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" Preface

A student of mechanical vibrations must draw upon knowledge of many areas
of engineering science (statics, dynamics, mechanics of materials, and even fluid
mechanics) as well as mathematics (calculus, differential equations, and linear
algebra). The student must then synthesize this knowledge to formulate the
solution of a mechanical vibrations problem.

Many mechanical systems require modeling before their vibrations can be
analyzed. After appropriate assumptions are made, including the number of
degrees of freedom necessary, basic conservation laws are applied o derive
governing differential equations. Appropriate mathematical methods are applied
to solve the differential equations. Often the modeling results in a differential
equation whose solution is well known, in which case the existing solution is used.
If this is the case the solution must be studied and written in a form which can be
used in analysis and design applications.

A student of mechanical vibrations must learn how to use existing knowledge
to do all of the above. The purpose of this book is to provide a supplement for a
student studying mechanical vibrations that will guide the student through all
aspects of vibration analysis. Each chapter has a short introduction of the theory
used in the chapter, followed by a large number of solved problems. The solved
problems mostly show how the theory is used in design and analysis applications.
A few problems in each chapler examine the theory in more detail.

The coverage of the book is quite broad and includes free and forced
vibrations of 1-degree-of-freedom, multi-degree-of-freedom, and continuous sys-
tems. Undamped systems and systems with viscous damping are considered.
Systems with Coulomb damping and hysteretic damping are considered for
1-degree-of-freedom systems. There are several chapters of special note. Chapter
8 focuses on design of vibration control devices such as vibration isolators and
vibration absorbers. Chapter 9 introduces the finite element method from an
analytical viewpoint. The problems in Chapter 9 use the finite element method
using only a few elements to analyze the vibrations of bars and beams. Chapter 10
focuses on nonlinear vibrations, mainly discussing the differences between linear
and nonlinear systems including self-excited vibrations and chaotic motion.
Chapter 11 shows how applications software can be used in vibration analysis and

design.

The book can be used to supplement a course using any of the popular
vibrations textbooks, or can be used as a textbook in a course where theoretical
development is limited. In any case the book is a good source for studying the
solutions of vibrations problems.

The author would like to thank the staff at McGraw-Hill, especially John
Aliano, for making this book possible. He would also like to thank his wife and
son, Seala and Graham, for patience during preparation of the manuscript and
Gara Alderman and Peggy Duckworth for clerical help.

S. GraHam KeLLy
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Chapter 1

Mechanical System Analysis

1.1 DEGREES OF FREEDOM AND GENERALIZED COORDINATES

The number of degrees of freedom used in the analysis of a mechanical system is the number
of kinematically independent coordinates necessary to completely describe the motion of every
particle in the system. Any such set of coordinates is called a ser of generalized coordinates. The
choice of a set of generalized coordinates is not unique. Kinematic quantities such as
displacements, velocities, and accelerations are written as functions of the generalized
coordinates and their time derivatives. A system with a finite number of degrees of freedom is
called a discrete system, while a system with an infinite number of degrees of freedom is called a
continuous system or a distributed parameter system.

1.2 MECHANICAL SYSTEM COMPONENTS

A mechanical system comprises inertia components, stiffness components, and damping
components. The inertia components have kinetic energy when the system is in motion. The
kinetic energy of a rigid body undergoing planar motion is

- T=imi*+ w’ €= (L.1)

where ¥ is the velocity of the body's mass center, w is its angular velocity about an axis
Eereendicular to the plane of motion, m is the body’s mass, and T is its mass moment of inertia
about an axis parallel to the axis of rotation through the mass center.

A linear stiffness component (a linear spring) has a force displacement relation of the form

F=kx (1.2)
where F is applied force and x is the component’s change in length from its unstretched length,
The stiffness k has dimensions of force per length.

A dashpot is a mechanical device that adds viscous damping to a mechanical system. A
linear viscous damping component has a force-velocity relation of the form

- F=cve (1.3)

where c.is the damping coefficient of dimensions mass per time.

1.3 EQUIVALENT SYSTEMS ANALYSIS

All linear 1-degree-of-freedom systems with viscous damping can be modeled by the simple
mass-spring-dashpot system of Fig. 1-1. Let x be the chosen generalized coordinate. The kinetic
energy of a linear system can be written in the form :

T = fmooi? (14)

1



2 MECHANICAL SYSTEM ANALYSIS [CHAP. 1

The potential energy of a linear system can be written in the form
V=lk ot (1.5)

The work done by the viscous damping force in a linear system between two arbitrary locations
x, and x, can be written as
B W=—J’c,qjdx@ (1.6)

x

1.4 TORSIONAL SYSTEMS

When an angular coordinate is used as a generalized coordinate for a linear system, the
system can be modeled by the equivalent torsional system of Fig. 1-2. The moment applied to a
linear torsional spring is proportional to its angular rotation while the moment applied to a
linear torsional viscous damper is proportional to its angular velocity. The equivalent system
coefficients for a torsional system are determined by calculating the total kinetic energy,
potential energy, and work done by viscous damping forces for the original system in terms of
the chosen generalized coordinate and setting them equal to

T =11,,0° (1.7)

V =k, 6 (1.8)
L

Wrose f c.,0d0 (1.9)
L




CHAP. 1] MECHANICAL SYSTEM ANALYSIS 3

1.5 STATIC EQUILIBRIUM POSITION

Systems, such as the one in Fig. 1-3, have elgstic elements that are subject to force when the
system is in equilibrium. The resulting deflection in the elastic element is called its staric
deflection, usually denoted by A,,. The static deflection of an elastic element in a linear system
has no effect on the system’s equivalent stiffness.

Fig. 1-3

Solved Problems

1.1 Determine the number of degrees of freedom to be used in the vibration analysis of the
rigid bar of Fig. 1-4, and specify a set of generalized coordinates that can be used in its
vibration analysis,

= 30em —+——— 70cm ? k= 2000 N/m
C [ N D)
R m=123kg
Fig. 1-4

Since the bar is rigid, the system has only 1 degree of freedom. One possible choice for the
generalized coordinate is 8, the angular displacement of the bar measured positive clockwise from
the system’s equilibrium position.

1.2 Determine the number of degrees of freedom needed for the analysis of the mechanical
system of Fig. 1-5, and specify a set of generalized coordinates that can be used in its

vibration analysis.
é

Fig. 15
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MECHANICAL SYSTEM ANALYSIS [CHAP. 1

Let x be the displacement of the mass center of the rigid bar, measured from the system’s
equilibrium position. Knowledge of x, by itself, is not sufficient 1o determine the displacement of
any other particle on the bar. Thus the system has more than 1 degree of freedom.

Let 8 be the clockwise angular rotation of the bar with réspect to the axis of the bar in its
equilibrium position. If & is small, then the displacement of the right end of the bar is x + (L/2)8.
Thus the system has 2 degrees of freedom, and x and @ are a possible set of generalized
coordinates, as illustrated in Fig. 1-6.

Fig. 1-6

Determine the number of degrees of freedom used in the analysis of the mechanical
system of Fig. 1-7. Specify a set of generalized coordinates that can be used in the
system's vibration analysis.

Fig. 1-7

The system of Fig. 1-7 has 4 degrees of freedom. A possible set of generalized coordinates are
@,, the clockwise angular displacement from equilibrium of the disk whose center is at Oy; @;, the
clockwise angular displacement from equilibrium of the disk whose center is at Oy x,, the
downward displacement of block B; and x,, the downward displacement of block C. Note that the
upward displacement of block A is given by r, 8, and hence is not kinematically independent of the
motion of the disk.

A tightly wound helical coil spring is made from an 18-mm-diameter bar of 0.2 percent
hardened steel (G =80 x 10° N/m?). The spring has 80 active coils with a coil diameter
of 16 cm. What is the change in length of the spring when it hangs vertically with one end
fixed and a 200-kg block attached to its other end?



CHAP. 1] MECHANICAL SYSTEM ANALYSIS

1.5

=i+

inu“

L6

The sliffiness of a helical coil spring is

_Gp*
T

where D is the bar diameter, r is the coil radius, and N is the number of active turns. Substituting

known values leads to

N 4
(30 x 10° F)(o,ma m)
64(80)(0.08 m)*
Using Eq. (1.2), the change in length of the spring is

=3.20x10° N
m

200 ke)(981 )

x=£= ?=—Ns=o.ﬁ13 m
320%10° =

Determine the longitudinal stiffness of the bar of Fig. 1-8.

—

Fig. 1-8

FUCTIATNY

-

The longitudinal motion of the block of Fig. 1-8 can be modeled by an undamped system of

the form of Fig, 1-1, When a force F is applied to the end of the bar, its change in length is

FL
> - -

or F= %;Eﬁ
which is in the form of Eq. (1.2). Thus

AFE

ko= 7y

Determine the torsional stiffness of the shaft in the system of Fig. 1-9.

r=15mm

_____________________ r,=25mm

@ G=s0x 100~
=
.................... -

Fig. 1-9



MECHANICAL SYSTEM ANALYSIS [CHAP. 1

If a moment M is applied to the end of the shaft, the angle of twist at the end of the shaft is
determined from mechanics of materials as

ML

0=
JG

where J is the polar moment of inertia of the shaft’s cross section. Thus
M=""p

and the shaft's equivalent torsional stiffness is

For the shaft of Fig. 1-9

J= ’2—'(r,' —r)= gi(u.nzs m)* — (0.015 m)*] = 5.34 X 10~ m*

(ﬁuﬂWm%mmW%) -
Thus k= =305 %10 —
14 m rad

A machine whose mass is much larger than the mass of the beam shown in Fig. 1-10 is
bolted to the beam. Since the inertia of the beam is small compared to the inertia of the
machine, a 1-degree-of-freedom model is used to analyze the vibrations of the machine.
The system is modeled by the system of Fig. 1-3. Determine the equivalent spring
stiffness if the machine is bolted to the beam at

(a) z=1m
(b) z=15m

};’,) E=210% m‘l
=

I=1.5% 10" m
b Im -

Fig. 1-10

Let w{z;a) be the deflection of the beam at a location z due to a unil concentrated load
applied at z = a. From mechanics of materials, the beam deflection is linear, and thus the deflection
due 1o a concentrated load of magnitude F is given by

¥(z;a) = Fw(z;a)

If the machine is bolted to the beam at z =a, the deflection at this location is
ya,a)=Fw(a,a)

which is similar to Eq. (1.2) with

1
k= wia,a)

(1.10)
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1.8

1.9

From mechanics of materials, the deflection of a beam fixed at z =0 and pinned at z = L due
to a unit concentrated load at z =a, for z <ais

weio) =g {5 (1- D) -2£-2] +52(1- De- D)) (.11)
(a) Fora=1m,a/L=} Then using Egs. (1.10) and (1.11),
o oL _BIEl

wia;a) "l
31(210>< 0= )(l 5% 107 m')
11(1 m)*
(b) Fora=15m,a/L =1\ Then using Egs. (1.10) and (1.11},

1 96EI
wlaia) Ta’

=232 10 N
m

g =

%("qu 10" = )(isx 107% m*)

= 5 my -'128:-(1!]

N

A machine of mass m is attached to the midspan of a simply supported beam of length L,
elastic modulus E, and cross-sectional moment of inertia /. The mass of the machine is
much greater than the mass of the beam; thus the system can be modeled using 1 degree
of freedom. What is the equivalent stiffness of the beam using the midspan deflection as
the generalized coordinate?

The deflection of a simply supported beam at its mldspan due to a concentrated load F
applied at the midspan is
FL
~48El
The equivalent stiffness is the reciprocal of the midspan deflection due to a midspan concentrated
unit load. Thus

48E1
ko=
The springs of Fig. 1-11 are said to be in parallel. Derive an equation for the equivalent
stiffness of the parallel combination of springs if the system of Fig. 1-11 is to be modeled
by the equivalent system of Fig. 1-1.

Fig. 1-11
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If the block is subject to an arbitrary displacement x, the change in length of each spring in
the parallel combination is x. The free body diagram of Fig. 1-12 shows that the total force acting
on the block is

F=k.x+k3,t+fc_.x+‘-‘+k,,:=(2k,)x (1.12)

Fig. 1-12

The system of Fig. 1-1 can be used 10 model the system of Fig. 1-11 if the force acting on the block
of Fig. 1-1 is equal to the force of Eqg. (1.12) when the spring has a displacement x. If the spring of
Fig. 1-] has a displacement x, then the force acting on the block of Fig. 1-1 is

F=k,x (113)
Then for the forces from Egs. (1.12) and (1.13) to be equal:

ko= k,
=1

1.10 The springs in the system of Fig. 1-13 are said to be in series. Derive an equation for the
series combination of springs if the system of Fig. 1-13 is to be modeled by the equivalent
system of Fig. 1-1.

bk kK K,
Fig. 1-13

Let x be the displacement of the block of Fig. 1-13 at an arbitrary instant. Let x, be the
change in length of the ith spring from the fixed support. If each spring is assumed massless, then
the force developed at each end of the spring has the same magnitude but opposite in direction, as
shown in Fig. 1-14. Thus the force is the same in each spring:

kxy=ka=kx,=-=kx, (1.14)
In addition,
X=X Fn ot = (1.15)

Solving for x, from Eq. (1.14) and substituting into Eq. (1.15) leads 10

.ff=LI (1.16)
Ij(_

b=
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Noting that the force acting on the block of the system of Fig. 1-1 for an arbitrary x is k_.x and
equating this to the force from Eq. (1.16) leads to

Fd
i
]
it
m—l"’

Fig. 1-14

1.11 Model the system shown in Fig. 1-15 by a block attached to a single spring of an
equivalent stiffness.

k k
3k k k 2%
m
2% 2% e
Fig. 1-15

The first step is to replace the parallel combinations by springs of equivalent stiffnesses using
the results of Problem 1.9. The resuit is shown in Fig. 1-16a. The springs on the left of the block are
in series with one another. The result of Problem 1.10 is used to replace these springs by a spring
whose stiffness is calculated as

1

k
1 I 1 1 2
TRETAAS T

The springs attached to the right of the block are in series and are replaced by a spring of stiffness

The result is the system of Fig. 1-16b. When the block has an arbitrary displacement x, the
displacements in each of the springs of Fig. 1-16b are the same, and the total force acting on the
block is the sum of the forces developed in the springs. Thus these springs behave as if they are in
parallel and can be replaced by a spring of stiffness

k 2k _Tk
kol B P

2 3 6

as illustrated in Fig. 1-16¢.
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3k 3k k 3k k 2k
m

(a)

3 2%

2 k]
m o AN
()

_‘ﬁ

6
m
(c)

Fig. 1-16

1.12 Model the torsional system of Fig. 1-17 by a disk attached to a torsional spring of an

I+

2Ly equivalent stiffness.
=

F—60cm | 80cm 120 em

E

A B cD

AB: Sieel shaft with aluminum core Fiag = 20 mm Frap = 40 mm
BC: Soid stecl shaft -8 _a5
DE: Solid aluminum shaft Tac: 2. 13 M N Fog =2 mm N
= o A ey
G,=80x 10° Gy=40% 10° —
Fig. 1-17

The stiffness of each of the shafts of Fig. 1-17 are calculated as

T . » E
L Gan, 21004 m) = (002 m) J(s0x 10° )

Kas, = Liw 0.6 m
=5.03%10° i
rad
JuosGra, o0 m)*(40x 10° %] o
k"”= T = 06m =].68X10‘r—3d—
16 3008 m)‘(&)x 10° ﬂ,) —_—
e —— =165x10'—2
s 7 (0025 m)‘(40 % 10° mﬁ,)

N-m
=205 %100 —
ko Lx 1.2m 205 rad
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1.13

The angle of twist of the end of aluminum core of shaft AB is the same as the angle of twist of
the end of the steel shell of shaft AB. Also, the total torque on the end of shaft A8 is the sum of
the resisting torque in the aluminum core and the resisting torque in the steel shell. Hence the
aluminum core and steel shell of shaft AB behave as torsional springs in parallel with an equivalent
stiffness of

N-m N-m N-m
kg =kan, * kan, =503%X10° — + 168X 10" — =520 1 —
" B, 8, =3.03 %10 = a 520% 10° )
The torques developed in shafts AB and BC are the same, and the angle of rotation of the disk is
Bas + Bae Thus shafts AB and BC behave as torsional springs in series whose combination acts in
parallel with shaft DE. Hence the equivalent stiffness is

-
1 1

—_——

kan Kac

N-m
+ ke =365 % 10* A

Derive an expression for the equivalent stiffness of the system of Fig. 1-18 when the
deflection of the machine is used as the generalized coordinate.

L : L
f 3 j R
m
jax X Ah
E !
k
Fig. 1-18

Consider a concentrated downward load F, applied to the midspan of the simply supported
beam leading to a midspan deflection x. A compressive force kx is developed in the spring. The
total downward force acting on the beam at its midspan is F, — kx. As noted in Problem 1.8, the

midspan deflection of a simply supported beam due to a concentrated load at its midspan is

FL’

* = a8El

Thus for the beam of Fig. 1-18,
2 . 3
*m =R ogeT

which leads to
F

T
ks

The equivalent stiffness is obtained by setting F, =1, leading to
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Using the results of Problem 1.9, it is observed that the beam and the spring act as two springs in
parallel.

1.14 What is the equivalent stiffness of the system of Fig. 1-19 using the displacement of the
%ﬁ block as the generalized coordinate?

E=210 % m'
5% |o’—
1=1.5%10° m‘

25m
2

AIATRLLY

xm’—

3x|0’—

Fig. 1-19

The deflection of a fixed-free beam at its free end due to a unit concentrated load at its free
end is L*/(3E]). Thus the equivalent stiffness of the cantilever beam is

ol
. 3(210x10 )(me m*)

R 25m)

The analysis of Problem 1.13 suggests that the beam and the upper spring act in parallel. This
parallel combination is in series with the spring placed between the beam and the block. This series
combination is in parallel with the spring between the block and the fixed surface. Thus using the
formulas for parallel and series combinations, the equivalent stiffness is calculated as

. +3x10° N o agox 100N
m m

=6.05 % 10° i
m

koo =

1
605x10' N asx10 N 2x10 N
m m m

1.15 The viscous damper shown in Fig. 1-20 contains a reservoir of a viscous fluid of viscosity
p and depth h. A plate slides over the surface of the reservoir with an area of contact A.
What is the damping coefficient for this viscous damper?

—_—

Fig. 1-20
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Let y be a coordinate up into the fluid, measured from the bottom of the reservoir. If & is
small and unsteady effects are neglected, the velocity profile u(y) in the fluid is linear with {0} =0
and w(h) = v, as shown in Fig. 1-21 where v is the velocity of the plate. The mathematical form of
the velocity profile is

=y
u(yy=vy.
The shear stress acting on the surface of the plate is calculated using Newton's viscosity law,
I
By
leading to
o P
5= k

The total viscous force is the resultant of the shear stress distribution

.
F=14= v

The constant of proportionality between the force and the plate velocity is the damping coefficient

_uA
=

Plate of area A

i Viscous fluid

h

1 I
il uly) = 5
Fig. 1-21

1.16 The torsional viscous damper of Fig. 1-22 consists of a thin disk attached to a rotating
shaft. The face of the disk has a radius R and rotates in a dish of fluid of depth 4 and
viscosity p. Determine the torsional viscous damping coefficient for this damper.

Fig. 1-22
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Let 7 be the shear stress acting on the differential area dA4 = r dr 46 on the surface of the disk,
as illustrated in Fig. 1-23. The resultant moment about the axis of rotation due to the shear stress
distribution is

in K
M=j th(rdrde) (1.17)
o o
If w is the angular velocity of the shaft and disk, then the velocity of the differential element is rw.
Let y be a coordinate, measured upward into the fluid from the bottom of the dish. Neglecting
unsteady effects and assuming the depth of the fluid is small, the velocity distribution u(r, y) in the
fluid is approximately linear in y with u(r, 0) = 0 and u(r, h) = rw, leading to

riw
u(r,y) =5y
The shear stress acting on the fact of the disk is calculated from Newton's viscosity law,
du T
I=p 3y (r, h) i
which, when substituted into Eq. (1.17), leads to

™R
3 4

sy pr'w =erR
M IIT drdo =250

The torsional damping coefficient is the constant of proportionality between the moment and the
angular velocity,

Fig. 1-23
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1.17 Show that the inertia effects of a linear spring connecting a fixed support and a
1-degree-of-freedom system can be approximated by placing a particle of mass equal to
one-third the mass of the spring at the system location where the spring is attached.

Let m, be the mass of a uniform spacing of unstretched length ¢ that is connected between a
fixed support and a particle in a 1-degree-of-freedom sy whose displ t is given by x(r).
Let m,, be the mass of a particle placed at the end of the spring. This particle can be used to
approximate the inertia effects of the spring if the kinetic energy of the spring is

T=lm,%
Let z be a coordinate along the axis of the spring in its unstreiched position, 0=z =¢, as
illustrated in Fig. 1-24. Assume the displacement function u(z, r) is linear along the length of the
spring at any instant with 1(0) =0 and u(¢) = x:

u(z, 1) Ei‘z

The kinetic energy of a differential spring element is
1 fauy? 104 Vo,
ar =3 (&) am=3(ee) e
from which the total kinetic energy of the spring is calculated

‘

o

m, 1m, .
Pdr=z2#

28 ] 237

Thus if a particle of mass 71,/3 is placed at the location on the system where the spring is attached,
its kinetic energy is the same as that of the linear spring assuming a linear displacement function.

r=J’dr=

i — ——x

i

(a)

. x ulf) = x
wl0) = 0 ulz) = 7:

W —

()
Fig. 1-24

1.18 What is the mass of a particle that should be added to the block of the system of Fig. 1-25
to approximate the inertia effects of the series combination of springs?
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Using the results of Problem 1.17, the inertia effects of the left spring can be approximated by
placing a particle of mass m,/3 at the junction between the two springs. Let x be the displacement
of the block at an arbitrary instant. Let z, and z, be coordinates along the axes of the left and right
springs, respectively. Let u,(z,, t) and u.(z,, 1) be the displacement functions for these springs. It is
known that u,(0, 1} =0, uy(&, 1) =x Also, u,(€,1)=u,(0, 1) = w. Assuming linear displacement
functions for each spring, this leads to

u(zy, ) ='§ z,
Uy 22, 1) ='E—;—w Ltw
2

Since the springs are in series, the forces in each spring are the same:
=2k{x—w) = w=1ix

Thus the kinetic energy of the series combination is

Im 1z; 23 m.
=3 (3 2J15F +3)# 53 da

=;(;m,)x=

which leads to an added particle mass of m,/2.

1.19  Use the static deflection function of the simply supported beam to determine the mass of
::"a a particle that should be attached to the block of the system of Fig. 1-26 to approximate

inertia effects of the beam.
Wathcad

o ' i B
f—

| =
v
2

Fig. 1-26

The static defiection y(z) of a simply supported beam due to a concentrated load F applied at

z=L[3is
S4a 1, L
o srlegt b=r=3
2 =5
Effly Ly 5., 1 L.
6(z 3) SILZ gz 3_155.

The force required to cause a static deflection x at z = L/3 is calculated as

L\ _ 4FL’ 243EIx
x=(5)-

3)7 2361 T T T A
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1.20

121

The kinetic energy of the beam is

[
L
T=I§y1pA dz

La L
I 2433,.U(s : l’)‘ ”1( ; )} 1 1] }
edoa28Y a2 o L IR U (e R TN U
z""(u-‘)" TR “'“m g 3k T e gt

o

=0.586pA L = 0.586m,

Hence the inertia effects of the beam are approximated by adding a particle of mass 0.586m, to the
machine.

An approximation to the deflection of a fixed-fixed beam due to a concentrated load at its
midspan is

¥(z) =§ (1 ucoszTﬂ:;—)

where x is the midspan deflection. Use this approximation to determine the mass of a
particle to be placed at the midspan of a beam to approximate the beam'’s inertia effects.

The kinetic energy of the beam is
[1
T= J- Ej"(z)pA dz

where p is the beam’s mass density and A is its cross-sectional area. Substituting the suggested
approximation,

3 =
. T Z:rz)‘
I‘-szqf(l COS_L dz

o
. :_L(3 )-:
=2 (s "’AL)“ ) (s’"“"“ 2
The inertia effects of the beam can be approximated by adding a particle of mass 3/Bmy..., at its
midspan.

Let x be the displacement of the block of Fig. 1-27, measured positive downward from
the system’s equilibrium position. Show that the system's difference in potential energies
between two arbitrary positions is independent of the mass of the block.

-1

Fig. 127



18

1.22

MECHANICAL SYSTEM ANALYSIS [CHAP. 1

Let x be the downward displacement of the block from the system’s equilibrium position.
When the system is in equilibrium, the spring has a static deflection A = mg/k. If the datum for the
potential energy due to gravity is taken as the system’s equilibrium position, the potential energy of
the system at an arbitrary instant is

V= ik(x + Ay — mgx
= bk + (kA = mg)x + 1kA?
= Lkx® + Lk A7
Thus the difference in potential energies as the block moves between x, and x, is

ooy 4 1
et 4 A7 = 2 ey = kAt

1
Vi V= sket 4

2
=lk(x’——x )
2 T 1

which is independent of the mass of the block. The results of this problem are used to infer that the
static deflection of a spring and the gravity force causing the static deflection cancel with one
another in the potential energy difference.

Determine m,, and k., for the system of Fig. 1-28 when x, the downward displacement of
the block, measured from the system’s equilibrium position, is used as the generalized
coordinate.

Fig. 1-28

From the results of Problem 1.21, it is evident that the effects of gravity and static deflections
cancel in potential energy calculations and can thus be ignored. The potential energy of the system
is

Vo= bt + L2k = 3k )x? — ko =3k
The kinetic energy of the system is
1 1 i

T=lni.&=+-!(£)z=-(m+-{)f’ — m=m+
2 2 \r 2 ol d - F
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1.23  Determine k., and m., for the system of Fig. 1-29 when x, the displacement of the center
of the disk measured from equilibrium, is used as the generalized coordinate. Assume the
disk is thin and rolls without slip.

Fig. 1-29

If the disk rolls without slip, then the angular rotation of the pulley 8 and the downward
displacement of the block y are

= y=2r,8 =2

B

Noting that the effects of gravity and static deflection cancel, potential energy calculations lead to
Vo= thx® + §(2k)y7 = bk + 12k () = 19k — k=9

The kinetic energy of the system is
T =fmi’ + o + 4,6+ W2m)y

If the disk is thin I, = mr*/2 and if it rolls without slip, w, = &/r. Thus

31 ¢ .I:(.I. 2(’5)2 ! f:: .IL 242
T 3 mi +2 2mr) = +2f'(r,) +2(Zm)(2x)
-—1 Q !& ;2 PN 1
—~2(2m+r’z)x - M= m+r,’

1.24 Calculate the parameters for an equivalent system model of the system of Fig. 1-30 when
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6, the clockwise angular displacement of the bar, measured from the system'’s equilibrium
position, is used as the generalized coordinate. Include approximations for the inertia
effects of the springs and assume small 6.

%L m, k. m,
Stender bar of mass m

c

',.._

~ b
o ‘ :

3

we

Fig. 1-30

The inertia of the springs is approximated by imagining particles of mass m,/3 at each end of
the bar. Including the kinetic energy of these particles, the kinetic energy of the system at an
arbitrary instant is

F= (E%mL’)B’ - %m(% 9)2 + % 3 (% 9)1 + %’: (% Lﬁ-')}

l 2 i 2\n2
(gmf. +2?m.L )8

Bed |

ot
2

If & is small, then the displacement of the left end of the bar is approximated as (L/3)8
upward, and the displacement of the right end of the bar is approximated by (2L/3)8 downward.
Assuming that the potential energy due to gravity cancels with potential energy due to static
deflection, the potential energy at an arbitrary instant is

v =%k(';:8)) + %k@wr
-4
From above
Lo=imL?+ §m, L2 k,_' = 3kL?

1.25 Determine the parameters when an equivalent system is used to model the system of Fig.
1-31 when @, the clockwise angular displacement of bar AB, measured from the system’s
equilibrium position, is used as the generalized coordinate. Assume small 6.

Let ¢ be the counterclockwise displacement of bar CD, measured from the system’s
equilibrium position. Since the ends of bars AB and CD are connected by a rigid link, their
displacements must be the same. Thus assuming small @ and ¢,

iLe=Ld — =18
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The kinetic energy of the system at an arbitrary instant is
T= Hﬂgé’ L km,mﬁ;m: + ”rn‘i'z + lfﬂ'rnﬁcn’
= {(lmL2)8 + bm(LLOY + (hmL)(O) + im(LL30)
= {EmLHE

The potential energy of the system at an arbitrary instant is
Yoo L2 . 4 S B (e O S U
V== (_ - ( = = (_) -(_ )
23k 38) + icLqu) 23k a +2k 9L8

2 3
1743 :) :
_2(81““ 9

L 2L
3 L 3 QIE
€ rigid massless link B
C = )
A pin Lo
3 Identical slender rods of mass m
L £
PRl DR — —]
k3 3 3
Fig. 1-31

Since 6 is used as the generalized coordinate, the appropriate equivalent systems model is the
torsional system. Thus from the above the appropriate equivalent system parameters are
7 43

=—ml? Py 2
ly=55m ki =g kL

1.26 The disk in the system of Fig. 1-32 rolls without slip on the plate. Determine the
parameters for an equivalent system model of the system using x, the displacement of the
plate from the system’s equilibrium position, as the generalized coordinate.

Fig. 1-32
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Let 6 be the clockwise angular displacement of the disk, measured from equilibrium. Since
the center of the disk is fixed and it rolls without slip on the plate,

x=r8 — ==
=

The kinetic energy of the system at an arbitrary instant is

1 1.. 1 1 /%7
=—pi+ -1 =-mi 4= (,
T 3 mi 2."9 2m.i +21 r)

1 !
=- +— )&
Z(m r’)"

The torsional stiffness of the shaft is

k,=—L~

The potential energy of the system at an arbitrary instant is
V= 1kx’ +1k &
2 &

110 (57
FLoe e o
_1( G
’2“1,8)‘

Hence the parameters for an equivalent system model are

I JG
m‘.|=i'i'l+r—: k.‘,=k+Lr3

1.27 Determine parameters for an equivalent system analysis of the system of Fig. 1-33, using
@ the clockwise angular displacement of the bar from the system’s equilibrium position, as
the generalized coordinate. Assume small 6.

o

£

W\

- Particle of mass nt,
o of

Fig. 1-33

o= | = e s [ |2 ——y
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1.28

The kinetic energy of the system at an arbitrary instant is
T= !mf&li- Lm + b,
= 4({EmLYE + im(5LE) + im, (LOY
=4ml®+m, L8
Using a horizontal plane through the pin support as the datum for potential energy

calculations, the difference in potential energies between an arbitrary system position and the
system’s initial position is

1,/2 2 L
V—ik(ii_ﬁ) +mgi(]—msﬂ)+m,g.£(]-¢0$9)
For small 8
cosf=1-1¢
L e e met (L Ly
Hence 4 2(9’cL )3 +”‘32(232)+”"3L(29)

14,2 L :
S(gkLr+me+mgr)o

Since an angular coordinate was chosen as the generalized coordinate, the appropriate
equivalent system is the torsional system with

mLi+m,L? k; —gkL’+mg%+m,,gL

-

L |

I,=

Determine the parameters for an equivalent systems model for the system of Fig. 1-34,
using x, the downward displacement of the block from the system'’s equilibrium position,
as the generalized coordinate.

Fig. 1-34

The angular displacement 8 of the disk and the displacement y of the particle on the cable
connected to the viscous damper at an arbitrary instant are

a=f, y=2r6=2¢
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The system’s kinetic energy at an arbitrary instant is

el o 1o L
T-—zmx +2m’—2mi + ."(r)

2
JLV U A P
- Z(m * ]'l):
Noting that the potential energy change due to gravity balances with the potential energy change
due 1o static deflections, the potential energy of the system at an arbitrary instant is
V= Lkx?

The work done by the viscous damping force between two arbitrary instants is

Wia=-— J) cydy = —J)C(lf) d(2x)

= —f-tmu
0

Thus from the above

Ma=m+ =l ke =k, Coq = dc

Repeat Problem 1.28 using @, the angular displacement of the disk measured coun-
terclockwise from the system’s equilibrium position, as the generalized coordinate.

The downward displacement x of the block and the displacement y of a particle on the cable
connected to the viscous damper at an arbitrary instant are

x=r@, y=2r8
The kinetic energy of the system at an arbitrary instant is
T =i + 1§ = {(rd)* + LI
= i(mr* + 1)
The potential energy of the system at an arbitrary instant is
V = bkx? = Wk(r@y’
= Lkrg*
The work done by the viscous damping formece betwzen two arbitrary instants is

W =~ f cpdy=~— rr(Zré) d(2r8)

o o
L}
=- f dcrrfde
L

Since and angular coordinate is used as the gen‘emlized coordinate, the appropriate equivalent
systems model is the torsional system. Thus from the above

=TI+ mr?, Ciii™= der?, k. =kr*

ey
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1.30 Determine the parameters in an equivalent system model of the system of Fig. 1-35 when
6, the clockwise angular displacement of the bar from the system's equilibrium position,
is used as the generalized coordinate. Assume small 6.

Fig. 1-35

Assuming small 6, the downward displacements of the bar's left end x,, right end x,, and the
mass center 1 are
x,=—$ ) x.=§L8. f=%8
The kinetic energy of the system at an arbitrary instant is
T= L6 + ymii*
= LimLé + im(LLOY
= Y&mLhHE?
The potential energy of the system at an arbitrary instant is
V = ket = k(- 1L6Y
= HikLY)e"

The work done by the damping force between two arbitrary instants is

W= j ok, dy, = -j c(gf_é) dG Le)

iy {
a.g

=— | —cl8
J'IGCL 8d8

Since the generalized coordinate is an angular displacement, the appropriate equivalent model is
the torsional system. From the above,

L,=%&mL? ¢, =wcl?, k= wkL?

131 Repeat Problem 1.30 using x, the upward displacement of the left end of the bar,
measured from equilibrium, as the generalized coordinate. Assume small x.

Assuming small x, the downward displacement of the right end x,, mass center &, and the
clockwise angular rotation of the bar 8 are

T3y, X=x, 6=—x
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The kinetic energy of the system at an arbitrary instant is

Lot 118w Lt s St .)=
T—zmu +2!9 —2m1 +212mL Lx
17 N\,
‘2(3”)‘
The potential energy of the system at an arbitrary instant is

V= tke?
The work done by the damping force between two arbitrary instants is
ty 2
W =— I ok, dx, = — j c(3%) d(3x)

oy

'—-'——J}Qc}édx

oy

Thus the equivalent system parameters are

-t T o -
my=im, o ™90 ka=k

Determine the parameters for an equivalent system model of the system of Fig. 1-36
when x, the displacement of the mass center of the disk measured from the system's
equilibrium position, is used as the generalized coordinate. Assume the disk rolls without
slip.

Idler pully

A
3 | :'5 i;
4 X
¢
m

Fig. 136

If the disk rolls without slip, then the friction force does no work and the angular
displacement of the disk is related to x by

The kinetic energy of the system at an arbitrary instant is

)
_13 T
E i,

The spring is attached to the disk at A. If the center of the disk moves a distance x to the left, then
A moves relative to the disk a distance r8. The change in length of the spring is

d=x+r@+x=2x+r@=2x +x=3x
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Thus the potential energy of the system at an arbitrary instant is
V =4(3x) = 19kx*

The work done by the viscous damping force between two arbitrary instants is

W, =- J) ckdx
ol |
Hence the coefficients for an equivalent systems model is
my=1m, cL=c koq =9k

Supplementary Problems
133 Determine the number of degrees of freedom necessary for the analysis of the system of Fig. 1-37.

Identical slender
k k rods of length L

L and mass m

~Je

[ s
N A

L L L
Fatrem—a3

Fig. 1-37
Ans. 3

1.34  Determine the number of degrees of freedom necessary for the analysis of the system of Fig. 1-38.

0L
—04L —l- 030 S 022

2k
N\

[
[ >
E’k % 2k Slender
rod of
mass m,
moment of
s

inertia [

Fig. 1-38

Ans. 3
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1.35 Determine the number of degrees of freedom necessary for the analysis of the system of Fig. 1-39.

k

" J\N\,—E

TOTTTTTTT T DO TTTv ey

T

Fig. 1-39

Ans, 4

1.36  Determine the longitudinal stiffness of a rectangular, 30 X 50 mm steel bar (£ = 210 % 10" N/m*) of
length 2.1 m.
Ans. 1.5% 10" N/m

Determine the torsional stifiness of a 60-cm-long annular aluminum shaft (G =40 x 10° N/m®) of

1.37
inner radius 25 mm and outer radius 35 mm,

Ans. 116 X 10° N-m/rad

1.38 A 200-kg machine is placed al the end of the beam of Fig. 1-40. Determine the stiffiness of the
beam for use in a 1-degree-of-freedom model of the system.

} Im il 2m——
|_
K

E=210 % m‘i,
m

\1“}..&

=135 % 10° m*
Fig. i-40

Ans. 5.00%10° N/m
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1.39  Determine the equivalent stiffness of the beam of Fig. 1-41 at the location where the machine is
placed.

N
F | E=210% 10",

m
| 1=652%10%m

Fig. 1-41

Ans. 8.85x 10" N/m

1.40 A helical coil spring is made from a steel (G = 80 x 10° N/m’) bar of radius 6 mm. The spring has a
coil diameter of 6 cm and has 46 active turns. What is the stiffness of the spring?

Ans. 209 % 10° N/m

141  What is the static deflection of the spring of Problem 1.40 when it is used in the system of Fig.
1.42?

Fig. 1-42
Ans. 939%107 m

142 Determine the equivalent stiffness of the system of Fig. 1-43.

m_f\/U\,-E

TITTTTTITTIT

Ans. 1T7k/11
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1.43  Determine the equivalent stiffness of the system of Fig. 1-44.

Ay=1x 10%m? Ay=34 % 10%m?

N
— _ L
Ee&sR0AWs  Higs 2x 100N
m

3IEII1IIIIIIJUUL— kg FAVE

t— 60 cm —=— T cm —=
Fig. 1-44

Ans. 220X 10" N/m

144 Determine the equivalent torsional stiffness of the system of Fig. 1-45.

te— 60 cm —=t=— B0 cm - 50 cm—{
rp=353cm

rp=8cm
o o |wf ncim .
9-—
ml

G,=G,=G,=40 % 10

Fig. 1-45

Ans.  8.66 % 1(f N-m/rad

1.45 Determine the equivalent stiffness of the system of Fig. 1-46.

I 2m |
El |
=
N
E=210 % 10" =
o 2x100R
1=38% 10% mi m
100 kg
it N
m
Fig. 1-46

Ans. 1.5% 10" N/m

[CHAP. 1
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1.46  Determine the equivalent stiffness of the system of Fig. 1-47.
f——d0cm f 80 cm

5 S

Pkt R
m

E=210 % 10"
m?

[=45% 107 m*

Ans. 760> 10° N/m

1.47 Determine the equivalent stiffness of the system of Fig. 1-48.

I & em + d0em —f

I E=1mxm"§-,-
] m

I=46x 10" m*

QITIETALY

N

1L5x 10" =
m

Fig. 1-48

Ans. 6.35% 10" N/m

31

148  The torsional viscous damper of Fig. 1-49 consists of a cylinder of radius r that rotates inside a fixed
cylinder. The cylinders are concentric with a clearance h. The gap between the cylinders is filled
with a fluid of viscosity p. The length of cylinder in contact with the fluid is £ Determine the

torsional viscous damping coefficient for this damper.

Ans.
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1.49  Determine the kinetic energy of the system of Fig. 1-50 at an arbitrary instant in terms of ¥,

1L.50

L.52

1.53

including the inertia effects of the springs

Fig. 1.50

Ans,

1/7 .5 I
S Eo ru Pt 2 08 )
2(4'" '4""+4r’)’

Let 6(r) represent the angular displacement of a thin disk attached at one end of circular shafl,
fixed at its other end. The shaft has a mass moment of inertia /, about its longitudinal centroidal
m_‘is- Using a linear displacement approximation, determine the equivalent moment of inertia of a
disk 10 be added to the end of the shaft o approximate the inertia effects of the shaft.

Anx,
La=3L

The static deflection for a fixed-free beam of length L, cross-sectional moment of inertia /, and
elastic modulus E with a concentrated load F at its free end is

AT
y(z)—ﬁﬂ(l‘lf_ z)

Use this equation to develop the equivalent mass of the beam if it has a cross-sectional area A and
a mass density p.

Ans. 0.236pAL

The trigonometric function

por=sfi-en (5]

satisties all boundary conditions for a fixed-free beam of length L where x is the deflection at the
frec end. Use this function to determine the mass of a particle that can be placed at the end of the
beam 1o approximate its inertia effects. The beam has a mass density p and a cross-sectional area
A

Ans. 0.227pAL

Use 4 trigonometric function similar to that of Problem 1.20 to determine the mass of a particle 1o
be placed 3 along the span of a fixed-fixed beam to approximate the beam’s inertia effects.

Ars. ipAL
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1.54 Determine the equivalent moment of inertia of the gearing system of Fig. 1-51.

/0
2 Gy ~+—— Gear with n, tecth
5: —,
— Gear with n, teeth
— = - £
;“.! _= L, J1.Gyopy
Fig. 1-51
Ans.
I, +JG‘(ﬂ)v
\n,

1.55  Repeat Problem 1.54, including the inertia effects of the shafts.

Ans.
34 o+ (Jo+ %“’*)(:_l)-

L56  Determine m,, and k., for an equivalent system model of the system of Fig. 1-42 using x as the
generalized coordinate. Note that & is determined in Problem 1.40 as 2.09 X 10° N/m.

Ans.

My =A15kg,  ke=523X10° E

157  Determine I, and k_ for an equivalent system model of the system of Fig. 1-52 using 6, the
clockwise displacement of the pulley, as the generalized coordinate.

Fig. 1-52
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Lo=1+mrd+myr?, .fc.',«=.kl".=

1.58  Determine I, and k, for an equivalent system model of the system of Fig. 1-53 using 6, the

counterclockwise angular displacement of the bar, as the generalized coordinate.

g
2L
3
--+—— Slender bar of mass m
:)«-— Particle of mass 2m
L
2 k
L G—wn—¢
Fig. 1-53
Ans.
L,=Y%mL?, k= kL + {mgL

159 Determine m.,, k.., and c,, for an equivalent system model of the system of Fig. 1-54 using x as the
generalized coordinate,

S

™

T

—

Fig. 1-54
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Ans.

c
My, =m+ c.,=§.

a‘; .
1.60 Determine [, k,_'. and Cig for an equivalent system maodel of the system of Fig. 1-54 using # as the
generalized coordinate.
Ans.

Lo=1+9mr, €. =crk, k, =2Tkr*
Gl g

1.61 Determine L, k,, and ¢, for an equivalent system model of the system of Fig. 1-55 using
8 as the generalized coordinate.

i
2k Me k

(& "} Slender bar of mass m
" L . £ o

= 5 t 3 =% —

Fig. 155
Ans.
L= smL?, € = sel’ k,, = HkL

1.62 Use an energy method to derive the equivalent stiffness of two identical springs in series.

Ans. k[2



Chapter 2

Free Vibrations of 1-Degree-of-Freedom Systems

2.1 DERIVATION OF DIFFERENTIAL EQUATIONS

All linear 1-degree-of-freedom systems can be modeled using either the system of Fig. 2-1 or
the system of Fig. 2-2. The eguivaleni system method, or the energy method, uses the
system's equivalent inertia, stiffness, and damping properties as described in Chap. 1. The
system of Fig. 2-1 is used as a model when the generalized coordinate is a linear
displacement coordinate. Its governing differential equation is

Mgk + Ceqd + kegx =0 (2.1)

The system of Fig. 2-2 is used as a model when the generalized coordinate is a coordinate of
angular measure and its governing differential equation is

Lo +e 8+k 6=0 (2.2)
Another method used to derive the differential equation governing the motion of a
1-degree-of-freedom system is the free body diagram method. Free body diagrams of the
system components are drawn at an arbitrary instant. The external forces due to elastic
elements and viscous damping are labeled in terms of the chosen generalized coordinate,
with their directions drawn consistent with the chosen positive sense of the generalized
coordinate. The basic laws of newtonian mechanics are applied to the free body diagrams,
leading to the governing differential equation. For a rigid body undergoing planar motion,
these equations are

S F=ma (2.3)

and > Mg =la (2.4)

where a quantity with an overbar is referenced to G, the body's mass center.

7 N

x oy J

Fig. 2-1 Fig. 2-2

A version of the free body diagram method for rigid bodies undergoing planar motion uses
a variation of D’Alembert’s principle. In addition to the free body diagram showing external
forces at an arbitrary instant, a second free body diagram is drawn at the same instant
showing the system's effective forces. The effective forces for a rigid body are defined as
force equal 10 ma, acting at the mass center, and a couple equal to Ja. Equations (2.3) and
(2.4) are applied in the form

ext eff

(2F)_=(2F) @.5)

36
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and (Em.) =(2ma), @6)
for any point A,

2.2 STANDARD FORM OF DIFFERENTIAL EQUATIONS
Equation (2.1) can be rewritten as

P+ 2w+ wx=0 2.7)
where w, = L (2.8)
Meg

is called the system’s undamped natural frequency and

c c. i
£=2m::a;,4 =2_V"nt (29)
is called the damping ratio. Equation (2.7) is subject to initial conditions of the form
x(0) =x, (2.10)
and x(0) =% (2.11)

2.3 UNDAMPED RESPONSE
For ¢ =0, the solution of Eq. (2.7) subject to Eqs. (2.10) and (2.11) is

x(1) = Asin(w, + ¢) (2.12)
where A, the amplitude, is the maximum displacement from equilibrium and is given by
A= xu=+("‘) . (2.13)
w,
and ¢, the phase angle, is given by
¢ =1an™! (‘i’—‘—") (2.14)
Xo

Equation (2.12) is illustrated in Fig. 2-3.

l-——r——-—-|

CAAANN
g lVAVAVAVA

@y

Fig. 2-3
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2.4 DAMPED RESPONSE

The mathematical form of the free vibration response of a 1-degree-of-freedom system with
viscous damping is dependent on the value of {.

Case 1: { <1 (Underdamped):

x(1) = Ae " sin (wyl + ¢g) (2.15)
where A ol (L‘“‘""") (2.16)
fwy
= tan~! _M_) 2.17
¢4 = tan (J‘:u + fw,Xq ( )
and the damped natural freq 'y is
SV (2.18)

Equation (2.15) is illustrated in Fig. 2-4 for x,# 0.

xlr)/x(0)

Fig. 2-4

The logarithmic decrement is defined for an underdamped system as

[0 ] 219
= [I (l’ + Tg) ( ' )
where the damped period is
T,= 2% (2.20)
ey

Case 2: {=1 (Critically damped):
For { =1, the solution of Eq. (2.7) subject to Egs. (2.10) and (2.11) is

x(1) = e™[xq + (o + w,Xo)] (2.21)
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39
Equation (2.21) is illustrated in Fig. 2-5.
wy = 20 rad/s, x(0) = | mm
E
=
-1k
=2k traeaadeeet
-3
t{s)
----- 0 = L0 mm/s 0} = [0.0mmys +eveeee 2(0) = — 150 mm/s
Fig. 2-5
Case 3: {>1 (Overdamped):
For { = 1, the solution of Eq. (2.7) subject to Egs. (2.10) and (2.11) is
(e (7 ] V=T
3 = | =+ +VrE— | VTt
x(r) 2\/2‘5‘_—]‘ l[m,‘ vl L F=1)le
+ [ =B rl= \/g‘fi)]ew-‘“’-“} (2.22)
mrr

Equation (2.22) is illustrated in Fig. 2-6.

ag = Jrad/s, =12, x(0)=1mm,

x(e) (mm)

2(0) = 9 mm/s =-==-= HO) = —9 mm/s

Fig. 2:6
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25 FREE VIBRATION RESPONSE FOR SYSTEMS SUBJECT
TO COULOMB DAMPING
The differential equation governing the motion of a system with Coulomb damping can be
written in general as

_f £>0
P4 wle= ”'P‘.q (2.23)
A, i <0
Mg %

where F; is the magnitude of the friction force. The solution of Eq. (2.23) is complicated but can
be attained and is illustrated in Fig. 2-7 for x,=48 and %,=0. The amplitude of response
decreases by

aa=35_ (2.24)

= ; :
Meqw,

on each cycle. Motion ceases when the amplitude is such that the force in the elastic element is
insufficient to overcome the friction force, leaving the system with a permanent displacement
from equilibrium.

6 —
Fo=u mg
i ﬂ r
u=0]
i m= 100 kg
| w, = 100 1/s
| {\{\ xazﬂﬂﬂﬁm
0 t LI L L L /\ ‘ =]
- 2.0
— t:me(IB 's)
3 -U U
: Displacement (107 m)

Fig. 27

Solved Problems

2.1  Use the equivalent systems method to derive the differential equation governing free
vibrations of the system of Fig. 1-28 using x as the generalized coordinate. Specify the
system'’s natural frequency.
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2.2

23

The system of Fig. 1-28 can modeled by an undamped system of the form of Fig. 2-1. The
equivalent system parameters are determined in Problem 1.22 as

My, =m+ keo = 3k, Coq =0

=
Equation (2.1) is used to write the governing differential equation as
(m+£)e+30c=0

3kr?

.*'l-ar:r.'r’leu

X+

from which the natural frequency is determined as
_ 3kr?
T NTEmr

Use the equivalent systems method to derive the differential equation governing the
motion of the system of Fig. 1-31 using # as the generalized coordinate. Specify the
system's natural frequency.

From the results of Problem 1.25, the system of Fig. 1-31 is modeled by an undamped system
of the form of Fig. 2-2 with
L= dmL?, k, =kL?

Then, using Eq. (2.2}, the governing differential equation is

SmLE + BELE =0

from which the natural frequency is determined as
_ sk
2) 21m

Use the equivalent system method to derive the differential equation governing the
motion of the system of Fig. 1-35, using @ as the generalized coordinate. Specify the
system's natural frequency.

From the resulis of Problem 1.30, the system of Fig. 1-35 can be modeled by the system of
Fig. 2-2 with
- Ly=%ml% ¢ =%’ k= Lkl?

Then, using Eq. (2.2), the governing differential equation is
EmL + fcl’B + kL6 =0
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24  Use the free body diagram method to derive the differential equation governing the
motion of the system of Fig. 1-28 using x as the generalized coordinate.

Free body diagrams of the system, which includes the block and disk, at an arbitrary instant

are shown in Fig. 2-8. It is noted that since gravily leads to static deflection in the springs, their
effects cancel in the differential equation. Summing moments about the center of the disk

(Bme),,-(2 ),
leads to
~ (ke = (ke = (me)(r) + 1)

(mr + f)x +3krx =0

oo
2k(x+ Agr) / r
R
"
ka: +8g) mx
External Forces Effective Forces

Fig. 2-8

2.5 Use the free body digram method to derive the differential equation governing the
motion of the system of Fig. 1-31, using @ as the generalized coordinate.

Let ¢ represent the clockwise angular rotation of bar CD. Since the displacements of the
particles where the rigid I'Slé__is connected must be the same, assuming small-8-and-¢—

Lp=1L8 — ¢=18
Free body diagrams of each of the bars are shown in Figs. 2-9 and 2-10, assuming small &. It is
noted that since gravity leads to static deflections, their effects cancel in the differential equations.
Summing moments on bar AB

(5m0)=( )

e o

leads to

~3k(50)5 - Fuc(3L) = Emb(£) + Lmee

Fpe= —tmLb - kL6
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Summing moments on bar CD

(Eme).,=(m0),

(e)(3)+me(5e)

EmL8 + $kLi8 =0

-

leads to

=

FocL - gkw@ L) = ; 7

Substitution for Fye leads to

3k( %‘ 8+4,)

External forces Effective forces

Fig. 2-9

Bar CD

R,
¢ 1 2T m—=¢
mg 7 mL’ & 2
2L
Foc k Tw * L“":}
External forces Effective forces

Fig. 2-10

2.6 Use the free body diagram method to derive the differential equation governing the
motion of the system of Fig. 1-35 using & as the generalized coordinate.

Free body diagrams of the bar at an arbitrary instant assuming small & are shown in Fig. 2-11.
It is noted that since gravity causes static deflection in the spring, terms containing these q i
cancel in the governing differential equation. Summing moments about the pin support

(Em).-(zm),
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leads to
e Lg(EY 3 -(% )=£ (L) b
k48(4) FeL(3L)=5mb(Z)+ mLe
ImL8 + 5cl?6+ LkLI6=0
e, 3k

B+=—f+>—@=
Tm Tm 0=0
k04 ag)
mi ;s
= L1}
R, mhg i )
mg 4 ]_'f mi'a
3L
Tt‘e
External forces Effective forces
Fig. 2-11

2.7 Determine the natural frequency of the system of Fig. 1-15.
From Problem 1.11 the system of Fig. 1-15 can be modeled by the system of Fig. 2-1 with

k"‘=gk' m., = m

il

7
-k
N
" m 6m

28 A 200-kg machine is placed at the end of 1.8-m-long steel (E =210 10" N/m?)
iy cantilever beam. The machine is observed to vibrate with a natural frequency of 21 Hz.

Bl What is the moment of inertia of the beam’s cross section about its neutral axis?

Thus from Eq. (2.8),

The natural frequency of the system is
I
w, =21 He= (21 298 (27 L2 ) gy 9 12
H cycle 5

and is related to the system properties by
= ‘I_(m i 3i0 rad ?_ E
= 72 = k= mo, = 00 kg)(1319 ) — 348 x10° -

The equivalent stiffness of a cantilever beam for a mass at its end is
_3EI

k=75
—_— (3.43 X 10° E)(I.S m)’
Thus P e 3% 10% m
3(210>< 10° )
m



CHAP. 2] FREE VIBRATIONS OF |-DEGREE-OF-FREEDOM SYSTEMS 45

29

=+

A 2.5-kg slender bar of length 40 cm is pinned at one end. A 3-kg particle is to be
attached to the bar. How far from the pin support should the particle be placed such that
the period of the bar's oscillation is 15?

If the period of oscillation is 1s, then

T 1s s

Let ¢ be the distance of the particle from the pin support. Let 8 be the counterclockwise angular
displacement of the system from the vertical equilibrium position. Free body diagrams of the bar
and particle at an arbitrary instant are shown in Fig. 2-12. Summing moments about the point of

support
(30), ~(z0)

£l

and assuming small 8 leads to
1

—nt,g % 8 —m,gf8=m,f8(F) +m, % 9(%) - I—Z-rnL’é

£ i E
(m,. FHm t”)& + (m,. Stm, t’)g& =0
The natural frequency is determined from the differential equation as

(

, ;’ +m, t’)g

m, 5 +m,

which can be rearranged as
X L
m»w-}fz = m,gl+m, "3‘ w, =, '2'3 =0
Substituting given and calculated values leads to

118.367 - 29.43¢ + 036 =0

whase positive solution is ¢=0235m,

-I-I.,—mfé
External forces Effective forces

Fig. 2-12
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2.10 A 5-kg wheel is mounted on a 1-kg plate whose center is attached to a 40-mm-diameter,

2.11

75-cm-long (G = 80 % 10° N/m?) steel bar, which is fixed at its other end. The centroidal
polar moment of inertia of the plate is 1.4 kg-m®. The period of torsional oscillation of
this assembly is 0.15 s, What is the polar moment of inertia of the wheel?

The torsional oscillations are modeled by the system of Fig. 2-2 with ¢, = 0. The torsional
stiffness of the bar is

% 3 (0,02 m)*(80x 10° 2

m N-m
k,——L-— 05w —2.68XIO‘E

The observed natural frequency is

r _ 2x rad
YT oass 0Ty

The natural frequency of the torsional system is

Hence the moment of inertia of the wheel is

I.=1-1,=153 kg-m* — 1.4 kg-m* = 13.9 kg-m*

A 60-kg drum of diameter 40 cm containing waste material of mass density 1100 kg/m” is
being hoisted by a 30-mm-diameter steel (E = 210 X 10° N/m?) cable. When the drum is
to be hoisted 10 m, the system'’s natural frequency is measured as 40 Hz. Determine the
volume of waste in the drum.

The system is modeled as a mass attached to the end of an elastic bar. The measured
frequency is the frequency of longitudinal vibrations. The equivalent stiffness of the cable is

N
#(0.015 m)¥(210 X 10°
=l ( mJ:l.anm’E

bam g 10m

The total mass is calculated from

n k 1.48 % 10'2
T :fis - m=f}= cycle rad g
(a0 2 1)
5 cycle

Thus the mass of the waste material is
m,=m-m,=2343 kg—-60 kg=1743 kg
and its volume is
v="ra —~—-M‘3: =0.158 m’
P o100 <8
m
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2,12

2.13

A sway pole is used by aerialists for acrobatic tricks. A sway pole consists of a long thin
pole fixed at one end designed such that an aerialist can sway and perform tricks at the
end of the pole. What is the natural frequency, in hertz, of a 120-1b aerialist at the end of
a 25-ft steel (£ =29 x 10° psi) pole of 4 in diameter?

The aerialist at the end of the sway pole is modeled as a mass at the end of a cantilever beam.
The equivalent stiffness of the pole is

3E] 3(29 x10 iln_b*)('2 E)l f(é “)4

Ib
=— =4.86 X -
=3 35 7 486X 10°
Thus the aerialist’s natural frequency is \
= 4.86 % 107 'r-h
e I PR |
=\ 12016 =330 '—35(-[-‘-’35&) =182 He
& s \2rx rad
322 ;}

Determine the natural frequency of the system of Fig. 2-13.

L
3

UJ =2

; —
(G L Slender bar
~—— Rigid 1L of mass m
link
*

Fig. 213

Let 8 be the clockwise angular displacement of the bar from the system’s equilibrium
position. Assuming small 8, the potential energy of the system at an arbitrary instant is

V= %k(% e)z - % (ékL’)B’ - k= %kﬂ
The kinetic energy of the system at an arbitrary instant is
Yo T =L mL + im(LLOY + IMGLOY = {(ImL? + SMLY)E — [ =bmL® + ML
The governing differential equation is
(bmL? + 3MLY + kL8 =0

; k
B +m +4;‘»‘8_ﬂ

from which the natural frequency is determined as

w, = k
! m+4M
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2.14 What is the natural frequency of the 200-kg block of Fig. 2-147

:Fa
head

2% 100X

E=210% 10 T

I=1x10* m*

Fig. 2-14

The equivalent stiffness of the simply supported beam at its midpoint is

48(210x 10° n—fé)u %107 m) 4
Ry = T =3.73x10° =

¥ (3 m) 3 m
The beam acts in parallel with the upper spring. This parallel combination acts in series with the
spring connecting the beam and the block. Finally, this combination acts in parallel with the spring
connecting the block and the ground. Using the equations for parallel and series combinations, the
equivalent stiffness for this system is

1 N
= + - ool
Key T 3 7 .I,leﬂm
N
3.':"Zin><IEF"E+2‘.>-(1-!}"E Ix 10—
m m m
=3.4'.|‘><1i.'.FE
m

The natural frequency is

/k_ 3.47 % 107 2 rad
= - e ——— —_—
“=\m =N a0k

2.15 A 500-kg vehicle is mounted on springs such that its static deflection is 1.5 mm. What is
=L the damping coefficient of a viscous damper to be added to the system in parallel with the
&u springs, such that the system is critically damped?

The static deflection is related to the natural frequency by

[ \/ om®
w, = B0.9 —
<7 000]5 m s

The addition of a viscous damper of damping coefficient ¢ leads to a damping ratio of

L= 2}:”“ — ¢=2{mw,
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The system is critically damped when the damping ratio is 1, requiring a damping coefficient of

¢ = 2(1)(500 kg)(sn.g %i) ~8.09% 10° %

Zrt

2.16 For what value of c is the damping ratio of the system of Fig. 2-15 equal to 1.25?

Mathcad

ki

r=10cm
ry=30cm

1, I,= 11 kg-m?

M|=10k3
iy ey my=25kg
N
k.:ixm‘E
Ir ky =rxat Y
- m

T
Fig. 2-15
The equivalent systems method is used to derive the governing differential equation. Let 8 be
the counterclockwise angular displacement of the disk. The Kinetic energy of the system at an
arbitrary instant is
r= %".uex + ;'ml("ze)1 + %mz(ﬂé): = %Uy +mrt+ mzrlz)él
- =1, +mr’+mr?

= 1.1 kg-m® + (10 kg)(0.3 m)* + (25 kg)(0.1 m)* = 2.25 kg-m*
The potential energy of the system at an arbitrary instant is

V = I K(R0) + 3 k(O = 5 (kird + Kar)°

— ki =k ko= (1 % 10° E)(ﬂj m)? + (1 X 10° E)(m my?

The work done by the damping force between two arbitrary instants is
b | L

W=- I cr0d(nd)= —f cr'6 de

I &
- ¢, =o' = (0.3 m)’c =0.09
Hence the governing differential equation is

2.258 + 0.09¢6 + 19008 =0

8+ 0.04c6 +844.46 =0
From the governing differential equation,

d
w, = VB4 =291 9;

2w, = 0.04c
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2.17

=i+

Wathcad

2.8

=i+

Watncad

- 219

zix

Mathcad
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For a damping ratio of 1.25,

N-s

21, 25)(29 1 E)
———f om0

c=
0.04 ——
kg m’
The recoil mechanism of a gun is designed with critical damping such that the system
returns to its firing position the quickest without overshooting. Design a recoil mechanism
(by specifying ¢ and k) for a 10-kg gun with a 5-cm recoil such that the firing mechanism
returns to within 0.5 mm of firing within 0.5 s after maximum recoil.
Let £ =0 occur when the mechanism reaches maximum recoil. The response of the mechanism
from this time is that of a eritically damped system with x(0)=0.05 m and #(0)=0. From Eg.

2.21
(22 (1) = 0.05e(1 + w, 1)
Requiring that x(0.5) = 0.0005 m leads to
0.0005 = 0.05e "**(1 + 0.5w,)
A trial-and-error solution leads to w, = 13.2 rad/s, which leads to
i N
k=mw,=(10 kg)(la.z %j) = 17400 ~

e=2mw, =2(10 kg)(13:2 %j) =264 %

A railroad bumper is designed as a spring in parallel with a viscous damper. What is the
bumper’s damping coefficient such that the system has a damping ratio of 1.25 when the
bumper is engaged by a 20,000-kg railroad car and has a stiffness of 2 X 10° N/m?

The damping coefficient is calculated from the damping ratio by

¢ =20Vimk = 2(1.25;\/(20.000 kg)(zm.{m 2) ~1.58% 10° Nms

The railroad car of Problem 2.18 is traveling at a speed of 20 m/s when it engages the
bumper. What is the maximum deflection of the bumper?

The natural frequency of the system of Problem 2 18 is

200,000 N o
e ‘\[ Al zoumag_“ﬁ_

Let =0 occur when the car engages the bumper. Since the system is overdamped with x(0) =0
and £(0) = 20 m/s, application of Eq. (2.22) leads to

202
S

ik 1164 2VLY -1

% [e"""’ EIT =T c—u.mvuml-lrl
x(1)=4.22(e "™ —e ¥y m
The time at which the maximum deflection occurs is obtained by setting

X 0= 4.22(~1.58 % + 6,32 )

f_[. 23NN

&t
632 e
i"ﬁ E.\u“"
1. (632
= 4_Mln(;58) 02925

Thus the maximum bumper deflection is
i = 4.22(e—l Shite292) _ e—i\.]?"\?\i?r) = l‘gg m
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2.20  An empty railroad car has a mass of only 4500 kg. What are the natural frequency and
=i+ damping ratio of a system with the bumper of Problem 2.18 when engaged by an empty
railroad car?

The natural frequency and damping ratio are calculated as

200000 .
a, —\X 6671
ks

. 158 % 10° ;
f= R \/ 5 2.63
2. /(4500 kg)(ZOO.DOB E)

221 Owvershoot for an underdamped system is defined as the maximum displacement of the
L system at the end of its first half cycle. What is the minimum damping ratio for a system
uﬁ such that it is subject to no more than 5 percent overshoot?
athcad
The general response of an underdamped system is given by
x(1) = Ae ™ sin (w,t + ¢,)
Let A be the initial displacement of an underdamped system. Then
x(0)=A=Asin ¢,

For 5 percent overshoot
T.,)
x{=)=-0054
'( 2

w, Ty

= Ae TP gin (T + ..bd) = —A sin gye ™ = —pp iR

The damped natural peried is

2

w,V1-{*

Thus 0.05 = g7V

[“n(005) i

= \NE+n 00

2.22 A suspension system is being designed for a 2000-kg vehicle (empty weight). It is
it estimated that the maximum added mass from passengers and cargo is 1000 kg. When the
vehicle is empty, its static deflection is to be 3.1 mm. What is the minimum value of the
damping coefficient such that the vehicle is subject to no more than 5 percent overshoot,
empty or full?

Mathead

“ The reguired suspension stiffness is

m
g (2000 kg)(o.sl s—,)
T Ay 00031m
The results of Problem 2.21 show that the damping ratio must be no smaller than 0.69 to limit the
overshoot to 5 percent. The damping ratio of a system whose stiffness is fixed but whose mass can

vary is smaller for a larger mass. Thus the damping coefficient must be limited to 0.69 when the
vehicle is fully loaded:

=633 % 10° N
m

¢ = 20 Vimk = (0.69) 1 /(3000 kg)(6.33 X 10° E) =190 % 10° ﬁm—’
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2.23 The vehicle with the suspension designed in Problem 2.22 encounters a bump of height
Zis 5.5 cm. What is the vehicle’s overshoot if it is carrying 25 kg of fuel, one 80-kg passenger,
@ and 110 kg of cargo?

Wathead

The mass of the vehicle is 2215 kg, leading to

f(:- 3Bx IO" e
\/7 rad
T5kg kg 33 sec

190)(19’
= 2\f
2215kg)633x10“ ]

From Problem 2.20 the overshoot is calculated by

=0.802

_x(ﬁg) = Be-™TP) = (0,055 m)e- @RIV = 0,081 cm

224 A free vibrations test is run to determine the stiffness and damping properties of an
elastic element. A 20-kg block is attached to the element. The block is displaced 1 cm and
released. The resulting oscillations are monitored with the results shown in Fig. 2-16,
Determine k and c for this element.

0.01
0.008
0.006
0.004 =

0.002 -

-0.002 [—
0,004 —
0,006

-0.008

-0.01
0 0.06 0.12 0.18 0.24 0.30 0.36

Fig. 2-16
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2.25

=+

ad

From Fig. 2-16 the displacement of the block at the end of the first cycle is 0.005 m. The
logarithmic decrement is calculated as
0.01 m
0.005 m

8=In( )=0,593

from which the damping ratio is determined
¢ £ 5 - 0.693 e
Vagt + 8 Var + (0.693)

The damped natural period is determined from Fig. 2-16 as 0.06 s. The damped natural frequency
is

011

2r_ 2n rad
=——— = 7 —
wy 7, 0065 104, .
The natural frequency is calculated from
104.7 e

e e,
TVI=Z Vi-(@ialy T s
Thus the stiffness and damping coefficient are calculated

. TL")’; M
k= mw, (zOkg)(ms.s ~) =222x10°

¢ = 2mw, = 2(0.11)(20 kg)(ms,_s 529) —463% 10F Enf‘

The 25-kg block of Fig. 2-15 is displaced 20 mm and released. If ¢ =100 N-s/m, how
many cycles will be executed before the amplitude is reduced to 1 mm?

Using the results of Problem 2.16, the damping ratio is calculated as

{},04([00 N—-s)

. 0.04c > = 0.069

2o 2(29.1 “-;—d)

Thus the logarithmic decrement is calculated as

4

The concept of logarithmic decrement can be successively applied between cycles leading to an
alternate form of Eq. (2.19)

) o= ()

where n is an integer. Thus, for the amplitude to be reduced to 1 mm in n cycles from an initial
amplitude of 20 mm,

0.435="11n (3?-—’“—"‘

1 mm

n

) - n=689

However, since n must be an integer the amplitude will be reduced to less than 1 mm after the 7th
cycle. :
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2.26 List three differences between the free vibration response of a system with Coulomb

227

damping and the free vibration response for a system with viscous damping whose free
vibrations are underdamped.

Three differences between the systems are:

(a) The magnitude of the Coulomb damping has no effect on the frequency or period of motion
while the magnitude of the viscous damping does affect the frequency w, and period T,. An
increase in viscous damping leads to a decrease in w, and an increase in T,

(b} The amplitude of vibration for a system with Coulomb damping decreases by a constant
amount per cycle (linear decrease) while the amplitude of vibration for a system with viscous
damping decreases exponentially.

(¢) Motion ceases for a system with Coulomb damping when the amplitude becomes small
enough such that the force in the elastic member is insufficient to overcome static friction,
leading to a permanent displacement from equilibrium. Motion continues indefinitely for a
system with viscous damping.

Use the work-energy method to determine the change in amplitude per cycle of motion
for a block of mass m attached to a spring of stiffness &, sliding on a surface with a
coefficient of friction g

Let X, be the ampiitudc of motion at the beginning of a cycle, defined as a time where the
velocity is zero. Let X; be the amplitude at the end of the next half cycle, when the velocity is
again zero. The principle of work and energy applied between these times is

T+Vi+W_ =T+ V,
where T,=T=0
Vi=teX? Vo= 3k
and the work done by the friction is
Wi_a= —pmg(X, + X,)
Thus X — pmp(X, + X)) = X7
kX + pmgX; + (umgX, - 1kX\*) =0

The quadratic formula is used to solve for X, in terms of X :

1 1
X, =3[ -umg + \f(nmg)’ ~2k(umgx, -3 4X 1))

Xi=-X, X -8

However, X; must be positive; thus the change in amplitude over one half cycle is

2,
X, = Xy= J‘.‘f’.ﬁ
Since the change in amplitude is independent of the amplitude, it is constant over each half cycle.
Thus the change in amplitude over 1 cycle of motion is

_dumg

AA X



CHAP. 2] FREE VIBRATIONS OF 1-DEGREE-OF-FREEDOM SYSTEMS 55

2.28 The block in the system of Fig. 2-17 is displaced 10 mm and released. How many cycles of
motion will be executed?

]U.w‘lﬁ
m
=N ke
\u=o.|z
Fig. 2-17

The differential equation governing the motion of the system of Fig. 2-17 can be shown to be

nw+kx=[_mlg' J,c>0
umg, <0
Comparing the above equation to Eq. (2.23),

Fy = pmg

Thus the decrease in amplitude per cycle is given by

m
e 4(0.12)(1 kg)(o.sl ;)

5 10,000 )
m

AA = =047 mm

Motion will cease when the amplitude is such that the spring force cannot overcome the friction
force. The resulting permanent displacement is given by

kx,=pmg — x =#ng=(lllﬂ mm
Hence the number of cycles is
X,—nAA <y,

n)xu—x,= 10 mm — 0.118 mm
AA 0.47 mm

Hence 22 cycles will be executed,

=21.02 cycles

2.29 The block of Fig. 2-18 is displaced 25 mm and released. It is observed that the amplitude
<1+ decreases 1.2 mm each cycle. What is the coefficient of friction between the block and the
surface?

Fig. 2-18
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Application of Newton's law to the free body diagrams of Fig. 2-19 leads to

m+h={—pmgcosﬂ. ,1:-50
g cos @, <0
Hence, using Eqgs. {2.23) and (2.24),
5 _dumgcos @ __kaA
aaias da e k - “-bngcosﬂ

Substituting given values leads to

N
. (1 X 10° m)(u.umz m) -
4010 kg)(9.81 ’Sﬂ) cos (25°)

X

i
kx o nmg cos 8 kx
mg cos 8 mg cos 8
pomgcos @
x>0 x<l
Fig. 2-19

2,30 The connecting rod of Fig. 2-20 is fitted around a cylinder of diameter 5 cm. The
coefficient of friction between the rod and the cylinder is 0.08. If the rod is rotated 13°
and released, what is the decrease in angle on each cycle?

@)

60 cm
(5} .
d=5¢cm
w=008
Fig. 2-20

Free body diagrams of the connecting rod at an arbitrary instant are shown in Fig. 2-21. The
effect of friction between the rod and the cylinder results in a moment wmgd/2 acting on the rod,
opposing the direction of motion. Thus the free body diagrams are shown for a clockwise angular
velocity. Summing moments,

(Bm)=(m)

o
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and assuming small 8 leads to

(I+méh)d +mgéd =

d .
= <0
umg 3 <
umg > a=0
Comparing the above to Eq.'(2,23) leads to

- [met sl
= NTrmer =5 umed

which from Eq. (2.24) leads 10

L
ag = Hapmed) 2pd
mgt &

Substituting given values leads to

20 = HOOBXOOS M) _ 043 rad = 0.76°
0.6 m

meo’

= mé B

_/ué

External Forces Effective Forces

Fig. 2-21

Supplementary Problems

231  Use the equivalent systems method to derive the differential equation governing the motion of the
system of Fig. 2-22. Use x as the generalized coordinate, Determine the system’s natural frequency.

Fig. 2-22
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(m+-{-)k'+’~‘):=ﬂ = k—r‘
9 9 % = N1 9met

232 Use the equivalent system method to derive the differential equation governing the motion of the
system of Fig. 2-23. Use @ as the generalized coordinate assuming small 8. Determine the system'’s
natural frequency.

Ans.

Lk
L ) L . L Slender bar of mass m
3 t 3 + e
r’fv\h Tﬁ f-l—}z-mL’
& k
Fig. 2-23
Ans, e
| (g 4 ) N _[6kL7 + 9k,
gmLﬂ- 3kL +k |8 =0, w, = iz

233 Use the equivalent system method to derive the differential equation governing the motion of the
system of Fig. 2-24. Use x as the generalized coordinate. Assume small x and determine the
system’s natural frequency.

r J;
o 14
h I_-——Ihgm

link
M
%t

%
1 T - i
(3m+M)j'+cx+kx-0, w"_\m+3M

234 Use the free body diagram method to derive the differential equation governing the motion of the

Slender bar of mass m
e Vil
l= ﬁm.i.

1ol =
=

=L

Fig. 2-24
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system of Fig. 2-25. Use # as the generalized coordinate, assuming small 8. Assume the structure is
composed of two slender rods welded rogether.

A
o

Slender bars

a2

5 3
[ 5

Fig. 2-25

Sml?8 +mgl=0

235 Use the free body diagram method to derive the differential equation governing the motion of the
system of Fig. 2-26. Use 8 as the generalized coordinate, assuming small 6.

c k

— VW
g
Slender bar of mass m
3L
T
% EDAE
L
F]
J—L\/\?}k\/‘—é
Fig. 2-26

Ans.
l EF 2 EF: (I_! - E) =
4EmLé+16cL8+ Gkl —mg)o=0
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A 300-kg block is attached 1o four identical springs, each of stiffness 2.3 % 10° N/m, placed in
parallel. Determine the system’s natural frequency in hertz.

Ans. 8.8] Hz

A thin disk of mass moment of inertia 5.8 kg-m? is attached to the end of a 2.5-m aluminum
(G =40 % 10" N/m®) shaft of 10 em diameter. What is the natural frequency of torsional oscillation
of the disk?

Ans.  164.6 rad/s

Determine the natural frequency of the system of Fig. 2-27.

A=2¥10"m?
) {-E=100><I0“% px o
= m
E F—"\\\— 100k —ANN—F
E 3x e N
, 2m | m
Fig. 227

Ans. 1323 rad/s

When empty the static deflection of a 2000-Ib vehicle is 0.8 in. What is the vehicle’s natural
frequency when it is carrving a 200-1b passenger and 250 1b of cargo?

Ans. 199 rad/s

The location of the center of mass and the mass moment of inertia of the connecting rod of Fig.
2-28 are unknown. When the rod is pinned at A, its natural frequency is observed as 20 rad/s.
When a 250-g mass is added 1o the free end, the system’s natural frequency is observed as 10 rad/s.
Determine the location of the center of mass €.

£ m=2kg
¢ |1
60 cm *
Fig. 2-28

Ans. 0512 m

A rotor of mass moment of inertia 2.5 kg-m’ is 1o be attached at the end of a 60-cm circular steel
(G =80x10° N/m®) shaft. What is the range of shaft diameters such that the torsional natural
frequency of the system is between 100 and 200 Hz?

Ans. 932 em<D <132 cm
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2.42 A uniform 45-kg flywheel of inner radius 80 cm and outer radius 100 cm is swung as a pendulum
about a knife edge support on its inner rim. Its period is observed as 2.1 5. Delermine the
flywheel's centroidal moment of inertia.

Ans. 1=10.65 kg-m’

2.43 A particle of mass m is attached to the midpoint of a taut string of length L and tension T, as
shown in Fig. 2-29. Determine the particle’s natural frequency of vertical vibration.

R

m
Fig. 229
Ans. ’
oo [3T
" VmL

2.44  The disk in the system of Fig. 2-30 rolls without slip. Determine the value of ¢ such that the system
has a damping ratio of 0.2.

Thin disk of mass m

Fig. 2-30

Ans.

c=1.55Vimk

245  What is the value of ¢ such that the system of Fig. 2-31 is critically damped if m =20 kg and
k = 10,000 N/m?

& —=x

2k

Fig. 2-31

Ans. ¢=155x 10" N-s/m
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2.48

2.49

2.50

2.51

2.52

2.53

2.54
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A 200-kg block is attached o a spring of stiffness 50,000 N/m in parallel with a viscous damper.
The period of free vibration of this system is observed as 0.417 s. What is the value of the damping
coefficient?

Ans. ¢ =191 %10 N-s/m

For the recoil mechanism designed in the solution of Problem 2.17, what is the initial velocity of
the recoil mechanism that leads to a recoil of 5 cm?

Ans. .79 m/s

What is the minimum damping ratio for an underdamped system such that its overshoot is limited
to 10 percent.

Ans. [ =0.591

A 1000-kg machine is placed on a vibration isolator of stiffness 1% 10° N/m. The machine is given
an initial displacement of 5 em and released. After 10 cycles the machine’s amplitude is 1 cm. What
is the damping ratio of the system?

Ans, [ =0026
A 100-kg block is attached (0 a spring of stiffness 1.5 10° N/m in parallel with a viscous damper

of damping coefficient 4900 N-s/m. The block is given an initial velocity of 5 m/s. What is its
maximum displacement?

Ans, 30,9 mm

Solve Problem 2.50 if ¢ = 29,000 N-s/m.

Ans. 134 mm

How long after being given the initial velocity will it take the system of Problem 2.51 to return
permanently to within 1 mm of equilibrium.

Ans. 0.0515s

The slender bar in the system of Fig. 2-32 is rotated 5° from equilibrium and released. Determine
the time dependent response of the system if m = 2 kg, L = 80 cm, r = 10 cm, k = 20,000 N/m, and

¢ =300 N-s/m.
‘jj/ Sphere of radius r
c |_ & mass m
i A :
= 5 <
e
Fig. 2-32
Ans.

6(r) = 0.0895¢ > sin (28.9¢ + 1.35)

Solve Problem 2.53 if ¢ = 1500 N-s/m.
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2.55

256

2.57

B(r) = 0.144¢ """ — 0,055¢ "

A spring-dashpot mechanism is designed such that a system is critically damped when the system
has a mass m. What is the damping ratio of a system using this mechanism with a mass (a) 3m/4,

(b) 4m/3?
Ans.  (a) 1.15, (b) 0.866

If the initial conditions for the motion of a critically damped system are of opposite sign, overshoot
is possible. Derive a relationship that the initial conditions x, and ¥, must satisfy in order for
overshoot to occur.

Ans.

X
T
Kot ow, Xy

A 35-kg block is connected to a spring of stiffness 1.7% 10° N/m. The coefficient of friction
between the block and the surface on which it slides is 0.11. The block is displaced 10 mm from
equilibrium and released. (a) What is the amplitude of motion at the end of the first cycle? (b)
How many cycles of motion occur?

Ans. {a) 9.11 mm, (b) 11
A 50-kg block is attached to a spring of stiffness 200,000 N/m and slides on a surface that makes an
angle of 34° with the horizontal. For what values of u, the coefficient of friction between the block

and the surface, will motion cease during the 10th cycle when the block is displaced 1 ¢cm from
equilibrivm and released?

Ans. 0.120< g <0133



Chapter 3

Harmonic Excitation of 1-Degree-of-Freedom
Systems

3.1 DERIVATION OF DIFFERENTIAL EQUATIONS

Differential equations governing the forced vibrations of a 1-degree-of-freedom system can
be derived using the free body diagram method as discussed in Chap. 3. Time-dependent forces
and moments are illustrated on the free body diagram showing external forces.

Any linear 1-degree-of-freedom system can be modeled by one of the systems of Figs. 3-1 or
3-2 using the equivalent system method. The system of Fig. 3-1 is appropriate if the chosen
generalized coordinate represents a linear displacement while the system of Fig. 3-2 is
appropriate if the generalized coordinate is an angular displacement. The equivalent inertia,
stiffness, and damping properties are determined as in Chaps. 1 and 2. The equivalent external
force F., or moment M., is determined using the method of virtual work. Let 8x be a variation
in the generalized coordinate (a virtual displacement). Let 8W be the work done by the
external forces as the system dmplaccs from x to x + 6x. The equivalent force is determined
from

SW = F., bx @.1)
If the generalized coordinate is an angular displacement,
W =M, 66 (3.2)

The general form of the differential equation governing the forced vibrations of a
1-degree-of-freedom system is

Mk + Cogk + kgt = Fii(1) (3.3)

P+ 22wk +w,x -;— Foylt) pa (3.4)
p M (1)

‘e [I

or dividing by m

eqr

Moy | Fq) 34 i s
Teq % -
Fig. 3-1 Fig. 3-2
3.2 HARMONIC EXCITATION
A single-frequency harmonic excitation is of the form
Foo(t) = Fysin (wt + ) (3.5)

where F, is the amplitude of excitation, w is the frequency of excitation, and i is the phase of the
excitation.

64
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65
3.3 UNDAMPED SYSTEM RESPONSE

For { =0 and w # w,, the solution of Eq. (3.4) with F.,(r) given by Eq. (3.5) and subject 1o
initial conditions x{0) = x, and £(0) = x;, is

F, sin s
x(t)= [xu = —-——2-—-2—] COS w, !
M lw,” — w?)
| 5 Fyw cos "
+= | X "“—,, sin w,f
w, me(w,” - w’)

+ —-E’— sin (wr + )
Mgl w,” — w?)

(3.6)
This response is illustrated in Fig. 3-3.

x(0)

o

i

Homogencous solution
""""" Particular solution
Total solution

w < w,
Fig. 3-3
When @ = w,, the solution of Eq. (3.4) is
B o' Ffycosgn |
x(1) = x4C08 w,t + (w_,, + m) §in !

By
- -
i 1 €08 (w, ! + )

(3.7)
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Figure 3-4 illustrates the condition of resonance, the unbounded growth of the response when
the excitation frequency coincides with the natural frequency.

D

e

| =
B
[—

Fig. 3-4

When w is very close but not equal 10 w,, and x, =0 and X, = 0, Eq. (3.7) can be rewritten
as

,:r(f)=m= (:'f’_ o) sin("’J -2:3,,)! ms(m;w")f (3.8)

The beating phenomenon that occurs in this situation and is illustrated in Fig. 3-5 is
characterized by a periodic buildup and decrease in amplitude.

1 T — ] :

| |
U\;‘

WY

ali)
B
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3.4 DAMPED SYSTEM RESPONSE
s

i
For {#0, the homogeneous soluticn of Eq. (3.5) @ecays ‘with increasing time, and

eventually only the particular solution is important in the response. This condition is called

steady state, and the corresponding particular solution, the steady-state response, is given by

x(t) = X sin (wt + o — ) (3.9)

where X is called the sready-state amplitude and ¢ is called the phase difference. The
steady-state amplitude is calculated from '

Mg, X - Tl ok
2 = M(r, ) PR (3.10)
I3 e
where r=2 (3.11)
Wy
is called the frequency ratio and
e 1
M(r, {) = (3.12)

(T =P7+ @y

is called the magnification factor. The phase difference between the response and the excitation
is
o f 2¢r
=1 L (— N
¢ =tan l—rl) (3.13)
Figures 3-6 and 3-7 illustrate the nondimensional magnification factor and phase difference as
functions of r for several values of £ It is noted that for a fixed ¢ < 1/V2, the maximum value of
Mis
1

L ey ———— 3.4
ey (3.14)

and occurs for a frequency ratio of
e = V1 =22 (3.15)

3.5 FREQUENCY SQUARED EXCITATIONS

A common form of harmonic excitation is one whose amplitude is proportional to the
square of its frequency. That is

Fo=Aw’ (3.16)

where A is a constant of proportionality. For a frequency squared excitation, Eq. (3.10) can be
rewritten as
ek A ) @17)
A 3
A(r, 2) = rM( r (3 18)
where Alr, O)=r )= :
4 £ V(1= r?) +(24r)
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Fig. 3-7

The nondimensioal function A is illustrated in Fig. 3-8 as a function of r for several values of {.
It is noted that for a fixed { < 1/V2, the maximum value of A is
A : L @9
e —=—— ! Fi
UV )
and occurs for a frequency ratio of

1
- e————— 3.20
Fna i (3.20)
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Fig. 3-8

3.6 HARMONIC SUPPORT EXCITATION

The block in the system of Fig. 3-9 is connected through a spring in parallel with a viscous
damper to a movable support. The support is given a harmonic motion of the form

y(1)=Ysinwr (3.21)
The absolute displacement of the block x is governed by
B+ 22w,k + 0, x = w, Y sinwt + 2w, Y cos ot (3.22)

m
Iz{i]
l
Iy(l}

Fig. 3-9

Let
z(t) =x(r) - y(1) | (3.23)

be the displacement of the block relative to its support. The differential equation governing z{r)
is

P+ 2w,i + w,’ = w'Ysin w C(3.24)
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The steady-state solution of Eq. (3.24) is

2(¢) = Z sin (wr — ¢) (3.25)
where ¢ is given by Eq. (3.13) and
Z_ a0 (3.26)
The steady-state amplitude of absolute displacement is given by
1+ (2Lr)
—- = 3.27
Ted) = \/(1 PY + 2Ly o2

The function T(r, £) is illustrated in Fig. 3-10 as a function of r for several values of {.

3.7 MULTIFREQUENCY EXCITATIONS
The steady-state solution of Eg. (3.4) with

Floy= 3 Esiniad +#) (3.28)

i=1

is obtained using the principle of linear superposition

iy S Eoblrs i G+ =) (3.29)

where n= mﬂ (3.30)
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i) (3.31)

Zp?
1=y

and ¢, =tan"' (

3.8 GENERAL PERIODIC EXCITATIONS: FOURIER SERIES

If F(r) is a periodic function of period 7, then F(t) has the Fourier series representation

F(r)= %q + i (a, cos wt + b, sin wt) (3.32)
i=1
where e (3.33)
T

2 T
a, = ?"I F(1) cos w;t dt (3.24)

2 T
b=2 nf F(1) sin ayt dt (3.35)

The series of Eq. (3.32) converges to F(r) at all r where F is continuous. If F(r) has a jump
discontinuity at r, then the series of Eq. (3.32) converges to the average value of F as ¢ is
approached from the left and right.

If F(t) is an even function, then F(—r)=F(r) forall tand b, =0, i =1,2,.... If F(r) is an
odd function, then F(—t) = —F(¢t) forall¢, and a, =0, i=0,1,2,....

An alternate representation of Eq. (3.32) is

F)=5+3 csin (ot - x) (3.36)
i=1
where ¢ =Va?+b? (3.37)
and K, =tan”! (%) (3.38)
The response of a 1-degree-of-freedom system subject to a periodic excitation is
1 dy | - .
x(t) s [—2-" + Z. eM(r, ) sin {wit +x, — @)] (3.39)
An upper bound for the maximum steady-state displacement is
1 Q| o ]
i = —+ 3.40
Lma mgqm,,z 2 ’2 C'M{r” ;) ( )

39 COULOMB DAMPING

An approximation of the response of a system with Coulomb damping subject to a
single-frequency harmonic excitation is obtained by modeling the system using viscous damping
with an equivalent viscous damping ratio, {.,, calculated such that the work done over 1 cycle of
motion by the system with Coulomb damping is the same as the work done by the system with
viscous damping with the equivalent damping coefficient. To this end,

2L

- 3.41
mrM ( )

gcq
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F

where =4 (3.42)

F

where F; is the magnitude of the Coulomb damping force, F, is the amplitude of the excitation,
and M is the magnification factor. Substituting into Eq. (3.12) leads to

- ()
@~ry

Equation (3.43) provides an approximation to the magnification factor for « < x/4.

(3.43)

310 HYSTERETIC DAMPING

Empirical evidence indicates that the energy dissipated over 1 cycle of motion due to
hysteretic damping is independent of frequency but proportional to the square of amplitude.
The free vibration response of a system with hysteretic damping is similar to that of a system
with viscous damping. A dimensionless hysteretic damping coefficient 4 is determined from the
logarithmic decrement & as

8
h=- (3.44)
T
For forced vibration, the equi\»alenl viscous damping ratio is
h
- 3.45
gcq 2r ( )
which leads to a magnification factor of
M= W S— (3.46)
VT ="+ k2

Solved Problems

3.1 Use the free body diagram method to derive the differential equation governing the
motion of the system of Fig. 3-11 using 6 as the generalized coordinate.

Fpsin wr
L
4

ra| =

L
—-P_'T

—
,-};;}-,o \M,sinw-m
k Ic

Fig. 3-11



CHAP. 3]  HARMONIC EXCITATION OF |I-DEGREE-OF-FREEDOM SYSTEMS 73

Free body diagrams of the system at an arbitrary instant assuming small @ are shown in Fig,
3-12. Summing moments about the pin support leads to

(sw0). =(z )

il
—3KLB(L) — Fysin wi(iL) — eLO(GL) + M, sin wr = 5mL* + \mLB(LL)

EmMLE + el?d + LkL20 = M, sin wr — LF,L sin wt

Fy sin wr

External forces Effective forces

Fig. 3-12

3.2 Use the equivalent system method to derive the differential equation governing the
motion of the system of Fig. 3-11 using 6 as the generalized coordinate.

The kinetic energy of the system at an arbitrary instant is
T=im(LOY + L smL6* = ZmL**
The potential energy of the system at an arbitrary instant is
Vo=1k(iLO) = | HkL'O?

The work done by the damping force between two arbitrary instants is

L] L]
W= —f leLBd(iL8) = — f Ll de

# L]

The work done by the external forces as the system moves through a variation 56 is
§W = —Fy(sin wt) 6(5L.8) + My(sin wr) 56
=(—iRL + M,)(sin wt) o8
Hence the governing differential equation is

ZmLE + el + kL8 = (—LF,.L + M,) sin wt
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For what value of m will resonance occur for the system of Fig. 3-137

200 sin 501
L
m
2% 10* X Srrrrrrmn 1 x 100 N
m m
Fig. 3-13

The springs attached to the block in Fig. 3-13 act in parallel, leading to an equivalent stiffness
of 3 10° N/m. Resonance occurs when the excitation frequency of 50 rad/s is equal to the natural
frequency,

50 o
] % m
which leads to
¥ 3% 10’2
m=—9= =120 kg

A 45-kg machine is placed at the end of a 1.6-m cantilever beam of elastic modulus of
200 % 10° N/m® and cross-sectional moment of inertia 1.6 X 10™* m®. As it operates, the
machine produces a harmonic force of magnitude 125 N. At what operating speeds will
the machine's steady-state amplitude be less than 0.2 mm?

The equivalent stiffness of the beam is

N

3(200>< 10° ﬁ)(l.sx 10~ m)
o L —23ax10r Y
L (1.6 my =

The system’s natural frequency is

k z34><|u‘2 caid
N N ey

In order to limit the steady-state amplitude to 0.2 mm, the allowable value of the magnification
factor is

rady?
e (84 kg)(ZZS.D -;-) (0.0002 m)

M=%~ 125N =37

For an undamped system, Eq. (3.12) becomes

M=iA
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For r <1, requiring M <3.74 leads to
/ 1
= —-— = ). 85
y 1 37 0.856

For r > 1, requiring M < 3.74 leads 1o

= —=1126
l+ |+3_N 1.12

Thus the allowable ranges of frequencies are

w <0.856w, = 15'52Ei and wbllzsw.—ﬁﬁiﬂ

A thin disk of mass 0.8 kg and radius 60 mm is attached to the end of a 1.2-m steel
(G =80x10° N/m% p = 7500 kg/m?) shaft of diameter 20 mm. The disk is subject to a
harmonic torque of amplitude 12.5 N-m at a frequency of 700 rad/s. What is the
steady-state amplitude of angular oscillations of the disk?

The torsional stiffness of the shaft is

% 001 my(s0x10° ) o
=105 x 10" =

1.2m rad

=6
I

The mass moment of inertia of the shaft is
- ! 4 1 k ) (12 1
T 3 prlrt= 2 (?500 —3, m(1.2 m){0.01 my

=141 % 107" kg-m*
The inertia effects of the shaft are included in a 1-degree-of-freedom model by
Lo=L+ 5 =imurl+ Y,
= 4(0.8 kg)(0.06 m)® + §(1.41 X 10~ kg-m?) = 1,49 X 10" kg-m*

The natural frequency of the system is

105 x 10*
L ARy S EEITY
PN T 149X 107 kgm® 77 s

700

The frequency ratio is

which leads to a magnification factor of

R
M= Ty 28
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Let @ be the steady-state amplitude of torsional oscillation. The torsional oscillation equivalent of
Eq. (3.10) 1s
w0
e M
T

MT, 3.28(12.5 N-m)

2 2
(149 %107 kg-m’)(&?ﬁ'%)

= 0.0390 rad = 2.24°

3.6 A 45-kg machine is mounted on four parallel springs each of stiffness 2 X 10° N/m. When
the machine operates at 32 Hz, the machine’s steady-state amplitude is measured as
1.5 mm. What is the magnitude of the excitation provided to the machine at this speed?

The system’s natural frequency is

4(2 X107 E)

oo _ m/_ . rad
w, i a5 kg =133.3 5

The system’s frequency ratio is

‘.!R-

(an S22y, 104

s cycle

=1.51

The magnification factor for an undamped wstt_rn with a frequency ratio greater than | is

o

|
-1 (151¢-1" 0.2l

Equation (3.10) is rearranged 1o solve for the excitation force as

rad\?
eix kg)(133.3 T) (0.0015 m)

v 0981 =154 %10°N

3.7 A system that exhibits beating has a period of oscillation of 0.05 s and a beating period of
i+ 1.0s. Determine the system's natural frequency and its excitation frequency if the
ﬁ excitation frequency is greater than the natural frequency.

From Fig. 3-5 it is observed that the period of oscillation is

T A o
w +

and the period of beating is
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3.9

These equations are rearranged o

W= w,=2T
which are solved simullaneously yielding
w=4m%. w..=391rr—?

Repeat Problem 3.4 as if the beam had a damping ratio of 0.08.

From the solution of Problem 3.4, the system’s natural frequency is 228.0 rad/s, and the
maximum allowable value of the magnification factor is 3.74. Thus in order to limit the
magnification factor to 3.74,
=il s
VT =) + [200.08)]

= 1.9744r* + 1 > 0.07149

374>

= 19744, + 0.9285 =0

The above is quadratic in r’. Application of the quadratic formula leads to positive solutions of
r=0.879 and r=1.096. The magnification factor is less than 3.74 if w < 0.879(228.0 rad/s)=
200.4 rad/s or w > 1.096(228.0 rad/s) = 249.9 rad/s.

A 110-kg machine is mounted on an elastic foundation of stiffness 2 x 10° N/m. When
operating at 150 rad/s, the machine is subject tga harmonic force of magnitude 1500 N.
The steady-state amplitude of the machine is‘n&dsured as 1.9 mm. What is the damping
ratio of the foundation?

The natural frequency of the system is

ZXIU‘E
B NP N S
“ =\ 110 kg s

The magnification factor during operation is

rady?
L (110 kg)(134.8 —) (0.0019 m)
Mzmm_X= 5 ~253
F, 1500 N :
The frequency ratio for operation at 150 rad/s is
150 rzd
r=2= —=1113

@138 ==

Equation (3.12) can be rearranged to solve for the damping ratio as

1 Pt
(=3 \Jam- (=)
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which for this problem leads to

_;/ 1 . i
“”2(1,113)\(2.53)7 Lt 2

3.10 The differential equation governing the motion of the system of Fig. 3-14 is

Fag 53

AT Mo .
b (m+;;)x+cx+5kx=-r—smmr

Using the given values, determine the steady-state amplitude of the block.

M, sin wr

—E

[

m=|0kg
I=0.1kg-m?

I r=10em

k=16% 100N
m

"
I X ;:MQ_@.‘E
m

N

¥ My =100
w=180 24

5

Fig. 3-14

The system’s natural frequency and damping ratio are

R e

The frequency ratio is

The magnification factor for the system is

M =M(0.9,0.08)=

=419
V1= (0.9¥F + [2(0.08)(0.9)]

[CHAP. 3
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The steady-state amplitude is determined using Eq. (3.10) with

M, 100 N-m
=" = 1000
R 0.1 m Lo
1
and mgq=m+r—!=20kg

_ EM(0.9, 0.08) _ _ (1000 N)(4.19)

Thus X it 3
= (20 kg)(zw %)

5= 5.24 mm

Derive Eq. (3.14) from Eq. (3.12).

For a fixed £, the value of r for which the maximum of M(r, {) occurs is obtained by finding
the value of r such that aM/ar = 0. To this end,

o = = S 1= P + QO I(2(1 = P)(=20) + 2207)(20))
oM
il dad =) +27=0

r=Vi=2p
Substituting this value of r into Eq. (3.12) leads to
_ 1 _ 1
TVi-Q-aF -] wvi-g

A 120-kg machine is mounted at the midspan of a 1.5-m-long simply supported beam of
elastic modulus £ =200x 10° N/m? and cross-section moment of inertia /=153 %
107" m*. An experiment is run on the system during which the machine is subject to a
harmonic excitation of magnitude 2000 N at a variety of excitation frequencies. The
largest steady-state amplitude recorded during the experiment is 2.5 mm. Estimate the
damping ratio of the system.

The stiffness of the beam is
43(200 X 10° ﬁ](l 53% 10 m*)
_48El mi/

N
3 RED =435 X100 —

k

The system’s natural frequency is

—  [azsxie D
=\/£_ g
= N 120 kg <1

The maximum value of the magnification factor is

rad\?
i, (120 ke)(190.4 T) (0.0025 m)

= - =544
Mew. F 2000 N

Equation (3.14) can be rearranged as

1
-7 -
TV I
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which is a quadratic equation in {* whose roots are

=),

Substituting M., = 5.44 and noting that use of the positive sign in the = choice leads to a damping
ratio grealer than 1/V2 leads 1o { = 0.092.

An 82-kg machine tool is mounted on an elastic foundation. An experiment is run to
determine the stiffness and damping properties of the foundation. When the tool is
excited with a harmonic force of magnitude 8000 N at a variety of frequencies, the
maximum steady-state amplitude obtained is 4.1 m at a frequency of 40 Hz. Use this
information to estimate the stiffness and damping ratio of the foundation.

Using Eqs. (3.10) and (3.14), the maximum steady-state amplitude is related to the damping
ratio by
Mo = 1 - mw, X e
™ avi= g £
Then from Eq. (3.15) the natural frequency and the frequency at which the maximum steady-state
amplitude occurs are related by

(3.47)

Fay = VT =20 = Zon
w,

G Wimae

TovT=2f8

which when substituted into Eq. (3.47), leads to

M@ X enas _ 1

(A=200F 20v1-7°

(82 kg}[(dﬂ 91?5)(2 c;f'd )} oovim
(1-2£7)(8000 N) V1=
Substituting given and calculated values and rearranging leads to
282001 = ) = (1 -2
O -0+ 0.03107=0
¢=10.179,0.984

However, since a maximum steady-state amplitude is attained only for ;cU\/i, {=0179. Eq.
(3.15) is used to determine the natural frequency as

0 228) e )

w, = = oyele/ _ 55,5 124
ToVI= ¢t VI = (0.179)° s

from which the foundation’s stiffness is calculated:
2
k = maw,? = (82 kg}(255.5 5‘:‘59) —535% 10° g
A 35-kg electric motor that operates at 60 Hz is mounted on an elastic foundation of

stiffness 3 % 10° N/m. The phase difference between the excitation and the steady-state
response is 21°, What is the damping ratio of the system?
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The natural frequency and frequency ratio are

3><IU“'I' cad
\/7 ke -ZQZ,ST

(00 %5) (o= ) _

rad
5

),

" 292.8

Equation (3.13) can be rearranged to solve for { as:
2

L=
= 5 tan ¢

However, since the frequency ratio is greater than 1, the response leads the excitation, and if the
phase angle is taken to be between 0 and 180°, the appropriate value is ¢ = 180° = 21° = 159", Thus

) G .1 O
E="Famg) " (59)=0.0982

The machine of mass m, of Fig. 3-15, is mounted on an elastic foundation modeled as a
spring of stiffness k in parallel with a viscous damper of damping coefficient ¢. The
machine has an unbalanced component rotating at a constant speed w. The unbalance
can be represented by a particle of mass m,, a distance e from the axis of rotation.
Derive the differential equation governing the machine's displacement, and determine its
steady-state amplitude.

Of

£ e
2

&
%

Fig. 3-15

Free body diagrams of the machine at an arbitrary instant are shown in Fig. 3-16. Summing
forces in the vertical direction

(E5).-(z5),

and noting that gravity cancels with the static spring force leads to
—kx — ¢ = (m — my)¥ + mgew’ sin 8 + my¥ (3.48)
Since w is constant,
0=wt+6, (3.49)
Substituting Eq. (3.49) into Eq. (3.48) and rearranging leads to
mi + ek +kx = —mgew’ sin (ot + 8,) = myew’ sin (@ + ) (3.50)

where w=8,+nm
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Thus the response of a system due 10 a rotating unbalance is that of a system excited by a
frequency squared harmonic excitation. The constant of proportionality defined in Eq. (3.16) is

A=mye
This application of Eq. (3.17) leads to
mX r
== AN (3.5
mye VT =AY 2y
i oL it
where r= R W, = \/m : L= oy
4] ad - myea?
— [ =~ mﬂ‘{ o
Ny l e [N = [}. .
=t = on—mi
k(i + a,,!l lr_f
External Effective
forces forces
Fig. 3-16

3.16 A 65-kg industrial sewing machine has a rotating unbalance of (.15 kg-m. The machine
operates at 125 Hz and is mounted on a foundation of equivalent stiffness 2 % 10° N/m
and damping ratio 0.12. What is the machine’s steady-state amplitude?

The natural frequency and frequency ratio of the system are

\/leﬂ“ -
w, —\/ T =1754 -

(252) e 20
r=2= —————rﬁ 4.48
o 175.4 =5

From the results of Problem 3.15, the excitation provided to the machine by the rotating unbalance
is a frequency squared harmonic excitation with A = m,e, the magnitude of the rotating unbalance.
Thus using Eq. (3.51) of Problem 3.15,
2

MK _ A(4.48,0.12) = ) =

mee V1 = (4.48)F + [2(0.12)(4.48)]
1.051(0.15 kg-m)

65 kg

051

X =

=243 mm

317 An 80-kg reciprocating machine is placed on a thin, massless beam. A frequency sweep is
run to determine the magnitude of the machine's rotating unbalance and the beam’s
equivalent stiffness. As the speed of the machine is increased, the following is noted:

(a) The steady-state amplitude of the machine at a speed of 65 rad/s is 7.5 mm.
(b) The maximum steady-state amplitude occurs for a speed less than 65 rad/s.
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(c) As the speed is greatly increased, the steady-state amplitude approaches 5 mm.
Assume the system is undamped.

Problem 3.15 illustrates that a machine with a rotating unbalance experiences a frequency
squared harmonmic excitation with A =mge, the magnitude of the rotating unbalance. Figure 3-8
shows that as the frequency ratio grows large, A— 1. Thus from condition (c)

(B0 kg)(0.005 m) _ |

e
e =04 kg-m

Since the maximum steady-state amplitude occurs for a speed less than 65 rad/s, it is probable that
65 rad/s corresponds to a frequency ratio greater than 1. Thus, for an undamped system with r > 1,

rJ

For w =65 rad/s,

= A A .

mye 0.04 kg-m

d
r 6 % rad
Th B Wl e
us LS= 0 = r=173 = o, =5 =376
- k=mw?= (80 kg)(a?.a %j) = 113 10° 2

A 500-kg tumbler has an unbalance of 1.26 kg, 50 cm from its axis of rotation. For what
stiffnesses of an elastic mounting of damping ratio 0.06 will the tumbler’s steady-state
amplitude be less than 2 mm at all speeds between 200 and 600 r/min?

The results of Problem 3.15 show that a machine with a rotating unbalance is subject to a
frequency squared excitation with A = mue. Thus in order for the steady-state amplitude to be less
than 2 mm when the tumbler is installed on the mounting, the largest allowable value of A is

X (500 kg)(0.002 m) _
e P Rl

From Eq. (3.19), A,..({ = 0.06) = 8.36 > A,,.. Then from Fig. 3-8, since A,,> 1 and { < 1/V2, there
are two values of r such that A(r, 0.06) = 1.587. In order for A < 1.587, the frequency ratio cannot
be between these two values, which are obtained by solving

K]
1587 = ————
VIT=7F) + (012r)°

Squaring the above equation, multiplying through by the denominator of the right-hand side, and
rearranging leads to
L.519¢" = 5.0017* + 2519 =10

which is a quadratic equation in r* and can be solved using the quadratic formula. The resulting
allowable frequency ranges correspond to

r<0.788 or r=1.634
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In order for r <(.788 over the entire frequency range, r = 0.788 should correspond to a frequency

less than. 600 r/min. Thus
(600 7)) s

[l rad
0> 2= = =7973 55
_ rady? N
K = (500 ug)(79,73 - ] =318 10"

In order for r > 1.634 over the entire frequency range, r = 1.684 should correspond to a frequency

grater than 200 r/min. Thus
(2.00 m_zn){zx %dJ( 1fnglisn) rad

1634 =12.82 <

w, =

2 ]
Ko = (500 kg)(lz,sz %) =821 % 10° E

Hence the acceptable mounting stiffnesses are

k<821x lﬂ‘E and s|:>3.1£'1><1t]“E
m m

A 40-kg fan has a rotating unbalance of magnitude 0.1 kg-m. The fan is mounted on the
beam of Fig. 3-17. The beam has been specially treated to add viscous damping. As the
speed of the fan is varied, it is noted that its maximum steady-state amplitude is 20.3 mm.
What is the fan’s steady-state amplitude when it operates at 1000 r/min?

E =200 10"%
@ I=1.3% 10" m*
; mge = 0.1 kg-m
2 1.2m J @ = 1000 r/min
Fig. 3-17

The maximum value of A is
mX e _ (40 kg)(0.0203 m)

Aree = mye 0.1 kg-m =812
The damping ratio is determined using Eq. (3.19):
8.]2=;
VT
7=0.0617
The beam’s stiffness is
3(200 X 10" E)( 13% 10° m)
g = SEI_ s —4s1x10' N

L (12m)y m
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and the system’s natural frequency is

!1-.5[9'(3!'.'&‘E
o = E: -——.-_._m=10.52§i1
" m 40 kg s

o (10005 )(2x ) (G0)
r=2a r > - 0986

o 106.2 24
5

The frequency ratio is

The steady-state amplitude is calculated by
X =’%;\(ﬂ.9&5, 0.0617)

_0.1kgm (0.986)°
40 kg V(1 - (0.986)7 + [2(0.0617)(0.986) ]

=19.48 mm

3.20 The fan of Problem 3.19 is to operate at 1000 r/min, 1250 r/min, 1500 r/min, 1750 r/min,
£ and 2000 r/min. What is the minimum mass that should be added to the fan such that its

ﬁ steady-state amplitude is less than 10 mm at all operating speeds?

Adding mass to the fan decreases the system's natural frequency, thus increasing the
frequency ratio at each operating speed. With no additional mass, r = 0.986 for w = 1000 r/min.
Adding mass will probably lead to a frequency ratio greater than 1 for w = 1000 r/min. Figure 3-8
shows that for r > 1, the steady-state amplitude for a frequency squared excitation decreases with
increasing excitation frequency. Thus if X < 10 mm for w = 1000 r/min, then X <10 mm for all
w > 1000 r/min. The desired magnification factor for w = 1000 r/min is

N
_melX_ kK =(4.51 X 10° ;)(0,01 m}=4“

E Meew®

" (0.1 kgm)(104.7 %1]

Thus 411= 1
V(L =)+ [2(0.0617) ]

Solving for r leads to r = 1.096. Thus

104.7 ? rad
w, = W= 95.5 5

N

PR . ]
1

(95.5 %‘)

& _4.5] x10°

s
!

=495k

Thus the minimum mass that should be added to the machine is 9.5 kg.
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3.21 The tail rotor section of the helicopter of Fig. 3-18 consists of four blades, each of mass
2.3 kg, and an engine box of mass 28.5 kg. The center of gravity of each blade is 170 mm
from the rotational axis. The tail section is connected to the main body of the helicopter
by an elastic structure. The natural frequency of the tail section is observed as 135 rad/s.
During flight, the rotor operates at 900 r/min. What is the vibration amplitude of the tail
section if one of the blades falls off during flight? Assume a damping ratio of 0.05.

Fig. 3-18

The total mass of the rotor is
m=4(23kg)+285 kg =377 kg

The equivalent stiffness of the tail section is
ke=mw?= (317 kg)(l35 @)‘ —687%10° N
5 m
If a blade falls off during flight, the rotor is unbalanced and leads to harmonic excitation of the tail
section. The magnitude of the rotating unbalance is

mye = (2.3 kg)(0.170 m) = 0.391 kg-m
The natural frequency of the rotor afier one blade falls off is

| esrx i Y
- e\ 3
e m 377 kg-23 kg s

o (050)= ) (ars)

== = =0.677
. 139.3 "=

The frequency ratio is

The steady-state amplitude is calculated using Eq. (3.17):

X = ”f A0.677,0.05)

_0.391 kg-m (0.677)
3Bd kg V[T - (0677 + [2(0.05)(0.677)]
=927 mm

3.22 When a circular cylinder of length L and diameter D is placed in a steady flow of mass
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density p and velocity v, vortices are shed alternately from the upper and lower surfaces
of the cylinder, leading to a net harmonic force acting on the cylinder of the form of Eq.
(3.5). The frequency at which vortices are shed is related to the Strouhal number (S5) by

wD
= — 352
8 2mv ( )

The excitation amplitude is related to the drag coefficient Cp, by

1
GO
2 DL

The drag coefficient and Strouhal number vary little with the Reynolds number Re for
13 107 < Re <2 % 10°. These approximately constant values are

5=02, Cp=10

(3.53)

In this case, show that the amplitude of excitation is proportional to the square of the
frequency, and determine the constant of proportionality.

Solving for v from Eq. (3.52) and setting S =02

wl

=— 354
0.4z ( )

v

Substituting Eq. (3.54) into Eq. (3.53) with C, = 1.0 leads to

_ A
PR

which leads to
F,=0317pD Lo’

As a publicity stunt, a 120-kg man is camped on the end of the flagpole of Fig. 3-19. What
is the amplitude of vortex-induced vibration to which the man is subject in a 5 m/s wind?
Assume a damping ratio of 0.02 and the mass density of air as 1.2 kg/m”.

D=10em
E=80 % 10° %
=

Fig. 3-19
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The flagpole is modeled as a cantilever beam of stiffness

Ny 7w i
sl 3(80 X 10° '—“—,) 2 (0.05 m)
L G my

The natural frequency of the man is

N
" Nm 120 kg s

The vortex shedding frequency is

=942 x 107 5
m

_04 _0'4”(5 _)_ 62,8 129
““"Dp T 0lIm s
Hence the frequency ratio is
o 62.8 %
r=e S,
Gl 7 -‘35-‘-1

Using the results of Problem 3.22, it is noted that vortex shedding provides a frequency squared
excitation with

A=0317pD°L = 0,31?(1.2 :‘—n%)(r},} m)'(5 m)=1.9% 10" kg-m
Then using Eq. (3.17),

x=2A¢.00,002)
m

_1.9%107 kg-m (7.09)°
120 kg V[T = (7.09)7 + [2(0.02)(7.09)]F
=167%x10"° m

3.24 A 35-kg block is connected to a support through a spring of stiffness 1.4 X 10° N/m in
i+ parallel with a dashpot of damping coefficient 1.8 x 10° N-s/m. The support is given a
harmonic displacement of amplitude 10 mm at a frequency of 35 Hz. What is the
steady-state amplitude of the absolute displacement of the block?

The natural frequency, damping ratio, and frequency ratio are

1.4><]0°E
YO i S
“ Vm ISk s

1.8x10° b
(== =129

2mes, 2(35 kg)(znn %i)

r=£=%=liﬂ

K 200 ¢
5
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The amplitude of absolute acceleration is obtained using Eq. (3.27) as

X =Y¥T(1.10,0.129)

5 1+ [2(0.129)(1. L0y
1004 1) \/[I —(L10) + [2(0.129)(1.10)]

=294 mm

3.25 For the system of Problem 3.24 determine the steady-state amplitude of the displacement
L of the block relative to its support.

et The displacement of the block relative to its support is obtained using Eq. (3.26):
Z = YA(L10,0.129)

(1.10)°

=(0.
(0.01 m)\fﬁj(l_lm:]z_{. [2(L.10)(0.129)F

=343 mm

326 A 35-kg flow monitoring device is placed on a table in a laboratory. A pad of stiffness
i 2x10° N/m and damping ratio 0.08 is placed between the apparatus and the table. The
ﬁ table is bolted to the laboratory floor. Measurements indicate that the floor has a
steady-state vibration amplitude of 0.5 mm at a frequency of 30 Hz. What is the
amplitude of acceleration of the flow monitoring device?

Wathcad
The natural frequency and frequency ratio are
2% 10’ :
rad
\/_ \/ = k.s =756

(30 cycle)( = rad )
_ 5 czcic —2.40 i
756 ’-"ig

re=

Ee

The amplitude of absolute displacement of the flow ing device is calculated using Eq. (3.27):

X =¥T(2.49,0.08)

=R ) \/ 1= 49 + ROIBEIT
=1.03x10" m

The acceleration amplitude is

A=ii¥= [(30 c”c'e)[zx i )] (1.03% 10~ m) =3.66 2
cycle s

3.27 What is the maximum deflection of the elastic mounting between the flow measuring
it device and the table of Problem 3.26?

b The elastic mounting is placed between the flow measuring device and the table. Hence its
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deflection is the defiection of the flow measuring device relative to the table. The amplitude of
relative displacement is calculated using Eq. (3.26):

Z =Y A(2.49, 0.08)
(2.49)°

VI = (2.49)F + [2(0.08)(2.49)]

=594% 10" m

= (0.0005 m)

3.28 A simplified model of a vehicle suspension system is shown in Fig. 3-20. The body of a
44 500-kg vehicle is connected to the wheels through a suspension system that is modeled as
a spring of stiffness 4 X 10° N/m in parallel with a viscous damper of damping coefficient
3000 N-s/m. The wheels are assumed to be rigid and follow the road contour. The
contour of the road traversed by the vehicle is shown in Fig. 3-21. If the vehicle travels at
a constant speed of 52 m/s, what is the acceleration amplitude of the vehicle?

Mathoad

m =500 kg

N

N-s

k s 1—3001!—“'
] v=5210
5

k=4x10°

Fig. 3-20

25m |

() = in 2%5
yi(E)=0.01 sin 73

Fig. 3-21

The natural frequency and damping ratio of the system are
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The mathematical description of the road contour is
(&) =0.01sin (0.878) m

If the vehicle travels with a constant horizontal velocity, £ = vt. Thus the time-dependent vertical
displacement of the wheel is

y(t) = 0.01 sin [0.8mu]

Since the wheel follows the road contour, it acts as a harmonic base displacement for the body of
the vehicle. The frequency of the displacement is

ad

w=08m = 0.8:r(52 ?) =130.7 [S._

Hence the frequency ratio is

The amplitude of absolute displacement of the vehicle is calculated using Eq. (3.27):

X = YT(4.62, 0.106)

B L+ [2(0.106)(4.62)F
i ’“}\[[ 1— (4.62)° + [2(0.106)(4.62)

=687x10" m

The vehicle's acceleration amplitude is

A=wix = (1307 5;:—(!)-{6.8? X107 m) =117 3

3.29 Let A be the amplitude of the absolute acceleration of the vehicle of Problem 3.28. Show

that
A -, [1+eoy
il Gl ree oy

where Y is the amplitude of the road contour.

The amplitude of acceleration is w”X where X is the amplitude of absolute displacement of

the vehicle. From Eq. (3.27),
w'X
oy~ [nd)

A
[ ——
e wS 'Y T(n 0)

A o i 1+ (2r)
o " wi TN Ay oy

330 Plot R(r, ¢) from Problem 3.29 as a function of r for the value of { obtained in Problem
3.28. At what vehicle speeds do the relative maximum and minimum of R occur?
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The plot of R{r, 0.106) is shown in Fig. 3-22. The values of r for which the maximum and
minimum of R(r, {) for a given ¢ occur are obtained by setting dR*/dp =0 where p =r*. To this
end

1_ —_‘.‘J + 4§1“}
p Al =2)p +1
and using the guotient rule for differentiation,
dR? _ (2p + 120070’ + (487 = ) + 1] = (p* + 42u)|[ (2 + (427 - 2)]
du [+ (47 = 2)p + 1]

Setting the numerator to zero leads to

470 + (3204 = 160’ + (168 — ) +2=0
Substituting { = 0.106 and rearranging leads 1o
n'=3909u7 =405 +44.5=0
whose positive roots are
u = 1025, 8190 — r=1.012, 2.862

The vehicle speeds for which the maximum and minimum steady-state amplitudes occur are given
by "

ra, (28'3 m;d) "

Vg = 11.26(1.012) = mm?

Vo = 11.26(2.862) = 32.2 ?

R (r. 0.106)
-
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3.31 Determine the form of W(r, {) such that X /Y = W(r, {) for the system of Fig. 3-23. What
is Wae?

e

=)
Tv{r} =¥ sin wr

Fig. 3-23

Free body diagrams of the block are shown at an arbitrary instant in Fig. 3-24. Summation of

forces
(zF),=(2),
leads to
—kx —c(¥—y)=m¥ -
mi +ck + kx =cy = cwY cos (wl) (3.55)
¥+ 2wk +w,x -—»f' wi cos wl = 2w, Y cos wt
k
where W, = 4 — el
m 2muw,,

Equation (3.55) is of the form of Eq. (3.4) with the excitation of Eq. (3.5) where

Fy=coY ¢=g

Thus the steady-state amplitude is obtained using Eq. (3.10) as

mw,' X

ot =M, {)
e X M0 0)
=M D)
W D=2 = s



94 HARMONIC EXCITATION OF 1-DEGREE-OF-FREEDOM SYSTEMS  [CHAP. 3

The value of r for which the maximum of W is obtained by setting dW?/dr = 0. The quotient rule
for differentiation is applied, giving

dW? _BZr[(1 = PV + (28] — 487201 - £)(=2r) + 2(22r)(20))
dr [(1 =) + (20 )P

Setting dW?{dr =0 leads to

2-2r'=0—r=1
and Wo.=1

B

1'7(# -¥) I’m:
Fig. 3-24

3.32 Determine the steady-state amplitude of angular oscillation for the system of Fig. 3-25.

| R |
T\'(;} = Y sin ot

—7 { T 4 Slender bar of mass m

A -

: k=2x100N
¢ F m
I c=appNt

m
L=12m
m=10kg

¥=001m

w=350"2d
5

Fig. 3-25

Free body diagrams of the system at an arbitrary instant are shown in Fig. 3-26. Summing
moments about 0,

—A-G Lo- y)(% L) s %L-LQ(%) = %».L’é + ; m.f.éa’r(}1 L)
ImL8 + kel + kL2 = ikLy(r) = kYL sin wr

(3.56)
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The natural frequency and damping ratio are

T N
[E 2?(2“0,'“)_2”8@
=07 N 7m T0kg s

— 1
™t
fscl?
2w, = 1“ FE]
N-s
3c 3(400 _m—)
{= Tt = 0.0309

14(10 kg)(277.7 %)

Equation (3.56) is of the form of Eq. (3.4) with the excitation of Eq. (3.5) where

3 3 N
F=3kLY =3 (2 *10° a)uz m)(0.01 m) = 1800 N-m

my, = kmL*= 510 kg)(1.2 m)* = 2.1 kg-m®

The frequency ratio for the system is

The system’s magnification factor is

M(1.26, 0.0309) =

V{1 = (1.26)F + [2(0.0309)( L.26)[*

The steady-state amplitude is obtained using Eq. (3.10) as

0
Mea® 2 _ (126, 0.0309)

C R
o= F,M(1.26,0.0309) (1800 N-m)(1.69)
= 7 o 1
Miaa® (2.1 kg~m’)(2??,8 @)
5
=1{.0188 rad = 1.08"
L oz
2 & {%ﬂ -y) mzo
c%é R . 5 )
"= T mL 8
External forces Effective forces

Fig. 3-26

95
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333 Determine the steady-state amplitude for the machine in the system of Fig. 3-27.

T_\-u) = 0.005 sin 351 m

I N
]
I 250 kg E=210%10 =3

I=4.1 % 10" m

_Jl 1.8m 4
Fig. 3-27

The system is modeled as a 250-kg block attached through a spring of stifiness

N
=~ (4. -6
k=3£f_3(210xw*m,){ 1x10 m)—443xlo=ﬂ
L (1.8 m)* R m

to a support undergoing harmonic motion. The system is undamped with a natural frequency of

4..4.‘1\><]()’E
=\/E=  m_,,, rad
" Nm 250kg s

E

and frequency ratio

35180
w s
e = —— =
" 420 2
s
The steady-state amplitude is
: 0.005 m
X=YT(083],0)= ————=0.
(0.831,0) = 1 0817 0.0162 m

3.34  Approximate the steady-state amplitude of the block in the system of Fig. 3-28.

=+

Mathead s N
k=1x10°=
m 300 sin 40s
N\ 100kg ——
rrrrrrnnrerrn
p=008
Fig. 3-28

The natural frequency and frequency ratio for the system of Fig. 3-28 are

- ]x]ﬂ!E
w=\/£= _.r.".=3]6@
" m 100 kg Tos
a0 ™d
r=2= 2 =1.27
e, ra
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The system’s force ratio is

m
g V08000 k)(981 S,) e
3 300N :

The magnification factor is determined us‘ing Eq. (3.43):

\/ \/ [4(0"62)
o= ]—r) TETET S dl

The steady-state amplitude is

x = BM __ (300 N)(. ssscyl iBi.om
e o0 kg)(:ﬂ 6 i)

3.35 When a free vibration test is run on the system of Fig. 3-29, the ratio of amplitudes on
iy successive cycles is 2.5 to 1. Determine the response of the machine due to a rotating
unbalance of magnitude 0.25 kg-m when the machine operates at 2000 r/min and the

Mathcad
damping is assumed to be viscous.

’IES ke| E=200x 10" X
m

- [=45%10°m
0 cm—

Fig. 3-29
The system’s equivalent stiffness, natural frequency, and [requcrlr:y ralio are
3(200 10 = J(45x 10°* mY)

3BL
U (08 m)’

. N
) E- fa.z?xloﬂ —1053@
Y= N 125 kg

o (oo )N ()
e zos:t’id o

N
=527 %100 =
m

The logarithmic decrement for underdamped vibrations is
5 =1In(2.5)=0916
from which the viscous damping ratio is calculated as
5 096
TVar+ s Var+ (0916)
Noting from Problem 3.15 that the rotating unbalance provides a frequency squared excitation with
A =mye, and using Eq. (3.17):

mye

=0.144

X=— !\(102 0.144)

_025kg-m (1.02y
125 kg VI = (102 + [2(0.143)(1 02)1‘
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3.36 Repeat Problem 3.35 if the damping is assumed to be hysteretic.

=+

Equation (3.44) is used to determine the hysteretic damping coefficient from the logarithmic
Mathcag  decrement

& In(2.5)
n n

=0.292

The steady-state amplitude is obtained using Egs. (3.18) and (3.46) and calculated by

_ Mmee r

m \.r"(] = !z)z + h}

_ 025 kg-m (1.02) —7.06 mm
125kg VII—(1.02)F + (0.292f

3.37 Determine the Fourier series representation for the periodic excitation of Fig. 3-30.

F (N}

5000 —

1 1 1 1 | 1 | 1
0.02 0.04 006 008 010 012 01 016 t{s)

-5000

Fig. 3-30

The excitation of Fig. 3-30 is an odd excitation of a period 0.04s. Thus a =0,
i=0,1,2,.... The Fourier sine coefficients are calculated by

r
2 . 2mi
b, —}J’ F(r) sin T rdr
2 007 Ly
T j (—5000) sin SOzir dr + J (5000) sin S0t di
o wm
= (m)(smn)(;l)[-cm ai + cos 0+ cos 2mi — cos mi|
Sl
10,000 ;
= -2 - (1Y)
Thus the Fourier series representation for F(1) is
F(t)= - -]—0'30—-02 —:{(l)— (—1)] sin 50mit
i=1

20 =
L0 > %siniOﬂit

To-ias




CHAP. 3] HARMONIC EXCITATION OF I-DEGREE-OF-FREEDOM SYSTEMS 99

3.38 Determine the Fourier series representation for the excitation of Fig. 3-31.

oy L

Wathcad

F
A
¥ | 1 |
I 2, 41, 5, Tt ar,
2 L Iy -1 L 21, 2 n Dy t
3 3 i i ] 3
Fig. 3-31
The excitation of Fig. 3-31 is an even excitation of period 1,. Hence b, =0, i=1,2,.... The

Fourier cosine coefficients are

a =§n fF(:)d'I

{200

3 J
o J‘(E)nm j Edi+ f 35,(1—’-);::
fn A I, I

0
i {230

a, = fF(r)ccsz-Efd.‘
I fo

o

2 (10 3F 2 i 2130y 2ni iy 2
== J‘ (—").'oosﬂrdf-f- f Facos == pdr + f 3!{,(1—1)1:05—”‘-1&:
fu Iy Iy o

o
{134y (23

_3.“'},, 1 2ri 1 4m

e (qeos T #3008 -1)
95 i

- _’lez.i'rz i=1,2,4,57,8,...
0 i=3,6912,...

Thus the Fourier Series representation for F(r) is

2 9% < 1 2ni
Fiy)=-FR—-— - Co§ — 1
® 3F’ ij-uxz.u:smfzm o

3.39 Determine the Fourier series representation for the excitation of Fig. 3-32.
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F(N)

2000 —_— — —_— —

1 | | 1 11 1 1 1 1 | 1 | 1 1 1
0.01 0.02 0.03 0.04 005 0.06 0.07 0.08 0.09 0.1 0.11 012 0.13 0.14 0.15 016 1(s5)

Fig. 3-32

The excitation of Fig. 3-32 is neither even nor odd and has a period of 0.04 5. The Fourier
coefficients are

4y = T‘ (2000) dr + Tu {0) dr

oo

am L)
== “j (m)wsﬁ'ﬁ’d"t‘i (0)cos-—--fdf:|

= (50)(7000)( )(sm Zi—sin o)

2ri

b,=0m|7]’m(2(m)sm m:d:+ f (O)SIn—rd:]
o {50)(2000)( L )(cos 2 —cnsﬂ)

=3-U'?—‘](1 —cosgi)

m
20000 |, i
Then ¢ =Val+bi=—n 5|n’£i+(1—cos£:')
mi 2 2
=— sinEiI
a'|
sinE‘
" 2!
and K, =lan
1-cosZi
2

Thus the Fourier series representation for F(r) is

Fl)= 500+——2 ‘sm = |5|r|(50m+-<)r
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3.40 A 200-kg press is subject to the time-dependent excitation of Problem 3.39 and Fig.
<ix  3-32. The machine sits on an elastic foundation of stiffness 1.8 X 10" N/m and damping
ﬁ ratio 0.06. Determine the steady-state response of the machine, and approximate its
maximum displacement from equilibrium.

Mathcad

341

3.42

The natural frequency of the system is

The system response is obtained using Eq. (3.39) as

1
L8 % 107

x(ry=

where

and

[500+

o0

Lt

n=

M(r, {)=

T I,leD’E .
\/FVW=3°“—

ad
5

;1. }sin (E:]| M(r, £ sin (50 + x, = )0

w,__50mi
e 300%

1

Table 3-1 illustrates the evaluation of the response. Then

1 o -4
o <TEXT0 [sm - §‘, oM(r, 5)] =334x10*m

Table 3-1

i w, 7 G M, oM, K, &,

1 157.1 0.523 900.2 137 1233 0.785 0.086
2 314.1 1.047 636.6 631 4017 0 -0.915
3 471.2 1.57 300 0.68 2027 -0.785 -0.128
4 628.3 2.094 0 0.29 0 1.571 -0.074
-] 785.4 2.672 1798 0.17 30.7 0.785 ~-0.054
6 942.5 3.141 2120 011 239 0 —0.042
7 10996  3.665 1286 0.080 10.3  -0.785 0.035
8 1256.6 4.188 0 0.06 0 1.571 —0.030

Supplementary Problems

A 100-kg machine is attached to a spring of stiffness 2 10° N/m and is subject to a harmonic
excitation of magnitude 700 N and period 0.1 s. What is the machine's amplitude of forced

vibration?

Ans. 3.59 mm

A 185-kg machine is attached to the midspan of a simply supported beam of length 1.5 m, elastic
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modulus 210 = 10° N/m*, and cross-sectional moment of inertia 3% 107" m*'. What is the
steady-state amplitude of the machine when it is subject to a harmonic excitation of magnitude
4% 10° N and frequency 125 rad/s?

Ans. 6,59 mm

A 45-kg machine is to be placed at the end of a 2.5-m steel (E = 210 x 10° N/m?) cantilever beam.
The machine is 10 be subject 1o a harmonic excitation of magnitude 1000 N at 40 rad/s. For what
values of the beam's cross-sectional moment of inertia will the machine’s steady-state amplitude be
limited to 15 mm?

Ans, 1<132x107m'or/>344%x10%m*

At what speeds will the steady-state amplitude of torsional oscillations of the disk of the system of
Fig. 3-33 be less than 277

4000 sin o N-m
G=80x 10"
o
. J=18% 10" m*
E 1= 1.65 kg-m?
k- 60 cm -
Fig. 3-33

Ans.  w<275.1 rad/s and w > 463.4 rad/s

When a 50-kg machine, placed on an undamped isolator, is subject to a harmonic excitation at
125 Hz, its steady-state amplitude is observed as 1.8 mm. When the machine is attached to two of
these isolators in series and subjected to the same excitation, its steady-state amplitude is 1.2 mm.
What is the stiffness of one of these isolators?

Ans. 1.54x 10" N/m

What is the diameter of the shaft of Fig. 3-34 if, when subject to the harmonic excitation shown,
beating occurs with a period of oscillation of 0.082 s?

100 sin 80r N-m

WL

1=2.15kg-m?

Ans. 182 mm
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3.47 Repeat Problem 3.41 as if the spring were in parallel with a viscous damper of damping coefficient
1200 N-s/m.

Ans. 335 mm

3.48 Repeat Problem 3.42 as if the beam had a viscous damping ratio of 0.05 and the excitation
frequency was 200 rad/s.
Ans. 22,7 mm

3.49 For what excitation frequencies will the steady-state amplitude of the machine of Fig. 3-35 be less
than 1.5 mm?

400 sin o N
125kg
X m‘% { 925 [J_m_s
Fig. 3-35

Ans. w=<187 rad/s and @ > 67.5 rad/s

350  If w =100 rad/s and € =20 cm, what is the steady-state amplitude of angular oscillation of the bar

of Fig. 3-367
— L | F,=I100N
P F,sinmrl N
k=2X10°=
iﬂ ) N m
-5
c=3l]-m—
& ¢ m=]8kg
L=1Llm
! 1
I= EML
Fig. 3-36
Ans. LT

351 If w =150 rad/s, for what values of € will the steady-state amplitude of the bar of Fig. 3.36 be 1°?
Ans. €=0255m,0314m

352 When the system of Fig. 3-37 is subjected to a harmonic excitation of magnitude 100 N but varying



104

3.53

3.54

3.55

3.56

3.57

HARMONIC EXCITATION OF 1-DEGREE-OF-FREEDOM SYSTEMS  [CHAP. 3

excitation freq ies, the i steady-state displacement of the machine is observed as
1.5 mm. What is the value of ¢?

100 sin wt N

30 kg

ax it N
m

Fig. 3-37

Ans. B27.9 N-s/m

For what values of ¢, will the steady-state amplitude of the system of Fig. 3-38 be less than 1.5°7

p 2500 sin 3501 N-m
CJ ]

G=80x 10" %
m? LI,

7= 183% 10° mt 1=2.19 kg-m
Fig. 3-38

Ans. ¢, > 2610 N-s-m

A 65-kg electric motor is placed at the end of a 1.3-m steel (E =210 % 10° N/m’) cantilever beam
of cross-sectional moment of inertia 1.3 < 10™* m*. When the motor operates at 200 r/min, the
phase difference between the operation of the motor and the response of the beam is 5°. Assuming
viscous damping, estimate the damping ratio of the beam.

Ans.  0.146

Derive Eq. (3.19) from Eq. (3.18).

A 300-kg machine is attached to an elastic foundation of stiffness 3.1 % 10* N/m and damping ratio
0.06. When excited by a frequency squared excitation at very large speeds, the machine’s

steady-state amplitude is 10 mm. What is the maximum steady-state amplitude the machine would
experience at lower speeds?

Ans. B35 mm

What is the steady-state amplitude of a 100-kg machine with a 0.25 kg-m rotating unbalance
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158

3.59

3.60

.61

3.64

165

3.66

operating at 2000 r/min when the machine is placed on an isolator of stiffness 4.5 X 10" N/m and
damping ratio 0.037

Ans. 379 mm

As the operating speed of a 75-kg reciprocating machine with a rotating unbalance is increased, its
steady-state amplitude approaches 1.78 mm. What is the magnitude of the rotating unbalance?

Ans. 0,134 kg-m

A 400-kg tumbler with a 0.45-kg-m rotating unbalance operates at speeds between 400 and
600 r/min. If the tumbler is placed on an elastic foundation of stiffness 1 > 10 N/m and damping
ratio 0.1, what is the maximum steady-state amplitude of the tumbler over its operating range?

Ans.  5.65 mm

Repeat Problem 3.59 as if the tumbler's operating range were from 1000 to 1350 r/min.

Ans.  1.45 mm

For what speeds will the steady-state amplitude of the tumbler of Problem 3.59 be less than
1.9 mm?

Ans.  w <403 rad/s and w >77.2 rad/s

Determine the required stiffness of an undamped elastic mounting for an 80-kg compressor with a
0.2-kg-m rotating unbalance such that its steady-state amplitude is less than 3.1 mm at all speeds
between 300 and 600 r/min. :

Ans. k=571 10° N/m and k < 1.53 % 10* N/m

Repeat Problem 3.62 as if the mounting had a damping ratio of 0.07.
Ans. k=>564%10° N/m and k < 1.55 % 10° N/m

A 500-kg block is connected through a spring of stiffness 1.3 % 10° N/m in parallel with a viscous
damper of damping coefficient 1800 N-s/m to a massless base. The base is given a prescribed
harmonic displacement of amplitude 2 mm and frequency 15.0 rad/s. What is the steady-state
amplitude of the block’s displacement relative to the base?

Ans. 6,98 mm

Determine the steady-state amplitude of absolute acceleration of the block of Problem 3.64.

Ans, 185 m/s*

A 300-kg vehicle traverses a road whose contour is approximately sinusoidal of amplitude 2.5 mm
and period 2.6 m. Use the simplified suspension system model of Problem 3.28 with
k=25x10° N/m and { = 0.3 to predict the acceleration amplitude of the vehicle as it travels at
30 m/s.

Ans. 431 m/s*



106

3.67

3.68

3.69

3n

HARMONIC EXCITATION OF I-DEGREE-OF-FREEDOM SYSTEMS  [CHAP. 3

A 10-kg computer system, used for data acquisition and data reduction in a laboratory, is placed on
a table which is bolted to the floor. Due 1o operation of rotating equipment, the floor has a
vibration amplitude of 0.2 mm at a frequency of 30 Hz. If the table is modeled as a spring of
stiffness 1.3 % 10° N/m with a damping ratio of 0.04, what is the steady-state acceleration amplitude
of the computer?

Ans. 977 m/s’

If the table of Problem 3.67 is assumed to be rigid, what is the maximum stiffness of an undamped
isolator placed between the computer and the table such that the steady-state amplitude of the
computer is less than 6 m/s™?

Ans.  1.63%10° N/m

Determine the function V(r, £) such that X/¥ = V(r, {) for the system of Fig. 3-39.

2 e

T ¥ sin wr

Fig. 3-39

Ans.

_"‘-‘1

i - P .
V(hi}—zM(f.f) 6—2\/5"—;( rew\o%

If the frequency of the base motion of the system of Fig. 3-39 and Problem 3.69 is varied, what is
the maximum steady-state amplitude of the block?

Ans.

e, .
4V -

A 90-kg controller is placed at the end of a 1.5-m steel (E =210 x 10° N/m’) cantilever beam
(/=1.53% 107" m"). The base of the beam is given a harmonic motion of amplitude 1.5 mm. For
what frequencies will the controller's acceleration be limited to 12 m/s?

Ans.  w>725 rad/s or w <477 rad/s
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3.72  Repeat Problem 3.42 as if the beam’s amplitude of free vibrations decays to 1/3 of its value in 10
cycles, the damping is assumed to be hysteretic, and the excitation frequency is 200 rad/s.

Ans.  25.1 mm

373 A 120-kg machine is placed at the midspan of a 85-cm aluminum (£ =100 10°) N/m* simply
supported beam (/=4.56 % 10°" m*). When the machine, which has a rotating unbalance of
0.68 kg-m, operates at 458 rad/s, its steady-state amplitude is measured as 13.2 mm. If the damping
is assumed to be hysteretic, determine the beam’s hysteretic damping coefficient.

Ans.  0.060

3.74 The steady-state amplitude of the system of Fig. 3-40 is 1.21 mm. What is the coefficient of friction
between the block and the surface?

1sx 0t N
m

g—f\/\/\,— 60kg |——» 200 sin 60r N
FrErrrrr K”J( (L

T
Fig. 3-40

Ans, 0.245

3.75 A 200-kg press is mounted on an elastic pad of stilfness 3.62 x 10° N/m and damping ratio 0.1. The
press is used in a plant whose floor vibrations are measured as

$(1) = 0:0014 sin 100r + 0.0006 sin (2007 — 0.12) m
Determine the steady-state displacement of the press relative to the floor.
Ans.
0.00297 sin (100¢ — 0.320) + 0.00048 sin (200r — 2.78) m

3.76  Determine the Fourier series representation for the periodic excitation of Fig. 3-41.

Filey (N)
. Imt
[1000 sin ﬁf

0.1 0.2 0.3 0.4 ris)
Fig. 3-41
Ans.
4000 & 1
404 +—— ), ———cos 20mér

T r Z1-4¢°



108 HARMONIC EXCITATION OF 1-DEGREE-OF-FREEDOM SYSTEMS  [CHAP. 3

377 Determine the Fourier series representation for the periodic excitation of Fig. 3-42.

FiN)
1000 _ _—

1 L 1 | 1 L 1 |

0.2 0.4 06 08 1.0 1.2 14 1.6 1(s)
-1000 _ —_— _—

Fig. 3-42

Ans.
-:%0:(:—!] § -:-95in -131) it
378 A 50-kg block is attached 0a spring of stiffness 3.16 % 10° N/m in parallel with a viscous damper
such that the system’s damping ratio is 0.12. The block is excited by the periodic excitation of Fig.
3-42. Approximate the maximum displacement of the block in the steady-state.

Ans. 517 mm



Chapter 4

General Forced Response
of 1-Degree-of-Freedom Systems

41 GENERAL DIFFERENTIAL EQUATION

The general form of the differential equation governing the motion of a forced 1-degree-of-
freedom system with viscous damping is

¥ 42w,k + 0 =f F(1) (4.1)

g

42 CONVOLUTION INTEGRAL

The convolution integral provides the general solution of Eq. (4.1) subject to x(0) =0 and
%(0) = 0. For an arbitrary F(t), the convolution integral response is

x(t)= J Flrtih(t —1)dr (4.2)

where h(r) is the response of the system due to a unit impulse applied at r=0. For a system
whose free vibrations are underdamped,

h(t) = l 7" sin wl (4.3)
Mg,
where wy = w, V1= (4.4)

is the damped natural frequency. Thus the response of an underdamped system is

x(1) =--'l---f F(t)e " sin wy(r — 1) dt (4.5)
Mequy

43 LAPLACE TRANSFORM SOLUTIONS
The Laplace transform of a function x(¢) is defined as

()} =%(s)= J e x(r) dt (4.6)

o

109
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Tables of Laplace transforms and properties of Laplace transforms follows.

Table 4.1
Number (1) Fls)
1 1 3
s
1
2 r o
s
3 e L
s—a
. w
4 sin it - e
5
5 €OS wt e
6 5(t - a) e
e
7 u(r—a) Tar
Table 4.2
Property name Formula
Definition of transform fis)= je‘"(f) dt
L]
Linearity Hlaf(r) + Bg(1)) = af () + BE(S)
Transform of derivatives .‘t’[;;r,f} =5"f(s) — 5" f(0) — - - - = f70)
First shifting theorem : Fle f(} = f(s +a)
Second shifting theorem LU (1 - ahult —a)} = e™=f(s)
Inverse transform =02 J" fs)e™ ds

The properties of the Laplace transform are used to transform Eq. (4.1) into an algebraic
equation whose solution is

F9) 1 (s +240,)x0) + 20)

=t o Meq 4.
A P+ 2w, s+ w,? (#7)

Inverting Eq. (4.7) for { <1 leads to
(0) + Lw,x(0) sin m,,r]

x(r)= e""“"’[x(ﬂ) cos wyt +
Wy

+_1_3ﬂ[____":"(’) ] (4.8)

2 2
Meq 5+ 2w, + w,
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4.4 UNIT IMPULSE FUNCTION AND UNIT STEP FUNCTION

The unit impulse function 5(t — ;) is the mathematical representation of the force applied 1o
a system resulting in a unit impulse applied to the system at ¢ = r,. Its mathematical definition is

6(r—ru)={i ::: (49)
but f&{r —tp)dt =1 (4.10)
o
The unit step function u(t — t,) is related to the unit impulse function by
u{r—.'.,)=f6(r—ru)dt (4.11)
leading to ’
ult = 1g) = [? ii: (4.12)

The unit step function may be used to develop a unified mathematical expression for an
excitation force whose mathematical form changes at discrete times.
An important integral formula is

JF(r)ﬁ(t—:nJ dt = F(t)ult —t5) (4.13)

4.5 NUMERICAL METHODS

While the convolution integral provides a solution to Eq. (4.1) for an arbitrary F(r), it is not
always possible to evaluate the convolution integral in closed form. This is the case, for
example, if F(r) is known empirically, rather than by a mathematical expression. In these cases,
the solution of Eq. (4.1) can be approximated using numerical methods.

One form of numerical approximation of the solution of Eq. (4.1) is numerical integration of
the convolution integral. The function F(¢) can be interpolated by an interpolation function F(r)
such that when F(t) is replaced by F(r) in Eq. (4.1), the integral has a closed form evaluation.
Often the interpolating function is defined piecewise. That is, its form changes at discrete values
of time.

A second form of numerical approximation to the solution of Eq. (4.1) is direct numerical
simulation of Eq. (4.1) using a self-starting method such as the Adams method or a
Runge-Kutta method.

4.6 RESPONSE SPECTRUM

Let 1, be a characteristic time in the definition of an excitation, and let /; be the maximum value
of the excitation. The response spectrum is a plot of the nondimensional parameter
(M, x,.,)/ Fy versus the nondimensional parameter (w,f,)/(27). The response spectrum can be
developed for any damping ratio.
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Solved Problems

4.1 Use the convolution integral to determine the response of an undamped 1-degree-of-
freedom system of natural frequency w, and mass m when subject to a constant force of
magnitude F,. The system is at rest in equilibrium at ¢ = 0.

Substituting F(r) into Eq. (4.5) with { =0 leads 10

x(r)= ;}J I Fysin o, (t — t)dt

F
=mm €08 w,(1 = T)

F;
=m;,(l“c{}$w,.f)

=0

42 Use the convolution integral to determine the response of an underdamped 1-degree-of-
freedom system of natural frequency w,, damping ratio ¢, and mass m when subject to a
constant force of magnitude F,. The system is at rest in equilibrium at 1 =0,

Substituting for F(r) in Eq. (4.5) leads to
()= -l~j Foe ™7 gin w, (1 — 1) dT
muw, ) L ‘.

Let v=r—1 Then
=0
£ . .
x(ry==—— | & ™"sin w,v (—dv)
mw, )
F i
Mw, e,
__h -t { . )
= S [1 —e " 4(\Wsm wyl + CO§ w,r)]

7€ ({w, Sin w,v + w, COS wyv)

=0

43  Use the convolution integral to determine the response of an undamped 1-degree-of-
cf  freedom system of natural frequency w, and mass m when subject to a time-dependent
", excitation of the form F(r) = Fye™™. The system is at rest in equilibrium at ¢ = 0.

Substituting for F(r) in Eq. (4.5) leads 1o

1 s B
I{l)—m%‘jﬁ.e sin w,(t — 1) dt

Let v=1— 1 Then

w=0
F T
x(r) = m:; f e~ sin w,v (—dv)
n'ﬂl
Fe ™ T
= :: J €7 sin w, v dv
w" =il
i
=—-—F°—-—e"“(or Sin w, v — w, COS w,v)
muw, (o’ + w,?) 3 " % b
fy

= (& 5in w, [ — 1+ we ™
mm_(a’+w,,’)( N, = t, COS w,l + w,e ™)
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4.4  Use the convolution integral to determine the time-dependent response of an undamped
1-degree-of-freedom system of natural frequency w, and mass m when subject to a
harmonic excitation of the form F{r) = F, sin wt with @ # .

Substituting for F{r) in Eg. (4.5) with { =0 leads to
|
x()=——| Fsinwrsin w,(t - 1) d7
muw, )
Use of a trigonometric identity for the product of sine functions of different arguments leads 1o

()= ZmeJ’ Fifcos [(w + w,) = wat] = cos [(@ = w, )z + wat} de

=

= F‘“ { i ! B } [
ol sin [(w + w, )T = w,t] — sin (@ = w7 + w.i] i}
EI 3 . - .
=— [sin wt + sin w,t] - [sin wt — sin w, 1]
2muw, lw + w, w =y,

Fy ’ .
=———————{w sin w,! — w, 5in wr)
muw,(w' = w,’)

4.5 The differential equation governing the motion of the system of Fig. 4-1 is
=i+
Loy wmL8 + kL@ = 1LF(1)

=t

Determine the time-dependent response of the system if F(r) = Fe

L A Fin
3 t 4
—% =~
Slender bar of mass m k
Fig. 4-1

The natural frequency of the system is

The governing differential equation can be put into the form of Eqg. (4.1) with

my,=4&mL*  F(t)=31LFe™
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Substituting into the convolution integral solution, Eq. (4.5), leads to

B(r) = ?;I% LFe " 'sinw,(t—1)dr
Lora
T mliw, 0
36 F

I e ""sinw,(t — T)dt

_';'_m.[.w,,
a

Performing the integration as in Problem 4.3 leads to

% R

L o g g

(e Sin w,f = @, COS w,f + w,e” ™)

For the system of Problem 4.5, if m =20kg, L=14m, k=14x10" N/m, [,=100 N,
and a =12 (s)”', determine the maximum angular displacement of the bar from its
equilibrium position.

The natural frequency of the system is
27(1ax10° E)
rad

27k m
m- ¥ a@kg O

w, =
Substituting given values into the solution obtained in Problem 4.6 leads to
36(100 N)

M= 7(20 kg)(1.4 m)(51.96 E;q][(m’ 1)+ (3196 E;E)?]

% (12.0sin 51.961 — 51.96 cos 51.96¢ + 51.96¢~'%)
= (L.00149 sin 51.96r — 0.00645 cos 51.96r + 0.00645¢
The time at which the maximum occurs is obtained by setting d8/dr = 0. To this end

%= 0.0774 cos 51.96 + 0.335 sin 51.96¢ — 0.0774e " = 0

A trial-and-error solution leads to 1 = 0.0538 s and 6,,,, = 0.00996 rad.

Use the convolution integral to determine the response of an undamped 1-degree-of-
freedom system to the excitation of Fig. 4-2.

£y
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For 1 <1,

|
miw,

x(t) = jﬁ.sin w,(t— 1) dr

[

=£°—;{1 - Cos w,t)

For t =1,

1 A
x(t) = ey fﬁ.sm w,(t— 1) dr
o

Fo
= ’;"‘;;; [cos w,(t = t,) — cos w,f]

115

4.8  Use the convolution integral to determine the response of an undamped 1-degree-of-

freedom system due to the triangular pulse of Fig. 4-3.

Wil g

Fig. 4-3

For < t,/2,

x(r)= f( )r sin w, (1 — 1) dt

M
"o

=ﬂ(: -Lsin w,,:)

mw,,’f‘, £,

Fort,/2=t <1,

o2 '
x()=—— [ f rsm wolt — 1) dr + f 25;,(1 = é) sin w, {1 - r)dr]
o w2

21t L oinaly b ]
mw.‘fu fo tla n 2 " S,

Forr=1,,

1
Hip= i,

25,

i, ’ru

IZSin w.,(l’ = % :.,) — sin w,t = sin w,(t — rn)]

[r( rsmw,,(:-r)dr+ fzr(l )smm.,(:—r)dr]
a L
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Develop a unified mathematical expression for the triangular pulse of Fig. 4-3 using unit
step functions.

The graphical breakdown of the triangular pulse is shown in Fig. 4-4. Using the graphical
breakdown and the definition of unit step functions,

*(0) =26 u() =2, uft- %:u) +26(1 -é)u(: - ; ) =261 = L Jutt 1)

= ZF.,[i MOES (I -2 i)n(r - % r.,) - (I - ;—i)u(f - tq)]

Wiz

+ F i

ff2 Iy :ﬂ\

Fig. 4-4

Show that

1

I w(t —tp)glt, T)dr=u(t —ty) f gt t)dr
o o

Nate that for T<1,, w(t = 1,)=0. Thus for 1<y, the integrand is identically zero. Then for
>t
Iu(f —t)glt, 1) dr= f u(t—t)glt, T)dr + J u(t—r)glt, 1) dr

[0 u i

= j e(r, ) dr

Thus
' 0 t<1,

Ju(r —t)elt, Tydr= J' =ulr—t,) J: glr, 1) dr

glt, Tydr 1>

[]

Use the results of Problems 4.9 and 4.10 to develop a unified mathematical expression
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4.12

for the response of an undamped 1-degree-of-freedom system due to the triangular pulse
of Fig. 4-3.

Substitution of the unified h ical rep tation of the triangular pulse developed in
Problem 4.9 into the convolution integral, Eq. (4.5) with { =0, leads to

L f 1 )
x(1) =m""—mj2ﬁ,[éu(r) +(1 —ZE)u(r—ir.,) -(1 —'-:'—:)u(r- :u)] sin wa(t — 1) dt
o
Using the integral formula of Problem 4.10,

T

x(1) = nzTE: [u(t) Jié sine,(r—1)dr+ u(r - %n,) I (l =2 i) sin w,(r = T) dt

(12

—uft— r.,)j (l = f) sin w, (1 — 1) dr]

Evaluation of the integrals yields

x(1) = i [H(T)(é— lr Sinw,.r)+u(f—%f,.)[l—2£+—Ef—sinw,‘(f—%ru)]

2
mauw, alty w,ly

sin e, (r — r.,)]}

!
ulr —:q)[l _:,,+ o

Use the convolution integral and unit step functions to develop a unified mathematical
expression for the response of an undamped 1-degree-of-freedom system to the excitation
of Fig. 4-5.

Fin

IFD —_— =

Fig. 4-5

The unified mathematical representation of the excitation of Fig. 4-5 is
F(r) = 2F{u(r) — ult — ;)] + Eult = 1,) = u(r — 2t,}]
= 2Fu(r) = Fyuelt — 1,) = Fu(e = 20)
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Substitution into the convolution integral, Eq. (4.5), with { =0 leads to

. x(1)= ”% IJ [2u(r) = u(7 = 15) = u(t = 21,)] sin w,(t = 1) n'f}

= mf‘;“ [2“(:) ] sin w,(r — T)dr—ult — 1) jsin w,(t = 1) dt—u(rt — 2ty) J sin w,(t — 1) dr]
o o 2ig
x(r)y= mf": {u(t)(1 = cos w,r) = 1l — to)[1 — cos w,(t = ta)] — te(t — 2ea)[1 = cos w, (1 — 21)]}

413 Determine a unified mathematical expression for the response of an undamped
. 1-degree-of-freedom system of w,=100rad/s and a mass of 10 kg subject to a

rectangular pulse of magnitude 2000 N and duration 0.1 s followed by an impulse of
usncad magnitude 200 N-s applied at ¢ = 0.25 s.

The mathematical representation of the excitation is
F(t) = 2000{u(t) — u(r — 0.1)] + 205(¢ - 0.25)
Substitution into Eq. (4.5) with { =0 leads to

_[2[)00 J [u(z) — u(r.— 0.1)] sin 100(¢ — 7) d7

L]

0" (10 kg)(lw r—‘:i’)

+ ZUJ &7 —0.25) sin 100{r — 1) d"r]
=2u(t) J sin 1000 — 7) dr — 2u(r = 0.1) j sin 100(r — 7) d7 + 0.02 sin 100(¢ = 0.25)u(r — 0.25)
o ol

= 0.02u(£)(1 - cos 100¢) = 0.02u(r — 0.1)[1 — cos (100¢ — 10)] + 0.02u( — 0.25) sin (100r — 25)

4.14 Use unit step functions to develop an infinite series representation for the periodic
function of Fig. 4-6.

Fin

Fy

| 1 |
-+ F 2 129— 2t i;ﬂ— 3 LR 9—’29- '

I,
2 fo 2 fo
Fig. 4-6

The graphical breakdown of the excitation of Fig. 4-6 is shown in Fig. 4-7. The representation
of F(r) in terms of unit step functions is

F(r) = Flult) = ult = b)) + Elult = ) = wle = 3e,)] + Fofule = 200) —ulr = )] + - - +

which can be written as

F(r)=Fy 2 {u(t — iy = ule = 20 = D]}
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4.15

4.16

Fy R F
] R e e
do
2
+Fy _— -F —
ST bl
3 LR
2
4
Fig. 4-7

Use the convolution integral to determine a mathematical representation for the response
of an undamped 1-degree-of-freedom system due to the periodic excitation of Fig. 4-6.

Substitution of the mathematical form of the excitation developed in Problem 4.14 into the
convolution integral, Eq. (4.5), with £ =0 leads to

:(:)=;11:"jﬁ,§ {n(r ity - n[r—%(h’ . 1)}o]}sin wnlt - 1) dt

The order of integration and summation can be interchanged assuming the infinite series converges
for all ¢. This leads to

x(r)=

) [j”“""*")“"‘ e~ f)df—!u[r— 2 i = D sin w (¢ - 7) dr

The integrals are evaluated using the integral formula developed in Problem 4.10;

muw,” oy

x(r) = —51—; i [u(.‘ = ify) €O8 w, (t = T) | = u[r = % (2i = I)r‘,] cos w,(f — 1)
=g e=lzi- 1y
F

= ;;:_j,é [n(t = it)[1 = cos w,(t — ity)] - u[f - %(2:’ - l).'.,]{] —Cos a.-,,[r - %{2:' = l)!,]}}

Solve Problem 4.1 using the Laplace transform method.

The excitation force and its Laplace transform are
Flty=F,

7 £
F(s)= =
Substituting into Eq. (4.7) with x(0) =0 and £(0) =0 and { =0 leads to
F 1

)= ms(st + w,?)
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A partial fraction decompaosition yields

Beh=—t2 (3—%)

mw s 4w,

Using linearity of the inverse transform,

x(1)= mL‘x (Y'E] E rl{ﬁ})

The inverse transforms are determined using Table 4.1, leading to

x(r)= 1 (1 = COS t,l)

4.17 Solve Problem 4.2 using the Laplace transform method.
The excitation force and its Laplace transform are
Fl)=k
- HI
F(s)= i
Substitution into Eqg. (4.7) with x(0) = 0 and £(0) = 0 leads to

1
m \(s + 2w, + w,’)

)=

A partial fraction decomposition leads to

1 s+, )

T(s) = mw,” : (_\‘ S+ Uw s+ w,’

Completing the square of the quadratic denominator and using linearity of the inverse transform
leads to

A mw,’ (Y.{i} = f‘{(s +i‘¢:1§:1:- w_,’] = ‘:_: <" (s+ ;‘:")'2 + w:‘:])

The first shifting theorem of Table 4-2 is used to obtain

Tl G v At |

The transform pairs of Table 4-1 are used to obtain

x(1)=

J"‘(")=m

w, .
- e""“(-:os wal + { —sin w,.l)]
iy

4.18 Solve Problem 4.5 using the Laplace transform method.

i
The differential equation of Problem 4.5 can be rewritten as
. 366,
+ w0 =
drwlo=goL
Tk
where N

Tm
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4.19

=+
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4.20

Assuming the system is at rest in equilibrium at r =0 and taking the Laplace transform of the
differential equation leads to
A 36F, 1
Hs)=— —
o)=L s T als T

Partial fraction decomposition yields

B(s) = 36K ( ... nr-s)

Tmlic* +w ) \s+a $+w’

Use of linearity of the inverse transform leads to

o0 () o) - )

Use of Table 4-1 leads to

12F, i
a(t) = - (e"‘ + % sin w,t — cos m,,.')

TmL{a®+ b w,

Use the Laplace transform method to determine the response of an undamped
1-degree-of-freedom system of natural frequency w, and mass m, initially at rest in
equilibrium and subject to the triangular pulse of Fig. 4-3.

From the results of Problem 4.5, the mathematical expression for the triangutar pulse is

F(r)=2ﬁ,[i u(:}+(1 —Zé)u(f—%&.) -1 —i)u(: —:.,)]

y

and its Laplace transform is abtained using the second shifting theorem and Table 4-1 as
= Eil 2 T
F(f)=2f_:(s_z_;e nmr:n_'_Pe n)

Substitution into Eq. (4.7) leads to
iy L A2
2 miy S5+ w?)
A partial fraction decomposition yields

25

mi,’t,

(s)= (1-28“‘*"”+e‘"")(gi_ l )

P

The system response is obtained by application of the second shifting theorem and the transform
pairs of Table 4-1. Thus

S T B (S )
mw,"l.,‘ w.sm“’"‘ 2ult 2:., ¢ 2{,,) wsmm,,r zlo

x(t)=
1 .
+ult fn)[(f - - ;:sm w,(f = ru]}}
Use the Laplace transform method to determine the response of an undamped

1-degree-of-freedom system of natural frequency w, and mass m, initially at rest in
equilibrium and subject to the periodic excitation of Fig. 4-6.
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From Problem 4.16, the mathematical representation of the periodic function of Fig. 4-6 is
F)=FS lu(r — i) = u(r —%(2: = l)fu)]
i=l
The second shifting theorem is used to obtain

F{s} =% i (e™— ¢ -!n[n—nnu}

wmi)

Substitution inte Eq. (4.7) with x(0) =0, #(0) =0, and { =0 leads 1o

E 1 = A
S [emt — g bty
ms(s’+w..’),§[ ]

R (l o e "_2) i [e—lllg _ e—}u.u— u-r.,]
i=0

mw, \s S+ w,

x(s)=

Inversion of the transform is performed using the second shifting theorem:

f i {[1 = cos w,(r — itg)Julr = i)} = {I - oS w,[l == %(2;‘ - I)co]}n[r = %(21‘ - l).'u]

mw,’ 5,

x() =

Use the Laplace transform method to determine the response of an underdamped
1-degree-of-freedom system of damping ratio {, natural frequency w,, and mass m,
initially at rest in equilibrium and subject to a series of applied impulses, each of
magnitude /, beginning at r =0, and each a time t, apart.

The mathematical form of the excitation and its Laplace transform are

Fy=13 81— i)

Fisy=1 > e
Substitution into Eq. (4.7) with x{0) = 0 and £(0) = 0 leads 10

= ! 1 -
SO R R ~ B
) me+2ws+ w,’ ?T,',e

I 1 S
_;?_I(J‘+{w,.)’ ,Ze

+wy, o

Inversion of the above transform is achieved using both shifting theorems:

oo o ; 3 3
x(t)=— 2 e ettt gin (1 = it )ue(r = it,)
My oy

Let v =x. Rewrite Eq. (4.1) as a system of two first-order ordinary differential equations
with 7 as the independent variable and x and v as dependent variables.

From the definition of v,
i=v (4.14)
and from Eq. (4.1),

I}=mlﬂ|F(r)‘2{m,,u—w,,2x (4.15)

Equations (4.14) and (4.15) form a set of first-order linear simultaneous equations to solve for x
and v
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4.19

=i

Mathead

4.20

Assuming the system is at rest in equilibrium at r =0 and taking the Laplace transform of the
differential equation leads o

36F, 1

A LG N+ 0l

Partial fraction decomposition yields

36F, ( 1 a—s)

O = Lie® + )

s+ta stw,

Use of linearity of the inverse transform leads to

P L B O A

Use of Table 4-1 leads 1o

sl o
e ™ 4 —sin w,! — cOS w,!
), ‘

o) = 12F, (

Tml{a® + w")

Use the Laplace transform method to determine the response of an undamped
1-degrec-of-freedom system of natural frequency w, and mass m, initially at rest in
equilibrium and subject to the triangular pulse of Fig. 4-3.

From the results of Problem 4.5, the mathematical expression for the triangutar pulse is

F(e) = 2E.Li w(ny+ (1 - Ei)u(r - ; n)-(1- .;:-.)u(f — .'u)]

and its Laplace transform is obtained using the second shifting theorem and Table 4-1 as

= il 2 1
Fisy=2-2 (___ —H) o -"o)

) 2!., P a¢
Substitution into Eq. (4.7) leads to

x_(s) _ ﬂ 1 - ze—ilmql + e—u“
mty, S5+ w,})

A partial fraction decompasition yields

25,

ma,’t,

#(s) = (1—2e™ 4 ¢ -*v)(si,——l )

P tw?

The system response is obtained by application of the second shifting theorem and the transform
pairs of Table 4-1. Thus

x(ty= mifll., [I - :i:sin w = In(r - %n.)[(r —%1..) - ;] sin w,,(f = %In)]

+ulr = ru)[(f —1) —mLusin w,(f— l',,)]]

Use the Laplace transform method to determine the response of an undamped
1-degree-of-freedom system of natural frequency w, and mass sz, initially at rest in
equilibrium and subject to the periodic excitation of Fig. 4-6.
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From Problem 4.16, the mathematical representation of the periodic function of Fig. 4-6 is
- 1
F = B3 [ute i)~ ult-3@i- 1n)
i=0 2
The second shifting theorem is used to obtain
?(S) - 5’ E O c—!tz‘—:h-u)
5 i
Substitution into Eq. (4.7) with x(0)=0. 2(0y=10, and { =0 leads 10

i(s)= Z [ — ¢ aimtmg)

ms(s+—a.’)
Rk f ]
- ’(__;";'_;_)E{e o g=biai=tim)

mw,’ \s

Inversion of the transform is performed using the second shifting theorem:

i) m’:‘:-, é{[l — o8 a0, (¢ — it = ite)} — [ i gon m,,[] = %{2;‘ = m,]].;[: 2 ; @i- I)r..]

Use the Laplace transform method to determine the response of an underdamped
1-degree-of-freedom system of damping ratio {, natural frequency w,, and mass m,
initially at rest in equilibrium and subject to a series of applied impulses. each of
magnitude /, beginning at ¢ =0, and each a time 1, apart.

The mathematical form of the excitation and its Laplace transform are

Finy=1 5: (1 — iry)

Fls)=13 e

Substitution into Eq. (4.7) with x(0) =0 and f(l:l) =) leads to

x(j)zm I —rZ(m,,3+ w,’ 2,,8_ !
! 1 -

Tt lan) oo
Inversion of the above transform is achieved using both shifting theorems:

x(n = ; %e eeti=ba i w (1 — ity et — it,)

Let v = x. Rewrite Eq. (4.1) as a system of two first-order ordinary differential equations
with 1 as the independent variable and x and v as dependent variables.

From the definition of v,
E=v (4.14)
and from Eq. (4.1),
1
0= F(1) - 2w.v - 0% (4.15)
e,

Equations (4.14) and (4.15) form a set of first-order linear simultaneous equations to solve for x
and v.
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4.23

425

Direct numerical simulation of Eq. (4.1) often involves rewriting Eq. (4.1) as two
first-order differential equations, as in Problem 4.22. The time interval over which a
solution is desired is discretized, and recurrence relations are developed for approxima-
tions to the dependent variables at the discrete times. Let ¢, f;, ..., be the discrete times
at equal intervals Ar. The Euler method is an implicit method using a first-order Taylor
series expansion to approximate the time derivatives of the independent variables.
Develop the recurrence relations for a l-degree-of-freedom system using the Euler
method.

Let f(r) be a continuously differentiable function of a single variable. Its Taylor series
expansion is

Fle+ 80 =F(0) + (A0F(0) + HAP () + HAY T+ +

Truncation after the linear term and rearranging leads to
Jio=HE2I0 4 oy (+.16)

Define x, = x(i Ar) and v, = v(i Ar). Application of Eq. (4.16) to Eqgs. (4.14) and (4.15) of Problem
422 at =1, =i At leads to
Xiet T & =
Al + (A=,

Vied — U | 2
Nt . ape— o
SO0 = - F) = 2w - o
or X=X + (A, + O(AnD)

V= ok m(;: - F(t) = 2w,y ~ w,x) + 0(a1)

e

[llustrate the application of the explicit Euler method to a 1-degree-of-freedom system of
mass 10 kg, natural frequency 100 rad/s, and damping ratio (.1 subject to a constant force
of magnitude 100 N. The system is at rest in equilibrium at 1 = 0. Use a time increment of
0.001 s, and compare with the exact solution of Problem 4.2.

The calculations are illustrated in Table 4-3.

A numerical approximation to an integral

1= fyae
is of the form ’
1) = ﬁ:.'mf(f-)ﬂf (4.17)
where 1, 1;,..., , are called knots, the intermediate values at which the integrand is

evaluated. The values of e, are specific to the numerical method used. Develop a form of
Eq. (4.17) that can be used to approximate the convolution integral, Eq. (4.2).

The extension of Eq. (4.17) to the convolution integral is

©(0)= 3 aF()h(, ~ 1) Ar
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Table 4.3

t x(t) vit,) Flt)im 2wy, wlx, x(t,+A)  wlt+A)  x(r) (exact)
1] 0 "0 10 0 0 0 0.01 0
0.001 0 0.01 10 02 0 0.00001 0.0198 4.96E-06
0.002 0.00001 0.0198 10 0.396 0.1 2.98E-05 0.029304 1.97E-05
0.003 2.98E-05 0.029304 10 0.58608  0.298 5.91E-05 0.03842 4.38E-05
0.004 S.91E-05 0.03842 10 0.768398  (.59104 9.75E-05  0.04706 7.69E-05
0.005 9.75E-05 0.04706 10 0.94121 0.975239 0.000145 0055144 0.000118
0.006 0.000145  0.055144 10 1102881 1.445844  0.0002 0.062595  0.000168
0.007 0.0002 0.062595 10 1.251906 1.997284 0.000262 0.069346 0.000225
0.008 0.000262  0.069346 10 1.386922 2.623237 0.000332 0.075336 0.000288
0.009 0.000332 0075336 10 1.506719  3.316699 0.000407 0.080513  0.000357
0.01 0.000407  0.080513 10 1.610251 4.070058 0.000488 0.084832  0.000431
0.011 0.000488 0.084832 10 1.696645 4.875184 0.000572 0.08826 0.000509
0.012 0.000572  0.08826 10 1.765208 5723506 0.000661 0.090772 0.000591 .
0.013 0.000661  0.090772 10 1.815434  6.60611  0.000751 0.09235  0.000675
0.014 0.000751  0.09235 10 1.847003  7.513827 0.000844 0.092989 0.00076
0.015 0.000844  0.092989 10 1.859786 8.437328 0.000937 0.092692  0.000846
0.016 0.000937 0.092692 10 1.853844  9.367221 0.001029 0.091471 0.000932
0.m7 0.001029 0.091471 10 1.829423 10.29414 0.001121 0.089348 0.001017
0.018 0.001121  0.089348 10 1.786951 11.20885 0.00121 0.086352 0.0011
0.019 0.00121 0.086352 10 1.727035 12.10233 0.001297 0.082522 0.001181
0.02 0.001297 0.082522 10 1.650448 12.96585 0.001379  0.077906 0.001258

Assuming 1, = k Ar,

x(1) = Er a,F(i AnA[(f — i) Ar) Ar

4.26 For the trapezoidal rule, the values of , in Eq. (4.17) of Problem 4.25 are a, = a; = 0.5,

% @y =ay=--+=a, ;=1 Illustrate the use of the trapezoidal rule 1o approximate the
M=y ime-dependent response of a system of mass 10 kg, natural frequency 50 rad/s, and

and approximate x(0.01), x(0.02), and x(0.03).

Fin

I0ON

0.02

0.04

Fig. 4-8

0.06

t(s)

damping ratio 0.05 subject to the time-dependent excitation of Fig. 4-8. Use Ar=(0.01s,
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Note that
hik Ary= e e7v = ¥ gin (w,k Ar)
M,

=2.003 X 107% "™ sin (0.4995k)
rOAN=0,  A(A)=936%10"
h(2Ar)=1.56 %107, h{3Ar)=184x10"
Then, using the trapezoidal rule

x(0.01) = [0.5F (0} (Ar) + 0.5F(0.01)h(0)] At

= [0.5(0)(9.36 X 10°*) + 0.5(50)(0)](0.04) = 0
2(0.02) = [0.5F(0)(2 Ar) + F(0.01)A(Ar) + 0.5F(0.02)h(0)] At

= [0.5(0)(1.56 % 107*) + (50)(9.36 X 107*) + 0.5(100(0)}(0.01) = 4.68 X 10~* m
x(0.03) = [0.5F(0)h(3 Ar) + F(0.01)A(2 Ar) + F(0.02)h(Ar) + 0.5F(0.03)1(0)] Ar

=172%x 10" m

4.27 Define 1, = j Ar. Show that Eq. (4.5) can be rewritten as

1 = . 3 &
x(t)=——=e ““‘-“(sm waty 2 Gy —cos waty 2, Gy
My i=1 i=1
*I

where G, = j F(t)e**cos w,tdT

-1

4
Gy = [ F(rle* sin wyrdr
=1
Note that
Sin w,(f = T) = $in w,f oS @, T — COS w, [ $in w,T

Substituting the previous trigonometric identity into Eq. (4.5) and rearranging leads to

~fuant ¢
x(1) = £ " [sin Wt [ F(r)e™ " cos wyTdT — cos wyt J- F(t)et™"sin w,rdr]
M, ] 4
Noting that
Ig(r)dr= fg(r)dr + fg(r}dr+ R j) glr)dr
=3 J g(t)dr
(lr—l
leads to

y

o Fn L3 L1 ! 3
[sin wite 2 | F(T)e™ " cos w,tdr —cos wty 2 | F(r)e™"sin m,rdr]
L i=t i=1

:

x(n) =
fet f-

4.28 One method of approximating the convolution integral is to interpolate F(r) piecewise
and exactly integrate the interpolation times the trigonometric functions using Eq. (4.17)
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of Problem 4.27. Suppose F(1) is interpolated by piecewise constants chosen such that the
constant interpolate on the interval from f,_; to ¢ is equal to F(r) evaluated at the
midpoint of the interval. Determine the appropriate forms of G, and G, for a piecewise
constant interpolation of Ft).

Let F = F[(r, +1,_,)/2). Then

3
G;= J Fe™ " cos w,tdt

L

Fl-r ; w, . w,
= B [e“‘-‘f(sm wgl, +{ — cos w,.f,) - e"'"'f"(sm @ty + { —COS w,l,_ ,)]
Wy Lhy by

and Gy = J- Fet"sin w,rdt

Y=t

E(1-&8) w, . w, .
= ST e“"’r(—ms .l + {—"sin m,,f__) - e“""‘l"(-- €Os wal,_ + L sin w,t, .)
wy Ay y

Discuss the advantages and disadvantages of using each of the following numerical
methods to provide a numerical approximation to the solution of Eq. (4.1): (a) implicit
Euler method, (b) fourth-order Runge-Kutta method, (¢) numerical integration of the
convolution integral using the trapezoidal rule (Problem 4.26), and (d) numerical
integration of the convolution integral using piecewise constant interpolate for F(r)
{Problem 4.28).

(a)

(&)

()

(d)

The implicit Euler method is only first-order accurate. Its application leads to a pair of
recurrence relations from which the approximations are successively determined. Applica-
tion of the recurrence relations does not require evaluation of the excitation at times other
than those for which approximations are obtained.

The fourth-order Runge-Kutta method is fourth-order accurate. It is an explicit method in
that its recurrence relations are used to determine the approximations successively.
However, their application requires evaluation of the excitation at times other than those at
which approximations are obtained.

The trapezoidal rule is a numerical integration of the convolution integral. It provides a
linear interpolation to the integrand between two knots. Its application does not lead to a
recursion relation for the approximation at subsequent times. The formula must be
repeated for each time the approximation is required, but an efficient algorithm is easy to
develop.

The excitation is interpolated by piecewise constants, multiplied by appropriate trigono-
metric functions, and the approximate integrand exactly integrated. An algorithm using this
method to approximate the convolution integral is easy to develop in that the approxima-
tion for the response at an arbitrary time can be calculated as the response at the previous
time plus the approximation to the integral between the two times.

4.30 To protect a computer during a move, the computer is placed in a cushioned crate. The
motion of the computer in the crate can be modeled as a 1-degree-of-freedom
mass-spring-viscous damper system. During the loading phase of the move, the crate is
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subject to the velocity of Fig. 4-9. Determine the displacement of the computer relative to
the crate.

Yo

4, !

Fig. 4-9

Let y be the acceleration to which the crate is subjected, The differential equation governing
the displacement of the computer relative to its crate is Eq. (3.24),

2w itwlz=-§

whose convolution integral solution is
z(r)y= - L jy(r)e"“"""’ sinw,(t — 1) dt
el
The time-dependent velocity and acceleration are
v= Uuri [te(r) = ule = ta)] + vlee(t — 1) = wle — 4e,)]
dv wy t "
§o=—==[u(r) = ult = t)] + vo— [8(r) = 8(r = 1,)] + vy 5t — 1) — 8t — d1,)]
dr fo
The relative displacement is
vo [ (Lr oy Lot it
20 == 2 [ - u(e )] + 50 - 8(r = 1)

u

+[8(t = 1,) = &(t — duy)}e =" sinw,(r — T) dT

vy fult .
=—2 [-'(-2} [e™*( L, sin w,t + w, cOS w,t) = w,]
ity e,
ult =t .
——(w - ")[e Sl g, Sin wylt — b)) + @, €08 w,(t — t,)] — w,]
.

~ (e = )e 5 sin w1 - 40|

4.31 Develop the response spectrum of an undamped system subject to the rectangular pulse

of Fig. 4-2.
The response of a 1-degree-of-freedom system due to the rectangular pulse is determined in
Problem 4.7 as
T I {l—cosw,.f 1<i,
mw,? | cos w,(t = t,) —cosw,t 1>,
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Whether the maximum occurs for <, or for 1 >1, depends upon the sysiem parameters. The
maximum response for <1, occurs either at r=1t, or when cosw,t = -1 {(w,=nx). Thus if
to < m/w,, the maximum is not achieved for ¢ <¢,. For 1, n/w,,

25
Xmar = 3
mw,

For t,< n/w,, X... occurs for ¢ >, at a value of t when dx/dt = 0. To this end, for r =1,

dx I . "
ot —m—'m'—,{-r.uN sin w, (1 = 1,) + w, sin w,!]
d . "
d_: =0 — sin w,r=sin w,(1— 1)
whaose solution is
1 (2n — l):r] .
t 2[.-,,1- 20, =12,...
This leads to
it 2sin e <X
R 2 r..>£
which is plotted in Fig. 4-10.
25
20 -
E_-; L5
£ ook
~ut
05 —
0.0 |
oty V2
2z
Fig. 4-10

Devise an algorithm to numerically develop the response spectrum for a 1-degree-of-
freedom system with viscous damping subject to an arbitrary excitation. Assume that an
integration method such as Euler's method or a fourth-order Runge-Kutta is used to
solve Eq. (4.1).

1. Equation (4.1) can be nondimensionalized by introducing

. mw, x o= ek

g 2n

where £, is the maximum value of F(r). In terms of these nondimensional variables, Eq.
(4.1) becomes

an?
£ 4 4nger +dmict = ;.i F() (4.18)
o

Note that the natural period in nondimensional time is 1.
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Define a = wi,/(2r), which can be viewed as a nondimensional value of the pulse duration.
Let a range from Aa to 2.5 in increments of Ax =0.1. Equation (4.18) should be solved
using, say Runge-Kutta for each value of . For a particular value of o, a time increment
and a final time for the Runge-Kutta simulation must be chosen. It is important to set the
nondimensional time increment small enough such that enough integration steps are used
over the duration of the pulse and over | natural period. Also the final time must be chosen
large enough such that the integration is carried out sufficiently beyond the duration of the
pulse and over several natural periods. Note that for « < 1, the duration of the pulse is less
than the natural period. Possible choices for the ume increment and final time are

o
* = — =
Art=S, =25
For @ > 1, the natural period is less than the duration of the pulse. Possible choices for the
time increment and final time are
Ar* =4, * =2.5a

Numerical simulation of Eq. (4.18) is developed for each value of a, as described in step 2.
The maximum value of the nondimensional response x%,. is recorded. The response
spectrum is a plot of x%,, versus a.

4.33 The force exerted on a structure due to a shock or impact is often modeled by the
excitation of Fig. 4-11. The response spectrum for this type of excitation for several
damping ratios is shown in Fig. 4-12. What is the maximum displacement of an undamped
1000-kg structure of stiffness 5 x 10° N/m subject to such a blast with F,=1500 N and
1ty =0.05 s?

Fa

fy

Fig. 4-11

200
175
150 F
125 b
}!ne 100 +
e
0I5
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The natural frequency of the structure is

The value of the nondimensional parameter on the horizontal scale of the response spectrum is

('m_? ﬂ)((ms s)
0563
n 2n 4
From Fig. 4-12, for { =0,

KX ae
5

from which the maximum displacement is calculated as
kX 'y Fo 5000 N
Xpan = (_:5_) f= ].2_"‘:—
* 5% —
m

=12

=12 mm

For what diameters of the circular bar of the system of Fig. 4-13 will the maximum
displacement of the block be less than 18 mm when subjected to a blast modeled by Fig.
4-11 with £, = 10,000 N and 1, =0.1 s?

0.8 m

S0kg ——=F(n

LAY

E=200x 10° %
m

Fig. 4-13

Let k be the stifiness of the system. Since it is desired to limit x < 18 mm,

k... k(0.018 m)

Kmwe k(0018 m) 419

K - 10000N - LEX107% g
Also Sl kDS, osx10VE (4.20)

2r 50kg 2m

Since k is unknown, a trial-and-error procedure using the response spectrum of Fig. 4-12 is used to
determine allowable values of k. Suppose k = 5> 10° N/m, thus using Eq. (4.20), w.f/(27) = 1.59,
From the response spectrum this leads to kx,../F, = 1.7. However, from Eq. (4.20), the maximum

" allowable value of kx,.../F, for k=5 10° N/m is 0.9. Inspection of Eqgs. (4.19) and (4.20) shows

that w,t,/(27) increases slower than the maximum allowable value of kx,.../F,. Thus an increase in
k is tried. Note that if k=1x10° N/m, then using Eq. (4.20) leads 10 w,t,/(27)=2.25. The
response spectrum  yields kx.../F, =18, which is the same as using Eq. (4.19). Thus if
k=1 10° N/m, the maximum displacement of the block is less than 18 mm. The minimum area
of the bar is calculated as

L (l x m“E)(o.s m)

£ ZUJXID";%

A =4x 10" m’
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4.35

4.36

4.37

4.38

Hence the minimum diameter is

4A 4(4 ~* m?
D=4 JHXITW) 6% 10 m
3 T

Supplementary Problems

Use the convolution integral to develop the response of an undamped 1-degree-of-freedom system
of mass m and natural frequency w, subject to an excitation of the form F(f) = £ sin w,t. The
system is at rest in equilibrium at 1 =0.

Ans,

LI £
sin w,f =

2mw,! 2mw, heos.enl
Use the convolution integral to develop the response of an undamped 1-degree-of-freedom system
subject to an excitation of the form F(r) = F,(1 — e ™). The system is at rest in equilibrium at ¢ =0.

Ans.
£

——— 2
mw o’ + w,’)

[wle ™ —a?—w,®+ q’cos w,f + dew, $in w,!]
Use the convolution integral to determine the response of a 1-degree-of-freedom system of mass
m, damping ratio ¢, and natural frequency w, subject to an excitation of the form F(r) = F,sin wt
for w # w,. The system is at rest in equilibrium at 1 = 0.
Ans.
ﬁi
ml{w,’ = W’y + (Qwe,

= [2(ww_(cos w,t = Cos wt) + (IRIJ,.: - m’)(sin wl = iﬂ:sin w,,.r)]

Use the convolution integral to determine the time-dependent response of the system of Fig. 4-14.

Mit)

For

ks

Mir)

! Iy

N
k=2X10°=  My=50N-m

m m =60 kg 1, =005
T r=5cm
c 1=0.3 kg-m*
2 -
" j: ¢ =3000 2
m

Fig. 414
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Ans.

0.0111[1 = e~"*™(0.140 sin 99.03¢ + cos 99.031)] 1 < 0,055
0.0111e™"**([0.140 sin 99.03 + cos 99.03r — (.280 sin (99.031 — 4.95) — 2.00 cos (99.037 — 4.95)]
1= 0.055

439  An undamped l-degree-of-freedom system is subject to the excitation of Fig. 4-15. Use the
convolution integral to determine the system response for ¢ > f,,.

Fy

Fig. 4-15

Ans.

F

1. ¥ .
: [r‘,cos w,(t — t,) +—sin (t = 1,) ——sin m,,:]
Mty w, i,

4.40  Develop a unified mathematical expression for the excitation of Fig. 4-16 using unit step functions.

Fo

Ans.

E,é u(t) + F..(I = f—i)u{r -1)+ F.,(4 = é)uir = 41,) + F.,(S = i)u(: - 56)

4.41  Use the convolution integral to develop the response of an undamped 1-degree-of-freedom system
subject to the excitation of Fig, 4-16. The system is at rest in equilibrium at 1 =0.
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K

i, z!‘,

[(r = i sin w...r)u{.r) = (r —fh— wi’sin w,(t — .‘U)Ju(r —1g)
= (: — 4t — isin w,lt = 4.'0))::(: = dty) — (: ~ 51y = 1, €08 w,(t — 5ig) — i sin (¢ — Sra))u(r = Sro)]

442 Use the convolution integral to develop the response of an undamped 1-degree-of-freedom system
due to the excitation of Fig. 4-17, The system is at rest in equilibrium at (= 0.

F

Fa
L
Iy !

Fig. 4-17
Ans.
F 1. 1 . '
nTm.:'r“ [(: - :’: sin m,,:)u(r) - (f —ty— w'_-,,sm w,(t = n.)}u(l - .'.,)]

4.43  Solve Problem 4.35 using the Laplace transform method.
4.44  Solve Problem 4.37 using the Laplace transform method.
4.45 Solve Problem 4.41 using the Laplace transform method.
4.46 Solve Problem 4.42 using the Laplace transform method.

4.47 A 50-kg block is attached to a spring of stiffness 2 X 10° N/m. The block is subject to an impulse of
magnitude 25 N-s at r =0 and an impulse of magnitude 15 N-s at r=0.1 s. What is the maximum
displacement of the block? '

Ans. 628 mm

4.48 Use the Laplace transform method to determine the response of a 1-degree-of-freedom system
with damping ratio { and natural freq y w, when subject to the periodic excitation of Fig. 4-18.

,
F

| d 1 1 L
_Fni-

Fig. 4-18
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4.50

451
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& =2 { : ]
m_w,.’ [] e «w(cos w,:+\/__.Tgism w,‘.') u(t)

+2 E-: (- 1)’[1 - e“"-"“""[cos w, (1 = ify) + VIi—.;?ﬁn w, (1 — ir.,)]]u(! = ity)

Determine an equation defining the response spectrum for an undamped 1-degree-of-freedom
system subject to the excitation of Fig. 4-17.

Ans.

ke 1
Bloan 94— V5] =
F 1+ o) 2(1 = cos w,t,)

A 100-kg machine is mounted on an isolator of stiffness 5 10° N/m. What is the machine’s
maximum displacement when subject to the excitation of Fig. 4-17 with £, = 1000 N and 1, = 0.11 s?

Ans. 2,50 mm
The response spectrum of a 1-degree-of-freedom system subject to a sinusoidal pulse is shown in

Fig. 4-19. A 25-kg block is attached to a spring of stiffness 5% 10° N/m and subject to a sinusoidal
pulse of magnitude 1250 N and duration 0.02 s. What is the maximum displacement of the block?

=0 cosenenn Pm Q] ———=02
----- [=03 =i =05
Fig. 4-19

Ans. 0.4 mm

A 200-kg machine is to be placed on a vibration isolator of damping ratio 0.1. For what range of
isolator stiffness will the maximum displacement of the machine be less than 2 mm when it is
subject 10 a sinusoidal pulse of magnitude 1000 N and duration 0.04 s? The response spectrum for
a sinusoidal pulse is shown in Fig. 4-19.

Ans, k=5x10°N/m

A 500-kg machine is attached to an isolator of stiffness 3x 10° N/m and damping ratio 0.05.
During startup it is subject to an excitation of the form of Fig. 4-17 with 1,=0.1 s and F, = 5000 N.
Use the trapezoidal rule for numerical integration of the convolution integral to approximate the
machine’s displacement. Use A = (.04 s.
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4.54 Consider the method for numerical evaluation of the convolution integral introduced in Problems
4.27 and 4.28. Develop an expression for G, if F(r) is interpolated by a series of impulses. That is,
on the interval from ¢, to r,,,, F(r) is interpolated by an impulse of magnitude F(r,*} Ar applied at
t* where 1* is the midpoint of the interval.

Ans.

F(1,*) Ate™" cos w,t,*

4.55  Use numerical integration of the convolution integral to approximate the response of a machine of
mass 250 kg attached to an isolator of stiffness 2 X 10° N/m and damping ratio 0.05 when subject to
the excitation

F(r)=1000e" N
Use the method of Problem 4.28, '

4.56 Repeat Problem 4.55 using the interpolations of Problem 4.55.



Chapter 5

Free Vibrations of Multi-Degree-of-Freedom
Systems

51 LAGRANGE'S EQUATIONS

Let x,, x5, x3,...,x, be a set of generalized coordinates for an n-degree-of-freedom system.
The motion of the system is governed by a set of n ordinary differential equations with the
generalized coordinates as the dependent variables and time as the independent variable. One
method of deriving the differential equations, referred to as the free body diagram method,
involves applying conservation laws to free body diagrams of the system drawn at an arbitrary
instant.

An energy method provides an alternative to derive the differential equations governing the

vibrations of a multi-degree-of-freedom system, Let V(x,, x5, ..., x,) be the potential energy of
the system at an arbitrary instant. Let T'(x,, x;,..., X, &, #3,...,%,) be the kinetic energy of
the system at the same arbitrary instant. The lagrangian L(x,, x5, ..., x,, %, X3, ..., %,) is
defined as

L=T-V (5.1)

The lagrangian is viewed as a function of 2n independent variables, with the time derivatives of
the generalized coordinates assumed 1o be independent of the generalized coordinates.

Let 8x,, &x,..., 8x, be variations of the generalized coordinates. The virtual work 6W
done by the nonconservative forces in the system due to the variations of the generalized
coordinates can be written as

W =3 0, bx, (5.2)
=1
Lagrange’s equations are
d(aL) al .
—(=]-==0, = 5.3
b 7 eminl DLl P @2

Application of Lagrange’s equations leads to a set of n independent differential equations.

5.2 MATRIX FORMULATION OF DIFFERENTIAL EQUATIONS
FOR LINEAR SYSTEMS

For a linear system, the potential and kinetic energies have quadratic forms:

V=LY 3 ki (5.4)
i=1 /=1

T=13 3 myi, (5.5)
i=1 y=1

If viscous damping and externally applied forces, independent of the generalized coordinates,
are the only nonconservative forces, the virtual work can be expressed as

sW=3 3 c.i be,+ 3 Fbx, (5.6)

=1 =l i=l

136
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Application of Lagrange's equations to the lagrangian developed using Egs. (5.4) and (5.5) and
the virtual work of Eq. (5.6) leads to

Mi + Ck + Kx=F (5.7)

where M is the n X n mass matrix whose elements are m,;, K is the n X n stiffness matrix whose
elements are k;, C is the n X n viscous damping matrix whose elements are ¢, x is the n X |
displacement vector whose elements are x,, and F is the n X 1 force vector whose elements are F.
The matrices are symmetric. For example, m, = m,,.

5.3 STIFFNESS INFLUENCE COEFFICIENTS

Stiffness infiuence coefficients are used to sequentially calculate the columns of the stiffness
matrix for a linear system. Imagine the system in static equilibrium with x; =1 and x, =0 for
i # J. The jth column of the stiffness matrix, the stiffness influence coeﬁiclents LTI ST
are the forces that must be applied to the particles whose dlsplaccments are descnbed by the
generalized coordinates to maintain the system in equilibrium in the prescribed position. The
forces are assumed positive in the positive direction of the generalized coordinates. If x, is an
angular coordinate, then k; is an applied moment. Maxwell's reciprocity relation implies that
ky =k,

54 FLEXIBILITY MATRIX

The flexibility matrix A is the inverse of the stiffness matrix. Flexibility influence coefficients
can be used to sequentially calculate the columns of the flexibility matrix. The jth column of the
flexibility matrix is the column of values of the generalized coordinates induced by static
application of a unit load to the particle whose displacement is described by x,. If x, is an angular
coordinate, then a unit moment is applied. The reciprocity relation implies that the flexibility
matrix is symmetric, @, = a.

The flexibility matrix is easier to calculate than the stiffness matrix for most structural
systems that are modeled using a finite number of degrees of freedom. The differential
equations governing the motion of a linear n-degree-of-freedom system can be written using the
flexibility matrix as

AMi + ACx + x = AF (5.8)

55 NORMAL MODE SOLUTION
Introduction of the normal mode solution
x = Xe™ - (5.9)

into Eq. (5.7) with C = 0 and F = 0 leads to the following matrix eigenvalue-eigenvector problem
for the natural frequencies w and their corresponding mode shape vectors X:

M'KX = «’X (5.10)
The natural frequencies, the square roots of the eigenvalues of M™'K, are obtained by setting
det[M™'K — 0’1l =0 (3.11)

or alternately
det|[K — w*M|=0 (5.12)
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If the flexibility matrix is known rather than the stiffness matrix, the natural frequencies are
the reciprocals of the square roots of the eigenvalues of AM and are calculated from

det |w*AM — 1| = 0 (5.13)

Use of Eq. (5.11) or (5.13) leads to an nth-order algebraic equation in w® with real
coefficients. Since M and K are symmetric, the n roots are real, yielding the system’s n natural
frequencies, w, = w, =- -+ = w,. If the system is stable, then K is nonnegative definite and the
roots are nonnegative. An wnrestrained system has a rigid body mode corresponding to a natural
frequency of zero.

5.6 MODE SHAPE ORTHOGONALITY

Let X, and X, be mode shape vectors for an n-degree-of-freedom system corresponding to
distinct natural frequencies w; and w,, respectively. These mode shapes satisfy the following
orthogonality conditions:

X/MX =0 (5.14)
X/ KX, =0 (5.15)
The mode shape vector X;, when determined as an eigenvector of M 'K or AM, is unique

only to a multiplicative constant. The nonuniqueness is alleviated by requiring the mode shape
to satisfy a normalization condition, usually specified as

X MX, =1 (5.16)
If Eq. (5.16) is used as a normalization condition, then
X/ KX, = o} (3.17)

57 MATRIX ITERATION

Numerical procedures are often used to calculate natural frequencies of systems with a large
number of degrees of freedom. Marrix iteration is a numerical procedure that allows
determination of a system’s natural frequencies and mode shapes successively, beginning with
the smallest natural frequency. Let u, be an arbitrary n X 1 vector. The sequence of vectors

u,

= (5.18)
'“i’ml

converges to X,, the mode shape corresponding to the lowest natural frequency. Also, [u,|ma.

the largest absolute value of an element of u,, converges to 1/w,’. Matrix iteration can be used

to determine natural frequencies and mode shapes for higher modes by using a trial vector

orthogonal, with respect to the mass matrix, to all previously determined mode shapes.

=t

u, = AMU,_,,

5.8 DAMPED SYSTEMS

The determination of the free and forced response of a multi-degree-of-freedom system is
significantly more difficult than for an undamped system. A special case, which is relatively easy
to handle, is proportional damping and occurs when constants « and j exist such that

C=aK+ M (5.19)

For proportional damping, the normal mode solution Eq. (5.9) is applicable. If w, w,,..., w,
are the natural frequencies corresponding to the undamped system, then the values of w that
satisfy Eq. (5.9) are

@ = iwd; £ w;m (5.20)
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where ¢;, a modal damping ratio is

21 B
t= (aw +2) (5.21)
For more general forms of C, it is convenient to rewrite Eq. (5.7) as
My+Ky=0 (3.22)
- 0 M - -M 0
§= ] = ] :
where M C K 0 K (5.23)
are symmetric 2n X 2n matrices and
X
¥y= [x] (5.24)
is a 2n X 1 column vector. A solution to Eq. (5.23) is assumed as
y=e™ ™ {5.25)

The values of y are the complex conjugate eigenvalues of M~'K, and ® is a corresponding
eigenvector. The eigenvectors satisfy the orthogonality relation

M, =0 i) (5.26)

Solved Problems

5.1 Use the free body diagram method to derive the differential equations governing the
motion of the system of Fig. 5-1 using x,, x,, and x, as generalized coordinates.

k 2k k
5—’\/\/\/' n VA 2 FAAA 2
Fig. 5-1

Free body diagrams of each of the blocks of the system of Fig. 5-1 are shown in Fig. 5-2 at an
arbitrary instant. Application of Newton's law to each of the free body diagrams leads to

—kx, +2k(x,— x,) =m¥, — mi¥, +3ke, —2kx,=0
—2e(x, = x,) +k(xy— x;) = 2mik, — 2mi,— 2kx, + 3kx; = ke, =0
—k(xy = x;) =2m¥, — 2m¥y— ke, + kx,=0

kx
-— = 2k (2, - ;) =~— b k(xy- xy) ~—

Fig. 5-2
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52  Use the free body diagram method to derive the differential equations governing the
motion of the system of Fig. 5-3 using x and 8 as generalized coordinates.

—g j( Mir)
b, =

k 1*’ k

Fig. 5-3

e
|-

—_—

—
(
b

Free body diagrams of the bar at an arbitrary instant are shown in Fig. 5-4 assuming small 6.
Summing forces on the bar,

(2F).~(2F),
~k(x = LL8) = k(x + |L6) =mi
mi + 2k + SkLO=0

Summing moments about the mass center of the bar,
(Em0),, = (Emc)

M(t)+ k(x = LLO)LL — k(x + LLOY L =18
10 + SkLx + SkL76 = M(1)

sl eft

}M{r} = 1}0
L ]
kfr-—8
(x-=7 8 i
kix+ —121 a)
External Forces Effective Forces
Fig. 5-4

53  Use Lagrange's equations to derive the differential equations governing the motion of the
system of Fig. 5-1 using x,, x;, and x; as generalized coordinates. Write the differential

equations in matrix form.
The kinetic energy of the system at an arbitrary instant is
T = bmi,* + [2miy* + L2miiy?
The potential energy of the system at an arbitrary instant is
V = bx)? + 12k (x; — . + Ykl — 1)
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The lagrangian is
L=T-V=im}+ 2mi} + 12mi,* = kx* = 2k(x, — %) = bk(x, — )

Application of Lagrange’s equations lead to

d (&L) oL _

dr ax,/  ax,

dipo

a{ml)-‘— [kxy + 2k(x; = x )}(—1)] =0

d (aL) aL

di\aiy) " ax,

4 @mi) + 2k = 1)) + ks~ 1)(-1)} =0
aL L
de (ax,) Tax, 0
d
E{Zmi_\) + [k(xy —x,)(1)] =0

Rearranging and writing in matrix form leads to
m 0 0 |[# W -2 0 ][« 0
0 2m 0 Bt -2k 3k k|| x|=|0
00 2m|l ¥ 0 -k &k Xy 0

54  Use Lagrange’s equaliom to derive the differential equations governing the motion of the
system of Fig. 5-3 using x and @ as gcnerallzed (.oordmates Write the differential

equations in matrix form.
The kinetic energy of the system at an arbitrary instant is
T =btmi’ + 116*
The potential energy of the system at an arbitrary instant is .
V= tk(x — SLOY + lk(x + 1LY 10 pamin
The lagrangian is
L= mit + {6 - bth(x - {L.8) = Lk(x + LL8)
If the variations &x and 8@ are introduced, the virtual work done by the external moment is
W =M(r) 66

Application of Lagrange’s equations leads to
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Rearranging and rewriting in matrix form leads to
o Ml aellsllao)
|+ -
0 rie SkL kLl M(1)

55  Use Lagrange's equations to derive the differential equations governing the motion of the
system of Fig. 5-3 using x, and x, as generalized coordinates. Write the differential
equations in matrix form.

The kinetic energy of the system at an arbitrary instant is

regm(38) + 21 TY)

The potential energy of the system is

Vo= Lkl + fxa)t + by
The lagrangian is
o r 5 +i,)’ 1 (.t,—k‘)’
prgm(B) spr(Be
1,73 1:-\?
£ Ek(ax, + EA’;) ——kx%
If variations &x, and &x, are introduced, the work done by the external moment is

SW = M(r)&(%} i %M(r} 8+ i M1) 8x

Application of Lagrange's equations leads 1o

dgaly  aL
26E)-5-e

al () O]+ 4 #4)3) - -
SE)-L-o

il D) [1Gn+ 3)3) + 4] = gm0

Rearranging and wriling in matrix form leads 10

m m | 9 3 1
' E 3D 2]+ AT []- M
m_1oom 1l 3 17 el )1
A 17D Tl T LMo
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5.6  Use Lagrange’s equations to derive the differential equations governing the motion of the
system of Fig. 5-5 using x,, x,, and 8 as generalized coordinates. Write the differential
equations in matrix form.

)

VU _—

Fig. 5-5

The kinetic energy of the system at an arbitrary instant is
T =16+ {48 + tmi?
The system's potential energy at an arbitrary instant is
V = k(x = r8,) + 13k(2r6, - 278,)°
The lagrangian is
L=46+ L8 + lmi* = Yk(x — r8,f — 13k(2r8, — 2r8,)}
Application of Lagrange’s equations leads to
d (aL ) _aL

dr a0,

a8,
L% (18,) + [k(x — r8,)(—r) + 3k(2r8, — 2r8,)(2r)] =0
d (aly AL

E(a_.«})—a"

3;(1,6,) +3k(28, — 208:)(~2r) =0

d oLy aL
d.‘(&i) ax °

d%(nu?) + k(x =r8)(1)=0

‘Rearranging and writing in matrix form leads to
5L 0 0|8 13kr? =12kr* —kr || 8,
0 L 0|8 |+] —12k* 12kr? 0 8, |=
00 m]Lx —kr 0 k x

oo o
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5.7  Use Lagrange’s equations to derive the differential equations governing the motion of the
system of Fig. 5-6 using 8, and 6, as generalized coordinates.

A Al A

Identical slender

a
bars of length L. mass m

-]

—VVVVVVWN—
g
Fig. 5-6

The kinetic energy of the system at an arbitrary instant is
T=im(iL8) + 1} lomL?6] + Im(1L6,) + | lsmL26)°

The potential energy of the system at an arbitrary instant is

L L , i
V=-mg Ecos& —mgicus&,+ %k(ﬂ'Sln 8, —asing )y

The lagrangian is
11

% 11 ; i
L= 3 imL’B.’ + igm.{.'ﬂ)’ + mg%cm 8, +mg 5 ¢os a,

1 . .
= Ek(n sin 8, — a sin 6,)°

Application of Lagrange's equations leads to

E(ﬁ)_ﬂ,

dr\a6,/ o8,

dl L : :

E(ij 8,)+ mg-2~mn8.+k(n sin @, —asin 8,)(—acos8,)| =0
E(E),E_U
dr\ad,) a8,

% GmL’é—:) -~ [mg%sin 8, + k(a sin 8, = asin 8,)(a cos 6,)] =0

Linearizing and rearranging leads to
] 2 L 2 2
L8+ (mga+ka )9.—ka 6,=0
] 15 2 L 2
. 3L~ ka 8.+_(mgf+ka Jo.=0

5.8 The identical disks of mass m and radius r of Fig. 5-7 roll without slip. Use Lagrange’s
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equations to derive the governing differential equations using x, and x, as generalized
coordinates.

l—-——x, 2% E—-—‘—»x,

fTITTTTTTTTITTIT LR LRI EEr R EER LRl TR T T

No slip
Fig. 5-7

The kinetic energy of the system at an arbitrary instant is

s 42
m.i,’+llmr’(?) lmi, —‘m (x;)

1
=3 22 22

The potential energy of the system at an arbitrary instant is
Vo= bke + 2k + 12k(20, — 20,
The Lagrangian is
L=4ime? + L dmit,? = bkt = §2ke® — §2k (20, — 20

Application of Lagrange's equations leads to

43 -
2 (Gma) + e, + 2626 - 20)(-2)] =
d

P (inlx,) + [2kxy + 2k(2x, — 2x,)(2)] = 0

Rearranging and writing in matrix fon-n yields
im0 9k —8k x,] o [I}]
0 ][ ] 10k [x, 0

5.9  Use Lagrange’s equations to derive the differential equations governing the motion of the
system of Fig. 5-8 using x,, x;, and x; as generalized coordinates.

I — —— =
£ k £ 2c
1 e 2m m £ m i —
= - =
AT TR T rIrerT T e rrrr ey rry iy v ey,
s
Fig. 5-8

The kinetic energy of the system at an arbitrary instant is

T = 12me + me + )}
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The potential energy of the system at an arbitrary instant is
Vo= ke + k(e — ) + k(e - x)
If the variations 8x,, 8x,, and 8x, are introduced when the system is in an arbitrary staie, the work
done by the forces in the viscous dampers is
W = —ci, 8x, — c(¥, — %) & (x, — x;) — 2ex; Bx,
= =k 8xy = (—ciy + cdy) Bxy — (—cky + 3eky) Bxy

Application of Lagrange’s equations yields

2 @ma) + T, + kG~ x)(~1)] = e

LR

dr\ag)  ax, *°

2 (e + [k = x)(1) + ko, — (-1 = et + e,

alii)-5e

% GRS % ek, = ) =k = 3

Rearranging and writing in matrix form leads to

am 0 0 [ x, c 0 o [z % -k 0 |[x 0
0 m 0 nl+]0 € —c || & |+ -k 2k -k x. |=]0
0o 0 m]|l 0 - 3]l 0 -k & Jlx 0

5.10 Use Lagrange’s equations to derive the differential equations governing the motion of the
system of Fig. 5-9 using x and 8 as generalized coordinates.

k r.‘fﬂ c

(T (T T

| o— Slender bar of
mass 2m, length L

o—/V\V—E

2k

nin

AiA1Y

Fig. 5-9

The kinetic energy of the system at an arbitrary instant is

T =lmit + 2m(i + LLOY + | S2mL* @
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511

512

The potential energy of the system at an arbitrary instant is

v =él-kx’ + %2!{(: + LY —nggcosﬂ

If the variations &x, and &6 are introduced at an arbitrary instant, the work done by the viscous
damping forces is

W = —ck fx —c(i + LO) 8(x + LO)
= —c(2¢ + L6) 6x — cL(¥ + L&) 56

Application of Lagrange's equations leads to

dia B,
de\ag) ax

‘%[nu" + 2m(.£+ %é)(l)] + [kx + 2k(x + LO)(1)] = —2ci ~ cLO

i 58)-5%-

dt ag  **

d . L L 1 . ; . N
T [2m(x + 3 6)( 5) + 3 ZmLTBJ +2k(x + LO)(L) + mgL sin @ =—cLi —cL?8

Rearranging and linearizing leads to

[Jm mL [x]+ 2c CLJ[E]+[3k 2kL ][x]=[0]
mL imL?IL8) " Let cr?llé) L2kl 2kL+mglllel Lo

Use stiffness influence coefficients to determine the stiffness matrix for the system of Fig.
5-1.

The first column of the stiffness matrix is obtained by setting x, =1, x,=0, and x, =0 and
solving for the applied forces as shown in Fig. 5-10a. Summing the forces to zero on each free body
diagram leads to k,, =3k, ky = —2k, and k,, = 0. The second column is obtained by setting x, =0,
x;=1, and x; =0 and solving for the applied forces as shown in Fig. 5-10b. Summing fores to zero
on each free body diagram of Fig. 5-10b leads 1o k,; = —2k, ks =3k, and ky; = —k. The third
column is obtained by setting x, =0, x, =0, and x, =1 and solving for the applied forces as shown
in Fig. 5-10c. Summing forces to zero on each free body diagram of Fig. 5-10c leads to &, =0,
ks = =k, and ki, = k. Hence the stiffness matrix is

3k -2k 0
K=| -2k 3k -k
0 —K k

Use stiffness influence coefficients to determine the stiffness matrix for the system of Fig.
5-3 using x and 8 as generalized coordinates. "

The first column of the stiffness matrix is obtained by setting x = 1 and 8 =0 and solving for
the applied force and moment as shown in Fig. 5-11a. Summing forces 1o zero leads to k,, = 2k.
Summing moments about the mass center to zero leads to kg, + kL4 —kL[2=0 — ky=kL/4.
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2k
k = e o —
*ll k.‘l *“
Hn=lay=0,=0
(a)
2%k k
—_— . e e
ki ky ki
x=0,x=1x=0
()
. *
- i
ki kyy kay
n=0rn=0n=I
(&)
Fig. 5-10

The second column is obtained by setting x =0 and 6 =1 and solving for the applied load and
moment as shown in Fig. 5-11b. Summing forces 1o zero leads to k= kL/4 while summing
moments about the mass center leads to ky, = kL/2(L{2) = kL/4(L/4) — k., =5kL’/16. Hence

the stiffness matrix is

[2k kL
K= tkL .‘—,Hj]
L‘_[i%. Pl
k Ky, k
(a)
& ‘)*73 ;:0
5 -
ki t
ﬁ,‘;
{b) 2
Fig. 5-11

5.13 Use stiffness influence coefficients to determine the stiffness matrix for the system of Fig.
5-3 using x, and x; as generalized coordinates.
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The first column of the stiffness matrix is obtained by setting x, = 1 and x, =0 and solving for
the applied loads shown in Fig. 5-12a. Summing moments about each end of the bar to zero,
Z M =0=ky(L) = k(L) — ks =%k
S Mo =0=ki(L)— KAL) — ki = 2k

The second column is obtained by setting x, =0 and x, = | and solving for the applied forces of
Fig. 5-12b. Summing moments about each end of the bar 1o zero,

T My=0=ku(L) — k(L) - tk(1L) — ks = [k
ZEMu=0=kol(L) = Wk(L) = k= sk

The stiffness matrix is

2p 2p
K = [ [ [
Wk ik
i
X =
=0
% kyy
3
O
{a)
kII
A
k)}
& B =0
T xy=1
(b) s
Fig. 5-12

5.14 Use stiffness influence coefficients to determine the stiffness matrix for the system of Fig.
5-5 using x, 8,, and 8, as generalized coordinates.

The first column of the stiffness matrix is obtained by setting x =1, 6, =0, and 6, =0 and
solving for the forces and moments shown in Fig. 5-134. Summing forces to zero on the block and
moments about the pin supports to zero lead to k,, = k, k,, = —kr, and k,, = 0. The second column
of the stiffness matrix is obtained by setting x =0, 8, = 1, and 8, = 0 and solving for the forces and
moments shown in Fig. 5-13b. Application of the equations of equilibrium to the free body diagram
leads to k., = —kr, k;; = 13kr’, and k,; = —12kr*. The third column is obtained by setting x =0,
6,=0, and 8, =1 and solving for the forces and moments shown in Fig. 5-13c. Application of the
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equations of equilibrium to these free body diagrams leads 1o k,;=0, k,,=—12kr", and
kyy = 12kr’. Thus the stiffness matrix is

k —kr 0
K=| —kr 13kr? —12kr?
0 —12kr? 12k

\*Ju §\\k"
k
(a) kll
) *.\?
S 6kr e K
kr
(b} ki
—ky
k‘l]

x=0, 6,=0, 8=

0©)

s

Fig. 5-13
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5.15 Use stiffness influence coefficients to derive the stiffness matrix for the system of Fig. 5-9
using x and @ as generalized coordinates and assuming small 6.

The first column of the stiffness matrix is obtained by setting x = 1 and 8 = 0 and solving for
the applied force and moment on the free body diagrams of Fig. 5-14a. Application of the
equations of equilibrium to these free body diagrams leads to k,, = 3k and k;, = 2kL. The second
column is obtained by setting x =0 and @ =1 and solving for the applied force and moment as
shown on the free body diagrams of Fig. 5-14b. Application of the equations of equilibrium to
these free body diagrams leads 1o &, = 2kL and k;, = 2kL* + mgL. Thus the stiffness matrix is

3k 2kL ]

K= [ZkL 2L +mglL

s
k
~—— ﬂ P—k, H
l 2mg l 2mg
-~ 2%k -2k
Ak, Ak,
z=1 8=0
(a)
Vv
H
2mg 2 mg
- 2kl - 2kL
~ Ak A ks
=0 8=1
)]
Fig. 5-14

5.16 Use flexibility influence coefficients to determine the flexibility matrix for the system of
Fig. 5-1 using x,, x,, and x; as generalized coordinates.

The first column of the flexibility matrix is obtained by applying a unit load to the block
whose displacement is x,. The resulting displacements of the blocks are the flexibility influence
coefficients a,,, a,, and a,. Application of the equations of static equilibrium to the free body
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diagrams of Fig. 5-15a leads 1o
—kay, +2k(ay —a,)+1=0
—2k(ay —ay) + k{ay —ax)=0

k{ay, —ay)=0
which are solved simultaneously, yielding
1 1 1
3||=E- a:l"E- ﬂ':uEE

The second column of the flexibility matrix is obtained by applying a unit load to the middle black
and applying the equations of equilibrium to the free body diagrams of Fig. 5-15b leading to
1 3 3

a|:=z- ﬁ':==2_k: ﬂszEﬁ

The third column of the flexibility matrix is obtained by applying a unit load to the block whose
displacement is described by x; and applying the equations of equilibrium to the free body
diagrams of Fig. 5-15¢, leading to

5
ﬂu:«:E‘ ﬂ'u=ﬁ. ﬂnsz_k
Thus the flexibility matrix is
111
k k k
3 73
T e
k 2k 2k
13 5
k 2k 2k
ka,, 1
-~ > 2k (ay, - 2,,) ~— — & (ay, - ay) +—o|
(a)
kay, 1
» 2k (ag; - ag,) - b K (@gy - @yy) -——]
(B)
karyy —=1
- = 2k (@qy - 0y} +—7 — k(@ - B3;) -—]
(c)
Fig, 5-15

5.17 Use flexibility influence coefficients to determine the flexibility matrix for the system of
Fig. 5-3 using x and 6 as generalized coordinates.

The first column of the flexibility matrix is obtained by applying a unit load to the mass center
of the bar and setting x =a,, and 6 = a;,. Application of the equations of equilibrium to the free
body diagram of Fig. 5-16a leads to

SF=0=1- k(al. —%n;.) —k(a., + %a,.)

EM.;=0=R(&., —%a,.)%4k(a” +%’az.)§
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The above equations are solved simultaneously, leading to

4

ay an = "m

e
The second column of the flexibility matrix is obtained by applying a unit clockwise moment to the
bar, applying the equations of equilibrium to the free body diagram of Fig. 5-16b, and solving
simultaneously for the flexibility influence coefficients, leading to

42
kL’ =T okL?

a,; = =

Thus the flexibility matrix is

s _4
9k 9kL
ATl e =
Okl Okf?

kia,, +£25-a,,}

(a)
klay, - %a”} ‘)l

L
) l’(ﬁ‘:‘f?&in}

Fig. 5-16

5.18 Use flexibility influence coefficients to derive the flexibility matrix for the system of Fig.
5-17 using x;, x5, and & as generalized coordinates.

gl k

Fig. 5-17

The first column of the flexibility matrix is obtained by applying a unit load to the block
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whose displacement is described by x,. Application of the equations of equilibrium to the free
body diagrams of Fig. 5-18 leads 10

Y F=0=1-k(a, — ray)
2 My =0=k(ay, — ray )r — k(2ray, — ay,)(2r)
2 F=0=k(2ray - ay)

When a simultaneous solution of the previous equations is attempted, an inconsistency results (for
example, 1 =0). This implies that the flexibility matrix does not exist. This is because the system is
unrestrained and the stiffness matrix is singular.

k(2ray - ay)

i
kay, - ray)

Fig. 5-18

5.19 Three machines are equally spaced along the span of a simply supported beam of elastic
% modulus £ and mass moment of inertia [ Determine the flexibility matrix for a

My 3-degree-of-freedom model of the system as shown in Fig. 5-19.

Fig. 5-19

The deflection of a particle a distance z along the neutral axis of a simply supported beam,
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measured from the left support, due to a concentrated unit load applied a distance a from the left

support is
ro=gg(-Dl-D -]

for z =a. The elements of the third column of the flexibility matrix are the machine displacements
induced by a unit concentrated load at @ = 3L /4. Then

y(:F%[%f’(E)‘}]

and the flexibility influence coefficients are

o) g oA wmm o) me

The second column of the flexibility matrix is determined by placing a unit concentrated load at
a=L/2 Then

ke [3 z (z ’J
Y=gl L)
Note that due to reciprocity and symmetry of the beam, only a;, must be calculated. To this end,
.
=7N2) T e

Then from reciprocity, a;; = a5, and from symmetry, a,; = a,;. Then from symmetry, a,, = a,,, and
from reciprocity, @y, = a,;, and a,, = @,,. Thus the fexibility matrix is

IR P

256 768 768

L1 1 11
A=Ei|768 s

71 3

768 ToR 256

Two degrees of freedom are to be used to model the vibrations of a fixed-fixed beam of
length L, elastic modulus £, and cross-sectional moment of inertia I. Determine the
flexibility matrix for this model assuming the generalized coordinates are displacements
of equally spaced particles along the span of the beam.

The deflection of a particle along the neutral axis a distance z from the left support due to a
concentrated unit load a distance a from the left support is

=515 (-8 -3 0- 2023

for z = a. The second column of the fexibility matrix is obtained by setting a = 2L/3, leading 10

f”’zzﬁv [(f)_g{f}}]
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C gLy L 2y 6L
Trey ”""}(3)‘43?451' "”"‘(3"‘)_437451

From reciprocity, a,: = a;,, and from symmetry, a,, = a,;. Thus
3
A= L 16 ll]
4374ET 111 16

A machine with a large moment of inertia is placed at the end of a cantilever beam.
Because of the large moment of inertia, it is decided to include rotational effects in a
model. Thus a 2-degree-of-freedom model with generalized coordinates, x, the displace-
ment of the machine, and 6, the slope of the elastic curve at the end of the beam, are
used. Determine the flexibility matrix for this model if the beam is of length L, elastic
modulus E, and cross-sectional moment of inertia [,

Consider first a concentrated unit load at the end of the beam. From strength of materials, the
deflection at the end of the beam is a,, = L*/(3El), and the slope of the beam at its end is
as, = L*/(2EI). Then if a unit moment is applied to the end of the beam, the deflection at the end
of the beam is a, = L*/(2El), and the slope of the elastic curve at the end of the beam is
ay; = LJ(ET). Hence the flexibility matrix for this model is

L L

2
1

L
A%y

LTl o B P

Determine the flexibility matrix for the 4-dcgr€c-of-frecdom system of Fig. 5-20.

—
) i

£y
O w7 e
1%““

1s

Fig. 5-20

Lel x,, x;, and x; be the displacements of the particles on the beam, and let x, be the
displacement of the particle attached to the beam through the spring. Note that the flexibility
matrix for the beam without the additional mass-spring system is determined in Problem 5.19. The
first column of the flexibility matrix is determined by placing a unit load acting on the first particle.
Summing forces on the free body diagram of the block, shown in Fig. 5-21, shows that the force in
the spring is zero, Thus the deflection of the beam is due only to a unit force applied to the beam,
and the flexibility influence coefficients a,, i =1, 2, 3, and j =1, 2, 3, are calculated as in Problem
5.19. Also

a,=4ay @ay =y gy = A

Now consider a unit load applied to the hanging block. The force developed in the spring is 1.
Hence the beam is analyzed as if a unit load were applied to the midspan. Also

1 1
k{aw—a)=1 — a..=;+a,‘=i+a2;
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Then using the results of Problem 5.19,

B0 Al e AL

128 768 768 768

IR T || 1
a-L[768 48 768 a8
El7 1m 3 11

768 768 128 68

LI T | I S 4

768 48 768 48 kL'
kfay -a,)=0 7

Fig. 5-21
5.23 Derive the stiffness matrix for the 3-degree-of-freedom unrestrained torsional system of
Fig. 5-22.
0 1[\9, .
60 cm 100 em I,=25 kg-m?
Iy =4.5 kg-m*
1-= 28 kg-m*
r=30 mm r=40 mm
N N
G=80x 10" — G =100 % 10° —
m- —! m-
A B c
Fig. 5-22

The torsional stifinesses of the shafts are

200 m)*(80 x 10° —N?)

7o JAHGAR o i N-m
i s 06m =L
T N
b, . 4 x —
G (004 my'(100x 10" ) e
T 10m : rad
Stiffness influence coefficients are used to show
ks —kypy 0 170 -170 0
K=| -k, k,+*k, —k,|=10-170 572 -402
0 -k 0 -4,02 4.02

ac fc

5.24 The differential equations governing the motion of a 2-degree-of-freedom system are
R RN
0 mlily, —k 3k Jlx, 0

Determine the system's natural frequencies.
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The natural frequencies are determined using Eq. (5.12):
det |[K — w'M|=0
% k] Jfm O

[—k 3&]“" [0 m]
‘21: - w'm -k _
—k 3k - w’m] B

(2k — w’'m)(3k — w’'m) — (—k)(—k)=0
miw* — Skmw® + 5k =0

det =0

The quadratic equation is used to solve for w™:
. Skm £ V25k*m® - 4(m*){(5k")
w = Z_m?
5 V5 ke
o=[G+3) ]

k k
w, = l.l?(}\g‘ wy = 1.902\/’;

5.25 Determine the natural frequencies of the system of Fig. 5-3 if m =5 kg, 1=0.5 kg-m?,
i+ L=08km, and k=2 x10° N/m.

Wathcad Substituting the given values into the mass and stiffiness matrices determined using x and & as
generalized coordinates in Problem 5.4 leads to

_[5 0 4107 4x 10
M‘[o n,s]' K_[-ixlﬂ‘ 4% 10*

The natural frequencies are calculated using Eq. (5.12)
4100 4x10Y 5 07
= =0
[ awl=+ls os]
4% 10° - 5w’ 4x10° | _
l 4x10° 4x10°-05w*|
(4% 10° = 507)(4 X 107 — 0.50”) — (4 x 10°7 =0
25w —4x 1000’ + 144 % 10" =0
= [4 X 10° + V{4 X 10°) - 4(2.5)(1.44 x 10'7)'"*
2(2.5)
rad rad

w, = 2339 = wy=3245 —;-

5.26 A 500-kg machine is placed 2 m from the left support of a 6-m fixed-fixed beam while a
i+ 375-kg machine is placed 4 m from the left support. Ignoring inertia effects of the beam,
determine the natural frequencies of the system if E =200x10" N/m? and /=235x%
107° m*.

The system is modeled uvsing 2-degrees-of-freedom with the generalized coordinates as the
displacements of the machines. Using the results of Problem 5.20 with the given values substituted,
the flexibility matrix for this model is

athcad

168 107" 116X 107"

A [l.lﬁx 107" 168% 107

The appropriate mass matrix for the model is

500 U]

M=[ 0 375
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5.27

=i+

=

Wathcad

5.28

=i

The natural frequencies are calculated using Eq. (5.13):
det | AM = 1] =10
1.68 1.16][500 O 1 0

L ]m 6”1[1.16 1.68][ 0 375] - [u 1“,=0
I&-'I X 10w~ 1 435 % 107'w*
5.8 %10 63X 107w — 1

277X 107w - 147X 100 + 1 =0
(147 %107 + V(147 X 107) = 4(2.77 x 107)(1) ]

W _[ 20277 % 107) ]
rad rad

w, =283 < w, = 67.1 T

=0

The beam described in Problem 5.26 is made of a material of mass density 7800 kg/m?
and has a cross-sectional area of 4.36 X 107° m*. Determine the natural frequencies of the
system when inertia effects of the beam are approximated by adding particles of
appropriate mass at the nodes.

The total mass of the beam is
m, = pAL = (7800 kg)(4.36 < 107 m*)(6 m) = 204.0 kg

The mass added at each node represents the mass of a segment of the beam. The boundary
between segments for adjacent nodes is midway between the nodes. The boundary of a segment for
a node adjacent to a support is midway between the node and the support. The inertia of particles
near the supports is neglected. If included equally with other particles, the inertia of the beam
would be overapproximated, Thus for this model, the mass added to each node is m,/3 = 68.0 kg.
Thus the mass matrix becomes

i [568 0 ]

0 443
A procedure similar to that used in Problem 5.26 is followed, leading to

d d
w, =264 5%— @y =623 %

Determine the mode shape vectors for the system of Problem 5.25 using x and @ as
generalized coordinates.

The normal mode solution implies that the ratios of the values of the generalized coordinates
are constant for each mode. Let X be the displacement of the mass center of the bar at an arbitrary
instant for either mode, and let © be the angular rotation of the bar at this instant, The mode
shapes are calculated using the results of Problem 5.25:

410 - 5w’ 4x10* _[0
[ 4x10° 4x10‘x0.sm=][g]_[o]
The two equations represented by the previous matrix system are dependent. From the top
equation,
(410 = Su’)X +4x10'@=0
4 X% 10 - Sw®
4% 10"

Substituting w =233.9 rad/s leads to © = ~3.16X. Substituting w = 324.5 rad/s leads to © = 3.16X.
Arbitrarily setting X = 1, the mode shape vectors are

x.=[_3]_15]- x1=[3.116]

o= -
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5.29 Both ends of the bar of Problems 5.25 and 5.28 are given a 1.8-mm displacement from
equilibrium, and the bar released from rest. Determine the time history of the resulting
motion.

Use of the normal mode solution leads to four linearly independent solutions to the
homogeneous set of differential equations. The most general solution is a linear combination of all
homogeneous solutions. To this end,

x(1) = C, X, e + C. X, 67" + C Xy + €. X e
Euler's identity is used to replace the complex !’Xjﬁoncntia]s by trigonometric functions:
x(1) = C,X, cos w1 + C;X, sin a1 + C,X, cos w,t + C.X, sin w,t

where C,, C;, C,, and C, are constants of integration. The initial conditions are
B o.ﬂms] o [D]
x0=["T°] wo-=[;

x(0)=0.0018=C, + C,
0(0) = 0= —3.16C, + 3.16C,
¥ =0=uwC;+ wC,
6(0)=0=—3.16w,C; + 3.16w,C,

whose application lead 1o

whose solution is C, = C, = 0.0009, C, = C, =0, leading to

x,[f}] =[ 0.0009 ] [ 0.0009
[K:(f) —0,00284 cos 233.91 + 0. ]cos324,§r

5.30 Determine the natural frequencies of the system of Fig. 5-1.

zis
The natural frequencies are the square roots of the eigenvalues of M~ 'K. To this end,
fead JJroo)fs 2 o] ,[3-2 o
MUK=—10 | 0] -2 30 ~lf=q -t 8 -
00 4 0 -1 1 0 -4 4
The eigenvalues are calculated from
det MK = Al =
3 L A —2£ 0
] m
_k o 3k, 1k o
m Zm
1k 1 k
o 2m im

~B+5pr-38+1=0, B=a7

The roots of the cubic equations are 0.129, 1, 3.870. Thus the natural frequencies are
Hnasg\f \f wy=1.97 F

5.31 Determine the mode shape vectors for the system of Fig. 5-1 and Problem 5.30.
E Let X, =[X, X. X,]" be the mode shape vector corresponding 1o w,. The equations from

Watncad
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which the mode shape vectors are determined are

Ib-A  —2¢ 0 X, 0
-2¢ o - A ot X, |=]0
0 —i¢ o-aldl X, 0

where ¢ = k/m. Since the previous equations are dependent.,only two must be used in Jetermining
the mode shapes. To this end, arbitrarily choose X; = 1. Then

24 i, ik L4
3p-A/ 21 - M)
Substituting calculated values of A, from Problem 5.30 leads to

Xi=

0.697 1 ~2.208
X, = 1 X= 1L, X= i
1.347 -1 ~0.1484

Use a 3-degree-of-freedom model to approximate the lowest natural frequency of a
simply supperted beam.

The inertia of the beam is approximated by placing particles at equally spaced nodes along the
length of the beam, as shown in Fig. 5-23. The magnitude of the particle masses are obtained as in
Problem 5.27. If m is the mass of the beam,

i 1 00
M= Ty 010
001
The natural frequencies are the reciprocals of the square roots of the eigenvalues of AM. To this
end, using the Aexibility matrix of Problem 5.19,

det |AM — Al =0

=

_— o 7] [1o
—— det 11 16 11]=Al0 1 0]]=0
HT68)ET 711 9 001
9 - A 1 76 .
HE  16e=A 1§ |=0 o=
: 7
76 e 9p-A e

~B 3BT -T8B+28=0, B =%

The roots of the above equation are 8 =0.444, 2, and 31.556. The lowest natural frequency is

1 EI
MI*W=9.36G\IE

M

Fig. 5-23

5.33 Determine and graphically illustrate the second mode of the beam of Problem 5.32.

The mode shape corresponding to A = 24 is determined from
9 —2¢ Il 1¢ Xu 0
114 16¢ = 24 11¢ Xa|=|0
T 11é 9 =24 || Xn 0
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Arbitrarily setting X3, = 1 and using the first two of the previous equations leads to
11X + TX = =7
14X, + 11X = —11

whose solution is X;, =0, X;; = —1, leading to X, =[1 0 =1]". The mode shape is illustrated in
Fig. 5-23.

5.34 The coupling of three identical railroad cars of mass m is shown in Fig. 5-24. The stifiness
in the coupling between each car is k. Describe the time history of motion of the three
cars after coupling.

—
" | m I k | m l

Fig. 5-24

The differential equations governing the motion of the system is

m o o]l k -k 0 ]x 0
0 m 0 i |=| -k 2k -kl x|=]0
0 0 m]Lx 0 —k k Xy 0
where x,, x;, and x, are the displacements of the railroad cars. The system’s initial conditions are
0 v
x(0)y=101, =10
0 0

The natural frequencies are calculated as

det K — w™™|=0

k= ma?® © —k 0
-k 2k — mw® —k =0
0 ~k k — mw®

k k
w, =10, wy = -\‘/;, Wy = J;—m'

The mode shapes are determined as
1 1 -1
X, =|1]. Xp=| 0} Xy=| 2
1 = -1

The general solution is

X, 1 1 —
x [=]1|[(C,+Cu)+ 0 ((.‘;cos \/5—: + C,sin \/Er)
m m

Xy 1 -1
=1 :
+| 2z (C’,u)s -\.,/3_5;:+C°sin\3£~f)

=],
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Application of the initial conditions leads to
x(0)=0=C+C,-C,
x(0)=0=C, +2C,
5L0)=0=C,-C,~-

(o}
,i.(0)=u=C,+\/£CJ+ |'3EC,,
m N'm
k
=0=GC {3—C,
L(0)=0 C'+2\3m
e JEE
H0)=0=C, \/;C‘ \/3”‘6}

whose solution is C, =C,=C, =10,

C"i C."—E’f Co=—2 2

° 6 3k

AN TN
%) =3 \j—s:n \/3

- ,_‘\ﬂm\[ : o E:

5.35 Determine the natural frequencies of the torsional system of Fig. 5-22,

=it

The natural frequencies are calculated using the stiffness matrix derived in Problem 5.23:

Wathead

det |[K — w*M| =
170 % 10° - 2.50° —1.70 % 10° 0
=170 % 10° 572X 100 - 450" -4.02x10° | =0
0 —4.02  10° 4.02 % 10" - 2.8w?
=31L5w" + 1067 X 107 w* — 6,696 x 10"w’ =0
@, =0, w,=2885 r-a-‘i w,—5054

5.36 Demonstrate orthogonality of the mode shapes of the system of Problem 5.28.

5 0 1
X" -
X/ =1 3'161[0- —0.5][3.16]

=1 —3.]6][1;8]=(l){S)+(—3.16)(L58)-0

5.37 Demonstrate orthogonality of the mode shapes of the system of Problem 5.30.

1o o] 1
X MX, =m[0.697 1 1347][ 0 2 of| 1
00 2 -1

1
=m[0.697 1 1,3471[ 2
-2

] =m[{0.697)(1) + (1}{2) + (1347)(-2)] =0

163
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1 00 -2.298
X,"MX,=m[0.697 1 1.347)[0 2 0 1
0 0 2]L-0.1484

-2.298
=m(0.697 1 1.347]] 2
~0.2968

= m[(0.697)(~2.298) + (1)(2) + (1.347)(—0.2968)] = 0

1 0 0 1
X,"MX,=m[-2298 1 -0.1484)| 0 2 0 1

0o 0 21L-1

1
=m[-2.298 1 —0.]484][ 2:|
-2

= m[(=2.298)(1) + (1)(2) + (—0.1484)(—2)] = 0

5.38 Normalize the mode shape vectors for the system of Problem 5.30.
I

Normalization of a mode shape vector X is achieved by dividing every component of the
#athcad vector by [X"MX]'?, To this end, for the mode shape vectors of Problem 5.30,

: 'm0 0 ][ 0697
X, MX, =[0.697 1 1347)] 0 2m O 1

L0 0 2m ]l 1347

[ 0.697m
=[0.697 1 1347)| 2m

| 2.694m
(0.697)(0.697m) + (1)(2m) + (1.347)(2.694m ) = 6.115m

m o o[ 1
X,MX,=[1 1 —1)| 0 2m 0 1
0 0 2m]L-1

m L
=0 1 —1][ 2m ]=(1)(m)+(1)(2m)+(—1)(——2m)=5m

~2m
[m 0 0] -2298
X MX,=[-2208 1 —0.1484)| 0 2m n][ 1 ]
Lo 0 2m )| -01484
[—2.293m]
=[2298 1 -01484]] 2m
—0.2968m

= (—2.208)(—2.298m) + (1)(2m) + (—0.1484)(—0.2968m) = 7.325m

The normalized mode shapes are

) 0607  [o2819 1 1T, [ own
X, = 1 |=—|o0d04 | Xo=—o| 1|=—| 04472,
V6.115m Vim | g.5447 T Vam| | V| Zgaam

) 2298 y | o8
X, = 1 =—| 03695 |
V7.325m Vir | o 0sas
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5.39 A 2-degree-of-freedom system whose mass matrix is

has a normalized mode shape of X, =

M=

(0.

shape for the second mode.

Assume the second mode shape as [1

X,"MX, =0=[0.0341 0. nssz][

= [0.0341 (10682][

= (0.0341)(100 + 40a) + (0.0682)(40 + 150a) = 6.138 + 11.594a

[IOG 40
40 150

0341

a|". Imposing orthogonality,

100 40
150

100+40aJ

40 + 150a

a=-0529

Normalizing the mode shape

XTMX =1 -0 529][

The normalized mode shape is

“ '[ ]_
X = Tooss L0529

100 40
150

5.40 Use matrix iteration with the trial vector u, =l

=ix

Mathcad

Using the matrix AM calculated in Problem 5.32, matrix iteration is used as shown:

[ 0.8132]
0.6364

=AMuq=[u¢- 164

=AM, =

= AMi, =

u, = AMi, =

u, = AMi, =

9 11¢ T
11¢

Td 1l¢ 9¢

164 114

9 |

7
114
9 |

96 |
7¢ |
11

1d
¢
1|¢ 166
¢
¢
IM 166
11
11¢
11¢. 166
11é 94 |
¢ 7d |
11¢. 166 11¢
¢ 94 |

11 7¢ ] ]:u.smz'

5.
el

.

.

L.

[—0.1529

0.01 DO]
-0.0530

] = 99.66

0.0682]". Determine the normalized mode

0 0]” to approximate the lowest

@

RGNS

1 =
0.6364 |

0?131

0.7019 |

07339
0.7073 ]

0?073_

0.7071 | [
0.7071 |

i

[ 22.82¢

| 22.46¢
23334 |

| 23314 |

| 22,826 |
(22324

| 22324

<

3¢

31574 |,

22.82¢ |
2224 |,

31.56¢ |,

22314 |
31.56¢
22.31¢ |

iy

natural frequency and its mode shape for the system of Problem 5.32.

1

:

"
.
a®
gk

0.7131 ]
1
0.7019 |

0.7389 |

0.7389 |
0.7073 ]

0. m?s i
0.7073 ]

0?0?3_
0.7071 |

0. ?071
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Hence the iteration has converged o A = 31.56¢ and
X, =[0.7071 1 0.7071]" which leads to

e A 1 EI
V31564

mlL* )= ' mL’
3072E!

dthy

31.56(

5.41 Use matrix iteration to determine the second natural frequency and mode shape of the
L4 system of Problem 5.32.

Wathead 1fX;=[A4 B CJ], then orthogonality requires
m

7 2 Ofoz0m

X MX, =0=[4 B c]| 0 ? 0 1

o o o |lomon

(070714 + B +0.7071C) =0
A=-14148-C
Orthogonality to the first mode is imposed by defining

9 114 7o |0 -1414 -1
Q=|1¢ 16¢ 114 ]| 0 1 0

¢ ¢ 9% JL0 0 1
[n —-1.7266  -2¢
=10 044604 0

0 L1024 24

Matrix iteration, when used with the matrix Q, imposes orthogonality of the iterale to the first
mode, and thus the iteration converges to the mode shape for the second mode and yields the
second natural frequency. To this end select u,= [0 0 1], Then

0 -1.726¢ =24 || O -2¢ =]
u,=Qu,=| 0 0.4460¢ 0 ol=| o0 | i=| 0
0 L1024 24 1 2 1

0 -L7260 24 |[ -1 26
wu,=Qi,=|0 04460 0 ol=] o

0 1.102¢ 2¢ 1 ~24
Hence it is clear that X, =[1 0  —1]" and
1 1 [EI
e = 3019, [y
" Vae 2( mL® NmL
3072E1

5.42  Use the results of Problems 5.40 and 5.41 to determine the highest natural frequency of
24 the system of Problem 5.32.

Wathcad If X,=[D E F]’, then orthogonality with X, requires D = —1.414E — F. Orthogonality
with X, requires

To0 o]r
X/MX,=0=[D E F]J| 0 'f of| o
mif -y

i 5

%’(D—F)=o=o - D=F

Arbitrarily setting F =1 leads to D =1 and E = —1.414, The third eigenvalue of AM is obtained
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by noting that AMX, = A,X,. Thus
94
1lg
Té

Hence A, = (1.446 and

11 T 1
16 1l || —1.414 =
Lig 94 1

1

0.446¢
-0.624¢
0.4466

k]

- V4464 i

ﬂ“”(’( 3072E1

mode shape for the system of Problem 5.30.

mlL? ) -

El
W\/rni.‘
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.
Use matrix iteration to determine the highest natural frequency and its corresponding

Matrix iteration converges 1o the highest natural frequency when the matrix M™'K is used in
the iteration procedure. Using w,=(1 0 0] and M 'K from Problem 5.30 with & = k/m,

E
u, =M "'Ku,=| ~¢
0
3¢ =24
w=M"'Ki,=| -¢ 3¢ °
0 —id
EC)
u,=M'Kii,=| —-¢ b
[ 0 —ié
36 =24
w=M"'Ki,=| —-¢ id
Lo -ie
[ 36 26
u, =M 'Ki,=| -¢ id
| 0 —i
(36 -2
w=M'Ki,=| -¢ b
L 0 i
(3¢ —2¢
u,=M"'Kii,= | - ¢ )
L0 -k

The iteration has converged to X, = (1

-26 0 |1
¢ i ||0|=
—i G JLod

0 1 3.667¢ | 1
|| —03333 | =| -15¢ |, @&=| -04001
w L o 0.16674 | 0.0455 |
o [ 1 " 38184 | [ 1]
~1p || -04001 [=] -1.636¢ |, G =| —04285
Yo L 00455 | | 022730 0.0595 |
o[ 1 T [ 3859 ] 1]
b || ~04295 |=| 16740 |, @=| -0.4338
w oL 00595 | | 024454 | 0.0636
0] 1 3.868¢ 1]
14 || 04338 [=| —1.683¢ |, @, =]| 0.4351
i | 0.0636 0.2487 0.0643
o 1 ] [ 38006 ] 1
—id || —04351 [=] -1.685¢ |,  @.=| 0.4354
1 L 00643 | | 024970 | 0.06452
o [ 1 3871 1
—ib || 04354 | =| —1.6854 |, @ =] -04353
1w ]l 006s2 0.2503¢ 0.0647 |

3¢
— |, i, =
0

1
[ -0.3333 :|
0

—-0.4353  0.0647]" and A, = 3.871¢, leading to

w, = V38714 = 1.96?\/%

%4_4 For what values of ¢ will both modes of the system of Fig. 5-25 be underdamped?

Wathcad

k

2k

B bl

W

—C

2m

m= 36 kg
k=13x 100N
m

e
Fig. 5-25
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The differential equations governing the motion of the system of Fig. 5-25 are
m 0 ][.E.]_}[ 3¢ -k][i.]+ 3k -ZkJ[X.]__[O]
0 2mlilx, -2 2c Lz, -2k 2k Jlx, 0
The system has viscous damping which is proportional with @ =¢/k and g =10, The undamped
natural frequencies are determined from

det |[K - w’M| =0
‘Ek—mm’ -2k ‘_
-2k 2k - 2ma?|
o k _ L3
@ —0,31??\/;, wy= 1.932\/;

Then from Eq. (5.21), for § =0, the mode with the highest natural frequency has the highest
damping ratio. Thus for £, <1,

law, <1
le [k
37 (1.932 \LT.)‘ 1

- s N - 2 N-s
¢ < 1.035Vimk = 1.035 \3(1.3 X10° )36 kg) =224 X 10°

5.45 Determine the general free vibration response of the system of Fig. 5-26.

=i
R‘auﬁ & & 2c =
m m k=100 —
N ___E_ m
s

¢ c k c=2

Fig. 5-26

The differential equations governing the motion of the system of Fig. 5-26 are

5 wlle) e SR 15 ZNRI-E]

The 2n % 2n partitioned matrices of Eq. (5.23) are

1] il m 0 —-m ] 0 0
- 0 0 0 m - 1] -m 0 0
Ml 0 % - =1 o 0 2% -k
0 m -t 3c 0 0 ~k 2k

The values of y are obtained as eigenvalues of

4 -2 200 =100
=2 6 —100 200

MK =
-1 1} 0 0
0 -1 0 0
which are determined from
4= -2 200 —-100
=2 6-y -100 200 _,
-1 0 =AF 0

0 -1 0 =y
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The determinant can be evaluated using row expansion by the third row, leading to the evaluation
of two 3% 3 determinants. The resulting equation is
¥ = 109" + 4209 = 1600y + 30,000 =0
whose rools are
¥ = 1502 £9.912{, 3.497 £ 16.918
If X=[X, X, X, X.|" is an eigenvector for an eigenvalue, y =1y, +iy, of MK, then
X=[X, X.]"is the mode shape vector that is of the form X, +iX,, and then the general solution
corresponding to y is
e (X, = X)) cos vt + Cy(X, + X)) sin y.1]
After performing the necessary calculations, the solution is obtained as
x=e"m(C.[ugm] 1.]1?2]

cos 9.912r +C,[ sin 9.9[2:)

-1071

e "m'(C;[ )

]cos 16.918¢ + a[ g

| ]sin 16918)

Supplementary Problems

546 Use the free body diagram method to derive the differential equations governing the motion of the
system of Fig. 5-27 using x,, x5, and x, as generalized coordinates.

}-—-—»_(r I——.-;, . }—»x,
g . m —f\f{ﬂu— 2m —JV{ﬂ,— mt —-l\/z“/\,—E

Fig. 527

Ans.
mi, +ck, +2kx, ~ kx, =0
2miy — kx, + 2kxy — kx, =0
mis—kx, + 3kx, =0

5.47 Use the free body diagram method to derive the differential equations governing the motion of the
system of Fig. 5-28 using 8, and 8, as generalized coordinates.

! L ; L .
) T 4 ¥l k AB: Slender bar of mass m
B
g[,;) ) Gu CD: Slender bar of mass 3"'/2
2k
k
o, 1= ¢( 0
I k14 2
[ e /

Fig. 5-28
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Ans.
\mL?8, + TkL?8, — 3kL?8, =0
imlL*@, — 3kL%0, + 3kL70,=0

548  Use the free body diagram method to derive the differential equations governing the motion of the
system of Fig. 5-29 using 8, x,, and x, as gerﬁralized coordinates.

Fiin

raf =

201

Fig. 5-29

imL8 + 3kL6 - tkLx, = LR(nL
2mi, — LkL6 + 3kx, — 2kx; =0
mi, — 2kx, + 2kx. = R(f)

5.49 Use Lagrange's equations to derive the differential equations governing the motion of the system
of Fig. 5-27 using x,, x;, and x, as generalized coordinates.

Ans.
m 0 0| % c 0 0] % 2k —k 0 x, 0
0 2m 0 ¥, |+]0 0 O] % |=]| —k 2k k|| x|=| 0
0 0 m X, 0 0 0]Lx 0 -k 3k X3 0

5.50 Use Lagrange's equations to derive the differential equations governing the motion of the system
of Fig. 5-28 using 6, and 6, as generalized coordinates. Assume small 8, and write the differential
equations in matrix form.

" wellel+ [ e M6)-)

Ans,
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551 Use Lagrange's equations to derive the differential equations governing the motion of the system
of Fig. 5-29 using 8, x,, and x, as generalized coordinates.

Ans.
wml? 0 o[ 8 ikL? — kL 0 8 SR(NL
0 2m 0| % |+]| —kL 3k 2%k |l x |= 0
0 0 mllLx 0 -2k 2k |Lx, Flt)

5.52  Use Lagrange's equations to derive the differential equations governing the motion of the system
of Fig. 5-30 using 6, and 8, as generalized coordinates. Assume small 8, and 8,.

A A C-- h
&

8, 9

a a
L AB: Slender bar of mass m
k CD: Slender bar of mass 5"
3L
2
8

k
D NN—E

Fig. 5-30

Ans.
[0 amella]+ (2™ ity e o=l

5.53  Use Lagrange's equations to derive the differential equations governing the motion of the system
of Fig. 5-31 using x and @ as generalized coordinates. Assume small 8.

AB: Bar of mass 2m and centroidal moment of inertia /

Al 2 o L B

TL l (’”TV::E'G

Fig. 5-31

Ans.

e 1 W
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554 Use Lagrange’s equations to derive the differential equations governing the motion of the system
of Fig. 5-31 using x, and x, as generalized coordinates.

Ans,

m, 1 om_ 1
2R 2 iE [i‘.]+[k 0][.\:,]=[l}]
m i 3 1 |L%; 0 kllxy 0
2 D

Use Lagrange's equations 1o derive the motion of the system of Fig. 5-32 using x,, x, and & as

5.55
generalized coordinates.

AB: Slender bar of mass m

2L

3

&
3

B

=

— il T,

Fir)
Fig. 5-32
Ans.
ml* 0 0|l @ WLt WL -ikL][ e 0
0 m 0|y |+] % k0 ||lx|=|0
0 0 2m]lx —3kL 0 k i F(r)

5.56 Use Lagrange's equations to derive the differential equations governing the motion of the system
of Fig. 5-33 using x,, and x, as generalized coordinates. Assume the disk rolls without slip.

l——-».t. |—-12
2k

k
k (VAVAY; E
m
T I T

Fig. 5-33
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Ans.

g"' o [x,]+ k(2+2§+‘:—:] -k(l+?_)
0 m|* —k(n‘f) 3k

[2]-[o]

557 Use Lagrange’s equations to derive the differential equations governing the motion of the system
of Fig. 5-34 using x,, x;, and 6 as generalized coordinates.

Fig. 5-34
Ans.
m 0 0[] %, k 0 =3&r || x, 0
0 m 0| x|+] O 2k —6kr || & [=] 0
0o 0 /L8 —3kr  —Gkr 28k/° | 6 0

5.58 Derive the differential equations governing the motion of the system of Fig. 5-35 using 6, and &,,
as generalized coordinates.

e,
aI

LG L 1.G L

ALY

2 —

Fig. 5-35
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Ans.

b 2lle]- 215 el

5.59  Derive the differential equations governing the motion of the system of Fig. 5-36 using 8,, 6, and
x as generalized coordinates,

1

pa. Ve, it

Fig. 5-36

L0 o8 k, +k, -k, o |8 0
0 L 0ff 8|+ -k, ko vkr* =kr|l 8, [=]0
00 m & 0 —kr k 0

X

Ans.

5.60 Derive the differential equations governing the motion of an automobile suspension system using

the 4-degree-of-freedom model of Fig. 5-37 using x,, x,, x,, and x, as generalized coordinates,

1
I

TG

€

€y

Fig. 5-37
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Ans.
b*M + | abM —{ 0
(a + b)Y (a+by X € 0 -, 0 LS
aM+t am+r o M| | e 0 —e; 0 X
(a+b)y (a+b) 23 -y 0 €, + ey 0 Xy
0 0 m 0 Xy 0 -3 0 ca+oe, Lk,
0 0 0 m
k, 0 -k, 0 X 0
" 0 ks 0 =k, x| _|0
—k, 0 ki + k; 0 X3 0
0 —k3 0 ka+ kg Jlxy 0

5.61  Use stiffness influence coefficients to derive the stiffness matrix for the system of Fig. 5-27 using x,,
x;, and x, as generalized coordinates.

Ans.
3 -k 0 -
—k 2%k -k
0 -k 3k

5.62  Use stiffiness influence coefficients to derive the stiffness matrix for the system of Fig. 5-28 using 8,
and 6, as generalized coordinates.
Ans.
[ HIE -3kL?
—3kL? HIN

5.63 Use stiffness influence coefficients to derive the stiffness matrix for the system of Fig. 5-30 using 6,
and 8, as generalized coordinates.
Ans.
[ka’ + smgl —ka®
—ka? k(a® +5L%) + imgl

5.64  Use stiffness influence coefficients to derive the stiffness matrix for the system of Fig. 5-32 using x,,
x,, and @ as generalized coordinates.

Ans.
WeL* WL -3kL
kL ko0
—3kL 0 k

5.65 Use stiffness influence coefficients to derive the stiffness matrix for the system of Fig. 5-35 using x,
and x; as generalized coordinates.

Ans.
e
L1=2 2

5.66  Use flexibility influence coefficients to derive the flexibility matrix for the system of Fig. 5-27 using
x,, X3, and x, as generalized coordinates.
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5.68

5.70
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Ans.
1 531
— 13 § 2
L 123

Use flexibility influence coefficients to derive the flexibility matrix for the system of Fig. 5-28 using
8, and 8, as generalized coordinates.

Ans.

wli 2l

Two machines are equally spaced along the span of a simply supported beam of length L, elastic
modulus E, and cross-sectional moment of inertia J. Determine the flexibility matrix for a
2-degree-of-freedom model of the sy using the displac ts of the machines as generalized
coordinates.

Ans.

g[o.mma 0.0144
Eil 00144 001646

Determine the flexibility matrix for a 4-degree-of-freedom model of a fixed-fixed beam of length L,
elastic modulus E, and cross-sectional moment of inertia /.
Ans.

1365 2.016 1.451 0.5013
L*| 2.016 4.608 3.925 1451

il -3
EI'l 1451 3.925 4608 2016 o
0.5013 1451 2.016 1.365
Determine the flexibility matrix for the system of Fig. 5-38.
L 5 L s i
i e
E o
| A7
2 El
x X
Fig. 5-38
4
Ans.
L[ 9.116 —]5.54]10_)
EllL-1554 104.2
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571 Determine the Aexibility matrix for the system of Fig. 5-39.

. L .
I 3 :

-1 [

ra| =

m
3

- Fig. 5-39
00417 0.1042 0.1042
Lloldz 0333 0.3333

01042 03333 75+03333

5.72 Determine the natural frequencies for a 2-degree-of-freedom system whose governing differential
equations are

[100 60 [l‘,'!+
60 120)L4,]
Ans. 9.044 rad/s, 26.98 rad/s.

[oss  “mamolle]=[o]

5.73  Determine the mode shape vectors for the system of Problem 5.72.
Ans. [0.04332  0.06342]7, [0.111 —0.08879]"

5.74 Demonstrate orthogonality of the mode shapes for the system of Problem 5.72.

575 Determine the natural frequencies of the system of Fig. 5-28.

Ans.
0.536 \/E 323 \/E
m m

576 Determine the natural frequencies of the system of Fig. 5-31 assuming [ = fsmL’

mmﬁ. Lsa1 [
m \m

577 Determine the natural frequencies of the system of Fig. 5-35.

Ans.
JG JG
05176+ 'IE 1,932\|||E

5.78 Determine the mode shape vectors for the system of Fig. 5-35.
Ans, [04597 0.6277]7, [0.8881  —0.3251]

Ans.
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5.79

5.80

5.82

5.83

5.84

5.86

5.87

5.88
5.89

5.90
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Determine the natural frequencies for the system of Problem 5.68 if the machines both have a mass
n.

Ans,

| EI El
o — i
5.692 Vmi 22.03

mi*
Determine the natural frequencies for the system of Fig. 5-29 if k =3 10° N/m, m = 15 kg. and
L=16m.
Ans.  70.7 rad/s, 244.9 rad/s, 282.8 rad/s.
Determine the natural frequencies of the system of Fig. 5-32 if & = 1.3 % 10° N/m, m = 2.6 kg, and
L=10m.
Ans.  114.3 rad/s, 215.3 rad/s, 718.0 rad/s.

Determine the mode shape vectors for the system of Problem 5.81.
Ans. [0.487 -0220 0680)7, [-0.212 0970 0.165]", [2953 0.106 -0.100]"

Demonstrate orthogonality of the mode shape vectors for Problem 5.82.

Determine the natural frequencies for the system of Fig. 5-39 if L=2m, E=200x% 10" N/m’,
I=15x10" m* k=4x10°N/m, m, =60 kg, m, =80 kg, and m, =40 kg. Assume the beam is
massless.

Ans.  77.7 rad/s, 147.3 rad/s, 857.4 rad/s.

Use a 3-degree-of-freedom model 1o approximate the lowest natural frequencies of a fixed-fixed
beam.

Ans.

L

El El [El
¥ e i Puninit s iy
23,/ 59.26\;"“ s A\

Use a 3-degree-of-freedom model to approximate the lowest natural frequencies of a fixed-free
beam. ’

Ans,
| Ef [J El El
33464 [—, & —_— 46, —
L’ 1886\ i 6.77 =73

Determine the natural frequencies of the system of Fig. 537 if e, =¢c;=c,=c.=0, a=3m,
b=1m, M=200 kg, m=30kg, /=200 kg-m*, k, =k, =4 x10° N/m, and k= k,=1x10° N/m.

Ans.  23.0 rad/s, 44.3 rad/s, 138.5 rad/s, 188.8 rad/s.

Use matrix iteration 10 determine the natural frequencies of the system of Problem 5.82.
Use matrix iteration to determine the natural frequencies of the system of Problem 5.85.

Use matrix iteration to determine the lowest natural frequency of a fixed-fixed beam using a
3-degree-of-freedom model.

Ans. n
[ El
2.3, 1—
A

mlL’
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Determine the general free vibration response of the system of Fig. 5-37 and Problem 3587 if

591
¢, =¢;= 2000 N-s/m and ¢, = ¢, = 500 N-s/m.

Ans.
e (T, cos 23.0¢ + C, sin 23.0r)

+e7*™(C, cos 44.0t + C, sin 44,0r)
+e 7™(C, cos 129.9¢ + €, sin 129.9r)
+ e ™(C, cos 166.4t + C,sin 166.41)

592 Determine the general free vibration response of the system of Fig. 5-40.

k k
I~ wl_g
m 2m
_£—1
€ 26 k=100
m
c=2ls
i ~
m=1kg
Fig. 5-40
Ans. :
e ‘“M{C.[O‘?Z]m?m +C [0‘?132} sin ?-%f}
& %
i m.lc{ 21-?3}u.5 14920+ €. “]‘7_.3]sin 14.92:)

5.93  Show that if a mode shape vector X is normalized according to Eq. (5.16), then Eq. (5.17) follows.

Let X, be the mode shape vector corresponding to a natural frequency w, of a n-degree-of-freedom

system. Then
KX, = o MX,

Note that if M is symmetric, then for any two vectors u and v:
u My =v"Mu

Use the above to derive the orthogonality relation, Eq. (5.14).



Chapter 6

Forced Vibrations of Multi-Degree-of-Freedom
Systems

6.1 GENERAL SYSTEM

The standard matrix form for the differential equations governing the motion of a linear
n-degree-of-freedom system with viscous damping and external excitation is

Mi + Cx + Kx = F(r) (6.1)

If energy methods are used to derive the differential equations, then M, C, and K are
symmetric.

6.2 HARMONIC EXCITATION
If
F(r)= R sin wt + 8 cos et (6.2)

then the steady-state solution of Eq. (6.1) is

x(1) = U sin wt + V cos wi (6.3)
where U and V are solutions of
(—w™ + K)U—-wCV=R (6.4)
and wCU + (—Isz +K)=8§ (6.5)
If x,(t)= X, sin (wt — ¢b,) then
X, =VUI+V? (6.6)

6.3 LAPLACE TRANSFORM SOLUTIONS

Let X(s) be the vector of Laplace transforms of the generalized coordinates and F(s) is the
Laplace transform of F(r). If x(0) =0 and %(0) =0, then taking the Laplace transform of Eqg.
(6.1) and solving for X(s) leads to

Z(s)x(s) = F(s) (6.7)
where the impedance matrix Z(s) is defined by
Z(s)=s"M +sC+ K (6.8)
Equations (6.7) can be solved for X(s) and the result inverted to obtain x(r).

180
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6.4 MODAL ANALYSIS FOR SYSTEMS WITH PROPORTIONAL DAMPING

Let w,, w;, ..., w, be the natural frequencies of an undamped n-degree-of-freedom
system. Let X, X;,...,X, be their corresponding mode shapes. The modal matrix P is the
matrix whose ith column is X;. Orthogonality of the mode shapes implies

P'MP =1 (6.9)
where I is the n X n identity matrix,
PKP = = diag {0, w:%, ..., 0,7} (6.10)
and if the viscous damping is proportional,
P'CP=Z =diag {2{,w,, 2 sw,, ... , 2L,w,} (6.11)
The principal coordinates p are defined through the linear transformation
p=P'x (6.12)
or x=Pp (6.13)
When C is of the form of Eq. (5.19), the principal coordinates are used as dependent variables
and Eq. (6.1) is rewritten as "
p+Zp+Qp=0G(r) (6.14)
where G()=P'F (6.15)
Differential equations represented by Eq. (6.14) are uncoupled and of the form
P4+ 2w, + wlp, = Gl1) =10 il (6.16)

The procedure where the principal coordinates are used to uncouple the differential
equations is referred to as modal analysis. The convolution integral is used to determine the
solution for each principal coordinate as

pilt)= ﬁj e~ fli= S gin w, V1 = LAt — 1)G(T) dT (6.17)

6.5 MODAL ANALYSIS FOR SYSTEMS WITH GENERAL DAMPING

If a n-degree-of-freedom system is subject to viscous damping, but the damping matrix is
not of the form of Eq. (5.19), a more complicated form of modal analysis must be used. The
definition of Eqs. (5.23) and (5.24) are used to rewnte-Eq. (6.1) as

My + Ky=F (6.18)
where F= [:,] (6.19)

is a~2n x1 column vector. Define P as a 2n X 2n matrix whose ith column is the eigenvector @,
of M~'K normalized such that
O MbD, =1 (6.20)
Equation (6.18) is uncoupled when the coordinates
p=Ply (6.21)
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are used as dependent variables. The uncoupled differential equations are

-

Pi—YPi=&

™

(]
=
=

where
The solution of Eq. (6.22) is

pi=[ & e
0

Solved Problems

6.1 Determine the steady-state response of the system of Fig. 6-1.

k 2k
g_r\.rm,_ m —N\NN— m - Fysiner

Fig. 6-1

The differential equations governing the motion of the system of Fig. 6-1 are
[m 0 [f,]+[ 3k _Zk][x']—[o]sinw
0 mile,l L=t 2 el 7L
Since the system is undamped and 8 =0, V = 0. Then Eq. (6.4) reduces to
{Jk—mm’ —2k HU,]_[()]
-2k 2%k -mo® LU, LE,

Solving simultaneously leads to

U= . 2kF,
U 2k — mw®)(3k — mw®) - ak*
-~ 2
& (3k — mw))F,

T 2k — mo?)(3k — mw’) — 4k

6.2 Determine the steady-state amplitudes of the blocks of the system of Fig. 6-2.

'——:‘ l—r:;

f—s= F, sin wi
L] 2m
= —\\V—

€ k

Fig. 6-2

The differential equations governing the motion of the system of Fig. 6-2 are
m 0 ][f.]_i_ ¢ U][i,]+[2k -k][x;]_[ﬁ;] siiar
0 2mllel Lo olla) T l-k & lle )T Lo )P

>

(6.22)
(6.23)

(6.24)
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Equations (6.4} and (6.5) become
v K Il M K
—k k-2muw?llu, 0 ollwv.) Lo
(7 ol (* 28 o mallii]-1o]
0 ollw, -k k—-2mo’llv,] L0
Solving simultaneously leads to
= (k = 2ma®)(k* = Skmw® + 2m*w*)F,

D
k{k® — Skmw® + 2m*w*)F,
U=
D

v o wclk = 2mw*VF

' D
v, o _ kwetk = 2mw)E,

$ D

where D = k' + (k% - 10k m)w® + (296 m* — dckm o

+ (4c*m® = 20km”)w" + dm*w®

The blocks’ steady-state amplitudes are

- k — 2ma’®)F,

X, = VO 7 Il T )
z - .._.k",E'.
X:=VUZ+Vii= D

6.3 A 110-kg machine with a 0.45-kg-m rotating unbalance is placed at the end of a
ix  1.5-m-long steel (E =200 x 10" N/m?, p = 7800 kg/m’) fixed-free beam of cross-sectional
area 1.4x107* m*, moment of inertia 3.5 10°° m*, and length 1.5 m. The machine
operates at 200 Hz. Use a 3-degree-of-freedom model for the beam, and approximate the
machine's steady-state amplitude.

The flexibility matrix for a 3-degree-of-freedom model of the fixed-free beam with equally
spaced nodes is determined using the methods of Chap. 5 as

595 149 238
A=10"% 149 476 833 N
238 833 160.7

The beam’s mass is

= pAL= (7800 %}(1.4 % 10 m?)(1.5 m) = 163.8 kg
Lumping the mass of the beam at the three nodes, the mass matrix is

m,

= n 0
546 0 0
0 % 0o |=| 0 sa6 o0 |ke
i 0 0 1373
0 ] E‘H—M
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The magnitude of the harmonic excitation provided by the rotating unbalance is

2
£ =muew® = (045 kg-m)(zm ﬂzi’a—d) =TI XI°N
s cycle
The force vector is
0
F= ]

7.11 % 107 sin 1257¢
The differential equations for this model are
AMi +x=AF

505 149 238|[s46 o0 o [« s
100 149 476 833 0 546 0 || & [+] x
238 833 1607]L 0 0o 1373 L% xs

595 149 238 0
=10"% 149 47.6 833 0 sin 1257t
238 833 160.7 ] 7.11%10°
3249 8135 32677 || ¥, [, 1.692 % 107
107% 8135 2599.0 11,4371 || &, |+ x, | =107 5922 %107
1299.5 45482 22,064.1 || &, B 1.143 x 10°

When the assumed steady-state solution x= U, U, U,]" sin 1257t is substituted into the above
equalions, the following algebraic equations are oblained:

-4.13 -12.85 -51.63 [ U, 0.169
=12.85 ~40.06 —180.7 || U: |=| 0.592
-20.53 -71.86 =376 LU, 1.143

whose solution is
U,=132x107, U,=—-430x10", Uy=-328x10"°

Hence the machine’s steady-state amplitude is 3.28 mm,

6.4  An auxiliary system consisting of a block of mass m, is connected to the primary system
of Fig. 6-3 by a spring of stiffness k,. The auxiliary system can be used as a vibration
absorber if the parameters k; and m; are chosen correctly. Show that if

ks

=2 =y
My

then the steady-state amplitude of the primary system is zero.

Fiysin wr

Fig. 6-3
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The differential equations governing the motion of the system are

RS

Application of Eqg. (6.4) leads to

{—w’m. +k, +ky J[ ] lﬁ,]
—k, —w'm, + kz

Filks = myw®)
(ky +ky=mw )(k:. myw’) — k)

The solution for U, is
UI

Hence U, =0 if kyfm,=

185

6.5  Use of the Laplace transform method to solve Problem 6.2 assuming that the system is at

rest in equilibrium at ¢ =0, m =1 kg, k=100 N/m, ¢ =2 N-s/m, and w = 10 rad/s.

The impedance matrix for the system of Problem 6.2 is

s+ Z.f + 200 -100
Z
. i ()= [ 2% + Iﬂﬂ]
and its inverse is
s+ 50 50

Z'0=pm| s %(534—23 +200)

where Dis)=5"+ 25" + 250s* + 1005 + 5000
= [{s +0.136)° + 21.96]((s + 0.864)° + 226.8]
The Laplace transform of the force vector is
) 10F,
F(s} =] s*+ 100
0
The Laplace transform of the displacement vector is
< i 10(s* + 50)
SNy Im}D(s) [ ]
Partial fraction decomposition leads to
Fili)= E.[ —4.95 X }02"3 +4.95% 107 3 —2.33X 10 %+ 1L.74x 107!
£+ 100 (s + 0.136)" + 21.96
7.28% 107 — 657 % 107F
(s + 0.864)* + 226.8

e F[‘ws X105 ~4.95x 107  ~1.11X 1075 +3.11x 10"
: ! 5%+ 100 (s + 0.136)" +21.96
~3.83%107% + 1.77 w-f]
(s +0.864) + 2268

Inversion of the transforms gives
x(1) = F[—4.95 % 10 cos 10r +4.95 % 10~ sin 10¢
+e (=233 % 107" cos 4.69r + 3.72 X 107 sin 4.6%)
+ e (7,28 x 107 cos 15.07t — 4.36 % 10 " sin 15.071)]
x(1) = F[4.95 X 107 cos 10¢ — 4.95 % 107" sin 10¢
+e M= 11T X 1) cos 4.69¢ + 6.63 % 1077 sin 4.697)
+e "™(=383% 107" cos 15.07 + 1.18 x 107" sin 15.071)]

6.6  Use the Laplace transform method to determine x,(t) for the system of Fig. 6-4 assuming

that the system is at rest in equilibrium at ¢ =0.
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Lt 2 AN
m NN m m Fli)
_f\f\f\u__
k

F
o

= =R

ty '
Fig. 6-4

The differential equations governing the motion of the system of Fig, 6-4 are

m 0 0] & 3k -2k 0 £y 0
0 m 0 X, [+] -2k 4k k|l x |= 0
0 0 m]Li 0 -k k X5 Flult) = ulr — t,)]

The impedance malrix for this system is

ms® + 3k -2k 0
Z(s)=| -2k ms® + 4k —k
H 0 —k ms* +k
and its inverse is
mst + Sms’k + 3K° 2k(ms® + k) 2k
Z'(5)= 1G] ke(ms® + k) (ms® + 3k ) (ms® + k) k(ms* + 3k)
2% k(ms® + 3k) mis* + Tms® + 8&°

where D(s) = m’s® + Bms'k + 14ms™k” + 5k°

The Laplace transform of the force vector is

0
Fis) = : L
—5'-'(1 o8 )
2k2
Then %(5)=Z'F(s) =D k(ms*+3k)  |R(1-e™™)

ms* + Tms® + 8k*
Partial fraction decomposition leads to

‘o .297 ; 00874

£ =2 k[ 02020 - o1uask+ cousnk ——
Y f+048185 £ 18205 s+ 5.698-

m m m

which when inverted, using in part the second shifting theorem, leads to
I3 k k
.t,(r)=25—;[[0.2—0.29? cos 0.694 [— 1t + 0.106 cos 1.395, [—¢
m Nm m

+ 0.00874 cos 2.387 /EJJu(r) - [0.2 - 0.297 cos 0_694\/E(r —1,)
Nom m

+ 0.106 cos 1.395 JREI(: = 1p) + 0.00874 cos 2.387 .\/,% (r~ 1’.,)]]

-
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6.7  Derive Eq. (6.14).
Equation (6.1) is rewritten with the principal coordinates as the dependent variables by

substituting Eq. (6.13) into Eq. (6.1), leading to
MPj + CPp + KPp=F
Premultiplying the previous equation by P” leads to
P"MPp+ P CPp+ P KPp=P'F
When we use Eqgs. (6.9), (6.10), (6.11), and {6.15), the previous equation becomes
p+rZp+Op=G
6.8  Determine the relationship between the generalized coordinates and the principal

coordinates for the system of Fig. 5-3 and Problem 5.4 if [ =mL?/12.

The natural frequencies of the system are determined from

2%k — maw’ LkL
LKL Sk — smlia?

k
by = ]‘28$. w,=2.03\]£
m m

The mode shapes are determined from

[Zk l:kzhu: EkL? Ek,’:;n.’"w’][g = [g]

from which the top equation yields

[-0

= 4(2k = mw?)
ki

1 1
X, = L‘,[—l.dZ], x,=c=[w:|
L L

The mode shapes are normalized by

&=

which leads to

1
—1.42 0.925
r =1=r2 - e
X, 'MX, =1 C .7 [0 ][l:l] C, = ¥
8.42 : 0.380
X rMX;—l—C;[l 0 ile B42 | — Cz:le
12 L

Thus the modal matrix and its inverse are
0.925
=_1_ l3l vin 0925 —{IIIOL]
Vim 0.378 0.268L
Hence the principal coordinates are related to the generalized coordinates by

{0925 1I0L][x
p=F x_v'-’-'[o.s?s 0.268L [s}

6.9  Use modal analysis to determine the response of the system of Fig. 5-3 and Problems 5.4
iy and 6.8 if
M(r) = My[1 = u(r — 15)]

Mathead
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The vector G(r) is determined as

0925 L3 =2 M)

1 L 0 1
G=PF=—— -
Vi [ 0380 -0 [“(’)] Yo 0

The differential equations for the principal coordinates become

k -1.31
p,+ - —u(r—
B 1.644mp. V,_LMnll ulr —15)]

jj,+4,lm£p, Y - ate=13]

\/_L

The convolution integral is used Lo solve for the principal coordinates as
f L1 — u —J)Ism 123\/£(:—:))dr

f \/_L o u(t 0, - m

0.797Vm k

== M.. 1 - cos (1.232\{;0]:;(:)

- [I — cos (1.282 .\g(r - -'.,})]u(r s !o)]

pal)= j”“ M1 = u(z=1)sin ( 203\[:;—:)
203{

pl{‘}-

“0?77v’7w[[| cos 203\/_ )]

[-eooyEeu])

The generalized coordinates are calculated from

| 5
x=g= [0.925p,(r) + 0.380p4(1))

= ;f*' ([0.442 — 0,737 cos (].28\/; ) +0.295 cos (2 03 \[:]]u(:)
= {am —0_?37@5{1.23\/’%(: —:,J

+0.295 cos (2,03 \/5: = :‘,}) ]u(: = f.,})

1
0= = LI=131p,(1) + 3.20p.(1)]

:i, ([3 53— 1.04 cos (1.28@:)

—147cos(203\f]u(r) [353-|D4cos 123((: r..
—2.47 cos (2.03 \E (- :D))]uu - :..))
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6.10  The right-hand block of the system of Fig. 5-1 is subject to a constant force of magnitude

=1

Wathead

F, at t =0. Use modal analysis to determine the resulting motion of the system.

From Problems 5.30, 5.31, and 5.38, the natural frequencies and modal matrix for the system

are

w|=0.359\/£, mz=\/E, u.,=1_9;'\/E

, | 0282 0.447  —0.849
P= V_;; 0.404 0.447 0.370
0.545 —0.447 —0.055
The force vector is
0
F=]0
I
The vector G{r) is calculated as
1 0.282 0.404 0.545 0 1
G=PF= v:_’—!- 0.447 0.447 —0.447 0 |= -;
—-0.849 0.370 -0.055 || £,

The differential equations for the principal coordinates become

k Fa
B, +0.129=p =0. b8,
I 01'2.9mp, I}S‘is\mI

Lk E
& — 3 ?__
pat = 0447 2

ko 0055
By +388, py=—0055 =

The solutions for the principal coordinates are

Vm k
=423 5" F..(l — 05 0.359 \/:n-r ;)
pat) = —.0.44?'%!{,(1 —Cos \/g.')

Vin k
Py =~00142=" ﬁ.(l — cos 1.97 ;)

The original generalized coordinates are calculated from

1
== [0.282p,(¢) + 0.447p.(r) = 0.849p,(e)]

0.545F,
—0.447F,
~0.055F,

= £“(1.005 - 1.1930050.359\/5"—; +0.200 cos \/gr
& m m

~0.0121 cosl.w\f—"ﬁ)
m
x() = %{(1494,0.(.») £0.447py(1) +0.370p:(0)]
m
= k (1.504 — 1,708 cos 0.359\/§r
& m

+0.200 cos \/5r +0.00525 cos 1.9?\/E:)
m m
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ol = \/L;E [0.545p (1) — 0.447p,(r) — 0.055p,(1))

=) (2.506 ~2.305 c050.359\/_£r +0.200 cos ~ X 1
k m '

m
k
+0.000781 cos 197 1)
m

6.11 Repeat Problem 6.3 using modal analysis.

=i+

ﬁ The flexibility matrix A and the mass matrix M are as given in Problem 6.3. The natural
ncad [requencies are the reciprocals of the square roots of the eigenvalues of AM. The columns of the
modal matrix are the corresponding normalized eigenvectors. Calculations lead to

d
g B pegma T ey M
s s s
00123 00768  0.11
P=|00423 0104 —0.0764

0.0807  —0.0262 0.00923

0.0123 0.0423 0.0807 0
G=P'F=| 0.0768 0.1034 —0.0262 0 sin 1257
0. llil =0.0764 0.00923 || 7.11 = 10#
sTx0
=| —1.86 % 10* | sin 1257t
6.57 % 10°

Thus the differential equations for the principal coordinates are
P+ 4.06 % 10°p, = 5.74 % 10* sin 1257
P2+ 328X 10°, = —1.86 X 10* sin 1257
Py +2.76 % 10°p, = 6.57 % 10° sin 1257
The steady-state responses are

0= 575 x10¢
P =06 % 107 - (1257)

()= —186X10°
PA) =358 % 10° - (12577

sin 1257t = =3.65 % 107 sin 1257t

sin 1257r = 1.52 % 1077 sin 1257¢

_ esTxI0° . _ o
p;(:}——zi‘?ﬁx 10 - (1257) sin 12571 = 5.57 % 107" sin 1257¢

The steady-state response for x, is determined as
x;=0.0807p, — 0.0262p; + 0.00923p, = —3.28 X 107 sin 1257

6.12 Experiments indicate that the modal damping ratios for the first two modes of the system
cir  of Problems 6.3 and 6.11 are 0.04 and 0.15. Repeat Problem 6.11 assuming proportional
damping.
Mathcad
If the damping is proportional, the damping ratios are of the form
=1 B
{,-—z(nw.-+m)

'
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Substituting the experimental damping ratios and the natural frequencies calculated in Problem
6.11 leads to
0.04 = }(63.7a + 0.01578)

0.15 = §{(572.3a + 0.001758)
Solving simultaneously gives & = 5.15x X 10™* and 8 = 2.91. Then
£ = H(5.15 X 1074)(1660) + (2.91)(6.02 X 107*)] = 0.428
Using Eq. (6.16), the differential equations governing the principal coordinates are
By +5.10p, +4.06 X 10°p, = 5.74 % 10*sin 1257
P+ 17175, +3.28 X 10°p, = = 1.86 X 10" sin 12571
P+ 1421p, + 276 % 10°p, = 6.57 % 10*sin 1257

The steady-state solutions are of the form

pln) = %M(n. £)sin (1257 — &)

1257 1
where LT Mir, £) = Vil -+ 2en)
é, =tan™’ (12_;11)
As an example,
_1s7_
=g =1973
= ) o -
Mir, &) V- 1973 + [2(0.04)(19.73) % BRI
g (20000973
¢, =tan ( - (19.73) ) 3137

Further calculations lead to
rn=2197, M(2.197,0.15) = 0.258, ¢ =297
ry=0757, M(0.757, 0.428) = 1.289, &, =0.988

Hence,
pin)= (%;—é;()(—%){lss % 107%) sin (1257¢ = 3.137)
=13.65% 107sin (1257r — 3.137)

—1.86% 10°
P‘('}'( 328 % 10°

= —1.46 X 107" sin (1257 — 2.97)

657 %1 N
pir) = (m (1.289) sin (1257¢ — 0.988)

)(uzss) sin (1257 — 2.97)

=3.07 X 107 sin (12571 - 0.988)
Modal analysis is used to obtain
x5(1) = 0.0807p,(r) — 0.0262p,(t) + 0.00924p,(r)
=2.95 % 107" sin (1257 — 3.137) + 3.83 % 107" sin (12571 — 2.97)
+2.84 % 107" sin (1257¢ — 0.988)
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Trigonometric identities are used to rewrite
x5(1) = —3.31 X 1077 sin 1257 + 1.03 % 107 cos 1257r

and the steady-state amplitude is
X,=V(=331 X107 + (103X 10 P =331%10"m

The three railroad cars of Problem 5.34 are coupled and at rest in equilibrium when the
left car is subjected to an impulse of magnitude I. Determine the resulting motion of the

coupled cars.
The differential equations governing the motion of the system are

m 0 o] kK -k o ]x 15(1)
0om o|lz|+]-%k 2% k|l x 0
00 m]|lx 0 -k Kk ]Jlx 0

The natural frequencies are calculated in Problem 5.34 as

]

k k
w, =0, wy = o wy = V3;
The mode shapes of Problem 5.34 are normalized, leading to the modal matrix of
y [ v
P=—=|V2 0 2

r""\/i -3

Vioovz V2 [ rs V2 ;
=[(v3 o V3| o [=[V3|==5)
] -1 2 = 0 = fm

The differential equations for the principal coordinates are

Then, G=PF=

PR
= 3m8(')

ﬁ

k I
J:H g Y 8(r)

k
.0

The solutions for the principal coordinates subject to initial conditions of p,(0)=0 and p(0)=0
are

P == rutt)

Pt = V,;;sin \/gri&(r)

I . k
p;(r)=—F‘msm 3;“«(!)

The x,{t) coordinates are obtained using Eq. (6.13) as

1 1
Nt P~ Vem P
f il B Ly bF
= (Sm‘ + 2:;:5"1 \ mr +6msm \'Bm .') ulr)
1 2
SO Vom?

1 2. k
= (E' S on sin 4 )3’; I) ult)
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i) = 7= Pu(-’) \{—Pz(ﬂ V-“PJ(")

= —r—-—sm \/_‘+-—s:n "(IJ

6.14 Repeat Problem 6.13 if each coupling is modeled as a spring of stiffness k in parallel
with a viscous damper of damping coefficient c.

The differential equations governing the motion of this system are

m 0 0| % ¢ - 0 £ k -k 0 I8(r)
0 m 0| %|+] ~-c 2c - || & |+] % 2k —k|= 0
0 0 m]Lx 0 -c E Xy 0 -k k 0

The damping is proportional with a = ¢/k and g = 0. Thus

pmty gt et Lo fk, Ve
b 2% Nmo 2Vmk' C.‘—Zk m 2Vmk

The differential equations governing the principal coordinates are

=Vam 2O

P + Pz \/ﬁ 8(1)
- {8 k !
p‘+3mp_.+3mp1 \/6?=ns(f)
The solutions for the principal coordinates are

pil) = = tu(r)

v,—._
palt)= me"‘"‘“"sin (w, V1= &) u(r)

!
LA Y, e

Modal analysis is used to obtain

“PeRm gin (ws V1 = £ ()

R S U 1

X."@Pu"‘v—zp: \/ﬁ_m—p’
1 2

x;"mpﬁfﬁ.ﬂ,

1 1 1
BV T VEm T Vem™

6.15 A simplified 4-degree-of-freedom model of a suspension system is shown in Fig. 6-5.
L4 Model the transverse motion of a vehicle due to a bump in the road as the response due
to an impulse of magnitude [ applied to the front wheel at =0 and an impulse of
magnitude [/ applied to the rear wheel at ¢ =0.05 s.

Wathoad
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-
&

|
L—M 1
- 1

I

€

v,
L}
m=30kg

b=1m M =200 kg

N »
h=h=dx 10N o =cp=3200 2

m m

N .
EepsrIe.  n=ereannis
1 m m
1=200kg - m*

Fig. 6-5

The kinetic energy of the svstem at an arbitrary instant is

- b.f,+m‘-,)’ 1 (.f,-x.)‘
=-M——=) 4o
1 ZM( a+b Zf a+b
| ST L
+ imx,’ + me,"'

The potential energy of the system at an arbitrary instant is
V =4k (o = 1, P + Boa(xs = x) =+ bhaxs? + bhax
The work done by the nonconservative forces as the system moves through virtual displacements is
W = =] 8(1) 8x, — I 5(t — 0.05) 6x, — c,(, — £,) 6(xs — x,)
= €3k — ) B(xs — X3) — €3y B3, — €k, X,
Lagrange’s equations are applied to yield
Mb*+1 Mab =1

0 0

(a+b) (a +b) £ [ ¢, 0 -¢, 0 X
Mab - | Ma® + 1 0 oIl % 0 & 0 —¢; X
] i Nl 7
(a+b) (a+b) ¥ ] 0 i+ 0 iy
0 0 m 0L .0 —¢ 0 et dli
0 0 0 m
ky 0 -k, 0 ] 0
N ks 0 ks || =] 0
—k, 0 ky+ ks 0 Xy =1 8(r)
0 =k 0 ky+ ko L x| =1 &(r - 0.05)
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Substituting given values, the mass, damping, and stiffness matrices are

25 25 0 0 3200 0 —3200 0
m=|2 15 0 0 e 0 3200 0 -3200
o0 3 of ~ | -3200 0 4000 0
0 0 0 30 0 =3200 ] 4000
4% 100 [i] -4 x| ]
K= 0 4% 107 0 —4 % 10°
—4x 107 0 5% 10° 0
0 —4 % |0 0 5% 10°

The damping matrix is proportional to the stiffness matrix with o =0.008 s. Hence, the modal
matrix for the undamped system is used to uncouple the differential equations. The natural
frequencies are the square roots of the eigenvalues of M~'K, and the columns of the modal matrix
are the normalized mode shapes. The methods of Chap. 5 are applied leading 1o

w, = 23.0 %‘ w,=44.3%‘

wr=13852¢ 4 =1e88 ™9
5 5
0.0187 0.147  —0.0074 0.167
p| 00791 00347 00313  -0.039
0.0154 0.133 00390  —0.117
00654  -0.0315 0.165 0.0277
0.0154 8(r) + 0.0654 5(r - 0.05
B GopTFo | 01338(1)—0.03155(:~0.05)

0.0390 6(r) + 0.165 5(t — 0.05)
~0.117 8(¢) + 0.0277 5(¢ - 0.05)
The modal damping ratios are calculated as :
£ = taw, =0.092, o= bow, = 0177
£ = baw, =0.554, L= bow, =0.755
The differential equations governing the principal coordinates are
By + 4235, +5.29 % 10%, = —0.1541 5(r) — 0.06541 5(1 — 0.05)
P+ 15.68p, + 1.96 X 10°p, = —0.1337 5(r) + 0.0315/ 8(r — 0.05)
By + 153.5p, + 1.92 X 10°p, = 0.03907 8() - 0.1651 (¢ — 0.05)
P+ 285.8p, +3.56 % 10°p, = 0.1174 5(¢) — 0.02771 §(¢ — 0.05)
The convolution integral, Eq. (6.17), is used to obtain
pilt) = =1e (6,73 % 107" sin (22.91) u(r)
+3.18 % 1077 sin (22,9 — 1.145) u(r — 0.05)]
par)=—Te 7M[3.05 X 107" sin (43.60) u(r)
~ 1.07 X 107 sin (43.6¢ — 2.18) u(r - 0.05)]
palr) = —Je ™ ™(3.38 x 10 * sin (115.3¢) u(r)
+6.62 % 107 sin (115.3¢ = 5.77) u(r — 0.05)]
palt) = —Te 40,45 % 107" sin (123.80) u(r)
= 2.79% 107" sin (123.8t — 6.19) u(r — 0.05)]
The generalized coordinates are calculated from
x,() = 0.0187p,(1) + 0.147p,(1) — 0.007dp,(¢) + 0.167p.(r)
x:{t) = 0.0791p,(r) - 0.0347ps(r) — 0.0313p,(r) — 0.0395p,(1)
x5(1) = 0.0154p,(r) + 0.133p.(r) + 0.0390p,(r) = 0.117p.(1)
x,(t) = 0.00654p (1) = 0.0315p,(¢) + 0.165p,(r) + 0.0277p.(1)
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6.16 Determine the time-dependent response of the system of Fig. 6-6 if the system is at rest in

=i

Mathe;

equilibrium at =0 when an impulse of magnitude 0.5 N-s is applied to the left block

followed by an impulse of 0.5 N-s at t =0.01 s. The free vibration response of this system
ad . : . )

is obtained in Problem 5.45.

k k k _ N

AN k-lmm

m m m=1kg

— " - N

c € 2¢ il
Fig. 6-6

The differential equations governing the motion of the system are

[I D][f.]+[ 4 —2][i,]+ 200 —-i(I}][x.]:[ﬂ.S &(r)+0.58(r — 0.01)
0 1lL%, ~2 6L, =100 20010 xy 0
Since the viscous damping is not proportional, a general modal analysis is used. The eigenvalues of

MK are
¥, = 1.502 - 9,912, v, = 1502 +9.912i

¥y =349 = 16.918i, vy =349+ 16.918(

The eigenvectors of M~ 'K are assumed of the form

B =[-y -vz | z)

Thus the problem to determine the eigenvector becomes
4=, =2 200 1000 - 0
-2 66— =100 200 [} —vz|_| 0
=1 0 ~% 0 1 0
0 =1 0 —% % 0

from which it is determined that
_200—4y, + ¥
HET 00 -2y,

Substitution leads 10
z, = 0.9898 — 0. 100:, 2; = 0.9898 + 0.100¢
2= — 1009 - 0.175i, z,= = 1009 + 0.175i

The mode shapes are normalized by requiring @/Md®, = 1. The columns of the modal matrix are
the normalized mode shapes. Calculations lead 1o

0886+ 13di  0.886— 134 129+ 1.63i 1.29 - 1.63i
po| tor+rz rLoi-1zs ~1.02 - 1.88i ~1.02 + 1.88i
0.119-0.107  0.11940107%  0.0774- 00925  0.0774 + 0.0925i
0.107-0.118  0.107+0.118  —0.0946+0.0797  —0.0946 — 0.0797i
0.119 - 0.107i
Fo +0.107§
Then G=pi=| ONIHOI0% o osiy i 058¢-001)

0.0774 - 0.0925i
0.0774 + 0.0925{
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Application of Eq. (6.24) leads to
pilt) =0.5(0.119 = 0.107i)[e 1272212 ()
+ g ISR TRIUN00N oty — 0101))
palr) = 0.5(0.119 4 0.1075)[e 11502+ gy (1)
g A0 4 (r = 0,019]
Pa(1) = 0.5(0.0774 — 0.0925i)[e "4 18"%¥ y (1)
+ @ THAPTINTIHA 4y (¢ — 0,01)]
palf) = 0.5(0.0774 + 0.0925)[e 15" y (1)
4 g AR IBSIRN -0 u(.‘ i 00[)]
Noting that x, = y, and x, = y, leads to
x, = (0.119 = 0.107)p, + (0.119 + 0.107i)p,
+ (0.0074 = 0.0925:)p, + (0.0774 + 0.0925i)p,
X = (0.107 = 0.118i)p, + (0.107 + 0.118{)p,
+ (=0.0946 + 0.0797i)p, + (—0.0946 — 0.0797i)p,
Use of complex algebra and Ei.tier's identity leads to
x,(1) = e ""{[0.0256 cos (9.912r) — 0.0253sin (9.9121)] u(r)
+ (0.0260 cos (9.912¢ — 0.099)
= 0.0257 sin (99121 = 0.099)] u(r — 0.01)}
+ e 7*(0.0145 cos (16.918¢) — 0.0143 sin (16.918¢)] u(r)
+ (0.0151 cos (16.918r — 0.169)
—0,0148 5in (16.918¢ — 0.169)] 1e(r —h.Dl)}
x:(r) = e {[0.0254 cos (9.912¢) — 0.0252 sin (9.912¢)) u(r)
+ [0.0257 cos (9.912r — 0.099)
= 0.0259 5in (9.912r = 0.099)] u(r — 0.01)}
+ e *"[0.0153 cos (16.918¢) — 0.0150 sin (16.918)] u(r)
+ [0.0158 cos (16.918¢ — 0.169)
—0.0155 sin (16.918¢ = 0.169)] w(r ~ 0.01)}

Supplementary Problems

6.17 Determine the steady-state amplitude of the 60-kg block of Fig. 6-7 if F{r) = 250 sin 40¢.

1 x10t N Lsx 0t
m m
g—’\/\/\/— 60kg —N\/\\— 100kg
- Fl)
Fig. 6-7

Ans. 104X 107" m

197
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6.18 Determine the steady-state amplitude of the 100-kg block of Fig. 6-8 if w = 80 rad/s.

N

s

X0 2x 10
m

g 80kg A\ 100ke

s00 M-
m

Fig. 6-8

Ans. 1.27x107m

——= 300 sin wr N

[CHAP. 6

6.19  For what values of w is the steady-state amplitude of the 100-kg block of Fig. 6-8 less than 1 mm?

Ans. w>81.0 rad/s

6.20 Determine the steady-state amplitude of the 60-kg block of Fig. 6-9.

s N

2% 10°= 1 x0 R
m m

sokg AN 60k

N
P2
Ix 10

—

Fig. 6-9

Ans. 108x 107" m

30 kg

100 sin 40 N

6.21 For what value of k is the sieady-state amplitude of angular oscillation of the bar of Fig. 6-10

identically zero?

ix N

m Slender bar of mass 20 kg

f——20cm . 20em

k

10ke

Fig. 6-10
Ans. 1x10° N/m

6.22  Use the Laplace transform method to solve Problem 6.17.
Ans. 1.4 x107*m

] 50 sin 100¢ N-m
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6.23

6.24

6.25

6.26

6.27

6.28

Use the Laplace transform method to determine the displacement of the 60-kg block of Fig. 6-7 if
F(t) =250(u(t) = u(r = 0.1)].

Ans.
[2.5% 107" = 1,87 X 107 cos (21.96r) — 6.29 X 10~* cos (72.00)] u(r)
~[2.5% 107 = 1.87 X 107 cos (21.96¢ — 2.196) — 6.29 X 10~* cos (72.0¢ — 7.2)]
ult = 0.1)
A moment 10¢™* N-m is applied to the upper bar of the system of Fig. 5-28. Use the Laplace

transform method to determine the time-dependent response of the lower bar if L=1m,
k=100 N/m, and m = 10 kg.

Ans.
7.38 X 107% %% + 2,78 % 107" sin (1.6931) — 9.40 % 107° cos 1.693¢
—9.88 > 10™*sin (10.23¢) + 2.02 % 107" cos (10.23r)

Solve Problem 6.24 using modal analysis.
Solve Problem 6.20 using modal analysis.

Use modal analysis to determine the steady-state response of the system of Fig. 5-1 when the
leftmost block is subjected to a force £ sin L5Vk/m1t.

x =0.24555in 1.5 \/Er, x3=—0.406£’sin 1.5 \/Er.
k m k m
_r,=0.11655in l.S\/Er
k m

Use modal analysis to determine the steady-state amplitude of angular oscillation of the leftmost
disk of the system of Fig. 6-11 when the middle disk is subjected to a torque of 50 sin 30t N-m.

Ans.

= sN-m = s N-m = s N-m
ky=1.2% 10 =a k=87 X 10 = ky=5X% 10 =
- —
= [0) [6] [0]
1.5 kg-m? et ! L
2.6 kg-m 3.7 kg-m?
Fig. 6-11

Ans.  4.46 %107 rad



6.29

6.30

6.31

6.32

FORCED VIBRATIONS OF MULTI-DEGREE-OF-FREEDOM SYSTEMS [CHAP. 6

Three 20-kg machines are equally spaced along the span of a 2-m simply supported beam of elastic
modulus 200 % 10° N/m® and cross-sectional moment of inertia 1.35 % 107* m*, The machine near

the left support has a rotating unbalance of gnitude 0.5 kg-m and operates at 100 rad/s.
Determine the steady-state amplitude of the machine at the midspan.
Ans.  0.0028 m

Repeat Problem 6.29 as if the system had proportional damping with the damping ratio for the
lowest mode equal to 0.04. Assume the damping matrix is proportional to the stiffness matrix.

Ans. 0.0028 m

Use modal analysis to determine the steady-state amplitude of the 60-kg block of the system of Fig.
6-12.

2x 100 %0 ix 00N
m m m

el VAVA —"\N\N\—

0ke 60 ke 30 kg 200 sin 50 N

E | - . -
20005 1000 N2 3000 N2
m m m

Fig. 6-12

Ans. L6ExX 107 m
Use modal analysis to determine x,(r) for the system of Fig. 6-13 if the leftmost block is subjected

to an impulse of magnitude 1 N-s at 1+ =0 and the rightmost block is subjected to an impulse of
magnitude 1.5 N-sat r=0.1s.

g—E ke AN Tk -’V\/\/—E
N-s N N

i 150 — 100 —
m m

Fig. 6-13

£™{[=2,56 % 10~ cos (6.647¢) + 1.02 X 10”" sin (6.47r)] u(1)
+[~4.11 X 107 cos (6.647r — 0.665)
+1.64 % 107" sin (6.647¢ — 0.665)) u(r — 0.1)}
+ e " M*{[2.96 % 10 cos (18.8931)
—1.79 % 10" sin (18.8931)] u(r)
+[3.91 % 107 sin (18.893¢ — 1.89)
+3.91 % 107 sin (18.893; — 1.89)] u(r — 0.1)}



Chapter 7

Vibrations of Continuous Systems

Continuous, or distributed parameter, systems are systems in which inertia is continuously
distributed throughout the system. A continuous system’'s dependent kinematic properties are
functions of spatial variables, as well as time. Vibrations of continuous systems are governed by
partial differential equations.

7.1 WAVE EQUATION

Free vibrations of certain one-dimensional systems are governed by the wave equation
,¥u du 7.0
C = S
ax*  ar

where x is a spatial coordinate, u(x, ¢) is the displacement of a particle in the system whose
equilibrium position is identified by x, and ¢ is the wave speed, the velocity at which waves
propagate in the system. Problems governed by the wave equation and the system’s wave speed
are given in Table 7-1.

7.2 WAVE SOLUTION
The general solution of Eq. (7.1) can be expressed as
w(x, 1) =flx —ct) +glx +ct) (7.2)

where fand g are arbitrary functions of a single variable.

7.3 NORMAL MODE SOLUTION
The normal mode solution of Eq. (7.1) is
ulx, 1) = X{x)e'™ (7.3)

where w is a natural frequency of the system and X'(x) is the mode shape corresponding to that
natural frequency. Equation (7.3) is substituted into Eq. (7.1), leading to

X
# +wX = 7.4
¢ e Te X =0 (7.4)
The general solution of Eq. (7.4) is
X(c)=c.cos‘§_r+c:sin§x (7.5)

where C, and C, are constants of integration. Boundary conditions for a specific system are used
in Eq. (7.5) to develop a characteristic equation that is satisfied by the natural frequencies.

201
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Table 7-1
Nondimensional

Problem Schematic wave equation Wave speed
Torsional

oscillations L8 ae % G G = shearmodulus

of circular a r i i an & 5 = mass density

cylinder N

- —= wix, 1)

[ﬂnr:"t;:(‘-i:is Pw i . E  E = elastic modulus

o”;“ g i J a3t » o = mass density
Transverse Tk ay aty T T = ension

vibrations of taut SR e r e it i .

. axt At u k= linear density
string. ylx, 1)
k = ratio of

Pressure waves 3 a ;

% 3 ap  @p specific heats

IT;:H ideal =E| —= plx,1) pe s ¢ = VKkRT R = gas constant

& T = temperature
Waterh | ap ap /'k- k = bulk modulus

waves in rigid —= plx,1) g T ¢ =13/ — of Auid

: 922 at Ve e
pipe p = mass density

Continuous systems have an infinite, but countable, number of natural frequencies. Application
of the boundary conditions also leads to a relation between C, and C, and thus determination of
a mode shape. Let X,(x) and X,(x) be mode shapes corresponding to distinct natural
frequencies o, and w,, respectively. The mode shape satisfy an orthogonality condition, which

for most systems has the form
£

[ X0 Xy 2x =0 76)
o "
where L is the length of the continuous system. The mode shapes are normalized by requiring

j XA x)dx=1 (7.7)

74 BEAM EQUATION

The partial differential equation governing the free transverse vibrations w(x, 1) of a
uniform beam of elastic modulus E, mass density p, cross-sectional moment of inertia I, and
cross-sectional area A is

a*w &w
El—+pA—=0 7.8
axt P Ge (zé)



CHAP. 7] VIBRATIONS OF CONTINUOQUS SYSTEMS 203

The effects of axial loads, rotary inertia, and shear deformation are ignored in Eq. (7.8). A
normal mode solution,

w(x, 1) = X(x)e™ (7.9)
of Eq. (7.8) leads to
‘:g—%‘j x =0 (7.10)
The solution of Eq. (7.10) is
X(x)=C, cos Ax + C,sin Ax + C; cosh Ax + C,sinh Ax (7.11)
pA ™
where : A= (Em) (7.12)

Boundary conditions are applied for specific end conditions, leading to a characteristic equation
solved by an infinite, but countable, number of natural frequencies. The mode shapes satisfy an
orthogonality condition similar to Eq. (7.6).

7.5 MODAL SUPERPOSITION

The modal superposition method is used to determine the response of a continuous system
due to initial conditions or external excitations. It can be used for systems whose free vibrations
are governed by the wave equation or the beam equation. If u(x,t) is the time-dependent
response of a system with natural frequencies w,, w,, ... and corresponding normalized mode
shapes X,(x), X5(x),..., then the modal superposition formula is

u(x, 1) = kz: 2ul) Xul(x) (7.13)

where the p,(r) are to be determined. If F(x,r) is a nonhomogeneous term appearing in the
differential equation, it can be expanded as

Flo, )= 3 Clt) Xu(x) (7.14)

L
whiére G0 = j Flx, ) Xa(x) dx (7.15)
o

Equations (7.13) and (7.14) are substituted into the partial differential equation governing
w(x, £). The resulting equation is multiplied by X,(¢), for an arbitrary i, and integrated between 0
and L. Orthogonality conditions are used to generate an uncoupled set of ordinary differential
equations for the p,'s.
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7.6 RAYLEIGH'S QUOTIENT

Let f(x) be any continuous function satisfying the boundary conditions for 2 continuous
system whose free vibrations are governed by the wave equation. Rayleigh's quotien: is a
functional defined as

f glx ) d—f
By (7.16)
[ m@) s+ £ mseoy

where g(x) and m(x) are known functions of geometry, inertia properties, and elastic properties
for the system. For longitudinal oscillations in a bar, g(x)= EA(x) and m(x) = pA(x). For
torsional oscillations in a shaft, g(x)=GJ(x) and m(x)=p/(x). The summation in the
denominator of Eq. (7.16) is taken over all discrete masses. Rayleigh's quotient is stationary if
and only if f(x) is a mode-shape for the system. In this case

RXi(x)] = w? (7.17)

Thus the minimum value of R(f) is o,
Rayleigh’s quotient for beam vibrations problems is

L
d_:‘!f‘ 2
[ Er(GE)
R(f) =7 (7.18)
[ oareyaxc+ & mpey

o

7.7 RAYLEIGH-RITZ METHOD

The Rayleigh-Ritz method is an energy method that can be used to approximate natural
frequencies, mode shapes, and forced responses of continuous systems. Let ¢, ¢, ..., &, bea
set of n linearly independent functions satisfying at least the system's geometric boundary
conditions (zeroth-order derivatives for the wave equation and zeroth- and first-order
derivatives for the beam equation). For free vibrations problems an approximation to the mode
shape is of the form

X() =3 edulx) (7.19)

k=]
When Eq. (7.19) is substituted into the wave equation or beam equation, the following system
of equations is obtained:

> (ay— 0B}, = 0 (7.20)

where the forms of @, and B, are given in Table 7-2. The determinant of the coefficient matrix
of the system of equations represented by Eq. (7.20) is set to zero, resulting in an nth-order
polynomial to solve for w’.
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Table 7-2

Situation @, B,
Longitudinal & db rdd L
oscillations j EA(JTI)(H) dx J‘pAé,(.r)fﬁ,(,()d_r
in a bar 3

+ 3 kbl (x )b, () + 5 mbi(x )b, (x)

Ll =1

Torsional k ddrrdd L
oscillations [ GJ(I") (-&‘) dx j ol (x),(x) dx
in a shaft ¢ o

+ 3k blx b lx) + 3 mdx)d(x)
Transverse & £ o t

&\ (d' D,

oscillations f E"(Eﬁ)('ﬁ) dx prrb.(xw,.(x)atr
of a beam $ L]

+ 3 kb (), (x,) + 3 b (x)d,(x)

el =1

MNote: x, represents the locations where discrete stiffness or mass elements are
attached.

Solved Problems

7.1  What is the speed of torsional waves in a solid steel (G =80 x 10° N/m?, p = 7800 kg/m”)
:ﬁa shaft of 20 mm diameter?

Hathcaa The speed of torsional waves in a shaft is obtained from Table 7-1 as
G 80 10° E
r=\/:= —kr"=*.20><m‘%
i 7800 51%

7.2 Derive the partial differential equation governing free longitudinal vibrations of a
uniform bar.

Consider a longitudinal element of the bar of thickness dx, as shown in Fig. 7-1. The force
developed on each face of the element is the resultant of the normal stress distribution across the
face. If the normal stress o is uniform across the face, the resultant force is oA, A Taylor series
expansion leads to

a(x +dx) Alx +dx)=o(x) A(x) + a-at- (ord) dx + %5?:—:(0-»1) (deP+---+
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Thus application of Newton’s law to the differential element leads 10

o(x) A(x) +%(a.4) + %5(0")(“)’ et —a(x) A(Y)

2,

)
=p{x)A(x)a—:dx

Neglecting terms with higher-order differentials leads to

@u
ar

d
a(o’A]ZpA (7.21)

The normal stress is related to the normal strain through Hooke's law:
™
o=Ee

where the normal strain is defined in terms of the displacement as

Substituting into Eq. (7.21) leads to

i #u
(EA ax) =AY

2
ax

If the bar is uniform and homogeneous, the previous equation reduces to

Edu_du

pax’  ar

x . | 4
oA oA + a;{aal.] dx

Vo (1)
Fig. 7-1

ALLLLALLLY

7.3  Determine the natural fequencies and mode shapes of torsional oscillation of a uniform
shaft of length L, mass density p, and cross-sectional polar moment of inertia J. The shaft
is fixed at one end and free at the other end.

The torsional oscillations of the shaft 8(x, r) are governed by
Gae_a6

pax’ ar
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74

=i

Wathead

The fixed end is constrained against rotation; thus
&0, 1)=0

The free end has no shear stress; thus
a8
ix (L,)y=0
When used with the normal mode solution, 8(x, 1) = X(x)e™, these conditions lead to
" X .. _
X()=0, dx(L)_U

Application of the first boundary condition to Eq. (7.5) leads to
X(=0=C¢,
Application of the second boundary condition to Eq. (7.5) then yields

dX w w
Z‘_-(L)—U—C:Ccosc.[

If C;=00r @=0, then X{x)=0. Thus the svstem's natural frequencies are determined from

cos 2L =0
c
_@a-vz 6
=L Vo gl
The corresponding mode shapes are
(2n - l)rr.r] :
TRPN (5
X.(x) sin 3L

for any nonzero C...

Determine the characteristic equation for longitudinal oscillation of a bar of length L,
elastic modulus E, and mass density p that is fixed at one end and has a particle of mass
m attached to the other end.

The equation governing the motion of the system is

paxt A
The end at x =0 is fixed; thus
uw(0,1y=0

The boundary condition at x = L is obtained by applying Newton’s law to a free-body diagram of
the particle, as shown in Fig. 7-2:

aue &
-EA = (Lyf)=m i

(L, 1)
Application of the normal mode solution, u(x, r) = X(x)¢™ to the boundary conditions leads to

X(0)=0, EA “;—’:'(L) = muwX(L)
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Application of the boundary condition at x =0 to Eq. (7.5) leads to C, =0. Application of the
boundary condition at x = L to Eq. (7.5) with €, =0 leads to

EAw\/‘-"'EEcns (“’\/P;L) = muw’ sin (w\ ‘E.L)
ViEA = wian (wy[21)

The solutions of the above characteristic equation are the system'’s natural frequencies.

au s au
Ed‘a'u-.f} = —*mw{f-«f}

Fig. 7-2

7.5 A ship’s propeller is a 20-m steel (E =210 % 10* N/m, p = 7800 kg/m’) shaft of diameter

4 10 cm. The shaft is fixed at one end with a 500-kg propeller attached to the other end.

& What are the three lowest natural frequencies of longitudinal vibration of the propeller-
shaft system?

The propeller-shaft system is modeled by the system of Problem 7.4. The transcendental
equation governing the natural frequencies is

i \/E=w tan (mL\fg)

m

Eﬂ—L = tan ¢
m
o [
where é =mLV§=m(zo m) =3.85% 107w
210x 10°

kg ;
oL (?sm m_.)x(o.os my@om) .
m 500 kg =

and

The three smallest solutions of the transcendental equation are
¢, =1.137, &, =3.725, thy = 6,637
leading to

d d
@, =295.3 % ws = 967.4 ’—ilj, @, =1724,0 %
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7.6

[+

1.7

What is the required tension in a transmission line of length 15 m and linear density of
5 kg/m such that the transmission line's lowest natural frequency for transverse vibrations
is 100 rad/s? Assume the line is simply supported.

The differential equation governing the transverse vibration u(x, r) of the line is

Tau_su

wax®  ar
Since the line is simply supported, both ends are constrained from transverse motion; thus
w0, 1) =0, u(l,)=0
When the normal mode solution u(x, 1) = X (x)e™ is assumed, the boundary conditions lead to
X(0)=0, X(L)=0
Application of X(0) =0in Eq. (7.5) leads 1o C, = (. Application of X(L)=0 then leads 1o

Cusin (wL. \/%) =0

The smallest value of w for which a nontrivial solution occurs is

ooX [T
AT
which is rearranged as
puSrbl
T

Substituting given values, requiring w, = 100 rad/s leads 10

(lm ’—‘:—drus (s '—‘5)

T= . TS L% 100N
3

Determine the characteristic equation for natural frequencies of the system of Fig. 7-3.

pEA A
pE.4

— L—+—%—-|

Fig. 7-3

Let u,(x, £) be the displacement in the left bar, and let u,(x, t) be the displacement in the right
bar. The partial differential equations governing u,(x, t) and u,(x, t) are

Edu, _&u,
paxt
Edu,  ¥u,
poaxt At

The boundary conditions are

w(0,1)=0, ‘;—‘:@L.:)=u
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The displacement must be continuous at the junction between the two bars:
w(L,t)=u(L, 1)

The resultant force due to the normal stress distribution must be the same in each bar at their
junction:

du,

A du,
EA (.'. 1)y= .‘-."‘1 o (L, 1)

Use of the normal mode solution u,(x, t) = X,(x)e™, uy(x, 1) = X, leads to

X,(x)=C, cos (m \/%x)+ C,sin (m\/gx)
X,(x)=C,cos (m \/%x) + C,sin (m \/g.r)

- Xy (3 0y _
and Xo=0 = (2 L] -0
' xw=xw), =1,

Application of the boundary ‘condilions leads to
Xi(0)=0—C =0

AX: 3\ 0 oo 3
= (2:.) Gesei 5 c,lan(2¢]. b= wa,
X((L)=XAL) - Cy=Cs(col ¢ +tan}4)

gy

5 (L) dx‘(L) — 4 cos dpcot ¢ +1an id) = —sin ¢ + cos ¢ tan 3

7.8 Determine the lowest natural frequency of longitudinal motion for the system of Fig. 7-4.

A=3x10"m?
E=200% 100 X%
m?

- kg I
y P =780 05 200 2
: AW
g 2m e
Fig. 7-4

‘al equation governing u(x, 1), the longitudinal displacement of the bar, is
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Since the end at x =0 is fixed,
u(0,1)=0

The resultant of the normal stress at the right end of the bar must equal the force in the spring at
any instant; thus

i
EA (L, 1)= —ku(L,1)
Application of the normal mode solution u(x, r) = X (x)e™ to the boundary conditions leads to
X({y=0, EA g(.f.) =—kX(L)

Using X(0) =0 in Eq. (7.5) leads to C, = 0. Application of the second boundary condition to Eq.

(7.5) leads to B
EAM\/gms(m\@L) = ~ksin (w\/gf.)
-iﬁ %w‘:—lan(mf_.\/g)

BA pa " 2
kLap tan ¢, ¢ =wl

Substituting given values leads to
1.5¢ = —tan ¢

The smallest solution of the transcendental equation is ¢ = 1.907, which leads to

7.9  Show that the mode shapes of Problem 7.3 satisfy an orthogonality condition of the form
of Eq. (7.6).

Let w, and w, be distinct natural frequencies of the system of Problem 7.3 with corresponding
mode shapes X,(x) and X(x). These mode shapes and natural frequencies satisfy the following
problems:

2 2
%»f‘-:;-x,:n (7.22)

- 4% 1y
X(©0)=0, “FHL)=0

d*X  w?
T x=0 (7.23)
x©=0, Xuy-o
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Multiplying Eq. (7.22) by X, and integrating from 0 to L leads to
JX(x)dzafx+ IX{:)X(X)dx-

Applying integration by parts twice to the first integral leads to

dX, dX,

X0y (0= XL} (L)~ X(G)—‘(0)+X(-’-)—‘(£)

Jxm dx+"fx1x)X{x)dx 0

Application of the boundary conditions leads to

s
% _xdﬁ_jx(x)x(x; 0 (7.24)
From Eq. (7.23),
X o}
dx? = = Xa

which when substituted into Eq. (7.24) leads to

&
%(u.f -w?) f X(x) X,(x)dx =0

and since w, # w,, Eq. (7.6} is satisfied.

7.10  Develop an orthogonality condition satisfied by the mode shapes of Problem 7.4.

Let w, and w, be distinct natural frequencies of Problem 7.4 with corresponding mode shapes
X, and X,. The problems satisfied by these natural frequencies and mode shapes are
&X  p

dx? +E

w?X, =0 (7.25)

ax,
X(0y=0, EA d—-\_'(L)=mw.’ X(L)

X, p
By B g 7.26
dx- + E wJ Xi 0 ( )

X(0)=0, EA ‘% (L) =mew? X(L)

Multiplying Eq. (7.25) by X, and integrating between 0 and L leads to

L L
a*X, ¥
I X(x) Ir?dx + w” I Xix) Xx)de =0
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Using integration by parts twice on the first integral leads to

dX, dX; dX, dX,
XALY (L) = X0) T ) = X (L) T (L) + X0 5L 0)

IX(r} Fdx += w,J’X(x)X(x)dx 0

Using the boundary conditions in the previous equation leads to

aw, XL XL - g "L w2 X,(L) X,(L)

L

+J- ! dx? d'x+ w'f‘*(‘)-"'(-\')dx—

Using Eq. (7.26) in the previous equation and rearranging leads to -
L
(w2~ w,*)[f; X(L) X(L) + % f X.(x)x,(x)de =0
Since w, # w,, the appropriate orthogonality condition is
L
ZeX(L)X(L) + [ %0 X ax =0
H

Determine the natural frequencies of a uniform simply supported beam of length L,
elastic modulus E, mass density p, area A, and moment of inertia /.

The free transverse vibrations w(x, ) a simply supported beam are governed by Eq. (7.8)
subject to

2
w(0, 1) =0 ‘;Tf{o. =0

2
MLO=0  TE(Ln=0

Application of the normal mode solution w(x, 1} = X (x)e" to the boundary conditions leads to

- dzx —
X(0)=0 (=0

X
X(L)y=0 (=0

Application of the boundary conditions at x =0 to Eq. (7.11) leads to

X()=0— C,+C=0

2
%f(ﬂ)=u — —AC, +AC, =0
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from which it is determined that C, = C, = 0. Application of the boundary conditions at x = L 1o
Eqg. (7.11) leads to

X(L)Y=0 — CysinAL + C,sinhAL=0
d'X o i fi
F(L)=0 — =A'Cysin AL + A'C.sinh AL =10
Nontrivial solutions of the above equations are obtained if and only if

sin AL =0, C.,=0

Hence A=%’ n=1,23,...

Then using Eq. (7.12), the natural frequencies are

w.=(nx]’-\|||p-A% n=123...

Determine the characteristic equation for a beam pinned at one end free at its other end.

The problem governing the free transverse vibrations of a pinned-free beam pinned at x =0
and free at x = L is Eq. (7.8) subject to

w(0, 1) =0, ‘;2—:(0,:)=0

aw

a'w
THLO=0,  TE(L0=0

Application of the normal mode solution w(x, 1) = X (x)¢™ to the boundary condition leads 10
d’X
X{0y=0 It (0)y=0

d'X &'x
=0 Z5)=0

Application of the boundary conditions at x = 0 to Eq. (7.11) leads to
X(0)=0 = C,+C,=0
£
dX?
from which it is determined that C, = C, = 0. Application of the boundary conditions at x = L leads
o

(0)=0 — —A°C, + A’C,=0

2
X
%,-(L) =0 — =A*C;sin AL+ A*sinhAL=0

'zx—f(i) =0 = —A'Cicos AL+ A*C,coshAL=0

A nontrivial solution of the above equations exists if and only if the determinant of the coefficient
maltrix is zero,
~sin AL cosh AL + sinh AL cosAL =0
leading to
tan AL =tanh AL

The solutions of the previous transcendental equation are used with Eq. (7.12) to determine the
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system’s natural freq ies. The llest solution is A =0, for which a nontrivial mode shape
exists.

7.13 Determine the three lowest natural frequencies for the system of Fig. 7-5.

=l

sathead

m=10kg
|m 3 N
E=200x 10" —
me

k
p =7800 -5

JERLTINY

L |
A=26%10"m

L=1lm
1=47 % 10* m

Fig. 7-5
The free transverse vibrations of the beam of Fig. 7-5 are governed by Eq. (7.8). Since the
beam is fixed at x =0,
aw
w(0, 1) =10, 3(0. 1) =0

The boundary conditions at x = L are determined by applying Newton’s law to the free body
diagram of the block, Fig. 7-6:

atw L a'w aw
5 (L, ty=0 El P (Lty=m o (L. 1)
Application of the normal mode solution w{x, r) = X (x)e™ to the boundary conditions leads 1o
dX
X(0)=0, —(0)=0
©=0. T

%‘g(uﬂ}, Ef%i-,,g= ~mw'X

Application of the boundary conditions to Eq. (7.11) leads to
X(0)=0—= C, +C,=0

adXx
O =AC,+AC,=0

2
%3:(1.) =0 — —A*cos ALC, — A®sin ALC, + A*cosh ALC, + A'sinh ALC, =0

Eld'X
;F(L)= —w? X(L) —

(% sin AL + A cos .»\.L)C, + (— ;L‘:tcos AL + Asin AL)C:

A A ’
+ (“;—‘ sinh AL + A cosh AL)C, + (%ﬂ" cosh AL + A sinh ML)CJ =0

where @’ has been replaced using Eq. (7.12). The previous equations represent a system of foulr
homogeneous linear simultaneous equations for C,, C,, C,, and C.. A nontrivial solution exists if
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and only if the determinant of the system's coefficient matrix is zero. Setting the determinant to
zero and simplifying leads to

(1 + cos ¢ cosh ¢)+ [cos:,bsmhé cosh ¢ sin ¢) = d=AL
Noting that
_m__ 10 ke &
DAL =0.493

(7800 :—1%)(2‘“ 10 m?)(1 m)

the three lowest solutions of the transcendental equation are
&, =1.423 ¢ =4.113 ¢y =7192

— The natural frequencies are calculated using Eqg. (7.12):

200>< 10° = )(47x10- m)
2
AT pAL‘ =/} =215.3¢;

(7800 kg)(z 6% 107 m)(1 m)*

d
-4861£ wQZS.MZXIG’E%E w,=_1,114x10‘%d

dxt

E.‘-—~ (L, :}l = l

m-:,[i. 1

Fig. 7-6

7.14 Demonstrate that the mode shapes of a fixed-free beam satisfy an orthogonality condition
of the form of Eq. (7.6).

Let w, and w, be distinct natural frequencies of a fixed-free beam with corresponding mode
shapes X, and X,. The problems satisfied by these natural frequencies and mode shapes are

d'X, pA

d  El1"

wiX, =0 (7.27)

- 4X, 0y =
X@0)y=0,  =(0)=0

d&X, d'x,
2 L=0 SEL)=0
X, pA iy
B 0iX, =0 (7.28)
dX,
- - =
X(0)=0 2 (=0
d'X, d'X

Fw=0  GHw=o
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Multiplying Eq. (7.27) by X, and integrating from 0 to L leads to

3 L
d'X, pA o
!X, i dx T JX,(:) X(x)de=0

Using integration by parts four times on the first integral leads to

X(L) (LJ X(ﬂi (0) —‘(L) e (L)

X,
(0) dkz )+ (L) e (L) (U) d_ “(0)

(L)X(Ln w)m)+[x, b

--—m J Xox) X(X) dx
which after application of boundary conditions reduces to
..__l Ly it
J‘X e dx w [X(:)X(.r){b:
Using Eq. (7.28) in the previous equation and rearranging leads to
4 L
PA i s
o (w7 = ] 1! XAX) X (x)di = 0

Since w, # w;, the orthogonality condition is verified.

7.15 Determine the steady-state amplitude of the end of the shaft of Fig. 7-7.

. G, J
(p n?},sinw
[

T
£ |
Fig. 7-7

- i

The problem governing the motion of the system of Fig. 7-7 is

Gre_#¢
pax ar

8(0,1)=0

af .
JG = {L,t)=T,sin wr
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The steady-state response is obtained by assuming
B(x, 1) = Q(x) sin wt

which when substituted into the partial differential equation and its boundary conditions leads to
the following problem for Q(x):

GaQ .
pd’r!+wQ-U
00)=0
16 1)-1,

The solution of the differential equation is

Qx)= C.cos(w\/’?—;x) + C; sin (m\/éx)

Application of the boundary conditions leads to
Q(0)=0— C,=0
chgu,) T, — C= L
m.."\«"chos(m \/% L]

Hence the steady-state amplitude of the end of the shaft is
I’; Ta P
Q(L) = Cysin(w \fE;I’) w\/—lan( \/jéi.)

The block at the end of the beam of Fig. 7-5 is a small reciprocating machine that
operates at 100 rad/s. Determine the machine’s steady-state amplitude if it has a rotating
unbalance of (.15 kg-m.

The mathematical problem goverening the response of the system is the same as that of
Problem 7.13 except for the second boundary condition at x = L. This boundary condition is
determined by applying Newton's law 1o the free body diagram of the machine, as shown in Fig.
7-8,

E!—-(L N=m e:(L‘r)+moewlsinm

A steady-state solution is assumed as
wix, 1) = Q(x) sin wt
which when substituted into the partial differential equation and the boundary conditions leads to

L d'Q
Eplike_ 2 =
i w'pAQ =10

em-0 “Lw-

Q

T (L)=0 £ (L) = —mw?Q(L) + myew?
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The solution of the differential equation is

x)=C, cos Bx + C,sin Bx + C, cosh Bx + C, sinh Bx
rad ™
I (100 )( 7800 ){26):10‘ m?)
where B= (?) = = 0.682
(200 107 —-)(4?>< 107 m*)

Application of the boundary conditions leads to
C,+C,=0
C+C,=0
—cos BLC, —sin BLC, +cosh BLC, +sinh BLC, =0

(fT—COSBL‘FSIRBL)C‘ (E—-smﬁL cﬂsﬁL)

+ (i—E cosh BL +sinh ,BL)(:, + (%‘- sinh BL + cosh ,sL) ”::’3
When numerical values are substituted, the previous two equations become
-0.776C, — 0.630C, + 1.242C, + 0.736C, =0
0.891C, — 0.564C, + 1.153C, + 1.489C, = 5.04 % 107?
The equations are solved simultaneously, leading to
C=182x10" Cy=-2.69% 107" C,= —l.SZIX 107 C,=2.69x 107"

The steady-state amplitude of the machine is

@(L)=C,cos BL + C,sin BL + Cycosh BL + C,sinh BL =560 % 107" m

l mgem* sin we

E.‘—ll 0 I ”‘W“ 0

External Forces Effective Forces

Fig. 7-8

7.17 A torque T is applied to the end of the shaft of Problem 7.3 and suddenly removed.
Describe the resulting torsional oscillations of the shaft.

Removal of the torque induces torsional oscillations of the shaft. The initial angular
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displacement of a particle along the axis of the shaft is the static displacement due Lo a torque T
applied at the end of the shaft. Thus, the initial conditions are

8(x, 0) = ‘fT‘f(x.O)w

Er

The natural frequencies and mode shapes are

_(2;‘~1)x\/’§
T P

X,(x) = C,sin [———m ;II}”‘]

The mode shapes are normalized according to Eq. (7.7) by

j)(ﬁx)dx . e IC,’sin’[%] dx

The general solution for the torsional oscillations is

u(x, )= i sm [u

i=t

](A cos wt + B, sin w)

Application of the initial velocity condition leads to 8, = 0. Application of the initial displacement
condition leads to

I 2 win G::_mn_r
J’G - 2 ]A

Multiplying the previous equation by X (x) for an arbitrary j and integrating from 0 to L leads to

A = L

Mode shape orthogonality implies that the only nonzero term in the infinite sum corresponds to

i=j. Thus
2 (2; ])n:x]
\/;J'G J“' sin| =2

\/E TLH{=1y"'
L xIG(2j - 1)?
Thus the torsional response is

9(,_,)_%2{—1)'1 [(2; l)ﬂ:x] [(2;—nx\/;]

A time-dependent torque of the form of Fig. 7-9 is applied to the midspan of a circular
shaft of length L, shear modulus G, mass density p, and polar moment of inertia J. The
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shaft is fixed at one end and free at the other end. Use modal superposition to determine
the time-dependent torsional response of the shaft.

TN

Ta

y ]

Fig. 79

The partial differential equation governing the torsional oscillation is
a} 2.
G.-‘é;-?+ Tofur) — u(e - )] .s(x = —) p]a—e (7.29)
From Problem 7.3 the natural frequencies and normalized mode shapes for the shaft are

I —
i 1)“\(’. A=1,2,...

- Ban[ @251

The excitation is expanded in a series of mode shapes using Eq. (7.14) with

J ()~ u(e = )1 3(x - ) /2 sin [ 1m8] 4,

= \/% Tasin [M][u(f} = u(t = 1)] (7.30)

68(x, 1) is expanded in a series of mode shapes of the form of Eq. (7.13). Substituting this expansion
in Eq. (7.29) using Eq. (7.30) leads to

- d}X - -
GI 3 p0) i + 2 Gult) Xulx) = pl 2 pu() Xu(x)

However, P = —w, c X,
Thus 3 (plps + plolp— CX, =0
k=1

Multiplying the above equation by X,(x) for an arbitrary j, integrating from (0 to L, and using mode
shape orthogonality lead 1o

ZTG [(zk 1)”][,,(,)—u(r—r‘.)|

B+ wlp =

The solution of the previous equation is obtained usmg the convolution integral as

pult) = \/% gt sin [ ZE52E i1 - cos wury )

= [1 = cos welr — 1)) ult — 1)}
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7.19  Use modal superposition to determine the time-dependent response of the system of Fig.

7-10.
Fy sin we
n¢h l I I I P EAI
—_— e L —0(7;7
Fig. 7-10
The natural freq ies and normalized mode shapes for a simply supported beam are

i [ET
w, = (nr) pAL:

X(x)= \/% sin %
The differential equation governing the motion of the beam is

a'w
El
PR

aw’? . P
+pATIE = Fysin (wl)u(x-—z-) (7.31)

The excitation is expanded in a series of mode shapes according to Eq. (7.14) with

s Ly [2 . knx
C;-!E.Sln(wf)u(x-2)-\/Esm—-£-dx

= Vﬁg’rsin a.-r[t:os (?) - cos (kﬁ)]

= B, sin wl
g 1 k=135
B‘=\/2_f.ﬁ_ -2 k=2,610,...
Lo k=4812...

The transverse deflection is expanded as X p, (1) X.(x) and substituted into Eq. (7.31) leading to
. e 2
ELS pu(0) G+ pA 3 B0 X)) = 3 Cu(0) Xulx)

Noting that
Y
- L3 Ef

d'X,
o %

and rearranging lead to

E lpA(p, + wlpi) = CXu(x) =0

Multiplying the previous equation by X(x), integrating from 0 to L, and using mode shape
orthogonality lead to
Fi + wlp, = B, sin wt

The solution of this equation subject to p,(0) =0 and p,(0) =0 and @ # w, is

B,
m‘Z -

; w .
pult)= 3 (sm @ — —sin '""J
i iy
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7.20  Use modal superposition to determine the response of the system of Fig. 7-11

EA
"
m = Feat

T

Fig. 7-11

The problem governing the motion of the system of Fig. 7-11 is

Edu_odu
paxt  ar

subject to
a0, =0

~£A (L, 1)+ Fe --'—m"—‘—‘(L 0

The natural frequencies and mode shapes for this system are determined in Problem 7.4
Substituting the modal superposition, Eq. (7.13), into the differential equation and non-

homogeneous boundary condition leads to

pEm = mm
a=]

= dX, )
~EA 3 GO0+ he=m S pxL)

Noting that
a*X,
o ““"%X‘
dX,
.(L) EA T W Xt(L)

leads to
Z {#. + “’L:Pk)xa =0
k=
2 (B + wlp) Xu(L) = ;‘:8""
h=1
The first equation is multiplied by X,(x) for an arbitrary j and integrated from 0 to L. The second
equation is multiplied by mX,(L)/{pA). The two equations are then added leading to
L
o X(L
3 (4 + oipa| XWX + [ X0 X dx =Jp%:—;
A=
o
Using the mode shape orthogonality condition for this problem, derived in Problem 7.10, the only

nonzero term in the sum corresponds to k =j. Thus
lai + "’azp: = CJE"!_-’
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: o,
oA AL

where C=

m X2 ( 2
TLXAL)+ | )
o

I‘ﬁsin (m_.\/gl.)
pﬂAsin’ (m, \/% L] + %— \/54; sin (2&: \{;L]

The solution for p,(r) subject to §,(0) =0 and p,(0) =0 is

C,F a
t =-~‘——(e""—cnsw-r+—sinn.'-r)
p}() m}ﬂ'ﬂ'! L w, g

7.21 Use Rayleigh's quotient with a trial function of
mx
=Bsin—
uix) sin 2

to approximate the lowest natural frequency of the system of Fig. 7-12.

_{J‘

N pALG pLG

3 ( ( £

5 1) g i
Fig. 7-12

The appropriate form of Rayleigh's quotient for the torsional system of Fig. 7-12 is

Js6(2t) o

[}

R(u) = ——
me'(x)m + hﬁ@ L)

IJG[ 87 cos )]1dx

] fpm* sin® (”f) dx + IBsin ( : )

m*GJB?

_ 2L

" pIBL T
2 2

Hence an upper bound for the system’s lowest natural frequency is

G \"
W, =

2D
oL J

[CHAP. 7
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7.22 Use Rayleigh's quotient to approximate the lowest natural frequency of longitudinal
Zi+ motion of the tapered bar of circular cross section shown in Fig. 7-13,

2
I

The trial function
u(x) = B sin i

satisfies the boundary conditions «(0) =0 and du/dx(L) = 0. The geometric properties of the bar's
cross section are

rix)= r(] 5 5‘}:)
At =1 "z%)!

Application of the appropriate form of Rayleigh's quotient to the trial function leads to

fEA(x)(fi—:),dx

R(uy ==
I pA(x) u*(x) dx
o
r! t
f o [2L LJ] %
L
nx
I""’J( ZL) s (ZL)dx
_0 DOITELM
T 02157Lpar’ 205 pL?
Thus, an upper bound for the lowest natural frequency of Iongimdinal oscillations is
2.05
Wy < T ;

723 Use the Rayleigh-Ritz method to approximate the two lowest natural frequencies of the
it system of Fig. 7-13. Use the two lowest mode shapes for a uniform fixed-free bar as trial

e functions.

The two lowest mode shapes for a fixed-free uniform bar are obtained in Problem 7.3 as

é,(x) = sin (ZL) $ifx) = sm(zL)
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Hence the Rayleigh-Ritz approximation to the mode shapes is

u(x)= Csm( )+Czsm(

2L 2L )
Application of the Rayleigh-Ritz method leads to two equations of the form of Eq. (7.20) with

=j:£A(.t) (%)(%) dx
Bﬁfﬂfl(x) du(x) P,(x) dx

The coefficients for this problem are determined as

jE”’J 2;,):[5“"

a,==an~f-’3”’( 2L [2L 2L)][§I (%)]dx

(;E]]R.—u=w

_ 0.6094Enr?
L
a,,-J'Exr 1——)[2{:;(“ 3,1: ] - _66615::1-

By = !Mﬂ(| _;I) sin® (77) dx = 0.2157pm°L

L

Bia= B = j prr(1 - ';E):sm (5 )sin (3ZL ) dx =00697pm°L

2L 2L
Upon substitution and simplification, Egs. (7.20) become
(0.9017 — 0.2157¢:)C, + (0.6094 — 0.06974)C, =0
(0.6094 — 0.0697¢)C, + (6.664 — 0.28334)C, =

)

L
_ X 3nx
Bu= ! om-“( ) sin’ ( )ir 0.28322pxr°L

where b= (
A nontrivial solution of the above equations exists if and only if the determinant of the coefficient
matrix of the system is zero. To this end

0.9017-02157¢  0.6094 — 0.0697¢] _
0.6094 —0.0697¢  6.664 — 02833 |

(0.9017 — 0.21574)(6.664 — 0.2833¢) — (0.6094 — 0.0697¢)* =0
: 0.05624° — 16084 + 5.637=0
ThL solutions of the above quadratic equation are ¢ = 4.093, 24.53 leading to

[E E
w, = 2,{]228\ PYEL ,=4.949 L’
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7.24 Use the Rayleigh-Ritz method to approximate the two lowest natural frequencies of the
torsional system of Fig. 7-14. Use cubic polynomials as trial functions.

J=1 %10  mt

N
2
G=80x 10 ™

BETETLTITILY

k=4x% m‘N;r"'

n
E

Fig. 7-14

The Rayleigh-Ritz method can be applied using trial functions satisfying only the geometric
boundary conditions (i.e., boundary conditions developed solely from geometric considerations).
Polynomials satisfying the boundary conditions for a fixed-free shaft are

é(x)=x"=3L%, dalx)=x"—2x
The coefficients used in Eq. (7.20) are

L

= j ;G(“i‘.’:)(“-ﬁ)dxu,au) &,(L)

de /\dx

L
8,= [ pr6x) ) dx
L)
Evaluation of these coefficients leads to

L L
ay,y = [10(31‘7 3L dx + R (L -3V =2114 ¢ 10"
a
L
.= J’ JG(3x — AL 2e - 2L) dx + k(LY = 3L L - 2L = 6379 % 1Y
. L
@, = IJ’G(?J.’ —2LY dx + k(L -2LY)=2115 %107
o
L
B =f I =3L7) dx = 2.589
L
Ba= I pJ (" = 3L2c)(x* — 2Lx) dx = 0.903

L
Bu= I pl(x? = 2LxY dx =0.3159

Equations (7.20) become
(2.114 X 10" - 2.5897)C, + (6.379 X 107 — 0.9030%)C, =0
(6.379 X 10" = 0.903w)C, + (2.115 X 10" — 0.3157w")C, =0
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A nontrivial solution is obtained if and only if the determinant of the coefficient matrix is set to
zero, leading to

0.001369w* — 6.2533 X 10°° + 4.0195 x 10" =0
whose solutions are

w.‘—‘&:‘?ﬁ%. w,=66430%

7.25 Use the Rayleigh-Ritz method to approximate the two lowest natural frequencies of a
iz uniform fixed-fixed beam. Use the following trial functions, which satisfy all boundary

ﬁ conditions: 7

Wathcad
Pi(x)=x*—2Lx* + L%3, da(x) =x"=3L%" + 2L
The Rayleigh-Ritz approximation to the mode shape is
wix) = Cyd(x) + Caghalx)
The appropriate form of the coefficients for Egs. (7.20) is

o= [ E(52)(52)

dx® S\ odx?
o

L

Bi= f pAd,(x) ¢,(x)dx

Using the suggested trial functions, the coefficients are calculated as

a, = J EN12x* —12Lx + 2L dx = 0.8BEJL?
a;= J EN12¢ = 12Lx + 2L7)(20x" = 18L%x + 4L ) dx = 2EIL"

L

oy = j EI(20x" = 18L%x + 4Ly dx = 5.1428EJL”
o
L

Bu= IpA(x‘ = 2Lx* + L%?) dx = 0.001587pAL®

n

L
Bu= I pA(x* = 2Lx* + Lx?)(x* = 3Lx* + 2L3¢%) dx = 0.003968pA L™
o

L
- J pAW® = 3126 + 2L dx = 0.0099567pAL"
o

Substitution into Egs. (7.20) and rearrangement vields
(0.8 = 0.0015874)C, + (2 - 0.0039684)C, =0
(2 - 0,003968¢)C, + (5.1428 — 0.0099567¢)C, =0
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7.26

.27

7.28

729

7.30

7.32

ALY
where b=w p?

A nontrivial solution of the above system exists if and only if the determinant of the coefficient
matrix is set to zero. To this end
(0.8 — 0.0015894)(5.1428 — 0.0099567¢) — (2 — 0.003968¢ ) =0
5.63% 107" - 2.549 % 107'¢ + 0.11424 =0
The solutions of the above equations are 504.09 and 4028.23 leading to

El El
=224, —; =63.47\f——
iy \ pAL* [E pAL*

Supplementary Problems

How long does it take a wave to travel across a 30-m transmission line of tension 15,000 N and
linear density 4.7 kg/m?

Ans. 0.531s

Derive the partial differential equation governing the longitudinal vibrations of a uniform bar,

Ans.
a Par

Derive the partial differential equation governing the transverse vibrations of a taut string or cable.

Ans.
au #u

ax Mar

Determine the lowest torsional natural frequency of a S-m-long steel (G =80 10" N/m?,
E =200 x 10° N/m?, p = 7800 kg/m’) annular shaft of inner diameter 20 mm and outer diameter
30 mm. The shaft is fixed at one end and free at its other end.

Ans. 1006 rad/s

Determine the lowest longitudinal natural frequency of the shaft of Problem 7.29.
Ans. 1590 rad/s

A pulley of moment of inertia 1.85 kg/m® is attached to the end of a 80-cm steel (G =
80 10° Nfm®, E =210 x'10° N/m?, p = 7800 kg/m’) shaft of diameter 30 cm. What are the two
lowest natural frequencies of torsional oscillation of the pulley?

Ans. 4655 radfs, 15,000 rad/s

Determine the characteristic equation for the longitudinal oscillations of the bar of Fig. 7-15.
r E A

L |
Fig. 7-15

—N—E

k

LULTTERCRTY
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7.33

7.34

7.35

7.36

7.38

7.39

7.40

VIBRATIONS OF CONTINUOUS SYSTEMS [CHAP. 7

5:- ”\@2 —tan (w\/%l-)

Determine the two lowest natural frequencies for the system of Problem 7.32 if £=150x
10° N/m’, p = 5000 kg/m*, A=15X10"* m, L =1.6 m, and k =3.1 % 10" N/m.

Ans.  5.82 % 10° rad/s, 1.63 x 10° rad/s

Determine the characteristic equation for the system of Fig, 7-16.

{p,E‘A

t L |
Fig. 7-16

il = 2mw’AVpE
@ltan ( \/;wl') T miw’ — pEA?

Show that the mode shapes for the system of Problem 7.32 satisfy the orthogonality condition, Eq.
(7.6).

Develop the orthogonality condition satisfied by the mode shapes of the system of Problem 7.34.
Ans,

L
pAJ X(x) X,(x) dx + mX,(L) X,(L) + mX,(0) X,(0) =0
o

Develop the characteristic equation for a fixed-free beam.
Ans.
wipALM ™
Er )

coshdpcosh = —1, qb={

Develop the characteristic equation for a free-free beam.
Ans.

cosh drcos ¢ =1, qb=(f:i£’:—f;)

Develop the characteristic equation for a beam fixed at one end with a spring of stiffness k attached
at its other end.

Ans, T
d'(cosh ¢ cos ¢ + 1) — B(cos ¢ sinh ¢ — cosh @ sin ¢) =0
- prALI 14 _ 'k£
¢ _( El ) El

Determine the lowest natural frequency of transverse vibration of the system of Problem 7.29.

Ans. 6.41 radfs
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7.41

7.42

7.43

7.44

7.45

Determine the characteristic equation for a beam fixed at one end with a disk of negligible mass
but a large moment of inertia [ attached at its other end.

Ans.
cos ¢ cosh ¢ + B(sin ¢ cosh ¢ + cos ¢ sinh b)) = —1

_ (wlpALY™ 1
"’"( El ) = gl

Show that the mode shapes of the system of Problem 7.37 satisfy the orthogonality condition, Eq.
(7.6).

Develop an orthogonality condition satisfied by the mode shapes of the system of Problem 7.41.

Ans.

[ xx 0 ax + pxIx Ly =0

Determine the steady-state amplitude of angular oscillation of the disk of Fig. 7-17.

Ty sin wt

. G,
{ [

WL

g

Fig. 7-17

Ans.
T.L sin ¢ sz - o P
Cowse-patsmg)’ P al *7°Ne

Determine the steady-state amplitude of the end of the beam of Fig. 7-18.

E 1l
’ i 4 ])Mns'mu::

L i

Fig. 7-18

Ans.
M,(1 + sinh® BL — sin BL sinh BL)
EIB*(1 + cosh BL cos BL)

o=(F)"
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746 A torque T, is statically applied to the midspan of the shaft of Fig. 7-19. Determine the
mathematical form of the time-dependent torsional oscillations when the torque is suddenly

removed,
[V
1
7 L L
— gtz — %
Fig. 7-19
Ans.

Hx, 1) = i A, sin w ﬁ sm Wl
L _
g in(wky2) -k s [21)

;{L-m*'%sm<w;\/§"”

7.47  Use modal superposition to determine the response of the pulley of Problem 7.31 when it is subject
1o an angular impulse H at 1 =10,

Ans.

7.48  Use modal superpasition to determine the response of the system of Fig. 7-20.

o — %

I 2L . L
3 3
Fig. 7-20
Ans.
2 <cos(2/3kn—coskn( - knx
,‘.F"f?u kw? + a?) ( cos w.!-rw Sin w,/ )sm L
T = el
= 2.2 ———
w, =k (pAL')

749 Determine the differential equations to be solved for p, for a simply supported beam subject to a
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7.50

7152

7.53

concentrated load of magnitude [ that starts at the beam's left end at r =0 and traverses the beam
at a speed v.

Ans.
o (kN 2 L\ .. (kmut
B, +[— = 2 _ i o
ot (42 pem 2 [t - (e~ E)] s (522)
Use Rayleigh’s quotient to approximate the lowest natural frequency of longitudinal vibrations of
the system of Fig. 7-21 using
o
$(x)=sin Y3

as a trial function.

- —

——

Fig. 7-21

: o | TEA
C=NapAL v smL

Use Rayleigh’s quotient with the trial function

Ans.

. mx
é(x) =sin L
to approximate the lowest natural frequency of a simply supported beam with a concentrated mass
m at its midspan.

Ans.
Eix*

- | Elm
“=NpAL +2mL

Use the Rayleigh-Ritzgmethod with trial functions
d(x)=Lx -2l +x',  ylx)=ilix —RL 4+
to approximate the lowest natural frequency of a uniform simply supported beam.
Ans.
E‘f 14
9.877(=—)
£ pAL
Use the Rayleigh-Ritz method with trial functions

s =sin’E, g =sin
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to approximate the lowest natural frequency of the system of Fig. 7-22.

4 = 7500 £&
 E— Y — A
A=1X10"m?

2L L
—_F— 35— t=3m

E=210% 10" N
=
Fig. 7-22

Ans. 301 % 10° rad/s



Chapter 8

Vibration Control

Vibration control is the design or modification of a system to suppress unwanted vibrations
or to reduce force or motion transmission. The design parameters include inertia properties,
stiffness properties, damping properties, and even the system configuration including the
number of degrees of freedom.

8.1 VIBRATION ISOLATION

Vibration isolators are used either to protect a foundation from large forces developed
during operation of a machine or to protect a machine from large accelerations induced by
motion of its base. The parallel elastic spring and viscous damper combination in the system of
Fig. 8-1 serves as a vibration isolator. If the machine is subject to an excitation F(r) which
induces a displacement x(¢), the force transmitted to the foundation through the isolator is

Fr=kx + i (8.1)
If the base of the system of Fig. 8-2 is subject to a displacement y(t), then the acceleration
transmitted to the machine of mass m is determined as

P4 kr
g ETRE 8.2)
m

where z(r) is the displacement of the machine relative to its base and is equal to the total
displacement of the isolator. '

x{r) I

(4

y{n-[

T
Fig. 8-1 Fig. 82
3

The above shows that the two types of isolation problems are analogous, and the same
theory is used to analyze both problems.

8.2 ISOLATION FROM HARMONIC EXCITATION

The steady-state response of the machine of Fig. 81 due to a harmonic excitation
F(t) = Fysin wt is
x(r) =X sin (wr — ) (8.3)

F ) 1
. pef__ L 8.4)
where maw? M(r, {) mw,: T=r)y + ) (

235
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where r = w/w, is the frequency ratio. Then the force transmitted to the foundation of Fig. 8-1
is determined using Egs. (8.1) through (8.4) as

Fr=Fsin(wt—A) (8.5)
e - 1+ (2r)?
where Fr=RT(r,{)= ﬁ\/(—-——l —rRR+ 0y (8.6)
oo =y 20
and A =tan T+ @z = l)rj] (8.7)

The function T(r, £} is called the transmissibility ratio and is plotted in Fig. 8-3. Note that
vibration isolation occurs only when T <1. Thus from Fig. 8-3, isolation from harmonic
excitation occurs only when r > V2.

8.3 SHOCK ISOLATION

Consider an excitation F(t}, characterized by parameters £, (perhaps its maximum value},
and a characteristic time (perhaps the duration of the excitation) of f,. The displacement
spectrum for F(1) is a nondimensional plot of kx,,,./F, on the vertical scale versus w,fy/2x on the
horizontal scale. The force spectrum is a plot of Fr ../ F, on the vertical scale versus w,f,/27 on
the horizontal scale. The force spectrum is identical to the displacement spectrum for an
undamped system. The force and displacement spectra are used in design and analysis
applications for transient excitations.

8.4 IMPULSE ISOLATION

If a system is subject to a very short duration pulse, the shape of the pulse is insignificant in
determining the maximum displacement and maximum transmitted force. An excitation applied
to an elastic system can often be modeled as an impulsive excitation if the pulse duration £, is
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much less than the system's natural period 7. In this circumstance, the important quantity is the
total magnitude of the impulse applied to the system:

pis [ F(t) de (8.8)

Application of the impulse leads to a velocity change of

s
m

(8.9)

=

Isolators are designed to protect foundations from large impulsive forces. A nondimensional

representation of the maximum force transmitted through an isolator to its foundation is
Fr. g V=) tan UV = S0 —40W -4 D <0.5

il { ( ¢ (8.10)

o= 2 £>05

mua,

Figure 8-4 shows that Q({) is flat as its minimum and approximately equal to 0.81 for £ =10.24.

035 ! L 1 1
Fig. 8-4

Isolator efficiency for impulsive excitations is defined as

. %muz iel{r\r’l—z’imn"i[{V'iv(’[l-ﬂ(’ﬂfﬂ{‘-ﬂ(‘-l]]} {{05
E@) =F—={ '

'FT_.xmll

LeleVT=0) an™ (VT=F0)] {>05 (8.11)

E(Z) has a maximum of 0.96 for £ = 0.4. It is noted that only evaluations of the inverse tangent
function between 0 and & are used in evaluating Eqgs. (8.10) and (8.11).

8.5 VIBRATION ABSORBERS

Large amplitude steady-state vibrations exist when a system is subject to a harmonic
excitation whose frequency of excitation is near the natural frequency of the system. The
steady-state amplitude can be reduced by changing the system configuration by the addition of a
vibration absorber, an auxiliary mass-spring system illustrated in Fig. 8-5. The addition of a
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vibration absorber adds 1 degree of freedom to the system and shifts the natural frequencies
away from the excitation frequency. The lower of the new system’s natural frequencies is less
than the natural frequency of the primary system while the higher natural frequency is greater
than the natural frequency of the primary system.

Fysin wt
"y
k?
K Ky
2 2
fig. 8-5

If the primary system is subject to a harmonic excitation of magnitude £, and frequency w,
the steady-state amplitude of the primary mass when the absorber is added is

Fy 1-r? |
= 1o 812
% ki =2 = (L+ p)n?+11 @12)
and the steady-state amplitude of the absorber mass is
R 1
== 8.13
A k, rlerZ_r22_(1+p)r!2+1! ( )
@ k,
=2, == 8.14
where iy i Wy m ( )
[ kg
=—, n=Al 8.15
L o Wz m; ( )
p= (8.16)
m

As shown by Eq. (8.12) and illustrated in Fig. 8-6, if r,= 1, the steady-state amplitude of the
primary mass is zero. In this situation

Xy=— (8.17)
When a vibration absorber is added to a system with a harmonic excitation and the absorber

is tuned to the excitation frequency, the point in the system where the absorber is added has
zero steady-state amplitude.
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0
p=015

15 = ronmrr Y
- Loy
“\: g
W 10
oy

5L

L "l i
0 0.5 1 1.5 2

Fig. 8-6

8.6 DAMPED ABSORBERS

Damping may be added to a vibration absorber in order to alleviate two problems that exist
for an undamped absorber:

(a) Since the lower natural frequency of the 2-degree-of-freedom system is less than the
frequency to which the absorber is tuned, large amplitude transient vibrations occur during
start-up. -

(b) As illustrated in Fig. 8-6, the steady-state amplitude of the primary mass grows large for
speeds slightly away from the tuned speed. Thus the absorber cannot be used when a
machine operates at variable speeds.

When viscous damping is added to an absorber, as shown in Fig. 8-7, the steady-state amplitude
of the primary mass is

F (24nq)* + (r2 - q°) (8.18)

Xy == -
ke N{t = [+ (U p)glIn + @+ (2ng L= r(L+ p)F
Wy i3
=z = 8.19
where q i { Ve (8.19)

Equation (8.18) is illustrated in Fig. 8-8 for several values of the parameters.

Fig. 8-7
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u=025

‘ {=02739

=080 gm0 = g =070
Fig. 8-8

The optimum damping ratio is defined as the damping ratio for which the peaks in the
frequency response curve for the primary mass are approximately equal, leading to a wider

operating range. This value is
. - /.._ﬁ‘___ 2
fo = \B(1 + ) et

8.7 HOUDAILLE DAMPERS

A Houdaille damper, illustrated in Fig. 8-9, is used in rotating devices such as engine
crankshafts where absorption is needed over a wide range of speeds. The damper is inside a
casing attached to the end of the shaft. The casing contains a viscous fluid and a mass that is free
to rotate in the casing. If the shaft is subject to a harmonic moment of the form M, sin wt, then
when the Houdaille damper is added to the shaft, its steady-state amplitude of torsional
oscillation is

M, i+ r
8, = k, \/4;1(;-2 tur— 1R+ (P - 1) (8.21)

_
where H "}; (8.22)

\/—’ 2, \/£
1 Ji

The optimum damping ratio is defined as the damping ratio for which the peak amplitude is
smallest. It is determined as

1

fog = —————— (8.23)
" V2 1)(u +2)
If the damping ratio of Eq. (8.23) is used in the design of a Houdaille damper,
gm“=%(-“l_+2) (8.24)
LA
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2
r=1.|2+p (8.25)

and occurs when

Inertia element
rotates in damper

Damping provided
by fluid

LA

8.8 WHIRLING

Whirling is a phenomenon that occurs when the center of mass of a rotor, attached 1o a
rotating shaft, is not aligned with the axis of the shaft. The motion of the shaft and the
eccentricity of the rotor cause an unbalanced inertia force in the rotor, pulling the shaft away
from its centerline and causing it to bow. Whirling is illustrated in Fig. 8-10. For synchronous
whirl, where the speed of the whirling is the same as the angular velocity of the shaft, the
distance between the shaft’s axis and its centerline, the amplitude of the whirl, is

- 26)

¥

where e is the eccentricity of the rotor, { is the damping ratio of the shaft, and r = w/w, where
w, is the natural frequency of the rotor and shaft system.

O: Axis of shaft

C: Geometric center of rotor
G Mass center of rotor

e Eccentricity

X: Whirl amplitude

Fig. 8-10
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Solved Problems

What is the maximum stiffness of an undamped isolator to provide 81 percent isolation
for a 200-kg fan operating at 1000 r/min?

For 81 percent isolation the maximum transmissibility ratio is 0.19. Using Eq. (8.6) with £ =0
and noting that isolation only occurs when r > V2 lead to

1
0.19=2——
e

which is solved giving r = 2.50. The system’s maximum allowable natural frequency is

(1000 L) (22 20) (100} 1 o2
min r/\60s H

and thus the maximum isolator stiffness is

it = rady’_ s N
k=, (200 kg)(41.9 %) 35110~

What is the minimum static deflection of an undamped isolator 1o provide 75 percent
isolation to a pump that operates at speeds between 1500 and 2000 r/min?

For 75 percent isolation, the transmissibility ratio is 0.25. Then using Eq. (8.6) with { =0 and
noting that isolation occurs only when r > V2 lead to

1
0.25=5—
=1

whose solution is r = 2.24. From Fig. 8-3, is is noted that isolation is greater at higher speeds. Thus
if 75 percent isolation is achieved at 1500 r/min, better than 75 percent isolation is achieved at
higher speeds. Thus, the maximum natural frequency is

A e e

o, = —= -

r 2.24 : 5

Then the mimmum static deflection is

A 150-kg sewing machine operates at 1200 r/min and has a rotating unbalance of
0.45 kg-m. What is the maximum stiffness of an undamped isolator such that the force
¥ transmitted to the machine’s foundation is less than 2000 N?
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The excitation frequency and magnitude are

e (um m—'m)(zx %’)(16;“—:‘) = 1257 “45—"

Fy=myew®= {045 kg-m)(lZS,? %) =7TAUXICN

The maximum transmissibility ratio such that the amplitude of the transmitted force is less than
2000 N is
_F_ 200N

=TT TRl 028
FoIx10e N O

Application of Eq. (8.6) with { =0 and noting T < 1 only when r > 1 lead to

0.281 =% — r=2134

The minimum natural frequency and maximum stiffness are calculated as

d
, 1257 L‘is— s
T s T g
r
k = maw,? = (150 kg)(ss.q %’) =520 10° E

A 20-kg laboratory experiment is to be mounted to a table that is bolted to the floor in a
laboratory. Measurements indicate that due to the operation of a nearby pump that
operates at 2000 r/min, the table has a steady-state displacement of 0.25 mm. What is the
maximum stiffness of an undamped isolator, placed between the experiment and the table
such that the experiment's acceleration amplitude is less than 4 m/s*?

The excitation frequency is 2000 r/min = 209.4 rad/s. The magnitude of the table’s accelera-
tion is

B dy?
WY = (209,4 =) (0.00025 m) = 10.97 3

The required transmissibility ratio is .

The minimum frequency ratio is calculated by

0.365 = —_r=193

il
-1

The maximum natural frequency and isolator stiffness are

F
k = mw,? = (20 kg)(lﬂs.i %d-) =235% 10° E
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A 100-kg turbine operates at 2000 r/min. What percent isolation is achieved if the turbine
is mounted on four identical springs in parallel, each of stiffness 3 % 10° N/m?

The equivalent stiffness of the parallel spring combination is
km=4k=4(3>< 3 E)=l.2:»( 1l'.'.|°E
m m

When the turbine is placed on the springs, the system’s natural frequency is

H N
" \m 100 kg ™

Noting that 2000 r/min = 209.5 /rad/s, the frequency ratio is

200.4 24
r= 3=—Sd= 1.912
“n 1095 =€
5
The transmissibility ratio is
T= 1 = .__..._I.._. =376

F-1 (1.912F -1
and thus the percentage isolation is

100(1 — T) = 62.4 percent

What can be done to the turbine of Problem 8.5 to achieve 81 percent isolation if the
same mounting system is used?

In Problem 8.1 it is shown that 81 percent isolation requires a minimum frequency ratio of
2.50. Thus for the system of Problem 8.5, the maximum natural frequency is

waBE
) .
T o e

w, =

Since the same mountings as in Problem 8.5 are to be used, the natural frequency is decreased only
if the mass is increased. The required mass is

k 1.2 x10¢ N
== =1709 kg
2 2
o (sa8™)
s
Thus 81 percent isolation is achieved if 70.9 kg is added 1o the turbine. -

List one negative and two beneficial effects of adding damping to an isolator.

From Fig. 8-3, it is seen that in the range of isolation (r > V2), the best isolation is achieved
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for an undamped isolator. Thus a negative effect of adding damping is to require a larger frequency
ratio to achieve the same isolation.

Since the range of isolation occurs for r > 1, resonance is experienced during start-up. Adding
damping decreases the maximum start-up amplitude.

The addition of viscous damping leads to ller isolator displac

8.8  An isolator of damping ratio { is to be designed to achieve a transmissibility ratio T < 1.
Derive an expression, in terms of { and T, for the smallest frequency ratio to achieve
appropriate isolation.

The relation between T, r, and { is given by Eq. (8.6):

1+42%"

T=\rrar-nr+1

Squaring and rearranging the previous equation leads to

r‘+{4§’%—2)r’+r;:]=ﬂ

The preceding equation is quadratic in r*. Use of the quadratic formula leads to

12 [ () - - ()

Since T <1, only the choice of the plus sign leads to a posuwe r*. Hence the smallest allowable

frequency ratio is
e -2 (T e () - o] - ()

8.9  Solve Problem 8.1 as if the isolator had a damping ratio of 0.1.

Using the results of Problem 8.8 with { =0.1 and T = 0,19 leads to

- (1 -207{ %]

T 17 (019 1 )"’
+\][' 2001507 ]} (0.19y

=2.63
Thus the i natural freq y and maximum allowable stiffness are
(g or ) )
_w min 60 s — 198 rad
Sy 2.63 s

rad)

k= mew,? = (200 kg)(39 82 29) =3.17x10° E
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8.10 Solve Problem 8.3 as if the isolator had a damping ratio of 0.08.
<
= From Problem 83 the required transmissibility ratio is 0.281. Thus using the results of
wancaa Problem 8.8 with { =0.08 and T = 0.281 leads to

= - 20087 GG

. \fz(o.osy (0.281)° - 1]_,]‘ (02817 - 1 )

(0.281) T8y
=2.18
The maximum natural frequency and maximum isolator stifiness are calculated as
i 125.7 E:—d -
y = — == 57.7 —
AR T

k= maw, = (150 k )(577@) _«a,ogxw‘g

8.11 What are the maximum start-up amplitude and the steady-state amplitude of the system
i+ of Problem 8.107

Wathcad Recall from Chap. 3 that the amplitude is related 1o the magnification factor by
B 1. .
kVT=7ry+ @)
Substituting values calculated in Problems 8.3 and 8.10 leads to a steady-stale amplitude of
T X10'N 1

X= —"M(; )=

X= ——— — m
4.99 % }0‘ N VL= (2.18)°F + [2(0.08)(2. IB)]
The maximum value of the magnification factor is
1
Mpar = ——
; UV
Thus the maximum amplitude during start-up is
F 7.1 %10 % )
K == My = =8.93 cm

k 4.99 % W‘S 2(0.08) V1~ (0.08)’

8.12 Design an isolator by specifying & and ¢ for the system of Problem 8.3 such that the
=i+ maximum start-up amplitude is 30 mm and the maximum transmitted force is 3000 N,

The isolator is to be designed by specifying k and ¢. Two constraints must be satisfied: The

Mathcad
maximum start-up amplitude is 30 mm, which leads to
TAL = 107 E =
0.03 m>——1 (8.27)
2NV -1
and the maximum transmitted force must be less than 3000 N, which leads 10

1+(2r)

\/ a=ry+Quy @8

3000 N>T7.11 %10 N



CHAP. §] VIBRATION CONTROL 247

8.13

=1

Wathcad

8.14
=1

Mathcad

Equation (8.27) can be rewritten in terms of r by noting & = mew?/r. The result is

?,llxll}‘E =

r
)’ uVi-T @29

0.03

(150 kg)(lZS.? %ﬁ

Equations (8.28) and (8.29) must be simultaneously satisfied. There are many solutions to Egs.
(8.28) and (8.29) which can be obtained by trial and error. One solution is r = 1.98 and ¢ =0.20,
which leads to X .. =0.03 m and F =2998 N. Thus

mw:

k=——=6.05x 10° s
r m

Using the isolator designed in Problem 8.12, what, if any, mass should be added to the
machine to limit its steady-state amplitude to 3 mm?

The steady-state amplitude is calculated by
X = 5'-_'_]__".__._..._.__
kVT=r) + @)’

When mass is added to the machine, for a fixed &, the natural frequency is decreased, and hence
the frequency ratio is increased. Using the values calculated in Problem 8.12,

0,003 m = 1L X10° N 1 ‘
6.05% 10° N V(I -7 + [2(0.08)F
m

which is solved for r = 2.21, leading to

N b
6.05 % 10° r;)(2.21)

" (
AW 3 = 187.0 kg

m=—=—=

2 2 2
e B (1257 2%)
5
Hence 37.0 kg must be added to the machine.

Solve Problem 8.4 as if the isolator had a damping ratio of 0.13.

The required transmissibility ratio is determined in Problem 8.4 as T =0.365. Using the
equation developed in Problem 8.8 with T =(0.365 and { = (.13 leads to

= (1- 2005 0221

(0.363)°
-l 20 ST [E5T))

=2.011
The maximum natural frequency and maximum isolator stiffness are determined as

209.4 L

k= mo,’ = (20 kg)(104.1 %) =217x10° E
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8.15 For the isolator designed in Problem 8.14, what is the steady-state amplitude of the
Zi+  experiment, and what is the maximum deformation in the isolator?

Waheud Using the theory of Chap. 3, the steady-state amplitude of the experiment is
X = YT(r, ) = ¥T(2.011, 0.13) = (0.00025 m)(0.365)
=013x10%m

The maximum deformation in the isolator is the same as the steady-state amplitude of the relative
displacement between the experiment and the table:

Z=YA(2.011,0.13)

(2.011)°
V[1 = (201 + [2(0.13)(2.01)
=327x10"m

= (0.00025)

8.16 A 200-kg turbine operates at speeds between 1000 and 2000 r/min. The turbine has a
é rotating unbalance of 0.25 kg-m. What is the required stiffness of an undamped isolator

M4 such that the maximum force transmitted to the turbine’s foundation is 1000 N?

The rotating unbalance provides a frequency squared excitation to the hine of the form
Fy=mgew?
Thus the transmitted force is of the form
Fr = muew’T(r, {)

As r increases above V2, T(r, {) decreases, However, since £ is also proportional to w’, the
transmitted force decreases with increasing w until a minimum is reached.

In view of the abave, if the isolator is designed such that sufficient isolation is achieved at the
lowest operating speed, the transmitted force must be checked at the highest operating speed. To
this end, at the lowest operating speed,

2
£y = moew? = (0.25 kg-m)(zm.? %) —2740 N
1000 N 1
Y 2740 N 03’65-r7_1 - r=193
07 g
&Sy A Oy
Checking at the upper operating speed,
209.4 Ll
5 "
| i w— - rad = 3.86
T542

2
(0.25 kg~m)(209.4 r—?)
Fr = mpew? e —-—W =T8IN
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Hence the isolator design is acceptable with

N

m

2
k= mw,? = (200 kg)(54,2 r%g) =588 10°

8.17 Repeat Problem 8.16 as if the isolator had a damping ratio of 0.1.
ol

The solution procedure is as described in Problem 8.16. Setting T(r, 0.1) = 0.365, using the
vancas equation derived in Problem 8.8, leads to

o= (1-200555)

" \f[z(m}’[%] g 'T i [% )"‘

Fr=m,ew’T(3.950.1)

B rad\? L= [2(0.1)(3.95)]
=53 kg'“’?(m“‘ s ) [1= (395 + [2(00.0)(3.95)F

=955N
Hence the isolator design is acceptable with

i rady’ N
k= ma,? = (200 kg}(52.9 S) =5.6010°

8.18 Repeat Problem 8.17 as if the upper operating speed were 2500 r/min.
i ; " 5 p i 7

The transmitted force at the upper operating speed for the turbine with the isolator design of
watheas Problem 8.17 is calculated as

, 2618 1‘;—‘]
re=fa——a495
~ e e

Fr=muea’T(4.95,0.1)

L rady’ | 1+ [2(0.1)(4.95)]
o kg’“‘}(zmﬁ s ) VT = (4.95)F + [200.1)(4.95)F

=1025 N

Thus this isolator is not acceptable. An isolator cannot be designed such that sufficient
isolation is achieved over the entire operating range.
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8.19 Measurement indicates that the peak components of the table vibration of Problem 8.4
iz are a 0.25-mm component at 100 rad/s and a (.4-mm component at 150 rad/s. An
available isolator has a stiffness of 8 x 10* N/m and a damping ratio of 0.1. Will the
acceleration felt by the apparatus exceed 6 m/s* when this isolator is installed?

Let r = 100/ w,. Then 150/w, = 1.5r. An upper bound on the acceleration fell by the apparatus

a = (0,00025 m)(wo %1) T(r,0.1)
d 2
+(0.0004 m)(150 %) T(1.56,0.1)
- 1+ 2001
“EIN =Py + 20000 F

.o / 1+ [2(0.1)(1.50))
YN = (LS + (200000150

5 f 1+ 0,047 [ 140097
TN A - L6 + 1 \/5.0625#—4_41H+1

If the proposed isolator is used, then

S [83 10° E - 100 523
w, = J;;= W‘:E&ZT r= E=LSS
s

and the upper bound on the acceleration is calculated as 3.86 m/s®. Thus the available isolator is
sufficient.

8.20 Repeat Problem 8.1 as if the isolator damping is assumed to be hysteretic with a
hysteretic damping coefficient of 0.2.

The appropriate form for the transmissibility ratio for a system with hysteretic damping is

; Cier
Ti(r, h) = A-rr+i

Thus for 81 percent isolation with an isolator of h = 0.2,

- 1+(027 \/ 1.04
0.19 \/(1 -+ (02¢ Vr-27+1.04

(019 (r =2 + 1.04) = 1.04

which is solved yielding r = 2.52. Hence the maximum allowable natural frequency is
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from which the maximum isolator stiffness is calculated as

2
k=mw,? = (200 kg)(4l,6 55‘5) =345%10°
s m

Problems 8.12 through 8.25 refer to the following: During testing, a 150-kg model of an
automobile is subject to a triangular pulse, whose force and displacement spectra are shown in
Fig. 8-11.

Fig. 8-11

8.21 If the model is mounted on an isolator of stiffness 5.4 X 10° N/m and damping ratio 0.1,
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what is the maximum transmitted force and maximum model displacement for a pulse of
magnitude 2500 N and duration 0.12 s?

The system's natural frequency is

5.4x10° 2
i, =Bl o B o080
" m 150 kg 5

The value of the parameter on the horizontal scale of the spectra is

(s0 “o125)
Waly ih = S s
2 2x )

From the force spectrum, Fr/F,= 1.30; hence
Fr = 1.30F, = 1.30(2500 N) = 3250 N

From the displacement spectrum, kx.,./F, = 1.35; hence
Vd

£, 1.35(2500
Xmaa = 1351 LEREN 6.25 mm

SAx 10 —
m

8.22  What is the maximum stiffness of an isolator such that the maximum transmitted force is
less than 2000 N for a pulse of magnitude 2500 N and duration (.12 s?

It is desired to set Fy/F,=2000/2500 = (0.8. From the force spectra, this corresponds 1o a
horizontal coordinate of 0.3. Hence

Wty _

m 0.3 w,

0.3(2x) rad
== =1571 25
012s 5

The maximum allowable stiffness is

2 N
k= mw,?= (150 kg)(:s.ﬂ ’a?d) =370x10' =

8.23 What is the maximum displacement of the model with the isolator of Problem 822
installed?

For a horizontal coordinate of 0.3, kx.../F, = 0.8; hence,
_F2= 0.8(2500 N) _
3.70x10° —
m

Xmaa = 0.8 0.054 m

-

8.24 If the model is mounted on an isolator of stiffness 5.4 X 10° N/m and damping ratio 0.14,
~r+ what is the maximum transmitted force if the pulse has a magnitude of 3000 N and a

duration of (.01 s?
Watncad

The natural frequency for the model on this isolator is 60 rad/s; thus the natural period is
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8.25

i
=

Mathcad

8.26

s

Wathcad

0.105s. Since the pulse duration is much smaller than the natural period, a short duration pulse
assumption is used. The magnitude of the impulse is the total area under the force time plot;

nuls

I J' F(e) dr =2 3(0,005 5)(3000 N) = 15 N-s

From Eq. (8.10), Q(0.14) = 0.848; thus,

Fr = 0.848/w, = 0.848(15 N- s)( Sd) 7.63 %X 10F N

What is the model's maximum displacement for the situation described in Problem 8.24?

The velocity induced by the application of the impulse is

I 15N-s m

m'isnkg'u' s

From Eq. (8.11), E(0.14) = 1.39. Note that the range of the inverse tangent function is taken
from O to & Then

%mu: —(150 kg)(ﬁ 1 TJ
£ =1, =13 7
o = 139 7 1392 = 137 mm

The 120-kg hammer of a 300-kg forge hammer is dropped from 1.3 m. Design an isolator
for the hammer such that the maximum transmitted force is less than 15,000 N and the
maximum displacement is a minimum.

The velocity of the hammer upon impact is

v, = Vagh = 4 f'z(q_m s—":)(l.a m) =5.05 %

The principle of impulse and momentum is used to determine the velocity of the machine induced
by the impact:

m
a0 kgl(S.OS X ) L o
" STm T 300kg s

For a specified transmitted force, the minimum maximum displacement is attained by choosing
¢ =0.4. Then the required natural frequency is obtained by

=Q(0.4)

mvw,,
w, = (;('04}= LERLLL, sy 04
mQ04) (300 kg)(z.m ?)(0.33)

Thus the maximum allowable stiffness is

k=mw? (300k}(28[—) 23?><10‘N
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Wathcad

8.28

=i+

Wathcad
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A 200-kg machine is attached 1o a spring of stiffness 4 X 10° N/m. During operation the
machine is subjected to a harmonic excitation of magnitude 500 N and frequency
50 rad/s. Design an undamped vibration absorber such that the steady-state amplitude of
the primary mass is zero and the steady-state amplitude of the absorber mass is less than
2 mm.

The steady-state amplitude of the machine is zero when the absorber is tuned to the excitation

frequency. Thus
[k
=1l = wn=w — ’-n-i‘;=w

When this occurs, the steady-state amplitude of the absorber mass is given by Eq. (8.17). Thus

A SN _ N
(l,UOZmak—: . k,zﬂlmzm—z.sxl()’m

Using the minimum allowable stifiness, the required absorber mass is

Thus an absorber of stiffiness 2.5 X 10° N/m and mass 100 kg can be used.

What are the natural frequencies of the system of Problem 8.27 with the absorber in
place?

The natural frequencies of the 2-degree-of-freedom system with the absorber in place are the
vales of w such that the denominator of Eq. (8.12) is zero. Thus, noting that the mass ratio is
= 100/200= 0.5,

rRi-nt =157 +1=0

4
& -w:(l‘ia+-l—})+]=0
iy W

2 2
Wy Wy
w' = (L3wy" + %)+ wy e =0

It is noted that w,, = 50 rad/s, and

P ek g rad
alyy = ’?I= -'2—D'G"|E-E—=44‘72T

Substitution of these values leads to
w' =575 X 10°w® + 5 X 10¢ =0
which is solved for w® using the quadratic equation. Taking the positive square roots of the roots
leads 1o
rad rad

w, = 32698 —, w; =68.42 —
s % 5
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8.29

8.30

831

A piping system experiences resonance when the pump supplying power to the system
operates at 500 r/min. When a 5-kg absorber tuned to 500 r/min is added to the pipe, the
system'’s new natural frequencies are measured as 380 and 624 r/min. What is the natural
frequency of the piping system and its equivalent mass?

The system has natural frequencies corresponding to values of w that makes the denominator
of Eq. (8.12) zero. Using the definitions of Eqs. (8.14) and (8.15), this leads to

w'—[w, + (1 + ploy’le’ + o, 'en’ =0 (8.301)
Noting that

wyr = 500 r/min = 52.4 %’

and applying Eq. (8.30) with @ = 380 r/min = 39.8 rad/s leads to

251X 10° + 11T X 100w, 2 — 4.35 % 10°(1 + ) =0
Application of Eqg. (8.30) for w = 624 r/min = 65.3 rad/s leads to

182 =107 = 1.5l X 100w, = L1IT 2 107 (1 + ) =0
Simultaneous solution of the previous two equations leads to

d
W, =492 5:— 2 =0225

Hence the piping system’s natural frequency is 49.2 rad/s, and its equivalent mass is

Redesign the absorber used in Problem 8.29 such that the system’s natural frequencies
are less than 350 r/min and greater than 650 r/min.

Applying Eq. (8.30) of Problem 8.29 with w = 350 r/min = 36.7 rad/s, w,, = 49.2 rad/s, and
@y =524 rad/s leads to pu =0414. Applying Eq. (8.30) of Problem 8.29 with w =650 r/min =
68.1 rad/s, with the same values of w,, and w;; leads to g =0.330. Thus in order for the natural
frequencies of the system with the absorber added to be less than 350 r/min and greater than
650 r/min requires an absorber mass of at least

my = pm, = (0.414)(22.2 kg) = 9.19 kg

Then the absorber stiffness is

2
Ky = myt = (9.19 kg)(52,4 '%d) =252 % 10° E

A 100-kg machine is placed at the midspan of a simply supported beam of length 3 m,
elastic modulus 200 X 10° N/m?, and moment of inertia 1.3 X 107® m*. During operation
the machine is subjected to a harmonic excitation of magnitude 5000 N at speeds between
600 and 700 r/min. Design an undamped vibration absorber such that the machine’s
steady-state amplitude is less than 3 mm at all operating speeds.

The beam'’s stiffness is
43(200 x 10° -11)(1 3% 10 m')
m?/t N

48ET
==l =d4.62 % 10° —
L (3 m)’ R

k
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The system’s natural frequency is

— 4.62)(]{}"E
= /E'.= __m=630.ra_d
“n " \m, 100 kg Ts

Assume that steady-state vibrations are to be eliminated at this speed; then,

rad
Wy, = wy; = 68.0 e

Note that in Eq. (8.12}, for r <1, the numerator is positive and the denominator is negative; hence,
in order to enforce X, <3 mm for w = 600 r/min = 62.8 rad/s with r, = r, = 62.8/68.0 = 0.923,

5000 N 1 (0.923)
N (0.923)(0.923) — (0.9237 — (1 + p)(0.923)* + 1
m

=0.003 m =

4.62 % 107

which is solved for g =0.652. For r,> 1, both the numerator and denominator of Eq. (8.12) are
negative. Hence for @ =700 r/min = 73.3 rad/s and r, = r, = 73.3/68.0 = 1.078,

5000 N 1 - (1L078y
N (1.O78) (1.078) — (1.078) = (1 + u)(1.078) + 1
m

0.003 m =—
4.62 x 10°

which is solved for p = 0.525, Since the mass ratios calculated represent the minimum mass ratios
for the amplitude to be less than 3 mm at the limits of the operating range, the larger mass ratio
must be chosen. Hence

o =10.652, my = pm, = (0.652)(100 kg) = 65.2 kg

Kz = myan? = (65.2 kgl(ﬁs,o '2‘?)‘ =3.014 % 10° E

If an optimally designed damped vibration absorber is used on the system of Problem
8.31 with a mass ratio of 0.25, what is the machine’s steady-state amplitude at 600 r/min?

The optimum absorber tuning is obtained from Eq. (8.19) as

B I
T v n"1+025 08

The optimum damping ratio is calculated using Eq. (8.20):
| T 3(0.25)

= =, =22 _ 27

S NBI+m - VE(1+o2s) 027

Using Eq. (8.18) with these values and r, = (923, £, =5000 N,gnd k, =4.62 % 10" N/m leads to
X, =29cm.

A 300-kg machine is placed at the end of a cantilever beam of length 1.8 m, elastic
modulus 200 % 10° N/m?*, and moment of inertia 1.8 % 10~* m*. When the machine
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operates at 1000 r/min, it has a steady-state amplitude of 0.8 mm. What is the machine’s
steady-state amplitude when a 30-kg absorber of damping coefficient 650 N-s/m and
stiffness 1.5 ¥ 10° N/m is added to the end of beam?

The beam’s stiffness is

7 5
k_lg_3(zmx10 )(lsxm m’) i
A (1.8 m)! : m

and the system’s natural frequency is

hssmo*
\/_ e -735—

The frequency ratio for w = 1000 r/min = 104.7 rad/s is

The excitation amplitude is calculated from knowledge of the steady-state amplitude before the
absorber is added:

F=k:X (7= 1)= (185 x 10" E)(u.m m[(133) - 1]

=1L14x10' N

The natural frequency of the absorber is

LSMI‘}’E
W = |J£= —m=70';@
= iy 30 kg |

Thus the parameters of the absorber design are

rad
: 707 =
_m:_30kg _ _0n_ s _
™ = 00ks 0.1 g o 0.90
5
o2
£ m
{= =0.153

zm;zz \/(1.5 X 10° E)(so ke)

Application of Eq. (8.18) with these values leads to X, =9.08 <10 m

An engine has a moment of inertia of 3.5 kg-m* and a natural frequency of 100 Hz.
Design a Houdaille damper such that the engine’s maximum magnification factor is 4.8.

If the optimum damper design is used, then setting the maximum magnification factor to 4.8
and using Eq. (8.24) leads to

P aa S TS
I
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The optimum damping ratio is determined from Eq. (8.23) as
= e 0.360
V2(1.526)(2.526)

The Houdaille damper parameters are determined from Eq. (8.22) as
Ji=pd, = (0.526)(3.5 kg-m’) = 1.84 kg-m*

e= 2 03015 g 022 2.2
=832 N_-s
m

8.35 During operation the engine of Problem 8.34 is subjected to a harmonic torque of

-

magnitude 100 N-m at a frequency of 110 Hz. What is the engine’s steady-state amplitude

e when the Houdaille damper designed in Problem 8.34 is used?

The frequency ratio is

Thus from Eg. (8.21),

= ___,ﬁ_\/ 47+
"L NAC(P + prt = 1P+ (P - 1P
_ 100 N-m [ 4(0.360)° + (1.1)° )
- 2 2) F I_112 2 _ 112 2
(3.5 kg-m’][lﬂﬂ(Zx) %t] Va(0.360)(1.1)7 + 0.536(1.1) — 1] + [(1.1) = 1](1.1)

=1.4x%10"*rad

8.36 A 40-kg rotor has an eccentricity of 1.2 cm. It is mounted on a shaft and bearing system

whose stiffness is 3.2 X 10° N/m and has a damping ratio of 0.07. What is the amplitude of
whirling when the rotor operates at 1000 r/min?

The shaft's natural frequency is

3,?.><|0’E
R CHPY it NP~
" \m 40 kg s

(o 5o 2 )

min r 60 s

aT,. rad
89.4 ks 117,

The frequency ratio is

The amplitude of whirling is calculated using Eq. (8.27):

_ (0.012 m)(1.17)? S
V1= (L17)T + [2(0.07) (11D
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8.37

=ix

Wathcad

8.38

8.39

8.40

8.41

8.42

8.43

An engine flywheel has an eccentricity of 1.2 em and mass of 40 kg. Assuming a damping
ratio of (.05, what is the necessary stiffness of its bearings to limit its whirl amplitude to
1.2 mm at all speeds between 1000 and 2000 r/min?

The maximum allowable value of A is

Xepae 12 mm

A = e  12Zem -
Then using Eq. (8.26),
2
F
0l€————
Vit =199 + 1
r<0302

Thus at all operating speeds, r<0.302. Thus since the largest operating speed is 2000 r/min =
209.4 rad/s

Hence the minimum bearing stiffness is

2
k=mo, = (40 kg)(693 de) = 1.93% 10 g

Supplementary Problems

What is the maximum stiffness of an undamped isolator to provide 81 percent isolation to a 350-kg
sewing machine when it operates at 2100 r/min?

Ans, 2,70 % 10° N/m =

What is the maximum stiffness of an undamped isolator to provide 70 percent isolation to a 200-kg
pump that operates at speeds between 1000 and 1500 r/min?

Ans. 506> 10° N/m

Repeat Problem 8.38 for an isolator with a damping ratio of 0.1.

Ans. 244 X 10° N/m

Repeat Problem 8.39 for an isolator with a damping ratio of 0.08.
Ans. 487 % 10° N/fm
A 50-kg compressor operates at 200 rad/s. The only available isolator has a stiffiness of

1.3 % 10° N/m and a damping ratio of 0.1. What is the minimum mass that must be added to the
compressor to provide 68 percent isolation?

Ans. 917 kg

During operation at 1000 r/min, a 200-kg tumbler produces a harmonic force of magnitude
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8.46

8.47

8.49
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5000 N. What is the minimum static deflection of an isolator of damping ratio 0.12 such that the
transmitted force is less than 2000 N7

Ans. 3.33 mm

What is the steady-state amplitude of the system of Problem 8.43 when the isolator with the
minimum static deflection is installed?

Ans. 3.08 mm

A 15-kg flow meter is mounted on a table in a laboratory. Measurements indicate that the
dominant frequency of surrounding vibrations is 250 rad/s. The amplitude at this frequency is
0.8 mm. What is the maximum stiffness of an isolator of damping ratio 0.1 such that the
acceleration transmitted to the flow meter is 5 m/s*?

Ans. 7.01 X 10° Nfm

A 60-kg engine operates at 2000 r/min and has a rotating unbalance of 0.2 kg-m. Can an isolator of
damping ratio 0.1 be designed to limit the transmitted force to 1000 N and the steady-state
amplitude 10 3 mm?

Ans. No, the maximum allowable isolator stiffness to limit the transmitted force to 1000 N is

2.27 % 10" N/m. If the stiffness is reduced below this value, the steady-state amplitude will always
be greater than 3 mm.

What is the minimum mass that can be added to the engine of Problem 8.46 such that a
steady-state amplitude of 3 mm can be attained when a transmitted force of 1000 N is attained
using an isolator of damping ratio 0,17

Ans. 12.8kg

What is the maximum stiffness of an isolator of damping ratio 0.1 that limits the transmitted force

to 1000 N when 12.8 is added to the engine of Problem 8.477

Ans. 275 10° N/m

What is the maximum start-up amplitude of the system of Problem 8.48.

Ans. 016 m

Repeat Problem 8.4 as if the isolator had hysteretic damping with a damping coefficient of 0.15.
-

Ans. 233X 10° N/m

What is the maximum stiffness of an isolator of damping ratio 0.1 such that the acceleration felt by
the apparatus of Problem 8,19 is less than 6 m/s™?

Ans. 1.08 % 10" N/m
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The systems of Problems 8.52 through 8.56 are subject to a pulse of the form of Fig. 8-12. The
force and displacement spectra for this type of pulse are given in Fig. 8-13.

£y

fa

Fig. 8-12

L Displacement Spectrum

2 - . 7 =0.00

L Force Spectrum

2 L . £=000

= £=0.10

Fig. 8-13

852 A 50-kg machine is mounted on four parallel springs, each of stiffness 3 x 10° N/m. What is the
maximum transmitted force when the machine is subject to an excitation of the form of Fig. 8-12
with F,= 1200 N and ¢, = 0.05 s?

Ans. 2040N
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VIBRATION CONTROL [CHAP. 8

What is the maximum displacement of the machine of Problem 8.527
Ans. 1.7 mm
What is the maximum stiffness of an isolator of damping ratio 0.1 such that the maximum

transmitted force for a 100-kg machine is 1125 N when it is subjected to the excitation of Fig. 8-12
with £, = 1500 N and 1, = 0.04 57

Ans. 2.22x10°N
What is the minimum stiffness of an isolator of damping ratio 0.1 such that the maximum

displacement of a 150-kg machine is 2.2 mm when it is subjected to an excitation of the form of
Fig. 8-12 with F,=2000 N and 1, = 0.06 s?

Ans. 1% 10° N/m
What is the range of stiffness of an isolator of damping ratio 0.1 such that when a 200-kg machine is

subjected to an excitation of the form of Fig. 8-12 with F,= 2000 N and 1, = 0.05 5, the maximum
transmitted force is 1500 kg and the maximum displacement is 6 mm?

Ans. 2% 10°P N/m<k <2.84%10° N/m
A 200-kg machine rests on springs whose equivalent stiffness is 1 10°N/m and damping

coefficient 1500 N-s/m. During operation the machine is subjected to an impulse of magnitude
75 N-s. What is the maximum force transmitted 1o the machine’s foundation due to the impulse?

Ans. 1.59x 10" N

What is the maximum displacement of the machine of Problem 8.577
Ans. 1162 mm
During operation a 65-kg machine is subjected to an impulse of magnitude 100 N-s. Specify the

stiffness and damping coefficient of an isolator such that the transmitted force is 4000 N and the
machine’s maximum displ is minimized

Ans. k=134%10° N/m, ¢ = 2.36 X 10° N-s/m

A 50-kg machine is mounted on a table of stiffness 1 X 10° N/m. During operation it is subjected to
a harmonic excitation of magnitude 1200 N at 45 rad/s. What is the required stiffness of a 5-kg
absorber to eliminate steady-state vibrations of the machine during operation?

Ans. 1.01 X 10° N/m

What is the steady-state amplitude of the absorber mass for the system of Problem 8.607

Ans. 11.9cm

What are the natural frequencies for the system of Problem 8.60 with the absorber in place?

Ans, 383 rad/s, 52.5 rad/s

For whal range of frequencies near 45 rad/s is the steady-state amplitude of the machine of
Problem 8.60 less than 5 mm when the absorber is in place?

Ans. 441 rad/s = w = 45.9 rad/s

When a 10-kg undamped absorber tuned to 100 rad/s is added o a 1-degree-of-freedom structure
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8.65

8.66

8.67

8.68

8.69

8.70

8.71

8.72

8.73

of stiffness 5% 10" N/m, the lowest natral frequency of the structure is 85.44 rad/s. What is the
higher natural frequency of the structure?

Ans. 103 rad/s
A 15-kg undamped absorber tuned to 250 rad/s is added to a 150-kg machine mounted on a

foundation of stiffness 13 10" N/m. At 250 rad/s, the amplitude of the absorber mass is 3.9 mm.
What is the amplitude of the machine at 275 rad/s?

Ans. 901 %10 m
A 50-kg machine is placed at the midspan of a 1.5-m simply supported beam of elastic modulus
210 % 10" N/m* and moment of inertia 1.5 X 107" m*. When running at 3000 r/min, the machine’s

steady-state amplitude is measured as 1.2 cm. Design an undamped absorber such that the
steady-state amplitude is less than 2 mm at all speeds between 2900 and 3100 r/min.

Ans. A nonunique design is 2.77 kg, 2.77 % 10" N/m.

If an optimally designed 15-kg damped vibration absorber is used for the system of Problem 8.66,
what is the steady-state amplitude of the machine when operating at 3000 r/min?

Ans.  3.39 mm

A 20-kg machine is mounted on a foundation of stiffness 1.3 % 10" N/m. What are the stiffness and
damping coefficient of an optimally designed 4-kg damped vibration absorber?

Ans.  1.B1 % 10° N/m, 134.3 N-s/m

With the absorber designed in Problem 8.68 in place, what is the steady-state amplitude of the
machine when operating at 85 rad/s if the machine has a rotating unbalance of 0.5 kg-m?

Ans. 0.0925m

A 110-kg machine is subjected 1o an excitation of magnitude 1500 N. The machine is mounted on a

foundation of stiffness 3 10° N/m. What are the mass and damping coefficient of an optimally
designed vibration damper such that the maximum amplitude is 3 mm?

Ans. 44 kg, 5624 N-s/m

What is the steady-state amplitude at 180 rad/s of the machine of Problem 8.70 when the optimally
designed vibration damper is added?

Ans.  1.21 mm
An engine has a mass moment of inertia of 3.5 kg-m® and is mounted on a shaft of stiffness
1.45 % 10° N-m/rad. If the applied moment has a magnitude of 1000 N-m, what is the engine’s

steady-state amplitude at 2000 r/min when an optimally designed Houdaille damper of mass
moment of inertia 1.1 kg-m® is added?

Ans.  1.60°
The center of gravity of a 12-kg rotor is 1.2 ¢cm from its geometric center. The rotor is mounted on

a shaft and spring-loaded bearings of stiffness 1.4 X 10f N/m. Assuming a damping ratio of 0.05,
what is the amplitude of whirling when the rotor operates at 1500 r/min?

Ans. 226 em



Chapter 9

Finite Element Method

The finite element method is used to provide discrete approximations to the vibrations of
continuous systems. The finite element method is an application of the Rayleigh-Ritz method
with the continuous system broken down into a finite number of discrete elements. The
displacement function is assumed piecewise over each element. The displacement functions are
chosen to satisfy geometric boundary conditions (i.e., displacements and slopes) and such that
necessary continuity is attained between elements. It is sufficient to require displacement
continuity for bars, while displacements and slopes must be continuous across element
boundaries for beams. )

9.1 GENERAL METHOD

Let € be the length of an element. Define the local coordinate £: 0= ¢ = € Let u(é, 1) be the
element displacement, chosen to satisfy appropriate continuity. If u;, w3, ..., u, represent the
degrees of freedom for the element (end displacements, slopes, etc.), then

u(t 1) =>: S/(E)ult) ©.1)

where the ¢,(¢) are called the shape functions. The potential energy for the element is
calculated using Eq. (9.1) for the displacement and has the quadratic form

V =4tu"ku (9.2)
where u=[u;, w, --- w]" and k is the derived local stiffness matrix or element stiffness
marrix. The kinetic energy for the element is calculated using Eq. (9.1) and has the quadratic
form

T=1a"ma (9.3)
where m is the local mass matrix or element mass matrix.

The total number of degrees of freedom in the finite element model is n = (number of
elements)(number of degrees of freedom per element) — number of geometric boundary
conditions. Define the global displacement vector U=[U, U, --- U,]" where U,
U, ..., U, represent the nonspecified model displacements. The total potential energy of the
system has the quadratic form

V =1U'KU (9.4)

where K is the global stiffness matrix, obtained by proper assembly of the local stiffness
matrices. The total kinetic energy of the system has the quadratic form

T=10"MU (9.5)
where M is the global mass matrix, obtained by proper assembly of the local mass matrices.

The differential equations approximating the free vibrations of the continuous systems are

written as

MU+KU=0 (9.6)
The finite element approximations to the natural frequencies and mode shapes are obtained

using the methods of Chap. 5. That is, the natural frequency approximations are the square
roots of the eigenvalues of M™'K, and the mode shapes are developed from their eigenvectors.

264
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9.2 FORCED VIBRATIONS

If F(x, 1) represents the time-dependent external force applied to a continuous system, then
the virtual work done by the external force due to variations in the global displacements is

W =J F(x, t) dulx, 1) dx
1]

= Zl,r,(r) U, (9.7)

Lagrange's equations are used to write the approximate differential equations in the form
MU+ KU =F (9.8)
where F=[f, £ --- f]" The methods of Chap. 6 (modal analysis, etc.) can be used to

approximate the system'’s forced response.

9.3 BAR ELEMENT

The local degrees of freedom for a bar element are the displacements of the ends of the
element. Following Fig. 9-1, let u, be the displacement of the left end (£ =0) and u; be the
displacement of the right end of the element (¢ = £). Then a finite element approximation for
the bar element is

&
u(é, f? = (I - %)u,(r) + }uz(r) (9.9)
The potential energy of the element is
£ .
1 du? 1EA
V=£!EA(£) d§=§7(u.=—2u,uz+u,=) (9.10)
which for constant F and A leads to an element stiffness matrix of
EA 1 -1
gil [ ] 9.1
¢ L-1 1 (@47
The kinetic energy of the element is
£
1 au? 1pAf o .
'T=£!pA('3;) dx =ip—3'—(ﬂ|’+u1u:+u2=) (9.12)
which for constant p and 4 leads to an element mass matrix of
pAt"[Z 1]
= 913
el 5 (9.13)
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94 BEAM ELEMENT

The beam element of a beam undergoing only transverse vibration has 4 degrees of
freedom, the displacements and slopes at each end of the element. As illustrated in Fig. 9-2, let
u,(t) be the displacement at £ = 0, u,(r) the slope at £ =0, u,(r) the displacement at £ = ¢, and
us(r) the slope at £=¢ A finite element expression for the displacement across the beam
element can be written as

u(§,1)=( 3.1:24—2&—!)1'11 (f 2§—1 fl)fuz

£ ¢ T e
2 3 3
+ (3% =g -f,-_;)u, + ( o +£ )t’u. (9.14)
The potential energy of the beam elernem is
a“u
E.f(ﬂéz) dé (9.15)
which for constant E and [ lead to an elcmenl stiffness matrix of
12 66 —12  6f
Ell 6f 47 —6¢ 2£7
k=2|-12 -6¢ 12 -ec (&16)
6f 2¢2 -6 4¢7
The kinetic energy is given by Eq. (9.12), which for constant p and A lead 1o a mass matrix of
156 22¢ 54 —13¢
pAC| 22¢ 4¢* 13¢ -3¢
="— 9.17
420 54 13¢ 156 -22¢ ( )

-13¢ =3 -22¢ 4¢2

Wl

w; —§

uy L}

Fig. 9-2

Solved Problems

9.1 Derive the element stiffness matrix for the bar element.

The displacement for a bar element is given by Eq. (9.9). Noting that

== ——M,+ll11=1(u,—-u,}

- T
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9.2

9.3

and substituting into the potential energy, Eq. (9.10),

V= (u," u,) d¢

——
w|'~"’

1
2
=258 -y j d

(1, = 20,00, + uy")

ol Tl

Hence the element stiffness matrix is as given by Eq. (9.11).

NI

LEA
2
=1£4
2
1
2

Use a one-element finite element model to approximate the lowest natural frequency of a
uniform fixed-free bar.

A one-el finite el model of a fixed-free bar has only 1 degree of freedom, the
displacement of its free end. The potential and kinetic energies for this model bar are obtained
using Eqgs. (9.9) through (9.13) with u, = 0:

1EA 1
V=224 T=-22C
27" 2.3
Energy methods are used to obtain the differential equation approximating the displacement of the
bar’s free end:
pAf EA

el

3 e,uz=0

H,+£u;=0

pt?t
The approximation to the lowest natural frequency is
e 3E

wy = F

Determine the global stiffness matrix and global mass matrix for a four-element finite
element model of a uniform fixed-free bar.

The four-element model of the fixed-free bar is illustrated in Fig. 9-3. In the global sense,
the model uses 4 degrees of freedom. The global stifiness and mass matrices are 4 X 4 matrices.
They are obtained by adding the potential and kinetic energies of the elements. When
writing the differential equations, they will multiply the global displacement vector U=
[U, U, U, U,)" or its second time derivative. Their construction is illustrated below.
(Recall that lowercase u’s correspond to local coordinates while upper case s refer to global
coordinates.)

s et et v
ORNOREORNON

R e e e e A e f |

ALY

Fig. 9-3
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Element 1:

Element 2:

Element 3:

Element 4:

FINITE ELEMENT METHOD

u; = 0, u; = U,, Hence in terms of the global displacement vector,

100 0
J1EA L, 1EAL o 0000
Ve U=l G U ULy 4 g g U
00 0 odLu.
2.0 0 010
_lpAl, . 1pAl 5 ol 000 g
=3 W= W U U Ul 4o ofle,
00 0 olLa,
w=U, =0,
1EA 1 =11y
Ve o UZI[—I 1]{0,}
1 -1 0 0y
_1EA -1 10 ol
‘23[”‘ v U Ul 0 0o 0 offlu
0 o o0 oldLu
-3%w o} S5
Te3% & U,]] 20,
21 0 0L,
1pAf ; 1200l 0
=-£25:0 3 R
26“" Uty U‘Touoa U,
o 0 0 olle,
wy=U, w,= U,
1EA 1 =1
V=3 fw* U‘l[ 1 1][05]
] ] 0o orth
_1EA 0 1 - ol v
=2 el U G U‘]a -1 10U
0 0 0 odlLu.
_1pA€ ‘[2 1] Ux}
T=3% 1t U] 2[(‘;,
00 0 0y
_lpAé . . 021 0|8
=36 10 G U UL, o, i
o0 o0 ollu,
W=y, wa= U,
_1EA -1
V=T b U‘][ 1 1][0’.]
0 0 0 0 U,
_1EA 0 o 0 ol e
=3¢ 14 U U U‘}o 0 1 =1 ||
0 0 -1 1L

[CHAP. 9
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ipA{’ [2 ][t},]
= u, o, .
Teoh 16 4 o,
000 00
lpfif .. < loo ool
[0 o o Ullog 0 2 1 U,
00 1 2]4Lo,
Hence the total potential energy is
& =1 0 or v,
iEA -1 2 -1 ol U
V= A
[U. u, U Ul 0 - 2 -1l
L 0 0o -1 1JLu,
The total kinetic energy is
4 1 0 04
1p,w P I T TN N ) | /S
T= [U.Uzb’)b’.]n]“lgl
o0 1 2]Lo,

Hence the stiffness and mass matrices for the 4-degree-of-freedom model are

2 - 0 07 4100
_EA| -1 2 -l 0 _pAfl1 4 1 0
K=" 0 -1 2 -1 M=o 1 41
0 0 -1 1 001 2

Use a 4-degree-of-freedom model to approximate the two lowest natural frequencies and
mode shapes for a uniform fixed-free bar. Compare the finite element mode shapes to the
exact mode shapes.

[

The natural frequency approximations are the square roots of the eigenvalues of M~ 'K. Using
the methods of Chap. 5 and the global mass and stiffness matrices derived in Problem 9.3, the two
lowest natural frequencies are

0395 [E _1247 [E
¢ Vo T Vo

uy =

Note that £ is the element length and is equal to L/4 where L is the total length of the bar. Thus in

terms of L, i
_ 1581 \ﬁ: _ 4987 \/E
@ =7 > wy=—7— 5

The corresponding eigenvectors are

0.112 0.299
0.207 0.229

X, = =
=1 0270 = o124
0.292 -0.324

The eigenvectors represent the nodal displacements for the modes.
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The two lowest exact natural frequencies and corresponding mode shapes are
wi ] () = sin &
wy ZL\p I’y ,t]—smzL
in

=_.\/§ l{)_“;ﬂ‘
iy 2LV L5l x ) = sin 2L

The error in the first natural frequency approximation is (.66 percent while the error in the second
natural frequency approximation is 5.8 percent. The approximate mode shapes are plotted in Fig.
9-4 where the maximum displacement is set to 1.

(a)

(b)
Fig. 9-4

9.5 Use a two-element finite element model to approximate the lowest natural frequency of
it the system of Fig. 9-5.

Matncad

—
—
o=

Fig. 9-5
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The bar is divided into two elements of equal length, €= L/2, as shown in Fig. 9-6. In the
global coordinate system the equation for the cross-sectional area is

Alx) = 7 (1 _i);

Since the area varies over the length of the element, the element stiffness and mass matrices must
be derived using the bar element of Eq. (9.9).

v, 0.
|

© e

I
e e

Fig. 9-6

Consider element 1: £=x, u, =0, u; = U,

f
S o= £
V—zez(u, u,)!f.'xr(l 4e,] dé
137 Enr’
=54— 7 (0" = 2u s + 15%)
1f £\
- 2 = & 1
T 2a{,,m'(r (1 “,) [(1 f,)u"f' u;] d
1prr’é ;
=Ep480 (1414, + 123012, + 1066i,7)
Hence the element mass and stiffness matrices for element 1 are
k _E.E'm’[ 1. %= ] = _pm’t’ 141 61.5]
IV S | a 6LS 106

Consider element 2: f=x— ¢, u,=U,, u,= U,

EL = 3_£y

V_Z(‘ sy u.)IEJrr’(4 4{) dé
119E

=38 ¢ e (13" = 20y + uy”)

v 3- £ (- o+ fuf

_lprrie

=3280 (760, + 63,61y + 514i;7)
Hence the element mass and stiffness matrices for element 2 are

=Q£m=[ 1 —1] prrié[ 76 315]
2748 ¢ -1 ™ =80 315 s1
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9.6

=i+

Mahcad

FINITE ELEMENT METHOD [CHAP. 9

The global mass and stiffness matrices are formed as
_Er? [37 0 i |: —19]] Enr? —]9]
48¢ 00 -19 486 —]9 19

m=f s ol s 5% s 5]

The natural frequency approximations are the square roots of the eigenvalues of M 'K which

lead to
wlos\/?zua\/‘ 183.’;566\/

Use a three-element finite element model to approximate the lowest natural frequency
and mode shape for the system of Fig. 9-7.

- EA
¢ (E.A.p 1"2L
[ L |

Fig. 97

The bar is divided into three elements of equal length, €= L/3, as illustrated in Fig. 9-8. The
element stiffness matrix for elements 1 and 2 is given by Eq. (9-11). The element mass matrix for
all three elements is given by Eq. (9.13). The element stiffness matrix for element 3 must be revised
1o take into account the discrete spring. In terms of local coordinates for element 3,

1EA IEA s 1EA

V=§ 7 (1e)? —2lr,u;+.l.r,)+,} 6" "2 7

Hence the element stiffness matrix is

A
(u. = 2uu,+ gn;‘)

EA { 1 -1 ]
k=
T l-1 1
The global mass and stiffness matrices are assembled as in Problem 9.3, leading to
410 2 =1 0
M=22400 4 k=221 2 -
01 2 0 -1 i

The natural frequency approximations are the square roots of the eigenvalues of M™'K. The
approximation to the lowest natural frequency is

0.622 \[ 1.867 \/E
wy = f‘ —

l_""-"ul_“uel—"”n
Ot HVW—E

ALY

Fig. 9-8
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9.7 5€ ¢

=i+

Use a two-element finite element model to approximate the lowest natural frequency of
the torsional system of Fig. 9-9
Mathcad

0.4 G
z L

Fig. 9-9

The system is modeled using two elements of equal length, € = L/2. The forms of the element

mass and stiffness matrices for the torsional system are analogous to those of an axial system. For a
uniform element without a discrete stiffness element (elements 1 and 2),

JG [ 1 ~l]
k= ¢ l-1 1
and for a uniform element without a discrete inertia element (element 1),

m=2[1 o]

The kinetic energy for element 2 is

et [l fu o b

%&"—(zn,uza.a, +2u%)

1pJ¢
t3a %

=3 %(2:&.’ & 20k, iy + Sii7)

Hence the mass matrix for element 2 is

m; =

-1 sl

The global mass and stiffness matrices are assembled using the procedure of Problem 9.3 leading to

. &15[4 l] JG [ 2 -1]
M 6 5 B el 1
The natural frequency approximations are the square roots of the eigenvalues of M 'K leading to

aasg\f 12?8\/7
2.155 \XG 431\[
WETE p L ]
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9.8

9.9

FINITE ELEMENT METHOD [CHAP. 9

Set up the differential equations governing the forced motion of the system of Fig. 9-10
using a two-element finite element model.

{"E. A p

_i—".ﬂ,sin !

ERTRITETINN

™

Fig. 9-10

The global mass and stiffness matrices for a two-element element model of the system of Fig.
9-10 are

_PAL[4 1 2 )
M=% L 2 K="l 1
The work done by the external force is
Ls
W =I [(1 —f,) ) +§au,]ﬁ,sin wt 5(¢ — €)d = F, sin ot 58U,
o x
Hence the governing differential equations are

31t 4 R I S P

Derive Eq. (9.14).

The static transverse defl of an el of a beam not subject to transverse loads
satisfies
du
o
which is integrated to yield
wg)=C &'+ CE+CE+ C, (9.18)

The constants C,, C;, C,, and C, are obtained by requiring the slope and transverse defiection
specified at £ =0 and £ = £. To this end, using the notation of Fig. 9-2,

W=u  wO=w  FO=u  FO=u (9.19)

Substituting the conditions of Eqg. (9.19) into Eq. (9.18) leads to
uw0)=0 — Ci=u,

du
E(ﬂ)-—m2 - Ci=u,

w)=u, —» CEO+CE+Cf+Co=u,

:—g(t’}=u, — 3C, 2 +2C.6+C=u,
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9.10

9.11

Solving the last two of the previous equations simultaneously leads to
1
C, =?}(2"| + fuy = 2u; + fu,)
l o+
C= 7 (=3u, — 2€uy + 3u; — €uy)

Substituting for the determined constants in Eq. (9.18) and rearranging leads to Eq. (9.14).

Derive the m,, element of the local mass matrix for a uniform beam element.

Note from Eq. (9.14),

ia_ff (1 3§ E)u,+(§—2§_“"'£i)‘ﬂ'i=

at ARz ¢ e
¥ (3‘%: —2%}:‘ +( —%+ ﬁ:)&h

The above expression is substituted into Eq. (9.12). The term that leads 1o m, in the element mass
matrix is

2 prA —1—2 51)“‘( - %+ £ )!’u.dé

=29Mﬂm4f(—35+5§,—2§) d¢

>
= 2pA i ‘% +(§)—§)

11
T T2 pPAE T,

When the quadratic form of the kinetic energy is expanded, it includes a term 2m,ti;i,. Thus

= — AL

Use a one-element finite element model to approximate the lowest natural frequency and
mode shape for a uniform fixed-free beam.

Since the slope and deflection at the fixed end is zero, 1, = u, =0. Thus, a one-element model
of a fixed-free beam has 2 degrees of freedom. The global mass and stiffness matrices are obtained
by simply setting u, =u,=0. This is accomplished by eliminating the first and second rows and
columns of the element mass and stiffness matrices of Egs. (9.16) and (9.17). Thus

_pAL[ 156 —22;.] EIT 12 ~6L]
420 L-22L 417 “rl-eL arc

The natural frequency approximations are the square roots of the eigenvalues of M™'K. The lowest
natural frequency is approximated as

El

=3.53 PALt
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The eigenvector corresponding to this first mode is w=[1 1.378/L])". Thus from Eq. (9.14) the
mode shape approximation is

S x* Xy (1.378
wn=35-25+ (-5 )
X? x.‘
= ].6221? = 0.622Z§

which is illustrated in Fig. 9-11.

08 -

wix)

0.2 —

0 A N I A
0 010203040506070809 1
X

r

Fig. 9-11

912 Determine the global stiffness matrix for a two-element finite element approximation to
the system of Fig. 9-12.

'a"z (E" p.AE T
® : @ T

ALY

f—— = % ’ 3
El
“ k=
Fig. 9-12

The two-element model of the beam of Fig. 9-12 has 4 degrees of freedom with the global
definitions of nodal displacements illustrated. Then for element 1: 4, =0, =0, u, = U,, u,= ..
The contribution 1o the global stiffness matrix from element 1 is

12 -6 0 0

x Elf-6¢ 4 0 0
el oo 0 [V
0 0 0 0
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MNow consider element 2: w, = Uy, u, = Uy, uy = Uy, u, = U, The stiffness matrix for element 2 must
be modified to account for the potential energy developed in the spring:

1 1E! 1 El
Ve=-kule-—ple=-—y?
L=k = R =g

Thus the element stiffness matrix for element 2 is

[ 12 6f =12 647

K, = Ell 66 46  —6¢ 287
e -1z —6f 12125 —6f

| 6¢ 26 =66 4¢* |

Hence the global stiffness matrix is
[ 24 0 =12 6f )
K_g_." 0 4t —-6f 287
B =12 —6f 12125 -6¢
6¢ 207 —hf 4t |

9.13 Determine the mass matrix for a one-element finite element approximation for the
i+ system of Fig. 9-13.

athcad
L 3L o b
’ ] e _'f pAL
[em=®
Fig. 9-13
Using a one-el finite el model for the simply supported beam, it is noted that

u, =uy=0. Then from, Eq. (9.14), at £ =3L/4,

(30)= (-2 () o [ () + (@) e

L =
= a{‘.’m! = u,)

Hence the kinetic energy of the block is
1 L P
T.= Em[ﬁ_-’l (30, — 95.\)]
- ile -2 - . 2

= 52006 (9niy* = 5ddigu, + Bla,")

Noting that in the global system U, = u, and U, = u,, the global mass matrix becomes

_pALT 412 —3.'.=]+ pAL [ 9 =27
420 L-300 4L |7 2(a096) L -27 81
_ o[ 00106  —0.0104

b [—0.0104 0.0194

M
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9,14 Use a two-element finite element model to approximate the two lowest natural
Cix  frequencies for the system of Fig. 9-14.

Mathcad

G, &

] o —w—j

——12m 1.2m—-
UI

L=15%10%m* 1,=88x% 107 m*
Ay=24 %107 m? A;=85% 10" m?

N
"
E = £,=200 % 10" -

k
py=py=7500 5

Fig. 9-14

When a two-element finite element model is used with one element covering each segment,
the system has 3 degrees of freedom, as illustrated in Fig. 9-14.

Element 1: u, =0, u;=0, u; = U, u,= Uy The element mass and stiffness matrices are

N e o 12 6(1.2) -12 6(1.2)
. _(zmxlﬂumZ]"'s"m ™) 612)  402¢  -6(12)  2(12F
! (1.2 my’ : -12 -6(1.2) 12 -6(1.2)

6(1.2) 2(1.2)° -6(1.2) 4(1.2y

2.08 1.25 -2.08 1.25
1.25 1.0 —1.25 0.500

=10 508 —12s 208 -125
125 0500 -125 10
ke o 156 22(1.2) 54 -13(1.2)
" z(ﬁmm,)(z.wm m)A2m) | 5r1.2) 4(1.2) 13(1.2)  —3(L2F
! 420 54 13(1.2) 156 -22(1.2)
-1312)  -3(1270  -2202)  4(1.2F
8.02 1.36 2.77 —(0.802
= 1.36 0.296 —=0.802 -0.222
2T 0.802 8.02 —-1.36

-0.802 -0.222 -1.36 0.296
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Element 2: u,=U,, u,=U,, u,=0, u,= U,. The el t mass and stiffness matrices are
(wux 10"%)(3,“ 107 mt)
iy (12 my
12 6(1.2) -12 6(1.2)
6(1.2)  4(1.2¢  —6(12)  2(1.2¢
-12 -6(L2) 12 —6(1.2)
6(12) 20129 -6(1.2) 412
1.22 0733 -1.22 0.733
oy 073 0586  —0.733 0.293
-1.22  -0.733 122 -0.733
0.733 0293 -0.733 0.586
(?soo ';‘f%)(s,s X 10~ m?)(1.2 m)
M= 420
156 22(1.2) 54 —13(1.2)
22(1.2) 4(1.2) 13(1.2)  -3(12)7
54 13(1.2) 156 -22(1.2)
-13(1.2) =312 -22(1.2) 4.2y
2.84 0.480 0983  —0.284
| oaso 0.105 0284  —0.0786
0.983 0.284 284  —0.480
0284  -0.0786  —0.480 0.105
The global matrices are constructed as
[ 209 -125 0] [1.22 0.733 0.?33]
K=10 —1.25 1.0 0+107 0733 0586 0.293
0 0 0 0.733 0293 0.586
[ 3.31 -0.517 0.?33}
=107 —0.517 1586 0293
0.733 0293 0.586
802 —136 0 2.84 0480  —0.284
M=| -136 0296 . 0 +[ 0.480 0.105 —0.0786
0 0 0 -0284  —0.0786 0.105
1086  -0.880  —0.284
=[ —0.880 0.401 —omss]
—0.284 ~0.0786 0.105

The natural frequency approximations are the square roots of the eigenvalues of M™'K. The two
lowest natural frequencies are calculated as w, = 404.7 rad/s, w, = 1524 rad/s.

Use a three-element finite element model to set up the differential equations governing

9.15
the forced vibration of the system of Fig. 9-15.
}-% ! ;' } % i
IR NN R ALY ;
(O] : @ :
A
v, v,

Fig. 9-15
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A three-element model of the fixed-free beam of Fig. 9-15 leads to a 4-degree-of-freedom
svstem. The global coordinates are illustrated in Fig. 9-15. The relations between the local and
plobal coordinates for each clement are:

Element I: u, =0, u;=0, us=U,, u,= U,
Element2: wy=U, ua=14, thy=Us, u,= U,

Element 3: wy=Us, ma=U,, s =0, u, =0

The global mass and stiffness matrices are constructed using the element mass and stiffness
matrices by

12 -6¢ 0 0] [12 6 -12 6 00 0 0
k-Er][-6¢ 4¢ 0 0| |6 a4 -6¢ 20| 00 0 0
el o 0 0 o |-12 -6¢ 12 —66| |0 0 12 6¢
0 o o ol Lee 200 —66 4 00 60 4
24 0 -12 607
_EI| 0 88 —6f 27
B e A Y 0
66 200" 0 8

156 -22¢ 0 0
mPALl| -2e 4 0 0
420 0 0 0 0
] 0 0 0
156 22¢ 54 —13€ o0 0 0
L| ¢ 4¢ 136 3¢ I
54 134 156 -22¢ 00 156 22¢
S136 =38 226 48 00 226 4¢°
312 0 54 -13¢
_pAl| O 867 136 -3
T 420 | 54 13¢ 312 0

-13¢ =3 0 88

where €= L/3.
The virtual work done by the distributed loading is

5w=fp(,,[(g,%_g%)su,ﬂu(h%»r— esu, | e

Jrofi-2§ 28w (f-2be Eenw
(3§~§) SU,+ (-f;+ zau.]dg

3 1 }
- e _ 2
F(r)[ Zrsu, + 192‘0 8Us + 7 (8Us = 15 € 8U,
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Hence the differential equations for a three-element finite element approximation for the system of
Fig. 9-15 are

[ 312 1] 54 =-13¢
pAEl 0 8 13¢ -3¢
420 54 13¢ 32 0

| -13¢ =362 0 8

24 0 =12 ef [ U,
1 +E 0 Be? —6¢ 287 || U,
1 ] -12 -6¢ 24 0 Uy
. 6¢ 28 0 sl

S oo

Supplementary Problems

%16 Derive the element mass matrix for a uniform bar element, Eq. (9.13).

9.17 Use a one-el finite el model to approximate the lowest natural frequency of the system
of Fig. 9-7.
Ans.
3
L N2
9.18 Use a one-el finite el model to approximate the lowest nonzero torsional natural
frequency of a shaft free at both ends.
Ans.
2 G
LN p
9.19 Use a two-element finite element model to approximate the lowest natural frequency of the system
of Fig. 9-16. ’

PERTTUIRIRY

L 1 L, 1
N
Ey=E;=200 % 10°
k
plupl-?SOO-r—"E;
Ay=14% 10" m? Ay =87 % 10" m?
Ly=65¢cm Ly=80cm

Fig. 9-16

Ans. 6,68 % 10" rad/s
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9,20 Derive the global stiffness matrix for the system of Fig. 9-17 using three elements to model the
uniform bar and an additional degree of freedom for the discrete mass.

+ L —
3 k, ky
. Yean
Fig. 9-17
Ans.
6EA JEA
L L 0 !
_3EA 6EA _3EA 0
L L L
0 _ 3fA O}EA g =g
0 0 —ky ky+k;
9.21 Derive the global mass matrix for the system of Problem 9.20.
Ans,
2pAL  pAL
9 18 o .
pAL  IpAL  pAL 0
18 9 18
0 pAL pAL 0
18 9
0 0 0 m
9.22  Approximate the lowest natural frequency of the system of Fig. 9-18 using one element to model
each bar.
r p.A "D- A
; m m m= 2 pAL
E 2
K L | — L —
Fig. 9-18
Ans.
0.755 E
L Np

9.23 Derive the differential equations governing the motion of the shaft of Fig. 9-19 as it is subject to a
time-dependent uniform torque loading. Use two elements to model the shaft.

[ ]
l l ‘\I—J. G p
L

N m"’”{'fw N

ALY

T

Fig. 9-19
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9.25

9.26

9.27

9.28

Ans.
L plL w6 G ;
3 12 [9.] . L L {91] "
ag = 1 A
ot (a7 _we  we [la)7[5]"
12 6 L L
Derive the el ki3 of the el stiffness matrix for a uniform beam element.
Ans.
12E1
v

Derive the element m,; of the element mass matrix for a uniform beam element.
Ans.
11pAe?
210

Approximate the lowest natural frequency of a simply supported beam using one element to model
the beam.

Ans. T
10ss 2L

Derive the global mass matrix for the system of Fig. 9-20.

; [%]
0w Tu
Uy l uy l *
i, Uy k .
Fig. 9-20
Ans.
312 0 54 -13¢ 0 0
0 Bé? 13¢ -3¢ 0 0
54 13¢ 312 0 54 -13¢
pAE
Yo | -Be -3 0 se 3¢ -3
0o 2o 54 3¢ 156+3207 o,
pAL
0 0 -13¢ -3# =228 4¢?
Derive the global stiffness matrix for the system of Fig. 9-20.
Ans.
24 0 =12 6f 0 0
0 86 -6 287 0 0
El =12 —-6¢ 24 0 =12 6f
7|66 20 0 s -ee 20

ké?
0 0 =12 -6¢ 12+£‘r 6f

0 0 6 2¢° -6¢ 4¢*
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9.29

9.30
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Approximate the two lowest natural frequencies of a uniform fixed-pinned beam using two
elements of equal length to model the beam.

Ans,
El Ei
15.56 ;‘.'_AI; i 5841 ;‘E,

Write the differential equations governing the motion of the system of Fig. 9-21 when two elements
are used to model the beam.

Fix, 1) = Fn) 7

ETLCLATARTY

I L i
Fig. 9-21
Ans.
- 13
54 -=r]
32 o ZL 24 0 -12 3L
., 13 3..0re L ru,
0 2L =L == L? o 0 21 -3L — 4
pAL 2 ] O] L 8E 2 |l o
840 75 Y L - - U,
54 E,'J[. 156 =11L || & L 12 3L 3L
2 [ 1 . U,
—Ei _E.,; —11L 12 * 2 et
| 2 4” =
L
4
LZ
1],
T, ©
80
LZ
_a)-




Chapter 10

Nonlinear Systems

10.1 DIFFERENCES FROM LINEAR SYSTEMS
Some of the differences between a linear system and a nonlinear system are:

1. The behavior of a nonlinear system is governed by a nonlinear differential equation. Exact
solutions do not exist for many nonlinear differential equations.

2. A nonlinear system may have more than one equilibrium point. An equilibrium point may
be stable or unstable.

3. Steady-state behavior, if it exists for a nonlinear system, is dependent upon initial
conditions.

4. The period of free vibration of a nonlinear system is dependent upon initial conditions. This
implies that the frequency of free vibration is dependent upon the free vibration amplitude.

5. A nonlinear system exhibits resonance at excitation frequencies different from the system'’s
linear natural frequency. A superharmonic resonance exists in a system with a cubic
nonlinearity when the excitation frequency is one-third of the system’s linear natural
frequency. A subharmonic resonance exists when the excitation frequency is nearly three
times the system’s linear natural frequency.

6. The principle of linear superposition cannot be used to analyze a nonlinear system subject
to a multifrequency excitation. A combination resonance can exist for appropriate
combinations of excitation frequencies.

7. Internal resonances can exist in multi-degree-of-freedom and continuous systems for
appropriate combinations of natural frequencies.

8. A periodic excitation may lead to a nonperiodic response in a nonlinear system. Such
chaotic motion occurs in many nonlinear systems for certain parameter values.

10.2 QUALITATIVE ANALYSIS

The state plane or phase plane is a plot of velocity versus displacement during the history of
motion. The nature and stability of equilibrium points can be examined from linearizing the
governing differential equation in the vicinity of the equilibrium point (see Problem 10.2). Types
of equilibrium points are shown in Fig. 10-1.

10.3 DUFFING’S EQUATION
Duffing's equation
¥4+2ui+x+ex’=Fsinn (10.1)

is a nondimensional equation that serves as a model for systems with cubic nonlinearities. If £ is
positive, it models the response of a system with a hardening spring whereas if £ is negative,
Duffing’s equation models the response of a system with a softening spring. For free vibrations

285
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Y,
W

Stable node Saddle point
(a) (b)
Unstable focus Center
{c) (d)
Fig. 10-1

the frequency amplitude relation for a system governed by Duffing’s equation is approximated
using a perturbation method as

w=1+ieA? + O(c?) (10.2)

where w is the nondimensional natural frequency (w =1 for a linear system) and A is the
amplitude. The forced response of Duffing’s equation is analyzed near resonance by assuming

r=1+cec (10.3)
Then the equation defining the steady-state amplitude is approximated as
A% + (o - JA%)) = P2 (104)

The plot of Eq. (10.4) in Fig. 10-2 for £ >0 illustrates the backbone curve and the jump
phenomenon. For certain values of o, Eq. (10.4) has three real and positive solutions for A*
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leading to three possible steady-state solutions. The intermediate solution is unstable, leading to
the jump phenomenon.

3T A

10.4 SELF-EXCITED VIBRATIONS

Self-excited oscillations are oscillations that are excited by the motion of the system.
Self-excited oscillations are induced by nonlinear forms of damping where the damping term is
negative over a certain range of motion. A mechanical system that exhibits negative damping,
where the free oscillations amplitude grows, is shown in Fig. 10-3. A model for some self-excited
systems is the van der Pol equation:

E+p(l—1Di+x=0 (10.5)

The phase plane, Fig. 10-4, for the free oscillations of the van der Pol oscillator illustrates a limit
cycle.

k

3 Vi m
—_—

@ OP—Maving belt

Fig. 10-3

Solved Problems

10.1 The nondimensional form of the nonlinear equation governing the motion of a pendulum
is
b +sing=0



(i)
(i)
(iii)
(i)

(i)

(iif)

NONLINEAR SYSTEMS
x

gy

Limit cycle

x

/

Fig. 10-4

Derive the general equation defining the phase plane for this motion.
Determine the trajectory for the condition that § =1 when 6 =0.
What is the maximum angle through which the pendulum will swing?

Define v = 8. Then
p_ab_dv_dvde  dv

dt di dedr "de

Thus the differential equation can be written as

dv
—— =
.udﬁ‘ sin@ =0

Integrating with respect to 8 leads to
Wi—cose=C

where C is a constant of integration.
Requiring v =1 when 8 =0 leads to C = —1/2. Then solving for v,

v=V2cosf-1
v =0 when 8 = 60°,

[CHAP. 10

10.2 Let x =x, represent the equilibrium position for a nonlinear system. The motion of the
system in the vicinity of the equilibrium point is analyzed by letting x = xo + Ax. Show
how the type of the equilibrium point and its stability can be established by linearizing
the differential equation about the equilibrium point.

Assume the governing differential equation has the form

B4 flr,5)=0
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10.3

289

If x=x, represents an equilibrium point, then f(x,, 0)=0. Substituting x =x,+ Ax into the

differential equation leads to
AX + fxg+ Ax, AZ) =0

Using a Taylor series expansion,

of

of o i
M+f(10;0)+ax(10.0)ﬁk"‘aj(.\'q.o)ﬁx‘i' +=0

Imposing the equilibrium condition and linearizing by ignoring higher-order terms leads to

At +adi+pax=0
o

L0

a=Lwo  p=

The solution of the previous equation can be written as

Ax=Cie"+ Cpe™

where A, and A, are the roots of A> + A + 8 = (. The stability and type of equilibrium point are

interpreted as follows:

(1) If either A, or A, have a positive real part, then the perturbation from equilibrium grows

without bound and the solution is unstable.

{2) If A, and A, are real and have the same sign, the equilibrium point is a node (stable or

unstable).

(3) If A, and A, are real and have opposite signs, the equilibrium point is a saddle point

{unstable).

(4) If A, and A; are complex conjugates, the equilibrium point is a focus (stable or unstable).

(5) If A, and A, are purely imaginary, the equilibrium point is a center.

Determine the type and stability of all equilibrium points of the pendulum equation.

The nonlinear differential equation governing the motion of the pendulum is
8 +sing=0
Using the notation of Problem 10.2,

£(8, 8) =sin §
and f(8,,0)=0 — sinf,=0 — 8,=nn, n=0, %1, £2,...

Now let
8=nn+ A8

Substitution into the governing equation leads to
AB +sin(nr + A8) =0
Using a Taylor series expansion, keeping only through the linear terms leads to
A +cos (nr) A8 =0
AB+ (-1 A8=0
Using the notation of Problem 10.2, the general solution of the above equation is
AQ = C ety Gy tm i

and Ay =(=1)02, A= =(=1)nn
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Hence for odd n, A, and A, are real and of opposite signs. These equilibrium points are saddle
points. For even n, A, and A, are purely imaginary. These equilibrium points are centers.

10.4 Sketch the phase plane for the pendulum motion.

The sketch of the phase plane using the results of Problem 10.3 is shown in Fig. 10-5.

g i W

E i il
SIS

e S S P WS L S

Fig. 10-5

10.5 The differential equation governing the motion of a particle on a rotating parabola, Fig.
10-6, is

(1 +4p®)% + (2gp — w¥)x +4p’xi® =0

If @ =10 rad/s, for what values of p is the equilibrium point x = 0, a saddle point?

Parabola

¥ = px? rotates at
COnstant o

Panticle of mass m moves along parabola

Fig. 10-6

Using the notation of Problem 10.2,
i) Zﬁﬂ - w’ 4 422 52
flx, 1) 1+4p'x’ l+4p=xzu
Note that x = 0 is indeed an equilibrium point. To examine the behavior of phase plane trajectories
in its vicinity, let
x=A4ax
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Using the notation of Problem 10.2,
= -
weg (0,0)=0
=Y 0,0)=20p -
B 56 0,0)=2¢gp -~ w
Hence the differential equation governing phase plane trajectories near x =0 is
A¥ +(2gp - @) Ax =0

The equilibrium point is a saddle point when

gp<w’
Hence for w =10 rad/s,
2
(10%)
p<—L —s510m”
2081 =

Problems 10.6 through 10.8 and Problems 10.11 and 10.12 refer to the system of Fig. 10-7. The
force displacement relation for the spring is

N N
F=kyy=-ky® k,=1xlﬂ°a k]=1xl(}‘zﬁ

where y is measured from the spring’s unstretched length.

—=¥

1 10 - 1 % 10"

ﬂ[\" 20kg = 100 sin 50N

10.6 Letx =y/A where y is the dimensional displacement from the spring’s unstretched length
=& and A = mg/k,. Write the differential equation governing the motion of the system of Fig.
i 10-7 in the form of Eq. (10.1), identifying &, p, F, and r.

The dimensional form of the differential equation is obtained by applying Newton's law to the
block, resulting in

my +cy+k,y—kyy' = Fsinwt (10.6)

The natural frequency of the linearized system is

I><IL)‘E
s e R e B M
£ m 20 kg s
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g @ kg)(o.m :—")

Also, A =-’E-- =1.96X 10" m
! 1%10° =
m
Define T=w,l
The chain rule yields
d _ddr_ 4

di-drdi i

Equation (10.6) is rewritten using nondimensional variables as

d’x dx w
- I i ax _ e Yk A A
M, ﬁdr;+cm,.i\dr+k.m' ky A F{,smwnf
dx ¢ dx ky F . w
el AT e TP L o, 5. AL .
e ey Y AT
Which is of the form of Eq. (10.1) with
g 1x10 N
p=-2a= (196 % 107 m)’ = —0.0384
! 1%10° =
m
pe=—— e __p0112
2ma, d
" 220 kg)(2236 29
A Mg g kg}(S‘.S] :'—:)
150 5’5-9
== ———= 0671
" 223628

10.7 Determine the nature and stability of the equilibrium positions of the system of Fig. 10-7.
Using the notation of Problem 10.2,

flx, d)=2pi +x + ex?

1
Then f(x,0)=l}=x+£x’_.x={)_¢,|'-E
Note that
o _ L S
o 2K 3 3ex
First consider the equilibrium point x =0:
a=2u B=1— A +2u Aé+Ax=0
A= —p o+ Vi —1=-00112 £ 0.999%

Since the values of A are complex conjugates with negative real parts, the equilibrium point x = 0 is
a stable focus.
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10.8

=i

Hathcad

10.9

Since € is negative, the system also has equilibrium points corresponding to x = £V-1/e. In
either case,

a=2 ﬂ=i+3s(—1)=—z
£
AV +2p Ai-24xc=0
Ma=—p VIt ai=1413, 1415

Thus these equilibrium points are saddle points and thus unstable.

Let p =0, and determine an integral expression for the natural period assuming x = x,
and ¥ =0 when ¢ =0.

Duffing’s equation for free vibrations with g =0 is
P+x+ex'=0
Define v = £ Then

dv
s +ext=
ud’x+x ex'=0

Integrating with respect to x leads to

| E
4 sxitoxt=
2u 2.: +4x C

Application of initial conditions and solving for v leads to

E E
v= x\.t“’+ix.,‘—.r’—ix‘

Noting that v = dx/dr,

dl’=:t+_‘

£ £
N |'x.f+§:u' -x* —Ex"

One-quarter of the period is the time the block returns to x = 0 from its initial position. During this
time the velocity is negative. Hence integrating between x, and 0 leads to

f d
T:4I i3
E £
"o \/xn‘+§xu‘—x’—ix‘

Use a straightforward perturbation expansion to develop a two-term approximation to
the solution of Duffing's equation with F =0.

Assume
x =x,(t) + ex,(1) + O(e?) (10.7)
Substituting Eq. (10.7) into the unforced Duffing's equation leads to
Ko+ EE -yt ex,+o ot E(xgFEx, oo +) =0
ot xot e(¥, +x,+x7)+0(e?) =0
Setting coefficients of like powers of ¢ to zero independently leads to
Ko+ xg=0 — x,=Asin{t + ¢)

Yot =—x = ¥ +x,=-A'sin’ (1 + ¢)
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10.11
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Use of trigonometric identities leads 1o

3
J'r‘,+x.=—-’%[35in(t+¢-)—sin3(t+¢-)]
3
r,=§A’fcos(r+¢)—%sin3(f+da]

Hence, () =Asin(r+¢)+ e[g.ﬂt’r cos(t+ ¢)— %sin 30+ .ﬂ] + O(e?)

The solution developed in Problem 10.9 is not periodic. Why, and what can be done to
correct the situation?

In Problem 10.8 it is shown that the natural period of the nonlinear system is dependent on
initial conditions. The perturbation solution of Problem 10.9 has no mechanism to allow for this
dependence. Indeed, the resp is developed at the same period as a linearized system. The
siluation can be corrected by the introduction of a time scale that is dependent on the amplitude:

r=w(l+ed, + a4+ 4)

The above expression can be introduced before making the straightforward expansion, in which
case the method is called the Linstedi-Poincaré method. Tt can also be introduced after the
aperiodic straightforward expansion is obtained in an effort to render it periodic. This latter
method is called the method of renormalization. In either case the results are

r=w(l=jeA’+--+)
3

x=A5i"(f+¢)—£;—25in3(r+¢}+---+

The block of the system of Fig. 10-7 is displaced 1.0 mm from equilibrium and released.
Determine the period of the resulting motion.

Using the nondimensionalization of Problem 10.6, the nondimensional initial conditions are

0.001 m
=5 ((0) =
*O =15ex10m >0 A =0
Application of the initial conditions to the two-term uniform expansion developed in Problem
10.10 and noting from Problem 10.5 that £ = —0.0384 lead to

T
L

L
P )

510=A-000124" — A =528

x(0) = A sin

The nondimensional frequency is
w=1+1eA’ =1+ }(—0.0384)(5.28) = 0.599
The dimensional frequency and period are

w, =0599(2236 5:5) =1339 ’-‘29 o T=0074s
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10.12

10.13

10.14

10.15

Use a perturbation method to approximate the forced response of the system of Fig. 10-7.

To avoid sign confusion, define § = —e Since the damping is small, it is ordered with the
nonlinearity. To this end
_ _p_oonz_ oo
=08 — { 50,0384 =0.292

Then the equation becomes
& +0.584 8% + x — 8x” =0.510sin 0.671¢
A straightforward perturbation solution is assumed as
x(1) = x,(0) + 8x,(r)
Substitution into the governing equation and setting coefficients of like powers of & to zero lead to
¥y +x,=0.510sin 0.671¢
Xa =%sin 0.671¢ = 0.928 sin 0.671¢
¥, +x, = —0.584%, + 1}
= —(.364 cos 0.671r + 0.799 sin’ 0.671r
= —0.364 cos 0.671¢ + 0.599 sin 0.671¢ — 0.200 sin 2.103«

0.364 0.599 :
xft)=~- I__Wcos 0.671t + m?—]-i:: sin 0.671¢
. 0.200 .
=03y sin 2,103

1l

—0.662 cos 0.671r + 1.09 sin 0.671¢ + 0.0655 sin 2.103r

Discuss quantitative tools that can be used to determine if the motion of a nonlinear
system is chaotic.

{a) The trajectory in the phase plane will not repeat itself for chaotic motion.

(b) 1f a spectral analysis of the time history of motion yields a continuous spectrum, the motion is
chaotic.

(c) If the response is sampled at regular intervals, the sampled response of a chaotic motion will
appear to be random.

The Runge-Kutta method has been used to develop the phase planes for Duffing's
equation for various values of the parameters, as illustrated in Fig. 10-8. Which of these
motions appear to be chaotic?

The motion in Fig. 10-8a appears to be chaotic as there is no discernible pattern to the
motion. The motion in Fig. 10-8b is not chaotic as it settles down into a steady state after an initial
transient period.

The Runge-Kutta method has been used to develop Poincaré sections for the solution of
Duffing’s equation, shown in Fig. 10-9. Poincaré sections are samples of the phase plane
at regular intervals. Comment on the motion for each Poincaré section.

(a) Since the Poincaré section is a collection of apparently random points, the motion is probably
chaotic.
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€ = 4.500
L =0.00
h=3.40
R=130 (a)

€= 1. 100E+00

L=0.10

h=1.30

R=1.20 (b}

Fig. 10-8

Since the Poincaré section is a closed curve, the motion is periodic, but the sampling
frequency is incommensurate with the frequency of motion.

Since the Poincaré section only consists of three points, the motion is periodic, and the period
of motion is three times the sampling period.

the van der Pol equation to qualitatively explain the phenomenon of limit cycles.

When x is small, the coefficient multiplying % in van der Pol's equation is negative. Thus

energy is being added to the system through self-excitation. This causes the response to prow.
However, when x grows above 1, the damping coefficient becomes positive, and energy is
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dissipated causing the motion to decay. This continual buildup and decay of amplitude through
sell-excitation lead to the limit cycle. This limit cycle is independent of initial conditions.

&= 1.000E - 01 .

£ =0.00 : &
A=1.00 Tegtiy &b ,
r=1.0% !

e =0.00
[ =0.00
A =0.00
r=1.00

(b)
Fig. 10-9

10.17 Show how the method of averaging, or the Galerkin method, can be used to approximate
the amplitude of a limit cycle.

Let F(x, x) represent the nonconservative forces in the system. The work done by these forces
over | cycle of motion is

W=JF{x.x)ic=jF(x,i}id:
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¥
f-—
4
] x
= 1000E-01
{=0.10
h=1.00
r=105 (<)

Fig. 10-9 (Continued)

If the system develops a limit cycle, the total work done by the nonconservative forces aver each
cycle is zero. Assume the system is nondimensionalized such that its linear period is 2r then

I

I Flx, f)idr=0 (10.7)
o
When the Galerkin method is used, a response such as

x(1)=Asint

is assumed and substituted into the work integral Eq. (10.7). The integral is evaluated, yielding an
approximation to the limit cycle amplitude A,

10.18 Use the method of averaging to approximate the limit cycle of the system governed by
the nondimensional equation

Fta(@B+x-1i+x=0
Application of the method of Problem 10.17 using x(r) = A sin « leads to

Fix, %)= a(¥ +x* - 1)

1x
j F(Asint, Acost)A costdr =0

i
I alA?cos’t + A'sin’ 1 = 1](A cos 1) dr =0
o
in
a4 - 1)4’[ cos*tdt =0
a

Ta (A - 1)47=0
A=1
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Supplementary Problems

10.19 Develop the general equation for the trajectory in the phase plane for a system governed by

Xt+x+excosx=0
Ans.

i=VC—x"-2xsinx—2cosx
10.20 Develop the general equation for a trajectory in the phase plane for a system governed by the
equation
Et+x—axr’=0
Ans,
E=VC =x'+ fax’
10.21 Determine the equilibrium points and their type for the system of Problem 10.20.

Ans. x=0is a center; x = « is a saddle point.

10.22 Sketch the phase plane for the system of Problem 10.20.

10.23 Determine the equilibrium points and their type for a system governed by
K+2k+x+exi=0

Ans.  x=0is a stable focus for { <1 and a stable node for { > 1; x = —1/¢ is a saddle point.

10.24 Determine the equilibrium points and their type for a system governed by
¥+ —x+ex’=0

Ans. x=0is a saddle point; x = +V'1/¢ are stable foci for { < V2 and stable nodes for {= V2.

10.25 Derive an integral expression for the period of motion of the nonlinear system governed by
8 +sin8(1 —cos 8) =0
subject to 8 = 8, when 8 =0.

Ans.
o
T=4f L
i -V —lcos28,+2cos 8, +icos28 —2cos @

10.26 A 50-kg block is attached to a spring whose force displacement relation is
F =2000x + 6000

for x in meters and F in newtons. The block is displaced 25 cm and released. What is the period of
the ensuing oscillations?

Ans. 0.907s
10.27 Use the perturbation method to obtain a two-term approximation to the response of a system
governed by

i 4 ped+x +ex® = Fsinwr
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10.28 Use Galkerkin's method to approximate the amplitude of the limit cycle of van der Pol's equation.
Ans. 2
10.29 Explain the jump phenomenon from Fig. 10-2.

10.30 Discuss how the Fourier transform of a response can be used to determine if the response is
chaaotic.



Chapter 11

Computer Applications

Vibration analysis often requires much mathematical analysis and computation. Digital
computation can be used in lieu of manual computation for many of the tedious tasks
performed in vibration analysis. Computer algebra can be used to perform tedious mathematical
analysis. However, the user must understand the sequence of the steps and how the results are
used.

The focus of this chapter is the use of applications software for vibration analysis. It is
worthwhile to know how to program using a higher-order programming language such as C,
PASCAL, or FORTRAN, and programs can be written in these languages to solve many
vibrations problems. However, much of the analysis used in the preceding chapters can be
performed on personal computers using applications software.

The finite element method, a powerful method for approximating the solution of continuous
vibrations problems when an exact solution is difficult to attain, is illustrated in Chap. 9.
However, for the sake of illustration and for brevity, the examples presented here use at most
four elements. When more elements are used, digital computation is essential in obtaining a
solution. Many difficulties are encountered in the development of a large-scale finite element
model. These range from efficient methods of assembly of the global mass and stiffness matrices
to solution of the resulting differential equations using modal analysis. Thus large-scale finite
element programs have been developed. Some are available for use on the personal computer.
However, they often require pre- and postprocessor programs and are beyond the scope of this
book.

11.1 SOFTWARE SPECIFIC TO VIBRATIONS APPLICATIONS

Software written specifically for vibrations applications is available. The programs in the
software package V/BES, which accompanies the McGraw-Hill text Fundamentals of Mechani-
cal Vibrations by Kelly, include programs that simulate the free and forced response of 1- and
multi-degree-of-freedom systems. VIBES also has programs that numerically integrate the
convolution integral, develop force and displacement spectra, perform modal analysis for
continuous svstems, and aid in the design of vibration isolators and vibration absorbers. Many
of the files are executable programs while several require user-provided BASIC subprograms to
allow for any type of excitation.

1.2 SPREADSHEET PROGRAMS

Spreadsheets allow the development of relationships between variables and parameters in
tabular form. Spreadsheets also have graphical capabilities for presentation of results. The
columns and graphs in a spreadsheet are automatically updated when the value of a parameter
is changed. Thus the spreadsheet is a useful tool in “what-if" situations such as design
applications. Examples of popular spreadsheets are Lotus Development Corporation's Lotus
1-2-3, Microsoft's Excel, Borland's Paradox, and WordPerfect's Quatro Pro.

301
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11.3 ELECTRONIC NOTEPADS

When using an electronic notepad, the user develops the solution on the computer screen as if
she or he were using pen, paper, and calculator. Electronic notepads such as MathSoft's
Mathcad and The Math Works, Inc.'s, MATLAB provide mechanisms for performing complex
sets of calculations. Electronic notepads have built-in algorithms that allow the user to quickly
perform complicated calculations. These include numerical integrations and matrix eigenvalue
algorithms. Electronic notepads also have automatic update, so that when the value of a
parameter is changed, all subsequent calculations involving the parameter are recalculated.
Electronic notepads also have graphical capabilities and allow for limited symbolic processing.

1.4 SYMBOLIC PROCESSORS

Symbolic processors such as MAPLE V, MACSYMA, and Mathematica perform symbolic
manipulations. Examples of symbolic manipulations include differentiation with respect to a
variable, indefinite integration, partial fraction decompositions, and solving equations for
solutions in terms of parameters. Computer algebra software can also be used for linear algebra
and solutions of differential equations.

Solved Problems

11.1  Use VIBES 1o plot the response of a 1-degree-of-freedom system of mass 100 kg, natural
frequency 100 rad/s, and damping ratio 0.3 subject to the excitation

F(t) =1000sin 125t N
The VIBES program FORCED is used to develop the response as shown in Fig. 11-1. The
excitation is plotted simultaneously with the response for comparison. The plot illustrates the

transient response giving way 1o a steady-state response. The plots also illustrate the difference in
period between the excitation and response and the phase difference.

4 =0

"3

3 I
& N
2 o
E_ U el i)
=] time {10~ sec)
-2
— Finik
----- Displacement

-4
Fig. 11-1
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11.2

113

11.4

I+

11.5

=i+

Hathcad

Use VIBES to determine approximations to the natural frequencies and mode shapes of a
uniform fixed-pinned beam when 4 degrees of freedom are used to model the beam.

The 4-degree-of-freedom model is illustrated in Fig. 11-2. The fexibility matrix is obtained
using the V/BES program BEAM. Unit values of beam properties are used as input in BEAM.
Thus the numerical values obtained in this example must be multiplied by LY/EI to obtain the
elements of the flexibility matrix. The output from BEAM is shown in Fig. 11-3. The VIBES
program MITER uses matrix iteration to determine natural freq ies and normalized mode
shapes of a multi-degree-of-freedom system. The flexibility matrix obtained from BEAM is used as
input as well as the mass matrix

M=

1
H
0
0 pAL

= =~

0
:
0
00

w—-ao oo

Again unit values of the properties are used. Hence the numerical values shown in Fig. 114
obtained using MITER in this example are non ional. The di ional natural freq ¥
approximations are obtained by multiplying these values by Ef/pAL*. The mode shape vectors
determined using MITER have been normalized with respect to the mass matrix.

e

&
Ly

=

: L
5

ORRCENO
R e s

& o %

L
"5——4

m=pAL
R

Fig. 112

Use VIBES to determine the three lowest natural frequencies and mode shape plots for
the beam of Fig. 11-5,

The VIBES program CFREQ is used to determine the natural frequencies and mode shapes
of the continuous system. Note that §=m/pAL. The natural frequency and mode shapes
generated by CFREQ are shown in Figs 11.6 and 11.7.

A 100-kg reciprocating machine, which operates at 250 r/min, has a rotating unbalance of
magnitude 0.5 kg-m. What is the maximum stiffness of a vibration isolator of damping
ratio 0.1 to limit the transmitted force to 5000 N? What is the required static deflection of
the isolator? What is the maximum deflection of the isolator during operation? Use
Mathcad for the calculations.

The electronic notepad developed using Mathcad follows (Fig. 11-8). The methods used are
those developed in Chap. 8. Note that m could not be used as the variable name for mass since
Mathcad reserves its use to represent the units of meters. In addition, e could not be used as the
variable name for eccentricity since Mathcad reserves its use for the base of the natural logarithm.
When finding the root of a single equation, Marthcad requires an initial guess for the root,

A 100-kg structure of natural frequency 100 rad/s and damping ratio 0.05 is at rest in
equilibrium when it is subject to an excitation of the form

F(r) = 12,500 """ N

Use Mathcad to develop the response of the system using the convolution integral.
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FLEXIBILITY MATRIX FOR A 4 -DEGREE-OF-FREEDOM MODEL OF A BEAM THAT IS
FIXED-PINNED

THE BEAM‘'S PROPERTIES ARE:
LENGTH = 1 m

ELASTIC MODULUS= 1 N/m"2
MOMENT OF INERTIA= 1 m"4

THE LOCATIONS OF THE NODAL PCINTS ARE:

¥l 1})=.2 m

X 2)= .4 m

XM 3)= .68 m

Xl 4)= .8 m
A(1 , 1 )= 1.621E-03 m/N
Al 1 , 2 )= 2.784E-03 m/N
A{1 , 3 )= 2.603E-03 m/N
A{1 , 4 J= 1.525E-03 m/N
Al 2 , 1 )= 2.784E-03 m/N
A{ 2 , 2 )= 6.912E-03 m/N
Al 2 , 3 )= 7.381E-03 m/N
Al 2 , 4 )= 4.523E-03 m/N
A{3 , 1 )= 2.603E-03 m/N
Al 3 , 2 )= 7.381E-03 m/N
A{ 3 , 3 )= 9.792E-03 m/N
Al 3 , 4 )= 6.624E-03 m/N
Al 4 , 1 )= 1.525E-03 m/N
Al 4 , 2 )= 4.523E-03 m/N
ARli 4 , 3 )= 6.624E-03 m/N
Al 4 , 4 )= G5.461E-03 m/N

Fig. 11-3

THE CONTROL MESSAGE IS ERR = 0
The natural freguency for mode 1 is 1.531E+01
The corresponding normalized mode shape is

1 .4558122
2 1.2066%7
3 1.505348
4 1.034433

The natural frequency for mode 2 is 4.969E+01
The corresponding normalized mode shape is

1 -1.076292
2 -1.314738
3 .4244277
4 1.3%02%5

The natural frequency for mode 3 is 1.005E+02
The corresponding normalized mode shape is

1 1.465718

2 -.23759109

3 -1.111364

4 1.248975

The natural frequency for mode 4 is 1.51BE+02
The corresponding normalized mode shape is

1 1.218811

2 -1.326177

3 1.148331

4 -.6611273

Fig. 11-4
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p = 7500 keg/m®
- oo
) ) E=210=10 e
I L —1 L=15m
| m A=12x107m?
I=18x10%m*
m=162kg
Fig. 11-5
Natural frequencies and mode shapes for a fixed-attached mass beam
with beta= 1.200
BEAM PROPERTIES
mass density= 7.500E+03 kg/m"3
elastic modulus= 2.100E+11 N/m"2
length= 1.500E+00 m
area= 1.200E-03 m"2 !
moment of inertia= 1.800E-06 m“4
Mode Number Dimensionless Natural freguency Normalization
frequency (rad/sec) constant
1 1.83 167.03 0.712E+00
2 20.11 1831.36 0.520E+00
3 59.61 54259.45 0.472E+00
Fig. 11-6

Fig. 11-7

Mathcad uses a Romberg integration scheme to numerically evaluate definite integrals.
Mathcad uses a default tolerance for numerical integration of 0.001. The tolerance can be changed

by the user.

Two methods of solution are presented (Figs 11-9 and 11-10). The first is a direct method
where the integration is carried out over the entire time interval from 0 to ¢ for each value of r. The
alternate method uses the results of Problem 4.27 where the convolution integral is rewritten as the
sum of two integrals. Using this formulation, the results of the previous integrations can be used

and the new integration is carried out over only the new interval.

11.6 Use Mathcad to determine the natural frequencies and normalized mode shapes for the

system of Fig. 11-11.

Wathcad
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Solution of Problem 11.4

Parameter values

mass = 100-kg Machine mass
w -;5!}'."1’ Operating speed

sec
[ =01 Damping ratio
mg = 10kg Unbalanced mass.
ece =0.05m Eccentricity
F pax = 5000 newton Madmum aliowable force
g =081 Acceleration due to gravity

sect
Funcion definitons

1
M(r.g) =— T
Magnification factor

1% H
[0 aeni]

=

| e

i 1

T(r.0) = i = Transmissibility ratic
|

L i

(1-7) " 20m
Fig. 11-8

The Marthcad solution for the natural frequencies and mode shapes follows in Fig. 11-12, Note
that the natural frequencies are the square roots of the eigenvalues of M 'K and the mode shapes
are the corresponding eigenvectors. The ‘mode shapes are normalized with respect to the mass
matrix. Note that unless otherwise specified, Mathcad refers to the first row or first column of a
matrix with a subscript 0. In addition, note that even though g = X"MX is a scalar, since it is
calculated as a matrix product, Marhcad considers it a matrix of 1 row and 1 column. Thus it must
be referred to as g, in subsequent calculations.

11.7 Use Mathcad to help perform modal analysis to determine the steady-state response of
£ the system of Fig. 11-12,

ahead The modal analysis procedure of Chap. 6 is followed in developing the notepad presented in
Fig. 11-13. The modal matrix is formed by augmenting the normalized mode shapes. The vector
G = P"F is formed, and the differential equations for the principal coordinates are

B, + w’p, = G, sin wt
The steady-state response for the principal coordinates is

G, in ot
= SIM fed
P Wi - w

The original generalized coordinates are then calculated from x = Pp.
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Function graphs
r =0,002.30
£ T T T
- ~
T0.0)
s i o
1 —
oo 1 1 3 1
i
Problem Solution
Fg=mgeecn’ Fg=212510" “newton Excitation amplitude
F
max ] o LT
T i TF_Q T max =016 Maxdmum transmissibility
rg23l Iretial guess for minimum r
" =rw(T[ls,()— Tnlx"g:] Solution for minimum r
r) =28603 Minimum allowable frequency
ratic
vy 22 o, =8.7404:10" ol _
f . sec Maximum allowable natural
frequency
k =massa,’ k7639410 2S00 o G
m Maximum allowable
stiffness
a-E A_12841:007 'm Mirimum isolator staic
o, deflacion
F
* max =T°M{r""") X max = 56783107 +m Masimum isolator deflection

Fig. 11-8 (Continued.)

11.8  Use Mathcad to determine the finite element approximations to the longitudinal natural
iz frequencies of a 2.9-m, fixed-free bar with £ =210 % 10° N/m? and p = 7100 kg/m® when

four elements are used to model the bar.
MWathcad
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308
Sciution of Problem 11.5 - Numerical evaluation of convolution integral
System parameters

mass = |00-kg System mass
™ -100"—" Natural frequency
seC
008 Damping ratio
Excitation
Fg = 12500 newton
F(t) :Fo-up'l- I.s--—l--g-l”\
[ et )
Impulsive response
1
§ X
wy =-n'\‘|—n:2,' Damped natrual frequency
hit) = 2 'le[-(.onl‘]-lin(lld-q System response due to a unit impulse
mass o applied att= 0
Convolution integral formula
it
x(1) = | Firyhit- t)dr
J0-sec
U = 0-sec,0.00]-sec., 0.3 sec
’ am T —T
ooz H| ! -
e AW
ol % UJ 'J‘l N -
I
L 1 1
o ol 02 03 04

Fig. 11-9
The global mass and stiffness matrices for a four-element finite element model of a fixed-free
i di ional forms of these

bar are determined in Problem 9.3. Note that for con
matrices are used in Mathead calculations, as shown in Fig. 11-14.
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Alternate solution of Problem 11.5 - Use of the method of Problem 4.27

System parameters

mass - 100-kg
g '-I!H}"_d
580
L =0.05 i
wg zogli-g) ug=o9875:24
sec

Fg =12500-newten
Excitaton
s | 1 s
F(t) =Fgexp/- 15—
R

1 =1,2.300

to=r0.00] s

1 ; ;

boj{ty = ————expiGw_ t)cosje gt

! massey A ( Lk,
1 r P A

Bg(t) = ———exp(Gu ] sinfa g1

z massw 4 wn :] VY
G =0 =0

L m Gzn Om

% 4
Gy -.Gl_l_l.J F(shh i) & Gy ”Gl.-:"{ E(r)h p(t)de
t L
=1 i

% 2exp(-Gw it (sinfu g1) O - conlu g1)G 2 )

oo T T
a0z -
]
agl /5
1 L
0o [T 02 [Y]

-

Fig. 11-10
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h K, ks k
E 20 kg ISkg ANV 0kg VWV 30kg
f - e
Fysin un 2F, sin ot
k,= 10000 N/m £ = 1000 N/m
k, = 20000 N/m w=35ris
Fig. 11-11

" Solution to Problem 11.6 - Natural frequencies and mode shapes for a 4 DOF system

Mass matrix
Wo 00
‘03500

M =
o 0 200
o 0 0 30

Inverse of mass malrix

[o0s 0 0
o |e oo 0
M'=

¢ 0

e o 0

Eigenvalues of D

A =cigenvals(D)

]
o

005 0

0033

Stiffness matrix
20000 -10000 0 o
g .| 10000 30000 -20000 O
10 .20000 40000 - 20000
| o 0 20000 20000 ,
D =M'K
[19¢ 500 o 0
| 28874 857143 STL429 0
0 et 20t -1t
0 0 666,667 666.667 |
[zww&]
3= 122270 I
l'm.o:r:
| 49733
nl-'.'.EISZ
0y =24271
034924

Fig. 11-12

[CHAP. 11
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1
wy {’-Dlll g =51.627
Mormalized mode shapes
0259
0.491
X =ecigeavec(D. X, =
D) 17| gs6s
061 |
q =X "MX, q=27347
[umol
X
X, X s 0.094
,'; 0.108
il lonr
[—aou-‘
| -0.504
X 5 = cigenvec|D, Xq=|
2 =cigenvec(D.4,) 2™ i
[u.w;_
q X3 "MX; q =27.457
[-o.117
X2
e -0.096 |
il Xga= |
Y0 0.013
0.115

Fig. 11-12 (Continued.)

11.9 A 1500-kg machine is mounted on a foundation of stiffness 2 % 10" N/m. The machine
i has a vibration amplitude of 7.3 mm when it operates at 1000 r/min. It is desired to
ﬁ design a vibration absorber for the machine to eliminate steady-state vibrations at 1000
Mathoad . : e
r/min. Use Marthcad to determine the following:
(/) The stiffness and mass of an undamped absorber to eliminate steady-state
vibrations of the machine at 1000 r/min and to limit the steady-state amplitude of
the absorber mass to 1.5 mm.

(ii) The natural frequencies of the system with the absorber in place.

(iii) The range of speeds near 1000 r/min such that the machine's steady-state
amplitude is less than 2 mm.

The Mathcad notepad using the equations presented in Chap. 8 follows in Fig. 11-15. Please
note the following regarding the solution: (1) Radians is a Mathcad defined unit, whereas
revolutions is not. Thus a statement defining rev must be made before using it in an equation, (2)
When the absorber is added, one natural frequency of the resulting 2-degree-of-freedom system is



312

11.10
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-0.873
X =cigeaves(D.1,) _| 0383
3 oam
0233
g =X3"MXy q=22.747
-0.183
X3 008
Xy® X3=
||ga_° 0.04
-0.049
0.09
X 4 weigenves(D.i | ] T
47| oom
-0.301
q =X, TMX, q=22245
[ 0019
5 X4 . |-0063
i, &
= ol oam
kA -0.064

Fig. 11-12 (Continued.)

less than w,, while one is greater than w,.. The root function uses an iteration to find the root. For
a function with multiple roots, it will generally converge to the root nearest the initial guess. (3) A
poor initial guess for the frequency where X, =2 mm may lead to the iteration process used by the
root function not to converge. This is due to the large derivatives of the function near the natural
frequencies.

Use a Laplace transform solution using MAPLE V to find the response of a
1-degree-of-freedom mass-spring system initially at rest in equilibrium at =0 when
subject to the excitation of Fig. 11-16.

The excitation of Fig. 11-16 is represented mathematically as
g o fy 1
FO = Fe ()~ u(t - 1]

The unit step function used throughout this text is referred to as the Heaviside function in MAPLE
V. The dsolve command with the laplace option solves the differential equation using the Laplace
transform method. In this case (Fig. 11-17) the solution is returned in terms of inverse transforms
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Soluticn to Prablem 11.7 - Natural frequencies and normalized mode shapes calculated in
solution of Problem 11.6.

P

:au@'nem['xl.xz) Py =augment(X 3,X 4)

0,049 0117 -0.183 0,019
0094 -0.096 DO -0.063
“| o108 0013 004 0am
Q117 0115 -0.049 -0.064

P = augment(P |.P )

Excitation vector Right hand side vector

1000
o

F= w =35 G =P"F
2000 |

[ 265.487
|-00305
“|-102.007
o | 401193

Steady-state ampiitudes of pri

R Py, 0226

P - p, 0142

p,_016

Py p, =0.279
Steady-state ampl ofg lized g

-0.052

x =Pp |00

0,037

—0.036

Fig. 11-13
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Solution o Problem 11.8 - Finite element model of bar

Global mass matnx

4100]
Jrane
o141

100I2‘.

Eigenvalues of D

b = cigenvals{ D)

Matural frequency calculations
E =210 10% 3Me0

=)
kg

» =T100

L =2%m

Global stiffness matrix
200 0]
-1 210
K=
o 12 -]
o0 11

0.608 -0.433 0124 -0.03]

~0.433 0732 0495 0124

0124 -0.495 0856 0464

|-0.062 0.247 -0.928 0.732

1788 |

0855
-

0259

0.026 |

Elastic modulus

Mass density

Length

c_teragt L
sec

) =296510" 1%
sec

g =935310" f
5EE

g =1699-10" -1

uy = 2457 10¢ 14

Fig. 11-14

rad

[CHAP. 11
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Salution of Problem 11.9 - vibration absorber design

m =1500kg

Mass of pimary system
3] =3, (¢ Dewon Sttfness of primary systam
m
ST Urit conversion
® :|mﬂ_."_'“‘“ s 10472-™ Operating speed
mun 6 sec - sec
X 00073 m

Steady-state ampiitude of primary system without absorber

Xomax =0.0015m Maximum absorber amplitude

X jmax =0-002m Maximum amplitude of primary system with absorber

Calculations
fiy

CIT |——l- u“ﬂlIM?-E Matural frequency of primary system
LMy e
)

w3y c@ mz2=|m.'.'2-:7': Natural frequency of absorber

Fo :k,-x-,:ll-,'Lﬁl Fg=6962:10" newton

Excitation amplitude
o
Absorber design
F
gy et kg =4.642.10° 2200 Absorber stffness
X amax m
k2
my =— = nz_-iZ!.IS'J'lg Absorber mass
®22

Fig. 11-15

that MAPLE V was not able to invert. Note that MAPLE V applied the first shifting theorem. The

Laplace transform of the Heaviside function is known, and the shifting theorem applied. Thus
using the results of MAPLE V, the system response is

S T W R )
;«(r)—m,+ml (“s:nm coswt +e
- ue"u(f = l)[_,_,_l___ [(a“ + w)e ot
al/l20’w’ + o'+ '

o - sl
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Natural frequency calculations
rolu) L
1 sy Frimary system frequency ratio
rylu) =—— Absorber frequency ratio
w22
_ 2 Mass ratio
»Em
=)
Dfrp.rgm) =rpytgy-ta- (Lep)rpyel Natural frequencies are values of u such
that D=0.
-
E see Guess for lower natural frequency

; !
8 —M(D\rlf.‘].rz(nz}.p).ug)
Lowest natural frequency
a) =5.227.14
sec
o, =15

& Guess for higher natural frequency

ay =root(Dir [u)rpfu !],p}.us}

Higher natural frequency
wy=1410-2
. sec
Determination of operating range
¢ v I-ry Fo  Steady-state amplitude of primary system
Xabreras - k;  with absorber
Trsfag-Tag- (Lo pdbris+ 1 %
TOL =0.000001 Setting tolerance for root procedures
_wtld
e Guess for lower end of operating range

@y =r0at(X mag+ Xy (1w g)rafe gl k)m )
- Lowest operating speed for X, < Xymee
) =88612-25
sec
g 15 ™
Wy "“'('xImn(“xli’l(”g}"ﬂr"s}‘"}‘“&)

ay~ 1362714
eC

Highes! operating speed for X, < X,

Fig. 11-15 (Continued.)
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11.11

11.12

11.13

11.14

-
Fae

L
o

Fig. 11-16

For what values of m, will the system of Fig. 11-18 have a natural frequency between 60
and 80 rad/s? Use MAPLE V 1o perform the algebra.

The MAPLE V worksheet follows (Fig. 11-19). The natural frequencies are the square roots
of the eigenvalues of M™'K. Computer algebra is useful in this problem as the mass matrix contains
an unspecified value. Computer algebra is used to develop the characteristic polynomial of M™'K
in terms of this parameter. Note that since f(A, m) is linear in m, that when f(A, m) =0 is solved
for m, only one value of m exists for each A. A plot of this function between A = (60 rad/s)” = 3600
and A =(80rad/s)’ = 6400 reveals that the maximum and minimum of the function over this
interval are at the ends of the interval (Fig. 11-20). Thus, in order for any of the natural
frequencies to be between 60 and 80 rad/s,

5719 kg<m < 13823 kg

Use the Rayleigh-Ritz method using trial functions
di(x)=Lx —2Lx* +x* () =3L% ~ LA +1°

to approximate the lowest natural frequency of a simply supported beam with a
concentrated mass s al its midspan. Use computer algebra to help with the
manipulations.

The application of MAPLE V to approximate the lowest natural frequency of the beam
follows in Fig. 11-21. The Rayleigh-Ritz method is applied as illustrated in Chap. 7. The lowest

natural frequency is obtained as
/ 42E1
86y [

=20\ 39684 L + 7875mL

Use MAPLE V to develop the Fourier series representation for the periodic function of
Fig. 11-22.

The Fourier series representation for F(1) is

Fly= %"4- E (a,coswe+bsinal) w= 2?"“

The Fourier coefficients are obtained using MAPLE V (Fig. 11-23),

During operation, a punch press of mass m is subject to an excitation of the form of Fig.
11-22. Set up a spreadsheet to design a vibration isolator of damping ratio { for the punch
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Solution to Problern 11.10 - Laplace transform solution for of cne-deg f-freedom system

Setup:
=readilb| Heaviside );

procix} ... end

Excitation:
>Frmt- > FO* expi-alpha* t) * (Heaviside(t}- Heaviside (t- 1 falpha) );
F=tFoe™! [Hcaviside( - Hmisid.{: = ulD

Differental equation:
e = (D@@2){y) (1) +omega™2*y{t) =F(t);
eq =D ) 1) + 02 y(r):FOe_a"(aniside{r)-Heavisid{f-%])

Solution to differential equation using laplace transform:

=duolveleq,y(t) laplace);
W0) ol cos(wr) w0 alcostwr) | D(yN0)wsin(wr)  D{y¥0)a sin(wr)
i) = + + +
%l %l %l %1
, Foasin(or) _ Fﬂws{wl) Fo:'“"
Yol o
FDIlphoe[ He.mstde[af )r,.na]:
+ invlapl o
S +sfa+olfs+ola
FUI:pIac{-Heavisid:[ 'a I)f,s-&-u]u
+ invlapla V8,1
Pesfarolssola
el :=uz+m2
Initial conditions:
=subs{ (¥(0) =0,Diy)(0) =0),"});
_ Foasin{u!) Focostws) Foe™'
= s, 2, o2 %
(u fao )w al+0?  alie?
FDlaplw{ Heawsudr{u’ I}r,s-ra]s
+ invlapl W5
I +.72c(+m S+ID a
Fo laplace( Henv‘md:[ et 15+ uJ a
+ invlapl. o )
i P asfarol $+0)le
Note the | g: (1) lapl iside(t-1/alpha))

{2) Rnplaﬂ'\g 5 by s+alpha in the abm leads 1o
exp({-s/alpha-1)}=exp{-1)exp{-sfalpha)fs+alpha)

Fig. 11-17

press such that the maximum transmitted force is less than F,;. Also use the spreadsheet
to determine the maximum displacement of the machine when the isolator is used. Use
the spreadsheet to determine the maximum stiffness of an isolator of damping ratio 0.1
for m = 1000 kg, @ = 0.2, T=0.1s, £, = 20,000 N, and F,, = 3000 N.

An alternate representation for the Fourier series is

Fin = % + 3 ¢ sin(wr + k) ¢, =Va'+h’ x; =tan™' (g)
=1 "



CHAP. 11] COMPUTER APPLICATIONS 319

(3) s*3+alpha"s*2+omega*2 s romega”2alpha={s+alpha)"(s"2+omega"2)
Then, the inverse transforms becoma;
=invlaplacelexp(-s/alpha)/{{s+ alpha)"2*{s"2 + omega’ 2}},5,1);

ﬂ(*‘ul] (:_L]e*"("al] wﬁ.{u[r-&))

- 1 oe a
Hmmdc{rh-—] 2 + -
o Yl uZ +m2 %l
iofi-g))  amfo(i-3)
* %l o =2 %I

%l :=2u2m2+m4+u4

snviaptace(exp(-s/aipha) *s/({s+ alpha) 2= {s" 2 + omega*21),5,0);

o8] o) (nloa),

Hm‘ﬁ"‘{"}lf) o RS R P
seesl{]) 2o(o(-2) Pofl-2)

%ol :‘2a2m2+m4+u4

Fig. 11-17 (Continued.)

: *l i’! kJ *I
m. VN m, J\/\/\/—{ m

k= 1% 10* Nim ky=1.8x 10 N/m m =125 kg
ky=12x 10°Nim . k= 1.35% 10° N/m my=150kg
Fig. 11-18

Defining r, = w,/w,, an upper bound for the maximum displacement is

1 [
Ao S R ST 7Y G0

Similarly, an upper bound for the transmitted force is

S [ 1+@my
Fras< ;l € -+ Q)

A spreadsheet for the calculation of the tr itted force and maximum displacement follows
in Fig. 11-24. Fourteen terms are taken in the Fourier series evaluation, noting that ¢, M., is only
0.02 percent of ¢,M, and ¢,,T,, is only 0.15 percent of ¢, T,. The isolator stiffness is entered in the
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Solution of Problem 11,11 using MAPLE V

Definiions:
>klim 17 10°5;
kil = 100000
=k2;=1.2*10"5;
k2 = 120000.0
k3= LB 10°5;
k3 := 180000.0
Shdrm 1.35°10°5;
kd 1= 135000.00
»mli= 25
ml =125
>m2:=150;
m2 = 150
>with{linalg);

Warning: new definition for norm
Warning: new definition for ctrace

[ BlockDiagonal, GramSchmidt, JordanBlock, Wronskian, add, addeol, addrow, adj, adjoint,
angl't augmmt backsub, band, basts, bezout, blockmatrix, charmat, charpoly, col, coldim,

, concat, cond, copyinto, crassprod, eurl, definite, delcols,
d'e."rows dea‘ diag, druerge da.pmd’ ergﬂmaif elgefmzrs em‘ermmx equal, exponential,
ex.rrnd' Wil lien, fib i, fF , gaussjord, g 1x, grad, hadamard,

, hessian, hilbert, ip I'errmire,' dexfunc, innerprod, intbasis, tnverse,
ismith, iszero, jacobian, jordan, kernel, lapl i qrs, linsolve, matrix, minor,
mmpoly ma.*m.f mulrow, multiply, norm, nomah'e /i , orthag, per , phvot,

1, 1%, rand , range, rank, ratform, row, rowdim, rowspace, rowspan,
rref scalarmul, singularvals, smith, stack, sub, ix, sub basis, swapcol,

m\aprmy sylvester, toeplitz, trace, transpose, vandermonde, wcpofm.‘ vectdim, vector |

.‘sM: = matrim[ 3, 3,1[m1,0,01,[0,m2,0],10,0,m] ]}

125 0o
M= 0 15 0
o 0 m
Stffness matrix:
sRrmmatri 3,3, [k +k2,-k2,0],[-k2 K2 +k3,-k3],|0,-k3 k3 +k4] 1)
220000.0  -120000.0 ]
K:=|-120000.0 300000.0 -180000.0
0 -180000.0 315000.00
=B = multiphy{inverse (M), Kj;
1760.000000  -960.0000000 0
B -800.0000000 2000000000 -1200.000000
1] -18!7!'12)0011'l jilfliZIlJ'l.'!.l)'EIi
m m
Fig. 11-19

spreadsheet as a parameter. The transmitted force is calculated for the value entered. If the
transmitted force exceeds 3000 N, the isolator stiffness must be lowered. The spreadsheet
automatically recalculates when a new stiffness is entered. An isolator stiffness of 1,190,875 N/m
leads to a transmitted force of 3000 N.

11.15 A simplified model of a vehicle suspension system is shown in Fig. 11-25. The vehicle

traverses a road whose contour is approximately sinusoidal, as shown in Fig. 11-26.
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Characteristic polynomial of B, roots are eigenvalues, which are squares
scharpotyl B, lambdaj;
(23 m - 315000.00 1.2 - 3760.000000 %% = + 9684000000 1

— 4867200000 10'2)/m
fr={lambda,m} > lambda®3*m-31 5000" lambda " 2-3 7560 ambda® 2 *m + 0.9684 " 109" lambda +0.2752*
=107 *lambda*m-0.4867* 10°12;

Fi= (%, m) = 1% m - 315000 2.2 - 3760 4.2 m + 9684000000 10° A +.2752000000 107 m %
~ 4867000000 10 '
=g =lambda- > solve([{lambda,m) =0,m};
g =4 —>solve(f{A, m)=0,m)
sgllambda);

| 2315000, 2.2 + 968400000 10° & - 4867000000 10 12

A3 - 3760, 1.2 +.2752000 107 &
»plot{gilambdal, lambda = 3600..6400,m =0.,200);

>g(3600);

138.2327410
>g|6400);

57.18886782

Fig. 11-19 (Continued.)

Develop a spreadsheet program that evaluates the amplitudes of displacement of the cab
relative to the wheels, the absolute displacement of the cab, and the absolute acceleration
of the cab for vehicle speeds between 0 and 80 m/s.

The frequency of the excitation is

2
d

w=

The equations for the relative displacement, absolute displacement, and absolute acceleration are,
respectively,

Z=h=ry vy

. L+ (20r)
X=h\a=rp+ ey

A=o'X

A spreadsheet program is developed to calculate tables of these amplitudes for varying v. The
spreadsheet program is also used to plot these relations (Fig. 11-27).

11.16 Develop a spreadsheet program that uses numerical integration of the convolution
integral using piecewise impulse approximations as illustrated in Problems 4.27 and 4.28.
Use the spreadsheet program to approximate the response of a 1-degree-of-freedom mass
(m =100 kg) — spring (k = 10,000 N/m) — dashpot (¢ =150 N — s/m) system subject to

F(r) = 1000e~"*'N

The solution is given in Figs 11-28 and 11-29.
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200

1504

= \

H\-\-\""-\-\._
| _hh'““--q_\_‘__‘_
| g,
s0.
|
! |
T anoo 4500 5000 5500 6000
lambda
Fig. 11-20

Supplementary Problems

11.17 Use VIBES or another dedicated vibrations software package to develop the force spectrum for a
system with a damping ratio of 0.2 subject to a triangular pulse.

11.18 Use VIBES or another dedicated vibrations software package to approximate the lowest natural
frequencies of the system of Fig. 11-30 when 3 degrees of freedom are used to model the beam.

11.19 Use VIBES or another dedicated vibrations software package to determine the response of the
system of Fig. 11-30 if the machine has a rotating unbalance of magnitude 0.45 kg-m and operates
at 200 rad/s.

11.20 A vehicle suspension system is modeled using 1 degree of freedom with m=1000 kg, k=
1.3 10" N/m, and {=0.7. Use VIBES or another dedicated vibrations software package to
measure the system’s overshoot when the vehicle encounters a 20-cm-deep pothole.
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Solution of Problem 11.12. - Rayleigh-Ritz apprexdmaton for simply-supported beam with concentrated
mass
Trial funcions:
sphil=x L 3% 2 L e T +x°4;

phil e Llr-2red ext
Dphi2is e =T34 10/37L" 2" 3+ x°5;
p)ai2:=x—>;!.4x—lj—0£,2x3+:s

dl :=x — difi{ phil(x), x)

Derivatives of trial functions:
>l zmx-> diffiphi 1 {x),x);

>dl{xk;
L3-8 L x* +4 X3

SdP: = > dif{phi2 (x},%);

d2 = x — difff phi2(x), x)
>d2ix);

;L‘ —10L%x? 455t

sdl Zr=x->diffid1 (x)x);

di_2:=x - diff{ dl(x), x)
=dl 2{x);

AA2Lx+ 1212

>dZ_2i=x- > diff(d2({x),x);
d2_2:=x— difff d2(x), x)

»>d2 2(x);
200242007
Integral evaluations:
zal rmint{EI*d1_2{x}=dl_2{x),x=0.L);
all = Bpgs
=a12: =in(El*dl_2{x)*d2_2{x},x=0..L);
ar2=12EL8
>222:=ind(E1*d2 2(x}*d2_2(x),x=0..L};
a22: -ﬂﬂﬂ
r.nl|;=lm{rho-a-pmr[x:'pnn{:;,x'-o,.l_;+m-ph|u|..!21-mntuz:;
51 a0 25 8
bl 6309‘41‘ +2ﬁmf.
b1 2:= int{rho* A*phiT{x) *phi2{x},x=0..L) +m*phi1 (L/2)*phi2(L/2);
3L 0,125 g
bi2: 232""“‘ 12 mpL
Fig. 1121

1121 Use VIBES or another dedicated vibrations software package to simulate the free vibrations of a
I-degree-of-freedom system of mass 10 kg and stiffness 1 X 10" N/m that slides on a surface with
friction coefficient p = 0,14 when it is displaced 3 mm and released from rest.

Use an electronic notepad to perform the calculations required to solve Problems 11.22 through
11.29, which refer to the system of Fig. 11-30. When operating at 200 r/min, the machine has a
rotating unbalance of magnitude 0.45 kg-m.
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»b22:=int{rha” A"phi2 (x)*phi2(x),x=0..L} +m*phiZ(L/2) "phi2(L/2);
640 5
b22:= 550 p paLlls me
=with{linalg);

[ BlackDiagonal, GramSchmidy, JordanBlock, Wronskian, add, addeol, addrow, adj, adjoint,
angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, col, coldim,
colspace, colspan, companion, concat, cond, copyinto, crossprod, curl, definite, delcols,
delrows, det, dhag, diverge, dotprod, eigenvals, ergeuwm entermatrix, equa! exponential,

nrendﬂi , fibonacei, frob B E g ix, grad, hadamard,
hermite, hesstan, hilbert, h ipose, il jte, inde , innerprod, infbasis, inverse,
i1smith, iszero, jacobian, jordan, kernel, laplacian, | grs, linsolve, matrix, minor,

poly, mulcol, mulrow, multiply, norm, normalize, nullspace, orthog, per , pivet,
pamma! randmatrix, randvector, range, rank, ratform, mw, dim, pace span,
rref, scalarmul, singularvals, smith, stack, sub i, hasi: ipcol,

swaprow, :}Imm' toeplitz, trace, transpose, vandermonde, vecpom:u vectdim, vec!or]

Coefficient matrix:
>Dr=marix(2,2,[[a11-omega*2*b1 1,21 2-omega~2"b12],[a1 2-0mega~2°b 1 2,a22-omega“2*b22]]);

D=
24,5 2[31_ 925 s] 6_ z(ﬂ 10 125 9]]
[SE”" w 630;).4!, +256mL JIZEILY —w 252"‘“‘" SIZML
6 _ 31 10 125
[IZE.’L @ (25 pAL 512"“[')
640 7 640 11 625 10
—EIL" -w [20?99AL +1024ML J]
>f:-ome-ga > det!D);
== det(D)
=llomega);
l6 2,12 _ 362 16 125 15,2 31 4 2,220
— EICL 14553 EIL o pA 2688 EJ’L m+orosean? P A“L
125 19
4257792‘” pALm

>solve][[omega) = 0,omegal;

pJOJE L i JE ,[_L”.{msf.pxus‘;smj_
.-'_ZJ"J'_ ZJ_j_ 3968 LY p A+ 7875 m L3

%J__LS 2 o8 Lpd <7875 m JEI

3968 LY p A+ 7875 m L3

Fig. 11-21 (Continued.)

ol ol T (1l +a)T 27T
2 (I +amr

Fig. 11-22
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11.22

11.23

11.24

11.25

Solution to Problem 11.13 - Founer coefficents
Fit)=1_1{t) for O<t<alpha*T/2, {_2(t) for alpha"T/2<t<alpha"T, and O for alpha'T<t<T

=f 1=t 27F u{alpha*T);
Fi
l=ts2—
L i aTl

= 2i=e>2°F*{1-U{alpha* T});
3
2:=t—>2 -—
I —+21F [ 1 = T)

a_:

a O:=2/T*{int(f_1{t),c=0..alpha"T/2) +int{F_2(t),t=alpha*T/2..3lpha*T}};
al=Fa

Frequency terms:

romega: =k 2*pi*l/T;

o=i»22L

T
Cosine coefficients:
a_low 2T (int{f_1{t) " cosiomega(l}=1),c=0..alpha " T/2) + intif_2(r)* cos{omega(i} *t},t=alpha*T/2. alpha"T)
>k
il 2[]_ T(eos(mia)+nisin(nia)a)F | TF leos(2nia)TF
B : !212(1 211.21’23 2 nzizu
I T(risin(nia)a-cos{miat))F T
T2 2.2
" i%a
simplify{ "}
Fl-2codnia)+ 1 +cos(2mia))
7t ita

Sine coefficients:
b low 2T * (it _1{c) " uin{omegali) "t),t=0..alpha"T/2) + int{l_2(t)*sin{omega(i} "1}, t=alpha* T/2..alpha"T}}

T

!\'21'211 2 22ila

+_;_ T(micos(mia)a+sn(x fﬂ)}F}/r

» I,”{ 1 T(-sin{nia)+nicos(nia)a)F 1sin(2ric)TF
- B -t

xz.‘za

slmplify(”);
F(2sn{nia)-sn(2mia))

nzf?’u

Fig. 11-23

The beam is to be modeled using 1 degree of freedom with the generalized coordinate chosen as
the displacement of the machine. Determine the equivalent stiffness of the beam at this location,
the equivalent mass of the beam to approximate the beam’s inertia effects, and the system’s natural
frequency.

Develop the flexibility matrix for a 4-degree-of-freedom model of the beam.

Determine approximations to the natural frequencies and normalized mode shapes for a
4-degree-of-freedom model of the beam.

Approximate the machine’s steady-state amplitude using a 4-degree-of-freedom model of the
beam.
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Saolution of Problem 11,14: Design of a vibeation isolator for penodic excitation

Pacamaters
mass 1000 kg
damping ratic 0.2
perod - X
alohs 0.2

Fo 20000 N
F_all 000 N

. 1180876 Nim

Calcutated values

omega_n
F max
x_max

34 50906 rad/s
I000.001 N

0.000388 m

Summation Frequency Frequency Fourier coeffickents

index
i omaga i

1 6283185
2 12568837
3 1BB. 4956
4 2613274
65 3141583
L]
7
8
8

12 753.9822
13 Bi6.8141
14 B79.6459

Magnification

ratio factor

o al b X M
1820735 2120887 2274802 3J870.125 0.412043116
364147 1081733 3329.231  I500.561 008098443
5462705 910,784 2803105 2947.358 0.034580126
7282841  1BEISE 1346707 2291147 0.0101856
5103676 162104 199613 1621139  0.012201394
10.92441 823817 -GEE.EM 1018287 0.008444277
1274616 -167.287 S14.B60 5413516 0.006191213
14.60588 678083 -208.077 2187850 0.004 733834
1638662 13865428 -28.084 4777932 ©.0037369
18,2073 [ L] 0 0.003074814
002000  25.87601 BOOOZ  31.9B45 0.002458723
21.BABBZ  J0.04813 87.2378 0.002008851
23.66956 485033 166 9698 0,001 TRTASS
75.48029 151317 1099348 1870374 0001541274

Fig. 11-24
1000 kg
J Ns
Y LI
1% 10 = 3000 o
Fig. 11-25
I 1L8m —
6 mm

Transmissitdty
factor
Ti

0508737848
REEITFES
0.083091015
0.05909184%
0046075804
0.037853387

0.0371 6466

002758428
0024777477
0.022236072
0.020173203
0.018462666
0017021202
0015780894

27 TN

Fig. 11-26

11.26 Use the Rayleigh-Ritz method with the trial functions
¢i(x) = 1L% — iL% + x*

$ilx) = IL = 3L + x°

to approximate the system’s lowest natural frequency.

[CHAP. 11

citMi

16584 668
2836258
101.82
42.9560
18.78016
B.E9BTON
2351624
1.035692
0178547
]
0.07992
0. 204088
0.2B0622
0.288258

e T

1872.749
500,838
a4 899

1356.3883

74 69544

38 54563

17.41239

6122642

11838861

o
064573

1. TRE 268

2.671661

2953222

11.27 Use the Rayleigh-Ritz method with the trial functions of Problem 11.26 to approximate the
steady-state amplitude of the machine.
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Parama

«

s,

1000
10000000

2,008
1.8

amaga lnada)
o

34308585
#38131701
10.4719755

13,362634
174832925

20942981
144346095

27.929288
314159268

34.90858%
183972433

41.887902
453785608
48.88921391
823898778
558505381
59.34711348
B82.8318531
85.3225118
#9.8131701
733038288
74.7944871
B0.20% 1458
837758041
B7.2664828
807571211
942477796
97 7384381
101.229097
104 719785
108.210414
111,701072
118191731
118582389
122073048
129883708
129.15438%
132.645023
136.135682

139.42624
143116993
146.607857
150.098318
153.588974
157.079833
180.570291

184,08055
187551808
171.042267
174.53292%
178.023584
181.514242
185.00420)
188 495559
191 388218
195 478874
198.967935
202.458193
206.948852

209.43951
212.3301439
218 420827
219.31 1448
223.402144
226.892801
230.383441

FEER-FENF
237.384778

;
o
0.034307
a.089813
0.10472
0139626
0174633
0.20344
0.244348
0.279253
0.314169
0.345068
0383372
0418879
0.453788
0.438882
0.523508
0.558505
0593412
0628319
0.68322%
0.598132
0.733038
0.767345
0.802851
0837758
0.872665
0.307571
0342478
0377384
1.012291
1047198
1.082104
111701
1161817
1186824
12073
1.256637
1201544
1.32845
13613587
1.396263
143117
1488077
1500983
1,83589
1570798
1.805703
1840800
1675518
1710423
1748329
1.780238
1818142
1.880043
1.884958
1.919862
1.954768
1988675
2024582
2089489
2094398
2129302
2184208
2199118
2.234021
2.268928
2.303835
2.338741
2.373648

danam
1
0.998836
0995348
0.989533
0.931393
0.970951
0.968137
0.043148
0.925814
0.908218
08843757

0.880212
0.834081
0805644
Iy
0.742647
0.708178
06718748
0.43383
0.99a421
0.553747
051229
0.470521
0.42935
0.339954
0.354113
0.324374
0.304021
0.296606
0.3046%3
0.328682
0.366831
V41672
0.475704
0541928
0.614014
0.691023
0.772312
0.857407
0945934
1037838
1.132769
1.230658
1.331409
1.434946
1.841211
1650157
1.761747
1.875951
1.892743
2112104
2.234017
2.358487
2.495343
2.814924
2.7a89M1
2.881427
3018416
3157892
329985
3444286
1691195
3,740678
3892423
4,048738
4203512
4.382748
4.524443
4.688535

Caleudatad values

omaga_n=
reta=

Z lemh

]
7.32E.00
2.94E-0%
6.A%E-0%
0.000119
0.000188
0.00027%
-0.00038
0.000505
0,000853
0.000827
0.001028
0.001262
0.001534
9.001849
0.00221%
0.002843
0.003145
0.003737
0.00444
0.005281
0.006294
0.00752
0.009008
0.010792
0.012903
0.015218
0.01753
0.019324
0020178
0020019
2.019149
0.01796%
0.016736
0.01953%
0.014588
0.013711
0.012959
0.012312
0.011758
0.011271
0.010849
0.010479
0.010153

0.009884

0.009808
0.003375
0.009187
0.008373
0.008809
0.008853
0.008512
0.008382
0.008283
0.008153
0.008051
0.007957
0.007863
0.007788
0.007712
0.007841
0.007875
0.007513
0,00745%5
0.0074
0007348
0,0073
0.007254
000721

100
.15

® imi
0.008
0.006007
0.006029
0.008084
0008119
0.008188
0.008274
0.008379
0.008503
0.00808%
0.008822
0.00702
000725
0007518
0.007821
0.008178
2.008531
9.009071
0.009812
2.010292
ooto7
0.011993
.013088
0014374
9.015869
2.017514
LEAE L g]
0.020509
0.021081
0.02058
0019134
0,017194
3.015185
9.013345
0011782
0,010407
0,009279
0.008332
0.,007532
0.006851
0.008268
0.006764
0005328
0.004942
0.004804
0.004304
0.004036
0.003796
0.00358
0.003384
0.003207
0.003045
0.002897
0.002761
0,002638
0.002821
0.002414
0.002316
0.002223
0.002137
0.002087
0.001983
0.001912
0.0018a7
0.001785
0.001727
0.001672
0.00162
0.001571

radin

omega”2*X |mis"2)
o

0073187
0.293854
0.865242
1192947
1884584
27510
3.80843
5071841
9563848
B8.311854
10.35042
1272134
1547699
18.68284
2242122
26.79834
3134108
38.02881
45,2899
53.95859
A4.44205
7707239
9285
111,3454
133.3803
157.3048
1821798
201.3701
210.89
2098317
201.3302
183.44853
177.0735
165.5395
155.343%
146.5314
138.9792
13265154
12697
1221963
1180877
1144799
111.3479
108.603
106.1882
104.0586
1021898
100.4949
99.005631
97.647915
98.436827
95 440489
94.49845
93.85755
9290784
8223972
91.64535
9111948
3065423
80,24433
LERLLLEY
a3.57881
89.30807
89.0803
88885951
88.73301
B88.60837
88.51328

Fig. 11-27
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€9 240895437 2408554 2 B55202 0.007168 0001525 BB 446}
F0  244.34809% 2443461 5024264 000713 0.001481 BE.40469
71 247 B36TS4 2.47HIGE 5195778 0007083 0.001439 BB 3ETE
72 251.327412 2513274 £.368745 0007068 0.001339 88,35308
73 264818071 2548181 5546162 0007025 0.001362 98.41995
74 2583087219 2583087 £.721%9018 0006993 0.001326 8D ABEDS
75 261.799388 2817884 5906344 0.008963 0.001232 BE.53289
76 265.280046 26529 6090108 0.006934 0,001268 BBE1672
77 260.780705 2687807 6€.276319 0006308 0.001228 8871748
78 272271383 2.722714 6464977 0.00688 0.001198 BE.EI410
79 275.762022 2.75762 6655081 O0.008855 000117 BE.96808
B0 27925268 2732527 6843631 0006831 0001143 8211236
61 282743333 2827433 7045626 0006808 000117 B8.27237
B2 286.233987 286234 7244065 O0.006786 0.001092 8944527
@3 280724656 2837247 7444048 0006745 0001068 B9.6306)
B4 283.215314 2932153 T7.648276 O.00674% 0.001045 89.82778
8%  298.706873 296708 76854046 0006728 0.001023 B0.03616
B8 300198631 3001968 506226 0.006707 0001002 50.28531

Fig. 11-27 (Continued.)

11.28 Determine the natural frequency approximations when a three-el finite el model is
used for the beam.
11.29 Approximate the machine’s steady-state amplitude when a three-el it finite el t model is

used for the beam.

11.30 Use an electronic notepad to solve the appropriate transcendental equation for the three lowest
natural frequencies of a uniform fixed-free beam and to plot the corresponding mode shapes.

11.31 Use an electronic notepad to solve Problem 8.25.

11.32  Use an electronic notepad to solve Problem 11.4 if ¢ = 0.15 and w = 195 r/min.

11.33 Use an electronic notepad to numerically evaluate the convolution integral for the system of
Problem 11.5 with

F(r) = 1000 tanh (0.1r)
Use compulter algebra to solve Problems 11.34 through 11,40,
11.34 Derive the elements of the local mass matrix Eq. (9.17) for a beam element.

11.35 Determine the natural frequencies of the system of Fig. 11-31 in terms of the stated parameters.

11.36 Determine the frequency response equation for the block of mass m, of the system of Fig. 11-31 if
F(1) = F,sin wt.

11.37 Use the Laplace transform method to determine the response of a 1-degree-of-freedom undamped
system subject 1o the excitation of Fig. 11-32.
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11.38

11.39

Salunen of Problam 11,18

using spreadsh

Paramatars.

0.07

0.09
(8]
o.n
0.12
0.13
LA ]
0.15
[AL]
0.17
a.18
0.19

0.21
0.22
0.23
0.24
0.25
0.26
o.27
0.28
0.29
03
.3
0.3z
0.33
0.34
0.38
0.36
0.37
0.38
0.38
0.4
0.41
0,42
0.43
044
0.45
0.48
0.47
0.48
0.49
0.5
0.51
0.52

COMPUTER APPLICATIONS

m

of antageal
Calculated valuos:
100 kg omaga_n= 10 radis
10000 Nim ota = 0.075
150 N-sim omega_d= 9.971835 radis

0.01 s r= 0.075212
Forca axp con sin al
1000 1 1 o o
998.9625 1.007528 0.995032 0.099553 10.02058
999.6626 1.016113 0.980178 O0.198117 9.992627
999.0823 1.022755 0.955586 0.294713 0.860809
988.1642 1.030455 0.921489 0.38838 9.625148
906.8671 1.038212 0.878257 0.478188 5.280883
9954728 1.046028 0.826289 0.563247  8.84845
9936825 1.053303 0.764111 0.842708 8.313488
991.508 1.061837 0.898321 0715784 7.8887
989.221  1.06881 0.A23594 0781745 6.974025
986.5537 1.077884 0.54267 0.819948 6.182382
983.5885 1.085909 0458355 0.8809794 5.319803
980.358 1.094174 0.365508 0.03080% 4.394525
976.835 1102411 0271025 0.962572 1.416888
973.0328 1.110711 0.173881 0.0984772 2.196359
588.8548 1.119072 0.074951 0.997187 1.34432
964.6041  1.127497 -0.02483 09996805 0.271817
§58.9851  1.135985 -0.12409 099227 -0.B0961
955.1017  1.144537 -0.22326 0.974087 -1.88825
942,958 1.153153 -0.31822 0.348017 -2.95238
944 5586 1.161834 041102 0.911827 -3.9%033
938.9083 1.170581 .0.49973 0.96618 -4.9909
833.0117  1.179393 058348 0.812127 -5.94297
926.8741 1188272 -0.66143 0.7500068 -6.83615
920.5007 1187217 073281 0.880432  -7.66085
813.8968 1.20623  .0.79691 0.6040898 -8.40748
BO7.0883 1.215311  -0.85308 0.521762 -9.08844
900.0207  1.22446  -0.9008 0434242 -9.62843
B82.76 1.233678 .0.93955 0.342408 .10.1062
B85.2072 1242065 -0.98897 0.247172 -10.4702
B77.6236 1.252321 .0.98876 0.14848 -10.7272
889.7604 1.2617% 093873 0.050302 10.8739
881.7091  1.271249 098878 -0.04937 -10.909
8534783 1.280819 -0.8883 -D.14850 -10.8324
8450686  1.290462 -0.8692 -0.24827 -10.8458
836.4927 1.300174 -0.93987 -0.34154 -10.351
827.7855  1.308964 -0.8012 -0.43341 -9.95228
818.8638 1.319826 085158 052007 -B.45443
809.8247  1.329762 -0.79747 -0.80336 -B.88258
800.8451  1.339771  -0.73344 087975 -B.18658
7813321 1.348858 -0.66213 -0,74839 -7.43145
TE1.8929 1.360021 -0.58423 -0.81153 -8.80702
772.33a5  1.370258 -0.50054 086572 -5.72278
762.6642 1.380575 041187 .0.91124 -4.78883
752,889  1.390988  .0.3181 -0.94772 -3.81574
7430161 140144 022317 -0.07478 -2.81446
7330828 141189 .0.12502 -0.89215 .1.78608
723.0082 1.42282 .0.02562 -0.909487 -0.77182
7128833 1.433329 0.07402¢ 0.99726 0.247182
Joz.6014 144412 0172037 -0.98483 1.250018
6324374 1.4540891 0270131 -0.96282 2.226035
682.1283 1485845 0364641 -0.93115 3.185078
6717712 1476881 0.455%28 .0.88027 4057534

Fig. 11-28

sum G_1

o
1002058
2001318

29.874
39.49014
48.78803
57.63a48
8594754
7363484
80.60867
86.79103
982.11063
B86.50518
89.92185
102.3182
103.8625
103.8343
1031247
101.2365
9828411
94.29372
89.30282
83.35985

76.5237
88.86305
B0,45558
51.38715
41.75072
31,6454
21.17522
10.44801
<0.42588
-11.3348
-22.1873
-32.8129
43,1638
53,1181

-102.423

62

o
0,500857
1.506557
2.511138
3,503384
4472281
5.406847
8.206767
7.131525
7901528
8.597711
9.211854
9.738483
1018517
1048252
10.71426
10.8273
10.82977
10.72107
10.501 86
10.17407
8,740873
9.206864
8.577001
7.858548
7.058882
6.186825
5.251822
4.2683837
3.233728
217214
1.082353
0.004387
-1,07938
-2,14727
-3.18773
-4.18983
-5.1428
-8.0387
-6.8623
781117
-8.27586
-8.84991
-9.32798
70583
98043
-10.15
-10.2138
~10.1725
-10.0279
-9.783
-Ba1
-5.00017

sum G_2

0
0.500657
2.007215
4.518352
o177
12.49402
17.80098
2419773
31,32928
139.23078
47.82852
57.04037
66.77885
76.94202
B7.43454
a8.1488
108.9761
119.8059
1305269
1410288
1512028
160.3438
170.1504
178.7274
186,588
183.6449
1898319
205.0837
209.3475
2125813
214.754
2158483
215.8507
214.7713
212.624
208.4383
206.2484
200.1036
184.0869
187.2046
178.5835
1713178
162.4877
153.1397
1434339
1334535
123.3035
113.0807
102.9172
5288924
B83.10624
73.868453
6465530

o
0.000497
0.001873
0.004330
0.007738
0011935
0,016941
0.0226891
0.029115
0.036137
0.043876
0.0516468
0.059959
0.088524
0.077249
0.088041
0.084807
0.103457
0.111902
0,120056
0,127838
0.1351689

o0.14188
0.148203
0.153779
0.158658
0. 182743
o.188148
0.188694
0170412
0171287
0171318
0.170508
0188389
0.166422
0183195
0.160223
0.154547
0.148218
0.143283
o.138807
0.129881
Q.122481
0.114787
0.106781
0.098587
0.090289
0,081932
0.073598

0.08536
0.057289
0.048451
0.041811

329

Use the Laplace transform method to determine the response of the system of Fig. 11-31 if F(¢) is
as shown in Fig. 11-32.

Use the convolution integral to determine the response of a 1-degree-of-freedom system of mass
m, natural frequency w,, and damping ratio { when subject to the excitation of Fig. 11-32.
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11.40

1141

11.42

11.43

0.53
0.54
0.55
0.56
a.57
0.58
0.59

0.61
a.62
0.63

0.65
0.68
0.67
0.68
0.69

[
o.n
0.72
073
074
0.75
0.76
0,77
o.78
078

o0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.69

0.

0.92
0.3
0.84
0.95
0.98
0.87
0.98
0.99

B61.3729
B50.8402
£40.4799
629.9987
618.5031
E0B. 8397
538.4848
587.8846
577.5064
567.0332
556.5838
546.1632
5357768
5254304
515.1282
504.8785
484.6833
4845286
474.4782
464.4707
454 5545

442,708
4349442
425.2672
4158809
406, 1887
396.7842
387.6007
a7a.ana
58,2283

360.257
351,3874
347.6528
334.0256

328518
N7.1319
308.8082
300.7315
2827204
284.8372
277.0832
289 4504
261.9658
254.608)
2473781
240.2831
233.3218
2264838

1.4881
1.299303
151050
1.521962
1,533418
1,544083
1,5565594
1.658312
1.580118
1.502014
1.603999
1.616074
1628241
1.640458
1.652848
1.665291
1.677828
1.680459
1.703185
1.7116007
1.728825
1.741941
1.755055
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L
1
1
2

TEB26T
JB1578
784031
LBOB504
JB22119
835836
B4D6ET
JBB3I5AT
L8178
8917486
BOEBET
810238
824782
545358
964033

76819
893716

2.023847
2.039083
2.054533
2.0698898
2.085482
2.101182

207
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0.52188
0.8622867
0.697656
0.765513
0.825765
0.877812
0.821138
08565312
0.878004
0.984939

1
0.895124
0.980362
0.955859

0.82186
0.878701
0.826812
0.7866708
0.698986

062432

0.54345
0457181

0.36637
0.271818
C1T4T6E
0.075877

-0.02377
012317
-0.22136
031734
041017
-0.48893
058273
-0.66073
<0.73218
«0.79635
-0.85261
<0.9003%
+0.93823
<0.06874
-0.98863
A0.99860
-0.99883
-D.98804
“0.98843
-0.84019

-0.8016
-0.854068

-0.84045
-0.78233
0.71643
-0,64342
-0,66401
-0.478
-0.38924
-0, 2968
-0. 18803
-0.10048
-0.00083
0.088828
087207
0.293825
0387524
0.477373
0.562479
0.641887
0.115135
0781169
0.838441
0.889373
0.930469
0.96232
©,08481
0997117
0.989718
0.992385
0.875183
0.948312
©.812009
0.886644
0.812869
0.75062
0681113
0.604838
0.522585
0.436079
0.343281
0.248072
0.150308
0.05123
-0.04845
014764
-0,24537
<0.34066
<0.43257
-0.52018,

4.884482
5. 667686
6.369870
6.904844
7.536668
7.891276
B8.35648
B.626807
B,8045
8.888212
8.879085
B.778187
8.591618
8,32035
7.970258
7.546908
7.058825
8.507007
5.004724
5.267966
4.674829
3.884011
2133703
2.362488
1.648737
0.810615
0.185985
-0.51767
-1,19335
-1.83455
-2,43541
+2.99068
+3,48582
+3.84701
-4.34117
-4.87598
-4, 84989
-5.1621
-5.31254
-5.40186
-5.43139
-6.40308
-6.31883
+5. 1838
499948
-4.77058
-4.50142
-4.10688

-97.5288
-01.8609
-B5.491
-TB.A%64
70,8588
-62.9885
54,6131
-45.8862
37,1817
-28.293%
-19.4144
-10.8352
+2.04356
6.276788
14.24705
21.70404
28.85097
3535798
41,2627
4652086
51.095589
54,5508
58.0931
60.4858
6213453
6304515
63.23113
6271346
61.52011
59,68556
57,26016
5426047
50.78364
46.81664
4247547
37.79949
318486
27.6875
22 37486
16.9731
11.54171
6138616
0.819088
-4.36471
936418
<14,1347
-18.6362
-22.8328

Fig. 11-28 (Continued.)

-Bawal
-7.89537
-7.22875
-6.499893
5. 71788
-4.89189
-4.03202

3.1478
-2.24068
+1.34738
-0,485079
0.430459
1.287169
2110618
2.882651
3.625771
4.303216
4.910016
6468054
5946088

6.34984
6.676902
6.925845
7.006184
7.188266
7.203439
7.143814
7.012316
6.812604
8.548007
6226449
5.850377
5426675
4.961579
4.461595
3.933408
3.383798
2819562
2.247387

1.67387

1.10634
0.547846
D.007082
0,61167
-1.00359
+1,48434
-1.88014
<2.27775

Determine the Fourier coefficients for the excitation of Fig. 11-33.

56.16395
48.26658
41.03983
34.53901
28.82203
23.93004
18.88802
16.75011
1450043
13.15307
12.70228
13.13274
1441801
16.53053
19.42218
2304895
27.35117
3zzina
37.73924
4368534
50.03518
58.71208
63.83782
70.73409
77.92235
8512578
92.26061
99.28102
106.0845
112,8435
Tig.87
124.7204
130,147
1351086
139.5702
143.5026
146.8874
149,707
151. 9544
153.6282
154.7336
156.2814
155,2885
154 7768
153,7732
152.3088
150.4188
148,141

[CHAP. 11

0,034728
0.027953
0.021653
0.015887
0.010609
0.005843
0.001887
-0.00154
-0.00432
-0.00645
-0.00793
-0.00876
-0.00895
000853
000781
-0.00593
-0.00382
000121
0.001842
0.005299
0.009107
0.013213
0.017564
0.022102
0.0268771
0.031512
0.036288
0.040883
0.0458
0.050067
0.054333
0.05835
0.062072
0.065458
0.068473
0.071082
0073267
0074976
007627
0.076876
0077236
0.076887
0.076262
0,075037
0.073338
0071174
0.068573
0.065559

Develop a spreadsheet program 1o solve Problem 11.14 if the machine is subject to the excitation
shown in Fig. 11-33 with T=0.1 5, &« =0.3, and F,= 21,000 N,

Develop a spreadsheet program that determines the frequency response of a system when a
damped vibration absorber is added. Use the program to analyze the system of Problem 11.9 when
an optimally damped absorber of mass ratio 0.15 is added to the machine.

Develop a spreadsheet program similar to the program of Problem 11.16 to determine the response
of the system due to an excitation of the form of Problem 11.15.
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N ical Eval of ¢ Integral

N
E=210x 10" p

I 13m t 0%m 1 L=laxioom®
I l A=25x%10"m?

z p = 7500 kg/m’
ﬁ!] m=20kg
=

Fig. 11-30
, k Ky
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Fig. 11-31
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iy 2,
-F,
Fig. 11-32
F
Fy — —_—
u‘T T (a+ )T i+ T I3
Fig. 11-33

11.44 Develop a spreadsheet program that uses Euler's method to numerically approximate the forced
response of a 1-degree-of-freedom system. Use the program to determine the response of a system
of mass 150 kg, natural frequency 210 rad/s, and damping ratio 0.05 subject to F(r) = 1200t "%,

1145 Develop a spreadsheet program that uses a fourth-order Runge-Kutta method to determine the
forced response of a 1-degree-of-freedom system. Use the program to determine the response of
the system of Problem 11.44,

REFERENCE
Kelly, S. G. Fundamentals of Mechanical Vibrations, McGraw-Hill, New York, 1993.



Appendix

SAMPLE Screens From
The Companion Schaum’s Electronic Tutor

This book has a companion Schaum's Electronic Tutor which uses Mathcad® and is designed to help you
learn the subject matter more readily. The Electronic Tutor uses the LIVE-MATH environment of Mathcad
technical calculation software to give you on-screen access to approximately 100 representative solved
problems from this book, together with summaries of key theoretical points and electronic cross-referencing
and hyperlinking. The following pages reproduce a representative sample of screens from the Electronic
Tutor and will help you understand the powerful capabilities of this electronic learning tool. Compare these
screens with the iated solved problems from this book (the corresponding page numbers are listed at the

start of each problem) to see how one complements the other.

In the companion Schaum's Electronic Tutor, you'll find all related text, diagrams, and equations for a
particular solved problem together on your computer screen. As you can see on the following pages, all the
math appears in familiar notation, including units. The format differences you may notice between the
printed Schaum's Outline and the Electronic Tutor are designed to encourage your interaction with the

material or show you alternate ways to solve challenging problems.

As you view the following pages, keep in mind that every number, formula, and graph shown is
completely interactive when viewed on the computer screen. You can change the starting parameters of a
problem and watch as new output graphs are calculated before your eyes; you can change any equation and
immediately see the effect of the numerical calculations on the solution. Every equation, graph, and number
you see is available for experimentation. Each adapted solved problem becomes a “live” worksheet you can
modify to solve dozens of related problems. The companion Electronic Tutor thus will help you to learn and

retain the material taught in this book and you can also use it as a working problem-solving tool.

g [

The Mathcad icon shown on the right is printed throughout this Schaum’s Outline to indicate

which problems are found in the Electronic Tutor. Mahesd

For more information about the companion Electrenic Tutor, including system requirements, please see

the back cover.

@ o

is a regi: d trad %k of MathSeft, Inc.
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Underdamped System Response and Overshoot
(Schaum's Mechanical Vibrations, Solved Problems 2.21, 2.22, and 2.23, pp. 51-52)

Statement

System
Parameters

Overshoot for an underdamped system is defined as the maximum
displacement of the system at the end of its first half cycle when the system
is subject to an initial displacement with zero initial velocity.

(a)

(b)

(c)

What is the minimum damping ratio of a system such that itis subject
to no more than 5% overshoot?

A suspension system is being designed for a vehicle of mass m when
empty. It is estimated that the maximum added mass from
passengers, cargo and fuel is m, . When the vehicle is empty its

static deflection is to be A. What is the minimum value of the
damping coefficient such that the vehicle is subject to no more than
5% overshoot, empty of full?

The suspension system for the vehicle of part (b) is designed using
the minimum damping coefficient determined in part (b). What is the
overshoot when the vehicle encounters a bump of height h when
loaded with passengers, fuel, and cargo of total mass m,?

mass '=2000- kg Empty mass of vehicle

A =3110%m Static deflection when empty

mp = 1000 kg Maximum mass of passengers, cargo, and fuel
m =220kg Mass of passengers, cargo, and fuel for part {(c)
h=5510%m Height of bump

g =9.81 L Acceleration due to gravity



Solution

(a)

MATHCAD SAMPLES

The free vibration response of an underdamped system is
{p Moo
x=A-exp;\- La n'T)I‘SLI'I(m qt+d d)
where ( is the system’s damping ratio, u,, is its natural frequency, uy is
its damped natural frequency, and A and §, are constants of integration. If
X, is the system's initial displacement, then
Xg=A sin(QdJ

The displacement from equilibrium at the end of the first half cycle is x, =

-x(T4/2)
Tq) Ty )
Xp=- Aex ( re— )| [ ——
i P\g"'nZJ (dz"dl
Nating that

T sinf;n+¢d)=-sm(+d)

leads to

_ [ ¢n
xh—xu-cxp|- J
\i-¢
For 5% overshoot, x(T,/2) = -0.05x,

0.05=cxp(- __Q_rl_)
1-¢

which is soived for { as .

2
¢ = |In(005) =069
&+ In(0.05)?
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(b)
(c)
Extension

MATHCAD SAMPLES
The required suspension sliffness is

k = Mg k=6.329-10° 1M

A m

The results of part (a) show that the damping ratio must be smaller than
0.69 to limit the overshoot to 5%. The stiffness of the system is fixed,

but its mass varies, depending on the passengers, fuel, and cargo. If the
damping coefficient is also fixed, the damping ratio is larger for a larger
mass (= c/[2(mk)12 ]). Hence, in order for the overshoot to be limited
to 5% for all possible loading conditions, the damping ratio must be
limited to 0.69 when the vehicle is fully loaded.

5 -1
c =2-C,-,J(mam+ mp) k ©=1.902-10" -kg-sec

The natural frequency of the system with this loading is

0p = (; w0, =53394-
B {mu5$ +1m 1} ' sec
The system's damping ratio is

€1 =

—
9 4 Vi
ﬁNr(mnss m )k

o

| =0.802

From part (a) the overshoot is

[ G
Xh =h-exp\-

Xy, =8.072:10° *m

| 2

AS!

Plot the overshoot as a function of the total mass where the mass varies from
the mass of the empty vehicle to the mass when the vehicle is fully loaded.
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i=0,1.20 For evaluation and plotting the mass ranges from
mass to mass + m, in increments of m_/20.

el
thi = mass + 20 I'J:lp

L 2 :
i ]‘ ms, The natural frequency varies with the mass
Rl
P c
ETIE . . ¥ s 4
i Ir“‘—k The damping ratio varies with the mass.
2-,‘! ms;
[ &
X =hexp| - - The overshoot
|| _(ry?
[ \li I\"i)
Overshoot vs, mass
0,003 T T T i
’,/
-
/'//
& 0.002 [~ L -
- o
.g K. -'/"’/
& o
i .-
& T
o001 [~ _— —
__,-‘,
__f""_‘f
i ! 1 1 L
2000 2200 2400 2600 2800 3000

i)
Total mass in kg

Further (1)  Plot the overshoot as a function of damping ratio for0 <{ < 1.

study

(2) Plot the overshoot as a function of the damped period. Assume the
stiffness is fixed and the damping ratio varies between 0 and 1.
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Undamped and Damped Response to Harmonic Excitation
(Schaum's Mechanical Vibrations, Solved Problems 3.4 and 3.8, pp. 74, 77)

Statement A machine of mass m is placed at the end of a cantilever beam of length L,
elastic modulus E, and cross-sectional moment of inertia I. As it operates the
machine produces a harmonic force of magnitude F;, . At what operating speed
will the machine's steady-state amplitude be less than X, if

(a) the system is modeled as an undamped 1 degree-of-freedom system?

(b) the beam is modeled as a 1degree-of-freedom system with a viscous
damping ratio (7

System mass =45 kg Mass of machine
Parameters
E =200 10" newton-m > Elastic modulus of beam
1=1610"m' Cross-sectional moment of inertia of beam
L=l6om Length of beam
Fg =125newton Excitation magnitude
X max =2:10 ‘m Maximum steady-state amplitude
L =008 Damping ratio for part b

Solution

(a) The system is modeled as a one-degree-of-freedom system. The
equivalent stiffness is the stiffness of a fixed-free beam at its end is

k=2 k=2.344-10° JoEMOn

K m
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If the inertia of the beam is neglected, the natural frequency of vibration of the
machine is

-
0y = .5 wn=223.218'@
4| mass sec

In order for the steady-state amplitude to be limited to X, ... the maximum
magnification factor

2
ma.ss-mn-){‘.mm

O "
Fo

The magnification factor is related to the frequency ratio and damping ratio by

M(r.0) = "—"—".!—'—-—'——

[r—

J0-2 e e

For an undamped system (= 0. There are two values of r such that
M(r,0) = M,,,, . Finding first the value of r< 1

08 Guess forr<1
r s rom(M(r,O)— Mm:x'r:i r, =0.856 Solving for r
o
@) T, ' =195.434-25 X< X o fore<a,
sec
MNow forr>1
r=12 Guess forr>1
r, = root(M(r,ﬂ) -M max'r) r,=1.125 ) Solving for r
rad L
by TR0, wq =256851— X(Xm-‘o‘“gbmz

seC
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(b) There is viscous damping ratio {

r=8§ Guess forr<1

r, =root(M(r,0)- M) 1 =0.879 Solving for r

G =reg W =I'E?S.=1:"4'E£1 X< X o fora<ao,
seC

r=12 Guess forr>1

r, =rool (M( rn0-M msx-r} r,=1.096 Solving forr

y ey w5 =250.099 2 X < Xy fOr >0,

Alternate method of solution which can be used if your version of MATHCAD has
symbolic capabilities:

First load the symbolic processor. The magnification factor M is written
symbolically as a function of r and . The [ctrl]= is used to type the equal sign.

S |SU
JO -2 en?

2 2,4 1 Mow select the variable rin the

o M2 , equation for M. Choose "Solve for
B Variable” from the "Symbolic"

|' ’ __2—;“—' | menu. Four solutions for r in terms

=20+ AT A0 — of M and { are shown to the left, in

j M? | an array. Note that the second and

T —_— |
[ 2 [ 2,4 1 first and third solutions and of no
| =Rk R R e interest
[+ M2 inierest.
[ J

|
O L
d M

|
t fourth solutions are negatives of the
|
[

4
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The first and third solutions are set equal to functions of M and £ by copying
them to the clipboard and pasting them to the right hand side of a function.
The third solution is the smaller value of r and set equal to ry while the first
solution is set equal tor,
|———"|—':
f G = (=28 ettt
A A M?

|
ro(M,g) = i'] 2 Lt

o A M

The solution to the problem is obtained by evaluating the functions for M =
M .xand {=0and(=0.08.

r.
1l

¢ =0 £ 1 (M paxG) =0.856 13(M pa.6) = 1.125

" \ - Py
=008 £ (M ax:t) =0879 73(M pay.§) = 1.096

The values obtained above are identical to those previously attained using the
root function, The upper bound on the speed for o <, and the lower bound

on the speed for o > w | are obtained as before. This method is useful if
these speeds are to be determined for a range of .

Further study

(1) Make a plot of the upper bound on the operating range forr<1vs {for0<{ <07

@ Plot the lower bound on the operating range for r > 1 as a function of the length of
the beam for 1 m < L < 4 m assuming { = 0.08 and all other parameters as
given.
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Natural Frequencies and Mode Shapes for a 3 DOF System
(Schaum'’s Mechanical Vibrations, Solved Problems 5.30, 5.31, and 5.38, pp. 160, 164)

Statement Determine the natural frequencies and normalized mode shapes of the following

system.
System Assume
Parameters
mass = |-kg

_ l-newton

m

Solution The mass and stiffness matrices for this 3 degree-of-freedom system are

, 3% -2y plMeO
/mass Okg Okg m
M =|0kg 2-mass Okg K= -2k 3k k
| ; 2. | ‘
\0-kg Okg 2-mass| o newion K K
m
The inverse of the mass matrix is calculated as
A-massz D-Rgz (}-kg_g2 | (10 04
| 2 2 ] ) sr W
Miny 7 w1 0-kg”™ 2-mass- Okg | M inv |0 05 0 I| kg
\dimass ) | 2| o 0 05

'LO-kg2 0-kg2 2-mass



MATHCAD SAMPLES

The natural frequencies are the square roots of the eigenvalues of M, K. To

this end
Foe2: 0
D =M, K D=l-I 15 -0.5|sec ?
0 -05 05
3.871
w2 =eigenvals(D) wi=|1 -sec
0.129
Thus the natural frequencies are
- P
@ :JIIZ @y :szl “’3‘«1[‘:2;
@) =U.359'Ea—d t112=|'£:1 (u3=l.‘96'|l'-E
sec sec sec

The made shapes are the eigenvectors of M; K.

|f0.9i5 0577 0383
E =eigenvecs(D) E={-0.399 0577 055
0.059 -0.577 0.742

The eigenvectors for the modes are u, v, and w respectively where

w=E v=E" w =E9>
577

0,35.53 0.‘.‘ 10.915

u=| 055 v=| 0577 w = |-0.199
0.742 | 577

0.059

343
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The mode shapes are normalized with respect to the mass matrix
N =u"Mu €y =vI My c3 cwlMow

¢ =1.853kg ¢y = 1667 kg cg=l.l62kg

The normalized mode shapes are

un = u Un_: wn = w
c c c
IO ] 20.0 30 0
[0.282 | 0447} [0.849 |
u, = 0404 [kg™* vo=[ 0447 kg wy=[037 kg
10,545 447 0.055

The previous solution follows the methods used in Schaum's Outline in
Mechanical Vibrations. However, Mathcad has a feature which determines
eigenvalues and eigenvectors for a generalized eigenvalue problem of the form
Kx = LMx. The natural frequencies are the square roots of the eigenvalues of
the generalized eigenvalue problems and the mode shapes are the normalized
eigenvectors. However to use this feature the matrix K must be dimensionless.
To this end

f o ml

MI:‘Dlol Kl
lo o2

1
[= R
RERTALE



Extension

Further
study
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{3871 '||
w3 = genvals(K1,M1) w3=| L
10129/

(0915 -0.577 -0.383
El =genvecs(K1,MI) El =|-0.399 0.577 -0.55

10.059 0.577 -0.742

Note that the eigenvectors returned using genvecs are not normalized with
respect to the mass matrix.

Investigate mode shape orthogonality using the normalized eignevectors.

T o TRs T _
u, Moup =1 up Moy, =0 u,Mw =0
v, "Mu, =0 Vo My, =1 v Mw, =0

T - Tafy = TMw. =
wy Mo, =0 WMo =0 wo Mw =1

(1) Show numerically that the mode shapes are also orthogonal with respect
to the stiffness matrix.

(2) Show numerically that u TKu, = 0,2
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Undamped Absorber Design
(Schaum's Mechanical Vibrations, Solved Problems 8.27 and 8.28, p. 254)

Statement A machine of mass m is attached to a spring of stiffness k,. During operation the
machine is subject to a harmonic excitation of magnitude Fg and frequency o.

(a) Determine the stiffness and mass of an undamped absorber of minimum mass
such that the steady-state amplitude of the machine is zero and the steady-state
amplitude of the absorber mass is less than X, .. when the machine operates at

W@,

(b) What are the natural frequencies of the system with the absorber in place?

System m =200kg k| =4 10}, newton

Parameters

F g =500 newton
m

rad

w =50 =0.002:m

b 4 Y
sec i

The natural frequency of the primary system is

[k
wyy = |—1 oy =44.721‘]-—a—q
Jmy sec

Solution The steady-state amplitude of the primary mass is zero when the absorber is
(@) tuned to the excitation frequency. When this cccurs the steady-state
amplitude of the absorber mass is



(b)
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The minimumn absorber stiffness such that X, < X,... is

F 0 newton

ky=25:10°

kz =
X 2max L

In order for X, = 0, the natural frequency of the absorber a,, = (k/my)'? must
be equal to the excitation frequency w. Thus since the ratio of k, to m, is fixed,

the absorber with the minimum possible mass corresponds to using the
minimum allowable stiffness. This leads to.

my --—-2- m o =100kg
w

The mass ratio is

m
u:_z u=0_5
m

The natural frequencies of the absorber are the frequencies such that the
denominator of Eq.(8.12) is zero. This leads to the following

4 2] 2 2 2
Yo =k (o) =o' - [(1ewe g’ ro ] eiso b0y

347

The natural frequencies are the values of o such that f(u) = 0. When the absorber

is added, the system has two natural frequencies, wy < @44, @5 > 0y,

® :m_r_ail guess value
SeC
ad
0| =rool(f{e),e) 0| =32.679-
sec
© '=30-E guess value
sec
rad

LF) =root(f{w),u) Wy =68426+
seC
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Extension With the absorber in place, for what values of o will the steady-state amplitude
of the absorber be less than X ?

imax

2 -3
X 1max 52:107%m

The steady-state amplitude of the absorber in terms of @ is expressed by

ri(m) .—.._l."_. rz(m) :l
u11 n32
F 1- 150

b4 1(u,) :_.9. :

k2 | ry(@) (@)’ - ro(e)’ - (1+ )7 @)+ |]

Analysis shows that the denominator above is negative for u,<e<w, The
numerator is positive for w<w,, and negative for e>w,, Thus the appropriate

range of w is such that o <a<e, where X,(0,)=X, ., and X (@,)=X; nae

TOL =0.000001 " The default value of TOL = 0,001 is not tight enough in
this problem. Try using the method below with the default
i value and notice the difference in answers. The smaller
o= "2'; the value of TOL, the more accurate the answer.
£
0 g =100t (X gy + X ((0),0) 0, =40.442 s
sec
@ —'54-rﬂ-j

sec

Wy :TON(leM—XI(U},m} mb=6I.238-§

Further (1) Study the design of an undamped absorber if the goal is to reduce the
study steady-state amplitude of the primary mass to 2 mm for all speeds between
' 35 rad/sec and 65 rad/sec,

(2) Repeat the extension of this problem if the excitation is a frequency
squared excitation caused by a rotating imbalance, that is, Fy = 0.202
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Acceleration amplitude, 89-91, 105-106,
243, 321
Adams method, 111
Amplitude:
free response, 37-38, 53
steady-state, 67, 88, 102-103, 238,
246-248, 260, 302
Angle of twist, 11
Auxiliary system, 184, 237-238

Backbone curve, 286
Bar element, 265
BEAM, 303-304
Beam:
cantilever (see Beam, fixed-fixed)
fixed—fixed, 155, 158, 176, 178, 228, 279
fixed—-free, 12, 30, 32, 43, 47, 74, 84, 88,
96-97, 102, 104-105, 156, 176-178, 182,
215-216, 223, 230-231, 256-257, 275,
283-284, 303
fixed-pinned, 6, 284, 303-304
free~free, 230
pinned-free, 214
pinned-pinned, 7, 11, 16, 31, 48, 79, 101,
109, 154-156, 161, 176, 200, 213, 222,
232, 255, 263, 277, 283 i
simply supported (see Beam, pinned—
pinned)
Beam element, 266
Beam equation, 202
Beating, 66, 76, 102

Boundary conditions, 201, 203, 207-215, 217,

218

Center, 289-290

CFREQ, 303-305

Chaotic motion, 285, 295, 300

Characteristic equation, 201, 207-209, 214,
229-230

Combination resonance, 285

Continuous systems, 1, 201-234, 264
Convolution integral, 109, 112-119, 123,
125-126, 132-133, 188, 195, 221, 303,
308-309, 321, 329-331
Coulomb damping:
forced response, 71, 97, 107
free response, 40, 54-55, 107
Critically damped response, 38-39, 48-49,
61, 63
Cubic nonlinearity, 285

Damped absorber, 238, 256-257, 263
Damped natural frequency, 38, 53
Damping coefficient, 1, 12-14, 31
Damping matrix, 137, 139
Damping ratio, 37, 49-51, 61-63, 77, 81
Dashpot, 1
Degrees of freedom, 1, 3-4, 27-28
Differential equation:
derivation of, 36-37, 40-44, 57-59, 64
multi-degree-of-freedom, 136-139, 157,
168-174, 177, 181, 194
nonlinear, 285
standard form of, 37, 64
Discrete system, 1
Displacement spectrum, 236, 251-252, 261
Displacement vector, 137
Distributed parameter system (see
Continuous systems)
Drag coefficient, 87
Duffing’s equation, 285-286, 293

E (L), 237,253
Eigenvalue-eigenvector problem, 137
Eigenvalues, 137, 139, 160, 168, 196, 264,
310, 314
Eigenvectors, 196, 264, 269
Element mass matrix, 264
bar element, 265, 271-273, 281
beam element, 266, 278-279, 283
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Element stiffness matrix, 264
bar element, 265-266, 271-273
beam element, 266, 278-279, 283
Equilibrium point, 285, 288, 290, 292, 299
Equivalent damping coefficient, 24-27, 34-35
Equivalent damping ratio, 71-72
Equivalent mass, 1, 15, 18-19, 22, 26-27,
32-35. 255
Equivalent moment of inertia, 2, 20-21, 23,
25, 32-35
Equivalent stiffness, 1, 11, 18-35
bars, 5
beams, 6, 7, 12, 30-31, 74, 79
parallel springs, 7, 9, 11-12
series springs, 8-9, 11-12
Equivalent systems, 1, 18-27, 36, 40-41,
57-58, 64,73
Euler method, 123, 126
Even function, 71, 99

Finite element method, 264-284, 307, 314

First shifting theorem, 110, 120

Flexibility influence coefficients, 137,
151-156, 175-176

Flexibility matrix, 137-138, 151-157,
175-176, 183, 303

Focus, 289

Force ratio, 97

Force spectrum, 236, 251-252, 261

Force vector, 137

FORCED, 302

Fourier series, 71, 98-100, 107-108, 317, 325

Free body diagram, 36, 42-43, 45, 56, 59, 64,
73. B2, 93, 95, 136, 139-140, 148-153,
169-170, 208, 216, 218-219

Frequency ratio, 67

Frequency squared excitation, 67, 82, 88

Galerkin method, 297-298, 300

Generalized coordinates, 1, 3-4, 137,
187-189, 195

Geometric boundary conditions, 204, 227,
264

Global displacement vector, 264

Global mass matrix, 264, 269, 272, 274, 277,
280, 282-283

Global stiffness matrix, 264, 269, 274, 276,
280, 282-283

Hardening spring, 285

Harmonic excitation, 64, 180
Homogeneous solution, 65

Hooke's law, 206

Houdaille damper, 240, 257-258, 263
Hysteretic damping, 72, 98, 107, 250, 260

Impedance matrix, 180, 185-186

Impulse excitation, 236

Initial conditions, 37, 65, 162, 220, 285, 293
Integration by parts, 212-213, 217

Internal resonance, 285

Inverse transform, 110, 120

Isolator efficiency, 237

Isolator stiffness, 242-243, 259

Jump phenomenon, 286

Kinetic energy:
bar element, 265, 268, 271-273
beam, 16-17
beam element, 266, 275, 277
equivalent system, 1
linear spring, 15
multi-degree-of-freedom system,

140146, 194

quadratic form, 132, 264
rigid body, 1, 18-19, 22-26
torsional system, 2, 20-21

" Knots, 123

A (r, £), 67-69, 82-84, 86, 88-90, 241, 248,
259

Lagrange’s equations, 136, 140-147,
170-173, 194, 265

Lagrangian, 136, 141-146

Laplace transform, 109, 119-122, 133, 180,
185186, 198-199, 312, 318-319

Limit cycle, 287, 296-297, 300

Linear spring, 1

Linear superposition, 70, 285

Linstedt-Poincaré method, 294

Local coordinate, 264

Local mass matrix (see Element mass matrix)

Local stiffness matrix (see Element stiffness
matrix)
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Logarithmic decrement, 38, 53, 97-98

Longitudinal waves, 202, 205, 207-208,
210-211

Lotus 1-2-3, 301

M (r, £), 67, 7480, 85, 93, 101, 191, 246, 306

MACSYMA, 302

Magnification factor, 67, 72, 75-78, 97

MAPLE V, 302, 312, 315, 317

Mass matrix, 137, 158-159, 161, 183, 303, 310

Mass ratio, 254

Mathcad, 302-303, 305-311

Mathematica, 302

MATLAB, 302

Matrix iteration, 138, 165-167, 178-179

Maxwell's reciprocity theorem, 137

Method of averaging, 297-298

Method of renormalization, 294

MITER, 303

Modal analysis, 181, 187-191, 193, 199, 265,
307, 313

Modal damping ratio, 139, 190-191, 195

Modal matrix, 181, 189-190, 196, 313

Modal superposition, 203, 221-223, 232

Mode shape vector, 137, 159-162, 165,
177-179, 187, 192, 310

Multi-degree-of-freedom systems, 136

Multifrequency excitation, 70

Natural frequency:
continuous systems of, 202, 206, 208,
210-211, 213-216, 220-221, 229-230,
303 )
from finite element method, 264, 267, 269,
272-273, 275, 279, 281-282, 307, 314
multi-degree-of-freedom system,
137-138, 157-163, 166-167, 177-178,
187, 189, 192
1-degree-of-freedom system, 37, 40, 43,
45-49, 51, 57-61
Negative damping, 287
Node, 289
Nonlinear systems, 285-300
Normal mode solution:
continuous systems, 201, 207, 209, 211,
213-214
discrete systems, 137, 159-160
Normalization condition, 138, 164, 179, 202,
220

Odd function, 71, 98
Optimum damping ratio, 240, 256, 258
Orthogonality:
continuous system, 202-203, 211-213, 216,
222-223, 230-231
discrete system, 138-139, 163, 166, 178,
181
Overdamped response, 39
Overshoot, 50-52, 62

Paradox, 301
Parallel springs, 7-9, 11-12, 48, 60, 76
Partial fractions, 120-121, 185-186
Particular solution, 65
Pendulum equation, 287
Period, 45-46, 62, 285, 293-294, 299
Perturbation method, 286, 293-295, 299
Phase angle:
steady-state, 67, 80-81, 104, 302
undamped free response of, 37
underdamped free response, 38
Phase plane, 285, 288, 290-299
Poincaré gections, 295
Potential energy, 17-18
bar element, 265, 267-268, 271-272
beam element, 266-267
due to gravity, 23-24
equivalent system, 2
linear springs, 18-22, 24-27, 47, 49
multi-degree-of-freedom system,
140-147, 194
quadratic form, 136, 264
torsional system, 2
Pressure waves, 20
Primary system, 184, 238
Principal coordinates, 181, 187-193, 313
Principle of impulse and momentum, 253
Proportional damping, 138, 167-168, 181,
190, 193, 195, 200

Q (L), 235,253
Quadratic form, 136, 264
Quatro Pro, 301

R(r, ), 91-92

Rayleigh-Ritz method, 204, 225-228,
233-234, 264, 317

Rayleigh's quotient, 204, 224-225, 233
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Relative displacement, 68, 89, 105, 235, 248,
321

Resonance, 66, 74, 285

Response spectrum, 111, 127-129, 137

Reynolds number, 87

Rotating unbalance, 81-84, 104-1035,
183-184, 218, 242-243, 248, 303

Runge-Kutta method, 111, 126, 295

Saddle point, 289-291

Second shifting theorem, 110, 121-122, 186

Self-excited vibrations, 287

Series springs, 8, 9, 11-12, 15, 35, 48

Shape functions, 264

Shock isolation, 236

Softening spring, 285

Spreadsheet, 301, 317, 321

Start-up amplitude, 246, 260

State plane (see Phase plane)

Static deflection, 3, 18, 29, 48, 51, 60, 242,
260, 303

Steady-state response, 67, 102-103, 107, 180,
182, 184, 191, 197-198, 217-219, 231,
235, 254, 302

Stiffness, 1

Stiffness influence coefficients, 137, 147-151,
175

Stiffness matrix, 137-138, 147-151, 157, 175,
310

Strouhal number, 87

Subharmonic resonance, 285

Superharmonic resonance, 285

Support excitation, 69, 88-89, 105

Symmetric matrix, 137, 179-180

T (r, £), 70, 89, 91, 236, 243-246, 248-249,
306

Taylor series expansion, 203, 289

Torsional stiffness, 2, 5-6, 10, 76

Torsional waves, 202

Trajectory, 288, 295, 299

Transmissibility ratio, 236, 243-256

Transmitted force, 242-243, 246, 249, 253,
260-262

Trapezoidal rule, 124, 126, 134

Triangular pulse, 115-117, 121, 251

Unbalance (see Rotating unbalance)
Underdamped response, 38, 167-168
Unit impulse function, 111, 195-196
Unit step function, 111, 116-118, 132
Unrestrained system, 138, 154

van der Pol equation, 287, 296-297, 300

Variation, 64, 136, 141-142, 146-147, 265

VIBES, 301-303, 322, 323

Vibration absorber, 182, 237-238, 254-255,
262, 311, 315-316

Vibration control, 235-263

Vibration isolator, 235, 242, 303, 317-320

Virtual work, 64, 136, 141, 194, 265, 280

Viscous damper, 12-14

Vortex shedding, 87-88

W(r, ), 93-94
Waterhammer waves, 202
Wave equation, 201, 202
Wave speed, 201-202, 205
Whirling, 241, 258-259, 363
Work, 2, 24-27, 49
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