
CHAPTER 36
MATERIAL DAMPING AND

SLIP DAMPING

L. E. Goodman

INTRODUCTION

The term damping as used in this chapter refers to the energy-dissipation properties
of a material or system under cyclic stress, but excludes energy-transfer devices such
as dynamic absorbers. With this understanding of the meaning of the word, energy
must be dissipated within the vibrating system. In most cases a conversion of
mechanical energy to heat occurs. For convenience, damping is classified here as (1)
material damping and (2) system damping. Material properties and the principles
underlying the measurement and prediction of damping magnitude are discussed in
this chapter. For application to specific engineering problems, see Chap. 37.

MATERIAL DAMPING

Without a source of external energy, no real mechanical system maintains an undi-
minished amplitude of vibration. Material damping is a name for the complex phys-
ical effects that convert kinetic and strain energy in a vibrating mechanical system
consisting of a volume of macrocontinuous (solid) matter into heat. Studies of mate-
rial damping are employed in solid-state physics as guides to the internal structure
of solids. The damping capacity of materials is also a significant property in the
design of structures and mechanical devices; for example, in problems involving
mechanical resonance and fatigue, shaft whirl, instrument hysteresis, and heating
under cyclic stress. Three types of material that have been studied in detail are:

1. Viscoelastic materials.1 The idealized linear behavior generally assumed for this
class of materials is amenable to the laws of superposition and other conven-
tional rheological treatments including model analog analysis. In most cases lin-
ear (Newtonian) viscosity is considered to be the principal form of energy
dissipation. Many polymeric materials, as well as some other types of materials,
may be treated under this heading.

2. Structural metals and nonmetals.2 The linear dissipation functions generally
assumed for the analysis of viscoelastic materials are not, as a rule, appropriate
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for structural materials. Significant nonlinearity characterizes structural materi-
als, particularly at high levels of stress.A further complication arises from the fact
that the stress and temperature histories may affect the material damping prop-
erties markedly; therefore, the concept of a stable material assumed in viscoelas-
tic treatments may not be realistic for structural materials.

3. Surface coatings. The application of coatings to flat and curved surfaces to
enhance energy dissipation by increasing the losses associated with fluid flow is a
common device in acoustic noise control. These coatings also take advantage of
material and interface damping through their bond with a structural material.

They are treated in detail in Chap. 37.

Material damping of macrocontinu-
ous media may be associated with such
mechanisms as plastic slip or flow,
magnetomechanical effects, dislocation
movements, and inhomogeneous strain
in fibrous materials. Under cyclic stress
or strain these mechanisms lead to the
formation of a stress-strain hysteresis
loop of the type shown in Fig. 36.1. Since
a variety of inelastic and anelastic mech-
anisms can be operative during cyclic
stress, the unloading branch AB of the
stress-strain curve falls below the initial
loading branch OPA. Curves OPA and
AB coincide only for a perfectly elastic
material; such a material is never
encountered in actual practice, even at
very low stresses. The damping energy
dissipated per unit volume during one
stress cycle (between stress limits ±σd or
strain limits ±�d) is equal to the area
within the hysteresis loop ABCDA.

SLIP DAMPING

In contrast to material damping, which occurs within a volume of solid material, slip
damping3 arises from boundary shear effects at mating surfaces, or joints between dis-
tinguishable parts. Energy dissipation during cyclic shear strain at an interface may
occur as a result of dry sliding (Coulomb friction), lubricated sliding (viscous forces),
or cyclic strain in a separating adhesive (damping in a viscoelastic layer between mat-
ing surfaces).

SIGNIFICANCE OF MECHANICAL DAMPING 

AS AN ENGINEERING PROPERTY

Large damping in a structural material may be either desirable or undesirable,
depending on the engineering application at hand. For example, damping is a desir-
able property to the designer concerned with limiting the peak stresses and extend-
ing the fatigue life of structural elements and machine parts subjected to
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FIGURE 36.1 Typical stress-strain (or load-
deflection) hysteresis loop for a material under
cyclic stress.
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near-resonant cyclic forces or to suddenly applied forces. It is a desirable property if
noise reduction is of importance. On the other hand, damping is undesirable if inter-
nal heating is to be avoided. It also can be a source of dynamic instability of rotating
shafts and of error in sensitive instruments.

Resonant vibrations of large amplitude are encountered in a variety of modern
devices, frequently causing rough and noisy operation and, in extreme cases, leading
to seriously high repeated stresses. Various types of damping may be employed to
minimize these resonant vibration amplitudes. Although special damping devices of
the types described in Chap. 6 may be used to transfer energy from the system, there
are many situations in which auxiliary dampers are not practical.Then accurate esti-
mation of material and slip damping becomes important.

When an engineering structure is subjected to a harmonic exciting force Fg sin ωt,
an induced force Fd sin (ωt − ϕ) appears at the support. The ratio of the amplitudes,
Fd/Fg, is a function of the exciting frequency ω. It is known as the vibration amplifi-

cation factor. At resonance, when ϕ =
90°, this ratio becomes the resonance
amplification factor4 Ar:

Ar = (36.1)

This condition is pictured schematically
in Fig. 36.2 for low, intermediate, and
high damping (curves 1, 2, 3, respec-
tively).

The magnitude of the resonance
amplification factor varies over a wide
range in engineering practice.5 In labo-
ratory tests, values as large as 1000 have
been observed. In actual engineering
parts under high stress, a range of 500 to
10 is reasonably inclusive. These limits
are exemplified by an airplane pro-
peller, cyclically stressed in the fatigue
range, which displayed a resonance
amplification factor of 490, and a double
leaf spring with optimum interface slip
damping which was observed to have a
resonance amplification factor of 10.
Because of the wide range of possible
values of Ar, each case must be consid-
ered individually.

METHODS FOR MEASURING DAMPING

PROPERTIES

STRESS-STRAIN (OR LOAD-DEFLECTION) HYSTERESIS LOOP

The hysteresis loop illustrated in Fig. 36.1 provides a direct and easily interpreted
measure of damping energy. To determine damping at low stress levels requires

Fd�
Fg
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FIGURE 36.2 Effect of material and slip
damping on vibration amplification. Curve (1)
illustrates case of small material and slip damp-
ing; (2) one damping is large while other is small;
(3) both material and slip damping are large.
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instruments of extreme sensitivity. For example, the width (DB in Fig. 36.1) of the
loop of chrome steel at an alternating direct-stress level of 103 MPa* is less than 2 ×
10−6. High-sensitivity and high-speed transducers and recording devices are required
to attain sufficient accuracy for the measurement of such strains. For metals in gen-
eral, extremely long gage lengths are required to measure damping in direct stress
by the hysteresis loop method if the peak stress is less than about 60 percent of the
fatigue limit. Under torsional stress, however, greater sensitivity is possible and the
hysteresis loop method is applicable to low stress work.

PROCEDURES EMPLOYING A VIBRATING SPECIMEN

The following methods of measuring damping utilize a vibrating system in which the
deflected member, usually acting as a spring, serves as the specimen under test. For
example, one end of the specimen may be fixed and the other end attached to a mass
which is caused to vibrate; alternatively, a freely supported beam or a tuning fork
may be used as the specimen vibrating system.6 In any arrangement the damping is

computed from the observed vibratory
characteristics of the system.

In one class of these procedures the
rate of decay of free damped vibration 
is measured. Typical vibration decay
curves are shown in Fig. 36.3. The meas-
ure of damping usually used, the log-
arithmic decrement, is the natural
logarithm of the ratio of any two succes-
sive amplitudes [see Eq. (2.19)]:

∆ = ln � (36.2)

The relation between logarithmic decre-
ment and other units used to measure
damping is given in Eq. (36.16). Vibra-
tion decay tests can be performed under
a variety of stress and temperature con-
ditions, and may utilize many different
procedures for releasing the specimen
and recording the vibration decay. It is
essential to minimize the loss of energy
either to the specimen supports or in
acoustic radiation.

A second class of vibrating specimen
procedures makes use of the fact, illus-

trated in Fig. 36.2, that higher damping is associated with a broader peak in the fre-
quency response or resonance curve. If the exciting force is held constant and the
exciting frequency varied, measurement of the steady-state amplitude of motion (or
stress) yields a curve similar to those shown in Fig. 36.2. The damping is then deter-
mined by measuring the width of the curve at an amplification factor equal to 

∆x
�
xn

xn�
xn + 1
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FIGURE 36.3 Typical vibration decay curves:
(A) low decay rate, small damping, and (B) high
decay rate, large damping.

* 1 MPa = 106 N/m2 = 146.5 lb/in.2 (103 MPa = 15,000 lb/in.2).
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0.707Ar. If a horizontal line drawn at this ordinate intercepts the resonance curve at
frequency ratios f1/fn and f2/fn ,

∆ = π � − � (36.3)

The quantity (f2 − f1) is the bandwidth at the half-power point. This procedure has the
advantage of requiring only steady-state tests. As in the case of the free-decay pro-
cedure, only the relative amplitude of the response need be measured. However, the
procedure does impose a particular stress history. If the system behavior should be
markedly nonlinear, the shape of the resonance curve will not be that assumed in the
derivation of Eq. (36.3).

If a system is operated exactly at resonance, the resonance amplification factor Ar

is the ratio of the (induced) force Fd to the exciting force Fg [see Eq. (36.1)]. In direct
application of this equation, Fg is usually made controllable and Fd computed from
strain or displacement measurements. The principle has been applied to the meas-
urement of damping in a large structure7 and in simple test specimens. It can take
account of high stress magnitude and of stress history as controlled variables. The
natural frequency of vibration of a specimen can be altered so that damping as a
function of frequency may be studied, but it is usually difficult to make such meas-
urements over a wide frequency range.This technique requires accurately calibrated
apparatus since measurements are absolute and not relative.

LATERAL DEFLECTION OF ROTATING CANTILEVER METHOD

The principle of the lateral deflection method is illustrated in Fig. 36.4. If test speci-
men S is loaded by arm-weight combination A—W, the target T deflects vertically
downward from position 1 to position 2. If the arm-specimen combination is rotated
by spindle B, as in a rotating cantilever-beam fatigue test, target T moves from posi-

tion 2 to position 3 for clockwise rotation. If the direction of rotation is counterclock-
wise, the target moves from position 3 horizontally to position 4. The horizontal
traversal H is a direct measure of the total damping absorbed by the rotating system.8

A modification of the lateral deflection method is the lateral force method. The
end of the rotating beam is confined and the lateral confining force is measured
instead of the lateral deflection H. This modification is particularly useful for meas-
urements of low modulus materials, such as plastic and viscoelastic materials.9

f1�
fn

f2�
fn

MATERIAL DAMPING AND SLIP DAMPING 36.5

FIGURE 36.4 Principle of rotating cantilever beam method for measuring damping.
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The advantages of the rotating cantilever beam method are (1) the test variables,
stress magnitude, stress history, and frequency, may be easily and independently con-
trolled so that this method is satisfactory for intermediate and high stress levels, and
(2) it yields not only data on damping but also fatigue and elasticity properties.

The disadvantages of this method are (1) the tests are rather time-consuming, (2)
accuracy is often questionable at low stress levels (below about 20 percent of the
fatigue limit) due to the small value of the horizontal traversal H, and (3) the
method can be used under rotating-bending conditions only.

HIGH-FREQUENCY PULSE TECHNIQUES

A sequence of elastic pulses generated by a transducer such as a quartz crystal
cemented to the front face of a specimen is reflected at the rear face and received
again at the transducer. The frequencies are in the megacycle range. The velocity of
such waves provides a measure of the elastic constants of the specimen; their decay
rates provide a measure of the material damping.10 This technique has been widely
employed in the study of the viscoelastic properties of polymers and the elastic
properties of crystals. So far as measurement of damping is concerned, it is open to
the objection that the attenuation may be due to scattering by imperfections rather
than to internal friction.

FUNDAMENTAL RELATIONSHIPS

Two general types of units are used to specify the damping properties of structural
materials: (1) the energy dissipated per cycle in a structural element or test specimen
and (2) the ratio of this energy to a reference strain energy or elastic energy.
Absolute damping energy units are:

D0 = total damping energy dissipated by entire specimen or structural element
per cycle of vibration, N⋅m/cycle

Da = average damping energy, determined by dividing total damping energy D0

by volume V0 of specimen or structural element which is dissipating energy,
N⋅m/m3/cycle

D = specific damping energy, work dissipated per unit volume and per cycle at a
point in the specimen, N⋅m/m3/cycle

Of these absolute damping energy units, the total energy D0 usually is of greatest
interest to the engineer.The average damping energy Da depends upon the shape of
the specimen or structural element and upon the nature of the stress distribution in
it, even though the specimens are made of the same material and have been sub-
jected to the same stress distribution at the same temperature and frequency. Thus,
quoted values of the average damping energy in the technical literature should be
viewed with some reserve.

The specific damping energy D is the most fundamental of the three absolute
units of damping since it depends only on the material in question and not on the
shape, stress distribution, or volume of the vibrating element. However, most of the
methods discussed previously for measuring damping properties yield data on total
damping energy D0 rather than on specific damping energy D. Therefore, the devel-
opment of the relationships between these quantities assumes importance.

36.6 CHAPTER THIRTY-SIX
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RELATIONSHIP BETWEEN D0, Da, AND D

If the specific damping energy is integrated throughout the stressed volume,

D0 = �V0

0
D dV (36.4)

This is a triple integral; dV = dx dy dz and D is regarded as a function of the space
coordinates x, y, z. If there is only one nonzero stress component, the specific damp-
ing energy D may be considered a function of the stress level σ. Then

D0 = �σd

0
D dσ (36.5)

In this integration, V is the volume of material whose stress level is less than σ. The
integration is a single integral, and σd is the peak stress. The integrands may be put
in dimensionless form by introducing Dd, the specific damping energy associated
with the peak stress level reached anywhere in the specimen during the vibration
(i.e., the value of D corresponding to σ = σd). Then

D0 = DdV0α (36.6)

where α = �1

0 � � d � � (36.7)

The average damping energy is

Da = = Ddα (36.8)

The relationship between the damping energies D0, Da, and D depends upon the
dimensionless damping energy integral α. The integrand of α may be separated into
two parts: (1) a damping function D/Dd which is a property of the material and (2) a
volume-stress function d(V/V0)/d(σ/σd) which depends on the shape of the part and
the stress distribution.

RELATIONSHIP BETWEEN SPECIFIC DAMPING ENERGY 

AND STRESS LEVEL

Before the damping function D/Dd can be determined, the specific damping energy
D must be related to the stress level σ. Data of this type for typical engineering
materials are given in Figs. 36.10 and 36.11. These results illustrate the fact that the
damping-stress relationship for all materials cannot be expressed by one simple
function. For a large number of structural materials in the low-intermediate stress
region (up to 70 percent of σe the fatigue strength at 2 × 107 cycles), the following
relationship is reasonably satisfactory:

D = J � �
n

(36.9)

Values of the constants J and n are given in Table 36.5 and Fig. 36.10. In general,
n = 2.0 to 3.0 in the low-intermediate stress region but may be much larger at high
stress levels. Where Eq. (36.9) is not applicable, as in the high stress regions of Figs.

σ
�
σe

D0�
V0

σ
�
σd

d(V/V0)�
d(σ/σd)

D
�
Dd

dV
�
dσ
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36.10 and 36.11 or in the case of the 403 steel alloy of Fig. 36.9, analytical expressions
are impractical and a graphical approach is more suitable for the computation of α.

VOLUME-STRESS FUNCTION

The volume-stress function (V/V0) may be visualized by referring to the dimension-
less volume-stress curves shown in Fig. 36.5. The variety of specimen types included
in this figure [tension-compression member (1) to turbine blade (9)] is representa-
tive of those encountered in practice. These curves give the fraction of the total vol-
ume which is stressed below a certain fraction of the peak stress. In a torsion
member, for example, 30 percent of the material is at a stress lower than 53 percent
of the peak stress. The volume-stress curves for a part having a reasonably uniform
stress, i.e., having most of its volume stressed near the maximum stress, are in the
region of this diagram labeled H. By contrast, curves for parts having a large stress

36.8 CHAPTER THIRTY-SIX

FIGURE 36.5 Volume-stress functions for various types of parts. (See Table 36.1 for additional
details on parts.)
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gradient (such as a notched beam in which very little volume is at the maximum
stress and practically all of the volume is at a very low stress) are in the G region.

In order to illustrate representative values of α for several cases of engineering
interest, the results of selected analytical and graphical computations11 are summa-
rized in Table 36.1 and in Fig. 36.6. In Fig. 36.6 the effect of the damping exponent n
on the value of α for different types of representative specimens is illustrated. Note
the wide range of α encountered for n = 2.4 (representative of many materials at low
and intermediate stress) and for n = 8 (representative of materials at high stress, as
shown in the next section).

RATIO OF DAMPING ENERGY TO STRAIN ENERGY

Owing to the complexity of the sources of material damping, the use of relative
damping energy units does not produce all the advantages that might otherwise be
associated with a nondimensional quantity. One motivation for the use of such units,
however, is their direct relation to several conventional damping tests. The logarith-

MATERIAL DAMPING AND SLIP DAMPING 36.9

FIGURE 36.6 Damping exponent n in equation D = J(σ/σe)n.
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TABLE 36.1 Expressions and Values for α and β/α for Various Stress Distribution and Damping Functions

Dimensionless damping energy integral α
Dimen-

for various damping functions
sionless
strain 
energy β/α

Type of specimen and loading Volume-stress function
For special case D = J(σ/σe)n

integral if
as designated in Fig. 36.1 V/V0 General case D = f(σ) For any value of n n = 2.4 n = 8 β n = 8

1 Tension-compression member 1 1 1 1 1.0 1

2 Cylindrical torsion member or 
� �

2

�1 + �
−1

0.45 0.20 0.5 2.5rotating beam

3 Rectangular beam under uniform �1 + �
−1

0.29 0.11 0.33 3.0
bending

4 Cylindrical beam under uniform � �	1 − � �
2

+ sin−1� �� 0.21 0.055 0.24 4.5
bending

5 Diamond beam under uniform 
2 − � �

2

�1 + + �
−1

0.13 0.022 0.17 7.7
bending

6
Rectangular beam

Mx = M0 �1 − loge � �1 + + �
−1

0.088 0.012 0.11 9.1

having bending
moment shown

7 Mx = � �
2

M0 2 �	 − �1 + + �
−1

0.051 0.0065 0.067 10.0

8 Tuning fork in bending K �1 − loge � K�1 + + �
−1

→ 0.091 0.0099 0.089 9.0

Note: β/α = 1 for all cases if n = 2.
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mic decrement ∆ is defined by Eq. (36.2). Other energy ratio units are tabulated and
defined below. In this chapter, the energy ratio unit termed loss factor is used as the
reference unit.

In defining the various energy ratio units, it is important to distinguish between
loss factor ηs of a specimen or part (having a variable stress distribution) and the loss
factor η for a material (having a uniform stress distribution). By definition the loss
factor of a specimen (identified by subscript s) is

ηs = (36.10)

where the total damping D0 in the specimen is given by Eq. (36.6). The total strain
energy in the part is of the form

W0 = �V0

0 � � dV = � � V0β (36.11)

where E denotes a modulus of elasticity and β is a dimensionless integral whose
value depends upon the volume-stress function and the stress distribution:

β = �1

0 � �
2

d � � (36.12)

On substituting Eq. (36.6) and Eq. (36.11) in Eq. (36.10), it follows that

ηs = (36.13)

If the specimen has a uniform stress distribution, α = β = 1 and the specimen loss fac-
tor ηs becomes the material loss factor η; in general, however,

η = = ηs (36.14)

Other energy ratio (or relative energy) damping units in common use are defined
below:

For specimens with variable stress distribution:

ηs = (tan φ)s = = = � �s
= = = � � (36.15)

For materials or specimens with uniform stress distribution:

η = tan φ = = = = = = Q−1 = (36.16)

where η = loss factor of material = dissipation factor (high loss factor signi-
fies high damping)

tan φ = loss angle, where φ is phase angle by which strain lags stress in
sinusoidal loading

ψ = πη = specific damping capacity
δω/ωn = (bandwidth at half-power point)/(natural frequency) [see Eq.

(36.3)]
Ar = resonance amplification factor [see Eq. (36.1)]

EDd�
πσd

2

1
�
Q

1
�
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δω
�
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ψ
�
π

∆
�
π

α
�
β
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2

1
�
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1
�
(Ar)s
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�
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ψs�
π

∆s�
π

β
�
α

EDd�
πσd

2

α
�
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Dd�
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2

E
�
π

σ
�
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σ
�
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2

�
E

1
�
2
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�
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1
�
2

D0�
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Q = 1/η = measure of the sharpness of a resonance peak and amplification
produced by resonance

The material properties are related to the specimen properties as follows:

ψ = ψs ∆ = ∆s Ar = (Ar)s (36.17)

Thus, the various energy ratio units, as conventionally expressed for specimens,
depend not only on the basic material properties D and E but also on β/α. The ratio
β/α depends on the form of the damping-stress function and the stress distribution in
the specimen.As in the case of average damping energy, Da, the loss factor or the log-
arithmic decrement for specimens made from exactly the same material and exposed
to the same stress range, frequency, temperature, and other test variables may vary
significantly if the shape and stress distribution of the specimen are varied. Since data
expressed as logarithmic decrement and similar energy ratio units reported in the
technical literature have been obtained on a variety of specimen types and stress dis-
tributions, any comparison of such data must be considered carefully. The ratio β/α
may vary for specimens of exactly the same shape if made from materials having dif-
ferent damping-stress functions. For different specimens made of exactly the same
materials, the variation in β/α also may be large, as shown in Fig. 36.7. For example,

α
�
β

β
�
α

β
�
α
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FIGURE 36.7 Effect of damping exponent n on ratio β/α for D = Jσn. Curves
are (1) tension-compression member; (2) solid circular torsion member or rotat-
ing beam; (3) rectangular beam–constant moment; (4) solid circular beam–con-
stant moment; (5) diamond beam–constant moment; (6) rectangular beam–linear
moment distribution; and (7) rectangular beam–quadratic moment distribution.
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for a material and stress region for which the damping exponent n = 2.4 (characteris-
tic of metals at low and intermediate stress), the value of β/α shown in Table 36.1
varies from 1 for a tension-compression member to 1.6 for a rectangular beam with
quadratic moment distribution. If n = 8 (characteristic of materials at high stress), the
variation is from 1 to 10, and larger for beams with a higher stress gradient.

It is possible, for a variety of types of beams, to separate the ratio β/α into two fac-
tors:12 (1) a cross-sectional shape factor Kc which quantitatively expresses the effect of
stress distribution on a cross section, and (2) a longitudinal stress distribution factor Ks

which expresses the effect of stress distribution along the length of the beam.Then

= KsKc (36.18)

If material damping can be expressed as an exponential function of stress, as in Eq.
(36.9), some significant generalizations can be made regarding the pronounced
effect of the damping exponent n on each of these factors. Some of the results are
shown in Fig. 36.8 for beams of constant cross-section. These curves indicate that
high values of Ks and Kc are associated with a high damping exponent n, other fac-
tors being equal; Kc is high when very little material is near peak stress. For example,
compare the diamond cross-section shape with the I beam, or compare the uniform
stress beam with the cantilever.

In much of the literature on damping, the existence of the factors α and β (or Ks

and Kc) is not recognized; the unstated assumption is that α = β = 1. As discussed
above, this assumption is true only for specimens under homogeneous stress.

β
�
α

MATERIAL DAMPING AND SLIP DAMPING 36.13

FIGURE 36.8 Effect of damping exponent n on longitudinal stress distribution factor and cross-
sectional shape factor of selected examples.
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Relative damping units such as logarithmic decrement depend on the ratio of two
energies, the damping energy and the strain energy. Since strain energy increases
with the square of the stress for reasonably linear materials, the logarithmic decre-
ment remains constant with stress level and is independent of specimen shape and
stress distribution only for materials whose damping energy also increases as the
square of the stress [n = 2 in Eq. (36.9)]. For most materials at working stresses, n
varies between 2 and 3 (see Fig. 36.10), but for some (Fig. 36.9) it is highly variable.
In the high stress region, n lies in the range 8.0–20.0 (Fig. 36.10). In view of the broad
range of materials and stresses encountered in design, the case n = 2 must be
regarded as exceptional. Thus, logarithmic decrement is a variable rather than a
“material constant.” Its magnitude generally decreases significantly with stress
amplitude.When referring to specimens such as beams in which all stresses between
zero and some maximum stress occur simultaneously, the logarithmic decrement is
an ambiguous average value associated with some mean stress. Published data
require careful analysis before suitable comparisons can be made.

36.14 CHAPTER THIRTY-SIX

FIGURE 36.9 Comparison of internal friction and damping values for dif-
ferent inelastic mechanisms.
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FIGURE 36.10 Specific damping energy of various materials as a function of amplitude of reversed
stress and number of fatigue cycles. Number of cycles is 10 to power indicated on curve. For example,
a curved marked 3 is for 103 or 1,000 cycles. Note: 6.895 kN⋅m/m3 = 1 in.-lb/in.3 and 1 MPa = 103 N/m2

= 10−3 kN/mm2 = 146.5 lb/in.2.
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VISCOELASTIC MATERIALS

Some materials respond to load in a way that shows a pronounced influence of the
rate of loading. Generally the strain is larger if the stress varies slowly than it is if the
stress reaches its peak value swiftly. Among materials that exhibit this viscoelastic
behavior are high polymers and metals at elevated temperatures, as well as many
glasses, rubbers, and plastics.13 As might be expected, these materials usually also
exhibit creep, an increasing deformation under constant applied load.

When a sinusoidal exciting force is applied to a viscoelastic solid, the strain is
observed to lag behind the stress. The phase angle between them, denoted by ϕ, is
the loss angle. The stress may be separated into two components, one in phase with
the strain and one leading it by a quarter cycle.The magnitudes of these components
depend upon the material and upon the exciting frequency, ω. For a specimen sub-
ject to homogeneous shear (α = β = 1),

γ = γ0 sin ωt (36.19)

σ = γ0 [G′(ω) sin ωt + G″(ω) cos ωt] (36.20)

This is a linear viscoelastic stress-strain law.The theory of linear viscoelasticity is the
most thoroughly developed of viscoelastic theories. In Eq. (36.20), G′(ω) is known as
the “storage modulus in shear” and G″(ω) is the “loss modulus in shear” (the sym-
bols G1 and G2 are also widely used in the literature). The stiffness of the material
depends on G′ and the damping capacity on G″. In terms of these quantities the loss
angle ϕ = tan−1 (G″/G′ ).The complex, or resultant, modulus in shear is G* = G′ + iG″.
In questions of stress analysis, complex moduli have the advantage that the form of
Hooke’s law is the same as in the elastic case except that the elastic constants are
replaced by the corresponding complex moduli. Then a correspondence principle
often makes it possible to adapt an existing elastic solution to the viscoelastic case.
For details of viscoelastic stress analysis, see Ref. 31.

The moduli of linear viscoelasticity are readily related to the specific damping
energy D introduced previously. For a specimen in homogeneous shear of peak mag-
nitude γ0, the energy dissipated per cycle and per unit volume is

D = �2π/ω

0
σ� � dt (36.21)

In view of Eqs. (36.19) and (36.20) this becomes

D = �2π/ω

0
γ0

2ω(G′ sin ωt + G″ cos ωt) cos ωt dt

= πγ0
2G″(ω) (36.22)

It is apparent from Eq. (36.22) that linear viscoelastic materials take the coefficient
n = 2 in Eq. (36.9). These materials differ from metals, however, by having damping
capacities that are strongly frequency- and temperature-sensitive.1

DAMPING PROPERTIES OF MATERIALS

The specific damping energy D dissipated in a material exposed to cyclic stress is
affected by many factors. Some of the more important are:

dγ
�
dt

36.16 CHAPTER THIRTY-SIX
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1. Condition of the material
a. In virgin state: chemical composition; constitution (or structure) due to ther-

mal and mechanical treatment; inhomogeneity effects
b. During and after exposure to pretreatment, test, or service condition:

Effect of stress and temperature histories on aging, precipitation, and other
metallurgical solid-state transformations

2. State of internal stress
a. Initially, due to surface-finishing operations (shot peening, rolling, case 

hardening)
b. Changes caused by stress and temperature histories during test or service

3. Stress imposed by test or service conditions
a. Type of stress (tension, compression, bending, shear, torsion)
b. State of stress (uniaxial, biaxial, or triaxial)
c. Stress-magnitude parameters, including mean stress and alternating compo-

nents; loading spectrum if stress amplitude is not constant
d. Characteristics of stress variations including frequency and waveform
e. Environmental conditions: temperature (magnitude and variation) and the

surrounding medium and its (corrosive, erosive, and chemical) effects

Factors tabulated above, such as stress magnitude, history, and frequency, may be
significant at one stress level or test condition and unimportant at another. The
deformation mechanism that is operative governs the sensitivity to the various fac-
tors tabulated.

Many types of inelastic mechanisms and hysteretic phenomena have been identi-
fied, as shown in Table 36.2. The various damping phenomena and mechanisms may
be classified under two main headings: dynamic hysteresis and static hysteresis.

Materials which display dynamic hysteresis (sometimes identified as viscoelastic,
rheological, and rate-dependent hysteresis) have stress-strain laws which are
describable by a differential equation containing stress, strain, and time derivatives
of stress or strain. This differential equation need not be linear, though, to avoid
mathematical complexity, much of the existing theory is based on the linear vis-
coelastic law described in the previous section. One important type of dynamic hys-
teresis, a special case identified as anelasticity14, 15 or internal friction, produces no
permanent set after a long time. This means that if the load is suddenly removed at
point B in Fig. 36.1, after cycle OAB, strain OB will gradually reduce to zero as the
specimen recovers (or creeps negatively) from point B to point O.

A distinguishing characteristic of anelasticity and the more general case of vis-
coelastic damping is its dependence on time-derivative terms. The hysteresis loops
tend to be elliptical in shape rather than pointed as in Fig. 36.1. Furthermore, the
loop area is definitely related to the dynamic or cyclic nature of the loading and the
area of the loop is dependent on frequency. In fact, the stress-strain curve for an ide-
ally viscoelastic material becomes a single-valued curve (no hysteretic loop) if the
cyclic stress is applied slowly enough to allow the material to be in complete equi-
librium at all times (oscillation period very much longer than relaxation times). No
hysteretic damping is produced by these mechanisms if the material is subjected to
essentially static loading. Stated differently, the static hysteresis is zero.

Static hysteresis, by contrast, involves stress-strain laws which are insensitive to
time, strain, or stress rate.The equilibrium value of strain is attained almost instantly
for each value of stress and prior stress history (direction of loading, amplitudes,
etc.), independent of loading rate. Hysteresis loops are pointed, as shown in Fig. 36.1,
and if the stress is reduced to zero (point B) after cycle OAB, then OB remains as a
permanent set or residual deformation.The two principal mechanisms which lead to
static hysteresis are magnetostriction and plastic strain.

MATERIAL DAMPING AND SLIP DAMPING 36.17
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TABLE 36.2 Classification of Types of Hysteretic Damping of Materials

Types of material damping

Name used here Dynamic hysteresis Static hysteresis

Other names Viscoelastic, rheological, and rate-dependent hysteresis Plastic, plastic flow, plastic strain, and rate-independent 
hysteresis

Nature of stress- Essentially linear. Differential equation involving stress, Essentially nonlinear, but excludes time derivatives of
strain laws strain, and their time derivatives stress or strain

Special cases Anelasticity. Special because no permanent set after 
and description sufficient time. Called “internal friction”

Simplest
representative
mechanical
model

Frequency dependence Critically at relaxation peaks No, unless other mechanisms present

Primary mechanisms Solute atoms, grain boundaries. Micro- and macro-thermal Magnetoelasticity Plastic strain
and eddy currents. Molecular curling and uncurling in
polymers.

Value of n in D = JSn 2 3—up to coercive force 2–3 up to σL

2 to >30 above σL

Variation of η with stress No change, since n − 2 = 0 Proportional to σ since Small increase up to σL

n − 2 = 1 Large increase above σL

Typical values for η Anelasticity: <0.001 to 0.01 0.01 to 0.08 0.001 to 0.05 up to σL

Viscoelasticity: <0.1 to >1.5 0.001 to >0.1 above σL

Stress range of Anelasticity—low stress Low and medium. Medium and high stress
engineering importance Viscoelasticity—all stresses Sometimes high

Effect of fatigue cycles No effect No effect No effect up to σL

Large changes above σL

Effect of temperature Critical effects near relaxation peaks Damping disappears at Mixed. Depends on type of 
Curie temperature comparison

Effect of static preload Large reduction for Either little effect or
small coercive force increase
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Table 36.2 also shows the simplest representative mechanical models for each of
the behaviors classified. In these models, k is a spring having linear elasticity (linear
and single-valued stress-strain curve), C is a linear dashpot which produces a resist-
ing force proportional to velocity, and D is a Coulomb friction unit which produces
a constant force whenever slip occurs within the unit, the direction of the force being
opposite to the direction of relative motion. More sophisticated models have been
found to predict reliably the behavior of some materials, particularly polymeric
materials.

Any one of the mechanisms to be discussed may dominate, depending on the
stress level. For convenience, low stress is defined here as a (tension-compression)
stress less than 1 percent of the fatigue limit; intermediate stress levels are those
between 1 percent and 50 percent of the fatigue limit of the material; and high stress
levels are those exceeding 50 percent of the fatigue limit.

DYNAMIC HYSTERESIS OF VISCOELASTIC MATERIALS

The linearity limits of a variety of plastics and rubbers are summarized in Table 36.3.
While the stress limits are of the same order of magnitude for plastics and rubbers,
the strain limits are much smaller for the former class of materials.Within these lim-
its the dynamic storage and loss moduli of linear viscoelasticity may be used.

One distinguishing characteristic of the dynamic behavior of viscoelastic materi-
als is a strong dependence on temperature and frequency.1, 16 At high frequencies (or
low temperature) the storage modulus is large, the loss modulus is small, and the
behavior resembles that of a stiff ideal material.This is known as the “glassy” region
in which the “molecular curling and uncurling” cannot occur rapidly enough to fol-

low the stress.Thus the material behaves essentially “elastically.”At low frequencies
(or high temperature) the storage modulus and the loss modulus are both small.This
is the “rubbery” region in which the molecular curling and uncurling follow the
stress in phase, resulting in an equilibrium condition not conducive to energy dissi-
pation. At intermediate frequencies and temperatures there is a “transition” region
in which the loss modulus is largest. In this region the molecular curling and uncurl-
ing is out of phase with the cyclic stress and the resulting lag in the cyclic strain pro-
vides a mechanism for dissipating damping energy.The loss factor also shows a peak

MATERIAL DAMPING AND SLIP DAMPING 36.19

TABLE 36.3 Linearity Limits for a Variety of Plastics and Rubber

Stress limit in creep, Strain limit
Material MPa in relaxation

Polymethylmethacrylate 10
Polystyrene 5
Plasticized polyvinyl chloride 1 0.1–1.0%
Polythene 12
Phenolic resins 10
Polyisobutylene 50%
Natural rubber 1–10 �100%
GR-S 100%

Note: 1 MPa = 106 N/m2 = 146.5 lb/in.2.
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in this region, although at a somewhat lower frequency than the peak in G″. Since
the damping energy is proportional to G″, the specific damping curve also has its
maximum in the transition region. Most engineering problems involving vibration
are associated with the transition and glassy regions. In Table 36.4, values of G′ and
G″ are given for a variety of rubbers and plastics. References 17 to 20 contain addi-
tional useful information.

Metals at low stress exhibit certain properties that constitute dynamic hysteresis
effects. Peaks are observed in curves of loss factors vs. frequency of excitation. For
example, under conditions that maximize the internal friction associated with grain
boundary effects, polycrystalline aluminum will display a loss factor peak as high as
η = 0.09. But for most metals, the peak values are less than 0.01. Although the rheo-

36.20 CHAPTER THIRTY-SIX

TABLE 36.4 Typical Moduli of Viscoelastic Materials

(Two values are given: the upper value is G′; the bottom value is G″. Moduli units are mega-
pascals, MPa.)

Frequency, Hz Tempera-
Material 10 100 1000 4000 ture, °C

Polyisobutylene 0.512 1.31 2.36 −60–100
0.410 1.76 4.50

M 169A Butyl gum 0.480 1.40 2.70 21–65
0.502 1.32 2.88

Du Pont fluoro rubber, 2.00 4.54 7.93 0–100
(Viton A) 1.60 8.41 27.0

Silicon rubber gum 0.05 0.08 21–65
0.02 0.04

Natural rubber 0.33 0.50 25
0.02 0.02

3M tape No. 466 0.81 2.52 15.3 25
(adhesive) 0.95 4.59 13.0

3M tape No. 435 0.28 0.55 0.87 −40–60
(sound damping tape) 0.16 0.37 0.63

Natural rubber 3.91 4.91 −30–75
(tread stock) 0.68 0.97

Thiokol M-5 7.86 8.34 −30–75
3.91 10.27

Natural gum 0.73 −30–75
(tread stock) 0.07

Filled silicone rubber 2.00 2.50 3.41 21–65
0.26 0.44 0.58

Polyvinyl chloride 1.26 3.20 6.60 21–65
acetate 1.44 2.32 5.78

X7 Polymerized tung oil 17.0 39.0 21–65
with polyoxane liquid 9.45 20.8

Du Pont X7775 pyralin 4.50 12.0 45.0 −45–100
2.51 9.45 28.3

Polyvinyl butyral 30.0 200.0 600.0 −45–100
3.1 12.5 37.6

Polyvinyl chloride with 0.35 0.65
dimethyl thianthrene 0.21 0.97

Note: 1 MPa = 106 N/m2 = 10−3 kN/mm2 = 146.5 lb/in.2.
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logical properties of metals at low stress can be described in terms of anelastic prop-
erties (rheology without permanent set), a more general approach which includes
provisions for permanent set is required to specify the rheological properties of met-
als at high stress. This approach is best described in terms of static hysteresis.

STATIC HYSTERESIS

The metals used in engineering practice exhibit little internal damping at low stress
levels. At intermediate and high stress levels, however, magnetostriction and plastic
strain can introduce appreciable damping. The former effect is considered first.

Ferromagnetic metals have significantly higher damping at intermediate stress
levels than do nonferromagnetic metals. This is because of the rotation of the mag-
netic domain vectors produced by the alternating stress field. If the specimen is mag-
netized to saturation, most of the damping disappears, indicating that it was due
primarily to magnetoelastic hysteresis. Figure 36.9 shows the loss factor for three
metals, each heat-treated for maximum damping. The damping of 403 steel (ferro-
magnetic material with 12% Cr and 5% Ni) is much higher than that of 310 steel
(nonferromagnetic with 25% Cr and 20% Ni). Most structural metals at low and
intermediate stress exhibit loss factors in the general range of 310 steel until the hys-
teresis produced by plastic strain becomes significant. The alloy Nivco 1021 (ap-
proximately 72% Co and 23% Ni), developed to take maximum advantage of
magnetoelastic hysteresis, displays significantly larger damping than other metals.

The damping energy dissipated by magnetoelastic hysteresis increases as the
third power of stress up to a stress level governed by the magnetomechanical coer-
cive force; thus, the loss factor should increase linearly with stress. Nivco 10 follows
this relationship for the entire range of stress shown in Fig. 36.9. Beyond an alter-
nating stress governed by the magnetomechanical coercive force, i.e., beyond
approximately 34.5 MPa (5,000 lb/in.2) for the 403 steel, the damping energy dissi-
pated becomes constant. Since the elastic energy W0 continues to increase as the
square of the alternating stress, the value of loss factor (ratio of the two energies)
decreases with the inverse square of stress. The curve for 403 steel in Fig. 36.9 at
stresses between 62 MPa (9,000 lb/in.2) and 103 MPa (15,000 lb/in.2) demonstrates
this behavior.

Magnetoelastic damping is independent of the excitation frequency, at least in
the frequency range that is of engineering interest. Magnetoelastic damping
decreases only slightly with increasing temperature until the Curie temperature is
reached, when it decreases rapidly to zero. Static stress superposed on alternating
stress reduces magnetoelastic damping.21, 22

It is not entirely clear what mechanisms are encompassed by the terms plastic
strain, localized plastic deformation, crystal plasticity, and plastic flow in a range of
stress within the apparent elastic limit. On the microscopic scale, the inhomogeneity
of stress distribution within crystals and the stress concentration at crystal boundary
intersections produce local stress high enough to cause local plastic strain, even
though the average (macroscopic) stress may be very low. The number and volume
of local sites so affected probably increase rapidly with stress amplitude, particularly
at stresses approaching the fatigue limit of a material. On the submicroscopic scale,
the role of dislocations, their kind, number, dispersion, and lattice anchorage in the
deformation process still remains to be determined. The processes involved in these
various inelastic behaviors may be included under the general term “plastic strain.”

At small and intermediate stress, the damping caused by plastic strain is small,
probably of the same order as some of the internal friction peaks discussed previ-
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ously and much smaller than magnetoelastic damping in many materials. In this
stress region, damping generally is not affected by the stress or strain history. How-
ever, as the stress is increased, the plastic strain mechanism becomes increasingly
important and at stresses approaching the fatigue limit it begins to dominate as a
damping mechanism. This is shown by the curves for titanium in Fig. 36.9.22 In the
region of high stress, microstructural changes and metallurgical instability appear
to be initiated and promoted by cyclic stress. This occurs even though the stress
amplitude may lie below the apparent elastic limit (that observed by conventional
methods) and the fatigue limit of the material. This means that damping in the high
stress region is a function not only of stress amplitude but also of stress history. In
Fig. 36.9, for example, the lower of the two curves for titanium indicates the damp-
ing of the virgin specimen and the upper curve gives the damping after 10,000 stress
cycles.

The general position as regards stress history is given in Fig. 36.10. Below a cer-
tain peak stress, σL, known as the “cyclic stress sensitivity limit,” the curve of damp-
ing vs. stress is a straight line on a log-log plot and displays no stress-history effect.
The limit stress σL usually falls somewhat below the fatigue strength of the material.
Above σL, stress-history effects appear; the curve labeled 1.3 indicates the damping
energy after 101.3 = 20 cycles and the curve labeled 6 after 106 or 1 million cycles. To
facilitate comparisons between the reference damping units, loss factor η and D
under uniform stress (α/β = 1), the loss factor also is plotted in Fig. 36.10. Since the
relationship between D and η depends on the value of Young’s modulus of elasticity
E, a family of lines for the range of E = 34 × 103 to 205.0 × 103 MPa (5 × 106 to 30 ×
106 lb/in.2) is shown for η = 1. The lines for the other values of η correspond to a
value of E = 102.0 × 103 MPa (15 × 106 lb/in.2).

36.22 CHAPTER THIRTY-SIX

TABLE 36.5 Static, Hysteretic, Elastic, and Fatigue Properties of a Variety of Metals

Static properties Fatigue behavior

Cyclic
Modulus Yield stress

of stress sensi-
elasticity (0.2% Tensile Fatigue tivity Stress

E, offset), strength, strength limit ratio
Material* MPa 10−4 MPa MPa σe, MPa σL, MPa σL/σe

N-155 (superalloy) 20. 410. 810. 360. 220. 0.62
Lapelloy (superalloy) 22. 764. 880. 490. 490. 1.00
Lapelloy (480°C) 17.5 270. 310. 1.14
RC 130B (titanium) 11.5 950. 1,040. 590. 650. 1.10
RC 130B (320°C) 9.9 430. 340. 0.81
Sandvik (O & T) steel 19.9 1,210. 1,400. 630. 680. 1.09
SAE 1020 steel 20.1 320. 490. 240. 200. 0.85
Gray iron 13.2 140. 65. 44. 0.69
24S-T4 aluminum 7.2 330. 500. 180. 160. 0.88
J-1 magnesium 4.4 230. 310. 120. 55. 0.47
Manganese-copper alloy 410. 610. 130. 120. 0.95

Note: 1 MPa = 106 N/m2 = 146 lb/in.2.
(Includes test temperature if above room temperature.)
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COMPARISON OF VARIOUS MATERIAL DAMPING MECHANISMS

AND REPRESENTATIVE DATA FOR ENGINEERING MATERIALS

The general qualitative characteristics of the various types of damping are summa-
rized in Table 36.2 by comparing the effects of different testing variables. The data
tabulated indicate that, in general, anelastic mechanisms do not contribute signifi-
cantly to total damping at intermediate and high stresses; in these regions magne-
toelastic and plastic strain mechanisms probably are the most important from an
engineering viewpoint.

Damping vs. stress ratio data have been determined for a variety of common
structural materials at various temperatures.2,4 Some of these data are listed in Table
36.5 (all tests at 0.33 Hz). For a large variety of structural materials (not particularly
selected for large magnetoelastic or plastic strain damping), the data are found to lie
within a fairly well-established band shown in Fig. 36.11. The approximate geomet-
ric-mean curve is shown. Up to the fatigue limit, that is up to σd = σe, the specific
damping energy D is given with sufficient accuracy by the expression

D = J � �
2.4

(36.23)

where J = 6.8 × 10−3 if D is expressed in SI units of MN⋅m/m3/cycle, and the value of
J = 1.0 if D is expressed in units of in.-lb/in.3/cycle.

The approximate bandwidth about the geometric mean curve in Fig. 36.11 for the
various structural materials included in the band is as follows: from 1⁄3 to 3 times the
mean value at a stress ratio of 0.2 or less; from 1⁄5 to 5 times at a ratio of 0.6; from 1⁄10

to 10 times at a ratio of 1.0.

σ
�
σe
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Damping properties, kN⋅m/m3/cycle

D = J � �

n

,

σ ≤ σL D at σ/σe = 1 D at σ/σe = 1.2

n, After After After Maximum
dimen-

D D

101.3 106 101.3 number of
J sionless

= 1 = 0.6
cycles cycles cycles cycles

8.8 2.5 2.7 2.7 310. 170. 1,230. 1,500.
30.* 2.4* 10.9 4.0 11. 11. 55. 170.
24. 2.2 34. 8.2 26. 26. 41. 48.
14. 2.0 14. 4.4 12. 12. 18. 24.
17. 1.9 12. 6.1 13. 34. 30. 170.
16. 2.3 19. 5.5 16. 16. 31. 200.
4.3 2.0 3.1 1.6 4.5 140. 34. 680.

12. 2.4 4.5 3.4 14. 8.2 22. 16.
3.9 2.0 3.0 1.4 6.8 4.1 6. 15.
3.1 2.0 0.7 0.9 7.5 3.4 24. 7.

96. 2.8 82. 22. 89. 89. 170. 140.

Note: 1 kN⋅m/m3/cycle = 0.146 in.-lb/in.3/cycle.
* Up to σ = 96 MPa (14,000 lb/in.2); at σ = 204 MPa (30,000 lb/in.2) n = 1.5.

σ
�
σe

σ
�
σL

σ
�
σe
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Also shown in Fig. 36.11 for comparison purposes are data for four materials
having especially high damping. Materials 1 and 2 are the magnetoelastic alloys
Nivco 10 and 403. Nivco 10 retains its high damping up to the stresses shown (data
not available at higher stresses). However, the 403 alloy reaches its magnetoelastic
peak at a stress ratio of approximately 0.2 and increases less rapidly beyond this
point; when plastic strain damping becomes dominant (at stress ratio of approxi-
mately 0.8), damping increases very rapidly. By contrast, material 3, a manganese-
copper alloy with large plastic strain damping, retains its high damping up to and
beyond its fatigue strength.23 Material 4 is a “typical” viscoelastic adhesive (G″ =
0.95 MPa = 138 lb/in.2), assuming that the permissible cyclic shear strain is unity
(experiments show that a shear strain of unity does not cause deterioration in this
adhesive even after millions of cycles).24 The magnetoelastic material has a damp-
ing thirty times as large as the average structural material in the stress range shown
in Fig. 36.11, and the viscoelastic damping is over ten times as large as the magne-
toelastic damping.

The range of D observed for common structural materials stressed at their
fatigue limit is 0.003 to 0.7 MN⋅m/m3/cycle with a mean value of 0.05 (0.5 to 100 in.-
lb/in.3/cycle with a mean value of 7). For materials stressed at a rate of 60 Hz under
a uniform stress distribution (tension-compression), 16.4 cm3 (1 in.3) of a typical
material will safely absorb and dissipate 48 watts (0.064 hp). Some high damping
materials can absorb almost 746 watts (1 hp) in the safe-stress range, assuming no
significant frequency or stress-history effects.25–27

36.24 CHAPTER THIRTY-SIX

FIGURE 36.11 Range of damping properties for a variety of structural materials.The shaded band
defines the damping for most structural materials. 1 kN⋅m/m3 = 0.146 in.-lb/in.3.
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SLIP DAMPING

In some cases the hysteretic damping in a structural material is sufficient to keep
resonant vibration stresses within reasonable limits. However, in many engineering
designs, material damping is too small and structural damping must be considered.A
structural damping mechanism which offers excellent potential for large energy dis-
sipation is that associated with the interface shear at a structural joint.

The initial studies28–30 on interface shear damping considered the case of
Coulomb or dry friction. Under optimum pressure and geometry conditions, very
large energy dissipation is possible at a joint interface. However, the application of
the general concepts of optimum Coulomb interface damping to engineering struc-
tures introduces two new problems. First, if the configuration is optimum for maxi-
mum Coulomb damping, the resulting slip can lead to serious corrosion due to
chafing; this may be worse than the high resonance amplification associated with
small damping. Second, for many types of design configurations, the interface pres-
sure or other design parameters must be carefully optimized initially and then accu-
rately maintained during service; otherwise, a small shift from optimum conditions
may lead to a pronounced reduction in total damping of the configuration. Since it
usually is difficult to maintain optimum pressure, particularly under fretting condi-
tions, other types of interface treatment have been developed. One approach is to
lubricate the interface surfaces. However, the maintenance of a lubricated surface
often is difficult, particularly under the large normal pressure and shear sometimes
necessary for high damping. Therefore, a more satisfactory form of interface treat-
ment is an adhesive separator placed between mating surfaces at an interface. The
function of the separating adhesive layer is to distort in shear and thus to dissipate
energy with no significant Coulomb friction or sliding and therefore no fretting cor-
rosion. The design of such layers is discussed in Chap. 37.

DAMPING BY SLIDING

The nature of interface shear damping can be explained by considering the behavior
of two machine parts or structural elements which have been clamped together. The
clamping force, whether it is the result of externally applied loads, of accelerations
present in high-speed rotating machinery, or of a press fit, produces an interface com-
mon to the two parts. If an additional exciting force Fg is now gradually imposed, the
two parts at first react as a single elastic body. There is shear on the interface, but not
enough to produce relative slip at any point.As Fg increases in magnitude, the result-
ing shearing traction at some places on the interface exceeds the limiting value per-
mitted by the friction characteristics of the two mating surfaces. In these regions
microscopic slip of adjacent points on opposite sides of the interface occurs. As a
result, mechanical energy is converted into heat. If the mechanical energy is energy of
free or forced vibration, damping occurs. The slipped region is local and does not, in
general, extend over the entire interface. If it does extend over the entire interface,
gross slip is said to occur. This usually is prevented by the geometry of the system.

The force-displacement relationship for systems with interface shear damping is
shown in Fig. 36.12. Since there are many displacements which can be measured,
the displacement which corresponds to the exciting force that acts on the system is
taken as a basis. Then the product of displacement and exciting force, integrated
over a complete cycle, is the work done by the exciting force and absorbed by the
structural element.As shown in Fig. 36.12, there is an initial linear phase OP during
which behavior is entirely elastic. This is followed, in general, by a nonlinear transi-
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tion phase PB during which slip pro-
gresses across the contact area. The
phase PB is nonlinear, not because of
any plastic behavior, but simply because
the specimen is changing in stiffness as
slip progresses. After the nonlinear
phase PB, there may be a second linear
phase BC during which slip is present
over the entire interface. The existence
of such a phase requires some geomet-
ric constraint which prevents gross
motion even after slip has progressed
over the entire contact area. If no such
constraint is provided, Fg cannot be

allowed to exceed the value corresponding to point B. If it should exceed this gross
value, slip would occur.

If the clamping force itself does not produce any shear on the interface and if the
exciting force does not affect the clamping pressure, the force-displacement curve is
symmetrical about the origin O. These conditions are at least approximately fulfilled
in many cases. If they are not fulfilled, the exciting force in one direction initiates slip
at a different magnitude of load than the exciting force in the opposite direction.
This is the case pictured in Fig. 36.12. With negative exciting force, slip is initiated at
P′ which corresponds to a force of considerably smaller magnitude than point P.
However, the force-displacement curve is always symmetrical about the mid-point
of PP′ (intersection of dashed lines in Fig. 36.12).

The force-displacement curve has been followed from point O to point C. If now
a reduction in the exciting force occurs, the curve proceeds from C in a direction par-
allel to its initial elastic phase. Eventually, as unloading proceeds, slip is initiated
again. Its sense is now opposite to that which was produced by positive force. The

curve continues to point B′, where slip is
complete, and then along a linear stretch
to C′, where the exciting force has its
largest negative value. As the force
reverses, the curve becomes again linear
and parallel to OP. Slip eventually
occurs again and covers the interface at
B. The hysteresis loop is closed at C.

The energy dissipated in local slip can
be found by computing the area
enclosed by the force-displacement hys-
teresis loop. It usually is simpler, how-
ever, to determine the energy loss at a
typical location on the interface by
analysis, and then to integrate over the
area of the interface. In this mode of pro-
cedure, interest centers on the frictional
force per unit area µσ and the relative
displacement ∆s of initially adjacent
points on opposite sides of the interface.

The so-called “slip-curve” illustrating
the relationship between µσ and ∆s is
shown in Fig. 36.13. Before the exciting
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FIGURE 36.12 Force-displacement hysteresis
loop under Coulomb friction.

FIGURE 36.13 Friction force-slip relationship
under Coulomb friction.
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force is applied, conditions are represented by point O″ which corresponds to point O
in Fig. 36.12. The initial elastic phase during which there is no slip is represented by
O″P″ (note that the normal pressure σ may change during this phase).The phase dur-
ing which slip occurs only over part of the interface is represented by the curved line
P″B″; it corresponds to PB in Fig. 36.12.After slip has progressed over the entire inter-
face, the normal force vs. relative-displacement relation is linear. This phase is repre-
sented by the curve B″C″ in Fig. 36.13 and by BC in Fig. 36.12.When the exciting force
has reached its maximum value, a second nonslip phase C″D″ ensues.This is followed
by slip along the curve D″E″F″ until the exciting force reaches its maximum negative
value. As the exciting force completes its period, there is a nonslip phase F″G″ fol-
lowed by slip along G″C″. The lengths C″D″ and F″G″ are equal and the curves G″C″
and D″F″ are congruent (F″ corresponds to C″ and D″ corresponds to G″).

If the point in question is at an element of area dx dz of the xz interface, the energy
dissipated in slip is proportional to the area enclosed by the slip curve. Because of the
congruence of the curved portions of the diagram and the parallelism of the linear
portions, this area can be expressed in terms of the total slip and the pressures at two
instants during the loading cycle. Integrating over the entire interface,

D0 = −µ � �[σ(E″ ) + σ(Q″ )] ∆ stot dx dy (36.24)

In this expression, the parameters σ(E″ ) and σ(Q″ ) and the total slip ∆ stot are func-
tions of x and z. They are the normal stresses at points E″ and Q″ in Fig. 36.13,
located midway between the vertical lines G″F″ and C″D″. Since the pressures σ are
always compressive (negative) and the total slip is always taken as a positive quan-
tity, the negative sign is required to ensure a positive energy dissipation. Equation
(36.24) is of little engineering value in itself because the stresses are functions of Fg

as well as of x and z. In many of the problems which are of design interest, however,
the shear on the interface is produced primarily by the exciting force and not by the
initial clamping pressure. Conversely, the clamping pressure is not greatly affected
by the addition of the time-varying exciting force. Under these circumstances, the
slip curve of Fig. 36.13, like the force-displacement curve of Fig. 36.12, is symmetric
about the point O″. Points P″ and Q″ then coincide, and the mean ordinate of the
slip curve is that corresponding to point O″. Then Eq. (36.24) reduces to

D0 = −4µ ��σ(O″ ) ∆smax dx dz (36.25)

where σ(O″ ) is the clamping stress corresponding to zero exciting force. It may be
determined by any of the well-known methods of stress analysis. In most cases,
σ(O″ ) can be determined without any reference to the existence of an interface.The
term ∆ smax represents the arc length of the maximum relative displacement, the so-
called “scratch path.” It is a function of the maximum value of Fg as well as of posi-
tion on the interface. It may be inferred from Eq. (36.25) that energy dissipation due
to interface shear is small both at very low clamping pressures and at very high ones.
In the former case, σ(O″ ) = 0; in the latter case, ∆ smax = 0. It follows that, for any dis-
tribution of clamping pressure, there is an optimum intensity of clamping force at
which the energy dissipation due to interface shear is a maximum. The maintenance
of this optimum pressure is essential to the utilization of this form of damping. From
the shape of the force-displacement curve OPBC shown in Fig. 36.12, it is evident
that systems in which interface shear damping plays a significant role behave like
softening springs.This means that instability and jump phenomena may occur at fre-
quencies below the nominal resonant frequency.

In the case of plane stress, the thickness of the material is t and Eq. (36.25)
becomes
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D0 = −4µt �σ(O″ ) ∆ smax dx (36.26)

The slip can be related to stress through Hooke’s law:

∆ s = E−1 �(∆ σx) dx (36.27)

This indicates that any discontinuity in displacement is associated with a discontinu-
ity in the component of stress parallel to the interface. These displacement disconti-
nuities due to slip are members of a class of generalized dislocations whose existence
has been demonstrated theoretically.32 If Eq. (36.27) is substituted in Eq. (36.26), the
energy dissipation can be expressed in terms of stress alone:

D0 = −4µE−1t �l

0
σ(O″ ) ��

x

0
(∆σx)max dx′�dx (36.28)

The computation of energy dissipation per cycle D0 is the first step in the predic-
tion of the dynamic amplification factor to be expected in service. For interface
shear damping, an elementary theory permits the dynamic amplification factor to be
estimated even though the system behavior is nonlinear. The technique employs an
averaging method. Denoting the displacement corresponding to the exciting force
by the symbol v,

v = vd cos ωt and Fg = Fm cos (ωt + ϕ) (36.29)

where vd is the peak dynamic displacement, Fm is the peak exciting force, and ϕ is the
loss angle. One relationship between these quantities is obtained by making the
average value of the virtual work vanish during each half-cycle of the steady-state
forced vibration:

�π/ω

0
[mv + kv − Fg ] cos ωt dt = 0 (36.30)

In this integration, the stiffness k changes as slip progresses across the interface. If
the hysteresis loop of Fig. 36.12 is replaced by a parallelogram, only two phases, elas-
tic and fully slipped, need be considered. Denoting the stiffness (i.e., the ratio of
exciting force to displacement) in the unslipped condition by the symbol ke and the
reduced stiffness in the fully slipped condition by the symbol ks, the phase angle ϕ
and the dynamic amplification factor A may be related by Eq. (36.30) to the dura-
tion of the elastic phase t′:

�1 − � (ωt′ + sin ωt′ ) = π � + � (36.31)

where A is the conventional dynamic amplification factor, i.e., A = vdke /Fm. The dura-
tion of the elastic phase is given by the first of Eqs. (36.29) with v = vd − 2vs, where vs

is the displacement at which slip first occurs. Then eliminating t′ from Eq. (36.31):

= �1 − ��2 �1 + + cos−1�1 − 2 �� − (36.32)

Equation (36.32) gives the relation between phase lag ϕ and amplification factor A.
A second relationship between these quantities is found from the consideration that
the energy dissipated during each half cycle of forced motion must be D0/2:

�π/ω

0
Fg dt = 1⁄2D0 or sin ϕ = (36.33)

D0ke�
πFm

2A
dv
�
dt

mω2ks�
ke

vske�
AFm

vske�
AFm

vske�
AFm

ks�
ke

1
�
π

cos ϕ
�

A

cos ϕ
�

A
mω2ks�

ke

ks�
ke
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Equations (36.32) and (36.33) serve to determine the dynamic amplification factor
A, after D0 has been estimated. Conversely, they serve to estimate the amount of
energy which must be dissipated per cycle to produce a given reduction in the ampli-
fication factor by interface shear. A detailed analysis of the response to a parallelo-
gram hysteresis loop has been made.33 Hysteresis loops other than parallelograms
also have been studied.34 At resonance, ϕ = 90° and

A = Ar = (36.34)

In general, the energy dissipation does not increase as rapidly as the square of the
peak exciting force; consequently, the resonance amplification factor decreases as
the exciting force increases. As a result, structures in which interface shear predom-
inates tend to be self-limiting in their response to an external excitation.

The foregoing discussion is based on the premise that changes in the exciting
force do not materially affect the size of the contact area.There is an important class
of problems for which this assumption is not valid, namely, those in which even the
smallest exciting force produces some slip. An example of this type of joint is the
press-fit bushing on a cylindrical shaft. If the ends of the shaft are subjected to a
cyclic torque, part of this torque is transmitted to the bushing. Each part of the com-
pound torque tube carries a moment proportional to its stiffness. Transmission of
torque from the shaft to the bushing is effected by slip over the interface.The length
of the slipped region grows in proportion to the applied torque. There is no initial
elastic region such as OP or O″P″ in Figs. 36.12 and 36.13. If the peak value of the
exciting torque is not too large, the fully slipped region BC or B′C′ in Fig. 36.12 never
occurs. In these cases, Eqs. (36.31) to (36.34) are not applicable because there are no
assignable constant values of ks and ke. A variety of simple cases of this type which
occur in design practice have been analyzed. They include the cylindrical shaft and
bushing in tension and torsion, and the flexure of a beam with cover plate.

Another important case in which the smallest exciting force may produce slip
arises in the contact of rounded solids. If these are pressed together by normal forces
along the line joining their centers, a small contact region is formed. Subsequent
application of a cyclic tangential force produces slip over a portion of the contact
region even if the peak tangential force is not great enough to effect gross slip or
sliding. This situation has been analyzed and verified experimentally.3, 36
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