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Temperature Conversion Formulas T(°C) � �
5
9

�[T(°F) � 32] � T(K) � 273.15

T(K) � �
5
9

�[T(°F) � 32] � 273.15 � T(°C) � 273.15

T(°F) � �
9
5

�T(°C) � 32 � �
9
5

�T(K) � 459.67

CONVERSIONS BETWEEN U.S. CUSTOMARY UNITS AND SI UNITS (Continued)

Times conversion factor
U.S. Customary unit

Accurate Practical
Equals SI unit

Moment of inertia (area)
inch to fourth power in.4 416,231 416,000 millimeter to fourth

power mm4

inch to fourth power in.4 0.416231 � 10�6 0.416 � 10�6 meter to fourth power m4

Moment of inertia (mass)
slug foot squared slug-ft2 1.35582 1.36 kilogram meter squared kg·m2

Power
foot-pound per second ft-lb/s 1.35582 1.36 watt (J/s or N·m/s) W
foot-pound per minute ft-lb/min 0.0225970 0.0226 watt W
horsepower (550 ft-lb/s) hp 745.701 746 watt W

Pressure; stress
pound per square foot psf 47.8803 47.9 pascal (N/m2) Pa
pound per square inch psi 6894.76 6890 pascal Pa
kip per square foot ksf 47.8803 47.9 kilopascal kPa
kip per square inch ksi 6.89476 6.89 megapascal MPa

Section modulus
inch to third power in.3 16,387.1 16,400 millimeter to third power mm3

inch to third power in.3 16.3871 � 10�6 16.4 � 10�6 meter to third power m3

Velocity (linear)
foot per second ft/s 0.3048* 0.305 meter per second m/s
inch per second in./s 0.0254* 0.0254 meter per second m/s
mile per hour mph 0.44704* 0.447 meter per second m/s
mile per hour mph 1.609344* 1.61 kilometer per hour km/h

Volume
cubic foot ft3 0.0283168 0.0283 cubic meter m3

cubic inch in.3 16.3871 � 10�6 16.4 � 10�6 cubic meter m3

cubic inch in.3 16.3871 16.4 cubic centimeter (cc) cm3

gallon (231 in.3) gal. 3.78541 3.79 liter L
gallon (231 in.3) gal. 0.00378541 0.00379 cubic meter m3

*An asterisk denotes an exact conversion factor 
Note: To convert from SI units to USCS units, divide by the conversion factor
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Preface to the SI Edition

This edition of Mechanical Vibrations: Theory and Applications has been adapted to

incorporate the International System of Units (Le Système International d’Unités or SI)

throughout the book.

Le Systeme International d'Unites
The United States Customary System (USCS) of units uses FPS (foot-pound-second) units

(also called English or Imperial units). SI units are primarily the units of the MKS (meter-

kilogram-second) system. However, CGS (centimeter-gram-second) units are often accepted

as SI units, especially in textbooks. 

Using SI Units in this Book

In this book, we have used both MKS and CGS units. USCS units or FPS units used in

the US Edition of the book have been converted to SI units throughout the text and prob-

lems. However, in case of data sourced from handbooks, government standards, and prod-

uct manuals, it is not only extremely difficult to convert all values to SI, it also encroaches

upon the intellectual property of the source. Also, some quantities such as the ASTM grain

size number and Jominy distances are generally computed in FPS units and would lose

their relevance if converted to SI. Some data in figures, tables, examples, and references,

therefore, remains in FPS units. For readers unfamiliar with the relationship between the

FPS and the SI systems, conversion tables have been provided inside the front and back

covers of the book.

To solve problems that require the use of sourced data, the sourced values can be con-

verted from FPS units to SI units just before they are to be used in a calculation. To obtain

standardized quantities and manufacturers’ data in SI units, the readers may contact the

appropriate government agencies or authorities in their countries/regions.

Instructor Resources

A Printed Instructor’s Solution Manual in SI units is available on request. An electronic

version of the Instructor’s Solutions Manual, and PowerPoint slides of the figures from the

SI text are available through http://login.cengage.com.

The readers’ feedback on this SI Edition will be highly appreciated and will help us improve

subsequent editions.

The Publishers

''
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vii

Preface

E
ngineers apply mathematics and science to solve problems. In a traditional under-

graduate engineering curriculum, students begin their academic career by taking

courses in mathematics and basic sciences such as chemistry and physics. Students

begin to develop basic problem-solving skills in engineering courses such as statics, dynam-

ics, mechanics of solids, fluid mechanics, and thermodynamics. In such courses, students

learn to apply basic laws of nature, constitutive equations, and equations of state to devel-

op solutions to abstract engineering problems. 

Vibrations is one of the first courses where students learn to apply the knowledge obtained

from mathematics and basic engineering science courses to solve practical problems. While the

knowledge about vibrations and vibrating systems is important, the problem-solving skills

obtained while studying vibrations are just as important. The objectives of this book are two-

fold: to present the basic principles of engineering vibrations and to present them in a frame-

work where the reader will advance his/her knowledge and skill in engineering problem solving. 

This book is intended for use as a text in a junior- or senior-level course in vibrations. It

could be used in a course populated by both undergraduate and graduate students. The latter

chapters are appropriate for use as a stand-alone graduate course in vibrations. The prerequi-

sites for such a course should include courses in statics, dynamics, mechanics of materials, and

mathematics using differential equations. Some material covered in a course in fluid mechan-

ics is included, but this material can be omitted without a loss in continuity.

Chapter 1 is introductory, reviewing concepts such as dynamics, so that all readers are

familiar with the terminology and procedures. Chapter 2 focuses on the elements that com-

prise mechanical systems and the methods of mathematical modeling of mechanical systems.

It presents two methods of the derivation of differential equations: the free-body diagram

method and the energy method, which are used throughout the book. Chapters 3 through 5

focus on single degree-of-freedom (SDOF) systems. Chapter 6 is focused solely on two

degree-of-freedom systems. Chapters 7 through 9 focus on general multiple degree-of-freedom

systems. Chapter 10 provides a brief overview of continuous systems. The topic of Chapter 11

is the finite-element methods, which is a numerical method with its origin in energy meth-

ods, allowing continuous systems to be modeled as discrete systems. Chapter 12 introduces

the reader to nonlinear vibrations, while Chapter 13 provides a brief introduction to random

vibrations.

The references at the end of this text list many excellent vibrations books that address

the topics of vibration and design for vibration suppression. There is a need for this book,

as it has several unique features:

• Two benchmark problems are studied throughout the book. Statements defining the

generic problems are presented in Chapter 1. Assumptions are made to render SDOF

models of the systems in Chapter 2 and the free and forced vibrations of the systems

studied in Chapters 3 through 5, including vibration isolation. Two degree-of-freedom

system models are considered in Chapter 6, while MDOF models are studied in
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Chapters 7 through 9. A continuous-systems model for one benchmark problem is

considered in Chapter 10 and solved using the finite-element method in Chapter 11.

A random-vibration model of the other benchmark problem is considered in Chapter 13.

The models get more sophisticated as the book progresses. 

• Most vibration problems (certainly ones encountered by undergraduates) involve the

planar motion of rigid bodies. Thus, a free-body diagram method based upon

D’Alembert’s principle is developed and used for rigid bodies or systems of rigid bod-

ies undergoing planar motion.

• An energy method called the equivalent systems method is developed for SDOF sys-

tems without introducing Lagrange’s equations. Lagrange’s equations are reserved for

MDOF systems.

• Most chapters have a Further Examples section which presents problems using con-

cepts presented in several sections or even several chapters of the book.

• MATLAB® is used in examples throughout the book as a computational and graphi-

cal aid. All programs used in the book are available at the specific book website acces-

sible through www.cengage.com/engineering.

• The Laplace transform method and the concept of the transfer function (or the impul-

sive response) is used in MDOF problems. The sinusoidal transfer function is used to

solve MDOF problems with harmonic excitation.

• The topic of design for vibration suppression is covered where appropriate. The design

of vibration isolation for harmonic excitation is covered in Chapter 4, vibration isola-

tion from pulses is covered in Chapter 5, design of vibration absorbers is considered

in Chapter 6, and vibration isolation problems for general MDOF systems is consid-

ered in Chapter 9.

To access additional course materials, please visit www.cengagebrain.com. At the

cengagebrain.com home page, search for the ISBN of your title (from the back cover of

your book) using the search box at the top of the page. This will take you to the product

page where these resources can be found.

The author acknowledges the support and encouragement of numerous people in the

preparation of this book. Suggestions for improvement were taken from many students

at The University of Akron. The author would like to especially thank former students

Ken Kuhlmann for assistance with the problem involving the rotating manometer in

Chapter 12, Mark Pixley for helping with the original concept of the prototype for the soft-

ware package available at the website, and J.B. Suh for general support. The author also

expresses gratitude to Chris Carson, Executive Director, Global Publishing; Chris Shortt,

Publisher, Global Engineering; Randall Adams, Senior Acquisitions Editor; and Hilda

Gowans, Senior Developmental Editor, for encouragement and guidance throughout the

project. The author also thanks George G. Adams, Northeastern University; Cetin

Cetinkaya, Clarkson University; Shanzhong (Shawn) Duan, South Dakota State

University; Michael J. Leamy, Georgia Institute of Technology; Colin Novak, University of

Windsor; Aldo Sestieri, University La Sapienza Roma; and Jean Zu, University of Toronto,
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viii Preface
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C h a p t e r 1

INTRODUCTION

1.1 THE STUDY OF VIBRATIONS
Vibrations are oscillations of a mechanical or structural system about an equilibrium posi-

tion. Vibrations are initiated when an inertia element is displaced from its equilibrium

position due to an energy imparted to the system through an external source. A restoring

force, or a conservative force developed in a potential energy element, pulls the element

back toward equilibrium. When work is done on the block of Figure 1.1(a) to displace it

from its equilibrium position, potential energy is developed in the spring. When the block

is released the spring force pulls the block toward equilibrium with the potential energy

being converted to kinetic energy. In the absence of non-conservative forces, this transfer

of energy is continual, causing the block to oscillate about its equilibrium position. When

the pendulum of Figure 1.1(b) is released from a position above its equilibrium position

the moment of the gravity force pulls the particle, the pendulum bob, back toward equi-

librium with potential energy being converted to kinetic energy. In the absence of non-con-

servative forces, the pendulum will oscillate about the vertical equilibrium position.

Non-conservative forces can dissipate or add energy to the system. The block of 

Figure 1.2(a) slides on a surface with a friction force developed between the block and the

surface. The friction force is non-conservative and dissipates energy. If the block is given a

displacement from equilibrium and released, the energy dissipated by the friction force

eventually causes the motion to cease. Motion is continued only if additional energy is

added to the system as by the externally applied force in Figure 1.2(b).
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2 CHAPTER 1

Vibrations occur in many mechanical and structural systems. If uncontrolled, vibration

can lead to catastrophic situations. Vibrations of machine tools or machine tool chatter can

lead to improper machining of parts. Structural failure can occur because of large dynamic

stresses developed during earthquakes or even wind-induced vibration. Vibrations induced

by an unbalanced helicopter blade while rotating at high speeds can lead to the blade’s fail-

ure and catastrophe for the helicopter. Excessive vibrations of pumps, compressors, turbo-

machinery, and other industrial machines can induce vibrations of the surrounding

structure, leading to inefficient operation of the machines while the noise produced can

cause human discomfort. 

Vibrations can be introduced, with beneficial effects, into systems in which they would

not naturally occur. Vehicle suspension systems are designed to protect passengers from dis-

comfort when traveling over rough terrain. Vibration isolators are used to protect structures

from excessive forces developed in the operation of rotating machinery. Cushioning is used

in packaging to protect fragile items from impulsive forces.

Energy harvesting takes unwanted vibrations and turns them into stored energy. An

energy harvester is a device that is attached to an automobile, a machine, or any system that

is undergoing vibrations. The energy harvester has a seismic mass which vibrates when

excited, and that energy is captured electronically. The principle upon which energy har-

vesting works is discussed in Chapter 4.

Micro-electromechanical (MEMS) systems and nano-electromechanical (NEMS) sys-

tems use vibrations. MEMS sensors are designed using concepts of vibrations. The tip of

(a) (b) mg

T

k

kx

FIGURE 1.1
(a) When the block is displaced
from equilibrium, the force
developed in the spring (as a
result of the stored potential
energy) pulls the block back
toward the equilibrium posi-
tion. (b) When the pendulum is
rotated away from the vertical
equilibrium position, the
moment of the gravity force
about the support pulls the
pendulum back toward the
equilibrium position. x

µ

(a)

kx

mg

N

µmg

x

F F

(b)

kx

mg

N

µmg

FIGURE 1.2
(a) Friction is a non-conserva-
tive force which dissipates
the total energy of the
system. (b) The external force
is a non-conservative force
which does work on the
system
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Introduction 3

an atomic force microscope uses vibrations of a nanotube to probe a specimen.

Applications to MEMS and NEMS are sprinkled throughout this text.

Biomechanics is an area where vibrations are used. The human body is modeled using

principles of vibration analysis. Chapter 7 introduces a three-degree-of-freedom model of

a human hand and upper arm proposed by Dong, Dong, Wu, and Rakheja in the Journal
of Biomechanics.

The study of vibrations begins with the mathematical modeling of vibrating systems.

Solutions to the resulting mathematical problems are obtained and analyzed. The solutions

are used to answer basic questions about the vibrations of a system as well as to determine

how unwanted vibrations can be reduced or how vibrations can be introduced into a

system with beneficial effects. Mathematical modeling leads to the development of princi-

ples governing the behavior of vibrating systems.

The purpose of this chapter is to provide an introduction to vibrations and a review of

important concepts which are used in the analysis of vibrations. This chapter begins with

the mathematical modeling of vibrating systems. This section reviews the intent of the

modeling and outlines the procedure which should be followed in mathematical modeling

of vibrating systems.

The coordinates in which the motion of a vibrating system is described are called the

generalized coordinates. They are defined in Section 1.3, along with the definition of

degrees of freedom. Section 1.4 presents the terms which are used to classify vibrations and

describe further how this book is organized.

Section 1.5 is focused on dimensional analysis, including the Buckingham Pi theorem.

This is a topic which is covered in fluid mechanics courses but is given little attention in

solid mechanics and dynamics courses. It is important for the study of vibrations, as is

steady-state amplitudes of vibrating systems are written in terms of non-dimensional vari-

ables for an easier understanding of dependence on parameters.

Simple harmonic motion represents the motion of many undamped systems and is pre-

sented in Section 1.6.

Section 1.7 provides a review of the dynamics of particles and rigid bodies used in this

work. Kinematics of particles is presented and is followed by kinematics of 

rigid bodies undergoing planar motion. Kinetics of particles is based upon Newton’s second

law applied to a free-body diagram (FBD). A form of D’Almebert’s principle is used to ana-

lyze problems involving rigid bodies undergoing planar motion. Pre-integrated forms of

Newton’s second law, the principle of work and energy, and the principle of impulse and

momentum are presented.

Section 1.8 presents two benchmark problems which are used throughout the book to

illustrate the concepts presented in each chapter. The benchmark problems will be reviewed

at the end of each chapter. Section 1.9 presents further problems for additional study. This

section will be present at the end of most chapters and will cover problems that use con-

cepts from more than one section or even more than one chapter. Every chapter, including

this one, ends with a summary of the important concepts covered and of the important

equations introduced in that chapter.

Differential equations are used in Chapters 3, 4, and 5 to model single degree-of-freedom

(SDOF) systems. Systems of differential equations are used in Chapters 6, 7, 8, and 9 to

study multiple degree-of-freedom systems. Partial differential equations are used in

Chapter 10 to study continuous systems. Chapter 11 introduces an approximate method

for the solution of partial differential equations. Chapter 12 uses nonlinear differential
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4 CHAPTER 1

equations to model nonlinear systems. Chapter 13 uses stochastic differential equations to

study random vibrations. Differential equations are not the focus of this text, although

methods of solution are presented. The reader is referred to a text on differential equations

for a more thorough understanding of the mathematical methods employed.

1.2 MATHEMATICAL MODELING
Solution of an engineering problem often requires mathematical modeling of a physical

system. The modeling procedure is the same for all engineering disciplines, although the

details of the modeling vary between disciplines. The steps in the procedure are presented

and the details are specialized for vibrations problems.

1.2.1 PROBLEM IDENTIFICATION
The system to be modeled is abstracted from its surroundings, and the effects of the sur-

roundings are noted. Known constants are specified. Parameters which are to remain vari-

able are identified.

The intent of the modeling is specified. Possible intents for modeling systems under-

going vibrations include analysis, design, and synthesis. Analysis occurs when all parame-

ters are specified and the vibrations of the system are predicted. Design applications include

parametric design, specifying the parameters of the system to achieve a certain design

objective, or designing the system by identifying its components.

1.2.2 ASSUMPTIONS
Assumptions are made to simplify the modeling. If all effects are included in the modeling

of a physical system, the resulting equations are usually so complex that a mathematical

solution is impossible. When assumptions are used, an approximate physical system is

modeled. An approximation should only be made if the solution to the resulting approxi-

mate problem is easier than the solution to the original problem and with the assumption

that the results of the modeling are accurate enough for the use they are intended. 

Certain implicit assumptions are used in the modeling of most physical systems. These

assumptions are taken for granted and rarely mentioned explicitly. Implicit assumptions

used throughout this book include:

1. Physical properties are continuous functions of spatial variables. This continnum
assumption implies that a system can be treated as a continuous piece of matter. The

continuum assumption breaks down when the length scale is of the order of the mean

free path of a molecule. There is some debate as to whether the continuum assump-

tion is valid in modeling new engineering materials, such as carbon nanotubes.

Vibrations of nanotubes where the length-to-diameter ratio is large can be modeled

reasonably using the continuum assumption, but small length-to-diameter ratio nan-

otubes must be modeled using molecular dynamics. That is, each molecule is treated

as a separate particle.

2. The earth is an inertial reference frame, thus allowing application of Newton’s laws in

a reference frame fixed to the earth.
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3. Relativistic effects are ignored. (Certaintly, velocities encountered in the modeling of

vibrations problems are much less than the speed of light).

4. Gravity is the only external force field. The acceleration due to gravity is 9.81 m/s2 on

the surface of the earth.

5. The systems considered are not subject to nuclear reactions, chemical reactions, exter-

nal heat transfer, or any other source of thermal energy.

6. All materials are linear, isotropic, and homogeneous.

7. The usual assumptions of mechanics of material apply. This includes plane sections

remaining plane for beams in bending and circular sections under torsional loads do

not warp.

Explicit assumptions are those specific to a particular problem. An explicit assumption

is made to eliminate negligible effects from the analysis or to simplify the problem while

retaining appropriate accuracy. An explicit assumption should be verified, if possible, on

completion of the modeling.

All physical systems are inherently nonlinear. Exact mathematical modeling of any

physical system leads to nonlinear differential equations, which often have no analytical

solution. Since exact solutions of linear differential equations can usually be determined

easily, assumptions are often made to linearize the problem. A linearizing assumption leads

either to the removal of nonlinear terms in the governing equations or to the approxima-

tion of nonlinear terms by linear terms. 

A geometric nonlinearity occurs as a result of the system’s geometry. When the dif-

ferential equation governing the motion of the pendulum bob of Figure 1.1(b) is

derived, a term equal to sin � (where � is the angular displacement from the equilib-

rium position) occurs. If � is small, sin � � � and the differential equation is linearized.

However, if aerodynamic drag is included in the modeling, the differential equation is

still nonlinear.

If the spring in the system of Figure 1.1(a) is nonlinear, the force-displacement relation

in the spring may be The resulting differential equation that governs the

motion of the system is nonlinear. This is an example of a material nonlinearity. The

assumption is often made that either the amplitude of vibration is small (such that

and the nonlinear term neglected).

Nonlinear systems behave differently than linear systems. If linearization of the differ-

ential equation occurs, it is important that the results are checked to ensure that the lin-

earization assumption is valid.

When analyzing the results of mathematical modeling, one has to keep in mind that

the mathematical model is only an approximation to the true physical system. The actual

system behavior may be somewhat different than that predicted using the mathematical

model. When aerodynamic drag and all other forms of friction are neglected in a mathe-

matical model of the pendulum of Figure 1.1(b) then perpetual motion is predicted for the

situation when the pendulum is given an initial displacement and released from rest. Such

perpetual motion is impossible. Even though neglecting aerodynamic drag leads to an

incorrect time history of motion, the model is still useful in predicting the period, fre-

quency, and amplitude of motion.

Once results have been obtained by using a mathematical model, the validity of all

assumptions should be checked.

k3x
3 V k1x

F = k1x + k3x
3.
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6 CHAPTER 1

1.2.3 BASIC LAWS OF NATURE
A basic law of nature is a physical law that applies to all physical systems regardless of the

material from which the system is constructed. These laws are observable, but cannot be

derived from any more fundamental law. They are empirical. There exist only a few basic

laws of nature: conservation of mass, conservation of momentum, conservation of energy,

and the second and third laws of thermodynamics.

Conservation of momentum, both linear and angular, is usually the only physical law

that is of significance in application to vibrating systems. Application of the principle of

conservation of mass to vibrations problems is trivial. Applications of the second and third

laws of thermodynamics do not yield any useful information. In the absence of thermal

energy, the principle of conservation of energy reduces to the mechanical work-energy

principle, which is derived from Newton’s laws.

1.2.4 CONSTITUTIVE EQUATIONS
Constitutive equations provide information about the materials of which a system is made.

Different materials behave differently under different conditions. Steel and rubber behave

differently because their constitutive equations have different forms. While the constitutive

equations for steel and aluminum are of the same form, the constants involved in the equa-

tions are different. Constitutive equations are used to develop force-displacement relation-

ships for mechanical components that are used in modeling vibrating systems.

1.2.5 GEOMETRIC CONSTRAINTS
Application of geometric constraints is often necessary to complete the mathematical mod-

eling of an engineering system. Geometric constraints can be in the form of kinematic rela-

tionships between displacement, velocity, and acceleration. When application of basic laws

of nature and constitutive equations lead to differential equations, the use of geometric

constraints is often necessary to formulate the requisite boundary and initial conditions.

1.2.6 DIAGRAMS
Diagrams are often necessary to gain a better understanding of the problem. In vibrations,

one is interested in forces and their effects on a system. Hence, a free-body diagram (FBD),

which is a diagram of the body abstracted from its surrounding and showing the effect of

those surroundings in the form of forces, is drawn for the system. Since one is interested

in modeling the system for all time, a FBD is drawn at an arbitrary instant of time.

Two types of forces are illustrated on a FBD: body forces and surface forces. A body
force is applied to a particle in the interior of the body and is a result of the body existence

in an external force field. An implicit assumption is that gravity is the only external force

field surrounding the body. The gravity force –(mg) is applied to the center of mass and is

directed toward the center of the earth, usually taken to be the downward direction, as

shown in Figure 1.3.

Surface forces are drawn at a particle on the body’s boundary as a result of the interaction

between the body and its surroundings. An external surface force is a reaction between the

body and its external surface. Surface forces may be acting at a single point on the boundary

of the body, as shown in Figure 1.4(a), or they may be distributed over the surface of the

FIGURE 1.3
The gravity force is directed
toward the center of the
earth, usually taken as the
vertical direction.

mg
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body, as illustrated in Figure 1.4(b). Surface forces also may be the resultant of a stress 

distribution.

In analyzing vibrations, FBDs are generally drawn at an arbitrary instant in the motion

of the body. Forces are labeled in terms of coordinates and system parameters. Constitutive

laws and geometric constraints are taken into consideration. An FBD drawn and annotated

as described, is ready for the basic laws of nature to be applied.

1.2.7 MATHEMATICAL SOLUTION
The mathematical modeling of a physical system results in the formulation of a mathemat-

ical problem. The modeling is not complete until the appropriate mathematics is applied

and a solution obtained. 

The type of mathematics required is different for different types of problems. Modeling

of many statics, dynamics, and mechanics of solids problems leads only to algebraic equa-

tions. Mathematical modeling of vibrations problems leads to differential equations.

Exact analytical solutions, when they exist, are preferable to numerical or approximate

solutions. Exact solutions are available for many linear problems, but for only a few non-

linear problems.

1.2.8 PHYSICAL INTERPRETATION OF MATHEMATICAL RESULTS
After the mathematical modeling is complete, there is still work to be done. Vibrations is

an applied science—the results must mean something. The end result may be generic: to

determine the frequency response of a system due to a harmonic force where a non-dimen-

sional form of the frequency response would be a great help in understanding the behavior

of the system. The reason for the mathematical modeling may be more specific: to analyze

a specific system to determine the maximum displacement. It only remains to substitute

given numbers. The objective of the mathematical modeling dictates the form of the phys-

ical interpretation of the results.

The mathematical modeling of a vibrations problem is analyzed from the beginning

(where the conservation laws are applied to a FBD) to the end (where the results are used).

A variety of different systems are analyzed, and the results of the modeling applied.

1.3 GENERALIZED COORDINATES
Mathematical modeling of a physical system requires the selection of a set of variables that

describes the behavior of the system. Dependent variables are the variables that describe the

physical behavior of the system. Examples of dependent variables are displacement of a par-

ticle in a dynamic system, the components of the velocity vector in a fluid flow problem,

F sinω t

(a)

F(x) sinωt

(b)

FIGURE 1.4
(a) A surface force applied to the beam
may be concentrated at a single point.
(b) A surface force also may be a distrib-
uted load, as shown on the beam.
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8 CHAPTER 1

the temperature in a heat transfer problem, or the electric current in an AC circuit prob-

lem. Independent variables are the variables with which the dependent variables change.

That is, the dependent variables are functions of the independent variables. An independ-

ent variable for most dynamic systems and electric circuit problems is time. The temper-

ature distribution in a heat transfer problem may be a function of spatial position as well

as time. The dependent variables in most vibrations problems are the displacements of

specified particles from the system’s equilibrium position while time is the independent

variable.

Coordinates are kinematically independent if there is no geometric relationship

between them. The coordinates in Figure 1.5(a) are kinematically dependent because

(1.1)

and

(1.2)

In Figure 1.5(b), the cables have some elasticity which is modeled by springs. The coordi-

nates x, y, and � are kinematically independent, because Equations (1.1) and (1.2) are not

applicable due to the elasticity of the cables.

The number of degrees of freedom for a system is the number of kinematically inde-

pendent variables necessary to completely describe the motion of every particle  in the

system. Any set of n kinematically independent coordinate for a system with n degrees of

freedom is called a set of generalized coordinates. The number of degrees of freedom used in

analyzing a system is unique, but the choice of generalized coordinates used to describe the

motion of the system is not unique. The generalized coordinates are the dependent vari-

ables for a vibrations problem and are functions of the independent variable, time. If the

time history of the generalized coordinates is known, the displacement, velocity, and accel-

eration of any particle in the system can be determined by using kinematics.

A single particle free to move in space has three degrees of freedom, and a suitable choice

of generalized coordinates is the cartesian coordinates (x, y, z) of the particle with respect to

a fixed reference frame. As the particle moves in space, its position is a function of time.

A unrestrained rigid body has six degrees of freedom, three coordinates for the dis-

placement of its mass center, and angular rotation about three coordinate axes, as shown in

Figure 1.6(a). However constraints may reduce that number. A rigid body undergoing 

planar motion has three possible degrees of freedom, the displacement of its mass center in

y = r1u =
r1

r2
 

x = r2u

r2

r1

x

y

θ

(a)

r2
r1

x

y

θ

(b)

FIGURE 1.5
(a) The coordinates x, y, and
� are kinematically depend-
ent, because there exists a
kinematic relationship
between them. (b) The coor-
dinates x, y, and � are kine-
matically independent,
because there is no kinematic
relation between them due
to the elasticity of the cables
modeled here as springs.
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a plane, and angular rotation about one axis, as illustrated in Figure 1.6(b). Two rigid

bodies undergoing planar motion have six degrees of freedom, but they may be connected

in a manner which constrains them and reduces the number of degrees of freedom.

y

x

xi + yj + zk

xi + yj

z
(a)

θy

θx

θz

y

x

GG

z
(b)

θz

FIGURE 1.6
(a) The general three-dimen-
sional motion of a rigid body
has six degrees of freedom. Its
mass center is free to move in
three coordinate directions,
and rotation may occur about
three axes. (b) A rigid body
undergoing planar motion has
at most three degree of free-
dom. Its mass center can move
in two directions, and rotation
occurs only about an axis per-
pendicular to the plane of
motion.

EXAMPLE 1 . 1
Each of the systems of Figure 1.7 is in equilibrium in the position shown and undergoes

planar motion. All bodies are rigid. Specify, for each system, the number of degrees of free-

dom and recommend a set of generalized coordinates.

SO LU T I ON
(a) The system has one degree of freedom. If �, the clockwise angular displacement of the

bar from the system’s equilibrium position, is chosen as the generalized coordinate, then a

FIGURE 1.7
(a) through (d) Systems of Example 1.1. Possible generalized coordinates are indicated.

L

(a)

θ G

(b)

θ

x

(c)

x2

x1

(d)

C D

BA

x

φ

θ

ψ
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10 CHAPTER 1

particle initially a distance a from the fixed support has a horizontal position a cos � and a

vertical displacement a sin �.

(b) The system has two degrees of freedom, assuming it is constrained from side-to-

side motion. If �, the clockwise angular displacement of the bar measured from its equilib-

rium position, and x, the displacement of the bar’s mass center measured from equilibrium,

are chosen as generalized coordinates, then the displacement of a particle a distance d to

the right of the mass center is x � d sin �. An alternate choice for the generalized coordi-

nates is x
1
, the displacement of the right end of the bar, and x

2
, the displacement of the left

end of the bar, both measured from equilibrium.

(c) The system has two degrees of freedom. The sliding block is rigidly connected to

the pulley, but the pulley is connected by a spring to the hanging block. Two possible

degrees of freedom are x
1 

(the displacement of the sliding block from equilibrium) and x
2

(the displacement of the hanging mass from the system’s equilibrium position). An alter-

nate choice of generalized coordinates are � (the clockwise angular rotation of the pulley

from equilibrium) and x
2
.

(d) The system has four degrees of freedom. The sliding block is connected by an 

elastic cable to the pulley. The pulley is connected by an elastic cable to bar AB, which is

connected by a spring to bar CD. A possible set of generalized coordinates (all from equi-

librium) is x, the displacement of the sliding block; �, the clockwise angular rotation of the

pulley; �, the counterclockwise angular rotation of bar AB; and �, the clockwise angular

rotation of bar CD.

The systems of Example 1.1 are assumed to be composed of rigid bodies. The rela-

tive displacement of two particles on a rigid body remains fixed as motion occurs.

Particles in an elastic body may move relative to one another as motion occurs. Particles

A and C lie along the neutral axis of the cantilever beam of Figure 1.8, while particle B
is in the cross section obtained by passing a perpendicular plane through the neutral

axis at A. Because of the assumption that plane sections remain plane during displace-

ment, the displacements of particles A and B are related. However, the displacement of

particle C relative to particle A depends on the loading of the beam. Thus, the displace-

ments of A and C are kinematically independent. Since A and C represent arbitrary par-

ticles on the beam’s neutral axis, it is inferred that there is no kinematic relationship

between the displacements of any two particles along the neutral axis. Since there are

an infinite number of particles along the neutral axis, the cantilever beam has an infi-

nite number of degrees of freedom. In this case, an independent spatial variable x,

which is the distance along the neutral axis to a particle when the beam is in equilib-

rium, is defined. The dependent variable, displacement, is a function of the independ-

ent variables x and time, w(x, t).

A C

B

w(x, t)

x

FIGURE 1.8
The transverse displacements of particles A and B are
equal from elementary beam theory. However, no kine-
matic relationship exists between the displacements of
particle A and B particle C. The beam has an infinite
number of degrees of freedom and is a continuous
system.
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1.4 CLASSIFICATION OF VIBRATION
Vibrations are classified by the number of degrees of freedom necessary for their modeling,

the type of forcing they are subject to, and the assumptions used in the modeling.

Vibrations of systems that have a finite number of degrees of freedom are called discrete 
systems. A system with one degree of freedom is called a single degree-of-freedom (SDOF)
system. A system with two or more degrees of freedom is called a multiple degree-of-freedom
(MDOF) system. A system with an infinite number of degrees of freedom is called a contin-
uous system or distributed parameter system.

If the vibrations are initiated by an initial energy present in the system and no other

source is present, the resulting vibrations are called free vibrations. If the vibrations are

caused by an external force or motion, the vibrations are called farced vibrations. If the

external input is periodic, the vibrations are harmonic. Otherwise, the vibrations are said to

be transient. If the input is stochastic, the vibrations are said to be random.

If the vibrations are assumed to have no source of energy dissipation, they are called

undamped. If a dissipation source is present, the vibrations are called damped and are fur-

ther characterized by the form of damping. For example, if viscous damping is present, they

are called viscously damped.
If assumptions are made to render the differential equations governing the vibrations

linear, the vibrations are called linear. If the governing equations are nonlinear, then so are

the vibrations.

Mathematical modeling of SDOF systems is the topic of Chapter 2. Free vibrations of

SDOF systems are covered in Chapter 3 (first undamped, then viscously damped, and finally

with other forms of damping). Forced vibrations of SDOF systems are covered in Chapter 4

(harmonic) and Chapter 5 (transient). Chapter 6 discusses the special case of two degree-of-

freedom systems from the derivation of the differential equations to forced vibrations. The

more general MDOF systems are considered in Chapters 7 through 9. Chapter 7 focuses on

the modeling of MDOF systems, Chapter 8 on the free vibration response of undamped and

damped systems, and Chapter 9 on the forced response of MDOF systems. Chapters 10 and

11 consider continuous systems. The exact free and forced response of continuous systems is

covered in Chapter 10, while Chapter 11 presents a numerical method called the finite-

element method, which is used to approximate continuous systems with a discrete systems

model. Chapter 12 covers nonlinear vibrations. Finally, Chapter 13 covers random vibrations.

1.5 DIMENSIONAL ANALYSIS
An engineer want to run tests to find the correlation between a single dependent variable

and four independent variables,

(1.3)

There are ten values of each independent variable. Changing one variable at a time requires

10,000 tests. The expense and time required to run these tests are prohibitive.

A better method to organize the tests is to use non-dimensional variables. 

The Buckingham Pi theorem states that you count the number of variables, including the

y = f (x1, x2, x3, x4)
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12 CHAPTER 1

dependent variable: call it n. Then count the number of basic dimensions involved in the

variables; call it r. Then you need n � r dimensionless variables or � groups. If n � 6 and

n � 3 there are three � groups, and the relation has a non-dimensional form of

(1.4)

where �
1

is a dimensionless group of parameters involving the dependent variable and �
2

and �
3

are dimensionless groups that involve only the independent parameters.

Usually, the dimensionless parameters have physical meaning. For example, in fluid

mechanics when it is desired to find the drag force acting on an airfoil, it is proposed that

(1.5)

where D is the drag force, v is the velocity of the flow, L is the length of the airfoil, � is the

mass density of the fluid, � is the viscosity of the fluid, and c is the speed of sound in the

fluid. There are six variables which involve three dimensions. Thus, the Buckingham Pi

theorem yields a formulation involving three � groups. The result is

(1.6)

where the drag coefficient is

(1.7)

the Reynolds number is

(1.8)

and the Mach number is

(1.9)

The drag coefficient is the ratio of the drag force to the inertia force, the Reynolds number

is the ratio of the inertia force to the viscous force, and the Mach number is the ratio to

the velocity of the flow to the speed of sound.

Dimensional analysis also can be used when a known relationship exists between a

single dependent variable and a number of dimensional variables. The algebra leads to a

relationship between a dimensionless variable involving the dependent parameter and non-

dimensional variables involving the independent parameters.

M =
v
c

Re =
rvL

m

CD =
D

1

2
rv2L

CD = f (Re, M  )

D = f (v, L, r, m, c)

p1 = f (p2,p3)

EXAMPLE 1 . 2
A dynamic vibration absorber is added to a primary system to reduce its amplitude. The

absorber is illustrated in Figure 1.9 and studied in Chapter 6. The steady-state amplitude

of the primary system is dependent upon six parameters:

• m
1
, the mass of the primary system

• m
2
, the absorber mass

• k
1
, the stiffness of the primary system

• k
2
, the absorber stiffness

• F
0
, the amplitude of excitation

• �, the frequency of excitation
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The equation for the dimensional amplitude is

(a)

Non-dimensionalize this relationship.

SO LU T I ON
The dimensional variables involve three independent basic dimensions: mass, length, and

time. The Buckingham Pi theorem predicts that the non-dimensional relationship between

X
1

and the parameters involve 7 � 3 � 4 non-dimensional parameters. Factor k
2

out of the

numerator and k
1
k

2
out of the denominator, resulting in 

(b)

Multiply both sides by , making both sides dimensionless. Define and

, leading to

(c)p1 = 3 1 - p2

m1v
2

k1

p2 - p2 + am1

k1

+
m2

k1

bv2 + 1
3

p2 =
m2v

2

k2

p1 =
k1x1

F0

k1

F0

X1 =
F0

k1

4 1 -
m2v

2

k2

m1m2v
4

k1k2

- am1

k1

+
m2

k2

+
m2

k1

bv2 + 1

4

X1 = F0
3 k2 - m2v

2

m1m2v
2 - (k2m1 + k1m2 + k2m2)v

2 + k1k2

3

F0 sinωt

Primary
system

Absorber
system

k2

m1

m2

k1

2

k1

2

FIGURE 1.9
Example 1.2 is to determine the non-dimen-
sional form of the steady-state amplitude
of the primary system when an absorber
system is added.
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Define . The final dimensional term in Equation (c) becomes

(d)

The non-dimensional form of Equation (a) is

(e)

1.6 SIMPLE HARMONIC MOTION
Consider a motion represented by

(1.10)

Such a motion is referred to as simple harmonic motion. Use of the trigonometric identity

(1.11)

in Equation (1.10) gives

(1.12)

where

(1.13)

and

(1.14)

Equation (1.12) is illustrated in Figure 1.10. The amplitude, X, is the maximum displace-

ment from equilibrium. The response is cyclic. The period is the time required to execute

one cycle, is determined by

(1.15)

and is usually measured in seconds (s). The reciprocal of the period is the number of cycles

executed in one second and is called the frequency

(1.16)

The unit of cycles/second is designated as one hertz (Hz). As the system executes 

one cycle, the argument of the trigonometric function goes through 2� radians. Thus, 

f =
v

2p

T =
2p
v

f = tan-1aA
B
b

X = 2A2 + B2

x (t ) = X sin (vt + f)

 sin (vt + f) =  sin vt cos f + cos vt sin f

x (t ) = A cos vt + B sin vt

p1 = 3 1 - p2

p3p2 - p2 + (1 + p4) p3 + 1
3

am1

k1

+
m2

k1

bv2 = p3a1 +
m2

m1
b = p3(1 + p4)

p3 =
m1v

2

k1
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1 cycle � 2� radians and the frequency becomes

(1.17)

Thus, � is the circular frequency measured in rad/s. The frequency also may be

expressed in term of revolutions per minute (rpm) by noting that one revolution is the

same as one cycle and there are 60 s in one minute,

(1.18)

The phase angle � represents the lead or lag between the response and a purely sinusoidal

response. If  , the response is said to  “lag” a pure sinusoid, and if  , the response

is said to “lead” the sinusoid.

f 6 0f 7 0

v rpm/s = (v rad/s)a 1 rev

2p rad
b a 60 s

1 min 
b

f = a v
2p

 cycle/sb (2p rad/cycle) = v rad/s

–3

–2

–1

0x(
t)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t

1

2

3 FIGURE 1.10
Illustration of simple har-
monic motion in which � � 0
and the response lags a pure
sinusoid.

EXAMPLE 1 . 3
The response of a system is given by

(a)

Determine (a) the amplitude of motion, (b) the period of motion, (c) the frequency in

Hz, (d) the frequency in rad/s, (e) the frequency in rpm, (f ) the phase angle, and (g) the

response in the form of Equation (1.12)

SO LU T I ON
(a) The amplitude is given by Equation (1.13) which results in

(b)

(b) The period of motion is

(c)

(c) The frequency in hertz is

(d)f =
1

T
=

1
0.209 s = 4.77 Hz

T =
2p

30
 s = 0.209 s

X = 20.0032 + 0.0042 m = 0.005 m

x (t) = 0.003  cos (30t) + 0.004  sin(30t) m
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(d) The frequency in rad/s is

(e)

(e) The frequency in revolutions per minute is

(f)

(f ) The phase angle is

(g)

(g) Written in the form of Equation (1.12), the response is

(h)

1.7 REVIEW OF DYNAMICS
A brief review of dynamics is presented to familiarize the reader with the notation and

methods used in this text. The review begins with kinematics of particles and progresses to

kinematics of rigid bodies. Kinetics of particles is presented, followed by kinetics of rigid

bodies undergoing planar motion.

1.7.1 KINEMATICS
The location of a particle on a rigid body at any instant of time can be referenced to a fixed

cartesian reference frame, as shown in Figure 1.11. Let  i, j, and k be unit vectors parallel

to the x, y, and z axes, respectively. The particle’s position vector is given by

(1.19)

from which the particle’s velocity and acceleration are determined

(1.20)

(1.21)a =
d v
dt

= x
$  (t)i + y 

$ (t)j + z
$  (t)k

v =
d r
dt

= x#  (t)i + y#  (t)j + z#  (t)k

r = x (t)i + y (t)j + z(t)k

x (t) = 0.005 sin(30t + 0.643) m

f = tan-1a0.003
0.004

b = 0.643 rad

v = a20
rad
s
b a 1 rev

2p rad
b a 60 s

1  min 
b = 191.0 rpm

v = 2pf = 30 rad/s

p(x, y, z)
r = xi + yj + zk

k
i

j

FIGURE 1.11
Illustration of the position vector for a particle
in three-dimensional space.
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where a dot above a quantity represents differentiation of that quantity with respect 

to time.

The motion of a particle moving in a circular path centered at A is illustrated in 

Figure 1.12. The motion is characterized by an angular coordinate � measured positive

counterclockwise. The rate of rotation

(1.22)

is called the angular speed and has units of rad/s, assuming the unit of time is in seconds.

The angular acceleration is defined by

(1.23)

and has units of rad/s2.

The position vector of the particle is

(1.24)

where R is the radius of the circle and i
n

is a unit vector instantaneously directed toward

the particle from the center of rotation. Define i
t
as the unit vector instantaneously tangent

to the circle in the direction of increasing � and instantaneously perpendicular to i
n
.

Noting that and the velocity is 

(1.25)

The particle’s acceleration is

(1.26)

Now consider a rigid body undergoing planar motion. That is (1) the mass center

moves in a plane, say the x-y plane and (2) rotation occurs only about an axis perpendicu-

lar to the plane (the z axis), as illustrated in Figure 1.13. Consider two particles on the rigid

body, A and B, and locate their position vectors r
A 

and r
B.

The relative position vector r
B/A

lies in the x-y plane. The triangle rule for vector addition yields

(1.27)

Differentiation of Equation (1.27) with respect to time yields

(1.28)vB = vA + vB>A

rB = rA + rB>A

a = v# =
d(Rvit)

dt
= R 

dv
dt

 it + Rv 
d it

dt
= Rait - Rv2in

v = r# = R 

d in

dt
= Rvit

d in

dt
= -vin,

d it

dt
= -vin

r = R in

a = u
$

 u
#

= v

θ

(a)

R

A A A

r = Rin

θ

(c)

R

at = Rα
an = Rω 2

θ

(b)

R

v = Rω it

FIGURE 1.12
(a) The position vector for a particle moving in a circular path. (b) The velocity for such a particle is
instantaneously tangent to the path of motion. (c) The particle has two components of acceleration.
One component is instantaneously tangent to the path, while the other is directed from the particle to
the center of rotation.
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Since rotation occurs only about the z axis, the motion of B (as viewed from A) is that

of a particle moving in a circular path of radius |r
B/A

| Thus, the magnitude of relative veloc-

ity is given by Equation (1.25) as

(1.29)

and its direction is tangent to the circle made by the motion of particle B, which is perpen-

dicular to r
B/A

. The total velocity of particle B is given by Equation (1.28) and lies in the

x-y plane.

Differentiating of Equation (1.28) with respect to time yields

(1.30)

The acceleration of particle B viewed from particle A is the acceleration of a particle

moving in a circular path centered at A as

(1.31)

Equations (1.28) and (1.30) are known as the relative velocity and relative acceleration

equations, respectively. They and Equations (1.29) and (1.31) are the only equations nec-

essary for the study of rigid-body kinematics of bodies undergoing planar motion.

1.7.2 KINETICS
The basic law for kinetics of particles is Newton’s second law of motion

(1.32)

where the sum of the forces is applied to a free-body diagram of the particle. A rigid body

is a collection of particles. Writing an equation similar to Equation (1.32) for each particle

in the rigid body and adding the equations together leads to

(1.33)

where is the acceleration of the mass center of the body and the forces are summed on a

free-body diagram of the rigid body. Equation (1.33) applies to all rigid bodies.

A moment equation is necessary in many problems. The moment equation for a rigid

body undergoing planar motion is

(1.34)

where G is the mass center of the rigid body and is the mass moment of inertia about an

axis parallel to the z axis that passes through the mass center.

I

aMG = I a

 a

aF = m a

aF = m a

aB = | rB>A |ait - r v2in

aB = aA + aB>A

vB/A = | rB>A |v

rB/Ar�B

r�A

A

B

y

x

y

x

y

x

(a)

vA

vA

A

B

(b)

vA⎪rB/A⎪α

aA

aA

A

B

(c)

⎪rB/A⎪ω 2⎪rB/A⎪ω

FIGURE 1.13
(a) The triangle rule for
vector addition is used to
define the relative position
vector. (b) For a rigid body
undergoing planar motion,
the velocity of B viewed from
A is that of a particle moving
in a circular path centered at
A. (c) The relative acceleration
is that of a particle moving in
a circular path centered at A.
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Equations (1.33) and (1.34) can be used to solve rigid-body problems for planar

motion. In general, the force equation of Equation (1.33) yields two independent equa-

tions, and the moment equation of Equation (1.35) yields one. If the axis of rotation is

fixed, Equation (1.33) may be replaced by

(1.35)

where IO is the moment of inertia about the axis of rotation. In Figure 1.14(a), O is a fixed

axis of rotation, and Equation (1.35) is applicable. In Figure 1.14(b), link BC has does not

have a fixed axis of rotation, and Equation (1.35) is not applicable.

Recall that a system of forces and moments acting on a rigid body can be replaced by

a force equal to the resultant of the force system applied at any point on the body and a

moment equal to the resultant moment of the system about the point where the resultant

force is applied. The resultant force and moment act equivalently to the original system 

of forces and moments. Thus Equations (1.33) and (1.34) imply that the system of exter-

nal forces and moments acting on a rigid body is equivalent to a force equal to applied

at the body’s mass center and a resultant moment equal to . This latter resultant system

is called the system of effective forces. The equivalence of the external forces and the effec-

tive forces is illustrated in Figure 1.15.

The previous discussion suggests a solution procedure for rigid-body kinetics problems.

Two free-body diagrams are drawn for a rigid body. One free-body diagram shows all exter-

nal forces and moments acting on the rigid body. The second free-body diagram shows the

Ia
ma

aMO = IOa

(a)

A C

B

O

(b)

FIGURE 1.14
(a) Rotation about a fixed axis at O. (b) AB has
a fixed axis of rotation at A, but BC does not
have a fixed axis of rotation.

G
G=

FB

ma
Iα

M1

M2

F4

F3

F2

F1

FIGURE 1.15
The system of external forces
and moments acting on a
rigid body undergoing planar
motion is equivalent to the
system of effective forces, a
force equal to applied at
the mass center, and a
moment equal to .I a

m  a
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20 CHAPTER 1

effective forces. If the problem involves a system of rigid bodies, it may be possible to draw

a single free-body diagram showing the external forces acting on the system of rigid bodies

and one free-body diagram showing the effective forces of all of the rigid bodies. Equations

(1.33) and (1.34) are equivalent to

(1.36)

and

(1.37)

taken about any point O on the rigid body. Equations (1.36) and (1.37) are statements of

D’ Alembert’s principle applied to a rigid body undergoing planar motion.

aMOext
= aMOeff

aFext = aFeff

EXAMPLE 1 . 4
The slender rod AC of Figure 1.16(a) of mass m is pinned at B and held hor-

izontally by a cable at C. Determine the angular acceleration of the bar immediately after

the cable is cut.

SO LU T I ON
Immediately after the cable is cut, the angular velocity is zero. The bar has a fixed axis of

rotation at B. Applying Equation (1.35)

(a)

to the FBD of Figure 1.16(b) and taking moments as positive clockwise, we have

(b)

The parallel-axis theorem is used to calculate IB as

(c)

Substituting into Equation (b) and solving for � yields

(d)

A L T ERNAT I V E METHOD
Free-body diagrams showing effective and external forces are shown in Figure 1.16(c). The

appropriate moment equation is

(e)

leading to

(f)

and a =
12g

7L
.

 mg  
L
4

=
1

12
 mL2 + am 

L
4

 ab aL
4
b

1gMB2ext = 1gMB2eff

a =
12g

7L

IB = I + md 2 =
1

12
 mL2 + m aL

4
b2

=
7

48
 mL2

mg  
L
4

= IB a

aMB = a IB a

1I = 1
12mL22
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Determine the angular acceleration of the pulley of Figure 1.17.

SO LU T I ON
Consider the system of rigid bodies composed of the pulley and the two blocks. If  � is the

counterclockwise angular acceleration of the pulley, then, assuming no slip between the

pulley and the cables, block A has a downward acceleration of rA� and block B has an

upward acceleration of rB�.

Summing moments about the center of the pulley, neglecting axle friction in the

pulley, and using the free-body diagrams of Figure 1.17(b) assuming moments are positive

counterclockwise yields

Substituting given values leads to � � 7.55 rad/s2.

mA grA - mB grB = IPa + mB r
2
A a + mB r

2
B a

gMOext
= gMOeff

B CA

3L
4

L
4

L
4

1
12

(a)

G

R

(b)

mg

G
=

R

(c)

mg m

mL2α

α

FIGURE 1.16
(a) System of Example 1.4 where the slender rod is pinned at B and held by the cable at C. (b) FBD
of bar immediately after cable is cut. The problem involves rotation about a fixed axis at B, so

(c) FBD’s showing external forces and effective forces immediately after cable is cut.aM B = IBa.

EXAMPLE 1 . 5

rA
rA = 30 cm
rB = 20 cm
IP = 0.6 kg · m2

mA = 5 kg
mB = 3 kg

mA mB

rB

(a)

mAg

mPg

mBg

R

External forces

(b)

mArAα mBrBα

IPα

External forces

=

FIGURE 1.17
(a) System of Example 1.4. (b) FBDs showing external forces and effective forces.
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1.7.3 PRINCIPLE OF WORK AND ENERGY
The kinetic energy of a rigid body undergoing planar motion is the sum of the translational

kinetic energy and the rotational kinetic energy

(1.38)

If the body has a fixed axis of rotation at O, the kinetic energy is

(1.39)

The work done by a force, F, acting on a rigid body as the point of application of the

force travels between two points described by position vectors rA and rB is

(1.40)

where dr is a differential position vector in the direction of motion. The work done by a

moment acting on a rigid body in planar motion is

(1.41)

If the work of a force is independent of the path taken from A to B, the force is called

conservative. Examples of conservative forces are spring forces, gravity forces, and normal

forces. A potential energy function, V (r), can be defined for conservative forces. The work

done by a conservative force can be expressed as a difference in potential energies 

(1.42)

Since the system of external forces is equivalent to the system of effective forces, the

total work done on a rigid body in planar motion is

(1.43)

When integrated, the right-hand side of Equation (1.43) is equal to the difference in the

kinetic energy of the rigid body between A and B. Thus Equation (1.43) yields the princi-

ple of work-energy,

(1.44)

If all forces are conservative, Equation (1.42) is used in Equation (1.44) and the result

is the principle of conservation of energy

(1.45)

If some external forces are conservative and some are non-conservative, then

(1.46)

where is the work done by all non-conservative forces. Equation (1.44) becomes

(1.47)

Equation (1.47) is the most general form of the principle of work and energy.

TA + VA + UA:BNC
= TB + VB

UA:BNC

UA:B = VA - VB + UA:BNC

TA + VA = TB + VB

TB - TA = UA:B

UA:B = L
rB

rA

m  a # d r + L
uB

uA

 Ia d u

UA:B = VA - VB

UA:B = L
uB

uA

M d u

UA:B = L
rB

rA

F # d r

T = IOv
2

T =
1
2

mv 2 +
1
2
 Iv2
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Express the kinetic energy of each of the systems of Figure 1.18 in terms of the specified

generalized coordinates at an orbitrary instant.

SO LU T I ON
(a) The system is a SDOF system. The angular velocity of the bar is . The velocity of the

mass center of the bar is related to the angular velocity of the bar using the relative veloc-

ity equation . The kinetic energy of the system is calculated using Equation (1.38)

as

(a)

(b) The system has two degrees of freedom. The kinetic energy is calculated using

Equation (1.38) as

(b)T =
1

2
mx# 2 +

1
2
a 1

12
mL2bu2

#

T =
1

2
maL

6
 u
# b2

+
1
2
a 1

12
mL2bu2

#
=

1
18

mL2u2
#

v = L
6 u

#
u
#

EXAMPLE 1 . 6

(c)

(b)

Slender bar
of mass m

θ

y

x

x

I
3r

r

Slender bar
of mass m

θ

2L
3

L
3

(a)

m

2m

FIGURE 1.18
Systems of Example 1.6: (a) SDOF system; (b) two
degree-of-freedom system with one rigid body; and
(c) two degree-of-freedom system composed of
three rigid bodies.
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24 CHAPTER 1

(c) The system has two degrees of freedom. The angular rotation of the pulley is related to

the displacement of the sliding block by . The displacement of the hanging mass is

independent of x. The kinetic energy is the sum of the kinetic energies of the sliding mass,

the pulley, and the hanging mass:

(c)

1.7.4 PRINCIPLE OF IMPULSE AND MOMENTUM
The impulse of the force F between t

1
and t

2
is defined as

(1.48)

The total angular impulse of a system of forces and moments about a point O is

(1.49)

The system momenta at a given time are defined by the system’s linear momentum

(1.50)

and its angular momentum about its mass center for a rigid body undergoing planar

motion

(1.51)

Integrating Equations (1.33) and (1.34) between arbitrary times t
1

and t
2

leads to

(1.52)

and

(1.53)

Equations (1.52) and (1.53) summarize the principle of impulse and momentum for

a system. For a particle application, Equation (1.52) is usually sufficient. For a rigid body

undergoing planar motion, Equation (1.52) can be written (in general) in component

form as two scalar equations. Equation (1.53) is not a vector equation and represents one

equation.

Using an equivalent force system argument similar to that used to obtain Equations

(1.36) and (1.37), it is deduced from Equations (1.52) and (1.53) that the system of

applied impulses is equivalent to the difference between the system momenta at t
1 
and the

system momenta at t
2
. This form of the principle of impulse and momentum, convenient

for problem solution, is illustrated in Figure 1.19 for a rigid body undergoing planar

motion.

HG1
+ JG1:2

= HG2

L1 + I1:2 = L2

HG = Iv

L = m  v

JO1:2
= L

t2

t1

aMO dt

I1:2 = L
t2

t1

Fdt

T =
1

2
(2m)x# 2 +

1
2

I a x#

r
b2

+
1
2

my# 2 =
1
2
a2m +

I
r 2 bx# 2 +

1
2

my# 2

u = x
r
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The slender rod of mass m of Figure 1.20 is swinging through a vertical position with an

angular velocity �
1

when it is struck at A by a particle of mass m/4 moving with a speed

vp. Upon impact the particle sticks to the bar. Determine (a) the angular velocity of the bar

and particle immediately after impact, (b) the maximum angle through which the bar and

particle will swing after impact, and (c) the angular acceleration of the bar and particle

when they reach the maximum angle. 

SO LU T I ON
(a) Let t

1 
occur immediately before impact and t

2
occur immediately after impact. Consider

the bar and the particle as a system. During the time of impact, the only external impulses

are due to gravity and the reactions at the pin support. The principle of impulse and

momentum is used in the following form:

Using the momentum diagrams of Figure 1.20(b), this becomes

(a)

which is solved to yield

(b)v2 =
4L2v1 - 3vpa

4L2 + 3a2

- c am 
L
2
v1b aL

2
b - am

4
vpb (a) +

1
12

mL2v1 d

0 = am 
L
2

 v2b aL
2
b + am

4
 a v2b (a) +

1

12
mL2v2

P
External angular
impulses about O
between t1and t2

Q = P
Angular momentum

about O
at t2

Q - P
Angular momentum

about O
at t1

Q

=

=

∫
t2 F3 dt

t1

∫
t2 F2 dt

t1

∫
t2 F1 dt

t1

∫
t2 M2 dt

t1

mv�2∫
t2 M1 dt

t1

External impulses applied
between t1 and t2

–

–

Iω 2

G

System momenta
at t2

System momenta
at t1

mv�1

Iω 1

G

FIGURE 1.19
Illustration of the principle of
impulse and momentum.

EXAMPLE 1 . 7
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26 CHAPTER 1

(b) Let t
3

be the time when the bar and particle assembly attains its maximum angle.

Gravity forces are the only external forces that do work; hence conservation of energy

applies between t
2

and t
3
. Thus, from Equation (1.45),

(c)

The potential energy of a gravity force is the magnitude of the force times the distance 

its point of application is above a horizontal datum plane. Choosing the datum as the 

T2 + V2 = T3 + V3

m

m
a

A =

=

O

�P

m
4

m
4

m
4

ω1

aω2

mL2ω2

L
2

ω2 m

–

m
4

1
12

mL2ω1
1
12

vP

L
2

ω1

∫
t2mg dt

t1

∫
t2 g dt

t1

∫
t2 Rx dt

t1

∫
t2 Rx dt

t1

(a) External impulses
during impact

–
System momenta

after impact
System momenta

before impact

(b)

= m
4

aα

L
2

αm

mL2α1
12

m
4

g

mg

Rx

Ry

External forces Effective forces

(c)

θmax θmax

FIGURE 1.20
(a) Slender rod of Example 1.7 swinging through the vertical position with angular velocity �

1
when it

is struck by a particle moving with a velocity vp a distance a from the pin support. (b) Impulse and
momentum diagrams for the time immediately before impact and the time immediately after impact.
(c) FBDs when the bar swings through its maximum angle.
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horizontal plane through the support, using Equation (1.38) for the kinetic energy of a

rigid body, and noting T
3 

� 0 yields

(d)

which is solved to yield

(e)

(c) The bar attains its maximum angle at t
3
, �

3
� 0. Summing moments about O using

the free-body diagrams of Figure 1.20(c) assuming moments and positive clockwise gives

(f)

(g)

which is solved to yield

(h)

1.8 TWO BENCHMARK EXAMPLES
Two benchmark examples will be followed throughout the text. The basic problems are

introduced here. Their mathematical models, assuming a SDOF system, are constructed in

Chapter 2 and analyzed under various forcing conditions in Chapters 3 through 5. Two

degree-of-freedom models are introduced in Chapter 6, and more general MDOF system

models are introduced in Chapter 7 and analyzed in Chapters 8 and 9. The first example

continues into Chapters 10 and 11 using a continuous system analysis. The second exam-

ple is continued into Chapter 13 using a random excitation.

1.8.1 MACHINE ON THE FLOOR OF AN INDUSTRIAL PLANT
A 4500-N machine is placed on the floor of an industrial plant, as shown in Figure 1.21(a).

The floor is supported by a W14 � 30 steel beam. The beam is 6 m long, fixed at one

end, and pinned at the other. The machine is placed 3.6 m from the fixed end, as shown

in Figure 1.21(b). The beam has a cross-sectional area of 57 cm2 and a cross-sectional

a = -
(6L + 3a)g sin u

 max 

4L2 + 3a2

= am 
L
2
ab aL

2
b + am

4
aab (a) +

1
12

mL2a

- (mg)aL
2

 sin u
 max 
b - amg

4
b (a sin u

 max 
)

aaMOb
ext

= aaMOb
eff

umax = cos-1 c1 -
(4L2 + 3a2)v2

2

g (12L + 6a)
d

= -mg  
L
2

 cos u
 max 

-
m
4

ga cos umax

1
2

m aL
2
v2b

2

+
1
2
 1
12

mL2v2
2 +

1
2
 m

4
(av2)

2 - mg  
L
2

-
mg

4
a
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28 CHAPTER 1

moment of inertia of 12,112 cm4. The beam’s weight per unit meter is 438 N. Steel has an

elastic modulus of 210 GPa. The basic model is that of a machine on an elastic beam.

Initially, the beam is modeled as a mass-less spring whose stiffness is calculated from

static-beam deflection theory. The inertia of the spring is then taken into account by cal-

culating an equivalent mass for the beam such that its kinetic energy is approximately that

of the kinetic energy of a particle lumped at the location of the machine. This model is

shown in Figure 1.21(c). In Chapter 3, the natural frequency of the system is calculated,

and the free response of the system is examined when subject to an impulsive load. 

First, the beam is modeled without damping. Then the hysteretic damping is modeled

by an equivalent viscous damping model. The machine develops a harmonic force while

operating and the steady-state vibrations of the beam are examined. Then the beam is

assumed to be rigid, and a vibration isolator is designed to protect the beam from large

forces generated during operation of the machine. The machine could be subject to a har-

monic excitation (Chapter 4) or an impulsive loading (Chapter 5).

The inertia of the beam is lumped at the location of the mass and a two-degree-of-

freedom system is assumed as shown in Figure 1.21(d). Natural frequencies of the two

degree-of-freedom system are determined, and the forced response is calculated (Chapter 6).

The same vibration isolator designed for the rigid beam is placed between the machine and

the beam, a multiple degree-of-freedom model is assumed (Chapter 7), and the natural fre-

quencies and mode shapes are calculated (Chapter 8). Then the performance of the vibration

isolator is evaluated (Chapter 9).

A continuous system model is described in Chapter 10, when natural frequencies are

approximated using the Rayleigh-Ritz method. The forced response is obtained by a finite-

element method in Chapter 11.

1.8.2 SUSPENSION SYSTEM FOR A GOLF CART
The design of a suspension system for an automobile is complicated. Some models require

up to eighteen degrees of freedom. The suspension system must be able to handle a wide

variety of road contours. Suspension system performance is often analyzed using random

vibration theory. Thus, a complete analysis is beyond the scope of this book. The focus is

(c) (d)

(a) (b)

w14×30 steel beam

Machine
Machine

Floor

Machine and 
equivalent mass
of beam

Equivalent
stiffness of beam

Beam

Machine

FIGURE 1.21
(a) The analysis of a machine
placed on a floor in an indus-
trial plant is one of the bench-
mark problems. (b) The
problem has been idealized
as a machine mounted on a
fixed-pinned beam. (c) SODF
model of mass on beam
accounting for inertia effects
of beam. (d) A two degree-
of-freedom model of the
machine when a vibration
isolator is placed between
the machine and the beam.
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instead on a simplified model of the suspension system, as shown in Figure 1.22, where this

could serve as the model of a suspension system for a golf cart.

The mass of the empty golf cart is 300 kg. Two golfers and their clubs could add an

addition 300 kg to the mass of the vehicle.

A simplified model for the suspension system is developed in Chapter 2. The analysis

of the golf cart when it encounters a sudden change in terrain contour is analyzed in

Chapter 3, while its performance under a sustained bumpy terrain contour is considered

in Chapter 4. Its performance when it encounters a hole in the road considered in Chapter 5.

A two degree-of-freedom model (which includes the mass of the axle and wheels) is used

in Chapter 6. In Chapter 7, a multiple degree-of-freedom model is developed for the vehi-

cle assuming the front wheels are independent of the rear wheels and the body has a distri-

bution of mass, as shown in Figure 1.22(c). The natural frequencies of the MDOF model

are calculated in Chapter 8, while the forced response is considered in Chapter 9. The effect

of a random input is described in Chapter 13.

1.9 FURTHER EXAMPLES

(d)(c)

v

(b)(a)

v

v
FIGURE 1.22
(a) A suspension system for a
small vehicle such as a golf
cart is the second benchmark
problem. (b) In early chap-
ters, the golf cart is modeled
as a SDOF system. (c) The
analysis grows in complexity
as the chapters progress. In
later chapters, the mass of
the wheel is taken into
account. (d) The distribution
of mass on the body is
considered.

EXAMPLE 1 . 8
The slender bar of Example 1.4 and Figure 1.16 is pinned at A and held in the horizon-

tal position by a cable. The cable is cut at t � 0.

(a) What is the bar’s angular velocity after it has rotated through 10°? 

(b) What are the reactions at the pin support after it has rotated through 10°?
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30 CHAPTER 1

SO LU T I ON
(a) Let position 1 refer to the bar immediately after the cable is cut. Let position 2 refer to

the bar after it has rotated through 10°. All external forces are conservative; thus, conserva-

tion of energy applies between positions 1 and 2 as

(a)

Take the datum for potential energy calculations for the gravity force to be position 1, then 

V
1

� 0, and The kinetic energy in position 1 is zero, and

(b)

Kinematics (the relative velocity equation) is used to relate the velocity of the mass center to

the angular velocity of the bar so that Substituting into Equation (a), we have

(c)

which is solved to yield

(d)

(b) Summing moments about the pin support on the free-body diagrams after the body 

has rotated through 10° are illustrated in Figure 1.23. Taking moments about the pin 

support yields which is the same as the initial value. This is to be expected, as the

external forces are constant, which implies uniformly accelerated motion. Summing forces

using the free-body diagrams according to give

(e)

By equating coefficients of the unit vectors, the reactions are determined as

(f)

(g)Ry = mg a1 -
4

7
 cos 10° +

8

7
 sin 210°b = 0.472mg

Rx = -
4mg

7
 sin 10°(1 + 2 cos 10°) = -0.295mg

+ m 
L
3
a24g

7L
 sin 10°b (-cos 10°i +  sin 10°j)

Rxi + (Ry - mg)j = m 
L
3
a12g

7L
b (- sin10°i - cos10°j)

(gF)ext = (gF)eff

a = 12g
7L ,

v = A
24g

7L
 sin 10° = 0.818A

g

L

0 =
1
2

maL
3
vb2

+
1
2
a 1

12
mL2bv2

2 -
mgL

3
 sin 10°

v = L
3v.

T2 =
1
2

mv 2
2 +

1
2
a 1

12
mL2bv2

2

V2 = - mgL
3  sin 10°.

T1 + V1 = T2 + V2

mg
Ry

Rx

External forces

m α

Effective forces

L
3

mL2α1
12

m ω2L
3

FIGURE 1.23
FBDs after bar of Example 1.8 has rotated through .10°
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Determine the acceleration of the block Figure 1.24(a).

SOLUT ION
The acceleration of the block is assumed to be upward, which is consistent with the assumed

direction of the angular acceleration of the disk. The point on the disk where the cable is

in contact with it has the same acceleration (r�) as the cable. Assuming the cable is inex-

tensible, it has the same acceleration as the block. Summing moments about the mass

center by applying to the FBDs shown in Figure 1.24(b) leads to

(a)

Solving for � gives

(b)

The acceleration of the block is

(c)a = r a = (0.3 m)(68.5 rad/s2) = 20.5 m/s2

a =
M - mgr

I + mr 2 =
(18 N # m) - (1.3 kg)(9.81 m/s2)(0.3 m)

0.09 kg # m2 + (1.3 kg)(0.3 m)2 = 68.5 rad/s2

M - mgr = mra(r) + Ia

(gMO)ext = (gMO)eff

EXAMPLE 1 . 9

0

r

m

M

(a)

M = 18 N · m
m = 1.3 kg
r = 30 cm
I = 0.09 kg · m2

R

mg

M

(b)

External forces Effective forces

=

mpg

mrα

Iα

FIGURE 1.24
(a) System of Example 1.9. (b) FBDs drawn
at an arbitrary instant showing the external
forces and the effective forces.
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A thin disk of mass 5 kg, radius 20 cm, and attached to a spring of stiffness 2000 N/m is

in equilibrium when it is subject to an applied force P � 10 N. The coefficient of friction

between the disk and the surface is 0.1. 

(a) What is the maximum displacement of the disk from its equilibrium position, assum-

ing no slipping between the disk and the surface? 

(b) What is the angular acceleration of the disk immediately after it reaches its maximum

displacement? 

(c) Is the no-slip assumption correct?

SO LU T I ON
(a) Let position 1 refer to the position when the disk is in equilibrium, and let position 2

refer to the position when the disk reaches its maximum displacement. Application of the

principle of work and energy between position 1 and position 2 for the disk gives

(a)

The kinetic energy of the disk in position 1 is zero, because the disk is at rest. The kinetic

energy of the disk in position 2 is zero, because the disk reaches its maximum displacement.

The only source of potential energy is the spring force. The potential energy in the spring

in position 1 is zero, as the spring is unstretched. Letting x be the maximum displacement,

the potential energy in position 2 is

(b)

The friction force does no work, since the disk rolls without slipping. Thus, the velocity of

the point where the friction force is applied is zero. The only non-conservative force is the

applied force P. Its work is

(c)

Substituting into Equation (a),

(d)

or

(e)

(b) Summing moments about the contact point as and using the

free-body diagrams drawn immediately after the disk reaches its maximum displacement

(illustrated in Figure 1.25) yields

(f)

If the disk rolls without slipping, the velocity of the point of contact is identically zero, 

and its acceleration only has an upward component of r�2. Application of the horizontal

-kxr + Pr =
1
2

mr 2a + mar

(gMO )ext = (gMO )eff

x =
2P
k

=
2(10 N)

2000 N/m
= 0.01 m

Px =
1

2
kx 2

U1:2NC
= L

x

0
Pdx = Px

V2 =
1

2
kx 2

T1 + V1 + U1:2NC
= T2 + V2

EXAMPLE 1 . 1 0
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component of the relative acceleration equation between the point of contact and the mass

center yields . Substituting this result into Equation (b) leads to

(g)

(c) Summing moments about the mass center as and using the

free-body diagrams of Figure 1.25 yields

(h)

The maximum value of � from when the motion is initiated to when the disk reaches its

maximum displacement should be used in the calculation. The maximum value occurs in

position 1 when

(i)

and

(j)

The maximum available friction force is �mg � 0.1(5 kg) (9.81 m/s2) � 4.91 N. Since

the friction force is less than the maximum allowable friction force, the disk rolls without

slipping.

F =
1
2

mr a =
1
2

(5 kg)(0.2 m)(6.67 rad/s2) = 3.33 N

a =
2P

3mr
=

2(10 N)

3(5 kg) (0.2 m)
= 6.67 rad/s2

Fr =
1
2

mr 2aQ F =
1
2

mr a 

(gMC)ext = (gMC)eff

a =
2(P - kx)

3mr
=

2310 N - (2000 N/m)(0.01 m)4
3(5 kg)(0.2 m)

= 6.67 rad/s2

a = ra

N

F

P P

External forces Effective forces

kx

mr2α

ma = mrα

mg 1
2

=

FIGURE 1.25
FBDs of system in Example 1.10.
Summing moments about the
point of contact helps to solve for
the angular acceleration assuming
no slipping. Summing moments
about the mass center finds the
friction force which is checked
against the maximum value to
determine if slipping occurs.

EXAMPLE 1 . 1 1
A baseball player holds a bat with a centroidal moment of inertia a distance a from the

bats mass center. His “bat speed” is the angular velocity with which he swings the bat. The

pitched ball is a fastball which reaches the batter with a velocity v. Assuming his swing is a

rigid-body rotation about an axis perpendicular to his hands, where should the batter hit

the ball to minimize the impulse felt by his hands?

SO LU T I ON
When the better hits the ball, it exerts an impulse on the bat: call it B. Since the batter is

holding the bat, he feels an impulse as he hits the ball: call it P. The effect of hitting the

I
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ball is to change the bat speed from �
1

to �
2
. The impulse momentum diagrams of the bat

during the time are shown in Figure 1.26.

Applying the principle of linear impulse and momentum to Figure 1.26 leads to

(a)

Application of the principle of angular impulse and angular momentum about an axis

through the batter’s  hands yields

(b)

Solving Equation (b) for B, we have

(c)

Substituting Equation (c) into Equation (a) and solving for P leads to

(d)

Thus, P � 0 if

(e)

Thus, the angular impulse felt by the batter is zero if b satisfies Equation (e). The location

of b is called the center of percussion.

b = a +
I

ma

P = (v1 - v2)a I + ma2

b
- mab

B =
(I + ma2)

b
(v2 - v1)

Iv1 + mav1(a) - B(b) = Iv2 + mav2(a)

mav1 + P - B = mav2

b

B

=+

=+

a

P

Momenta of bat
immediately before
striking ball

External impulses
during striking ball

System momenta
immediately after
striking ball

Iω1 Iω2

maω2maω1

FIGURE 1.26
Impulse momentum diagrams for Example 1.11 as batter hits ball.

1.10 SUMMARY

1.10.1 IMPORTANT CONCEPTS
• Vibrations are oscillations about an equilibrium position.

• Assumptions may be implicit (such as the continuum assumption) or explicit (such as

neglecting all forms of friction).
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• The number of degrees of freedom used in a system model is the number of kinematically

independent coordinates necessary to describe the motion of every particle in the system.

• Vibrations are classified as free or forced, damped or undamped, linear or nonlinear,

continuous or discrete, and deterministic or random.

• The Buckingham Pi theorem allows calculation of the number of dimensionless param-

eters which are involved in the non-dimensional formulation of an equation derived

from a physical law.

• Kinematics of particles tracks the motion of particles through space through their posi-

tion vector, velocity vector, and acceleration.

• A particle moving in a circular path has a velocity that is instantaneously tangent to the

circle at the point where the particle is located.

• A particle moving in a circular path has two components of acceleration: a tangential

component and a normal component.

• A rigid body undergoes planar motion in the x-y plane if the path of the mass center lies

in x-y plane, and rotation occurs only about the z axis.

• The relative velocity and relative acceleration equations are used to analyze rigid body

dynamics.

• A free-body diagram (FBD) is a diagram of the body, which has been abstracted from

its surroundings, showing the effect of the surroundings in the form of forces.

• Body forces are forces that are applied within the body and are due to an external force

field such as gravity.

• Surface forces are applied to the boundary of the body as a result of contact between the

body and its surroundings.

• Newton’s second law is a basic law of nature written for a particle.

• D’Alembert’s principle applied to a rigid body undergoing planar motion reveals that

the system of external forces is equivalent to the system of effective forces. The effective

forces are a force equal to applied at the mass center and a couple equal to 

• The principle of work and energy is a pre-integrated form of Newton’s second law, The

integration occurs over the path of motion.

• Conservative forces are forces whose work is independent of the path. A potential

energy function, which is a function of position, is defined for conservative forces such

that the work done by the force is the difference in potential energies.

• The principle of impulse and momentum is a pre-integrated form of Newton’s second

law, The integration occurs over time.

1.10.2 IMPORTANT EQUATIONS
Simple harmonic motion

(1.12)

Velocity and acceleration of a particle

(1.20)

(1.21)a = x 
$
i + y

$  j + z 
$
k

v = x#  i + y#  j + z#  k

x (t) = A  sin (vt + f)

Ia.m a
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36 CHAPTER 1

Velocity and acceleration of a particle moving in a circular path

(1.25)

(1.26)

Relative velocity equations

(1.28)

(1.29)

Relative acceleration equations

(1.30)

(1.31)

Newton’s second law as applied to a particle

(1.32)

Newton’s second law for a rigid body

(1.33)

Moment equation for a rigid body undergoing planar motion

(1.34)

D’Alembert’s principle for rigid bodies undergoing planar motion

(1.36)

(1.37)

Work done by a force

(1.40)

Principle of work and energy

(1.47)

Impulse due to a force

(1.48)

Principle of impulse and momentum

(1.52)

Principle of angular impulse and angular momentum

(1.53)HG1
- JG1:2

= HG2

I1 + I1:2 = I2

I1:2 = L
t2

t1

Fdt

TA + VA + UA:BNC
= TB + VB

UA:B = L
rB

rA

F # dr

(gMO)ext = (gMO)eff

1gF2ext = 1gF2eff

gMG = Ia

gF = m a

gF = m a

aB = | rB>A |ait - rv2in

aB = aA + aB>A

vB/A = | rB>A |v

vB = vA + vB>A

a =  Rait - Rv2in

v = Rvit
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PROBLEMS

SHORT ANSWER PROBLEMS
For questions 1.1 through 1.10, indicate whether the statement presented is true or false.

If true, state why. If false, rewrite the statement to make it true.

1.1 The earth can be taken to be an inertial reference frame.

1.2 Systems undergoing mechanical vibrations are not subject to nuclear reactions is

an example of an explicit assumption.

1.3 A basic law of nature is proven only empirically.

1.4 The point of application of surface forces is anywhere in the body.

1.5 The number of degrees of freedom necessary to model a mechanical system is

not unique.

1.6 Distributed parameter systems are another name for discrete systems.

1.7 The Buckingham Pi theorem is used to predict how many non-dimensional

variables are used in a dimensionless formulation of a dimensional relationship.

1.8 A rigid body undergoing planar motion has at most three degrees of freedom.

1.9 A particle traveling in a circular path has a velocity which is in the direction of

the radius.

1.10 The principle of work and energy is derived from Newton’s second law

integrated over time.

Questions 1.11 through 1.25 require a short answer.

1.11 What is the continuum assumption, and what does it imply?

1.12 What is the difference between explicit and implicit assumptions?

1.13 How are constitutive equations used in vibrations modeling?

1.14 What is a free-body diagram (FBD)? How is it used in modeling mechanical

systems?

1.15 What does the following equation represent

1.16 In the equation of Problem 1.15 define (a) X, (b) �, and (c) �.

1.17 The phase angle for a mechanical system is calculated as 26°. Does the response

lead or lag a pure sinusoid?

1.18 What is the distinction between a particle and a rigid body?

1.19 What are the criteria for a rigid body to undergo planar motion?

1.20 The acceleration of a particle traveling in a circular path has two components.

What are they?

1.21 Particle A and particle B are fixed particles on a rigid body undergoing planar

motion. Describe the motion of particle B by an observer fixed at particle A.

1.22 How is the equation applied to a vibrating particle?

1.23 What are the effective forces for a rigid body undergoing planar motion?

1.24 The kinetic energy of a rigid body undergoing planar motion consists of two

terms. What are they? What does each represent?

1.25 State the principle of impulse and momentum.

gF = ma

x (t) = X sin (vt + f)
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126–1.33 How many degrees of freedom are required to model the system of  

Figures SP 1.26 through 1.33? Identify a set of generalized coordinates which

can be used to analyze the system’s motion for each system.

FIGURE SP 1.26 FIGURE SP 1.27

FIGURE SP 1.28
FIGURE SP 1.29

Rigid link

FIGURE SP 1.30 FIGURE SP 1.31
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Beam

FIGURE SP 1.32

Mfingers

Mpalm

Arm

y

y

Mhand

FIGURE SP 1.33

Questions 1.34 through 1.43 require short calculations.

1.34 A particle has a uniform acceleration of 2 m/s2. If the particle starts from rest 

at t � 0. 

(a) Determine the velocity of the particle at t � 5 s.

(b) Determine how far the particle travels in 5 s.

1.35 A particle starts at the origin of a Cartesian coordinate system and moves with a

velocity vector v � 2 cos 2t i � 3 sin 2t j � 0.4 k m/s. 

(a) Determine the magnitude and direction of the particle’s acceleration at 

t � � s.
(b) Determine the particle’s position at t � � s.

1.36 A particle is traveling in a circular path of radius 3 m. The particle starts at 

� � 0 at t � 0 and has a constant speed of 2 m/s.

(a) Where is the particle at t � 2 s?

(b) What  is the acceleration of the particle at t � 2 s?
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1.37 A rigid body of mass 2 kg undergoes planar motion. At a given instant, the

acceleration of its mass center is (5i � 3j) m/s2, and it rotates about the z, axis

with a clockwise angular acceleration of 10 rad/s2. What are the effective forces

at this instant? Where on the body are they applied?

1.38 The velocity of a particle of mass 0.1 kg is (9i � 11j) m/s. Calculate the kinetic

energy of the particle.

1.39 The velocity of the mass center of a rigid body of mass 3 kg undergoing planar

motion is (3i � 4j) m/s. The mass center is 20 cm from the fixed axis of

rotation. Calculate the angular velocity of the body at this instant.

1.40 The kinetic energy of a body that rotates about its centroidal axis is 100 J. The

centroidal mass moment of inertia is 0.03 kg • m2. Calculate the angular

velocity of the body.

1.41 The speed of the mass center of a rigid body undergoing planar motion of mass 

5 kg is 4 m/s. It rotates about the z axis with a clockwise angular velocity 

of 20 rad/s. The mass moment of inertia of the body about its centroidal axis is 

0.08 kg • m2. Calculate the kinetic energy of the body.

1.42 An impulsive force of magnitude 12,000 N is applied to a particle for 0.03 s.

What is the total impulse imparted by this force?

1.43 The force of Figure SP1.43 is applied to a particle of mass 3 kg at rest in

equilibrium. 

(a) What is the total impulse imparted to the particle?

(b) What is the velocity of the particle at t � 2 s?
(c) What is the velocity of the particle at 5 s?

100 N

1 s 2 s 3 s

F

t

FIGURE SP 1.43

FIGURE SP 1.44

1.44 A particle of mass 2 kg is subject to a constant force of 6 N, as shown in 

Figure SP1.44. How far has the particle traveled after 10 s if the particle’s

velocity is 4 m/s initially?

2 kg 6 N

1.45 Match the quantity with the appropriate units (units may be used more than

once, and some units may not be used).

(a) acceleration, a (i) N • s 

(b) velocity, v (ii) m/s2

(c) impulse, I (iii) rad/s2

(d) kinetic energy, T (iv) m/s

(e) linear momentum, L (v) J
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(f ) work done by a force, (vi) rad/s

(g) angular velocity, � (vii) m

(h) angular acceleration, � (viii) rad

(i) force, F (ix) N

CHAPTER PROBLEMS
1.1 The one-dimensional displacement of a particle is

(a) What is the maximum displacement of the particle?

(b) What is the maximum velocity of the particle?

(c) What is the maximum acceleration of the particle?

1.2 The one-dimensional displacement of a particle is

(a) What is the maximum displacement of the particle?

(b) What is the maximum velocity of the particle?

(c) What is the maximum acceleration of the particle?

1.3 At the instant shown in Figure P1.3, the slender rod has a clockwise angular

velocity of 5 rad/s and a counterclockwise angular acceleration of 14 rad/s2. At

the instant shown, determine (a) the velocity of point P and (b) the acceleration

of point P.

x (t) = 0.5e -0.2t sin (5t + 0.24) m

x (t) = 0.5e -0.2t sin 5t m

W1:2

3 m

1 m

10°

14 rad /s2

5 rad /sP

FIGURE P1.3

1.4 A t � 0, a particle of mass 1.2 kg is traveling with a speed of 10 m/s that is

increasing at a rate of 0.5 m/s2. The local radius of curvature at this instant is

50 m. After the particle travels 100 m, the radius of curvature of the particle’s

path is 50 m.

(a) What is the speed of the particle after it travels 100 m?

(b) What is the magnitude of the particle’s acceleration after it travels 100 m?

(c) How long does it take the particle to travel 100 m?

(d) What is the external force acting on the particle after it travels 100 m?
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1.5 The machine of Figure P1.5 has a vertical displacement x(t). The machine has a

component which rotates with a constant angular speed �. The center of mass

of the rotating component is a distance e from the axis of rotation. The center

of mass of the rotating component is as shown at t � 0. Determine the vertical

component of the acceleration of the rotating component.

ω

x(t)

e

FIGURE P1.5

(a)

r

(b)

FIGURE P1.6

1.6 The rotor of Figure P1.6 consists of a disk mounted on a shaft. Unfortunately,

the disk is unbalanced, and the center of mass is a distance e from the center of

the shaft. As the disk rotates, this causes a phenomena called “whirl”, where the

disk bows. Let r be the instantaneous distance from the center of the shaft to

the original axis of the shaft and � be the angle made by a given radius with the

horizontal. Determine the acceleration of the mass center of the disk.

1.7 A 2 tonne truck is traveling down an icy, 10° hill at 80 km/h when the driver

sees a car stalled at the bottom of the hill 76 m away. As soon as he sees the

stalled car, the driver applies his brakes, but due to the icy conditions, a braking

force of only 2000 N is generated. Does the truck stop before hitting the car?

1.8 The contour of a bumpy road is approximated by

What is the amplitude of the vertical acceleration of the wheels of an automobile

as it travels over this road at a constant horizontal speed of 40 m/s?

1.9 The helicopter of Figure P1.9 has a horizontal speed of 33 m/s and a

horizontal acceleration of 1 m/s2. The main blades rotate at a constant speed 

of 135 rpm. At the instant shown, determine the velocity and acceleration of

particle A.

y(x) = 0.03 sin (0.125x) m
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1.10 For the system shown in Figure P1.10, the angular displacement of the thin

disk is given by rad. The disk rolls without slipping

on the surface. Determine the following as functions of time.

(a) The acceleration of the center of the disk.

(b) The acceleration of the point of contact between the disk and the surface.

(c) The angular acceleration of the bar.

(d) The vertical displacement of the block.

(Hint: Assume small angular oscillations � of the bar. Then sin � � �.)

u(t) = 0.03 sin (30t + p
4)

45°

64 cm

A

135 rpm

33 m/s

1 m/s2

FIGURE P1.9

Thin disk of
radius 10 cm

Rigid link

θ(t) = 0.03 sin(30t + –) 

Rigid link

20 cm

4
π

φ

30 cm

FIGURE P1.10
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1.11 The velocity of the block of the system of Figure P1.11 is sin 20t m/s

downward.

(a) What is the clockwise angular displacement of the pulley?

(b) What is the displacement of the cart?

1.12 A 30-kg block is connected by an inextensible cable through the pulley to the

fixed surface, as shown in Figure P1.12. A 20 kg weight is attached to the pulley,

which is free to move vertically. A force of magnitude N tows

the block. The system is released from rest at 

(a) What is the acceleration of the 30-kg block as a function of time?

(b) How far does the block travel up the incline before it reaches a velocity of

60 cm/s?

t = 0.
P = 500(1 + e -t )

y# = 0.02

r2

r1

r1 = 10 cm
r2 = 30 cm

y = 0.02sin20t m/s

FIGURE P1.11 FIGURE P1.12

20 kg

30 kg

45°
µ = 0.3

P

1.13 Repeat Problem 1.12 for a force of 

1.14 Figure P1.14 shows a schematic diagram of a one-cylinder reciprocating one-

cylinder engine. If  at the instant of time shown the piston has a velocity v and

an acceleration a, determine (a) the angular velocity of the crank and (b) the

angular acceleration of the crank in terms of  v, a, the crank radius r, the

connecting rod length and the crank angle 

1.15 Determine the reactions at A for the two-link mechanism of Figure P1.15. The

roller at C rolls on a frictionless surface.

u./,

P = 100t  N.
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1.16 Determine the angular acceleration of each of the disks in Figure P1.16. 

l

�, a

r

θ

B

C
A

3.6 kg

2.4 kg

30°

2 m

2.6 m/s

1.4 m/s2

3 m

FIGURE P1.14

FIGURE P1.16

FIGURE P1.15

20 kg

60 cm

(a) (b)

30 kg

4 kg·m2

180 N

60 cm

270 N

4 kg·m2

1.17 Determine the reactions at the pin support and the applied moment if the bar

of Figure P1.17 has a mass of 50 g.
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1.18 The disk of Figure P1.18 rolls without slipping. Assume if 

(a) Determine the acceleration of the mass center of the disk.

(b) Determine the angular acceleration of the disk.

P = 18 N.

3 m

1 m

θ = 10°

α = 14 rad/s2

ω = 5 rad/s

M

FIGURE P1.17 FIGURE P1.18

P

1.8 kg

20 cm

1.19 The coefficient of friction between the disk of Figure P1.18 and the surface is

0.12. What is the largest force that can be applied such that the disk rolls

without slipping?

1.20 The coefficient of friction between the disk of Figure P1.18 and the surface is

0.12. If what are the following?

(a) Acceleration of the mass center.

(b) Angular acceleration of the disk.

1.21 The 3 kg block of Figure P1.21 is displaced 10 mm downward and then

released from rest. 

(a) What is the maximum velocity attained by the 3-kg block?

(b) What is the maximum angular velocity attained by the disk? 

P = 22 N,

5 kg 3 kg

20 cm

4000 N/m

0.25 kg · m2

FIGURE P1.21
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1.22 The center of the thin disk of Figure P1.22 is displaced 15 mm and released.

What is the maximum velocity attained by the disk, assuming no slipping

between the disk and the surface? 

r r = 25 cm
20,000 N/m

m = 2 kg

FIGURE P1.22 FIGURE P1.23

k
m

µ

1.23 The block of Figure P1.23 is given a displacement and then released.

(a) What is the minimum value of such that motion ensues?

(b) What is the minimum value of such that the block returns to its

equilibrium position without stopping? 

1.24 The five-blade ceiling fan of Figure P1.24 operates at 60 rpm. The distance

between the mass center of a blade and the axis of rotation is 0.35 m. What is

its total kinetic energy?

d

d

d

60 rpm

G

G

13 mm

m = 1.21 kg

m = 4.7 kg

I = 0.96 kg · m2

I = 5.14 kg · m2

Blade

Motor

FIGURE P1.24

1.25 The U-tube manometer shown in Figure P1.25 rotates about axis A-A at a

speed of 40 rad/s. At the instant shown, the column of liquid moves with a

100 cm

40 rad/s
v = 20 m/s
Specific gravity = 1.4
Area = 3 × 10–4 m2

60 cm20 cm

FIGURE P1.25
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speed of 20 m/s relative to the manometer. Calculate the total kinetic energy of

the column of liquid in the manometer.

1.26 The displacement function for the simply supported beam of Figure P1.26 is 

where c � 0.003 m and t is in seconds. Determine the kinetic energy of the beam.

y (x, t) = c sinapx
L
bcosap2A

EI

rAL4
tb

x

y(x, t)

E = 200 × 104 N/m2

I = 1.73 × 10–7 m4

ρ = 7400 kg/m3

A = 1.6 × 10–4 m2

3.1 m

FIGURE P1.27

FIGURE P1.28

FIGURE P1.26

1.27 The block of Figure P1.27 is displaced 1.5 cm from equilibrium and released.

(a) What is the maximum velocity attained by the block?

(b) What is the acceleration of the block immediately after it is released?

12,000 N/m

65 kg

1.28 The slender rod of Figure P1.28 is released from the horizontal position when the

spring attached at A is stretched 10 mm and the spring attached at B is unstretched.

(a) What is the acceleration of the bar immediately after it is released?

(b) What is the maximum angular velocity attained by the bar? 

B

A

y

1000 N/m

m = 1.2 kg

1200 N/m

1 m
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1.29 Let x be the displacement of the left end of the bar of the system in Figure P1.29.

Let represent the clockwise angular rotation of the bar. 

(a) Express the kinetic energy of the system at an arbitrary instant in terms of 

and .

(b) Express the potential energy of an arbitrary instant in terms of and u.x
u
# x#

u

k k

θ

x

4

3L F(t)

FIGURE P1.29

1.30 Repeat Problem 1.29 using as coordinates x
1
, which is the displacement of the

mass  center, and x
2
, which is the displacement of the point of attachment of

the spring that is a distance 3L/4 from the left end.

1.31 Let � represent the clockwise angular displacement of the pulley of the system

in Figure P1.31 from the system’s equilibrium position.

(a) Express the potential energy of the system at an arbitrary instant in terms of �.

(b) Express the kinetic energy of the system at an arbitrary instant in terms of .u
#

2r

2 m

Ip

m
k

2 k

r

θ

FIGURE P1.31

1.32 A 20 tonne railroad car is coupled to a 15 tonne car by moving the 20 tonne

car at 8 km/h toward the stationary 15 tonne car.

(a) What is the resulting speed of the two-car coupling?

(b) What would the resulting speed be if the 15 tonne car is moving at 8 km/h

toward a stationary 20 tonne car?
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1.33 The 15 kg block of Figure P1.33 is moving with a velocity of 3 m/s at t � 0

when the force F(t) is applied to the block.

(a) Determine the velocity of the block at t � 2 s.

(b) Determine the velocity of the block at t � 4 s.

(c) Determine the block’s kinetic energy at t � 4 s.

v

F(t)

30 N15 kg

3 t
µ = 0.08

FIGURE P1.33

1.34 A 400 kg forging hammer is mounted on four identical springs, each of stiffness 

k � 4200 N/m. During the forging process, a 110 kg hammer, which is part 

of the machine, is dropped from a height of 1.4 m onto an anvil, as shown in

Figure P1.34. 

(a) What is the resulting velocity of the entire machine after the hammer is

dropped?

(b) What is the maximum displacement of the machine? 

1.4 m

Drop hammer

Workpiece

Anvil

FIGURE P1.34

1.35 The motion of a baseball bat in a ballplayer’s hands is approximated as a rigid-

body motion about an axis through the player’s hands, as shown in Figure P1.35.

The bat has a centroidal moment of inertia I. The player’s “bat speed” is , and

the velocity of the pitched ball is v. Determine the distance from the player’s

hand along the bat where the batter should strike the ball to minimize the

v
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1.36 A playground ride has a centroidal moment of inertia of 23 km . m2. Three

children of weights 222 N, 222 N, and 222 N are on the ride, which is rotating

at 60 rpm. The children are 76 cm from the center of the ride. A father stops

the ride by grabbing it with his hands. What is the impulse felt by the father? 

Problems 1.37 through 1.39 present different problems that are to be formulated in non-

dimensional form. For each problem answer the following.

(a) What are the dimensions involved in each of the parameters?

(b) How many dimensionless parameters does the Buckingham Pi theorem predict are in

the non-dimensional formulation of the relation between the natural frequencies and

the other parameters?

(c) Develop a set of dimensionless parameters.

1.37 The natural frequencies of a thermally loaded fixed-fixed beam (Figure P1.37)

are a function of the material properties of the beam, including:

E, the elastic modulus of the beam

�, the mass density of the beam

�, the coefficient of thermal expansion

The geometric properties of the beam are

A, its cross-sectional area

I, its cross section moment of inertia

L, its length

Also,

, the temperature difference between the installation and loading¢T

FIGURE P1.35

G

a b

�

ω

L

E, I, A, P, α, ∆T

FIGURE P1.37

impulse felt by the his/her hands. Does the distance change if the player

“chokes up” on the bat, reducing the distance from G to his/her hands.
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1.38 The drag force F on a circular cylinder due to vortex shedding is a 

function of

the velocity of the flow

the dynamic viscosity of the fluid

the mass density of the fluid

the length of the cylinder

the diameter of the cylinder

1.39 The principal normal stress 	 due to forcing of a beam with a concentrated

harmonic excitation is a function of

, the amplitude of loading

the frequency of the loading

the elastic modulus of the beam

the mass density of the beam

the beam’s cross-sectional area

the beam’s cross-sectional moment of inertia

the beam’s length

the location of the load along the axis of the beam

1.40 A MEMS system is undergoing simple harmonic motion according to

(a) What is the period of motion?

(b) What is the frequency of motion in Hz?

(c) What is the amplitude of motion?

(d) What is the phase and does it lead or lag?

(e) Plot the displacement.

1.41 The force that causes simple harmonic motion in the mass-spring system of 

Figure P1.41 is F(t) � 35 sin 30t N. The resulting displacement of the mass is 

x(t) � 0.002 

(a) What is the period of the motion?

(b) The amplitude of displacement is  where is the amplitude of

the force and is a dimensionless factor called the magnification factor.

Calculate M.

(c) M has the form

where is called the natural frequency. If then otherwise

Calculate vn.f = 0.
f = p;vn 6 v,vn

M =
1

` 1 - a v
vn

b2 `

M

F0X =
F0

k
M

 sin (30t - p)m.

x (t ) = 33.1 sin (2 * 105t + 0.48) + 4.8 cos (2 * 105t + 1.74)4 mm

a,
L,
I,
A,
r,
E,
v,
F0

D,
L,
r,
m,
U,
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1.42 The displacement vector of a particle is

(a) Describe the trajectory of the particle.

(b) How long does it take the particle to make one circuit around the path? 

r(t) = 32 sin 20t i + 3 cos 20t j4 mm

m

35 sin 30t

3.5 � 104 N/m

FIGURE P1.41
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C h a p t e r 2

MODELING OF
SDOF SYSTEMS

2.1 INTRODUCTION
The basic components of a mechanical system are inertia, stiffness, damping, and a source

of work or energy. Inertia components store kinetic energy. Stiffness components store poten-

tial energy. Damping components dissipate energy. Energy sources provide energy to the

system.

This chapter begins with a discussion of potential energy sources, mainly springs.

Springs store potential energy, but they don’t require motion to do so. The helical coil

spring serves as the model for all linear springs. Structural components, such as bars under-

going longitudinal motion, shafts under rotational motion, and beams undergoing trans-

verse vibrations, all store potential energy and can be modeled as springs. Combinations of

springs may be replaced by a single spring of an equivalent stiffness. Hanging springs acting

under gravity store potential energy when in static equilibrium. However, the potential

energy stored in the spring due to deflection from its equilibrium position cancels with the

potential energy due to gravity for a linear system, when  modeling a linear system.

Viscous damping refers to any form of damping in which the friction force is propor-

tional to the velocity. Viscous dampers are inserted into mechanical systems because they

add a linear term in the differential equation. The energy dissipated due to the viscous

damping force is considered and an equivalent viscous damping coefficient is calculated for

a combination of viscous dampers.

An inertia element is anything that has mass or stores kinetic energy. The principles of

dynamics reviewed in Chapter 1 govern the motion of inertia elements. An equivalent mass
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56 CHAPTER 2

can be calculated for a SDOF system when it includes several inertia elements. The inertia

effects of springs and entrained fluids are taken into account with an equivalent 

mass model.

The energy source could be an initial energy present in the system, or it could be an

input to the system in terms of an external force or an imposed motion.

The derivation of differential equations governing the motion of a SDOF is consid-

ered. The free-body diagram method applies Newton’s second law or D’Alembert’s 

principle to free-body diagrams drawn at an arbitrary instant. Nonlinear differential

equations are linearized through application of a small angle or small displacement

assumption.

The equivalent systems method only applies for linear systems. It uses the model of a

linear mass-spring and viscous-damper system for any linear SDOF system. The kinetic

energy calculated at an arbitrary instant is used to determine an equivalent mass. The

potential energy is used to determine an equivalent stiffness. The work done by viscous

damping forces is used to calculate an equivalent viscous damping coefficient. The work

done by external forces is used to calculate an equivalent force.

A second-order linear ordinary differential equation which governs the motion of a

SDOF system results from either method. The equation may be homogeneous (in the case

of free vibrations) or non-homogeneous (in the case of forced vibrations).

2.2 SPRINGS

2.2.1 INTRODUCTION
A spring is a flexible mechanical link between two particles in a mechanical system. In real-

ity a spring itself is a continuous system. However, the inertia of the spring is usually small

compared to other elements in the mechanical system and is neglected. Under this assump-

tion the force applied to each end of the spring is the same. 

The length of a spring when it is not subject to external forces is called its unstretched
length. Since the spring is made of a flexible material, the force F that must be applied to

the spring to change its length by x is some continuous function of x,

(2.1)

The appropriate form of f (x) is determined by using the constitutive equation for the

spring’s material. Since f (x) is infinitely differentiable at x � 0, it can be expanded by a

Taylor series about x � 0 (a MacLaurin expansion):

(2.2)

Since x is the spring’s change in length from its unstretched length, when x � 0, F � 0.

Thus When x is positive, the spring is in tension. When x is negative, the spring

is in compression. Many materials have the same properties in tension and compression.

That is, if a tensile force F is required to lengthen the spring by , then a compressive force

of the same magnitude F is required to shorten the spring by . For these materials,

or f is an odd function of x. The Taylor series expansion of an odd func-

tion cannot contain even powers. Thus, Equation (2.2) becomes

(2.3)F = k1x + k3x
3 + k5x

5 + Á

f  (-x) = - f  (x),
d

d

k0 = 0.

F = k0 + k1x + k2x
2 + k3x

3 + Á

F = f  (x)
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All springs are inherently nonlinear. However in many situations x is small enough that the

nonlinear terms of Equation (2.3) are small compared with k
1
x. A linear spring obeys a

force-displacement law of 

(2.4)
where k is called the spring stiffness or spring constant and has dimensions of force per length.

Thus, for a linear spring, , which is illustrated in Figure 2.1.

The work done by a force is calculated according to Equation (1.40). For a linear

system where the spring force is applied to a particle whose displacement is x, in the hori-

zontal direction the force is represented by –kx i, and the differential displacement vector is

dxi. The work done by the spring force as its point of application moves from a position

described by to a position described by x
2

is

(2.5)

Since the work depends upon the initial and final position of the point of application of

the spring force and not the path of the system, the spring force is conservative. A poten-
tial energy function can be defined for a spring as

(2.6)

where x is the change in the length of the spring from its unstretched length.

A torsional spring is a link in a mechanical system where application of a torque leads to

an angular displacement between the ends of the torsional spring. A linear torsional spring

has a relationship between an applied moment M and the angular displacement of

(2.7)

where the torsional stiffness kt has dimensions of force times length. The potential energy

function for a torsional spring is 

(2.8)

2.2.2 HELICAL COIL SPRINGS
The helical coil spring is used in applications such as industrial machines and vehicle sus-

pension systems. Consider a spring manufactured from a rod of circular cross section of

diameter D. The shear modulus of the rod is G. The rod is formed into a coil of N turns

of radius r. It is assumed that the coil radius is much larger than the radius of the rod and

that the normal to the plane of one coil nearly coincides with the axis of the spring.

Consider a helical coil spring when subject to an axial load F. Imagine cutting the rod

with a knife at an arbitrary location in a coil, slicing the spring in two sections. The cut

exposes an internal shear force F and an internal resisting torque Fr, as illustrated in 

V =
1

2
ktu

2

M = ktu

u

V (x) =
1

2
 k x 2

U1:2 = L
x 2

x1

(-k x )d x = k 
x 2

1

2
- k 

x 2
2

2

x1

k = df
dx

|
x = 0

F = kx

f

x

k = (0) = slope of
 tangent

df
dx

tangent
at x = 0

Actual
force deflection
curve

FIGURE 2.1
The spring stiffness is the derivative of the
force displacement relation at x = 0.

62129_02_Ch02_p055-136.qxd  3/17/11  5:21 PM  Page 57

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



58 CHAPTER 2

Figure 2.2. Assuming elastic behavior, the shear stress due to the resisting torque varies

linearly with distance from the center of the rod to a maximum of 

(2.9)

where is the polar moment of inertia of the rod. The shear stress due to the

shear force varies nonlinearly with distance from the neutral axis. For the maxi-

mum shear stress due to the internal shear force is much less than the maximum shear stress

due to the resisting torque, and its effect is neglected. 

Principles of mechanics of materials can be used to show that the total change in length

of the spring due to an applied force F is 

(2.10)

Comparing Equation (2.10) with Equation (2.4) leads to the conclusion that under the

assumptions stated a helical coil spring can be modeled as a linear spring of stiffness

(2.11)k =
GD4

64Nr 3

x =
64Fr 

3N

GD 
4

r /D W 1
J = (pD 

4)/32

t
 max 

=
Fr D
2 J

=
16 F r
pD 

3

F

F
T = Fr FIGURE 2.2

A spring is subject to a force F along its axis. A section
cut of the spring reveals its cross section has a shear
force F and a torque Fr where r is the coil radius.

EXAMPLE 2 . 1
A tightly wound spring is made from a 20-mm-diameter bar of 0.2% C-hardened steel 

(G � 80 � 109 N/m2). The coil diameter is 20 cm. The spring has 30 coils. What is the

largest force that can be applied such that the elastic strength in shear of 220 � 106 N/m2

is not exceeded? What is the change in length of the spring when this force is applied? 

SO LU T I ON
Assuming the shear stress due to the shear force is negligible, the maximum shear stress in

the spring when a force F is applied is

Thus the maximum allowable force is

The stiffness of this spring is calculated by using Equation (2.11):

The total changes in length of the spring due to application of the maximum allowable force is 

¢ =
F
k

= 0.518 m

k =
(80 * 109

 N/m2)(0.02m)4

(64)(30)(0.1m3)
= 6.67 * 103 

 
N
m

F
 max 

=
220 * 106 N/m2

6.37 * 104
= 3.45 * 103  N

t =
Fr D
2 J

= F 
(0.1 m)(0.02 m)

2p
32

(0.02 m)4

= 6.37 * 104F
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2.2.3 ELASTIC ELEMENTS AS SPRINGS
Application of a force F to the block of mass m of Figure 2.3 results in a displacement x. The

block is attached to a uniform thin rod of elastic modulus E, unstretched length L, and cross-

sectional area A. Application of the force results in a uniform normal strain in the rod of 

(2.12)

The strain energy per volume is the area under the stress–strain curve, which for an elastic bar:

(2.13)

The total strain energy is

(2.14)

If the force is suddenly removed, the block will oscillate about its equilibrium position. The

initial strain energy is converted to kinetic energy and vice versa, a process which contin-

ues indefinitely. If the mass of the rod is small compared to the mass of the block, then

inertia of the rod is negligible and the rod behaves as a discrete spring. From strength of

materials, the force F required to change the length of the rod by x is

(2.15)

A comparison of Equation (2.15) with Equation (2.4) implies that the stiffness of the rod is 

(2.16)

The motion of a particle attached to an elastic element can be modeled as a particle

attached to a linear spring, provided the mass of the element is small compared to the mass

of the particle and a linear relationship between force and displacement exists for the ele-

ment. In Figure 2.4, a particle of mass m is attached to the midspan of a simply supported

beam of length L, elastic modulus E, and cross-sectional moment of inertia I. The trans-

verse displacement of the midspan of the beam due to an applied static load F is

(2.17)

Thus a linear relationship exists between transverse displacement and static load. Hence if

the mass of the beam is small, the vibrations of the particle can be modeled as the vertical

motion of a particle attached to a spring of stiffness 

(2.18)k =
48EI

L3

x =
L3

48EI
   F

k =
AE
L

F =
A E
L

 x

S = sV =
1

2
E E 

2AL =
1

2
 (E A /L)x 

2

s =
1

2
 sE =

1

2
E E2

E =
F

AE
=

x
L

x

L

A, E FIGURE 2.3
Longitudinal vibrations of a mass
attached to the end of a uniform thin rod
can be modeled as a linear mass-spring
system with .k = AE/L

62129_02_Ch02_p055-136.qxd  3/17/11  5:21 PM  Page 59

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



60 CHAPTER 2

In general the transverse vibrations of a particle attached to a beam can be modeled as

those of a particle attached to a linear spring. Let w(z) represent the displacement function of

the beam due to a concentrated unit load applied at z � a. Then the displacement at z � a
due to a load F applied at z � a is 

(2.19)

Then the spring stiffness for a particle placed at z � a is

(2.20)k =
1
v(a)

x = v(a)F

x

x

L/2 L/2

m

m

48EI

(a)

(b)

k =
L3

FIGURE 2.4
The transverse vibrations
of a machine attached to
the midspan of a simply
supported beam (a) mod-
eled by a mass-spring
system and the stiffness
of the spring is 48 EI/L3.
(b) provided the mass of
the beam is small in com-
parison to the mass of the
machine.

EXAMPLE 2 . 2
A 200-kg machine is attached to the end of a cantilever beam of length L � 2.5 m, elastic

modulus E � 200 � 109 N/m2, and cross-sectional moment of inertia 1.8 � 10–6 m4.

Assuming the mass of the beam is small compared to the mass of the machine, what is the

stiffness of the beam?

SO LU T I ON
From Table D.2 the deflection equation for a cantilever beam with a concentrated unit load

at z � L is

(a)

The deflection at the end of the beam is

(b)

The stiffness of the cantilever beam at its   end is 

(c)k =
3 EI
L3 =

3 (200 * 109 N/m2) (1.8 * 10-6 m4)

(2.5 m)3 = 6.91 * 104 N/m

v(L) =
1
EI

 a -
L3

6
+

L
2

L2b =
L3

3EI

v(z) =
1
EI

 a -
1

6
z 3 +

L
2

z 
2b
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Equation (2.18) is used for the stiffness of a pinned-pinned beam at its midspan. The

equation for the stiffness of a cantilever beam at its end is

(2.21)

The equivalent stiffness of a fixed-fixed beam at its midspan is

(2.22)

2.2.4 STATIC DEFLECTION
When a spring is not in its unstreched length when a system is in equilibrium, the spring

has a static deflection. When the system of Figure 2.5(b) is in equilibrium a static force in

the spring is necessary to balance the gravity force. From the FBD of Figure 2.5(b) the force

in the spring is Fs � mg. Since the force is the stiffness times the change in length from its

unstretched length, the static deflection is calculated as

(2.23)¢s =
mg

k

k =
192EI

L3

k =
3EI
L3

k

m

mg

k∆s

(a) (b)

FIGURE 2.5
(a) The spring has a static
spring force when the system
is in static equilibrium.
(b) FBD of the mass when the
system is in equilibrium.

r2

r1

m1 m2

m2g

T2T1

k∆s

(a)

R

m1g

(b)

FIGURE 2.6
(a) System of Example 2.3. (b) FBDs of system
when it is in equilibrium.

EXAMPLE 2 . 3
Determine the static deflection of the spring in the system of Figure 2.6(a).

SO LU T I ON
The FBDs of the system in its equilibrium position are shown in Figure 2.6(b). Summing

forces to zero on the FBD of the left hand block leads to

(a)

Summing moments about the center of the disk leads to as

(b)

from which the static deflection is determined as

(c)¢s =
m1g r1 - m2 

g r2

kr1

m2 
g r2 - (m1g - k¢s 

)r1 = 0

πMO = 0,

T1 = m 1g - k ¢s

πF = 0
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Torsional oscillations occur in the system of Figure 2.7. A thin disk of mass moment

of inertia I is attached to a circular shaft of length L, shear modulus G, and polar moment

of inertia J. When the disk is rotated through an angle from its equilibrium position, a

moment 

(2.24)

develops between the disk and the shaft. Thus, if the polar mass moment of inertia of the

shaft is small compared with I, then the shaft acts as a torsional spring of stiffness

(2.25)

2.3 SPRINGS IN COMBINATION
Often, in applications, springs are placed in combination. It is convenient, for purposes of

modeling and analysis, to replace the combination of springs by a single spring of an equiv-

alent stiffness, k
eq

. The equivalent stiffness is determined such that the system with a com-

bination of springs has the same displacement, x, as the equivalent system when both

systems are subject to the same force, F. A model SDOF system consisting of a block

attached to a spring of an equivalent stiffness is illustrated in Figure 2.8. The resultant force

acting on the block is 

(2.26)

2.3.1 PARALLEL COMBINATION
The springs in the system of Figure 2.9 are in parallel. The displacement of each spring in

the system is the same, but the resultant force acting on the block is the sum of the forces

developed in the parallel springs. If x is the displacement of the block, then the force devel-

oped in the i th  spring is kix and the resultant is 

(2.27)

Equating the forces from Equations (2.26) and (2.27) leads to

(2.28)

2.3.2 SERIES COMBINATION
The springs in Figure 2.10 are in series. The force developed in each spring is the same and

equal to the force acting on the block. The displacement of the block is the sum of the

keq = a
n

i = 1

ki

F = k1x + k2x + Á + knx = aa
n

i = 1

kibx

F = keqx

kt =
JG

L

M =
JG

L
 u

u

I

θ
J, G

L

FIGURE 2.7
The rotational motion of the thin disk
attached to the shaft are modeled by the tor-
sional oscillations of a disk attached to a tor-
sional spring of stiffness k t = JG

L .

keq

x

m

FIGURE 2.8
Combination of springs
replaced by a single spring so
that the system behaves iden-
tically to the original system.

k1

k2

kn

x

m

FIGURE 2.9
Each of the n springs in the
parallel combination has the
same displacement, but the
resultant force acting on the
FBD of the block is the sum of
the individual spring forces.
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changes in length of the springs in the series combination. If xi is the change in length of

the ith spring, then

(2.29)

Since the force is the same in each spring, xi � F/k and Equation (2.29) becomes 

(2.30)

Since the series combination is to be replaced by a spring of an equivalent stiffness,

Equation (2.26) is used in Equation (2.30), leading to

(2.31)

Electrical circuit components also can be placed in series and parallel and the effect of the

combination replaced by a single component with an equivalent value. The equivalent capac-

itance of capacitors in parallel or series is calculated like that of springs in parallel or series. The

equivalent resistance of resistors in series is the sum of the resistances, whereas the equivalent

resistance of resistors in parallel is calculated by using an equation similar to Equation (2.31).

keq =
1

a
n

i = 1

1
ki

x = a
n

i = 1

F
ki

x = x1 + x2 + Á + xn = a
n

i = 1

x i

k1 k3k2 kn

m

FIGURE 2.10
The springs in the series combination each
develop the same force, but the total displace-
ment of the combination is the sum of the indi-
vidual changes in length.

EXAMPLE 2 . 4
Model each of the systems of Figure 2.11 by a mass attached to a single spring of an 

equivalent stiffness. The system of Figure 2.11(c) is to be modeled by a disk attached to a

torsional spring of an equivalent stiffness. 

SO LU T I ON
(a) The steps involved in modeling the system of  Figure 2.11(a) by the system of Figure 2.8

are shown in Figure 2.12. Equation (2.28) is used to replace the two parallel springs by an

equivalent spring of stiffness 3k. The three springs on the left of the mass are then in series,

and Equation (2.31) is used to obtain an equivalent stiffness. 

If the mass in Figure 2.11(a) is given a displacement x to the right, then the spring

on the left of the mass will increase in length by x, while the spring on the right of the

mass will decrease in length by x. Thus, each spring will exert a force to the left on the

mass. The spring forces add; the springs behave as if they are in parallel. Hence 

Equation (2.28) is used to replace these springs by the equivalent spring shown in 

Figure 2.12(c).

(b) The deflection of the simply supported beam due to a unit load at x � 2 m is cal-

culated using Table D.2

(a)v(z = 2 m) = va2L
3
b =

4L3

243EI
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k 3k
2k

2k

k

m

(a)

(b)

(c)

(d)

k

m

2 m 1 m
E = 210 × 109 N/m2

I = 5 × 10–4 m4

k = 1 × 108 N/m

m

h2 = 20 mm
h1 = 25 mm

b = 13 mm
E = 210 × 109 N/m2

2 m

b

h2
h1

A B C

Gst = 80 × 109 N/m2

Gal = 40 × 109 N/m2

r1 = 20 mm

r2 = 25 mm

r3 = 18 mm

r4 = 30 mm

20 cm
AB: Steel shaft
 with aluminum core

BC: Hollow steel
 shaft

30 cm

r2 r3

r4
r1

FIGURE 2.11
Systems for Example 2.4.

k 3k 2k3k
m

x

(a)

(b)

(c)

13k/5
m

3k/5 2k
m

x

FIGURE 2.12
Steps in replacing the combination of springs in
Figure 2.11 (a) using a single spring of an equivalent
stiffness.
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from which the equivalent stiffness is obtained 

(b)

The displacement of the block of mass m equals the displacement of the beam at the location

where the spring is attached plus the change in length of the spring. Hence the beam and spring

act as a series combination. Equation (2.31) is used to calculate their equivalent stiffness

(c)

(c) The aluminum core of shaft AB is rigidly bonded to the steel shell. Thus the angu-

lar rotation at B is the same for both materials. The total resisting torque transmitted to

section BC is the sum of the torque developed in the aluminum core and the torque devel-

oped in the steel shell. Thus the aluminum core and steel shell of shaft AB behave as two

torsional springs in parallel. The resisting torque in shaft AB is the same as the resisting

torque in shaft BC. The angular displacement at C is the angular displacement of B plus

the angular displacement of C relative to B. Thus shafts AB and BC behave as two torsional

springs in series. In view of the preceding discussion and using Equations (2.28) and

(2.31), the equivalent stiffness of shaft AC is

(d)

where the torsional stiffness of a shaft is kt � JG/L and

(e)

(f)

(g)

Substitution of these values into the equation for k
eq

gives

(h)

(d) Under the assumption that the rate of taper of the bar is small the following

mechanics of materials equation is used to calculate the change in length of the bar due to

a unit load applied at its end:

(i)¢ = L
L

0

dz
AE

kt,eq = 1.01 * 105
 N # m/rad

ktBC
= =

p

32
3(0.06 m)4 - (0.036 m)44a80 * 109 N

m2 b
0.2 m

= 4.43 * 105 N.m
rad

ktABst

=

p

32
3(0.05 m)4 - (0.04 m)44a80 * 109 N

m2 b
0.3 m = 9.66 * 104 N.m

rad

ktABal

=

p

32
(0.04  m)4a40 * 109 

N
m2 b

0.3 m
= 3.35 * 104 N.m

rad

kteq
=

1

1
ktABal

+ ktABst

+
1

ktBC

keq =
1

1

2.36 * 108   N/m
+

1

1 * 108   N/m

= 7.03 * 107  N/m

k1 =
243EI

4L3 =
243(210 * 109

 
  N/m2)(5 * 10-4 m4)

4(3 m)3 = 2.36 * 108 N/m
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The area varies linearly over the length of the bar . The change in

length is

(j)

Thus, the equivalent stiffness of the shaft is 

(k)

2.3.3 General Combination of Springs
A single degree-of-freedom (SDOF) system is defined such that every particle is kinemati-

cally related to every other particle. Consider a system with n springs of stiffnesses

k
1
, k

2
, . . . , kn. Assume the jth spring is attached at a point where the relation between the

displacement of the point of attachment and the generalized coordinate x is x j � jx for

j � 1, 2, . . . , n.  The potential energy in a spring is where x is the change in

length of the spring from its unstretched length. The total potential energy in the n
springs is

(2.32)

Equation (2.32) shows that (for analysis purpose) it is possible to replace a combination of

springs in a linear SDOF system by a single spring of equivalent stiffness at the location

described by the generalized coordinate x. The criterion for the equivalent stiffness is that

the potential energy of the equivalent spring and the potential energy of the original system

be equivalent at all times.

When using an angular coordinate as the generalized coordinate, the potential energy

of a SDOF linear system is

(2.33)

where is an equivalent, torsional viscous-damping coefficient.kt,eq

V =
1
2

kt,equ
2

=
1

2
keqx

2

=
1
2
aa

n

i = 1

ki 
a2

i bx 
2

V = a
n

i =  2
c1
2

ki(gi x)2 d

V = 1
2 k x 2

g

keq =
1

¢
=

1
3.27 * 10-8

 m/N
= 3.06 * 107 N/m

= 3.27 * 10-8m/N

=
2 m

(0.013 m) (210 * 109 N/m2)(0.025 m - 0.02 m)
 ln 

0.025 m
0.02 m

¢ =
1

bEL
L

0

dz

h1-  

h1 
-  h2

L
z

=
1

bE
a -L

h1 
-  h2

b lnah1 -  

h1 
-  h2

L
zb 2 L

0

=
L

bE (h1 
-  h2)

 lna h1

h2

b

A = Ah1 - h1 - h2

L z Bb
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EXAMPLE 2 . 5
The system of Figure 2.13 moves in a horizontal plane. Replace the system of springs by

(a) a single spring of equivalent stiffness when x is the displacement of the block of mass 2 kg

and is used as the generalized coordinate and (b) a spring of an equivalent torsional stiff-

ness when the clockwise angular rotation of the disk is used as the generalized coordinate.  

SO LU T I ON
(a) When the block of mass 2 kg moves through a displacement x, as shown in Figure 2.13,

and assuming the cable connecting the block to the disk is inextensible, the point of con-

tact between the disk and the cable have the same velocity. The velocity of the cable is 

and the velocity of a point on the outer edge of the inner disk is r . Thus, 

(a)

Let y be the displacement of the cable attached to the 1 kg block. Its direction is opposite

that of the other block. Assuming the cable is inextensible, the velocity of the cable is the

same as the velocity of the point on the disk in contact with the cable which

is leading to

(b)

Equations (a) and (b) are combined, leading to

(c)

which is true for all time. Integrating and setting y(0) � x (0) � 0 leads to

(d)

The total potential energy developed in the system at an arbitrary time in terms of x is

the sum of the potential energies in the springs

(e) =
1

2
 (5250N/m)x 2

 V =
1
2

 (3000 N/m)x 2 +
1
2

 (1000 N/m)a3
2

 xb2

y =
3
2

x

y# =
3

2
 x#

y# =
3
2

r u
#

3
2r u

#
y#

x# = r u
#

u
# x# ,

u

r

r

y

x

3000 N/m 1000 N/m

r = 10 cm
θ

3
2

1 kg2 kg FIGURE 2.13
System of Example 2.5 is in a horizontal plane. The combina-
tion of springs are replaced by a single spring of an equivalent
stiffness, so the potential energy of the original system is
equal to the potential energy of the equivalent spring at any
instant.
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The equivalent stiffness of a spring placed on the 2 kg block to model the potential energy

of the system is 5250 N/m.

(b) Using Equations (a) and (b) to give relations between x and and y and leads to the

total potential energy in the system, which is written using as the generalized coordinate as

(f)

Substituting r � 0.1 m gives

(g)

Thus, the equivalent torsional stiffness of the system when using as the generalized coor-

dinate is 52.5 N m/rad, which implies that the springs can be replaced by a single torsional

spring of stiffness 52.5 N m/rad attached to the pulley.

2.4 OTHER SOURCES OF POTENTIAL ENERGY
Any conservative force has an associated potential energy function. In addition to the spring

force, this includes gravity, buoyancy, and a parallel-plate capacitor. Gravity and buoyancy

are considered.

2.4.1 GRAVITY
The force due to the presence of a body of mass m in a gravitational field is mg directed

toward the center of the earth applied at the mass center of the body. Gravity is a conser-

vative force with a potential energy of

(2.34)

where h is the distance of the mass center above a reference position (the datum). The

potential energy is a function of only the vertical position of the mass center.

V = mgh

#
#

u

V =
1
2

 a52.5  
N. m

r
bu2

V =
1
2

 (3000 N/m)(r u)2 +
1
2

 (1000 N/m)a3
2

 r ub2

u

uu

EXAMPLE 2 . 6
A bar is hanging in equilibrium in the position shown in Figure 2.14(a). Determine the

potential energy of the bar in terms of the counterclockwise angular position of the bar

from its equilibrium position when (a) the datum is taken to be the horizontal plane at 

the bottom of the bar when in equilibrium, (b) the datum is taken as the horizontal plane

through the mass center when the bar is in equilibrium, and (c) the datum is taken to be

the horizontal plane through the pin support.

SO LU T I ON
(a) As the bar swings through an angle , as illustrated in Figure 2.14(b), the mass center

is a distance 

(a)

and has a potential energy with respect to the datum of

(b)V = mg 
L
2

 (2 - cos u)

h =
L
2

+
L
2

 (1 - cos u)

u

u
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(b) Using a horizontal plane through G as a datum, we have

(c)

(c) Using a horizontal plane through O as a datum, we have 

(d)V = -mg 
L
2

 cos  u

V = mg 
L
2

 (1 - cos u)

G

θ θ

L
2

L
2

L
2

L
2

(a)

L
2

L
2

(b)

cosθ
L
2

(1 – cosθ) G FIGURE 2.14
(a) The point of application of the gravity force
mg is at the mass center of the bar.
(b) Diagram of a bar for an arbitrary value of ,
illustrating the geometry used in the calcula-
tion of the potential energy.

u

Calculate the total potential energy of the system of Figure 2.15 as the mass is displaced a

distance x downward form the system’s equilibrium position. Use a horizontal plane

through the mass when the system is in equilibrium as the datum.

SO LU T I ON
When the system is in equilibrium, the spring has a static deflection, . Thus, as the

mass moves down a distance x from the equilibrium position, the potential energy in the

spring is 

(a)

Adding to this, the potential energy due to gravity Vg � � mgx yields

(b)

where is the potential energy in the spring when the system is in equilibrium.

Thus, the total potential energy is expressed as the potential energy of the spring with

respect to the equilibrium position plus the potential energy of the system when it is in

equilibrium.

V0 = m 2g 2

2k

 =
1

2
k x 2 + V0

 =
1
2

 akx 2 - 2mgx +
m2g 2

k
b - mg x

 =
1
2

k  ax +
mg

k
b2

- mg x

V =  
1
2

k (x + ¢)2 - mg x

V =
1

2
k(x + ¢)2

¢ = mg
k

EXAMPLE 2 . 7

x
m

k

FIGURE 2.15
The potential energy due to
gravity cancels with the
potential energy of the static
spring force as the mass
moves from equilibrium.
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2.4.2 BUOYANCY
When a solid body is submerged in a liquid or floating on the interface of a liquid and

air, a force acts vertically upward on the body because of the variation of hydrostatic pres-

sure. This force is called the buoyant force. Archimedes’ principle states that the buoyant

force acting on a floating or submerged body is equal to the weight of the liquid displaced

by the body.

EXAMPLE 2 . 8
A sphere of mass 2.5 kg and radius 10 cm is hanging from a spring of stiffness 1000 N/m

in a fluid of mass density 1200 kg/m3. What is the static deflection of the spring?

SO LU T I ON
The spring force must balance with the gravity force and the buoyancy force as shown on

the free-body diagram in Figure 2.16.

Archimedes’ principle is used to calculate the buoyant force as

The static deflection is calculated as

¢st =
mg - FB

k
=

(2.5 kg)(9.81 m/s2) - 49.3  N

1000  N/m
= -0.0185 m

FB =
4
3

 rg pr 3 =
4
3 (1200 kg/m3)p(9.81 m/s2)(0.1 m)3 = 49.3 N

k¢st + FB - mg = 0

FB

mg

k∆st

FIGURE 2.16
FBD of a sphere attached to a
spring and submerged in a
liquid.

FB = mg + ρgAx

G

x + ∆
ρ

FIGURE 2.17
Oscillations of a cylinder on a free
surface can be modeled by a SDOF
system where the buoyant force is
the source of potential energy.

Consider a body floating stably on a liquid-air interface. The buoyant force balances

with the gravity force. If the body is pushed farther into the liquid, the buoyant force

increases. If the body is then released, it seeks to return to its equilibrium configuration.

The buoyant force does work, which is converted into kinetic energy and oscillations about

the equilibrium position ensue. 

The circular cylinder of Figure 2.17 has a cross-sectional area A and floats stably on

the surface of a fluid of density . When the cylinder is in equilibrium, it is subject to a

buoyant force mg and its center of gravity is a distance from the surface. Let x be the

vertical displacement of the center of gravity of the cylinder from this position. The additional

¢
r
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volume displaced by the cylinder is xA. According to Archimedes’ principle, the buoyant

force is

(2.35)

Calculations show that the work done by the buoyant force as the cylinder’s center of grav-

ity moves between positions x
1

and x
2

is 

(2.36)

and is independent of path. Hence the buoyant force is conservative. Its effect on the cylin-

der is the same as that of a linear spring of stiffness gA. The oscillations of the cylinder on

the liquid-gas interface can be modeled by a SDOF mass-spring system. 

2.5 VISCOUS DAMPING
Viscous damping occurs in a mechanical system when a component of the system is in con-

tact with a viscous liquid. The damping force is usually proportional to the velocity 

(2.37)

where c is called the viscous damping coefficient and has dimensions of (force)(time)/ (length).

Viscous damping is often added to mechanical systems as a means of vibration control.

Viscous damping leads to an exponential decay in amplitude of free vibrations and a reduc-

tion in amplitude in forced vibrations caused by a harmonic excitation. In addition, the

presence of viscous damping gives rise to a linear term in the governing differential equa-

tion, and thus does not significantly complicate the mathematical modeling of the system.

A mechanical device called a dashpot is added to mechanical systems to provide viscous

damping. A schematic of a dashpot in a one degree-of-freedom system is shown in 

Figure 2.18(a). The free-body diagram of the rigid body, Figure 2.18(b), shows the viscous

force in the opposite direction of the positive velocity.

A simple dashpot configuration is shown in Figure 2.19(a). The upper plate of the

dashpot is connected to a rigid body. As the body moves, the plate slides over a reservoir of

viscous liquid of dynamic viscosity . The area of the plate in contact with the liquid is A.

The shear stress developed between the fluid and the plate creates a resultant friction force

acting on the plate. Assume the reservoir is stationary and the upper plate slides over the

m

F = cv

r

U1:2 =
1
2
rg A x 2

1 -
1
2
rg A x 

2
2

FB = mg + rg Ax

m

c

k
kx

x

(a) (b)

cx· FIGURE 2.18
(a) Schematic of SDOF mass-spring-dashpot
system. (b) Dashpot force is and
opposes the direction of positive velocity.

cx#

62129_02_Ch02_p055-136.qxd  3/18/11  11:03 AM  Page 71

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



72 CHAPTER 2

liquid with a velocity v. The reservoir depth h is small enough that the velocity profile in

the liquid can be approximated as linear, as illustrated in Figure 2.19(b). If y is a coordi-

nate  measured upward from the bottom of the reservoir,

(2.38)

The shear stress developed on the plate is determined from Newton’s viscosity law

(2.39)

The viscous force acting on the plate is 

(2.40)

Comparison of Equation (2.40) with Equation (2.37) shows that the damping coefficient

for this dashpot is

(2.41)

Equation (2.41) shows that a large damping force is achieved with a very viscous fluid, a

small h, and a large A. A dashpot design with these parameters is often impractical and thus

the device of Figure 2.19(a) is rarely actually used as a dashpot.

This analysis assumes the plate moves with a constant velocity. During the motion of

a mechanical system, the dashpot is connected to a particle which has a time-dependent

velocity. The changing velocity of the plate leads to unsteady effects in the liquid. If the

reservoir depth h is small, the unsteady effects are small and can be neglected.

A more practical dashpot is a piston-cylinder arrangement, as shown in Figure 2.20.

The piston slides in a cylinder of viscous liquid. Because of the motion, a pressure difference

c =
m A

h

F = tA =
m A

h
 v

t = m
du
dy

= m
v
h

u(y) = v 
y

h

υ

(a)

(b)

h

υ

vy

Plate of area A

Viscous fluid

u(y) =

ρ, µ
h

FIGURE 2.19
(a) Simple dashpot model where
plate slides over a fixed reservoir of
a viscous liquid. (b) Since h is small, a
linear velocity profile is assumed in
the liquid.

x·

FIGURE 2.20
A piston and cylinder device that
serves as a viscous damper.
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is formed across the head of the piston which is proportional to the velocity of the piston.

The pressure times the area of the head is the damping force.

A torsional viscous damper is illustrated in Figure 2.21. The shaft is rigidly connected

to a point on a body undergoing torsional oscillations. As the disk rotates in a dish of vis-

cous liquid, a net moment due to the shear stresses developed on the face of the disk acts

about the axis of rotation. The moment is proportional to the angular velocity of the shaft 

(2.42)

where c
t 
is the torsional viscous damping coefficient and has dimensions of force-length-time.

Any form of damping where the damping force is proportional to the velocity is

referred to as viscous damping. Viscous damping can be produced by a body moving

through a magnetic field, a body oscillating on the surface of a lake, or by the oscillations

of a column of liquid in a U-tube manometer.

The schematic representation for viscous damping when present in mechanical systems

is shown in Figure 2.22. The force developed in the dashpot is equal to and opposite of the

force from the damper on the body. The force resists the motion of the system and is drawn

to show it acting in the opposite direction of the velocity. The direction of the force takes

care of itself. If the velocity is negative, the actual damping force is acting in the direction

of positive velocity. However, it is drawn on the FBD in the direction of negative velocity

and has a negative value, thus being in the positive direction.

The viscous damping force is the damping coefficient times the velocity of the point

where the dashpot is attached acting in the opposite direction of the positive velocity of

that point.

M = ct u
#

θ⋅
FIGURE 2.21
A disk rotates in a dish of a viscous
liquid, producing a moment about the
axis of the shaft and acting as a
torsional viscous damper.

cx· > 0

x·

cx· < 0

x·

c

x

(a) (b) (c)

FIGURE 2.22
(a) Schematic of a viscous damper in
a mechanical system. (b) The viscous
damping force is always drawn as the
opposite of the direction of positive
velocity. (c) When velocity is nega-
tive, the viscous clamping force is still
drawn to the left, but since it is nega-
tive, it goes toward the right.
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2.6 ENERGY DISSIPATED BY VISCOUS DAMPING
Rewriting the principle of work and energy, Equation (1.47) applied to a system is

(2.43)

and shows that work done by non-conservative forces is the difference in total energies.

Viscous damping is a non-conservative force. After application of viscous damping,

, and the work done by viscous damping is negative. The viscous

damping force always opposes the direction of motion. The work done by a viscous damper

between the initial position is described by x � 0 and an arbitrary position

(2.44)

The work done by discrete viscous dampers in a SDOF system is the sum of the work

done by individual dampers. For a SDOF system, the displacement of all particles is kine-

matically related. In a system with n viscous dampers, the displacement of the ith viscous

damper is related to the generalized coordinate by xi � �i x. The total work done by the

viscous dampers is

(2.45)U1:2 = -a
n

i =  1L
xi

0
ci x

#
i

 

d x i

U1:2 = -L
x

0
cx#  dx

T2 + V2 6 T1 + V1

U1:2NC
= T2 + V2 - (T1 + V1)

L
4

Lc
4

3L

c

R

4

θ

θ⋅

3Lc
4

θ⋅

c

(a)

(b)

FIGURE 2.23
(a) System of Example 2.9. (b) FBD of system. The
force from the viscous damper on the body is
equal to and opposite the force from the body on
the viscous damper. The force is always drawn
opposite to the positive velocity of the point to
which it is attached.

EXAMPLE 2 . 9
Draw a FBD for the system of Figure 2.23(a) at an arbitrary instant using as the depend-

ent variable and labeling the forces in terms of 

SO LU T I ON
The FBD is shown in Figure 2.23(b). The velocity of particle A at an arbitrary instant is

upward, while the velocity of particle B is downward.
3L
4  u

#L
4u

#

u
# u
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Equation (2.45) is rewritten by introducing the relationship between xi and x as

(2.46)

Now that the integrals all have the same variable of integration and limits, the order of

summation and integration are interchanged to yield

(2.47)

Hence, an equivalent viscous-damping coefficient can be determined for any SDOF

system.

If an angular coordinate is used as a generalized coordinate, Equation (2.47) is mod-

ified as

(2.48)

where is an equivalent, torsional viscous-damping coefficient.ct,eq

U1:2 = -L
x

0
ct,eq  u

#
d u

u

 = -L
x

0
ceq x

# dx

 U1:2 = -L
x

0
aa

n

i = 1

ci 
g

 

2
i bx#dx

 = - a
n

i =  1L
x

0
ci(g

2
i x
# )dx

 U1:2 = -a
n

i = 1L
x

0
ci(gix

#)d(gi 
x)

EXAMPLE 2 . 1 0
The system of Figure 2.24 moves in a horizontal plane. 

(a) Determine the equivalent viscous-damping coefficient for the system if x is the dis-

placement of the 2 kg block and is used as the generalized coordinate. 

(b) Determine the equivalent, torsional viscous-damping coefficient if the clockwise

angular displacement of the disk is used as the generalized coordinate.

u

r

r

y

x
2 kg

3000 N/m

1 kg

θ
3
2

1000 N/m

I = 0.04 kg-m2

r = 10 cm

200 N · s/m 400 N · s/m
FIGURE 2.24
System for Examples 2.10 and 2.11.
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SO LU T I ON
(a) Using kinematics, it is found that the relation between the downward displacement of

the 2 kg block x and the upward displacement of the 1 kg block y is Calculating

the work done by the viscous dampers as the system moves between the initial position and

an arbitrary position, we have

(a)

Thus, c
eq

� 1100 N s/n

(b) Kinematics is used to determine that x � r and where r � 0.1 m.

Calculating the work done by the viscous dampers as the system moves from an initial posi-

tion to an arbitrary position, we have

(b)

Thus, ct,eq  
� 11 N m s/rad

2.7 INERTIA ELEMENTS
A particle’s mass is the only inertia property for the particle. The distribution of mass about

the mass center is also important for a rigid body undergoing planar motion. It is described

by a property of the rigid body called the centroidal moment of inertia, defined by

(2.49)

when the coordinates of the rigid body’s mass center are The integration is carried

out over the entire mass of the rigid body. The centroidal moment of inertia has been cal-

culated for common shapes, and the results are tabulated in Table 2.1. 

2.7.1 Equivalent Mass
The kinetic energy of a particle is . The kinetic energy of a rigid body undergoing

planar motion is . For a linear SDOF system, the displacement of any parti-

cle in the system is kinematically dependent upon x. Consider a system composed of n
bodies, particle, and rigid bodies undergoing planar motion. There exists a such that

the displacement of the mass center of the ith body is and there exists a �i such

that the angular rotation of the ith body is If the ith body is a particle, thenui = ni x.
x i = bi x,

bi

1
2m v 2 + 1

2Iv2

1
2mv2

(x, y).

I = 3
m

3(x - x)2 + (y - y)42 dm 

##

* d c3
2

(0.1 m)u d = -L
u

0
a11 

N # m . s

rad
 bu#d u

U1:2 = -L
u

0
(200 N # s/m)[(0.1m)u

#
]d [(0.1 m)u]-L

u

0
(400 N # s/m) c3

2
(0.1 m)u

# d

y = 3
2 r  uu

#

 = -L
x

0
(1100  N # s/m) x#  dx

 U1:2 = -L
x

0
(200  N # s/m) x# dx - L

x

0
(400 N # s/m) a3

2
 x# bd a3

2
 xb

y = 3
2x.
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Slender rod

L

y

x

z Iz =
1

12
mL2

Iy =
1

12
mL2

Ix L 0

Thin disk y

x

r

z

Iz =
1
4

mr 2

Iy =
1
4

mr 2

Ix =
1

2
mr 2

Thin plate

Iz =
1

12
mh 2

Iy =
1

12
mw2

Ix =
1

12
m(w2 + h 2)

y

z

h

x
w

Circular cylinder

z

y

x

r

L

Iz =
1

12
m(3r 2 + L2)

Iy =
1

12
 m(3r 2 + L2 )

Ix =
1

12
mr 2

Sphere y

z
x

r

Iz =
2

5
mr 2

Iy =
2
5

mr 2

Ix =
2

5
mr 2

Moments of inertia of three-dimensional bodiesT A B L E 2 . 1

Body General Shape Centroidal Moments of Inertia

xz

G

yGeneral shape

 Iz = L(x 2 + y 2) dm

 Iy = L(x 2 + z 2) dm

 Ix = L(y 2 + z 2) dm
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. The total kinetic energy of the system is the sum of the kinetic energies of all bodies

in the system:

(2.50)

Thus, any single degree-of-freedom system has an equivalent mass defined by Equation

(2.50).

If an angular coordinate is used as the generalized coordinate, the kinetic energy is written as

(2.51)

where I
eq 

is an equivalent moment of inertia.

T =
1

2
Ieq u

#
2

=
1
2

meqx
# 2

=
1
2
ca

n

i = 1

(mi 
b2

i + Ii  
n2

i ) dx# 2

a
n

i =  1
c1
2

mi(bi x
#)2 +

1
2

Ii 
( ni  x#)2 d

T = a
n

i =  1
a1

2
miv 

2
i +

1
2

Ii 
v2

i b

vi = 0

EXAMPLE 2 . 1 1
The system of Figure 2.24 moves in a horizontal plane. 

(a) Determine the equivalent mass when x (the displacement of the 2 kg block) is used

as the generalized coordinate.

(b) Determine the equivalent moment of inertia when (the clockwise angular rota-

tion of the disk) is used as the generalized coordinate.

SO LU T I ON
During the solution of Example 2.10, it is determined that if y is the upward displace-

ment of the 1 kg block, then and . The total kinetic energy

is the kinetic energy of the blocks plus the kinetic energy of the disk:

(a)

Thus, the equivalent mass is 8.25 kg.

(b) During the solution of Example 2.10, it is shown that 

 T =
1

2
(2 kg)x# 2 +

1
2

(1 kg)y# 2 +
1
2

(0.04 kg # m2)u
#
2

y =
3
2

r u =
3
2

(0.1 m)u

=
1

2
 (8.25 kg)x# 2

=
1
2

 (2 kg)x#  2 +
1
2

 (1 kg)a3
2

x# b2

+
1
2

(0.04 k g # m2)(10x#  m-1)2

T =
1
2

 (2 kg)x# 2 +
1
2

 (1 kg)y# 2 +
1
2

 (0.0 4 kg # m2)u
#
2

u = x
r = x

0.1  m = 10 xy = 3
2x

u
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(b)

Thus, if all of the inertia were concentrated on the disk, the disk would have a moment

of inertia of 0.0825 kg # m2.

2.7.2 INERTIA EFFECTS OF SPRINGS
When a force is applied to displace the block of Figure 2.25(a) from its equilibrium posi-

tion, the work done by the force is converted into strain energy stored in the spring. If the

block is held in this position and then released, the strain energy is converted to kinetic

energy of both the block and the spring. If the mass of the spring is much smaller than the

mass of the block, its kinetic energy is negligible. In this case the inertia of the spring has

negligible effect on the motion of the block, and the system is modeled using one degree

of freedom. The generalized coordinate is usually chosen as the displacement of the block.

If the mass of the spring is comparable to the mass of the block, the single degree-of-

freedom assumption is not valid. The particles along the axis of the spring are kinemati-

cally independent from each other and from the block. The spring should be modeled as a

continuous system.

If the mass of the spring is much smaller than the mass of the block, but not negligi-

ble, a reasonable one degree-of-freedom approximation can be made by approximating the

spring’s inertia effects. The actual system of Figure 2.25(a) is modeled by the ideal system

of Figure 2.25(b) in which the spring is massless. The mass of the block in Figure 2.25(a)

is greater than the mass of the actual block to account for inertia effects of the spring. The

value of m
eq 

is calculated such that the kinetic energy of the system of Figure 2.25(b) is the

same as the kinetic energy of the system of Figure 2.25(a) including the kinetic energy of

the spring, when the velocities of both blocks are equal. Unfortunately, calculation of the

exact kinetic energy of the spring requires a continuous system analysis. Thus, an approx-

imation to the spring’s kinetic energy is used.

Let x(t) be the generalized coordinate describing the motion of both the block of Figure 2.25(a)

and the block of Figure 2.25(b). The kinetic energy of the system of Figure 2.25(a) is

(2.52)

where Ts is the kinetic energy of the spring. The kinetic energy of the system of

Figure 2.25(b) is

(2.53)

The spring in Figure 2.25(a) is uniform, has an unstretched length l and a total mass ms.

Define the coordinate z along the axis of the spring, measured from its fixed end, as defined

in Figure 2.26. The coordinate z measures the distance of a particle from the fixed end in

the spring’s unstretched state. The displacement of a particle on the spring, u(z), is assumed

explicitly independent of time and a linear function of z such that u(0) � 0 and u(l ) � x,

(2.54)u(z) =
x
l

 z

T =
1

2
 meq x#  2

T = Ts +
1
2

m x#  2

 =
1
2

(0.0825 kg # m2)   u
#
2

d2 +
1
2

(0.04 kg # m2)u
# 2c3

2
(0.1 m)u

#
 =

1
2

(2 kg)3(0.1m)u
#
]2 +

1
2

 (1kg)

k

x

m

k

x

(a)

(b)

meq

FIGURE 2.25
(a) Potential energy devel-
oped in the spring is con-
verted into kinetic energy for
both the block and the
spring. (b) An equivalent
mass is used to approximate
inertia effects of the spring.
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Equation (2.54) represents the displacement function of a uniform spring when it is stati-

cally stretched. Consider a differential element of length dz, located a distance z from the

spring’s fixed end. The kinetic energy of the differential element is 

(2.55)

The total kinetic energy of the spring is

(2.56)

Equating T  from Equations (2.52) and (2.53) and using from Equation (2.56) gives

(2.57)

Equation (2.57) can be interpreted as follows: The inertia effects of a linear spring with one

end fixed and the other end connected to a moving body can be approximated by placing

a particle whose mass is one-third of the mass of the spring at the point where the spring

is connected to the body.  

The preceding statement is true for all springs where use of a linear displacement func-

tion of the form of Equation (2.54) is justified. This is valid for helical coil springs, bars

that are modeled as springs for longitudinal vibrations, and shafts acting as torsional

springs. 

meq = m +
ms

3

Ts

Ts = Ld Ts = L
1

0

1

2
 
ms

l
 a x#z

l
b2

d z =
1
2

 
ms

l 3  x# 2 
z 

3

3
 `

l

0

=
1
2
ams

3
bx 

# 2

dTs =
1
2

u# 2(z)dm =
1
2

u# 2(z)
ms

l
dz

x

z

dz
l

(a)

u(z) =
u(l) = x

u(0) = 0

(b)

x
l

z
FIGURE 2.26
(a) The coordinate z is measured along the axis of
the spring form its fixed end when the system is in
equilibrium, . (b) The displacement
of the spring is assumed as a linear function of z.

0 … z … /

EXAMPLE 2 . 1 2
The springs in the system of Figure 2.27(a) are all identical, with stiffness k and mass m

s
.

Calculate the kinetic energy of the system in terms of (t), including the inertia effects of

the springs. 

SO LU T I ON
Each spring is replaced by a massless spring and a particle of mass ms/3 at the point on the

bar where the spring is attached as shown in Figure 2.27(b). The total kinetic energy of the

u
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system of Figure 2.27(b) is the kinetic energy of the bar plus the kinetic energy of each of

the particles

 =
1

2
a7m + 11ms

48
bL2u

#
2

 =
1
2

 m aL
4

 u
# b2

+
1
2

 
1
12

 mL2
 u
#
2 +

1
2

ms

3
aL

4
b2

+
1
2

 
ms

3
 aL

4
 u
# b2

+
1
2

 
ms

3
 a3L

4
u
# b2

 T =
1
2

 mv  
2 +

1

2
 I  u

#
2 + T1 + T2 + T3

k

k

k

L
4

L
4

L
2

Bar of
mass m

(a)

θ

ms/3

ms/3 ms/3

(b)

FIGURE 2.27
(a) System of Example 2.12. (b) Inertia effects of springs are approximated by placing a particle of
mass at locations where springs are attached.ms /3

The simply supported beam of Figure 2.28 is uniform and has a total mass of 

100 kg. A machine of mass 350 kg is attached at B, as shown. What is the mass of a parti-

cle that should be placed at B to approximate the beam’s inertia effects?

SO LU T I ON
Since the exact expression for the dynamic beam deflection is hard to obtain, an approxi-

mate displacement function is used in the calculation of the beam’s kinetic energy. Let z be

a coordinate along the beam’s neutral axis. Assume that the time-dependent displacement

of any particle a long the beam’s neutral axis can be expressed as

(a)

where x(t) is the deflection of B. An appropriate approximation for w(z) is the static deflection

of the beam due to a concentrated load, P, applied at B, such that B has a unit deflection.

y (z, t) = x (t )v(z)

EXAMPLE 2 . 1 3
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82 CHAPTER 2

By using the methods of Appendix D, the static deflection due to a concentrated load

at B is found to be

(b)

The load required to cause a unit deflection at z � 2L 3

(c)

Consider a differential element of length dz, located a distance z from the left support.

The kinetic energy of the element is 

(d)

where is the mass density of the beam and A is its cross-sectional area. The beam’s total

kinetic energy is calculated by integrating dT over the entire beam. Substituting the previ-

ous results for w(x, t) in this integral leads to

(e)

The integral is evaluated yielding 

(f)

Noting that the total mass of the beam is AL, a particle of mass 58.6 kg should be added

at B to approximate the inertia effects of the beam. The system of Figure 2.28(a) is mod-

eled as a SDOF system with a particle of 408.6 kg located at B.

r

T =
1
2

 0.586rAL x# 2

+ L
L

2L/3
a2z 3 - 6z 

2L +
44

9
zL2 -

8

9
L3b2

 dz d
T =

1
2
rA c 1

18EI
 a243EI

4L3 b d
2

x#  2 cL
2L>3

0
z 

2a8L2

9
- z 

2b2

dz

r

d T =
1
2

 y# 2(z, t) dm =
1
2

y# 2(z , t) rA dm

P =
243EI

4L3

>

[w (z ) = e P
18 EI

 z a8L2

9
- z 2b  

                                                0 …  z …  
2L
3

P
18 EI

 a2z 3 - 6z 2L +
44

9
zL2 -

8

9
L 

3b   
2L
3

 …  z … L

z
P

B

350 kg

2 m 1 m

(b)

(a)

FIGURE 2.28
(a) System of Example 2.13.
(b) Static deflection of beam
due to concentrated load at B.
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2.7.3 ADDED MASS
Consider a mass-spring system immersed in an inviscid fluid, as shown in Figure 2.29. The

spring is stretched from its equilibrium configuration and the mass released. The ensuing

motion of the mass causes motion in the surrounding fluid. The strain energy initially

stored in the spring is converted to kinetic energy for both the mass and the fluid. Since

the fluid is inviscid, energy is conserved

(2.58)

The inertia effects of the fluid can be included in an analysis by using a method similar to

that used in Section 2.7.2 to account for the inertia effects of springs. An imagined parti-

cle is attached to the mass such that the kinetic energy of the particle is equal to the total

kinetic energy of the fluid. If x is the displacement of the mass, the total kinetic energy of

the system is , where

(2.59)

The mass of the particle is called the added mass.
The kinetic energy of the fluid is difficult to quantify. The motion of the body theo-

retically entrains fluid infinitely far away in all directions. The total kinetic energy of the

fluid is calculated from

(2.60)

where v is the velocity of the fluid set in motion by the motion of the body. The inte-

gration is carried out from the body surface to infinity in all directions. If the integration

of Equation (2.60) is carried out, the added mass is calculated from  

(2.61)

Potential flow theory can be used to develop the velocity distribution in a fluid for a body

moving through the fluid at a constant velocity. This velocity distribution is used in

Equations (2.60) and (2.61) to calculate the added mass. Table 2.2 is adapted from Wendel

(1956) and Patton (1965) and presents the added mass for common body shapes.

ma =
Tf

1

2
x#  2

Tf =
1
2LLLrv 

2
 dV

meq = m + ma

1
2meqx

# 2

Tm + Tf + V = C

k

x

m

FIGURE 2.29
Oscillations of a submerged body create kinetic energy
in a fluid. The inertia of the fluid can be approximated
by a particle added to the mass of the body.
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Rotational motion of a body in a fluid also imparts motion to the fluid resulting in

rotational kinetic energy of the fluid. The inertia effects of the fluid are taken into account

by adding a disk of an appropriate moment of inertia to the rotating body. If is the angu-

lar velocity of the body, the added mass moment of inertia is calculated from 

(2.62)

Note that the added mass moment of inertia is zero if the body is rotating about an axis

of symmetry. Both the added mass and added moment of inertia terms are negligible for

bodies moving in gases. Table 2.3 presents added moments of inertia for a few common

bodies. It is adapted from Wendel (1956).

2.8 EXTERNAL SOURCES
A non-conservative force is one whose work depends upon the path traveled by the particle

to which the force is attached. Viscous damping and externally applied forces are examples

of non-conservative forces. The work done by an external force is

(2.63)

where x (t
1
) � x

1
and x (t

2
) � x

2
.

Let x represent the generalized coordinate defined for a SDOF system. Suppose n exter-

nal forces are applied to the system whose points of application are 

The total work by the external forces are

xi = ei x, i = 1, 2, Á , n.

U1:2 = L
x2

x1

F (t )d x = L
t2

t1

F (t )x# dt

Ia =
Tf

1
2 v2

v

Added mass for common
two- and three-dimensional
bodies ( is the mass density
of the fluid)

r

T A B L E 2 . 2 Added moments of inertia
for common bodies ( is
the mass density of the
fluid)

r

T A B L E 2 . 3

Body Added Mass

Sphere of
diameter D

Thin Circular
disk of diameter D

Thin square plate
of side h

Circular cylinder of
length L, diameter D

Thin flat plate
of length L, width w

Square cylinder of
side h, length L

Cube of side h 2.33rh3

0.3775rph2L

1
4
prw3L

1
4
prD2L

0.1195prh3

1
3
rD3

1

12
prD3

Body Added moment of inertia

Sphere
Circular cylinder
Any body rotating about
axis of symmetry

Thin plate of length L ,
rotating about axis in
the plane of the surface
area of plate, perpendi-
cular to direction for
which L is defined

Disk of diameter D
rotating about a diameter

0

0

0

1
90rD

5

0.0078125prL4
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(2.64)

The power delivered by an external force F(t) is

(2.65)

Work is a cumulative effect, whereas power is instantaneous.

Sinusoidal forces are easy to generate by an actuator. Sometimes the dynamics of the

system provides harmonic forces, such as reciprocating engines or any type of rotating

machinery. Impulsive forces are large forces generated over a short period of time, such as

the action of a hammer. Transient forces are generated over a period of time.

P =
dU
dt

= F (t )x#

= L
t2

t1

Feq(t)x
#dt

= L
t2

t1

a a
n

i =  1
eiFi(t)b x#  dtU1:2 = a

n

i = 1L
t2

t1

Fi (t )x# i dt = a
n

i = 1L
t2

t2

Fi(t )ei x
#dt

EXAMPLE 2 . 1 4

An applied force has the form F(t) � 100 sin(50t) N.

(a) Determine the work done by the force between time 0 and an arbitrary time t if 

x(t) � 0.002 sin(50t � 0.15) m.

(b) Determine the work done by the force between 0 s and 0.01 s.

(c) Determine the power delivered by the force at 0.01 s.

SO LU T I ON
(a) The work done by the force is

(b) The work between 0 s and 0.01 s is W (0.01)

(c) The power delivered to the system at t � 0.01 s is

Motion input is generated by kinematic mechanism, such as a cam and follower system or

a Scotch yoke. Motion input also occurs through the wheels on a car following the road con-

tour. The work done by the motion input depends upon the system. Consider a mass-spring

= 4.50 N # m/s

P = F (t )x# = 3100  sin (0.5) N4 C (0.002 m)(50 rad/s) cos (0.5 - 0.15) D

W (0.01) = -
1

20
 cos (0.85) +

1
20

 cos (0.15) +
1

20
 sin (0.15) = 0.0239  N # m

= 0.049 + 0.747t -0.05 cos (100t - 0.15)

= -
1

20
 cos (100t - 0.15) +

1
20

 cos (0.15) + 5 sin (0.15)t

= 10L
t

0
 sin (50t) cos (50t - 0.15)dt

W (t) = L
t

0
(100  sin 50t  N)(0.002  m)(50  rad/s) cos (50t - 0.15)dt
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and viscous-damper system of Figure 2.30. The spring and viscous damper are connected to a

moveable support which has a prescribed displacement y(t). The motion causes work in the

spring and viscous damper. If x is the chosen generalized coordinate and represents the dis-

placement of the mass, the change in length of the spring is y � x and the velocity developed

in the viscous damper is . The work done by the parallel combination of the spring and

viscous damper on the body is

(2.66)

where is the work done by the non-conservative damping force. Hence, the

equivalent force due to the motion input is

(2.67)Feq = ky + cy#

U1:2NC,d

 = V1 - V2 + U1:2NC,d
+ +L

x2

x1

(k y + c y#)dx

 = L
x2

x1

(-kx - c x# )d x + L
x2

x1

(ky + c y#)dx

 U1:2 = L
x2

x1

[k (y - x) + c ( y# - x# )]d x

y# - x#

EXAMPLE 2 . 1 5
A car is traveling on a bumpy road that is approximated by 

(a)

The car has a constant horizontal velocity of 60 m/s. The car is modeled using a simplified

suspension system consisting of a mass attached to a spring in parallel with a viscous

damper. The spring and viscous damper combination is attached to the wheels’ axis which

follow the road contour. 

(a) What is the time dependent displacement imparted to the suspension system? 

(b) What is the acceleration imparted to the suspension system?

(c) What is the equivalent force felt by the vehicle through a suspension system of

stiffness 20,000 N/m and damping coefficient 1000 N # s/m?

SOLUT ION
(a) The car is traveling at a constant speed of 60 m/s; thus, in time t, it travels z � 60t.
The displacement imparted to the vehicle is 

(b)

(b) The acceleration imparted to the suspension system is 

(c)

(c) The equivalent force is given by Equation (2.65) as

(d)= [40sin(120t) + 240cos(120t)] N

(120)[0.002cos(120t)m/s]Feq = (20000 N/m) [0.002  sin(120t) m] + (1000 N # s/m)

y
$ = - (0.002)(120p)2 sin (120pt) = -2.84 * 102 sin(120pt) m/s2

y (t) = 0.002 sin32p(60t)4 = 0.002 sin(120pt)

y (z) = 0.002sin(2pz) m

k c

m

x

y(t)

FIGURE 2.30
A mass-spring and viscous-
damper system with the
spring and viscous damper
attached to a moveable sup-
port. The motion of the sup-
port induces both the spring
force and viscous-damping
force to do work on the
system.
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2.9 FREE-BODY DIAGRAM METHOD
Newton’s laws, as formulated in Chapter 1, are applied to free-body diagrams of vibrating

systems to derive the governing differential equation. The following steps are used in appli-

cation to a SDOF system. 

1. A generalized coordinate is chosen. This variable could represent the displacement of

a particle in the system. If rotational motion is involved, the generalized coordinate

could represent an angular displacement.

2. Free-body diagrams are drawn showing the system at an arbitrary instant of time. In

line with the methods of Section 1.7, two free-body diagrams are drawn. One free-

body diagram shows all external forces acting on the system. The second free-body dia-

gram shows all effective forces acting on the system. Recall that the effective forces are

a force equal to , applied at the mass center and a couple equal to 

The forces drawn on each free-body diagram are annotated for an arbitrary

instant. The direction of each force and moment are drawn consistent with the posi-

tive direction of the generalized coordinate. Geometry, kinematics, constitutive equa-

tions, and other laws valid for specific systems can be used to specify the external and

effective forces.

3. The appropriate form of Newton’s law is applied to the FBD. If the FBD is that of a

particle, the appropriate conservation law is If the FBD is that of a rigid

body undergoing planar motion, the conservation laws are and

If the external and effective force method is used, the appropriate

equations are .

4. Applicable assumptions are used along with algebraic manipulation. The result is a

governing  differential equation.

Forces are drawn on the FBDs at an arbitrary instant. The force from the spring on the

FBD (from Newton’s third law) is equal and opposite to the force from the body on 

the spring. If the spring is stretched, it is in tension, and the force in the spring pulls 

on the spring, as shown in Figure 2.31(a). Equal and opposite to it is the spring force acting

away from the body. If the spring is in compression, the force in the spring pushes against

(πF)ext = (πF)eff

πMG = Ia.
πF = m  a

πF = m a.

I  a.m   a

(a)

(b)

x < 0

(c)

=
50 N–50 N

FIGURE 2.31
(a) Spring is in tension where force from a spring on
a block is away from the block. (b) Spring is in com-
pression were the force from a spring on a block
pushes on the block. (c) A � 50 N force pulling on
the block is equivalent to a 50 N force pushing on
the block.
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the spring, as shown in Figure 2.31(b). Equal and opposite again, the spring force is acting

against the body. Let x represent the displacement of the particle to which the spring is

attached. If the spring force is drawn for a positive value of x, it is labeled kx and is drawn

acting away from the body. Now if the spring is in compression, x takes on a negative value.

If the spring force is drawn acting away from the body and x is negative, it is actually acting

against the body as shown in Figure 2.31(c). Thus, the spring force is always drawn in the

direction opposite to the that of positive displacement of the point to which it is attached.

Then the direction of the spring force always takes care of itself.

The force from a viscous damper always opposes the direction of motion of the point

to which it is attached on a FBD of a SDOF system. If x represents the displacement of the

particle to which a viscous damper is attached, then its velocity is . The force from the vis-

cous damper drawn on the FBD opposes the direction of positive . If the velocity of the

particle is in the opposite direction and is negative, it is the same situation shown 

Figure 2.32(c) where a negative force on a FBD is actually in the opposite direction. Thus,

the force from a viscous damper always opposes the direction of positive motion of the par-

ticle to which it is attached. Like the spring force, the direction always takes care of itself.

When the effective force diagram is drawn, the effective forces are drawn to be consis-

tent with the positive direction of the generalized coordinates.

x#
x#

x#

(a)

(b)

cx·

cx·

(c)

=
|cx· |

x
.

x
.

x

c
m

FIGURE 2.32
The sign of the viscous-damping force takes care of itself if
it is drawn to the opposite of the positive motion of the
point to which the viscous damper is attached.

EXAMPLE 2 . 1 6
The block of Figure 2.33(a) slides on a frictionless surface. Derive the differential equation

governing the motion of the system using x as the displacement of the system from its equi-

librium position and as the generalized coordinate. 

SO LU T I ON
The free-body diagram of Figure 2.33(b) shows the forces acting on the block at an arbi-

trary instant. The spring force is kx and is drawn away from the block, indicating the spring

is in tension for a positive x. The damping force is labeled and is drawn opposite the pos-

itive direction of motion.

cx#
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Applying Newton’s law to the free-body diagram in the x direction leads to

(a)

Rearranging the equation so that all terms involving the generalized coordinate are on one

side yields

(b)

Equation (b) is the governing differential equation. The values of x(0) and must be

specified before solving.

x# (0)

m x
$ + cx# + kx = F (t)

- kx - cx# + F (t) = mx
$

(a)

(b)

F(t)

kx

cx·

mg

m

c

F(t)

k

FIGURE 2.33
(a) System of Example 2.16. Mass-spring and viscous-damper
system sliding on a frictionless surface with an external force.

A thin disk of mass moment of inertia I is attached to a fixed shaft of length L. The polar

moment of inertia of the shaft is J and it is made from a material of shear modulus G, as

shown in Figure 2.34(a). A moment M(t) is applied to the disk. Derive the differential

equation governing the clockwise angular displacement of the disk .

SO LU T I ON
The effect of the shaft is to produce a resisting moment

(a)

on the disk. The disk undergoes pure rotational motion about the axis of the shaft. A

FBD of the disk at an arbitrary time is shown in Figure 2.34(b). Applying to

the disk and noting that leads to 

(b)

(c)I u
$

+
JG

L
 u = M(t)

-
JG

L
 u + M(t) = Iu

$

a = u
$ πMG = Ia

M =
JG

L
 u

u

EXAMPLE 2 . 1 7

θ
M(t)

M(t)
JG
L

(a)

(b)

FIGURE 2.34
(a) System of Example 2.17.
The angular displacement of
the disk is the chosen gen-
eralized coordinate. (b) FBD
of the system at an arbitrary
instant.

u
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EXAMPLE 2 . 1 8
The system of Figure 2.35 lies in a horizontal plane on a frictionless surface. Derive the dif-

ferential equation governing the displacement of the mass.

SO LU T I ON
Let x represent the displacement of the mass. The disks move together. Assuming the cable

connecting the block to the disk is inextensible, the change in length of the cable is x,

which must be the amount of cable taken up or let out by the disk. If represents the

clockwise angular rotation of the disk, the amount of cable let out is equal to the arc length

subtended by as

(a)

Equation (a) is valid for all time. It can be differentiated leading to and 

This is consistent with use of the relative velocity and relative acceleration equations

applied between the center of the disk and the point instantaneously releasing the cable.

The acceleration of the point also has a component equal to directed toward the center

of rotation. Using the same principle, the spring is stretched by 2x.

r u
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FIGURE 2.35
(a) System of Example 2.18 lies in a horizontal
plane. (b) FBDs of the system at an arbitrary
instant. The system consists of the disk and the
block.
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Modeling of SDOF Systems 91

FBD’s illustrating the external forces for the system and the effective forces are shown

in Figure 2.35(b). Applying to these FBDs yields

(b)

which is rearranged to

(c)a1
r

+ mrb x
$ + 4krx = rF (t)

- k(2x)(2r) + rF(t) = I a x
$

r
b + mx

$
(r)

(πMO 
)ext = (πMO  

)eff

EXAMPLE 2 . 1 9
A thin disk of mass m and radius r, has a spring of stiffness k, and has a viscous

damper of damping coefficient c attached at its mass center, as shown in Figure 2.36(a). The

disk rolls without slipping. Derive a differential equation governing the displacement of the

mass center.

SO LU T I ON
Let x be the displacement of the disk’s mass center. When the disk rolls without slipping

the friction force is less than the maximum available friction force where N is the

normal force. The point of contact between the disk and the surface has a velocity of zero.

Use of the relative velocity equation between the point of contact and the center of mass

yields

(a)

The mass center only has a velocity and an acceleration in the horizontal direction; thus,

Equation (a) can be differentiated to yield

(b)

When the disk rolls without slipping, the kinematic condition of Equation (b) exists

between the disk’s angular acceleration and the acceleration of the mass center. Noting that

a = r a

v = vC + vG>C = r vi

mN

I = 1
2 mr 2,

F

kx + cx
.

mx·
.

mr2

=

External forces Effective forces

mg

No slip

Thin disk of
mass m and
radius r

c

µ

k

N

1
2

x·
.

r FIGURE 2.36
(a) System of Example 2.19. The disk
rolls without slipping. (b) FBDs of the
system at an arbitrary instant. The
friction force is less than the maxi-
mum available friction, and a kine-
matic relationship exists between the
angular acceleration and the acceler-
ation of the mass center.
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92 CHAPTER 2

FBDs of the disk at an arbitrary instant are shown in Figure 2.36(b). Summing

moments on these FBDs according to leads to

(c)

(d)
3
2

 mx
$ + cx# + kx = 0

-kx (r) - cx#  (r) =
1
2

mr 
2a x

$

r
b + mx 

$
(r)

(πMC  
)ext = (πMC 

)eff

a = x
$
,

EXAMPLE 2 . 2 0
An accelerometer used in micro-electromechanical (MEMS) applications is shown in

Figure 2.37(a). The accelerometer consists of a rigid bar between two massless fixed-fixed

beams that are acting like springs. The bar is free to vibrate in the surrounding medium,

which provides viscous damping. Derive a differential equation for the free vibrations of

the accelerometer using a one degree-of-freedom model.

SO LU T I ON
The system is modeled, as in Figure 2.37(b), as a rigid bar attached to two identical springs.

The mass of the bar is

(a)

(b)

(c)

beams

200  µm

20
0 

µm mass

Top view Cross-section of mass

Cross-section of beams

Side view

Direction
of vibration

silicone

E = 1.9 × 1011 N/m2

20 mm

0.5 mm

1 mm

0.5 mm

c k

m

h1 = 15 mm

h2 = 10 mm

FIGURE 2.37
(a) MEMS accelerometer
consists of a rigid bar
between two fixed-fixed
beams which vibrates in a
viscous liquid. (b) SDOF
model of system.
(c) Calculation of viscous
damping coefficient.
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Modeling of SDOF Systems 93

(a)

The moment of inertia of the cross section of one beam is

(b)

The equivalent stiffness is twice the stiffness of a fixed-fixed beam at its midspan. From

Appendix D, it is calculated as 

(c)

An equivalent viscous-damping coefficient is calculated using an approximate linear veloc-

ity profile in the surrounding fluid. The fluid on the top and bottom of the beam is in

motion due to the vibrations of the beam as shown in Figure 2.37(c). The fluid above the

beam has a velocity profile of

(d)

where y is a coordinate into the fluid from the fixed surface. The shear stress acting on the

beam is calculated using Newton’s viscosity law as 

(e)

and the resultant force on the surface of the beam is

(f)

Using a similar analysis, the force on the lower surface of the beam is

(g)

The total damping force is expressed as

(h)

from which the equivalent viscous damping coefficient is calculated as

a 1

15 * 10-
 
6  m

+
1

10 * 10-
 
6  m 

b
= (740 * 10-6 N # s/m)(200 * 10-6  m)(20 * 10-6  m)

ceq = mL d a 1
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+
1
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b

F = mL d a 1
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+
1
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F1 = tL d = mL d  
v
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= 2
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keq = 2a192EI

L3 b

I =
1

12
th 3 =

1
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94 CHAPTER 2

(i)

The mathematical model for the free response of the system is

(j)

2.10 STATIC DEFLECTIONS AND GRAVITY
Static deflections are present in springs due to an initial source of potential energy, usu-

ally gravity. The static force developed in the springs form an equilibrium condition with

the gravity forces. The generalized coordinate is generally measured from the equilibrium

position of the system. For a linear system, when the differential equation governing the

motion is derived, the equilibrium condition appears in the differential equation. It is,

of course, set equal to zero. The static spring forces cancel with the gravity forces that

cause them in the differential equation. Thus, neither are drawn on the FBD showing

the external forces.

4.6 *  10-12
 x
$ + 4.93 * 10-7x# + 0.380x = 0

= 4.93 * 10-7  N # s/m

EXAMPLE 2 . 2 1
A hanging mass-spring and viscous-damper system is illustrated inFigure 2.38(a). Derive

the differential equation governing the motion of the system. 

SO LU T I ON
Let x measure the displacement of the mass (positive downward) from the system’s equilib-

rium position. When the system is in equilibrium, a static spring force is developed due to

gravity. Summing forces to zero on the FBD (drawn when the system is in equilibrium, as

shown in Figure 2.38(b)) leads to the equilibrium condition 

(a)

where is the static deflection in the spring.

When the mass has deflected a distance x downward, the spring force is the spring force

that is present in equilibrium k plus the additional force developed from equilibrium kx.

Applying in the downward direction to the FBD of the particle (drawn at an

arbitrary instant, as shown in Figure 2.38(c)) leads to

(b)mg - k (x + ¢s) - cx# + F(t ) = mx
$

πF = m a
¢s

¢s

mg - k¢S = 0

(a)

k c

m

F(t)

(b)

mg

k∆s

(c)

mg

cẋ

F(t)

k(x + ∆s)

FIGURE 2.38
(a) System of Example 2.21. (b) FBD of the system
drawn when the system is in equilibrium. (c) FBD
drawn at an arbitrary instant. The differential equa-
tion governing the motion of the system is the
same as the sliding mass-spring-viscous system
without friction.
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Modeling of SDOF Systems 95

which rearranges to

(c)

Using the equilibrium condition, Equation (a) in Equation (c) gives 

(d)

The equation governing the displacement of the hanging mass-spring and viscous-damper

system is the same as the sliding mass-spring and viscous-damper system.

The hanging mass-spring and viscous-damper system can be analyzed by considering it

FBD, shown again in Figure 2.39. The FBD can be broken down by drawing a FBD show-

ing the spring, viscous damper, and external forces plus a FBD showing the gravity and static

spring force. The resultant of the gravity and static spring force is zero, so one only needs

the first FBD. It is not necessary to show the static spring force or gravity on the FBD. 

The above result, not needing to show the gravity force or the static spring force on the

FBD, is valid only for deriving the differential equation of motion. If another goal 

(such as obtaining a reaction) is desired, the static spring forces and gravity must be

included on the FBD.

mx
$ + cx# + kx = F(t)

mx
$ + cx# + kx = F (t) + mg - k¢S

mg

cẋ

F(t)

=

k(x + ∆s) cẋ

F(t)

kx

=

cẋ

F(t)

kx

+

k∆s

mg

FIGURE 2.39
(a) FBD of hanging mass-spring
and viscous-damper system can
be drawn such that it is the
same as the FBD of the sliding
mass-spring and viscous-damper
system.

Consider the system of Figure 2.40(a). Let x describe the downward displacement of m
l

from the system’s equilibrium position. 

(a) Derive the differential equation governing x(t).
(b) Determine the reaction at the center of the disk at the pin support in terms 

of 

SO LU T I ON
A FBD of the system in equilibrium is shown in Figure 2.40(b). Summing moments about

the pin support to zero with positive moments counterclockwise leads to

(a)

FBDs illustrating the external forces and effective forces at an arbitrary instant are shown

in Figure 2.40(c). Using and on these FBDs lead to

(b)= m1x
$

 (2r) + m2

x
$

2
 (r) + I 

x
$

2r

- k (x + ¢s1)(2r) + m1g (2r) - k a x
2

- ¢s2b (r) - m2g (r)

(πMO 
)ext(πMO  

)eff

m1g (2r) - k¢s1(2r) - m2g (r) + k¢s2(r) = 0

x, x# ,  and  x$.

EXAMPLE 2 . 2 2
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96 CHAPTER 2

which cleans up to

(c)

Use of Equation (a) in Equation (c) gives

(d)

(b) Applying in the vertical direction to the FBD of external forces,

positive downward yields

(e)

which is solved for R as

(f)

From this point, it is assumed that for all linear systems the generalized coordinate will

be measured from the system’s equilibrium position, and the only goal is to derive the dif-

ferential equation. Then the static spring force and the gravity force that causes it will not

be drawn on a FBD showing external forces.

R = mp 
g + m1g + m2g -

1

2
k x - k (¢s1 - ¢s2) + a1

2
 m2 - m1b x$

mp 
g + m1g + m2 

g - k (x + ¢s1) + k a x
2

- ¢s 2b -R = m1x
$ - m2

x
$

2

(πF)ext = (πF)eff

a 1
2r

+ 2r m1 + r m 2b x
$ +

5
2

kr x =  0

a 1

2r
+ 2r m1 +

r
2

 m2b  x$ +
5
2

k r x =  m1g (2r) - k¢s1(2r)- m2g (r) + k¢Q(r )

2r

m1 m2

r

k

I

(a)

k

I

(c)

ẍ
r

x
m1g m2g

mpg

(b)

mpg

R

R

k∆s1
k∆s2

k(x + ∆s1
) k(    – ∆s2

)x
2

m1ẍ1 m2
ẍ2

2

FIGURE 2.40
(a) System of Example 2.22. (b) FBD of
static equilibrium position. (c) FBDs of
system at an arbitrary instant.
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Modeling of SDOF Systems 97

2.11 SMALL ANGLE OR DISPLACEMENT ASSUMPTION
Nonlinear differential equations occur when the generalized coordinate appears nonlinearly

in the differential equation. Examples of nonlinear differential equations are

(2.68a)

(2.68b)

(2.68c)

Equation (2.68a) occurs for a mass-spring and viscous-damper system when the spring has

a cubic nonlinearity. Equation (2.68b) occurs for a system where air resistance is included

in the modeling. An equation such as Equation (2.68c) could occur in the modeling of the

vibrations of a bar about the equilibrium position.

The exact solution of few nonlinear equations are known. Methods to handle nonlin-

earities in differential equation (mostly approximate methods) are considered in 

Chapter 12. A linearization method is sought for the differential equations. It is clear that

linearization of Equations (2.68a) or (2.68b) simply requires neglecting the nonlinear

terms in comparison to the linear terms. The linearization of Equation (2.68c) is not quite

as simple.

u
$

+ 3 u 

$
cos u + 200 cos  usin u = 0

 mx
$ + ax# 2 + k1x = 0

 mx
$ + cx# + k1x + k3x

3 = 0

θ

(b)(a)

mg

m

T

L

θ

FIGURE 2.41
(a) System of Example 2.23. (b) FBD of particle at arbitrary
instant.

Derive the differential equation governing the motion of the simple pendulum of 

Figure 2.41(a) using as the counterclockwise angular displacement of the pendulum from

the system’s horizontal equilibrium position and as the generalized coordinate. 

SO LU T I ON
The FBD of the system at an arbitrary time is illustrated in Figure 2.41(b). Summing

moments about the fixed axis of rotation O using leads to 

(a)- mgL   sin u = mL2u
$

πM0 = IOa

u

EXAMPLE 2 . 2 3
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98 CHAPTER 2

Equation (a) is arranged to

(b)

The differential equation derived in Example 2.23 is nonlinear because sin is a transcen-

dental, not linear, function of . Consider the Taylor series expansion for sin about � 0 as

(2.69)

Suppose � 0.1 rad. Thus,

(2.70)

Thus, the approximation for a small of

(2.71)

for � 0.1 rad � 5.1°( has an error of 1.167 percent. This provides confidence in the small
angle approximation. Using this approximation in the differential equation of 

Example 2.23 gives

(2.72)

which is a linear differential equations.

Consistent with the small angle approximation, truncation of Taylor series expansions

about � 0 for other trigonometric functions yields

(2.73)

(2.74)

(2.75)

The small angle assumption may be made a priori, before the differential equation is

derived. Consider the spring in the system Figure 2.42(a). It has an unstretched length .

When the bar rotates through an angle , the spring moves to a new position, as shown in

Figure 2.42(b). The change in length of the spring is 

(2.76)

It is consistent with the small angle assumption to approximate the change in length of the

spring by L . The spring force would be at an angle to the vertical. However, it is also

consistent with the small angle assumption to draw the spring force vertically and label it

kL , as shown in Figure 2.42(c). The distance for taking moments about the pin support

is L cos .u L L
u

uu

d = 2(/ + L sin u)2 + (L - L cos u)2 - /

u

/

1 -  cos u L
1
2

 u 
2

tan u L 0

 cos u L 1

u

u
$

+
g

L
 u =  0

u

 sin u L u
u

 = 0.099833 + Á
 = 0.1 - 1.67 * 10-4 + 8.33 * 10-8 - Á

  sin (0.1) = 0.1 -
(0.1)3

6
+

(0.1)5

120
- Á

u

 sin u = u -
u3

6
+
u5

120
- Á

uuu

u

u
$

+  
g

L
  sin u = 0
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kLθ

Rx

Ry

kδ

(a)

(b)

(c)

Rx

Ry

FIGURE 2.42
(a) The spring has an unstretched length . (b) When the system
moves to a new position described by the generalized coordinate
, the change in length of the spring is a nonlinear function of .

(c) Consistent with the small angle assumption, the spring force is
drawn vertically and labeled kL .u

uu

/

EXAMPLE 2 . 2 4
Derive the differential equation governing the motion of the bar of Figure 2.43(a). Use 

as the clockwise angular displacement of the bar from the system’s equilibrium position and

as the chosen generalized coordinate. Assume a small .

SO LU T I ON
The small angle assumption will be used; thus, the differential equation will be linearized.

Static deflections exist in the springs due to gravity. The static equilibrium position is

defined by an angle , and is measured relative to this angle. It is assumed that is small

and does not affect the lengths required for the moments. Indeed, under these conditions,

is taken to be zero without loss of generality.

FBDs showing the external forces and the effective forces at an arbitrary instant are

shown in Figure 2.42(b). The forces are drawn on the FBD with the small angle assump-

tion already made. The spring forces are labeled assuming small displacements with sin

. They also remain vertical, which is consistent with the small angle assumption. The

damping force is labeled as , which is derived from the relative velocity equation but is

drawn vertical to be consistent with the small angle assumption.  

This problem involves rotation about a fixed axis at O, so either or

is applicable. The latter is used here, applying 

to the FBDs of Figure 2.43(b) and leading to

(a)

Rearranging Equation (a) gives 

(b)4m u
$

+ c u
#

+ 20k u = 0

- k 
L
3

 uaL
3
b - k 

2
3

 L ua2L
3
b - c 

L
6

 u
# aL

6
b =

1
12

 mL2
 u
$

+ m 
L
6

 u
$aL

6
b

(πMO 
)ext = (πMO )eff(πMO 

)ext = (πMO )eff

πMO = IOa

c  

L
6  u

#uLu

us

usuus

u

u
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100 CHAPTER 2

2.12 EQUIVALENT SYSTEMS METHOD
It has been shown that the potential energy for a linear SDOF system with chosen gener-

alized coordinate x can be expressed as where is the potential energy 

in its equilibrium position, the kinetic energy is expressed as , the work done

by the viscous-damping forces as the generalized coordinate moves between x
1

and x
2

can

be written as , and the work done by all other external forces between

times t
l

and t
2

is . Application of the principle of work and energy between 

position 1 and position 2 for the system where x (t
1
) � x

1
and position 2 defines an arbi-

trary position of the system

(2.77)

Substituting the given expression for both kinetic and potential energy and separating the

work done by both viscous and external forces leads to

(2.78)

Noting that T
1
, V

1
, and V

0
represent kinetic and potential energy at a specific instant of time

and therefore are constants, differentiation of Equation (2.78) with respect to time gives

(2.79)

Note that

(2.80)

(2.81)
d
dt

(x# 2) = 2x#  x
$

d
dt

 (x 2) = 2x x#

-
d
dt

 aL
x

x1

ceqx
#dxb +

d
dt

 aL
t

t1

Feqx
#dtb =

1
2

meq 
d
dt

 (x# 2) +
1
2

keq 
d
dt

 (x 2)

T1 + V1 - L
x

x1

ceqx
#dx + L

t

t1

Feqx
#dt =

1
2

meqx
# 2 +

1
2

keqx
2 + V0

T1 + V1 + U1:2 = T + V + V0

1t2
t1
Feqx

#dt

U1:2 = - 1x2
x1 

ceqx
#dx

T = 1
2meqx

# 2

V0V = 1
2keqx

2 + V0

k

k θ

k

c

Ox
Oy

G

L
3

L
3

k θ2L
3

c θ̇L

G

6
m θ̈L

6

m mL2θ̈θ̈ 2L
6

1
12

L
2

L
6

(a)

(b)

=

O

FIGURE 2.43
(a) System of Example 2.24.
(b) FBDs drawn at an arbitrary
instant using the small angle
assumption, ignoring static
spring forces and the gravity
forces that cause them.
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and

(2.82)

Equation (2.79) becomes

(2.83)

Equation (2.80) has two solutions: (the static case) and x. This satisfies 

(2.84)

Equation (2.84) is the differential equation for any linear, single degree-of-freedom

system. It only requires identification of , and . That is, any linear SDOF 

system is modeled by a mass-spring and viscous-damper system with equivalent coeffi-

cients, as in Figure 2.44. The equivalent mass is identified from the quadratic form of

kinetic energy in . The equivalent stiffness is identified from the quadratic

form of potential energy in . The equivalent viscous-damping coefficient is 

identified from the energy dissipation in The work done by external

forces, shown as is used to calculate .

If an angular coordinate is chosen as the generalized coordinate, the appropriate form

of Equation (2.84) is

(2.85)

The appropriate equivalent systems model is a thin disk of moment of inertia I
eq 

attached

to a shaft of torsional stiffness kt,eq
in parallel with a torsional viscous-damper coefficient

ct,eq
as shown in Figure 2.45.

Iequ
$

+ ct,equ
#

+ k t,equ = Meq(t )

Feq(t)1 t2
t1

Feq x# dt,

U1:2 = - 1x2
x1

ceq x
#
dt.

V = 1
2keqx

2

T = 1
2meqx

# 2

Feq(t)meq, ceq, keq

meq x
$ + ceqx

# + keqx = Feq(t )

x# = 0

Feqx
# - ceqx

# = meqx
$
x# + keqx x#

d
dt
aL

x

x1

ceqx
#d xb =

d
dt
aL

t

t1

ceqx
# 2dtb = ceqx

# 2

x

ceq

keq

meq Feq (t)

FIGURE 2.44
Equivalent mass-spring and viscous-damper system when a
linear displacement is chosen as the generalized coordinate.x

kt,eq
ct,eq

Ieq

Meq (t)

θ

FIGURE 2.45
Equivalent torsional system used when an angular
coordinate is chosen as the generalized coordinate.u
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102 CHAPTER 2

Use the equivalent systems method to derive the differential equation governing the

motion of the bar of Figure 2.43(a) and Example 2.24 using as the clockwise angular dis-

placement of the bar from the system’s equilibrium position and as the chosen generalized

coordinate. Assume small .

SO LU T I ON
The kinetic energy of the bar at an arbitrary instant is

(a)

Thus, . The potential energy of the system at an arbitrary instant is

(b)

The equivalent torsional stiffness is . The work done by the viscous damper

between an initial position and an arbitrary position is

(c)

Hence, the equivalent torsional stiffness is . The differential equation governing is

(d)

Equation (d) reduces to Equation (b) of Example 2.24.

1
9

 mL 
2

 u
$
 + c 

L2

36
 u

#
+

5
9

kL2u = 0

uct,eq = c 
L2

36

 W1:2 = -L
u

u1

 ac 
L
6

 u
# b  d aL

6
 ub = -L

u

u1

 ac 
L2

36
 u
# bd u

kt,eq = 5
9kL2

V =
1
2

k aL
3

 ub2

+
1
2

k a2L
3

 ub2

=
1
2

 a5
9

kL2bu2

Ieq =1
9 mL2

=
1
2

 a1
9

 mL2bu# 2T =
1
2

m v
 
2 +

1
2

Iv2 =
1
2

maL
6

 u
# b2

+
1
2

 a 1
12

mL2bu# 2

u

u

EXAMPLE 2 . 2 6
Use the equivalent system method to derive the differential equation governing the free

vibrations of the system of Figure 2.46. Use x, the displacement of the mass center of the

disk from the system’s equilibrium position, as the generalized coordinate. The disk rolls

without slipping, no slip occurs at the pulley, and the pulley is frictionless. Include an

approximation for the inertia effects of the springs. Each spring has a mass ms.

SO LU T I ON
Let be the clockwise angular rotation of the pulley from the system’s equilibrium position

and xB be the downward displacement of the block, also measured from equilibrium. Then

(a)

Eliminating between these equations leads to xB � 2x. Since the disk rolls without slip,

its angular velocity is The inertia effect of each spring is approximated by plac-

ing a particle of mass m
s
/3 at the location where the spring is attached to the system.

vD = x#  /rD.
u

x = r u xB = 2r u

u

EXAMPLE 2 . 2 5
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Modeling of SDOF Systems 103

To this end it is imagined that a particle of mass ms/3 is attached to the center of the disk

and a particle of mass ms/3 is attached to the block. The total kinetic energy of the system,

including the kinetic energies of the imagined attached particles is

(b)

The equivalent mass is

(c)

The potential energy of the system at an arbitrary instant is

(d)

Comparison to the quadratic form of potential energy leads to k
eq

� 5k.

The work done by the viscous dampers between two arbitrary instants is 

Comparison with the general form of work done by a viscous damper leads to c
eq

� 5c.
The differential equation governing free vibration of the system is 

a19

2
 m +

IP

r 2 +
5
3

 msbx
$ + 5cx# + 5kx = 0

U1:2 = -L
x2

x1

cx#  dx - L
x2

x1

c (2x#) d (2x) = -L
x2

x1

5cx# dx

V = 1
2kx 2 + 1

2k (2x)2 = 1
2(5k)x 2

meq =
19

2
 m +

1P

r 2 +
5

3
 ms

 =
1

2
 a19

2
m +

IP

r 2 +
5

3
ms 
bx# 2

 =
1

2
mx# 2 +

1

2
 a1

2
 mr 2

Db  a x#

rD
b2

+
1

2
IP a x#

r
b2

+
1

2
 (2m)(2x#)2 +

1

2
 
ms

3
x# 2 +

1

2
 
ms

3
(2x# )2

 T =
1
2

mx# 2 +
1
2

ID 
v2

D +
1
2

IP u
#
2 +

1
2

(2m)x 

#
2
B + Ts1

+ Ts2

k

k

xB = 2x

c

c

x

rD 2r

2m

Ipr

FIGURE 2.46
The system of Example 2.26 is
modeled by the equivalent system
of Figure 2.44.

EXAMPLE 2 . 2 7
The slender rod of Figure 2.47 will be subject only to small displacements from equilib-

rium. Use the equivalent systems method to derive the differential equation governing the

motion of the rod using , the counterclockwise angular displacement of the rod from its

equilibrium position, as the generalized coordinate.

u
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104 CHAPTER 2

SO LU T I ON
The kinetic energy of the bar at an arbitrary instant is

(a)

Comparison with the quadratic form of kinetic energy leads to I
eq 

� mL2/9.

The potential energy in the system is due to gravity. Choosing the plane of the pin sup-

port as the datum, the potential energy of the system at an arbitrary instant is

(b)

For small the Taylor series expansion for truncated after the second term leads to

an approximation for the potential energy as 

(c)

Comparison with the quadratic form of potential energy leads to kt,eq 
� mgL/6. Since the

datum was chosen as the plane of the pin support, the system has a potential energy of 

V
0

� –mgL/6 when it is in equilibrium.

Equation (2.84) is used to write the differential equation governing the motion of the

system as

(d)
1
9

mL2
 u
$

+
1
6

 mgL u = 0

V = -mg 
L
6
a1 -

1
2

 u2b =
1
2

 mg L
6

 u2 - mg L
6

cos uu,

V = -mg 
L
6

 cos u

T = =
1

2
 maL

6
 u
# b2

+
1
2
a 1

12
 mL2bu# 2 =

1
2
a1

9
 mL2bu#

  

2

EXAMPLE 2 . 2 8
A simplified model of a rack-and-pinion steering system is shown in Figure 2.48. A gear of

radius r and polar moment of inertia J is attached to a shaft of torsional stiffness k
t
. 

The gear rolls without slip on the rack of mass m. The rack is attached to a spring of stiff-

ness k. Derive the differential equation governing the motion of the system using x, the

horizontal displacement of the rack from the system’s equilibrium position, as the general-

ized coordinate.

SO LU T I ON
Since there is no slip between the rack and the gear, � x/r, where is the angular displace-

ment of the gear from equilibrium. The kinetic energy of the system at an arbitrary instant is

(a)

from which the equivalent mass is determined as m
eq 

� m � J/r2. The potential energy of

the system at an arbitrary instant is 

(b)

from which the equivalent stiffness is determined as k
eq

� k � kt/r
2. The differential equation is

(c)am +
J

r 2 b  x
$ + akt

kt

r 
2 bx = 0

V = =
1

2
k x 2 +

1
2

kta x
r 2 b =

1
2
ak +

kt

r 2 bx 2

T = =
1

2
 mx# 2 +

1

2
 J a x#

r
b2

=
1

2
am +

J

r 2 bx# 2

uu

2L
3

θ

L
3

FIGURE 2.47
The compound pendulum is
modeled by the equivalent tor-
sional system of Figure 2.45.
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Gear of radius r, polar
moment of inertia J

Rack of
mass m

k

kt

x
FIGURE 2.48
Model of the rack-and-pinion system of
Example 2.28.

EXAMPLE 2 . 2 9
A simplified transmission system is shown in Figure 2.49. A motor supplies a torque, which

turns a shaft. The shaft has a gear on it, which meshes to a second gear designed such that

the speed of the second shaft is greater than the first. The shafts are mounted on identical

bearings each with a torsional damping coefficient ct. Let be the angular velocity of the

shaft directly connected to the motor. Derive a differential equation governing , which is

angular displacement of the shaft directly connected to the motor.

SO LU T I ON
The meshing gears imply a relationship between the angular velocities of the shafts. The

gear equation gives

(a)

The total kinetic energy of the shafts is

(b)

Thus, the equivalent moment of inertia is The work done by the tor-

sional viscous dampers is

(c)

The equivalent viscous damping coefficient is 

The work done by the external moment supplied by the motor is 

(d)

The equivalent moment is M
eq

(t) � M(t).
Thus the differential equation governing the angular displacement of the shaft is

(e)cJ1 + an1

n2
b2

J2 du$1 + ct 
c1 + an1

n2
b2 du# 1 + M(t )

W1:2 = L
t

t1

M(t )u
#
1dt

ct,eq = ct 
c1 + an1

n2
b2 d .

W1:2 = -L
u

u1

ct u
#
1d u1 -L

u

u1

 ct 
an1

n2
 u

#
1b  d an1

n2
 u1b = -L

u

u1

 ct 
c1 + an1

n2
b2 du# 1d u1

Ieq = J1 + an
1

n 2
b2

J2.

T = =
1
2

J1v
2
1 +

1

2 
J2v

2
2 =

1

2
J1u

#
2
1 +

1

2
J2a

n1

n2
 u

#
1b

2

=
1

2
cJ1 + an1

n2
b2

J2 du# 21

n1v1 = n2v2

u1

u
#
1
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106 CHAPTER 2

2.13 BENCHMARK EXAMPLES
In this section, the benchmark examples introduced in Section 1.8 are considered. The

free-body diagram method is used to derive the differential equations for the machine

mounted on a beam and for the simplified vehicle suspension system.

2.13.1 MACHINE ON A FLOOR IN AN INDUSTRIAL PLANT
A machine is mounted on the floor of an industrial plant. The floor is modeled as a 

W14�30 steel fixed-pinned beam. The appropriate SDOF model is that of a mass sus-

pended from a spring of appropriate stiffness, as shown in Figure 2.50(a). The stiffness is

calculated using Appendix D. The equation for the deflection of a fixed-free beam due to

a unit concentrated load at x � a evaluated for x < a is

(a)

The machine is located at a � 0.6L. Substituting this value into Equation (a) leads to

(b)

The stiffness is the reciprocal of w(0.6L)

(c)

One model is a mass of 458.72 kg (the mass of the machine) attached to a spring of stiff-

ness 1.20 � 107 N/m.

k =
EI

0.00979L3 =
(210  GPa) (1.21 * 10- 4

 m4)

0.00979(6 m)3  = 1.20 * 107 N/m

w (0.6L) = 0.00979 
L3

EI

w (x) =
1

2EI
 a1 -

a
L
b c a a2

L2 - 2
a
L

- 2b x 
3

6
+ a a2 -

a
L
b x 

2

2
d

M(t)

J1

J2

Gear with
n2 teeth

Gear with
n1 teeth

c1θ̇1

c2θ̇2

θ1
FIGURE 2.49
Model of the transmission system of Example 2.29.

kb

m + mb,eq

570.69 kg

1.20 × 107 N/m

(a) (b)

FIGURE 2.50
(a) SDOF model for system of the first benchmark
problem. (b) Equivalent mass and equivalent stiffness
are calculated for the model.
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Modeling of SDOF Systems 107

The inertia of the beam is included in the model by adding a particle of an appropri-

ate mass to the mass of the machine. The expression for the displacement of the beam due

to a concentrated load P applied at x � 0.6 L is obtained from Appendix D as

(d)

It takes a load of to cause a unit deflection at z � 0.6L. If x is the deflection

where the machine is supported, the beam’s kinetic energy is

(e)

Thus, the equivalent weight of the beam (noting that the weight per meter of a W14 � 30

steel beam is 438 N/m) is

(f)

Thus, the equivalent weight of the machine and the beam is 5598.5 N. The mass of the

machine must be expressed in kg as

(g)

The system is modeled by a machine of weight 5598.5 N attached to a spring of stiffness

1.20 � 107 N/m as shown in Figure 2.50(b). The differential equation modeling the

system is

(h)

2.10.2 SIMPLIFIED SUSPENSION SYSTEM
A single degree-of-freedom model of a simplified suspension system is shown in Figure 2.51(a).

The “sprung mass,” which is the mass of the main vehicle, is modeled as a particle con-

nected to the axle by the suspension system. The suspension system is modeled as a spring

in parallel with a viscous damper. The wheel is assumed to be rigid (an assumption to be

examined later) and it traverses the road contour. Let m be the mass of the vehicle, k the

stiffness of the spring, and c the damping coefficient of the viscous damper. Let y( ) be

the road contour. If the vehicle travels with a constant horizontal velocity y, then the vehi-

cle travels a distance � vt in time t. Thus, the wheel experiences y(vt).j

j

570.69 x
$ + 1.20 * 107x = F (t )

m =
W
g

=
5598.5 N
9.81 m/s2 = 570.69 kg

Weq = 0.418Wb = 0.418(438 N/m)(6 m) = 1098.5 N

 =
1

2
(0.418)rALx# 2

 + L
L

0.6L
a 1

EI
b2

rA c1
6

(z - 0.6L)3 + 0.84Lz 2 - 0.0946z 3 d2 dzv

T =
1

2
 x# 2a102.14EI

L3 b2uL
0.6L

0

rA c 1

EI
 (0.84Lz - 0.0946z 

3) d2dz

P = 102.14L3

EI

w(z ) =
P
EI

 c 0.84Lz - 0.0946t 3 z 6 0.6L

1
6

 (z - 0.6L) + 0.84Lz 2 - 0.0946z 3 0.6L 6 z
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108 CHAPTER 2

Applying Newton’s law to a free-body diagram of the vehicle drawn at an arbitrary

instant in Figure 2.51(b), we have

(a)

which is rearranged to

(b)

The model of the suspension system is that of a mass-spring and viscous-damper system

subject to motion input.

Parameters for the suspension system may be m � 300 kg, c � 1200 N s/m, and 

k � 12,000 N/m. Thus, the model for this suspension system is

(c)

2.14 FURTHER EXAMPLES
The small angle assumption, where appropriate, is made in these problems. Assuming all

systems are linear, the generalized coordinate is measured from the system’s equilibrium

position. Thus, the static forces in the spring cancel with the gravity forces, which cause

them, and neither are included on the FBDs.

300x
$ + 1200x# + 12,000x = 1200y# + 12,000y

#

m x
$ + c x# + kx = c y# + ky

-k(x - y) - c (x# - y# ) = mx
$

m
x(t)

k(y – x) c(ẏ – ẋ)y(t)

ck

(a) (b)

FIGURE 2.51
(a) SDOF model for simplified suspension system.
Model ignores the stiffness of the tires and the mass
of the axle. (b) FBD of the system at an arbitrary
instant.

EXAMPLE 2 . 3 0
A mass of 30 kg (shown in Figure 2.52(a)) is hung from a spring of stiffness k � 2.5 � 105 N/m,

which is attached to an aluminum beam (E � 71 � 109 N/m2, � � 2.7 � 103 kg/m3) of

moment of inertia I � 3.5 � 10–8 m4 and of length 35 cm. The beam is supported at its

free end and by a circular aluminum cable of diameter 1 mm and length 30 cm. 

(a) Determine the equivalent stiffness of the assembly.

(b) Write the differential equation governing in the motion of the mass.

SO LU T I ON
The stiffness of the beam is

(a)

The equivalent stiffness of the cable is

(b)

The beam and cable behave as two springs in parallel, because they have the same displace-

ments at their end. The discrete spring is in series with the parallel combination, because

kc =
EA
L

=
(71 * 109 N/m2) p(5 * 10-4)2

0.30 m = 1.86 * 105 N/m

kb =
3EI
L3 =

3(71 * 109 N/m2)(3.5 * 10-8 m4)

(0.35 m)3 = 1.74 * 105 N/m
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Modeling of SDOF Systems 109

the displacement of the mass is the sum of the displacement of the spring and the displace-

ment of the end of the beam. The equivalent model is shown in Figure 2.52(b). The 

equivalent stiffness of the combination is

(c)

(b) The differential equation for a SDOF model of the motion of the mass (assuming

the beam and the column are massless) is

(d)30x
$ + 1.48 * 105x = 0

 = 1.48 * 105 N/m

 =
1

1

2.5 * 105 N/m
+

1

(1.74 * 105 N/m) + (1.86 * 105 N/m)

 keq =
1

1

k
+

1
kb + kc

35 cm
30 cm

Aluminum

30 kg

Aluminum

1 mm diameter

I = 3.5 × 10–8 m4

2.5 × 105 N/m

30 kg

kcable

k

kbeam

(a) (b)

x x

FIGURE 2.52
(a) System of Example
2.30. Mass is suspended
from a beam supported
by a column. (b) Beam
and column are modeled
by springs resulting in the
equivalent systems model
shown.

EXAMPLE 2 . 3 1
A schematic diagram of a compactor is shown in Figure 2.53(a). The compactor is a cylin-

der of mass 35 kg, radius 0.9 m, and length 1.5 m. To each end of the cylinder, a viscous

damper of damping coefficient c � 1000 N m/s is connected to the center, while a spring

of stiffness k � 1.4 � 105 N/m is connected to a point 0.2 m from the center. 

(a) Derive a mathematical model for the unforced motion of the cylinder if it rolls

without slipping. 

(b) Derive a mathematical model for the unforced motion of the cylinder when it rolls

and slips with a coefficient of friction of 0.25.

SO LU T I ON
(a) The free-body diagram method is used with projections of the diagrams showing the

equivalent and effective forces in Figure 2.53(b). When the cylinder rolls without slipping,

there is an unknown friction force between the cylinder and the ground. Additionally, a

#
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110 CHAPTER 2

kinematic relationship exists between the displacement of the mass center and the angular

acceleration . When the mass center of the disk has moved a distance x from equi-

librium, the spring has also changed in length where r 5 0.2 m and is the angular rota-

tion of the disk. Since x � R , the change in length of the spring is x. Summing

moments on these FBDs using ( Mc)
ext

� ( Mc)
eff

gives

(a)

(b)

Substituting given values, noting the moment of inertia of a circular cylinder about the

axis of rotation is , leads to

(c)

(b) if the disk rolls and slips, the friction force is equal to the maximum allowable friction force

equal to N, and there is no kinematic relationship between the angular acceleration and them

52.5x
$ + 2000x# + 4.18 * 105x = 0

I = 1
2mR2

a 1
R2 + mb x

$ + 2cx# + 2ka1 +
r
R
b2

x = 0

- (2cx#)R - c2k a1 +
r
R
bx d (r + R )x = I a x

$

R
b + (mx 

$
)R

gg A1 + r
R Bu

ur u

a = Ra

Iα

2k (1+
r
R

) x

µmg

mg

External forces Effective forces

=

mg

N

N

F

Ix
.

2cx
.

2cx
.

R

mẍ
2k (1+

r
R

) x

External forces Effective forces

x

Cylinder

(a)

(b)

(c)

mẍ

FIGURE 2.53
(a) System of Example 2.31. A compactor
is modeled as a cylinder with viscous
dampers attached at the center and
springs attached at a point above the
center. (b) FBDs of the compactor, assum-
ing it rolls without slipping. (c) FBDs of the
compactor in the case of slipping.
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Modeling of SDOF Systems 111

acceleration of the mass center. The appropriate FBDs are shown in Figure 2.53(c). Summing

moments about the point contact using the FBDs and , we have

(d)

Summing moments about the center of the disk using these FBDs and

, we have

(e)

Substituting Equation (e) into Equation (d) leads to

(f)

Equation (f ) is derived assuming . The right-hand side is positive if . Upon

substitution of given values and taking into account the sign dependence of the right-hand

side on Equation (f ) becomes

(g)35x
$ + 2000x# + 3.08x105 = e -77.25 x# 7 0

77.25 x# 6 0

x#

x# 6 0x# 7 0

mx
$ + 2c x# + 2k a1 +

r
R
bR = -mmgR

- c2k a1 +
r
R
bx dr + mmg R = Ia

(πMG 
)ext = (πMG 

)eff

- (2cx#)R - c2k a1 +
r
R
bx d (r + R )x =  Ia + (mx

$
 )R

(πMC 
)ext = (πMC 

)eff

EXAMPLE 2 . 3 2
Consider the system shown in Figure 2.54(a). A thin rod of mass m is pinned at O at a dis-

tance of from its left end is attached to a viscous damper of damping coefficient c at its

left end. Attached to its right end is a cubic block of side d and mass m which is initially

half submerged in a liquid of mass density . 
(a) Determine the value of d such that the equilibrium position is the horizontal con-

figuration of the bar. 

(b) Determine the equation of motion for small oscillations about the horizontal equi-

librium position. Use as the chosen generalized coordinate.

SO LU T I ON
When the system is in equilibrium, the moment of the gravity force must balance with the

moment of the buoyant force acting on the block. For the horizontal configuration whose

free-body diagram is shown in Figure 2.54(b), summing moments about the pin support

leads to

(a)

The buoyant force is equal to the weight of the fluid displaced by the block. For half of

the cube to be submerged,

(b)

Using Equation (b) in Equation (a) leads to 

(c)a 7
10
br 

d  
3

2
=

2
10

 mg Q d = a4mg

7r
b

1
3

FB = rd 
2a d

2
b = r 

d 
3

2

- mg a2L
10
b + FBa7L

10
b = 0

πMO = 0,

u

r

3L
10
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112 CHAPTER 2

(b) When the bar has an angular displacement from its, equilibrium position, the

buoyant force acting on the block (assuming small ) becomes

(d)

Summing moments about the point of support using the free-body diagrams of Figure 2.54(c),

leads to

(e)

After subtracting the equilibrium condition of Equation (a), Equation (d) becomes

. (f)

(g)184 mu
$

+ 27c u
#

+ 147 rd 
2u =

210
L

F (t )

184
300

mL2u
$

+
9

100
cL 

2u
#

+
49

100
rd 2L 

2u =
7L
10

F (t)

=
1

12
 mL2u

$
 +  

2
10

 mL u
$ a 2

10
Lb +

7
10

 mL u 
$a 7

10
Lb

F(t)
7L
10

-
3

10
Lc u

# a 3
10

Lb  +
2

10
mgL -

7
10

L crd 2a d
2

+
7

10
Lub d

(πMO 
)ext = (πMO 

)eff

FB = rd 
2a d

2
+

7
10

Lub
u

u

c
F(t)

Slender bar
of mass m

m

7L
10

3L
10

(a)

(b)

FB

mg

c(        )3L
10

F(t)

R

ρd2 7L
10

=

m
2L
10 θ

θ

¨

mL21
12 θ̈m

2L
10θ 2˙

θ̇

m
7L
10 θ̈(       )

(c)

FIGURE 2.54
(a) System of Example 2.32. A
cube is at the end of a thin bar
and is partially submerged in a
liquid when acted on by a time
dependent force. (b) FBD of the
equilibrium position. (c) FBDs at
an arbitrary instant. The gravity
force and static buoyancy force
cancel with each other when
deriving the differential equation.
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EXAMPLE 2 . 3 3
Use the free-body diagram method to derive the differential equation governing the motion

of the system shown in Figure 2.55(a). Use as the clockwise angular displacement of the

bar measured from the system’s equilibrium position and as the chosen generalized coordi-

nate. Assume small .

SO LU T I ON
FBDs showing the external forces and the effective forces acting on the bar at an arbitrary

instant are shown in Figure 2.55(b). The small angle assumption implies that sin 

and the springs remain vertical. Thus, a linear differential equation will be

derived, and it can be assumed that static spring forces cancel with gravity when deriving

the differential equation. Summing moments about the point of support

and using the FBDs, we have

(a)

which reduces to

(b)m
$

 u + 4c u
#

+ 3k u = 0

- c a2L
3

 u
# b a 2L

3
b - kaL

3
 ub aL

3
b - 2kaL

3
 ub aL

3
b =

1
12

mL2u
$

+ maL
6

 u
$b aL

6
b

(πMO 
)ext = (πMO 

)eff

cos u L 1,
u L u,

u

u

mL2θ1
12

¨m θ 2L
6

˙

m θL
6

˙

=

External forces Effective forces

2k θL
3

k θL
3

c θ2L
3

˙

Rx
Ry

(b)

θ

L
3

L
3

L
3

k

c

2k

(a)

FIGURE 2.55
(a) System of Example
2.33. The small angle
assumption is used to
linearize the differential
equation a priori. (b) FBDs
of the system at an arbi-
trary instant.

EXAMPLE 2 . 3 4
Derive the differential equation governing the motion of the system of Figure 2.56. The

system is in equilibrium when the bar is in the vertical position. Use the equivalent systems

method using the angular coordinate as the counterclockwise angular displacement of the

bar when it is in equilibrium and as the generalized coordinate. Assuming small , the disk

rolls without slipping, and there is no friction between the cart and the surface.

u

u

62129_02_Ch02_p055-136.qxd  3/17/11  5:25 PM  Page 113

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



114 CHAPTER 2

SO LU T I ON
The displacement of the center of the disk is , and the displacement of the cart is

with both assuming small . The appropriate equivalent systems model is the tor-

sional system whose equation is

(a)

The equivalent moment of inertia is obtained using kinetic energy. The kinetic energy of

the system at an arbitrary instant is

(b)

Noting that, if the disk rolls without slipping, then the moment of inertia of the

thin disk is , and the moment of inertia of the slender bar is .

Equation (b) becomes

(c)

Hence, . 

The potential energy at an arbitrary instant is

(d)

Thus, . The work done by the viscous damping force is

(e)U = -Lcx# d x = -Lc (a u
#
)d(a u) = -Lca 

2u
#
d u

kt,eq = k(a2 + b2)

V =
1
2

kx 2 +
1
2

ky 2 =
1
2

k (a2 + b 
2)   u

Ieq = 3
2md  

a 
2 + 1

12mL 
2 + mcb 

2

=
1
2
a3

2
md 

a2 +
1

12
mL2 + mcb

2bu# 2
T =

1

2
md 
aa u

# b2

+
1

2
a1

2
md  

r 2b a a u
#

r
b2

+
1

2
a 1

12
mL2bu# 2 +

1

2
mc(b u

#
)2

Ib = 1
12mL2Id = 1

2md  
r 2

v = x
#

r ,

T =
1
2

 md x# 2 +
1
2

Id  
v2 +

1
2

Ib u
#
2 +

1
2

mc  y
# 2

Ieq u
$

+ ct,equ
#

+ kt,eq u = 0

uy = b u

x = a u

a

b

mc

k

k

Thin disk of
mass md
radius r

Slender bar
of mass m,
length L

No slip

c

θ

FIGURE 2.56
The thin rod connects the disk
that rolls without slipping and
the cart which moves on a sur-
face without friction.
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The equivalent viscous damping coefficient is . Hence, the governing differen-

tial equation is

(f)a3
2

md 
a2 +

1
12

mL2 + mcb
2bu$ + ca2u

#
+ k(a2 + b2)u = 0

ct,eq = ca2

θ

b
Slender bar of

mass m2

a

c

k

m1

y(t)

(a)

x

k(y –     x) + c(ẏ –     ẋ)
b
a

b
a

(   )
2x

.

a
m2(        )b – a

2
(   )ẍ

a
m2(        )b – a

2
=

External forces Effective forces

Rx

Ry
kx m1ẍm1

(b)

Iθ̈ FIGURE 2.57
(a) The end of the bar
is connected to a
spring and viscous
damper which is given
motion input, perhaps
from a cam and fol-
lower mechanism.
(b) FBDs of the bar at
an arbitrary instant.

EXAMPLE 2 . 3 5
The bar of Figure 2.57(a) is attached to a spring and viscous damper which is attached to

a cam and follower system. The cam is designed such that it imparts a displacement y(t) to
the spring and viscous damper. The bar is designed to impart a linear motion to the cart.

Derive the differential equation governing the motion using x as the displacement of the

cart and as the generalized coordinate. The motion occurs in the horizontal plane.

SO LU T I ON
Assume the displacement of the cart is small. The angular rotation of the bar is related to

the displacement of the cart by . The displacement of the end of the bar where the

spring is attached is . FBDs showing the external and effective force acting

on the bar are shown in Figure 2.57(b). Summing moments about the mass center of the

bar and using these FBDs leads to

(a)+ (m1x 
$
)a + m2a b - a

2
b  

x
$

a
 a b - a

2
b  

k ay -
b
a

 xbb + c ay
# -

b
a

x
#bb - (kx)a =

1
12

m2L
2a x

$

a
b

(πMG 
)ext = (πMG 

)eff

y = b u = b
a x

x = a u
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which is rearranged to

(b)

2.15 CHAPTER SUMMARY

2.15.1 IMPORTANT CONCEPTS
• A spring is a flexible link between two particles in a mechanical system.

• Structural elements may be used as springs.

• A combination of springs may be replaced by a single spring of equivalent stiffness for

purposes of analysis.

• The magnitude of a spring force (drawn at an arbitrary instant on a FBD) is the stiff-

ness of the spring times the change in length of the spring. If one end of 

the spring is fixed, the change in length of the spring is simply the displacement 

of the particle to which the spring is attached.

• The direction of a spring force (drawn on a FBD at an arbitrary instant) is consistent

with the state of the spring for a positive value of the generalized coordinate. If the

spring is stretched, the force is drawn acting away from the body. If the spring is com-

pressed, the force is drawn acting on the body. The direction of the spring force takes

care of itself as motion continues.

• Viscous damping is often used in mechanical systems because the addition of viscous

damping leads to a linear term in the governing differential equation.

• The force from a viscous damper (drawn on a FDB at an arbitrary instant) is equal to

the viscous-damping coefficient times the velocity of the particle to which it is

attached and opposite to the direction of positive velocity of the particle.

• The viscous dampers in a system may be replaced (for analysis purposes) by a single

viscous damper, such that the work done by the single damper is equivalent to the

work done by all viscous dampers.

• All inertia elements in a system may be replaced by a particle (for analysis purposes)

such that the kinetic energy of the particle is equal to the kinetic energy of all inertia

elements.

• The inertia of a spring may be approximated by adding a particle of one third of the

mass of the spring at the location in the system where the spring is attached.

• When a mass is vibrating in a liquid, the motion of the entrained liquid can be approx-

imated by added mass. That is, a particle of an appropriate mass is added to the mass

of the vibrating body. 

• All external forces acting on a system can be replaced (for analysis purposes) by a single

force whose work is equal to the work done by all external forces.

• The free-body diagram method can be used to derive the differential equation of any

SDOF. The method consists of drawing FBDs of the system at an arbitrary instant. If

the system can be modeled as a particle, the appropriate conservation law is 

. If the system can be modeled as a rigid body undergoing planar motion

with rotation about a fixed axis through O, the appropriate equations are πF = m   a
πF = m a

am1a +
m2L

2

12a
+

m2

4a
(b - a)2b x

$ + c  
b2

a
 x# + k aa +

b2

a
bx = c  

b2

a
y# + k 

b2

a
 y
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and . If the system is composed of more than one body or involves planar

motion of a rigid body, the conservation equations are and

where A is any axis.

• For a linear system, if the generalized coordinate is measured from the system’s equi-

librium position, static forces developed in springs cancel with the gravity forces that

cause them when the differential equation governing the motion is derived. Thus, nei-

ther are included on a FBD or in formulation of potential energy.

• The small angle assumption can be used to linearize a nonlinear differential equation. It can

be applied a priori to deriving the differential equation governing the motion of the system.

• The equivalent systems method can be applied to any linear system. A generalized

coordinate is selected. An equivalent mass is calculated using the kinetic energy of the

system, an equivalent stiffness is calculated using the potential energy of the system,

an equivalent viscous-damping coefficient is calculated using the work done by the 

viscous-damping forces, and an equivalent force is calculated using the work done by

external forces. The differential equation governing the motion of is that of a mass-

spring and viscous-damper system using the equivalent coefficients.

2.15.2 IMPORTANT EQUATIONS
Force-displacement relation for a linear spring

(2.4)

Potential energy developed in a linear spring

(2.6)

Stiffness of a helical coil spring

(2.11)

Stiffness of longitudinal bar

(2.16)

Stiffness of a simply supported beam at its midspan

(2.18)

Stiffness of a cantilever beam at its end

(2.21)

Torsional stiffness of shaft

(2.25)

Equivalent stiffness of n springs in parallel

(2.28)keq = a
n

i = 1

ki

kt =
JG

L

k =
3EI
L3

k =
48EI

L3

k =
AE
L

k = GD4

64Nr 3

V = 1
2

 k x 2

F = kx

(πMA 
)ext = (πMA 

)eff

(πF)ext = (πF)eff

πMO = I0a
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118 CHAPTER 2

Equivalent stiffness of n springs in series

(2.31)

Determination of equivalent stiffness for arbitrary combination of springs

(2.32)

Potential energy due to gravity

(2.34)

Force developed in viscous damper

(2.37)

Work done by viscous damping forces

(2.47)

Equivalent mass when linear displacement is used as generalized coordinate

(2.50)

Equivalent moment of inertia when angular coordinate is used as generalized coordinate

(2.51)

Equivalent mass of a system including approximation of inertia effects in springs

(2.57)

Work done by external sources

(2.64)

Small angle assumption

(2.71)

(2.73)

(2.74)

Differential equation governing equivalent mass-spring and viscous-damper system

(2.84)

Differential equation governing equivalent system when chosen generalized coordinate is

an angular coordinate

(2.85)Ieq u
$

+ ct, eq u
#

+ kt, eq 
u = Meq 

(t )

meqx
$ + ceqx

# + keqx = Feq(t )

 tan u L u

 cos u L 1

 sin u L u

U1:2 = -L
t2

t1

Feq x# dt
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3

T =
1

2
Iequ

#
2

T =
1

2
meqx

# 2
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x

0
ceqx

# dx
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1

2
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PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 2.1 through 2.15, indicate whether the statement presented is true or false.

If true, state why. If false, rewrite the statement to make it true.

2.1 The differential equation governing the free vibrations of a sliding mass-spring

and viscous-damper system (without friction) is the same as the differential

equation for a hanging mass-spring and viscous-damper system.

2.2 The differential equation governing the motion of a SDOF linear system is

fourth order.

2.3 Springs in series have an equivalent stiffness that is the sum of the individual

stiffnesses of these springs.

2.4 The equivalent stiffness of a uniform simply supported beam at its middle is

3EI/L3.

2.5 The term representing viscous damping in the governing differential equation

for a system is linear.

2.6 When the equivalent systems method is used to derive the differential equation

for a system with an angular coordinate used as the generalized coordinate, the

kinetic energy is used to derive the equivalent mass of the system.

2.7 The equivalent systems method can be used to derive the differential equation

for linear SDOF systems with viscous damping.

2.8 The inertia effects of a simply supported beam can be approximated by placing

a particle of mass one-third of the mass of the beam at the midspan of the

beam. 

2.9 The static deflection of the spring in the system if Figure SP2.9 is mg/k.

2.10 The springs in the system of Figure SP2.10 are in series.

Slender bar
of mass m

L

k

FIGURE SP 2.09

m

k1

k2

FIGURE SP 2.10
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2.11 A shaft can be used as a spring of torsional stiffness JG/L.

2.12 Energy dissipation is used to calculate the equivalent viscous-damping

coefficient for a combination of viscous dampers.

2.13 The added mass of a fluid entrained by a vibrating system is determined by

calculating the potential energy developed in the fluid.

2.14 If it is desired to calculate the reactions at the support of Figure SP2.14, the

effects of the static spring force and gravity cancel and do not need to be

included on the FBD or in summing forces on the FBD.

2.15 Gravity cancels with the static spring force, and hence, the potential energy 

of neither is included in potential energy calculations for the system of

Figure SP2.15.

Problems 2.16 through 2.25 require a short answer.

c

kL
2

L
2

FIGURE SP 2.14

2.16 What is the small angle assumption and how is it used?

2.17 When are the free-body diagrams of a system drawn when they are used to

derive the differential equation of a linear SDOF system?

2.18 What is meant by “quadratic forms”?

2.19 The inertia effects of the spring in a mass-spring and viscous-damper system can

be approximated by adding a particle of what to the mass?

2.20 What is the same in each spring for a combination of springs in parallel?

2.21 In general, how is the equivalent stiffness of a combination of springs

calculated?

2.22 Draw a FBD showing the spring forces applied to the system of Figure SP2.22

at an arbitrary instant. Label the forces in terms of .u
#

L
3

2L

k

3

FIGURE SP 2.15

L

k k

k

3
L
3

L
3

θ

FIGURE SP 2.22
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Modeling of SDOF Systems 121

2.23 Draw a FBD showing the forces developed in the viscous dampers acting on the

bar of Figure SP2.23 at an arbitrary instant. Label the forces in terms of .u
#

2.24 Describe the equivalent systems method.

2.25 When are static spring forces not drawn on the FBD of external forces?

2.26 Can the equivalent systems method be used to derive the differential equation

of a nonlinear SDOF system? Explain.

Problems 2.27 through 2.44 require short calculations.

2.27 What is the equivalent stiffness of springs of individual stiffnesses k
1

and k
2

placed in series? 

2.28 What is the equivalent stiffness of the springs in the system of Figure SP2.28? 

2.29 What is the equivalent torsional stiffness of the shafts in Figure SP2.29?

θ
c

L
2

L
6

L
2

L
3

L
2

Rigid bar

c c

FIGURE SP 2.23

x

k
k

2k4k

3k

FIGURE SP 2.28

50 cm

Aluminum
r = 20 mm

Steel
r = 15 mm

60 cm

FIGURE SP 2.29

2.30 When a tensile force of 300 N is applied to an elastic element, it has an

elongation of 1 mm. What is the stiffness of the element?

2.31 What is the potential energy developed in the elastic element of Short 

Problem 2.30 when a 300 N tensile force is applied? 

2.32 What is the potential energy in the elastic element of Short Problem 2.30 when

a 300 N compressive force is applied?

2.33 A spring of torsional stiffness 250 N m/rad has a rotation of 2° when a

moment is applied. Calculate the potential energy developed in the spring.

2.34 What is the torsional stiffness of an annular steel shaft (G � 80 � 109 N/m2)

with a length of 2.5 m, inner radius of 10 cm, and outer radius of 15 cm?

2.35 What is the torsional stiffness of a solid aluminum shaft (G � 40 � 109 N/m2)

with a length of 1.8 m and a radius of 25 cm?

2.36 What is the longitudinal stiffness of a steel bar (E � 200 � 109 N/m2) with a

length of 2.3 m and a rectangular cross section of 5 cm � 6 cm?

#
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2.42 Evaluate without using a calculator. The argument of the trigonometric

function is in radians.

(a) sin 0.05 (b) cos 0.05

(c) 1-cos 0.05 (d) tan 0.05

(e) cot 0.05 (f ) sec 0.05

(g) csc 0.05

2.43 Evaluate without using a calculator.

(a) sin 3° (b) cos 3°

(c) 1-cos 3° (d) tan 3°

2.44 Calculate the equivalent moment of inertia of the three shafts of Figure SP2.44

when is used as the generalized coordinate. Assume the gears mesh perfectly

and their moments of inertia are negligible.

u2

122 CHAPTER 2

2.37 What is the transverse stiffness of a cantilever steel beam (E � 200 � 109 N/m2)

with a length of 10 m and a rectangular cross section with a width of 1 m

and height of 0.5 m?

2.38 Calculate the static deflection in a linear spring of stiffness 4000 N/m when a

mass of 20 kg is hanging from it.

2.39 A spring of unstretched length of 10 cm has a linear density of 2.3 g/cm. The

spring is attached between a fixed support and a block of mass of 150 g. What

mass should be added to the block to approximate the inertia effects of the

spring?

2.40 What is the kinetic energy of the system of Figure SP2.40 at an arbitrary instant

in terms of x, which is the downward displacement of the block of mass m
1
?

Include an approximation of the inertia effects of the springs. The mass of each

spring is ms.

2.41 Calculate an equivalent torsional-damping coefficient for the system of 

Figure SP2.41 when , which is the clockwise angular rotation of the bar, 

is used as the generalized coordinate.

u

m

mm

x

I

ms

ms

No slip

Thin disk of
mass m2

r2

m1

r1

FIGURE SP2.40

L
3

L
3

L
3

θ

c c

c

FIGURE SP2.41
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J1

θ1

θ2

θ3

J2

J3

Gear with
n2 teeth

Gear with
n4 teeth

Gear with
n3 teeth

Gear with
n1 teeth

FIGURE SP 2.44

2.45 Match the quantity with the appropriate units

(a) spring stiffness, k (i) N m

(b) torsional stiffness, kt (ii) rad

(c) damping coefficient, c (iii) N m/rad

(e) torsional damping coefficient, ct (iv) N m/s

(f ) potential energy, V (v) kg m2

(g) power delivered by external force, P (vi) N/m

(h) moment of inertia, I (vii) N m s/rad

(i) angular displacement � (viii) N s/m

CHAPTER PROBLEMS

2.1–2.8 Determine the equivalent stiffness of a linear spring when a SDOF mass-spring

model is used for the systems shown in Figures P2.1 through P2.8 with x being

the chosen generalized coordinate.

#
##

#
#
#

#

x

20 kg
E = 200 × 109 N/m2

I = 1.15 × 10–4 m4

1 m 1 m

FIGURE P 2.1

x

k

k

L

E, I
Massless beam

m

FIGURE P 2.2

E, I

x

20 kg Massless beam

40 cm60 cm 40 cm

FIGURE P 2.3
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x

E = 210 × 109 N/m2

I = 6.1 × 10–6 m4

L = 2.5 m

8 × 104 N/m

6 × 104 N/m

1 × 105 N/m

m

L
2

3L
2

L
2

7L
15

k
L
3

L
5

θx

3k k

x

k

3k
2k

3rr

r

2k

kk

kL
3

L
3

L
2

2L
3

Rigid link

L
2

x

k

r3k

No slip

x

FIGURE P 2.4 FIGURE P 2.5

FIGURE P 2.6 FIGURE P 2.7

FIGURE P 2.8

2.9 Two helical coil springs are made from a steel (E � 200 � 109 N/m2) bar with a radius of 20 mm.

One spring has a coil diameter of 7 cm; the other has a coil diameter of 10 cm. The springs have

20 turns each. The spring with the smaller coil diameter is placed inside the spring with the larger

coil diameter. What is the equivalent stiffness of the assembly?
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x

u

θ

65 cm

r = 10 mm

E = 200 × 109 N/m2

G = 80 × 109 N/m2

FIGURE P 2.10

2.10 A thin disk attached to the end of an elastic beam has three uncoupled modes

of vibration. The longitudinal motion, the transverse motion, and the torsional

oscillations are all kinematically independent. Calculate the following for the

system of Figure P2.10.

(a) The longitudinal stiffness

(b) The transverse stiffness

(c) The torsional stiffness

3 × 105 N/m

5 × 105 N/m4 × 105 N/m

45°

x
45°30°

FIGURE P 2.11

20 µm

0.2 µm

1 µ
m

x
Each layer is
0.1 µm thick

FIGURE P 2.12

2.11 Find the equivalent stiffness of the springs in Figure P2.11 in the x direction.

2.12 A bimetallic strip used as a MEMS sensor is shown in Figure P2.12. The strip,

has a length of 20 m. The width of the strip is 1 m. It has an upper layer

made of steel (E 5 210 3 109 N/m2) and a lower layer made of aluminum 

(E 5 80 3 109 N/m2) . Each layer is 0.1 m thick. Determine the equivalent

stiffness of the strip in the axial direction.

m

mm

2.13 A gas spring consists of a piston of area A moving in a cylinder of gas. As the

piston moves, the gas expands and contracts, changing the pressure exerted on

the piston. The process occurs adiabatically (without heat transfer), so

where p is the gas pressure, is the gas density, is the constant ratio of specific

heats, and C is a constant dependent on the initial state. Consider a spring

when the initial pressure is p
0

and the initial temperature is T
0
. At this pressure,

the height of the gas column in the cylinder is h. let F �
0
A + F be the

pressure force acting on the piston when it has displaced a distance x into the

gas from its initial height.

dr

gr

p = Crg
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(a) Determine the relation between F and x.

(b) Linearize the relationship of part (a) to approximate the air spring by a

linear spring. What is the equivalent stiffness of the spring?

(c) What is the required piston area for an air spring (� � 1.4) to have a stiffness 

of 300 N # m for a pressure of 150 kPa (absolute) with h � 30 cm.

2.14 A wedge is floating stably on an interface between a liquid of mass density , as

shown in Figure P2.14. Let x be the displacement of the wedge’s mass center

when it is disturbed from equilibrium.

(a) What is the buoyant force acting on the wedge?

(b) What is the work done by the buoyant force as the mass center of the

wedge moves from x
l
to x

2
?

(c) What is the equivalent stiffness of the spring if the motion of the mass

center of the wedge is modeled as a mass attached to a linear spring?

r

d

r

Length of wedge = L
Mass density of
wedge = ρw

h

FIGURE P 2.14

2.15 Consider a solid circular shaft of length L and radius c made of an elastoplastic

material whose shear stress–shear strain diagram is shown in Figure P2.15(a). If

the applied torque is such that the shear stress at the outer radius of the shaft is

less than �p, a linear relationship between the torque and the angular

displacement exists. When the applied torque is large enough to cause plastic

behavior, a plastic shell is developed around an elastic core of radius r c, as 

shown in Figure 2.15(b). Let be the applied torque which

results in an angular displacement of

(a) The shear strain at the outer radius of the shaft is related to the angular

displacement .The shear strain distribution is linear over a given

cross section. Show that this implies

(b) The torque is the resultant moment of the shear stress distribution over the

cross section of the shaft,

Use this to relate the torque to the radius of the elastic core.

(c) Determine the relationship between T and .
(d) Approximate the stiffness of the shaft by a linear torsional spring. What is

the equivalent torsional stiffness?

udd

T = L
c

0
2ptr2dr

u =
LtP

rG

u =
g

c
L

c

u =
tp L

cG + du
T =

ptp  c2

2 + dT
6
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c

r

Plastic
shell

Elastic
core

γ

G

τp

(a) (b)

FIGURE P 2.15

�

E
σp

σ

σ = f(E)

(a)

FIGURE P 2.16

2.16 A bar of length L and cross-sectional area A is made of a material whose stress-

strain diagram is shown in Figure P2.16. If the internal force developed in the

bar is such that , the bar’s stiffness for a SDOF model is 

Consider the case where Let be the applied load 

which results in a deflection of .

(a) The work done by the applied force is equal to the strain energy developed

in the bar. The strain energy per unit volume is the area under the

stress–strain curve. Use this information to relate P to .

(b) What is the equivalent stiffness when the bar is approximated as a linear

spring for s 7 sp?

¢dd

¢ =
sp L

E + d¢

P = spA + dPs 7 sp.
k = AE

L .s 6 sp

2.17 Calculate the static deflection of the spring in the system of Figure P2.17.

2.18 Determine the static deflection of the spring in the system of Figure P2.18.

m1

m2

k

r2

r1

FIGURE P 2.17

m = 20 kg

Spring is stretched
20 mm when bar

is vertical

5 × 103 N/m

1.2 m

0.4 m

FIGURE P 2.18
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2.19 A simplified SDOF model of a vehicle suspension system is shown in 

Figure P2.19. The mass of the vehicle is 500 kg. The suspension spring has a

stiffness of 100,000 N/m. The wheel is modeled as a spring placed in series 

with the suspension spring. When the vehicle is empty, its static deflection is

measured as 5 cm.

(a) Determine the equivalent stiffness of the wheel

(b) Determine the equivalent stiffness of the spring combination.

2.20 The spring of the system in Figure P2.20 is unstretched in the position shown.

What is the deflection of the spring when the system is in equilibrium?

128 CHAPTER 2

2.21 Determine the static deflection of the spring in the system of Figure P2.21.

2.22 Determine the static deflections in each of the springs in the system of 

Figure P2.22.

m

Suspension
spring

Wheel
stiffness

ks

kw

FIGURE P 2.19

2.23 A 30 kg compressor sits on four springs, each of stiffness 1 � 104 N/m. What is

the static deflection of each spring.

2.24 The propeller of a ship is a tapered circular cylinder, as shown in Figure P2.24.

When installed in the ship, one end of the propeller is constrained from

longitudinal motion relative to the ship while a 500-kg propeller mass is

attached to its other end.

(a) Determine the equivalent longitudinal stiffness of the shaft for a SDOF

model.

(b) Assuming a linear displacement function along the shaft, determine the

equivalent mass of the shaft to use in a SDOF model.

150 kg

3 m

2000 N/m

I = 8.2 × 10–7 m4

E = 210 × 109 N/m2

FIGURE P 2.20

m

k

E, I

L
2

L
2

FIGURE P 2.21

40 cm 20 cm

4 kg

1 × 105 N/m 2 × 105 N/m

FIGURE P 2.22
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r0 = 30 cm
r1 = 20 cm
E = 210 × 109 N/m2

ρ = 7850 kg/m3

r0 r1

10 m

FIGURE P 2.24

2.25 (a) Determine the equivalent torsional stiffness of the propeller shaft of 

Problem 2.24.

(b) Determine an equivalent moment of inertia of the shaft of Problem 2.24 to

be placed on the end of the shaft for a SDOF model of torsional oscillations.

2.26 A tightly wound helical coil spring is made from an 1.88-mm diameter bar

made from 0.2 percent hardened steel (G � 80 � 109 N/m2, � 7600 kg/m3). 

The spring has a coil diameter of 1.6 cm with 80 active coils. Calculate 

(a) the stiffness of the spring, 

(b) the static deflection when a 100 g particle is hung from the spring, and

(c) the equivalent mass of the spring for a SDOF model.

2.27 One end of a spring of mass ms1 and stiffness k
1

is connected to a fixed wall,

while the other end is connected to a spring of mass ms2 and stiffness k
2
. The

other end of the second spring is connected to a particle of mass m. Determine

the equivalent mass of these two springs.

2.28 A block of mass m is connected to two identical springs in series. Each spring

has a mass m and a stiffness k. Determine the equivalent mass of the two

springs at the mass.

2.29 Show that the inertia effects of a torsional shaft of polar mass moment of inertia

J can be approximated by adding a thin disk of moment of inertia J/3 at the

end of the shaft.

2.30 Use the static displacement of a simply supported beam to determine the mass

of a particle that should be added at the midspan of the beam to approximate

inertia effects in the beam.

2.31–35 Determine the equivalent mass or equivalent moment of inertia of the system

shown in Figures P2.31 through P2.35 when the indicated generalized

coordinate is used.

r

x

m

2r

No slip

Sphere of
mass m

k

r

FIGURE P 2.31
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2.36 Determine the kinetic energy of the system of Figure P2.36 at an arbitrary

instant in terms of including inertia effects of the springs.x#

θ
m

L m/2

L/2

A CB

AB and BC are
slender bars

m

L

Slender rod
of mass m

Slender rod
of mass m

m

4L
5

L
3

Rigid massless connector
θ Gear with

n2 teeth

Gear with
n1 teeth

Gear with
n4 teeth

JG4

JG2

JG1

J1

θ1

JG3

Jr

J3

Gear with
n3 teeth

FIGURE P 2.33

FIGURE P 2.34 FIGURE P 2.35

c
2m

2r

r

x

No slip

rD

Ip

k, ms

k, ms

m

FIGURE P 2.36

L
3

2L

2m

3Slender rod
of mass m x

m

FIGURE P 2.32
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2.37 The time-dependent displacement of the block of mass m of Figure P2.36 is 

x(t) � 0.03e–1.35t sin (4t) m. Determine the time-dependent force in the viscous

damper if c � 125 N s/m.

2.38 Calculate the work done by the viscous damper of Problem 2.37 between t � 0

and t � 1 s.

2.39 Determine the torsional viscous-damping coefficient for the torsional viscous

damper of Figure P2.39. Assume a linear velocity profile between the bottom of

the dish and the disk. 

#

Disk of radius r
Oil of density ρ, viscosity µ
Depth of oil = h

θ⋅

r

FIGURE P 2.39

2.40 Determine the torsional viscous-damping coefficient for the torsional viscous

damper of Figure P2.40. Assume a linear velocity profile in the liquid between

the fixed surface and the rotating cone.

d
h

r

θ̇

Oil of density ρ,
viscosity µ
Come of base radius r,
height h
Gap width, d

FIGURE P 2.40
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2.41 Shock absorbers and many other forms of viscous dampers use a piston moving

in a cylinder of viscous liquid as illustrated in Figure P2.41. For this

configuration the force developed on the piston is the sum of the viscous forces

acting on the side of the piston and the force due to the pressure difference

between the top and bottom surfaces of the piston.

(a) Assume the piston moves with a constant velocity v
p
. Draw a free-body

diagram of the piston and mathematically relate the damping force, the

viscous force, and the pressure force.

(b) Assume steady flow between the side of the piston and the side of the

cylinder. Show that the equation governing the velocity profile between the

piston and the cylinder is 

(c) Assume the vertical pressure gradient is constant. Use the preceding results

to determine the velocity profile in terms of the damping force and the

shear stress on the side of the piston.

(d) Use the results of part (c) to determine the wall shear stress in terms of the

damping force.

(e) Note that the flow rate between the piston and the cylinder is equal to the

rate at which liquid is displaced by the piston. Use this information to

determine the damping force in terms of the velocity and thus the damping

coefficient.

(f ) Use the results of part (e) to design a shock absorber for a motorcycle that

uses SAE 1040 oil and requires a damping coefficient of 1000 N m/s.#

dp
dx = m 

0v2

0r 2

d

x h

r
D

Vp

Oil of viscosity µ,
density ρ

FIGURE P 2.41

2.42–51 Derive the differential equation governing the motion of the one degree-of-

freedom system by applying the appropriate form(s) of Newton’s laws to the

appropriate free-body diagrams. Use the generalized coordinate shown in

Figures P2.42 through P2.51. Linearize nonlinear differential equations by

assuming small displacements.
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k
m

x

2k

FIGURE P 2.42

2r r

m

k

I

x

FIGURE P 2.43

θ

k

k c

2c

Slender bar of mass m

L
4

L
4

L
4

L
4

FIGURE P 2.45

Slender bar
of mass m

k

θ

c

L
4

3L
4

FIGURE P 2.44

θ

k

x

Thin disk of mass m
radius r rolls
without slip

c
θ

2L
3

L
3

L
4

L
4

c

k
c

2k

Rigid massless link

Identical slender bars of mass m, length L

L
2

FIGURE P 2.46 FIGURE P 2.47

62129_02_Ch02_p055-136.qxd  3/17/11  5:26 PM  Page 133

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



134 CHAPTER 2

2.52–61 Determine the differential equations governing the motion of the system by

using the equivalent systems method. Use the generalized coordinates shown in

Figures P2.52 through P2.61.

c

k

r

2k

No slip

x

Thin disk of mass m, radius r

θ

L
2

L
2

m 2m

A B

k ck c

Slender bar of mass m connected to
blocks through rigid links at A and B

FIGURE P 2.48

FIGURE P 2.49

R

φ

µ

Sphere of
mass m,
radius r,
no slip

2k

x

r

Slender bar
of mass m

Rigid
massless

link
Thin disk
of mass m,

no slip

c

k

L
3

L
3

L
3

FIGURE P 2.50

FIGURE P 2.51
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θ

k

k c

2c

Slender bar of mass m

L
4

L
4

L
4

L
4

FIGURE P 2.55

Slender bar
of mass m

k

θ

c

L
4

3L
4

FIGURE P 2.54

θ

k

x

Thin disk of mass m
radius r rolls
without slip

c
θ

2L
3

L
3

L
4

L
4

c

k
c

2k

Rigid massless link

Identical slender bars of mass m, length L

L
2

FIGURE P 2.56 FIGURE P 2.57

k
m

x

2k

FIGURE P 2.52

2r r

m

k

I

x

FIGURE P 2.53
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c

k

r

2k

No slip

x

Thin disk of mass m, radius r

θ

L
2

L
2

m 2m

A B

k ck c

Slender bar of mass m connected to
blocks through rigid links at A and B

FIGURE P 2.58

FIGURE P 2.59

R

φ

µ

Sphere of
mass m,
radius r,
no slip

2k

x

r

Slender bar
of mass m

Rigid
massless

link
Thin disk
of mass m,

no slip

c

k

L
3

L
3

L
3

FIGURE P 2.60 FIGURE P 2.61
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C h a p t e r 3

FREE VIBRATIONS
OF SDOF SYSTEMS

3.1 INTRODUCTION
Free vibrations are oscillations about a system’s equilibrium position that occur in the

absence of an external excitation. Free vibrations are a result of a kinetic energy imparted

to the system or of a displacement from the equilibrium position that leads to a difference

in potential energy from the system’s equilibrium position.

Consider the model single degree-of-freedom (SDOF) system of Figure 3.1. When the

block is displaced a distance x
0

from its equilibrium position, a potential energy is devel-

oped in the spring. When the system is released from equilibrium, the spring force draws the

block toward the system’s equilibrium position, with the potential energy being converted to

kinetic energy. When the block reaches its equilibrium position, the kinetic energy reaches a

maximum and motion continues. The kinetic energy is converted to potential energy until the

spring is compressed a distance x
0
. This process of transfer of potential energy to kinetic energy

and vice versa is continual in the absence of nonconservative forces. In a physical system, such

perpetual motion is impossible. Dry friction, internal friction in the spring, aerodynamic drag,

and other nonconservative mechanisms eventually dissipate the energy.

Examples of free vibrations of systems that can be modeled using one degree of free-

dom include the oscillations of a pendulum about a vertical equilibrium position, the

motion of a recoil mechanism of a firearm once it has been fired, and the motion of a vehi-

cle suspension system after the vehicle encounters a pothole.

Free vibrations of a SDOF system are described by a homogeneous second-order ordi-

nary differential equation. The independent variable is time, while the dependent variable

is the chosen generalized coordinate. The chosen generalized coordinate represents the

kx 2
0>2
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138 CHAPTER 3

displacement of a particle in the system or an angular displacement and is measured from

the system’s equilibrium position.

The differential equation governing free vibrations of a linear system are derived in

Chapter 2 and is shown to have the form

(3.1)

when a linear displacement x is chosen as the generalized coordinate. The second derivative

term is due to the inertia forces (effective forces) of the system, the first derivative term is

present if there is viscous damping in the system, and the zeroth derivative term is from the

elastic forces. If the energy method is used to derive the differential equation, the second

derivative term is a result of the system’s kinetic energy, the first derivative term is a result

of the work done by the viscous friction forces, and the zeroth order derivative term is a

result of the system’s potential energy.

The general solution of the second-order differential equation is a linear combination

of two linearly independent solutions. The arbitrary constants, called constants of integra-
tion, are uniquely determined upon application of two initial conditions. The necessary ini-

tial conditions are values of the generalized coordinate and its first time derivative at a

specified time, usually t � 0.

The differential equation governing free vibration of a SDOF system is written in a

standard form in terms of two parameters. The form of the solution of the differential

equation depends upon the parameters. For example, the mathematical form of the solu-

tion for an undamped system is simple harmonic motion. The mathematical form of the

solution for a damped system varies with a parameter called the damping ratio.

The response of a system under other forms of damping also is considered. Dry sliding
friction, or Coulomb damping, leads to two differential equations that govern the motion:

one for a positive velocity and another for a negative velocity. This leads to a nonlinear

system, but one whose solution is available. The response of a system with hysteretic damp-
ing (the damping due to energy loss within a material) is characterized by an equivalent

viscous-damping coefficient under certain conditions.

3.2 STANDARD FORM OF DIFFERENTIAL EQUATION
The differential equation governing any SDOF system was shown in Chapter 2 to have the form

(3.2)

If the generalized coordinate is an angular coordinate, then

(3.3)= Meq(t)kt, equ+ kt, equct, equ
#

Iequ
$

+

meqx
$ + ceqx

# + keqx = Feq

meqx
$ + ceqx

# + keqx = 0

k
m m

l l +x0

(a) (b)

xFIGURE 3.1
When the mass is displaced, a
distance x0, a force kx0, and a
potential energy develop
in the spring. When released
from rest, a cyclic motion occurs.
In the absence of any dissipative
mechanisms, the system returns
to the same position at the end
of every cycle.

1
2kx2

0
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Free Vibrations of SDOF Systems 139

Free vibrations occur in the absence of any forcing and as a result of an initial potential or

kinetic energy present in the system at t � 0. Thus, for this chapter, F
eq

� 0 or M
eq

� 0.

Without loss of generality, assume the generalized coordinate is a linear displacement and

the differential equation is written in the form of Equation (3.1).

Dividing Equation (3.1) by m
eq

leads to

(3.4)

Equation (3.4) is written in terms of two parameters, and , which have an effect on

the solution. They are defined as

(3.5)

which is the natural frequency of motion and

(3.6)

which is the damping ratio. The reasons for the names of these parameters will become

apparent later. The differential equation is written in terms of these parameters as

(3.7)

Equation (3.7) is called the standard form of the differential equation for SDOF systems.

It is supplemented by two initial conditions:

(3.8)

and

(3.9)

Equation (3.7) is a linear, ordinary homogeneous differential equation with constant

coefficients. A solution of Equation (3.7) is assumed to be of the form

(3.10)

Substitution of Equation (3.10) into Equation (3.7) leads to

(3.11)

The solution is obtained by setting . Using the quadratic formula

to obtain a solution, we have

(3.12)

or

(3.13)

The form of the solution of this differential equation depends upon the values of , the

roots of the characteristic equation. Defining , there are four cases.i = 2-1
a

a = vn(-z � 2z2 - 1)

a =
-2zvn � 2(2zvn)

2 - 4v2
n

2

a2 + 2zvna + v2
n = 0

Aa2 + 2zvna + v2
n BAe at = 0

x(t) = Ae at

x# (0) = x# 0

x (0) = x0

x
$ + 2zvnx# + v2

nx = 0

z =
ceq

22keqmeq

vn = A
keq
meq

keq
meq

ceq
meq

x
$ +

ceq

meq
 x# +

keq

meq
x = 0
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140 CHAPTER 3

1. When the roots are purely imaginary, as . The free vibrations are

undamped.

2. When 0 1, the roots are complex conjugates, as . 

The free vibrations are underdamped.

3. When the characteristic equation has only one real root, . The free

vibrations are critically damped.

4. When the characteristic equation has two real roots .

The free vibrations are overdamped.

The solution varies with . The mathematical form of the solution is different for each case.

3.3 FREE VIBRATIONS OF AN UNDAMPED SYSTEM
When the system is undamped, the roots of the characteristic equation given by

Equation (3.12) are purely imaginary, as ni. The general solution is a linear combina-

tion of all possible solutions, thus

(3.14)

where B
1

and B
2

are constants of integration.

Euler’s identity states

(3.15)

Application of Euler’s identity to Equation (3.14) leads to

(3.16)

or

(3.17)

where C
1

� B
1

� B
2

and C
2

� i(B
1
– B

2
) are redefined constants of integration. As defined,

C
1

and C
2

are real, while B
1

and B
2

are complex conjugates. Substituting the initial condi-

tions, Equations (3.8) and (3.9), into Equation (3.17) leads to

(3.18)

An alternate and more instructive form of Equation (3.18) is

(3.19)

Expanding Equation (3.19) using the trigonometric identity for the sine of the sum of

angles

(3.20)

gives

(3.21)x(t) = A cos f sin vnt + A sin f cos vnt

 sin(a + b) =  sin a cos b + cos a sin b

x(t) = A  sin (vnt + f)

x(t) = x0 cos vnt +
x# 0
vn

 sin vnt

x(t) = C1 cos vnt + C2 sin vnt

x(t) = B1( cos vnt + i sin vnt) + B2( cos vnt - i sin vnt)

e iu = cos u + i sin u

x(t) = B1e
ivnt + B2e

-ivnt

v�

z

a = vn(-z � 2z2 - 1)z 7 1

a = -vnz = 1,

a = vn(-z � i21 - z2)6z6

a = �ivnz = 0,
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Free Vibrations of SDOF Systems 141

Equating coefficients of like trigonometric terms of Equations (3.18) and (3.21) leads to

(3.22)

and

(3.23)

Equation (3.19) is an example of the simple harmonic motion discussed in Section 1.6.

The amplitude of the motion is A, the frequency is n, its phase is , and its period is .

The parameter n is called the natural frequency, because it is the frequency at which the

undamped free response occurs naturally.

The undamped motion of a SDOF system is simple harmonic motion. The initial con-

ditions determine the energy initially present in the system. Potential energy is converted

to kinetic energy and vice versa without dissipation. Since energy is conserved, the system

eventually returns to its initial state with the original potential and kinetic energies, com-

pleting one full cycle of motion. The subsequent cycle duplicates the first cycle. The system

takes the same amount of time to execute the second cycle as it does the first. Since no

energy is dissipated, it executes subsequent cycles in the same amount of time. Thus, the

motion is cyclic and periodic. Figure 3.2 illustrates simple harmonic motion of an

undamped SDOF system.

The amplitude A, defined by Equation (3.22), is the maximum displacement from equi-

librium. The amplitude is a function of the system parameters and the initial conditions.

The amplitude is a measure of the energy imparted to the system through the initial con-

ditions. For a linear system

(3.24)

where E is the sum of kinetic and potential energies.

A = A
2E
keq

v

2p
vn

fv

f = tan -1avnx0

x# 0
b

A = Ax 2
0 + a x# 0

vn
b2

T =

t

2π
ωn

π/2 – φ
ωn

x0

x(
t)

–x0

0

A

FIGURE 3.2
Illustration of free response
of an undamped system. The
motion is cyclic and periodic.
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142 CHAPTER 3

The phase angle , calculated from Equation (3.23) is an indication of the lead or lag

between the response and a pure sinusoidal response. The response is purely sinusoidal with

� 0 if x
0

� 0. The response leads a pure sinusoidal response by /2 rad if . The

system takes a time of

(3.25)

to reach its equilibrium position from its initial position.

t = d p - f
vn

    f 7 0

  - f
vn

         f … 0

x
#
0 = 0pf

f

EXAMPLE 3 . 1
An engine of mass 500 kg is mounted on an elastic foundation of equivalent stiffness

7 � 105 N/m. Determine the natural frequency of the system.

SO LU T I ON
The system is modeled as a hanging mass-spring system. Equation (3.3) with c

eq
� 0 gov-

erns the displacement of the engine from its static-equilibrium position. The natural fre-

quency is determined by using Equation (3.5)

(a)

or expressed in Hz.

(b)

EXAMPLE 3 . 2

 f =
vn

2p
=

37.4 rad/s
2p rad/cycle

= 5.96 Hz

vn = A
k
m

= A
7 * 105 N/m

500 kg
= 37.4 rad/s

EXAMPLE 3 . 2
A wheel is mounted on a steel shaft (G � 83 � 109 N/m2) of length 1.5 m and radius

0.80 cm. The wheel is rotated 5 and released. The period of oscillation is observed as 2.3 s.

Determine the mass moment of inertia of the wheel.

SO LU T I ON
The oscillations of the wheel about its equilibrium position are modeled as the torsional

oscillations of a disk on a massless shaft, as illustrated in Figure 3.3. The differential equa-

tion for such a system is derived in Example 2.17 as

(a)

Equation (a) is written in the standard form by dividing by I, giving

(b)
$
u +

JG

IL
 u = 0

I 
$
u +

JG

L
 u = 0

°

62129_03_Ch03_p137-204.qxd  3/16/11  10:21 AM  Page 142

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Free Vibrations of SDOF Systems 143

The natural frequency is obtained from Equation (b) as

(c)

The natural frequency is calculated from the observed period by

(d)

The moment of inertia of the wheel is calculated using Equation (c) as

(e)I =
JG

Lv2
n

=

p

2
(0.008  m)4(83 * 109  N/m2)

(1.5  m)(2.73 rad/s)2 = 47.7  kg # m2

vn =
2p
T

=
2p rad/cycle

2.3 s/cycle
= 2.73 rad/s

vn = A
JG

IL

FIGURE 3.3
System of Example 3.2. A wheel is mounted on a shaft, and the
period of oscillations is observed, which is used to calculate the
moment of inertia of the wheel.

G = 83 × 109  N/m2

r = 8 mm

θ (t)

1.5 m

EXAMPLE 3 . 3
A mass of 5 kg is dropped onto the end of a cantilever beam with a velocity of 0.5 m/s, as

shown in Figure 3.4(a). The impact causes vibrations of the mass, which sticks to the beam.

The beam is made of steel (E � 210 � 109 N/m2), is 2.1 m long, and has a moment of

inertia I � 3 � 10–6 m4. Neglect inertia of the beam and determine the response of the mass.

SO LU T I ON
Let x(t) represent the displacement of the mass, which is measured positive downward

from the equilibrium position of the mass after it is attached to the beam. As shown in

Figure 3.4(b), the system is modeled as a 5 kg mass hanging from a spring of stiffness

(a)

The natural frequency of free vibration is

(b)

The beam is in equilibrium at t � 0 when the particle hits. However, x is measured

from the equilibrium position of the system with the particle attached. Thus,

(c)x(0) = - ¢st = -
mg

keq

= -
(5  kg)(9.81 m/s2)

2.04 * 105
 N/m

= -2.40 * 10-4
 
 m

vn = A
keq

m
= A

2.04 * 105 N/m
5  kg

= 202.0  rad/s

keq =
3EI
L3 =

3(210 * 109
  N/m2)(3 * 10-6

  m4)

(2.1  m)3 = 2.04 * 105   N/m
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The initial velocity is . The time history of motion is calculated using

Equation (3.19) as

(d)

where the amplitude A and the phase are determined using Equations (3.22) and (3.23),

respectively:

(e)

(f)f = tan -1 c (202.0 rad/s)(-2.40 * 10-4 m)

0.5 m/s
d = -0.0968  rad = -5.59°

A = A(-2.40 * 10-4
  m)2 + a 0.5  m/s

202.2  rad/s
b2

= 2.48  mm

f

x(t) = A  sin (202.0t + f)

x# (0) = 0.5  m/s

E = 210 × 109  N/m2

I = 3 × 10–6  m4 

2.04 × 105  N/m

5 kg

x

Velocity = 0.5 m/s

2.1 m

(a)

5 kg

(b)

FIGURE 3.4
(a) System of Example 3.3. A mass is
dropped onto a fixed-free beam. (b) The
system is modeled as a mass hanging from
a spring of equivalent stiffness. Since x is
measured from the equilibrium position of
the system, the initial displacement is the
negative of the static deflection of the
beam.

EXAMPLE 3 . 4
An assembly plant uses a hoist to raise and maneuver large objects. The hoist shown in

Figure 3.5 is a winch attached to a beam that can move along a track. Determine the nat-

ural frequency of the system when the hoist is used to raise a 800-kg machine part at a cable

length of 9 m.

SO LU T I ON
The beam is modeled as a pinned-pinned beam. If the hoist is at its midspan, its stiffness is

(a)kb =
48EI

L3 =
48(200 * 109

  N/m2)(3.5 * 10-4
  m4)

(3.1  m)3 = 1.13 * 108  N/m

62129_03_Ch03_p137-204.qxd  3/16/11  10:21 AM  Page 144

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Free Vibrations of SDOF Systems 145

The stiffness of the cable is

(b)

The beam and the cable act as springs in series with an equivalent stiffness of

(c)

The system’s natural frequency is

(d)vn = A
keq

m
= A

9.71 * 107  N/m

800  kg
= 3.48 * 102   rad/s

keq =
1

1

kb

+
1

kc

=
1

1

1.13 * 108   N/m
+

1
6.98 * 108   N/m

= 9.71 * 107   N/m

kc =
AE
L

=
p(0.1  m)2(200 * 109  N/m2)

9  m
= 6.98 * 108   N/m

Cable

(a) (b)

Beam

Beam: L = 3.1 m
 E = 200 × 109 N/m2

 I = 3.5 × 10–4 m4

Cable: E = 200 × 109  N/m2

 r = 10 cm
 L = 9 m

m
kb

ks

FIGURE 3.5
(a) System of Example 3.4 in which a hoisting mechanism
consists of a cable attached to an overhead beam. (b) The
system is modeled as a SDOF system with the stiffness of
the beam and the stiffness of the cable acting as springs
in series.

EXAMPLE 3 . 5
The pendulum of a cuckoo clock consists of a slender rod on which an aesthetically

designed mass slides. If the clock gains time, should the mass be moved closer to or farther

away from the support to correct the tuning?

SO LU T I ON
The pendulum is modeled as a particle of mass m on a rigid, massless rod. The particle is

assumed to be a distance l from its axis of rotation. Summing moments about the point of

support on the free-body diagrams of Figure 3.6 leads to

(a)

Application of the small-angle assumption yields the linearized equation of motion

(b)
$
u +

g

l
  u = 0

$
u +

g

l
  sin u = 0
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from which the natural frequency is calculated as

The period of oscillation is

Since the clock is running fast, the period of the pendulum needs to be increased. Thus l
should be increased and the mass moved farther away from the axis of rotation.

T = 2pA
l
g

vn = A
g

l

FIGURE 3.6
(a) System of Example 3.5 in which the pendulum of a cuckoo clock is a massless rod with a particle
attached. (b) FBDs at an arbitrary instant.

l

mg

Ox

Oy

mlθ 2˙

mlθ̈=

External forces Effective forces

The nonlinear differential equation derived in Example 3.5 is linearized by assuming

small and replacing sin by . The exact nonlinear pendulum equation, Equation (a) of

Example 3.5, is one of the few nonlinear equations for which an exact solution is known.

The solution subject to and is developed in terms of elliptic integrals,

which are well-known tabulated functions.

The period of motion of a nonlinear system is dependent upon the initial conditions,

while the period of a linear system is independent of initial conditions. One method of

assessing the validity of the small-angle approximation for a given amplitude is to compare

the period calculated using the exact solution to the period calculated using the linearized

differential equations for different initial displacements. This comparison is given in

Table 3.1, which shows that the small angle approximation leads to accurate prediction of

the period for amplitudes as large as 40 . For an initial angular displacement of 40 , the

error in the period from using the small angle approximation is only 3.1 percent.

The success of the use of the small-angle approximation in the pendulum example should

give confidence to its use in other problems, where an exact solution is not available.

°°

#
u(0) = 0u(0) = u0

uuu
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Free Vibrations of SDOF Systems 147

3.4 UNDERDAMPED FREE VIBRATIONS
When 0 1, the roots of the equation for are complex conjugates, and the system

is said to be underdamped. The general solution of the governing equation is

(3.26)

which can be rewritten using Euler’s identity as

(3.27)x(t) = e -zvnt  CC1 cos 1vn21 - z22t + C2 sin 1vn21 - z22t D

x(t) = B1e 
(-zvn-ivn21-z2)t + B2e 

(-zvn + ivn21-z2)t

a6z6

Ratio of period of simple pendulum, T, calcu-
lated from exact nonlinear solution to period cal-
culated from linearized equation as a function of
initial angle, 0, . Nonlinear period is 4K where

K is the complete elliptic integral of the first
kind with a parameter of sin ( 0/2)u

2p
2g / l

u

T A B L E 3 . 1

0( ) 0( )

2 1.00007 48 1.04571
4 1.00032 50 1.04978
6 1.00070 52 1.05405
8 1.00120 54 1.05851
10 1.00191 56 1.06328
12 1.00274 58 1.06806
14 1.00376 60 1.07321
16 1.00490 62 1.07850
18 1.00618 64 1.08404
20 1.00764 66 1.08982
22 1.00930 68 1.09588
24 1.01108 70 1.10211
26 1.01305 72 1.10867
28 1.01515 74 1.11548
30 1.01738 76 1.12255
32 1.01987 78 1.12987
34 1.02248 80 1.13751
36 1.02528 82 1.14540
38 1.02821 84 1.15368
40 1.03132 86 1.16221
42 1.03463 88 1.17112
44 1.03814 90 1.18035
46 1.04183

T
2p

2g  /l°u
T

2p
2g  /l°u
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The constants of integration are determined by applying the initial conditions, Equation (3.8)

and (3.9), resulting in

(3.28)

An alternative form of the solution is developed by using the trigonometric identity,

Equation (3.20)

(3.29)

where

(3.30)

(3.31)

and

(3.32)

Equation (3.29) is plotted in Figure 3.7. Once free oscillations of a viscously damped

system commence, the nonconservative viscous damping force continually dissipates

energy. Since no work is being done on the system, this leads to a continual decrease in the

sum of the potential and kinetic energies. For underdamped free vibrations, the system

oscillates about an equilibrium position. However, each time it reaches equilibrium, the

system’s total energy level is less than at the previous time. The maximum displacement on

each cycle of motion is continually decreasing. Equation (3.29) and Figure 3.7 show that

the amplitude decreases exponentially with time.

The free vibrations of an underdamped system are cyclic but not periodic. Even though

the amplitude decreases between cycles, the system takes the same amount of time to exe-

cute each cycle. This time is called the period of free underdamped vibrations or the damped
period and is given by

(3.33)Td =
2p
vd

vd = vn21 - z2

fd = tan -1a x0vd

x# 0 + zvnx0

b

A = Ax 2
0 + a x# 0 + zvnx0

vd
b2

x(t) = Ae -zvnt sin (vd t + fd )

x(t) = e -zvnt  cx0 cos 1vn21 - z2t2 +
x# 0 + zvnx0

vn21 - z2
 sin 1vn21 - z2t2 d

t

Ae–ζωnt
1

x(
t)

/x
(0

)

FIGURE 3.7
Free vibrations of an under-
damped SDOF system decay
exponentially.
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Free Vibrations of SDOF Systems 149

Thus, d is called the damped natural frequency. Note that d n and Td T. This is

due to the viscous friction which resists the motion of the system and slows it down.

Consider a mass-spring and viscous-damper system with and . Then

(3.34)

Hence, cos d � , and

(3.35)

The total energy present in an underdamped system at time t is

(3.36)

The total energy in the system at the end of the nth cycle, , is

(3.37)

The energy dissipated as the system executes one cycle of motion is

(3.38)

The ratio of the energy dissipated over a cycle compared to the total energy at the begin-

ning of the cycle is

(3.39)

Equations (3.38) and (3.39) show that the energy dissipated per cycle of motion is con-

stant, and thus, it has a constant ratio. The sequence of energies at the beginning of

each cycle is a geometric sequence with ratio . For example, if 

. The percentage of energy at the end of the nth cycle is (0.717)n times the

initial energy. The larger the damping ratio, the smaller the ratio, and a larger fraction of

energy is dissipated per cycle. Since the sequence of energies is a geometric sequence, the

energy is never completely dissipated, thus indicating that the free vibrations of an under-

damped system continues indefinitely with exponentially decreasing amplitude.

Taking the limit of the energy ratio as the damping ratio approaches one, lim .

All of the energy would be dissipated within the first cycle. This is the origin of the term

underdamped; the damping force is not large enough to ever dissipate all of the energy.

The logarithmic decrement, , is defined for underdamped free vibrations as the natu-

ral logarithm of the ratio of the amplitudes of vibration on successive cycles.

d

z:1
¢En

En
= 1

¢En

En
= 0.717

z = 0.1,1 - e - 4pz>21 -z2

¢En

En

= 1 - e 4pz>21 -z2

 =
1

2
kx 2

0e
-4n zp>11 -z2(1 - e -4pz>11 -z2)

�En = En - En + 1

En = E(nTd) =
1

2
kx 2

0 
e -4n zp>21 -z2

t = 2np
vd

 cos (vd 
t + fd    ) + (1 - z2) cos 2(vd 

t + fd 
) D

- 2z21 - z2 sin (vd t + fd ) =
1

2
 
kx 2

0e
-2zvnt

(1 - z2)
C (1 + z2) sin 2(vd 

t + fd )

 E =
1
2

kx 2 +
1

2
mx# 2

A =
x0

21 - z2

zf sin fd = 21 - z2,

fd =  tan-1a21 - z2

z
b

x# (0) = 0x (0) = x0

7v6vv
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150 CHAPTER 3

(3.40)

For small ,

(3.41)

The logarithmic decrement is often measured by experiment and damping ratio deter-

mined from

(3.42)

It can be shown that the following equations can also be used to calculate the logarithmic

decrement:

(3.43)

for any integer n and

(3.44)

(3.45)

Equation (3.43) implies that the logarithmic decrement can be determined from ampli-

tudes measured on nonsuccessive cycles, while Equations (3.44) and (3.45) imply that

velocity and acceleration data can also be used to determine the logarithmic decrement.

The free vibrations of an underdamped system decay exponentially with time. When the ini-

tial conditions are x(0) � x
0

and , the response of the system is shown in Figure 3.8.x# (0) = 0

d = lna x
$
(t)

x
$

(t + Td )
b

d = lna x# (t)
x# (t + Td 

)
b

d =
1
n

lna x (t)

x (t + nTd )
b

z =
d

24p2 + d2

d = 2pz

z

 = zvnTd =
2pz

21 - z2

 d = lna x(t)

x (t + Td )
b = lna Ae -zvnt sin (vd t + fd)

Ae -zvn(t + Td ) sin 3vd (t + Td ) + fd4 b

1.2

1

0.8

0.6

0.4

0.2

0

–0.2
0 0.5 1 1.5

t (s)

x/
x 0

2 2.5 3

FIGURE 3.8
Underdamped response due
to initial conditions x(0) � x0
and (0) � 0. The overshoot
is the amplitude at the end of
the first half-period.

x
#
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Free Vibrations of SDOF Systems 151

The absolute value of the displacement after the first half-cycle is called the overshoot. The over-

shoot is calculated by

(3.46)

The percent overshoot is .100
h

x 0
= 100 e -zp>21 -z2

= x0e
-zp>21 -z2

h = -x aTd

2
b = -

x0

21 - z2
 e -zp>21 -z2

 sin (p + fd )

Determine (a) the response of the accelerometer of Example 2.20 if it has an initial veloc-

ity of 30 m/s and an initial displacement of 0 m. (b) What is the value of the displacement

at t � 1 s?

SO LU T I ON
(a) The differential equation governing the free response of the accelerometer is

(a)

Putting the equation in standard form, we have

(b)

The natural frequency is

(c)

and the damping ratio is determined as

(d)

The system is underdamped and the response for the given initial conditions is

(e)

where

(f)

Thus,

(g)

(b) At t � 1 s,

(h)x (10-6  s) = 1.04 * 10-4e -5.36 * 104(10-6) sin 32.82 * 105(10-6)4 = 3.07 * 10-5
  m

m

 = 1.04 * 10-4e -5.36 * 104t( sin 2.82 * 105t)  m

 x (t) =
30 m/s

2.82 * 105 rad/s
e -0.187(2.87 * 105)t sin (2.82 * 105t)

vd = vn21 - z2 = 2.87 * 105  rad/s  21 - (0.187)2 = 2.82 * 105   rad/s

x (t) =
x# 0
vd

e -zvnt sin vdt

z =
1.07 * 105

2(2.87 * 105)
= 0.186

vn = 28.26 * 1010 = 2.87 * 105  rad/s

x
$ + 1.07 * 105x# + 8.26 * 1010x = 0

4.6 * 10-12
 x
$ + 4.93 * 10-7x# + 0.380x = 0

m

EXAMPLE 3 . 6
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152 CHAPTER 3

EXAMPLE 3 . 7
The slender bar of Figure 3.9(a) has a mass of 31 kg and a length of 2.6 m. A 50 N force

is statically applied to the bar at P then removed. The ensuing oscillations of P are moni-

tored, and the acceleration data is shown in Figure 3.9(b) where the time scale is calibrated

but the acceleration scale is not. 

(a) Use the data to find the spring stiffness k and the damping coefficient c.
(b) Calibrate the acceleration scale.

SO LU T I ON
FBDs of the system at an arbitrary instant are shown in Figure 3.9(c). Applying

(∑MO)
ext

� (∑MO)
eff

to these FBDs leads to the differential equation of motion:

(a)x
$ +

3c
7m

x# +
27k
7m

x = 0

c = ?

k = ?

50 N

m = 31 kg

1.95 m0.65 m

(a)

4

3

2

1

0

–1

–2

–3
0 0.05 0.1

Time (s)

a(
t)

 (
sc

al
e 

no
t c

al
ib

ra
te

d)

0.15 0.2 0.25

(b)

Ry mg k[x(0) + ∆st]

50 N

(c) (d)

External forces Effective forces

R

kx

(   )
2x

.

3
m

x
.

3
c

�     �ẍ
3L/4

1
12

mL2

mxø
3

FIGURE 3.9
(a) System of Example 3.7. (b) Accelerometer data for free vibration response. (c) FBD when system is
in equilibrium. (d) FBDs of system at an arbitirary instant.
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Free Vibrations of SDOF Systems 153

The natural frequency and damping ratio are determined by comparing the preced-

ing equation with the standard form of the differential equation for damped free vibra-

tions as

(b)

(c)

The period of damped free vibrations is determined from the accelerometer data as 0.1 s.

The value of the logarithmic decrement is determined from the accelerometer data and

Equation (3.45) as

(d)

The damping ratio is calculated using Equation (3.42) as

(e)

The damped natural frequency is

(f)

from which the natural frequency is calculated as

(g)

(a) The stiffness is calculated from Equation (b) as

(h)

and the damping coefficient is calculated from Equation (c) as

(i)

(b) A static analysis of the equilibrium position in Figure 3.9(c) provides the initial dis-

placement from equilibrium as

(j)

The initial acceleration is calculated using the governing differential equation as

(k)x
$
(0) = -2zvnx

# (0) - v2
nx (0) = - (63.0)2(0.0016  m) = -6.22  m/s2

x (0) =
F
k

=
50  N

3.19 * 104   N/m
= 1.6  mm

c =
14mvnz

3
=

14(31  kg)(63.0  rad/s)(0.0643)

3
= 585.7  N # s/m

k =
7mv2

n

27
=

7(31  kg)(63.0  rad>s)2

27
= 3.19 * 104   N/m

vn =
vd

21 - z2
=

62.8 rad/s

21 - (0.0644)2
= 63.0  rad/s

vd =
2p
Td

=
2p

0.1  s
= 62.8  rad/s

z =
0.406

24p2 + (0.406)2
= 0.0644

d = ln c x
$
(0)

x
$
(0.1  s)

d = ln 
3

2
= 0.406

2zvn =
3c
7m

Q z =
3c

14m vn

vn = A
27k
7m
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154 CHAPTER 3

3.5 CRITICALLY DAMPED FREE VIBRATIONS
When , the free vibrations are said to be critically damped. In this case, there is onlyz = 1

3

2

1

0

Time (s)

ωn = 2.0 rad/s,  x(0) = 1 mm

x(
t)

 (
m

m
)

–1

–2

–3
x(0) = –1.0 mm/s˙ x(0) = 10.0 mm/s˙ x(0) = –15.0 mm/s˙

FIGURE 3.10
Free vibration response for a
system with critical damping.
The damping is just sufficient
to dissipate the energy within
one cycle. Depending on ini-
tial conditions, the response
may overshoot the equilib-
rium position.

The acceleration scale is then calibrated as

(l)1  unit =
6.22  m/s2

3
= 2.07  m/s2

one root of the quadratic equation defining . The root is � n; thus, one solution of the

differential equation is . The second linearly independent solution is obtained by mul-

tiplying the first by t. Thus, the general solution is

(3.47)

Application of the initial conditions leads to

(3.48)

The response of a SDOF system subject to critical viscous damping is plotted in

Figure 3.10 for different initial conditions. If the initial conditions are of opposite sign or

if , the motion decays immediately. If both initial conditions have the same sign or

if , the absolute value of x initially increases and reaches a maximum of

(3.49)

at

(3.50)t =
x# 0

vn(x
#
0 + vnx0)

x
 max 

= e -x# 0/(x
#
0 +vnx0)ax0 +

x# 0

vn

b
x0 = 0
x# 0 = 0

x (t) = e -vnt3x0 + (x# 0 + vnx0)t4

x (t) = e -vnt(C1 + C2t)

e -vnt
va
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Free Vibrations of SDOF Systems 155

If the signs of the initial conditions are opposite and

(3.51)

then the response overshoots the equilibrium position before eventually decaying and approach-

ing equilibrium from the direction opposite that of the initial position. Equation (3.51) is

equivalent to specifying that the initial conditions are opposite and the initial kinetic energy

is greater than the initial potential energy.

Free vibrations with � 1 are called critically damped because the damping force is

just sufficient to dissipate the energy within one cycle of motion. The system never exe-

cutes a full cycle; it approaches equilibrium with exponentially decaying displacement.

A system with critical damping returns to equilibrium the fastest without oscillation.

A system that is overdamped has a larger damping coefficient and offers more resistance to

the motion.

z

x0

x# 0 + vnx0

6 0

EXAMPLE 3 . 8
The recoil mechanisms of large firearms are designed with critical damping to take advan-

tage of the quickest return to the firing position without oscillation. A 52 kg cannon is to

return to within 50 mm of its firing position 0.1 s after maximum recoil. The initial recoil

velocity of the cannon is 2.5 m/s. Determine (a) the stiffness of the recoil mechanism,

(b) the damping coefficient of the recoil mechanism, and (c) the maximum recoil.

SO LU T I ON
The maximum recoil of a critically damped system with a initial velocity v � 2.5 m/s and

an initial displacement of zero is given by Equation (3.49) as

(a)

Take t � 0 to occur at the maximum velocity of the mechanism when and

. The response of the system is given by Equation (3.48) as

(b)

Requiring that the mechanism return to within 50 mm of equilibrium 0.1 s after maxi-

mum recoil leads to

(c)

An iterative solution is used to solve Equation (c), for n � 12.1 rad/s.

(a) The stiffness of the recoil mechanism is

(d)

(b) Since the mechanism is critically damped, we have

(e)c = 2mvn = 2(52  kg)(12.1  rad/s) = 1.26 * 103  N # s/m

k = mv2
n = (52  kg)(12.1  rad/s)2 = 7.61 * 103  N/m

v

0.050 =
2.5
e vn

e -vn(0.1)31 + 0.1vn4

x (t) =
2.5
e vn

e -vnt(1 + vnt) m

x (0) = 2.5
evn

x# (0) = 0

xmax =
2.5  m/s

evn
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156 CHAPTER 3

3.6 OVERDAMPED FREE VIBRATIONS
When � 1, the characteristic equation has two real roots as 

The general solution of the governing differential equation Equation (3.7) is

(3.52)

Application of initial conditions from Equations (3.8) and (3.9) to Equation (3.52) leads to

(3.53)

Equation (3.53) is plotted in Figure 3.11. The response of an overdamped SDOF

system is not periodic. It attains its maximum either at t � 0 or at

(3.54)t = -  
1

2vn2z2 - 1
 ln ≥ z - 2z2 - 1

z + 2z2 - 1
 

x# 0

vn

+ x01z + 2z2 - 12
x# 0

vn

+ x01z - 2z2 - 12
¥

+ c - x# 0
vn

+ x01-z + 2z2 - 12 de -vn2z2 - 1t r
x (t) =

e -zvnt

22z2 - 1
 e c x

#
0

vn

+ x01z + 2z2 - 12 d  e vn2z2 - 1t

x (t) = C1e
-vn1z+2z2 - 12t + C2e -vn1z-2z2 - 12t

v1,2 = vn1-z � 2z2 - 12.z

x(0) = 9 mm/s˙ x(0) = –9 mm/s˙

2

1

0
0.5 1.0 1.5 2.0

Time (s)

x(
t)

 (
m

m
)

–1

ωn = 3 rad/s,   ζ = 1.2,   x(0) = 1 mm

FIGURE 3.11
Free vibration response for a
system that is overdamped.
The damping force is suffi-
cient to dissipate the energy
within a full cycle.

(c) The maximum recoil given by Equation (a) is

(f)xmax =
2.5  m/s

e vn

=
2.5 m/s

e (12.1  rad/s)
= 76.0  mm
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11
×10–4
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8

7

6

5

4

3
0 0.2 0.4 0.6 0.8 1

t (s)

x 
(m

)

1.2 1.4 1.6 1.8 2

ζ = 1
ζ = 1.25

FIGURE 3.12
Comparison between the free
response of a critically
damped system and an over-
damped system.

The response of a system that is overdamped is similar to a critically damped system.

An overdamped system has more resistance to the motion than critically damped systems.

Therefore, it takes longer to reach a maximum than a critically damped system, but the

maximum is smaller. An overdamped system also takes longer than a critically damped

system to return to equilibrium. Two systems with the same initial conditions are shown in

Figure 3.12. One system has a damping ratio of 1 and the other of 1.25. It is obvious that

the system that is overdamped is slower.

The restroom door of Figure 3.13 is equipped with a torsional spring and a torsional viscous

damper so that it automatically returns to its closed position after being opened. The door

has a mass of 60 kg and a centroidal moment of inertia about an axis parallel to the axis of

the door’s rotation of 7.2 kg m2. The torsional spring has a stiffness of 25 N m/rad.

(a) What is the damping coefficient such that the system is critically damped?

(b) A man with an armload of packages, but in a hurry, kicks the door to cause it to open.

What angular velocity must his kick impart to cause the door to open 70 ?

(c) How long after his kick will the door return to within 5 of completely closing?

(d) Repeat parts a through c if the door is designed with a damping ratio, � 1.3.z

°
°

##

EXAMPLE 3 . 9
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158 CHAPTER 3

SO LU T I ON
The differential equation is derived from the free-body diagrams of Figure 3.13(b),

(a)

Equation (a) is put in the standard form of Equation (3.7) by dividing by � md 2. Then

it is evident that

(b)

and

(c)

(a) For critical damping, the damping ratio is 1. Thus,

(d)

(b) If the kick is given when the door is closed, (0) � 0, the time the maximum displace-

ment occurs is given by Equation (3.50)

(e)t =
1
vn

= 0.88  s

u

ct = 2vn(I + md 2) = 44.0  N # m # s

z =
ct

2vn(I + md 2)

vn = A
kt

I + md 2
= A

25  N # m/rad
7.2  Kg # m2 + (60  kg)(0.45  m)2 = 1.14 rad/s

I

(I + md 2)u
$

+ ctu
#

+ ktu = 0

0.90 m

(a)

2.13 m

θ

mg

External forces Effective forces

ktθ

(b)

=

Iθ̈

ctθ̇ mdθ̇ 2

mdθ̈

FIGURE 3.13
The restroom door of Example 3.9 is modeled
as a SDOF system with a torsional spring and a
torsional viscous damper. (b) FBDs at an arbi-
trary instant.
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Free Vibrations of SDOF Systems 159

and from Equation (3.49) is

(f)

Requiring 
max

� 70 yields

(g)

(c) Applying Equation (3.48) with � 5 gives

(h)

which is solved by trial and error to yield t � 4.658 s.

(d) Setting � 1.3 yields

(i)

From Equation (3.54) the maximum displacement occurs at

(j)

Substituting the preceding result in Equation (3.53) and setting � 70 yields

(k)

which gives

(l)

Applying Equation (3.53) with � 5 yields

(m)

This equation could be solved by trial and error. However, a good approximation is

obtained by neglecting the smaller exponential to give t � 6.2 s. The neglected term at this

time is 0.00081 rad which is only 0.9% of the total angular displacement.

Note that a harder kick is required to open the door when the system is overdamped

than when the system is critically damped even though the time required to open the door

is approximately the same. This reflects the increase in the viscous resistance moment. The

response of the critically damped system against the response of an overdamped system

with � 1.3 is plotted in Figure 3.14. z

e -1.142(1.3)2 - 1
  
t B* Ae 1.142(1.3)2 - 1

  
t -

5° a2p  rad

360°
b = a e -1.14(1.3)t

22(1.3)2 - 1
b a4.54 rad/s

1.14 rad/s
b

°u

u
#
0 = 4.54 rad/s

* Ae1.14 rad/s 2(1.3)2 - 1(0.8  s) - e -1.14  rad/s 2 (1.3)2 - 1(0.8  s) B
 70°a2p rad

360°
b = a u

#
0

1.14  rad/s
b  

1

22(1.3)2 - 1
 e -1.3(1.14  rad/s)(0.8  s)

°u

t = -   
1

2(1.14  rad/s)2(1.3)2 - 1
 ln ¢1.3 - 2(1.3)2 - 1

1.3 + 2(1.3)2 - 1
≤ = 0.80  s

ct = 2z( I + md 2)vn = 57.2  N # m # s

z

5°a2p  rad
360°

b = e -(1.14  rad/s)t 13.78   rad/s2t
°u

u
#
0 = 70°a2p rad

360°
b11.14  rad/s2e = 3.78 rad/s

°u

umax =
u
#
0

e vn
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3.7 COULOMB DAMPING
Coulomb damping is the damping that occurs due to dry friction when two surfaces slide

against one another. Coulomb damping can be the result of a mass sliding on a dry sur-

face, axle friction in a journal bearing, belt friction, or rolling resistance. The case of a mass

sliding on a dry surface is analyzed here, but the qualitative results apply to all forms of

Coulomb damping.

As the mass of Figure 3.15 (a) slides on a dry surface, a friction force that resists the

motion develops between the mass and the surface. Coulomb’s law states that the friction

force is proportional to the normal force developed between the mass and the surface. The

constant of proportionality , is called the kinetic coefficient of friction. Since the friction

force always resists the motion, its direction depends on the sign of the velocity.

Application of Newton’s law to the free-body diagrams of Figure 3.15(b) and (c) yields

the following differential equations:

(3.55)

Equations (3.55) are generalized by using a single equation

(3.56)mx
$ + kx = -mmg   

| x# |
x#

mx
$ + kx = e -mmg   x# 7 0

   mmg   x# 6 0

m

ζ = 1
ζ = 1.3

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 1.5 1 1.5 2 2.5

t (s)

θ 
(r

ad
)

3 3.5 4 4.5 5

FIGURE 3.14
MATLAB plot of responses of the system of Example 3.8 for a critically damped system and an over-
damped system.
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Free Vibrations of SDOF Systems 161

The right-hand side of Equation (3.56) is a nonlinear function of the generalized coordi-

nate. Thus the free vibrations of a one-degree-of-freedom system with Coulomb damping

are governed by a nonlinear differential equation. However, an analytical solution exists

and is obtained by solving Equation (3.55).

Without loss of generality, assume that free vibrations of the system of Figure 3.15 are ini-

tiated by displacing the mass a distance to the right, from equilibrium, and releasing it from

rest. The spring force draws the mass toward equilibrium; thus the velocity is initially negative.

Equation (3.55) applies over the first half-cycle of motion, until the velocity again becomes zero. 

The solution of Equation (3.55) subject to and with mg on the

right-hand side is

(3.57)

Equation (3.57) describes the motion until the velocity changes sign at t � n when

(3.58)

Equation (3.55) with – mg on the right-hand side governs the motion until the

velocity next changes sign. The solution of Equation (3.55) using Equation (3.58) and

as initial conditions is 

(3.59)x (t) = ad -
3mmg

k
b  cos vnt -

mmg

k
      

p

vn

… t …
2p
vn

x 
# A pvn
B = 0

m

x a p
vn

b = -d +
2mmg

k

v>p
x (t) = ad -

mmg

k
b  cos vnt +

mmg

k

mx#(0) = 0x(0) = d

d

k
x

m

µ

External forces

(a)

(b)

(c)

Effective forces

kx

mg

ẋ > 0

F = µmg

N

=

kx

mg

F = µmg
N

= ẋ < 0

FIGURE 3.15
(a) A mass slides on a surface with a
coefficient of friction . (b) FBDs at
an arbitrary instant for > 0. (c) FBDs
at an arbitrary instant for < 0.x

#x
#m
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The velocity again changes sign at t � 2 n when

(3.60)

The motion during the first complete cycle is described by Equations (3.57) and

(3.59). The amplitude change between the beginning and the end of the cycle is

(3.61)

The motion is cyclic. The analysis of the subsequent and each successive cycle continues in

the same fashion. The initial conditions used to solve for the displacement during a half-

cycle are that the velocity is zero and the displacement is the displacement calculated at the

end of the previous half-cycle.

The period of each cycle is

(3.62)

Thus Coulomb damping has no effect on the natural frequency.

Mathematical induction is used to develop the following expressions for the displace-

ment of the mass during each half-cycle:

(3.63)

(3.64)

(3.65)

Equation (3.65) shows that the displacement at the end of each cycle is 4 mg/k less

than the displacement at the end of the previous cycle. Thus the amplitude of free vibra-

tion decays linearly as shown, when Equations (3.63) and (3.64) are plotted in Figure 3.16.

The amplitudes on successive cycles form an arithmetic sequence. If xn is the ampli-

tude at the end of the nth cycle then

(3.66)

with x
0

� . The solution of this difference equation is Equation (3.65).

The motion continues with this constant decrease in amplitude as long as the restor-

ing force is sufficient to overcome the resisting friction force. However, since the friction

d

xn - xn - 1 =
4mmg

k

m

x a2n 
p

vn

b = d - a4mmg

k
bn

2an -
1
2
b  
p

vn

… t … 2n  
p

vn

x (t) = cd - (4n - 1)
mmg

k
d  cos vnt -

mmg

k

2(n - 1)
p

vn

… t … 2an -
1

2
b p
vn

x (t) = cd - (4n - 3)
mmg

k
d  cos vnt +

mmg

k

T =
2p
vn

x (0) - x a2p
vn

b =
4mmg

k

x a2p
vn

b = d -
4mmg

k

v>p
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Free Vibrations of SDOF Systems 163

FIGURE 3.16
Free response of a system with
Coulomb damping. The motion
is cyclic with a linear decay of
amplitude. The period is the
same as the natural period
with motion ceasing with a
permanent displacement.

–6

–3

0

3

6

8.06.0

Time (10–1 s)

µ = 0.1
m = 100 kg
ωn = 100 rad/s
x0 = 0.005 m

Displacement
(10–3 m)

4.02.0

causes a decrease in amplitude, the restoring force eventually becomes less than the friction

force. This occurs when

(3.67)

Motion ceases during the nth cycle, where n is the smallest integer such that

(3.68)

When motion ceases a constant displacement from equilibrium of mg/k is maintained.

The effect of Coulomb damping differs from the effect of viscous damping in these

respects:

1. Viscous damping causes a linear term proportional to the velocity in the governing dif-

ferential equation, while Coulomb damping gives rise to a nonlinear term.

2. The natural frequency of an undamped system is unchanged when Coulomb damp-

ing is added, but is decreased when viscous damping is added.

3. Motion is not cyclic if the viscous damping coefficient is large enough, whereas the

motion is always cyclic when Coulomb damping is the only source of damping.

4. The amplitude decreases linearly because of Coulomb damping and exponentially

because of viscous damping.

m

n 7
kd

4mmg
-

1
4

k ` x a2n 
p

vn

b ` … mmg
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164 CHAPTER 3

5. Coulomb damping leads to a cessation of motion with a resulting permanent displace-

ment from equilibrium, while motion of a system with only viscous damping contin-

ues indefinitely with a decaying amplitude.

Since the motion of all physical systems ceases in the absence of continuing external

excitation, Coulomb damping is always present. Coulomb damping appears in many

forms, such as axle friction in journal bearings and friction due to belts in contact with pul-

leys or flywheels. The response of systems to these and other forms of Coulomb damping

can be obtained in the same manner as the response for dry sliding friction.

The general form of the differential equation governing the free vibrations of a linear

system where Coulomb damping is the only source of damping is

(3.69)

where Ff is the magnitude of the Coulomb damping force. The decrease in amplitude per

cycle of motion is

(3.70)�  A =
4Ff

meqv
2
n

x
$ + v2

nx = e       
Ff

meq
   x# 6 0

-
Ff

meq
   x# 7 0

E XAMP L E 3 . 1 0
An experiment is run to determine the kinetic coefficient of friction between a block and

a surface. The block is attached to a spring and displaced 150 mm from equilibrium. It is

observed that the period of motion is 0.5 s and that the amplitude decreases by 10 mm on

successive cycles. Determine the coefficient of friction and how many cycles of motion the

block executes before motion ceases.

SO LU T I ON
The natural frequency is calculated as

(a)

The decrease in amplitude is expressed as

(b)

which is rearranged to yield

(c)

From Equation (3.68) the motion ceases during the 15th cycle. The mass has a permanent

displacement of 2.5 mm from its original equilibrium position.

m =
¢  A
4 g
v2

n =
(0.01  m)(12.57 rad/s)2

4(9.81 m/s2)
= 0.04

¢  A =
4mmg

k
=

4mg

v2
n

vn =
2p
T

=
2p

0.5  s
= 12.57  rad/s

62129_03_Ch03_p137-204.qxd  3/16/11  10:27 AM  Page 164

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Free Vibrations of SDOF Systems 165

FIGURE 3.17
(a) Tree swing of Example 3.11. (b) The tension
developed in opposite sides of a rope are
unequal due to friction. (c) FBDs of swing at an
arbitrary instant.

T1 T2

M

T1

mg

External forces Effective forces

(c)

(b)

(a)

=

mlθ̈

mlθ̇ 2

T2

M

d = 8.2 cm

µ = 0.1

2T1

2T2

3.5 m

A father builds a swing for his children. The swing consists of a board attached to two ropes,

as shown in Figure 3.17. The swing is mounted on a tree branch, with the board 3.5 m below

the branch. The diameter of the branch is 8.2 cm and the kinetic coefficient of friction

between the ropes and the branch is 0.1. After the swing is installed and his child is seated,

the father pulls the swing back 10 and releases. What is the decrease in angle of each swing

and how many swings will the child receive before Dad needs to give another push?

SO LU T I ON
Because of the friction between the tree branch and the ropes, the tension on opposite sides

of a rope will be different. These tensions can be related using the principles of belt fric-

tion. When the swing is swinging clockwise,

(a)T2 = T1e
mb

°

EXAMPLE 3 . 1 1
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166 CHAPTER 3

where is the angle of contact between the tree branch and the rope. As the child swings

the angle of contact may vary. However, this complication is too much to handle with a

simplified analysis. A good approximation is to assume is constant and � rad.

When the swing is swinging counterclockwise

(b)

Let be the clockwise angular displacement of the swing from equilibrium. Summing

forces in the direction of the tensions gives ∑F
ext

� ∑F
eff

(c)

The swing is pulled back only 10 . Thus the usual small-angle approximation is valid, with

cos 1 and the nonlinear inertia term ignored in comparison to the tensions and grav-

ity. The belt friction relations and the normal force equation are solved simultaneously to

yield

(d)

(e)

Summing moments about the center of the tree branch, using the free-body diagrams of

Figure 3.17(c) and the small-angle assumption yields

(f)

Substituting for the tensions into the preceding equation and rearranging leads to

(g)

The frequency of the swinging is

(h)

which is the same as it would be in the absence of friction.

vn = A
g

l
= 1.67  rad/s

 u
#

7 0

 
u
#

6 0
u
$

+
g

l
  u = d gd

2l 2 
1 - e mp

1 + e mp

-
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2l 2 
1 - e mp

1 + e mp

(2T1 - 2T2)  
d
2

- mgl u = ml 2
  u
$

b
eff

MO= aaMOb
ext

aa

T2 =
mg

2(1 + e mp)

T1 =
mge mp

2(1 + e mp)
u
#

7 0,

T2 =
mge mp

2(1 + e mp)

T1 =
mg

2(1 + e mp)
u
#

7 0,

Lu
°

2T1 + 2T2 - mg   cos u = mlu
# 2

u

T1 = T2e
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b
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Free Vibrations of SDOF Systems 167

The governing differential equation is of the form of Equation (3.69). Thus, from

Equation (3.70), the decrease in amplitude per swing is

Motion ceases when, at the end of a cycle, the moment of the gravity force about the center

of the branch is insufficient to overcome the frictional moment. This occurs when

or

Thus, if Dad does not give the swing another push after 23 swings, the swing will come to

rest with an angle of response of 0.1 .°

u 6
d
2l

 
e mp - 1
e mp + 1

= 0.10°

mgl u 6 | T2 - T1 |d

2d
l

 
e mp - 1
e mp + 1

= 2a0.082  m
3.5  m

b e 0.1p - 1
e 0.1p + 1

= 0.0073  rad = 0.42°

–σy

�

σy

σ

FIGURE 3.18
Stress strain diagram for a linearly elastic
isotropic material with the same behavior
in compression and tension. Material
behavior is linear for | | y.s6s

-

3.8 HYSTERETIC DAMPING
The stress–strain diagram for a typical linearly elastic material is shown in Figure 3.18.

Ideally, if the material is stressed below its yield point and then unloaded, the stress-strain

curve for the unloading follows the same curve for the loading. However, in a real engi-

neering material, internal planes slide relative to one another and molecular bonds are

broken, causing conversion of strain energy into thermal energy and causing the process to
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be irreversible. A more realistic stress-strain curve for the loading-unloading process is

shown in Figure 3.19 when | | y.
The curve in Figure 3.19 is a hysteresis loop. The area enclosed by the hysteresis loop from

a force–displacement curve is the total strain energy dissipated during a loading–unloading

cycle. In general, the area under a hysteresis curve is independent of the rate of the loading-

unloading cycle.

In a vibrating mechanical system an elastic member undergoes a cyclic load-displacement

relationship as shown in Figure 3.19. The loading is repeated over each cycle. The existence

of the hysteresis loop leads to energy dissipation from the system during each cycle, which

causes natural damping, called hysteretic damping. It has been shown experimentally that

the energy dissipated per cycle of motion is independent of the frequency and proportional

to the square of the amplitude. An empirical relationship is

(3.71)

where X is the amplitude of motion during the cycle and h is a constant, called the hysteretic
damping coefficient.

The hysteretic damping coefficient cannot be simply specified for a given material. It

is dependent upon other considerations such as how the material is prepared and the geom-

etry of the structure under consideration. Existing data cannot be extended to apply to

every situation. Thus it is usually necessary to empirically determine the hysteretic damp-

ing coefficient.

Mathematical modeling of hysteretic damping is developed from a work-energy analy-

sis. Consider a simple mass-spring system with hysteretic damping. Let X
1

be the ampli-

tude at a time when the velocity is zero and all energy is potential energy stored in the

spring. Hysteretic damping dissipates some of that energy over the next cycle of motion.

Let X
2

be the displacement of the mass at the next time when the velocity is zero, after the

¢E = pkhX 2

s6s

FIGURE 3.19
Behavior of a real engineering material as a system
executes one cycle of motion. The area enclosed
by the curve is the dissipated strain energy per unit
volume. This dissipated energy is the basis for hys-
teretic damping.

x

F
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Free Vibrations of SDOF Systems 169

system executes one half-cycle of motion. Let X
3

be the displacement at the subsequent

time when the velocity is zero, one full cycle later. Application of the work-energy princi-

ple over the first half-cycle of motion gives

(3.72)

The energy dissipated by hysteretic damping is approximated by Equation (3.71) with X as

the amplitude at the beginning of the half-cycle.

(3.73)

This yields

(3.74)

A work-energy analysis over the second half-cycle leads to

(3.75)

Thus the rate of decrease of amplitude on successive cycles is constant, as it is for vis-

cous damping. By analogy a logarithmic decrement is defined for hysteretic damping as

(3.76)

which for small h is approximated as

(3.77)

By analogy with viscous damping an equivalent damping ratio for hysteretic damping is

defined as

(3.78)

and an equivalent viscous damping coefficient is defined as

(3.79)

The free vibrations response of a system subject to hysteric damping is the same as the

response of the system when subject to viscous damping with an equivalent viscous damp-

ing coefficient given by Equation (3.79). This is true only for small hysteretic damping, as

subsequent plastic behavior leads to a highly nonlinear system. The analogy between vis-

cous damping and hysteretic damping is also only true for linearly elastic materials and for

materials where the energy dissipated per unit cycle is proportional to the square of the

amplitude. In addition, the hysteretic damping coefficient is a function of geometry as well

as the material.

The response of a system subject to hysteretic or viscous damping continues indefi-

nitely with exponentially decaying amplitude. However, hysteretic damping is significantly

different from viscous damping in that the energy dissipated per cycle for hysteretic damp-

ing is independent of frequency, whereas the energy dissipated per cycle increases with fre-

quency for viscous damping. Thus while the mathematical treatments of viscous damping

and hysteretic damping are the same they have significant physical differences.

ceq = 2z2mk =
hk
vn

z =
d

2p
=

h
2

d = ph

d = ln
X1

X3

= - ln(1 - ph)

X3 = 21 - ph X2 = (1 - ph)X1

X2 = 21 - ph X1

1
2

kX 2
1 =

1
2

kX 2
2 +

1
2
pkhX 2

1

T1 + V1 = T2 + V2 +
¢E
2
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EXAMPLE 3 . 1 2
The force-displacement curve for a structure of Figure 3.20(a) modeled by the system of

Figure 3.20(b) is shown in Figure 3.20(c). The structure is modeled as a one-degree-of-free-

dom system with an equivalent mass 500 kg located at the position where the measure-

ments are made. Describe the response of this structure when a shock imparts a velocity of

20 m/s to this point on the structure.

SO LU T I ON
The area under the hysteresis curve is approximated by counting the squares inside the hys-

teresis loop. Each square represents (1 104 N)(0.002 m) 20 N m of dissipated

energy. There are approximately 38.5 squares inside the hysteresis loop resulting in 770 N m

dissipated over one cycle of motion with an amplitude of 20 mm.

#
#=*

FIGURE 3.20
(a) One-story frame structure modeled as a SDOF system. (b) Hysteretic damping leads to an equivalent
viscous-damping coefficient of 6100 N s/m. (c) Force-displacement curve over one cycle for the system
of Example 3.12.

#

meq = 500 kg

ceq = 6100 N · s/m

keq = 5 × 106 N/m
x x

(b)(a)

5 × 104

–5 × 104

–1 × 105

1 × 105

1.5 × 105

(c)

10–20 –10 20

Displacement (mm)

Force (N)

62129_03_Ch03_p137-204.qxd  3/16/11  10:28 AM  Page 170

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Free Vibrations of SDOF Systems 171

The equivalent stiffness is the slope of the force deflection curve and is determined as

5 106 N/m. Application of Equation (3.71) leads to

(a)

The logarithmic decrement, damping ratio, and natural frequency are calculated by

using Equations (3.77) and (3.78)

(b)

(c)

(d)

The response of this structure with hysteretic damping is approximately the same as the

response of a simple mass-spring-dashpot system with a damping ratio of 0.0615 and a nat-

ural frequency of 100 rad/s. Then from Equation (3.28) with and x
0

� 0, the

response is

(e)x(t) = 0.20e -6.13t sin (99.81t) m

x# 0 = 20  m/s

vn = A
k
m

= A
5 * 106  N/m

500  kg
= 100  rad/s

z =
h
2

= 0.0613

d = ph = 0.385

h =
¢  E
p kX 2 =

770  N # m

p(5 * 106
  N/m)(0.02  m)2

= 0.123

*

3.9 OTHER FORMS OF DAMPING
A mechanical or structural system may be subject to other forms of damping such as aero-

dynamic drag, radiation damping, or anelastic damping. However, these give rise to non-

linear terms in the governing differential equations. Exact solutions do not exist for these

forms of damping. The periodic motion of systems subject to these forms of damping can

be approximated by developing an equivalent viscous damping coefficient. The equivalent

viscous damping coefficient is obtained by equating the energy dissipated over one cycle of

motion, assuming harmonic motion at a specific amplitude and frequency, for the partic-

ular form of damping with the energy dissipated over one cycle of motion because of the

force in a dashpot of the equivalent viscous damping coefficient.

For a harmonic motion of the form the energy dissipated over one

cycle of motion due to a damping force FD is

(3.80)

For viscous damping, Equation (3.80) yields

(3.81)¢E = L
2p>v

0
c x# 2

  dt = L
2p>v

0
c v2X 2

 cos2vt  dt = c vpX 2

¢E = L
2p>v

0
FD x#   dt = L

2p>v

0
FD 

X  v cos vt  dt

x (t) = X sin vt,
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172 CHAPTER 3

Thus, by analogy, the equivalent viscous damping coefficient for another form of damping is

(3.82)

Aerodynamic drag is present in all real problems. However, its effect is often ignored.

The determination of the correct form of the drag force is a problem in fluid mechanics.

At high Reynolds numbers, the drag is very nearly proportional to the square of the veloc-

ity and can be written as

(3.83)

where CD is a coefficient that is a function of body geometry and air properties. For mod-

erate Reynolds numbers, appropriate forms of the drag force have been proposed as

(3.84)

where 0 1. In either case, the resulting differential equation is nonlinear.

Some materials (e.g., rubber) are viscoelastic and obey a constitutive equation in

which stress is related to strain and strain rate. It is shown in Chapter 4 that for an

undamped system the forced response is in phase with a harmonic excitation, whereas a

phase lag occurs for a damped system. This phase lag also occurs for many viscoelastic

materials. Indeed, many viscoelastic materials have constitutive equations that are derived

by modeling the material as a spring in parallel with a dashpot. This is called a Kelvin

model. The phase lag results in energy dissipation and the resulting damping is called

anelastic damping.

Damping occurs when energy is dissipated from a vibrating body by any means.

Another example is radiation damping that occurs for a body vibrating on the free surface

between two fluids. The vibrating body causes pressure waves to be radiated outward, caus-

ing energy transfer from the body to the surrounding fluids.

Most physical systems are subject to a combination of forms of damping. Indeed, a simple

mass-spring-dashpot system is subject to viscous damping from the dashpot, Coulomb damp-

ing from the dry sliding friction, hysteretic damping from the spring, and aerodynamic drag.

The presence of Coulomb damping leads to cessation of free vibrations after a finite time. The

aerodynamic drag is usually neglected in an analysis as its effect is negligible and it leads to a

nonlinear differential equation. The hysteretic damping acts in parallel with the viscous

damping. The equivalent damping coefficient is the sum of the viscous damping coefficient

for the dashpot and the equivalent viscous damping coefficient for the hysteretic damping. For

small amplitudes the effect of viscous damping is much greater than the effect of hysteretic

damping. For large amplitudes the hysteretic damping can be dominant.

…a6

FD = CD| x# |ax#

FD = CD x 
# | x# |

ceq =
¢E
p vX 2

EXAMPLE 3 . 1 3
A block of mass 1 kg is attached to a spring of stiffness 3 105 N/m. The block is dis-

placed 20 mm from equilibrium and released from rest. The block is in a fluid where the

drag force is given by Equation (3.83) with CD � 0.86 N s2/m. Approximate the number

of cycles before the amplitude is reduced to 15 mm.

#
*
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SO LU T I ON
The energy lost per cycle of motion due to aerodynamic drag is calculated from

Equation (3.80)

(a)

From Equation (3.82) the equivalent viscous damping coefficient is calculated as

(b)

If the equivalent viscous damping is small, the frequency is approximately equal to the

natural frequency of free undamped vibrations

(c)

The damping ratio on a given cycle is

(d)

From Equation (3.41) the logarithmic decrement is

(e)

Since the equivalent viscous damping coefficient, and hence the damping ratio and the

logarithmic decrement, depend on the amplitude, the decrease in amplitude is not constant

on each cycle. Using an amplitude of 20 mm for the first cycle, the amplitude at the begin-

ning of the second cycle is obtained using the logarithmic decrement, which in turn is used

to predict the amplitude at the beginning of the third cycle. Table 3.2 is developed in this

fashion. The amplitude of vibration is reduced to 15 mm in seven cycles.

d = 2pz = 2.29X

z =
ceq

22km
=

0.73(547.7 rad/s)X

22(1kg)(3 * 105
  N/m)

v = A
k
m

= 547.7 rad/s

ceq = 0.730vX

 = 4L
p>2v

0
CDX 3v3 cos3vt  dt =

8
3

CDv
2X 3

 �E = L
2p>v

0
CDX 3v3 cos2vt | cos vt | dt

Viscous approximation
used to predict decay in
amplitude for Example 3.13

T A B L E 3 . 2

Amplitude at beginning
Cycle of cycle Xn� Xn-1 e

-2.32Xn - 1

1 20.0
2 19.09
3 18.26
4 17.50
5 16.81
6 16.16
7 15.56
8 15.00
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174 CHAPTER 3

3.10 BENCHMARK EXAMPLES

3.10.1 MACHINE ON THE FLOOR OF AN INDUSTRIAL PLANT
During operation, the machine is to be subject to an impulse of magnitude 220 N s. The

effect of the impulse on the machine is to give the machine an initial velocity using the

equivalent mass of the machine. Application of the principle of impulse and linear momen-

tum to the machine leads to

(a)

The ensuing free vibrations of the machine, accounting for the inertia of the beam, are

modeled by

(b)

with . Putting the differential equation in standard form

leads to

(c)

from which the natural frequency is calculated as

(d)

The system response due to the initial conditions is

(e)

Equation (e) predicts that the motion will continue indefinitely without amplitude

decay. This is false, but it does predict closely the frequency of vibrations and their maxi-

mum amplitude. To explore the possible effects of energy dissipation through hysteretic

damping, transverse vibrations of the floor are initiated and the history of the response is

recorded using an accelerometer placed at the location where the machine is to be attached.

The amplitude of vibration decays to half of its initial value in 10 cycles. The logarithmic

decrement is calculated as

(f)

from which a hysteretic damping coefficient is determined as

(g)

The response thus is modeled with hysteretic damping as a system with an equivalent viscous-

damping ratio

(h)z =
d

2p
= 0.0110

h =
d

2
= 0.0347

d =
1

10
  lna2

1
b = 0.0693

x (t) =
x#  (0)

vn

 sin vnt =
0.39  m/s

144.9  rad/s
 sin (144.9t) = 2.69 * 10-3 sin (144.9t)  m

vn = 22.10 * 104 = 144.9  rad>s

x
$ + 2.10 * 104x = 0

x (0) = 0  and  x#  (0) = 0.39  m/s

570.69x
$ + 1.20 * 107x = 0

v =
I
m

=
220 N # s
570.69 kg

= 0.39  m/s

#
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Free Vibrations of SDOF Systems 175

The response of the system with hysteretic damping is

(i)

Equation (i) is illustrated in Figure 3.21.

3.10.2 SIMPLIFIED SUSPENSION SYSTEM
The model for free vibrations of the vehicle suspension system with an empty vehicle is

(a)

Putting the differential equation in standard form, it becomes

(b)

The vehicle has a natural frequency of

(c)vn = A
k
m

= A
12000  N/m

300  kg
= A40

1
s2 = 6.32  rad/s

x
$ + 4x# + 40x = 0

300x$ + 1200x# + 12000x = 0

= 2.69 * 10-3e -1.59t sin (144.9t) m

=
0.39  m/s

(144.9 rad/s)21 - (0.0110)2
e -(0.0110)(141.4)t sin A141.421 - (0.0110)2t B

x (t) =
x# (0)

vn21 - z2
 e -zvnt  sin Avn21 - z2t B

FIGURE 3.21
Plot of the free response of a
machine attached to a fixed-
free beam when hysteretic
damping is included.
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176 CHAPTER 3

and a damping ratio of

(d)

The vehicle encounters a sudden change in road contour of a drop of distance h. The

system is modeled with the equilibrium position taken after the drop, which implies that

the initial conditions are x(0) � �h and . The solution of an underdamped

system subject to these initial conditions is

(e)

where

(f)

Note that the numerator and the denominator in the argument of the inverse tangent are

both negative. The negative sign does not cancel; instead, a four-quadrant evaluation of the

inverse tangent is used. Substituting numbers in x(t) leads to

(g)

One concept associated with the free response of a vehicle when it encounters a sudden

contour change is overshoot, where the absolute value of maximum displacement at the

end of the first half-cycle is

(h)

Expressed as a percentage, the overshoot is

(i)

The mass of the vehicle varies with passengers and cargo from an empty value of 300 kg to

a fully loaded value of 600 kg. The damping ratio is inversely proportional to the square

root of the mass, and hence, the overshoot increases with increasing mass. The variation of

overshoot with mass is shown in Figure 3.22.

Another important concept is the 2 percent settling time t
2%

, which is how long it takes

for the system response to be permanently reduced to be within 2 percent of the initial dis-

placement of equilibrium. It is calculated from the last time that x(t) � |0.02h|, which is

calculated in term of the mass of the vehicle using Equation (e). The value of

ranges between –1 and 1 and does not have much effect on the

solution for the 2 percent settling time. Ignoring this term and eliminating the absolute

value (since the remainder of the terms are positive) leads to

(j)0.02h = hC1 +
z

31 - z2
  e -zvnt2%

sin (vn21 - z2t + fd)

h = 100 

g

h
= 100e -zp>21 -z2

g = 2 x aTd

2
b 2 = he -zp>21 -z2

x(t) = 1.054he -2.00t sin (6.00t + 4.39)

fd =  tan -1 ¢-h21 - z2

-hz
≤ =  tan -1 ¢- 21 - (0.316)2

-0.316
≤ = 4.39

x (t ) = h C1 + a z

31 - z2
b2

e -zvnt sin 1vn21 - z2t + fd2

x# (0) = 0

z =
c

22mk
=

1200  N # s/m

22(300  kg)(12000  N/m)
= 0.316
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FIGURE 3.23
Two percent settling time as
a function of the mass of the
vehicle for the simplified
model of the vehicle suspen-
sion system.
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FIGURE 3.22
Percent overshoot as a func-
tion of mass of the vehicle for
the simplified model of the
vehicle suspension system.
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which is solved, leading to

(k)

Equation (j) is plotted in Figure 3.23 from an empty vehicle to a fully loaded vehicle.

t2% =
1

zvn

 c3.912 +
1

2
 lna1 +

z

21 - z2
b d
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3.11 FURTHER EXAMPLES

EXAMPLE 3 . 1 4
A particle of mass of 50 g is to be attached along the length of a thin bar with a length

of 25 cm, mass of 200 g, and centroidal moment of inertia of 9.0 � 10�3 kg m2. The

assembly is suspended from a pin support attached at one end of the bar. The center of grav-

ity of the bar is 15 cm from the pin support. The assembly is to be tuned such that it has a

period of 1.25 s. Determine the length along the bar where the particle is to be placed.

SO LU T I ON
The assembly shown in Figure 3.24(a) is modeled as a compound pendulum with an

attached particle. The generalized coordinate used in the modeling is , which is the coun-

terclockwise angular displacement of the pendulum from equilibrium. It is assumed that 

is small, so that the small angle assumption applies. Free-body diagrams drawn for an arbi-

trary value of are shown in Figure 3.24(b). Using these free-body diagrams to sum

moments about an axis through the pin support, (∑MO)
ext

� (∑ MO)
eff

, yields

(a)

where a is the distance from the pin support to the mass center of the ban.

-m1ga u - m2gb u = I u
$ + (m1a u

$
)a + (m2b u

$
)b

u

u

u

#

FIGURE 3.24
Pendulum composed of a mass which can
slide along the rod. (b) FBDs at an arbitrary
instant where is the chosen generalized
coordinate.

u

b

(a)

m2g

External forces Effective forces

m1g m2bθ̇ 2

m1aθ̇ 2

m2bθ̈

m1aθ̈

I
–θ̈

Rx

Ry

(b)

=
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Equation (a) is rearranged to

(b)

Equation (b) is put into standard form, and the natural frequency identified as

(c)

The period of free oscillation is

(d)

Requiring the period to be 1.25 s and substituting in the given values leads to

(e)

Dividing by 2 , squaring, multiplying by the denominator, and rearranging leads to

(f)

The solution of the quadratic equation is b � 0.169, 0.219 m. The mass can be placed at

either location.

b2 - 0.3882b + 0.03709 = 0

p

1.25  s = 2pA
9 * 10-3 kg # m2 + (0.2  kg)(0.15  m)2 + (0.05  kg)b2

3(0.2  kg)(0.15  m) + (0.05  kg)b4(9.81 m/s2)

T =
2p
vn

= 2pA
I + m1a

2 + m2b
2

(m1a + m2b)g

vn = A
(m1a + m2b)g

I + m1a
2 + m2b

2

(I + m1a
2 + m2b

2) u
$

+ (m1a + m2b)g u = 0

FIGURE 3.25
System of Example 3.15.

x

2r
r

ck

k
ID

m = 1.2 kg
ID = 0.002 kg · m2

r = 10 cm
k = 3 × 104 N/m

m

The parameters in the system of Figure 3.25 have the following values: ID � 0.002 kg m2,

r � 100 mm, m � 1.2 kg, and k � 3 � 104 N/m. 

(a) Let x be the displacement of the mass center of the cart as the generalized coordinate.

Derive the differential equation for the system using the equivalent systems method.

Assume there is no friction between the cart and the surface.

(b) For what value of c is the system critically damped? Call this value cc.

(c) Suppose the cart is displaced 3 cm from equilibrium and released. Determine x(t) if 
(i) c � 0.25cc, (ii) c � cc, and (iii) c � 1.25cc.

(d) How long will it take for the response to be permanently within 1 mm of the equilib-

rium position if (i) c � 0.25cc, (ii) c � cc, and (iii) c � 1.25cc?

#
EXAMPLE 3 . 1 5
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180 CHAPTER 3

SO LU T I ON
(a) The kinetic energy of the system at an arbitrary instant is where is

the angular velocity of the disk. Assuming the cables are inextensible, the velocity of the point

on the disk where the cable is being taken up or let out is the same as the velocity of the cable,

which also is the same as the velocity of the cart. Thus, . The kinetic energy becomes

(a)

Thus, the equivalent mass is m
eq

� 6.2 kg. The potential energy at an arbitrary instant is

(b)

which leads to k
eq

� 3.75 � 104 N/m. The work done by the viscous damper between

t � 0 and an arbitrary instant is

(c)

Hence, the equivalent viscous-damping coefficient is c
eq

� c 4. The differential equation

governing the system is

(d)

(b) The natural frequency of the system is

(e)

The form of the damping ratio is

(f)

For critical damping, the damping ratio is 1, which leads to cc � 3860 N s/m.

(c) The initial conditions are x(0) � 0.03 m and . (i) If cc � 0.25, the system x# (0) = 0  m/s

#
z =

c
8(6.2  kg)(77.8  rad/s)

=
c

3860  N # s/m

vn = A
3.75 * 104   N/m

6.2  kg
= 77.8  rad/s

6.2x
$ +

1

4
cx# + 3.75 * 104x = 0

>
U1:2 = -Lc  

x#

2
 d a x

2
b = -L

c
4

 x#  dx

=
1

2
(3.75 * 104  N/m)x 2

V =
1
2

k x 2 +
1
2

k (r u)2 =
1
2

kx 2 +
1
2

k a x
2
b2

=
1
2
a5k

4
bx 2 =

1
2
c5
4
a3 * 104  N/mb dx 2

=
1

2
(6.2  kg)x# 2

T =
1
2

mx# 2 +
1
2

IDa x#

2r
b2

=
1
2
am +

ID

4r 2 bx# 2 =
1
2

 a1.2  kg +
0.002  kg # m2

4(0.01  m)2 bx# 2

x# = 2ru
#

vT = 1
2mx# 2 + 1

2IDv
2

is underdamped with � � 0.25. The solution for an underdamped system is given by
Equation 3.28 and is applied to this problem as

 sin b (77.8  rad/s)21 - (0.25)2t

x (t) = C(0.03  m)2 + c0  m/s + (0.25)(77.8  rad/s)(0.03  m)

(77.8  rad/s)31 - (0.25)2
d2
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(g)

(ii) For c � cc, the system is critically damped, and � 1. The free response of a critically

damped system is given by Equation 3.48, which is applied to yield

(h)

(iii) For c � 1.25 cc, the system is overdamped with � 1.25. The free response of an over-

damped system is given by Equation 3.53, which is applied to yield

(i)

(d)

(i) For an underdamped system, the logarithmic decrement can be used to determine how

long it will take for the system to be permanently within 1 mm of equilibrium. To this end,

(j)

From the requirements, the number of cycles is determined by

(k)

The system will return to within 1 mm of equilibrium within 3 cycles. Thus,

(l)

(ii) For � 1, an iteration is performed on

(m)

leading to t � 0.067 s.

(iii) For � 1.25, the solution is composed of two exponential terms with negative

exponents. The solution simply decays without crossing the axis. When the response is

within 0.001 m from equilibrium, the term with the larger exponent (smaller absolute

value) should be much greater than the term with the smaller exponent. Thus, a good

z

0.001  m = e -(77.8  rad/s)t(0.03 + 2.33t)  m

z

t = 3Td = 3
2p

vn21 - z2
= 3

2p

(77.8  rad/s)2(1.25)2 - 1
= 0.250  s

1.622 =
1
n

 ln a 0.03  m
0.001  m

b =
3.410

n
Q n =

3.410

1.622
Q 2.10

d =
2pz

21 - z2
=

2p(0.25)

21 - (0.25)2
= 1.622

= (0.04e -38.9t - 0.01e -155.6t )m

+ c 0 m/s
77.8 rad/s

+ (0.03 m)(-1.25 + 2(1.25)2 - 1) de -(77.8  rad/s)2(1.25)2 - 1t f

+ 2(1.25)2 - 1) de (77.8 rad/s)2(1.25)2 - 1t

x (t) =
e -(1.25)(77.8 rad/s)t

22(1.25)2 - 1
b c 0 m/s

77.8 rad/s
+ (0.03 m)(1.25

z

= e -(77.8  rad/s)t(0.03 + 2.33t)  m

x (t) = e -(77.8  rad/s)tE0.03  m + C0  m/s + (77.8  rad/s)(0.03  m)t D F
z

 = 0.0310 sin (75.3t + 1.32)  m

+ tan -1 c (0.03  m)(77.8  rad/s)21 - (0.25)2

0  m/s + (0.25)(77.8  rad/s)(0.03  m)
d r
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EXAMPLE 3 . 1 6
A torsional pendulum shown in Figure 3.26(a) is composed of a thin disk with a moment

of inertia I which is pinned at its mass center and allowed to rotate about the pin support.

The pendulum is attached to a torsional spring of stiffness kt � 1.8 N m/rad. As the disk

rotates, it moves through an electromagnet. A body moving through a magnetic field gen-

erates a force whose magnitude is qvB if the magnetic field is perpendicular to the velocity

where q is the charge on the body, B is the magnitude of the magnetic field, and v is the

velocity of the body. Since the force is proportional to the velocity, the pendulum behaves

as if has viscous damping. The net result of the pendulum passing through the magnetic

field is to generate a moment resisting the motion about the center of the disk. The mag-

netic field acts as a torsional viscous damper.

(a) When the magnetic field is off, the torsional pendulum is rotated 40 from its equilib-

rium position and released. It takes 2 s to complete one cycle of motion. Determine the

moment of inertia of the pendulum.

(b) When the magnetic field is turned on, the amplitude of successive cycles of motion is

observed as 30 , 25 , 20.8 , etc. What is the damping ratio of the system?°°°

°

#

approximation for the time to be permanently within 1 mm of equilibrium is approxi-

mated by

(n)

which leads to t � 0.0948 s. The neglected term is .01e–155.6(0.0948) � 3.92 10–9, which

is much less than 0.001, and hence, t � 0.0948 is a good approximation.

*

0.001  m = 0.04e -38. 9t
 m

FIGURE 3.26
A torsional pendulum consists of
a thin disk pinned at its center.
The disk is attached to a tor-
sional spring and rotates through
a magnetic field which serves as
a torsional damper. (b) FBDs of
pendulum at an arbitrary instant,
assuming viscous damping and
ignoring Coulomb damping.

Electromagnet

Iθ̈

ktθ

ctθ̇

θ

kt = 1.8 N · m/rad

(b)

(a)

External forces Effective forces
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(c) When the magnetic field is turned on and the pendulum is given an initial amplitude

of 30 , describe the resulting motion of the system.

(d) If the electromagnet is turned off and the amplitude of free, oscillations observed on

successive cycles is 30 , 28 , and 26 . What frictional moment is generated at the pin

support?

SO LU T I ON
(a) Summing moments on a FBD of the pendulum drawn at an arbitrary instant, Figure 3.26(b)

yields

(a)

The differential equation is divided by I arriving at the standard form of

(b)

from which the natural frequency is obtained as

(c)

The period of free oscillations T is observed as 2 s. The pendulum’s natural frequency is

(d)

Equating Equations (c) and (d) leads to

(e)

(b) The amplitudes on successive cycles are in a constant ratio. The logarithmic decrement is

(f)

from which the damping ratio is calculated from

(g)

(c) The damped natural frequency is

The motion of an underdamped system with (0) � 30° and is

(h)= 30.16°e -0.0345t sin (3.14t + 89.4°)

a21 - (0.11)2

0.11 
b dsin  c3.14t + tan - 1

e -(0.011)(3.14)tu(t) = (30°)C1 + a 0.011

31 - (0.011)2
b2

#
u(0) = 0 rad/su

vd = (3.14  rad/s)21 - (0.011)2 = 2.85  rad/s

z =
d

24p4 + d2
=

0.690

24p4 + (0.690)2
= 0.011

d =  ln 
30°
28°

= 0.690

A
kt

I
= 3.14 Q I =

1.8  N # m/rad
(3.14  rad/s)2 = 0.183  kg # m2

vn =
2p
T

=
2p
2  s

= 3.14  rad/s

vn = A
kt

I

u
$

+
ct

I
 u
#

+
kt

I
 u = 0

I u
$

+ ctu
#

+ kt u = 0

°°°

°
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184 CHAPTER 3

(d) The system is undergoing Coulomb damping. The differential equation governing the

motion when system is under the effect of Coulomb damping is

(i)

where Mf is the resisting moment due to the friction at the pin support. The system loses

2 of amplitude every cycle of motion, which is given by

(j)

Thus,

(k)

Equation (k) is solved to yield

(l)Mf =
0.0349(0.183  kg # m2)(3.14  rad/s)2

4
= 0.0157  N # m

4Mf

Iv2
n

= (2°)a2p  rad
360°

b = 0.0349  rad

¢A =
4Mf

Iv2
n

°

I u
$

+ ktu = b -Mf

#
u 7 0

Mf

#
u 6 0

EXAMPLE 3 . 1 7
A MEMS system consists of a mass of 50 g hanging from a silicon (E � 73 � 109 N/m2)

cable with a diameter 0.2 m and a length of 120 m. The cable is suspended from a

simply supported, circular silicon beam with a diameter of 1.6 m and a length of 50 m,

as shown in Figure 3.27. The mass vibrates in a silicone oil such that its damping coeffi-

cient is 1.2 � 10–6 N s/m. The mass is given as an initial displacement of 2 m and

released. Determine the response of the system.

SO LU T I ON
The stiffness of the beam is

(a)kb =
48EI

L3 =
48 (73 * 109  N/m2)(0.8 mm)4

 p/4

(50  mm)3 = 9.018  N/m

m#
mm

mm

m

FIGURE 3.27
System of Example 3.17 is a MEMS system. The damping is provided
by a surrounding fluid.

50 µm

120 µm
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The stiffness of the cable is

(b)

The springs are in series with an equivalent stiffness as

(c)

The undamped natural frequency is

(d)

The damping ratio is

(e)

The damped natural frequency is

(f)

The response of an underdamped system with an initial displacement is

(g)= 2e -12t sin (1.10 * 104t + 1.57)mm

sin (1.10 * 104t + 1.57)

x (t ) = (2 mm)C1 + c 0.0011

31 - (0.0011)2
d2e -(0.0011)(1.10 * 104

  rad/s)t

vd = (1.10 * 104  rad/s)21 - (0.0011)2 = 1.10 * 104  rad/s

z =
c

2mvn

=
1.2 * 10-6  N # s/m

2(50  mg)(1.10 * 104  rad/s)
= 0.0011

vn = A
keq

m
= A

6.14  N/m
50  mg

= 1.10 * 104  rad/s

keq =
1

1
9.08  N/m

+
1

19.11  N/m

= 6.13  N/m

kc =
AE
L

=
p(0.1mm)2(73 * 109   N/m2)

120  mm
= 19.11  N/m

3.12 CHAPTER SUMMARY

3.12.1 IMPORTANT CONCEPTS
The following refer to free vibrations of a linear SDOF system.

• The natural frequency of a one degree-of-freedom system is the frequency at which

undamped free vibrations occur.

• The expression for the natural frequency is determined from the differential equation of

motion. It is a function of the stiffness and inertia properties of the system.

• The damping ratio is a measure of the magnitude of the damping force on the system.

If the damping ratio is between zero and one, the system is underdamped. If the damp-

ing ratio is exactly equal to one, the system is critically damped. If the damping ratio is

greater than one, the system is overdamped.

• The free undamped vibrations of a one degree-of-freedom system are cyclic and periodic.
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186 CHAPTER 3

• A system with undamped free vibrations undergoes simple harmonic motion. For a

linear system, the period of motion is independent of the initial conditions. The fre-

quency of the motion is the natural frequency of the system.

• An underdamped system undergoes cyclic motion that is not periodic.

• The amplitude of an underdamped system is exponentially decaying.

• The mechanical energy present in an underdamped system at the end of a cycle is a con-

stant fraction of the mechanical energy at the beginning of the cycle. The fraction is

dependent upon the damping ratio.

• The logarithmic decrement, which is a measure of the natural logarithm of the ratio of

amplitudes on successive cycles, can be used to determine the damping ratio.

• When a system is critically damped, the damping force is just sufficient to dissipate all

of the initial energy within one cycle of motion.

• The response of a critically damped system is exponentially decaying. The response

overshoots the equilibrium position if the initial conditions are of opposite signs and the

initial kinetic energy is larger than the initial potential energy.

• The response of an overdamped system decays exponentially.

• Given the same initial conditions, a critically damped system returns to within a frac-

tion of equilibrium quicker than an overdamped system.

• Coulomb damping results from two surfaces moving relative to one another.

• A system subject to Coulomb damping has the same natural frequency as an undamped

system.

• Coulomb damped systems have a constant decrease in amplitude per cycle of motion.

• Motion eventually ceases for a system with Coulomb damping with a permanent dis-

placement from equilibrium.

• Hysteretic damping is the loss of energy experienced by engineering materials due to

bonds breaking between atoms and imperfections in the material.

• The energy loss per cycle of motion for a system with hysteretic damping is proportional

to the square of the amplitude at the beginning of the cycle and is independent of the

frequency of motion.

• The ratio of amplitudes on successive cycles is constant for hysteretic damping, leading

to an equivalent viscous-damping model.

• An equivalent viscous-damping coefficient can be calculated for any form of damping

by equating the energy dissipated by viscous damping over one cycle of motion to the

energy dissipated by the actual damping over one cycle of motion, assuming the motion

is harmonic.

3.12.2 IMPORTANT EQUATIONS

Natural frequency of SDOF system

(3.5)vn = A
keq

meq
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Free Vibrations of SDOF Systems 187

Damping ratio of SDOF system

(3.6)

Standard form of differential equation for free vibrations of a linear SDOF system with

generalized coordinate x

(3.7)

Roots of characteristic equation

(3.13)

Free response of undamped system

(3.19)

(3.22)

(3.23)

Free response of underdamped system

(3.29)

(3.30)

(3.31)

Damped natural frequency

(3.32)

Damped period

(3.33)

Logarithmic decrement

(3.40)

Logarithmic decrement over n cycles

(3.43)

Response of critically damped system

(3.48)x (t ) = e -vnt  3x0 + (x# 0 + vnx0)t4

d =
1
n

  ln  a x(t)

x(t + nTd)
b

d = lna x(t)

x(t + Td)
b =

2pz

21 - z2

Td =
2p
vd

vd = vn21 - z2

fd = tan-1a vd  
x0

x# 0 + zvnx0

b

A = Ax 2
0 + a x# 0 + zvnx0

vd
b2

x (t ) = Ae -zvnt sin (vd 
t + fd 

)

f = tan-1avnx0

x# 0
b

A = Ax 2
0 + a x# 0

vn
b2

x (t ) = A  sin (vnt + f)

a = vn(-z � 2z2 - 1)

x
$ + 2zvnx

# + v2
nx = 0

z =
ceq

22keqmeq
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188 CHAPTER 3

Response of overdamped system

(3.53)

Differential equation for mass sliding on a surface with friction

(3.55)

Motion ceases due to Coulomb damping on the nth cycle

(3.68)

Change in amplitude per cycle of motion for system with Coulomb damping

(3.70)

Energy loss per cycle due to hysteretic damping

(3.71)

Equivalent viscous damping ratio for hysteretic damping

(3.78)

Equivalent viscous damping coefficient for any form of damping

(3.82)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 3.1 through 3.15, indicate whether the statement presented is true or false.

If true, state why. If false, rewrite the statement to make it true.

3.1 The period of free vibration of a linear system is independent of initial conditions.

3.2 The natural frequency determined directly from the differential equation of

motion has units of Hertz.

3.3 A system with a natural frequency of 10 rad/s has a shorter period than a system

of natural frequency 100 rad/s.

3.4 The free vibrations of an overdamped SDOF system are cyclic.

3.5 An undamped SDOF system has free vibrations which are periodic.

3.6 A system with a damping ratio of 1.2 is overdamped.

3.7 The energy lost per cycle of motion for hysteretic damping is independent of

the amplitude of motion but depends upon the square of the frequency.

ceq =
¢E
pvX 2

z =
h
2

¢E = pkhX 2

¢A =
4Ft

meqv
2
n

n 7
k d

4mmg
-

1
4

mx
$ + kx = e -mmg   x# 7 0

   mmg   x# 7 0

+ c -
x# 0
vn

+ x0(-z + 2z2 - 1) de -vn  2z2 - 1 t f

x (t ) =
e -zvnt

22z2 - 1
e c x

#
0

vn

+ x01z + 2z2 - 12 de vn  2z2 - 1 t

62129_03_Ch03_p137-204.qxd  3/16/11  10:36 AM  Page 188

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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3.8 The energy lost per cycle of motion for underdamped free vibrations is a

constant fraction of the energy present at the beginning of the cycle.

3.9 Motion eventually ceases due to viscous damping for a system with

underdamped free vibrations.

3.10 A system that has viscous damping with a damping coefficient such that it is

overdamped is governed by two differential equations: one for positive velocity

and another for negative velocity.

3.11 There is a permanent displacement from equilibrium when motion ceases for a

system with Coulomb damping.

3.12 The period, measured in s, is the reciprocal of the natural frequency, measured

in rad/s.

3.13 The differential equation governing the free vibrations of a SDOF system with

viscous damping as the only form of friction is a second-order homogeneous

differential equation.

3.14 The damping ratio for a SDOF system with viscous damping is always positive.

3.15 The amplitude of an undamped SDOF system is time dependent.

Problems 3.16 through 3.35 require a short answer.

3.16 Consider the differential equation

Define in words and in terms of system parameters m, c, and k for (a) n and (b) .

3.17 A critically damped system has a natural frequency of 10 rad/s. Which of the

following sets of initial conditions leads to the system overshooting the

equilibrium position?

(a) (b)

(c) (d)

(e)

3.18 Systems with a mass of 1 kg and stiffness of 100 N/m are given an initial

displacement of 1 mm and released form rest. Match the plot of system

displacement, shown in Figure SP3.18 on the next page, with the system that is

(a) undamped, (b) underdamped, (c) critically damped, and (d) overdamped.

3.19 List four differences between the free vibrations of an underdamped system and

a system with Coulomb damping.

3.20 An underdamped system is given an initial displacement and released from rest.

The amplitudes of motion on successive cyclers form a (an) ____________ series.

3.21 A system with Coulomb damping is given an initial displacement and released

from rest. The amplitudes of motion on successive cycles form a (an)

____________ series.

3.22 Identify the following equation and every parameter

3.23 Explain the concept of hysteresis? What is the area under a hysteresis cycle?

3.24 Why can’t the concept of logarithmic decrement be used to measure viscous

damping ratios greater than or equal to one.

x (t ) = A  sin(vn t + f)

x0 = mm, x# 0 = -0.2  m/s
x0 = 1  mm, x# 0 = -1  m/sx0 = 1  mm, x# 0 = 1  m/s
x0 = 0  mm, x# 0 = 1  m/sx0 = 1  mm, x# 0 = 0  m/s

zv

x
$ + 2zvnx

# + v2
nx = 0
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0
0 0.2 0.4 0.6 0.8

t

1 1.2 1.4 1.6 1.8 2

0.1

0.2

0.3

0.4

0.5x

0.6

0.7

0.8

×10–3

0.9

1

(a)

–1
0 0.2 0.4 0.6 0.8

t

1 1.2 1.4 1.6 1.8 2

–0.8

–0.6

–0.4

–0.2

0x

0.2

0.4

0.6

×10–3

0.8

1

(b)

FIGURE SP3.18

3.25 When given the same initial conditions a system that is critically damped

returns to equilibrium faster than the same system that is overdamped. Why?

3.26 Two systems have the same stiffness and viscous damping coefficient, but one

has an equivalent mass of 2 kg, the other has an equivalent mass of 3 kg. Which

system has a higher damping ratio. Why?
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–1
0 0.2 0.4 0.6 0.8

t

1 1.2 1.4 1.6 1.8 2

–0.8

–0.6

–0.4

–0.2

0x

0.2

0.4

0.6

×10–3

0.8

1

(c)

0
0 0.2 0.4 0.6 0.8

t

1 1.2 1.4 1.6 1.8 2

0.1

0.2

0.3

0.4

0.5x

0.6

0.7

0.8

×10–3

0.9

1

(d)

FIGURE SP3.18
(Continued)

3.27 A system with viscous damping has a (longer or shorter) period of free vibration

than the corresponding undamped system. Why?

3.28 What are the two initial conditions which must be formulated for a SDOF

system?

3.29 What are the initial conditions for a mass-spring-viscous damper system that is

released from rest with an initial displacement .d
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3.30 What are the initial conditions for a mass-spring-viscous damper system subject

to an impulse of magnitude I when in equilibrium?

3.31 What is meant by the term total energy?

3.32 Describe the process by which aerodynamic drag is modeled by viscous

damping with an equivalent damping coefficient.

3.33 A pendulum consists of a particle of mass m along a massless rod that is pinned

at the upper end of the rod. To lengthen the period of the pendulum should the

mass be moved closer to the pin support of farther away?

3.34 A mass m is attached to a spring of stiffness k
1

given an initial displacement and

released to slide on a surface. The number of cycles executed is recorded. The same

mass m is attached to a spring of stiffness k
2

k
1
. Do you predict that the number

of cycles executed by the mass will increase, remain the same, or decrease? Why?

3.35 A mass m is attached to a spring of stiffness k
1

and viscous damper of damping

coefficient c
1

in parallel. The mass is given an initial displacement and released.

The natural frequency of vibration is observed. The same mass is attached to

another spring of stiffness k
2

k
1

and viscous damper of damping coefficient

c
2

c
1

in parallel. When given the same initial displacement, the motion is still

cyclic but with a smaller frequency. Explain.

Short calculations are required for Problems 3.36 through 3.48.

3.36 The free vibrations of a system are governed by the differential equation

with initial conditions and . Calculate or specify the following.

(a) The natural frequency, n
(b) The damping ratio, 

(c) Whether the system is undamped, underdamped, critically damped, or

overdamped 

(d) The undamped period, T

(e) The frequency in Hz, f
(f ) The damped natural frequency (if appropriate), d
(g) The logarithmic decrement (if appropriate), 

(h) The amplitude, A
(i) The phase between the response and a pure sinusoid (if appropriate), 

(j) The free response of the system

3.37 Repeat Short Problem 3.36 for the differential equation

subject to x(0) � 0.001 m and .

3.38 The free vibrations of a system are governed by

with x(0) � 0.02 m and . Calculate or specify the following.x#  (0) = 0

2x
$ + 1800x = e3       x# 6 0

-  3    x# 7 0

x#(0) = 3  m/s

2x
$ + 600x# + 9800x = 0

f

d

v

z

v

x#  (0) = 3  m/sx(0) = 0.001  m

2x
$ + 40x# + 1800x = 0

7
7

7
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(a) The period of motion

(b) The change in amplitude per cycle of motion

(c) The permanent displacement when motion ceases

(d) The number of cycles before motion ceases

3.39–43 What is the natural frequency of the system shown when a SDOF model is

used?

k k
m

x

FIGURE SP3.39

mE, I

L x

FIGURE SP3.40

m

E, A

L

x

FIGURE SP3.41

θ
J, G

L

FIGURE SP3.42

E, I

m

L
2

L
2

x

FIGURE SP3.43

3.44 A mass of 12 kg is attached to two springs each of stiffness 4000 N/m and

mounted in parallel. What is the natural frequency of the system?

3.45 A mass of 30 g is attached to a spring of stiffness 150 N/m in parallel with a

viscous damper. What is the damping coefficient such that the system is

critically damped?

3.46 When an engine with a mass of 400 kg is mounted on an elastic foundation,

the foundation deflects 5 mm. What is the natural frequency of the system?

3.47 A 2 kg mass is connected to a spring with a stiffness of 1000 N/m. When given

an initial displacement of 25 mm, the area under the hysteresis curve of the

spring is measured as 0.06 N m. What is the equivalent viscous damping ratio

of the motion?

3.48 What is the response of a system with a equivalent mass of 0.5 kg and a natural

frequency of 100 rad/s that has a hysteretic damping coefficient of 0.06 to an

initial velocity of 2 m/s?

3.49 Match the quantity with the appropriate units (units may used more than once,

some units may not be used).

#
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(a) The natural frequency, n (i) N m

(b) The damping ratio, (ii) rad

(c) Damped natural frequency, d (iii) None

(d) Logarithmic decrement, (iv) rad/s

(e) Phase angle, (v) Hz

(f ) Change in amplitude per cycle, A (vi) m

(g) Energy loss under a hysteresis loop, E (vii) N s

(h) Hysteretic damping coefficient, h (viii) m/s

(i) Initial angular velocity of torsional system, (0) (ix) N/s

CHAPTER PROBLEMS
3.1 The mass of a pendulum bob of a cuckoo clock is 30 g. How far from the pin

support should the bob be placed such that its period is 1.0 s?

3.2 A ceiling fan assembly of five blades is driven by a motor. The assembly is

attached to the ceiling by a thin shaft fixed at the ceiling. What is the natural

frequency of torsional oscillations of the fan of Figure P3.2.

u
#

#¢
¢

f

d

v

z

#v

3.3 The cylindrical container of Figure P3.3 has a mass of 25 kg and floats stably

on the surface of an unknown fluid. When disturbed, the period of free

oscillations is measured as 0.2 s. What is the specific gravity of the liquid?

3.4 When the 5.1 kg connecting rod of Figure P3.4 is placed in the position

shown, the spring deflects 0.5 mm. When the end of the rod is displaced and

G = 80 × 109 N/m2

L = 0.25 m
r = 6 mm

Motor: I = 10 kg · m2

Each blade:
I = 11 kg · m2

m = 0.4 kg
r = 0.4 m

Shaft:

FIGURE P3.2

50 cm

150 cm25 kg

FIGURE P3.3

20 cm

k = 3 × 104 N/m

FIGURE P3.4
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released, the resulting period of oscillation is observed as 0.15 s. Determine the

location of the center of mass of the connecting rod and the centroidal mass

moment of inertia of the rod.

3.5 When a 9000 N vehicle is empty, the static deflection of its suspension system

is measured as 2 cm. What is the natural frequency of the vehicle when it is

carrying 3100 N of passengers and cargo?

3.6 A 400 kg machine is placed at the midspan of a 3.2-m simply supported steel

(E � 200 � 109 N/m2) beam. The machine is observed to vibrate with a

natural frequency of 9.3 Hz. What is the moment of inertia of the beam’s cross

section about its neutral axis?

3.7 A one degree-of-freedom model of a 9-m steel flagpole ( � 7400 kg/m3,r

E = 100 × 109 N/m2
60 cm

3 cm

180 cm

120 cm

FIGURE P3.10

3.11 A diver is able to slightly adjust the location of the intermediate support on the

diving board in Figure P3.10. What is the range of natural frequencies a 64-kg

diver can attain if the distance between the supports can be adjusted between

1.2 m and 1.95 m?

3.12 A 60 kg drum of waste material is being hoisted by an overhead crane and

winch system as illustrated in Figure P3.12. The system is modeled as a simply

supported beam to which the cable is attached. The drum of waste material is

attached to the end of the cable. When the length of the cable is 6 m, the

E � 200 � 109 N/m2, G � 80 � 109 N/m2) is that of a beam fixed at one end
and free at one end. The flagpole has an inner diameter of 4 cm and an outer

diameter of 5 cm.

(a) Approximate the natural frequency of transverse vibration.

(b) Approximate the natural frequency of torsional oscillation.

3.8 A 250 kg compressor is to be placed at the end of a 2.5-m fixed-free steel

(E � 200 � 109 N/m2) beam. Specify the allowable moment of inertia of the

beam’s cross section about its neutral axis such that the natural frequency of the

machine is outside the range of 100 to 130 Hz.

3.9 A 50 kg pump is to be placed at the midspan of a 2.8-m simply supported steel

(E � 200 � 109 N/m2) beam. The beam is of rectangular cross section of width

25 cm. What are the allowable values of the cross-sectional height such that the

natural frequency is outside the range of 50 to 75 Hz?

3.10 A diving board is modeled as a simply supported beam with an overhang. What

is the natural frequency of a 64-kg diver at the end of the diving board of

Figure P3.10
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natural period of the system is measured as 0.3 s. What is the mass of the waste

material?

3.13 A 200-kg package is being hoisted by a 120-mm-diameter steel cable

(E � 200 � 109 N/m2) at a constant velocity v. What is the largest value of v
such that the cable’s elastic strength of 560 � 106 N/m2 is not exceeded if the

hoisting mechanism suddenly fails when the cable has a length of 10 m.

3.14 Determine the natural frequency of the system of Figure P2.43.

3.15 Determine the natural frequency and damping ratio of the system of Figure P2.45.

3.16 Determine the natural frequency and damping ratio for the system of

Figure P2.47.

3.17 Determine the natural frequency and damping ratio for the system of

Figure P2.49.

3.18 Determine the natural frequency and damping ratio for the system of Figure P2.53.

3.19–23 The inertia of the elastic elements is negligible. What is the natural frequency of

the system assuming a SDOF model is used? See Figures P3.19 through P3.23.

kb

kc

Waste

L = 3 m

Beam: E = 200 × 109 N/m2

 I = 2.6 × 10–4 m4

Cable: E = 200 × 109 N/m2

 r = 8 cm

FIGURE P3.12

0.8 m

150 kg

E = 210 × 109 N/m2

I = 1.6 × 10–5 m4

x

FIGURE P3.19

E = 210 × 109 N/m2

A = 2.1 × 10–4 m2

L = 0.65 m

E = 180 × 109 N/m2

A = 2.1 × 10–4 m2

L = 0.35 m

165 kg

x

FIGURE P3.20

E = 180 × 109 N/m2

I = 4.6 × 10–4 m4

0.6 m

x

65 kg

0.4 m

FIGURE P3.21
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E = 200 × 109 N/m2

I = 4.23 × 10–6 m4
8 × 104 N/m

5 × 104 N/m1.8 m

x

200 kg

FIGURE P3.22

G = 60 × 109 N/m2

r = 8 mm

G = 80 × 109 N/m2

r = 6 mm

θ

8.3 kg · m2

60 cm 40 cm

FIGURE P3.23

3.24 The center of the disk of Figure P3.24 is displaced a distance from its

equilibrium position and released. Determine x(t) if the disk rolls without slip.

d

k Thin disk
of mass m,

no slip

r

x

FIGURE P3.24

3.25 The coefficient of friction between the disk and the surface in Figure P3.24 is .

What is the largest initial velocity of the mass center that can be imparted such

that the disk rolls without slip for its entire motion?

3.26–3.31 For the systems shown in Figures P3.26 through P3.31.

m

x(t)

x(0) = 3 cm
x(0) = 0

3 × 104 N/m
12.5 kg

4 × 104 N/m

750 N · s/m

FIGURE P3.26

3.2 × 104 N/m

θ 30 cm

θ (0) = 0
θ̇ (0) = 2.5 rad/s

0.3 kg · m2

150 N · s/m

5 kg 40 kg

10 cm

FIGURE P3.27
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θ

G = 60 × 109 N/m2

J = 2.5 × 10–7 m4

MO = 280 N · m applied and removed

MO

Thin disk
m = 22.5 kg

1 × 105 N/m

60

40 cm

10 kg

1.3 m N · m · s
rad

FIGURE P3.28

100 N · s/m

m = 1.5 kg
L = 0.4 m

50 N/m

L
4

3L
4

θ (0) = 0
θ̇ (0) = 1.2 rad/s

θ
FIGURE P3.29

3000 N/m

200 N · s/m x

2 kg

9 kg

50 N

50 N force
applied and

released
9000 N/m

0.2 m

0.3 m

FIGURE P3.30

150 kg

1000 N . s/m

Vehicle encounters
bump of height 1 cm.

v = 60 m/s

15,000 N/m

x

FIGURE P3.31
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(a) Determine the damping ratio

(b) State whether the system is underdamped, critically damped, or

overdamped

(c) Determine x(t) or (t) for the given initial conditions

3.32 The amplitude of vibration of the system of Figure P3.32 decays to half of its

initial value in 11 cycles with a period of 0.3 s. Determine the spring stiffness

and the viscous damping coefficient.

u

3.33 The damping ratio of the system of Figure P3.33 is 0.3. How long will it take for

the amplitude of free oscillation to be reduced to 2 percent of its initial value?

I = 2.4 kg · m2

m = 5 kg

R1 = 20 cm

R2 = 40 cm

I

k

m

c

R2

R1

FIGURE P3.32

k

c

k = 2 × 103 N/m

m = 4.2 kg

60 cm40 cm
10 cm

FIGURE P3.33

3.34 When a 40-kg machine is placed on an elastic foundation, its free vibrations

appear to decay exponentially with a frequency of 91.7 rad/s. When a 60-kg

machine is placed on the same foundation, the frequency of the exponentially

decaying oscillations is 75.5 rad/s. Determine the equivalent stiffness and

equivalent viscous damping coefficient for the foundation.
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3.35 A suspension system is being designed for a 1300-kg vehicle. When the vehicle

is empty, its static deflection is measured as 2.5 mm. It is estimated that the

largest cargo carried by the vehicle will be 1000 kg. What is the minimum value

of the damping coefficient such that the vehicle will be subject to no more than

5 percent overshoot, whether it is empty or fully loaded.

3.36 During operation a 500-kg press machine is subject to an impulse of magnitude

5000 N s. The machine is mounted on an elastic foundation that can be modeled

as a spring of stiffness 8 � 105 N/m in parallel with a viscous damper of damping

coefficient 6000 N s/m. What is the maximum displacement of the press after the

impulse is applied. Assume the press is at rest when the impulse is applied.

3.37 For the press of Chapter Problem 3.36, determine (a) the force transmitted to

the floor as a function of time, (b) the time at which the maximum transmitted

force occurs, and (c) the value of the maximum transmitted force.

3.38 Repeat Chapter Problem 3.37 if the system has the same mass and stiffness but

it is designed to be overdamped with a damping ratio of 1.3.

3.39 One end of the mercury filled U-tube manometer of Figure P3.39 is open to

the atmosphere while the other end is capped an under a pressure of 140 kpa.

The cap is suddenly removed.

(a) Determine x(t) as the displacement of the mercury-air interface from the

column’s equilibrium position if the column is undamped.

(b) Determine x(t) if it is determined that the column of mercury has viscous

damping with a damping ratio of 0.1.

(c) Determine x(t) if it is observed that after 5 cycles of motion the amplitude

has decreased to one-third of its initial value.

#

#

Hg

Total length of mercury
column = 3.5 mx

FIGURE P3.39

3.40 The disk of Figure P3.40 rolls without slip.

(a) What is the critical damping coefficient, cc, for the system?

(b) If c � cc 2, plot the response of the system when the center of the disk is

displaced 5 mm from equilibrium and released from rest.

(c) Repeat part (b) if c � 3cc 2.>
>

k = 4 × 103 N/m

Thin disk m = 1 kg

No slipc

40 cm

FIGURE P3.40

(d) Repeat part (b) if c � cc. 
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(e) If the coefficient of friction between the disk and surface is 0.15, is the no-

slip assumption still valid for the systems of parts (b), (c), and (d).

3.41 A recoil mechanism of a gun is designed as a spring and viscous damper in

parallel such that the system has critical damping. A 52-kg cannon has a

maximum recoil of 50 cm after firing. Specify the stiffness and damping

coefficient of the recoil mechanism such that the mechanism returns to within

5 mm of firing position within 0.5 s after firing.

3.42 The initial recoil velocity of a 1.4-kg gun is 2.5 m/s. Design a recoil mechanism

that is critically damped such that the mechanism returns to within 0.5 mm of

firing within 0.5 s after firing.

3.43 A railroad bumper is modeled as a linear spring in parallel with a viscous

damper. What is the damping coefficient of a bumper of stiffness 2 � 105 N/m

such that the system has a damping ratio of 1.15 when it is engaged by a

22,000-kg railroad car.

3.44 Plot the responses of the bumper of Chapter Problem 3.43 when it is engaged by

railroad cars traveling at 20 m/s when the mass of the railroad car is (a) 1500 kg,

(b) 22,000 kg, and (c) 30000 kg.

3.45 Reconsider the restroom door of Example 3.9. The man, instead of kicking the

door, pushes it so that it opens to 80 and then lets go. How long will it take

the door after he lets go to close to within 5 of being shut if it is designed 

(a) with critical damping and (b) with a damping ratio of 1.5?

3.46 A block of mass m is attached to a spring of stiffness k and slides on a

horizontal surface with a coefficient of friction . At some time t, the velocity is

zero and the block is displaced a distance from equilibrium. Use the principle

of work-energy to calculate the spring deflection at the next instant when the

velocity is zero. Can this result be generalized to determine the decrease in

amplitude between successive cycles?

3.47 Reconsider Example 3.11 using a work-energy analysis. That is, assume the

amplitude of the swing is at the end of an arbitrary cycle. Use the principle of

work-energy to determine the amplitude at the end of the next half-cycle.

3.48 The center of the thin disk of Figure P3.48 is displaced a distance and the

disk released. The coefficient of friction between the disk and the surface is .

The initial displacement is sufficient to cause the disk to roll and slip.

(a) Derive the differential equation governing the motion when the disk rolls and

slips.

(b) When the displacement of the mass center from equilibrium becomes small

enough, the disk rolls without slip. At what displacement does this occur?

m

d

u

d

m

°
°

rk

µ

Thin disk
of mass m

x

FIGURE P3.48
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(c) Derive the differential equation governing the motion when the disk rolls

without slip.

(d) What is the change in amplitude per cycle of motion?

3.49 A 10-kg block is attached to a spring of stiffness 3 � 104 N/m. The block slides

on a horizontal surface with a coefficient of friction of 0.2. The block is displaced

30 mm and released. How long will it take before the block returns to rest?

3.50 The block of Chapter Problem 3.49 is displaced 30 mm and released. What is

the range of values of the coefficient of friction such that the block comes to

rest during the 14th cycle?

3.51 A 2.2-kg block is attached to a spring of stiffness 1000 N/m and slides on a

surface that makes an angle of 7 with the horizontal. When displaced from

equilibrium and released, the decrease in amplitude per cycle of motion is

observed to be 2 mm. Determine the coefficient of friction.

3.52 A block of mass m is attached to a spring of stiffness k and viscous damper of

damping coefficient c and slides on a horizontal surface with a coefficient of

friction . Let x(t) represent the displacement of the block from equilibrium.

(a) Derive the differential equation governing x(t).
(b) Solve the equation and sketch the response over two periods of motion.

3.53 A connecting rod is fitted around a cylinder with a connecting rod between the

cylinder and bearing. The coefficient of friction between the cylinder and

bearing is 0.08. If the rod is rotated 12° counterclockwise and then released,

how many cycles of motion will it execute before it comes to rest? The ratio of

the diameter of the cylinder to the distance to the center of mass of the

connecting rod from the center of the cylinder is 0.01.

3.54 A one-degree-of-freedom structure has a mass of 65 kg and a stiffness of

238 N/m. After 10 cycles of motion the amplitude of free vibrations is

decreased by 75 percent. Calculate the hysteretic damping coefficient and the

total energy lost during the first 10 cycles if the initial amplitude is 20 mm.

3.55 The end of a steel cantilever beam (E � 210 � 109 N/m2) of I � 1.5 � 10–4 m4

is given an initial amplitude of 4.5 mm. After 20 cycles of motion the amplitude

is observed as 3.7 mm. Determine the hysteretic damping coefficient and the

equivalent viscous damping ratio for the beam.

3.56 A 500-kg press is placed at the midspan of a simply supported beam of length

3 m, elastic modulus 200 � 109 N/m2, and cross-sectional moment of inertia

1.83 � 10–5 m4. It is observed that free vibrations of the beam decay to half of

the initial amplitude in 35 cycles. Determine the response of the press, x(t), if it
is subject to an impulse of magnitude 10,000 N s.

3.58 Use the theory of Section 3.9 to derive the equivalent viscous damping

coefficient for Coulomb damping. Compare the response of a one-degree-of-

freedom system of natural frequency 35 rad/s and friction coefficient 0.12 using

the exact theory to that obtained using the approximate theory with an

equivalent viscous damping coefficient.

3.59 A 0.5-kg sphere is attached to a spring of stiffness 6000 N. The sphere is given

an initial displacement of 8 mm from its equilibrium position and released. If

aerodynamic drag is the only source of friction, how many cycles will the

system execute before the amplitude is reduced to 1 mm?

#

m

°
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3.60 A one-degree-of-freedom model of a suspension system is shown in Figure P3.60(a).

For this model the mass of the vehicle is much greater than the axle mass, but

the tire has characteristics which should be included in the analysis. In the

model of Figure P3.60(b), the tire is assumed to be elastic with a stiffness kt.

The tire stiffness acts in series with the spring and viscous damper of the

suspension system.

(a) Derive a third-order differential equation governing the displacement of the

vehicle from the system’s equilibrium position.

(b) Solve the differential equation to determine the response of the system

when the wheel encounters a pothole of depth h.

m

cks

kt

m

cks

kt

(a) (b)

FIGURE P3.60

m

csks

ct

(a)

0.6
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.7

0.8

0.9

1

1.1

x(
t)

/h

t (s)

(b)

1.2

1.3

1.4

1.5

cs

mks2
ζ = = 0.1

FIGURE P3.61

3.61 A one-degree-of-freedom model of a suspension system is shown in 

Figure P3.61(a). Consider a model in which the tire is modeled by a viscous 
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damper of damping coefficient ct and is placed in series with the spring 

and viscous damper modeling the suspension system, as illustrated in

Figure P3.61(a).

(a) Derive a third-order differential equation governing the displacement of the

vehicle from the system’s equilibrium position.

(b) A plot of the suspension system when the wheel encounters a pothole is

given in Figure P3.61(b). The plot is made for a suspension system that is

designed to have a damping ratio of 0.1. Use this information to find ct.
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C h a p t e r 4

HARMONIC EXCITATION
OF SDOF SYSTEMS

4.1 INTRODUCTION
Forced vibrations of a single degree-of-freedom (SDOF) system occur when work is being

done on the system while the vibrations occur. Examples of forced vibration include the

ground motion during an earthquake, the motion caused by unbalanced reciprocating

machinery, or the ground motion imparted to a vehicle as its wheel traverses the road con-

tour. Figure 4.1 illustrates an equivalent systems model for the forced vibrations of a SDOF

system when a linear displacement is chosen as the generalized coordinate. The governing

differential equation is

(4.1)

Although, the derivations that follow use a linear displacement as a generalized coordinate

they are also valid if an angular displacement is used as a generalized coordinate. The form

of the differential equation, Equation (4.1) is used as a model equation.

Dividing Equation (4.1) by m
eq

leads to

(4.2)

Equation (4.2) is the standard form of the differential equation governing linear forced

vibrations of a SDOF system with viscous damping.

x$ + 2zvnx
# + v2

nx =
1

meq
Feq(t )

meqx
$ + ceqx

# + keqx = Feq (t )
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The general solution of Equation (4.2) is

(4.3)

where xh(t) is the homogeneous solution, the solution obtained if F
eq

(t) � 0, and xp(t) the

particular solution, a solution that is specific to F
eq

(t). The homogeneous solution is in

terms of two constants of integration. However the initial conditions are not imposed until

the general solution of Equation (4.3) is developed. For an underdamped system

(4.4)

Many ways exist to solve the particular solution. These include the method of undeter-

mined coefficients, variation of parameters, annihilator methods, Laplace transform meth-

ods, and numerical methods.

This chapter is concerned with the solution of Equation (4.2) subject to periodic exci-

tations. An excitation is periodic of period T if

(4.5)

for all t. Figure 4.2 periodic shows examples of periodic excitations. A single-frequency

periodic excitation is defined as

(4.6)

where F
0

is the amplitude of the excitation, � is its frequency such that and �
is its phase. Note that � is independent of �n, the natural frequency which is a function of 

the stiffness and mass properties of the system. They are independent, but the frequencies

may coincide.

The steady-state response for a periodic excitation is defined as

(4.7)

which for systems with viscous damping becomes

(4.8)x ss � lim
t  : � xp(t )

x ss � lim
t : �

x (t )  = lim
t : �
3xh(t) + xp(t)4

v = 2p
T

Feq(t ) = F0 sin (v t + �)

Feq(t + T  ) = Feq(t )

xh(t ) = e -zvnt  3C1 cos (vd 
t ) + C1 

sin (vd 
t )4

x (t ) = xh(t ) + xp(t )

meq Feq(t)

keq

ceq

x FIGURE 4.1
SDOF model for a linear system with forcing.

T

(a)

T

(b) (c)

T

FIGURE 4.2
Examples of periodic excitations (a) a pure sinusoid; (b) a periodic triangular wave; and (c) a periodic
square wave.
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Beginning with Section 4.3, the “steady-state” will be dropped from steady-state response, and

it will be understood that a response refers to a steady-state response.

For an undamped system, the limit of the homogenous solution as t approaches infin-

ity is not zero. The homogeneous response is important if the frequency of excitation coin-

cides or is close to the natural frequency. Otherwise it is assumed that some form of

damping really occurs and the free response does decay leaving only the forced response as

the long-term response.

When the system is undamped and the frequency of the excitation coincides with the

natural frequency a condition of resonance exists. When the system is undamped and the

excitation frequency is close, but not equal to, the natural frequency a phenomena called

beating occurs.

When the system is undamped with the excitation frequency far enough away from the

natural frequency or the system has viscous damping the particular solution of Equation (4.2) 

subject to the excitation of Equation (4.6) is determined in terms of terms of system

parameters. The solution is characterized in term of a steady-state amplitude and a steady-

state phase. The relations for these terms are non-dimensionalized resulting in a non-

dimensional magnification factor as a function of the damping ratio and the

non-dimensional frequency ratio. The phase is written as a function of the frequency ratio

and the damping ratio. The concept of frequency response involves studying the behavior

of these functions with the frequency ratio for different values of the damping ratio. The

frequency response is studied from the equations defining the functions and their graphs.

A special case of a frequency squared excitation, when the amplitude of excitation is pro-

portional to the square of its frequency, is considered. A new non-dimensional function repre-

senting the frequency response of such systems is introduced. The general theory is applied to

a variety of physical problems including vibrations of reciprocating machines with an unbal-

anced rotating component and vibrations induced by vortex shedding from a circular cylinder.

Two important quantities in studying the response of a system due to harmonic

motion of its base are the absolute acceleration of the system and the displacement of the

system relative to its base. The latter is shown to be an application of the theory of fre-

quency squared excitations while the former is an application of vibration isolation theory.

Vibration isolation is the insertion of an elastic member between an object, say a

machine, and its foundation to protect either the foundation from large forces generated

during operation of the machine or to protect the machine from large accelerations gener-

ated through motion of the foundation. A suspension system provides vibration isolation

to a vehicle as it protects the vehicle from the accelerations generated by the wheels.

Vibration isolation theory is developed for a SDOF system subject to harmonic input.

A Fourier series is a representation of a periodic function by an infinite series of sine

and cosine terms. The series converges to the periodic function pointwise at every point

where function is continuous. The Fourier series representation and the method of linear

superposition are used to solve for the steady-state response of a system due to a general

periodic excitation.

Seismic vibration measurement instruments use the vibrations of a seismic mass to meas-

ure the vibrations of a body. Because the seismic mass is attached to the instrument which is

rigidly attached to the body whose vibrations are being measured the vibrations of the seis-

mic mass relative to the body is actually measured. A seismometer measures this relative

motion and requires a large frequency ratio for accuracy. An accelerometer converts the

output so that it measures the acceleration and requires a small frequency ratio for accuracy.
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208 CHAPTER 4

The response of a system with Coulomb damping due to harmonic forcing is compli-

cated by the possibility of stick-slip in which the motion ceases during a period when the

spring force and the input force are insufficient to overcome the friction force. This makes

the response of the system highly nonlinear. It is possible under certain assumptions to

assume a steady-state response at the same frequency as the input and use the methods of

Chapter 3 to determine an equivalent viscous damping coefficient. The frequency response

is then studied. The same method is used to approximate the frequency response for a

system with hysteretic damping.

4.2 FORCED RESPONSE OF AN UNDAMPED SYSTEM
DUE TO A SINGLE-FREQUENCY EXCITATION
The differential equation for undamped forced vibrations of a SDOF system subject to a

single-frequency harmonic excitation of the form of Equation (4.2) is

(4.9)

The method of undermined coefficients is used to find the particular solution of

Equation (4.9). Assume a solution of

(4.10)

Substitution of Equation (4.10) into Equation (4.9) leads to

(4.11)

The functions cos (�t � �) and sin (�t � �) are linearly independent. Thus, Equation (4.11)

implies that

(4.12)

and

(4.13)

if � � �n, Equation (4.12) implies U � 0 and then from Equation (4.13)

(4.14)

The particular solution for � � �n becomes

(4.15)

or alternately,

(4.16)xp(t ) = 2 F0

meq(v
2
n - v2)

2  sin (vt + � - f)

xp(t ) =
F0

meq(v
2
n - v2)

 sin (vt + �)

V =
F0

meq(v
2
n - v2)

(v2
n - v2)V =

F0

meq

(v2
n - v2)U = 0

(v2
n - v2) U cos (vt + �) + (v2

n - v2) V sin (vt + �) =
F0

meq
 sin (vt + �)

xp(t ) = U cos (vt + �) + V sin (vt + �)

x
$ + v2

nx =
F0

meq
 sin (vt + �)
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Harmonic Excitation of SDOF Systems 209

where the amplitude of the particular solution is positive and

(4.17)

The response is in phase with the excitation if �n � � and 180 degrees out of phase if �n � �.

The general solution is formed by adding the homogeneous solution to the particular

solution. Then the initial conditions are applied yielding

(4.18)

The response, plotted in Figure 4.3, is the sum of two trigonometric terms of different

frequencies.

The case when � � �n is special. The nonhomogeneous term in Equation (4.9) and

the homogeneous solution are not linearly independent. Thus, when the method of undeter-

mined coefficients is used to determine the particular solution, Equation (4.12) is identi-

cally satisfied and Equation (4.13) cannot be satisfied unless V � �. A particular solution

is assumed in this case as

(4.19)

Substitution of Equation (4.19) in Equation (4.9) leads to

(4.20)xp(t ) = -
F0

2meqvn

t cos  (vnt + �)

xp(t ) = Ut sin (vnt + �) + Vt cos (vnt + �)

+ 2 F0

meq(v
2
n - v2)

2  sin (vt + � - f)

x (t ) = cx0 -
F0 sin �

meq(v
2
n - v2)

d  cos (vnt ) +
1
vn

cx# 0 -
F0v cos �

meq(v
2
n - v2)

d  sin (vnt )

f = e 0 vn 7 v
p vn 6 v

0x(
t)

t

2π
ωn

2π

Homogeneous solution
Particular solution
Total solution

ω

FIGURE 4.3
Response of an undamped
SDOF system when � � �n.
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210 CHAPTER 4

Application of initial conditions to the sum of the homogeneous and particular solution

yields

(4.21)

The response of a system in for which the excitation frequency equals the natural fre-

quency is illustrated in Figure 4.4. Since the amplitude of the response is proportional to t
it grows without bound producing a condition called resonance. The resonance leads to an

amplitude increase to a value where the assumptions used in modeling the physical system

are no longer valid. For example in a system with a helical coil spring the proportional limit

of the spring’s material is exceeded as the amplitude increases. After this time the motion

is governed by a nonlinear differential equation.

Resonance is a dangerous condition in a mechanical or structural system and will pro-

duce unwanted large displacements or lead to failure. Resonant torsional oscillations were

partially the cause of the famous Tacoma Narrows Bridge disaster. It is suspected that the

frequency at which vortices were shed from the bridge co-incided with a torsional natural

frequency, leading to oscillations that grew without bound.

When vibrations of a conservative system are initiated, the motion is sustained at the

system’s natural frequency without additional energy input. Thus, when the frequency of exci-

tation is the same as the natural frequency, the work done by the external force is not needed to

sustain motion. The total energy increases because of the work input and leads to a continual

increase in amplitude. When the frequency of excitation is different from the natural frequency,

the work done by the external force is necessary to sustain motion at the excitation frequency.

When the excitation frequency is close, but not exactly equal, to the natural frequency,

an interesting phenomenon called beating occurs. Beating is a continuous buildup and

decrease of amplitude as shown in Figure 4.5. When � is very close to �n and 

and � � 0, Equation (4.18) can be written as

(4.22)x (t ) =
2F0

meq1v2
n - v22  sin c av - vn

2
b t d  cos c av + vn

2
b t d

x0=x# 0=  0

x (t ) = x0 cos (vnt ) + a x# 0
vn

+
F0 cos �

2meqv
2
n

b  sin (vnt ) -
F0

2meqvn

t cos (vnt + �)

0x(
t)

t

FIGURE 4.4
Undamped response when
the excitation frequency
equals the natural frequency.
The response grows without
bound producing resonance.
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Since |� � �n| is small the solution, Equation (4.22) is viewed as a cosine wave with
a slowly varying amplitude

(4.23)

where

(4.24)

is the frequency of the vibration and

(4.25)

is the frequency of the beating and

(4.26)

The amplitude reaches a maximum value of when for any

integer n � 1, 2, . . . 

et = 1
2(2n - 1)p

2F
0

meqeb

A(et) =
2F0

meqeb
 sin et

e =
1

2
 |v - vn |

b =
1
2

 (v + vn)

x (t ) = A(et ) cos bt

EXAMPLE 4 . 1
The equivalent mass of a SDOF of 10 kg. The system has a natural frequency of 80 rad/s.

The system is at rest in equilibrium when it is subject to a time dependent force. Determine

and plot the response of the system if it is subject to a force of (a) 10 sin(40t)N, 

(b) 10 sin(80t) N, and (c) 10 sin(82 t) N.

SOLUT ION
(a) The input is a single frequency excitation of frequency 40 r/s with . Since

the excitation frequency is not equal to or close to the natural frequency the response

of the system is given by Equation (4.18) which leads to

(a)

= 2.08 * 10-43 sin (40t) - 0.5 sin (80t)4  m
x (t ) =

(10 N)

(10  kg)3(80  rad/s)2 - (40  rad/s)24 c sin (40t) -
40  rad/s
80  rad/s

 sin (80t) d

� = 0

2π
|ω – ωn|

4π
ω + ωn

0x(
t)

t

FIGURE 4.5
Beating, which occurs in
an undamped system when
� � �n, is characterized by
a continual build-up and
decay of amplitude.
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212 CHAPTER 4

Equation (a) is plotted in Figure 4.6(a). Two distinct frequencies are shown.

(b) The natural frequency is equal to the excitation frequency, hence resonance occurs.

The solution is for this case is given by Equation (4.21)

(b)

Equation (b) is shown in Figure 4.6(b). The unbounded growth in amplitude is evident.

(c) The excitation frequency is close to but not equal to the natural frequency. Thus,

Equation (4.22) is the applicable solution

(c)

Equation (c) is plotted in Figure 4.6(c) where the build up and decay of amplitude is obvious.

The period of vibration is

(d)

and the period of beating is

(e)Tb = 2p = 6.28  s

T =
2p

81
= 00776  s

= -6.17 * 10-3 sin t cos (81t )  m

* c sina82 rad/s - 80 rad/s
2

tb  cos a82 rad/s + 80 rad/s
2

tb d

x (t ) =  

2(10 N )

(10  kg)3(80 rad/s)2  - (82 rad/s)24

= 6.25 * 10-330.125 sin (80t) - t cos (80t)4  m
x (t ) =

10  N
2(10  kg)(80  rad/s)

 c3 1
80  rad/s

 sin (80t ) - t cos (80t ) d

0

1

2

3

4

–1

–2

–3
0 0.5 1 1.5

t(s)

(a)

2 2.5 3

x(
m

)

×10–4

FIGURE 4.6
Response of system of Example 4.1 for (a) � � 40 rad/s, (b) � � 80 rad/s for which resonance occurs;
and (c) � � 82 rad/s for which beating occurs with a period of T � 6.28 s.
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(b)
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m

)

–2

0

2

4

6

8
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m
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FIGURE 4.6
(Continued)
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214 CHAPTER 4

4.3 FORCED RESPONSE OF A VISCOUSLY DAMPED
SYSTEM SUBJECT TO A SINGLE-FREQUENCY
HARMONIC EXCITATION
The standard form of the differential equation governing the motion of a viscously damped

SDOF system with the single-frequency harmonic excitation of Equation (4.9) is

(4.27)

A particular solution is assumed as

(4.28)

Substitution of Equation (4.28) into Equation (4.27) leads to the following simultaneous

equations for U and V

(4.29)

(4.30)

Solving these equations and substituting the results into Equation (4.28) leads to

(4.31)

Use of the trigonometric identity for the sine of the difference of angles and algebraic

manipulation leads to the following alternate form of Equation (4.31)

(4.32)

where (4.33)

and

(4.34)

X is the amplitude of the forced response and � is the phase angle between the response

and the excitation.

The amplitude and phase angle provide important information about the forced

response. Formulation of Equations (4.33) and (4.34) in nondimensional form allows better

qualitative interpretation of the response. It is noted from these equation that

(4.35)

and

(4.36)f = g (v, vn, z)

X = f  (F0, meq, v, vn, z)

f = tan-1 a 2zvvn

v2
n - v2 b

X =
F0

meq3(v2
n - v2)2 + (2zvvn)

241>2

xp(t) = X sin (vt + � - f)

+  (v2
n - v2) sin (vt + �)4

xp(t ) =
F0

meq3(v2
n - v2)2 + (2zvvn)

243-2zvvn cos (vt + �)

-2zvvnU + (v2
n - v2)V =

F0

meq

(v2
n - v2)U + 2zvvnV = 0

xp(t ) = U cos (vt + �) + V sin (vt + �)

x
$ + 2zvn x# + v2

n 
x =

F0

meq
 sin (vt + �)
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The parameters use three basic dimensions: mass, length, and time. The Buckingham Pi

theorem (Section 1.5) implies that the formulation of the amplitude relationship is a func-

tion of 6 � 3 � 3 non-dimensional parameters. One is a dependent parameter involving

the amplitude and the other two independent parameters.

Multiplying Equation (4.33) by gives

(4.37)

where (4.38)

is the frequency ratio. The ratio

(4.39)

is dimensionless and is often called the amplitude ratio or magnification factor. The magni-

fication factor has the interpretation that it is the ratio of the amplitude of response to the

static deflection of a spring of stiffness k due to a constant force F
0
,

(4.40)

An alternate interpretation is that it is the maximum force developed in the spring of

a mass-spring and viscous-damper system, to the maximum of the

excitation. It represents how much the force is magnified by the system. The magnification

factor is really a force ratio, necessary for dynamic similitude

(4.41)

Thus the nondimensional form of Equation (4.33) is

(4.42)

The magnification factor as a function of frequency ratio for different values of the

damping ratio is shown in Figure 4.7. These curves are called frequency response curves.

The following are noted about Equation 4.42 and Figure 4.7.

1. M � 1 when r � 0. In this case the excitation force is a constant and the maximum

force developed in the spring of a mass-spring-dashpot system is equal to the value of

the exciting force.

2. . The amplitude of the forced response is very small for high-

frequency excitations.

3. For a given value of r, M decreases with increasing .

4. The magnification factor grows without bound only for � 0. For 

the magnification factor has a maximum for some value of .z

0 6  z … 1/22,z

z

limr :� M (r, z) = 1
r 2

M (r, z) =
1

2(1 - r 2)2 - (2zr )2

M =
Fmax

F0

Fmax = kX = m v2
nX

M =
X

�st

M =
meqv

2
nX

F0

r =
v

vn

meqv
2
nX

F0

=
1

3(1 - r 2)2 + (2zr)241>2

meqv
2
n 
>F0
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5. For , the maximum value of the magnification factor occurs for a fre-

quency ratio of

(4.43)

Equation (4.43) is obtained from Equation (4.42) by determining the value of r such

that dM/dr � 0.

6. The corresponding maximum value of M is

(4.44)

7. For for r � 0. For there is no real value of r satis-

fying Equation (4.43). M(r, � ) does not achieve a maximum. It monotonically

decreases with increasing r and approaches zero as 1/r 2 for large r.
The nondimensinoal form of Equation (4.34) is

(4.45)

The phase angle from Equation (4.45) is plotted as a function of frequency ratio for differ-

ent values of the damping ratio in Figure 4.8. The following are noted from Equation 4.45

and Figure 4.8:

1. The forced response and the excitation force are in phase for � � 0. For � � 0, the

response and excitation are in phase only for r � 0.

2. If � � 0 and 0 � r � 1, then 0 � � � �/2. The response lags the excitation.

f = tan-1a 2zr

1 - r 2 b

z Ú 1/22,z = 1/22,  dM /dr = 0

Mmax =
1

2z(1 - z2)1>2

rm = 21 - 2z2

0 6  z … 1/22

3

4

5

2

1

0
0

r

1 2 3

M

FIGURE 4.7
Magnification factor versus
frequency ratio for different
values of the damping ratio.
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3. If � � 0 and r � 1, then � � �/2. If � � 0, then the excitation is a pure sine wave

while the steady-state response is a pure cosine wave. The excitation is in phase with

the velocity. The direction of the excitation is always the same as the direction of

motion.

4. If � � 0 and r � 1, then �/2 � � � �. The response leads the excitation as shown

in Figure 4.9.

5. If � � 0 and r W 1, then � � �. The sign of the steady-state response is opposite that

of the excitation.

6. For � � 0, the response is in phase with the excitation for r � 1 and � radians (180	)
out of phase for r � 1.

Equation (4.42) and (4.45) constitute the frequency response of a SDOF system. The

frequency response is the variation of the steady-state amplitude and the steady-state phase.

The graphical representation of the frequency response is illustrated in Figures 4.7 and 4.8.

2

1

0

3

4

0

r

1 1.5 30.5 2

φ

ζ = 0.25
ζ = 0.1

ζ = 0.70
ζ = 1.0

ζ = 0.01

FIGURE 4.8
Phase angle versus frequency
ratio for different values of
the damping ratio.

–1

1

sin ω t
sin (ω t – φ),

t

< φ < ππ
2

0

FIGURE 4.9
Response leads excitation
when r � 1.
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If the stiffness or damping ratio of a system is not known the frequency response may be

determined experimentally and used to identify the system parameters.

The steady-state response of an SDOF system due to a single-frequency harmonic

excitation is

(4.46)

where M(r, �) is given by Equation (4.42) and � is given by Equation (4.45). The theory

can handle the undamped response covered in Section 4.2 by taking � � 0 these equations

yielding

(4.47)

and

(4.48)

The value of the magnification factor M(1, 0) does not exist, as there is no steady-state in

the case of an undamped SDOF system under resonant conditions.

f = tan-1a 0
1 - r 2 b = b 0  r 6 1

p  r 7 1

M(r, 0) =
1

2(1 - r 2)2
=

1
| 1 - r 2 |

x (t ) =
F0

meqv
2
n

 M(r, z) sin (vt + � - f)

EXAMPLE 4 . 2
A moment, M

0
sin �t, is applied to the end of the bar of Figure 4.10. Determine the max-

imum value of M
0

such that the steady-state amplitude of angular oscillation does not

exceed 10	 if � � 500 rpm, k � 7000 N/m, c � 650 N· s/m, L � 1.2 m, and the mass of

the bar is 15 kg.

c

Ox

Oy

L
2

c q̇L
4

m q̈L
4

1
12

m q̇ 2L
4

L
4

L
4

2k

(a)

(b)

External forces Effective forces

O

q

M0 sin w t

M0 sin w t

k

k

qL
4

2k q3L
4

mL2q̈ 

FIGURE 4.10
(a) System of Example 4.2. (b) FBDs at an arbitrary instant.
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SO LU T I ON
The differential equation obtained by summing moments about 0 using the free-body

diagrams of Figure 4.10(b) is

(a)

Using the notation of Equation (4.1)

(b)

The differential equation is rewritten in the form of Equation (4.2) by dividing by I
eq

:

(c)

The preceding equation has a steady-state solution of the form

(d)

The natural frequency and damping ratio are obtained by comparison to Equation (4.2)

(e)

(f)

The frequency ratio is

(g)

The magnification factor is calculated from Equation (4.42)

(h)

The maximum allowable magnitude of the applied moment is calculated using

Equation (4.37),

(i)

Requiring leads to

(j)M0 6
(3.15 kg #  m2) (61.6 rad/s)2 (10°)(2p rad/360°)

2.64
= 790.2 N #  m

™ 6 10°

Ieqv
2
n™

M0

= M(0.85, 0.15) = 2.64

M (0.85, 0.15) =
1

231 - (0.85)242 + 32(0.15)(0.85)42 = 2.64

r =
v

vn

=
(500 rev/min)(2p rad>rev)(1 min/60 s)

61.6 rad/s
= 0.85

z =
3

14
 

c
mvn

=
(3)(650 N # s/m)

(14)(15 kg) (61.6 rad/s)
= 0.15

vn = A
57
7

 
k
m

= A
(57)(7000 N/m)

(7)(15 kg)
= 61.6 rad

s

u(t) = ™ sin (vt - f)

u
$

+
3

7
 
c
m

 u
#

+
57
7

 
k
m

 u =
M0

Ieq

 sin vt

Ieq =
7

48
 mL2 =

7
48

 (15 kg) (1.2 m)2 = 3.15 kg # m2

7
48

 mL2
 u
$

+
1

16
 cL2

 u
#

+
19

16
 kL2 u = M0sin vt
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4.4 FREQUENCY-SQUARED EXCITATIONS

4.4.1 GENERAL THEORY
Many SDOF system are subject to single-frequency harmonic excitation whose amplitude

is proportional to the square of its frequency

EXAMPLE 4 . 3
A machine of mass 25.0 kg is placed on an elastic foundation. A sinusoidal force of mag-

nitude 25 N is applied to the machine. A frequency sweep reveals that the maximum

steady-state amplitude of 1.3 mm occurs when the period of response is 0.22 s. Determine

the equivalent stiffness and damping ratio of the foundation.

SO LU T I ON
The system is modeled as a mass attached to a spring in parallel with a viscous damper with

a applied sinusoidal force of amplitude 25 N. For a linear system the frequency of response

is the same as the frequency of excitation. Thus the maximum response occurs for a period

of 0.22 s which corresponds to a frequency of

(a)

The frequency ratio at which the maximum response occurs is given by Equation (4.43)

(b)

Solving Equation (b) for the natural frequency

(c)

The maximum value of the response is given by Equation (4.44) which upon substitution

and use of Equation (4.39) becomes

(d)

Squaring Equation (d) and rearranging leads to

(e)

which is a quadratic equation for � 2. Using the quadratic formula leads to � � 0.369,

0.929. The larger value is discarded because a frequency sweep would only yield a maxi-

mum for a value of . Thus � � 0.369. The natural frequency is calculated from 

Equation (c) as

(f)

The stiffness of the foundation is

(g)k = mv2
n = (25.0 kg) (33.5 rad/s)2 = 2.80 * 104 N/m

vn =
28.6 rad/s

21-2(0.369)2
= 33.5 rad/s

z 6 1
12

z4 - z2 + 0.118 = 0

(25.0 kg) (0.0013 m)(28.6 rad>s)2

(25 N) (1-2z2)
 =

1

2z21-z2

vn =
v

21-2z2
=

28.6 rad/s

21-2z2

r =
v

vn

= 21 - 2z2

v =
2p
T

=
2p

0.22 s
= 28.6 rad/s
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Harmonic Excitation of SDOF Systems 221

(4.49)

where A is a constant of proportionality with dimensions of F T 2 or M L. When F
eq

(t) rep-

resents a moment A it has dimensions of F L T 2 or M L2. The steady-state response due

to this type of excitation is developed by applying equations developed in Section 4.3 with

(4.50)

Substitution of Equation (4.50) into Equation (4.37) yields

or (4.51)

where (4.52)


 is, like M, a nondimensional function of the frequency ratio and the damping ratio.


 is related to M by

(4.53)

The steady-state response is given by Equation (4.32) where X is determined from

Equations (4.51) and (4.52), and � is determined using Equation (4.45).


 is plotted as a function of r for various values of � in Figure 4.11. The following are

noted from Equation (4.52) and Figure 4.11.

¶(r, z) = r 2M(r, z)

¶(r, z) =
r 2

2(1 - r 2) + (2zr)2

meq  
X
A = ¶(r, z)

ameqX

A b avn

v
b2

=
1

A c1 - a v
vn
b2 d2 + a2z

v

vn
b2

F0 = Av2

###
##

Feq(t ) = Av2  sin (vt + �)

0
0 1 2 3

Λ

1

2

3

4

5

r

FIGURE 4.11

 (r, �) versus r for different
values of �.
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4.4.2 ROTATING UNBALANCE
The machine of Figure 4.12(a) has a component which rotates at a constant speed, �. Its

center of mass is located a distance e, called the eccentricity, from the axis of rotation. The

mass of the rotating component is m
0
, while the total mass of the machine, including the

rotating component, is m. The machine is constrained to move vertically. 

1. 
 � 0 if and only if r � 0 for all values of �.

2. for all values of �.

3. 
 grows without bound near r � 1 for � � 0.

4. For 
 has a maximum for a frequency ratio of

(4.54)

Equation (4.54) is derived by finding the value of r such that d
/dr � 0.

5. For a given the maximum value of 
 corresponds to the frequency

ratio of Equation (4.54) and is given by

(4.55)

6. For 
 does not reach a maximum. 
 grows slowly from zero near r � 0,

monotonically increases, and asymptotically approches one from below.

z 7 1>22,

¶
 max 

=
1

2z21 - z2

0 6 z 6 1>22,

rm =
1

21 - 2z2

0 6 z 6 1>22,

limr :0
¶(r, z) = 1

EXAMPLE 4 . 4
A one-degree-of-freedom system is subject to a harmonic excitation whose magnitude is

proportional to the square of its frequency. The frequency of excitation is varied and the

steady-state amplitude noted. A maximum amplitude of 8.5 mm occurs at a frequency of

200 Hz. When the frequency is much higher than 200 Hz, the steady-state amplitude is

1.5 mm. Determine the damping ratio for the system.

SO LU T I ON
From Figure 4.11, 
 : 1 as r : �. Thus, from Equation (4.51) and the given information,

(a)

Substituting Equation (a) into Equation (4.55) yields

(b)

Inverting, squaring, and rearranging leads to

(c)

The roots of Equation (c) are � � �0.089, �0.996. Since a maximum was attained,

the appropriate value of � is 0.089.0 6 z 6 1
12,

z4 - z2 + 0.00778 = 0

¶max =
m
A X

 max 
=

8.5 mm

1.5 mm
=

1

2z21 - z2

meq

A =
1

1.5 mm
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Harmonic Excitation of SDOF Systems 223

Let x represent the downward motion of the machine. The acceleration of the rotating

component is obtained using the relative acceleration equation

(4.56)

where and is directed downward and directed toward the center of 

rotation. The center of mass of the rotating component moves in a circular path about the

center of rotation at a constant speed. Let � represent the angle made by the line segment

between the center of rotation and the center of mass at an arbitrary instant. Resolving the

relative acceleration into horizontal and vertical components the vertical component of the

absolute acceleration of the center of mass of the rotating component is

(4.57)

Summation of forces, applied in the vertical direction, positive down-

ward to the FBDs of Figure 4.12(b) yields

(4.58)

For constant �,

(4.59)

where �
0

is an angle between the initial position of the center of mass of the rotating compo-

nent and the horizontal. Using Equation (4.59) in Equation (4.58), and rearranging yields

(4.60)

The negative sign is incorporated into the sine function by defining . Then

Equation (4.60) becomes

(4.61)

It is apparent from Equation (4.61) that the unbalanced rotating component leads to

a harmonic excitation whose amplitude is proportional to the square of its frequency. The

constant of proportionality is

(4.62)

Using Equation (4.51) gives

(4.63)
mX
m0e

 = ¶(r, z)

A = m0e

mx$ + cx# + kx = m0e v2 sin (vt + �)

� = u0 + p

m x$ + cx# + kx = -m0e v2 sin (vt + u0)

u = vt + u0

-kx - cx# = mx$ + m0e v2 sin u

gFext = gFeff

ar, x = x
$ + e v2 sin u

| ar>c | = e v2| ac | = x
$

ar = ac + ar>c

k
2

kc

e
w

2

(a)

N1

N2

N3

N4

cẋ

m0ẍ

m0ew2

(m – m0)ẍ

kx

External
forces

(b)

Effective
forces

=

FIGURE 4.12
(a) Machine with a rotating
unbalance produces a har-
monic excitation whose
amplitude is proportional to
the square of its frequency.
(b) FBDs of the machine at an
arbitrary instant.
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EXAMPLE 4 . 5
A 150-kg electric motor has a rotating unbalance of 0.5 kg, 0.2 m from the center of rota-

tion. The motor is to be mounted at the end of a steel (E � 210 � 109 N/m2) cantilever

beam of length 1 m. The operating range of the motor is from 500 to 1200 rpm. For what

values of I, the beam’s cross-sectional moment of inertia, will the steady-state amplitude of

vibration be less than 1 mm? Assume the damping ratio is 0.1.

SO LU T I ON
The maximum allowable value of 
 is

(a)

Since 

allow

� 1 and , Figure 4.11 shows that two values of r correspond to 


 � 

allow

. These are determined using Equation (4.52)

(b)

Rearrangement leads to the following equation:

(c)
whose positive roots are

(d)

However if r � 0.787 corresponds to � � 1200 rpm then 
 � 

allow

for all r in the operat-

ing range. Whereas if r � 0.787 corresponds to � � 500 rpm then 
 � 

allow

for r over part

of the operating range. Thus requiring r � 0.787 over the entire operating range yields.

(e)

or �n � 159.7 rad/s. The one degree-of-freedom approximation for the natural frequency

of the motor attached to the end of a cantilever beam of negligible mass is

(f)

Thus,

(g)

Using a similar reasoning r � 1.71 should correspond to � � 500 rpm. Thus,

(h)

or �n � 30.6 rad/s. This requirement leads to I � 2.23 � 10�7 m4.

Thus the amplitude of vibration will be limited to 1 mm if I � 6.08 � 10�6 m4 or 

I � 2.23 � 10�7 m4. However, other considerations limit the design of the beam. The

smaller the moment of inertia, the larger the bending stress in the outer fibers of the beam

at the support.

(500 rev>min)(2p rad>rev)(1 min/60 s)

vn

7 1.71

I 7
(159.7 rad/s)2L3m

3E
=

(159.7 rad/s)2(1 m)3(150 kg)

3(210 * 109 N/m2)
= 6.07 * 10-6 m4

vn = A
3EI
mL3

(1200 rev/min)(2p rad/rev)(1 min >60 s)
vn

6 0.787

r = 0.787,  1.71

0.556r 4 - 1.96r 2 + 1 = 0

1.5 =
r 2

2(1 - r 2) + (0.2r)2

z 6 1/12

¶allow =
mXallow

m0e
=

(150 kg)(0.001 m)

(0.5 kg) (0.2 m)
= 1.5
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4.4.3 VORTEX SHEDDING FROM CIRCULAR CYLINDERS
When a circular cylinder is placed in a steady uniform stream at sufficient velocity, flow

separation occurs on the cylinder’s surface, as illustrated in Figure 4.13. The separation

leads to vortex shedding from the cylinder and the formation of a wake behind the cylin-

der. Vortices are shed alternately from the upper and lower surfaces of the cylinder at a con-

stant frequency. The alternate shedding of vortices causes oscillating streamlines in the

wake which, in turn, lead to an oscillating pressure distribution. The oscillating pressure

distribution, in turn, gives rise to an oscillating force acting normal to the cylinder,

(4.64)

where F
0

is the magnitude of the force and � is the frequency of vortex shedding.

These parameters are dependent upon the fluid properties and the geometry of the

cylinder. That is,

(4.65)

and (4.66)

where v � the magnitude of fluid velocity, [L]/[T ]

� � the fluid density, [M]/[L]3

	 � the dynamic viscosity of fluid, [M]/([L][T ])

D � the diameter of cylinder, [L]

L � the length of cylinder, [L]

The dependent parameters F
0

and � are both functions of five independent parameters.

Dimensional analysis theory implies that Equations (4.65) and (4.66) can be rewritten as

relationships between three dimensionless parameters. Indeed, nondimensional forms of

Equations (4.65) and (4.66) are

(4.67)

(4.68)

The dependent dimensionless parameters are the drag coefficient

(4.69)

which is the ratio of the drag force to the inertia force, and the Strouhal number

(4.70)S =
vD
2p v

CD =
F0

1
2r v 2 DL

S = f aRe, D
L
b

CD = f  aRe, 
D
L
b

v = v(v, r, m, D, L)

F0 = F0(v, r, m, D, L)

F (t ) = F0 
sin (vt )

υ

(a) (b)

FIGURE 4.13
(a) Circular cylinder in steady flow.
(b) Cross section of cylinder showing vor-
tices shed alternately from each surface
of the cylinder, resulting in a wake behind
the cylinder and a harmonic force acting
on the cylinder.
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226 CHAPTER 4

which is the ratio of the inertia force due to the local acceleration of the inertia force due

to the convective acceleration of the inertia force.

The independent dimensionless parameters are the Reynolds number

(4.71)

which is the ratio of the inertia force to the viscous force and the diameter-to-length ratio D/L.

For long cylinders (D/L V 1), a two-dimensional approximation is used. Then the

effect of D/L on the drag coefficient and Strouhal number is negligible. Empirical data are

used to determine the forms of Equations (4.67) and (4.68) assuming that both the drag

coefficient and Strouhal number are independent of D/L.

The density and dynamic viscosity of air at 20°C are 1.204 kg/m3 and 1.82 � 10�5 N · s/m, 

respectively. Thus, for air at 20°C, the Reynolds number for flow over a 10-cm-diameter

circular cylinder at 20 m/s is

The Reynolds number for many situations involving wind-induced oscillations is between

1 � 103 and 2 � 105. Over this Reynolds number regime, both the drag coefficient and

the Strouhal number are approximately constant. For long cylinders (D/L V 1) empirical

evidence suggests that

(4.72)

(4.73)

From Equation (4.73) and the definition of the Strouhal number, Equation (4.70), 

(4.74)

Then from Equations (4.69), (4.72), and (4.74),

(4.75)

Hence the harmonic excitation to a circular cylinder provided by vortex shedding

when the Reynolds number is between 1 � 103 and 2 � 105 has a magnitude that is pro-

portional to the square of its frequency. Using the notation of Equations (4.50) and (4.51)

gives

(4.76)

and (4.77)

The theory is presented for vortex shedding from circular cylinders. If the frequency at

which the vortices are shed is near the natural frequency of the structure, then large-

amplitude vibrations exist. The effects of vortex shedding must be taken into account when

designing structures such as street lamp posts, transmission towers, chimneys, and tall

buildings. Vortex shedding also occurs from noncircular structures such as buildings and

bridges.

3.16 mX
r D 

3L
= ¶(r, z)

A = 0.317rD3L

F0 = 0.317 rD 
3 Lv2

y =  vD
0.4p

S L 0.2  1 * 103 6 Re 6 2 * 105

CD L 1  1 * 103 6 Re 6 2 * 105

Re =
(1.204 kg/m3)(20 m/s)(0.1 m)

1.82 * 10-5 N # s/m
= 1.3 * 105

R =
r v D

m
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EXAMPLE 4 . 6
A street lamp consists of a 60-kg light fixture attached at the end of a 3-m-tall solid steel

(E � 210 � 109 N/m2) cylinder with a diameter of 20 cm. Use a one degree-of-freedom

model consisting of a cantilever beam with a concentrated mass at its end to analyze the

response of the light fixture to wind excitation. Assume the beam has an equivalent viscous

damping ratio of 0.2.

(a) At what wind speed will the maximum steady-state amplitude of vibration due to

vortex shedding occur?

(b) What is the corresponding maximum amplitude?

(c) Redesign the light by changing its diameter such that the maximum amplitude of

vibration does not exceed 0.10 mm for any wind speed.

SO LU T I ON
Before proceeding with the analysis, there are several questions associated with the model-

ing that must be addressed. Vortices are shed along the entire length of the cylinder. The

two-dimensional assumption implies that the force per unit length is constant along the

entire length of the light post. Thus the force given by Equation (4.64) is really the result-

ant of this force per unit length distribution. Its point of application should be the mid-

point of the light post. However, the problem is not really two dimensional because of

among other things, the boundary layer of the earth. The presence of a boundary layer

causes a varying wind velocity over the length of the light post, which, in turn, causes a

nonuniform force per unit length distribution, as shown in Figure 4.14(a). Thus the actual

point of application of the resultant force will be somewhat higher than the midpoint of

the light post. In addition, the mass is assumed to be lumped at the end of the beam, while

the point of application of the applied force is elsewhere. The resultant force can be

replaced by a force of the same magnitude located at the end of the beam and a moment.

However, the moment causes rotational effects which are not adequately taken into

account in a one-degree-of-freedom model. At least a two-degree-of-freedom model should

be used. In order to attain an approximate result, these effects are neglected. A one degree-

of-freedom model is used where the excitation is provided by a concentrated harmonic load

located at the light of fixture, as shown in Figure 4.14(b).

Assume air at 20°C. The Rynolds number for a velocity of 20 m/s is

(a)Re =
(1.204 kg/m3)(20 m/s)(0.20 m)

(1.82 * 10-5
 N # s/m)

= 2.6 * 105

F0 sinωt

3 m

20 cm

60 kg

(a) (b)

FIGURE 4.14
(a) Street light post in steady wind is
subject to harmonic excitation whose
amplitude is proportional to the square
of the frequency because of vortex
shedding. (b) The model of the system
is a mass attached to the end of a can-
tilever beam.
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4.5 RESPONSE DUE TO HARMONIC EXCITATION
OF SUPPORT
Consider the mass-spring-dashpot system of Figure 4.15. The spring and dashpot are in

parallel with one end of each connected to the mass and the other end of each connected

to a moveable support. Let y(t) denote the known displacement of the support and let x (t)

This Reynolds number is higher than the 2 � 105 upper limit on the range of strict appli-

cability of the theory presented previously. However, the Strouhal number is only slightly

higher than 0.2. Using 0.2 as an approximation for the Strouhal number is in line with

other approximations made in the modeling.

(a) Using a one degree-of-freedom model, the natural frequency of the cantilever beam is

(b)

The magnitude of the excitation force is proportional to the square of its frequency. Thus,

from Equation (4.54), the maximum steady-state amplitude occurs for a frequency ratio of

(c)

Thus the frequency at which the maximum amplitude occurs is

� � 1.043(174.8 rad/s) � 182.2 rad/s (d)
The wind velocity that gives rise to this frequency is calculated using the definition of the

Strouhal number

(e)

(b) The value of 
 corresponding to this frequency ratio is calculated from Equation (4.55)

(f)

The corresponding maximum amplitude is calculated by using Equation (4.77)

(g)

(c) The maximum value of 
 is a function of � only and does not change with �n. The

steady-state amplitude can be limited to 0.1 mm for all wind speeds by requiring that 


 � 2.55 for X � 0.1 mm. This leads to

(h)

Thus, the maximum diameter of the light pole should be 12.7 cm.

D = a3.16 mX
rL¶

b1>3
= 12.7 cm

X =
r D 

3 L¶
3.16m

=
(1.204 kg/m3)(0.2 m)3(3 m)(2.55)

3.16(60 kg)
= 3.9 * 10-4m

¶
 max 

 =  1

2z21 - z2
= 2.55

y =
vD
2pS

=
(182.2 rad/s)(0.2 m)

2p(0.2)
= 29.0 m/s

rmax 
=

1

21 - 2z2
= 1.043

vn = A
3EI
mL3 = A

3(210 * 109 N/m2)(p>64)(0.2 m)4

(60 kg)(3 m)3 = 174.8 rad/s
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denote the absolute displacement of the mass. Application of Newton’s law to the free-body

diagrams of Figure 4.15(b) yields

(4.78)

or (4.79)

Define

(4.80)

as the displacement of the mass relative to the displacement of its support. Equation (4.79)

is rewritten using z as the dependent variable

(4.81)

Dividing Equations (4.79) and (4.81) by m yields

(4.82)

and (4.83)

If the base displacement is given by a single-frequency harmonic of the form

(4.84)

then Equations (4.82) and (4.83) become

(4.85)

and (4.86)

Equation (4.86) shows that a mass-spring-dashpot system subject to harmonic base

motion is yet another example in which the magnitude of a harmonic excitation is propor-

tional to the square of its frequency. Using the theory of Section 4.4,

(4.87)

where (4.88)

where 
 is defined in Equation (4.52) and defined by Equation (4.45).

When Equations (4.87) and (4.88) are substituted into Equation (4.80) the absolute

displacement becomes

(4.89)x (t ) = Y 3¶  sin (vt - f) + sin vt4

f

Z = Y ¶(r, z)
z (t ) = Z   sin (vt - f)

z
$ + 2zvnz

# + v2
nz = v2Y sin vt

x$ + 2zvnx
# + v2

nx = 2zvnvY cos vt + v2
nY sin vt

y (t ) = Y sin vt

z
$ + 2zvnz

# + v2
nz = - y

$
x
$ + 2zvnx

# + v2
nx = 2zvn y# + v2

n 
y

mz
$ + cz# + kz = -my

$

z (t ) = x (t ) - y (t )

m  x
$ + cx# + kx = cy# + ky

-k (x - y) - c (x# - y# ) = mx
$

(b)(a)

=

External
forces

Effective
forces

mẍc(ẋ – ẏ)k(x – y)k c

m
x(t)

y(t)

FIGURE 4.15
(a) Block is connected
through parallel combination
of spring and viscous damper
to a moveable support.
(b) FBDs at an arbitrary
instant. Spring and viscous-
damper forces include effects
of base motion.
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Using the trigonometric relationship for the sine of the difference of two angles, it is pos-

sible to express Equation (4.89) in the form

(4.90)

where (4.91)

and (4.92)

where T(r, �) is yet another nondimensional function of the frequency ratio and the damp-

ing ratio defined by

(4.93)

X/Y is the amplitude of the absolute displacement of the mass to the amplitude of dis-

placement of the base. 

Multiplying the numerator and denominator by �2 leads to

(4.94)

Thus T(r, �) is also the ratio of the acceleration amplitude of the body to the acceleration

amplitude of the base.

Equation (4.93) is plotted in Figure 4.16. The following are noted about T(r, �):

1. T(r, �) is near one for small r.

2. (4.95)lim 
t: �

T(r, z) =
2z
r

v2X
v2Y

= T (r, z)

T (r, z ) = A
1 + (2zr)2

(1 - r 2)2 + (2zr)2

l = tan-1 c 2zr 3

1 + (4z2 - 1)r 2 d

X
Y

= T (r, z)

x (t ) = X sin (vt - l)

0
0 1 2 3

T

1

2

3

4

r
2

FIGURE 4.16
T(r, �) versus r for several
values of �. The range for

is called the range of
amplification, while the range
for is called the range
of isolation.

r 7 12

r 6 12
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Harmonic Excitation of SDOF Systems 231

3. For all �, T(r, �) grows until it reaches a maximum for a frequency ratio of

(4.96)

4. The maximum T(r, �) corresponding to the frequency ratio of Equation (4.96)

(4.97)

5. , independent of the value of �.

6. For is larger for smaller values of �. However, for is

smaller for smaller values of �.

7. For all values of �, T(r, �) is less than one when and only when .

The body is isolated from large accelerations of the base only if T(r, �) < 1. This occurs

on when . For this reason the range is called the range of isolation and

is called the range of amplification. When isolation occurs an increase in � hinders

isolation. Better isolation occurs for smaller damping ratios. Some damping is still required

to limit the amplitude of vibration during start up.

The function T(r, �) is called the transmissibility ratio. It is the ratio of the transmitted

acceleration to the acceleration of the base. When T � 1 the presence of an elastic element

between the base and the body actually amplifies the acceleration that is transmitted to the

body. Only when T � 1 is the transmitted acceleration less than the acceleration of the body.

The amplitude of relative motion, Z � Y
(r, �) is the amplitude of the maximum dis-

placement of the elastic element.

r 6 12
r 7 12r 7 12

r 7 12

r 7 22,T (r,  z)r 6 22,T (r, z)

T (12, z) = 1

Tmax = 4z2 c 21 + 8z2

2 + 16z2 + (16z4 - 8z2 - 2)21 + 8z2
d1/2

rmax =
1
2z

 111 + 8z2 - 121/2

EXAMPLE 4 . 7
A 50 kg laboratory experiment is to be mounted onto a table in a laboratory. The table, which

is rigidly attached to the floor is vibrating due operation of the other machinery. Measurements

indicate that the floor’s acceleration amplitude is 1.2 m/s2 and it vibrates at 100 Hz. Accurate

use of the equipment requires that its acceleration amplitude be limited to 0.6 m/s2.

(a) What is the largest equivalent stiffness of a mounting of damping ratio 0.1 that can

be used to limit the acceleration amplitude to 0.6 m/s2?

(b) What is the maximum deflection of the mounting?

SO LU T I ON
(a) The transmissibility ratio is

(a)

Requiring T(r, 0.1) � 0.5 leads to

(b)

Squaring Equation (b), multiplying the resulting equation by the denominator of the right

hand side and rearranging gives

(c)r 4 - 2.12r 2 - 3 = 0

T (r, 0.1) = 0.5 = A
1 + 32(0.1)r42

(1 - r 2)2 + 32(0.1)r42

T =
v2X
v2Y

=
0.6 m/s2

1.2 m/s2 = 0.5
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232 CHAPTER 4

Mechanisms can be used to produce harmonic base excitations. One simple example is

the eccentric circular cam of Figure 4.17. When rotating at a constant speed, the cam pro-

duces a displacement of e sin �t to its follower, which, in turn, produces a harmonic base

excitation in the arrangement shown. The Scotch yoke of Figure 4.18 is another mecha-

nism that produces simple harmonic motion. When the crank is rotating at a constant

speed the base is given a displacement of l sin �t.

Equation (c) is solved leading to r � 1.76. Recalling and � � 100 Hz �

(100 cycles/s) (2
 rad/cycle) � 6.28 � 102 rad/s gives

(d)

The maximum stiffness for an elastic mounting is

(f)

(b) The displacement of the mounting is the relative displacement between the experi-

ment and the table z(t). The maximum displacement is the steady-state amplitude which is

(g)

The steady-state amplitude of the table is

(h)

and (i)

The maximum displacement of the mounting is obtained by substituting Equation (h) and

Equation (i) into Equation (g) resulting in

(j)Z = (3.04 * 10-6 m)(1.46) = 4.43 * 10-6 m

¶(1.76, 0.1) =
(1.76)2

231 - (1.76)242 + 32(0.1)(1.76)42 = 1.46

Y =
v2Y
v2 =

1.2 m/s2

(6.28 * 102 rad/s)2 = 3.04 * 10-6 m

Z = Y¶(1.76, 0.1)

k = mv2
n = (50 kg)(3.57 * 102rad/s) = 6.39 * 106 N/m

vn =
v

r
=

6.28 * 102 rad/s
1.76

= 3.57 * 102 rad/s

r = vvn

c

e
m

k

c

l

m

k

FIGURE 4.17
Eccentric circular cam pro-
duces harmonic motion of fol-
lower which provides support
motion to the mass-spring-
viscous damper system.

FIGURE 4.18
Scotch yoke mechanism
produces simple harmonic
motion and provides support
excitation to mass-spring-
viscous damper system.
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EXAMPLE 4 . 8
A Scotch yoke mechanism provides a harmonic base excitation for the mass-spring-

dashpot system of Figure 4.18. The crank arm is 80 mm long. The speed of rotation of

the crank arm is varied and the resulting steady-state amplitude is recorded at each speed.

The maximum recorded amplitude of the 14.73 kg block is 13 cm at 1000 rpm. Determine

the spring stiffness and damping ratio.

SO LU T I ON
The amplitude of the base displacement is 0.08 m. The maximum displacement of the

mass is 0.13 m. Thus,

The value of � which corresponds to this T
max

is determined by solving Equation (4.97).

However, algebraic manipulation of Equation (4.97) yields a fifth-order polynomial equa-

tion for � 2. A numerical method must be used to find �. An easier trial-and-error

approach is outlined in the following discussion, and then used to find the value of � for

this example.

Equation (4.96) is rearranged as

A value of r
max

� 1 is guessed and its corresponding value of � calculated from the preced-

ing equation. Equation (4.93) or (4.97) is then used to calculate the value of T
max

corre-

sponding to the guessed value of r
max

. However, small changes in the accuracy of an

intermediate calculation using Equation (4.97) lead to large changes in the result. Thus,

Equation (4.93) is usually used. The calculated value of T
max

is compared against the

desired value of 1.625. If T
max

� 1.625 another guess for r
max

, smaller than the previous

one, should be made. Other iteration schemes are possible, but the method presented is the

most direct using the equations as presented. The trial-and-error scheme is illustrated in the

following table:

Then, for r
max

� 0.89,

and k = mv2
n = 2.04 * 105 N/m.

vn =
v

r
 max 

= a1000 
rev
min
b a2p 

rad
rev
b a 1  min 

60 s b  
1

0.89
= 117.7 rad/s

Tmax
rmax (guess) � [from Equation (4.93)]

0.98 0.147 3.180
0.90 0.381 1.702
0.89 0.407 1.640
0.88 0.437 1.573

z = A
1 - r 2

 max 

2r 4
 max 

T
 max 

=
X

 max 

Y
=

0.13 m
0.08 m = 1.625
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4.6 VIBRATION ISOLATION
Consider a machine bolted to its foundation. During operation the machine produces or

is subject to large amplitude harmonic forces. The force is directly passed onto the founda-

tion. This could lead to problems such as fatigue of the foundation and acoustic wave prop-

agation in the foundation.

The remedy to this situation is to mount the machine on a vibration isolator, which

can be discrete springs or elastic pads, as shown in Figure 4.19. The vibration isolator acts

to reduce the amplitude of the harmonic force transmitted to the foundation. With an exci-

tation force of F(t) � F
0

sin (�t), the transmitted force is

(4.98)

The steady-state response of the system is x(t) � X sin (�t � ), thus

(4.99)

Let FT represent the amplitude of the transmitted force

(4.100)

and F
0

represent the amplitude of the excitation force. It can be shown that

(4.101)

and 
 is as given in Equation (4.92).

The theory of vibration isolation to protect against large transmitted forces is the same

as the theory to protect against large transmitted accelerations. To see this, consider the dif-

ferential equation for the relative displacement, z � x � y, of a mass attached to a move-

able support,

(4.102)

The acceleration of the base is given by or using Equation (4.97)

(4.103)

where is the force developed in the elastic element connecting the mass and

the base.

Vibration isolation only occurs for . When isolation occurs it is negatively

affected by damping. Damping is present to protect against large amplitude oscillations

during start-up necessary to reach a value of r 7 12

r 7 12

F = cz# + kz

mx
$ = - (cz# + kz)

x
$ = z

$ + y
$

mz
$ + cz# + kz = -my

$

FT

F0

= T (r, z )

FTM = FT sin (vt - l)

FTM = kX sin (vt - f) + c v cos (vt - f)

f

FTM = kx + cx#

F(t)

F(t)

(a) (b)

FIGURE 4.19
(a) Elastic mounting is
used as a vibration isolator
to protect foundation
from large forces gener-
ated during operation of
the machine. (b) SDOF
model of machine
mounted on isolator.
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EXAMPLE 4 . 9
An air conditioner weighs 1 kN and is driven by a motor at 500 rpm. What is the required

static deflection of an undamped isolator to achieve 80 percent isolation (a) if � � 0 (b) if

� � 0.1?

SO LU T I ON
(a) Eighty percent isolation means that the transmitted force is reduced by 80 percent of

that if the machine were directly bolted to the floor. It is 20 percent of the value of the exci-

tation force,

(a)

For an undamped isolator

(b)
or

(c)

Since to achieve isolation, and a positive result is required from the square root,

the appropriate form of the preceding equation after the square root is taken is

(d)

which yields r � 2.45. The maximum natural frequency for the air conditioner-isolator

system to achieve 80 percent isolation is calculated as

(e)

The required static deflection is obtained from

(f)

or

(g)

(b) It is required to find r such that

(h)

or

(i)

Squaring both sides of Equation (g), multiplying by the denominator of the left hand side

and rearranging leads to

(j)r 4 - 2.96r 2 - 24 = 0

A
1 + 32(0.1)r42

(1 - r 
2)2 + 32(0.1)r42 = 0.2

T (r, 0.1) = 0.2

�st =
g

v2
n

=
9.81 m/s2

(21.4 rad/s)2 = 0.02 m

vn = A
k
m

= A
g

�st

vn =
v

r
=

(500 rev>min)(2p rad>rev)(1 min/60 s)
2.45

= 21.4 rad/s

0.2 =
1

r 2 - 1

r 7 12

0.2 = A
1

(1 - r 2)2

T (r, 0) = 0.2

FT

F0

= 0.2
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236 CHAPTER 4

Equation (h) is a quadratic equation in r2. Solution using the quadratic formula yields r 2 �
�3.64, 6.60. Choosing the positive value and taking the square root leads to r � 2.57.

Note that this value is greater than the value obtained for � � 0. Thus

(k)

The minimum static deflection is

(l)�st =
g

v2
n

=
9.81 m/s2

(20.4 rad/s)2 = 0.0236 m = 2.36 cm

vn 6
v

2.56
=

52.4 rad/s
2.57

= 20.4 rad/s

EXAMPLE 4 . 1 0
An industrial sewing machine has a mass of 430 kg and operates at 1500 rpm (157 rad/s).

It appears to have a rotating unbalance of magnitude m
0
e � 0.8 kg · m. Structural engi-

neers suggest that the maximum repeated force transmitted to the floor is 10,000 N. The

only isolator available has a stiffness of 7 � 106 N/m and a damping ratio of 0.1. If the iso-

lator is placed between the machine and the floor, will the transmitted force be reduced to

an acceptable level? If not, what can be done?

SO LU T I ON
The maximum allowable transmissibility ratio is

(a)

The natural frequency with the isolator in place is

(b)

which leads to a frequency ratio of . Use of this isolator actually amplifies the

force transmitted to the floor.

Adequate isolation is achieved only by increasing the frequency ratio, thus decreasing

the natural frequency. The maximum allowable natural frequency is obtained by solving for

r from

(c)

Equation (c) is squared and rearranged to yield the following quadratic equation for r2:

(d)

The appropriate solution is r � 1.75. Thus the maximum natural frequency is

(e)

If more than one of the described isolator were available, the natural frequency of the system

can be decreased by placing isolators in series. The equivalent stiffness for n isolators in

vn =
157 rad/s

1.75
= 89.7 rad/s

r 4 - 2.12r 2 - 2.89 = 0

T (r, 0.1) =  0.507 = A
1 + (0.2r)2

(1 - r 
2)2 + (0.2r)2

1.24 6 12

vn = A
7 * 106 N/m

430 kg
= 127.6 rad/s

Tmax =
FTmax

m0ew 
2 =

10,000 N
(0.8 kg # m)(157 rad/s)2 = 0.507
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Harmonic Excitation of SDOF Systems 237

series is k/n. Further calculations show that at least two isolator pads in series are necessary

to reduce the natural frequency below 89.7 rad/s.

If only one isolator pad is available, the natural frequency is decreased by adding mass

to the machine. A mass of at least 440 kg must be rigidly attached to the machine and the

assembly placed on the existing isolator.

EXAMPLE 4 . 1 1
A flow-monitoring device of mass 10 kg is to be installed to monitor the flow of a gas in a

manufacturing process. Because of the operation of pumps and compressors, the floor of

the plant vibrates with an amplitude of 4 mm at a frequency of 2500 rpm. Effective oper-

ation of the flow-monitoring device requires that its acceleration amplitude be limited to 5g.

What is the equivalent stiffness of an isolator with a damping ratio of 0.05 to limit the

transmitted acceleration to an acceptable level? What is the maximum displacement of the

flow-monitoring device and what is the maximum deformation of the isolator?

SO LU T I ON
The acceleration amplitude of the floor is

(a)

The maximum allowable transmissibility ratio is

(b)

Requiring T (r, 0.05) � 0.179, we have

(c)

Solution of the preceding equation gives the minimum frequency ratio for which vibrations

are sufficiently isolated. It yields r � 2.60. Thus

(d)

The maximum stiffness of the isolator is

(e)

When T � 0.179, Equation (4.91) is used to calculate the steady-state amplitude of

the flow-monitoring device as

(f)

Since the isolator is placed between the floor and the flow-monitoring device, its deforma-

tion is equal to the relative displacement between the floor and the device.

The steady-state amplitude of the relative displacement is calculated by using

Equation (4.88).

(g)Z = ¶Y =
r 

2Y

2(1 - r 
2)2 + (2zr)2

= 4.69 mm

X = Y T = (0.004 m)(0.179) = 0.72 mm

k = mv2
n = 1.01 * 105 N/m

vn 6
v

2.60
= 100.6 rad/s

0.179 6 A
1 + 0.01r 

2

1 - 1.99r 
2 + r 

4

T
 max 

=
v2X
v2Y

=
5g

27.95 g = 0.179

v2Y = c a2500 
rev

min
b a2p 

rad
rev
b a1 

min

60 s
b2 d (0.004 m) = 274.1m/s2 = 27.95g
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4.7 VIBRATION ISOLATION FROM
FREQUENCY-SQUARED EXCITATIONS
A special case occurs when the amplitude of the excitation force is proportional to the

square of the excitation frequency, as for the harmonic excitation due to a rotating unbal-

ance. Since the maximum allowable force transmitted to the foundation is independent of

the frequency of excitation, the percentage of isolation required varies with the frequency.

When the excitation is caused by a rotating unbalance, Equation (4.101) becomes

or

(4.104)

The nondimensional function R (r, �) is defined as

(4.105)

R (r, �) is plotted in Figure 4.20. The following is noted about its behavior

1. R (r, �) is asymptotic to the line f (r ) � 2� r for large r. That is,

(4.106)

2. For increases with increasing r, from 0 at r � 0 and

reaches a maximum value. R then decreases and reaches a relative minimum. As r
increases from the value where the minimum occurs, R grows without bound and

approaches the asymptotic limit given by Equation (4.106). The values of r where the

maximum and relative minimum occur are obtained by setting, dR/dr � 0, yielding

(4.107)
Equation (4.107) is a cubic polynomial in r2. It has three roots. One root is the value of

r where the maximum occurs, another is the value of r where the relative minimum

1 + (8z2 - 1)r 2 + 8z2(2z2 - 1)r 4 + 2z2r 6 = 0

z 6 12/4 = 0.354, R(r, z)

limx : � R(r, z) = 2zr

R(r, z) = r 2C
1 + (2zr)2

(1 - r 2)2 + (2zr)2

FT

m0ev
2
n

= r 2T (r, z) = R (r, z)

FT

m0e v2 = T (r, z)

0
0 1 2 543

R

2

4

6

8

10

12

r

ζ = 0.05 ζ = 0.353
ζ = 0.5

ζ = 0.2
ζ = 0.1

FIGURE 4.20
R(r, �) versus r for several
values of �.
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occurs, and one root is negative and irrelevant. Figure 4.21 shows the value of r for

which the minimum occurs as a function of �. Figure 4.22 shows the corresponding

value of R at its relative minimum.

3. R � 2 for for all values of �.

4. Equation (4.107) has a double root of for . The maximum 

and minimum coalesce for this value of �. For , is an inflection

point.

5. For , Equation (4.107) has no positive roots. Thus R does not reach a 

maximum, but grows without bound from R � 0 at r � 0.

If the natural frequency of a system whose vibrations are due to a rotating unbalance

is fixed, Figure 4.20 shows that the transmitted force has a minimum for some value of r.
If r exceeds this value, the force increases without bound as r increases. If � is small, the

curve in the vicinity of the relative minimum is flat. The transmitted force varies little over

a range of r. This suggests that for situations where vibrations must be isolated over a range

of excitation frequencies, it is best to chose �n such that the value of r at the center of the

operating range is near the value of r for which the relative minimum occurs.

The limit process used to develop Equation (4.106) is performed for a fixed value

of �n as � is increased. Thus, for a fixed �n, the transmitted force approaches m
0
e��n.

z 7 12/4

r = 12z = 0.354
z = 12>4 = 0.354r = 12

r = 12

0
0 0.1

z
0.2 0.40.3

r
4

2

6

8

10

0
0 0.1 0.2 0.40.3

r 1

2

FIGURE 4.21
Value of r for which the mini-
mum R(r, �) occurs as a func-
tion of �.

FIGURE 4.22
Rmin(�).
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The limit of FT as �n goes to zero for a fixed � is zero. Thus decreasing the natural fre-

quency decreases the magnitude of the transmitted force for a specific excitation frequency.

Decreasing the natural frequency such that the minimum is to the left of the operating

range reduces the magnitude of the repeating component of the transmitted force over a

portion of the operating range. However, the transmitted force may vary greatly over the

operating range.

EXAMPLE 4 . 1 2
A 250-kg pump operates at speeds between 1000 and 2400 rpm and has a rotating unbal-

ance of 2.5 kg · m. The pump is placed at a location in an industrial plant where it has

been determined that the maximum repeated force that should be applied to the floor is

F
max

. Specify the stiffness of an isolator of damping ratio 0.1 that can be used to reduce the

repeating component of the transmitted force to an acceptable level. Solve for (a) F
max

�
15,000 N; (b) F

max
� 10,000 N.

SO LU T I ON
If the pump is placed directly on the floor, the repeating component of the transmitted

force is 27,400 N at 1000 rpm and 157,800 N at 2400 rpm. Thus isolation is necessary.

(a) From Figure 4.22, for � � 0.1 the minimum value of R occurs for r � 2.94. If �n
is chosen such that r � 2.94 is at the center of the operating range, then

(a)

At the lower end of the operating range, the frequency ratio is 1.73 and the transmitted

force is

(b)

At the upper end of the operating range, the frequency ratio is 4.15 and the transmitted

force is

(c)

Thus, choosing an isolator such that r � 2.94 corresponds to 1200 rpm will reduce the

transmitted force to less than 15,000 N at all speeds between 1000 and 2400 rpm. The

stiffness of such an isolator is

(d)

(b) The above analysis works for but does not work for 

, as the transmitted force at both ends of the operating range is larger than10,000 N
FT

 max
=FT

 max
= 15,000 N

k = mv2
n = (250 kg)(60.55 rad/s)2 = 9.17 * 105 N/m

= 12,630 N

= (2.5 kg #m) (60.55 rad/s)2(4.15)2A
1 + (0.830)2

31 - (4.15)242 + (0.830)2

FT = m0e v2
nR (4.15, 0.1)

= 14,350 N

= 2.5 kg #  m (60.55 rad/s)2(1.73)2A
1 + (0.346)2

31- (1.73)242 + (0.346)2

FT = m0e v2
n 
R (1.73, 0.1)

vn =
1700 rpm

2.94
= 578.2 rpm = 60.55 rad/s
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4.8 PRACTICAL ASPECTS OF VIBRATION ISOLATION
Vibration isolation is required in a variety of military and industrial applications. Isolation

is required to reduce the force transmitted between a machine and its foundation during

ordinary operation or to isolate a machine from vibrations of its surroundings. Motors are

often isolated to protect mountings from forces arising from harmonic variation of torque

and unbalanced rotors. Electrical components such as transformers and circuit breakers are

isolated to protect surroundings from electromagnetic forces generated in solenoids or as a

result of alternating current. Large harmonic inertia forces are developed by rotating com-

ponents of single-cylinder reciprocating engines. Isolation is required to protect the engine

mounting from these forces. Other machines with rotating components such as fans,

pumps, and presses are often isolated to protect against inherent rotating unbalance.

The maximum stiffness of an isolator required for a particular application is calculated

by using the theory of Section 4.6. A SDOF system using an isolator is modeled as the

simple mass-spring-dashpot system of Figure 4.19(b).

Specifications provided in catalogs of commercially available isolators include allow-

able static deflections. If the isolated system of Figure 4.19 has a minimum required natu-

ral frequency �n, the required minimum static deflection of the isolator is

(4.108)

Isolation of low-frequency vibrations requires a small natural frequency, which leads to a

large isolator static deflection.

The vibration amplitude of a machine during operation is calculated from Equation (4.39)

(4.109)
mv2

nX

F0

= M(r, z)

�st =
g

v2
n

10,000 N when the center of the operating range corresponds to the minimum value of R.

Setting for � � 1000 rpm leads to

(e)

which leads to r � 2.012. Then

(f)

Then for � � 2400 rpm, r � 4.83 and

(g)

Thus, the transmitted force is less than 10,000 at all speeds within the operating range and

(h)k = mv2
n = (250 kg) (52.02 rad/s)2 = 6.77 * 105 N/m

FT = m0e v2
n 
R (4.83, 0.1) = 9810 N

vn =
104.7 rad/s

2.102
= 52.02 rad/s

T (r, 0.1) =
FTmax

m0e v2 =
10,000 N

(2.5 kg # m)  (104.7 rad/s)2 = 0.365

FT
 max

= 10,000 N
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242 CHAPTER 4

Multiplying both sides of the preceding equation by r 2 leads to

(4.110)

where 
(r, �) is defined in Equation (4.52). Since vibration isolation requires and 


(r, �) decreases and approaches 1 as r increases, the steady-state amplitude decreases as

isolation is improved. However, for fixed m, F
0
, and � the steady-state amplitude has a

lower bound given by

(4.111)

Equations (4.110) and (4.111) show that if an isolator is being designed to provide isola-

tion over a range of frequencies, the steady-state amplitude is greatest at the lowest operat-

ing speed.

Since vibration isolation requires , the speeds at which the maximum vibra-

tion amplitude occurs must be passed during start-up and stopping. The maximum vibration

amplitude for a fixed �n is obtained using Equation (4.44) as

(4.112)

The smaller the natural frequency, the larger the maximum amplitude. In addition, the

larger the damping ratio, the smaller the maximum amplitude.

A large vibration amplitude can lead to ineffective operation of machinery. Large-

amplitude vibrations of machines which must be properly aligned with devices that feed

materials to the machine can lead to improper alignment and improper operation. Many

machine tools require a rigid foundation for effective operation. Equation (4.110) shows

that one way to reduce the amplitude of vibration during operation and the maximum

amplitude is to increase the mass of the isolated system. Equation (4.111) shows that the

only way to reduce the amplitude below a calculated value at a given operating speed is to

increase the system mass. Increasing the mass allows a proportional increase in the stiffness

required to achieve sufficient isolation.

The mass of a system can be increased by rigidly mounting the machine on a block of

concrete. A small machine can be mounted above ground, while a large machine is usually

mounted in a specially designed pit. The static load applied to the isolator and the mount-

ing is increased when the mass of the system is increased.

There are three important considerations in vibration isolator design: the maximum

amplitude during start-up, the steady-state amplitude, and the amplitude of the transmit-

ted force. There are three parameters which can be controlled: m, �n (or �
st
), and �. The

three parameters can be adjusted to provide the necessary isolation.

X
 max 

=
F0

m v2
n

1

2z21 - z2

r 7 12

X 7
F0

m v2

r 7 12

mv2X
F0

= r 2M(r, z) = ¶(r, z)

EXAMPLE 4 . 1 3
A milling machine of mass 450 kg operates at 1800 rpm and has an unbalance which

causes a harmonic repeated force of magnitude 20,000 N. Design an isolation system to

limit the transmitted force to 4000 N, the amplitude of vibration during operation to 

1 mm, and the amplitude of vibration during start-up to 10 mm. Specify the required stiff-

ness of the isolator and the minimum mass that should be added to the machine. Assume

a damping ratio of 0.05.
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SO LU T I ON
The maximum allowable transmissibility is

(a)

The minimum frequency ratio is determined by solving

(b)

which yields r � 2.48 and a maximum natural frequency of

(c)

The maximum amplitude during start-up for the 450-kg machine mounted on an

isolator such that the system natural frequency is 76.0 rad/s is

(d)

The resonant amplitude can be decreased to 10 mm only by increasing the mass to

(e)

When the mass is increased to 3460 kg, the amplitude of vibration of the milling

machine when operating at 1800 rpm is

(f)

The isolator stiffness is calculated by

(g)

The milling machine should be mounted on a concrete block of mass 3010 kg and the

system isolated by springs with an equivalent stiffness of 2 � 107 N/m.

k = mv2
n = (3460 kg) (76.0 rad/s)2 = 2.0 * 107 N/m

X =
20,000 N

(3460 kg) (76.0 rad/s)2 
1

231- (2.48)242 + 32(0.05)(2.48)42 = 0.19 mm

m =
20,000 N

(0.01 m) (76.0 rad/s)2 
1

2(0.05) 21 - (0.05)2
= 3460 kg

X
 max 

=
200,000 N

(450 kg) (76.0 rad/s)2 
1

2(0.05) 21 - (0.05)2
= 76.9 mm

vn =
v

2.48
= 76.0 rad/s

0.2 = A
1 + 0.01 r 

2

1 - 1.99r 
2 + r 

4

T =
4000 N

20,000 N = 0.2

There are three classes of isolators in general use. The choice of an isolator for a partic-

ular application depends on the constraints noted previously, as well as other factors such

as cost, weight limitations space limitations, the amount of damping required, and envi-

ronmental conditions.

Helical coil steel springs are used as isolators when large static deflection (� 3 cm) are

required and a flexible foundation is acceptable. This occurs when good isolation is

required at low operating speeds. Hysteresis in steel springs is low, so discrete viscous

dampers are used in parallel with the springs to provide adequate damping. Steel springs

may be used in combination with other isolation methods when a machine must be

mounted on a concrete block. These isolators can be designed for specific use or can be

obtained commercially.
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244 CHAPTER 4

Isolators made of elastomers are used in applications where small static deflections are

required. If used for larger static loads, the elastomers are subject to creep, reducing their

effectiveness after a period of time. Caution should be taken in using these isolators in

extreme temperatures. Hysteretic damping inherent in the isolators is usually sufficient.

However, discrete dampers can be employed in conjunction with these isolators. The

damping ratio of an isolator depends on the elastomeric material from which it is made,

the steady-state frequency, and the amplitude. The damping ratio for isolators made of nat-

ural rubber varies little with amplitude but is highly dependent on frequency. The damp-

ing ratio of a natural rubber isolator at 200 Hz is � � 0.03, while � � 0.09 at 1200 Hz.

Pads made of materials such as cork, felt, or elastomeric resin are often used to isolate

large machines. Pads used to isolate a specific machine can be cut from larger pads. Pads of

prescribed thicknesses can be placed on top of one another, acting as springs in series, to

provide increased flexibility.

4.9 MULTIFREQUENCY EXCITATIONS
A multifrequency excitation has the form

(4.113)

Without loss of generality, it is assumed that Fi � 0 for each i. The steady-state response

due to a multifrequency excitation is obtained using the response for a single-frequency

excitation and the principle of linear superposition. The total response is the sum of the

responses due to each of the individual frequency terms. Thus, the solution of Equation (4.2)

with the excitation of Equation (4.113) is

(4.114)

where (4.115)

(4.116)

(4.117)

and (4.118)

The maximum displacement from equilibrium is difficult to obtain. The maxima of

the trigonometric terms in Equation (4.114) do not occur simultaneously. An upper bound

on the maximum is

(4.119)X
 max 

… a
n

i =  1
Xi

Mi = M(ri, z) =  1

2(1 - r 2
i )

2 + (2zri)
2

ri =
vi

vn

fi = tan-1 a 2zri

1 - r 2
i

b

Xi =
MiFi

meqv
2
n

x (t) =a
n

i =1

Xi sin (vi t + �i - fi )

F (t ) = a
n

i = 1

Fi  sin (vit + �i)
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EXAMPLE 4 . 14
A slider-crank mechanism is used to provide a base motion for the block shown in Figure 4.23.

Plot the maximum absolute displacement of the block as a function of frequency ratio for

a damping ratio of 0.05. The crank rotates with a constant speed, �.

SO LU T I ON
The instantaneous position of the block relative to point O is

(a)

Application of the law of sines gives

(b)

Thus

(c)

Assuming is small, the binomial expansion is used to expand the square root

(d)

where the expansion has been terminated after the term proportional to sin2 �t and the

double-angle formula is used to replace sin2 �t. The principle of linear superposition and

the theory of Section 4.6 are used to solve for the absolute displacement of the mass

(e)

where (f)

and   (g)

with   (h)r1 =
v

vn

li = tan-1 c 2zr 3
i

1 + (4z2 - 1)r  
2
i

d

Ti = T (ri, z ) = A
1 + (2zri)2

(1 - r i 

2)2 + (2zri)
2

+
l
4
arN

l
b2

T2  sin a2vt - l2 +
p

2
b

x (t ) = l c1 - -
1
4

 a rN

l
b2 d + rNT1 

sin avt - l1 +
p

2
b

y (t) = l -
l
4
a rN

l
b2

+ rN  cos vt +
l
4
a rN

l
b2 

cos 2 vt + Á

rN/l

y (t ) = rN   cos vt + l A1-  a rN
l
 sin vtb2

sin a =
rN

l
 sin vt

y (t ) = rN cos vt +  l cos a

k

m

c

αωt

lr

FIGURE 4.23
Slider crank mechanism
produces multi-frequency
base motion for SDOF
system.
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and   (i)

The response is the sum of the responses due to each frequency term plus the response due

to the constant term. The maximum displacement is difficult to attain. Instead an upper

bound is calculated

(j)

x
max

/l versus �/�n is plotted in Figure 4.24 for and � � 0.05. The graph has two 

peaks. The first peak near �/�n � is smaller than the second peak near �/�n � 1. If

additional terms from the binomial expansion were used, higher harmonics would appear

in the solution. Small peaks on the frequency response curve will appear near values of

�/�n � 1/i where i is an even integer. The magnitude of the peaks grows smaller with

increasing i.

1
2

rN /l = 1
2

xmax 6 l  c1 -
1
4
a rN

l
b2 d + rNT1 +

1
4
arN

l
b2

T2

r2 =
2v
vn

4.10 GENERAL PERIODIC EXCITATIONS

4.10.1 FOURIER SERIES REPRESENTATION
Consider the function H(t) of Figure 4.25. It is periodic of period T. The function is con-

structed such that it is an odd function; that is, if a periodic extension of the function were

performed backward in time (Figure 4.26) and it existed for negative time, then

(4.120)H(- t ) = -H(t )

0
0 0.5 1 21.5

x m
ax

/l

2

1

3

4

5

6

7

r1

FIGURE 4.24
Upper bound on absolute displacement as a function of frequency ratio for system with base motion
provided by slider crank mechanism.
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for all t, . Now consider the function

(4.121)

H
1
(t) is also a periodic function of period T. Now consider the function

(4.122)

H
2
(t) is a periodic function of period T/2. However, a function of period T

2
� T/2 is also

periodic of period T, as

(4.123)

Consider the sequence of functions Hi(t) where

(4.124)

The ith function in the sequence Hi(t) is a periodic function of period Ti � T/i. But a func-

tion of period T/i is also periodic of period T, as

(4.125)Hi(t + T  ) = Hia t + i 
T
i
b = Hi(t + iTi 

) = Hi(t )

Hi(t ) =  sin a2pi
T

tb = sin (i v1t )

H2(t +T  ) = H2a t + 2
T
2

 b = H2(t + 2T2) = H2(t )

H2(t ) = sin a4p
T

tb = sin (2v1t)

H1(t ) = sin a2p
T

tb = sin (v1t )

0 … t … T

–H0

H0

H

T
2

T 3T
2

2T 5T
2

3T
t

FIGURE 4.25
Odd periodic function.

H

–T
2

–T T
2

T
t

FIGURE 4.26
Periodic extension of F (t) one period into
negative time.
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The sequence of functions Hi(t), for i � 1, 2, 3, . . . is said to be complete over the set

of periodic odd functions, which means that any odd periodic function can be written

as a linear combination of elements of the sequence. That is, there exists constants bi
such that

(4.126)

The sequence of partial sums (with appropriate constants) con-

verges to the function of Figure 4.25.

An even function G(t), illustrated in Figure 4.27, is one where if a periodic extension

were made into negative time

(4.127)

for all . The function G
0
(t) � 1 is an even function that is periodic of any period.

The function G
1
(t) � cos � cos(�t) is an even periodic function of period T. Define

the sequence of functions Gi(t) � cos(i�t), i � 1, 2, 3, . . . . The function Gi(t) is an even

function that is periodic of period T/i, and thus, it is also periodic of period T. The

sequence is complete over the set of even periodic functions, which implies there exists con-

stants ai such that

(4.128)

A general periodic function is composed of an odd function and an even function, as

in Figure 4.28:

(4.129)F(t  ) = G(t  ) + H(t )

G(t ) =
a0

2
+ a

�

i = 1

ai cos (i vit)

(2p
T t)

t, 0 … t … T

G (- t ) = G (t )

zn = gn
i = 1 

bi sin (i v1t)

H(t ) = a
�

i = 1

bi sin (i v1t)

–T
2

–T T
2

T

FIGURE 4.27
An even function.

–T
2

–T T
2

T FIGURE 4.28
A function that is neither even or odd.
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Which implies that F(t ) can be written as

(4.130)

where

(4.131)

Equation (4.130) is called the Fourier series representation of F(t). The coefficients in the

expansion are called the Fourier coefficients. They are 

(4.132)

(4.133)

(4.134)

The Fourier series for F(t) has the following properties:

1. The Fourier series representation converges to F(t ) at all t where F(t) is continuous for

.

2. If F (t) has a finite jump discontinuity at t, the Fourier series representation converges

to , which is the average value of F(t).

3. The Fourier series representation converges to the periodic extension of F(t) for t �T.

4. If F(t) is an odd function defined by Equation (4.120), then the Fourier coefficients 

ai � 0 for i � 0, 1, 2, . . . .

5. If F(t) is an even function defined by Equations (4.127), then the Fourier coefficients

bi � 0 for i � 1, 2, . . . .

1
2[F (t 

-) + F (t 
+)]

0 … t … T

bi =
2
TL

T

0
F (t )  sin (vi 

t )dt i = 1, 2, Á

ai =
2
TL

T

0
F (t ) cos (vit )dt i = 1, 2, Á

a0 =
2
TL

T

0
F (t )dt

vi = i v1 =
2pi
T

F (t ) =
a0

2
+ a

�

t = 1

3ai cos (vit ) +  bi  sin  (vit )4

EXAMPLE 4 . 1 5
One period of a periodic excitation is shown in Figures 4.29(a) through (c). Draw the func-

tion that the Fourier series representations for each of these excitations converge to for the

interval [�2T, 2T ].

SO LU T I ON
(a) The function for the convergence of the Fourier series representation is shown in 

Figure 4.29(d). The excitation is even and continuous everywhere.

(b) The function for the convergence of the Fourier series representation for

Figure 4.29(b) is shown in Figure 4.29(e). The function is neither even or odd. It converges

to [2 � (�1)]/2 � 1/2 at t � �2, �1, 0, 1, and 2.

(c) The function for the convergence of the Fourier series representation for Figure 4.29(c)

is shown in Figure 4.29(f). The function is odd. It converges to [2 � (�2)]/2 � 0 at t � �6,

�3, 0, 3, and 6. At t � �4, �1, 2, and 5, the Fourier series converges to [0 � 2]/2 � 1. At

t � �5, �2, 1, and 4, the Fourier series converges to [0 � (�2)]/2 � �1.
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Use of the trigonometric identity for the sine of the sum of two angles and algebraic

manipulation leads to an alternative form for the Fourier series representation

(4.135)

where (4.136)

and (4.137)

Note that , but . The inverse tangent func-

tion has the same argument, but it is multi-valued. A calculator typically evaluates the

inverse tangent between ��/2 and �/2. The calculation for �i must be carried out using

the four quadrant evaluation of the inverse tangent. Using MATLAB, this involves using

the function atan2(a, b), where a is the numerator of the inverse tangent function,

and b is in the denominator.

tan-1 1 0.5
- 0.8662 = -p6 , or 

11p
6tan-11 - 0.5

0.8662 = 2p
3

ki = tan-1 
ai

bi

ci = 2a2
i + b2

i

F (t ) =
a0

2
+ a

�

i =  1
c i   

sin (vi 
t + ki )

2

(d)

3 41–3 –2 –1–4 2

(e)

3 41–3 –2 –1

2

1/2

–4

1

(c)

(b)

(a) 2 32

22

–1 1

–2

21

1

2

(f)

3 4 5 61–3 –2 –1–4–6 –5

FIGURE 4.29
(a), (b), and (c) One period of periodic excitations for Example 4.15 parts (a), (b), and (c). (d), (e), and
(f) Functions that Fourier series converges to over [�2T, 2T ].
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4.10.2 RESPONSE OF SYSTEMS DUE TO GENERAL
PERIODIC EXCITATION
If F(t) is a periodic excitation for a SDOF system with viscous damping, the differential

equation governing the response of the system is

(4.138)

The principle of linear superposition is used to determine the response as

(4.139)

where Mi and are defined in Equation (4.118) and (4.116), respectively.

The principle of linear superposition used to find the steady-state solution of 

Equation (4.139) applies, because the Fourier series converges to something at every value

of t. Under this condition, the method applies and the response converges. While the exci-

tation may be discontinuous, the response of the system must be continuous.

fi

x (t ) =
1

meqv
2
n

 c a0

2
+ a

�

i = 1

ci Mi  sin (v2
i t + ki - fi ) d

x
$ + 2zvnx

# + v2
nx =

1
meq

 c a0

2
+ a

�

l = 1

ci 
sin(vi t + ki ) d

EXAMPLE 4 . 1 6
A punch press of mass 500 kg sits on an elastic foundation of stiffness k � 1.25 � 106 N/m

and damping ratio � � 0.1. The press operates at a speed of 120 rpm. The punching oper-

ation occurs over 40 percent of each cycle and provides a force of 5000 N to the machine.

The excitation force is approximated as the periodic function of Figure 4.30. Estimate the

maximum displacement of the elastic foundation.

SO LU T I ON
From the given information, the period of one cycle is 0.5 s and the natural frequency of

the system is 50 rad/s.

The excitation force is periodic, but it is neither an even function nor an odd function.

Its mathematical representation is

(a)

The Fourier coefficients for the Fourier series representation for F(t) are

(b)

ai =
2

0.5 s
 ¢L0.2 s

0
5000 N cos 4pit dt≤

a0 =
2

0.5 s
 ¢L0.2 s

0
5000 N dt + L

0.5 s

0.2 s
(0) dt≤ = 4000 N

F (t ) = e5000 N 0 6 t 6 0.2 s
0 0.2 s 6 t 6 0.5 s

0.2 0.5 0.7 1.21 t(s)

F(t)

5000 N
FIGURE 4.30
Force developed during punching
operation of Example 4.16 is periodic.
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(c)

and (d)

(e)

The Fourier series representation of the excitation force is

(f)

where (g)

and (h)

An upper bound on the displacement is

(i)

A MATLAB program was written to develop the Fourier series representation for F(t)
and the response of the system, x(t). Figure 4.31 shows the MATLAB generated plots from

which the maximum displacement is determined.

xmax 6
1

mv2
n

 a a0

2
+ a

�

i = 1

ci 
Mi 
b

ki = tan-1 ¢ sin 0.8 pi
1 - cos 0.8 pi

≤
ki =

5000
pi

22(1 - cos 0.8pi ) N

F (t ) =
a0

2
 +a

q

i = 1

ci sin (4pit +ki  
)

=
5000
pi

 cos 4pit 2 0.2 s
0

 N =
5000
pi

 (1 - cos 0.8pi ) N

bi =
2

0.5 s
 ¢L0.2 s

0
5000 N sin 4pit dt≤

=
5000
pi

 sin 4p it 2 0.2 s
0

 N =
5000
pi

 sin 0.8pi N

–1000
0 0.1 0.2 0.70.3 0.4 0.5 0.6

1000

0

2000

3000

4000

5000

6000

time (s)

(a)

F
(t

) 
(N

)

FIGURE 4.31
(a) Fourier series representation for F(t) with 50 terms. (b) x (t) over one period from 50 terms in the
Fourier series representation.
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4.10.3 VIBRATION ISOLATION FOR MULTI-FREQUENCY
AND PERIODIC EXCITATIONS
Vibration isolation of a system subject to a multifrequency excitation can be difficult,

especially if the lowest frequency is very low. Consider a system subject to an excitation

composed of n harmonics

(4.140)

The principle of linear superposition is used to calculate the total response of the system

due to this excitation. The principle of linear superposition is also used to calculate the

transmitted force leading to

(4.141)

where . Since the harmonic terms of Equation (4.141) are out of phase, their 

maxima occur at different times. A closed-form expression for the absolute maximum

is difficult to attain. The following is used as an upper bound:

(4.142)

An initial guess for the upper bound is obtained by determining the natural frequency such

that the transmitted force due to the lowest-frequency harmonic only is reduced to FT .

Since additional forces at higher frequencies are present, greater isolation is required.

The natural frequency can be systematically reduced from this initial guess, checking

Equation (4.142), until an upper bound is obtained.

FTmax
6 a

n

i = 1

FiT (ri , z)

ri =
v

i
vn

FT (t ) = a
n

i = 1
T (ri, z)Fi sin (vit + �i - li)

F (t ) = a
n

i =   1
Fi sin (vi 

t + �i)

0 0.1 0.2 0.70.3 0.4 0.5 0.6

5

0

10

time (s)

(b)

x(
t)

 (
m

)

×10–3

FIGURE 4.31
(Continued)
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EXAMPLE 4 . 1 7
The 500-kg punch press of Example 4.16 is to be mounted on an isolator such that the max-

imum of the repeating force transmitted to the floor is 1000 N. Determine the required

static deflection of an isolator, assuming a damping ratio of 0.1. What is the resulting max-

imum deflection of the isolator during the punching operation?

SO LU T I ON
From Example 4.16, the excitation force is periodic and is expressed by a Fourier series as

(a)

The 2000 N term is the average force applied to the punch during one cycle. It contributes

to the total static load applied to the floor and is not part of the repeating load. Application

of Equation (4.142) to the repeating components of loading gives

(b)

where (c)

An initial guess for an upper bound for the natural frequency is obtained by calculat-

ing r
1

such that the transmitted force due to the lowest-frequency harmonic is less than

1000 N. This leads to

(d)

which gives r
1

� 2.06. Defining

(e)

it is desired to solve

(f)

A lower bound on the value of r
1

that solves the preceding equation is 2.06. A trial-and-error

solution using ten terms in the summation is used to determine r
1
, leading to r

1
� 2.19. For

r
1

� 2.19, an upper bound for the natural frequency is calculated as

(g)

The required static deflection of the isolator is . The static deflection

is excessive, and a flexible foundation is required. The total static load on the isolator is the

weight of the machine plus the average value of the excitation force, a
0
/2 � 2000 N. Thus,

the total static load to be supported is

(h)Fstatic = (500  kg)(9.81  m/s2) + 2000  N = 6905  N

�st =  g/v2
n =  298  mm

vn =
v1

2.19
=

4p
2.19

= 5.74  rad/s

f  (r1) = 1000

f  (r1) =
500022
p a

�

i = 1

1
i
21 - cos 0.8pi T (ir1, z)

1000 =
5000
p

22(1 - cos 0.8p)A
1 + (0.2r1)2

(1 - r  
2
1)

2 + (0.2r1)
2

ri =
4pi
vn

= ir1

1000 7
500022
p a

�

i = 1

1

i
21 - cos 0.8pi T (ri , z)

F (t ) = 2000 +
500022
p a

�

i = 1

1
i
21 - cos 0.8pi sin (4pit + ki ) N
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4.11 SEISMIC VIBRATION MEASURING INSTRUMENTS
Time histories of vibrations are sensed using seismic transducers. A transducer is a device that

converts mechanical motion into voltage. A schematic of a piezoelectric transducer is shown

in Figure 4.32. The transducer is mounted on a body whose vibrations are to be measured.

As the vibrations occur, the seismic mass moves relative to the transducer, causing deforma-

tion in the piezoelectric crystal. A charge is produced in the piezoelectric crystal that is pro-

portional to its deformation. The charge is amplified and displayed on an output device. The

measured signal is the motion of the seismic mass relative to the transducer housing.

4.11.1 SEISMOMETERS
A model of the transducer is shown in Figure 4.33. The piezoelectric crystal is assumed to

provide viscous damping. The purpose of the transducer is to measure the motion of the

body, y(t). However, it actually measures z(t), which is the displacement of the seismic mass

relative to the body. Assume the vibrations of the body are a single-frequency harmonic of

the form

(4.143)

The displacement of the seismic mass relative to the vibrating body is

(4.144)

where Z = Y¶(r, z)  f =  tan-1 ¢ 2zr

1 - r 2≤
z(t) = Z  sin (v t - f)

y (t ) = Y sin vt

Seismic
mass

Preload
spring

Housing

Output
Piezoelectric

element

x(t)

y(t)

Seismic
mass

Housing

z(t)

y(t)

m

k c

FIGURE 4.32
Diagram of a piezoelectric crystal trans-
ducer. As seismic mass moves, a charge is
produced in the piezoelectric element that
is proportional to its deflection. The trans-
ducer actually measures z(t) � x(t) � y(t).

FIGURE 4.33
Schematic representation of the trans-
ducer. The piezoelectric crystal provides
viscous damping and stiffness.
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and 
(r, � ) is defined by Equation (4.53) and r � �/�
n
, where �

n
and � are the natural

frequency and damping ratio of the transducer.

Figure 4.11 shows that 
 is approximately 1 for large r (r � 3). In this case the ampli-

tude of the relative displacement which is monitored by the transducer is approximately the

same as the vibration amplitude of the body. From Figure 4.8, it is noted that for large r, � is

approximately �. Thus for large r, the transducer response is approximately that of the

response to be measured, but out of phase by � radians.

A seismic transducer that requires a large frequency ratio for accurate measurement is

called a seismometer. A large frequency ratio requires a small natural frequency for the trans-

ducer. This, in turn, requires a large seismic mass and a very flexible spring. Because of the

required size for accurate measurement, seismometers are not practical for many applications.

The percentage error in using a seismic transducer is

(4.145)

When using a seismometer the percentage error is

(4.146)

4.11.2 ACCELEROMETERS
The acceleration of the body is

(4.147)

Noting that Z/Y � 
(r, � ) and 
 � r2M(r, � ) leads to

(4.148)

Comparing Equation (4.144) to Equation (4.148) makes it apparent that

(4.149)

The negative sign in Equation (4.148) is taken into account in Equation (4.149) by sub-

tracting � from the phase. For small r, M(r, �) is approximately 1, and

(4.150)

Thus, for small r, the acceleration of the particle to which the seismic instrument is

attached is approximately proportional to the relative displacement between the particle

and the seismic mass, but on a shifted time scale. A vibration measuring instrument that

works on this principle is called an accelerometer. The transducer in an accelerometer

records the relative displacement, which is electronically multiplied by , which is the

square of the natural frequency of the accelerometer. The acceleration is integrated twice to

yield the displacement.

v2
n

y
$
(t ) L v2

nz ¢t -
f

v
-
p

v
≤

y
$
(t ) =

v2
n

M(r, z)
 z ¢t -

f

v
-
p

v
≤

y
$
(t ) = -v2

 
Z

¶(r, z)
 sin vt = -v2

 
Z

r 
2M(r, z)

 sin vt = -v2
n 

Z
M

 sin vt

y
$
(t ) = -v2Y sin vt

E = 100 2 Y - Z
Y
2 = 100| 1 - ¶ |

E = 100 2 Yactual - Ymeasured

Yactual

2
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The natural frequency of an accelerometer must be high to measure vibrations accu-

rately over a wide range of frequencies. The seismic mass must be small and the spring stiff-

ness must be large. The error in using an accelerometer is

(4.151)

Consider the measurement of the vibration of a multifrequency vibration,

(4.152)

According to the theory of Section 4.9 (the principle of linear superposition), the displace-

ment of a seismic mass relative to the housing of a seismic instrument is
(4.153)

The accelerometer measures . Note that each term in the summation of

Equation (4.153) has a different phase shift. When summed, the accelerometer output will

be distorted from the true measurement. This phase distortion is illustrated in

Figure 4.34(a), which compares the accelerometer output to the signal to be measured for

a 10-frequency vibration. The damping ratio of the accelerometer is 0.25, and the largest

frequency ratio in the measurement is 0.66.

Accelerometers are used only when r � 1. In this frequency range, the phase shift is

approximately linear with r for � � 0.7 (See Figure 4.8). Then

(4.154)fi = a 

vi

vn

-v2
nz (t )

=
1
v2

n

 a
n

i = 1

v2
i M(ri, z)Yi sin (vi  

t + �i - fi )

z (t ) = a
n

i = 1

¶(ri , z)Yi sin (vit + �i - fi )

y (t ) = a
n

i = 1

Yi sin (vi t + �i )

E = 100 2 v2Y - v2
nZ

v2Y
2 = 100 2 1 -

1
r 2¶(r, z) 2 = 100| 1 -  M (r, z) |
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FIGURE 4.34
Comparison of a(t), which is
the acceleration to be meas-
ured, and which is
the acceleration actually
measured or predicted, for a
vibration composed of 10
different frequencies. (a)
The phase distortion is obvi-
ous with an accelerometer
damping ratio 0.25. (b) The
accelerometer damping ratio
is 0.7, which eliminates the
phase distortion, giving a
phase shift.

v2
nz (t ),
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where 
 is the constant of proportionality. Using Equation (4.154) in Equation (4.153)

leads to

(4.155)

If ri V 1, then M (ri, � ) � 1 for i � 1, 2, . . . , n and

(4.156)

Thus, when an accelerometer with � � 0.7 is used, its output device duplicates the actual

acceleration, but on a shifted time scale. This is illustrated in Figure 4.34(b), which com-

pares the use of Equation (4.153) with  � � 0.7 to the actual acceleration for the example

of Figure 4.34(a).
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FIGURE 4.34
(Continued)

EXAMPLE 4 . 18
What is the smallest natural frequency of an accelerometer of damping ratio 0.2 that meas-

ures to vibrations of a body vibrating at 200 Hz with an error of a 2 percent?

SO LU T I ON
Requiring that the error in the measurement is less than 2 percent is equivalent to requir-

ing that

(a)

Since the damping ratio is 0.2, which is less than , M(r, 0.2) � 1 near r � 0. Thus, 

Equation (a) is equivalent to

M (r, 0.2) � 1.02 (b)

121/

100| 1 - M(r, 0.2) | 6 2
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4.12 COMPLEX REPRESENTATIONS
The use of complex algebra provides an alternative method to the solution of the differen-

tial equations governing the forced response of systems subject to harmonic excitation. It

can prove to be less tedious than the use of trigonometric solutions. Recall that if Q is a

complex number, it has the representation

(4.157)

where Q r � Re (Q) is the real part of Q and Q i � Im (Q) is the imaginary part of Q. The

complex number also has the polar form

(4.158)

where A is the magnitude of Q and � is the phase of Q. Euler’s identity

(4.159)

leads to

(4.160)

and (4.161)

In view of Euler’s identity, it is noted that

(4.162)

Thus the standard form of the differential equation governing the motion of a linear one

degree-of-freedom system subject to a single-frequency sinusoidal excitation can be written as

(4.163)x
$ + 2 zvn x# + v2

nx =
F0

m
 Im(e ivt )

cos (vt ) = Re (e  
ivt )  sin (vt ) = Im (e 

ivt )

f = tan-1 ¢Q i

Q r

 ≤
A = 2Q2

r + Q2
i

e 
if = cos f + i sin f

Q = Ae 
i f

Q = Q r + iQ i

or

(c)

Equation (c) is solved leading to r � 0.146 or r � 1.349. However, the accelerometer

works on the principle of small r, so the second solution is rejected. It is also rejected

because for some r � 1.349, M(r, 0.2) � 0.98 and when the error in the accelerometer

measurement is greater than 2 percent. Thus, it is required that r � 0.146, leading to

(d)
v

vn

6 0.146 Q vn 7
v

0.146
=
¢200 

cycles

s
≤ ¢2p  rad

cycle
≤

0.146
= 8.60 * 103 rad

s

1

2(1 - r 2)2 + 32(0.2)r42 6 1.02
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Then the solution of Equations (4.163) is the imaginary part of the solution of

(4.164)

A solution of Equation (4.164) is assumed as

(4.165)

where H is complex. Substitution of Equation (4.165) into Equation (4.164) leads to

(4.166)

Equation (4.166) can be rewritten by using the definition of the frequency ratio r � � /�n:

(4.167)

Multiplying the numerator and denominator by the complex conjugates of the denominator

puts H in its proper form as

(4.168)

Then, from Equations (4.160) and (4.161), H can be written as

(4.169)

where (4.170)

and (4.171)

Equations (4.170) and (4.171) are the same as those derived by using a trigonometric solu-

tion. The system response is

(4.172)

A graphical interpretation of the complex representation of the excitation and response is

shown in Figure 4.35.

4.13 SYSTEMS WITH COULOMB DAMPING
The differential equations derived using the free-body diagram of Figure 4.36 governing

the response of a one degree-of-freedom system with Coulomb damping due to a harmonic

excitation are

(4.173a)

(4.173b)

where Ff � 	mg is the magnitude of the friction force.

mx
$ + kx = F0 sin  (vt + �) + Ff            x

# 6 0

mx
$ + kx = F0 sin  (vt + �) - Ff            x

# 7 0

x (t ) = Im (Xe -ife 
vt ) = X  sin(vt - f)

f = tan-1a 2zr

1 - r 
2 b

X =
F0

mv2
n

1

2(1 - r 2)2 + (2zr)2

H = Xe -if
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mv2
n3(1 - r 2)2 + (2zr)24(1 - r 2 - 2izr)
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FIGURE 4.35
Graphical representation
of excitation and response
in complex plane.
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If the initial displacement and velocity are both zero, motion commences only when

the excitation force is as large as the friction force. Motion will continue until the resultant

of the spring force and the excitation force is less than the friction force,

(4.174)

The resultant eventually grows large enough such that the inequality in Equation (4.174)

is no longer satisfied, when motion again commences. This process is known as stick-slip

and can occur several times during one cycle of motion.

Equation (4.173) is nonlinear. Thus, the principles guiding the solution of linear dif-

ferential equations are not applicable. Specifically, the general solution cannot be written

as a homogeneous solution independent of the excitation plus a particular solution. Thus,

even though free vibrations of a system with Coulomb damping decay linearly and even-

tually cease, it is not possible to predict the particular solution as a steady-state solution.

Indeed, from the preceding discussion, the stick-slip process should occur for large time

and cannot be predicted by a particular solution.

The analytical solution to Equation (4.173) can be attained using a procedure similar

to that of Section 3.7 used to obtain the free-vibration response of a system subject to

Coulomb damping. The solution of Equations (4.173a and b) are readily available over the

time that the equation governs. The constants of integration are determined by noting that

the velocity is zero and the displacement is continuous at the time when the equation first

begins to govern. Equation (4.174) must be checked over each half-cycle to determine if

and when the mass sticks.

The analytical solution is very involved and difficult to use to predict long-term behav-

ior. In many applications only the maximum displacement is of interest. It is a function of

five parameters

(4.175)X = f  (m, v, vn, F0, Ff  
)

| kx - F0 sin vt | 6 Ff 
Q x# = 0

N

=kx

mg

External
forces

Effective
forces

Ff = µmg

F0 sinwt

N

mẍ 

mẍ 

=
kx

mg

Ff = µmg

F0 sinwt

(a)

(b)

FIGURE 4.36
FBDs for systems subject
to Coulomb damping and a
harmonic excitation at an
arbitrary instant for (a)

and (b) .x# 6 0x# 7 0
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262 CHAPTER 4

Using [M], [L], and [T] as basic dimensions, the Buckingham Pi theorem implies that

the nondimensional formulation involves 6 � 3 � 3 dimensionless groups. The non-

dimensional formulation of Equation (4.176) is

(4.176)

where (4.177)

For small �, the friction force is much less than the magnitude of the excitation force, and

it is expected that the transient solution will decrease as t increases and a harmonic steady

state of the form

(4.178)

exists for large t. In this case the effects of Coulomb damping can be reasonably approxi-

mated by an equivalent viscous damping model as discussed in Section 3.9. The equivalent

viscous damping coefficient for Coulomb damping is

(4.179)

An equivalent damping ratio is defined by

(4.180)

Rearrangement of Equation (4.180) leads to

(4.181)

where Mc, the magnification factor for Coulomb damping, is

(4.182)

Using �
eq

in place of � in Equation (4.42) leads to

(4.183)

which is solved for Mc, yielding

(4.184)

The magnification factor for Coulomb damping is plotted in Figure 4.37 as a function of

r for several values of �. The following are noted from Equation (4.184) and Figure 4.37.

Mc(r, i) = Q
1 - a4i

p b
2

(1 - r 2)2

Mc(r, i) =
1

A(1 - r 2)2 + ¢ 4i
pMc
≤ 2

Mc =
mv2

nX

F0

zeq =
2i  F0

prmv2
nX

=
2i
p r Mc

zeq =
ceq

2mvn

=
2Ff

pmvvnXc

ceq =
4Ff

pvXc

x (t ) = Xc sin (v t - fc 
)

i =
Ff

F0

mv2
nX

F0

= f (r, i)
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1. The small � theory predicts that Mc(r, �) exists only for � � �/4. The equivalent 

viscous damping theory cannot be used to predict the maximum displacement 

for � � �/4.

2. (4.185)

3. Resonance occurs for systems with Coulomb damping with small � when r � 1.

Resonance occurs because, for small �, the excitation provides more energy per cycle

of motion than is dissipated by the friction. Since free vibrations sustain themselves at

the natural frequency, the extra energy leads to an amplitude buildup.

4. For all values of r, M
c

is smaller for larger �.

When Equation (4.181) is substituted into Equation (4.45) and the resulting equation

manipulated, the following result for the phase angle occurs:

(4.185a)

(4.185b)

The phase angle is constant with r, except that it is positive for r � 1 and negative  

for r � 1.

The preceding theory is sufficient for small �. For larger �, the equation is truly non-

linear and the results more complex. However, it is expected that larger � leads to smaller-

amplitude vibrations and less serious problems. In the absence of initial energy, vibrations

will not be initiated for � � 1.

fc = - tan-1≥
4i
p

A1 - a4i
p b

2
¥             r 7 1

fc = tan-1≥
4i
p

A1 - a4i
p b

2
¥             r 6 1

limr  :� Mc(r, i) =
1
r 2

0
0 1 2

1

2

3

r

ι = 0.7 ι = 0.05

ι = 0.6
ι = 0.4

M
c

FIGURE 4.37
Mc(r, �) versus r for different
values of � using an equivalent
viscous-damping coefficient.
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264 CHAPTER 4

EXAMPLE 4 . 1 9
A Scotch yoke mechanism operating at 30 rad/s is used to provide base excitation to a block

as shown in Figure 4.38. The block has a mass of 1.5 kg and is connected to the Scotch

yoke through a spring of stiffness 500 N/m. The coefficient of friction between the block

and the surface is 0.13. Approximate the steady-state response of the block.

SO LU T I ON
The differential equation governing the motion of the block is

(a)

The amplitude of the excitation is kl. Thus

(b)

The system’s natural frequency and frequency ratio are

(c)

The Coulomb damping magnification factor is

(d)

The steady-state response is calculated from

(e)

(f)

The phase angle is calculated from Equation (4.185b) as

(g)

The response of the system is

(h)x (t ) = 0.0588 sin (18.26t + 0.0488)m

fc = -  tan -1≥
4(0.038)
p

1 - a4(0.038)
p

b2
¥ = -0.0488

X = (0.1  m)(0.587) = 0.0588  m

mv2
nX

kl
=

X
l

= Mc(1.64, 0.038)

Mc(1.64, 0.038) = Q
1 - c4(0.038)

p
d2

31 - (1.64)242 = 0.587

vn = A
k
m

= 18.26  rad/s           r =
v

vn

= 1.64

i =
mmg

kl
=

(0.13)(1.5  kg)(9.81  m/s2)

(500  N/m)(0.1  m)
= 0.038

mx
$ + kx = kl   sin vt < mmg

l = 10 cm

ω = 30 rad/s

1.5 kg

k = 500 N/m

µ = 0.13

FIGURE 4.38
Scotch yoke mechanism providing
base displacement for system with
Coulomb damping.
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4.14 SYSTEMS WITH HYSTERETIC DAMPING
Recall from Section 3.8 that the energy dissipated per cycle of motion for a system with

hysteretic damping is independent of frequency but proportional to the square of the

amplitude. This leads to the direct analogy between viscous damping and hysteretic damp-

ing and the development of an equivalent viscous damping coefficient

(4.186)

The true forced response of a mass-spring system with hysteretic damping is non-linear.

The equivalent viscous damping coefficient of Equation (4.186) is valid only when the

excitation consists of a single-frequency harmonic. During the initial part of the response,

the transient solution and the particular solution have harmonic terms with different fre-

quencies. On the basis of the viscous damping analogy, it is suspected that the transient

solution decays leaving only the steady-state solution after a long time. The differential

equation governing the steady-state response of a mass-spring system with hysteretic damp-

ing due to a single-frequency harmonic excitation is assumed to be

(4.187)

It is noted that the generalization of Equation (4.187) to a more general excitation is not

permissible because the damping approximation is valid only for a single-frequency har-

monic excitation. The equation is also nonlinear so that the method of superposition is not

applicable to determine particular solutions for multifrequency excitations.

The steady-state solution of Equation (4.187) is obtained by comparison with

Equation (4.2). The equivalent damping ratio is

(4.188)

The steady-state response is

(4.189)

where Xh and �h are obtained by analogy with Equations (4.37), (4.42), and (4.45)

(4.190)

(4.191)

(4.192)

Equations (4.191) and (4.192) are plotted in Figures 4.39 and 4.40. The following are

noted from these equations and figures:

1. (4.193)Mh(0, h) =
1

21 + h 2

fh = tan-1a h
1 - r 2 b

Mh(r, h) =
1

2(1 - r 2)2 + h 2

mv2
nXh

F0

= Mh(r, h)

x (t ) = Xh sin (vt - fh 
)

zeq =
h
2r

mx
$ +

kh
v

 x# + kx = F0 sin (vt + �)

ceq =
hk
v
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266 CHAPTER 4

2. (4.194)

3. For a given h, when r � 1 and the maximum value of .

4. The phase angle is non-zero for r � 0. The response is never in phase with the excitation.

5.

Most damping is not viscous, but hysteretic. The differences are slight, but noticeable.

Viscous damping is often assumed, even when hysteretic damping is present. The viscous

damping assumption is easier to use because the damping ratio is independent of fre-

quency. For hysteretic damping, the damping ratio is higher for lower frequencies.

If the concept of complex frequency from Section 4.13 is used, the differential equa-

tion for the forced response with hysteretic damping becomes

(4.195)mx$ +
hk
v

 x# + kx = F0e
ivt

limr :� 
fh = p

Mh(r, h) =
1
h

dMh

dr
= 0

limr : � 
Mh(r, h) =

1

r 2

0
0 1 2 3

M
h

4

2

6

8

10

r

h = 0.3

h = 0.2

h = 0.1

h = 0.01

h = 0.5
h = 0.7

h = 1.0

f h

0
0 0.5 1 1.5 2.52

2

1

3

4

r

h = 1.0
h = 0.4

h = 0.1
h = 0.01

FIGURE 4.39
Magnification factor for
hysteretic damping for
different values of h.

FIGURE 4.40
versus r for different

values of h. The response of a
system with hysteretic damp-
ing is never in phase with the
excitation.

fh
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Assuming a solution of the form, results in

(4.196)

which is the same response obtained from the differential equation as

(4.197)

Thus, the forced response of a system with hysteretic damping can be modeled by a system

with a complex stiffness of k (1 � ih).

mx
$ + k(1 + ih)x = F0e

ivt

H =
F0

-mv2 + k (1 + ih)

x (t ) = He ivt

EXAMPLE 4 . 2 0
A 100-kg lathe is mounted at the midspan of a 1.8-m simply supported beam 

(E � 200 � 109 N/m, I � 4.3 � 10�6 m4). The lathe has a rotating unbalance of 0.43 kg . m

and operates at 2000 rpm. When a free vibrations test is performed on the system it is

found that the ratio of amplitudes on successive cycles is 1.8 to 1. Determine the steady-

state amplitude of vibration induced by the rotating unbalance. Assume the damping is

hysteretic.

SO LU T I ON
The beam’s stiffeness is

(a)

The natural frequency and frequency ratio are

(b)

(c)

The logarithmic decrement and hysteretic damping coefficient are calculated as

(d)

The appropriate form of � for hysteretic damping is

(e)

(f)

The lathe’s steady-state amplitude is

(g)X =
m0e

m
¶h(0.787, 0.187) =

0.43  kg # m

100  kg
 (1.46) = 6.3  mm

¶h(0.787, 0.187) =
(0.787)2

231 - (0.787)242 + (0.187)2
= 1.46

¶h(r, h) =
r 2

2(1 - r 2)2 + h 2

d = ln  1.8 = 0.588  h =
d

p
= 0.187

r =
v

vn

=
(2000  rev/min)(2p  rad/rev)(1   min /60  s)

266.1  rad/s
= 0.787

vn = A
k
m

= A
7.08 * 106

  N/m
100  kg

= 266.1  rad/s

k =
48EI

L3 =
48(200 * 109

  N/m2)(4.3 * 10-6
  m4)

(1.8  m)3 = 7.08 * 106
  
 N/m
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4.15 ENERGY HARVESTING
In MEMS systems, the desire is to harvest energy from vibration: that is, to capture the

energy from unwanted vibrations. A crude energy harvester, shown in Figure 4.41, con-

sists of a seismic mass attached through an elastic element to the body whose vibrations

are to be harvested (say, a machine). In addition to the stiffness which is necessary to

generate vibrations of the harvester, a damping element must be present. The damping

is to facilitate power transfer from the harvester and convert the power to electrical

energy.

The harvester is subject to the vibrations of its base, which excites the harvester. The

relative vibration between the harvester and the machine is

(4.198)

The energy harvested by the viscous damper over one cycle of motion is the work done by

the force in the viscous damper as leading to

(4.199)

The average power is

(4.200)

Substituting Z � Y�(r, � ), c � 2��mn, and yields

(4.201)

A nondimensional average power is defined as

(4.202)

Equation (4.202) is a nondimensional relationship for the average power generated by a

specific energy harvester over a range of frequencies. The nondimensional function 

� (r, �) is plotted in Figure 4.42 for several values of �.

The maximum average power is obtained from

(4.203)

Evaluation of Equation (f ) leads to

(4.204)r 4 - 3(2 - 4z2 )r 2 + 1 = 0

=
z

[(1 - r 2)2 + (2zr)2]2 {5r 5[(1 - r 2)2 + (2zr)2] + r 6[4r 3 - 2(2 - 4z2)r]}

d °
dr

= 0 =
d
dr

 c zr 6

(1 - r 2)2 + (2zr)2 d

P
mv3

nY  
2 = zr 2¶2(r, z) = °(r, z)

 P = zm v3
nr 

2¶2(r, z)Y  
2

r = v
vn

 P =
vE
2p

=
v

2p
(pc vZ 2) =

1

2
c v2Z 2

c v2Z 2 cos 2(vt - f)  dt = pc vZ 2

L
2p
v

0

E = L
T

0
cz# 2

  dt =

cz# = c vZ   cos (vt - f),

z (t ) = Z   sin (vt - f)

k

m
x

y(t)

c = cm + cc

FIGURE 4.41
An energy harvester captures
the vibrations of a body and
converts the energy of the
vibration to electrical energy.
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The solutions to Equation (g) are

(4.205)

The maximum average power is obtained by substituting Equation (4.205) into Equa-

tion (4.205). Equation (4.205), which is plotted in Figure 4.43, shows that for 

a real value of r that solves Equation (4.204) does not exist. The value z 7 13
3 = 0.577

r = 	 c3
2

(2 - 4z2) 	
1
2
232 - 144z2 + 144z4 d0.5

0
0 0.5 1.51

1

0.5

1.5

2

2.5

3

r

ψ

z = 0.1

z = 0.2

z =
 0.3

z =
 0.4

z =
 0.5

FIGURE 4.42
� (r, �) versus r for several
values of �. For � 
 0.577, the
function has a maximum.

0
0 0.1 0.2 0.3 0.4 0.70.5 0.6

r

1.5

2

2.5

ζ

FIGURE 4.43
Solution of Equation (4.204)
as a function of �. � (r, 0.577)
has a maximum value at r � 1.
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of r for which the power has a maximum only exists for � � 0.577. The plot of the maxi-

mum average power over the range 0 
 � 
 0.577 is plotted in Figure 4.44. The maximum

average power reaches a maximum around � � 0.45.

Figure 4.44 is the plot of maximum power versus � for an energy harvester of a given

natural frequency; the natural frequency appears in the nondimensionalization of �. In

energy harvesting, the task is to decide upon the best natural frequency �n to harvest the

energy at the vibration frequency �. A reformulation yields of the average power dissipated

by the viscous damper such that � is a parameter in the non-dimensionalization of and

yields

(4.206)

Figure 4.45 shows �(r, �)versus r for several values of �. The maximum of �(r, �) over all

r is obtained from

(4.207)

which yields

(4.208)

The real solution of Equation (4.208) is plotted in Figure 4.46, and the maximum average

power from Equation (4.206) is plotted in Figure 4.47 on page 272.

r = c1
3
a1 - 2z2 	 24 - z2 + z4b d0.5

d £
dr

=
d
dr

 c zr

(1 - r 2)2 + (2zr)2 d =
z3-3r 4 + (2 - 4z2)r 2 + 14
3(1 - r 2)2 + (2zr)242 = 0

P
mv3Y 2 =

z

r
¶2(r, z) = £  (r, z)

 P

0
0 0.1 0.2 0.3

z
0.4 0.70.5 0.6

ψ
m

ax

1.5

1

0.5

2

2.5FIGURE 4.44
�max versus �.
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0
0 0.5 1.51

Φ

1

0.5

1.5

2

2.5

3

r

z = 0.1

z = 0.2

z = 0.3

z = 0.4

z = 0.5

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

0 0.1 0.2 0.3 0.4

z
0.70.5 0.6

r

1

FIGURE 4.45
� (r, �) versus r for several
values of �.

FIGURE 4.46
Solution of Equation (4.207)
as a function of �.
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272 CHAPTER 4

The maximum power is predicted to approach infinity for � � 0, but this is the reso-

nance condition. A steady-state is not reached, so the solution is not applicable. Figure 4.47

suggests that the optimal damping ratio is small. However, part of the damping ratio is

from the electrical circuit that captures the energy. Thus, damping is required. However,

from Figure 4.45, it is clear that a larger damping ratio gives a wider range of frequencies

over which the harvester can be used.

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.70.5 0.6

P

30

ζ

FIGURE 4.47
�max versus �.

EXAMPLE 4 . 2 1
An energy harvester is being designed with a damping ratio of 0.1 to harvest vibrations at

an amplitude of 0.1 mm 30 Hz. The mass of the harvester is 1.5 g. What is the theoreti-

cal power harvested in one hour of operation?

SO LU T I ON
Equation (4.208) implies that r � 0.9962, and the natural frequency of the harvester

should be

(a)

The nondimensional function � is

(b)£(0.9962, 0.1) =
(0.1)(0.9962)

31 - (0.9962)24 + 32(0.1)(0.9962)42 = 2.50

vn = 0.9962a30 

cycles

s
b a 2p  rad

cycle
b = 187.8  rad/s
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The average power harvested over one cycle is obtained from Equation (4.206) as

(c)

The number of cycles executed in one hour is

(d)

The power harvested in one hour is

(e)P = n P = 108,000(0.2511  mW) = 27.2  W

n = (1  hr)(3600  s/hr)(30  cycles/s) = 108,000  cycles

(0.0001m)2(2.50) = 0.2517 mW

 P = mv3Y  
2£(0.9962, 0.1) = (0.0015 kg)(188.5 rad/s)3

4.16 BENCHMARK EXAMPLES

4.16.1 MACHINE ON FLOOR OF INDUSTRIAL PLANT
During operation, the machine develops a sinusoidal force of amplitude of 90 kN at a speed

of 80 rad/s. The ratio of the excitation frequency to the natural frequency is

(a)

Assuming the system is undamped, the steady-state amplitude of the machine is

(b)

Assuming viscous damping with a damping ratio of 0.0110, the steady-state amplitude is

(c)

The amplitude of the machine assuming hysteretic damping of the hysteretic damping

coefficient 0.0347 is

(d)

The force transmitted to the floor is too large. A vibration isolator is designed to pro-

tect the floor from large transmitted forces generated during operation of the machine.

An isolator modeled as a spring in parallel with a viscous damper is placed between the

machine and the foundation. If the mass of the beam is ignored, the isolator is in series

= 0.0108  m

=
90,000 N

(570.69  kg)(144.9  rad/s)2 
1

2[1 - (0.552)2]2 + (0.0347)2

X =
F0

mv2
n

 Mh(0.552, 0.0347)

=  0.0108  m

=
90,000  N

(570.69  kg)(144.9  rad/s)2

1

2[1 - (0.552)2]2 + [2(0.0110)(0.552)]2

X =
F0

m v2
n

 M(0.552, 0.0110)

X =
F0

mv2
n

 M(0.552) =
90,000  N

(570.69  kg)(144.9  rad/s)2   
1

1 - (0.552)2 = 0.0108  m

r =
v

vn

=
80  rad/s

144.9  rad/s
= 0.552
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with the beam, as illustrated in Figure 4.48(a), but the stiffness of the beam is much

larger than the stiffness of the isolator. The equivalent stiffness is approximately that of

the isolator. Thus, the flexibility of the beam is ignored, and the isolator is designed based

upon a SDOF model, as illustrated in Figure 4.48(b).

To limit the transmitted force to 22,500 N,

(e)

which is equivalent to

(f)

The required value of r is obtained by solving Equation (f ) for a specific value of �. The

maximum natural frequency is . The maximum stiffness is

determined from , recalling that the weight of the machine is 4500 N. The results 

of the calculation for � � 0 are r � 2.24, and . 

The mass of the machine without the added inertia effects of the beam was used in the

calculation of the stiffness.

The assumption that the stiffness of the beam is much larger than the stiffness of the

isolator is checked. The maximum isolator stiffness is 5.81 � 105 N/m, whereas the stiff-

ness of the beam is 1.20 � 107 N/m, which is 20.7 times the stiffness of the isolator. Thus,

the assumption is valid.

Allowing the maximum transmitted force to vary, Figure 4.49 shows the maximum

stiffness as a function of maximum transmitted force for � � 0 and � � 0.1.

4.16.2 SIMPLIFIED SUSPENSION SYSTEM
The differential equation of the vehicle as it traverses a road is

(a)

The displacement of the vehicle relative to the road is z � x � y and is governed by the

equation

(b)mz
$ + cz# + kz = m y

$

m x
$ + cx# + kx = cy# + ky

k = 5.81 * 105 N/mvn = 35.6 rad/s,
k = mv2

n

vn = v
r  with v = 80 rad/s

0.25 = A
1 + (2zr)2

(1 - r)2 + (2zr)2

T(r, z) =
FT

F0

=
22,500  N

90,000  N
= 0.25

ciki

m

x

kb
ck

m

x

(a) (b)

FIGURE 4.48
(a) When the mass of the beam is ignored, the
beam is in series with the isolator. As an approxi-
mation, when a series combination is used to cal-
culate the equivalent stiffness of the isolator and
the beam, the stiffness of the beam is much larger
than the stiffness of the isolator and can be
ignored. (b) SDOF model of isolator between
the machine and the beam.
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or

(c)

Consider the vehicle having a constant horizontal speed v as it traverses a road with a sinu-

soidal road contour . Since the vehicle is traveling at a constant horizontal 

speed, it traverses a distance � in time vt. Thus, the time-dependent displacement imparted to

the vehicle is . Thus, the input is a sinusoidal input of frequency .

The input to the relative displacement equation is a frequency-squared excitation of

amplitude m�2Y. The key steady-state quantities are the steady-state amplitude of relative

displacement

(d)

and the amplitude of absolute acceleration

(e)

The amplitude of absolute acceleration can be written as

(f)

Plots of Z versus vehicle speed and A versus speed of the empty vehicle (for a half-loaded

vehicle and a fully loaded vehicle for d � 5 m and Y � 0.02) are given in Figures 4.50 and

4.51, respectively. The plots are made for a vehicle with �n � 6.32 rad/s and a damping

ratio of 0.316.

A
v2

nY
= r 2T(r, z) = R(r, z)

A = v2X = v2YT(r, z)

Z = Y¶(r, z)

v = 2pv
dy (t ) = Y sin 12pv

d t2
y (j ) = Y sin 12pjd 2

z
$ + 2zvnz

# + v2
nz = y

$

FIGURE 4.49
Maximum stiffness of isolator
as a function of maximum
transmitted force for � � 0
and � � 0.1.
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Next, consider the vehicle as it traverses a periodic road whose contour is shown in

Figure 4.52, which models a road with expansion joints every 3 m. The Fourier series for

the road contour is

(g)y (j) =
a0

2
+ a

�

i = 1

(ai cos bi j + bi sin bi 
j )

0

0.005

0.015

0.02

0.03

0 105 2015 25 3530 5040 45

Z
/Y

0.025

0.01

0.035

v (m/s)

m = 300 kg
m = 450 kg
m = 600 kg

FIGURE 4.50
Z/Y versus speed for a vehicle
that is empty, half-loaded,
and fully loaded.

0

1

3

4

0 105 2015 25 3530 5040 45

A
/m

w
2 n

5

2

6

v (m/s)

m = 300 kg
m = 450 kg
m = 600 kg

FIGURE 4.51
A/w2Y versus speed for the
empty vehicle, a half-loaded
vehicle, and a fully loaded
vehicle.
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where

(h)

The function defining the road joints is expressed as

(i)

The Fourier coefficients are

(j)

(k)

and

(l)
= L-

0.01
pi

 e c1 +
i 2

25[1 - (0.2i )2]
d [cos(0.4pi ) - 1] f i Z 5

0    i = 5

bi =
2

3 mL
T

0
y (j) sin(bi j)dt =

2
3L

0.6

0
0.02 a1 - cos2  

p

0.6
 jb  sin a2

3
 pi jbd j

= L
0.01

pi
 e1 +

i 
2

25[1 - (0.2i )2]
f  sin (0.4pi ) i Z 5

         0.0020    i = 5

ai =
2

3 mL
T

0
y (j ) cos (bi j ) dt =

2
3L

0.6

0
0.02a1 - cos2

 
p

0.6
 jb  cos a  

2
3

 pi jbd j

a0 =
2

3 mL
T

0
y (j ) d j =

2
3L

0.6

0
0.02a1 - cos2 

p

0.6
 jbdj = 0.004

y (j ) = e0.02 11 - cos2 p
0.6 j2 0 … j … 0.6 m

0 0.6 … j … 3 m 

li =
2pi
3

–0.005

0

0.01

0.015

0 21 43 5 76 108 9

y(
x  

)

0.02

0.005

0.025

x

0.02 1 – cos2 px
0.6

FIGURE 4.52
Periodic road contour with
expansion joints every 3 m.
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The Fourier series converges y(�), as illustrated in Figure 4.53. Rewriting the Fourier

series as

(m)

where

(n)ci = (a2
i + b2

i )
1/2 = L

0.01
pi

 e1 +
i 2

25[1 - (0.2i )2]
f  22(1 - cos 0.4pi )  i Z 5

                                0.02                                        i = 5

y (j) =
a0

2
+ a

�

t =  1
ci  sin (bi  

j + ki 
)

FIGURE 4.53
Convergence of Fourier series representation to y(�) with (a) 5 terms, (b) 8 terms, (c) 15 terms, and
(d) 25 terms.
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and

(o)

Since the vehicle is traveling at a constant horizontal speed, it traverses a distance � in

time vt. Thus, the motion excitation applied to the wheels is y(vt) or

(p)y (t ) =
a0

2
+ a

�

t = 1

ci sin (bi vt + ki )

ki = tan-1 
ai

bi

= µ
tan - 1J sin 0.4 pi

- (cos 0.4 pi - 1) K      i Z 0  

          -
p

2
                               i = 5

0
–5

0

5

10

15

20
×10–3

0.5 1 1.5

(c)

ξ

y(
ξ)

2 2.5 3

0
–5

0

5

10

15

20
×10–3

0.5 1 1.5

(d)

x

y(
x)

2 2.5 3

FIGURE 4.53
(Continued)
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The differential equation governing the displacement of the body of the vehicle is

(q)

or

(r)

Noting that the solution of Equation (q) with a single-frequency term on the right-hand

side with magnitude Y is y(t) � YT(r, �) sin (�t � �), the principle of linear superposition

is applied yielding

(s)

where

(t)

The plot of the steady-state response over on period is given in Figure 4.54 for v � 30 m/s.

The acceleration is

(u)

The steady-state acceleration is plotted in Figure 4.55 for v � 30 m/s.

a (t ) = a
�

i = 1

(liv)2T (ri, z)ci sin (livt + ki - li )

ri =
vBi

vn

x (t ) =
a0

2
+ a

�

i =1

T (ri, z)ci sin (bivt + ki - li 
)

+ v2
n c

a0

2
 + a

�

i = 1

ci sin (bi vt + ki 
) d

x
$ + 2zvn x# + v2

n 
x = 2za

�

t = 1

ci 
biv cos (bivt + ki 

)

x
$ + 2zvnx# + v2

nx = 2zvn y# + v2
n y
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0.2 0.25 0.3 0.35
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2

2.1
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2.4
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2.7
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(m

)

FIGURE 4.54
Displacement of vehicle
as a function of time for
v � 30 m/s.
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4.17 FURTHER EXAMPLES
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0.2 0.25 0.3 0.35
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5

0

–5

a 
(m

/s
2 )

FIGURE 4.55
Acceleration of vehicle as a
function of time for v � 30 m/s.

EXAMPLE 4 . 2 2
A 50-kg machine tool is mounted on an elastic foundation that is modeled as a spring and

viscous damper in parallel. In order to determine the properties of the foundation, a force

with a magnitude of 8000 N is applied to the machine tool at a variety of speeds. It is

observed that the maximum steady-state amplitude is 2.5 mm, which occurs at 35 Hz.

Determine the equivalent stiffness and equivalent damping coefficient of the foundation.

SO LU T I ON
The maximum steady-state amplitude occurs for a frequency ratio of 

and corresponds to a magnification factor . Substituting 

given numbers leads to

(a)

and

(b)

Eliminating �n between Equations (a) and (b) yields

(c)

Rearranging Equation (c) leads to

(d)6.286z4 - 6.286z2 + 1 = 0

0.756 =
1 - 2z2

2z21 - z2

(50 kg) v2
n (0.0025  m)

8000 N =
1

2z21 - z2

(35 cycles/s)(2p rad>cycle)

vn

= 21 - 2z2

=
1

2z11 - z2
Mmax =

m v2
n 
Xmax

F0

rm  
=  vm /vn =1 1 -  2z2
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whose solutions are � � 0.446, 0.895. The smaller value of � is the appropriate solution,

as it is less than for which M reaches a maximum. Thus,

(e)

The stiffness is calculated is

(f)

and the damping coefficient is

(g)c = 2zmvn = 2(0.446)(50 kg) (245.7 rad/s) = 1.26 * 104 N # s/m

k = mv2
n = (50 kg) (245.7 rad/s)2 = 4.0 * 106 N/m

vn =
v

21 - 2z2
=

70p rad/s

21 - 2(0.446)2
= 283.2 rad/s

1>12

EXAMPLE 4 . 2 3
A 65 kg industrial sewing machine operates at 125 Hz and has a rotating unbalance of

0.15 kg · m. The machine is mounted on a foundation with a stiffness of 2 � 106 N/m and

a damping ratio of 0.12. Determine the machine’s steady amplitude.

SO LU T I ON
The natural frequency of the system is

(a)

The frequency ratio for the excitation is

(b)

The steady-state amplitude is found from

(c)

Equation (c) is solved, yielding

(d)X =
m0e

m
¶(4.48, 0.12) = a0.15 kg # m

65 kg
b1.051 = 2.43 mm

mX
m0e

= ¶(4.48, 0.12) =
(4.48)2

2(1 - 4.482)2 + 32(0.12)(4.48)42 = 1.051

r =
v

vn

=
(125 cycles/s)(2p rad/cycle)

175.5 rad/s
= 4.48

vn = A
k
m

= A
2 * 106 N/m

65 kg
= 175.4 r/s

EXAMPLE 4 . 24
A 500 kg tumbler has a rotating unbalance of 12.6 kg, which is 5 cm from its axis of rota-

tion. For what stiffnesses of an elastic mounting of damping ratio 0.06 will the tumbler’s

steady–state amplitude be less than 2 mm for all speeds of operation between 200 rpm and

600 rpm?

SO LU T I ON
From the given information, the allowable value of the nondimensional parameter � is

(a)¶all =
mXall

m0e
=

(500 kg)(0.002 m)

(12.6 kg)(0.05 m)
 = 1.587
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The curve of �(r, 0.06) versus r is shown in Figure 4.56. Since �
all

� 1 there are two values

of r for which �(r, 0.06) � �
all

. These can be found by solving

(b)

The solutions are r � 0.788, 1.635. Consider first the lower value of r, � 
 1.587 for r 
 0.788.

Thus, if r � 0.788 corresponds to � � 600 rpm, the steady-state amplitude is less than 2 mm

for all speeds less than 600 rpm. Thus, requiring r 
 0.788 or equivalently ,

this implies �n � 761.4 rpm or . This

leads to

(c)

If r � 1.635 corresponds to � � 200 rpm, then � 
 1.537 or X 
 2 mm for all � � 200 rpm.

Thus, r � 1.635 implies that , which leads to �n 
 122.3 rpm or 
�n 
 12.81 rad/s. The allowable stiffnesses are

(d)

Thus, the steady-state amplitude of the machine is less than 2 mm at all speeds between

200 rpm and 600 rpm if k � 3.18 � 106 N/m or k 
 8.21 � 104 N/m.

k 7 (500 kg) (12.81 rad/s)2 = 8.21 * 104 N/m

200 rpm
vn

7 1.635

k 7 1500 kg2a79.73 
r
s
 b2

= 3.18 * 106 N/m

vn 7 1761.4 rev
min212p rad

rev 211 min
60 s 2 = 79.73 rad/s

600 rpm
vn

6 0.788

r 2

2(1 - r 2)2 + 32(0.06)r42 = 1.587

0 0.5 1 1.5 2 2.5 3 3.5
r

r1 r2 4
0

0.5

1

1.5

1.587

2

2.5

3

Λ
 (

r,
 0

.0
6)

FIGURE 4.56
�(r, 0.06) versus r.

EXAMPLE 4 . 2 5
What is the minimum static deflection of an isolator to provide 85 percent isolation to a

fan that operates at speeds between 1500 rpm and 2200 rpm if (a) the isolator is undamped

and (b) the isolator has a damping ratio � � 0.1?

SO LU T I ON
Eighty-five percent isolation leads to a transmissibility ratio of T � 0.15.

(a) If the isolator is undamped, the appropriate equation to use is

(a)T(r, 0) =
1

r 2 - 1

Harmonic Excitation of SDOF Systems 283
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which leads to and r � 2.77. Since T(r, 0) 
 0.15 for r � 2.77, it is 

required that r � 2.77 corresponds to the lowest allowable frequency at � � 1500 rpm �
157.1 rad/s. To this end,

(b)

which gives �n � 56.7 rad/s. The required static deflection is

(c)

(b) If the isolator has a damping ratio of 0.1, then

(d)

Squaring both sides and rearranging leads to

(e)

whose solution is r � 2.953. Following the procedure in part (a), the required natural fre-

quency is calculated as �n � 53.2 rad/s and 
s � 3.5 mm. The increased damping ratio

leas to a lower natural frequency and a higher required static deflection.

r 4 - 3.737r 2 - 43.44 = 0

T(r, 0.1) = 0.15 = A
1 + 32(0.1)r42

(1 - r 2)2 + 32(0.1)r42


s =
mg

k
=

g

v2
n

=
9.81 m/s2

(56.7 rad/s)2 = 3.1 mm

157.1 rad/s
vn

= 2.77

0.15 = 1
r 2 - 1

EXAMPLE 4 . 26
A 50 kg machine has a rotating unbalance. The machine is mounted on an elastic founda-

tion with a stiffness of 1.3 � 105 N/m, and damping ratio of 0.04 and operates at 1500 rpm.

An accelerometer is mounted on the machine to monitor its steady-state vibrations.

(a) What is the minimum natural frequency of an accelerometer of damping ratio 0.2 such

that it measures the vibrations of the machine with no more than 2 percent error? 

(b) When the accelerometer of part (a) is used, it measures a steady-state amplitude of 

14.8 m/s2. What is the magnitude of the rotating unbalance?

(c) What is the accelerometer output if the machine operates at 1200 rpm?

SO LU T I ON
(a) The percent error in the accelerometer measurement is E � 100�1 � M (r, �)| where

the frequency ratio refers to the ratio of the frequency of excitation to the natural frequency

of the accelerometer. The accelerometer works in the range of small r and

. In order for the error to be less than 2 percent,

(a)

or M(r, 0.2) 
 1.02, which implies that

(b)

The solutions of Equation (a) are r 
 0.146 and r � 1.35. However, requiring r � 1.35

will lead to the error being greater than 2 percent for when 100[1 � M(r, 0.2)] 
 0.98.

1

2(1 - r 2)2 + 32(0.2)r42 6 1.02

1003M(r, 0.2) - 14 6 2

z 6 1
12

. Thus, M(r, z) 7 1

62129_04_Ch04_p265-312.qxd  3/15/11  5:05 PM  Page 284

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Harmonic Excitation of SDOF Systems 285

Thus, the minimum natural frequency for the error to be less than 2 percent requires that

r � 1.46 corresponds to � � 1500 rpm. To this end

(c)

which leads to �n � 1076 rad/s.

(b) The error in the measurement is 2 percent. Thus, if A is the actual acceleration and

B is the measurement, then B � 1.02A. With B � 14.8 m/s2, this gives A � 14.5 m/s2.

Then the amplitude of the steady-state vibration is related to the acceleration amplitude by

A � �2X. With � � 1500 rpm � 157.1 rad/s, the steady-state amplitude is 

X � 5.87 � 10�4 m. For the machine with a rotating unbalance,

where rm is the ratio of the excitation frequency to the natural frequency of the machine.

Performing the necessary calculations, the natural frequency of the machine is

(d)

The frequency ratio is

(e)

Then

(f)

and the magnitude of the rotating unbalance is

(g)

(c) The machine now rotates at � � 1200 rpm � 125.7 rad/s. Thus, 

and �(2.46, 0.04) � 1.197. The steady-state response of the machine is x(t) �
X sin where

(h)

and

(i)

Thus, the steady-state response of the machine is

(j)x (t ) = 6.32 *  10-4  sin  (125.7t +  0.0389) m

f =  tan -1 c2(0.04)r

1 - r 2 d =  tan-1 c (0.08)(2.46)

1 - (2.46)2 d = -0.0389 rad

X =
m0e

mm
¶(r, 0.04) =

0.0264 kg # m

50 kg
 (1.197) = 6.32 * 10-4 m

(vt - f)

r = 125.7 rad/s
51.0 rad/s = 2.46

m0e =
mX

¶(3.08, 0.04)
=

(50 kg)(5.9 * 10-4 m)

1.12
 = 0.0264 kg # m

¶(3.08,0.04) =
(3.08)2

231 - (3.08)242 +  32(0.04)(3.08)42 = 1.12

r =
v

vn

=
157.1 rad/s
51.0 rad/s

= 3.08

vn = A
k

mm
= Q

1.3 * 105
 
N
m

50 kg
= 51.0 rad/s

mX
m0e

= ¶(rm, 0.04)

a1500
rev
min
b a2p

rad
rev
b a1 min

60 s b
 vn

= 0.146
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286 CHAPTER 4

The accelerometer output is where and M(0.117,0.2)

� 1.013. The error in the accelerometer measurement is 1.3 percent. z(t) is the displace-

ment of the seismic mass relative to the machine and is given as

(k)

where

(l)

and

(m)

Thus, the accelerometer output is

(n)= 10.03 sin(125.7t - 0.0072) m/s2

a(t) = -
(1076 rad/s)2

1.013
 (8.78 * 10-6  m) sin(125.7t + 0.0389 - 0.0461)

fa = tan-1 c2(0.2)(0.117)

1 - (0.117)2 d = 0.0461 rad

Za = X¶(0.117, 0.2) = (6.32 * 10-4 m)(0.013) = 8.78 * 10-6 m

z(t) = Za sin (125.7t + 0.0389 - fa 
)

ra = 125.7 rad/s
1076 rad/s = 0.117-

v2
n

M(ra, 0.2)z (t)

EXAMPLE 4 . 2 7
An energy harvester is being designed to harvest energy from a MEMS system whose vibra-

tions are given by

(a)

The harvester is to have damping ratio 0.2 and a mass of 0.002 g.

(a) What is the best natural frequency for the harvester?

(b) How much power is harvested in one hour?

SO LU T I ON
(a) Since the periods of both terms in the vibration are not the same, it is difficult to define

the average power over one cycle. The period over which both vibrations repeat is

(b)

The relative response between the harvester and the machine is

(c)

The power dissipated by the viscous damper over this period is

(d)+ 0.3¶(r1, z)¶(r2, z)[sin(f2 - f1) - sin(2.821 + f2 - f1)]}

= 2zmvn10-6{0.226¶2(r1, z) + 0.763¶2(r1, z)
+ (15)(500)¶(r1, z) cos(500t - f2)]

2 dt

P = 10-12

L
0.0282

0
c[(10)(400)¶(r1, z)cos (400t - f1)

z (t) = 10¶(r1, z) sin(400t - f1) + 15¶(r2, z) sin(500t - f2)

Tc =
2p(900)

(400)(500)
= 0.0282 s

y (t ) = (10 sin 400t + 15 sin 500t ) mm
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Equation (d) is plotted against �n in Figure 4.57. The largest power harvested is 0.277 �W

and occurs for �n � 468 rad/s.

(b) The number of cycles in one hour is

(e)

The power captured in one hour is

(f)P = a0.277 mW

cycle
b  (1.27 * 105 cycles) = 3.52 * 10-2 W

n = a 3600 s/hr
0.0282 s/cycle

b  (1 hr) = 1.27 * 105 cycles

EXAMPLE 4 . 28
The torsional spring of the system of Example 3.16 is attached to an actuator which provides

a harmonic displacement of � sin �t to the system as shown in Figure 4.58. Take � � 10°.

(a) If the electromagnet is turned off determine the form of the magnification factor for

the pendulum (Mc ), assuming Coulomb damping. What is the steady-state amplitude

of the pendulum if � � 4 rad/s?

(b) If the electromagnet is turned on, predict the steady-state amplitude of the pendulum

if � � 4 rad/s.

SO LU T I ON
If the electromagnet is turned off the pendulum is subject to Coulomb damping with a

resisting moment of 0.0629 N · m (Example 3.16). The differential equation governing the

forced oscillations of the pendulum is

(a)I u
$

+ ktu = kt£ sin vt + e -Mf  u# 7 0
Mf    u

#
6 0

300 350 400 450 500 550
ωn (rad/s)

600
0.05

0.1

0.15

0.2

0.25

0.3

P
 (

µ
W

)

FIGURE 4.57
Plot of power harvested versus �n for system of Example 4.27.
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where I � 0.183 kg · m2 and kt � 1.8 N · m/rad. The theory regarding steady-state vibra-

tion of systems with Coulomb damping applies with (in Example 3.16 if was found that

Mf � 0.0157 N # M)

(b)

The magnification factor is

(c)

For � � 4 rad/s, and Mc (1.27, 0.2) � 1.63. The steady-state

amplitude is

(d)

(b) If the electromagnet is turned on, the system has viscous damping which dominates

the Coulomb damping. The differential equation governing the motion of the system is

(e)

which is written in standard form as

(f)

The steady-state amplitude is given by

(g)

The demping ratio is 0.011 (Example 3.16) and for � � 4 rad/s, .

Thus,

(h)™ = (10°)M(1.27,0.011) = (10°)
1

231 - (1.27)242 + 32(0.011)(1.27)42 = 16.29°

r = 4 rad/s
3.14 rad/s = 1.27

™ =
kt£
kt

 M (r, z) = £M(r,  z)

u
$

+ 2zvn u
#

+ v2
n u = v2

n £ sin vt

I  u
$

+ ct u
#

+ kt u = kt£ sin vt

™ =
kt£
Iv2

n

 Mc(1.27,0.2) =
(1.8 N # m/rad)(10°)

(0.183 kg # m2)(3.14 rad/s)2 (1.63) = 16.26°

r = 4 rad/s
3.14 rad/s = 1.27

Mc(r, 0.2) = Q
1 - c4(0.05)

p
d2

(1 - r 2 )2 = A
0.996

(1 - r 2)2 =
0.998

| 1 - r 2 |

i =
Mf

kt£
=

0.0157 N # m

a1.8
N # m

rad
b (10°)a2p rad

360°
b

= 0.050

y sin ωt

Electromagnet

FIGURE 4.58
System of Example 4.28.
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4.18 CHAPTER SUMMARY

4.18.1 IMPORTANT CONCEPTS
The topics covered in this chapter included steady-state vibrations of SDOF systems. The

following refer to these topics.

• Resonance, which is characterized by an unbounded growth in amplitude, occurs in an

undamped system when the input frequency coincides with the natural frequency.

• Resonance occurs because the work done by the external force is not necessary to sus-

tain the vibrations at the natural frequency.

• Beating, which occurs in an undamped system when the input frequency is near but not

equal to the natural frequency, is characterized by a continual build up and decay of

amplitude.

• Free vibrations of a damped system die out after a period of time leaving only the par-

ticular solution, which is the steady–state solution. 

• The steady–state response of a system with viscous damping due to a single-frequency

harmonic excitation is at the same frequency as the input but at a different phase angle.

• The amplitude of the response is affected by the stiffness, inertia, and damping proper-

ties of the system.

• The nondimensional magnification factor, which is the ratio maximum force developed

in the spring to the maximum of the excitation force, is a function of the frequency ratio

and the damping ratio M(r, �).

• The frequency response is studied by considering the behavior of M(r, �) for varying r for

different values of � where M(0, �) � 1 and M(r, �) � 0. For , M(r, �)

increases as r increases from zero and reaches a maximum before it starts decreasing. For

, M(r, �) decreases monotonically with increasing r.

• Frequency-squared excitations occur when the amplitude of excitation is proportional

to the square of the frequency. A machine with a rotating unbalance is an example of a

system with frequency-squared excitation.

• The frequency response for frequency-squared excitations is given by a nondimensional

function �(r, �) where �(r, 0) � 0 and �(r, �) � 1. For , �(r, �) 

reaches a maximum and then approaches 1 from above. For , �(r, �) has no

maximum and approaches 1 from below.

• Harmonic-based motion is analyzed by considering the displacement of the mass rela-

tive to the base. The relative displacement is governed by the standard differential equa-

tion in which the mass times acceleration of the base replaces the forcing term. The

steady-state amplitude of relative displacement is given by the amplitude of the base

motion times �(r, �).

• The ratio of the amplitude of acceleration of the mass to the amplitude of acceleration

of the base is given by a nondimensional function T(r, � ), which is only less than 1 for

.r 7 12

z 7 1
12

z 6 1
12

limr :�

z 7 1
12

z 6 1
12

limr :�
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290 CHAPTER 4

• The range is called the range of isolation; is called the range of ampli-

fication.

• An increase in damping ratio leads to an increase in T(r, �) in the range of isolation.

Damping hurts isolation.

• Vibration isolation theory includes protection of machines from large amplitude accel-

erations of their bases and the protection of foundations from large amplitude forces

developed in machines.

• The steady–state response due to multi-frequency excitations is obtained using the prin-

ciple of linear superposition.

• Any periodic excitation has a Fourier series representation which converges pointwise to

the function at all times where it is continuous.

• All Fourier cosine coefficients are zero for an odd function. All Fourier sine coefficients

are zero for an even function.

• Seismic vibration measuring instruments have a seismic mass which moves relative to

the body whose vibrations are being measured.

• Seismometers measure the motion of the seismic mass relative to its housing and oper-

ate with a large frequency ratio where �(r, �) is close to l.

• Accelerometers measure the acceleration of the body whose vibrations are to be meas-

ured and operate with a small frequency ratio where M(r, �) is close to 1.

• An equivalent viscous-damping ratio is used to formulate a magnification factor for

Coulomb damping.

• The steady-state behavior of a system with hysteretic damping can be obtained using a

complex stiffness.

• An energy harvester has a seismic mass which vibrates relative to the body whose vibra-

tions are being harvested. The average power harvested per cycle of steady-state motion

increases with the decreasing damping ratio of the harvester.

4.18.2 IMPORTANT EQUATIONS
Standard form of differential equation governing forced vibrations of linear, single degree-of-

freedom systems

(4.2)

Particular solution for undamped system when excitation frequency coincides with natural

frequency

(4.20)

Response when beating occurs

(4.22)x (t ) =
2F0

meq(v
2
n - v2)

sin c av - vn

2
b t d cos c av + vn

2
b t d

xp(t ) = -
F0

2meqvn

t cos(vnt + �)

x
$ + 2zvn

 x
# + v2

n x =
1

meq
 Feq(t )

r 6 12r 7 12
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Steady–state response of system with viscous damping

(4.32)

Frequency ratio

(4.38)

Magnification factor

(4.39)

Functional form of magnification factor

(4.42)

Phase angle

(4.45)

Frequency-squared excitation

(4.50)

Amplitude of response due to frequency-squared excitation

(4.51)

Functional form of �(r, �)

(4.52)

Rotating unbalance as frequency-squared excitation

(4.62)

Frequency response due to rotating unbalance

(4.63)

Displacement of mass relative to base

(4.80)

Differential equation for relative motion of mass to base due to harmonic-base excitation

(4.86)

Amplitude of motion of mass relative to base

(4.88)

Steady–state response of absolute displacement

(4.90)x (t ) = X  sin (vt - l)

Z = Y¶(r, z)

z
$ + 2zvn z# + v2

nz = v2Y  sin vt

z (t ) = x (t ) - y (t )

mX
m0e

= ¶(r, z)

A = m0e

¶(r, z) =
r 2

2(1 - r 2)2 + (2zr )2

meqX

A
= ¶(r, z)

F0 = Av2

f =  tan -1 a 2zr

1 - r 2 b

M(r, z) =
1

2(1 - r 2)2 + (2zr )2

M =
meqv

2
n X

F0

r =
v

vn

xp(t ) = X  sin (vt + � - f)
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Amplitude of absolute displacement

(4.91)

Functional form of T(r, �)

(4.93)

Ratio of acceleration amplitudes

(4.94)

Ratio of amplitude of transmitted force to amplitude of excitation

(4.101)

Vibration isolation due to rotating unbalance

(4.104)

Functional form of R(r, �)

(4.105)

Fourier series representation of periodic functions

(4.130)

(4.131)

(4.132)

(4.133)

(4.134)

Alternate form of Fourier series

(4.135)

Response due to general periodic excitation

(4.139)x (t) =
1

meqv
2
n

 c a0

2
+ a

�

i = 1

ci Mi sin(vi t + ki - fi ) d

F (t ) =
a0

2
+ a

�

i = 1

ci sin (vi t + ki )

bi =
2

TL
T

0
F (t) sinvi t dt  i =  1, 2, Á

ai =
2
TL

T

0
F (t) cosvi t dt  i = 1, 2, Á  

a0 =
2
TL

T

0
F (t ) dt

vi =
2pi
T

F (t ) =
a0

2
+ a

�

i = 1

(ai cos vit + bi sin vit )

R(r, z ) = r 2A
1 + (2zr )2

(1 - r 2)2 + (2zr )2

FT

m0ev
2
n

= r 2T(r, z ) = R (r, z )

FT

F0

= T(r, z)

v2X
v2Y

= T(r, z)

T(r, z) = A
1 + (2zr )2

(1 - r 2)2 + (2zr )2

X
Y

= T(r, z)
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Percent error in using seismometer

(4.146)

Percent error in using accelerometer

(4.151)

Magnification factor for Coulomb damping

(4.184)

Magnification factor for hysteretic damping

(4.191)

Average power harvested during cycle

(4.206)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 4.1 through 4.16, indicate whether the statement presented is true or false.

If true, state why. If false, rewrite the statement to make it true.

4.1 The steady–state response of a linear SDOF system occurs at the same frequency

as the excitation.

4.2 Beating is characterized by a continual build-up of amplitude.

4.3 The amplitude of a machine subject to a rotating unbalance approaches one for

large frequencies.

4.4 An increase in damping leads to an increase in the percentage of isolation.

4.5 The phase angle for an undamped system is always 	.

4.6 The phase angle depends upon F
0
, which is the amplitude of excitation.

4.7 If � is positive in the equation x(t) � X sin(�t 
 �), the response lags the

excitation.

4.8 M(r, �) approaches 0 for large r for all values of �.

4.9 �(r, � ) approaches 0 for large r for all values of �.

4.10 T(r, �) approaches 1 for large r for all values of �.

4.11 The amplitude of the response of a system relative to the motion of its base is

given by R(r, � ) if the base is subject to a single-frequency harmonic excitation.

4.12 The phase angle for the response of a system with Coulomb damping is

independent of the frequency of excitation.

4.13 The equation for the response of a system with hysteretic damping is nonlinear

in general but is linear when the system is subject to a single-frequency

excitation.

P
mv3Y 2 =

z

r ¶2(r, z) = £(r, z)

Mh(r, h ) =
1

2(1 - r 2)2 + h 2

Mc(r, i) = C
1 -  ( 

4i
p )2

(1 -  r 
2)2

E = 100| 1 - M(r, z) |

E = 100 |1 - ¶ |
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4.14 A seismometer actually measures the displacement of the seismic mass relative

to the displacement of the body the instrument is set up to measure.

4.15 Hysteretic damping can be modeled using a differential equation with a

complex stiffness.

4.16 M(r, �) has a maximum when .

Problems 4.17 through 4.38 require a short answer.

4.17 Explain why resonance occurs for undamped systems when the natural

frequency coincides with the excitation frequency.

4.18 Why doesn’t the amplitude grow unbounded when the frequency of excitation

coincides with the natural frequency for systems with viscous damping?

4.19 For an undamped system, when is the response out of phase with the

excitation?

4.20 In the equation x(t) � X sin(�t 
 �), when is � negative?

4.21 How many real positive values of r satisfy the following.

(a) M(r, 0.3) � 3

(b) M(r, 0.8) � 1.2

(c) M(r, 0.1) � 1.3

4.22 How many real positive values of r satisfy the following.

(a) �(r, 0) � 1

(b) �(r, 0.1) � 1.5

(c) �(r, 0.9) � 1.3

(d) �(r, 0.3) 
 3

4.23 How many real positive values of r satisfy the following.

(a) T(r, 0.1) � 1

(b) T(r, 0.5) � 0.5

(c) T(r, 0) � 3

4.24 How many real positive values of r satisfy the following.

(a) (r, 0.05) � 0

(b) (r, 0.4) � 0

(c) (r, 0.8) � 0

4.25 Explain the concept of frequency response.

4.26 How is frequency response determined for a machine with a rotating

unbalance?

4.27 How is frequency response determined for the motion of a machine on a

moveable foundation?

4.28 Explain why vibration isolation is difficult at low speeds.

4.29 What is percentage isolation?

4.30 Explain why protecting a foundation from large forces generated by a machine

is similar to protecting a body from large accelerations by its base.

dR
dr

dR
dr

dR
dr

z 6 1
12
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4.31 Seismometers have a ___________ natural frequency and thus operate only for

___________ frequency ratios.

4.32 Explain the concept of phase distortion. Why is it a problem for accelerometers

and not seismometers?

4.33 Explain the principle of linear superposition and how it applies to systems with

multiple frequency input.

4.34 Why does the principle of linear superposition apply to general periodic input?

4.35 Explain the concept of stick-slip.

4.36 What are the limitations on �, which is the nondimensional value of the ratio of

the force causing Coulomb friction to the amplitude of the excitation force?

4.37 Why is viscous damping used in vibration isolation, since it has a negative effect

on vibration isolation?

4.38 Does a steady–state response of the differential equation exist for the

following?

(a)

(b)

(c)

Problems 4.39 through 4.59 require short calculations.

4.39 Find all real positive values of r that satisfy the following.

(a) M(r, 0) � 1.4

(b) M(r, 0.4) � 3

(c) M(r, 0.8) 
 1.2

4.40 Find all positive values of r that satisfy the following.

(a) T(r, 0.1) 
 1

(b) T(r, 0.8) � 1

(c) T(r, 0.4) � T(r, 0.3)

4.41 A machine with a mass of 30 kg is operating at a frequency of 60 rad/s. What

equivalent stiffness of the machine’s mounting leads to resonance?

4.42 An undamped SDOF system with a natural frequency of 98 rad/s is subject to a

excitation of frequency 100 rad/s. (a) What is the period of response? (b) What

is the period of beating?

4.43 A machine operates at 100 rad/s and has a rotating component of mass 5 kg

whose center of mass is 3 cm from the axis of rotation. What is the amplitude

of the harmonic excitation experienced by the machine?

4.44 Convert 1000 rpm to rad/s.

4.45 A machine is subject to a harmonic excitation with an amplitude of 15,000 N.

The force transmitted to the floor through an isolator has an amplitude of 3000 N.

What percentage isolation is achieved by the isolator?

4.46 A 50 kg machine is mounted on an isolator with a stiffness of 6 �105 N/m.

During operation, the machine is subject to a harmonic excitation with a

frequency of 140 rad/s. (a) What is the frequency ratio? (b) Does this isolator

actually isolate the vibrations?

3x
$ + 2700x = 20 sin 10t

3x
$ + 40 x

# + 2700x = 20 sin 30t

3x
$ + 2700x = 20 sin 30t
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4.47 Recall that the Fourier series representation of a periodic function is

Describe which of the Fourier coefficients (a
0
, ai, bi, or none) are zero for each

of the functions (illustrated over one period) shown in Figure SP4.46.

F =
a0

2
+ a

�

i = 1

(ai cos vi t + bi sin vi t )

200 N

100 N

200 N

0.1 0.2 0.8 0.9 1.0

0.1 0.2

0.03

(a) (b)

(c)

(e)

(d)

0.1 0.2

0.06

200

–100

0.3 0.4
–200 N

0.1 1.0

300 N

–200 N

0.2 0.4 0.6 0.8 1.0

FIGURE SP4.46

FIGURE SP4.47

4.48 Draw the function that the Fourier series representation of the function shown

in Figure SP4.47 converges to on the interval [�5, 5].

4.49 What is the largest frequency whose vibrations can be measured by an undamped

accelerometer of natural frequency 200 rad/s if the error is no more than 1 percent?

4.50 What is the smallest frequency whose vibrations can be measured by an

undamped seismometer of natural frequency 20 rad/s if the error is no more

than 1.5 percent?
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Find the steady-state solution of the differential equation for Problems 4.51

through 4.59.

4.51

4.52

4.53

4.54

4.55

4.56

4.57

4.58

4.59 Match the quantity with the appropriate units (units may used more than once,

some units may not be used).

(a) Steady-state amplitude, X (i) m

(b) Steady-state amplitude of torsional oscillations, (ii) none

(c) Magnification factor, M(r, �) (iii) N

(d) Transmissibility ratio, T(r, �) (iv) N/m2

(e) Acceleration amplitude, �2X (v) rad

(f ) Relative displacement amplitude, Z (vi) N · s/m

(g) Frequency ratio, r (viii) N · s · m/rad

(h) Equivalent viscous-damping coefficient for

Coulomb damping, c
eq

(ix) N · s

(i) Ratio of friction force to excitation force, � (x) N · m

(j) Hysteretic-damping coefficient, h (xi) m/s2

(k) Energy captured by energy harvester, E (xii) W/cycle

(l) Average power captured by energy harvester, (xiii) N/m

CHAPTER PROBLEMS
4.1 A 40 kg mass hangs from a spring with a stiffness of 4 �104 N/m. A harmonic

force with a magnitude of 120 rad/s is applied. Determine the amplitude of the

forced response.

4.2 Determine the amplitude of forced oscillations of the 30 kg block of Figure P4.2.

P

™

3x
$ + 2700x = e50 sin 20t - 5  x# 7 0

50 sin 20t + 5  x# 6 0

3x
$ + 30x

# + 2700x = 30 sin 50t + 20 sin 20t

3x
$ +

2700(0.002)

v
 x# + 2700x = 20 sin vt

3x
$ + 30x# + 2700x = 30(0.002)(40) cos 40t + 2700(0.002) sin 40t

3x
$ + 30x# + 2700x = 0.01v2 sin vt

3x
$ + 30x

# + 2700x = 20 sin 10t
3x

$ + 2700x = 20 sin 60t
3x

$ + 2700x = 20 sin 10t

200 sin 10t

30 kg

10 cm

IP = 0.68 kg · m2

400 N/m

FIGURE P4.2

62129_04_Ch04_p265-312.qxd  3/15/11  5:09 PM  Page 297

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



298 CHAPTER 4

4.3 For what values of M
0

will the forced amplitude of angular displacement of the

bar in Figure P4.3 be less than 3° if � � 25 rad/s?

4.4 For what values of � will the forced amplitude of the bar in Figure P4.3 be less

than 3° if M
0

� 300 N · m?

4.5 A 2 kg gear with a radius of 20 cm is mounted to the end of a 1-m long steel

(G � 80 � 109 N/m2) shaft. A moment M � 100 sin 150t is applied to the

gear. For What shaft radii is the value of the forced amplitude of torsional

oscillations less than 4°?

4.6 During operation, a 100 kg reciprocating machine is subject to a force F(t) �
200 sin 60t N. The machine is mounted on springs of an equivalent stiffness 

of 4.3 � 106 N/m. What is the machine’s steady-state amplitude?

4.7 A 40 kg pump is to be placed at the midspan of a 2.5-m long steel (E � 200 �
109 N/m2) beam. The pump is to operate at 3000 rpm. For what values of the

cross-sectional moment of inertia will the oscillations of the pump be within 3 Hz

of resonance?

4.8 To determine the equivalent moment of inertia of a rigid helicopter component,

an engineer decides to run a test in which she pins the component a distance of

40 cm and mounts the component on two springs of stiffness 3.6 � 105 N/m,

as shown in Figure P4.8. She then provide a harmonic excitation to the

component at different frequencies and finds that the maximum amplitude

occurs at 50 rad/s. What is the equivalent centroidal moment of inertia

predicted by the test?

Slender bar of
mass m

Mo sin ωt

L = 40 cm

k = 1 × 104 N/m

m = 0.8 kg

L
2

k

k

L
4

L
4

FIGURE P4.3

Helicopter
component

3.6 × 105 N/m

Mo sin wt

40 cm 10 cm

G
3.6 × 105 N/m

m = 4 Kg

FIGURE P4.8

62129_04_Ch04_p265-312.qxd  3/15/11  5:09 PM  Page 298

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Harmonic Excitation of SDOF Systems 299

4.9 The modeling of an airfoil requires at least two degrees-of-freedom. However,

its torsional stiffness is unknown, so an engineer devises a test. She prevents the

airfoil from motion in the transverse direction at A but still allows it to rotate as

shown in Figure P4.9. She then places two springs with a stiffness of 3 � 104 N/m

at the tip of the airfoil and excites the airfoil with a harmonic excitation at the

tip. She notices that the maximum amplitude of the tip occurs at a frequency of

150 rad/sec. The mass of the airfoil is 15 kg, and the moment of inertia of the

airfoil about its mass center is 4.4 kg · m2. The distance between the mass

center and A is 20 cm, and the tip is 60 cm from A.

4.10 A machine with a mass of 50 kg is mounted on springs of equivalent stiffness

6.10 � 104 N/m and subject to a harmonic force of 370 sin 35t N while

operating. The natural frequency is close enough to the excitation frequency 

for beating to occur. 

(a) Write the overall response of the system, including the free response.

(b) Plot the response of the system.

(c) What is the maximum amplitude?

(d) What is the period of beating?

4.11 A machine with a mass of 30 kg is mounted on springs with an equivalent stiffness

of 4.8 � 104 N/m. During operation, it is subject to a force of 200 sin �t.
Determine and plot the response of the system if the machine is at rest in

equilibrium when the forcing starts and at (a) � � 20 rad/s, (b) � � 40 rad/s,

and (c) � � 41 rad/s.

4.12 A 5 kg block is mounted on a helical coil spring such that the system’s natural

frequency is 50 rad/s. The block is subject to a harmonic excitation of

amplitude 45 N at a frequency of 50.8 rad/s. What is the maximum

displacement of the block from its equilibrium positions?

4.13 A 50-kg turbine is mounted on four parallel springs, each with a stiffness of 

3 � 105 N/m. When the machine operates at 40 Hz, its steady–state amplitude

is observed as 1.8 mm. What is the magnitude of the excitation?

FIGURE P4.9

3 × 104 N/m

3 × 104 N/m

60 cm

F0 sin ωt

G A

20 cm
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300 CHAPTER 4

4.14 A system with an equivalent mass of 30 kg has a natural frequency of 120 rad/s

and a damping ratio of 0.12 and is subject to a harmonic excitation of amplitude

2000 N and frequency 150 rad/s. What are the steady–state amplitude and

phase angle of the response?

4.15 A 30-kg block is suspended from a spring with a stiffness of 300 N/m and

attached to a dashpot of damping coefficient of 120 N · s/m. The block is

subject to a harmonic excitation of amplitude 1150 N at a frequency of 20 Hz.

What is the block’s steady–state amplitude?

4.16 What is the amplitude of steady–state oscillation of the 30 kg block of the

system of Figure P4.16?

2000 sin 100t N

2700 N . s/m

10
cm

20 cm

4 × 106 N/m

IP = 3 kg . m2
40 kg

30 kg

FIGURE P4.16

4.17 If � � 16.5 rad/s, what is the maximum value of M
0

such that the disk of

Figure P4.17 rolls without slip?

4000 N/m
10 cm

20-kg thin disk

M0 sin ωt

µ = 0.12

50 N . s/m

FIGURE P4.17

4.18 If M
0

� 2 N · m, for what values of � will the disk of Figure P4.17 roll

without slip?

4.19 For what values of d will the steady–state amplitude of angular oscillations be

less than 1° for the rod of Figure P4.19?

FIGURE P4.19

1000 sin 50t
4 × 104 N/m

20-kg slender rod

100 N . s/m
4
3

m2
3

m

d
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4.20 A 30-kg compressor is mounted on an isolator pad of stiffness 6 � 105 N/m.

When subject to a harmonic excitation of magnitude 350 N and frequency 

100 rad/s, the phase difference between the excitation and steady–state response

is 24.3°. What is the damping ratio of the isolator and its maximum deflection

due to this excitation?

4.21 A thin disk with a mass of 5 kg and a radius of 10 cm is connected to a

torsional damper of coefficient 4.1 N · s · m/rad and a solid circular shaft with

a radius of 10 mm, length 40 cm, and shear modulus 80 � 109 N/m2. The disk

is subject to a harmonic moment of magnitude 250 N · m and frequency 600 Hz.

What is the amplitude of steady–state torsional oscillations?

4.22 A 50-kg machine tool is mounted on an elastic foundation. An experiment is

run to determine the stiffness and damping properties of the foundation. When

the tool is excited with a harmonic force of magnitude 8000 N at a variety of

frequencies, the maximum steady–state amplitude obtained is 2.5 mm, occurring

at a frequency of 32 Hz. Use this information to determine the stiffness and

damping ratio of the foundation.

4.23 A machine with a mass of 30 kg is placed on an elastic mounting of unknown

properties. An engineer excites the machine with a harmonic force with a

magnitude of 100 N at a frequency of 30 Hz. He measures the steady–state

response as having an amplitude of 0.2 mm with a phase lag of 20°. Determine

the stiffness and damping coefficient of the mounting.

4.24 A 80-kg machine tool is placed on an elastic mounting. The phase angle is

measured as 35.5° when the machine is excited at 30 Hz. When the machine is

excited at 60 Hz, the phase angle is 113°. Determine the equivalent damping

coefficient and equivalent stiffness of the mounting.

4.25 A 100-kg machine tool has a 2-kg rotating component. When the machine is

mounted on an isolator and its operating speed is very large, the steady–state

vibration amplitude is 0.7 mm. How far is the center of mass of the rotating

component from its axis of rotation?

4.26 A 1000 kg turbine with a rotating unbalance is placed on springs and viscous

dampers in parallel. When the operating speed is 20 Hz, the observed

steady–state amplitude is 0.08 mm. As the operating speed is increased, the

steady–state amplitude increases with an amplitude of 0.25 mm at 40 Hz and

an amplitude of 0.5 mm for much larger speeds. Determine the equivalent

stiffness and damping coefficient of this system.

4.27 A 120-kg fan with a rotating unbalance of 0.35 kg · m is to be placed at 

the midspan of a 2.6-m simply supported beam. The beam is made of steel 

(E � 210 � 109 N/m2) with a uniform rectangular cross section of height of 5 cm. 

For what values of the cross-sectional depth will the steady–state amplitude of the

machine be limited to 5 mm for all operating speeds between 50 and 125 rad/s?

4.28 Solve Chapter Problem 4.27 assuming the damping ratio of the beam is 0.04.

4.29 A 620-kg fan has a rotating unbalance of 0.25 kg · m. What is the maximum

stiffness of the fan’s mounting such that the steady–state amplitude is 0.5 mm or

less at all operating speeds greater than 100 Hz? Assume a damping ratio of 0.08.

Problems 4.30 and 4.31 refer to the following situation: The tail rotor section of the heli-

copter of Figure P4.30 consists of four blades, each of mass 2.1 kg, and an engine box of
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302 CHAPTER 4

4.31 Determine the steady-state amplitude of vibration if one of the blades in

Figure P4.30 snaps off during flight.

4.32 Whirling is a phenomenon that occurs in a rotating shaft when an attached

rotor is unbalanced. The motion of the shaft and the eccentricity of the rotor

cause an unbalanced inertia force, pulling the shaft away from its centerline,

causing it to bow. Use Figure P4.32 and the theory of Section 4.5 to show that

the amplitude of whirling is

where e is the distance from the center of mass of the rotor to the axis of the shaft.

X = e¶(r, z)

mass 25 kg. The center of gravity of each blade is 170 mm from the rotational axis. The

tail section is connected to the main body of the helicopter by an elastic structure. The nat-

ural frequency of the tail section has been observed as 150 rad/s. During flight the rotor

operates at 900 rpm. Assume the system has a damping ratio of 0.05.

4.30 During flight a 75-g particle becomes stuck to one of the blades, 25 cm from

the axis of rotation. What is the steady–state amplitude of vibration caused by

the resulting rotating unbalance?

FIGURE P4.30

4.33 A 30-kg rotor has an eccentricity of 1.2 cm. It is mounted on a shaft and

bearing system whose stiffness is 2.8 � 104 N/m and damping ratio is 0.07.

What is the amplitude of whirling when the rotor operates at 850 rpm? Refer

to Chapter Problem 4.32 for an explanation of whirling.

O

C
G

θ

FIGURE P4.32
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4.34 An engine flywheel has an eccentricity of 0.8 cm and mass 38 kg. Assuming a

damping ratio of 0.05, what is the necessary stiffness of the bearings to limit its

whirl amplitude to 0.8 mm at all speeds between 1000 and 2000 rpm? Refer to

Chapter Problem 4.32 for an explanation of whirling.

4.35 It is proposed to build a 6-m smokestack on the top of a 60-m factory. The

smokestack will be made of steel (
 � 7850 kg/m3) and will have an inner

radius of 40 cm and an outer radius of 45 cm. What is the maximum

amplitude of vibration due to vortex shedding and at what wind speed will it

occur? Use a SDOF model for the smokestack with a concentrated mass at its

end to account for inertia effects. Use � � 0.05.

4.36 What is the steady–state amplitude of oscillation due to vortex shedding of the

smokestack of Chapter Problem. P4.35 if the wind speed is 35 km/h?

4.37 A factory is using the piping system of Figure P4.37 to discharge environmentally

safe waste-water into a small river. The velocity of the river is estimated as 5.5 m/s.

Determine the allowable values of l such that the amplitude of torsional oscillations

of the vertical pipe due to vortex shedding is less than 1°. Assume the vertical pipe

is rigid and rotates about an axis perpendicular to the page through the elbow.

The horizontal pipe is restrained from rotation at the river bank. Assume a

damping ratio of 0.05.

Fresh water
20°C

Steel pipes:

G = 80 × 109 N/m2

Dinner = 14 cm

υ = 5.5 m/s

t = 1 cm (pipe thickness)

p = 7800 kg/m3

l

3 m

1 m

FIGURE P4.37

4.38–4.42 Determine the amplitude of steady–state vibration for the systems shown in

Figures P4.38 through P4.42. Use the indicated generalized coordinate.

0.02 sin 100t m

100 N . s/m

2.8 kg

x

1.5 × 104 N/m

3 × 104 N/m

0.01 sin 250t m

3 m 1 m

400 N . s/m1 × 105 N/m

5 kg

θ

FIGURE P4.38 FIGURE P4.39
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304 CHAPTER 4

4.43 A 40-kg machine is attached to a base through a spring of stiffness 2 � 104 N/m

in parallel with a dashpot of damping coefficient 150 N · s/m. The base is given

a time-dependent displacement 0.15 sin 30.1t m. Determine the amplitude of

the absolute displacement of the machine and the amplitude of displacement of

the machine relative to the base.

4.44 A 5-kg rotor-balancing machine is mounted on a table through an elastic

foundation of stiffness 3.1 � 104 N/m and damping ratio 0.04. Transducers

indicate that the table on which the machine is placed vibrates at a frequency 

of 110 rad/s with an amplitude of 0.62 mm. What is the steady–state amplitude 

of acceleration of the balancing machine?

4.45 During a long earthquake the one-story frame structure of Figure P4.45 is subject

to a ground acceleration of amplitude 50 mm/s2 at a frequency of 88 rad/s. Deter-

mine the acceleration amplitude of the structure. Assume the girder is rigid and

the structure has a damping ratio of 0.03.

0.08 sin 200t m
115 kg

E = 210 × 109 N/m2 

I = 4.6 × 10–5 m4 
x1.5 m

0.035 sin 10t m

m = 4 kg

50 cm
q

0.1 sin 300t rad

1.5 kg . m2
G = 80 × 109 N/m2

J = 4.6 × 10–6 m4

θ

1.1 m

FIGURE P4.40

FIGURE P4.41 FIGURE P4.42

x(t)

ẍ(t)

Columns

Girder
m = 2000 kg

k = 1.8 × 106 N/m

k
2

k
2

FIGURE P4.45
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4.46 What is the required column stiffness of a one-story structure to limit its accel-

eration amplitude to 2.1 m/s2 during an earthquake whose acceleration ampli-

tude is 150 mm/s2 at a frequency of 50 rad/s? The mass of structure is 1800 kg.

Assume a damping ratio of 0.05.

4.47 In a rough sea, the heave of a ship is approximated as harmonic of amplitude 

20 cm at a frequency of 1.5 Hz. What is the acceleration amplitude of a 20-kg

computer workstation mounted on an elastic foundation in the ship of stiffness

700 N/m and damping ratio 0.04? 

4.48 In the rough sea of Chapter Problem 4.47, what is the required stiffness of an

elastic foundation of damping ratio 0.05 to limit the acceleration amplitude of

a 5-kg radio set to 1.5 m/s2?

4.49 Consider the one degree-of-freedom model of a vehicle suspension system of

Figure P4.49. Consider a motorcycle of mass 250 kg. The suspension stiffness 

is 70,000 N/m and the damping ratio is 0.15. The motorcycle travels over a

terrain that is approximately sinusoidal with a distance between peaks of 10 m

and the distance from peak to valley is 10 cm. What is the acceleration

amplitude felt by the motorcycle rider when she is traveling at

(a) 30 m/s

(b) 60 m/s

(c) 120 m/s

k = 70,000 N/m

z = 0.15250 kg

FIGURE P4.49

4.50 For the motorcycle of Chapter Problem 4.49 determine (a) the “frequency

response” of the motorcycle’s suspension system by plotting the amplitude of

acceleration versus motorcycle speed and (b) determine and plot the amplitude

of displacement of the motorcycle versus its speed.

4.51 What is the minimum static deflection of an undamped isolator that provides

75 percent islolation to a 200-kg washing machine at 5000 rpm?

4.52 What is the maximum allowable stiffness of an isolator of damping ratio 0.05 that

provides 81 percent isolation to a 40-kg printing press operating at 850 rpm?

4.53 When set on a rigid foundation and operating at 800 rpm, a 200-kg machine

tool provides a harmonic force with a magnitude of 18,000 N to the

foundation. An engineer has determined that the maximum magnitude of a

harmonic force to which the foundation should be subjected to is 2600 N.

(a) What is the maximum stiffness of an undamped isolator that provides

sufficient isolation between the tool and the foundation?

(b) What is the maximum stiffness of an isolator with a damping ratio of 0.11?
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4.54 A 150-kg engine operates at 1500 rpm.

(a) What percent isolation is achieved if the engine is mounted on four

identical springs each of stiffness 1.2 � 105 N/m?

(b) What percent isolation is achieved if the springs are in parallel with a viscous

damper of damping coefficient 1000 N · s/m?

4.55 A 150-kg engine operates at speeds between 1000 and 2000 rpm. It is desired

to achieve at least 85 percent isolation at all speeds. The only readily available

isolator has a stiffness of 5 � 105 N/m. How much mass must be added to the

engine to achieve the desired isolation?

4.56 Cork pads with a stiffness of 6 � 105 N/m and a damping ratio of 0.2 are used

to isolate a 40-kg machine tool from its foundation. The machine tool operates

at 1400 rpm and produces a harmonic force of magnitude 80,000 N. If the pads

are placed in series, how many are required such that the magnitude of the

transmitted force is less than 10,000 N?

4.57 A 100-kg machine operates at 1400 rpm and produces a harmonic force of

magnitude 80,000 N. The magnitude of the force transmitted to the founda-

tion is to be reduced to 20,000 N by mounting the machine on four identical

undamped isolators in parallel. What is the minimum stiffness of each isolator?

4.58 A 10-kg laser flow-measuring device is used on a table in a laboratory. Because

of operation of other equipment, the table is subject to vibration. Accelerometer

measurements show that the dominant component of the table vibrations is at

300 Hz and has an amplitude of 4.3 m/s2. For effective operation, the laser can

be subject to an acceleration amplitude of 0.7 m/s2.

(a) Design an undamped isolator to reduce the transmitted acceleration, to an

acceptable amplitude.

(b) Design the isolator such that it has a damping ratio of 0.04.

4.59 Rough seas cause a ship to heave with an amplitude of 0.4 m at a frequency of

20 rad/s. Design an isolation system with a damping ratio of 0.13 such that a

45 kg navigational computer is subject to an acceleration of only 20 m/s2.

4.60 A sensitive computer is being transported by rail in a boxcar. Accelerometer

measurements indicate that when the train is traveling at its normal speed of 

85 m/s the dominant component of the boxcar’s vertical acceleration is 8.5 m/s2

at a frequency of 36 rad/s. The crate in which the computer is being transported

is tied to the floor of the boxcar. What is the required stiffness of an isolator

with a damping ratio of 0.05 such that the acceleration amplitude of the 60 kg

computer is less than 0.5 m/s2? With this isolator, what is the displacement of

the computer relative to the crate?

4.61 A 200-kg engine operates at 1200 rpm. Design an isolator such that the

transmissibility ratio during start-up is less than 4.6 and the system achieves 

80 percent isolation.

4.62 A 150-kg machine tool operates at speeds between 500 and 1500 rpm. At each

speed a harmonic force of magnitude 15,000 N is produced. Design an isolation

system such that the maximum transmitted force during start-up is 60,000 N

and the maximum transmitted steady–state force is 2000 N.
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4.63 A 200-kg testing machine operates at 500 rpm and produces a harmonic force of

magnitude 40,000 N. An isolation system for the machine consists of a damped

isolator and a concrete block for mounting the machine. Design the isolation

system such that all of the following are met.

(i) The maximum transmitted force during start-up is 100,000 N.

(ii) The maximum transmitted force in the steady–state is 5000 N.

(iii) The maximum steady–state amplitude of the machine is 2 cm.

4.64 A 150-kg washing machine has a rotating unbalance of 0.45 kg · m. The machine

is placed on isolators of equivalent stiffness 4 � 105 N/m and damping ratio 0.08.

Over what range of operating speeds will the transmitted force between the

washing machine and the floor be less than 3000 N?

4.65 A 54-kg air compressor operates at speeds between 800 and 2000 rpm and

has a rotating unbalance of 0.23 kg · m. Design an isolator with a damping

ratio of 0.15 such that the transmitted force is less than 1000 N at all

operating speeds.

4.66 A 1000-kg turbomachine has a rotating unbalance of 0.1 kg · m. The machine

operates at speeds between 500 and 750 rpm. What is the maximum isolator

stiffness of an undamped isolator that can be used to reduce the transmitted

force to 300 N at all operating speeds?

4.67 A motorcycle travels over a road whose contour is approximately sinusoidal, 

y(z) � 0.2 sin (0.4z) m where z is measured in meters. Using a SDOF model,

design a suspension system with a damping ratio of 0.1 such that the acceleration

felt by the rider is less than 15 m/s2 at all horizontal speeds between 30 and 

80 m/s. The mass of the motorcycle and the rider is 225 kg.

4.68 A suspension system is being designed for a 1000 kg vehicle. A first model of

the system used in the design process is a spring of stiffness k in parallel with a

viscous damper of damping coefficient c. The model is being analyzed as the

vehicle traverses a road with a sinusoidal contour, y(z) � Y sin (2	 z/d) when

the vehicle has a constant horizontal speed v. The suspension system is to be

designed such that the maximum acceleration of the passengers is 2.5 m/s2 for

all vehicle speeds less than 60 m/s for all reasonable road contours. It is

estimated that for such contours, Y 
 0.01 m and 0.2 m 
 d < 1 m. Specify k
and c for such a design.

4.70 A 20-kg block is connected to a spring of stiffness 1 � 105 N/m and placed on a

surface which makes an angle of 30° with the horizontal. A force of 300 sin 80t N

is applied to the block. The steady–state amplitude is measured as 10.6 mm.

What is the coefficient of friction between the block and the surface?

4.71 A 40-kg block is connected to a spring of stiffness 1 � 105 N/m and slides on a

surface with a coefficient of friction 0.2. When a harmonic force of frequency

60 rad/s is applied to the block, the resulting amplitude of steady–state

vibrations is 3 mm. What is the amplitude of the excitation?

4.72–4.73 Determine the steady–state amplitude of motion of the 5-kg block. The

coefficient of friction between the block and surface is 0.11. (See Figures P4.72

and P4.73.)
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4.74 Use the equivalent viscous damping approach to determine the steady–state

response of a system subject to both viscous damping and Coulomb damping.

4.75 The area under the hysteresis curve for a particular helical coil spring is 0.2 N · m

when subject to a 350 N load. The spring has a stiffness of 4 � 105 N/m. 

If a 44-kg block is hung from the spring and subject to an excitation force of

350 sin 35t N, what is the amplitude of the resulting steady–state oscillations?

4.76 When a free-vibration test is run on the system of Figure P4.76, the ratio of

amplitudes on successive cycles is 2.8 to 1. Determine the response of the pump

when it has an excitation force of magnitude 3000 N at a frequency of 2000 rpm.

Assume the damping is hysteretic.

E = 200 × 109 N/m2

I = 2.4 × 10–4 m4

215 kg

3.1 m

FIGURE P4.76

4.77 When a free-vibration test is run on the system of Figure P4.76, the ratio of

amplitudes on successive cycles is 2.8 to 1. When operating, the engine has a

rotating unbalance of magnitude 0.25 kg · m. The engine operates at speeds

between 500 and 2500 rpm. For what value of � within the operating range

will the pump’s steady–state amplitude be largest? What is the maximum

amplitude? Assume the damping is hysteretic.

4.78 When the pump at the end of the beam of Figure P4.76 operates at 1860 rpm,

it is noted that the phase angle between the excitation and response is 18°.

What is the steady–state amplitude of the pump if it has a rotating unbalance 

of 0.8 kg · m and operates at 1860 rpm? Assume hysteretic damping.

4.79 A schematic of a single-cylinder engine mounted on springs and a viscous

damper is shown in Figure P4.79. The crank rotates about O with a constant

speed �. The connecting rod of mass mr connects the crank and the piston of

mass mp such that the piston moves in a vertical plane. The center of gravity of

the crank is at its axis of rotation.

(a) Derive the differential equation governing the absolute vertical displacement of

the engine including the inertia forces of the crank and piston, but ignoring

forces due to combustion. Use an exact expression for the inertia forces in

terms of mr, mp, �, the crank length r, and the connecting rod length l.
(b) Since F(t) is periodic, a Fourier series representation can be used. Set up, but

do not evaluate, the integrals required for a Fourier series expansion for F(t).

y(t) = 2.7 × 10–4 sin 180t m

2 × 105 N/m

5 kg

x

µ

FIGURE P4.72
FIGURE P4.73

y(t) = 3.2 × 10–4 sin 220t m

1 × 105 N/m 1 × 105 N/m
5 kg

x

µ
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(c) Assume r/l 1. Rearrange F(t) and use a binomial expansion such that

(d) Truncate the preceding series after i � 3. Use trigonometric identities to

approximate

(e) Find an approximation to the steady–state form of x (t).

F (t ) L b1 cos vt + b2 cos 2vt + b3 cos 3vt

F (t ) = a
�

i = 1
ai a r

l
b i

V

10,000 N

–10,000 N

0.1 s 0.2 s 0.3 s

10,000 N

F

0.1 s 0.2 s

10,000 N

0.1 0.2 0.3

10,000 N

0.1 0.2

FIGURE P4.82

FIGURE P4.84

FIGURE P4.83

FIGURE P4.85

mp

mr

l

r

k
2

k
2

c

FIGURE P4.79

4.80 Using the results of Problem P4.79, determine the maximum steady–state response

of a single-cylinder engine with mr � 1.5 kg, mp � 1.7 kg, r � 5.0 cm, l � 15.0 cm,

� � 800 rpm, k � 1 � 105 N/m, c � 500 N · s/m, and total mass 7.2 kg.

4.81 A 5-kg rotor-balancing machine is mounted to a table through an elastic founda-

tion of stiffness 10,000 N/m and damping ratio 0.04. Use of a transducer reveals

that the table’s vibration has two main components: an amplitude of 0.8 mm at

a frequency of 140 rad/s and an amplitude of 1.2 mm at a frequency of 200

rad/s. Determine the steady–state response of the rotor balancing machine.

4.82–4.86 During operation a 100-kg press is subject to the periodic excitations shown.

The press is mounted on an elastic foundation of stiffness 1.6 � 105 N/m and

damping ratio 0.2. Determine the steady–state response of the press and approxi-

mate its maximum displacement from equilibrium. Each excitation is shown over

one period.
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4.87 Use of an accelerometer of natural frequency 100 Hz and damping ratio 0.15

reveals that an engine vibrates at a frequency of 20 Hz and has an acceleration

amplitude of 14.3 m/s2. Determine

(a) The percent error in the measurement

(b) The actual acceleration amplitude

(c) The displacement amplitude

4.88 An accelerometer with a natural frequency of 200 Hz and damping ratio of 0.7

is used to measure the vibrations of a system whose actual displacement is 

x (t ) � 1.6 sin 45.1t mm. What is the accelerometer output?

4.89 An accelerometer with a natural frequency of 200 Hz and damping ratio of 0.2

is used to measure the vibrations of an engine operating at 1000 rpm. What is

the percent error in the measurement?

4.90 When a machine tool is placed directly on a rigid floor, it provides an excitation

of the form

to the floor. Determine the natural frequency of the system with an undamped

isolator with the minimum possible static deflection such that when the

machine is mounted on the isolator the amplitude of the force transmitted to

the floor is less than 3500 N.

4.91 Use the force shown in Figure P4.91 as an approximation to the force provided by

the punch press during its operation. Rework Example 4.17 for the excitation.

F (t ) = (4000 sin 100t + 5100 sin 150t) N

10,000

–10,000

0.1 0.2 0.3 0.4

FIGURE P4.86

4000 N

0.1 s 0.3 s 0.4 s 1 s 1.1 s
FIGURE P4.91

4.92 A 550-kg industrial sewing machine has a rotating unbalance of 0.24 kg · m.

The machine operates at speeds between 2000 and 3000 rpm. The machine is

placed on an isolator pad of stiffness 5 � 106 N/m and damping ratio 0.12.

What is the maximum natural frequency of an undamped seismometer that can

be used to measure the steady–state vibrations at all operating speeds with an

error less than 4 percent. If this seismometer is used, what is its output when

the machine is operating at 2500 rpm?
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4.93 The system of Figure P4.93 is subject to the excitation

What is the output in mm/s2 of an accelerometer of natural frequency 100 Hz

and damping ratio 0.7 placed at A?

F (t) = 1000 sin 25.4t + 800 sin (48t + 0.35) -300 sin(100t + 0.21) N

1.8 m
0.6 m

100 N . s/m

12.8 kg

F(t)4.8 × 104 N/m

FIGURE P4.93

4.94 What is the output, in mm, of a seismometer with a natural frequency of 2.5 Hz

and a damping ratio of 0.05 placed at point A for the system of Figure P4.93?

4.95 A 20-kg block is connected to a moveable support through a spring of stiffness

1 � 105 N/m in parallel with a viscous damper of damping coefficient 600 N · s/m.

The support is given a harmonic displacement of amplitude 25 mm and frequency

40 rad/s. An accelerometer of natural frequency 25 Hz and damping ratio 0.2 is

attached to the block. What is the output of the accelerometer in mm/s2?

4.96 An accelerometer has a natural frequency of 80 Hz and a damping coefficient of

8.0 N · s/m. When attached to a vibrating structure, it measures an amplitude

of 8.0 m/s2 and a frequency of 50 Hz. The true acceleration of the structure is

7.5 m/s2. Determine the mass and stiffness of the accelerometer.

4.97 Vibrations of a 30 kg machine occur at 150 rad/s with an amplitude of 0.003 mm.

(a) Design an energy harvester with a damping ratio of 0.2 that harvests

theoretical maximum power over one cycle of vibrations from the body.

(b) What is the power harvested by this harvester in one hour?

4.98 An energy harvester is being designed to harvest the vibrations form a 200 kg

machine that has a rotating unbalance of 0.1 kg · m which operates at 1000 rpm.

The harvester is to have a mass of 1 kg and a damping ratio of 0.1.

(a) What is the stiffness of the harvester?

(b) What is the power harvested from the machine if it operates continuously

in one day.

4.99 An energy harvester is being designed for a vehicle with a simplified suspension

system similar to that in the benchmark examples. The harvester, which is to 

be mounted on the vehicle, is to harvest energy as the vehicle vibrates while

traveling. The harvester will have a mass of 0.1 kg, damping ratio of 0.1, and

natural frequency of 30 rad/s. Estimate how much power is harvested over one

cycle of a sinusoidal road with a spatial period of 10 m and amplitude of 5 mm

while the vehicle is traveling at 50 m/s.
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4.100 How much energy is harvested over one period by the energy harvester of

Problem 4.99 if the vehicle is traveling at 50 m/s over a road whose contour is

shown in Figure P4.100.

Y
(ξ

)
10 cm 280 cm

FIGURE P4.100

4.101 An energy harvester is being designed to harvest energy from a MEMS system.

The harvester consists of a micro-cantilever beam vibrating in a viscous liquid

such that its damping ratio is 0.2. The micro-cantilever beam is made of silicon

(E � 1.9 � 1011 N/m2) is 30 �m long, is rectangular in cross section, has a

base width of 2 �m, and a height of 0.5 �m. The mass density of silicon is 

2.3 g/cm3.

(a) What is the natural frequency of the energy harvester using a SDOF model?

Use the equivalent mass of a cantilever beam at its end.

(b) What energy is harvested over one cycle of motion if the harvesting occurs

at the natural frequency with a vibration amplitude of 1 �m?

(c) What is the average power harvested over one cycle?

(d) What is the power harvested over one hour?
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C h a p t e r 5

TRANSIENT VIBRATIONS
OF SDOF SYSTEMS

5.1 INTRODUCTION
When vibrations of a mechanical or structural system are initiated by a periodic excitation,

an initial transient period occurs where the free-vibration response is as large as the forced

response. The free-vibration response quickly decays, resulting in a steady-state motion.

In many cases, when a system is subject to a nonperiodic excitation, the free vibration

response interacts with the forced response and is important throughout the duration of

the motion of the system. Such is the case when a system is subject to a pulse of finite dura-

tion where the period of free vibration is greater than the pulse duration.

One example of a nonperiodic excitation is the ground motion of an earthquake. The

response of structures due to ground motion is obtained by using the methods of this chapter.

An earthquake is usually of short duration, but maximum displacements and stresses occur

while the earthquake takes place. The terrain traveled by a vehicle is usually nonperiodic.

Suspension systems must be designed to protect passengers from sudden changes in road

contour. Forces produced in operation of machines in manufacturing processes are often

nonperiodic. Sudden changes in forces occur in presses and milling machines.

Forced vibrations of SDOF systems are described by the differential equation

(5.1)x
$ + 2zvnx

# + v2
nx =

Feq(t)

meq
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314 CHAPTER 5

Initial conditions, values of x (0) and , complete the problem formulation. Solution of

Equation (5.1) for periodic forms of F
eq

(t) is discussed in Chapter 4.

The purpose of this chapter is to analyze the motion of systems undergoing transient

vibrations. Equation (5.1) is a second-order linear nonhomogeneous ordinary differential

equation. For certain forms of Feq(t), the method of undetermined coefficients, as applied in

Chapter 4, can be used to determine the particular solution. The homogeneous solution is

added to the particular solution, resulting in a general solution involving two constants of

integration. Initial conditions are applied to evaluate the constants of integration. If damping

is present the homogeneous solution dies out, leaving the particular solution as a steady-state

solution. The method of undetermined coefficients is best suited for harmonic, polynomial,

or exponential excitations and not useful for most excitations studied in this chapter.

The initial conditions and the homogeneous solution have an important effect on the

short-term transient motion of vibrating systems. For these problems, it is convenient to

use a solution method in which the homogeneous solution and particular solution are

obtained simultaneously and the initial conditions are incorporated in the solution.

Many excitations are of short duration. For short-duration responses, the maximum

response may occur after the excitation has ceased. Thus it is necessary to develop a solu-

tion method which determines the response of a system for all time, even after the excita-

tion is removed. In addition, many excitations change form at discrete times. For these

excitations a solution method in which a unified mathematical form of the response is

determined is a great convenience.

The primary method of solution presented in this chapter is use of the convolution

integral. The convolution integral is derived using the principle of impulse and momen-

tum and linear superposition. It can also be derived by application of the method of vari-

ation of parameters. The convolution integral provides the most general closed-form

solution of Equation (5.1). The initial conditions are applied in the derivation of the inte-

gral, and need not be applied during every application. The convolution integral can be

used to generate a unified mathematical response for excitations whose form changes at dis-

crete times. Since it only requires evaluation of an integral, it is easy to apply.

A second method presented in this chapter is the Laplace transform method. Initial

conditions are applied during the transform procedure and the Laplace transform can be

used to develop a unified mathematical response for excitations whose form changes at dis-

crete times. Use of tables of transforms makes application of the method convenient. The

algebraic effort can be less than that using the convolution integral for damped systems, if

appropriate transforms are available in a table. However, if the appropriate transforms are

not available in a table, determination of the response is difficult.

The system’s transfer function is the ratio of the Laplace transform of its output to the

Laplace transform of its input. Thus, the transfer function is independent of the input. It

is a property of the system itself and contains information regarding the system’s dynamics.

If the transfer function for a system is known, multiplication by the transform of the input

leads to the transform of the system response, which can be inverted. The transfer function

is also the Laplace transform of its impulsive response, which is the response due to a unit

impulse.

There are some excitations in which a closed-form solution of Equation (5.1) does not

exist. In these cases, the convolution integral does not have a closed-form evaluation, and

application of the Laplace transform method leads only to the convolution integral. In

addition, situations exist when the excitation is not known explicitly at all values of time.

x# (0)
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Transient Vibrations of SDOF Systems 315

The excitation may be obtained empirically. In these situations, numerical methods must

be used to develop approximations to the response at discrete times. These numerical

methods include numerical evaluation of the convolution integral and direct numerical

solution of Equation (5.1).

Whether the solution is obtained using the convolution integral, Laplace transforms,

or numerical methods, questions arise regarding maximum displacement, maximum trans-

mitted force, and design used to reduce maximum vibration. These questions are answered

for pulses of finite duration. The response spectrum, which is a nondimensional plot of

maximum displacement versus duration of the pulse, is drawn when the shape of the pulse

matters. For short-duration pulses, the shape of the pulse does not matter (only the total

impulse imparted to the system matters), and the design of the system to minimize the

maximum displacement is based upon the concept of isolator efficiency.

5.2 DERIVATION OF CONVOLUTION INTEGRAL

5.2.1 RESPONSE DUE TO A UNIT IMPULSE
The impulse delivered to a system by a force between times t

1
and t

2
is defined as

(5.2)

An impulsive force is a very large force applied over a very short interval of time. The prin-

ciple of impulse and momentum (a form of Newton’s second law integrated over time) is

(5.3)

where v(t) is the system’s velocity at time t. If the limit of the time over which the force is

applied approaches zero and the impulse remains finite, it is said that an impulse is applied

to the system. In this context, impulse refers to an impulsive force which is applied instan-

taneously.

Consider a SDOF system at rest in equilibrium. Let x (t) be a generalized coordinate

representing the displacement of a particle. A linear SDOF system has the equivalent sys-

tems model of Figure 5.1(a). An impulse of magnitude I is applied to a system at rest at 

mv (t1) + I = mv (t2)

I = L
t2

t1

F (t)d t

F (t )

(a)

(b)

ceq

meq

keq
x(t)

Feq(t)

meqυ=+

=+System momenta
before impulse

System momenta
after impulse

System external
impulses

I

FIGURE 5.1
(a) Equivalent system model of a
linear SDOF system. (b) Impulse
and momentum diagrams used to
obtain velocity immediately after
application of an impulse.
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t � 0 as shown in Figure 5.1(b). The principle of impulse and momentum is used to cal-

culate the velocity of the particle immediately after application of the impulse as

(5.4)

Application of an impulse leads to a discrete change in velocity. The velocity immedi-

ately after application of the impulse is I/m. Thus, the response of the system is the same

as the solution initial value problem

(5.5)

with

(5.6)

and

(5.7)

For a system whose free vibrations are underdamped, the solution of Equations (5.5)

through (5.7) is

(5.8)

Equation (5.8) can be written as

(5.9)

where

(5.10)

is the response due to a unit impulse applied at .

For a system that is critically damped,

(5.11)

and for an overdamped system,

(5.12)

If the unit impulse is not applied at but at a time , the response at time is

shifted by such that

(5.13)

where is the unit step function of argument which takes on a value of 0

for and a value of 1 for . The unit step function’s presence in Equation (5.13)

guarantees that the response does not occur until the impulse has been applied. Actually,

t � t0t � t0

t - t0,u(t - t0 )

x (t ) = h (t - t0)u(t - t0)

t0

tt0t = 0

h (t) =
e-zvnt

2meqvn2z2 - 1
 aevd1z2 - 1t - e-vd

1z2 - 1t b

            =
e-zvnt

meqvn2z2 - 1
 sinh avd2z2 - 1t b

h (t ) =
1

meq
 te -vnt

t = 0

h (t ) =
1

meqvd

 e -zvnt sin vd t

x (t ) = Ih (t )

x (t ) =
I

meqvd

 e -zvnt sin vd t

x# (0) =
I
m

x (0) = 0

x
$ + 2zvnx# + v2

n x = 0

v =
I

meq
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the response for an impulse applied at t � 0 should be multiplied by u(t), but is meas-

ured from 0. For an underdamped system,

(5.14)

An alternative to using a non-zero initial velocity to determine the response of a

system to a unit impulse is to use a unit impulse function (see Appendix A) as the forcing

function in the differential equation. The unit impulse function �(t) is the mathematical

representation of a force required to provide a unit impulse to a system. It possesses the

properties of an impulsive force. It is zero except at t � 0, where it is infinite; yet its integral

over time is equal to 1. Use of the unit impulse function as the forcing function in the

differential equation gives

(5.15)

The solution of the differential equation is h(t ), which is called the impulsive response.
If the impulse is applied at a time other than zero (say t

0
), the force required to

cause the impulse is �(t – t
0
), and the differential equation governing the response of

the system is

(5.16)

The solution of Equation (5.16) is h(t � t
0
)u(t � t

0
). If the magnitude of the applied

impulse is other than one (say I ), the differential equation becomes

(5.17)

The solution to Equation (5.17) is Ih(t � t
0
)u(t � t

0
).

x
$ + 2zvn x

# + v2
n x =

I
m

 d(t - t0 )

x
$ + 2zvn x

# + v2
n x =

1
m

 d(t - t0 )

x$ + 2zvn x
# + v2

n x =
1
m

 d(t )

h (t - t0) =
1

meqvd

 e -zvn (t - t0) sin 3vd (t - t0 )4

t

EXAMPLE 5 . 1
During its operation, a punch press is subject to impulses of magnitude at t � 0

and at t � 1.5 sec. The mass of the press is 10 kg, and it is mounted on an elastic pad with

a stiffness of 2 � 104 N/m and damping ratio of 0.1. Determine the response of the press.

SO LU T I ON
The natural frequency of the system is

(a)

The damped natural frequency is

(b)

The differential equation governing the response of the press is

(c)x
$ + 8.94x# + 2000x =

1
10

 35d (t ) + 5d (t - 1.5)4

vd = vn21 - z2 = 44.7  rad/s21 - (0.1)2 = 44.5  rad/s

vn = A
k
m

= A
2 * 104  N/m

10  kg
= 44.7  rad/s

5 N # s
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The principle of linear superposition is used to find the response of the system as

(d)

The graph of the time response is shown in Figure 5.2.

5.3 RESPONSE DUE TO A GENERAL EXCITATION
Consider a SDOF system subject to an arbitrary external force, as illustrated in Figure 5.3(a).

The time scale is written as �, because t is reserved for the time at which the response is to be

calculated. The interval from 0 to t is broken into n subintervals each of duration �� as illus-

trated in Figure 5.3(b). An effect of the force on the interval from k�� to (k 	 1)�� is to 

provide an impulse with a magnitude of

(5.18)

to the system as shown in Figure 5.3(c). The mean value theorem of integral calculus

implies that there exists a where such that

(5.19)I n
k = F (t*

k )�t

k�t … t*
k … (k + 1)�tt*

k

I n
k = L

(k + 1)�t

k�t

F (t)dt

+ e -4.47t + 6.705 sin(44.5t - 66.75)u (t - 1.5)4 m
= 0.01123e -4.47t sin(44.5t )u (t )

+
5  N # s

(10  kg)(44.5  rad/s)
 e -4.47(t -  1.5) sin344.5(t - 1.5)4u (t - 1.5)

x (t ) =
5  N # s

(10  kg)(44.5  rad/s)
 e -4.47t sin(44.5t )u(t )

0 0.5 1 1.5
t (s)

2 2.5 3

10
×10–3

8

6

4

2

0x 
(m

)

–2

–4

–6

–8

FIGURE 5.2
Time dependent response of
a punch press subject to two
impulses.
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Transient Vibrations of SDOF Systems 319

If �� is small, the effect of the force applied between k�� and (k 	 1)�t can be approxi-

mated by an impulse of magnitude applied at tk � (k 	 1/2)�t. Thus, as illustrated in

Figure 5.2(b), the excitation F (t) applied between 0 and t is approximated by the sequence

of impulses .

The response of the system at time t due to an impulse with a magnitude of applied

at time tk is obtained using Equations (5.8) and (5.13):

(5.20)

The force F(�) from 0 to t is approximated by

(5.21)F (t) = a
n

k =  1
I n

kd(t - tk )

x n
k (t ) = I n

k h (t - tk)u(t - tk )

I n
k

I n
k , k = 0, 1, 2, . . . , n - 1

I n
k

FIGURE 5.3
(a) Arbitrary excitation
applied to a SDOF system.
(b) The interval from 0 to t is
divided into n equal intervals
of duration �t� t /n. (c) The
effect of the force applied
during the kth interval is
approximated by the effect
at time t due to an impulse
of an appropriate magnitude.
In the limit as n approaches
infinity, the approximation
becomes exact.

∆t

F(t)

(b)

(c)

F(t)

F(t0
∗)∆t

t0
∗

F(t1
∗)∆t

t1
∗

F(t2
∗)∆t

t2
∗

F(t3
∗)∆t

t3
∗

F(t4
∗)∆t

t4
∗

F(tn–2)∆t

tn–2

F(tn–1)∆t

tn–1

2∆t 3∆t 4∆t 5∆t

∗
∗

∗∗

(a)

F(t)

t

(n – 2) ∆t  (n – 1) ∆t t = n∆t
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320 CHAPTER 5

The system is aware of the time history of the applied force, but it cannot predict the

future. Thus, since Equation (5.1) is linear and has F(�) as expressed in Equation (5.21) on

the right-hand side, the principle of linear superposition is applied to determine the

response at time t as

(5.22)

The approximation of Equation (5.21) becomes exact in the limit as n → 
r �t → 0.
To this end,

(5.23)

In the limit as n → , �k and � *k become a continuous variable �. Also, in the limit, the

sum becomes a Riemann sum and

(5.24)

For a system whose free vibrations are underdamped, Equation (5.10) is used in

Equation (5.24), leading to

(5.25)

The integral representation of Equation (5.24) is called the convolution integral. It can be

used to determine the response of a SDOF system initially at rest in equilibrium subject to

any form of excitation. The convolution integral solution is valid for all linear systems where

h(t) is viewed as the response of the system due to a unit impulse at t � 0. It is the solution

of the differential equation of Equation (5.1) that is subject to x(0) � 0 and .

The response of a system with a nonzero initial velocity is obtained by adding to the

convolution integral of Equation (5.24) the response of the system due to a unit impulse

at t � 0 necessary to cause the initial velocity. The response of a system that is not in its

equilibrium position at t � 0 is obtained by defining a new independent variable as 

y � x �x (0). The differential equation governing y(t) is

(5.26)

The convolution integral is used to obtain

(5.27)

The resulting general solution for a system whose free vibrations are underdamped is

(5.28)
 
x (t ) = x (0) e -zvnt cos vd t +

x# (0) + zvnx (0)

vd

 e -zvn t sin vd t

            +
1

m eqvdL
t

0
F (t) e -zvn(t -t) sin vd (t - t)d t

y (t ) =L
t

0
3-keq x (0) + Feq(t)4 h (t - t)d t

y
$ + 2zvn y# + v2

n y = -
keq

meq
 x (0) +

Feq(t )

meq

x# (0) = 0

x (t ) =
1

meqvdL
t

0
F (t)e -zvn (t - t)

  sin vd (t - t)d t

x (t ) = L
t

0
F (t) h (t - t)d t

�

x (t ) =  lim
n: q

 x n(t ) =  lim
n: q  a

n -  1

k =  0
F (t*

k ) h (t - tk ) u(t - tk )�t

�

x n(t ) = a
n -  1

k =  0
x n

k (t ) = a
n -  1

k =  0
F (t*

k ) h (t - tk ) u(t - tk )�t

�t:0�t:0
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Transient Vibrations of SDOF Systems 321

EXAMPLE 5 . 2
Find the response of an underdamped SDOF mass-spring-dashpot system initially at rest

in equilibrium when the force

(a)

is applied.

SO LU T I ON
Application of Equation (5.25) for this particular form of F (t ) gives

(b)* U e -zvnt3(a - zvn ) sin vd t - vd cos vd t4 - vd e
-atV

=
F0

m eqvd (v2
n - 2zvna + a2)

x (t ) = L
t

0

F0e
-at

m eqvd

 e -zvn(t - t) sin vd (t - t)d t

F (t ) = F0e
-at

EXAMPLE 5 . 3

FIGURE 5.4
Excitation of Example 5.3.

F(t)

t0

F0

t

A press of mass m is mounted on an elastic foundation of stiffness k. During operation, the

force applied to the press builds up to its final value F
0

in a time t
0
, as illustrated in 

Figure 5.4. Determine the response of the press for (a) t � t
0
, and (b) t � t

0
.

SO LU T I ON
The force applied to the press can be expressed as

(a)

For an undamped system, the convolution integral of Equation (5.25) becomes

(b)

(a) For the convolution integral yields

(c)

x (t ) =
1

mvnL
t

0

F0

t

t0

 sin vn(t - t)d t

           =
F0

mvnt0

 c t
vn

 cos vn(t - t) +
1

v2
n

 sin vn(t - t) dt =  t

 t =  0

          =
F0

mv2
nt0

 a t -
1

vn

 sin vntb

t � t0,

x (t ) =
1

mvnL
t

0
F (t) sin vn(t - t)d t

F (t ) = c F0

t
t0

           t 6 t0

F0                 t Ú t0
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322 CHAPTER 5

(b) For application of the convolution integral leads to

(d)-
1
vn

 cos vn(t - t0) d
=

F0

mv2
nt0

 c t0 cos vn(t - t0) +
1
vn

 sin vn(t - t0) -
1
vn

 sin vnt +
1
vn

+ c 1
vn

 cos vn(t - t) dt =  t

t =  t 0

s
=

F0

mvn

 c c t
vn

 cos vn(t - t) +
1
v2

n

 sin vn(t - t) dt =  t 0

t =  0

x(t) =
1

mvn

 cL
t0

0
F0 
t

t0

 sin vn(t - t)dt + L
t

t0

F0 sin vn(t - t)dt d
t � t0,

EXAMPLE 5 . 4
The restroom door of Example 3.9 is designed such that it is critically damped. The door

is closed when a man applies a force of 10 N for a duration of 2 s to the knob. What is the

time dependent response of the door?

SO LU T I ON
Using data from Example 3.9, the force applied to the knob results in a moment applied

to the door of

(a)

The differential equation governing the motion of the door is

19.35 	 44.1 	 25� (b)

The convolution integral solution of Equation (b) subject to � (0) � 0 and is

(c)

For t � 2 s, the integral becomes

(d)

The integral is evaluated by letting u � t � t, leading to

(e)

u(t ) = 0.465L
0

t
ue -1.14u(-du) = 0.465L

t

0
ue -1.14udu

           = -0.465 c u
1.14

e -1.14u +
1

(1.14)2e -1.14u d u =  t

u =  0
           = 0.357 - 0.357e -1.14t - 0.408te - 1.14t

u(t ) =
9.0

19.35L
t

0
(t - t)e -1.14(t - t)d t

u(t ) = L
t

0
M(t)

1
Ieq

 (t - t)e -vn(t - t) d t

= b9.0           t 6 2
  0           t 7 2

u
#

u
$

M = (10  N)(0.90  m) = 9.0 N # m
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Transient Vibrations of SDOF Systems 323

For t � 2 s, the convolution integral leads to

(f)

Let u � t � �, then

(g)
Thus,

(h)u(t ) = b0.361 - 0.361e -1.14t - 0.412te -1.14t
           

 t 6 2  s
3.58t e -1.14t - 4.84e -1.14t

                                                 t 7 2  s

u(t ) = 0.470L
t

t -  2
ue -1.14udu

           = 0.357e -1.14(t -  2) + 0.408(t - 2)e -1.14(t -  2) - 0.357e -1.14t - 0.408te -1.14t

           = 3.58te -1.14t - 4.84e -1.14t

u(t ) =
9.0

19.35L
2

0
(t - t)e -1.14(t -  t)d t

5.4 EXCITATIONS WHOSE FORMS CHANGE
AT DISCRETE TIMES
Many engineering systems are subject to a force whose mathematical form changes at discrete-

values of time. Such is the case with the force applied to the press in Example 5.3. The force

linearly increases to its maximum value in a time t
0
. The mathematical form of the response

of the press is different for t � t
0

than it is for t � t
0
. It is more convenient to have unified

mathematical forms for the excitation and response. To this end, the unit step function,

introduced in Appendix A, is used.

If a constant force F
0

is not applied until time t
0
, it can be represented using a delayed

unit step function

(5.29)F (t ) = b0                    t … t0

F0                 t 7 t0

= F0u(t - t0 )

EXAMPLE 5 . 5
Use the unit step function to write a unified mathematical expression for each of the forces

of Figure 5.5.

FIGURE 5.5
Excitations of Example 5.5.

t0
(a)

F0

t0 3t0 4t0
(b)

F0

t0
(c)

F0 Exponential decay
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SO LU T I ON
Each of the forces of Figure 5.5 can be written as the sum and/or difference of functions

that are nonzero only after a discrete time. The graphical breakdown for each function is

shown in Figure 5.6. The unit step function is used to write a mathematical expression for

each term in the forcing functions, leading to

FIGURE 5.6
Graphical breakdown of excitations of Example 5.5 into functions that can be written by using unit step functions.

t0 F0u(t)

(a)

(b)

F0

t0

F0
= –

F0u(t – t0)

F0

t0

F0

3t0 4t0 t0

F0
= –

t0
F0t/t0 F0t/t0u(t – t0)

F0

3t0

F0
+

+

–

t0
F0u(t – 3t0)

F0(4 – t/t0)u(t – 3t0) F0(4 – t/t0)u(t – 4t0)

F0u(t – t0)

F0

4t0

F0
–

3t0 4t0

F0
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Transient Vibrations of SDOF Systems 325

Many functions found in practice can be written as combinations of impulses, step

functions, ramp functions, exponentially decaying functions, and sinusoidal pulses. Many

functions which cannot be mathematically defined in terms of these functions are often

approximated by these functions for estimation purposes.

Table 5.1 provides the response of an undamped SDOF system to common excitation

terms delayed by a time t
0
. The responses are derived from the convolution integral making

use of the following formula:

(5.30)L
t

0
F (t)u (t - t0)d t = u (t - t0 )L

t

t0

F (t)d t

(c)

F0e–α(t–t0)u(t – t0)

t0 t

F0

t0

F0
=

+

–

F0t/t0u(t)

F0

t0

F0t/tØu(t – t0)

F0

EXAMPLE 5 . 6
Use the convolution integral to derive the responses of an undamped linear SDOF system

of mass m and natural frequency when subject to the delayed exponential excitation

illustrated in Table 5.1.

vn

(a) (a)

(b)

(b)

(c) (c)F (t ) =
F0t

t0

3u (t ) - u (t - t0 )4 + F0e
-a(t -  t0)u (t - t0 )

+
F0

t0

(t - 4t0)u (t - 4t0)

=
F0

t0

tu (t) -
F0

t0

(t - t0 )u (t - t0) -
F0

t0

(t - 3t0)u (t - 3t0)

+ F0a4 -
t
t0

b3u (t - 3t0) - u(t - 4t0)4
F (t) =

F0t

t0

3u (t) - u (t - t0)4 + F03u (t - t0) - u (t - 3t0)4
F (t ) = F03u (t ) - u (t - t0)4

FIGURE 5.6
(Continued)
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Delayed impulse
Excitation:
Response: meqv

2
n x (t )/A = vn  sin  vn (t - t0)u (t - t0)

F (t ) = Ad(t - t0)

F
(t

)
A

0.5

Impulsive excitation

Unit impulse

t
0.5

1

0

–0.5

0.5

–1

0 1
t

1.5 2 2.5

Response for delayed impulse

m
 w

n2 x
(t

)
A

0.5

2.5

0.4

0.2

0.6

1.0

0.0
0 1

t
1.5 2 2.5

Delayed step excitation

0.8

F
(t

)
A

0.5

2.5

1.0

0.5

1.5

2.0

0.0
0 1

t
1.5 2 2.5

Response for delayed step

m
 w

n2 x
(t

)
A

Delayed step function
Excitation:
Response: meqv

2
n x (t )/A = 31 -  cos  vn (t - t0)4u (t - t0)

F (t ) = Au (t - t0)

Delayed ramp function
Excitation:

Response: meqv
2
n x (t )/A = 3t + B/A - (t0 + B /A)  cos  vn (t - t0) -

1
vn

  sin  vn (t - t0)4u (t - t 0)

F (t ) = (At + B)u (t - t0)

0.5

4

1

2

0
0 1

t
1.5 2 2.5

Delayed ramp excitation
B/A = 0.5

3

F
(t

)
A

0.5

4

2

1

3

0
0 1

t
1.5 2 2.5

Response for delayed ramp
B/A = 0.5

m
 w

n2 x
(t

)
A

Response of an undamped SDOF to common forms of
excitation

T A B L E 5 . 1
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Delayed exponential function

Excitation:

Response: meqv
2
n x (t )/A = 3e -a(t -  t0) + a/vn  sin  vn(t - t0)

       -  cos  vn(t - t0)4/(1 + a2/v2
n)u (t - t0)

F (t ) = Ae -a(t -  t0)u(t - t0)

Delayed sine function:

Excitation:

Response: meqv
2
n x (t )

A
=

1
2
b a 1
v/vn - 1

b3 sin  v (t - t0) -   sin  vn(t - t0)4
              -  a 1

v/vn + 1
b 3 sin  v (t - t0) +   sin  vn(t - t0)4 ru (t - t0)

F (t ) = A  sin[v(t - t0)]u (t - t0)

0.5

1.2

0.0

0.2

0.4

0.6

0.8

1.0

0 1
t

1.5 2 2.5

Delayed exponential excitation
a  = 0.5

F
(t

)
A

0.5

2.5
2.0
1.5
1.0
0.5
0.0

–1.0
0 1

t
1.5 2 2.5

Response for delayed exponential
a = 0.5

–0.5
m

 w
n2 x

(t
)

A

0.5

1.5

–1.5

–1.0

–0.5

0.0

0.5

1.0

0 1
t

1.5 2 2.5

Delayed sinusoidal excitation
ω = 4.0

F
(t

)
A

0.5

2

1

0

–2
0 1

t
1.5 2 2.5

Response for delayed sine
w = 4.0

–1

m
 w

n2 x
(t

)
A

This table provides the response of an undamped SDOF system to common forms of excitation. Many forms of excitation
can be written as combinations of the excitations whose system responses are provided in the table. Superposition can
be used to determine the response due to these excitations. In other cases, excitations can be approximated by combina-
tions of excitations in this table. Then this table and superposition is used to approximate the response of an undamped
SDOF system.

The table provides the mathematical form of the excitation and response as well as graphical representations. In all
cases, values of �n � 10 rad/s and r0 � 0.5 s were used to generate the graphs. The values of specific parameters used for
specific excitations are given.

T A B L E 5 . 1 ( C O N T I N U E D )
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SO LU T I ON
The mathematical representation of the forcing function is

(a)

The convolution integral of Equation (5.25) is used to write the solution as

(b)

which using Equation (5.30) is rearranged as

(c)

x (t ) = u(t - t0) 
F0

meqvnL
t

0
e -a(t- t0) sin vn(t - t

t
)d t

         = u(t - t0) 
F0

meqvn(a
2 + v2

n )
 3vne

-a(t -  t0) + a sin vn(t - t0)

                                                                                      - vn cos vn(t - t0)4

x (t ) =
F0

meqvnL
t

0
e -a(t -  t0)u (t - t0) sin vn(t - t)dt

F (t ) = F0e
-a(t -  t0)u(t - t0)

Often, excitations are linear combinations of the function whose responses are pre-

sented in Table 5.1. The general form of an excitation that changes form at discrete times

t
1
, t

2
, . . . , tn is

(5.31)

Application of the convolution integral to the excitation of Equation (5.31), using

Equation (5.30), yields

(5.32)

Equation (5.32) shows that the total response is the sum of the responses due to the indi-

vidual terms of the excitation. This result is due to the linearity of Equation (5.1). The

effects of any nonzero initial conditions are included with the response due to f
1
(t ).

x (t ) = a
n

i =  1
u(t - ti )L

t

ti

f i (t)h (t - t) d t

F (t ) = a
n

i =  1
f i (t )u (t - ti )

EXAMPLE 5 . 7
Use Table 5.1 to develop the response of a linear, SDOF system of mass m and natural 

frequency �n when subject to the triangular pulse excitation of Figure 5.7.

SO LU T I ON
The triangular pulse can be written as the sum and difference of ramp functions as shown.

The response due to the triangular pulse is obtained by adding and subtracting the

responses due to each ramp function according to

(a)
where the individual responses are determined from Table 5.1.

For xa(t), the ramp function entry of Table 5.1 is used with A � F
0
/t

1
, B � 0, and 

t
0

� 0 leading to

(b)xa(t ) =
F0

mv2
n

c t
t1

-
1
vnt1

 sin vnt d

x (t ) = xa(t ) - xb(t ) + x c(t ) - xd (t )
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Transient Vibrations of SDOF Systems 329

FIGURE 5.7
(a) Triangular pulse of
Example 5.7 and its graphical
breakdown. (b)–(e) Response
of a SDOF undamped system
due to the component parts
of a triangular pulse excita-
tion obtained using Table 5.1.
(f) Response of a SDOF
system due to triangular
pulse excitation obtained
using the principle of linear
superposition. (g) Comparison
of triangular pulse and the
resulting excitation.
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+

–F0(t/t1 – 2)u(t – t1)
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t1 2t1

t1
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2t1 t1
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F0t/t1u(t)
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F
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330 CHAPTER 5

xb(t) is determined from the ramp function entry of Table 5.1 with A � F
0
/t

1
, B � 0,

t
0

� t
1
. This gives

(c)

For xc(t), the ramp function entry of Table 5.1 is used with A � �F
0
/t

1
, B � 2F

0
, and

t
0

� t
1
. This leads to

(d)

xd(t) is determined using the ramp function entry of Table 5.1 with A � �F
0
/t

1
, 

B � 2F
0
, and t

0
� 2t

1
. This gives

(e)

Simplifying the resulting expression in each interval of time yields

(f)

The response of each component part and the total response is shown in Figure 5.7(b)

through (g).

x (t ) =
F0

mv2
n

 f
t
t1

-
1

vnt1

 sin vnt                                                                                    0 … t … t1

2 -
t
t1

+
1

vnt1

32 sin vn(t - t1) -  sin vnt4                                 t1 … t … 2t1

1
vnt1

32 sin vn(t - t1) -  sin vnt -  sin vn(t - 2t1)4            t1 7 2t1

xd (t ) =
F0

mv2
n

c a2 -
t
t1

b +
1
vnt1

 sin vn(t - 2t1) du(t - 2t1)

x c(t ) =
F0

mv2
n

c a2 -
t
t1

b -  cos vn(t - t1) +
1
vnt1

 sin vn(t - t1) du (t - t1)

xb(t ) =
F0

mv2
n

c t
t1

-  cos vn(t - t1) -
1
vnt1

 sin vn(t - t1) du (t - t1)

5.5 TRANSIENT MOTION DUE TO BASE EXCITATION
Many mechanical systems and structures are subject to nonperiodic base excitation. A rigid

wheel traveling along a road contour excites motion of a vehicle through the suspension

system. Earthquakes excite structures through base motion.

Recall the governing equation for the relative displacement between a mass and its base

when the mass is connected to the base through a spring and viscous damper in parallel

(5.33)

where y is the prescribed base motion. If and , the convolution integral

is used to solve Equation (5.33), yielding

(5.34)z (t ) = -meqL
t

0
y
$
(t)h (t - t)d t

z# (0) = 0z (0) = 0

z
$ + 2zvnz

# + v2
nz = - y

$
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Equation (5.34) is integrated by parts to write the solution in terms of the base velocity

(5.35)

where

(5.36)

(5.37)

If the base displacement is known, it can be differentiated to calculate the velocity and

Equation (5.35) can be used to determine the relative displacement. Alternatively, the

absolute displacement of the base can be attained by solving

(5.38)

When applied to Equation (5.38), the convolution integral yields

(5.39)x (t ) = -meqL
t

0
32zvn y# (t) + v2

n y (t)4h (t - t)dt

x
$ + 2zvnx

# + v2
nx = -2zvn y# - v2

n y

x =  tan -1a21 - z2

z
b

 
e -zvnt

meq21 - z2
 sin (vd t - x)h

#
(t ) = -

h
#  
(t - t)d tz (t ) = meq3y# (0)h (t) -L

t

0
y# (t)

EXAMPLE 5 . 8
Determine the response of a block of mass m connected through a spring of stiffness k
to a base when the base is subject to the rectangular velocity pulse of Figure 5.8. Use 

(a) Equation (5.35) and (b) Equation (5.34).

SO LU T I ON
The mathematical expression for the velocity pulse is

(a) By definition u(0) � 0, thus . In using Equation (5.35) for an undamped,

system, note that 
 � p/2 and sin (�nt � p/2) � cos �nt. Application of Equation (5.35)

then yields

(a)

Using Equation (5.30) to evaluate the integral leads to

(b)

(b) The base acceleration is obtained by differentiating the base velocity with respect

to time. Noting that the derivative of the unit step function is the unit impulse function,

differentiation gives

(c)y
$

(t) = v 3d(t ) - d(t - t0)4

z (t ) = -v 3u (t )L
t

0
 cos vn(t - t)d t - u (t - t0)L

t

t0

 cos vn(t - t)d t4
           =

v
vn

3 sin vn(t - t0)u(t - t0) -  sin  (vnt )u(t )4

z (t ) = -vL
t

0
3u (t) - u (t - t0)4 cos vn(t - t)d t

y# (0) = 0

y# (t ) = v3u (t ) - u (t - t0)4
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332 CHAPTER 5

The base velocity changes instantaneously at t � 0 and t � t
0
. Instantaneous velocity

changes result only from applied impulses.

Substituting the base acceleration into Equation (5.34) gives

(d)

The integrals are evaluated after noting

(e)

The relative displacement is determined as

(f)z (t ) =
v
vn

3 sin vn (t - t0)u(t - t0 ) -  sin  (vnt )u(t )4

L
t

0
d(t - t0)f (t)d t = f (t0) u (t - t0)

z (t ) = -
v
vnL

t

0
3d(t) - d (t - t0)4  sin vn(t - t)d t

FIGURE 5.8
Velocity pulse for Example 5.8.

t0 t

v (t)

v

5.6 LAPLACE TRANSFORM SOLUTIONS
The Laplace transform method is a convenient method for finding the response of a

system due to any excitation. The basic method is to use known properties of the trans-

form to transform an ordinary differential equation into an algebraic equation, using the

initial conditions. The algebraic equation is solved to find the transform of the solution.

This transform is inverted by using properties of the transform and a table of known

transform pairs.

The Laplace transform can be used to solve linear ordinary differential equations with

constant or polynomial coefficients. The method easily handles excitations whose form

changes with time. Such excitations are written in a unified mathematical expression by

using the unit step functions. The shifting theorems help perform the transform and eval-

uate the inversions.

The Laplace transform is not as easy to apply as the convolution integral unless one has

extensive experience in its use. The main drawback of the method is the difficulty in invert-

ing the transform. A formal inversion theorem, involving contour integration in the com-

plex plane, is available, but is beyond the scope of this text.

The transform pairs and properties used in the following discussion are summarized

and explained in Appendix B.
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Transient Vibrations of SDOF Systems 333

Let X(s) be the Laplace transform of the generalized coordinate for a SDOF system.

That is,

(5.40)

Let F(s) be the Laplace transform of the known forcing function which, for a specific form

of F
eq

(t), is calculated from the transform definition, referring to a table of transform pairs,

or using basic properties in conjunction with a table.

Taking the Laplace transform of Equation (5.1) and using linearity of the transform,

(5.41)

The property for transform of derivatives allows the transform of the differential equation

for x(t) into an algebraic equation for X(s). Its application to Equation (5.41) gives

which rearranges to

(5.42)

The definition and linearity of the inverse transform is used to find x(t),

(5.43)

The inverse transform of each term of Equation (5.43) depends on the types of roots in

the denominator, which, in turn, depend on the value of �. For a given �, the inverse transform

of the last term of Equation (5.43) is directly determined. The inverse transform of the first

term is determined only after specifying F
eq

(t) and taking its Laplace transform.

If the system is undamped, � � 0, and the inverse transform of the second term

becomes

(5.44)

Using transform pairs B4 and B5 to invert the transforms for an undamped system

(5.45)

If the free vibrations are underdamped, then the denominator has two complex roots. In

this case, it is convenient to complete the square of the denominator as

(5.46)s2 + 2zvns + v2
n = (s + 2zvn )2 + v2

n(1 - z2)

L-1b (s + 2zvn )x(0) + x# (0)

s2 + 2zvns + v2
n

r = x (0) cos vnt +
x# (0)

vn

 sin vnt

L-1b (s + 2zvn )x (0) + x# (0)

s2 + 2zvns + v2
n

r = L-1b sx (0) + x# (0)

s2 + v2
n

r
    = x (0) L-1b s

s2 + v2
n

r + x# (0) L-1b 1

s2 + v2
n

r

x (t ) =
1

meq
L-1b F (s)

s2 + 2zvns + v2
n

r + L-1b (s + 2 zvn )x (0) + x# (0)

s2 + 2zvns + v2
n

r
X(s) =

F (s)
meq

+ (s + 2zvn )x (0) + x# (0)

s2 + 2zvns + v2
n

s2X(s) - sx (0) - x# (0) + 2zvn3sX (s ) - x(0)4 + v2
nX(s ) =

F (s )
meq

L{x$ } + 2zvn L{x#} + v2
nX (s) =

F (s )
m eq

X(s) = L
�

0
x (t )e -stdt
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334 CHAPTER 5

Substituting Equation (5.46) into the last term of Equation (5.43) yields

(5.47)

Equation (5.47) is written in a form for use in the first shifting theorem (that is, wherever

s appears, it appears as in the denominator). Using linearity of the inverse trans-

form, we have

(5.48)

The first shifting theorem along with transform pair B5 are used to invert the first term,

while the first shifting theorem and transform pair B4 are used to invert the second term,

yielding for an underdamped system:

(5.49)

If the free vibrations are critically damped, the denominator of Equation (5.43) is a

perfect square as (s 	�n)
2 and it yields

(5.50)

Using linearity of the inverse transform, the right-hand side of Equation (5.50) is rewritten as

(5.51)

Inverting using transform pairs B3 on the first term and the first shifting theorem and

transform pair B2 on the second term leads to:

(5.52)

When the free vibrations are overdamped, the denominator of Equation (5.43) can be

factored into two linear factors (s – s
1
)(s – s

2
) where ands1 = -vn(z + 2z2 - 1)

L-1b (s + 2zvn )x (0) + x# (0)

s2 + 2zvns + v2
n

r = x (0)e -vnt + (vnx (0) + x# (0))te -vnt

L-1b (s + 2zvn )x (0) + x# (0)

s 2 + 2zvns + v2
n

r
    = x (0) L-1 b 1

s + vn

r + (vnx (0) + x# (0))L-1b 1

(s + vn )2
r

L-1b (s + 2zvn )x (0) + x# (0)

s 2 + 2zvns + v2
n

r = L-1b (s + 2vn )x (0) + x# (0)

(s + vn )2 r

L-1b (s + 2zvn )x(0) + x# (0)

s 2 + 2zvns + v2
n

r
                      = x (0)e -zvnt cos (vn21 - z2t )

                           + 3x# (0) + zvnx (0)4e -zvnt sin (vn21 - z2t )

L-1 b (s + 2zvn )x (0) + x# (0)

s2 + 2zvns + v2
n

r
       = x (0) L-1 b (s + zvn )

(s + zvn )2 + v2
n(1 - z2 )

r
              + (x# (0) + zvnx (0))L-1 b 1

(s + zvn )2 + v2
n(1 - z2 )

r

s + zvn

L-1b (s + 2zvn )x (0) + x# (0)

s2 + 2zvns + v2
n

r = L-1b (s + 2zvn )x (0) + x# (0)

(s + zvn )2 + v2
n(1 - z2)

r
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. A partial fraction decomposition of the transform leads to

(5.53)

The transform is inverted using transform pair B3, yielding

(5.54)

The inverse transform of the first term of Equation (5.43) is found by finding for

the particular form of , forming , and inverting using algebraic

manipulations, transform properties, and a table of known transform pairs.

F (s)/(s 2 + 2zvn s + v2
n )F (t )

F (s)

L-1b (s + 2zvn )x(0) + x# (0)

s2 + 2zvns + v2
n

r
      =

3(s1 + 2zvn )x (0) + x# (0)4
s1 - s2

e s1t +
3(s2 + 2zvn )x (0) + x# (0)4

s2 - s1
e s 2t

L-1b (s + 2zvn )x(0) + x# (0)

s2 + 2zvns + v2
n

r
=
3(s1 + 2zvn )x (0) + x# (0)4

s1 - s2
L-1b 1

s - s1
r

      +
3(s2 + 2zvn )x (0) + x# (0)4

s2 - s1
L-1b 1

s - s2
r

s1 = -vn(z - 2z2 - 1)

EXAMPLE 5 . 9
A 200-kg machine is to be mounted on an elastic surface of equivalent stiffness 2 � 105

N/m with no damping. During operation, the machine is subject to a constant force of

2000 N for 3 s. Can vibrations be eliminated without adding damping? If so, what is the

maximum deflection of the machine?

SO LU T I ON
The differential equation governing motion of the machine is

(a)

where F
0

� 2000 N and �n � 31.63 rad/s. The Laplace transform of F(t) is obtained by

using the second shifting theorem

(b)

Then from Equation (5.43) with x(0) � 0 and ,

(c)

Partial fraction decomposition yields

(d)X (s ) =
F0

mv2
n

a1
s

-
s

s2 + v2
n

b (1 - e -3s )

X (s ) =
F0

m
 L- 1b 1 - e -3s

s (s2 + v2
n )
r x# (0) = 0

L{F03u (t ) - u (t - 3)4} =
F0

s
 (1 - e -3s )

x
$ + v2

nx = F03u (t ) - u (t - 3)4
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The second shifting theorem is used to help invert the transform

(e)

The solution for t � 3 s is

(f)

For no steady-state motion,

(g)

which is satisfied if 3�n � 2n� for any positive integer n. Thus steady-state vibrations are

eliminated by requiring

(h)

For n � 15, vn � 31.35 rad/s, which is attained if m � 203.5 kg. Thus steady-state vibra-

tions are eliminated if 3.5 kg is rigidly added to the machine.

The machine undergoes 15 cycles while the force is applied, and motion ceases when

the force is removed. The maximum displacement during operation is

(i)x
 max 

=
2F0

mv2
n

=
2F0

k
= 0.02  m

vn =
2np

3
= 2.09n rad/s

 cos vnt =  cosvn(t - 3)

x (t ) =
F0

mv2
n

 3cosvn(t - 3) -  cosvnt4  t 7 3  s

x (t ) =
F0

mv2
n

 31 -  cos  vnt - u (t - 3)(1 -  cosvn(t - 3))4

EXAMPLE 5 . 1 0
Use the Laplace transform method to determine the response of an underdamped SDOF

system to the rectangular velocity pulse of Figure 5.8.

SO LU T I ON
From the analysis in Example 5.8, the differential equation governing displacement of the

mass relative to its base when the base is subject to a rectangular velocity pulse is

Using transform pair B1, and assuming z(0) � 0 and , Equation (5.42) becomes

The transform is inverted by completing the square in the denominator and using both the

first shifting theorem and the second shifting theorem to obtain

z (t ) =
-v
vn

 3e -zvnt sin vdt - e -zvn(t - t0) sin vd (t - t0)u (t - t0)4

Z (s) =
-v (1 - e -st0)

s2 + 2zvns + v2
n

z# (0) = 0

z
$ + 2zvnz + v2

nz = -v3d(t ) - d(t - t0)4
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5.7 TRANSFER FUNCTIONS
Taking the Laplace transform of Equation (5.1), assuming x(0) � 0 and , leads

to an equation of the form

(5.55)

where X (s) is the Laplace transform of x (t), F (s) is the Laplace transform of F (t), and G (s)
is called the transfer function. The transfer function is always defined assuming the initial

conditions are zero. Since

(5.56)

the transfer function is independent of the input to the system. It is a function of only the

system and its parameters. For a SDOF system, the transfer function is dependent upon

the mass, damping ratio, and natural frequency.

G (s) =
X (s)

F (s)

X (s ) = F (s)G ( s )

x# (0) = 0

EXAMPLE 5 . 1 1
(a) Determine the transfer function for a SDOF system of natural frequency 10 rad/s and

a damping ratio of 1.5 due to a force input. The mass of the system is 2 kg. 

(b) Find the response of the system due to a force 

SO LU T I ON
(a) The differential equation governing the motion of the system is

(a)

Taking the Laplace transform of Equation (a) and setting both initial conditions to zero

leads to

(b)

Rearranging Equation (b) leads to

(c)

(b) The Laplace transform of is From Equation (5.49),

(d)

The system is overdamped, so the denominator of its transfer function is factorable with

real factors as

(e)

Performing a partial fraction decomposition on the right-hand side of Equation (e), we have

(f)

Inverting Equation (f ) leads to

(g)x (t) = 0.234e -3t + 9.69 * 10- 3e -26.18t - 0.244e -3.82t

X (s) =
-0.244

s + 3.82
+

9.69 * 10- 3

s + 26.18
+

0.234
s + 3

X (s) =
5

(s + 3.82)(s + 26.18)(s + 3)

X (s) = F (s)G (s) =
10

2(s2 + 30s + 100)(s + 3)

F (s) =
10

s + 3
.F (t) = 10e - 3t

G (s) =
X ( s)

F (s )
=

1
2(s2 + 30s + 100)

(s2 + 30s + 100)X (s) =
1
2

F (s)

x$ + 30x# + 100x =
1

2
F (t )

F (t) = 10e - 3t.
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EXAMPLE 5 . 1 2
Determine the transfer function for the system of Figure 5.9, which has motion input.

FIGURE 5.9
Mechanical system with
motion input. m

ck

x(t)

y(t)

SO LU T I ON
The differential equation is derived in Section 4.5 as

(a)

The transfer function for this system is defined as

(b)

where X(s) � L{x (t)} and Y(s) � L{y(t)}. Taking the Laplace transform of Equation (a), we

have

(c)

Using the properties of linearity of the transform and the transform of derivatives with the

initial conditions taken to be zero leads to

(d)

Rearranging Equation (d) and solving for the transfer function leads to

(e)G (s) =
2zvns + v2

n

s2 + 2zvns + v2
n

s2X (s) + 2zvnsX (s) + v2
nX (s) = 2zvnsY (s) + v2

nY (s)

L{x$ + 2zvnx
# + v2

nx } = L{2zvn y# + v2
n y }

G (s) =
X (s)

Y (s)

x
$ + 2zvnx

# + v2
nx = 2zvn y# + v2

n y

The transfer function for SDOF systems are as follows:

• System with force input

(5.57)

• System with motion input

(5.58)

The impulsive response of a system xI (t) is the response due to a unit impulse function:

(5.59)x$ I + 2zvnx
#
I + v2

nx I =
1
m

 d(t )

G (s) =
2zvns + v2

n

s2 + 2zvns + v2
n

G (s) =
1
m

s2 + 2zvns + v2
n
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Transient Vibrations of SDOF Systems 339

Noting that , the Laplace transform of the impulsive response H(s) obtained

from Equation (5.55) is

(5.60)

Thus, the transfer function is the transform of the system’s impulsive response. Using the

notation of previous sections, we have

(5.61)

Use of the convolution theorem on Equation (5.55) and noting Equation (5.61) yields

(5.62)

The response of a system due to a unit step function is given by

(5.63)

Noting that the Laplace transform of the step response is

(5.64)

Taking the inverse of Equation (5.64) and using the property of transforms of integrals

yields

(5.65)

Changing the variable of integration in Equation (5.58) by letting v � t � t leads to

(5.66)

Writing Equation (5.66) as

(5.67)

leads to a convolution integral solution of

(5.68)x (t ) = L
t

0
3F#

(t) + F (0)4x s (t - t)d t

X (s) = 3sF (s )4c 1
s
G (s ) d

x s (t ) = L
t

0
h (v)dv

x s (t ) = L
t

0
u (t)h (t - t)d t = L

t

0
h (t - t)d t

Xs (s) =
1
s
G (s)

L{u(t )} = 1/s,

x$ s + 2zvnx# s + v2
nx s =

1
m

 u (t )

x (t ) = L
t

0
F (t)h (t - t)d t

h (t) = L-1G {(s)}

H (s ) = G (s )

L{d (t )} = 1

EXAMPLE 5 . 1 3
Find the step response of a critically damped SDOF system.

SO LU T I ON
The impulsive response of a critically damped SDOF system is

(a)h (t ) =
1
m

 te -vnt
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Use of Equation (5.66) gives

(b)x s(t ) =
1
mL

t

0
ve -vnvdv

               =
1

mv2
n

 (1 - e -vnt - vnte
-vnt )

5.8 NUMERICAL METHODS
The convolution integral and Laplace transform methods are easy methods of solving

Equation (5.1) for any excitation. However, closed-form solutions using these methods

are limited to cases where the forcing function has an explicit mathematical formulation

and closed-form evaluation of the convolution integral is possible. In addition, there are

explicitly defined forcing functions such as those proportional to non-integral powers of

time where a closed-form evaluation of the convolution integral or evaluation of the

inverse Laplace transform is very difficult. When these situations occur, numerical meth-

ods must be used to obtain an approximate solution to the differential equation at discrete

values of time.

Numerical solutions of forced SDOF vibrations problems are of two classes: numerical

evaluation of the convolution integral and direct numerical evaluation of Equation (5.1).

5.8.1 NUMERICAL EVALUATION OF CONVOLUTION
INTEGRAL
Many numerical integration techniques are available for evaluation of integrals. Most

numerical integration techniques use piecewise defined functions to interpolate the

integrand. A closed-form integration of the interpolated integrand is performed. The

method described here uses an interpolation for from which an approximation to

the convolution integral is obtained. The discretization of a time interval and possible

interpolations to are shown in Figure 5.10.

Let t
1
, t

2
, . . . be values of time at which an approximate solution is to be obtained. Let F

1
(t),

F
2
(t), . . . be the interpolating functions such that Fk(t) interpolates on the interval

tk�1
� t � tk. Let xk be the numerical approximation for x (tk). Also define

The convolution integral is used to obtain the response of an underamped SDOF

system as

(5.69)

x (t ) = x (0)e -zvnt cos vd t +
x# (0) + zvnx (0)

vd

e -zvnt sin vd t

              + L
t

0

Feq(t)

meqvd

 e -zvn(t - t) sin vd (t - t)d t

� j = tj - tj - 1

F eq(t)

F eq(t)

F eq(t)

62129_05_Ch05_p313-382.qxd  3/16/11  11:25 AM  Page 340

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Transient Vibrations of SDOF Systems 341

F(t)

(a)

(b)

t1
∗ t1 t2 t3 t4 tkt2

∗ t4
∗t3

∗ tk+1

t1 t2 t3 t4 tk tk+1

∗

(c)

(d)
FIGURE 5.10
(a) Discretization of time for numerical integration of convolution integral. (b) Interpolation of F(t)
by a series of impulses. (c) Interpolation of F(t) by piecewise constants. (d) Piecewise linear
interpolation for F(t).
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The trigonometric identity for the sine of the difference of angles is used to rewrite

Equation (5.69) as

(5.70)

Define

(5.71)

and

(5.72)

Using the definitions in Equations (5.71) and (5.72) in Equation (5.69) leads to

(5.73)

Interpolating functions are chosen for F
eq

(t) such that Equations (5.71) and (5.72) 

have closed-form evaluations when the interpolating function is used in place of F
eq

(t).
Then Equation (5.73) is used to calculate approximations to the solution at discrete times.

First, consider the case where F
eq

(t) is interpolated by a series of impulses, as illustrated

in Figure 5.10(b). During the interval between tj�1
and tj, application of F

eq
(t) results in

an impulse of magnitude

(5.74)

The mean value theorem of integral calculus implies that there exists a 

such that

(5.75)

For the sake of interpolation, approximate t*
j by

(5.76)

Thus, on the interval tj –1 
� t � tj , F(t ) is interpolated by an impulse of magnitude Ij

applied at the midpoint of the interval. With this choice of interpolation, Equations (5.71)

and (5.72) are evaluated as

(5.77)

(5.78)G2j = Feq(t
*
j )�j e

zvnt
*
j  sin  vd t

*
j

G1j = Feq(t
*
j )�j e

zvnt
*
j  cos  vd t

*
j

t *
j L

tj + tj -1

2

Ij = Feq(t
*
j )�j

t *
j , tj -1 6 t *

j 6 tj ,

Ij = L
tj

tj -  1

Feq(t)d t

xk = e -zvn tk cx (0) cos vd tk +
zvnx (0) + x# (0)

vd

 sin vd tk d
       +

1
meqvd

 e -zvn tk c  sin vd tka
k

j =  1
G1j -  cos vd tka

k

j =  1
G2j d

G2j = L
tj

tj -1

Feq(t)e
zvn t cos vd td t

G1j = L
tj

tj - 1

Feq(t)e
zvn t cos vd td t

x (t ) = e -zvnt cx (0) cos vd t +
x# (0) + zvnx (0)

vd

 sin vd t d
   +

1
meqvd

 e -zvn t c  sin vd tL
t

0
Feq(t)e

zvn tcos vd t

       -  cos vd tL
t

0
Feq(t)e

zvn tcos vd td t d
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Transient Vibrations of SDOF Systems 343

It is also possible to interpolate F
eq

(t) with piecewise constants. Over the interval from

tj�1
to tj, the interpolate for F

eq
(t) assumes the value of F

eq
(t) at the interval’s midpoint, as

illustrated in Figure 5.10(c). Call the value of the interpolate fj. Then

(5.79)

(5.80)

where

(5.81)

(5.82)

Finally, consider the case where F
eq

(t) is interpolated linearly between tj �1
and tj , as illus-

trated in Figure 5.10(d). Then if gj � f (tj),

(5.83)

(5.84)

where Cj and Dj are given by Equations (5.81) and (5.82), respectively, and

(5.85)

(5.86)

Other choices for interpolating functions for F
eq

(t) are possible. Higher-order piece-

wise polynomials may be used, as well as interpolates which require more smoothness at

each tj , such as splines. Any form of interpolating function can be chosen as long as

Equations (5.71) and (5.72) have closed-form evaluations. However, the more complicated

the interpolating function, the more algebra is involved in the evaluation of G
1 j and G

2 j.

The numerical evaluation of the convolution integral also requires more computations for

more complicated interpolating functions.

If F
eq

(t) is known empirically, any of the methods presented may be used to evaluate the

convolution integral. If piecewise impulses or piecewise constants are used, the times where

Bj =
1 - z2

vd

 B tj e
zvntj a zvn

vd

 sin vd tj -  cos vd tj b
               - tj -1e

zvntj - 1 a zvn

vd

 sin vd tj -1 -  cos vd tj -1b + aCj -
zvn

vd

Dj b R

Aj =
1 - z2

vd

 B tj e
zvntj a  sin vd tj +

zvn

vd

  cos vd tj b
               - tj -1e

zvntj - 1a  sin vd tj -1 +
zvn

vd

  cos vd tj -1b - aDj +
zvn

vd

Cj b R

G2j =
1
�j

 3( gj - gj -1)Bj + ( gj -1tj - gj tj -1)Dj4

G1j =
1

�j

 3( gj - gj -1)Aj + ( gj -1tj - gj tj -1)Cj4

Dj =
1 - z2

vd

 ce zvntj a - cos vd tj +
zvn

vd

 sin vd tj b
                - e zvntj - 1a - cos vd tj -1 +

zvn

vd

 sin  vd tj -1b d

Cj =
1 - z2

vd

 ce zvntj a sin vd tj +
zvn

vd

 cos vd tj b
                - e zvn tj - 1a  sin vd tj -1 +

zvn

vd

 cos vd tj -1b d

G2j = f jDj

G1j = f jCj
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344 CHAPTER 5

F
eq

(t) is known are taken as midpoints of the intervals. If piecewise linear interpolates are

used, the times where F
eq

(t) is known are taken as the tj’s.
Error analysis of the preceding methods is beyond the scope of this text. Better accu-

racy for the response is, of course, obtained with better accuracy of the interpolate. Error

analysis usually involves comparing the interpolation with a Taylor series expansion to esti-

mate the error in the interpolation. The error is usually expressed as being the order of

some power of � j. Bounds on the error in using the convolution integral are obtained.

Integration tends to smooth errors.

Determination of the response using these methods requires evaluation of the convo-

lution integral at discrete values of time. Since errors are introduced in the evaluation of

G
1 j and G

2 j, the more of these terms used in the evaluation, the larger is the error. Hence

the error in approximation grows with increasing t. Reduction of error can be achieved by

using smaller time intervals, if possible, or by using more accurate interpolates.

5.8.2 NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS
An alternative to numerical evaluation of the convolution integral is to approximate the

solution of Equation (5.1) by direct numerical integration. Many methods are available for

numerical solution of ordinary differential equations.

Since vibrations of discrete systems are governed by initial value problems, it is best to

use a numerical method that is self-starting. That is, previous knowledge of the solution at

only one time is required to start the procedure.

Best application of self-starting methods required the rewriting of an nth-order differen-

tial equation as n first-order differential equations. This is done for Equation (5.1) by defining

(5.87a)

(5.87b)

Thus,

(5.88a)

and from Equation (5.1)

(5.88b)

Equations (5.88a) and (5.88b) are two simultaneous linear first-order ordinary differential equa-

tions whose numerical solution yields the values of displacement and velocity at discrete times.

In the following let ti , i � 1, 2, . . . , be the discrete times at which the solution is

obtained and let y
1,i and y

2,i be the displacements and velocities at these times and define

(5.89)

The recurrence relations for the simplest self-starting method, called the Euler method,

are obtained from truncating Taylor series expansions for yk, i+1
about yk,i after the linear

terms. These recurrence relations are

(5.90a)

(5.90b)y2,i + 1 = y2,i + (ti + 1 - ti )BFeq(ti )

meq
- 2zvn y2,i - v2

n y1,iR
y1,i + 1 = y1,i + (ti + 1 - ti )y2,i

�j = tj + 1 - tj

y#2(t ) =
Feq

meq
- 2zvn y2(t ) - v2

n y1(t )

y#1(t ) = y2(t )

y2(t ) = x# (t )

y1(t ) = x (t )
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Transient Vibrations of SDOF Systems 345

Given initial values of y
1

and y
2
, Equations (5.90a) and (5.90b) are used to calculate recur-

sively the displacement and velocity at increasing times. The Euler method is first-order

accurate meaning that the error is of the order of �j.

Runge-Kutta methods are more popular than the Euler method because of their better

accuracy, while still being easy to use. A Runge-Kutta formula for the solution of the first-

order differential equation

(5.91)

is of the form

(5.92)

where

and the a, q, and p coefficients are chosen by using Taylor series expansions to approximate

the differential equation to the desired accuracy.

The error for a fourth-order Runge-Kutta formula is proportional to �4
j . A fourth-

order Runge-Kutta formula is

(5.94)

where 

Equation (5.94) can be used for higher-order differential equations by rewriting it as a system

of first-order equations as has been done in Equation (5.90) for a SDOF system. The result is

(5.96a)

(5.96b)

where 

(5.97a)

(5.97b)k1,2 = (ti + 1 - ti )a y2,i +
1
2

 k2, 1b
k1,1 = (ti + 1 - ti )y2,i

y2,i + 1 = y2,i +
1
6

 (k2,1 + 2k2, 2 + 2k2,3 + 2k2,4)

y1,i + 1 = y1,i +
1
6

 (k1,1 + 2k1,2 + 2k1,3 + 2k1,4)

k1 = (ti + 1 - ti ) f  ( yi , ti )

k2 = (ti + 1 - ti ) f   a yi +
1
2

 k1, 
1
2

 (ti + ti + 1)b
k3 = (ti + 1 - ti ) f   a yi +

1

2
 k2, 

1
2

 (ti + ti + 1)b
k4 = (ti + 1 - ti ) f  ( yi + k3, ti + 1)

y i + 1 = yi +
1

6
 (k1 + 2k2 + 2k3 + k4 )

k1 = (ti + 1 - ti ) f ( yi , ti )
k2 = (ti + 1 - ti ) f ( y1 + q1,1k1, ti + p1)
k3 = (ti + 1 - ti ) f ( yi + q2,1k1 + q2, 2k2, ti + p2)  o
kn = (ti + 1 - ti ) f ( yi + qn -1, 1k1 + qn - 2, 2k2 + Á
                            + qn -1, n -1kn -1, ti + pn -1)

yi +1 = yi + a
n

j =  1

aj k j

y# = f (y, t )

(5.93)

(5.95)
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346 CHAPTER 5

(5.97c)

(5.97d)

(5.97e)

(5.97f)

(5.97g)

(5.97h)

The Runge-Kutta method is often used because it is easy to program for a digital computer.

Its most restrictive limitation is that extension of the approximation between two discrete times

requires evaluation of the excitation at an intermediate time. If the forcing function is known

only at discrete times, evaluation at the appropriate intermediate times is often impossible. In

addition, a large number of function evaluations can lead to large computer times.

Adams’ formulas provide more accurate approximations of ordinary differential equa-

tions. An open Adams formula requires knowledge of the functions at the two previous time

steps to calculate the approximation at the desired time. A closed Adams formula requires

knowledge of the function at only the previous time step, but the formula involves the eval-

uation of the function at the time step of interest. Thus a closed Adams formula requires an

iterative solution at each time step. The closed Adams formula is much more accurate than

an open formula of the same order. The closed formula is self-starting, whereas the open for-

mula is not self-starting.

A predictor-corrector method is a compromise that uses the closed formula for

increased accuracy, but uses the open formula to reduce computation time. The open for-

mula is used to “predict” the solution at the desired time, then the closed formula is used

to “correct” by using the predicted value as an initial guess. Iterations are not necessary as

the first correction is very accurate. Since the open Adams formulas are not self-starting, a

self-starting method such as the Runge-Kutta method of the same order is used to calcu-

late the solution at the first time. The predictor-corrector method is used for the remain-

der of the calculations.

k2,4 = (ti + 1 - ti )BFeq(ti + 1)

m eq
- 2zvn ( y2,i + k2,3 ) - v2

n ( y1,i + k1,3 )R
- 2zvna y2,i +

1
2

 k 2, 2 b - v2
na y1,i +

1
2

 k 1,2b R
k2,3 = (ti + 1 - ti )BFeqa1

2
(ti + ti + 1)b
meq

k2,2 = (ti + 1 - ti )BFeqa1

2
 (ti + ti + 1)b

meq

      - 2zvna  y2,i +
1

2
 k2,1b - v2

na  y1,i +
1

2
 k1,1b R

k2,1 = (ti + 1 - ti )BFeq(ti )

meq
- 2zvn y2,i - v2

n y1,iR
k1,4 = (ti + 1 - ti )( y2,i + k2, 3)

k1,3 = (ti + 1 - ti )ay2,i +
1
2

 k2, 2b
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EXAMPLE 5 . 1 4

200 N 200 (1 – cos2

0.3 t (s)

F(t)

π t
0.2 )

FIGURE 5.11
Versed sine pulse of
Examples 5.14 and 5.15.

A 200-kg milling machine is subject to the versed sine pulse of Figure 5.11 during opera-

tion. The machine is mounted on an elastic foundation of stiffness 1 � 106 N/m and

damping ratio of 0.2. Write a MATLAB script that uses piecewise constants as interpolating

functions to numerically integrate the convolution integral to obtain the response of the

machine up to t � 0.5 s.

SO LU T I ON
The MATLAB script and the resulting plot of displacement are illustrated in Figure 5.12.

The MATLAB script is written in a general form. When the script is run by MATLAB, the

user will be prompted for input. The form of the excitation is provided in a separate

MATLAB m file.

% Example 5.14
% Numerical integration of convolution integral using
% piecewise constants to interpolate excitation
m=200; % Mass of system
k=l.*10^6; % Stiffness
zeta=0.06; % Damping ratio
omega_n=sgrt (k/m); % Natural frequency
omega_d=omega_n*sqrt (l-zeta^2); % Damped natural frequency
F0=200; % Magnitude of pulse
t0=0.2; % Duration of pulse
x0=0; % Initial displacement
xdot0=0; % Initial velocity
t=linspace(0, .5, 1001); % Discretization of time scale
suml=0; % Initialization of sum for Gl
sum2=0; % Initialization of sum for G2
x(l)=x0; % Initialization of x
Cl=(l-zeta^2)/omega_d;
C2=zeta*omega_n;
C3=C2/omega_d;
for k=2: 1001
% Calculating F(t)
if t(k) < = t0
F=F0*(l-(cos(pi*t(k)/t0)^2)); % F(t)

else
F=0

end

FIGURE 5.12
(a) MATLAB script for Example 5.14, numerical integration of convolution integral using piecewise
constants for interpolation of excitation force. (b) Plot of displacement versus time obtained by
running the script.

(Continued )
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% Numerical integration formula Eqs. (5.79) – (5.82)
EK=exp (C2*t(k));
EK1=exp(C2*t(k-1));
SK=sin(omega_d*t(k));
SK1=sin(omega_d*t(k-1));
CK=cos(omega_d*t(k));
CK1=cos(omega_d*t(k-1));
G1=F*C1*(EK*(SK+C3*CK)-EK1*(SK1+C3*CK1));
G2=F*C1*(EK*(-CK+C3*SK)–EK1*(-CK1+C3*SK1));
sum1=sum1+G1;
sum2=sum2+G2;
% Eq.(5.73)
xK=(x0*CK+(C2*x0+xdot0)/omega_d/*SK)/EK;
x(k)=xK+(SK*sum1-CK*sum2)/(EK*m*omega_d);

end
plot(t,x)
xlabel(‘t (sec)’)
ylabel(‘x(t)(m)’)

0
t (sec)

(b)

0.7

×10–4

3

2.5

2

1.5

1

0.5

0

x(
t)

 (
m

)

–0.5
0.60.50.40.30.20.1

(a)

FIGURE 5.12

(Continued)

EXAMPLE 5 . 1 5
Write a MATLAB script using the program ODE45 to determine the response of the

system of Example 5.14.

SO LU T I ON
The MATLAB script for the development of the response is given in Figure 5.13(a). The

script uses the MATLAB function ODE45, which uses a Runge-Kutta-Fehlberg method to

numerically approximate the response.
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FIGURE 5.13
(a) MATLAB script for solving differential equation for Example 5.15 using ODE45, a Runge-Kutta
solution. (b) User provided function for Example 5.15.

(b)

% Runge-Kutta solution to Example 5.15 using 
MATLAB program ODE45

% Initial conditions

x0=0;

xdot0=0;

% y(1)=x; y(2)=xdot

y0(1)=x0;

y0(2)=xdot0;

y0=[y0(1);y0(2)];

TSPAN=[0 0.5];

[T,Y]=ode45(‘fun412’,TSPAN,y0);

plot(T,Y(:,1))

xlabel(‘time (s)’)

ylabel(‘x(t) (m)’)

(a)

% Defining file for function of Example 5.15 
function F=fun412 (T,Y)

m=200; % Mass of system

k=1.*10^6; % Stiffness

zeta=0.06; % Damping ratio

omega_n=sqrt(k/m); % Natural frequency

F0=200; % Magnitude of pulse

t0=0.2; % Duration of pulse

F(1)=Y(2);

% Calculating F(T)

if T<=t0

f1=F0/m*(1-(cos(pi*T/t0))^2);

else

f1=0;

end

% xdot=F(1), xddot=F(2)

F(2)-2*zeta*Y(2)-omega_n^2*Y(1)+f1;

F=[F(1); F(2)];

The resulting response generated from MATLAB is shown in Figure 5.13(b). The

response is very close to that generated in Example 5.14 by numerical integration of the

convolution integral.
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350 CHAPTER 5

5.9 SHOCK SPECTRUM
Design problems often require the determination of system parameters such that con-

straints are satisfied. In many problems, the design criteria involve limiting maximum 

displacements and/or maximum stresses for a given type of excitation. For example, if it is

determined that all earthquakes in a given area have similar forms of excitations, only with

different levels of severity, then knowledge of the maximum displacement as a function of

system parameters is useful in the design of a structure to withstand a certain level of earth-

quake. The structure’s ability to withstand the earthquake depends on the maximum dis-

placement developed in the structure during the earthquake and the maximum stresses

developed. A structure in California along the San Andreas fault will usually be designed

to withstand a more severe earthquake than a structure in Ohio. This, of course, depends

on the use of the structure.

Thus it is useful for the designer to know the maximum response of a structure as a

function of system parameters. The transmissibility curves presented in Chapter 4 actually

do this for the steady-state response due to harmonic excitations. For a given value of the

damping ratio, the transmissibility curve plots the nondimensional ratio of the amplitude

of the transmitted force to the maximum amplitude of the excitation force against the

nondimensional frequency ratio.

Similar curves are useful for analysis and design of systems that are subject to shock

excitations. A shock is a large force applied over a short interval resulting in transient

vibration. The maximum response is a function of the type of shock and system

parameters.

A shock spectrum (response spectrum) is a nondimensional plot of the maximum response

of a SDOF system for a specified excitation as a function of a nondimensional time ratio.

The vertical axis of the plot is the maximum value of the force developed in the spring

divided by the maximum of the excitation force. The horizontal axis is the ratio of a char-

acteristic time for the excitation divided by the natural period. For a shock excitation, the

characteristic time is usually taken as the duration of the shock.

Shock spectra are often plotted only for undamped systems as damping tends to act

favorably to reduce the maximum response. Also, a shock spectrum is very tedious to cal-

culate and plot. Inclusion of damping in the development of a shock spectrum greatly

increases the amount of algebra performed. The resulting complexity may obscure the use-

fulness of the results.

EXAMPLE 5 . 1 6
A one-story frame structure is to be built to house a chemical laboratory. The experiments

performed in the laboratory involve highly volatile chemicals and the possibility of explo-

sion is great. It is estimated that the worst explosion will generate a force of 5 � 106 N last-

ing 0.5 s. The structure is to be designed such that the maximum displacement due to such

an explosion is 10 mm. The equivalent mass of the structure is 500,000 kg. Draw the shock

spectrum for the structure subject to a rectangular pulse and determine the minimum

allowable stiffness for the structure.
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SO LU T I ON
The laboratory frame structure of Figure 5.14 is modeled as an undamped SDOF system

with x(t) representing the displacement at the rigid girder. The excitation is modeled as a

rectangular pulse of magnitude F
0

� 5 � 106 N and duration t
0

� 0.5 s. The response of

an undamped SDOF system to a rectangular pulse with zero initial conditions is calculated

using superposition and Table 5.1 as

(a)

For t � t
0
, the nondimensional force ratio is

(b)

The preceding function increases until t � p/vn when it reaches a maximum value of 2. If

t
0

� p/vn, the maximum nondimensional force ratio in this interval is

(c)

However, since the response is continuous, the maximum response for t � p/vn must be

at least this large. For t � t
0
, the nondimensional force ratio is

(d)
kx
F0

=  cos vn(t - t0) -  cos vnt

kx
 max 

F0

= 1 -  cos vnt0

kx
F0

= 1 -  cos vnt

x (t) =
F0

k
 {1 -  cos vnt - u (t - t0 )[1 -  cos vn(t - t0)]}

k

x(t)

m

Girder

(a)

(b)

Columns

FIGURE 5.14
(a) The one-story chemical
laboratory of Example 5.16 is
modeled as a frame structure.
(b) The frame structure is
modeled as a SDOF
mass-spring system, assuming
the girder is very rigid com-
pared to the columns.
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352 CHAPTER 5

Trigonometric identities are used on the above equation to obtain

(e)

where

(f)

Thus,

(g)

In summary,

(h)

The shock spectrum is plotted in Figure 5.15.

Returning to the specific problem, t
0

� 0.5 s, F0 � 5 � 106 N, x
max

� 0.01 m, and

m � 500,000 kg. The natural frequency is , and the problem is to determine

appropriate values of k. The natural period is . First assume which

is equivalent to

(i)

or

(j)vn 6 2p  rad/s

vnt0

2p
6 0.5

t0 >T 6 0.5,T = 2p/vn

vn = 2k /m

e 2sin 
vnt0

2
  t0 6

p

vn

 a t0

t
…

1
2
b

      2     t0 7
p

vn

 a t0

t
7

1
2
b

kxmax

F0

=

kx
 max 

F0

= 2 sin 
vnt0

2
  t0 6

p

vn

 tan a =
 cos vnt0 - 1

 sin vnt0

 

kx
F0

= 2 sin 
vnt0

2
  sin (vnt - a)

2.5

1.0

0.5

1.5

0.0

t0/τ
1/2

2 sin (πt0/τ)

2.0

kx
m

ax
/F

0

FIGURE 5.15
Shock spectrum of an
undamped SDOF system for
a rectangular pulse.
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The equation to solve for k is

(k)

Equation (k) becomes

(l)

Equation (l) is a transcendental equation to solve for k with the smallest positive solution

being k � 5.33 � 107 N/m. The natural frequency with this value of k is

(m)

Thus, there is no solution for . Hence, vn � 2p rad/s and which

leads to

(n)

which is solved yielding

(o)

If k � 1 � 109 N/m, the maximum displacement will be less than 0.01 m.

k = 1 * 109
  N/m

k (0.01  m)

5 * 106
  N

= 2

kx
 
max

 F0
= 2,vnt0

2p 6 0.5

vn = A
5.33 * 107

  N/m
500,000  kg

= 10.32  rad/s 7 2p rad/s

1 * 10-8
  k =  sin a3.54 * 10-42kb

k(0.01  m)

5 * 106
  N

= 2 sin aA
k

500,000  kg
 
0.5 s

2
b

The important question in Example 5.16 is whether the duration of the pulse is long

enough so that the maximum response occurs when the excitation is occurring. If the pulse

is too short, the maximum displacement occurs after the pulse is removed. The rectangular

pulse is the simplest pulse for analysis of the response of a SDOF system. Its response spec-

trum is also the simplest to draw.

Shock spectra are often calculated only for undamped systems. Algebraic complexity usu-

ally prevents analytical determination of shock spectra for damped systems. The maximum

response is obtained either by numerical evaluation of the exact expression for the displace-

ment or by numerical solution of the differential equation. Damping does not have as much

effect on the transient response due to a pulse of longer duration as it does on the steady-state

response due to a harmonic excitation or on the response due to a short-duration pulse.

Since shock isolation often involves minimizing the force transmitted between a system

and its support, a plot similar to the shock spectrum, but involving the maximum value of

the transmitted force, is useful. The vertical coordinate of the force spectrum is the ratio of

the maximum value of the transmitted force to the maximum value of the excitation force.

When the system is undamped, the force spectrum is the same as the shock spectrum.

Figures 5.16 through 5.21 present displacement spectra and force (acceleration) spectra

for common pulse shapes. These spectra were obtained by using a Runge-Kutta solution of

the governing differential equation. A system with vn � 1 and m � 1 was arbitrarily used.

A time increment of the smaller of t
0
/50 and T/50 was used. The Runge-Kutta solution

was carried out until the larger of 4t
0

or 4T. The displacement and transmitted force were

calculated at each time step and compared to maxima from the previous times. The spec-

tra were developed for several values of �.
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FIGURE 5.16
(a) Force spectrum for a triangular pulse. (b) Response spectrum for a triangular pulse.

FIGURE 5.17
(a) Force spectrum for a rectangular pulse. (b) Response spectrum for a rectangular pulse.
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FIGURE 5.18
(a) Force spectrum for a sinusoidal pulse. (b) Response spectrum for a sinusoidal pulse.
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FIGURE 5.19
(a) Force spectrum for a versed sine pulse. (b) Response spectrum for a versed sine pulse.
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FIGURE 5.20
(a) Force spectrum for a negative slope pulse. (b) Response spectrum for a negative slope pulse.
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FIGURE 5.21
(a) Force spectrum for a reversed loading pulse. (b) Response spectrum for a reversed loading pulse.

t0

F0

2t0

–F0

0

(a)

3

5

4

3

2

1

F
T
/F

0

t0/T

0
21

ζ = 0.0357 ζ = 0.1 ζ = 0.2

ζ = 0.3 ζ = 0.5

0

(b)

3

5

4

3

2

1

kx
m

ax
/F

0

t0/T

0
21

ζ = 0.0357 ζ = 0.1 ζ = 0.2

ζ = 0.3 ζ = 0.5

62129_05_Ch05_p313-382.qxd  3/16/11  11:27 AM  Page 356

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Transient Vibrations of SDOF Systems 357

The force spectra for the rectangular pulse, the triangular pulse, the sinusoidal pulse, the

versed sine pulse, the negative-slope ramp pulse, and the reversed loading pulse show that shock

isolation is achieved only for small natural frequencies. The shock spectra for these excitations

show that the nondimensional displacement is small for small natural frequencies. However, the

dimensional displacement is calculated by using the nondimensional displacement from

(5.98)

Thus, a small natural frequency leads to a large displacement.

x
 max 

=
F0

mv2
n

 amv2
nx

 max 

F0

b

T A B L E 5 . 2

xmax, cm

10 0.08 0.25 5.0
15 0.12 0.38 3.4
18 0.14 0.42 2.6
17 0.135 0.40 2.8

mv2
n xmax

F0

vnt0
2p

vn , rad/s

EXAMPLE 5 . 1 7
A 1000-kg machine is subject to a triangular pulse of duration 0.05 s and peak of 20,000 N.

What is the range of isolator stiffness for an undamped isolator such that the maximum

transmitted force is less than 8000 N and the maximum displacement is less than 2.8 cm?

SO LU T I ON
The force spectrum for the triangular pulse shows that for � 0.4, vnt0

�(2p) � 0.16,

which gives

The lower bound on the natural frequency is obtained by trial and error, using the dis-

placement spectrum for the triangular pulse. For a guessed value of vn, vnt0
/(2p) is calcu-

lated and the corresponding value of the maximum nondimensional displacement is found

from the displacement spectrum. The maximum dimensional displacement is calculated

from Equation (5.98). If the displacement is greater than the allowable displacement, the

guess for the lower bound must be increased. The calculations for this example are given in

Table 5.2. The lower bound is calculated as 17 rad/s. Thus the allowable stiffness range is

2.89 * 105
  N/m 6 k 6 4.04 * 105

  N/m

vn 6
2p(0.16)

0.05  s
= 20.1  rad/s

FT >F0

5.10 VIBRATION ISOLATION FOR SHORT
DURATION PULSES
If the forge hammer of Figure 5.22 is rigidly mounted to the foundation, the foundation

is subject to a large impulsive force when the hammer impacts the anvil. An isolation

system modeled as a spring and viscous damper in parallel can be designed to reduce the
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magnitude of the force to which the foundation is subject. The principles used in the

design of a shock isolation system are similar to the principles used to design an isolation

system to protect against harmonic excitation, but the equations are different.

If the duration t
0

of a transient excitation F(t) is small, say t
0

� T/5 where T is the nat-

ural period of the system, then the system response can be adequately approximated by the

response due to an impulse of magnitude

(5.99)

If the system is at rest in equilibrium when a pulse of short duration is applied, 

the principle of impulse-momentum is used to calculate the velocity imparted to the mass as

(5.100)

The impulse provides external energy to initiate vibrations. Time is measured beginning

immediately after the excitation is removed. The ensuing response is the free-vibration

response due to an impulse providing the mass with an initial velocity n.

(5.101)

The maximum displacement occurs at a time

(5.102)

and is equal to

(5.103)

Equation 5.101 and trigonometric identities are used to calculate the force transmit-

ted to the foundation through the isolator as

(5.104)FT (t ) = F
'

e -zvnt sin (vd t - b)

x
 max 

=
v
vn

 expB -
z

21 - z2
 tan -1a21 - z2

z
b R

tm =  tan -1a21 - z2

z
b

x (t ) =
v
vd

e -zvnt sin vd t

v =
I
m

I = L
t0

0
F (t )dt

FIGURE 5.22
Schematic of a forge
hammer. When the tup
impacts the anvil, an
impulsive force is developed.

Tup

Anvil

Foundation block

Frame
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where

(5.105)

and

(5.106)

The maximum value of the transmitted force is obtained by differentiating

Equation (5.104) with respect to time, solving for the smallest time for which the deriv-

ative is zero, and finding the transmitted force at this time. The time for which the max-

imum transmitted force occurs is

(5.107)

The corresponding maximum transmitted force is

(5.108)

Equation (5.107) shows that the maximum transmitted force occurs at t � 0 for z� 0.5.

For z � 0.5, the first time where dF/dt � 0 corresponds to a minimum. Thus, for z � 0.5,

the maximum transmitted force occurs at t � 0 and is given by

(5.109)

Equations (5.108) and (5.109) are combined to develop a nondimensional function

Q(z ) that is a measure of the maximum transmitted force, which is defined by

(5.110)

Figure 5.23 shows that Q(z ) is flat and approximately equal to 0.81 for 0.23 � z� 0.30.

If minimization of the transmitted force is the sole criterion for the isolator design, the isolator

should have a damping ratio near 0.25.

Equation (5.110) shows that, for a given z, the transmitted force is proportional to the

natural frequency. Thus a low natural frequency and large natural period is necessary and

the short-duration assumption is often valid.

Equation (5.103) shows that the maximum displacement varies inversely with the nat-

ural frequency. Thus, requiring a small transmitted force leads to a large displacement. The

natural frequency is eliminated between Equations (5.103) and (5.110), yielding

(5.111)
FT

 max 

x
 max 

1
2mv2

= S(z)

expa -
z

21 - z2
 tan -1B21 - z2(1 - 4z2)

z(3 - 4z2)
R b z 6 0.5

2z                                                                             0.5 … z 6 1
= d

Q(z) =
FT

 max 

mvvn

FT (0) = cv = 2zmvnv

FT
 max 

= mv vnexp a -
z

21 - z2
 tan -1B21 - z2(1 - 4z2)

z(3 - 4z2)
R b

tmF
=

1
vd

 tan -1B21 - z2(1 - 4z2)

z(3 - 4z2)
R

b = -  tan -1a2z21 - z2

1 - 2z2 b

F
'

=
mvnv

21 - z2
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where

(5.112)

The denominator of the nondimensional ratio of Equation (5.111) is the initial kinetic

energy of the system. The numerator is a measure of the work done by the transmitted

force. The inverse of this ratio is the fraction of energy absorbed by the isolator, the isola-

tor efficiency. Figure 5.24 shows that the maximum isolator efficiency occurs for z � 0.40

where S � 1.04.

If the idea of an isolator design is to set the maximum transmitted force to a given value

while minimizing the maximum displacement, the damping ratio should be set at z� 0.4,

and the natural frequency should be calculated using Q(z) with Q(0.4) � 0.886. The max-

imum displacement is calculated from S(z). This maximizes the isolator efficiency.

In calculating Q(z) from Equation (5.111) and S(z) from Equation (5.112), the expo-

nent must be negative. Therefore, the argument of the inverse tangent functions must be

positive. That is, the range of evaluation of the inverse tangent functions must be between

0 and p rad. If evaluation leads to a negative argument, recall that the tangent function

repeats every p rad, so simply add p rad to the evaluation.

2 expa-
z

21 - z2
 tan -1B z21 - z2(4 - 8z2)

8z2 - 8z4 - 1
R b       z 6 0.5

4z  expB-
z

21 - z2
 tan -1a21 - z2

z
b R         0.5 … z 6 1

S(z) = e

FIGURE 5.23
Q(z) has a minimum of 0.81
for z 0.25.L

0 1

2.0

1.3

1.0

0.81

Q

z

0.5
0.6 0.80.2 0.4

0 1

2.0

1.8

1.6

1.4

1.2

1.04

S

1.0
0.6 0.80.2 0.4

FIGURE 5.24
S (z) has a minimum of 1.04
for � � 0.4.

62129_05_Ch05_p313-382.qxd  3/16/11  11:28 AM  Page 360

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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5.11 BENCHMARK EXAMPLES

5.11.1 MACHINE ON FLOOR OF INDUSTRIAL PLANT
The machine is subject to a sinusoidal pulse with a magnitude of 90 kN and a duration of

0.1 s, as shown in Figure 5.25(a). It is desired to design an isolator to protect the beam from

the large force that is transmitted to the foundation. The specifications are that the trans-

mitted force is limited to 4.5 kN, and the maximum displacement is 0.03 m.

The ratio of the maximum value of the allowable transmitted force to the magnitude

of the excitation force is

(a)
FT

F0

=
4.5  kN

90  kN
= 0.5

EXAMPLE 5 . 1 8
The 200 kg hammer of a 1000-kg forge hammer is dropped from a height of 1 m. Design

an isolator to minimize the maximum displacement when the maximum force transmitted

to the foundation is 20,000 N. What is the maximum displacement of the hammer when

placed on this isolator?

SO LU T I ON
The excitation is a result of the impact of the hammer with the anvil and, thus, is of short

duration. The velocity of the anvil at the time of impact is

The velocity of the machine after impact is determined by using the principle of impulse

and momentum

The product of the maximum transmitted force and the maximum displacement is mini-

mized by selecting z � 0.4. Then if the transmitted force is limited to 20,000 N, the

maximum displacement is obtained by using Equation (5.111)

The natural frequency of the isolator is calculated by using Equation (5.110)

and the maximum isolator stiffness is calculated as

k = mv2
n = (1000  kg)(25.65 rad/s)2 = 6.58 * 105

  N/m

vn =
FT

 max 

mvQ (0.4)
=

20,000  N
(1000  kg)(0.886  m/s)(0.88)

= 25.65  rad/s

x
 max 

=

1

2
mv2

FT
 max 

 S(0.4) =

1

2
 (1000  kg)(0.886  m/s)2

20,000  N
 1.04 = 0.02  m

v =
(200  kg)(4.43  m/s)

1000  kg
= 0.886  m/s

v = 22(9.81  m/s2)(1  m) = 4.43  m/s
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The response spectrum for a sinusoidal pulse is given in Figure 5.18. For , the

value of is read as 0.2, so

(b)

The natural frequency is calculated from Equation (b) as

(c)

For the value of x
max

is read as 0.5, which implies

(d)

The maximum displacement is too large. The only way to reduce the maximum dis-

placement to an acceptable value is to add mass to the machine. The added mass must be

sufficient to reduce the maximum displacement to 0.03 m:

(e)

Mount the machine on a concrete block of weight:

(f)

The stiffness of the mounting is

(g)

The SDOF model of the machine with this isolation system is illustrated in Figure 5.25(b).

5.11.2 SIMPLIFIED SUSPENSION SYSTEM
The vehicle encounters a bump in the road that is modeled as a versed sine pulse, as shown

in Figure 5.26. The height of the pulse is 0.02 m and the length of the pulse is 0.6 m. Thus,

the equation for the versed sine pulse is

(a)y (j) = 0.02B1 -  cos 2 a10p
6

 jb R [1 - u (j - 0.6)]

k =
W
g
v2

n = a 9.27 * 104
  N

9.81 m/s2 
b (12.6  rad/s)2 = 1.5 * 106

  N>m

Wc = W - Wm = 9.27 * 104
  N - 4.5 * 103

  N =  8.82 * 104 N

W =
0.5gF0

x
 max 
v2

n

=
(0.5)(9.81  m/s2)(90,000  N)

(0.03  m)(12.6  rad/s)2 = 9.27 * 104

x
 max 

=
0.5gF0

Wv2
n

=
(0.5)(9.81  m/s2)(90,000  N)

(4500  N)(12.6  rad/s)2 = 0.618  m

mv2
n

F0
t0 >T = 0.2,

vn =
(0.2)(2p)

0.1 s = 12.6  rad/s

t0

T
=
vnt0

2p
= 0.2

t0 >T
FT >F0 = 0.5

4500 N

88,200 N90,000

keq = 1.5 × 106 N/m

0.1

(a) (b)

t (s)

F(N)

FIGURE 5.25
(a) Sinusoidal pulse excitation
for machine of benchmark
problem. (b) Isolation system
for machine consists of the
mass attached to a 88,200 N
concrete block and an elastic
pad with an equivalent
stiffness of 1.5 � 106 N/m.
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0.6 m

0.02 m

y(ξ ) = 0.02�1– cos2�    ��m 

ζ

πξ
0.6

300 350 400 450
m (kg)

500 550 600

0.09

0.08

0.07

0.06

0.05a m
ax

 (
m

/s
2 )

0.04

0.03

0.02

FIGURE 5.26
(a) Bump in road is modeled as a versed sine pulse. (b) xmax versus m. (c) amax versus m.

The vehicle traverses the bump at a constant horizontal speed v, which leads to j � vt.
The differential equation modeling the system is

(b)+ 12,000b0.02B1 -  cos 2a10pv
6

tb R r R B1 - ua t -
0.6
v
b R

= B1200a10pv
6
b [0.02] sin a 20pv

6
tb

mx
$ + 1200x# + 12,000x = 1200y# + 12,000y

(a) (b)

(c)

300 350 400 450 500 550 600
0.019

0.02

0.021

0.022

0.023

0.024

0.025

0.026

m (kg)

x m
ax

 (m
)
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364 CHAPTER 5

Let z � x – y be the relative displacement of the vehicle with respect to the wheel. The dif-

ferential equation for the relative displacement is

(c)

Equation (c) can be solved using the Laplace transform method.

Equation (c) is rearranged to

(d)

The Laplace transform method or the convolution integral can be applied to solve

Equation (d) for a specific value of m. For a fully loaded vehicle (m � 600 kg), Equation (d)

becomes

(e)

The natural frequency for a fully loaded vehicle is vn � 4.47 rad/s and the system has a

damping ratio of z� 0.224. The damped natural frequency is vd � 4.36 rad/s. Application

of the convolution integral leads to

(f)

Application of the Laplace transform method leads to

(g)

The response spectrum for a versed sine pulse is given in Figure 5.19. For an empty vehi-

cle, m � 300 kg, the natural frequency is 6.32 rad/s, the damping ratio is 0.316, and the

period is 1.0 s. The speed of the vehicle is important in this problem, as it defines t
0
, which

is the duration of the pulse. The driver, of course, slows down when he sees the bump. For

a speed of 15 m/s, the vehicle is traversed in 0.6 m, 15 m/s, or 0.04 s. For an empty vehicle,

. Thus, the pulse is truly a short-duration pulse. The total impulse provided 
by the bump is

(h)

The maximum displacement due to this impulse is given by Equation (5.103).

Application of Equation (5.103) leads to

(i)x
 max 

=
72

mvn

exp a -
z

21 - z2
 tan -1

21 - z2

z
b

+ 12,000b0.02B1 -  cos 2 a10pv
6

tb R r Rdt =
72
v

  N # s

I = L
0.6>v

0
B1200a10pv

6
b [0.02] sin a20pv

6
tb

t0 >T = 0.04

Z(s) =
-1.10v2sa1 - e- 0.6

v sb
(s2 + 2s + 20)(s2 + 109.8v2)

z (t ) =
-1.10v2

10 L
t

0
 cos (10.48vt )B1 - u at -

0.6
v
b Re -10(t - t) sin [10(t - t)]d t

z
$ + 2z# + 20z = -1.10v2 cos (10.48vt )B1 - u a t -

0.6
v
b R

mz
$ + 1200z# + 12,000z = -1.10mv2 cos (10.48vt )B1 - u a t -

0.6
v
b R

-my
$ = 0.02  a10pv

6
b a 20pv

6
b  cos a20pv

6
tb B1 - u a t -

0.6
v
b Rmz

$ + 1200z# + 12,000z =
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The maximum acceleration is given by Equation (5.110) with a
max

� FTmax
/m

(j)

The maximum displacement and the maximum acceleration plotted against the mass are

plotted in Figure 5.26(b) and Figure 5.26(c), respectively.

5.12 FURTHER EXAMPLES

a
 max 

=
72vn

mv
exp a- z

21 - z2
 tan -1 

[1 - 4z221 - z2

z[3 - 4z2]
b

EXAMPLE 5 . 1 9
A one-story frame structure serves as a laboratory. The structure is composed of two beams

and a rigid girder. The structure is modeled as a SDOF system with m � 1000 kg and 

k � 9 � 106 N/m (vn � 94.9 rad/s). The force from an explosion is modeled by the pulse

shown in Figure 5.27(a). Unfortunately, an explosion occurs, and that explosion triggers a

second explosion at t � 0.07 s, later, which lasts twice as long. The force is approximately

that of Figure 5.27(b). What is the maximum displacement of the structure?

SO LU T I ON
The mathematical model for the dual explosions is

(a)

The response of the system can be obtained using the convolution integral or Table 5.1 and

the superposition formula

(b)

where F
0

� 50,000 N and xa(t ) is the response due to (1 � 20t)u(t) or the response due

to a delayed ramp function with A � �20, B � 1, and t
0

� 0.

(c)

• xb(t ) is the response due to (1 � 20t)u(t � 0.05) or the response due to a delayed ramp

function with A � �20, B � 1, and t
0

� 0.05.

(d)

• xc(t ) is the response due to (1.7 � 10t)u(t � 0.07) or due to a delayed ramp function

with A � �10, B � 1.7, and t
0

� 0.07:

(e)

-
1
vn

 sin vn(t - 0.07) du(t - 0.07)

x c(t ) =
-10
mv2

n

c t -
1.7
10

- (0.07 - 0.17) cos vn(t - 0.07)

xb(t ) =
-20
mv2

n

c t -
1

20
-

1
vn

 sin vn(t - 0.05) du (t - 0.05)

xa(t ) =
-20

mv2
n

a t -
1

20
+

1
20

 cos vnt -
1
vn

 sin vntb

x (t ) = F0[xa(t ) - xb(t ) + x c(t ) - xd (t )]

+ 50,000(1.7 - 10t )[u (t - 0.07) - u (t - 0.17)]

F (t ) = 50,000(1 - 20t)[u (t) - u (t - 0.05)]
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366 CHAPTER 5

• xd(t) is the response due to (1.7 � 10t)u (t � 0.17) or the response due to a delayed

ramp function with A � �10, B � 1.7, and t
0

� 0.17:

(f)

Thus,

(g)

The maximum of the absolute value of the displacement is determined as 16.0 mm, as

shown in Figure 5.27(c).

- [t - 0.17 - 0.0105 sin (94.9t - 16.133)]u (t - 0.17)}

- 0.0105 sin (94.9t - 6.643)]u (t - 0.07) 

+ [t - 0.17 + 0.1 cos (94.9t - 6.643)

- 2[t - 0.05 - 0.0105 sin (94.9t - 4.745)]

x (t ) = -  0.0555{2(t - 0.05 + 0.05 cos 94.9t - 0.0105 sin 94.9t )u (t )

xd (t ) =
-10

mv2
n

c t -
1.7

10
-

1
vn

 sin vn(t - 0.17) du (t - 0.17)

FIGURE 5.27
(a) Model of force provided to a chemical laboratory during an explosion. (b) First explosion triggers a
second explosion, resulting in the excitation applied to system of Example 5.19. (c) Response of struc-
ture as a function of time.
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EXAMPLE 5 . 2 0
Determine the response of a SDOF system with a mass of 10 kg and natural frequency of

�n � 10 rad/s to the excitation of Figure 5.28(a).

SO LU T I ON
The excitation of Figure 5.28(a) can be broken down as shown in Figure 5.28(b).

Mathematically, the function can be written as

(a)

which is simplified to

(b)

The solution is a superposition of four functions, each of which is represented in Table 5.1,

(c)

• xa(t): Ramp function, A � 100, B � 0, and t
0

� 0:

(d)

• xb(t): Delayed ramp function, A � �100, B � 10, and t
0

� 0.1:

(e)

• xc(t): Delayed ramp function, A � �50, B � 25, and t
0

� 0.5:

(f)

• xd(t): Delayed ramp function, A � �50, B � 35, and t
0

� 0.7:

(g)

The response is plotted in Figure 5.28(c). The maximum of the response is 1.96 cm.

= -0.05 [t - 0.7 - 0.1  sin  (10t - 7)]u (t - 0.7)

-
1

10
  sin  10(t - 0.7) du (t - 0.7)

xd (t ) = a -50 N
1000  N/m

b c t -
35
50

- a0.7 -
35
50
b  cos  10(t - 0.7)

= -0.05[t - 0.5 - 0.1  sin (10t - 5)]u (t - 0.5)

-
1
10

  sin  10(t - 0.5) du (t - 0.5)

x c(t ) = a -50 N
1000  N/m

b c t -
25
50

- a0.5 -
25
50
b  cos 10(t - 0.5)

= -0.1[t - 0.1 - 0.1  sin  (10t - 1)]u (t - 0.1)

-
1

10
  sin  10(t - 0.1) du (t - 0.1) 

xb(t ) = a -100 N
1000  N/m

b c t -
10

100
- a0.1 -

10
100
b  cos  10(t - 0.1)

xa(t ) = a 100 N
1000  N/m

b a t -
1

10
 sin 10tb = 0.1(t - 0.1 sin 10t)

x (t ) = xa(t ) + xb(t ) + x c(t ) + xd (t )

+ 25(1 - 2t)u (t - 0.5) + 5(7 - 10t)u (t - 0.7)

F (t ) = 100tu(t ) + 10(1 - 10t)u (t - 0.1)

+ (35 - 50t )u (t - 0.5) - (35 - 50t)u(t - 0.7)

F(t ) = 100tu (t ) - 100tu (t - 0.1) + 10u(t - 0.1) - 10u (t - 0.5)
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FIGURE 5.28
(a) Excitation applied to Example 5.20. (b) Graphical breakdown of excitation. (c) Response of the system.

(c)
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EXAMPLE 5 . 2 1
During operation, a 200 kg machine is subject to a 1000 N reversed loading, as shown in

Figure 5.29.

(a) If the machine is mounted on an elastic pad with a stiffness of 3 � 105 N/m and

damping ratio of 0.1, what is the maximum displacement of the machine? What

is its maximum transmitted force?

(b) It is desired to hold the amplitude of vibration of the machine to 1.5 cm and limit

the transmitted force to 5000 N. Design an isolation system with a damping ratio

of 0.1 to achieve these goals.

SO LU T I ON
(a) The loading is a reversed rectangular pulse with F

0
� 2000 N and t

0
� 0.2 s. The response

spectrum for this force is given in Figure 5.21. The natural period of the machine is

(a)

The value of the nondimensional parameter on the horizontal scale of the response 

spectrum is

(b)

The corresponding value of read off the vertical scale of Figure 5.21(b) is 2.95. Thus,

(c)

The corresponding value of read off the vertical scale of Figure 5.21(a) is also 2.95.

Thus,

(b) The upper bound on the natural frequency is determined from

(d)

which from Figure 5.21(a) occurs for

(e)

(f)

For this value of , . Thus, it is not 

possible to design an isolator such that the maximum force is less than 5000 N and the

maximum displacement is less than 0.040 m. However, the mass of the machine can be

increased without changing the natural frequency. Setting x
max

� 0.015 leads to

(g)m =
2.5(2000  N)

(25.1  rad/s)2(0.015  m)
= 527.7  kg

kx
 
max 

F0
= 2.5 Q x

 max 
= 2.5(2000  N)

1.26 * 105
  N/m = 0.040  mt0 /T

k = mv2
n Q k 6 (200  kg)(2.51  rad/s)2 = 1.26 * 105

  N/m

t0

T
=
vnt0

2p
6 0.8 Q vn 6

2p(0.8)

(0.2  s)
= 25.1  rad/s

FT, max 

F0

6
5000  N
2000  N

= 2.5

FT, max 
= 2.95F0 = 2.95(2000  N) = 5900  N

FT, max
 F0

x
 max 

= 2.95 
F0

k
= 2.95 

2000  N

3 * 105
  N/m

= 0.020  m

kx
 
max 

F0

t0

T
=

0.2  s
0.162  s

= 1.23

T = 2pA
m
k

= 2pC
200  kg

3 * 105
  N/m

= 0.162  s
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1000

–1000

F(N)

t (s)0.2 0.4

FIGURE 5.29
Pulse loading for
Example 5.19.

Thus, to achieve a maximum displacement of 1.5 cm and a maximum transmitted force of

5000 N, mount the machine on a concrete block with a mass of 327.7 kg and an elastic

pad with a stiffness of 3.33 � 105 N/m.

5.13 CHAPTER SUMMARY

5.13.1 IMPORTANT CONCEPTS
• The response of a system due to a unit impulse can be determined as the free response

with zero initial displacement and an initial velocity equal to velocity imparted by the

impulse.

• The convolution integral solution is derived using the principle of linear superposition

and the response due to an impulse applied at a previous time.

• The convolution integral provides the response of a linear, SDOF system due to any

form of excitation.

• The use of the unit step function allows excitations whose mathematical form changes

at discrete values of time to be represented by a unified mathematical function.

• The principle of linear superposition and the representation of excitations that have

changes at discrete values of time by unit step functions allow a unified mathematical

response for all systems.

• Arbitrary base motion can be handled by the convolution integral.

• The Laplace transform method can be used to determine the response of a linear, SDOF

system due to an arbitrary input.

• The transfer function for a system is the Laplace transform of its output divided by the

Laplace transform of its input. The transfer function is dependent on the inertia, damp-

ing, and stiffness properties of a system.

• The transfer function for a system is the Laplace transform of the system’s impulsive

response.

• Numerical solutions for the response of a SDOF system are developed through numer-

ical integration of the convolution integral or direct numerical simulation of the gov-

erning differential equation.
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Transient Vibrations of SDOF Systems 371

• Numerical integration of the convolution integral is obtained by interpolation of the

excitation force and then integrating exactly the interpolation times the trigonometric

function. Interpolating functions are piecewise impulses, piecewise constants or piece-

wise linear functions.

• Numerical simulation of the governing differential equation is best carried out using a

self-starting method, such as Runge-Kutta.

• The response spectrum (shock spectrum) for the shape of a transient excitation is a

nondimensional plot of the ratio of the maximum force in the spring to the maximum

displacement versus the ratio of the duration of the force (or a characteristic time for the

excitation) to the natural undamped period of the system. Numerical simulation of the

governing equation is used to develop the response spectrum for different damping

ratios.

• Vibration isolation protects foundations from large transient forces generated during

operation of a machine is analyzed using the response spectrum for the form of the 

excitation.

• Vibration isolation for short-duration pulses [t
0
/T � 0.2] is analyzed using Q(z) and

S(z). To minimize the maximum transmitted force, use a damping ratio of 0.23 � z �
0.3. To minimize the maximum displacement for a specified transmitted force use a

damping ratio, z � 0.4.

5.13.2 IMPORTANT EQUATIONS
Impulse delivered by a force

(5.2)

Impulsive response of an underdamped system

(5.10)

Convolution integral solution for differential equation

(5.24)

Convolution integral response for an underdamped system

(5.25)

Convolution integral for relative displacement in base motion problems

(5.34)

Laplace transform of a function

(5.40)X(s ) = L
�

0
x (t)e -stdt

z (t ) = -m eqL
t

0
y
$

(t)h(t - t)d t

x (t ) =
1

m eqvdL
t

0
F (t)e -zvn(t - t)

  sin vd (t - t)dt

x (t ) = L
t

0
F (t) h(t - t)dt

h(t ) =
1

m eqvd

e -zvnt sin vd t

I = L
t2

t1

F (t)d t

62129_05_Ch05_p313-382.qxd  3/16/11  11:31 AM  Page 371

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



372 CHAPTER 5

Laplace transform solution to differential equation

(5.43)

Transfer function

(5.56)

Impulsive response

(5.61)

Convolution integral for step response

(5.68)

Numerical evaluation of convolution integral

(5.73)

Maximum transmitted force for short-duration pulse

(5.110)

Reciprocal of isolator efficiency for short-duration pulses

(5.111)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 5.1 through 5.10, indicate whether the statement presented is true or false.

If true, state why. If false, rewrite the statement to make it true.

5.1 The convolution integral is the solution to the differential equation governing

the motion of a SDOF system with initial conditions equal to zero.

5.2 The convolution integral can be derived using Laplace transforms or variation

of parameters.

5.3 The effect of an impulse applied to a SDOF system is to cause a discrete change

in displacement.

FT
 max 

x
 max 

1
2

mv2

= S(z)

Q(z) =
FT

 max 

mvvn

xk = e -zvntkBx (0) cos vd tk +
zvnx (0) + x# (0)

vd

 sin vd tkR
     +

1

m e qvd

 B  sin vd tka
n

j = 1

G1j -  cos vd tka
n

j = 1

G2jR

(t) + F(0)]x s(t - t)d t[F
#
 x (t ) = L

t

0

h (t ) = L-1{G (s)}

G(s) =
X(s)

F (s)

x (t ) =
1

meq
L-1b F (s)

s2 + 2zvns + v2
n

r + L-1b (s + 2zvn)x (0) + x# (0)

s2 + 2zvns + v2
n

r
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Transient Vibrations of SDOF Systems 373

5.4 The Laplace transform method derives a solution in terms of constants of

integration and the determination of the constants is obtained through

application of initial conditions.

5.5 Numerical integration of the convolution integral can be obtained by

interpolating the forcing function and exactly integrating the interpolation

times h(t � t).

5.6 Self-starting methods are best for numerical integration of the equation of motion.

5.7 The transfer function for a SDOF system is the ratio of the Laplace transform

of the input to the Laplace transform of the output.

5.8 The transfer function is the Laplace transform of the step response of a system.

5.9 The maximum displacement of a machine mounted on an isolator due to an

impulsive force is minimized by selecting the damping ratio of the system to be

0.25.

5.10 The maximum transmitted force of a machine mounted on an isolator due to

an impulsive force is minimized by selecting the damping ratio of the system to

be 0.25.

Problems 5.11 through 5.17 require a short answer.

5.11 What is the physical meaning of the function h(t)?

5.12 What pre-integrated form of Newton’s second law is used in the derivation of h(t)?

5.13 What does the convolution integral represent?

5.14 Explain the meaning of

5.15 What is meant by the approximation of a pulse being short duration?

5.16 What is the response spectrum of a pulse?

5.17 Why is the impulsive response of a system with motion input not defined?

Problems 5.18 through 5.23 require a short calculation.

5.18 A mass-spring system with m � 2 kg and k � 1000 N/m is subject to an

impulse of magnitude 12 N s. What is the velocity imparted to the system?

5.19 A mass-spring and viscous-damper system is shown in Figure SP5.19. What is

the transfer function for the system?

#

x (1) = L
1

0
F (t)h (1 - t)d t

x(t)

F(t)
5 kg

100 N/m

30 N.s/m

FIGURE SP5.19
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374 CHAPTER 5

5.20 A mass-spring and viscous-damper system with motion input is shown in 

Figure SP5.20. What is the transfer function for the system?

5.21 A mass-spring and viscous-damper system is shown in Figure SP5.21. What is

the Laplace transform of the system’s impulsive response?

5.22 Determine the impulsive response of an undamped mass-spring system with a

mass of 5 kg and stiffness of 1000 N/m.

5.23 An impulse with a magnitude of 15 N s is applied to a mass-spring system and

removed. The mass of the system is 0.5 kg, and the stiffness is 200 N/m.

Determine the response of the system.

5.24 Match the quantity with the appropriate units (units may used more than once,

some units may not be used).

(a) Impulse, I (i) N m

(b) Maximum displacement, x
max

(ii) rad/s

(c) Initial kinetic energy, (iii) m

(d) Energy absorbed by isolator, FT, max 
x

max
(iv) kg/s

(e) Impulsive response, h(t) (v) s/kg

(f ) Damped natural frequency, vd (vi) N s

CHAPTER PROBLEMS
5.1 A SDOF system with m � 20 kg, k � 10,000 N/m, and c � 540 N s/m is at

rest in equilibrium when a 50 N s impulse is applied. Determine the response

of the system.

5.2 A SDOF system with m � 10 kg, k � 40,000 N/m, and c � 300 N s/m is at

rest in equilibrium when a 80 N s impulse is applied. This is followed by a 

40 N s impulse 0.02 s later. Determine the response of the system.# # #
# #

#

1/2mv2

#

#

FIGURE SP5.20

FIGURE SP5.21

x(t)

10 kg

1000 N/m

y(t)

100 N.s/m

250 N/m

x(t)

5 kg

10 N.s/m
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Transient Vibrations of SDOF Systems 375

5.3 A SDOF system with m � 1.3 kg, k � 12,000 N/m, and c � 400 N s/m is at

rest in equilibrium when a 100 N s impulse is applied. This is followed by a

150 N s impulse 0.12 s later. Determine the response of the system.

5.4 Use the method of variation of parameters to obtain the general solution of

Equation (5.1) and show that it can be written in the form of the convolution

integral, Equation (5.25).

5.5 Use the convolution integral to determine the response of an underdamped

SDOF system of mass m and natural frequency vn when the excitation is the

unit step function, u(t).
5.6 Let g(t) be the response of an underdamped system to a unit step function and

h(t) the response of an underdamped system to a unit impulse function. Show

5.7 Use the convolution integral and the notation and results of Chapter Problem

5.6 to derive the following alternative expression for the response of a system

subject to an excitation, F(t):

5.8 A SDOF undamped system is initially at rest in equilibrium and subject to a force

F(t) � F
0
te–t/2. Use the convolution integral to determine the response of the

system.

5.9 The mass of Figure P5.9 has a velocity v when it engages the spring-dashpot

mechanism. Let x (t) be the displacement of the mass from the position where

the mechanism is engaged. Use the convolution integral to determine x(t).
Assume the system is underdamped.

x (t ) = F (0)g (t ) + L
t

0

dF (t)

d t
g (t - t)d t

h (t ) =
dg

dt

# # #

k

m

c

�

θ

FIGURE P5.9

5.10 Use the convolution integral to determine the response of the system of 

Figure P5.10.

k

M0e–t/5

2k
L
3

L
3

L
3

FIGURE P5.10
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376 CHAPTER 5

5.11 Use the convolution integral to determine the response of an underdamped

SDOF system of natural frequency vn and damping ratio z when subject to a

harmonic excitation F (t) � F
0

sin vt.
5.12– A machine tool with a mass of 30 kg is mounted on an undamped foundation

of stiffness 1500 N/m. During operation, it is subject to one of the machining

force shown in Figures P5.12 through P5.18. Use the principle of superposition

and the convolution integral to determine the response of the system to each

force.

FIGURE P5.12

FIGURE P5.14

FIGURE P5.13

F(N)

t (s)0.5

3000

2

F(N)

t (s)1

1000
1000 sin pt

32

F(N)

t (s)1

500

21.5

5.18

F(N)

t (s)0.1

1000

0.50.40.3 0.6 0.7

FIGURE P5.15

F(N)

t (s)

500

10.5 1.5

–500

FIGURE P5.16
FIGURE P5.17

F(N)

t (s)

600

2

Exponential decay
with a = 0.2 s–1
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Transient Vibrations of SDOF Systems 377

5.19 The force applied to the 120-kg anvil of a forge hammer during operation is

approximated as a rectangular pulse of magnitude 2000 N for a duration of 

0.3 s. The anvil is mounted on a foundation of stiffness 2000 N/m and

damping ratio 0.4. What is the maximum displacement of the anvil?

5.20 A one-story frame structure houses a chemical laboratory. Figure P5.20 shows

the results of a model test to predict the transient force to which the structure

would be subject if an explosion would occur. The equivalent mass of the

structure is 2000 kg and its equivalent stiffness is 5 � 106 N/m. Approximate

the maximum displacement of the structure due to this blast.

FIGURE P5.18

F(N)

t (s)

100

1

Impulse of
magnitude 450 N . s

4 6

F(N)

t (s)

5000

1.0.2 1.2

FIGURE P5.20

5.21 A 20-kg radio set is mounted in a ship on an undamped foundation of stiffness

1000 N/m. The ship is loosely tied to a dock. During a storm, the ship

experiences the displacement of Figure P5.21. Determine the maximum

acceleration of the radio.

FIGURE P5.21

0.6 s 0.1 s

15 cm

5.22 A personal computer of mass m is packed inside a box such that the stiffness

and damping coefficient of the packing material are k and c, respectively. The
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378 CHAPTER 5

package is accidentally dropped from a height h and lands on a hard surface

without rebound. Set up the convolution integral whose evaluation leads to the

displacement of the computer relative to the package.

5.23 Use the Laplace transform method to determine the response of a system at rest

in equilibrium when subject to

for (a) z � 0, (b) 0 � z � 1, (c) z � 1, (d) z � 1.

5.24 Use the Laplace transform method to determine the response of an undamped

SDOF system initially at rest in equilibrium when subject to a symmetric

triangular pulse of magnitude F
0

and total duration t
0
.

5.25 Use the Laplace transform method to determine the response of an

underdamped SDOF system to a rectangular pulse of magnitude F
0

and 

time t
0
.

5.26 Use the Laplace transform method to derive the response of a SDOF system

initially at rest in equilibrium when subject to a harmonic force F
0

sin vt, when

(a) v vn, and (b) v � vn.

5.27 Determine the transfer function for the relative displacement of a SDOF system

with base motion defined as where Z(s) is the Laplace transform of

the relative displacement and Y(s) is the Laplace transform of the motion of the

base.

5.28 Determine the transfer function for the force transmitted to the foundation for

a SDOF system. The transfer function is defined as where Ft(s) is
the Laplace transform of the transmitted force and F(s) is the Laplace transform

of the applied force.

5.29 Use the transfer function to determine the response of a SDOF system excited

by motion of its base with m � 3 kg and k � 18,000 N/m where the base

motion is shown in Figure P5.29.

G (s) = Ft (s )
F (s )

G (s) = Z (s)
Y (s)

Z

F (t ) = F0 cos vt [1 - u(t - t0)]

y(m)

t (s)

0.01

0.50.40.2

–0.005

FIGURE P5.29

5.30 Use the transfer function to determine the response of a SDOF system with 

m � 1 kg, k � 100 N/m, and c � 6 N s/m when the system is subject to

motion of its base shown in Figure P5.30.

#
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Transient Vibrations of SDOF Systems 379

5.31 Repeat Chapter Problem 5.30 if the system parameters are m � 1 kg, 

k � 200 N/m, and c � 30 N s/m.

5.32 For the system of Figure P5.32(a), complete the following.

(a) Determine its transfer function defined as .

(b) Use the transfer function to find the response of the system due to y(t) as

shown in Figure P5.32(b). Use m � 1 kg, k � 100 N/m, and c � 30 N s/m.#
G(s) = X (s)

Y (s)

#

FIGURE P5.30

y(m)

t (s)

0.1

1

x(t)

m

k

2k

(a) (b)

c

y(t)

y(m)

t (s)

0.001

0.05

FIGURE P5.32

5.33 For the system of Figure P5.33(a), complete the following.

θ

20 cm

2000 N/m

1000 N/m

80 cm

Slender bar of
mass 12 kg

C

(a) (b)

y(t)
t (s)

0.001

0.2

y(m)

FIGURE P5.33
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(a) Determine its transfer function defined as where (s) is the

Laplace transform of the angular displacement of the bar.

(b) Use the transfer function to determine u(t) due to y(t), as shown in 

Figure P5.33(b).

5.34 During its normal, operation, a 144-kg machine tool is subject to a 15,000 

N s impulse. Design an efficient isolator such that the maximum force

transmitted through the isolator is 2500 N and the maximum displacement is

minimized.

5.35 A 110-kg pump is mounted on an isolator of stiffness 4 �105 N/m and a

damping ratio of 0.15. The pump is given a sudden velocity of 30 m/s. What is

the maximum force transmitted through the isolator and what is the maximum

displacement of the pump?

5.36 During operation, a 50-kg machine tool is subject to the short-duration pulse

of Figure P5.36. Design an isolator that minimizes the maximum displacement

and reduces the maximum transmitted force to 5000 N. What is the maximum

displacement of the machine tool when this isolator is used?

#

uG(s) = u(s)
Y (s)

t (s)

30,000 N

0.005 0.01

FIGURE P5.36

5.37 Repeat Chapter Problem 5.36 for the short-duration pulse of Figure P5.37.

FIGURE P5.37

t (s)

20,000 N

0.01

5.38 A ship is moored at a dock in rough seas and frequently impacts the dock. The

maximum velocity change caused by the impact is 15 m/s. Design an isolator to

protect a sensitive 80-kg navigational control system such that its maximum

acceleration is 30 m/s2.
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Transient Vibrations of SDOF Systems 381

5.39 A one-story frame structure with an equivalent mass of 12,000 kg and stiffness

of 1.8 � 106 N/m is subject to a blast whose force is given in Figure P5.39.

What is the maximum deflection of the structure?

t (s)

35,000 N

0.3 0.6

FIGURE P5.39

5.40 A 20-kg machine tool is on a foundation that is subject to an acceleration that

is modeled as a versed sine pulse with a magnitude of 20 m/s2 and duration of

0.4 s. Design an undamped isolator such that the maximum acceleration felt by

the machine is 15 m/s2. What is the maximum displacement of the machine

tool relative to its foundation when this isolator is used?

5.41 During operation, a 100-kg machine tool is exposed to a force that is modeled

as a sinusoidal pulse with a magnitude of 3100 N and duration of 0.05 s.

Design an isolator with a damping ratio 0.1 such that the maximum force

transmitted through the isolator is 2000 N and the maximum displacement of

the machine tool is 3 cm.

5.42 During operation a 80-kg machine tool is subject to a triangular pulse with a

magnitude of 30,000 N and duration of 0.15 s. What is the range of undamped

isolator stiffness such that the maximum transmitted force is 15,000 N and the

maximum displacement is 5 cm?
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C h a p t e r 6

TWO DEGREE-OF-
FREEDOM SYSTEMS

6.1 INTRODUCTION
Two degree-of-freedom systems require two generalized coordinates to describe the motion

of every particle in the system. The system requires two (in general) coupled differential

equations governing the motion of the system. The general form of the differential equa-

tions for a linear system with viscous damping is

(6.1)

or

(6.2)

The matrix M is a 2�2 mass matrix, C is a 2�2 damping matrix, K is a 2�2 stiffness

matrix, F is a 2�1 force vector and x is a 2�1 vector of generalized coordinates. The forms

of the matrix are determined by deriving the differential equations of motion.

Two degree-of-freedom systems are considered before n degree-of-freedom systems because

• Many systems only require two degrees of freedom when modeling.

• While the equations are formulated in a matrix form, matrix algebra is not required to

formulate a solution.

• Physical insight is gained by studying two degree-of-freedom systems.

• Viscous damping can be more easily handled.

cm1,1 m1,2

m2,1 m2,2

d c x
$

1

x$2

d + c c1,1 c1,2

c2,1 c2,2

d cx
#
1

x# 2
d + ck1,1 k1,2

k2,1 k2,2

d cx1

x2

d = cF1

F2

d

Mx$ + Cx# + Kx = F
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384 CHAPTER 6

The differential equations governing two degree-of-freedom systems are derived. A

normal-mode solution for the free response for undamped systems is assumed in which both

generalized coordinates are assumed to vibrate synchronously with different amplitudes. The

normal-mode solution is used to obtain the natural frequencies and mode shapes, which are

the relative amplitudes of vibration, for the two degree-of-freedom system. The two mode

shapes are combined to formulate the free response for undamped systems. The solution is in

terms of four constants of integration, which are determined through application of initial

conditions.

An exponential solution is assumed for systems with viscous damping. This leads to a

fourth-order algebraic equation for a parameter. The fourth-order equation includes odd

powers, so it cannot be reduced to a quadratic and must be solved numerically. The modes

of vibration can be underdamped, critically damped, or overdamped. The free response is

obtained in terms of constants of integration. Initial conditions are applied to determine

the constants.

When the differential equations are written using principal coordinates as the dependent

variables, they are uncoupled. However, the principal coordinates are not obvious; sometimes

a principal coordinate does not represent the displacement of a particle in the system.

The forced response of systems with harmonic excitations is developed. Both

undamped systems and damped systems are considered. The sinusoidal transfer functions

are developed as a means of determining the harmonic response. The concept of frequency

response is considered.

An application of harmonic response of two degree-of-freedom systems is the vibration

absorber. A vibration absorber is an auxiliary mass-spring system that is attached to a

machine that is experiencing large amplitude vibrations due to near-resonance conditions.

The addition of a vibration absorber changes a SDOF system to a two degree-of-freedom

system. When the vibration absorber is properly “tuned,” the steady-state vibrations of the

machine are eliminated. One problem with vibration absorbers is that the lower natural

frequency of the two degree-of-freedom system is lower than the tuned speed. Thus, the

lower natural frequency is passed through during start-up, which leads to large amplitude

vibrations. When damping is added to the vibration absorber to control the vibrations

during start-up, the ability to eliminate steady-state vibrations of the machine is lost. An

optimum damped vibration absorber is determined.

6.2 DERIVATION OF THE EQUATIONS OF MOTION
The equations of motion for a two degree-of-freedom system are derived using the free-

body diagram method or an energy method. However, the energy method is delayed until

Chapter 7. The free-body diagram method is the same as for SDOF systems, except that

multiple free-body diagrams or equations may be used. Newton’s law (∑F � ma) is applied

to the free-body diagram of a particle. The equations ∑F � and ∑M
0

� I
0
� are applied

to a free-body diagram of a rigid body undergoing planar motion with rotation about a

fixed axis through 0. For a rigid body undergoing planar motion, D’Alembert’s principle

can be applied as ∑F
ext

� ∑F
eff

and (∑MA)
ext

� (∑MA)
eff

where A is any point. The system

of effective forces is a force equal to applied at the mass center and a moment equal

to .Ia
ma

ma
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Two Degree-of-Freedom Systems 385

k

c

c

k

2k

(a) (b)

2c
F(t)

m

2m
x2

x1

kx1cẋ1

c(ẋ2 – ẋ1)

2cẋ2 2kx2

k (x2 – x1)

F(t)

Derive the differential equations governing the motion of the two degree-of-freedom system

of Figure 6.1 using x
1

and x
2

as generalized coordinates. Both are measured from the

system’s equilibrium position.

SOLUT ION
The free-body diagrams of the blocks drawn at an arbitrary instant are shown in Figure 6.1(b).

The forces from gravity of the blocks cancel with the static spring forces, as in single degree-

of-freedom systems. The bottom end of the spring connecting the two blocks has a dis-

placement of x
2

from equilibrium, while the upper end of the spring has a displacement of

x
1
. Therefore, the change in length of the spring is x

2
� x

1
, and the force developed in the

spring is k(x
2

� x
1
). If x

2
� x

1
, the spring is stretched, and the spring force is drawn acting

away from the blocks.

Applying Newton’s second law (∑F � ma) to the first block yields

(a)

or

(b)

Application of Newton’s second law to the lower block leads to

(c)

or

(d)

Rewriting Equations (b) and (d) in a matrix form gives

(e)cm 0
0 2m

d c x
$

1

x$2

d + c 2c - c
- c 3c

d cx
#
1

x# 2

d + c 2k -k
-k 3k

d cx1

x2

d = c 0
F (t )
d

2mx$2 + 3cx# 2 + 3k x2 - cx# 1 - kx1 = F (t )

-2kx2 - 2cx# 2 - k (x2 - x1) - c (x# 2 - x# 1) + F (t) = 2m x$2

m x$1 + 2c x#1 + 2k x1 - c x#2 - k x2 = 0

-kx1 - cx# 1 + k (x2 - x1) + c (x# 2 - x# 1) = mx
$

1

EXAMPLE 6 . 1

FIGURE 6.1
(a) System of Example 6.1 showing
the chosen generalized coordinates.
(b) FBDs at an arbitrary instant. Static
spring forces cancel with gravity.
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386 CHAPTER 6

EXAMPLE 6 . 2
Consider the system shown in Figure 6.2 in which the slender bar of mass m and moment

of inertia is attached to springs of stiffness k at its left end and three-quarters of

the way across the bar. Derive the differential equations for the system of Figure 6.2 using

the following.

(a) x is as generalized coordinates: the displacement of the mass center of the bar from

equilibrium, and � is the clockwise angular displacement of the bar.

(b) x
1

and x
2

are the vertical displacements of particles where the springs are attached and

measured from equilibrium. Assume small �.

1>12(mL2)

Equilibrium position

L
2

A
B

x

kk

L
4

L
4

θ
x2

x1

L
2

k(x –     θ)
L
4

k(x +     θ)

kx1

kx2

x1 x2

a

x

1
12

mL2 θ̈

θ

mẍ

1
12

4
3L

mL2         (ẍ2 – ẍ1)

m
3

(2ẍ2 + ẍ1)

θ3L
4

sin θ =
3L
4

(a)

(b)

=

=

(c)

(d)

3L /4

x2 – x1

FIGURE 6.2
(a) System of Example 6.2. One choice of generalized coordinates is the displacement of the mass
center x and the angular rotation of the bar �. Another choice is x1 and x2, which are the points where
the springs are attached. (b) FBDs of the system at an arbitrary instant using x and � as generalized
coordinates. (c) FBDs of the system at an arbitrary instant using x1 and x2 as generalized coordinates.
(d) Geometry used to determine x and � in terms of x1 and x2.
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Two Degree-of-Freedom Systems 387

SO LU T I ON
(a) A free-body diagram of the bar drawn at an arbitrary instant using x and � as generalized

coordinates is shown in Figure 6.2(b). Rotation does not occur about a fixed axis; thus,

the effective force method is used. Application of ∑F
ext

� ∑F
eff

leads to

(a)

Application of the moment equation (∑MG)
ext

� (∑MG )
eff

leads to

(b)

Rearranging Equations (a) and (b) and writing them in a matrix form leads to

(c)

(b) Free-body diagrams drawn at an arbitrary instant when x
1

and x
2

are used as gen-

eralized coordinates, as shown in Figure 6.2(c). The geometry used to calculate the

displacement of the mass center and the angular rotation of the bar, as illustrated

in Figure 6.2(d), is consistent with the small angle assumption. The angular rota-

tion of the bar is

(d)

(e)

Summation of moments about an axis through B, (∑MB )
ext

� (∑ MB )
eff

, leads to

(f)

Summation of moments about an axis through A, (∑ MA)
ext

� (∑ MA)
eff

, yields

(g)

Rewriting Equations (f ) and (g) and writing them in matrix form leads to

(h)c 7
36mL 1

18mL
1
18

mL 4
9
mL
d c x

$
1

x$2

d + c3L
4 k 0
0 3L

4 k
d cx1

x2

d = c0
0
d

-kx2a3L
4
b =

1
12

mL2a 4
3L
b (x$2 - x$ 1) + m a2x$2 + x$1

3
b aL

2
b

(kx1)a3L
4
b =

1
12

mL2a 4
3L
b (x$2 - x$1) - m a2 x$ 2 + x$1

3
b aL

4
b

x = x1 + a = x1 +
L
2
u = x1 + aL

2
b4(x2 - x1)

3L
=

2x2 + x1

3

u =
x2 - x1

3L
4

=
4(x2 - x1)

3L

cm 0
0 1

12
mL2 d c x

#

u
# d + c 2k -k L

4

-k L
4 k 5L2

16
d c x
u
d = c0

0
d

k ax -
L
2
ubL

2
- k ax +

L
4
ubL

4
=

1
12

m L2 u
$

-k ax -
L
2
ub - k ax +

L
4
ub = mx

$
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388 CHAPTER 6

6.3 NATURAL FREQUENCIES AND MODE SHAPES
Natural frequencies for two degree-of-freedom systems are the frequencies at which

undamped vibrations naturally occur. They are determined by assuming that the free

response is periodic with a specified frequency. Recalling that e i�t � cos (�t) � i sin (�t),
the free response of a two degree-of-freedom system with C � 0 is assumed as

(6.3)

where X � [�
1

�
2
]T is the mode shape vector. Equation (6.3) is called the normal mode

solution. The normal mode solution assumes the generalized coordinates are synchronous;

that is, they vibrate at the same frequency. Substituting Equation (6.3) into Equation (6.2)

with C � 0 leads to

(6.4)

which can be written as

(6.5)

Equation (6.5) represents a system of equations for X, but it is homogeneous. Using

Cramer’s rule to determine the components of the solution vector leads to

(6.6)

(6.7)

The determinant of a matrix with a column of zeroes is zero. Thus, the solution to

Equation (6.5) is the trivial solution �1 � 0 and �2 � 0, unless the denominator is zero.

Thus, to obtain a non-trivial solution,

(6.8)
Equation (6.8) leads to a quadratic equation with two possible natural frequencies; both

real and non-negative. The natural frequencies are ordered such that �
1

� �
2
.

The mode shape vector corresponding to a natural frequency � is the non-trivial solution

of Equation (6.4) with that value of �, as

(6.9)

If � satisfies Equation (6.8), then ��2M � K is singular, and the equations in Equation (6.9)

are multiples of one another. A solution exists, but it not unique. Using the first of Equation (6.9),

the solution has

(6.10)x2 =
v2m1,1 - k1,1

-v2m1,2 + k1,2

x1

c -v2m1,1 + k1,1 -v2m1,2 + k1,2

-v2m2,1 + k2,1 -v2m2,2 + k2,2

d cx1

x2

d = c0
0
d

det(-v2M + K ) = 0

x2 =
` -v2m1,1 + k1,1 0
-v2m2,1 + k2,1 0

`
 det (-v2M + K )

x1 =
` 0 -v2m1,2 + k1,2

0 -v2m2,2 + k2,2

`
 det(-v2M + K )

-v2MX + KX = 0

-v2 cm1,1 m1,2

m2,1 m2,2

d cx1

x2

d + ck1,1 k1,2

k2,1 k2,2

d cx1

x2

d = c0
0
d

cx1

x2

d = Xe ivt
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Two Degree-of-Freedom Systems 389

Traditionally, �
1

� 1 for determining �
2
, and Equation (6.8) becomes

(6.11)

The value of �
2
, calculated by Equation (6.11), is called the modal fraction for the frequency.

There are two modal fractions, one for the first mode shape, which we will label �
1
, and

one for the second mode shape, which we will label �
2
. We will refer to the mode shape in

general as [1 �]T.

The nodes are the particles in a system which has zero displacement when the system

is vibrating at one of the natural frequencies. These can be determined from the mode

shapes. For a two degree-of-freedom system, there are no nodes associated with the lowest

natural frequency and one node associated with the higher natural frequency.

x2 =
v2m1,1 - k1,1

-v2m1,2 + k1,2

EXAMPLE 6 . 3
Consider the two degree-of-freedom system shown in Figure 6.3(a). Determine (a) the

natural frequencies, (b) the modes shapes, and (c) the nodes for the system.

k k

x1 x2

m 3m

(a)

(b)

Initial position of masses

1.85
X

(c)

Initial position of masses

X

1

1

1

–0.181
L – l

Node
l

0.181

FIGURE 6.3
(a) System of Example 6.3. (b) Mode shape corresponding to first mode. (c) Mode shape corresponding
to second mode.
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390 CHAPTER 6

SO LU T I ON
The differential equations governing the system are

(a)

(a) The natural frequencies and mode shapes are determined using by Equation (6.7),

(b)

Setting det(��2M � K) � 0 as in Equation (6.6) leads to

(c)

Evaluation of Equation (c) leads to

(d)

When expanded, Equation (d) becomes

(e)

Dividing Equation (e) by m and defining � � k/m and � � �2, Equation (e) becomes

(f)

Using the quadratic formula to solve Equation (f ) leads to 

(g)

or

(h)

Realizing that the natural frequencies are

(i)

and

(j)

(b) The mode shapes are determined using Equation (6.9). For , substitution

in Equation (6.9) leads to a modal fraction of

(k)x1 =
-0.153

k
m

(m) + 2k

k
= 1.85

v2
1 = 0.153 k

m

v
 2 = Ca

7 + 237

6
bf = 1.47A

k
m

v
 1 = Ca

7 - 237
6

bf = 0.391A
k
m

v = 2l  and  f = k>m,

l1 = a7 - 237
6

bf  l2 = a7 + 237
6

bf

l =
7f � 2(7f)2 - 4(3)(f)2

2(3)

l = - b � 1b 2 - 4ac
2a

3l2 - 7fl + f2 = 0

(3m)v4 - (7mk)v2 + (k 2) = 0

(-v2m + 2k)(-v23m + k) - (-k)(-k) = 0

c -v2m + 2k -k
-k -v23m + k

d = 0

-v2 cm 0
0 3m

d c 1
x
d + c 2k -k

-k k
d c 1
x
d = c0

0
d

cm 0
0 3m

d c x
$

1

x$2

d + c 2k -k
-k k

d cx1

x2

d = c0
0
d
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Two Degree-of-Freedom Systems 391

Application of Equation (6.9) for the second mode leads to the modal fraction of

(l)

The mode shapes for the first mode and second mode are

(m)

(c) The mode shape diagrams, which are plots of relative displacements for each mode

drawn horizontally, are given in Figure 6.3(b) and Figure 6.3(c). The mode shape

diagram for the first mode shows no point where the displacement is negative. Thus,

the mode shape for the first mode has no nodes. The mode shape diagram for the

second mode has one node. Assuming the spring is linear, similar triangles applied

to the mode shape shown in Figure 6.3(c) leads to

(n)

or

(o)

where L is the length of the spring.

/ = 0.153L

/
0.181

=
L - /

1

X1 = c 1
1.85
d  X2 = c 1

-0.181
d

x2 =
-2.16

k
m

(m) + 2k

k
= -0.181

EXAMPLE 6 . 4
Determine the natural frequencies and mode shapes for the bar of Figure 6.2. Identify any

nodes.

SO LU T I ON
The differential equation of the system is derived in Example 6.2. The natural frequencies

do not depend on the choice of generalized coordinates, but the mode shape vectors are

specific to the choice of generalized coordinates. The nodes are not dependent on the

choice of generalized coordinates. Using x and � as generalized coordinates, the natural

frequencies are determined through application of Equation (6.7).

(a)

Evaluation of the determinant leads to

(b)(-v2m + 2k)a-v2 1
12

mL2 + k
5L2

16
b - a-k

L
4
b a-k

L
4
b = 0

†
-v2m + 2k -k

L
4

-k
L
4

-v2 1

12
mL2 + k

5L2

16

† = 0
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392 CHAPTER 6

Expansion of the above gives

(c)

Multiplying Equation (c) by 12/(m2L2) and defining � � and � � �2 leads to

(d)

Using the quadratic formula to solve Equation (d) gives

(e)

Recalling that yields

(f)

The mode shapes are calculated using Equation (6.9). For this yields

(g)

For Equation (6.9) gives

(h)

The mode shape vectors are

(i)

The mode shapes are illustrated in Figure 6.4. The first mode has no nodes on the bar,

but it represents rigid-body motion about an axis through point O, which is not on the bar.

Point O is a distance 0.19L from the end of the bar. The second mode has one node and

represents a rigid-body motion about an axis through point P, which is a distance of 0.118

to the right of the mass center.

X1 = J 1
1.42

L
K  X2 = J 1

-8.42
L
K

x2 =
a4.11

k
m
bm - 2k

-k L
4

= -
8.42

L

v2 = 2.072f,

x1 =
a1.64

k
m
bm - 2k

-k L
4

=
1.42

L

v1 = 1.282f,

v1 = 1.28A
k
m
  v2 = 2.02A

k
m

v = 2l  and  f = k>m

l = P
23

4
� Ca

23
4
b2

- 4a27
4
b

2 Qf = 1.64f, 4.11f

l2 -
23

4
fl +

27
4
f = 0

k>m

1
12

m2L2v4 -
46
96

mkL2v2 +
9

16
k 2L2 = 0
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Two Degree-of-Freedom Systems 393

6.4 FREE RESPONSE OF UNDAMPED SYSTEMS
The most general solution of a linear homogeneous problem is a linear combination of all

possible solutions. The free response of a linear, undamped two degree-of-freedom system

has two natural frequencies and two mode shapes. However, each natural frequency satis-

fies a fourth-order equation which only contains even powers of �. It can be converted to

a quadratic equation in �2. Thus, �� and �� are both solutions of the fourth-order

equation. However, �� has the same mode shape as ��. Thus, there are four solutions

of the homogeneous equation: ei�itX
1
, e�i�itX

1
, ei �

2
tX

2
, and e�i �

2
tX

2
where �

1
and �

2
are 

the natural frequencies and X
1

and X
2

are their corresponding mode shape vectors. The 

general solution is

(6.12)

Euler’s identity is used in the above to replace the exponentials with complex exponents by

trigonometric functions

(6.13)

The system has four initial conditions to satisfy

and Their application yields

(6.14a)

(6.14b)

(6.14c)

(6.14d)x# 2,0 = v1C2x1 + v2C4x2

x# 1,0 = v1C2 + v2C4

x2,0 = C1x1 + C3x2

x1,0 = C1 + C3

x# 2(0) = x# 2,0.
x1(0) = x1,0, x2(0) = x2,0, x

#
1(0) = x# 1,0,

x (t ) = [C1 cos(v1t ) + C2 sin(v1t )]X1 + [C3 cos(v2t ) + C4 sin(v2t )]X2

x (t) = C1e
iv1tX1 + C2e

- iv1tX1 + C3e
iv2tX2 + C4e

- iv2tX2

Equilibrium position

Equilibrium position

1.42/L

8.42/L

0.118L

1

1

(a)

(b)

0.19L FIGURE 6.4
Mode shapes of Example 6.4.
(a) First mode is a rigid-body
rotation about point O, which is a
point a distance 0.19L from the left
end of the bar. (b) Second mode is
a rigid-body rotation about point P,
which is a distance of 0.118L to the
right of the mass center.
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394 CHAPTER 6

The equations are two sets of two simultaneous equations whose solutions are

(6.15a)

(6.15b)

(6.15c)

(6.15d)

Trigonometric identities can be used to write Equation (6.13) as

(6.16)

where

(6.17a)

(6.17b)

(6.17c)

(6.17d)f2 = tan - 1(C4OC3)

f1 = tan - 1(C2OC1)

A2 = (C 2
3 + C 2

4 )1>2
A1 = (C 2

1 + C 2
2 )1>2

x(t) = A1X1 sin(v1t + f1) + A2X2 sin(v2t + f2)

C4 =
x# 2,0v1 - x# 1,0v2x2

v1v2(x2 - x1)

C3 =
x2,0 - x1,0x2

x2 - x1

C2 =
x# 1,0v2x2 - x# 2, 0v1

v1v2(x2 - x1)

C1 =
x1,0x2 - x2,0

x2 - x1

EXAMPLE 6 . 5
The system of Example 6.3 is given initial displacements of x

1
(0) � � and x

2
(0) � �� and

is released from rest. Determine the resulting response of the system.

SO LU T I ON

The natural frequencies are determined in the solution of Example 6.3 as 

and . The mode shapes are and The general

form of the response is given by Equation (6.16) as

(a)

Application of initial conditions leads to

(b)

(c)x2(0) = -d = 1.85A1 sin f1 - 0.181A2 sin f2

x1(0) = d = A1 sin f1 + A2 sin f2

x(t) = A1 c 1
1.85
d  sin a0.391A

k
m

t + f1b + A 2 c 1
-0.181

d  sin a1.47A
k
m

t + f2b

X2 = C 1
- 0.181 D .X1 = C 1

1.85 Dv2 = 1.472 k
m

v1 = 0.3912 k
m
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Two Degree-of-Freedom Systems 395

(d)

(e)

Equations (d) and (e) are satisfied if cos �
1

� cos �
2

� 0, which implies 

Then equations (b) and (c) become

(f)

(g)

Equations (f ) and (g) are solved to yield A
1

� �0.4038 and A
2

� 1.4038, leading to a

response of

(h)x(t) = -d c0.403
0.746

d  sin a0.391A
k
m

t +
p

2
b + d c 1.403

-0.254
d  sin a1.47A

k
m

t +
p

2
b

1.85A1 - 0.181A2 = -d

A1 + A2 = d

f1 = f2 = p
2 .

x# 2(0) = 0 = (1.85)(0.391)A1 cos f1 + (-0.181)(1.47)A2 cos f2

x# 1(0) = 0 = 0.391A1 cos f1 + 1.47A2 cos f2

EXAMPLE 6 . 6
For what initial conditions will the system of Example 6.4 vibrate as if it were a rigid-body

rotation about point P, which is a distance 0.118L to the right of the mass center?

SO LU T I ON
The point P is determined to be a node for the second mode. Thus, only the first mode is

represented in the solution

(a)

Application of initial conditions leads to

(b)

(c)

(d)

(e)

Dividing Equation (a) by Equation (b) yields

(f)

Dividing Equation (d) by Equation (e) yields

(g)

Any boundary conditions satisfying Equation (f ) and Equation (g) will eliminate the

second mode from the response.

x# 1,0

x# 2,0

= 0.694L

x1,0

x2,0
= 0.694L

x# 2,0 = (1.28)a1.42
L
bC2

x# 1,0 = 1.28C2

x2,0 =
1.42

L
C1

x1,0 = C1

cx1(t)
x2(t)
d = c 1

1.42
L
d bC1 cos a1.28A

k
m

tb + C2 sin a1.28A
k
m

tb r
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396 CHAPTER 6

6.5 FREE VIBRATIONS OF A SYSTEM WITH
VISCOUS DAMPING
Free vibrations of a system with viscous damping cannot be qualitatively defined as for

SDOF systems. Assuming a normal-mode solution of x � Xei�t leads to an algebraic

equation with complex coefficients to determine �. Instead, a solution of the form

(6.18)

is assumed. Substitution of Equation (6.18) into Equation (6.1) leads to

(6.19)

Equation (6.19) is viewed as a system of simultaneous algebraic equations to solve for �.

Equation (6.19) has a non-trivial solution if and only if

(6.20)

Expansion of the determinant leads to a fourth-order polynomial equation for �. The four

roots for � can be all real, two real, and one pair of complex conjugates or two pairs of complex

conjugates. The real roots correspond to overdamped modes of vibration. The complex

roots correspond to underdamped modes of vibration. The real roots can be repeated, in

which case they correspond to vibrations that are critically damped.

For specific real values of �, substitution into Equation (6.20) leads to real-mode shape

vectors. Hence, the solution for four real values of � is

(6.21)

For complex conjugate values of �, Equation (6.20) leads to complex conjugate mode shapes.

The solution corresponding to a pair of complex conjugate values of � is

(6.22)

Writing � � �r � i�i and X � X
r
� iX

i
and using Euler’s identity on the exponentials with

complex exponents leads to

(6.23)

where A
1

� C
1

� C
2

and A
2

� i(C
1

� C
2
) are redefined constants of integration.

= e lrt[A1(Xrcoslit -  Xi sinlit ) +  A2(Xr sinlit +  Xi cosli t )]

x(t) = e lrt [C1(Xr + Xi)(coslit + i sinli t) + C2(Xr - iXi)(cosli t - i sinli t )]

x(t) = C1Xe lt + C2Xe lt

x(t) = C1X1e
l1t + C2X2e

l2t + C3X3e
l3t + C4X4e

l4t

det(l2MX + lCX + KX ) = 0

l2MX + lCX + KX = 0

cx1(t)
x2(t)
d = c 1

x
de lt

EXAMPLE 6 . 7
Determine the response of the system of Figure 6.5 when using x

1
and x

2
as generalized

coordinates when and all other initial conditions are zero.x# 2(0) = 2
m
s
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Two Degree-of-Freedom Systems 397

SO LU T I ON
The differential equations of motion for the system are

(a)

Assume a solution of

(b)

The values of � which lead to a non-trivial solution of Equation (b) are the roots of

(c)

Evaluation of the determinant leads to

(d)

The roots of the fourth-order equation are � � �0.5122 � 1.7436i, �1.2378 � 2.2648i.
The system vibrates at frequencies �

1
� 1.7436 and �

2
� 2.2468. The complex modal

fraction is determined from

(e)

The two equations represented by Equation (e) for the values of � obtained previously are

dependent. Thus, only the first equation is used, as

(f)

or

(g)

For � � �0.5122 � 1.7436i, the evaluation of Equation (g) becomes

(h)

For � � �0.5122 � 1.7436i, the evaluation leads to � � (1.817 � 0.248i). For �1.2378 �
2.2648i, the evaluation of Equation (g) leads to � � (�0.435 	 0.115i ).

= (1.817 + 0.248i )

x =
(-0.5122 - 1.7436i )2 + 2(-0.5122 - 1.7436i ) + 6

2 - 0.5122 - 1.7436i

x =
l2 + 2l + 6

l + 2

(l2 + 2l + 6) - (l + 2)x = 0

cl2 + 2l + 6 -l - 2
-l - 2 2l2 + 3l + 8

d c 1
x
d = c0

0
d

(l2 + 2l + 6)(2l2 + 3l + 8) - (l + 2)2 = 0

` l2 + 2l + 6 -l - 2
-l - 2 2l2 + 3l + 8

` = 0

cx1(t)
x2(t)
d = c 1

x
d e lt

c1 0
0 2

d c x
$

1

x$2

d + c 2 -1
-1 3

d cx
#
1

x# 2
d + c 6 -2

-2 8
d cx1

x2

d = c0
0
d

4 N/m

1 N · s/m 1 N · s/m 2 N · s/m

6 N/m2 N/m
x1 x2

1 kg 2 kg

FIGURE 6.5
System of Example 6.7. Motion is
initiated by giving the second
mass an initial velocity of 2 m/s.
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398 CHAPTER 6

Using Equation (6.21), the response can be written as

(i)

or

(j)

Applying the initial conditions leads to

(k)

Solution of Equation (k) leads to A
1

� 4.49, A
2

� �1.95, A
3

� �2.12 and A
4

� 3.29.

Substitution of these results into Equation (j) leads to

(l)+ e -1.237t ¢ c -2.13
0.54
d  cos 2.25t + c 3.29

-1.67
d  sin 2.25t≤

cx1(t)
x2(t)
d = e -0.512t ¢ c4.49

7.68
d cos 1.74t + c -1.95

-4.66
d sin 1.74t≤

≥
x1(0)
x2(0)
x# 1(0)
x# 2(0)

¥ = ≥
0
0
0
2

¥ = ≥
   1 0    1    0
   1.817 0.248 -0.435 -0.115
-0.5122 1.744 -1.238    2.247
-1.390 3.295     0.871 -0.258

¥ ≥
A1

A2

A3

A4

¥

+ A4 ¢ c 1
-0.435

d  sin 2.247t + c 0
-0.115

d  cos 2.247t≤v
+ e -1.2378t uA3 ¢ c 1

-0.435
d  cos 2.247t - c 0

-0.115
d sin 2.247t≤

+ A2a c 1
1.817

d  sin 1.744t + c 0
0.248

d cos 1.744tbv

cx1(t)
x2(t)
d = e -0.5122tuA1a c 1

1.817
d  cos 1.744t - c 0

0.248
d  sin 1.744tb

+ e -1.2378t ¢C3 c 1
-0.435 - 0.115i

de i 2.2468C4 c 1
-0.435 + 0.115i

de -i 2.2468≤
cx1(t)
x2(t)
d = e-0.5122t

 ¢C1 c 1
1.817 - 0.248i

de i1.7436t + C2 c 1
1.817 + 0.248i

de -i1.7436t≤

6.6 PRINCIPAL COORDINATES
It would be easier to solve uncoupled differential equations, but the coupling between coor-

dinates is inevitable in most systems. The choice of generalized coordinates to derive the dif-

ferential equations affects the coupling. If the coupling is through the stiffness matrix as in

Example 6.1, the system is said to be statically coupled. If the coupling is through the mass

matrix as in Example 6.2(b), the system is said to be dynamically coupled. Using the 
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Two Degree-of-Freedom Systems 399

coordinates x and �, the system of Example 6.2 is statically coupled and is not dynamically

coupled. Using the coordinates x
1

and x
2
, the differential equations are dynamically coupled

but not statically coupled. A system can be statically coupled, dynamically coupled, statically

coupled and dynamically coupled, or neither statically or dynamically coupled, depending

on the choice of generalized coordinates. The choice of generalized coordinates does not

affect the natural frequencies.

Suppose the differential equations are neither statically coupled nor dynamically cou-

pled using a set of coordinates p
1

and p
2
, called the principal coordinates. Then the differ-

ential equations are written as

(6.24)

(6.25)
The solutions of Equation (6.24) and (6.25) are simply

(6.26)

(6.27)

The decoupled system behaves as two SDOF systems. Since the choice of generalized coor-

dinates does not affect the natural frequencies of the system, �
1

and �
2

are properties of

the system. When written using coordinates x
1

and x
2
,

(6.28)

Taking , Equation (6.28) becomes

(6.29)

or

(6.30)

Equation (6.30) is solved for the principal coordinates in terms of the original generalized

coordinates yielding

(6.31)

(6.32)

Without loss of generality, since the generalized coordinates can represent points that have

zero displacement for z, given mode �
2

� �
1 

can be ignored and

(6.33)

(6.34)p2 = x2 - x1x1

p1 = x2x1 - x2

p2 =
1

x2 - x1

(x2 - x1x1)

p1 =
1

x2 - x1

(x2x1 - x2)

cx1

x2

d = c 1
x1

dp1 + c 1
x2

dp2

x(t) = X1p1(t) + X2 p2(t)

A1
P1

= A1
P2

= 1

=
A1

P1

X1p1(t ) +
A1

P2

X2 p2(t )

x(t) = A1X1 sin(v1t + f1) + A2X2 sin(v2t + f2)

p2(t) = P2 sin (v2t + f2)

p1(t) = P1 sin (v1t + f1)

p
$

2 + v2
2 p2 = 0

p
$

1 + v2
1p1 = 0
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400 CHAPTER 6

The principal coordinates for a two degree-of-freedom system can be examined by

looking at the nodes for a system. The second mode shape has a node which is in the

system. This is a point of zero displacement for that node, and the response of that point

only includes the first mode. This point can be taken to be a principal coordinate repre-

senting the first mode. The first mode does not have a node that is a particle on the system.

Thus, the second mode does not represent the motion of a particle in the system.

EXAMPLE 6 . 8
Describe the principal coordinates for the system of Example 6.4. Write the differential

equations for the principal coordinates.

SO LU T I ON

Recall that the natural frequency and modal fraction for the first mode using x and � as

generalized coordinates are and . The natural frequency and

modal fraction for the second mode are and . Using 

Equations (6.33) and (6.34), the principal coordinates are

(a)

(b)

Equation (a) is the negative of the displacement of the node for the second mode, which

as noted in Example 6.4 represents a rigid-body rotation about a point 0.118L to the right

of the midspan of the bar. Equation (b) represents the negative of the rigid-body rotation

0.19L from the left end of the bar.

The differential equations the principal coordinates satisfy are

(c)

(d)p
$

2 + 4.28  
k
m

  p2 = 0

p
$

1 + 1.64  
k
m

  p1 = 0

p2(t) = u(t) -
1.42

L
x (t)

p1(t) = -
8.44

L
x (t) - u(t)

x2 = - 8.44
Lv2 = 2.072 k

m

x1 = 1.42
Lv1 = 1.282 k

m

It is not possible to find principal coordinates for a system with a general form of viscous

damping. However, if the damping matrix is proportional to a linear combination of the

stiffness matrix and the damping matrix, the principal coordinates for the undamped

system uncouple the system. The differential equations governing the principal coordinates

become

(6.35)

(6.36)

where �
1

and �
2

are called modal damping ratios. This is covered in more detail in Chapter 8.

p
$

2 + 2z2v2 p# 2 + v2
2 p2 = 0

p
$

1 + 2z1v1p
#
1 + v2

1 p1 = 0
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Two Degree-of-Freedom Systems 401

6.7 HARMONIC RESPONSE OF TWO
DEGREE-OF-FREEDOM SYSTEMS
The harmonic response of two degree-of-freedom systems is determined using the method of

undetermined coefficients. First, consider undamped systems whose differential equations are

(6.37)

where is a vector of constants.

The method of undetermined coefficients can be used to find the steady-state solution.

Assume a steady-state response of

(6.38)

where . Substitution of Equation (6.38) into Equation (6.37) leads to

(6.39)
from which the equation to solve for the components of U is

(6.40)
The component equations represented by Equation (6.40) are

(6.41)

(6.42)

The solution of Equation (6.41) and Equation (6.42) provide the values of u
1

and u
2
.

The steady-state amplitudes are chosen to be positive. If a negative value is obtained

(say u
2


 0), the response of the system is written as |u
2
| sin(�t �	).

(-v2m2,1 + k2,1)u1 + (-v2m2,2 + k2,2)u2 = f2

(-v2m1,1 + k1,1)u1 + (-v2m1,2 + k1,2)u2 = f1

( -v2M + K)U = F

-v2MU sin(vt) + KU sin(vt) = F sin(vt)

U = 3u1  u24T
x = U sin(vt)

F = 3 f1  f24T
Mx

$ + Kx = F sin(vt)

EXAMPLE 6 . 9
Consider the two degree-of-freedom system of Figure 6.6. Determine the steady-state

response of the system.

SO LU T I ON
The differential equations governing the motion of the system are

(a)

(b)2x
$

2 - x1 + 3x2 = 10 sin(2t )

x
$

1 + 2x1 - x2 = 0

1 N/m 1 N/m

2 N/m

10 sin2t

x1 x2

1 kg 2 kg

FIGURE 6.6
System of Example 6.9.
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402 CHAPTER 6

The steady-state response is determined by assuming

(c)

(d)

Substituting the solution into the differential equations leads to

(e)

(f)

or

(g)

(h)

The solution to Equation (g) and Equation (h) is and . The steady-state

responses of the two masses are

(i)

(j)u2(t) =
20

9
sin(2t - p)

u1(t) =
10

9
sin(2t )

u2 = - 20
9u1 = 10

9  

-u1 - 5u2 = 10

-2u1 - u2 = 0

-8u2 - u1 + 3u2 = 10

-4u1 + 2u1 - u2 = 0

x2 = u2 sin(2t)

x1 = u1 sin(2t)

Now consider the steady-state responses for systems with viscous damping. The general

form of the equation for systems that are viscously damped is

(6.43)

or

(6.44)

A steady-state response of

(6.45)

(6.46)

is assumed. Substituting into Equation (6.43) leads to four equations for four unknowns.

The steady-state responses for x
1

and x
2

are written as

(6.47)

and

(6.48)

where

(6.49)

and

(6.50)fi =  tan -1a vi

ui
b

Xi = 2u2
i + v2

i

x2 = X2 sin(vt - f2)

x1 = X1 sin(vt - f1)

x2 = u2 sin (vt) + v2 cos (vt)

x1 = u1 sin (vt) + v1 cos (vt)

cm1,1 m1,2

m2,1 m2,2

d c x
$

1

x$2

d + cc1,1 c1, 2

c2,1 c2, 2

d cx
#
1

x# 2
d + ck1,1 k1, 2

k2,1 k2, 2

d cx1

x2

d = c f1

f2

d sin(vt)

Mx
$ + Cx# + Kx = F sin(vt)

62129_06_Ch06_p383-458.qxd  3/16/11  11:37 AM  Page 402

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Two Degree-of-Freedom Systems 403

EXAMPLE 6 . 1 0
Find the steady-state response for the system of Figure 6.7.

SO LU T I ON
The differential equations governing the motion of the two degree-of-freedom system

shown are

(a)

Assume a steady-state response of

(b)

Substitution of Equation (b) into Equation (a) gives

(c)

Collecting coefficients of sin 5t and cos 5t from each equation leads to

(d)

The solution to Equation (c) is u
1

� 0.0212, u
2

� 0.0203, v
1

� �0.0077, and v
2

� �0.0039.

Substitution into Equation (b) gives

(e)

or

(f)

(g)x2(t ) = 0.0207 sin(5t + 0.188)

x1(t ) = 0.0225 sin(5t + 0.348)

cx1

x2

d = c0.0212
0.0203

d  sin 5t + c -0.0077
-0.0039

d  cos 5t

≥
250 -200 -150 100

-200 375 100 -100
150 -100 250 -200

-100 100 -200 375

¥ ≥
u1

u2

v1

v2

¥ = ≥
2
3
0
0

¥

= c2
3
d  sin 5t

+ c 300 -200
-200 400

d cu1

u2

d sin 5t + c 300 -200
-200 400

d cv1

v2

d cos 5t

+ c 150 -100
-100 100

d cu1

u2

d cos 5t + c -150 100
100 -100

d cv1

v2

d sin 5t

c -50 0
0 -25

d cu1

u2

d sin 5t + c -50 0
0 -25

d cv1

v2

d cos 5t

cx1

x2

d = cu1

u2

d sin 5t + cv1

v2

d cos 5t

c2 0
0 1

d c x
$

1

x$2

d + c 30 -20
-20 20

d cx
#
1

x# 2
d + c 300 -200

-200 400
d cx1

x2

d = c2
3
d sin 5t

200 N/m

10 N · s/m 20 N · s/m

300 N/m

3 sin5t
100 N/m

x1 x2

2 kg 1 kg

2 sin5t

FIGURE 6.7
System of Example 6.10.
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404 CHAPTER 6

6.8 TRANSFER FUNCTIONS
Transfer functions are the ratio of the Laplace transform of a system output to the Laplace

transform of a system input. When the system has multiple input and multiple outputs, a

matrix of transfer functions is defined. A two degree-of-freedom system has two outputs

and possibly two inputs, as illustrated in Figure 6.8. The transfer function matrix for this

system is

(6.51)

where Gi,j(s) is the transfer function for xi due to a force applied at x j . Recalling the physical

meaning of the transfer function from Chapter 5, it also represents the transform of the

response due to a unit impulse. Thus, Gi,j(s) also is the Laplace transform of the response

of xi due to an unit impulse applied at the location which is described by xj .

G(s ) = cG1,1(s) G1,2(s)
G2,1(s) G2,2(s)

d

k1

k2

F1 (t)

F2 (t)

x1 x2

m1 m2

FIGURE 6.8
A two degree-of-freedom system
with two inputs.

EXAMPLE 6 . 1 1
The system of Figure 6.9 is at rest in equilibrium when a unit impulse is applied to the 2 kg

block. Determine the resulting response of the 1 kg block.

SO LU T I ON
The differential equations governing the motion of the system are

(a)

(b)

Taking the Laplace transform of Equations (a) and (b) and using the principle of linearity

leads to

(c)

(d)2L{x$2} - 500L{x1} + 1000L{x2} = L{F (t )}

L{x$1} + 1000L{x1} - 500L{x2} = 0

2x$2 - 500x1 + 1000x2 = F (t )

x$1 + 1000x1 - 500x2 = 0

500 N/m1000 N/m
500 N/m

F(t)

x1 x2

1 kg 2 kg

FIGURE 6.9
System of Example 6.11.
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Two Degree-of-Freedom Systems 405

Letting X
1
(s) � L{x

1
(t)}, X

2
(s) � L{x

2
(t)}, and F(s) � L{F(t)} and using the property of

transform of derivatives leads to

(e)

(f)

Writing Equations (e) and (f ) in matrix form, we have

(g)

Cramer’s rule is used to solve for X
1
(s), leading to

(h)

Evaluation of the determinants leads to

(i)

The appropriate transfer function is

(j)

The impulsive response is obtained by inverting the transfer function. To this end, the

transfer function is factored as

(k)

A partial fraction decomposition of Equation (k) leads to

(l)

Inversion of the transform leads to

(m)x i1,2
= 0.0162 sin 17.8t - 0.0084 sin 34.4t

G1,2(s) =
0.2887

s 2 + 317
-

0.2887
s 2 + 1183

G1,2(s) =
250

(s2 + 1183)(s2 + 317)

G1,2(s) =
X1(s)

F (s )
=

250

s4 + 1500s 2 + 375,000

X1(s) =
500F (s )

2s4 + 3000s 2 + 750,000

X1(s) =
` 0 -500
F (s ) 2s2 + 1000

`
` s2 + 1000 -500

-500 2s2 + 1000
`

c s 2 + 1000 -500
-500 2s 2 + 1000

d cX1(s)
X2(s)
d = c 0

F (s)
d

-500X1(s ) + (2 s 2 + 1000)X2(s) = F (s)

(s 2 + 1000)X1(s) - 500X2(s ) = 0

40,000 N/m
20,000 N/m

2000 N · s/m

F(t)

x1 x2

20 kg 40 kg

FIGURE 6.10
System of Example 6.12.

EXAMPLE 6 . 1 2
Determine the transfer function for the 20 kg block of the system in Figure 6.10 due to a

force applied to the 20 kg block.
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SO LU T I ON
The differential equations governing the system are

(a)

(b)

Taking the Laplace transform of both equations and using the properties of the transform

of derivatives and linearity yields

(c)

(d)

Rewriting Equations (c) and (d) in matrix form

(e)

Cramer’s rule is used to solve for X
2
(s), leading to

(f)

Evaluation of the determinants leads to

(g)

The appropriate transfer function is

(h)G22(s ) =
20s 2 + 2000s + 60,000

800s 4 + 1.2 * 105s3 + 2.8 * 106s2 + 8 * 107s + 8 * 108

X2(s) =
(20s2 + 2000s + 60,000)F (s)

800s4 + 1.2 * 105s 3 + 2.8 * 106s 2 + 8 * 107s + 8 * 108

X1(s) =
` 20s2 + 2000s + 60,000 0

-2000s + 20,000 F (s)
`

` 20s 2 + 2000s + 60,000 -2000s - 20,000
-2000s - 20,000 40s2 + 2000s + 20,000

`

c20s2 + 2000s + 60,000 -2000s - 20,000
-2000s - 20,000 40s2 + 2000s + 20,000

d cX1(s)
X2(s)
d = c 0

F (s)
d

- (2000s + 20,000)X1(s) + (40s2 + 2000s + 20,000)X2(s) = F (s)

(20s2 + 2000s + 60,000)X1(s) - (2000s + 20,000)X2(s) = 0

40x$2 - 2000x# 1 + 2000x# 2 - 20,000x1 + 20,000x2 = F (t )

20x$1 + 2000x# 1 - 2000x# 2 + 60,000x1 - 20,000x2 = 0

406 CHAPTER 6

The transfer function may be used to derive a convolution integral response for the

system. Note that

(6.52)

where Xi,j(s) is the response of the system for xi(t) due to a force Fj(t) applied at the location

specified by xj(t). Using property B7 (transform of convolution), we have

(6.53)

where hi,j(t) is the impulsive response 

Equation (6.53) is the convolution integral solution for the response of a two degree-

of-freedom system. It is similar to that of a SDOF system.

hi, j (t ) = L-1{Gi, j (s )}.

x i(s) = L
t

0
Fj(t)hi,j(t - t)dt

Xi (s) = Fj (s)Gi, j (s )
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Two Degree-of-Freedom Systems 407

EXAMPLE 6 . 1 3
Determine the response of the 1 kg mass of Figure 6.9 when the time-dependent force of

Figure 6.11 is applied to the 2 kg block.

SO LU T I ON
The mathematical form of the force shown in Figure 6.11 is

(a)

The impulsive response of the 1 kg block due to a unit impulse applied to the 2 kg block

is calculated in Example 6.11. The convolution integral of Equation (6.53) is used to deter-

mine the response of the system of Figure 6.10 as

(b)

Equation (b) is written as

(c)

The integrals of Equation (c) are evaluated using the entries of Table 5.1. Use the table for

the delayed ramp excitation with A � �10 and B � 1 with �n � 17.8 for the first two

integrals. Use t
0

� 0 for the first integral and t
0

� 0.1 for the second. The third and fourth

integrals are evaluated using �n � 34.4. Use m
eq

� 1 when evaluating the integrals. For

example, the second integral is evaluated as

(d)= 0.03153t - 0.1 - 0.0562 sin 17.8(t - 0.1)4u(t - 0.1)

-
1

17.8
sin 17.8(t - 0.1) du(t - 0.1)

=
-10
317
ct +

1
-10

- a0.1 +
1

-10
b cos 17.8(t - 0.1)

L
t

0
(1 - 10t) sin 17.8(t - t)u(t - 0.1)dt

-L
t

0
(1 - 10t) sin 34.4(t - t)u (t - 0.1)d t dv

-  0.0084 cL
t

0
(1 - 10t) sin 34.4(t - t)u(t)d t

-L
t

0
(1 - 10t) sin 17.8( t - t)u (t - 0.1)dt d

x1(t) = 10u0.0162 cL
t

0
(1 - 10t) sin 17.8(t - t)u(t)dt

x1(t) = L
t

0
10(1 - 10t)3u(t) - u(t - 0.1)430.0162 sin17.8(t - t)

                                             - 0.0084 sin 34.4(t - t)4d t

F (t) = 10(1 - 10t)3u(t ) - u(t - 0.1)4
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408 CHAPTER 6

The resulting solution is

(e)

Simplification results in

(f)+ 2.05 * 10-5 sin 34.8(t - 0.1)4u(t - 0.1)

- 30.0044t - 0.00044 - 2.87 * 10-4 sin 17.8(t - 0.1)

- 2.87 * 10-4 sin 17.8t + 2.05 * 10-5 sin 34.8t)u(t)

x1(t) = (0.0044t - 0.00044 - 0.0051 cos 17.8t + 7.14 * 10-4 cos 34.8t

+ (0.0084)(0.0085)3t - 0.1 - 0.0287 sin 34.88(t - 0.1)4u(t - 0.1)}

- (0.0084)(0.0085)3t - 0.1 - 0.1 cos 34.8t - 0.0287 sin 17.8t4u(t)

- (0.0162)(0.0315)3t - 0.1 - 0.0562 sin 17.8(t - 0.1)4u(t - 0.1)

x1(t) = 10{(0.0162)(0.0315)3t - 0.1 - 0.1 cos 17.8t - 0.0562 sin 17.8t4u(t)

F(N)

10

0.1 t (s)

FIGURE 6.11
Excitation of Example 6.13.

6.9 SINUSOIDAL TRANSFER FUNCTION
The use of the method of undetermined coefficients is fine for calculation of the steady-

state amplitudes for a specific frequency, but the determination of the frequency response

using this method leads to much unnecessary algebra. An alternate method is to use the

Laplace transform method.
Consider the Laplace transform of a system subject to a sinusoidal input of F(t) � F

0
sin �t :

(6.54)

where G(s) is the transfer function. For an nth order system, the denominator of G(s) is of

order n. Let s
1
, s

2
, . . . , sn where Re (sj) 
 0 for j � 1, 2, . . . , n is the zeros of the denomi-

nator of the transfer function. A partial fraction decomposition leads to

(6.55)X(s) =
A1

s + iv
+

A2

s - iv
+

B1

s - s1
+

B2

s - s2
+ Á +

Bn

s - sn

X(s) = G (s)F (s) =
F0v

s2 + v2G (s )
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Two Degree-of-Freedom Systems 409

The steady-state response is obtained by inverting the first two terms in X(s) as

(6.56)

The steady-state response is

(6.57)

where

(6.58)

and

(6.59)

The steady-state response becomes

(6.60)

Since G(i�) is a complex number, it can be expressed as

(6.61)

where

(6.62)

and

(6.63)

Substituting Equation (6.61) into Equation (6.60) and noting that 

yields

(6.64)

or

(6.65)

The steady-state amplitude of any system is the magnitude of the excitation times the

magnitude of the sinusoidal transfer function G(i�). This is the frequency response of the

system. The full power of the sinusoidal transfer function is not needed for SDOF systems

because there exists only one steady-state amplitude. The steady-state amplitude in

Equation (6.65) is non-dimensionalized by

(6.66)
k1X1

F0

= k1|G(iv)|

x (t ) = F0|G (iv)| sin(vt + f)

x (t ) = F0|G(iv)|
e i(vt + f) - e -i(vt +f)

2i

|G(iv)|e -if
G(- iv) = G(iv) =

f = tan-1e Im3G(iv)4
Re3G(iv)4 f

|G(iv)| = 2Re3G (iv)42 + Im3G(iv)42

G(iv) = |G(iv)|e i f

=
F03G(- iv)e -ivt - G(iv)e ivt4

-2i

x (t ) = A1e
-ivt + A2e ivt

A2 = lim
s : iv

F0vG (s )(s + iv)

s2 + v2 =
F0

2 i
G (iv)

A1 = lim
s : - i v

F0vG(s )(s + iv)

s2 + v2 =
F0

-2i
G (- i v)

x (t ) = L-1e A1

s + iv
+

A2

s - iv
f

= lim
t : q

(B1e
s1t + B2e

s2t + Á Bne
snt ) = 0

lim
t : q
L-1e B1

s - s1
+

B2

s - s2
+ Á +

Bn

s - sn
f
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410 CHAPTER 6

40,000 N/m
20,000 N/m

2000 N · s/m

200 sin50t N

x1 x2

20 kg 40 kg

EXAMPLE 6 . 1 4
Determine the steady-state response of the 40 kg mass of Figure 6.12 when subject to a

sinusoidal force of magnitude 200 N at a frequency of 50 rad/s.

SO LU T I ON
The transfer function for the system is determined in Example 6.12 as

(a)

which becomes 

(b)

when the numerator and denominator are divided by 8 � 102. 

Use of the sinusoidal transfer function yields

(c)

where

(d)

Performing the calculations leads to

(e)

Thus the steady-state response of the system is

(f)= 0.0018 sin(50t - 3.13) m

x (t ) = 200(9.08 * 106) sin(50t - 3.13)

=
12.5 - 125i

- (1.5 + 1.375i )106
= - (9.08 + 0.00817i )106 = 9.08e -3.13i

G(50i ) =
0.025(50i )2 + 2.5(50i ) + 75

(50i )4 + 1.5 * 102(50i )3 + 3500(50i )2 + 1 * 105(50i ) + 1 * 106

f = tan -1a Im(50i )

Re(50i )
b

x(t ) = 200|G(50i )| sin(vt + f)

G(s) =
0.025s2 + 2.5s + 75

s4 + 1.5 * 102s3 + 3500s2 + 1 * 105s + 1 * 106

G(s) =
20s2 + 2 * 103s + 6 * 104

8 * 102s4 + 1.2 * 105s3 + 2.8 * 106s2 + 8 * 107s + 8 * 108

FIGURE 6.12
System of Example 6.14.
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Two Degree-of-Freedom Systems 411

6.10 FREQUENCY RESPONSE
The frequency response refers to the variation of steady-state amplitude with a frequency

of excitation. It is often described nondimensionally. A general two degree-of-freedom

system is illustrated in Figure 6.13. The steady-state amplitudes are functions of the eleven

parameters shown as

(6.67)

(6.68)

The Buckingham Pi theorem implies that a nondimensional formulation of the relationship

between a steady-state amplitude and all parameters involves twelve (11 independent �
1 dependent) parameters minus three dimensions for nine nondimensional parameters.

Many of the parameters would simply be mass, stiffness, and damping coefficient ratios.

Unlike a SDOF system where the nondimensional relationship can be summarized on one set

of coordinate axes (M versus r for different values of �), it is almost impossible to determine

the effect of every parameter independently. The system has two parameters: the natural

frequencies, which are determined from a quadratic equation. The modal fractions are

determined from the solution of the resulting equation when the normal mode solution is

assumed at a natural frequency.

Instead of having a general equation for the frequency response, each system configura-

tion is studied individually. Consider the system of Figure 6.14. The differential equations

governing the motion of this system are

(6.69)

(6.70)

The matrix of transfer functions is determined as

(6.71)

The sinusoidal transfer functions are determined by substituting s � i�,

(6.72)c -m2v
2 + k2 k2

k2 -m1v
2 + k1 + k2

d

G(iv) =
1

m1m2v
4 - (m1k2 + m2k1 + m2k2)v

2 + k1k2

*

cm2s
2 + k2 k2

k2 m1s
2 + k1 + k2

d

G(s) =
1

m1m2s
4 + (m1k2 + m2k1 + m2k2)s

2 + k1k2

*

m2x$2 - k2x1 + k2x2 = F2(t)

m1x$1 + (k1 + k2)x1 - k2x2 = F1(t)

X2 = X2(m1, m2, k1, k2, k3, c1, c2, c3, F01, F02, v)

X1 = X1(m1, m2, k1, k2, k3, c1, c2, c3, F01, F02, v)

k1

c1 c2 c3

k3k2

x1 x2

m1 m2

F0 sinω1t F0 sinω2t

FIGURE 6.13
A general two degree-of-
freedom system.
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412 CHAPTER 6

The steady-state amplitudes due to a harmonic force F
1
(t) � F

0
sin �t is determined using

the sinusoidal transfer functions as

(6.73)

(6.74)

There are seven parameters, six independent parameters (m
1
, m

2
, k

1
, k

2
, F

0
, �) and one

dependent parameter (X
1
) in Equation (6.73) involving three independent dimensions

(M, L, T ). The Buckingham Pi theorem suggests there are 7 � 3 � 4 independent dimen-

sionless parameters involved in a nondimensional formulation. Equations (6.73) and

(6.74) are nondimensionalized by dividing by F
0

and multiplying by something that has

dimensions of stiffness (say k
1
) as

(6.75)

Defining

(6.76)

(6.77)

as parameters that have dimensions of 1/T. Note that these are not the natural frequencies

of the two degree-of-freedom system, they are just defined for convenience. Factoring out

k
2

from the numerator and denominator of Equation (6.75) and rewriting the resulting

equation in terms of �
1,1

and �
2,2

leads to

(6.78)
k1X1

F0

= 5 -
v2

v2
2,2

+ 1

v4

v2
1,1v

2
2,2

- a 1
v2

1,1

+
1
v2

2,2

+
m2

m1v
2
1,1

bv2 + 1

5

v2,2 = A
k2

m2

v1,1 = A
k1

m1

k1X1

F0

= † -m2v
2 + k2

m1

k1

m2v
4 - am1

k1

k2 + m2 +
m2k2

k1

bv2 + k2

†

X2 = F0|G2,1(iv)| = ` F0k2

m1m2v
4 - (m1k2 + m2k1 + m2k2)v

2 + k1k2

`

X1 = F0|G1,1(iv)| = ` F0(-m2v
2 + k2)

m1m2v
4 - (m1k2 + m2k1 + m2k2)v

2 + k1k2

`

k1
k2 F02 sinω2t

x1 x2

m1 m2

F0 sinω1t

FIGURE 6.14
Two degree-of-freedom
system with parameters
m1, m2, k1, k2, F01, F02, and �.
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Two Degree-of-Freedom Systems 413

Defining

(6.79)

(6.80)

(6.81)

the right-hand side of Equation (6.78) is written as

(6.82)

In a similar fashion, it is shown that

(6.83)

The frequency responses are plotted against r
1

for r
2

� 0.5 and 
 � 0.5. Both are shown

in Figure 6.15.

Frequency-response equations for the force applied to the mass m
2

are

(6.84)

and

(6.85)

Equations (6.84) and (6.85) versus r
1

for specific values of r
2
, 
, and v are plotted in Figure 6.16

on page 415.

The frequency response of an undamped two degree-of-freedom system has two asymptotes

corresponding to the natural frequencies of the system. These are the values of � for which the

denominator of the frequency response is zero. From Equation (6.73), this becomes

(6.86)

whose solutions are

(6.87)

Equation (6.87) is written as

(6.88)v =
v1,1

22B1 + av2,2

v1,1

b2

(1 + m) � A a
v2,2

v1,1

b4

(1 + m)2 + 2av2,2

v1,1

b2

(m - 1) + 1

v = ¢m1k2 + m2k1 + m2k2 � 2(m1k2 + m2k1 + m2k2)
2 - 4m1m2k1k2

2
≤1>2

m1m2v
4 - (m1k2 + m2k1 + m2k2)v

2 + k1k2 = 0

k1X2

F0

= M2,2(r1, r2, m) =
3 r 2

1 a1 +
m

r 2
2

b + 1

r 2
1r

2
2 - r 2

2 - (1 + m)r 2
1 + 1

3
k1X1

F0

= M1,2(r1, r2, m) = ` 1
r 2

1r
2
2 - r 2

2 - (1 + m)r 2
1 + 1

`

k1X2

F0

= M2,1(r1, r2, m) = ` 1
r 2

1r
2
2 - r 2

2 - (1 + m)r 2
1 + 1

`

M1,1(r1, r2, m) = ` 1 - r 2
2

r 2
1r

2
2 - r 2

2 - (1 + m)r 2
1 + 1

`

r2 =
v

v2,2

r1 =
v

v1,1

m =
m2

m1
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414 CHAPTER 6

or in nondimensional form as

(6.89)r1 =
1

22B1 + a r1

r2
b2

(1 + m) � A a
r1

r2
b4

(1 + m)2 + 2a r1

r2
b2

(m - 1) + 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

7

8

9

10

(a)

r1

M
11

0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

6

7

8

9

(b)

r1

M
21

FIGURE 6.15
Frequency response curves: (a) M1,1
versus r1 for r2 � 0.5 and 
 � 0.5.
(b) M2,1 versus r1 for r2 � 0.5 and

 � 0.5.

6.11 DYNAMIC VIBRATION ABSORBERS
When the machine of Figure 6.17 is subject to a harmonic excitation at a frequency near its

natural frequency, large amplitude steady-state vibrations are a result. One remedy is to

change the properties of the system such that the natural frequency is away from the excita-

tion frequency. An alternate remedy is to add an auxiliary mass-spring system such that the

system has two natural frequencies both of which are away from the excitation frequency.
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Two Degree-of-Freedom Systems 415

FIGURE 6.16
Frequency response curves when
a force is applied to mass m1:
(a) M1,2 versus r1 for r2 � 0.5 and

 � 0.75. (b) M2,2 versus r1 for
r2 � 0.5 and 
 � 0.75.
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FIGURE 6.17
Large amplitude steady-state
vibrations occur when the
excitation frequency is close
to the natural frequency of
the machine.
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F0 sinωt
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FIGURE 6.18
A vibration absorber is an aux-
iliary mass-spring system
which is added to the primary
system (the machine) to add
one degree of freedom to the
system and change its natural
frequencies.

A vibration absorber is the auxiliary system. The original machine is termed the pri-

mary system. The resulting two degree-of-freedom system is illustrated in Figure 6.18. This

is the configuration that was analyzed in Section 6.10, and its frequency response is

(6.90)

The parameter �
1,1

is the natural frequency of the primary system, and the parameter �
2,2

is the natural frequency of the absorber if it were grounded (that is, directly connected to

the ground). The system composed of the primary system attached to the auxiliary system

is a two degree-of-freedom system with natural frequencies given by Equation (6.88).

The steady-state amplitude of the absorber is given by

(6.91)
k1X2

F0

= ` 1
r 2

1r
2
2 - r 2

2 - (1 + m)r 2
1 + 1

`

k1X1

F0

= ` 1 - r 2
2

r 2
1r

2
2 - r 2

2 - (1 + m)r 2
1 + 1

`

62129_06_Ch06_p383-458.qxd  3/16/11  11:40 AM  Page 415

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



416 CHAPTER 6

The steady-state amplitude of the primary system is zero when the absorber is tuned

such that r
2

� 1 or that

(6.92)

When r
2

� 1, the steady-state vibrations of the primary system are zero. Thus, the excitation

force is transmitted directly to the absorber system. Using the FBD of Figure 6.19, the

steady-state behavior of the auxiliary system is

(6.93)

Hence, the steady-state amplitude of the absorber mass when it is tuned such that

k
2

� m
2
�2 is

(6.94)

The frequency response for the primary system as a function of r
2

for �
2,2

� � is

illustrated in Figure 6.20. Note that one of the system’s two natural frequencies is less

than the tuned frequency while the other is greater.

If the excitation speed varies slightly from the tuned speed, the larger the separation in

natural frequencies the smaller the steady-state amplitude of the primary system. Defining

(6.95)

the separation in natural frequencies is a function of 
, as shown in Figure 6.21, and by

the equation

(6.96)

In situations where absorbers are employed, q ≈ 1. Setting q � 1 in Equation (6.96) leads to

(6.97)

The separation in natural frequencies is larger for larger 
. For , 

The denominator in Equation (6.90) is positive for � �
1

and � �
2
. It is nega-

tive in the range �
1


 � 
 �
2
. The numerator is positive for � 
 �

2,2
and negative other-

wise. When the ratio of the numerator to denominator is negative, the response of the

primary system is 180° out of phase with the excitation. When the denominator is negative,

the response of the auxiliary system is 180° with the excitation.

A dynamic vibration absorber is used to eliminate steady-state vibrations of a particle

where the absorber is attached if the natural frequency of the absorber is tuned to the

excitation frequency. The absorber has many applications in industrial processes. When

the absorber is used on a SDOF system, it converts the system to two degrees of freedom.

The following must be kept in mind when using an absorber:

• The steady-state amplitude of the primary system is zero when the auxiliary system

(the absorber) is tuned such that �
2, 2

� �.

• One of the natural frequencies of the resulting two degree-of-freedom system is less

than the tuned frequency, and one is higher than the tuned frequency. The lower

76
v2

2 - v2
1 L v1,1

2 .m = 0.25

v2
2 - v2

1 = v1,1
2 2m(4 + m)

v2
2 - v2

1 = v1,1
2 2q 4(1 + m)2 + 2(m - 1)q 2 + 1

q =
v22

v11

X2 =
F0

k2

x2(t) = -
F0

k2

 sin vt

k2 = m2v
2

F0 sinωt

F0 sinωt

kx2(t)

FIGURE 6.19
FBD of the primary system
and the auxiliary system
when the absorber is tuned
to the excitation frequency.
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FIGURE 6.20
(a) Frequency response curve for
primary system with absorber
tuned to frequency of excitation
and 
 � 0.25. (b) Frequency
response of auxiliary system
under same conditions.
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FIGURE 6.21
Natural frequencies of
two degree-of-freedom
system as a function of
the mass ratio 
.
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418 CHAPTER 6

natural frequency must be passed during start-up and stopping, leading to large-

amplitude vibrations during these transient periods.

• The steady-state vibrations of the primary system are eliminated only at a single

frequency. If the system operates over a wide range of frequencies, the steady-state

amplitudes at frequencies away from the tuned frequency may be large. An effective

operating range should be defined for each application by limiting the amplitude of

vibrations to an acceptable maximum.

• If the absorber is tuned to the excitation frequency and a given mass ratio 
 is not to

be exceeded, the maximum value of the absorber stiffness is

(6.98)

and the minimum steady-state amplitude of the absorber mass is

(6.99)

• The analysis is valid only for undamped systems. If damping is present either in the

primary system or in the absorber, it is not possible to eliminate steady-state vibrations

of the primary system.

X2  min 
=

F0

mm1v
2

k2 max 
= mm1v

2

EXAMPLE 6 . 1 5

A machine of mass 150 kg with a rotating unbalance of 0.5 kg�m is paced at the midspan of

a 2-m-long simply supported beam. The machine operates at a speed of 1200 rpm. The

beam has an elastic modulus of 210 � 109 N/m2 and a cross-sectional moment of inertia

of 2.1�10�6 m4.

(a) What is the steady-state amplitude of the primary system without an absorber?

(b) Design the dynamic vibration absorber of minimum mass such that, when attached to

the midspan of the beam, the vibrations of the beam will cease and the steady-state

amplitude of the absorber will be less than 20 mm.

(c) What are the system’s natural frequencies when the absorber is in place?

(d) What is the effective operating range such that the midspan deflection does not exceed

5 mm when the absorber is in place?

SO LU T I ON
Modeling the vibrations of the machine on the beam using a SDOF system model and

ignoring the mass of the beam, the stiffness and natural frequency of the primary system

are calculated as

(a)

and

(b)

The operating speed is

(c)v = (1200  rpm)a2p rad
rev
b a 1  min

60  s
b = 125.7  rad/s

v11 = A
k1

m1
= A

2.65 * 106
  N/m

150  kg
= 132.9  rad/s

k1 =
48EI

L3 =
48(210 * 109

  N/m2)(2.1 * 10-6
  m4)

(2  m)3 = 2.65 * 106
  N/m
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Two Degree-of-Freedom Systems 419

(a) Since the excitation speed is near the natural frequency of the primary system, it will

have large amplitude vibrations without an absorber. The frequency ratio is

(d)

Steady-state amplitude of the machine is

(e)

(b) Steady-state vibrations of the primary system are eliminated when the absorber is tuned

to the excitation frequency using

(f)

Since the ratio of the absorber stiffness to absorber mass is fixed, the absorber with the

minimum mass is also the absorber with the minimum stiffness. The amplitude of the

absorber is to be limited to 20 mm, which from Equation (6.94) leads to

(g)

The minimum absorber stiffness is 3.95 � 105 N/m, leading to an absorber mass of

(h)

(c) The natural frequencies of the two degree-of-freedom system are calculated from

Equation (6.88) using as

(i)

(d) The effective operating range is obtained by setting F
0

� 0.5�2 and using Equation (6.90).

The denominator is negative between the two natural frequencies, and the numerator is

positive for r
2


 1. Take away the absolute value symbol and set X
1

� �0.005 m in this

case. Rearrange the equation to

(j)

which (when solved for �) leads to a lower bound on the operating range of 114.8 rad/s.

For r
2

� 1, set X
1

� 0.005 m, leading to

(k)

and a upper bound on the operating range of 138.5 rad/s. Thus, the effective operating

range is

(l)114.8  rad/s 6 v 6 138.5  rad/s

v4 - 2.79 * 104v2 + 1.67 * 108 = 0

v4 - 7.63 * 104v2 + 8.28 * 108 = 0

v1 = 105.8  rad/s  v2 = 157.6  rad/s

m = 25 kg
150 kg = 0.167 

m2 =
k2

v2
22

=
3.95 * 105

  N/m

(125.7  rad/s)2 = 25  kg

X2 =
F0

k2

Q k2 Ú
F0

X2

=
(0.5  kg # m)(125.7  rad/s)2

0.002  m
= 3.95 * 105

  N/m

v22 = A
k2

m2
= 125.7  rad/s

X1 =
m0e

m
¶(0.945, 0) = a0.5  kg # m

150  kg
b (0.945)2

1 - (0.945)2 = 0.285  m

r =
v

v11

=
125.7  rad/s
132.9  rad/s

= 0.945
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6.12 DAMPED VIBRATION ABSORBERS
Two problems exist when a vibration absorber is used. The lowest natural frequency of the

two degree-of-freedom system must be passed through in order to build up to the operating

speed. If the absorber is slightly mistuned, the vibration amplitude of the primary system

can be large. Perhaps the addition of damping to the absorber can help with these issues.

Consider the configuration of the system of Figure 6.22 in which viscous damping is

added in parallel with the stiffness in the auxiliary system. This is known as a damped

vibration absorber. The steady-state amplitude of the primary system is given by

(6.100)

The steady-state amplitude of the auxiliary system is

(6.101)

where

(6.102)

is the damping ratio of the auxiliary system if it were grounded. The nondimensional

steady-state amplitude of the primary system, given by Equation (6.100), is illustrated in

Figure 6.23 for 
 � 0.25 and q � 1 for several values of �. The steady-state amplitude of

the primary system is not zero for any value of r
1
. A minimum amplitude is reached for r

1

near one between the peaks. The absorber was successful in significantly reducing the peak

near the second natural frequency, but not very successful in reducing the peak amplitude

near the first natural frequency. An investigation of the parameters affecting the damped

vibration absorber is necessary. It is noted that each curve, for different �, passes through

the same two points. 

M
1d is plotted in Figure 6.24 for 
 � 0.25 and q � 0.8. The peak at the lower reso-

nant frequency is smaller than the peak at the higher resonant frequency. However, the

higher peak occurs near r
1

� 1, which is the region where an absorber is usually needed.

Also, the effective operating range is still small. It is noted again that there are two fixed

points through which each curve passes. These fixed points are different than those in

Figure 6.23.

Since it is not possible to eliminate steady-state motion of the original system when

damping is present, a damped vibration absorber must be designed to reduce the peak at the

lower resonant frequency and to widen the effective operating range. Absorbers using the

parameters used to generate Figure 6.23 and Figure 6.24 are not suitable for these purposes.

z =
c

22m2k2

= A
q 4 + (2zq)2

{r 4
1 - [1 + (1 + m)q 2r 2

1] + q 2}2 + (2zr1q)2[1 - r 2
1(1 + m)]2

k1X2

F0

= M2d (r1, q, m, z)

= A
(2zr1q)2 + (r 2

1 - q 2)2

{r 41 - [1 + (1 + m)q 2r 2
1] + q 2 }2 + (2zr1q)2[1 - r 2

1(1 + m)]2

k1X1

F0

= M1d (r1, q, m, z)

420 CHAPTER 6
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k2 c

k1
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2

FIGURE 6.22
The auxiliary system of a
damped vibration absorber
consists of a mass attached
to a spring in parallel with a
viscous damper.
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Two Degree-of-Freedom Systems 421

Widening the operating range requires that the two peaks have approximately the

same magnitude. Since the locations of the fixed points are dependent on q, it should be

possible to tune the absorber such that the values of M
1d at the fixed points are the same.

Since curves for all values of � pass through the fixed points, it should be possible to find

a value of � such that the fixed points are near the peaks.

For fixed values of 
 and q, there are two values of r
1

which yield a value of M
1d,

independent of �. The value of M
1d at these points is written as

(6.103)

Since Equation (6.103) holds for all � and powers of � are linearly independent,

(6.104)

Using Equation (6.100) to determine the forms of A, B, C, and D, substituting into

Equation (6.104), and rearranging leads to

(6.105)r 4
1a1 +

m

2
b - 31 + q 2(1 + m)4r 2

1 + q 2 = 0

A
C

=
B
D

M1d = A
A(m, q)z2 + B(m, q)

C (m, q)z2 + D(m, q)

0
0

2

4

6

8
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0.5

k 1
X

1/
F

0

1
r1

1.5 2

ζ = 0.1

ζ = 0.15
ζ = 0.2

0
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0.5

k 1
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F
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1
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1.5 2

ζ = 0.1
ζ = 0.2
ζ = 0.15

FIGURE 6.23
Response of primary system
when a damped vibration
absorber is used with

 � 0.25 and q � 1 for
several values of �.

FIGURE 6.24
Response of primary system
when an optimum damped
vibration absorber is used
with 
 � 0.25 and q � 0.8.
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The solution of Equation (6.105) places the fixed points at

(6.106)

Since Equation (6.103) yields the same value of M
1d, independent of � for r

1
given by

Equation (6.106), letting gives

(6.107)

Requiring M
1d to be the same at both fixed points leads to

(6.108)

An optimum absorber could be designed with an appropriate value of � such that the

smaller r
1

given by Equation (6.106) corresponds to both a fixed point and a peak on the

frequency response curve. The appropriate value of � is obtained by setting dM
1d /d� � 0,

using q from Equation (6.108). The same procedure can be followed to yield the value of

� such that the larger value of r
1

given by Equation (6.106) corresponds to both a fixed

point and a peak. Since the values of � are not equal, their average is usually used to define

the optimum damping ratio

(6.109)

In summary, the optimum design of a damped vibration absorber requires that the

absorber be tuned to the frequency calculated from Equation (6.108) with the damping

ratio of Equation (6.109). For 
 � 0.25, Equation (6.109) gives an optimum damping

ratio of � � 0.2379 and an optimum q � 0.80. Figure 6.25 shows M
1d for these values as

a function of r
1
. This figure also shows M

1d for the same 
 and � but with values of q, one

on each side of the optimum. The curve corresponding to the optimum value of q has

smaller resonant peaks and the value of M
1d does not vary much between the peaks.

zopt = A
3m

8(1 + m)

q =
1

1 + m

M1d = A
1

31 - r 2
1(1 + m)42
z: q

r1 = D
1 + (1 + m)q 2 � 21 - 2q 2 + (1 + m)2q 4

2 + m

422 CHAPTER 6
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FIGURE 6.25
Steady-state amplitude
of primary system for

 � 0.25, �opt � 0.2739,
and qopt � 0.80.
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Two Degree-of-Freedom Systems 423

EXAMPLE 6 . 1 6
A milling machine has a mass of 250 kg and a natural frequency of 120 rad/s and is subject

to a harmonic excitation of magnitude 10,000 N at speeds between 95 rad/s and 120 rad/s.

Design a damped vibration absorber of mass 50 kg such that the steady-state amplitude is

no greater than 15 mm at all operating speeds.

SO LU T I ON
The mass ratio is

(a)

Since a wide operating range is required, the optimum absorber design is tried. From

Equations (6.108) and (6.109),

(b)

The steady-state amplitude at any operating speed for this absorber design is calculated by

Equations (6.100) and (6.101). The results are used to generate the frequency response

curve of Figure 6.26. 

The fixed-points are calculated from Equation (6.106) as

(c)

which leads to 

Since the extremes of the operating range lie between the peaks and the steady-state

amplitudes at the extremes are

(d)X (v = 95   rad/s) = 10.1  mm  X (v = 120   rad/s) = 12.7 mm

v = 91.5   rad/s, 125.0   rad/s.

= 0.7629, 1.0414

r1 = D
1 + (1 + 0.2)(0.833)2 � 31 - 2(0.833)2 + (1 + 0.2)2(0.833)4

2 + 0.2

q =
1

1.2
= 0.833  z = A

3(0.2)

8(1.2)
= 0.25

m =
50   kg

250   kg
= 0.2

FIGURE 6.26
Frequency response for
primary system of
Example 6.16 with
optimum damped absorber
with 
 � 0.25 attached.
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424 CHAPTER 6

and both are less than 15 mm, the optimum design is acceptable. The absorber stiffness

and damping ratio are calculated as

(e)

(f)c = 2z2k2m2 = 2500 N # s/m

k2 = m2v
2
22 = mq 2k1 = (0.2)(0.833)2(3.6 * 106 N/m) = 5.08 * 105 N/m

6.13 VIBRATION DAMPERS
A vibration damper is an auxiliary system composed of an inertia element and a viscous

damper that is connected to a primary system as a means of vibration control. Vibration

dampers are used in situations where vibration control is required over a range of frequencies.

The Houdaille damper of Figure 6.27 is an example of a vibration damper that is used

for vibration control of rotating devices such as engine crankshafts. The damper is inside a

casing that is attached to the end of the shaft. The casing contains a viscous fluid and a

mass that is free to rotate in the casing. The differential equations governing the motion of

the two degree-of-freedom torsional system are

(6.110)

The steady-state amplitude of the primary system is obtained by the methods of

Section 6.10 as

(6.111)

where (6.112)

The optimum damping ratio is defined as the damping ratio for which the maximum value

of is smallest. The peak amplitude, is the value of where rm is the value

of r that yields The optimum damping ratio is the value of � such that

Extensive algebra leads to

(6.113)zopt =
1

22(m + 1)(m + 2)

d ®1p>dz = 0.
d ®1>dr = 0.

®1(rm)®1p(z)®1

r =
v

A
k
J1

 z =
c

2J2A
k
J1

 m =
J2

J1

®1 =
M0

k A
4z2 + r 2

4z2(r 2 + mr 2 - 1)2 + (r 2 - 1)2r 2

cJ1 0
0 J2

d c u
$

1

u
$

2

d + c c - c
- c c

d c u
#
1

u
#
2

d + ck 0
0 k

d cu1

u2

d = cM0 sinvt
0

d

θ2

J1, kt

Inertia element
rotates in damper.
Damping provided
by fluid.

ct

J2

θ1

FIGURE 6.27
Houdaille damper.
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Two Degree-of-Freedom Systems 425

If the optimum damping ratio is used in the design of a Houdaille damper then

(6.114)

and

(6.115)

6.14 BENCHMARK EXAMPLES

6.14.1 MACHINE ON FLOOR OF INDUSTRIAL PLANT
In Chapter 4, vibration isolation of the machine was considered by ignoring the mass and

flexibility of the beam. They are taken into account using the model of Figure 6.28. The

mass of the beam is lumped at the midspan using the equivalent mass of the beam. The

stiffness of the beam is the stiffness used in the SDOF model. The force transmitted

through the isolator to the beam is k(x
2 

� x
1
).

The differential equations governing the two degree-of-freedom system are

(a)

(b)

which are written in matrix form as

(c)

Consider the system with an isolator designed such that the transmitted force is 22,500 N.

The stiffness of the isolator is , and the equations become

(d)c458.72 0
0 111.97

d c x
$

1

x
$

2

d + c 5.81 * 105 -5.81 * 105

-5.81 * 105 1.258 * 107 d cx1

x2

d = cF0 sinvt
0

d
5.81 * 105 N>m

c458.72 0
0 111.97

d c x
$

1

x$2

d + c k -k
-k k + 1.20 * 107 d cx1

x2

d = cF0 sin vt
0

d

111.97 x$2 - kx1 + (k + 1.20 * 107)x2 = 0

458.72 x$1 + kx1 - kx2 = F0 sinvt

®1p =
M0

k
 2 + m
m

rm = A
2

2 + m

(b)(a)

111.97 kg

458.72 kg

1.20 × 107 N/m

x2

xF0 sin ω t

F0 sin ω t

F0 sin ω t

x2

x1

FIGURE 6.28
(a) Machine attached by iso-
lator to beam. (b) Two
degree-of-freedom model
with inertia of beam
included.
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426 CHAPTER 6

A normal-mode solution is used to calculate the natural frequencies and mode shapes

resulting in

(e)

which leads to

(f)

For comparison purposes, the natural frequency of the machine on a rigid beam is 35.6 rad/s,

and the natural frequency of the machine mounted directly to the flexible beam is 144.9 rad/s.

Since the force transmitted to the beam is k(x
2

� x
1
), define a new variable z � x

2
� x

1
.

The differential equations written using x
1

and z as generalized coordinates become

(g)

The steady-state amplitude of z is determined using the sinusoidal transfer function. To this

end, determine the transfer function Taking the Laplace transform of the two

equations with an arbitrary F (t) in place of F
0
sin �t, we have

(h)

Using Cramer’s rule to solve for Z(s), we have

(i)

The transfer function is

(j)

The sinusoidal transfer function G(80i) is

(k)

The magnitude of the sinusoidal transfer function is

(l)|G(80i ) | = 2 1.128 * 107

8.35 * 106k - 3.3095 * 1013
2

G (80i ) =
- (111.97(80i )2 + 1.20 * 107)

5.14 * 104(80i )4 + (5.5 * 109 + 570.69k)(80i )2 + 1.20 * 107k

G (s) =
- (111.97s2 + 1.20 * 107)

5.14 * 10s4 + (5.5 * 109 + 570.69k)s2 + 1.20 * 107k

=
- (111.97s2 + 1.20 * 107) F (s)

(458.72s2)(111.97s2 + 1.20 * 107 + k) - (-k)(111.97s2 + 1.20 * 107)

Z(s) =

2 458.72 s2 F (s )
111.97s2 + 1.20 * 107 0

2
2 458.72s2 -k
111.97s2 + (1.20 * 107) 111.97s2 + (1.20 * 107) + k

2

c 458.72s2 -k
111.97s2 + 1.20 * 107 111.97s2 + 1.20 * 107 + k

d cX1(s)
Z(s)
d = cF (s )

0
d

G(s) = z(s)
F(s).

c458.72 0
111.97 111.97

d c x
$

1

z$
d + c 0 -k

1.20 * 107 1.20 * 107 + k
d cx1

z
d = cF0 sinvt

0
d

v1 = 34.73  rad/s  v2 = 335.28  rad/s

2 -458.72v2 + 5.81 * 105 -5.81 * 105

-5.81 * 105 -111.97v2 + 1.258 * 107
2 = 0
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Two Degree-of-Freedom Systems 427

Thus, the amplitude of kz or the amplitude of the force transmitted between the machine

and the beam is so

(m)

Figure 6.29 shows the transmitted force as a function of k. A value of k � 15 � 105 N/m

leads to FT � 74,000 N, which is slightly less than the value of 90,000 predicted by the

SDOF system with the rigid beam.

6.14.2 SIMPLIFIED SUSPENSION SYSTEM
The two degree-of-freedom model shown in Figure 6.30(a) is used for the vehicle suspen-

sion system. The “unsprung” mass represents the mass of the axle and wheel, and the addi-

tional stiffness represents the tire. The unsprung mass is 50 kg, which is much less than the

mass of the vehicle, while the stiffness of the tire is 200,000 N/m, which is much greater

than the stiffness of the suspension spring. A quick calculation reveals that lumping the

unsprung and sprung masses together and assuming the two spring are in series, as shown

in Figure 6.30(b), gives a natural frequency of

(a)

The differential equations governing the two degree-of-freedom model (assuming the

sprung mass can vary) is

(b)

(c)50 x$2 - 1200x#1 + 1200x#2 + 12,000x1 - 212,000x2 = 200,000y

ms x$1 + 1200x#1 - 1200x#2 + 12,000x1 - 12,000x2 = 0

vn./ = a

1

1
200,000   N/m

+
1

12,000 N/m
350  kg

= 5.69   rad/s

kZ = 2 1.015 * 1012k
8.35 * 106k - 3.3095 * 1013

2kF0|G(80i )|,

0
0

1

2

2.5

1.5

0.5

5

F
T

m
ax

 (N
)

k (N/m)
10 15 20 25

×105

×105 FIGURE 6.29
Amplitude of transmitted
force as function of
absorber stiffness.
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428 CHAPTER 6

Consider free vibrations of an empty vehicle as ms � 300 kg. The differential equations are

summarized in matrix form as

(d)

The free response is assumed as

(e)

Substituting Equation (e) into Equation (d) leads to

(f)

Evaluation of the determinant leads to

(g)

whose roots are

(h)

The modal fractions are given by

(i)

from which

(j)x1 = 0.0481 � 0.0328i  x2 = -4.56 � 15.43i

x =
300l2 + 1200l + 12,000

1200l + 12,000

l1,2 = -1.88 � 5.94i,  -12.2 � 63.28i

15,000l4 + 4.2 * 105l3 + 6.42 * 107l2 + 2.40 * 108l + 2.4 * 109 = 0

2 300l2 + 1200l + 12,000 -1200l - 12,000
-1200l - 12,000 50l2 + 1200l + 212,000

2 = 0

cx1

x2

d = c 1
x
de lt

+ B 12,000 -12,000
-12,000 212,000

R Bx1

x2

R = B0
0
R

B300 0
0 50

R B x
$

1

x
$

2

R + B 1200 -1200
-1200 1200

R Bx# 1

x# 2

R

x1

x2

(a)

c

m
Mass of
vehicle

Suspension
parameters

Mass of axle

Tire stiffness
and damping

(b)

k5

kx

FIGURE 6.30
(a) Two degree-of-freedom model
of vehicle suspension system. The
mass of the axle is included in the
model. (b) The stiffness of the
wheel is imagined to be in series
with the stiffness of the suspen-
sion system.
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Two Degree-of-Freedom Systems 429

The general solution of the differential equations is obtained using Equation (6.21) as

(k)

The initial conditions are assumed as

(l)

Substitution of the initial conditions into the solution yields

(m)

The constants of integration are obtained as A
1

� 1.029h, A
2

� �0.3579h, A
3

� �0.029h
and A

4
� 0.0584h. The solution obtained from substitution of the values of the constants

of integration into Equation (k) is

(n)

The time-dependent response of the system is plotted in Figure 6.31.

Now consider the response of the vehicle due to a sinusoidal road contour as

The vehicle travels with a constant horizontal speed v. The differential

equations expressing the motion of the vehicle are

(o)= C 0

200,000y(t ) sin a2pv
d

tb S
cms 0

0 50
d c x

$
1

x$2

d + c 1200 -1200
-1200 1200

d cx
#
1

x#2
d + c 12,000 -12,000

-12,000 212,000
d cx1

x2

d

y(j) = Y  sin (2pj
d ).

+  e -12.2t a c -0.029
   1.0378

d cos 63.28t + c0.0584
0.1942

d sin 63.28tb r
cx1(t)
x2(t)
d = hb e-1.88t a c    1.029

-0.0378
d cos 5.94t + c -0.3579

0.0510
d sin 5.94 t b

D    1    0    1       0
-0.0481 -0.0328     -4.56      15.43
-1.88     5.94   -12.2      63.28
   0.2853 -0.2241 -920.77 -476.81

T DA1

A2

A3

A4

T = Dh
h
0
0

T

x(0) = ch
h
d  and  x# (0) = c0

0
d

+ A4a c 1
-4.56

d sin 63.28t + c 0
-15.43

d cos 63.28tb r
+  e -12.2t bA3a c 1

-4.56
d cos 63.28t - c 0

-15.43
d sin 63.28tb

+ A2a c 1
-0.0481

d sin 5.94t + c 0
-0.0328

d cos 5.94tb r
cx1(t)
x2(t)
d = e -1.88t bA1a c 1

-0.0481
d cos 5.94t - c 0

-0.0328
d sin 5.94tb
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430 CHAPTER 6

The frequency responses for x
1

and x
2

are derived using the sinusoidal transfer functions.

The determination for x
2
(t) is detailed, and the transfer function for x

1
(t) is simply presented.

Taking the Laplace transform of each of the differential equations with an arbitrary y (t) on

the right-hand side yields

(p)

The transfer function is determined from

(q)

from which the transfer function is calculated as

(r)

The sinusoidal transfer function is

(s)
Defining

(t)

(u)B = (2.4 * 108)v - (1200ms + 60,000)v3

A = 50msv
4 - (212,000ms + 60,000)v2 + 2.4 * 109

G(iv) =
(12,000 - msv

2) + 1200vi

350msv
4 - (212,000ms + 600,000)v2 + 2.4 * 1094 + 32.4 * 108v - (1200ms + 60,000)v34i

G(s) =
mss

2 + 1200s + 12,000

50mss
4 + (1200ms + 60,000)s3 + (212,000ms + 600,000)s2 + 2.4 * 108s + 2.4 * 109

X2(s) =

2mss
2 + 1200s + 12,000 0
-1200s + 12,000 Y (s)

2
2mss

2 + 1200s + 12,000 -1200s - 12,000
-1200s - 12,000 50s2 + 1200s + 212,000

2
G2(s) =

X
2
(s)

Y (s)

cmss
2 + 1200s + 12,000 -1200s - 12,000
-1200s - 12,000 50s2 + 1200s + 212,000

d cX1(s)
X2(s)
d = c 0

200,000Y (s )
d

0
–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0.5

x/
h

1
t (s)

1.5

x1

x2

FIGURE 6.31
Time dependent response
of the vehicle suspension
system when it is subject
to a bump in the road.
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Two Degree-of-Freedom Systems 431

The steady-state amplitude is

(v)
The amplitude for x

1
(t ) is

(w)X1 = 200,000Y  
2(1200)23(A + vB)2 + (vA + B)24

A2 + B2

= 200,000Y 
23(12,000 - msv

2)A - 1200vB42 + 3(12,000 - msv
2)B + 1200vA42

A2 + B2

X2 = 200,000Y | G (i v) |

0
0

0.5

1

1.5

2

2.5

40 6020

x 
(m

)

80 100
v (m/s)

(a)

120

x1

x2

×10–3

300
1.4

1.6

1.8

2.2

2

2.4

2.8

3

2.6

3.2

400 450350

x 
(m

)

500 550
m (kg)

(b)

600

x1

x2

×10–4

FIGURE 6.32
(a) Steady-state amplitude
of vehicle and axle versus
vehicle speed for empty
vehicle (ms � 300 kg).
(b) Steady-state amplitude
of vehicle and axle versus
mass for v � 60 m/s.
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432 CHAPTER 6

Equations (v) and (w) are illustrated in Figure 6.32(a) by plotting the steady-state amplitudes

versus vehicle speed for an empty vehicle (ms � 300 kg) and in Figure 6.32(b) by plotting

steady-state amplitude versus m for v � 60 m/s. The frequency is substituted as 

the vehicle speed is the horizontal axis, d is taken as 10 m, and Y is 0.002 m.

6.15 FURTHER EXAMPLES

v = 2pv
d ,

x1 x2

k 3k 2k
m 2m

(a)

1

1

–0.5

(b)

EXAMPLE 6 . 1 7
Determine the natural frequencies and mode shapes for the two degree-of-freedom system

shown in Figure 6.33.

SO LU T I ON
The differential equations governing the motion of this system are

(a)

Assuming a normal mode solution and substituting into the differential equations

leads to

(b)

A non-trivial solution to Equation (b) exists only if

(c)2 -v2m + 4k -3k
-3k -v22m + 5k

2 = 0

B -v2m + 4k -3k
-3k -v22m + 5k

R B 1
x
R = B0

0
R

x = Xe iv t

Bm 0
0 2m

R B x$1

x$2

R + B 4k -3k
-3k 5k

R Bx1

x2

R = B0
0
R

FIGURE 6.33
(a) System of Example
6.17. (b) Mode shapes
for system.
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Two Degree-of-Freedom Systems 433

Expansion of Equation (c) yields

(d)

which is simplified to

(e)

Dividing Equation (e) by m2 and letting leads to

(f)

The quadratic formula is used to determine the roots of the quadratic equation as �2 � �,

�5.5�, which leads to

(g)

The mode shapes vectors are the solutions of Equation (b) for each value of � as given in

Equation (f ). For �
1
, the equations become

(h)

The first of the equations in Equation (g) gives

(i)

Dividing Equation (h) by m and rearranging leads to . The second equation only

confirms the first equation and yields no new information. Thus, the mode shape vector

corresponding to the first mode is any vector proportional to

(j)

The second mode shape vector is determined by substituting �
2

in Equation (b), leading to

(k)

The first equation represented by Equation (j) is divided by m and rearranged to 

The second mode shape vector is any vector proportional to

(l)

The mode shape vectors are illustrated graphically in Figure 6.33(b). There is a node for

the second mode located in the spring.

X2 = B 1
-0.5

R
x = - 1

2.

B -5.5fm + 4k -3k
-3k - (5.5f)2m + 5k

R B 1
x
R = B0

0
R

X1 = c1
1
d

x = 1

(-fm + 4k) - 3kx = 0

B -fm + 4k -3k
-3k -f2m + 5k

R B 1
x
R = B0

0
R

v1 = A
k
m
  v2 = 2.35A

k
m

2v4 - 13fv2 + 11f2 = 0

f = k
m

2m2v4 - 13kmv2 + 11k 2 = 0

(-v2m + 4k)(-v22m + 5k) - (-3k)(-3k) = 0

62129_06_Ch06_p383-458.qxd  3/16/11  11:44 AM  Page 433

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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1 N/m
3 N/m 2 N/m

1 N · s/m 1 N · s/m

2sin2t
x1

x2

1 kg
2 kg

EXAMPLE 6 . 1 8
The two degree-of-freedom system shown in Figure 6.34 is subject to the periodic force

shown. Determine the steady-state response of the system.

SO LU T I ON
The differential equations of motion are

(a)

A solution to the differential equations is assumed as

(b)

Substituting Equation (b) into Equation (a) leads to

(c)

which is rearranged to

(d)

Equating coefficients of sin 2t and cos 2t, four equations for four unknowns are obtained

(e)D 0 -3 1 -1
-3 -3 -1 2
-1 1 0 -3
1 -2 -3 -3

T DU1

U2

V1

V2

T = D0
0
0
2

T
= c0

2
d  sin 2t

+ a c -1 1
1 -2

d cU1

U2

d + c 0 -3
-3 -3

d cV1

V2

d b sin 2t

a c 0 -3
-3 -3

d cU1

U2

d + c 1 -1
-1 2

d cV1

V2

d b cos 2t

+ B 4 -3
-3 5

R BU1

U2

R cos(2t ) + B 4 -3
-3 5

R BV1

V2

R sin(2t ) = B 0
2 sin2t

R
+ B -1 1

1 -2
R BU1

U2

R sin(2t ) + B 1 -1
-1 2

R BV1

V2

R cos(2t )

B -4 0
0 -8

R BU1

U2

R cos(2t ) + B -4 0
0 -8

R BV1

V2

R sin(2t )

Bx1(t)
x2(t)
R = BU1

U2

R cos(2t ) + BV1

V2

R sin(2t )

B1 0
0 2

R B x$1

x$2

R + B 1 -1
-1 2

R Bx# 1

x# 2

R + B 4 -3
-3 5

R Bx1

x2

R = B 0
2 sin 2t

R

FIGURE 6.34
System of Example 6.18.
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Two Degree-of-Freedom Systems 435

The solution to Equation (e) is U
1

� 0.188, U
2

� �0.110, V
1

� �0.431, and V
2

� �0.094.

Thus,

(f)

The steady-state responses can be converted to a form with an amplitude and a phase by

use of a trigonometric identity which leads to

(g)

(h)x2(t) = 0.149 sin(2t - 2.31)

x1(t) = 0.470 sin(2t + 2.70)

cx1(t)
x2(t)
d = c 0.188

-0.110
d  cos(2t ) + c -0.431

-0.094
d  sin(2t )

EXAMPLE 6 . 1 9
A two-story frame structure, shown in Figure 6.35(a), can be modeled as the two degree-

of-freedom system shown in Figure 6.35(b). The second story of the structure is subject

to an explosion that leads to a force of the form of Figure 6.35(c). What is the maximum

displacement of each story due to the explosion?

SO LU T I ON
The differential equations modeling the vibrations of each floor due to an explosion on

the second floor are

(a)

(b)mx$2 - kx1 + kx2 = F (t)

mx$1 + 2kx1 - kx2 = 0

k
2

k
2

k
2

k
2

x2

x1m

m

(a)

(b)

(c)

k
m

k
m

F0

t0

0
–6

–4

–2

0

2

4

6

8

10

0.03 0.04 0.05 0.060.01 0.02

x 
(m

)

0.07 0.08 0.09
t (s)

(d)

0.1

x1

x2

×10–3

FIGURE 6.35
(a) Two-story frame structure of Example 6.19. (b) Two degree-of-freedom model of frame structure.
(c) Force applied to second floor of structure. (d) Response of structure.
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Taking the Laplace transform of both equations and summarizing the results in matrix

form lead to

(c)

The transfer functions due to a force applied to the second story are obtained from

(d)

(e)

The impulsive responses are the inverses of the transfer functions, given here as

(f)=
0.447

m
 D 1

0.618A
k
m

 sin a0.618 A
k
m

tb -
1

1.618 A
k
m

 sin a1.618 A
k
m

t b T
h12(t) = L-1{G12(s)} = L-1 d 0.447

m
 § 1

s2 + 0.382 
k
m

-
1

s2 + 2.618 
k
m

¥ t

=
1
m

 § 0.724

s2 + 0.382 
k
m

+
0.276

s2 + 2.618 
k
m

¥
=

1
m

 a s2 + 2 
k
m
b

a s2 + 0.382 
k
m
b a s2 + 2.618 

k
m
b

G22(s) =

2ms2 + 2k 0
-k 1

2
2ms2 + 2k -k

-k ms2 + k
2 =

ms2 + 2k

m2s4 + 3km + k 2
=

1
m

 a s2 + 2 
k
m
b

s4 + 3 
k
m

s2 +
k 2

m2

=
0.447

m
 § 1

s2 + 0.382
k
m

-
1

s 2 + 2.618
k
m

¥
=

k
m2

a s2 + 0.382
k
m
b a s2 + 2.618

k
m
b

G12(s) =

2 0 -k
1 ms2 + k

2
2ms2 + 2k -k

-k ms2 + k
2 =

k

m2s4 + 3km + k 2
=

k
m2

s4 + 3 
k
m

s2 +
k 2

m2

cms2 + 2k -k
-k ms2 + k

d cX1(s )
X2(s )

d = c 0
F (s)
d
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(g)

The forced response is the convolution integral of the impulsive response and the forcing

function, given as

(h)

Table 5.1 can help with the convolution integral evaluation. Use the delayed ramp function with

A � �1/t
0
, B � 1, and t

0
equal to either 0 or t

0
to evaluate an integral. The result for x

1
(t) is

(i)+  1

2.618 
k
m

 D t - t0 -
1

1.618A
k
m

 sin ¢1.618A
k
m

(t - t0)≤ Ru(t - t0) t
-

1

2.618
k
m

 D t - t0 + t0 cos ¢1.618A
k
m

t≤ -
1

1.618A
k
m

 sin ¢1.618A
k
m

t≤ Tu(t)

-
1

0.382
k
m

 D t - t0 -
1

0.618A
k
m

 sin §0.618A
k
m

 (t - t0)¥ Tu(t - t0)

-
1

0.618A
k
m

 sin a0.618A
k
m

t b Ru(t)

x1(t) = -  
0.447F0

m
 d 1

0.382 
k
m

 B t - t0 + t0 cos a0.618A
k
m

t≤

-
1

1.618A
k
m

 sin B1.618A
k
m

(t - t)R tdt

x1(t ) = L
 t

0
F0 a1 -

t

t0

b [u (t) - u (t - t 0)] 
0.447

m
 d 1

0.618 A
k
m

sin B0.618A
k
m

 (t - t)R

=
1
m

 D 0.724

0.618 A
k
m

 sin ¢0.618A
k
m

t≤ +
0.276

1.618 A
k
m

 sin ¢1.618A
k
m

t ≤ T
h22(t) = L-1{G22(s)} = L-1d 1

m
 § 0.724

s2 + 0.382 
k
m

+
0.276

s2 + 2.618 
k
m

¥ t
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The solution for x
2
(t) is

(j)

Using the same method to evaluate the convolution integral for x
2
(t), we have

(k)

Equations (j) and (k) are plotted in Figure 6.35(d) for m � 1000 kg, k � 1 � 106 N/m,

t
0

� 0.05 s and F
0

� 50,000 N.

-
0.276

2.618
k
m

 B t - t0 -
1

1.618A
k
m

 sin ¢1.618A
k
m

 (t - t0)≤ Ru (t - t0) t
+

0.276

2.618
k
m

 Bt - t0 + t0 cos ¢1.618A
k
m

t≤ -
1

1.618A
k
m

 sin ¢1.618A
k
m

t≤ Ru(t)

-
0.724

0.382 

k
m

 B t - t0 -
1

0.618A
k
m

 sin ¢0.618A
k
m

(t - t0)≤ Ru (t - t0)

-
1

0.618A
k
m

 sin ¢0.618A
k
m

t≤ du(t)

x2(t) = -
F0

m
 d 0.724

0.382  

k
m

 c t - t0 + t0 cos ¢0.618A
k
m

t≤

+
0.276

1.618A
k
m

 sin ¢1.618A
k
m

t≤ Tdt

x2(t) = L
t

0
F0 ¢1 -

t

t0

≤ 3u(t) - u(t - t0)4 1
m

 D 0.724

0.618A
k
m

 sin ¢0.618A
k
m

t ≤

EXAMPLE 6 . 2 0
A large machine has a mass of 200 kg and is mounted on an undamped elastic foundation

of stiffness 2.5 � 106 N/m as shown in Figure 6.36(a). During operation at 110 r/s, the

machine is subject to a harmonic force of magnitude 2200 N. 

(a) Determine the steady-state amplitude of the machine as it operates. 

(b) Determine the required stiffness of an undamped vibration absorber of mass 20 kg

such that steady-state vibrations of the machine are eliminated during operation. 
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Two Degree-of-Freedom Systems 439

(c) Determine the amplitude of the absorber mass when the vibration absorber of part (b)

is used. 

(d) What are the natural frequencies of the resulting two degree-of-freedom system?

(e) When this absorber is used, what is the frequency range such that the machine’s steady-

state amplitude is less than 1.2 mm?

SO LU T I ON
(a) The natural frequency of the machine mounted on the elastic foundation is

(a)

The frequency ratio is

(b)

The steady-state amplitude of the machine is

(c)X =
F0

mv2
n

M(0.984, 0) =
2200   N

2.5 * 106
  

 N/m
 1
1 - (0.984)2 = 2.75   cm

r =
v

vn

=
110   rad/s

111.8   rad/s
= 0.984

vn = A
k
m

= A
2.5 * 106

  

 N/m
200 kg

= 111.8   rad/s

keq = 2.5 × 106 N/m

keq = 2.5 × 106 N/m

200 kg

200 kg

20 kg

2200 sin(110t)

(a)

(b)

0

1

2

3

4

4.5

3.5

2.5

1.5

0.5

10050

x 1
(m

)

150 200
ω (rad/s)

(c)

×10–3

FIGURE 6.36
(a) Machine is mounted on an elastic foundation at an excitation frequency of 110 rad/s. (b) Vibration
absorber of mass 20 kg is designed to eliminate steady-state vibrations of the machine. (c) Frequency
response of machine with absorber in place.
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440 CHAPTER 6

(b) To eliminate steady-state vibrations at the excitation speed, the absorber is tuned to

the excitation speed

(d)

Thus

(e)

(c) The steady-state amplitude of the absorber when the system operates at the frequency

to which the absorber is tuned is

(f)

The absorber attached to the machine is illustrated in Figure 6.36(b).

(d) The ratio of the absorber mass to the mass of the machine is 
 � (20 kg)/(200 kg) � 0.1.

The ratio of the tuned frequency to the natural frequency of the machine is the same as

the original frequency ratio q � 0.984. Natural frequencies of the two degree-of-freedom

system with the absorber in place are

(g)

(e) Let � be a varying frequency. Define and . The frequency

response of the machine is given by

(h)

The values of � for which the steady-state amplitude of the machine is less 1.2 mm are

obtained by setting X
1


 0.0012 m in Equation (h) and solving for �. There are two values

of � which satisfy X
1


 0.0012 m: one value less than �
22

and one value greater than �
22

. In

performing the calculations, note that the numerator is positive for � 
 �
22

and negative for

� � �
22

, but the denominator is always positive in the operating range. The equation can be

rearranged into a quadratic equation in �2, resulting in an operating range of

(i)
The frequency response of the pump is illustrated in Figure 6.36(c).

104.3 rad/s 6 v 6 117.0 rad/s

=
2200   N

2.5 * 106
  

 N/m
4 1 - a v

110   rad/s
b2

a v

111.8 rad/s
b2a v

110  rad/s
b2

- a v

110  rad/s
b2

- (1+ 0.1)a v

111.8 rad/s
b2

+1

4
X1 =

F0

k1

2 1 - r 2
2

r 2
1r

2
2 - r 2

2 - (1 + m)r 2
1 + 1

2
r2 = v

110 rad/sr1 = v
111.8 rad/s

= 94.8   rad/s, 129.7   rad/s

=
111.8 

r
s

22
 31 + (0.984)2 (1 + 0.1) � 2(0.984)4(1 + 0.1)2 + 2(0.1 - 1)(0.984)2 + 1

v1,2 =
v11

22
31 + q 2(1 + m) � 2q 4(1 + m2) + 2(m - 1)q 2 + 1

X2 =
F0

k2

=
2200 N

2.42 * 105
  

 N/m
= 9.1 mm

k2 = m2v
2 = (20   kg)(110   rad/s)2 = 2.42 * 105 N/m

v22 = A
k2

m2

= v
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EXAMPLE 6 . 2 1
It is decided to place a damped vibration absorber on the machine of Example 6.21. In

addition to changing the frequency-response curve of the primary system, it can serve as an

energy harvester (see Section 4.15). Assume that an optimal damped vibration absorber of

mass 20 kg is used. What is the average power harvested by the absorber over one cycle?

SO LU T I ON
The mass ratio of the absorber is The optimum damping ratio of the

absorber is

(a)

The absorber is tuned such that

(b)

or

(c)

The average power harvested by the absorber is

(d)

where Z is the amplitude of the relative displacement between the absorber and the

primary system. If x
1
(t) � X

1
sin (�t � �

1
) and x

2
(t) � X

2
sin(�t � �

2
), then

(e)

where

(f)

Defining

(g)

and

(h)

analysis of the two degree-of-freedom system gives

(i)

(j)f1 =  tan -1 c 2zr2M - (1 - r 2
2)N

(1 - r 2
2)q

2mM + 2zNr22m
d = -1.784

X1 =
F0

k1 B
(2zr1q)2 + (r 2

1 - q 2)2

{r 4
1 - [1 + (1 + m)q 2r 2

1] + q 2}2 + (2zr1q)2[1 - r 2
1(1 + m)]2

= 0.0057  m

N = 2zr1q31 - r 2
1(1 + m)4

M = r 4
1 - 31 + (1 + m)q 2r 2

14 + q 2

Z = 2X 2
1 - 2X1X2 sin (f1 + f2) + X 2

2

z(t) = X2 sin(vt - f2) - X1 sin(vt - f1) = Z sin(vt - f3)

P =
cv2Z 2

2
= zm2v22

4 r 2
2Z 2

v22 = 0.909v11 = 0.909(110 rad/s) = 100.0   rad/s

q =
1

1 + m
= 0.909

zopt = A
3m

8(1 + m)
= A

3(0.1)

8(1.1)
= 0.184

m =
m2
m1

= 0.1.
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442 CHAPTER 6

(k)

(l)

The value of Z using Equation (f ) is Z � 0.0039 m. Thus, from Equation (d), the average

power harvested over one cycle is

(m)P = (0.184)(10   kg)(100   rad/s)4(0.909)2(0.0039   m)2 = 4.64   kW

f2 =  tan -1 cM - 2zr2N

2zr2M + N
 d = -2.278

X2 =
F0

k1A
q 4 + (2zq)2

{r 4
1 - [1 + (1 + m)q 2r 2

1] + q 2}2 + (2zr1q)2[1 - r 2
1(1 + m)]2

= 0.0027 m

6.16 CHAPTER SUMMARY

6.16.1 IMPORTANT CONCEPTS
• Two degree-of-freedom systems are governed by two coupled differential equations.

• FBD method is used to derive differential equation governing the motion of two

degree-of-freedom systems.

• A normal mode solution in which synchronous motion occurs is assumed for the free

response of undamped systems.

• The natural frequencies are obtained by solution of a fourth-order algebraic equation

for � with only even powers of �.

• The modal fraction for each mode is the second element of the mode shape vector

when the first element is set equal to one.

• The mode shape vectors can be illustrated graphically.

• A node is a point of zero displacement for a mode.

• The general free response is a linear combination of the modes. The constants in the

linear combination are determined from application of the initial conditions.

• An exponential solution is assumed for the free response of system with viscous

damping. The exponents are obtained by solving a fourth order algebraic equation

with odd powers.

• Every undamped system has a set of principal coordinates which when the differential

equations are written in terms of the principal coordinates they are uncoupled.

• The harmonic response of two degree-of-freedom systems is obtained by the method

of undetermined coefficients or use of the sinusoidal transfer function.

• A transfer function matrix can be defined when its elements are Gi, j(s) where Gi, j(s) is
the transform of the response at xi due to a unit impulse applied at x j.

• A convolution integral solution provides the response of the system due to any forc-

ing function.

• The frequency response is the variation of steady-state amplitude with frequency.

• A vibration absorber, when tuned to the excitation frequency, can be used to eliminate

steady-state vibrations of the primary system.
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Two Degree-of-Freedom Systems 443

• The vibration absorber works by changing a SDOF system to a two degree-of-freedom

system. The natural frequencies of the resulting two degree-of-freedom system are

away from the excitation frequency.

• Damped absorbers are designed to reduce the amplitude during start-up and to widen

the operating range of the absorber.

6.16.2 IMPORTANT EQUATIONS
Matrix formulation of differential equations

(6.1)
Normal mode solution

(6.3)

Determination of natural frequencies for undamped system

(6.8)

Modal fraction

(6.11)

Free response of an undamped system

(6.13)

(6.16)

Solution for system with viscous damping

(6.18)

Determination of free response for damped system

(6.20)

Differential equations for the principal coordinates

(6.24)

(6.25)

Steady-state vibrations of an undamped system due to single frequency excitation

(6.38)

Steady-state response for system with viscous damping due to single frequency excitation

(6.45)

(6.46)x 2 = u2sin(vt) + v2cos(vt)

x1 = u1sin(vt) + v1cos(vt)

x = U sin(vt)

p$2 + v2
2 p2 = 0

p
$

1 + v2
1p1 = 0

 det(l2MX + lCX + KX ) = 0

cx1(t)
x2(t)
d = c 1

x
de lt

x(t) = A1X1 sin (v1t + f1) + A2X2 sin(v2t + f2)

x (t) = 3C1 cos(v1t) + C2 sin(v1t)4X1 + 3C3 cos(v2t ) + C4 sin(v2t )4X2

x2 =
-v2m1,1 - k1,1

-v2m1,2 + k1,2

 det(-v2M + K) = 0

cx1

x2

d = Xe iv t

Mx$ + Cx# + Kx = F
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Steady-state amplitudes and phases

(6.47)

(6.48)

(6.49)

(6.50)

Convolution integral solution for xi due to a force applied at xj

(6.53)

Forced response of system

(6.65)

Frequency response for primary system when vibration absorber is used

(6.90)

Tuning of absorber

(6.92)

Steady-state amplitude of tuned absorber

(6.94)

Optimally damped absorber

(6.108)

(6.109)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 6.1 through 6.15 indicate whether the statement presented is true or false. If

true, state why. If false, rewrite the statement to make it true.

6.1 A two degree-of-freedom system has two natural frequencies.

6.2 The natural frequencies are determined by setting | �2K � M | � 0.

6.3 The natural frequencies of a two degree-of-freedom system depend upon the choice

of generalized coordinates used to model the system.

zopt = A
3m

8(1 + m)

q =
1

1 + m

X2 =
F0

k2

k2 = m2v
2

k1X1

F0

= 2 1 - r 2
2

r 2
1r

2
2 - r 2

2 - (1 + m)r 2
1 + 1

2
x(t) = F0|G(iv) | sin(vt + f)

x i (t) = L
t

0
Fj(t)hi,j (t - t)dt

fi =  tan -1a vi

ui
b

Xi = 2u2
i + v 2

i

x2 = X2 sin(vt - f2)

x1 = X1 sin(vt - f1)
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6.4 The natural frequencies for an undamped two-degree-of-freedom system are

determined by solving for the roots of a fourth-order polynomial that only has

even powers of the frequency.

6.5 The modal fraction represents the damping of each mode.

6.6 The principal coordinates are the generalized coordinates for which the mass

matrix and the stiffness matrix are symmetric matrices.

6.7 The free response of a damped two degree-of-freedom system has two modes of

vibration, both of which are underdamped.

6.8 A displacement of a node for a mode of a two degree-of-freedom system can

serve as a principal coordinate.

6.9 The modal fractions for a two degree-of-freedom system depend upon the

choice of generalized coordinates used to model the system.

6.10 The sinusoidal transfer function can be used to determine the steady-state

response of a two degree-of-freedom system.

6.11 Addition of an undamped vibration absorber transforms a SDOF system into a

system with two degrees of freedom.

6.12 The undamped vibration absorber is tuned to the natural frequency of the

primary system to eliminate steady-state vibrations of the absorber.

6.13 An optimally tuned damped vibration absorber is tuned such that only the

amplitude of vibration during start-up is minimized.

6.14 Addition of a dynamic vibration absorber to a damped primary system will

eliminate the steady-state vibrations of the primary system if the absorber is

tuned to the excitation frequency.

6.15 A Houdaille damper is used for vibration control in engine crankshafts.

Problems 6.16 through 6.37 require a short answer.

6.16 Draw a FBD of the block whose displacement is x
1

of Figure SP6.16 at an

arbitrary instant of time, appropriately labeling the forces.

6.17 Draw a FBD of the block whose displacement is x
2

of Figure SP6.17 at an

arbitrary instant of time, appropriately labeling the forces.

k1 k2 k3

x1 x2

m1 m2

FIGURE SP6.16 FIGURE SP6.17

k

c

c

x1 x2

m m

6.18 What is the normal-mode solution and how is it used?

6.19 Discuss the difference in the assumed solution for free vibrations of an

undamped two degree-of-freedom system and one with viscous damping.

6.20 What does a real solution of the fourth-order equation for a system with viscous

damping to solve for � mean regarding the mode of vibration?

6.21 What does a complex solution of the fourth-order equation for a system with

viscous damping to solve for � mean regarding the mode of vibration?

6.22 What is the meaning of the transfer function G
1,2

(s)?
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6.23 Define the sinusoidal transfer function.

6.24 Write the differential equations for the principal coordinates of free undamped

vibrations of a two degree-of-freedom system with natural frequencies �
1

and �
2
.

6.25 A two degree-of-freedom system has a mode with a modal fraction equal to

zero. What does this imply?

6.26 A two degree-of-freedom system has a mode with a modal fraction equal to one.

What does this imply?

6.27 How many nodes are there for the mode corresponding to the lowest natural

frequency of a two degree-of-freedom system?

6.28 If the differential equations governing a two degree-of-freedom system are

uncoupled when a certain set of generalized coordinates are used, the

coordinates must be ___________ coordinates of the system.

6.29 The general form of the transfer function is

The transfer functions G
1,1

(s) and G
2,1

(s), defined for a two degree-of-freedom

system, have which in common (choose one)? 

(a) The numerator N(s) 
(b) The denominator D(s)
(c) Neither the numerator or the denominator 

(d) Both the numerator and the denominator

6.30 State the convolution integral solution for the forced response of the generalized

coordinate x
1
(t) when due to a force F(t) applied at the location where the

second generalized coordinate x
2
(t) is defined.

6.31 How are the amplitudes and phases determined for free vibrations of a two

degree-of-freedom system?

6.32 How is G(i�) resolved into polar coordinates?

6.33 What is the vibration amplitude of the primary system when a dynamic

vibration absorber tuned to the excitation frequency is added to the system?

6.34 How does a dynamic vibration absorber work?

6.35 When is a vibration damper used?

6.36 What two problems does the addition of damping address when added to a

vibration absorber?

6.37 How is the optimum damping ratio of a Houdaille damper defined?

Problems 6.38 through 6.47 require short calculations.

6.38 The equation

is an equation developed to determine the natural frequencies of a system. Solve

the equation to determine the natural frequencies.

6.39 The equations for the natural frequencies and mode shape vectors of a two

degree-of-freedom system are

c -v2 + 3 -2
-2 -v2 + 2

d c 1
x
d = c0

0
d

6v4 - 27v2 + 21 = 0

G (s ) =
N (s )

D (s )
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Two Degree-of-Freedom Systems 447

(a) Define a system that would yield this equation.

(b) Calculate the natural frequencies of the system.

(c) Calculate the mode shape corresponding to the lower natural frequency.

(d) Draw a diagram illustrating the mode shape vector.

6.40 A two degree-of-freedom system has a modal fraction for one of its mode shapes

of �1. (a) Draw the mode shape diagram corresponding to that mode. (b) Does

the mode shape correspond to the lower or higher natural frequency?

6.41 The transfer function for one generalized coordinate of a two degree-of-freedom

system is

(a) Calculate G (3i ).

(b) What are the natural frequencies of the system?

(c) If this system were excited by a force equal to 5 sin3t, what is the 

steady-state response of the generalized coordinate?

6.42 The transfer function for a generalized coordinate, x
1
, of a two degree-of-

freedom system, due to a force at the other generalized coordinate, x
2
, is

If x
2

is subject to a force 2.5 sin 4t, what is the steady-state response of x
1
?

6.43 A machine vibrates at a frequency ratio of 1.05. A vibration absorber tuned to

the excitation frequency is added to the machine. What is the value of (a) r
2
,

(b) r
1
, (c) q?

6.44 If the mass ratio of the absorber of Short Problem 6.43 is 0.2 and the natural

frequency of the primary system is 100 rad/s, what are the natural frequencies

with the absorber in place?

6.45 A machine is excited at a frequency of 30 Hz by a force with an amplitude of

200 N. It is desired to eliminate steady-state vibrations of the machine by

addition of a vibration absorber.

(a) What frequency should the absorber be tuned?

(b) If the mass of the absorber is 3 kg, what is the stiffness of the absorber?

(c) When the machine is excited at 30 Hz, what is the amplitude of vibration

of the absorber?

(d) What is the frequency of the absorber vibrations?

6.46 An optimally damped vibration absorber is being designed for a primary system

of natural frequency 100 rad/s. The mass of the machine is 50 kg and the mass

of the absorber is to be 10 kg.

(a) What is the natural frequency of the absorber?

(b) What damping ratio is to be used for the absorber?

6.47 An optimally designed Houdaille damper is to be used to absorb the vibrations of

a rotational system. The moment of inertia of the primary system is 0.1 kg � m2 and

the moment of inertia of the damper is to be is 0.01 kg � m2.

(a) What is the optimum damping ratio?

(b) What is the steady-state amplitude of the primary system if ?
M0
k = 0.002

G (s ) =
1

s 4 + 2s 3 + 4s 2 + 10s + 25

G (s ) =
1

s 4 + 3s 2 + 2
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448 CHAPTER 6

CHAPTER PROBLEMS

6.1 Derive the differential equation governing the two degree-of-freedom system

shown in Figure P6.1 using x
1

and x
2

as generalized coordinates.

k k 2k

x1 x2

m 2m

FIGURE P6.1

k

k

m

L
2

L
2

x

Slender bar of
mass m

M0 sinω t

θ

6.2 Derive the differential equation governing the two degree-of-freedom system

shown in Figure P6.2 using x and � as generalized coordinates.

6.3 Derive the differential equations governing the two degree-of-freedom system

shown in Figure P6.3 using �
1

and �
2

as generalized coordinates.

FIGURE P6.2

6.4 Derive the differential equations governing the two degree-of-freedom system

shown in Figure P6.4 using �
1

and �
2

as generalized coordinates.

2r
r

k
θ2

θ1

r
I2

I1

mm

k
F0sinω t

FIGURE P6.3

J1, G1 J2, G2

θ1

I1

L 3L
2

I2

θ2

FIGURE P6.4
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Two Degree-of-Freedom Systems 449

6.5 A two degree-of-freedom model of an airfoil shown in Figure P6.5 is used for

flutter analysis. Derive the governing differential equations using h and � as

generalized coordinates.

k
θ

e

h

G

kt

k

c

2k

2c

x1 x2

m2m F0 sinωt

FIGURE P6.5

FIGURE P6.6

6.6 Derive the differential equations governing the damped two degree-of-freedom

system shown in Figure P6.6 using x
1

and x
2 

as generalized coordinates.

6.7 Derive the differential equations governing the damped two degree-of-freedom

system shown in Figure P6.7 using x
1

and x
2 

as generalized coordinates.

6.8 A two degree-of-freedom model of a machine tool is illustrated in Figure P6.8.

Using x
1

and x
2

as generalized coordinates, derive the differential equations

governing the motion of the system.

c

ck

m

2m

x2

x1

FIGURE P6.7

G

xm, I

b a

k
c

k
c

x2 x1

θ

FIGURE P6.8
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450 CHAPTER 6

6.9 Derive the differential equation of the two degree-of-freedom model of the

machine tool of Chapter Problem 6.8 using x and � as generalized coordinates.

6.10 Determine the natural frequencies of the system of Figure P6.1 if m � 10 kg

and k � 1 � 105 N/m. Determine and graphically illustrate the mode shapes.

Identify any nodes.

6.11 Determine the natural frequencies of the system of Figure P6.2 if m � 2 kg, 

L � 1 m and k � 1000 N/m. Determine the modal fractions for each mode.

6.12 Determine the natural frequencies of the system of Figure P6.3 if m � 30 g, 

I
1

� 8 � 10�6 kg � m2, I
2

� 2 � 10�5 kg � m2, r � 5 mm, and k � 10 N/m.

Determine the modal fraction for each mode.

6.13 Determine the natural frequencies of the system of Figure P6.4 if I
1

� 0.3 kg � m2,

I
2

� 0.4 kg � m2, J
1

� J
2 

� 1.6 � 10�8 m4, G
1

� G
2 

� 80 � 109 N/m2, and

L � 30 cm. Determine the modal fractions for each mode. Identify any nodes.

6.14 An overhead crane is modeled as a two degree-of-freedom system as shown in

Figure P6.14. The crane is modeled as a mass of 1000 kg on a steel (E � 200 �
109 N/m2) fixed-fixed beam with a moment of inertia of 4.2 � 10�3 m4 and

length of 12 m. The crane has an elastic steel rope of diameter 20 cm. At a

specific instant, the length of the rope is 10 m and is carrying a 300 kg load.

What are the two natural frequencies of the system?

6.15 A seismometer of mass 30 g and stiffness 40 N/m is used to measure the

vibrations of a SDOF system of mass 60 g and natural frequency 150 rad/s. 

It is feared that the mass of the seismometer may affect the vibrations that are

to be measured. Check this out by calculating the natural frequencies of the 

two degree-of-freedom system with the seismometer attached.

6.16 Calculate the natural frequencies and modal fractions for the system of 

Figure P6.16.

12 m

1000 kg

300 kg

Steel wire
E = 200 × 109 N/m2

d = 20 cm

Steel beam
E = 200 × 109 N/m2

I = 4.2 × 10–3 m4

FIGURE P6.14

1000 N/m 1000 N/m

2000 N/m2000 N/m

4 kg

3 kg

FIGURE P6.16

6.17 Determine the forced response to the system of Figure P6.1 and Chapter Problems

6.1 and 6.10 if the left-hand mass is given an initial displacement of 0.001 m while

the right-hand mass is held in equilibrium and the system is released from rest.

6.18 Determine the response of the system of Figure P6.2 and Chapter Problems 6.2

and 6.11 if the particle is given an initial velocity of 2 m/s when the system is

in equilibrium.
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Two Degree-of-Freedom Systems 451

6.19 Determine the response of the system of Figure P6.4 and Chapter Problems 6.4

and 6.13 if the right-hand disk is given an angular displacement of 2° clockwise

from equilibrium and the left-hand disk is given an angular displacement of 2°

counterclockwise.

6.20 Determine the response of the system of Chapter Problem 6.14 if the crane is

disturbed resulting in an initial velocity of 10 m/s downward.

6.21 Determine the output from the seismometer of Chapter Problem 6.15 if the 

60 g mass is given an initial velocity of 15 m/s. Use a two degree-of-

freedom system, remembering that the seismometer records the relative

displacement between the seismic mass and the body whose vibrations are 

to be measured.

6.22 Determine the free response of the system of Figure P6.6 if the left-hand mass is

given an initial displacement of 0.001 m while the right-hand mass is held in

equilibrium and the system is released from rest. Use m � 1 kg, k � 10,000 N/m,

and c � 100 N � s/m.

6.23 Determine the response of the system of Figure P6.7 if the lower mass is given 

a displacement from equilibrium of 0.004 m and the upper mass is held in its

equilibrium position and the system is released. Use m � 5 kg, k � 4000 N/m,

and c � 30 N � s/m.

6.24 Determine the free response of the system of Figure P6.8 if the machine tool has

initial velocities of and . if I � 0.03 kg � m2,

c � 100 N � s/m, m � 3 kg, a � 0.3 m, b � 0.4 m and k � 3000 N/m.

6.25 Determine the principal coordinates for the system of Figure P6.1 and Chapter

Problem 6.10. Write the differential equations which the principal coordinates

satisfy.

6.26 Determine the principal coordinates for the system of Figure P6.2 and Chapter

Problem 6.11. Write the differential equations which the principal coordinates

satisfy.

6.27 Determine the principal coordinates for the system of Figure P6.3 and Chapter

Problem 6.12. Write the differential equations which the principal coordinates

satisfy.

6.28 Determine the principal coordinates for the system of Figure P6.4 and Chapter

Problem 6.13. Write the differential equations which the principal coordinates

satisfy.

6.29 Determine the principal coordinates for the system of Figure P6.8 if it had no

damping. Write the differential equations which the principal coordinates satisfy.

Use I � 0.03 kg � m2, m � 3 kg, a � 0.03 m, b � 0.3 m and k � 3000 N/m.

6.30 Determine the principal coordinates for the system of Chapter Problem 6.9.

Write the differential equations which the principal coordinates satisfy. 

if I � 0.03 kg � m2, c � 0 N � s/m, m � 3 kg, a � 0.3 m, b � 0.4 m 

and k � 3000 N/m.

6.31 Determine the response of the system of Figure P6.1 and Chapter Problem 6.10

due to a sinusoidal force 200 sin110t N applied to the block whose

displacement is x
1

using the method of undetermined coefficients.

6.32 Determine the response of the system of Figure P6.1 and Chapter Problem 6.10

due to a sinusoidal force 200 sin 80t applied to the block whose displacement is

x
2

using the Laplace transform method.

(0) =  5 rad/su
#

x# (0) = 0.8 m/s

62129_06_Ch06_p383-458.qxd  3/16/11  11:49 AM  Page 451

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



452 CHAPTER 6

6.33 Determine the response of the system of Figure P6.2 and Chapter Problem 6.11

due to a sinusoidal force 100 sin 70t N applied to the particle using the method

of undetermined coefficients.

6.34 Determine the response of the system of Figure P6.2 and Chapter Problem 6.11

due to a sinusoidal moment 50 sin 90t N � m applied to the bar using the

method of undetermined coefficients.

6.35 Determine the response of the system of Figure P6.1 and Chapter Problem 6.10

due to (a) a unit impulse applied to the block whose displacement is x
1
, and 

(b) a unit impulse applied to the block whose displacement is x
2
.

6.36 Determine the response of the system of Figure P6.1 and Chapter Problem 6.10

due to the force of Figure P6.36 applied to the block whose displacement is x
1
.

F(N)

100

0.01 0.02
t (s)

FIGURE P6.36

6.37 Determine the response of the system of Figure P6.2 and Chapter Problem 6.11

due to a unit impulse applied to the particle.

6.38 Determine the response of the system of Figure P6.2 and Chapter Problem 6.11

due to a unit impulsive moment applied to the bar.

6.39 Derive the response of the system of Figure P6.2 and Chapter Problem 6.11

due to the force of Figure P6.39 applied downward to the end of the bar.

F(N)

t (s)

200

–100
0.3 0.5

FIGURE P6.39

6.40 Derive the response of the system of Figure P6.2 and Chapter Problem 6.11

due to a moment M(t) � 10e�2t N � m applied to the bar.

6.41 Determine the response of the system of Figure P6.6 due to a force 

F(t) � 20 sin20t N applied to the block whose displacement is x
2

using 

the method of undetermined coefficients. Use m � 10 kg, k � 90,000 N/m, 

and c � 100 N � s/m.

6.42 Determine the response of the system of Figure 6.7 due to a force F(t) �
40 sin60t N applied to the block whose displacement is x

1
using the method 

of undetermined coefficients. Use m � 20 kg, k � 200,000 N/m, and 

c � 400 N � s/m.
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Two Degree-of-Freedom Systems 453

6.43 Determine the response of the system of Figure P6.8 due to a unit impulse

applied at the mass center. Use m � 100 kg, I � 4.5 kg � m2, k � 200,000 N/m,

c � 500 N � s/m, b � 2 m, and a � 1 m.

6.44 Determine the response of the system of Figure P6.8 and Chapter Problem 6.43

to a unit impulse applied t to the right end or the machine tool using x and � as

generalized coordinates.

6.45 Determine the response of the system of Figure P6.8 and Chapter Problem 6.43 to

the force shown in Figure P6.45 applied at the right end of the machine tool.

F(N)

t (s)

100

0.05 0.10

FIGURE P6.45

6.46 A schematic of part of a power transmission system is shown in Figure P6.46. A

motor of moment of inertia I � 100 kg � m2 is mounted on a shaft of shear

modulus G � 80 � 109 N/m2, polar moment of inertia J � 2.3 � 10�4 m4, and

length 10 cm. Gear A, of moment of inertia 50 kg � m2 with 40 teeth is at the

end of the shaft which meshes with a gear, gear B, of moment of inertia 

25 kg � m2 with 20 teeth. Gear B is on a shaft of elastic modulus G � 80 �
109 N/m2, polar moment of inertia J � 1.2 � 10�5 m4, and length 60 cm. 

At the end of the shaft is a large industrial fan of moment of inertia 300 kg � m2.

Determine the natural frequencies of the system and the modal fractions.

6.47 Determine the natural frequencies and modal fractions for the two degree-of-

freedom system of Figure P6.47.

Gear A
40 teeth

Motor

Fan
Gear B

20 teeth

k

2k
2r

r

2m

m

FIGURE P6.46 FIGURE P6.47

6.48 Determine the frequency response of the system of Figure P6.1 and Chapter

Problem 6.10 due to a sinusoidal force F
0
sin �t applied to the block whose

displacement is x
1
.

6.49 Determine the frequency response of the system of Figure P6.1 and Chapter

Problem 6.10 due to a sinusoidal force F
0
sin �t applied to the block whose

displacement is x
2
.
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6.50 Determine the frequency response of the system of Figure P6.2 and Chapter

Problem 6.11 due to a sinusoidal force F
0
sin �t applied to the particle.

6.51 Determine the frequency response of the system of Figure P6.7 and Chapter

Problem 6.42 due to a sinusoidal force F
0
sin �t applied to the block whose

displacement is x
1
.

6.52 Determine the frequency response of the system of Figure P6.8 and Chapter

Problem 6.43 due to a sinusoidal force F
0
sin �t applied to the mass center of

the machine tool.

6.53 Determine the frequency response of the system of Figure P6.8 and Chapter

Problem 6.43 due to a sinusoidal force F
0
sin �t applied to the right end of the

machine tool.

6.54 A 50-kg lathe mounted on an elastic foundation of stiffness 4 � 105 N/m has a

vibration amplitude of 35 cm when the motor speed is 95 rad/s. Design an

undamped dynamic vibration absorber such that steady-state vibrations are

completely eliminated at 95 rad/s and the maximum displacement of the

absorber mass at this speed is 5 cm.

6.55 What is the required stiffness of an undamped dynamic vibration absorber

whose mass is 5 kg to eliminate vibrations of a 25 kg machine of natural

frequency 125 rad/s when the machine operates at 110 rad/s?

6.56 A 35-kg machine is attached to the end of a cantilever beam of length 2 m,

elastic modulus 210 � 109 N/m2, and moment of inertia 1.3 � 10�7 m4. The

machine operates at 180 rpm and has a rotating unbalance of 0.3 kg � m.

(a) What is the required stiffness of an undamped absorber of mass 5 kg such

that steady-state vibrations are eliminated at 180 rpm?

(b) With the absorber in place, what are the natural frequencies of the system?

(c) For what range of operating speeds will the steady-state amplitude of the

machine be less than 8 mm?

6.57 A 150-kg pump experiences large-amplitude vibrations when operating at

1500 rpm. Assuming this is the natural frequency of a SDOF system, design a

dynamic vibration absorber such that the lower natural frequency of the two

degree-of-freedom system is less than 1300 rpm and the higher natural

frequency is greater than 1700 rpm.

6.58 A solid disk of diameter 30 cm and mass 10 kg is attached to the end of a solid

3-cm-diameter, 1-m-long steel shaft (G � 80 � 109 N/m2). A torsional

vibration absorber consists of a disk attached to a shaft that is then attached to

the primary system. If the absorber disk has a mass of 3 kg and a diameter of 

10 cm, what is the required diameter of a 50-cm-long absorber shaft to eliminate

steady-state vibrations of the original system when excited at 500 rad/s?

6.59 A 200-kg machine is placed on a massless simply supported beam as shown in

Figure P6.59. The machine has a rotating unbalance of 1.41 kg � m and

operates at 3000 rpm. The steady-state vibrations of the machine are to be

absorbed by hanging a mass attached to a 40 cm steel cable from the location

on the beam where the machine is attached. What is the required diameter of

the cable such that machine vibrations are eliminated at 3000 rpm and the

amplitude of the absorber mass is less than 50 mm?
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Two Degree-of-Freedom Systems 455

6.60 The disk in Figure P6.60 rolls without slip and the pulley is massless. What is

the mass of the block that should be hung from the cable such that steady-state

vibrations of the cylinder are eliminated when � � 120 rad/s?

200 kg

m

2 m 1 m
E = 200 × 109 N/m2

I = 1.8 × 10–4 m4

FIGURE P6.59

40 cm 40 cm

20 cm

5 × 106 N/m

3 × 106 N/m

FIGURE P6.60

6.61 Vibration absorbers are used in boxcars to protect sensitive cargo from large

accelerations due to periodic excitations provided by rail joints. For a particular

railway, joints are spaced 5 m apart. The boxcar, when empty, has a mass of

25,000 kg. Two absorbers, each of mass 12,000 kg, are used. Absorbers for a

particular boxcar are designed to eliminate vibrations of the main mass when

the boxcar is loaded with a 12,000 kg cargo and travels at 100 m/s. The natural

frequency of the unloaded boxcar is 165 rad/s.

(a) At what speeds will resonance occur for the boxcar with a 12,000 kg cargo?

(b) What is the best speed for the boxcar when it is loaded with a 25,000 kg cargo?

6.62 A 500-kg reciprocating machine is mounted on a foundation of equivalent

stiffness 5 � 106 N/m. When operating at 800 rpm, the machine produces an

unbalanced harmonic force of magnitude 50,000 N. Two cantilever beams with

end masses are added to the machine to act as absorbers. The beams are made

of steel (E � 210 � 109 N/m2) and have a moment of inertia of 4 � 10�6 m4.

A 10 kg mass is attached to each beam. The absorbers are adjustable in that the

location of the mass on the absorber can be varied.

(a) How far away from the support should the masses be located when the

machine is operating at 800 rpm? What is the amplitude of the absorber mass?
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456 CHAPTER 6

(b) If the machine operates at 1000 rpm and produces a harmonic force of

amplitude 100,000 N, where should the absorber masses be placed and

what is their vibration amplitude?

6.63 A 100-kg machine is placed at the midspan of a 2-m-long cantilever beam 

(E � 210 � 109 N/m2, I � 2.3 � 10�6 m4). The machine produces a harmonic

force of amplitude 60,000 N. Design a damped vibration absorber of mass 30 kg

such that when hung from the beam at midspan, the steady-state amplitude of

the machine is less than 8 mm at all speeds between 1300 and 2000 rpm.

6.64 Repeat Chapter Problem 6.63 if the excitation is due to a rotating unbalance of

magnitude 0.33 kg � m.

6.65 For the absorber designed in Chapter Problem 6.63, what is the minimum

steady-state amplitude of the machine and at what speed does it occur?

6.66 Determine values of k and c such that the steady-state amplitude of the center of

the cylinder in Figure P6.66 is less than 4 mm for 60 rad/s 
 � 
 110 rad/s?

FIGURE P6.66

40 cm Massless
pulley

20 cm

40 cm

8 kg

5 × 105 N/m

kc

200 sinω t

6.67 Use the Laplace transform method to analyze the situation of an undamped absorber

attached to a viscously damped system, as shown in Figure P6.67.

(a) Determine the steady-state amplitude of the mass m
1
.

(b) Use the results of part (a) to design an absorber for a 123 kg machine of natural

frequency 87 rad/s and damping ratio of 0.13. Use an absorber mass of 35 kg.

m1

k1

k2

c

m2

F0 sinω t

FIGURE P6.67
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6.68 Design an undamped absorber such that the steady-state motion of the 25-kg

machine component in Figure P6.68 ceases when the absorber is added. What

is the steady-state amplitude of the 31-kg component?

6.69 A 300-kg compressor is placed at the end of a cantilever beam of length 1.8 m,

elastic modulus 200 � 109 N/m2, and moment of inertia 1.8 � 10�5 m4.

When the compressor operates at 1000 rpm, it has a steady-state amplitude of

1.2 mm. What is the compressor’s steady-state amplitude when a 30 kg

absorber of damping coefficient 500 N � s/m and stiffness 1.3 � 105 N/m is

added to the end of the beam?

6.70 An engine has a moment of inertia of 7.5 kg � m2 and a natural frequency of

125 Hz. Design a Houdaille damper such that the engine’s maximum

magnification factor is 4.8. During operation, the engine is subject to a

harmonic torque of magnitude 150 N � m at a frequency of 120 Hz. What is

the engine’s steady-state amplitude when the absorber is used?

6.71 A 200-kg machine is subjected to an excitation of magnitude 1500 N. The

machine is mounted on a foundation of stiffness 2.8 � 106 N/m. What are the

mass and damping coefficient of an optimally designed vibration damper such

that the maximum amplitude is 3 mm?

200 sin 67t N

25 kg

31 kg

4 × 104 N/m

5 × 104 N/m

FIGURE P6.68
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C h a p t e r 7

MODELING OF MDOF
SYSTEMS

7.1 INTRODUCTION
The number of degrees of freedom used to analyze a system is the number of kinematically

independent coordinates necessary to describe the motion of every particle in the system. The

system of Figure 7.1(a) has only one degree of freedom. If � is chosen as the generalized

coordinate, using the small angle approximation, x � a� where x is displacement of a particle

located a distance a from the pin support. If the pin support is removed as in Figure 7.1(b),

using the small displacement approximation, the analysis of the system requires two coor-

dinates. These could be chosen as x, as the displacement of the mass center and � and as

the clockwise angular rotation of the bar, all of which are measured from the system’s equi-

librium position. If a mass-spring system is hung from the mass center of the bar, as illus-

trated in Figure 7.1(c), the system has three degrees of freedom. A suitable choice of

generalized coordinates is x
1

(the displacement of the left end of the bar), x
2

(the displace-

ment of the right end of the bar), and x
3

(the displacement of the mass). All are measured

from equilibrium.

Recall that for linear systems with static spring forces, the static spring forces cancel

with the source of the spring forces when the differential equation is derived. Neither is

included on a FBD when the objective is to derive the differential equation of motion. The

potential energy of springs with static forces is calculated from energy that is calculated

from the system’s equilibrium position. The total potential energy is expressed as V � V
0

where V
0

is the potential energy in the spring when the system is in equilibrium. Since V
0
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460 CHAPTER 7

is a constant, it is not considered when calculating the equivalent stiffness. The same is true

for multiple degree-of-freedom (MDOF) systems. The static forces in the springs cancel with

the source of these spring forces and are not included on FBDs or in potential energy terms.

The analysis of an n degree-of-freedom (nDOF) system requires n independent differ-

ential equations. The differential equations for systems with two degrees of freedom, dis-

cussed in Chapter 6, were derived using the free-body diagram method. The method is

used again in this chapter for systems with more than two degrees of freedom, but the

energy method is the favored method. Lagrange’s equations, which are a result of an energy

method, are specified and used to derive the differential equations governing the vibrations of

MDOF systems. The advantage of using Lagrange’s equations is that, when the differential

equations are linear and to to be expressed in matrix form, the mass matrix and the stiffness

matrix are symmetric. This imposes appropriate orthogonality conditions on the mode

shapes (Chapter 8) and leads to the derivation of the modal analysis method (Chapter 9) for

determining the forced response. When viscous damping is present, application of Lagrange’s

equations also leads to a symmetric damping matrix which is crucial to developing the forced

response to systems with viscous damping.

Application of Lagrange’s equations requires that the kinetic energy is calculated in

terms of the generalized coordinates and their time derivatives at an arbitrary instant. The

potential energy is calculated in terms of the generalized coordinates at an arbitrary instant.

Lagrange’s equations may be used to derive the differential equations for linear systems and

nonlinear systems. When viscous damping is present, Rayleigh’s dissipation function is

used to determine the energy dissipated by the damping forces. Linear equations can be

expresses in a matrix form similar to those in Equation (6.1), as

(7.1)
When the equations are linear, the kinetic energy, potential energy, and Rayleigh’s dis-

sipation function all can be written in their quadratic form. The quadratic form of kinetic

energy is used to directly determine the elements of the mass matrix. The quadratic form of

Rayleigh’s dissipation function is used to directly determine the elements of the damping

matrix. The quadratic form of potential energy is used to directly determine the elements of

the stiffness matrix. The force vector is determined by using the method of virtual work.

Mx
$ + Cx# + Kx = F

FIGURE 7.1
(a) The system is a SDOF
system with � as the chosen
generalized coordinate.
(b) The system has two
degrees of freedom with x
and � chosen as generalized
coordinates. (c) A three
degree-of-freedom system
with x1, x2, and x3 as general-
ized coordinates.

θ

(a)

θ

(b)

x3

x2x1

x

(c)
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MODELING OF MDOF SYSTEMS 461

Since the potential energy of a system depends only upon the forces and the position of

the system (not the time history of motion), it can be calculated by any method which leads

to the instantaneous position. This is the basis of the stiffness influence coefficients. A unit

deflection for a generalized coordinate is assumed, and the deflection of all other general-

ized coordinates is assumed to be zero. The forces needed to maintain this as an equilib-

rium position, which are the stiffness influence coefficients, are calculated. It is shown that

these are the coefficients in the quadratic form of the potential energy and the elements of

the stiffness matrix. A similar method with inertia influence coefficients and the elements

of the mass matrix is developed.

The inverse of the stiffness matrix, when it exists, is the flexibility matrix A. Pre-

multiplying Equation (6.1) by A leads to

(7.2)

Thus, A can be used to formulate the differential equations. A column of flexibility
influence coefficients are the deflections of the generalized coordinates when a unit force is

placed at the location described by one generalized coordinate. Flexibility influence coeffi-

cients are the elements of A.

Continuous systems are often modeled as discrete systems. Recall that a SDOF model of

a machine at the end of a cantilever beam neglects the mass of the beam and models the

stiffness of the beam as 3EI/L3. But this only leads to an approximation of the lowest natural

frequency of the continuous system, which has an infinite number of natural frequencies.

A MDOF model of the beam leads to approximations of higher natural frequencies. The

finite-element method, discussed in Chapter 11, provides a discrete system model of a con-

tinuous system. The introduction of discrete modeling of continuous systems discussed in

this chapter is developed using flexibility influence coefficients.

This chapter is concerned with the derivation of differential equations for discrete sys-

tems. Chapter 8 is concerned with the free response of discrete systems, and Chapter 9 is

concerned with the forced response.

7.2 DERIVATION OF DIFFERENTIAL EQUATIONS USING
THE FREE-BODY DIAGRAM METHOD
Governing differential equations for SDOF systems derived using the free-body diagram

method require drawing a free-body diagram of the system at an arbitrary instant of time

and applying the basic conservation laws to the free-body diagrams. Newton’s second law

( F � ma), is applied to a particle, while rigid bodies undergoing planar motion also 

require M
0

� Io � where 0 is an axis of fixed rotation. If the rigid body does not have an

axis of fixed rotation, it is best to draw two free-body diagrams of the system at an arbitrary

instant: one showing the external forces and one showing the effective forces. Recall that

the effective forces are defined as a force equal to ma– applied at the mass center and a couple

equal to I–�. Then the conservation laws are written as ( F )
ext

� ( F )
eff

and ( MQ)
ext

�
( MQ )

eff
where Q is any axis.

The first example illustrates the former procedure, while the second and third exam-

ples illustrate the latter.

g ggg

g
g

AMx
$ + ACx# + x = AF
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462 CHAPTER 7

The three blocks slide on a frictionless surface, as shown in Figure 7.2(a). Derive the dif-

ferential equations governing the vibrations of the system using x
1
, x

2
, and x

3
as generalized

coordinates.

SO LU T I ON
Free-body diagrams illustrating the forces acting on the blocks at an arbitrary instant are

shown in Figure 7.2(b). Consider the force in the spring connecting the blocks whose dis-

placements are x
1

and x
2
. The spring force is the stiffness 2k times the change in length of

the spring, which is x
2 � x

1
, drawn in a direction such that when x

2 � x
1
, the force is ten-

sile. Therefore, the spring force is acting away from the blocks. The spring is assumed to

be massless. Thus, the force in the spring is the same at both ends, and the force acting on

the block from the spring whose displacement is x
2 
is equal to and opposite the force acting

on the block whose displacement is x
1
. The determination of the other spring forces is

made in the same manner.

Applying F � ma in the horizontal direction to the FBDs of each of the blocks

leads to

(a)

(b)

(c)

Taking everything involving the generalized coordinates to one side of the equations and

everything not involving the generalized coordinates to the other side and rewriting the

equations in a matrix form leads to

(d)Cm 0 0
0 2m 0
0 0 m

S C x
$

1

x
$

2

x
$

3

S + C 3k -2k 0
-2k 3k -k

0 -k 4k
S C x1

x2

x3

S = C 0
0

F (t)
S

-k(x3 - x2) - 3kx3 + F(t) = mx
$

3

-2k(x2 - x1) + k(x3 - x2) = 2mx
$

2

-kx1 + 2k(x2 - x1) = mx
$

1

g

EXAMPLE 7 . 1

x1

kx1 2k(x2 – x1)

3kx3

k(x3 – x2)

k
m

x2

2k
2m

(a)

(b)

x3

k
m

3k

f (t)

f(t)

FIGURE 7.2
(a) System of Example 7.1. (b) FBDs of the blocks at an arbitrary instant.
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MODELING OF MDOF SYSTEMS 463

A three degree-of-freedom model of an automobile suspension system and passenger is

illustrated in Figure 7.3(a). The bar of mass m has its mass center at G, which is a distance

a from the front springs. The attached mass-spring models a seat with a passenger strapped

inside. The wheels provide a displacements of y
1
(t) and y

2
(t), as illustrated. Using x

1
, �, and

x
2

as generalized coordinates, derive the equations of motion for the system. Assume small �.

SO LU T I ON
Free-body diagrams of the body of the vehicle and the seat drawn at an arbitrary instant

are shown in Figure 7.3(b). The geometry used in writing the force applied to the rear

wheel is illustrated in Figure 7.3(c). The spring force is the stiffness times the change in

length of the spring. One end of the spring is displaced at y
2
(t); the other end is displaced

EXAMPLE 7 . 2

θ

θ

b a

x2

x1

m1, I

y2(t) y1(t)

c

(b)

(a)

(c)

m2

G

G

b

=

k2[y2 – (x1 – bθ)]

k1[y1 – (x1 – aθ)]

xr = x1 – bθ

Equilibrium position

x1

xr

k3(x1 + cθ – x2)

m2x2
..

m1x1
.. Iθ

..

FIGURE 7.3
Three degree-of-freedom model of suspension system of Example 7.2. (b) FBDs of system drawn at an
arbitrary instant. (c) Geometry used in calculation of spring force applied to rear wheel.
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464 CHAPTER 7

at x
1

� b�. Thus, the change in length of the spring is y
2
(t) � (x

1
� b�). Applying ( F )

ext
�

( F )
eff

to the FBD of the vehicle yields

(a)

Application of the moment equation ( MG)
ext

� ( MG)
eff

to the FBD of the vehicle gives

(b)

Application of ( F )
ext

� ( F )
eff

to the FBD of the seat yields

(c)

Rearranging the equations such that everything involving the generalized coordinates is on one

side and everything else is on the other, and writing the equations in a matrix form leads to

(d)= C k1y1(t) + k2y2(t)
k1ay1(t ) - k2by2(t )

0
S

Cm1 0 0
0 I 0
0 0 m2

S C x
$

1

u
$

x
$

2

S + C k1 + k2 + k3 k1a - k2b + k3c -k3

k1a - k2b + k3c k1a
2 + k2b

2 + k3c
2 -k3c

-k3 - k3c k3

S C x1

u

x2

S
k33x1 + cu - x24 = m2x

$
2

gg
k13y1(t ) - (x1 + au)4(a) - k23y2(t ) - (x1 - bu)4(b) - k33x1 + c u - x24(c) = I u

$
gg

k13y1(t) - (x1 + au)4 + k23y2(t ) - (x1 - bu)4 - k33x1 + c u - x24 = m1x
$

1

g g

The cart of Figure 7.4(a) rolls on a frictionless surface. A double pendulum consisting of

two slender bars which can move freely is pinned to the cart. Using x, �
1
, and �

2
as gener-

alized coordinates, derive the equations of motion. Assume small �
1

and �
2
.

SO LU T I ON
First consider the kinematics and the acceleration of the mass center of the bar AB.

(a)

In a similar fashion, it is determined that

(b)

The relative acceleration equation is applied between B and the mass center of bar BC:

+ (L u
$

1sin u1 + L u
#
2
1cos u1) j + u

$
2kx aL

2
sin u2 i -

L
2

cos u2 jb
= (x

$ + L u
$

1cos u1 - L u
#
2
1 sin u1)i

aBC = aB + A
 
xrG>B + Vx(Vx rG>B )

aB = (x
$ + L u

$
1cosu1 - L  u

#
2
1 sinu1) i + (L u

$
1sinu1 + L u

#
2
1cosu1) j

= ax
$ +

L
2

 u
$

1cosu1 -
L
2

 u
#
2
1 sinu1b  i + aL

2
 u
$

1 sinu1 +
L
2

 u
#
2
1 cosu1)b j

= x 
$

i + u
$

1kx aL
2

 sinu1 i -
L
2

 cosu1 jb + u
#
1k x cu#1k x aL

2
 sinu1i -

L
2

 cosu1 jbd
aAB = aA + AxrG>A + Vx(VxrG>A)

EXAMPLE 7 . 3
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MODELING OF MDOF SYSTEMS 465

(c)+ aL u
$

1sin u1 + L u
#
2
1cos u1 +

L
2

 u
$

2 sin u2 +
L
2

 u
#
2
2 cos u2b j

= ax$ + L u
$

1cos u1 - L u
#
2
1 sin u1 +

L
2

 u
$

2cos u2 -
L
2

 u
#

2
2  sin u2b i

+ u
#
2 kx cu#2 kx aL

2
sin u2 i -

L
2

cos u2 jbd

θ1

θ2

L

A

B

L

x

C

(a)

(b)

=

Fx1

F1x1

Fx2

Fx2

Fy1

Fy1

External forces Effective forces

Fy2
Fy2

mg

mg

kx
mx1

m( +L
2

..

..

..

. .
θ1 sinθ1 θ1 cosθ2)L

2

L
2

L
2

L
2

L
2

1
12

L
2

L
2

m(Lθ1 + Lθ1
..

sinθ1 cosθ1)

m(x + –
.

sinθ1)θ1
2

2

.2

– Lθ1
.2

2

+ Lθ1
..

cosθ1

mL2

..
m(x + sinθ1)cosθ1

+ +
..
θ2

..
θ2

1
12

mL2 ..
θ

..
θ1

cosθ2)θ2sinθ2

+ –
.. .

.

θ2 sinθ2)θ2cosθ2

FIGURE 7.4
System of Example 7.3. (a) The cart rolls on a frictionless surface and the double pendulum is free to
rotate about the center of the cart. (b) FBDs at an arbitrary instant.
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466 CHAPTER 7

FBDs of the cart and the two bars, drawn at an arbitrary instant, are illustrated in Figure 7.4(b).

Application of to the free-body diagram of the cart leads to

(d)

Summing moments using the FBDs of bar AB leads to

(e)

Summing moments using the FBDs of bar BC leads to

(f)

Summation of forces on the FBDs of the bars gives

(g)

and

(h)

Summation of forces applied to the FBDs of the bars gives

(i)

and

(j)

Use of Equations (g) through (j) in Equations (d) through (g) leads to

(k)

(l)+m
L2

2
 u
#
2
2 (cos u1 sin u2 + sin u1cos u2) +

5
2

 mg L sin u1 = 0

3
2

mL  cos u1x
$ +

13

12
 mL2

 u
$

1 + m 
L2

4
  u
$

2 (cos u1cos u2 + sin u1 sinu2)

3m x
$ +

3

2
mL u

$
1cos u1 -

3m
2

 L u
#
2
1 sinu1 + m 

L
2

  u
$

2cosu2 - m 
L
2

 u
#
2
2  sinu2 + kx = 0

-Fy2 - mg = m aL u
$

1 sin u1 + L u
#
2
1 cos u1 +

L
2

  u
$

2 sin u2 +
L
2

  u
#
2
2 cos u2b

-Fy1 + Fy2 - mg = m aL
2

 u
$

1sinu1 +
L
2

 u
#
2
1 cos u1b

(gFy )ext = (gFy )eff

-Fx2 = m ax$ + L u
$

1cosu1 - L u
#
2
1 sinu1 +

L
2

 u
$

2 cosu2 -
L
2

  u
#
2
2 sinu2b

-Fx1 + Fx2 = m ax$ +
L
2

 u
$

1cosu1 -
L
2

 u
#
2
1 sinu1b

(gFx )ext = (gFx )eff

+m aL u
$

1sin u1 + L u
#
2
1 cos u1 +

L
2

 u
$

2 sin u2 +
L
2

 u
#
2
2 cos u2b aL2 sin u2b +

1
12

 mL2 u
$

2

-mg 
L
2

sinu2 = m ax$ + L u
$

1cosu1 - L u
#
2
1 sinu1 +

L
2

 u
$

2cos u2 -
L
2

  u
#
2
2 sinu2b aL2 cos u2b

(gMB )ext = (gMB)eff

+ m aL
2

 u
$

1 sin u1 +
L
2

 u
#
2
1 cos u1b a- L

2
 sin u1b +

1

12
 mL2u

$
1

= m ax$ +
L
2

  u
$

1 cos u1 -
L
2

  u
#
2
1 sinu1b a- L

2
 cos u1b

Fx1
(L cosu1) + Fy1

(L sinu1) + mg 
L
2

 sinu1

(gMB 
)ext = (gMB 

)eff

-kx + Fx 1 = mx
$

1

(gFx )ext = (gFx )eff
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(m)

Assuming small �
1

and �
2

(which implies sin �
1

L �
1
, cos �

1
L 1, sin �

2
L �

2
, and cos �

2
L 1,

along with products of generalized coordinates are small), Equations (k) through (m) are

written (respectively) as

(n)

(o)

(p)mx
$ + m 

L2

2
 u
$

1 + m 
L2

3
  u

$
2 + mg 

L
2

 u2 = 0

3

2
mL x

$ +
13
12

mL2u
$

1 + m 
L2

4
  u
$

2 +
5
2

 mgLu1 = 0

3mx
$ +

3
2

 mLu
$

1 + m 
L
2

  u
$

2 + kx = 0

+ m 
L2

3
 u
$

2 + mg 
L
2

 sin u2 = 0

m x
$ + m 

L2

2
 u
$

1 (cos u1cos u2 + sin u1 sin u2) + m 
L2

4
 u
#
2
1 (cos u1 sin u2 - sin u1cos u2)

7.3 LAGRANGE’S EQUATIONS
Energy methods are more useful than the free-body diagram method for deriving differen-

tial equations governing MDOF systems. Lagrange’s equations are derived using energy

methods. The equivalent systems method, discussed in Chapter 2, is actually Lagrange’s

equations written for a linear SDOF system. Lagrange’s equations can be applied to linear

and nonlinear MDOF systems to derive the governing differential equations. When

applied to linear systems, application of Lagrange’s equations leads to symmetric mass and

stiffness matrices.

However, the derivation of Lagrange’s equations requires calculus of variations, and a

formal derivation is beyond the scope of this book. The basis for the derivation of

Lagrange’s equations is the principle of work and energy. Instead of taking the dot product

of Newton’s law with a differential displacement vector, the dot product is taken with a

variation of the displacement vector. Whereas a differential, dx, is a change in the depend-

ent variable due to a change in the independent variable, (a variation written as �x is due

to a change in the dependent variable, as show in Figure 7.5).

The independent variable is time t and the dependent variable is y. Imagine following a

particle as it travels throughout space along a path y(t). The actual path that the particle fol-

lows between time t
1

and time t
2

is y(t). The varied path is y(t) � �y as shown in Figure 7.5(a).

The variation is an arbitrary function that the varied path could follow. The variation must

be the same as the actual path at t
1

and t
2
. That is, �y(t

1
) � 0 and �y(t

2
) � 0. Figure 7.5(b)

illustrates the difference between a variation and a differential by examining both the func-

tion y(t) and the variation y(t) � �y during the time dt. The geometry of this illustration

shows that �(dy) � d(�y).
The actual path that the particle follows is not known. It is the job of calculus of vari-

ations to specify the actual path (or to derive an equation that specifies the actual path) by

considering all possible variations. This is the purpose of Lagrange’s equations. Application

of Lagrange’s equations specifies the equations for the actual path.
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468 CHAPTER 7

The discussion thus far has been for a particle with a one-dimensional motion. The

particle has a position vector r(t) and the variation of the position vector is �r(t).
The expression is referred to as the virtual work �W. Consider a system with

nDOF with generalized coordinates of x
1
, x

2
, . . . , xn. The virtual work �W is the work

done by external forces as the system’s position changes from (x
1
, x

2
, . . . , x

n
) to (x

1
� �x

1
,

x
2

� �x
2
, . . . , xn � �xn). The virtual work is

(7.3)

where

(7.4)

The virtual work is broken down into the work done by conservative forces �Wc and

the work done by non-conservative forces �W
nc

. The work done by conservative forces is

written as

(7.5)

where �V is the variation of the potential energy.

The term ma . �r is manipulated into the variation of kinetic energy �T. Just like the

principle of work and energy, the result is integrated between two times t
1

and t
2

with the

dWc = -dV

dr =
0r

0x1

 dx1 +
0r
0x2

 dx2 + Á 0r
0xn

 dxn

dW = a F # dr

gF # dr

y

y + d y

y

dt

t

t1

(a)

t2

(b)

y(t)

y(t + dt)

y(t) + d y(t)

y(t + dt) + d y(t + dt)

d(y + d y)

d y
dy

dt

d (y + dy)

FIGURE 7.5
(a) Illustration of y(t) and
y � �y. (b) Enlargement of
section of curve in part
(a) showing detail of variation.

62129_07_Ch07_p459-496.qxd  3/16/11  11:53 AM  Page 468

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



MODELING OF MDOF SYSTEMS 469

requirement that the variation of the position vector is zero at these times. The result is

Hamilton’s principle, which is stated as

(7.6)

The Lagrangian is defined as

(7.7)

and if all forces are conservative, Hamilton’s principle becomes

(7.8)

For a nDOF system with generalized coordinates x
1
, x

2
, . . . , xn, the Lagrangian L is a func-

tion of 2n variables. The potential energy is written at an arbitrary instant and is a func-

tion of n variables, which are the generalized coordinates. The kinetic energy is written at

an arbitrary instant and is a function of 2n variables: the generalized coordinates and their

time derivatives. In general,

(7.9)

The integral is a functional or a function of variables whose result is a scalar. It takes

on a variety of values for arbitrary choices of the generalized coordinates and their time deriv-

atives, but only for the exact choice is its variation zero. Using a theorem of calculus of vari-

ations, if

(7.10)

Equations (7.10) are called Lagrange’s equations and can be used to derive the differential

for conservative nDOF systems.

d
dx

 a0L
0x#
i

b -
0L
0x i

= 0  i = 1,2, . . . , n

d1 t2
t1

Ldt = 0

1 t2
t1

Ldt

L = L(x1,x2, . . . , xn, x
#
1, x

#
2, . . . , x

#
n )

dL
t2

t1

Ldt = 0

L = T - V

dL
t2

t1

(T - V + dWnc)dt = 0

Use Lagrange’s equations to derive the differential equations governing the motion of the system

of Example 7.1 using x
1
, x

2
, and x

3
as generalized coordinates.

SO LU T I ON
The kinetic energy of the system at an arbitrary instant is

(a)

The potential energy of the system at an arbitrary instant is

(b)

The Lagrangian is

(c)L +
1
2

 3mx# 2
1 + 2mx# 2

2 + mx# 2
3 - kx 2

1 - 2k (x2 - x1)
2 - k (x3 - x2)

2 - 3kx 2
34

V =
1

2
kx 2

1 +
1
2

2k (x2 - x1)
2 +

1
2

k (x3 - x2)
2 +

1
2

 3kx 2
3

T =
1
2

mx# 2
1 +

1
2

2mx# 2
2 +

1
2

 mx# 2
3

EXAMPLE 7 . 4
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470 CHAPTER 7

Application of Lagrange’s equations leads to

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

The differential equations derived from Lagrange’s equations are identical to those

obtained in Example 7.1 by the free-body diagram method.

mx
$

3 - kx2 + 4kx3 = 0

d
dt

 (mx# 3) - 3-k(x3 - x2) - 3kx34 = 0

d
dt

 a 0L
0x# 3
b -

0L
0x3

= 0

2mx
$
2 - 2kx1 + 3kx2 - kx3 = 0

d
dt

 (2mx# 2) - 3-2k(x2 - x1) - k (x3 - x2)(-1)4 = 0

d
dt

 a 0L
0x# 2
b -

0L
0x2

= 0

m x
$

1 + 3kx1 - 2kx2 = 0

d
dt

 (mx#1) - 3-kx1 - 2k (x2 - x1)(-1)4 = 0

d
dx

 a 0L
0x# 1
b -

0L
0x1

= 0

Use Lagrange’s equations to derive the differential equations governing the motion of the

system of Figure 7.3(a) and Example 7.2.

SO LU T I ON
The kinetic energy of the system of Figure 7.3 is the sum of the kinetic energies of the body

of the vehicle and the seat. The kinetic energy of the system is

(a)

The potential energy is the sum of the potential energies in the three springs. The change

in lengths of the springs are measured from the system’s equilibrium position and are deter-

mined in the solution of Example 7.2, resulting in

(b)V =
1

2
k13y1(t) - (x1 + au)42 +

1
2

k23y2(t) - (x1 - bu)42 +
1
2

 k33x1 + c u - x242

=
1

2
m1x

# 2
1 +

1

2
 Iu

#
2 +

1

2
m2x

# 2
2

T =
1
2

 mv 2 +
1
2

 Iv2 + Tseat

EXAMPLE 7 . 5
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MODELING OF MDOF SYSTEMS 471

The Lagrangian is

(c)

Application of Lagrange’s equation for x
1

leads to

(d)

Application of Lagrange’s equations for � leads to

(e)

Application of Lagrange’s equations for x
2

leads to

(f)

Equations (d) through (f ) are rearranged and written in a matrix form leading to

(g)= C k1 y1(t) + k2 y2(t)
k1ay1(t) - k2by2(t)

0
S

Cm1 0 0
0 I 0
0 0 m2

S   C x
$

1

u
$

x
$

2

S + C k1 + k2 + k3 k1a - k2b + k3c -k3

k1a - k2b + k3b k1a
2 + k2b

2 + k3c
2 -k3c

-k3 - k3c k3

S  C x1

u

x2

S

d
dt

 c1
2

 m2(2x# 2) d - e-
1
2

 k3(2)[x1 + c u - x2](1) f = 0

d
dt

 a 0L
0x# 2

b -
0L
0x2

= 0

-
1

2
 k3(2)3x1 + cu - x24(c) = 0

d
dt

 c1
2

 I (2u
#
)d - e- 1

2
 k1(2)3y1(t) - (x1 + a u)4(-a) -

1
2

k2(2)3y2(t ) - (x1 - b u)4(b)

d
dt

 a 0L
0u

# b -
0L
0u

= 0

-
1

2
 k3(2)3x1 + c u - x24(1)f = 0

d
dt

 c1
2

 m1(2x# 1)d - e1
2

 k1(2)3y1(t) - (x1 + a u)4 (-1) -
1

2
 k2(2)3y2(t ) - (x1 - bu)4(-1)

d
dt

 a 0L
0x

#
1

b -
0L
0x1

= 0

-
1

2
 k33x1 + c u - x242

L =
1
2

 m1x
# 2
1 +

1
2

 Iu
#
2 +

1
2

 m2x
# 2
2 -

1
2

k13y1(t) - (x1 + au)42 -
1
2

 k2 3y2(t ) - (x1 - bu)42
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472 CHAPTER 7

Derive the nonlinear equations governing the motion of Example 7.3 and Figure 7.4.

SO LU T I ON
The velocity of the mass center of bar AB is given by

(a)

Using a similar analysis, the velocity of particle B is

(b)

The velocity of the mass center of bar BC is

(c)

The kinetic energy of the system at an arbitrary position is

(d)

The potential energy of the system at an arbitrary instant, using the plane of the cart as the

datum, is

(e)

The Lagrangian for the system is

(f)- c1
2

 kx 2 + mg 
3L
2

cos u1 + mg 
L
2

 cos u2 d

+
1
2

 m cax# + L u
#
1cosu1 +

L
2

 u
#
2 cos u2b

2

+ aL u
#
1sinu1 +

L
2

 u
#
2 sinu2b

2 d +
1

12
 mL2 u

#
2
2

L =
1
2

 mx# 2 +
1
2

 m c ax# +
L
2

 u
#
1cos u1b

2

+ aL
2

 u
#
1 sin u1b

2 d +
1

12
 mL2 u

#
2
1

V =
1
2

 kx 2 + mg 
L
2

 cos u1 + mg aL cos u1 +
L
2

 cosu2b

+
1

12
 mL2 u

#
2
2

+
1
2

 m c ax# + Lu
#
1 cos u1 +

L
2

 u2 

#
cos u2b

2

+ aLu1

#
sin u1 +

L
2

 u2

#  sin u2b
2 d

T =
1
2

 mx# 2 +
1
2

 m c ax# +
L
2

 u
#
1cos u1b

2

+ aL
2

 u
#
1 sin u1b

2 d +
1

12
 mL2u

#
2
1

= (x# + L u
#
1cos u1 +

L
2

 u
#
2 cos u2) i + aLu#1sin u1 +

L
2

 u
#
2 sin u2b j

= (x# + L u
#
1 cos u1)i + L u

#
1sin u1 j + u

#
2 k x aL

2
 sin u2 i -

L
2

 cos u2 jb
vBC = vB + vxrG/B

vB = (x# + Lu
#
1cos u1) i + L u

#
1 sin u1 j

= ax# +
L
2

 u
#
1cos u1b i +

L
2

 u
#
1sinu1 j

= x # i + u
#
1kxaL

2
 sin u1 i -

L
2

 cos u1 jb
vAB = vA + vxrG>A

EXAMPLE 7 . 6

62129_07_Ch07_p459-496.qxd  3/16/11  11:54 AM  Page 472

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



MODELING OF MDOF SYSTEMS 473

Application of Lagrange’s equations for x leads to

(g)

(h)

Application of Lagrange’s equations for �
1

yields

(i)

and

(j)

Application of Lagrange’s equations for �
2 

yields

(k)

and

- m 
L
2

 ax# + Lu
#
1cos u1 +

L
2

 u
#
2 cos u2b  u

#
2 sin u2

amx
$ + mLu

$
1cos u1 - mLu

#
2
1 sin u1 + m 

L
2

 u
$

2 cos u2 - m 
L
2

 u
#
2
2 sin u2b  aL

2
cos u2b

+ (2) aLu#1 sinu1 +
L
2

 u
#
2 sinu2b  aL

2
 sinu2bd +

1

12
mL2(2)u

#
2f - c-mg 

L
2
 sinu2d = 0

d
dt

 e 1
2

m c(2) ax# + L u
#
1 cos u1 +

L
2

 u
#
2 cos u2b  aL

2
 cos u2b

d
dt

 a 0L
0u

#
2

b -
0L
0u2

= 0

- m 
L
2

 u
#
2(u

#
1 - u

#
2) sin(u1 - u2) + mg 

3L
2

 sin u1 = 0

2m x
$ +

4
3

 mL2 u
$

1 -
3

2
 mL x# u

#
1 sin u1 + m

L
2

 u
$

2 cos (u1 - u2)

+ (2) aLu# 1 sinu1 +
L
2

 u
#
2 sinu2b  (L sin u1)d f - c-mg 

3L
2

 sinu1d = 0

+
1

12
 mL2(2)u

#
1 +

1
2

 m c(2)ax# +Lu
#
1 cosu1 +

L
2

 u
#
2 cos u2b (L cos u1)

d
dt

 e1
2

 m c(2) ax# +
L
2

 u
#
1 cos u1b  aL

2
 cos u1b + (2) aL

2
 u
#
1 sinu1b  aL

2
 sinu1bd

d
dt

 a 0L
0u

#
1

b -
0L
0u1

= 0

3m x
$ + m 

3L
2

 u
$

1cosu1- m 
3L
2

 u
#
2
1 sinu1 + m 

L
2

 u
$

2cos u2- m 
L
2

 u
#
2
2 sin u2 + kx = 0

- c- 1
2

 k (2)x d = 0

d
dt

 c1
2

m (2)x# +  
1
2

 m(2) ax# +
L
2

 u
#
1cos u1b +

1
2

m(2) ax# + Lu
#
1cosu1 +

L
2

 u
#
2 cos u2bd

d
dt

 a 0L
0x#
b -

0L
0x

= 0
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474 CHAPTER 7

(l)

Equations (g), (h), and (i) are the nonlinear differential equations that govern the motion

of the system.

Using the small angle assumption (sin �
1

L �
1
, cos �

1
L 1, sin �

2
L �

2
and cos �

2
L 1,

and assuming terms involving higher powers or products of �
1

and �
2

are small), Equation (k)

reduces to Equation (n) of Example 7.3 while Equations (l) and (m) are multiples of

Equations (o) and (p) of Example 7.3.

If the system is non-conservative, Lagrange’s equations are modified to taken the non-

conservative forces into account and are written as

(7.11)

where the Qi are referred to as generalized forces. The virtual work done by all nonconservative

forces �W
nc

is written as

(7.12)

The power dissipated by a viscous damper is the force in the viscous damper times the

displacement of the particle to which the damper is attached. Rayleigh’s dissipation func-

tion  is the negative one-half of the total power dissipated in all viscous dampers.

(7.13)

Recall that the work done by the viscous damping force as the particle to which it is

attached moves from x
1

to x
2

is , where c is the viscous-damping coefficient 

and is the velocity of the particle to which it is attached. The power dissipated is

(7.14)

Now consider a viscous damper connected between two masses with displacements x
1

and x
2
. The force in the viscous damper is . The work done by the viscous-

damping force is

(7.15)W = -L
x2b

x2a

c (x#2 - x#1) dx2 + L
x1b

x1a

c (x#2 - x#1) dx1

c (x# 2 - x# 1)

= - cx# 2

= -
d
dtL

t2

t1

cx# 2
  dt

P =
dW
dt

= -
d
dtL

x2

x1

cx#   dx

x#
W = - 1x2

x1
cx# dx

� = -
1
2

P

�

dWnc = a
n

i = 1

Q i dxi

d
dx

 a 0L
0x#
i

b -
0L
0x i

= Qi  i = 1, 2, . . . , n

+ m 
L
2

 aLu# 1 sin u1 +
L
2

 u
#
2 sin u2b  u

#
2 cos u2 +

1
12

 mL2 u
$

2 + mg 
L
2

 sinu2 = 0

+ m aLu$1 sin u1 + Lu
#
2
1 cos u1 +

L
2

 u
$

2 sin u2 + m 
L
2

 u
#
2
2 cos u2b  aL

2
 sin u2b
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MODELING OF MDOF SYSTEMS 475

The power dissipated during this time is

(7.16)

Changing the variables of integration to time leads to

(7.17)

The generalized force due to viscous damping is

(7.18)

Then

(7.19)

where Qi,nv
is the generalized forced due to nonviscous forces. Lagrange’s equations then

become

(7.20)
d
dx

 a 0L
0x#
i

b -
0L
0x# i

-
0�

0x#
i

= Qi, nv  i = 1, 2, . . . , n

Qi =
0�

0x#
i

+ Q i, nv

Qi =
0�

0x#
i

= c (x#2 - x#1)2

P =
d
dt

 cL
t2

t1

c(x# 2 - x# 1)x
#
2 dt d -

d
dt

 cL
t2

t1

c (x# 2 - x# 1)x
#
1 dt d

P = -
dW
dt

=
d
dt

 cL
x2b

x2a

c (x# 2 - x# 1) dx2d -
d
dt

 cL
x1b

x1a

c (x# 2 - x# 1) dx1d

Derive the differential equations for the system of Figure 7.6 using x
1
, x

2
, and x

3
as gener-

alized coordinates.

SO LU T I ON
The Lagrangian for this system is developed in Equation (c) of Example 7.4. Rayleigh’s dis-

sipation function is

(a)� = -
1
2

 cx# 2
1 -

1
2

 2c (x#2 - x#1)2 -
1
2

c (x#3 - x#2)2 -
1
2

 3cx# 2
3

EXAMPLE 7 . 7

x1

F1(t)

m
k 2k

c 2c

x2

F2(t)

2m
k

c

x3

m
3k

3c

FIGURE 7.6
System of Example 7.7
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476 CHAPTER 7

The work done by the external forces is

(b)

Thus, Q
1,nv

� F
1
(t), Q

2,nv
� F

2
(t) and Q

3,nv
� 0. Application of Lagrange’s equation for

x
1

leads to

(c)

Application of Lagrange’s equation for x
2

leads to

(d)

Application of Lagrange’s equation for x
3

gives

(e)

Rearranging Equations (c), (d), and (e) and summarizing in matrix form leads to

(f)+ C 3k -2k 0
-2k 3k -k

0 -k 4k
S   C x1

x2

x3

S = CF1(t )
F2(t )

0
S

Cm 0 0
0 2m 0
0 0 m

S   C x
$

1

x
$

2

x
$

3

S + C 3c -2c 0
-2c 3c - c
0 - c 4c

S  C x#1
x#2
x#3

S
- c- 1

2
 c (2)(x#3 - x#2) -

1
2

 3c (2)x#3 d = 0

d
dt

 c1
2

 m (2)x# 3 d - c- 1

2
 k (2)(x3 - x2) -

1

2
 3k (2)x3d

d
dt

 a 0L
0x# 3

b -
0L
0x3

-
0�

0x# 3
= Q3, nv

- c- 1
2
 2c (2)(x# 2 - x# 1) -

1
2

 c (2)(x# 3 - x# 2)(-1) d = F2(t)

d
dt

 c1
2

 2m (2)x# 2d - c - 1

2
 2k (2)(x2 - x1) -

1

2
 k (2)(x3 - x2)(-1)d

d
dt

 a 0L
0x# 2

b -
0L
0x2

-
0�

0x# 2

= Q2, nv

- c- 1
2

 c (2)x#2 -
1
2

 2c (2)(x# 2 - x#1)(-1)d = F1(t)

d
dt

 c1
2

 m (2)x# 1d - c- 1
2

 k (2)x2 -
1
2

 2k (2)(x2 - x1)(-1)d

d
dt
a 0L

0x#1
b -

0L
0x1

-
0�

0x# 1
= Q1, nv

dW = F1(t ) dx1 + F2(t ) dx2
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MODELING OF MDOF SYSTEMS 477

Derive the differential equations of the vehicle damping, as illustrated in Figure 7.7. Note

this system was used in Example 7.5 without damping.

SO LU T I ON
The forms of the kinetic energy and potential energy are as in Example 7.5. The form of

Rayleigh’s dissipation functions for this example is

(a)

Using the Lagrangian of Equation (c) of Example 7.5, application of the nonconservative

form of Lagrange’s equations Equation (7.19) yields

(b)

Application of Lagrange’s equations for � leads to

d
dt

 c1
2

 I(2u
#
) d - e- 1

2
 k1(2)[y1(t) - (x1 + au)] (-a) -

1
2

 k2(2)[y2(t) - (x1 - bu)](b)

d
dt

 a0L
0u

# b -
0L
0u

-
0�

0u
# = 0

-
1

2
 c3(2)[(x# 1 + c u

#
) - x# 2]f = 0

- e-
1
2

 c1(2)[y#1 - (x# 1 + au
#
)4 (-1) -

1

2
 c2(2)3y#2 - (x# 1 - bu

#
)4 (-1)

-
1
2

 k3(2)[x1 + c u - x2](1) f

d
dt

 c1
2

m1(2x# 1)d - e1
2

k1(2)[y1(t) - (x1 + au)](-1) -
1
2

 k2(2)[y2(t) - (x1 - b u)](-1)

d
dt

 a 0L
0x# 1

b -
0L
0x1

-
0�

0x# 1
= 0

� = -
1

2
 c13y#1 - (x#1 + au

#
)42 -

1
2

 c2 3y#2 - (x# 1 - b u
#
)42 -

1
2

 c3 3(x#1 - c u
#
) - x#242

EXAMPLE 7 . 8

x2

x1

b
c

a

kL c2 k1

k3 c3

m2

m1, I

c1

θ

FIGURE 7.7
Two degree-of-freedom system of
Example 7.8. The nature of the cou-
pling depends upon the choice of
generalized coordinates.
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478 CHAPTER 7

(c)

Application of Lagrange’s equations for x
2

leads to

(d)

Equations (b) through (d) are rearranged and written in a matrix form leading to

(e)

7.4 MATRIX FORMULATION OF DIFFERENTIAL
EQUATIONS FOR LINEAR SYSTEMS
It can be shown that for an nDOF linear system the potential and kinetic energies must

have the quadratic forms

(7.21)

(7.22)

The Lagrangian for a linear system becomes

(7.23)L =
1
2

 ca
n

i = 1

 a
n

j = 1

(mij x
#
i x

#
j - kij x i x j)d

T =
1

2
 a

n

i = 1
 a

n

j = 1
mij x

#
i x

#
j

V =
1
2

 a
n

i = 1
 a

n

j = 1
kij xi xj

= C k1y1(t) + k2y2(t) + c1y#1(t) + c2 y# 2(t)
k1ay1(t) - k2by2(t) + c1ay#1(t) + c2by#2(t)

0
S

+ C k1 + k2 + k3 k1a - k2b + k3c -k3

k1a - k2b + k3c k1a
2 + k2b

2 + k3c
2 -k3c

-k3 -k3c k3

S  C x1

u

x2

S
+ C c1 + c2 + c3 c1a - c2b + c3c - c3

c1a - c2b + c3c c1a
2 + c2b

2 + c3c
2 - c3c

- c3 - c3c c3

S  C x# 1

u
#

x# 2

SCm1 0 0
0 I 0
0 0 m2

S   C x
$

1

u
$

x
$

2

S
- c  - 1

2
 c3(2)(x#1 + c u

#
- x#2(-1)d = 0

d
dt

 c1
2

 m2(2x# 2)d - e- 1
2

 k3(2)[x1 + c u - x2](1)f

d
dt

 a 0L
0x#2
b -

0L
0x2

-
0�

0x#2
= 0

-
1

2
 c2(2) [y#2 - (x# 1 - b u

#
)](b)f = 0

-
1
2

 k3(2)x1 + cu - x2](c)f - e -  
1
2

 c1(2)[y#1 - (x#1 + au
#
)](-a)
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MODELING OF MDOF SYSTEMS 479

Application of Lagrange’s equations for a nonconservative system without viscous damping

for generalized coordinate xl leads to

(7.24)

Since

(7.25)

Equation (7.24) becomes

(7.26)

The right-hand side of the preceding equation is broken into four terms and the order of

summation interchanged on the second and fourth terms. Then because of the presence

of the �’s, the value of the term on the inner summation is nonzero only for one value of

the summation index. Thus, the preceding equation can be rewritten using single summa-

tions as

(7.27)

The name of a summation index is arbitrary. Thus, these summations are combined,

yielding

(7.28)

Note that in Equation (7.21), kil and kli both multiply xixl. It seems reasonable that, with-

out loss of generality, they can be set equal to one another (the formal proof of this fact will

be given in Section 7.5. The same reasoning leads to mil � mli. Thus,

(7.29)

Equation (7.29) represents a system of n simultaneous linear differential equations.

The matrix formulation of Equation (7.29) is

(7.30)

where M is the n � n mass matrix, K is the n � n stiffness matrix, F is the n � 1 force vector,
x is the n � 1 displacement vector, and is the n � 1 acceleration vector. Note fromx

$

Mx
$ + Kx = F

a
n

i =1

mli x
$
i + a

n

i =1

kl i xi = Q l  l = 1, Á , n

Ql =
1
2

 ca
n

i =1

(mil + ml i) x
$

i + a
n

i = 1

(kil + kli)xi d

Ql =
1

2
  aa

n

i =1

mil x
$

i + a
n

j =1
 mlj x

$
j + a

n

i = 1

kil xi + a
n

j =1

klj xjb

Ql =
1

2
 a

n

i =1

 a
n

j = 1
 cmij 

d
dt

 (x#i djl + x# j dil 
) + kij (xi djl + xj dil 

) d

0x i

0x l

= dil = e0  i Z l
1  i = l

=
1

2
 a

n

i =1

 a
n

j =1
 cmij 

d
dt

 cx# i 
0x# j

0x# l

+ x# j 
0x# i

0x# l

d + kij ax i 
0x j

0x l

+ x j 
0x i

0x l

b f

Ql =
1
2

 a
n

i =1

 a
n

j =1
 cmij 

d
dt

 c 0
0x# l

 (x# i x# j ) d + kij 
0

0xl

 (xi xj)f

Q l =
d
dt

 a 0L
0x# l

b -
0L
0xl

  l = 1, 2, . . . , n
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480 CHAPTER 7

Equation (7.28) that for the lth equation, the coefficient multiplying is (mil � mli)/2,

which is mli, the element in the lth row and ith column of M. Similarly mil, the element in

the ith row and lth column is determined as (mli � mil)/2. Hence mil � mli for each i, l � 1,

2, . . . , n. Thus, the mass matrix is symmetric. The element in the ith row and jth column

of the mass matrix is mij , the same coefficient that multiplies in the quadratic form of

the kinetic energy, Equation (7.22).

A similar argument can be used to show that the stiffness matrix is symmetric and that

the element in the ith row and jth column of K is the coefficient that multiplies xi xj in the

quadratic form of the potential energy, Equation (7.21). The ith element of the force vector

is the generalized force Qi, as determined by the method of virtual work.

The matrix formulation of the differential equations governing the motion of a linear

n degree-of-freedom system is used in deriving the free and forced responses of the system.

If the mass and stiffness matrices and the force vector are known for a chosen set of gener-

alized coordinates, differential equations of the form of Equation (7.30) can be directly

written. Thus, if the quadratic forms of the kinetic and potential energies can be deter-

mined, the elements of the mass and stiffness matrices are the coefficients in these quad-

ratic forms. Formal application of Lagrange’s equations to derive the differential equations

governing the motion of a linear system is not necessary.

The coupling of a system relative to the choice of generalized coordinate is specified

according to how the mass and stiffness matrices are populated. A diagonal matrix is a

matrix in which the only nonzero elements are along the main diagonal of the matrix. If

the stiffness matrix is not a diagonal matrix, the system is said to be statically coupled rel-

ative to the choice of generalized coordinates. If the system is statically coupled with

respect to a set of generalized coordinates xi, i � 1, 2, . . . , n, then there is at least one i
such that application of a static force to the particle whose displacement is xi results in a

static displacement of the particle whose displacement is xj , for some .

If the mass matrix is not a diagonal matrix, the system is said to be dynamically cou-
pled. If the system is dynamically coupled, then there exists at least one i such that appli-

cation of an impulse to the particle whose displacement is xi instantaneously induces a

velocity , for some .j Z ix# j

j Z i

x# i x
#
j

x
$

i

FIGURE 7.8
System of Example 7.9.

Use the quadratic forms of kinetic and potential energy to derive the differential equations

governing free vibration of the system of Figure 7.8 and discuss the coupling using (a) x
and � as generalized coordinates, and (b) xA, the vertical displacement of particle A, and xB,

the vertical displacement of particle B, as generalized coordinates.

EXAMPLE 7 . 9

G

x

k k

xA xB

θ

L/2 L/4 L/4

Slender bar
of mass m,

I = 1/12 mL2
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MODELING OF MDOF SYSTEMS 481

SO LU T I ON
(a) With x and � as generalized coordinates, the kinetic and potential energies of the system

at an arbitrary instant are

(a)

(b)

Comparing the above equations with the quadratic forms of kinetic and potential energies,

Equations (7.22) and (7.21), respectively, using x for x
1

and � for x
2

leads to

(c)

(d)

Note that the term multiplying x� in the quadratic form of potential energy is 2k
12

� 2k
21

.

Thus, the governing differential equations are

(e)

Since the stiffness matrix is not a diagonal matrix and the mass matrix is a diagonal matrix

the system is statically coupled, but not dynamically coupled.

(b) With xA and xB as generalized coordinates, the quadratic forms of kinetic and

potential energies at an arbitrary instant are

(f)

(g)

The elements of the mass and stiffness matrices are obtained by comparing the above equa-

tions to Equations (7.22) and (7.21) respectively, leading to the following differential equations

(h)

Thus, the system is dynamically coupled, but not statically coupled, when xA and xB are

used as generalized coordinates.

D 7
27

m
2

27
m

2

27
m

16
27

m
T  cx

$
A

x
$
B

d + ck 0
0 k

d  cxA
xB
d = c0

0
d

V =
1

2
 kx 2

A +
1

2
 kx 2

B

=
1

2
 a 7

27
 x 
# 2
A +

4

27
 x#A x#B +

16

27
 x# 2

Bb

T =
1
2

 m a x
$

A

3
+

2x
$

B

3
b2

+
1
2

 a 1
12

 mL2b  £x
$

B - x
$

A

3L
4

≥2

 c x
$

u
$ d + D 2k - k 

L
4

-k 
L
4

5
16

 kL2

T  c x
u
d = c0

0
dCm 0

0
1

12
ml 2
S

k11 = 2k  k12 = k21 = -k 
L
4
  k22 =

5
16

 kL2

m11 = m  m12 = m21 = 0  m22 =
1

12
 mL2

V =
1
2

 k ax -
L
2

 ub2

+
1
2

 k ax +
L
4

 ub2

=
1
2

 a2kx2 - k 
L
2

 x u +
5

16
 kL2u2b

T =
1
2

 mx# 2 +
1
2

 a 1
12

mL2b u# 2
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482 CHAPTER 7

The method presented in this section to determine the mass and stiffness matrices for

linear systems is the MDOF analogy to the equivalent systems method presented in

Section 2.12 to derive the differential equations governing the motion of a linear SDOF system.

The equivalent systems method uses the kinetic energy to determine an equivalent mass and

the potential energy to determine an equivalent stiffness. The mass and stiffness matrices are

analogous to the equivalent mass and the equivalent stiffness.

The differential equations governing the motion of a linear nDOF system when vis-

cous damping is included are

(7.31)

where C is the nxn damping matrix. Rayleigh’s dissipation function can be used to directly

determine the elements of the damping matrix. Recall that the dissipation function is the

negative of one-half of the power dissipated by all the viscous dampers. It can be shown to

have a quadratic form of

(7.32)

The damping matrix is symmetric; that is, ci, j � cj, i.

When using the quadratic form of Rayleigh’s dissipation function to determine the damp-

ing matrix, remember that like the mass matrix and the stiffness matrix, the diagonal terms are

the terms multiplying , but that due to the dissipation function, including both

and , the off diagonal term ci, j is the negative of the coefficient multiplying .

Unlike the quadratic forms of kinetic and potential energy, the definition of Rayleigh’s

dissipation function leads to the quadratic form being defined with a negative sign.

x#
i
x# jcj,i x

#
j x#
i

ci,j x#
i
x# j- 1

2 x# 2
i

� = -
1
2

 a
n

i = 1

 a
n

j = 1

ci,j x
#
i
 x# j

Mx
$ + Cx# + K x = F

Determine the damping matrix for the three degree-of-freedom system shown in Figure 7.9.

SO LU T I ON
The power dissipated by viscous damping is

(a)

The energy dissipation function is calculated as

(b)� = -
1
2

cx# 2
1 -

1
2

 2c (x#2 - x#1)2 -
1
2

 3c (x# 3 - x#2)2 -
1
2

 cx# 2
3

P = (cx# 1)x
#
1 + [2c (x# 2 - x# 1)] (x

#
2 - x# 1) + [3c (x# 3 - x# 2)](x

#
3 - x# 2) + (cx# 3)x

#
3

x1

c 2c 3c c

x2 x3

FIGURE 7.9
System of Example 7.10.

EXAMPLE 7 . 1 0
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MODELING OF MDOF SYSTEMS 483

which is rearranged to

(c)

The diagonal element of the damping matrix ci,i is the negative of twice the coefficient of

, while an off diagonal element mi,j for is the negative of the coefficient of . The

damping matrix is

(d)C = C 3c -2c 0
-2c 5c -3c
0 -3c 4c

S
x#
i
x# ji Z jx# 2

i

� = -
3
2

 cx 
# 2
1 + 2cx#1x

#
2 -

5
2

cx# 2
2 + 3cx# 2 x#3 - 2cx# 2

3

7.5 STIFFNESS INFLUENCE COEFFICIENTS
It is shown in Section 7.4 that the elements of the stiffness matrix for a linear system can

be determined as the coefficients in the quadratic form of the potential energy. The work

done by a conservative force is independent of path and can be expressed as the difference

in potential energy between the initial position and the final position of the system. The

potential energy function is a function only of the position of the system. Thus, when eval-

uating the potential energy for a specific system configuration, one can look at any means

of arriving at that configuration, even if the configuration is obtained statically.

Stiffness influence coefficients provide an alternate means of determining the elements of

the stiffness matrix. It is based on determining the potential energy for a system configuration

that is obtained through static application of concentrated forces. To illustrate the develop-

ment of the method, consider three particles along the span of a fixed-free beam as illus-

trated in Figure 7.10(a). The beam is initially in its static equilibrium configuration. Let x
1
,

x
2
, and x

3
be the chosen generalized coordinates which represent the displacements of the

particles.

Consider the static application of a set of concentrated loads with f
11

applied to

particle 1, f
21

applied to particle 2, and f
31

applied to particle 3 such that after their appli-

cation, x
1

� x
1
, x

2
� 0, and x

3
� 0 as illustrated in Figure 7.10(b). Since particles 2 and 3

do not change position during application of these loads, the forces applied to these parti-

cles do no work. The total work done by the external loads during this application is

(7.33)

Now add a second set of forces with f
12

applied to particle 1, f
22

applied to particle 2, and

f
32

applied to particle 3 such that after static application of these loads, x
1

� x
1
, x

2
� x

2
,

and x
3

� 0 as illustrated in Figure 7.10(c). Since particles 1 and 3 do not change position

during application of these loads, only the forces applied to particle 2 do work. Note that the

force f
21

was already fully applied when the displacement occurred and the displacement

occurred as f
22

was being applied. Hence, the work done during application of these forces is

(7.34)U1:2 = f21 x2 +
1
2

 f22x2

U0:1 =
1
2

 f11x1
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484 CHAPTER 7

Next add a third set of forces f
13

applied to particle 1, f
23

applied to particle 2, and f
33

applied to particle 3 such that after static application of these loads x
1

� x
1
, x

2
� x

2
,

and x
3

� x
3

as illustrated in Figure 7.10(d). The work done during application of these

forces is

(7.35)

Thus, after application of the three sets of forces, the particles have arbitrary displacements.

According to the principle of work and energy, the potential energy in the system is equal

to the work done by the external forces between configuration 0 and configuration 3,

(7.36)

The system is linear, thus a proportional change in the system of forces applied on any

step leads to a proportional change in displacements. Define k
11

, k
21

, and k
31

as the set of

forces required to cause a unit displacement for the first particle. Then due to the linearity

of the system

(7.37)

Similarly define k
12

, k
22

, and k
32

as the set of forces required to cause a unit displacement

for particle 2 and k
13

, k
23

, and k
33

as the set of forces required to cause a unit displacement

for particle 3. Then in general,

(7.38)fij = kij   
xj

f11 = k11x1  f21 = k21x1  f31 = k31x1

V =
1
2

 f11x1 + f21x2 +
1
2

 f22x2 + f31x3 + f32x3 +
1
2

 f33x3

U2:3 = f31x3 + f32x3 +
1

2
 f33x3

(a)

f11

x1

f21 f31

(b)

(c)

f11

x1 x2

f21 f31

f12 f22 f32

(d)

f11

x1 x2

x3

f21 f31

f12 f22 f32

f13 f23 f33

FIGURE 7.10
(a) Fixed-fixeds beam with
three particles along its
span. (b) Configuration of
beam after first set of loads.
(c) Configuration of beam
after second set of loads.
(d) Configuration of beam
after third set of loads.
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MODELING OF MDOF SYSTEMS 485

Using Equation (7.38) in Equation (7.36) leads to

(7.39)

The potential energy is a function only of the beam’s configuration, not of how the config-

uration is attained. Thus, the potential energy would be the same if the order of the load-

ing were reversed. Suppose the forces f
12

, f
22

, and f
32

are applied first, resulting in x
1

� 0,

x
2

� x
2
, and x

3
� 0. Then the forces f

21
, f

22
, and f

32
are applied such that after their static

application, the beam’s configuration is defined by x
1

� x
1
, x

2
� x

2
, and x

3
� 0. Then using

Equation (7.38), the potential energy is calculated as

(7.40)

Since the potential energy calculated by Equation (7.39) must be the same as that calcu-

lated by Equation (7.40) for arbitrary values of x
1
, x

2
, and x

3
, k

12
� k

21
. Other combina-

tions of the order of loading can be studied to show that in general,

(7.41)

This result, which guarantees that the stiffness matrix is symmetric, is known as Maxwell’s
reciprocity relation.

Then using Equation (7.41) in Equation (7.39) leads to

(7.42)

Equation (7.42) is identical to the quadratic form of the potential energy for this three

degree-of-freedom system. Thus, the coefficients kij, i, j � 1, 2, 3 are the elements of the

stiffness matrix. The kij calculated in this fashion are called stiffness influence coefficients.
Equation (7.41) shows that the stiffness matrix is symmetric when stiffness influence coef-

ficients are used in its determination.

The concept of stiffness influence coefficients can be generalized to any linear system.

Each column of the stiffness matrix has a physical interpretation. The jth column of the

stiffness matrix is the set of forces acting on the particles whose displacements are described

by the chosen generalized coordinates such that after static application of these forces,

xj � 1 and xi � 0 for .

In summary, the influence coefficient method for determining the elements of an n
degree-of-freedom system is as follows:

1. Assign a unit displacement for x
1
, maintaining x

2
, x

3
, . . . , xn in their static-equilibrium

position. Calculate the system of forces required to maintain this as an equilibrium.

position. The forces, ki1, are applied at the locations whose displacements define the

generalized coordinates in the directions of the positive values of the generalized coor-

dinates. This set of forces yields the first column of the stiffness matrix.

2. Continue this procedure to find all columns of the stiffness matrix. The jth column is

found by prescribing xj � 1 and xi � 0, , and calculating the system of forces nec-

essary to maintain this as an equilibrium position.

3. If xj is an angular coordinate, then kji is an applied moment. When calculating the jth
column of the stiffness matrix, a unit rotation in radians must be applied to the angle

defined by xj in the direction of the positive value of the angular coordinate. If the

i [ j

i Z j

V =
1
2

 a
3

i =1

 a
3

j =1

kij x i xj

kij = kji

V =
1
2

k22x2x2 + k12x2x1 +
1
2

 k11x1x1 + k31x3x1 + k32x3x2 +
1
2

 k33x3x3

V =
1
2

 k11x1x1 + k21x1x2 +
1
2

 k22x2x2 + k31x1x3 + k32x2x3 +
1
2

k33x3x3
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486 CHAPTER 7

small angle assumption is necessary to achieve a linear system, it is also used to calcu-

late the stiffness influence coefficients.

4. Reciprocity implies the stiffness matrix must be symmetric: kij � kji. The symmetry

can be used as a check.

5. When deriving differential equations for linear systems, note that static deflections in

springs cancel with the gravity forces or other conservative forces that cause the static

deflections. Thus, static deflections and their sources do not need to be considered in

determining stiffness influence coefficients.

Use the stiffness influence coefficient method to calculate the stiffness matrix for the system

of Figure 7.2 in Example 7.1.

SO LU T I ON
The first column of the stiffness matrix is obtained by setting x

1
� 1, x

2
� 0, x

3
� 0, and

calculating the system of applied forces necessary to maintain this position in equilibrium.

Free-body diagrams of the blocks are shown in Figure 7.11. Setting F � 0 yields

Block a: 

Block b:

Block c: Q k31 = 0

2k + k21 = 0 Q k21 = -2k

-k - 2k + k11 = 0 Q k11 = 3k

g

EXAMPLE 7 . 1 1

mg

N1

k 2k k11
k21

k k
k22

3k
k33

2mg

(a)

(b)

(c)

N2

2k
k31

mg

N3

mg

N1

2k k12

2mg

N2

2k
k32

mg

N3

k kk23

mg

N1

k13

2mg

N2

mg

N3

FIGURE 7.11
(a) First column of stiffness matrix is calculated by setting x1 � 1 , x2 � 0, and x3 � 0, and determining
forces maintaining the position in static equilibrium. (b) Second column of stiffness matrix is calcu-
lated by setting x1 � 0, x2 � 1, and x3 � 0, and determining forces maintaining the position in static
equilibrium. (c) Third column of stiffness matrix is calculated by setting x1 � 0, x2 � 0, and x3 � 1, and
determining forces maintaining the position in static equilibrium.
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MODELING OF MDOF SYSTEMS 487

The second column is obtained by setting x
2

� 0, x
1

� 1, and x
3

� 0. Summing forces on

the free-body diagrams yields

Block a:

Block b:

Block c:

The third column is obtained by setting x
1

� 0, x
2

� 0, and x
3

� 1. Summing forces on

the free-body diagrams yields

Block a:

Block b:

Block c:

The stiffness matrix is

K = C 3k -2k 0
-2k 3k -k

0 -k 4k
S

-k - 3k + k33 = 0 Q k33 = 4k

k + k23 = 0 Q k23 = -k

Q k13 = 0

k + k32 = 0 Q k32 = -k

-2k - k + k22 = 0 Q k22 = 3k

2k + k12 = 0 Q k12 = -2k

Use the stiffness influence coefficient method to find the stiffness matrix for the system

in Figure 7.12. Use xA, the downward displacement of block A, xB, the upward displace-

ment of block B, and �, the counterclockwise angular rotation of the pulley, as general-

ized coordinates.

SO LU T I ON
The first column of the stiffness matrix is obtained by setting xA � 1, xB � 0, and � � 0,

and finding the resulting system of forces and moments to maintain this as an equilibrium

position. Note that since � is an angular coordinate, k
31

is a moment.

Block A:

Block B:

Pulley:      

The second column is obtained by setting xA � 0, xB � 1, and � � 0. The equations of

equilibrium yield

Block A:

Block B:

Pulley:   aMO = 0 Q 3k (2r) + k32 = 0 Q k32 = -6kr

aF = 0 Q 3k - k22 = 0 Q k22 = 3k

aF = 0 Q k12 = 0

aMO = 0 Q k (r) + k31 = 0 Q k31 = -kr

aF = 0 Q k21 = 0

aF = 0 Q - k + k11 = 0 Q k11 = k

EXAMPLE 7 . 1 2
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488 CHAPTER 7

The third column is obtained by setting xA � 0, xB � 0, and � � 1. The equations of equi-

librium yield

Block A:

Block B:

Pulley:      

Thus, the stiffness matrix for this choice of generalized coordinates is

K = C k 0 -kr
0 3k -6kr

-kr -6kr 13kr 2

S
aMO = 0 Q -k(r)(r) - 3k (2r)(2r) + k33 = 0 Q k33 = 13kr 2

aF = 0 Q 3k (2r) + k23 = 0 Q k23 = -6kr

aF = 0 Q kr + k13 = 0 Q k13 = -kr

2r

k
3k

r

I

xB

xA

θ

m2m

(a) (b)

(c) (d)

mpg

k

k11

k21

k31

Oy
Ox

mpg

k (r) 3k (2r)

k13 k23

k33

Oy
Ox

mpg

3k

k12 k22

k32

Oy
Ox

FIGURE 7.12
(a) System of Example 7.12. (b) First column of stiffness matrix is obtained by setting xA � 1, xB � 0, and
� � 0 and calculating forces and moments to maintain the position in static equilibrium. (c) Second column
of stiffness matrix is obtained by setting xA � 0, xB � 1, and � � 0 and calculating forces and moments to
maintain the position in static equilibrium. (d) Third column of stiffness matrix is obtained by setting xA � 0,
xB � 0, and � � 1 and calculating forces and moments to maintain the position in static equilibrium.
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MODELING OF MDOF SYSTEMS 489

Use the influence coefficient method to find the stiffness matrix for the system of Figure 7.13

using �
1
, the clockwise angular displacement of bar AB, and �

2
, the counterclockwise angu-

lar displacement of bar CD, as generalized coordinates.

EXAMPLE 7 . 1 3

θ1

θ2

Ax

Ay

Ax

Ay

A

B

C

(a)

(b)

(c)

D

Dx

Dy

Dx

Dy

k

k11

k12

k21

k22

2k

3k

2k

k

L/2

L/2

L/3L/6

L
2

3k
L
2

k k(L)

k(L)

5L
6

k
5L
6

B
L/3 L/6

FIGURE 7.13
(a) System of Example 7.13. (b) First column of stiffness matrix is determined by setting �1 � 1
and �2 � 0, and calculating the applied moments required to maintain this position in equilibrium.
(c) Second column of stiffness matrix is determined by setting �1 � 0 and �2 � 1 , and calculating the
applied moments required to maintain this position in equilibrium.
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490 CHAPTER 7

SO LU T I ON
The first column of the stiffness matrix is obtained by setting �

1
� 1 and �

2
� 0 and find-

ing the moments that must be applied to the bars to maintain this as an equilibrium posi-

tion. The small angle assumption is used. Equilibrium equations are applied to the

free-body diagrams of Figure 7.13(b).

Taking moments to be positive clockwise about an axis at A and moments to be posi-

tive counterclockwise about an axis at D, we have

(a)

(b)

The second column is obtained by setting �
1

� 0 and �
2

� 1. The equilibrium equa-

tions are applied to the free-body diagrams to yield

(c)

(d)

The stiffness matrix is

(e)K = D 79

36
kL2 -5k 

L2

3

-5k 
L2

3
22
9

kL2

T
aMD = 0 = -kL(L) - 5k 

L
6

 a5 L
6
b - 3k 

L
2

 aL
2
b + k22 Q k22 = 22k 

L2

9

aMA = 0 = kL a5 L
6
b + 5k 

L
6

 (L) + k12 Q k12 = -5k 
L2

3

aMD = 0 = 5k 
L
6

 (L) + kL a5 L
6
b + k21 Q k21 = -5k 

L2

3

aMA = 0 = -2k 
L
2

 aL
2
b - 5k 

L
6

 a5
L
6
b - kL(L) + k11 Q k11 =

79

36
 kL2

The transverse vibrations of the cantilever beam Figure 7.14 are to be approximated by

modeling the beam as a two degree-of-freedom system. The inertia of the beam is modeled

by placing discrete masses at the beam’s midspan and end. Calculate the stiffness matrix for

this two degree-of-freedom model using the displacements of the midspan and end of the

beam as generalized coordinates.

SO LU T I ON
Calculation of the stiffness matrix requires the evaluation of the deflection of the beam due

to a concentrated load at the midspan and a concentrated load at the end of the beam.

Perhaps the best way of handling the beam deflection problem is to use the method of

superposition as shown in Figure 7.14(b). The elements of the ith column of the stiffness

matrix are calculated from

(a)

(b)y (L) = k1i y1(L) + k2i y2(L)

y aL
2
b = k1i y1aL

2
b + k2i y2aL

2
b

EXAMPLE 7 . 1 4
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MODELING OF MDOF SYSTEMS 491

where y(z) is the total deflected shape of the beam, y
1
(z) is the deflected shape of the beam due

to a concentrated unit load at the midspan, and y
2
(z) is the deflected shape of the beam due to

a concentrated unit load at the end of the beam. From Table D.2, these are evaluated as

(c)

(d)

To determine the first column, set y (L/2) � 1 and y (L) � 0. The equations are solved

simultaneously, yielding

(e)

To determine the second column, set y(L/2) � 0 and y(L) � 1. The equations are solved

simultaneously, yielding

(f)k12 = -
240EI

7L3   k22 =
96EI

7L3

k11 =
768EI

7L3   k21 = -
240EI

7L3

y2(L) =
L3

3EI
y1(L) =

5L3

48EI

y1aL
2
b =

L3

24EI
  y2aL

2
b =

5L3

48EI

(a)

(b)

=

f2f1

y(z)

z

x1 x2

f1

y1(z)

+

f2

y2(z)

FIGURE 7.14
(a) Two degree-of-freedom model of cantilever beam of Example 7.14. (b) Illustration of the method
of superposition used to calculate the stiffness matrix.

7.6 FLEXIBILITY INFLUENCE COEFFICIENTS
Development of the stiffness matrix using stiffness influence coefficients is straight-forward.

For mechanical systems, the calculation of stiffness influence coefficients requires the appli-

cation of the principles of statics and little algebra. However, as shown in Example 7.14,
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492 CHAPTER 7

the calculation of a column of stiffness influence coefficients for a structural system mod-

eled with n degrees of freedom requires the solution of n simultaneous equations. This leads

to significant computation time for systems with many degrees of freedom. Flexibility

influence coefficients provide a convenient alternative. They are easier to calculate than

stiffness influence coefficients for structural systems and the knowledge of them is sufficient

for solution of the free-vibration problem.

If the stiffness matrix, K, is nonsingular, then its inverse exists. The flexibility matrix,

A, is defined by

(7.43)

Premultiplying Equation (7.1) by A gives

(7.44)

Equation (7.44) shows that knowledge of A instead of K is sufficient for solution of a vibra-

tion problem.

The elements of K are determined by using stiffness influence coefficients. Analogously,

flexibility influence coefficients can be used to determine A. The flexibility influence coeffi-

cient aij is defined as the displacement of the particle whose displacement is represented by

xi when a unit load is applied to the particle whose displacement is represented by xj and no

other loading is applied to the system. If xj represents an angular coordinate, then a unit

moment is applied.

Suppose an arbitrary set of concentrated loads { f
1
, f

2
, , fn} is applied statically to an 

nDOF system. The load fi is applied to the particle whose displacement is represented by xi.

Using the definition of flexibility influence coefficients, xj is calculated from

(7.45)

Equation (7.45) is summarized in matrix form as

(7.46)

Multiplying Equation (7.46) by A–1 yields

(7.47)
which defines the static relationship between force and displacement. Equation (7.47)

shows that the flexibility influence coefficients as defined are the elements of the inverse of

the stiffness matrix, called the flexibility matrix.

The procedure for determining the flexibility matrix using influence coefficients is as follows:

1. Apply a unit load at the location whose displacement is defined by x
1
. The flexibility

influence coefficient in the first column, ai1, is the resulting displacement of the par-

ticle whose displacement is xi.

2. Successively apply concentrated unit loads to particles whose displacements define the

remaining generalized coordinates. Calculate column of flexibility influence coeffi-

cients using the principles of statics.

3. If xl is an angular displacement, then a unit moment is applied to calculate ajl , j � 1, , n.

The displacements calculated for ali, i � 1, . . . , n, are angular displacements.

4. Since the stiffness matrix is symmetric, the flexibility matrix must also be symmetric.

This condition serves as a check on the analysis.

Á

f = A-1x = Kx

x = Af

x j = a
n

i = 1

aji f i

Á

AMx
$ + ACx# + x = AF

A = K-1
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MODELING OF MDOF SYSTEMS 493

Determine the flexibility matrix for the system in Figure 7.13 of Example 7.13 using flex-

ibility influence coefficients.

SO LU T I ON
The free-body diagrams of Figure 7.15 show the external forces, in terms of angular dis-

placements, acting on each bar when an arbitrary set of moments is applied. The equations

of equilibrium are used to derive equations relating the displacements to the applied forces

(a)

(b)

The first column of the flexibility matrix is obtained by setting m
1

� 1, m
2

� 0, �
1

� a
11

,

�
2

� a
21

, and solving the resulting equations simultaneously. The second column is obtained

by setting m
1

� 0, m
2

� 1, �
1

� a
12

, �
2

� a
22

, and solving the resulting simultaneous equa-

tions. The flexibility matrix is

(c)A = ≥
396

419kL2

270

419kL2

270
419kL2

711
838kL2

¥

Bar BC :  aMD = 0 Q m2 = -
5kL2

3
u1 +

22kL2

9
u2

Bar AB :  aMA = 0 Q m1 =
79kL2

36
u1 -

5kL2

3
u2

EXAMPLE 7 . 1 5

Ax

Ay

Dx

Dy

m1

m2

2k
L
2

k
5L
6

–

θ1

3k
L
2

θ2

Lθ2 θ1 k
5L
6

θ2 – Lθ1

FIGURE 7.15
FBDs of static equilibrium position used to calculate flexibility influence coefficients for system of
Example 7.15. For the first column, m1 � 1 and m2 � 0. For the second column, m1 � 0 and m2 � 1.

Two small machines are to be bolted to an overhanging beam as shown in Figure 7.16. The

beam is nonuniform; thus prediction of influence coefficients from strength-of-materials

concepts is difficult. Instead, the project engineer performs static measurements. After the

first machine is installed, the engineer notes that the deflection directly below the machine

EXAMPLE 7 . 1 6
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494 CHAPTER 7

is 10 mm and the deflection of the end of the beam is 2 mm. After the second machine is

also installed, the deflection of the end of the beam is 0.8 mm.

(a) What is the deflection at the location where the first machine is installed after the

second machine is installed?

(b) What is the flexibility matrix for this system?

SO LU T I ON
(a) Assuming a linear system, the principle of superposition yields the following relation-

ships between the static loads, the influence coefficients, and the deflection:

(a)

(b)

When only the first machine is installed, f
1

� (60 kg)(9.81 m/s2) � 588.6 N, f
2

� 0,

x
1

� 0.01 m, x
2

� �0.002 m. Substitution into the preceding equations yields a
11

� 1.7 �
10–5 m/N, a

21
� �3.4 � 10–6 m/N. When the second machine is also installed, f

1
� 588.6

N, f
2

� (20 kg)(9.81 m/s2) � 196.2 N, and x
2

� �0.0008 m. Then, since a
12

� a
21

, the dis-

placement at the location of the first machine when both machines are installed is

(c)

(b) The second of the preceding equations yields

(d)

The flexibility matrix is

(e)A = c  1.7 -0.34
-0.34   0.61

d10-5
 m/N

a22 =
x2 - a21 f1

f2

=
3-0.0008 m - (-3.4 * 10-6

 m/N)(588.6  N)4
196.2  N

= 6.1 * 10-6 m/N

x1 = (1.7 * 10-5
 m/N)(588.6  N) + (-3.4 * 10-6

 m/N)(196.2  N) = 9.3  mm

x2 = a21 f1 + a22 f2

x1 = a11 f1 + a12 f2

(a)

60 kg
20
kg

60 kg

0.8 mm

2 mm

(b)

60 kg
20
kg

10 mm

FIGURE 7.16
(a) System of Example 7.16. (b) As each machine is bolted to the beam, static deflection measurements
are made.
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MODELING OF MDOF SYSTEMS 495

Four machines are equally spaced along the length of an 8 m fixed-free beam of elastic

modulus 210 � 109 N/m2 and cross-section moment of inertia 1.6 � 10–5 m4, as shown

in Figure 7.17. Determine the flexibility matrix for a four degree-of-freedom model of the

system with the location of the machines as the generalized coordinates.

SO LU T I ON
The deflection equation for a fixed-free beam taken from Appendix D is

(a)

The flexibility matrix is calculated sequentially by column in reverse order. Imagine the

unit load placed at a � L � 8 m. Then

(b)

In a similar manner,

(c)

Symmetry of the flexibility matrix is used to determine a
34

� a
43

. Then a unit load is imag-

ined at and

(d)

Imagine a unit load placed at 

(e)a21 = w aL
4

; L
2
b = 1.98 * 10-6

 m>N, a22 = w aL
2

; L
2
b = 6.35 * 10-6

 m>N
a = L>2

a33 = w a3L
4

; 3L
4
b = 2.14 * 10-5

 m>N

a31 = w aL
4

; 3L
4
b = 3.17 * 10-6

 m>N, a32 = w aL
2

; 3L
4
b = 1.11 * 10-5

 m>N,

a = 3L>4

a43 = w a3L
4

; Lb = 3.21 * 10-5
 m>N, a44 = w (L ; L) = 5.08 * 10-5

 m>N
a42 = w aL

2
; Lb = 1.59 * 10-5

 m>N,

=
11(8 m)3

384(210 * 109
 N>m2) (1.6 * 10-5

 m4)
= 4.37 * 10-6

 m>N
a41 = w aL

4
; Lb =

1
EI

 c- 1
6

 aL
4
b3

+
1
2

 (L )aL
4
b2 d =

11L3

384EI

w (z ; a) =
1
EI

 c1
6

 (z - a)3u (z - a ) -
z 3

6
+

az 2

2
d

x1 x2 x3 x4

I = 1.6 × 10–5 kg · m2

E = 210 × 109 N/m2

2 m 2 m 2 m 2 m

FIGURE 7.17
Four machines along the span of a fixed-free beam used in Example 7.17.

EXAMPLE 7 . 1 7
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496 CHAPTER 7

Finally, imagine a unit load placed at 

(f)

The flexibility matrix is

(g)

Systems exist in which the stiffness matrix is singular and hence the flexibility matrix

does not exist. These systems are called semidefinite or unconstrained. It is shown in Chapter 8

that these systems have a lowest natural frequency of zero and a corresponding mode where

the system moves as a rigid body.

The system of Figure 7.18(a) has two degrees of freedom and is unconstrained. The

stiffness matrix for this system is calculated as

(7.48)

The second row of the stiffness matrix is a multiple of the first row, which implies that the

matrix is singular and a flexibility matrix for this system does not exist. Indeed, when the def-

inition of flexibility influence coefficients is applied in an attempt to calculate the flexibility

matrix, as shown in Figure 7.18(b), no solution is found. Since the system is unconstrained,

when a unit force is applied to either mass, the system cannot remain in equilibrium. Instead,

the system will behave as a rigid body with uniform acceleration.

Another example of an unconstrained system is the system of Figure 7.11 in

Example 7.10. The stiffness matrix for this example is repeated here

(7.49)

Inspection of this matrix reveals that the first row plus two times the second row is pro-

portional to the third row. Thus, the three rows of the stiffness matrix are dependent, which

implies that the stiffness matrix is singular, which, in turn, implies that the flexibility

matrix does not exist. If, for example, a unit moment were applied to the pulley, then there

are no other external forces which develop a moment about the center of the pulley. Hence,

equilibrium cannot be maintained.

K = J
k 0 -kr
0 3k -6kr

-kr -6kr 13kr 2 K

K = c k -k
-k k

d

A = 10-7 ≥
   7.90   19.8   31.7   43.7
19.8  63.5 111.1 158.7
31.7 111.1 214.3 321.4
43.7 158.7 321.4 507.9

¥   m>N

a11 = w aL
4

; L
4
b = 7.90 * 10-7

 m>N
a = L>4

k

(a)

(b)

k (a21 – a11) = 0
1

m1 m2

FIGURE 7.18
(a) A two degree-of-freedom unrestrained
system. (b) FBDs of a system are used to show
that the flexibility matrix does not exist.
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A beam pinned at one end with no other support is an example of an unconstrained

structural system. Application of a force or moment will lead to rigid body rotation about

the pin support. A free-free beam is doubly unconstrained, in that it has two independ-

ent rigid-body motions. A free-free beam is unconstrained from transverse motion as well

as rigid-body rotation.

Flexibility influence coefficients can be used to calculate the flexibility matrix.

Equation (7.44) shows that knowledge of the flexibility matrix instead of knowledge of the

stiffness matrix is sufficient to proceed with solution of the system of differential equations

governing the vibrations of a MDOF system. The choice of whether to determine the stiff-

ness matrix or the flexibility matrix is usually easy.

For structural systems, calculation of the flexibility matrix is easier than calculation of

the stiffness matrix. For these systems, deflection equations from mechanics of solids are

used to determine the deflection of a particle due to an applied concentrated load. The

deflection equation for the structure is often available in a textbook or handbook (e.g.,

Appendix D). Thus, calculation of the flexibility matrix is direct, whereas the solution of

a system of simultaneous equations is necessary to determine each column of the stiffness

matrix. However, calculation of the stiffness matrix is easier than calculation of the flexi-

bility matrix for mechanical systems that comprise rigid bodies connected by flexible ele-

ments. For these systems, application of the equations of static equilibrium to appropriate

free-body diagrams is sufficient to calculate the stiffness matrix, while calculation of a

column of the flexibility matrix also requires the solution of a system of simultaneous

equations.

The stiffness matrix must be calculated for unconstrained systems.

7.7 INERTIA INFLUENCE COEFFICIENTS
The mass matrix can be calculated directly from the quadratic form of kinetic energy. It

also can be calculated from influence coefficients calculated from an impulse and momentum

analysis. Consider a linear system initially at rest in equilibrium. Free vibrations will occur

if the system is given either an initial kinetic or potential energy. The stiffness influence

coefficients are developed by examining potential energy induced by a static application of

a system of forces. Inertia influence coefficients are developed by examining the kinetic

energy induced by application of a system of impulses. An instantaneous change in velocity

(and hence an instantaneous change in kinetic energy) occurs due to application of an

impulse. If a system is dynamically coupled, then an instantaneous change in the velocity

associated with one generalized coordinate may cause an instantaneous change in the veloci-

ties associated with the other generalized coordinates.

Consider a MDOF system with generalized coordinates x
1
, x

2
, . . . , xn. Assume a

system of impulses is applied such that Ii is an impulse applied to the particle whose velocity

is Motion occurs with possibly non-zero velocities in the other generalized coordinates.

These velocities are related to the applied impulses by n application of the principle of

impulse and momentum. For a linear system, these are

(7.50)Ii = a
n

i = 1

mij x# j

x# i .
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498 CHAPTER 7

where mij are the inertia influence coefficients. Consider in particular a system of applied

impulses such that and for Then Equation (7.50) reduces to

(7.51)

Thus, the inertia influence coefficient mik is one component of a system of impulses that is

applied to generate an instantaneous velocity with for Specifically, it 

is the impulse that is applied to the particle whose displacement is represented by xi. If a

system of impulses is applied to a linear system such that the relationship between the

applied impulses and the induced velocities is given by Equation (7.50), then the principle

of work and energy can be used to show that the kinetic energy developed by the system is

the quadratic form of kinetic energy given by Equation (7.22). Thus, the inertia influence

coefficients are the elements of the mass matrix.

The following summarizes the calculation of inertia influence coefficients:

1. Assume that a system of impulses, Ii, i � 1, 2, . . . , n are applied such that 

, , . . . , . Note that Ij is the impulse applied to the particle whose

displacement is described by the generalized coordinate xj. Repeated application of the

principle of impulse and momentum allows for the solution of the applied impulse.

The inertial influence coefficients are mi1 � Ii for i � 1, 2, . . . , n.

2. The procedure in step 1 is repeated with and all other velocities equal to zero 

for k � 2, 3, . . . , n. The inertia influence coefficients are mik � Ik.

3. If xj represents an angular coordinate, then Ij is an angular impulse and is an angu-

lar velocity.

4. The mass matrix is symmetric, mij � mji. This serves as a check on the calculations.

x# j

x# k = 1

x# n = 0x# 2 = 0x# 2 = 0
x# 1 = 1,

j Z k.x# j = 0x# k = 1

Ii = mik

j Z k.x# j = 0x# k = 1

Determine the mass matrix for the system of Figure 7.19(a) using inertia influence coeffi-

cients. Use � and x, as illustrated, as generalized coordinates.

EXAMPLE 7 . 1 8

(b)

(c)

x

(a)

θ

 =

m22

m12

ImpulsesMomentum

m

m21

m11=

m L–
2

1
12

mL2

FIGURE 7.19
(a) System of
Example 7.18
where � and x
are used as
generalized
coordinates.
(b) Impulse and
momentum dia-
grams of
system for set

1 and
0. (c) Impulse
and momentum
diagrams for
set 0
and 1.x# =
u
#

=

x# =u
#

=
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SO LU T I ON
To determine the first column of the mass matrix, set and The angular 

momentum of the system is equal to The linear momentum of the system is 

If the velocity of the end of the bar is zero but its angular velocity is one, the relative

velocity equation is used to determine the velocity of the mass center as directed down-

ward. An angular impulse equal to m
11

is applied clockwise to the bar, and a linear impulse

equal to m
21

is applied downward at the end of the bar. Impulse and momentum diagrams

are shown in Figure 7.19(b). Applying the principle of linear impulse and momentum gives

(a)

Applying the principle of angular impulse and angular momentum about the end of the

bar to impulse diagram of Figure 7.19(b)

(b)

To determine the second column of the mass matrix, set and . The angular

momentum of the bar is zero, and the linear momentum is simply m. An angular impulse

equal to m
12

is applied clockwise to the bar, and a linear impulse of magnitude m
22

is

applied downward at the end of the bar. Applying the principle of linear impulse and

momentum to the impulse diagram of Figure 7.19(c) yields

(c)

Of course, the mass matrix is symmetric, so However, it is best to check

the result. Applying the principle of angular impulse and angular momentum to the dia-

grams of Figure 7.19(c) about an axis at the end of the bar leads to

(d)

Thus, the mass matrix for this system is

(e)M = ≥
m

L2

3
m

L
2

m
L
2

m
¥

m
L
2

= m12

m12 = m21 = m L
2.

m = m22

x# = 1u
#

= 0

m 
L
2

 aL
2
b +

1
12

mL2 = m11 Q m11 = m 
L2

3

m 
L
2

= m21

L>2mv.

#
qI u = 1

12
mL2.

x# = 0.u
#

= 1

7.8 LUMPED-MASS MODELING
OF CONTINUOUS SYSTEMS
Vibrations of continuous systems are governed by partial differential equations. Analytical

solutions to partial differential equations are often difficult to obtain. Thus, approximate and

numerical methods are often used to approximate the vibration properties and systems response

of continuous systems. Some of these, such as the Rayleigh-Ritz method and the finite-

element method, are discussed in Chapters 10 and 11. A simpler method of approximation
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500 CHAPTER 7

is to replace the distributed inertia of the continuous system by a finite number of lumped

inertia elements. A point where a lumped mass is placed is called a node. All inertia effects

are concentrated at the nodes. The nodes are assumed to be connected by elastic but mass-

less elements. Generalized coordinates are chosen as the displacements of the nodes.

A lumped-mass model of a continuous system is a discrete model of a continuous system.

A system with n nodes is modeled as an n degree-of-freedom system. Differential equations

of the form of Equation (7.1) or Equation (7.44) are derived to approximate the vibrations of

the continuous system. It is necessary to determine the mass matrix, either the stiffness matrix

or the flexibility matrix, and the force vector for the discrete approximation.

Unless the system is unconstrained, the flexibility matrix is used in lumped-mass mod-

eling of a continuous system. The flexibility matrix is obtained by using flexibility influence

coefficients, as described in Section 7.6. If the system is unconstrained, the stiffness matrix

must be determined.

Lumped-mass approximations for modeling a continuous system using one degree of

freedom were considered in Chapter 2. Recall that the inertia effects of a linear spring are

approximated by placing a particle of mass equal to one-third of the mass of the spring at

its end. The one-third approximation determined by calculating the particle mass such that

the kinetic energy of the model system is equal to the kinetic energy of the spring, assum-

ing a linear displacement function along the axis of the spring. This model illustrates that

it is incorrect to model the inertia effects of the spring by using the full mass of the spring.

The kinetic energy of particles near its fixed support is much less than the kinetic energy

of the particles near the point of attachment to the system. Kinetic energy considerations

could be used to determine the mass matrix for a discrete approximation. However, such a

mass matrix, called the consistent mass matrix, is difficult to obtain and is not a diagonal

matrix. The amount of effort used in determining a consistent mass matrix would be better

used in developing a finite-element model for the system.

For simplicity, it is desirable to specify a diagonal mass matrix for a lumped-mass

approximation of a continuous system. If a discretization is used where the mass of the

system is lumped at nodes, then an obvious approximation to the mass matrix is a diago-

nal matrix with the nodal masses along the diagonal. In such a situation, the values of the

nodal masses affects the accuracy of the system response. Using the one-degree-of-freedom

approximation of the inertia effects of a linear spring as a guide, it is clear that using the

entire mass of the system in the approximation will lead to errors in the approximation.

When a diagonal matrix is used to model the inertia effects of a continuous system, the

mass lumped at each node should represent the mass of an identifiable region of the struc-

ture. A good scheme is to define the nodal mass as the mass of a region whose boundaries

are halfway between the node and neighboring nodes on its right and left. If the node has

no neighbor on one side, but is adjacent to a free end, then all of the mass between the

node and the free end is used in calculating the nodal mass. If the particle is adjacent to a

support that prevents motion, then only half of the mass between the node and the sup-

port is used. The accuracy of this method of approximation is considered in Chapter 8.

Calculation of the force vector may also require additional approximations. As shown in

Section 7.3, the force vector is obtained by calculating the generalized forces, which occur when

the method of virtual work is used. If a concentrated load is applied at a node, then the gener-

alized force for the node’s generalized coordinate is the value of the concentrated load and the

generalized forces for all other coordinates are zero. However, if a concentrated load is applied

at a location other than a node or the loading is distributed, calculation of the generalized forces

requires additional approximations. The dynamic displacement is not available to apply the
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MODELING OF MDOF SYSTEMS 501

method of virtual work. In these cases it is suggested that the loading be replaced by a series of

concentrated loads, calculated as follows, such that the resulting system is approximately stati-

cally equivalent to the applied loading. Static equivalence does not imply dynamic equivalence.

If the applied loading is replaced by a system of concentrated loads, the following

method is used. The loading between any two nodes is replaced by a concentrated load at

each of the nodes. The two concentrated loads are statically equivalent to the loading

between the nodes. The sum of the concentrated loads is the resultant of the load-

ing between the nodes. The moment of the distributed loading about either node is the

same as the moment of the two concentrated loads about that point. Thus, the total general-

ized force applied at a node is approximated by the sum of the contribution from the load-

ing between the node and its neighbor to the left and the contribution from the loading

between the node and its neighbor to the right. If the node is adjacent to a free end, the con-

tribution to the loading between the node and the free end is the resultant of the loading. If

the particle is adjacent to a support that prevents displacement, only the resultant of the

loading between the node and the point halfway between the node and the support is used.

In this case, the work done by particles near supports is ignored in modeling the system, just

as these particles’ kinetic energy is ignored. The concentrated load is not statically equiva-

lent to the actual loading if the particle is adjacent to a free end or a support.

Derive the differential equations whose solution approximates the forced response of the

cantilever beam of Figure 7.20. Use four degrees of freedom to discretize the system. The

beam is made of a material of elastic modulus E and mass density �. It has a cross-sectional

area A and moment of inertia I. Neglect damping.

EXAMPLE 7 . 1 9

m1 =

L
4

FL
8

FL
4

FL
8

rAL
4

m2 = rAL
4

m3 = rAL
4

m4 = rAL
8

L
2

(a)

(b)

(c)

F(t)

L
4

FIGURE 7.20
(a) System of Example 7.19. (b) Calculation of nodal masses. (c) Nodal forces are applied such that the
forces are statically equivalent to the distributed loading of Figure 7.20(a).
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502 CHAPTER 7

SO LU T I ON
The beam is discretized by lumping its mass in four particles as shown in Figure 7.20(b).

The nodes are chosen to be equally spaced. The generalized coordinates are the displace-

ments of the nodes. The mass of each particle models the inertia effects of the regions

shown in the figure. The loading is replaced by time-dependent concentrated loads at the

nodes, as shown in Figure 7.20(c).

The flexibility matrix for this discretized system is determined from flexibility influ-

ence coefficients, as described in Section 7.6. The first column is obtained by placing a unit

load at the first node and calculating the resulting deflections at each of the nodes. The

result is

(a)

The mass matrix is a diagonal matrix with the nodal masses along the diagonal. The force

vector is simply the vector of concentrated loads from Figure 7.20(c). Then Equation (7.44)

becomes

(b)

which simplifies to

(c)
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7.9 BENCHMARK EXAMPLES

7.9.1 MACHINE ON FLOOR OF AN INDUSTRIAL PLANT
Consider the machine directly bolted to the beam. Four lumped masses, as illustrated

in Figure 7.21, are used to represent the motion of the beam, rather than one. The 

total weight of the beam is 1098.5 N or a mass of 111.97 kg. The mass matrix is deter-

mined using the methods described in Section 7.8. Each lumped mass has a value of 
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111.97 kg/5 � 22.39 kg. The mass associated with x
3

is the mass of the machine plus the

lumped mass:

(a)

The flexibility matrix is calculated using Appendix D. For example, calculation of the

fourth column of the matrix requires a unit force applied at a � 4.8 m, and calculation of

the deflection at the locations of the generalized coordinates is

(b)

(c)
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FIGURE 7.21
Four degree-of-freedom model of machine
bolted directly to beam.
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(e)

(f)

The differential equations that model the system are

(g)

or

(h)

Now consider a five degree-of-freedom model including the vibration isolator of stiff-

ness 5.81 � 105 N/m as illustrated in Figure 7.22(a). Let the displacement of the machine

be x
5
. The first four columns and rows of the flexibility matrix for this model are the same as

in Equation (f ). The fifth column is calculated by placing a unit load on the machine and

no loads anywhere else. However, summing forces on a free-body diagram of the machine

Figure 7.22(b) reveal

(i)

and the force developed in the isolator is unity. Thus, the deflections of the other points on

the beam are as if a unit load were applied to the mass whose displacement is x
3
. This is the
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displacement as calculated for the third column of the flexibility matrix. Hence, the flexi-

bility matrix for the five degree-of-freedom model is

(j)

The mass matrix is

(k)

The differential equations modeling the displacement of the system are

(l)

F0  sin vt10-8  G
31.346 53.736 49.952 30.0026 1027.533

53.736 133.6683 142.051 85.9776 2922.046

50.1536 142.6243 188.212 126.0557 3871.597
30.0026 85.9776 125.549 103.8896 2582.594
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FIGURE 7.22
(a) Five degree-of-freedom model machine on fixed pinned beam. (b) FBD of machine and particle on
beam.
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7.9.2 SIMPLIFIED SUSPENSION SYSTEM
The distribution of mass about the center of mass is considered to matter such that the

vehicle has the four degree-of-freedom model of Figure 7.23. The vehicle is now repre-

sented as a nonuniform bar of mass ms � 300 kg. The length of the bar is the length of the

vehicle is l � 3 m with a mass center 1.3 m from the front axle. The moment of inertia of

the vehicle is l � 225 kg � m2. Each axle has a mass ma � 25 kg. The stiffness of each set

of tires is kt � 100,000 N/m. It is estimated that the damping coefficient of each tire is

10,000 N � s/m. The front wheel has a displacement y(t), and the rear wheel has a displace-

ment where v is the constant horizontal speed of the car. The generalized 

coordinates are x
1

(the displacement of the mass center of the vehicle form the system’s equi-

librium position), � (the clockwise angular displacement of the vehicle form the system’s

equilibrium position), and x
2

(the displacement of the front axle), and x
3

(the displacement

of the rear axle), where all are measured from the system’s equilibrium position.

Lagrange’s equations are employed to derive the governing differential equations. The

kinetic energy of the car at an arbitrary instant is

(a)

The potential energy of the car at an arbitrary instant is

(b)

The system’s Lagrangian is

(c)+
1

2
kt (z - x3 )2 d+

1
2

kt (y - x2)
2

- c1
2

k 3x2 - (x1 + a u)42 +
1

2
k {x3 - 3x1 - (L - a )u4}2

L =
1

2
 ms x 

# 2
1 +

1

2
I u

#
2
2 +

1

2
 ma x 

# 2
2 +

1

2
 max 

# 2
3

V =
1
2

k3x2- (x1+a u)42 +
1
2

k{x3- 3x1- (L - a )u4}2 +
1
2

kt (y - x2)2 +
1
2

kt (z - x3)2

T =
1
2

 ms x 
# 2
1 +

1
2

I u
#
2 +

1
2

 ma x 
#2
2 +

1
2

 ma x 
# 2

3

z = y 1t - L
v2

506 CHAPTER 7

1.7 m 1.3 m

x3

v

x1

G

12,000 N/m

ms = 300 kg I = 225 kg · m2

100,000 N/m

1200 N · s/m

25 kg

10,000 N · s/m

z(t) = y(t – L/v)

x2

12,000 N/m

100,000 N/m

1200 N · s/m

10,000 N · s/m

y(t)

θ

25 kg

FIGURE 7.23
Four degree-of-freedom
model of vehicle suspension
system.
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MODELING OF MDOF SYSTEMS 507

Rayleigh’s dissipation function is

(d)

Application of Lagrange’s equations yield

(e)

(f)

(g)

and

(h)

The equations summarized in matrix form become

(i)+ ≥
k 3a2 + (L - a)24 k L -ka k (L - a)

-k (L - 2a) 2k -k -k
-ka -k k + kt 0

k (L - a) -k 0 k + kt

¥  ≥
u

x1

x2

x3

¥ = ≥
0
0

ct y# + kt y
ctz

# + kt z

¥

+ ≥
c 3a2 + (L - a)24 cL - ca c (L - a)

cL 2c - c - c
- ca - c c + ct 0

c (L - a) - c 0 c + ct

¥  ≥
u
#

x# 1

x
#
2

x# 3

¥

≥
I 0 0 0
0 ms 0 0
0 0 ma 0
0 0 0 ma

¥  ≥
u
$

x
$

1

x
$
2

x
$

3

¥

ma x
$

3 + c (L - a)u
#

- cx# 1 + (c + ct )x
#
3 + k (L - a )u - kx1 + (k + kt )x3 = ct z# + kt z

d
dt

 a 0L
0x# 3
b -

0L
0x3

-
0�

0x# 3
= 0

ma x
$

2 - cau
#

- cx# 1 + (c + ct )x
#
2 - ka u - kx1 + (k + kt )x2 = ct y# + kt y

d
dt

 a 0L
0x# 2
b -

0L
0x2

-
0�

0x# 2
= 0

ms x
$
1 + c (L - 2a)u

#
+ 2cx#1 - cx#2 - cx#3 + k (L - 2a) + 2kx1 - kx2 - kx1 = 0

d
dt

 a 0L
0x# 1
b -

0L
0x1

-
0�

0x# 1
= 0

+ kLx1 - kax2 + k (L - a )x3 = 0

I u
$

+ c 3a2 + (L - a)24 u# + cLx#1 - cax#2 + c (L - a )x#3 + k 3a2 + (L - a)24u

d
dt

 a 0L

0u
# b -

0L
0u

-
0�

0u
# = 0

-
1

2
 ct ( y# - x# 2)2 +

1

2
 ct (z

# - x# 3)2

� = -
1
2

 c [x# 2 - (x# 1 + a u
#
)]2 -

1
2

 c {x# 3-[x# 1- (L - a )u
#
]}2

62129_07_Ch07_p497-518.qxd  3/16/11  12:01 PM  Page 507

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



508 CHAPTER 7

Substituting the given values into Equation (i) leads to

(j)

7.10 FURTHER EXAMPLES

+104 ≥
 5.5     -3.60   -1.56      2.04

-1.08    2.4 -1.2 -1.2
-1.56 -1.2      1.12 0
   2.04 -1.2 0  1.2

¥  ≥
u

x1

x2

x3

¥ = ≥
0
0

1 * 104y# + 1 * 105y
1 * 104z# + 1 * 105z

¥

≥
225 0 0 0
0 300 0 0
0 0 25 0
0 0 0 25

¥  ≥
u
$

x
$

1

x
$

2

x
$

3

¥ + 103≥
 5.5   -0.48   -1.56      2.04

-0.48    2.4 -1.2 -1.2
-1.56 -1.2  11.2 0
   2.04 -1.2 0 1.12

¥  ≥
u
#

x#1
x#2
x#3

¥

Refer to the system shown in Figure 7.24(a). 

(a) Use Lagrange’s equations to derive the differential equations governing the motion of

the three degree-of-freedom system shown. Use x
1
, x

2
, and � as generalized coordinates.

Assume small displacements. 

(b) Use stiffness influence coefficients to derive the stiffness matrix. 

(c) Use inertia influence coefficients to derive the mass matrix.

EXAMPLE 7 . 2 0

x1 x2

k

k

k

2L/3 L/4

L/2 L/2

L/12

F(t)

M(t)

Identical slender rods
of mass m

(a)

q

FIGURE 7.24
(a) System of Example 7.20. (b) FBDs for calculation of the first column of stiffness matrix. (c) FBDs for
the second column of stiffness matrix. (d) FBDs for the third column of stiffness matrix. (e) Impulse-
momentum diagrams to determine the first column of mass matrix. (f) Impulse-momentum diagrams for
the second column of mass matrix. (g) Impulse-momentum diagrams for the third column of mass matrix.
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k33

k

oy

oy

ox

ox

k11

(b)

(c)

(d)

k21

k
L
3

k33

k

k23

k22

k12

k
k32

L
2

kL

oy

ox

k13

k
2L
3

FIGURE 7.24
(Continued)

SO LU T I ON
(a) The system’s kinetic energy at an arbitrary instant is

(a)

The system’s potential energy at the same instant is

(b)V =
1
2

k aL
2
ub2

+
1

2
kx 2

1 +
1

2
k ax1 + 2x2

3
- Lub2

T =
1
2

m (Lu
#
)2 +

1
2

 a 1
12

mL2b u#2 +
1
2

m ax
#
1 + x# 2

2
b2

+
1
2
a 1
12

mL2b ax
#
2 - x# 1

L
b2
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The Lagrangain becomes

(c)- c1
2

k aL
2
ub2

+
1
2

kx 2
1 +

1
2

k ax1 + 2x2

3
- L ub2 d

L = T - V =
1
2
a1
3

mL2b u# 2 +
1
2

m ax
#
1 + x# 2

2
b2

+
1
2
a 1
12

mL2b ax
#
2 - x# 1

L
b2

=

m31

m11

m21

=

(f)

(e)

(g)

m32m22

Ix

Iy

m12

Ix

Iy

mL2I
12

mL
2

mL2

mL
2

mL
2

1
12

I
L

=

m33m23

m13

Ix

Iy

mL2I
12

I
L

FIGURE 7.24
(Continued)
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MODELING OF MDOF SYSTEMS 511

The method of virtual work is used to obtain the generalized forces. Assume virtual dis-

placements ��, �x
1
, and �x

2
. The virtual work done by the external forces is

(d)

Thus, 

Successive application of Lagrange’s equations leads to

(e)

(f)

(g)

Cleaning up these equations and writing them in a matrix form gives

(h)

(b) The differential equations are derived assuming the same displacement vector as in 

part (a). The first column of the stiffness matrix is obtained by setting � � 1, x
1

� 0, and

G
1

3
mL2 0 0

0
1
3

m
1
6

m

0
1
6

m
1
3

m

W  J
u
$

x
$

1

x
$

2
K + G

5
4

kL2 -
1
3

kL -
2
3

kL

-
1
3

kL
10
9

k
2
9

k

-
2
3

kL
2
9

k
4
9

k

W  J
u

x1

x2
K = E M(t)

1
4

F(t )

3
4

F (t )

U

- c- 1

2
(2)k a x1 + 2x2

3
- L ub  a2

3
b d =

3
4

F (t )

d
dt

 c1
2

 (2)m ax# 1 + x# 2

2
b  a1

2
b +

1
2

 (2) a 1
12

mL2b  ax
#
2 - x# 1

L
b  a1

L
bd

d
dt

 a 0L
0x# 2

b -
0L
0x2

= Q3

- c- 1
2

(2)kx1 -
1
2

(2)k ax1 + 2x2

3
- L ub a1

3
bd =

1
4

F (t )

d
dx
c1
2

(2)m ax
#
1 + x# 2

2
b a1

2
b +

1
2

(2) a 1
12

mL2b ax
#
2 - x# 1

L
b a- 1

L
bd

d
dt

 a 0L
0x# 1

b -
0L
0x1

= Q2

d
dt

 c1
2

 (2)a1
3

mL2b u# d - c- 1

2
 (2)k aL

2
b2

u -
1

2
 (2)k ax1 + 2x2

3
- Lub (-L) d = M (t )

d
dt

 a0L

0u
#b -

0L
0u

= Q1

Q1 = M (t ), Q2 =
F (t )

4
, and  Q3 =

3F (t )

4
.

dW = M (t )du + F (t )adx1 + 3dx2

4
b
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512 CHAPTER 7

x
2

� 0, as shown in Figure 7.24(b). Summing moments using the FBD of the lower bar,

MO � 0 yields

(i)

Summing moments on the FBD of the upper bar using M
2

� 0 yields

(j)

Summing moments on the FBD of the upper bar using M
1

� 0 yields

(k)

The second column is obtained by setting � � 0, x
1

� 1, and x
2

� 0. Summing moments

on the upper bar using the FBDs of Figure 7.24(c) yields

(l)

and

(m)

The third column is obtained by setting � � 0, x
1

� 0, and x
2

� 1. Summing moments

on the upper bar using the FBDs of Figure 7.24(d) yields

(n)

The remaining elements of the stiffness matrix are determined using symmetry of the stiff-

ness matrix.

(c) The mass matrix is determined through the use of inertia influence coefficients. The

first column is calculated by setting , , and . Using the principle of

angular impulse and momentum applied to the lower bar about O using impulse momen-

tum diagrams of Figure 7.24(e) leads to

(o)

Applying the principle of impulse and momentum to the upper bar yields

(p)

The second column of the mass matrix is calculated by setting , , and 

The induced velocity of the mass center of the upper bar is one-half downward, and the

induced angular velocity of the bar is counterclockwise. Using angular momentum

about O on the lower bar of the momentum diagrams of Figure 7.24(f ) leads to

(q)m12 = 0

1>L
x# 2 = 0.x# 1 = 1u

#
= 0

m21 = m31 = 0

m11 =
1

12
mL2 +

mL
2

 aL
2
b Q m11 =

mL2

3

x# 2 = 0x# 1 = 0u
#

= 1

(k33)L -
2k
3

 a2L
3
b = 0 Q k33 =

4k
9

(k32 )L -
k
3

 a2L
3
b = 0 Q k32 =

2k
9

(k22)L - (k)L - ak
3
b aL

3
b = 0 Q k22 =

10k
9

k31(L) + (kL) a2L
3
b = 0 Q k31 = -

2kL
3

g
k21(L) + (kL) aL

3
b = 0 Q k21 = -

kL
3

g
k11 - (kL)(L) - ak L

2
b  aL

2
b = 0 Q k11 =

5kL2

4

g
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MODELING OF MDOF SYSTEMS 513

Application of the principle of angular impulse and angular momentum for the upper bar

about an axis through the particle whose displacement is x
2

leads to

(r)

Application of the principle of angular impulse and angular momentum for the upper bar

about an axis through the particle whose displacement is x
1

leads to

(s)

The third column of the mass matrix is calculated by setting  , , and 

The induced velocity of the mass center is one-half downward, and the induced angular

velocity of the bar is clockwise. Application of the principle of angular impulse and

angular momentum for the upper bar about an axis through the particle whose displace-

ment is x
1

using the diagrams of Figure 7.24(g) leads to

(t)

The remaining elements of the mass matrix are determined from its symmetry.

m33 (L ) =
m
2

 aL
2
b +

1
12

mL Q m33 =
m
3

1>L
x# 2 = 1.x# 1 = 0u

#
= 0

m32 (L) =
m
2

 aL
2
b -

1
12

mL Q m32 =
m
6

m22 (L) =
m
2

 aL
2
b +

1
12

mL Q m22 =
m
3

The three degree-of-freedom model of a human hand and upper arm when squeezing a

handle was first suggested in by Dong, Dong, Wu, and Rakheja. It is illustrated in Figure 7.25.

Use Lagrange’s equations to derive a mathematical model for the arm.

SO LU T I ON
The kinetic energy of the system at an arbitrary instant using the generalized coordinates

indicated in Figure 7.25(b) is

(a)

The potential energy at an arbitrary instant is

(b)

The Lagrangian is

(c)

Rayleigh’s dissipation function is

(d)� = -
1
2

c1x# 2
1 -

1
2

c2 (x# 2 - x1)2 -
1
2

c3 (x# 3 - x# 2)2 -
1
2

c4 ( y# - x# 2)2 -
1
2

c5 ( y# - x# 3 )2

-
1
2

k3 (x3 - x2 )2 -
1
2

k4 ( y - x2 )2 -
1
2

k5 ( y - x3 )2

L =
1
2

m1x# 2
1 +

1
2

m2x# 2
2 +

1
2

m3x# 2
3 +

1
2

m4 y# 2 +
1
2

m5 y# 2 -
1
2

k1x 2
1 -

1
2

k2 (x2 - x1)2

V =
1

2
k1x 2

1 +
1

2
k2 (x2 - x1)

2 +
1

2
k3 (x3 - x2)

2 +
1

2
k4 (y - x2)2 +

1

2
k5 ( y - x3 )2

T =
1
2

m1x# 2
1 +

1
2

m2x# 2
2 +

1
2

m3 x# 2
3 +

1
2

m4y# 2 +
1
2

m5y# 2

EXAMPLE 7 . 2 1
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514 CHAPTER 7

Application of Lagrange’s equation for x
1
, yields

(e)

Application of Lagrange’s equation for x
2
, yields

(f)

Application of Lagrange’s equation for x
3
, yields

(g)- k5( y - x3 ) (-1)4 = 0

d
dx

 (m3x# 3 ) - 3- c3(x
#
3 - x2) - c5( y# - x# 3 ) (-1)4 - 3-k3 (x3 - x2 )

d
dt

 a 0L
0x# 3

b -
0�

0x# 3

-
0L
0x3

= 0

- 3-k2(x2 - x1) - k3 (x3 - x2) (-1)-k4( y - x2) (-1)4 = 0

d
dx

 (m2x# 2 ) - 3- c2(x
#
2 - x# 1) - c3(x

#
3 - x# 2) (-1)c4 ( y# - x# 2) (-1)4

d
dt

 a 0L
0x#2
b -

0�

0x#2
-

0L
0x2

= 0

d
dx

 (m1x# 1) - 3- c1x
#
1 - c2(x# 2 - x# 1) (-1)4 - 3-k1x1 - k2 (x2 - x1) (-1)4 = 0

d
dt

 a 0L
0x# 1

b -
0�

0x# 1

-
0L
0x1

= 0

k5 c5

c2
k2

c1
k1

k4 c4

Fingers
m3

Palm
m2

Upper arm
m1

(b)(a)

Fingers’
skin

Palm
skin

x3

c3k3

x2

x1

y

FIGURE 7.25
(a) Hand and upper arm gripping an object.
(b) Three degree-of-freedom model of hand
and upper arm.
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The differential equations are written in matrix form as

(h)J
x1

x2

x3
K = J

0
c4 y# + k4 y
c5 y# + k5 y K+  J

k1 + k2 -k2 0
-k2 k2 + k3 + k4 -k3

0 -k3 k3 + k5

K

J
m1 0 0
0 m2 0
0 0 m3

K  J
x
$

1

x
$

2

x
$

3
K + J

c1 + c2 -c2 -0
- c2 c2 + c3 + c4 - c3

0 - c3 c3 + c5
K  J

x#1
x#2
x#3
K

To study the instability of a missile as it flies, it is modeled as a free-free beam. For ease of

modeling, a four degree-of-freedom model is used as shown in Figure 7.26(a). The beam

is divided as shown and the masses are lumped as shown. Determine the differential equa-

tions for governing the four degree-of-freedom model.

SO LU T I ON
The flexibility matrix for this unrestrained system does not exist; therefore, we use the stiff-

ness matrix in the modeling. Stiffness influence coefficients are used to develop the stiff-

ness matrix. Consider the deflection of the beam due to concentrated loads applied at

, and L, as shown in Figure 7.26(b). The deflection of a beam due to this

series of concentrated loads is

(a)

Requiring that gives C
2

� 0. Requiring that leads to C
1

� 0. The

system is in static equilibrium; thus, F 0, or using the FBD of Figure 7.27(c) yields

(b)F1 + F2 + F3 + F4 = 0

=g v‡(0) = F1

EIv–(0) = 0

+
1
6

F4 (z - L )3u (z - L) + C1

z 3

6
+ C2

z 2

2
+ C3z + C4d

w (z) =
1
EI

 c1
6

F1z 3 +
1
6

F2 az -
L
3
b3

u az -
L
3
b +

1
6

F3 az -
2L
3
b3

u az -
2L
3
b

z = 0, L>3, 2L>3

EXAMPLE 7 . 2 2

m/3

(b)

(a)

(c)

m/3

F4F2F1 F3

L/3 L/3 L/3

m /6 m /6

L/3 L/3 L/3

v

FIGURE 7.26
(a) Missile is modeled as a free-free
beam. (b) Four degree-of-freedom model
of missile with concentrated masses
placed along span of beam. (c) Forces
are used to determine the stiffness
matrix; since the system is unrestrained,
statics must first be used to obtain rela-
tions between the forces.
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and M � 0 about any axis. Choose an axis through x � L,

(c)

Solving for F
1

and F
4

from Equations (b) and (c) leads to

(d)

(e)

Substituting Equations (d) and (e) into Equation (a) leads to

(f)

The constants C
3

and C
4

cannot be solved by application of statics or boundary conditions.

The deflections at the points where the forces are applied are

(g)

(h)

(i)

and

(j)

The first column of the stiffness matrix is obtained by setting x
1

� 1, x
2

� 0, x
3

� 0, and

x
4

� 0. Substitute Equation (e) into Equations (h) through (j). Solve the resulting equations

for F
2
, F

3
, C

3
, and C

4
. Substitute into Equations (d) and (e) to find F

1
and F

4
. The second

column of the stiffness matrix is obtained by setting x
1

� 0, x
2

� 1, x
3

� 0, and x
4

� 0 and

repeating the same procedure. The third column is obtained by setting x
1

� 0, x
2

� 0,

x
3

� 1, and x
4

� 0 and repeating the procedure. The fourth column is obtained by setting

x
1

� 0, x
2

� 0, x
3

� 0, and x
4

� 1. The stiffness matrix must be symmetric. The result is

(k)K =
EI
L3 ≥

   43.2      -97.2      64.8 -10.8
-97.2       259.2 -226.8    64.8
   64.8    -226.8    259.2 -97.2
-10.8         64.8    259.2     43.2

¥

x4 = w (L) =
1
EI

 c1
6

F1 (L3) +
1
6

F2 a8L3

27
b +

1
6

F3 aL
3

27
b + C3 (L ) + C4d

x3 = w a2L
3
b =

1
EI

 c1
6

F1 a8L3

27
b +

1
6

F2 aL
3

27
b + C3 a2L

3
b + C4 d

x2 = w aL
3
b =

1
EI

 c1
6

F1 a L3

27
b + C3 aL

3
b + C4 d

x1 = w (0) =
1
EI

 3C44

+
1
6

 a- 5
3

F2 -
4
3

F3b  (z - L)3u (z - L) + C3z + C4d

w (z ) =
1
EI

 c1
6

 a- 2
3

F2 -
1

3
F3b z 3 +

1

6
F2 az -

L
3
b3

u az -
L
3
b +

1
6

F3 az -
2L
3
b3

u az -
2L
3
b

F4 = -
1
3

F2 -
2
3

F3

F1 = -
2
3

F2 -
1
3

F3

F1L + F2

2L
3

+ F3

L
3

= 0

g
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The mass matrix is obtained by the methods of Section 7.7. resulting in

(l)

where mb is the total mass of the beam.

The differential equations governing the displacements of the lumped masses are

(m)
mb

6
 ≥

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

¥  ≥
x
$

1

x
$

2

x
$

3

x
$

4

¥ +
EI
L3 ≥

  43.2 -97.2    64.8 -10.8
-97.2  259.2 -226.8  64.8
  64.8 -226.8  259.2 -97.2
-10.8    64.8  259.2  43.2

¥  ≥
x1

x2

x3

x4

¥ = ≥
0
0
0
0

¥

M =
mb

6
 ≥

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

¥

7.11 SUMMARY

7.11.1 IMPORTANT CONCEPTS
• The FBD method can be used to derive the governing differential equations of a MDOF

system.

• Lagrange’s equations provide an alternative method for deriving differential equation for

a MDOF system.

• Lagrange’s equations is based upon the calculus of variations. The kinetic energy and the

potential energy are calculated at an arbitrary instant in terms of the generalized coordinates.

• The Lagrangian is the difference between kinetic and potential energies written at an

arbitrary instant.

• Rayleigh’s dissipation function is the power dissipated by viscous damping forces, writ-

ten at an arbitrary instant.

• The method of virtual work is used to calculate the generalized forces.

• The kinetic energy, the potential energy, and Rayleigh’s dissipation function all have

quadratic forms for linear systems.

• The mass matrix, stiffness matrix, and damping matrix can be directly calculated from

the quadratic forms.

• The mass matrix, damping matrix, and stiffness matrix are all symmetric when

Lagrange’s equations are used to derive the differential equations.

• When the mass matrix is not a diagonal matrix, the system is said to be dynamically

coupled. When the stiffness matrix is not a diagonal matrix, the system is said to be stat-

ically coupled.
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518 CHAPTER 7

• The stiffness matrix also may be calculated using stiffness influence coefficients. One

column of the stiffness matrix is calculated at a time. If the ith column is being calcu-

lated, a unit displacement is assumed for the particle whose displacement is represented

by the generalized coordinate xi with the displacements of the particles whose displace-

ments are represented by xj for j � 1, 2, , n, but set equal to zero. The stiffness

influence coefficients are the forces required to maintain this in static equilibrium.

• The flexibility matrix is the inverse of the stiffness matrix. The differential equations can

be written using the flexibility matrix.

• The flexibility matrix can be calculated using flexibility influence coefficients. One

column of the flexibility matrix is calculated at a time. To calculate the ith column of

the flexibility matrix, a unit force is applied at the location described by the generalized

coordinate xi . The flexibility influence coefficients are the displacements at the locations

described by the generalized coordinates.

• The flexibility matrix does not exist for unrestrained systems.

• Inertia influence coefficients can be used to calculate the mass matrix. Assume a unit

velocity for the ith generalized coordinate and all other velocities zero as 

for Calculate the system of impulses that would have to be applied to achieve this

configuration. These impulses are the ith column of the mass matrix.

• Continuous systems may be modeled as MDOF systems. Flexibility influence coeffi-

cients are used to determine the flexibility matrix for a lumped mass model.

7.11.2 IMPORTANT EQUATIONS
Hamilton’s Principle

(7.6)

Lagrangian

(7.7)

Lagrange’s equations for a conservative system

(7.10)

Lagrange’s equations for a nonconservative system

(7.11)

Virtual work by non-conservative forces

(7.12)

Rayleigh’s dissipation function

(7.13)� = -
1
2

P

dWnc = a
n

i =  1

Qidxi

d
dx

 a 0L
0x#
i

b -
0L
0xi

= Qi  i = 1, 2, . . . , n

d
dx

 a 0L
0x#
i

b -
0L
0x# i

= 0  i = 1, 2 , . . . , n

L = T - V

dL
t2

t1

(T - V + dWnc)dt = 0

j Z i.
x# j = 0x# i = 1

j Z iÁ
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MODELING OF MDOF SYSTEMS 519

Quadratic forms of potential and kinetic energies

(7.21)

(7.22)

Differential equations for a linear system written in matrix form

(7.31)

Quadratic form of Rayleigh’s dissipation function

(7.32)

Flexibility matrix

(7.43)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 7.1 through 7.15, indicate whether the statement presented is true or false.

If true, state why. If false, rewrite the statement to make it true.

7.1 The differential equations for a linear MDOF system can be written in a matrix

form.

7.2 Lagrange’s equations can be used to derive the differential equations governing

the motion only for linear systems.

7.3 Lagrange’s equations can be used for conservative systems and nonconservative

systems.

7.4 The FBD method, when applied to a MDOF linear system, always leads to

symmetric mass, stiffness, and damping matrices.

7.5 Lagrange’s equations, when applied to a MDOF linear system, always leads to

symmetric mass, stiffness, and damping matrices.

7.6 The quadratic form of the potential energy can be used to determine the stiffness

matrix for a linear MDOF system.

7.7 A system is dynamically coupled if the mass matrix for the system is not

symmetric.

7.8 The choice of generalized coordinates is irrelevant in deciding whether a system

is dynamically coupled.

7.9 The flexibility matrix is the transpose of the stiffness matrix.

7.10 A diagonal stiffness matrix means that kij � kji for all i, j � 1, 2, . . . , n.

7.11 Elements of the mass matrix for a MDOF system may have different dimensions.

7.12 The formulation of the stiffness influence coefficient method to determine the

stiffness matrix for a linear MDOF system relies on the concept that potential

energy is a function of position.

A = K-1

� = -
1
2a

n

i = 1
a

n

j = 1

ci,j x
#
i x

#
j

Mx
$ + Cx# + Kx = F

T =
1

2a
n

i = 1
a

n

j = 1

mijx
#
i x

#
j

V =
1
2a

n

i = 1
a

n

j = 1

kij xi xj
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520 CHAPTER 7

7.13 When flexibility influence coefficients are used to calculate the flexibility matrix

for a MDOF system, the flexibility matrix is calculated one column at a time.

7.14 The stiffness matrix for a system always exists but the flexibility matrix does not

always exist.

7.15 A system is not statically coupled if its flexibility matrix is a diagonal matrix.

7.16 Lagrange’s equations can be used to derive the equations governing the

vibrations of three masses along the span of a beam ignoring the inertia of the

beam and using three degrees of freedom in the model.

Problems 7.17 through 7.28 require a short answer.

7.17 Write the general matrix form of the differential equations governing the

undamped and forced vibrations of a linear nDOF system.

7.18 State Lagrange’s equations for a conservative system.

7.19 What defines whether a system is dynamically coupled?

7.20 How is Rayleigh’s dissipation function used?

7.21 What is a variation?

7.22 How is the method of virtual work applied in the application of Lagrange’s

equations for a MDOF system?

7.23 What is Maxwell’s reciprocity relation and how is it applied?

7.24 Write the differential equations governing a MDOF system in matrix form

when the mass matrix, damping matrix, and flexibility matrix are known.

For Problems 7.25 through 7.28, the generalized coordinates for modeling a system have

been selected as x
1
, x

2
, and � where x

1
and x

2
are linear displacements and � is an angular

coordinate.

7.25 Describe the calculation of the stiffness influence coefficient k
13

.

7.26 Describe the calculation of the flexibility influence coefficient a
13

.

7.27 Describe the calculation of the inertia influence coefficient m
12

.

7.28 Describe the calculation of the inertia influence coefficient m
31

.

Problems 7.29 through 7.41 require a short calculation.

7.29 What is the kinetic energy of the system of Figure SP7.29 at an arbitrary instant?

7.30 What is the potential energy in the system of Figure SP7.29 at an arbitrary instant?

7.31 What is Rayleigh’s dissipation function for the system of Figure SP7.28 at an

arbitrary instant?

7.32 What is the result of

d
dt

 c 0
0x#

 (2x# - y# )2d

x1

300 N · s/m120 N · s/m 100 N · s/m

600 N/m2000 N/m3000 N/m

150 N · s/m

x2 x3

10 kg 4 kg 8 kg

FIGURE SP7.29
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7.33 What is virtual work done by the external forces in Figure SP7.33, assuming

virtual displacements �x and �y?

7.34 What are the generalized forces for the system of Figure SP7.34 using x and � as

generalized coordinates?

7.35 The quadratic form of the potential energy for a three degree-of-freedom 

system is

Determine the stiffness matrix for the system.

7.36 The kinetic energy for a three degree-of-freedom system is

Determine the mass matrix for the system.

7.37 When a load of 50 N is applied to the 250 kg mass in the system of Figure SP7.37,

the displacements of the masses are x
1

� 3 mm, x
2

� 5 mm, and x
3

� 2.5 mm.

Determine all possible elements of the system’s flexibility matrix.

T = 3 ax# 2 -
1
2

x# 1b
2

+ 12 ax# 2 +
1
3

x# 1b
2

+ 4x# 2
3

V = 5x 2
1 + 4x1x2 + 2x1x3 + 8x 2

2 + 3x2x2 + 6x 2
3

x

F1(t)

F2(t)

L/2

q

FIGURE SP7.34

2r

M(t)

F(t)

r

y

x

FIGURE SP7.33
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7.38 When the block of mass 10 kg is given a displacement of 3 mm in the system

of Figure SP7.38 and all other blocks are held in their equilibrium positions, it

is found that the forces on the blocks are F
1

� 0, F
2

� 100 N, and F
3

� 300 N.

Determine all possible elements of the system’s stiffness matrix.

7.39 What is the determinant of the stiffness matrix of the system of Figure SP7.39?

7.40 When block A of Figure SP7.40 is given a velocity of 15 m/s and the velocities

of blocks B and C remain at rest, an impulse of 3 N # s applied to block A is

required. Determine all possible elements of the system’s mass matrix.

7.41 When the right end of the bar of the system of Figure SP7.41 is given a velocity of

3 m/s but the angular velocity of the bar is zero, an impulse of magnitude 6 N # s is
required at the right end of the bar and an angular impulse of 10 N # m # s is

required. Determine all possible elements of the mass matrix for this two

degree-of-freedom system using x, which is the displacement of the right end

of the bar, and �, which is the angular rotation of the mass center of the bar, as

generalized coordinates.

x1 x2 x3

15 m/s

A
3 N · s

B C

FIGURE SP7.40

x2

k
2m

x3

3k
mm

x1 x4

2k
2m

FIGURE SP7.39

x1 x2 x3

20 kg
100 N

30 kg 300 N

3 mm

10 kg

FIGURE SP7.38

75 kg
50 N

250 kg 70 kg

FIGURE SP7.37
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7.42 Lagrange’s equations are used to derive the differential equations for a three

degree-of-freedom system resulting in

where x
1

and x
2

are linear displacements and � is an angular coordinate. Match

the term in the equation with its units. Some units may be used more than

once, others not at all.

(a) m
11

(i) N # s/m

(b) m
23

(ii) N/m

(c) m
33

(iii) m

(d) c
12

(iv) kg

(e) c
22

(v) N # s # m/rad

(f ) c
33

(vi) N # m/rad

(g) k
13

(vii) rad/s2

(h) k
21

(viii) N/rad

(i) k
33

(ix) N

(j) F
2

(x) kg # m2

(k) F
3

(xi) N # m

(l) x
2

(xii) N # s/rad

(m) (xiii) m/s

(n) (xiv) N # s2/m

(xv) kg # m

CHAPTER PROBLEMS
7.1–7.7 Use the free-body diagram method to derive the differential equations governing

the motion of the systems shown in Figures P7.1 through P7.7 using the

indicated generalized coordinates. Make linearizing assumptions and write the

resulting equations in matrix form.

x1

k 2k k k

x2 x3

m m m

FIGURE P7.1
(Problems 7.1, 7.8, 7.23, 7.30, 7.36, 7.51, 7.66)

x
$
3

x# 1

J
m11 m12 m13

m21 m22 m23

m31 m32 m33
K  J

x
$

1

x
$

2

u
$ K + J

c11 c12 c13

c21 c22 c23

c31 c32 c33
K  J

x# 1
x# 2
u
# K + J

k11 k12 k13

k21 k22 k23

k31 k32 k33
K  J

x1

x2

u
K = J

F1

F2

F3
K

θ  = 0

6 N · s
10 N · s/m

x = 3m/s.
.

FIGURE SP7.41
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x1

m

k 2k

2k

c 2c

x2

2k

c

x3

2m
3m

FIGURE P7.6
(Problems 7.6, 7.13, 7.41, 7.56, 7.71)

k kk

x3

Slender rod of
mass m

m

L/2L/2

x2x1

FIGURE P7.4
(Problems 7.4, 7.11, 7.25, 7.39, 7.54, 7.69)

θ

2kk

x2

Rod of
mass m1,

moment of
inertia Im2

x1

0.4L 0.3L 0.2L
2k

G

0.1L

FIGURE P7.5
(Problems 7.5, 7.12, 7.26, 7.40, 7.55, 7.70)

q

k

k

x1

2m

2k

Slender rod of
mass m

m

L
3

L
3

2

x2

FIGURE P7.2
(Problems 7.2, 7.9, 7.31, 7.37, 7.52, 7.67)

q

k

k

x1

2m

2k

Slender rod of
mass m

m

L/4L/4L/2

x2

FIGURE P7.3
(Problems 7.3, 7.10, 7.24, 7.38, 7.53, 7.68)
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7.8–7.14 Use Lagrange’s equations to derive the differential equations governing the

motion of the systems shown in Figures P7.1 through P7.7. Use the indicated

generalized coordinates. Make linearizing assumtions, and write the resulting

equations in matrix form. Indicate whether the system is statically coupled,

dynamically coupled, neither, or both.

7.15–7.22 Use Lagrange’s equations to drive the differential equations governing the

motion of the systems shown in Figures P7.15 through P7.22. Use the

indicated generalized coordinates. Make linearizing assumptions, and write the

resulting equations in matrix form. Indicate whether the system is statically

coupled, dynamically coupled, neither, or both.

xD xC

2k
k kk

Idler pulley

Thin disk of
mass m and radius
r rolls without slip
relative to center of
cart. xD is absolute

displacement of
mass center of disk. 2m

FIGURE P7.16
(Problems 7.16, 7.33, 7.44, 7.59, 7.74)

xD xC

kk 2k r
F(t)

Thin disk of
mass m and radius
r rolls without slip
relative to center of
mass 2m. xD is
absolute displacement
of mass center of disk.

FIGURE P7.15
(Problems 7.15, 7.27, 7.32, 7.43, 7.58, 7.73)

q

k

k c

2c2k

m

2m

L/32L/3

x2

x1

F(t)

FIGURE P7.7
(Problems 7.7, 7.14, 7.42, 7.57, 7.72)
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k1

k2

k3

k4

r

r

r

J

J

J

q1

q2

q3

FIGURE P7.21
(Problems 7.21, 7.49, 7.64, 7.79)

q

k k
Identical slender
rods of length L

and mass m.

k

L/4

L

x2

x1

L/4 L/2

FIGURE P7.19
(Problems 7.19, 7.28, 7.34, 7.47, 7.62, 7.77)

m
k k

Identical slender
bars of mass m.

q1 q2

2L/3 2L/3

L/3

x

L/3

FIGURE P7.20
(Problems 7.20, 7.35, 7.48, 7.63, 7.78)

r r/2

I

x1

k

m
x2

2m

2kq

r 2I

FIGURE P7.17
(Problems 7.17, 7.45, 7.60, 7.75)

2r

r

x2

x1

k

m m

k

k

I

q

FIGURE P7.18
(Problems 7.18, 7.46, 7.61, 7.76)
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7.23–7.29 Determine the kinetic energy of the system at an arbitrary instant for the systems

of Figures P7.1, P7.3, P7.4, P7.5, P7.15, P7.19, and P7.22. Put the kinetic

energy in a quadratic form. Use the quadratic form to determine the mass

matrix for the system.

7.30–7.35 Determine the potential energy of the system at an arbitrary instant for the

systems of Figures P7.1, P7.2, P7.15, P7.16, P7.19, and P7.20. Put the

potential energy in a quadratic form. Use the quadratic form to determine 

the stiffness matrix for the system.

7.36–7.50 Derive the stiffness matrix for the systems of Figures P7.1, P7.2, P7.3, P7.4, P7.5,

P7.6, P7.7, P7.15, P7.16, P7.17, P7.18, P7.19, P7.20, P7.21, and P7.22 using

the indicated generalized coordinates and stiffness influence coefficients.

7.51–7.65 Determine the flexibility matrix for the systems of Figures P7.1, P7.2, P7.3, P7.4,

P7.5, P7.6, P7.7, P7.15, P7.16, P7.17, P7.18, P7.19, P7.20, P7.21, and P7.22

using the indicated generalized coordinates and flexibility influence coefficients.

7.66–7.80 Determine the mass matrix for the systems of Figures P7.1, P7.2, P7.3, P7.4,

P7.5, P7.6, P7.7, P7.15, P7.16, P7.17, P7.18, P7.19, P7.20, P7.21, and P7.22

using the indicated generalized coordinates and inertia influence coefficients.

7.81 Derive the differential equations governing the torsional oscillations of the

turbomotor of Figure P7.81. The motor operates at 800 rpm and the turbine

shaft turns at 3200 rpm.

Uniform slender
rod of mass 2m

L/2 L/4 L/4

x2

x2x1

kF(t)

kc

k c

k

M

m

FIGURE P7.22
(Problems 7.22, 7.29, 7.50, 7.65, 7.80)

Turbine

Moments of inertia:
Motor 1800 kg · m2

Turbine 600 kg · m2

Gear A 400 kg · m2

Gear B 80 kg · m2

Gear B

Gear A

4:1 gear ratio

θ3

Motor

Motor shaft
G = 80 × 109 N/m2 
L = 1.4 m
d = 305 mm

Turbine shaft
G = 80 × 109 N/m2 
L = 2.1 m
d = 180 mm

θ1

θ2

FIGURE P7.81
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528 CHAPTER 7

7.82 Derive the differential equations governing the torsional oscillations of the

system of Figure P7.82.

7.83 A rotor of mass m is mounted on an elastic shaft with journal bearings at both

ends. A three degree-of-freedom model of the system is shown in Figure P7.83.

Each journal bearing is modeled as a spring in parallel with a viscous damper.

Drive the differential equations governing the transverse motion of the system.

7.84 A three degree-of-freedom model of a railroad bridge is shown in Figure P7.84.

The bridge is composed of three rigid spans. Each span is pinned at its base.

Using the angular displacements of the spans as generalized coordinates, derive

the differential equations governing the motion of the bridge.

7.85 A five-degree of model of a railroad bridge is shown in Figure P7.85. The bridge

is composed of five rigid spans. The connection between each span and its base

is modeled as a torsional spring. Using the angular displacements of the spans as

the generalized coordinates, derive the differential equations governing the

motion of the bridge.

q1

k1

G
m, I

h

l l

q2

k2 k2 k1

G
m, I

h

l

q3

G
m, I

h

FIGURE P7.84
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m1 m2 m1m1

x3x1
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MODELING OF MDOF SYSTEMS 529

7.86 A four degree-of-freedom model of an aircraft wing is shown in Figure P7.86.

Derive the flexibility matrix for the model.

7.87 Figure P7.87 illustrates a three degree-of-freedom model of an aircraft. A rigid

fuselage is attached to two thin flexible wings. An engine is attached to each

wing, but the wings themselves are of negligible mass. Derive the differential

equations governing the motion of the system.

7.88 An airplane is modeled as two flexible wings attached to a rigid fuselage

(Figure P7.88). Use two degrees of freedom to model each wing and derive the

differential equations governing the motion of the five degree-of-freedom system.

x3

x5x4x2x1

E, I E, I E, I E, I
Mm1 m2 m2 m1

L/2 L/2 L/2 L/2

FIGURE P7.88

x1

x2

x3

L L

E, I E, I
M mm

FIGURE P7.87

x1

E, I4
E, I3E, I2E, I1

x2 x3 x4

FIGURE P7.86
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l
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530 CHAPTER 7

7.89 A drum of mass m is being hoisted by an overhead crane as illustrated in

Figure P7.89. The crane is modeled as a simply supported beam with a winch at

its midspan. The cable connecting the crane to the drum is of stiffness k. Derive

the differential equations governing the motion of the system using four degrees

of freedom to model the system, three degrees of freedom for the beam and one

for the displacement of the load.

7.90–7.93 The beams shown in Figures P7.90 through P7.93 are made of an elastic

material of elastic modulus 210 � 109 N/m2 and have a cross-sectional

moment of inertia 1.3 � 10–5 m4. Determine the flexibility matrix when 

a three degree-of-freedom model is used to analyze the beam’s vibrations.

Use the displacements of the particles shown as generalized coordinates. 

Use Table D.2 for deflection calculations.

Beam of
mass m,
E, I, L

x2
k

m

x3x1

Includes mass
of winch

x4

FIGURE P7.89

40 cm40 cm 40 cm 40 cm

FIGURE P7.90

FIGURE P7.91

80 cm80 cm 80 cm 80 cm
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MODELING OF MDOF SYSTEMS 531

7.94 Determine the stiffness matrix for the three degree-of-freedom model of the free-

free beam of Figure P7.94.

7.95 Using a two degree-of-freedom model, derive the differential equations governing

the forced vibration of the system of Figure P7.95.

7.96 Use a two degree-of-freedom model to derive the differential equations governing

the motion of the system of Figure P7.96. A thin disk of mass moment of inertia

ID is attached to the end of the fixed-free beam. Use x, the vertical displacement

of the disk, and �, the slope of the end of the beam, as generalized coordinates.

FIGURE P7.96

L

E, I2

F0 sin w t

x

m, I

q

FIGURE P7.95

L/3

EI
F(t)

L/3L/3

FIGURE P7.94

L/4 L/4 L/4L/4

FIGURE P7.92

FIGURE P7.93
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40 cm 40 cm 40 cm 80 cm
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C h a p t e r 8

FREE VIBRATIONS
OF MDOF SYSTEMS

8.1 INTRODUCTION
Free vibrations of an n degree-of-freedom (nDOF) system are governed by a system of n
differential equations. If the system is linear, the differential equations can be summarized

in matrix form. When the differential equations are derived using Lagrange’s equations, the

mass, stiffness, and damping matrices are guaranteed to be symmetric. It is assumed that,

whatever method is used to derive the differential equations for a linear system, they can

be summarized in a matrix form, which for free vibrations is either

(8.1)

or

(8.2)

The free response of an nDOF system is more complicated than the free response of a

one or two degree-of-freedom system. Computation of the response requires matrix algebra.

A reader unfamiliar with topics in matrix algebra (such as eigenvalues and eigenvectors)

is encouraged to read Appendix C before proceeding.

For an undamped system, the response of a MDOF system is assumed to be syn-

chronous; the particles represented by the generalized coordinates move with the same

frequency. This leads to a normal-mode solution in which a mode shape vector provides

the relation between the generalized coordinates. The time dependence of the response is

expressed by an exponential with a complex exponent equal to i�t. When the normal

AM  x
$ + ACx# + x = 0

M x
$ + Cx

# + Kx = 0
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534 CHAPTER 8

mode solution is substituted into the differential equations governing the undamped free

response, the natural frequencies are shown to be the square roots of the eigenvalues of

M�1K or the reciprocals of the square roots of the eigenvalues of AM. The mode-shape

vectors are the corresponding eigenvectors. An nDOF system has n natural frequencies.

The general free response is a linear combination of all modes in the solution. The con-

stants in the linear combination are determined from the initial conditions, the values of

the generalized coordinates at t � 0, and their velocities at t � 0. There are 2n initial

conditions required.

Two special cases are considered. When the system is unrestrained, it has its lowest

natural frequency equal to zero, which corresponds to a rigid-body movement of the

system. In degenerate systems, two natural frequencies of the system are equal. 

If the equations are derived using Lagrange’s equations or any method that is derived

from Lagrange’s equations, the mass matrix and the stiffness matrix are guaranteed to be

symmetric. This implies that a kinetic-energy scalar product and a potential-energy scalar

product can be defined. This leads to showing that all eigenvalues of M�1K are real, all

eigenvalues are non-negative, and an orthogonality condition exists for eigenvectors

corresponding to distinct natural frequencies of the same system. Also, an expansion theo-

rem is developed for representing a vector by the eigenvectors of a MDOF system.

Any multiple of an eigenvector is also an eigenvector corresponding to the same eigen-

value. The normalized mode-shape vector is defined such that the kinetic-energy scalar

product of the vector with itself is one. This has an implication for the potential-energy

scalar product of a vector with itself.

Principal coordinates are defined as coordinates which uncouple the differential equations.

A method is presented for determination of principal coordinates for a MDOF system.

Rayleigh’s quotient provides a method for approximation of the lowest natural fre-

quency of a MDOF system. Numerical methods are presented for determination of the

natural frequencies and their mode shapes.

Damping is addressed for MDOF systems. Systems that have proportional damping
(where the damping matrix is a linear combination of the stiffness matrix and the mass

matrix) are uncoupled using the same principal coordinates as the corresponding

undamped system. Natural frequencies and modal damping ratios are defined. General vis-

cous damping is considered by rewriting the n second-order differential equations as 2n
first-order differential equations.

8.2 NORMAL-MODE SOLUTION
The general formulation of the differential equations governing free vibrations of a linear

undamped n-degree-of-freedom system is

(8.3)

where M and K are the symmetric n � n mass and stiffness matrices, respectively, and x is

the n-dimensional column vector of generalized coordinates.

Free vibrations of a MDOF system are initiated by the presence of an initial potential

or kinetic energy. If the system is undamped, there are no dissipative mechanisms and it is

expected that the free vibrations described by the solution of Equation (8.3) are periodic.

It is assumed that the vibrations are synchronous in that all dependent variables execute

M x
$ + K x = 0
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Free Vibrations of MDOF Systems 535

motion with the same time-dependent behavior. Thus, when free vibrations at a single fre-

quency are initiated for a particular system, the ratio of any two dependent variables is inde-

pendent of time. These assumptions lead to hypothesizing the normal-mode solution of

Equation (8.3) in the form

(8.4)

where � is the frequency of vibration and X is an n-dimensional vector of constants, called

a mode shape. This hypothesis implies that certain initial conditions lead to a solution of the

form of Equation (8.4) for specific values of �. The values of � such that Equation (8.4) is

a solution of Equation (8.3) are called the natural frequencies. Each natural frequency has

at least one corresponding mode shape. Since the differential equations represented by

Equation (8.3) are linear and homogeneous, their general solution is a linear superposition

over all possible modes.

Substitution of Equation (8.4) into Equation (8.3) leads to

(8.5)

Since for any real value of t,

(8.6)

The mass matrix is nonsingular, and thus M�1 exists. Premultiplying Equation (8.6) by

M�1 and rearranging gives

(8.7)

where I is the n � n identity matrix. Equation (8.7) is the matrix representation of a system

of n simultaneous linear algebraic equations for the n components of the mode shape

vector. The system is homogeneous. Application of Cramer’s rule gives the solution for the

jth component of X, Xj, as

(8.8)

Thus the trivial solution (X � 0) is obtained unless

(8.9)

Hence, applying the definitions of Appendix C, �2 must be an eigenvalue of M�1K. The

square root of a real positive eigenvalue has two possible values, one positive and one

negative. While both are used to develop the general solution, the positive square root is

identified as a natural frequency. The mode shape is the corresponding eigenvector.

It is shown in Section 7.6 that when the stiffness matrix, K, is nonsingular, its inverse

is the flexibility matrix, A. Premultiplying Equation (8.6) by A leads to

(8.10)

Dividing by �2 gives

(8.11)

Thus, the natural frequencies are the reciprocals of the positive square roots of the eigen-

values of AM and the mode shapes are its eigenvectors. The matrix, AM, is often called the

dynamical matrix.

aAM -
1
v2 Ib X = 0

(-v2AM + I )X = 0

 det | M-1K - v2I | = 0

Xj =
0

 det | M-1K - v2I |

( M-1K - v2I )X = 0

-v2MX + KX = 0

e ivt Z 0,

(-v2MX + KX )e ivt = 0

x(t ) = Xe ivt
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536 CHAPTER 8

Natural frequencies of MDOF systems are calculated as either the square roots of the

eigenvalues of M�1K or as the reciprocals of the square roots of the eigenvalues of AM. The

mode shapes are the corresponding eigenvectors of either matrix.

8.3 NATURAL FREQUENCIES AND MODE SHAPES
In the previous section, it is shown that the natural frequencies of an nDOF system are the

positive square roots of the eigenvalues of M�1K or the reciprocals of the positive square

roots of the eigenvalues of AM. The mode shape vectors are the corresponding eigenvec-

tors. As shown in Appendix C, the evaluation of Equation (8.9) leads to an nth-order poly-

nomial equation, called the characteristic equation, whose roots are the eigenvalues. Since all

elements of the mass and stiffness matrices are real, all coefficients in the characteristic equa-

tion are real and thus, if complex roots occur, they must occur in complex conjugate pairs.

However, it can be shown that, because of the symmetry of M and K, the characteristic equa-

tion has only real roots. Negative roots are possible, but lead to imaginary values of the nat-

ural frequency. When the negative square root of a negative eigenvalue is multiplied by i to

form the exponent in the normal-mode solution of Equation (8.4), a real positive exponent

is developed. This term grows without bound as time increases. Such a system is unstable.

Assume that all eigenvalues of M�1K corresponding to symmetric mass and stiffness

matrices are nonnegative. Then there exist n real natural frequencies that can be ordered by

Each distinct eigenvalue has a corresponding

nontrivial eigenvector, X i, which satisfies

(8.12)

This mode shape, Xi, is an n-dimensional column vector of the form

(8.13)

Since the system of equations represented by Equation (8.12) is homogeneous, the mode

shape is not unique. However, if is not a repeated root of the characteristic equation, then

there is only one linearly independent nontrivial solution of Equation (8.12). The eigenvec-

tor is unique only to an arbitrary multiplicative constant. Normalization schemes exist such

that the constant is chosen so the eigenvector satisfies an externally imposed condition.

If is a repeated root of the characteristic equation of multiplicity r, there are r
linearly independent nontrivial solutions of Equation (8.12). Each of these mode shapes is

also unique to a multiplicative constant.

Solution of the eigenvalue-eigenvector problem is an important part of the vibra-

tion analysis of MDOF systems. The quadratic formula is used to find the roots of the

characteristic equation for a two degree-of-freedom system. The natural frequencies of

a three degree-of-freedom system are obtained by finding the roots of a cubic polyno-

mial, which can be done by trial and error or an iterative method. The algebraic com-

plexity of the solution grows exponentially with the number of degrees of freedom. The

development of a characteristic equation for an nDOF system requires the evaluation of

v2
1

v2
1

Xi = F
Xi1

Xi2

o

Xin

V

M-1K Xi = v2
i Xi

v2
i , i = 1, 2, Á , nv1 … v2 … Á … vn .
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an n � n determinant and the natural frequencies are the n roots of the characteristic

equation. The determination of each eigenvector requires the solution of n homoge-

neous simultaneous algebraic equations. Thus, numerical methods which do not require

the evaluation of the characteristic equation are used for systems with a large number

of degrees of freedom.

EXAMPLE 8 . 1
Determine the natural frequencies and mode shapes for the system of Figure 8.1. Use � and

x as generalized coordinates.

SO LU T I ON
The kinetic energy of the system at an arbitrary instant is

(a)

The potential energy of the system at an arbitrary instant is

(b)

Application of Lagrange’s equations leads to

(c)

Since the mass matrix is a diagonal matrix, its inverse is also a diagonal matrix with the

reciprocals of the diagonal elements of M along its diagonal. The matrix M�1K is

(d)M-1K = D 12
mL2 0

0
1

2m

T D k  
L2

4
-k  

L
2

-k  
L
2

2k
T = D 3k

m
-

6k
mL

-
kL
4m

k
m

T = fD 3 -
6

L

-
L
4

1
T

C 1
12

mL2 0

0 2m
S Bu$

x
$ R + Dk  

L2

4
-k  

L
2

-k  
L
2

     2k
T Bu

x
R = B0

0
R

V =
1
2

k ax -
L
2

  ub2

+
1
2

 k x 2

T =
1
2

 a 1
12

mL2u
#
2b +

1
2

(2m)x# 2

FIGURE 8.1
System of Example 8.1.

θ

2m

x

k

kSlender bar
of mass m

L/2 L/2
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where . Calculating the eigenvalues of M�1K, we have

(e)

The eigenvalues are obtained by solving

(f)

where The solutions are

(g)

The natural frequencies are the square roots of the eigenvalues

(h)

The mode-shape vectors are obtained from

(i)

for i � 1,2. The two equations are linearly dependent when evaluated for the eigenvalues.

The first equation gives

(j)

or

(k)

Recalling that �
1

� 0.419�,

(l)

and given that �
2

� 3.58�,

(m)X22 =
L(3f - 3.58f)

6f
X21 = -0.0977LX21

X12 =
L(3f - 0.419f)

6f
X11 = 0.430LX11

Xi 2 =
L(3f - li 

)

6f
Xi 1

(3f - li 
)Xi 1 -

6f

L
Xi 2 = 0

∞
3f - li

-6f

L
-fL

4
f - li

∞ cXi 1

Xi 2

d = c0
0
d

v1 = A0.419
k
m

= 0.647A
k
m
    v2 = A3.58

k
m

= 1.89A
k
m

b =
4 � A(-4)2 - 4a3

2 b
2

=
1
2

 14 � 1102 = 0.419, 3.58

b = l>f.

b2 - 4b +
3
2

= 0

= l2 - 4fl +
3
2
f2

det (M-1K - lI) = 4 3f - l
-6f

L
-fL

4
f - l

4 = (3f - l)(f - l) - a -6f

L
b a -fL

4
b

f = k
m
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Arbitrarily taking Xi1 � 1, the mode-shape vectors are

(n)

In the first mode, when x is 1, the value of � is 0.430L. The bar and the block are moving

in the same direction for the first mode. In the second mode, when x is 1, the value of � is

�0.977L, which is a counter-clockwise rotation. The bar and the block move in opposite

directions for the second mode. A point of zero displacement must exist in the spring

connecting the bar to the block.

X1 = c 1
0.430L

d                X2 = c 1
-0.0977L

d

EXAMPLE 8 . 2
Calculate the natural frequencies and the mode shapes for the three degree-of-freedom

system of Figure 8.2(a).

SO LU T I ON
The differential equations for free vibrations using the displacements of the masses from

equilibrium as the generalized coordinates are

(a)

Calculating M�1K gives

(b)

where � � k/m. Application of Equation (8.9) gives

(c)

Expansion of the determinant yields the characteristic equation

(d)

where � � �/�. A plot of the preceding cubic polynomial is given in Figure 8.2(b). The

roots of this equation are

(e)

which leads to the natural frequencies

(f)v1 = 0.893A
k
m
  v2 = 2.110A

k
m
  v3 = 2.597A

k
m

b = 0.798, 4.455, 6.747

-b3 + 12b2 - 39b + 24 = 0

det C3f -  l -2f 0
-2f 3f -  l -f

0 -2f 6f -  l
S = 0

M-1K = E
1
m

0 0

0
1
m

0

0 0
2
m

U C     3k -2k 0
-2k   3k -k

0 -k  3k
S = C    3f -2f 0

-2f   3f -f
0 -2f  6f

S

Dm 0 0

0 m 0

0 0
m
2

T C x
$
1

x
$
2

x
$
3

S + C    3k -2k 0
-2k   3k -k

0 -k 3k
S  C x1

x2

x3

S = C0
0
0
S
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FIGURE 8.2
(a) Three degree-of-freedom
system of Example 8.2. (b) Plot
of characteristic equation of
Example 8.2 where roots occur
at values of � where curve
intersects horizontal axis.
(c) Illustration of mode shape for
first mode. (d) Illustration of mode
shape for second mode; mode has
one node. (e) Illustration of mode
shape for third mode; mode has
two nodes.
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The mode shapes are obtained by finding the nontrivial solutions of

(g)

The first equation leads to

(h)

while the third equation leads to

(i)

Arbitrarily choosing Xi2 � 1 leads to the following mode shape vectors:

(j)

The graphical representations of the mode shapes in Figure 8.2(c) through (e) are based

on the assumption that the displacement in each spring is a linear function of position

along the length of the spring. There are no nodes for the first mode. The second mode has

a node in the spring between the first and second mass. The third mode has one node in

the spring between the first and second mass and one node in the spring between the

second and third masses.

X1 = C 0.908
1    
0.384

S  X 2 = C -1.375
1 

       1.294
S  X 3 = C -0.534

1  
-2.677

S
Xi 3 =

2f

6f - li

Xi 2

Xi1 =
2f

3f - li

Xi 2

C3f - li -2f 0
-2f 3f - li -f

0 -2f 6f - li

S CXi 1

Xi 2

Xi 3

S = C0
0
0
S

EXAMPLE 8 . 3
An engineer is designing an 6-m-long steel fixed-pinned beam (E � 210 GPa, � � 62 kN/m3)

for use in an industrial plant. The beam is to support a machine at its midspan. The

machine may weigh up to 5 tonnes and will operate at speeds between 1000 rad/s and

2000 rad/s. The engineer is considering using either a W-shape W16 � 100 (I � 2.96 �
10�4 m4, A � 0.0189 m2) beam or a W-shape W27 � 114 beam (I � 1.7 � 10�3 m4,

A � 0.0216 m2) in the design. Use a three degree-of-freedom model of the beam to help

decide which shape is the better choice in this design.

SO LU T I ON
Using a three degree-of-freedom model as shown in Figure 8.3(a), the mass of the beam is

lumped at three equally spaced locations along the span of the beam. The mass of each particle

is where mb is the total mass of the beam. If � is the mass of the machine, the mass

matrix for a three degree-of-freedom model is

M = F
mb

4
0 0

0
mb

4
+ b 0

0 0
mb

4

V

mb>4,
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FIGURE 8.3
(a) System of Example 8.3 where inertia of the beam is lumped at three locations along axis of beam.
(b) Natural frequencies versus mass of machine for W27�114 beam. (c) Natural frequencies versus
mass for W16�100 beam.

β + mb/4
mb/4mb/4

(a)

0
0 1400700 28002100 490042003500

1000

1500

500

2000

2500

N
at

ur
al

 f
re

qu
en

cy
 (

ra
d/

s)

3000

3500

4000

4500

5000

Mass of machine (kg)

(b)

W27×114

W16×100

0
0

500

1000

N
at

ur
al

 f
re

qu
en

cy
 (

ra
d/

s)

1500

2000

2500

Mass of machine (kg)

(c)

62129_08_Ch08_p533-592.qxd  3/16/11  12:12 PM  Page 542

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Free Vibrations of MDOF Systems 543

The flexibility matrix A for the model is determined from Appendix D.

A MATLAB script is written to symbolically determine the eigenvalues of AM as a

function of the machine mass. The natural frequencies are the reciprocal of the square roots

of the eigenvalues. The MATLAB generated plots of the natural frequency approximations

as a function of the machine mass for each of the beams under consideration are given in

Figures 8.3(b) and (c). These plots show that using the W16�100 shape is not a good

choice, as the system’s second natural frequency is in this range. The W27�114 shape is a

better choice, as the specified operating range of 1000 rad/s to 2000 rad/s is between the

system’s two lowest natural frequencies for all machines up to 5 tonnes.

8.4 GENERAL SOLUTION
Equation (8.3) is a homogeneous system of n second-order linear differential equations.

The normal-mode assumption, Equation (8.4), leads to the determination of n natural

frequencies. If � is an eigenvalue of M�1K, then both and satisfy

Equation (8.9) and give rise to the same solution, X, of Equation (8.7). The functions e i�t

and e�i�t are linearly independent with each other and linearly independent with other

functions of the same form with different values of �. Thus, the normal-mode solution gen-

erates 2n linearly independent solutions of Equation (8.3). The most general solution of a

linear homogeneous problem is a linear combination of all possible solutions. To this end,

(8.14)

Using Euler’s identity to replace the complex exponential by trigonometric functions and

redefining the arbitrary constants gives

(8.15)

Trigonometric identities are used to write Equation (8.15) in the alternate form

(8.16)

Initial conditions must be specified for each dependent variable

(8.17)

Application of the 2n initial conditions to Equation (8.16) yields 2n equations to be solved

for the 2n integration constants.

(8.18)

and

(8.19)x# (0) = a
n

i = 1

Xivi Ai cos fi

x(0) = -a
n

i = 1

Xi Ai sin fi

x(0) = Dx1(0)
x2(0)

o
xn(0)

T  x# (0) = Dx# 1(0)
x# 2(0)

o
x# n(0)

T
x(t) = a

n

i = 1

Xi  
Ai sin (vit - fi )

x(t ) = a
n

i =1

Xi 
(Ci1 cos vit + Ci 2 sin vi 

t )

x(t ) = a
n

i =1

Xi 
(C

∼
i1e 

i vt + C
∼
i 2e

-i vt  )

v = - 1lv = + 1l
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EXAMPLE 8 . 4
The block of mass of Figure 8.2(a) is given an initial displacement � while the other

blocks are held in their equilibrium position. The system is then released. What is the

response of the system?

SO LU T I ON
The solution is formed according to Equation (8.16) resulting in

(a)

Application of the initial displacements yield

(b)

Application of initial velocities lead to

(c)

Equation (c) is satisfied by taking cos(��
1
) � cos(��

2
) � cos(��

3
) � 0 or �

1
� �

2

� �
3
� ��2. Then Equation (b) becomes

(d)= C0.908 -1.375 -0.534
1 1 1
0.384 1.294 -2.677

S CA1

A2

A3

S
C0

0
d

S = A1C0.908
1
0.384

S + A2C- 1.375
1
1.294

S + A3C -0.534
1

-2.677
S

+ A3a2.597A
k
m
b C -0.534

1
-2.677

S  cos (-f3)

C0
0
0
S = A1a0.893A

k
m
b C0.908

1
0.384

Scos (-f1) + A 2a2.110A
k
m
b C-1.375

1
 1.294

Scos (-f2)

C0
0
d

S = A1C0.908
1
0.384

S  sin (-f1) + A2C-1.375
1
1.294

S  sin (-f2) + A3C-0.534
1

-2.677
S  sin (-f3)

+ A3 C -0.534
1

-2.677
S  sin a2.597A

k
m

t - f3b

+ A2 C -1.375
1
1.294

S  sin a2.110A
k
m

t - f2b

C x1(t)
x2(t)
x3(t)
S = A1 C0.908

1
0.384

S  sin a0.893A
k
m

t - f1b

m>2
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Equation (d) is solved yielding A
1

� 0.101�, A
2

� 0.174�, and, A
3

� �0.275�. The

response of the system is

(e)

Equations (e) are plotted in Figure 8.4 for m � 10 kg, and � � 1 mm.

8.5 SPECIAL CASES

8.5.1 DEGENERATE SYSTEMS
Repeated eigenvalues of M�1K and AM occur when the natural frequencies of two distinct

modes coincide. It is usually possible to identify the separate modes of vibration. For exam-

ple, consider the circular cantilever beam of Figure 8.5. The beam has a thin disk attacked

at its end. If the disk is vertically displaced and released, the disk undergoes free transverse

k = 1000 N>M, 

+ C 0.147

-0.275

0.736

S  sin a2.597A
k
m

t +
p

2
b s

C x1(t )

x2(t )

x3(t )

S = d c C 0.0920

0.101

0.0389

S  sin a0.893A
k
m

t +
p

2
b + C -0.239

0.174

   0.224

S  sin a2.110A
k
m

t +
p

2
b
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FIGURE 8.4
Solution of Example 8.4.
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546 CHAPTER 8

vibrations. For a SDOF model with inertia effects of the beam ignored, the natural fre-

quency of free transverse vibrations of the disk is

(8.20)

where E is the elastic modulus of the beam, I is the cross-sectional moment of inertia of the

beam, L is the length of the beam, and m is the mass of the disk. If the disk is twisted and

released, it undergoes free torsional oscillations. For a SDOF model, with inertia effects of

the beam ignored, the natural frequency of free torsional oscillations is

(8.21)

where J is the polar moment of inertia of the cross section of the beam, G is the beam’s

shear modulus, and ID is the mass moment of inertia of the disk. These two natural fre-

quencies are equal for a steel shaft when the ratio of the length of the beam to the radius

of the disk is 1.40. The two modes of vibration are independent but happen to have the

same natural frequency.

A system with a repeated natural frequency is called a degenerate system. If �i is a nat-

ural frequency calculated from an eigenvalue of multiplicity m, then only n � m of the

linear algebraic equations from which the mode shape is calculated are independent. Thus,

m elements of the mode shape can be arbitrarily chosen. The most general mode shape

involves m arbitrary constants. Then m linearly independent mode shapes, Xi, Xi�1
, . . . ,

Xi�m, are specified. The general solution of Equation (8.3) is still given by Equation (8.16),

but �i � �i�1
� . . . � �i�m�1

.

v2 = A
JG

IDL

v1 = A
3EI
mL3

y

FIGURE 8.5
For certain combinations of parameters, natural
frequency of transverse vibration coincides with
natural frequency for torsional oscillations.

EXAMPLE 8 . 5
The two degree-of-freedom system of Figure 8.6 has a natural frequency of corre-

sponding to a rotational mode and a natural frequency of corresponding to a trans-

lational mode. The system is neither statically nor dynamically coupled. A block of mass m
is attached to the mass center of the bar through a spring as shown in Figure 8.6(d), adding

a degree of freedom and leading to static coupling. The differential equations governing

free vibration of this vibration of this three degree-of-freedom system are

(a)Dm 0   0
0 m   0

0 0 m  
L2

12

T C x
$
1

x
$
2

u
$
S + D2k + k1 -k1   0

-k1 k1   0

0 0 k    
L2

2

T C x1

x2

u

S = C0
0
0
S

12k>m 16k>m
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The rotational mode is still uncoupled from the other modes. Find a value of k
1

such that

another natural frequency of the system coincides with the natural frequency of the rota-

tional mode. Find the mode shapes corresponding to all modes.

SO LU T I ON
The determinant leading to the characteristic equation is

(b)

where

and

a =
k1

k

f =
k
m

 det  C (2 + a )f - l -af 0
-af af - l 0

0 0 6f - l
S = 0

m
ω  =

6k

m
ω  =

2k

kk

L

m

(a)

(b)

(c)

kk

L

(d)

x2

x1

m

m

αk = k1

θ

FIGURE 8.6

(a) Original system of Example 8.5.
(b) Mode shape for translational
mode . (c) Mode
shape for rotational mode

. (d) System of
Example 8.5 with added mass-
spring system. Correct tuning
of mass-spring system gives
a double root of the characteristic
equation resulting in two inde-
pendent mode shapes for the
same natural frequency.

v = 16k >m
v = 12k>m
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The characteristic equation obtained by row expansion of the determinant, using the third

row, is

(c)

where

(d)

The roots of the characteristic equation are

(e)

The � � 6 root corresponds to the natural frequency of the rotational mode. Requiring

one of the other natural frequencies to be equal to the natural frequency of the rotational

mode leads to

(f)

Then the natural frequencies become

(g)

The mode shape corresponding to the lowest natural frequency is

(h)

For � � 6, the mode shapes are determined from

(i)

The general solution of this system contains two arbitrary constants and can be written as

(j)

Thus, the two linearly independent mode shapes corresponding to are

(k)X 2 = D 1

-
2
3
0

T  X3 = C0
0
1
S

v = 16k>m

D a

-
2
3

a

b

T = a D 1

-
2
3

0

T + b C0
0
1
S

C -1.6f -2.4f 0
-2.4f -3.6f 0

0 0 0
S CX21

X22

X23

S = C0
0
0
S

X1 = C 1
1.5
0
S

v1 = A
4k
5m

  v2 = v3 = A6
k
m

1 + a � 21 + a2 = 6 Q a =
12

5

b = 6, 1 + a � 21 + a2

b =
l

f

(6 - b)3b2 - 2(1 + a )b + 2a4 = 0
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Note that the mode corresponding to the lowest natural frequency is a translational mode

with extension of the spring. One mode corresponding to is a translational

mode with extension in the spring, but with a node in the spring. The second independ-

ent mode for is a rigid-body rotation of the bar about its mass center, with

no extension in the spring.

8.5.2 UNRESTRAINED SYSTEMS
A second special case occurs when one of the eigenvalues of M�1K is zero. The general

solution for a system with a zero eigenvalue is

(8.22)

where C
1
, C

2
, and Ai are constants determined from application of the initial conditions.

The first part of the solution corresponds to a rigid-body motion. The summation term

corresponds to oscillatory motion.

A system has a natural frequency of zero only when it is unrestrained. For example, if

both masses of the two degree-of-freedom system of Figure 8.7(a) are given the same ini-

tial displacement with no initial velocity, they will remain in their displaced positions

indefinitely. If the shaft connecting the two flywheels of Figure 8.7(b) is rotating at a con-

stant speed, both flywheels will continue to rotate at this speed.

When motion of an unrestrained system occurs, either linear or angular momentum is

conserved for the entire system. Application of the principle of conservation of linear

momentum or the principle of conservation of angular momentum provides a relationship

between the generalized coordinates of the form

(8.23)

where C
1

is a constant determined from the initial state. Equation (8.23) can be integrated

to provide a constraint between the generalized coordinates of the form

(8.24)

Equation (8.25) could be used to reduce the number of degrees of freedom by one.

a
n

l = 1

al x l = C1t + C2

a
n

l = 1

al x# l = C1

x (t ) = (C1 + C2t )X1 + a
n

i = 2

Ai X i sin (vi t - fi )

v = 16k>m
v = 16k>m

FIGURE 8.7
(a) A two degree-of-freedom
unrestrained system. If both
blocks are given the same dis-
placement, they will move as
a rigid body. If the blocks are
given different displacements,
free oscillations occur. (b) An
unrestrained torsional system.

θ1 θ2

m2m1

x1 x2

(a) (b)
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EXAMPLE 8 . 6
A railroad car of mass 1500 kg is to be coupled to an assembly of two precoupled identi-

cal railroad cars. The couplers are elastic connections of stiffness 4.2 � 107 N/m. The

single car is rolled toward the other cars with a velocity of 7 m/s, as shown in Figure 8.8(a).

Describe the motion of the three railroad cars after coupling is achieved.

SO LU T I ON
After coupling, the motion of the three railroad cars is modeled by using three degrees of

freedom, as shown in Figure 8.7(b). The differential equations of motion are

(a)

The natural frequencies are determined from

(b)

where The resulting characteristic equation is solved to yield

(c)

The corresponding mode shapes are

(d)

Since the lowest natural frequency is zero, the system is unrestrained. The mode-shape

vector for the first mode is that of a rigid-body motion in which all cars move together.

In the second mode, the middle car is a node, and the other two cars move in opposite

X1 = C1
1
1
S  X2 = C   1  0

-1
S  X3 = C   1-2

  1
S

v1 = 0  v2 = A
k
m

= 167.3 rad>s    v3 = A
3k
m

= 289.8   rad>s
f = k>m.

 det  Cf - l -f 0
-f 2f - l -f
0 - f f - l

S = 0

Cm 0 0
0 m 0
0 0 m

S C x
$

1

x
$
2

x
$
3

S + C k -k 0
-k 2k -k
0 -k k

S C x1

x2

x3

S = C0
0
0
S

1500 kg
7 m/s

1500 kg 1500 kg

k = 4.2 × 107 N/m

x1 x2 x3

m
k k

m m

(a)

(b)

FIGURE 8.8
(a) Shunting of railroad cars. (b) Three degree-of-freedom model once cars are coupled.

62129_08_Ch08_p533-592.qxd  3/16/11  12:13 PM  Page 550

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Free Vibrations of MDOF Systems 551

directions with the same amplitude. The third mode has two nodes: one in the spring con-

necting the first car to the middle car and one in the spring connecting the third car to the

middle car.

The general solution of the differential equations is

(e)

Application of the initial conditions leads to

(f)

and

(g)

Equations (g) and (h) are satisfied if

(h)

The equation expressing conservation of linear momentum of the railroad cars after cou-

pling is achieved is

(i)mx# 1(t ) + mx# 2(t ) + mx# 3(t ) = C

C1 = f1 = f2 = 0 C2 = 2.32   m/s  C3 = 0.021   m C4 = 0.004   m

= C2 C1
1
1
S + C3 (167.3) C 1

0
-1
S cos (-f1) + C4 (289.8) C 1

-2
1
S  cos(-f2 )

C x# 1(0)
x# 2(0)
x# 3(0)

S = C7 m/s
0
0
S

C x1(0)
x2(0)
x3(0)

S = C0
0
0
S = C1 C1

1
1
S + C3 C    1

   0
-1
S  sin  (-f1 ) + C4 C    1

-2
   1
S  sin (-f2 )

+ C4 C 1
-2
1
S  sin (289.8t + f2 )

C x1(t )
x2(t )
x3(t )

S = (C1 + C2t ) C1
1
1
S + C3 C 1

0
-1
S   sin (167.3t + f1)

EXAMPLE 8 . 7
Consider the unrestrained three degree-of-freedom system of Example 7.12 and Figure 7.12.

Let Calculate the natural frequencies and illustrate the development of the

constraint from momentum considerations.

SO LU T I ON
The differential equations are

(a)C2m 0 0
0 m 0
0 0 I

S C x
$
A

x
$

B

u
$
S + C k 0 -kr

0 3k -6kr
-kr -6kr 13kr2

S C xA

xB

u

S = C0
0
0
S

mr 2>I = 2.
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The characteristic equation is developed from

(b)

where . The characteristic equation is

(c)

where . The roots of this equation are

(d)

which lead to natural frequencies of

(e)

Application of the principle of conservation of angular momentum about the center of the

pulley leads to

(f)2mrx#A (t ) + 2mrx#B (t ) + I u
#
(t ) = 2mrx#A (0) + 2mrx#B (0) + Iu

#
(0)

v1 = 0  v2 = 0.823A
k
m
  v3 = 5.369A

k
m

b = 0, 0.677, 28.82

b = l>f
-b3 +

59

2
b2 -

39

2
b = 0

f = k>m

 det  E
1
2
f - l 0 -

r
2
f

0 3f - l -6rf

-
mr
I
f -

6mr
I
f

13mr 2

I
f - l

U = 0

8.6 ENERGY SCALAR PRODUCTS
A scalar product is an operation performed on two vectors such that the result is a scalar.

In order for the operation to be termed a scalar product, it must satisfy certain rules as

outlined in Appendix C. When the differential equations governing the motion of a linear

nDOF system are formulated by using energy methods, the mass and stiffness matrices are

symmetric. Then for a stable restrained system, the following two operations satisfy all

requirements to be called scalar products. Let y and z be any two n-dimensional vectors;

define

(8.25)

and

(8.26)

The scalar product defined by Equation (8.25) is called the potential energy scalar
product. Let Xi be the mode shape corresponding to a natural frequency �i. If the system

response includes only this mode, then from Equation (8.16)

(8.27)x (t ) = Ai Xi sin (vi t - fi )

(y, z)M = z T My

(y, z )K = z T Ky

62129_08_Ch08_p533-592.qxd  3/16/11  12:13 PM  Page 552

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Free Vibrations of MDOF Systems 553

From Equation (7.21), the potential energy is calculated as

(8.28)

Thus, at a given instant of time, the potential energy scalar product of a mode shape with

itself is proportional to the potential energy associated with that mode.

The scalar product defined by Equation (8.26) is called the kinetic energy scalar
product. It can be shown by using Equations (7.22) and (8.26) that

(8.29)

or that for a linear system, the kinetic energy scalar product of a mode shape with itself is

proportional to the kinetic energy associated with that mode.

The mass and stiffness matrices for a linear system are guaranteed to be symmetric. In

addition, the mass matrix is positive definite. The stiffness matrix for a stable system is pos-

itive definite unless it is unrestrained. The stiffness matrix for an unstable system is not pos-

itive definite. Thus, from Example C.5 of Appendix C, Equation (8.26) defines a valid

scalar product for all nDOF systems and Equation (8.25) defines a valid scalar product for

all stable constrained nDOF systems.

The ability to define the potential-energy scalar product and the kinetic-energy scalar

product is because M and K are guaranteed to be symmetric. One property that scalar

product defined for real vectors must satisfy is commutivity; that is

(8.30)

and

(8.31)

Taking the potential-energy scalar product of y and z using Equation (8.30) implies

(8.32)

for all n dimensional y and z, which is true if K is symmetric. The commutivity of the

kinetic energy scalar product is proved in the same fashion.

Another property of scalar products is that, when a scalar product of a vector is taken

with itself, the operation must yield a non-negative quantity and the operation is only zero

for the zero vector. This statement, for the potential energy scalar product, is equivalent to

(8.33)

for all y and yTKy � 0 if and only if y � 0.

Equation (8.33) is also a statement of positive definiteness of the matrix K. It can be

shown that for all stable systems K satisfies the first part of the statement. For restrained sys-

tems, K satisfies the second part as well. If the system is unrestrained, there exists a y Z 0

such that yTKy � 0. This y is the mode shape for the rigid-body mode. The kinetic-energy

scalar product always satisfies an equivalent statement to Equation (8.33).

For all real n-dimensional vectors w, y, and z and for all scalars 	 and �, we have

(8.34)(aw + by, z )K = a (w, z )K + b(y,z )K

yTKy Ú 0

zTKy = yTK z

(y, z)M = (z, y)M

(y, z )K = (z, y)K

T =
A 2

i

2
v2

i  cos 2(vi t - fi )(X i , X i )M

V =
A2

i

2
 sin 2(vi t - fi )a

n

r = 1
a

n

s = 1

kr s Xir Xis =
A2

i

2
 sin 2 (vi t - fi )(Xi 

, Xi )K
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554 CHAPTER 8

and

(8.35)

Equations (8.34) and (8.35) are statements of the linearity of the potential and kinetic

energy scalar products.

Two vectors are said to be orthogonal with respect to a scalar product if their scalar

product is zero. The n-dimensional vectors y and z are orthogonal with respect to the

potential-energy scalar product, giving

(8.36)

The vectors are orthogonal with respect to the kinetic energy scalar product if

(8.37)

The use of scalar product notation is not essential to analyze and understand free and

forced vibrations of MDOF systems. However, writing equations in scalar product nota-

tion is usually less confusing than using matrix and vector notation. In addition, since the

scalar products have identifiable physical meaning, it may be easier to identify the physical

significance of an equation when it is written in scalar product notation. At the very least,

the energy scalar products can be thought of as shorthand notation for the products

defined by Equations (8.25) and (8.26). For these reasons, the remainder of the discussion

in Chapter 8 and the entire discussion in Chapter 7 use scalar product notation. In addi-

tion, a scalar product is developed for use with continuous systems in Chapter 10. Many

equations are also written using matrix notation for those not comfortable with scalar product

notation.

( y, z )M = 0

( y, z )K = 0

(aw + by, z )M = a(w, z )M + b(y, z )M

EXAMPLE 8 . 8
Consider the system of Figure 8.2 and Example 8.2. Define the vectors

(a)

Calculate (a) (y, z)
M

, (b) (y, z)
K

, and (c) for any three-dimensional vector x prove Equation

(8.33) for this system.

SO LU T I ON
(a) Using the mass matrix from Example 8.2, we have

(b)= 2(m) - 1(2m) + 3(2m) = 6m

( y, z)M = [2 -1 3]Dm 0 0
0 m 0

0 0
m
2

T C1
2
4
S = [2 -1 3] C   m

2m
2m
S

y = C   1   2
-4
S  z = C  2

-1
  3
S
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Free Vibrations of MDOF Systems 555

(b) Using the stiffness matrix from Example 8.2, we have

(c)

(c) For an arbitrary x,

(d)

Clearly, Equation (d) is greater than or equal to zero for all choices of x. Additionally, it

is obvious that (x, x)
K

� 0 if x � 0 and the only x for which Equation (d) equals zero is

x � 0. Equation (d) is twice the potential energy of the system if x were a mode shape

vector.

= kx 
2
1 + 2k (x2 - x1)

2 + k (x3 - x2)
2 + 2kx 

2
3

= 3kx 
2
1 - 4kx1x2 + 3kx 

2
2 - 2kx2x3 + 3kx 

2
3

= x1(3kx1 - 2kx2) + x2(-2kx1 + 3kx2 - kx3) + x3(-kx2 + 3kx3)

( x, x)K = [x1 x2 x3]C 3k -2k 0
-2k 3k -k

0 -k 3k
S C x1

x2

x3

S = [x1 x2 x3] C 3kx1-
 
2kx2

-2kx1+  3kx2-kx3

-kx2+  3kx3

S
= 2(-k) - 1(0) + 3(10k) = 28k

( y, z)K = [2 -1 3]C 3k -2k 0
-2k 3k -k

0 -k 3k
S C1

2
4
S = [2 -1 3] C -k

0
10k
S

8.7 PROPERTIES OF NATURAL FREQUENCIES
AND MODE SHAPES
Let �i and �j be distinct natural frequencies of an nDOF system. Let Xi and Xj be their

respective mode shapes. From Equation (8.6), the equations satisfied by these natural fre-

quencies and mode shapes are

(8.38)

and

(8.39)

Premultiplying Equation (8.38) by gives

(8.40)

or in scalar product notation

(8.41)

Premultiplying Equation (8.39) by gives

(8.42)v2
j ( Xj , Xi )M = (Xj , Xi )K

XT
i

v2
i ( Xi 

, Xj )M = ( Xi 
, Xj )K

v2
i XT

j M Xi = XT
j K Xi

XT
j

v2
j M Xj = K Xj

v2
i M Xi = K Xi
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Subtracting Equation (8.42) from Equation (8.41) gives

(8.43)

On the basis of the commutivity of the scalar products, Equation (8.43) reduces to

(8.44)

Since 

(8.45)

or mode shapes corresponding to distinct natural frequencies are orthogonal with respect

to the kinetic energy scalar product. Then from Equation (8.41), these mode shapes are

also orthogonal with respect to the potential energy scalar product, or

(8.46)

If a system has a zero natural frequency, then it is strictly improper to define a poten-

tial energy scalar product. Property 3 required of scalar products is violated. However, it

can be shown that the mode shape for the rigid-body mode for an unrestrained system is

orthogonal to all other mode shapes for the system.

If an eigenvalue is not distinct, but has a multiplicity m > 1, then there are m linearly

independent mode shapes corresponding to that eigenvalue. The preceding analysis shows

that each of these mode shapes is orthogonal to mode shapes corresponding to different

natural frequencies. Independent mode shapes obtained by solving Equation (8.7) for the

same eigenvalue may or may not be mutually orthogonal with respect to the energy scalar

products. However, a procedure known as the Gram-Schmidt orthogonalization process

can be used to replace these mode shapes with a set of m mutually orthogonal mode shapes.

These orthogonalized mode shapes are linearly dependent with the original mode shapes.

(Xi 
,  Xj 

)K = 0

(Xi , Xj )M = 0

vi Z vj ,

(v2
i - v2

j )(Xi , Xj )M = 0

v2
i (Xi, Xj )M - v2

j (Xj , Xi )M = (Xi, Xj )K - (Xj , Xi )K

EXAMPLE 8 . 9
Demonstrate orthogonality of the mode shapes with respect to the kinetic energy scalar

product for the system of Example 8.2

SO LU T I ON
The mass matrix, stiffness matrix, and mode shapes are as given in Example 8.2. Orthogo-

nality with respect to the kinetic energy inner product is as follows:

= [0.908 1 0.384]C -1.375m
m   

      0.647m
S

= [0.908 1 0.384]Dm 0 0
0 m 0

0 0
m
2

T C-1.375
1 

       1.294

S
(X2, X 1)M = X 

T
1 

M X 2
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Free Vibrations of MDOF Systems 557

A version of the preceding argument is used to prove that the eigenvalues are all real.

The formal proof of this statement involves the introduction of a scalar product that can

be defined to operate on complex vectors and can be evaluated to be a complex number.

The properties of a complex scalar product are more general than for a real scalar product.

The property of commutivity is generalized to a property where the scalar product is the

complex conjugate of its commutative. Assume a complex eigenvalue of M�1K or AM exists

and then prove that the eigenvalue must be real due to the symmetry of M, K, and A.

The argument can also be used to show that if M and K are positive definite, then the

eigenvalues of M�1K are all positive. Let Xi � Xj in Equation (8.41)

(8.47)

If M and K are positive definite, then both scalar products in the quotient of Equation (8.47)

are positive. Hence,

(8.48)v2
i 7 0

v2
i =

( Xi 
, Xi 

)K

( Xi 
, Xi 

)M

= -0.00159m L 0

= (-1.375)(-0.534m) + (1)(m) + (1.294)(-1.339m)

= [1.375 1 1.294]C -0.535m
m   

-1.339m
S

= [-1.375 1 1.294]Dm 0 0
0 m 0

0 0
m
2

T C -0.534
1 

-2.677
S

(X3, X 2)M = X 
T
2 

M X 3

= 0.00095m L 0

= (0.908)(-0.534m) + (1)(m) + (0.384)(-1.339m)

= [0.908 1 0.384]C -0.534m
m   

-1.339m
S

= [0.908 1 0.384]Dm 0 0
0 m 0

0 0
m
2

T C -0.534
1 

-2.677
S

(X3, X 1)M = X 
T
1 

M X 3

= -0.000052m L 0

= (0.908)(-1.375m) + (1)(m) + (0.384)(0.647m)
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This, in turn, shows that a system in which both the mass and stiffness matrices are posi-

tive definite is stable.

The ratio of Equation (8.47) is called Rayleigh’s quotient. For a given mode it is the ratio

or the potential energy to the kinetic energy.

It is possible to construct n orthogonal, and hence linearly independent, mode shapes

for an nDOF system. Thus any n-dimensional vector can be written as a linear combina-

tion of these n mode shapes. To this end, if y is any n-dimensional vector, there exist con-

stants c
1
, c

2
, . . . , cn such that

(8.49)

Equation (8.49) is a representation of the expansion theorem. Premultiplying Equation (8.49)

by for some j, 1 j n gives, in scalar product notation

(8.50)

Interchanging the scalar product operation with the summation and using the linearity

property of scalar products gives 

(8.51)

The orthogonality of the mode shapes implies that the only nonzero term in the summa-

tion occurs when i � j. Then Equation (8.51) reduces to

(8.52)

8.8 NORMALIZED MODE SHAPES
A mode shape corresponding to a specific natural frequency of an nDOF system is unique

only to a multiplicative constant. The arbitrariness can be alleviated by requiring the mode

shape to satisfy the normalization constraint. A mode shape chosen to satisfy the normal-

ization constraint is called a normalized mode shape. The normalization constraint, itself, is

arbitrary. However, all mode shapes are required to satisfy the same normalization con-

straint. The constraint should be chosen such that subsequent use of the normalized mode

shape is convenient.

It is convenient to normalize mode shapes by requiring that the kinetic energy scalar

product of a mode shape with itself is equal to one. That is,

(8.53)

If the mode shape, Xi, is normalized according to Equation (8.53), then from Rayleigh’s

quotient, Equation (8.47)

(8.54)XT
i   K Xi = (Xi 

, Xi 
)K = v2

i

(Xi 
,  Xi 

)M = XT
i   

MXi = 1

cj =
(Xj 

,  y)M

(Xj 
,  Xj 

)M

(Xj 
, y)M = a

n

i =1

ci 
( Xj 

,  Xi 
)M

(Xj 
,  y)M = aXj 

,a
n

i =1

ci  
Xib

M

……XT
j  

M

y = a
n

i =1

ci  
Xi
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The orthogonality relations, Equations (8.45) and (8.46), the normalization constraint,

Equation (8.53), and the subsequent result of the choice of normalization, Equation (8.54),

are summarized by

(8.55)

and

(8.56)

where �ij is the Kronecker delta. From this point, mode shapes will be assumed to be nor-

malized by Equation (8.53).

With the normalization scheme of Equation (8.53), the expansion theorem, Equations (8.49)

and (8.52), becomes

(8.57)y = a
n

i =1

(Xi 
, y)M  

Xi

( Xi 
,  Xj 

)K = v2
idij

(Xi 
,  X j 

)M = dij

EXAMPLE 8 . 10
Expand the vector

(a)

using the normalized mode shapes of Example 8.2.

SO LU T I ON
The general mode shapes of Example 8.2 are

(b)

where B
1
, B

2
, and B

3
are arbitrary constants. The normalization of the first mode shape

proceeds as follows

(c)

which yields and

(d)X1 =
1

2m
 C0.659

0.726
0.279

S
B1 = 0.726>1m

1 = (X1,  X1)M = B 2
1 30.908 1 0.3844 Dm 0 0

0 m 0

0 0
m
2

T C 0.908
1  
0.384

S  

X1 = B1C 0.908
1  
0.384

S  X2 = B2C-1.375
1 

       1.294
S  X3 = B3C -0.534

1  
-2.677

S

y = C   1  4
-2
S
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The other mode shapes are normalized in the same manner yielding

(e)

The first coefficient in the expansion is calculated by

(f)

The other coefficients are calculated in a similar manner, yielding 

Thus,

(g)

8.9 RAYLEIGH’S QUOTIENT
Consider a situation where the free vibrations of a SDOF system are generated such that

only one mode is present. The frequency of the mode is � and its mode shape is X. The

maximum potential energy associated with this mode of vibration is determined from

Equation (8.28) as

(8.58)

The maximum kinetic energy associated with this mode is determined from Equation (8.29) as

(8.59)

For a conservative system, where a continual process of transfer of kinetic and potential

energy occurs without dissipation, the maximum potential energy equals the maximum

kinetic energy. Thus, from Equations (8.58) and (8.59)

(8.60)

or

(8.61)v2 =
(X, X)K

(X, X)M

v2(X, X)M = (X, X)K

T
 max 

=
1
2

 v2(X , X )M

V
 max 

=
1
2

(X, X)K

C    1
   4
-2
S = 3.284 C0.659

0.726
0.279

S + 0.690 C -0.712
  0.518
  0.670

S + 2.777 C -0.242
  0.453
-1.213

S
c3 = 2.7771m.

c2 = 0.6901m,

c1 = (X1,  y)M =
1

2m
30.659 0.726 0.2794 Dm 0 0

0 m 0

0 0
m
2

T C    1
   4
-2
S = 3.2842m

X2 =
1

2m
 C -0.712

  0.518
  0.670

S  X3 =
1

2m
 C -0.242

   0.453
-1.213

S
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Free Vibrations of MDOF Systems 561

For a general n-dimensional vector X, not necessarily a mode shape, Equation (8.61) is gen-

eralized to

(8.62)

The scalar function defined in Equation (8.62) is called Rayleigh’s quotient. If X is a

mode shape of the linear n degree of freedom whose stiffness and mass matrices are K and

M, respectively, then R(X) takes on the value of the natural frequency associated with that

mode. If X is not a mode shape, then R(X) takes on some other value.

Rayleigh’s quotient can be useful in determining an upper bound on the lowest natu-

ral frequency. In some cases, it can be used to attain a good approximation to the lowest

natural frequency.

From the expansion theorem, an arbitrary vector X can be written as a linear combi-

nation of the normalized mode shapes

(8.63)

Substituting Equation (8.63) in Rayleigh’s quotient, using properties of the scalar

products and orthonormality of the mode shapes, leads to

(8.64)

Stationary values of R(X) occur when

(8.65)

The n solutions of Equation (8.65) are summarized by c
i
� �ij for j � 1, . . . , n. That is,

Rayleigh’s quotient is stationary only when X is an eigenvector. It is also possible to show

that these stationary values are minimums. Hence is the minimum value of Rayleigh’s

quotient.

The preceding result implies that an upper bound and perhaps an approximation for

the lowest natural frequency can be obtained by using Rayleigh’s quotient. Rayleigh’s quo-

tient can be calculated for several trial vectors. The lowest natural frequency can be no

greater than the square root of the smallest value obtained. The closer a trial vector is to the

actual mode shape, the closer the value of Rayleigh’s quotient is to the square of the lowest

natural frequency.

v2
1

0R
0 c1

=
0R

0 c2

= Á =
0R

0 cn

= 0

R ( X ) = a
n
i =1c 

2
iv

2
i

an
i =1c 

2
i

X = a
n

i = 1

ci  
X i

R (X) =
(X, X)K

(X, X)M

EXAMPLE 8 . 1 1
Use Rayleigh’s quotient to obtain an approximation to the lowest natural frequency of the

system of Example 8.2. Use the trial vectors

X = C 1
1

  0.5
S  Y = C   1-1

  1
S  Z = C   1  3

-1
S
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SO LU T I ON
Calculate Rayleigh’s quotient:

(a)

Similar calculations yield

(b)

From the preceding equations, an upper bound on the lowest natural frequency is

(c)

From Example 8.2, the lowest natural frequency for this system is 

8.10 PRINCIPAL COORDINATES
Let �

1
, �

2
, . . . , �n, be the natural frequencies of a linear nDOF system with correspon-

ding normalized mode shapes X
1
, X

2
, . . . , Xn. The expansion theorem implies that there

exists coefficients such that at any time the solution of Equation (8.3) can be expanded in

a series of eigenvectors. These coefficients must be continuous functions of time, call them

pi(t), i � 1, 2, . . . , n. The expansion theorem implies

(8.66)

Substitution of Equation (8.66) into Equation (8.3) leads to

(8.67)

Taking the standard scalar product of Equation (8.67) with Xj for an arbitrary j leads to

which, after the properties of scalar products are invoked, becomes

(8.68)a
n

i = 1

p
$
i (Xj 

, M Xi) + a
n

i =1

pi (Xj 
, K Xi 

) = 0

aX j 
,a

n

i = 1

p
$
i M  Xib + aX j 

,a
n

i = 1

pi  
K  Xib = 0

Maa
n

i = 1

p
$
i Xib + K aa

n

i = 1

pi Xib = 0

x(t) = a
n

i = 1

pi(t)Xi

0.8932k>m.

v1 6 0.907A
k
m

R (Y ) = 6.0 
k
m
  R (Z) = 2.57

k
m

R (X) =

31 1 0.54C 3k -2k 0
-2k 3k -k

0 -k 3k
S C 1

1
0.5
S

31 1 0.54Dm 0 0
0 m 0

0 0
m
2

T C 1
1
0.5
S

= 0.823
k
m
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Free Vibrations of MDOF Systems 563

Using the definitions of the energy scalar products, Equations (8.26) and (8.27), in

Equation (8.68) leads to

(8.69)

Orthogonality and normalization of mode shapes, Equations (8.56) and (8.57), are used in

Equation (8.69), leading to

(8.70)

Since j was arbitrarily chosen, an equation of the form of Equation (8.70) can be written

for each j � 1, 2, . . . , n.

Equation (8.66) can be viewed as a linear transformation between the chosen general-

ized coordinates, x, and the coordinates p � [p
1

p
2 · · · pn]

T, called the principal coordinates.
The transformation matrix is the matrix whose columns are the normalized mode shapes.

This matrix, P � [X
1

X
2 · · · Xn] is called the modal matrix. Since the columns of the

modal matrix are linearly independent, the modal matrix is nonsingular and the transfor-

mations

(8.71)

have a one-to-one correspondence.

The differential equations governing the vibrations of a linear nDOF system are uncou-

pled when the principal coordinates are used as dependent variables.

x = Pp  p = P-1x

p
$
j + v2

i pj = 0

a
n

i = 1

p
$
i (Xj  

, Xi 
)M + a

n

i = 1

pi (Xj 
, Xi 

)K = 0

EXAMPLE 8 . 1 2
(a) Write the differential equations satisfied by the principal coordinates for the system of

Example 8.2. 

(b) Find the relation between the principal coordinates and the original generalized coor-

dinates and vice versa. 

(c) Motion of the system is initiated by moving the third mass a distance � from equilib-

rium while holding the other masses in their equilibrium position and then releasing

the system from rest. Solve for the response of the principal coordinates.

SO LU T I ON
(a) Recalling from Example 8.2, the natural frequencies of the system are

(a)

The differential equations governing the principal coordinates are

(b)

(c)

(c)p
$
3 + a2.597A

k
m
b2

p3 = 0

p
$
2 + a2.110A

k
m
b2

p2 = 0

p
$
1 + a0.893A

k
m
b2

p1 = 0

v1 = 0.893A
k
m
  v2 = 2.110A

k
m
  v3 = 2.597A

k
m
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564 CHAPTER 8

(b) The normalized eigenvectors are calculated in Example 8.10 as

(d)

The modal matrix is the matrix whose columns are the normalized eigenvectors

(e)

The relation between the two sets of coordinates is given by Equation (8.74)

(f)

The relationship is inverted yielding

(g)

(c) The initial conditions for x are

(h)

The initial conditions for the principal coordinates are obtained from Equation (g) as

(i)

and

(j)

The general solution for the principal coordinates is

(k)

(l)

(m)p3(t) = A3 sin a2.597A
k
m

tb + B3 cos a2.597A
k
m

tb

p2(t) = A2 sin a2.110A
k
m

tb + B2 cos a2.110A
k
m

tb

p1(t) = A1 sin a0.893A
k
m

tb + B1 cos a0.893A
k
m

tb

C p
#
1(0)

p
#
2(0)

p
#
3(0)
S = 2m C     0.659 0.726   0.140

-0.712 0.518   0.335
-0.242 0.453 -0.607

S C0
0
0
S = C0

0
0
S

C p1(0)
p2(0
p3(0)

S = 2m C     0.659 0.726    0.140
-0.712 0.518    0.335
-0.242 0.453 -0.607

S C0
0
d

S = 2m d C   0.140
  0.335
-0.607

S
C x1(0)

x2(0)
x3(0)

S = C0
0
d

S      C x#1(0)
x#2(0)
x#3(0)

S = C0
0
0
S

p = P-1x Q C p1(t)
p2(t)
p3(t)
S = 2mC     0.659 0.726   0.140

-0.712 0.518   0.335
-0.242 0.453 -0.607

S C x1(t)
x2(t)
x3(t)
S

x = Pp Q C x1(t)
x2(t)
x3(t)
S =

1

2m
C0.659 -0.712 -0.242

0.726    0.518     0.453
0.279    0.670 -1.213

S C p1(t)
p2(t)
p3(t)
S

P =
1

2m
C0.659 -0.712 -0.242

0.726    0.518     0.453
0.279    0.670 -1.213

S
X1 =

1

2m
C0.659

0.726
0.279

S  X2 =
1

2m
 C -0.712

   0.518
   0.670

S  X1 =
1

2m
 C -0.242

    0.453
-1.213

S
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Free Vibrations of MDOF Systems 565

Application of initial conditions, Equations (i) and (j) lead to 

A1 � 0, A
2

� 0, and A
3

� 0. The original generalized 

coordinates are obtained using Equation (f ) as

(n)

(o)

(p)

Equations (n) through (p) are the same as Equation (e) of Example 8.4.

+ 0.736d cos a2.597A
k
m

tb

x3(t) = 0.0389d cos a0.893A
k
m

tb + 0.224d cos a2.110A
k
m

tb

- 0.275d cos a2.597A
k
m

tb

x2(t) = 0.102d cos a0.893A
k
m

tb + 0.174d cos a2.110A
k
m

tb

+ 0.147d cos a2.597A
k
m

tb

x1(t) = 0.0922d cos a0.893A
k
m

tb - 0.238d cos a2.110A
k
m

tb

0.335d1m, B3 = -0.607d1m,
B1 = 0.140d1m, B2 =

Equation (8.71) shows that the generalized coordinates are linear combinations of the

principal coordinates. The generalized coordinates for a linear system are chosen such that the

displacement of any particle in the system is a linear combination of the generalized coordi-

nates. Thus, the displacement of any particle in the system is a linear combination of the prin-

cipal coordinates. This implies that if a particle is a node for the higher mode of a two

degree-of-freedom system, then p
1

is proportional to the displacement of that particle. If a

particle is a node for the second mode of a three degree-of-freedom system, then a linear com-

bination of the first and third principal coordinates represents the displacement of that point.

Nothing can be inferred about the physical interpretation of either principal coordinate.

8.11 DETERMINATION OF NATURAL FREQUENCIES
AND MODE SHAPES
The determination of the natural frequencies and mode shapes for a MDOF system

requires the solution of a matrix eigenvalue-eigenvector problem. If the system has more

than three degrees of freedom, the algebraic and computational burden usually leads one

to seek approximate, numerical, or computer solutions. Rayleigh’s quotient, presented in

Section 8.9, may be used to provide an upper bound to the lowest natural frequency. In the

Rayleigh-Ritz method for discrete systems, a linear combination of linearly independent

vectors is used in Rayleigh’s quotient. The coefficients in the linear combination are chosen

to render Rayleigh’s quotient stationary.
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566 CHAPTER 8

Most applications require more accurate determination of the natural frequencies and

mode shapes than can be provided by Rayleigh’s quotient or the Rayleigh-Ritz method. A

number of numerical methods lead to accurate numerical determination of natural fre-

quencies and mode shapes. One such is the matrix iteration method. Beginning with a trial

mode shape vector x
0
, a sequence of vectors xi is generated by

(8.72)

It can be shown that the ratio of two corresponding elements of xi and xi�1
approaches 

as i gets large and that xi approaches the corresponding mode shape vector. Higher natural

frequencies and mode shape vectors can be obtained by requiring trial vectors to be orthog-

onal with respect to the kinetic energy scalar product to all previously obtained mode shape

vectors. Matrix iteration has the advantage that natural frequencies and mode shape vectors

are determined sequentially and that only the number desired need to be determined.

Jacobi’s method is a powerful iterative method that determines all eigenvalues and

eigenvectors of a matrix. Jacobi’s method uses a series of transformations to convert a

symmetric matrix into a diagonal matrix with the eigenvalues along the diagonal. The

product of the matrices used in the transformation produces a matrix whose columns are

the eigenvectors. The mass and stiffness matrices for a MDOF system are guaranteed to

be symmetric, but the matrix M�1K, whose eigenvalues are the squares of the natural fre-

quencies, is not necessarily symmetric. In this case, it can be shown that there exists a

symmetric matrix D that can be obtained by a method called Choleski decomposition,

such that the eigenvalues and eigenvectors of M�1K are the same as the eigenvalues and

eigenvectors of D.

The above methods are described in other texts on vibrations or numerical analysis

texts. These methods are tools that can be used to solve eigenvalue-eigenvector problems

and thus, lead to natural frequencies and mode shapes for MDOF systems. However,

understanding the mechanics of these methods does not enhance the understanding of

vibrations. These methods have been incorporated into the eigenvalue routines used in

MATLAB. These MATLAB routines are easy to use.

v2
1

xi = AMxi -1

EXAMPLE 8 . 1 3
Study the accuracy of lumped-mass models to approximate the natural frequencies of a

simply supported beam. Model the beam using 2, 3, 4, 5, 6, and 7 lumped masses.

Compare the natural frequency approximations obtained when each lumped mass is mb/n,

where mb is the total mass of the beam and n is the number of nodes, to the natural fre-

quencies obtained when the method of Section 7.8 is used to obtain the nodal masses.

SO LU T I ON
A simply supported beam modeled with n lumped masses is illustrated in Figure 8.9. The

nodal masses are of equal value

(a)

where � is a parameter dependent on the method of discretization. If the sum of the nodal

masses equals the total mass of the beam, then � � n. If each nodal mass represents the

mass of a region surrounding the particle, as described and illustrated in Section 7.8, then

� � n � 1.

m =
mb

b
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Free Vibrations of MDOF Systems 567

The generalized coordinates are the transverse displacements of the lumped masses. The

mass matrix is a diagonal matrix with mii � m as the diagonal element for i � 1, 2, . . . , n.

Flexibility influence coefficients are used to determine the elements of the flexibility

matrix. These elements are of the form

(b)

where qij is determined from Appendix D as

(c)
Symmetry of the flexibility matrix is used to determine qij for j � i.

The differential equations governing the free vibrations of the approximate system are

(d)

where

(e)

The natural frequencies are the reciprocals of the square roots of the eigenvalues of

. The nondimensional natural frequencies are

(f)

A MATLAB script is written to determine the non dimensional natural frequencies of

the simply supported beam with n discrete masses for n � 2, 3, . . . , 7. The eigenvalues of

Q are summarized in Table 8.1.

v*
i = vi A

L3mb

EI

fQ , v2
i = 1

1li

f =
L3mb

bEI

fQ x
$ + x = 0

qij = a j

n + 1
- 1b a i

n + 1
b3

+
1
6
a j

n + 1
b a1-

j

n + 1
b a2 -

j

n + 1
b a i

n + 1
b j Ú i

aij =
L3

EI
 qij

m m m··· m

FIGURE 8.9
Lumped model of a simply supported beam by nmasses. The generalized coordinates are the transverse
displacements of the masses.

Nondimensional frequencies for simply supported beam

Mode number

� 1 2 3 4 5 6 7

n � 2 5.6922 22.046 — — — — —
n � 3 4.9333 19.596 41.607 — — — —
n � 4 4.4133 17.637 39.988 64.202 — — —
n � 5 4.0290 16.100 36.000 62.356 89.194 — —
n � 6 3.7302 14.913 33.456 58.826 88.776 116.19 —
n � 7 3.4894 13.954 31.348 55.427 85.221 117.68 145.52

T A B L E 8 . 1
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568 CHAPTER 8

The natural frequency approximations using � � n � 1 are summarized in Table 8.2,

while the natural frequency approximations for � � n are summarized in Table 8.3. When

the results are compared to the exact natural frequencies, obtained by the method of

Chapter 10, it is clear that using � � n � 1 leads to a better approximation.

8.12 PROPORTIONAL DAMPING
A MDOF system is said to have proportional damping if the viscous damping matrix is a linear

combination of the mass matrix and the stiffness matrix,

(8.73)
where 	 and � are constants. The differential equations governing the free vibrations of a

linear system with proportional damping are

(8.74)M x
$ + (aK + bM)x# + K x = 0

C = aK + bM

Dimensional frequencies assuming � � n � 1
T A B L E 8 . 2

Mode number

1 2 3 4 5 6 7

Exact 9.8696 39.478 88.826 157.91 246.74 355.31 483.61
n � 2 9.8591 38.184 — — — — —
n � 3 9.8666 39.192 83.214 — — — —
n � 4 9.8685 39.381 87.179 143.56 — — —
n � 5 9.8691 39.437 88.182 152.74 218.48 — —
n � 6 9.8693 39.457 88.523 155.64 234.88 307.40 —
n � 7 9.8694 39.467 88.664 156.77 241.04 332.85 411.60

where � is the dimensional natural frequency.v = v# 2 EI
rAL4

�N

Dimensional frequencies assuming � � n
T A B L E 8 . 3

Mode number

1 2 3 4 5 6 7

Exact 9.8696 39.478 88.826 157.91 246.74 355.31 483.61
n � 2 8.0499 31.177 — — — — —
n � 3 8.5447 33.941 72.065 — — — —
n � 4 8.8267 35.223 77.973 128.40 — — —
n � 5 9.0092 36.000 80.499 139.43 199.44 — —
n � 6 9.1372 36.820 81.956 144.09 217.46 284.60 —
n � 7 9.2320 36.918 82.938 146.64 225.47 311.35 295.93

where � is the natural frequency of a simply supported beam.v = v# 2 EI
rAL4

�N
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Free Vibrations of MDOF Systems 569

Let �
1

	 �
2

	 . . . 	 �n be the natural frequencies of an undamped system whose mass

matrix is M and whose stiffness matrix is K. Let X
1
, X

2
, . . . , Xn be the corresponding nor-

malized mode shapes. The expansion theorem implies that x(t) can be written as a linear

combination of the mode shape vectors, as in Equation (8.66). Substituting Equation (8.66)

in Equation (8.74) leads to

(8.75)

Taking the standard scalar product of Equation (8.75) with Xj for an arbitrary j, and using

properties of scalar products and the definitions of energy scalar products, leads to

(8.76)

Use of the orthonormality relations, Equations (8.55) and (8.56), in Equation (8.76)

leads to

(8.77)

The principal coordinates are related to the original generalized coordinates through the

linear transformation, Equation (8.71). Thus the same principal coordinates that uncouple

the undamped system uncouple the system when proportional damping is added.

Equation (8.77) is analogous to the differential equation governing free vibrations of a

SDOF system and by analogy, is rewritten as

(8.78)

where (8.79)

is called the modal damping ratio.
The general solution of Equation (8.78) for 
j � 1 is

(8.80)

where Aj and �j are determined from initial conditions. The generalized coordinates are

obtained by using Equation (8.71).

Damping in structural systems is mostly hysteretic and hard to quantify. Lacking a

better model, proportional damping is often assumed. The modal damping ratios are usu-

ally determined experimentally. The equivalent damping ratio for a harmonically excited

SDOF system with hysteretic damping is proportional to the natural frequency, and

inversely proportional to the excitation frequency. This model fits proportional damping

where the damping matrix is proportional to the stiffness matrix. In these cases, the modes

with higher frequencies are damped more than modes with lower frequencies. The natural

frequencies in stiff structural systems are usually greatly separated. The effect of the higher

modes in the free vibration response is often negligible.

pj (t ) = Aj e
-zj vj t sin avj21 - z2

j t - fjb

zj =
1

2
 aavj +

b

vj

b

p
$
j + 2zj vj  p

#
j + v2

j pj = 0

p
$
j + (av2

j + b)p
#
j + v2

j pj = 0  j = 1, 2, Á , n

a
n

i = 1

p
$
i (Xj , Xi)M + a

n

i = 1

p
#
i3a(Xj , Xi)K + b(Xj , Xi)M4 + a

n

pi (Xj , Xi )K = 0

Maa
n

i = 1

p
$

i Xib + (aK + bM)aa
n

i = 1

p
#
i Xib + Kaa

n

i = 1

pi Xib
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570 CHAPTER 8

EXAMPLE 8 . 1 4
The system of Examples 8.2 and 8.12 has damping added, as shown in Figure 8.10. The

values of the parameters are m � 2 kg, k � 200 N/m, and c � 17 N · s/m. Motion of the

system is initiated by moving the third mass a distance � from equilibrium while holding

the other masses in equilibrium and releasing the system from rest.

(a) Write the differential equations satisfied by the principal coordinates and determine

the modal damping ratios.

(b) Find the free response of the system.

SO LU T I ON
The differential equations of motion are

(a)

The damping matrix is proportional to the stiffness matrix with

(b)

The natural frequencies of this system are given by Equation (f ) of Example 8.2. They are

calculated using the values of the parameters as

(c)

The modal damping ratios are

(d)

(e)

(f)z3 =
av3

2
=

(0.085   s)(25.97 rad/s)

2
= 1.10

z2 =
av2

2
=

(0.085  s)(21.1  rad/s)

2
= 0.900

z1 =
av1

2
=

(0.085  s)(8.93  rad/s)

2
= 0.380

v1 = 8.93   rad/s  v2 = 21.1  rad/s  v3 = 25.97  rad/s

a =
c
k

=
17  N # s/m

200 N/m
= 0.085 s

+ C 600 -400 0
-400 600 -200

0 -200 600
S C x1

x2

x3

S = C0
0
0
S

C2 0 0
0 2 0
0 0 1

S C x
$
1

x
$
2

x
$
3

S + C 51 -34 0
-34 51 -17

0 -17 51
S C x

#
1

x
#
2

x
#
3

4S

FIGURE 8.10
System of Example 8.14 is the system of Example 8.2, but with viscous damping added.

c

m m m/2

k

2c

2k

c

k

2c

2k
x1 x2 x3
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Free Vibrations of MDOF Systems 571

The first two modes are underdamped; the third is overdamped. The differential equations

governing the principal coordinates are

(g)

(h)

(i)

(b) The solutions for the principal coordinates are

(j)

(k)

(l)

The initial conditions that the principal coordinates must satisfy are those given in

Equations (i) and (j) of Example 8.12. They are applied to Equations (j) through (l) to

determine the constants of integration yielding

(m)

(n)

(o)

The generalized coordinates are related to the principal coordinates by

(p)

which leads to

(q)

(r)

(s)

8.13 GENERAL VISCOUS DAMPING
The differential equations governing the free vibrations of a MDOF system with viscous

damping is

(8.81)
If the damping matrix is a linear combination of the mass matrix and the stiffness matrix,

the system is proportionally damped. In this case, the principal coordinates of the undamped

M x
$ + Cx# + Kx = 0

+ 1.405e-19.24t - 0.6688e-40.46t4
x3(t) = d30.0422e-3.39t sin (8.26t + 1.81) + 0.0993e-18.92t sin (9.33t + 0.484)

- 0.5248e-19.24t + 0.2498e-40.46t4
x2(t) = d30.110e-3.39t sin (8.26t + 1.81) + 0.0678e-18.92t sin (9.33t + 0.484)

+ 0.2803e-19.24t - 0.1334e-40.46t4
x1(t) = d30.0997e-3.39t sin (8.26t + 1.81) - 0.1056e-18.92t sin (9.33t + 0.484)

x = Pp =
1

22
C0.659 -0.712 -0.242

0.726   0.518    0.453
0.279   0.670 -1.213

S C p1(t)
p2(t)
p3(t)
S

p3(t) = -1.1584de-19.24t + 0.5514de-40.46t

p2(t) = 0.148de-18.92t sin (9.33t + 0.484)

p1(t) = 0.513de-3.39t sin (8.26t + 1.81)

p3(t) = A3e
-19.24t + A4e

-40.46t

p2(t) = A2e
-18.92t sin (9.33t - f2)

p1(t) = A1e
-3.39t sin (8.26t - f1)

p
$
3 + 57.33p

#
3 + 674.4p3 = 0

p
$
2 + 37.84p

#
2 + 445.2p2 = 0

p
$
1 + 6.78p

#
1 + 79.75p1 = 0
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572 CHAPTER 8

system are used to uncouple the differential equations, Equation (8.76). The differential

equation defining each principal coordinate is analogous to the differential equation govern-

ing the motion of a linear SDOF system with viscous damping.

If the damping matrix is arbitrary, the principal coordinates of the undamped system do

not uncouple Equation (8.81). A more general procedure must be used. Equation (8.81) can

be reformulated as 2n first-order differential equations by writing

(8.82)

where (8.83)

A solution to Equation (8.82) is assumed as

(8.84)

Substitution of Equation (8.84) into Equation (8.82) leads to

(8.85)

or (8.86)

Thus the values of � are the eigenvalues of and the vectors are the corresponding

eigenvectors 
.

The values of � occur in complex conjugate pairs. The system is stable only if all eigen-

values have nonnegative real parts. Eigenvectors corresponding to complex conjugate

eigenvalues are also complex conjugates of one another. Eigenvectors corresponding to

eigenvalues which are not complex conjugates satisfy the orthogonality relation

(8.87)£T
i   M

∼
£j = 0

M
∼ -1K

∼

M
∼ -1K

∼
£ = g£

gM
∼

£ = K
∼

£

y = £e-gt

M
∼

= c 0 M
M C

d  K
∼

= c -M 0
0 K

d  y = cx
#

x
d

M
∼

y# + K
∼

y = 0

EXAMPLE 8 . 1 5
Plot the free-vibration response to the system of Figure 8.11 under the initial conditions

x
1
(0) � 0, x

2
(0) � 0.01 m, 

SO LU T I ON
The differential equations governing the motion of the system are

(a)

The damping matrix for this system is not a linear combination of the mass matrix and

the stiffness matrix. Hence, the principal coordinates of the undamped system cannot be

used to uncouple the differential equations. These equations are written in the form of

Equation (8.82) where

(b)y = Dx#1
x#2
x1

x2

T M
∼

= D 0 0 m 0
0 0 0 2m
m 0 0 0
0 2m 0 c

T K
∼

= D -m 0 0 0
0 -2m 0 0
0 0 3k -2k
0 0 -2k 2k

T

cm 0
0 2m

d cx
$
1

x
$
2

d + c0 0
0 c

d cx
#
1

x#2
d + c 3k -2k

-2k 2k
d cx1

x2

d = c0
0
d

x#1(0) = 0, and x#2(0) = 0.
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A solution of Equation (8.82) is assumed in the form of Equation (8.84). The resulting values

of � are the eigenvalues of . The eigenvalues obtained by using MATLAB are

(c)

The corresponding eigenvectors are

(d)

The general solution is a linear combination over all modes

(e)y = a
4

j = 1

Cj £j e-gi t

£1,2 = D -0.924 < 0.166i
     0.340 � 0.0437i
   0.0039 < 0.0214i
-0.0011 � 0.0079i

T  £3,4 = D 0.4984 < 0.3123
0.6871 � 0.4179i
0.0240 < 0.0448i
0.0320 � 0.0617i

T
g1,2 = 0.2110 � 43.19i  g3,4 = 0.7890 � 11.50i

M
∼ -1K

∼

FIGURE 8.11
(a) System of Example 8.15 has a general viscous-damping matrix. (b) Free vibration response of
system of Example 8.15.

k c2k
m 2m

x1
x2

c = 80 N · s/mk = 10,000 N/m m = 20 kg

(a)

–8
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 
(m

)

–6

–4

–2

0

2

4

6

8

10

t (s)

(b)

x1(t)

x2(t)

×10–3
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574 CHAPTER 8

where Cj are constants of integration. Application of initial conditions leads to

(f)

Since the eigenvalues and eigenvectors are complex conjugate pairs, evaluation of the solu-

tion leads to a real response. Evaluation and plotting the response over a period of time

leads to Figure 8.11(b).

8.14 BENCHMARK EXAMPLES

8.14.1 MACHINE ON FLOOR OF AN INDUSTRIAL PLANT
The differential equations for free vibration of the machine bolted to the beam illustrated

in Figure 7.21 are taken from Equation (h) of Section 7.9.1 with the right-hand side equal

to zero as

(a)

The eigenvalues of AM are obtained using MATLAB as

(b)

The natural frequencies are reciprocals of the eigenvalues

(c)

The mode shape vectors are

(d)

The mode-shape vectors are illustrated in Figure 8.12.

The differential equations for free vibration of the machine connected to the beam by

the isolator of stiffness 5.81 � 105 N/m with the beam modeled with four degrees of free-

dom, illustrated in Figure 7.22(a), are obtained from Equation (l) of Section 7.9.1 as

X1 = D0.1857
0.5244
0.6909
0.4617

T X2 = D   0.5382
  0.7346
-0.0198
-0.4128

T X4 = D   0.7219
-0.6497
   0.0213
-0.237

T X3 = D  0.446
   0.1468
-0.0382
   0.8821

T

v1 =
1

2l4

= 153.1  rad/s         v2 =
1

2l3

= 1.54 * 103 rad/s

v3 =
1

2l2

= 4.51 * 103 rad/s  v4 =
1

2l1

= 2.49 * 103 rad/s

l1 = 1.6 * 10-7 l2 = 5 * 10-8 l3 = 4.2 * 10-7 l4 = 4.3 * 10-5

10-8D31.346 53.736 1077.686  30.0026
53.736 133.6683 3064.671  85.9776
50.1536 142.6243 4060.568 126.0557
30.0026   85.9776 2708.649 103.8896

T Dx
$

1

x
$

2

x
$

3

x
$

4

T + Dx1

x2

x3

x4

T = D0
0
0
0

T

y0 = a
4

j = 1

Cj £j
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Free Vibrations of MDOF Systems 575

(d)

10-8E
31.346 53.736 49.952 30.0026 1027.533
53.736 133.6683 142.051 85.9776 2922.046
50.1536 142.6243 188.212 126.0557 3871.597
30.0026 85.9776 125.549 103.8896 2582.594
50.1536 142.6243 188.212 126.0557 77872.31

U E
x
$

1

x
$

2

x
$

3

x
$

4

x
$

5

U + E
x1

x2

x3

x4

x5

U = E
0
0
0
0
0

U

(a)

(b)

0.1857

0.5244

0.5382
0.7346

–0.0198

–0.4128

0.6909

0.4617

(c)

0.446 0.1468

–0.0382

0.8821

(d)

0.7219

–0.6497

0.0213

–0.237

(e)

FIGURE 8.12
(a) Four degree-of freedom
model of beam on floor of
industrial plants. (b) Mode
shape for first mode. (c) Mode
shape for second mode.
(d) Mode shape for third mode.
(e) Mode shape for fourth
mode.

1
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576 CHAPTER 8

The eigenvalues of AM are

(e)

The natural frequencies are the reciprocals of the square roots of the eigenvalues

(f)

8.14.2 SIMPLIFIED SUSPENSION SYSTEM
The differential equations governing the free vibrations of the four degree-of-freedom

model suspension system illustrated in Figure 7.23 are

(a)

The system is proportionally damped with the damping matrix proportional to the stiff-

ness matrix with

(b)

Thus, the methods of Section 8.12 are applicable. The natural frequencies and mode shapes

for the undamped system are found by finding the square roots of the eigenvalues of

(c)* D    5.50 -0.48 -1.56 2.04
-0.48  2.4 -1.2 -1.2
-1.56 -1.2 11.2 0
   2.04 -1.2 0 11.2

T = D 244.4 -21.3 -69.3 90.7
-16   80.0 -40 -40

-624 -480 4480 0
816 -480    0 4480

T
M 

- 1K = 104 D4.44 * 10-3 0 0 0
0 3.33 * 10-3 0 0
0 0 4 * 10-2 0
0 0 0 4 * 10-2

T

a =
1200   N # s/m
12,000   N/m

= 0.1  s

+ 10-4D     5.50 -0.48 -1.56 2.04
-0.48   2.4 -1.2 -1.2
-1.56 -1.2      1.12 0
   2.04 -1.2 0   1.12

T D ux1

x2

x3

T = D0
0
0
0

T
D225 0 0 0

0 300 0 0
0 0 25 0
0 0 0 25

T D u
$

x
$
1

x
$
2

x
$
3

T + 10-3 D    5.50 -0.48   -1.56   2.04
-0.48    2.4 -1.2 -1.2
-1.56 -1.2     1.12 0
   2.04 -1.2 0  1.12

T D u
#

x#1
x#2
x#3

T

v5 =
1

2l1

= 5.06 * 103 rad/s

v3 =
1

2l3

= 1.61 * 103
 

 rad/s  v4 =
1

2l2

= 3.05 * 103
 

 rad/s

v1 =
1

2l5

= 35.83  rad/s  v2 =
1

2l4

= 510.25 rad/s

l4 = 3.84 * 10-6  l5 = 7.79 * 10-4

l1 = 3.89 * 10-8  l2 = 1.07 * 10-7  l3 = 3.87 * 10-7
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Free Vibrations of MDOF Systems 577

The eigenvalues and normalized mode shapes are obtained from MATLAB as

(d)

(e)

The natural frequencies are the square roots of the eigenvalues

(f)

The modal damping ratios are

(g)

The differential equations for the principal coordinates are given by Equation (8.73) that

when applied to this problem become

(h)

(i)

(j)

(k)

The solutions of Equations (h) through (k) are

(l)

(m)

(n)

(o)

The principal coordinates are related to the generalized coordinates by x=Pp where P is the

modal matrix, or the matrix whose columns are the normalized eigenvectors

(p)P = D0.0573       0.0064       0.0025 - 0.0005
0.0049       0.0134 - 0.1112       0.1656
0.0073 - 0.0090 -0.1660 -0.1110
0.0074 - 0.660        0.0003       0.0053

T

p4(t) = A5e
-10.23t + A6e

-440.7t

p3(t) = A3e
-10.22t + A4e

-438.7t

p2(t) = A2e
-11.950t sin (9.96t - f2)

p1(t) = A1e
-3.47t sin (7.58t - f1)

p
$
4 + 450.9p

#
4 + 4507p4 = 0

p
$
3 + 448.9p

#
3 + 4485p3 = 0

p
$
2 + 21.9p

#
2 + 218.7p2 = 0

p
$

1 + 6.94p
#
1 + 69.5p1 = 0

z4 =
a

2
v4 = 3.36

z1 =
a

2
v1 = 0.417  z2 =

a

2
v2 = 0.740  z3 =

a

2
v3 = 3.35

v4 = 2l4 = 67.1 rad>s
v1 = 2l1 = 8.33 rad >s v2 = 2l2 = 14.79 rad>s  v3 = 2l3 = 67.0 rad/s

X1 = D0.0573
0.0049
0.0073
0.0074

T X2 = D   0.0064
  0.0134
-0.0090
-0.660  

T X3 = D     0.0025
-0.1112
-0.1660

      0.0003

T X4 = D -0.0005
  0.1656
-0.1110
  0.0053

T
l1 = 69.5  l2 = 218.7  l3 = 4485  l4 = 4507
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578 CHAPTER 8

8.15 FURTHER EXAMPLES

EXAMPLE 8 . 1 6
Reconsider the three degree-of-freedom model of the hand and upper arm of Example 7.21.

Dong et al. report the following data for the parameters in the model for the “grip” condition,

m
1

� 5.0516 kg m
2

� 1.4295 kg m
3

� 0.887 kg m
4

� 0.0229 kg

m
5

� 0.0150 kg

k
1

� 149,490 N/m k
2

� 1726 N/m k
3

� 12,075 N/m k
4

� 29,898 N/m

k
5

� 195,665 N/m

c
1

� 87.2 N · s/m c
2

� 64.9 N · s/m c
3

� 36.3 N · s/m c
4

� 74.8 N · s/m

c
5

� 126.0 N · s/m

(a) Determine the natural frequencies of free undamped vibration and the normalized

mode shapes.

(b) Determine the general form of the solution for the damped response.

SOLUT ION
(a) Substituting the given values into Equation (i) of Example 7.21 leads to the following

differential equations as

(a)

The natural frequencies are the square roots of the eigenvalues of M�1K. They are calculated as

(b)

The mode-shape vectors are the corresponding eigenvectors. The eigenvectors are normal-

ized such that They are obtained as

(c)

(b) The damped system is written in the state-space formulation of Equation (8.82) with

(d)M
∼

= c 0 M
M C

d = F
0
0
0

5.0516
0
0

 

0
0
0
0

1.4295
0

 

0
0
0
0
0

0.887

 

5.0516
0
0

152.1
-64.9

0

 

0
1.4295
0

-64.9
176.0
-36.3

 

0
0
0.887
0

-36.3
111.1

V

X1 = C0.3233
0.5738
0.0381

S  X2 = C     0.3057
-0.6069
-0.0406

S  X3 = C7.3 * 10-4

-0.0439
   1.0603

S
XT

i MXi = 1.

v1 = 171.2   rad/s  v2 = 175.0   rad/s  v3 = 484.5   rad/s

+ C151,216     -1726            0
-1726     43,699 -12,075
         0 -12,075  207, 740

S C x1

x2

x3

S = C 0
74.8y# + 29,898y
126y# + 195,695y

S
C5.0516 0 0

0 1.4295 0
0 0 0.887

S C x
$
1

x
$
2

x
$
3

S + C 152.1 -64.9 0
-64.9 176.0 -36.3

0 -36.3 111.1
S C x

#
1

x#2
x#3

S
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Free Vibrations of MDOF Systems 579

(e)

The assumed solution is where The values of � are the eigenvalues of

. They are

(f)

The corresponding eigenvectors are

(g)

The general solution is

(h)

Equation (h) can be rewritten as

(i)+ C6[£5r
 sin 479.1t + £5i cos 479.1t]6

+ e-64.01t5C5[£5r
 cos 479.1t - £5i sin 479.1t]6

+ C4[£3r
 sin 162.3t + £3i sin 162.3t]6

+ e-63.176t5C3[£3r
 cos 162.3t - £3i sin 162.3t]

+ C2[£1r
 sin 171.1t + £1i cos 171.1t]6

y(t) = e-12.06t5C1[£1r
 cos 171.1t - £1i sin 171.1t]

+ e-64.01t5C5£5e
i479.1t + C2£5e

-i479.1t6
y(t) = e -12.06t5C1
1e

i171.7t + C2
1e
-i171.7t6 + e -63.176t5C3
3e

i162.3t + C4
3e
-i162.3t6


5,6 = 10-2F
0.2082e�2.4639i

6.841e<2.0931

98.763
0.0004e�0.7603i

0.0142e�2.486i

0.2064e<1.7036i

V

£1,2 = 10-2F
90.29

42.89e<0.126i

3.134e�0.2085i

0.5245e<1.641i

0.2489e<1.760i

0.0182e<1.360i

V  £3, 4 = 10-2F
12.76e�3.020i

98.98
6.255e�0.5439i

0.0731e�1.079i

0.5673e<1.941i

0.0359e<1.397i

V

g1, 2 = 12.06 � 171.7i g3,4 = 63.17 � 162.3i g1, 2 = 64.01 � 479.1i

M
∼ -1 K∼

y = cx
#

x
d .y = £e-gt

K
∼

= c -M 0
0 K

d = F
-5.0516 0 0 0 0 0

0 -1.4295 0 0 0 0
0 0 -0.887 0 0 0
0 0 0 151,216    -1726 0
0 0 0 -1726    43,699 -12,075
0 0 0 0 -12,075   207,740

V
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580 CHAPTER 8

EXAMPLE 8 . 1 7
(a) Determine the natural frequencies for the three degree-of-freedom system shown in

Figure 8.13.

(b) Calculate and graphically illustrate the normalized mode shape vectors.

(c) Demonstrate mode shape orthogonality.

SO LU T I ON
The differential equations governing the system may be formulated using Newton’s law

or Lagrange’s equations (the full set or via influence coefficients as)

(a)

(a) The natural frequencies are the square roots of the eigenvalues of M�1K,

(b)

where . Evaluation of the determinant in Equation (b) leads to

(c)

The smallest toot of Equation (c) is � � 0. The system is unrestrained. The other roots

are obtained by solving

(d)

The solutions of Equation (b) are

(e)

from which the natural frequencies are obtained as

(f)

(b) The mode shape vectors are determined from

(g)C4f - l -4f 0
-4f 6f - l -2f

0 -f f - l
S CX1

X2

X3

S = C0
0
0
S

v1 = 0  v2 = A
1.725k

2m
= 0.928A

k
m
  v3 = A

9.275k

2m
= 2.15A

k
m

l = 0, 1.725f, 9.275f

l2 - 11fl + 16f2 = 0

-l3 + 11fl2 - 16f2l = 0

f = k
2m

= C4f - l -4f 0
-4f 6f - l -2f

0 -f f - l
S

 det (M-1K - lI) = 0 Q F
1
m

0 0

0
1
m

0

0 0
1

2m

V C 2k -2k 0
-2k 3k -k

0 -k k
S - lC1 0 0

0 1 0
0 0 1

S

Cm 0 0
0 m 0
0 0 2m

S C x
$
1

x
$
2

x
$
3

S + C 2k -2k 0
-2k 3k -k

0 -k k
S C x1

x2

x3

S = C0
0
0
S
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Free Vibrations of MDOF Systems 581

The first equation gives

(h)

while the third equation gives

(i)

When evaluated for the values of � which are the eigenvalues of M�1K and keeping

X
2

� C, arbitrary Equations (h) and (i) yield

(j)

The mode shapes are normalized by requiring (X
i
, X

i
)

M
� X T

i
MX

i
� 1. For example, the

normalization of X
2

chooses C such that

XT
2  

MX2 = 1 Q 1 = C [1.758 1 -1.3679]Cm 0 0
0 m 0
0 0 2m

SC C 1.758
1

-1.379
S

X1 = C C  

1
1
1
S  X2 = C  C    1.758

1
-1.379

S  X3 = C  C -0.758

1
-0.121

S

X3 =
f

f - l
X2

X1 =
4f

4f - l
X2

(b)

0.5

0.587
0.334

–0.461

0.790

–0.096

–0.599

X
2 

  m
X

1 
  m

X
3 

  m
FIGURE 8.13
System of Example 8.17.

x1 x2 x2

(a)
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582 CHAPTER 8

(k)

or Similar calculations are performed yielding the normalized mode-shape vec-

tors as

(l)

The normalized mode shapes are illustrated in Figure 8.12(b). The first mode is a rigid-

body mode corresponding to the natural frequency of zero. There is a node for the

second mode in the spring connecting the second and third masses. Two nodes mark

the third mode. One is in the spring connecting the first two masses; the second is in

the spring connecting the second and third mass, but not in the same location as the

node for the second mode.

(a) Mode-shape orthogonality implies (Xi, Xj)M � X T
j MXi � 0 for i j. The demon-

stration of this relation follows

(m)

(n)= -0.599(0.587) + 0.790(0.334) - 0.096(-0.922) = 0

=
1
m

 [-0.599 0.790 -0.096]C0.587m
0.334m
0.922m

S
(X2,  X3)M = XT

3 MX2 =
1

2m
[-0.599 0.790 -0.096]Cm 0 0

0 m 0
0 0 2m

S 1

2m
C    0.587

   0.334
-0.461

S
= 0.587(0.5) + 0.334(0.5) - 0.461(1) = 0

=
1
m

 [0.587 0.334 -0.461]C0.5m
0.5m

m
S

(X1, X2)M = XT
2 M  X1 =

1

2m
 [0.587 0.334 -0.461]Cm 0 0

0 m 0
0 0 2m

S 1

2m
C0.5

0.5
0.5
S

Z

X1 =
1

2m
C0.5

0.5
0.5
S  X2 =

1

2m
C    0.587

   0.334
-0.461

S  X3 =
1

2m
C -0.599

   0.790
-0.096

S
C = 0.334

1m .

= C 2[1.758(1.758m) + 1(m) - 1.479(-2.758m)] = C 2(8.939m)

= C 2[1.758 1 -1.3679]C    1.758m
m

-2.758m
S
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(o)

= 0.5(-0.599) + 0.5(0.790) + 0.5(-0.192) = 0

=
1
m

[0.5 0.5 -0.5]C -0.599m
  0.790m
-0.192m

S
(X3, X1)M = XT

2  
MX1 =

1

2m
 [0.5 0.5 -0.5]Cm 0 0

0 m 0
0 0 2m

S 1

2m
C -0.599

  0.790
-0.096

S

8.16 SUMMARY

8.16.1 IMPORTANT CONCEPTS
• A nDOF system is governed by n differential equations and has n natural frequencies.

• The natural frequencies of a nDOF system are the square roots of the eigenvalues of M�1K.

• The natural frequencies of a nDOF system are the reciprocals of the square roots of the

eigenvalues of AM.

• The mode-shape vectors are the corresponding eigenvectors.

• The general solution for the free response is a linear combination of the modes.

The constants in the linear combination are determined by application of the initial

conditions.

• A degenerate system has repeated natural frequencies.

• An unrestrained system has its lowest natural frequency equal to zero.

• Mode shapes corresponding to distinct frequencies of a MDOF system are mutually

orthogonal with respect to the kinetic energy scalar product as well as the potential

energy scalar product.

• All eigenvalues of M�1K are real.

• If K is positive definite, then all eigenvalues of M�1K are positive.

• Any n-dimensional vector can be expanded in a series of mode-shape vectors of a nDOF

system.

• Mode-shape vectors are normalized with respect to the kinetic-energy scalar product.

• Principal coordinates are coordinates which uncouple the differential equations.

• The principal coordinates are a linear transformation from the original generalized

coordinates.

• The differential equations for a system with proportional damping are uncoupled by the

same principal coordinates that uncouple the corresponding undamped system.

• The n second-order equations governing a system with viscous damping are reformu-

lated as 2n first-order differential equations for solution.
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584 CHAPTER 8

8.16.2 IMPORTANT EQUATIONS
Normal mode solution

(8.4)

Equations defining mode shapes

(8.7)

Natural frequencies from the stiffness matrix

(8.9)

Equations defining mode shapes from flexibility matrix

(8.10)

General solution

(8.16)

Potential-energy scalar product

(8.25)

Kinetic-energy scalar product

(8.26)

Mode-shape orthogonality

(8.45)

(8.46)

Expansion theorem

(8.49)

(8.52)

Normalized mode shapes

(8.53)

(8.54)

Rayleigh’s quotient

(8.62)

Principal coordinates

(8.70)

(8.71)x = Pp

p
$
j + v2

j pj = 0

R ( X ) =
( X, X )K

( X,X )M

(Xi , Xi )K = v2
i

(Xi , Xi )M = 1

cj =
(Xj , y )M

(Xj Xj )M

y = a
n

i = 1

ci Xi

(Xi, Xj )K = 0

(Xi, Xj )M = 0

(y, z )M = zT My

(y, z )K = zT Ky

x (t ) = a
n

i = 1

Xi Ai sin (vi t - fi )

(-v2A M + I ) X = 0

 det | M-1K - v2I | = 0

(M-1K - v2I)X = 0

x (t ) = X e ivt
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Proportional damping

(8.73)

Principal coordinates for proportional damping

(8.78)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 8.1 through 8.18, indicate whether the statement presented is true or false.

If true, state why. If false, rewrite the statement to make it true.

8.1 The natural frequencies of a MDOF system are the eigenvalues of M�1K.

8.2 An n degree-of-freedom system has n � 1 natural frequencies.

8.3 The mode-shape vector is the solution of 

8.4 A node for a mode is a particle that has zero displacement when the vibrations

are solely at that frequency.

8.5 The mode-shape vectors are orthogonal with respect to the standard inner

product. That is, 

8.6 The mode-shape vector corresponding to a natural frequency � for a MDOF

system is unique.

8.7 The eigenvectors are normalized by requiring that the kinetic-energy inner

product of a mode-shape vector with itself is one.

8.8 The modal matrix is the transpose of the matrix whose columns are the

normalized mode-shape vectors.

8.9 Proportional damping occurs when the damping matrix is proportional to the

flexibility matrix.

8.10 The natural frequencies of a nDOF system are the roots of a nth-order

polynomial.

8.11 PTMP � I where P is the modal matrix and I is the identity matrix.

8.12 If Xi is a normalized mode shape corresponding to a natural frequency �i, then 

.

8.13 The lowest natural frequency when det K � 0 is zero.

8.14 The flexibility matrix does not exist for an unrestrained system.

8.15 Rayleigh’s quotient can be applied to obtain a lower-bound on the lowest natural

frequency.

8.16 The damping ratio for a proportionally damped system where the proportional

damping is proportional to the stiffness matrix is inversely proportional to the

natural frequency.

8.17 Matrix iteration is a method used to determine natural frequencies of a MDOF

system iteratively.

8.18 If [1 2]T is a mode-shape vector corresponding to a natural frequency of 100 rad/s

for a two non-degenerate system, then [2 6]T is also a mode-shape vector

corresponding to 100 rad/s.

(Xi, Xi )K = v2
i

XT
j Xi = 0.

(AM - 1
v2 I )X = 0.

p
$
j + 2zjvj p

#
j + v2

j pj = 0

C = aK + bM
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586 CHAPTER 8

Problems 8.19 through 8.39 require a short answer.

8.19 What is the normal mode solution?

8.20 What is the dynamical matrix?

8.21 The natural frequencies of an nDOF system are the ________________ of the

eigenvalues of AM.

8.22 The natural frequencies and mode-shape vectors for a nDOF system have been

determined. How is the free response of the system determined?

8.23 What is the name for the mode corresponding to a natural frequency equal to zero?

8.24 How many linearly independent mode-shape vectors correspond to a natural

frequency that is a double root of the characteristic equation?

8.25 Define the potential-energy scalar product.

8.26 What does the term “kinetic energy” refer to in the kinetic-energy scalar product?

8.27 How is the property of commutivity of scalar products satisfied for the kinetic-

energy scalar product?

8.28 What is meant by mode-shape orthogonality?

8.29 What is a normalized mode-shape vector?

8.30 Define Rayleigh’s quotient for an arbitrary n-dimensional vector.

8.31 When is Rayleigh’s quotient stationary?

8.32 Why is the modal matrix nonsingular?

8.33 State the expansion theorem.

8.34 What are the principal coordinates for an undamped, linear MDOF system?

8.35 How is matrix iteration used to approximate the lowest natural frequency of a

MDOF system?

8.36 What is the modal damping ratio?

8.37 Why can the principal coordinates of an undamped system be used as principal

coordinates for a viscously damped system with proportional damping?

8.38 If the lowest natural frequency of a system is zero, what is det M�1K?

8.39 How many nodes located in the system should be expected for the third mode

of a seven degree-of-freedom system?

Problems 8.40 through 8.51 require a short calculation.

8.40 The eigenvalues of M�1K are 20, 50, and 100. What are the eigenvalues of AM?

8.41 The eigenvalues of M�1K are 16, 49, 100, and 225. What are the natural

frequencies of the system?

8.42 For the system of Figure SP8.42, calculate (x, y)K for x � [3  2  �1]T and 

y � [1  �2  3]T.

8.43 For the system of Figure SP8.42, calculate Rayleigh’s quotient for x � [3  2  �1]T.

FIGURE SP 8.42

5000 N/m 3000 N/m
3 kg 2 kg 1 kg

1000 N/m
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Free Vibrations of MDOF Systems 587

8.44 A mode shape vector of a two degree-of-freedom system is [1 2]T. The mass matrix

for the system is . Calculate the second mode-shape vector.

8.45 A mode-shape vector of a two degree-of-freedom system is [1 2]T. Is this the mode-

shape vector for the first mode, which corresponds to the lowest natural frequency,

or the higher mode? Why?

8.46 A mode-shape vector of a two degree-of-freedom system is [1 2]T. The mass matrix

for the system is Normalize the mode-shape vector.

8.47 A normalized mode-shape vector for a two degree-of-freedom system is [0.1   0.3]T.

The stiffness matrix for the system is Calculate the natural

frequency corresponding to this mode.

8.48 Can the vectors [1  2  2.5]T and [1  2  �2]T be mode shape vectors of a system

with a diagonal mass matrix with all three diagonal elements equal?

8.49 A three degree-of-freedom undamped system has natural frequencies of 10 rad/s,

25 rad/s, and 50 rad/s. What are the differential equations satisfied by the principal

coordinates for the system for free vibration?

8.50 A three degree-of-freedom system with viscous damping that is proportional to

the stiffness matrix has natural frequencies of 10 rad/s, 25 rad/s, and 50 rad/s.

The modal damping ratio for the first mode is 0.1.

(a) What are the modal damping ratios for the higher modes?

(b) Write the differential equations satisfied by the principal coordinates for free

vibrations of the system.

8.51 A system has the differential equations

Write the system of differential equations as six first-order differential equations.

8.52 Lagrange’s equations are used to derive the differential equations for a three

degree-of-freedom system resulting in

where x
1

and x
2

are linear displacements and � is an angular coordinate. The

damping matrix is such that the system has proportional damping. What are

possible units (in SI) for each of the following quantities.

(a) The third natural frequency �
3

(b) The modal damping ratio 

2

(c) The constant of proportionality between the damping matrix and the stiffness

matrix 	

Cm11 m12 m13

m21 m22 m23

m31 m32 m33

S  C x$1

x$2

u
$
S + C c11 c12 c13

c21 c22 c23

c31 c32 c33

S  C x#1
x#2
u
#
S + C k11 k12 k13

k21 k22 k23

k31 k32 k33

S  C x1

x2

u

S = CF1

F2

F3

S

C5 0 0
0 3 0
0 0 2

S  C x$1
x$2
x$3

S + C 3 -1 0
-1 4 -3
0 -3 3

S  C x#1
x#2
x#3

S + C 50 -20 0
-20 100 -80

0 -80 120
S  C x1

x2

x3

S = C0
0
0
S

K = c 200 -100
-100 300

d .

M = c2 0
0 3

d .

M = c2 0
0 3

d
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588 CHAPTER 8

(d) The third element of the normalized mode-shape vector for the first mode

(e) The second element of the normalized mode-shape vector for the third mode

(f ) The principal coordinate p
1

(g) The element of the modal matrix in the first row and second column

(h) The element of the modal matrix in the third row and third column

(i) The constant of proportionality between the mass matrix and the damping

matrix

CHAPTER PROBLEMS
8.1–8.7 Calculate the natural frequencies and mode shapes for the system shown in

Figures P8.1 through P8.7 by calculating the eigenvalues and eigenvectors of

M�1K. Graphically illustrate the mode shapes. Identify any nodes.

FIGURE P8.6

k
m

k

3m
k k

2m

2k

x1 x2 x3

FIGURE P8.5

k
m

k
2m

k k
2m

x1 x2 x3

FIGURE P8.4

k

k

Slender bar of
mass m θ

L
2

L
2

2m

x

FIGURE P8.3
(Problems 8.3, 8.22.)

G

k k

1.5 m 1.3 m

1.3 m
m = 1.5 kg
I = 0.6 kg · m2

k = 200 × 104 N/m

θ
x

FIGURE P8.2

k
m m

2k 2k

x1 x2

FIGURE P8.1

k
m 3m

2k

x1 x2
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Free Vibrations of MDOF Systems 589

8.8 Two machines are placed on the massless fixed-pinned beam of Figure P8.8.

Determine the natural frequencies for the system.

8.9 Determine the natural frequencies and mode shapes for the system of Figure P7.2

if k � 3.4 � 105 N/m, L � 1.5 m and m � 4.6 kg.

8.10 Determine the natural frequencies of the system of Figure P7.5 if k � 2500 N/m,

m
1

� 2.4 kg, m
2

� 1.6 kg, I � 0.65 kg · m2, and L � 1 m.

8.11 Determine the natural frequencies and mode shapes for the system of Figure P7.17

if k � 10,000 N/m, m � 3 kg, I � 0.6 kg · m2, and r � 80 cm.

8.12 Determine the natural frequencies and mode shapes of the system of Figure P7.19

if k � 12,000 N/m and each bar is of mass 12 kg and length 4 m.

8.13 A 400 kg machine is placed at the midspan of a 3-m-long, 200-kg simply supported

beam. The beam is made of a material of elastic modulus 200 � 109 N/m2 and

has a cross-sectional moment of inertia of 1.4 � 10�5 m4. Use a three degree-of-

freedom model to approximate the system’s lowest natural frequency.

8.14 A 500 kg machine is placed at the end of a 3.8-m-long, 190-kg fixed-free beam.

The beam is made of a material of elastic modulus 200 � 109 N/m2 and has a

cross-sectional moment of inertia of 1.4 � 10�5 m4. Use a three degree-of-freedom

model to approximate the two lowest natural frequencies of the system.

8.15 Determine the two lowest natural frequencies of the railroad bridge of Chapter

Problem 7.84 if k
1

� 5.5 � 107 N/m, k
2

� 1.2 � 107 N/m, m � 15,000 kg,

I � 1.6 � 106 kg · m2, l � 6.7 m, and h � 8.8 m.

8.16 Determine the natural frequencies of the system of Chapter Problem 7.89. The

beam is of length 5 m, made of a material of elastic modulus 200 � 109 N/m2,

FIGURE P8.8

20 kg 30 kg

1 m 1 m 0.5 m

E = 210 × 109 N/m2

I = 5.6 × 10–4 m4

FIGURE P8.7

k

k

k

Slender bar of
mass m

L
2

L
2

m

2m

θ

x1

x2
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590 CHAPTER 8

and has a cross-sectional moment of inertia of 1.4 � 10�5 m4. The total mass of

the beam is 320 kg. The mass of the winch is 115 kg. The winch cable is made

of a material of elastic modulus 200 � 109 N/m2 and has a cross-sectional area of

3.4 � 10�2 m2. The length of the cable is 5.5 m and the mass being lifted is

715 kg.

8.17 Determine the free vibration response of the railroad bridge of Chapter

Problem 8.14 if a ground disturbance initially leads to �
1

� 0.8° with

�
2

� �
3

� 0.

8.18 A robot arm is 60 cm long, made of a material of elastic modulus 200 � 109 N/m2,

and has the cross section of Figure P8.18. The total mass of the arm is 850 g. A tool

of mass 1 kg is attached to the end of the arm. Assume one end of the arm is

pinned and the other end is free. Use a three degree-of-freedom model to determine

the arm’s natural frequencies.

8.19 A 30,000 kg locomotive is coupled to a fully loaded 20,000 kg boxcar and moving

at 6.5 m/s. The assembly is coupled to a stationary and empty 5,000 kg cattle

car. The stiffness of each coupling is 5.7 � 105 N/m.

(a) What are the natural frequencies of the three-car assembly?

(b) Mathematically describe the motion of the cattle car after coupling.

8.20 Determine the natural frequencies and mode shapes for the three degree-of-

freedom model of an airplane of Chapter Problem 7.87. Assume m � 3.5 m.

8.21 Determine the natural frequencies and mode shapes of the torsional system of

Problem 7.81.

8.22 Use a four degree-of-freedom model to approximate the two lowest nonzero

natural frequencies of a free-free beam.

8.23 A pipe extends from a wall as shown in Figure P8.23. The pipe is supported at

A to prevent transverse displacement, but not to prevent rotation. Under what

conditions will the pipe’s lowest natural frequency of transverse vibrations

coincide with its frequency of free torsional vibrations?

FIGURE P8.23

2L
3

L

A

3

r
t

FIGURE P8.18

8 mm

1 mm6 mm
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8.24 Show that Rayleigh’s quotient R(X) is stationary if and only if X is a mode shape

vector.

8.25 Use Rayleigh’s quotient to determine an upper bound on the lowest natural

frequency of the system of Figure P8.7. Use at least four trial vectors.

8.26 An alternative method to derive the uncoupled equations governing the motion

of the free vibrations of a nDOF system in terms of principal coordinates is to

introduce a linear transformation between the generalized coordinates x and

the principal coordinates p as x � Pp, where P is the modal matrix, the matrix

whose columns are the normalized mode shapes. Follow these steps to derive the

equations governing the principal coordinates:

(a) Rewrite Equation (8.3) using the principal coordinates as dependent variables

by introducing the linear transformation in Equation (8.3).

(b) Premultiply the resulting equation by PT.

(c) Use the orthonormality of mode shapes to show that PT MP and PT KP are

diagonal matrices.

(d) Write the uncoupled equations for the principal coordinates.

8.27 Use the method of Chapter Problem 8.26 to derive the uncoupled equations

governing the principal coordinates for a system with proportional damping.

8.28 Determine the free vibration response of the system of Figure P8.28 if the

system is released from rest after the 3 kg block is displaced 5 mm.

8.29 If the modal damping ratio for the lowest mode of Chapter Problem 8.13 is

0.03, determine the modal damping ratio for the higher modes and determine

the response of the system if the machine is displaced 2 mm and released.

8.30 Determine the free-vibration response of the bar of Figure P8.30 is the mass

center is displaced 1 cm from equilibrium while the bar is held horizontal and

the system released from this position.

FIGURE P8.30

4 × 105 N/m 500 N · s/m 4 × 105 N/m 500 N · s/m

Uniform bar
m = 120 kg
I = 1.5 kg · m2

1.5 m 0.5 m

FIGURE P8.28

5 kg

k = 5 × 105 N/m

c = 2000 N · s/m

3 kg

k = 1 × 105 N/m

c = 400 N · s/m

k = 4 × 105 N/m

c = 1600 N · s/m
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8.31 Determine the free-vibration response of the system of Figure P8.31.

8.32 Determine the free-vibration response of the system of Figure P8.32.

8.33 Determine the free-vibration response of the system of Chapter Problem 7.87 when

E � 200 � 109 N/m2, I � 1.5 � 10�6 m4, L � 0.8 m, k � 1.5 � 105 N/m,

c � 250 N · s/m, m
1

� 4 kg, m
2

� 6.1 kg.

FIGURE P8.32

4 × 105 N/m 4 × 105 N/m500 N · s/m

Uniform bar
m = 120 kg
I = 1.5 kg · m2

1.5 m 0.5 m

θ
x

G

FIGURE P8.31

1 × 106 N/m 2 × 106 N/m

400 N · s/m

4 kg 6 kg

x1 x2
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C h a p t e r 9

FORCED VIBRATIONS
OF MDOF SYSTEMS

9.1 INTRODUCTION
The forced response of a linear multiple degree-of-freedom (MDOF) system, as for a linear

single degree-of-freedom (SDOF) system, is the sum of a homogeneous solution and a par-

ticular solution. The homogeneous solution depends on system properties, while the par-

ticular solution is the response due to the particular form of the excitation. The

free-vibration response is often ignored for a system whose long-term behavior is impor-

tant, such as a system subject to a periodic excitation. The free-vibration solution is impor-

tant for systems in which the short-term behavior is important, such as a system subject to

a shock excitation.

Several methods are available to determine the forced response of a MDOF system. The

method of undetermined coefficients can be applied to any system subject to a periodic exci-

tation. However, because of algebraic complexity, its usefulness is restricted to systems with

only a few degrees of freedom. The Laplace transform method can be applied to determine

system properties, but its usefulness is limited because its application requires the solution

of a system of simultaneous equations whose coefficients are functions of the transform vari-

able. Both the method of undetermined coefficients and the Laplace transform method can

be used to determine the forced response of a system with a general damping matrix.

The method of undetermined coefficients and the Laplace transform method were

introduced in Chapter 6 to solve forced-vibration problems involving two degree-of-

freedom systems. Their application is the same, except that matrix methods are used in

this chapter.
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594 CHAPTER 9

The most useful method for determining the forced-vibration response of a linear

MDOF system is modal analysis, which is based on using the principal coordinates to

uncouple the differential equations governing the motion of an undamped or propor-

tionally damped system. The uncoupled differential equations are solved by the standard

techniques for solution of ordinary differential equations. A more general form of modal

analysis involving complex algebra is developed for systems with a general damping

matrix.

Often the differential equations cannot be solved in closed form. Modal analysis can

still be used to uncouple the differential equations. The differential equations for 

the principal coordinates can be solved by numerical integration of the convolution inte-

gral or direct numerical simulation of the differential equation by a method such as a

Runge-Kutta method.

9.2 HARMONIC EXCITATIONS
The response of a MDOF system due to a harmonic excitation is the sum of the homoge-

neous solution and the particular solution. Even if damping is not included, the homoge-

neous solution is often ignored. In a real situation, damping is present, causing the

homogeneous solution to decay with time. The long-time or steady-state solution is only

the particular solution.

The method of undetermined coefficients can be adapted to find the particular solu-

tion for a MDOF system subject to a harmonic excitation. The method of undetermined

coefficients can be used for damped or undamped systems. Its application for an nDOF

system requires the solution of at least one set of n simultaneous equations.

The differential equations governing the motion of an nDOF undamped system sub-

ject to a single-frequency excitation with all excitation terms at the same phase are of the

form

(9.1)

where F is an n-dimensional vector of constants. The method of undetermined coefficients

is used and assumes a particular solution of the form

(9.2)

where U is an n-dimensional vector of undetermined coefficients. Substituting

Equation (9.2) in Equation (9.1) leads to

(9.3)

Equation (9.3) represents a set of n simultaneous algebraic equation to solve for the com-

ponents of the vector U. A unique solution of Equation (9.3) exists unless

(9.4)

Equation (9.4) is satisfied only when the excitation frequency coincides with one of the

system’s natural frequencies. When this occurs, the use of Equation (9.2) is inappropriate.

The response grows linearly with time, producing a resonance condition.

When a solution of Equation (9.3) exists, it can be written as

(9.5)U = (-v2M + K)-1F

| -v2M - K | = 0

(-v2M + K)U = F

x(t) = U sin vt

M x
$ + Kx = F sin vt
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Forced Vibrations of MDOF Systems 595

Determine the forced response of the three degree-of-freedom system shown in

Figure 9.1(a)

SO LU T I ON
The differential equations governing the system of Figure 9.1 are

(a)

A steady-state solution is assumed as

(b)

which upon substitution into Equation (a) leads to

(c)J 500 -1000 0
-1000 500 -700

0   -700 -700
K  JU1

U2

U3

K = J 0
0
20
K

J x1

x2

x3

K = JU1

U2

U3

K  sin 10t

J10 0 0
0 12 0
0 0 14

K  J x
$

1

x
$

2

x
$

3

K + J 1500 -1000 0  
-1000 1700 -700

0   -700 700
K  J x1

x2

x3

K = J 0
0

20  sin 10t
K

EXAMPLE 9 . 1

0.05

Node

0.025

0

–0.0576

(a)

(b)

500 N/m 1000 N/m 700 N/m

x1 x2 x3

20 sin10t10 kg 12 kg

(a)

14 kg

FIGURE 9.1
(a) Three degree-of-freedom system of Example 9.1. (b) Steady-state response of system is deter-
mined using the method of undetermined coefficient. The plot is of the steady state amplitudes of the
masses versus the position of the mass.
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596 CHAPTER 9

The solution to Equation (c) is

(d)

The vector of solutions is plotted against equilibrium position of the masses as in a mode-

shape diagram in Figure 9.1(b). In the steady state, there is a node in the spring between

the 12 kg mass and the 14 kg mass. The third mass is out of phase with the excitation.

The differential equations governing the motion of a nDOF system with viscous

damping subject to a single-frequency harmonic excitation are of the form

(9.6)

where F is an n-dimensional vector of constants. The constants could be complex if each

generalized force is not of the same phase and are of the form

(9.7)

The solution of Equation (9.6) is assumed as

(9.8)

where U is an n-dimensional vector of complex constants. Substitution of Equation (9.8)

in Equation (9.6) leads to

(9.9)

The solution of Equation (9.9) is obtained as

(9.10)

Determine the steady-state amplitudes of the system of Figure 9.2.

SO LU T I ON
The differential equations governing the motion of the system shown in Figure 9.2 are

(a)

+ J    1500 -1000    0
-1000     1700 -700
         0 -700     700

K  J x1

x2

x3

K =
D10 sin a10t +

p

4
b

0
20 sin 10t

T
J10 0 0

0 12 0
0 0 14

K  J x
$

1

x
$

2

x
$

3

K + J50 0  0  
0 100 -100
0 -100 100

K  J x
#
1

x#2
x#3
K

U = (-v2M + ivC + K)-1F

(-v2M + ivC + K )U = F

x(t) = Im  (Ue ivt
 )

Fi = f ie
if

M x
$ + C x

$ + Kx = Im  (Fe ivt )

JU1

U2

U3

K = J 0.05    
 0.025  

-0.0536
K

EXAMPLE 9 . 2

62129_09_Ch09_p593-632.qxd  3/16/11  12:23 PM  Page 596

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Forced Vibrations of MDOF Systems 597

A solution of Equation (a) is assumed to be

(b)

Only the imaginary part is used as the solution. Substitution of Equation (b) into Equation (a)

leads to

(c)

whose solution is

(d)

The imaginary part of the solution is

(e)= 10-3J7.92 sin(10t - 1.26)
10.1 sin(10t + 2.93)
15.5 sin(10t + 2.81)

K

J
x1

x2

x3
K = Im ±10-3J 2.43 + 7.54i

-9.63 - 3.08i
-14.65 - 5.09i

Ke i10t≤ = 10-3J 2.43 sin 10t + 7.54 cos 10t
-9.63 sin 10t - 3.08 cos 10t

-14.65 sin 10t - 5.09 cos 10t
K

JU1

U2

U3

K = 10-3J 2.43 + 7.54i
-9.63 - 3.08i
-14.65 - 5.09i

K

J500 + 500i -1000 0
-1000 500 + 1000i -700 - 1000i

0 -700 - 1000i -700 + 1000i
K  JU1

U2

U3

K = J
10e i p4

0
20
K

J x1

x2

x3

K = JU1

U2

U3

Ke i10t

500 N/m 1000 N/m 700 N/m
20 sin 10t

10 sin ×
(10t + p/y) 100 N · s/m50 N · s/m

x1 x2 x3

10 kg 12 kg 14 kg

FIGURE 9.2
Three degree-of-freedom system of Example 9.2.
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598 CHAPTER 9

Determine the frequency response of the system of Figure 9.3.

SO LU T I ON
The differential equations governing the motion of the system shown in Figure 9.3 are

(a)= J
0
0

F0sin vt
K+ J 1500 -1000 0

-1000 1700 -700
0 -700 700

K  J x1

x2

x3

K

J
10 0 0
0 12 0
0 0 14

K  J x
$

1

x
$

2

x
$

3

K + J50 0 0
0 100 -100
0 -100 100

K  J x
#
1

x#2
x#3
K

FIGURE 9.3
(a) There degree-of-freedom system of Example 9.3. (b) – (d) Frequency-response curves of Example 9.3.

EXAMPLE 9 . 3

(a)

(b)

F0 sinωt

500 N/m 1000 N/m 700 N/m

100 N · s/m50 N · s/m

x1 x2 x3

10 kg 12 kg 14 kg

0
0 8642 12 14 16 18 2010

|U
1/

F
0|

 (
m

/N
)
4

3

5

2

1

6

8

7

9

ω (rad/s)

×10−3

(c)

0
0 8642 12 14 16 18 2010

|U
2/

F
0|

 (
m

/N
)

0.006

0.004

0.002

0.008

0.012

0.01

0.014

ω (rad/s)
(d)

0
0 8642 12 14 16 18 2010

|U
3/

F
0|

 (
m

/N
)

0.006

0.004

0.002

0.008

0.012

0.014

0.01

0.016

ω (rad/s)

62129_09_Ch09_p593-632.qxd  3/16/11  12:23 PM  Page 598

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Forced Vibrations of MDOF Systems 599

A solution of Equation (a) is assumed to be

(b)

Only the imaginary part is used as the solution. Substitution of Equation (b) into

Equation (a) leads to

(c)

For a given �, Equation (c) is solved and the imaginary part of fe i�t taken. This leads to

the amplitudes of being |U
0
|. The frequency response curves are given in Figures 9.3(b)

through (d).

9.3 LAPLACE TRANSFORM SOLUTIONS
Let X(s) be the vector of Laplace transforms of the generalized coordinates for an nDOF

system. Taking the Laplace transform of the differential equations governing forced vibra-

tions of a linear nDOF system and using linearity of the transform and the property of

transform of the first and second derivatives gives

(9.11)

where F(s) is the vector of Laplace transforms of F(t). If x(0) � 0 and ,
Equation (9.11) becomes

(9.12)

where

(9.13)

is called the impedance matrix. Pre-multiplying Equation (9.13) by Z�1(s) yields

(9.14)

The elements of Z�1(s) are the transfer functions Gk, j(s), which represent the transform of the

response of xk due to a unit impulse applied at the location described by xj.
The response of the system x(t) is obtained by inversion of Equation (9.14). If F(t) is

a vector of harmonic forces as fj(t) � Fj sin �jt, the sinusoidal transfer functions can be

used to obtain the response. The solution for the ith component of X(s) is

(9.15)Xk(s) = a
n

j = 1

Gk,j(s)Fj(s)

X(s) = Z-1(s)F(s)

Z(s) = s2M + s C + K

Z(s)X(s) = F(s)

x# (0) = 0

(s2M + s C + K)X(s) = F(s) + (s M + K)x(0) + Mx# (0)

= J 0
0
F0

K
J 1500 - 10v2 + 50vi -1000 0

-1000 1700 - 12v2 + 100i -700 - 100vi
0 -700 - 100vi 700 - 14v2 + 100i

K  JU1

U2

U3

K

J x1

x2

x3

K = JU1

U2

U3

Ke ivt
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600 CHAPTER 9

which is inverted as

(9.16)

where and

(9.17)

Determine the steady-state response of the 10 kg block of Figure 9.4 for the following. 

(a) F
1
(t) is given in Figure 9.4(a), F

2
(t) � 0, and F

3
(t) � 0 

(b) F
1
(t) � 20 sin 10t, F

2
(t) � 0, and F

3
(t) � 30 sin 20t

SO LU T I ON
The differential equations governing the motion of the three degree-of-freedom system of

Figure 9.4 are

(a)= J
F1(t)
F2(t)
F3(t)
K+ J 1500 -1000 0  

-1000 1700 -700
0   -700 700

K  J x1

x2

x3

K
J

10 0 0
0 12 0
0 0 14

K  J x
$

1

x
$

2

x
$

3

K + J50    0    0
  0    100 -100
  0 -100    100

K  J x
#
1

x#2
x#3
K

fk,j = tan-1
Im3Gk,j(ivj  

)4
Re3Gk,j(ivj  

)4

i = 2-1

xk(t) = a
n

j = 1

| Gk,j(ivj) |Fj sin(vjt + fk,j)

EXAMPLE 9 . 4

500 N/m
1000 N/m

700 N/m

100 N · s/m50 N · s/m

x1 x2 x3

10 kg 12 kg

20

1

14 kg

(a)

(b)

F1(t) (N)

F1(t) F2(t)

F3(t)

t (s)

FIGURE 9.4
(a) System of Example 9.4. (b) F1(t) for part a.
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Forced Vibrations of MDOF Systems 601

Taking the Laplace transform of Equation (a) and using all initial conditions as zero leads to

(b)

The matrix in Equation (b) is Z(s).
(a) Taking the Laplace transform of the excitation leads to

(c)

The inverse of Z(s) is obtained as

(d)

where

(e)

The roots of D(s) are obtained as

(f)s = -3.278 � 13.95i,   -  6.550 � 7.67i,   -0.4097 � 3.13i

+ 1,062,500s + 4,375,000

D(s) = 21s6 + 430s5 + 8800s4 + 81,375s3 + 578,750s2

1250s + 8750
25s3 + 300s3 + 4625s + 26,250

3s4 + 40s3 + 1000s2 + 58,755 + 38,750 K

175s4 + 1250s + 8750
7s4 + 85s3 + 1650s2 + 9250s + 52,500

25s3 + 300s3 + 4625s + 26,250

=
1

D(s)
J2.1s4 + 32.5s3 + 402.5s2 + 1250s + 8750

175s2 + 1250s + 8750
1250s + 8750

Z- 1(s)

= J
1
s (1 - e- 0.5s)

0
F0>s K

J10s2 + 50s + 1500 -1000 0
-1000 12s2 + 100s + 1700 -100s - 700

0 -100s - 700 14s2 + 100s + 700
K  JX1(s)

X2(s)
X3(s)
K

= JF1(s)
F2(s)
F3(s)
K

J10s2 + 50s + 1500 -1000 0
-1000 12s2 + 100s + 1700 -100s - 700

0 -100s - 700 14s2 - 100s + 700
K  JX1(s)

X2(s)
X3(s)
K
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602 CHAPTER 9

Multiplying F(s) by Z�1(s) and solving for X
1
(s) leads to

(g)

A partial fraction decomposition of Equation (g) leads to

(h)

Inversion of the transform yields

(i)

(b) From Equation (9.16) for the given forces

(j)

where

(k)

and

(l)=
8.75 * 103 + 2.5 * 104i

-1.671 * 108 + 7.463 * 108i
= 2.94 * 10-5 - 1.83 * 10-5i

=
1250(20i ) + 8750

21(20i )6 + 430(20i )5 + 8800(20i )4 + 81,375(20i )3

+ 578,750(20i )2 + 1,062,500(20i ) + 4,375,000

G1,3(20i )

=
-1.05 * 104 - 2.00 * 104i
1.26 * 107 - 2.775 * 107i

= 4.55 * 10-4 - 5.85 * 10-4i

=
2.1(10i )4 + 32.5(10i )3 + 402.5(10i )2 + 1250(10i ) + 8750

21(10i )6 + 430(10i )5 + 8800(10i )4 + 81,375(10i )3

+ 578,750(10i )2 + 1,062,500(10i ) + 4,375,000

G1,1(10i )

x1(t) = 20| G1,1(10j ) |sin(10t + f1,1) + 30| G1,3(20j ) |sin(20t + f1,3)

+ 1.40sin14.32(t - 0.5)]}}

+ 2.36sin10.08(t - 0.5)] + e-3.28(t -  0.5)[-3.53cos14.32(t - 0.5)

+ 4.081sin3.16(t - 0.5]e -6.56(t -  0.5)[-2.93cos10.08(t - 0.5)

- u(t - 0.5){20 + e -0.409(t -  0.5)[-14cos3.16(t - 0.5)

+ e -3.28(-3.53cos14.32t + 1.40sin14.32t)

+ e -6.56t(-2.93cos10.08t + 2.46sin10.08t)

x1(t) = 10-4{20 + e -0.409t(-14cos3.16t + 4.081sin3.16t)

+
-3.53s + 13

s2 + 6.54s + 205.2
b (1 - e -0.5s)

X1(s) = 10-4a20
s

+
-14s + 16

s2 + 0.820s + 9.96
+

-2.93s + 19

s2 + 13.71s + 101.73

X1(s) =
(2.1s4 + 32.5s3 + 402.5s2 + 1250s + 8750)(1 - e -0.5s)

s(21s6 + 430s5 + 8800s4 + 81,375s3 + 578,750s2 + 1,062,500s + 4,375,000)
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Forced Vibrations of MDOF Systems 603

The steady-state solution is

(m)

9.4 MODAL ANALYSIS FOR UNDAMPED SYSTEMS
AND SYSTEMS WITH PROPORTIONAL DAMPING
The differential equations governing the forced vibrations of an undamped linear nDOF

system are

(9.18)

The method of modal analysis uses the principal coordinates of the system to uncouple the

differential equations of Equation (9.18).

Let be the natural frequencies of the system whose equations

are given by Equation (9.18). Let P be the system’s modal matrix, the matrix whose

columns are the normalized mode shapes, P � [X
1

X
2 

X
n
]. Using the expansion the-

orem, as in Section 8.8, the response at any instant of time can be expanded as

(9.19)

where pi(t) are the system’s principal coordinates. Equation (9.19) is equivalent to a linear

transformation between the original generalized coordinates and the principal coordinates

(9.20)

Substitution of Equation (9.19) in Equation (9.18) leads to

(9.21)

Taking the standard scalar product of Equation (9.21) with Xj for an arbitrary j leads to

(9.22)

On the basis of the definitions of energy scalar products, Equation (9.22) becomes

(9.23)

Application of mode-shape orthogonality leads to only one nonzero term in each summa-

tion, the term corresponding to i � j. Since the mode shapes are normalized,

Equation (9.23) leads to

(9.24)

where

(9.25)gj(t) = (Xj 
, F)

p
$

j + v2
j pj = gj(t )

a
n

i = 1

p
$

i(Xj 
, Xi 

)M + a
n

i = 1

pi 
(Xj 

, Xi 
)K = (Xj 

, F)

a
n

i = 1

p
$

i(Xj , MXi ) + a
n

i = 1

pi(Xj , KXi ) = (Xj , F)

a
n

i = 1

p
$

i 
MXi + a

n

i = 1

pi 
KXi = F

x = Pp

x(t ) = a
n

i = 1

pi(t )Xi

Á

v1 … v2 … Á … vn

Mx
$ + Kx = F

= 0.0148 sin(10t - 0.910) + 0.00106 sin(20t - 0.557)

x1(t) = 20(7.414 * 10-4) sin(10t - 0.910) + 30(3.463 * 10-5) sin(20t - 0.557)
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604 CHAPTER 9

An equation of the form of Equation (9.24) can be written for each j � 1, 2, . . . , n.

This shows that the principal coordinates that are used to uncouple the differential equa-

tions governing free vibrations can also be used to uncouple the differential equations gov-

erning forced vibrations. The differential equations of Equation (9.24) can be solved by any

useful means. If the initial conditions for pi are pi(0) � 0 and i(0) � 0, then the convo-

lution integral solution of Equation (9.24) is

(9.26)

Once the solutions for each pi have been obtained, Equation (9.19) is used to determine

the original generalized coordinates.

The modal analysis procedure to determine the forced response of an undamped linear

nDOF system is summarized below.

1. A set of generalized coordinates is chosen. The differential equations governing the

motion of the system are derived using Lagrange’s equations. The differential equations

are written in the matrix form of Equation (9.18).

2. The natural frequencies and normalized mode shapes are obtained. The natural fre-

quencies are the square roots of the eigenvalues of M�1K and the mode shapes are the

corresponding eigenvectors. The mode shapes are normalized by requiring that the

kinetic energy scalar product of a mode shape with itself be equal to one.

3. The elements of the column vector G are obtained by using Equation (9.25). An alter-

native method to obtain G is

(9.27)

4. Equations of the form of Equation (9.24) are solved to obtain the time-dependent

form of the principal coordinates. Equation (9.26) gives the convolution integral solu-

tion of Equation (9.24).

5. The time-dependent form of the original generalized coordinates is obtained by using

Equation (9.19) or Equation (9.20).

Use modal analysis to determine the time-dependent response of the system of Figure 9.5(a)

subject to the excitation of Figure 9.5(b).

SO LU T I ON
The differential equations governing the motion of the system of Figure 9.5(a) are

(a)

where from Figure 9.5(b)

(b)

where t is in seconds.

F  (t ) = 4000[1 - u (t - 1.2)] N

Jm 0 0
0 m 0
0 0

m
2
K  J x

$
1

x
$

2

x
$

3

K + J 3k -2k 0
-2k 3k -k

0 -k 3k
K  J x1

x2

x3

K = J 0
0

 F  (t)
K

G = PT F

pi(t) =
1
viL

t

0
gi(t) sin[vi(t - t)]dt

p#

EXAMPLE 9 . 5
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Forced Vibrations of MDOF Systems 605

The natural frequencies for this system are determined in Example 8.2 and the nor-

malized mode shapes are determined in Example 8.10. Substituting m � 10 kg and

k � 1000 N/m in these results leads to natural frequencies of

(c)

and a modal matrix of

(d)

The vector G(t) is then calculated by using Equation (9.27)

(e)

The differential equations satisfied by the principal coordinates are written by using

Equation (9.24)

(f)

(g)

(h)

The convolution integral is used to solve for p
1

as

(i)= 4.418 {cos 8.936t - 1 + u(t - 1.2)[1 - cos 8.936(t - 1.2)]}

p1(t) =
1

8.936L
t

0
352.8 [1 - u(t - 1.2)] sin 8.936(t - t)dt

p
$

3 + 674.6p3 = 1535.2 [1 - u(t - 1.2)]

p
$

2 + 445.5p2 = -848.0 [1 - u(t - 1.2)]

p
$

1 + 79.852p1 = 352.8 [1 - u(t - 1.2)]

G(t ) = PT F = J    0.0882
-0.2120
   0.3838

K  F  (t )

P = J0.2085    0.2252    0.0765
0.2295 -0.1638 -0.1432
0.0882 -0.2120    0.3838

K (kg)-1>2

v1 = 8.936   rad/s   v2 = 21.107   rad/s   v3 = 25.974   rad/s

FIGURE 9.5
(a) Three degree-of-freedom system of Example 9.5. (b) Excitation for system of Example 9.5.

k 2k

x1 x2

m m m/2
k 2k

x3

F(t)

(a)

m = 10 kg
k = 1000 N/m

4000

1.2

(b)

F (N)

t (s)
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606 CHAPTER 9

The convolution integral is also used to solve for p
2

and p
3
, yielding

(j)

(k)

The solution in terms of the original generalized coordinates is obtained by using

Equation (9.20)

(l)

which leads to

(m)

(n)

(o)

where

(p)

(q)

(r)

A machine of mass 150 kg is placed as shown on the simply supported beam of Figure 9.6.

The machine has a rotating unbalance of 0.965 kg . m and operates at 1250 rpm. The

beam has a total mass of 280 kg, a cross-sectional moment of inertia of 1.2 � 10�4 m4, a

length of 3 m, and an elastic modulus of 210 � 109 N/m2. Model the beam with three

degrees of freedom and use modal analysis to predict the steady-state amplitude of displace-

ment for the point where the machine is attached.

SO LU T I ON
The beam is modeled as three particles with a mass of 70 kg, as shown in Figure 9.6(b).

The mass matrix for this model is

(a)

Flexibility influence coefficients are used to determine the flexibility matrix as

(b)A = 10-9J12.53 15.33   9.75
15.33 22.29 15.33
  9.75 15.33 12.53

K    m/N

M = J 70   0    0  
  0 70    0  

  0   0 220
K    kg

b3(t) = cos 25.974t - 1 + u(t - 1.2)[1 - cos 25.974(t - 1.2)]

b2(t) = cos 21.107t - 1 + u(t - 1.2)[1 - cos 21.107(t - 1.2)]

b1(t) = cos 8.936t - 1 + u(t - 1.2)[1 - cos 8.936(t - 1.2)]

x3(t) = 0.390b1(t) + 0.403b2(t) + 0.874b3(t)

x2(t) = 1.014b1(t) + 0.312b2(t) - 0.326b3(t)

x1(t) = 0.921b1(t) - 0.429b2(t) + 0.174b3(t)

J x1

x2

x3

K = J0.2085    0.2252    0.0765
0.2295 -0.1638 -0.1432
0.0882 -0.2120    0.3838

K J p1(t)
p2(t)
p3(t)
K

p3(t) = 2.276 {cos 25.974t - 1 + u(t - 1.2)[1 - cos 25.974(t - 1.2)]}

p2(t) = -1.903 {cos 21.107t - 1 + u(t - 1.2)[1 - cos 21.107(t - 1.2)]}

EXAMPLE 9 . 6
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Forced Vibrations of MDOF Systems 607

The governing differential equations are

(c)

where

(d)

The natural frequencies and normalized mode shapes are determined as the reciprocals of

the square roots of the eigenvalues of AM. They are

(e)

The normalized eigenvectors comprise the modal matrix P, which is

(f)

The vector G(t) is calculated as

(g)= J    821.8
   687.0
-300.3

K  sin130.9t    N  (kg)-1>2

J 0
0

16,500 sin130.9t
KG(t) = PTF = J    0.0453    0.0666    0.0498

-0.0851 -0.4000    0.0416
-0.0707    0.0908 -0.0182

K

P = J0.0453 -0.0851 -0.0707
0.0666 -0.4000    0.0908
0.0498    0.0416 -0.0182

K

v1 = 455.8   rad/s v2 = 1.735 * 103
 

 
 rad/s v3 = 4.474 * 103

  

 rad/s

F(t) = J 0
0

16,500 sin 130.9t
K    N

AM x
$ + x = AF

FIGURE 9.6
(a) Machine with rotating unbalance is attached to pinned-pinned beam. (b) Three degree-of-freedom
model of beam.

0.75 m 0.75 m 0.75 m 0.75 m

2.25 m

m3 = 220 kg

m = 150 kg

m2 = 70 kgm1 = 70 kg

(b)

(a)

0.75 m

w = 1250 rpm
m0e = 0.965 kg · m
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608 CHAPTER 9

The differential equations for the principal coordinates are written by using Equation (9.24)

(h)

(i)

(j)

The steady-state solution of

(k)

is

(l)

The steady-state solution for the principal coordinates is

(m)

Equation (9.20) is used to determine x
3
(t) as

x
3
(t) � 0.0498p

1
(t) � 0.0416p

2
(t) � 0.0182p

3
(t) � 2.25 � 10�4 sin130.9t m (n)

Thus, the maximum steady-state displacement of the point on the beam where the

machine is placed is 0.225 mm.

The differential equations governing the forced vibrations of a linear system with vis-

cous damping are

(9.28)

If the system is proportionally damped, the damping matrix is a linear combination of the

mass matrix and the stiffness matrix.

Modal analysis using the principal coordinates of the undamped system can be used to

uncouple the differential equations of a system with proportional damping. Substitution of

Equation (9.19) into Equation (9.28) and following a procedure similar to that used for

the undamped system leads to the differential equations for the principal coordinates as

(9.29)

where the modal damping ratio �i is defined in Equation (8.79).

The convolution integral solution of Equation (9.29) for Ji � 1 is

(9.30)

The procedure for application of modal analysis to a system with proportional damping is

the same as that for an undamped system with the addition of the determination of the

pi(t ) =
1

vi21 - z2
i
L

t

0
gi(t)e

-zivi(t -  t) sin cvi21 - z2
i (t - t) dd t

p
$

i + 2zi 
vi p

#
i + v2

i 
pi = gi(t)

M x
$ + Cx# + Kx = F

J p1

p2

p3

K = 10-5J432.0
   22.93
 -1.501

K sin130.9t    (kg)1>2

pi(t) =
Fi

v2
i - v2

i

 sin vt

p
$

i + v2
i pi = Fi sin vt

p
$

3 + (4474)2p3 = -300.3 sin130.9t

p
$

2 + (1736.5)2p2 = 687.0 sin130.9t

p
$

1 + (455.8)2p1 = 821.8 sin130.9t
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Forced Vibrations of MDOF Systems 609

modal damping ratios to step 2 and the use of Equation (9.30) as the convolution integral

solution.

Damping in structural systems is mostly hysteretic and hard to quantify. Lacking a

better model, proportional damping is often assumed. The modal damping ratios are usu-

ally determined experimentally. The equivalent damping ratio for a harmonically excited

SDOF system with hysteretic damping is proportional to the natural frequency, and

inversely proportional to the excitation frequency. This model fits proportional damping

where the damping matrix is proportional to the stiffness matrix. In these cases, the higher

modes are damped more than the lower modes. The natural frequencies in stiff structural

systems are usually greatly separated. The effect of the higher modes in the total response

is less than the modes with lower natural frequencies. For these reasons, damping ratios are

often specified only for the lower modes.

If proportional damping is assumed, the higher modes are damped more than the

lower modes and have a lesser effect on the overall solution. Modes with higher damping

ratios die out more quickly when the system is subject to any short-term or shock excita-

tion. If the system is subject to a harmonic excitation, the modes with higher frequencies

have lesser effect because their amplitudes are inversely proportional to the square of their

frequencies. Thus, fewer modes can be calculated without losing significant accuracy.

Hence, in practice, Equation (9.19) is often replaced by

(9.31)

for some m � n. Equation (9.31) is often used in situations where the mode shapes are

determined experimentally and an experimental modal analysis method is used to deter-

mine the response of a system.

The three degree-of-freedom system of Example 9.5 is modified by the addition of dash-

pots, as shown in Figure 9.7 Determine the forced response of the damped system.

SO LU T I ON
The damping matrix is

(a)

and is proportional to the stiffness matrix with

(b)

Thus, the modal damping ratios are given by

(c)z1 =
a

2
v1 = 0.178 z2 =

a

2
v2 = 0.422 z3 =

a

2
v3 = 0.520

a =
c
k

=
40   N # s/m
1000   N/m

= 0.04   s

C = J    3c -2c 0
-2c    3c - c
   0   - c 3c

K

x(t) = a
m

i = 1

pi Xi

EXAMPLE 9 . 7

62129_09_Ch09_p593-632.qxd  3/16/11  12:24 PM  Page 609

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



610 CHAPTER 9

FIGURE 9.7
(a) Three degree-of-freedom system with the damping matrix proportional to the stiffness matrix.
(b) System response for � � 0.04 s. (c) System response for � � 0.

k

c

x1 x2 x3

m

2k

2c

m

k

c

m/2

2k

2c

F(t)

c = 40 N · s/m(a)

(b)

(c)
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x 
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–0.015
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Forced Vibrations of MDOF Systems 611

All modes are underdamped. The differential equations governing the principal coordinates

are

(d)

(e)

(f)

The solution for the principal coordinates is obtained from the convolution integral. It is

noted that

(g)

Application of the convolution integral to the first equation leads to

(h)

The convolution integral solution of Equation (g) is evaluated for the other principal coor-

dinates. The original generalized coordinates are calculated by x � Pp. The resulting plots

for � � 0.04 and � � 0 are shown in Figure 9.7(b) and (c).

9.5 MODAL ANALYSIS FOR SYSTEMS
WITH GENERAL DAMPING
The differential equations governing the forced vibrations of a linear nDOF system

(9.32)

can be rewritten as a system of 2n linear first-order equations

(9.33)

where , and are defined in Equation (8.83) and

(9.34)F
∼ = c0

F
d

K
∼

y, M
∼

M
∼

y# + K
∼

y = F
∼

M x
$ + Cx# + Kx = F

+ 0.181 sin (8.79t - 10.55)]}

- 4.43u(t - 1.2){1 - 6.77e -1.60t [cos (8.79t - 10.55)

p1(t) = 4.43 [1 - e -1.60t(cos 8.79t + 0.181 sin (8.79t)]

+
z

21 - z2
 sin vd(t - 1.2) d f d

- u(t - 1.2)e1 - e -zvn(t -  1.2) ccos vd(t - 1.2)

= -
1 - z2

vd

 c1 - e -zvnt ccos vd 
t +

z

21 - z2
 sin vd 

t d
L

t

0
[1 - u(t - 1.2)]  e -zvn(t -  t) sin vd(t - t)dt

p
$

3 + 13.49p#3 + 674.6p3 = 0.3838F  (t)

p
$

2 + 8.91p#2 + 445.5p2 = -0.2120F  (t)

p
$

1 + 1.60p#1 + 79.85p1 = 0.0882F  (t)
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612 CHAPTER 9

The homogeneous solution of Equation (9.33) is obtained in Section 8.13. The solu-

tion uses eigenvalues and eigenvectors of Eigenvalues occur in complex conjugate

pairs. Eigenvectors satisfy the orthogonality relation of Equation (8.84). The eigenvectors

can be normalized by requiring

(9.35)

The modal matrix is the matrix whose columns are the normalized eigenvectors of

The principal coordinates are defined by

(9.36)

Substituting Equation (9.36) in Equation (9.33) leads to

(9.37)

Premultiplying Equation (9.37) by leads to

(9.38)

Use of mode shape orthonormality in Equation (9.38) results in

(9.39)

where is a diagonal matrix with the eigenvalues of along the diagonal. Thus, the

differential equations represented by Equation (9.39) are uncoupled and written as

(9.40)

The convolution integral solution of Equation (9.40) is

(9.41)

Application of modal analysis to systems with general damping is very similar to its

application to systems with proportional damping. The procedure is summarized below.

1. The differential equations governing the forced vibrations of the system are derived

in terms of a chosen set of generalized coordinates and written in the form of

Equation (9.32).

2. The differential equations are reformulated in the form of Equation (9.33), using

Equations (8.83) and (9.34).

3. The eigenvalues and eigenvectors of are obtained. The eigenvectors are normal-

ized by using Equation (8.87). The modal matrix is formed as the matrix whose

columns are the normalized mode shapes.

4. The vector is determined.

5. Differential equations of the form of Equation (9.40) are written for each principal

coordinate.

6. The differential equations are solved by any convenient method. The convolution

integral solution is given by Equation (9.41).

7. The time-dependent behavior of the chosen generalized coordinates is obtained by

using Equation (9.36).

G
∼ = P

∼ TF

P
∼

M
∼ -1K

∼

p∼i = L
t

0
g∼i(t)e

-gi(t -  t)dt

p
#∼
i + gi p

∼
i = g∼i(t)  i = 1, 2, . . . , 2n

M
∼ -1K

∼¶

p
.∼ + ¶p = G

P
∼ T M

∼
P
∼
p
#∼ + P

∼ T K
∼

P
∼
p∼ = P

∼ T F
∼ = G

∼

P
∼ T

M
∼

P
∼
p∼
#

+ K
∼

P
∼
p∼ = F

∼

y = P
∼
p∼

M
∼ -1K

∼
.

P
∼

£T
i  M

∼ £i = 1

M
∼ -1K

∼
.
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Forced Vibrations of MDOF Systems 613

Determine the response of the system of Figure 9.8(a) when F(t) � 50e�1.5t N.

SO LU T I ON
The differential equations governing the motion of the system are

(a)

The differential equations are written in the form of Equation (9.33) as

(b)

where y = [x#1 x#2 x1 x2]
T.

≥
0 0 m 0
0 0 0 2m
m 0 0 0
0 2m 0 c

¥  ≥
y#1
y#2
y#3
y#4

¥ + ≥
-m 0 0 0

0 -2m 0 0
0 0 3k -2k
0 0 -2k 2k

¥  ≥
y1

y2

y3

y4

¥ = ≥
0
0
0

F (t)

¥

cm 0
0 2m

d cx
$

1

x
$

2

d + c0 0
0 c

d cx
#
1

x#2
d + c 3k -2k

-2k 2k
d cx1

x2

d = c 0
F (t)
d

EXAMPLE 9 . 8

FIGURE 9.8
(a) Two degree-of-freedom system with external excitation and general damping. (b) System response.

k
m

c

2k
2m

x1 x2
F(t) k = 1000 N/m

m = 20 kg
c = 80 N · s/m

(a)

–6
0 0..5 1 1.5

x 
(m

)

–2

–4

2

0

4

6

8

t (s)

(b)

×10–3

x1(t)
x2(t)
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614 CHAPTER 9

A MATLAB program is written to evaluate the forced response for this problem. The

free vibration response is calculated first with the eigenvlaues and mode shapes, as in

Example 8.16. The modal matrix is formed, and the vector is calculated. The

differential equation for each principal coordinate is written and solved symbolically by the

convolution integral. The response for the original generalized coordinates are obtained

from The plot of the output is given in Figure 9.8(b).

9.6 NUMERICAL SOLUTIONS
An exact solution for the forced response of an nDOF linear system is not always possible.

The excitation may be such that the convolution integral cannot be evaluated in closed

form or the excitation may be known exactly only at discrete values of time. While a closed-

form solution is always preferable to a numerical solution, it may be easier to obtain a

numerical solution. Even when a closed-form solution is available, it must be evaluated

numerically to plot the response.

Numerical difficulties may arise if a direct numerical simulation of Equation (9.18) is

used. An nDOF system has n natural frequencies and n natural periods. Hence, there are

n time scales implicit in the response. The time step in a numerical simulation must be

chosen such that a sufficient number of time steps are taken over each natural period.

Thus, the natural periods should be determined before any numerical simulation is

attempted.

Since the natural frequencies should be determined before a numerical simulation is

attempted, it is suggested that modal analysis be applied before a numerical simulation

is attempted. Numerical solutions for the modal equations can be obtained, and

Equation (9.20) can be used to obtain the response in terms of the chosen generalized

coordinates. This approach has several advantages over direct numerical simulation of

Equation (9.18):

1. The natural frequencies and mode shapes are known before the numerical solution

begins. This makes it easier to determine an appropriate time step in a numerical

approximation.

2. The use of modal analysis provides a choice of numerical solutions. Numerical inte-

gration of the convolution integral may be employed or numerical integration of the

modal equations based on a method like Runge-Kutta may be used.

3. The numerical solution of n uncoupled equations is simpler and quicker than the

numerical solution of n coupled equations.

4. It is not necessary to include all modes in the forced response. If the system is propor-

tionally damped, the higher modes are more highly damped and will contribute less

to the overall response. If a large number of degrees of freedom are used in modeling

a structural system in order to assure high accuracy for the lowest modes, it is not

desirable to include the higher modes in the response, since they provide inaccurate

approximations.

x = P
∼
pI .

G
∼ = PT∼

   FP
∼
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Forced Vibrations of MDOF Systems 615

9.7 BENCHMARK EXAMPLES

9.7.1 MACHINE ON FLOOR OF INDUSTRIAL PLANT
The differential equations used to model the vibrations of the machine on the floor of the

industrial plant using four degrees of freedom to model the vibrations of the floor and

another to model the vibrations of the machine and isolator are derived in Section 7.9.

Using F(t) � 90,000 sin 80t, they are

(a)

A steady-state solution is assumed as

(b)

which when substituted into Equation (a) leads to

(c)

Simultaneous solution of Equation (c) gives

(d)

The amplitude of the force transmitted to the beam is

(e)k | U5 - U3 | = (5.81 * 105
  N>m ) | -0.03834   m + 0.00195  m | = 21,144   N

E
U1

U2

U3

U4

U5

U = E
-0.00054
-0.00151
-0.00195
-0.00127
-0.03834   

U

E
0.998 -0.0034 -0.0032 -0.0019 -0.0658

-0.0034      0.9914 -0.0091 -0.0055 -0.187
-0.0032 -0.0091      0.988 -0.0081 -0.2478
-0.0019 -0.0055 -0.008      0.9934 -0.1653
-0.0032 -0.0091 -0.012 -0.0081 -3.9838

U E
U1

U2

U3

U4

U5

U = E
0.0020
0.0057
0.0076
0.0051
0.1528

U

E
x1

x2

x3

x4

x5

U = E
U1

U2

U3

U4

U5

U sin 80t

10-8E
31.346   53.736   49.952   30.0026   1027.533
53.736 133.6683 142.051   85.9776   2922.046
50.1536 142.6243 188.212 126.0557   3871.597
30.0026   85.9776 125.549 103.8896   2582.594
50.1536 142.6243 188.212 126.0557 77,872.31

U E
x
$

1

x
$

2

x
$

3

x
$

4

x
$

5

U + E
x1

x2

x3

x4

x5

U = 9 * 10-4E
    2.24
    6.37
    8.44
    5.63
169.76

U  sin  80t
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616 CHAPTER 9

Since the transmitted force is less than 22,500 N, the force transmitted through the isola-

tor is still acceptable.

Table 9.1 shows the models of the machine on the floor of the industrial plant with

an isolator of stiffness 5.81 � 105 N/m. The table includes the natural frequencies of the

model as well as the transmitted force between the isolator and the beam. The finite-element

model presented in Chapter 11 is included for comparison. The transmitted force predicted

using a rigid model for the beam is the largest at 22,500 N. The transmitted force in all other

models is less. Thus, the SDOF approximation is sufficient for the vibration isolation prob-

lem. The lowest natural frequency ranges from 34.73 rad/s for the two DOF model to 35.6

for the SDOF model.

9.7.2 SIMPLIFIED SUSPENSION SYSTEM
The differential equations governing the motion of the vehicle are derived in Section 7.7

as

(a)

The system has proportional damping. Modal analysis is used to solve for the forced

response. The natural frequencies, modal damping ratios, and modal matrix are calculated

+ 104D 5.50 3.60 -1.56 2.04
-1.08 2     -1.2  -1.2  
-1.56 -1.2  1.12 0     

2.04 -1.2  0     1.12

T D ux1

x2

x3

T = D 0
0

1 * 104y# + 1 * 105y
1 * 104z# + 1 * 105z

T
D225 0  0 0

0  300 0 0
0  0  25 0
0  0  0 25

T  D u
$

x
$

1

x
$

2

x
$

3

T + 103D 5.50 3.60 -1.56 2.04
-1.08 2.4   -1.2  -1.2  
-1.56 -1.2  1.12 0     

2.04 -1.2  0     1.12

T  D u
#

x#1
x#2
x#3

T

T A B L E 9 . 1

Model of machine attached to beam with Natural frequencies (rad/s)
isolator of stiffness

SDOF model, assumes beam is rigid 22,500 35.6

2DOF model, uses equivalent mass and 20,878 34.73, 335.28
stiffness of beam

5DOF model, uses flexibility matrix 21,144 35.83, 510.25, 1.61 � 103,
with lumped masses to model beam 3.05 �103, 5.06 � 103

Four-element finite-element model
of beamresults in a 10DOF system 20,867 34.7, 330.2, 1.05 � 103, 2.2 �

103, 3.83 � 103, 6.35 � 103,
9.38 � 103, 1.37 � 104,
1.95 � 104, 2.52 � 104

5. 8 1 * 105 N/m
FT (N )
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Forced Vibrations of MDOF Systems 617

in Section 8.14. The components of the right-hand side vector for the modal equations are

calculated as

(b)

The vehicle travels over a bump in the road at speed of v, which is given in Section 5.10 as

(c)

from which

(d)

The rear wheels traverse the bump at a time later, giving the equation

for z(t) as

(e)

from which

(f)

The differential equations for the modal responses are

(g)

(h)p
$

2 + 23.18p#2 + 193p2 = -51.6y# - 516y - 51.6z# - 516z

p
$

1 + 6.65p#1 + 55.2p1 = 97.1y# + 971y + 97.1z# + 971z

- b1 - cos2 c10pv
6
a t -

3
v
b d r cda t -

3
v
b - da t -

3.6
v
b d d

z 
# (t ) = 0.02 c -2 sin c10pv

6
 a t -

3
v
b d  cos c 10pv

6
 a t -

3
v
b d cu a t -

3
v
b - u a t -

3.6
v
b d

z (t ) = 0.02b1 - cos2 c10pv
6

 a t -
3
v
b d r cu a t -

3
v
b - u a t -

3.6
v
b r

(a +  b)>v = 3>v
- c1 - cos2a10pv

6
tb d  d a t -

0.6
v
b r

y# (t ) = 0.02b -2a10pv
6
b  sin a 10pv

6
tb  cos a10pv

6
tb c1 - u a t -

0.6
v
b d

y (t ) = 0.02 c1 - cos2a10pv
6

tb d c1 - u a t -
0.6
v
b d

=  D 97.1y# + 971y + 97.1z# + 971z
-51.6y# - 516y - 51.6z# - 516z

2770y# + 27,700y + 2770z# + 27,700z
556y# + 5560y + 556z# + 5560z

T
G = PTF = D0.0169     0.0645  -0.00028      0.00450

0.0560 -0.00140 -0.002313  -0.00046
0.00709      0.00664      0.1664  -0.1105
0.00262  -0.0118        0.1106      0.1661

T
T  D 0

0
1 * 104y# + 1 * 105y
1 * 104z# + 1 * 105z

T
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618 CHAPTER 9

(i)

(j)

Convolution integral solutions of Equations (h) through (j) are available for

Equations (g) through (j).

(k)

(l)

(m)

(n)

The response of the system in terms of the original generalized coordinates is given by

(o)

The third and fourth modes are overdamped and will not have much effect on the response

of the system. Thus, only the first two modes are used in the response

(p)

Numerical integration of the convolution integral with piecewise constants is used to deter-

mine the time dependence of the principal coordinates. The results are given in Figure 9.9

for v � 15 m/s and v � 60 m/s.

D ux1

x2

x3

T = D0.0169      0.0645
0.0560 -0.0140
0.00709      0.00664
0.00262 -0.0118

T  c p1

p2
d = D 0.0169p1 + 0.0645p2

0.0560p1 - 0.0140p2

0.00709p1 + 0.00664p2

0.00262p1 - 0.0118p2

T

x = Pp = D0.0169    0.0645 -0.00028    0.00450
0.0560 -0.0140 -0.00213 -0.00046
0.00709    0.00664    0.1664 -0.1105
0.00262 -0.0118    0.1106    0.1661

T  D p1

p2

p3

p4

T

+ 5560z (t)] [e -8.47(t -  t) - e -522.2(t -  t)]dt

p4(t) =
1

513.7L
t

0
[556y# (t) + 5560y (t) + 556z# (t)

+ 2770z# (t) + 27,700z(t)] [e-8.47(t -  t) - e-520.7(t -  t)]dt

p3(t) =
1

512.2L
t

0
[2770y#(t) + 27,700(t)

- 51.6z# (t) - 516z (t)] e -11.60(t -  t) sin 4.10(t - t)dt

p2(t) =
1

4.10L
t

0
[-51.6y# (t) - 516y (t)

+ 971z (t)] e -3.33(t -  t) sin 6.64(t - t)dt

p1(t) =
1

6.64L
t

0
[97.1y# (t) + 971y (t) + 97.1z# (t)

p
$

4 + 530.7p#4 + 4419p4 = 556y# + 5560y + 556z# + 5560z

p
$
3 + 528.5p#3 + 4409p3 = 2770y# + 27,700y + 2770z# + 27,700z
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Forced Vibrations of MDOF Systems 619

FIGURE 9.9
Numerical integration of convolution integral is used to determine displacement of vehicle traveling over a bump in the road.
(a) Displacement of the wheels at v � 15 m/s. (b) Displacement of the body of the vehicle and its angular rotation at v � 15 m/s.
(c) Displacement of the wheels at v � 60 m/s. (d) Displacement of the body of the vehicle and its angular rotation at v � 60 m/s.
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620 CHAPTER 9

9.8 FURTHER EXAMPLES

Reconsider the three degree-of-freedom model of the hand of Example 7.21 and Example 8.16.

The mathematical model is repeated as

(a)

(a) Determine the steady-state amplitudes when the hand is gripping a power tool that

has a vibration of

(b)

(b) Determine the response of the system when the hand is gripping an object that

expands according to

(c)

SO LU T I ON
(a) Substituting for the displacement of the tool into the differential equations leads to

(d)

A solution to Equation (c) is assumed to be

(e)C x1

x2

x3

S = CU1

U2

U3

Se i100t

+ C151,216 -1726 0      
-1726 43,699 -12,075

0      -12,075 207,740
S  C x1

x2

x3

S = C 0
1.536sin(100t + 0.254)
9.80sin(100t + 0.0644)

S
C5.0516 0 0

0 1.4295 0
0 0 0.887

S  C x
$

1

x
$

2

x
$

3

S + C 152.1 -64.9 0   
-64.9 176.0 -36.3

0   -36.3 111.1
S C x#1

x#2
x#3

S

y(t) = 5 * 10-5(1 - e -50t )

y(t) = 5 * 10-5sin100t

+ C151,216 -1726 0     
-1726 43,699 -12,075

0     -12,075 207,740
S  C x1

x2

x3

S = C 0
74.8y# + 29,898y
126y# + 195,695y

S
C5.0516 0 0

0 1.4295 0
0 0 0.887

S C x
$

1

x
$

2

x
$

3

S + C 152.1 -64.9 0   
-64.9 176.0 -36.3

0    -36.3 111.1
S C x#1

x#2
x#3

S
EXAMPLE 9 . 9
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Forced Vibrations of MDOF Systems 621

Only the imaginary part of the solution is used for the response. Substitution of Equation (d)

into Equation (c) using complex notation for the trigonometric terms leads to

(f)

The solution of Equation (f ) is

(g)

The steady-state solution for the system is

(h)

(b) Substituting for the displacement of the object, we have

(i)

The system has damping, but it is not proportionally damped. Thus, the state–space for-

mulation and a general modal analysis are required. Thus, a six-dimensional vector is

+ C151,216 -1726 0     
-1726 43,699 -12,075

0      -12,075 207,740
S C x1

x2

x3

S = C 0
1.50 - 1.39e -50t

9.78 - 9.47e -50t

S
C5.0516 0 0

0 1.4295 0
0 0 0.887

S  C x
$

1

x
$

2

x
$

3

S + C 152.1 -64.9 0   
-64.9 176.0 -36.3

0   -36.3 111.1
S C x#1

x#2
x#3

S

= 10-4C 0.0430 sin (100t + 0.892)
0.652 sin (100t - 0.270)

0.53332 sin (100t + 0.0054)
S

= 10-4C0.0270 sin 100t + 0.0334 cos 100t
0.6281 sin 100t - 0.1735 cos 100t
0.5332 sin 100t + 0.0029 cos 100t

S
C x1

x2

x3

S = Im£10-4C0.0270 + 0.0334i
0.6281 - 0.1735i
0.5332 + 0.0029i

Se i100t≥

CU1

U2

U3

S = 10-4C0.0270 + 0.0334i
0.6281 - 0.1735i
0.5332 + 0.0029i

S

= C 0
1.536e 0.254i

9.80e 0.0644i

S* CU1

U2

U3

S
105C 1.007 + 0.152i -0.0173 + 0.06490i 0

-0.0173 + 0.0649i 0.2877 + 0.176i -0.1208 - 0.0363i
0 -0.1208 - 0.0363i 1.9887 + 0.111i

S  
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622 CHAPTER 9

defined as The eigenvalues and eigenvectors of the

matrix are calculated in Example 8.16. The force vector is defined as

(j)

The mode shape vectors are normalized according to For eigenvalues

(k)

the modal matrix is

(l)

The vector of generalized forces is calculated from

(m)

The differential equations for the principal coordinates become

(n)

(o)

(p)

(q)p#4 + (63.17 - 162.3i )p4 = -0.0172 + 0.0168i + (0.0162 - 0.0157i )e -50t

p#3 + (63.17 + 162.3i )p3 = -0.0172 - 0.0168i + (0.0162 + 0.0157i )e -50t

p#2 + (64.01 - 479.1i )p2 = -0.2313 + 0.2438i + (0.2241 - 0.2357i )e -50t

p#1 + (64.01 + 479.1i )p1 = -0.2313 - 0.2438i + (0.2241 + 0.2375i )e -50t

G
∼ = P

∼ TF
∼ = F 

-0.2313 - 0.2438i + (0.2241 + 0.2375i )e -50t

-0.2313 + 0.2438i + (0.2241 - 0.2357i )e -50t

-0.0172 - 0.0168i + (0.0162 + 0.0157i )e -50t

-0.0172 + 0.0168i + (0.0162 - 0.0157i )e -50t

0.0752 + 0.0545i + (-0.0708 - 0.0508i )e -50t

0.0752 - 0.0545 + (-0.0708 + 0.0508i )e -50t

 V

-2.609 - 3.047i -0.514 + 0.877i -0.514 - 0.877i
-1.41 - 1.279i 3.136 - 7.235i 3.136 + 7.235i
-0.058 - 0.126i -0.067 - 0.494i -0.067 + 0.494i
-0.017 + 0.161i -3.62 * 10-3 - 4.565 * 10-3i -3.62 * 10-3 + 4.565 * 10-3i

-6.835 * 10-3 + 8.69 * 10-3i 0.032 + 0.032i 0.032 - 0.032i
-7.085 * 10-4 + 3.85 * 10-4i 2.777 * 10-3 + 6.668 * 10-4i 2.777 * 10-3 - 6.668 * 10-4i

 V

P = F 
0.034 - 8.126 * 10-3i 0.034 + 8.126 * 10-3i -2.609 + 3.047i

-0.435 - 1.05i -0.435 + 1.05i -1.41 + 1.279i
-10.104 + 13.131i -10.014 - 13.131i -0.058 + 0.126i

7.458 * 10-6 + 7.114 * 10-7i 7.458 * 10-6 - 7.114 * 10-7i -0.017 - 0.016i
2.272 * 10-3 - 6.039 * 10-4i 2.272 * 10-3 - 6.039 * 10-4i -6.835 * 10-3 - 8.69 * 10-3i

-0.024 - 0.024i -0.024 + 0.024i -7.085 * 10-4 - 3.85 * 10-4i

g1,2 = 64.01 � 479.1i, g3,4 = 12.06 � 171.7i, g3,4 = 63.17 � 162.3i

£T
i M

∼ £i = 1.

F
∼ = F

0
0
0
0

1.50 - 1.39e -50t

9.78 - 9.47e -50t

V
M
∼ -1K

∼
y = [x#1 x#2 x#3 x1 x2 x3]

T.
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Forced Vibrations of MDOF Systems 623

(r)

(s)

Equations (n) through (s) are first-order nonhomogenous differential equations. The

solution of

(t)

subject to p(0) � 0 is

(u)

The solutions to Equations (n) through (s) are

(v)

(w)

(x)

(y)

(z)

(aa)

The original generalized coordinates and their velocities are obtained by multiplying the modal

matrix times the vector of principal coordinates The values of the original general-

ized coordinates are x
1

� y
4
, x

2
� y

5
, and x

3
� y

6
.

9.9 CHAPTER SUMMARY

9.9.1 IMPORTANT CONCEPTS
• The method of undetermined coefficients can be used to determine the steady-state

response of a system with harmonic input.

• The Laplace transform method leads to a set of algebraic equations in terms of the trans-

form parameter. The elements of the inverse of the impedance matrix are the transfer

y = P
∼
p∼ .

+ 34.67 + 41.39i + (-19.52 + 45.57i )e -50t ]

p6(t) = 10-5[(-15.14 + 4.189i )e -(12.06 - 171.6i )t

+ 34.67 - 41.39i + (-19.52 - 45.57i )e -50t ]

p5(t) = 10-5[(-15.14 - 4.189i )e -(12.06 + 171.6i )t

+ 10.42 + 9.13i + (5.407 - 12.70i )e -50t ]

p4(t) = 10-5[(-15.82 + 3.575i )e -(63.17 - 162.3i )t

+ 10.42 - 9.13i + (5.407 + 12.70i )e -50t ]

p3(t) = 10-5[(-15.82 - 3.575i )e -(63.17 + 162.3i )t

- 56.33 - 40.75i + (50.89 + 45.28i )e -50t ]

p2(t) = 10-5[(5.435 - 4.535i )e -(64.01 - 479.1i )t

- 56.33 + 40.75i + (50.89 - 45.28i )e -50t ]

p1(t) = 10-5[(5.435 + 4.535i )e -(64.01 + 479.1i )t

p(t) = - aA
l

+
B

l - 50
be -lt +

A
l

-
B

l - 50
e -50t

p# + lp = A + Be -50t

p#6 + (12.06 - 171.6i )p6 = 0.0752 - 0.0545 + (-0.0708 + 0.0508i )e -50t

p#5 + (12.06 + 171.6i )p5 = 0.0752 + 0.0545i + (-0.0708 - 0.0508i )e -50t
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624 CHAPTER 9

functions Gi,j(s). The concept of the sinusoidal transfer function can be used to find the

steady-state response.

• Modal analysis is a method where principal coordinates are used to uncouple the differ-

ential equations and can be applied to systems that are undamped or have proportional

damping.

• A modal analysis exists for systems with proportional damping.

• Modal analysis is used to uncouple the differential equations when a numerical integra-

tion method is used.

• Numerical methods, such as Runge-Kutta methods or numerical integration of the con-

volution integral, can be applied to determine the response of a MDOF system.

9.9.2 IMPORTANT EQUATIONS
Steady-state solution of an undamped system using the method of undetermined coeffi-

cients

(9.5)

Steady-state solution of a damped system using the method of undetermined coefficients

(9.10)

Impedance matrix

(9.13)

Solution of equations by Laplace transform method

(9.14)

Use of sinusoidal transfer function to determine response of system due to harmonic input

(9.16)

Expansion of response in terms of principal coordinates

(9.19)

Differential equations that the principal coordinates satisfy for an undamped system

(9.24)

(9.25)

Differential equations that the principal coordinates satisfy for a system with proportional

damping

(9.29)

Convolution integral solution for principal coordinates

(9.30)pi(t) =
1

vi21 - z2
i
L

t

0
gi(t)e

-zi vi (t -  t)sin cvi21 - z2
i (t - t) ddt

p
$

i + 2zi 
vi p

#
i + v2

i pi = gi(t )

gj(t) = (Xj 
, F)

p
$

j + v2
j pj = gj(t )

x(t ) = a
n

i = 1

pi(t )Xi

x k(t ) = a
n

j = 1

| Gk,j (ivj 
) |Fj sin(vj t + fk,j 

)

X(s) = Z-1(s)F(s)

Z(s) = s2M + s C + K

U = (-v2M + ivC + K)-1F

U = (-v2M + K)-1F
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Forced Vibrations of MDOF Systems 625

Principal coordinates for system with general damping

(9.40)

Convolution integral solution for principal coordinates for system with general damping

(9.41)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 9.1 through 9.7, indicate whether the statement presented is true or false. If

true, state why. If false, rewrite the statement to make it true.

9.1 The Laplace transform method cannot be used to determine the response of a

system with proportional damping.

9.2 The principal coordinates are used to uncouple the differential equations for

forced vibrations.

9.3 For a system with a damping matrix that is proportional to the stiffness matrix,

the higher modes are more highly damped and therefore have less of an effect

on the forced response.

9.4 The elements of the impedance matrix are the transfer functions Gi,j(s).
9.5 The principal coordinates are only used to determine the steady-state response

of a system.

9.6 The vector of forces for the right-hand side of the equations defining the

principal coordinates is calculated by G � PTF.
9.7 The kth component of G, which is the vector on the right-hand side of the

equations defining the generalized coordinate, is calculated by taking the kinetic-

energy scalar product of the forced vector with the kth normalized mode shape.

Problems 9.8 and 9.9 require a short answer.

9.8 The determinant of the impedance matrix of an nDOF system is a polynomial

of what order?

9.9 The lowest natural frequency of a five degree-of-freedom system is 30 rad/s.

Select the differential equation which could be the equation for the principal

coordinate.

(a)

(b)

(c)

(d)

Problems 9.10 through 9.13 are fill-in-the-blank questions regarding the derivation of

modal analysis for an undamped system or a system with proportional damping.

p
$

1 = g1(t )
p
$

1 + 900p#1 = g1(t )
p
$

1 + 30p#1 = g1(t )
p
$

1 + p#1 = g1(t )

p∼i = L
t

0
g∼i(t)e

-gi (t  -   t)dt

p#i + gi p
∼
i = g∼i(t )
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626 CHAPTER 9

9.10 To derive modal analysis, the ___________ is used to write the general solution

as a linear combination of the principal coordinates.

9.11 The ___________ scalar product is taken with both sides of the equation after

the linear combination is substituted into the differential equations.

9.12 The equations are ___________ using mode shape ___________ with respect

to ___________ and ___________.

9.13 The ___________ integral can be used to solve the resulting nonhomogenous

differential equations.

Problems 9.14 through 9.18 are fill-in-the-blank questions regarding the derivation of

modal analysis for a system with a general damping matrix.

9.14 For systems with a general damping matrix, the differential equations governing

the nDOF system is written as ___________ first-order differential equations.

9.15 The vector is defined as the 2n � 1 vector ___________.

9.16 The modal matrix is defined as the matrix whose columns are normalized 

by ___________.

9.17 The differential equations governing the principal coordinates of the system

are___________.

9.18 The differential equations have a solution, called

the ___________.

9.19 Give two reasons why modal analysis is convenient to use before solving a

system using the Runge-Kutta method.

9.20 Give two reasons why modal analysis should be used before using numerical

integration of the convolution integral.

Problems 9.21 through 9.23 require short calculations.

In Problems 9.21 and 9.22, spectral analysis shows that the natural frequencies for a fifth-

order system are 20 rad/s, 41 rad/s, 55 rad/s, 93 rad/s, and 114 rad/s. Experimental modal

analysis is used to determine that its modal matrix is

9.21 If the system is undamped and subject to a force vector equal to

determine the following.

(a) Write the differential equation for the first principal coordinate.

(b) What is the steady-state solution of this differential equation?

(c) Which mode do you expect will have the largest contribution to the

response?

(d) What is the relation between the fifth generalized coordinate and the

principal coordinates?

F = [0 0 sin54t 0 0]T,

P = E
1.3 1.0  0.7 0.5 0.1
1.8 1.5  1.0 0.4 -0.3
2.4 0.5  -0.4 -0.3 0.2
2.9 -0.2  -0.7 0.5 -0.5
2.0 -0.15 0.2 -0.6 0.4

U

p∼i = 1 t
0  g∼i(t)e

-gi(t -  t)dt,

P
∼

F
∼
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Forced Vibrations of MDOF Systems 627

9.22 If the system is damped with modal damping ratios of 0.3, 0.615, 0.825, 1.395,

and 1.71, and has a forcing vector equal to 

determine the following.

(a) Write the differential equation for p
4
.

(b) What is the steady-state solution of this differential equation?

(b) Which modes are overdamped and which are underdamped?

(c) What is the constant(s) of proportionality between the damping matrix and

the stiffness and mass matrices?

9.23 The differential equations governing a three degree-of-freedom system are

What is the impedance matrix for this system?

CHAPTER PROBLEMS
9.1 Determine the steady-state amplitudes of vibration of each of the masses of the

system in Figure P9.1. Use the method of undetermined coefficients.

C2 0 0
0 2 0
0 0 3

S C x
$

1

x
$

2

x
$

3

S C1 0 0
0 0 0
0 0 2

S C x#1
x#2
x#3

S + C 5 -3 0
-3 7 -4
0 -4 4

S C x#1
x#2
x#3

S = C 0
0

0.1 sin 60t
S

F = [0 0 sin 54t 0 0]T,

FIGURE P9.1

FIGURE P9.2

1000 N/m 2000 N/m 3000 N/m

x1 x2 x3

10 sin20t2 kg 4 kg 6 kg

9.2 Determine the steady-state amplitude for the mass hanging from the end of the

bar in the system in Figure P9.2. Use the method of undetermined coefficients.

L
2

L
2

k1 2k1

k2

m2

m1, I

m1 = 30 kg
m2 = 20 kg
k1 = 4 × 105 N/m
k2 = 3 × 105 N/m
I = 1.8 kg · m2

L = 80 cm
M0 = 20 N · m
ω  = 45 rad/s

M(t) = M0 sinω t

y

x
θ
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628 CHAPTER 9

9.3 Determine the steady-state amplitude of vibration of the mass m
3

of the system

in Figure P9.3. Use the method of undetermined coefficients.

2r

No slip
r

m1
k1

k2

m2

m3

k3

Ip
k1 = 3 × 104 N/m
k2 = 4.5 × 104 N/m
k3 = 1 × 104 N/m
r = 25 cm
IP = 1.4 kg · m2

m1 = 18 kg
m2 = 20 kg
m3 = 45 kg
F0 = 25 N
ω = 35 rad/s

F0 sinωt
y

x

θ

FIGURE P9.6

FIGURE P9.5

FIGURE P9.4

FIGURE P9.3

9.4 Determine the steady-state amplitudes of vibration of each of the masses of the

system in Figure P9.4. Use the method of undetermined coefficients.

9.5 Determine the steady-state amplitudes of vibration of each of the masses of the

system in Figure P9.5. Use the method of undetermined coefficients.

F0 sinωtm 2m
2kk

m
c

k = 1 × 104 N/m
c = 100 N · s/m
m = 10 kg

F0 = 20 N
ω = 15 rad/s

x1 x2 x3

200 N/m 100 N/m 100 N/m

30 N · s/m30 N · s/m

x1 x2 x3

6 kg 4 kg 4 kg

20 N · s/m

20 sin15t N

1000 N/m 3000 N/m

60 N · s/m

x1 x2 x3

20 kg 20 kg 10 kg

80 N · s/m

40 sin30t

9.6 Determine the steady-state amplitudes of vibration of each of the masses of the

system in Figure P9.6. Use the method of undetermined coefficients.
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Forced Vibrations of MDOF Systems 629

9.7 Determine the steady-state responses of each of the masses of the system in

Figure P9.7. Use the method of undetermined coefficients.

500 N/m 100 N/m 200 N/m

30 N · s/m20 N · s/m

x1 x2 x3

5 kg 7 kg 5 kg

20 N · s/m

20 sin50t10 sin50t

FIGURE P9.9

FIGURE P9.8

FIGURE P9.7

9.8 Determine the steady-state responses of each of the masses of the system in

Figure P9.8. Use the method of undetermined coefficients.

1000 N/m 2000 N/m

100 N · s/m50 N · s/m

x1 x2 x3

2 kg 3 kg 2 kg

100 N · s/m

20 sin30t

20 sin(30t + p/4)

9.9 Determine the steady-state response of the hanging mass in the system of Figure

P9.9. Use the method of undetermined coefficients.

9.10 Determine the steady-state amplitudes of vibration of each of the masses in the

system of Figure P9.1. Use the Laplace transform method.

9.11 Determine the steady-state amplitudes of vibration of the hanging mass in the

system of Figure P9.2. Use the Laplace transform method.

9.12 Determine the steady-state amplitude of vibration of the mass m
3

of the system

in Figure P9.3. Use the Laplace transform method.

9.13 Determine the steady-state amplitudes of vibration of each of the masses of the

system in Figure P9.4. Use the Laplace transform method.

9.14 Determine the steady-state amplitudes of vibration of each of the masses of the

system in Figure P9.5. Use the Laplace transform method.

L
2

L
2

M0 sinω t

m2

k2

k1 c1 2k1 2c1

m1, I

m1 = 30 kg
m2 = 20 kg
k1 = 4 × 105 N/m
k2 = 4 × 105 N/m
I = 1.8 kg · m2

L = 80 cm
M0 = 20 N · m
ω = 45 rad/s
c1 = 1 × 103 N · s/m

x

y

θ
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630 CHAPTER 9

9.15 Determine the response of the 2 kg mass of Figure P9.1 if the sinusoidal force is

replaced by the triangular pulse of Figure P9.15. Use the Laplace transform

method.

FIGURE P9.16

FIGURE P9.17

0.1 s

20 N

0.2 s t (s)

FIGURE P9.15

9.16 Determine the response of the 6 kg mass of Figure P9.1 if the sinusoidal force is

replaced by the rectangular pulse of Figure P9.16. Use the Laplace transform

method.

0.5

20 N

t (s)

9.17 Determine the response of the system of Figure P9.2 if the sinusoidal force is

replaced by the force of Figure P9.17. Use the Laplace transform method.

0.1

200 N

t (s)

9.18 Repeat Chapter Problem 9.1 using modal analysis.

9.19 Repeat Chapter Problem 9.2 using modal analysis.

9.20 Repeat Chapter Problem 9.3 using modal analysis.

9.21 Repeat Chapter Problem 9.15 using modal analysis

9.22 Repeat Chapter Problem 9.16 using modal analysis.

9.23 Repeat Chapter Problem 9.7 using modal analysis.

9.24 Repeat Chapter Problem 9.9 using modal analysis.

9.25 Figure P9.25 shows a machine attached to a fixed-pinned beam through an

isolator. Design an isolator of damping ratio 0.1 such that the force transmitted
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Forced Vibrations of MDOF Systems 631

to the beam is 2000 N when the machine is subject to a harmonic excitation

with an amplitude of 12,000 N at a frequency of 300 rad/s. Use a three degree-

of-freedom lumped-mass model for the beam.

L
2

L
2

m

F(t)

m = 120 kg
L = 4 m
E = 150 × 109 N/m2

A = 1.5 × 10–3 m2

r = 7000 kg/m3

I = 4.6 × 10–6 m4

k c

FIGURE P9.25

FIGURE P9.25

9.26 Design an isolator with a damping ratio of 0.4 for the system of Figure P9.25

when it is subject to the pulse of Figure P9.26. The maximum force transmitted

to the beam should be 500 N.

0.01

10,000 N

t (s)
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C h a p t e r 1 0

VIBRATIONS OF
CONTINUOUS SYSTEMS

10.1 INTRODUCTION
All solid objects are made of deformable materials. Often a solid is assumed to be rigid.

This allows for simpler modeling and leads to information about essential vibrational char-

acteristics. The validity of a rigid-body assumption in modeling the vibrations of a system

depends on many factors such as geometry and frequency range. For example, consider a

machine mounted on springs and operating in an industrial plant. The floor of the indus-

trial plant is often assumed to be rigid and the vibrations of the machine considered by ana-

lyzing a one-degree-of-freedom system. However, if the forces developed in the springs are

large, then since the floor is really deformable, vibrations are excited in the floor and per-

haps the entire structure. In this case, the vibrations of the machine are coupled to the

structural vibrations. 

Examples of continuous systems are shown in Figure 10.1. All structural elements such as

beams, columns, and plates are continuous systems. This includes the suspended piping system

of Figure 10.1(a), simply supported at locations along its length. Vibrations of the pipeline are

excited by the fluid flowing through the pipe, the operation of pumps, or structural vibrations.

The vibrations are analyzed by considering a continuous beam with simple supports.

All elements of the frame structure of Figure 10.1(b) are continuous structural ele-

ments. Often the columns of a frame structure are much more flexible than the girders, and

the girders are considered rigid, resulting in the model shown.

The spring of Figure 10.1(c) is a simple continuous system. As one end of the spring

is moved relative to the other, a compression wave is generated and travels throughout the
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634 CHAPTER 10

spring. If the excitation frequency is near the frequency of the compression waves, a phe-

nomenon called surge develops. Surge can be a problem in mechanical systems where one

end of a spring is given a harmonic displacement.

The free and forced vibrations of a rigid body attached to a continuous system are

approximated by using one degree of freedom in Chapters 2 through 5. The inertia effects

of a continuous element are approximated by adding a particle of a calculated equivalent

mass at the location of the rigid body. Multiple degree-of-freedom approximations are con-

sidered in Chapters 6 through 9.

A variable x, measured along the axis of the bar, is introduced for the analysis of the

vibrations in each of the continuous systems in Figure 10.2. The displacement w is measured

(a)

u

(b)

(c)

FIGURE 10.1
Examples of continuous
systems: (a) simply supported
piping system; (b) one-story
frame structure; (c) helical
coil spring.

(a)
x

u(x, t)

(c)

x

(b)

x

q (x, t)

w (x, t)

FIGURE 10.2
(a) A coordinate x, measured from the left end
of the bar along the axis of the bar, is intro-
duced for the analysis of vibrations of the bar.
The displacement of the bar is a function of
both x and time t as u(x, t). (b) The angular dis-
placement is a function of x and t as � (x, t) .
(c) The transverse displacement of the beam
is a function of x and t as w(x, t), where x is
measured along the beam's neutral axis.
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Vibrations of Continuous Systems 635

as a function of the variable x as well as time as w(x, t). Since w depends upon two inde-

pendent variables, a governing partial differential equation is derived.

The ordinary differential equations obtained by using a discrete model of the contin-

uous system are easier to solve than the governing partial differential equation. Thus dis-

crete approximations are often used, but have limitations. A continuous system has an

infinite, but countable, number of natural frequencies and corresponding mode shapes. A

discrete approximation predicts only a finite number of modes. Often a large number of

degrees of freedom are needed to attain accurate approximations for higher natural fre-

quencies. Consider, for example, the cantilever beam of Figure 10.3 with a concentrated

mass at its end. Figure 10.4 shows the nondimensional lowest natural frequency as a func-

tion of �, the ratio of the concentrated mass to the mass of the beam. Figure 10.4 shows

natural frequencies calculated using up to six degrees of freedom, as well as a one degree-

of-freedom approximation.

The methods used in this chapter are analogous to those used for multiple degree-of-

freedom systems. The separation-of-variables method used to determine the natural fre-

quencies is analogous to the normal-mode solution used in Chapter 8. The method used

for the analysis of forced vibrations is a direct result of an expansion theorem and is directly

analogous to modal analysis. The approximate methods presented are based on energy

methods. Indeed, similar notation using energy scalar products can be used. The continu-

ous functions used in the analysis of continuous systems are analogous to the column vec-

tors of generalized coordinates used for discrete systems. Energy scalar products are defined

for continuous systems using definite integrals.

A general method for determining the free and forced solutions to continuous vibra-

tions problems is presented in Section 10.2. This method is applied to systems that are

m

FIGURE 10.3
Discrete approximation works well when m is
large compared to the mass of the beam.

1.0
0

n = 1

0.5

First mode

1 1.5 2

w

2.0

1.5

2.5

3.5

3.0

4.0

b

n = 3
n = 4
n = 5
n = 6

n = 2

FIGURE 10.4
As the ratio of the concen-
trated mass to the mass of
the beam grows larger, the
approximation for the lowest
natural frequency using a dis-
crete model with n degrees
of freedom improves.
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636 CHAPTER 10

governed by partial differential equations whose highest-order spatial derivative is of

second order (second-order systems). Examples of such systems are strings, bars, and shafts.

The general method is then applied to systems that are governed by partial differential

equations whose highest-order spatial derivative is of fourth order (fourth-order systems).

An example of a fourth-order system is a beam. Finally, an energy method is presented as

a means of approximating the natural frequencies and mode shapes for second-order and

fourth-order systems.

10.2 GENERAL METHOD
This section presents an outline of an exact closed-form method for analyzing vibra-

tions of continuous systems. The method is applied to analyze the torsional oscillations

of a circular shaft and the transverse vibrations of a beam in Sections 10.3 and 10.4

respectively. This chapter is intended only as an introduction to vibrations of continu-

ous systems. Thus, it is assumed that the dependent displacement is a function of only

one spatial variable and time, all material properties are constant, and all geometries are

uniform.

The analysis procedure is broken into three parts: problem formulation, free-vibration

analysis, and forced-vibration analysis. The mathematical theory underlying the analysis of

vibrations of continuous systems is developed by using an infinite-dimensional vector

space, while the mathematical foundation for a MODF is developed by using a finite-

dimensional vector space. Many of the concepts developed for finite-dimensional spaces

have direct extension to infinite-dimensional spaces.

Part I: Problem Formulation

1. An independent spatial variable is chosen, call it x. This independent spatial variable

represents the displacement of a particle from a reference position when the system is

in its equilibrium position. A continuous system has an infinite number of degrees of

freedom and hence an infinite number of generalized coordinates are required. These

are chosen as the displacement of the particles in the system. They can be summarized

by a single dependent variable w(x, t).

2. Free-body diagrams (FBDs) of a representative differential element are drawn at an

arbitrary instant. The usual assumptions of mechanics of materials are used including

plane sections remain plane. Thus, the differential element can be assumed to be

undergoing planar motion. Two FBDs are drawn; one showing the external forces

acting on the differential element and the second showing the effective forces for that

element. The external forces include forces on the surface of the element that are

resultants of stress distributions.

3. The appropriate form of Newton’s law is applied to the free-body diagrams.

Appropriate kinematic conditions and constitutive equations are applied to derive a

partial differential equation governing w(x, t).

4. Appropriate boundary conditions, dependent on the end supports of the structural

member, are formulated.

5. Appropriate initial conditions are formulated.
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Vibrations of Continuous Systems 637

6. An optional step is to nondimensionalize the governing equation and boundary con-

ditions by introducing nondimensional forms of the independent and dependent

variables. This leads to the formulation of dimensionless parameters which are impor-

tant in the physical understanding of the results. Assume for the remainder of this

discussion that nondimensional variables are introduced and all variables referred to

are nondimensional. Also assume that the nondimensional spatial variable x ranges

from 0 to 1.

The governing equations and boundary conditions can also be derived by energy

methods. Kinetic and potential energy scalar products directly analogous to those

formed for multiple degree-of-freedom systems can be defined.

Part II: Free-Vibration Solution A free-vibration problem is one where w(x, 0) or

are nonzero and the partial differential equation and all boundary conditions

are homogeneous. The initial potential or kinetic energy drives the vibrations, during

which no external forces are applied.

As for MDOF systems, the free-vibration problem is considered to determine the

system’s natural frequencies and mode shapes. The method presented to solve free vibra-

tions problems for continuous systems is called separation of variables. Application of this

method requires that the partial differential equation be of an appropriate form, called sep-
arable. The governing partial differential equations for torsional vibrations of a uniform

shaft, longitudinal vibrations of a uniform elastic bar, and transverse vibrations of a uni-

form beam are all separable.

1. The dependent variable is assumed to be a product of functions of the independent

variables,

(10.1)

Equation (10.1) is substituted into the governing partial differential equation. If the

governing partial differential equation is separable, the resulting equation can be writ-

ten in the form of where Lx and Lt are linear ordinary

differential operators. Note that the left-hand side of this equation is a function of x
only and the right-hand side is a function of t only. Since x and t are independent, this

can only be true if both sides are equal to the same constant, call it ��. This argu-

ment is called the separation argument. Its application leads to ordinary differential

equations for X(x) and T(t), both in terms of �, called the separation constant.

2. Equation (10.1) is applied to the boundary conditions to obtain homogeneous bound-

ary conditions for X(x).

3. If the system is undamped, the differential equation for T(t) is

(10.2)

from which the natural frequencies are deduced to be the square roots of the values

of �. The mode shapes, which are the spatial representation of the solution, are the

forms of X(x) corresponding to an appropriate value of �.

4. The problem for X(x) is

(10.3)LxX + lX = 0

d  
2T

dt 
2 + lT = 0

[LxX (x)]>X (x) = [LtT (t )]>T (t )

w (x, t ) = X(x)T (t )

0w>0t (x, 0)
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638 CHAPTER 10

which is a homogeneous, ordinary differential equation with homogeneous boundary

conditions. This is called a differential eigenvalue problem. A nontrivial solution is

available only for certain values of the separation constant. Standard solution tech-

niques for ordinary differential equations are applied to determine X(x) in terms of

arbitrary constants of integration.

5. Application of the boundary conditions leads to a solvability condition of the form

f (�) � 0. Nontrivial solutions of the eigenvalue problem exist only for values of �
such that f (�) � 0. This results in an infinite (but countable) number of solutions

. Corresponding to each �k, there is an Xk(x), which is

unique only to a multiplicative constant.

If only the natural frequencies and mode shapes are necessary, the solution

ends here.

6. An energy scalar product, (Xi , Xj)T , is defined such that (Xi, Xi)T is proportional to the

kinetic energy of the ith mode at any instant. It can be shown that for systems governed

by the wave equation (torsional vibrations of shafts, longitudinal vibrations of bars) and

for uniform beam vibrations, mode shapes for distinct modes are mutually orthogonal

with respect to this energy scalar product. For a uniform continuous system (in the

absence of discrete masses) the appropriate kinetic energy scalar product is

(10.4)

If the system has discrete masses, additional terms are added to the integral of

Equation (10.4) to account for the kinetic energy of the discrete masses. The mode

shapes are normalized by requiring

(10.5)

7. If the mode shapes are normalized with respect to a scalar product for which they are

also mutually orthogonal, then an expansion theorem exists which states that any con-

tinuous function, f (x), can be expanded in a series of the mode shapes as

(10.6)

The expansion converges to f (x) at all x except perhaps at x � 0 and x � 1. The expan-

sion converges at the boundaries if f (x) satisfies the boundary conditions.

If a forced-vibration solution is required, the expansion theorem of Equation (10.6)

is noted and the solution proceeds to step 1 of the forced response. If a free-vibration

solution is required, the solution continues as follows.

8. The general solution is formed by taking a linear combination over all modes

(10.7)

Two arbitrary constants for each mode are present from the solution for Tk(t). These

constants are determined from application of initial conditions. Often the functions

involved in the initial conditions must be expanded by the expansion theorem,

Equation (10.6). For example, if w(x, 0) is nonzero and is equal to f (x), then f (x) is

w (x, t ) = a
q

k = 1

Xk(x )Tk(t )

f (x ) = a
q

k = 1

(  f, Xk )T Xk

(Xi 
, Xi 

)T = 1

(Xi 
, Xj )T = L

1

0
Xi(x)Xj (x)dx

l1 6 l2 6 Á 6 lk 6 Á
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Vibrations of Continuous Systems 639

expanded by Equation (10.6) and compared to w(x, 0) obtained from Equation (10.7),

in terms of arbitrary constants. The linear independence of each Xk(x) is used to deter-

mine the constants.

Part III: Forced-Vibration Solution As for discrete systems, there are several methods

available to determine the forced response of continuous systems. These include applica-

tion of the method of undetermined coefficients for harmonic excitations, the Laplace

transform method, and modal analysis. Modal analysis is the most powerful and most often

used and is described here. 

Let f (x, t) represent the nondimensional nonhomogeneous term arising in the partial

differential equation as a result of the external forcing. Nonhomogeneous terms can also

occur in the boundary conditions.

1. The expansion theorem, Equation (10.6) is used to expand f (x, t) as

(10.8)

where

(10.9)

2. The expansion theorem is also used to expand

(10.10)

where the pk(t) are called the principal coordinates for the continuous system.

Equations (10.8) and (10.10) are substituted into the governing partial differential

equation.

3. The scalar product of the resulting partial differential equation is taken with Xj(x) for

an arbitrary j. For a problem whose appropriate scalar product is given by 

Equation (10.4), this is equivalent to multiplying the equation by Xj(x) and integrat-

ing from 0 to 1. Application of the orthogonality condition leads to uncoupled differ-

ential equations for the principal coordinates.

4. The uncoupled differential equations are solved to determine each pk(t).

10.3 SECOND-ORDER SYSTEMS: TORSIONAL
OSCILLATIONS OF A CIRCULAR SHAFT

10.3.1 PROBLEM FORMULATION
The circular shaft of Figure 10.5 is made of a material of mass density � and shear modu-

lus G and has a length L, cross-sectional area A, and polar moment of inertia J. Let x be the

coordinate along the axis of the shaft, measured from its left end. The shaft is subject to a

time-dependent torque per unit length, T(x, t). Let �(x, t) measure the resulting torsional

oscillations where � is chosen positive clockwise.

w (x, t) = a
q

k = 1

pk(t )Xk(x)

Ck(t ) = (  f  (x, t ), Xk(x))

f  (x, t ) = a
q

k = 1

Ck(t )Xk(x)
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640 CHAPTER 10

Figure 10.6 shows free-body diagrams of a differential element of the shaft at an arbi-

trary instant of time. The element is of infinitesimal thickness dx and its left face is a dis-

tance x from the left end of the shaft. The assumptions of mechanics of materials imply that

sections do not warp thus the problem run be treated assuming the differential element

undergos planar motions and the effective-external force method can be used.

The free-body diagram of the external forces shows the time-dependent torque load-

ing as well as the internal resisting torques developed in the cross sections. The internal

resisting torques are the resultants of the shear stress distributions. If Tr(x, t) is the resisting

torque acting on the left face of the element, then a Taylor series expansion truncated after

the linear terms gives

(10.11)

The directions of the torques shown on the free-body diagram are consistent with the

choice of � positive clockwise.

Since the disk is infinitesimal, the angular acceleration is assumed constant across the

thickness. Thus, the free-body diagram of the effective forces simply shows a moment equal to

the mass moment of inertia of the disk, which is �Jdx, times its angular acceleration, .

Summation of moments about the mass center of the disk

gives

T (x, t)dx - Tr(x, t ) + Tr(x, t ) +
0Tr

0x
 (x, t )dx = rJdx  

02u

0t 
2  (x, t)

aaMb
ext

= aaMb
eff

02
u

0t 2

Tr(x + dx, t ) = Tr(x, t ) +
0Tr

0X
 (x, t )dx

q(x, t)
T(x, t)

x

T(x, t) dx

Tr

dx
∂TrTr +

=

External forces Effective forces

∂x

dx
∂ 2qrJ ∂t2

FIGURE 10.5
Circular shaft is subject to tor-
sional loading T(x, t). �(x, t)
measures angular displace-
ment of the shaft.

FIGURE 10.6
FBDs of differential element
of shaft at an arbitrary
instant. Tr(x, t) is the resisting
torques in the shaft.
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Vibrations of Continuous Systems 641

or

(10.12)

From mechanics of materials,

(10.13)

which, when substituted in Equation (10.12) for a uniform shaft, leads to

(10.14)

The following nondimensional variables are introduced:

(10.15)

and

(10.16)

where Tm is the maximum value of T. Introduction of Equations (10.15) and (10.16) in

Equation (10.14) leads to

(10.17)

where the ∗ has been dropped from the nondimensional variables.

Boundary conditions are formulated at each end of the shaft. At a free end the

shaft is restrained from rotation, thus � at that end is zero. At a free end there is no

torque acting on the free end which implies there is no shear stress distribution at the

free end. A linear shear stress-shear strain relation is assumed and the shear strain is

given by Thus at a free end If there is a disk at an end, a moment balance

on a FBD of the disk is performed with the resultant of the shear stress distribution

from the end of the shaft as the external moment and the inertia of the disk providing

the effective moment. Other end conditions such as discrete torsional springs, discrete

torsional viscous dampers and applied torques have boundary conditions developed

using a moment balance at the end of the shaft. A differential element at the end of

the shaft is considered. The sum of the external moments is zero which include the

resultant moment form the shear stress distribution. Table 10.1 provides nondimensional

boundary conditions for different types of shaft ends. 

The problem formulation is completed by specifying appropriate initial conditions of

the form

(10.18)

and

(10.19)

Consider the homogeneous form of Equation (10.17),

(10.20)
02u

0x 
2 =

02u

0t 
2

0u
0t

(x, 0) = g2(x)

u(x, 0) = g1(x)

0u
0x = 0.0u

0x.

aL2Tm

JG
bT (x, t) +

02u

0x 2 =
02u

0t 2

T 
*(x *, t *) =

T (x, t)

Tm

x * =
x
L
  t  * = A

G
r

 
t
L

T (x, t) + JG 
02u

0x 2 = rJ 
02u

0t 2

Tr(x, t) = JG 
0u
0x

(x, t)

T (x, t) +
0Tr

0x
(x, t) = rJ 

02u

0t 
2
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642 CHAPTER 10

Equation (10.20) is a hyperbolic partial differential equation, called the wave equation. The

wave equation also governs such variables as the axial displacement during the longitudi-

nal motion of a bar, the axial displacement of a particle on a coil spring during a compres-

sion wave, and the free vibrations of a taut string. Applications in areas other than

vibrations include propagation of surface waves on the interface of two fluids and the veloc-

ity potential for supersonic flow in an ideal fluid.

Solutions of the wave equation are rich in physical phenomena. It can be shown that

the solutions of the wave equation represent waves propagating through the medium. The

speed of propagation is determined from the governing partial differential equation in

dimensional form or in the definition of t*. In general, to arrive at a partial differential

equation of the form of Equation (10.20) in which no parameters appear, we have

(10.21)

where c is the wave speed. Thus, for torsional oscillations, the wave speed is 

Table 10.2 gives the wave speed for other situations governed by the wave equation.

10.3.2 FREE-VIBRATION SOLUTIONS
The application of the method discussed in Section 10.2 for calculating the natural fre-

quencies and mode shapes and determining the free response due to non-zero initial con-

ditions for second-order systems is illustrated in the following examples.

2G>r.
t * =

c
L

t

Boundary conditions for
torsional oscillations of
a circular shaft

T A B L E 1 0 . 1

Boundary
End Condition Condition Remarks

� � 0

0u
0x

= -b
02u

0t 
2

0u
0x

= b
02u

0t 
2

0u
0x

= -b
0u
0t

0u
0x

= b
0u
0t

0u
0x

= -bu

0u
0x

= bu

0u
0x

= 0

Fixed,
x � 0 or x � 1

Free,
x � 0 or x � 1

Torsional spring,
x � 0

Torsional spring,
x � 1

Torsional damper,
x � 0

Torsional damper,
x � 1

Attached disk,
x � 0

Attached disk,
x � 1 b =

ID

rJL

b =
ID

rJL

b = ctA
J

rG

b = ctA
J

rG

b =
kt 

L

JG

b =
kt 

L

JG
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Vibrations of Continuous Systems 643

Physical problems governed by the wave equationT A B L E 1 0 . 2

Nondimensional
Problem Schematic Wave Equation Wave Speed

Torsional
oscillations
of circular
cylinder

Longitudinal
oscillations
of bar

Transverse
vibrations of
taut spring

Pressure waves
in an ideal
gas

Waterhammer
waves in rigid
pipe p(x, t)

p(x, t)

y(x, t)
x

w(x, t)

q

02r

0x 2 =
02r

0t 2

02r

0x 2 =
02r

0t 2

02y

0x 2 =
02y

0t 2

02w
0x 2 =

02w
0t 2

02u

0x 2 =
02u

0t 2

c = A
k
r

c = 1kRT

c = A
T
m

c = A
E
r

c = A
G
r

G � shear modulus
� � mass density

E � elastic modulus
� � mass density

T � tension
� � linear density

k � ratio of specific hears
R � gas constant
T � temperature

k � bulk modulus of fluid
� � mass density

EXAMPLE 1 0 . 1

A moment M is statically applied to the end of a circular shaft, fixed at x � 0 and free at

x � 1, causing the angle of twist to vary linearly over the length of the shaft. Determine

the resulting free torsional response when the moment is suddenly removed.

SO LU T I ON
The free torsional oscillations are governed by Equation (10.20). The boundary condition

corresponding to a fixed end at x � 0 is

(a)

and corresponding to a free end at x � 1 is

(b)

Static application of the moment M leads to the initial condition

(c)

Since the shaft is released from rest a second initial condition is

(d)

A separation-of-variables solution is assumed as

(e)u(0, t) = X (x)T (t)

0u
0t

(x, 0) = 0

u(x, 0) =
M
JG

 x = gx

0u
0x

(1,   t) = 0

u(0, t) = 0
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Substituting Equation (e) into Equation (10.20) and rearranging leads to

(f)

The left-hand side of Equation (f ) is a function of x only, while the right-hand side is a

function of t only. However, x and t are independent. Thus, Equation (f ) is true only if

both sides are equal to the same constant, call it �� , where � is called the separation con-
stant. Then Equation (f ) leads to

(g)

and

(h)

The solution of Equation (g) is

(i)

where A and B are arbitrary constants of integration. From Equation (i) it is obvious that

the natural frequencies are the square roots of the separation constant.

The solution of Equation (h) is

(j)

Application of Equation (a) to Equation (e) yields

(k)

and its subsequent application to Equation (j) gives C � 0.

Application of Equation (b) to Equation (e) yields

(l)

Application of Equation (l) to Equation (j) with C � 0 leads to

(m)

Choosing either D � 0 or � � 0 leads to the trivial solution. Thus a nontrivial solution is

obtained only when

(n)

or

(o)

There are an infinity of solutions of Equation (n), but as evidenced by Equation (o),

they are countable. The mode shape corresponding to �k is

(p)Xk(x) = Dk sin c (2k - 1)
p

2
x d

Xk 
= c (2k - 1)

p

2
d2  k = 1, 2, . . .

 cos 2l = 0

D2l cos 2l = 0

dX
dx

(1) = 0

X(0) = 0

X(x) = C cos 2lx + D sin 2lx

T (t) = A cos 2lt + B sin 2lt

d 2X
dx 2 + lX = 0

d 2T
dt 

2 + lT = 0

1

X (x)
 
d 2X
dx 2 =

1
T (t )

 
d 2T
dt 

2
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Vibrations of Continuous Systems 645

for any Dk. The mode shapes are orthogonal with respect to the scalar product of

Equation (10.4) as follows:

(q)
The mode shapes are normalized by requiring

(r)

which leads to

(s)

The first three normalized mode shapes are shown in Figure 10.7

The general solution to the free-vibration problem is formed using Equation (10.7)

(t)

Application of the initial condition, Equation (d), yields Bk � 0. Application of Equation (c)

then gives

(u)

The expansion theorem, Equation (10.6), is used to expand

(v)gx = a
q

k = 1

(gx, Xk 
)T Xk

gx = a
q

k = 1

Ak22 sin c (2k - 1)
p

2
x d

u(x, t) = a
q

k = 1

22 sin c (2k - 1) 
p

2
x d eAk 

cos c (2k - 1) 
p

2
t d + Bk 

sin c (2k - 1)
p

2
t d f

Xk(x) = 22 sin c (2k - 1)
p

2
x d

1 = (Xk , Xk )T = L
1

0
D 2

k  sin 2 c (2k - 1)
p

2
x ddx =

D 
2
k

2

 = 0

 =
DjDk

p
c 1

j - k
 sin ( j - k)p -

1
j + k + 1

 sin ( j + k + 1)p d

 (Xk(x), Xj 
(x))T = L

1

0
Dj 

Dk sin c (2k - 1) 
p

2
x d  sin c (2j - 1) 

p

2
x ddx

–1.5
0

First mode

0.2 0.4 0.6 0.8 1

X
(x

)

–0.5

–1.0

0.0

1.0

0.5

1.5

x

Third mode
Second mode

FIGURE 10.7
Normalized mode shapes corresponding to three lowest natural frequencies of a fixed-free shaft.
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where

(w)

Comparison of Equations (u) and (v) yields

(x)

Equation (t) becomes

(y)

The time-dependent angles of twist at four locations along the axis of the shaft,

obtained by numerical evaluation of Equation (y), are plotted in Figure 10.8.

u(x, t) =
8g

p2a
q

k = 1

 (-1)k + 1 1

(2k - 1)2  sin c (2k - 1)
p

2
x d  cos c (2k - 1) 

p

2
t d

Ak = (gx, Xk)T =
4g22(-1)k + 1

p2(2k - 1)2

 =
4g22

p2(2k - 1)2  (-1)k + 1

 =
4g22

p2(2k - 1)2   sin(2k - 1)
p

2

 (gx, Xk 
)T = L

1

0
gx22 sin c (2k - 1) 

p

2
x ddx

–1.5
0

x = 1/4

2 4 6 8 10

–0.5

–1.0

0.0

1.0

0.5

1.5

Time

x = 3/4
x = 1

x = 1/2

p2 q (
x,

 t)
8g

FIGURE 10.8
Time-dependent torsional oscillations of circular fixed-free shaft at different locations on the shaft of
Example 10.1.

EXAMPLE 1 0 . 2
The circular shaft of Figure 10.9 is fixed at x � 0 and has a thin disk of mass moment of

inertia I attached at x � 1. Determine the natural frequencies for this system, identify the

orthogonality condition satisfied by the mode shapes, and determine the normalized mode

shapes.
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Vibrations of Continuous Systems 647

SO LU T I ON
The partial differential equation governing, this system is Equation (10.20). It is subject to

Equation (a) of Example 10.1 and from Table 10.1, giving

(a)

where

(b)

The solution procedure is similar to that of Example 10.1. Separation of variables is

assumed and applied to the partial differential and the boundary conditions leading to the

eigenvalue problem

(c)

subject to

(d)

and

(e)

The solution satisfying Equations (c) and (d) is

(f)

Application of Equation (e) to Equation (f ) yields

(g)

or

(h)

A graphical solution of the transcendental equation, Equation (h), is shown in

Figure 10.10. The values of � where the curves tan and intersect are the solu-

tions of Equation (h), and are the values of the separation constant for which nontrivial

solutions for X(x) occur. Figure 10.10 shows that there are infinite, but countable, values

1>b1l1l

tan1l =
1

b1l

1l cos1l = bl sin1l

X (x) = D sin1lx

dX
dx

(1) = blX (1)

X (0) = 0

d  
2X

dx 
2 + lX = 0

b =
1

rJL

0u
0x

(1, t) = -b
02u

0t 2(1, t)

L

l

J, G, r

FIGURE 10.9
System of Example 10.2 is a shaft fixed at
one end and a disk with a moment of
inertia I attached at the other end.
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648 CHAPTER 10

of � where these curves intersect. Figure 10.10 also shows that for large k, �k approaches

[(k � 1)�]2.

The natural frequencies are the square roots of the separation constants. Figure 10.11

shows the first four natural frequencies as a function of �. The first four mode shapes are

plotted in Figure 10.12 for � � 0.4.

f(z)

tan z

p/2
0 z

3p/2p 5p/22p 7p/23p 4p

1/(b z)

z = ÷ l

9p/2

FIGURE 10.10
Graphical solution of transcendental equation tan used to determine the natural frequencies
of the system of Example 10.2. Values of correspond to points of intersection of the two curves.1l

1l = 1
b1l

0
0

w 1

0.5 1 1.5 2

4

2

6

10

8

12

b

w 3
w 4

w 2

FIGURE 10.11
Nondimensional natural frequencies of Example 10.2 as functions of nondimensional parameter �.
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Vibrations of Continuous Systems 649

Let �i and �j be distinct solutions of Equation (g) with corresponding mode shapes

Xi(x) and Xj(x), respectively. The mode shapes satisfy the following problems

(i)

(j)

Multiplying Equation (i) by Xj(x) and integrating from 0 to 1 leads to

(k)

Using integration by parts on the first integral leads to

(l)

Application of the boundary conditions Equations (d) and (e) in Equation (l) leads to

(m)

Multiplying Equation (j) by Xi(x), integrating from 0 to 1, and performing algebra similar

to that leading to Equation (m) gives

(n)

Subtracting Equation (n) from Equation (m) leads to

(o)(li - lj )abXi(1)Xj(1) + L
1

0
Xi Xjdxb = 0

blj Xj (1)Xi(1) - L
1

0

dXi

dx
 
dXj

dx
dx + ljL

1

0
Xi Xjdx = 0

bli Xi(1)Xj (1) - L
1

0

dXi

dx
 
dXj

dx
dx + liL

1

0
Xi Xjdx = 0

Xj (1)
dXi

dx
(1) - Xj (0)

dXi

dx
(0) - L

1

0

dXi

dx
 
dXj

dx
dx + liL

1

0
Xi  

Xjdx = 0

L
1

0

d  
2Xi

dx 2 Xjdx + liL
1

0
Xi Xjdx = 0

d  
2Xj

dx 2 + lj Xj = 0  Xj (0) = 0  dXj

dx
(1) = blj Xj (1)

d  
2Xi

dx 2 + li Xi = 0  Xi (0) = 0  dXi

dx
(1) = bli Xi (1)

–1.5
0

First mode

0.2 0.4 0.6 0.8 1

–0.5

–1.0

0.0

1.0

0.5

1.5

x

Third mode
Fourth mode

Second mode

FIGURE 10.12
Mode shapes of Example 10.2 with � � 0.4.
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650 CHAPTER 10

Since �i ≠ �j, Equation (o) implies

(p)

If the scalar product of f and g is defined by

(q)

then

(r)

Equation (q) defines the energy scalar product with which the mode shapes are mutually

orthogonal. Taking (Xk, Xk ) gives the nondimensional form of the kinetic energy associated

with the mode shape Xk(x). The term is the kinetic energy of the attached disk

while is the kinetic energy of the shaft. Thus the scalar product is a kinetic

energy scalar product.

Normalization of the mode shape requires

(s)

Using the trigonometric identity

(t)

and replacing cos from Equation (g) leads to

(u)

where �k is the kth real solution of Equation (h).

10.3.3 FORCED VIBRATIONS
The application of undetermined coefficients for harmonic excitations is illustrated in the

following example. Modal analysis is illustrated with examples in Section 10.4. 

The thin disk of Example 10.2 and Figure 10.9 is subject to a harmonic torque,

Determine the steady-state response of the system.

SO LU T I ON
The torsional oscillations, in terms of nondimensional variables, are governed by Equa-

tion (10.20) with

(a)u(0, t ) = 0

T (t ) = T0 
sinvt

Dk = 12(1 + bsin21lk )-1>2
1lk

sin 21lk = 2 sin1lk cos1lk

 = D 
2
k c12 a1 -

1

21lk

 sin 21lkb + b  sin2 1lk d
 = D 

2
k cL

1

0

1
2

(1 - cos 21lk x)dx + b  sin2 1lk d
 1 = (Xk 

, Xk 
) = L

1

0
D 

2
k sin2 1lk xdx + D  2

kb sin2 1lk

11
0 X  

2
k(x)dx

bX 
2
k(1)

(Xi 
, Xj ) = 0

( f, g ) = L
1

0
f  (x)g (x)dx + bf  (1)g (1)

bXi (1)Xj (1) + L
1

0
Xi Xjdx = 0

EXAMPLE 1 0 . 3
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and

(b)

where

(c)

Since the external excitation is harmonic, the steady-state response is assumed as

(d)

Substituting Equation (d) into Equation (10.20) leads to

(e)

or

(f)

Substituting Equation (d) into the boundary conditions, Equations (a) and (b), leads to

(g)
and

(h)

The solution of Equation (f ) subject to Equations (g) and (h) is

(i)

Note that if is equal to any of the system’s natural frequencies, the denominator vanishes.

The assumed form of the solution, Equation (d),  must be modified to account for this res-

onance condition.

The steady-state solution is given by Equation (d), where u(x) is given in Equation (i).

The total solution is the steady-state solution plus the homogeneous solution, which is a

summation over all free-vibration modes. Initial conditions can then be applied to deter-

mine the constants in the linear combination.

10.4 TRANSVERSE BEAM VIBRATIONS

10.4.1 PROBLEM FORMULATION
The uniform beam of Figure 10.13 is made of a material of mass density � and elastic mod-

ulus E, and has a length L, cross-sectional area A, and centroidal moment of inertia I. Let

x be a coordinate along the neutral axis of the beam, measured from its left end. The beam

v∼

u(x) =
T0L

(v∼ cosv∼ - bv∼ 2sinv∼ )JG
  sin v∼ x

du
dx

(1) - bv∼ 2u (1) =
T0L

JG

u(0) = 0

d  
2u

dx 2 + v∼ 2u = 0

d  
2u

dx 2 sinv∼ t = -v∼ 2u sin v∼ t

u(x, t ) = u(x) sin v∼ t

v∼ = L A
r

G
v

0u
0x

(1, t ) = -b
02u

0t 2(1, t ) +
T0L

JG
sin v∼ t
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652 CHAPTER 10

has an external load per unit length, f (x, t). Let w(x, t) be the transverse deflection of the

beam, measured from its equilibrium position.

Free-body diagrams of an arbitrary differential element of the beam at an arbitrary

instant of time are shown in Figure 10.14. The element is a slice of the beam of thickness

dx and its left face is a distance x from the beam’s left end. The external forces shown are

the external loading, the internal bending moment which is the resultant moment of the

normal stress distribution, and the internal shear force, which is the resultant of the shear

stress distribution. It is assumed that the resultant of the normal stress distribution is zero.

The effective force is the element mass times its acceleration. The element’s longitudinal

acceleration and angular acceleration are small in comparison to other effects and are thus

ignored.

Sum forces in the vertical direction are ( F )
ext

� ( F )
eff

, so

(10.22)

The mean value theorem implies that there is an such that

(10.23)

Since dx is infinitesimal, Equation (10.22) becomes

(10.24)f  (x, t ) -
0V
0x

= rA 
02w
0x 2

x∼ L x.

L
x + dx

x
f  (z, t )dz = f  (x∼, t )dx

x∼, x 6 x∼ 6 x + dx,

V - aV +
0V
0x

dxb + L
x + dx

x
f  (z, t)d z = rA  

02w
dt 

2 dx

gg

dx

x

w(x, t)

f(x, t) FIGURE 10.13
The beam is undergoing transverse vibra-
tions with w(x, t) being the transverse
deflection of the beam measured from its
static equilibrium position.

f(x, t)

External forces Effective forces

dx
∂ 2wrA ∂t2

dx
∂ M

M + =M
∂x

dx
∂ V

V +
∂xdx

V

FIGURE 10.14
FBDs of differential beam
element at an arbitrary time.
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Sum moments about the neutral axis of the left face of the element are 

( M
0
)
ext

� ( M
0
)
eff 

, sogg

(10.25)

Since dx is infinitesimal, terms of order (dx)2 are negligible compared to terms of order dx.
When the mean value theorem is used on the integral and since � � x is less than dx over

the entire range of integration, it becomes apparent that the term is of order dx2. Then

Equation (10.25) simplifies to

(10.26)

From mechanics of materials and with the chosen sign conventions,

(10.27)

Substitution of Equations (10.26) and (10.27) into Equation (10.24) assuming uniform

properties leads to

(10.28)

Equation (10.28) is nondimensionalized by introducing

(10.29)

where fm is the maximum value of f. The resulting nondimensional form of Equation

(10.28) where the *s have been dropped from nondimensional variables is

(10.30)

Four boundary conditions, two at x � 0 and two at x � 1, must be specified. The

forms of the boundary conditions depend on the type of end supports. Nondimen-

sional boundary conditions associated with different support conditions are given in

Table 10.3.

The nondimensional spatial derivatives of the displacement have the physical meanings:

• is the slope of the deflection equation

• is the internal bending moment

• is the internal shear force
03w
0x 3

02w
0x 2

0w
0x

02w
0t 2 +

04w

0x 4
=

fmL3

EI
f (x, t )

x * =
x
L
  t * = tA

EI

rAL4
  w* =

w
L
  f * =

f

fm

rA 
02w
0t 2 + EI 

04w

0x 4
= f (x, t )

M = -EI 
02w
0x 2

V = -
0M
0x

M - aM +
0M
0x

d xb - aV +
0V
0x

d xbd x

    + L
x + dx

x
(z - x)f (z, t)d z = rA

02w
0x 2 dx a d x

2
b
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654 CHAPTER 10

A fixed end is restrained against deflection and slope. A pinned end is restrained against

deflection and cannot support an internal moment. There is no normal stress distribution

or shear stress distribution at a free end which implies there is no bending moment or shear

force. Discrete masses, springs and viscous dampers may be placed at an end of a beam or

the end may be subject to an applied force or moment. The appropriate boundary condi-

tions for these situations are developed from application of conservation laws to a FBD of

the discrete mass or a differential element at the end of the beam.

A fixed end, say at x � 0, is restrained against motion which implies w(0, t) � 0 and

rotation which implies A pinned end is restrained against vertical displacement.

The formulation of the mathematical problem is completed by specifying two initial

conditions.

Equation (10.30) is the governing nondimensional partial differential equation for

forced vibrations of a beam assuming no axial load, longitudinal effects are negligible,

rotary inertia and transverse shear are negligible, and other standard assumptions of beam

theory from mechanics of materials apply.

10.4.2 FREE VIBRATIONS
When the product solution

(10.31)w (x, t ) = X (x)T (t )

0v
0x (0, t) = 0.

Boundary conditions for transverse vibrations of beamT A B L E 1 0 . 3

Boundary Boundary
End Condition Condition A Condition B Remarks

Free, x � 0 or
x � 1

Pinned, x � 0 or
x � 1

Fixed, x � 0 or
x � 1

Linear spring,
x � 0

Linear spring,
x � 1

Viscous damper,
x � 0

Viscous damper,
x � 1

Attached mass,
x � 0

Attached mass,
x � 1

Attached inertia
element, x � 0

Attached inertia
element, x � 1 b =

J

rAL3

b =
J

rAL3

b =
m
rAL

b =
m
rAL

b =
cL

1rEI A

b =
cL

1rEI A

b =
kL3

EI

b =
kL3

EI

02w
0x 

2 = b
03w

0x 0t 
2

02w
0x 2 = -b

03w
0x 0t 

2

02w
0x 2 = 0

02w
0x 2 = 0

02w
0x 

2 = 0

02w
0x 

2 = 0

02w
0x 2 = 0

02w
0x 2 = 0

w = 0

w = 0

02w
0x 

2 = 0

03w
0x 

2 =
03w

0x 0t  
2

03w
0x 3 = 0

03w
0x 3 = b

02w
0t 2

03w
0x 3 = -b

02w
0t 2

03w
0x 3 = b

0w
0t

03w
0x 3 = -b

0w
0t

03w
0x 3 = bw

03w
0x 3 = -bw

0w
0x

= 0

02w
0x 2 = 0

03w
0x 

3 = 0
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is substituted into Equation (10.30) with f � 0, the result is

(10.32)

The usual separation argument is used to set both sides of Equation (10.32) equal to the

same constant, say ��. This leads to

(10.33)

and

(10.34)

The solution of Equation (10.33) is

(10.35)

from which it is obvious that the natural frequencies are the square roots of the separation

constants. The general solution of Equation (10.34) is

(10.36)

The solvability condition is determined by applying the homogeneous boundary con-

ditions to Equation (10.36). Table 10.4 on the next page summarizes the solvability condi-

tions for different types of end supports, provides the first five nondimensional natural

frequencies for each entry, their corresponding mode shapes, and specifies the scalar prod-

uct for which the mode shapes are orthogonal.

Free-free and pinned-free beams are unrestrained and thus their lowest natural fre-

quency is zero, corresponding to a rigid-body mode. The fixed-pinned beam has the same

characteristic equations as the pinned-free beam, and � � 0 is a solution of this equation.

However, � � 0 leads to a trivial mode shape for the fixed-pinned beam.

The free beam has a double natural frequency of zero and two rigid-body mode shapes.

One corresponds to a translation and one a rotation.

A carbon nanotube is a new engineering material that is made from a graphene sheet rolled

to form a tube as shown in Figure 10.15a on page 658. However, the radius of the tube is

the radius of a several carbon atoms. The radius of 1 carbon atom is 0.34 nm. If the nanotube

is long enough, the continuum assumption may be used and the tube can be modeled as a

beam. Determine the five lowest natural frequencies and their corresponding mode shapes of

a carbon nanotube with a mean radius of 2 nm and length of 100 nm. The elastic modulus

of a carbon nanotube is 1 GPa, and its mass density is 2.3 g/cm3. Assume the tube is fixed at

one end and free at the other.

SO LU T I ON
The characteristic equation for a fixed-free beam is given in Table 10.4 as

(a)cosh l1>4cos l1>4 = -1

X (x) = C1 cosl1>4x + C2 sinl
1>4x + C3 coshl1>4x + C4 sinhl1>4x

T(t ) = A cos1lt + B sin1lt

d 4X

dt 4
- lX = 0

d  
2T

dt 
2 + lT = 0

1

T (t)
 
d  

2T
dt 

2 = -
1

X (x)
 
d 4X

dx 4

EXAMPLE 1 0 . 4
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658 CHAPTER 10

The nondimensional natural frequencies are the square roots of the solutions of this equa-

tion. If �k is a nondimensional natural frequency, the corresponding dimensional natural

frequency is

(b)

where

(c)= 2.71 * 109
 
1
s

A
EI

rAL4
=

a

a1 * 1012 
  

N

m2 b  
p

4
[(2 * 10-9

  m)4 - (1.66 * 10-9
  m)4]

a2.3  

g

cm3 b a
1  kg

1000  g
b a100  cm

m
b3

p[(2 * 10-9
  m)2 - (1.66 * 10-9

  m)2](100 * 10-9
  m)4

v∼ k = vkA
EI

rAL4

(a)

–2.5
0 0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 1

X

–1.5

–1

1.5

–2

2

–0.5

0.5

1

0

2.5

x

(b)

FIGURE 10.15
(a) Carbon nanotube. (b) Five lowest mode shapes.
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Vibrations of Continuous Systems 659

The first five nondimensional natural frequencies are given in Table 10.4. They are

used to obtain the five lowest dimensional natural frequencies:

(d)

(e)

(f)

(g)

(h)

The corresponding mode shapes are also given in Table 10.4. For a fixed-free beam

they are

(i)

where

(j)

The first five nondimensional mode shapes are

(k)

(l)

(m)

(n)

(o)

The normalization of the mode shapes is with respect to the kinetic energy scalar product

which yields

(p)

Evaluation of the first five constants yields

(q)

The normalized mode shapes are shown in Figure 10.15(b).

C1 = 1.003, C2 = 1, C3 = 1, C4 = 1, C5 = 1

Ci =
1

211
0 [coshli x + cosli x - ai (sinhli x - sinli x)]2dx

X5(x) = C5[cosh 14.14x - cos 14.14x - sinh 14.14x + sin 14.14x]

X4(x) = C4[cosh 11.0x - cos11.0x - sinh 11.0x + sin 11.0x]

X3(x) = C3[cosh 7.86x - cos 7.86x - 0.999(sinh 7.86x - sin 7.86x)]

X2(x) = C2[cosh 4.69x - cos 4.69x - 1.02(sinh 4.69x - sin 4.69x)]

X1(x) = C1[cosh 1.87x - cos 1.87x - 0.73(sinh 1.87x - sin 1.87x)]

ak =
cos l1>4 + cosh l1>4
sin l1>4 + sinh l1>4

Xk(x) = Ck[cosh l1>4x - cos l1>4x - ak(sinh l1>4x - sin l1>4x)]

v∼ 5 = 199.9a2.71 * 1091
s
b = 5.41 * 1011 rad/s

v∼ 4 = 120.9a2.71 * 1091
s
b = 3.28 * 1011 rad/s

v∼ 3 = 61.70a2.71 * 1091
s
b = 1.67 * 1011 rad/s

v∼ 2 = 22.03a2.71 * 109
 
1
s
b = 5.97 * 1010 rad/s

v∼ 1 = 3.51a2.71 * 109
 
1
s
b = 9.51 * 109 rad/s
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660 CHAPTER 10

Determine the natural frequencies and normalized mode shapes for a simply supported beam.

SO LU T I ON
The boundary conditions for a simply supported beam are

(a)

and

(b)

which when applied to Equation (10.36) gives

(c)

(d)

(e)

(f)

The first two of these equations imply C
1

� C
3

� 0. Then the last two equations become

(g)
and

(h)
These equations have a nontrivial solution if and only if

(i)
which is satisfied by

(j)

For these values of �, C
4

� 0 and C
2

remains arbitrary, leading to the mode shape

(k)

The mode shapes are orthogonal with respect to the scalar product of Equation (10.4),

as evidenced by

(l)

Normalization with respect to this scalar product yields 

Determine the first four natural frequencies for the beam of Figure 10.16

SO LU T I ON
From Table 10.3, the appropriate boundary conditions are

(a)w (0, t ) = 0  0w
0x

(0, t) = 0

Ck = 12.

L
1

0
CkCj   sinkpx sinjpxdx = 0  k Z j

Xk(x) = Ck sin kpx

lk = (kp)4  k = 1, 2, . . .

sin l1>4 = 0

 -C2 sin l1>4 + C4 sinh l1>4 = 0

C2 sinl
1>4 + C4 sinhl1>4 = 0

0 = - 1lC1 cosl1>4 - 1lC2 sinl
1>4 + 1lC3 coshl1>4 + 1lC4 sinhl1>4

0 = C1 cosl1>4 + C2 sinl
1>4 + C3 coshl1>4 + C4 sinhl1>4

0 = - 1lC1 + 1lC3

0 = C1 + C3

w (1, t ) = 0  02w
0x 2 (1, t ) = 0

w(0, t ) = 0  02w
0x 2 (0, t ) = 0

EXAMPLE 1 0 . 5

EXAMPLE 1 0 . 6
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Vibrations of Continuous Systems 661

and

(b)

where

(c)

Application of the boundary conditions to Equation (10.36) gives

(d)

(e)

(f)

(g)

The solvability condition is obtained by setting the determinant of the coefficient matrix

obtained by writing Equations (d) through (g) in a matrix form to zero yielding

(h)

For � � 0.190 the first four roots of this equation are

(i)
The nondimensional natural frequencies are the square roots of the values of � that solve

the characteristic equation. The dimensional natural frequencies are obtained by noting the

relationship between the dimensional time and the nondimensional time and its applica-

tion to Equation (10.29),

(j)

The first four natural frequencies for this beam are

(k)
v1 = 829.2   rad/s      v2 = 5.05 * 103 rad/s
v3 = 1.41 * 104

  

 rad/s  v4 = 2.13 * 104 rad/s

v = Al
EI

rAL4
= 229.11l

l = 13.10, 486.2, 3807.0, 14161.6, . . .

l3>4(1 + cosl1>4 cosh l1>4) = -b(cosh l1>4 sinl1>4 - cos l1>4 sinhl1>4)

+ (l3>4 sinhl1>4 - b coshl1>4)C3 + (l3>4 coshl1>4 - b sinhl1>4)C4

0 = (l3>4 sin l1>4 - b cos l1>4)C1 + (-l3>4 cos l1>4 - b sin l1>4)C2

0 = -C1 cos l1>4 - C2 sin l1>4 + C3 cosh l1>4 + C4 sinh l1>4
0 = C2 + C4

0 = C1 + C3

b =
kL3

EI
=

(2 * 106
  

 N/m)(1 m)3

(210 * 109
  

 N/m2)(5 * 10-5 m4)
= 0.190

02w
02x

 (1, t ) = 0  03w
0x 3  (1, t ) = bw (1, t )

1 m

k = 2 × 106 N/mm = 200 kg
I = 5 × 10–5 m4

E = 210 × 109 N/m2

r = 7600 kg/m3

A = 2.63 × 10–2 m2

FIGURE 10.16
System of Example 10.6 is a beam that is fixed at one end and attached to a spring at its
other end.
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662 CHAPTER 10

10.4.3 FORCED VIBRATIONS
The modal analysis method, described in Section 10.2, for analyzing the forced vibrations

of a continuous system is applied to the following examples.

The simply supported beam of Figure 10.17 is subject to a harmonic excitation over half

of its span. Determine the beam’s steady-state response.

SO LU T I ON
The nondimensional force per unit length is

(a)

where

(b)

The expansion theorem is used to expand f (x, t) in terms of the normalized mode shapes

of the corresponding free-vibration problem, which are determined in Example 10.5 as

Xk(x) = sin k�x. The expansion coefficients are determined using Equation (10.8),

with the scalar product defined by Equation (10.4),

= 12sinv∼ tL
3>4

1>4
sin(kpx)dx

Ck = L
1

0
f  (x, t)12sin(kpx)dx

12

v∼ = vA
rAL4

EI

f  (x, t) = sinv∼ t cuax -
1
4
b - uax -

3
4
b d

F0 sinw t

L
2

(a)

L
4

L
4

–0.12
0

w~ /p 2 = 1.2

0.2 0.4 0.6 0.8 1

f(
x) 0.00

–0.06

0.06

0.12

x

w~ /p 2 = 0.95
w~ /p 2 = 1.05

w~ /p 2 = 0.8

(b)

FIGURE 10.17
(a) System of Example 10.7 is a simply supported beam with a harmonic excitation over a portion of
its span. (b) Steady-state response for Example 10.7.

EXAMPLE 1 0 . 7

62129_10_Ch10_p633-688.qxd  3/16/11  12:43 PM  Page 662

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Vibrations of Continuous Systems 663

(c)

The displacement is expanded as

(d)

Substituting for w and f in Equation (10.30) leads to

(e)

where

(f)

The preceding equation is multiplied by for an arbitrary j and integrated

from 0 to 1. This is equivalent to taking the scalar product of both sides of the equation

with Xj (x). The orthogonality condition, Equation (10.8), is used such that each sum col-

lapses to a single term, yielding

(g)

whose steady-state solution is

(h)

The steady-state response of the beam is

(i)

The function f (x) is shown in Figure 10.17(b) for several values of . Note that when is

close to �2 the steady-state amplitude is large at the midspan.

v∼v∼

w (x, t) =
212¶
p

 sinv∼ t c 1

p4 - v∼ 2
sin px

         -
1

3(81p4 - v∼ 2)
sin 3px -

1

5(625p4 - v∼ 2)
sin 5px

         +
1

7(150p4 - v∼ 2)
sin 7px + Á d

    =
212¶
p

 f  (x)sinv∼ t

pj 
(t ) = c ¶

( jp)4 - v∼ 2
d 2

jp  
aj sinv∼ t

p
$

j + ( jp)4pj = ¶Cj  j = 1, 2, . . .

12 sin( j px)

¶ =
F0L

3

EI

a
q

k = 1

[ p
$

k + (k p)4pk ]12 sin(k px) = ¶a
q

k = 1

Ck(t)12 sin(kpx)

w (x, t ) = a
q

k = 1

12 sin(kpx)pk(t )

=
2

kp
ak sin v∼ t

=
2

kp
 sin v∼ t c 0 k = 2, 4, 6, Á

1 k = 1, 7, 9, 15, 17, 23, Á
-1 k = 3, 5, 11, 13, 19, 21, Á

=
12
kp

 sinv∼ t acosk  
p

4
- cosk  

3p
4
b
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664 CHAPTER 10

A machine of mass 150 kg is attached to the end of the cantilever beam of Figure 10.18.

The machine operates at 2000 rpm and has a rotating unbalance of 0.965 kg · m. What is

the steady-state amplitude of vibration of the end of the beam?

SO LU T I ON
The nondimensional formulation of the governing mathematical problem is

(a)

subject to

(b)

(c)

where 

(d)

v∼ = vA
rAL4

EI

  = 209.4   
rad
s A

(280 kg)(3 m)3

(210 * 109
  

 N/m2)(1.2 * 10-4
  

 m4)
  = 3.63

03w
0x 3  (1, t ) = b

02w
0t 2  (1, t ) + a sinv∼ t

w (0, t ) = 0  0w
0x

 (0, t ) = 0  02w
0x 2  (1, t ) = 0

04w

0x 4
+

02w
0t 

2 = 0

EXAMPLE 1 0 . 8

(a)

3 m

m = 150 kg
w = 2000 rpm
m0e = 0.965 kg . m

m = 280 kg
E = 210 × 109 N/m2

I = 1.2 × 10–4 m4

(b)

=

m0eω 2 sinω t

External forces

(1, t)
î 3w

EI î x3

Effective forces

(1, t)
î 2w

m
î t2

FIGURE 10.18
(a) System of Example 10.8 is a fixed-free beam with a machine with a rotating unbalance at its free
end. (b) FBDs of the machine at an arbitrary instant are used to derive a boundary condition.
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Vibrations of Continuous Systems 665

(e)

and 

(f)

The boundary condition Equation (c) is developed by applying Newton’s law to a FBD of

the machine as shown in Figure 10.18.(b) The problem is nonhomogeneous due to this

boundary condition. From Table 10.4 the characteristic equation for the homogeneous

problem of a beam with a concentrated mass at its end is

(g)

The corresponding mode shapes for the homogeneous problem are

(h)

where Ck is chosen to normalize the mode shape with respect to the scalar product

defined by

(i)

The first six nondimensional natural frequencies and normalization constants are given

in Table 10.5.

The expansion theorem implies that the solution of the nonhomogeneous problem can

be expanded in a series of normalized mode shapes. To this end,

(j)w (x, t ) = a
q

k = 1

pk(t )Xk(x)

(Xj (x), Xk(x)) = L
1

0
Xj (x), Xk(x)dx + bXj (1)Xk(1)

Xk(x) = Ck ccosl1>4x - coshl1>4x +
cosl1>4 + coshl1>4
sinl1>4 + sinhl1>4  (sinhl1>4x - sinl1>4x) d

l1>4(1 + cosl1>4coshl1>4) + b(cosl1>4 sinhl1>4 - coshl1>4 sinl1>4) = 0

a =
m0e v2L2

EI

  =
(0.965 kg # m)(209.4 rad/s)2(3 m)2

(210 * 109 
  N/m2)(1.2 * 10-4

 

 
 m4)

  = 0.010

b =
m
rAL

=
150 kg

280 kg
= 0.536

Free-vibration properties for
Example 10.8

T A B L E 1 0 . 5

Nondimensional Natural
Natural Frequency

�k Frequency �k(rad/s) Ck

6.71 2.59 149.55 0.715
443.5 21.06 1216.0 0.617
3682.1 60.68 3483.0 0.593

14,371.2 119.88 6922.0 0.584
39,533.3 198.83 11,480.0 0.582
88,513.2 297.51 17,178.0 0.434
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666 CHAPTER 10

Substituting for w(x, t) into the governing partial differential equation, multiplying by Xj(x)

for an arbitrary j, and integrating from 0 to 1 leads to

(k)

The mutual orthonormality of the mode shapes implies

(l)

Use of this orthogonality condition leads to

(m)

Substituting for w(x, t) from the expansion theorem in the nonhomogeneous bound-

ary condition leads to

(n)

The mode shapes satisfy the boundary conditions for the nonhomogeneous problem.

Thus,

(o)

which when used in the preceding equation gives

(p)

and which when substituted into the previously derived differential equations for the prin-

cipal coordinates uncouples these equations and gives

(q)

The steady-state solution for each of the principal coordinates is now easily obtained

and the expansion theorem is used to write the steady-state solution as

(r)

The nondimensional steady-state amplitude of the end of the beam is

(s)

The dimensional amplitude is obtained using Equation (10.29) as 1.67 � 10�4 (3 m) �
4.0 mm.

aa
q

k = 1

X 2
k (1)

lk - v∼ 2 = 1.67 * 10-4

w (x, t) = ca
q

k = 1

aXk(1)

lk - v∼ 2  Xk(x ) d sin v∼ t

p
$
j + lj 

pj = a
 
Xj 

(1)sin v∼ t  j = 1, 2, . . .

a
q

k = 1

(p
$
k + lk pk )Xk(1) = a sin v∼ t

d 3X
d x 3 (1) = -lkbXk(1)

a
q

k = 1

d 3Xk

dx 3  (1)pk(t ) = a sin v∼ t + ba
q

k = 1

Xk(1)p
$
k(t )

p
$

j + lj  
pj = a

q

k = 1

(p
$

k + lk 
pk )bXj (1)Xk(1)

L
1

0
Xj (x)Xk(x)dx = djk - bXj (1)Xk(1)

a
q

k = 1

( p
$

k + lpk  
)L

1

0
Xj (x)Xk(X )dx = 0
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Vibrations of Continuous Systems 667

10.5 ENERGY METHODS
Consider a differential element of the shaft of Figure 10.5. Assuming elastic behavior

throughout, a shear stress distribution is developed across the cross section of the shaft

according to

(10.37)

where Tr(x, t) is the resisting torque in the cross section and r is the distance from the center

of the shaft to a point in its cross section. The total strain energy in the element is

(10.38)

Substitution of Equations (10.37) and (10.13) into Equation (10.38) leads to

(10.39)

Noting that and integrating over the entire length of the shaft, the total strain

energy becomes

(10.40)

The kinetic energy of the differential element is

(10.41)

where � is the mass density of the shaft’s material. The total kinetic energy of the shaft is

(10.42)

For a conservative system, the maximum potential energy is equal to the maximum kinetic

energy. Thus, if the free oscillations of the shaft are described by

(10.43)
then

(10.44)

Introducing the nondimensional variables of Equation (10.29) into Equation (10.44) and

assuming the shaft is uniform leads to

(10.45)v∼ 2 = L
1

0
a du

dx
b2

dx

L
1

0
u2dx

v2 = L
L

0
JG a du

dx
b2

dx

L
L

0
rJu2dx

u(x, t) = u(x)sinvt

T =
1

2L
L

0
rJ a 0u

0t
b2

dx

dT =
1

2
 rJ a 0u

0t
b2

dx

V =
1

2L
L

0
JG a 0u

0x
b2

dx

J = 1A r 
2dA

dV =
G
2
a 0u

0x
b2aLA

r 
2dAbdx

dV =
1

2G
aLA
t2dAbd x

t =
T1r

J
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668 CHAPTER 10

where 

(10.46)

For any function w(x) which satisfies the boundary conditions specified for the shaft,

we define

(10.47)

where R(w) is Rayleigh’s quotient for this continuous system. If w(x) is a mode shape, then

R(w) is equal to the square of the natural frequency of that mode. If w(x) is not a mode shape

but satisfies the boundary conditions for the system, then R(w) is a scalar function of w. As

for discrete systems, R(w) is a minimum when w is a mode shape. Hence Rayleigh’s quotient

can be used to approximate the lowest natural frequency for the continuous system.

Use Rayleigh’s quotient to approximate the lowest natural frequency of the tapered circu-

lar shaft of Figure 10.19.

SO LU T I ON
The polar moment of inertia varies over the length of the shaft is

(a)

A trial function which satisfies the boundary conditions and is

(b)

An upper bound and approximation on the lowest natural frequency is

(c)

(d)v1 … [R (w)]1>2 = 3767 rad/s

R (w) =
80 * 109

 
N
m2 
p

2 L
3

0
(0.2 - 0.05x)4ap

6
b2

cos2
 
p

6
x dx

7850 

kg

m3 
p

2 L
3

0
(0.2 - 0.05x)4 sin2 

 
p

6
x dx

w (x) = sin 
p

6
 x

dw>dx (3 m) = 0w (0) = 0

J(x) =
p

2
 (0.2 - 0.05x)4

R(w) = L
L

0
JG a dw

dx
b2

dx

L
L

0
rJw 

2dx

v∼ = LA
r

G
v

EXAMPLE 1 0 . 9

3 m

5 cm

20 cm

FIGURE 10.19
Tapered circular shaft of Example 10.9.

62129_10_Ch10_p633-688.qxd  3/16/11  12:46 PM  Page 668

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Vibrations of Continuous Systems 669

Rayleigh’s quotient can be generalized as the ratio of a potential energy scalar to a

kinetic energy scalar product, where the energy products are defined by integrals, perhaps

with additional terms to account for discrete masses or springs.

(10.48)

Rayleigh’s quotient can be applied to any continuous system. Table 10.6 gives the appro-

priate form of the scalar products for several continuous systems.

A method based on Rayleigh’s quotient, called the Rayleigh-Ritz method, can be used to

approximate a finite number of the lowest natural frequencies of a continuous system. Let

u
1
(x), u

2
(x), . . . , un(x) be n linearly independent functions, each of which satisfies the

boundary conditions for a specific continuous system. An approximation to the free-vibration

response of the continuous system is assumed as

(10.49)

Equation (10.49) is substituted into Rayleigh’s quotient which is rewritten as

(10.50)R (w)(w, w)T = (w, w)V

w (x) = a
n

i = 1

ciui (x)

R (w) =
(w, w)V

(w, w)T

Scalar products for Rayleigh-Ritz method.T A B L E 1 0 . 6

Structural
Element Case (u, v)T (u, v)V

Torsional
shaft

Longitudinal
bar

Beam

No added
disks or
springs

Added disk
at

Torsional spring
at

No added
masses or
springs

Added mass
at

Spring
at

No added
masses, disks,
or springs

Added mass
at

Added spring
at

Added disk
(ID) at x = x∼

x = x∼

x = x∼

x = x∼

x = x∼

x = x∼

x = x∼

L
L

0
rAu(x)v(x)dx + ID

du (x∼)

dx
 
dv(x∼)

dx

L
L

0
rAu(x)v(x)dx

L
L

0
rAu(x)v(x)dx + mu(x∼)v(x∼)

L
L

0
rAu(x)v(x)dx

L
L

0
rAu(x)v(x)dx

L
L

0
rAu(x)v(x)dx + mu(x∼)v(x∼)

L
L

0
rAu(x)v(x)dx

L
L

0
rJu(x)v(x)dx

L
L

0
rJu(x)v(x)dx + IDu(x∼)v(x∼)

L
L

0
rJu(x)v(x)dx

L
L

0

EI  
d  

2u
dx 2  

d  
2v

dx 2dx

L
L

0

EI  
d  

2u
dx 2  

d  
2v

dx 2  dx + ku (x∼)v(x∼)

L
L

0

EI  
d  

2u
dx 2  

d  
2v

dx 2  dx

L
L

0

EI 
d  

2u
dx 2  

d  
2v

dx 2dx

L
L

0

EA 
du
dx

 
dv
dx

dx + ku (x∼)v(x∼)

L
L

0

EA 
du
dx

 
dv
dx

 dx

L
L

0

EA 
du
dx

 
dv
dx

dx

L
L

0

GJ 
du
dx

 
dv
dx

dx + ktu (x∼)v (x∼)

L
L

0

GJ 
du
dx

 
dv
dx

dx

L
L

0
GJ 

du
dx

 
dv
dx

dx
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670 CHAPTER 10

Since R(w) is stationary near a mode shape, the best approximation to the natural fre-

quencies and mode shapes using the functions u
1
(x), u

2
(x), . . . , un(x), is obtained by

setting

(10.51)

Differentiating Equation (10.50) with respect to ck for any k � 1, 2, . . . , n and using

Equation (10.51) gives

(10.52)

Developing Equation (10.52) for each k � 1, 2, . . . , n leads to n linear homogeneous

equations to solve for c
1
, c

2
, . . . , cn in terms of the parameter R(w). Since the equations

are homogeneous, a nontrivial solution is available if and only if the determinant is set

equal to zero, yielding an nth-order polynomial equation for R(w). The roots of the poly-

nomial are the squares of the approximations to the lowest natural frequencies.

Approximations for the mode shapes can be obtained by returning to the homogeneous

equations. The method is illustrated in the following example.

Use the Rayleigh-Ritz method to approximate the two lowest natural frequencies of

Example 10.1.

SO LU T I ON
Two polynomials which satisfy the boundary conditions of Example 10.1 are

(a)

An approximation to the mode shape is developed as

(b)

Calculation of the energy scalar products gives

(c)

(d)

Application of Equation (10.52) leads to

(e)

(f)a5 -
61
30

Rbc1 + a48
5

-
136
35

Rbc2 = 0

a8
3

-
16
15

Rbc1 + a5 -
61
30

Rbc2 = 0

(w, w)V = L
1

0
[c1(2 - 2x) + c2(3 - 3x 2)]2 dx =

4

3
c 2

1 + 5c1c2 +
24

5
c 2

2

(w, w)T = L
1

0
[c1(2x - x 

2) + c2(3x - x 
3)]2 dx =

8

15
c 

2
1 +

61

30
c1c2 +

204

105
c 

2
2

w (x) = c1(2x - x 
2) + c2(3x - x 

3)

u1(x) = 2x - x 
2  u2(x) = 3x - x 

3

R (w) 

0(w, w)T

0ck

=
0(w, w)V

0ck

0R
0c1

=
0R
0c2

= Á =
0R
0cn

= 0

EXAMPLE 1 0 . 1 0
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Vibrations of Continuous Systems 671

A nontrivial solution of the preceding equations is obtained if and only if

(g)

Evaluation of the determinant leads to

(h)

whose roots are

(i)

The natural frequency approximations are

(j)

The approximation to the lowest natural frequency is excellent. The approximation to the

second natural frequency is also very good, being only 3.3 percent higher than the exact

value.

The mode shape approximations are obtained by solving for c
2

in terms of c
1

for each

R and then substituting into the expression for w(x) with c
1

remaining arbitrary. This

leads to

(k)

(l)

The approximate mode shapes plotted in Figure 10.20 have been normalized such that

wi(1) � 1. These compare favorably to the first two mode shapes for a fixed-free torsional

shaft plotted in Figure 10.7.

w2(x) = 0.4295x - x 
2 + 0.5235x 

3

w1(x) = 7.58x - x 
2 - 1.86x 

3

v1 L 1.571  v2 L 4.859

R = 2.467, 23.610

9.24R 2 - 241.0R + 538.0 = 0

 det ≥
8
3

-
16
15

R 5 -
61
30

R

5 -
61
30

R
48
5

-
136
35

R
¥ = 0

–1.5
0

w = 1.571

0.2 0.4 0.6 0.8 1

–0.5

–1.0

0.0

1.0

0.5

1.5

x

w
(x

)

w = 4.859

FIGURE 10.20
Rayleigh-Ritz approximations to the mode shapes corresponding to the two lowest natural frequen-
cies of a fixed-free torsional shaft.
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672 CHAPTER 10

10.6 BENCHMARK EXAMPLES
The problem of the machine on the simply supported beam can be formulated using a con-

tinuous systems analysis. The problem of where the machine is directly mounted on the

beam is formulated such that the governing differential equation is

(a)

where 	(x � 3.6) is the Dirac delta function introduced in Appendix A. The boundary

conditions are those for a fixed-pinned beam, which are

(b)

The solutions of Equations (a) and (b) are beyond the scope of this book.

The approach instead is to use the Rayleigh-Ritz method and the scalar products

reported in Table 10.6. The energy formulation of Rayleigh’s quotient is

(c)

where It is desired to approximate the five lowest natural frequencies

of the system by

(d)

The mode shapes for a uniform fixed-free beam reported in Table 10.4 are used as the func-

tions in Equation (d). They are

(e)

(f)

(g)

(h)

(i)
The mode shaped of Equations (e) through (h) have been normalized. Thus,

(j)

Substituting Equations (e) through (h) into Equation (d) and using Equation (j) leads to

(k)K = E
237.8 0 0 0 0

0 2496.0 0 0 0
0 0 10857 0 0
0 0 0 31790 0
0 0 0 0 73984

U
L

1

0
ui(x)uj(x)dx = dij and L

1

0
a d  

2ui

dx 2 b a
d  

2uj

dx 2 bdx = v2
idij

u5(x) = cos 16.49x - cosh 16.49x - sin 16.49x + sinh 16.49x

u4(x) = cos 13.35x - cosh 13.35x - sin 13.35x + sinh 13.35x

u3(x) = cos 10.21x - cosh 10.21x - sin 10.21x + sinh 10.21x

u2(x) = cos 7.07x - cosh 7.07x - sin 7.07x + sinh 7.073x

u1(x) = cos 3.93x - cosh 3.93x - 0.998 sin 3.93x + 0.998 sinh 3.93x

w (x) = a
5

i = 1

ciui(x)

b = 4500   N
2700   N = 1.67.

R(w) = L
L

0
EI a d  

2w
dx 2 b

2

dx

L
L

0
rAw 2dx + m[w (3.6)]2

  or  R (w) = L
1

0
a d  

2w
dx 2 b

2

dx

L
1

0
w 2dx + b[w (0.6)]2

            (dimensional form)               (nondimensional form)

w(0, t) = 0  0w
0x

 (0, t) = 0  w (1, t) = 0  02w
0x 

2  (1, t) = 0

rA 
02w
0t 

2 + m  
02w
0t 

2  d(x - 3.6) + EI  
04w

0x 4
= 0
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Vibrations of Continuous Systems 673

The mass matrix is determined as

(l)

The natural frequency approximations are the reciprocals of the square roots of the eigen-

values of AM. They are

(m)

The dimensional natural frequencies are obtained by multiplying the nondimensional fre-

quencies by

(n)

They are

(o)

The eigenvectors of AM are substituted into Equation (d) to provide the mode shape

approximations. They are given in Figure 10.21.

Now consider the forced vibrations of the machine when it is subject to a harmonic

force F(t) � 90,000 sin 80t 	(x � 3.6). Nondimensionalizing the force as in Equation

(10.29) leads to

(p)

Approximating the forced response requires the generalized force vector calculated as

(q)

or

(r)f  (t) = E
-1.516

0.422
1.143

-1.297
-0.438

U0.128 sin 80t

f i (t) = L
1

0
ui (x)[0.128 sin 80t   d(x - 0.6)]dx = 0.128ui (0.6) sin 80t

fmL2

EI
=

(90,000   N)(6 m)2

(210 * 109
  

 N/m2)(1.21 * 10- 4 m4)
= 0.128

v1 = 150.09 rad/s  v2 = 1011.22   rad/s  v3 = 1.777 * 103
  

 rad/s  
v4 = 3.496 * 103

 

 rad/s  v5 = 5.765 * 103 rad/s

A
EI

rAL4
=

  a210 * 109 N
m2 b (1.21 * 10- 4 m4)

a438 N
m
b

9.81 m>s2
  (6 m)4

= 20.96 rad/s

v1 = 7.161   v2 = 48.245   v3 = 84.806   v4 = 166.82   v5 = 275.07

M = E
   4.854 -1.057 -2.899    3.256    1.108

-1.057    1.298    0.807 -0.857 -0.309
-2.899    0.807    3.182 -2.591 -0.836

  3.256 -0.857 -2.591    3.826    1.066
   1.108 -0.309 -0.836    1.066    1.320

U

R
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–1.5
0 0.5

(a)

0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 1

w

–1

–0.5

0.5

1

0

1.5

x

Mode 1
Mode 2

–2.5

–1.5

0 0.5

(b)

0.6 0.7 0.8 0.90.1 0.2 0.3 0.4 1

w

–1

–2

–0.5

0.5

1

2

0

2.5

1.5

x

Mode 3
Mode 4
Mode 5

FIGURE 10.21
Mode shape approximations
to beam with machine:
(a) first and second modes
and (b) modes 3, 4, and 5.
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Vibrations of Continuous Systems 675

The right-hand side of the equation is written in dimensional form, while the left-hand

side is written in nondimensional form. The nondimensionalization of time is

The nondimensional equations become

(s)

where the * has been dropped on nondimensional variables. It is noted that the frequency

of the excitation is near the natural frequency of a uniform fixed-pinned beam, but it is

away from the natural frequency of the beam with the machine on it. A steady-state solu-

tion to Equation (s) is assumed to be

(t)

When Equation (t) is substituted into Equation (s), we have

(u)

The solution of Equation (u) is

(v)E
C1

C2

C3

C4

C5

U = E
-1.107 * 10-3

2.920 * 10-5

1.819 * 10-5

-6.845 * 10-6

-1.025 * 10-6

U

E
176.7 16.64 45.64 -45.67 -17.44
16.64 2476 12.71 12.71 4.86
45.64 -12.71 10857 34.43 13.16

-45.67 12.71 34.43 31790 -13.19
-17.40 4.86 13.16 -13.19 73984

U E
C1

C2

C3

C4

C5

U = 0.128 E
-1.516
   0.422
   1.143
-1.297
-0.438

U

= E
C1

C2

C3

C4

C5

U  sin 3.817tE
c1

c2

c3

c4

c5

U

= E
-1.516

  0.422

  1.143
-1.297
-0.438

U  sin 3.817tE
c1

c2

c3

c4

c5

U+ E
237.8 0 0 0 0

0 2496.0 0 0 0
0 0 10857 0 0
0 0 0 31790 0
0 0 0 0 73984

U

E
c
$
1

c
$
2

c
$

3

c
$

4

c
$

5

UE
   4.854 -1.057 -2.899    3.256    1.108

-1.057    1.298    0.807 -0.857 -0.309
-2.899    0.807    3.182 -2.591 -0.836

  3.256 -0.857 -2.591    3.826    1.066
   1.108 -0.309 -0.836    1.066    1.320

U
t * = tA

EI

rAL4
= 20.96t.
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676 CHAPTER 10

The coefficients are substituted into Equation (d) to approximate the steady-state response

of the beam. A plot of the steady-state response at a given time is shown in Figure 10.22.

The displacement of the machine is 5.31 � 10�5 m.

10.7 CHAPTER SUMMARY

10.7.1 IMPORTANT CONCEPTS
• A continuous system is governed by a partial differential equation. The independent

variables are a spatial coordinate and time.

• Torsional oscillations of a shaft, longitudinal vibrations of a bar, and transverse vibra-

tions of a string are all governed by the wave equation.

• Transverse vibrations of a beam are governed by a partial differential equation that is of

the fourth order in the spatial variable and second order in time.

• The method-of-separation of variables is used to solve the free-vibrations problem.

• A continuous system has an infinite but countable number of natural frequencies �k
and corresponding mode shapes Xk for k � 1, 2, 3, . . . .

• The natural frequencies and mode shapes are determined by solving a differential eigen-

value problem consisting of a homogeneous differential equation and an appropriate

number of homogeneous boundary conditions. The eigenvalue is a parameter in the dif-

ferential equation for which a non-trivial solution exists only for certain values of the

parameter.

0 0.2 0.4 0.6 0.8 1
x

w
(x

)

FIGURE 10.22
Plot of the steady-state
response mode shape of the
beam as a function of posi-
tion along the beam.
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Vibrations of Continuous Systems 677

• Rayleigh’s quotient is the ratio of the potential energy to the kinetic energy if the system

has a specified mode shape. It is stationary when the function that it is evaluated for is

a mode shape of the system. Rayleigh’s quotient has an absolute minimum when the

mode shape corresponds to the lowest natural frequency.

• The Rayleigh-Ritz method assumes a solution as a finite, linear combination of n func-

tions which satisfy the boundary conditions of a system. The assumed solution is sub-

stituted into Rayleigh’s quotient and minimized to approximate the lowest n frequencies

and mode shapes of the system.

10.7.2 IMPORTANT EQUATIONS
Product solution for free-vibrations problems

(10.1)

Separated equations

(10.2)

(10.3)

Kinetic-energy scalar product

(10.4)

Normalized mode shapes

(10.5)

Expansion theorem

(10.6)

General free-vibrations solution

(10.7)

Solution of forced-vibration problem with forcing function f (x)

(10.8)

(10.9)

Wave equation for torsional oscillations of a shaft

(10.20)

Nondimensional partial differential equation governing the transverse forced vibrations of

a uniform beam

(10.30)
02w
0t 2 +

04w

0x 4
=

fmL3

EI
 f  (x, t)

02u

0x 2 =
02u

0t 2

Ck(t ) = ( f  (x, t ), Xk(x))

f  (x) = a
q

k = 1

Ck(t )Xk(x)

w (x) = a
q

k = 1

Xk(x)Tk(t)

f  (x) = a
q

k = 1

( f, Xk)T Xk(x)

(Xi , Xj )T = 1

(Xi , Xj )T = L
1

0
Xi(x)Xj (x)dx

LxX + lX = 0

d  
2T

dt 
2 + lT = 0

w (x, t) = X (x)T (t)
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678 CHAPTER 10

Solutions of separated equations when the product solution is assumed for free vibrations

of a uniform beam

(10.35)

(10.36)

Rayleigh’s quotient

(10.48)

Rayleigh-Ritz method

(10.49)

Equations to solve for the coefficients in a Rayleigh-Ritz solution

(10.52)

PROBLEMS

SHORT ANSWER PROBLEMS
For all problems, the bar, shaft, string, or beam specified is assumed to be linear, elastic,

uniform, and homogoenous.

For Problems 10.1. through 10.10, indicate whether the statement presented is true or

false. If true, state why. If false, rewrite the statement to make it true.

10.1 A continuous system is also referred to as a distributed parameter system.

10.2 A continuous system has an infinite number of natural frequencies.

10.3 The longitudinal vibrations of a bar and the transverse vibrations of a beam are

both governed by the wave equation.

10.4 A free-free beam is an example of a degenerate system.

10.5 Rayleigh’s quotient defined for a system is stationary for any function that

satisfies the boundary conditions of that system.

10.6 Four initial conditions are necessary to determine the forced-vibration response

of a fixed-free beam.

10.7 The Rayleigh-Ritz method can be used to approximate natural frequencies and

forced responses of continuous systems.

10.8 Mode shapes corresponding to distinct natural frequencies of a continuous

system are orthogonal with respect to the potential-energy scalar product.

10.9 The mode shape reported in Table 10.4 for a pinned-free beam of is a

rigid-body mode.

10.10 The assumption that is used in the derivation of the differential

equation governing the transverse vibrations of a beam.

M = -EI 0
2w

0x 2

13x

R (w)
0(w, w)T

0ck

=
0(w, w)v

0ck

w(x ) = a
q

i = 1

ciui (x )

R (w) =
(w, w)V

(w, w)T

X(x) = C1cos l1>4x + C2sin l1>4x + C3cosh l1>4x + C4sinh l1>4x
T (t ) = A cos1lx + B sin1lx
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Vibrations of Continuous Systems 679

Problems 10.11 through 10.32 require a short answer.

10.11 What is the method where a product solution is assumed for the free vibrations

of a uniform bar called? Is the same method applicable to the free vibrations of

a beam?

10.12 What is the order of the highest spatial derivative in the wave equation? What is

the order of the highest spatial derivative of the beam equation?

10.13 What is the process of introducing the independent variables t* and x* and the

dependent variable w* called?

10.14 How many boundary conditions are required to determine the response of

(a) A beam undergoing transverse vibrations?

(b) A bar undergoing longitudinal vibrations?

(c) A shaft undergoing torsional oscillations?

10.15 What does the boundary condition mean physically when applied to a

torsional shaft.

10.16 What are the boundary conditions for the free vibrations of a longitudinal bar

fixed at x � 0 and free at x � L?
10.17 What are the boundary conditions for the free vibrations of a torsional shaft

fixed at x � 0 and attached to a thin disk with a mass moment of inertia I at

x � L?
10.18 What are the boundary conditions for the free vibrations of a torsional shaft

free at x � 0 and attached to a thin disk with a mass moment of inertia I and 

a torsional spring of stiffness kt at x � L?

10.19 What are the boundary conditions for the free vibrations of a string fixed at 

x � 0 and attached to a spring of stiffness k at x � L?

10.20 What is the relationship between a nondimensional natural frequency and the

corresponding dimensional natural frequency for a torsional shaft.

10.21 A bar with a length of L and cross-sectional area A is made of a material 

with an elastic modulus E and mass density � is fixed at x � 0 and has a 

rigid mass m attached at x � L. It has a longitudinal mode shape Xk(x) 

which corresponds to a natural frequency �k. What is the normalization

condition for this mode?

10.22 A bar with a length of L and cross-sectional area A is made of a material with an

elastic modulus E and mass density � is fixed at x � 0 and is attached to a

spring with a stiffness of k at x � L. The bar also has a longitudinal mode shape

Xk(x) which corresponds to a natural frequency �k. What is the normalization

condition for this mode?

10.23 The differential equation for the vibrations of a beam is

Explain the physical meaning of each term in the equation.

10.24 The characteristic equation for a fixed-free beam is cos �1/4 cosh �1/4 � �1.

This is an example of a ______________ equation to solve for �.

10.25 What are the boundary conditions for the free vibrations of a fixed-free beam?

10.26 What are the boundary conditions for the free vibrations of a free-free beam?

rA 
02w
0t 

2 + EI 
04w

0x 
4

= f  (x, t )

0u
0x(L, t )
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680 CHAPTER 10

10.27 What are the boundary conditions for the free vibrations of a beam that is fixed

at x � 0 and has a rigid mass m attached at x � L?

10.28 The characteristic equation for the fixed-pinned beam is the same as the

characteristic equation for the pinned-free beam, yet their lowest natural

frequency is different. How is this possible?

10.29 A bar with a length of L and cross-sectional area A is made of a material with an

elastic modulus E and mass density � and has a normalized longitudinal mode

shape Xk(x) which corresponds to a natural frequency �k.

(a) What is the potential energy of a system that vibrates with this mode shape?

(b) What is the kinetic energy of a system that vibrates with this mode shape?

10.30 For Short Answer Problem 10.29 what is the value of R(w)?

10.31 A beam with a length L cross-sectional area A, and moment of inertia I is made

of a material with an elastic modulus E and mass density � and has a

normalized transverse mode shape Xk(x) which corresponds to a natural

frequency �k.

(a) What is the potential energy of a system that vibrates with this mode shape?

(b) What is the kinetic energy of a system that vibrates with this mode shape?

10.32 For Short Answer Problem 10.31 what is the value of R(w)?

Problems 10.33 through 10.47 require short calculations.

10.33 What is the wave speed for torsional oscillations in a circular shaft made from

steel? The shaft is of length 60 cm and has a radius of 3 cm.

10.34 Calculate the wave speed of longitudinal waves in a 3-m long steel bar

with a circular cross section of a 

20 mm radius.

10.35 Calculate the three lowest natural frequencies of a solid 20-cm radius steel shaft

with a length of 1.5 m that is fixed

at one end and free at its other end.

10.36 The characteristic equation for a fourth-order continuous system is cos � � 0.

What is the lowest natural frequency of the system?

10.37 What are the three lowest positive values of � that satisfy the equation 

tan �� 6/�?

10.38 What are the three lowest positive values of � that satisfy the equation 

tan �� 4�?

10.39 The nondimensional mode shape of a uniform bar is sin 5�x.

(a) Determine the potential energy of this mode.

(b) Determine the kinetic energy of this mode.

(c) What is the nondimensional natural frequency that corresponds to this

mode?

10.40 The nondimensional mode shape of a beam is 

(a) Determine the potential energy of this mode.

(b) Determine the kinetic energy of this mode.

(c) What is the nondimensional natural frequency that corresponds to this mode?

12 sin 3px.

(G = 80 * 109 N>m2, r = 7500 kg>m3)

(E = 210 * 109 N>m2, r = 7580 kg>m3)
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Vibrations of Continuous Systems 681

10.41 A circular bar with a length of 80 cm and radius of 3 cm is made of steel which

has an elastic modulus and mass density The

bar has a mode shape of X(x) 33.91 cos 13.74x.

(a) Determine the potential energy of this mode.

(b) Determine the kinetic energy of this mode. 

(c) What is the natural frequency that corresponds to this mode?

10.42 A carbon nanotube has a length of 200 nm and

radius of 5 nm. Using a fixed-free beam model for the nanotube, calculate its

first four natural frequencies.

10.43–10.45 Each of the beams of Figures SP10.43 through SP10.45 is made 

from a material of 

with A � 1.2 � 10�2 m2, I � 4.0 � 10�5 m4, and L � 1.4 m. Use 

Table 10.4 to calculate the beam’s three lowest natural frequency of

transverse vibrations.

E = 210 * 109  N>m2 and r = 7580 kg>m3

(E = 1  GPa, r = 2.3 g>cm3)

=
7600 kg>m3.200 * 109 N>m2

k = 3.5 × 105 N/m

FIGURE SP10.43 FIGURE SP10.44

FIGURE SP10.45

10.46 Find all non-trivial solutions to the boundary value problem

10.47 Find all non-trivial solutions to the boundary value problem

d 4X

dx 4
- lX = 0  X (0) = 0  X – (0) = 0  X (1) = 0  X – (1) = 0

d  
2X

dx 2 + lX = 0  X ¿(0) = 0  X ¿(1) = 0
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682 CHAPTER 10

10.48 Specify the SI units of the given quantity.

(a) Wave speed of longitudinal vibrations in a bar, c
(b) Flexural rigidity of a beam, El
(c) Natural frequency of sixth mode, �

6

(d) Nondimensional natural frequency of first mode, �
1

(e) Rayleigh’s quotient, R(w)

(f ) Inertia term in the beam equation, 

(g) Kinetic energy of a bar, 

CHAPTER PROBLEMS
10.1 A 5000 N · m torque is statically applied to the free end of a solid 20-cm radius

steel shaft with a length of 1.5 m that

is fixed at one end and free at its other end. The torque is suddenly removed,

and torsional oscillations begin. Plot the time-dependent oscillations of the free

end of the shaft.

10.2 A 5000 N · m torque is statically applied to a the midspan of a solid 

20-cm radius steel shaft with 

a length of 1.5 m that is fixed at one end and free at its other end. The 

torque is suddenly removed, and torsional oscillations begin. Determine an

expression for the time-dependent angular displacement of the free end of 

the shaft.

10.3 A steel shaft with a inner radius of

30 mm, outer radius of 50 mm, and length of 1.0 m is fixed at both ends.

Determine the three lowest natural frequencies of the shaft.

10.4 A 10,000-N · m torque is applied to the midspan of the shaft of Chapter

Problem 10.3 and suddenly removed. Determine the time-dependent angular

displacement of the midspan of the shaft.

10.5 A motor of mass moment of inertia 85 kg · m2 is attached to the end of the

shaft of Chapter Problem 10.1. Determine the three lowest natural frequencies

of the shaft and motor assembly. Compare the lowest natural frequency to that

obtained by making a one-degree-of-freedom model and approximating the

inertia effects of the shaft.

10.6 Show the orthogonality of the two lowest mode shapes of the system in Chapter

Problem 10.5.

10.7 Operation of the motor attached to the shaft of Chapter Problem 10.5 

produces a harmonic torque of amplitude 2000 N · m at a frequency of 

110 Hz. Determine the steady-state angular displacement of the end of 

the shaft.

10.8 A 20-cm-diameter, 2-m-long steel shaft 

has rotors of mass moment of inertia 110 kg · m2 and 65 kg · m2 attached to its

ends. Determine the three lowest natural frequencies of the shaft. Compare the

lowest nonzero natural frequency to that obtained by using a two-degree-of-

freedom model, ignoring the inertia of the shaft. 

10.9 Determine an expression for the natural frequencies of the shaft of Figure P10.9.

( r = 7600   kg/m3, G = 80 * 109 N/m2)

( r = 7850   kg/m3, G = 85 * 109 N/m2)

(G = 80 * 109 N/m2, r = 7500   kg/m3)

(G = 80 * 109 N/m2, r = 7500   kg/m3)

T = 1L
0 rA( 

0w  

0t )2dx

rA 0
2w

0t 
2
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Vibrations of Continuous Systems 683

10.10 An oil well drilling tool is modeled as a bit attached to the end of a long shaft,

unrestrained from rotation at its fixed end.

(a) Determine the equation defining the natural frequencies of the drilling tool.

(b) For a particular operation, the shaft 

is 20 m long with a 20-cm diameter. The tool operates at a speed of

400 rad/s. What are the limits on the moment of inertia of the drill bit

such that the two lowest nonzero natural frequencies of the tool are not

within 20 percent of the operating speed?

10.11 The shaft of Chapter Problem 10.1 is at rest in equilibrium when the time-

dependent moment of Figure P10.11 is applied to the end of the shaft.

Determine the time-dependent form of the resulting torsional oscillations.

10.12 The shaft of Chapter Problem 10.1 is at rest in equilibrium when it is 

subject to the uniform time-dependent torque loading per unit length of 

Figure P10.12. Determine the time-dependent form of the resulting torsional

oscillations.

(r = 7500   kg/m3, G = 80 * 109 N/m2)

L
kt

J, G, r
FIGURE P10.9

M

M0

t0 t

FIGURE P10.11

t0 2t0

M0

–M0

t

FIGURE P10.12

10.13 The elastic bar of Figure P10.13 is undergoing longitudinal vibrations. Let

u(x, t) be the time-dependent displacement of a particle along the centroidal

axis of the bar, initially a distance x from the left support.

(a) Draw free-body diagrams showing the external and effective forces acting on

a differential element of thickness dx, a distance x from the left end of the bar

at an arbitrary instant of time.

(b) Show that the governing partial differential equation is

(c) Introduce nondimensional variables to derive a nondimensional partial differ-

ential equation.

E 
02u
0x 2 = r

02u
0t 2

62129_10_Ch10_p633-688.qxd  3/16/11  12:52 PM  Page 683

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



684 CHAPTER 10

10.14 Using the results of Chapter Problem 10.13, determine the natural frequencies

of longitudinal vibrations of a bar fixed at one end and free at the other.

10.15 Show the orthogonality of mode shapes of longitudinal vibration of a bar fixed

at one end and free at its other end.

10.16 A large industrial piston operates at 1000 Hz. The piston head has a mass of

20 kg. The shaft is made from steel .

For what shaft diameters will all natural frequencies be out of the range of 900

to 1100 Hz?

10.17 The free end of the piston of Chapter Problem 10.16 is subject to a force

1000 sin �t N, where � � 100 Hz. If the diameter of the shaft is 8 cm,

determine the steady-state response of the piston.

10.18 Determine the five lowest natural frequencies of the system of Figure P10.18.

( r = 7500   kg/m3, E = 210 * 109 N/m2)

dx

x

u(x, t)

L

r, A, E

FIGURE P10.13

L

k2k1 r, E, A

r = 7500 kg/m3

E = 200 × 109 N/m2

A = 1.5 × 10–5 m2

L = 3 m
k1 = 1 × 106 N/m
k2 = 1.5 × 106 N/m

L

F0 sin wt
k r, E, A

r = 7500 kg/m3

E = 200 × 109 N/m2

A = 4.5 × 10–5 m2

k = 9 × 105 N/m
F0 = 800 N
w = 100 rad/s
L = 3.3 m

k

r = 7500 kg/m3

E = 200 × 109 N/m2

A = 4.5 × 10–5 m2

k = 9 × 105 N/m
m = 2.5 kg
L = 3.5 m
F0 = 600 N
w = 450 rad/s

L

r, E, A

F0 sin wt

m

FIGURE P10.18

FIGURE P10.19

FIGURE P10.20

10.19 Determine the steady-state response of the system of Figure P10.19.

10.20 Determine the steady-state response of the system of Figure P10.20.
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Vibrations of Continuous Systems 685

10.21 Draw frequency response curves for the response of the disk at the end 

of the shaft in Example 10.3. Plot the curves for � � 0.5, � � 2, and 

� � 20.0.

10.22 Determine the steady-state response of a circular shaft subject to a uniform

torque per unit length T
0

sin �t applied over its entire length.

10.23 Determine the steady-state response of the system of Figure P10.23.

L I

r, J, G
T0 sin wt k1

L r, A, E, I

F0 sin wt

r, A, E, I

F0 sin wt

L
2

L
2

FIGURE P10.23

FIGURE P10.30 FIGURE P10.31

10.24 Propeller blades totaling 1200 kg with a total mass moment of inertia 

of 155 kg · m2 are attached to a solid circular shaft 

of radius 40 cm and length 20 m. 

The other end of the shaft is fixed in an ocean liner. Determine

(a) The lowest natural frequency for torsional oscillations of the propeller.

(b) The lowest natural frequency for longitudinal motion of the propeller.

10.25 A pipe used to convey fluid is cantilevered from a wall. The steel pipe

has an inner

radius of 20 cm, a thickness of 1 cm, and a length of 4.6 m. For an empty pipe

determine

(a) The five lowest natural frequencies for torsional oscillation.

(b) The five lowest natural frequencies for longitudinal vibration.

(c) The five lowest natural frequencies for transverse motion.

10.26 Verify the characteristic equation given in Table 10.4 for a pinned-free beam.

10.27 Verify the characteristic equation given in Table 10.4 for a fixed-fixed beam.

10.28 Verify the orthogonality of the eigenfunctions given in Table 10.4 for a pinned-

free beam.

10.29 Verify the orthogonality of the eigenfunctions given in Table 10.4 for a fixed-

attached mass beam.

10.30–10.34 Determine the time-dependent displacement for the beam shown in

Figures P10.30 through P10.34.

( r = 7500   kg/m3, G = 80 * 109 N/m2, E = 200 * 109 N/m2)

E = 140 * 109 N/m2)G = 60 * 109 N/m2,
( r = 5000   kg/m3,
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686 CHAPTER 10

10.35 A root manipulator is 60 cm long, made of steel 

and has the cross section of Figure P10.35. One end of the

manipulator is fixed and a 1-kg mass is attached to its opposite end. Determine

the three lowest natural frequencies for transverse vibration of the manipulator.

r = 7500   kg/m3)
(E = 210 * 109 N/m2,

r, A, E, I

F0 e
–at

L
2

L
2

FIGURE P10.32

k
L

F0 sin wt

L
4

F0 sin wt m

L
3

L
3

L
3

EI
rAL4w = 1.2

= 0.35m
rAL

FIGURE P10.33

FIGURE P10.34

10 mm

15 mm

t = 1.5 mm

FIGURE P10.35

5 m

Xl = 0.5 mm

0.5 sin w t mm 0.8 sin w t mmw = 150 Hz

r = 7500 kg/m3
E = 210 × 109 N/m2

Xr = 0.8 mm

r = 10 cm
t = 1 cm

r

t

FIGURE P10.36

10.36 The steam pipe of Figure P10.36 is suspended from the ceiling in an

industrial plant. A heavy machine with a rotating unbalance is placed on 

the floor above the machine causing vibrations of the ceiling. If the frequency 

of the oscillations is 150 Hz and the amplitude of displacement of the pipe’s 

left support is 0.5 mm and the amplitude of displacement of the pipe’s right

support is 0.8 mm, determine the maximum deflection of the center of the

pipe. The pipe is modeld as a simply supported beam of length 5 m and has the

cross section shown in Figure P10.36.

10.37 A simplified model of the rocket of Figure P10.37 is a free-free beam.

(a) Calculate the five lowest natural frequencies for longitudinal vibration.

(b) Calculate the five lowest natural frequencies for transverse vibration.
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Vibrations of Continuous Systems 687

10.38 Longitudinal vibrations are initiated in the rocket of Figure P10.38 when thrust

is developed. Determine the Laplace transform of the transient response U(x, s)
when the thrust of Figure P10.38 is developed. Do not invert the transform.

10.39 Determine the response of a cantilever beam when the fixed support is subject

to a displacement f (t) � A sin �t. Use the Laplace transform method and

determine the transform W(x, s). Do not invert.

10.40 The tail rotor blades of a helicopter have a rotating unbalance of magnitude 

0.5 kg · m and operate at a speed of 1200 rpm. Modeling the tail section as a

cantilever beam of length 3.5 m with determine the

steady-state response of the tail section.

10.41 Determine the steady-state amplitude of the engine of Figure P10.41.

E = 31 * 106  N # m2,

F0

t0

FIGURE P10.37 FIGURE P10.38

4.1 m

Rotating
unbalance

m
r = 7800 kg/m3

E = 200 × 109 N/m2

I = 4.5 × 10–6 m4

A = 1.6 × 10–3 m2

m = 55 kg
k = 5 × 104 N/m
m0e = 1.8 × kg . m
w = 300 rpm

FIGURE P10.41

10.42 Show that the differential equation governing free vibration of a uniform beam

subject to a constant axial load, P, is

10.43 Determine the frequency equation for a simply supported beam subject to an

axial load.

10.44 Determine the frequency equation for a fixed-pinned beam subject to an axial

load.

10.45 A fixed-fixed beam is made of a material with a coefficient of thermal expansion


. After installed, the temperature is decreased by �T. Determine the beam’s

frequency equation.

10.46 Show orthogonality of the mode shapes for a simply supported beam subject to

an axial load.

10.47 Use Rayleigh’s quotient to approximate the lowest natural frequency of a

torsional shaft fixed at both ends.

EI 
04w

0x 4
- P 

02w
0x 2 + rA 

0w
0t 2 = 0
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688 CHAPTER 10

10.48 Use Rayleigh’s quotient to approximate the lowest natural frequency of a

torsional shaft with a disk of mass moment of inertia I placed at its midspan.

The shaft is fixed at both ends.

10.49 Use Rayleigh’s quotient to approximate the lowest natural frequency of a fixed-

free beam.

10.50 Use Rayleigh’s quotient to approximate the lowest natural frequency of a simply

supported beam with a mass m at its midspan. Use as the

trial function.

10.51 Use the Rayleigh-Ritz method to approximate the two lowest natural

frequencies of a fixed-free beam.

10.52 Use the Rayleigh-Ritz method to approximate the two lowest natural

frequencies of the system of Figure P10.52.

w (x) = sin(px>L)

r = 6000 kg/m3

E = 200 × 109 N/m2

2 m 20 mm

k = 1 × 106 N/m 35 mm

ρ = 4000 kg/m3

G = 60 × 109 N/m2

r = 35 mm

60 cm 40 cm

I = 7.1 kg . m2

E = 200 × 109 N/m2

I = 5.6 × 10–6 m4

A = 2.4 × 10–3 m2

mb = 200 kg

70 cm

80 kg

30 cm

FIGURE P10.52

FIGURE P10.53

FIGURE P10.56

10.53 Use the Rayleigh-Ritz method to approximate the two lowest natural frequencies

for the system of Figure P10.53.

10.54 Use the Rayleigh-Ritz method to approximate the three lowest natural frequencies

of a fixed-pinned beam. Use polynomial of order six or less as trial functions.

10.55 Use the Rayleigh-Ritz method to approximate the three lowest natural

frequencies and their corresponding mode shapes of a fixed-free beam. Use

polynomials of order six or less as trial functions.

10.56 Use the Rayleigh-Ritz method to approximate the two lowest frequencies of

transverse vibration of the system of Figure P10.56.

62129_10_Ch10_p633-688.qxd  3/16/11  12:53 PM  Page 688

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C h a p t e r 1 1

FINITE-ELEMENT
METHOD

11.1 INTRODUCTION
The finite-element method is a powerful numerical method that is used to provide approx-

imations to solutions of static and dynamic problems for continuous systems. The disci-

plines in which the finite-element method can be applied include stress analysis, heat

transfer, electromagnetics, fluid flow, and vibrations. Application of the finite-element

method to a continuous system requires the system be divided into a finite number of dis-

crete elements. Interpolations for the dependent variables are assumed across each element

and are chosen to assure appropriate interelement continuity. The interpolating functions

are developed in terms of the unknown values of the dependent variables at discrete points,

called nodes. The nodes for a one-dimensional system are located at element boundaries. A

variational principle is applied to derive equations whose solution leads to approximations

to the dependent variables at the nodes. The defined interpolations are used to provide

approximations to the dependent variables across the system. Lagrange’s equations, derived

using the application of calculus of variations, is applied for vibrations problems, resulting

in a set of differential equations for the dependent variables at the nodes.

The finite-element method for vibration problems could be derived by applying the

Rayleigh-Ritz method of Section 10.5 with the interpolating functions, u
1
(x),

u
2
(x), . . . , un(x), chosen to be defined piecewise over each element. Consider application

of the Rayleigh-Ritz method to approximate the natural frequencies and mode shapes of a

bar. The governing equation, the wave equation, has second-order spatial derivatives. Thus

the exact solution is at least twice differentiable. However, the energy scalar products used
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in evaluation of Rayleigh’s quotient, given in Table 10.6, only require that approximate

solutions be first-order differentiable. Thus functions that are only first-order differentiable

are permissible interpolating functions for Rayleigh-Ritz approximations. 

Boundary conditions for continuous systems are classified as being of two types.

Geometric boundary conditions are those that must be satisfied according to geometric con-

straints. For example, u(0) � 0, if x � 0 is a fixed support for a bar problem, is a geomet-

ric boundary condition. Natural boundary conditions are those that must be satisfied as a

result of force and moment balances. For example, at x � 1, if x � 1 is a free

end, is a natural boundary condition. This condition occurs because there is no external

force at the free end. Note from Table 10.6 that the energy scalar product definitions include

terms arising because of natural boundary conditions. Thus, since the natural boundary con-

ditions are incorporated into the energy scalar products, the chosen interpolating functions

for a Rayleigh-Ritz approximation must satisfy only geometric boundary conditions.

The set of admissible functions for use as interpolating functions in a Rayleigh-Ritz

approximation to solutions of the wave equation consists of those that are first-order dif-

ferentiable and satisfy all geometric boundary conditions (displacement conditions). By

similar arguments, it is determined that the set of admissible functions for use as basis func-

tions in a Rayleigh-Ritz approximation to solutions of the beam equation consists of those

that are second-order differentiable and satisfy all geometric boundary conditions (dis-

placement and slope conditions).

The Rayleigh-Ritz can be difficult to apply for vibrations problems. The assumed modes
method, introduced in the next section, is based on application of Lagrange’s equations and

leads to the same approximation for the same set of interpolating functions as the Rayleigh-

Ritz method. The finite-element method will be developed from the assumed modes method.

11.2 ASSUMED MODES METHOD
Consider the forced vibrations of a longitudinal bar of Figure 11.1. The displacement u is

a function of the spatial coordinate x and time t, u(x, t). Let u
1
(x), u

2
(x), . . . , un(x) be a

set of n linearly independent functions that are at least first-order differentiable and satisfy

all of the system’s geometric boundary conditions. An approximate solution is assumed as

(11.1)

The kinetic energy of the bar, according to the approximation of Equation (11.1), is cal-

culated as

=
1

2a
n

i  = 1
a

n

j  = 1

w#
iw

#
j cL

L

0
rAui(x)uj(x)dx + mui(L)uj(L) d

=
1
2L

L

0
rA aa

n

i  = 1

w#
iui(x)b2

dx +
1
2

maa
n

i  = 1

w#
iui(L)b2

T =
1
2L

L

0
rA a 0u

0t
b2

dx +
1
2

m c 0u
0t

(L) d2

u(x, t ) = a
n

i  = 1

wi(t )ui(x)

du>dx = 0
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Thus, the kinetic energy has the quadratic form

(11.2)

where

(11.3)

The potential energy of the system, according to the approximation of

Equation (11.1), is

(11.4)

The potential energy has the quadratic form

(11.5)V =
1

2a
n

i = 1
a

n

j = 1

kijwiwj

=
1
2a

n

i = 1
a

n

j = 1

wiwj 
cL

L

0
EA 

dui

dx
 
duj

dx
 dx + kui(L)uj(L) d

V =
1
2L

L

0
EAa 0u

0x
b2

dx +
1
2

k [u(L)]2

mij = L
L

0
rAui(x)uj(x)dx + mui(L)uj(L)

T =
1
2a

n

i = 1
a

n

j = 1

mijw
#
iw

#
j

FIGURE 11.1
(a) Forced longitudinal vibra-
tions of a bar are described
by a displacement function
u(x, t). (b) Assumed mode
approximations to mode
shapes.
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where

(11.6)

The virtual work done by the external force f (x, t) due to a virtual displacement �u(x, t) is

(11.7)

The virtual work can be written as

(11.8)

where

(11.9)

The assumed modes method approximates the solution to the forced vibrations of a

continuous system with n degrees of freedom. The generalized coordinates for the n-

degree-of-freedom model are the coefficient functions w
1
(t), w

2
(t), . . . , wn(t). Quadratic

forms of the kinetic and potential energies in terms of the generalized coordinates have

been obtained. Use of Lagrange’s equations, as applied in Section 7.4 to linear systems with

quadratic energy forms, leads to differential equations of the form

(11.10)

where the elements of the mass matrix M are the coefficients of Equation (11.3), the ele-

ments of the stiffness matrix K are the coefficients of Equation (11.6), and the elements of

the force vector F are the generalized forces of Equation (11.9). If scalar product notation

is used

(11.11)

Approximations to the n lowest natural frequencies are obtained as the square

roots of the eigenvalues of M�1K. The corresponding mode shape vectors are used in

Equation (11.1) to approximate the mode shapes for these frequencies. An approxi-

mation to the forced response is obtained by solving Equation (11.10) using the

methods of Chapter 9.

mij = (ui 
, uj )T  kij = (ui 

, uj )V  Q i = ( f, ui )

Mw
$ + Kw = F

Q i = L
L

0
f (x, t )ui(x)dx

dW = a
n

i = 1

Q i 
dwi

dW = L
L

0
f (x, t)du(x, t)dx = a

n

i = 1

dwiL
L

0
f (x, t)ui(x)dx

kij = L
L

0
EA 

dui

dx
 
duj

dx
dx + kui(L)uj(L)

Use the assumed modes method to approximate the three lowest natural frequencies and

mode shapes for the bar of Figure 11.1(a) with A(x) = 0.001(1 � 0.002x) m2, E � 200 �
109 N/m2, � � 7600 kg/m3, L � 3.6 m, m � 12 kg, and k � 4 � 107 N/m. Use the inter-

polating functions

(a)

which are the first three mode shapes of a uniform fixed-free bar.

u1(x) = sin apx
2L
b  u2(x) = sin a3px

2L
b  u3(x) = sin a5px

2L
b

EXAMPLE 1 1 . 1
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SO LU T I ON
Equations (11.3) and (11.6) are used to determine the elements of the mass and stiffness

matrices, respectively, for the assumed modes approximation. For example,

(b)

(c)

A MATLAB script is written using symbolic algebra to determine the mass and stiffness

matrices for this assumed modes approximation. The natural frequency approximations are

the square roots of the eigenvalues of M�1K. The eigenvectors are used to develop approx-

imations to the mode shapes. If X
1

� [X
11

X
12

X
13

]T is the eigenvector corresponding to the

eigenvalue that gives an approximation to the lowest natural frequency, then the approxi-

mation to the corresponding mode shape is

The natural frequency approximations are

(d)

The mode shape approximations are illustrated in Figure 11.1(b).

v1 = 1.86 * 103 rad/s  v2 = 4.99 * 103 rad/s  v1 = 9.72 * 103 rad/s

w1(x) = X11u1(x) + X12u2(x) + X13u3(x)

k12 = L
L

0
E   30.001(1 - 0.002x)4 a p

2L
b a3p

2L
b  cos apx

2L
b  cos a3px

2L
bdx - k

m12 = L
L

0
r  30.001(1 - 0.002x)4 sin apx

2L
b  sin a3px

2L
bdx - m

11.3 GENERAL METHOD
Consider again the bar of Figure 11.1(a). The bar is divided into n discrete segments, or ele-

ments. For purposes of discussion assume the elements are of equal length l � L �n. The dis-

cretization of a uniform bar into n elements of equal length l is shown in Figure 11.2(a). The

piecewise defined interpolating functions of Figure 11.2(b) are mathematically described as

(11.12)

When the functions of Equation (11.12) are used in an assumed modes approximation

of the form

(11.13)u(x, t) = a
n

i = 0

Wi(t)ui 
(x)

un(x) = c x
l

+ (1 - n) du(x - (n - 1)l ) 

+ c - x
l

+ (1 + j ) d [u(x - jl ) - u(x - ( j + 1)l )]     1 … j 6 n

uj(x) = c x
l

+ (1 - j ) d [u(x - ( j - 1)l ) - u(x - jl )]

u0(x) = a -
x
l

+ 1bu(x - l )
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then

(11.14)

Thus, the generalized coordinates are the displacements at the element boundaries. The

geometric boundary condition w(0, t) � 0 can be imposed simply by setting W
0

� 0.

The finite-element method is an application of the assumed modes method using

piecewise-defined basis functions. The basis function uj(x) is nonzero only over the jth and

( j � 1)st elements. The assumed modes method as described in Section 11.2 is applied.

The mass matrix is developed from the kinetic energy, the stiffness matrix is developed

from the potential energy, and the force vector is developed from the virtual work of the

external forces. As a result of the piecewise definition of the interpolating functions, it is

noted that mij � (ui, uj)T � 0 unless i � j � 1, j, or j � 1.

u( jl, t) = Wj

(a)

21 3 ... ...j n – 1 n

l

(b)

u0(x)
1

...

xl

u1(x)
1

xl 2l

u2(x)
1

xl 2l 3l

uj(x)
1

x( j – 1)l ( j + 1)ljl
...

un – 1(x)
1

x( n – 2)l L( n – 1)l

un(x)
1

x( n – 1)l L

FIGURE 11.2
(a) Discretization of uniform
bar into n elements of equal
length l. (b) Interpolating
functions that can be used
in an assumed modes
approximation.
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When the interpolating functions of Equation (11.12) are used in the assumed modes

method, Equation (11.13) can be rearranged to

(11.15)

where

(11.16)

Equations (11.15) and (11.16) are illustrated in Figure 11.3. Equation (11.15) rewrites the

assumed modes approximation as a linear combination of functions that are each nonzero

only over one element. The functions are in terms of the displacements at the element

boundaries. Application of the finite-element method is used to obtain approximations to

the displacements of the nodes (the element boundaries). Figure 11.3 illustrates that the

finite-element method, as applied to this problem, assumes a linear interpolation between

the nodal displacements.

Often a large number of elements are required to obtain accurate results for complex

structures. Application of the finite-element method is more convenient when formulated

as in Equation (11.15). This allows an approximation function to be defined for each ele-

ment in terms of the displacements at the element boundaries. The kinetic energy, poten-

tial energy, and work done by external forces are calculated for the element in terms of the

generalized coordinates representing displacements at element boundaries. For example,

the kinetic energy of element j can be written in the quadratic form

(11.17)

where w � [Wj�1
Wj ]

T is the element displacement vector, the vector of boundary displace-

ments, written in terms of global generalized coordinates and mj is the element mass matrix

written in local coordinates. The total kinetic energy of the system is the sum of the 

element kinetic energies

(11.18)

and has the quadratic form

(11.19)Tj =
1
2

W
#

T MW
#

T = a
n

j = 1

Tj

Tj =
1
2

 w# T
j mjw

#
j

fn(x) = c1
l

(Wn - Wn - 1)x + Wn (1 - n) + nWn - 1 d [u(x - (n - 1)l ) - u(x - nl )]

       3u(x - jl ) - u(x - ( j + 1)l )4 2 … j 6 n

fj(x, t) =
1
l
3(Wj + 1(t ) - Wj(t ))x + (  j + 1)lWj(t ) - jlWj + 1(t )4

f1(x, t) = W1(t ) 
x
l
 3u(x) - u(x - l )4

u(x, t) = a
n

i = 1

fi(x, t)

... ...
W1

W2
W3 Wj – 1

Wj
Wj + 1 Wn – 1

Wn

( j – 1)l ( j + 1)ljll 2l 3l ( n – 1)l nl

FIGURE 11.3
Linear interpolation between
nodes for finite-element
model of a bar.
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where W � [W
1

W
2

. . . Wn]
T is the global displacement vector, the vector of generalized

coordinates, and M is the global mass matrix.

The above development suggests a computational procedure where the energy meth-

ods are used to develop the finite-element model. The system is divided into a finite

number of discrete elements. The global generalized coordinates are the coordinates repre-

senting the degrees of freedom at the nodes. Each element has a specific number of degrees

of freedom. The bar element, for example, has two degrees of freedom, the displacements

of the ends of the element. A local coordinate system is defined for each element in the finite-

element model. The kinetic energy, potential energy, and virtual work are determined for

each element. The potential energy, for example, is written in quadratic form in terms of

an element displacement vector and element stiffness matrix. Model elements for a bar, a

torsional system, and a beam are developed in this fashion. The element mass and stiffness

matrices are assembled into global mass and stiffness matrices. The differential equations

are written in terms of the global generalized coordinates by using the global matrices. The

homogeneous solution of the differential equations provides approximations to the natural

frequencies and mode shapes. Nonhomogeneous equations are solved to provide approxi-

mation to the forced response.

The following sections provide the details of the method. The standard bar element

and standard beam element, written in terms of local coordinates, are developed.

Methods of assembling the element matrices into global matrices are discussed.

Examples of application of the finite-element method to bar, beam, and truss problems

are presented.

This chapter provides only an overview of the finite-element method. There is much

more to the method that is beyond the scope of the discussion. This includes error analy-

sis, element selection, substructuring, and algorithm development. Many excellent finite-

element software packages exist.

11.4 THE BAR ELEMENT
A bar element of length l is illustrated in Figure 11.4. The element has two degrees of free-

dom represented by w
1
, the displacement of the left end of the element, and w

2
, the dis-

placement of the right end of the element. Define a local coordinate along

the axis of element. The linear displacement function for the element is

(11.20)

The kinetic energy of the element, assuming uniform properties, is

(11.21)

=
1

2
 
rAl

3
(w# 2

1 + w#
1w

#
2 + w# 2

2 )

=
1
2L

l

0
rA c1

l
(w#

2 - w#
1)j + w#

1 d
2

d j

T =
1
2L

l

0
rAa 0u

0t
b2

d j

u(j, t) =
1

l
(w2 - w1)j + w1

j, 0 … j … l,
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Equation (11.21) can be rewritten in the quadratic form

(11.22)

Thus the element mass matrix is

(11.23)

The potential energy of the element, assuming uniform properties, is

(11.24)

The potential energy can be written in the quadratic form

(11.25)

from which the element stiffness matrix is determined as

(11.26)

If the element has an external axial load f (�, t), then the virtual work done by the load is

(11.27)

and the element generalized forces are

(11.28)

The torsion element of Figure 11.5 is developed in the same manner as the bar ele-

ment. If w
1

is the angular displacement at the left end of the element and w
2

the angular

displacement at the right end of the element, then the finite-element approximation to the

q1 = L
l

0
f (j, t)a1 -

j

l
bd j  q2 = L

l

0
f (j, t)

1
l
d j

= dw1L
l

0
f (j, t)a1 -

j

l
bd j + dw2L

l

0
f (j, t)

1
l

 d j
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l

0
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(dw2 - dw1)j + dw1 dd j
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l

0
f (j, t) du(j, t) d j
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-1   1 d
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l
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EA c1

l
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V =
1
2L

l

0
EAa 0u

0j
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d j
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rAl
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 c2 1

1 2
d

T =
1
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 w# Tmw# =

1
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rAl

6
3w#
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2
d cw

#
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d
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l

ξ

FIGURE 11.4
A bar element of length l has two degrees of
freedom. A linear function in terms of local
coordinate � interpolates the displacement.
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angular displacement over the element is given by

(11.29)

Application of Equation (11.29) to the kinetic energy

(11.30)

leads to the element mass matrix

(11.31)

Application of Equation (11.29) to the potential energy

leads to the element stiffness matrix

(11.32)k =
JG

l
 c   1 -1

-1   1 d

V =
1

2L
l

0
JG a 0u

0j
b2

d j

m =
rJl

6
 c2 1

1 2
d

T =
1

2L
l

0
rJ a 0u

0t
b2

d j

u(j, t) = a1 -
j

l
bw1 +

1
l
w2

w2

l

ξ

w1
FIGURE 11.5
Uniform torsion element of length l has two
degrees of freedom represented by w1 and w2,
angular displacements at the ends of the element.

Use a one-element, finite-element model to approximate the lowest natural frequencies and

mode shapes of a free-free bar.

SO LU T I ON
The displacements of the ends of the bar are the two generalized coordinates. The differ-

ential equations for the model are

(a)

The approximations to the natural frequencies are obtained by assuming a normal-mode

solution of Equation (a) as w � [1 �]Te iwt, resulting in

(b)

where The characteristic equation is obtained by setting the determinant of the

coefficient matrix in Equation (b) to zero, giving

(c)
The solutions to Equation (c) are

(d)

The mode shape corresponding to the rigid-body mode is [1 1]T, while the mode shape

corresponding to the second mode is [1 �1]T.

v = 0, A
6E
rL2

4v4 - 4fv2 = 0

f = 6E
rL2.

c -2v2 + f -f
-f -2v2 + f

d c 1
x
d = c0

0
d

rAL

6
c2 1
1 2

d cw
$

1

w
$

2

d +
EA
L
c   1 -1
-1   1 d c

w1

w2

d = c0
0
d

EXAMPLE 1 1 . 2
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EXAMPLE 1 1 . 3
Use a one-element, finite-element model to approximate the lowest natural frequency of a

fixed-free bar.

SO LU T I ON
The differential equations for a one-element, finite-element model are those given in

Equation (a) of Example 11.2. Since the bar is fixed at x � 0, w
1

� 0. When one coordi-

nate is zero, to obtain the appropriate finite-element mode, simply cross-out the row and

column associated with the generalized coordinate in the element mass and stiffness matrix.

The differential equations, crossing out the first row and first column of the mass and stiff-

ness matrices, reduce to

(a)

or

(b)

The approximation to the natural frequency using a one-element approximation is

obtained from Equation (b) as

(c)

Note that the one-element, finite-element model of the fixed-free bar leads to the same

natural frequency approximation that is obtained by using a SDOF model when an equiv-

alent mass of is lumped at the end of the bar.
rAL

3

v = A
3E
rL2

w
$

2 +
3E
rL2w2 = 0

rAL

6
(2w

$
2) +

EA
L

w2 = 0

EXAMPLE 1 1 . 4
Use a one-element, finite-element model to approximate the lowest natural frequency of

torsional oscillations of a fixed-free elastic shaft with a rigid disk of moment of inertia I
attached at its free end, as in Figure 11.6.

SO LU T I ON
The mass matrix and stiffness matrix for a one-element model for the shaft are given by

Equations (11.31) and (11.32), respectively. The bar is fixed at x � 0; thus, w
1

� 0 and

the first row and first column of the mass and stiffness matrix are crossed out when devel-

oping the model. However, a disk of moment of inertia I is attached at the free end, adding

to the kinetic energy such that

(a)

Thus, the model of the system is

(b)arJL
3

+ Ibw
$

2 +
JG

L
w2 = 0

T =
1

2
a2rJL

6
bw# 2

2 +
1
2

Iw# 2
2
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11.5 BEAM ELEMENT
The potential energy scalar product for a beam involves the second spatial derivative of the

displacement. Thus a Rayleigh-Ritz or assumed modes approximation must be twice dif-

ferentiable. When a finite-element model of the beam is developed by the assumed modes

method, the requirement that the interpolation be twice differentiable leads to requiring

that displacements and slopes (first spatial derivatives) be continuous at element bound-

aries. In order to enforce this requirement over the entire beam, each beam element has

four degrees of freedom represented by the displacements and slopes at the ends of the ele-

ment. Let w
1

represent the transverse displacement of the left end of the element, w
2

the

slope at the left end of the element, w
3

the transverse displacement of the right end of the

element, and w
4

the slope at the right end of the element, as illustrated in Figure 11.7. If

� is the local coordinate over the beam element, the finite element approximation for the

displacement across the beam element must satisfy

(11.33)

The deflection of a beam element without transverse loading across its span, but with pre-

scribed displacements and slopes at its ends, is

(11.34)u(j) = C1j
3 + C2j

2 + C3j + C4

u(0, t ) = w1  0u
0j

(0, t ) = w2  u (l, t ) = w3  0u
0j

(l, t ) = w4

or

(c)

The natural frequency approximation for the system of Figure 11.6 using a one-element,

finite-element model is obtained from Equation (c) as

(d)v = A
3JG

rJL + 3IL

w
$

2 + a 3JG

rJL + 3IL
bw2 = 0

L
I

r, J, G

FIGURE 11.6
A one-element, finite-element model is used
to approximate the lowest natural frequency
of a torsional shaft with an attached disk.

l

ξ

w2

w1 w3

w4

FIGURE 11.7
Beam element has four degrees of freedom,
represented by the displacements and slopes
of each end.
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Using Equation (11.33) in Equation (11.34) to determine the constants leads to

(11.35)

(11.36)

(11.37)

(11.38)

Use of Equations (11.35) through (11.38) in Equation (11.34) and rearranging leads to

(11.39)

The kinetic energy of the beam element is

(11.40)

Use of Equation (11.39) in Equation (11.40) leads to a quadratic form of kinetic energy

(11.41)

where and the element (local) mass matrix for a uniform beam

element is

(11.42)

The potential energy of the beam element is

(11.43)

Use of Equation (11.39) in Equation (11.43) leads to the quadratic form of potential

energy

(11.44)

where the element (local) stiffness matrix for a uniform beam element is

(11.45)k =
EI
l 3

  ≥
   12    6l -12   6l 
   6l    4l 2 -6l    2l 2

-12 -6l     12 -6l 
   6l    2l 2 -6l    4l 2

¥

V =
1

2
 wT kw

V =
1

2L
l

0
EI a 02u

0j2 b
2

d j

m =
rAl

420
 ≥

  156   22l   54 -13l
  22l   4l 2   13l -3l 2

   54   13l   156 -22l
-13l -3l 2 -22l    4l 2

¥

w# T = 3w# 1 w#
2 w#

3 w#
44

T =
1
2

 w# Tmw#

T =
1
2L

l

0
rAa 0u

0t
b2

d j

+ a3
j2

l 2
- 2
j3

l 3
bw3 + a -

j2

l 2
+
j3

l 3
bw4

u(j, t) = a1 - 3
j2

l 2
+ 2
j3

l 3
bw1 + a j

l
- 2
j2

l 2
+
j3

l 3
bw2

C4 = w1

C3 = w2>l
C2 =

1
l 2

(-3w1 - 2lw2 +  3w3 - lw4)

C1 =
1
l 3

(2w1 + lw2 - 2w3 + lw4)
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The method of virtual work is used to obtain the generalized forces as

(11.46)

(11.47)

(11.48)

(11.49)q4 = L
l

0
f (j, t)a -

j2

l 2
+
j3

l 3
b l  d j

q3 = L
l

0
f (j, t)a3

j2

l 2
- 2
j3

l 3
bd j

q2 = L
l

0
f (j, t)a j

l
- 2
j2

l 2
+
j3

l 3
b l  d j

q1 = L
l

0
f (j, t)a1 - 3

j2

l 2
+ 2
j3

l 3
bd j

Use a one-element, finite-element model to approximate the natural frequencies and mode

shapes of a uniform fixed-free beam.

SO LU T I ON
The differential equations governing the free vibrations of a one-element, finite-element

model of a beam are

(a)

The beam is fixed at x � 0; thus, w
1

� 0 and w
2

� 0. Thus, for the one-element, finite-

element model, the first and second rows and columns are crossed out, leaving

(b)

A normal-mode solution is assumed for this two degree-of-freedom system as

w � [1 �]T ei�t, which when substituted into Equation (b) leads to an eigenvalue

problem for � as

(c)-v2
 

rAL

420
 c 156 -22L

-22L 4L2 d c 1x d +
EI
L3 c 12 -6L

-6L 4L2 d c 1x d = c0
0
d

rAL

420
c 156 -22L
-22L 4L2 d cw

$
3

w
$

4

d +
EI
L3  c 12 -6L

-6L 4L2 d cw3

w4

d = c0
0
d

+
EI
L3  ≥

12 6L -12 6L 
6L 4L2 -6L 2L2

-12 -6L 12 -6L 
6L 2L2 -6L 4L2

¥ ≥
w1

w2

w3

w4

¥ = ≥
0
0
0
0

¥

rAL

420
≥

156 22L 54 -13L
22L 4L2  13L -3L2 
54  13L  156 -22L

-13L -3L2 -22L 4L2 
¥ ≥

w
$

1

w
$

2

w
$

3

w
$

4

¥

EXAMPLE 1 1 . 5
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Finite-Element Method 703

FIGURE 11.8
A one-element, finite-element model of fixed-free beam has two degrees of freedom, which leads to
approximations of the first two mode shapes.

where the values of � are the square roots of the eigenvalues of the matrix

(d)

The approximations to the natural frequencies are calculated as

(e)

The approximations to the mode shapes are represented by the eigenvectors, which are

(f)

The discrete mode shape vectors of Equation (f ) are substituted into Equation (11.39) to

obtain approximations for the mode shapes. The results are

(g)

and

(h)

Equations (g) and (h) are plotted in Figure 11.8.

w2(x) = 3
x2

L2 - 2
x2

L3 + 7.62a -
x2

L2 +
x3

L3 b

w1(x) = 3
x2

L2 - 2
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L3 + 1.38a -
x2

L2 +
x3

L3 b

W1 = c 1
1.38
d  W2 = c 1

7.62
d

v1 = 3.53A
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rAL4
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Use a one-element, finite-element model to approximate the steady-state response of the

pinned-pinned beam of Figure 11.9 with a concentrated load F(t) � 80 sin 100t at its

midspan.

SO LU T I ON
The differential equations for a one-element, finite-element model of a beam are given in

Equation (a) of Example 11.5, except that the right-hand side is [q
1

q
2

q
3

q
4
]T. For a

pinned-pinned beam, w
1

� 0 and w
3

� 0. The first and third columns of the stiffness

matrix and the mass matrix are crossed out, leading to

(a)

The concentrated load can be represented using the Dirac delta function of Appendix A

as

(b)

The generalized forces are obtained by

(c)

(d)

Substituting given values into the differential equations leads to

(e)

A steady-state solution is assumed to Equation (e) as

(f)cw2

w4

d = cW2

W4

d  sin 100t

c 0.1737
-0.1303

 -0.1303
0.1737

d cw
$

2

w
$

4

d + c6300
3150

 3150
6300

d cw2

w4

d = c 10
-10
d  sin 100t

q4 = L
L

0
80 sin 100t daj -

L
2
b a -

j2

L2 +
j3

L3 bd j = 10 sin 100t

q2 = L
L

0
80 sin 100t daj -

L
2
b a j

L
- 2
j2

L2 +
j3

L3 bd j = 10 sin 100t

F (x, t) = 80 sin 100t dax -
L
2
b

rAL

420
c 4L2 -3L2

-3L2 4L2 d cw
$

2

w
$

4

d +
EI
L3  c4L2 2L2

2L2 4L2 d cw2

w4

d = cq2

q4

d

EXAMPLE 1 1 . 6

E = 210 × 109 N/m2

I = 1.5 × 10–4 m4

ρ = 7600 kg/m2

A = 3 × 10–4 m2

1 m 1 m

10 sin 100t N

FIGURE 11.9
A one-element, finite-element model is applied to determine the steady-state amplitude of the point
of application of a concentrated load.
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which when substituted into Equation (e) yields

(g)

The steady-state response is obtained by substituting Equation (g) into Equation (11.39)

with W
1

� W
3

� 0 yielding

(h)W (x) = 0.99091a x
2

- 2
x2

4
+

x3

8
b - 0.99091a -

x2

4
+

x3

8
b

cW2

W4

d = c   0.09091
-0.09091

d

11.6 GLOBAL MATRICES
Local mass and stiffness matrices are derived for bar, torsion, and beam elements in

Sections 11.4 and 11.5. The accuracy of the finite-element method improves as the

number of elements used increases. The use of many elements is necessary in the approxi-

mation of complicated systems. Local mass and stiffness matrices are calculated for each

element and assembled into global matrices. When many elements are used, an efficient

assembly algorithm is necessary.

A bar element has two degrees of freedom. The local generalized coordinates are the

displacements of the ends of the elements. An n-element finite-element model of a bar, as

illustrated in Figure 11.10, has at most n � 1 degrees of freedom. The global generalized

coordinates are the displacements of the boundaries between elements and the ends of the

bar. Each geometric boundary condition reduces by one the number of global degrees of

freedom. For example if the left end of the bar is fixed, then its displacement is zero and

the model has n degrees of freedom.

Let W
1
, W

2
, . . . . , Wn represent the global generalized coordinates. Each local gener-

alized coordinate is one of the global generalized coordinates, unless that element is subject

to a geometric boundary condition. The local mass and stiffness matrices can be expanded

to include all global generalized coordinates. The total kinetic energy of the system is the

sum of the kinetic energies of the elements. Let

(11.50)

be the kinetic energy of the ith element. The local mass matrix can be enlarged and the

kinetic energy written in terms of the global generalized coordinates as

(11.51)Ti =
1
2

 W
#

T
 M
∼

iW
#

Ti =
1
2

 w# T
i miw

#
i

21 3 ... ...j n – 1 n

W1 W2 W3 Wj – 1 Wn – 2 Wn – 1 WnWj

FIGURE 11.10
An n-element model of a
fixed-free bar. Global general-
ized coordinates are the dis-
placements of the nodes,
which are located at element
boundaries or ends of the
bar. The bar is fixed at x � 0,
W0 � 0.
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The total kinetic energy of the system is

(11.52)

Thus, the global mass matrix is

(11.53)

The global stiffness matrix and the global force vector can be obtained in an analogous

manner.

M = a
n

i = 1

M
∼

i

T = a
n

i = 1

Ti =
1
2a

n

i = 1

 W
#

TM
∼

iW
#

=
1
2

 W
#

T aa
n

i = 1

M
∼

ibW
#

 

Derive the global mass matrix for a three-element model of a fixed-free bar.

SO LU T I ON
The three-element model of a fixed-free bar is shown in Figure 11.11. The three-element

model has three degrees of freedom, noting that u(0) � 0. The global generalized coordi-

nates are the displacements of the ends of the elements. The assembly of the global mass

matrix from the local mass matrices is shown. The global displacement vector is W �
[W

1
W

2
W

3
]T. The quadratic form of the kinetic energy is .

Element 1 Local generalized coordinates:

(a)

Element mass matrix in terms of local generalized coordinates:

(b)m1 =
rAl

6
 c2 1

1 2
d

w1 = 0  w2 = W1

T = 1
2 W

#
TMW

#

EXAMPLE 1 1 . 7

(a)

(b)

21 3

L
3

L
3

L
3

W1 W2 W3

l

ξ

w1 = 0 w2 = W1

l

ξ

w1 = W1 w2 = W2

l

ξ

w1 = W2 w2 = W3

FIGURE 11.11
(a) Three-element model of fixed-free bar has three degrees of freedom. The elements are of equal
length . (b) Local coordinates for each element.l = L

3
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Kinetic energy of element:

(c)

Element mass matrix in terms of global generalized coordinates:

(d)

Element 2 Local generalized coordinates:

(e)

Element mass matrix in terms of local generalized coordinates:

(f)

Element mass matrix in terms of global generalized coordinates:

(g)

Element 3 Local generalized coordinates:

(h)

Element mass matrix in terms of local generalized coordinates:

(i)

Element mass matrix in terms of global generalized coordinates:

(j)

Thus the global mass matrix is

(k)=
rAl

6
 C4 1 0

1 4 1
0 1 2

S
=
rAl

6
 £ C 2 0 0

0 0 0
0 0 0

S + C2 1 0
1 2 0
0 0 0

S + C0 0 0
0 2 1
0 1 2

S ≥
M = M

∼
1 + M

∼
2 + M

∼
3

M
∼

3 =
rAl

6
 C0 0 0

0 2 1
0 1 2

S
m3 =

rAl

6
 c2 1

1 2
d

w1 = W2  w2 = W3

M
∼

2 =
rAl

6
 C2 1 0

1 2 0
0 0 0

S
m2 =

rAl

6
 c2 1

1 2
d

w1 = W1  w2 = W2

M
∼

1 =
rAl

6
 C2 0 0

0 0 0
0 0 0

S
T =

1

2
 rAl

6
 (2w 

# 2
2 ) =

1
2
 rAl

6
 (2W

#
2

1 ) =
1
2

[W
#

1 W
#

2 W
#
3]C2 0 0

0 0 0
0 0 0

S CW
#

1

W
#

2

W
#

3

S
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The model of Example 11.7 has only three degrees of freedom, and it is easy to con-

struct . It is more difficult for systems with a large number of degrees of freedom. For

such systems computer analysis will be used to formulate the model and solve the resulting

differential equations. Thus it is important to have an efficient algorithm for assembly of

the global mass matrices.

Let Si be a transformation matrix between the local generalized coordinates for element

i and the global generalized coordinates,

(11.54)

The total kinetic energy of the system is

(11.55)

Using Equation (11.54) in Equation (11.55) leads to

(11.56)

Thus the global mass matrix is

(11.57)M = a
n

i = 1

ST
i miSi

=
1

2
W
#

T aa
n

i = 1

ST
i miSibW

#

=
1

2a
n

i = 1

W
#

TST
i miSiW

#

T =
1
2a

n

i = 1

(SiW
#

)Tmi(SiW
#

)

T =
1

2a
n

i = 1

w# i
Tmiw

#
i

wi = SiW

M
∼

Illustrate the development of  for the system of Example 11.7 using the transformation matrix.

SO LU T I ON
The transformation between the local generalized coordinates and the global generalized

coordinates for element 2 of Example 11.7 is

(a)

Thus

(b)=
rAl

6
 C2 1 0

1 2 0
0 0 0

S
=
rAl

6
 C1 0

0 1
0 0

S c2 1 0
1 2 0

d

M
∼

2 = C1 0

0 1
0 0

S  
rAl

6
 c2 1

1 2
d c1 0 0

0 1 0
d

cw1

w2

d = c1
0
 0

1
 0

0
d CW1

W2

W3

S

M
∼

2

EXAMPLE 1 1 . 8
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11.7 BENCHMARK EXAMPLE
The response of the machine on the beam is considered using the finite-element method.

Five elements are used to model the beam, as shown in Figure 11.12(a), which indicates

the global coordinates used. The machine is a discrete mass connected to the beam by an

(a)

21 3 4 5

W1

x = 1.2 x = 2.4 x = 3.6 x = 4.8

W2

W3 W5 W7

W4 W6 W8 W9

k c

m

W10

w3

w4
1

w3w1

w4
w1 = W1
w2 = W2
w3 = W3
w4 = W4

w1 = 0
w2 = 0
w3 = W1
w4 = W2

w2
2

w3w1

w4
w1 = W3
w2 = W4
w3 = W5
w4 = W6

w2
3

w4w1

w3
w1 = W5
w2 = W6
w3 = W7
w4 = W8

w2
4

w1 w3

w4 w1 = W7
w2 = W8
w3 = 0
w4 = W9

w2
5

(b) (c)

W10

FIGURE 11.12
(a) Five-element, finite-
element model of machine
attached by isolator to fixed-
pinned beam. The model has
ten degrees of freedom. (b)
Relation between local coor-
dinates and global coordi-
nates for model. (c) The
machine adds another degree
of freedom to the model.
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isolator. The beam is assumed to be undamped. The following describes the construction

of the model. There are a total of 10 degrees of freedom in the model. For the element

matrices It is noted that

(a)

and

(b)

The local mass matrix for each element is

(c)

The local stiffness matrix for each element is

(d)

The relation between the local coordinates for each element and the global coordinates are

shown in Figure 11.10(b).

Element 1: w
1

� 0, w
2

� 0, w
3

� W
1

w
4

� W
2

The transformation matrix between the

local coordinates and the global coordinates is

(e)S1 = ≥
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

¥

= (1.47 * 107 N/m)≥
  12   7.2 -12   7.2

  7.2    5.76 -7.2     2.88
-12 -7.2   12 -7.2

  7.2    2.88 -7.2    5.76

¥

K =
EI
/3  ≥

   12   6/ -12   6/
   6/    4/2 -6/    2/2

-12 -6/   12 -6/
   6/    2/2 -6/    4/2

¥

= (0.128 kg)≥
156    26.4 54 -15.6

  26.4    5.76  15.6    -4.32
 54    15.6 156 -26.4

-15.6 -4.32 -26.4       5.76

¥

M =
rA/
420

 ≥
156 22/ 54 -13/
  22/   4/2  13/    -3/2

 54  13/ 156 -22/
-13/ -3/2 -22/     4/2

¥

EI
/ 3 =

(210 * 109 N>m2)(1.21 * 10- 4 m4)

(1.2 m)3 = 1.47 * 107 N>m

rA/
420

=
(438 N/m) (1.2 m )a 1

9.81 m/s2 b
420

= 0.128 kg

/ = L
5 = 1.2 m.
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Finite-Element Method 711

Element 2: w
1

� W
1

w
2

� W
2
, w

3
� W

3
, w

4
� W

4
The transformation matrix between

the local coordinates and the global coordinates is

(f)

Element 3: w
1

� W
3
, w

2
� W

4
, w

3
� W

5
, w

4
� W

6
The transformation matrix between

the local coordinates and the global coordinates is

(g)

Element 4: w
1

� W
5
, w

2
� W

6
, w

3
� W

7
, w

4
� W

8
The transformation matrix between

the local coordinates and the global coordinates is

(h)

Element 5: w
1

� W
7
, w

2
� W

8
, w

3
� 0, w

4
� W

9
The transformation matrix between

the local coordinates and the global coordinates is

(i)

Discrete Mass The displacement of the discrete mass is W
10

. Its kinetic energy is ,

where m � 458.72 kg. The potential energy of the spring is , k �

. The 10 � 10 global matrix for the discrete element is ; the global stiff-

ness matrix is . Their elements are zero except for

10,10
� 458.72 kg (j)

and

5,5
� 5.81 � 105 N/m

5,10
� �5.81 � 105 N/m

10,5
��5.81 � 105 N/m

10,10
� 5.81 � 105 N/m (k)K

∼
K
∼

K
∼

K
∼

M
∼

K
∼

M
∼

5.81 * 105 N/m

V = 1
2k (W10 - W5)

2

T = 1
2mW

#
2
10

S5 = ≥
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0

¥

S4 = ≥
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0

¥

S3 = ≥
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

¥

S2 = ≥
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

¥
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712 CHAPTER 11

K = a
5

i = 1

ST
i  kSi + K

∼

(l)Y
39.936 0 6.912 -1.9968 0 0 0 0 0 0

0 1.4746 1.9968 -0.553 0 0 0 0 0 0
6.912 1.9968 39.936 0 6.912 -1.9968 0 0 0 0

-1.9968 -0.553 0 1.4746 1.9968 -0.553 0 0 0 0

0 0 6.912 1.9968 39.936 0 6.912 -1.9968 0 0

0 0 -1.9968 -0.553 0 1.4746 1.9968 -0.553 0 0

0 0 0 0 6.912 1.9968 39.936 0 -1.9968 0

0 0 0 0 -1.9968 -0.553 0 1.4746 -0.553 0

0 0 0 0 0 0 -1.9968 -0.553 0.7373 0

0 0 0 0 0 0 0 0 0 458.72

= I

The global matrices are formed by

M = a
5

i = 1

ST
i  mSi + M

∼

(m)Y
3.528 0 -1.764 1.0584 0 0 0 0 0 0

0 1.6934 -1.0584 0.4234 0 0 0 0 0 0

-1.764 -1.0584 3.528 0 -1.764 1.0584 0 0 0 0

1.0584 0.4234 0 1.6934 -1.0584 0.4234 0 0 0 0

0 0 -1.764 -1.0584    3.5338 0 -1.764 1.0584 0 -0.0058

0 0 1.0584 0.4234 0 1.6934 -1.0584 0.4234 0 0

0 0 0 0 -1.764 -1.0584    3.528 0 1.0584 0

0 0 0 0 1.0584 0.4234 0 1.6934 0.4234 0

0 0 0 0 0 0 1.0584 0.4234 0.8467 0

0 0 0 0 -0.0058 0 0 0 0 0.0058

= 108I

The natural frequency approximations are the square roots of the eigenvalues of M
_1K,

which are

(n)

The forced response is determined by

(o)MW
$

+ KW = F

v9 = 1.953 * 104 rad/s  v10 = 2.523 * 104 rad/s

v6 = 6.348 * 103 rad/s   v7 = 9.375 * 103 rad/s   v8 = 1.371 * 104 rad/s

v4 = 2.205 * 103 rad/s  v5 = 3.825 * 103 rad/s

v1 = 34.7 rad/s  v2 = 330.2 rad/s  v3 = 1.048 * 103 rad/s
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Finite-Element Method 713

where F is a 10�10 vector with all elements equal to zero except

(p)

A steady-state solution is assumed as W � U sin 80t, which leads to

(q)

The transmitted force is

(r)

The steady-state approximation is plotted in Figure 11.13.

= 20,867 N

k | U10 - U5 | = (5.81 * 105 N/m) | 3.78 * 10-2 m  +  1.85 * 10-3 m |

Y  m

-4.95 * 10-4

-7.04 * 10-4

-1.39 * 10-3

-6.81 * 10-4

-1.85 * 10-3

    4.71 * 10-5

-1.25 * 10-3

    8.56 * 10-4

   1.13 * 10-3

-3.78 * 10-2

= IY
U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

I

F10 = 90,000 sin 80t N

–2
0 2 31 4 5 6

w
 (

m
)

–1

–1.4

–1.8

–0.8

–1.2

–1.6

–0.6

–0.4

–0.2

× 10–3

0

x (m)

FIGURE 11.13
Steady-state mode shape of
beam as predicted by finite-
element method.
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714 CHAPTER 11

11.8 FURTHER EXAMPLES

Use a three-element, finite-element model to approximate the lowest natural frequency and

its corresponding mode shape for a uniform fixed-free bar.

SO LU T I ON
The three-element model of a fixed-free bar is illustrated in Figure 11.11. The global mass

matrix was derived in Example 11.7. Using the same method, the global stiffness matrix is

determined as

(a)

The differential equations for the bar in the finite-element model are

(b)

The natural frequencies are the square roots of the eigenvalues of M�1K. The mode shape

vectors are the corresponding eigenvectors. The lowest natural frequency and mode shape

vector are calculated as

(c)

The mode shape vector provides the displacements at the element boundaries. The finite-

element approximation to the mode shape is a piecewise linear approximation between the

element boundaries.

v1 = 1.584A
E
rL2  W = C0.577

1
1.155

S

 rAl

6
 C4 1 0

1 4 1
0 1 2

S CW1

$

W2

$

W3

$ S +
EA
l

 C    2 -1    0
-1    2 -1
   0 -1    1

S CW1

W2

W3

S = C0
0
0
S

  K =
EA
l

 C    2 -1    0
-1    2 -1
   0 -1    1

S

EXAMPLE 1 1 . 9

Use a two-element, finite-element model to approximate the four lowest natural frequen-

cies for the system of Figure 11.14(a). Note that the exact solution for this system was

obtained in Example 10.6.

SO LU T I ON
The two-element, finite-element model for the fixed-free beam illustrating the global gen-

eralized coordinates is shown Figure 11.14(b). The beam element of Section 11.5 is used.

Note that since the left end of the beam is fixed, the geometric boundary conditions of zero

slope and zero displacement must be imposed. The generic element mass and stiffness

EXAMPLE 1 1 . 1 0
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Finite-Element Method 715

matrices for a beam element are

(a)

(b)

The potential energy for the discrete spring is incorporated into the local stiffness matrix

for element 2. For this model .

Element 1 Local generalized coordinates:

(c)w1 = 0  w2 = 0  w3 = W1  w4 = W2

l = L>2

k =
El
l 3

 ≥
  12   6l -12   6l
  6l   4l 2 -6l   2l 2

-12 -6l   12 -6l
  6l   2l 2 -6l   4l 2

¥

m =
rAl

420
 ≥

  156   22l   54 -13l
  22l   4l 2   13l -3l 2

  54   13l   156 -22l
-13l -3l 2 -22l   4l 2

¥

k = 2 × 106 N/m

1 m

(a)

m = 200 kg
I = 5 × 10–5 m4

E = 210 × 109 N/m2

(b)

21

W1 W3

W2 W4

(c)

1

w3 = W1w1 = 0

w4 = W2w2 = 0

2

w3 = W3w1 = W1

w4 = W4w2 = W2

FIGURE 11.14
(a) System of Example 11.10. (b) Two-element, finite-element model of beam illustrating global gener-
alized coordinates. (c) Local generalized coordinates for each element.
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716 CHAPTER 11

Element global matrices are

(d)

Element 2 Local generalized coordinates:

(e)

The element stiffness matrix for element 2 must be modified to account for the potential

energy of the spring, . The stiffness matrix term k
33

is the only term affected by

the discrete spring. The global mass and stiffness matrices for element 2 are

(f)

(g)

The global mass and stiffness matrices are

(h)

(i)

Substitution of given values leads to

(j)M = ≥
74.29 0 12.86 -1.55

0 0.476 1.55 -0.179
12.86 1.55 37.14 -0.262
-1.55 -0.179 -2.62    0.238

¥

K = K
∼

1 + K
∼

2 =
EI
l 3

 E
  24 0 -12 6l

0    8l 2 -6l  2l 2

-12 -6l 12 +
kl 3

EI
 -6l 

  6l    2l 2 -6l  4l 2

U

M = M
∼

1 + M
∼

2 =
rAl

420
 ≥

   312 0  54 -13l
0   8l 2   13l -3l 2

  54   13l   156 -22l
-13l -3l 2 -22l   4l 2

¥

K
∼

2 =
El
l 3

 E
  12   6l -12   6l
  6l   4l 2 -6l    2l 2

-12 -6l 12 +
kl 3

EI
-6l

  6l    2l 2 -6l    4l 2

U

M
∼

2 =
rAl

420
 ≥

  156   22l   54 -13l
  22   4l 2   13l -3l 2

  54   13l   156 -22l
-13l -3l 2 -22l   4l 2

¥

V = 1
2kv2

3

w1 = W1  w2 = W2  w3 = W3  w4 = W4

M
∼

1 =
rAl

420
 ≥

  156 -22l 0 0
-22l   4l 2 0 0

0 0 0 0
0 0 0 0

¥  K
∼

1 =
EI
l 3

 ≥
  12 -6l 0 0
-6l    4l 2 0 0
 0  0 0 0
 0  0 0 0

¥
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Finite-Element Method 717

(k)

The natural frequency approximations, the square roots of the eigenvalues of M�1K, are

obtained as

(l)

The exact natural frequencies for this system, obtained in Example 10.6, are

(m)
v1 = 829 rad/s        v2 = 5.05 * 103 rad/s
v3 = 1.41 * 104 rad/s  v4 = 2.73 * 104 rad/s

v1 = 806.0 rad/s      v2 = 5.09 * 103 rad/s
v3 = 1.72 * 104 rad/s  v4 = 5.00 * 104 rad/s

K = ≥
   2.016 0 -1.008    0.252

0    0.108 -0.252    0.042
-1.008 -0.252    1.008 -0.252
   0.252    0.042 -0.252    0.084

¥109

Use a two-element finite-element model for the beam to determine the steady-state

response of the system of Figure 11.15(a).

SO LU T I ON
For a two-element, finite-element model of the beam, the system has five degrees of freedom.

The global generalized coordinates are illustrated in Figure 11.15(b). The local mass and stiff-

ness matrices for each element are given by Equations (11.42) and (11.45), respectively.

Element 1

(a)w1 = 0  w2 = W1  w3 = W2  w4 = W3

EXAMPLE 1 1 . 1 1

F0 sinw t

L
4

L
4

L
4

L
4

k

L = 8 m
r = 7600 kg/m3

E = 200 × 109 N/m2

I = 1.6 × 10–6 m4

A = 3.5 × 10–3 m2

m = 20 kg
k = 3 × 104 N/m
F0 = 2500 N
w = 80 rad/s

r, A, E, I

m

(a)

FIGURE 11.15
(a) System of Example 11.11. (b) Two-element model for beam illustrating global generalized coordi-
nates. (c) Relations between local coordinates and global coordinates for each element. (d) Output
from MATLAB code. (e) Steady-state mode shape.
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718 CHAPTER 11

(c)

w3 = W2w1 = 0

w4 = W3w2 = W1

w3 = 0w1 = W2

w4 = W4w2 = W3

Global mass matrix
[ 16.677, 13.550, -12.507, 0, 0]
[ 13.550, 81.298, 0, -13.550, 0]
[ -12.507, 0, 33.353, -12.507, 0]
[ 0, -13.550, -12.507, 16.677, 0]
[ 0, 0, 0, 0, 20.]

Global stiffness matrix
[ .32000e6, -.12000e6, .16000e6, 0, 0]
[ -.12000e6, .15000e6, 0, .12000e6, -30000.]
[ .16000e6, 0, .64000e6, .16000e6, 0]
[ 0, .12000e6, .16000e6, .32000e6, 0]
[ 0, -30000., 0, 0, 30000.]

iter =

2
eigs =

1.151315789473683e+005
3.487849420597156e+004
5.482456140350870e+003
1.816727650409610e+003
2.298793581937252e+002

FIGURE 11.15
(Continued)

W5

(b)

21

W2

W3W1 W4
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Finite-Element Method 719

stopcrit =

1.245169782336117e-015

Force vector
[ 2.60400e2]
[ 8.12500e3]
[ 0]
[ -2.60400e2]
[ 0]

Natural frequencies in rad/s
[ 339.31, 186.76, 74.044, 42.623, 15.162]

Steady-state amplitudes in m
[ -0.9758e-2]
[ -0.1133e-1]
[ 0.0]
[ 0.9758e-3]
[ 0.3468e-2]

(d)

–0.012
0 2 31 4

(e)

5 6 7 8

W
(x

) 
(m

)

–0.006

–0.008

–0.01

–0.004

–0.002

0

x (m)

FIGURE 11.15
(Continued)
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720 CHAPTER 11

Global element matrices are

(b)

The generalized force vector for element 1 is calculated by using Equations (11.46) through

(11.49). Since w
1

� 0, q
1

is not calculated.

(c)

(d)

(e)

The global generalized force vector for element 1 is

(f)

Element 2 Local generalized coordinates:

(g)

Global mass and stiffness matrices are

M
∼

2 =
rAl

420
 E

0   0   0   0 0
0   156   22l -13l 0
0   22l   4l 2 -3l 2 0
0 -13l -3l 2   4l 2 0
0   0   0   0 0

U
w1 = W2  w2 = W3  w3 = 0  w4 = W4

F1 =
H

-
1

48

  13
32

-
11
192
0
0

X
l F0 sin vt

q4 = L
l

l >2
F0 sin vt a -

j2

l 2
+
j3

l 3
bd j = -

11

192
l F0 sin vt

q3(t) = L
l

l /2
F0 sin vt a3

j2

l 2
- 2
j3

l 3
bd j =

13

32
l F0 sin vt

q2(t) = L
l

l /2
F0 sin vt a j

l
- 2
j2

l 2
+
j3

l 3
bd j = -

1

48
l F0 sin vt

K
∼

1 =
EI
l 3

 E
   4l 2 -6l    2l 2 0 0

-6l   12 -6l 0 0
   2l 2 -6l    4l 2 0 0

0 0 0 0 0
0 0 0 0 0

U

M
∼

1 =
rAl

420
 E

  4l 2   13l -3l 2 0 0

  13l   156 -22l 0 0
-3l 2 -22l   4l 2 0 0

0 0 0 0 0
0 0 0 0 0

U
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Finite-Element Method 721

(h)

The generalized force vector for element 2 is calculated by using Equations (11.46) through

(11.49). Since w
3

� 0, q
3

is not calculated.

(i)

(j)

(k)

The global generalized force vector for element 2 is,

(l)

For the discrete spring-mass system.

Potential energy: (m)

Kinetic energy: (n)

The contributions to the global matrices due to the discrete mass-spring system are

(o)

Assembling the global mass matrix, global stiffness matrix, and global generalized force

vector leads to the following differential equations

Ms = E
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 m

U  Ks = E
0 0 0 0 0
0 k 0 0 -k
0 0 0 0 0
0 0 0 0 0
0 -k 0 0 k

U

T =
1

2
mW

#
2
5

V =
1
2

k (W2 - W5)
2

F2 = H
   0
   13

32

   35

192

-
5

192

   0

X l F0 sin vt

q4(t) = L
l>2

0
F0 sin vt a -

j2

l 2
+
j3

l 3
bd j = -

5

192
l F0 sin vt

q2(t) = L
l>2

0
F0 sin vt a j

l
- 2
j2

l 2
+
j3

l 3
bd j =

11
192

l F0 sin vt

q1(t) = L
l>2

0
F0 sin vt a1 - 3

j2

l 2
+ 2
j3

l 3
bd j =

13
32

l F0 sin vt

K
∼

2 =
EI
l 3

 E
0 0 0 0 0
0 12 6l 6l 0
0 6l 4l 2 2l 2 0
0 6l 2l 2 4l 2 0
0 0 0 0 0

U
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722 CHAPTER 11

(p)

The method of undetermined coefficients is used to approximate the steady-state response

of the system. The steady-state response is assumed as W(t) � S sin �t where S is the vector

of undetermined coefficients. A MATLAB script can be written to determine the natural

frequencies and steady-state response. The output from running the script is given in

Figure 11.15(d), while the MATLAB-generated plot of the steady-state mode shape is given

in Figure 11.15(e). The steady-state amplitude of the discrete mass is W
5

� 3.3 mm.

I
-

1

48

   13
16

-
1

8

-
5

192

   0

Y
l F0 sin vtE

W1

W2

W3

W4

W5

U =+
EI
l 3

 G
4l 2 -6l   2l 2 0 0

-6l 24 +
kl 3

EI
0 6l -

kl 3

EI
2l 2 0 8l 2 2l 2 0
0 6l   2l 2 4l 2 0

0 -
kl 3 
EI

0 0
kl 3

EI

W

rAl

420
 F

4l 2 13l -3l 2 0 0
13l 312 0 -13l 0
-3l 2 0 8l 2 -3l 2 0

0 -13l -3l 2 4l 2 0

0 0 0 0
420m
rAl

V E
W1

$

W2

$

W3

$

W4

$

W5

$

U

Use the finite-element method to approximate the lowest natural frequency for the truss of

Figure 11.16(a). Use one bar element for each truss member.

SO LU T I ON
The finite-element model of the four-bar truss using one bar element for each member has

four degrees of freedom. The global generalized coordinates are illustrated in Figure 11.16(b).

Member 1 The relations between the local generalized coordinates and the global gener-

alized coordinates are w
1

� 0, w
2

� W
1
. The contributions to the global mass and stiffness

matrices for element 1 are

(a)M
∼

1 =
rAl1

6
 D2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

T  K
∼

1 =
EA
l1

 D1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

T

EXAMPLE 1 1 . 1 2
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l1

l1 = 1.2 m
l2 = 2.683 m
l3 = 2.4 m
l4 = 1.2 m
q = 63.43°
sin q = 0.894
cos q = 0.447

W1

W2

q

l 2

l4

l3

W3

W4

All members are made of material of elastic
modulus E and have cross-sectional area A.

(a)

w1 = 0

w1 = 0

w2 = W3 w2 = W4

w1 = W2

w1 = 0

w2 = W1

w2 = W1 cosq  – W2 sinq

(b)

FIGURE 11.16
(a) Four-bar truss of Example 11.12 illustrating global coordinates. (b) Relationships between local coor-
dinates and global coordinates for each truss member. (c) Output from MATLAB code to determine
natural frequencies and mode shapes.
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724 CHAPTER 11

Member 2 The relations between the local generalized coordinates and the global gener-

alized coordinates for member 2 are w
1

� 0, w
2

� W
1

cos � � W
2

sin �. The transforma-

tion between the nonzero local generalized coordinate and the global generalized

coordinates written in matrix from is

(b)

The contributions to the global mass and stiffness matrices from element 2 are obtained by

using Equation (10.43) with S
2

� [cos � � sin � 0 0]. Note that since w
1

� 0, the ele-

ment mass and stiffness matrices in terms of the local generalized coordinate are

(c)

Thus the contribution to the global mass matrix for element 2 is

(d)

(e)=
rAl2

3
 D  cos2u -cos u  sin u 0 0

- cos u  sin u  sin2u 0 0
0 0 0 0
0 0 0 0

T
M
∼

2 = D  cos u

- sin u

0
0

T arAl2
6
b 324 3cos u - sin u 0 04

m2 =
rAl2

6
 324  k2 =

EA
l2

 314

DW1

W2

W3

W4

T3w24 = 3 cos u - sin u 0 04

Global mass matrix
176.01 -108.78 0 0
-108.78 460.67 0 121.6

0 0 121.6 0
0 121.6 0 243.2

Global stiffness matrix
7.2634e+009 -1.193e+009 0 0
-1.193e+009 5.7184e+009 0 -3.3333e+009

0 0 6.6667e+009 0
0 -3.3333e+009 0 3.3333e+009

eigs =
5.482456140350878e+007
5.482456140350876e+007
3.162555149229576e+007
2.146804007227498e+006

Natural frequencies in rad/s
7404.4 7404.4 5623.7 1465.2

(c)

FIGURE 11.16
(Continued)
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Finite-Element Method 725

The contribution to the global stiffness matrix for element 2 is calculated as

(f)

Element 3 The relations between the local generalized coordinates and the global gener-

alized coordinates for element 3 are w
1

� W
2
, w

2
� W

4
. The contributions to the global

mass and stiffness matrices from element 3 are

(g)

Element 4 The relations between the local generalized coordinates and the global gener-

alized coordinates for element 4 are w
1

� 0, w
2

� W
3
. The contributions to the global mass

and stiffness matrices from element 4 are

(h)

The global mass matrix is

(i)

Similar calculations lead to the global stiffness matrix

(j)K = EA H
1
l1

+
(cos2 u)

l2
-

(cos u sin u)

l2
0 0

-
(cos u sin u)

l2

(sin2 u)

l2
+

1
l3

0 -
1
l3

0 0
1
l4

0

0 -
1
l3

0
1
l3

X

D2l1 + 2l2 cos2 u -2l2 cos u sin u 0 0
-2l2 cos u sin u 2l3 + 2l2 sin2 u 0 l3

0 0 2l4 0
0 l3 0 2l3

TM = M
∼

1 + M
∼

2 + M
∼

3 + M
∼

4 =
rA

6
 

M
∼

4 =
rAl4

6
 D0 0 0 0

0 0 0 0
0 0 2 0
0 0 0 0

T  K
∼

4 =
EA
l4

 D0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

T

M
∼

3 =
rAl3

6
 D0 0 0 0

0 2 0 1
0 0 0 0
0 1 0 2

T  K
∼

3 =
EA
l3

 D0    0 0    0
0    1 0 -1
0    0 0    0
0 -1 0    1

T

K
∼

2 =
EA
l2

 D  cos2 u - cos u sin u 0 0
- cos u  sin u  sin2 u 0 0

0 0 0 0
0 0 0 0

T
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726 CHAPTER 11

The natural frequencies are the square roots of the eigenvalues of M�1K. Output from a

MATLAB script to determine the natural frequencies and mode shapes is given in

Figure 11.16(c). Note that the results show only three distinct natural frequencies.

11.9 SUMMARY

11.9.1 IMPORTANT CONCEPTS
• Natural boundary conditions are those that are imposed as a result of a force balance,

while geometric boundary conditions are those dictated by geometry.

• Admissible functions are functions that satisfy all geometric boundary conditions and

have appropriate continuity. For a bar, this implies only that the function is continuous.

For a beam, this implies that the function and its first spatial derivative are continuous.

• The assumed-modes method assumes a solution that is a linear combination of admis-

sible functions. The coefficients in the linear combination are unknown functions of

time. The linear combination is substituted into Lagrange’s equations to derive a set of

differential equations for the coefficients.

• The finite-element method uses piecewise defined functions as admissible functions.

Only geometric boundary conditions need to be satisfied.

• The finite-element method breaks a complicated structure into element of a finite

length. A piecewise defined function is assumed over each element. An elemental mass

matrix, stiffness matrix, and force vector are defined.

• The local coordinates (defined for each element) are related to the global coordinates.

Global mass and stiffness matrices are defined from local matrices and the transforma-

tion between the local coordinate system and the global coordinate system.

• A bar element has two degrees of freedom which are the displacement at each end of

the element.

• A beam element has four degree of freedom which are the displacements and slopes at

each end of the element.

• The boundary conditions are applied globally.

• The natural frequency approximations are the square roots of the eigenvalues of M�1K.

Approximations to the mode shapes are developed from the eigenvectors.

• The forced-vibration problem can be solved as a forced-vibration problem for a discrete

system.

11.9.2 IMPORTANT EQUATIONS
Assumed-modes method

(11.1)u(x, t ) = a
n

i = 1

wi(t )ui(x)
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Uniform bar element

(11.23)

(11.26)

(11.28)

Uniform beam element

(11.39)

(11.42)

(11.45)

(11.46)

(11.47)

(11.48)

(11.49)q4 = L
l

0
f (j, t)a -

j2

l 2 +
j3

l 3 bd j

q3 = L
l

0
f (j, t)a3

j2

l 2 - 2
j3

l 3 bd j

q2 = L
l

0
f (j, t)a j

l
- 2
j2

l 2 +
j3

l 3 bd j

q1 = L
/

0
f (j, t)a1 - 3

j2

/2 + 2
j3

/3 bd j

k =
EI
l 3  D 12 6l -12 6l

6l 4l 2 -6l 2l 2

-12 -6l 12 -6l
6l 2l 2 -6l 4l 2

T

m =
rAl

420
 D 156 22l 54 -13l

22l 4l 2 13l -3l 2

54 13l 156 -22l
-13l -3l 2 -22l 4l 2

T
       + a -

j2

/2 +
j3

/3 b  w4

w (x, j) = a1 - 3
j2

/2 + 2
j3

/3 b  w1 + a j
/

- 2
j2

/2 +
j3

/3 b  w2 + a3
j2

/2 - 2
j3

/3 bw3

q1 = L
/

0
f (j, t )a1 -

j

/
bd j  q2 = L

/

0
f (j,t) 

1

/
 d j

k =
EA
l

 c    1 -1
-1    1

d

m =
rAl

6
 c2 1

1 2
d
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728 CHAPTER 11

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 11.1 through 11.10, indicate whether the statement presented is true or false.

If true, state why. If false, rewrite the statement to make it true.

11.1 A piecewise continuous function that satisfies the boundary conditions is an

admissible function for approximation of the natural frequencies of a beam.

11.2 The boundary condition at a free end for a bar is a geometric boundary

condition.

11.3 The boundary conditions at a free end for a beam are natural boundary conditions.

11.4 A beam element has four degrees of freedom.

11.5 A finite-element model of a bar with n elements predicts n natural frequencies

of the bar.

11.6 Natural frequency approximations using the finite element method are

determined as the square roots of the eigenvalues of M�1K where M is the

global mass matrix and K is the global stiffness matrix.

11.7 The finite-element method can be used to approximate the displacement of a

system subject to initial conditions.

11.8 The global generalized coordinates for a pinned-pinned beam are an

accumulation of the local generalized coordinates.

11.9 The stiffness matrix for an interior element of length for a variable area bar is

11.10 The functions w
1
(x) � x � 1 and w

2
(x) � x2 � 1 can be used as trial functions

using the assumed-mode method to predict the lowest natural frequencies of a

fixed-free bar.

Problems 11.11 through 11.23 require a short answer.

11.11 What is an admissible function?

11.12 What are natural boundary conditions?

11.13 Give a summary of the assumed-modes method.

11.14 A finite-element model of a bar fixed at x � 0 at one end and having a mass m
rigidly attached at x � L must satisfy what boundary condition?

11.15 A finite-element model of a torsional shaft that is attached to a spring of

torsional stiffness kt1 at x � 0 and a spring of torsional stiffness kt2 at x � L
must satisfy what boundary conditons?

11.16 A torsional bar element has two degrees of freedom. What are the generalized

coordinates associated with these degrees of freedom?

11.17 What are the local generalized coordinates associated with a beam element.

11.18 How many degrees of freedom are there in a three-element model of a fixed-free

bar?

11.19 How many degrees of freedom are there in a two-element model of a fixed-fixed

shaft with a rotor at its midspan?

k =
EA
/

 c    1 -1
-1    1

d
/
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Finite-Element Method 729

11.20 How many degrees of freedom are there in a two-element model of a fixed-fixed

beam?

11.21 How many degrees of freedom are there in a two-element model of a fixed-

pinned beam?

11.22 How many degrees of freedom are there in a three-element model of a fixed-free

beam?

11.23 How many degrees of freedom are there in a three-element model of beam fixed

at one end and attached to a linear spring at its other end?

Problems 11.24 through 11.33 require a short calculation.

11.24 Use a one-element, finite-element model to approximate the lowest natural

frequency of a bar (elastic modulus E, density �, area A and length L) that is fixed

at one end and attached to a discrete spring of stiffness EA/2L at its other end.

11.25 Use a one-element, finite-element model to approximate the lowest torsional

natural frequency of a uniform shaft with a length L, polar moment of inertia J,
is made from an elastic material of density �, and has a shear modulus G that is

fixed at one end and has a torsional spring of stiffness kt at its other end.

11.26 Use a one-element, finite-element model to approximate the lowest torsional

natural frequency of a uniform shaft with a length L polar moment of inertia J,
is made from an elastic material of density �, and has a shear modulus G that is

fixed at one end and has a rigid disk with a moment of inertia I attached at its

free end.

11.27 Use a one-element, finite-element model to approximate the steady-state

amplitude of a uniform bar with a length L, cross-sectional area A, is made

from an elastic material of density �, and has an elastic modulus G that is fixed

at one end and has harmonic force f (t) � F
0

sin �t applied at its free end.

11.28 Develop the element mass matrix for a bar element that is circular in cross

section but has a linearly varying radius over the element. The radius is r
1

at 

� � 0 and is r
2

at � � .

11.29 Develop the element stiffness matrix for a bar element that is circular in cross

section but has a linearly varying radius over the element. The radius is r
1

at 

� � 0 and is r
2

at � � .

11.30 Develop the element mass matrix for a bar element that is made of a material of

varying density. The density varies linearly over the element and is �
1

at � � 0

and �
2

at � � .
11.31 Use a one-element, finite-element model to predict the lowest natural frequency

of a beam with a length L, cross-sectional area A, mass moment of inertia I, is
made from a material of mass density �, and has an elastic modulus E that is

fixed at one end and attached to a linear spring of stiffness k at the other end.

11.32 A concentrated load f (t) � F
0

sin �t is acting at the midspan of a simply

supported beam with a length L, cross-sectional area A, mass moment of inertia

I, is made from a material of mass density �, and has an elastic modulus E. Use

a one-element, finite-element model to predict the displacement of the midspan

of the beam.

11.33 A concentrated load f (t) � F
0

sin �t is applied to the end of a uniform fixed-

free beam. Use a one-element, finite element model to predict the steady-state

amplitude of displacement of the end of the beam.

/

/

/
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730 CHAPTER 11

CHAPTER PROBLEMS
It may be convenient to use MATLAB to perform natural frequency calculations as well as

to solve for forced responses.

11.1 The potential energy scalar product for a uniform bar is defined as

Consider the cases where (a) the bar is fixed at x � 0 and free at x � L and (b)

the bar is fixed at x � 0 and attached to a linear spring of stiffness k at x � L.
Discuss, in each case, the implication of requiring f (x) and g (x) to satisfy only

the geometric boundary conditions.

11.2 Use the assumed modes method with trial functions

to approximate the lowest natural frequency and its corresponding mode shape

for a uniform fixed-fixed bar of length L.
11.3 Let w

1
(x), w

2
(x), w

3
(x), w

4
(x) be linearly independent polynomials of degree

four or less that satisfy the geometric boundary conditions for a bar fixed at

x � 0 and attached to a spring of stiffness k at x � L.

(a) Determine a set of w
1
(x), w

2
(x), w

3
(x), w

4
(x).

(b) Use the assumed modes method with the functions obtained in part (a) as

trial functions and kL3/EI � 0.5 to approximate the system’s lowest natural

frequencies and mode shapes.

11.4 Use the assumed modes method with trial functions

to approximate the two lowest natural frequencies and mode shapes for a simply

supported beam.

11.5 Repeat Chapter Problem 11.4 if the beam has a machine of mass m � 2.0�AL
where �AL is the total mass of the beam. The machine is placed at the midspan

of the beam.

11.6 The mode shapes of a uniform fixed-free bar are of the form

Use the assumed modes method with �
1
(x), �

2
(x), �

3
(x) as trial functions to

approximate the lowest natural frequency and mode shapes for the tapered bar

of Figure P11.6.

L

r

r(x) = r0(1 – l x)2
r0 = 5 cm
l  = 1 cm/m
L = 3 m
E = 200 × 109 N/m2

r = 7500 kg/m3

FIGURE P11.6

fn(x) =  sin c (2n - 1)px

2L
d  n = 1, 2, 3, . . .

w1(x) = x (x - L)  w2(x) = x (x - L)2  w3(x) = x (x - L)3

w1(x) =  sin ap 
x
L
b  w2(x) = sin a2p 

x
L
b  w3(x) = sin a3p 

x
L
b

( f, g)v = L
L

0
EAf (x)

d 2g

dx 2 dx
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11.7 Use a one-element, finite-element model to approximate the lowest natural

frequency of a uniform bar of mass density �, cross-sectional area A, elastic

modulus E, and length L that is fixed at one end and has a block of mass m
attached at one end.

11.8 Derive the element stiffness and mass matrices for a tapered bar of rectangular

cross-section, A(x) � A
0

(1 � �x).

11.9 Use a one-element, finite-element model to approximate the lowest nonzero

torsional natural frequency of a uniform shaft of mass density �, polar moment

of inertia J, shear modulus G, and length L that has a thin disk of mass

moment of inertia I
1

attached at one end and a thin disk of mass moment of

inertia I
2

attached at the other end.

11.10 Use a one-element, finite-element model to approximate the lowest natural

frequencies of a uniform beam of mass density �, cross-sectional area A, cross-

sectional moment of inertia I, elastic modulus E, and length L that is free at

both ends.

11.11 Derive the element m
34

of the element mass matrix for a beam element.

11.12 Derive the element k
23

of the element stiffness matrix for a beam element.

11.13 Use a two-element, finite-element model to approximate the two lowest natural

frequencies and their corresponding mode shapes for the system of Figure P11.13.

11.14 Use a two-element, finite-element model to approximate the two lowest

torsional natural frequencies for the system of Figure P11.14.

11.15 Use a three-element, finite-element model to approximate the lowest natural

frequency and its corresponding mode shape for the system of Figure P11.15.

m

L

E = 200 × 109 N/m2

A = 3.5 × 10–5 m2

L = 2.5 m
r = 7000 kg/m3

m = 1.2 kg
k1 = 2 × 106 N/m
k2 = 1.4 × 106 N/m

k1 k2

FIGURE P11.15

L

I

J = 3.2 × 10–5 m4

G = 80 × 109 N/m2

r = 7000 kg/m3

L = 4.2 m
I = 1.5 kg · m2

FIGURE P11.14

L

k
E = 200 × 109 N/m2

A = 1.6 × 10–4 m2

L = 2.5 m
k = 1 × 107 N/m

FIGURE P11.13
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732 CHAPTER 11

11.16 Use a three-element, finite-element model to approximate the steady-state

response of the system of Figure P11.16.

11.17 Use a three-element, finite-element model to approximate the forced response

of the system of Figure P11.15 when the end of the bar is subject to the

excitation of Figure P11.17.

11.18 Use a two-element, finite-element model to approximate the two lowest natural

frequencies of transverse vibration of the beam of Figure P11.18.

11.19 Use a two-element, finite-element model to approximate the lowest natural

frequencies of the beam of Figure P11.19.

11.20 Use a two-element, finite-element model to approximate the two lowest natural

frequencies of the system of Figure P11.20. Use elements of equal length.

11.21 Use a three-element, finite-element model to approximate the three lowest

natural frequencies of the system of Figure P11.21.

k

m

3L
4

3EI
L3

L
4

1
2

k =

m =     rAL

FIGURE P11.20

L

E, I, r, A

FIGURE P11.19

L

E, I, r, A

FIGURE P11.18

F

8000 N

t (s)0.01 0.02

FIGURE P11.17

L1 L2

L1 = 2.1 m
G1 = 40 × 109 N/m2

J1 = 1.8 × 10–5 m4

r1 = 5000 kg/m3

L2 = 1.0 m
G2 = 80 × 109 N/m2

J2 = 4.3 × 10–6 m4

r2 = 7000 kg/m3

I = 0.25 kg · m2

T0 = 100 N · m
w = 500 rad/s

A
B C

I

T0 sinwt

Use two elements for
AB and one element
for BC

FIGURE P11.16
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11.22 Use a two-element, finite-element model to approximate the lowest natural

frequency of the system of Figure P11.22.

11.23 Use a two-element, finite-element model for the beam to approximate the two

lowest natural frequencies of the system of Figure P11.23.

11.24 Use a two-element, finite-element model to approximate the two lowest natural

frequencies of the system of Figure P11.24.

11.25 Use a three-element, finite-element model to approximate the steady-state

amplitude of the machine of the system of Figure P11.25.

m

1.2 m

I = 1.9 × 10–5 m4

m = 210 kg
E = 200 × 109 N/m2

r = 7500 kg/m3

A = 1.4 × 10–2 m2

F0 = 1500 N
w  = 200 rad/s

F0 sinwt

FIGURE P11.25

60 cm

r = 8000 kg/m3

A = 1.1 × 10–4 m2

E = 200 × 109 N/m2

Ib = 1.9 × 10–6 m4

m = 1.2 kg
I = 0.8 kg · m2

FIGURE P11.24

ρ = 7600 kg/m3

A = 4.5 × 10–3 m2

m = 100 kg
E = 200 × 109 N/m2

I = 1.8 × 10–6 m4

80 cm

m

80 cm

FIGURE P11.23

1.2 m 1.8 m
A B

C

IAB = 4.1 × 10–6 m4

EAB = 200 × 109 N/m2

AAB = 6.3 × 10–4 m2

ρAB = 7500 kg/m3

EBC = 140 × 109 N/m2

ABC = 5.4 × 10–5 m2

ρBC = 5600 kg/m3

IBC = 5.3 × 10–7 m4

FIGURE P11.22

2 m 1.3 m E = 200 × 109 N/m
I = 4.6 × 10–6 m4

r = 7500 kg/m3

A = 1.5 × 10–2 m2

FIGURE P11.21
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734 CHAPTER 11

11.26 Use a three-element, finite-element model to approximate the steady-state

amplitude of the machine of the system of Figure P11.26.

11.27 The street light has a mass of 25 kg. The wind velocity is 60 m/s, but the

force distribution is as shown in Figure P11.27. Use a three-element, finite-

element model of the structure to approximate the steady-state amplitude of

the light.

11.28 Use a three-element, finite-element model to approximate the steady-state

response of the system of Figure P11.28.

F0 sinwt

L
3

2L
3

F0 = 800 N
w  = 120 rad/s
E = 200 × 109 N/m2

A = 4.1 × 10–3 m2

I = 8.6 × 10–5 m4

r = 7500 kg/m3

L = 3 m

FIGURE P11.28

4 m

Parabolic

E = 200 × 109 N/m2

ri = 6 cm
ro = 8 cm

F0 sinwt

ro ri

FIGURE P11.27

k

m

F0 sinw t

L
2

L
2

L = 2.6 m
E = 200 × 109 N/m2

I = 4.5 × 10–6 m4

A = 3.1 × 10–2 m2

r = 7000 kg/m3

m = 20 kg
k = 2 × 105 N/m

FIGURE P11.26
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Finite-Element Method 735

11.29 A plate and girder bridge is modeled as a simply supported beam, as illustrated

in Figure P11.29. A vehicle is traveling across the bridge with the velocity v. Use

a three-element, finite-element model of the bridge to determine the time-

dependent response of the structure as the vehicle is crossing the bridge.

11.30 A simple model of a one-story frame structure is shown in Figure P11.30(a).

Use one beam element to model each of the columns and two bar elements to

model the girder. Determine the response of the structure if it is subject to the

blast force of Figure P11.30(b).

11.31 Use the finite-element model of Chapter Problem 11.30 to determine the

response of the structure if it is subject to the earthquake of Figure P11.31.

11.32 Use the finite-element model of Chapter Problem 11.30 to determine the

response of the structure if HVAC equipment on the girder produces a lateral

harmonic force of magnitude 3000 N at a frequency of 500 rpm.

2.5 m/s

0.2 s 2.4 s x

FIGURE P11.31

(a) (b)

5.1 m

2000 kg

2.5 m
E = 200 × 109 N/m2

ρ = 7500 kg/m3

A = 3.1 × 10–2 m2

I = 1.7 × 10–5 m4

F(N )

7000

t(s)
(t)

0.08

FIGURE P11.30

Vehicle of mass
1100 kg

L

Lv

v Lv = 2.5 m
v = 60 m/s
L = 8 m
I = 1.5 × 10–6 m4

r = 7500 kg/m3

A = 3.2 × 10–2 m2

E = 200 × 109 N/m2

FIGURE P11.29
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736 CHAPTER 11

11.33 Use two bar elements to model each member of the truss of Example 11.12 and

approximate the three lowest natural frequencies of the truss.

11.34 Use one bar element to model each member of the truss of Figure P11.34 and

approximate its two lowest natural frequencies.

11.35 Use one bar element to model each member of the truss of Figure P11.35 and

approximate its two lowest natural frequencies.

11.36 A beam is placed on an elastic foundation whose stiffness per unit length is k.
Derive the element k

23
of the local stiffness matrix for a beam element of length

l including the stiffness of the elastic foundation.

11.37 A beam is subject to a constant axial load of magnitude P, which is applied

along the beam’s neutral axis. Derive the element k
31

of the local stiffness matrix

for a beam element of length l, including the effect of transverse displacement

due to the axial load.

11.38 A beam is rotating about an axis with an angular velocity �. Determine the

element m
13

of the local mass matrix for a beam element of length l, including

the kinetic energy due to the rotation of the beam. The left end of the element

is a distance r from the axis of rotation.

E = 140 × 109 N/m2

A = 1.6 × 10–3 m2

1.5 m 1.5 m

1.5 m

FIGURE P11.35

30 cm
40 cm

20 cm

E = 140 × 109 N/m2

A = 1.6 × 10–3 m2

FIGURE P11.34
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C h a p t e r 1 2

NONLINEAR VIBRATIONS

12.1 INTRODUCTION
All physical systems are inherently nonlinear. Often assumptions and approximations are

made such that the mathematical problem governing the behavior of the system is linear.

This is done for an obvious reason; the solution of a linear problem is much easier than the

solution of a nonlinear problem. Often, the results obtained using the linear approxima-

tion are sufficient for engineering work. Except for the discussions of free and forced oscil-

lations when Coulomb damping is present, this text has thus far considered only linear

systems.

Nonlinear systems are much more difficult to analyze than linear systems because the

principle of linear superposition is not valid for nonlinear systems. Among the ramifica-

tions of the absence of a superposition principle are

• The homogeneous solution of a second-order nonlinear differential equation is not a

linear combination of two linearly independent solutions.

• The general solution of a nonlinear differential equation cannot be written as the sum

of a homogeneous solution and a particular solution, which is independent of initial

conditions. The forced response of a nonlinear system cannot be separated from its

free-vibration response.

• The method of superposition cannot be used to add the forced responses due to a

combination of excitations. The nonlinearity causes the responses to interact.
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738 CHAPTER 12

• Since the convolution integral is derived by using linear superposition, it does not

apply to nonlinear systems. There is no equivalent of the convolution integral for non-

linear systems.

• The Laplace transform cannot be used to derive the solution of nonlinear differential

equations.

The focus of this chapter is on the qualitative analysis of nonlinear systems. Quantitative

results are presented to show how the nonlinearities act to produce nonlinear phenomena.

12.2 SOURCES OF NONLINEARITY
Let x

1
, x

2
, . . . , xn be the generalized coordinates for a conservative n degree-of-freedom

system. The kinetic energy of the system is a function of the generalized coordinates and

their derivatives

(12.1)

The potential energy of the system is a function of the generalized coordinates

(12.2)

If the system is linear, then its kinetic energy is independent of the generalized coordinates

and is a quadratic function of their derivatives. A conservative system is nonlinear if either

the kinetic or potential energy cannot be written in a quadratic form.

The kinetic energy function contains terms other than quadratic terms when the iner-

tia properties of the system are dependent on the generalized coordinates or other kine-

matic relationships between the generalized coordinates are nonlinear. Nonlinear terms due

to the latter are called geometric nonlinearities.
Terms other than quadratic terms appear in the potential energy function because of

geometric nonlinearities or nonlinear force-displacement relations in flexible elements.

Nonlinear terms due to the latter are called material nonlinearities.

V = V (x1, x2, Á , xn 
)

T = T (x1, x2, Á , xn, x
#
1, x

#
2, Á , x# n 

)

EXAMPLE 1 2 . 1
Derive the governing differential equation for the simple pendulum of Figure 12.1.

SO LU T I ON
The kinetic energy function for the pendulum is

(a)

With the plane of the support as the datum,

(b)

The kinetic energy function is quadratic, but the potential energy function is not. The non-

quadratic term in the potential energy function is a result of the geometric relationship

between the instantaneous position of the particle and the datum.

V = -mgl cos u

T =
1

2
m(l u

#
)2
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Nonlinear Vibrations 739

Lagrange’s equation, Equation (7.10), is applied with L � T � V,

(c)

giving (d)u
$

+
g

l
  sin u = 0

d
dt

 a 0L

0u
# b -

0L
0u

= 0

θ

l

m

FIGURE 12.1
The differential equation governing
oscillations of the simple pendulum
of Example 12.1 is nonlinear.

The nonlinear term in the differential equation of Example 12.1 is a transcendental

function of the dependent variable. Approximate solutions to such equations are made by

replacing the transcendental function by its Taylor series expansion. For the equation of

Example 12.1, this leads to

(12.3)

Approximations can be made by assuming � is small. A linear approximation is obtained

by ignoring all but the linear terms. The simplest nonlinear approximation is obtained by

keeping only the largest nonlinear term. Since this term is proportional to the cube of the

dependent variable, the nonlinearity is called a cubic nonlinearity.

u
$

+
g

l
 au -

u3

6
+
u5

120
- Áb = 0

EXAMPLE 1 2 . 2
Derive the differential equations governing the motion of the system of Figure 12.2.

SO LU T I ON
Let x, the change in length of the spring from its length when the system is in equilibrium

with a length l, and � be the generalized coordinates. The system’s kinetic energy function is

(a)T =
1
2

m  3x 
# 2 + (l + x)2u2

# 4
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740 CHAPTER 12

Assuming the spring is linear and using the plane of the support as the datum, the system’s

potential energy function is

(b)

Application of Lagrange’s equations leads to

(c)

and (d)m (l + x)2 u
$

+ m (l + x )g sin u + 2m (l + x )x#   u
#

= 0

m x
$ + k x - m (l + x )u2

#
+ mg (1 - cos u ) = 0

V =
1

2
k ax +

mg

k
b2

- mg (l + x ) cos u

FIGURE 12.2
(a) The “swinging spring” in equlibrium;
(b) the oscillations of the swinging
spring are described by coupled nonlin-
ear differential equations. The coupling
occurs only in the nonlinear terms. The
linear approximation calculating the
extensional mode is uncoupled from the
swinging mode.

θ
l

m

k

(a) (b)

m

l + x

If x and � are assumed small, Taylor series expansions used for the transcendental func-

tions, and only linear terms retained, the differential equations of Example 12.2 becomes

(12.4)

(12.5)

Thus, a linear approximation predicts two uncoupled modes: a spring mode with a natural

frequency of and a pendulum mode with a natural frequency of Coupling

occurs only in the nonlinear terms. If only the largest nonlinear terms are retained, the

governing differential equations become

(12.6)

(12.7)

Since the largest nonlinear terms involve quadratic products of the generalized coordinates

and their derivatives, the nonlinearities are termed quadratic.
Note that l is not the unstretched length of the spring, but its length when the system

is in static equilibrium, l � l
0

� mg >k. Hence, the effect of gravity causing a static spring

force does not cancel with the static spring force in a nonlinear differential equation. Both

must be included in the potential energy formulation.

l u
$

+ g u +
g

l
 ux + 2x#  u

#
= 0

m x
$ + k x - ml u 

2
#

+
m g

2
 u2 = 0

1g >l.1k >m

u
$

+
g

l
  u = 0

mx
$ + k x = 0
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Nonlinear Vibrations 741

A material nonlinearity occurs when a flexible component has a nonlinear constitutive

equation. The system of Figure 12.3 is used to model most one-degree-of-freedom systems

with viscous damping and harmonic excitation. If the spring has a force-displacement rela-

tion of the form

(12.8)

where f is a nonlinear function of x, then the governing differential equation is nonlinear, as

(12.9)

If the spring is unstretched when it is unloaded, then a Taylor series expansion is used to

expand f (x ) about x � 0. If the spring has the same properties in compression as in ten-

sion, only odd powers of x appear in the expansion:

(12.10)

The values of the coefficients in the Taylor series expansion should decrease as the power

increases. The expansion is usually truncated after the cubic term, leading to

(12.11)

where �n is the natural frequency of the corresponding linear system, � is the damping ratio

for the linear system, and

(12.12)

A spring for which � is positive is called a hardening spring. A spring for which � is negative

is called a softening spring.
Equation (12.11) is called Duffing’s equation. Duffing’s equation is nondimensionalized

by introducing

(12.13)

where (12.14)

is the static deflection of a linear spring of stiffness k
1
. Substituting Equation (12.13) into

Equation (12.11), rearranging, and dropping the * from the nondimensional variables leads to

(12.15)x
$ + 2zx# + x + Px 

3 = ¶ sin rt

� =
mg

k1

x* =
x
�
  t* = vnt

a =
k3

k1

x
$ + 2 zvnx

# + v2
nx + av2

nx
3 =

F0

m
 sin vt

m x
$ + cx# + k1x + k3x 

3 + Á = F0 sin vt

mx
$ + cx# + f (x) = F0 sin vt

F = f (x)

c

m
F0 sinωt

m
F0 sinωt

External
forces

m

Effective
forces

F = f(x)
f(x)

cẋ

mẍ

x

(a) (b)

=

FIGURE 12.3
(a) Model system for an
SDOF system with a nonlinear
elastic element, viscous
damping and harmonic
excitation; (b) FBDs used
to derive Equation (12.4).
Nonlinear terms are due
to a material nonlinearity.
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742 CHAPTER 12

where

(12.16)

(12.17)

and

(12.18)

It is shown in Chapter 3 that the presence of some forms of damping causes nonlinear

terms in the differential equation. If the damping force is a function of the velocity,

(12.19)

then for Coulomb damping

(12.20)

and for aerodynamic drag

(12.21)

The general form of the differential equation for a system subject to a harmonic excitation

with nonlinear damping and a nonlinear flexible element is

(12.22)

Nonlinear terms can arise in differential equations because of an external excitation, as

in the following example.

mx
$ + g (x# ) + f (x) = F0 sin vt

g (x#  ) = c x#  2

g (x#  ) = mmg  
x#

| x#  |

Fd = g (x# )

P = a �2

¶ =
F0

mv2
n�

r =
v

vn

EXAMPLE 1 2 . 3
The U-tube manometer of Figure 12.4 rotates about an axis other than its centroidal axis with

an angular velocity �(t). The liquid is incompressible with a mass density �, the column has

a total length l, and the tube has a cross-sectional area A. If the rotational speed is greater than

a critical speed, then all of the fluid is drained from the left leg. Assume the column of liquid

ω

h(t)

b

FIGURE 12.4
The oscillations of the column of liquid in
a U-tube manometer rotating about a non-
centroidal axis. When the angular velocity
is large enough to drain fluid from the left
leg, the oscillations are governed by a non-
linear differential equation.
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Nonlinear Vibrations 743

moves in the manometer as a rigid body and let h(t) represent the instantaneous height of the

column in the right leg. The potential energy function for this system is

(a)

The system’s kinetic energy function is

(b)

Neglecting viscous friction, Lagrange’s equation is applied to derive

(c)

The differential equation in Example 12.3 has a quadratic nonlinearity which is the

result of the externally imposed rotation. If the speed of rotation is time-dependent, the

differential equation has variable coefficients and the system is said to parametrically excited.

lh
$

+ gh +
v2

2
 (l  -  b  -  h)2 =

v2b 
2

2

T =
1

2
 rAlh

#
 
2 +

1
2
rAb 

2h v2 + L
b

0
rAr 

2v2dr + L
l -b -h

0
rAr 

2v2dr

V =
1

2
 rgAh 

2

12.3 QUALITATIVE ANALYSIS OF NONLINEAR SYSTEMS
Qualitative analysis of nonlinear systems is of importance since exact analytical solutions

are often not available. Qualitative analysis is used to predict general features of the motion

including stability and long-time behavior.

The most useful tool for qualitative analysis of a nonlinear system is the state plane, a

graphical time history of the relationship between two variables. The state plane for a one

degree-of-freedom system is a family of curves showing the history of the relation between

velocity and displacement. The curves in the state plane are called trajectories. Attractors are

points or curves to which the trajectories eventually approach.

EXAMPLE 1 2 . 4
Draw the state plane for the unforced Duffing’s equation with no damping for a hard-

ening spring.

SO LU T I ON
Let v � x. Then

(a)

Duffing’s equation, Equation (12.11), becomes

(b)

Integrating both sides with respect to x gives

(c)

where C is the constant of integration, dependent on initial conditions. The state plane for

is shown in Figure 12.5. Different trajectories correspond to different values of C.P = 1
2

1
2

v 
2 = C -

1
2

x 
2 -

1
4

 Px 4

v 
dv
dx

= -x - Px 3

x
$ =

dv
dt

=
dv
dx

 
dx
dt

= v 
dv
dx
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744 CHAPTER 12

The system of Figure 12.3 is in equilibrium when its velocity is zero and the sum of

the spring force and damping force is zero. For a linear system, this occurs only when

v � 0 and x � 0. A nonlinear system may have more than one equilibrium point. An

equilibrium point is stable if trajectories approach the equilibrium point for large time.

An equilibrium point is unstable if trajectories diverge from the equilibrium point for

large time.

The equilibrium points for a system governed by Equation (12.22) are v � 0 and the

values of x such that f � 0. The stability of an equilibrium point is determined by analyz-

ing the trajectories in the vicinity of the equilibrium point. Let

(12.23)

be a point in the phase plane in the vicinity of the equilibrium point, x
0
. Substituting

Equation (12.23) into Equation (12.22) with F
0

� 0 leads to

(12.24)

Expanding f and g about x � x
0

and , respectively, and keeping only linear terms gives

(12.25)

The general solution of Equation (12.25) is

(12.26)

If either �
1

or �
2

have a positive real part, then the equilibrium point is unstable.

If �
1

and �
2

are real and have the same sign, the equilibrium point is called a node. If

�
1

and �
2

are real and have different signs, the equilibrium point is called a saddle point,

�x = Ae 
b1t + Be 

b2t

�x
$ +

dg 

d x#
 (0)�x# +

df 

dx
 (x0)�x = 0

x# = 0

� x
$ + g (�x#  ) + f (x0 + �x) = 0

x = x0 + �x

–4

–4

4

8
υ

–8

4 8 x–8

FIGURE 12.5
State plane for unforced and undamped Duffing’s equation.
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Nonlinear Vibrations 745

(a) Stable node (b) Saddle point

(c) Unstable focus (d) Center

FIGURE 12.6
State planes in the vicinity of
equilibrium points: (a) stable
node, (b) saddle point,
(c) unstable focus, and
(d) center.

EXAMPLE 1 2 . 5
Determine the equilibrium points and their nature for the damped unforced Duffing’s

equation.

SO LU T I ON
The equilibrium points are the values of x such that

(a)
For a hardening spring, the only equilibrium point for Duffing’s equation is x � 0. For a

softening spring, the system has the additional equilibrium points

(b)x0 = �A
1

-P

x + Px 
3 = 0

and is, by definition, unstable. If �
1

and �
2

are complex conjugates, the equilibrium point

is called a focus. A special case of a focus occurs when �
1

and �
2

are purely imaginary, in

which case the equilibrium point is called a center. Sketches of state planes in the vicinity

of a node, saddle point, focus, and center are given in Figure 12.6.
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746 CHAPTER 12

The nature of the equilibrium point corresponding to x
0

� 0 is investigated by assuming

x � �x, which leads to

(c)

Hence, he equilibrium point x � 0 is a stable node if � 1, and is a stable focus if � � 1.

For a softening spring, the natures of the additional equilibrium points are determined

using

(d)

Substituting into Duffing’s equation and linearizing leads to

(e)

and

(f)

Since the two values of � are real with opposite signs, these equilibrium points are saddle

points and thus, by their very nature, unstable.

b = -z � 2z2 + 2

�x
$ + 2z�x# - 2�x = 0

x = � A -
1
P

+ �x

Ú

b1, 2 = -z � 2z2 - 1

The phase plane for a system subject to a forced excitation is usually difficult to deter-

mine solely by analytical methods. Often, these phase planes must be drawn by graphical

methods or numerical results. Figure 12.7 shows several phase planes corresponding to the

forced Duffing’s equation. 

–1

–1

1

2 υ

–2

1 2 x–2

(a)

FIGURE 12.7
Examples of state planes
for (a) forced, undamped
Duffing’s equation and
(b) forced, damped Duffing’s
equation.
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Nonlinear Vibrations 747

12.4 QUANTITATIVE METHODS OF ANALYSIS
Exact solutions to nonlinear vibration problems exist only for a few special free-vibration

problems. Exact solutions for nonlinear forced-vibration problems are almost nonexistent.

Consider Equation (12.22) with F
0

� 0. Let . Then, using the chain rule for differ-

entiation, as in Example 12.4, Equation (12.22) can be written as

(12.27)

For certain forms of g (v) and f (x), Equation (12.27) can be integrated, yielding v(x),

which, in turn, can be integrated, yielding t (x).
Consider an undamped system, g (v) � 0. Integrating Equation (12.27) with respect

to x and using x � x
0

and v � 0 when t � 0 yields

(12.28)

Rearranging and integrating with respect to x gives

(12.29)

Since Equation (12.29) gives t as a function of x, it is not useful for computing the time

history of motion, but can be used for frequency calculations. For many forms of f (x),

closed-form evaluation of the integral does not exist, and numerical integration is used.

t = L
x

x0

d l

c2L
x0

l

f (h)d h d1>2

v (x ) = c2L
x0

x
f (h)d h d1>2

v  
dv
d x

+ g (v ) + f (x ) = 0

v = x#

–2

–2

2

4 υ

–4

2 4 x–4

(b)

FIGURE 12.7
(continued)
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748 CHAPTER 12

Care must be taken when evaluating Equation (12.29) numerically because the integrand

is singular for � � 0.

Since exact solutions are not often available, numerical solutions are used. Self-starting

methods such as Runge-Kutta are convenient for numerical solution of nonlinear equations.

The general form of the equations for a nonlinear n degree-of-freedom system is

(12.30)

Let v � and x be independent n-dimensional vectors. Equation (12.30) can be rewritten

as two systems of first-order equations

Analytical solutions are preferable to numerical solutions because they can be used to

predict trends, analyze the effects of parameters, and develop qualitative results. Thus,

approximate analytical methods are often used to approximate the solution of nonlinear

problems.

If the magnitude of the nonlinear term is small or the amplitude of motion is small,

then a perturbation method can be used to develop an approximate solution. Let P be a

small nondimensional parameter, The small parameter may be a measure of the

amplitude or a measure of the nonlinearity. For a one degree-of-freedom system, the gen-

eralized coordinate is expanded in a series of powers of P,

(12.31)

Equation (12.31) is substituted into the governing differential equation. Coefficients of

like powers of P are collected and set to zero independently. The result is a set of linear dif-

ferential equations that are successively solved for xi(t ), i � 1, 2, . . . .

The series of Equation (12.31) is convergent. However, it converges slowly and thus a

finite number of terms are inadequate to represent the solution for all t. When only a few

terms are included, nonperiodic terms appear which cause the solution to be unbounded

for large t. The terms which produce these nonuniformities are called secular terms. Since

it is impossible to include an infinite number of terms in the evaluation, the secular terms

must be removed. A variety of perturbation methods have been developed to remove sec-

ular terms. These include the method of strained parameters, the method of renormaliza-

tion, the method of multiple scales, and the method of averaging. The application of these

methods to nonlinear oscillation problems is beyond the scope of this book, but an exhaus-

tive treatment is found in Nayfeh and Mook. The method of renormalization is illustrated

in Section 12.5.

x (t ) = x 0(t ) + Px1(t ) + P2x2(t ) + Á

P V 1.

d x1

dt
= v1  dv1

dt
= h1(x, v, t )

d x2

dt
= v2  dv2

dt
= h2(x, v, t )

o     o
d xn

dt
= vn  dvn

dt
= hn(x, v, t )

x#

x
$

1 = h1(x, x# , t )
x
$

2 = h2(x, x# , t )
 o

x
$

n = hn(x, x# , t )
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Nonlinear Vibrations 749

12.5 FREE VIBRATIONS OF SDOF SYSTEMS
The free vibrations of a conservative system are periodic. If the spring in the system of

Figure 12.3 has the same properties in compression as in tension, then each period of

motion can be broken into four parts, each of which takes the same amount of time. If the

mass is displaced a distance x
0

from equilibrium and released from rest, the period of the

resulting motion can be calculated by using Equation (12.29) as four times the time it takes

the mass to go from its initial position to x � 0,

(12.32)

Equation (12.32) shows that, in contrast to a linear system, the period and the correspon-

ding natural frequency for a nonlinear system depend on the initial conditions.

T =
4

22L
0

x 0

d l

C1x0
l  

f (h)dh D1>2

EXAMPLE 1 2 . 6
A mass, attached to a softening spring with a cubic nonlinearity, is displaced a nondimen-

sional distance x
0

from equilibrium and released from rest. Determine the period of the

resulting oscillations as a function of and x
0
.

SO LU T I ON
In the notation of Section 12.2 and Equations (12.10) through (12.15), the nondimen-

sional force developed in a softening spring is

(a)

Thus, the nondimensional period is determined from Equation (12.32)

(b)

where x
0

is the nondimensional initial displacement. The dimensional period is the nondi-

mensional period divided by the linear natural frequency. Proceeding with the algebra

gives

(c)=
422

22 - Px 
2
0
L

1

0

d f

(1 - f2)(1 - k 
2f2)

=
422

22 - Px 
2
0

 F ak , 
p

2
b

T =
4

22L
0

x0

d l

c x 
2
0

2
- P

x 
4
0

4
-
l2

2
+ P
l4

4
d1>2

=
422

x02PL
1

0

d f

A
2

Px 
2
0

- 1 -
2

Px 
2
0

 f2 + f4

T =
4

22L
0

x 0

d l

C1x0
l (h - Ph 

3)d h D1>2

f (x) = x - Px 
3  P = a �2

P
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750 CHAPTER 12

where is the complete elliptic integral of the first kind of argument k, where

(d)

A table of elliptic integrals, such as in Abramowitz and Stegun, is used to generate

Figure 12.8.

k = A
2 -  Px 

2
0

Px 
2
0

F (k, p>2)

2
0 0.40.2 0.6 0.8 1

2.4

2.2

2.8

T π

2.6

3

x0

� = 0.7

� = 0.3

� = 0.1

FIGURE 12.8
Period of Duffing’s equation as function of displacement x0 for several values of .�

When the integral of Equation (12.32) cannot be evaluated in closed form, numerical

integration must be used. However, the integrand is singular at � � x
0
. Let 	 be a small

nondimensional value. Then for the system of Example 12.6,

(12.33)

The first integral is evaluated by numerical integration. The integrand of the second inte-

gral is expanded by the binomial theorem, and the resulting expansion is integrated term

by term. The expansion is truncated such that desired accuracy is achieved.

T =
422

x02P J L
1 -d

0

d f

A
2

Px 
2
0

- 1 -
2

Px 
2
0

 f2 + f4

+ L
1

1 -d

d f

A
2

Px 
2
0

- 1 -
2

Px 
2
0

 f2 + f4 K
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Nonlinear Vibrations 751

Perturbation methods can be applied to approximate the period of a nonlinear system.

When the straightforward expansion, Equation (12.31), is substituted into the unforced,

undamped Duffing’s equation, the results are

(12.34)

Coefficients of powers of P are set to zero independently, leading to a set of hierarchical

equations

(12.35)

(12.36)

(12.37)

The solution for x
0

is

(12.38)

where A and 
 are determined using initial conditions. Substitution of Equation (12.38)

into Equation (12.36) and use of trigonometric identities lead to

(12.39)

The particular solution of Equation (12.39) is

(12.40)

and the resulting two-term approximation for x(t) is

(12.41)

Unfortunately, the expansion of Equation (12.41) is not periodic and grows without bound

as t gets large. Indeed, when t is as large as 1/P, the second term in the expansion is as large

as the first term, rendering it invalid.

The problem with the straightforward expansion is that it cannot account for the vari-

ation of the period with initial conditions, as mandated by the exact solution. The method

of renormalization is used to take this variation into account and render the two-term

straightforward expansion uniform. A new time scale is introduced according to

(12.42)

Equation (12.41) is rewritten with w as the independent variable

(12.43)-  
A3

32
 sin 3(w + Pl1w + Á + f ) d + Á

 +  P c3
8

A3(w + Pl1w + Á ) cos (w + Pl1w + Á + f)

 x = A sin (w + Pl1w + Á + f)

t = w (1 + Pl1 + P2l2 + Á )

x (t ) = A sin (t + f) + P c3
8

A3t cos (t + f) -
A3

32
 sin 3(t + f) d + Á

x1(t ) =
A 

3

8
 t cos (t + f) -

A 
3

32
 sin 3(t + f)

x
$

1 + x1 = -
A 

3

4
33 sin (t + f) -  sin 3(t + f)4

x0 = A sin (t + f)

x
$

2 + x2 = -3x 2
0x1    o

x
$

1 + x1 = -x3
0

x
$

0 + x0 = 0

x
$

0 + x0 + P( x
$

1 + x1 + x  
3
0) + P2( x

$
2 + x2 + 3x 2

0 
x1) + Á = 0
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Taylor series expansions are used to expand the trigonometric functions and coefficients of

powers of P are recollected, leading to

(12.44)

The secular term is removed from Equation (12.44) by choosing

(12.45)

leading to

(12.46)

where

(12.47)

The binomial expansion is used to invert Equation (12.47)

(12.48)

The amplitude is determined by application of the initial conditions. If x(0) � 	 and

, then

(12.49)

(12.50)

A natural frequency approximation can be obtained to greater accuracy by calculating

higher-order terms in the expansion for x, and choosing the �i from Equation (12.48) to

eliminate secular terms.

For damped systems, the damping term is often small enough to be ordered with the

nonlinearity. To this end, define

(12.51)

where � is of order 1. When the straightforward expansion is used in the damped, unforced

version of Duffing’s equation, the following equations result, defining x
0

and x
1
:

(12.52)

(12.53)

In order to use the method of renormalization for damped systems, the solutions of

Equations (12.52) and (12.53) are written using complex exponentials

(12.54)x0 = A cos (t + f) =
1

2
A3e 

i (t +f) + e-i(t  + f)4

x
$

1 + x1 = -x3
0 - 2mx#0

x
$

0 + x0 = 0

z = 2Pm

d = A - P
A3

32

f =
p

2

x#  (0) = 0

w = t a1 + P 
3

8
A2 + Áb

t = w a1 - P
3
8

A2 + Áb

x = A sin (w + f) - P
A3

32
 sin 3(w + f) + Á

l1 = -
3
8

A2

 +  
3
8

A 
3w cos (w + f) -

A3

32
 sin 3(w + f) d + Á

 x = A sin (w + f) + P cAl1w cos (w + f)
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Nonlinear Vibrations 753

When Equation (12.47) is used to remove secular terms from the two-term expansion,

(12.55)

and the resulting two-term uniformly valid expansion is

(12.56)

Thus, when secular terms are removed through x
1
, damping has no effect on the nat-

ural period. The exponential decay, comparable to that of a linear system, is apparent.

In summary, the natural frequency of a nonlinear system depends on its initial condi-

tions. The straightforward perturbation expansion and the method of renormalization can

be used to determine an approximation to the natural frequency when the nonlinearity is

small or when the amplitude is small. Small viscous damping has an effect on free vibra-

tions of nonlinear systems similar to that on free vibrations of linear systems, causing an

exponential decay of amplitude.

12.6 FORCED VIBRATIONS OF SDOF SYSTEMS
WITH CUBIC NONLINEARITIES
Consider the damped Duffing’s equation subject to a two-frequency excitation,

(12.57)

Use of the straightforward expansion, Equation (12.31), produces the following two-term

approximation to the solution of Equation (12.57):

-
3A 

2F  
2
1M 

2
1

431 - (1 + 2r1)
24 sin 3(1 + 2r1)t + f4

+
3A 

2F1M1

431 - (2 - r1)
24 sin 3(2 - r1)t + 2f4

+
A 

3

32
 sin 3(t + f) -

3A 
2F1M1

431 - (2 + r1)
24 sin 3(2 + r1)t + 2f4

+
3(2A 

2F2M2 + F  
3
2M  

3
2 + 2F  

2
1F2M  

2
1M2)

4(1 - r 
2
2)

 sin r2t

+
3(2A 

2F1M1 + F  
3
1M  

3
1 + 2F1F  

2
2M1M 

2
2)

4(1 - r 
2
1)

 sin r1t

-
2mF1M1r1

1 - r 
2
1

 cos r1t -
2mF2M2r2

1 - r 
2
2

 cos r2t

+ Pe -m At sin (t + f) - a3
8

A3 +
3
4

AF  
2
1M  

2
1 +

3
4

 AF  
2
2M  

2
2b t  cos(t + f)

x = A sin (t + f) + F1M1 
sin r1t + F2M2 sin r2t

x
$ + 2mPx# + x + Px 

3 = F1 
sin r1t + F2 

sin r2t  r1 Z r2

x = Ae-zt sin c (1 + P
3
8

A2)t + f d

l1 = -
3

8
A 

2 - i 

m

2
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(12.58)

where

(12.59)Mi =
1

1 - r  
2
i

+
3AF1F2M1M2

231 - (r1 + r2 - 1)24 sin 3(r1 + r2 - 1)t - f4 f Á

-
3AF - 1F - 2M1M2

231 - (r1 + r2 + 1)24 sin 3(r1 + r2 + 1)t + f4

-
3AF1F2M1M2

231 - (r1 - r2 - 1)24 sin 3(r2 - r1 - 1)t - f4

+
3AF1F2M1M2

231 - (r1 - r2 + 1)24 sin 3(r1 - r2 + 1)t + f4

-
F  

3
1M 

3
1

4(1 - 9r2
1)

 sin 3r1t -
F  

3
2M  

3
2

4(1 - 9r3
2)

 sin 3r2t

+
3F1F  

2
2M1M 

2
2

431 - (2r2 - r1)
24 sin (2r2 - r1)t

-
3F1F  

2
2M1M 

2
2

431 - (2r2 + r1)
24 sin (2r2 + r1)t

+
3F  

2
1F2M 

2
1M2

431 - (2r1 - r2)
24 sin (2r1 - r2)t

-
3F  

2
1F2M 

2
1M2

431 - (2r1 + r2)
24 sin (2r1 + r2)t

+
3AF  

2
2M 

2
2

431 - (1 - 2r2)
24 sin 3(1 - 2r2)t + f4

-
3AF  

2
2M 

2
2

431 - (1 + 2r2)
24 sin 3(1 + 2r2)t + f4

+
3A 

2F2M2

431 - (2 - r2)
24 sin 3(2 - r2) + 2f4

-
3AF2M2

431 - (2 + r2)
24 sin 3(2 + r2) + 2f4

+
3AF  

2
1M 

2
1

431 - (1 - 2r1)
24 sin 3(1 - 2r1)t + f4
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The expansion of Equation (12.58) is nonuniform because of the secular terms arising

from the free-vibration solution. Additional nonuniformities occur when the values of r
1

and r
2

are such that the denominators of other terms are very small. Examination of Equation (12.58)

suggests that an exhaustive study of the frequency response of a one degree-of-freedom system

with a cubic nonlinearity requires the following cases be considered:

1. No resonances.

2. r
1

� 1 or r
2

� 1, primary resonance.

3. r
1

� or r
2

� , superharmonic resonance.

4. r
1

� 3 or r
2

� 3, subharmonic resonance.

5. 2r
2 
� r

1
� 1, 2r

1
� r

2
� �1, 2r

2
� r

1
� �1, r

1
� r

2
� 1 � �1, r

1 
� r

2 
� 1 � �1, 

or r
1 

� r
2 

� 1 � 1, combination resonances.

6. Conditions when two resonances occur simultaneously. For example, when r
1

� and

r
2

� , both superharmonic and combination resonances occur.

A resonance condition occurs when the free-vibration contribution to the solution

does not decay with time. The steady-state solution has a contribution from the free vibra-

tions as well as the forced steady-state response. For a linear system, the free-vibration

response is periodic with a frequency equal to the natural frequency, and the forced

response due to a harmonic excitation is periodic with a frequency equal to the excitation

frequency. For a linear system, only the primary resonance can occur when the excitation

frequency is near the natural frequency.

For a system with a cubic nonlinearity, Equation (12.44) shows that the free-vibration

response includes a periodic term whose frequency is three times the linear natural fre-

quency. Thus oscillations at this frequency are sustained in the absence of an external exci-

tation. Any additional energy input may lead to growth of the free oscillations and thus

produce the subharmonic resonance.

The forced response of a system with a cubic nonlinearity to a harmonic excitation

includes a periodic term whose frequency is three times the excitation frequency. Thus,

when the excitation frequency is one-third of the natural frequency, this term tends to

excite the free vibrations and causes the free-vibration term to be sustained, even in the

presence of small damping. This produces the superharmonic resonance.

When a system with a cubic nonlinearity is subject to a multifrequency excitation, the

forced response includes periodic terms at frequencies that are combinations of the excita-

tion frequencies. When this combination of frequencies is close to the natural frequency,

free oscillations are sustained and a combination resonance exists.

The straightforward expansion is nonuniform for all r
1

and r
2
, even when no resonance

conditions exist. The method of renormalization can be used to render the two-term

expansion uniform, but it can only be used to predict periodic responses, and cannot pro-

vide information about the stability of equilibrium points. Possibly the best method for

obtaining uniform expansions to approximate the solution of nonlinear forced-vibration

problems is the method of multiple scales. The results provided in the following discussion

can be obtained using the method of multiple scales. Since its application is beyond the

scope of this text, the discussion focuses on qualitative behavior. More detail is available in

Nayfeh and Mook.

5
3

1
3

1
3

1
3
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1. No resonances. For most values of r
1

and r
2
, no resonance conditions exist. However, the

expansion of Equation (12.58) is still nonuniform. When secular terms are removed, the

solution is the sum of the free-vibration response and the forced response. The free vibra-

tions decay exponentially, but the frequency of free vibrations depends on the initial con-

ditions and the amplitudes and frequencies of the excitation.

2. Primary resonance. A primary resonance occurs when an excitation frequency is near

the system’s linear natural frequency, corresponding to the nondimensional frequency

being near 1. When the amplitude of the excitation is of order 1, the straightforward per-

turbation expansion predicts an infinite amplitude response, even in the presence of small

damping. When the amplitude of the excitation is the same order as the nonlinearity and

the damping, secular terms occur in x
1
.

The frequency response in the vicinity of the primary resonance is studied by introduc-

ing a detuning parameter, defined by

(12.60)

The amplitude and phase of the resulting motion vary with time, but possible steady

states can be identified. The following approximate equations can be derived for the steady-

state amplitude and the steady-state phase angle:

(12.61)

(12.62)

where (12.63)

Equations (12.61) and (12.62) are plotted in Figures 12.9 and 12.10. Note from these

figures that there is a frequency range where three possible steady-state amplitudes and

phases exist for a single frequency. This leads to an interesting phenomenon, peculiar to

nonlinear systems, called the jump phenomenon. Imagine that the amplitude of excitation

FN1 =
F1

P

f = - tan-1P m

s -
3
8

A 
2Q

4A 
2 cm2 + ¢s -

3
8

A 
2 ≤ 2 d = FN2

1

r1 = 1 + Ps

–5

–1

1

2

3 A

5 10
σ

–10

FIGURE 12.9
Frequency response curve
for primary resonance of
Duffing’s equation illustrates
the jump phenomenon
(� � 0.25, ).FN1 = 1
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Nonlinear Vibrations 757

is fixed, but its frequency is slowly increased, starting slightly below the linear natural fre-

quency. As the frequency is increased the steady-state amplitude follows the upper branch

of the frequency response curve, until the point of vertical tangency is reached. When the

frequency is increased beyond this critical value, the only possible steady-state amplitude is

finitely lower than the amplitude at the critical frequency, and the amplitude will “jump”

to this lower value. Now if the frequency is decreased from this value, the steady-state

amplitude will follow the lower branch of the frequency response curve, until the point of

vertical tangency is reached, when it will “jump” to the upper branch.

A state plane showing the relation between the amplitude and phase can be plotted for

Duffing’s equation with a primary resonance for parameters where the triple valuedness

exists. Two equilibrium points are stable foci corresponding to the points on the upper and

lower branches of the frequency response curve. A third equilibrium point is a saddle point

corresponding to the intermediate amplitude between the points of vertical tangency. Since

this equilibrium point is unstable, it can never be physically attained. The initial conditions

dictate which of the two stable foci corresponds to the steady-state solution.

3. Superharmonic resonance. When either r
1

or r
2

is near , the free-oscillation term does

not decay exponentially. The steady-state response then consists of the forced response

whose period is three times that of the linear natural period plus the free response, whose

frequency is adjusted to three times that of the excitation. Thus the total response is peri-

odic with the period equal to that of the excitation.

Introduction of a detuning parameter when r
1

is near , 3ri � 1 � P�, leads to the fre-

quency response equation

(12.64)

which is cubic in A2 and hence has three solutions. For a certain frequency range, three real

solutions exist. The triple valuedness of the amplitude leads to a jump phenomenon simi-

lar to that for the primary resonance, as shown in Figure 12.11.

4. Subharmonic resonance. When an excitation frequency is near three times the linear

natural frequency, a subharmonic resonance may occur. The frequency response curve when

3m2 + (s - 3F  
2
i - 3

8 A 
2)24A 

2 = F 6
i

1
3

1
3

–5

π/4

π/2

3π/4

πφ

50 10
σ

–10

FIGURE 12.10
Phase versus frequency
curve for primary resonance
of Duffing’s equation also
shows a jump phenomenon
(� � 0.25, ).FN1 = 1
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ri is near 3, ri � 3 � P� is given by

(12.65)

Equation (12.65) has the trivial solution, A � 0, and two solutions obtained as roots of a

quadratic equation in A2. The quadratic equation yields real solutions for A if and only if

the parameters satisfy the following inequality:

(12.66)

When nontrivial solutions exist, one corresponds to a stable focus and one corresponds to

a saddle point. The initial conditions determine whether the steady-state contribution from

the free-oscillation term is trivial or approaches the stable focus.

Thus, if Equation (12.66) is satisfied and the initial conditions are appropriate, the

free-vibration term will not decay, but will exist with an adjusted frequency of one-third of

that of the excitation. The total response is periodic with the period equal to that of the

excitation. The frequency response curve is illustrated in Figure 12.12.
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FIGURE 12.11
Frequency response curve in
vicinity of superharmonic res-
onance (� � 0.25, ).FN1 = 1

FIGURE 12.12
Frequency response curve
for superharmonic resonance
with � � 0.25 and F1 � 1. For
� � 0.937, only the trivial
steady-state response exists.
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5. Combination resonances. Combination resonances are unique to nonlinear systems and

occur because of the nonlinear interaction of the particular solutions from x
0

when x
1

is calcu-

lated. When a combination resonance is present, a nontrivial free-vibration solution exists. The

nonlinearity tunes the free-vibration response to the appropriate combination of frequencies.

The jump phenomenon does occur when a combination resonance is present.

6. Simultaneous resonances. Simultaneous resonances occur when two resonance conditions

occur simultaneously. A detuning parameter is introduced for each resonance condition.

Analysis of the steady state is much more complicated. For some simultaneous resonances, as

many as seven equilibrium points exist in the state plane for the same frequency.

12.7 MDOF SYSTEMS
Nonlinear MDOF systems exhibit behaviors which are not present for linear systems. It is

instructive to consider free and forced vibrations of systems with quadratic nonlinearities

and systems with cubic nonlinearities. Let p
1
, p

2
, . . . , pn be the principal coordinates for a

linearized system with natural frequencies �
1

� �
2

� . . . � �n, respectively. Principal

coordinates that uncouple a linear system do not uncouple the system when nonlinearities

are considered. The differential equations for the principal coordinates are coupled through

nonlinear terms. For example, the free vibrations of an undamped two degree-of-freedom

system with quadratic nonlinearities are governed by

(12.67)

(12.68)

12.7.1 FREE VIBRATIONS
The free-vibration response of a system with quadratic nonlinearities includes periodic

terms with frequencies of �
1

� �
2
, �

1
� �

2
, 2�

1
, and 2�

1
. If �

2
L 2�

1
, then the nonlin-

earity acts as if it excites the system with a harmonic excitation of frequencies �
1

and �
2
,

producing a self-sustaining free oscillation, called an internal resonance.
In the absence of the internal resonance, and in the presence of damping, the free oscil-

lations of both modes decay exponentially, and are to first approximation independent. When

an internal resonance is present, free oscillations are sustained, even when damping is present

and causes coupling between the two modes. Even if only one mode is initially excited, the

internal resonance excites the other mode as well. Energy is continually exchanged between

the two modes.

An internal resonance occurs in a two degree-of-freedom system with cubic nonlinear-

ities when �
2

L 3�
1
.

p
$
2 + v2

2 p2 + b1p 2
1 + b2 p1 p2 + b3 p2

2 = 0

p
$
1 + v2

1 p1 + a1p2
1 + a2 p1 p2 + a3 p2

2 = 0

EXAMPLE 1 2 . 7
Reconsider the spring pendulum of Example 12.2. The spring has a stiffness 1 � 103 N/m

and an unstretched length of 0.5 m. For what values of m will an internal resonance occur?

SO LU T I ON
Since l is the length of the spring when the system is in equilibrium,

(a)l = a0.5 +
mg

k
bm
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760 CHAPTER 12

Since the approximate linear system is uncoupled when x and � are used as generalized

coordinates, these are also the principal coordinates and the linear natural frequencies are

(b)

Setting �
2

� 2�
1

gives m � 12.74 kg.

12.7.2 FORCED VIBRATIONS
The free oscillations are self-sustaining in MDOF systems subject to harmonic excitations

when the frequency of excitation is near certain values. A primary resonance occurs if the exci-

tation frequency is near any of the system’s natural frequencies. Subharmonic and superhar-

monic resonances occur as for one degree-of-freedom systems. Other secondary resonances

occur when the excitation frequency is near a certain combination of natural frequencies.

For a system with quadratic nonlinearities, these resonances occur when the excitation

frequency is near the sum or difference of two natural frequencies. Combination resonances

occur for multifrequency excitations. Simultaneous resonance conditions can also exist.

A complete summary of the phenomena present in nonlinear MDOF systems is too

extensive. The jump phenomenon occurs for certain types of resonances. Quenching can

also occur in certain systems with simultaneous resonances where introduction of the

second resonance causes the total response to decrease.

A saturation phenomenon can also occur for systems with quadratic nonlinearities.

The amplitude of a specific mode may build up as the amplitude of excitation is increased.

When the excitation amplitude reaches a certain value, the mode may become saturated;

its amplitude of response remains constant as the excitation amplitude is further increased.

The amplitudes of the other modes will continue to grow with the excitation amplitude.

In addition to primary resonances, subharmonic resonances, and superharmonic reso-

nances, combination resonances occur in a two degree-of-freedom system with cubic non-

linearities when one of the following conditions is met:

(12.69)

(12.70)

(12.71)

where 	 is the excitation frequency.

12.8 CONTINUOUS SYSTEMS
The nonlinear dimensionless partial differential equation governing transverse vibrations of

a uniform beam of length L and radius of gyration r, subject to a transverse load per unit

length F (x, t), is

(12.72)a r
L
b2a 02w

0t 2 +
04w

0x 4
b =

1
2L

1

0
a 0w

0x
b2

dx
02w
0x 2 + F (x,t )

Æ L
1

2
(v2 � v1)

Æ L 2v2 � v1

Æ L 2v1 � v2

v1 =

Q

g

0.5 +
mg

k

  v2 = A
k
m
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The nonlinear term is a result of the midplane stretching and is often ignored.

Let �
1
, �

2
, . . . be the natural frequencies of the linearized system and 


1
, 


2
, . . . be

their corresponding normalized mode shapes such that

(12.73)

for an appropriate scalar product.

The expansion theorem is used to develop an approximation to the solution of

Equation (12.72) as

(12.74)

where is a small dimensionless amplitude. Substituting Equation (12.74) into

Equation (12.72), taking the scalar product with respect to 
j (x ) for an arbitrary j, and

using algebra and mode shape orthonormality lead to

(12.75)

The preceding procedure is similar to the modal analysis method of Chapter 10, except

that the members of the resulting set of ordinary differential equations are still coupled

through the nonlinear terms. The nonlinear terms, due to midplane stretching are cubic

nonlinearities. If the excitation is harmonic with a frequency 	, then from the results of

Section. 12.7, the following resonances can occur:

1. Internal resonances occur if �i L 3�j, or � L 2�j � �k for any i, j, and k. From

Table 10.4, for a fixed-pinned beam, �
2

� 3�
1

� 2.30, and for a fixed-fixed beam

�
5

� 2�
3

� �
2

� 4.86. Internal resonances occur in each of these beams. It is noted

that for a pinned-pinned beam �
3

� 2�
2

� �
1
. However, the coefficient multiplying

p2
2

p
1

in Equation (12.75) is zero for a pinned-pinned beam.

2. Primary resonance occurs if 	 L �i for any i.

3. Superharmonic resonance occurs if 	 � �i 
3 for any i.

4. Subharmonic resonance occurs if 	 � 3�i for any i.

5. Combination resonances occur if 	 L 2�i � �j , 	 L �i  � �j � �k, or 	 L (�i  � �i)
2
for any i, j, and k.

12.9 CHAOS
Recent research in nonlinear phenomena has led to the development of a relatively new

branch of physics called chaos. The term chaos refers to the seemingly random response of a

nonlinear system due to deterministic excitation. Chaos occurs when a periodic excitation

leads to a nonperiodic response. It also occurs when slightly different initial conditions lead

to divergent responses.

Chaos has been observed and predicted in nonlinear systems in such diverse fields as

physics, medicine, economics, and meteorology. Chaos occurs in mechanical systems,

electrical systems, and chemical systems. Researchers observed that chicken pox epidemics

 + (F (x, t ),fj (x ))

 p
$

j + v2
j pj = P aL

r
b2  c1

2 a
q

k = 1
a

q

l = 1
a

q

m = 1

afj, 
02fk

0x 2 bL
1

0

0fl

0x
 
 0fm

0x
dx pk  

 pl   
pm d

P V 1

w (x, t ) = Pa
q

i = 1

pi(t )fi (x )

(fi (x ),fj(x )) = dij
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762 CHAPTER 12

are periodic while measles epidemics are chaotic. Others have used chaos to model stock

market fluctuations. Chaotic fluctuations has been applied to turbulent flows.

Chaotic motion has been observed in many mechanical systems. Chaotic vibrations for

systems modeled by Duffing’s equation are well documented, as are chaotic motions of a

forced pendulum.

Analytical tools have been developed to identify and classify chaotic behavior. These

tools can be applied to analytical solutions for vibrating systems as well as experimental

observations. Some are described in the following discussion.

1. State space. Observation of the state space can indicate whether a system is chaotic. A

chaotic motion will have trajectories that do not repeat, when viewed in the phase plane. The

trajectories will fill a region of the phase plane without ever repeating. However, viewing of

the state plane is by itself insufficient to speculate that a motion is chaotic. An example of a

chaotic response from Duffing’s equation, Equation (12.15) as viewed in a state plane is

shown in Figure 12.13.

2. Poincaré sections. A Poincaré section is a graph of the phase plane response taken or

sampled only at fixed intervals of time. If the response is periodic and the time interval is

equal to the period, then the Poincaré section is only a point, as the same response is

obtained on each sampling. If the response is periodic and the time interval is less than

the period, but commensurate with the period, the Poincaré section is a finite number

of points.

The Poincaré section of a nonlinear system with a quadratic subharmonic resonance,

sampled at the period of excitation should have two points. The presence of the subhar-

monic resonance doubles the period of response. If a system subject to a periodic excita-

tion is sampled at intervals equal to the period of excitation and the Poincaré section is a

seemingly random collection of points, the response can be guessed to be chaotic. Poincaré

sections for responses of Duffing’s equation, Equation (12.15) are given in Figure 12.14.

These Poincaré sections illustrate that values of parameters determine whether a response

is chaotic.

3. Fourier transforms. The Fourier transform of a nonperiodic continuous function is an

extension of the Fourier series defined for periodic functions. The Fourier transform is

y

x

� = 0.2
ζ = 0
Λ = 1
r = 1.3

FIGURE 12.13
State plane for an apparently chaotic motion.
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y

x

y

x

y

x
(a)

(b)

(c)

FIGURE 12.14
(a) Poincare’ section for
periodic motion when
sampling interval is equal to
half the period. (b) Poincare’
section for periodic motion
when sampling interval is
incommensurate with period.
(c) Poincare’ section for a
chaotic motion.
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764 CHAPTER 12

obtained from the Fourier series by allowing the period to become infinite. The resulting

Fourier transform of f (t) is defined as

(12.76)

The transform function, F(�), is a function of the transform variable, �. If the Fourier

transform of a periodic function is taken, then F(�) � 0 unless � is a multiple of the func-

tion’s fundamental frequency.

The Fourier transform decomposes a function into its harmonic components. The

strength of a component is given by the magnitude of F (�). The values of � which have

significant nonzero values of F (�) are called the spectrum of the function. If the Fourier

transform of the response of a nonlinear system due to a periodic response is a continuous

spectrum, then the response is chaotic.

For computational purposes the Fourier transform is replaced by the fast Fourier trans-

form. If f (t ) is known at k times, t
1
, t

2
, . . . , tk, then the discrete fast Fourier transform is

given by

(12.77)

Examples of Fourier transforms are given in Figure 12.15.

4. Bifurcation diagrams. Bifurcation diagrams can be used to identify one route to chaos.

The steady-state amplitude (or phase) of a nonlinear system as a function of a system param-

eter is plotted as the parameter is slowly changed. For a nonlinear system the steady-state

solution may split at a certain value of the parameter and two possible steady states exist for

greater values of the parameter. A bifurcation is said to occur for the value of the parameter

where the split occurs. The bifurcation is often the result of the sudden presence of a sub-

harmonic resonance. When this occurs the period of motion doubles. As the parameter is

increased, additional bifurcations may occur, where the period again doubles. If the system

is chaotic, as the parameter increases, bifurcations and period doubling occur more rapidly.

The chaotic response bounces between amplitudes and has no discernible period. The plot

of steady-state amplitudes (or phases) as the parameter increases becomes a blur. It is often

the case that as the parameter is increased much further, the motion again becomes periodic.

While chaotic motion is characterized by its unpredictable nature, it has some univer-

sal features. Feigenbaum showed that, as the number of bifurcations increases, the values

of the parameter, call it A, for which the bifurcations occur are given by

(12.78)

There are many routes to chaos. The one described here applies to systems undergoing

nonlinear oscillations subject to a harmonic excitation and is illustrated by the rotating

U-tube manometer of Example 12.3 and Figure 12.16. The manometer is rotated about a

vertical axis other than its centroidal axis. The rotational speed of the manometer varies as

(12.79)

where A is large enough to cause the fluid to be completely drained from the left leg during

an initial transient period. The system is subject to viscous damping from the interaction

of the fluid with the wall of the manometer.

v(t ) = A sin lt

An - An - 1 = (4.699 Á )(An + 1 - An )

F ( j ) = a
k

l = 1

f (ti )e
-2pi (l - 1)( j - 1)>k

F (w ) =
1

2pL
q

-q
f (t )e- ivtdt
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ω1

F(ω)

ω2 ω

(a)

ω0

F(ω)

2ω0 3ω0 nω0

(b)

ω

F(ω)

(c)

FIGURE 12.15
(a) Fourier transform of a
periodic function with two
distinct frequencies.
(b) Fourier transform of a
periodic function of
fundamental frequency �0.
(c) Fourier transform of a
chaotic response.

h(t)
a b

ω = A sin λt

FIGURE 12.16
For certain values of � and e the motion of the column
of liquid in the U tube manometer can be chaotic when
the manometer rotates about a non-centroidal axis.
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The behavior of a nonlinear system is heavily influenced by the system parameters. This

is evidenced by the state planes of Figures 12.17 and 12.18. Figure 12.17 shows the state

planes for two slightly different values of the frequency for the same amplitude. A steady

state is evident for the motion of Figure 12.17(a), while the motion of Figure 12.17(b)

appears chaotic. Chaos is also induced by small amplitude changes for the same frequency

as shown in Figure 12.18(a).

A bifurcation diagram for the parameter A is shown in Figure 12.19. The fre-

quency of excitation is fixed as its amplitude varies. For A � 3.33, the steady-state

motion is periodic. The stationary response is periodic of frequency 2� and a certain

amplitude.

λ = 0.27(a) A = 4.5

λ = 0.28(b) A = 4.5

FIGURE 12.17
A small change in frequency
can cause a change from a
periodic response to a chaotic
response.
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λ = 0.27(a) A = 4.6

λ = 0.27(b) A = 4.7

FIGURE 12.18
A small change in the input
amplitude can cause a change
from a periodic response to a
chaotic response.

For A L 3.33, the parameters change such that a subharmonic resonance becomes

present. A bifurcation is said to occur. The presence of the subharmonic resonance means

that the steady-state response is the sum of a free-vibration term and a forced-vibration

term and that the period of motion is doubled. Two amplitudes are evident in the station-

ary oscillations.

For A L 3.35, another bifurcation occurs. A higher-order subharmonic resonance is

induced. The response has a period of four times the original period and is made up of four

distinct amplitudes.

As A increases, bifurcations occur more rapidly with the period doubling with each

bifurcation. Eventually, the response is chaotic. The chaotic response shown in Figure 12.20

bounces between amplitudes and has no discernible period.

For A L 3.36, the motion ceases to be chaotic and returns to the doubled period.

However, bifurcations begin to occur again at A L 3.37.
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3.34 3.36 3.38 3.40 3.42

A

λ = 0.27

ḣ2

λ = 0.28 A = 4.5
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FIGURE 12.19
Bifurcation diagram for
rotating manometer. First
bifurcation occurs near
A � 3.34. As A increases
chaos develops. Motion is
not chaotic for a range of A,
then the process to chaos
begins again.

FIGURE 12.20
The time history of motion
for these parameters has no
discernable period.

The process described previously is called period doubling through a subharmonic cascade.
Chaos is the subject of much current research. It is hoped that studying chaos can

lead to the better understanding of nonlinear systems like turbulent fluid flows, the

flow and pumping of blood through a human heart, weather patterns, and nonlinear

vibrations.
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12.10 CHAPTER SUMMARY

12.10.1 IMPORTANT CONCEPTS
• Methods of analysis for linear systems are not applicable to nonlinear systems

• A geometric nonlinearity occurs due to the geometry of the system. A material non-

linearity occurs due to nonlinearity in material behavior

• Static spring forces do not cancel with gravity in nonlinear systems

• The state plane is a family of curves showing the history of the relation between 

displacement and velocity. The curves the state plane are called trajectories.

• An equilibrium point is stable if the trajectories approach the equilibrium point as time gets

large. The trajectories are unstable if the trajectories diverge from the equilibrium point.

• An equilibrium point is classified by the eigenvalues of the stability equation �
1

and �
2
.

If �
1

and �
2

are real and of the same sign, the equilibrium point is called a node. If �
1

and �
2

are real and of opposite signs, the equilibrium point is a saddle point (unstable).

If �
1

and �
2

are complex conjugates, the equilibrium point is called a focus. If �
1

and

�
2 

are purely imaginary, the equilibrium point is called a center.

• Secular terms are terms which produce non-uniformities in perturbation expansions.

• The period for free vibrations of a nonlinear system depends upon initial conditions.

• Small viscous damping leads to linear decay of the free-vibration solution.

• Resonances occur in the forced response of Duffing’s equation. Resonances due to a single

frequency excitation are classified as primary when r � 1, superharmonic when r � 1
3,

or subharmonic when r � 3. Combination resonances and simultaneous resonances occur

when the excitation is at two or more frequencies.

• A jump phenomenon occurs when the frequency is in the vicinity of the linear natural

frequency, which is characterized by a discrete change in amplitude at critical frequencies.

The jump also occurs in the phase.

• A jump response also occurs near the superharmonic resonance, but not near the sub-

harmonic resonance.

• Internal resonances are present in MDOF systems and continuous systems.

12.10.2 IMPORTANT EQUATIONS
Duffing’s equation

(12.11)

Nonlinear differential equation with nonlinear damping and nonlinear flexible element

(12.22)

Stability of an equilibrium point

(12.23)

(12.26)�x = Ae b1t + Be b2t

x = x0 + �x

mx
$ + g (x# ) + f (x ) = F0 sin vt

x
$ + 2zvn x# + v2

n x + av2
nx 3 =

F0

m
 sin vt
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770 CHAPTER 12

General perturbation expansion in terms of a small dimensionless parameter

(12.31)

Period of nonlinear system

(12.32)

Two-term expansion for free vibrations of undamped Duffing’s equation

(12.46)

(12.48)

Free vibrations of damped Duffing’s equation

(12.56)

Detuning parameter to allow for study of the frequency response in the neighborhood of

resonance

(12.60)

Amplitude and phase near primary resonance

(12.61)

(12.62)

Amplitude equation near superharmonic resonance

(12.64)

PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 12.1 through 12.14, indicate whether the statement presented is true or false.

If true, state why. If false, rewrite the statement to make it true.

12.1 The convolution integral can be applied to solve nonlinear problems.

12.2 A mass attached to a linear spring sliding on a surface with Coulomb damping

is an example of a nonlinear system.

12.3 The swinging spring is an example of a two degree-of-freedom system with a

cubic nonlinearity.

cm2 + ¢s -  3F  
2
i -

3
8

A 
2≤ 2 dA2 = F 6

i

f = - tan-1P m

s -
3
8

A 
2Q

4A 
2 cm2 + as -

3
8

A 
2b2 d = FN 2

1

r1 = 1 + e s

x = Ae-zt sin c a1 + e 
3
8

A 
2b t + f d

w = t  a1 + e 
3
8

A 
2 + Áb

x = A sin (w + f) - e
A 

3

32
 sin 3 (w + f) + Á

T =
4

22 L
0

x0

dl

31x0

l
     f (h )dh41/2

x (t ) = x0(t ) + ex1(t ) + e2x2(t ) + Á
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Nonlinear Vibrations 771

12.4 The period of free vibrations of a nonlinear system depends upon initial

conditions.

12.5 The free response of a system with a cubic nonlinearity occurs only at the linear

natural frequency of the system.

12.6 A focus is always unstable.

12.7 A saddle point is always unstable.

12.8 Secular terms must be removed from the response of a system.

12.9 When a superharmonic resonance occurs, the free oscillation term does not

decay exponentially but combines with the forced response.

12.10 A SDOF system with viscous damping subject to a single frequency excitation

always has a free response which decays exponentially.

12.11 A SDOF system with a cubic nonlinearity is excited by a harmonic force at a

frequency of 100 rad/s. The forced response occurs only at 300 rad/s.

12.12 A MDOF system has a combination resonance when the parameters are such

that one of the system’s linear natural frequencies is in a certain combination

with another of the system’s natural frequencies.

12.13 A bifurcation is a split in natural frequencies for one value of a parameter.

12.14 Period doubling is a route to chaos.

Problems 12.15 through 12.38 require a short answer.

12.15 Why can’t the Laplace transform method be applied to nonlinear systems?

12.16 A spring has a cubic nonlinearity which is an example of a (geometric, material)
_______________________________ nonlinearity.

12.17 A spring with a cubic nonlinearity equal to �3x3 is an example of a (hardening,

softening) _______________________________ nonlinearity.

12.18 Trajectories near an equilibrium point in the state space are shown in

Figure SP12.18. Identify the equilibrium point that is (a) an unstable saddle

point, (b) a stable focus, (c) a center, and (d) an unstable node.

FIGURE SP12.18

(a) (b)
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B

A

FIGURE SP12.25

In Problems 12.19 through 12.23, the eigenvalues of the differential equation are �
1

and

�
2

when the equation is linearized about an equilibrium point. Determine the type of the

equilibrium point and its stability.

12.19 �
1

� 3, �
2

� �2

12.20 �
1

� �3 � 2i, �
2

� �3 � 2i
12.21 �

1
� 2i, �

2
� �2i

12.22 �
1

� �3, �
2

� �2

12.23 �
1

� 3, �
2

� 2

12.24 Explain the use of the detuning parameter.

12.25 The frequency-response curve shown in Figure SP12.25 is for the primary

resonance of a SDOF system with a cubic nonlinearity.

(a) Is the curve drawn for a hardening spring or a softening spring?

(b) Explain the significance of points A and B on the diagram.

(c) (d)

FIGURE SP12.18
(continued)
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Nonlinear Vibrations 773

12.26 A SDOF system with a cubic nonlinearity has a linear natural frequency of

30 rad/s. At what excitation frequency does the system have

(a) A primary resonance?

(b) A superharmonic resonance?

(c) A subharmonic resonance?

In Problems 12.27 through 12.33, a SDOF system with a cubic nonlinearity has a linear

natural frequency of 120 rad/s. The system is forced by harmonic excitations at different

frequencies �
1

and �
2
. What resonances does the system have under the given circum-

stances.

12.27 �
1

is near 30 rad/s and �
2

is near 60 rad/s

12.28 �
1

is near 90 rad/s and �
2

is near 60 rad/s

12.29 �
1

is near 20 rad/s and �
2

is near 260 rad/s

12.30 �
1

is near 50 rad/s and �
2

is near 180 rad/s

12.31 �
1

is near 40 rad/s and �
2

is near 200 rad/s

12.32 �
1

is near 120 rad/s and �
2

is near 40 rad/s

12.33 �
1

is near 240 rad/s and �
2

is near 360 rad/s

12.34 Explain why a superharmonic resonance occurs.

12.35 What is an internal resonance in a MDOF system?

12.36 Describe the Poincaré section corresponding to a periodic function when the

sampling interval is one-third of the period.

12.37 What is the signature of the Fourier transform?

12.38 What is Feigenbaum’s constant?

Problems 12.39 through 12.53 require short calculations.

12.39 The linearized differential equation around an equilibrium point is

Classify the equilibrium point and determine its stability.

12.40 The linearized differential equation around an equilibrium point is

Classify the equilibrium point and determine its stability.

12.41 The linearized differential equation around an equilibrium point is

Classify the equilibrium point and determine its stability.

12.42 The equation of motion of a simple pendulum of length / is

(a) Determine the pendulum’s equilibrium points.

(b) Classify the equilibrium points and determine their stability.

(c) Sketch a trajectory in the phase plane corresponding to each equilibrium

point.

u
$

+
g

/
  sin u = 0

�x
$ + 2�x# - 3�x = 0

�x
$ - 2�x# + 3�x = 0

�x
$ + 2�x# + 3�x = 0
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12.43 The differential equation governing the motion of a nonlinear system is

(a) Determine the equilibrium points.

(b) Classify the equilibrium points and determine their stability.

(c) Sketch a trajectory in the phase plane corresponding to each equilibrium

point.

12.44 The differential equation governing the motion of a nonlinear system is

(a) Determine the equilibrium points.

(b) Classify the equilibrium points and determine their stability.

(c) Sketch a trajectory in the phase plane corresponding to each equilibrium

point.

12.45 The equation of motion for a particle moving on a rotating circular frame

(Figure SP12.45) is

u
$

+
g

R
a sin u -

v2

g
  cos ub = 0

x
$ - x + 0.1x 

3 = 0

x
$ - 0.5x# + x - 0.1x 3 = 0

(b)

ω

FIGURE SP12.45

(a) Determine the equilibrium points.

(b) Classify the equilibrium points and determine their stability for

(i) (ii) (iii)

12.46 Determine the free response to the nondimensional undamped Duffing’s

equation for e � 0.01, x (0) � 1, and 

12.47 Determine the free response to the nondimensional damped Duffing’s equation

for e � 0.01, � � 0.05, x (0) � 1, and 

12.48 Determine the steady-state amplitudes for the equation

x
$ + 0.05x# + x + 0.01x 3 = 0.03 sin 1.01t

x# (0) = 0.

x# (0) = 0.

v2

g
= 1.5

v2

g
= 1

v2

g
= 0.5
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Nonlinear Vibrations 775

12.49 Determine the steady-state amplitudes for the equation

12.50 Determine the steady-state amplitudes for the equation

12.51 Suggest any internal resonances for a fixed-free beam.

12.52 Suggest any internal resonances for a beam fixed at one end with a mass of

0.25� AL attached at its other end.

12.53 Determine the Fourier transform of

F (t ) � 2 sin 3t � 4 sin 4.5t
12.54 What are the dimensions of the following quantities?

(a) Coefficient multiplying x 3 in nonlinear spring stiffness, k
3

(b) The perturbation parameter, e

(c) A detuning parameter, �

CHAPTER PROBLEMS
12.1 The free-vibration response of a block hanging from a linear spring is the same

as that of the block attached to the same spring, but sliding on a frictionless

surface. Is the response the same if the spring has a force-displacement relation

given by the following?

(a) F � k
1
x � k

3
x3

(b) F � k
1
x � k

2
x2

(c) F � k
1
x, x � x

0

(d) F � k
2
x, x � x

0

12.2 The system of Figure P12.2 is one of the few for which an exact solution is

available. Its solution is obtained in a manner analogous to that of free vibrations

with Coulomb damping. The block is displaced a distance x
0

� 	 to the right

from equilibrium and released. Determine the period of the resulting oscillations.

x
$ + 0.05x# + x + 0.01x 3 = 0.03 sin 3.06t

x
$ + 0.05x# + x + 0.01x 3 = 0.03 sin 0.33t

k k
m

δ

FIGURE P12.2

FIGURE P12.3

12.3 The block in Figure P12.3 is not attached to the springs. Determine the period

of the resulting oscillations if the block is displaced a distance x
0

to the right

from equilibrium and released.
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776 CHAPTER 12

12.4–12.7 Without making linearizing assumptions, use Lagrange’s equations to derive the

nonlinear differential equation(s) governing the motion of the systems shown. Use

the generalized coordinates indicated in Figures P12.4 through P12.7.

y

x = generalized coordinate

y = px2 rotates at
constant w

Particle of mass m moves
along parabola

Parabola

w

FIGURE P12.6 FIGURE P12.7

Slender rod of mass 2m

k m
x

l

θ

12.8 A wedge of specific weight 
 floats stably on the free surface of a fluid of

specific weight 
w (Figure P12.8). The wedge is given a vertical displacement 	
from this equilibrium position.

(a) Derive the differential equation governing the resulting free oscillations of

the wedge. Neglect viscous effects and the added mass of the fluid.

(b) What is the equation of the trajectory in the phase plane which describes

the resulting motion. Sketch the trajectory.

(c) Assume 	 is small and use the method of renormalization to determine a

two-term approximation for the frequency-amplitude relationship.

L/4

k
Slender rod of mass m

θ

3L/4

FIGURE P12.4

k
m x

k
Unstretched length of springl

FIGURE P12.5
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b

L

h
γ

γw

γ

γw

h

r

FIGURE P12.8

FIGURE P12.9

12.9 Repeat Chapter Problem 12.8 for the inverted cone of Figure P12.9.

12.10 Determine the equation defining the state plane for the system of Figure P12.6.

Sketch trajectories in the phase plane when the following are given.

(a) p � 1.5 m�1, � � 5 rad/s

(b) p � 1.0 m�1, � � 5 rad/s

(c) p � 5.097 m�1, � � 10 rad/s

12.11 Plot the trajectory in the state plane corresponding to the motion of a mass

attached to a linear spring free to slide on a surface with Coulomb damping

when the mass is displaced from equilibrium and released from rest.

12.12 Determine the equilibrium points and their type for the differential equation

12.13 Determine the equilibrium points and their type for the differential equation

12.14 Determine the equilibrium points and their type for the differential equation

12.15 Determine the equilibrium points and their type for the differential equation

12.16 The equation of motion for the free oscillations of a pendulum subject to quadratic

damping is

(a) Determine an exact equation defining the state plane.

(b) Determine the equilibrium points and their type.

u
$

+ 2zu
#
2 +  sin u = 0

x
$ + 2zx# + x - Px 2 = 0

x
$ + 2zx# + x + Px 2 = 0

x
$ + 2zx# - x - Px 3 = 0

x
$ + 2zx# - x + Px 3 = 0
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12.17 Determine the period of oscillation of a mass attached to a hardening spring

with a cubic nonlinearity.

12.18 Determine an integral expression for the period of oscillation of the system of

Figure P12.6.

12.19 Use the method of renormalization to determine a two-term approximation for

the frequency-amplitude relation for the system of Figure P12.4. If the bar is

rotated 4° from equilibrium and released, what is the period for L � 4 m,

k � 1000 N/m, and m � 10 kg?

12.20 A 25-kg mass is attached to a hardening spring with k
1

� 1000 N/m and

k
3

� 4,000 N/m3. The mass is displaced 15 mm from equilibrium and released

from rest. What is the period of the ensuing oscillations?

12.21 Suppose the mass of Chapter Problem 12.20 is subject to an impulse which

imparts a velocity of 3.1 m/s to the mass when the mass is in equilibrium.

What is the period of the ensuing oscillations?

12.22 Suppose the mass of Chapter Problem 12.20 is attached to the same spring

when a 50-N force is statically applied and suddenly removed. What is the

period of the ensuing oscillations?

12.23 Use the method of renormalization to determine a two-term frequency-amplitude

relationship for the particle on the rotating parabola of Figure P12.6, assuming

the amplitude is small.

12.24 Use the method of renormalization to determine a two-term frequency-amplitude

relationship for a block of mass m attached to a spring with a quadratic nonlinearity.

When nondimensionalized the differential equation governing free vibrations of

the system is

Problems 12.25 through 12.31 refer to the system of Figure P12.25.

12.25 If F (t ) � F
0

sin �t, what values of � will lead to the presence of the

following?

(a) A primary resonance

(b) A superharmonic resonance

(c) A subharmonic resonance

x
$ + v2x + Px 2 = 0  P V 1

17.8 kg F(t)

20 N · s/m

k1 = 1000 N/m
k3 = 950 N/m3

FIGURE P12.25

12.26 When F (t) � 5 sin 8t N, a primary resonance condition occurs. Determine the

amplitude of the forced response.

12.27 When F (t ) � 150 sin 2.5t N a superharmonic resonance condition occurs.

Determine the amplitude of the forced response.
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k2

m2 F(t)

1000x + 950x3

10 kg

x1 x2

FIGURE P12.32

12.28 If F (t ) � F
0

sin �t N, for what value of � will a jump in amplitude occur

when � is increased slightly beyond this value when

(a) F
0

� 5 N and a primary resonance occurs.

(b) F
0

� 150 N and a superharmonic resonance occurs.

12.29 If F (t) � 25 sin 22 t N, will a nontrivial subharmonic response exist?

12.30 If F (t) � 30 sin 15 t � 25 sin �t N, what values of � lead to a combination

resonance?

12.31 If F (t) � 30 sin 2.5t � 25 sin �t N, what values of � lead to simultaneous

resonances? 

Problems 12.32 through 12.35 refer to the systems of Figure P12.32. The spring of stiff-

ness k
2

is a linear spring.

12.32 If m
2

� 10 kg, for what values of k
2

will internal resonances exist?

12.33 For what values of m
2

are internal resonances possible? If an internal resonance

is possible in terms of m
2
, for what values of k

2
will they exist?

12.34 Consider the system with m
2

� 10 kg and k
2

� 2000 N/m. The right mass is

displaced 10 mm from equilibrium while the left mass is held in place. The

system is released from rest from this configuration.

(a) Determine the natural frequencies, mode shapes, and principal coordinates

for the linearized system.

(b) Write the nonlinear differential equations governing the system using the

principal coordinates of the linearized system as dependent variables.

12.35 If m
2

� 10 kg, k
2

� 1000 N/m, and F(t ) � 150 sin �t N, for what values of �
will the following resonances exist?

(a) Primary resonance

(b) Superharmonic resonance

(c) Subharmonic resonance

(d) Combination resonance

12.36 Consider the system of Figure P12.36.

(a) Derive the nonlinear differential equations governing the motion of the system

using the generalized coordinates shown.

(b) Expand trigonometric functions of the generalized coordinates using Taylor

series expansions. Rewrite the differential equations keeping only quadratic

and cubic nonlinearities.
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12.37 Show that the coefficient multiplying for a pinned-pinned beam is zero in

Equation (11.50).

12.38 A fixed-free rectangular steel beam 

with a length of 1 m, base of 2 cm, and height of 5 cm is subject to a single-

frequency harmonic excitation. List all excitation frequencies that should be

avoided to avoid all primary, secondary, and combination resonances involving

the three lowest modes.

12.39 If the beam of Chapter Problem 12.38 is fixed-fixed, which of the following

excitation frequencies should be avoided and why?

(a) 180 rad/s

(b) 1530 rad/s

(c) 2200 rad/s

(d) 7940 rad/s

(r = 7850   kg>m3, E = 210 *  109
   N>m2)

p2
2 p1

Slender rod
of mass m

k m

l

F(t) = F0 sinω t

θ

x

FIGURE P12.36

(c) For what values of l in terms of the other parameters will an internal

resonance exist?

(d) In the absence of an internal resonance, for what values of � will resonance

conditions exist?
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C h a p t e r 1 3

RANDOM VIBRATIONS

13.1 INTRODUCTION
A time-dependent process is deterministic if its properties at a given time t can be predicted

in advance. A linear process is deterministic if its input is deterministic. The processes of

free and forced vibrations of SDOF, MDOF, and continuous systems (as described previ-

ously) are all deterministic; their response can be predicted at any instant of time given a

deterministic input, as illustrated in Figure 13.1. A nonlinear system can have a chaotic

response due to deterministic input.

Many physical systems do not have a deterministic input, such as those illustrated in

Figure 13.2 on page 783. The road contour encountered by the wheels of a vehicle, while

described as sinusoidal in previous chapters, is really made up of a series of bumps and

depressions that cannot be predicted. Other sources of non-deterministic input to systems

are the excitation provided to a building from an earthquake, vortex shedding from a

bridge, and the vibration of a floor in an industrial plant. These inputs are said to be random:

an input which cannot be predicted at any time. There are many reasons why an input is

random. For example, many vehicles of assorted sizes and shapes have travelled over the

road; environmental conditions such as temperature, rain, and snow have affected the road

over a long period; or imperfections in the road material affect the road contour. An earthquake

is random because not enough is known about the origin of the earthquake: the energy

released by the earthquake and the propagation of seismic waves are not understood fully.

Vortex shedding is a random phenomenon because the wind velocity is uncontrollable and
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m2

k2

k c

m

m1

k1

(a)

(b)

F0sinωt

F0sinωt

F(t)

F(t)

t

(c)

FIGURE 13.1
Examples of deterministic
systems. (a) SDOF system
subject to harmonic
excitation. (b) SDOF system
subject to pulse loading.
(c) Fixed-pinned beam
subject to harmonic loading.

is affected by many factors, including the geometry of the bridge deck. Machines on the

floor of an industrial plant are vibrating at different frequencies, and different amplitudes,

at different times, providing a random input to anything placed on the floor.

The response of a system due to a random input is also random. Analysis of such sys-

tems requires a method of approach which combines the different vibrations with the

methods of dealing with random input. Random input can be expressed in terms of statis-

tical quantities and the output can be expressed in terms of its mean square values, which

can be translated into probabilities.

Assumptions are made which make the analysis of random vibrations easier.

Mathematical functions describing the statistical analysis of a random variable are devel-

oped including the mean, standard deviation, and probability distribution. Functions

defining the joint probability distribution are developed to include the autocorrelation

function. The Fourier transform is employed to derive a transfer function for the system

and to relate the autocorrelation function to the power spectral density. The power spectral

density is used to describe the random response of a SDOF system.

13.2 BEHAVIOR OF A RANDOM VARIABLE

13.2.1 ENSEMBLE PROCESSES
Consider again the SDOF model of a vehicle suspension system. The following experiment

is run. An accelerometer is attached to the wheel of the vehicle and the displacement y(t)
of the axle is monitored. The experiment is repeated at the same speed 50 times, but at each
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Random Vibrations 783

time, the displacement measured is different due to variations in wind, temperature, tire

conditions, and other factors outside of the control of the experiment. The displacement

of the axle is not repeatable and is a random phenomenon. The variable y(t) is a random

variable, and each displacement yi(t ) is a sample function of the random variable. All

sample functions taken together form a collection or an ensemble of sample functions and

is expressed as {yi(t)}.

13.2.2 STATIONARY PROCESSES
The statistical mean of the ensemble {xi(t)} at a time t

0
is calculated by

(13.1)x (t0) =
1
na

n

i = 1

xi (t0 )

FIGURE 13.2
Systems subject to random
input. (a) SDOF model of
vehicle suspension system as
it traverses a road contour.
(b) One-story frame structure
subject to an earthquake.
(c) Vibrations of the floor in
an industrial plant.

k c

m

(a)

(b)

(c)

Floor of an industrial plant with machines

y(t)

t

x

x(t)

t
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784 CHAPTER 13

or as n, which is the number of elements in the ensemble, becomes large

(13.2)

Statistical definitions of other functions introduced in this chapter can be calculated in the

same fashion. For example the statistical definition of the standard deviation is

(13.3)

These statistical averages are functions of time.

The ensemble measurements are a function of time. However, if the measurements have

statistical features which are independent of time (such as the mean and standard deviation),

the ensemble is said to be stationary. The value of m, as calculated by Equation (13.1),

is independent of the time t
0

at which it is calculated. A random stationary process has

other implications, which are covered in more detail later. All processes in this chapter are

assumed to be stationary.

13.2.3 ERGODIC PROCESSES
The temporal average uses a representative sample function and integrates over time, as

(13.4)

or using the notation of improper integrals, as

(13.5)

If the temporal average is the same for all ensemble measurements. That is, mt is the same

for every i when the random process is ergodic. Only stationary ergodic processes are cov-

ered in this chapter.

13.3 FUNCTIONS OF A RANDOM VARIABLE

13.3.1 PROBABILITY FUNCTIONS
Consider a random variable y with sample points y

1
, y

2
, . . . , yn. The probability that y is

less than or equal to a certain value that is less than or equal to a value is the number of

values of divided by the number of sample points n. In the limit, as n , this

defines the probability distribution function P (y). For a random variable that is a function

of time, P(y) is defined in the limit as the time span approaches infinity, the total time that

the function is less than or equal to y divided by the time span. The probability distribution

function has the property that

(13.6)

subject to P (� ) � 0 and P ( ) � 1.qq

0 … P (y ) … 1

: qy … yN
yN

mt(i ) = L
q

- q
x i (t ) dt

mt (i ) = lim
T: q

1
TL

T
2

- T
2

xi (t ) dt

s = a
n
i=1(xi - x )2

n - 1

m (t0 ) = lim
n: q  

1
n a

n

i =  1
xi (t0 )
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Random Vibrations 785

The time-dependent data for a stationary ergodic process is illustrated in Figure 13.3

along with its probability distribution. P (a) is the probability that the random variable y
takes on a value less than or equal to a. The probability that it is greater than a is 1�P(a).

The probability that the random variable is between a and a value b � a is P(b) � P(a).

This leads to the definition of the probability density function. Taking the limit as �y
goes to zero of the probability that y is between y and y � �y divided by �y

(13.7)

Equation (13.7) defines the derivative of P with respect to y. Thus,

(13.8)

From the fundamental theorem of integral calculus, we have

(13.9)

where is a dummy variable of integration. It is noted from Equation (13.9) that

(13.10)

Also,

(13.11)

The probability density function, defined by Equation (13.8), illustrated in Figure 13.4.

0 … p(y ) … 1

L
q

- q
p (y ) dy = 1

j

P (y) = L
y

-q
p(j ) dj

p (y ) =
dP
dy

p (y) = lim
�y :0

 
P ( y + �y) - P (y )

�y

FIGURE 13.3
A random process and its
probability distribution.1

0

P(y)

x

a

t

FIGURE 13.4
A random process and its
probability density function.

P(x)

y

t
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786 CHAPTER 13

13.3.2 EXPECTED VALUE, MEAN, AND STANDARD
DEVIATION
The expected value of a function of a random variable f ( y) with a probability density

function p( y) is defined as

(13.12)

The mean of a random variable y is the expected value of the random variable

(13.13)

The variance of a random variable is the expected valued of (y � m)2 and is expressed as

(13.14)

The standard deviation is the positive square root of the variance and

(13.15)

13.3.3 MEAN SQUARE VALUE
The mean square value of a function of a random variable y is the expected value of y2, as

(13.16)

The mean square value is related to the variance and mean through

(13.17)

But by definition, the integral of the probability density function is one and the integral of

yp(y) is m. Equation (13.17) becomes

(13.18)y 2 = s2 + m2

s2 = L
q

-q
(y - m)2p (y ) dy =  y 2 - 2mL

q

-q
yp (y) dy + m2

L
q

-q
p(y)dy

y 2 = E (y 2) = L
q

-q
y 2p (y ) dy

s = 2s2

s2 = E 3(y - m)24 = L
q

-q
(y - m )2p (y ) dy

m = L
q

-q
yp (y ) dy

E3 f (y )4 = L
q

-q
f (y )p(y) dy

EXAMPLE 1 3 . 1
For the process of Figure 13.5, determine (a) the mean, (b) the mean square value, and 

(c) the standard deviation.

SO LU T I ON
(a) The mean is calculated two ways. It is equally likely that at any time the value of the

function is any value between 0 and A and the function is linear in t. Hence,

(a)

1
A

 0 … y … A

0 y 6 0 or y 7 A
p (y) = c
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Thus,

(b)

Using the temporal definition of mean, Equation (13.4) becomes

(c)

(b) The mean square value is

(d)

(c) The variance is obtained using Equation (13.18) as

(e)

The standard deviation is the square root of the variance, so

(f)s = A
A2

12
=

A23

6

s2 = y 2 - m2 =
A2

3
-

A2

4
=

A2

12

y 2 = L
q

-q
y 2p(y) dy = L

A

0
y 2 a 1

A
bdy =

A2

3

=
A
2

m = lim
T: q

1

TL
T
2

- T
2

x (t ) dt =
1
T
cL

0

- T
2

Aa1 +
2t
T
bdt + L

T
2

0
Aa1 -

2t
T
bdt d

m = L
q

-q
yp (y )dy = L

A

0
x a 1

A
bdx =

A
2

FIGURE 13.5
Process of Example 13.1.

–T
2

T

A
2t

2

T
1 + A 2t

T
1 – A

13.3.4 PROBABILITY DISTRIBUTION FOR ARBITRARY
FUNCTION OF TIME
Let y(t) be single-valued arbitrary function of time over a period T. Suppose an arbitrary

measurement were made. It is equally likely that any time in the interval 0 � t � T is

chosen; thus,

The following formula is used to find p(y):

(13.19)

where ti are all of the values where y (ti) � y.

p (y ) = a
n

i = 1

 
p(t )

` dy

dt
(ti ) `

p(t ) =
1

T
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788 CHAPTER 13

EXAMPLE 1 3 . 2
(a) Find the probability distribution for the rectified sine wave p( y) over the half-period

(b) Use p(y) to calculate the mean.

(c) Use p(y ) to determine 

SO LU T I ON
(a) The mathematical form of the rectified sine wave is

(a)

There are two values of t corresponding to each value of y. The derivatives have equal 

magnitude, as

(b)

From Equation (13.19), noting that the interval is T/2 and that there are two points 

corresponding to each y, we have

(c)

Thus, since y � A, we have

(d)

(b) The mean is given by Equation (13.13) as

(d)

The same value of m is obtained using Equation (13.4).

(c) The mean square value is obtained using Equation (13.16) as

(e)y 2 = L
q

-q
y 2p (y )dy = L

A

0
y 2a 2

p2A2 - y 2
bdy =

A2

2

m = L
q

-q
yp (y )dy = L

A

0
y a 2

p2A2 - y 2
bdy =

2A
p

2

p2A2 - y 2
  0 … y … A

          0                     y 7 A
p(y) = c

p (y ) = 2 a 2

T
b ≥

T
2p

AA1 - a y
A b

2
¥ =

2

p2A2 - y2

` dy

dt
` = 2p

T
 A ` cos

2p
T

 t ` =
2p
T

 A B1 - a y
A b

2

y (t ) = A `   sin 
2p
T

t ̀

y 2.

0 … t … T
2.

13.3.5 GAUSSIAN PROCESS
The probability density function for a Gaussian distribution of mean m and standard 

deviation s is

(13.20)( x - m
s )2

p (x) =
1

22ps
e - 1

2
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The Gaussian distribution is the probability distribution for a normal distribution, such as

one defined by the bell-shaped curve, illustrated in Figure 13.6.

(13.21)

is the standard normal variable. In terms of z, the probability density function is expressed as

(13.22)

Equation (13.22) is the normalized Gaussian probability density function. It has a mean of

zero and a standard deviation of one. The normalized Gaussian probability density func-

tion is illustrated in Figure 13.7.

The probability distribution is given from the density function by Equation (13.9), as

(13.23)d t
t2

2p (z ) = L
z

-q

1

22p
e-

p (z ) =
1

22p
e - z 2

2

z =
x - m
s

FIGURE 13.6
Gaussian probability density
function with a mean of m
and a standard deviation of s.

µ – σ µ + σµ
x

p

FIGURE 13.7
(a) Normalized Gaussian
density function distribution.
(b) Gaussian probability
distribution.

(a)

P(x)

x

1
√2

p

(b)

1

0.5
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790 CHAPTER 13

The integral in Equation (13.23) cannot be evaluated analytically, but the values are

summarized in a table of normal distributions. An abbreviated one is given in Table 13.1.

z P(z) z P(z)

0.0 0.5 1.1 0.8643
0.1 0.5398 1.2 0.8849
0.2 0.5793 1.3 0.9032
0.3 0.6179 1.4 0.9192
0.4 0.6554 1.5 0.9382
0.5 0.6915 1.6 0.9452
0.6 0.7257 1.7 0.9554
0.7 0.7580 1.8 0.9641
0.8 0.7881 1.9 0.9713
0.9 0.8159 2.0 0.9773
1.0 0.8413 1q

Probability distribution for a Gaussian process,
P(�z) � 1� P(z)

T A B L E 1 3 . 1

EXAMPLE 1 3 . 3
The displacement of a machine is a random variable with a mean of 1 mm and a standard

deviation of 0.1 mm. What is the probability that at any given time the displacement (a)

exceeds 1.05 mm, (b) is less than 0.85 mm, and (c) is between 0.93 mm and 1.01 mm?

SO LU T I ON
Assume the amplitude of vibration has a Gaussian distribution. The normalized variable is

given by Equation (13.20) with m � 1 mm and s � 0.1 mm.

(a) Calculating the value of the normalized variable, we have

(a)

The probability that z � 0.5 is P (0.5) � 0.6915

(b)

(b) The normalized variable for x � 0.85 mm is

(c)

The probability that z � �1.5 is

(d)

(c) The z value corresponding to 0.93 mm is z � �0.7 and the z value corresponding to

1.01 mm is z � 0.1. The probability that z is between �0.7 and 0.1 is

(e)= 0.5398 - (1 - 0.7580) = 0.2978

Prob( - 0.7 6 z 6 0.1) = P (0.1) - P ( - 0.7)

Prob(z 6 - 1.5) = P ( - 1.5) = 1 - P (1.5) = 1 - 0.9832 = 0.0168

z =
0.85  mm - 1  mm

0.1  mm
= -1.5

Prob(z 7 0.5) = 1 - P (0.5) = 1 - 0.6915 = 0.3085

z =
1.05  mm - 1  mm

0.1  mm
= 0.5
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13.3.6 RAYLEIGH DISTRIBUTION
The Rayleigh distribution is used for random variables restricted to positive values. The

probability density function for the Rayleigh distribution for a positive random variable y
is defined by

(13.24)

The Rayleigh distribution is illustrated in Figure 13.8 for several values of a.

The probability distribution for the Rayleigh distribution can be obtained by direct

integtration. Let Then

and (13.25)

Representative values of the probability distribution are given in Table 13.2.

p (y) = L
y 2

2a

0
e -udu = 1 - e - y2

2adu =
y

a
dy

u = y 2

2a.

p(y ) =
y

a
e - y2

2a

FIGURE 13.8
Rayleigh distribution for
several values of a.

0
0

a = 0.5

0.5 1 1.5 2 2.5 3

p
(y

)

0.2

0.1

0.3

0.5

0.6

0.7

0.8

0.4

0.9

y

a = 1.5
a = 1.0

P(u) P(u) P(u)

0 0 1.0 0.6321 2.0 0.8647
0.1 0.0952 1.1 0.6671 2.1 0.8775
0.2 0.1813 1.2 0.6988 2.2 0.8892
0.3 0.2592 1.3 0.7275 2.3 0.8997
0.4 0.3297 1.4 0.7534 2.4 0.9093
0.5 0.3935 1.5 0.7769 2.5 0.9179
0.6 0.4512 1.6 0.7981 2.6 0.9257
0.7 0.5034 1.7 0.8173 2.7 0.9328
0.8 0.5507 1.8 0.8347 2.8 0.9392
0.9 0.5934 1.9 0.8504 2.9 0.9450

u =
y 2

2a
u =

y 2

2a
u =

y 2

2a

Rayleigh probability distributionT A B L E 1 3 . 2
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EXAMPLE 1 3 . 3
Calculate for the Rayleigh distribution (a) the mean, (b) the mean square value, (c) the

standard deviation, and (d) the probability that the random variable is one standard devi-

ation greater than the mean for a � 4.

SO LU T I ON
(a) The mean is calculated using Equation (13.13), knowing that it is only defined for pos-

itive values of y, so that

(a)

(b) The mean square value is calculated using Equation (13.16) as

(b)

(c) The variance is calculated using Equation (13.18) as

(c)

The standard deviation of the Rayleigh distribution is

(e)

(d) One standard deviation greater than the mean implies that the variable is greater than

(f)

Thus, the probability that y is greater than 3.82 is

(g)1 - P (3.82) = 1 -L
3.82

0
p(y )dy = 1 -L

3.82

0

y

4
e -

y 2

8 dy = 1 - 0.839 = 0.161

m + s = A
pa

2
+ A a

4 - p
2
ba = 1.9102a = 1.91024 = 3.82

s = 20.429a = 0.6552a

s2 = y 2 - m2 = 2a -
pa

2
=

4 - p
2
a = 0.429a

y 2 = L
q

0
y 2p (y )dy = L

q

0
y 2 c y
a

e - y 2

2a ddy = 2a

m = L
q

0
yp (y )dy = L

q

0
y c y
a

e - y 2

2a ddy = A
pa

2

13.3.7 CENTRAL LIMIT THEOREM
A random variable can satisfy many probability distributions. Due to the central limit the-

orem, the Gaussian distribution is the most important. It states that, if a random variable

has any distribution, then if an experiment is run n times and the mean and standard devi-

ation of the kth sample are mk and sk, respectively, then for large n the means of the sample

are normally distributed with a mean equal to

(13.26)

and a standard deviation equal to where

(13.27)

Stated another way, a random variable is the sum of a large number of random variables,

the sum approaches the normal distribution. Thus, if x is a random variable that has a

s2 =
a
n

k=1
(mk - m)2

n - 1

s2n

m =
1
na

n

k = 1

mk
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Random Vibrations 793

probability distribution P(x), the random variable X � x
1

� x
2

� . . . � xn where xi are differ-

ent outcomes for x, which is normally distributed. Thus, an ensemble is normally distributed.

13.4 JOINT PROBABILITY DISTRIBUTIONS

13.4.1 TWO RANDOM VARIABLES
An experiment is run repeatedly on a SDOF system subject to a harmonic excitation. The

output is expected in the form x (t) � A sin(vt � f). However, due to a variety of factors,

the experiment does not yield the same amplitude or phase at the same instant of time.

Ensembles of each are taken as {Ai} and {fi}. Probability density functions can be devel-

oped for both A and f, p(f) and p(A), respectively. It is known that A and f are related

through the frequency ratio of the system and the damping ratio; they are not totally inde-

pendent. Thus, the joint probability density function is not simply p(A)p(f) but is p(A, f).

In general, consider two random variables from the same process x and y. The joint

probability density function is written as p(x, y). This leads to a joint probability distribu-

tion defined by

(13.28)

The joint probability distribution is defined such that P(x, y) is the probability that the first

random variable has a value less than x and the second random variable has a value less than y.
The probability density functions are defined by

(13.29)

and

(13.30)

The means are defined as

(13.31)

and

(13.32)

The variances are defined by

(13.33)

and

(13.34)s2
y = E 3(y - my )24 = L

q

- qL
q

- q
(y - my )2p (x,y)dxdy

s2
x = E 3(x - mx)

24 = L
q

-qL
q

-q
(x - mx )2p (x,y )dydx

my = E (y ) = L
q

-q
yp (y )dx = L

q

-qL
q

-q
yp (x,y )dxdy

mx = E(x)L
q

- q
xp(x)dx = L

q

- qL
q

- q
xp(x,y)dydx

p(y) = L
q

- q
p(x, y)d x

p (x) = L
q

-q
p(x, y )dy

P (x, y ) = L
x

- qL
y

- q
p(j,t) djd t
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The covariance is

(13.35)

The coefficient of correlation is defined by

(13.36)

13.4.2 AUTOCORRELATION FUNCTION
Let y(t) be a random variable that is a function of time. Consider the variable at a time t � t.
The autocorrelation is the expected value of the product of the function at these two times:

(13.37)

For a stationary process, R is independent of t, dependent on t, and is written as R(t). For

a stationary ergodic process, the temporal average can be used, as

(13.38)

If t � 0,

(13.39)

From Equation (13.18),

(13.40)

It can be shown that this is the maximum value of the autocorrelation function.

It is noted that for a stationary process

(13.41)

The autocorrelation function is an even function.

R ( - t) = E 3y (t )y (t - t)4 = E 3y (t )y (t + t)4 = R (t)

R(0) = s2 + m2

R (0) = E (y 2)

R (t ) = lim
T: q

1
TL

T
2

- T
2

y (t )y (t + t)dt

R (t,t) = E 3y (t )y (t + t)4 = L
q

- qL
q

-q
y (t )y (t + t)p3y (t),y (t + t)4dy(t ) dy (t + t)

rxy =
sxy

sxsy

= L
q

- qL
q

- q
(x - mx )(y - my )p (x, y )dxdy

cL
q

- qL
q

-q
(x - mx )2p (x,y )dydx d

1
2 cL

q

-qL
q

-q
(y - my)

2p (x,y )dxdy d
1
2

sxy = E 3(x - mx )( y - my )4 = L
q

-qL
q

-q
(x - mx )(y - my )p (x,y )dxdy

EXAMPLE 1 3 . 4
Determine the autocorrelation function for the sine wave given by

(a)

SO LU T I ON
The autocorrelation function is given by Equation (13.38) for an egrodic process. The

process is periodic of period thus, the limit of the integral is replaced by its

evaluation over one period as

(b)R(t) =
v

2p
 L

p
v

0

 A  sin  (vt - f) {A  sin  3v(t + t) - f4} dt =
A2

2
  cos  vt

T = 2p
v ;

y (t ) = A sin (vt - f)
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Random Vibrations 795

The autocorrelation of a harmonic function is another harmonic function. The function

and its autocorrelation are shown in Figure 13.9.

FIGURE 13.9
(a) y (t) � A sin(vt � f) for Example 13.4. (b) Autocorrelation function for y(t).

t
(a)

A

x(
t)

t
(b)

A2

R
(t

)

EXAMPLE 1 3 . 5
(a) Determine the autocorrelation function for the process shown in Figure 13.10. 

(b) Verify that R (0) � E ( y2).

SO LU T I ON
(a) The process is periodic of period T thus the autocorrelation function is

(a)R (t) =
1
TL

T

0
y(t )y (t + t)dt = L

T
4

0
Ay (t + t)dt
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where

(b)

For 

(c)

For 

(d)

For 

(e)

The autocorrelation is periodic of period T and is illustrated in Figure 13.10.

(b) Using Equation (13.16),

(f)E (y2) = L
T

0
y 2dt = L

T
4

n
A2dt = A2 

T
4

= R (0)

R(t) =
1

TL
T
4

T -t
A2dt = A2a t

T
-

3
4
b

3T
4 6 t 6 T,

R(t) = 0

T
4 6 t 6 3T

4 ,

R (t) =
1
TL

T
4 - t

0
A2dt = A2a1

4
-
t

T
b

0 6 t 6 T
4 t

A    0 6
T
4

- t

0  T
4

6 t 6
3T
4

A  t -
3T
4

6 T

y (t + t) = g

FIGURE 13.10
(a) y(t) for Example 13.5. (b) Autocorrelation function for y(t).

–T
4

T
4

(b)

–5T –T
4

–3T
4

3T T T
4

5T
4

T
4

(a)

–T –3T
4

T t

y

5T
4
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Random Vibrations 797

13.4.3 CROSS CORRELATIONS
The cross correlation between two stationary ergodic random variables y

1
and y

2
is defined by

(13.42)

13.5 FOURIER TRANSFORMS

13.5.1 FOURIER SERIES IN COMPLEX FORM
The Fourier series for a periodic function of period T is given by Equation (4.130).

Through substitution of the relations between the trigonometric functions and exponen-

tials of complex exponents,

(13.43)

and

(13.44)

the Fourier series representation for a periodic function can be written as

(13.45)

Defining

(13.46)

The Fourier series is written as

(13.47)

where which is the complex conjugate of ak. The above equations can be com-

bined using the definitions of the Fourier coefficients to yield.

(13.48)

Since F(t) is periodic of period T,

(13.49)

The mean square value of F(t) is

(13.50)

Equation (13.50) is called Parseval’s identity.

F 2 =
1
TL

T
2

- T
2

F 2(t )  dt =
1
TL

T
2

- T
2

a a
q

k = -q
ake

ivktb2

dt = a
q

k = -q
aka

*
k = a

q

k = -q
|ak |2

ak =
1
TL

T
2

- T
2

F (t )e ivktd t

ak =
1
TL

T

0
F (t )e ivktd t

a-k =  a*
k,

F ( t ) = a
q

k = - q
ake

ivkt

ak =
1
2

(ak - ibk )

F (t ) =
a0

2
+ a

q

k = 1

c1
2

(ak - ibk )e ivkt +
1
2

(ak + ibk )e -ivkt d

 cos vt =
1
2

(e ivt + e -ivt )

 sin vt =
1
2i

(e ivt - e -ivt )

C (t ) = lim
T: q

1
TL

T
2

- T
2

y1 (t )y2 (t + t)dt
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798 CHAPTER 13

13.5.2 FOURIER TRANSFORM FOR NONPERIODIC FUNCTIONS
A Fourier series can be developed for any function by taking the limit of Equation (13.47)

as T approaches infinity, as

(13.51)

As T the discrete frequencies approach a continuous spectrum vk v, and the inte-

gral divided by the period is expressed as a function of the continuous variable v as 

As T approaches infinity, k becomes a continuous variable, and the infinite sum becomes

an integral with a variable of integration of v. The result of the limiting process is

(13.52)

where

(13.53)

Equation (13.53) defines the Fourier transform of a nonperiodic function. Equations (13.52)

and (13.53) form a Fourier transform pair.

F (v) = L
q

- q
F (t )e -ivtd t

F (t ) =
1

2pL
q

- q
F (v)e ivtdv

F (v)
2p .

:: q

b aq
k = -q
c 1
TL

T
2

T
2

F (t )e ivktdt de ivkt rF (t ) = lim
T: q

EXAMPLE 1 3 . 6
Determine the Fourier transform of the unit impulse function d (t).

SO LU T I ON
By definition and from Equation (13.53),

(a)

The unit impulse function is zero everywhere except at t � 0, where it is infinite. But it is

infinite in such a way (see Appendix A) that

(b)

Thus, the Fourier transform of the unit impulse function is

(c)F (v) = 1

L
q

- q
d(t )F (t )dt = F (0)

F (v) = L
q

-q
d(t )e -ivtdt

EXAMPLE 1 3 . 7
Determine the Fourier transform of F

0
sin vnt. 

SO LU T I ON
Using Equation (13.43) for sin vnt and substituting into Equation (13.53) gives the

Fourier transform as

(a)F (v) = L
q

-q

F0

2i
(e ivnt - e -ivnt )e -ivtdt
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Random Vibrations 799

Unlike the Laplace transform, the integration cannot be performed by traditional means.

Instead, use Equation (13.52)

(b)

Recalling the property of the unit impulse function,

(c)

leads to the realization that

(d)

The Fourier transform of a periodic function leads to a discrete frequency distribution.

F (v) =
F0

2i
3d(v - vn ) - d(v + vn )4

L
q

- q
F (v)d(v - a ) dv = F (a)

F0

2i
(e ivnt - e -ivnt ) =

1
2pL

q

-q
F (v)e ivtdv

EXAMPLE 1 3 . 8
Determine the Fourier transform of the non-periodic function of Figure 13.11.

SO LU T I ON
The Fourier transform of F(t) is

(a)

The real part of the Fourier transform of F(t) is illustrated in Figure 13.11(b), the imagi-

nary part in Figure 13.11(c).

+ 2 vT  cos  vT - 2  sin  vT d

=
4F0

v
  sin vT -

2F0

v
  sin  vT

2
-

iF0

v
c2  sin  vT

2
- vT cos   vT

2

+ a tei vt -
1

iv
eivtb 2

- T

- T
2

+ a teivt -
1
iv

eivtb 2 T
T
2

d

=
F0

iv
 c2e ivt 2

- T

- T
2

+ e ivt 2 T2
- T

2

+ 2e ivt 2 T
- T

2

= F0 cL
- T

2

-T
e ivtdt + L

T
2

- T
2

e ivtdt + 2L
T

T
2

e ivtdt +
2
TL

- T
2

- T
te ivtdt +

2
T L

T

T
2

te ivtdt d

F (v) = F0 cL
- T

2

-T
2a1 +

t
T
be ivtdt + L

T
2

T
2

e ivtdt + L
T

T
2

2a1 -
t
T
be ivtdt d
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FIGURE 13.11
(a) F(t) for Example 13.8. (b) Real part of F(v). (c) Imaginary part of F(v).
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Random Vibrations 801

13.5.3 TRANSFER FUNCTIONS
The Fourier transform has properties similar to that of the Laplace transform. It exists and

is unique for functions that can be generated physically. It satisfies a linearity property. 

Let represent the Fourier transform of F(t). Let and

. Then for any scalars a and b,

(13.54)

The Fourier transform also satisfies a property of transform of derivatives.

Differentiating Equation (13.52) with respect to time leads to

(13.55)

Taking the Fourier transform of both sides of this equation using linearity leads to

(13.56)

The Fourier transform of the second derivative is

(13.57)tb d 2F
dt 2 r = ivtb dF

dt
r = -v2t{F }

t b dF
dt
r = ivt{F }

dF
dt

=
iv
2pL

q

-q
F (v)e ivtdv = ivF (t )

t{aF (t ) + bG (t )} = aF (v) + bG (v)

G (v) = t{G (t )}
F (v) = t{F (t )}t{F (t )}

EXAMPLE 1 3 . 9
Determine the Fourier transform of the solution of

(a)

for an arbitrary F(t).

SO LU T I ON
Let and Taking the Fourier transform of the differen-

tial equation leads to

(b)

Using linearity, Equation (b) becomes

(c)

Applying the property of transform of derivatives, Equation (c) is rewritten as

(d)

Solving Equation (d) yields

(e)x (v) =
F (v)

-mv2 + icv + k

- mv2x (v) + icvx (v) + kx (v) = F (v)

mt{x
$

} + ct{x# } + kt{x } = F (v)

t{mx
$ + cx# + kx } = t{F (t )}

x (v) = t{x (t )}.F (v) = t{F (t )}

mx
$ + cx# + kx = F (t )

Similar to the Laplace transform method, a transfer function can be defined for 

the Fourier transform as the ratio of the Fourier transform of the output to the Fourier
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transform of the input,

(13.58)

In taking the Fourier transform of a differential equation instead of the Laplace transform,

the s from the Laplace transform is replaced by iv from the Fourier transform. Thus,

(13.59)

is the same as the sinusoidal transfer function discussed in Section 6.9.

Example 13.6 showed that ]. Thus, the Fourier transform of the response

of a system due to a unit impulse function is H(v).

13.5.4 FOURIER TRANSFORM IN TERMS OF f
The frequency parameter v has units of rad/s and is converted to cycles/s by recognizing

that 2p rad � 1 cycle. Denoting the frequency in cycles/s by f, we have v � 2pf.
Substituting for v in Equation (13.52) leads to

(13.60)

Substitution into Equation (13.53) gives

(13.61)

Equations (13.60) and (13.61) are the Fourier transform pair in terms of the frequency in

cycles/s.

13.5.5 PARSEVAL’S IDENTITY
Applying the definition of the inverse Fourier transform,

(13.62)

Changing the order of integration in Equation (13.62) leads to

(13.63)

The inner integral is the definition of the complex conjugate of the Fourier transform of

y(t ), leading to

(13.64)

Equation (13.64) is known as Parseval’s identity for nonperiodic functions. Using the

circular frequency v, Parseval’s identity is written as

(13.65)L
q

- q
y 2(t )dt =

1

2pL
q

-q
| Y (v) |2dv

L
q

-q
y 2(t )dt = L

q

-q
Y ( f )Y *( f )d f = L

q

-q
| Y ( f ) |2d f

L
q

-q
y 2(t )dt = L

q

-q
Y ( f ) cL

q

-q
y (t )e i 2pftd t ddf

L
q

-q
y 2(t )dt = L

q

-q
y (t ) cL

q

-q
Y ( f )e i 2pftd f ddt

F ( f ) = L
q

-q
F (t )e -i 2pftdt

F (t ) =
1

2pL
q

- q
F ( f )e i 2pftd (2pf ) = L

q

-q
F ( f )e i 2pftd f

t{d (t )} = 1

H (v) = G (iv)

H (v) =
x (v)

F (v)
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13.6 POWER SPECTRAL DENSITY
The mean square value of a random variable y is calculated according to

(13.66)

Using Parseval’s identity, Equation (13.65) becomes

(13.67)

Equation (13.67) is written as

(13.68)

where

(13.69)

is called the power spectral density. It represents the energy density associated with a fre-

quency v.

The power spectral density is written in terms of f as

(13.70)

where f can take on positive and negative values. If f is restricted to positive values, in order for

(13.71)

the spectral density in terms of f is defined as

(13.72)

Consider the Fourier transform of y (t � t), defined such that

(13.73)

Substituting Equation (13.73) into the definition of the autocorrelation function yields

(13.74)

Interchanging the limiting process with the integration, changing the order of the inte-

gration, and rearranging leads to

(13.75)R (t) =
1

2pL
q

- q
c lim

T: q

1
TL

q

- q
y (t )eivtd t dY (v)eivtdv

= lim
T: q

1
TL

T
2

- T
2

y (t ) c 1

2pL
q

- q
Y (v)e iv(t +t)dv ddt

R (t) = lim
T: q

1
TL

T
2

- T
2

y (t )y (t + t)dt

y (t + t) =
1

2pL
q

- q
Y (v)e iv(t +t)dv

W ( f ) = 4pS(v)

E (y2 ) = L
q

- 0
S (v)dv = L

q

0
W ( f )df

W ( f ) = 2pS (v)

S (v) = lim
T: q

1

T
 y (v)y*(v)

y 2 = L
q

-q
S (v)dv

y 2 =
1

2p L
q

- q
 lim
T: q

1
T

 y (v)y*(v)dv

y 2 = lim
T: q

1
TL

T
2

- T
2

y 2(t )dt
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Using the definition of the Fourier transform in Equation (13.75) gives

(13.76)

Using the definition of power spectral density in Equation (13.76) leads to

(13.77)

Thus, the power spectral density is the Fourier transform of the autocorrelation function

over 2p. Using the definition of the transform pair, we have

(13.78)

Equations (13.77) and (13.78) are called the Wiener-Khintchine equations.
The autocorrelation and the power spectral densities are real functions of v. In addition,

R(t) � R(�t), so that Equation (13.77) can be written as

(13.79)

A wideband process is one in which a large number of frequencies appear in the time-

dependent description of the process, as shown in Figure 13.12(a). The autocorrelation

R (t) = 2L
q

-q
S(v) cos vt  dv

S (v) =
1

2pL
q

- q
R (t)e -ivtd t

R (t) = L
q

-q
S (v)e ivtdv

R (t) =
1

2pL
q

- q
lim

T: q

1
TL

q

- q
Y * (v)Y(v)e ivtdv

FIGURE 13.12
Wideband process (a) y(t),
(b) R(t), and (c) S(v).

(a)

(b)

y(t)

t

t

R

(c)

S(w)
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Random Vibrations 805

function is large near v � 0 and decays rapidly, as shown in Figure 13.12(b). The power

spectral density has a significant value over a wide range of frequencies, as shown in

Figure 13.12(c). Jet engine noise is typically a wideband process.

A narrowband process is one in which only a few frequencies with random ampli-

tudes are present in the time-dependent description of the process, as illustrated in

Figure 13.13(a). The autocorrelation function appears to be a decaying cosine function,

as illustrated in Figure 13.13(b). The power spectral density is large over a narrowband of

frequencies, as shown in Figure 13.13(c). Vibration of a floor in an industrial plant is an

example of narrowband excitation in which a few frequencies are dominant in the power

spectral density.

White noise is a limiting case of a wideband process. Its time dependent description,

as illustrated in Figure 13.14(a), is similar to that of a wideband excitation. Its autocorre-

lation function is proportional to the unit impulse function

(13.80)

where S
0

is the magnitude of its constant-power spectral density, as shown in Figure 13.14(c),

over a theoretically infinite frequency range. White noise is impossible to achieve, as the

means square value of the process is infinite but it provides a good approximation for many

wide band processes.

R(t) = S0d(t)

FIGURE 13.13
Narrowband process (a) y(t),
(b) R(t), (c) S(v).

(a)

(b)

y(t)

R

S

t

t

(c)

w
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806 CHAPTER 13

If the white noise is limited by bandwidth, the power spectral density is as given in

Figure 13.14 and is described by

(13.81)

This bandlimited white noise is more realistic, as it has a finite mean square value.

S0  v1 6 v 6 v2

0      v 6 v1 and v 7 v2

S (v)c

FIGURE 13.14
White noise at (a) y(t), (b)
R(t), and (c) S(v).

(a)

Area = S0

(b)

y

t

R

t

(c)

S

w

EXAMPLE 1 3 . 1 0
Determine and plot the autocorrelation function for bandlimited white noise, as illustrated

in Figure 13.15.

SO LU T I ON
The autocorrelation function is given by Equation (13.77), which is evaluated for this

power spectral density as

(a)R(t) = 2L
v2

v1

S0 cos vtdv =
2F0

t
( sin v2t -  sin v1t)

FIGURE 13.15
Bandlimited white noise for
Example 13.10.w1

ww 2

S
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Random Vibrations 807

FIGURE 13.16
Autocorrelation function for
bandlimited white noise with
v1 � 10 rad/s at (a) v2 �

15 rad/s, (b) v2 � 20 rad/s,
and (c) v2 � 50 rad/s.

–10
–3 0 1 2–2 –1 3

R
(t

)/
S 0

–8

6

8

–6

–4

–2

2

4

0

10

t
(a)

–20
–3 0 1 2–2 –1 3

R
(t

)/
S 0

–15

15

–10

–5

5

10

0

20

t
(b)

–40
–3 0 1 2–2 –1 3

R
(t

)/
S 0

–20

0

20

60

40

80

t
(c)

The autocorrelation function is plotted in Figure 13.16 for v
1

� 10 rad/s for different

values of v
2
.
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808 CHAPTER 13

13.7 MEAN SQUARE VALUE OF THE RESPONSE
Equation (13.58) implies that the transfer function is the ratio of the Fourier transform of

the output to the Fourier transform of the input. Multiplying the transfer function by its

complex conjugate yields a real quantity

(13.82)

which is rearranged to yield

(13.83)

Let Sx(v) represent the spectral density of the output and SF (v) represent the spectral den-

sity of the input. The mean square value of the output is calculated as

(13.84)

Substituting Equation (13.83) into Equation (13.84) leads to

(13.85)x2 = L
q

- q
| H (v) |2 c lim

T: q

1

T
F (v)F *(v) ddv = L

q

- q
| H (v) |2SF (v)dv

Sx(v)dv = L
q

- q
lim

T: q
 
1
T

 X (v)X *(v)dvx 2 = L
q

- q

X (v)X *(v) = | H (v) |2F (v)F *(v)

H (v)H*(v) =
X(v)X *(v)

F (v)F *(v)

EXAMPLE 1 3 . 1 1
What is the mean square response of a SDOF system due to (a) white noise, (b) bandlim-

ited white noise if

and

SO LU T I ON
The results of Example 13.9 are used to determine the transfer function for a SDOF system as

(a)

The power spectral density of the output is

(b)

The mean square response of the output is given by Equation 13.85

(c)x2 = L
q

-q
| H (v) |2SF (v) dv = L

q

-q

S0

(k - mv2)2 + (cv)2dv

Sx(v) = | H (v) |2SF (v) = S0 |
1

-mv2 + icv + k
| =

S0

(k - mv2)2 + (cv)2

H (v) =
1

-mv2 + icv + k

v2 = 100 rad>s
vn = 30 rad>s, m = 1 kg, z = 0.1 S0 = 1 * 10-6 m2 # s>rad v1 = 10 rad>s

62129_13_Ch13_p781-824.qxd  3/16/11  2:42 PM  Page 808

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Random Vibrations 809

The integral is evaluated using Appendix (E) leading to

(d)

(b) The transfer function is written as

(e)

The square of magnitude of the transfer function is

(f)

The mean square response of the output is

(g)

The integral is evaluated using Appendix (E) leading to

x 2 = (30)(1 * 10-6) c t
4(0.1)

d c 0.1

2p21 - (0.1)2
 ln 

(3.33)2 + 2(3.33)21 - (0.1)2 + 1

(3.33)2 - 2(3.33)21 - (0.1)2 + 1

    +
1

p
 tan -1

3.33 + 21 - (0.1)2

0.1
+

1

p
 tan -1

3.33 - 21 - (0.1)2

0.1

  -
0.1

2p21 - (0.1)2
 ln 

(0.333)2 + 2(0.333)21 - (0.1)2 + 1

(0.333)2 - 2(0.333)21 - (0.1)2 + 1

  -
1

p
 tan -1

0.333 + 21 - (0.1)2

0.1
-

1

p
 tan -1

0.333 - 21 - (0.1)2

0.1
d

 = 1.97 * 10-2 m2

x 2 = L
100

10

| H (v) |2SF (v) dv = L
100

10

1 *  10-6

(900 - v2)2 + (6v)2
dv

  =
1

(900)2L
3.33

0.333

(30)(1 *  10-6) 

c1 - a v
30
b2 d2 + c2(0.1)a v

30
b d2

d a v
30
b  

| H(v) |2 =
1

(900 - v2)2 + (6v)2

H(v) =

1
1 kg

(900 - v2) + i 6v
=

1
(10000 - v2) + i 6v

x 2 =
pS0

2kc
=
pS0

2zm2v3
n

=
p(1 * 10-6 m2 # s/rad)

2(0.1)(1 kg)2(30 rad/s)
= 5.81 * 10-10 m2

EXAMPLE 1 3 . 1 2
A two degree-of-freedom frame structure is subject to wind loading whose power spectral den-

sity is measured and given in Table 13.3 on the next page and plotted in Figure 13.17(a) on

page 811. The transfer function is also measured and has two peaks, as shown in Figure 13.17.

(a) Determine the mean square value of the response of the system.

(b) Determine the probability that | x | � 0.02 m.

(c) Determine the probability that the maximum value of x exceeds 0.02 m.

(h)
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810 CHAPTER 13

SO LU T I ON
The mean square of the response of the system is given by Equation (13.85)

(a)

Since the power spectral density and the magnitude of the transfer function are only known

at discrete values of omega, a numerical integration procedure must be used. Applying the

trapezoidal rule over the range of frequencies 0 � v� 380 rad/s with the number of inter-

vals equal to 19 and �v � 20 rad/s leads to

(b)

Assuming the mean is zero, the standard deviation is calculated from Equation (13.18) as

(c)
(b) The value of x can take on positive and negative values. Thus, using the central limit

theorem, it is governed by the Gaussian distribution. The normalized variable is

(d)z =
0.02 m - 0 m

0.0375 m = 0.5333

s = 2x 2 = 0.0375 m

= 1.41 * 10-3 m2

x 2 = 3SF (0)| H (0) |2 + 2a
18

i = 1

SF (20i )| H(20i ) |2 + SF (380)| H (380) |24c 20
2(19)

d

x 2 = L
q

- q
| H(v) |2SF (v)dv

0 0 1
20 0.01 1.01
40 0.03 1.03
60 0.5 1.10
80 1.0 1.4
100 1.6 1.9
120 1.0 2.5
140 0.8 3.1
160 1.3 2.5
180 2.0 1.6
200 3.4 1.1
220 2.0 1.3
240 1.8 2.7
260 1.3 4.0
280 1.0 5.6
300 1.3 3.8
320 1.3 2.1
340 0.9 1.3
360 0.6 0.5
380 0.1 0.1

| H(v) |am
N
bSF (v)a10-5m2 # s

rad
bva rad

s
b

Measured values of spectral density function
and magnitude of transfer function

T A B L E 1 3 . 3
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FIGURE 13.17
(a) SF (v) for system of Example 13.12 is experimentally obtained. (b) H(v).
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812 CHAPTER 13

The probability that | x | � 0.02 is the probability that z � �0.5333, which according to

Table 13.1 is 1 � 0.701 � 0.299. The probability that z � 0.5333 is 0.299. Thus, the

probability that | z | � 0.533 is 0.598.

(c) The maximum value of x is only positive. Thus, it likely follows a Rayleigh distribution

with a � 0.0375. The value of the variable in the Rayleigh distribution is

. The probability that the maximum value of x is greater than 0.02 m is

(e)e -0.142 = 0.867

(0.02 m)2

2(0.0375 m)2 = 0.142

13.8 BENCHMARK EXAMPLE
Consider the benchmark example of the simplified model of a suspension system subject

to a random vibration, as illustrated in Figure 13.18. The differential equation governing

the displacement of the body of the vehicle x(t) given the displacement of the wheel y(t) is

(a)

The transfer function is obtained by taking the Fourier transform of the differential equa-

tion, leading to

(b)

The transfer function is obtained from Equation (b) as

(c)

The transfer function is rewritten as

(d)

The square of the magnitude of the transfer function is

(e)| H(v) |2 =
(1600 - 24v2)2 + 1600(2 - v)4

(40 - v2)2 + (4v)2

H(v) =
4iv + 40

(40 - v2 ) + 4iv
c (40 - v2) - 4iv

(40 - v2) - 4iv
d =

1600 - 24v2 + 40(2 - v)2i

(40 - v2)2 + (4v)2

H (v) =
X (v)

Y (v)
=

1200iv + 12,000
-300v2 + 1200iv + 12,000

=
4iv + 40

(40 - v2 ) + 4iv

300( - v2)X (v) + 1200ivX (v) + 12,000X (v) = 1200ivY (v) + 12,000Y (v)

300x# + 1200x# + 12,000x = 1200y# + 12,000y

FIGURE 13.18
System of the benchmark
example as it travels over a
road modeled by white noise.

300 kg 60 m/s

12,000 N/m1200 N . s/m
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Random Vibrations 813

The vehicle is traveling over a road contour whose power spectral density is that of white

noise:

(f)

If the vehicle is traveling at 60 m/s, we have

(g)

Thus,

(h)

The mean square values of the response is

(i)

Evaluation of the integral using the formulas of Appendix F leads to

(j)

Assuming the mean is zero, the standard deviation is

(k)

The random variable x is governed by the Gaussian distribution via the central limit

theorem. The maximum absolute value is greater than a if �a � x or x � a. The maxi-

mum amplitude is a positive random variable and is more likely governed by the Rayleigh

distribution. The probabilities of exceeding certain values of the absolute value of x and the

maximum amplitude are given in Table 13.4.

s = 27.74 * 10-5m2 = 8.80  mm

x 2 = (6.1 * 10-8)(404)p = 7.74 * 10-5
 m2

x 2 =  L
q

-q
a6.1 * 10-8 

m2 # s
rad

b  b (1600 - 24v2)2 + 1600(2 - v)4

(40 - v2)2 + (4v)2 rdv

S0 = 2.3 * 10-5 
 

m2

cycle>m  

1 cycle>m
120p rad>s = 6.10 * 10-8

 m2 # s>rad

1   

cycle

m
= 1 

cycle

m
 
60 m

s
 
2prad
cycle

= 120 prad >s

S0 = 2.3 * 10-5 m2

cycle>m

a (mm) Normal Variable Probability Rayleigh Variable Probability

| a | � x xmax � a

2 0.227 0.820 0.0258 0.9745
4 0.454 0.645 0.1033 0.9019
6 0.682 0.490 0.2324 0.7926
8 0.909 0.362 0.4132 0.6615
10 1.136 0.250 0.6457 0.5243
12 1.364 0.170 0.9298 0.3947
14 1.591 0.118 1.2655 0.2821
16 1.818 0.068 1.6529 0.1915
18 2.045 0.035 2.0119 0.1234
20 2.272 0.022 2.5826 0.0756

a2

2(8.80mm)2

a
8.80 mm

Probability that x � | a | and xmax � a
T A B L E 1 3 . 4
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13.9 SUMMARY

13.9.1 IMPORTANT CONCEPTS
• A random variable does not have a defined value, but it is expressed in terms of proba-

bilities.

• A system with a random input has a random response.

• A sample function is one measurement of a random variable y(t).
• An ensemble is a set of sample functions {yi(t)}.
• A process is stationary if its defining statistics are independent of time.

• A process is ergoidc if one element of the ensemble is representative of the ensemble.

The statistics do not depend on which element is selected.

• The probability distribution function P(y) gives the value of the probability that the

random variable is less than y.
• The probability density function is the derivative of the probability distribution function.

• The mean m of a random variable is the expected value of the random variable.

• The variance s2 of a random variable is the expected value of (y � m)2.

• The mean square value is the expected value of y2.

• A Gaussian process defines a bell-shaped curve.

• The central limit theorem implies that the Gaussian process can be used to describe the

distribution of the means or random variables which are not Gaussian processes.

• The Rayleigh distribution is used for random variables that only have positive values.

• The autocorrelation function is the expected value of x (t)x (t � t). It is a function of t

only for a stationary process.

• The Fourier transform of a nonperiodic function is the application of the Fourier series

as the period approaches infinity.

• The transfer function is the ratio of the Fourier transform of the output of a system to

the Fourier transform of its input.

• The power spectral density function S(v) is the energy density associated with a fre-

quency v.

• The Wiener-Khintchine equations relate the power spectral density to the Fourier trans-

form of the autocorrelation function.

• A wideband process is one in which the power spectral density has a significant value

over a wide range of frequencies.

• A narrowband process is one in which the power spectral density is defined to have a

significant value only over a narrow band of frequencies.

• White noise is a wideband process in which the power spectral density is constant over

all frequencies.

• The power spectral density of the output is equal to the power spectral density of the

input times the square of the transfer function.
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Random Vibrations 815

• The mean square value of a process is equal to the integral over the entire range of fre-

quencies of the power spectral density.

13.9.2 IMPORTANT EQUATIONS
Range of values of probability distribution function

(13.6)

Relations between the probability density function and the probability distribution function

(13.8)

(13.9)

Mean of a random variable

(13.13)

Variance of a random variable

(13.14)

Mean square value of a random variable

(13.16)

Relation between the mean, the variance and the mean square value

(13.18)

Probability density function for Gaussian process

(13.20)

Normalized random variable

(13.21)

Probability distribution function for normalized Gaussian process

(13.23)

Probability density function for Rayleigh process

(13.24)p (y ) =
y

a
e - y2

2a

P(z) = L
z

-q

1

22p
e - t2

2 d t

z =
x - m
s

p (x ) =
1

22ps
e - 1

2(x -m
s )2

y 2 = s2 + m2

y 2 = E (y 2 ) = L
q

-q
y 2p (y )dy

s2 = E 3(y - m)24 = L
q

-q
(y - m)2p (y )d y

m = L
q

-q
yp (y )dy

P (y ) = L
y

-q
p (j)d j

p (y ) =
dP
dy

0 … P (y ) … 1
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816 CHAPTER 13

Autocorrelation function

(13.37)

Autocorrelation function for an ergodic stationary process

(13.38)

Relation between autocorrelation function, mean and variance for a stationary process

(13.40)

Fourier transform pair

(13.52)

(13.53)

Transfer function

(13.58)

Parseval’s identity

(13.65)

Power spectral density

(13.69)

Wiener-Khintchine equations

(13.77)

(13.78)

Autocorrelation function for white noise

(13.80)

Mean square value of output

(13.85)x 2 = L
q

- q
 | H(v) |2 c  lim

T: q

1
T

F (v)F *(v) ddv = L
q

- q
| H(v) |2SF(v)dv

R(t) = S0d(t)

S (v) =
1

2pL
q

- q
R (t)e -ivtdt

R (t) = L
q

-q
S(v)e ivtdv

S (v) =
1

2p
 c lim

T: q

1
T

 Y (v)Y *(v) d

L
q

- q
y 2(t )dt =

1
2pL

q

-q
| Y (v) |2dv

H (v) =
x (v)

F (v)

F (v) = L
q

-q
F (t )e -ivtdt

F (t) =
1

2pL
q

-q
F (v)e ivtdv

R(0) = s2 + m2

R (t) = lim
T: q

1
TL

T
2

- T
2

y (t )y (t + t)dt

= L
q

-qL
q

- q
y(t )y (t + t)p3y (t ),y (t + t)4dy (t )dy (t + t)

R (t,t) = E 3y (t )y (t + t)4
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PROBLEMS

SHORT ANSWER PROBLEMS
For Problems 13.1 through 13.12, indicate whether the statement presented is true or false.

If true, state why. If false, rewrite the statement to make it true.

13.1 The Rayleigh distribution can be applied to random variables with positive

values.

13.2 A stationary process is one in which a representative sample of ensemble

measurements can be used for the entire process.

13.3 The Weiner-Khintchine equations imply that the autocorrelation function is the

Fourier transform of the power spectral density.

13.4 If P(0) � 0.5 for a normalized random variable, the probability distribution

follows the Gaussian distribution.

13.5 The probability distribution function is the derivative of the probability density

function.

13.6 The autocorrelation function is an even function of  t for a stationary process.

13.7 The transfer function is defined as the Fourier transform of the output of a

system divided by the Fourier transform of the input to a system is equal to the

sinusoidal transfer function for the system.

13.8 If x(t) � A sin 5t, then 

13.9 The mean of a random function can be calculated by for a

stationary ergodic process.

13.10 The variance is the positive square root of the standard deviation.

13.11 A narrowband process has a power spectral density defined over a narrow band

of frequencies.

13.12 For a stationary process R (0) � 1.

Problems 13.13 through 13.30 require a short answer.

13.13 What is an ensemble?

13.14 What is a stationary process?

13.15 What is an ergodic process?

13.16 Which is more likely to be a random process, the wind induced vibrations of a

bridge or the rotating unbalance of a machine?

13.17 What is the total area under the curve of a probability density function?

13.18 What does the Central Limit theorem imply?

13.19 What is the power spectral density function for ideal white noise?

13.20 What is the autocorrelation function for ideal white noise?

13.21 What is the Fourier transform of d(t)?
13.22 If the probability density function p(x) is known for a random variable, what is

the probability distribution P(x)?

13.23 What is P(0) for the normalized Gaussian distribution?

13.24 The probability of the maximum value of the response of a system follows what

probability distribution?

m = L
q

-q
xp(x) dx

p(x) = 1
A    for  | x | 6 A.
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818 CHAPTER 13

13.25 The probability that the absolute value of the response of a system follows what

probability distribution?

13.26 A random variable has a probability distribution, P(x). What is p( )?

13.27 A random variable has a probability distribution, P(x). What is the probability

that x � b?

13.28 A random variable has a probability distribution, P(x). What is the probability

that �1 � x � 3?

13.29 If the power spectral density of an input force is SF(v) and the transfer function

for the system the force is applied to is H(v), what is the power spectral density

of the output?

13.30 The spectral density of a random process is S(v). How is the mean square value

of the process determined?

Problems 13.31 through 13.36 require short calculations.

13.31 For the normalized Gaussian distribution P(z), determine the following.

(a) What is the probability that z � 1?

(b) What is the probability that �2 � z � 1?

(c) What is the probability that z � 0.5?

13.32 A random variable has a Gaussian distribution with m � �1.3 and s � 2.8.

Determine the following.

(a) What is the probability that x � �3.3?

(b) What is the probability that x � 3.3?

(c) What is the probability that 0 � x � 6.3?

13.33 A random variable has a Rayleigh distribution with m � 3.1. Determine the

following.

(a) What is the probability that x � 3.1?

(b) What is the probability that x � 2.3?

(c) What is the probability that 2.9 � x � 3.3?

13.34 The probability density function for the standard Cauchy distribution is

(a) What is the probability distribution function for the Cauchy 

distribution?

(b) What is the mean of the Cauchy distribution?

(c) What is the mean square value of the Cauchy distribution?

13.35 The probability distribution function for the standard Weibull 

distribution is

What is its probability density function p(x)?

P (x) = 1 - e-xg

p (x) =
1

p(1 + x2)

q
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Random Vibrations 819

13.36 Consider the system shown in Figure SP13.36.

(a) What is the transfer function for the system ?

(b) Determine |H(v)|.

(c) The system is subject to ideal white noise. What is the power spectral

density of the input?

(d) What is the power spectral density of the output?

(e) Determine the mean square response of the system.

(f ) If the mean of the response is zero, what is the standard deviation of the

response?

H(v) = X (v)
F (v)

FIGURE SP13.36

c

m x

F

13.37 It is desired to approximate the random displacement of a machine due to a

random force F(t). What are the SI units of the following.

(a) The power spectral density of the displacement Sx(v)

(b) The power spectral density of the force SF (v)

(c) The Fourier transform of the force F (v)

(d) The Fourier transform of the displacement X (v)

(e) The transfer function for the system H (v)

(f ) The mean square value of the displacement E(x2)

(g) The variance of the force 

(h) The autocorrelation function for the displacement Rx(t)

(i) The autocorrelation function for the force RF(t)

(j) The probability distribution for the force

(k) The probability density function for the force

CHAPTER PROBLEMS

13.1 Determine the autocorrelation function for x (t) � A cos 2t.
13.2 Determine the autocorrelation function for the rectangular wave shown in

Figure P13.2.

s2
F
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820 CHAPTER 13

13.3 Determine the autocorrelation function for the rectangular wave shown in

Figure P13.3.

T
2

–2T–5T
2

–3T
2

–T
2

T t

A

F

3T
2

2T 7T
2

FIGURE P13.3

T
2

–T
2

–3T
2

t

A

F

3T
2

FIGURE P13.4

13.4 Determine the autocorrelation function for the triangular wave shown in 

Figure P13.4.

13.5 Determine the autocorrelation function for the triangular wave shown in

Figure P13.5.

T
8

–2T –15T
8

–T –7T
8

T t

A

F

9T
8

2T 17T
8

FIGURE P13.2

T T
2

–T–T 0
2

–3T
2

t

A

3T
2

FIGURE P13.5
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Random Vibrations 821

13.6 Determine the autocorrelation function for the triangular wave shown in 

Figure P13.6.

T
4

T
2

–T 0
2

–T
4

A

–A

FIGURE P13.6

–T
4

–T
2

T
4

0 T
2

A

P(t)

FIGURE P13.9

13.7 A sine wave has the form

Determine the expected value of x and x2.

13.8 Assume that t is uniformly distributed.

(a) Determine the probability density function p(x) for the function in

Chapter Problem 13.7.

(b) Determine the probability distribution function P(x) for the function in

Chapter Problem 13.7.

13.9 Determine the probability density function for the periodic function, one

period of which is shown in Figure P13.9

x(t) = 3 - 2 sin 4t

13.10 Determine the probability density function for the half-period cosine wave of

Figure P13.10.

–T
2

T

A

p . t

2

T
cos 

FIGURE P13.10
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822 CHAPTER 13

13.11 Determine the Fourier transform of the rectangular pulse of Figure P13.11.

13.12 Determine the Fourier transform for the triangular pulse of Figure P13.12

13.13 Determine the Fourier transform of the half-period cosine wave of 

Figure P13.10.

13.14 Determine the power spectral density of the wave shown in Figure P13.2.

13.15 Determine the power spectral density of the wave shown in Figure P13.3.

13.16 Determine the power spectral density of the wave shown in Figure P13.4.

13.17 Determine the power spectral density of the wave shown in Figure P13.6.

13.18 A force has band limited white noise with frequency bounds of v
1

� 100 rad/s

and v
2

� 500 rad/s and magnitude S
0

� 2 � 102 N2 s rad determine the

following.

(a) The autocorrelation function for the force

(b) The expected mean square value of the force

(c) Assuming the mean is zero, what is the probability that the magnitude of

the force is greater than 1000 N?

13.19 A SDOF system with a mass of 20 kg, z � 0.1 and vn � 100 rad/s is subject

to white noise with . What is the power spectral

density of the response Sx(v)?

S0 = 1 * 10-2 N2 # s/rad

>#

T
2

–T
2

F0

P(t)

FIGURE P13.11

–T
2

T t

F0

2

FIGURE P13.12
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Random Vibrations 823

13.20 A SDOF system with a mass of 30 kg, z � 0.05, and vn � 200 rad s is subject

to white noise with . What is the power spectral density

of the response Wx(f )?

13.21 A SDOF system with a mass of 20 kg, z � 0.1, and vn � 100 rad/s is subject

to white noise with .

(a) What is the mean square value of the response of the system?

(b) What is the probability of the response exceeding 5 mm?

(c) What is the probability of the maximum of the response exceeding 

5 mm?

13.22 The SDOF system of Figure P13.22 is subject to a white noise with 

S
0

� 1 � 10�2 m2 rad s (the power spectral density of the acceleration of 

the base). Calculate the mean square value of the acceleration of the 

20 kg block.

#>

S0 = 1 * 10-2 N2 # s/rad

S0 = 1 * 10-2 N2/Hz
>

FIGURE P13.22

20 kg

y(x)

1000 N . s/m1 × 104 N/m

13.23 The SDOF system of Figure P13.23 is subject to a white noise with S
0

� 1 �
10�3 N2 s rad. What is the mean square value of the response of the 300 kg

mass.

>#

FIGURE P13.23

300 kg

y(t)

2000 N . s/m1 × 105 N/m

1 × 105 N/m

x(t)

13.24 Solve Chapter Problem 13.21, assuming the power spectral density is band

limited with v
1

� 50 rad/s and v
2

� 200 rad/s.
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824 CHAPTER 13

13.25 Solve Chapter Problem 13.21, assuming the force is narrowband with a power

spectral density given by .

13.26 Solve Chapter Problem 13.22, assuming the acceleration is band limited with 

v
1

� 10 rad s and v
2

� 30 rad s.

13.27 A two SDOF has governing differential equations

where F (t) is random with a power spectral density of S
0

� 5 � 10�2 N2 s rad.

(a) Determine the mean square value of x
1
.

(b) Determine the mean square value of x
2
.

>#
= BF (t )

0
RB x1

x2

R+ B 200 -100
-100 300

RB x#1
x#2
R+ B 5 -2

-2 2
RB x#1

x#2
RB1 0

0 1
R

>>
SF (v) = 3 * 10-3

2 + 5v2
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Appendix A

UNIT IMPULSE FUNCTION
AND UNIT STEP FUNCTION

Consider the function, f
�
(x ; a), where f

�
(x ; a), as shown in Figure A.1 is defined by

(A.1)

The function has the property

(A.2)

Taking the limit of f
�
(x ; a) as yields

(A.3)

From Equation (A.2)

(A.4)L
q

-q
d(x - a)dx = 1

lim
� :0

 f�(x ; a) = d(x - a) = e 0 x Z a
q x = a

� : 0

L
q

-q
f�(x ; a)dx = 1

f�(x ; a) = f
0 - q 6 x 6 a -

�

2
1
�

a -
�

2
… x … a +

�

2

0 a +
�

2
6 x 6 q

∆
2

a – 

f∆(x; a)

1
∆

a x∆
2

a + 

FIGURE A.1
f∆(x; a).d(x - a ) = lim

� : 0

825
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826 APPENDIX A

The function defined in Equation (A.3) and whose valuable property is given in

Equation (A.4) is called the unit impulse function. It has many applications in physics and

engineering. It is used to mathematically represent the force that is applied to cause a unit

impulse applied at a time t � a in a mechanical system. It is used to represent a unit con-

centrated load applied at a location x � a to a structure. The unit impulse function, also

called the Dirac delta function, is used to represent a unit heat source in a heat transfer problem.

Now define

(A.5)

The function defined in Equation (A.5) is called the unit step function and is illustrated in

Figure A.2. Differentiating Equation (A.5) gives

(A.6)

The definitions of the unit impulse function and unit step function can also be used to

derive the following integral formulas. For any function g(t),

(A.7)

and (A.8)L
t

0
u (t - a)g (t)dt = u(t - a) L

t

a
g (t)dt

L
t

0
d(t - a)g (t)dt = u (t - a)g (a)

du
dx

(x - a) = d(x - a)

u(x - a) = L
x

0
d(x - a) dx = L

x

0
lim
� :0

 f�(x ; a) dx = e  0 x … a
1 x 7 a

u(x – a)

1

xa

FIGURE A.2
The unit step function u(x � a).
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B.1 DEFINITION
The Laplace transform of a function f (t) is defined as

(B.1)

If there exist values of �, M, and T such that

(B.2)

then F(s) exists for s � �. Equation (B.2) is satisfied for all excitations and responses in

this text.

The Laplace transform transforms a real-valued function into a function of a com-

plex variable, s. For many functions, the Laplace transform can be obtained by direct

integration.

e -at | f  (t) | 6 M  for all t 7 T

F (s) = L{  f  (t)} = L
q

0
f  (t)e -st dt

Appendix B

LAPLACE TRANSFORMS

EXAMPLE B . 1
Determine the Laplace transform of f (t) � eat.

SO LU T I ON

(a)L{e at} = L
q

0
e ate -stdt =

1
a - s

e (a- s)t 2 q
0

=
1

s - a
  s 7 a

B.2 TABLE OF TRANSFORMS
Equation (B.1) is used to develop a table of transform pairs a table of f (t) versus F(s).
Laplace transforms of other functions can be developed using Table B.1 in conjunction

with the properties of the transform, provided in Table B.2.

B.3 LINEARITY
The Laplace transform operator is a linear operator. Let F(s) � L{ f (t)}, G(s) � L{ g(t)}, and

� and � be any real numbers. Then

(B.3)L{af  (t) + bg (t)} = aF (s) + bG (s)

827
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828 APPENDIX B

B.4 TRANSFORM OF DERIVATIVES
The property of the Laplace transform of derivatives along with the linearity of the trans-

form allows easy application of the Laplace transform method to the solution of differen-

tial equations. If F(s) � L{ f (t)}, then

� sn�2
.

f (0)� … � sf (n�2)(0) � f (n�1)(0) (B.4)Le d nf

dt n   f = snF (s) - sn - 1f  (0)

EXAMPLE B . 2
Determine L{cosh(�t)}.

SO LU T I ON

Recall that . Then using linearity of the transform

(a)

Using transform pair 3 from Table B.1 with � � � and � � �� in Equation (a)

leads to

(b)L{cosh(vt)} =
1
2
a 1

s - v
b +

1
2
a 1

s + v
b =

1
2
as - v + s + v

s2 - v2 b =
s

s2 - v2

L{cosh(vt)} =
1

2
 L{e vt } +

1

2
 L{e -vt }

cosh(vt) =
e vt + e -vt

2

T A B L E B . 1

Number F (s)

1 1

2 tn

3 e�t

4 sin�t

5 cos�t

6 �(t � a) e�as

7 u(t � a)

8

9

10

11

12
2sv

(s2 + v2)2t  sin vt

s2 - v2

(s2 + v2)2t  cos vt

1

(s + a)2t e at

v

s2 + 2as + v2e at sin vt

s + as
s2 + 2as + v2e at cos vt

e-as

s

s
s2 + v2

v

s2 + v2

1

s - a

n!
sn + 1

1
s

f (t )
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Laplace Transforms 829

B.5 FIRST SHIFTING THEOREM
If F(s) � L{ f (t)}, then

(B.5)L{e -atf  (t)} = F (s + a)

T A B L E B . 2

Name of Property Statement of Property

Definition

Linearity of transform

First Shifting Theorem

Second Shifting Theorem

Transform of First Derivative

Transform of Second Derivative

Convolution

Inversion Integral

Note: and G(s) = L{ g (t)}F (s) = L{ f  (t)}

L-1{F (s)} = 1
2piL

g+ i q

g- i q
F (s)e st ds

L{  f  (t) * g (t)} = F (s)G(s)

Le d 2f

dt 2   f = s2F (s) - sf  (0) -
df

dt
 (0)

Le df

dt
  f = sF (s) - f  (0)

L{  f  (t - a)u(t - a)} = e -asF (s)

L{e atf  (t)} = F (s - a)

L{af  (t) + bg (t)} = aF (s) + bG (s)

L{ f  (t)} = 1q
0 f  (t)e -stdt

Properties of Laplace Transforms

EXAMPLE B . 3
Use transform pair 5 from Table B.1 and Equation (B.4) to determine L{sin2t}.

SO LU T I ON
Noting that

(a)

and applying properties (B.3) and (B.4) with n � 1 gives

(b)

Using transform pair 5 from Table B.1,

(c)L{sin 2t } = -
1

2
 a s2

s2 + 4
- 1b =

2
s2 + 4

L{sin 2t } = -
1
2

 (s L{cos 2t } - 1)

sin 2t = -
1
2

 

d (cos 2t)

dt

EXAMPLE B . 4
Use Table B.1 and the first shifting theorem to calculate where

.

SO LU T I ON
Using the first shifting theorem and transform pair 5 from Table B.1,

(a)L{e -zvnt cos vd t } =
s

s2 + v2
d

2
s :s +zvn

=
s + zvn

(s + zvn)
2 + v2

d

=
s + zvn

s2 + 2zvns + v2
n

vd = vn1(1 - z2)
L{e -zvnt cos vd 

t }
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830 APPENDIX B

B.6 SECOND SHIFTING THEOREM
If F(s) � L{ f (t)}, then

(B.6)L{ f  (t - a)u(t - a)} = e -asF (s)

EXAMPLE B . 5
Use Table B.1 and the second shifting theorem to determine the Laplace transform of the

function of Figure B.1.

SO LU T I ON
The function of Figure B.1 is written using unit step functions as

Use of transform pair 2 from Table B.1 with n � 1 and the second shifting theorem give

L{  f  (t)} =
1
s

- e -s
 
2
s

+ e -2s
 
1
s

=
1
s

 (1 - 2e -s + e -2s )

 = tu(t) - 2(t - 1)u(t - 1) + (t - 2)u(t - 2)

 f  (t) = t 3u(t) - u(t - 1)4 + (2 - t )3u(t - 1) - u(t - 2)4

f(t)

1

t1 2

FIGURE B.1

B.7 INVERSION OF TRANSFORM
If F(s) � L{ f (t)}, then f (t) � L�1 {F(s)} where

(B.7)

is an integral carried out in the complex s plane. Inverse transforms are often obtained by

using Table B.1 in conjunction with transform properties.

L-1{F(s)} =
1

2piL
g+ i q

g- i q
F (s)e st  ds

EXAMPLE B . 6
If

find F(t), where f (t) � L�1{F (s)}.

e -2s
 

s + 5
s2 + 2s + 5

= F (s)
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Laplace Transforms 831

B.8 CONVOLUTION

Let F (s) � L{ f (t)} and G (s) � L{g (t)}. Then

(B.8)

where is called the convolution of f (t ) and g (t ). The property is known as the

convolution property. It is usually used to invert transforms.

B.9 SOLUTION OF LINEAR DIFFERENTIAL
EQUATIONS
The properties of linearity of the transform and transform of derivatives are used to solve

a linear differential equation with initial conditions.

f  (t ) * g (t )

L{ f  (t) * g (t)} = Le L
t

0
f (t)g(t - t)dt f = F (s)G (s)

Completing the square of the denominator of F (s) gives

Using linearity, the first shifting theorem, and transform pairs 4 and 5 from Table B.1 leads to

Using the second shifting theorem leads to

f  (t ) = u(t - 2)g (t - 2) = e 2 - t3cos 2(t - 2) + 2 sin 2(t - 2)4u(t - 2)

 g (t ) = L-1{G(s)} = e -t(cos 2t + 2 sin 2t )

F (s) = e -2s 
s + 5

(s + 1)2 + 4
= e -2s c s + 1

(s + 1)2 + 4
+

4
(s + 1)2 + 4

d = e -2sG(s)

EXAMPLE B . 7
Solve the differential equation

(a)

where f (t ) is the function of Figure B.1 and

(b)

are given initial conditions.

SO LU T I ON
Taking the Laplace transform of both sides of Equation (a) leads to

(c)

Applying the property of linearity of the transform to Equation (c) leads to

(d)L{ x$  } + 16L{x } = L{  f  (t )}

L{ x$ + 16x } = L{ f  (t )}

x (0) = 0  x#  (0) = 0

x$ + 16x = f  (t )
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832 APPENDIX B

Let X(s) � L{x (t)}. Using the property of the transform of the second derivative and

applying the transform of the function in Figure B.1 leads to

(e)

Applying the initial conditions, Equation (b) to Equation (e) leads to

(f)

The solution for X(s) is

(g)

Noting that x(t) � L�1{X(s)}, the solution of the differential equation is obtained by invert-

ing Equation (g).

Using linearity of the transform in the inverse fashion,

(h)

From transform pair 4 of Table B.1, . Then using the second

shifting theorem in reverse, . A similar method is

used to invert the final transform, leading to

(i)x (t) =
1

4
 sin 4t -

1

2
 sin34(t - 1)4u (t - 1) +

1

4
 sin34(t - 2)4u (t - 2)

L-1 E e -s

s 2 + 16
F = 1

4 sin 4(t - 1)u (t - 1)

L-1E 1
s 2 + 16

F = 1
4 sin 4t

x (t) = L-1e 1
s2 + 16

f - 2L-1e e -s

s2 + 16
f + L-1e e -2s

s2 + 16
f

X (s) =
1 - 2e -s + e -2s

s2 + 16

(s2 + 16)X (s ) = 1 - 2e -s + e -2s

s2X(s) - sx (0) - x#  (0) + 16X (s) = 1 - 2e -s + e -2s
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LINEAR ALGEBRA

Appendix C

C.1 DEFINITIONS

1. A matrix is a collection of numbers arranged in a specific order in rows and columns.

If matrix A has n rows and m columns, then it is represented by

(C.1)

Throughout this text a single capital letter in boldface is used to represent a

matrix. The corresponding lowercase letter with two subscripts is used to refer to a spe-

cific element of the matrix. For example, the element aij resides in the ith row and jth
column of A.

A matrix with n rows and m columns is called an n � m matrix. A square matrix

has the same number of rows and columns.

2. A column vector is a matrix with only one column. A row vector is a matrix with only

one row. Usually, a single lowercase letter in boldface is used to represent a column

vector or a row vector. The letter with a single subscript refers to a specific element of

the vector. A column vector with n rows or a row vector with n columns is said to be

an n-dimensional vector. If x is an n-dimensional column vector, then xi, i � n is the

element in the ith row of the vector.

3. A diagonal matrix is a square matrix with all off-diagonal elements equal to zero. That

is aij � 0 if i � j.

4. An identity matrix is a square diagonal matrix whose diagonal elements are all unity.

That is aij � �ij, where �ij is the Kronecker delta defined by

5. The transpose of the matrix A, denoted by AT, is the matrix obtained by interchanging

the rows and columns of A. If B � AT, then bij � aji. The transpose of a column vector

is a row vector and vice versa.

6. A symmetric matrix is a square matrix whose transpose is equal to the matrix 

itself. If A is an n � n symmetric matrix, then aij � aji for i � 1, . . . , n and j �
1, . . . , n.

dij = e1 i = j
0 i Z j

A = E
a11 a12 a13

Á a1m

a21 a22 a23
Á a2m

a31 a32 a33
Á a3m

o o o ∞ o
an1 an2 an3

Á anm

U

833
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834 APPENDIX C

C.2 DETERMINANTS
The determinant of a square n � n matrix is a number associated with the matrix that is

often of great consequence. It is easiest to define the determinant of a 2 � 2 matrix and

use this definition and properties of determinants to calculate the determinant of larger

matrices.

The determinant of the 2 � 2 matrix A is

(C.2)

The minor corresponding to the element in the ith row and jth column of an n � n
matrix A, denoted by Mij, is the determinant of the (n � 1) � (n � 1) matrix obtained by

deleting the ith row and jth column from A. The cofactor corresponding to the element in

the ith row and jth column of A, denoted by Cij, is

(C.3)

For an i, i � 1, . . . , n, the determinant of A is obtained by the following row expansion:

(C.4)

The value of the determinant is the same regardless of the value of i. The determinant can

also be calculated by a column expansion according to the formula

(C.5)

Since the minors themselves are determinants, row or columns expansions can be used

to express each of the minors in terms of the minors of their corresponding matrix. These

expansions continue until the remaining minors are 2 � 2 determinants.

| A |  = a
n

j  = 1

ajiCji

| A |  = a
n

j  = 1

aijCij

Cij = (-1)i + j Mij

 det{A} = | A | = 2 a11 a12

a21 a22

2 = a11a22 - a12a21

EXAMPLE C . 1
Calculate the determinant of the 4 � 4 matrix A where

SO LU T I ON
The determinant is evaluated by a first-row expansion, using Equation (C.4),

| A | = (1) †
2 -1 0

-1 3 1
0 -2 1

† - (2) †
1 2 -1
2 -1 3
2 0 - 2

†

A = D1 0 0 2
1 2 -1 0
2 -1 3 1
2 0 - 2 1

T
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Linear Algebra 835

The determinant of a matrix is zero if and only if the column vectors that form the

matrix are linearly dependent. For example, the determinant of a matrix with a column of

zeros is zero. A matrix whose determinant is zero is said to be singular. The row vectors of

a singular matrix are also linearly dependent.

C.3 MATRIX OPERATIONS
If C � A � B, then

(C.6)

If the number of columns of A equals the number of rows of B, then the matrix C � AB

is defined as a matrix with the number of rows of A and the number of columns of B and

cij is the sum of the products of the corresponding elements in the ith row of A and the jth
column of B. That is,

(C.7)

Matrix multiplication is not commutative, but is associative and distributive. The

transpose of the product has the following property. If C � AB, then

(C.8)CT = (AB)T = BTAT

cij = a
n

k  = 1

aikbkj

cij = aij + bij

Expansion by the first row is used to evaluate each of the 3 � 3 determinants,

resulting in

The 2 � 2 determinants are evaluated using Equation (C.2), yielding

  = -31

 -  (2){[(-1)(-2) - (3)(0)] - (2)[(2)(-2) - (3)(2)] - [(2)(0) - (-1)(2)]}

 | A | = (2)[(3)(1) - (1)(-2)] + [(-1)(1) - (1)(0)]

 -  (2) ` 2 3
2 - 2

` + (-1) ` 2 -1
2 0

` b
 | A | = (2) ` 3 1

-2 1
` - (-1) ` -1 1

0 1
` - 2a(1) ` -1 3

0 - 2
`

EXAMPLE C . 2
Calculate Ax where

A = D1 2 4 -1
2 3 0 4
1 2 6 2
0 2 3 1

T  x = D 1
4

-1
2

T
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836 APPENDIX C

C.4 SYSTEMS OF EQUATIONS
Consider the system of n simultaneous equations which are to be solved for the n
unknowns x

1
, x

2
, . . . , xn,

(C.9)

Using the definitions of matrix addition and matrix multiplication, the system of

Equation (C.9) is written in matrix form as

where

(C.10)

Cramer’s rule can be used to solve for the components of x,

(C.11)

where Bi is the matrix obtained by replacing the ith column of A with y. Thus if A is sin-

gular, a solution of Equation (C.9) exists only for certain forms of y. Since its rows are lin-

early dependent when the matrix is singular, the solution corresponding to special forms of

y is not unique.

An equation in a system of equations can be replaced, without affecting the solution

of the system, by an equation obtained by multiplying the equation by a scalar and

adding or subtracting it from another equation. The equations can be so manipulated

until one of the equations only has one unknown. This is the basis of the Gauss elimi-

nation method.

x i =
| B i |

| A |

A = Da11 a12
Á a1n

a21 a22
Á a2n

o o ∞ o
an1 an2

Á ann

T  x = Dx1

x2

o
xn

T  y = Dy1

y2

o
yn

T
Ax = y

a11x1 + a12x2 + Á + a1nxn = y1

a21x1 + a22x2 + Á + a2nxn = y2

  o      o          o       o
an1x1 + an2x2 + Á + annxn = yn

SO LU T I ON
The product of a 4 � 4 matrix and a four-dimensional column vector is a four-dimensional

column vector,

Ax = D (1)(1) + (2)(4) + (4)(-1) + (-1)(2)
(2)(1) + (3)(4) + (0)(-1) + (4)(2)
(1)(1) + (2)(4) + (6)(-1) + (2)(2)
(0)(1) + (2)(4) + (3)(-1) + (1)(2)

T = D 3
22
7
7

T
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Linear Algebra 837

Matrix formulation of the equations expedites the application of Gauss elimination.

The n � n coefficient matrix is augmented with the right-hand side vector to form an

n � (n � 1) matrix. Each row of the augmented matrix represents one equation. The Gauss

elimination procedure is applied by performing manipulations on the rows of the aug-

mented matrix such that coefficients below the diagonal become zero. The elimination pro-

cedure results in a coefficient matrix with all zeros below its diagonal. Back substitution is

used to determine the solution.

C.5 INVERSE MATRIX
If A is a nonsingular n � n matrix, then a matrix A�1, called the inverse of A, exists such that

(C.12)

If A�1 is known, Equation (C.9) can be solved by premultiplying both sides by A�1,

(C.13)

If y is a column vector with all zeros except yi � 1, then A�1y is the ith column of A�1.

This provides the basis of an extension of Gauss elimination which is used to determine

A�1. The coefficient matrix is augmented by the n � n identity matrix. The procedure used

in Gauss elimination is applied until the identity matrix appears in place of the original

matrix. The matrix that augments the identity matrix is A�1.

A-1Ax = x = A-1y

AA-1 = A-1A = I

EXAMPLE C . 3
Determine the inverse of

SO LU T I ON
Gauss elimination is applied to the following matrix:

Gauss elimination is used to develop zeros below the diagonal of the coefficient matrix

The procedure of Gauss elimination is used to eliminate the zeros above the diagonal

of the coefficient matrix. Each row is divided by the value of the element along the

C2 -1 0 1 0 0
0 5 -4 1 2 0
0 0 7

2 1 2 5
2

S

C 2 -1 0 1 0 0
-1 3 -2 0 1 0

0 -2 3 0 0 1
S

A = C 2 -1 0
-1 3 -2

0 -2 3
S
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838 APPENDIX C

C.6 EIGENVALUE PROBLEMS
The eigenvalues of an n � n matrix, A, are the values of � such that the system of equations

(C.14)

has a nontrivial solution. The nontrivial solution corresponding to an eigenvalue is called

an eigenvector. Equation (C.14) can be rewritten as

(C.15)

From Cramer’s rule, Equation (C.11), the solution for xi is

Thus, for each , unless

(C.16)

The determinant of Equation (C.16) can be expanded by a row or column expansion.

This yields an nth-order polynomial equation of the form

(C.17)

called the characteristic equation. Equation (C.17) has n roots, and A has n eigenvalues.

Since the coefficients in Equation (C.17) are all real, if complex eigenvalues occur, they

occur as complex conjugate pairs.

If � is an eigenvalue of A, then Equation (C.14) has a nontrivial solution, an eigen-

vector. From Equation (C.l6), the matrix A � �I is singular. Thus the equations defin-

ing the components of the corresponding eigenvector are not all independent and the

eigenvector is not unique. The eigenvector is unique only to an arbitrary multiplicative

constant.

ln + C1l
n - 1 + C2l

n - 2 + Á + Cn - 1l + Cn = 0

| A - lI | = 0

i = 1, Á , n, x i = 0

x i =
0

| A - lI |
  i = 1, Á n

(A - lI)x = 0

Ax = lx

diagonal of the matrix that has taken the place of the original coefficient matrix. 

The result is

Thus

A-1 = D5
7

3
7

2
7

3
7

6
7

4
7

2
7

4
7

5
7

T

D1 0 0 5
7

3
7

2
7

0 1 0 3
7

6
7

4
7

0 0 1 2
7

4
7

5
7

T
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Linear Algebra 839

If A is an n � n singular matrix, then one of its eigenvalues is zero. If A is nonsingu-

lar, then the eigenvalues of A�1 are the reciprocals of the eigenvalues of A. The eigenvec-

tors of A�1 are the same as the eigenvectors of A.

EXAMPLE C . 4
Determine the eigenvalues and eigenvectors of the matrix

SO LU T I ON
The eigenvalues of A are determined by finding the values of � satisfying Equation (C.16),

which for this example become

Expansion of the determinant by its first row gives

When the 2 � 2 determinants are expanded by using Equation (C.2), the following cubic

equation is obtained:

The eigenvalues are the roots of the cubic equation which are 0.609, 2.227, and 5.164. The

eigenvector corresponding to the smallest eigenvalue is obtained by solving

The first equation gives x
1 
� 0.719x

2
. The third equation gives x

3
� 0.836x

2
. When these

relationships are substituted into the second equation, it is identically satisfied. Thus x
2

remains arbitrary and the eigenvector of A corresponding to � � 0.609 is

where C
1

is an arbitrary constant. The same procedure is followed yielding the eigenvectors

corresponding to the second and third eigenvalues. These are

respectively.

C2C -4.41
  1
  2.59

S   C3C -0.316
  1
-0.924

S

C1C0.719
1
0.836

S

C   1.391 -1   0
-1   2.391 -2

  0 -2   2.391
S C x1

x2

x3

S = C0
0
0
S

-l3 + 8l2 - 16l + 7 = 0

(2 - l) c3 - l -2
-2 3 - l

d - (-1) ` -1 -2
0 3 - l

` = 0

C2 - l -1 0
-1 3 - l -2
0 -2 3 - l

S = 0

A = C 2 -1 0
-1 3 -2

0 -2 3
S

62129_14_Appendix.qxd  3/16/11  2:51 PM  Page 839

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



840 APPENDIX C

C.7 SCALAR PRODUCTS
Let u, v, and w be arbitrary real n-dimensional column vectors. A scalar product is an oper-

ation among two of these vectors yielding a real value. The scalar product of u and v is

denoted by (u, v). The scalar product must satisfy four requirements.

1. The scalar product is commutative. That is,

(C.18)

2. For any real �,

(C.19)

3. The scalar product is distributive

(C.20)

4. (C.21)

and if and only if  (C.22)

The definition of a scalar product is not unique. The standard scalar product is defined as

(C.23)

Two vectors, u and v, are said to be orthogonal with respect to a scalar product if

(C.24)

A matrix A is said to be positive definite with respect to a scalar product if

(C.25)

and if and only if (C.26)u = 0(Au, u) = 0

(Au, u) Ú 0

(u, v) = 0

(u, v) = uTv

u = 0(u, u) = 0

(u, u) Ú 0

(u + v, w) = (u, w) + (v, w)

(au, v) = a(u, v)

(u, v) = (v, u)

EXAMPLE C . 5
Show that if A is a positive-definite symmetric matrix, then

(C.27)

is a valid scalar product where (u, v) is the standard scalar product defined by Equation (C.23).

SO LU T I ON
In order for Equation (C.27) to represent a valid scalar product, it is necessary to show that

the four properties of Equations (C.18) through (C.22) are true, knowing that they are true

for the standard scalar product.

1.

(u, v)A = (Au, v)

(u, v)A = (Au)Tv Equations (C.23) and (C.27)
    = uTATv  Equation (C.9)
    = uTAv   symmetry of A
    = (u, Av) Equation (C.23)
    = (Av, u) Equation (C.18)
    = (v, u)A  Equation (C.27)
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Linear Algebra 841

2. For any real �,

3.

4. The validity of the property 4 for this definition of the scalar product follows directly

from the positive definiteness of A, Equations (C.25) and (C.26).

(u + v, w)A = 3A(u + v)4T w
      = 3(Au)T + (Av)T4 w
      = (Au)Tv + (Av)Tw
      = (u, w)A + (v, w)A

(au, v)A = a(Au)Tv
    = a(u, v)A

The concept of scalar products can be extended to continuous functions. Any operation

between two continuous functions that results in a scalar and obeys Equations (C.18)

through (C.22) is a valid scalar product. For example, for two functions f (x) and g(x) that are

everywhere continuous between x � 0 and x � 1, a valid scalar product is

(C.28)(  f , g ) = L
1

0
f  (x)g (x) dx
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Consider a beam of total length L, subject to arbitrary end constraints. Let z be a coordi-

nate along the neutral axis of the beam. The beam has n intermediate simple supports at

z � zi, i � 1, 2, . . . ,  n. It is desired to calculate the deflection of the beam as a function

of z due to a concentrated unit load applied at z � a. If y(z) is the deflection of the neutral

axis of the beam, measured positive downward from the horizontal, then use of the usual

assumptions of linear elastic beam theory leads to

(D.1)

where w(z) represents the loading, E is the elastic modulus of the beam, and I is the

moment of inertia of the cross-sectional area about the neutral axis.

The intermediate supports are replaced by concentrated loads. The analysis requires

the deflection to be zero at the intermediate supports.

The mathematical representation for a concentrated load of magnitude P applied at

z � a is Pd(z � a) where d(z) is the unit impulse function. Thus the loading function w(x)

for the beam of Figure D.1 is written as

(D.2)

where Ri, i � 1, . . . ,  n, are the reactions at the intermediate supports. Equation (D.2) is

substituted into Equation (D.1) and the resulting equation is integrated three times, using

Equation (A.5), giving

(D.3)EI 
d 3y

dz 3 = u(z - a) + a
n

i  = 1

Riu(z - z i  
) + C1

w(z) = d(z - a) + a
n

i  = 1

Ri 
d(z - z i  

)

EI 
d 4y

dz 4
= w(z)

Appendix D

DEFLECTION OF BEAMS SUBJECT
TO CONCENTRATED LOADS

FIGURE D.1
Deflection equation for beam with intermediate supports
due to a unit concentrated load is developed by represent-
ing the load and the support reactions using the unit
impulse function.

1z

z1

zn

a

842
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Deflection of Beams Subject to Concentrated Loads 843

(D.4)

(D.5)

(D.6)

where C
1
, C

2
, C

3
, and C

4
are constants of integration which are determined upon applica-

tion of the appropriate boundary conditions.

The appropriate boundary conditions depend on the type of support at the bound-

aries. Table D.1 provides the boundary conditions for different types of support. Two

boundary conditions are applied at each end of the beam. Thus, n � 4 equations are

applied to determine the n �4 unknowns, n intermediate support reactions, and four

constants of integration.

+ C1

z 3

6
+ C2

z 2

2
+ C3z + C4

EIy =
1

6
 (z - a)3u(z - a) +

1

6a
n

i  = 1

Ri(z - z i 
)3u(z - z i 

)

+ C1

z 2

2
+ C2z + C3

EI 
dy

dz
=

1
2

 (z - a)2u(z - a) +
1

2a
n

i  = 1

Ri(z - z i 
)2u(z - z i )

EI 
d 2y

dz 2 = (z - a)u (z - a) + a
n

i  = 1

Ri (z - z i 
)u (z - z i 

) + C1z + C2

T A B L E D . 1

Boundary Boundary
End Condition Condition Condition

Free

Fixed y � 0

Pinned y � 0 EI 
d 2y

dx 2 = 0

dy

dx
= 0

EI 
d 3y

dx 3 = 0EI 
d 2y

dx 2 = 0

EXAMPLE D . 1
Determine the deflection of a beam fixed at x � 0 and pinned at z � L due to a unit con-

centrated load applied at z � a, 0 	 a 	 L.

SO LU T I ON
From Table D.1, the appropriate boundary conditions are

d 2y

dz 2
2
z  = L

= 0    (d  )
dy

dz
2
z  =  0

= 0    (b)

y (L) = 0   (c)y (0) = 0   (a)
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844 APPENDIX D

Boundary conditions are applied to the beams of Table D.2, resulting in the evaluation

of constants and, if applicable, intermediate reactions for each beam. Equation (D.6) is

used to calculate the deflection of the beam at any point.

Application of (a) to Equation (D.6) yields C
4

� 0. Application of (b) yields C
3

� 0.

Application of (c) and (d) yields the following equations:

respectively. The preceding equations are solved simultaneously, yielding

C2 = a a1 -
a
L
b a1 -

a
2L
b

C1 =
1

2
 a1 -

a
L
b c a a

L
b2

- 2
a
L

- 2 d

LC1 + C2 = - (L - a)

L3

6
C1 +

L2

2
C2 = -

1

6
(L - a)3
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Deflection of Beams Subject to Concentrated Loads 845

T A B L E D . 2

The deflection, y(z), of a uniform beam of elastic modulus E and cross-sectional moment of inertia I due to a unit concentrated
load applied at z � a is

where Ri is the reaction at an intermediate support located at z � zi. The forms of the constants and the intermediate reactions
for common beams are given as follows.

1.

2.

3.

4.
C1 = - a1 -

a
L
b2a1 +

2a
L
b  C3 = 0

C2 = a a1 -
a
L
b2           C4 = 0

C1 =
1

2
 a1 -

a
L
b  c a a

L
b2

- 2
a
L

- 2 d  C3 = 0

C2 =
1
2

a a1 -
a
L
b a2 -

a
L
b          C4 = 0

C2 = 0        C4 = 0

C1 =
a
L

- 1  C3 =
aL
6

 a1 -
a
L
b a2 -

a
L
b

C1 = -1  C3 = 0

C2 = a     C4 = 0

y (z) =
1
EI

 c1
6

 (z - a)3u(z - a) +
1
6 a

n

i =  1
Ri(z - z i)

3u(z - z i ) + C1

z 3

6
+ C2

z 2

2
+ C3z + C4 d

1

Fixed-free

a

1

Pinned-pinned

a

1

Fixed-pinned

a

1

Fixed-fixed

a

C1 = -
3

2
+

3a
2z1

+
1

2
 a1 -

a
z1

b3

u (z1 - a)     C3 = 0

C2 =
z1

2
 a1 -

a
z1

b c1 - a1 -
a
z1

b3

u (z1 - a) d  C4 = 0

R1 =
1
2

-
3a
2z1

-
1
2

 a1 -
a
z1

b3

u (z1 - a)

C1 =
a
z1

- 1  C3 = - a1 -
a
z1

b z 2
1

6
c a1 -

a
z1

b2

u(z1 - a) - 1 d
C2 = 0     C4 = 0

R1 = -
a
z1

1

Fixed-free with overhang

z1

a

1

Pinned-free with overhang

a

z1

5.

6.
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Lalanne reports the following integral formulas:

(E.1)

(E.2)

and

(E.3)

In general,

(E.4)

where

(E.5)In =
4z
p

 v
n - 3

n - 3
+ 2(1 - 2z2)In - 2 - In - 4

In =
4z
p L

vn

(1 - v2)2 + (2zv)2 dv

+
1
p

 C  tan -1 
v + 21 - z2

z
+  tan -1 

v - 21 - z2

z
S

=
z

2p21 - z2
 ln 
v2 - 2v21 - z2 + 1

v2 + 2v21 - z2 + 1
  

I2 =
4z
p L

v2

(1 - v2)2 + (2zv)2 dv

I1 =
4z
p L

v

(1 - v2)2 + (2zv)2 d v =
1

p21 - z2
 tan -1 

2z21 - z2

1 - 2z2 - v2

+
1
p

 C  tan -1 
v + 21 - z2

z
+  tan -1 

v - 21 - z2

z
S

=
z

2p21 - z2
 ln 
v2 + 2v21 - z2 + 1

v2 - 2v21 - z2 + 1
  

I0 =
4z
p L

1

(1 - v2)2 + (2zv)2 d v
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The software programs, collectively called VIBES, are available at the website

www.cengage.com/engineering/kelly. It contains programs written in MATLAB and

associated with the calculations involved with vibrations problems and the resulting

graphs that can be generated. VIBES also contains all programs that are used in the text

in examples, to generate plots, or to simply perform calculations. The following is a

brief description of each program that comprises VIBES. The descriptions are arranged

in order that they would be useful in the text.

SPRING.m Designs a helical coil spring.

BEAM_STIFFNESS.m Determines the stiffness of a uniform fixed-free beam as a

function of distance from the fixed support.

BEAM_MASS.m Determines the equivalent mass of a uniform fixed-free beam as a

function of distance from the fixed support.

MACHINE_A.m Calculates the natural frequency of a machine mounted on a fixed-

pinned beam including inertia effects of the beam.

DIVER.m Provides natural-frequency calculations for a diver on a diving board that

is modeled as a continuous fixed-pinned beam.

FREE_VISCOUS.m Provides the free-vibration response of a system with viscous

damping.

FREE_COULOMB.m Provides the free response of a system with Coulomb damping.

SUSPENSION_A.m Provides the response of a simplified SDOF model of a sus-

pension system when the vehicle encounters a pothole in the road.

MAGNIF.m Provides analysis of problems using M(r, z).

LAMBDA.m Provides analysis of problems using Λ(r, z).

TRANS.m Provides analysis of problems using T(r, z).

SUSPENSION_B.m Analysis of SDOF model of suspension system as it traverses

a sinusoidal road contour.

ISOL.m Aids in the design of a vibration isolation system.

ISOL_FREQ2.m Aids in the design of a vibration isolation system to protect the

foundation over a range of frequencies.

M_C.m Provides analysis of problems using MC(r, i).

FOURIER_A.m Provides analysis of a machine with a periodic rectangular pulse.

FOURIER_B.m Uses symbolic algebra to develop the response of a SDOF system

due to a periodic input.

Appendix F

VIBES
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848 APPENDIX F

FOURIER_ISOL. Aids in the design of vibration isolators to protect a foundation

from periodic inputs.

CONVOL.m Provides symbolic integration of the convolution integral to solve

SDOF problems subject to a general excitation.

LAPLACE.m Provides the Laplace transform solution for a SDOF system due to an

arbitrary excitation.

PIECEWISE.m Provides numerical integration of the convolution integral using

piecewise constants to interpolate the excitation.

RESPONSE_SPECT.m Uses a MATLAB program ODE45.m to numerically inte-

grate the differential equation and develop the response spectrum due to any type of

excitation.

ISOL_EFF.m Calculates the values of Q(z) and S(z).

SUSPENSI0N_2DOF.m Develops a two DOF model for the natural frequencies

and mode shapes for a vehicle suspension system.

FORCED_2.m Symbolically determines the steady-state response of a two DOF

system.

ABSORB.m Aids in the design of a undamped vibration absorber.

FIXED_FREE.m Develops the flexibility matrix for a six DOF model of a fixed-

free beam for equally spaced nodes.

FIXED_FIXED.m Calculates the flexibility matrix for an nDOF model of a fixed-

fixed beam. Nodes may be at any location along axis of the beam.

FREE_FREE.m Develops the stiffness matrix for a nDOF model of a free-free

beam.

DESIGN_BEAM.m Provides support for the design of a fixed-pinned beam using a

three DOF model.

NDOF_FREE.m Determines the natural frequencies and mode shapes for an nDOF

system given the mass matrix and the stiffness matrix.

SIMPLY_MASS.m Calculates the natural frequencies and mode shapes for a

nDOF model of a simply supported beam with a machine attached by a spring.

PROPORTIONAL_FREE.m Calculates the natural frequencies and mode shapes

for a four DOF model of a system with proportional damping.

SUSPENSION_4.m Calculates the natural frequencies and damping ratios for a

four DOF model of a suspension system.

FORCED_N.m Determines the steady-state response of an nDOF system due to a

single frequency harmonic exciation.

MODAL_3.m Provides modal analysis on a specific three DOF system given the

system input.

FIXED_PINNED_ISOL.m Determines the steady-state response of a machine

attached to a fixed-pinned beam through an undamped isolator. The machine is sub-

ject to a harmonic excitation.
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Vibes 849

FIXED_PINNED_ISOLD.m Determines the steady-state response of a machine

attached to a fixed-pinned beam through a damped isolator. The machine is subject to

a harmonic excitation.

FIXED_PINNED_GENERAL.m Uses modal analysis to develop response of a

machine attached to a fixed-pinned beam through a damped isolator. The machine is

subject to an arbitrary excitation.

SUSPESNI0N_6.m Uses numerical integration of the convolution integral to

develop a six DOF model of a vehicle suspension system due to any type of road contour.

FIXED_FREE_CONT.m Calculates the natural frequencies, mode shapes, and

normalization constants for a continuous system model of a fixed-free beam.

FIXED_PINNED_CONT.m Calculates the natural frequencies, mode shapes, and

normalization constants for a continuous systems model of a fixed-pinned beam.

FIXED_SPRING_CONT.m Calculates the natural frequencies, mode shapes, and

normalization constants for a continuous systems model of a beam fixed at one end

and attached to a linear spring at its other end.

PINNED_SPRING_CONT.m Calculates the natural frequencies, mode shapes,

and normalization constants for a continuous systems model of a beam that is pinned

at one end and attached to a linear spring at its other end.

TORSIONAL_CONT.m Plots the mode shapes for the torsional oscillations of a

shaft that is pinned at one end and has a disk attached at its other end.

FREQ_RESPONSE_CONT Uses a continuous systems model to develop the fre-

quency response for a beam fixed at one end with a machine attached at its other end.

The machine is subject to a frequency squared excitation.

RAYLEIGH_RITZ.m Uses a Rayleigh-Ritz method to aid in the design a fixed-

pinned beam.

ASSUMED_FREE.m Uses the assumed modes method to determine the natural

frequencies and mode shapes of a tapered bar with an attached mass and linear spring.

ASSUMED_FORCED.m Uses the assumed-mode method to determine the forced

response of a tapered bar with an attached mass and linear spring.

VARIABLE_AREA.m Develops the local mass and stiffness matrices for a beam

element whose cross-sectional properties vary across the span of the element.

SHAFT_FEM. Uses the finite-element method to approximate the natural frequen-

cies and mode shapes for torsional oscillation of a free-free shaft with rotors at the end.

FIXED_PINNED_FREE.m Uses a finite-element method to calculate the natural

frequencies and mode shapes of a fixed-pinned beam with a machine at its midspan.

FIXED_PINNED_FORCED.m Uses a finite-element method to calculate the

forced response of a fixed-pinned beam with a machine at its midspan.

SIMPLY-SUPPORTED_FEM Uses a finite-element method to determine the

forced response of a simply supported beam with a discrete mass-spring system attached

at its midspan.

DUFFING.m Numerically integrates Duffing’s equation.
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A
Absolute displacement

amplitude of, 292

steady-state response of, 291

Acceleration

amplitudes, ratio of, 292

particle, 35–36

relative acceleration equations, 36

vector, 479

Accelerometers

in MEMS systems, 92

percent error in using, 293

as seismic vibration measurement 

instruments, 207, 256–259

Adams’ formulas, 346

Added mass, 83–84

Admissible functions, 690, 726

Aerodynamic drag

free vibrations of SDOF systems and,

171–172

pendulum and, 5

Algebra, linear

definitions, 833

determinants, 834–835

eigenvalue problems in, 838–839

equation systems in, 836–837

inverse matrix in, 837–838

matrix operations in, 835–836

scalar products in, 840–841

Amplitude

of absolute displacement, 292

acceleration, ratio of, 292

Buckingham Pi theorem and, 215

change in, for system with 

Coulomb damping, 188

defined, 141

equations, 770

of motion of mass relative to base, 291

near primary resonance, 770

of response due to frequency-squared

excitation, 291

state plane showing, 757

steady-state, 444, 596

near superharmonic resonance, 770

of transmitted force, 292

Analytical solutions, numerical 

solutions v., 748

Analytical tools, for identifying 

and classifying chaos, 762

Angular coordinate, 66–68, 118

Angular displacement

of thin disk, 89–92

of transmission system shaft, 105–106

Angular impulse, 33–34, 36

Angular momentum, 36

Applied loading, 500–501

Arbitrary combination, of springs, 118

Arbitrary function of time, probability 

distribution for, 787–788

Archimedes’ principle, 69

Assumed modes method

admissible functions in, 726

defined, 690

equation, 726

finite-element method and, 690–693

longitudinal bar and, 690–695

MATLAB script for, 692

twice differentiable 

approximation in, 700

Assumptions

displacement, 97–100

in mathematical modeling, 4–5

rigid body, validity of, 633

small angle, 97–100, 118

Attached disk end condition, 642

Attached inertia element end 

condition, 654, 657

Attached mass end condition, 654, 657

Attractors, 743

Autocorrelation function

equations, 816

power spectral density and, 804–807

probability distributions and, 794–797

Auxiliary mass-spring system, 414–415
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854 Index

B
Back substitution, 837

Bandlimited white noise, 806–807

Bar. See also Longitudinal bar

admissible functions of, 726

fixed-free, 705–708

four-bar truss, 722–726

free-free, 698–699

Bar element

degrees of freedom of, 726

in finite-element method, 696–700, 705,

726–727

kinetic energy of, 696

potential energy of, 697

uniform bar element equations, 727

Base

harmonic excitations of, 232

mass displacement relative 

to base, 291, 371

motion problems, convolution integral

for, 371

transient vibrations due to excitation of,

330–332

Basic laws of nature, 6

Basis functions, piecewise-defined, 694

Beam(s). See also Simply supported beam;

Transverse beam vibrations

admissible functions of, 726

cantilever, 117, 545–546

dynamic deflection of, 81–83

element, in finite-element method,

700–705, 726–727

elementary theory of, 10

Beam(s)

fixed-free, 483–484, 702–703, 714

fixed-pinned, 541–543, 708–713, 782

free-free, 497, 515–517, 655

mode shapes, 656–657, 660, 674,

702–703, 713–714

natural frequencies, 656–657, 

702–703, 714

pinned-free, 655

pinned-pinned, 704–705

scalar products for Rayleigh-Ritz 

method, 669

stiffness, 60–61, 117

subject to concentrated loads, 

deflection of, 843–845

uniform beam element equations, 727

Beating, 210–211, 290

Bell-shaped curve, 789, 814

Benchmark problems, 3, 27. See also Machine

on floor of industrial plant; Suspension

system

Bifurcation diagrams, 765

Biomechanics, vibration analysis and, 3

Body force, 6

Boundary conditions. See also End conditions

for deflection of beams subject to 

concentrated loads, 843–845

geometric, 690, 705, 726

globally applied, 726

linear spring, 654, 656

natural, 690, 726

for second-order systems, 641–642

for torsional oscillations of circular shaft,

641–642

for transverse beam vibrations, 653–654

Boundary layer, 227

Buckingham Pi theorem

amplitude and, 215

in dimensional analysis, 3, 11–13

frequency response and, 411–412

nondimensional variables and, 11–12

Buoyancy, in modeling of SDOF 

systems, 69–70

Buoyant force, 69

C
Cantilever beam

circular, 545–546

stiffness, 117

Carbon nanotubes

length-to-diameter ratio of, 4

natural frequencies and mode shapes of,

655, 658–659

Center, equilibrium point as, 745

Center of percussion, 34

Central limit theorem, 792–793

Centroidal moment of inertia, 76

Chaos

analytical tools for identifying and 

classifying, 762

bifurcation diagrams for, 765

defined, 761

Fourier transforms for, 762, 764–765

nonlinear vibrations and, 761–768

observation of, 761–762

Poincaré sections for, 762–763

state planes and, 766–767

state space for, 762

universal features of, 764
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Index 855

Characteristic equation

defined, 838

mode shapes and, 536

natural frequencies and, 536

roots of, 187

Chemical laboratory structure, 351–353,

365–366

Choleski decomposition, 568

Circular cantilever beam, 545–546

Circular cylinders

added mass for, 84

moment of inertia of, 77, 84

vortex shedding from, 225–228

Circular shaft, tapered, 668–671. See also
Torsional oscillations, of circular shaft

Classification, of vibration, 11

Closed Adams formula, 346

Closed form, differential equations in, 594

Coefficient matrix, 837

Column

girder v., 633

vectors, 833, 835

Combination, of springs

arbitrary combination of, 118

combinations, in SDOF system 

modeling, 62–68

general combination of, 66

parallel combination of, 62, 117

series combination of, 62–63, 118

Combination resonances, 759–761

Commutativity, 557

Compactor, 109–111

Complex form, Fourier series in, 797

Complex frequency, 259–260, 266

Complex roots, 536

Complex scalar products, 557

Compression waves, 633–634

Concentrated loads, 843–845

Concentrated mass, 635

Conservation of mass, 6

Conservation of momentum, 6

Conservative forces, 22, 68

Conservative system, Lagrange’s 

equations for, 518

Consistent mass matrix, 500

Constants of integration, 138

Constitutive equations, 6

Continuous functions, scalar products 

extended to, 841

Continuous systems

defined, 11

examples of, 633–634

in modeling of MDOF systems, 461,

499–502

mode shapes of, 635, 638

natural frequencies of, 635

nonlinear, 760–761

principal coordinates for, 639

uniform, scalar products for, 638

Continuous systems, vibrations of

differential equations for, 635–636

end conditions for, 642

energy methods for, 667–671

expansion theorem for, 639, 761

general method for, 636–639

important concepts, 676–677

important equations, 677–678

introduction to, 633–636

machine on floor of industrial 

plant and, 672–676

nonlinear, 760–761

partial differential equations for, 635–636

Rayleigh-Ritz method for, 669–671, 677

Rayleigh’s quotient for, 668–669

second-order systems, 639–651

separation-of-variables method 

for, 635, 637, 676

simply supported beam and, 660–663

transverse beam vibrations, 651–666

Continuum assumption, 4

Convolution, of Laplace transform, 831

Convolution integral

derivation of, 315–318

nonlinear systems and, 738

numerical evaluation of, 340–344, 372

numerical integration of, 618–619

for principal coordinates, 624–625

for relative displacement in base motion

problems, 371

solution, 444

for step response, 372

for system with general damping, 625

transient vibrations of SDOF systems

and, 314–318, 325

for underdamped system, 371

Coordinates. See also Generalized coordinates;

Principal coordinates

angular, 66–68, 118

local system of, 696, 726

Coulomb damping

amplitude changes for system with, 188

differential equations for system with, 260
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856 Index

Coulomb damping (Continued )

from dry sliding friction, 172

free vibrations of SDOF systems 

and, 138, 160–167

harmonic excitation of SDOF systems

and, 260–264

kinetic coefficient of friction 

and, 160, 164

magnification factor for, 293

motion ceasing due to, 188

viscous damping v., 163–164

Coupling, 398–399, 480

Cramer’s rule, 535

Critically damped free vibrations, 140,

154–160, 187

Cross correlations, 797

Cube, added mass for, 84

Cubic nonlinearity

defined, 739

excitation frequency and, 755

forced vibrations of SDOF systems 

with, 753–759

Cyclic motion, 141

Cylinders. See also Circular cylinders

in piston-cylinder arrangement, 72–73

square, 84

D
D’Alembert’s principle, 20, 36

Damped Duffing’s equation, 745–746,

752–753

Damped natural frequency, 149, 187

Damped period, 148, 187

Damped system

critically damped, 140, 154–160, 187

free response of, 443

steady-state solution of, 624

viscously damped, 214–220

Damped vibration(s)

absorbers, 420–424, 441–442, 444

critically damped, 140, 154–160, 187

overdamped, 140, 156–160, 187

viscously damped, 11

Dampers. See also Viscous damper

Houdaille, 424

torsional, 642

vibration, 424–425, 642

Damping. See also Coulomb damping;

General damping; Hysteretic 

damping; Proportional damping;

Viscous damping

components, 55

energy harvesting and, 272–273

force, 71

matrix, 400, 482, 572

in MDOF systems, 534

other forms of, free vibrations of SDOF

systems and, 171–173

ratio, 138–139, 187, 216–217, 244

shock spectrum and, 350, 353

in structural systems, 569, 609

Dashpot

in mass-spring-dashpot system, 228–231

piston-cylinder arrangement, 72–73

simple model, 71–72

viscous damping from, 172

Decoupled system, 399

Deflection. See also Static deflection

of beams subject to concentrated loads,

843–845

boundary conditions for, 843–845

dynamic, 81–83

loading function for, 842

Deformable materials, 633

Degenerate system

defined, 534

as special case, 545–548

Degrees of freedom. See also Multiple 

degree-of-freedom systems; Single

degree-of-freedom systems; Two

degree-of-freedom systems

of bar element, 726

of beam element, 726

global, geometric boundary conditions

reducing, 705

of rigid body, 8

in vibration classification, 11

Delayed exponential function, 327

Delayed impulse, 326

Delayed ramp function, 326

Delayed sine function, 327

Delayed step function, 326

Dependent variables

defined, 7–8

transcendental function of, 739

Derivatives, Laplace transform of, 

828–829

Determinants, in linear algebra, 

834–835

Deterministic systems, 781–782

Detuning parameter, 756, 770

Diagonal matrix, 480, 500, 833
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Index 857

Diagrams. See also Free-body diagram

bifurcation, 765

in mathematical modeling, 6–7

stress–strain, 167–168

Differential, 467

Differential eigenvalue problem, 638

Differential equations. See also Linear 

differential equations; Partial 

differential equations

in closed form, 594

energy method of derivation, 384

Differential equations 

FBD method for deriving, 56, 384–387,

461–467

for forced vibrations of SDOF systems,

290, 313–314

for free vibrations of MDOF systems,

533, 571–572

for free vibrations of SDOF systems,

138–140, 187

for harmonic excitations, 214, 260,

594–596

for mass sliding on surface with 

friction, 188

mass-spring system governed by, 118

matrix formulation of, 478–483, 519

of motion, derivation of, 

384–387

nonlinear, 737, 769

numerical solution of, 344–350

pendulum motion governed by, 97–98,

738–739

for principal coordinates, 443, 584, 624

for response of system with Coulomb

damping, 260

separable, 637

for two degree-of-freedom systems,

383–387, 400, 411

for undamped forced vibrations due to

single-frequency excitation, 208

for undamped systems, 624

uses of, 3–4

vibrations of continuous systems and,

635–636

viscous damper governed by, 118

for viscously damped system subject to 

single-frequency harmonic 

excitation, 214

Dimensional analysis, 3, 11–13

Dimensional frequencies, for simply support-

ed beam, 567

Dimensionless parameters, physical 

meaning of, 12

Discrete mass, displacement of, 711

Discrete viscous dampers, 74–75

Displacement

absolute, 291–292

angular, 89–92, 105–106

assumption, 97–100

base, 291, 371

of discrete mass, 711

Duffing’s equation as functionof, 750

in force-displacement relationships, 

6, 117

force relationships with, 6, 117

harmonic, 634

linear, as generalized coordinate, 118

mass, relative to base, 291

node, 695

of particles, 10

second spatial derivative of, 700

Distributed parameter systems. See
Continuous systems

Drag coefficient, 12

Dry sliding friction, 138, 172

Duffing’s equation

damped, 745–746, 752–753

forced, 746

as function of displacement, 750

nonlinear vibrations and, 741, 743–747,

750, 769

primary resonance of, 756–757

two-term expansion for free 

vibrations of, 770

undamped, 743–744, 751, 770

unforced, 743–746, 751–752

Dynamically coupled system, 

398–399, 480

Dynamical matrix, 535

Dynamic beam deflection, 81–83

Dynamics

kinematics in, 16–18

kinetics in, 18–21

principle of impulse and momentum in,

24–27, 36

principle of work and energy in, 

22–24, 36

review of, 16–27

Dynamic vibration absorber

added to primary system, 12–13

in two degree-of-freedom systems,

414–419
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E
Earth, as inertial reference frame, 4

Earthquakes. See also Seismic vibration meas-

urement instruments

ground motion of, 313

randomness of, 781

shock spectrum and, 350

Eccentric circular cam, 232

Effective forces, 461

Eigenvalue

in differential eigenvalue problem, 638

in eigenvalue-eigenvector problem, 536,

565–566

equilibrium points and, 769

in linear algebra, 838–839

MATLAB routines for, 566

real, 557

Eigenvector

defined, 838

in eigenvalue-eigenvector problem, 536,

565–566

multiple of, 534

Elastic body, particles in, 10

Elastic elements, as springs, 59–60

Elastic mounting, 234

Elastomers, isolator made of, 244

Electrical circuit components, 

in combination, 63

Elementary beam theory, 10

End conditions

attached disk, 642

attached inertia element, 654, 657

attached mass, 654, 657

fixed, for transverse vibrations of 

beam, 654

fixed, for vibrations of continuous 

systems, 642

fixed-attached mass, 657

fixed-fixed, 656, 845

fixed-free, 656, 845

fixed-linear spring, 656

fixed-pinned, 657, 845

free, 642, 654

free-free, 656

pinned, 654

pinned-free, 845

pinned-linear spring, 657

pinned-pinned, 656, 845

torsional damper, 642

torsional spring, 642

viscous damper, 654

End supports, solvability conditions for,

655–657

Energy. See also Kinetic energy; Potential energy

loss per cycle, due to hysteretic 

damping, 188

methods, 384, 667–671

non-conservative forces adding or 

dissipating, 1–2

principle of, 22–24, 36

sources, 55–56

stored, from energy harvesting, 2

strain, 59

viscous damping dissipating, 74–76

Energy harvesting

average power harvested by, 293

damping and, 272–273

harmonic excitation of SDOF systems

and, 268–273

MEMS systems and, 268, 286–288

stored energy from, 2

Energy scalar products

complex, 557

defined, 552

extended to continuous functions, 841

of free vibrations of MDOF systems,

552–555

kinetic energy scalar product, 553,

556–557, 584, 638, 677

in linear algebra, 840–841

notation of, 554

potential energy scalar product, 552–553,

584, 700

for Rayleigh-Ritz method, 669–670

requirements of, 840

for uniform continuous system, 638

Ensemble processes, 782–783

Equation systems, in linear algebra, 836–837

Equilibrium

points, 744–745, 769

vertical position, 1–2

Equivalent mass, 76–79

Equivalent systems method, in modeling of

SDOF systems, 56, 100–106

Ergodic processes, 784, 816

Euler method, 344–345

Euler’s identity, 543

Even periodic function, 248

Excitation frequency. See also Single-frequency

excitation

natural frequency equaling, 210, 290

of system with cubic nonlinearity, 755
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Index 859

Expansion theorem

equation, 677

for free vibrations of MDOF systems,

561, 584

for vibrations of continuous systems, 

639, 761

Expected value, of random variables, 786

Explicit assumptions, 5

Exponential function, 327

External force field, gravity as, 5

External source, in modeling of SDOF 

systems, 84–86

F
FBD. See Free-body diagram

Finite-element method

accuracy of, 705

applications, 689

assumed modes method and, 690–693

bar element in, 696–700, 705, 726–727

beam element in, 700–705, 726–727

general method for, 693–696

global matrix in, 705–708, 726

important concepts, 726

important equations, 726–727

introduction to, 689–690

machine on floor of industrial plant 

and, 708–713

MATLAB scripts for, 718–719, 722, 

724, 726

nodes in, 689

Rayleigh-Ritz method and, 689–690

software for, 696

transformation matrix in, 708

undetermined coefficients in, 722

First derivative, transform of, 829

First Shifting Theorem, 829

First spatial derivative, 700

Fixed-attached inertia element, 657

Fixed-attached mass end condition, 657

Fixed end condition

for transverse vibrations of beam, 654

for vibrations of continuous systems, 642

Fixed-fixed end condition, 656, 845

Fixed-free bar, 705–708

Fixed-free beam, 483–484, 702–703, 714

Fixed-free elastic shaft, 699–700

Fixed-free end condition, 656, 845

Fixed-linear spring end condition, 656

Fixed-pinned beam, 541–543, 708–713, 782

Fixed-pinned end condition, 657, 845

Flexibility influence coefficients, 461,

491–497

Flexibility matrix

equation, 519

in lumped-mass modeling of continuous

systems, 500

in modeling of MDOF systems, 461,

492–497

mode shapes from, 584

stiffness matrix v., 497

Flow-monitoring device, 237

Flywheels, 548–549

Focus, 745

Forced Duffing’s equation, 746

Force-displacement relationships

constitutive equations developing, 6

for linear spring, 117

Forced response of system, 444, 737

Forced vibrations

defined, 11

for discrete system, 726

with forcing function, equation for, 677

of longitudinal bar, 690–692

second-order systems and, 650–651

torsional oscillations of circular shaft and,

650–651

transverse beam, 662–666

in undamped system, due to single-fre-

quency excitation, 208–213

in viscously damped system subject to sin-

gle-frequency harmonic excitation,

214–220

Forced vibrations, of MDOF systems

harmonic excitations and, 594–599

important concepts, 623–624

important equations, 624–625

introduction to, 593–594

Laplace transform method for, 593,

599–603

machine on floor of industrial plant,

615–616

Forced vibrations, of MDOF systems 

modal analysis for, 594, 603–614

nonlinear, 760

numerical solutions for, 614

short-term behavior and, 593

suspension system and, 616–619

undetermined coefficients for, 

593–594, 624

Forced vibrations, of SDOF systems

with cubic nonlinearities, 753–759
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differential equation describing, 290,

313–314

harmonic excitation and, 205–206,

208–220

Forced-vibration solution, 639

Force spectra, 353–356

Force vector, 479

Forcing function, 677

Forge hammer, 357–358, 361

Four-bar truss, 722–726

Fourier coefficients, 249

Fourier series

in complex form, 797

representation, 207, 246–250, 292

Fourier transforms

for chaos, 762, 764–765

mean square value of response 

and, 808

for nonperiodic functions, 798–800

pair, 798, 816

Parseval’s identity, 797, 802, 816

random vibrations and, 797–802

in terms of f, 802

transfer functions, 801–802

Fourth-order systems, 636

Free-body diagram (FBD)

defined, 3

for differential element of shaft, 640

for differential equation derivation, 56,

384–387, 461–467

generalized coordinates and, 87

in general method for vibrations of con-

tinuous systems, 636

Lagrange’s equations v., 267

in mathematical modeling, 6–7

in modeling of MDOF systems, 461–467

in modeling of SDOF systems, 87–94

Newton’s laws applied to, 3, 87

springs and, 87–88

of transverse beam vibrations, 652

of viscous damping, 73–74

Free end condition

for transverse vibrations of beam, 654

for vibrations of continuous systems, 642

Free-free bar, 698–699

Free-free beam, 497, 515–517, 655

Free-free end condition, 656

Free response

of damped system, 443

of two degree-of-freedom systems with

viscous damping, 396–398, 443

of undamped two degree-of-freedom sys-

tems, 393–395, 443

of underdamped system, 187

Free torsional response, free-vibration solu-

tions for, 643–646

Free vibrations

critically damped, 140, 154–160, 187

of Duffing’s equation, two-term expan-

sion for, 770

overdamped, 140, 156–160, 187

properties for simply supported 

beam, 665

transverse beam, 654–661

underdamped, 140, 147–154

Free vibrations, of MDOF systems

degenerate system, 545–548

differential equations governing, 533,

571–572

energy scalar products of, 552–555

expansion theorem for, 561, 584

general solution, 543–545

general viscous damping in, 571–574

important concepts, 583

important equations, 584–585

introduction to, 533–534

machine on floor of industrial plant and,

574–576

MATLAB script for, 543

mode shapes and, 534–543, 555–560,

565–568

natural frequencies and, 536–543,

555–558, 565–568

nonlinear, 759–760

normal mode solution, 534–536, 584

principal coordinates in, 534, 562–565

proportional damping in, 568–571, 584

Rayleigh’s quotient and, 534, 558,

560–562

simply supported beam and, 566–568

special cases, 545–552

suspension system and, 576–577

undamped system, 187, 533

unrestrained system, 548–552

Free vibrations, of SDOF systems

aerodynamic drag and, 171–172

Coulomb damping and, 138, 160–167

critically damped, 140, 154–160, 187

defined, 11

differential equation, standard form of,

138–140, 187

hysteretic damping and, 138, 167–171

62129_16_Index.qxd  3/18/11  5:54 PM  Page 860

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Index 861

important concepts, 185–186

important equations, 186–188

introduction to, 137–138

machine on floor of industrial plant 

and, 175–177

nonlinear vibrations, 749–753

numerical integration for, 750

other forms of damping in, 171–173

overdamped, 140, 156–160, 187

suspension system and, 174–175

undamped, 11, 140–147, 187, 533

underdamped, 140, 147–154

Free-vibration solutions

for free torsional response, 643–646

in general method, 637–639, 677

mode shapes and, 646–650

natural frequencies and, 646–650

product solution, 677

for second-order systems, 642–650

for torsional oscillations of circular shaft,

642–650

Frequency ratio, 215–217, 291

Frequency response

Buckingham Pi theorem and, 411–412

curves, 215

in harmonic excitation of SDOF systems,

207–208, 217–218

in two degree-of-freedom systems, 411–414

vibration absorber and, 444

Frequency-squared excitations

amplitude of response due to, 291

equation, 291

general theory, 220–222

in harmonic excitation of SDOF systems,

220–228

rotating unbalance, 222–224, 238,

284–286, 291–292

special case of, 207, 238

vibration isolation from, 238–241

vortex shedding from circular cylinders,

225–228

Friction

dry sliding, 138, 172

energy dissipated by, 1–2

kinetic coefficient, 160, 164, 556–557

mass sliding on surface with, 188

G
Gauss elimination, 837

Gaussian density function distribution, 

normalized, 789

Gaussian process

central limit theorem and, 792

normalized, 815

probability density function for, 815

probability distribution for, 789–790

random variables and, 788–790

General combination, of springs, 66

General damping. See also Systems with gen-

eral damping

convolution integral solution for, 625

modal analysis for, 611–614

viscous, in free vibrations of MDOF 

systems, 571–574

General excitation, response due to, 318–323

Generalized coordinates

angular coordinate as, 66–68, 118

coupling relative to, 480

defined, 3, 8–9

in FBD method, 87

global, 696

as linear combinations of principal coor-

dinates, 565

linear displacement as, 118

in two degree-of-freedom systems, 383

Generalized forces, 474

Generalized stiffness influence coefficients,

485

General method

equation, 677

for finite-element method, 693–696

forced-vibration solution in, 639

free-vibration solution in, 637–639, 677

problem formulation in, 636–637

for vibrations of continuous systems,

636–639

General periodic excitations

Fourier series representation, 207,

246–250, 292

harmonic excitation of SDOF systems,

246–254

system response due to, 250–253, 292

vibration isolation for multifrequency and

periodic excitations, 253–254

General perturbation expansion, 770

General shape, moment of inertia of, 77

General solution, for free vibrations of

MDOF systems, 543–545

Geometric boundary conditions

defined, 690, 726

global degrees of freedom reduced by, 705

Geometric constraints, 6
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Geometric nonlinearity, 5, 738

Girders, columns v., 633

Global degrees of freedom, geometric bound-

ary conditions reducing, 705

Global generalized coordinates, 696

Globally applied boundary conditions, 726

Global matrix

in finite-element method, 705–708, 726

mass, 705–708

stiffness, 705–706

transformation, 708

Golf cart suspension system. See Suspension

system

Gram-Schmidt orthogonalization 

process, 556

Gravity

diagram, 6

in modeling of SDOF systems, 68–69,

94–96

as only external force field, 5

potential energy due to, 118

static deflection and, 94–96

static spring forces and, 769

Ground motion, of earthquakes, 313

H
Hamilton’s Principle, 518

Hand and upper arm model, 513–515

Hardening spring, 741

Harmonic displacement, surge and, 634

Harmonic excitation, of SDOF systems

complex representations, 259–260

Coulomb damping and, 260–264

deterministic systems, 782

energy harvesting and, 268–273

forced vibrations in, 205–206, 208–220

frequency response in, 207–208, 

217–218

frequency-squared excitations, 220–228

general periodic excitations, 246–254

helical coil springs and, 243

hysteretic damping and, 265–267

important concepts, 289–290

important equations, 290–293

introduction to, 205–208

machine on floor of industrial plant 

and, 273–274

multifrequency excitations, 244–246

resonance and, 210, 263

response due to excitation of support,

228–233

seismic vibration measurement instru-

ments and, 207, 255–259

in suspension system, 274–281

vibration isolation in, 207, 234–244

Harmonic excitations

of base, 232

differential equations for, 214, 260,

594–596

forced vibrations of MDOF systems and,

594–599

homogeneous solution and, 594

of support, 228–233

Harmonic functions, 795

Harmonic loading, 782

Harmonic motion, simple

equation, 35

introduction to, 14–16

Harmonic response, of two degree-of-freedom

systems, 401–404

Harmonic torque, 650

Helical coil springs

as continuous system, 633–634

harmonic excitations of SDOF systems

and, 243

in modeling of SDOF systems, 

57–58, 117

Homogeneous response, 207, 209

Homogeneous solution

harmonic excitations and, 594

short-term transient motion influenced

by, 314

Houdaille damper, 424

Hysteretic damping

coefficient, 168

energy loss per cycle due to, 188

equivalent viscous damping ratio for, 188

free vibrations of SDOF systems and,

138, 167–171

harmonic excitation of SDOF systems

and, 265–267

isolators and, 243–244

magnification factor for, 293

mathematical modeling of, 168–169

from spring, 172

viscous damping v., 169, 266

I
Ideal gas, pressure waves in, 643

Identity matrix, 833

Impedance matrix, 599, 624

Implicit assumptions, 4–5
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Index 863

Impulse. See also Unit impulse

angular, 33–34, 36

delayed, 326

due to force, 36, 371

principle of, 24–27, 36

Impulsive forces, 85, 315

Impulsive response equations, 371–372

Independent mode shapes, 556

Independent variables, 7–8

Industrial sewing machine, 236–237, 282

Inertia, moment of

angular coordinate used as generalized

coordinate and, 118

centroidal, 76

of three-dimensional bodies, 77, 84

Inertia components

added mass, 83–84

inertia effects of springs, 79–83, 118

Inertia elements

attached, 654, 657

equivalent mass, 76–79

in modeling of SDOF systems, 55–56,

76–84

Inertia influence coefficients, 497–499

Inertial reference frame, earth as, 4

Integrals, used in random vibrations, 846. 

See also Convolution integral

Integration

constants of, 138

direct, 827

numerical, 618–619, 750

Internal resonance, 759, 761

Interpolating function, 340–344

Inverse matrix, 837–838

Inversion of transform, 829–831

Isolation, vibration

from elastic mounting, 234

from frequency-squared excitations,

238–241

in harmonic excitation of SDOF systems,

207, 234–244

for multifrequency excitations, 253–254

for periodic excitations, 253–254

practical aspects of, 241–244

protection with, 234

due to rotating unbalance, 292

for short-duration pulses, 357–361

Isolator

classes, 243

design, 242, 360

efficiency, reciprocal of, 372

elastomers in, 244

hysteretic damping and, 243–244

maximum stiffness of, 241

static deflection and, 241, 283–284

J
Jacobi’s method, 566

Joint probability distributions, 793–797

Jump phenomenon, 756–757, 759–760

K
Kinematics, in dynamics, 16–18

Kinetic coefficient of friction

Coulomb damping and, 160, 164

orthogonality of, 556–557

Kinetic energy

of bar element, 696

Lagrange’s equations and, 460

quadratic form of, 497

scalar product, 553, 556–557, 584, 

638, 677

of SDOF systems, 23

Kinetics, of particles

basis of, 3

in dynamics, 18–21

Newton’s second law and, 18

rigid-body problems, 19–20

L
Lag, 15

Lagrange’s equations

for conservative system, 518

FBD v., 267

kinetic energy and, 460

in modeling of MDOF systems, 460,

467–478

non-conservative systems and, 474, 518

Lagrangian, 518

Laplace transform(s)

convolution of, 831

defined, 827

of derivatives, 828–829

direct integration obtaining, 827

equations, 371–372, 624

First Shifting Theorem of, 829

for forced vibrations of MDOF systems,

593, 599–603

inversion of, 829–831

linear differential equation solutions with,

831–832

linearity of, 827–828
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864 Index

Laplace transform(s) (Continued )

method, 332–336, 408

properties, 829

Second Shifting Theorem, 829–830

solutions using, 332–336

table of, 827

transfer functions and, 314, 404,

801–802

transient vibrations of SDOF systems

and, 314, 332–336

two degree-of-freedom systems and,

408–410

uses, 332

Laws of nature, 6

Length-to-diameter ratio, nanotube, 4

Linear algebra

definitions, 833

determinants, 834–835

eigenvalue problems in, 838–839

equation systems in, 836–837

inverse matrix in, 837–838

matrix operations in, 835–836

scalar products in, 840–841

Linear differential equations

Laplace transform solutions with,

831–832

matrix form and, 478–483, 519

second-order linear ordinary, 56

Linear displacement, as generalized 

coordinate, 118

Linear process, deterministic, 781

Linear spring

boundary conditions, 654, 656

fixed-linear spring end condition, 656

in modeling of SDOF systems, 57, 117

pinned-linear spring end condition, 657

potential energy in, 117

Linear superposition, principle of, 253, 257

Linear systems

equivalent systems method for, 56

matrix formulation of differential 

equations for, 478–483, 519

nonlinear systems v., 5
SDOF, 66

two degree-of-freedom, 383

Linear vibrations, 11

Loading function, for deflection of beams

subject to concentrated loads, 842

Local coordinate system, 696, 726

Logarithmic decrement, 149–150, 187

Longitudinal bar

assumed modes method and, 690–695

forced vibrations of, 690–692

longitudinal oscillations of, 643

scalar products for Rayleigh-Ritz 

method, 669

stiffness, 117

Longitudinal oscillations, of bar, 643

Longitudinal vibrations, 59

Lumped-mass modeling

accuracy of, 566

flexibility matrix in, 500

in modeling of MDOF systems, 499–502

M
Machine on floor of industrial plant

finite-element method and, 708–713

forced vibrations of MDOF systems 

and, 615–616

free vibrations of MDOF systems 

and, 574–576

free vibrations of SDOF systems 

and, 175–177

harmonic excitation of SDOF systems

and, 273–274

introduction to, 27–28

modeling of MDOF systems 

and, 502–505

modeling of SDOF systems and, 106–107

random inputs of, 782–783

transient vibrations of SDOF systems

and, 361–362

two degree-of-freedom systems 

and, 425–427

vibrations of continuous systems 

and, 672–676

Machine tool chatter, 2

Magnetic field, 182–184

Magnification factor, 215–216, 218, 291, 293

Manometer, U-tube, 742–743, 764–765, 768

Mass

added, as inertia component, 83–84

attached, end condition for, 654, 657

concentrated, 635

conservation of, 6

discrete, displacement of, 711

displacement, relative to base, 291, 371

equivalent, 76–79

fixed-attached, end condition, 657

increased, 242

mass sliding on surface with friction,

differential equation for, 188
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Index 865

in mass-spring-dashpot system, 228–231

sprung, 107

unsprung, 427

Mass matrix

consistent, 500

global, 705–708

in modeling of MDOF systems,

479–482, 497–499

symmetric, 480

Mass-spring-dashpot system, 228–231

Mass-spring system

auxiliary, 414–415

differential equation governing, 118

Material nonlinearity, 5, 738

Mathematical modeling

assumptions, 4–5

basic laws of nature in, 6

constitutive equations in, 6

diagrams in, 6–7

geometric constraints in, 6

of hysteretic damping, 168–169

problem identification in, 4

results, physical interpretation of, 7

solution obtained in, 7

of vibrations, 4–7

Mathematical solution, 7

MATLAB

for assumed modes method, 692

eigenvalue routines in, 566

for finite-element method, 718–719, 722,

724, 726

for free vibrations of MDOF systems, 543

for modal analysis, 614

for transient vibrations of SDOF systems,

347–350

VIBES program and, 847–849

Matrix. See also Flexibility matrix; Global

matrix; Mass matrix; Stiffness matrix

coefficient, 837

damping, 400, 482, 572

defined, 833

diagonal, 480, 500, 833

dynamical, 535

equation systems and, 836–837

formulation of differential equations,

478–483, 519

identity, 833

impedance, 599, 624

inverse, 837–838

iteration method, 566

modal, 563

operations, 835–836

singular, 835

symmetric, 480, 833

transformation, 708

transpose of, 833

MDOF systems. See Multiple 

degree-of-freedom systems

Mean, 786, 815

Mean square value, 786, 815–816

Mean square value of response

Fourier transform and, 808

random vibrations and, 808–812

Mean value theorem, 653

MEMS systems. See Micro-electromechanical

systems

Micro-electromechanical (MEMS) systems

accelerometers in, 92

energy harvesting and, 268, 286–288

vibrations used by, 2–3

Milling machine, 242–243, 

347–348, 423–424

Minor, 834

Missile, instability of, 515–517

Modal analysis

defined, 603

for forced vibrations of MDOF systems,

594, 603–614

for general damping, 611–614

MATLAB program for, 614

proportional damping and, 603–611

rotating unbalance and, 606–608

summarized, 604, 612

for transverse beam, 662

for undamped systems, 603–611

Modal fraction, 443

Modal matrix, 563

Modeling, lumped-mass

accuracy of, 566

flexibility matrix in, 500

in modeling of MDOF systems, 499–502

Modeling, mathematical

assumptions, 4–5

basic laws of nature in, 6

constitutive equations in, 6

diagrams in, 6–7

geometric constraints in, 6

of hysteretic damping, 168–169

problem identification in, 4

results, physical interpretation of, 7

solution obtained in, 7

of vibrations, 4–7
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866 Index

Modeling, of MDOF systems

continuous systems in, 461, 499–502

FBD method for, 461–467

flexibility influence coefficients in, 461,

491–497

flexibility matrix in, 461, 492–497

important concepts, 517–518

important equations, 518–519

inertia influence coefficients in, 497–499

introduction to, 459–461

Lagrange’s equations applied to, 460,

467–478

lumped-mass modeling, 499–502

machine on floor of industrial plant and,

502–505

mass matrix in, 479–482, 497–499

matrix formulation of differential equations

for linear systems, 478–483, 519

partial differential equations and, 499

potential energy in, 460–461, 485

stiffness influence coefficients in, 461,

483–492

stiffness matrix in, 479–483, 486–492,

496–497

suspension system and, 506–508

three degree-of-freedom model, 463–464

Modeling, of SDOF systems

buoyancy in, 69–70

displacement assumption in, 97–100

equivalent systems method in, 56,

100–106

external source in, 84–86

FBD method for, 87–94

gravity in, 68–69, 94–96

helical coil springs in, 57–58, 117

important concepts, 116–117

important equations, 117–118

inertia elements in, 55–56, 76–84

introduction to, 3, 55–56

linear spring in, 57, 117

machine on floor of industrial plant and,

106–107

small angle assumption in, 97–100, 118

springs, 56–62

springs in combination, 62–68

static deflection in, 94–96

suspension system and, 107–108

viscous damping, 55, 71–76

Mode shapes

for beams, 656–657, 660, 674, 702–703,

713–714

characteristic equation 

and, 536

of continuous systems, 

635, 638

determination of, 565–568

equations defining, 584

from flexibility matrix, 584

of free-free bar, 698–699

free vibrations of MDOF systems 

and, 534–543, 555–560, 565–568

free-vibration solutions and, 

646–650

independent, 556

matrix iteration method for, 566

of nanotube, 655, 658–659

normalized, 558–560, 584, 

646–650, 660, 677

normal mode solution of, 388, 443,

534–536

orthogonality of, 556–558, 584

properties of, 555–558

Rayleigh-Ritz method for, 566

two degree-of-freedom systems 

and, 388–393

Moment equation, 36

Moment of inertia

angular coordinate used as generalized

coordinate and, 118

centroidal, 76

of three-dimensional bodies, 77, 84

Momentum

angular, 36

conservation of, 6

principle of, 24–27, 36

Multifrequency excitations

harmonic excitation of SDOF 

systems, 244–246

vibration isolation for multifrequency,

253–254

Multiple degree-of-freedom (MDOF) 

systems. See also Forced vibrations, 

of MDOF systems; Free vibrations, 

of MDOF systems; Modeling, of

MDOF systems

analysis of, 460

damping in, 534

defined, 10

eigenvalue-eigenvector problem and, 536

nodes in, 500

nonlinear vibrations in, 759–760

Multiple scales method, 755
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Index 867

N
Nano-electromechanical (NEMS) systems, 2–3

Nanotubes

length-to-diameter ratio of, 4

natural frequencies and mode shapes 

of, 655, 658–659

Narrowband process, 805

Natural boundary conditions, 690, 726

Natural frequencies

for beams, 656–657, 702–703, 714

characteristic equation and, 536

of continuous systems, 635

damped, 149, 187

determination of, 565–568

excitation frequency equaling, 210, 290

of fixed-free elastic shaft, 699–700

of free-free bar, 698–699

free vibrations of MDOF systems 

and, 536–543, 555–558, 565–568

free-vibration solutions and, 646–650

matrix iteration method for, 566

of motion, 139, 141

of nanotube, 655, 658–659

nondimensional, 658–659, 665

numerical solutions and, 614

properties of, 555–558

Rayleigh-Ritz method for, 566

of SDOF system, 186

for simply supported beam, 660–661

from stiffness matrix, 584

of tapered circular shaft, 668–671

of transverse vibrations, 546

two degree-of-freedom systems 

and, 388–393, 417

of zero, 548, 556

Nature, laws of, 6

Negative roots, 536

Negative slope pulse, 356

NEMS systems. See Nano-electromechanical

systems

Newton’s second law

applied to FBD, 3, 87

equations, 36

kinetics of particles and, 18

Nodes

displacement of, 695

equilibrium points as, 744–745

in finite-element method, 689

in MDOF systems, 500

in two degree-of-freedom systems, 

389, 400

Non-conservative forces

defined, 84

energy added or dissipated by, 1–2

virtual work by, 518

viscous damping, 74–76

Non-conservative systems, Lagrange’s 

equations and, 474, 518

Nondimensional frequencies, for simply 

supported beam, 567

Nondimensional natural frequencies,

658–659, 665

Nondimensional partial differential equation,

for transverse beam vibrations, 677

Nondimensional variables, Buckingham 

Pi theorem and, 11–12

Nondimensional wave equation, 643

Nonlinear differential equations, 737, 769

Nonlinearity

cubic, 739, 753–759

geometric, 5, 738

material, 738

quadratic, 740, 760

sources, 738–743

Nonlinear systems

continuous, 760–761

convolution integral and, 738

deterministic input and, 781

linear systems v., 5
MDOF, 759–760

parameters influencing, 766–767

period of, 770

physical, 5, 737

qualitative analysis of, 743–747

quantitative analysis of, 747–748

SDOF, with elastic element, 741

viscous damping influencing, 753

Nonlinear vibrations

chaos and, 761–768

in continuous systems, 760–761

defined, 11

Duffing’s equation and, 741, 

743–747, 750, 769

exact solutions for, 747–748

forced vibrations of MDOF systems, 760

forced vibrations of SDOF systems 

with cubic nonlinearities, 753–759

free vibrations of MDOF systems,

759–760

free vibrations of SDOF systems,

749–753

important concepts, 769
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868 Index

Nonlinear vibrations (Continued)

important equations, 769–770

introduction to, 737–738

jump phenomenon and, 756–757,

759–760

in MDOF systems, 759–760

multiple scales method for, 755

nonlinearity sources, 738–743

qualitative analysis of, 743–747

quantitative analysis of, 747–748

resonance conditions and, 755–756

superposition principle absent for,

737–738

Nonperiodic excitation, 313

Nonperiodic functions, Fourier transform 

for, 798–800

Nonuniform expansion, 755

Normalization constraint, 558–559

Normalized Gaussian density function 

distribution, 789

Normalized Gaussian process, 815

Normalized mode shapes, 558–560, 584,

646–650, 660, 677

Normalized random variable, 815

Normal mode solution

for free vibrations of MDOF systems,

534–536, 584

of mode shapes, 388, 443, 534–536

separation-of-variables method and, 635

Notation, scalar product, 554

Numerical integration

of convolution integral, 618–619

for free vibrations of SDOF systems, 750

Numerical methods

Adams’ formulas, 346

Euler method, 344–345

for forced vibrations of MDOF systems,

614

numerical evaluation of convolution inte-

gral, 340–344, 372

numerical solution of differential equa-

tions, 344–350

predictor-corrector, 346

Runge-Kutta methods, 345–346, 349, 353

self-starting, 344

for transient vibrations of SDOF systems,

340–350

Numerical solutions

analytical solutions v., 748

of differential equations, 344–350

natural frequencies and, 614

O
Odd periodic function, 247

One-story structure

chemical laboratory, 351–353, 

365–366

as continuous system, 633–634

random input and, 783

Open Adams formula, 346

Optimum damped vibration absorber,

421–422, 441–442, 444

Orthogonality

of kinetic coefficient of friction, 556–557

of mode shapes, 556–558, 584

Output, mean square value of, 816

Overdamped free vibrations, 140, 

156–160, 187

Overshoot, 151

P
Parallel combination, of springs, 62, 117

Parametrically excited system, 743

Parseval’s identity, 797, 802, 816

Partial differential equations

modeling of MDOF systems and, 499

nondimensional, for transverse 

beam vibrations, 677

separable, 637

vibrations of continuous systems and,

635–636

wave equation, 642–643

Particles. See also Kinetics, of particles

acceleration of, 35–36

in elastic body, 10

position vector of, 16–17

relative displacement of, 10

on rigid body, 10

velocity of, 35–36

Pendulum

aerodynamic drag and, 5

differential equation governing motion of,

97–98, 738–739

internal resonance of, 759

torsional, 182–184

Period doubling, through subharmonic

cascade, 768

Periodic excitations. See also General periodic

excitations

Fourier series representation, 207,

246–250, 292

harmonic excitation of SDOF systems,

246–254
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Index 869

system response due to, 250–253, 292

vibration isolation for, 253–254

Periodic motion, 141

Perturbation methods

general expansion, 770

period approximated with, 751

secular terms removed by, 748, 753

Phase

angle, 15, 291

near primary resonance, 770

plane, 746–747

state plane showing, 757

steady-state, 444

Physical problems, wave equation governing,

642–643

Physical systems

deterministic inputs of, 781–782

nonlinear, 5, 737

Piecewise constants, 341, 343

Piecewise-defined basis functions, 694

Piezoelectric transducer, 255

Pinned end condition, 654

Pinned-free beam, 655

Pinned-free end condition, 845

Pinned-linear spring end condition, 657

Pinned-pinned beam, 704–705

Pinned-pinned end condition, 656, 845

Piping system, simply supported, 633–634

Piston-cylinder arrangement, 72–73

Planar motion, rigid body undergoing, 36

Poincaré sections, 762–763

Position vector, of particles, 16–17

Potential energy

of bar element, 697

function, 57

due to gravity, 118

in linear spring, 117

in modeling of MDOF systems,

460–461, 485

quadratic form of, 460

scalar product, 552–553, 584, 700

sources, 55, 68–71

Potential flow theory, 83

Power spectral density

autocorrelation function and, 804–807

equation, 816

measured values of, 810

narrowband process and, 805

random vibrations and, 803–807

wideband process and, 804–805

Predictor-corrector method, 346

Pressure waves, in ideal gas, 643

Primary resonance, 756–757, 

760–761, 770

Principal coordinates

for continuous system, 639

convolution integral solution for,

624–625

coupling and, 398–399

defined, 563

equations for, 443, 584, 624

expansion of response in terms of, 624

in free vibrations of MDOF systems, 534,

562–565

generalized coordinates as linear combina-

tions of, 565

for proportional damping, 584

for system with general damping, 625

in two degree-of-freedom systems,

398–400

Probability distributions

for arbitrary function of time, 

787–788

autocorrelation function and, 794–797

cross correlations and, 797

Gaussian, 789–790

joint, 793–797

range of values of, 815

Rayleigh, 791–792, 815

for two random variables, 793–794

Probability functions, of random variables,

784–785, 815

Problem formulation

in general method, 636–637

for second-order systems, 639–642

for torsional oscillations of circular shaft,

639–642

for transverse beam vibrations, 651–654

Problem identification, in mathematical 

modeling, 4

Product solution, for free-vibration problems,

677

Proportional damping

defined, 568

equations, 584, 624

in free vibrations of MDOF systems,

568–571, 584

modal analysis and, 603–611

principal coordinates for, 584

in structural systems, 569

Pulley, 21

Punch press, 251–254, 317–318
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870 Index

Q
Quadratic form

eigenvalue-eigenvector problem and, 536

of kinetic energy, 497

of potential energy, 460

of Rayleigh’s dissipation function, 460,

482, 519

Quadratic nonlinearities, 740, 760

Qualitative analysis

of nonlinear systems, 743–747

state plane in, 743–745

Quantitative analysis, of nonlinear systems,

747–748

Quenching, 760

R
Rack-and-pinion steering system, 104–105

Railroad car couplers, 550–551

Ramp function, 326

Random inputs, 781–783

Random variables

behavior of, 782–784

central limit theorem and, 792–793

ensemble processes and, 782–783

ergodic processes and, 784, 816

expected value of, 786

functions of, 784–793

Gaussian process and, 788–790

mean of, 786, 815

mean square value of, 786, 815–816

normalized, 815

probability distribution for arbitrary func-

tion of time, 787–788

probability functions of, 784–785, 815

Rayleigh distribution and, 791–792, 815

standard deviation of, 786

stationary processes and, 783–784, 816

two, probability distributions for,

793–794

variance of, 815

Random vibrations

behavior of random variable 

and, 782–784

defined, 11

Fourier transforms and, 797–802

functions of random variable and,

784–793

important concepts, 814–815

important equations, 815–816

integrals used in, 846

introduction to, 781–782

joint probability distributions and,

793–797

mean square value of response and,

808–812

power spectral density and, 803–807

suspension system and, 812–813

Rayleigh distribution, 791–792, 815

Rayleigh-Ritz method

coefficients in, 678

equations, 678

finite-element method and, 689–690

for mode shapes, 566

for natural frequencies, 566

scalar products for, 669–670

twice differentiable, 700

for vibrations of continuous systems,

669–671, 677

Rayleigh’s dissipation function, 460, 482, 518

Rayleigh’s dissipation function, quadratic

form of, 460, 482, 519

Rayleigh’s quotient

defined, 534, 558, 677

equations, 584, 678

free vibrations of MDOF systems and,

534, 558, 560–562

stationary, 561, 565

uses of, 561

for vibrations of continuous systems,

668–669

Recoil mechanisms, 155

Rectangular pulse, 332, 336, 354

Recurrence relations, 344–345

Relative acceleration equations, 36

Relative velocity equations, 36

Relativistic effects, ignored, 5

Renormalization, 753, 755

Resonance

classification of, 769

combination, 759–761

conditions, 755–756

harmonic excitation of SDOF systems

and, 210, 263

internal, 759, 761

primary, 756–757, 760–761, 770

simultaneous, 759

subharmonic, 755, 757–758, 760–761,

767

superharmonic, 757–758, 760–761, 770

Response spectrum, 315, 353–356, 364. See
also Shock spectrum

Reversed loading, 356, 369–370
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Index 871

Reynolds number, involving wind-induced

oscillations, 226–228

Rigid body

assumption, validity of, 633

degrees of freedom of, 8

kinetics problems, 19–20

planar motion undergone by, 36

relative displacement of particles on, 10

Rigid foundation, 242

Rigid pipe, waterhammer waves in, 643

Rotating manometer, 768

Rotating unbalance

frequency-squared excitations, 222–224,

238, 284–286, 291–292

modal analysis and, 606–608

vibration isolation due to, 292

Rotational mode, 547

Row vectors, 833, 835

Runge-Kutta methods, 345–346, 

349, 353

S
Saddle point, 744–745

Saturation phenomenon, 760

Scalar products

complex, 557

defined, 552

extended to continuous functions, 841

of free vibrations of MDOF systems,

552–555

kinetic energy scalar product, 553,

556–557, 584, 638, 677

in linear algebra, 840–841

notation of, 554

potential energy scalar product, 552–553,

584, 700

for Rayleigh-Ritz method, 669–670

requirements of, 840

for uniform continuous system, 638

Scotch yoke, 232–233, 264

SDOF systems. See Single degree-of-freedom

systems

Second derivative, transform of, 829

Second law of thermodynamics, 6

Second-order linear ordinary differential

equation, 56

Second-order systems

boundary conditions for, 641–642

continuous, vibrations of, 639–651

forced vibrations and, 650–651

free-vibration solutions, 642–650

problem formulation for, 639–642

wave equation for, 642–643, 677

Second Shifting Theorem, 829–830

Second spatial derivative of displacement, 700

Secular terms, 748, 753

Seismic vibration measurement instruments

accelerometers, 207, 256–259

harmonic excitation of SDOF systems

and, 207, 255–259

seismometers, 207, 255–256

Seismometers, 207, 255–256, 293

Self-starting numerical methods, 344

Semidefinite systems, 496

Separable partial differential equations, 637

Separated equations, 677–678

Separation argument, 637, 655

Separation constant, 637

Separation-of-variables method

defined, 637

normal mode solution and, 635

for vibrations of continuous systems, 635,

637, 676

Series combination, of springs, 62–63, 118

Settling time, 176–177

Sewing machine, 236–237, 282

Shear stress distribution, 667

Shock isolation, 353

Shock spectrum

damping and, 350, 353

earthquakes and, 350

transient vibrations of SDOF systems

and, 350–357

Short-duration responses

maximum transmitted force for, 372

transient, 314, 357–361

vibration isolation for, 357–361

Short-term behavior, forced vibrations of

MDOF systems and, 593

Short-term transient motion, homogeneous

solution influencing, 314

Simple harmonic motion

equation, 35

introduction to, 14–16

Simplified suspension system. See Suspension

system

Simply supported beam

dimensional frequencies for, 567

free-vibration properties for, 665

free vibrations of MDOF systems and,

566–568

machine on, 672–676
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872 Index

Simply supported beam (Continued )

natural frequencies for, 660–661

nondimensional frequencies for, 567

steady-state response of, 662–666

vibrations of continuous systems and,

660–663

Simply supported piping system, 633–634

Simultaneous resonances, 759

Sine function, 327

Sine pulse, 355, 362–364

Single degree-of-freedom (SDOF) systems.

See also Forced vibrations, of SDOF

systems; Free vibrations, of SDOF sys-

tems; Harmonic excitation, of SDOF

systems; Modeling, of SDOF systems;

Transient vibrations, of SDOF systems

damping ratio of, 187

defined, 10, 66

kinetic energy of, 23

linear, 66

natural frequency of, 186

with nonlinear elastic element, 741

state plane for, 743

steady-state response of, 291

Single-frequency excitation

forced vibrations in undamped system

due to, 208–213

forced vibrations in viscously damped sys-

tem subject to, 214–220

Singular matrix, 835

Sinusoidal forces, 85

Sinusoidal pulse, 355

Sinusoidal transfer functions, 408–410, 624

Slender rod, moment of inertia of, 77

Slider-crank mechanism, 245–246

Small angle assumption, 97–100, 118

Softening spring, 741

Solvability conditions, for transverse beam

vibrations, 655–657

Spatial derivatives, 700

Special cases, of free vibrations of MDOF sys-

tems

degenerate system, 545–548

unrestrained system, 548–552

Spectral density

autocorrelation function and, 804–807

equation, 816

measured values of, 810

narrowband process and, 805

random vibrations and, 803–807

wideband process and, 804–805

Sphere

added mass for, 84

moment of inertia of, 77, 84

Spring(s). See also Combination, of springs;

Helical coil springs; Linear spring

constant, 57

defined, 56

elastic elements as, 59–60

in FBD method, 87–88

force, 88

force-displacement relationships for, 117

hardening, 741

hysteretic damping from, 172

inertia effects of, 79–83, 118

introduction to, 56–57

length, change in, 58–59

in mass-spring-dashpot system, 228–231

in mass-spring system, 118, 414–415

in modeling of SDOF systems, 56–62

as potential energy source, 55

softening, 741

static deflection of, 61–62, 70–71, 94–96

static spring forces, 769

stiffness, 57, 117–118

swinging, 740

taut, transverse vibrations of, 643

torsional, 57, 157–160, 642

Sprung mass, 107

Square cylinder, 84

Stable equilibrium point, 744–745, 769

Standard deviation, 786

State plane

amplitude and phase shown by, 757

chaos and, 766–767

in qualitative analysis, 743–745

for SDOF systems, 743

State space, 762

Statically coupled system, 398–399, 480

Static deflection

gravity and, 94–96

isolators and, 241, 283–284

in modeling of SDOF systems, 94–96

of springs, 61–62, 70–71, 94–96

Static force, 94, 769

Stationary ensemble, 784

Stationary processes, 783–784, 816

Steady-state amplitude, 444, 596

Steady-state phases, 444

Steady-state response

of absolute displacement, 291

of fixed-pinned beam, 713
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Index 873

of pinned-pinned beam, 704–705

of SDOF systems, 291

of simply supported beam, 662–666

trivial, 758

of two degree-of-freedom systems,

401–403, 443

viscous damping and, 402–403, 443

Steady-state solution, of undamped and

damped systems, 624

Step function, 323–326, 372, 825–826

Stiffness

beam, 60–61, 117

components, 55

isolator, 241

longitudinal bar, 117

spring, 57, 117–118

torsional, 57, 117

of vibration absorber, 427

Stiffness influence coefficients

generalized, 485

in modeling of MDOF systems, 461,

483–492

stiffness matrix and, 483

Stiffness matrix

flexibility matrix v., 497

global matrix and, 705–706

in modeling of MDOF systems,

479–483, 486–492, 496–497

natural frequencies from, 584

stiffness influence coefficients and, 483

for unconstrained systems, 496–497

Strain energy, 59

Stress–strain diagram, 167–168

Structural failure, 2

Structural systems, damping in, 569, 609

Subharmonic cascade, period doubling

through, 768

Subharmonic resonance, 755, 757–758,

760–761, 767

Summation index, 479

Superharmonic resonance, 757–758,

760–761, 770

Superposition principle, 737–738

Support, harmonic excitation of, 

228–233

Surface forces, 6–7

Surge, 633–634

Suspension system

ensemble processes and, 782–783

forced vibrations of MDOF systems and,

616–619

free vibrations of MDOF systems and,

576–577

free vibrations of SDOF systems in,

174–175

harmonic excitation of SDOF systems in,

274–281

introduction to, 28–29

modeling of MDOF systems and,

506–508

modeling of SDOF systems in, 107–108

random vibrations and, 812–813

Suspension system 

transient vibrations of SDOF systems

and, 362–365

two degree-of-freedom systems and,

427–432

Swinging spring, 740

Symmetric mass matrix, 480

Symmetric matrix, 480, 833

Systems with general damping

convolution integral solutionfor, 625

free vibrations of MDOF systems and,

571–574

modal analysis for, 611–614

principal coordinates for, 625

Systems with proportional damping, modal

analysis for, 603–611

T
Tacoma Narrows Bridge disaster, 210

Tapered circular shaft, 668–671

Taylor series expansions, 752

Thin disk

added mass for, 84

angular displacement of, 89–92

moment of inertia of, 77, 84

Thin plate

added mass for, 84

moment of inertia of, 77, 84

Third law of thermodynamics, 6

Three degree-of-freedom model, 463–464

Three-dimensional bodies

added mass for, 84

moments of inertia of, 77, 84

Time

arbitrary function of, 787–788

discretization of, 340–341

settling, 176–177

Time-dependent process, deterministic, 781

Torque, harmonic, 650

Torsional damper end condition, 642

62129_16_Index.qxd  3/18/11  5:54 PM  Page 873

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



874 Index

Torsional oscillations, of circular shaft

boundary conditions for, 641–642

forced vibrations and, 650–651

free-vibration solutions, 642–650

problem formulation for, 639–642

wave equation for, 642–643, 677

Torsional pendulum, 182–184

Torsional shaft, 669

Torsional spring, 57, 157–160, 642

Torsional stiffness, 57, 117

Torsional viscous damper, 73, 157–160

Torsion element, 697–698

Trajectories, 743

Transcendental equation, 647–648

Transcendental function, of dependent 

variable, 739

Transducer, 255–256

Transfer functions

defined, 337

equations for, 372, 816

Fourier transform, 801–802

Laplace transform and, 314, 404,

801–802

magnitude of, 810

sinusoidal, 408–410, 624

transient vibrations of SDOF systems

and, 314, 337–340

two degree-of-freedom systems and,

404–410

Transformation matrix, 708

Transient forces, 85

Transient vibrations, of SDOF systems

due to base excitation, 330–332

convolution integral and, 314–318, 325

defined, 11

forms changing at discrete times,

323–330

important concepts, 370–371

important equations, 371–372

introduction to, 313–315

Laplace transform method and, 314,

332–336

machine on floor of industrial plant and,

361–362

MATLAB scripts for, 347–350

numerical methods for, 340–350

response due to general excitation,

318–323

shock spectrum and, 350–357

short-duration responses, 314, 357–361

suspension system and, 362–365

transfer functions and, 314, 337–340

in undamped system, 325–328

Transmissibility ratio, 231

Transmission system, 105–106

Transpose, of matrix, 833

Transverse beam vibrations

boundary conditions for, 653–654

of continuous systems, 651–666

FBDs of, 652

forced, 662–666

free vibrations, 654–661

modal analysis for, 662

nondimensional partial differential equa-

tion for, 677

problem formulation for, 651–654

solvability conditions for, 655–657

Transverse vibrations, 60, 546, 643

Tree swing, 165–167

Triangular pulse, 328–330, 354, 357

Trivial steady-state response, 758

Tumbler, 282–283

Tuned vibration absorbers, 444

Two degree-of-freedom systems

coupling and, 398–399

damped vibration absorbers and, 420–424

deterministic systems, 782

differential equations for, 383–387, 

400, 411

dynamic vibration absorbers and,

414–419

frequency response in, 411–414

generalized coordinates in, 383

harmonic response of, 401–404

important concepts, 442–443

important equations, 443–444

introduction to, 23–24, 383–384

Laplace transform and, 408–410

linear, 383

machine on floor of industrial plant and,

425–427

mode shapes and, 388–393

natural frequencies and, 388–393, 417

nodes in, 389, 400

principal coordinates in, 398–400

sinusoidal transfer functions and,

408–410

steady-state response of, 401–403, 443

subject to pulse loading, 782

suspension system and, 427–432

transfer functions and, 404–410

with two inputs, 404
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Index 875

undamped, 393–395, 443

with viscous damping, free response of,

396–398, 443

Two-story frame structure, 435–438

Two-term expansion, for free vibrations of

Duffing’s equation, 770

U
Unbalance, rotating

frequency-squared excitations, 222–224,

238, 284–286, 291–292

modal analysis and, 606–608

vibration isolation due to, 292

Unconstrained systems, 496–497

Uncontrolled vibrations, 2

Undamped Duffing’s equation, 743–744,

751, 770

Undamped free vibrations, of SDOF systems,

11, 140–147, 187, 533

Undamped systems

differential equations for, 624

forced vibrations in, due to single-fre-

quency excitation, 208–213

MDOF, free vibrations of, 187, 533

modal analysis for, 603–611

SDOF, free vibrations of, 11, 140–147,

187, 533

steady-state solution of, 624

transient vibrations in, 325–328

two degree-of-freedom, 393–395, 443

when excitation frequency equals natural

frequency, 290

Underdamped free vibrations, 140, 147–154

Underdamped system

convolution integral for, 371

free response of, 187

impulsive response of, 371

rectangular velocity pulse and, 336

Undetermined coefficients

equation, 624

in finite-element method, 722

for forced vibrations of MDOF systems,

593–594, 624

harmonic response of two degree-of-free-

dom systems and, 401

Unforced Duffing’s equation, 743–746,

751–752

Uniform bar element equations, 727

Uniform beam element equations, 727

Uniform continuous system, scalar products

for, 638

Uniform fixed-free beam, 702–703, 714

Uniform torsion element, 697–698

Unit impulse

function, 317, 798, 825–826

response due to, 315–318

Unit step function, 323–326, 372, 825–826

Unrestrained system

defined, 534

as special case, 548–552

Unsprung mass, 427

Unstable equilibrium point, 744–745

Unstretched length, 56

U-tube manometer, 742–743, 764–765, 768

V
Velocity

particle, 35–36

pulse, 331–332, 336

Versed sine pulse, 355, 362–364

Vertical equilibrium position, 1–2

VIBES program, 847–849

Vibration absorbers

as auxiliary mass-spring system, 414–415

damped, 420–424, 441–442, 444

defined, 384, 420

dynamic, 12–13, 414–419

frequency response and, 444

stiffness of, 427

tuning of, 444

Vibration dampers, 424–425, 642

Vibration isolation

from elastic mounting, 234

from frequency-squared excitations,

238–241

in harmonic excitation of SDOF systems,

207, 234–244

for multifrequency and periodic 

excitations, 253–254

practical aspects of, 241–244

protection with, 234

due to rotating unbalance, 292

for short-duration pulses, 357–361

Vibrations. See also Continuous systems,

vibrations of; Damped vibration(s);

Forced vibrations; Forced vibrations, of

MDOF systems; Free vibrations, of

MDOF systems; Free vibrations, of

SDOF systems; Nonlinear vibrations;

Random vibrations; Seismic vibration

measurement instruments; Transient

vibrations, of SDOF systems;
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876 Index

Transverse beam vibrations

analysis of, 3, 743–748

classification of, 11

defined, 1

dynamic vibration absorber and, 12–13

important concepts, 34–35

important equations, 35–36

linear, 11

longitudinal, 59

mathematical modeling of, 4–7

MEMS systems using, 2–3

study of, 1–4

transverse, 60, 546, 643

uncontrolled, 2

viscously damped, 11

Virtual work, 468, 518

Viscous damper

differential equation governing, 118

discrete, 74–75

end condition, 654

force from, 88–89, 118

motion input and, 85–86

system, motion of, 94–96

torsional, 73, 157–160

Viscous damping

coefficient, 71, 75–76, 169, 188

Coulomb damping v., 163–164

from dashpot, 172

defined, 73

energy dissipated by, 74–76

Viscous damping 

FBD of, 73–74

general, in free vibrations of MDOF sys-

tems, 571–574

hysteretic damping v., 169, 266

modeling of SDOF systems and, 55,

71–76

as non-conservative force, 74–76

nonlinear systems influenced by, 753

ratio, 188

steady-state response and, 402–403, 443

two degree-of-freedom systems with, free

response of, 396–398, 443

work done by, 118

Viscously damped system, 214–220

Viscously damped vibrations, 11

Vortex shedding

from circular cylinders, 225–228

random, 781–782

W
Waterhammer waves, in rigid pipe, 643

Wave equation, 642–643, 677

White noise, 805–807, 812–813, 816

Wideband process, 804–805

Wiener-Khintchine equations, 804, 814, 816

Wind-induced oscillations, Reynolds number

involving, 226–228

Work

by external sources, 118

done by force, 36, 118

by non-conservative forces, 518

principle of, 22–24, 36

virtual, 468, 518
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PRINCIPAL UNITS USED IN MECHANICS

International System (SI) U.S. Customary System (USCS)
Quantity

Unit Symbol Formula Unit Symbol Formula

Acceleration (angular) radian per second squared rad/s2 radian per second squared rad/s2

Acceleration (linear) meter per second squared m/s2 foot per second squared ft/s2

Area square meter m2 square foot ft2

Density (mass) kilogram per cubic meter kg/m3 slug per cubic foot slug/ft3

(Specific mass)

Density (weight) newton per cubic meter N/m3 pound per cubic foot pcf lb/ft3

(Specific weight)

Energy; work joule J N�m foot-pound ft-lb

Force newton N kg�m/s2 pound lb (base unit)

Force per unit length newton per meter N/m pound per foot lb/ft
(Intensity of force)

Frequency hertz Hz s�1 hertz Hz s�1

Length meter m (base unit) foot ft (base unit)

Mass kilogram kg (base unit) slug lb-s2/ft

Moment of a force; torque newton meter N�m pound-foot lb-ft

Moment of inertia (area) meter to fourth power m4 inch to fourth power in.4

Moment of inertia (mass) kilogram meter squared kg�m2 slug foot squared slug-ft2

Power watt W J/s foot-pound per second ft-lb/s
(N�m/s)

Pressure pascal Pa N/m2 pound per square foot psf lb/ft2

Section modulus meter to third power m3 inch to third power in.3

Stress pascal Pa N/m2 pound per square inch psi lb/in.2

Time second s (base unit) second s (base unit)

Velocity (angular) radian per second rad/s radian per second rad/s

Velocity (linear) meter per second m/s foot per second fps ft/s

Volume (liquids) liter L 10�3 m3 gallon gal. 231 in.3

Volume (solids) cubic meter m3 cubic foot cf ft3
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