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Vibration of Mechanical Systems
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selected topics in mechanics; a description of single-degree-of-freedom
(SDOF) systems in terms of equivalent mass, equivalent stiffness, and
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lems (base excitation and rotating balance); an introduction to systems
thinking, highlighting the fact that SDOF analysis is a building block
for multi-degree-of-freedom (MDOF) and continuous system analyses
via modal analysis; and a simple introduction to finite element analy-
sis to connect continuous system and MDOF analyses. There are more
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PREFACE

This book is intended for a vibration course in an undergraduate
Mechanical Engineering curriculum. It is based on my lecture notes
of a course (ME370) that I have been teaching for many years at The
Pennsylvania State University (PSU), University Park. This vibration
course is a required core course in the PSU mechanical engineering
curriculum and is taken by junior-level or third-year students. Text-
books that have been used at PSU are as follows: Hutton (1981) and
Rao (1995, First Edition 1986). In addition, I have used the book by
Thomson and Dahleh (1993, First Edition 1972) as an important refer-
ence book while teaching this course. It will be a valid question if one
asks why I am writing another book when there are already a large
number of excellent textbooks on vibration since Den Hartog wrote
the classic book in 1956. One reason is that most of the books are
intended for senior-level undergraduate and graduate students. As a
result, our faculties have not found any book that can be called ideal
for our junior-level course. Another motivation for writing this book is
that I have developed certain unique ways of presenting vibration con-
cepts in response to my understanding of the background of a typical
undergraduate student in our department and the available time dur-
ing a semester. Some of the examples are as follows: review of selected
topics in mechanics; the description of the chapter on single-degree-
of-freedom (SDOF) systems in terms of equivalent mass, equivalent
stiffness, and equivalent damping; unified treatment of various forced

Xiii
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response problems such as base excitation and rotating balance; intro-
duction of system thinking, highlighting the fact that SDOF analysis
is a building block for multi-degree-of-freedom (MDOF) and contin-
uous system analyses via modal analysis; and a simple introduction
of finite element analysis to connect continuous system and MDOF
analyses.

As mentioned before, there are a large number of excellent books
on vibration. But, because of a desire to include everything, many of
these books often become difficult for undergraduate students. In this
book, all the basic concepts in mechanical vibration are clearly iden-
tified and presented in a simple manner with illustrative and practi-
cal examples. I have also attempted to make this book self-contained
as much as possible; for example, materials needed from previous
courses, such as differential equation and engineering mechanics, are
presented. At the end of each chapter, exercise problems are included.
The use of MATLAB software is also included.

ORGANIZATION OF THE BOOK

In Chapter 1, the degrees of freedom and the basic elements of
a vibratory mechanical system are presented. Then the concepts
of equivalent mass, equivalent stiffness, and equivalent damping
are introduced to construct an equivalent single-degree-of-freedom
model. Next, the differential equation of motion of an undamped
SDOF spring—mass system is derived along with its solution. Then the
solution of the differential equation of motion of an SDOF spring—
mass—damper system is obtained. Three cases of damping levels —
underdamped, critically damped, and overdamped — are treated in
detail. Last, the concept of stability of an SDOF spring—mass—damper
system is presented.

In Chapter 2, the responses of undamped and damped SDOF
spring-mass systems are presented. An important example of input

shaping is shown. Next, the complete solutions of both undamped and
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damped spring—mass systems under sinusoidal excitation are derived.
Amplitudes and phases of steady-state responses are examined along
with force transmissibility, quality factor, and bandwidth. Then the
solutions to rotating unbalance and base excitation problems are pro-
vided. Next, the basic principles behind the designs of a vibrometer
and an accelerometer are presented. Last, the concept of equivalent
viscous damping is presented for nonviscous energy dissipation.

In Chapter 3, the techniques to compute the response of an SDOF
system to a periodic excitation are presented via the Fourier series
expansion. Then it is shown how the response to an arbitrary exci-
tation is obtained via the convolution integral and the unit impulse
response. Last, the Laplace transform technique is presented. The
concepts of transfer function, poles, zeros, and frequency response
function are also introduced.

In Chapter 4, mass matrix, stiffness matrix, damping matrix, and
forcing vector are defined. Then the method to compute the natural
frequencies and the mode shapes is provided. Next, free and forced
vibration of both undamped and damped two-degree-of-freedom sys-
tems are analyzed. Last, the techniques to design undamped and
damped vibration absorbers are presented.

In Chapter 5, the computation of the natural frequencies and the
mode shapes of discrete multi-degree-of-freedom and continuous sys-
tems is illustrated. Then the orthogonality of the mode shapes is
shown. The method of modal decomposition is presented for the com-
putation of both free and forced responses. The following cases of
continuous systems are considered: transverse vibration of a string,
longitudinal vibration of a bar, torsional vibration of a circular shaft,
and transverse vibration of a beam. Last, the finite element method is
introduced via examples of the longitudinal vibration of a bar and the
transverse vibration of a beam.






EQUIVALENT
SINGLE-DEGREE-OF-FREEDOM
SYSTEM AND FREE VIBRATION

The course on Mechanical Vibration is an important part of the
Mechanical Engineering undergraduate curriculum. It is necessary
for the development and the performance of many modern engi-
neering products: automobiles, jet engines, rockets, bridges, electric
motors, electric generators, and so on. Whenever a mechanical sys-
tem contains storage elements for kinetic and potential energies, there
will be vibration. The vibration of a mechanical system is a contin-
ual exchange between kinetic and potential energies. The vibration
level is reduced by the presence of energy dissipation elements in the
system. The problem of vibration is further accentuated because of
the presence of time-varying external excitations, for example, the
problem of resonance in a rotating machine, which is caused by the
inevitable presence of rotor unbalance. There are many situations
where the vibration is caused by internal excitation, which is depen-
dent on the level of vibration. This type of vibration is known as self-
excited oscillations, for example, the failure of the Tacoma suspension
bridge (Billah and Scanlan, 1991) and the fluttering of an aircraft wing.
This course deals with the characterization and the computation of the
response of a mechanical system caused by time-varying excitations,
which can be independent of or dependent on vibratory response.
In general, the vibration level of a component of a machine has to
be decreased to increase its useful life. As a result, the course also
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examines the methods used to reduce vibratory response. Further, this
course also develops an input/output description of a dynamic system,
which is useful for the design of a feedback control system in a future
course in the curriculum.

The book starts with the definition of basic vibration elements
and the vibration analysis of a single-degree-of-freedom (SDOF) sys-
tem, which is the simplest lumped parameter mechanical system and
contains one independent kinetic energy storage element (mass), one
independent potential energy storage element (spring), and one inde-
pendent energy dissipation element (damper). The analysis deals
with natural vibration (without any external excitation) and forced
response as well. The following types of external excitations are con-
sidered: constant, sinusoidal, periodic, and impulsive. In addition,
an arbitrary nature of excitation is considered. Then, these analyses
are presented for a complex lumped parameter mechanical system
with multiple degrees of freedom (MDOF). The design of vibration
absorbers is presented. Next, the vibration of a system with continu-
ous distributions of mass, such as strings, longitudinal bars, torsional
shafts, and beams, is presented. It is emphasized that the previous
analyses of lumped parameter systems serve as building blocks for
computation of the response of a continuous system that is governed
by a partial differential equation. Last, the fundamentals of finite ele-
ment analysis (FEA), which is widely used for vibration analysis of a
real structure with a complex shape, are presented. This presentation
again shows the application of concepts developed in the context of
SDOF and MDOF systems to FEA.

In this chapter, we begin with a discussion of degrees of freedom
and the basic elements of a vibratory mechanical system that are a
kinetic energy storage element (mass), a potential energy storage ele-
ment (spring), and an energy dissipation element (damper). Then,
an SDOF system with many energy storage and dissipation elements,
which are not independent, is considered. It is shown how an equiv-

alent SDOF model with one equivalent mass, one equivalent spring,
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and one equivalent damper is constructed to facilitate the derivation
of the differential equation of motion. Next, the differential equation
of motion of an undamped SDOF spring—mass system is derived along
with its solution to characterize its vibratory behavior. Then, the solu-
tion of the differential equation of motion of an SDOF spring-mass—
damper system is obtained and the nature of the response is exam-
ined as a function of damping values. Three cases of damping lev-
els, underdamped, critically damped, and overdamped, are treated in
detail. Last, the concept of stability of an SDOF spring-mass—damper
system is presented along with examples of self-excited oscillations

found in practice.

1.1 DEGREES OF FREEDOM

Degrees of freedom (DOF) are the number of independent coordinates
that describe the position of a mechanical system at any instant of time.
For example, the system shown in Figure 1.1.1 has one degree of free-
dom x, which is the displacement of the mass m1;. In spite of the two
masses m; and m; in Figure 1.1.2, this system has only one degree of
freedom x because both masses are connected by a rigid link, and the
displacements of both masses are not independent. The system shown
in Figure 1.1.3 has two degrees of freedom x; and x; because both
masses m; and m, are connected by a flexible link or a spring, and the
displacements of both masses are independent.

Next, consider rigid and flexible continuous cantilever beams as
shown in Figures 1.1.4 and 1.1.5. The numbers of degrees of freedom
for rigid and flexible beams are 0 and oo, respectively. Each contin-
uous beam can be visualized to contain an infinite number of point
masses. These point masses are connected by rigid links for a rigid
beam as shown in Figure 1.1.2, whereas they are connected by flexible
links for a flexible beam as shown in Figure 1.1.3. Consequently, there
is one degree of freedom associated with each of the point masses in
a flexible beam.
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Figure 1.1.4 A rigid beam fixed at one end
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Figure 1.1.5 A flexible beam fixed at one end
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Figure 1.2.1 A mass in pure translation

1.2 ELEMENTS OF A VIBRATORY SYSTEM

There are three basic elements of a vibratory system: a kinetic energy
storage element (mass), a potential energy storage element (spring),
and an energy dissipation element (damper). The description of each
of these three basic elements is as follows.

1.2.1 Mass and/or Mass-Moment of Inertia

Newton’s second law of motion and the expression of kinetic energy
are presented for three types of motion: pure translational motion,
pure rotational motion, and planar (combined translational and rota-

tional) motion.

Pure Translational Motion
Consider the simple mass m (Figure 1.2.1) which is acted upon by a
force f(¢).

Applying Newton’s second law of motion,

mi = (1) (12.1)

where

. dx o d*x
X = E and X = ﬁ (1223, b)

The energy of the mass is stored in the form of kinetic energy (KE):

1
KE = zmx2 (1.2.3)
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Figure 1.2.2 A mass in pure rotation

Pure Rotational Motion

Consider the mass m (Figure 1.2.2) which is pinned at the point O,
and acted upon by an equivalent external force f,, and an equivalent
external moment o,,. This mass is undergoing a pure rotation about
the point O, and Newton’s second law of motion leads to

1,0 = —mgrsin® + foql + 0o4 (1.2.4)

where I, is the mass-moment of inertia about the center of rotation O,
0 is the angular displacement, and ¢ is the length of the perpendicular
from the point O to the line of force.

The KE of the rigid body is

1 .
KE = 51092 (1.2.5)
The potential energy (PE) of the rigid body is

PE = mg(r — r cos9) (1.2.6)

Planar Motion (Combined Rotation and Translation)

of a Rigid Body

Consider the planar motion of a rigid body with mass m and the mass-
moment of inertia /. about the axis perpendicular to the plane of
motion and passing through the center of mass C (Figure 1.2.3). Forces
fi.i=1,2,...,ny, and moments o;,i = 1,2, ..., n,, are acting on this
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Figure 1.2.3 Planar motion of a rigid body

rigid body. Let x, and y. be x- and y- coordinates of the center of
mass C with respect to the fixed x—y frame. Then, Newton’s second
law of motion for the translational part of motion is given by

mi, = Z fui(0) (1.2.7)
my, = nyl- (t) (1.2.8)

where f;; and f); are x- and y- components of the force f;. Newton’s
second law of motion for the rotational part of motion is given by

I =1d=>) oi(t)+ ) of (1.2.9)

where af‘;f is the moment of the force f; about the center of mass C.
And, 0 and w are the angular position and the angular velocity of the
rigid body, respectively. The KE of a rigid body in planar motion is
given by

L o, 1. 5

KE = -mv, + = l.w (1.2.10)

2 2
where v, is the magnitude of the linear velocity of the center of mass,
that is,

D (1.2.11)
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1) Massless 1)
< AN —
= =
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Figure 1.2.4 A massless spring in translation

Special Case: Pure Rotation about a Fixed Point
Note that the pure rotation of the rigid body (Figure 1.2.2) is a special
planar motion for which

Ve =Tw (1.2.12)
and Equation 1.2.10 leads to
KE = %(mrz +I)o* (1.2.13)
Using the parallel-axis theorem,
I, =1+ mr? (1.2.14)

Therefore, Equation 1.2.5 is obtained for the case of a pure rotation
about a fixed point.

1.2.2 Spring

The spring constant or stiffness and the expression of PE are pre-
sented for two types of motion: pure translational motion and pure
rotational motion.

Pure Translational Motion

Consider a massless spring, subjected to a force f(¢#) on one end
(Figure 1.2.4). Because the mass of the spring is assumed to be zero,
the net force on the spring must be zero. As a result, there will be an
equal and opposite force on the other end. The spring deflection is the
difference between the displacements of both ends, that is,

spring deflection = x, — x; (1.2.15)
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Figure 1.2.5 A massless spring in rotation

and the force is directly proportional to the spring deflection:
f(®) = k(xp — x1) (1.2.16)

where the proportionality constant k is known as the spring constant
or stiffness.
The PE of the spring is given by

1
PE = zk(x2 —x1)? (1.2.17)

It should be noted that the PE is independent of the sign (extension

or compression) of the spring deflection, x, — x;.

Pure Rotational Motion

Consider a massless torsional spring, subjected to a torque o (f) on one
end (Figure 1.2.5). Because the mass of the spring is assumed to be
zero, the net torque on the spring must be zero. As a result, there will
be an equal and opposite torque on the other end. The spring deflec-
tion is the difference between angular displacements of both ends,
that is,

spring deflection = 6, — 6; (1.2.18)
and the torque is directly proportional to the spring deflection:
o(t) = k(6 —61) (1.2.19)

where the proportionality constant k; is known as the torsional spring
constant or torsional stiffness.

The PE of the torsional spring is given by

1
PE = zkt(e2 —6)° (1.2.20)
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Massless
(1) 4 §10)!
< |_:,> 0
X1 c X {1 | Mass
>,
(a) (b)

Figure 1.2.6 (a) A massless damper in translation; (b) A mass attached to the right
end of the damper

It should be noted that the PE is independent of the sign of the spring
deflection, 6, — 6.

1.2.3 Damper

The damping constant and the expression of energy dissipation are
presented for two types of motion: pure translational motion and pure
rotational motion.

Pure Translational Motion

Consider a massless damper, subjected to force f(¢#) on one end
(Figure 1.2.6a). Because the mass of the damper is assumed to be
zero, the net force on the damper must be zero. As a result, there
will be an equal and opposite force on the other end, and the damper
force is directly proportional to the difference of the velocities of both
ends:

@) = c(2(t) — %1(1)) (1.2.21)

where the proportionality constant ¢ is known as the damping con-
stant. The damper defined by Equation 1.2.21 is also known as the
linear viscous damper.

If there is a mass attached to the damper at the right end (Fig-

ure 1.2.6b) with the displacement x;, the work done on the mass
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against the damping force for an infinitesimal displacement dx; is

f(H)dx, = f(t)%dt = f(t)xodt (1.2.22)

The energy dissipated by the damper equals the work done on mass
against the damping force, that is, from Equation 1.2.22,

energy dissipated by the damper = f(¢)x,dt = c(xX, — x1)x2dt
(1.2.23)
As an example, consider x;(f) = 0 and x,(¢) = Asin(wt — ¢), where A
and ¢ are constants, and w is the frequency of oscillation. In this case,
from Equation 1.2.23,

energy dissipated by the damper = cx5dt = cA*w? cos*(wt — ¢)dt
(1.2.24)
Substituting v = wt — ¢ into Equation 1.2.24,

energy dissipated by the damper = cA’wcos> vdv  (1.2.25)

As a result, the energy dissipated by the damper per cycle of oscilla-
tion is
2
/ cA’w cos® vdv = mewA? (1.2.26)
0
It should be noted that the energy dissipated by the viscous
damper per cycle of oscillation is proportional to the square of the
vibration amplitude.

Pure Rotational Motion

Consider a massless torsional damper, subjected to a torque o (¢) on
one end (Figure 1.2.7). Because the mass of the damper is assumed
to be zero, the net torque on the damper must be zero. As a result,
there will be an equal and opposite torque on the other end, and the
damper torque is directly proportional to the difference of the angular
velocities of both ends:

o (1) = c(6>(1) — 61(1)) (1.2.27)
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Massless

¥
Torque, 0 Torque, 0
y Yo
6T Lym)

Ct

Figure 1.2.7 A massless torsional damper

where the proportionality constant ¢, is known as the damping con-
stant. The damper defined by Equation 1.2.27 is also known as the
linear viscous damper.

If there is a mass attached to the damper at the right end with the
angular displacement 6,, the work done against the damping torque
for an infinitesimal displacement d6, is

o (6)d6 = o(t)%dt = o ()brdt (1.2.28)

The energy dissipated by the damper equals the work done on mass
against the damping torque, that is, from Equation 1.2.28,

energy dissipated by the damper = o (£)bhdt = c,(6> — 01)brdt
(1.2.29)
The expression similar to Equation 1.2.26 can be derived for the
energy dissipated by the torsional viscous damper per cycle of oscilla-
tion.

1.3 EQUIVALENT MASS, EQUIVALENT STIFFNESS,
AND EQUIVALENT DAMPING CONSTANT FOR
AN SDOF SYSTEM

In this section, equivalent mass, equivalent stiffness, and equivalent

damping constant are derived for a rotor—shaft system, spring with
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N

/ Simply supported shaft

Rotor with mass = m

Figure 1.3.1 A rotor-shaft system

nonnegligible mass, parallel and series combinations of springs and
dampers, and a combined rotational and translational system.

1.3.1 A Rotor-Shaft System

Consider a rotor with mass m which is supported at the mid-span of a
simply supported shaft of length ¢ (Figure 1.3.1). The mass of the shaft
is negligible in comparison with the mass of the rotor. For the purpose
of transverse vibration modeling, the shaft is considered as a simply
supported beam (Crandall et al., 1999). For a simply supported beam,
when a load P is applied at the mid-span (Figure 1.3.2), the deflection
8 of the shaft at the mid-span is obtained from the results provided in
Appendix A (Equation A.2) by

PO
T 48EI

where E and [ are the Young’s modulus of elasticity and the area

(1.3.1)

moment of inertia, respectively.

Simply supported shaft Deflection

Figure 1.3.2 Deflection of a simply supported shaft
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Massless

I _48E1

eq

=

m

x(1)

Figure 1.3.3 Equivalent SDOF system for a rotor-shaft system

Therefore, the equivalent stiffness of the shaft is defined as

P 48EI

kg =5 =7 (1.3.2)

And, an equivalent SDOF system can be constructed as shown in
Figure 1.3.3, where x(¢) is the displacement of the rotor mass.

1.3.2 Equivalent Mass of a Spring

Consider an SDOF system (Figure 1.3.4) in which the mass of the

spring m, is not negligible with respect to the main mass m.

Spring-mass
— mS

x(7) ’ vy

Figure 1.3.4 A spring-mass system with nonnegligible mass of spring
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Then, an equivalent system with a massless spring can be obtained
on the basis of the total KE. Let the length of the spring be ¢, and
assume that the mass of the spring is uniformly distributed over its
length. Then, the mass of a spring strip of the length dy will be

dm, = %dy (13.3)

To determine the KE, the velocity v, of the spring strip at a distance
y from the base of the spring must be known. But, we only have the

following information:
@y=0,v,=0 (1.34)
and
@y=1"{,v,=xXvy,=2x (1.3.5)

The velocity at an intermediate point (0 < y < £) is not known. There-
fore, it is assumed that the velocity profile over the length of the spring

is linear as shown in Figure 1.3.4, that is,
vy = fy (1.3.6)

The KE of the spring strip of length dy at a distance y from the base
of the spring is

1
dKE, = Edmy(vy)2 (1.3.7)

Using Equations (1.3.3) and (1.3.7),

1m, (X

2
dKE, = -—(Zy) d 1.3.8
57 <Ey> y (1.3.8)

Therefore, the total KE of the spring is given by

12
Img (% \° 1ma* [, 1ms ,
KE; = / 37 (Zy) dy = 55_3/)} dy = z?x (1.3.9)
0 0
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Massless
spring

m
m+—=
x(1) 3

Figure 1.3.5 Equivalent SDOF system with a massless spring

Hence, the total KE of the system with a nonnegligible spring mass is
given by

1 1 my 1
KE = mez + Em?xz = E”neqx2 (1310)

where the equivalent mass m,, is given by

Meg = m+ m? (13.11)

And, the equivalent SDOF system can be created with a massless
spring and a mass m,., as shown in Figure 1.3.5. The systems shown
in Figures 1.3.4 and 1.3.5 will have the same amount of KE under the
assumption of a linear velocity profile for the spring.

1.3.3 Springs in Series and Parallel

Springs in Series
Consider a series combination of massless springs with stiffnesses k;
and k, (Figure 1.3.6).

ky ky f@
F v ans—=
Massless |—> Massless I—»
)Cl x

Figure 1.3.6 Springs in series
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Figure 1.3.7 Free body diagrams for springs in series

The free body diagram of each spring is shown in Figure 1.3.7 for
which the following relationships can be written:

f@) =kix (1.3.12)
and
f@) = ka(x — x1) (1.3.13)

It is important to note that both springs, which are in series, carry

the same amount of force. From Equations 1.3.12 and 1.3.13,

ko
ki + ky

Substituting Equation 1.3.14 into Equation 1.3.13,

X = X (1.3.14)

F(t) = ke (13.15)
where
kiky
keg = 1.3.16
Tk 4k ( )

Here, k., is the equivalent stiffness and the system in Figure 1.3.6
can be replaced by a system with only one spring with the stiffness k.,
as shown in Figure 1.3.8.

Equation 1.3.16 can also be written as

1 1 1

_ .1 1317
ey Kk (1.3.17)

Springs in Parallel
Consider a parallel combination of massless springs with stiffnesses k;
and k, (Figure 1.3.9).
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1 1 1

—_—— 4 —

keq ky ko
f)

keq
k P B i
1 2 ! Massless
me =,
Massless |_> Massless |_>
X1

X

Figure 1.3.8 Equivalent system with only one spring for a series combination

The free body diagram of each spring is shown in Figure 1.3.10 for
which the following relationships can be written:

fi() = kix (1.3.18)
L) = kox (1.3.19)

and
f@) = () + ) (1.3.20)

It is important to note that both springs, which are in parallel, undergo
the same amount of deflection. Substituting Equations 1.3.18 and 1.3.19
into Equation 1.3.20,

f(t) = keqx (1321)
where
keq =ki+k (1.3.22)
Massless
ky

—
S

B

ky s

X

Figure 1.3.9 A parallel combination of springs
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i) o AW

S
0 x A1)
p—
e 1
f2(0)

S2(0) ky J2(0)
N NN—=
s >

Figure 1.3.10 Free body diagrams for springs in parallel

X

Here, k., is the equivalent stiffness and the system in Figure 1.3.9
can be replaced by a system with only one spring with the stiffness k.,
as shown in Figure 1.3.11.

1.3.4 An SDOF System with Two Springs and Combined Rotational

and Translational Motion

Consider the system shown in Figure 1.3.12, in which a cylinder
rolls without slipping. The displacement of the cylinder’s center of
mass, marked as C, is denoted by the symbol x(¢). Because of the
displacement x(¢), the stepped pulley rotates by an amount 0(¢). For a
small displacement x(¢), from Figure 1.3.13,

o(t) = @ (1.3.23)
Massless
ky
k = kl + k2

— t

w AU = I_/\/\/\/W o

ky Mass|

|—; assless

Figure 1.3.11 Equivalent system with only one spring for a parallel combination
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Radius = r Cylinder with mass = m
ky /_\‘/ ngld link x

G
L X
|_> Stepped
- pulley & ‘
| / Radius =73
Radlus =r
Roll without slip

Mass-moment of inertia = 1,

Figure 1.3.12 An SDOF System with rotational and translational motion
Using Equation 1.2.10, the KE of the cylinder is given as

1 1
KE., = mez + zlcw2 (1.3.24)

where the mass-moment of inertia of the cylinder about Cis

1
I. = —mr?

5 (1.3.25)

and the angular velocity o of the cylinder for rolling without slipping
is

(1.3.26)

X
w=—
-

Substituting Equations 1.3.25 and 1.3.26 into Equation 1.3.24,

1
KE., = E1.5mx2 (1.3.27)

The KE of the stepped pulley is

1
KEsp = EI,,(,()ZP (1328)

where wj,, is the angular velocity of the stepped pulley. From Equation
1.3.23,
(1.3.29)

R X
wSP:Q:E
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X

ff

Figure 1.3.13 Displacement and equivalent rotation

Substituting Equation 1.3.29 into Equation 1.3.28,

11, ,

KE, = —— 1.3.30
2r; ( )

From Equations 1.3.24 and 1.3.30, the total KE in the system is
1
KE = KEcy + KE, = Emeqxz (1.3.31)
where
Iy
Meqg = 1.5m+ — (1.3.32)
)
From Figure 1.3.12, the total PE in the system is
Lo, 1, 5
PEy = zklx + Ekle (1.3.33)
where from Figure 1.3.13,
X1 =r3b (1.3.34)

Substituting Equation 1.3.34 into Equation 1.3.33 and using Equa-
tion 1.3.23,

1

PE,; = Ekeqx2 (1.3.35)
where
2
r3
keg = ki + ks (7) (1.3.36)
2

Here, m,, (Equation 1.3.32) and k., (Equation 1.3.36) are the
equivalent mass and the equivalent stiffness of the SDOF system
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2
> x k, =k1+k2(r—3\
keq e Y
I—/WNNW\/— e Iy
Mpg =1.5m+ —

—— 3

Figure 1.3.14 An SDOF system with a single spring and a single mass equivalent to
system in Figure 1.3.12

shown in Figure 1.3.12. And, the system shown in Figure 1.3.12 can
also be described as the equivalent SDOF (Figure 1.3.14).

1.3.5 Viscous Dampers in Series and Parallel

Dampers in Series
Consider a series combination of massless viscous dampers with
damping coefficients ¢; and ¢, (Figure 1.3.15).

The free body diagram of each damper is shown in Figure 1.3.16
for which the following relationships can be written:

f@) =cxy (1.3.37)
f(t) = ca(x — x1) (1.3.38)
An important point to note here is that both dampers, which are in

series, carry the same amount of force. From Equations 1.3.37 and

1.3.38,
1)

¢ = ¢ 1.3.39
o 1+ * ( )
Substituting Equation 1.3.39 into Equation 1.3.38,
f(t) = cegx (1.3.40)
Massless Massless
f(0)
: - =
|_:) 4] X1 (&) |_;

Figure 1.3.15 Dampers in series
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Massless Massless
4 4
S SO f@ S0
0 c X1 X1 (&) X

Figure 1.3.16 Free body diagrams for dampers in series

where

(1.3.41)

Here, c.4 is the equivalent damping coefficient and the system in
Figure 1.3.15 can be replaced by a system with only one damper with
the coefficient c,, as shown in Figure 1.3.17. Equation 1.3.41 can also
be written as

1 1 1
— ==+ (1.3.42)
Ceq C1 2

Dampers in Parallel
Consider a parallel combination of massless dampers with coefficients
¢ and ¢, (Figure 1.3.18).

The free body diagram of each damper is shown in Figure 1.3.19
for which the following relationships can be written:

fi(t) = a1 x (1.3.43)
fz([) = (X (1344)
Massless Massless Massless
Y v Y
S | f(@)
| - . v
|_:) ¢ x ¢ |_:c __ae *

Figure 1.3.17 Equivalent system with only one damper for a series combination
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and

An important point to note here is that both dampers, which are in par-
allel, have the same velocity. Substituting Equations 1.3.43 and 1.3.44

Vibration of Mechanical Systems

Massless Massless

S

S

Q)

C2 |_>
\ X
Massless

Figure 1.3.18 A parallel combination of dampers

fO=H0O+1£0) (1.3.45)

into Equation 1.3.45,

F(E) = Cogit (1.3.46)
where
Ceg=C1+C (1.3.47)
Massless
Si® / A
— =
|_5 ‘o |_; Massless
Massless /i lé;
f2(0) / f(t) /0
& =
|—> J2(0)
X

=¥

=

)

Figure 1.3.19 Free body diagrams for dampers in parallel
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1@ Massless
Y
S(@)
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X

Massless Cog =C1 T C2

Figure 1.3.20 Equivalent system with only one damper for a parallel combination

Here, c.q is the equivalent damping constant and the system in Fig-
ure 1.3.18 can be replaced by a system with only one damper with the

coefficient c,, as shown in Figure 1.3.20.

1.4 FREE VIBRATION OF AN UNDAMPED
SDOF SYSTEM

This section deals with the derivation and the solution of the differ-
ential equation of motion of an undamped SDOF system. The solu-
tion of the differential equation of motion is used to characterize the
nature of free vibration.

1.4.1 Differential Equation of Motion

Consider an SDOF spring—mass system with equivalent spring stiff-
ness k., and equivalent mass m,, (Figure 1.4.1). First, consider the
system with the unstretched spring (Figure 1.4.1). As we let the mass
be under gravity, the spring will deflect due to the weight. There will
be a static equilibrium configuration where the net force on the mass
will be zero. The free body diagram is shown in Figure 1.4.2, where
A is the static deflection or the deflection of the spring in the static
equilibrium configuration. For the static equilibrium condition,

Keg A = meyg (1.4.1)
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P.E. = Potential energy

keq
Zero PE. keg
Meg _/_
A
i/ N
meq

Unstretched IR ey
spring

Static

equilibrium

Perturbed from static equilibrium

Figure 1.4.1 An undamped SDOF spring-mass system

Let the displacement x(f) be a perturbation from the static equilib-

rium (Figure 1.4.1). From the free body diagram in Figure 1.4.2 (Per-

turbed from Static Equilibrium),

net force in x-direction = —keq(x + A) + meq8 (1.4.2)

Newton’s second law of motion states that

Net force in x-direction = mass x acceleration (1.4.3)
Therefore,
—keq(X + A) + Megg = MegX (1.4.4)

Tkqu T keq (A+x(1)

meq meq

brege ¥ g
Stat.lc‘: . Perturbed from static equilibrium
equilibrium

Figure 1.4.2 Free body diagrams
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T kegx(t)

meq

Perturbed from static equilibrium

Figure 1.4.3 Equivalent free body diagram after canceling keq A and meqg

Using Equation 1.4.1,
MeqX + kegx =0 (1.4.5)

The same differential equation is obtained by neglecting the weight
meqg and the spring force k., A as well. The resulting free body dia-
gram is shown in Figure 1.4.3, and

net force in x-direction = —k.,x (1.4.6)
Newton’s second law of motion yields
—KegX = MeqX (1.4.7)
Energy Approach

The KE of the system (perturbed from static equilibrium in Fig-
ure 1.4.1is given by

1
U= Emeqx2 (1.4.8)
and the PE is given by
1
P= Ekeq(x + A — Megg(x + A) (1.4.9)

The total energy is
1 1
T=U+P= Emeqx2 + Ekeq(x + A — Megg(x + A) (1.4.10)
Since there is no sink (damping) or source (external force) of energy,
the total energy 7 is a constant. Therefore,
dT

— =0 1.4.11
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From Equations 1.4.10 and 1.4.11,

1 1
EmquXJ'c' + Ekeq2(x + A)X — megx =0 (1.4.12)

or
(MegX + kegX + keg A — meqg)x% =0 (1.4.13)
Because of the static equilibrium condition in Equation 1.4.1,
(MegX + kegx)x =0 (1.4.14)
As x(t) is not zero for all ¢,
MegX + kegx =0 (1.4.15)

The same differential equation of motion can be obtained by writing
the PE as
1
P= zkeqxz (1.4.16)
Note that the contributions of the weight mg and the corresponding
static deflection A have been simultaneously neglected.
The total energy is given by
1 1
T=U+P= Emeq;ﬂ - Ekequ (1.4.17)
The condition in Equation 1.4.11 yields

(MegX + kegx)x =0 (1.4.18)
Therefore,

MegX + kegx = 0 (1.4.19)

Example 1.4.1: A Horizontal Rigid Bar

Consider the system shown in Figure 1.4.4a, in which a rigid bar,
pinned at point A, and is supported by springs with stiffnesses k; and
ky which are located at distances a and b from the pin A, respectively.

Under the gravity, the bar will rotate to be in the static equilibrium
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Static equilibrium

(a) (b)

Figure 1.4.4 (a) A horizontal bar with an unstretched spring; (b) Perturbation from
static equilibrium configuration

configuration. Let 6(¢) be the small angular displacement of the bar
from the static equilibrium position (Figure 1.4.4b). The free body dia-
gram of the bar is shown in Figure 1.4.5. Note that the weight of the
bar and spring forces due to static deflections (in static equilibrium
configuration) have not been included as they cancel out. It should
also be noted that the spring deflections with respect to static equi-
librium configurations are calculated for a small angular displacement
and are found (Figure 1.4.6) to be b6 and a6 for springs with stiffnesses
k> and k1, respectively.

Net torque about point A in 6 direction = —kjafa—k,b0b (1.4.20)
Applying Newton’s second law of motion,

net torque about point A in @ direction = 4  (1.4.21)

/N

Static equilibrium

Figure 1.4.5 Free body diagram for a horizontal bar
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b a
I ~—F1 }a

Figure 1.4.6 Spring displacements for a horizontal bar

From Equations 1.4.20 and 1.4.21, the differential equation of motion
is

146 + (kia® + kyb?)0 =0 (1.4.22)
Energy Method
1. .,
KE,U = EIAH (1.4.23)
1 2, 1 2
PE,P = Ekl(ae) + zkz(be) (1.4.24)

The total energy is
1.5, 1 , 1 )
T=U+P= EIA@ + Ekl(ae) + zkz(be) (1.4.25)

The condition of a constant value of the total energy yields

daT )
- = 0= 146 + (kia® + kyb*)0 =0 (1.4.26)

Example 1.4.2: A Vertical Rigid Bar

Consider the rigid bar of mass m in the vertical configuration (Fig-
ure 1.4.7a). This bar is pinned at the point A, and is connected to
a spring with the stiffness k at a distance b from the point A. The
center of the gravity of the bar C, is located at a distance a from the
pin A.

Let 6(f) be the small angular displacement of the bar (Fig-
ure 1.4.7b). The free body diagram of the bar is shown in Figure 1.4.8a,
where R4 is the reaction force at the point A. The geometry associ-
ated with the angular displacement is shown in Figure 1.4.8b, where
the angle 6(¢) has been magnified for the sake of clarity. The spring
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Figure 1.4.7 (a) Vertical bar in static equilibrium; (b) Vertical bar perturbed from
static equilibrium

deflection is bsin 6, which is approximated as b6 for a small 6. Taking
moment about the point A4,

—kbObcost — mgasin@ = 1,0 (1.4.27)

where 14 is the mass-moment of inertia about A. For a small 8, sin9 ~
6 and cos6 ~ 1.
Therefore,

140 + (mga + kb*)6 =0 (1.4.28)

Magnified 0
T

acos@
a(l—cosé)
kb6

(@) (b)

Figure 1.4.8 (a) Free body diagram for vertical rigid bar; (b) Geometry associated
with Figure 1.4.8a
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Note that the weight of the bar mg, is included here because it
does not cause any spring deflection in the vertical static equilibrium

configuration.

Energy Method

1.
KE,U = EIAQZ (1.4.29)

1
PE.P = mga(1 — cosf) + zk(be)2 (1.4.30)

In Equation 1.4.30, 1 —cos6 is almost equal to zero as cosf =~ 1.
However, 1 — cos 6 is not negligible in comparison with 6%, which is
also quite small. Therefore, cos® ~ 1 should not be used in Equa-
tion 1.4.30.

The total energy is given by

1 1
T= EIAQZ + mga(1 — cos0) + Ek(b@)2 (1.4.31)

Because the total energy is a constant,

dT " .
o= [146 + mgasin6 + kb*0]0 = 0 (1.4.32)

Using sin6 ~ 6, Equation 1.4.32 yields

146 4 (mga + kb*)6 =0 (1.4.33)

Example 1.4.3: Inclined Spring

Consider a mass with an inclined massless spring with the stiffness k
(Figure 1.4.9). The inclination of the spring is represented by the angle
o. When the displacement of the mass m is x, the length of the spring
changes from ¢ to ¢ + § (Figure 1.4.10). From the cosine law,

024 x> — (L4 8)
20x

cos(r —a) = (1.4.34)
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Figure 1.4.9 A mass connected with an inclined spring

After some algebra,

2 2 X x2
£+8)"=¢ [1 + 22 cosa + ﬁ:| (1.4.35)
Assume that x/¢ < 1. In this case, the term (x/£)? can be neglected
and
X 0.5
45—t [1 +27 cosa] (1.4.36)

Using the binomial expansion (Appendix B) and neglecting higher-

order terms,
45 [1 + %cosa] (1.4.37)
Therefore,
= xcosa (1.4.38)

The spring force k8§ will be directed at an angle 8 (Figure 1.4.10).
Applying Newton’s second law in the x-direction,

—kd cos B = mx (1.4.39)

Figure 1.4.10 Free body diagram for system in Figure 1.4.9
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Because x/¢ « 1, cos 8 = cosa. Hence Equations 1.4.38 and 1.4.39
lead to

mi + (kcos® a)x =0 (1.4.40)
Therefore, the equivalent stiffness of the spring is

keq = kcos’ (1.4.41)

1.4.2 Solution of the Differential Equation of Motion Governing
Free Vibration of an Undamped Spring—Mass System

Assume that (Boyce and DiPrima, 2005)
x(t) = De* (1.4.42)

where D and s are to be determined. Substituting Equation 1.4.42 into
the differential equation of motion in Equation 1.4.19,

(Mey8* + keg)De™ =0 (1.4.43)

Here, D is not zero for a nontrivial solution. Therefore, for Equa-
tion 1.4.43 to be true for all time ¢,

MegS® + keg = 0 1.4.44
q q

This is called the characteristic equation. The roots of this equation
are

s1=jw, and s =—jow, (1.4.45a,b)

where j = +/—1 is the imaginary number and

ke
Wy = | (1.4.46)
Mg

The general solution of the differential Equation 1.4.19 is expressed
as

x(t) = Die/®" 4 Dye=iont (1.4.47)
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where D; and D, are constants. Recall the well-known trigonometric
identity,

eijwnt

= COS wyt £ J sin wyt (1.4.48)
Using Equation 1.4.48, Equation 1.4.47 leads to
x(t) = (D1 + D;) coswt + j(D1 — D) sinw,t (1.4.49)

It can be shown that D; and D, are complex conjugates. Therefore,
both (D; + D) and j(D; — D;) will be real numbers. Denote

A=D1+ D, and By = j(D;— D») (1.4.50a, b)
Equation 1.4.49 is written as
x(t) = Aj cos w,t + By sinw,t (1.4.51)

The coefficients A; and B; depend on initial conditions x(0) and x(0).
It is easily seen that

A; = x(0) (1.4.52)
Differentiating Equation 1.4.51,
X(t) = —w, A1 sin w,t + w, By cos w,t (1.4.53)

Substituting ¢ = 0 in Equation 1.4.53,

B =2 (1.4.54)
Wy
Equation 1.4.51 is written as
¢ (0
x(t) = x(0) cos w,t + 0 sin wyt (1.4.55)
wp
Alternatively, Equation 1.4.55 can also be expressed as
x(t) = Asin(wyt + ¥) (1.4.56)

where A and ¢ are determined as follows:

x(t) = Asin(w,t + V) = Asiny cos w,t + Acos Y sinw,t  (1.4.57)
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Comparing Equations 1.4.55 and 1.4.57,

Asin ¥ cos wy,t + A cos ¥ sin w,t = x(0) cos w,t + Q sin w,t
(1.4.58)
Equating coefficients of cos w,t and sin w,t on both sides,
Asiny = x(0) (1.4.59)
¢(0
Acosy = ﬂ (1.4.60)
on
Squaring Equations 1.4.59 and 1.4.60 and then adding them,
A2sin® ¢ + A% cos? ¢ = (x(0)) + (x(0)> (1.4.61)
Using the fact that sin® ¢ + cos2 ¢ = 1,
(0))?
A= [(x(0)>+|—= (1.4.62)
Wy
Dividing Equation 1.4.59 by Equation 1.4.60,
_1 [ @nx(0)
= i s 1.4.
Y = tan [ 0) (1.4.63)

It should be noted that the value of A is taken to be positive. Further-
more, there is a single solution for the angle v/. The quadrant in which
the angle ¢ lies is determined by the signs of the numerator w,x(0)
and the denominator x(0). For example, if w,x(0) = 1 and x(0) = —

Y= tan~! [—:| = —rad (1.4.64)

In summary, the free vibration of an undamped spring-mass system is
given by

x(t) = Asin(w,t + ¢¥); A>0 (1.4.65)
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Figure 1.4.11 Free response of an undamped SDOF spring-mass system
where

on = \/,fT A= +\/ 602+ (20): ana y = [220]

(1.4.66a, b, c)

The free vibration of an undamped SDOF system is purely sinu-
soidal with the amplitude A and the frequency w, (Equation 1.4.65
and Figure 1.4.11). This frequency (w,) is called the natural fre-
quency, which is an intrinsic property of the SDOF spring-mass sys-
tem. Denoting Newton as N, meter as m, kilogram as kg, the unit of
w,, 1s derived as follows:

. unit Of keq Nn’l_1 kg —m — SeC72 _mfl
unitof w,, = - = =
unit of 1, kg kg

=sec”! = rad/sec (1.4.67)
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lg Static equilibrium

Figure 1.4.12 A diver on a spring board

Note that the radian (rad) has been inserted in Equation 1.4.67
as it is a dimensionless quantity. The time-period of oscillation (7)),
which is the time required to complete one full cycle (= 2r rad) of
oscillation is shown in Figure 1.4.11 and expressed as

_271

T, = (1.4.68)

Wy
Using the fact that one cycle = 27 rad, the frequency of oscillation (f)
can also be expressed in the units of cycles/sec as follows:
Wn

1
f= o = Fp cycles/sec (1.4.69)

The unit of cycles/sec is called Hertz (Hz).

Example 1.4.4: A Diving Board

Consider a springboard, which is pinned at the point A and is sup-
ported by a spring with stiffness k& (Figure 1.4.12). Let the mass-
moment of inertia of the board about the point A be I4. A person
of mass m, is standing at the edge of the board in static equilib-
rium. Suddenly, this person jumps from the board and the board starts

vibrating.
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Figure 1.4.13 New static equilibrium for the diving board

When the person leaves the board, there will be a new static
equilibrium configuration. Let the new static equilibrium configura-
tion be at an angle 6y from the original static equilibrium position
(Figure 1.4.13). Then,

kaboa = mpgt (1.4.70)
or,
6o = M8t (1.4.71)
ka?

From the results in Example 1.4.1, the differential equation of motion

(after the person jumps) will be
10 + ka*0 =0 (1.4.72)

Therefore, the undamped natural frequency will be

k 2
on = | & (1.4.73)
Iy

The initial conditions will be
6(0) = fpandH(0) =0 (1.4.74)
Hence, from Equation 1.4.65,

0(t) = 6y sin w,t (1.4.75)
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Figure 1.5.1 Spring-mass—damper system

1.5 FREE VIBRATION OF A VISCOUSLY
DAMPED SDOF SYSTEM

This section deals with the derivation and the solution of the differ-
ential equation of motion of a viscously damped SDOF system. The
solution of the differential equation of motion is used to characterize

the nature of free vibration for different values of damping.

1.5.1 Differential Equation of Motion

A viscously damped SDOF system is shown in Figure 1.5.1. At the
static equilibrium, the velocity of the mass is zero; therefore, the
damper does not provide any force, and Equation 1.4.1, m,,8 = k4 A,
still holds. From the free body diagram in Figure 1.5.2 (Perturbed

from Static Equilibrium),
net force in x-direction = —keyXx — CoX (1.5.1)
From Newton’s second law of motion,

—KegX — CogX = Mg X (1.5.2)
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Figure 1.5.2 Free body diagram of the spring-mass—-damper system

or
MegX 4 CegX + kegx =0 (1.5.3)

Equation 1.5.3 is the governing differential equation of motion.

1.5.2 Solution of the Differential Equation of Motion Governing
Free Vibration of a Damped Spring—Mass System

Assume that (Boyce and DiPrima, 2005)
x(t) = De" (1.5.4)

where D and s are to be determined. Substituting Equation 1.5.4 into
Equation 1.5.3,

(MegS® + Cegs + keg)De™ =0 (1.5.5)

Here, D is not zero for a nontrivial solution. Therefore, for Equation
1.5.5 to be true for all time ¢,

MegS® + CogS + keg =0 (1.5.6)

Roots of the quadratic Equation 1.5.6 are given by

—Ceq + 1/ng — 4keqmeq (1 5 7)

2y

S12 =
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The value of cgq — 4k.qme, has a direct influence on the nature of
the solution or the response. Roots are complex conjugates when
cgq — 4koqmey < 0, whereas they are real numbers for cgq — 4kegmey >
0. The critical damping c, is defined as the value of c,, for which

¢l — 4kegimeg =0 (1.5.8)

From Equation 1.5.8, the expression for the critical damping coeffi-
cient ¢, is obtained as

Ce = 2/ keqMeq = 2meqw, (1.5.9)

Then, the damping ratio £ is defined as

g=Cu (1.5.10)

Cc

Now, Equation 1.5.7 is written as

2
e e ke
Sip = — %4 4 (C—q> _ K (1.5.11)

2Meq 2Meq Mg

where

Coq _ Cea _Cc _ ¢, (1.5.12)
21eq Ce 2myg,

Equation 1.5.11 is written as

S1p = —Ew, £ /6202 — 02 = —Ew, L w,/E2— 1 (1.5.13)
Three cases of damping are defined as follows:

a. Underdamped (0 <& <1lor0 < ¢, < cc)
b. Critically damped (¢ =1 or ¢,y = c.)
c. Overdamped (§ > 1 or coq > )

Case I: Underdamped (0 < & <10r0 < ceq < c.)
In this case, the roots (s; and s,) are complex conjugates. From Equa-
tion 1.5.13,

S12= —Ew £ jouy/1 — £ (1.5.14)
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or,
51 = —fwy,+ jog and s, = —Ew, — jog  (1.5.15a, b)
where
wy = wnm (1.5.16)
The general solution is expressed as
x(t) = D1e"' + Dye™' = e 5! (Dye/® 4 Dye /") (1.5.17)

where D; and D, are constants. Similar to the solution procedure for
an undamped spring-mass system, the following well-known trigono-
metric identity is again used:

ei]wdt

= COs wyt % j sinwyt (1.5.18)
Therefore, Equation 1.5.17 leads to
x(t) = e_Ew"l(Al cos wyt + By sin wyt) (1.5.19)

where A; and B are real numbers defined by Equations 1.4.50a,b. To

determine A; and By, initial conditions x(0) and x(0) are used. First,
x(0) = A4 (1.5.20)
Differentiating Equation 1.5.19,

x(t) = e_gw”t(—a)dAl sin wyt + wy B1 cos wyt)

—Ewpe 5" (A cos wgt + By sin w,t) (1.5.21)
Attr=0,
x(0) = wyB1 — Ew, Ay (1.5.22)

Using Equation 1.5.20,

_ (0) +£,x(0)
wq

B, (1.5.23)
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Alternatively, Equation 1.5.19 can be written as
x(f) = e 5" Asin(wqt 4 V) (1.5.24)

To determine the amplitude A and the phase ¢ in terms of A; and By,
Equations 1.5.19 and 1.5.24 are compared to yield

Asin(wgt + ) = Ay coswyt + By sin wgt (1.5.25)
or
Asin ¥ cos wgt + A cos ¥ sin wyt = Ay cos wgt + By sinwgt  (1.5.26)
Equating the coefficients of cos w,¢ and sin w,¢ on both sides,

Asiny = Ay (1.5.27)
Acosy = By (1.5.28)

Therefore, following derivations in Section 1.4,

. 2
A= \/ [x(O)]? + [—x(o) JZ‘””X(O)} (1.5.29)
_ 4x(0)

Summary: The free vibration of an underdamped (0 <& <1 or 0 <
Ceqg < C¢) spring-mass—damper system is given by

x(1) = Ae " sin(wqt + ¥); A > 0 (1.5.31)

where wy, A, and v are given by Equations 1.5.16, 1.5.29, and 1.5.30.

The free response of an underdamped system is shown in Fig-
ure 1.5.3. Compared to free vibration of an undamped system in Fig-
ure 1.4.11, the following observations are made:

a. Amplitude is exponentially decaying and lim x(z) — 0 as t — oo.

b. The natural frequency of the damped system is w,, which is smaller
than the undamped natural frequency w,. The time period of the
free response of an underdamped system is 27 /wy, which will be
larger than that of the undamped system.
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Figure 1.5.3 Free response of an underdamped SDOF system

c. Unlike a pure sinusoidal function, the half-way point in a period of
underdamped free response does not correspond to zero velocity,
when the starting point of a period is taken to be zero velocity
condition. This point is expressed in Figure 1.5.3 by the following
relationship: o # 8.

Case II: Critically Damped (§ =1 or c,q = c.)
In this case, the roots (s and s,) are negative real numbers and equal.
From Equation 1.5.13,

§S1 =82 = —wy (1532)

Therefore, the general solution (Boyce and DiPrima, 2005) of the dif-
ferential Equation 1.5.3 will be

x(t) = Ae”' + Byte™ = Aje” "' + Byte™ " (1.5.33)
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where A; and B; are constants. Attt =0,
x(0) = Ay (1.5.34)
Differentiating Equation 1.5.33,
x(t) = —w,Are” " — w,Bite” "' + Bie=! (1.5.35)
Atr=0,
x(0) = —w,A1 + By (1.5.36)
Using Equation 1.5.34,
B; = x(0) + w,x(0) (1.5.37)
Therefore, from Equation 1.5.33,
x(t) = x(0)e™ " + [(0) + w,x(0)]te~ (1.5.38)

The response of a critically damped system is nonoscillatory as shown
in Figure 1.5.4. Furthermore, lim x(f) — 0 as t — 0.

Case I1I: Overdamped (& > 1 or ceq > c.)
From Equation 1.5.13, both roots s; and s, are negative real numbers.

1= —Ew, +w,/E2—1<0 (1.5.39)
o= —Ew, —w/E2 -1 <0 (1.5.40)

And, the general solution of the differential Equation 1.5.3 will be
x(t) = Are”' + Bye™' (1.5.41)
where A; and B; are constants. At¢ =0,
x(0)=A,+ By (1.5.42)
Differentiating Equation 1.5.41,

x(t) = Alslesll + Blszesﬂ (1543)
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Figure 1.5.4 Free responses of underdamped, critically damped, and overdamped

SDOF systems
Att =0,
x(0) = Ays1 + Bisy

Solving Equations 1.5.42 and 1.5.44,
_ 5x(0) — x(0)

Ay
§2 — 81
and
B — —s51x(0) + x(0)
S2 — 81

(1.5.44)

(1.5.45)

(1.5.46)

The free response of an overdamped system is also nonoscillatory

as shown in Figure 1.5.4. Furthermore, lim x(¢f) — 0 as t — oo.

Comparing responses of underdamped, critically damped, and

overdamped systems, it is seen in Figure 1.5.4 that the free response

of a critically damped system decays at the fastest rate. In other
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Imag

0<é<l

Figure 1.5.5 Locations of characteristic roots in the complex plane as £ is increased
from 0 to oo (“Shield” indicates that the root going toward the origin never crosses the
imaginary axis)

words, the rate of decay of free response of a critically damped system
is higher than that of an overdamped system. This result is counterin-
tuitive as a higher value of damping is expected to be associated with
a higher rate of energy loss and therefore a higher value of the decay
rate of free response. To understand this result, locations of charac-
teristic roots s; and s, are plotted in Figure 1.5.5 as & is increased
from 0 to oo. The following information is used for the construction of
Figure 1.5.5:

a. Foré§ =0,
s1=+jow, and s =—jo, (1547)
b. For0<¢ <1,

s1= 0+ jo/1— 82 and s, = —Ew, — jouy/1 - §2
(1.5.48)
The real part (RP) and the imaginary part (IP) of s; and s; are as
follows:

RP = —(w, and IP = tw, /1 — &2 (1.5.49)
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Therefore,

RP* +IP* = £%0? + w2 (1 — £%) = o (1.5.50)

n

This is the equation of a circle with the radius w, and the center
at the origin of the complex plane. Since RP is negative, the roots
move along the semicircle in the left half of the complex plane as
& varies from 0 to 1 (Figure 1.5.5).

c. Foré =1,
S1 =85 =—w, (1.5.51)

d. Foré > 1,
S| = —Ewy + on/E2 —1 <0 (1.5.52)
5 = —Ewp — op/E2—1 < 0 (1.5.53)

Note that
Isi] < @n, I52] > wn (1.5.54)

Equation 1.5.41 is rewritten as

x(t) = Aje™ Ml 4 Bje=2l (1.5.55)

Because |s;| > |s1| for an overdamped system, the term with e~/
dies at a rate faster than the term with e~¥1". As a result, the domi-
nant term in Equation 1.5.55 is the one with e~'", The critically
damped system decays at the rate of e~*. Since |s1] < w,, the
decay rate of an overdamped system is slower than that of a criti-
cally damped system.

Example 1.5.1: A Rigid Bar Supported by a Spring and a Damper
Consider a rigid bar of length ¢, which is pinned at the point A and is
supported by a spring with the stiffness k and a damper with the coef-
ficient ¢ (Figure 1.5.6). The mass of the bar is m and is concentrated at
its right end as shown in Figure 1.5.6.
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Figure 1.5.6 Rigid bar with a spring and a damper

The free body diagram is shown in Figure 1.5.7 for a small angu-
lar displacement 6 from its static equilibrium position, where Ry is
the unknown reaction force at the point A. Taking moment about the

point A,
—kaba — 0100, = 1,46 (1.5.56)
where 14 is the mass-moment of inertia of the bar about A. Here,
Iy = me? (1.5.57)

Substituting Equation 1.5.57 into Equation 1.5.56,

me*d + ct30 + ka*9 =0 (1.5.58)
Therefore,
Mg = me?; keqg = ka*; and Ceqg = CE% (1.5.59)
fl ‘T Cfle

A

small 0 (=01 +10,

Figure 1.5.7 Free body diagram of a rigid bar in Figure 1.5.6
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The undamped natural frequency is

w0, = | Kea _ ﬁ\/z (1.5.60)
Meyg LV m

The critical damping for this system is

cec = 2\/kegmeq = 2La~ km (1.5.61)

Consider the following numerical values:
m=1kg,c=20N —sec/m,a =0.4m,¢; =0.5m,and £ = 1m

Case I: If the stiffness k = 100 N/m,

¢, = 20a~vkm = 8N — sec/m

As a result, ¢ > ¢, and the system is overdamped. The damping
ratio £ = 2.5 and the damped natural frequency is not defined.

Case II: If the stiffness k = 900 N/m,

c. = 2lavkm = 24N — sec/m

As aresult, ¢ < ¢, and the system is underdamped. The damping
ratio & = 0.833 and the damped natural frequency w; = w,/1 — €2 =
5.5277 rad/sec.

1.5.3 Logarithmic Decrement: Identification of Damping Ratio from
Free Response of an Underdamped System (0 < & < 1)

Let us assume that two successive peak displacements in the response
of an underdamped system are known. If the first known peak dis-
placement occurs at t = #; (Figure 1.5.8), Equation 1.5.31 yields

x(ty) = x1 = Ae 5" sin(wat1 + V) (1.5.62)
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Figure 1.5.8 Free vibration of an underdamped system (illustration of log decrement)

Let the second peak displacement be at ¢t=1¢ (Figure 1.5.8).
From Equation 1.5.31,

X([z) =Xy = Ae~tent2 Sill(a)dtz + 1//) (1563)
From the characteristic of free underdamped response,

2
h=t+— (1.5.64)

Wy

As a result,
sin(wqty + ¥) = sin(wgty + ¢ + 27) = sin(wgtr + ) (1.5.65)

Dividing Equation 1.5.62 by Equation 1.5.63 and using Equa-
tions 1.5.64-1.5.65,

M o) _ T (1.5.66)
X2
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Using the fact that w; = w,+/1 — &2 (Equation 1.5.16),

2mE
i Y (1.5.67)
x

The ratio of the two successive amplitudes only depends on the damp-
ing ratio &, that is, it is independent of the undamped natural fre-
quency w,. Taking natural logarithm of Equation 1.5.67 with respect

to the base e,

n o 278 (1.5.68)

X2 /1 _52

The natural logarithm of two successive amplitudes or peak displace-

ments is known as the logarithmic decrement §, that is,

5=Int (1.5.69)
X2

Therefore, from Equations 1.5.68 and 1.5.69,
2n &
V1—£2

For a small &, /1 — £2 ~ 1 and from Equation 1.5.70,

S =

(1.5.70)

_5
T 27

£ (1.5.71)

In general, Equation 1.5.70 is directly solved to yield

P (1572)

V(2m)? + 82
The approximation Equation 1.5.71 is found to be valid for £ < 0.2 or
equivalently § < 0.4rx.
Since ratio of two successive amplitudes only depends on the

damping ratio,

X1

= =...= = (1.5.73)
X2 X3 Xm Xm+1
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Figure 1.5.9 Free response of an underdamped system for a small damping ratio

where x;.1 is the amplitude after i cycles of oscillation, i =
1,2,...,m—1,m (Figure 1.5.9). Therefore,
X1 _xl X2 Xm—1 Xm

— . omm om (1.5.74)
Xm+1 X X3 Xm  Xm+1
Using Equation 1.5.73,
X1 X1 n
(= 1.5.75
Xm41 (Xz ) ( )

Taking natural logarithms of both sides of Equation 1.5.75 and using
the definition of logarithmic decrement Equation 1.5.69,

I —1n <ﬂ> — min 2 = ms (1.5.76)
Xm+1 X2 X2

Therefore, the logarithmic decrement § can also be computed by the

following relationship:

1
5= —1In—L (1.5.77)
m - Xmii1
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x = Racket tip displacement

Figure 1.5.10 A tennis racket and a ball

where x,,1 is the amplitude after m cycles of oscillation. The expres-
sion in Equation 1.5.77 is useful for low values of the damping ratio
& for which the difference between the two successive amplitudes can
be so small that they may not be accurately differentiable by a mea-
suring instrument, that is, the expression in Equation 1.5.69 may not
accurately predict the value of the logarithmic decrement. But, if one
considers the amplitude after a certain number of cycles of oscillation,
for example, m = 7 in Figure 1.5.9, the difference between x; and x,,,11
can be quite significant. As a result, the ratio of x; and x,,11 can be
estimated quite accurately via a measuring instrument and Equation
1.5.77 can lead to an accurate value of § and the damping ratio £ using
Equation 1.5.72.

Example 1.5.2: Vibration of a Tennis Racket

A tennis ball hits the tennis racket (Figure 1.5.10) and imparts a veloc-
ity of 1.5m/sec to the racket tip. The natural frequency and the damp-
ing ratio of the tennis racket (Oh and Yum, 1986) are given to be
31.45 Hz and 0.0297, respectively. Determine the maximum displace-
ment of the racket tip.

Solution
Given: w, = 31.45Hz = 197.606 rad/sec, & = 0.0297, x(0) =0, and
x(0) = 1.5m/sec

Therefore, wy = wyy/1 — €2 = 197.519 rad/sec
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For an underdamped system, the free response is described by
Equations 1.5.29-1.5.31:

x(f) = Ae 5" sin(wyt + V)

where
. 2 .
A= \/ [x(0)]2 + ["(0) + $nx(0) } ~ 2O _0076m
wq wq

and

_ -1 w4x(0) _

v=an | o @] =

Therefore,

x(t) = Ae 5 sin(wyt)
For the maximum displacement,

x(t) = Ae 5wy cos(wyt) + A(—Ew,)e 5@ sin(wyt) = 0

Let r* be the time corresponding to the maximum displacement.

Then,

1_ g2
tan(wqr’) = —4 — & 33665

Ewy &

Therefore,
wgt" =1.541 rad

or

1.541

= > = 0.0078 sec
oy

The maximum displacement is computed as

x(£*) = 0.0076 ¢~ 0027x197.606x0.0078 gy (1.541) = 0.0073 m
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Figure 1.5.11 Measured free vibration of a damped spring-mass system (displacement
in mm)
Example 1.5.3: Damping Ratio and Undamped Natural Frequency
from Free Response
For the free vibration of an SDOF system (Figure 1.5.11), the
amplitudes 1.403 mm and 1.326 mm are measured at 1.242 sec and
12.734 sec, respectively. Find the undamped natural frequency w, and
the damping ratio &.

The number of cycles of oscillation between two measured ampli-
tudes is 9. Hence, the time period of damped oscillation is

12.734 — 1.242
i=—3 = 1.2769 sec
Therefore,
2
wg = — = 4.9207 rad/sec
Ty

From Equation 1.5.77, the logarithmic decrement § is

1 1.403
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From Equation 1.5.72,

8
§ = —————= =10.001

V(@2r)? + 82
Here, (27)? 4 8> = (27)?. Therefore, the approximation in Equa-
tion 1.5.71 can also be used.

1.6 STABILITY OF AN SDOF SPRING-
MASS-DAMPER SYSTEM

The stability of a linear SDOF spring-mass—damper system refers to
the nature of the free vibration caused by nonzero initial conditions
in the absence of any external excitation. There are three possible
situations:

a. Stable: The free vibration response dies out as time goes to infinity,
that is, (x(1) — O as t — o0)

b. Marginally Stable/Unstable: The response remains bounded but
nonzero as time goes to infinity.

c. Unstable: The response becomes unbounded as the time goes to
infinity, that is, (x(f) — oo as t — 00)

As shown in Section 1.5.2, the characteristic of the free response is
governed by e* term, where s is a root of the characteristic Equa-
tion 1.5.6:

MegS” + CeqS + keqs = 0 (1.6.1)
In general, a root s is represented as a complex number:
s=sgr+ js;; j=+v—1 (1.6.2)

where sg and s; are real and imaginary parts of s. For a purely
real root, s; = 0. Similarly, for a purely imaginary root, sg = 0. From
Equation 1.6.2,

e = URHISDE — okl (cos(s;1) + J sin(st)) (1.6.3)
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Imag. 4 s/
Left Right SR
Half Half  Real

Figure 1.6.1 Complex s—plane

Because cosine and sine terms are bounded between —1 and +1,
the sign of the real part sg will determine whether the response will
die out, remain nonzero and bounded, or grow to be unbounded as
t — oo. The system will be stable, marginally stable/unstable, and
unstable when sz < 0 (left half of the complex plane, Figure 1.6.1),
sg = 0 (imaginary axis of the complex plane, Figure 1.6.1), and sg > 0
(right half of the complex plane, Figure 1.6.1), respectively. This fact
can be summarized as follows:

a. The spring-mass—damper system will be stable, provided both
roots are located in the left half (excluding imaginary axis) of the
complex plane.

b. The spring-mass—damper system will be marginally stable/
unstable, provided at least one root is on the imaginary axis, and
no root is in the right half of the complex plane.

c. The spring—mass—damper system will be unstable, provided one
root is in the right half of the complex plane.

Equation 1.6.1 is a second-order polynomial or a quadratic equa-
tion. The roots of this equation can be easily calculated, and therefore
their locations in the complex plane can be easily determined to evalu-
ate the stability of the system. The necessary and sufficient conditions
for the stability in the context of the quadratic Equation 1.6.1 are as
follows:

a. None of the coefficients vanishes.

b. All coefficients must have the same sign.
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Figure 1.6.2 Inverted pendulum and free body diagram
Since m,, > 0, necessary and sufficient conditions for stability are
Ceqg > 0 (1.6.4)
and
keg >0 (1.6.5)

In other words, a spring—-mass—damper system is guaranteed to be sta-
ble, provided both equivalent damping and equivalent stiffness are

positive.

Example 1.6.1: Inverted Pendulum (Negative Stiffness)
Consider an inverted pendulum which is supported by a spring with
the stiffness k, located at a distance a from the pivot point A (Fig-
ure 1.6.2). The mass of the pendulum is m and the center of gravity is
located at a distance b from the pivot point A.

Let 0 be the clockwise small rotation of the bar from its static equi-
librium configuration. Taking moment about the point A,

—kafa + mgb0 — caba = 1,0 (1.6.6)

where /4 is the mass-moment of inertia of bar about the point A. Rear-
ranging Equation 1.6.6,

IA0 + ca®0 + (ka* — mgh)o =0 (1.6.7)
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v,.: Relative wind velocity

fu : Aerodynamic force
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Figure 1.6.3 Wind across a cable with a circular cross section

The equivalent stiffness k., for the system is

key = ka® — mgh (1.6.8)
The equivalent stiffness k., is negative if
mgb

When the condition in Equation 1.6.9 is satisfied, the vertical static
equilibrium configuration is unstable.

Example 1.6.2: Galloping of Transmission Lines During Winter
(Negative Damping)
There are long electric transmission cables (Den Hartog, 1956), which
have circular cross sections. Assume that there is also a cross wind
with the velocity v, and the cable is undergoing a small trans-
verse oscillation. Let v, be the instantaneous cable velocity, which is
directed downwards as shown in Figure 1.6.3. The cable will experi-
ence the relative wind velocity v,, and the effective aerodynamic force
fa on the cable will be along the direction of the relative velocity v,.
The vertical component of this aerodynamic force is in the direction
opposite to the downward velocity of the cable. In other words, the
aerodynamic force opposes the cable motion, and as a result, aero-
dynamic forces dissipate energy and the equivalent damping c.q is
positive.

During the winter season in certain regions, there is an ice for-

mation and effective cross section of the cable becomes noncircular
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v,.: Relative wind velocity
i+ Aerodynamic force
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Figure 1.6.4 Wind across an ice-coated cable

as shown in Figure 1.6.4. In this case, the aerodynamic force can also
be downwards when the velocity of the cable is downward. In other
words, the wind will further strengthen the downward motion of the
cable, and as a result, aerodynamic forces add energy to the system
and the equivalent damping c., is negative.

Example 1.6.3: Galloping of a Square Prism (Negative Damping)
Consider a square prism with the mass m, which is subjected to a cross
wind with the velocity v, (Figure 1.6.5). The width and the height of
the prism are w and h, respectively. The displacement of the prism
with respect to the static equilibrium position is denoted by x(¢). For
a small velocity x, the vertical component of the aerodynamic force
fav(2) is given by (Thompson, 1982)

fav(t) = %pVaWh,Bx (1610)

where p is the air density. The constant 8 has been experimentally
found to be a positive number. The differential equation of motion is

easily derived to be
mx + cx + kx = fu,,(¢) (1.6.11)
Substituting Equation 1.6.10 into Equation 1.6.11,

mi+(c—cy)x+kx=0 (1.6.12)
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Figure 1.6.5 Wind across a square prism

where
1
ch = zpvawhﬂ (1.6.13)

When ¢ < ¢,, the equivalent damping is negative and system
becomes unstable.

EXERCISE PROBLEMS

P1.1 Consider the SDOF system shown in Figure P1.1. All the shafts
and the connections among them are massless. The material of the
shaft is steel. Also,

my = 1.1kg, my, = 1.4kg, m, =2.1kg

The stiffness & is half of the cantilever beam stiffness.
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Find the equivalent mass and the equivalent stiffness with respect

to the displacement x.

[e——
0.4 m
k
my,
E -
) 0.8 m R 04m
I 1 . .
K oy dia.= 1 cm
Midspan | m |
1x
L y dia.=2cm
1
| 1 dia. =3 cm

-
¥

0.9 m

Figure P1.1 A combination of beams and a rigid bar

P1.2 Find the equivalent mass of a spring under the assumption that
the velocity distribution along the length of the spring is parabolic.

P1.3 Consider the cantilever beam with mass m and length ¢ (Fig-
ure P1.3). Obtain the equivalent mass of the cantilever beam under

the assumption that the beam deflection is y(z) = 5[1 — cos(%?)].

Figure P1.3 A cantilever beam

P1.4 An object with mass m and rectangular cross section A is floating
in a liquid with mass density p (Figure P1.4). Derive the governing
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differential equation of motion, and obtain the natural frequency of
the system.

Floating object

— Liquidlevel

X

Figure P1.4 A floating object

P1.5 An L-shaped bracket hinged at point A is supported by two
springs with stiffnesses k; and k; (Figure P1.5). The mass of the
bracket is m and is uniformly distributed.

ky a
Fvwwwv —
l,
O @
A h |
Hinge K %

Figure P1.5 L-shaped bracket supported by springs

Find the equivalent mass, the equivalent stiffness and the natural
frequency of the system.

P1.6 The mass of a complex-shaped object is 3 kg. When this object is
suspended like a pendulum (Figure P1.6), its frequency of oscillation
is 30 cycles/min. The center of mass is at a distance of 0.2 m from the
pivot point A.

Find the mass-moment of inertia of the object about its center of

mass.
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A
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~of
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Figure P1.6 Complex-shaped object as a pendulum

P1.7 An uniform rigid bar of length ¢ = 50 cm and mass m = 7kg is
hinged at one end (Figure P1.7). At the other end, this bar is suddenly
attached to a massless spring with stiffness k = 1, 000 N/m. Derive an
expression for the angular oscillation of the bar.

Figure P1.7 A uniform rigid bar

P1.8 A cylinder of mass m;, rolls without slipping inside the box with
mass my (Figure P1.8). Derive the equivalent mass and the stiffness of
the system.
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Figure P1.8 A cylinder inside a box

P1.9 Consider the gear shaft system in Figure P1.9. The length and
the diameter of shaft A are 50 cm and 4 cm, respectively. Similarly, the
length and the diameter of shaft B are 60 cm and 3 cm, respectively.
Masses of gears A and B are 1.5 kg and 0.5 kg, respectively. The gear
ratio is 2.

— Shaft B

Gear B

Shaft A

Gear A

Figure P1.9 Gear shaft system

Assuming that the shaft material is steel, determine the equivalent
mass and the equivalent stiffness with respect to the angular displace-

ment of gear A. What is the natural frequency?

P1.10 An object with mass = 500 kg is attached to a table with four
steel legs of diameter = 0.015 m and length = 0.1 m (Figure P1.10).

a. Derive the differential equation for vibration of the object in verti-
cal direction.

b. Determine the natural frequency of vibration.

c. What is the maximum possible amplitude of vibration so that the
maximum vibratory stress in each table leg is less than 70% of the
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Figure P1.10 An object on the table

yield point stress? For this maximum amplitude, plot the allowable
region of initial displacement and the initial velocity of the object.
d. Develop a MATLAB program to solve the governing differen-
tial equation. Compare the solution from your program to that
obtained analytically for an allowable initial displacement and the
initial velocity determined in part (c).
P1.11 A tank (Figure P1.11) with mass m; = 2, 000kg fires a cannon
with mass n, = 2kg and velocity = 10 m/sec. The recoil mechanism
consists of a spring with stiffness = 11,000 N/m, and a damper. There
are three possible values of the damping coefficient: 0.2¢., c., and 1.5¢,
where c. is the critical damping.

Cannon

Tank

Q Q

Figure P1.11 A tank with recoil mechanism

a. For each value of the damping constant, determine the time
required to come back to the original firing position. Validate your
analytical results via comparison with results from numerical inte-
gration of the solution of the differential equation via MATLAB.
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Figure P1.12 (a) Mass supported via a spring and a massless rigid bar; (b) Free vibra-
tion of mass m
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b. What will be your recommendation regarding the choice of the

damping coefficient? Explain your answer.

P1.12 Consider the system shown in Figure P1.12a, where m = 10kg,

£1 =35cm, and £ = 50 cm.

A record of free vibration is shown in Figure 1.12b. Find the values

of the spring constant k and the damping coefficient c.

P1.13 Consider a spring—-mass system (Figure P1.13) where the mass

is on a surface with the coefficient of friction p. Assuming that the

initial displacement of the mass is x(0), determine the expression for

the displacement x(z).

k

|_vaw\m—

}“’x

Coulomb friction

Figure P1.13 Frictionally damped spring mass system

P1.14 Consider a simple electromagnetic suspension system shown in

Figure P1.14.

/
=4

It

T x(1)

e

Figure P1.14 An electromagnetic suspension system

The electromagnetic force f,,, is given by

12

fm:aﬁ
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where [ and £ are the coil current and the air gap, respectively. The
constant o = MQNZAP where o, N, and A, are the air permeability,
the number of coil turns, and the face area per single pole of the mag-
net, respectively. Let sy be the desired air gap. Then, the current [ is
calculated from the following static equilibrium condition:
a% =mg
0
Let x(¢) be the dynamic displacement of the mass with respect
to the static equilibrium position. Derive the differential equation of
motion and determine the stability of system. Show that the dynamic
characteristic of this system is equivalent to that of an inverted
pendulum.

P1.15 Consider the system in Figure P1.15. Determine the natural fre-
quencies when the mass m is constrained to move along x and y direc-
tions, respectively.

Figure P1.15 Mass supported by two inclined springs



VIBRATION OF A
SINGLE-DEGREE-OF-FREEDOM
SYSTEM UNDER CONSTANT AND
PURELY HARMONIC EXCITATION

First, responses of undamped and damped single-degree-of-freedom
(SDOF) spring—mass systems are presented in the presence of a con-
stant external force. An important example of input shaping is shown.
Using the input shaping procedure, the system settles to a steady
state in a finite time in spite of a low level of damping. Next, com-
plete solutions of both undamped and damped spring-mass systems
under sinusoidal excitation are derived. Amplitudes and phases of
the steady-state responses are derived along with force transmissi-
bility, quality factor, and bandwidth. These results are fundamen-
tal tools for machine design. Then, solutions to rotating unbalance
and base excitation problems are provided. Next, the basic principles
behind the designs of vibration measuring instruments (vibrometer
and accelerometer) are presented. Last, the concept of equivalent vis-
cous damping is presented for nonviscous energy dissipation.

2.1 RESPONSES OF UNDAMPED AND DAMPED SDOF
SYSTEMS TO A CONSTANT FORCE

Consider a damped SDOF system subjected to a force f(¢) (Fig-
ure 2.1.1). Using the free body diagram in Figure 2.1.1,

net force in x-direction = —keqx — c.q% + f(t) (2.1.1)

72



Vibration of an SDOF System under Constant and Purely Harmonic Excitation 73
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Figure 2.1.1 An SDOF spring-mass—-damper system subjected to external excitation

Applying Newton’s second law of motion,

—KegX — CegX + f(t) = megX (2.1.2)
Therefore, the differential equation of motion is

MegX + CegX + kegx = f(1) (2.1.3)

Let the force f(¢) be a step function as shown in Figure 2.1.2.
From Equation 2.1.3, the differential equation of motion for a step
forcing function is

MegX + CeqX + Kegx = fo; 1 >0 (2.1.4)
f()a
Jo
0 7

Figure 2.1.2 A step forcing function
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The solution of Equation 2.1.4 is composed of two parts:
x(t) = xu(t) + x,(2) (2.1.5)
where x;,(f) is the homogeneous solution satisfying
MegXp + CoqXn + KegXp =0 (2.1.6)
and x,(¢) is a particular solution satisfying
MegXp + CegXp + keqXp = fo (2.1.7)
To determine the particular solution x,(¢), it is assumed that
Xp(t) = Xo, a constant (2.1.8)
Substituting Equation 2.1.8 into Equation 2.1.7,
MeqXo + Cego + kegXo = fo (2.1.9)

Since xg is a constant, Xy = 0 and Xy = 0. Therefore,

Xy = f_O (2.1.10)
Keg
Therefore, from Equation 2.1.5,
fo
x(t) = x,(t) + o (2.1.11)

eq

where the homogeneous part x;(¢) depends on the amount of damping
as discussed in Sections 1.4 and 1.5.

Case I: Undamped (¢ = 0) and Underdamped (0 < & < 1)
From Equation 1.5.19,

xp(t) = e ' (A; cos wyt + By sinwyt) (2.1.12)

From Equation 2.1.11,

x(f) = e "' (A cos wgt + By sin wgt) + ]{—0 (2.1.13)
eq
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Att=0,

x(0)=A1+l{—O=>A1=)C(O)—I{—O

eq eq

Differentiating Equation 2.1.13,

i(f) = e 5" (—wyA; sin wgt + wyBj cos wgt)

— Ew,e (A} cos wgt + By sin wgt)
Attr=0,
x(O) = a)dBl — Sa),,Al

Using Equation 2.1.14,
_ X(O) + Sa)n(x(()) _fO/keq)

wq

By

(2.1.14)

(2.1.15)

(2.1.16)

(2.1.17)

With zero initial conditions (x(0) = 0 and x(0) = 0), Equations 2.1.14

and 2.1.17 yield

fo
A= -2
1 g
s fonh
wq keq keq
where
§

e

For zero initial conditions,

x(t) = ]{—0[1 —e 5@l coswgt — ey sinwgt]; t >0
eq

Case II: Critically Damped (§ =1 or c.q = ¢;)
From Equation 1.5.33,

xh(t) = Ale_w”t + Blte_w”t

(2.1.18)

(2.1.19)

(2.1.20)

(2.1.21)

(2.1.22)
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From Equation 2.1.11,

x(t) = Are™ " + Bite ™" + f_O
Keg
Att =0,
x(0) = A +f—0 = A; =x(0) — fo
Kkeq keq

Differentiating Equation 2.1.23,
i(t) = —w,Are” " — w,Bite” " + Bie™ "
Att=0,
x(0) = —w,A1 + By

Using Equation 2.1.24,

B = 4(0) +o (x(0) - ,f—“)

(2.1.23)

(2.1.24)

(2.1.25)

(2.1.26)

(2.1.27)

For zero initial conditions (x(0) =0 and x(0) = 0), substitution of

Equations 2.1.24 and 2.1.27 into Equation 2.1.23 yields

x(t) = ]{—0[1 —e " —wpte™™']; >0
eq

Case 11I: Overdamped (§ > 1 or ceq > c.)

(2.1.28)

From Equations 1.5.39 and 1.5.40, both characteristic roots s; and s,

are negative real numbers,

51 =—Ew, +w,/E2—-1<0
§o=—Ew, —w,/E2—1<0

From Equation 1.5.41,

xh(t) = Aleslt + Bleszt

(2.1.29)

(2.1.30)

(2.1.31)
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From Equation 2.1.11,

x(t) = Are”" + Bie™ + fo (2.1.32)
eq
Att=0,
fo
X(O) =A+B + k_ (2.1.33)
eq
Differentiating Equation 2.1.32,
x(t) = A]S]ESlt + B]S2€S2t (2134)
Atr=0,
x(0) = Ays1 + Bisy (2.1.35)
Solving Equations 2.1.33 and 2.1.35,
0) — fo/keq) — %(0
Al — Sz(x( ) fo/ q) x( ) (2136)
S2 — 81
and
— 0) — fo/ k. (0
5, = SO~ fo/keg) £ 5(0) .137)

2 —51

For zero initial conditions (x(0) =0 and x(0) = 0), substitution of
Equations 2.1.36 and 2.1.37 into Equation 2.1.32 yields

x(f):}f—o[l— 2wy eszt]; (>0 (2.1.38)
eq §2 — 81 §2 — 81

where s; and s; are given by Equations 2.1.29 and 2.1.30.
Finally, it should be noted that

xp(t) >0 as t— o0 (2.1.39)

for any damping ¢, > 0 or £ > 0. Therefore, in the steady state (t —
00), from Equation 2.1.11

fo

— 2.1.40
o (2.1.40)

Xss =
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Underdamped (0 < & <11)
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Figure 2.1.3 Response to the unit step forcing function with zero initial conditions

The step responses (Equations 2.1.21, 2.1.28, and 2.1.38) are plotted
in Figure 2.1.3 for zero initial conditions.

Example 2.1.1: Robot Vibration

Consider a single link robot manipulator with a rigid link but with a
flexible revolute joint (Figure 2.1.4a). The length of the link and the
torsional stiffness of the joint are £ and k;, respectively.

A
Torque
h(t)
mgl
Static equilibrium without payload
—k,0
O —— m
A -] 9 i >
I: > 0 t
/
(a) (b)

Figure 2.1.4 (a) A robot with a payload; and (b) Torque due to sudden payload
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Figure 2.1.5 Angular oscillation of a robot arm

When the gripper suddenly gets a payload of mass m, the robot
link undergoes a torque that is a step function A(¢) (Figure 2.1.4). The
differential equation of motion is

140 + k0 = h(?) (2.1.41)

where 6(¢) is measured from the static equilibrium configuration with-
out the payload, and /4 is the mass-moment of inertia of the link with
the payload about the joint axis A. Initial conditions are 6(0) = 0 and
6(0) = 0. Using Equation 2.1.21 with £ = 0,

0(t) = 6(1 — coswyt); >0 (2.1.42)
where
mgt
6 = (2.1.43)
ki

It should be noted that 6y represents the new static equilibrium
configuration. The response (Figure 2.1.5) clearly indicates that the
robot arm will sustain a nondecaying oscillation of magnitude 6, about
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Figure 2.1.6 A staircase forcing function

the new static equilibrium configuration after it suddenly grips a pay-
load of mass m.

Example 2.1.2: Input Shaping (Singer and Seering, 1990)
Consider an underdamped spring-mass—damper SDOF system
(Figure 2.1.1), which is subjected to the force f(¢f) shown in Fig-
ure 2.1.6. Assume that the initial conditions are zeros.

The differential equation of motion is

MegX + CogX + kegx = f(1) (2.1.44)
To determine the response x(t), the force f(¢) is expressed as

f@O =10 +1H0) (2.1.45)

where fi(¢) and f>(¢) are shown in Figure 2.1.7.
Using Equation 2.1.21, the response due to fi(¢) will be

x1(t) = Z—l[l —e 5 coswgt — e Sy sinwgt]; t>0  (2.1.46)
eq

p A
fit4 S0

ay —ap

a1

v
[e=)

f t

0 I t

Figure 2.1.7 Components of staircase forcing function in Figure 2.1.6
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Similarly, using Equation 2.1.21, the response due to f>(¢) will be

a, —aq
x(l) = =
eq

[1 _ e_&:wn(t_tl) CcOS a)d(t - tl)
— ety sinwg(t —1)]; t>1 (2.1.47)

It is obvious that x,(¢) =0 for ¢ < #;. Using the principle of super-
position,

x(t) = x1(t) + x2(2) (2.1.48)
Substituting Equations 2.1.46 and 2.1.47 into Equation 2.1.48 and after
some algebra,

4, ot

x(t)y=—— (asinwgt + Bcoswyt); t>1  (2.1.49)
keq eq
where
o =ayx + e (ay — ay)(sinwgty + x cos wgaty) (2.1.50)
B=a + efent (le — dl)(COS wgty — X sin (z)dtl) (2151)

It should be noted that « = 0 and 8 = 0 when

as

T
H=— d = 2.1.52a,b
1 oy and a T+gq ( a,b)
where
&

g=e V¢ (2.1.53)

When #; and a; are chosen according to Equation 2.1.52,
=L for 1>n (2.1.54)

Keq

In other words, the system reaches its steady state in a finite time #
without any oscillation, even when the damping is zero or almost zero.
Note that the input command a,, ¢t > 0, will yield a sustained oscilla-
tion as shown in Figure 2.1.5. Hence, by shaping the input command
as shown in Figure 2.1.6, the system reaches the steady state without
any vibration.
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Figure 2.2.1 An undamped spring-mass system subjected to sinusoidal excitation

2.2 RESPONSE OF AN UNDAMPED SDOF SYSTEM TO
A HARMONIC EXCITATION

Consider an undamped SDOF system subjected to a sinusoidal exci-
tation with the amplitude f; and the frequency wy. Using the free body
diagram in Figure 2.2.1,

net force in x-direction = —k,x + fy sinwt (2.2.1)
Applying Newton’s second law of motion,
—kegx + fosinwt = mey i (2.2.2)
Therefore, the differential equation of motion is
Mgk + kegXx = fosin wt (2.2.3)
The solution of Equation 2.2.3 is composed of two parts:
x(t) = xp(t) + x,(2) (2.2.4)
where x;,(f) is the homogeneous solution satisfying

Mg Xy + keqxh =0 (2.2.5)
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and x,(¢) is a particular solution satisfying
MegXp + KegXxp = fosinwt (2.2.6)
The homogeneous solution in Equation 2.2.5 is
xp(t) = Aj cos w,t + By sinw,t (2.2.7)
where A; and Bj are constants. And,

keq
Meq

(2.2.8)

wy =

The form of the particular solution is dependent on whether the exci-
tation frequency w equals the natural frequency wj,.

Case I w # w,
xp(t) = Asin ot (2.2.9)

where A can be positive or negative. To determine A, Equation 2.2.9
is substituted into Equation 2.2.6,

(—* Moy + keg)Asin wt = fy sin wt (2.2.10)

Equating coefficients of sin wt on both sides,

(=’ Meg + keg)A = fi (2.2.11)
or
fo
A= 2.2.12
keqg — @*Meqy ( )
or
A 1
= 2213
fO/keq 1—r? ( )
where r is the frequency ratio defined as
r=2 (2.2.14)

Wy,
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Note that fy/ k., is the steady-state deflection when a constant (o = 0
or r = 0) force f is applied. A constant force corresponds to w = 0 or
r=0.

From Equations 2.2.4, 2.2.7, and 2.2.9, the total solution will be

x(t) = Aj cos w,t + Bi sinw,t + Asin wt (2.2.15)
Att=0,
x(0) = Ay (2.2.16)

Differentiating Equation 2.2.15,

x(t) = —Ajw, sin w,t + Biw, cos w,t + Aw cos wt (2.2.17)
Attr=0,
x(0) = Biw, + Aw (2.2.18)
Solving Equation 2.2.18,
B = w (2.2.19)

Substituting Equations 2.2.16 and 2.2.19 into Equation 2.2.15,
©) -

n

x(t) = x(0) cos w,t + ol ® sin wpt+ Asinwt  (2.2.20)

where the amplitude A is given by Equation 2.2.13.

Case II: v = w,, (Resonance)

In this case, the form of the particular integral Equation 2.2.9 is not
valid. Note that the expression in Equation 2.2.9 is already repre-
sented by the homogeneous solution in Equation 2.2.7 when v = w,,.
If the form given in Equation 2.2.9 was valid, Equation 2.2.13 would
yield A = oo at w = wy; that is, the displacement would become infi-
nite from any finite initial displacement as soon as the external force

is applied, which is physically impossible.
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The particular integral for w = w, is
xp(t) = Astcos wt
Differentiating Equation 2.2.21 twice,

¥p(t) = —2A,wsin wt — Ay tw? cos wt

Substituting Equations 2.2.21 and 2.2.22 into Equation 2.2.6,

(2.2.21)

(2.2.22)

—2A,meqwsinwt — A, tmeqa)2 cos wt + A, tk,q cos wt = fj sin wt

(2.2.23)
Because kg = Meq> = My,
—2A, megwsin wt = fy sin wt (2.2.24)
Equating coefficients of sin wt on both sides,
—2A, Mg, = fo (2.2.25)
or
A =— 2m]: an = _];O:’q (2.2.26)
From, 2.2.7, and 2.2.21, the total solution will be
x(t) = Aj cos w,t + By sinw,t + At cos wpt (2.2.27)
Att=0,
x(0) = A; (2.2.28)
Differentiating Equation 2.2.27,
x(t) = —Ajw, sin w,t + Biw, cos w,t — A, tw, sin w,t + A, cos w,t
(2.2.29)
Att=0,
x(0) = Biw, + A, (2.2.30)
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Figure 2.2.2 Responses at excitation frequencies o = 0.5w,, @y, 1.50,, and 0.9w,
with zero initial conditions

or

_H0) -4,

wp

B (2.2.31)

Substituting Equations 2.2.28 and 2.2.31 into Equation 2.2.27,

t(0) — A
x(t) = x(0) cos w,t + L sinwyt + Artcosowt  (2.2.32)

n

where A, is given by Equation 2.2.26.

Example 2.2.1: Responses at Different Excitation Frequencies with
Zero Initial Conditions

In Figure 2.2.2, responses are plotted for different values of excitation
frequencies w with zero initial conditions (x(0) = 0 and x(0) = 0).
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Case I: v # wy
With zero initial conditions, Equation 2.2.20 yields

Aw

x(t) = —— sin w,t + Asin wt (2.2.33)

where A is given by Equation 2.2.13. When o = 0.50, and w = 1.5w,,
responses contain both the frequencies o and w, (Figure 2.2.2). When
o is close to w,, for example, w = 0.9w,,, the response exhibits a beat-
ing phenomenon (Figure 2.2.2) which can be explained by expressing
Equation 2.2.33 as

x(t) = A(sin ot — sin w,t) — AL in wut (2.2.34)
or
. w — a)n .
x(t) = 2A5sin(0.5(w — wy)t) cos(0.5(w + wy)t) — A sin wpt
(2.2.35)

The second term on the right-hand side of Equation 2.2.35 is small.
Ignoring this term,

x(t) = 2A5sin(0.5(w — wy)t) cos(0.5(w + wy)t) (2.2.36)

Equation 2.2.36 can be interpreted as the response with the frequency
0.5(w + wy,) with the time-varying amplitude. The frequency of the
amplitude variation is 0.5(w — w,), as found in Figure 2.2.2, and is
much less than 0.5(w + w,).

Case Il: v = w,

With zero initial conditions, Equation 2.2.32 yields

A, .
x(t) = —— sinwyt + At cos wt (2.2.37)
Using Equation 2.2.26,
x(f) = Jo sin wyt — fowntcos wt (2.2.38)
2keq eq

It is obvious that the second term on the right-hand side of Equa-
tion 2.2.38 will be dominant after some time ¢. This will be true for a
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Ceq H Cequ T keqx(t)

kgq x(z‘) l meq
lfo sin wt
Static equilibrium " Free body diagram
eq
x(1) |
ﬂ Jfosinwt

Figure 2.3.1 A damped SDOF spring-mass system subjected to sinusoidal excitation

large w, even for a small time ¢. In other words, for a large w, and/or
after some time ¢,

wan
AN —— 2.2.
x(t) 2o tcos wt (2.2.39)

The response in Figure 2.2.2 is described by Equation 2.2.39, in which
the amplitude of vibration grows to infinity in a linear manner with
respect to time. From the structural integrity point of view, the bad
news is that the amplitude of vibration grows to infinity. But, the good
news is that it takes time for the amplitude to build up to infinity, and
there is time to save the structure from catastrophic failure. This fact
is used in determining the rate at which a rotor shaft must be acceler-
ated past its resonant speed (or critical speed ) when the desired rotor
speed is greater than the critical speed.

2.3 RESPONSE OF A DAMPED SDOF SYSTEM TO A
HARMONIC EXCITATION

Consider a damped SDOF system subjected to a sinusoidal excitation
with the amplitude f; and the frequency w (Figure 2.3.1). Using the
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free body diagram in Figure 2.3.1,
net force in x-direction = —k,qx — c.g% + fy sinwt (2.3.1)
Applying Newton’s second law of motion,
—KegX — Cegk + fosSinwt = meyx (2.3.2)
Therefore, the differential equation of motion is
MegX + CeqX + Kegx = fo sin wt (2.3.3)
The solution of Equation 2.3.3 is composed of two parts:
x(t) = xp(t) + x,(1) (2.3.4)
where x;(f) is the homogeneous solution satisfying
Meqin + CoqXn + kegXn =0 (2.3.5)
and x,(¢) is a particular solution satisfying
MegXp + CogXp + KegXp = fosinwt (2.3.6)
Particular Solution
Assume that
xp(t) = Asin(wt — ¢) (2.3.7)
Substituting Equation 2.3.7 into Equation 2.3.6,

— Mg Asin(wt — ¢) + coqwA cos(wt — )
+ kegAsin(wt — ¢) = fosinwt (2.3.8)

or
(keg — Meg®)Asin(wt — ¢) + coqwAcos(ot — ¢) = fysinwt  (2.3.9)
or

(keg — Meqw®)A[sin wt cos ¢ — cos wt sin @]

+ CegwA[cos wt cos ¢ + sinwtsing] = fysinwt  (2.3.10)
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or

[(Keg — Meqg*)A OS¢ + coqwAsin ¢]sin ot

+ [ceqA cos ¢ — (keg — Megw*)Asin¢] cos ot = fysinwt  (2.3.11)
Equating coefficients of sin wt and cos wt on both sides,
(keg — Meq*)Acos ¢ + coqwAsing = fi (2.3.12a)
and
CeqA oS — (kog — Meg*)Asing = 0 (2.13.12b)

Representing Equations 2.3.12a and 2.3.12b in matrix form,

keg — @’ My, Ceq Acos¢ _ fo (2313)
Ceq® —(keg — @*meg) | | Asing 0 -
-1
Acos ¢ _ keq — meeq Coq fo (23.14)
Asin ¢ Ceq® —(keg — @*Meq) 0 o

Ac9s¢ _ 1| ke = W’ Meg) —Ceq® fo (2.3.15)
Asing A —Ceq@ +(keg — meeq) 0

where

or

or

A= —(keg — wzmeq)2 - (Ceqa))2 (2.3.16)
From Equation 2.3.15,

(keq - a)zmeq)f 0
(keq — @?Meg)? + (Ceqw)?

Acos¢p = (2.3.17)

and

Ceqa)f()
(keqg — @?Meg)? + (Ceqw)?

Asing = (2.3.18)



Vibration of an SDOF System under Constant and Purely Harmonic Excitation 91

Using Equations 2.3.17 and 2.3.18,

. fO
A= A 24 (A 2=+
\/( cos¢)? + (Asing) \/(keq — W Meg)? + (Ceq)?
(2.3.19)
and
fang — ASil’l¢ _ Ceq (2320)

Acosp  (keg — @*Miey)

Dividing the numerators and denominators of Equations 2.3.19 and
2.3.20 by ke,

Jo
A= ke (2.321)
1 Zmeq Ceq@ 2
(1-ere) + (%)
and
Ceq®
ke
tan¢g = T quﬁ (2.3.22)
Keq
Now,
2
2Meq @ 2
= = 2.3.23
fy ~ 2 r ( )
Cqw  Ckw  2mygwptw w
keg  keq Keg Son =T (23.24)

Substituting Equations 2.3.23 and 2.3.24 into Equations 2.3.21 and
2.3.22,

A 1

= (2.3.25)
folkeg /(1 —r2)2 4 (2&r)?
and

2&r
t = 2.3.26
ang = = (2.3.26)

where r is the frequency ratio defined as
_ excitation frequency _ @ (2327)

natural frequency Wy
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Case I: Underdamped (0 < & < 10r0 < ceq < ;)
From Equation 1.5.19,

xp(t) = e 5" (A} cos wyt + By sin wgt) (2.3.28)
From Equations 2.3.4,2.3.28, and 2.3.7,
x(f) = e (A cos wyt + By sinwgt) + Asin(wt — ¢) (2.3.29)
Att=0,
x(0) = A; — Asing = A; = x(0) + Asing (2.3.30)
Differentiating Equation 2.3.29,

x(t) = €_§w”t(—wdA] sin wgt + wg By cos wyt)

— Ewpe 59" (A; cos wgt + By sin wgt) + wAcos(wt — ¢)  (2.3.31)

Att=0,
x(0) = wg By — Ewp A1 + wAcos ¢ (2.3.32)
Using Equation 2.3.30,
B — x(0) 4+ £w,(x(0) + Asing) — wAcos ¢ (23.33)
g

The total response x () = x;(t) + x,(t) is shown in Figure 2.3.2 for £ =
0.04 and & = 0.5.

Case II: Critically Damped (§ =1 or c.q = c.)
From Equation 1.5.33,
xp(t) = Are™ " + Byte ! (2.3.34)
From Equations 2.3.4,2.3.34, and 2.3.7,
x(t) = Are” " + Byte " + Asin(wt — ¢) (2.3.35)
Att=0,

x(0) =A; — Asing = A; = x(0) + Asing (2.3.36)
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Figure 2.3.2 Response (x(0) = fo/keq and x(0) = 0) for &€ = 0.04,0.5,1, and 1.5

Differentiating Equation 2.3.35,

i(t) = —w,Are™ " — w,Bite ™" + Bie™ "' + wA cos(wt — ¢)

(2.3.37)
Att=0,
x(0) = —w,A1 + B1 + wAcos ¢ (2.3.38)
Using Equation 2.3.36,
By = x(0) + w,(x(0) + Asin¢) — wAcos ¢ (2.3.39)

The total response x(f) = x(t) + x,(¢) is shown in Figure 2.3.2 for
£=1.
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Case I1I: Overdamped (§ > 1 or ceq > c;)
From Equation 1.5.41,

xp(t) = Are™ + Bie™ (2.3.40)

where
51 = —Ewp+o/EL—1 <0 (2.3.41)
5 = —Ewp — wp/E2—1 <0 (2.3.42)

Therefore, from Equations 2.3.40 and 2.3.7,
x(t) = A1e”" + Bie”' + Asin(wt — ¢) (2.3.43)
Att=0,
x(0) =A; + By — Asing (2.3.44)
Differentiating Equation 2.3.43,
(1) = Ars1€™ + Bis2e™ + wA cos(wt — ¢) (2.3.45)
Att=0,
x(0) = Ays1 + Bisy + wAcos ¢ (2.3.46)

Solving Equations 2.3.44 and 2.3.46,

_ 52(x(0) + Asin¢) — (x(0) — wA cos ¢)
a S2 — 81

A (2.3.47)

and

B, = O + Asing) + (K(0) —wAcosd) 40
Sy — 81

The total response x(f) = x(f) + x,(¢) is shown in Figure 2.3.2 for
E>1.
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2.3.1 Steady State Response

For all cases of damping c., > 0 or £ > 0 (Equations 2.3.28,2.3.34, and
2.3.40)

x,(t) >0 as t— o0 (2.3.49)

Therefore, the homogeneous part x,(¢) is also called “transient
response.” In the steady state (f — 00),

x(t) = xp(t) + xp(t) > x,(t) as t— oo (2.3.50)

Therefore, the particular integral x,(¢) is also called the steady state
response X(f) :

Xys(t) = Asin(wt — ¢) (2.3.51)

where (from Equations 2.3.25 and 2.3.26),
A 1

= 23.52
Jolkeg /(1 —r?)?+ (2%r)? (2352)
and
2&r
tang = 1—3 (23.53)

Note that A is the amplitude of the steady state response. And ¢ is
the phase of the steady state response which is the angle by which the
steady state response lags behind the forcing function.

Amplitude (A) and phase (¢) are plotted in Figures 2.3.3 and 2.3.4
as functions of the frequency ratio r for different values of the damp-
ing ratio &. For all values of the damping ratio §, A — 0 as r — oo.
Near resonance condition, the amplitude can be very large, particu-
larly for a small value of the damping.

To find the peak amplitude, Equation 2.3.52 is differentiated with
respect to r,

bea @2 210 =2 4+ ery1 20 — )(-20) + (26)2r]

fo dr
(2.3.54)
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Figure 2.3.3 Amplitude versus frequency ratio (direct excitation on mass)

The condition for the maximum value of the amplitude A is

dA
=0

e 2.3.55
P ( )
Therefore, from Equations 2.3.54 and 2.3.55,
—(1=r})+2:2=0 (2.3.56)
or
1
r=+1-282 provided & < WG = 0.707 (2.3.57)
Equation 2.3.57 yields the frequency ratio at which the amplitude is
maximum.
The corresponding peak amplitude (A,) is given by

A, 1

fO/keq - 2&'\/1 — .’;:2;

£ <0.707 (2.3.58)
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Figure 2.3.4 Phase versus frequency ratio (direct excitation on mass)

It should be noted that the maximum value of the amplitude occurs at
r =0for & > 0.707.

For the phase plot (Figure 2.3.4), two important points should be
noted:

a. The phase angle ¢ = 90° at = w, for all values of damping ratios
greater than zero. In other words, the phase angle ¢ of a damped
(¢ > 0) system is always 90° when the excitation frequency w
equals the undamped natural frequency w, of the system.

b. The phase angles ¢ of an undamped (¢ = 0) system are 0° and 180°
for w < w, and w > w,, respectively. In other words, the phase
angle ¢ changes abruptly from 0° to 180° across w = w,. It should
be noted that the phase angle ¢ of an undamped system is not
defined for w = w,, as Asin(wt — ¢) is not the particular integral
in this case.
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Figure 2.3.5 Turbine blade subjected to sinusoidal excitation

Example 2.3.1: Steady State Response of a Turbine Blade

Consider a turbine blade, which is subjected to a sinusoidal force
fosinwt (Figure 2.3.5a). For an assumed displacement shape of
the turbine blade (Figure 2.3.5b), the equivalent SDOF system is
shown in Figure 2.3.6, where m,,; = 0.0114 kg and k., = 430,000 N/m
(Griffin and Sinha, 1985). Assuming that the damping ratio & = 0.01
and the force amplitude fy = 1N, determine the steady state ampli-
tudes and the phases for the following values of frequency ratio: 0.4,
0.95, 1, and 2. Also, plot the response with zero initial conditions for

x(1)
keq

meq

each frequency ratio.

fosin wt

TIIITTIIIT

Figure 2.3.6 Equivalent SDOF model for the turbine blade
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Solution
o _ 2.3256 x 10 ® m
Keq
keq
wp = = 6,141.6 rad/sec
Mg
a. r=04
A= fo/ keq —=2.7684 x 10" m
VA —r2)?2 4 (2&r)?
¢ =tan™! 12§r > =tan™ % = 0.0095 rad
—r .
b. r =0.95
A= fo/ keq =23412x 105 m
VA =r2)2 4 (2&r)?
2 0.019
¢ =tan™' f—rz = tan™! 5oooe = 0.1925 rad
—r .
c. r=1
ke
- Jo/ keq =1.1628 x 104 m
VA =122+ (2r)?
ot 260 002w
¢ = tan 1_rz_tan 0 _2rad
d r=2
ke
A= Jo/ keq =7.7512 x 10" m
VA =122+ (2r)?
¢ =tan™! 12§r2 = tan~! g =3.1283 rad
J— r J—

For each frequency ratio, the response is computed with zero
initial conditions (Equation 2.3.29). The steady state response and
the excitation force are plotted together in Figure 2.3.7, primarily to



100 Vibration of Mechanical Systems

20

0 / U Y/ ;
LD NN LYY

5900 600 610 620 630 610 615 620 625 630

H/(fyk

80 X(O/lfkeg) 1 ) 7~ X/ /K )
r=1i | ----- 30 (1) r=2 /1 Y 0eq

oA A Y S R A i

40 |

-20 | e
\/ v Y \/
610 615 620 625 630 620 625 630
Nondimensional time, w,t Nondimensional time, w,t

Figure 2.3.7 Steady state vibration of a turbine blade

see the phase relationships. For r =1, the excitation force is maxi-
mum when x(¢) = 0 and x(¢) > 0. This confirms that the steady state
response lags behind the forcing function by 90°.

The subplot for r = 0.95 in Figure 2.3.7 is re-plotted in Figure 2.3.8,
where it is estimated that

w, At = 0.20 rad

where At is the time difference for peaks of excitation and steady state
response to occur. Therefore,

1)
wAt = —0.20rad = 0.19 rad
Wp
This is the phase difference between the excitation and the steady
state response. Also, the excitation peak occurs before the response
peak. Therefore, the steady state response lags behind the excitation
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Figure 2.3.8 A zoomed subplot in Figure 2.3.7

by 0.19 rad, which matches well with the theoretical result. The slight
difference between the numerical and the theoretical result is due to

approximations involved in obtaining w, At from the plot.

2.3.2 Force Transmissibility

When a force is applied to the mass, it is important to determine the
force transmitted to the support. Therefore, free body diagrams are
constructed for mass, spring, and damper in Figure 2.3.1. From these
free body diagrams in Figure 2.3.9,

force transmitted to the support = keq(x + A) + cegk
= Mg + kegX + CegX  (2.3.59)

The time-varying part of the force transmitted to the support is given
by

fr(t) = kegx + ceqX (2.3.60)
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Figure 2.3.9 Free body diagram of each element in Figure 2.3.1

In the steady state, the force transmitted to the support is obtained by
substituting Equation 2.3.51 into Equation 2.3.60,

fr(t) = kegAsin(wt — ¢) + ceqwA cos(wt — ¢) = frosin(wt — ¥ )

(2.3.61)
where
v=¢—-0 (2.3.62)
fro=A\/k2, + c2,0? (2.3.63a)
and
tang = 4% (2.3.63b)

keq

Substituting Equation 2.3.52 into Equation 2.3.63a, and using Equa-
tion 2.3.24,

fo _ V14 QEr) (2.3.64)

o Ja-ry +eery
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Figure 2.3.10 Force transmissibility as a function of frequency ratio
Using Equations 2.3.62,2.3.24, and 2.3.26,

2&r
1—-r2

1 2&r3
(2.3.65)

Y =¢—0=tan"" —tan~!2&r = tan™

Since fy and fpy are, respectively, the amplitudes of the applied sinu-
soidal force and the time-varying part of the force transmitted to the
support, the ratio fm/fo is known as the force transmissibility, which
is plotted in Figure 2.3.10 as a function of the frequency ratio r for
many values of the damping ratio &. As the applied force and the
time-varying part of the force transmitted to the support are fj sin wt
and fry sin(wt — ¥) respectively, ¢ is the phase angle by which the
transmitted force lags behind the applied force. The phase angle v
has been plotted in Figure 2.3.11 as a function of the frequency ratio r
for many values of the damping ratio &.
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Figure 2.3.11 Phase plot for force transmissibility
It is often desired to select the spring stiffness and the damping
coefficient such that the force transmissibility is as small as possible,

but never greater than one. To determine the frequency ratio at which
fro/fo is one, from Equation 2.3.64,

VI+@E)? (2.3.66)
Y=y + @ery

Squaring both sides of Equation 2.3.66,

1+ (28r)?

R 1 (2.3.67)

After some algebra, Equation 2.3.67 yields

r?(r*=2)=0 (2.3.68)
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Solving Equation 2.3.68,
r=0 or r=+2 (2.3.69)

Therefore, the force transmissibility equals one at »r =0 and r =
/2 for all values of the damping ratio. In Figure 2.3.10, it can also be
seen that the force transmissibility is greater than one for 0 < r < v/2,
whereas it is less than one for r > +/2. Further, for r > /2, the force
transmissibility increases as the damping ratio increases. Therefore, a
support system, that is, the spring stiffness and the damping constant,
should be designed such that 7 > +/2 and the damping constant ¢ is as
small as possible. For r > +/2,

2

w W
—>\/§:>w,21<—$keq<
W, 2

Meq?

(2.3.70)

In general, a design guideline is to choose small values for the
spring stiffness and the damping constant. Rubber pads are often used
to minimize the force transmitted to the support because rubber mate-
rial has small values for the stiffness and the damping constant.

Example 2.3.2: Force Transmitted to Turbine Blade Support
For the frequency ratio = 1, find the steady state force transmitted to
the support of the turbine blade in Example 2.3.1.

Solution
Here,r =1and & = 0.01.

o= fy Y CE e % —50.01N
Ja =y 4 oery (2¢)

2£r3 41
A tan' — —1.5508 rad
2@ —1) 0 2 ra

The steady state force transmitted to the support is

Y= tan™!

F1(t) = frosin(wt — ¥) = 50.01 sin(6141.6¢ — 1.5508) N
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Figure 2.3.12 Frequency ratios for A/A, = 0.707

2.3.3 Quality Factor and Bandwidth

Here, two widely used terms, quality factor (Q) and bandwidth, are
defined.

Quality Factor
The amplitude A, atr = 1 is obtained from Equation 2.3.52,
A1
folkeg — 28
For the definition of quality factor, it is important to determine the
frequency ratios where the values of A are 1/+/2 times the amplitude
A, (Figure 2.3.12). Using Equations 2.3.52 and 2.3.71, the amplitude

ratio (A/A,) is determined and set equal to 1/+/2 for this purpose:

A 2 1

= = 5 = — (2.3.72)
A A =2+ Q5 V2

Squaring both sides of Equation 2.3.72,

(2.3.71)

() —(2-4)r" +(1-87)=0 (2373)
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Solving this quadratic equation in 72,

r2=(1-28%)+26y1-¢2 (2.3.74)
Forasmall £, /1 — &2~ 1and1—2&% ~ 1, that is,
r? a1 428 (2.3.75)
Using binomial expansion (Appendix B),
r~(1+ 25)% = 1=+ & £ higher power terms of & (2.3.76)

Neglecting higher powers of &, frequencies w; and w, where the
values of A/(fo/keq) are 1/ /2 times the value at 7 = 1 can be approx-
imated for small & as

n="o1¢ (2.3.77)
wy
=2 _14¢ (2.3.78)

n
The quality factor Q is defined as
Wy

0= (2.3.79)

w2 — w1

From Equations 2.3.77-2.3.79,

1
0=5 (2.3.80)

A higher value of Q implies a lower value of the damping ratio £ and
vice versa.

Bandwidth
The bandwidth of a system is defined as the frequency below which
the steady state amplitude is above 1/+/2 (= 0.707) times the steady
state amplitude at zero frequency or the steady state amplitude under
constant force, for example (Figure 2.3.13).

The bandwidth is a measure of the frequency range for which the

system responds strongly to the forcing function.
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Figure 2.3.13 Definition of bandwidth

The bandwidth (frequency) is obtained by setting

A 1 1
- (2.3.81)

folkeg  JA—r22 + Qerg 2

Squaring both sides of Equation 2.3.81, the following quadratic equa-

tion in 2 is obtained:
() —(2—-42r*—1=0 (2.3.82)

Solving Equation 2.3.82,

The negative sign in front of the square root sign in Equation 2.3.83
will lead to a negative value of r?, which is meaningless. Therefore,

the positive sign in front of the square root sign is chosen to obtain

=128 VaE 482 12 (23.84)
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Figure 2.3.14 Bandwidth versus damping ratio

Therefore,

bandwidth

Wy

= \/1 — 262 4 \J4E4 — 42 42 (2.3.85)

The bandwidth is plotted as a function of the damping ratio in Fig-
ure 2.3.14.

As the damping is increased, the bandwidth decreases. It is inter-
esting to note that the bandwidth equals the undamped natural fre-
quency w, when the damping ratio & equals 1/+/2 (= 0.707).

2.4 ROTATING UNBALANCE

In a rotating machine such as a motor, a generator, a turbine, and
so on, there is always an unbalance because the center of rotation
never coincides with the center of the rotor mass. Even though this
eccentricity is small, this results in a rotating centrifugal force on
the rotor with a significant amplitude because the centrifugal force is

proportional to the square of the angular speed. Further, a rotating
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eq

Figure 2.4.1 A spring-mass-damper system with rotating unbalance

centrifugal force results in a sinusoidal excitation on the structure,
and hence can lead to a large magnitude of the structural vibration
because of the resonance phenomenon.

Consider the system in which an unbalance mass 1, with an eccen-
tricity e is rotating at a speed of w rad/sec (Figure 2.4.1). Let the total
mass be m,4, which includes the unbalance mass m,. From the free
body diagram in Figure 2.4.1,

net force in x-direction = —Kkegx — CoqX (24.1)

And the acceleration of the mass (m., — m,) is . The displace-
ment of the unbalance mass m, is x + e sin wt. As a result, the accel-
eration of the unbalance mass will be the second time derivative of
x + esinwt. Applying Newton’s second law of motion,

d2
—kegX — CoqXt = (Meg — my,)% + muﬁ(x + esin wt) (24.2)
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After some simple algebra,
MegX + CeqX + Kegx = myew” sin wt (2.4.3)
Comparing Equations 2.4.3 and 2.3.3,
fo=myea® (2.4.4)

Following the developments in Section 2.3, the steady state response
X(?) is again given by

X (f) = Asin(wt — ¢) (2.4.5)

where the amplitude A and the phase angle ¢ are given by Equations
2.3.25 and 2.3.26:

A 1
- 2.4.6
fO/keq \/(1 _ r2)2 + (25’,)2 ( )
and
2&r
tang = 1—>5 (2.4.7)

It should be noted that the complete solution is still given by Equa-
tions 2.3.29, 2.3.35, and 2.3.43 for underdamped, critically damped,
and overdamped systems, respectively.

Using Equation 2.4.4,
fi 2 2 2
0 Mmyew emy, Meqw emy, w emy , (2.4.8)
— = - Y = ——— = —7 A
keq keq Mg Keg Meg W2 Mg

Substituting Equation 2.4.8 into Equation 2.4.6, the steady state
amplitude due to the rotating unbalance is given by

Meg A _ a (2.4.9)
ny e \/(1 . 1'2)2 + (257’)2

The steady state amplitude (A) due to the rotating unbalance is plot-

ted in Figure 2.4.2 as a function of the frequency ratio for many values
of the damping ratio. The plot for the phase angle is exactly the same
as the one shown in Figure 2.3.4. Here, the amplitude (A) equals zero
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Figure 2.4.2 Steady state amplitude versus frequency ratio (rotating unbalance)

atr = 0 and equals (m,e/m,,) for all damping ratios as r — oo. Near
resonance condition, the amplitude (A) can be large for small values

of the damping ratio.
To find the maximum amplitude, Equation 2.4.9 is differentiated

with respect to r,

meg dA — —r?[2(1 — r?)(=2r) + (2£)%2r] 2r
medr ~ Q=P+ QTS (=Y + @
(2.4.10)
The condition for the maximum value of the amplitude A is
A
A =0 (2.4.11)
dr

Therefore, from Equations 2.4.10 and 2.4.11,

=2 [ =r*)(=2r) + Q&)°r] +2r[(1 = r*)* + 26r)’] =0 (24.12)
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Figure 2.4.3 Rotating unbalance position under stroboscopic light
After some algebra, Equation 2.4.12 yields
1 1
r = ———— provided § < — =0.707 (2.4.13)
J1-2¢2 V2

It should be noted that the maximum amplitude occurs for r = oo
when & > 0.707.
For & < 0.707, substituting Equation 2.4.13 into Equation 2.4.9,

MegAp _ 1
m, e 2£\/1-¢2

where A, is the peak amplitude. It is interesting to note that right-
hand sides of Equations 2.3.58 and 2.4.14 are identical.
Using Equation 2.3.64, the amplitude fry of the force transmitted

(2.4.14)

to the support in steady state will be given by

fo V14 (@2Er)
myew? \/(1 _ r2)2 +(2&r)?

(2.4.15)

Example 2.4.1: Identification of Damping Ratio and Natural
Frequency

Consider an SDOF system with the rotating unbalance = 0.1
kg — meter and the equivalent mass m,, = 200 kg (Figure 2.4.3a). At
a speed of 850 rpm under stroboscopic light, the configuration of the
eccentric mass is horizontal, the displacement x is zero, and the veloc-
ity X is positive. The steady state amplitude at the speed of 850 rpm is
found to be 25 mm. Determine the damping ratio and the undamped



114 Vibration of Mechanical Systems

natural frequency of the system. Also, determine the angular speed
o when the angular position of the rotating unbalance as shown in
Figure 2.4.3b when the displacement x is zero, and the velocity % is
positive.

Solution

The configuration in Figure 2.4.3a indicates that the response x()
lags behind the excitation force by 90°. Therefore, the frequency ratio
r = 1 from Equation 2.4.7, that is,

w, = w = 850 rpm = 89.012 rad/sec

Given:
mye =0.1kg-m and A =0.025m
From Equation 2.4.9,
Mmeg A 1
— = — =0.01
my, e 28 =4

The configuration in Figure 2.4.3b indicates that the response x(¢) lags
behind the excitation force by 135°. Therefore,

tan¢ = !
-1
From Equation 2.4.7,
2
s 00r 120
re—1

Solving this quadratic equation: r = 1.01 and — 0.99. Since the nega-
tive value of r is meaningless,
r=-<2 =101 = v =1.0lw, = 858.5 rpm
Wy
Example 2.4.2: A Rotor Shaft with Mass Unbalance

Consider the rotor—shaft system shown in Figure 1.3.1, but with a cas-

ing around the rotor as shown in Figure 2.4.4. The clearance § between
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Figure 2.4.4 Rotor-shaft system with casing

the rotor and the casing is 10 mm. The length and the diameter of the
circular steel shaft are 0.5 m and 3 cm, respectively. The mass and the
unbalance of the turbine rotor are 12 kg and 0.25 kg-cm, respectively.

a. Determine the critical speed of the rotor.

b. If the rotor operates at the critical speed, find the time after which
the rotor will hit the casing. Assume that the initial conditions are
Zeros.

c. Assume that the operating speed of the rotor is higher than its
critical value. Then, the rotor must pass through its critical speed
before it acquires the desired speed. Recommend a safe value of
angular acceleration to cross the critical speed.

a. Area moment of inertia I = 2% — 39761 x 10-8 m*

64
For steel, E = 2 x 10'! N/m?
£=05m
48E1
keg = =5~ =3.0536 x 10° N/m

ke
Wy = 1 = 504.45 rad/sec
Megq

critical speed w = w, = 504.45 rad/sec
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b. Unbalance m,e = 0.25 x 1072 kg-m
fo = myew® = 636.173 N

Equation 2.2.38 is rewritten here.

fo . fown
[ —
e, sinw,l — 7 e,

tcos wt

x(t) =
Therefore,
x(f) = 1.0417 x 10~*sin w,t — 0.0525¢ cos w,t
or
x(t) = —0.0525¢ cos wpt
Let the time after which the rotor hits the casing be #;,. Then,

0.0525t, =0.01 = 1, =0.1905 sec

. desired speed—0
c. Recommended acceleration = =S50 rad/sec’.

The operating speed will reach the desired speed from rest in half
the time that it takes for the rotor to hit the casing at the critical speed.
Therefore, the rotor will not hit the casing.

2.5 BASE EXCITATION

There are many practical situations where the base is not fixed and
the vibration is caused by the displacement of the base, for example,
automobile vibration caused by uneven road profile, building vibra-
tion during earthquake, and so on.

Consider the SDOF spring-mass—damper system with the base
having a displacement y(¢) (Figure 2.5.1). From the free body dia-

gram,

net force in x-direction = —key (X — y) — Coq(X — J) (2.5.1)
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Figure 2.5.1 A spring-mass-damper system with base excitation
Applying Newton’s second law of motion,
—keq(Xx = y) = Ceq(X — J) = meg% (252)
or,
MegX + CoqX + KegX = Cogy + kegy (25.3)

With y(f) = y sin wt, the right-hand side of Equation 2.5.3 can be writ-

ten as
Ceq + keqy = Ceqwyy COS Wt + Keg Yo Sin wt (2.54)
Let Equation 2.5.4 be represented as
CeqV + kegy = fosin(wt + 0) (2.5.5)
Using Equation 2.5.4,

Ceqg®Y0 COS Wt + Keg Yo Sin wt = fy sin(wt + 0)

= fycosOsinwt + fysinf coswt  (2.5.6)
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Comparing the coefficients of cos wt and sin wt on both sides,

fosin® = ceqwyo (2.5.7)
and

focost = kegyo (2.5.8)
Squaring Equations 2.5.7 and 2.5.8 and adding them,

fo= y()\/m (2.5.9)

Dividing Equation 2.5.7 by Equation 2.5.8 and using Equation 2.3.24,

Ceq

tanf =
keq

= 2kr (2.5.10)

Dividing Equation 2.5.9 by k., and using Equation 2.3.24,

2
kf—fq = yo,/1+ (C;c%:)) = yoy/ 1+ (261)? (2.5.11)

Using Equations 2.5.3 and 2.5.5, the differential equation of motion is
written as

MegX + CogX + kegX = fosin(wt + 6) (2.5.12)

where fy and 6 are defined by Equations 2.5.11 and 2.5.10, respec-
tively. Following the developments in Section 2.3, the steady state

response x(?) is given by
X55() = Asin(wt + 6 — ¢) (2.5.13)

where the amplitude A and the phase angle ¢ are given by Equations
2.3.25 and 2.3.26.
A 1
folkeg (U =r2)2 + (26r)?

(2.5.14)

and

2&r

t =——
an¢ 12

(2.5.15)
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It should be noted that the complete solutions are given by Equa-
tions 2.3.29, 2.3.35, and 2.3.43 for underdamped, critically damped,
and overdamped systems, respectively.

Substituting Equation 2.5.11 into Equation 2.5.14,

A_ Y1+ Gy (2.5.16)
N -y - ey

The ratio of the steady state amplitude A of the mass and the input

base amplitude yp is known as the displacement transmissibility. It
is important to note that the expressions for displacement and force
transmissibilities are identical. Compare Equations 2.5.16 and 2.3.64.
Therefore, the plot of transmissibility (Figure 2.3.10) holds for base
excitation also. And a support system, that is, the spring stiffness and
the damping constant, should be designed such that r > +/2 and the
damping constant c is as small as possible. Equation 2.3.70 is valid
here also.
Equation 2.5.13 can be written as

Xy5(1) = Asin(wt — ) (2.5.17)

where
v=¢—0 (2.5.18)

Since the input base displacement is y(f) = y sin wt, the phase i is
the angle by which the steady state displacement x,(¢) lags behind the

base displacement. From Equations 2.5.15 and 2.5.10,

2&r
1—1r2

283
(2.5.19)

—tan~' 267 = tan~!

Y =¢—6=tan"'

Again, note that the expression of the phase lag v for base excitation
is the same as that for the force transmitted to the support when the
mass is directly excited by the sinusoidal force. Compare Equations
2.3.65 and 2.5.19. The plot of the phase lag ¢ (Figure 2.3.11) holds for
base excitation also.
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Example 2.5.1: Microgravity Isolation Systems
In a spacecraft, a number of scientific experiments are conducted to
utilize the microgravity environment; that is, the acceleration due to
gravity in space is 107° g where g is the acceleration due to gravity on
earth. However, because of various disturbances such as crew motion,
thruster firing, and so on, the acceleration due to gravity in space can
be as high as 1073 g.

Design a spring—damper suspension system for an experiment
module, which has a mass of 1.5kg. The disturbance frequencies lie
between 0.1 and 0.5 Hz, and assume that the damping ratio is £ = 0.2.

Solution

In the context of microgravity isolation system, m,, in Figure 2.5.1
is the mass of the experiment module. The base acceleration, y(t) is
caused by various disturbances on the spacecraft. The displacement

and acceleration transmissibilities are identical because
WA A
)
The desired transmissibility is 10> because w”A and w?y, are 107 g
and 1073 g, respectively. Using Equation 2.5.16,

é _ 1+ (28r)? _ 103
W Ja- )t ery

This equation leads to the following quadratic equation in r

.
(r*)? — 160001.84r> — 999999 = 0

There are two roots: 7> = 1.6 x 10 and —0.62. Since a negative value
of r? is meaningless, 7> = 1.6 x 10° and r = 400.

When r > +/2, the transmissibility decreases as r increases. There-
fore,
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Figure 2.6.1 A vibration measuring instrument

Here, 0.1 Hz < w < 0.5 Hz. Therefore,

. 0.1 x 27

400 = 0.00157 rad/sec

Wy
Therefore,
keq = Meqwi = 3.6973 x 107° N/m

Ceq = 2EMqwy, = 9.42 X 10~* N-sec/m

2.6 VIBRATION MEASURING INSTRUMENTS

Here, basic theories for designing instruments that measure ampli-
tudes of vibratory displacements and acceleration are presented.
These instruments are composed of a spring—-mass—damper system as
shown in Figure 2.6.1, and are rigidly attached to the vibratory struc-
ture with the displacement

y(t) = yosin wt (2.6.1)
and therefore the acceleration

y = —w”yp sin wt 2.6.2
y b
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The position of the pointer attached to the mass, which is the relative
displacement

1=x—y (2.6.3)

is available from the scale reading. By proper selection of mass, stiff-
ness, and damping coefficient, the amplitude of z = x — y can serve
as a good estimate of either the displacement amplitude (yp) or the
acceleration amplitude (w?yp). The instruments that measure the dis-
placement amplitude (yp) and the acceleration amplitude (w?y,) are
called the vibrometer and the accelerometer, respectively.

From the free body diagram in Figure 2.6.1,

net force in x-direction = —key(x — ¥) — coq(x — 3)  (2.64)
Applying Newton’s second law of motion,
—keg(x — ¥) — Cog(X — §) = Mgy (2.6.5)
From Equations 2.6.3 and 2.6.2,
¥=%49=7%—w’ysinot (2.6.6)

Substituting Equations 2.6.3 and 2.6.6 into Equation 2.6.5,

MeqZ + CeqZ + keqz(t) = fosinwt (2.6.7)
where
fO = meqa)zy() (268)
Therefore,
Jo _ meg@yo _ “’zzyo (2.6.9)
keq keq wy
The steady state

Zss(t) = zo sin(wt — ¢) (2.6.10)
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where the amplitude zp is obtained by using Equations 2.3.52 and
2.6.9:

fO/keq _ 0)2)’0/60%
A=+ QP =Py + @y
where r is the frequency ratio w/w,. The phase angle ¢ is given by
Equation 2.3.53:

20 =

(2.6.11)

2
$ = tan~! 22 (2.6.12)
1—r2
2.6.1 Vibrometer
From Equation 2.6.11,
2
@ d (2.6.13)

0o V=) @y
The plot of the ratio in Equation 2.6.13 is shown in Figure 2.6.2. It
should be noted that the right-hand side of Equation 2.6.13 is identi-
cal to the relationship for the steady state amplitude of the rotating
unbalance problem (Equation 2.4.9).
For large r,

Dx1 or 2~y (2.6.14)

Yo
It should be recalled that z is directly available from the scale reading.
Equation 2.6.14 establishes the fact that z; can be a good estimate of
the amplitude of vibration y; when the frequency ratio r = w/w, is
large. A large value of r = w/w, implies a small value of the natural
frequency w,, which is achieved by having a small stiffness and/or a
large mass.

Example 2.6.1: Design of a Vibrometer

A vibrometer is to be designed such that the error in the estimated
vibration amplitude is less than 4%. Determine the undamped natural
frequency when the frequency of vibration lies between 20 and 50 Hz.
Assume that the damping ratio is 0.3.
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Solution

Vibration of Mechanical Systems

It is required that

The plot of z/yp is shown in Figure 2.6.2 for & = 0.3. The line zo/yy =
1.04 intersects the plot at two points, whereas zp/yo = 0.96 intersects
the plot at only one point. The intersection point corresponding to
20/Yo = 0.96 is not important for vibrometer design. The error is less
than 4% when the frequency ratio is greater than the higher of the
two values of the frequency ratio where zp/yp = 1.04 intersects the

096 <2 <1.04
Yo

plot. To determine this frequency ratio,

20 r?

w2+ )
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Figure 2.6.3 Plot for accelerometer design
With & =0.3,
0.0816(r%)> — 1.77387* +1.0816 = 0

This is a quadratic equation in r2. Two roots are: r> = 21.1098
and 0.6279, or equivalently, r = 4.5945 and 0.7924.
Therefore,

w w

Here 20 Hz < w < 50 Hz. The undamped natural frequency w, which
will satisfy the above inequality w, < w/4.5945 for all signal frequen-

cies w is given as

_20x 27

w, = 15945 rad/sec = 27.3509 rad/sec
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2.6.2 Accelerometer

From Equation 2.6.11,

2
1
TR (2.6.15)
o*yo /(1 —r2)2+ (26r)?
The plot of the ratio in Equation 2.6.15 is shown in Figure 2.6.3. It
should be noted that the right-hand side of Equation 2.6.15 is identical

to the relationship for the steady state amplitude of the direct force

excitation problem (Equation 2.3.52).
For small r,
w20

? Yo

~1 or wlzg™ o’y (2.6.16)

It should be again recalled that z is directly available from the scale
reading. Equation 2.6.16 establishes the fact that w2z can be a good
estimate of the amplitude of the acceleration w?y, when the frequency
ratio r = w/w, is small. A small value of r = w/w, implies a large
value of the natural frequency w,,, which is achieved by having a large
stiffness and/or a small mass.

Example 2.6.2: Design of an Accelerometer

An accelerometer is to be designed such that the error in the
estimated acceleration amplitude is less than 4%. Determine the
undamped natural frequency when the frequency of vibration lies
between 20 and 50 Hz. Assume that the damping ratio is 0.3.

Solution
It is required that

2
0.96 < 2% < 1.04
@Yo

The plot of w2z9/w?yy is shown in Figure 2.6.4 for & = 0.3. The line
w?z0/@?yy = 1.04 intersects the plot at two points, whereas the line
w2zp/w?yy = 0.96 intersects the plot at only one point. The intersec-
tion point corresponding to w?zy/w?yy = 0.96 is not important for the
accelerometer design. The error is less than 4% when the frequency
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Figure 2.6.4 Accelerometer design with damping ratio & = 0.3

ratio is smaller than the lower of the two values of frequency ratio
where w?zy/w?yy = 1.04 intersects the plot. To determine this fre-
quency ratio,

C()%Z() _ 1

@?y VA =122+ (2&r)?

With £ = 0.3,
1.0816(r%)* — 1.7738r> +0.0816 = 0

This is a quadratic equation in r2. Two roots are: r?=1.5926
and 0.0474 or equivalently, r = 1.2620 and 0.2177.

Therefore,

w w
2 02177 > 2
=S = Oz 00077

Here 20 Hz < w < 50 Hz. The undamped natural frequency w,, which

will satisfy the above inequality for all signal frequencies w, is given as

_50x2n

= = 1443.1
Wy 02177 rad/sec 3.1rad/sec
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2.7 EQUIVALENT VISCOUS DAMPING FOR
NONVISCOUS ENERGY DISSIPATION

There are many forms of nonviscous damping found in applications;
for example, Coulomb friction, where the damping force is not pro-
portional to the velocity. In such cases, it is useful to determine equiv-
alent viscous damping so that the linear analysis developed in previous
sections can be used.

Let W,, be the energy dissipated by nonviscous damping per
cycle of oscillation having an amplitude A and a frequency w. Then,
the equivalent viscous damping c., is defined by equating W, with
the energy dissipated by equivalent viscous damper per cycle of
oscillation having the same amplitude A and frequency w. Using
Equation 1.2.26,

TCoqA? = Wy, (2.7.1)
or
Wi
g = — 2.72
Ceq TwA? ( )

If the damping force is f;(¢), then the energy dissipated per cycle of
oscillation is calculated as follows:

Wy, = y§ Fu(Odx (2.7.3)

It should be noted that the integral in Equation 2.7.3 is evaluated for
one complete cycle of oscillation. A typical plot of f;(¢) versus dis-
placement x(¢) is shown in Figure 2.7.1. Hence, the integral on the
right-hand side of Equation 2.7.3 is the shaded area in Figure 2.7.1. In
other words, the shaded area is the energy dissipated (W,,) per cycle
of oscillation.

Example 2.7.1 Forced Response of a Frictionally Damped Spring—
Mass System

Consider a spring-mass system in Figure 2.7.2 where one side of the
mass is pushed against the wall by the normal load N. Assuming that
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Ja(®

§ fa (t)dx

x(t)

Figure 2.7.1 Damper force f;(¢) versus oscillatory displacement x(r)

the coefficient of friction is , the friction force f;(¢) will be 4N in the

direction opposite to the velocity x(¢). The external force on the mass

is fo sinwt. It is assumed that the steady state response is sinusoidal,

that is,

x(t) = Asin(wt — ¢)

where amplitude A and phase ¢ are to be determined.

—

Coefficient of friction

#\

m

ks

Static
—— equilibrium

()
ﬁj

Normal load

Jfo sin wt

(2.7.4)

Figure 2.7.2 Frictionally damped spring-mass system under sinusoidal excitation



130 Vibration of Mechanical Systems

Ja(®)
unN

A A x(?)

—uN

Figure 2.7.3 Coulomb friction force f;(¢) versus steady state displacement x()
Figure 2.7.3 shows the friction force versus the steady state dis-

placement plot. Therefore, the energy dissipated per cycle of oscilla-
tion is

W, = y§ fi(H)dx = 4uNA (2.7.5)

From Equation 2.7.2, the equivalent viscous damping is given by

4uN
Ceq = m (276)

Using the equivalent viscous damping c.,, the system shown in Fig-
ure 2.7.2 can be approximated as a standard spring—mass—damper sys-
tem shown in Figure 2.7.4.

The application of Equation 2.3.19 yields

fo

A= 2.7.7
[k — o T g 77
Substituting Equation 2.7.6 into Equation 2.7.7,
1 < 4 N)2 05
= Pt __Ah/ (2.7.8)

kloa-ry
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x(1)

m
ﬂfo sin wt

Figure 2.7.4 Spring-mass system with the equivalent viscous damper

where r is the frequency ratio w/w,. For the amplitude A to be a real
number, it is required that
4uN

The inequality in Equation 2.7.9 is the condition for the validity of
the equivalent viscous damping approach. From Equation 2.7.8, the
following results are derived:

a. Atresonance condition (r = 1 or w = w,), the steady state ampli-
tude of vibration is unbounded. In other words, Coulomb fric-
tion damping is unable to bring any change to the response of a
spring—mass system. This is a reflection of the fact that the energy
dissipated by Coulomb friction per cycle is proportional to the
amplitude. Therefore, the Coulomb friction is a weaker form of
damping in comparison with the viscous damping for which the
energy dissipated per cycle is proportional to the square of the
amplitude.

b. At nonresonance condition (r # 1 or w # w,), the steady state
amplitude of vibration does get reduced due to Coulomb friction,
when compared with the amplitude of an undamped system.
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EXERCISE PROBLEMS

P2.1 Consider the system shown in Figure P2.1a where a = 25 cm,
£1 =50 cm, and ¢, = 30 cm. When the force f(t) is a step function of
magnitude 1 N, the response is as shown in Figure P2.1b. Determine
the mass m, the stiffness k, and the damping constant c.

—

VAU

-l
. 0 >

| m

' j\“T"

Massless
- and
rigid bar

Figure P2.1a Spring-mass-damper system subjected to step forcing function

0.018

0.016 /\

0.014 /\
0.012 [ \ /\

0.01

0.006

0.004

Displacement of mass (meter)

0.008 / \/
L
|
|

0.002

0 1 2 3 4 5 6 7
Time (sec)

Figure P2.1b Unit step response for system in Figure P2.1a
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P2.2 Consider a spring-mass-damper system (Figure P2.2) with
meq = 100kg, k.; = 10,000 N/m, and c.; = 20 N-sec/m.

my |m2|

meq
J Static equilibrium

|

>k

C€q|___| ikeq ()
I

Figure P2.2 Spring-mass-damper system

It is required to place a 10 kg mass on the main mass i, such that
the new static equilibrium is reached without any vibration. Develop
a strategy to achieve this goal. You are allowed to use two separate
masses my and ny, such that my 4+ m, = 10kg.

P2.3 Consider the system shown in Figure P2.1a where a = 25 cm,
¢1 = 50 cm, and ¢, = 30 cm. Here, kK = 1,100N/m and 0.5kg < m <
2kg. The force f(t) is a step function.

Find a value of damping constant ¢ such that the steady state is
reached without any overshoot.

P2.4 Consider the system shown in Figure P1.12.

a. First the damper is detached and the mass is excited by a force
f(t) = 20 sin weN. Find and plot responses when o = 0.8wj,, w,, and
1.5w,. Assume that the initial conditions are zero. Compare your
results from analysis to those from MATLAB ODE23 or ODE45.

b. Reattach the damper, and the mass is again excited by a force f(¢) =
20sin wtN. Find and plot responses when w = 0.8w,, w,, and 1.5w,.
Assume that the initial conditions are zero. Compare your results
from the analysis to those from MATLAB ODE?23 or ODEA45.

Also, show the phase lags of the responses in your plots.
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P2.5 Consider arotor on a massless and rigid shaft, which is supported
by ball bearings at the ends (Figure P2.5).

R

Bearing || \ Bearing
f Massless
Rotor with mass = m and
and eccentricity = e rigid shaft

Figure P2.5 Rotor on massless and rigid shaft

The mass of the rotor is 10 kg and the eccentricity is 0.5 cm. If
the operating speed of the rotor is 4,200 rpm, what should be the
stiffnesses of the bearings such that the amplitude of rotor vibration

does not exceed 0.05 cm?

P2.6 Consider a rotor on a massless and flexible steel shaft, which is
simply supported at the ends (Figure P2.6).
t ‘
2 2
e

N

f Simply supported shaft

Rotor with mass = m

Figure P2.6 Rotor on massless and flexible shaft

The mass of the rotor is 10 kg and the eccentricity is 0.5 cm. The
length and the diameter of the shaft are 50 cm and 5 cm, respectively.

a. Compute the critical speed of the rotor.
b. If the rotor operates at critical speed, how much time will it take
for the maximum bending stress in the shaft to be about 70% of its

yield stress? Assume that the rotor starts from rest.
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c. Assuming that the rotor starts from rest, suggest an angular accel-
eration of the rotor to reach a speed that equals two times the criti-
cal speed. It is desired that the maximum bending stress in the shaft
is below 50% of its yield stress. Verify your result using numerical
integration of differential equation.

d. For part c, plot the force transmitted to each support as a function
of time.

P2.7 An instrument with mass = 13 kg is to be isolated from aircraft
engine vibrations ranging from 18,00 to 2,300 cpm. What should be
the stiffness of an isolator for at least 65% isolation? Assume that the
damping ratio is 0.045.

Assuming that the initial conditions are zero, demonstrate the per-
formance of your isolator for both the extreme frequencies (1,800 and
2,300 cpm) using the MATLAB routine ODE23 or ODEA45. For each
frequency, plot displacements of the radio and the support in a single
figure. Then, also verify the analytical expression of the phase of the

steady state response of the instrument.

—|— Massless

and
rigid bar

.
PR . / T "
— @
a e
o — f

1 y(t) = ygsin ot

Figure P2.8 A spring-mass—damper system with sinusoidal base displacement

P2.8 Determine the amplitude and the phase of the steady state
response of the mass m in Figure P2.8.

P2.9 A vehicle with mass m., = 1,050kg and suspension stiffness
keq = 435,000N/m is traveling with a velocity V on a sinusoidal
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road surface with amplitude = 0.011 m and a wavelength of 5.3 m
(Figure P2.9).

a. Determine the critical speed of the vehicle.

b. Select an appropriate amount of damping for the suspension
system.

c. With the damping selected in part b, should the vehicle be oper-
ated above or below the critical speed so that the amplitude of the
vehicle is small? Justify your answer.

d. With the damping selected in part b, should the vehicle be oper-
ated above or below the critical speed so that the amplitude of the
vehicle is small relative to the road profile? Justify your answer.

Road profile

Figure P2.9 A vehicle moving over a rough road

P2.10 The natural frequency and the damping ratio of a vibrometer
are 6 Hz and 0.22 Hz, respectively. What is the range of frequencies
for the measurement error to be below 3%?

Corroborate the validity of your design using MATLAB ODE23
or ODEA4S5 for a signal frequency. Show the signal that your instru-
ment will produce after it has been attached to the vibrating structure.

P2.11 An accelerometer with mass = 0.01 kg and a damping ratio =
0.707 is to be designed. What should be the undamped natural
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frequency of the system so that the measurement error never exceeds
2%? The vibration signal, which is to be measured, can have a fre-
quency as high as 200 Hz.

Corroborate the validity of your design using MATLAB ODE23
or ODEA4S5 for the signal frequency = 80 Hz. Show the signal that your
instrument will produce after it has been attached to the vibrating
structure.

P2.12 The force-deflection curve for a structure is experimentally
obtained (Figure P2.12). What is the equivalent viscous damping if
the frequency of oscillation is 100 Hz?

Force (N)

794

-0.53 Deflection (mm)

-794

Figure P2.12 Force-deflection curve



RESPONSES OF AN SDOF
SPRING-MASS-DAMPER
SYSTEM TO PERIODIC AND
ARBITRARY FORCES

In Chapter 2, the response has been calculated when the excitation is
either constant or sinusoidal. Here, a general form of periodic exci-
tation, which repeats itself after a finite period of time, is considered.
The periodic function is expanded in a Fourier series, and it is shown
how the response can be calculated from the responses to many sinu-
soidal excitations. Next, a unit impulse function is described and the
response of the single-degree-of-freedom (SDOF) system to a unit
impulse forcing function is derived. Then, the concept of the convo-
lution integral, which is based on the superposition of responses to
many impulses, is developed to compute the response of an SDOF
system to any arbitrary type of excitation. Last, the Laplace transform
technique is presented. The concepts of transfer function, poles, zeros,
and frequency response function are also introduced. The connection
between the steady-state response to sinusoidal excitation and the fre-
quency response function is shown.

3.1 RESPONSE OF AN SDOF SYSTEM
TO A PERIODIC FORCE

The procedure of a Fourier series expansion of a periodic function is
described first. The concepts of odd and even functions are introduced
next to facilitate the computation of the Fourier coefficients. It is also

shown how can a Fourier series expansion be interpreted and used

138



Responses of an SDOF Spring-Mass-Damper System 139

f(

=27 T 0 T 2T ar ¢

Figure 3.1.1 A periodic function

for a function with a finite duration. Last, the particular integral of an
SDOF system subjected to a periodic excitation is obtained by com-
puting the response due to each term in the Fourier series expansion

and then using the principle of superposition.

3.1.1 Periodic Function and its Fourier Series Expansion

Consider a periodic function f(¢) with the time period 7, that is, the
function repeats itself after time 7. Therefore,

f+nT)=f@); n=12,3,..., (3.1.1)
and
ft—nT)=f@k);, n=12,3,..., (3.1.2)

It should be noted that a periodic function is defined for —oo < ¢ < oo
(Figure 3.1.1). Sine and cosine functions are the simplest examples of
periodic functions.

The fundamental frequency w of a periodic function with the time
period T is defined as follows:

27
= — 313
0= (3.13)

The Fourier series expansion of a periodic function f(¢) is defined as
follows:

f(®) =ao+ i ay cos(nwt) + i by sin(nwt) (3.14)

n=1 n=1
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where

/2

/f(t)dt = / f(t)dt (3.1.5)

—T/2

T2

ff(t) cos(nwt)dt = / f(t)cos(nwt)dt  (3.1.6)

—T/2

and

772

/f(t) sin(nwt)dt = / f () sin(nwt)dt (3.1.7)

—T/2

Derivations of Equations 3.1.5-3.1.7 are based on the following facts:

a. Integrals of cosine and sine functions over the time period T is
zero, that is,

T 772
/ cos(nwt)dt = / cos(nwt)dt=0; n#0 (3.1.8)
0 -T2

T T2
/sin(ﬁa)z)dt = / sin(fwt)dt =0 (3.1.9)
0 )

b. Orthogonality of cos nwt and sin £wt in the following sense:
T 772
/ cos(nwt) sin(fwt)dt = / cos(nwt) sin(fwt)dt =0 (3.1.10)
0 -T2

c. Orthogonality of sin nwt and sin £wt in the following sense:

T 772
/ sin(nwt) sin(fwt)dt = / sin(nwt) sin(fwt)dt =0; n#4¢
0 )

(3.1.11)
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d. Orthogonality of cos nwt and cos £wt in the following sense:

T /2
/ cos(nwt) cos(Ywt)dt = / cos(nwt) cos(fwt)dt =0; n# £
0 -T2

(3.1.12)
The expression for ay is derived by integrating both sides of Equation
3.1.4 over a full time period as follows:

T T 00 T 0 T
/f(t)dt: /aodt—i—Zan /cos(na)t)dt—l—Zb,, /sin(na)t)dt
0 0 n=l 0

n=1
(3.1.13)
Using Equations 3.1.8 and 3.1.9,
T
ff(t)dt=a0T+0+0 (3.1.14)
0

It is easily seen that Equation 3.1.13 yields Equation 3.1.5.
The expression for a, is derived by multiplying both sides of Equa-
tion 3.1.4 by cos(¢wt) and then integrating over a full time period as

follows:
T T o T
/f(t) cos(fwt)dt = /ao cos((cot)dt—i—Za,,/cos(nwt) cos({wt)dt
0 0 n=l
~ T
+3 b, / sin(not) cos(fwr)dt (3.1.15)
n=1 7

Using Equations 3.1.8-3.1.12,

T T
/f(t) cos(wt)dt = 0+ a, / cos’(Lwt)dt 4+ 0
0 0

T
- % 1+ cos2ewt)dt = %‘T (3.1.16)
0
It is easily seen that Equation 3.1.16 yields Equation 3.1.6. It should
also be noted that the equation (3.1.4) is multiplied by a, where ¢ can
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be any value from 1 to co. The subscript £ is chosen to be different
from n, which is a counter for the summation X.

The expression for b, is derived by multiplying both sides of Equa-
tion 3.1.4 by sin(fwt) and then integrating over a full time period as

follows:
T T ~ T
/ f(®) sin(fwt)dt = / ap sin(fwt)dt + Zan f cos(nwt) sin(Lwt)dt
0 0 n=l
+ ) by f sin(not) sin(fot)dt (3.1.17)
n=1

Using Equations 3.1.8-3.1.12,

T

/ F(0) sin(Can)dt = 0+ 0+ by / sin(Lof)dt

N|®

T
by

/1 — cos(2lwt)dt = 7T (3.1.18)

0

It is easily seen that Equation 3.1.18 yields Equation 3.1.7.

3.1.2 Even and Odd Periodic Functions

For an even function g, (),

ge(t) = ge(—1) (3.1.19)

Because of the property in Equation 3.1.19,

772 772

/ ge(dt =2 / ge(t)dt (3.1.20)

-T2 0

Cosine functions are even functions because cos(nwt) = cos(—nwt).
For an odd function g,(¢),

8o(t) = —go(—1) (3.1.21)
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Even x Even = Even
EvenxOdd = 0Odd
Odd x Even = Odd
Odd x Odd = Even

Figure 3.1.2 Multiplication of odd and even functions

Because of the property in Equation 3.1.21,

Iy
/ go(t)dt =0 (3.1.22)
~T/2
Sine functions are odd because sin(nwt) = — sin(—nwt). When odd

and even functions are multiplied among each other, the result can
be either odd or even functions (Figure 3.1.2).

Fourier Coefficients for Even Periodic Functions

For an even periodic function, the computational effort needed to
obtain the Fourier coefficients can be significantly reduced. First,
using Equation 3.1.20,

172 172
f(dt = fdet = f(dt (3.1.23)
/ r [ron=gf

Since cosine is an even function, f(¢) cos(nwt) will be an even function
according to the information in Figure 3.1.2. Therefore, using Equa-
tion 3.1.20 again,

T/2

a, = /f(t) cos(nwt)dt = / f(¥) cos(nwt)dt
7T/2
72

= ;/f(t) cos(nwt)dt (3.1.24)
0



144 Vibration of Mechanical Systems

~v

Figure 3.1.3 An even periodic function

Since sine is an odd function, f(¢)sin(nwt) will be an odd function
according to the information in Figure 3.1.2. Therefore, using Equa-
tion 3.1.22,

72

/f(t) sin(nwt)dt = / f(®O)sin(nwt)dt =0 (3.1.25)

~12

Example 3.1.2: Fourier Series Expansion of Triangular Waveform
Consider the even periodic function shown in Figure 3.1.3. Therefore,

by=0; n=1,23,..., (3.1.26)

To evaluate the integrals for ap and a, in Equations 3.1.23 and 3.1.24,
the function f(¢) is defined between 0 and 7/2 as follows:

2A T
f)= —t=—t 0<t=<—= 3.1.27
Uo T/2 7" V=153 (3.1.27)
Using Equation 3.1.23,
2 124 4A (T\’1 A
=— | =tdt=—= (=) === 3.1.28
o T/ T T2<2> 272 (3.1.28)
0
Using Equation 3.1.24,
72
4/2Atcos( 1)dt 84 [sm( 1)+ —— ! cos(nwt) "
—_ P n = — n n
7] T @ 7 Lnw T ey |
0

(3.1.29)
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or
a, = 8A 1 sin noT + ! cos nol ! "

" 2noT 2 (nwT)? 2 (noT)* ]|,
(3.1.30)

Because wT = 27 (Equation 3.1.3)
8A ! sin(nr) + 1 cos( ) — ! (3.1.31)
a, = 1y, Sin(nm nw) = g 1

For odd and even n, cos nt = —1 and +1, respectively. And sinnmr =0
for all n. Therefore,

4A
a, = _nZ_nZ’ I’l:1,3,5,..., (3132)
and
a,=0;, n=2,4,6,..., (3.1.33)

Therefore, the Fourier series expansion is

4 4A 4A
foy==- = —5 coswt — 902 cos 3wt — 5.2 cosSwt — -+ (3.1.34)
Fourier Coefficients for Odd Periodic Functions
For an odd periodic function, the computational effort needed to
obtain the Fourier coefficients can also be significantly reduced. First,
using Equation 3.1.22,

T/2

/ f)dt = / f(tdt = (3.1.35)

—T/2

Since cosine is an even function, f(¢) cos(nwt) will be an odd function
according to the information in Figure 3.1.2. Therefore, using Equa-
tion 3.1.22 again,

/2

/ F() cos(nand = = / (&) cos(nanydi =0 (3.1.36)

-T2
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-T _5 A

~ v

2
Figure 3.1.4 Square waveform: An odd periodic function
Since sine is an odd function, f(¢) sin(nwt) will be an even function

according to the information in Figure 3.1.2. Therefore, using Equa-
tion 3.1.20,

T T2
b, = ; / () sin(nwt)dt:% f f(0) sin(nwt)dt
0 )
T2
_ ; / () sin(not)dt (3.1.37)
0

Example 3.1.3: Fourier Series Expansion of a Square Waveform
Consider the square waveform (Figure 3.1.4), which is an odd periodic
function. Therefore,

ay =20 (3.1.38)
and
a, =0, n=1,2,3,..., (3.1.39)

To evaluate the integrals for b, in Equation 3.1.37, the function f(¢) is
defined between 0 and 7/2 as follows:

fO=4; 0<t< (3.1.40)
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fot
0 tq :

Figure 3.1.5 A finite duration function

Using Equation 3.1.37,

/2

4 4A n1|""?
by = — / Asin(notydr = A4 [ _costren)
T T nw 0
0
4A noT
=—| = — 1 3.1.41
an[ cos< 2>+i| ( )
Because T = 27 (Equation 3.1.3),
2A
b, = —(1 — cosn) (3.1.42)
nmw
For odd and even n, cosnw = —1 and +1, respectively. Therefore,
4A
b,=—; n=1,3,5,..., (3.1.43)
nw
and
b,=0; n=2,46,..., (3.1.44)
Therefore, the Fourier series expansion is
4A 4A 4A
f(t) = —sinwt + — sin3wt + — sinSwt + - - - (3.1.45)
i 3 Sm

3.1.3 Fourier Series Expansion of a Function with a Finite Duration

Consider a function f(¢) of finite duration #; (Figure 3.1.5). Then, it
can also be expanded in a Fourier series by treating this function as
one period of a fictitious periodic function g(z) (Figure 3.1.6).
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A
o g()
Fictitious Fictitious

Figure 3.1.6 Fictitious periodic function corresponding to a finite duration function

The Fourier series expansion of this fictitious periodic function
g(¢) can be defined as follows:

g(t)=ap+ i a, cos(nwt) + i b, sin(nwt) (3.1.46)

n=1 n=1
where the fundamental frequency w is given by

2
w="Z (3.1.47)
la
However, the Fourier series (Equation 3.1.46) should only be used
for 0 <t < t4, as the actual function f(¢) is zero for t < 0 and ¢ > #,.

Therefore,

f(0) =ao+ ) _ancos(nwr) + » bysin(nwr); 0=<t=<ty (3.148)

n=1 n=1

Example 3.1.3: Fourier Series Expansion of a Triangular Pulse
Consider the triangular pulse f(¢) as shown in Figure 3.1.7. The cor-
responding fictitious periodic function g(¢) is shown in Figure 3.1.8,
which is identical to the periodic function shown in Figure 3.1.3.
Therefore, from Equation 3.1.34,

A 4A 4A 4A
f() = 7~ Fcosa)t— WcosSa)t— mcosSwt—m; 0<t<ty
(3.1.49)
where
2
== (3.1.50)
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\4

O ot
2
Figure 3.1.7 A triangular pulse

Example 3.1.4: Turbomachinery Blade Excitation

Consider the rotor and the stator of a turbomachine (Figure 3.1.9).
The schematic drawings of the stator and the rotor are shown in
Figure 3.1.10. The stator consists of four equi-spaced nozzles, with
each nozzle having a 45 degrees sector. The rotor is a bladed disk
with a rotational speed of 2 cps (Hz). When the blade comes in front
of the nozzle, it experiences a constant force p due to fluid flow. The
temporal variation of the force experienced by each blade is periodic

and is shown in Figure 3.1.11.

The force pattern is repeated four times during one full rotation.
As aresult, the time period T of the forcing function is

T= Esec

And the fundamental frequency

2
w= o 8m Qrad/sec

The periodic force shown in Figure 3.1.11 is neither odd nor even. To
evaluate the integrals for ay, a,, and b, in Equation 3.1.4, the function

Fictitious g(1) Fictitious

.
RN
. .
,

IS
RN
1
, 1
, N 1
. N ’, !
., N \
4 1

—Zl‘d —14

Figure 3.1.8 Fictitious periodic function for a triangular pulse



150 Vibration of Mechanical Systems

Rotor
Stator .

¥
—
Fluid flow
Q
Shaft.»
—
Fluid flow

Figure 3.1.9 Fluid flow through a rotor/stator

f(¢) is defined as follows:

p for 0=<t<0.5T
t)= 3.1.51
uo {O for 05T <t<T ( )
Using Equation 3.1.5,
) 72
p
= - dt+0 | == 3.1.52
w= | [par+o] =2 (3152)
0
Using Equation 3.1.6,
772
2 2p [sin(nwt)]|"* 2 T
an=—, /pcos(na)t)dt+0 b M — 2P n (222
T T nw 0 noT 2
0
(3.1.53)
Because wT = 21,
a, =0 (3.1.54)
Stator Nozzle# 4 Rotor Blades
'y 1
Nozzle# 3 @ Nozzle# 1 *

Nozzle# 2

Figure 3.1.10 Descriptions of rotor and stator
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fnt

0.57 |

i 4

-7 =0.5T T
‘0.2597l sec O lsec

‘ One full rotation

Figure 3.1.11 Force experienced by each blade

Next, using Equation 3.1.7,

2 [ 7 2 (not) 7| 1?
b, = = /psin(nwt)dt—i—O _ by _cosnel)
T T nw 0
0
2p noT
= |- —_— 1 3.1.55
an[ cos(2 >+} ( )
Because wT = 2,
by = £-(1 = cosnr) (3.1.56)
nmw
For odd and even n, cosnr = —1 and +1, respectively. Therefore,
2
bo=2L, n=135,..., (3.1.57)
niw
and
b,=0, n=2,4,6,..., (3.1.58)
Therefore, the Fourier series expansion is
2 2 2
O =2 + Lsinot + 22 sin3wt + 2L sin5wt +--- (3.1.59)
2 0w 3 Sm

3.1.4 Particular Integral (Steady-State Response with Damping)
Under Periodic Excitation

Consider the spring—mass—damper system subjected to a periodic
force f(¢) with the fundamental frequency w. Using the Fourier series
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expansion, the differential equation of motion can be written as

[o.¢] [o.¢]
MegX + CeqX + kegx = f(t) = ap + Z a, cos(nwt) + Z b, sin(nwt)
n=1 n=1

(3.1.60)
First the particular integral will be obtained for each term on the right-

hand side separately.

a. Constant term ag
Let the particular integral due to the constant term be xj.
Then,

MeqXo + CegXo + kegXo = ag (3.1.61)
The particular integral in this case will be a constant p, that is,
Xo=p (3.1.62)
Substituting Equation 3.1.62 into Equation 3.1.61,
keqgp = ao (3.1.63)
because p = 0 and p = 0. In other words,
ao

Xo=p=,— (3.1.64)
eq

b. Term a, cos(nwt)
Let the particular integral be x.,(¢). Then,

MegXen + CegXen + KegXen = an cos(nwt) (3.1.65)
Using Equation 2.3.25,
an/keq
Xen(t) = cos(nwt — ¢, 3.1.66
O = Tmmr gy et =60 (169
where

2&nr

m (3-1-67)

¢n = tan™!
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and
r=— (3.1.68)
c. Term b, sin(nwt)

Let the particular integral be x,(f). Then,

MeqXsn + CeqXon + KegXsn = by sin(nwt) (3.1.69)
Using Equation 2.3.25,
b,/ k. .
Xa(t) = [ Keq sin(nwt — ¢,,) (3.1.70)

V=7 + 2enry?
where ¢,, and r are given by Equations 3.1.67 and 3.1.68.

Having obtained the steady-state response or the particular inte-
gral due to each term on the right-hand side of Equation 3.1.60, the

complete particular integral x,(¢) is obtained by using the principle of

superposition:
Xp(1) = X0+ Y _ Xen(t) + D Xeu() (3.1.71)
n=1 n=1
or
an/keq

os(nwt — ¢y,)

XP(I) + Z \/(1 n2r2)2 T (Zé'nr)Q C

bu/ ke )
Z /Keq sin(nwt — ¢,,) (3.1.72)
/(1= n?r2)? + (2&nr)?
where ¢,, and r are given by Equations 3.1.67 and 3.1.68.
It should be noted that x,(¢) will be the steady-state response when

Ceq > 0.

Example 3.1.5: Steady-State Response of a Turbine Blade

Consider the turbomachinery problem of Example 3.1.3. The turbine
rotates at 60 Hz. The natural frequency of the system is 160 Hz. Find
the maximum steady-state amplitude in terms of p/k., assuming that
the damping ratio & is 0.01.
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Using Equations 3.1.59 and 3.1.72,

t 1 nd 2
@ 1 /(n) sin(not — ¢,) (3.1.73)
p/keq 2 n=13... \/(l — n2r2)2 + (2%‘”1’)2
where
w 60 3
r o ~ 160 8 and £€= 0.0
n=1
2
/n —=23272; ¢ = 0.0087 rad
\/(1 —n?r2)2 + (2&nr)?
n=3:
2/n —2.5008; ¢ =3.0571rad
\/(1 —n?r2)2 + (2&nr)?
n=>5:
2
/n —=0.1590; ¢s = 3.1267rad
\/(1 —n?r2)? + (2&nr)?
n=717:

2/n
V(= n2r2)2 + 2&nr)?
Neglecting n = 7 and higher terms,

—0.0485; ¢ = 3.1327rad

X0 s

08
sin(Bwt — ¢
D/ ke ( 3)

2.3272
+ T S]n(a)t — ¢1) +

0.1590
_l_

sin(Swt — ¢s)

The plot of x,(t)/(p/keq) is shown in Figure 3.1.12. The maximum
value of the steady-state response x,(f)/(p/ keq) is 2.3.

3.2 RESPONSE TO AN EXCITATION WITH
ARBITRARY NATURE

The response to an arbitrary type of excitation is obtained via an
impulsive force, which has a large magnitude and a small duration.
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0 0.02 0.04 0.06 0.08 0.1
Time (sec)

Figure 3.1.12 Steady-state response with n = 5 in Equation 3.1.73

The time integral f of an impulsive force f(¢) is finite, and is defined
as the impulse of the force:

f= / f(e)dt (3.2.1)

In other words, the impulse of a force f is the area under the force—
time plot. For a unit impulse, f = 1. Drawing an analogy with this
impulsive force, a mathematical impulse unit function is defined as
follows.

3.2.1 Unit Impulse Function §(t — a)

Consider a constant function of the magnitude 1/¢ of duration &
(Figure 3.2.1a). Therefore,

1
—&

e=1 (3.2.2)

f= [ =

The function shown in Figure 3.2.1a has a unit impulse. Having ¢ — 0,
the unit impulse function (¢ — a) is obtained (Figure 3.2.1b) with the
following properties:
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A £ A
-« T ot —a) 4 TM
' , <
‘1 £—0
a £ > a >
t t
(a) (b)
Figure 3.2.1 Unit impulse function
L. 8(t—a)=0 when t+#a (3.2.3)
2. 8(t — a) = oo when ¢ = a, but with the following constraint
o0
/a(t —a)dt=1 (3.2.4)
0
3. For any function g(¢),
o0
/ g(Hs(t —a)dt = g(a) (3.2.5)

0
It should be noted that the unit impulse function is not necessarily a
force function. It could be defined for any variable, such as displace-
ment and velocity.

3.2.2 Unit Impulse Response of an SDOF System
with Zero Initial Conditions

Consider a spring-mass—damper system subjected to the unit impulse
force §(¢) (Figure 3.2.2). The differential equation of motion is

MegX + CogX + kegx = 5(2) (3.2.6)

This unit impulse force is applied at ¢ = 0. Since the duration of this
impulse function is zero, symbols 0~ and 0" are introduced to denote
instants just before and after the application of the force, respectively.
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‘i |

Static equilibrium

q

x(7)

o(t)
Figure 3.2.2 Spring-mass-damper subjected to unit impulse force
Zero initial conditions will then be represented as
x(07)=0 and x(07)=0 (3.2.7)
Due to the impulsive force,
change in momentum = m ¥(07) — mx(07) = mx(07)  (3.2.8)

Since the change in the momentum equals the magnitude of the
impulse,

mx(07) = 1 (3.2.9)
or,
, 1
07 = (3.2.10)

In other words, the velocity has changed instantaneously from 0
to 1/m. It can be shown that the displacement remains unchanged,
that is,

x(0") =x(07) =0 (3.2.11)
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Note that there is no force for ¢ > 0*. Hence, the response due to
the unit impulse force can be obtained by solving the following free

vibration problem:

1
MegX + CoqX + kegx =0;  x(07) =0 and x(07) = — (3.2.12)
m

Case I: Undamped and Underdamped System (0 < & < 1)
From Equation 1.5.19, the free vibration of the underdamped system

is given by
x(t) = €_Sw”t(A1 cos wyt + By sin wyt) (3.2.13)
where

A =x(07) =0 (3.2.14)

_H(0) +Ew,x(0) 1
- wq - mawgq

By

(3.2.15)
Substituting Equations 3.2.14 and 3.2.15 into Equation 3.2.13,
1
x(f) = ——e 5" sin wyt (3.2.16)
mawgq

The unit impulse response (the response due to the unit impulse force)
of an underdamped system is given by Equation 3.2.16 and will be
represented by a new symbol g(¢), that is,

1
) = —e 5@ sin wyt 3.2.17
g(1) g€ sin wy ( )

For an undamped system (¢ = 0),
1

mwy,

gt = sin wyt (3.2.18)

Case II: Critically Damped (§ = 1or c.q = c.)
From Equation 1.5.38, the free vibration of the critically damped sys-
tem is given by

x(1) = x(0%)e™" 4+ [%(07) + w,x(0") Jre™" = %te_“’”’ (3.2.19)
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The unit impulse response (the response due to the unit impulse force)
of a critically damped system is given by Equation 3.2.19 and will be
represented by a new symbol g(t), that is,

1
g(t) = n—qte“”"’ (3.2.20)

Case I11: Overdamped (§ >1or c.q>c.)
From Equation 1.5.41, the free vibration of the overdamped system is

given by
x(t) = Are™ + Bre™ (3.2.21)
where
s1=—Ewp + 0, /E2—-1<0 (3.2.22)
§o = —Ew, —wp/E2 -1 <0 (3.2.23)

Using Equations 1.5.45 and 1.5.46,

_ 5x(0) —x(07) 1 _ 1
B §3 — 81 C om(s2—51)  2mwp/EX — 1

—six(0H) +x(01) 1 1 (3.2.25)

§2 — 81 Com(sy —s1) _2mw,,,/§2 -1

The unit impulse response (the response due to the unit impulse force)

Ay

(3.2.24)

B, =

of an overdamped system is given by Equation 3.2.21 and will be rep-
resented by a new symbol g(¢), that is,

(3.2.26)

([) _ ;(651[ _ eSzt)
8= dmwnJE2 — 1

Nondimensional unit impulse responses, g(¢)mw,, are plotted in
Figure 3.2.3 for all cases of damping.
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Figure 3.2.3 Unit impulse response for undamped, underdamped, critically damped,
and overdamped systems

3.2.3 Convolution Integral: Response to an Arbitrary
Excitation with Zero Initial Conditions

Consider a forcing function f(¢) of an arbitrary nature (Figure 3.2.4).
Let us determine the response at t = t,. First, the following points
should be noted:

a. The entire forcing function before ¢ = £y will have an influence on

the response at t = &.

fnt

Figure 3.2.4 An arbitrary forcing function
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b. The forcing function after ¢t = #, will not have any influence on the
response at t = f.

The forcing function before the instant ¢ = ¢y is divided into many
strips of small time width Az. Each strip can be viewed as an impulse
function as shown in Figure 3.2.4. Let us consider one such impulse

function at r = t. The magnitude of the impulse is
fo =f(r)Ar (3.2.27)
The contribution of this impulse to the response at ¢ = f; is
x(t) = glto — ©)fc = glto — T)f (t)AT (3.2.28)

where g(.) is the unit impulse response. The response at t = t; is then
found by summing up the contributions from all the impulses (strips
of width At ):

T=th—AT T=th—At
xw)= Y, x(w)= ) gl—1)f(r)Ar (3.2:29)
=0 =0

When At — 0, the summation in Equation 3.2.29 becomes the inte-
gral as follows:
=
x(h) = / gty — o)f(r)dr (3.2.30)
=0
Since ¢ is arbitrarily chosen, the response at any time ¢ is given by
T=t
x(t) = / gt—1)f(r)dr (3.2.31)
=0
This is the convolution integral and yields the response for zero initial
conditions. This represents the complete solution, that is, it contains
both the homogeneous part and the particular integral.

Example 3.2.1: Step Response of an Undamped System
Consider the undamped spring—mass system subjected to a step forc-
ing function (Figure 3.2.5). Assume that the initial conditions are
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10 s

x(1)
s
7 fo

Static equilibrium

eq

Figure 3.2.5 Undamped SDOF system subjected to step forcing function
zeros. Then,
f)=fy fort>0 (3.2.32)

Using Equations 3.2.18, 3.2.31, and 3.2.32,

=t

(1) = / mi) sin(wn(t — ))fodt = ’ﬁ) [

=0

cos(w,(t — 1)) T~

Wn :|r_0
(3.2.33)
After some simple algebra,

x(t) = I’I{Z)Z [1 — cos(wut)] = % [1 —cos(w,t)]; t=>0 (3.2.34)

n

Note that Equation 3.2.34 is identical to Equation 2.1.21 with & = 0.

Example 3.2.2: Underdamped SDOF System Subjected to a Rectan-
gular Pulse

Consider an underdamped spring-mass—damper system in which the
mass is subjected to the force f(¢) as shown in Figure 3.2.6. Assuming
that all initial conditions are zero, find the response using the convo-
lution integral.

The differential equation of motion is

MegX + CogX + kegx(t) = f(1); x(0)=0, x(0)=0 (3.2.35)
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S S(0) 4
x(1) T
1 mgy pl"

e

Static equilibrium
Co,
keg d
0 a b :

Figure 3.2.6 Underdamped SDOF system and rectangular pulse

Casel:0<t<a

=t =t
x(1) = /g(t—r)f(r)dr = /g(t— 7)0dt =0  (3.2.36)
=0 =0
Casell:a <t<b
=t T=a =t
x(t) = / gt —1)f(r)dr = / g(t—1)0dr + / g(t—rt)Pdt
=0 =0 T=a
=t
= / g(t— 1) Pdr (3.2.37)
Therefore,
=t P =t
x(t) = f g(t—t)Pdt = / e 5= sin(wy(t — 7))dt
Meqwd
(3.2.38)
Substituting v = ¢ — v into Equation 3.2.38,
v=t—a
x(1) = / e 5 sin(wgv)dv (3.2.39)
Meqq

v=0
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or
P e—fwnv . v=t—a
x(t) = —Swy, SIN WV — wg COS wqV
(3.2.40)
or
P e*éwn(lfa) .
x(f) = — s— (§wpsinwy(t — a) + wq cos wq(t — a))
MeqWd w;;
P
> (3.2.41)
me‘Iwn

Simplifying Equation 3.2.41,

x(t) =

P : [1 _ O 60n=9) sin(wq (f — a) + ¢)} (3.2.42)
wq

eq @y,

where cos ¢ = &

Caselll: t > b

=t
10 = [ s~ ofar
=0
T=a =b =t
= f g(t—1t)0dt + / gt—t)Pdr + / g(t—1)0dr (3.243)
=0 T=a t=b
Therefore,
t=b t=b
(1) = / gt —7) Pdr = / £ sin(walt — 7))dt
MeqWd
(3.2.44)
or
v=I—a
P eson .
t) = —Ew, —
x(1) P |:€260% +a)(21( Ew, Sinwyv — wy coswdv):| .

(3.2.45)
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Simplifying Equation 3.2.45,

x(f) = L [g—f“’"(t‘b) sin(wq(t — b) + ¢)
MegWdwp
— efgwn(tfa) Sin(a)d (l‘ — a) —+ ¢)] (3246)

where cos ¢ = &.

3.2.4 Convolution Integral: Response to an Arbitrary Excitation

with Nonzero Initial Conditions

Consider again the same equivalent SDOF system considered in Sec-
tion 3.2.3, that is,

MegX + CogX + Kegx = f(2) (3.2.47)

Assume that x(0) and/or x(0) are not zero. In this case, the following

two problems are separately solved:
1. Forcing function with zero initial conditions

MegX1 + CogX1 + kegx1 = f(¢); x1(0) =0 and x;(0) =0
(3.2.48)
This problem has already been solved in Section 3.2.3. Therefore,

=t

x(t) = / gt—1)f(r)dr (3.2.49)

=0

2. Nonzero initial conditions without any forcing function

MegXy + CegXa + kegXx2(t) =0;  x2(0) = x(0) and x,(0) = x(0)
(3.2.50)
The problem in Equation 3.2.50 represents the free vibration of a
damped or undamped SDOF system. As seen in Chapter 2, the solu-

tion to Equation 3.2.50 depends on the damping values as follows.
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Case I: Undamped and Underdamped (0 < & <1or 0 < c.4<cc)

x2(f) = e 75" (A1 cos wyt + By sin wgt)

where
A] = X(O)
and
%(0) + £, x(0)
Bj=—r——
w4

Case 1I: Critically Damped (§ = 10r c.q = c.)

x(1) = x(0)e™ " + [%(0) + wpx(0)Jre™ "

Case I1I: Overdamped (§ > 1or c.q > c.)

xz(t) = Aleslt =+ B1€Szt
where

s1=—Ew, +w,/E2—1<0
)= —Ewy —wp/E2—1 <0

_ 52x(0) — x(0)

2 — 81

Aq

and
—s51x(0) + x(0)
S2 — 8

B =

(3.2.51)

(32.52)

(3.2.53)

(3.2.54)

(3.2.55)

(3.2.56)

(3.2.57)

(3.2.58)

(3.2.59)

Last, the solution to Equation 3.2.47 with an arbitrary forcing function

and nonzero initial conditions is

x(1) = x1(2) + x2(2)

(3.2.60)
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x(1) T

Static equilibrium

t =0 Position

Figure 3.2.7 Vehicle moving over a step bump

where x1(¢) is given by Equation 3.2.49 and x,(¢) is given by Equations
3.2.51,3.2.54,and 3.2.55for0 < & < 1,& =1, and & > 1, respectively.
It should also be remembered that the expression of the unit impulse
response g(¢), in the solution to Equation 3.2.49 for x;(¢) is given by
Equations 3.2.17, 3.2.20, and 3.226 for 0 <& <1, £ =1,and § > 1,
respectively.

Example 3.2.3: A Vehicle Past a Step Bump
The differential equation of motion (Figure 3.2.7) is
MegX + kegx = f(1) (3.2.61)
where
F@) = kegy(1) (3.2.62)
Using Equations 3.2.60, 3.2.49, and 3.2.51-3.2.53, the response is
x(t) = x1(t) + x2(t) (3.2.63)

where

=t

x(0) = / gt — 1)f(v)dt (3.2.64)

=0
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and
X () = x(0) cos wyt
Here,
g(t) = sin w,t
Meqy
From Equations 3.2.62 and 3.2.64,
1 =t
x1(t) = / sin(w,(t — ©))keqgy(r)dt
Mgy
=0
=t
1 .
= / sin(w,(t — 7))kegyodt
MeqWn
=0

Evaluating the integral in Equation 3.2.67,
x1(t) = yo(1 — cos wyt)
Last, from Equations 3.2.63, 3.2.65, and 3.2.68,

x(1) = yo(1 — cos wut) + x(0) cos wyt

3.3 LAPLACE TRANSFORMATION

(3.2.65)

(3.2.66)

(3.2.67)

(3.2.68)

(3.2.69)

Consider a function f(#)us(¢) in time-domain where u,(f) is the unit

step function (Figure 3.3.1). In other words,

f(t) for t>0

f(t)”‘*([)z{ 0 for 1<0

The Laplace transform of f(f)u,(¢) is defined as

£(5) = LFOus(0)) = / F(Dedt
0

(33.1)

(33.2)
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ug (1) 1

i 4

Figure 3.3.1 Unit step function

169

And f()u,(¢) is defined as the inverse Laplace transformation of f(s),

that is,

L™ (f(9)) = f(n)us(r)

3.3.1 Properties of Laplace Transformation

a. Linearity

L(afi(1) + Bf2(0) = aL(f1(D) + BL(f2(1))

where o and § are any real or complex numbers.
b. Derivatives

L (%) = SL(f(1)) - £(0)

d’f daf

L (—2) — L) — s£0) — YL 0)

dt dt

c. Integrals

L ( / f(r)dr) = L()
0

d. Shifting in time-domain

L(f(t — a)us(t — a)) = e L(f(1))

(33.3)

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)



170 Vibration of Mechanical Systems

e. Shifting in s-domain
L(ef(Dyuy(1)) = f(s — ) (33.9)

f. Final value theorem
tl_lglo f() = gré sf(s) (3.3.10)

provided sf(s) is analytic on the imaginary axis and in the right
half of the complex s-plane.

g. Convolution integral

L (/ﬁ(t— T)fz(f)df) = L(fi(0)-L(f2(1)) = fi(s)f2(s) (3.3.11)
0

Therefore, the convolution integral in time-domain is equivalent to a
simple multiplication in s-domain.

3.3.2 Response of an SDOF System via Laplace Transformation

The differential equation of motion for the system shown in Fig-
ure 2.1.11s

MegX + CoqX + Kegx = f(2) (3.3.12)

where the nature of forcing function f(z) is arbitrary.
Taking Laplace transformation on both sides,

L(megx + cegX + kegx) = L(f(2)) (3.3.13)
Using the linearity property in Equation 3.3.4,
Meq L(E(1)) + Coq L(X(1)) + keq L(x(2)) = L(f(2))

Using properties in Equations 3.3.5 and 3.3.6,

MeglS(5) — 53(0) — X(0)] + ceg[5(5) — X(0)] + kegx(s) = £(5)
(3.3.14)
or

(MegS® + CegS + keq) x(5) — Megi(0) — (Megs + Ceq)x(0) = f(s) (3.3.15)
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Solving the algebraic Equation 3.3.15,

xX(s) = f(s) (Megs + Ceq)X(0) MeqX(0)
MegS? + CoqS + keg — Megs? +CeqgS+hkeg  MegS? + CegS + keg
(3.3.16)
or,
(o) £(s) . (54 5)x(0) ) (0)
Meg [s2+,%‘;s+%] [s2+,%"qs+%] [s2+%s+,%]
(3.3.17)

Using Equations 1.4.46 and 1.5.12,
/) L _(5+260,)x(0) X(0)
Meq (2 +26wps+@2) (428w +0?) (2 +26wps + @)
(3.3.18)

x(s)=

Last, the response x(t) is obtained by taking the inverse Laplace trans-
formation of x(s).

Example 3.3.1: Rectangular Pulse as the Force

Consider an underdamped SDOF system subjected to the force shown
in Figure 3.3.2. To determine the Laplace transform of the forcing
function f(s), via the table in Appendix C, the function f(¢) is repre-
sented as a difference between the two forcing functions fi(¢) and f>()
shown in Figure 3.3.3, that is,

f(©) = 1) = (1) (3.3.19)

Using the property in Equation 3.3.4,

f(s) = fi(s) = fo(s) (3.3.20)

From the table in Appendix C,

L(us(1)) = % (3.321)
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Figure 3.3.2 Rectangular pulse as a forcing function for SDOF System
Therefore, using the property in Equation 3.3.8,
P
LUA(0) = L(Pus(t — a)) = —e~ (3.3.22)
N
and
P —bs
L(£(1)) = L(Puy(t = b)) = —e (3.3.23)
Therefore, from Equation 3.3.20,
P —as —bs
fls) = ;(e S —e™™) (3.3.24)

With zero initial conditions, Equation 3.3.18 yields
Pe™4s Pet

meqs(s2 +2Ew,s + a)%) B meqs(s2 + 28 wps + a)ﬁ)

x(s) =

(3.3.25)

From the table in Appendix C,

L o2 o
i Zom el |~ T @ SO 1)
(3.3.26)

fl(t)u fz(l‘)u

t

i 4

0 a 0 b

Figure 3.3.3 Rectangular pulse as a difference between two delayed step functions
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where ¢ = cos™' £. Using the property in Equation 3.3.8 and the
result in Equation 3.3.26, the inverse Laplace transformation of Equa-
tion 3.3.25 yields

x(t) — [1 _ ﬂe—éwn(t—a) Sin(wd(t—a) +¢):| L zus(t—a)
wq Meg

eq=n

n . P
- [1 _ O =€) i (g (1 — b) + ¢)} ——uy(t—b) (3.3.27)
wq Meqwy,

3.3.3 Transfer Function and Frequency Response Function

A general second-order differential equation can be written as
X4+ax+ aox(t) = byt + byt + b()u(t) (3328)

where x(¢) and u(¢) are defined as the output and the input of the
system, respectively. Taking Laplace transform of Equation 3.3.28,

s?x(s) — sx(0) — x(0) + a;(sx(s) — x(0)) + apx(s)
= s%u(s) — su(0) — it(0) + by (su(s) — u(0)) + bou(s)  (3.3.29)

Setting all initial conditions (x(0), x(0), u(0), andi(0)) to be zero,
Equation 3.3.29 yields

s2x(s) 4 arsx(s) + apx(s) = bys*u(s) + bysu(s) + bou(s)  (3.3.30)
The transfer function G(s) is then defined as

bys® + bys + b
Gis)= X&) _ o8 +hist by (3331)
u(s) s2 4+ ais+ap
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u(s) x(s)

— G(s) —

Figure 3.3.4 Block diagram

Equation 3.3.11 is represented by a block diagram, shown in Fig-
ure 3.3.4, where

x(s) = G(s)u(s) (3.3.32)

Example 3.3.2: Direct Excitation Problem
For the direct excitation problem, the governing differential equation
is given by Equation 3.3.12. Comparing Equations 3.3.12 and 3.3.28,

u(t) = £(2) (3333)
1
bo=—, b =0, by=0 (3.334)
meq
ke e
gy =9, 4= (33.35)
Meg Meg

x(s) by

= = - 3.3.36
u(s) s2+as+ap ( )

Example 3.3.3: Base Excitation Problem
For the base excitation problem, governing differential equation is
Equation 2.5.3. Comparing Equations 2.5.3 and 3.3.28,

u(t) = y(1) (3.3.37)
eq ke
by=0, b= 9 py= (3.3.38)
Mg Megq
k@ e
ay=—L g = 4 (3339)
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The transfer function is given by

_x(s) _ bis+bo
Cu(s)  s24ais+ag

G(s) (3.3.40)
Significance of Transfer Function
Let u(t) = 8(¢), the unit impulse function. In this case, u(s) = 1 and
Equation 3.3.32 yields x(s) = G(s), where x(s) is the Laplace trans-
form of the response to the unit impulse input under zero initial con-
ditions, known as the unit impulse response. In other words, the trans-
fer function is the Laplace transform of the unit impulse response of
the system. Taking the inverse Laplace transform of Equation 3.3.32,
t
x(t) = /g(t —Du(r)dt (3.3.41)
0

Equation 3.3.41 is the same convolution integral that has been derived
in Section 3.2.3.

Poles and Zeros of Transfer Function
A transfer function G(s) can be written as a ratio of two polynomials
N(s) and D(s):

(3.3.42)

Poles are defined as the roots of the denominator polynomial equa-
tion D(s) = 0, whereas zeros are defined as the roots of the numerator
polynomial equation N(s) = 0 In general, D(s) = 0 is also the charac-
teristic equation. For example, poles are the roots of s> + a;s + ay = 0
for both direct force and base excitation transfer functions (Equa-
tions 3.3.36 and 3.3.40). They are the same as the characteristic roots
defined in Chapter 1. There is no finite zero for the direct force excita-
tion transfer function (Equation 3.3.36). However, there is a real zero
at —by/b; for the base excitation transfer function (Equation 3.3.40).

The transfer function is called stable when all poles are located in
the left half of the complex s-plane (Figure 1.6.1).
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Frequency Response Function

The frequency response function G(jw) is obtained by substituting
§ = jw into the transfer function G(s), where w is the frequency. The
frequency response function for the transfer function in Equation
3.3.40 is given by

by jw + by by + jhw

G 1 = =
(]Cl)) (ja))2+a1ja)+ao (a() —w2)+ja1w

(3.3.43)

For a specified frequency w, G(jw) is a complex number, for which
the magnitude and the phase (or angle) can be expressed as

b2 + b2w2
G(jo)| = Vo 2 (3.3.44)
V(g — ?)? + (a10)?

. 1 ho _ ajw
/LG =tan"! =— —tan”! ———
(jw) = tan by an o

(3.3.45)

When the magnitude in decibels, dB (20log,, |G(jw)|) and the phase
are plotted as a function of the frequency w, the resulting diagrams are
known as Bode plots. The MATLAB routine “bode” can be readily
used to make Bode plots.

For a stable G(s), the magnitude and the phase of the frequency

response function have the following physical significance:

a. The magnitude |G(jw)| is the ratio of the amplitudes of the steady-
state output and the sinusoidal input with frequency w.

b. The angle ZG(jw) is the phase difference between the steady-state
sinusoidal output and the sinusoidal input with frequency w.

Example 3.3.4: Frequency Response Function for Direct Excitation
Problem

The frequency response function for the direct force transfer function
(Equation 3.3.36) is as follows:

by
(jw)* + jayw + ag

G(jow) = (3.3.46)
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For a linear differential equation with characteristic roots in the left
half of the complex plane, the steady-state response x(¢) is sinusoidal
when the input u(?) is sinusoidal. Let

u(t) = ug sin wt (3.3.47)
Then the steady-state response x(¢) will be expressed as
x(t) = Asin(wt — ¢) (3.3.48)

where ¢ is the phase lag between the steady-state response x(¢) and
the input u(¢). The magnitude and the phase of the complex number
G(jw) are related to the steady-state amplitude and the phase as fol-
lows:

|G(jw)| = % (3.3.49)
and
/G(jw) = —¢ (3.3.50)

For the direct force excitation problem, substitution of the parameters
in Equations 3.3.34 and 3.3.35 yields

1
G(jw) = 3.3.51
(jo) (keg — Meq?) + jCeqw ( )
From Equation 3.3.49,
A 1
= = |G(jo)| = (33.52)
L{O 2 2
\/(keq - meqwz) + (Ceq"))
From Equation 3.3.50,
¢ = —/G(jw) = tan~! — 4% (3.3.53)

keg — Meqa?

Note that Equations 3.3.52 and 3.3.53 are same as Equations 2.3.19
and 2.3.20.
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Bode diagram
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Figure 3.3.5 Bode plot for direct excitation problem

Example 3.3.5: Bode Plot via MATLAB
Consider the Example 3.3.2 for which m,, = 1kg, k., =2, 500 N/m,
and c.; = 25N-sec/meter. Construct Bode plots for this system.

Using Equation 3.3.36, the transfer function of the system is

1

Gs)= —
)= 77357 2,500

(3.3.54)
The Bode plots are shown in Figure 3.3.5. The MATLAB program is
given in Program 3.3.1.

MATLAB Program 3.3.1: Bode Plots
num=1;

den=[1 25 2500];
sysG=tf (num, den) ;

bode (sysG)

grid
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EXERCISE PROBLEMS

P3.1 Find the Fourier series expansions of the periodic functions

shown in Figures P3.1a—c.

Half sine wave

VAU /
P

=T 0 T 2T t

Figure P3.1a Periodic function with half sine waves

J@

-T T 0 T T t
2

-P -P

Figure P3.1b Periodic function with triangular waves

AU
P

Figure P3.1c A periodic function with ramps

P3.2 Consider a spring-mass—damper system with mass = 1.2 kg and
damping ratio = 0.05, which is subjected to the periodic force shown
in Figures P3.1a—c. Let the natural frequency of the system be /7.
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a. Determine the steady-state response for each forcing function.
b. Verify your analytical results by numerical integration of the dif-

ferential equations.

P3.3 In Example 3.1.4, the second nozzle is inadvertently closed. Find
the Fourier coefficients of the force experienced by each blade. Also,
find the maximum steady-state amplitude using the natural frequency
and the damping ratio provided in Example 3.1.5.

P3.4 A turbine blade in a rotor of a gas turbine experiences the
force (Table P3.4) during each rotation. An SDOF model of the tur-
bine blade is described in Figure P3.4a where m = 1 kg, k = 80,000
N/m, and ¢ = 3 N-sec/m. The clearance is 0.0002 m. The force f(¢) is
described by data in Table P3.4, where the locations of the pressure
measurements are shown in P3.4b.

Table P3.4 Force (N) as a function of angular position

Locations 1 through 10

7.1990 6.7002 6.5711 6.8254 6.9662 7.9576 5.5987 5.1906 7.2930 9.3493
Locations 11 through 20

9.6712 6.3222 5.8015 9.3643 6.1894 8.2292 9.8344 8.3247 9.3519 5.0496
Locations 21 through 30

5.6850 9.0938 7.1508 9.4516 8.6745 8.4366 6.7306 5.8302 5.7781 5.9556
Locations 31 through 40

7.1123 9.2799 7.4512 9.0797 7.3038 7.2868 7.2534 7.0611 9.5080 5.0279
Locations 41 through 50

6.4870 5.2458 8.4659 8.2505 9.9149 7.7634 7.0004 5.9939 8.1260 8.6668
Locations 51 through 60

6.8794 5.0494 7.0993 8.7683 8.9694 9.5998 9.2236 6.8388 8.1040 8.6564
Locations 61 through 70

5.9695 9.5241 7.8460 8.1589 6.1721 7.7439 9.6579 6.6760 8.2777 6.9595
Locations 71 through 80

8.1366 8.4954 6.9859 7.0681 8.2761 9.1879 6.8580 7.1263 7.9733 7.8287
Locations 81 through 90

8.5827 7.5566 8.8820 7.4467 5.9295 8.5032 9.9135 9.0332 8.5178 7.4248
Locations 91 through 99

5.5731 83243 6.8269 5.7002 7.8339 9.1150 8.3697 9.9972 9.8082
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Figure P3.4a Model of a turbine blade

2
n = number of force measurements

_2
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n

Figure P3.4b Locations of force measurements

Figure P3.4c Angular velocity profile

The gas turbine is stationary. You are in charge of starting the
engine and operating the gas turbine at a steady rotational speed
equal to 60 Hz. Using the velocity profile (Figure P3.4c), determine
the smallest angular acceleration of the turbine so that the blade never
hits the casing.
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At the steady speed of 60 Hz, compute the Fourier coefficients
and the steady-state response analytically. Compare your steady-state
response to that from ODE23 or ODEA45.

P3.5 Consider an SDOF spring-mass—damper system subjected to the
step forcing function (Figures 2.1.1 and 2.1.2).

Using the convolution integral, derive Equations 2.1.21, 2.1.28,
and 2.1.38 for underdamped, critically damped, and overdamped sys-
tem, respectively.

P.3.6 Using the convolution integral, derive the expression for the
response of an undamped (¢ = 0) spring-mass system subjected to
the forcing function f(¢) shown in Figure P3.6. Assume that all initial
conditions are zero.

A
(1) Q
x()
k
| AAAANAL = P
f() = M
c O O 0 a t'

Figure P3.6 Spring-mass system subjected to staircase function with two steps

P3.7 Consider the cantilever of the atomic force microscope (Bin-
ning and Quate, 1986) with length =100 pm, thickness = 0.8 um, and
width = 20 um. The material of the cantilever is silicon nitride having
E =310 x 10°Pa and density = 3.29 gm/cc. A force f(f) is applied at
the tip of the cantilever.

The force f(¢) is as shown in Figure P3.7 for which P =1 uN, Q =
0.5 uN,a=1sec, b =2sec,d =3sec,and g =5 sec.

a. On the basis of an equivalent SDOF model, find the unit impulse
response function for zero initial conditions. Assume the damping
ratio = 0.001.
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0 a bd g t

Figure P3.7 Forcing function for atomic force microscope problem

b. Using the convolution integral, determine x(¢) for ¢+ > 0. Assume
that x(0) = 0.5 um, and dx/dt = 0.

Using MATLAB, plot x(¢) versus .

P3.8 The base displacement y(f) in Figure P3.8a is described in

Figure P3.8b. Using the convolution integral, determine the response

x(1).

x(t)T
| m !
Static equilibrium

x(0)#£0
ke (0)=0

(1) T

(a) (b)

Figure P3.8 (a) Base excitation problem (b) Specified base displacement

P3.9 Consider an SDOF spring-mass—damper system subjected to the
step forcing function (Figures 2.1.1 and 2.1.2).

Using the Laplace transformation technique, derive Equations
2.1.21, 2.1.28, and 2.1.38 for underdamped, critically damped, and
overdamped systems, respectively.
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P3.10 Solve the problem P3.7 using the Laplace transformation tech-

nique.

P3.11 Solve the problem P3.8 using the Laplace transformation tech-

nique.

P3.12 Consider the system shown in Figure P3.12, where a = 25 cm,
¢ =50 cm, and ¢, =30 cm. Here, k = 1, 100 N/m, m = 2 kg, and the

damping ratio is 0.1.

A|'; % ‘x(r)

I<—>I

t I t‘—‘
Y0 Massless
and

rigid bar

Figure P3.12 A massless bar with mass, spring, and damper

x(s)
¥s)*
b. Find poles and zeros of the transfer function.

a. Derive the transfer function

c. Construct Bode plots for the frequency response function.

P3.13 The dynamics of pedestrian-bridge interaction is given (New-
land, 2004) by

My + Ky(t) + mapy(t — A) + 26/ KMy = —mpi(t)

where M : Mass of the bridge, K : Stiffness of the bridge, &£ : damping
ratio, Y : displacement of the pavement, x : movement of the center of
mass caused by pedestrian walking, m : mass of the pedestrian, and A
: time lag. & and B are constants.



Responses of an SDOF Spring-Mass-Damper System 185

¥()

x(s)

b. Plot |« G(jw)| versus frequency ratio + where o : input frequency,
w, = \/g for oA =0, —7, —m and 7. Assume that “’37'” = 0.1 and

£ =0.1

a. Derive the transfer function G(s) =



VIBRATION OF TWO-DEGREE-OF-
FREEDOM-SYSTEMS

For a two-degree-of-freedom (2DOF) system, the number of inde-
pendent second-order differential equations is two. With respect to
a vector composed of the displacements associated with each degree
of freedom, these two differential equations are represented as a sin-
gle equation. In this vector equation, the coefficients of acceleration,
velocity, and displacement vectors are defined as the mass matrix,
the damping matrix, and the stiffness matrix, respectively. Next, the
method to compute the natural frequencies and the modal vectors,
also known as mode shapes, is presented. The number of natural
frequencies equals the number of degrees of freedom, which is two.
Unlike in a single-degree-of-freedom (SDOF) system, there is a mode
shape associated with each natural frequency. Next, free and forced
vibration of both undamped and damped 2DOF systems are ana-
lyzed. Using these techniques, vibration absorbers are designed next.
A vibration absorber consists of a spring, a mass, and a damper, and is
attached to an SDOF main system experiencing vibration problems.
After the addition of a vibration absorber to an SDOF main system,
the complete system has two degrees of freedom. Last, the response
is represented as a linear combination of the modal vectors, and it is
shown that the response of each mode of vibration is equivalent to the
response of an SDOF system.

186
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j x1(1) j x5(t)

ky k2
— MWV —
ks
I LG E myp
aq = €2
S1(0)

Figure 4.1.1 Two-degree-of-freedom system

4.1 MASS, STIFFNESS, AND DAMPING MATRICES

Let x1(¢) and x,(¢) be the displacements (linear or angular) associated
with two degrees of freedom. Then, displacement x(¢), velocity x(¢),
and acceleration X(f) vectors are defined as follows:

_| a0 Cx(f) = (0 | (1) = #1(2) _
mﬁ[@m}(O—LNJ,am ay[bm}mmmg

Let f1(¢) and f>(¢) be the forces (or the torques) associated with each
degree of freedom. Then, the force vector £(¢) is described as follows:

1 A@
£(7) = [fz(t)} (4.1.2)

The dynamics of a 2DOF system is governed by a set of two coupled
second-order differential equations, which is written in the matrix
form as follows:

M5 + Cx + Kx(t) = £(t) (4.13)

where the matrices M, C, and K are known as mass, damping, and
stiffness matrices, respectively.

Example 4.1.1: Two Degree of Freedom System
Consider the 2DOF system shown in Figure 4.1.1. The free body dia-

gram of each mass is shown in Figure 4.1.2.
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k
1 kp(x1—x3) ky(xp —x1)
D | D a— k3x,
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Figure 4.1.2 Free body diagrams for system in Figure 4.1.1

From the free body diagram of the mass m in Figure 4.1.2, New-

ton’s second law of motion yields
fi(t) —kixy — iy — ko) — x2) — (g — o) =iy (4.1.4)

From the free body diagram of the mass m, in Figure 4.1.2, Newton’s
second law of motion yields

H(t) — ksxy — ka(xxy — x1) — 2y — X1) = Mpiip (4.1.5)
Equations 4.1.4 and 4.1.5 are rearranged as follows:

mixXi + (c1 + ¢2)x1 — e + (ki + ko)xi — koxo = fi(r)  (4.1.6)

Xy — Xy + iy — koxy + (ko + k3)xp = fo(2) (4.1.7)

Putting Equations 4.1.6—4.1.7 in the matrix form,
ny 0 X1 " c1+c —C X1
0 ny > —C (&5} X
ki + k —k t
T i I PR VRS
—ky kot ks || x f(0)
Equation 4.1.8 has the form of Equation 4.1.3,

M5 + Ck + Kx = £(t) (4.1.9)

where

_|a@ | e | O
x(1) = LZ (I)} : f(f) = [fz(t)] (4.1.10)
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Figure 4.1.3 Double pendulum

M m 0 = a1+ —¢ and K= k+k -k
0 my —C (o) —ky ko + k3

(4.1.11)

The matrices M, C, and K are mass, damping, and stiffness matrices,

respectively.

Example 4.1.2: Double Pendulum

Consider a double pendulum as shown in Figure 4.1.3. The mass and
the mass-moment of inertia about the support point of each pendulum
are m and I', with the center of mass located at a distance ¢ from the
support joint. Derive the differential equations of motion and obtain
the mass and stiffness matrices.

The free body diagram of each pendulum is shown in Figure 4.1.4,
where R4 and Rp are the unknown reaction forces at the support joints
A and B.

Taking moments about the support joint A,
—kelelel — kc(flel — 6192)61 — mgﬁ&l = Fél (4112)
Taking moments about the support joint B,

—kﬂlezﬂl — kc(€192 — 1&101)& — mng = Féz (4113)
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kt 16,

Figure 4.1.4 Free body diagram from each pendulum

Equations 4.1.12 and 4.1.13 can be put in the matrix form as

r of|é (k +kc)e3 +mge —k 2 6, 0
-+ =
0 I ||6b —k 02 (k4 ket +mge || 6, 0

(4.1.14)
Equation 4.1.14 yields mass (M) and stiffness (K) matrices as
r o
M= [ } (4.1.15)
0 T
and
k+ ko) ¢ —k 3
K = | KHkoti+mg 1 (4.1.16)
—k 2 (k + kc)€3 + mge

Example 4.1.3: Combined Translational and Rotational Motion
Consider a rigid bar (Figure 4.1.5) with the mass m and the mass-
moment of inertia /. about the center of mass C, which is located at
distances ¢; and ¢, from left and right ends, respectively. Further, the
bar is supported by springs with stiffnesses ki and k; at its left and
right ends, respectively. Derive the differential equations of motion
and obtain the mass and stiffness matrices.

Note: This rigid bar and springs can be viewed as an automobile chassis

and tires. To help with your imagination, dotted lines are drawn.
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Figure 4.1.5 A rigid bar supported by springs at both ends

The free body diagram of a rigid bar is shown in Figure 4.1.6,
where x is the displacement of the center of mass C and 0 is the clock-
wise angular displacement of the bar.

Summing all forces along x-directions,

—ki(x — £10) — ka(x + €20) = mi (4.1.17)
Taking moments about the center of mass C,
ki(x — €10)0 — ka(x + €20)¢, = 1.6 (4.1.18)
Equations 4.1.17 and 4.1.18 are represented in the matrix form as
|:m 0][;‘5}{ ki + ko —(klﬂl—k2£2)]|:x:|=|:0:|
0 I.||4d —(kity — katy) kil + ka3 6 0
(4.1.19)

Equation 4.1.19 yields mass (M) and stiffness (K) matrices as

0
m=|" (4.1.20)
0 I
0 ‘5
x-00_§

X

9 | x+10,6
kl(x—(lﬁ) c

ky(x+10,0)

Figure 4.1.6 Free body diagram of rigid bar supported by springs
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and

(4.1.21)

ki + ko —(kity — kat2)
—(k1£1 — szz) k]f% + kQZ%

4.2 NATURAL FREQUENCIES AND MODE SHAPES

There is a mode shape or a modal vector associated with a natural
frequency. The method to compute the natural frequencies and the
mode shapes is as follows.

Ignoring damping and external force terms, Equation 4.1.3 can be
written as

M5 + Kx = 0 (4.2.1)

Let
= A in(w
x(1) = |:A2:| sin(wt + ¢) (42.2)

where amplitudes A;, A;, and the phase ¢ are to be determined. Dif-
ferentiating Equation 4.2.2 twice with respect to time,

%= —a? [ij sin(wt + ¢) (4.2.3)

Substituting Equations 4.2.2 and 4.2.3 into Equation 4.2.1,

(K — ?M) [ﬁj - [8] (4.2.4)

For a nonzero or a nontrivial solution of A; and A,,
det(K — w*M) =0 (4.2.5)

which will be a quadratic equation in w?. The solution of Equation
4.2.5 yields two values (o? and w3) for w? where w; and w, are the
natural frequencies. In other words, there are two natural frequencies

for a 2DOF system. Corresponding to each natural frequency, there is
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a mode shape which is obtained from Equation 4.2.4 after substituting

w = w1 Or w = wy, that is,
Ay 0
Pl = ci=1,2 (4.2.6)
Az’l‘ 0

Pi=(K—w?M)y=| P PR (42.7)
P21 P2

where

Substituting Equation 4.2.7 into Equation 4.2.6, the following two lin-

ear equations are obtained:
PiiAL;i + pi2iAr;i =0 (4.2.8)
P2iALi + pnifri =0 (4.2.9)

Because det P; = 0, the rank (Strang, 1988) of the matrix P; cannot
be two, and both the rows of the matrix P; are not independent, or
equivalently Equations 4.2.8 and 4.2.9 are essentially the same. In
other words, there is only one equation in two unknowns A; ; and A, ;.
Therefore, only the ratio of A;; and A,; can be found, for example,
using Equation 4.2.8,
A _ _Pui (4.2.10)
Ay P12.i
One of the variables, that is, either A; ; or A, ;, can be chosen arbitrar-

ily. For example, let A;; = 1. Then,
Ay =1L (4.2.11)

And the modal vector v; corresponding to the natural frequency w;

can be defined as

A i 1
v,:[ 1*}:[ p_:|;i=1,2 (42.12)
A . _ P
2. P12

This modal vector v; is also defined as the mode shape corresponding

to the natural frequency w = w;.
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j x1(1) % x5 (1)

ky ky ks
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Figure 4.2.1 Undamped spring-mass system

Example 4.2.1: Natural Frequencies and Mode Shapes of the System
in Figure 4.2.1

Consider the 2DOF system shown in Figure 4.1.1 with the following
parameters: ¢; = ¢; = 0 and my; = m, = m. The resulting spring—mass
system is shown in Figure 4.2.1. Determine the natural frequencies
and the mode shapes for the two cases: ki =k, = ks =k, and k; =
ky = k and k3 = 2k.

Case I: k1 = kz = k3 =k
Equation 4.1.8 yields the following mass and stiffness matrices:

mM=|" Y| ana k=|%* * (4.2.13)
0 m -k 2k
Then,
2%k — w? —k
K—o*M = wm (4.2.14)
-k 2k — w*m

Therefore, from Equation 4.2.14,

det(K — 0*M) = 2k — 0*m)?* — k? = (k — w*m)(3k — w’m) =0
(4.2.15)
Solving Equation 4.2.15, the two natural frequencies are:

| k 3k
w;=,/— and wy; =, — (4.2.16)
m m
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Mode shape (modal vector) corresponding to the natural frequency wi
From Equation 4.2.7,

P (K—wiMy=| P Pal Lk ko)
Pl Pna -k k

Equation 4.2.10 yields the following eigenvector:

v, = [ﬂ (4.2.18)

Mode shape (modal vector) corresponding to the natural frequency w,
From Equation 4.2.7,

—k —k
Py=(K-wjM)=| P12 P22 (4.2.19)
P22 P22 —k —k

Equation 4.2.10 yields the following eigenvector:

v, — [_11} (4.2.20)

Casell: ki = ko = k and k3 = 2k
Equation 4.1.8 yields the following mass and stiffness matrices:

mM=|™ O ana x=|%* X (4.2.21)
0 m —k 3k

Therefore, from Equation 4.2.21,

(4.2.22)

Ko — |:2k—a)2m —k ]

—k 3k — w’m
From Equation 4.2.22,

det(K — *M) = 2k — *m)(3k — ’m) — k> =0 (4.2.23)
or

m*(w*)? — Skmw? 4 5k*> = 0 (4.2.24)
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Solving Equation 4.2.24,

,  Skm+kmv/5
@ =
2m?

Hence, the two natural frequencies are:
[1.382k /3.618k
w =, —— and w,=,—— (4.2.26)
m m

Mode shape (Modal vector) corresponding to the natural frequency w

(4.2.25)

From Equation 4.2.7,

0.618k —k
P = (K —o’M) = |:P11,1 P12,1:| _ |:

(4.2.27)
Pl P2 —k 1.618k

Equation 4.2.10 yields the following eigenvector:

1
vi = [0.618] (4.2.28)

Mode shape (Modal vector) corresponding to the natural frequency w,

From Equation 4.2.7,

—k  —0.618k
(4.2.29)

Py = (K — w3M) =
P22 Pn2

D112 P12,2i| _ |:—1.618k —k ]

Equation 4.2.10 yields the following eigenvector:

1
Vo = [_1.618} (4.2.30)

Example 4.2.2: Natural Frequencies and Mode Shapes of a Double
Pendulum
Find the natural frequencies and the mode shapes of the double pen-
dulum shown in Figure 4.1.3.

From Equations 4.1.12 and 4.1.13,

o |a=eT B
(K a)M)_|: s a—wzF:| (42.31)
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where
a=(k+k)?+mgt and B=kt; (4.2.32)
From Equation 4.2.31,

det(K — o’M) = (¢ —’T)? = B2 =(a + B — 0’ T)(@ — B —’T) =0

(4.2.33)
Solving Equation 4.2.33, the two natural frequencies are
w? =2 . Foand w2=" JFF p (4.2.34)

Mode shape (Modal vector) corresponding to the natural frequency wi
From Equation 4.2.7,

P = (K — M) = put poa|_| B =B (4.2.35)
P21 poi -8 B
Equation 4.2.10 yields the following modal vector:

v = [ﬂ (4.2.36)

Mode shape (Modal vector) corresponding to the natural frequency w,

From Equation 4.2.7,
Py = (K — o2M) = pu2 po2|_| =B —B (4.2.37)
P2 pno | —B —B
Equation 4.2.10 yields the following modal vector:
-
vy = |: . (4.2.38)

4.2.1 Eigenvalue/Eigenvector Interpretation

K [Al} = ow’M [Al} (4.2.39)
Ay A,

From Equation 4.2.4,
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Pre-multiplying both sides of Equation 4.2.39 by M~!,
M™'Kv = o’v (4.2.40)

where
v = [Al} (4.2.41)

Therefore, the square of the natural frequency w? and the correspond-
ing modal vector v are the eigenvalue and the eigenvector (Boyce and
DiPrima, 2005; Strang, 1988) of the matrix M~'K, respectively. The
eigenvalue/eigenvector interpretation is convenient from the com-
putation point of view, as there are standard routines available, for
example, the MATLAB routine “eig.”

4.3 FREE RESPONSE OF AN UNDAMPED
2DOF SYSTEM

In general, if the initial conditions are arbitrarily chosen, the free
vibration will contain both the natural frequencies w; and w;. On the
basis of the assumed solution (Equation 4.2.2) and the fact that the
response can be expressed as a linear combination of the modal vec-
tors, the general solution can be written as

X(t) = agvy sin(wit + ¢1) + aava sin(wat + ¢2) (4.3.1)

where v; and v, are the modal vectors (or mode shapes) correspond-
ing to the natural frequencies w; and w,, respectively. Constants oy,
a2, ¢1, and ¢, can be determined from the initial conditions x(0) and
x(0). From Equation 4.3.1,

x(0) = viag sin gy + vao sin ¢y (43.2)

or

433
o) Sin ¢ ( )

x(0) = 0 |:oz1 sin¢1:|
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where Q is a 2 x 2 matrix defined as follows:

Q= [V1 Vz]
From Equation 4.3.3,
|:oz1 s%n 1 j| — 0-'x(0)
o SIn ¢y

Differentiating Equation 4.3.1 with respect to time,
X(1) = ayviw; cos(wit + ¢1) + aavows cos(wart + ¢2)
Substituting ¢t = 0 into Equation 4.3.6,
x(0) = a1viw1 oS 1 + apvow; COS ¢
Using the definition of Q given in Equation 4.3.4,

x(O) —0 |:w1cx1 cos¢1j|

w)Hp COS ¢>2
Therefore,

Wy COS ¢2

|:wlot1 COS ¢1 ] _ Q’lx(O)

199

(4.3.4)

(4.3.5)

(4.3.6)

(4.3.7)

(43.8)

(4.3.9)

In summary, ogsingy, aysin¢g,, ajcos¢;, and acos¢, are first

obtained from Equations 4.3.5 and 4.3.9. Then, a1, a3, ¢1, and ¢, are

determined.

As an example, let the initial conditions be as follows:
x(0) = xvi and x(0)=0

where x is a constant.
Then, from Equations 4.3.2 and 4.3.9,

oy sin ¢ _|x and a1 COS ¢ _ 0
o) Sin ¢ 0 o) COS ¢ 0

(4.3.10)

(4.3.11)
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Therefore,

w=x ¢=7 and a=0 (4.3.12)

Hence, from Equations 4.3.1 and 4.3.12, the response would be
x(t) = x vy sin <a)1t + %) = XV coswit (4.3.13)

The response is purely sinusoidal with the frequency equal to the first
natural frequency. This is due to the fact that the initial conditions
match with the first modal vector and do not contain the second modal
vector. If the initial conditions match the second modal vector, the
free vibration will be purely sinusoidal with the frequency equal to
the second natural frequency.

Example 4.3.1: Free Vibration of a Double Pendulum

Consider the double pendulum shown in Figure 4.1.3. Numerical
values of the parameters are as follows: m =0.5kg, ' =0.6kg —
m?, k = k. = 10,000 N/m, ¢ = 0.8 m, £; = 0.3 m. Initial conditions are
given as: 61(0) = 0.1rad, 6,(0) = 0.05rad, 6;(0) = 10rad/sec, 6,(0) =
—15rad/sec.

Determine the equation governing the free vibration.

Solution
From Equation 4.2.34,
w1 = 38.814rad/sec and w, = 67.130rad/sec
From Equation 4.3.4,
1 1
=i 4|
Therefore,

0.5 05
-1 _
¢ _[0.5 —0.5}
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From Equation 4.3.5,
o s%n¢1 _ Q‘lx(O) _ 0.075 rad
op SIN (,152 0.025

From Equation 4.3.9,

[wlal cos ﬂ — 050 = [_2'5 } rad/ sec

w0 COS ¢y 12.5

Considering o1 sin ¢; = 0.075 and wjr; cos ¢ = —2.5,
a1 = 0.0989, ¢ = 2.2804rad

Considering o, sin ¢, = 0.025 and wya; cos ¢ = 12.5,
a; = 0.1879, ¢, = 0.1335rad

From Equation 4.3.1,

[28} = 0.0989 [1} sin(38.8141 4 2.2804)

1
+0.1879 |: 1:| sin(67.130¢ + 0.1335)

4.4 FORCED RESPONSE OF AN UNDAMPED 2DOF
SYSTEM UNDER SINUSOIDAL EXCITATION

The differential equations of motion of an undamped 2DOF system
can be represented as

M[“} +K|:x1:| - [fm} sin ot (4.4.1)
i X2 f20

where M and K are mass and stiffness matrices, respectively. The
amplitudes of sinusoidal excitations are fiyp and fa.

Assume the forced response (particular integral) to be

[’“ (t)} - [Al } sin oot (4.42)
x(1) Ay
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j x(1) j X, (1)

k k 2k
— VW L AAMAA—] m AN
=
Josinwt o sinli:t>

N O W O W

Figure 4.4.1 Two-degree-of-freedom system under sinusoidal excitation

Here, the amplitudes A; and A, are allowed to be negative. A neg-
ative value of the amplitude represents the phase angle equal to
180 degrees. Substituting Equation 4.4.2 into Equation 4.4.1, and
equating the coefficients of sin wt on both sides,

(K — M) [jﬂ - [22] (4.4.3)
From Equation 4.4.3,

Av| e WM fio

|:A2:| =(K M) |:f20:| (44.4)

Example 4.4.1: Forced Response of a 2DOF System

Consider the 2DOF system shown in Figure 4.4.1 which is the same
model as the one shown in Figure 4.1.1 with the following parameters:
a=ca=0,m=m=m, ki =k, =k, ks =2k, and fi(t) = o(t) =
fosin wt.

With respect to Equation 4.4.1,

Jio=/fo=/o (4.4.5)
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Therefore, from Equation 4.4.4,

_Al] = [2k_w2m - ]l [ﬁ)} (4.4.7)
A ko 3k—om| | fo

Equation 4.4.7 yields

Ar ] _ fo 4k — w*m
A, | 2k — 0?m)(Bk — ?m) — k2 | 3k — w®m

} (4.4.8)

After some algebra, the amplitudes of masses are found to be

A 0.8[1 — (0/w:,)’]

fork ~ 1= (@/o)?][1 — (0/w2)] (4.4.9)
and
A 0.6[1 — (w/w,)?]
folk  [1—(w/w)?][1 - (w/w2)?] (4.4.10)
where
Wz = \/%, Wz, = \/%, w] = @’ and wy = /36}:181(
(4.4.11)

It should be noted that w; and w, are the natural frequencies (Equa-
tion 4.2.26). When w = w; or @ = wy, the amplitudes A; and A, are
infinite (Figures 4.4.2 and 4.4.3). Furthermore, A; = 0 at w = w,, and

A2:Oatw:wzz.

4.5 FREE VIBRATION OF A DAMPED 2DOF SYSTEM

The free vibration of a damped 2DOF system is governed by the fol-
lowing differential equations:

M5 + Cx + Kx =0 (4.5.1)

where M, C, and K are mass, damping, and stiffness matrices, respec-
tively. Here, the initial displacement x(0) and/or velocity x(0) will be

nonzero.



wlw4

Figure 4.4.2 Amplitude of mass with displacement equal to x; in Figure 4.4.1

Aokif,

Figure 4.4.3 Amplitude of mass with displacement equal to x, in Figure 4.4.1
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The solution can be written as

x(1) = [’:ﬂ e (452)

where s is to be determined. Substituting Equation 4.5.2 into Equa-
tion 4.5.1,

(Ms® 4 Cs + K) [f‘j = [8} (4.5.3)
For a nontrivial solution of Equation 4.5.3,
det(Ms> + Cs + K) =0 (4.5.4)
When C =0,
det(Ms* + K) =0 (4.5.5)

It can be shown that the roots of this equation are purely imaginary.
In fact, by substituting s = + jw, Equation 4.5.5 reduces to

det(—Mw? + K) =0 (4.5.6)

which is the same as Equation 4.2.5. In the case of C # 0, the roots of
Equation 4.5.4 can be obtained via the eigenvalue/eigenvector formu-
lation as follows:

Define

y1 =x(¢t) and y, =x(¢) (4.5.7)
Then,
yi=Y2 (4.5.8)
and from Equation 4.5.1,

Vo =X = —M1Kx(t) — M~'Cx(t) = —M 'Ky, (t) — M~ Cy,(¢)
(4.5.9)
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Equations 4.5.8 and 4.5.9 can be written in the matrix form as

y(t) = Ry(?) (4.5.10)
where
yi(0)
= 4.5.11
¥0) [yz (I)} (4511)
and
0 1
R = |:—M1K —M1C1| (4.5.12)

It can be shown that the eigenvalues of the matrix R are the same as
the roots of Equation 4.5.4. These eigenvalues can be complex or real.
A set of complex conjugate eigenvalues (—o + jw) correspond to an
underdamped SDOF system and can be written as

-0+ jo=—Ew, +w,/1—E2] (4.5.13)

where £ and w, are the damping ratio and the undamped natural fre-
quency respectively. Therefore,

wp =V o2+ w? (45.14)

and

£ = Jﬁ (4.5.15)

The undamped natural frequency (Equation 4.5.14) will be one of the
roots of det(K — w?M).
The solution of Equation 4.5.10 can be described as

y(2) = e"'y(0) (4.5.16)

where ef is the matrix exponential described as

3

£ t
eR’=I+Rt+R25+R3§+-~- (4.5.17)
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and
R>=RR, R* =R’R, ... (4.5.18)

In MATLAB, the matrix exponential can be calculated by using the
command “expm.” It should also be noted that

0 0

y) = [ YOO (4.5.19)
y2(0) x(0)

Thatis, y(0) is composed of the initial displacement x(0) and the veloc-

ity x(0) vectors.

Example 4.5.1: Free Vibration of a Damped 2DOF Freedom System
Consider the spring-mass—damper model in Figure 4.1.1 with fi(¢) =
fa(t) =0. Let my =mp, =0.5kg, ki =k = ks =10,000N/m, ¢; =
10N — sec/m, and ¢, = 0. Obtain x;(¢f) and x,(f) when the initial
conditions are as follows: x;(0) = 1.5, x(0) = 0.5, x;(0) =0, and
%(0) = 0.

From Equation 4.1.8,

M= m 0 _ 05 0
0 m 0 05
C— c1+co —o _ 10 O
—C (&) 0 0

B [ 20,000 10, 000]

and

—10,000 20, 000

The eigenvalues of the matrix R (Equation 4.5.12) are presented in
Table 4.1.

The response is obtained from the MATLAB program 4.5.1 and is
presented in Figure 4.5.1.
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Table 4.1 Eigenvalues of matrix R

Characteristic roots (—o + jw) & wy, (rad/sec)
—5.01 £ 141.51§ 0.0354  141.5987
—4.99 +244.59i 0.0204  244.6422

MATLAB Program 4.5.1: Free Vibration of a Damped 2DOF
System

clear all

close all

M=[0.5 0;0 0.5];

C=[10 0;0 0O];

K=[20000 —10000;-10000 200007 ;
MI=inv (M) ;

R=[zeros(2,2) eye(2);-MI*K -MI*C]

Q
o

ada=eig(R);
ognl=abs(ada(l));
xil=-real(ada(l))/ognl;
ogn2=abs (ada(3)) ;
xi2=-real (ada(3))/ogn2;

%$Initial conditions
v0=[1 0.5 0 0]";

s

T=2%pi/ognl;
delt=T/40;
t=-delt;
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Figure 4.5.1 Free vibration of a 2DOF system

for 1=1:1000
t=t+4+delt;
tv(i)=t;
y(:,1)=expm(R*t)*y0;
end
plot (tv,y(1l,:),tv,yv(2,:), ' -=-")
xlabel (‘time(sec.) )
legend(‘x_1(t)’,'x_2(t)")
grid

4.6 STEADY-STATE RESPONSE OF A DAMPED 2DOF

SYSTEM UNDER SINUSOIDAL EXCITATION

The vibration of a damped 2DOF system is governed by the differen-
tial Equation 4.1.3 that is rewritten here:

MK + Ck + Kx = f(f) (4.6.1)
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where the external excitation vector f(¢) is written as

| A
£(0) = [fz(t)} (4.6.2)

It is assumed that both fi(¢) and f>(¢) are sinusoidal with the same
frequency. Typically,

fi= Fy sin(fwt + ¢¥1) and f = F, sin(wt + ¥) (4.6.3)
or
fi = Ficos(wt +v1) and fo = Fycos(wt+vyn)  (4.6.4)

To facilitate the analysis, it will be assumed for any of these two cases,

(1) = [f 1“)} = [F 1} e/ j=v-1 (4.6.5)

f() F
where
Fl Flejllll
= ‘ 4.6.6
The steady-state solution of Equation 4.6.1 is assumed to be
() = X el (4.6.7)
)Q(t) X,
Therefore,
; X 4
i) = | SO | Z| A1 i (4.6.8)
)Cz([) X,
and
(¢ X ;
i) =" @ _ X (—w?)el®! (4.6.9)
X2(I) X,

Substituting Equations 4.6.5, 4.6.7-4.6.9 into Equation 4.6.1,

Fi

[(K — &’M) + jCo] |:§;:| el = |:F2

} el (4.6.10)
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Equating the coefficients of /' on both sides,

[(K — o*M) + jCo] [2} = [2] (4.6.11)

Therefore,

X1 _ ) iCol™! Fy
|:X2:| =[(K M) + jCw] |:F2:| (4.6.12)

Corresponding to Equation 4.6.3,
x1(¢) _ Aj sin(wt + ¢1) (4.6.13)
XZ([) Ay sin(a)t + ¢2) -

where
A1 = |X1| y AZ = |X2| 5 ¢1 = ZXl, and ¢2 = ZXQ (4614)

If excitations were in the form of Equation 4.6.4,

x(6) | _ | Avcos(at + 1) (4.6.15)
x2(1) A, cos(wt + ¢)

where A1, A, ¢1, and ¢, are given by Equation 4.6.14.

Example 4.6.1: Steady-State Response of a Damped 2DOF System
Find the steady-state response of system in Figure 4.1.1 for which
f1(¢) =105sin(240¢) N and f>(¢f) = 100 cos(240¢) N. As in Example 4.5.1,
let my = my = 0.5kg, ki = ko = k3 = 10,000 N/m, ¢; = 10N — sec/m,
and ¢; = 0.

Using K, M, and C in Example 4.5.1,

0884 j0.24  —1
(K — 0’M) + joC = 10* t
1 ~0.88

Therefore,

(K — M)+ joC]! :10_3[ 0.2079 — j0.1946 —0.2362+10.2211}

—0.2362 4 j0.2211  0.1548 — j0.2513
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With respect to Equation 4.6.3,

F1=10, Y1 =0, F, =100, and v, = =

2
Fi _ Flejwl _ 10
Fy | | Fyelv2 || j100
From Equation 4.6.12,

[Xl} =[(K — M) + jCow] ™! [Fl} _ [ 0.0242 + j0.0217 }

Therefore,

X F, —0.0275 — j0.0133

Next,

A1 = | X1 =0.0325, Ay = | X,| = 0.0305,
¢ = £X1 =0.7306rad, and ¢, = £X, = —2.6919rad

Last, Equation 4.6.13 yields the following steady-state response:

|:x1 (t):| B {0.0325 sin(240¢ + 0.7306):| "

x@) | | 0.0305sin(240¢ — 2.6919)

4.7 VIBRATION ABSORBER

In this section, design techniques for two types (undamped and
damped) of vibration absorbers are presented.

4.7.1 Undamped Vibration Absorber

Consider an undamped spring-mass system with the stiffness k; and
the mass m; subjected to a sinusoidal excitation fj sin wt (Figure 4.7.1).
When w = /ki/my, there will be resonance and a large amount of
vibration. In many applications, it is not possible to add damping, or
to change the natural frequency, or the excitation frequency. In these

situations, another spring-mass system with the stiffness k, and the
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Figure 4.7.1 An undamped vibration absorber

mass #n, is added to suppress this vibration. The spring-mass system
with the stiffness k; and the mass m, is called the undamped vibration
absorber. The objectives are to select the absorber stiffness k; and the
absorber mass m, for the suppression of vibration of the main mass
my in a reliable manner.

Applying Newton’s second law of motion to free body diagrams in
Figure 4.7.2,

fo sin wt — k1x; — kz(x1 — Xz) = mx (471)
—kz(Xz — xl) = mz)'c'z (472)

Rearranging the differential equations of motion (Equations 4.7.1 and
4.7.2),

mi1 + (k1 + ko)x1 — koxo = fysinwt (4.7.3)

myXy — kyxi + koxy = 0 (4.7.4)
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fo sin a)tT l kix

" T ky (x3 = xp)
l I’I’lz
ko (x1 —x2)

Figure 4.7.2 Free body diagrams of masses in Figure 4.7.1

Therefore, the differential equations of motion in matrix form can be

written as
M [’“} +K ’“} - [fo] sin ot (4.7.5)
Xo | X2 0
where
m=|™ 0 } (4.7.6)
L 0 niy
and
K= [kl +h _kz} (4.7.7)
—ky ky
From Equations 4.7.6 and 4.7.7,
— 2 —k
K—wtm = |f1 Tl —om 2 (4.7.8)
—k2 kz — w2m2
From Equation 4.7.8,
ky — w? k
(K — oty = 1| e mem e (4.7.9)
A +ky ki +ky — w*my

where
A = det(K — 0*M) = (ki + ko — o’my) (ko — 0*my) — k5 (4.7.10)

From Equation 4.4.4,

A1 _ 1 kz — w2m2 kz fO
Ay A ky ki +ky — w2m1 0

_ 1| (ke —o'm)fy 4.7.11)
A kafo
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where A; and A, are the amplitudes of x; and x;, respectively. From
Equations 4.7.11 and 4.7.10,

_ (ka — 0*mp)fy
(ki + ky — ?my)(ky — w?my) — k3

A (4.7.12)

and

_ ka fo
(ki + ky — w?my)(ky — w?my) — k3

As (4.7.13)

The amplitude A; of the main mass m; will be zero when the absorber
parameters k, and m;, are chosen such that

ko _ w? (4.7.14)
m
Define
k
AL (4.7.15)
ny
and
k.
22— oy (4.7.16)
ny

The condition in Equation 4.7.14 can then be expressed as
w = w2 (4.7.17)

In other words, whenever ws; is chosen such that it equals the excita-
tion frequency w, A1 = 0, that is, the vibration of the main mass will
be completely suppressed. The parameter w,; is designed such that
the vibration of the main mass will be suppressed at the resonance
condition of the original SDOF system, that is, v = wy;. As a result,
the design condition is

w3 = W11 (4.7.18)

From the definitions in Equations 4.7.15 and 4.7.16, the condition in
Equation 4.7.18 is also expressed as
ky Kk

= 4.7.19
o (4.7.19)
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In summary, when k; and m;, are selected to satisfy Equation 4.7.19,
A1 = 0 when w = wy;. And the amplitude of the absorber mass at this

condition w = wi; = wy; will be

Ay = —2= (4.7.20)
k>
Define the mass ratio u as
p="2 (4.7.21)
ny
Then, from Equation 4.7.19,
k
m_Mm_, (4.7.22)
k] ny

Using Equation 4.7.22, Equations 4.7.12 and 4.7.13 are represented as

follows:
Ak (1-r?)
= 4.7.23
R (e (e (729
and
Arkq 1
= 4.7.24
i Ara-m-r)—n (4729
where
r=2 -2 (4.7.25)
w1 wn

In Figure 4.7.3, the magnitude of the amplitude |A;] is plotted as a
function of w with the condition in Equation 4.7.18. It should be noted
that A; # 0 when @ # wy;. In fact, the amplitude A; is infinite when
equals one of the natural frequencies of the 2DOF system, which are
the roots of Equation 4.2.5 as follows:

A =det(K — *M) = (ki + ko — o*my)(ky — 0*my) — k5 = 0
(4.7.26)
In Figure 4.7.4, the magnitude of the amplitude |A;| is plotted as

a function of w with the condition in Equation 4.7.18. Dividing
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Figure 4.7.4 Amplitude of the absorber mass versus excitation frequencies
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Equation 4.7.26 by ki k,
(1 n % _ wZ’%) <1 — a}’%) - % ~0 (4.7.27)
Using Equations 4.7.22 and 4.7.25,
A4+p—rH)A=r)—pn=0 (4.7.28)
After some algebra, Equation 4.7.28 yields
Y - Q+mwr’+1=0 (4.7.29)

The roots of the quadratic Equation 4.7.29 are as follows:

24 ) — Vil +4
2 2+ 2m (4.7.30)
2 2+4
LI +2‘/m (4.7.31)
where
=L and r,=22 (4.7.32a,b)
w11 w11

Note that w; and w; are the natural frequencies of the 2DOF system.
These natural frequencies are plotted as a function of the mass ratio
w in Figure 4.7.5.

Example 4.7.1: An Undamped Vibration Absorber

When a fan with 1,000 kg mass operates at a speed of 2,400 rpm on

the roof of a room (Figure 4.7.6), there is a large amount of vibration.
Design an undamped vibration absorber, which can satisfactorily

perform even when there is about 10% fluctuation in the angular

speed of the fan.

Solution

2,400 x 2
0 =w= % = 807z rad/sec
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Figure 4.7.5 Natural frequencies versus mass ratio

To ensure a good margin of safety, let us keep the natural frequencies
of the 2DOF system to be at least 20% away from w1; (Figure 4.7.5).

In this case, r = 0.8 in the following equation:

)Y —Q+wr’+1=0

or
ot 2_(0.8)4+1 5 — 02005
H="n ~ T (08) _‘
i i
1 1
ky
Vibrati —
ibration m
absorber

Figure 4.7.6 Undamped vibration absorber attached to the ceiling of room
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It should be noted that r = 0.8 has been chosen because the lower
natural frequencies in Figure 4.7.5 are closer to the r =1 line.
Therefore,
ny
nw=—=0.2025 = my =202.5kg
my
and

k
= = o}, = (807’
my

Last,

ky = my(80m)? = 6,4007m% x 202.5 = 1.2791 x 10’ N/m

4.7.2 Damped Vibration Absorber

An undamped vibration absorber yields complete suppression of
vibration at the design frequency of excitation, which is generally
selected to be the resonance condition of the original system. How-
ever, if the excitation frequency is a variable, unbounded response
is obtained when the excitation frequency matches either of the two
natural frequencies of the 2DOF system. In order to alleviate this
situation, a damper is included in the absorber design as shown in
Figure 4.7.7, and the objective is to choose damper parameters such
that the vibration of the main mass is minimized over all excitation
frequencies. When the damping constant ¢ = 0, the amplitude of the
main mass can be unbounded. Similarly, when the damping constant
is extremely large, both masses will become as if they are welded
together, and the system will effectively become an SDOF system,
that is, the response can again be unbounded. In other words, nei-
ther a small ¢ nor an extremely large ¢ will be desirable. There exists
an optimal value of the damping constant ¢ for which the vibration of
the main mass is minimized over all excitation frequencies.
From the free body diagram in Figure 4.7.7,

fosinwt — kix1 — ky(x1 — x2) — c(dp — %) = iy ¥y (4.7.33)

—ka(xp — x1) — c(p — X1) = My (4.7.34)
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Figure 4.7.7 Damped vibration absorber and associated free body diagrams

or
mxX1 + cxy — cip + (k1 + ko)x1 — koxo = fysinwt
mpX, — cx1 + cxp — kox1 + koxo =0
Equations 4.7.35-4.7.36 are put in the matrix form as
MX + Cx + Kx(t) = £(r)

where

(4.7.35)

(4.7.36)

(4.7.37)
(4.7.38)

—ky
ky

(4.7.39)
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The steady-state response is computed by following the procedure
outlined in Section 4.6. To use Equation 4.6.12,

(K_a)zM)‘F]Ca): kl+k2_w2m1+jwc —kz—ja)c
—ka = joc ky — w?my + jowc
(4.7.40)
Therefore,
[(K_wZM)+]a)C]71=l kZ—Cl)sz—}—ja)C kz—l—ja)c
A ko + joc ki + ko — w?my + joc

(4.7.41)
where

A = det(K — @*M + jwC)
= (k1 + ky — w2m1 + ]wc)(k2 — w2m2 + ja)c) — (kz + ja)C)2
(4.7.42)

After some algebra,

A=k — w2m1)(k2 — a)zﬂ’l2) — wzkzn’Iz] + jowc(k — a)z(ml + my))

(4.7.43)
Furthermore
F
v | (4.7.44)
F 0
From Equation 4.6.12,
Xi|_ 1| (k- ’my + joc)fy (4.7.45)
X, A (k2 + joc)fo
The amplitude of the main mass is given by
ky — w’rmy + |
A = x| = e = @ime + joo)f (4.7.46)

|Al
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Using Equation 4.7.43,

fov/ (ko — ?m)? + (cw)?

223

A=

VIki — 0*my)(ky — ?m) — 0 komo | + [we(ky —

or

Atk \/<1’% B %’1”2)2 + (%Y

w*(my +my)J?

(4.7.47)

(4.7.48)

fo \/ [(kl —?my)(ky—e?my) kazmz]z n [wc(iq —wz(m1+7m))]2

ki ki ki

Define the following nondimensional variables:

Then,

b _kmm (%)ZM P
ki my ki my w11

2 2

w Ny w~ny ny 2
= —=gu
ki ki m
cw 2cw w11hp

w
ki 2mon ki 5 w11 58

2
w1y

(wc)(ky — &*(my + mp)) [ wc ?
e (2

(4.7.49)

(4.7.50)

(4.7.51)

(4.7.52)

(4.7.53)

= (Qtgu)(1—g>—ug>)  (47.54)

(k] — a)zml)(kz — a)zmz) _ (1 _ gz) é _ w2m2
k1 kq

ki
=(1-g)"—gHu

(4.7.55)
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a)zkgl’l”lz w2k2 mp niy
Kok kom

= g*f*u? (4.7.56)

Substituting Equations 4.7.49-4.7.56 into Equation 4.7.48,

Arki _ V(2 — g2)? + (2£g)?
o VIO =g)(2 - g%) — &2f2ul + 26g)°(1 — g2 — ug?)?
(4.7.57)

Den Hartog (1956) has obtained optimal absorber parameters to min-
imize the following function:

1= " A9) (4.7.58)
g

Here, A1(g) is a representation of the fact that A; is a function of
frequency ratio g. The objective function / is the maximum value of
A; with respect to the variation in g.

Case I: Tuned Case (f = 1 or wy = w11)
For the minimum value of I, the optimal value of & is

_ e +3)A + v/ (n+2) (4.7.59)
8(1+ )

g2
And the objective function [ is

fo 1
ki (—pe 4+ (14 p)y/i/ (e +2))

The amplitude of this main mass due to this optimal absorber is shown

I= mgaXAl(g) - (4.7.60)

in Figure 4.7.8.

Case II: No restriction on f (Absorber not tuned to main system)
For the minimum value of 7,

f=— (4.7.61)
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Figure 4.7.8 Amplitude of the main mass for various damping ratios (Absorber tuned

to main system, f = 1)

and

(4.7.62)

(4.7.63)

The amplitude of this main mass due to this optimal absorber is shown

in Figure 4.7.9.

Example 4.7.2: A Damped Vibration Absorber
When a fan with 1,000 kg mass operates at a speed of 2,400 rpm on the

roof of a room (Figure 4.7.10), there is a large amount of vibration.

Design an optimally damped vibration absorber with the mass

ratio equal to 0.2025, which is same as that in Example 4.7.1.
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Figure 4.7.9 Amplitude of the main mass for various damping ratios (Absorber not
tuned to main system)

From Equation (4.7.61),

1 1
. — R
=13 o 1.2025

and

k
22 = 2w}, = (0.8316 x 807)?
ny

voraton =
absorber

Figure 4.7.10 Damped vibration absorber attached to the ceiling of room
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Therefore,
ky = my(f x 80m)? = 6, 400722 x 202.5 = 8.8457 x 10° N/m
From Equation (4.7.62),

3u

— =0.209
8(1+p)?

E:

¢ =2Emwy; = 2.1274 x 10* N-sec/m

4.8 MODAL DECOMPOSITION OF RESPONSE
The general differential Equation 4.1.3 is rewritten
MX + Cx + Kx =1£(1) (4.8.1)
Pre-multiplying both sides of Equation 4.8.1 by M1,
X+ M 1Cx+ M1 Kx = M~ (1) (4.8.2)

In general, the response x() is a linear combination of the modal vec-

tors v; and v,, that is,

(1) = viyi(t) + v2y2 () (4.8.3)

where y;(¢) and y,(f) are the coefficients of modal vectors v; and v;,
respectively. Equation 4.8.3 can be represented in a compact form as

follows:

x(t) = Vy(?) (4.8.4)
where

V=[vi v2] (4.8.5)
and

y(t) = [i ;Eg} (4.8.6)
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Substituting Equation 4.8.4 into Equation 4.8.2 and pre-multiplying
by V71,

¥+ Cay + Kay = £,(1) (4.8.7)
where

Ci=VM'cV, K, =V MKV, and f,(1)=V M ()

(4.8.8)
From Equation 4.8.8 and Equation 4.2.40,
w? 0
Ky=V MKV =nA= [ ! 2} (4.8.9)
0 w5
Let
vt
£,(t) = fu(®) (4.8.10)
va(t)
Case I: Undamped System (C = 0)
Equations 4.8.7 and 4.8.10 yield
1+ iy = () (4.8.11)
Y2+ o3y = fio(t) (4.8.12)

Equations 4.8.11 and 4.8.12 can be solved by techniques developed
for an SDOF system. After that, the response can be obtained from
Equation 4.8.3.

Case II: Damped System (C # 0)

For a general damping matrix, the matrix C,; will not be diagonal, and
the differential equations for y;(¢) and y,(¢) will be coupled. However,
the modal equations are decoupled for special cases, for example,

C=aM+ K (4.8.13)
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Figure 4.8.1 Two-degree-of-freedom system with sinusoidal excitation and modal
damping

where « and § are constants. This form of damping is known as Pro-
portional or Rayleigh damping. In this case, from Equation 4.8.8,

Cy =V IMICV =al +BA (4.8.14)

Equation 4.8.7 yields
1+ (@ + Bo)) i + wiyi = fu (D) (4.8.15)
¥2+ (@ + Bw3)in + w32 = fia(t) (4.8.16)

Equations 4.8.15 and 4.8.16 can be solved by techniques developed
for an SDOF system. After that, the response can be obtained from
Equation 4.8.3.

On the basis of Equations 4.8.15 and 4.8.16, the modal damping in
each mode &;; i =1, 2, can be described as

_ ot—l—,Bwiz_

3 i=1,2 4.8.17)

2w;
Example 4.8.1: Application of Modal Decomposition
Consider the system shown in Figure 4.8.1 and assume that the damp-
ing ratios in modes 1 and 2 are 0.05 and 0.1 respectively. Determine
the steady-state response via modal decomposition. Following param-
eters are provided: m = 2kg, k = 1,800 N/m, f; = 10N, f, = 20N, and
w = 45rad/sec.
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Solution
From the Example 4.2.1 (Case 1),

1 1 2 0
1 -1 0 2
Ik 3k
1 = —_— = C()2 = —_— = .
w 30rad/sec and 51.9615rad/sec
m m

Note that
w 45
& r o1~ 30
w 45
=0.1 = — = = 0.866
52 2, T 51.9615
10
f(r) = sin 45¢
20
From Equation 4.8.8,

ﬁ0%=V1M”ﬂ0=[?§2}=[2;{met

In steady state, the responses of Equations 4.8.15 and 4.8.16 are given

as
yi1(t) = Yy sin(45t 4 ¢1)
(1) = Y5 sin(45t + ¢»)
where
75
Y = = 0.0066,
ol =+ @arn )P
2
6 = tan~! 22U _ 3022 rad
(1—r})
25
Y, = = —0.0030,
27 WA -2+ (25n)2]03
2
6 = tan1 —222"2_ _ (6058 rad

(=73
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Last, from Equation 4.8.4,

x1(6) = y1(t) + y2(2)
x(t) = yi1(t) — y2(0)

EXERCISE PROBLEMS

P4.1 Consider the system in Figure P4.1.

j x1() j x2(7)

k ke k

m ] AAANA /N m —\VV\V\V/—

e NN O N O T

Figure P4.1 Undamped 2DOF system with coupling stiffness k.

a. Derive the differential equations of motion and obtain the mass
and stiffness matrices.

b. Calculate the natural frequencies and the mode shapes.

c. Find the initial conditions such that the free vibration is sinusoidal
with each natural frequency.

P4.2 Consider the system in Figure P4.2.

Massless
and
rigid bar
2m Im
k 2k

Figure P4.2 Massless rigid bar with masses lumped at ends and supported on springs
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a. Derive the differential equations of motion and obtain the mass
and stiffness matrices.

b. Calculate the natural frequencies and the mode shapes.

c. Find the initial conditions such that the free vibration is sinusoidal
with each natural frequency.

P4.3 Consider the system in Figure P4.3.

—_

Rigid bar
k mass =m
14
1% , —>
A 4 \I
0
k
m

Figure P4.3 A rigid bar connected to another mass via a spring

a. Derive the differential equations of motion and obtain the mass
and stiffness matrices.

b. Calculate the natural frequencies and the mode shapes.

c. Find the initial conditions such that the free vibration is sinusoidal
with each natural frequency.

P4.4 Consider the system in Figure P4.4.

Boxwith mass 2m|  Cylinderwith mass

k k

v

J (J

Figure P4.4 A cylinder inside a box with spring connections
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a. Derive the differential equations of motion and obtain the mass
and stiffness matrices.

b. Calculate the natural frequencies and the mode shapes.

c. Find the initial conditions such that the free vibration is sinusoidal

with each natural frequency.
P4.5 Obtain and plot free vibration response for the system shown in
Figure P4.1 when m = 1kg, k = 530 N/m, k. = 130 N/m. Assume that
x1(0) = 0.01 m, %;(0) = 1 m/sec, x,(0) = 0, and x,(0) = 0.
P4.6 Consider the system in Figure P4.6.

Massless ——
and

rigid bar c |::|
a] \x K

2m 3m

Figure P4.6 Massless rigid bar with masses lumped at ends and supported by springs
and a damper

a. Derive the differential equations of motion and obtain mass, stiff-
ness, and damping matrices.

b. Assume that m = 11kg, k=4,511N/m, and ¢ = 20N — sec/m.
Determine the damping ratio and the undamped natural frequency
for each mode.

c. Obtain and plot response when x;(0) = 0.0l m, %;(0) = 1 m/sec,
x(0) = —0.02m, and x,(0) = 0.

P4.7 A quarter car model of an automobile is shown in Figure P4.7.

The vehicle is traveling with a velocity V on a sinusoidal road surface

with amplitude = 0.011 m and a wavelength of 5.3 m.
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Figure P4.7 A quarter car model

a. Derive the differential equations of motion and obtain mass, stiff-
ness, and damping matrices. Also, obtain the forcing vector.

b. Assume that my = 1,010kg, m, = 76kg, k; =31, 110N/m, k, =
321,100 N/m, and ¢ =4,980N — sec/m. Determine the damping
ratio and the undamped natural frequency for each mode.

c. Compute the amplitudes and the phases of steady-state responses
when the velocity V = 100 km/h with and without the damper.

d. Plot amplitudes of both masses as a function of the velocity V in
the presence of a damper.

P4.8 A rotor-shaft system (Figure P4.8) consisting of torsional stiff-
ness k; and mass-moment of inertia J; is subjected to a sinusoidal
torque with magnitude 1.3 kN-meter. When the excitation frequency
equals 80 Hz, there is a large amount of vibration.
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Figure P4.8 Undamped torsional vibration absorber

Design an undamped vibration absorber with the requirement that
the system will be safe for 20% fluctuation in excitation frequency
around 80 Hz. Determine the amplitude of the absorber rotor J, at
80 Hz.

P4.9 A rotor-shaft system consisting (Figure P4.9) of torsional stiff-
ness k1 and mass-moment of inertia J; is subjected to a sinusoidal
torque with magnitude 1.3 kN-meter. When the excitation frequency
equals 80 Hz, there is a large amount of vibration.

Iy — ]

-

Femm—

.

Pd

C
st Vibration absorber
Torque “s.__ at

-
............

Figure P4.9 Damped torsional vibration absorber

Design an optimally damped vibration absorber. Determine the

amplitudes of both rotors as a function of excitation frequencies.

P4.10 Determine the response of the two-mass system in Figure P4.10
via modal decomposition when the force f(¢) is a step function of
magnitude 5 N and the modal damping ratio in the vibratory mode
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j x1(7) j x2(t)

Y0 .
=" AW

() () O Q)

Figure P4.10 Two masses connected by a spring

is 0.05. Assume that m=1.5kg, k=1,250N/m, x;(0) =0.02m,
x1(0) = 1 m/sec, x,(0) = —0.01 m, and x,(0) = 0.



FINITE AND INFINITE
(CONTINUOUS) DIMENSIONAL
SYSTEMS

This chapter begins with the computation of the natural frequencies
and the mode shapes of a discrete multi-degree-of-freedom (MDOF)
system. It is shown that the natural frequencies and the modal vectors
(mode shapes) are computed as the eigenvalues and the eigenvectors
of a matrix dependent on mass and stiffness matrices. The orthogonal
properties of modal vectors are derived. These orthogonal principles
are the foundation of the modal decomposition technique, which leads
to a significant reduction in the computational effort required to com-
pute the response. Next, the following cases of continuous systems
are considered: transverse vibration of a string, longitudinal vibration
of a bar, torsional vibration of a circular shaft, and transverse vibra-
tion of a beam. These continuous systems have mass continuously dis-
tributed, are infinitely dimensional, and are governed by partial dif-
ferential equations. The method of separation of variables is used and
the natural frequencies and the modal vectors are calculated. Again,
modal decomposition is used to compute the response. Last, the finite
element method is introduced via examples of the longitudinal vibra-
tion of a bar and the transverse vibration of a beam.

5.1 MULTI-DEGREE-OF-FREEDOM SYSTEMS

The differential equations of an MDOF system is written as
Mx + Cx + Kx = 1(r) (5.1.1)

237
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Figure 5.1.1 Three-degree-of-freedom system

~H

The mass matrix M, the damping matrix C, and the stiffness matrix K
are n x n matrices where » is the number of degrees of freedom. The

force vector f(¢) is n-dimensional.

Example 5.1.1: Consider the three-degree-of-freedom system shown
in Figure 5.1.1.

The free body diagram of each mass is shown in Figure 5.1.2. Applying

Newton’s law of motion to each mass, three second-order differential
equations are obtained as follows:

fi(t) — kxy — k(x1 — x2) — c(X1 — X2) = mi; (5.1.2)

fz([) — k(xz — xl) - C(Xz - )'cl) — k(xz — X3) = mi, (513)

f3(t) — k(x3 — x2) — kx3 = mis (5.1.4)

With the number of degrees of freedom n equal to 3, Equations 5.1.2—
5.1.4 can be put in the matrix form (Equation 5.1.1).

j N0 j xy(f) | n0
k(xy—xy)

kx, ,kal —%) «— k(x3 = x3)
«— . c(xz—x1)<_. m  |[e— <« m 4k—
— <C(T— %) — koo=x)  — "
fl(t) 1 2 fz(t) f3(t)

Figure 5.1.2 Free body diagram for each mass in Figure 5.1.1
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where
x1(1) fi()
()= | @) | ()= f£©0) (5.1.5)
x3(1) ()
[m 0 0 2k -k 0
M=|0 m 0|, K=|-k 2k —k|,and
|0 0 m 0 -k 2k
¢ - 0
C=|-—c ¢ 0 (5.1.6)
| 0 0 o0

5.1.1 Natural Frequencies and Modal Vectors (Mode Shapes)

There is a mode shape or a modal vector associated with a natural
frequency. A general method to compute the natural frequencies and
the mode shapes is as follows.

Ignoring damping and external force terms, Equation 5.1.1 can be

written as
Mx+Kx=0 (5.1.7)
Let
x(¢) = asin(wt + ¢) (5.1.8)

where n x 1 vector a, the frequency w, and the phase ¢ are to be deter-
mined.

Differentiating Equation 5.1.8 twice with respect to time,
% = —o’asin(wt + ¢) (5.1.9)
Substituting Equations 5.1.8 and 5.1.9 into Equation 5.1.7,

(K—ao*M)a=0 (5.1.10)
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For a nonzero or a nontrivial solution of a,
det(K — *’M) =0 (5.1.11)

which will be a polynomial equation of degree n in w?. Equation 5.1.10
can also be written as

Ka = w*Ma (5.1.12)
or
M™'Ka = w’a (5.1.13)

Equation 5.1.13 clearly indicates that o and a are an eigenvalue and
an eigenvector (Strang, 1988) of the matrix M~'K. In addition, Equa-

tion 5.1.12 suggests that o’

and a are generalized eigenvalues and
eigenvectors of the stiffness matrix K with respect to the mass matrix
M. The MATLAB command for computation of generalized eigen-
values and eigenvectors is eig(K, M). The formulation of the general-
ized eigenvalue/eigenvector problem is convenient for a large number
of degrees of freedom because the inverse of the mass matrix is not

required.

Example 5.1.2: Eigenvalues and Eigenvectors of Three-Mass Chain
From Example 5.1.1, the mass and stiffness matrices are as follows:

m 0 0 2k —k 0
M=|0 m 0|; K=|-k 2k —k| (51.14a,b)
0 0 m 0 —k 2k
Therefore,
2k — w*m —k 0
K—o’M = —k 2k — w*m —k (5.1.15)
0 —k 2k — w’*m

From Equation 5.1.15,

det(K — 0*M) = 2k — mao?)[(2k — mw*)?* —2k?*]  (5.1.16)
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From Equation 5.1.16, three natural frequencies are as follows:

wl:,/%, w2=\/%, and m:,/%(s.l.m

Using Equation 5.1.10,

—w'm — a
2k — ? k 0 0
(K — *M)a = —k 2k — w’m —k al=|0
0 —k 2k—w?m | | a3 0
(5.1.18)

I. Modal Vector for o? = %
From Equation 5.1.18,

2k —k 0 ai
-k 2k —k a | =
0 —k ~2k|| a

(5.1.19)

oS O O

Two independent equations are
V2ka; —ka, =0 and —kar + ~2kaz =0 (5.1.20a, b)

Since there are two equations in three unknowns, a; is arbitrarily cho-
sen to be 1. Then, the solutions of Equations 5.1.20a,b yield a; = V2
and a3 = 1. In other words, the modal vector is

a=[1 2 11" (5.1.21)

II. Modal Vector for w? = 2k/m

From Equation 5.1.18,

—k 0 —k||a (5.1.22)

Il
c o o
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Two independent equations are
ka, =0 and —ka; —kaz=0 (5.1.23a,b)

Again, a; is arbitrarily chosen to be 1. Then, the solutions of Equa-
tions 5.1.23a,b yield a, = 0 and a3 = —1. In other words, the modal
vector is

a=[1 0 -1]" (5.1.24)

III. Modal Vector for o? = G2k

m

From Equation 5.1.18,

-2k —k 0 a 0
-k =2k -k aw|=1]0 (5.1.25)
0 —k =2k || a3 0

Two independent equations are
—2kay —kay =0 and —kay —v2kas =0 (5.1.26a, b)

Again, a; is arbitrarily chosen to be 1. Then, the solutions of Equa-
tions 5.1.26a,b yield a; = —+/2 and a3 = 1. In other words, the modal
vector is

a=[1 —v2 1]" (5.1.27)

5.1.2 Orthogonality of Eigenvectors for Symmetric Mass

and Symmetric Stiffness Matrices

The orthogonality of eigenvectors is an important property for the
vibration analysis of an MDOF system. The derivation of this property
is as follows.

Let »? and v; be the eigenvalue and eigenvector pair where i =
1,2,...,n. Then,

Kv; = o’ My, (5.1.28)
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and
KVj = a)?MV]‘
Pre-multiplying both sides of Equation 5.1.28 by V/T,

T 2T
ijvi :a)iv]»Mvi

243

(5.1.29)

(5.1.30)

Pre-multiplying both sides of Equation 5.1.29 by v/ and then taking

the transpose,
(viTva)T = a)?(viTMvj)T
or
vaKTw = a)?v]rMTvi
For symmetric mass and symmetric stiffness matrices,
K=K"
and
M=M"
Using Equations 5.1.33 and 5.1.34, Equation 5.1.32 yields
V]-TKV,- = a)?v]TMvi
Substituting Equation 5.1.30 into Equation 5.1.35,
(a)iz - w?)vaMvi =0
As aresult,
vaMvi =0 for w; # w;
From Equations 5.1.30 and 5.1.37,
vaKvi =0 for w; # w;j
Usually, each eigenvector is scaled such that

v,-TMvizl; i=1,2,...,n

(5.1.31)

(5.1.32)

(5.1.33)

(5.1.34)

(5.1.35)

(5.1.36)

(5.1.37)

(5.1.38)

(5.1.39)
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In this case, from Equation 5.1.30,

vVIKvi=w?; i=1,2,....n (5.1.40)
Define a modal matrix V as follows:

V=[vi v - v V] (5.1.41)

Then, Equations 5.1.37-5.1.40 are expressed as

ViMv =1, (5.1.42)
and
VIKV = A (5.1.43)
where
(@ 0 0 0]
0 w? 0 0
A=| : (5.1.44)
0 0 - w2, 0
0 0 - 0 o]

Note: The derivations (Equations 5.1.42 and 5.1.43) are shown only
for nonrepeated natural frequencies. However, it may be possible to

diagonalize when some of the natural frequencies are repeated.

Example 5.1.3: Orthogonality of Modal Vectors in Three-Mass Chain
Modal vectors in Example 5.1.2 are normalized to satisfy Equa-

tion 5.1.42 as follows:

1 1 1
1 1 1
= — s = — , d = — -
Vi 2 Jm V2 \g) o 01 and wv3 2 1/5

(5.1.45)
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Therefore, the modal matrix is

) V22 2
V=I[vy v» w]l=—=|2 0 =2 (5.1.46)
22
"z 2 V2
Hence,
) V22 V272 —k 0 V2 2 V2
VTKV=71 2 0 =2||-k 2k -k 2 0 =2
V2 =2 V2 0 —k 2k||vV2 -2 V2
(5.1.47)
It can be verified that
. 2-v2 0 0 w} 0 0
VIKV = — 0 2 0 =10 o 0 (5.1.48)
m
0 0 242 0 0 o

5.1.3 Modal Decomposition

In general, the response x(¢) is a linear combination of the modal vec-

torsv;; i =1,2,...,n, thatis,
X(1) = viyi(t) + v2y2(0) + - + Vayu(?) (5.1.49)
where y;(¢) is the coefficient of the modal vectors v;; i =1,2,...,n.

Equation 5.1.49 can be represented in a compact form as follows:
x(t) = Vy(1) (5.1.50)

where the matrix V is defined by Equation 5.1.41 and the vector y(¢)
is defined as

YO=[y o - Y1 yal" (5.1.51)

Substituting Equation 5.1.50 into Equation 5.1.1, and pre-multiplying
by V7,

VIMV + VICvy + VIKVy = V(1) (5.1.52)
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j Yi(®)
2

keq = ;

vl ()

Figure 5.1.3 An equivalent undamped SDOF system for each mode

Equations 5.1.52 are often called modal equations as they are in terms
of modal components y;; i =1,2,...,n. Matrices VMV and V'KV
are diagonal, but there is no guarantee that V' CV is diagonal. Two
special cases of damping resulting in decoupled modal equations are
considered as follows.

Case I: Undamped System (C = 0)
Substituting Equations 5.1.42 and 5.1.43 into Equation 5.1.52,

¥+ Ay = V1) (5.1.53)
or
yi+oiyi =viEE);, i=1,2,...,n (5.1.54)

Here, modal equations are decoupled and each modal equation in
Equation 5.1.54 can be viewed as an equivalent undamped single-

degree-of-freedom system subjected to the force v/ f(r) (Figure 5.1.3).
The quantity v/f(¢) is also known as the modal force.

Example 5.1.4: Consider the system in Figure 5.1.1 with zero
damping.
Let m = 2kg and k = 1,000kg, and

1
f(r) =] 0.5 | sin30¢tN (5.1.55)
2
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Let the initial displacement and velocity vectors be x(0) =
[0.03 0.02 0.04]" m and x(0) = [3 5 8]” m/sec.
The MATLAB program is listed in Program 5.1. This yields

03536 —0.5 —0.3536
v=| 05 0 0.5 (5.1.56)
0353 05 —0.3536

and
a)f 0 O (17.114)? 0 0
A= 0 wg 0 |= 0 (31.6228)? 0
0 O w% 0 0 (41.3171)?

(5.1.57)

The conditions in Equations 5.1.42 and 5.1.43 have been verified.
Next,

vit(0) 13107
Vi) = | vif() | =| 0.5 |sin30¢ (5.1.58)
vIE(r) —0.8107
Initial conditions are
y1(0) 0.0695
»(0) | =V x(0)=| 0.01 (5.1.59)
y3(0) —0.0295
and
$1(0) 12.7782
$,(0) | = V71x(0) = 5 (5.1.60)

73(0) —2.7782
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Equation 5.1.54 yields

1 + (17.114)%y, = 1.3107sin30;  y1(0) = 0.0695,
$1(0) = 12.7782  (5.1.61a)

J2 4 (31.6228)%y;, = 0.5sin30f;  1,(0) =0.01, 3,(0) =5
(5.1.61b)
3 + (41.3171)%y; = —0.8107sin30;  y3(0) = —0.0295,
y3(0) = —2.7782 (5.1.61c¢)

These equations can be easily solved using techniques presented in
Chapter 2, and the response of the MDOF system is then given by

x1(2) yi(?)
w0 | = V] wo (5.1.62)
x3(t) y3(1)

MATLAB Program 5.1: Modal Vectors and Modal Initial Conditions

clear all

close all

Q
o

m=2;

k=1000;

M=[200;020;002];

K=[2*k -k 0;-k 2*k -k;0 -k 2*k];
f=[1 0.5 21"';

)

[V,Dl=eig(K,M) ;

V/*E

yv0=inv(V)*[0.03 0.02 0.04]'%initial value of y
dy0=inv(V)*[3 5 8] '%initial value of dy/dt
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j yi(1)
2
keq =w;

T Meg =1 r
Cog = 00+ P L

Figure 5.1.4 An equivalent damped SDOF system for each mode

Case II: Proportional or Rayleigh Damping
Assume that the damping matrix has the following form:

C=aM+BK (5.1.63)

where « and $ are the constants. This form of damping is known as
Proportional and Rayleigh damping. Substituting Equations 5.1.42,
5.1.43, and 5.1.63 into Equation 5.1.52,

¥+ (al + BA)Y + Ay = V(1) (5.1.64)
or
Ji+ (e + pof) yi + iy = V1), i=1,2,....n (5.1.65)

Again, the modal equations are decoupled and each modal equation
in Equation 5.1.65 can be viewed as an equivalent damped single-
degree-of-freedom system subjected to the modal force v/f(r) (Fig-
ure 5.1.4).

Example 5.1.5: Nonproportional Damping
Consider the Example 5.1.1 with ¢ = 5 N-sec/meter. The mass and
stiffness matrices are the same as those in Example 5.1.4. In this

case,

0.1072 0.3661 0.6250
vicv =103661 125 2.1339 (5.1.66)
0.6250 2.1339 3.6428
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w(x, 1)
\Hr\
m R

Zero vibration position

Figure 5.2.1 Transverse vibration of a string

Because VICV is not diagonal, the damping in the system is not pro-

portional.

5.2 CONTINUOUS SYSTEMS GOVERNED
BY WAVE EQUATIONS

This section deals with the vibration of a string, the longitudinal vibra-

tion of a bar, and the torsional vibration of a circular shaft.

5.2.1 Transverse Vibration of a String

Consider a string (Figure 5.2.1) with tension P, mass per unit length
u, and external force per unit length f(x, ¢). Let w(x, ¢) be the trans-
verse deflection of the string at a position x and time ¢. The free
body diagram of a string section with the length dx is shown in
Figure 5.2.2.

P
Jex,ndx - _A<60+do

A

9
: P w w+dw

>

X x+dx

Figure 5.2.2 Free body diagram of a string element
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Applying Newton’s second law of motion to the free body diagram in
Figure 5.2.2,

. . *w
fe(x, )dx + Psin(6 + d0) — Psinf = ,udxﬁ (5.2.1)

where 6 is the slope of the function w(x, t), that is,

0
tanf = 2 (52.2)
ax
For a small 9,
d
Sinf ~ tan0 = - (5.2.3)
ax
and
aw 82w
sin(@ + df) ~ tan(6 + df) = — + T (5.2.4)
Substituting Equations 5.2.3 and 5.2.4 into Equatlon 521,
a?w 82w
—fi(xx, )+ x> = — 525
fe(x )+ x 2 pYs ( )
where
P
X=.— (5.2.6)
w

Equation 5.2.5 is the governing partial differential equation of motion.

Natural Frequencies and Mode Shapes
Natural frequencies and mode shapes are the characteristics of free
vibration. Therefore, the external force term in Equation 5.2.5 is
ignored to obtain
207w 9w
dx? or2
The partial differential Equation 5.2.7 is known as the wave equation.

(52.7)

The solution of the partial differential Equation 5.2.7 is repre-
sented as follows:

w(x, £) = X(x)T(1) (5.2.8)
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where X(x) is a function of position x only and 7(¢) is a function of
time ¢ only. This technique is known as the separation of variables
(Boyce and DiPrima, 2005). Differentiating Equation 5.2.8,

?w  d’°X

—=—T 5.2.9

axz  dx? ( )
and

3’w d’T

— =X— 5.2.10

012 dr? ( )
Substituting Equations 5.2.9 and 5.2.10 into Equation 5.2.7,

1d’X 1d°T

2 = (5.2.11)

Xde T Tdr
Since the left-hand side of Equation 5.2.11 is only a function of x and
the right-hand side of Equation 5.2.11 is only a function of ¢, they can
be equal only by being a constant. Also, it has been found that this
constant must be a negative number for a physically meaningful solu-

tion. Denoting this negative constant as —w?,

1d’X  1d°T
LA _1al 9
XX a2 = TR 1) (5.2.12)

Equation 5.2.12 represent the following two ordinary differential

equations:

da’T

T W*T=0 (5.2.13)
and

a’X o

W + PX: 0 (5.2.14)

Both equations have the same form as the differential equation gov-
erning the undamped free vibration of an equivalent single-degree-
of-freedom system in Chapter 1. Therefore, the solution of Equation
5.2.13 is as follows:

T(¢t) = A; sinwt + Bj cos wt (5.2.15)
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where the constants A; and B; depend on the initial position and the

velocity of the string. The form of the solution Equation 5.2.15 clearly

indicates that the constant w is the natural frequency of vibration.
The solution of Equation 5.2.14 is as follows:

X(x) = A; sin <§x) + B, cos (%x) (5.2.16)

where the constants A, and B, depend on the boundary conditions
which also yield natural frequencies and associated mode shapes. As
an example, a string fixed at both ends is considered as follows.

String Fixed at Both Ends Let a string of length ¢ be fixed at both
ends. In this case, the boundary conditions are described as

w(0,f) =0 forallz (52.17)
and
w(l,t)=0 forall¢ (5.2.18)
From Equations 5.2.8 and 5.2.17,
X0)=0 (5.2.19)
From Equations 5.2.8 and 5.2.18,
X)=0 (5.2.20)

Imposing the conditions (Equations 5.2.19 and 5.2.20) to Equation
5.2.16,

B, =0 (5.2.21)
and
X(¢) = Ay sin (95) —0 (5.2.22)
X

For a nontrivial solution (A, # 0),

sin <§e> =0 (5.2.23)
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The number of solutions of Equation 5.2.23 is infinite as follows:
)
—A=nmw; n=12,3,..., (5.2.24)
X

Equation 5.2.24 leads to the natural frequencies for the transverse
vibration of the string:

nryx nmw
a)n = — =

= o n=1,2.3,... 5225
7 7 ;o n=1,23,..., ( )

NS

The number of natural frequencies is infinite as the number of degrees
of freedom of a continuous structure is infinite. Substituting Equations
5.2.21 and 5.2.25 into Equation 5.2.16,

X(x) = Ay sin <&x) = A;sin (nn f) (5.2.26)
X L

Setting A, arbitrarily equal to one, the mode shape associated with
the frequency w, is written as

¢u(x) = sin (nn%) o n=1,23,..., (5.2.27)

These mode shapes are shown in Figure 5.2.3.
The mode shapes (Equation 5.2.27) are orthogonal to each other

in the following sense:

¢
[o@eax =0 i# (5.228)
0

It should also be noted that

£
/ ¢ (x)dx = g (5.2.29)
0
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1 1
é 0.5
S 05 =il 0
® n=2
2 05
a .
% 0.5 1 o 0.5 1
1 1
VA A RATETA
$ 05 0.5
; \ oo Vo
SN R
o
g—o.s \/ -0.5 \/ \/
-1 -1
0 0.5 1 0 0.5 1
X/(String length) X/(String length)

Figure 5.2.3 Mode shapes ¢, (x) of strings fixed at both ends

Computation of Response

In general, the response can be expressed as a linear combination of
mode shapes, that is,

w(x, 1) = an(t)pu(x) (5.2.30)

n=1

where time-dependent coefficients «,(f) are to be determined.
Differentiating Equation 5.2.30 twice and using Equation 5.2.14,

92 g 42 . 00
’ axv; - Za”(t)xz d;pz =- Zan(t)wfi¢n(x) (5.2.31)
n=1

n=1

Substituting Equation 5.2.31 into the partial differential equation of
motion (Equation 5.2.5),

00 o0 20{n
> an(oppu(x) ==Y dqubn(x) + % fo(x, 1) (5.2.32)

n=1 n=1
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Multiplying both sides of Equation 5.2.32 by ¢;(x) and integrating
from O to ¢,

L
Zan(t)a) f Pn(X)p;(x)dx = Z ddg” f dn(x)¢;(x)dx
0

+l/fg(x, Hej(x)dx  (52.33)
o

Then using the properties in Equations 5.2.28 and 5.2.29,

d
dt2 2

a,»(t)gwf — / fu(x, £)p;(x)dx (5.2.34)

or

d’a
dr?

Lt ol () = / fulx. )¢ (x)dx (5.2.35)

Initial conditions are obtained from w(x, 0) and w(x, 0). From Equa-
tion 5.2.30,

w(x,0) =" an(0)pu(x) (5.2.36)
n=1

W(x,0) = @n(0)pn(x) (5.2.37)
n=1

Using the properties in Equations 5.2.28 and 5.2.29,

a;(0) =

SN

¢
/ w(x,0)p;(x)dx (5.2.38)
0

and
4

a;(0) = / w(x, 0)g;(x)dx (5.2.39)

0



Finite and Infinite (Continuous) Dimensional Systems 257

0.2 0.4 0.6 0.8 1
x/(String length)

Figure 5.2.4 Initial displacement of a string
Example 5.2.1: Free Vibration of a String

Consider a string for which the initial displacement is shown in Fig-

ure 5.2.4, which can be analytically expressed as

w(x,0) = sin (717)() + sin <27r7x> (5.2.40)

Assuming that the initial velocity of string w(x, 0) = 0, determine the
free response of the string.
From Equation 5.2.38,

amF%qu%wm%%ﬂ}m@QW=1@mm
@@:%th%)ﬂmc%ﬂm%%gqu(mM)

0

and

@ (0)=0; j=3.45 .., (5.2.43)
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u(x, 1)

= /filx1)

X > dx| Jfo(x, ) Force per unit length

Figure 5.2.5 Longitudinal vibration of a bar

From Equation 5.2.39,
a@;(0)=0; j=1,2,3,..., (5.2.44)
The solution of Equation 5.2.35 with f;(x, t) = 0 is
aj(t)y =coswjt; j=1,2 (5.2.45)
aj(t)=0; j=3,4,5,..., (5.2.46)

Therefore, from Equation 5.2.30, the response is

w(x, t) = cos(wqt) sin (%) + cos(wyt) sin (?) (5.2.47)

5.2.2 Longitudinal Vibration of a Bar

Consider a longitudinal bar shown in Figure 5.2.5 for which u(x, t) is
the axial displacement at a distance x from the left end and at any time
t. The force per unit length along the axial direction is fy(x, ?). The free
body diagram of an element of the length dx is shown in Figure 5.2.6,
where P is the force on the element from the part of the bar on the
left of the element. Similarly, P + d P is the force on the element from
the part of the bar that is on the right side of the element.
Applying Newton’s second law of motion to the element in Fig-
ure 5.2.6,
d’u
fe(x,t)ydx+P+dP —P = ,oAde (5.2.48)
where p and A are the mass density and the cross-sectional area,
respectively. Note that the mass of the element of length dx is pAdx.
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letx |
P —» P+dP
So(x, dx
u(x, t)

Figure 5.2.6 Free body diagram of an element of length dx

The strain ¢ (Crandall et al., 1999) at a position x in Figure 5.2.5 is
ou

= — 5.2.49
&= (5.2.49)
Therefore, the stress o at a position x in Figure 5.2.5 is
0
o=EX (5.2.50)
ox

where E is the Young’s modulus of elasticity. Using Equation 5.2.50,
the internal force P at a position x in Figure 5.2.5 is

P=0cA= EAa—u (5.2.51)
0x

Differentiating Equation 5.2.51,

9%u
dP = EA—dx (5.2.52)
9x2

Substituting Equation 5.2.52 into Equation 5.2.48,

u  fi(x,t) u
2 ’

— = 5.2.53
2T A T (5253)

c= \/E (5.2.54)
0

The governing partial differential equation of motion (Equation

where

5.2.53) is also a wave equation.

Example 5.2.2: Find the natural frequencies and the mode shapes of
a fixed—free longitudinal bar.
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In this case, the boundary conditions are described as

u(0,1)=0 forall ¢ (5.2.55)
and

du

—(,t) =0 forall¢ (5.2.56)

dx
Similar to Equation 5.2.8,

u(x, t) = X(x)T(t) (5.2.57)

The solutions of 7(¢) and X(x) are given by Equations 5.2.15 and
5.2.16 where yx is replaced by c.
From Equations 5.2.55 and 5.2.57

X0)=0 (5.2.58)
From Equations 5.2.56 and 5.2.57,

dX

—(@)=0 (5.2.59)

dx

Imposing the conditions in Equations 5.2.58 and 5.2.59 to Equation
5.2.16,

B, =0 (5.2.60)
and
—(5) A% cos (2e) =0 (5.2.61)
c
For a nontrivial solution (A, # 0),
w
cos (zz) =0 (5.2.62)
The number of solutions of Equation 5.2.62 is infinite as follows:
o  2n-1

c 2 d

n=1,23,..., (5.2.63)
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Figure 5.2.7 Mode shapes ¢,(x) for longitudinal vibration of a bar (fixed-free)

Equation 5.2.63 leads to the natural frequencies for the longitudinal
vibration of a bar:

-1 -1y [E
o= B e _Cn=Dx [E 455 (5264
20 20 P

The mode shapes of the longitudinal bar vibration are

¢n(x) = sin (%x) = sin (%x)

These mode shapes are plotted in Figure 5.2.7.

(5.2.65)

5.2.3 Torsional Vibration of a Circular Shaft

Consider a shaft with a circular cross section shown in Figure 5.2.8 for
which 6(x, t) is the angle of twist of a section at a distance x from the
left end and at any time ¢.

The torque per unit length along the axial direction is n.(x, f).

The free body diagram of an element of the length dx is shown in
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n, (x, t) : Torque per unit length

Figure 5.2.8 Torsional vibration of a circular shaft

Figure 5.2.9, where M, is the torque on the element from the part of
the shaft on the left of the element. Similarly, M; + d M, is the torque
on the element from the part of the bar that is on the right side of the
element.
Applying Newton’s second law of motion to the element in Fig-
ure 5.2.9,
3%0
M, +dM, + ne(x,t)dx — M, = Iodxﬁ (5.2.66)
where [j is the mass-moment of inertia per unit length about the axis
XX. Tt is known (Crandall et al., 1999) that

20
M, =GJ] — (5.2.67)
ax

where G and J are the Shear modulus of elasticity and the area
moment of inertia of the circular cross section about the axis XX,

05D gty a6

Figure 5.2.9 Free body diagram of an element of length dx
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n,0(x — 0)

| Drill
| Torque

j%i

|~

A

0

Figure 5.2.10 A simple model of drill

respectively. From Equation 5.2.67,

%0
dM, = GJ —dx (5.2.68)
dx2
Substituting Equation 5.2.68 into Equation 5.2.66,

NG i
9x2 I, — 92

(5.2.69)

where
c= . [— (5.2.70)

The governing differential equation of motion (Equation 5.2.69) is
also a wave equation.

Example 5.2.3: Forced Response of a Circular Drill
Consider a circular drill of length ¢ and diameter d. When the drill
makes a hole on a work surface, it experiences a torque ny at x = £
(Figure 5.2.10). Assuming that 6(x,0) = 0, é(x,0) — 0, and treating
the shaft as fixed—free, determine the response 0(x, ), the angle of
twist of a section at a distance x from the left.

Since the shaft is fixed—free, the natural frequencies and the mode
shapes can be shown to be given by Equations 5.2.64 and 5.2.65,
that is,

2j—Dnec @Qj—Dr |GJ .
P = = —_— =1,2,3,... 52.71
wj =1 T =123 s27)
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And the mode shapes will be

¢;(x) = sin (%x) S j=1,2,3,..., (52.72)

Following Equations 5.2.30 and 5.2.35, the response is given by

0(x, 1) = i:a,-(t)qu (x) (5.2.73)
i
where
d;ﬂ wjerj(1) = f ne(x, 0)¢;(x)dx (5.2.74)
0
Here,

ne(x, 1) = npd(x — ¢) (5.2.75)

where §(x — £) is the Dirac delta or the unit impulse function. Substi-
tuting Equation 5.2.75 into Equation 5.2.74, and using Equation 3.2.5,

d2Olj 2 21’10(15]'(3)
Because 6(x,0) = 0 and A(x,0) =0,
@j(0)=0 and &(©0)=0; j=123,.... (5277

Following the solution procedure in Chapter 2 (Equation 2.1.21),

2no¢;(£)

ai(t) = Tt (I —coswjt); j=1,2,3,..., (52.78)
0tw;

From Equations 5.2.73, 5.2.72, and 5.2.78,

0(x,t) = Z ’;Od)/ ©) (1 — cosw;f) sin (%x) (5.2.79)
j=1
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Force per unit length
Joe(x, 1)

Figure 5.3.1 Transverse vibration of a beam

5.3 CONTINUOUS SYSTEMS: TRANSVERSE
VIBRATION OF A BEAM

5.3.1 Governing Partial Differential Equation of Motion

Consider a beam shown in Figure 5.3.1 for which w(x, ¢) is the trans-
verse displacement at a distance x from the left end and at any time ¢.
The force per unit length along the lateral direction is f;(x, 7). The free
body diagram of an element of the length dx is shown in Figure 5.3.2,
where V(x, t) and M(x, ) are the shear force and the bending moment,
respectively, on the element from the part of the beam on the left of
the element. Similarly, V(x,t) + dV(x, t) and M(x, t) +dM(x,t) are
the shear force and the bending moment, respectively, on the element
from the part of the beam which is on the right side of the element.

dx
- fg(x, t)dx

l) M, 6+ dM(x, 1)

Vix, t)+ dV(x,t)

Figure 5.3.2 Free body diagram of a beam element
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Applying Newton’s second law of motion to the beam element in
Figure 5.3.2,

82
~(V+dV)+ fulx, )dx + V = pAdxa—;V (53.1)
where p and A are the mass density and the cross-sectional area,
respectively.
It is well known (Crandall et al., 1999) that

oM
V=— (53.2)
ax
Therefore,
M
Substituting Equation 5.3.3 into Equation 5.3.1,
M a?w
= 1) = pA—- 534
i) = pA (5.3.4)
From the elementary beam theory (Crandall et al., 1999),
3w
M(.X, I) = EIaW (535)

where E and I, are the Young’s modulus of elasticity and the area
moment of inertia of the beam cross section, respectively. Substituting
Equation 5.3.5 into Equation 5.3.4,

a4 2
Y AT = fi(x, 1) (5.3.6)

El,—
“ oxt of

Equation 5.3.6 is the governing partial differential equation of motion.
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5.3.2 Natural Frequencies and Mode Shapes

Setting the external force f;(x, t) = 0, Equation 5.3.6 can be written

as
*w ?w
2
—_— = 537
dx4 a2 ( )
where
El
2 a
= 538
=i (53.8)
Following the method of separation of variables, assume that
w(x, t) = X(x)T(t) (5.3.9)

where X(x) is a function of x only and 7(¢) is a function of time ¢ only.
From Equation 5.3.9,

tw  diX

—=—T 5.3.10

ox*  dx* ( )
and

9%w d’T

— =X— 53.11

or dr ( )
Substituting Equation 5.3.10 and 5.3.11 into Equation 5.3.7

1d*X 14d°T

—-pI——— = (5.3.12)

Xdx* ~ Tde
Since the left-hand side of Equation 5.3.12 is only a function of x and
the right-hand side of Equation 5.3.12 is only a function of ¢, they can
be equal only by being a constant. Also, it has been found that this
constant must be a negative number for a physically meaningful solu-
tion. Denoting this negative constant as —w?,

1d*X 14T
2 2
g —_ 5.3.13
Xdx* " Tae =~ “ (5:3.13)
From Equation 5.3.13,
d*T
T 4+ W*T=0 (5.3.14)

dr?
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The solution of Equation 5.3.14 is
T(t) = A; sinwt + By cos wt (5.3.15)

where A; and B; are the constants. Equation 5.3.13 also yields

d*x
where
i_ @

The solution of Equation 5.3.16 is assumed as
X(x) = Ae™ (5.3.18)
Substituting Equation 5.3.18 into Equation 5.3.16,
(s* —yHAae™r =0 (5.3.19)
For a nontrivial solution (A # 0),
st—yt=0 (5.3.20)
or
(s+y)s—y)s+iy)s—iy)=0 (5.3.21)
where i = +/—1. The four roots of Equation 5.3.21 are as follows:
s1=-y, S$=y, s3=—iy, and ss=iy (5322)
Therefore, the general solution of Equation 5.3.16 is
X(x) = Aye " + By’ + Cre™'V* + Dye'?* (5.3.23)
Equation 5.3.23 can also be expressed as
X(x) = Ascoshyx + Bssinhyx + Cscosyx + D3sinyx  (5.3.24)

Here, the constants A; and Bj are related to A, and B,. Also, the
constants C; and Dj are related to C, and D,.
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w(0,)=0 w(l, )=0
[ ]
le N
) ( /l
M, =0 M(l,1)=0

Figure 5.3.3 A simply supported beam

Simply Supported Beam
For a simply supported beam (Figure 5.3.3) of length ¢, deflections at
both ends are zero, that is,

w(0,£)=0 and w(¢,t)=0 (5.3.25)

Also, the bending moments at both ends of a simply supported beam
are zero, that is,

M(0,t)=0 and M(¢, 1) =0 (5.3.26)

The boundary conditions in Equations 5.3.25 and 5.3.26 along with the
assumed form of the solution (Equation 5.3.9) and Equation 5.3.5 lead

to the following four conditions on X{(x):

X0)=0 (5.3.27a)
X()=0 (5.3.27b)
a’x
W(O) =0 (5.3.27¢)
and
d*x
W(z) =0 (5.3.274d)

From Equations 5.3.27a, 5.3.27c, and 5.3.24,

A3+ G =0 (5.3.28)
Ay —Cs=0 (5.3.29)
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Equations 5.3.28 and 5.3.29 imply that
A3 =0 and G =0 (5.3.30a, b)

Applying Equations 5.3.27b and 5.3.27d to Equation 5.3.24,

s%nhy@ sir.lyé B; _ 0 (5.331)
sinhy? —sinyf || D3 0
For a nontrivial solution of Equation 5.3.31,
inh y ¢ inyt
det| STVE SR (53.32)
sinhyf¢ —siny#

The condition in Equation 5.3.32 yields
sinyf =0 (5.3.33)
Substituting Equation 5.3.33 into Equation 5.3.31 yields
B3 =0 (5.3.34)
Because of Equations 5.3.30a,b and 5.3.34, Equation 5.3.24 yields
X(x) = D3sinyx (5.3.35)

Equations 5.3.33 and 5.3.35 lead to the natural frequencies and the
mode shapes, respectively. From Equation 5.3.33,

yb=nw; n=12,3,..., (5.3.36)

From Equations 5.3.17 and 5.3.36, the natural frequencies of a simply
supported beam are

g
wn = EZ ’

n=1273,..., (5.3.37)

There are an infinite number of natural frequencies as the num-

ber of degrees of freedom of a continuous structure is infinite. The
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w(0,)=0 V(=0
|
k >)
V4
ﬂ((), H=0 M, =0
dx

Figure 5.3.4 A cantilever beam

associated mode shapes are obtained from the Equation 5.3.35 by

arbitrarily setting D3 = 1:
dn(x) = sin (@) S on=1,23,..., (5.3.38)
£
Cantilever Beam

For a cantilever beam (Figure 5.3.4) of length ¢, the deflection and the
slope at the left end is zero, that is,

w(0,£)=0 and %(0’ =0 (5.3.39)

Also, the bending moment and the shear force at the right end of a

cantilever beam are zero, that is,
M(,t)=0 and V(L t)=0 (5.3.40)

The boundary conditions in Equations 5.3.39 and 5.3.40 along with the
assumed form of solution (Equations 5.3.9) and Equation 5.3.5 lead to
the following four conditions on X{(x):

X(0) =0 (5.3.41a)
dXx
—(0)=0 5.3.41b
Q) (5341b)
d*x
and
d*X

E(z) =0 (5.3.41d)
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Applying the conditions in Equations 5.3.41a-5.3.41d to Equation
5.3.24,

As+C3=0 (5.3.42a)
B:+D3;=0 (5.3.42b)
Azcoshyl + Bsysinhyl — C3cosyl — Dysinyl =0 (5.3.42¢)
Azsinhyf + Bycoshyl + Cssinyl — Dzcosyf =0 (5.3.42d)

Because of Equations 5.3.42a and 5.3.42b, Equations 5.3.42c and
5.3.42d can be written as

|:(cosh yl+cosyl) (sinhyf+sin y(i)i| |:A3:| . |:O

5343
(sinhy¢ —sinyf) (coshyf+cosyl) || Bz 0i| ( )

For a nontrivial solution of Equation 5.3.43,

‘ |:(cosh y€+cosyl) (sinhyf+sinyl)

) . =0 (53.44)
(sinhy€ —sinyf) (coshyf+ cosyl)

The condition in Equation 5.3.44 yields

coshyfcosyl = —1 (5.3.45)

And from Equation 5.3.43,

B;  (coshyl+cosyt)

—= = 5.3.46
Az (sinh y € +siny£) ( )

From Equation 5.3.24,
X(x) = As[(coshyx —cosyx) + A(sinh yx —sinyx)] (5.3.47)

where
By (coshyt +cosyl)

A=—=
As (sinh y £ + sin y £)

(5.3.48)

There are an infinite number of roots of Equation 5.3.45. The first four

roots of Equation 5.3.45 are

it = 1.875104, 1,0 = 4.694091,
y3t = 7.854757, and sl = 10.995541 (5.3.49)
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Figure 5.3.5 Mode shapes ¢,(x) of a cantilever beam

From Equations 5.3.17 and 5.3.49, the natural frequencies of a can-
tilever beam are

B
wp = E—z(y,,ﬁ)z; n=123,..., (5.3.50)

The associated mode shapes are obtained from Equation 5.3.47 by
arbitrarily setting A3 = 1:

¢n(x) = (cosh y,x — cos y,.x) + A,(sinh y,x —siny,x) (5.3.51)
where A, is given by Equation 5.3.48 with y = y,,. These mode shapes

are plotted in Figure 5.3.5.

5.3.3 Computation of Response

In general, the response can be expressed as a linear combination of
mode shapes, that is,

w(x, 1) = an(t)pu(x) (5.3.52)

n=1
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where time-dependent coefficients «,(f) are to be determined. Mode
shapes ¢;(x) and ¢;(x) of beams are orthogonal, that is,

/ ()b, (X)dx = 0; i # ] (5.3.53)
0

Differentiating Equation 5.3.52 four times and using Equation 5.3.16,

x4 dx?*

9% > A I — 1
W _ Zan(t)—¢ = Zan(t)ﬁwflqbn(x) (5.3.54)
n=1

n=1

From the partial differential equation of motion in Equation 5.3.6,

o0 o0 zan
> an(Dhpn(x) + ) ddT@,(x) - pLAfK(x, 1 (53.55)
n=1

n=1
Multiplying both sides of Equation 5.3.54 by ¢;(x), and integrating

from O to ¢,

L 14
00 [e'9) ann
> a0, [ 6,006 (0dx + > [ uresrax
0 n= 0

n=1

¢
1
= [ £ 0 (5.3.56)
PA
0
Then using the property in Equation 5.3.53,

& 1

o

Otj(f)ﬁjf!ﬁ + 72]77,' = A /fz(x, Ho;(x)dx (5.3.57)
0

or

1
pAn;

dza;
dr?

+a)?aj(t) =

¢
/fz(X, Ng;(x)dx (5.3.58)
0

where

4
nj = / @7 (x)dx (5.3.59)
0
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Figure 5.3.6 A cantilever beam subjected to sinusoidal excitation

Initial conditions are obtained from w(x, 0) and w(x, 0). From Equa-
tion 5.3.52,

w(x, 0) = au(0)dy(x) (5.3.60)
n=1

W(x,0) = @n(0)pn(x) (5.3.61)
n=1

Using the properties in Equations 5.3.53 and 5.3.59,

¢
1
a;(0) = 77_] b/ w(x, 0)g;(x)dx (5.3.62)
and
. ¢
a;(0) = 77_] 0/ Ww(x, 0)g;(x)dx (5.3.63)

Example 5.3.1: Response of a Cantilever Beam

Consider a steel cantilever beam of rectangular cross section (Fig-
ure 5.3.6) with the width b = 0.0l m and the thickness 4 = 0.005 m.
The length ¢ of the beam is 0.8 m. At the tip of the beam, a sinu-
soidal force with magnitude P = 10N and frequency w = 100rad/ sec
is applied. Determine the steady-state response by assuming that the
damping ratio in each mode is 0.02.

For steel, E =2 x 10 N/m? and p = 7, 850 kg/m>.

1
A=bh=5x10"N/m> and I, = ﬁbh3
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Then,

El,
= = 7.2855
B oA

The first four natural frequencies (Equation 5.3.49) are as follows:

w1 = 40rad/sec, wy = 250.8rad/sec,
w3 =702.3rad/sec, and w4 = 1376.3rad/sec

Here,
fu(x, 1) = Psinwts(x — £) (5.3.64)

where §(x — ¢) is the Dirac delta or the unit impulse function.
After introducing the damping ratio £ in each mode, Equation
5.3.58 becomes

2.
da;

T 2kwjej + wiaj(t) = foq(j) sinwt (5.3.65)
where
. _ Pei(0)
() = 21 5.3.66
fea(J) A, ( )
Using Equation 5.3.59,
4 1
nj = / ¢7(x)dx = £ / ¢ (X)dx (5.3.67)
0 0
where
=2 (5.3.68)
¢
and

¢j(x) = [cosh(yj€x) — cos(y;j£x) + A j(sinh(y;£x) — sin(y;£X)]
(5.3.69)
It has been verified numerically that

n; =t (5.3.70)
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Using results in Chapter 2, the steady-state response of Equation
5.3.65 can be written as

Ol/'(l) = A]‘ Sin(a)l — 9]‘) (5371)
where
A= J “’2(] ) (53.72)
V@ =) + Cewro)
and
o) = 2 (5.3.73)
w; —w

From Equation 5.3.52, the steady-state displacement at x = £ is given
by

w(t.)) =" ¢i(O)a;j(t) =Y ¢;(O)A;sin(wr —0;) (5.3.74)
j=1

j=1

After some algebra, Equation 5.3.74 is written as

w(¥,t) = By sinwt — B, cos wt (5.3.75)
where
B = Xn: ¢j(£)Ajcosb; (5.3.76)
j=1
and
B, = 2’1: ¢j(£)A;sinb; (5.3.77)
j=1

From Equation 5.3.75,
w(l, t) = Bsin(wt — @) (5.3.78)

where

B
B=/B>+B: and tang = B—2 (5.3.79a, b)

1



278 Vibration of Mechanical Systems

From the MATLAB Program 5.2 with w = 100rad/ sec,
B=0.0155m and ¢ =3.1145rad

MATLAB Program 5.2

$cantilever beam

gamL=[1.875104 4.694091 7.854757 10.995541];%eq. (5.3.49)

E=2ell;%Young’s Modulus of Elasticity (N/m"2)

rho=7850; $mass density(kg./m"3)

L=0.8;%length of beam(meter)

b=0.01;%meter

h=0.005; %$meter

A=b*h; %cross sectional area

2

P=10; %magnitude of force (Newton)

omega=100; %excitation frequency (rad./sec.)

m=rho*L*A; $mass of beam

Ia=b*h"3/12;

beta=sqrt (E*Ia/ (rho*a));

sumcos=0;

sumsin=0;

for i=1:4

omegan (i) =beta*gamL (i) "2/L"2;%Natural Frequencies (rad/sec.),eq. (5.3.50)
lamd=- (cosh(gamL (i) )+cos(gamL(i)) )/ (sinh(gamL (i) )+sin(gamL(i))) ;%eq.

%$(5.3.48)
ang=gamL (1) *1;
phil(i)=(cosh(ang) -cos (ang) ) +1lamd* (sinh (ang) -sin(ang)) ;
Feqg(i)=P*phiL (i) / (m*L) ; $Equivalent force in mode#i
den=sqgrt ( (omegan (i) "2-omega”2) "2+ (2*0.02 *omegan (i) *omega) "2);
Amp (1) =Feq (i) /den;%Amplitude of Response in Mode#i
phase (i)=atan2 (2*0.02*omegan (i) *omega, omegan (i) 2-omega 2) ; $Phase
sumcos=sumcos+philL (i)*Amp (i) *cos (phase(i)) ;%Bl

sumsin=sumsin+philL (i)*Amp (i)*sin(phase(i)) ;%B2
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end
%
Ampw=sqgrt (sumcos”2+sumsin”2) %Steady State Amplitude of w(L,t):B

phasew=atan2 (sumsin, sumcos) $Steady State Phase of w(L,t)

5.4 FINITE ELEMENT ANALYSIS

The number of degrees of freedom of a continuous system is infi-
nite. For simple geometries, such as those considered in Sections 5.2
and 5.3, the governing partial differential equation of motion can be
solved analytically to determine the natural frequencies, the mode
shapes, and the response of the structure. However, in general, the
analytical solution of a partial differential equation is not possible for
a real structure, for example, a turbine blade. As a result, the struc-
ture is discretized into a finite number of elements and the solution
is obtained numerically. This process is known as the finite element
method, which has been successfully applied to many real engineering
problems. In fact, many commercially available codes, such as ANSYS
and NASTRAN, are routinely used in industries. Here, fundamental
ideas behind the finite element analysis (Petyt, 1990) will be illustrated
via two simple examples: longitudinal vibration of a bar and transverse

vibration of a beam.

5.4.1 Longitudinal Vibration of a Bar

Consider the longitudinal bar shown in Figure 5.2.5 again. This bar
is divided into n elements of equal lengths (Figure 5.4.1), that is, the
length of each element is

le= - (5.4.1)

Each element has two nodes associated with it. For example, the first

element has nodes 1 and 2, and the last element has nodes n and
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Node 2
‘, u(x, t) Node i+ 1 Lo
> |_> / >
Node 1 Node n + 1
112131~ il o n—=1 n
/ I—ﬂ' ‘
'\
Element 1 X Element n

I >
!

Figure 5.4.1 Discretization of a longitudinal bar by a finite number of elements

n + 1. In general, the element i will have the node numbersi and i + 1
(Figure 5.4.2).

Each node has one degree of freedom (axial displacement u ). Let
u; (¢) be the axial displacement of the node i. Then, a discrete displace-
ment vector u(z) can be defined as

u®) = [w (@) w@ - () wn @] (542)

Inside each element, the displacement is assumed to be a predefined
function of the axial coordinate &. Here, this function will be chosen
as linear. For example, inside the element i,

. t)=a+mé; 0<&<d, (5.4.3)
Note that
AtE =0, u(0,1) = u; (1) (54.4)
AtE =L, u(le,t) = ui(1) (54.5)
i Ujt]
>

—>u(, f) | Element i

e

0 le
£=0 fe  g=y,

Figure 5.4.2 An element of a longitudinal bar
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Substituting Equations 5.4.4 and 5.4.5 into Equation 5.4.3,

ar = u;
and
a Uiyl — U
D=
L,

Substituting Equations 5.4.6 and 5.4.7 into Equation 5.4.3,

§

u(g, t) = (1— .

) u; (t) + Eiui+l(t)

Differentiating Equation 5.4.8 with respect to &,

ou 1 1
— = ——u;(t —U; t
3 = 0T )
Equation 5.4.9 can be expressed as
0
£ = kTv;()
where
it
iy = | “ (®)
uji+1(f)
and

T L L
te €

Differentiating Equation 5.4.8 with respect to time,
du £\ . £
ar ( E@) l()+£eul+l()
Equation 5.4.13 can be expressed as
u Trene
= (t
5 =W Vi)

where
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(5.4.6)

(5.4.7)

(5.4.8)

(5.4.9)

(5.4.10)

(5.4.11)

(5.4.12)

(5.4.13)

(5.4.14)

(5.4.15)
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and

n’(¢) = [(l — zi) ;] (5.4.16)

The kinetic energy of the element i is written as

L, 2 Le
n=/m(%)@=mwﬂjmaﬂ@@}w (5.417)
0 0

where p is the mass density of the material and

t , b
[O=) e JO-2) e

T _{o 0 _te|2 1
JEGIGEE - —6[12
0

[(=2)5e [@re
L0 o ¢
(5.4.18)
Substituting Equation 5.4.18 into Equation 5.4.17,
L.r
T = EVZMV, (5.4.19)

where M, is the mass matrix of the element defined as follows:

pAL [2 1
M, = 5.4.20
3 [1 2} ( )

Using Equation 5.4.10, the potential energy of the element i is written
as

Le

Le
e f (3 ae-eaf () ()
= EAv! { Of KKTd§j| v; (5.4.21)
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Column i
v
cI)_0---0100~--0
Tl - 00010 -0

t

Column (i + 1)

Figure 5.4.3 Matrix connecting v; to u

where E and A are the Young’s modulus of elasticity and the cross-
sectional area of the element, respectively. Furthermore,

Zﬂ ee

1 1
‘ / e_gdé ) @ds 1[1 1
/ kxlde =| ° 0 =— B (5.4.22)
t 1 b 1 Lo | -1 1
0
[ [ e
L o ¢ o °
Substituting Equation 5.4.22 into Equation 5.4.21,
1
P = zv] K.v; (5.4.23)
where K, is the stiffness matrix of the element defined as
2EA| 1 -1
K, =— (5.4.24)
£ -1 1

Total Kinetic and Potential Energies of the Bar
From Equation 5.4.11,

vi(t) = dpu(r) (5.4.25)

where ®; is a 2 x (n+ 1) matrix defined in Figure 5.4.3. The kinetic
and potential energies of the element i are defined as

1

T = Eﬁ%f M, ®;u(t) (5.4.26)
1 TxT

P, =-u (I)i Keql)ill([) (5427)

2
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The total kinetic energy of the bar is obtained by summing the kinetic
energy of each element:

- 1
T=>) T = EﬁTM,ﬁ(t) (5.4.28)
i=1
where M, is the mass matrix defined as
M=) &M, (5.4.29)
i=1

The total potential energy of the bar is obtained by summing the
potential energy of each element:

- 1
P=) P = EuTK,u(t) (5.4.30)
i=1

where K, is the stiffness matrix defined as
n
K =) oK. (5.4.31)
i=1

The differential equations of motion will then be
M;ii(t) + Ku(t) =0 (5.4.32)

It should be noted that Equation 5.4.32 refers to a free—free bar, as
there is no constraint imposed on any nodal displacement.

Example 5.4.1: Natural Frequencies of a Free-Free Bar

Consider a free—free steel bar with length = 0.04 m and cross-sectional
area = 4 x 10~* m?. Determine the first five natural frequencies using
5, 10, and 15 elements, and compare them to the theoretical frequen-
cies obtained in Section 5.2.
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Solution
The MATLAB program 5.3 is used. Results are as follows:
First five theoretical frequencies:

[0 04075 0.8150 1.2226 1.6301] x 10°rad/ sec

First five natural frequencies from finite element analysis:
Number of elements = 5,

[0 04143 0.8691 1.3978 1.9580] x 10°rad/ sec
Number of elements = 10,

[0 0.4092 0.8285 1.2682 1.7382] x 10°rad/sec
Number of elements = 15,

[0 0.4083 0.8210 1.2428 1.6781] x 10° rad/sec

As the number of elements increases, the natural frequencies con-
verge to their theoretical values.

MATLAB Program 5.3: Finite Element Analysis of a Longitudinal
Bar

clear all

close all

%Free-Free Longitudinal Bar Vibration
betal2_ff=[22.4 61.7 121];

nel=10%number of elements
E=210e9;%Young’s Modulus of Elasticity (N/m"2)
rho=7.8e3;%mass density (kg./m"3)
lt=4e-2;%Length of Beam (Meter)
Area=4e-4%Cross Sectional Area (m"2)
1=1t/nel;%Element Length (Meter)
ndof=nel+1; %$number of degrees of freedom
sum_K=zeros (ndof,ndof) ;

sum_M=zeros (ndof,ndof) ;

P=zeros (2,ndof) ;
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Node 2
/ w(x, 1) Node i + 1 Lo
—< o —
Nods 1 ) Node n + 1
112 (|3 | i e n—1 ny
v
| e—
Element 1 X Element n

| »|
I i

l

Figure 5.4.4 Discretization of a beam by a finite number of elements

P(l:2,1:2)=eye(2);
for i=l:nel
if (i>1)
P=zeros (2,ndof) ;
P(l:2,i:i41)=eye(2);
end
Ke=(2*E*Area/1)*[1 -1;-1 1];
Me= (rho*Area*1/3)*[2 1;1 2];
sum_K=sum_K+P’'*Ke*P;% eq. (5.4.31)
sum_M=sum_M+P’'*Me*P; %eq. (5.4.29)
end
K=sum_K;
M=sum_M;
%
%Free-Free
<
ogff_th=sqgrt(E/rho)*pi/1t*[1 2 3 4 5]%Theoretical Natural Frequencies
%
[V_ff,D_ffl=eig(K,M);
ogff_fem=sqrt (diag(D_ff))%Natural Frequencies from FEM

%
5.4.2 Transverse Vibration of a Beam

Consider the beam shown in Figure 5.3.1 again. This beam is divided
into n elements of equal lengths (Figure 5.4.4), that is, the length of
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wi(?) wy(9)

A A

01(1) «f WD «l 0200

Node i | Elementi | Node (i + 1)

Figure 5.4.5 An element of a beam
each element is
Le = . (5.4.33)
e — n ST

Each element has two nodes associated with it. For example, the first
element has nodes 1 and 2, and the last element has nodes n and
n + 1. In general, the element i will have the node numbers i and
i + 1 (Figure 5.4.5).

Each node has two degrees of freedom (transverse displacement w
and the slope 2 ). Let w;(7) and ;(¢) be the transverse displacement
and the slope at the node i. Then, a discrete displacement vector u(z)

can be defined as
u()=[w; wy -+ Wy Wa 6 6 - 6, O] (5.4.34)

Inside each element, the transverse displacement is assumed to be a
predefined function of the axial coordinate &. Here, this function will
be chosen as a cubic polynomial. For example, inside the element i,

w(E, 1) = a1(t) + e () + az()€> + ay ()€ (5.4.35)

Differentiating Equation 5.4.35 with respect to &,

2—?(& 1) = ar + 2a3& + 3as&° (5.4.36)
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Note that
ow
Ate =0, w(0,1) = w;(t), E(O 1) =06 (5.4.37)
ow
AtéE =4, W(Ee, [) = W,’+1([), E(ﬂe, [) =011 (5438)

Substituting Equations 5.4.37 and 5.4.38 into Equations 5.4.35 and
5.4.36,

w(0,t) = a; = w;i(t) (5.4.39a)
aw
00 =m=60 (5.4.39)
W(ﬁe, t) =a; +al, + 1,1353 + a4£3 = Wi41 (t) (54390)
ow 2
E(ZE, t) =a, + 2a3l, + 3a4ée = 9,'+1(t) (5439(1)

The solutions of Equations 5.4.39a-5.4.39d yield the coefficients a,
ay, az, and ay:

a(f) = Wq; (1) (5.4.40)
where
[ 1 0 0 0 |
0 0 1
| 3 3 2 1 (5.4.41)
2 2 e 4,
2 1
e 6 oe e
a'()=[a1(t) @) as3(t) ast)] (5.4.42)

4/ () =[wi(®) win() 6:(1) 6i1(1)] (5.4.43)
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From Equations 5.4.35, 5.4.40, and 5.4.41,

wE N=[1 ¢ & &la0)=[1 ¢ & &wq)=n"E)q)
(5.4.44)
where

nE=| -, i " 3 (5.4.45)
§— Zg + Ef
g2 &

The kinetic energy of the element i is written as

¢
1 ow\?
T == Al — ) d 5.4.46
2/p <8t> 3 ( )
0

where p and A are the mass density of the material and the cross-
sectional area of the beam, respectively. Differentiating Equation
5.4.44 with respect to time,

i)
a_’;’ — n’(&)q; (5.4.47)

Therefore,

(%)2 - (Z—V:)Taa—f —amEn ©a  (5449)

Substituting Equation 5.4.48 into Equation 5.4.46,

i

1
T = quMeqi (5.4.49)
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where M, is the mass matrix of the element defined as follows:

Le
M. = pA { f n(s)nT(s)ds}

0

Using Equation 5.4.45,
, 156 54 220, —13¢,
: 54 156 13¢, —22¢
T e e
n(é)n d¢ =
/ E)n’(§)ds = 420 22¢,  13¢, 42 -3¢2
0
—13¢, —-22¢, -3¢  4¢2
Therefore, the mass matrix of the beam element is
156 54 22¢, —13¢,
_ pAL, 54 156  13¢, —-22¢,
7420 | 220, 130, 402 32
—13¢, —22¢, -3¢  4¢2

The potential energy of the element i is written as

L,

iz%E’/(fﬂéZ)
0

From Equation 5.4.44,
Pw _ (&)
W=< > ) q: (1)
§ 3
where
6 12 7
eyt
6 125
o) | 26
082 | 4.6
w et
2 + 6E
L 027

(5.4.50)

(5.4.51)

(5.4.52)

(5.4.53)

(5.4.54)

(5.4.55)
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From Equation 5.4.54,
2w\>  [(Pw\ (8w ?n(g)\ [9%n()\"
() - (&) (&) -vo(52) (55) w0
(5.4.56)
Using Equation 5.4.55,

) 12 -12 6L, 6L
f (32n(g)> (a%(g))T gL |12 12 6t 6L,
9E2 9E2 S| e, —6e, 42 242
0
60, —6L, 202 402
(5.4.57)

Substituting Equation 5.4.56 into Equation 5.4.53,
1
P = qu (NK.q;(t) (5.4.58)

where K, is the element stiffness matrix defined as
€

K, = EI / (azang(f )) (azar;(zg )>Td§ (5.4.59)
0

Substituting Equation 5.4.57 into Equation 5.4.59,

12 12 6L 6
_EI|-12 12 -6t 6L

K, =— 5.4.60
‘T 6r, —60, 42 202 ( )
6¢, —6L, 202 442
Total Kinetic and Potential Energies of the Beam
q;(1) =Tu(r) (5.4.61)

where I'; is a 4 x (2n + 2) matrix defined in Figure 5.4.6. The kinetic
and potential energies of the element i are defined as

1

T = El'lTFiTMeFiil(I) (5.4.62)
1

P, = —u'T!K,Tu(r) (5.4.63)

2
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Column i Column (n+1+1i)
' '
0 0100 0 0 0 00O 0
L= 0 0010 0 0 00 0O 0
1710 0000 0 0 0100 0
0 0000 0 0 0010 0
Column (n + 1) Column (2n +2)

Figure 5.4.6 Matrix connecting q; to u

The total kinetic energy of the beam is obtained by summing the

kinetic energy of each element:
- 1.7
T= 21: T = EuTM,u(r) (5.4.64)
1=
where M, is the mass matrix defined as
n
M, = T[M,T; (5.4.65)
i=1

The total potential energy of the beam is obtained by summing the
potential energy of each element:

- 1
P=Y"P = zuTK[u(t) (5.4.66)

i=1

where K is the stiffness matrix defined as
n
K, =) T/K.I; (5.4.67)
i=1
The differential equations of motion will then be

M,ii(r) + Kou(t) = 0 (5.4.68)

It should be noted that Equation 5.4.68 refers to a free-free beam, as
there is no constraint imposed on any nodal displacement or slope.
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Example 5.4.2: Natural Frequencies of a Cantilever Beam

Consider a cantilever steel beam with length = 0.04 m, cross-sectional

10°8
3

the first four natural frequencies using 5, 10, and 15 elements, and

area = 4 x 1074 m?, and area moment of inertia = m*. Determine

compare them to the theoretical frequencies derived in Section 5.3.

Solution
The MATLAB Program 5.4 is used. Results are as follows:
First Four Theoretical Frequencies:

[0.0329 0.2063 0.5775 1.1317] x 10°rad/ sec

First Four Natural Frequencies from finite element analysis:
Number of elements = 5,

[0.0329 0.2064 0.5797 1.1451] x 10° rad/sec

Number of elements = 10,

[0.0329 0.2063 0.5777 1.1329] x 10° rad/sec

Number of elements = 15,

[0.0329 0.2063 0.5776 1.1321] x 10° rad/sec

As the number of elements increases, the natural frequencies con-
verge to their theoretical values.

MATLAB Program 5.4: Finite Element Analysis of Beam Vibration

clear all

close all

%Free-Free and Cantilever Beam
betal2_ff=[4.730 7.853 10.995 14.137]."2;

betal2_cant=[1.875 4.694 7.854 10.995].72;
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nel=2%number of elements
E=210e9;%Young’s Modulus of Elasticity (N/m"2)
rho=7.8e3;%mass density (kg./m"3)
I=1e-8/3;%Area Moment of inertia (m"4)
lt=4e-2;%Length of Beam (Meter)
Area=4e-4%Cross Sectional Area (m"2)
1=1t/nel;%Element Length (Meter)
ndof=2* (nel-1)+4;
sum_K=zeros (ndof,ndof) ;
sum_M=zeros (ndof,ndof) ;
P=zeros (4,ndof) ;
P(l:4,1:4)=eye(4);
for i=l:nel
if (i>1)
P=zeros (4,ndof) ;
P(1:4,2%(i-1)41:2%(i-1)+4)=eye(4);
end
Ke=(E*I/(173))*[12 6*1 -12 6%1; 6*1 4*1*1 -6*1 2*1*1; ...

-12 -6*1 12 -6%1;6"1 2*1*1 -6"1 4*1*1];

Me= (rho*Area*1/420)*[156 22*1 54 -13*1;22*1 4*1*1 13*1 -3*1*1; ...

54 13*1 156 -22%*1;-13*1 -3*1*1 -22*1 4*1*1];
sum_K=sum_K+P'*Ke*P;
sum_M=sum_M+P’'*Me*P;
end
K=sum_K;
M=sum_M;
<
%Free-Free
%
ogff_th=sqgrt((E*I/(rho*Area*1t"4)))*betal2_ff
%
[V_ff,D_ffl=eig(K,M) ;

ogff_fem=sqgrt(diag(D_£ff));
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%

%Cantilever

%
ogcant_th=sqgrt ( (E*I/ (rho*Area*1t"4)))*betal2_cant
%

K_cant=K(3:ndof, 3:ndof) ;

M_cant=M(3:ndof, 3:ndof) ;
[V_cant,D_cant]=eig(K_cant,M cant) ;
ogcant_fem=sqgrt (diag(D_cant)) ;

ogcant_fem(1:4)

EXERCISE PROBLEMS

P5.1 Consider the model of a bladed disk (Sinha, 1986) shown in
Figure P5.1 where each blade is represented by a single mass. Fur-
thermore, it should be noted thati + 1 =1wheni = Nandi —1=N
when i = 1, where N is the number of blades. Model parameters are
as follows: m, = 0.0114 kg, k; = 430,000 N/m, and K, = 45,430 N/m.

Xi-1 Xi Xitl

...\/\/_ ny _W\/_ m, _\/\/\/— m —\/\/---

VS VA AW
ki

Figure P5.1 A bladed disk model with one mass per blade sector

a. Compute the natural frequencies and the mode shapes when
N = 3. Examine the orthogonality of the mode shapes.

b. Compute the natural frequencies and the mode shapes when
N = 10. Examine the orthogonality of the mode shapes.
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P5.2 Consider the model of a turbine blade (Griffin and Hoosac,
1984) shown in Figure P5.2. Model parameters (SI units) are as
follows: my = 0.0114, m, = 0.0427, mz = 0.0299, k; = 430,300, k, =
17,350,000, and k3 = 7,521,000.

a. Compute the natural frequencies and the mode shapes. Examine
the orthogonality of the mode shapes.

b. Let f(¢) = sin wt, where w is the excitation frequency. Using modal
decomposition, find the amplitude and the phase of each mass as
a function of the excitation frequencies near the first natural fre-
quency. Assume the modal damping ratio to be 0.01.

X1

—>

1@

ks

Figure P5.2 A bladed disk model with three masses per blade sector

P5.3 Consider the half car model in Figure P5.3. The vehicle is trav-
eling with a velocity V on a sinusoidal road surface with an amplitude
of 0.011 m and a wavelength of 5.3 m.

Parameters of the system are as follows: ¢; =1.35m, ¢, =
1.05m, I, = 1,556 kg-m*, m; = 1,010kg, m, = 38kg, ky = 31,110 N/m,
ky =41310N/m, k3 =321,100N/m, c¢; = 3,980N-sec/m, and c¢; =
4,980 N-sec/m.
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Center
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my my
| |
Tire Tire
k3 ks
i i
—r/'\,_/'“\__/\\—/_/_ —_— ~__

Road surface

Figure P5.3 A half-car model

a. Compute the natural frequencies and the mode shapes.
b. Compute the modal damping ratios.
c. Find the critical speed of the vehicle. At the lowest critical speed,

compute the steady-state response.

P5.4 The steel wire of length 0.9 m and cross-sectional area of 1.3 mm
is fixed at both ends in a musical instrument. The tension in the string
is 220 N. A musician plucks the string while adjusting the lengths of
the strings in the following sequence: 0.5, 0.7, and 0.9 m. Compute the
sequence of the fundamental frequencies of the sound generated by
the instrument.

P5.5 Find the natural frequencies and the mode shapes of a fixed—

fixed longitudinal bar.

P5.6 Find the natural frequencies and the mode shapes of a fixed-
fixed torsional shaft.
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P5.7 Find the natural frequencies and the mode shapes of a cantilever
beam attached to a spring at its end (Figure P5.7).

3

Figure P5.7 A cantilever beam attached to a spring

E 1. p.A !

P5.8 A sinusoidal force is applied at the midpoint of a fixed—fixed
elastic beam. Determine the response of the system using zero initial
conditions.

Jfosin wt

E,L,p, A1l

Figure P5.8 A fixed-fixed beam excited by a sinusoidal force

P5.9 Consider a fixed—fixed steel bar with the length = 0.1 m and the
cross-sectional area = 4 x 10~ m?. Using the finite element method,
determine the first three natural frequencies and compare them to the
theoretical values.

P5.10 Consider a fixed—fixed steel beam with the length = 0.1 m, the
cross-sectional area = 4 x 10~ m? and the area moment of inertia =
0.5 x 1078 m*. Using the finite element method, determine the first
three natural frequencies and compare them to the theoretical values.
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EQUIVALENT STIFFNESSES
(SPRING CONSTANTS) OF BEAMS,
TORSIONAL SHAFT, AND
LONGITUDINAL BAR

In this Appendix, equivalent stiffnesses of beams, a torsional shaft,
and a longitudinal bar are presented. Derivations of these stiffnesses
are based on static deflection of a structure.

A.1 FIXED-FIXED BEAM

Force F/
a b
—

B E 1,

Deflection, d(x) atb=r
6EI, 03 . 0O<x<a

0o F x2b*(3at — x(3a + b))’
eq\X) = 75 =
q 8(x) 6EI, 0 <x <y
; a<x
(¢ = xpa@3bt — (¢ =x)3b+a)” ~ ="
(A1)

keq(x): Equivalent stiffness at a distance x from left end
E: Young’s modulus of elasticity

1,: Area moment of inertia
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A.2 SIMPLY SUPPORTED BEAM

Force F/

: a b

A2

A\
x E, I,
Deflection, 6(x) a+b="¢

6FEI,¢ : O<x<a
k) = - _ xb( — X2 — B?)
TR 6ELL

E—xa%x—xz—az; asxst
( Ja(

A.3 CANTILEVER BEAM

Force I
<— a b 3

X E 1,

Deflection, d(x) atbh=1
6E]

———% . 0<x<a
ko () F x%(3a — x)
X) = =

“ 8(x) 6EI,

_ <x </
a’(3x —a) a=r=

A.4 SHAFT UNDER TORSION

)4
S > Outer dia. = dy
Inner dia. = d|
rG(dd — d?
keq = %; G: Shear modulus of elasticity

(A2)

(A3)

(A4)
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A.5 ELASTICBAR UNDER AXIAL LOAD

~

keg = —; A: Cross-sectional area

301

(A5)



APPENDIX B

SOME MATHEMATICAL
FORMULAE

B.1 TRIGONOMETRIC IDENTITY

sin(—x) = —sinx
cos(—x) = cos x
sin(x &+ y) = sinx cos y & cos x sin y

cos(x & y) = cosx cos y F sinx sin y

sinx + sin y = 2sin <x—;—y) cos (x Y

X
Sinx—siny:2cos< +y

X+
COSX + cosy =2cos<

COSX — cosy = —2sin (x—;y) sin (x ; y)

tanx £tany

tan(x £ y) = ———
(r ) 1Ftanxtany

e/* =cosx+ jsinx; j=+-1

ery —e ¥
sinhyx =
4 2
ert 4 e
coshyx = —

302
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ejyx — e_j)’x

Sin'}/sz; j:\/—1
J

eij + e_ij

cosyx = #; j=v—-1

cosh® x —sinh?*x =1

B.2 POWER SERIES EXPANSION

23
e-l—l—x—l—;-ﬁ-g‘l‘
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APPENDIX C

LAPLACE TRANSFORM TABLE
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Absorber, 224-226

Absorber, optimal, 224-225
Acceleration, 110, 115-116, 121-122
Acceleration amplitude, 122
Accelerometer, 122, 125, 126-127, 136
Accelerometer design, 125-127
Aerodynamic, 61-62

Aerodynamic forces, 61-62
Amplitude, 37, 44, 53-54, 55-57, 68, 72
Amplitude, maximum, 68, 112
Amplitude, peak, 113

Bandwidth, 106, 107, 108-109

Base excitation, 116-117, 119, 174-175,
183

Beam, 273, 285-286, 291

Beam, fixed-fixed, 298-300

Beam rigid, 4

Cantilever Beam, 3, 64,271, 273, 275,
298, 300

Convolution Integral, 160-161, 162, 165,
170, 175, 182-183

Critically Damped System, 4649, 159

Damped spring-mass system, 57, 70
Damper, 10, 22-23, 49, 129
pure rotational motion, 5-6, 11-12
pure translational motion, 5, 10-11
Differential equation of motion, 3, 25-34

Eigenvalue/Eigenvector, 197-198, 205,
240
Equivalent Mass Constants, 12-13

Equivalent Stiffness Constants, 12, 14, 17,
19, 21, 34, 60-61, 64-65, 299-301

Equivalent Damping Constants, 12-13,
23,25, 60-61

Finite dimensional systems, 237-251

Finite element analysis, 279, 295

Force Transmissibility, 101-105

Fourier Series Expansion, 138-139,
144-148, 151,179

Free vibration, 25-40

Frequency Response Function, 138, 173,
176-178

Infinite dimensional systems, 237-291

LaPlace Transformation, 168-178, 184

Logarithmic Decrement, 51, 53-55, 57

Longitudinal Vibration, 15, 237, 250,
258-261,279

Mass, 5-8
Mass moment of inertia, 5-8, 20, 31, 50,
60, 65, 79, 189, 234-235, 262
Matrices, 187, 189-191, 194-195, 201-203,
231-234,237-238, 240, 246
Modal decomposition, 227, 229, 235, 237,
245-250, 296
Mode shapes, 15, 192, 194, 196, 198,
231-232, 261, 273-274, 279, 295-296
Motion
planar, 6-8
pure rotation, 5-6, 8-9-11
pure translation, 5-6, 8-10
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267,284,293

Non-viscous energy dissipation, 72,
128-131

Orthogonality, 140-141, 242, 244,
295-296

Overdamped System, 47-49, 111, 119,
159-160, 182183

Particular integral, 84-85, 95, 97, 139,
151-153, 161, 201

Periodic force, 138, 149, 151, 179

Periodic function, 179

Planar motion, 7

Quality (Q) factor, 106

Rigid bar mass, 232

Rigid body, 6

Rotating unbalance, 113

Rotational motion, 5-9, 11, 190

Rotor-shaft system, 12-13, 14, 114-115,
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Sinusoidal excitation, 129
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Spring, 8-10
pure rotational motion, 6-8, 11-12
pure translational motion, 5-6, 10-11
Static equilibrium, 26-29, 38-39
Stiffness, 60, 184, 242

Torsional Vibration, 261-265
Transfer Function, 173, 175
Translational motion, 19-22
Transverse Vibration, 250-268

Undamped spring—mass system, 82, 194

Underdamped System, 44, 51-52, 56, 158

Unit Impulse Function, 155-156, 175,
264,276

Unit Impulse Response, 156-159,
160-161, 167, 175, 182

Vibration Absorber, 212-224
Vibration Measuring Instruments, 72,
121-127
Vibratory system, 5, 10
Vibrometer, 122-124, 136
design, 124
Viscous damper, 12,22, 128, 131
equivalent, 128, 131

Wave equations, 250-265
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