
CHAPTER 31
THEORY OF 

SHOCK ISOLATION

R. E. Newton

INTRODUCTION

This chapter presents an analytical treatment of the isolation of shock. Two classes
of shock are considered: (1) shock characterized by motion of a support or founda-
tion where a shock isolator reduces the severity of the shock experienced by equip-
ment mounted on the support and (2) shock characterized by forces applied to or
originating within a machine where a shock isolator reduces the severity of shock
experienced by the support. In the simplified concept of shock isolation, the equip-
ment and support are considered rigid bodies, and the effectiveness of the isolator is
measured by the forces transmitted through the isolator (resulting in acceleration of
equipment if assumed rigid) and by the deflection of the isolator. Linear isolators,
both damped and undamped, together with isolators having special types of nonlin-
ear elasticity are considered.When the equipment or floor is not rigid, the deflection
of nonrigid members is significant in evaluating the effectiveness of isolators.Analy-
ses of shock isolation are included which consider the response of nonrigid compo-
nents of the equipment and floor.

IDEALIZATION OF THE SYSTEM

In the application of shock isolators to actual equipments, the locations of the isola-
tors are determined largely by practical mechanical considerations. In general, this
results in types of nonsymmetry and coupled modes not well adapted to analysis by
simple means. It is convenient in the design of shock isolators to idealize the system
to a hypothetical one having symmetry and uncoupled modes of motion.

UNCOUPLED MOTIONS

The first step in idealizing the physical system is to separate the various translational
and rotational modes, i.e., to uncouple the system. Consider the system of Fig. 31.1
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consisting of a homogeneous block attached at the corners, by eight identical springs,
to a movable rigid frame. The block and frame are constrained to move in the plane
of the paper.With the system at rest, the frame is given a sudden vertical translation.
Because of the symmetry of both mass and stiffness relative to a vertical plane per-
pendicular to the paper, the response motion of the block is pure vertical translation.
Similarly, a sudden horizontal translation of the frame excites pure horizontal trans-
lation of the block.A sudden rotation about an axis through the geometric center of
the block produces pure rotation of the block about this axis. This set of response
behaviors is characteristic of an uncoupled system.

If the block of Fig. 31.1 is not homoge-
neous, the mass center (or center-of-
gravity) may be at A or B instead of C.
Consider the response to a sudden verti-
cal translation of the frame if the mass
center is at A. If the response were pure
vertical translation of the block, the
dynamic forces induced in the vertical
springs would have a resultant acting ver-
tically through C. However, the “inertia
force” of the block must act through the
mass center at A. Thus, the response can-
not be pure vertical translation, but must
also include rotation. Then the motions
of vertical translation and rotation are
said to be coupled. A sudden horizontal
translation of the frame would still excite

only a horizontal translation of the block because A is symmetrical with respect to the
horizontal springs; thus this horizontal motion remains uncoupled. If the mass center
were at B, i.e., in neither the vertical nor the horizontal plane of symmetry, then a sud-
den vertical translation of the frame would excite both vertical and horizontal transla-
tions of the block, together with rotation. In this case, all three motions are said to be
coupled.

It is not essential that a system have any kind of geometric symmetry in order
that its motions be uncoupled, but rather that the resultant of the spring forces be
either a force directed through the center-of-gravity of the block or a couple. If the
motions are completely uncoupled, there are three mutually orthogonal directions
such that translational motion of the base in any one of these directions excites only
a translation of the body in the same direction. Similarly there are three orthogonal
axes, concurrent at the mass center, having the property that a pure rotation of the
base about any one of these axes will excite a pure rotation of the body about the
same axis. The idealized systems considered in this chapter are assumed to have
uncoupled rigid body motions.

ANALOGY BETWEEN TRANSLATION AND ROTATION

If the motions in translational and rotational modes are uncoupled, motion in the
rotational mode may be inferred by analogy from motion in the translational mode,
and vice versa. Consider the system of Fig. 31.1. Assume that the mass center is at C
and the forces in the four vertical springs have a negligible horizontal component at
all times. For horizontal motion the differential equation of motion is

31.2 CHAPTER THIRTY-ONE

FIGURE 31.1 Schematic diagram of three
degree-of-freedom mounting.
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mδ̈ + 4kδ = −mü (31.1)

where δ = horizontal displacement of mass center of block relative to center-of-
frame, in.

m = mass of block, lb-sec2/in.
k = spring stiffness for each spring, lb/in.
u = absolute horizontal displacement of center-of-frame, in. In the 

equilibrium position the point C lies at the frame center.

Equation (31.1) may be written

δ̈ + ωn
2δ = −ü (31.2)

where ωn = �4�k�/m�, rad/sec, is the angular natural frequency in horizontal vibration.
For rotation of the block the corresponding equation of motion is

Iγ̈r + 4k(a2 + b2)γr = − IG̈ (31.3)

where I = mass moment of inertia of block about axis through C, perpendicular
to plane of paper, lb-in.-sec2

a, b = distances of spring center lines from mass center (see Fig. 31.1), in.
γr = rotation of block relative to frame in plane of paper, rad
G = absolute rotation of frame in plane of figure, rad

Equation (31.3) may be written

γ̈r + ωn1
2 γr = −G̈ (31.4)

where ωn1 = �4�k�(a�2�+� b�2)�/I� is the angular natural frequency in rotation.
Equations (31.2) and (31.4) are analogous; γr corresponds to δ, G corresponds to

u, and ωn1 corresponds to ωn. Because of this analogy, only the horizontal motion
described by Eq. (31.2) is considered in subsequent sections; corresponding results
for rotational motion may be determined by analogy.

CLASSIFICATION OF SHOCK ISOLATION

PROBLEMS

It is convenient to divide shock isolation problems into two major classifications
according to the physical conditions:

Class I. Mitigation of effects of foundation motion
Class II. Mitigation of effects of force generated by equipment

Isolators in the first class include such items as the draft gear on a railroad car, the
shock strut of an aircraft landing gear, the mounts on airborne electronic equipment,
and the corrugated paper used to package light bulbs. The second class includes the
recoil cylinders on gun mounts and the isolators on drop hammers, looms, and recip-
rocating presses.The objectives in the two classes of problems are allied, but distinct.
In Class I the objective is to limit the shock-induced stresses in critical components
of the protected equipment. In Class II the purpose is to limit the forces transmitted
to the support for the equipment in which the shock originates.

THEORY OF SHOCK ISOLATION 31.3
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IDEALIZED SYSTEMS—CLASS I

The simplest approach to problems of Class I is through a study of single degree-of-
freedom systems (see Chap. 2). Consider the system of Fig. 31.2A. The basic ele-
ments are a mass and a spring-dashpot unit attached to the mass at one end. The
block may be taken to represent the equipment (assumed to be a rigid body), and
the spring-dashpot unit to represent the shock isolator.The displacement of the sup-
port is u. The equation of motion is

mδ̈ + F(δ̇,δ) = −mü (31.5)

where m = mass of block, lb-sec2/in.
δ = deflection of spring (δ = x − u; see Fig. 31.2), in.

F(δ̇,δ) = force exerted on mass by spring-dashpot unit (positive when ten-
sile), lb

u = absolute displacement of left-hand end of spring-dashpot unit, in.

In the typical shock isolation problem, the system of Fig. 31.2A is initially at rest (u̇ =
δ̇ = 0) in an equilibrium position (u = δ = 0). An external shock causes the support to
move.The corresponding movement of the left end of the shock isolator is described
in terms of the support acceleration ü. Then Eq. (31.5) may be solved for the result-
ing extreme values of δ and F(δ̇,δ), and these values may be compared with the per-
missible deflection and force transmission limits of the shock isolator. It also is
necessary to determine whether the internal stresses developed in the equipment
are excessive. If the equipment is sufficiently rigid that all parts have substan-
tially equal accelerations, then the internal stresses are proportional to ẍ where 
−mẍ = F(δ̇,δ).

A critical component of the equipment may be sufficiently flexible to have a sub-
stantially different acceleration than that determined by assuming the equipment
rigid. If the total mass of such components is small in comparison with the equip-
ment mass, the above analysis may be extended to cover this case. Equation (31.5) is
first solved to determine not merely the extreme value of F(δ̇,δ) but its time-history.
Then the acceleration ẍ may be determined from the relation ẍ = −F(δ̇,δ)/m. Now
consider the system shown in Fig. 31.2B having a component of mass mc and stiffness-
damping characteristics Fc(δ̇c,δc). The force Fc(δ̇c,δc) transmitted to the mass mc and
the resulting acceleration ẍc = −Fc(δ̇c,δc)/mc may be found by solving an equation 
that is analogous to Eq. (31.5) where ẍ is substituted for ü, δ̈c for δ̈, and Fc(δ̇c,δc) for
F(δ̇,δ).

31.4 CHAPTER THIRTY-ONE

FIGURE 31.2 Idealized systems showing use of isolator with transmitted force F(δ̇,δ) to protect
equipment of mass m from effects of support motion u. In (A) the equipment is rigid and in (B) there
is a flexible component having stiffness-damping characteristics Fc(δ̇c, δc) and mass mc.
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IDEALIZED SYSTEMS—CLASS II

Consider the system of Fig. 31.3A to represent the equipment (mass m) attached to its
support by the shock isolator (spring-dashpot unit).The left end of the spring-dashpot
unit is fixed to the supporting structure and there is a force F applied externally to the
mass.The force F may be a real external force or it may be an “inertia force” generated
by moving parts of the equipment.The equation of motion may be written as

mδ̈ + F(δ̇,δ) = F (31.6)

where F is the external force applied to the mass in pounds and the relative dis-
placement δ of the ends of the spring-dashpot unit is equal to the absolute displace-
ment x of the mass. Assuming the system to be initially in equilibrium (δ̇ = 0, δ = 0),
Eq. (31.6) is solved for extreme values of δ and F(δ̇,δ) since F is a known function of
time. These are to be compared with the displacement and force limitations of the
shock isolator. Often the supporting structure is sufficiently rigid that the maximum
force in the isolator may be considered as a force applied statically to the support.
Then the foregoing analysis is adequate for determining the stress in the support.

The load on the floor may be treated as dynamic instead of static by a simple
analysis if the displacement and velocity of the support are negligible in comparison
with those of the equipment. Consider the system of Fig. 31.3B where the support-
ing structure is represented as a mass mF and a spring-dashpot unit in place of the
rigid support shown in Fig. 31.3A. The force acting on the supporting structure is a
known function of time F(δ̇,δ) as found from the previous solution of Eq. (31.6).
To find the maximum force within the support structure requires a solution of an
equation analogous to Eq. (31.6) where δ̈F is substituted for δ̈, mF for m, FF(δ̇F,δF) for
F(δ̇,δ), and F(δ̇,δ) for F. For engineering purposes it suffices to find the extreme val-
ues of δF and FF(δ̇F,δF). The first is needed to verify the assumption that support
motion is negligible compared with equipment motion, and can be used to determine
the maximum stress in the support. The second is the maximum force applied by the
support structure to its base.

MATHEMATICAL EQUIVALENCE OF CLASS I 

AND CLASS II PROBLEMS

The similarity of shock isolation principles in Class I and Class II is indicated by the
similar form of Eqs. (31.5) and (31.6). The right-hand side (−mü or F) is given as a
function of time, and the extreme values of δ and F(δ̇,δ) are desired.When the actual
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FIGURE 31.3 Idealized systems showing use of isolator with transmitted force F(δ̇,δ) to reduce
force transmitted to foundation when force F is applied to equipment of mass m. In (A) the founda-
tion is rigid and in (B) it has mass mF and stiffness damping characteristics FF(δ̇F,δF).
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system is represented by two separate single degree-of-freedom systems, as shown in
Figs. 31.2B and 31.3B, the time-history of F(δ̇,δ) is also required. Figure 31.4 may be
considered a generalized form of the applicable system. In Class I, F = 0, F1(δ̇1,δ1)
represents the properties of the isolator, and m2,F2(δ̇2,δ2) represents the component
to be protected. In Class II, u = 0, F2(δ̇2,δ2) represents the properties of the isolator,
and m1,F1(δ̇1,δ1) represents the supporting structure.

The system of Fig. 31.4, with the spring-dashpot units nonlinear, requires the use
of a digital computer to investigate performance characteristics. Analytical methods
are feasible if the system is linearized by assuming that each spring-dashpot unit has
a force characteristic in the form

F(δ̇,δ) = cδ̇ + kδ (31.7)

where c = damping coefficient, lb-sec/in., and k = spring stiffness, lb/in. Even with this
simplification, the number of parameters (m1,c1,k1,m2,c2,k2) is so great that it is nec-
essary to confine the analysis to a particular system. If the damping may be neg-
lected [let c = 0 in Eq. (31.7)], then it is feasible to obtain equations in a form suitable
for routine use. Use of this idealization is described in the section on Response of
Equipment with a Flexible Component.

A different form of idealization is indicated when the “equipment” is flexible;
e.g., a large, relatively flexible aircraft subjected to landing shock. Then it is impor-
tant to represent the aircraft as a system with several degrees-of-freedom. To find
resulting stresses, it is necessary to superimpose the responses in the various modes
of motion that are excited.

RESPONSE OF A RIGID BODY SYSTEM 

TO A VELOCITY STEP

PHYSICAL BASIS FOR VELOCITY STEP

The idealization of a shock motion as a simple change in velocity (velocity step) may
form an adequate basis for designing a shock isolator and for evaluating its effec-
tiveness. Consider the two types of acceleration ü vs. time t curves illustrated in Fig.
31.5A. The solid line represents a rectangular pulse of acceleration and the dashed
line represents a half-sine pulse of acceleration. Each pulse has a duration τ. In Fig.

31.6 CHAPTER THIRTY-ONE

FIGURE 31.4 General two degree-of-freedom system.
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31.5B, the corresponding velocity-time
curves are shown. Each of these curves
is defined completely by specifying the
type of acceleration pulse (rectangular
or half-sine), the duration τ, and the
velocity change u̇m. The curves of Fig.
31.5B are repeated in Fig. 31.5C with the
time scale shrunk to one-tenth. If τ is
sufficiently short, the only significant
remaining characteristic of the velocity
step is the velocity change u̇m. The ideal-
ized velocity step, then, is taken to be a
discontinuous change of u̇ from zero to
u̇m. A shock isolator characteristically
has a low natural frequency (long
period), and this idealization leads to
good results even when the pulse dura-
tion τ is significantly long.

GENERAL FORM OF ISOLATOR

CHARACTERISTICS

The differential equation of motion 
for the undamped, single degree-of-
freedom system shown in Fig. 31.6 is

mδ̈ + Fs(δ) = −mü (31.8)

where m represents the mass of the
equipment considered as a rigid body, u
represents the motion of the support
which characterizes the condition of
shock, and Fs(δ) is the force developed
by the isolator at an extension δ (posi-
tive when tensile). Equation (31.8) dif-
fers from Eq. (31.5) in that Fs(δ), which
does not depend upon δ̇, replaces F(δ̇,δ)
because the isolator is undamped. The
effect of a velocity step of magnitude u̇m

at t = 0 is considered by choosing the ini-
tial conditions: At t = 0, δ = 0 and δ̇ = u̇m.

These conditions correspond to a negative velocity step.This choice is made to avoid
dealing with negative values of δ and δ̇. If Fs(δ) is not an odd function of δ, a positive
velocity step requires a separate analysis.

A first integration of Eq. (31.8) yields

δ̇2 = u̇m
2 − �δ

0
Fs(δ)dδ (31.9)

At the extreme value of isolator deflection, δ = δm and the velocity δ̇ of deflection is
zero. Then from Eq. (31.9),

2
�
m

THEORY OF SHOCK ISOLATION 31.7

FIGURE 31.5 Acceleration-time curves (A)
and velocity-time curves (B) and (C) for rect-
angular acceleration pulse (solid curves) and
half-sine acceleration pulse (dashed curves).

FIGURE 31.6 Idealized system showing use of
undamped isolator to protect equipment from
effects of support motion u.
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�δm

0
Fs(δ)dδ = 1⁄2mu̇m

2 (31.10)

The right side of Eq. (31.10) represents the initial kinetic energy of the equipment
relative to the support, and the integral on the left side represents the work done on
the isolator. The latter quantity is equal to the elastic potential energy stored in the
isolator, since there is no damping.

For the special case of a rigid body mounted on an undamped isolator, Eq. (31.10)
suffices to determine all important results. In particular, the quantities of engineer-
ing significance are:

1. The maximum deflection of the isolator δm

2. The maximum isolator force, Fm = Fs(δm) = mẍm

3. The corresponding velocity change u̇m

The interrelations of these three quanti-
ties are shown graphically in Fig. 31.7.
The curve OAB represents the spring
force Fs(δ) as a function of deflection δ.
If point A corresponds to the extreme
excursion, then its abscissa represents
the maximum deflection δm. The shaded
area OAC is proportional to the poten-
tial energy stored by the isolator;
according to Eq. (31.10), this is equal to
the initial kinetic energy mu̇m

2/2. The
maximum ordinate (at A) represents the
maximum spring force Fm. [It is possible
to have a spring force Fs(δ) which attains
a maximum value at δ = δf < δm. Then 
Fm = Fs(δf).]

The design requirements for the isolator usually include as a specification one or
more of the following quantities:

1. Maximum allowable deflection δa

2. Maximum allowable transmitted force Fa

3. Maximum expected velocity step u̇a

It is important to observe that the limits 1 and 2 establish an upper limit Faδa on the
work done on the mass. It follows that u̇a must satisfy the relation

Faδa ≥ mu̇a
2/2

or the specifications are impossible to meet. The specifications may be expressed
mathematically as follows:

δm ≤ δa Fm ≤ Fa u̇m ≥ u̇a (31.11)

In many instances it is advantageous to eliminate explicit reference to the mass
m. Then the allowable absolute acceleration ẍa of the mass is specified instead of the

31.8 CHAPTER THIRTY-ONE

FIGURE 31.7 Typical force-deflection curve
for undamped isolator.
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allowable force Fa where Fa = mẍa. With this substitution the second of Eqs. (31.11)
is replaced by

ẍm ≤ ẍa (31.12)

The acceleration ẍ is determined as a function of time by using δ̇ from Eq. (31.9) and
finding the time t corresponding to a given value of δ:

t = �δ

0
(31.13)

From Eq. (31.13) and the relation ẍ = Fs(δ)/m, the acceleration time-history is
found.

The integrations required by Eqs. (31.9) and (31.13) sometimes are difficult to
perform, and it is necessary to use numerical methods. Then a difficulty arises with
the integral in Eq. (31.13). As δ approaches the extreme value δm, the velocity δ̇ in
the denominator of the integrand approaches zero.The difficulty is circumvented by
first using Eq. (31.13) to integrate up to some intermediate displacement δb less than
δm; then the alternative form, Eq. (31.14), may be used in the region of δ = δm:

t = tb + � δ̇

δ̇
b

(31.14)

where tb is the time at which δ = δb, as determined from Eq. (31.13).
In the next three sections three different kinds of spring force-deflection charac-

teristics Fs(δ) are considered. Equation (31.10) is applied to find the relation
between u̇m and δm. Curves relating u̇m, δm, and ̈xm in a form useful for design or analy-
sis are presented.

EXAMPLES OF PARTICULAR ISOLATOR CHARACTERISTICS

Linear Spring. The force-deflection characteristic of a linear spring is

Fs(δ) = kδ (31.15)

where k = spring stiffness, lb/in. Using the notation

ωn = �� rad/sec (31.16)

the maximum acceleration is

ẍm = ωn
2δm (31.17)

From Eqs. (31.10) and (31.16), the relation between velocity change u̇m and maxi-
mum deflection δm is

u̇m = ωnδm (31.18)

Combining Eqs. (31.18) and (31.17),

ẍm = ωnu̇m (31.19)

k
�
m

dδ̇
�
δ̈

dδ
�
δ̇

THEORY OF SHOCK ISOLATION 31.9
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Hardening Spring (Tangent Elasticity). The isolator spring may be nonlinear
with a “hardening” characteristic; i.e., the slope of the curve representing spring
force vs. deflection increases with increasing deflection. Rubber in compression has
this behavior. A representative curve having this characteristic is defined by

Fs(δ) = tan (31.20)

where the constant k is the initial slope of the curve (lb/in.) and a vertical asymptote
is defined by δ = d (in.). Such a curve is shown graphically in Fig. 31.8. Using the
notation of Eq. (31.16) and the relation mẍm = Fs(δm), Eq. (31.20) gives the following
relation between maximum acceleration and maximum deflection:

= tan (31.21)

Note that ωn, the angular natural fre-
quency for a linear system, has the same
meaning for small amplitude (small δm)
motions of the nonlinear system. For
large amplitudes the natural frequency
depends on δm. Using Eq. (31.16), substi-
tuting for Fs(δ) from Eq. (31.20) in Eq.
(31.10), and performing the indicated
integration, the relation between veloc-
ity change and maximum displacement
is

= loge �sec � (31.22)

A graphical presentation relating the
important variables u̇m, ẍm, and δm is con-

venient for design and analysis. Such data are presented compactly as relations
among the dimensionless parameters δm/d, u̇m/ωnd, and ẍmδm/u̇m

2.The physical signif-
icance of the ratio ẍmδm/u̇m

2 is interpreted by multiplying both numerator and
denominator by m. Then the numerator represents the product of the maximum
spring force Fm(= mẍm) and the maximum spring deflection δm. This product is the
maximum energy that could be stored in the spring. The denominator mu̇m

2 is twice
the energy that is stored in the spring. The minimum possible value of the ratio
ẍmδm/u̇m

2 is 1⁄2. Actual values of the ratio, always greater than 1⁄2, may be considered to
be a measure of the departure from optimum capability.

In Fig. 31.9 the solid curve represents u̇m/ωnd as a function of δm/d and the dashed
curve shows the corresponding result for a linear spring [see Eq. (31.18)]. In Fig.
31.10 the solid curve shows ẍmδm/u̇m

2 vs. δm/d for an isolator with tangent elasticity.
The dashed curve in Fig. 31.10 shows ẍmδm/u̇m

2 for a linear spring [see Eqs. (31.17)
and (31.18)]; the ratio is constant at a value of unity because a linear spring is 50 per-
cent efficient in storage of energy, independent of the deflection.

Softening Spring (Hyperbolic Tangent Elasticity). A nonlinear isolator also
may have a “softening” characteristic; i.e., the slope of the curve representing force

πδm�
2d

8
�
π2

u̇m
2

�
ωn

2d2

πδm�
2d

2
�
π

ẍm�
ωn

2d

πδ
�
2d

2kd
�

π
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FIGURE 31.8 Typical force-deflection curve
for hardening spring (tangent elasticity).
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vs. deflection decreases with increasing deflection. The force-deflection characteris-
tic for a typical “softening” isolator is

Fs(δ) = kd1 tanh (31.23)

where k is the initial slope of the curve. Figure 31.11 shows the form of this curve
where the meaning of d1 is evident from the figure. If Fs(δ) is replaced by mẍm, δ by
δm, and k by mωn

2, Eq. (31.23) becomes

= tanh (31.24)

where δm and ẍm are maximum values of
deflection and acceleration, respec-
tively, and ωn may be interpreted as the
angular natural frequency for small val-
ues of δm. To relate u̇m to δm, substitute
Fs(δ) from Eq. (31.23) in Eq. (31.10), let
ωn

2 = k/m, and integrate:

= loge �cosh2 � (31.25)

A graphical presentation of the rela-
tion between u̇m/ωnd1 and δm/d1 is given

δm�
d1

u̇m
2

�
ωn

2d1
2

δm�
d1

ẍm�
ωn

2d1

δ
�
d1
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FIGURE 31.9 Dimensionless representation
of relation between velocity step u̇m and maxi-
mum isolator deflection δm for undamped iso-
lators.

FIGURE 31.10 Dimensionless representation
of relation among velocity step u̇m, maximum
transmitted acceleration ẍm, and maximum isola-
tor deflection δm for undamped isolators.

FIGURE 31.11 Typical force-deflection curve
for softening spring (hyperbolic tangent elas-
ticity).
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by the solid curve of Fig. 31.12. The dashed curve shows the corresponding relation
for a linear spring. In Fig. 31.13 the solid curve represents ẍmδm/u̇m

2 as a function of
δm/d1. Note that, for large values of δm/d1, the ordinate approaches the minimum
value 1⁄2 attainable with an isolator of optimum energy storage efficiency.The dashed
curve shows the same relation for a linear spring.

Linear Spring and Viscous Damping. The addition of viscous damping can
almost double the energy absorption capability of a linear shock isolator. Consider
the system of Fig. 31.2A, with both spring and dashpot linear as defined by Eq.
(31.7). Substituting F(δ̇,δ) from Eq. (31.7) in Eq. (31.5) gives the equation of motion.
The initial conditions are δ̇ = u̇m, δ = 0, when t = 0; for t > 0, ü = 0. Letting cc = 2mωn

and ζ = c/cc [see Eq. (2.12)], the equation of motion becomes

δ̈ + 2ζωnδ̇ + ωn
2δ = 0 (31.26)

Solutions of Eq. (31.26) for maximum deflection δm and maximum acceleration ẍm as
functions of ζ are shown graphically in Figs. 31.14 and 31.15. In Fig. 31.14, the dimen-
sionless ratio ẍm/u̇mωn is plotted as a function of the fraction of critical damping ζ.
Note that the presence of small damping reduces the maximum acceleration. As ζ is
increased beyond 0.25, the maximum acceleration increases again. For ζ > 0.50, the
maximum acceleration occurs at t = 0 and exceeds that for no damping; it is
accounted for solely by the damping force cδ̇ = cu̇m.

31.12 CHAPTER THIRTY-ONE

FIGURE 31.12 Dimensionless representation
of relation between velocity step u̇m and maxi-
mum isolator deflection δm for undamped iso-
lators.

FIGURE 31.13 Dimensionless representation
of energy-storage capabilities of undamped iso-
lators.
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In Fig. 31.15 the parameter ẍmδm/u̇m
2 is plotted as a function of ζ. (As pointed out

with reference to Fig. 31.10, ẍmδm/u̇m
2 is an inverse measure of shock isolator effective-

ness.) Figure 31.15 shows that the presence of damping improves the energy storage
effectiveness of the isolator even beyond ζ = 0.50. In the neighborhood ζ = 0.40, the
parameter ẍmδm/u̇m

2 attains a minimum value of 0.52—only slightly above the theoret-
ical minimum of 0.50. This parameter has the value 1.00 for an undamped linear sys-
tem, and even higher values for a hardening spring (see Fig. 31.10). On the other hand,
ẍmδm/u̇m

2 may approach 0.50 when a softening spring is used.
True viscous damping of the type considered above is difficult to attain except in

electrical or magnetic form. Fluid dampers which depend upon orifices or other con-
stricted passages to throttle the flow are likely to produce damping forces that vary
more nearly as the square of the velocity. Dry friction tends to provide damping
forces which are virtually independent of velocity. The analysis of response to a
velocity step in the presence of Coulomb friction is similar to that described in the
section entitled General Formulas—No Damping.

Example 31.1. Equipment weighing 40 lb and sufficiently stiff to be considered
rigid is to be protected from a shock consisting of a velocity step u̇a = 70 in./sec. The
maximum allowable acceleration is ẍa = 21g (g is the acceleration of gravity) and
available clearance limits the deflection to δa = 0.70 in. Find isolator characteristics
for: linear spring, hardening spring, softening spring, and linear spring with viscous
damping.

Linear Spring. Taking the maximum velocity u̇m equal to the expected velocity
u̇a and using Eqs. (31.18) and (31.11),

THEORY OF SHOCK ISOLATION 31.13

FIGURE 31.14 Dimensionless representation of maximum trans-
mitted acceleration ẍm for an isolator having a linear spring and vis-
cous damping.
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δm = ≤ δa or ωn ≥ = 100 rad/sec

From Eqs. (31.19) and (31.12), ẍm = ωnu̇m ≤ ẍa. Then

ωn ≤ = = 116 rad/sec

Selecting a value in the middle of the permissible range gives ωn = 108 rad/sec [17.2
Hz]. The corresponding maximum isolator deflection is δm = 0.65 in. and the maxi-
mum acceleration of the equipment is ẍm = 7580 in./sec2 = 19.6g.The isolator stiffness
given by Eq. (31.16) is

k = mωn
2 = × (108 rad/sec)2 = 1210 lb/in.

If, as is usually the case, the isolation is provided by several individual isolators in
parallel, then the above value of k represents the sum of the stiffnesses of the indi-
vidual isolators.

Hardening Spring. The tangent elasticity represented by Eq. (31.20) is
assumed. Since the linear spring meets the specifications with only a small margin of

40 lb
��
386 in./sec2

21 × 386 in./sec2

��
70 in./sec

ẍa�
u̇m

70 in./sec
��

0.70 in.
u̇m�
ωn
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FIGURE 31.15 Dimensionless representation of energy absorption
capability of an isolator having a linear spring and viscous damping.
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safety, it is inferred that the poorer energy storage capacity of the hardening spring
shown by Fig. 31.10 will severely limit the permissible nonlinearity. Using the speci-
fied values as maxima,

= = = 1.16

From Fig. 31.10:

= 0.54; thus d = = 1.30 in.

From Fig. 31.9:

= 0.58; thus ωn = = 93 rad/sec [14.8 Hz]

The initial spring stiffness k from Eq. (31.16) is

k = (93)2 = 896 lb/in.

Because the selected linear spring provides a small margin of safety and the hard-
ening spring provides none, superficial comparison suggests that the former is supe-
rior. Various other considerations, such as compactness and stiffness along other
axes, may offset the apparent advantage of the linear spring. Moreover, a shock
more severe than that specified could cause the linear spring to bottom abruptly and
cause much greater acceleration of the equipment.

Softening Spring. The hyperbolic tangent elasticity represented by Eq. (31.23)
is assumed. The softening spring has high energy-storage capacity as shown by 
Fig. 31.13. By working to sufficiently high values of δm/d1, it is possible to utilize this
storage capacity to afford considerable overload capability. Choose ẍm = 20g and 
δm/d1 = 3. From Fig. 31.13, ẍmδm/u̇m

2 = 0.645 at δm/d1 = 3. Then

δm = 0.645 = 0.41 in. d1 = = 0.137 in.

From Fig. 31.12, u̇m/ωnd1 = 2.15 at δm/d1 = 3. Then

ωn = = 238 rad/sec [37.9 Hz]

The initial spring stiffness k from Eq. (31.16) is

k = (238)2 = 5870 lb/in.

This initial stiffness is much greater than those found for the linear spring and
hardening spring. Accordingly, for small shocks (small u̇m) the isolator with the soft-
ening spring will induce much higher acceleration of the equipment than will those

40
�
386

70
��
2.15 × 0.137

δm�
3

(70)2

�
20 × 386

40
�
386

70
��
1.30 × 0.54

u̇m�
ωnd

0.70
�
0.54

δm�
d

(21 × 386) × 0.70
��

(70)2

ẍaδa�
u̇a

2

ẍmδm�
u̇m

2
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with linear or hardening springs. This poorer performance for small shocks is
unavoidable if the isolator with the softening spring is designed to take advantage of
the large energy-storage capability under extreme shocks.

Linear Spring and Viscous Damping. The introduction of viscous damping in
combination with a linear spring [Eq. (31.7)] affords the possibility of large energy
dissipation capacity without deterioration of performance under small shocks. From
Fig. 31.15, the best performance is obtained at the fraction of critical damping ζ = 0.40
where ẍmδm/u̇m

2 = 0.52. If the maximum isolator deflection is chosen as δm = 0.47 in.
(67 percent of δa), then

ẍm = 0.52 = 5450 in./sec2 = 14.1g

This acceleration is 67 percent of ẍa. From Fig. 31.14:

= 0.86 at ζ = 0.40

Then

ωn = = 90 rad/sec [14.3 Hz]

The spring stiffness k from Eq. (31.16) is

k = (90)2 = 840 lb/in.

The dashpot constant c is

c = 2ζmωn = 2 × 0.40 × × 90 = 7.46 lb-sec/in.

RESPONSE OF RIGID BODY SYSTEM 

TO ACCELERATION PULSE

The response of a spring-mounted rigid body to various acceleration pulses provides
useful information. For example, it establishes limitations upon the use of the veloc-
ity step in place of an acceleration pulse and is significant in determining the
response of an equipment component when the equipment support is subjected to a
velocity step. Additional useful information is afforded by comparing the responses
to acceleration pulses of different shapes.

For positive pulses (ü > 0) having a single maximum value and finite duration,
three basic characteristics of the pulse are of importance: maximum acceleration üm,
duration τ, and velocity change u̇c.A typical pulse is shown in Fig. 31.16.The relation
among acceleration, duration, and velocity change is

u̇c = �τ

0
ü dt (31.27)

40
�
386

40
�
386

5450
��
0.86 × 70

ẍm�
u̇mωn

u̇m
2

�
δm
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where the value of the integral corre-
sponds to the shaded area of the figure.
The equivalent rectangular pulse is charac-
terized by (a) the same maximum acceler-
ation üm and (b) the same velocity change
u̇c. In Fig. 31.16, the horizontal and vertical
dashed lines outline the equivalent rect-
angular pulse corresponding to the
shaded pulse. From condition (b) above
and Eq. (31.27), the effective duration τr of
the equivalent rectangular pulse is

τr = �τ

0
ü dt (31.28)

where τr may be interpreted physically as the average width of the shaded pulse.

RESPONSE TO A RECTANGULAR PULSE

The rectangular pulse shown in Fig. 31.17 has a maximum acceleration üm and dura-
tion τ; the velocity change is u̇c = ümτ. The response of an undamped, linear, single

degree-of-freedom system (see Fig.
31.6) to this pulse is found from the dif-
ferential equation obtained by substitut-
ing in Eq. (31.8) Fs(δ) = kδ from Eq.
(31.15) and ωn

2 = k/m from Eq. (31.16):

δ̈ + ωn
2δ = −üm [0 ≤ t ≤ τ] (31.29)

δ̈ + ωn
2δ = 0 [t > τ] (31.30)

Using the initial conditions δ̇ = 0, δ = 0
when t = 0, the solution of Eq. (31.29) is

δ = (cos ωnt − 1) [0 ≤ t ≤ τ] (31.31)

For the solution of Eq. (31.30), it is necessary to find as initial conditions the values 
of δ̇ and δ given by Eq. (31.31) for t = τ. Using these values the solution of Eq.
(31.30) is

δ = [(cos ωnτ − 1) cos ωn(t − τ) − sin ωnτ sin ωn(t − τ)] [t > τ] (31.32)

The motion defined by Eqs. (31.31) and (31.32) is shown graphically in Fig. 31.18 for
τ = π/2ωn, π/ωn, and 3π/2ωn.

In the isolation of shock, the extreme absolute acceleration ẍm of the mass is
important. Since ẍm = ωn

2δm [Eq. (31.17)], ẍm is found directly from the extreme
value of δ. As indicated by Fig. 31.18, for values of τ greater than π/ωn, the extreme
(absolute) value of δ encountered at t = π/ωn is never exceeded. For values of τ
less than π/ωn, the extreme value occurs after the pulse has ended (t > τ) and is 

üm�
ωn

2

üm�
ωn

2

1
�
üm
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FIGURE 31.16 Typical acceleration pulse with
maximum acceleration üm and duration τ.

FIGURE 31.17 Rectangular acceleration pulse.
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the amplitude of the motion repre-
sented by Eq. (31.32). This amplitude
may be written

δm = 2 sin (31.33)

The extreme absolute values of the
acceleration ẍm are plotted as a function
of τ in Fig. 31.19. Note that the extreme
value of acceleration is twice that of the
acceleration of the rectangular pulse.

HALF-SINE PULSE

Consider the “half-sine” acceleration
pulse (Fig. 31.20A) of amplitude üm and
duration τ:

ü = üm sin [0 ≤ t ≤ τ]

ü = 0 [t > τ]

(31.34)

From Eq. (31.28), the effective duration is

τr = τ (31.35)

The response of a single degree-of-
freedom system to the half-sine pulse 
of acceleration, corresponding to Eqs.
(31.31) and (31.32) for the rectangular
pulse, is defined by Eq. (8.32).

2
�
π

πt
�
τ

ωnτ�
2

üm�
ωn

2
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FIGURE 31.18 Response curves for an
undamped linear system subjected to rect-
angular acceleration pulses of height üm and var-
ious durations τ.

FIGURE 31.19 Maximum acceleration spec-
trum for a linear system of angular natural fre-
quency ωn. Support motion is a rectangular
acceleration pulse of height üm.

FIGURE 31.20 Half-sine acceleration pulse (A) and versed sine acceleration pulse (B).
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VERSED SINE PULSE

The versed sine pulse (Fig. 31.20B) is described by

ü = �1 − cos � = üm sin2 [0 ≤ t ≤ τ]

ü = 0 [t > τ]

(31.36)

The effective duration τr given by Eq. (31.28) is

τr = (1⁄2)τ (31.37)

The response of a single degree-of-freedom system to a versed sine pulse is defined
by Eq. (8.33). The responses to a number of other types of pulse and step excitation
also are defined in Chap. 8.

COMPARISON OF MAXIMUM ACCELERATIONS

Velocity Step Approximation. A comparison of values of ẍm resulting from var-
ious acceleration pulses with that resulting from a velocity step is shown in Fig. 31.21.
The maximum acceleration induced by a velocity step is ωnu̇m [see Eq. (31.19)]. The
abscissa ωnτr is a dimensionless measure of pulse duration. The effect of pulse shape
is imperceptible for values of ωnτr < 0.6. For pulses of duration ωnτr < 1.0, the effect
of pulse shape is small and the maximum possible error resulting from use of the
velocity step approximation is of the order of 5 percent.

πt
�
τ

2πt
�

τ
üm�
2
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FIGURE 31.21 Dimensionless representation of maximum transmitted
acceleration ẍm for the undamped linear system of Fig. 31.6.
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FIGURE 31.22 Shock transmissibility for the undamped linear system of Fig. 31.6 as a function of
angular natural frequency ωn and effective pulse duration τr.

Effects of Pulse Shape. The effects of pulse shape upon the maximum response
acceleration ẍm for values of ωnτr > 1.0 are shown in Fig. 31.22. The ordinate ẍm/üm is
the ratio of maximum acceleration induced in the responding system to maximum
acceleration of the pulse. All three pulses produce the highest value of response
acceleration when ωnτr 	 π. Physically, this corresponds to an effective duration τr of
one-half of the natural period of the spring-mass system. For longer pulse durations
the curves for half-sine and versed sine pulses are similar. For pulse durations
beyond the range of Fig. 31.22 (ωnτr > 16), the half-sine and versed sine curves
approach the limiting ordinate ẍm/üm = 1.This corresponds physically to approximat-
ing a static loading of the spring-mass system. A limiting acceleration ratio ẍm/üm = 2
is encountered for all rectangular pulses of duration greater than the half-period of
the spring-mass system. A more extensive study of responses to a variety of pulse
shapes is included in Chap. 8.

SHOCK RESPONSE SPECTRUM

The abscissa ωnτr in Fig. 31.22 may be treated as a measure of pulse duration (pro-
portional to τr) for a given spring-mass system with ωn fixed. Alternatively, the pulse
duration may be considered fixed; then the curves show the effect of varying the nat-
ural frequency ωn of the spring-mass system. Each of the curves of Fig. 31.22 shows
the maximum acceleration induced by a given acceleration pulse upon spring-mass
systems of various natural frequencies ωn; thus, Fig. 31.22 may be used to determine
the required natural frequency of the isolator if ẍm and üm are known, and the pulse
shape is defined.

31.20 CHAPTER THIRTY-ONE
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THEORY OF SHOCK ISOLATION 31.21

Each curve shown in Fig. 31.22 may be interpreted as a description of a pulse, in
terms of the response induced in a system subjected to the pulse. The curve of maxi-
mum response as a function of the natural frequency of the responding system is
called a shock response spectrum or response spectrum. This concept is discussed
more fully in Chap. 23.A pulse is a particular form of a shock motion; thus, each shock
motion has a characteristic shock response spectrum. A shock motion has a charac-
teristic effective value of time duration τr which need not be defined specifically;
instead, the spectra are made to apply explicitly to a given shock motion by using the
natural frequency ωn as a dimensional parameter on the abscissa. By taking the isola-
tor-and-equipment assembly to be the responding system, the natural frequency of
the isolator may be chosen to meet any specified maximum acceleration ẍm of the
equipment supported by isolators. Spectra of maximum isolator deflection δm also
may be drawn, and are useful in predicting the maximum isolator deflection when the
natural frequency of the isolator is known.

When damping is added to the isolator, the analysis of the response becomes
much more complex. In general, it is possible to determine the maximum value of
the response acceleration ẍm only by calculating the time-history of response accel-
eration over the entire time interval suspected of including the maximum response.
A digital computer has been used to find shock response spectra for “half-sine”
acceleration pulses with various fractions of critical damping in the responding sys-
tem, as shown in Fig. 31.23. Similar spectra could be obtained to indicate maximum
values of isolator deflection. In selecting a shock isolator for a specified application,
it may be necessary to use both maximum acceleration and maximum deflection
spectra. This is illustrated in the following example.

FIGURE 31.23 Shock transmissibility for the system of Fig. 31.2A with
linear spring and viscous damping.
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Example 31.2. A piece of equipment weighing 230 lb is to be isolated from the
effects of a vertical shock motion defined by the spectra of acceleration and deflec-
tion shown in Fig. 31.24. It is required that the maximum induced acceleration not
exceed 7g (2700 in./sec2). Clearances available limit the isolator deflection to 2.25 in.
The curves in Fig. 31.24A represent maximum response acceleration ẍm as a function
of the angular natural frequency ωn of the equipment supported on the shock isola-
tors. The isolator springs are assumed linear and viscously damped, and separate
curves are shown for values of the damping ratio ζ = 0, 0.1, 0.2, and 0.3.The curves in
Fig. 31.24B represent the maximum isolator deflection δm as a function of ωn for the
same values of ζ.

Consider first the requirement that ẍm < 2700 in./sec2. In Fig. 31.24A, the hori-
zontal dashed line indicates this limiting acceleration. If the damping ratio ζ = 0.3,

then the angular natural frequency ωn

may not exceed 38.5 rad/sec on the crite-
rion of maximum acceleration. The
dashed horizontal line of Fig. 31.24B rep-
resents the deflection limit δm = 2.25 in.
For ζ = 0.3, the minimum natural fre-
quency is 30 rad/sec on the criterion of
deflection. Considering both accelera-
tion and deflection criteria, the angular
natural frequency ωn must lie between 30
rad/sec and 38.5 rad/sec. The spectra
indicate that both criteria may be just
met with ζ = 0.2 if ωn is 35 rad/sec.
Smaller values of damping do not permit
the satisfaction of both requirements.

Conservatively, a suitable choice of
parameters is ζ = 0.3, ωn = 35 rad/sec.
This limits ẍm to 2500 in./sec2 and δm to
2.0 in. The spring stiffness k is

k = ωn
2m = (35)2 × = 730 lb/in.

If the equipment is to be supported by
four like isolators, then the required stiff-
ness of each isolator is k/4 = 182.5 lb/in.

RESPONSE OF EQUIPMENT WITH A FLEXIBLE

COMPONENT

IMPACT WITH REBOUND

Consider the system of Fig. 31.4. The block of mass m1 represents the equipment and
m2 with its associated spring-dashpot unit represents a critical component of the equip-
ment.The left spring-dashpot unit represents the shock isolator. It is assumed here that
m1 >> m2 so that the motion of m1 is not sensibly affected by m2; larger values of m2 are
considered in a later section. Consider the entire system to be moving to the left at uni-
form velocity when the left-hand end of the isolator strikes a fixed support (not

230
�
386

FIGURE 31.24 Shock response spectra: (A)
maximum acceleration and (B) maximum isola-
tor deflection for Example 31.2.
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THEORY OF SHOCK ISOLATION 31.23

shown).The isolator will be compressed until the equipment is brought to rest. Follow-
ing this the compressive force in the isolator will continue to accelerate the equipment
toward the right until the isolator loses contact with the support and the rebound is
complete.This type of shock is called impact with rebound. Practical examples include
the shock experienced by a single railroad car striking a bumper at the end of a siding
and that experienced by packaged equipment, shock-mounted inside a container of
small mass, when the container is dropped upon a hard surface and then rebounds.

The procedure for finding the maximum acceleration ẍ2m of the component,
assuming the component stiffness to be linear and neglecting component damping, is:

1. Using the known striking velocity determine, from velocity step results (Figs.
31.9, 31.10, 31.12 to 31.15), the maximum deflection δ1m of the isolator and the
maximum acceleration ẍ1m of the equipment.

2. From Eq. (31.28), find the effective duration τr for the acceleration time-history
ẍ1(t) of the equipment.

3. From the shock spectra corresponding to the acceleration pulse ẍ1(t), find the
maximum acceleration ẍ2m of the component.

Details of the procedure using the isolators of Example 31.1 are considered in
Example 31.3.

Example 31.3. Let the equipment of Example 31.1 weighing 40 lb have a flexi-
ble component weighing 0.2 lb. By vibration testing, this component is found to have
an angular natural frequency ωn = 260 rad/sec and to possess negligible damping. For
the isolators of Example 31.1, it is desired to determine the maximum acceleration
ẍ2m experienced by the mass m2 of the component if the equipment, traveling at a
velocity of 70 in./sec, is arrested by the free end of the isolator striking a fixed sup-
port. The four cases are considered separately. It is assumed that the component has
a negligible effect on the motion of the equipment because m2 << m1.

Linear Spring. From the results of Example 31.1, it is known that ωn = 108 rad/sec
and that the maximum acceleration of the equipment as found from Eq. (31.19) is

ẍ1m = 7580 in./sec2 = 19.6g

This acceleration occurs at the instant when the isolator deflection has the extreme
value δ1m = 0.65 in. [If the equipment (Fig. 31.4) is moving toward the left when the
isolator contacts the support, the extreme value of δ1m is negative. It suffices to deal
here with absolute values.] Subsequently the isolator spring continues to accelerate
the equipment until the isolator force is zero and the rebound is complete. Since
there is no damping, the rebound velocity equals the striking velocity (with opposite
sign). The velocity change ẋ1c is twice the striking velocity and the effective duration
τr [Eq. (31.28)] is

τr = = = 0.0185 sec

The acceleration time-history of the equipment is a half-sine pulse as represented in
Fig. 31.20 (the ordinate is ẍ1 instead of ü).

Since the equipment is the “support” for the component, the response of the lat-
ter may be found from results developed for the response of a rigid body whose sup-
port experiences a half-sine pulse of acceleration. The half-sine curve of Fig. 31.22
gives the desired information if the following interpretations are made: For ẍm/üm

read ẍ2m/ẍ1m; for ωnτr read ωn2τr. Now ωn2τr = 260 × 0.0185 = 4.80. From Fig. 31.22,
ẍ2m/ ẍ1m = 1.66, and ẍ2m = 1.66 × 7580 = 12,600 in./sec2 = 32.6g.

2 × 70
�
7580

ẋ1c�
ẍ1m
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Hardening Spring. From Example 31.1, the maximum equipment acceleration
is ẍ1m = 21g = 8100 in./sec2. Since the velocity change ẋ1c is twice the striking velocity,
the effective duration τr [Eq. (31.28)] is

τr = = = 0.0173 sec

With a hardening isolator spring, the shape of the acceleration pulse ̈x1(t) experienced
by the equipment varies considerably as the maximum deflection δ1m approaches the
upper limit d. Up to δ1m/d = 0.5, the shape is closely approximated by a half-sine pulse.
For δ1m/d = 0.8, a symmetric triangular pulse is a good approximation. For higher val-
ues of δ1m/d, the pulse is very sharply peaked.The maximum response curve for a half-
sine pulse is given in Fig. 31.22. The corresponding curve for a symmetric triangular
pulse (Fig. 8.18b) is similar to that for the versed sine pulse, though lying generally
below the latter. Inasmuch as the curve for the versed sine pulse is below that for the
half-sine pulse, it is conservative to use the half-sine pulse for all values of δ1m/d.
Accordingly, ωn2τr = 260 × 0.0173 = 4.50. From the half-sine curve of Fig. 31.22,
ẍ2m/ẍ1m = 1.69, and ẍ2m = 1.69 × 8100 = 13,700 in./sec2 = 36.4g.

Softening Spring. From Example 31.1, the maximum equipment acceleration
ẍ1m is

ẍ1m = 20g = 7720 in./sec2

The effective duration τr [Eq. (31.28)] is

τr = = = 0.0181 sec

The shape of the acceleration pulse ẍ1(t) for the equipment varies markedly as the
departure from linearity increases (increasing values of δ1m/d1). The pulse shape is
found by first performing the integration of Eq. (31.9) with Fs(δ) as given by Eq.
(31.23). The result supplies the integrand required for Eq. (31.13). A numerical inte-

gration of the latter equation shows that
the pulse shape undergoes a rapid transi-
tion from the half-sine pulse at very
small values of δ1m/d1 to shapes that are
closely approximated by the trapezoidal
pulse of Fig. 31.25. Note that the pulse of
Fig. 31.25 requires three parameters to
fix it completely: the maximum accelera-
tion ẍ1m; the effective duration τr; and the
ratio τr /τ, where τ is the actual duration
and τr = τ − τ1. From results of the numer-
ical integrations of Eq. (31.13), the curve
of Fig. 31.26 is constructed to show τr /τ as
a function of the deflection ratio δ1m/d1.

To find the maximum acceleration
ẍ2m of the component, the maximum

response curves (shock spectra) of Fig. 31.27 are used. These curves are constructed
for symmetric trapezoidal pulses (Fig. 31.25). The top curve (τr /τ = 1.0) corresponds
to the limiting (rectangular) form. The dashed curve (τr /τ = 0.64) represents
response to a half-sine pulse.

2 × 70
�
7720

ẋ1c�
ẍ1m

2 × 70
�
8100

ẋ1c�
ẍ1m
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FIGURE 31.25 Symmetric trapezoidal accel-
eration pulse.

8434_Harris_31_b.qxd  09/20/2001  12:33 PM  Page 31.24



The value of δ1m/d1 corresponding to the maximum acceleration ẍ1m of the
equipment is (from Example 31.1) δ1m/d1 = 3. From Fig. 31.26: τr /τ = 0.88. Now 
ωnτr = 260 × 0.0181 = 4.7. Using Fig. 31.27, linear interpolation between the curves for

τr /τ = 0.8 and τr /τ = 0.9 gives ẍ2m/ ẍ1m =
1.98 and ẍ2m = 1.98 × 7720 = 15,300
in./sec2 = 39.6g.

Linear Spring and Viscous Damp-
ing. The presence of damping in the
isolator adds several complications: (1)
the rebound velocity is no longer equal
to the striking velocity; (2) the accelera-
tion pulse of the equipment is not sym-
metrical and returns to zero before the
isolator deformation δ1m returns to zero;
and (3) the pulse shape varies greatly
with damping ratio ζ1. Shock response
spectra for acceleration pulse shapes
corresponding to damping ratios of par-
ticular interest (0.10 < ζ1 < 0.40) are not
available. However, for single accelera-

tion pulses which do not change sign, it is conservative to assume that the maximum
acceleration ẍ2m of the component is twice the maximum acceleration ẍ1m of the
equipment. Using the results of Example 31.1, the maximum acceleration of the
component is ẍ2m = 2ẍ1m = 2 × 5450 = 10,900 in./sec2 = 28.2g.

THEORY OF SHOCK ISOLATION 31.25

FIGURE 31.26 Dimensionless representation
of effective duration τr of acceleration pulse
experienced by equipment during impact with
rebound.

FIGURE 31.27 Shock response spectra for component having undamped linear elasticity with
angular natural frequency ωn2.
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IMPACT WITHOUT REBOUND

When impact of the isolator occurs without rebound, it must be recognized that the
equipment-isolator system continues to oscillate until the initial kinetic energy is
dissipated. Consider the system of Fig. 31.4; it consists of equipment m1, shock iso-
lator (left spring-dashpot unit), and flexible component (subsystem 2). The system
is initially at rest. The left end of the shock isolator is attached to a support (not
shown) which is given a velocity step of magnitude u̇m at t = 0. The subsequent
motion of the support is u = u̇mt. Determine the maximum force F1m transmitted by
the isolator, the maximum isolator deflection δ1m, and the maximum acceleration
ẍ2m of the component.

Solutions are available only for linear systems, i.e., linear springs and viscous
damping. Two such simplified analyses of this problem are included in the following
sections: (1) The influence of damping is considered, but the component mass m2 is
assumed of negligible size relative to m1 and (2) damping is neglected but the effect
of the mass m2 of the component upon the motion of the system is considered.

Component Mass Negligible. Assume that m1 >> m2 so that the motion x1 of the
equipment may be determined by neglecting the effect of the component. Then the
extreme value of the force F1m transmitted by the isolator and the extreme deflection
δ1m of the isolator occur during the first quarter-cycle of the equipment motion; they
may be found from Figs. 31.14 and 31.15 in the section on Response of a Rigid Body
System to a Velocity Step. The subsequent motion of the equipment is an exponentially
decaying sinusoidal oscillation or, if there is no damping in the isolator, a constant-
amplitude oscillation. If the component also is undamped, an analytic determination
of the component response is not difficult.The motion consists of harmonic oscillation
at the frequency ωn1 of the equipment oscillation and a superposed oscillation at the
frequency ωn2 of the component system. Since the oscillations are assumed to persist
indefinitely in the absence of damping, the extreme acceleration of the component is
the sum of the absolute values of the maximum accelerations associated with the oscil-
lations at frequencies ωn1 and ωn2. In the particular case of resonance (ωn1 = ωn2), the
vibration amplitude of the component increases indefinitely with time. Because actual
systems always possess damping (usually a considerable amount in the isolator), solu-
tions of this type tend to be unduly conservative for engineering applications.

The equation of motion for the viscous damped component is a special case of
Eq. (31.5) with F(δ̇,δ) as given by Eq. (31.7). If appropriate subscripts are supplied
and customary substitutions are made, the equation is

δ̈2 + 2ζ2ωn2δ̇2 + ωn2
2δ2 = −ẍ1 (31.38)

Analytic solutions of Eq. (31.38) to find the acceleration ẍ2 = ẍ1 + δ̈2 of the compo-
nent are too laborious to be practical. However, computer-generated results are
shown in Fig. 31.28. The ordinate is the ratio of the maximum acceleration ẍ2m of the
component to the maximum acceleration u̇mωn2 [see Eq. (31.19)] that the component
would experience if the shock isolator were rigid. The abscissa is the ratio of the
undamped natural frequency ωn2 of the component to the undamped natural fre-
quency ωn1 of the equipment on the isolator spring. Curves are given for several dif-
ferent values of the fraction of critical damping ζ1 for the isolator. For all curves the
fraction of critical damping for the component is ζ2 = 0.01. The effect of isolator
damping in reducing the maximum acceleration ẍ1m of the component is great in the
neighborhood of ωn2/ωn1 = 1. Above ωn2/ωn1 = 2, small damping (ζ1 ≤ 0.1) in the isola-
tor has little effect and large damping may significantly increase the maximum accel-
eration of the component.
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The ordinate in Fig. 31.28 represents the ratio of the maximum acceleration of
the component to that which would be experienced with the isolator rigid (absent);
thus, it may properly be called shock transmissibility. If shock transmissibility is less
than unity, the isolator is beneficial (for the component considered). An isolator
must have a natural frequency significantly less than that of the critical component
in order to reduce the transmitted acceleration. If there are several critical compo-
nents having different natural frequencies ωn2, each must be considered separately
and the natural frequency of the isolator must be significantly lower than the lowest
natural frequency of a component.

Two Degrees-of-Freedom—No Damping. This section includes an analysis of
the transient response of the two degree-of-freedom system shown in Fig. 31.4,
neglecting the effects of damping but assuming the equipment mass m1 and the com-
ponent mass m2 to be of the same order of magnitude. The equations of motion are

m1δ̈1 + k1δ1 = k2δ2 − m1ü

m2δ̈2 + k2δ2 = −m2δ̈1 − m2ü

(31.39)

where k1 = stiffness of isolator spring, lb/in., and k2 = stiffness of component, lb/in.The
system is initially in equilibrium; at time t = 0, the left end of the isolator spring is
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FIGURE 31.28 Shock transmissibility for a component of a viscously damped system with linear
elasticity, where the effect of the component on the equipment motion is neglected.
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given a velocity step of magnitude u̇m. Initial conditions are: δ̇1 = u̇m, δ̇2 = 0, δ1 = δ2 = 0.
Equations (31.39) may be solved simultaneously for maximum values of the acceler-
ation ẍ2m of the component and maximum deflection δ1m of the isolator:

ẍ2m =
u̇mωn2


� − 1�
2

+ � �
2

�
1/2

(31.40)

1 + �1 + �
δ1m =


� + 1�
2

+ � �
2

�
1/2

(31.41)

where ẍ2m = maximum absolute acceleration of component mass, in./sec2; δ1m =
maximum deflection of isolator spring, in.; ωn1* = angular natural frequency of iso-
lator (k1/m1)1/2, rad/sec; and ωn2* = angular natural frequency of component
(k2/m2)1/2, rad/sec. (The natural frequencies ωn1 and ωn2 are hypothetical in the sense
that they do not consider the coupling between the subsystems.) Equation (31.40) is
shown graphically in Fig. 31.29. The dimensionless ordinate is the ratio of maxi-
mum acceleration ẍ2m of the component to the maximum acceleration u̇mωn2 which
the component would experience with no isolator present. The abscissa is the ratio
of component natural frequency ωn2 to isolator natural frequency ωn1. Separate
curves are given for mass ratios m2/m1 = 0.01, 0.1, 0.3, and 1.0. Equation (31.41) is
shown graphically in Fig. 31.30. The ordinate is the ratio of the maximum isolator
deflection δ1m to the deflection u̇m(1 + m2/m1)1/2/ωn1 which would occur if compo-
nent stiffness k2 were infinite. The abscissa is the ratio of natural frequencies
ωn2/ωn1, and curves are given for values of m2/m1 = 0.1 and 1.0.

Figure 31.29 shows that the effect of the mass ratio m2/m1 upon the maximum
component acceleration ẍ2m is very great near resonance (ωn2/ωn1 	 1). As ωn2/ωn1

increases above resonance, the effect of finite component mass steadily decreases.
Figure 31.30 shows that except for small values of ωn2/ωn1 the effect of finite compo-
nent mass on the maximum isolator deflection δ1m is slight. As ωn2/ωn1 increases, the
curves for all mass ratios asymptotically approach the ordinate 1.0.

The factor (1 + m2/m1)1/2 in the ordinate parameter of Fig. 31.30 is introduced
because the total equipment mass is m1 + m2. For the limiting case of rigid equipment
(k2 infinite), the natural frequency ωn is given by

ωn
2 = ωn =

Substituting this relation in Eq. (31.18) and solving for δ1m:

δ1m = u̇m(1 + m2 /m1)1/2/ωn1

This is in agreement with the result given by Eq. (31.41) as ωn2/ωn1 approaches infinity.
Example 31.4. Equipment weighing 152 lb has a flexible component weighing

3 lb.The angular natural frequency of the component is ωn2 = 130 rad/sec.The equip-
ment is mounted on a shock isolator with a linear spring k1 = 2400 lb/in. and having
a fraction of critical damping ζ1 = 0.10. Find the maximum isolator deflection δ1m and

ωn1��
(1 + m2 /m1)1/2

k1�
m1 + m2

ωn2�
ωn1

m2�
m1

ωn2�
ωn1

u̇m�
ωn1

m2�
m1

ωn2�
ωn1

ωn2�
ωn1

m2�
m1

ωn2�
ωn1
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the maximum component acceleration ẍ2m which result when the base experiences a
velocity step u̇m = 55 in./sec.

Consider first a solution assuming that m2 has a negligible effect on the equip-
ment motion:

m1 = = 0.393 lb-sec2/in.

ωn1 = �� = �� = 78.1 rad/sec [12.4 Hz]

Figure 31.14 gives ẍ1m/u̇mωn1 = 0.88 and Fig. 31.15 gives ẍ1mδ1m/u̇m
2 = 0.76 for ζ1 = 0.1.

Then

δ1m = × = = 0.61 in.

In finding ẍ2m it is assumed that damping of the component has the typical value 
ζ2 = 0.01. Using ωn1/ωn2 = 130/78.1 = 1.67, Fig. 31.28 gives ̈x2m/u̇mωn2 = 1.15; then ẍ2m = 1.15
× 55 × 130 = 8230 in./sec2 = 21.3g.

0.76 × 55
��
0.88 × 78.1

u̇m�
ωn1

0.76
�
0.88

2400
�
0.393

k1�
m1

152 lb
��
386 in./sec2

THEORY OF SHOCK ISOLATION 31.29

FIGURE 31.29 Shock transmissibility for component of system of Fig. 31.4
under impact at velocity u̇m without rebound, where component and isolator
have undamped linear elasticity.
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FIGURE 31.30 Dimensionless representation of maximum isolator deflection
in system of Fig. 31.4 under impact at velocity u̇m without rebound, where com-
ponent and isolator have undamped linear elasticity.

A second solution, taking into consideration the mass m2 of the component, may
be obtained if the damping is neglected. From Eq. (31.41),

1 + �1 + �
δ1m =


� + 1�
2

+ � �
2

�
1/2

= × = 0.71 in.

From Eq. (31.40):

ẍ2m = u̇mωn2 
� − 1�
2

+ � �
2

�
−1/2

= 55 × 130[(0.67)2 + 3⁄152(1.67)2]−1/2

= 10,070 in./sec2 = 26.1g

ωn2�
ωn1

m2�
m1

ωn2�
ωn1

1 + 1.67(1 + 3⁄152)
���
[(2.67)2+ 3⁄152(1.67)2]1/2

55
�
78.1

ωn2�
ωn1

m2�
m1

ωn2�
ωn1

u̇m�
ωn1

m2�
m1

ωn2�
ωn1
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This example is too complex for a practicable solution when damping and the mass
effects are considered together. However, the two above solutions may be taken
conservatively as limiting conditions; it is unlikely that the actual acceleration and
deflection would exceed the maxima of the limiting conditions.

SUPPORT PROTECTION

This section considers conditions in which the shock originates within the equipment
(e.g., guns and drop hammers).Attention is first given to determining the response of
the support for such equipment in the absence of a shock isolator. The effect of a
shock isolator introduced to protect the support from excessive loads is considered
later.

EQUIPMENT RIGIDLY ATTACHED TO SUPPORT

If the equipment is rigidly attached to the support, the support and equipment may
be idealized as a single degree-of-freedom system for purposes of a simplified analy-
sis. Consider the system of Fig. 31.3B with the spring-dashpot unit 2 assumed to be
rigid.The mass m represents the equipment, and the mass mF represents, with spring
and dashpot assembly (1), the support. The force F, applied externally to the equip-
ment, is taken to be a known function of time. The equation of motion is

(mF + m)δ̈ + F(δ̇,δ) = F

Considering only force-time relations F(t) in the form of a single pulse, the analo-
gous mathematical relations of Eqs. (31.5) and (31.6) are used by defining the
impulse J applied by the force F as

J = �τ

0
F dt (31.42)

where τ is the duration of the pulse.

Short-Duration Impulses. If τ is short compared with the half-period of free
oscillation of the system, then the results derived in the section on Response of a
Rigid Body System to a Velocity Step may be applied directly. An impulse J of negli-
gible duration acting on the mass m produces a velocity change u̇m given by

u̇m = (31.43)

The subsequent relative motion of the system is identical with that resulting from a
velocity step of magnitude u̇m.

If the damping capacity of the support is small, then velocity step results derived
for linear springs, hardening springs, and softening springs are applicable. If the
damping of the support may be represented as viscous and the stiffness as linear,
then the linear-spring viscous damping results apply. In most installations it is suffi-
ciently accurate to consider the support an undamped linear system.

A structure used to support an equipment generally has distributed mass and
elasticity; thus the application of an impulse tends to excite the structure to vibrate

J
�
m
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not only in its fundamental mode but also in higher modes of vibration. The mass-
spring-dashpot system shown in Fig. 31.3B to represent the structure would have
equivalent mass and stiffness suitable to simulate only the fundamental mode of
vibration. In many applications, such simulation is adequate because the displace-
ments and strains are greater in the fundamental mode than in higher modes. The
vibration of members having distributed mass is discussed in Chap. 7, and the for-
mulation of models suitable for use in the analysis of systems subjected to shock is
discussed in Chap. 28, Part II.

Long-Duration Impulses. If the duration τ of the applied impulse exceeds about
one-third of the natural period of the equipment-support system, application of
velocity step results may be unduly conservative. Then the results developed in the
section on Response of Rigid Body System to Acceleration Pulse are applicable. The
mathematical equivalence of Eqs. (31.5) and (31.6) is based on identifying −mü in
the former with F in the latter. Accordingly, if the shape of the force F vs. time curve
is similar to the shape of the curve of acceleration ü vs. time, then the response of a
system to an acceleration pulse may be used by analogy to find the response to a
force pulse by making the following substitutions:

üm = τr =

where Fm is the maximum value of F, üm is the maximum value of ü, and τr is the
effective duration. If the mathematical equivalence is literally applied, Fm /m is anal-
ogous to −üm, not üm. Since acceleration pulse results are given in terms of extreme
absolute values, the sign is not important.

EQUIPMENT SHOCK ISOLATED

Idealized System. When a shock isolator is used to reduce the magnitude of the
force transmitted to the support, the idealized system is as shown in Fig. 31.4. Sub-
system 2 represents the equipment (mass m2) mounted on the shock isolator (right-
hand spring-dashpot unit). Subsystem 1 is an idealized representation of the support
with effective mass m1 and with stiffness and damping capacity represented by the
left spring-dashpot unit. The free end of the latter unit is taken to be fixed (u = 0).

It is assumed that the system is initially in equilibrium (δ̇1 = δ̇2 = 0; δ1 = δ2 = 0) and
that force F (positive in the +X direction) applies an impulse J to m2.Analysis is sim-
plified by treating the duration τ of impulse J as negligible. This assumption, always
conservative, usually is warranted if the natural frequency of the shock isolator is
small relative to the natural frequency of the support.

System Separable. In many applications the support motion x1(= δ1) is suffi-
ciently small compared with the equipment motion x2 that the equipment accelera-
tion ẍ2 is closely approximated by δ̈2 where ẍ2 = δ̈2 + ẍ1. Using this approximation, the
analysis is resolved into two separate parts, each dealing with a single degree-of-
freedom system.

If the system consists only of linear elements as defined by Eq. (31.7), the equa-
tion of motion of the equipment mounted on the shock isolator (subsystem 2 of Fig.
31.4) is

J
�
Fm

Fm�
m
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δ̈2 + 2ζ2ωn2δ̇2 + ωn2
2δ2 = 0 (31.44)

where ωn2
2 = k2/m2 and ζ2 = c2/2m2ωn2. The initial conditions are: δ2 = 0, δ̇2 = u̇m = J/m2

when t = 0. Because of the similarity of Eqs. (31.26) and (31.44), and the respective
initial conditions, the maximum equipment acceleration ẍ2m and the maximum isola-
tor deflection δ2m may be found from Figs. 31.14 and 31.15. The differential equation
for the motion of the support in Fig. 31.4 is

δ̈1 + 2ζ1ωn1δ̇1 + ωn1
2δ1 = − ẍ2 (31.45)

where ωn1
2 = k1/m1 and ζ1 = c1/2m1ωn1. The initial conditions are δ̇1 = 0, δ1 = 0.

The solution of Eq. (31.45) is formally identical with that of Eq. (31.38) because
the equations differ only by the interchange of the numerical subscripts and the
presence of the factor m2/m1 on the right-hand side of Eq. (31.45). The solutions of
Eq. (31.45) as obtained by a computer are shown in Fig. 31.31. The ordinate is the
ratio of the maximum force F1m in the support to the quantity Jωn1. The latter quan-
tity is the maximum force which would be developed in an undamped, linear, single
degree-of-freedom support of mass m1 and stiffness k1 if the impulse J were applied
directly to m1.The abscissa in Fig. 31.31 is the ratio of the undamped support natural
frequency ωn1 to the undamped isolator natural frequency ωn2. Curves are drawn for

m2�
m1
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FIGURE 31.31 Dimensionless representation of maximum force in support F1m resulting from
action of impulse J on equipment.
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various values of the fraction of critical damping ζ2 for the isolator, assuming that the
fraction of critical damping ζ1 for the support is constant at ζ1 = 0.01.

Figure 31.31 appears to show that the presence of an isolator increases the maxi-
mum force F1m transmitted by the support if the natural frequencies of isolator and
support are nearly equal.This conclusion is misleading because the analysis assumes
that the support deflection δ1 is small compared with the isolator deflection δ2, a 
condition which is not met in the neighborhood of unity frequency ratio. A more
realistic analysis involves the two degree-of-freedom system discussed in the next
section.

Two Degree-of-Freedom Analysis. This section includes an analysis of the sys-
tem of Fig. 31.4 considered as a coupled two degree-of-freedom system where both
the support and isolator are linear and undamped [F1(δ̇1,δ1) = k1δ1, F2(δ̇2,δ2) = k2δ2].
This analysis makes it possible to consider the effect of deflection of the support on
the motion of the equipment. Fixing the support base (u = 0), the equations of
motion may be written

δ̈1 + ωn1
2δ1 = ωn2

2δ2

δ̈2 + ωn2
2δ2 = −δ̈1

(31.46)

Assuming that the impulse J has negligible duration, the initial conditions are: δ̇1 = 0,
δ̇2 = J/m2, δ1 = δ2 = 0. The solution of Eqs. (31.46) parallels that of Eqs. (31.39); the
resulting expressions for the maximum isolator deflection δ2m and force F1m applied
to the support are

δ2m = 
1 + �
−1/2

(31.47)

F1m = Jωn1 
�1 − �
2

+ �
−1/2

(31.48)

The maximum deflection of the isolator given in Eq. (31.47) is shown graphically
in Fig. 31.32. For small values of the ratio of support natural frequency to isolator
natural frequency, the flexibility of the support may significantly reduce the maxi-
mum isolator deflection, especially if the mass of the support is small relative to the
mass of the equipment. For large values of the frequency ratio, the effect of the mass
ratio is small.

Maximum values of force in the support, given by Eq. (31.48), are shown in Fig.
31.33.The maximum deflection of the floor is the maximum force F1m divided by the
stiffness of the floor. The effect of mass ratio is profound for small values of the fre-
quency ratio.The curves of Figs. 31.31 and 31.33 show corresponding results, the for-
mer including damping and the latter including the coupling effect between the two
systems.The analysis which ignores the coupling effect may grossly overestimate the
maximum force applied to the support at low values of the frequency ratio. At high
values of the frequency ratio, the two analyses yield like results if the fraction of crit-
ical damping in the isolator is less than about ζ2 = 0.10. The two methods are com-
pared in Example 31.5.

Example 31.5. A forging machine weighs 7000 lb exclusive of the 600-lb ham-
mer. It is mounted at the center of a span formed by two 12-in., 50 lb/ft I beams hav-

m2�
m1

ωn1�
ωn2

m2 /m1��
(1 + ωn1/ωn2)2

J
�
m2ωn2

m2�
m1
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ing hinged ends and a span l = 18 ft. The hammer falls freely from a height of 60 in.
before striking the work. Determine:

a. Maximum force F1m in the beams and maximum deflection δ1m of the beams if the
machine is rigidly bolted to the beams.

b. The maximum force F1m in the beams and the maximum deflection δ2m of an iso-
lator interposed between machine and beams.

Solution
a. When the machine is bolted rigidly to the beams, the system may be consid-

ered to have only a single degree-of-freedom. The mass is that of the machine, plus
the hammer, plus the effective mass of the beams. For the machine: m2 = (7000 +
600)/386 = 19.2 lb-sec2/in. The effective mass of the beams is taken as one-half of the
actual mass:

m1 = = 2.33 lb-sec2/in.

m = m1 + m2 = 21.5 lb-sec2/in.

The stiffness of the beams is

2(0.5)(18)(50)
��

386
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FIGURE 31.32 Dimensionless representation of maximum isolator deflec-
tion δ2m resulting from action of impulse J on equipment. Isolator and support
have undamped linear elasticity.
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FIGURE 31.33 Dimensionless representation of maximum force in support
F1m resulting from action of impulse J on equipment.

k = 2 = 2 = 123,000 lb/in.

The natural frequency of the machine-and-beams system is

ωn = �� = �� = 75.6 rad/sec [12.0 Hz]

If the impact between the hammer and work is inelastic and its duration is negligi-
ble, the resulting velocity u̇m of the machine may be found from conservation of
momentum. The impulse J is the product of weight of hammer and time of fall:

J = (600) � �
1/2

= 335 lb-sec

Then u̇m = J/m = 335/21.5 = 15.6 in./sec. If the damping of the beams is neglected, the
maximum beam deflection is found from Eq. (31.18):

δ1m = = = 0.21 in.

The maximum force in the beams is the product of beam stiffness and maximum
deflection:

F1m = kδ1m = 25,300 lb

15.6
�
75.6

u̇m�
ωn

2 × 60
�

386

123,000
�

21.5
k
�
m

48 × (30 × 106) × 302
���

(18 × 12)3

48EI
�

l 3
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b. An isolator having a stiffness k2 = 36,000 lb/in. and a fraction of critical damp-
ing ζ2 = 0.10 is interposed between the machine and beams. The “uncoupled natural
frequencies” defined in connection with Eqs. (31.40) and (31.41) are

ωn2 = �� = �� = 43.3 rad/sec [6.9 Hz]

ωn1 = �� = �� = 230 rad/sec [36.6 Hz]

Consider first that the system is separable. Figures 31.14 and 31.15 give, respectively:
ẍ2m/u̇mωn2 = 0.88; ẍ2mδ2m/u̇m

2 = 0.76. Substituting u̇m = J/m2 = 17.4 in./sec and solving 
for δ2m,

δ2m = = 0.35 in.

Entering Fig. 31.31 at ωn1/ωn2 = 5.3, F1m/Jωn1 = 0.23. Then

F1m = 17,700 lb

Thus, the effect of the isolator is to reduce the maximum load in the beams from
25,300 lb to 17,700 lb.An isolator with less stiffness would permit a further reduction
of this force at the expense of greater machine motion.

Consider now that the floor and machine-isolator systems are coupled, and use
the two degree-of-freedom analysis which neglects damping. From Eq. (31.47):

δ2m = 
1 + m2/m1

�1 + �
2�

−1/2

= 
1 + �
−1/2

= 0.37 in.

From Eq. (31.48):

F1m = Jωn1 
�1 − �
2

+ �
−1/2

= 335 × 230 
(1 − 5.3)2 + �
−1/2

= 14,900 lb

Thus, the two results for the isolator deflection δ2m differ only slightly, but the two
degree-of-freedom analysis gives a maximum load in the beams about 16 percent
smaller than that obtained by assuming the systems to be separable.

19.2
�
2.33

m2�
m1

ωn1�
ωn2

19.2/2.33
��
(1 + 5.3)2

335
��
19.2 × 43.3

ωn1�
ωn2

J
�
m2ωn2

0.76 × 17.4
��
0.88 × 43.3

123,000
�

2.33
k1�
m1

36,000
�

19.2
k2�
m2
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