’s viscosity law as

du v @)
=2 -2
and the resultant force on the surface of the beam is
F =r1ld= Mzdbi f)
1
Using a similar analysis, the force on the lower surface of the beam is
v
£ = pld - (8)
2

The total damping force is expressed as

1 1
F= ,U,Ld<}] + h>v (h)

1 2
from which the equivalent viscous damping coefficient is calculated as
1 1
=uldl —+ —
ch 1% (bl /?2)

= (740 X 107°N - s/m)(200 X 107°m)(20 X 107°m)

1 1
( . )
15X 1070°m 10 X 107 °m
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= 4.93 X 107N + s/m ()
The mathematical model for the free response of the system is

4.6 X 1072% + 4.93 X 107% + 0.380x = 0 )

s ——
2.10 STATIC DEFLECTIONS AND GRAVITY

Static deflections are present in springs due to an initial source of potential energy, usu-
ally gravity. The static force developed in the springs form an equilibrium condition with
the gravity forces. The generalized coordinate is generally measured from the equilibrium
position of the system. For a linear system, when the differential equation governing the
motion is derived, the equilibrium condition appears in the differential equation. It is,
of course, set equal to zero. The static spring forces cancel with the gravity forces that
cause them in the differential equation. Thus, neither are drawn on the FBD showing
the external forces.

A hanging mass-spring and viscous-damper system is illustrated inFigure 2.38(a). Derive
the differential equation governing the motion of the system.

SOLUTION

Let x measure the displacement of the mass (positive downward) from the system’s equilib-
rium position. When the system is in equilibrium, a static spring force is developed due to
gravity. Summing forces to zero on the FBD (drawn when the system is in equilibrium, as
shown in Figure 2.38(b)) leads to the equilibrium condition

mg— kA; =0 (a)

where A _is the static deflection in the spring.

When the mass has deflected a distance x downward, the spring force is the spring force
that is present in equilibrium £A plus the additional force developed from equilibrium x.
Applying ZF = ma in the downward direction to the FBD of the particle (drawn at an
arbitrary instant, as shown in Figure 2.38(c)) leads to

mg— k(x+ A) — ox + Hz) = my (b)
k L|J ¢ kA k(x + Ay) T Tcx
FIGURE 2.38
m (a) System of Example 2.21. (b) FBD of the system
| drawn when the system is in equilibrium. () FBD
mg mg drawn at an arbitrary instant. The differential equa-
tion governing the motion of the system is the
F@) F@) same as the sliding mass-spring-viscous system
(a) (b) (c) without friction.
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which rearranges to

mx + ck+ kx = F(2) + mg — kA, ()
Using the equilibrium condition, Equation (a) in Equation (c) gives

mx + ck + kx = Ko (d)

The equation governing the displacement of the hanging mass-spring and viscous-damper
system is the same as the sliding mass-spring and viscous-damper system.

The hanging mass-spring and viscous-damper system can be analyzed by considering it
FBD, shown again in Figure 2.39. The FBD can be broken down by drawing a FBD show-
ing the spring, viscous damper, and external forces plus a FBD showing the gravity and static
spring force. The resultant of the gravity and static spring force is zero, so one only needs
the first FBD. It is not necessary to show the static spring force or gravity on the FBD.

The above result, not needing to show the gravity force or the static spring force on the
FBD, is valid only for deriving the differential equation of motion. If another goal
(such as obtaining a reaction) is desired, the static spring forces and gravity must be
included on the FBD.

k(x + Ay T Tcx kxT Tcx kA kxT Tcx
FIGURE 2.39
(a) FBD of hanging mass-spring

and viscous-damper system can

| = + = be drawn such that it is the
same as the FBD of the sliding
Img l mg l mass-spring and viscous-damper
F(t) F(1) F(t) system.

Consider the system of Figure 2.40(a). Let x describe the downward displacement of
from the system’s equilibrium position.

(a) Derive the differential equation governing x(z).

(b) Determine the reaction at the center of the disk at the pin support in terms
of x, x, and X.

SOLUTION
A FBD of the system in equilibrium is shown in Figure 2.40(b). Summing moments about
the pin support to zero with positive moments counterclockwise leads to

m g(2r) — kA [ (27) = m,g(n) + kA () =0 (@)

FBDs illustrating the external forces and effective forces at an arbitrary instant are shown

in Figure 2.40(c). Using and (ZM))_ (2M ) on these FBDs lead to

— k(e A )2 + mg(27) — /e(; - Asz)(r) — m,g(?)
=mx 27+ ng(r) + [2% (b)
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I FIGURE 2.40
m,g (a) System of Example 2.22. (b) FBD of
static equilibrium position. (c) FBDs of
kR/ system at an arbitrary instant.

P
I+

o \

I ] L T

X
Kt Ay) (KE-4,)

141 w2

©
which cleans up to

1
< +2rm, + ;mz) x + %/erx = mg(2n) — kA ,(27)— m,g(r) + kAQ(r) ()

2r
Use of Equation (a) in Equation (c) gives
1 .. 5
<27 + 2rm,+ rm2> x + E/erx =0 (d)

(b) Applying (ZF)_,

positive downward yields

= (2F) 4 in the vertical direction to the FBD of external forces,

mpg-f-mlg-i- ng—/e(x-f—Aﬂ)-f-k(;—A:z)—R: ml'x'—ng (e)
which is solved for R as
1 1 .
R=mpg+m1g+m2g—Elex—/e(Ad—Asz)—l— <2m2—m1> x )

From this point, it is assumed that for all linear systems the generalized coordinate will
be measured from the system’s equilibrium position, and the only goal is to derive the dif-
ferential equation. Then the static spring force and the gravity force that causes it will not
be drawn on a FBD showing external forces.
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R
2.11 SMALL ANGLE OR DISPLACEMENT ASSUMPTION

Nonlinear differential equations occur when the generalized coordinate appears nonlinearly
in the differential equation. Examples of nonlinear differential equations are

mx + ok + kyx + kypx® =0 (2.68a)
mx + ax* + kx =0 (2.68b)
6 + 30cosf + 200cos Bsind = 0 (2.68¢)

Equation (2.68a) occurs for a mass-spring and viscous-damper system when the spring has
a cubic nonlinearity. Equation (2.68b) occurs for a system where air resistance is included
in the modeling. An equation such as Equation (2.68¢) could occur in the modeling of the
vibrations of a bar about the equilibrium position.

The exact solution of few nonlinear equations are known. Methods to handle nonlin-
carities in differential equation (mostly approximate methods) are considered in
Chapter 12. A linearization method is sought for the differential equations. It is clear that
linearization of Equations (2.68a) or (2.68b) simply requires neglecting the nonlinear
terms in comparison to the linear terms. The linearization of Equation (2.68c) is not quite
as simple.

Derive the differential equation governing the motion of the simple pendulum of
Figure 2.41(a) using 6 as the counterclockwise angular displacement of the pendulum from
the system’s horizontal equilibrium position and as the generalized coordinate.

SOLUTION
The FBD of the system at an arbitrary time is illustrated in Figure 2.41(b). Summing
moments about the fixed axis of rotation O using M, = [ a leads to

—mgL sin@ = ml[*0 @)

_6,
L
FIGURE 2.41
(a) System of Example 2.23. (b) FBD of particle at arbitrary
(@ (b) instant.
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Equation (a) is arranged to

Y S
0+Zsm0—0 (b)

The differential equation derived in Example 2.23 is nonlinear because sin6 is a transcen-
dental, not linear, function of 6. Consider the Taylor series expansion for sin 6 about § = 0 as
03 0°
nb=0 - —+——--- 2.6
s 6 120 (2:69)
Suppose 0 = 0.1 rad. Thus,

017  ©1°

in (0.1) = 0.1 — +
sin (0.1) c 0
=0.1—- 167 X104+ 833 X 1078 — ---
= 0.099833 + --- (2.70)

Thus, the approximation for a small 6 of
sinf ~ 0 (2.71)
for = 0.1 rad = 5.1°( has an error of 1.167 percent. This provides confidence in the small

angle approximation. Using this approximation in the differential equation of
Example 2.23 gives

. g
6+—-60=0 2.72
7 (2.72)
which is a linear differential equations.

Consistent with the small angle approximation, truncation of Taylor series expansions
about # = 0 for other trigonometric functions yields

cosf = 1 (2.73)
tanf ~ 0 (2.74)

1
1 — cos = 502 (2.75)

The small angle assumption may be made « priori, before the differential equation is
derived. Consider the spring in the system Figure 2.42(a). It has an unstretched length €.
When the bar rotates through an angle 6, the spring moves to a new position, as shown in
Figure 2.42(b). The change in length of the spring is

8=\ + Lsin0)? + (L — Lcosh)? — € (2.76)

It is consistent with the small angle assumption to approximate the change in length of the
spring by 6. The spring force would be at an angle 6 to the vertical. However, it is also
consistent with the small angle assumption to draw the spring force vertically and label it
kL 6, as shown in Figure 2.42(c). The distance for taking moments about the pin support
is LcosO ~ L.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Modeling of SDOF Systems

FIGURE 2.42

(@) The spring has an unstretched length ¢. (b) When the system

moves to a new position described by the generalized coordinate

0, the change in length of the spring is a nonlinear function of 6.

(c) Consistent with the small angle assumption, the spring force is
g (’) |> drawn vertically and labeled kL6.

(a)

(b)

Derive the differential equation governing the motion of the bar of Figure 2.43(a). Use 0
as the clockwise angular displacement of the bar from the system’s equilibrium position and
as the chosen generalized coordinate. Assume a small 6.

SOLUTION

The small angle assumption will be used; thus, the differential equation will be linearized.
Static deflections exist in the springs due to gravity. The static equilibrium position is
defined by an angle 6, and 6 is measured relative to this angle. It is assumed that 6 _is small
and does not affect the lengths required for the moments. Indeed, under these conditions,
0 is taken to be zero without loss of generality.

FBDs showing the external forces and the effective forces at an arbitrary instant are
shown in Figure 2.42(b). The forces are drawn on the FBD with the small angle assump-
tion already made. The spring forces are labeled assuming small displacements with sin
0 ~ 6. They also remain vertical, which is consistent with the small angle assumption. The
damping force is labeled as Céé, which is derived from the relative velocity equation but is
drawn vertical to be consistent with the small angle assumption.

This problem involves rotation about a fixed axis at O, so either ZM, = I & or
(EM,),,. = (M) qis applicable. The latter is used here, applying (M) = (EM ) 4
to the FBDs of Figure 2.43(b) and leading to

—/eLe(L>—/£w<2L>— Le'(L)—l 26 + L@;(L) @)
3\ 3 37\3) ‘6\6) 127 6"\ 6

Rearranging Equation (a) gives

ext

4mb + cf + 20k0 = 0 (b)
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=~

L_ L L
3 6 2

FIGURE 2.43
mL g2 1 ,2g (@) System of Example 2.24.
6 (b) FBDs drawn at an arbitrary
\V instant using the small angle
Ly assumption, ignoring static
6 spring forces and the gravity
(®) forces that cause them.

2.12 EQUIVALENT SYSTEMS METHOD

It has been shown that the potential energy for a linear SDOF system with chosen gener-
alized coordinate x can be expressed as V' = -/e x2 + V) where V[ is the potential energy
in its equilibrium position, the kinetic energy is expressed as I'= Em x2, the work done
by the viscous-damping forces as the generalized coordinate moves between %, and x, can
be written as U,_,, = — f ¢, xdx and the work done by all other external forces between
times £ and 7, is [* A F, R Apphcatlon of the principle of work and energy between

position 1 and position 2 for the system where x(#,) = x, and position 2 defines an arbi-
trary position of the system

T+V+U_ =T+V+V, (277)

Substituting the given expression for both kinetic and potential energy and separating the
work done by both viscous and external forces leads to
X t 1 l
I+ V- / Cequfx + /Feqaédt = Emeqa'cz + Ekeqxz + 1 (2.78)
X 4
Noting that 7}, V|, and V/ represent kinetic and potential energy at a specific instant of time
and therefore are constants, differentiation of Equation (2.78) with respect to time gives

- E(/ xd’“) i E(/ £ x‘#) ey 2@+ 0 26 @79)

Note that
%(xz) = 2xx (2.80)
%(552) = 2xx (2.81)
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k I : . .
el Equivalent mass-spring and viscous-damper system when a
linear displacement x is chosen as the generalized coordinate.

Mg > Foq (1)

Ca /iR

and

i " . di " . .
dt(/X; ceqxdx> = dt(/t Ceqx zdt) = ceqxz (2.82)

1

Equation (2.79) becomes

F &= %= m X%+ kxx (2.83)

Equation (2.80) has two solutions: x = 0 (the static case) and x. This satisfies
Moy X + C* + /eeqx = FCq(t) (2.84)

Equation (2.84) is the differential equation for any linear, single degree-of-freedom
system. It only requires identification of Moo Cop /eeq, and F, (D That is, any linear SDOF
system is modeled by a mass-spring and viscous-damper system with equivalent coeffi-
cients, as in Figure 2.44. The equivalent mass is identified from the quadratic form of
kinetic energy in 7' = %meqp'cz. The equivalent stiffness is identified from the quadratic
form of potential energy in V' = %/eeqxz. The equivalent viscous-damping coefficient is

identified from the energy dissipation in U, = — j;::zt‘eq xdt. The work done by external

1-2
2 . .
forces, shown as f,lee . Xt, is used to calculate F, q(t).

If an angular coordinate is chosen as the generalized coordinate, the appropriate form
of Equation (2.84) is

LG+ e, 0+ Kk, 0=M0 (2.85)

The appropriate equivalent systems model is a thin disk of moment of inertia /_attached
to a shaft of torsional stiffness /eteq in parallel with a torsional viscous-damper coefficient
¢, _as shown in Figure 2.45.

neq
P Meq (1)
0

kt,eq Creq

Equivalent torsional system used when an angular
eq coordinate 6 is chosen as the generalized coordinate.
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Use the equivalent systems method to derive the differential equation governing the
motion of the bar of Figure 2.43(a) and Example 2.24 using 6 as the clockwise angular dis-
placement of the bar from the system’s equilibrium position and as the chosen generalized
coordinate. Assume small 6.

SOLUTION
The kinetic energy of the bar at an arbitrary instant is

1 1- 1 (L-\* 1/[1 . 1/1 .
T=—mv?2 + —Ju? = — — + = 2102 = — | — mI? )62
o 2[w 2m<6 0) 3 (12ml )0 2 (9 m ) (a)

1 . . . .
Thus, I, =g mI*. The potential energy of the system at an arbitrary instant is
eq

2 2 1
v L) LY - L () .
2 \3 2 \3 2\9

The equivalent torsional stiffness is £, = g/eLz. The work done by the viscous damper

between an initial position and an arbitrary position is

e[ ()42 [ (L3}

. . . . )5 . . . . .
Hence, the equivalent torsional stiffness is ¢, = c3¢. The differential equation governing 6 is

q

1 .. 2.
—mL?0 +c— 0+ sz20=O (d)
9 36 9

Equation (d) reduces to Equation (b) of Example 2.24.

Use the equivalent system method to derive the differential equation governing the free
vibrations of the system of Figure 2.46. Use x, the displacement of the mass center of the
disk from the system’s equilibrium position, as the generalized coordinate. The disk rolls
without slipping, no slip occurs at the pulley, and the pulley is frictionless. Include an
approximation for the inertia effects of the springs. Each spring has a mass 2.

SOLUTION
Let 0 be the clockwise angular rotation of the pulley from the system’s equilibrium position
and x, be the downward displacement of the block, also measured from equilibrium. Then

x=7r0 x,=2r0 (@)

Eliminating 6 between these equations leads to x, = 2x. Since the disk rolls without slip,
its angular velocity is @, = &/, The inertia effect of each spring is approximated by plac-
ing a particle of mass m /3 at the location where the spring is attached to the system.
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|_>x FIGURE 2.46

The system of Example 2.26 is

/’?\ 2r, modeled by the equivalent system
] I, of Figure 2.44.
2m
‘ IxB =2x

oL

o
=~

To this end it is imagined that a particle of mass 72/3 is attached to the center of the disk
and a particle of mass 72/3 is attached to the block. The total kinetic energy of the system,
including the kinetic energies of the imagined attached particles is

1 1 1 .
T = Ema'cz + E[D(")ZD + 5[[)02 *(Zm)xz + T + T

1 ¢ \2 1 v )2 1 1 m 1m
*mx ( ><x> + [P<x> + = 2m(Q2D* + ——%2 + ——(2»?
2 rD 2 r 2 23 23

1/19 I, s .
= 2<2m + ; + 3m5>x2 (b)
The equivalent mass is
19 Ip 5
€q=7m+;+gm5 (c)
The potential energy of the system at an arbitrary instant is
V= %kxz + %k(sz = %(5/6‘)962 (d)

Comparison to the quadratic form of potential energy leads to £, = 5.
The work done by the viscous dampers between two arbitrary instants is

U1—>2:_/ ”.Cdx_/f(zk)ﬂ’(zx)Z—/ Sex dx

1 1 1
Comparison with the general form of work done by a viscous damper leads to Cq = ¢
The differential equation governing free vibration of the system is

19 L 5 .. .
(2m+}’2+3m5>x+ S5cx + Skx =0

The slender rod of Figure 2.47 will be subject only to small displacements from equilib-
rium. Use the equivalent systems method to derive the differential equation governing the
motion of the rod using 6, the counterclockwise angular displacement of the rod from its
equilibrium position, as the generalized coordinate.
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AT SOLUTION
% The kinetic energy of the bar at an arbitrary instant is
e 1 (LY 11 RTATAY
iy T= = m(O) + <mL2 0? = —| —ml? |6? (@)
2 6 2\ 12 2\9
oL Comparison with the quadratic form of kinetic energy leads to I, = mL?*/9.
3 The potential energy in the system is due to gravity. Choosing the plane of the pin sup-
port as the datum, the potential energy of the system at an arbitrary instant is
L
~ = V= —mg— cos 6 (b)
FIGURE 2.47 6

The compound pendulum is
modeled by the equivalent tor-
sional system of Figure 2.45.

For small 0, the Taylor series expansion for cos 6 truncated after the second term leads to
an approximation for the potential energy as

V= —mgL(l — 192> = lmg£02 - mg£ ()

6 2 2°°6 6
Comparison with the quadratic form of potential energy leads to k,., = mglLl6. Since the
datum was chosen as the plane of the pin support, the system has a potential energy of

V, = —mgl/6 when it is in equilibrium.
Equation (2.84) is used to write the differential equation governing the motion of the
system as
1 o1
gmLZO + gmgLH =0 (d)

EXAMPLE 2.28

A simplified model of a rack-and-pinion steering system is shown in Figure 2.48. A gear of
radius 7 and polar moment of inertia / is attached to a shaft of torsional stiffness 4.
The gear rolls without slip on the rack of mass 7. The rack is attached to a spring of stiff-
ness k. Derive the differential equation governing the motion of the system using x, the
horizontal displacement of the rack from the system’s equilibrium position, as the general-
ized coordinate.

SOLUTION

Since there is no slip between the rack and the gear, § = x/5; where 6 is the angular displace-
ment of the gear from equilibrium. The kinetic energy of the system at an arbitrary instant is

T= = %m&'cz + ;j(’:)z = ;<m + i)xz (a)

from which the equivalent mass is determined as m, = m + J/ 7. The potential energy of
the system at an arbitrary instant is

1 1 [ x 1 k
= = “py2 4+ —pl ) = 2 4 L g2
1’4 zkx 2/€t<r2> 2</e r2>x (b)

from which the equivalent stiffness is determined as £, = & + &/ 7*. The differential equation is
AW k,
m + ) + k;ﬁ x=0 (<)
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FIGURE 2.48
Model of the rack-and-pinion system of
Example 2.28.

Gear of radius r, polar
moment of inertia J

A simplified transmission system is shown in Figure 2.49. A motor supplies a torque, which
turns a shaft. The shaft has a gear on it, which meshes to a second gear designed such that
the speed of the second shaft is greater than the first. The shafts are mounted on identical
bearings each with a torsional damping coefficient ¢. Let 6, be the angular velocity of the
shaft directly connected to the motor. Derive a differential equation governing 6,, which is
angular displacement of the shaft directly connected to the motor.

SOLUTION
The meshing gears imply a relationship between the angular velocities of the shafts. The
gear equation gives

nw, = nw, (@)
The total kinetic energy of the shafts is

1 1 1 . 1 nyo.\? 1 n,\2 .
T= ijlw%-i-* (1)2:*]10%4‘* <n01> :2|:]1 + (}5)]2 0% (b)

2
n
Thus, the equivalent moment of inertia is /, 0= 5+ (}:) J,- The work done by the tor-
sional viscous dampers is :

0. 0 n, . 7, 0 7, 2.
WHZ=—/ cﬁldﬂl—/ e\ -0, )4\ -0, =—/ |1+ |00, ()
0, 0, 2 2 0, 2

n 2
. . . o 1
The equivalent viscous damping coefficientis ¢, = ¢ {1 + ( > ]
teq t n,

The work done by the external moment supplied by the motor is

W_, = / M(2)6, d (d)

The equivalent moment is Meq(t) = M(?).
Thus the differential equation governing the angular displacement of the shaft is

[]1 + (Zl)zjz]él + Ct[l + (Zl)z]él + M(2) (e)
2 2
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M(1) Clél 01 FIGURE 2.49
A [\‘ Model of the transmission system of Example 2.29.

7 \ Gear with
Jy ny teeth
— 26,
Gear with
n, teeth Jy

e
2.13 BENCHMARK EXAMPLES

In this section, the benchmark examples introduced in Section 1.8 are considered. The
free-body diagram method is used to derive the differential equations for the machine
mounted on a beam and for the simplified vehicle suspension system.

2.13.1 MACHINE ON A FLOOR IN AN INDUSTRIAL PLANT

A machine is mounted on the floor of an industrial plant. The floor is modeled as a
W14X30 steel fixed-pinned beam. The appropriate SDOF model is that of a mass sus-
pended from a spring of appropriate stiffness, as shown in Figure 2.50(a). The stiffness is
calculated using Appendix D. The equation for the deflection of a fixed-free beam due to
a unit concentrated load at x =  evaluated for x < a is

1 a a* a x3 a )\ x?
w(x)=2—E[1—Z E-Zz-Zz—Fd 2—23 (a)

The machine is located at 2 = 0.6L. Substituting this value into Equation (a) leads to

L3
6L = 0. = b
w(0.6L) = 0.00979 o (b)
The stiffness is the reciprocal of w(0.6L)
. ET (210 GPa) (1.21 X 104 m?) N
_ - =1.20 X 10
00097973 0.00979(6 m)? m (©)

One model is a mass of 458.72 kg (the mass of the machine) attached to a spring of stiff-
ness 1.20 X 107 N/m.

ky 1.20 x 107 N/m
570.69 kg FIGURE 2.50
"+ my (a) SDOF model for system of the first benchmark
problem. (b) Equivalent mass and equivalent stiffness
(@) (b) are calculated for the model.
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The inertia of the beam is included in the model by adding a particle of an appropri-
ate mass to the mass of the machine. The expression for the displacement of the beam due
to a concentrated load P applied at x = 0.6 L is obtained from Appendix D as

0.84Lz — 0.0946#3 2z < 0.6L
w(z) = —4 1 (d)
ET g(z — 0.61) + 0.84Lz% — 0.0946z> 0.6L < z
_ 102,145 . . _ . .
It takes a load of P = —=57— to cause a unit deflection at z = 0.6L. If x is the deflection

where the machine is supported, the beam’s kinetic energy is

1 102.14E7\? 0.6L 1 2
T=— x2<> pA{ (0.84Lz — 0.0946z3)] dz
2 J& . EI

L
1)? 1 2
+ / () pA [(z — 0.61)% + 0.84Lz* — 0.0946275} dz
062\ ET 6

= %(0.418)pAL5c2 (e)

Thus, the equivalent weight of the beam (noting that the weight per meter of a W14 X 30
steel beam is 438 N/m) is

W, = 0.418W, = 0.418(438 N/m)(6 m) = 1098.5 N (f)

Thus, the equivalent weight of the machine and the beam is 5598.5 N. The mass of the
machine must be expressed in kg as

W 55985 N
=—=—-= .69 ki
g 9.81 m/s? 570.69 kg (&)

The system is modeled by a machine of weight 5598.5 N attached to a spring of stiffness
1.20 X 107 N/m as shown in Figure 2.50(b). The differential equation modeling the
system is

570.69% + 1.20 X 107x = F(z) (h)

2.10.2 SIMPLIFIED SUSPENSION SYSTEM

A single degree-of-freedom model of a simplified suspension system is shown in Figure 2.51(a).

The “sprung mass,” which is the mass of the main vehicle, is modeled as a particle con-
nected to the axle by the suspension system. The suspension system is modeled as a spring
in parallel with a viscous damper. The wheel is assumed to be rigid (an assumption to be
examined later) and it traverses the road contour. Let m be the mass of the vehicle, £ the
stiffness of the spring, and ¢ the damping coefficient of the viscous damper. Let y(§) be
the road contour. If the vehicle travels with a constant horizontal velocity y, then the vehi-
cle travels a distance € = vz in time £ Thus, the wheel experiences y(v#).
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FIGURE 2.51
m (a) SDOF model for simplified suspension system.
Ix(t) Model ignores the stiffness of the tires and the mass
J of the axle. (b) FBD of the system at an arbitrary
k c instant.
o ky-x) (-1
(a) (b)

Applying Newton’s law to a free-body diagram of the vehicle drawn at an arbitrary
instant in Figure 2.51(b), we have

—k(x — y) — clx — j) = mx )
which is rearranged to
mx + cx+ kx=cy+ by (b)

The model of the suspension system is that of a mass-spring and viscous-damper system
subject to motion input.

Parameters for the suspension system may be 7 = 300 kg, ¢ = 1200 N-s/m, and
k = 12,000 N/m. Thus, the model for this suspension system is

300x + 1200x + 12,000x = 12005 + 12,000y (<)

2.14 FURTHER EXAMPLES

The small angle assumption, where appropriate, is made in these problems. Assuming all
systems are linear, the generalized coordinate is measured from the system’s equilibrium
position. Thus, the static forces in the spring cancel with the gravity forces, which cause
them, and neither are included on the FBDs.

A mass of 30 kg (shown in Figure 2.52(a)) is hung from a spring of stiffness # = 2.5 X 10> N/m,
which is attached to an aluminum beam (£ = 71 X 10° N/m?, p = 2.7 X 10° kg/m?) of
moment of inertia / = 3.5 X 1078 m* and of length 35 cm. The beam is supported at its
free end and by a circular aluminum cable of diameter 1 mm and length 30 cm.

(a) Determine the equivalent stiffness of the assembly.

(b) Write the differential equation governing in the motion of the mass.

SOLUTION
The stiffness of the beam is
3E]  3(71 X 10° N/m?)(3.5 X 107 m%
b, =— = = 1.74 X 10° N/
7 (0.35 m)? / m @
The equivalent stiffness of the cable is

EA 1 X 10° N/m? X 10792
p =AU m) w5 S _ 186 X 10° N/m (b)
<L 0.30 m

The beam and cable behave as two springs in parallel, because they have the same displace-

ments at their end. The discrete spring is in series with the parallel combination, because
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Aluminum uy —

1 mm diameter \

k
30 cm

f 35 cm l

e
3 N Aluminum
I=35x108m*

kbeam

2 2.5 % 10° N/m

30kg Ix 30 kg
(a)

(b)

Modeling of SDOF Systems

Ix

cable

FIGURE 2.52
(a) System of Example
2.30. Mass is suspended
from a beam supported
by a column. (b) Beam
and column are modeled
by springs resulting in the
equivalent systems model
shown.

the displacement of the mass is the sum of the displacement of the spring and the displace-
ment of the end of the beam. The equivalent model is shown in Figure 2.52(b). The

equivalent stiffness of the combination is
1

1

k, + k.

€q 1
—+
k

1 1

+
2.5 X 10°N/m  (1.74 X 10° N/m) + (1.86 X 10° N/m)

1.48 X 10> N/m

()

(b) The differential equation for a SDOF model of the motion of the mass (assuming

the beam and the column are massless) is

30% + 1.48 X 10°x = 0

(d)

A schematic diagram of a compactor is shown in Figure 2.53(a). The compactor is a cylin-

der of mass 35 kg, radius 0.9 m, and length 1.5 m. To each end of the cylinder, a viscous

damper of damping coefficient ¢ = 1000 N-m/s is connected to the center, while a spring

of stiffness £ = 1.4 X 10> N/m is connected to a point 0.2 m from the center.
(a) Derive a mathematical model for the unforced motion of the cylinder if it rolls

without slipping.

(b) Derive a mathematical model for the unforced motion of the cylinder when it rolls

and slips with a coefficient of friction of 0.25.

SOLUTION

(a) The free-body diagram method is used with projections of the diagrams showing the
equivalent and effective forces in Figure 2.53(b). When the cylinder rolls without slipping,

there is an unknown friction force between the cylinder and the ground. Additionally, a
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Cylinder FIGURE 2.53
(a) System of Example 2.31. A compactor
( is modeled as a cylinder with viscous
dampers attached at the center and
springs attached at a point above the
center. (b) FBDs of the compactor, assum-
ing it rolls without slipping. (c) FBDs of the
compactor in the case of slipping.
(@)
mg
Nk
2% (14 2)x R
2cx mx
——F

N
External forces Effective forces
(b)
la
mg \‘
2% (1+ Ig) x
2cx = mx
- Humg
N
External forces Effective forces
©

kinematic relationship exists between the displacement of the mass center and the angular
acceleration @ = Ra. When the mass center of the disk has moved a distance x from equi-
librium, the spring has also changed in length 76 where r 5 0.2 m and 6 is the angular rota-
tion of the disk. Since x = R, the change in length of the spring is (1 + 72) x. Summing
moments on these FBDs using (XMc) = (EMC)eff gives

ext

— Q2R — [Zk (I + ;)x}(r + R)x = [(;) + (mX)R (a)
(1+ >"+2'+2k<1+’>2 =0 b
2 m| X x 2 x = (b)

Substituting given values, noting the moment of inertia of a circular cylinder about the
. o 1
axis of rotation is / = 3mR?, leads to

52.5% + 2000% + 4.18 X 10%% = 0 (c)

(b) if the disk rolls and slips, the friction force is equal to the maximum allowable friction force
equal to w/V, and there is no kinematic relationship between the angular acceleration and the
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acceleration of the mass center. The appropriate FBDs are shown in Figure 2.53(c). Summing
moments about the point contact using the FBDs and (2M ) = (EM ) 4 we have

—QeR — {2!@(1 + ;Hu + R)x = la + (m¥)R (d)

Summing moments about the center of the disk using these FBDs and

EM),, = (EM,) g we have

ext

—{2/@‘(1 + ;)47 + umg R = lo (e)
Substituting Equation (e) into Equation (d) leads to
m¥ + 2cx + 2/e<1 + ;)R = —umgR )

Equation (f) is derived assuming X > 0. The right-hand side is positive if X < 0. Upon
substitution of given values and taking into account the sign dependence of the right-hand
side on X Equation (f) becomes

7725 x>0

7725 x<0 &)

35% + 2000x + 3.08x10° = {

Consider the system shown in Figure 2.54(a). A thin rod of mass » is pinned at O at a dis-
tance of % from its left end is attached to a viscous damper of damping coefficient ¢ at its
left end. Attached to its right end is a cubic block of side & and mass 7 which is initially
half submerged in a liquid of mass density p.

(a) Determine the value of & such that the equilibrium position is the horizontal con-
figuration of the bar.

(b) Determine the equation of motion for small oscillations about the horizontal equi-
librium position. Use 0 as the chosen generalized coordinate.

SOLUTION
When the system is in equilibrium, the moment of the gravity force must balance with the
moment of the buoyant force acting on the block. For the horizontal configuration whose

free-body diagram is shown in Figure 2.54(b), summing moments about the pin support
2ZM, = 0, leads to

wfi) ()

The buoyant force is equal to the weight of the fluid displaced by the block. For half of
the cube to be submerged,

d 43
=2l Z) =
Fy = pd <2> r (b)

Using Equation (b) in Equation (a) leads to

7\ 4> 2 _ 4mg>
(10) 2 _IOmg=>d_<7p (©)
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FIGURE 2.54
Cﬁ/ Fo) (@) System of Example 2.32. A

3L 7L cube is at the end of a thin bar
| . . .

L— 0t 10 Slender bar aimd' is partially submerged n a
liquid when acted on by a time

Q\ 1) of mass m

77 | dependent force. (b) FBD of the

equilibrium position. (c) FBDs at

m an arbitrary instant. The gravity

force and static buoyancy force

cancel with each other when

deriving the differential equation.

(a)

mg

I,

(b)
3L .
1 o( 10 )
20 m2h
l - 2L ..

R mm ]
TL ..
m E@)

(©)

(b) When the bar has an angular displacement 6 from its, equilibrium position, the
buoyant force acting on the block (assuming small 6) becomes

d 7
Fy=pd £+ L1p d
=P (2 0 > (d)
Summing moments about the point of support using the free-body diagrams of Figure 2.54(c),
(EM,),,, = (M) qleads to
7L 3 .[3 2 7 d 7
2 2 L)+ Somgl — 1] pd?( L+ ip
T (10 ) 10" " 10 {p (2 10 ﬂ
1 . 2 (2 ..
= =+ = mLH(L) + L mL0(7L) (e)
12 10 10 10 10
After subtracting the equilibrium condition of Equation (a), Equation (d) becomes
184 .. 9 . 49 L
—ml*0 + ——cL?0 + ——pd?L*0 = 7fF(zt) )
300 100 100 10
5 . 210
184 mi + 27c6 + 147 pd’0 = = ~F (1 (&)
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Use the free-body diagram method to derive the differential equation governing the motion
of the system shown in Figure 2.55(a). Use 6 as the clockwise angular displacement of the
bar measured from the system’s equilibrium position and as the chosen generalized coordi-
nate. Assume small 6.

SOLUTION

FBDs showing the external forces and the effective forces acting on the bar at an arbitrary
instant are shown in Figure 2.55(b). The small angle assumption implies that sin 6 ~ 6,
cos@ =~ 1, and the springs remain vertical. Thus, a linear differential equation will be
derived, and it can be assumed that static spring forces cancel with gravity when deriving

the differential equation. Summing moments about the point of support
(EM,),,, = (M) 4 and using the FBDs, we have

ext

) AN - {2)E) o

which reduces to

mO + 4c6 + 340 = 0 (b)
c
L L L
g— 3 — |- 3 e 3 —»)
A\ o
k 2k
(@
2L L 52 1 2
C?‘g ”’39 ﬁmL ®  FIGURE 2.55
T \ (a) System of Example
«Lo = 2.33. The small angle
3 L mLe assumption is used to
2]‘?9 6 linearize the differential
1f ffective fi equation a priori. (b) FBDs
External forces Effective forces of the system at an arbi-
(b) trary instant.

Derive the differential equation governing the motion of the system of Figure 2.56. The
system is in equilibrium when the bar is in the vertical position. Use the equivalent systems
method using the angular coordinate 6 as the counterclockwise angular displacement of the
bar when it is in equilibrium and as the generalized coordinate. Assuming small 6, the disk
rolls without slipping, and there is no friction between the cart and the surface.
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Thin disk of FIGURE 2.56
mass my The thin rod connects the disk
radius r 0 that rolls without slipping and

|7 the cart which moves on a sur-
face without friction.

o fe

Slender bar
of mass m,

length L /7797#977

SOLUTION

The displacement of the center of the disk is x = 26, and the displacement of the cart is
y = b0 with both assuming small 6. The appropriate equivalent systems model is the tor-
sional system whose equation is

L6+ e 0+ k 0=0 (a)

The equivalent moment of inertia is obtained using kinetic energy. The kinetic energy of
the system at an arbitrary instant is

1 . 1 1 . 1 .
T= E mdxz + E[ﬂ,wz + Elbez + Em[_)lz (b)

Noting that, if the disk rolls without slipping, then @ = f, the moment of inertia of the
N 1 L. . 1
thin disk is 7, = 3m, 72, and the moment of inertia of the slender bar is I, = ﬁmlz.

Equation (b) becomes

AT YZ AN V2 S VRS T
T=-mab) +{-mp? (=) + - mi?)6> + —m (66)
2 2\2 r) T2\ 2"

1/3 1 .
= 2(27”/12 + Eml,z + m[bz)ez ()

Hence, [, = %md;zz + HmLl? + m b
The potential energy at an arbitrary instant is
1 1 1
V= —kx? + —ky?> = —k(a®> + bH)0 d
JR Skt = Sk(a ) (d)

Thus, £, = ka* + b%). The work done by the viscous damping force is

teq

U= —/w'c dx = —/c(aé)d(a@) = —/mzédé? (e)
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The equivalent viscous damping coefficient is ¢, = ca*. Hence, the governing differen-
tial equation is

3 1 . ,
<2m a0+ Emlz + m[!ﬂ)e + ca’® + ka* + b0 =0 )

The bar of Figure 2.57(a) is attached to a spring and viscous damper which is attached to
a cam and follower system. The cam is designed such that it imparts a displacement y(z) to
the spring and viscous damper. The bar is designed to impart a linear motion to the cart.
Derive the differential equation governing the motion using x as the displacement of the
cart and as the generalized coordinate. The motion occurs in the horizontal plane.

SOLUTION

Assume the displacement of the cart is small. The angular rotation of the bar is related to
the displacement of the cart by x = 46. The displacement of the end of the bar where the
spring is attached is y = 66 = gx. FBDs showing the external and effective force acting
on the bar are shown in Figure 2.57(b). Summing moments about the mass center of the

bar (EM ) . = (EM ) 4and using these FBDs leads to

ext

k<)/ - f})b + c<j/ - ia&)b—(/ex)a = 112m2L2<z>

+ (mxX)a + m2<b; ﬂ)i<b; ﬂ) @)

= ¥(0)

Z

Slender bar of
mass 1,

|—>x

Y-

| Q- f——

(a)

Ko-Lw+eo-Lo— \‘ i
a a 10 FIGURE 2.57
(@) The end of the bar
is connected to a
. b—ay X spring and viscous
R; mz(b%a) (2)2 m2( 2 )(E) dam;;er which is given
= motion input, perhaps
kx _E_, mx from a cam and fol-
lower mechanism.
External forces Effective forces (b) FBDs of the bar at
(b) an arbitrary instant.
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which is rearranged to

mL* m, W b AV b?
<m1ﬂ+ 2 +4a(b—a) x+cﬂx+/e at— x—cdy+/eﬂy(b)

215 CHAPTER SUMMARY
2.15.1 IMPORTANT CONCEPTS

e A spring is a flexible link between two particles in a mechanical system.

¢ Structural elements may be used as springs.

* A combination of springs may be replaced by a single spring of equivalent stiffness for
purposes of analysis.

¢ The magnitude of a spring force (drawn at an arbitrary instant on a FBD) is the stiff-
ness of the spring times the change in length of the spring. If one end of
the spring is fixed, the change in length of the spring is simply the displacement
of the particle to which the spring is attached.

¢ The direction of a spring force (drawn on a FBD at an arbitrary instant) is consistent
with the state of the spring for a positive value of the generalized coordinate. If the
spring is stretched, the force is drawn acting away from the body. If the spring is com-
pressed, the force is drawn acting on the body. The direction of the spring force takes
care of itself as motion continues.

*  Viscous damping is often used in mechanical systems because the addition of viscous
damping leads to a linear term in the governing differential equation.

¢ The force from a viscous damper (drawn on a FDB at an arbitrary instant) is equal to
the viscous-damping coefficient times the velocity of the particle to which it is
attached and opposite to the direction of positive velocity of the particle.

¢ The viscous dampers in a system may be replaced (for analysis purposes) by a single
viscous damper, such that the work done by the single damper is equivalent to the
work done by all viscous dampers.

e All inertia elements in a system may be replaced by a particle (for analysis purposes)
such that the kinetic energy of the particle is equal to the kinetic energy of all inertia
elements.

¢ The inertia of a spring may be approximated by adding a particle of one third of the
mass of the spring at the location in the system where the spring is attached.

*  When a mass is vibrating in a liquid, the motion of the entrained liquid can be approx-
imated by added mass. That is, a particle of an appropriate mass is added to the mass
of the vibrating body.

e All external forces acting on a system can be replaced (for analysis purposes) by a single
force whose work is equal to the work done by all external forces.

e The free-body diagram method can be used to derive the differential equation of any
SDOE The method consists of drawing FBDs of the system at an arbitrary instant. If

I the system can be modeled as a particle, the appropriate conservation law is
I 2F = ma. If the system can be modeled as a rigid body undergoing planar motion
with rotation about a fixed axis through O, the appropriate equations are ZF = ma
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and 2M, = [a. If the system is composed of more than one body or involves planar
motion of a rigid body, the conservation equations are (ZF)_ = (ZF), and
(EM )., = (EM ) , where A is any axis.

e For a linear system, if the generalized coordinate is measured from the system’s equi-

ext

librium position, static forces developed in springs cancel with the gravity forces that
cause them when the differential equation governing the motion is derived. Thus, nei-
ther are included on a FBD or in formulation of potential energy.

e The small angle assumption can be used to linearize a nonlinear differential equation. It can
be applied  priori to deriving the differential equation governing the motion of the system.

e The equivalent systems method can be applied to any linear system. A generalized
coordinate is selected. An equivalent mass is calculated using the kinetic energy of the
system, an equivalent stiffness is calculated using the potential energy of the system,
an equivalent viscous-damping coefficient is calculated using the work done by the
viscous-damping forces, and an equivalent force is calculated using the work done by
external forces. The differential equation governing the motion of is that of a mass-
spring and viscous-damper system using the equivalent coefficients.

2.15.2 IMPORTANT EQUATIONS

Force-displacement relation for a linear spring

F= kx (2.4)
Potential energy developed in a linear spring
V= % b (2.6)
Stiffness of a helical coil spring
_ GD*
k= AN (2.11)
Stiffness of longitudinal bar
AE
h="= 2.16
: (216)
Stiffness of a simply supported beam at its midspan
48E7T
k= I (2.18)
Stiffness of a cantilever beam at its end
3EI
k= 573 (2.21)
Torsional stiffness of shaft
JG
k, = 7 (2.25)

Equivalent stiffness of 7 springs in parallel

by = i/ei (2.28)

=1
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Equivalent stiffness of 7 springs in series
1

q 2”: 1 (2:31)
Sk
Determination of equivalent stiffness for arbitrary combination of springs
1
— oL 42
V= kg (2.32)
Potential energy due to gravity
V = mgh (2.34)
Force developed in viscous damper
F=cv (2.37)
Work done by viscous damping forces
(Jl—>2 = _/0' C‘qu‘C dx (2'47)
Equivalent mass when linear displacement is used as generalized coordinate
1
= — "2
T 5 e (2.50)
Equivalent moment of inertia when angular coordinate is used as generalized coordinate
1 .
- —7
r=_10 (2:51)
Equivalent mass of a system including approximation of inertia effects in springs
— + 7
Mg =m+ = (2:57)
Work done by external sources
t2
U_, = —/ F % dt (2.64)
tl
Small angle assumption
sinf ~ 0 (2.71)
cosf = 1 (2.73)
tanf ~ 6 (2.74)

Differential equation governing equivalent mass-spring and viscous-damper system
m Xt ookt kx=F (1) (2.84)

Differential equation governing equivalent system when chosen generalized coordinate is
an angular coordinate

quf) + ct)eqe + k, eqH = Meq(t) (2.85)
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PROBLEMS

SHORT ANSWER PROBLEMS

For Problems 2.1 through 2.15, indicate whether the statement presented is true or false.

If true, state why. If false, rewrite the statement to make it true.

2.1 The differential equation governing the free vibrations of a sliding mass-spring
and viscous-damper system (without friction) is the same as the differential
equation for a hanging mass-spring and viscous-damper system.

2.2 The differential equation governing the motion of a SDOF linear system is
fourth order.

2.3 Springs in series have an equivalent stiffness that is the sum of the individual
stiffnesses of these springs.

2.4 The equivalent stiffness of a uniform simply supported beam at its middle is
3EI/L3.

2.5 The term representing viscous damping in the governing differential equation
for a system is linear.

2.6 When the equivalent systems method is used to derive the differential equation

for a system with an angular coordinate used as the generalized coordinate, the
kinetic energy is used to derive the equivalent mass of the system.

2.7 The equivalent systems method can be used to derive the differential equation
for linear SDOF systems with viscous damping.

2.8 The inertia effects of a simply supported beam can be approximated by placing
a particle of mass one-third of the mass of the beam at the midspan of the
beam.

2.9 The static deflection of the spring in the system if Figure SP2.9 is mg/k.

2.10  The springs in the system of Figure SP2.10 are in series.

Slender bar

g (.) Y of mass m
k
k Zh

FIGURE SP 2.09 FIGURE SP 2.10
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2.11 A shaft can be used as a spring of torsional stiffness /G/L.

2.12  Energy dissipation is used to calculate the equivalent viscous-damping
coefficient for a combination of viscous dampers.

2.13  The added mass of a fluid entrained by a vibrating system is determined by
calculating the potential energy developed in the fluid.

2.14  Ifitis desired to calculate the reactions at the support of Figure SP2.14, the
effects of the static spring force and gravity cancel and do not need to be
included on the FBD or in summing forces on the FBD.

2.15 Gravity cancels with the static spring force, and hence, the potential energy
of neither is included in potential energy calculations for the system of

Figure SP2.15.
k
f\_\/\_E

Problems 2.16 through 2.25 require a short answer.

ol

=
C
sl

2.16  What is the small angle assumption and how is it used?

2.17  When are the free-body diagrams of a system drawn when they are used to
derive the differential equation of a linear SDOF system?

2.18  What is meant by “quadratic forms”?

2.19  The inertia effects of the spring in a mass-spring and viscous-damper system can
be approximated by adding a particle of what to the mass?

2.20 What is the same in each spring for a combination of springs in parallel?

2.21 In general, how is the equivalent stiffness of a combination of springs
calculated?

2.22 Draw a FBD showing the spring forces applied to the system of Figure SP2.22
at an arbitrary instant. Label the forces in terms of 6.

|

w|l~
y
*l

12

e
( /_/f’777\_/‘7 D) e

=~
=~
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2.23 Draw a FBD showing the forces developed in the viscous dampers acting on the
bar of Figure SP2.23 at an arbitrary instant. Label the forces in terms of 6.

G Q) ~¢
[, iy Y
¢ 6| Rigid bar

i @E

i L
ENE
h

2.24 Describe the equivalent systems method.

2.25 When are static spring forces not drawn on the FBD of external forces?

2.26  Can the equivalent systems method be used to derive the differential equation
of a nonlinear SDOF system? Explain.

Problems 2.27 through 2.44 require short calculations.

2.27  What is the equivalent stiffness of springs of individual stiffnesses #, and &,
placed in series?

2.28  What is the equivalent stiffness of the springs in the system of Figure SP2.28?

2.29  What is the equivalent torsional stiffness of the shafts in Figure SP2.29?

I 50 cm } 60 cm |
k - P
4k 2k k 2
z
;;
3k < Aluminum Steel
r=20 mm r=15mm

2.30  When a tensile force of 300 N is applied to an elastic element, it has an
elongation of 1 mm. What is the stiffness of the element?

2.31 What is the potential energy developed in the elastic element of Short
Problem 2.30 when a 300 N tensile force is applied?

2.32 What is the potential energy in the elastic element of Short Problem 2.30 when
a 300 N compressive force is applied?

2.33 A spring of torsional stiffness 250 N - m/rad has a rotation of 2° when a
moment is applied. Calculate the potential energy developed in the spring.

2.34 What is the torsional stiffness of an annular steel shaft (G = 80 X 10° N/m?)
with a length of 2.5 m, inner radius of 10 c¢m, and outer radius of 15 cm?

2.35 What is the torsional stiffness of a solid aluminum shaft (G = 40 X 10° N/m?)
with a length of 1.8 m and a radius of 25 cm?

2.36 What is the longitudinal stiffness of a steel bar (E = 200 X 10° N/m?) with a
length of 2.3 m and a rectangular cross section of 5 cm X 6 cm?
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2.37 What is the transverse stiffness of a cantilever steel beam (E = 200 X 10° N/m?)
with a length of 10 m and a rectangular cross section with a width of 1 um
and height of 0.5 um?

2.38 Calculate the static deflection in a linear spring of stiffness 4000 N/m when a
mass of 20 kg is hanging from it.

2.39 A spring of unstretched length of 10 c¢m has a linear density of 2.3 g/cm. The
spring is attached between a fixed support and a block of mass of 150 g. What
mass should be added to the block to approximate the inertia effects of the
spring?

2.40  What is the kinetic energy of the system of Figure SP2.40 at an arbitrary instant
in terms of x, which is the downward displacement of the block of mass 72, ?
Include an approximation of the inertia effects of the springs. The mass of each
spring is ms.

2.41 Calculate an equivalent torsional-damping coefficient for the system of
Figure SP2.41 when 6, which is the clockwise angular rotation of the bar,
is used as the generalized coordinate.

Thin disk of

4 mass m,
v
2

1
Al
L1
No slip
Lle
L L L
nmy
mx C C
2.42 Evaluate without using a calculator. The argument of the trigonometric

function is in radians.

(a) sin 0.05 (b) cos 0.05
(c) 1-cos 0.05 (d) tan 0.05
(e) cot 0.05 (f) sec 0.05

(g) csc0.05
2.43 Evaluate without using a calculator.
(a) sin 3° (b) cos 3°

(c) 1-cos 3° (d) tan 3°

2.44 Calculate the equivalent moment of inertia of the three shafts of Figure SP2.44
when 6, is used as the generalized coordinate. Assume the gears mesh perfectly
and their moments of inertia are negligible.
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0
r Gear with
7 n; teeth
Gear with
p
Gear with ny teeth
n, teeth J,
0.
Al
Gear with
ny teeth
e |y
FIGURE SP 2.44
2.45 Match the quantity with the appropriate units
(a) spring stiffness, 4 (i) N-m
(b) torsional stiffness, £, (ii) rad
(c) damping coefficient, ¢ (iii) N-m/rad
(e) torsional damping coefficient, ¢, (iv) N-m/s
(f) potential energy, V' (v) kg-m?
(g) power delivered by external force, P (vi) N/m
(h) moment of inertia, / (vii) N-m-s/rad
(i) angular displacement 0 (viii) N-s/m
CHAPTER PROBLEMS
2.1-2.8 Determine the equivalent stiffness of a linear spring when a SDOF mass-spring
model is used for the systems shown in Figures P2.1 through P2.8 with x being
the chosen generalized coordinate.
I Im } 1m |
E =200 x 10° N/m?
20 kg I=1.15%x 10" m*
oy T S
FIGURE P 2.1
I L k
A
el =~ Massless beam I 60 cm f 40 cm f 40 cm —
= El
% k 20 kg E, I Massless beam
e . ~
m =~
L O]
FIGURE P 2.2 FIGURE P 2.3
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1 3_L
| 2

T

S
1107 N/m E =210 x 10° N/m?

I=6.1x10°m*
L=25m

b O :

6 x 10* N/m L L 7L
T AR e b

"7 T [~
1

X
10* N/m
FIGURE P 2.4 FIGURE P 2.5

2%
k
L, 2L
3 3 |
(G /\ Rigid link
2k - % L

L L
2 2

3k

L
1’ 2 2 —
x C q):
o)
k k k
FIGURE P 2.6 FIGURE P 2.7

AT

2.9 Two helical coil springs are made from a steel (E = 200 X 10° N/m?) bar with a radius of 20 mm.
One spring has a coil diameter of 7 cm; the other has a coil diameter of 10 cm. The springs have
20 turns each. The spring with the smaller coil diameter is placed inside the spring with the larger
coil diameter. What is the equivalent stiffness of the assembly?

MMM

FIGURE P 2.8
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A thin disk attached to the end of an elastic beam has three uncoupled modes
of vibration. The longitudinal motion, the transverse motion, and the torsional
oscillations are all kinematically independent. Calculate the following for the
system of Figure P2.10.

(a) The longitudinal stiffness

(b) The transverse stiffness

(c) The torsional stiffness

AN

0
@ r=10 mm
u
—
E =200 x 10° N/m?
X G =80 x 10° N/m?

65 cm

2.11
2.12

2.13
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Find the equivalent stiffness of the springs in Figure P2.11 in the x direction.
A bimetallic strip used as a MEMS sensor is shown in Figure P2.12. The strip,
has a length of 20 wm. The width of the strip is 1 wm. It has an upper layer
made of steel (E 5210 3 109 N/m2) and a lower layer made of aluminum

(E 5803 109 N/m2) . Each layer is 0.1 um thick. Determine the equivalent
stiffness of the strip in the axial direction.

4 % 10° N/m 5x 10° N/m

45°
X
= 20 um ,
& ]
N ¥
3 x 10° N/m [
45° [ A

T 0.2 um Each layer is
0.1 ym thick

A gas spring consists of a piston of area 4 moving in a cylinder of gas. As the
piston moves, the gas expands and contracts, changing the pressure exerted on
the piston. The process occurs adiabatically (without heat transfer), so

p = pr
where p is the gas pressure, p is the gas density, y is the constant ratio of specific
heats, and C'is a constant dependent on the initial state. Consider a spring
when the initial pressure is p; and the initial temperature is 7;. At this pressure,
the height of the gas column in the cylinder is 4. let ¥ = p A + 8F be the

pressure force acting on the piston when it has displaced a distance x into the
gas from its initial height.
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(a) Determine the relation between 6F and x.

(b) Linearize the relationship of part (a) to approximate the air spring by a
linear spring. What is the equivalent stiffness of the spring?

(c) What is the required piston area for an air spring (y = 1.4) to have a stiffness
of 300 N - m for a pressure of 150 kPa (absolute) with # = 30 cm.

2.14 A wedge is floating stably on an interface between a liquid of mass density p, as
shown in Figure P2.14. Let x be the displacement of the wedge’s mass center
when it is disturbed from equilibrium.

(a) What is the buoyant force acting on the wedge?

(b) Whart is the work done by the buoyant force as the mass center of the
wedge moves from x, to x,?

(c) What is the equivalent stiffness of the spring if the motion of the mass
center of the wedge is modeled as a mass attached to a linear spring?

Length of wedge = L
Mass density of
wedge = p,,

h

2.15 Consider a solid circular shaft of length Z and radius ¢ made of an elastoplastic
material whose shear stress—shear strain diagram is shown in Figure P2.15(a). If
the applied torque is such that the shear stress at the outer radius of the shaft is
less than 7 , a linear relationship between the torque and the angular
displacement exists. When the applied torque is large enough to cause plastic
behavior, a plastic shell is developed around an elastic core of radius » < ¢, as

shown in Figure 2.15(b). Let 7 = m-; + 87 be the applied torque which

T L
results in an angular displacement of § = = + 86

(a) The shear strain at the outer radius of the shaft is related to the angular
displacement § = %= The shear strain distribution is linear over a given
cross section. Show that this implies

g =—=
rG

(b) The torque is the resultant moment of the shear stress distribution over the
cross section of the shaft,

T = /2777'p2dp
0

Use this to relate the torque to the radius of the elastic core.

(¢) Determine the relationship between 67 and 66.
(d) Approximate the stiffness of the shaft by a linear torsional spring. What is
the equivalent torsional stiffness?
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Elastic
core

N

Plastic
shell

(a) (b)

2.16 A bar of length L and cross-sectional area A is made of a material whose stress-
strain diagram is shown in Figure P2.16. If the internal force developed in the
bar is such that o < o, the bar’s stiffness for a SDOF model is £ = ATE.
Consider the case where o > o,LeeP=0Ad+ 6P be the applied load

which results in a deflection of A = % + SA.

(a) The work done by the applied force is equal to the strain energy developed
in the bar. The strain energy per unit volume is the area under the
stress—strain curve. Use this information to relate 67 to 6A.

(b) What is the equivalent stiffness when the bar is approximated as a linear
spring for o0 > o ?

o=f(E)

(a)

2.17  Calculate the static deflection of the spring in the system of Figure P2.17.
2.18  Determine the static deflection of the spring in the system of Figure P2.18.

k
g_MA_ iy ‘g% T X 10 Nm E

1.2m
m m=20kg
—
—| Spring is stretched
0.4m 20 mm when bar
i / is vertical
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2.19 A simplified SDOF model of a vehicle suspension system is shown in
Figure P2.19. The mass of the vehicle is 500 kg. The suspension spring has a
stiffness of 100,000 N/m. The wheel is modeled as a spring placed in series
with the suspension spring. When the vehicle is empty, its static deflection is
measured as 5 cm.
(a) Determine the equivalent stiffness of the wheel
(b) Determine the equivalent stiffness of the spring combination.

2.20  The spring of the system in Figure P2.20 is unstretched in the position shown.
What is the deflection of the spring when the system is in equilibrium?

m
I 3m I E=210x 10° N/m?
k Suspension
¥<Z spring P 150 kg [=82x107 m*
k Wheel :
stiffness 5
2000 N/m

2.21 Determine the static deflection of the spring in the system of Figure P2.21.
2.22 Determine the static deflections in each of the springs in the system of
Figure P2.22.

2 I 40 cm } 20 cm —»|

m E 1 C >4kg

1 x 10° N/m 2 x 10° N/m

=~

2.23 A 30 kg compressor sits on four springs, each of stiffness 1 X 104 N/m. What is
the static deflection of each spring.

2.24 The propeller of a ship is a tapered circular cylinder, as shown in Figure P2.24.
When installed in the ship, one end of the propeller is constrained from
longitudinal motion relative to the ship while a 500-kg propeller mass is
attached to its other end.

(a) Determine the equivalent longitudinal stiffness of the shaft for a SDOF
model.

(b) Assuming a linear displacement function along the shaft, determine the
equivalent mass of the shaft to use in a SDOF model.
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7 30
R ro =30 cm
f 4 i 7 =20 cm
> - - - - - E =210 x 10° N/m?
7 - 3
é p=7850 kg/m
e
I 10 m |
2.25 (a) Determine the equivalent torsional stiffness of the propeller shaft of

Problem 2.24.
(b) Determine an equivalent moment of inertia of the shaft of Problem 2.24 to
be placed on the end of the shaft for a SDOF model of torsional oscillations.
2.26 A tightly wound helical coil spring is made from an 1.88-mm diameter bar
made from 0.2 percent hardened steel (G = 80 X 10° N/m?, p = 7600 kg/m?).
The spring has a coil diameter of 1.6 cm with 80 active coils. Calculate

(a) the stiffness of the spring,
(b) the static deflection when a 100 g particle is hung from the spring, and
(c) the equivalent mass of the spring for a SDOF model.

2.27  One end of a spring of mass 72, and stiffness k, is connected to a fixed wall,
while the other end is connected to a spring of mass 72, and stiffness k,. The
other end of the second spring is connected to a particle of mass 7. Determine
the equivalent mass of these two springs.

2.28 A block of mass m is connected to two identical springs in series. Each spring
has a mass m and a stiffness k. Determine the equivalent mass of the two
springs at the mass.

2.29 Show that the inertia effects of a torsional shaft of polar mass moment of inertia
J can be approximated by adding a thin disk of moment of inertia //3 at the
end of the shaft.

2.30  Use the static displacement of a simply supported beam to determine the mass

of a particle that should be added at the midspan of the beam to approximate
inertia effects in the beam.

2.31-35 Determine the equivalent mass or equivalent moment of inertia of the system
shown in Figures P2.31 through P2.35 when the indicated generalized
coordinate is used.

Sphere of
/ p

& /\mass m _

No slip

o
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Slender rod
of mass m

!

\_ oy
\o/
e [ —— o]

2m _/\/\_E
AB and BC are

/77(7)777977 slender bars

FIGURE P 2.32 FIGURE P 2.33
6, J G
Gear with
n; teeth
Ji Gear with
I L | | i ny teeth
§Z§ Ay Gear with
3 - Rigid massless connector ny teeth 7J—\—'7 R

Slender rod
of mass m I A— Ia, A
Gear with

5
C CEE ny teeth
Slender rod |— % — \ A
of mass m \:‘
m ‘,G4

FIGURE P 2.35

FIGURE P 2.34

236 Determine the kinetic energy of the system of Figure P2.36 at an arbitrary
instant in terms of x including inertia effects of the springs.

k, mg

FIGURE P 2.36
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2.37  The time-dependent displacement of the block of mass 72 of Figure P2.36 is
x(#) = 0.03¢13% sin (4¢) m. Determine the time-dependent force in the viscous
damper if ¢ = 125 N-s/m.

2.38 Calculate the work done by the viscous damper of Problem 2.37 between r = 0
and £ = 1.

2.39 Determine the torsional viscous-damping coefficient for the torsional viscous

damper of Figure P2.39. Assume a linear velocity profile between the bottom of
the dish and the disk.

|
j?z

Disk of radius r
Oil of density p, viscosity u
Depth of oil =/

FIGURE P 2.39

2.40 Determine the torsional viscous-damping coefficient for the torsional viscous
damper of Figure P2.40. Assume a linear velocity profile in the liquid between
the fixed surface and the rotating cone.

rfr_.

Oil of density p,
viscosity

Come of base radius r,
height

Gap width, d

=

FIGURE P 2.40
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2.41 Shock absorbers and many other forms of viscous dampers use a piston moving
in a cylinder of viscous liquid as illustrated in Figure P2.41. For this
configuration the force developed on the piston is the sum of the viscous forces
acting on the side of the piston and the force due to the pressure difference
between the top and bottom surfaces of the piston.

(a) Assume the piston moves with a constant velocity v . Draw a free-body
diagram of the piston and mathematically relate the damping force, the
viscous force, and the pressure force.

(b) Assume steady flow between the side of the piston and the side of the

cylinder. Show that the equation governing the velocity profile between the
v

piston and the cylinder is % TS

(c) Assume the vertical pressure gradient is constant. Use the preceding results
to determine the velocity profile in terms of the damping force and the
shear stress on the side of the piston.

(d) Use the results of part (c) to determine the wall shear stress in terms of the
damping force.

(e) Note that the flow rate between the piston and the cylinder is equal to the
rate at which liquid is displaced by the piston. Use this information to
determine the damping force in terms of the velocity and thus the damping
coefficient.

(f) Use the results of part (e) to design a shock absorber for a motorcycle that
uses SAE 1040 oil and requires a damping coefficient of 1000 N-m/s.

]
—D :i

Oil of viscosity 4,
density p

2.42-51 Derive the differential equation governing the motion of the one degree-of-
freedom system by applying the appropriate form(s) of Newton’s laws to the
appropriate free-body diagrams. Use the generalized coordinate shown in
Figures P2.42 through P2.51. Linearize nonlinear differential equations by
assuming small displacements.
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FIGURE P 2.42

b

FIGURE P 2.43
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FIGURE P 2.44 FIGURE P 2.45
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—

N
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- — T —_—
4
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Thin disk of mass m /7\7T777

radius r rolls
without slip Identical slender bars of mass m, length L

N[~

FIGURE P 2.46 FIGURE P 2.47
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| = 2 : < : < |
. N O - o T

No slip

Thin disk of mass m, radius r

FIGURE P 2.48

Slender bar of mass m connected to
blocks through rigid links at A and B

FIGURE P 2.49

L
3
Sphere of
mass m,
radius r, T g:)
no slip Slender bar
L of mass m

3 |—>x

(N

FIGURE P 2.50

Rigid
massless k
L link
3 Thin disk
of mass m,
no slip
FIGURE P 2.51 AN

2.52-61 Determine the differential equations governing the motion of the system by
using the equivalent systems method. Use the generalized coordinates shown in
Figures P2.52 through P2.61.
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FIGURE P 2.52

b

FIGURE P 2.53
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9

FIGURE P 2.54 FIGURE P 2.55
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N
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2
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4
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Thin disk of mass m
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FIGURE P 2.56 FIGURE P 2.57
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Slender bar of mass m connected to
blocks through rigid links at A and B

FIGURE P 2.59
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FREE VIBRATIONS
OF SDOF SYSTEMS

i

R
3.1 INTRODUCTION

Free vibrations are oscillations about a system’s equilibrium position that occur in the
absence of an external excitation. Free vibrations are a result of a kinetic energy imparted
to the system or of a displacement from the equilibrium position that leads to a difference
in potential energy from the system’s equilibrium position.

Consider the model single degree-of-freedom (SDOF) system of Figure 3.1. When the
block is displaced a distance x; from its equilibrium position, a potential energy kx?/2 is devel-
oped in the spring. When the system is released from equilibrium, the spring force draws the
block toward the system’s equilibrium position, with the potential energy being converted to
kinetic energy. When the block reaches its equilibrium position, the kinetic energy reaches a
maximum and motion continues. The kinetic energy is converted to potential energy until the
spring is compressed a distance x,. This process of transfer of potential energy to kinetic energy
and vice versa is continual in the absence of nonconservative forces. In a physical system, such
perpetual motion is impossible. Dry friction, internal friction in the spring, aerodynamic drag,
and other nonconservative mechanisms eventually dissipate the energy.

Examples of free vibrations of systems that can be modeled using one degree of free-
dom include the oscillations of a pendulum about a vertical equilibrium position, the
motion of a recoil mechanism of a firearm once it has been fired, and the motion of a vehi-
cle suspension system after the vehicle encounters a pothole.

Free vibrations of a SDOF system are described by a homogeneous second-order ordi-
nary differential equation. The independent variable is time, while the dependent variable
is the chosen generalized coordinate. The chosen generalized coordinate represents the
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FIGURE 3.1 X

When the mass is displaced, a i ! i I |<_l+x0_>|

distance x, a force kx,, and a k

potential energy 3kx2 develop g—/\/\/\,— m g—/\/\/\/\,— m

in the spring. When released

from rest, a cyclic motion occurs. JSTTTTTTTTTTTT7 JTTTTTTTTTTTT7
In the absence of any dissipative (@) (b)

mechanisms, the system returns
to the same position at the end
of every cycle.
displacement of a particle in the system or an angular displacement and is measured from
the system’s equilibrium position.
The differential equation governing free vibrations of a linear system are derived in
Chapter 2 and is shown to have the form

m X+ ot ksqx =0 (3.1)

when a linear displacement x is chosen as the generalized coordinate. The second derivative
term is due to the inertia forces (effective forces) of the system, the first derivative term is
present if there is viscous damping in the system, and the zeroth derivative term is from the
elastic forces. If the energy method is used to derive the differential equation, the second
derivative term is a result of the system’s kinetic energy, the first derivative term is a result
of the work done by the viscous friction forces, and the zeroth order derivative term is a
result of the system’s potential energy.

The general solution of the second-order differential equation is a linear combination
of two linearly independent solutions. The arbitrary constants, called constants of integra-
tion, are uniquely determined upon application of two initial conditions. The necessary ini-
tial conditions are values of the generalized coordinate and its first time derivative at a
specified time, usually # = 0.

The differential equation governing free vibration of a SDOF system is written in a
standard form in terms of two parameters. The form of the solution of the differential
equation depends upon the parameters. For example, the mathematical form of the solu-
tion for an undamped system is simple harmonic motion. The mathematical form of the
solution for a damped system varies with a parameter called the damping ratio.

The response of a system under other forms of damping also is considered. Dry sliding
friction, or Coulomb damping, leads to two differential equations that govern the motion:
one for a positive velocity and another for a negative velocity. This leads to a nonlinear
system, but one whose solution is available. The response of a system with hysteretic damp-
ing (the damping due to energy loss within a material) is characterized by an equivalent
viscous-damping coefficient under certain conditions.

AR
3.2 STANDARD FORM OF DIFFERENTIAL EQUATION

The differential equation governing any SDOF system was shown in Chapter 2 to have the form
mi + e x+ /eeqx = Feq (3.2)
If the generalized coordinate is an angular coordinate, then
Lo+ ¢ 0+ k Ok 0=M(® (33)
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Free vibrations occur in the absence of any forcing and as a result of an initial potential or
kinetic energy present in the system at £ = 0. Thus, for this chapter, F,=0o0rM,_ =0.
Without loss of generality, assume the generalized coordinate is a linear displacement and
the differential equation is written in the form of Equation (3.1).

Dividing Equation (3.1) by M, leads to

c
.. eq . ¢q

+ — = .
X » qu 0 (3 4)

ce ke .
Equation (3.4) is written in terms of two parameters, ,,qu and W;, which have an effect on
the solution. They are defined as

Feq
0, =\|m (3-5)

€q

which is the narural frequency of motion and

(= —F—— (3-6)
2V /eeqmeq

which is the damping ratio. The reasons for the names of these parameters will become
apparent later. The differential equation is written in terms of these parameters as

¥+ 2w x+ 0lx=0 3.7)

Equation (3.7) is called the standard form of the differential equation for SDOF systems.
It is supplemented by two initial conditions:

x(0) = x, (3.8)
and

x(0) = %, (3-9)

Equation (3.7) is a linear, ordinary homogeneous differential equation with constant
coefficients. A solution of Equation (3.7) is assumed to be of the form

x(2) = Ae™ (3.10)
Substitution of Equation (3.10) into Equation (3.7) leads to
(a2 + 2w,a + wi)Ae“’ =0 (3.11)

The solution is obtained by setting &* + 2{w & + w? = 0. Using the quadratic formula
to obtain a solution, we have

2o, = V(2w)* — 40’

a = 3 (3.12)

o(=¢*VZE-1) (3-13)

The form of the solution of this differential equation depends upon the values of «, the
roots of the characteristic equation. Defining 7 = V —1, there are four cases.

or

o
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1. When { = 0, the roots are purely imaginary, as « = *iw . The free vibrations are

undamped.

2. When 0 < { < 1, the roots are complex conjugates, as @ = o (—={ = iV1 — 7).
The free vibrations are underdamped.

3. When { = 1, the characteristic equation has only one real root, @ = —w . The free
vibrations are critically damped.

4. When { > 1 the characteristic equation has two real roots @ = w (= + V{* — 1).

The free vibrations are overdamped.

The solution varies with . The mathematical form of the solution is different for each case.

e
3.3 FREE VIBRATIONS OF AN UNDAMPED SYSTEM

When the system is undamped, the roots of the characteristic equation given by
Equation (3.12) are purely imaginary, as *w 7 The general solution is a linear combina-
tion of all possible solutions, thus

x{2) = Be™t+ Be "t (3.14)

where B, and B, are constants of integration.
Euler’s identity states

e = cos® + isin@ (3.15)
Application of Euler’s identity to Equation (3.14) leads to

) = B(cosw t+ isinw ) + B(cosw t — isinw 1) (3.16)
or

7)) = Cicosw r+ Csinw ¢ (3.17)

where C, = B, + B, and C, = i(B, - B,) are redefined constants of integration. As defined,
C, and C, are real, while B, and B, are complex conjugates. Substituting the initial condi-
tions, Equations (3.8) and (3.9), into Equation (3.17) leads to
X
MH) = xycosw t + —sinw ¢ (3.18)
w

n

An alternate and more instructive form of Equation (3.18) is
X)) = Asin (@, + ¢) (319)

Expanding Equation (3.19) using the trigonometric identity for the sine of the sum of
angles

sin(¢ + ) = sinacos b + cosasin b (3.20)
gives

x7) = Acospsinw t + Asing cosw, ¢ (3.21)
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Equating coefficients of like trigonometric terms of Equations (3.18) and (3.21) leads to

A= |x2+ %o\’ (3.22)
0 1)

n

and

® X
e -
*o

Equation (3.19) is an example of the simple harmonic motion discussed in Section 1.6.
The amplitude of the motion is A, the frequency is w , its phase is ¢, and its period is 2(77:
The parameter w _ is called the natural frequency, because it is the frequency at which the
undamped free response occurs naturally.

The undamped motion of a SDOF system is simple harmonic motion. The initial con-
ditions determine the energy initially present in the system. Potential energy is converted
to kinetic energy and vice versa without dissipation. Since energy is conserved, the system
eventually returns to its initial state with the original potential and kinetic energies, com-
pleting one full cycle of motion. The subsequent cycle duplicates the first cycle. The system
takes the same amount of time to execute the second cycle as it does the first. Since no
energy is dissipated, it executes subsequent cycles in the same amount of time. Thus, the
motion is c¢yclic and periodic. Figure 3.2 illustrates simple harmonic motion of an
undamped SDOF system.

The amplitude A, defined by Equation (3.22), is the maximum displacement from equi-
librium. The amplitude is a function of the system parameters and the initial conditions.
The amplitude is a measure of the energy imparted to the system through the initial con-
ditions. For a linear system

A=\ (3-24)

fe— T = 2—” —»|
a)n
A
w2—¢ lllustration of free response
™ Tt o of an undamped system. The
! motion is cyclic and periodic.
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The phase angle ¢, calculated from Equation (3.23) is an indication of the lead or lag
between the response and a pure sinusoidal response. The response is purely sinusoidal with
¢ = 0 if x; = 0. The response leads a pure sinusoidal response by 7/2 rad if x; = 0. The
system takes a time of

77;(1’ ¢ >0
r = _gﬂ (3-25)
w

$=0

n

to reach its equilibrium position from its initial position.

An engine of mass 500 kg is mounted on an elastic foundation of equivalent stiffness
7 X 10° N/m. Determine the natural frequency of the system.

SOLUTION

The system is modeled as a hanging mass-spring system. Equation (3.3) with ¢ _ = 0 gov-
eq

erns the displacement of the engine from its static-equilibrium position. The natural fre-

quency is determined by using Equation (3.5)

k [7 X 10°N/m
w, = \/; = Tkg = 37.4rad/s (a)

or expressed in Hz.

w, 37.4rad/s
= = ———— =596H b
f 2w 2mrrad/cycle 296 Hz ()

A wheel is mounted on a steel shaft (G = 83 X 10° N/m?) of length 1.5 m and radius
0.80 cm. The wheel is rotated 5° and released. The period of oscillation is observed as 2.3 s.
Determine the mass moment of inertia of the wheel.

SOLUTION

The oscillations of the wheel about its equilibrium position are modeled as the torsional
oscillations of a disk on a massless shaft, as illustrated in Figure 3.3. The differential equa-
tion for such a system is derived in Example 2.17 as

.. G
19+]70=o (a)

Equation (a) is written in the standard form by dividing by /, giving
.. JG
06+—06=0 (b)
1L
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FIGURE 3.3

System of Example 3.2. A wheel is mounted on a shaft, and the
period of oscillations is observed, which is used to calculate the
L.5m moment of inertia of the wheel.

G =83 x10° N/m?
r=8 mm

The natural frequency is obtained from Equation (b) as

w=Jf (©)

The natural frequency is calculated from the observed period by
27 2wrad/cycle

=—=——""""=273rd/ d
©n T 2.3slcycle 73 radls )

The moment of inertia of the wheel is calculated using Equation (c) as

%(0.008 m)4(83 X 10°N/m?)

JG
== = 477kg + m
L (1.5 m)(2.73 radls)? 77k m ()

7

A mass of 5 kg is dropped onto the end of a cantilever beam with a velocity of 0.5 m/s, as
shown in Figure 3.4(a). The impact causes vibrations of the mass, which sticks to the beam.
The beam is made of steel (£ = 210 X 10° N/m?), is 2.1 m long, and has a moment of
inertia / = 3 X 107° m*. Neglect inertia of the beam and determine the response of the mass.

SOLUTION

Let x(2) represent the displacement of the mass, which is measured positive downward
from the equilibrium position of the mass after it is attached to the beam. As shown in
Figure 3.4(b), the system is modeled as a 5 kg mass hanging from a spring of stiffness

_3E[ 3(210 X 10° N/m?)(3 X 10~° m?)

«w 3 (2.1 m)?

= 2.04 X 10°N/m (a)

The natural frequency of free vibration is

keq _ 204 X IOSN/m _
®, =/ /—5 ke = 202.0 rad/s (b)

The beam is in equilibrium at # = 0 when the particle hits. However, x is measured
from the equilibrium position of the system with the particle attached. Thus,

mg (5 kg)(9.81 m/s?)
- = = —2.40 X 1074
k, 204X 10°N/m " (<)

H0) = -4, =
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2.1m | FIGURE 3.4
. a) System of Example 3.3. A mass is
— Velocity = 0.5 ms Eiropped onto a fixed-free beam. (b) The
ﬂ ‘ system is modeled as a mass hanging from
= \ a spring of equivalent stiffness. Since x is
E=210x10° N/m? measured from the equilibrium position of
1=3%10° m* the system, the initial displacement is the
(a) negative of the static deflection of the

beam.

2.04 % 10° N/m

5kg
1

(b)

The initial velocity is x(0) = 0.5 m/s. The time history of motion is calculated using
Equation (3.19) as

x() = Asin (202.0¢ + ¢) (d)
where the amplitude 4 and the phase ¢ are determined using Equations (3.22) and (3.23),
respectively:

0.5m/s \2
=, /(=240 X 107" m)> + (———— | =2
A \/( 2.40 X 107 m) (202.2 rad/s> 2.48 mm (e)

(202.0rad/s)(—2.40 X 1074 m)
= —0.0968 rad = —5.59° (f)

— -1
¢ = tan { 0.5m/s

An assembly plant uses a hoist to raise and maneuver large objects. The hoist shown in
Figure 3.5 is a winch attached to a beam that can move along a track. Determine the nat-
ural frequency of the system when the hoist is used to raise a 800-kg machine part at a cable

length of 9 m.

SOLUTION
The beam is modeled as a pinned-pinned beam. If the hoist is at its midspan, its stiffness is

_ 48EI  48(200 X 10 N/m?)(3.5 X 107* m?)
b (3.1 m)?

=113 X 18N/m  (a)
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FIGURE 3.5
[ (WA (@) System of Example 3.4 in which a hoisting mechanism
\ AN consists of a cable attached to an overhead beam. (b) The
system is modeled as a SDOF system with the stiffness of

the beam and the stiffness of the cable acting as springs
in series.

Beam: L=3.1m
E =200 x 10° N/m?
I=35%x10%m*
Cable: E =200 x 10° N/m?

r=10cm
L=9m
(a) (b)

The stiffness of the cable is

_AE (0.1 m)(200 X 10°N/m?)
¢ L 9m

k

= 6.98 X 108 N/m (b)

The beam and the cable act as springs in series with an equivalent stiffness of

1 1
= = = 9.71 X 107 N/
0 0 0 9.7 m (c)

1
— +
k, k113 X 105N/m  6.98 X 10°N/m

eq

The system’s natural frequency is

k. 9.71 X 107N/
w === |22 R 348 X 10 rads (d)
" m 800 kg

The pendulum of a cuckoo clock consists of a slender rod on which an aesthetically
designed mass slides. If the clock gains time, should the mass be moved closer to or farther
away from the support to correct the tuning?

SOLUTION

The pendulum is modeled as a particle of mass 7 on a rigid, massless rod. The particle is
assumed to be a distance / from its axis of rotation. Summing moments about the point of
support on the free-body diagrams of Figure 3.6 leads to

6+ }gsinO =0 (a)
Application of the small-angle assumption yields the linearized equation of motion
6+§9=o (b)
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0,
mi6?
l .
= ml@
-/ e
External forces Effective forces
FIGURE 3.6

(a) System of Example 3.5 in which the pendulum of a cuckoo clock is a massless rod with a particle
attached. (b) FBDs at an arbitrary instant.

from which the natural frequency is calculated as

The period of oscillation is

T= 271'\/7
£

Since the clock is running fast, the period of the pendulum needs to be increased. Thus /
should be increased and the mass moved farther away from the axis of rotation.

The nonlinear differential equation derived in Example 3.5 is linearized by assuming
small 6 and replacing sin 6 by 6. The exact nonlinear pendulum equation, Equation (a) of
Example 3.5, is one of the few nonlinear equations for which an exact solution is known.
The solution subject to 6(0) = 6 and 6(0) = 0 is developed in terms of elliptic integrals,
which are well-known tabulated functions.

The period of motion of a nonlinear system is dependent upon the initial conditions,
while the period of a linear system is independent of initial conditions. One method of
assessing the validity of the small-angle approximation for a given amplitude is to compare
the period calculated using the exact solution to the period calculated using the linearized
differential equations for different initial displacements. This comparison is given in
Table 3.1, which shows that the small angle approximation leads to accurate prediction of
the period for amplitudes as large as 40°. For an initial angular displacement of 40°, the
error in the period from using the small angle approximation is only 3.1 percent.

The success of the use of the small-angle approximation in the pendulum example should
give confidence to its use in other problems, where an exact solution is not available.
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tio of period of simple pendulum, T, calcu-

lated from exact nonlinear solution to period cal-
culated from linearized equation as a function of
21

initial angle, 6, TR Nonlinear period is 4K where

K'is the complete elliptic integral of the first
kind with a parameter of sin (6 /2)

0.(%) L \/&ir 6,(°) /&I
2 2

2 1.00007 48 1.04571
4 1.00032 50 1.04978
6 1.00070 52 1.05405
8 1.00120 54 1.05851
10 1.00191 56 1.06328
12 1.00274 58 1.06806
14 1.00376 60 1.07321
16 1.00490 62 1.07850
18 1.00618 64 1.08404
20 1.00764 66 1.08982
22 1.00930 68 1.09588
24 1.01108 70 11021
26 1.01305 72 1.10867
28 1.01515 74 1.11548
30 1.01738 76 1.12255
32 1.01987 78 1.12987
34 1.02248 80 1.13751
36 1.02528 82 1.14540
38 1.02821 84 1.15368
40 1.03132 86 1.16221
42 1.03463 88 117112
44 1.03814 90 1.18035
46 1.04183

]
3.4 UNDERDAMPED FREE VIBRATIONS

When 0 < ¢ < 1, the roots of the equation for a are complex conjugates, and the system
is said to be underdamped. The general solution of the governing equation is

) = Bl oo mio N1=0)r 32 oo, Tio N 1-0)t (3.26)
which can be rewritten using Euler’s identity as

) = e_g“’n’[Cl cos (0, V1 = )t + C;sin(w, V1 — gl)t] (3.27)
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The constants of integration are determined by applying the initial conditions, Equation (3.8)
and (3.9), resulting in

¢+
D) = et x cos (0, V1 — {%1) + :\/%Sin (0, V1 = )| (3.28)

An alternative form of the solution is developed by using the trigonometric identity,
Equation (3.20)

X)) = Ae %rsin (it + ) (3-29)

A= \/ 2+ (M)z (3-30)

@,

b, = tan_1<xowd) (3.31)

x, T {w x,

w,=o V1 - (3-32)

Equation (3.29) is plotted in Figure 3.7. Once free oscillations of a viscously damped
system commence, the nonconservative viscous damping force continually dissipates
energy. Since no work is being done on the system, this leads to a continual decrease in the
sum of the potential and kinetic energies. For underdamped free vibrations, the system
oscillates about an equilibrium position. However, each time it reaches equilibrium, the
system’s total energy level is less than at the previous time. The maximum displacement on
each cycle of motion is continually decreasing. Equation (3.29) and Figure 3.7 show that
the amplitude decreases exponentially with time.

The free vibrations of an underdamped system are cyclic but not periodic. Even though
the amplitude decreases between cycles, the system takes the same amount of time to exe-
cute each cycle. This time is called the period of free underdamped vibrations or the damped
period and is given by

where

and

o

T, (3-33)

wy

Free vibrations of an under-
damped SDOF system decay
exponentially.

<
-
<
C
~
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Thus, w, is called the damped natural frequency. Note that o, < w and 7,> T. This is
due to the viscous friction which resists the motion of the system and slows it down.
Consider a mass-spring and viscous-damper system with x(0) = x;and %(0) = 0. Then
V1-p

¢, = tan1<§> (334)

Hence, sing, = V1 — (% cos ¢, = {, and

il (335)
e 3.35
V1-—{?

The total energy present in an underdamped system at time # is

A:

1 1
E = —kx? + —mx?
2 2

1 kxzefzgw"t
= 5(1"_752)[(1 + ) sinw,t+ ¢ ) — 20V 1 — Csin (0t + ¢)
cos(w,t + ¢, + (1 — ) cosz(wdt + d’d)] (3.36)
The total energy in the system at the end of the nth cycle, £ = zwij, is
1 o
E = EnT) = Ekxéé’_““/\/l_g (3-37)

The energy dissipated as the system executes one cycle of motion is

AEn = En - En+l

1 . Y=
Ekxéf—wgw/vl—#(l — HTINIZD) (3:38)

The ratio of the energy dissipated over a cycle compared to the total energy at the begin-
ning of the cycle is

AE
g = Lo emvre (3:39)

n

Equations (3.38) and (3.39) show that the energy dissipated per cycle of motion is con-
stant, and thus, it has a constant ratio. The sequence of energies at the beginning of

each cycle is a geometric sequence with ratio 1 — ¢~ 4™/V1=¢ For example, if { = 0.1,

ATI? = 0.717. The percentage of energy at the end of the nth cycle is (0.717)” times the

initial energy. The larger the damping ratio, the smaller the ratio, and a larger fraction of
energy is dissipated per cycle. Since the sequence of energies is a geometric sequence, the
energy is never completely dissipated, thus indicating that the free vibrations of an under-
damped system continues indefinitely with exponentially decreasing amplitude.

Taking the limit of the energy ratio as the damping ratio approaches one, lim ,_,, Efﬂ = 1L
All of the energy would be dissipated within the first cycle. This is the origin of the term
underdamped; the damping force is not large enough to ever dissipate all of the energy.

The logarithmic decrement, 8, is defined for underdamped free vibrations as the natu-
ral logarithm of the ratio of the amplitudes of vibration on successive cycles.
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5 = ln( x(2) ) _ ln( Ae@.f sin (wyt+ @) )

x(t+ T) At I sin[w (¢ + T) + ]
2m{
Y . S (3-40)
T NV1-p
For small ¢,
8 =2m{ (3-41)

The logarithmic decrement is often measured by experiment and damping ratio deter-
mined from

o

Vi o

It can be shown that the following equations can also be used to calculate the logarithmic
decrement:

1 x(9) )
6=—In|l —— .
p n(x(t + aT) (343)
for any integer 7 and

5= ln(M> (3-44)

x(t+ 1)

8= ln(w> (3-45)

¥(e+ T)

Equation (3.43) implies that the logarithmic decrement can be determined from ampli-
tudes measured on nonsuccessive cycles, while Equations (3.44) and (3.45) imply that
velocity and acceleration data can also be used to determine the logarithmic decrement.
The free vibrations of an underdamped system decay exponentially with time. When the ini-
tial conditions are x(0) = x, and x(0) = 0, the response of the system is shown in Figure 3.8.

1.2
1A
0.8
0.6
£
=
0.4 1
0.2 1
Underdamped response due 07
to initial conditions x(0) = x,
and x(0) = o. The overshoot 02 : : : : :
is the amplitude at the end of 0 0.5 1 1.5 2 2.5 3
the first half-period. 1(s)
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The absolute value of the displacement after the first half-cycle is called the overshoot. The over-
shoot is calculated by

1 %o N/
Y _— w1
mn x<2> me / sin (m + &)
= xogfgw/ Vi-¢? (3'46)

The percent overshoot is IOOXE0 = 100 ¢ ¢m/V1-&,

Determine (a) the response of the accelerometer of Example 2.20 if it has an initial veloc-
ity of 30 m/s and an initial displacement of 0 m. (b) What is the value of the displacement
atr =1 us?

SOLUTION
(a) The differential equation governing the free response of the accelerometer is

4.6 X 1072% + 4.93 X 107x + 0.380x = 0 @)
Putting the equation in standard form, we have

¥ +1.07 X 105% + 8.26 X 10"% = 0 (b)

The natural frequency is

o = V826 X 10 = 2.87 X 10°rad/s (c)

and the damping ratio is determined as

1.07 X 10°
g j—

=————=10.186 d
2(2.87 X 10%) ()

The system is underdamped and the response for the given initial conditions is

X .
x() = —etrsinw ¢ (e)
W,

where

w,= o V1 — =287 X 10°rad/s V1 — (0.187)> = 2.82 X 10° rad/s (f)

Thus,
30m/s
H=—"" —0.187(2.87X10%) ¢ o§ 2.82 X 1051'
M) = e X 10radls’ sin ( )
= 1.04 X 1074753X10%(5in 2.82 X 10°) m (®)

(b) At =1 us,

x(1076s) = 1.04 X 1074¢7536X10°00 5in [2.82 X 10°(1079)] = 3.07 X 10°m (h)
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The slender bar of Figure 3.9(a) has a mass of 31 kg and a length of 2.6 m. A 50 N force
is statically applied to the bar at P then removed. The ensuing oscillations of P are moni-
tored, and the acceleration data is shown in Figure 3.9(b) where the time scale is calibrated
but the acceleration scale is not.

(a) Use the data to find the spring stiffness # and the damping coefficient c.
(b) Calibrate the acceleration scale.

SOLUTION
FBDs of the system at an arbitrary instant are shown in Figure 3.9(c). Applying

EM,), = (XM,) 4 to these FBDs leads to the differential equation of motion:
x + ix + 2—7/€x = @)
Tm 7m
4
3 3
E 2
o S0N % 1 \ /\
: T A A
< (] m=3lke D 2.
S ol NS M
k=2 % ~
-3 . . . .
0 0.05 0.1 0.15 0.2 0.25

}0.65 m-» 1.95m | Time (s)
(@) (b)

50N

C— ) [ L ()

I l 127 \3L0/4
R, mg T K[x(0) + Ayl External forces Effective forces
(© (d
FIGURE 3.9

(a) System of Example 3.7. (b) Accelerometer data for free vibration response. (c) FBD when system is
in equilibrium. (d) FBDs of system at an arbitirary instant.
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The natural frequency and damping ratio are determined by comparing the preced-
ing equation with the standard form of the differential equation for damped free vibra-
tions as

27k
— i b
w0,=5 (b)
3¢ 3¢
2 = — =
fw, 7m ¢ l4mw, (©)

The period of damped free vibrations is determined from the accelerometer data as 0.1 s.
The value of the logarithmic decrement is determined from the accelerometer data and
Equation (3.45) as

B . O - A
8= ln[}é(o.ls)} = ln2 = 0.406 (d)

The damping ratio is calculated using Equation (3.42) as

4
{ = 0406 = 0.0644 (e)

V4m? + (0.406)°

The damped natural frequency is

2 21
w,= 74 =01 62.8 rad/s )

from which the natural frequency is calculated as

B o, B 62.8rad/s
V1 =2 V1 - (0.0644)

1) = 63.0 rad/s (g)

(a) The stiffness is calculated from Equation (b) as

7mw*  7(31 ke)(63.0 rad/s)?
P F A b /9% _ 519 x 106 N/m (h)
27 27

and the damping coefficient is calculated from Equation (c) as

14mw {  14(31 kg)(63.0 rad/s)(0.0643)
c= 3 = 3 = 585.7 N * s/m 0]

(b) A static analysis of the equilibrium position in Figure 3.9(c) provides the initial dis-
placement from equilibrium as

F
x0) = £ S0 N

L '
£ 319 X 10° N/m mm @)

The initial acceleration is calculated using the governing differential equation as

X(0) = —2{w #(0) — w?x(0) = —(63.0)%(0.0016 m) = —6.22 m/s> (k)
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The acceleration scale is then calibrated as

6.22 m/s?
1 unit = % = 2.07 m/s? Q)]

s
3.5 CRITICALLY DAMPED FREE VIBRATIONS

When { = 1, the free vibrations are said to be critically damped. In this case, there is only
one root of the quadratic equation defining . The root is —w; thus, one solution of the
differential equation is e~/ The second linearly independent solution is obtained by mul-
tiplying the first by # Thus, the general solution is

x() = eXC, + C) (3-47)
Application of the initial conditions leads to
x() = e x, + (%, + ©x,)t] (3.48)

The response of a SDOF system subject to critical viscous damping is plotted in
Figure 3.10 for different initial conditions. If the initial conditions are of opposite sign or
if x,
if x, = 0, the absolute value of x initially increases and reaches a maximum of

= 0, the motion decays immediately. If both initial conditions have the same sign or

— v (% 560
xmax = e xO/(xo+wnx0)<x0 + (1)_ (3’49)

n

at

-
Il

(3-50)

@, =2.0rad/s, x(0)=1 mm

FIGURE 3.10

Free vibration response for a
system with critical damping.
The damping is just sufficient

x(f) (mm)

to dissipate the energy within Time (s)

one cycle. Depending on ini- -2
tial conditions, the response

may overshoot the equilib- =3
rium positon. T x(0) =-1.0 mm/s

X(0) =10.0 mm/s  --eeeeees X(0) =-15.0 mm/s
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If the signs of the initial conditions are opposite and

X0

Py .
0 n0

then the response overshoots the equilibrium position before eventually decaying and approach-

ing equilibrium from the direction opposite that of the initial position. Equation (3.51) is

equivalent to specifying that the initial conditions are opposite and the initial kinetic energy

is greater than the initial potential energy.

Free vibrations with { = 1 are called critically damped because the damping force is
just sufficient to dissipate the energy within one cycle of motion. The system never exe-
cutes a full cycle; it approaches equilibrium with exponentially decaying displacement.

A system with critical damping returns to equilibrium the fastest without oscillation.
A system that is overdamped has a larger damping coefficient and offers more resistance to

the motion.

EXAMPLE 3.8

The recoil mechanisms of large firearms are designed with critical damping to take advan-
tage of the quickest return to the firing position without oscillation. A 52 kg cannon is to
return to within 50 mm of its firing position 0.1 s after maximum recoil. The initial recoil
velocity of the cannon is 2.5 m/s. Determine (a) the stiffness of the recoil mechanism,
(b) the damping coefficient of the recoil mechanism, and (c) the maximum recoil.

SOLUTION
The maximum recoil of a critically damped system with a initial velocity v = 2.5 m/s and
an initial displacement of zero is given by Equation (3.49) as

_2.5mls

ew
n

X
max

()

Take # = 0 to occur at the maximum velocity of the mechanism when x(0) = 0 and
x(0) = 3‘75 The response of the system is given by Equation (3.48) as

x(2) = £f“’nf(l + o )m (b)
ew

n

Requiring that the mechanism return to within 50 mm of equilibrium 0.1 s after maxi-
mum recoil leads to

2.5
0.050 = ——¢ =01 + 0.1w,] (<)
ew

n

An iterative solution is used to solve Equation (c), for @ = 12.1 rad/s.
(a) The stiffness of the recoil mechanism is

k= mw? = (52kg)(12.1 rad/s)* = 7.61 X 10°N/m (d)
(b) Since the mechanism is critically damped, we have

¢=2mw, = 2(52kg)(12.1 rad/s) = 1.26 X 10°N * s/m (e)
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(c) The maximum recoil given by Equation (a) is

2.5 m/s 2.5m/s
= = = 76. f
max ew, e(12.1 rad/s) 76.0 mm ()

e
3.6 OVERDAMPED FREE VIBRATIONS

When { > 1, the characteristic equation has two real roots as @, , =  ( V{ 1).
The general solution of the governing differential equation Equatlon (3 7) is

x() = CeoeVi-1y 4 Cpmoe=Vo-1r (3:52)

Application of initial conditions from Equations (3.8) and (3.9) to Equation (3.52) leads to

e—{w t
x() = {{— + x,(¢ + V¢ ]
) ) T (¢

+ {—ﬁ +ox(={ + \/ﬁ)}‘“"\/ﬁt} (353)

w
n

Equation (3.53) is plotted in Figure 3.11. The response of an overdamped SDOF
system is not periodic. It attains its maximum either at # = 0 or at

) ‘- ,74’ lw—+x §+\/

r=— In (3-54)
eNESL V§2‘1—°+x0<§—w2—1>

n

®,=3radls, {=12, x(0)=1mm

2

E

g

=
FIGURE 3.1
Free vibration response for a
system that is overdamped. R Time (s)
The damping force is suffi-
cient to dissipate the energy -1

within a full cycle. X(0)=9 mm/s ------ X%(0) = -9 mm/s
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<1074 FIGURE 3.12
11 Comparison between the free
— response of a critically
10 e £=125 damped system and an over-
damped system.
9 -
8 —
E 7
=
6 -
54
4
3 T T T T T T T T T

0 02 04 06 08 1 12 14 16 138 2
1(s)

The response of a system that is overdamped is similar to a critically damped system.
An overdamped system has more resistance to the motion than critically damped systems.
Therefore, it takes longer to reach a maximum than a critically damped system, but the
maximum is smaller. An overdamped system also takes longer than a critically damped
system to return to equilibrium. Two systems with the same initial conditions are shown in
Figure 3.12. One system has a damping ratio of 1 and the other of 1.25. It is obvious that
the system that is overdamped is slower.

The restroom door of Figure 3.13 is equipped with a torsional spring and a torsional viscous
damper so that it automatically returns to its closed position after being opened. The door
has a mass of 60 kg and a centroidal moment of inertia about an axis parallel to the axis of
the door’s rotation of 7.2 kg * m? The torsional spring has a stiffness of 25 N + m/rad.

(a) What is the damping coefficient such that the system is critically damped?

(b) A man with an armload of packages, but in a hurry, kicks the door to cause it to open.
What angular velocity must his kick impart to cause the door to open 70°?

(c) How long after his kick will the door return to within 5° of completely closing?

(d) Repeat parts a through c if the door is designed with a damping ratio, { = 1.3.
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T FIGURE 3.13
The restroom door of Example 3.9 is modeled
{ as a SDOF system with a torsional spring and a
I torsional viscous damper. (b) FBDs at an arbi-
213 m trary instant.
l
0\
}+—0.90 m—»]
(a)
— 019. md6?
< - s
mg \
L) md@
—Z[] k0 16
)/ /
External forces Effective forces
(b)
SOLUTION

The differential equation is derived from the free-body diagrams of Figure 3.13(b),
(I + md)6 + ch+ ko =0 (a)

Equation (a) is put in the standard form of Equation (3.7) by dividing by I + md?. Then
it is evident that

k, 25N - m/rad
=./= = = 1.14 rad/ b
“n \/] + md? \/7.2 Kg - m? + (60 kg)(0.45 m)? e ()

and

c

7 ST+ ) ©

(a) For critical damping, the damping ratio is 1. Thus,
¢ =20l + md*) = 440N - m - s (d)

(b) If the kick is given when the door is closed, 6(0) = 0, the time the maximum displace-
ment occurs is given by Equation (3.50)

1
t=—=1088s (e)
w

n
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and from Equation (3.49) is

0
9, =— ()
ewﬂ

Requiring 0 = 70° yields

. 277 rad
0, = 700( T )(1.14 rad/s)e = 3.78 rad/s (8)
360°
(o) Applying Equation (3.48) with 8 = 5° gives
277 rad
50< :6:; ) = ¢ (140 (3,78 radfs) s (h)

which is solved by trial and error to yield # = 4.658 s.
(d) Setting { = 1.3 yields

¢, = 20 + md)w = 572N+ m*s 0]
From Equation (3.54) the maximum displacement occurs at
1 | (1.3 - V(13?2 - 1) 0.80
— n =0.80s
2(1.14 rad/s) V' (1.3)? — 1 1.3+ V(1.3)2 -1

Substituting the preceding result in Equation (3.53) and setting 8 = 70° yields

=

0)

700<27”ad) _ ( % ) ! 130114 radl5)(0.8 )
360° L4 radls) )\/(13)2 — 1
> (el.l4rad/s\/(1.3)Tl(0.Ss) _ ol rad/s\/W(OBS)) (k)
which gives
6, = 4.54 rad/s (1

Applying Equation (3.53) with § = 5° yields
50 (277 rad) B ( e 114013) )(4.54 rad/s>
360° 2V (1.3)2 — 1/ \1.14rad/s

% (61.14\/(1.3)2—1 t

— Vasp-1 z) (m)
This equation could be solved by trial and error. However, a good approximation is
obtained by neglecting the smaller exponential to give # = 6.2 s. The neglected term at this
time is 0.00081 rad which is only 0.9% of the total angular displacement.

Note that a harder kick is required to open the door when the system is overdamped
than when the system is critically damped even though the time required to open the door
is approximately the same. This reflects the increase in the viscous resistance moment. The

response of the critically damped system against the response of an overdamped system
with { = 1.3 is plotted in Figure 3.14.
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0 (rad)

T
0 1.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1(s)
FIGURE 3.14
MATLAB plot of responses of the system of Example 3.8 for a critically damped system and an over-
damped system.

s
3.7 COULOMB DAMPING

Coulomb damping is the damping that occurs due to dry friction when two surfaces slide
against one another. Coulomb damping can be the result of a mass sliding on a dry sur-
face, axle friction in a journal bearing, belt friction, or rolling resistance. The case of a mass
sliding on a dry surface is analyzed here, but the qualitative results apply to all forms of
Coulomb damping.

As the mass of Figure 3.15 (a) slides on a dry surface, a friction force that resists the
motion develops between the mass and the surface. Coulomb’s law states that the friction
force is proportional to the normal force developed between the mass and the surface. The
constant of proportionality w, is called the kinetic coefficient of friction. Since the friction
force always resists the motion, its direction depends on the sign of the velocity.

Application of Newton’s law to the free-body diagrams of Figure 3.15(b) and (c) yields
the following differential equations:

.. _J—umg x>0
mx + kx = { pmg %<0 (3-55)

Equations (3.55) are generalized by using a single equation
| ]

mx + kx = —mmg = (3.56)
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—x
k (@) A mass slides on a surface with a
g—/\/\/\,— m coefficient of friction w. (b) FBDs at
an arbitrary instant for x > 0. (c) FBDs
\ U at an arbitrary instant for x < 0.
(a)
|
kx ' _ .
- = x>0
T < F=umg
N
(®)
|
| ¥ ,
| = = x<0
F=umg —
N
External forces Effective forces
(©)

The right-hand side of Equation (3.56) is a nonlinear function of the generalized coordi-
nate. Thus the free vibrations of a one-degree-of-freedom system with Coulomb damping
are governed by a nonlinear differential equation. However, an analytical solution exists
and is obtained by solving Equation (3.55).

Without loss of generality, assume that free vibrations of the system of Figure 3.15 are ini-
tiated by displacing the mass a distance 6 to the right, from equilibrium, and releasing it from
rest. The spring force draws the mass toward equilibrium; thus the velocity is initially negative.
Equation (3.55) applies over the first half-cycle of motion, until the velocity again becomes zero.

The solution of Equation (3.55) subject to x(0) = 8 and x(0) = 0 with wmg on the
right-hand side is

m m
x() = (5 — M) cosw t + L (3-57)
k " k
Equation (3.57) describes the motion until the velocity changes sign at # = 7/w  when
2um
x(Tr) = -5+ R (3.58)
» k

Equation (3.55) with —umyg on the right-hand side governs the motion until the
velocity next changes sign. The solution of Equation (3.55) using Equation (3.58) and

x wl = ( as initial conditions is
3um m 2
x(t):(a_w>coswt_w T, (3:59)
k " k o, o,
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The velocity again changes sign at # = 27r/w when

2 4
x(w) _ 5 Awmg (3.60)
w k

n

The motion during the first complete cycle is described by Equations (3.57) and
(3.59). The amplitude change between the beginning and the end of the cycle is

4um
x(0) — x<2ﬂ.) — M (3.61)
10} k

n

The motion is cyclic. The analysis of the subsequent and each successive cycle continues in
the same fashion. The initial conditions used to solve for the displacement during a half-
cycle are that the velocity is zero and the displacement is the displacement calculated at the
end of the previous half-cycle.

The period of each cycle is

2
7= (3.62)

w

n

Thus Coulomb damping has no effect on the natural frequency.
Mathematical induction is used to develop the following expressions for the displace-
ment of the mass during each half-cycle:

m m
x() = [5 — (4n — 3)L g} cosw t + ki 4
k " k
1
2n— N == 2<n - >7T (3.63)
®, 2 ®,
m m
x() = [5 — (4n — I)'LL g} cosw t — Lo
k " k
1\ 7 T
2(;1—)5 t=2n— (3.64)
2w, ®,

T\ 4umg
x(2nw>— —< p )n (3-65)

Equation (3.65) shows that the displacement at the end of each cycle is 4umg/k less
than the displacement at the end of the previous cycle. Thus the amplitude of free vibra-
tion decays linearly as shown, when Equations (3.63) and (3.64) are plotted in Figure 3.16.

The amplitudes on successive cycles form an arithmetic sequence. If x is the ampli-
tude at the end of the nth cycle then

 Aumg

n n—1 A (366)

with x; = 8. The solution of this difference equation is Equation (3.65).
The motion continues with this constant decrease in amplitude as long as the restor-
ing force is sufficient to overcome the resisting friction force. However, since the friction
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6 -+ FIGURE 3.16

Free response of a system with
Coulomb damping. The motion
is cyclic with a linear decay of

1 amplitude. The period is the

1 1=0.1 same as the natural period
m =100 kg with motion ceasing with a
37 , =100 rad/s permanent displacement.
T Xp=0.005m

Displacement
(103 m)

causes a decrease in amplitude, the restoring force eventually becomes less than the friction
force. This occurs when

k x(Znﬂ-) = umg (3.67)
®
Motion ceases during the nth cycle, where 7 is the smallest integer such that
kb 1
= _ = .68
" fumg 4 (3-68)

When motion ceases a constant displacement from equilibrium of umg/k is maintained.
The effect of Coulomb damping differs from the effect of viscous damping in these
respects:

1. Viscous damping causes a linear term proportional to the velocity in the governing dif-
ferential equation, while Coulomb damping gives rise to a nonlinear term.

2. The natural frequency of an undamped system is unchanged when Coulomb damp-
ing is added, but is decreased when viscous damping is added.

3.  Motion is not cyclic if the viscous damping coefficient is large enough, whereas the
motion is always cyclic when Coulomb damping is the only source of damping.

4. The amplitude decreases linearly because of Coulomb damping and exponentially

because of viscous damping.
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5.  Coulomb damping leads to a cessation of motion with a resulting permanent displace-
ment from equilibrium, while motion of a system with only viscous damping contin-
ues indefinitely with a decaying amplitude.

Since the motion of all physical systems ceases in the absence of continuing external
excitation, Coulomb damping is always present. Coulomb damping appears in many
forms, such as axle friction in journal bearings and friction due to belts in contact with pul-
leys or flywheels. The response of systems to these and other forms of Coulomb damping
can be obtained in the same manner as the response for dry sliding friction.

The general form of the differential equation governing the free vibrations of a linear
system where Coulomb damping is the only source of damping is

F,
L x<0
Prem=q (569)
X WX = .
' i
- — x>0
m
€q

where F,is the magnitude of the Coulomb damping force. The decrease in amplitude per
cycle ofj motion is

5
AA= (3.70)

m_w?
eq 7

An experiment is run to determine the kinetic coefficient of friction between a block and
a surface. The block is attached to a spring and displaced 150 mm from equilibrium. It is
observed that the period of motion is 0.5 s and that the amplitude decreases by 10 mm on
successive cycles. Determine the coefficient of friction and how many cycles of motion the
block executes before motion ceases.

SOLUTION
The natural frequency is calculated as

_m 2
" T 05s

The decrease in amplitude is expressed as

w

= 12.57 rad/s (@)

4um 4
Ay dwmg  dug b)
k w?

n

which is rearranged to yield

A4 (0.01 m)(12.57 rad/s)*
= 4gw 4(9.81 m/s?) B

2 =
n

0.04 (©)

From Equation (3.68) the motion ceases during the 15th cycle. The mass has a permanent
displacement of 2.5 mm from its original equilibrium position.
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A father builds a swing for his children. The swing consists of a board attached to two ropes,
as shown in Figure 3.17. The swing is mounted on a tree branch, with the board 3.5 m below
the branch. The diameter of the branch is 8.2 cm and the kinetic coefficient of friction
between the ropes and the branch is 0.1. After the swing is installed and his child is seated,
the father pulls the swing back 10° and releases. What is the decrease in angle of each swing
and how many swings will the child receive before Dad needs to give another push?

SOLUTION

Because of the friction between the tree branch and the ropes, the tension on opposite sides
of a rope will be different. These tensions can be related using the principles of belt fric-
tion. When the swing is swinging clockwise,

Y; = YIE’LB (a)

35m

Y

T, T, T, T,
(b)
21,
27, .
ml6?
mlé FIGURE 3.17
mg (a) Tree swing of Example 3.11. (b) The tension
. developed in opposite sides of a rope are
External forces Effective forces unequal due to friction. (c) FBDs of swing at an
(© arbitrary instant.
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where B is the angle of contact between the tree branch and the rope. As the child swings
the angle of contact may vary. However, this complication is too much to handle with a
simplified analysis. A good approximation is to assume 3 is constant and 8 = 7 rad.
When the swing is swinging counterclockwise

7; = 755"3 (b)

Let 6 be the clockwise angular displacement of the swing from equilibrium. Summing

forces in the direction of the tensions gives ZFm = ZFCﬁ

27;+27;—mgc050=m192 (c)

The swing is pulled back only 10°. Thus the usual small-angle approximation is valid, with
cos @ ~ 1 and the nonlinear inertia term ignored in comparison to the tensions and grav-
ity. The belt friction relations and the normal force equation are solved simultaneously to
yield

mg

: .
6=0 L2(1 + erm)

(d)

mget™

2(1 + &™)

mget™
2(1 + e+m)
mg
T - -
2 2(1 + et

6 >0, T =
(e)

Summing moments about the center of the tree branch, using the free-body diagrams of
Figure 3.17(c) and the small-angle assumption yields

(zm) = (2),

d ..
Q1 — 27;)5 — mgld = mi* 0

(f)

Substituting for the tensions into the preceding equation and rearranging leads to

P Sl
.. g 2/2 1 + M7
+20 =
0 / gd 1 — erm . (®)
1 050

The frequency of the swinging is

o, = \/EZ = 1.67 rad/s (h)

which is the same as it would be in the absence of friction.
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The governing differential equation is of the form of Equation (3.69). Thus, from
Equation (3.70), the decrease in amplitude per swing is

2d et — 1 2(0.082 m\ '™ — 1

[ e + 1 35m )T + 1

= 0.0073 rad = 0.42°

Motion ceases when, at the end of a cycle, the moment of the gravity force about the center
of the branch is insufficient to overcome the frictional moment. This occurs when

mgld < |1, — T|d
or
de*™ — 1

0 < ——=0.10°
2[eFm 4+ 1

Thus, if Dad does not give the swing another push after 23 swings, the swing will come to
rest with an angle of response of 0.1°.

]
3.8 HYSTERETIC DAMPING

The stress—strain diagram for a typical linearly elastic material is shown in Figure 3.18.
Ideally, if the material is stressed below its yield point and then unloaded, the stress-strain
curve for the unloading follows the same curve for the loading. However, in a real engi-
neering material, internal planes slide relative to one another and molecular bonds are

broken, causing conversion of strain energy into thermal energy and causing the process to

o, 4+

FIGURE 3.18

+ -0, Stress—strain diagram for a linearly elastic
isotropic material with the same behavior
in compression and tension. Material
behavior is linear for | 0| < O,
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Behavior of a real engineering material as a system
executes one cycle of motion. The area enclosed
by the curve is the dissipated strain energy per unit
volume. This dissipated energy is the basis for hys-
teretic damping.

be irreversible. A more realistic stress-strain curve for the loading-unloading process is
shown in Figure 3.19 when |o| < o .

The curve in Figure 3.19 is a hysteresis loop. The area enclosed by the hysteresis loop from
a force—displacement curve is the total strain energy dissipated during a loading—unloading
cycle. In general, the area under a hysteresis curve is independent of the rate of the loading-
unloading cycle.

In a vibrating mechanical system an elastic member undergoes a cyclic load-displacement
relationship as shown in Figure 3.19. The loading is repeated over each cycle. The existence
of the hysteresis loop leads to energy dissipation from the system during each cycle, which
causes natural damping, called hysteretic damping. It has been shown experimentally that
the energy dissipated per cycle of motion is independent of the frequency and proportional
to the square of the amplitude. An empirical relationship is

AE = mkhX? (3.71)

where Xis the amplitude of motion during the cycle and 4 is a constant, called the hysteretic
damping coefficient.

The hysteretic damping coefficient cannot be simply specified for a given material. It
is dependent upon other considerations such as how the material is prepared and the geom-
etry of the structure under consideration. Existing data cannot be extended to apply to
every situation. Thus it is usually necessary to empirically determine the hysteretic damp-
ing coefficient.

Mathematical modeling of hysteretic damping is developed from a work-energy analy-
sis. Consider a simple mass-spring system with hysteretic damping. Let X, be the ampli-
tude at a time when the velocity is zero and all energy is potential energy stored in the
spring. Hysteretic damping dissipates some of that energy over the next cycle of motion.
Let X, be the displacement of the mass at the next time when the velocity is zero, after the
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system executes one half-cycle of motion. Let X, be the displacement at the subsequent
time when the velocity is zero, one full cycle later. Application of the work-energy princi-
ple over the first half-cycle of motion gives

AE
7;+V=T+V+7 (3.72)

1 2 2

The energy dissipated by hysteretic damping is approximated by Equation (3.71) with Xas
the amplitude at the beginning of the half-cycle.

%kazA%H@—k%wwa (3.73)
This yields

X, = V1 - whX, (3.74)
A work-energy analysis over the second half-cycle leads to

X, = V1 - whx, = - 7hX, (3.75)

Thus the rate of decrease of amplitude on successive cycles is constant, as it is for vis-
cous damping. By analogy a logarithmic decrement is defined for hysteretic damping as

e :76)
= |n—= —In(1 — 7 3'7
%
which for small / is approximated as
8=mh (3.77)
By analogy with viscous damping an equivalent damping ratio for hysteretic damping is
defined as
) h
== = .78
{=5-=5 (3.78)

and an equivalent viscous damping coefficient is defined as

hk
¢, = 2N mk=— (3.79)

eq w
n

The free vibrations response of a system subject to hysteric damping is the same as the
response of the system when subject to viscous damping with an equivalent viscous damp-
ing coefficient given by Equation (3.79). This is true only for small hysteretic damping, as
subsequent plastic behavior leads to a highly nonlinear system. The analogy between vis-
cous damping and hysteretic damping is also only true for linearly elastic materials and for
materials where the energy dissipated per unit cycle is proportional to the square of the
amplitude. In addition, the hysteretic damping coefficient is a function of geometry as well
as the material.

The response of a system subject to hysteretic or viscous damping continues indefi-
nitely with exponentially decaying amplitude. However, hysteretic damping is significantly
different from viscous damping in that the energy dissipated per cycle for hysteretic damp-
ing is independent of frequency, whereas the energy dissipated per cycle increases with fre-
quency for viscous damping. Thus while the mathematical treatments of viscous damping
and hysteretic damping are the same they have significant physical differences.
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The force-displacement curve for a structure of Figure 3.20(a) modeled by the system of
Figure 3.20(b) is shown in Figure 3.20(c). The structure is modeled as a one-degree-of-free-
dom system with an equivalent mass 500 kg located at the position where the measure-
ments are made. Describe the response of this structure when a shock imparts a velocity of
20 m/s to this point on the structure.

SOLUTION

The area under the hysteresis curve is approximated by counting the squares inside the hys-
teresis loop. Each square represents (1 X 104 N)(0.002 m) = 20 N - m of dissipated
energy. There are approximately 38.5 squares inside the hysteresis loop resulting in 770 N + m
dissipated over one cycle of motion with an amplitude of 20 mm.

—x —x
keq =5 x 106 N/m
— meq =500 kg
1
_

Ceq=6100N - s/m

(a) (b)
Force (N) &
Tl
1.5 10°
[
]
T
1x10°
[
T[]
T
5% 10*
h 2011 -10 10 1+ 20 -
] [
[ T
-5x10* ::Displacemem (mm)

HHHA

[TTTTTd

-1x10°

\

(©)
FIGURE 3.20
(a) One-story frame structure modeled as a SDOF system. (b) Hysteretic damping leads to an equivalent
viscous-damping coefficient of 6100 N - s/m. (c) Force-displacement curve over one cycle for the system
of Example 3.12.
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The equivalent stiffness is the slope of the force deflection curve and is determined as
5 X 10° N/m. Application of Equation (3.71) leads to

AE 770N - m
mkX? (5 X 10°N/m)(0.02 m)?

h = =0.123 (a)

The logarithmic decrement, damping ratio, and natural frequency are calculated by
using Equations (3.77) and (3.78)

5 = mh= 0385 (b)

l = b _ o.0613 (<)

2
b X 100N/
w =.]—= 5 X 10/N/m 100 rad/s (d)
» Nm N 500kg

The response of this structure with hysteretic damping is approximately the same as the
response of a simple mass-spring-dashpot system with a damping ratio of 0.0615 and a nat-
ural frequency of 100 rad/s. Then from Equation (3.28) with %, = 20 m/s and x, = 0, the

response is

x5 = 0.20e7°13%5in (99.81) m (e)

3.9 OTHER FORMS OF DAMPING

A mechanical or structural system may be subject to other forms of damping such as aero-
dynamic drag, radiation damping, or anelastic damping. However, these give rise to non-
linear terms in the governing differential equations. Exact solutions do not exist for these
forms of damping. The periodic motion of systems subject to these forms of damping can
be approximated by developing an equivalent viscous damping coefficient. The equivalent
viscous damping coefficient is obtained by equating the energy dissipated over one cycle of
motion, assuming harmonic motion at a specific amplitude and frequency, for the partic-
ular form of damping with the energy dissipated over one cycle of motion because of the
force in a dashpot of the equivalent viscous damping coefficient.

For a harmonic motion of the form x(#) = Xsin ws, the energy dissipated over one
cycle of motion due to a damping force £, is

27w 27w
AE = / Fo % dr = / F X cos wt dr (3.80)
0 0
For viscous damping, Equation (3.80) yields

2m/w 27/w
AE = / cx? dr = / cw’X*cos’wt dt = comX? (3.81)
0 0

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



172 CHAPTER 3

Thus, by analogy, the equivalent viscous damping coefficient for another form of damping is

AE
ch = m (3.82)

Aerodynamic drag is present in all real problems. However, its effect is often ignored.
The determination of the correct form of the drag force is a problem in fluid mechanics.
At high Reynolds numbers, the drag is very nearly proportional to the square of the veloc-
ity and can be written as

E, = C,%|%| (3-83)

where C,, is a coefficient that is a function of body geometry and air properties. For mod-
erate Reynolds numbers, appropriate forms of the drag force have been proposed as

F, = C|%% (3-84)

where 0 < a = 1. In either case, the resulting differential equation is nonlinear.

Some materials (e.g., rubber) are viscoelastic and obey a constitutive equation in
which stress is related to strain and strain rate. It is shown in Chapter 4 that for an
undamped system the forced response is in phase with a harmonic excitation, whereas a
phase lag occurs for a damped system. This phase lag also occurs for many viscoelastic
materials. Indeed, many viscoelastic materials have constitutive equations that are derived
by modeling the material as a spring in parallel with a dashpot. This is called a Kelvin
model. The phase lag results in energy dissipation and the resulting damping is called
anelastic damping.

Damping occurs when energy is dissipated from a vibrating body by any means.
Another example is radiation damping that occurs for a body vibrating on the free surface
between two fluids. The vibrating body causes pressure waves to be radiated outward, caus-
ing energy transfer from the body to the surrounding fluids.

Most physical systems are subject to a combination of forms of damping. Indeed, a simple
mass-spring-dashpot system is subject to viscous damping from the dashpot, Coulomb damp-
ing from the dry sliding friction, hysteretic damping from the spring, and acrodynamic drag,.
The presence of Coulomb damping leads to cessation of free vibrations after a finite time. The
aerodynamic drag is usually neglected in an analysis as its effect is negligible and it leads to a
nonlinear differential equation. The hysteretic damping acts in parallel with the viscous
damping. The equivalent damping coefficient is the sum of the viscous damping coefficient
for the dashpot and the equivalent viscous damping coefficient for the hysteretic damping. For
small amplitudes the effect of viscous damping is much greater than the effect of hysteretic
damping. For large amplitudes the hysteretic damping can be dominant.

A block of mass 1 kg is attached to a spring of stiffness 3 X 10°> N/m. The block is dis-
placed 20 mm from equilibrium and released from rest. The block is in a fluid where the
drag force is given by Equation (3.83) with C, = 0.86 N + s*/m. Approximate the number
of cycles before the amplitude is reduced to 15 mm.
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SOLUTION
The energy lost per cycle of motion due to aerodynamic drag is calculated from
Equation (3.80)

27w
AE = / C, X’ cos’wt| cos wt|dt
0
/2w 8
= 4[ C, X°w’ cos’wr dt = gCDa)zX3 (@)
From Equation (3.82) the equivalent viscous damping coefficient is calculated as

¢, = 0.7300X (b)

€

If the equivalent viscous damping is small, the frequency is approximately equal to the
natural frequency of free undamped vibrations

w = \/? = 547.7rad/s ()
m

The damping ratio on a given cycle is
[ = Cq 0.73(547.7 rad/s) X
2Vkm  2V(1kg)(3 X 10° N/m)

(d)

From Equation (3.41) the logarithmic decrement is
8§ = 2wl = 229X (e)

Since the equivalent viscous damping coefficient, and hence the damping ratio and the
logarithmic decrement, depend on the amplitude, the decrease in amplitude is not constant
on each cycle. Using an amplitude of 20 mm for the first cycle, the amplitude at the begin-
ning of the second cycle is obtained using the logarithmic decrement, which in turn is used
to predict the amplitude at the beginning of the third cycle. Table 3.2 is developed in this
fashion. The amplitude of vibration is reduced to 15 mm in seven cycles.

TABLE 3.2 . K .
TASLE 32 gep——

used to predict decay in
amplitude for Example 3.13

Amplitude at beginning
Cycle of cyde X = X >3

20.0
19.09
18.26
17.50
16.81
16.16
15.56
15.00

O OOV AW N
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.
3.10 BENCHMARK EXAMPLES

3.10.1 MACHINE ON THE FLOOR OF AN INDUSTRIAL PLANT

During operation, the machine is to be subject to an impulse of magnitude 220 N - s. The
effect of the impulse on the machine is to give the machine an initial velocity using the
equivalent mass of the machine. Application of the principle of impulse and linear momen-
tum to the machine leads to

I 220N - s 0.39 m/ (a)
=—=———""=039m

"7 m T 570.69kg ’
The ensuing free vibrations of the machine, accounting for the inertia of the beam, are
modeled by

570.69% + 1.20 X 107x = 0 (b)
with x(0) = 0 and x (0) = 0.39 m/s. Putting the differential equation in standard form
leads to

X+ 210 X 10% =0 (c)

from which the natural frequency is calculated as

w,= V210 X 10* = 144.9 rad/s (d)

The system response due to the initial conditions is

x(0) 039 m/s
s @,p= 144.9 rad/s

sin (144.99) = 2.69 X 10?sin (144.99) m (e)

Equation (e) predicts that the motion will continue indefinitely without amplitude
decay. This is false, but it does predict closely the frequency of vibrations and their maxi-
mum amplitude. To explore the possible effects of energy dissipation through hysteretic
damping, transverse vibrations of the floor are initiated and the history of the response is
recorded using an accelerometer placed at the location where the machine is to be attached.
The amplitude of vibration decays to half of its initial value in 10 cycles. The logarithmic
decrement is calculated as

1 2
5 = wln(1> = 0.0693 Q)

from which a hysteretic damping coefficient is determined as

5
h= 3= 0.0347 (8)

The response thus is modeled with hysteretic damping as a system with an equivalent viscous-
damping ratio

)
£ == 00110 (h)
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The response of the system with hysteretic damping is

__ O -
O ol =8

- 0.39 m/s ¢~ 0000419 6in (141.4\/1 — (0.0110)%)
(144.9 rad/s)V1 — (0.0110)2 ' '

= 2.69 X 10737 1"sin (144.99) m ()

Equation (i) is illustrated in Figure 3.21.

3.10.2 SIMPLIFIED SUSPENSION SYSTEM

The model for free vibrations of the vehicle suspension system with an empty vehicle is
300 + 1200% + 12000x = 0 (a)
DPutting the differential equation in standard form, it becomes
X+ 4dx+ 40x=0 (b)

The vehicle has a natural frequency of

12000 N/m 1
A / = [40— = 6.32
\/ 300 kg \/ 052 6.32 rad/s (c)

175

FIGURE 3.21

Plot of the free response of a
machine attached to a fixed-
free beam when hysteretic
damping is included.
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and a damping ratio of
B c B 1200 N * s/m
2V mk  2V/(300 kg)(12000 N/m)

s = 0316 (d)

The vehicle encounters a sudden change in road contour of a drop of distance 4. The
system is modeled with the equilibrium position taken after the drop, which implies that
the initial conditions are x(0) = —4 and %(0) = 0. The solution of an underdamped
system subject to these initial conditions is

¢ : -
(@) = b1+ <> etossin(w, V1= £t + ¢ (<)
Vi-g d

where

é » A e (V11— (0.316)? 439 ®
= t _— = Tt = .

a yy an ~0.316

Note that the numerator and the denominator in the argument of the inverse tangent are

both negative. The negative sign does not cancel; instead, a four-quadrant evaluation of the

inverse tangent is used. Substituting numbers in x(z) leads to

D) = 1.054he 2 in (6.00¢ + 4.39) (8

One concept associated with the free response of a vehicle when it encounters a sudden
contour change is overshoot, where the absolute value of maximum displacement at the
end of the first half-cycle is

T
Y = x(;) = be_{’”—/v 1-¢7 (h)
Expressed as a percentage, the overshoot is
n = 100% = 100¢¢m/V1=¢ ()

The mass of the vehicle varies with passengers and cargo from an empty value of 300 kg to
a fully loaded value of 600 kg. The damping ratio is inversely proportional to the square
root of the mass, and hence, the overshoot increases with increasing mass. The variation of
overshoot with mass is shown in Figure 3.22.

Another important concept is the 2 percent settling time Lyops which is how long it takes
for the system response to be permanently reduced to be within 2 percent of the initial dis-
placement of equilibrium. It is calculated from the last time that x() = |0.024|, which is
calculated in term of the mass of the vehicle using Equation (e). The value of
sin (0, V'1 — {?t + ¢ ) ranges between —1 and 1 and does not have much effect on the
solution for the 2 percent settling time. Ignoring this term and eliminating the absolute
value (since the remainder of the terms are positive) leads to

0.02/) = hy|1 + ———— ¢ ¢t (])
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50 FIGURE 3.22
Percent overshoot as a func-
tion of mass of the vehicle for
the simplified model of the
vehicle suspension system.
45 +
=
40
35 T T T T T
300 350 400 450 500 550 600

m (kg)

which is solved, leading to

1 1 {
Ly, = §(x)|:3912 + 21n<1 + m)] (k)

Equation (j) is plotted in Figure 3.23 from an empty vehicle to a fully loaded vehicle.

11000

10000

9000 ~

8000

7000

tyq, (8)

6000

5000

4000 FIGURE 3.23
Two percent settling time as

a function of the mass of the
vehicle for the simplified
model of the vehicle suspen-
m (kg) sion system.

3000 T T T T T
300 350 400 450 500 550 600
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3.1 FURTHER EXAMPLES

A particle of mass of 50 g is to be attached along the length of a thin bar with a length
of 25 cm, mass of 200 g, and centroidal moment of inertia of 9.0 X 107% kg - m?. The
assembly is suspended from a pin support attached at one end of the bar. The center of grav-
ity of the bar is 15 cm from the pin support. The assembly is to be tuned such that it has a
period of 1.25 s. Determine the length along the bar where the particle is to be placed.

SOLUTION

The assembly shown in Figure 3.24(a) is modeled as a compound pendulum with an
attached particle. The generalized coordinate used in the modeling is 6, which is the coun-
terclockwise angular displacement of the pendulum from equilibrium. It is assumed that 6
is small, so that the small angle assumption applies. Free-body diagrams drawn for an arbi-
trary value of 6 are shown in Figure 3.24(b). Using these free-body diagrams to sum
moments about an axis through the pin support, (X M) = (X M,) g yields

—mgal — mghd = 16 + (mal)a+ (mb6)b @)

where 4 is the distance from the pin support to the mass center of the ban.

Ly

: ©

b
(a)
R,
RX

mg
FIGURE 3.24
Pendulum composed of a mass which can g
slide along the rod. (b) FBDs at an arbitrary .
instant where 6 is the chosen generalized External forces Effective forces
coordinate. (b)
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Equation (a) is rearranged to
I+ ma* + mzbz)é + (ma + m,b)gh = 0 (b)
Equation (b) is put into standard form, and the natural frequency identified as

_\/ (ma + m,b)g

I+ ma* + m,b*

()

n

The period of free oscillation is

T=2W=27T\/[+ mia® + m,b* )
) (ma + m,b)g

n

Requiring the period to be 1.25 s and substituting in the given values leads to

a 9 X 10 °kg-m? + (0.2 kg)(0.15 m)* + (0.05 kg) 52
L35 = 27T\/ [(0.2 kg)(0.15 m) + (0.05 kg)5](9.81 m/s?) ©)

Dividing by 27, squaring, multiplying by the denominator, and rearranging leads to
b2 — 0.38826 + 0.03709 = 0 f)

The solution of the quadratic equation is & = 0.169, 0.219 m. The mass can be placed at
either location.

The parameters in the system of Figure 3.25 have the following values: 7, = 0.002 kg * m?,
r =100 mm, m = 1.2 kg, and # = 3 X 10* N/m.

(a) Let x be the displacement of the mass center of the cart as the generalized coordinate.
Derive the differential equation for the system using the equivalent systems method.
Assume there is no friction between the cart and the surface.

(b) For what value of ¢ is the system critically damped? Call this value ¢

(c) Suppose the cart is displaced 3 ¢cm from equilibrium and released. Determine x(z) if
(i) ¢ = 0.25¢, (ii) ¢ = ¢, and (iii) ¢ = 1.25¢,.

(d) How long will it take for the response to be permanently within 1 mm of the equilib-
rium position if (i) ¢ = 0.25¢, (ii) ¢ = ¢, and (iii) ¢ = 1.25¢?2

|—>x
k m=12kg
g_/\/\_ [, Ip=0002kg- m’
m r=10cm
k=3x10*N/m
k c

FIGURE 3.25
System of Example 3.15.
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SOLUTION

L . . . 1. 1 .
(a) The kinetic energy of the system at an arbitrary instant is 7= Jmi? + 5/,0* where w is

the angular velocity of the disk. Assuming the cables are inextensible, the velocity of the point
on the disk where the cable is being taken up or let out is the same as the velocity of the cable,
which also is the same as the velocity of the cart. Thus, x = 276. The kinetic energy becomes

1 1 +\2 1 [D> 1 ( 0.002 kg + m2>
T=-mi2+~L[~) = m+-2)2==(12ks + ——2— )32
2T D<2r> 2(m 42)" 2 87 4001 m? )7

= %(6.2 kg)i? (a)

Thus, the equivalent mass is m., = 6.2 kg. The potential energy at an arbitrary instant is

1 1 1 1 2 1 1
V=—kx?>+ —k(r0)? = —kx* + k<x> = (Sk)xz = [5<3 X 104N/m>]x2
2 2 2 2 \2 2\ 4 204
1
= 5(3.75 X 10*N/m)x2 (b)

which leads to £, = 3.75 X 10 N/m. The work done by the viscous damper between
¢ = 0 and an arbitrary instant is

U_, = —/cjd(;> = —/;Mx (©)

Hence, the equivalent viscous-damping coefficient is ¢, = ¢/4. The differential equation
governing the system is

.1
6.2x + Zw'c +3.75 X 10%x =0 (d)

(b) The natural frequency of the system is

[3.75 X 10% N/
w, = 37562kgm = 77.8 rad/s (e)

The form of the damping ratio is

4 4

8(6.2 kg)(77.8 rad/s) 3860 N - s/m

(= (f)

For critical damping, the damping ratio is 1, which leads to ¢, = 3860 N - s/m.
(c) The initial conditions are x(0) = 0.03 m and &(0) = 0 m/s. (i) If ¢, = 0.25, the system

is underdamped with { = 0.25. The solution for an underdamped system is given by
Equation 3.28 and is applied to this problem as

() = \/(0.03 m)? + {O m/s + (0.25)(77.8 rad/s)(0.03 m) |?

(77.8 rad/s) V' 1 — (0.25)?
sin {(77.8 rad/s)V'1 — (0.25)%¢
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N _{ (0.03 m)(77.8 rad/s) V' 1 — (0.25)2}
B 0 m/s + (0.25)(77.8 rad/s)(0.03 m)

= 0.0310sin(75.3¢# + 1.32) m (8)

(ii) For ¢ = ¢, the system is critically damped, and { = 1. The free response of a critically
damped system is given by Equation 3.48, which is applied to yield

x() = 778 rad/s)t{0.03 m + [0 m/s + (77.8 rad/s)(0.03 m)t]}
= ¢ 7781:d91(0.03 + 2.33) m "

(i) For ¢ = 1.25 ¢, the system is overdamped with { = 1.25. The free response of an over-
damped system is given by Equation 3.53, which is applied to yield

o~ (1.25)(77.8 rad/s)s J{ 0 m/s

N + (0.03 m)(1.25
0 2125 — 1\L77.8 radss (0.03 m)(
+ \/(125)72—1)] 778 1adl)\V/ (1257 -1¢
+ |:0rn/s + (0.03 m)(—1.25 + \/(125)72_1) o778 md/s)\/mt}
77.8 rad/s
= (0.04¢7389 — 0.01¢7 1556 m 5
(d)

(i) For an underdamped system, the logarithmic decrement can be used to determine how
long it will take for the system to be permanently within 1 mm of equilibrium. To this end,

2wy 2m(0.25)
Vi-¢2  Vi-(025?
From the requirements, the number of cycles is determined by

0.03 m ) 3.410 3.410
= £ n=—
0.001 m n 1.622

5= = 1.622 0

1
1.622 = nm( =2.10 (k)

The system will return to within 1 mm of equilibrium within 3 cycles. Thus,

2T 27

t=3T7T,=3 =3 = 0.250s ()
¢ 0 V1 - (77.8 rad/s) V' (1.25)% — 1
(i) For { = 1, an iteration is performed on
0.001 m = ¢~ 078rd5y0,03 + 2.33) m (m)

leading to # = 0.067 s.

(iii) For { = 1.25, the solution is composed of two exponential terms with negative
exponents. The solution simply decays without crossing the axis. When the response is
within 0.001 m from equilibrium, the term with the larger exponent (smaller absolute
value) should be much greater than the term with the smaller exponent. Thus, a good
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approximation for the time to be permanently within 1 mm of equilibrium is approxi-
mated by

0.001 m = 0.04¢ %% m (n)

which leads to # = 0.0948 s. The neglected term is .01¢1°>00:048) = 3,92 X 10, which
is much less than 0.001, and hence, r = 0.0948 is a good approximation.

A torsional pendulum shown in Figure 3.26(a) is composed of a thin disk with a moment
of inertia 7 which is pinned at its mass center and allowed to rotate about the pin support.
The pendulum is attached to a torsional spring of stiffness £, = 1.8 N + m/rad. As the disk
rotates, it moves through an electromagnet. A body moving through a magnetic field gen-
erates a force whose magnitude is qvB if the magnetic field is perpendicular to the velocity
where ¢ is the charge on the body, B is the magnitude of the magnetic field, and v is the
velocity of the body. Since the force is proportional to the velocity, the pendulum behaves
as if has viscous damping. The net result of the pendulum passing through the magnetic
field is to generate a moment resisting the motion about the center of the disk. The mag-
netic field acts as a torsional viscous damper.

(a) When the magnetic field is off, the torsional pendulum is rotated 40° from its equilib-
rium position and released. It takes 2 s to complete one cycle of motion. Determine the
moment of inertia of the pendulum.

(b) When the magnetic field is turned on, the amplitude of successive cycles of motion is
observed as 30°, 25°, 20.8°, etc. What is the damping ratio of the system?

\2

k,=1.8 N - m/rad

Electromagnet

(a)

16
FIGURE 3.26
A torsional pendulum consists of
a thin disk pinned at its center.
The disk is attached to a tor-

sional spring and rotates through

a magnetic field which serves as x
a torsional damper. (b) FBDs of 6

Cy

pendulum at an arbitrary instant, ]
External forces Effective forces

assuming viscous damping and
ignoring Coulomb damping. (b)
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(c) When the magnetic field is turned on and the pendulum is given an initial amplitude
of 30°, describe the resulting motion of the system.

(d) If the electromagnet is turned off and the amplitude of free, oscillations observed on
successive cycles is 30°, 28°, and 26°. What frictional moment is generated at the pin

support?
SOLUTION
(a) Summing moments on a FBD of the pendulum drawn at an arbitrary instant, Figure 3.26(b)
yields
16+ cO+ k6 =0 (a)
The differential equation is divided by 7 arriving at the standard form of
6.k
0+—-0+—-60=0 (b)
7 7
from which the natural frequency is obtained as
NE ©
w, =47 C

The period of free oscillations 7" is observed as 2 s. The pendulum’s natural frequency is

2 2
=—=—=314 d
o, T 3, 3.14 rad/s (d)
Equating Equations (c) and (d) leads to
k 1.8 N * m/rad
L =314=]=—"———""—=10.183ke -+ m?
I 3 (3.14 rad/s)? 0.185 kg * m (e)

(b) The amplitudes on successive cycles are in a constant ratio. The logarithmic decrement is

00
6= In 2 - = 0.690 (f)
from which the damping ratio is calculated from
0 0.690
(= = = 0.011 ()

\V 4t + 82 \V4m% + (0.690)2

() The damped natural frequency is

w,= (3.14rad/s) V1 — (0.011)%> = 2.85 rad/s

The motion of an underdamped system with #(0) = 30° and 9(0) = Orad/s is

0.011 2
0(y) = (300)\/1 + <> o (0.01)(3.14)
V1 - (00112
Vi- ey

sin {3.141‘ + tan~! <
0.11

= 30.16°¢ %7 sin (3.14¢ + 89.4°) (h)
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(d) The system is undergoing Coulomb damping. The differential equation governing the
motion when system is under the effect of Coulomb damping is

.. -M, 6>0
10 + ko = I ()
M, 6 <0

where M, is the resisting moment due to the friction at the pin support. The system loses
2° of amplitude every cycle of motion, which is given by

4Mf

Thus,

Iw?
n

4M
f oo f2mrad)
@ )< o ) — 0.0349 rad (k)

Equation (k) is solved to yield

0.0349(0.183 kg * m?)(3.14 rad/s)?
Mf= y

=0.0157N * m 0

A MEMS system consists of a mass of 50 ug hanging from a silicon (£ = 73 X 10° N/m?)
cable with a diameter 0.2 um and a length of 120 um. The cable is suspended from a
simply supported, circular silicon beam with a diameter of 1.6 um and a length of 50 wm,
as shown in Figure 3.27. The mass vibrates in a silicone oil such that its damping coeffi-
cient is 1.2 X 10° N - s/m. The mass is given as an initial displacement of 2 um and
released. Determine the response of the system.

SOLUTION
The stiffness of the beam is

L _ 48ET_ 48(73 X 10°N/m?)(0.8 um)* 77/4

= 9.018 N/m a
b ? (50 wm)? @
I 50 um |
120 um
FIGURE 3.27
System of Example 3.17 is a MEMS system. The damping is provided
by a surrounding fluid.
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The stiffness of the cable is
_AE _ (0.1um)?(73 X 10° N/m?)
¢ L 120 pwm

k = 19.11 N/m (b)

The springs are in series with an equivalent stiffness as

1
keq = I A I = 6.13 N/m (<)
9.08 N/m 19.11 N/m

The undamped natural frequency is

. 614N/
o = R [OLANIM 0% s (d)

The damping ratio is
=t 1.2 X 10°N - s/m
2mw,  2(50 pug)(1.10 X 10%rad/s)
The damped natural frequency is
w, = (1.10 X 10%rad/s) V1 — (0.0011)> = 1.10 X 10%rad/s (f

The response of an underdamped system with an initial displacement is

= 0.0011 (e)

2
x(2) = (2/.Lm)\/l + {w £~ (0.0011)(1.10X10° rad/s)#

V1 — (0.0011)%

sin (1.10 X 10% + 1.57)

= 2¢7%in (1.10 X 10% + 1.57)um (®)

- ]
3.12 CHAPTER SUMMARY

3.12.1 IMPORTANT CONCEPTS i

The following refer to free vibrations of a linear SDOF system.

¢ The natural frequency of a one degree-of-freedom system is the frequency at which
undamped free vibrations occur.

+ The expression for the natural frequency is determined from the differential equation of
motion. It is a function of the stiffness and inertia properties of the system.

¢ The damping ratio is a measure of the magnitude of the damping force on the system.
If the damping ratio is between zero and one, the system is underdamped. If the damp-
ing ratio is exactly equal to one, the system is critically damped. If the damping ratio is
greater than one, the system is overdamped.

 The free undamped vibrations of a one degree-of-freedom system are cyclic and periodic.
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e A system with undamped free vibrations undergoes simple harmonic motion. For a
linear system, the period of motion is independent of the initial conditions. The fre-
quency of the motion is the natural frequency of the system.

* An underdamped system undergoes cyclic motion that is not periodic.
¢ The amplitude of an underdamped system is exponentially decaying.

* The mechanical energy present in an underdamped system at the end of a cycle is a con-
stant fraction of the mechanical energy at the beginning of the cycle. The fraction is
dependent upon the damping ratio.

¢ The logarithmic decrement, which is a measure of the natural logarithm of the ratio of
amplitudes on successive cycles, can be used to determine the damping ratio.

* When a system is critically damped, the damping force is just sufficient to dissipate all
of the initial energy within one cycle of motion.

* The response of a critically damped system is exponentially decaying. The response
overshoots the equilibrium position if the initial conditions are of opposite signs and the
initial kinetic energy is larger than the initial potential energy.

¢+ The response of an overdamped system decays exponentially.

*  Given the same initial conditions, a critically damped system returns to within a frac-
tion of equilibrium quicker than an overdamped system.

+ Coulomb damping results from two surfaces moving relative to one another.

A system subject to Coulomb damping has the same natural frequency as an undamped
system.

+ Coulomb damped systems have a constant decrease in amplitude per cycle of motion.

* Motion eventually ceases for a system with Coulomb damping with a permanent dis-
placement from equilibrium.

+ Hysteretic damping is the loss of energy experienced by engineering materials due to
bonds breaking between atoms and imperfections in the material.

* The energy loss per cycle of motion for a system with hysteretic damping is proportional
to the square of the amplitude at the beginning of the cycle and is independent of the
frequency of motion.

 The ratio of amplitudes on successive cycles is constant for hysteretic damping, leading
to an equivalent viscous-damping model.

* An equivalent viscous-damping coefficient can be calculated for any form of damping
by equating the energy dissipated by viscous damping over one cycle of motion to the
energy dissipated by the actual damping over one cycle of motion, assuming the motion
is harmonic.

3.12.2 IMPORTANT EQUATIONS

Natural frequency of SDOF system

(3-5)
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Damping ratio of SDOF system

C
{=——7~1— (3-6)
2V keqmeq

Standard form of differential equation for free vibrations of a linear SDOF system with
generalized coordinate x

¥+ 2w x+ o?x =0 3.7)
Roots of characteristic equation

a=ow(-{* V-1 (3-13)

Free response of undamped system

x() = Asin (ot + }) (319)
s N2
A= |x;+ <ﬁ> (3.22)
wn
wnxO
¢ = tan!| — (3.23)
*o
Free response of underdamped system
x() = Ae ““tsin (w,t + @) (3-29)
. 3
A= \/ X2+ (’%—M) (3-30)
Wy
® ,x
— -1 470
¢, = tan (550 n {wnx()) (3:31)

Damped natural frequency

w,=o V1 - (332)

Damped period
2

I=— (3-33)
@y

Logarithmic decrement

5=1 < x(2) ) _ 2n{
= In T 7;) = ,71 — é‘z (3-40)

Logarithmic decrement over 7 cycles

5="1ln (L) (3-43)

n x(t + nT)

Response of critically damped system

x(0) = e [x, + (%, + © x,)1] (3-48)
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Response of overdamped system

—{w t

{{—+x§+\/7)] Vet

[ 2 nee s VD e 553)

Differential equation for mass sliding on a surface with friction

.. _Jumg x>0
mx + kx = { pmg  #>0 (3.55)
Motion ceases due to Coulomb damping on the nth cycle
kb 1
- _1 68
dumg 4 (3.68)
Change in amplitude per cycle of motion for system with Coulomb damping
4F,
AA = 5 (3.70)
e,
Energy loss per cycle due to hysteretic damping
AE = mkhX? 3.71)
Equivalent viscous damping ratio for hysteretic damping
h
(=3 (3.78)
Equivalent viscous damping coefficient for any form of damping
AE
= — .82
‘a0 rox? (3-82)

S
PROBLEMS

SHORT ANSWER PROBLEMS

For Problems 3.1 through 3.15, indicate whether the statement presented is true or false.
If true, state why. If false, rewrite the statement to make it true.

3.1
3.2

3.3

| 3.4
| 3.5
3.6
3.7

The period of free vibration of a linear system is independent of initial conditions.
The natural frequency determined directly from the differential equation of
motion has units of Hertz.

A system with a natural frequency of 10 rad/s has a shorter period than a system
of natural frequency 100 rad/s.

The free vibrations of an overdamped SDOF system are cyclic.

An undamped SDOF system has free vibrations which are periodic.

A system with a damping ratio of 1.2 is overdamped.

The energy lost per cycle of motion for hysteretic damping is independent of
the amplitude of motion but depends upon the square of the frequency.
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3.8

3.9

3.10

3.11

3.12

3.13

3.14
3.15

Free Vibrations of SDOF Systems

The energy lost per cycle of motion for underdamped free vibrations is a
constant fraction of the energy present at the beginning of the cycle.

Motion eventually ceases due to viscous damping for a system with
underdamped free vibrations.

A system that has viscous damping with a damping coefficient such that it is
overdamped is governed by two differential equations: one for positive velocity
and another for negative velocity.

There is a permanent displacement from equilibrium when motion ceases for a
system with Coulomb damping.

The period, measured in s, is the reciprocal of the natural frequency, measured
in rad/s.

The differential equation governing the free vibrations of a SDOF system with
viscous damping as the only form of friction is a second-order homogeneous
differential equation.

The damping ratio for a SDOF system with viscous damping is always positive.
The amplitude of an undamped SDOF system is time dependent.

Problems 3.16 through 3.35 require a short answer.

3.16

Consider the differential equation

¥+ 2ox+ 0x=0

Define in words and in terms of system parameters 7, ¢, and £ for (a) @, and (b) {.

3.17

3.18

3.19

3.20

3.21

3.22

3.23
3.24
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A critically damped system has a natural frequency of 10 rad/s. Which of the
following sets of initial conditions leads to the system overshooting the
equilibrium position?

(@ x, = 1 mm,%; = 0 m/s (b) x, = 0 mm,x;, = 1 m/s
() xy = 1 mm,x, = 1 m/s (d) x, = 1 mm,x;, = —1m/s
(e) x, = mm,x, = —0.2 m/s

Systems with a mass of 1 kg and stiffness of 100 N/m are given an initial
displacement of 1 mm and released form rest. Match the plot of system
displacement, shown in Figure SP3.18 on the next page, with the system that is
(a) undamped, (b) underdamped, (c) critically damped, and (d) overdamped.
List four differences between the free vibrations of an underdamped system and
a system with Coulomb damping.
An underdamped system is given an initial displacement and released from rest.
The amplitudes of motion on successive cyclers form a (an) series.
A system with Coulomb damping is given an initial displacement and released
from rest. The amplitudes of motion on successive cycles form a (an)

series.
Identify the following equation and every parameter

x(t) = Asin(w t + )

Explain the concept of hysteresis? What is the area under a hysteresis cycle?
Why can’t the concept of logarithmic decrement be used to measure viscous
damping ratios greater than or equal to one.
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FIGURE SP3.18
3 x1073

0.8

0.7 1

0.6

0.4 1

0.3 4

0.2 1

0.1 4

x1073

0.8 1

0.6

0.4

0.2

—0.2 1

~0.4

—0.6

—0.8

(b)

3.25  When given the same initial conditions a system that is critically damped
returns to equilibrium faster than the same system that is overdamped. Why?

3.26 Two systems have the same stiffness and viscous damping coefficient, but one
has an equivalent mass of 2 kg, the other has an equivalent mass of 3 kg. Which
system has a higher damping ratio. Why?
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%103 FIGURE SP3.18
1 (Continued)
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(d)

3.27 A system with viscous damping has a (longer or shorter) period of free vibration
than the corresponding undamped system. Why?

3.28  What are the two initial conditions which must be formulated for a SDOF
system?

3.29  What are the initial conditions for a mass-spring-viscous damper system that is
released from rest with an initial displacement 8.
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3.30  What are the initial conditions for a mass-spring-viscous damper system subject
to an impulse of magnitude / when in equilibrium?

3.31 What is meant by the term total energy?

3.32 Describe the process by which aerodynamic drag is modeled by viscous
damping with an equivalent damping coefficient.

3.33 A pendulum consists of a particle of mass 72 along a massless rod that is pinned
at the upper end of the rod. To lengthen the period of the pendulum should the
mass be moved closer to the pin support of farther away?

3.34 A mass m is attached to a spring of stiffness £, given an initial displacement and
released to slide on a surface. The number of cycles executed is recorded. The same
mass 72 is attached to a spring of stiffness £, > %,. Do you predict that the number
of cycles executed by the mass will increase, remain the same, or decrease? Why?

3.35 A mass m is attached to a spring of stiffness #, and viscous damper of damping
coefficient ¢, in parallel. The mass is given an initial displacement and released.
The natural frequency of vibration is observed. The same mass is attached to
another spring of stiffness £, > 4, and viscous damper of damping coefficient
¢, > ¢, in parallel. When given the same initial displacement, the motion is still
cyclic but with a smaller frequency. Explain.

Short calculations are required for Problems 3.36 through 3.48.

3.36 The free vibrations of a system are governed by the differential equation
2x + 40x + 1800x = 0
with initial conditions x(0) = 0.001 m and x(0) = 3 m/s. Calculate or specify the following.

(a) The natural frequency,

(b) The damping ratio, {

(c) Whether the system is undamped, underdamped, critically damped, or
overdamped

(d) The undamped period, T

(e) The frequency in Hz, f

(f) The damped natural frequency (if appropriate),

(g) The logarithmic decrement (if appropriate), 6

(h) The amplitude, A4

(i) The phase between the response and a pure sinusoid (if appropriate), ¢

(j) The free response of the system

3.37  Repeat Short Problem 3.36 for the differential equation
2x + 600x + 9800x = 0
subject to x(0) = 0.001 m and %(0) = 3 m/s.
3.38  The free vibrations of a system are governed by

3 x<0

235+1800x={ .
-3 x>0

with x(0) = 0.02 m and x(0) = 0. Calculate or specify the following.
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(a) The period of motion

(b) The change in amplitude per cycle of motion

(c) The permanent displacement when motion ceases
(d) The number of cycles before motion ceases

3.39-43 What is the natural frequency of the system shown when a SDOF model is
used?

) f-x ) > E I m
W g c
2 |
T ’ L Y x
|—>x
0
> EA 7 1.G
e m g
7 J
I L I L

0~

b oer e

3.44 A mass of 12 kg is attached to two springs each of stiffness 4000 N/m and
mounted in parallel. What is the natural frequency of the system?

3.45 A mass of 30 g is attached to a spring of stiffness 150 N/m in parallel with a
viscous damper. What is the damping coefficient such that the system is
critically damped?

3.46  When an engine with a mass of 400 kg is mounted on an elastic foundation,
the foundation deflects 5 mm. What is the natural frequency of the system?

3.47 A2 kg mass is connected to a spring with a stiffness of 1000 N/m. When given
an initial displacement of 25 mm, the area under the hysteresis curve of the
spring is measured as 0.06 N + m. What is the equivalent viscous damping ratio
of the motion?

3.48  What is the response of a system with a equivalent mass of 0.5 kg and a natural
frequency of 100 rad/s that has a hysteretic damping coefficient of 0.06 to an
initial velocity of 2 m/s?

3.49  Match the quantity with the appropriate units (units may used more than once,
some units may not be used).

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



194 CHAPTER 3

(a) The natural frequency, @ (i) N+ m
(b) The damping ratio, { (ii) rad
(c) Damped natural frequency, o, (iii) None
(d) Logarithmic decrement, & (iv) rad/s
(e) Phase angle, ¢ (v) Hz
(f) Change in amplitude per cycle, A4 (vi) m

(g) Energy loss under a hysteresis loop, AE (vii) N -5
(h) Hysteretic damping coefficient, / ] (viii) m/s

(i) Initial angular velocity of torsional system, 6(0) (ix) N/s

CHAPTER PROBLEMS

3.1 The mass of a pendulum bob of a cuckoo clock is 30 g. How far from the pin
support should the bob be placed such that its period is 1.0 s?

3.2 A ceiling fan assembly of five blades is driven by a motor. The assembly is
attached to the ceiling by a thin shaft fixed at the ceiling. What is the natural
frequency of torsional oscillations of the fan of Figure P3.2.

11111111
Shaft:
«— G=80x10°N/m?
L=025m k=50 cm |
r=6 mm
Motor: T= 10 kg - m? 25kg |150 cm

~—— Each blade:

I=11kg - m?
m=04kg
7=04m

3.3 The cylindrical container of Figure P3.3 has a mass of 25 kg and floats stably
on the surface of an unknown fluid. When disturbed, the period of free
oscillations is measured as 0.2 s. What is the specific gravity of the liquid?

3.4 When the 5.1 kg connecting rod of Figure P3.4 is placed in the position
shown, the spring deflects 0.5 mm. When the end of the rod is displaced and

I 20 cm |
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Free Vibrations of SDOF Systems

released, the resulting period of oscillation is observed as 0.15 s. Determine the
location of the center of mass of the connecting rod and the centroidal mass
moment of inertia of the rod.

When a 9000 N vehicle is empty, the static deflection of its suspension system
is measured as 2 cm. What is the natural frequency of the vehicle when it is
carrying 3100 N of passengers and cargo?

A 400 kg machine is placed at the midspan of a 3.2-m simply supported steel
(£ = 200 X 10° N/m?) beam. The machine is observed to vibrate with a
natural frequency of 9.3 Hz. What is the moment of inertia of the beam’s cross
section about its neutral axis?

A one degree-of-freedom model of a 9-m steel flagpole (P = 7400 kg/m?,

E =200 X 10° N/m?, G = 80 X 10? N/m?) is that of a beam fixed at one end
and free at one end. The flagpole has an inner diameter of 4 cm and an outer
diameter of 5 cm.

(a) Approximate the natural frequency of transverse vibration.
(b) Approximate the natural frequency of torsional oscillation.

A 250 kg compressor is to be placed at the end of a 2.5-m fixed-free steel

(E =200 X 10° N/m?) beam. Specify the allowable moment of inertia of the
beam’s cross section about its neutral axis such that the natural frequency of the
machine is outside the range of 100 to 130 Hz.

A 50 kg pump is to be placed at the midspan of a 2.8-m simply supported steel
(E =200 X 10° N/m?) beam. The beam is of rectangular cross section of width
25 c¢m. What are the allowable values of the cross-sectional height such that the
natural frequency is outside the range of 50 to 75 Hz?

A diving board is modeled as a simply supported beam with an overhang. What
is the natural frequency of a 64-kg diver at the end of the diving board of
Figure P3.10

A diver is able to slightly adjust the location of the intermediate support on the
diving board in Figure P3.10. What is the range of natural frequencies a 64-kg
diver can attain if the distance between the supports can be adjusted between
1.2 mand 1.95 m?

A 60 kg drum of waste material is being hoisted by an overhead crane and
winch system as illustrated in Figure P3.12. The system is modeled as a simply
supported beam to which the cable is attached. The drum of waste material is

attached to the end of the cable. When the length of the cable is 6 m, the

195
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=0

Beam: E = 200 x 10° N/m?
1=26x10%m*

Cable: E = 200 x 10° N/m? Waste
r=8cm

natural period of the system is measured as 0.3 s. What is the mass of the waste
material?

3.13 A 200-kg package is being hoisted by a 120-mm-diameter steel cable
(E =200 X 10° N/m?) at a constant velocity . What is the largest value of v
such that the cable’s elastic strength of 560 X 10° N/m? is not exceeded if the
hoisting mechanism suddenly fails when the cable has a length of 10 m.

3.14  Determine the natural frequency of the system of Figure P2.43.

3.15 Determine the natural frequency and damping ratio of the system of Figure P2.45.

3.16  Determine the natural frequency and damping ratio for the system of
Figure P2.47.
3.17  Determine the natural frequency and damping ratio for the system of

Figure P2.49.
3.18 Determine the natural frequency and damping ratio for the system of Figure P2.53.
3.19-23 The inertia of the elastic elements is negligible. What is the natural frequency of
the system assuming a SDOF model is used? See Figures P3.19 through P3.23.

I 0.8 m | e [ — é
150kg Z
» e 165 kg Z
j \ \ E
J e
g / Ix E =210 x 10° N/m? E =180 x 10° N/m?
A=2.1x10"%m? A=2.1x10"%m?

E =210 x 10° N/m?

O N L=0.65m L=035m
I=1.6x10%m

I 0.6 m } 0.4 m—>

65 kg

Fr=

E =180 x 10° N/m?
I=46x10%*m*
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fe—— 18 m—>>5x 10* N/m

!
2

E =200 x 10° N/m? 4 0
=423 x 100 m* Bx10°Nm 60 cm {40 cm
1
> |
E
g
200 kg e G =80x 10°N/m?| | 8.3 kg - m?
I ~ G=60x10°N/m>  ,=6mm
X r=8 mm
FIGURE P3.22 FIGURE P3.23

3.24  The center of the disk of Figure P3.24 is displaced a distance 6 from its

equilibrium position and released. Determine x(#) if the disk rolls without slip.

|—> X
4 k r#\  Thin disk
3 /\/\/\’ of mass m,
no slip

FIGURE P3.24

3.25 The coefficient of friction between the disk and the surface in Figure P3.24 is .
What is the largest initial velocity of the mass center that can be imparted such
that the disk rolls without slip for its entire motion?

3.26-3.31 For the systems shown in Figures P3.26 through P3.31.

0.3 kg - m?
i
0(0)=0
6(0) = 2.5 rad/s
—ex(1)
4 x 10* N/m , 40 kg
P 3x10°N/m ¢
e /\/r\/\ 125kg Z |
2 & - 3.2 x 10* N/m 150 N - s/m
750N -s/m /777777777777 x(0)=3cm
x0)=0
FIGURE P3.26 FIGURE P3.27
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ne 2\,

e :H]_E Thin disk
g o m=22.5kg
= - m 60N -m-s
G=60x10°N/m> [ ~~ rad =77 -7moo
J=25%x10" m*
10 kg

§ § 1 x 103 N/m

177777 /77777

My =280 N - m applied and removed
FIGURE P3.28

50 N/m
¢ (—wW—E

200N -s/m  |—x

2 kg — 0;‘—
%L 3000Nm () O '
L]
0.2 m (=
m=15kg 60)=0 ke
=0. 6(0) = 1.2 rad/
L=04m © rads 50 N force l
by %D applied and 9000 N/m
50N
released
L
4
i FIGURE P3.30
N
100 N - s/m
0 150 ke V=060 m/S yiepicle encounters
FIGURE P3.29 —l_ bump of height 1 cm.
x
15,000 N/m l 1000 N . s/m
FIGURE P3.31
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(a) Determine the damping ratio

(b) State whether the system is underdamped, critically damped, or
overdamped

(c) Determine x(#) or 6(2) for the given initial conditions

3.32  The amplitude of vibration of the system of Figure P3.32 decays to half of its
initial value in 11 cycles with a period of 0.3 s. Determine the spring stiffness
and the viscous damping coefficient.

' I I=24kg-m?
- .
R;=20cm

R, =40 cm

3.33 The damping ratio of the system of Figure P3.33 is 0.3. How long will it take for
the amplitude of free oscillation to be reduced to 2 percent of its initial value?

k
k=2x 10> N/m
a0 * —
[TTITTTITT m=4.2kg
10 cm ¢
| } 40 cm } 60 cm ITI
3.34 When a 40-kg machine is placed on an elastic foundation, its free vibrations

appear to decay exponentially with a frequency of 91.7 rad/s. When a 60-kg
machine is placed on the same foundation, the frequency of the exponentially
decaying oscillations is 75.5 rad/s. Determine the equivalent stiffness and
equivalent viscous damping coefficient for the foundation.
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3.35 A suspension system is being designed for a 1300-kg vehicle. When the vehicle
is empty, its static deflection is measured as 2.5 mm. It is estimated that the
largest cargo carried by the vehicle will be 1000 kg. What is the minimum value
of the damping coefficient such that the vehicle will be subject to no more than
5 percent overshoot, whether it is empty or fully loaded.

3.36 During operation a 500-kg press machine is subject to an impulse of magnitude
5000 N - s. The machine is mounted on an elastic foundation that can be modeled
as a spring of stiffness 8 X 10° N/m in parallel with a viscous damper of damping
coefficient 6000 N + s/m. What is the maximum displacement of the press after the
impulse is applied. Assume the press is at rest when the impulse is applied.

3.37  For the press of Chapter Problem 3.36, determine (a) the force transmitted to
the floor as a function of time, (b) the time at which the maximum transmitted
force occurs, and (c) the value of the maximum transmitted force.

3.38  Repeat Chapter Problem 3.37 if the system has the same mass and stiffness but
it is designed to be overdamped with a damping ratio of 1.3.

3.39  One end of the mercury filled U-tube manometer of Figure P3.39 is open to
the atmosphere while the other end is capped an under a pressure of 140 kpa.
The cap is suddenly removed.

(a) Determine x(#) as the displacement of the mercury-air interface from the
column’s equilibrium position if the column is undamped.

(b) Determine x(2) if it is determined that the column of mercury has viscous
damping with a damping ratio of 0.1.

(c) Determine x(2) if it is observed that after 5 cycles of motion the amplitude
has decreased to one-third of its initial value.

Total length of mercury
column =3.5m

Hg

3.40  The disk of Figure P3.40 rolls without slip.
(@) What is the critical damping coefficient, ¢, for the system?
(b) If ¢ = ¢ /2, plot the response of the system when the center of the disk is
displaced 5 mm from equilibrium and released from rest.
(c) Repeat part (b) if ¢ = 3¢,/2.
(d) Repeat part (b) if ¢ = ¢..

k=4x%10°N/m

Thin disk m = 1 kg
c No slip
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(e) If the coefficient of friction between the disk and surface is 0.15, is the no-
slip assumption still valid for the systems of parts (b), (c), and (d).

A recoil mechanism of a gun is designed as a spring and viscous damper in
parallel such that the system has critical damping. A 52-kg cannon has a
maximum recoil of 50 cm after firing. Specify the stiffness and damping
coefficient of the recoil mechanism such that the mechanism returns to within
5 mm of firing position within 0.5 s after firing.

The initial recoil velocity of a 1.4-kg gun is 2.5 m/s. Design a recoil mechanism
that is critically damped such that the mechanism returns to within 0.5 mm of
firing within 0.5 s after firing.

A railroad bumper is modeled as a linear spring in parallel with a viscous
damper. What is the damping coefficient of a bumper of stiffness 2 X 10° N/m
such that the system has a damping ratio of 1.15 when it is engaged by a
22,000-kg railroad car.

Plot the responses of the bumper of Chapter Problem 3.43 when it is engaged by
railroad cars traveling at 20 m/s when the mass of the railroad car is (a) 1500 kg,
(b) 22,000 kg, and (c) 30000 kg.

Reconsider the restroom door of Example 3.9. The man, instead of kicking the
door, pushes it so that it opens to 80° and then lets go. How long will it take
the door after he lets go to close to within 5° of being shut if it is designed

(a) with critical damping and (b) with a damping ratio of 1.5?

A block of mass m is attached to a spring of stiffness # and slides on a
horizontal surface with a coefficient of friction u. At some time ¢, the velocity is
zero and the block is displaced a distance 6 from equilibrium. Use the principle
of work-energy to calculate the spring deflection at the next instant when the
velocity is zero. Can this result be generalized to determine the decrease in
amplitude between successive cycles?

Reconsider Example 3.11 using a work-energy analysis. That is, assume the
amplitude of the swing is 0 at the end of an arbitrary cycle. Use the principle of
work-energy to determine the amplitude at the end of the next half-cycle.

The center of the thin disk of Figure P3.48 is displaced a distance 6 and the
disk released. The coefficient of friction between the disk and the surface is u.
The initial displacement is sufficient to cause the disk to roll and slip.

(a) Derive the differential equation governing the motion when the disk rolls and
slips.

(b) When the displacement of the mass center from equilibrium becomes small
enough, the disk rolls without slip. At what displacement does this occur?

|—>X

r Thin disk

k
VW

ANNRNNY
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(c) Derive the differential equation governing the motion when the disk rolls
without slip.
(d) What is the change in amplitude per cycle of motion?

349 A 10-kg block is attached to a spring of stiffness 3 X 10* N/m. The block slides
on a horizontal surface with a coefficient of friction of 0.2. The block is displaced
30 mm and released. How long will it take before the block returns to rest?

3.50  The block of Chapter Problem 3.49 is displaced 30 mm and released. What is
the range of values of the coefficient of friction such that the block comes to
rest during the 14¢h cycle?

3.51 A 2.2-kg block is attached to a spring of stiffness 1000 N/m and slides on a
surface that makes an angle of 7° with the horizontal. When displaced from
equilibrium and released, the decrease in amplitude per cycle of motion is
observed to be 2 mm. Determine the coefficient of friction.

3.52 A block of mass  is attached to a spring of stiffness 4 and viscous damper of
damping coefficient ¢ and slides on a horizontal surface with a coefficient of
friction w. Let x(#) represent the displacement of the block from equilibrium.

(a) Derive the differential equation governing x(2).
(b) Solve the equation and sketch the response over two periods of motion.

3.53 A connecting rod is fitted around a cylinder with a connecting rod between the
cylinder and bearing. The coefficient of friction between the cylinder and
bearing is 0.08. If the rod is rotated 12° counterclockwise and then released,
how many cycles of motion will it execute before it comes to rest? The ratio of
the diameter of the cylinder to the distance to the center of mass of the
connecting rod from the center of the cylinder is 0.01.

3.54 A one-degree-of-freedom structure has a mass of 65 kg and a stiffness of
238 N/m. After 10 cycles of motion the amplitude of free vibrations is
decreased by 75 percent. Calculate the hysteretic damping coefficient and the
total energy lost during the first 10 cycles if the initial amplitude is 20 mm.

3.55 The end of a steel cantilever beam (£ = 210 X 10° N/m?) of / = 1.5 X 10~ m*
is given an initial amplitude of 4.5 mm. After 20 cycles of motion the amplitude
is observed as 3.7 mm. Determine the hysteretic damping coefficient and the
equivalent viscous damping ratio for the beam.

3.56 A 500-kg press is placed at the midspan of a simply supported beam of length
3 m, elastic modulus 200 X 10° N/m?, and cross-sectional moment of inertia
1.83 X 10 m*, It is observed that free vibrations of the beam decay to half of
the initial amplitude in 35 cycles. Determine the response of the press, x(#), if it
is subject to an impulse of magnitude 10,000 N - s.

3.58 Use the theory of Section 3.9 to derive the equivalent viscous damping
coefficient for Coulomb damping. Compare the response of a one-degree-of-
freedom system of natural frequency 35 rad/s and friction coefficient 0.12 using
the exact theory to that obtained using the approximate theory with an
equivalent viscous damping coefficient.

3.59 A 0.5-kg sphere is attached to a spring of stiffness 6000 N. The sphere is given
an initial displacement of 8 mm from its equilibrium position and released. If
aerodynamic drag is the only source of friction, how many cycles will the
system execute before the amplitude is reduced to 1 mm?

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Free Vibrations of SDOF Systems 203

3.60 A one-degree-of-freedom model of a suspension system is shown in Figure P3.60(a).
For this model the mass of the vehicle is much greater than the axle mass, but
the tire has characteristics which should be included in the analysis. In the
model of Figure P3.60(b), the tire is assumed to be elastic with a stiffness 4.
The tire stiffness acts in series with the spring and viscous damper of the
suspension system.

(a) Derive a third-order differential equation governing the displacement of the
vehicle from the system’s equilibrium position.

(b) Solve the differential equation to determine the response of the system
when the wheel encounters a pothole of depth 4.

m
ki Lic
m
kg c
kf
(@) (b)
3.01 A one-degree-of-freedom model of a suspension system is shown in

Figure P3.61(a). Consider a model in which the tire is modeled by a viscous

1.5

14
13 /\ (=-S5 =01

g alf A\
1 /
S R i\
. 0.8 \
l 0.7 /

0.6

x(t)/h

0 02 04 06 08 1 12 14 16 18
1(s)
(a) (b)
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damper of damping coefficient ¢, and is placed in series with the spring
and viscous damper modeling the suspension system, as illustrated in

Figure P3.61(a).

(a) Derive a third-order differential equation governing the displacement of the
vehicle from the system’s equilibrium position.

(b) A plot of the suspension system when the wheel encounters a pothole is
given in Figure P3.61(b). The plot is made for a suspension system that is
designed to have a damping ratio of 0.1. Use this information to find ¢,
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4.1 INTRODUCTION

Forced vibrations of a single degree-of-freedom (SDOF) system occur when work is being
done on the system while the vibrations occur. Examples of forced vibration include the
ground motion during an earthquake, the motion caused by unbalanced reciprocating
machinery, or the ground motion imparted to a vehicle as its wheel traverses the road con-
tour. Figure 4.1 illustrates an equivalent systems model for the forced vibrations of a SDOF
system when a linear displacement is chosen as the generalized coordinate. The governing
differential equation is

mex + oAt keqx = Feq(t) (41)
Although, the derivations that follow use a linear displacement as a generalized coordinate
they are also valid if an angular displacement is used as a generalized coordinate. The form
of the differential equation, Equation (4.1) is used as a model equation.

Dividing Equation (4.1) by 7, leads to

1
g L o8 153§ .
¥ 2w A b @k mequq(t) (4.2)

Equation (4.2) is the standard form of the differential equation governing linear forced
vibrations of a SDOF system with viscous damping.
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eq SDOF model for a linear system with forcing.

P 0)

cq

The general solution of Equation (4.2) is
x(2) = x,(1) + x (1) (4-3)

where x,(#) is the homogeneous solution, the solution obtained if Feq(t) =0, and xp(t) the
particular solution, a solution that is specific to F, (#). The homogeneous solution is in
terms of two constants of integration. However the initial conditions are not imposed until
the general solution of Equation (4.3) is developed. For an underdamped system

x,(t) = e [ C cos (w,2) + Csin(w,1)] (4-4)

Many ways exist to solve the particular solution. These include the method of undeter-
mined coefficients, variation of parameters, annihilator methods, Laplace transform meth-
ods, and numerical methods.

This chapter is concerned with the solution of Equation (4.2) subject to periodic exci-
tations. An excitation is periodic of period 7"if

E(t+ T) = F (5 (4-5)
for all z Figure 4.2 periodic shows examples of periodic excitations. A single-frequency
periodic excitation is defined as

Feq(t) = Fysin(wz + ¥) (4.6)
where £ is the amplitude of the excitation, w is its frequency such that o = 2% and ¢
is its phase. Note that w is independent of w , the natural frequency which is a function of

the stiffness and mass properties of the system. They are independent, but the frequencies
may coincide.

The steady-state response for a periodic excitation is defined as

x,= limx() = lim[x,() + x (0] (47)
t—® t—w
which for systems with viscous damping becomes
= 1 8
xﬂ tinec xP(t) (4 )
T | — T —f e T— >
(a) ©) ©

Examples of periodic excitations (a) a pure sinusoid; (b) a periodic triangular wave; and (c) a periodic
square wave.
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Beginning with Section 4.3, the “steady-state” will be dropped from steady-state response, and
it will be understood that a response refers to a steady-state response.

For an undamped system, the limit of the homogenous solution as # approaches infin-
ity is not zero. The homogeneous response is important if the frequency of excitation coin-
cides or is close to the natural frequency. Otherwise it is assumed that some form of
damping really occurs and the free response does decay leaving only the forced response as
the long-term response.

When the system is undamped and the frequency of the excitation coincides with the
natural frequency a condition of resonance exists. When the system is undamped and the
excitation frequency is close, but not equal to, the natural frequency a phenomena called
beating occurs.

When the system is undamped with the excitation frequency far enough away from the
natural frequency or the system has viscous damping the particular solution of Equation (4.2)
subject to the excitation of Equation (4.6) is determined in terms of terms of system
parameters. The solution is characterized in term of a steady-state amplitude and a steady-
state phase. The relations for these terms are non-dimensionalized resulting in a non-
dimensional magnification factor as a function of the damping ratio and the
non-dimensional frequency ratio. The phase is written as a function of the frequency ratio
and the damping ratio. The concept of frequency response involves studying the behavior
of these functions with the frequency ratio for different values of the damping ratio. The
frequency response is studied from the equations defining the functions and their graphs.

A special case of a frequency squared excitation, when the amplitude of excitation is pro-
portional to the square of its frequency, is considered. A new non-dimensional function repre-
senting the frequency response of such systems is introduced. The general theory is applied to
a variety of physical problems including vibrations of reciprocating machines with an unbal-
anced rotating component and vibrations induced by vortex shedding from a circular cylinder.

Two important quantities in studying the response of a system due to harmonic
motion of its base are the absolute acceleration of the system and the displacement of the
system relative to its base. The latter is shown to be an application of the theory of fre-
quency squared excitations while the former is an application of vibration isolation theory.

Vibration isolation is the insertion of an elastic member between an object, say a
machine, and its foundation to protect either the foundation from large forces generated
during operation of the machine or to protect the machine from large accelerations gener-
ated through motion of the foundation. A suspension system provides vibration isolation
to a vehicle as it protects the vehicle from the accelerations generated by the wheels.
Vibration isolation theory is developed for a SDOF system subject to harmonic input.

A Fourier series is a representation of a periodic function by an infinite series of sine
and cosine terms. The series converges to the periodic function pointwise at every point
where function is continuous. The Fourier series representation and the method of linear
superposition are used to solve for the steady-state response of a system due to a general
periodic excitation.

Seismic vibration measurement instruments use the vibrations of a seismic mass to meas-
ure the vibrations of a body. Because the seismic mass is attached to the instrument which is
rigidly attached to the body whose vibrations are being measured the vibrations of the seis-
mic mass relative to the body is actually measured. A seismometer measures this relative
motion and requires a large frequency ratio for accuracy. An accelerometer converts the
output so that it measures the acceleration and requires a small frequency ratio for accuracy.
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The response of a system with Coulomb damping due to harmonic forcing is compli-
cated by the possibility of stick-slip in which the motion ceases during a period when the
spring force and the input force are insufficient to overcome the friction force. This makes
the response of the system highly nonlinear. It is possible under certain assumptions to
assume a steady-state response at the same frequency as the input and use the methods of
Chapter 3 to determine an equivalent viscous damping coefficient. The frequency response
is then studied. The same method is used to approximate the frequency response for a
system with hysteretic damping.

AR
4.2 FORCED RESPONSE OF AN UNDAMPED SYSTEM

DUE TO A SINGLE-FREQUENCY EXCITATION

The differential equation for undamped forced vibrations of a SDOF system subject to a
single-frequency harmonic excitation of the form of Equation (4.2) is

E
¥+ ol = m—osin (wt + ) (3-9)
q
The method of undermined coefficients is used to find the particular solution of
Equation (4.9). Assume a solution of

xp(t) = Ucos (wt + ) + Vsin (wt + 1) (4.10)

Substitution of Equation (4.10) into Equation (4.9) leads to

E
(@2 — @) Ucos (0t + ) + (@2 — ) Vsin (0t + §) = m—osin (Wt + §) (4.11)
eq
The functions cos (wz + 1) and sin (wr + 1) are linearly independent. Thus, Equation (4.11)
implies that

(@2 — @)U =0 (4.12)
and
2 2 A
(wn —w)V = m—eq (4.13)
if w # o, Equation (4.12) implies U = 0 and then from Equation (4.13)
5
et (4.14)

2 _ 2
meq(wn w?)

The particular solution for @ 7# @ becomes

5 .
xp(t) = msm (wr + ) (4.15)
or alternately,
FO .
xp(t) = @ — o) sin (wt + § — @) (4.16)
meq (x)” w
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where the amplitude of the particular solution is positive and
0 w >w
¢ = { ’ (4.17)
T 0w, <o

The response is in phase with the excitation if @ > @ and 180 degrees out of phase if w < w.
The general solution is formed by adding the homogeneous solution to the particular
solution. Then the initial conditions are applied yielding

Fysins 1 F,w cos §s

x(r) = Xy — W cos (wnt) + ;n 560 - W sin (a)nt)
FO
+ |————|sin(wr + ¢ — @) (4.18)

2 _ 2
meq(wn w?)

The response, plotted in Figure 4.3, is the sum of two trigonometric terms of different
frequencies.

The case when @ = @ is special. The nonhomogeneous term in Equation (4.9) and
the homogeneous solution are not linearly independent. Thus, when the method of undeter-
mined coefficients is used to determine the particular solution, Equation (4.12) is identi-
cally satisfied and Equation (4.13) cannot be satisfied unless V' = . A particular solution
is assumed in this case as

xp(t) = Utsin (w ¢ + §) + Vicos (w, ¢ + 1) (4-19)
Substitution of Equation (4.19) in Equation (4.9) leads to
5
x () = ———tcos (w t+ 1) (4.20)
4 Zqu ., ”

———- Homogeneous solution
Particular solution
Total solution

x(1)

FIGURE 4.3
Response of an undamped
SDOF system when o < w,.
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Undamped response when
the excitation frequency

equals the natural frequency.

The response grows without

bound producing resonance. A
N\ /\

<
<]
|
——

Application of initial conditions to the sum of the homogeneous and particular solution

yields
x,  Fycosy £,
x(t) = xycos (@ f) + | — + ———— |sin(w,) — ———zcos (v, + ) (4.21)
4 ®, Zmeqwn " 2 @ "

The response of a system in for which the excitation frequency equals the natural fre-
quency is illustrated in Figure 4.4. Since the amplitude of the response is proportional to r
it grows without bound producing a condition called resonance. The resonance leads to an
amplitude increase to a value where the assumptions used in modeling the physical system
are no longer valid. For example in a system with a helical coil spring the proportional limit
of the spring’s material is exceeded as the amplitude increases. After this time the motion
is governed by a nonlinear differential equation.

Resonance is a dangerous condition in a mechanical or structural system and will pro-
duce unwanted large displacements or lead to failure. Resonant torsional oscillations were
partially the cause of the famous Tacoma Narrows Bridge disaster. It is suspected that the
frequency at which vortices were shed from the bridge co-incided with a torsional natural
frequency, leading to oscillations that grew without bound.

When vibrations of a conservative system are initiated, the motion is sustained at the
system’s natural frequency without additional energy input. Thus, when the frequency of exci-
tation is the same as the natural frequency, the work done by the external force is not needed to
sustain motion. The total energy increases because of the work input and leads to a continual
increase in amplitude. When the frequency of excitation is different from the natural frequency,
the work done by the external force is necessary to sustain motion at the excitation frequency.

When the excitation frequency is close, but not exactly equal, to the natural frequency,
an interesting phenomenon called beating occurs. Beating is a continuous buildup and
decrease of amplitude as shown in Figure 4.5. When w is very close to @, and x;=x,=0
and ¢ = 0, Equation (4.18) can be written as

_ 2F, ] 0 -, 0+ o,
x() = W sin [(2 )t} cos [(2 )t:| (4-22)
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o7 FIGURE 4.5
o -, Beating, which occurs in
an undamped system when
W = @, is characterized by
a continual build-up and

0 /\ /\ N /\ [\ n\ /\ decay of amplitude.
N N

4r
o+ o,

Since @ — | is small the solution, Equation (4.22) is viewed as a cosine wave with
a slowly varying amplitude

x(£) = Alet) cos Bt (4.23)

where

B = %(w +to) (4-24)
is the frequency of the vibration and

e=2lo-w) (4.25)

is the frequency of the beating and

2F
Aler) =

sin et (4.26)

eq
2F
*— when et = %(271 — 1) for any

The amplitude reaches a maximum value of

integern =1, 2, ... et

The equivalent mass of a SDOF of 10 kg. The system has a natural frequency of 80 rad/s.
The system is at rest in equilibrium when it is subject to a time dependent force. Determine
and plot the response of the system if it is subject to a force of (a) 10 sin(40%)N,
(b) 10 sin(80#) N, and (c) 10 sin(82¢) N.

SOLUTION
(a) The input is a single frequency excitation of frequency 40 r/s with ¢ = 0. Since
the excitation frequency is not equal to or close to the natural frequency the response
of the system is given by Equation (4.18) which leads to

(10N) 40 rad/s .

_ [ _
) = 10 kg)[(80 radis? — (@0 rads )" 40 T B0 raass M|

2.08 X 1074[ sin (402 — 0.5sin (807 ] m

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



212 CHAPTER 4

Equation (a) is plotted in Figure 4.6(a). Two distinct frequencies are shown.
(b) The natural frequency is equal to the excitation frequency, hence resonance occurs.
The solution is for this case is given by Equation (4.21)

= 10N -
x 2(10 kg)(80 rad/s) | 80 rad/s

6.25 X 1073[0.125sin (80%) — #cos (807 ] m

sin (80¢) — tcos (80¢%) (b)

Equation (b) is shown in Figure 4.6(b). The unbounded growth in amplitude is evident.
(c) The excitation frequency is close to but not equal to the natural frequency. Thus,
Equation (4.22) is the applicable solution

B 2(10N)
(10 kg)[ (80 rad/s)?— (82 rad/s)?]

. [ 82rad/s —80rad/s 82rad/s + 80rad/s
X | sin > t | cos 2 t

= —6.17 X 107 3sin tcos (81¢#) m (<)

x(2)

Equation (c) is plotted in Figure 4.6(c) where the build up and decay of amplitude is obvious.
The period of vibration is

2
T= % = 007765 (d)

and the period of beating is

T,=2m = 6.28s (e)

x107

x(m)

-2

-3 T T T T T
0 0.5 1 15 2 2.5 3

1(s)
(a)

FIGURE 4.6
Response of system of Example 4.1 for (a) w = 40 radfs, (b) @ = 80 rad/s for which resonance occurs;
and (c) w = 82 rad/s for which beating occurs with a period of T = 6.28 s.
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(Continued)
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-
4.3 FORCED RESPONSE OF A VISCOUSLY DAMPED

SYSTEM SUBJECT TO A SINGLE-FREQUENCY
HARMONIC EXCITATION

The standard form of the differential equation governing the motion of a viscously damped
SDOF system with the single-frequency harmonic excitation of Equation (4.9) is

F
¥+ 2w %+ wlx = m—osin (wt + ) (4.27)
e
A particular solution is assumed as
xp(t) = Ucos (wz + ) + Vsin (wz + ) (4.28)

Substitution of Equation (4.28) into Equation (4.27) leads to the following simultaneous
equations for U and V'

(@ — U + 2{ww V=10 (4.29)
£
2w, U+ (02 — o)V = o (4.30)
q
Solving these equations and substituting the results into Equation (4.28) leads to
5
xp(t) = [—2{ww, cos (wr + 1) (4-31)

meq[(wi — 0 + oo )?]
+ (w2 — w,) sin (wz + )]

Use of the trigonometric identity for the sine of the difference of angles and algebraic
manipulation leads to the following alternate form of Equation (4.31)

xp(t) = Xsin (wt + ¢ — ¢) (4.32)
F,
where X= 2 (4.33)
meq[(wf7 — w)? + (2{(1)(1)’1)2]1/2
and
2o,
¢ = tan—1<m) (4-34)

X is the amplitude of the forced response and ¢ is the phase angle between the response
and the excitation.

The amplitude and phase angle provide important information about the forced
response. Formulation of Equations (4.33) and (4.34) in nondimensional form allows better
qualitative interpretation of the response. It is noted from these equation that

X=fF,m,0 0,0 (4-35)
and

¢ =g o0, (4-36)
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The parameters use three basic dimensions: mass, length, and time. The Buckingham Pi
theorem (Section 1.5) implies that the formulation of the amplitude relationship is a func-
tion of 6 — 3 = 3 non-dimensional parameters. One is a dependent parameter involving
the amplitude and the other two independent parameters.

Multiplying Equation (4.33) by m, w’ /F, gives

m (1)2X 1
= (4-37)
F [(1 — 722 + (2¢n?]V?
where r== (4.38)
wn
is the frequency ratio. The ratio
meqwiX
M — .
F, (4-39)

is dimensionless and is often called the amplitude ratio or magnification factor. The magni-
fication factor has the interpretation that it is the ratio of the amplitude of response to the
static deflection of a spring of stiffness # due to a constant force £,

X

M= (4-40)

St

An alternate interpretation is that it is the maximum force developed in the spring of
a mass-spring and viscous-damper system, F = kX = mw>X to the maximum of the

excitation. It represents how much the force is magnified by the system. The magnification
factor is really a force ratio, necessary for dynamic similitude

max

M=— 41
7 (4-41)

0
Thus the nondimensional form of Equation (4.33) is
1

M) =
"o V= 2?2 = @)

(4-42)

The magnification factor as a function of frequency ratio for different values of the
damping ratio is shown in Figure 4.7. These curves are called frequency response curves.

The following are noted about Equation 4.42 and Figure 4.7.

1. M = 1when r = 0. In this case the excitation force is a constant and the maximum
force developed in the spring of a mass-spring-dashpot system is equal to the value of
the exciting force.

2. lim _ M(n{) = % The amplitude of the forced response is very small for high-
frequency excitations.

3. For a given value of 7, M decreases with increasing {.

The magnification factor grows without bound only for { = 0. For0 < ¢ = 1/ \6,
the magnification factor has a maximum for some value of ¢.
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FIGURE 4.7

Maghnification factor versus
frequency ratio for different
values of the damping ratio.

5. For0 < ¢ =1/ \/E, the maximum value of the magnification factor occurs for a fre-
quency ratio of

r, = V1-=2 (4-43)

Equation (4.43) is obtained from Equation (4.42) by determining the value of 7 such
that dM/dr = 0.

6. The corresponding maximum value of M is

1

M. . = 20— )" (4-44)

7. Forl = 1/\/5, dMldr = 0 forr = 0.For{ = 1/\/5, there is no real value of 7 satis-
fying Equation (4.43). M(r, {) does not achieve a maximum. It monotonically
decreases with increasing 7 and approaches zero as 1/7? for large 7.

The nondimensinoal form of Equation (4.34) is
2Lr
¢ = taﬂ1<1_72> (4-45)

The phase angle from Equation (4.45) is plotted as a function of frequency ratio for differ-
ent values of the damping ratio in Figure 4.8. The following are noted from Equation 4.45
and Figure 4.8:

1. The forced response and the excitation force are in phase for { = 0. For { > 0, the
response and excitation are in phase only for » = 0.

2. If{=0and 0 <r<1,then 0 < ¢ < m/2. The response lags the excitation.
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4 FIGURE 4.8
Phase angle versus frequency
ratio for different values of

3 the damping ratio.

< 2

1 -

0

3. If{<O0andr=1,then ¢ = @/2. If = 0, then the excitation is a pure sine wave
while the steady-state response is a pure cosine wave. The excitation is in phase with
the velocity. The direction of the excitation is always the same as the direction of
motion.

4. If{>0and r> 1, then 7/2 < ¢ < 7. The response leads the excitation as shown
in Figure 4.9.

5. If{>0and »>>1, then ¢ = 7. The sign of the steady-state response is opposite that
of the excitation.

6. For { = 0, the response is in phase with the excitation for » < 1 and 7 radians (180°)
out of phase for » > 1.

Equation (4.42) and (4.45) constitute the frequency response of a SDOF system. The
frequency response is the variation of the steady-state amplitude and the steady-state phase.
The graphical representation of the frequency response is illustrated in Figures 4.7 and 4.8.

—— sin ot
---- sin (wt—¢),§<¢<7r

FIGURE 4.9
Response leads excitation
t when r > 1.
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If the stiffness or damping ratio of a system is not known the frequency response may be
determined experimentally and used to identify the system parameters.

The steady-state response of an SDOF system due to a single-frequency harmonic
excitation is

x(2) = Osin (0t + 4 — ¢) (4-46)

eq
where M(r, {) is given by Equation (4.42) and ¢ is given by Equation (4.45). The theory
can handle the undamped response covered in Section 4.2 by taking { = 0 these equations
yielding

1 o

V-2 (1=

S wan

1 — 72 T r>1

M(,0) = (4-47)

and

The value of the magnification factor M(1, 0) does not exist, as there is no steady-state in
the case of an undamped SDOF system under resonant conditions.

A moment, M, sin w¢, is applied to the end of the bar of Figure 4.10. Determine the max-
imum value of A such that the steady-state amplitude of angular oscillation does not
exceed 10° if = 500 rpm, # = 7000 N/m, ¢ = 650 N-s/m, L = 1.2 m, and the mass of
the bar is 15 kg.

M, sin ot

b
ﬁi e
2k
(a)
s o % )

—mL2 )

3L
2k
(%

External forces Effective forces

(b)

FIGURE 4.10
(a) System of Example 4.2. (b) FBDs at an arbitrary instant.
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SOLUTION
The differential equation obtained by summing moments about 0 using the free-body
diagrams of Figure 4.10(b) is

7

.
—ml*0 + —

.19
S 16 c?0 + R/e]f@ = Msin wt (@)

Using the notation of Equation (4.1)

_ Lo 2 2
]eq %8 mL 48(15kg)(1.2m) 3.15kg - m (b)

The differential equation is rewritten in the form of Equation (4.2) by dividing by 7 :

) . P M
A SR AL i IR (©)
7m 7 m I

The preceding equation has a steady-state solution of the form

6() = Osin (wt — ) (d)
The natural frequency and damping ratio are obtained by comparison to Equation (4.2)
000 N/
" = \/57 k_[GNT m o md ©
4 7 m (7)(15kg) $
3)(650 N - s/
[o3 e O hm) o

T ldmo,  (14)(15kg) (61.6 radls)
The frequency ratio is

0 (500 rev/min)(27r rad/rev)(1 min/60 s) 3

a ® 61.6 rad/s 0-85 (&)

n

The magnification factor is calculated from Equation (4.42)

1
M (0.85, 0.15) = = 2.64 (h)

V1 = (0.85?] + [2(0.15)(0.85)]?

The maximum allowable magnitude of the applied moment is calculated using
Equation (4.37),

[ 0*©
eq n

M,

= M(0.85, 0.15) = 2.64 0)

Requiring © < 10° leads to

(3.15 kg-m?) (61.6 rad/s)? (10°)(27 rad/360°)
My < 2.64

=790.2 N-m 0
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A machine of mass 25.0 kg is placed on an elastic foundation. A sinusoidal force of mag-
nitude 25 N is applied to the machine. A frequency sweep reveals that the maximum
steady-state amplitude of 1.3 mm occurs when the period of response is 0.22 s. Determine
the equivalent stiffness and damping ratio of the foundation.

SOLUTION
The system is modeled as a mass attached to a spring in parallel with a viscous damper with
a applied sinusoidal force of amplitude 25 N. For a linear system the frequency of response
is the same as the frequency of excitation. Thus the maximum response occurs for a period
0f 0.22 s which corresponds to a frequency of
2 2
=—= = 28.6 rad/
CTT T 022 e (@)
The frequency ratio at which the maximum response occurs is given by Equation (4.43)
®
r=—=V1 -2 (b)
®

Solving Equation (b) for the natural frequency
_ 1) _ 28.6 rad/s ©

ToVi1=22 V1222

The maximum value of the response is given by Equation (4.44) which upon substitution

and use of Equation (4.39) becomes

w

(25.0 kg) (0.0013 m)(28.6 rad/s)? 3 1 @
(25 N) (1—2§2) zg 1_{2
Squaring Equation (d) and rearranging leads to
A—=02+0.118=0 (e)

which is a quadratic equation for {%. Using the quadratic formula leads to { = 0.369,
0.929. The larger value is discarded because a frequency sweep would only yield a maxi-
mum for a value of { < \/Lj Thus ¢ = 0.369. The natural frequency is calculated from
Equation (c) as
28.6 rad/
W = ——2 = 33 5pdls (f)

" V1-2(0.369)?

The stiffness of the foundation is

k = mw? = (25.0kg) (33.5 rad/s)* = 2.80 X 10*N/m (g

AR e———————————
4.4 FREQUENCY-SQUARED EXCITATIONS

4.4.1 GENERAL THEORY

Many SDOF system are subject to single-frequency harmonic excitation whose amplitude

is proportional to the square of its frequency
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Feq(t) = Aw® sin (wt + ) (4-49)

where A is a constant of proportionality with dimensions of #+7% or M+ L. When F, o(®) rep-
resents a moment A it has dimensions of 7+ L + 7% or M + L2. The steady-state response due
to this type of excitation is developed by applying equations developed in Section 4.3 with

Fy = Aw? (4-50)

Substitution of Equation (4.50) into Equation (4.37) yields
meqX o, 2 B 1
A w/) o \2 ]2 © \2
V-G T+ Ge)
1)

X
or  m 4= A Q) (4.51)

72

V= 2+ 209?

where A(r, () = (4-52)

A is, like M, a nondimensional function of the frequency ratio and the damping ratio.
A is related to M by

A(n ) = r*M(r, {) (4-53)

The steady-state response is given by Equation (4.32) where X is determined from
Equations (4.51) and (4.52), and ¢ is determined using Equation (4.45).

A is plotted as a function of 7 for various values of { in Figure 4.11. The following are
noted from Equation (4.52) and Figure 4.11.

5

4 -

3 -

<

2 -

1 -

0 T T FIGURE 4.11

0 1 2 3 A (r, ) versus rfor different

r values of {.
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A = 0 if and only if » = 0 for all values of {.
limrﬁoA(r, {) = 1 for all values of £.

A grows without bound near » = 1 for { = 0.

Ll

For0 < ¢ <1/ V/2, A has a maximum for a frequency ratio of
1

T = Vo (4-54)

Equation (4.54) is derived by finding the value of 7 such that 4A/dr = 0.

5. Foragiven0 < ¢ <1/ \/2, the maximum value of A corresponds to the frequency
ratio of Equation (4.54) and is given by

1

A = :
max 2{,\/1_7§2 (4 55)

6. For{ > 1/ /2, A does not reach a maximum. A grows slowly from zero near r» = 0,
monotonically increases, and asymptotically approches one from below.

EXAMPLE 4.4 — — —
A one-degree-of-freedom system is subject to a harmonic excitation whose magnitude is

proportional to the square of its frequency. The frequency of excitation is varied and the
steady-state amplitude noted. A maximum amplitude of 8.5 mm occurs at a frequency of
200 Hz. When the frequency is much higher than 200 Hz, the steady-state amplitude is
1.5 mm. Determine the damping ratio for the system.

SOLUTION
From Figure 4.11, A — 1 as r — 0. Thus, from Equation (4.51) and the given information,
m
e«q 1
A 1.5mm (2)

Substituting Equation (a) into Equation (4.55) yields

_m 8.5 mm

1
= = b
max A~ max 1.5mm 2§ /1 — 52 ( )

Inverting, squaring, and rearranging leads to
24— 24 0.00778 = 0 (<)

The roots of Equation (c) are { = %=0.089, =0.996. Since a maximum was attained,
0<¢< %’ the appropriate value of £ is 0.089.

A

4.4.2 ROTATING UNBALANCE

The machine of Figure 4.12(a) has a component which rotates at a constant speed, . Its
center of mass is located a distance e, called the eccentricity, from the axis of rotation. The
mass of the rotating component is s while the total mass of the machine, including the
rotating component, is 72. The machine is constrained to move vertically.
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@Q N N mge @’
'/ _ 0 (@) Machine with a rotating
Mo M = ot l (m — m)i unba.lance .pro.duces a har-
| monic excitation whose
k. s kxT T ox amplitude is proportional to
2 2 the square of its frequency.
External Effective (b) FBDs of the machine at an
forces forces arbitrary instant.
(@) (b)

Let x represent the downward motion of the machine. The acceleration of the rotating
component is obtained using the relative acceleration equation

a =a_+ a. (4-56)

where |ac\ = X and is directed downward and \ar /C| = ew? directed toward the center of
rotation. The center of mass of the rotating component moves in a circular path about the
center of rotation at a constant speed. Let 6 represent the angle made by the line segment
between the center of rotation and the center of mass at an arbitrary instant. Resolving the
relative acceleration into horizontal and vertical components the vertical component of the
absolute acceleration of the center of mass of the rotating component is

a = X+ ew’sinf (4.57)

n X

Summation of forces, X F, = X F applied in the vertical direction, positive down-
ward to the FBDs of Figure 4.12(b) yields

—kx — x = m¥ + myew*sin O (4-58)

For constant w,
0 =wt+ 6, (4-59)

where 6, is an angle between the initial position of the center of mass of the rotating compo-
nent and the horizontal. Using Equation (4.59) in Equation (4.58), and rearranging yields

mi + cx + kx = —myew?sin (07 + 6) (4.60)

0

The negative sign is incorporated into the sine function by defining §y = 6, + 7. Then
Equation (4.60) becomes

mi + cx + kx = mew?sin (wt + ) (4.61)

0

It is apparent from Equation (4.61) that the unbalanced rotating component leads to
a harmonic excitation whose amplitude is proportional to the square of its frequency. The
constant of proportionality is

A= mge (4.62)

Using Equation (4.51) gives

mX
e = A Q) (4-63)
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A 150-kg electric motor has a rotating unbalance of 0.5 kg, 0.2 m from the center of rota-
tion. The motor is to be mounted at the end of a steel (£ = 210 X 10° N/m?) cantilever
beam of length 1 m. The operating range of the motor is from 500 to 1200 rpm. For what
values of 7, the beam’s cross-sectional moment of inertia, will the steady-state amplitude of
vibration be less than 1 mm? Assume the damping ratio is 0.1.

SOLUTION
The maximum allowable value of A is

A = o (50 kg)(0.001 m)
allow me - (05 kg) (02 m) =

(a)

Since A ~>Tland{ < 1/ V2, Figure 4.11 shows that two values of 7 correspond to
A = A, . These are determined using Equation (4.52)

7.2

VA= + 02

Rearrangement leads to the following equation:

1.5

(b)

0.5567% — 1.96r2+ 1 =0 (c)
whose positive roots are
r=0.787, 1.71 (d)

However if 7 = 0.787 corresponds to @ = 1200 rpm then A < A for all 7 in the operat-
ing range. Whereas if » = 0.787 corresponds to @ = 500 rpm then A > A for r over part
of the operating range. Thus requiring » << 0.787 over the entire operating range yields.

(1200 rev/min) (27 rad/rev)(1 min /60 s)

w
n

< 0.787 (e)

or w, > 159.7 rad/s. The one degree-of-freedom approximation for the natural frequency
of the motor attached to the end of a cantilever beam of negligible mass is

3EI
I el f
wn mL3 ( )
Thus,
(159.7 rad/s)2Pm  (159.7 rad/s)*(1 m)*(150 kg)
1> = = 6.07 X 10 °m*
3E 3(210 X 10° N/m?) / m’ (g)

Using a similar reasoning » = 1.71 should correspond to @ = 500 rpm. Thus,

(500 rev/min) (27 rad/rev) (1 min/60s)
> 1.71

w

n

or @ < 30.6 rad/s. This requirement leads to 7 < 2.23 X 107/ m*.

Thus the amplitude of vibration will be limited to 1 mm if / > 6.08 X 107° m* or
1< 2.23 X 1077 m* However, other considerations limit the design of the beam. The
smaller the moment of inertia, the larger the bending stress in the outer fibers of the beam
at the support.

(h)
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(a) Circular cylinder in steady flow.
u\x 3}3 (b) Cross section of cylinder showing vor-
—_— tices shed alternately from each surface
))) of the cylinder, resulting in a wake behind
the cylinder and a harmonic force acting
on the cylinder.
(a)

(b)

4.4.3 VORTEX SHEDDING FROM CIRCULAR CYLINDERS

When a circular cylinder is placed in a steady uniform stream at sufficient velocity, flow
separation occurs on the cylinder’s surface, as illustrated in Figure 4.13. The separation
leads to vortex shedding from the cylinder and the formation of a wake behind the cylin-
der. Vortices are shed alternately from the upper and lower surfaces of the cylinder at a con-
stant frequency. The alternate shedding of vortices causes oscillating streamlines in the
wake which, in turn, lead to an oscillating pressure distribution. The oscillating pressure
distribution, in turn, gives rise to an oscillating force acting normal to the cylinder,

F(z) = Fjsin (w?) (4.64)

where F is the magnitude of the force and w is the frequency of vortex shedding.
These parameters are dependent upon the fluid properties and the geometry of the
cylinder. That is,

E) = FE)(”’ p) M; D! L) (4'65)

and o = oy, p, w, D, I) (4.66)

where v = the magnitude of fluid velocity, [L]/[7]
p = the fluid density, [M]/[L]?
= the dynamic viscosity of fluid, [M]/([L][T"])
D = the diameter of cylinder, [L]
L = the length of cylinder, [Z]

The dependent parameters £, and @ are both functions of five independent parameters.
Dimensional analysis theory implies that Equations (4.65) and (4.66) can be rewritten as
relationships between three dimensionless parameters. Indeed, nondimensional forms of

Equations (4.65) and (4.66) are
D
C,=f (Re,L> (4-67)

S = f(Re, "2) (4.68)

The dependent dimensionless parameters are the drag coefficient

- (4-69)
C. = 4.69
P 1puipL
which is the ratio of the drag force to the inertia force, and the Strouhal number
wD
S= (4.70)
2T v
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which is the ratio of the inertia force due to the local acceleration of the inertia force due
to the convective acceleration of the inertia force.
The independent dimensionless parameters are the Reynolds number
pvD
I

R

(4.7)

which is the ratio of the inertia force to the viscous force and the diameter-to-length ratio D/L.

For long cylinders (D/L << 1), a two-dimensional approximation is used. Then the
effect of D/L on the drag coefficient and Strouhal number is negligible. Empirical data are
used to determine the forms of Equations (4.67) and (4.68) assuming that both the drag
coefficient and Strouhal number are independent of D/L.

The density and dynamic viscosity of air at 20°C are 1.204 kg/m? and 1.82 X 107> N . s/m,
respectively. Thus, for air at 20°C, the Reynolds number for flow over a 10-cm-diameter
circular cylinder at 20 m/s is

(1.204 kg/m?)(20 m/s)(0.1 m)
B 1.82 X 1075 N+ s/m

e =13 X 10°

The Reynolds number for many situations involving wind-induced oscillations is between
1 X 103 and 2 X 10°. Over this Reynolds number regime, both the drag coefficient and
the Strouhal number are approximately constant. For long cylinders (D/L << 1) empirical
evidence suggests that

C,~1 1 X 10° < Re <2 X 10° (4.72)
S~ 0.2 1 X 103 < Re <2 X 10° (4.73)
From Equation (4.73) and the definition of the Strouhal number, Equation (4.70),
wD
VoS (4-74)

Then from Equations (4.69), (4.72), and (4.74),
F, = 0317 pD? Lw? (4.75)

Hence the harmonic excitation to a circular cylinder provided by vortex shedding
when the Reynolds number is between 1 X 10° and 2 X 10° has a magnitude that is pro-
portional to the square of its frequency. Using the notation of Equations (4.50) and (4.51)

gives
A= 0317pDL (4.76)
3.16 mX

and DL = A0 (4.77)

The theory is presented for vortex shedding from circular cylinders. If the frequency at
which the vortices are shed is near the natural frequency of the structure, then large-
amplitude vibrations exist. The effects of vortex shedding must be taken into account when
designing structures such as street lamp posts, transmission towers, chimneys, and tall
buildings. Vortex shedding also occurs from noncircular structures such as buildings and

bridges.
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EXAMPLE 4.6
A street lamp consists of a 60-kg light fixture attached at the end of a 3-m-tall solid steel

(£ = 210 X 10° N/m?) cylinder with a diameter of 20 cm. Use a one degree-of-freedom
model consisting of a cantilever beam with a concentrated mass at its end to analyze the
response of the light fixture to wind excitation. Assume the beam has an equivalent viscous
damping ratio of 0.2.

(a) At what wind speed will the maximum steady-state amplitude of vibration due to
vortex shedding occur?

(b) What is the corresponding maximum amplitude?

(c) Redesign the light by changing its diameter such that the maximum amplitude of
vibration does not exceed 0.10 mm for any wind speed.

SOLUTION

Before proceeding with the analysis, there are several questions associated with the model-
ing that must be addressed. Vortices are shed along the entire length of the cylinder. The
two-dimensional assumption implies that the force per unit length is constant along the
entire length of the light post. Thus the force given by Equation (4.64) is really the result-
ant of this force per unit length distribution. Its point of application should be the mid-
point of the light post. However, the problem is not really two dimensional because of
among other things, the boundary layer of the earth. The presence of a boundary layer
causes a varying wind velocity over the length of the light post, which, in turn, causes a
nonuniform force per unit length distribution, as shown in Figure 4.14(a). Thus the actual
point of application of the resultant force will be somewhat higher than the midpoint of
the light post. In addition, the mass is assumed to be lumped at the end of the beam, while
the point of application of the applied force is elsewhere. The resultant force can be
replaced by a force of the same magnitude located at the end of the beam and a moment.
However, the moment causes rotational effects which are not adequately taken into
account in a one-degree-of-freedom model. At least a two-degree-of-freedom model should
be used. In order to attain an approximate result, these effects are neglected. A one degree-
of-freedom model is used where the excitation is provided by a concentrated harmonic load
located at the light of fixture, as shown in Figure 4.14(b).

Assume air at 20°C. The Rynolds number for a velocity of 20 m/s is

3 (1.204 kg/m?)(20 m/s)(0.20 m)
"~ (1.82 X 10°N - s/m)

Re =26 X 10° (a)

60 kg

lFO sinwt

20 cm l—| (a) Street light post in steady wind is

subject to harmonic excitation whose
amplitude is proportional to the square
of the frequency because of vortex
shedding. (b) The model of the system
is @ mass attached to the end of a can-
(@) (b) tilever beam.

ARANANN
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This Reynolds number is higher than the 2 X 10° upper limit on the range of strict appli-
cability of the theory presented previously. However, the Strouhal number is only slightly
higher than 0.2. Using 0.2 as an approximation for the Strouhal number is in line with
other approximations made in the modeling.

(a) Using a one degree-of-freedom model, the natural frequency of the cantilever beam is

_ [3EI  [3(210 X 10° N/m?)(7/64)(0.2 m)* _
®, =\ 5" \/ 60 k)3 m)? 174.8 rad/s (b)

The magnitude of the excitation force is proportional to the square of its frequency. Thus,
from Equation (4.54), the maximum steady-state amplitude occurs for a frequency ratio of

- 43 ()

,

Thus the frequency at which the maximum amplitude occurs is

o = 1.043(174.8 rad/s) = 182.2 rad/s (d)
The wind velocity that gives rise to this frequency is calculated using the definition of the
Strouhal number
D (182.2 rad/s)(0.2 m)
YT ms 27(0.2)

= 29.0 m/s (e)

(b) The value of A corresponding to this frequency ratio is calculated from Equation (4.55)

1
A = ———— =255 ()

Vi

The corresponding maximum amplitude is calculated by using Equation (4.77)

. pD3LA  (1.204 kg/m?)(0.2m)’(3 m)(2.55) 3.9 X 104
= S iom = 3.16(60 kg) T ) ¥

(¢) The maximum value of A is a function of £ only and does not change with @, . The
steady-state amplitude can be limited to 0.1 mm for all wind speeds by requiring that
A = 2.55 for X = 0.1 mm. This leads to

3.16 mX\'/3
= _— = . h
D ( DIA > 12.7 cm (h)

Thus, the maximum diameter of the light pole should be 12.7 c¢m.

..
4.5 RESPONSE DUE TO HARMONIC EXCITATION

OF SUPPORT

Consider the mass-spring-dashpot system of Figure 4.15. The spring and dashpot are in
parallel with one end of each connected to the mass and the other end of each connected
to a moveable support. Let y(2) denote the known displacement of the support and let x(#)
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(a) Block is connected

m
| Tx(l) B | through parallel combination
o of spring and viscous damper
k ¢ k(X—Y)T TC(X ) l mi to a moveable support.
0 (b) FBDs at an arbitrary
Ty External Effective instant. Spring and viscous-
(@)

forces forces damper forces include effects
(b) of base motion.

denote the absolute displacement of the mass. Application of Newton’s law to the free-body

diagrams of Figure 4.15(b) yields

—k(x — ) — clx— 3) = mx (4.78)
or  miX+ ck+ kx=c+ ky (4.79)
Define

z(2) = x(¢) — y(2) (4.80)

as the displacement of the mass relative to the displacement of its support. Equation (4.79)
is rewritten using z as the dependent variable

mz + cz+ kz= —my (4.81)
Dividing Equations (4.79) and (4.81) by m yields

¥4 2ox+ olx =205+ o’y (4-82)
and z + 2{w z+ wlz= —Y) (4-83)

If the base displacement is given by a single-frequency harmonic of the form

y(#) = Ysin wr (4.84)
then Equations (4.82) and (4.83) become

¥+ 2o i+ 0lx = 2o wYcoswt + o>Ysin wr (4.85)
and Z + 2{w z + w’z = w’YVsinwr (4.86)

Equation (4.86) shows that a mass-spring-dashpot system subject to harmonic base
motion is yet another example in which the magnitude of a harmonic excitation is propor-
tional to the square of its frequency. Using the theory of Section 4.4,

z(t) = Zsin(wt — ¢) (4.87)
where Z=YAW 0 (4.88)

where A is defined in Equation (4.52) and ¢ defined by Equation (4.45).
When Equations (4.87) and (4.88) are substituted into Equation (4.80) the absolute

displacement becomes

x(t) = Y[Asin (0t — @) + sin wt] (4.89)
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Using the trigonometric relationship for the sine of the difference of two angles, it is pos-
sible to express Equation (4.89) in the form

x(¢) = Xsin (wt — A) (4.90)
where i;= T(r, ) (4.91)

»3
% ] (4-92)

I
and A = tan [1 W= e

where 71(r, {) is yet another nondimensional function of the frequency ratio and the damp-
ing ratio defined by

B 1+ 20?2
T(r () = \/ 0= + (4-93)

X/Y is the amplitude of the absolute displacement of the mass to the amplitude of dis-
placement of the base.
Multiplying the numerator and denominator by w? leads to

w*X
oy [0 (4.94)

Thus 71r, {) is also the ratio of the acceleration amplitude of the body to the acceleration
amplitude of the base.
Equation (4.93) is plotted in Figure 4.16. The following are noted about 7{r, {):

1. 1(r, {) is near one for small 7.

2
2. lim,__ Th{) = — (4-95)

7

FIGURE 4.16

1(r, {) versus r for several
values of {. The range for

r <V2is called the range of
amplification, while the range
for » >V2is called the range
of isolation. r
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3. Forall , T(r, {) grows until it reaches a maximum for a frequency ratio of

r
max

- i VIFEE — 1)1 (4.96)

4. The maximum 7{(r, ) corresponding to the frequency ratio of Equation (4.96)
I =4 Vi+se "
max 2+ 162 + (1624 — 822 — V1 + 822
. T(V2, {) = 1, independent of the value of {.
6. Forr < V2,7(r, ) is larger for smaller values of . However, for » > \/2,7(r, {) is

smaller for smaller values of {.

7. For all values of ¢, T(r, {) is less than one when and only when » > V2.

(4-97)

The body is isolated from large accelerations of the base only if 7(r, {) < 1. This occurs
on when 7>V/2. For this reason the range 7>V/2 is called the range of isolation and
r <V2 s called the range of amplification. When isolation occurs an increase in ¢ hinders
isolation. Better isolation occurs for smaller damping ratios. Some damping is still required
to limit the amplitude of vibration during start up.

The function 7{r, {) is called the transmissibility ratio. It is the ratio of the transmitted
acceleration to the acceleration of the base. When 7> 1 the presence of an elastic element
between the base and the body actually amplifies the acceleration that is transmitted to the
body. Only when 7"< 1 is the transmitted acceleration less than the acceleration of the body.

The amplitude of relative motion, Z = YA(r, {) is the amplitude of the maximum dis-
placement of the elastic element.

A 50 kg laboratory experiment is to be mounted onto a table in a laboratory. The table, which
is rigidly attached to the floor is vibrating due operation of the other machinery. Measurements
indicate that the floor’s acceleration amplitude is 1.2 m/s? and it vibrates at 100 Hz. Accurate
use of the equipment requires that its acceleration amplitude be limited to 0.6 m/s.

(a) What is the largest equivalent stiffness of a mounting of damping ratio 0.1 that can
be used to limit the acceleration amplitude to 0.6 m/s?

(b) What is the maximum deflection of the mounting?

SOLUTION
(a) The transmissibility ratio is
_ @’X 0.6 m/s?

=0.5 (a)

Y 12 m/s
Requiring 7(r, 0.1) = 0.5 leads to

\/ 1+ [2(0.1)7]?
T(r, 0.1) =05= (1 _ 72)2 4 [2(0.1)@2 (b)

Squaring Equation (b), multiplying the resulting equation by the denominator of the right
hand side and rearranging gives

= 2122=3=0 ()
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Equation (c) is solved leading to » = 1.76. Recalling » = wﬂ and w = 100 Hz =
(100 cycles/s) (27 rad/cycle) = 6.28 X 10% rad/s gives !

®  6.28 X 10%rad/s

_ & _ 220 2P A 2
®, =" 176 3.57 X 10%rad/s (d)

The maximum stiffness for an elastic mounting is
= mw? = (50 kg)(3.57 X 10%rad/s) = 6.39 X 10°N/m f)

(b) The displacement of the mounting is the relative displacement between the experi-
ment and the table z(#). The maximum displacement is the steady-state amplitude which is

Z = YA(1.76,0.1) (8)
The steady-state amplitude of the table is
w?Y 1.2 m/s?
=— = = 3.04 X 107 h
o (628 X 10%radls)  ° " ()
1.76)*
and A(1.76,0.1) = (1.76) = 1.46 O]

V1 = (1762 + [20.0(1.76) ]2

The maximum displacement of the mounting is obtained by substituting Equation (h) and
Equation (i) into Equation (g) resulting in

Z = (3.04 X 10° m)(1.46) = 4.43 X 10° m ()

Mechanisms can be used to produce harmonic base excitations. One simple example is
the eccentric circular cam of Figure 4.17. When rotating at a constant speed, the cam pro-
duces a displacement of e sin wr to its follower, which, in turn, produces a harmonic base
excitation in the arrangement shown. The Scotch yoke of Figure 4.18 is another mecha-
nism that produces simple harmonic motion. When the crank is rotating at a constant
speed the base is given a displacement of /sin wz.

Eccentric circular cam pro-
duces harmonic motion of fol- m
lower which provides support
motion to the mass-spring-
viscous damper system.

/ k
Scotch yoke mechanism
produces simple harmonic m
motion and provides support J—
excitation to mass-spring- ¢

viscous damper system.
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EXAMPLE 4.8

A Scotch yoke mechanism provides a harmonic base excitation for the mass-spring-
dashpot system of Figure 4.18. The crank arm is 80 mm long. The speed of rotation of
the crank arm is varied and the resulting steady-state amplitude is recorded at each speed.
The maximum recorded amplitude of the 14.73 kg block is 13 ¢cm at 1000 rpm. Determine
the spring stiffness and damping ratio.

SOLUTION
The amplitude of the base displacement is 0.08 m. The maximum displacement of the
mass is 0.13 m. Thus,

0.13 m

Xmax
T, === = 1.625
mx Ty 0,08 m

The value of { which corresponds to this 7, is determined by solving Equation (4.97).
However, algebraic manipulation of Equation (4.97) yields a fifth-order polynomial equa-
tion for {2. A numerical method must be used to find {. An easier trial-and-error
approach is outlined in the following discussion, and then used to find the value of { for
this example.
Equation (4.96) is rearranged as
1 —
g — max

274

max

Avalue of 7 <1 is guessed and its corresponding value of { calculated from the preced-
ing equation. Equation (4.93) or (4.97) is then used to calculate the value of 7/ corre-
sponding to the guessed value of »_ . However, small changes in the accuracy of an
intermediate calculation using Equation (4.97) lead to large changes in the result. Thus,
Equation (4.93) is usually used. The calculated value of 7,  is compared against the
desired value of 1.625. If T . > 1625 another guess for - smaller than the previous
one, should be made. Other iteration schemes are possible, but the method presented is the
most direct using the equations as presented. The trial-and-error scheme is illustrated in the
following table:

T

max (8U€SS) { [from Equ;'a);n (4.93)]
0.98 0.147 3.180
0.90 0.381 1.702
0.89 0.407 1.640
0.88 0.437 1.573

Then, for 7 = 0.89,

w rev rad \/ 1 min 1
w = =(1000— )| 27— —— = 117.7 rad/s
L min rev 60 s /0.89

and k= mw? = 2.04 X 10° N/m.
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.-
4.6 VIBRATION ISOLATION

Consider a machine bolted to its foundation. During operation the machine produces or
is subject to large amplitude harmonic forces. The force is directly passed onto the founda-
tion. This could lead to problems such as fatigue of the foundation and acoustic wave prop-
agation in the foundation.

The remedy to this situation is to mount the machine on a vibration isolator, which
can be discrete springs or elastic pads, as shown in Figure 4.19. The vibration isolator acts
to reduce the amplitude of the harmonic force transmitted to the foundation. With an exci-
tation force of F(7) = F sin (w¢), the transmitted force is

Fpy, = kx + cx (4.98)
The steady-state response of the system is x(z) = Xsin (wz — ¢), thus
Fp,, = kXsin (0t — ¢) + cw cos (w0t — ¢) (4.99)

Let F, represent the amplitude of the transmitted force

Fpy, = Fpsin(or — ) (4.100)
and £ represent the amplitude of the excitation force. It can be shown that

I T(n{) (4-101)

£,

and A is as given in Equation (4.92).

The theory of vibration isolation to protect against large transmitted forces is the same
as the theory to protect against large transmitted accelerations. To see this, consider the dif-
ferential equation for the relative displacement, z = x — y, of a mass attached to a move-
able support,

mz + cz+ kz = —my (4.102)
The acceleration of the base is given by X = z + » or using Equation (4.97)
mx = —(cz + k2 (4.103)

where F = ¢z + kzis the force developed in the elastic element connecting the mass and
the base.

Vibration isolation only occurs for 7 > V2. When isolation occurs it is negatively
affected by damping. Damping is present to protect against large amplitude oscillations
during start-up necessary to reach a value of » > V2

F(t) FIGURE 4.19
l (a) Elastic mounting is
lF (1) used as a vibration isolator
to protect foundation
from large forces gener-

‘ ated during operation of
the machine. (b) SDOF
model of machine
mounted on isolator.

(a) (b)
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EXAMPLE 4.9

An air conditioner weighs 1 kN and is driven by a motor at 500 rpm. What is the required
static deflection of an undamped isolator to achieve 80 percent isolation (a) if { = 0 (b) if

(=012

SOLUTION

(a) Eighty percent isolation means that the transmitted force is reduced by 80 percent of
that if the machine were directly bolted to the floor. It is 20 percent of the value of the exci-
tation force,

— =102 (a)

For an undamped isolator

T(r, 0) = 0.2 (b)

/ 1
0.2 = m (o)

Since 7 > V2 to achieve isolation, and a positive result is required from the square root,

or

the appropriate form of the preceding equation after the square root is taken is

02 =1 (d)

=1

which yields » = 2.45. The maximum natural frequency for the air conditioner-isolator

system to achieve 80 percent isolation is calculated as

500 in) (27 rad/rev)(1 min/60
o - gr _ ( rev/min)( 2rj}ts/reV)( min/60 s) — 214 rad/s (e)

The required static deflection is obtained from

o= \m= Vi G

g 9.81 m/s?
R
“ T W (14 radls)? " ®

(b) It is required to find 7 such that
7(r, 0.1) = 0.2 (h)

or

\/ 1+ [2(0.1)7]?

(1 — 72 + 2007

Squaring both sides of Equation (g), multiplying by the denominator of the left hand side
and rearranging leads to

r* —=296r2 =24 =0 )
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Equation (h) is a quadratic equation in 72. Solution using the quadratic formula yields 2 =
—3.64, 6.60. Choosing the positive value and taking the square root leads to » = 2.57.
Note that this value is greater than the value obtained for = 0. Thus

® 524 rad/s

= = 20.4 rad/ k
T 256 257 e ()
The minimum static deflection is
9.81 m/s?
- g Come 0.0236 m = 2.36 cm 0]

S @2 (20.4 rad/s)?

n

EXAMPLE 4.10
An industrial sewing machine has a mass of 430 kg and operates at 1500 rpm (157 rad/s).

It appears to have a rotating unbalance of magnitude 7 = 0.8 kg . m. Structural engi-
neers suggest that the maximum repeated force transmitted to the floor is 10,000 N. The
only isolator available has a stiffness of 7 X 10° N/m and a damping ratio of 0.1. If the iso-
lator is placed between the machine and the floor, will the transmitted force be reduced to
an acceptable level? If not, what can be done?

SOLUTION
The maximum allowable transmissibility ratio is
Fr 10,000 N
I =——= : = 0.507
mx "y ew? (0.8 kg m)(157 rad/s)? @

The natural frequency with the isolator in place is

[7 X 10° N/m
= |— = 127. b
o, 430 kg 7.6 rad/s (b)

which leads to a frequency ratio of 1.24 < /2. Use of this isolator actually amplifies the
force transmitted to the floor.

Adequate isolation is achieved only by increasing the frequency ratio, thus decreasing
the natural frequency. The maximum allowable natural frequency is obtained by solving for
r from

1 + (0.29)?
(1 — 9% + (0.20)?

T(r, 0.1) = 0.507 = \/ (o)

Equation (c) is squared and rearranged to yield the following quadratic equation for 7

4 — 2129 — 289 =0 (d)
The appropriate solution is » = 1.75. Thus the maximum natural frequency is
1 d/
o, = % = 89.7 rad/s (e)

If more than one of the described isolator were available, the natural frequency of the system
can be decreased by placing isolators in series. The equivalent stiffness for 7 isolators in
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series is #/n. Further calculations show that at least two isolator pads in series are necessary
to reduce the natural frequency below 89.7 rad/s.

If only one isolator pad is available, the natural frequency is decreased by adding mass
to the machine. A mass of at least 440 kg must be rigidly attached to the machine and the
assembly placed on the existing isolator.

A flow-monitoring device of mass 10 kg is to be installed to monitor the flow of a gas in a
manufacturing process. Because of the operation of pumps and compressors, the floor of
the plant vibrates with an amplitude of 4 mm at a frequency of 2500 rpm. Effective oper-
ation of the flow-monitoring device requires that its acceleration amplitude be limited to 5g.
What is the equivalent stiffness of an isolator with a damping ratio of 0.05 to limit the
transmitted acceleration to an acceptable level? What is the maximum displacement of the
flow-monitoring device and what is the maximum deformation of the isolator?

SOLUTION
The acceleration amplitude of the floor is

2y rev \(, rad)( min}? _ )
= (3500 (2242 oot — s - 75 o
The maximum allowable transmissibility ratio is
L _ex_ 5
mx 2y 2795 ¢
Requiring 7°(r, 0.05) = 0.179, we have

0.179 < 1+ 0.012 ©
) N C
1 —1.9972 + 74

Solution of the preceding equation gives the minimum frequency ratio for which vibrations
are sufficiently isolated. It yields » > 2.60. Thus

=0.179 (b)

®
<2 = 100.
W, < 5 00.6 rad/s (d)

The maximum stiffness of the isolator is
k= mo?=1.01 X 10° N/m (e)

When 7" = 0.179, Equation (4.91) is used to calculate the steady-state amplitude of
the flow-monitoring device as

X= YT = (0.004 m)(0.179) = 0.72 mm )

Since the isolator is placed between the floor and the flow-monitoring device, its deforma-
tion is equal to the relative displacement between the floor and the device.
The steady-state amplitude of the relative displacement is calculated by using
Equation (4.88).
2
Z=AY= =t = 4.69mm ®
VA = 22+ 0
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AEEEEEEE————————————
4.7 VIBRATION ISOLATION FROM

FREQUENCY-SQUARED EXCITATIONS

A special case occurs when the amplitude of the excitation force is proportional to the
square of the excitation frequency, as for the harmonic excitation due to a rotating unbal-
ance. Since the maximum allowable force transmitted to the foundation is independent of
the frequency of excitation, the percentage of isolation required varies with the frequency.
When the excitation is caused by a rotating unbalance, Equation (4.101) becomes

F
— =70 0
moew
or
FT
T ) = R D) (4-104)
0 n

The nondimensional function R (7, {) is defined as

1+ n?
R ) = 72\/(1 s GO (4-105)

R (1, {) is plotted in Figure 4.20. The following is noted about its behavior
1. R(r, {) is asymptotic to the line f(r) = 2{r for large r. That is,
lim R = 24r (4.106)
2. For { < V2/4 = 0.354, R(r, {) increases with increasing », from 0 at » = 0 and
reaches a maximum value. R then decreases and reaches a relative minimum. As 7
increases from the value where the minimum occurs, R grows without bound and

approaches the asymptotic limit given by Equation (4.106). The values of » where the
maximum and relative minimum occur are obtained by setting, dR/dr = 0, yielding

1+ (82— 1)r? + 8222 — Nt + 20%7° =0 (4.107)

Equation (4.107) is a cubic polynomial in 7% It has three roots. One root is the value of
7 where the maximum occurs, another is the value of » where the relative minimum

12

------- £=02353
——¢=05

FIGURE 4.20 0
R(r, {) versus r for several
values of {. p
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10

Value of r for which the mini-
g mum R(r, ) occurs as a func-
tion of .

0 0.1 0.2 0.3 04
4

occurs, and one root is negative and irrelevant. Figure 4.21 shows the value of r for
which the minimum occurs as a function of {. Figure 4.22 shows the corresponding
value of R at its relative minimum.

3. R=2forr= V2 for all values of {.
4. Equation (4.107) has a double root of » = V2 for { = V2/4 = 0.354. The maximum

and minimum coalesce for this value of . For z = 0.354, » = V2 is an inflection
point.

5. For { > \/2/4, Equation (4.107) has no positive roots. Thus R does not reach a
maximum, but grows without bound from R = 0 at » = 0.

If the natural frequency of a system whose vibrations are due to a rotating unbalance
is fixed, Figure 4.20 shows that the transmitted force has a minimum for some value of .
If 7 exceeds this value, the force increases without bound as » increases. If { is small, the
curve in the vicinity of the relative minimum is flat. The transmitted force varies little over
a range of 7. This suggests that for situations where vibrations must be isolated over a range
of excitation frequencies, it is best to chose @  such that the value of 7 at the center of the
operating range is near the value of 7 for which the relative minimum occurs.

The limit process used to develop Equation (4.100) is performed for a fixed value
of w as w is increased. Thus, for a fixed @, the transmitted force approaches m

Oewwn.

Rmin(g )
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The limit of F, as w  goes to zero for a fixed w is zero. Thus decreasing the natural fre-
quency decreases the magnitude of the transmitted force for a specific excitation frequency.
Decreasing the natural frequency such that the minimum is to the left of the operating
range reduces the magnitude of the repeating component of the transmitted force over a
portion of the operating range. However, the transmitted force may vary greatly over the
operating range.

A 250-kg pump operates at speeds between 1000 and 2400 rpm and has a rotating unbal-
ance of 2.5 kg - m. The pump is placed at a location in an industrial plant where it has
been determined that the maximum repeated force that should be applied to the floor is
F_ . Specify the stiffness of an isolator of damping ratio 0.1 that can be used to reduce the

repeating component of the transmitted force to an acceptable level. Solve for (a) £ =
15,000 N; (b) 7. = 10,000 N.

SOLUTION
If the pump is placed directly on the floor, the repeating component of the transmitted
force is 27,400 N at 1000 rpm and 157,800 N at 2400 rpm. Thus isolation is necessary.
(a) From Figure 4.22, for { = 0.1 the minimum value of R occurs for » = 2.94. If
is chosen such that » = 2.94 is at the center of the operating range, then
1700 rpm

w, = o4 = 578.2 rpm = 60.55 rad/s (a)

At the lower end of the operating range, the frequency ratio is 1.73 and the transmitted
force is

F, = myewR(1.73,0.1)

1 + (0.346)2
[1—(1.73)*]* + (0.346)?

2.5 kg-m (60.55 rad/s)2(1.73)2\/ (b)

14,350 N

At the upper end of the operating range, the frequency ratio is 4.15 and the transmitted
force is

F.= moewan(4.15, 0.1)

1 + (0.830)2
[1 — (4.15)%]* + (0.830)*

(2.5 kg-m) (60.55 rad/s)2(4.15)2\/ (c)

12,630 N

Thus, choosing an isolator such that » = 2.94 corresponds to 1200 rpm will reduce the
transmitted force to less than 15,000 N at all speeds between 1000 and 2400 rpm. The
stiffness of such an isolator is

k= mw? = (250 kg)(60.55 rad/s)*> = 9.17 X 10° N/m (d)
(b) The above analysis works for 7. = 15,000 N but does not work for F,

10,000 N, as the transmitted force at both ends of the operating range is larger than

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Harmonic Excitation of SDOF Systems 241

10,000 N when the center of the operating range corresponds to the minimum value of R.
Setting ;. = 10,000 N for @ = 1000 rpm leads to

x

£ 10,000 N
T(r, 0.1) = —= = ’ = 0.36
( ) myew*  (2.5kg-m) (104.7 rad/s)? 365 (e)
which leads to » = 2.012. Then
104.7 rad/
0 = 0878 ) 02 rads (f)
" 2.102
Then for o = 2400 rpm, » = 4.83 and
F, = mye?R(4.83,0.1) = 9810 N ®)
Thus, the transmitted force is less than 10,000 at all speeds within the operating range and
k= mw?: = (250 kg) (52.02 rad/s)* = 6.77 X 10°N/m (h)

I — ]
4.8 PRACTICAL ASPECTS OF VIBRATION ISOLATION

Vibration isolation is required in a variety of military and industrial applications. Isolation
is required to reduce the force transmitted between a machine and its foundation during
ordinary operation or to isolate a machine from vibrations of its surroundings. Motors are
often isolated to protect mountings from forces arising from harmonic variation of torque
and unbalanced rotors. Electrical components such as transformers and circuit breakers are
isolated to protect surroundings from electromagnetic forces generated in solenoids or as a
result of alternating current. Large harmonic inertia forces are developed by rotating com-
ponents of single-cylinder reciprocating engines. Isolation is required to protect the engine
mounting from these forces. Other machines with rotating components such as fans,
pumps, and presses are often isolated to protect against inherent rotating unbalance.

The maximum stiffness of an isolator required for a particular application is calculated
by using the theory of Section 4.6. A SDOF system using an isolator is modeled as the
simple mass-spring-dashpot system of Figure 4.19(b).

Specifications provided in catalogs of commercially available isolators include allow-
able static deflections. If the isolated system of Figure 4.19 has a minimum required natu-
ral frequency @ , the required minimum static deflection of the isolator is

A =— (4.108)

Isolation of low-frequency vibrations requires a small natural frequency, which leads to a
large isolator static deflection.
The vibration amplitude of a machine during operation is calculated from Equation (4.39)
)
22 M ) (4.109)

0
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Multiplying both sides of the preceding equation by 2 leads to

mX M, §) = A ) (4.110)

£y

where A(r, {) is defined in Equation (4.52). Since vibration isolation requires » > V2 and
A(r, {) decreases and approaches 1 as 7 increases, the steady-state amplitude decreases as
isolation is improved. However, for fixed 7, F|, and @ the steady-state amplitude has a
lower bound given by

5

X> 5 (4.111)

mow
Equations (4.110) and (4.111) show that if an isolator is being designed to provide isola-
tion over a range of frequencies, the steady-state amplitude is greatest at the lowest operat-
ing speed.

Since vibration isolation requires » > V/2, the speeds at which the maximum vibra-
tion amplitude occurs must be passed during start-up and stopping. The maximum vibration
amplitude for a fixed w, is obtained using Equation (4.44) as

X .= Fo—l (4.112)
= i - g
The smaller the natural frequency, the larger the maximum amplitude. In addition, the
larger the damping ratio, the smaller the maximum amplitude.

A large vibration amplitude can lead to ineffective operation of machinery. Large-
amplitude vibrations of machines which must be properly aligned with devices that feed
materials to the machine can lead to improper alignment and improper operation. Many
machine tools require a rigid foundation for effective operation. Equation (4.110) shows
that one way to reduce the amplitude of vibration during operation and the maximum
amplitude is to increase the mass of the isolated system. Equation (4.111) shows that the
only way to reduce the amplitude below a calculated value at a given operating speed is to
increase the system mass. Increasing the mass allows a proportional increase in the stiffness
required to achieve sufficient isolation.

The mass of a system can be increased by rigidly mounting the machine on a block of
concrete. A small machine can be mounted above ground, while a large machine is usually
mounted in a specially designed pit. The static load applied to the isolator and the mount-
ing is increased when the mass of the system is increased.

There are three important considerations in vibration isolator design: the maximum
amplitude during start-up, the steady-state amplitude, and the amplitude of the transmit-
ted force. There are three parameters which can be controlled: 7, @ (or A ), and {. The
three parameters can be adjusted to provide the necessary isolation.

A milling machine of mass 450 kg operates at 1800 rpm and has an unbalance which
causes a harmonic repeated force of magnitude 20,000 N. Design an isolation system to
limit the transmitted force to 4000 N, the amplitude of vibration during operation to
1 mm, and the amplitude of vibration during start-up to 10 mm. Specify the required stiff-
ness of the isolator and the minimum mass that should be added to the machine. Assume
a damping ratio of 0.05.
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SOLUTION
The maximum allowable transmissibility is
4000 N
=— —=0.2 (a)
20,000 N

The minimum frequency ratio is determined by solving

[ 1+ 0.01 r?
02=,/—"77— b
1 —1.9972 4+ 4 ()

which yields » = 2.48 and a maximum natural frequency of
®
w, = e 76.0 rad/s (o)

The maximum amplitude during start-up for the 450-kg machine mounted on an
isolator such that the system natural frequency is 76.0 rad/s is

x = 200,000 N 1

" (450 kg) (76.0 rad/s) 2(0.05) V1 — (0.05)2

The resonant amplitude can be decreased to 10 mm only by increasing the mass to
20,000 N 1

~ (0.01m) (76.0rad/s)? 2(0.05) V1 — (0.05)

When the mass is increased to 3460 kg, the amplitude of vibration of the milling

= 76.9 mm (d)

m

= 3460 kg (e)

machine when operating at 1800 rpm is

20,000 N 1

= = 0.19 mm (f)
The isolator stiffness is calculated by
k= mw? = (3460 kg) (76.0 rad/s)* = 2.0 X 10" N/m (8)

The milling machine should be mounted on a concrete block of mass 3010 kg and the
system isolated by springs with an equivalent stiffness of 2 X 107 N/m.

There are three classes of isolators in general use. The choice of an isolator for a partic-
ular application depends on the constraints noted previously, as well as other factors such
as cost, weight limitations space limitations, the amount of damping required, and envi-
ronmental conditions.

Helical coil steel springs are used as isolators when large static deflection (> 3 c¢m) are
required and a flexible foundation is acceptable. This occurs when good isolation is
required at low operating speeds. Hysteresis in steel springs is low, so discrete viscous
dampers are used in parallel with the springs to provide adequate damping. Steel springs
may be used in combination with other isolation methods when a machine must be
mounted on a concrete block. These isolators can be designed for specific use or can be
obtained commercially.
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Isolators made of elastomers are used in applications where small static deflections are
required. If used for larger static loads, the elastomers are subject to creep, reducing their
effectiveness after a period of time. Caution should be taken in using these isolators in
extreme temperatures. Hysteretic damping inherent in the isolators is usually sufficient.
However, discrete dampers can be employed in conjunction with these isolators. The
damping ratio of an isolator depends on the elastomeric material from which it is made,
the steady-state frequency, and the amplitude. The damping ratio for isolators made of nat-
ural rubber varies little with amplitude but is highly dependent on frequency. The damp-
ing ratio of a natural rubber isolator at 200 Hz is = 0.03, while = 0.09 at 1200 Hz.

Pads made of materials such as cork, felt, or elastomeric resin are often used to isolate
large machines. Pads used to isolate a specific machine can be cut from larger pads. Pads of
prescribed thicknesses can be placed on top of one another, acting as springs in series, to
provide increased flexibility.

e
4.9 MULTIFREQUENCY EXCITATIONS

A multifrequency excitation has the form

F(r) = D F sin (wz + 1) (4.13)

i=1

Without loss of generality, it is assumed that , > 0 for each 7. The steady-state response
due to a multifrequency excitation is obtained using the response for a single-frequency
excitation and the principle of linear superposition. The total response is the sum of the
responses due to each of the individual frequency terms. Thus, the solution of Equation (4.2)
with the excitation of Equation (4.113) is

x() =D X sin(w,r + 1, — ¢,) (4.114)
=1
Mi i
where X, = —— (4.115)
m. W
eq n
2L,
¢, =an| —— (4.16)
! L —r;
@,
n= (4.17)

1
V= 2+ 2r)?

The maximum displacement from equilibrium is difficult to obtain. The maxima of

and M, = M, ) = (4.118)

the trigonometric terms in Equation (4.114) do not occur simultaneously. An upper bound
on the maximum is

X, =2X (4.119)
i=1
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EXAMPLE 4.14

A slider-crank mechanism is used to provide a base motion for the block shown in Figure 4.23.
Plot the maximum absolute displacement of the block as a function of frequency ratio for
a damping ratio of 0.05. The crank rotates with a constant speed, w.

SOLUTION
The instantaneous position of the block relative to point O is

y(t) = 7 coswt + [ cosa (@)

Application of the law of sines gives

sina =

sin wt (b)
Thus

P 2
y(t) = 7 coswt + 11/1—(; sinwt) (c)

Assuming 7// is small, the binomial expansion is used to expand the square root

eV 1/ \2
y() =1— 4(;) + 7 coswt + 4(;) cos2wt + - (d)

where the expansion has been terminated after the term proportional to sin?> w# and the

~

double-angle formula is used to replace sin? wz. The principle of linear superposition and
the theory of Section 4.6 are used to solve for the absolute displacement of the mass

1/7)\? - T
x(t) = /|:1 - - 4<1> :| + rYIsm(wt— /\1 + 2)
EAL T
+ 4(1) 7, sin <2wt— A+ 2) (e)

1+ (2¢r)*
(I =)+ (2r)?

where 7= T(r,{) = ()

273

and /\l, = tan1|:l+(4{21—1)r%:| (8

with 7, =

(h)

w
w
n

FIGURE 4.23

Slider crank mechanism
produces multi-frequency
base motion for SDOF
system.
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1

FIGURE 4.24
Upper bound on absolute displacement as a function of frequency ratio for system with base motion
provided by slider crank mechanism.

and 7, = — 0]
The response is the sum of the responses due to each frequency term plus the response due
to the constant term. The maximum displacement is difficult to attain. Instead an upper
bound is calculated

1/ 7\? . 1/7\?
xmax<[|:l—z<—;)}+771+z<%) 7; (l)

x_Ilversus wlw is plotted in Figure 4.24 for 7// = % and ¢ = 0.05. The graph has two
peaks. The first peak near w/w, = % is smaller than the second peak near w/w, = 1. If
additional terms from the binomial expansion were used, higher harmonics would appear
in the solution. Small peaks on the frequency response curve will appear near values of
w/w, = 1/i where 7 is an even integer. The magnitude of the peaks grows smaller with
increasing 7.

-
4.10 GENERAL PERIODIC EXCITATIONS

4.10.1 FOURIER SERIES REPRESENTATION

Consider the function H(#) of Figure 4.25. It is periodic of period 7. The function is con-
structed such that it is an odd function; that is, if a periodic extension of the function were
performed backward in time (Figure 4.26) and it existed for negative time, then

H(—t) = —H(z) (4.120)
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H
Hy —+
t
T T 3T 2T 5T 3T
2 2 2
—Hy -+
H
| t
T T T\ /1
2 2
Periodic extension of F(z) one period into
negative time.

forall 4, 0 = ¢ = 7. Now consider the function
2
H\(¢) = sin <;t> = sin (w,?) (4.121)
H.,(2) is also a periodic function of period 7. Now consider the function
_ (AT
H,(#) = sin 7t = sin 2w, ) (4.122)

H,(2) is a periodic function of period 7/2. However, a function of period 7, = 772 is also
periodic of period 7; as

T
H(t+T) = Hz(t + 22> = H,(t+ 217)) = H,() (4.123)
Consider the sequence of functions (#) where

]-Iz.(t) = sin (T) = sin (iw, 1) (4.124)

The 7th function in the sequence H(#) is a periodic function of period 7, = 77i. But a func-

tion of period 77i is also periodic of period 7, as

H(t+ T) = ]-Il.(t + zT> = H(r + iT) = H(z) (4.125)
1

0Odd periodic function.
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An even function.

|
T

-T -T T T
2

2
The sequence of functions H(#), for i = 1, 2, 3, . . . is said to be complete over the set

of periodic odd functions, which means that any odd periodic function can be written
as a linear combination of elements of the sequence. That is, there exists constants &,

such that
H(y) = E b, sin (iw,?) (4.126)
i=1
The sequence of partial sums z, = 2”_, b, sin (iw,7) (with appropriate constants) con-

verges to the function of Figure 4.25.
An even function G(¢), illustrated in Figure 4.27, is one where if a periodic extension
were made into negative time

G(—1) = G(1) (4-127)

forall 50 = ¢ = 7. The function G, (#) = 1 is an even function that is periodic of any period.
The function G (#) = cos (2—;’1‘) = cos(w?) is an even periodic function of period 7. Define
the sequence of functions G (#) = cos(iwr), i = 1, 2, 3, . ... The function G(#) is an even
function that is periodic of period 777, and thus, it is also periodic of period 7. The
sequence is complete over the set of even periodic functions, which implies there exists con-
stants «, such that

Glr) = % T+ Su cos (i (4.128)

i=1

A general periodic function is composed of an odd function and an even function, as
in Figure 4.28:

Rr) = G(¢) + H@) (4.129)

|
T

-T -T T T
2 A function that is neither even or odd.
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Which implies that F(#) can be written as

%

a,
F@) = 50 + E[aicos (wit) + b sin (w;)] (4-130)
t=1
where
2mi
0, = io, = K (4.131)

Equation (4.130) is called the Fourier series representation of F(#). The coefficients in the
expansion are called the Fourier coefficients. They are

2 T
4= / F(r)ds (4.132)
TJo
5 T (4-133)
a.=/ F(t)cos(wt)d:r i=1,2, ...
1 T 0 7
5 (7 (4-134)
b = / F(t) sin(wt)dt i=1,2, ...
7 T 0 1

The Fourier series for /(#) has the following properties:

1. The Fourier series representation converges to F(z) at all # where /(#) is continuous for
0=r=T

2. If F(2) has a finite jump discontinuity at 7 the Fourier series representation converges
to %[F (£7) + F(+7)], which is the average value of F(z).

3. The Fourier series representation converges to the periodic extension of F(z) for t >T.

If F(#) is an odd function defined by Equation (4.120), then the Fourier coefficients
a,=0fori=0,1,2,....

5. If F#) is an even function defined by Equations (4.127), then the Fourier coefficients
b.=0fori=1,2,....

One period of a periodic excitation is shown in Figures 4.29(a) through (c). Draw the func-
tion that the Fourier series representations for each of these excitations converge to for the
interval [—27, 27T1].

SOLUTION
(a) The function for the convergence of the Fourier series representation is shown in
Figure 4.29(d). The excitation is even and continuous everywhere.

(b) The function for the convergence of the Fourier series representation for
Figure 4.29(b) is shown in Figure 4.29(e). The function is neither even or odd. It converges
to2+ (=1)]/2=1/2att= —2,—1,0,1, and 2.

(c) The function for the convergence of the Fourier series representation for Figure 4.29(c)
is shown in Figure 4.29(f). The function is odd. It converges to [2 + (—2)]/2 = 0 at £ = —6,
—3,0,3,and 6. At £ = —4, —1, 2, and 5, the Fourier series converges to [0 + 2]/2 = 1. At
t = —5, —2, 1, and 4, the Fourier series converges to [0 + (—2)]/2 = —1.
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i,

o
T !
T
1

o 40
w—+o

FIGURE 4.29
@), (b), and (c) One period of periodic excitations for Example 4.15 parts (a), (b), and (c). (d), (e), and
(f) Functions that Fourier series converges to over [—27,27].

Use of the trigonometric identity for the sine of the sum of two angles and algebraic
manipulation leads to an alternative form for the Fourier series representation

p .
F(t) = 50 + D ¢ sin(w,r + k) (4.135)
i=1

where ¢, = Va? + b? (4.136)

a
— -1 _*
and  k; = tan ) (4.137)
i
1705\ _ 2m 105 N _ @ llw .
Note that tan™(g5¢z) = 5 but tan™ (=75z.) = —¢> or— - The inverse tangent func-
tion has the same argument, but it is multi-valued. A calculator typically evaluates the
inverse tangent between —7/2 and /2. The calculation for k; must be carried out using
the four quadrant evaluation of the inverse tangent. Using MATLAB, this involves using
the function atan2(a, b), where a is the numerator of the inverse tangent function,
and b is in the denominator.
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4.10.2 RESPONSE OF SYSTEMS DUE TO GENERAL
PERIODIC EXCITATION

If F(2) is a periodic excitation for a SDOF system with viscous damping, the differential
equation governing the response of the system is

55-|-2§w5c-|—w2x=L @-i- icsin(wt-&-K) (4.138)
7 7 meq 2 [=1i i i °

The principle of linear superposition is used to determine the response as

1[4 -
x(¢) = meqwi [20 + Z:Ici M sin (0%t + K, — qbl,)} (4-139)

where M, and ¢, are defined in Equation (4.118) and (4.116), respectively.

The principle of linear superposition used to find the steady-state solution of
Equation (4.139) applies, because the Fourier series converges to something at every value
of z. Under this condition, the method applies and the response converges. While the exci-
tation may be discontinuous, the response of the system must be continuous.

EXAMPLE 4.16

A punch press of mass 500 kg sits on an elastic foundation of stiffness # = 1.25 X 10° N/m
and damping ratio { = 0.1. The press operates at a speed of 120 rpm. The punching oper-
ation occurs over 40 percent of each cycle and provides a force of 5000 N to the machine.
The excitation force is approximated as the periodic function of Figure 4.30. Estimate the
maximum displacement of the elastic foundation.

SOLUTION
From the given information, the period of one cycle is 0.5 s and the natural frequency of
the system is 50 rad/s.
The excitation force is periodic, but it is neither an even function nor an odd function.
Its mathematical representation is
Ay = {SOOON 0<t<02s @)
0 0.2s <t <0.5s

The Fourier coefficients for the Fourier series representation for F(z) are

2 02s 0.5s
X < / 5000 N dr + / 0) dt) = 4000 N (b)
0.5s\Jo 0.25

b 0.2s
a. = (/ 5000 N cos 477t dt)
’ 0.5 S 0

B
Il

F()
5000 N ——
FIGURE 4.30
T T T T Force developed during punching
0.2 05 07 1 1.2 1(s) operation of Example 4.16 is periodic.
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000 0.2 000
= 2000 |02 N = 2220 G 08 N ()
i 0 i
2 02s
and b = / 5000 N sin 4777t dt (d)
T 055\ Jo
000 0.2 000
= > — cos 41 it SN = 57,(1 — cos 0.877) N (e)
i 0 i

The Fourier series representation of the excitation force is

F(t) = ?-I—icisin (4mit +k,) (f)

i=1

000
where k, = > —V2(1 — cos0.87i) N (8)
i

(h)

1 — cos 0.87%

wd k- tan_1< sin 0.8 i >

An upper bound on the displacement is

1 a -
X, < (20 + ZCZMJ (i)

mw? =
n i=1

A MATLAB program was written to develop the Fourier series representation for F(z)
and the response of the system, x(#). Figure 4.31 shows the MATLAB generated plots from
which the maximum displacement is determined.

6000

5000 W\/\/\/WVW\/\/M

4000 -

3000

F() (N)

2000

1000 ~

O_

—1000 T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time (s)
(a)
FIGURE 4.31
(a) Fourier series representation for F(t) with 50 terms. (b) x(t) over one period from 50 terms in the
Fourier series representation.
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-3
10 x10
5 -
E
1
0 -
T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time (s)
(b)
FIGURE 4.31
(Continued)

4.10.3 VIBRATION ISOLATION FOR MULTI-FREQUENCY
AND PERIODIC EXCITATIONS

Vibration isolation of a system subject to a multifrequency excitation can be difficult,
especially if the lowest frequency is very low. Consider a system subject to an excitation
composed of 7 harmonics

n
F(t) = D Fsin(w,z+ 1) (4-140)
i=1
The principle of linear superposition is used to calculate the total response of the system
due to this excitation. The principle of linear superposition is also used to calculate the
transmitted force leading to

F(z) = 2”: I(r, O F;sin(wz + §, — A) (4.141)

i=1

.
where 7, = g'. Since the harmonic terms of Equation (4.141) are out of phase, their
maxima occur at different times. A closed-form expression for the absolute maximum
is difficult to attain. The following is used as an upper bound:

Fp < > FET(r, ) (4-142)
i=1
An initial guess for the upper bound is obtained by determining the natural frequency such
that the transmitted force due to the lowest-frequency harmonic only is reduced to 7.
Since additional forces at higher frequencies are present, greater isolation is required.
The natural frequency can be systematically reduced from this initial guess, checking
Equation (4.142), until an upper bound is obtained.
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The 500-kg punch press of Example 4.16 is to be mounted on an isolator such that the max-
imum of the repeating force transmitted to the floor is 1000 N. Determine the required
static deflection of an isolator, assuming a damping ratio of 0.1. What is the resulting max-
imum deflection of the isolator during the punching operation?

SOLUTION
From Example 4.16, the excitation force is periodic and is expressed by a Fourier series as

500012 &G 1
F(r) = 2000 + Tgf\/ 1 — cos 0.8misin (4mir + k) N (a)
i=1?
The 2000 N term is the average force applied to the punch during one cycle. It contributes
to the total static load applied to the floor and is not part of the repeating load. Application
of Equation (4.142) to the repeating components of loading gives

®

50002 LT cos0.8m
1000 > TE—Z 1 — cos0.87: T(r;, {) ()

i=1

where r, = — = ir, ()

An initial guess for an upper bound for the natural frequency is obtained by calculat-
ing 7, such that the transmitted force due to the lowest-frequency harmonic is less than
1000 N. This leads to

000 1+ (0272
1000 = ST\/Z(I — cos 0.8m), ¢ 027) (d)

1 — )2+ (0.2r)?

which gives 7, = 2.06. Defining

o) = V2§ LA G TG @

i=1
it is desired to solve
£(r) = 1000 ()

A lower bound on the value of 7, that solves the preceding equation is 2.06. A trial-and-error
solution using ten terms in the summation is used to determine s leading to 7, = 2.19. For
7, = 2.19, an upper bound for the natural frequency is calculated as
wl 4ar
= = —— = 5.74rad/

©, =509 " 29 O/4radhs ©)
The required static deflection of the isolatoris A = g/wi = 298 mm. The static deflection
is excessive, and a flexible foundation is required. The total static load on the isolator is the

weight of the machine plus the average value of the excitation force, a,/2 = 2000 N. Thus,
the total static load to be supported is

F. . = (500 kg)(9.81 m/s?) + 2000 N = 6905 N (h)
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]
4.11 SEISMIC VIBRATION MEASURING INSTRUMENTS

Time histories of vibrations are sensed using seismic transducers. A transducer is a device that
converts mechanical motion into voltage. A schematic of a piezoelectric transducer is shown
in Figure 4.32. The transducer is mounted on a body whose vibrations are to be measured.
As the vibrations occur, the seismic mass moves relative to the transducer, causing deforma-
tion in the piezoelectric crystal. A charge is produced in the piezoelectric crystal that is pro-
portional to its deformation. The charge is amplified and displayed on an output device. The
measured signal is the motion of the seismic mass relative to the transducer housing,.

4.11.1 SEISMOMETERS

A model of the transducer is shown in Figure 4.33. The piezoelectric crystal is assumed to
provide viscous damping. The purpose of the transducer is to measure the motion of the
body, y(#). However, it actually measures z(#), which is the displacement of the seismic mass
relative to the body. Assume the vibrations of the body are a single-frequency harmonic of
the form

y(t) = Ysinwt (4143)

The displacement of the seismic mass relative to the vibrating body is

Zt) = Z sin(wt — ¢) (4144)
o 2L
where Z = YA(r,{) ¢ = tan I 5
- r
Preload
sprin
pring Housing
Seismic
mass FIGURE 4.
x(1) * —e Output . e .
Piezoelectric Diagram of a piezoelectric crystal trans-
element ducer. As seismic mass moves, a charge is
’ produced in the piezoelectric element that
I is proportional to its deflection. The trans-
() ducer actually measures z(t) = x(t) = y(t).
Seismic
mass
m T Housing
| «n
k "r ¢ FIGURE 4.33
Schematic representation of the trans-

]—l' ducer. The piezoelectric crystal provides
y(®) viscous damping and stiffness.
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and A(r, {) is defined by Equation (4.53) and » = w/w , where @_and { are the natural
frequency and damping ratio of the transducer.

Figure 4.11 shows that A is approximately 1 for large 7(» > 3). In this case the ampli-
tude of the relative displacement which is monitored by the transducer is approximately the
same as the vibration amplitude of the body. From Figure 4.8, it is noted that for large 7, ¢ is
approximately 7. Thus for large 7, the transducer response is approximately that of the
response to be measured, but out of phase by 7 radians.

A seismic transducer that requires a large frequency ratio for accurate measurement is
called a seismometer. A large frequency ratio requires a small natural frequency for the trans-
ducer. This, in turn, requires a large seismic mass and a very flexible spring. Because of the
required size for accurate measurement, seismometers are not practical for many applications.

The percentage error in using a seismic transducer is

Y;ctual B Kneasured
E=100———— (4145)
actual
When using a seismometer the percentage error is
Y-z
E=100[=— | = 1001 = A (4.146)
4.11.2 ACCELEROMETERS
The acceleration of the body is
y(t) = —w?Ysin wr (4147)
Noting that Z/Y = A(r, {) and A = #M(r, {) leads to
Z Z
y(2) = —wZMsin wt = —wzmsin wt = —wiﬁsin wt (4.148)
Comparing Equation (4.144) to Equation (4.148) makes it apparent that
. o’ ¢
y(@) = M, 0) z\ ¢ » » (4-149)

The negative sign in Equation (4.148) is taken into account in Equation (4.149) by sub-
tracting 7 from the phase. For small r, M(r, {) is approximately 1, and

J@) = o’z r— ¢_= (4.150)
0w

Thus, for small 7, the acceleration of the particle to which the seismic instrument is
attached is approximately proportional to the relative displacement between the particle
and the seismic mass, but on a shifted time scale. A vibration measuring instrument that
works on this principle is called an accelerometer. The transducer in an accelerometer
records the relative displacement, which is electronically multiplied by w?, which is the
square of the natural frequency of the accelerometer. The acceleration is integrated twice to
yield the displacement.
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The natural frequency of an accelerometer must be high to measure vibrations accu-
rately over a wide range of frequencies. The seismic mass must be small and the spring stiff-
ness must be large. The error in using an accelerometer is

0’V — 0’2

p 1
E=100|——="—| = 100|1 — SA(r {)| = 100|1— M(» {)| (4.151)
?*Y r?

Consider the measurement of the vibration of a multifrequency vibration,

" (4.152)
y(r) = E Visin (0,7 + )

i=1
According to the theory of Section 4.9 (the principle of linear superposition), the displace-
ment of a seismic mass relative to the housing of a seismic instrument is

i/\(ri, OYsin(wr + &, — ¢,)

i=1

(4.153)

z(t)

- % 2w?M(ri, O Ysin(w,r + U, — )

The accelerometer measures —w?z(#). Note that each term in the summation of
Equation (4.153) has a different phase shift. When summed, the accelerometer output will
be distorted from the true measurement. This phase distortion is illustrated in
Figure 4.34(a), which compares the accelerometer output to the signal to be measured for
a 10-frequency vibration. The damping ratio of the accelerometer is 0.25, and the largest
frequency ratio in the measurement is 0.66.

Accelerometers are used only when 7 << 1. In this frequency range, the phase shift is
approximately linear with 7 for { = 0.7 (See Figure 4.8). Then

w,;
¢, =a— (4-154)
w

40

30 ,'|“/ w%z(l) [measured by accelerometer, =0.25]

11 a(t) [actual]

20 4

Comparison of a(t), which is
the acceleration to be meas-
ured, and ®?z(), which is
the acceleration actually
measured or predicted, for a
vibration composed of 10
different frequencies. (a)
The phase distortion is obvi-
’ ous with an accelerometer
damping ratio 0.25. (b) The
-30 T T T T T accelerometer damping ratio
0 05 1 15 2 25 3 is 0.7, which eliminates the
1s) phase distortion, giving a
(a) phase shift.

2(1)

2

n

—_

(=)
I

a(t) and @

—10
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\
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FIGURE 4.34 25

(Continued) 20 1|l @27(1) [predicted by Eq. (3.119), £ =0.7]
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where « is the constant of proportionality. Using Equation (4.154) in Equation (4.153)
leads to

1

z(t) = e iM(”p Y sin|w|t— % + 4, (4.155)

n i=1 n

Ifr,<<1,then M (r,{) = 1fori=1,2,...,nand

1 .. o
R ——ylt— — .156
() wiy - (4-156)

n-

Thus, when an accelerometer with { = 0.7 is used, its output device duplicates the actual
acceleration, but on a shifted time scale. This is illustrated in Figure 4.34(b), which com-
pares the use of Equation (4.153) with ¢ = 0.7 to the actual acceleration for the example
of Figure 4.34(a).

EXAMPLE 4.18
What is the smallest natural frequency of an accelerometer of damping ratio 0.2 that meas-

ures to vibrations of a body vibrating at 200 Hz with an error of a 2 percent?

SOLUTION
Requiring that the error in the measurement is less than 2 percent is equivalent to requir-
ing that

100]1 — M(r,0.2)| < 2 @)

Since the damping ratio is 0.2, which is less than 1/ /2, M(r, 0.2) > 1 near » = 0. Thus,
Equation (a) is equivalent to

M (r,0.2) < 1.02 (b)
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or
1

V1 = 7?2 + [20.2)7]

< 1.02 (©)

Equation (c) is solved leading to » < 0.146 or » > 1.349. However, the accelerometer
works on the principle of small , so the second solution is rejected. It is also rejected
because for some » > 1.349, M(r, 0.2) < 0.98 and when the error in the accelerometer
measurement is greater than 2 percent. Thus, it is required that » < 0.146, leading to

( cycles) < 2 rad)

200

® s cycle rad
s

w
— < 0.146=> > =
© “n 70,146 0.146

n

= 8.60 X 10> — (d)

R
4.12 COMPLEX REPRESENTATIONS

The use of complex algebra provides an alternative method to the solution of the differen-
tial equations governing the forced response of systems subject to harmonic excitation. It
can prove to be less tedious than the use of trigonometric solutions. Recall that if Q is a
complex number, it has the representation

Q=Q,+iQ,; (4-157)
where Q= Re (Q) is the real part of Qand Q, = Im (Q) is the imaginary part of Q. The

complex number also has the polar form
Q= Ae™® (4.158)
where A is the magnitude of Q and ¢ is the phase of Q. Euler’s identity

e = cos¢p + isin¢ (4.159)

leads to

A=VQ + Q; (4.160)

and ¢ = tan™! <%> (4.161)

In view of Euler’s identity, it is noted that
cos(wz) = Re (¢ ™) sin (wz) = Im (¢%%) (4162)

Thus the standard form of the differential equation governing the motion of a linear one
degree-of-freedom system subject to a single-frequency sinusoidal excitation can be written as

F,
¥+ 2005+ ol = —Im(e™) (4163)
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Then the solution of Equations (4.163) is the imaginary part of the solution of

E (4-164)
¥+ 2w x+ wx = —e't
m
A solution of Equation (4.164) is assumed as
x(¢) = He'" (4-165)
where H is complex. Substitution of Equation (4.165) into Equation (4.164) leads to
5

mw? — 0* + 2iloo,)

Equation (4.166) can be rewritten by using the definition of the frequency ratio » = w /w
£

mwX(1 — r* + 2il7)

H= (4167)
Multiplying the numerator and denominator by the complex conjugates of the denominator
puts / in its proper form as

F

0
= (1
mo?[(1 — 722 + (2492
Then, from Equations (4.160) and (4.161), H can be written as

— 2 = 247 (4-168)

H=Xe™ (4-169)
Fy 1
where X = 5 (4.170)
MmO N/(1 = 722 + (247
E ip(wt— 2
5| mere? and ¢ = tan_1< & 2) (4.171)
§ 1 =7
éﬁ Equations (4.170) and (4.171) are the same as those derived by using a trigonometric solu-
- tion. The system response is
Real axis _
FIGURE 4.35 x(2) = Im (Xe ") = Xsin(wt — ¢) (4-172)

Graphical representation
of excitation and response . .
in complex plane. shown in Figure 4.35.

A —————————
4.13 SYSTEMS WITH COULOMB DAMPING

A graphical interpretation of the complex representation of the excitation and response is

The differential equations derived using the free-body diagram of Figure 4.36 governing
the response of a one degree-of-freedom system with Coulomb damping due to a harmonic
excitation are

mx + kx = Fysin (0r + §) — Ff x>0 (4.1733)
mx + kx = F sin (0r+ §) + 13, x<0 (4.173b)

where F.= pmg s the magnitude of the friction force.
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mg
FBDs for systems subject
Fysinor = i to Coul(}mb d'am.plng and a
harmonic excitation at an
arbitrary instant for (a)
Fy=cemg %> 0and (b) % < 0.
N
(@)
mg
R b FO sinwt = et FNLX
Fp= ccmg ——»
N
External Effective
forces forces
(b)

If the initial displacement and velocity are both zero, motion commences only when
the excitation force is as large as the friction force. Motion will continue until the resultant
of the spring force and the excitation force is less than the friction force,

| kx — Fysinwt| < F=%=0 (4.174)

The resultant eventually grows large enough such that the inequality in Equation (4.174)
is no longer satisfied, when motion again commences. This process is known as stick-slip
and can occur several times during one cycle of motion.

Equation (4.173) is nonlinear. Thus, the principles guiding the solution of linear dif-
ferential equations are not applicable. Specifically, the general solution cannot be written
as a homogeneous solution independent of the excitation plus a particular solution. Thus,
even though free vibrations of a system with Coulomb damping decay linearly and even-
tually cease, it is not possible to predict the particular solution as a steady-state solution.
Indeed, from the preceding discussion, the stick-slip process should occur for large time
and cannot be predicted by a particular solution.

The analytical solution to Equation (4.173) can be attained using a procedure similar
to that of Section 3.7 used to obtain the free-vibration response of a system subject to
Coulomb damping. The solution of Equations (4.173a and b) are readily available over the
time that the equation governs. The constants of integration are determined by noting that
the velocity is zero and the displacement is continuous at the time when the equation first
begins to govern. Equation (4.174) must be checked over each half-cycle to determine if
and when the mass sticks.

The analytical solution is very involved and difficult to use to predict long-term behav-
ior. In many applications only the maximum displacement is of interest. It is a function of
five parameters

X=fim o, 0, L F) (4.175)
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Using [M], [L], and [T] as basic dimensions, the Buckingham Pi theorem implies that
the nondimensional formulation involves 6 — 3 = 3 dimensionless groups. The non-
dimensional formulation of Equation (4.176) is

mwX 50 ( )
= flr, 1 4.176
F,
where Ff (4177)
L =—
F,

For small ¢, the friction force is much less than the magnitude of the excitation force, and
it is expected that the transient solution will decrease as 7 increases and a harmonic steady
state of the form

x() = Xsin(wt — ¢) (4-178)

exists for large #. In this case the effects of Coulomb damping can be reasonably approxi-
mated by an equivalent viscous damping model as discussed in Section 3.9. The equivalent
viscous damping coefficient for Coulomb damping is

4

-7 .
“ " rw X (4-179)
An equivalent damping ratio is defined by
c 2F
°q f
= = 180
geq 2mw,  Tmow X (4:180)
Rearrangement of Equation (4.180) leads to
2LF 2t
0
= = 181
9 mmwlX  wrM, (4181)
where M, the magnification factor for Coulomb damping, is
y mw’X
= 182
TR (4.182)
Using ¢, in place of { in Equation (4.42) leads to
1
M(r, 1) = (4183)
‘ 41 \2
=72+ (7ar
which is solved for M, yielding
(=)
1 — _
T
M[(V» 1) = (1 — r2)? (4184)

The magnification factor for Coulomb damping is plotted in Figure 4.37 as a function of
r for several values of v. The following are noted from Equation (4.184) and Figure 4.37.
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M (r, v) versus r for different
values of t using an equivalent
viscous-damping coefficient.

1. The small ¢ theory predicts that M (r, 1) exists only for ¢+ < 7/4. The equivalent
viscous damping theory cannot be used to predict the maximum displacement
for v > /4.

r

1
2. lim, _ M(r 1) = e (4.185)

3. Resonance occurs for systems with Coulomb damping with small ¢ when » = 1.
Resonance occurs because, for small ¢, the excitation provides more energy per cycle
of motion than is dissipated by the friction. Since free vibrations sustain themselves at
the nat