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INTRODUCTION

Vibration isolation concerns means to bring about a reduction in a vibratory effect.
A vibration isolator in its most elementary form may be considered as a resilient
member connecting the equipment and foundation. The function of an isolator is to
reduce the magnitude of motion transmitted from a vibrating foundation to the
equipment or to reduce the magnitude of force transmitted from the equipment to
its foundation.

CONCEPT OF VIBRATION ISOLATION

The concept of vibration isolation is illustrated by consideration of the single
degree-of-freedom system illustrated in Fig. 30.1.This system consists of a rigid body
representing an equipment connected to a foundation by an isolator having
resilience and energy-dissipating means; it is unidirectional in that the body is con-
strained to move only in vertical translation.The performance of the isolator may be
evaluated by the following characteristics of the response of the equipment-isolator
system of Fig. 30.1 to steady-state sinusoidal vibration:

Absolute transmissibility. Transmissibility is a measure of the reduction of
transmitted force or motion afforded by an isolator. If the source of vibration is
an oscillating motion of the foundation (motion excitation), transmissibility is the
ratio of the vibration amplitude of the equipment to the vibration amplitude of
the foundation. If the source of vibration is an oscillating force originating within
the equipment (force excitation), transmissibility is the ratio of the force ampli-
tude transmitted to the foundation to the amplitude of the exciting force.
Relative transmissibility. Relative transmissibility is the ratio of the relative
deflection amplitude of the isolator to the displacement amplitude imposed at
the foundation.A vibration isolator effects a reduction in vibration by permitting
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deflection of the isolator. The relative deflection is a measure of the clearance
required in the isolator. This characteristic is significant only in an isolator used
to reduce the vibration transmitted from a vibrating foundation.
Motion response. Motion response is the ratio of the displacement amplitude of
the equipment to the quotient obtained by dividing the excitation force amplitude
by the static stiffness of the isolator. If the equipment is acted on by an exciting
force, the resultant motion of the equipment determines the space requirements
for the isolator, i.e., the isolator must have a clearance at least as great as the
equipment motion.

FORM OF ISOLATOR

The essential features of an isolator are resilient load-supporting means and energy-
dissipating means. In certain types of isolators, the functions of the load-supporting
means and the energy-dissipating means may be performed by a single element, e.g.,
natural or synthetic rubber. In other types of isolators, the resilient load-carrying
means may lack sufficient energy-dissipating characteristics, e.g., metal springs; then
separate and distinct energy-dissipating means (dampers) are provided. For pur-
poses of analysis, it is assumed that the springs and dampers are separate elements.
In general, the springs are assumed to be linear and massless. The effects of nonlin-
earity and mass of the load-supporting means upon vibration isolation are consid-
ered in later sections of this chapter.

Various types of dampers are shown in combination with ideal springs in the fol-
lowing idealized models of isolators illustrated in Table 30.1. Practical aspects of iso-
lator design are considered in Chap. 32.

Rigidly connected viscous damper. A viscous damper c is connected rigidly
between the equipment and its foundation as shown in Table 30.1A. The damper
has the characteristic property of transmitting a force Fc that is directly propor-
tional to the relative velocity δ̇ across the damper, Fc = cδ̇.This damper sometimes
is referred to as a linear damper.

30.2 CHAPTER THIRTY

FIGURE 30.1 Schematic diagrams of vibration isolation systems: (A) vibration isolation where
motion u is imposed at the foundation and motion x is transmitted to the equipment; (B) vibration
isolation where force F is applied by the equipment and force FT is transmitted to the foundation.
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THEORY OF VIBRATION ISOLATION 30.3

TABLE 30.1 Types of Idealized Vibration Isolators
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Rigidly connected Coulomb damper. An isolation system with a rigidly con-
nected Coulomb damper is indicated schematically in Table 30.1B. The force Ff

exerted by the damper on the mass of the system is constant, independent of posi-
tion or velocity, but always in a direction that opposes the relative velocity across
the damper. In a physical sense, Coulomb damping is approximately attainable
from the relative motion of two members arranged to slide one upon the other
with a constant force holding them together.

Elastically connected viscous damper. The elastically connected viscous damper
is shown in Table 30.1C. The viscous damper c is in series with a spring of stiffness
k1; the load-carrying spring k is related to the damper spring k1 by the parameter
N = k1/k. This type of damper system sometimes is referred to as a viscous relax-
ation system.

Elastically connected Coulomb damper. The elastically connected Coulomb
damper is shown in Table 30.1D. The friction element can transmit only that force
which is developed in the damper spring k1. When the damper slips, the friction
force Ff is independent of the velocity across the damper, but always is in a direc-
tion that opposes it.
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TABLE 30.2 Transmissibility and Motion Response for 
Isolation Systems Defined in Table 30.1

Where the equation is shown graphically, the applicable figure is indicated below the equa-
tion. See Table 30.1 for definition of terms.

NOTE 1: These equations apply only when there is relative motion across the damper.
NOTE 2: This equation applies only when excitation is defined in terms of displacement amplitude.
NOTE 3: These curves apply only for optimum damping [see Eq. (30.15)]; curves for other values of

damping are given in Ref. 4.
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INFLUENCE OF DAMPING IN VIBRATION ISOLATION

The nature and degree of vibration isolation afforded by an isolator is influenced
markedly by the characteristics of the damper. This aspect of vibration isolation is
evaluated in this section in terms of the single degree-of-freedom concept; i.e., the
equipment and the foundation are assumed rigid and the isolator is assumed mass-
less. The performance is defined in terms of absolute transmissibility, relative trans-
missibility, and motion response for isolators with each of the four types of dampers
illustrated in Table 30.1. A system with a rigidly connected viscous damper is dis-
cussed in detail in Chap. 2, and important results are reproduced here for com-
pleteness; isolators with other types of dampers are discussed in detail here.

The characteristics of the dampers and the performance of the isolators are
defined in terms of the parameters shown on the schematic diagrams in Table 30.1.
Absolute transmissibility, relative transmissibility, and motion response are defined
analytically in Table 30.2 and graphically in the figures referenced in Table 30.2. For
the rigidly connected viscous and Coulomb-damped isolators, the graphs generally
are explicit and complete. For isolators with elastically connected dampers, typical
results are included and references are given to more complete compilations of
dynamic characteristics.
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TABLE 30.2 Transmissibility and Motion Response for 
Isolation Systems Defined in Table 30.1 (Continued)

Where the equation is shown graphically, the applicable figure is indicated below the equa-
tion. See Table 30.1 for definition of terms.

NOTE 4: These curves apply only for N = 3.
NOTE 5: This equation applies only when excitation is defined in terms of displacement amplitude; for

excitation defined in terms of force or acceleration, see Eq. (30.18).
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RIGIDLY CONNECTED VISCOUS DAMPER

Absolute and relative transmissibility curves are shown graphically in Figs. 30.2 and
30.3, respectively.* As the damping increases, the transmissibility at resonance
decreases and the absolute transmissibility at the higher values of the forcing fre-
quency ω increases; i.e., reduction of vibration is not as great. For an undamped iso-
lator, the absolute transmissibility at higher values of the forcing frequency varies
inversely as the square of the forcing frequency. When the isolator embodies signifi-
cant viscous damping, the absolute transmissibility curve becomes asymptotic at
high values of forcing frequency to a line whose slope is inversely proportional to
the first power of the forcing frequency.

The maximum value of absolute transmissibility associated with the resonant
condition is a function solely of the damping in the system, taken with reference to
critical damping. For a lightly damped system, i.e., for ζ < 0.1, the maximum absolute
transmissibility [see Eq. (2.41)] of the system is1

30.6 CHAPTER THIRTY

* For linear systems, the absolute transmissibility TA = x0/u0 in the motion-excited system equals FT /F0 in
the force-excited system. The relative transmissibility TR = δ0/u0 applies only to the motion-excited system.

FIGURE 30.2 Absolute transmissibility for the
rigidly connected, viscous-damped isolation sys-
tem shown at A in Table 30.1 as a function of the
frequency ratio ω/ω0 and the fraction of critical
damping ζ. The absolute transmissibility is the
ratio (x0/u0) for foundation motion excitation
(Fig. 30.1A) and the ratio (FT /F0) for equipment
force excitation (Fig. 30.1B).

FIGURE 30.3 Relative transmissibility for the
rigidly connected, viscous-damped isolation sys-
tem shown at A in Table 30.1 as a function of the
frequency ratio ω/ω0 and the fraction of critical
damping ζ.The relative transmissibility describes
the motion between the equipment and the
foundation (i.e., the deflection of the isolator).
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Tmax = (30.1)

where ζ = c/cc is the fraction of critical damping defined in Table 30.1.
The motion response is shown graphically in Fig. 30.4. A high degree of damping

limits the vibration amplitude of the equipment at all frequencies, compared to an
undamped system.The single degree-of-freedom system with viscous damping is dis-
cussed more fully in Chap. 2.

RIGIDLY CONNECTED COULOMB DAMPER

The differential equation of motion for the system with Coulomb damping shown in
Table 30.1B is

mẍ + k(x − u) ± Ff = F0 sin ωt (30.2)

The discontinuity in the damping force that occurs as the sign of the velocity
changes at each half cycle requires a step-by-step solution of Eq. (30.2).2 An
approximate solution based on the equivalence of energy dissipation involves
equating the energy dissipation per cycle for viscous-damped and Coulomb-
damped systems:3

πcωδ0
2 = 4Ff δ0 (30.3)

where the left side refers to the viscous-
damped system and the right side to the
Coulomb-damped system; δ0 is the
amplitude of relative displacement
across the damper. Solving Eq. (30.3)
for c,

ceq = = j � � (30.4)

where ceq is the equivalent viscous damp-
ing coefficient for a Coulomb-damped
system having equivalent energy dissi-
pation. Since δ̇0 = jωδ0 is the relative
velocity, the equivalent linearized dry
friction damping force can be consid-
ered sinusoidal with an amplitude
j(4Ff /π). Since cc = 2k/ω0 [see Eq. (2.12)],

ζeq = = (30.5)

where ζeq may be defined as the equiva-
lent fraction of critical damping. Substi-
tuting δ0 from the relative transmissibility
expression [(b) in Table 30.2] in Eq.
(30.5) and solving for ζeq

2,

2ω0Ff�
πωkδ0

ceq
�
cc

4Ff
�
πδ̇0

4Ff
�
πωδ0

1
�
2ζ
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FIGURE 30.4 Motion response for the
rigidly connected viscous-damped isolation sys-
tem shown at A in Table 30.1 as a function of
the frequency ratio ω/ω0 and the fraction of
critical damping ζ. The curves give the resulting
motion of the equipment x in terms of the exci-
tation force F and the static stiffness of the iso-
lator k.
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ζeq
2 =

� η�
2

�1 − �
2

(30.6)

� − � η�
2

�
where η is the Coulomb damping parameter for displacement excitation defined in
Table 30.1.

The equivalent fraction of critical damping given by Eq. (30.6) is a function of the
displacement amplitude u0 of the excitation since the Coulomb damping parameter
η depends on u0. When the excitation is defined in terms of the acceleration ampli-
tude ü0, the fraction of critical damping must be defined in corresponding terms.
Thus, it is convenient to employ separate analyses for displacement transmissibility
and acceleration transmissibility for an isolator with Coulomb damping.

Displacement Transmissibility. The absolute displacement transmissibility of an
isolation system having a rigidly connected Coulomb damper is obtained by substi-
tuting ζeq from Eq. (30.6) for ζ in the absolute transmissibility expression for viscous
damping, (a) in Table 30.2. The absolute displacement transmissibility is shown
graphically in Fig. 30.5, and the relative displacement transmissibility is shown in Fig.
30.6. The absolute displacement transmissibility has a value of unity when the forc-
ing frequency is low and/or the Coulomb friction force is high. For these conditions,
the friction damper is locked in, i.e., it functions as a rigid connection, and there is no
relative motion across the isolator.The frequency at which the damper breaks loose,

4
�
π

ω4

�
ω0

4

ω2

�
ω0

2

ω2

�
ω0

2

2
�
π
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FIGURE 30.5 Absolute displacement trans-
missibility for the rigidly connected, Coulomb-
damped isolation system shown at B in Table 30.1
as a function of the frequency ratio ω/ω0 and the
displacement Coulomb-damping parameter η.

FIGURE 30.6 Relative displacement transmis-
sibility for the rigidly connected, Coulomb-
damped isolation system shown at B in Table 30.1
as a function of the frequency ratio ω/ω0 and the
displacement Coulomb-damping parameter η.
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* This equation is based upon energy considerations and is approximate. Actually, the friction damper
breaks loose when the inertia force of the mass equals the friction force, mu0ω2 = Ff.This gives the exact solu-
tion (ω/ω0)L = �η�. A numerical factor of 4/π relates the Coulomb damping parameters in the exact and
approximate solutions for the system.

i.e., permits relative motion across the isolator, can be obtained from the relative dis-
placement transmissibility expression, (e) in Table 30.2. The relative displacement is
imaginary when ω2/ω0

2 ≤ (4/π)η. Thus, the “break-loose” frequency ratio is*

� �
L

= �	η (30.7)

The displacement transmissibility can become infinite at resonance, even though
the system is damped, if the Coulomb damping force is less than a critical minimum
value. The denominator of the absolute and relative transmissibility expressions
becomes zero for a frequency ratio ω/ω0 of unity. If the break-loose frequency is
lower than the undamped natural frequency, the amplification of vibration becomes
infinite at resonance.This occurs because the energy dissipated by the friction damp-
ing force increases linearly with the displacement amplitude, and the energy intro-
duced into the system by the excitation source also increases linearly with the
displacement amplitude.Thus, the energy dissipated at resonance is either greater or
less than the input energy for all amplitudes of vibration. The minimum dry-friction
force which prevents vibration of infinite magnitude at resonance is

(Ff)min = = 0.79 ku0 (30.8)

where k and u0 are defined in Table 30.1.
As shown in Fig. 30.5, an increase in η decreases the absolute displacement trans-

missibility at resonance and increases the resonance frequency.All curves intersect at
the point (TA)D = 1, ω/ω0 = �2�.With optimum damping force, there is no motion across
the damper for ω/ω0 ≤ �2�; for higher frequencies the displacement transmissibility is
less than unity. The friction force that produces this “resonance-free” condition is

(Ff)op = = 1.57 ku0 (30.9)

For high forcing frequencies, the absolute displacement transmissibility varies
inversely as the square of the forcing frequency, even though the friction damper dis-
sipates energy. For relatively high damping (η > 2), the absolute displacement trans-
missibility, for frequencies greater than the break-loose frequency, is approximately
4ηω0

2/πω2.

Acceleration Transmissibility. The absolute displacement transmissibility (TA)D

shown in Fig. 30.5 is the ratio of response of the isolator to the excitation, where each is
expressed as a displacement amplitude in simple harmonic motion. The damping
parameter η is defined with reference to the displacement amplitude u0 of the excita-
tion. Inasmuch as all motion is simple harmonic, the transmissibility (TA)D also applies
to acceleration transmissibility when the damping parameter is defined properly.When
the excitation is defined in terms of the acceleration amplitude ü0 of the excitation,

ηü0
= (30.10)

Ff ω2

�
kü0

πku0�
2

πku0
�

4

4
�
π

ω
�
ω0
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where ω = forcing frequency, rad/sec
ü0 = acceleration amplitude of excitation, in./sec2

k = isolator stiffness, lb/in.
Ff = Coulomb friction force, lb

For relatively high forcing frequencies, the acceleration transmissibility approaches
a constant value (4/π)ξ, where ξ is the Coulomb damping parameter for acceleration
excitation defined in Table 30.1. The acceleration transmissibility of a rigidly con-
nected Coulomb damper system becomes asymptotic to a constant value because the
Coulomb damper transmits the same friction force regardless of the amplitude of the
vibration.

ELASTICALLY CONNECTED VISCOUS DAMPER

The general characteristics of the elastically connected viscous damper shown at C
in Table 30.1 may best be understood by successively assigning values to the viscous
damper coefficient c while keeping the stiffness ratio N constant. For zero damping,
the mass is supported by the isolator of stiffness k. The transmissibility curve has the
characteristics typical of a transmissibility curve for an undamped system having the
natural frequency

ω0 = �	 (30.11)

When c is infinitely great, the transmissibility curve is that of an undamped system
having the natural frequency

ω∞ = �	 = �N� +� 1� ω0 (30.12)

where k1 = Nk. For intermediate values of damping, the transmissibility falls within the
limits established for zero and infinitely great damping. The value of damping which
produces the minimum transmissibility at resonance is called optimum damping.

All curves approach the transmissibility curve for infinite damping as the forcing
frequency increases.Thus, the absolute transmissibility at high forcing frequencies is
inversely proportional to the square of the forcing frequency. General expressions
for absolute and relative transmissibility are given in Table 30.2.

A comparison of absolute transmissibility curves for the elastically connected
viscous damper and the rigidly connected viscous damper is shown in Fig. 30.7. A
constant viscous damping coefficient of 0.2cc is maintained, while the value of the
stiffness ratio N is varied from zero to infinity.The transmissibilities at resonance are
comparable, even for relatively small values of N, but a substantial gain is achieved
in the isolation characteristics at high forcing frequencies by elastically connecting
the damper.

Transmissibility at Resonance. The maximum transmissibility (at resonance) is
a function of the damping ratio ζ and the stiffness ratio N, as shown in Fig. 30.8. The
maximum transmissibility is nearly independent of N for small values of ζ. However,
for ζ > 0.1, the coefficient N is significant in determining the maximum transmissi-
bility.The lowest value of the maximum absolute transmissibility curves corresponds
to the conditions of optimum damping.

k + k1�
m

k
�
m
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Motion Response. A typical motion
response curve is shown in Fig. 30.9 for
the stiffness ratio N = 3. For small damp-
ing, the response is similar to the
response of an isolation system with
rigidly connected viscous damper. For
intermediate values of damping, the
curves tend to be flat over a wide fre-
quency range before rapidly decreasing
in value at the higher frequencies. For
large damping, the resonance occurs near
the natural frequency of the system with
infinitely great damping. All response
curves approach a high-frequency
asymptote for which the attenuation
varies inversely as the square of the exci-
tation frequency.

Optimum Transmissibility. For a sys-
tem with optimum damping, maximum
transmissibility coincides with the inter-
sections of the transmissibility curves for
zero and infinite damping.The frequency
ratios (ω/ω0)op at which this occurs are
different for absolute and relative trans-
missibility:

Absolute transmissibility:

� �
op

(A)

= �	 (30.13)

Relative transmissibility:

� �
op

(R)

= �	
The optimum transmissibility at resonance, for both absolute and relative motion, is

Top = 1 + (30.14)

The optimum transmissibility as determined from Eq. (30.14) corresponds to the
minimum points of the curves of Fig. 30.8.

The damping which produces the optimum transmissibility is obtained by differ-
entiating the general expressions for transmissibility [(g) and (h) in Table 30.2] with
respect to the frequency ratio, setting the result equal to zero, and combining it with
Eq. (30.13):

Absolute transmissibility:

(ζop)A = �2�(N� +� 2�)� (30.15a)
N

�
4(N + 1)

2
�
N

N + 2
�

2
ω
�
ω0

2(N + 1)
�

N + 2
ω
�
ω0
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FIGURE 30.7 Comparison of absolute trans-
missibility for rigidly and elastically connected,
viscous damped isolation systems shown at A
and C, respectively, in Table 30.1, as a function of
the frequency ratio ω/ω0.The solid curves refer to
the elastically connected damper, and the param-
eter N is the ratio of the damper spring stiffness
to the stiffness of the principal support spring.
The fraction of critical damping ζ = c/cc is 0.2 in
both systems. The transmissibility at high fre-
quencies decreases at a rate of 6 dB per octave
for the rigidly connected damper and 12 dB per
octave for the elastically connected damper.
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Relative transmissibility:

(ζop)R = (30.15b)

Values of optimum damping determined from the first of these relations correspond
to the minimum points of the curves of Fig. 30.8. By substituting the optimum damp-
ing ratios from Eqs. (30.15) into the general expressions for transmissibility given in
Table 30.2, the optimum absolute and relative transmissibility equations are
obtained, as shown graphically by Figs. 30.10 and 30.11, respectively. For low values
of the stiffness ratio N, the transmissibility at resonance is large but excellent isola-
tion is obtained at high frequencies. Conversely, for high values of N, the transmissi-
bility at resonance is lowered, but the isolation efficiency also is decreased.

ELASTICALLY CONNECTED COULOMB DAMPER

Force-deflection curves for the isolators incorporating elastically connected
Coulomb dampers, as shown at D in Table 30.1, are illustrated in Fig. 30.12. Upon
application of the load, the isolator deflects; but since insufficient force has been
developed in the spring k1, the damper does not slide, and the motion of the mass is
opposed by a spring of stiffness (N + 1)k. The load is now increased until a force is
developed in spring k1 which equals the constant friction force Ff; then the damper
begins to slide.When the load is increased further, the damper slides and reduces the
effective spring stiffness to k. If the applied load is reduced after reaching its maxi-

N
��
�2�(N� +� 1�)(�N� +� 2�)�
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FIGURE 30.8 Maximum absolute transmissibility for the elastically connected, vis-
cous-damped isolation system shown at C in Table 30.1 as a function of the fraction of
critical damping ζ and the stiffness of the connecting spring. The parameter N is the ratio
of the damper spring stiffness to the stiffness of the principal support spring.
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mum value, the damper no longer dis-
places because the force developed in
the spring k1 is diminished. Upon com-
pletion of the load cycle, the damper will
have been in motion for part of the cycle
and at rest for the remaining part to form
the hysteresis loops shown in Fig. 30.12.

Because of the complexity of the
applicable equations, the equivalent
energy method is used to obtain the
transmissibility and motion response
functions. Applying frequency, damping,
and transmissibility expressions for the
elastically connected viscous damped
system to the elastically connected
Coulomb-damped system, the transmis-
sibility expressions tabulated in Table
30.2 for the latter are obtained.

If the coefficient of the damping term
in each of the transmissibility expres-
sions vanishes, the transmissibility is
independent of damping. By solving for
the frequency ratio ω/ω0 in the coeffi-
cients that are thus set equal to zero, the
frequency ratios obtained define the fre-
quencies of optimum transmissibility.
These frequency ratios are given by Eqs.
(30.13) for the elastically connected vis-
cous damped system and apply equally
well to the elastically connected
Coulomb damped system because the
method of equivalent viscous damping
is employed in the analysis. Similarly,

Eq. (30.14) applies for optimum transmissibility at resonance.
The general characteristics of the system with an elastically connected Coulomb

damper may be demonstrated by successively assigning values to the damping force
while keeping the stiffness ratio N constant. For zero and infinite damping, the trans-
missibility curves are those for undamped systems and bound all solutions. Every
transmissibility curve for 0 < Ff < ∞ passes through the intersection of the two
bounding transmissibility curves. For low damping (less than optimum), the damper
“breaks loose” at a relatively low frequency, thereby allowing the transmissibility to
increase to a maximum value and then pass through the intersection point of the
bounding transmissibility curves. For optimum damping, the maximum absolute
transmissibility has a value given by Eq. (30.14); it occurs at the frequency ratio
(ω/ω0)op

(A) defined by Eq. (30.13). For high damping, the damper remains “locked-
in” over a wide frequency range because insufficient force is developed in the spring
k1 to induce slip in the damper. For frequencies greater than the break-loose fre-
quency, there is sufficient force in spring k1 to cause relative motion of the damper.
For a further increase in frequency, the damper remains broken loose and the trans-
missibility is limited to a finite value. When there is insufficient force in spring k1 to
maintain motion across the damper, the damper locks-in and the transmissibility is
that of a system with the infinite damping.

THEORY OF VIBRATION ISOLATION 30.13

FIGURE 30.9 Motion response for the elasti-
cally connected, viscous-damped isolation sys-
tem shown at C in Table 30.1 as a function of the
frequency ratio ω/ω0 and the fraction of critical
damping ζ. For this example, the stiffness of the
damper connecting spring is 3 times as great as
the stiffness of the principal support spring 
(N = 3). The curves give the resulting motion of
the equipment in terms of the excitation force F
and the static stiffness of the isolator k.
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FIGURE 30.10 Absolute transmissibility with
optimum damping in elastically connected, vis-
cous-damped isolation system shown at C in
Table 30.1 as a function of the frequency ratio
ω/ω0 and the fraction of critical damping ζ.These
curves apply to elastically connected, viscous-
damped systems having optimum damping for
absolute motion. The transmissibility (TA)op is
(x0/u0)op for the motion-excited system and
(FT /F0)op for the force-excited system.

FIGURE 30.11 Relative transmissibility with
optimum damping in the elastically connected,
viscous-damped isolation system shown at C in
Table 30.1 as a function of the frequency ratio
ω/ω0 and the fraction of critical damping ζ.These
curves apply to elastically connected, viscous-
damped systems having optimum damping for
relative motion. The relative transmissibility
(TR)op is (δ0 /u0)op for the motion-excited system.

FIGURE 30.12 Force-deflection characteristics of the elastically connected,
Coulomb-damped isolation system shown at D in Table 30.1. The force-
deflection diagram for a cyclic deflection of the complete isolator is shown at A
and the corresponding diagram for the assembly of Coulomb damper and spring
k1 = Nk is shown at B.
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The break-loose and lock-in frequencies are determined by requiring the motion
across the Coulomb damper to be zero. Then the break-loose and lock-in frequency
ratios are

� �
L

=�� η�(N + 1)
(30.16)

� η� ± N

where η is the damping parameter defined in Table 30.1 with reference to the dis-
placement amplitude u0. The plus sign corresponds to the break-loose frequency,
while the minus sign corresponds to the lock-in frequency. Damping parameters for
which the denominator of Eq. (30.16) becomes negative correspond to those condi-
tions for which the damper never becomes locked-in again after it has broken loose.
Thus, the damper eventually becomes locked-in only if η > (π/4)N.

Displacement Transmissibility. The absolute displacement transmissibility
curve for the stiffness ratio N = 3 is shown in Fig. 30.13 where (TA)D = x0/u0. A small
decrease in damping force Ff below the optimum value causes a large increase in the
transmitted vibration near resonance. However, a small increase in damping force Ff

above optimum causes only small changes in the maximum transmissibility. Thus, it
is good design practice to have the damping parameter η equal to or greater than the
optimum damping parameter ηop.

The relative transmissibility for N = 3 is shown in Fig. 30.14 where (TR)D = δ0 /u0.
All curves pass through the intersection of the curves for zero and infinite damping.
For optimum damping, the maximum relative transmissibility has a value given by

Eq. (30.14); it occurs at the frequency ratio � �op

(R)
defined by Eq. (30.13).

Acceleration Transmissibility. The acceleration transmissibility can be ob-
tained from the expression for displacement transmissibility by substitution of the
effective displacement damping parameter in the expression for transmissibility of
a system whose excitation is constant acceleration amplitude. If ü0 represents the
acceleration amplitude of the excitation, the corresponding displacement ampli-
tude is u0 = −ü0/ω2. Using the definition of the acceleration Coulomb damping
parameter ξ given in Table 30.1, the equivalent displacement Coulomb damping
parameter is

ηeq = − � �
2

ξ (30.17)

Substituting this relation in the absolute transmissibility expression given at j in
Table 30.2, the following equation is obtained for the acceleration transmissibility:

(TA)A = =�1 + � ξ�
2

� � �� �� � − 2� ��
(30.18)
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Equation (30.18) is valid only for the frequency range in which there is relative
motion across the Coulomb damper. This range is defined by the break-loose and
lock-in frequencies which are obtained by substituting Eq. (30.17) into Eq. (30.16):

� �
L

=�� ξ�(N + 1) ± N

(30.19)
ξ

where Eqs. (30.16) and (30.19) give similar results, damping being defined in terms of
displacement and acceleration excitation, respectively. For frequencies not included in
the range between break-loose and lock-in frequencies, the acceleration transmissibil-
ity is that for an undamped system. Equation (30.18) indicates that infinite accelera-
tion occurs at resonance unless the damper remains locked-in beyond a frequency
ratio of unity.The coefficient of the damping term in Eq. (30.18) is identical to the cor-
responding coefficient in the expression for (TA)D at j in Table 30.2.Thus, the frequency
ratio at the optimum transmissibility is the same as that for displacement excitation.

4
�
π

4
�
πω

�
ω0
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FIGURE 30.13 Absolute displacement trans-
missibility for the elastically connected,
Coulomb-damped isolation system illustrated at
D in Table 30.1, for the damper spring stiffness
defined by N = 3.The curves give the ratio of the
absolute displacement amplitude of the equip-
ment to the displacement amplitude imposed at
the foundation, as a function of the frequency
ratio ω/ω0 and the displacement Coulomb-
damping parameter η.

FIGURE 30.14 Relative displacement trans-
missibility for the elastically connected,
Coulomb-damped isolation system illustrated at
D in Table 30.1, for the damper spring stiffness
defined by N = 3.The curves give the ratio of the
relative displacement amplitude (maximum iso-
lator deflection) to the displacement amplitude
imposed at the foundation, as a function of the
frequency ratio ω/ω0 and the displacement
Coulomb-damping parameter η.
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An acceleration transmissibility
curve for N = 3 is shown by Fig. 30.15.
Relative motion at the damper occurs in
a limited frequency range; thus, for rela-
tively high frequencies, the acceleration
transmissibility is similar to that for infi-
nite damping.

Optimum Damping Parameters.
The optimum Coulomb damping param-
eters are obtained by equating the opti-
mum viscous damping ratio given by Eq.
(30.15) to the equivalent viscous damp-
ing ratio for the elastically supported
damper system and replacing the fre-
quency ratio by the frequency ratio given
by Eq. (30.13).The optimum value of the
damping parameter η in Table 30.1 is

ηop = �	 (30.20)

To obtain the optimum value of the
damping parameter ξ in Table 30.1, Eq.
(30.17) is substituted in Eq. (30.20):

ξop = �	 (30.21)

Force Transmissibility. The force transmissibility (TA)F = FT /F0 is identical to
(TA)A given by Eq. (30.18) if ξ = ξF, where ξF is defined as

ξF = (30.22)

Thus, the transmissibility curve shown in Fig. 30.15 also gives the force transmissibil-
ity for N = 3. By substituting Eq. (30.22) into Eq. (30.21), the transmitted force is
optimized when the friction force Ff has the following value:

(Ff)op = �	 (30.23)

To avoid infinite transmitted force at resonance, it is necessary that Ff > (π/4)F0.

Comparison of Rigidly Connected and Elastically Connected Coulomb-
Damped Systems. A principal limitation of the rigidly connected Coulomb-
damped isolator is the nature of the transmissibility at high forcing frequencies.
Because the isolator deflection is small, the force transmitted by the spring is negli-
gible; then the force transmitted by the damper controls the motion experienced by
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�
N + 1

πF0�
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FIGURE 30.15 Acceleration transmissibility
for the elastically connected, Coulomb-damped
isolation system illustrated at D in Table 30.1, for
the damper spring stiffness defined by N = 3.The
curves give the ratio of the acceleration ampli-
tude of the equipment to the acceleration ampli-
tude imposed at the foundation, as a function of
the frequency ratio ω/ω0 and the acceleration
Coulomb-damping parameter ξ.
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the equipment. The acceleration transmissibility approaches the constant value
(4/π)ξ, independent of frequency. The corresponding transmissibility for an isolator
with an elastically connected Coulomb damper is (N + 1)/(ω/ω0)2. Thus, the trans-
missibility varies inversely as the square of the excitation frequency and reaches a
relatively low value at large values of excitation frequency.

MULTIPLE DEGREE-OF-FREEDOM SYSTEMS

The single degree-of-freedom systems discussed previously are adequate for illus-
trating the fundamental principles of vibration isolation but are an oversimplification
insofar as many practical applications are concerned.The condition of unidirectional
motion of an elastically mounted mass is not consistent with the requirements in
many applications. In general, it is necessary to consider freedom of movement in all
directions, as dictated by existing forces and motions and by the elastic constraints.
Thus, in the general isolation problem, the equipment is considered as a rigid body
supported by resilient supporting elements or isolators. This system is arranged so
that the isolators effect the desired reduction in vibration.Various types of symmetry
are encountered, depending upon the equipment and arrangement of isolators.

NATURAL FREQUENCIES—ONE PLANE OF SYMMETRY

A rigid body supported by resilient supports with one vertical plane of symmetry has
three coupled natural modes of vibration and a natural frequency in each of these
modes.A typical system of this type is illustrated in Fig. 30.16; it is assumed to be sym-
metrical with respect to a plane parallel with the plane of the paper and extending

through the center-of-gravity of the sup-
ported body. Motion of the supported
body in horizontal and vertical transla-
tional modes and in the rotational mode,
all in the plane of the paper, are coupled.
The equations of motion of a rigid body
on resilient supports with six degrees-of-
freedom are given by Eq. (3.31). By
introducing certain types of symmetry
and setting the excitation equal to zero, a
cubic equation defining the free vibra-
tion of the system shown in Fig. 30.16 is
derived, as given by Eqs. (3.36). This
equation may be solved graphically for
the natural frequencies of the system by
use of Fig. 3.14.

SYSTEM WITH TWO PLANES 

OF SYMMETRY

A common arrangement of isolators is
illustrated in Fig. 30.17; it consists of an
equipment supported by four isolators
located adjacent to the four lower cor-

30.18 CHAPTER THIRTY

FIGURE 30.16 Schematic diagram of a rigid
equipment supported by an arbitrary arrange-
ment of vibration isolators, symmetrical with
respect to a plane through the center-of-gravity
parallel with the paper.
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ners. It is symmetrical with respect to two coordinate vertical planes through the cen-
ter-of-gravity of the equipment, one of the planes being parallel with the plane of the
paper. Because of this symmetry, vibration in the vertical translational mode is decou-
pled from vibration in the horizontal and rotational modes. The natural frequency in
the vertical translational mode is ωz = �	Σkz/m, where Σkz is the sum of the vertical
stiffnesses of the isolators.

Consider excitation by a periodic
force F = Fx sin ωt applied in the direc-
tion of the X axis at a distance � above
the center-of-gravity and in one of the
planes of symmetry. The differential
equations of motion for the equipment
in the coupled horizontal translational
and rotational modes are obtained by
substituting in Eq. (3.31) the conditions
of symmetry defined by Eqs. (3.33),
(3.34), (3.35), and (3.38). The resulting
equations of motion are

mẍ = −4kxx + 4kxaβ + Fx sin ωt (30.24)

Iyβ̈ = 4kxax − 4kxa2β − 4kyb2β − Fx� sin ωt

Making the common assumption that
transients may be neglected in systems
undergoing forced vibration, the transla-
tional and rotational displacements of
the supported body are assumed to be
harmonic at the excitation frequency.
The differential equations of motion
then are solved simultaneously to give

the following expressions for the displacement amplitudes x0 in horizontal transla-
tion and β0 in rotation:

x0 = � � β0 = � � (30.25)

where A1 = � � (ηaz
2 + ax

2 − η�az) − � �
2

A2 = � �
2

+ (az − �) (30.26)

D = � �
4

− �η + η + �� �
2

+ η� �
2

In the above equations, η = kx/kz is the dimensionless ratio of horizontal stiffness to
vertical stiffness of the isolators, ρy = �Iy�/m� is the radius of gyration of the supported
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FIGURE 30.17 Schematic diagram in elevation
of a rigid equipment supported upon four vibra-
tion isolators.The plane of the paper extends ver-
tically through the center-of-gravity; the system is
symmetrical with respect to this plane and with
respect to a vertical plane through the center-of-
gravity perpendicular to the paper. The moment
of inertia of the equipment with respect to an axis
through the center-of-gravity and normal to the
paper is Iy. Excitation of the system is alterna-
tively a vibratory force Fx sin ωt applied to the
equipment or a vibratory displacement u = u0 sin
ωt of the foundation.
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body about an axis through its center-of-gravity and perpendicular to the paper,
ωz = �	Σkz/m is the undamped natural frequency in vertical translation, ω is the forc-
ing frequency, az is the vertical distance from the effective height of spring (mid-
height if symmetrical top to bottom)* to center-of-gravity of body m, and the other
parameters are as indicated in Fig. 30.17.

Forced vibration of the system shown in Fig. 30.17 also may be excited by peri-
odic motion of the support in the horizontal direction, as defined by u = u0 sin ωt. The
differential equations of motion for the supported body are

mẍ = 4kx(u − x − azβ)

Iyβ̈ = −4azkx(u − x − azβ) − 4kzax
2β

(30.27)

Neglecting transients, the motion of the mounted body in horizontal translation and
in rotation is assumed to be harmonic at the forcing frequency. Equations (30.27)
may be solved simultaneously to obtain the following expressions for the displace-
ment amplitudes x0 in horizontal translation and β0 in rotation:

x0 = β0 = (30.28)

where the parameters B1 and B2 are

B1 = η� − � B2 = � �
2

(30.29)

and D is given by Eq. (30.26).

Natural Frequencies—Two Planes of Symmetry. In forced vibration, the
amplitude becomes a maximum when the forcing frequency is approximately equal
to a natural frequency. In an undamped system, the amplitude becomes infinite at
resonance. Thus, the natural frequency or frequencies of an undamped system may
be determined by writing the expression for the displacement amplitude of the sys-
tem in forced vibration and finding the excitation frequency at which this amplitude
becomes infinite. The denominators of Eqs. (30.25) and (30.28) include the parame-
ter D defined by Eq. (30.26). The natural frequencies of the system in coupled rota-
tional and horizontal translational modes may be determined by equating D to zero
and solving for the forcing frequencies:4

× = �η� �
2

�1 + � + 1 ± ��η	�		�
2	�	1	 +			�	+	 1	�

2	 −	 4	η	�		�
2	

(30.30)

where ωxβ designates a natural frequency in a coupled rotational (β) and horizontal
translational (x) mode, and ωz designates the natural frequency in the decoupled
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* The distance az is taken to the mid-height of the spring to include in the equations of motion the moment
applied to the body m by the fixed-end spring. If the spring is hinged to body m, the appropriate value for az

is the distance from the X axis to the hinge axis.
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vertical translational mode. The other parameters are defined in connection with
Eq. (30.26). Two numerically different values of the dimensionless frequency ratio
ωxβ /ωz are obtained from Eq. (30.30), corresponding to the two discrete coupled
modes of vibration. Curves computed from Eq. (30.30) are given in Fig. 30.18.

The ratio of a natural frequency in a
coupled mode to the natural frequency
in the vertical translational mode is a
function of three dimensionless ratios,
two of the ratios relating the radius of
gyration ρy to the dimensions az and ax

while the third is the ratio η of horizontal
to vertical stiffnesses of the isolators. In
applying the curves of Fig. 30.18, the
applicable value of the abscissa ratio is
first determined directly from the con-
stants of the system. Two appropriate
numerical values then are taken from
the ordinate scale, as determined by the
two curves for applicable values of az/ρy;
the ratios of natural frequencies in cou-
pled and vertical translational modes are
determined by dividing these values by
the dimensionless ratio ρy /ax.The natural
frequencies in coupled modes then are
determined by multiplying the resulting
ratios by the natural frequency in the
decoupled vertical translational mode.

The two straight lines in Fig. 30.18 for
az/ρy = 0 represent natural frequencies in
decoupled modes of vibration. When 
az = 0, the elastic supports lie in a plane
passing through the center-of-gravity of
the equipment. The horizontal line at a
value of unity on the ordinate scale rep-
resents the natural frequency in a rota-
tional mode. The inclined straight line
for the value az/ρy = 0 represents the nat-
ural frequency of the system in horizon-
tal translation.

Calculation of the coupled natural
frequencies of a rigid body on resilient

supports from Eq. (30.30) is sufficiently laborious to encourage the use of graphical
means. For general purposes, both coupled natural frequencies can be obtained from
Fig. 30.18. For a given type of isolators, η = kx/kz is a constant and Eq. (30.30) may be
evaluated in a manner that makes it possible to select isolator positions to attain
optimum natural frequencies.5 This is discussed under Space-Plots in Chap. 3. The
convenience of the approach is partially offset by the need for a separate plot for
each value of the stiffness ratio kx/kz. Applicable curves are plotted for several val-
ues of kx/kz in Figs. 3.17 to 3.19.

The preceding analysis of the dynamics of a rigid body on resilient supports
includes the assumption that the principal axes of inertia of the rigid body are,
respectively, parallel with the principal elastic axes of the resilient supports. This
makes it possible to neglect the products of inertia of the rigid body. The coupling

THEORY OF VIBRATION ISOLATION 30.21

FIGURE 30.18 Curves of natural frequencies
ωxβ in coupled modes with reference to the nat-
ural frequency in the decoupled vertical trans-
lational mode ωz, for the system shown
schematically in Fig. 30.17. The isolator stiff-
nesses in the X and Z directions are indicated by
kx and kz, respectively, and the radius of gyration
with respect to the Y axis through the center-of-
gravity is indicated by ρy.
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introduced by the product of inertia is not strong unless the angle between the
above-mentioned inertia and elastic axes is substantial. It is convenient to take the
coordinate axes through the center-of-gravity of the supported body, parallel with
the principal elastic axes of the isolators. If the moments of inertia with respect to
these coordinate axes are used in Eqs. (30.24) to (30.30), the calculated natural fre-
quencies usually are correct within a few percent without including the effect of
product of inertia. When it is desired to calculate the natural frequencies accurately
or when the product of inertia coupling is strong, a calculation procedure is available
that may be used for certain conventional arrangements using four isolators.6

The procedure for determining the natural frequencies in coupled modes sum-
marized by the curves of Fig. 30.18 represents a rigorous analysis where the assumed
symmetry exists. The procedure is somewhat indirect because the dimensionless
ratio ρy /ax appears in both ordinate and abscissa parameters and because it is neces-
sary to determine the radius of gyration of the equipment. The relations may be
approximated in a more readily usable form if (1) the mounted equipment can be
considered a cuboid having uniform mass distribution, (2) the four isolators are
attached precisely at the four lower corners of the cuboid, and (3) the height of the
isolators may be considered negligible. The ratio of the natural frequencies in the
coupled rotational and horizontal translational modes to the natural frequency in
the vertical translational mode then becomes a function of only the dimensions of
the cuboid and the stiffnesses of the isolators in the several coordinate directions.
Making these assumptions and substituting in Eq. (30.30),

30.22 CHAPTER THIRTY

FIGURE 30.19 Curves indicating the natural frequencies ωxβ in cou-
pled rotational and horizontal translational modes with reference to
the natural frequency ωz in the decoupled vertical translational mode,
for the system shown in Fig. 30.17. The ratio of horizontal to vertical
stiffness of the isolators is η, and the height-to-width ratio for the
equipment is λ. These curves are based upon the assumption that the
mass of the equipment is uniformly distributed and that the isolators
are attached precisely at the extreme lower corners thereof.
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= � ± ��			�
2	 −			 (30.31)

where η = kx/kz designates the ratio of horizontal to vertical stiffness of the isola-
tors and λ = 2az/2ax indicates the ratio of height to width of mounted equipment.
This relation is shown graphically in Fig. 30.19. The curves included in this figure
are useful for calculating approximate values of natural frequencies and for indi-
cating trends in natural frequencies resulting from changes in various parameters
as follows:

1. Both of the coupled natural frequencies tend to become a minimum, for any
ratio of height to width of the mounted equipment, when the ratio of horizontal to
vertical stiffness kx/kz of the isolators is low. Conversely, when the ratio of horizon-
tal to vertical stiffness is high, both coupled natural frequencies also tend to be
high. Thus, when the isolators are located underneath the mounted body, a condi-
tion of low natural frequencies is obtained using isolators whose stiffness in a hori-
zontal direction is less than the stiffness in a vertical direction. However, low
horizontal stiffness may be undesirable in applications requiring maximum stabil-
ity. A compromise between natural frequency and stability then may lead to opti-
mum conditions.

2. As the ratio of height to width of the mounted equipment increases, the lower
of the coupled natural frequencies decreases. The trend of the higher of the coupled
natural frequencies depends on the stiffness ratio of the isolators. One of the cou-
pled natural frequencies tends to become very high when the horizontal stiffness of
the isolators is greater than the vertical stiffness and when the height of the mounted
equipment is approximately equal to or greater than the width. When the ratio of
height to width of mounted equipment is greater than 0.5, the spread between the
coupled natural frequencies increases as the ratio kx/kz of horizontal to vertical stiff-
ness of the isolators increases.

Natural Frequency—Uncoupled Rotational Mode. Figure 30.20 is a plan view
of the body shown in elevation in Fig. 30.17. The distances from the isolators to the
principal planes of inertia are designated by ax and ay. The horizontal stiffnesses of
the isolators in the directions of the coordinate axes X and Y are indicated by kx and

ky, respectively. When the excitation is
the applied couple M = M0 sin ωt, the
differential equation of motion is

Izγ̈ = −4γax
2ky − 4γay

2kx + M0 sin ωt

(30.32)

where Iz is the moment of inertia of the
body with respect to the Z axis. Neglect-
ing transient terms, the solution of Eq.
(30.32) gives the displacement ampli-
tude γ0 in rotation:

γ0 = (30.33)
M0

���
4(ax

2ky + ay
2kx) − Izω2

12η
�
λ2 + 1

4ηλ2 + η + 3
��

λ2 + 1
4ηλ2 + η + 3
��

λ2 + 1
1

�
�2�
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�
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FIGURE 30.20 Plan view of the equipment
shown schematically in Fig. 30.17, indicating the
uncoupled rotational mode specified by the
rotation angle γ.
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where the natural frequency ωγ in rotation about the Z axis is the value of ω that
makes the denominator of Eq. (30.33) equal to zero:

ωγ = 2 �	 (30.34)

VIBRATION ISOLATION IN COUPLED MODES

When the equipment and isolator system has several degrees-of-freedom and the
isolators are located in such a manner that several natural modes of vibration are
coupled, it becomes necessary in evaluating the isolators to consider the contribu-
tion of the several modes in determining the motion transmitted from the support to
the mounted equipment or the force transmitted from the equipment to the founda-
tion. Methods for determining the transmissibility under these conditions are best
illustrated by examples.

For example, consider the system shown schematically in Fig. 30.21 wherein a
machine is supported by relatively long beams which are in turn supported at their
opposite ends by vibration isolators. The isolators are assumed to be undamped,
and the excitation is considered to be a force applied at a distance � = 4 in. above
the center-of-gravity of the machine-and-beam assembly. Alternatively, the force is
(1) Fx = F0 cos ωt, Fz = F0 sin ωt in a plane normal to the Y axis or (2) Fy = F0 cos ωt,
Fz = F0 sin ωt in a plane normal to the X axis. This may represent an unbalanced
weight rotating in a vertical plane. A force transmissibility at each of the four isola-
tors is determined by calculating the deflection of each isolator, multiplying the

ax
2ky + ay

2kx
��

Iz
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FIGURE 30.21 Schematic diagram of an equipment mounted upon relatively long beams
which are in turn attached at their opposite ends to vibration isolators. Excitation for the sys-
tem is alternatively (1) the vibratory force Fx = F0 cos ωt, FZ = F0 sin ωt in the XZ plane or (2)
the vibratory force Fy = F0 cos ωt, FZ = F0 sin ωt in the YZ plane.
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deflection by the appropriate isolator stiffness to obtain transmitted force, and
dividing it by F0 /4.

When the system is viewed in a vertical plane perpendicular to the Y axis, the
transmissibility curves are as illustrated in Fig. 30.22.The solid line defines the trans-
missibility at each of isolators B and C in Fig. 30.21, and the dotted line defines the
transmissibility at each of isolators A and D. Similar transmissibility curves for a
plane perpendicular to the X axis are shown in Fig. 30.23 wherein the solid line indi-
cates the transmissibility at each of isolators C and D, and the dotted line indicates
the transmissibility at each of isolators A and B.

Note the comparison of the transmissibility curves of Figs. 30.22 and 30.23 with
the diagram of the system in Fig. 30.21. Figure 30.23 shows the three resonance con-
ditions which are characteristic of a coupled system of the type illustrated.The trans-
missibility remains equal to or greater than unity for all excitation frequencies lower
than the highest resonance frequency in a coupled mode. At greater excitation fre-
quencies, vibration isolation is attained, as indicated by values of force transmissibil-
ity smaller than unity.

The transmissibility curves in Fig. 30.22 show somewhat similar results. The long
horizontal beams tend to spread the resonance frequencies by a substantial fre-
quency increment and merge the resonance frequency in the vertical translational
mode with the resonance frequency in one of the coupled modes. A low transmissi-
bility is again attained at excitation frequencies greater than the highest resonance
frequency. Note that the transmissibility drops to a value slightly less than unity over
a small frequency interval between the predominant resonance frequencies.This is a
force reduction resulting from the relatively long beams, and it constitutes an
acceptable condition if the magnitude of the excitation force in this direction is rel-
atively small. Thus, the natural frequencies of the isolators could be somewhat
higher with a consequent gain in stability; it is necessary, however, that the excitation
frequency be substantially constant.

THEORY OF VIBRATION ISOLATION 30.25

FIGURE 30.22 Transmissibility curves for the system shown in Fig. 30.21
when the excitation is in a plane perpendicular to the Y axis. The solid line indi-
cates the transmissibility at each of isolators B and C, whereas the dotted line
indicates the transmissibility at each of isolators A and D.
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Consider the equipment illustrated in Fig. 30.24 when the excitation is horizontal
vibration of the support. The effectiveness of the isolators in reducing the excitation
vibration is evaluated by plotting the displacement amplitude of the horizontal
vibration at points A and B with reference to the displacement amplitude of the sup-
port. Transmissibility curves for the system of Fig. 30.24 are shown in Fig. 30.25. The
solid line in Fig. 30.25 refers to point A and the dotted line to point B. Note that
there is no significant reduction of amplitude except when the forcing frequency
exceeds the maximum resonance frequency of the system.

A general rule for the calculation of
necessary isolator characteristics to
achieve the results illustrated in Figs.
30.22, 30.23, and 30.25 is that the forcing
frequency should be not less than 1.5 to 2
times the maximum natural frequency in
any of six natural modes of vibration.
In exceptional cases, such as illustrated in
Fig. 30.22, the forcing frequency may be
interposed between resonance frequen-
cies if the forcing frequency is a constant.

Example 30.1. Consider the ma-
chine illustrated in Fig. 30.21. The force
that is to be isolated is harmonic at the
constant frequency of 8 Hz; it is assumed
to result from the rotation of an unbal-
anced member whose plane of rotation
is alternatively (1) a plane perpendicu-
lar to the Y axis and (2) a plane per-
pendicular to the X axis. The distance
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FIGURE 30.23 Transmissibility curves for the system illustrated in Fig. 30.21
when the excitation is in a plane perpendicular to the X axis.The solid line indi-
cates the transmissibility at each of isolators C and D, whereas the dotted line
indicates the transmissibility at each of isolators A and B.

FIGURE 30.24 Schematic diagram of an
equipment supported by vibration isolators.
Excitation is a vibratory displacement u = u0 sin
ωt of the foundation.
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between isolators is 60 in. in the direction of the X axis and 24 in. in the direction of
the Y axis. The center of coordinates is taken at the center-of-gravity of the sup-
ported body, i.e., at the center-of-gravity of the machine-and-beams assembly. The
total weight of the machine and supporting beam assembly is 100 lb, and its radii of
gyration with respect to the three coordinate axes through the center-of-gravity are
ρx = 9 in., ρz = 8.5 in., and ρy = 6 in. The isolators are of equal stiffnesses in the direc-
tions of the three coordinate axes:

η = = = 1

The following dimensionless ratios are established as the initial step in the solution:

az/ρy = −1.333 az/ρx = −0.889

ax/ρy = ±5.0 ay /ρx = ±1.333

(az/ρy)2 = 1.78 (az/ρx)2 = 0.790

(ax/ρy)2 = 25.0 (ay/ρx)2 = 1.78

η(ρy /ax)2 = 0.04 η(ρx/ay)2 = 0.561

The various natural frequencies are determined in terms of the vertical natural fre-
quency ωz. Referring to Fig. 30.18, the coupled natural frequencies for vibration in a
plane perpendicular to the Y axis are determined as follows:

ky
�
kz

kx
�
kz
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FIGURE 30.25 Displacement transmissibility curves for the system
of Fig. 30.24. Transmissibility between the foundation and point A is
shown by the solid line; transmissibility between the foundation and
point B is shown by the dotted line.
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First calculate the parameter

�	 = 0.2

For az/ρy = −1.333, (ωxβ/ωz)(ρy /ax) = 0.19; 1.03. Note the signs of the dimensionless
ratios az/ρy and ax/ρy. According to Eq. (30.30), the natural frequencies are inde-
pendent of the sign of az/ρy. With regard to the ratio ax/ρy, the sign chosen should be
the same as the sign of the radical on the right side of Eq. (30.30). The frequency
ratio (ωxβ/ωz) then becomes positive. Dividing the above values for (ωxβ/ωz)(ρy /ax) by 
ρy /ax = 0.2, ωxβ /ωz = 0.96; 5.15.

Vibration in a plane perpendicular to the X axis is treated in a similar manner. It
is assumed that exciting forces are not applied concurrently in planes perpendicular
to the X and Y axes; thus, vibration in these two planes is independent. Conse-
quently, the example entails two independent but similar problems and similar equa-
tions apply for a plane perpendicular to the X axis:

�	 = 0.75

For az/ρx = 0.889, (ωyα /ωz)(ρx/ay) = 0.57; 1.29. Dividing by ρx/ay = 0.75, ωyα /ωz = 0.76; 1.72.
The natural frequency in rotation with respect to the Z axis is calculated from Eq.

(30.34) as follows, taking into consideration that there are two pairs of springs and
that kx = ky = kz:

ωγ = �� �� � = 3.8ωz

The six natural frequencies are as follows:

1. Translational along Z axis: ωz

2. Coupled in plane perpendicular to Y axis: 0.96ωz

3. Coupled in plane perpendicular to Y axis: 5.15ωz

4. Coupled in plane perpendicular to X axis: 0.76ωz

5. Coupled in plane perpendicular to X axis: 1.72ωz

6. Rotational with respect to Y axis: 3.8ωz

Considering vibration in a plane perpendicular to the Y axis, the two highest nat-
ural frequencies are the natural frequency ωy in the translational mode along the Z
axis and the natural frequency 5.15ωz in a coupled mode. In a similar manner, the
two highest natural frequencies in a plane perpendicular to the X axis are the natu-
ral frequency ωz in translation along the Z axis and the natural frequency 1.72ωz in a
coupled mode. The natural frequency in rotation about the Z axis is 3.80ωz. The
widest frequency increment which is void of natural frequencies is between 1.72ωz

and 3.80ωz. This increment is used for the forcing frequency which is taken as 2.5ωz.
Inasmuch as the forcing frequency is established at 8 Hz, the vertical natural fre-
quency is 8 divided by 2.5, or 3.2 Hz.The required vertical stiffnesses of the isolators
are calculated from Eq. (30.11) to be 105 lb/in. for the entire machine, or 26.2 lb/in.
for each of the four isolators.

4kzg
�

W
ax

2 + ay
2

�
ρz

2

kz
�
ky

ρx
�
ay

kx
�
kz

ρy
�
ax
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INCLINED ISOLATORS

Advantages in vibration isolation sometimes result from inclining the principal elas-
tic axes of the isolators with respect to the principal inertia axes of the equipment, as
illustrated in Fig. 30.26. The coordinate axes X and Z are, respectively, parallel with
the principal inertia axes of the mounted body, but the center of coordinates is taken

at the elastic axis. The location of the
elastic axis is determined by the elastic
properties of the system. If a force is
applied to the body along a line extend-
ing through the elastic axis, the body is
displaced in translation without rota-
tion; if a couple is applied to the body,
the body is displaced in rotation without
translation.

The principal elastic axes r, p of the
isolators are parallel with the paper and
inclined with respect to the coordinate
axes, as indicated in Fig. 30.26. The stiff-
ness of each isolator in the direction of
the respective principal axis is indicated
by kr, kp. The principal elastic axis of an
isolator is the axis along which a force
must be applied to cause a deflection

colinear with the applied force (see the section Properties of a Biaxial Stiffness 
Isolator).

Assume the excitation for the system shown in Fig. 30.26 to be a couple M0 sin ωt
acting about an axis normal to the paper. The equations of motion for the body in
the horizontal translational and rotational modes may be written by noting that the
displacement of the center-of-gravity in the direction of the X axis is x − �β; thus,
the corresponding acceleration is ẍ − �β̈. A translational displacement x produces
only an external force −kxx, whereas a rotational displacement β produces only an
external couple −kββ. The equations of motion are

m(ẍ − �β̈) = −kxx

mρe
2β̈ − m�ẍ = −kββ + M0 sin ωt

(30.35)

where ρe is the radius of gyration of the mounted body with respect to the elastic
axis. The radius of gyration ρe is related to the radius of gyration ρy with respect to a
line through the center-of-gravity by ρe = �ρ�y

2� +� ��2�, where � is the distance between
the elastic axis and a parallel line passing through the center-of-gravity. In the equa-
tions of motion, kx and kβ represent the translational and rotational stiffness of the
isolators in the x and β coordinate directions, respectively.

By assuming steady-state harmonic motion for the horizontal translation x and
rotation β, the following displacement amplitudes are obtained by solving Eqs.
(30.35):

x0 = −M0�ω2

����
m[ρe

2(ω2 − ωβ
2)(ω2 − ωx

2) − �2ω4]
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FIGURE 30.26 Schematic diagram of an
equipment supported by isolators whose princi-
pal elastic axes are inclined to the principal iner-
tia axes of the equipment.
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β0 = −M0 (30.36)
m�ρe

2(ω2 − ωβ
2) − �

where ωx = �k�x/�m� and ωβ = �k�β/�m�ρ�e
2� are hypothetical natural frequencies defined

for convenience. The natural frequencies ωxβ in the coupled x,β modes are deter-
mined by equating the denominator of Eqs. (30.36) to zero and solving for ω (now
identical to ωxβ):

= � (30.37)

where λ1 is a dimensionless ratio given by

λ1 = (30.38)

The hypothetical natural frequency ωx is

ωx = � �cos2 φ + sin2 φ� (30.39)

The relation given by Eq. (30.37) is shown graphically by Fig. 30.27. The parame-
ters needed to evaluate the natural fre-
quencies by using this graph are
calculated from the physical properties
of the system and the relations of Eqs.
(30.38) and (30.39). In addition, the dis-
tance � between a parallel line passing
through the center-of-gravity and the
elastic axis must be known. The distance
� is determined by effecting a small hori-
zontal displacement of the equipment in
the X direction and equating the result-
ing summation of elastic couples to zero:

� = az − (30.40)

where az is the distance between the par-
allel planes passing through the center-
of-gravity of the body and the mid-height
of the isolators, as shown in Fig. 30.26.

DECOUPLING OF MODES

The natural modes of vibration of a
body supported by isolators may be

ax(1 − kp/kr) cot φ
��
(kp/kr) cot2 φ + 1

kr
�
kp

4kp
�
m

(ax/ρe) �	kr/kp
���
cos2 φ + (kr /kp) sin2 φ

1 + λ1
2 ± �(1� +� λ�1

2�)2� −� 4�λ�1
2�[1� −� (��/�ρ�e)�2]�

�����
2[1 − (�/ρe)2]

ωxβ
�
ωx

�2ω4

�
ω2 − ωx

2
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FIGURE 30.27 Curves indicating the natural
frequencies ωxβ in coupled modes with reference
to the natural frequency in the decoupled (ficti-
tious) horizontal translational mode ωx for the
system shown schematically in Fig. 30.26. The
radius of gyration with respect to the elastic axis
is indicated by ρe, and the distance between the
center-of-gravity and the elastic center is �. The
dimensionless parameter λ1 is defined by Eq.
(30.38) and ωx is defined by Eq. (30.39).
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decoupled one from another by proper orientation of the isolators. Each mode of
vibration then exists independently of the others, and vibration in one mode does
not excite vibration in other modes.The necessary conditions for decoupling may be
stated as follows:The resultant of the forces applied to the mounted body by the iso-
lators when the mounted body is displaced in translation must be a force directed
through the center-of-gravity; or, the resultant of the couples applied to the mounted
body by the isolators when the mounted body is displaced in rotation must be a cou-
ple about an axis through the center-of-gravity.

In general, the natural frequencies of a multiple degree-of-freedom system can
be made equal only by decoupling the natural modes of vibration, i.e., by making 
az = 0 in Fig. 30.17. The natural frequencies in decoupled modes are indicated by the
two straight lines in Fig. 30.18 marked az/ρy = 0. The natural frequencies in transla-
tion along the X axis and in rotation about the Y axis become equal at the intersec-
tion of these lines; i.e., when az/ρy = 0, kx/kz = 1 and ρy /ax = 1.The physical significance
of these mathematical conditions is that the isolators be located in a plane passing
through the center-of-gravity of the equipment, that the distance between isolators
be twice the radius of gyration of the equipment, and that the stiffness of each isola-
tor in the directions of the X and Z axes be equal.

When the isolators cannot be located in a plane which passes through the center-
of-gravity of the equipment, decoupling can be achieved by inclining the isolators, as
illustrated in Fig. 30.26. If the elastic axis of the system is made to pass through the
center-of-gravity, the translational and rotational modes are decoupled because the
inertia force of the mounted body is applied through the elastic center and intro-
duces no tendency for the body to rotate. The requirements for a decoupled system
are established by setting � = 0 in Eq. (30.40) and solving for kr /kp:

= (30.41)

The conditions for decoupling defined by Eq. (30.41) are shown graphically in Figs.
30.28 and 3.23. The decoupled natural frequencies are indicated by the straight lines
�/ρe = 0 in Fig. 30.27.The horizontal line refers to the decoupled natural frequency ωx

in translation in the direction of the X axis, while the inclined line refers to the
decoupled natural frequency ωβ in rotation about the Y axis.

PROPERTIES OF A BIAXIAL STIFFNESS ISOLATOR

A biaxial stiffness isolator is represented as an elastic element having a single plane
of symmetry; all forces act in this plane and the resultant deflections are limited by
symmetry or constraints to this plane.The characteristic elastic properties of the iso-
lator may be defined alternatively by sets of influence coefficients as follows:

1. If the two coordinate axes in the plane of symmetry are selected arbitrarily, three
stiffness parameters are required to define the properties of the isolator. These
are the axial influence coefficients* along the two coordinate axes, and a charac-
teristic coupling influence coefficient* between the coordinate axes.

(ax/az) + cot φ
��
(ax/az) − tan φ

kr
�
kp

THEORY OF VIBRATION ISOLATION 30.31

* The influence coefficient κ is a function only of the isolator properties and not of the constraints
imposed by the system in which the isolator is used. Both positive and negative values of the influence coef-
ficient κ are permissible.
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2. If the two coordinate axes in the plane of symmetry are selected to coincide with
the principal elastic axes of the isolator, two influence coefficients are required to
define the properties of the isolator. These are the principal influence coeffi-
cients. If the isolator is used in a system, a third parameter is required to define
the orientation of the principal axes of the isolator with the coordinate axes of
the system.

PROPERTIES OF ISOLATOR WITH RESPECT 

TO ARBITRARILY SELECTED AXES

A schematic representation of a linear biaxial stiffness element is shown in Fig. 30.29
where the X and Y axes are arbitrarily
chosen to define a plane to which all
forces and motions are restricted. In gen-
eral, the deflection of an isolator result-
ing from an applied load is not in the
same direction as the load, and a coupling
influence coefficient is required to define
the properties of the isolator in addition
to the influence coefficients along the X
and Y axes. The three characteristic stiff-
ness coefficients that uniquely describe
the load-deflection properties of a biaxial
stiffness element are:

1. The influence coefficient of the ele-
ment in the X coordinate direction is
κx. It is the ratio of the component of

30.32 CHAPTER THIRTY

FIGURE 30.28 Ratio of stiffnesses kr/kp along principal elastic axes
required for decoupling the natural modes of vibration of the system illus-
trated in Fig. 30.26.

FIGURE 30.29 Schematic diagram of a linear
biaxial stiffness element.
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the applied force in the X direction to the resulting deflection when the isolator
is constrained to deflect in the X direction.

2. The influence coefficient of the element in the Y coordinate direction is κy. It is
the ratio of the component of the applied force in the Y direction to the resulting
deflection when the isolator is constrained to deflect in the Y direction.

3. The coupling influence coefficient is κxy. It represents the force required in the X
direction to produce a unit displacement in the Y direction when the isolator is
constrained to deflect only in the Y direction. (By Maxwell’s reciprocity princi-
ple, the same force is required in the Y direction to produce a unit displacement
in the X direction; i.e., κxy = κyx.)

Consider the isolator shown in Fig. 30.29 where the applied force F has compo-
nents Fx and Fy; the resulting displacement has components δx and δy. From the
above definitions of influence coefficients, the forces in the X and Y coordinate
directions required to effect a displacement δx are

Fxx = κxδx Fyx = κyxδx (30.42)

The forces required to effect a displacement δy in the Y direction are

Fxy = κxyδy Fyy = κyδy (30.43)

The force components Fx and Fy required to produce the deflection having compo-
nents δx, δy are the sums from Eqs. (30.42) and (30.43):

Fx = κxδx + κxyδy

(30.44)
Fy = κyxδx + κyδy

If the three influence stiffness coefficients κx, κy, and κxy = κyx are known for a given
stiffness element, the load-deflection properties are given by Eq. (30.44).

The deflections of the isolator in response to forces Fx, Fy are determined by solv-
ing Eqs. (30.44) simultaneously:

δx =

δy =

(30.45)

These expressions give the orthogonal components of the displacement δ for any
load having the components Fx and Fy applied to a biaxial stiffness isolator. By sub-
stituting the relations of Eqs. (30.45) into Eq. (30.44), the following alternate forms
of the force-deflection equations are obtained:

Fx = �κx − � δx + Fy

Fy = �κy − � δy + Fx

(30.46)

κxy
�
κx

κxy
2

�
κx

κxy
�
κy

κxy
2

�
κy

Fyκx − Fxκxy
��
κxκy − κxy

2

Fxκy − Fyκxy
��
κxκy − κxy

2
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The specific force-deflection equations for a given situation are obtained from these
general load-deflection expressions by applying the proper constraint conditions.

Unconstrained Motion. The general force-deflection equations can be used to
obtain the effective stiffness coefficients when the forces Fx and Fy shown in Fig.
30.29 are applied independently. The resulting deflection of the isolator is uncon-
strained motion, i.e., the isolator is free to deflect out of the line of force application.
The force divided by that component of deflection along the line of action of the
force is the effective stiffness k. When Fy = 0, the effective stiffness kx resulting from
the applied force Fx is obtained from Eq. (30.46):

kx = = �κx − � (30.47)

When Fx = 0, the effective stiffness ky in response to the applied force Fy is

ky = = �κy − � (30.48)

For unconstrained motion, kx/ky = κx/κy; i.e., the ratio of the effective stiffnesses in
two mutually perpendicular directions is equal to the ratio of the corresponding
influence coefficients for the same directions.

Constrained Motion. When the isolator is constrained either by the symmetry of
a system or by structural constraints to deflect only along the line of the applied
force, the effective stiffness is obtained directly by letting appropriate deflections be
zero in Eq. (30.44):

kx = = κx ky = = κy (30.49)

The force required to maintain constrained motion is found by letting appropriate
deflections be zero in Eqs. (30.46). For example, the force that must be applied in the
X direction to ensure that the isolator deflects in the Y direction in response to a
force Fy is

Fx = Fy (30.50)

INFLUENCE COEFFICIENT TRANSFORMATION

Assume the influence coefficients κx, κy, and κxy are known in the X, Y coordinate
system. It may be convenient to work with isolator influence coefficients in the X′,
Y′ coordinate system as shown in Fig. 30.30.The X′, Y′ coordinate system is obtained
by rotating the coordinate axes counterclockwise through an angle θ from the X, Y
system. The influence coefficients with respect to the X′, Y′ axes are related to the
influence coefficients with respect to the X, Y axes as follows:

κx′ = + cos 2θ + κxy sin 2θ
κx − κy
�

2
κx + κy
�

2

κxy
�
κy

Fy
�
δy

Fx
�
δx

κxy
2

�
κx

Fy
�
δy

κxy
2

�
κy

Fx
�
δx
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κx′y′ = sin 2θ + κxy cos 2θ (30.51)

κy′ = − cos 2θ − κxy sin 2θ

The influence coefficient transformation of a biaxial stiffness isolator from one set of
arbitrarily chosen coordinate axes to another arbitrarily chosen set of coordinate axes
is described by the two-dimensional Mohr circle.7 Since the influence coefficient is a
tensor quantity, the following invariants of the influence coefficient tensor give addi-
tional relations between the influence coefficients in the X,Y and the X′, Y′ set of axes:

κx + κy = κx′ + κy′

κxκy − κxy
2 = κx′κy′ − κx′y′

2
(30.52)

PRINCIPAL INFLUENCE COEFFICIENTS

The set of axes for which there exists no coupling influence coefficient are the prin-
cipal axes of stiffness (principal elastic axes). These axes can be found by requiring
κx′y′ to be zero in Eq. (30.51) and solving for the rotation angle corresponding to this
condition. Letting θ′ represent the angle of rotation for which κx′y′ = 0:

tan 2θ′ = (30.53)

By substituting this value of the angle of rotation into the general influence coeffi-
cient expressions, Eqs. (30.51), the following relation is obtained for the principal
influence coefficients:

κp, κq = ± �� �
2

+ κxy
2 (30.54)

where p and q represent the principal axes of stiffness. The principal influence coef-
ficients are the maximum and minimum influence coefficients that exist for a linear

κx − κy
�

2
κx + κy
�

2

2κxy
�
κx − κy

κx − κy
�

2
κx + κy
�

2

κy − κx
�

2
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FIGURE 30.30 (A) Force and (B) displacement transformation dia-
grams for a linear biaxial stiffness element.
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biaxial stiffness isolator. In Eq. (30.54), the plus sign gives the maximum influence
coefficient whereas the minus sign gives the minimum influence coefficient. Either
κp or κq can be the maximum influence coefficient, depending on the degree of axis
rotation and the relative values of κx, κy, and κxy.

INFLUENCE COEFFICIENT TRANSFORMATION 

FROM THE PRINCIPAL AXES

The influence coefficient transformation from the principal axes p, q is of practical
interest. The influence coefficients in the XY frame of reference are determined
from Eq. (30.51) by setting κx′y′ = κpq = 0, κx′ = κp, κy′ = κq, and θ = θ′. The influence
coefficients in the XY frame-of-reference may be expressed in terms of the principal
influence coefficients as follows:

κx = κp cos2 θ′ + κq sin2 θ′ = + cos 2θ′

κxy = (κp − κq) sin θ′ cos θ′ = sin 2θ′ (30.55)

κy = κp sin2 θ′ + κq cos2 θ′ = − cos 2θ′

The transformation from the principal axes in the form of a two-dimensional Mohr’s
circle is shown by Fig. 30.31. This circle provides quick graphical determination of

κp − κq
�

2
κp + κq
�

2

κp − κq
�

2

κp − κq
�

2
κp + κq
�

2
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FIGURE 30.31 Mohr-circle representation of the stiffness transformation from
the principal axes of stiffness of a biaxial stiffness element. The p, q axes represent
the principal stiffness axes and the X,Y axes are any arbitrary set of axes separated
from the p, q axes by a rotation angle θ′.
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the three influence coefficients κx, κy, and κxy for any angle θ′ between the P and X
axes, where θ′ is positive in the sense shown in the inset to Fig. 30.31.

Example 30.2. Consider the system shown schematically by Fig. 30.26. The
transformation theory for the influence coefficient of a biaxial stiffness element may
be applied to develop the effective stiffness coefficients for this system. The center
of coordinates for the XZ axes is at the elastic center of the system. The principal
elastic axes of the isolators p, r are oriented at an angle φ with the coordinate axes X,
Z, respectively.* The position of the elastic center is determined by effecting a small
horizontal displacement δx of the body, letting δz be zero and equating the summa-
tion of couples resulting from the isolator forces. The forces Fx and Fz are deter-
mined from Eqs. (30.44):

Fx = κxδx = κxδx Fz = κzxδx = κzxδx

Each of the forces Fx acts at a distance −aze from the elastic center; the force Fz at the
right-hand isolator is positive and acts at a distance ax from the elastic center
whereas the force Fz at the left-hand isolator is negative and acts at a distance −ax

from the elastic center. Taking a summation of the moments:

−2azeFx + 2axFz = 0

Substituting the above relations between the forces Fx, Fz and the influence coeffi-
cients κz, κzz into Eqs. (30.55), and noting that θ′ = 90° −φ (compare Figs. 30.30 and
30.26), the following result is obtained in terms of principal stiffnesses:

= = =

Substituting � = az − aze in the preceding equation, the relation for � given by Eq.
(30.40) is obtained.

Since the equations of motion are written in a coordinate system passing through
the elastic center, all displacements in this frame-of-reference are constrained.
Therefore, the effective stiffness coefficients for a single isolator may be obtained
from Eq. (30.55) as follows [see Eq. (30.49)]:

kx = κx = kr sin2 φ + kp cos2 φ

kz = κz = kr cos2 φ + kp sin2 φ

These effective stiffness coefficients define the hypothetical natural frequency ωx

given by Eq. (30.39) as well as the uncoupled vertical natural frequency ωz. Since
four isolators are used in the problem represented by Fig. 30.26, the translational
stiffnesses given by the above expressions for kx and kz must be multiplied by 4 to
obtain the total translational stiffness.

The effective rotational stiffness of a single isolator kβ can be obtained by deter-
mining the sum of the restoring moments for a constrained rotation β. When the
body is rotated through an angle β, the displacements at the right isolator are 
δx = −azeβ and δz = axβ, where aze is a negative distance since it is measured in the neg-
ative Z direction.The sum of the restoring moments is (Fzax − Fxaze), where Fx and Fz

(kr − kp) sin φ cos φ
���
kr sin2 φ + kp cos2 φ

κzx
�
κx

Fz
�
Fx

aze
�
ax
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* The properties of a biaxial stiffness element may be defined with respect to any pair of coordinate axes.
In Fig. 30.26, the principal elastic axis q is parallel with the coordinate axis Y; then the analysis considers the
principal elastic axes p, r which lie in the plane defined by the XZ coordinate axes.
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are the forces acting on the right isolator in Fig. 30.26. The forces Fx and Fz may be
written in terms of the influence coefficients and the displacements δx and δz by use
of Eq. (30.44) to produce the following moment equation:

Mβ = kββ = β[kxaze
2 − 2kxzazeax + kzax

2]

where the effective rotational stiffness kβ of a single isolator is

kβ = kxa2 − 2kxzazeax + kzax
2

The distance aze can be eliminated from the expression for rotational stiffness by sub-
stituting aze = axFz/Fx obtained from the summation of couples about the elastic center:

kβ = ax
2� �

The numerator of this expression can be replaced by krkp [see Eq. (30.52)] where the
r, p axes are the principal elastic axes of the isolator and krp = 0. Also, kx can be
replaced by its equivalent form given by Eq. (30.55). Making these substitutions, the
effective rotational stiffness for one isolator in terms of the principal stiffness coef-
ficients of the isolator becomes

kβ =

Since four isolators are used in the problem represented by Fig. 30.26, the rotational
stiffness given by the above expression for kβ must be multiplied by 4 to obtain the
total rotational stiffness of the system.

NONLINEAR VIBRATION ISOLATORS

In vibration isolation, the vibration amplitudes generally are small and linear vibra-
tion theory usually is applicable with sufficient accuracy.* However, the static effects
of nonlinearity should be considered. Even though a nonlinear isolator may have
approximately constant stiffness for small incremental deflections, the nonlinearity
becomes important when large deflections of the isolator occur due to the effects of
equipment weight and sustained acceleration. A vibration isolator often exhibits a
stiffness that increases with applied force or deflection. Such a nonlinear stiffness is
characteristic, for example, of rubber in compression or a conical spring.

In Eq. (30.11) for natural frequency, the stiffness k for a linear stiffness element is
a constant. However, for a nonlinear isolator, the stiffness k is the slope of the force-
deflection curve and Eq. (30.11) may be written

ωn = 2πfn = �	 (30.56)

where W is the total weight supported by the isolator, g is the acceleration of grav-
ity, and dF/dδ is the slope of the line tangent to the force-deflection curve at the
static equilibrium position.Vibration is considered to be small variations in the posi-

g(dF/dδ)
��

W

ax
2kp

���
sin2 φ + (kp/kr) cos2 φ

kxkz − kxz
2

��
kx
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* If the vibration amplitude is large, nonlinear vibration theory as discussed in Chap. 4 is applicable.
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tion of the supported equipment above
and below the static equilibrium posi-
tion, as indicated in Fig. 30.32. Thus, the
natural frequency is determined solely
by the stiffness characteristics in the
region of the isolator deflection.

NATURAL FREQUENCY

In determining the natural frequency of
a nonlinear isolator, it is important to
note whether or not all the load results
from the dead weight of a massive body.
The force F on the isolator may be
greater than the weight W because of a
belt pull or sustained acceleration of a
missile. Then the load on the isolator is

F = ngW (30.57)

where ng is some multiple of the acceleration of gravity. For example, ng may indi-
cate the absolute value of the sustained acceleration of a missile measured in “num-
ber of g’s.”

Characteristic of Tangent Isolator. It is convenient to define the force-
deflection characteristics of a nonlinear isolator having increasing stiffness (harden-
ing characteristic) by a tangent function:8

F = tan� � (30.58)

where F is the total force applied to the isolator, k0 is the stiffness of the isolator at
zero deflection, δ is the deflection of the isolator, and hc is the characteristic height
of the isolator. The force-deflection characteristic defined by Eq. (30.58) is shown
graphically in Fig. 30.33A. The characteristic height hc represents a height or thick-
ness characteristic of the isolator which may be adjusted empirically to obtain opti-
mum agreement, over the deflection range of interest, between Eq. (30.58) and the
actual force-deflection curve for the isolator.

The stiffness of the tangent isolator is obtained by differentiation of Eq. (30.58)
with respect to δ:

k = = k0 sec2� � = k0�1 + � �
2

� (30.59)

The stiffness-deflection relation defined by Eq. (30.59) is shown graphically in Fig.
30.33B.

Replacing the load F by ngW in Eq. (30.59) and substituting the resulting stiffness
relation into Eq. (30.56):

fn �h�c� = 3.13 �2.46ng
2� � + � � (30.60)

k0hc
�
W

W
�
k0 hc

Fπ
�
2k0 hc

πδ
�
2hc

dF
�
dδ

πδ
�
2hc

2k0hc
�

π
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FIGURE 30.32 Typical force-deflection char-
acteristic of a tangent hardening isolator.
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The relation defined by Eq. (30.60) is shown graphically in Fig. 30.34.The ordinate is
the natural frequency fn (Hz) times the square root of the characteristic height of the
isolator (in.). The theoretical and experimental force-deflection curves for the isola-
tor are matched to establish the numerical value of the characteristic height. For a
given value of the acceleration parameter ng, the natural frequency of the isolation
system is determined by hc and W/k0hc.

The deflection of the isolator under a sustained acceleration loading is obtained
by substituting Eq. (30.57) into the general force-deflection expression, Eq. (30.58),
and solving for the dimensionless ratio δ/hc:
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FIGURE 30.33 Elastic properties of a tangent isolator in terms of its characteristic height hc and
stiffness k0 at zero deflection: (A) dimensionless force-deflection curve; (B) dimensionless stiffness-
deflection curve.

FIGURE 30.34 Natural frequency fn of a tangent isolator system when a portion of
the total load applied to the isolator is nonmassive.The weight carried by the isolator is
W and the sustained acceleration parameter is ng, a multiple of the gravitational accel-
eration. The characteristic height is hc and the stiffness at zero deflection is k0.
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= tan−1� ⋅ � = tan−1�15.37� �� (30.61)

A reference natural frequency fn0
is the natural frequency that occurs when the iso-

lator is not deflected by the dead-weight load; i.e., ng = 0. The nomograph of Fig.
30.35 gives the deflection ratio δ/hc and the frequency ratio fn/fn0

.9 The value of the
parameter 15.37(ng /hc fn0

2) is transferred by a horizontal projection to the coordi-
nate system for the curves.Values for the natural frequency ratio fn/fn0

are read from
the lower abscissa scale and values for the deflection ratio δ/hc are read from the
upper abscissa scale.

Example 30.3. A rubber isolator having a characteristic height hc = 0.5 in.
(determined experimentally for the particular isolator design) has a natural fre-
quency fn = 10 Hz for small deflections and a fraction of critical damping ζ = 0.2.The
equipment supported by the isolator is subjected to a sustained acceleration of 11g.
It is desired to determine the absolute transmissibility of the isolation system when
the forcing frequency is 100 Hz, and to determine the deflection of the isolator under
the sustained acceleration.

Referring to the nomograph of Fig. 30.35, a straight line is drawn from a value of
10 on the fn0

scale to 0.5 on the hc scale. A second straight line is drawn from the
intersection of the first line with the R scale through the value ng = 11. The second
line intersects the left side of the coordinate system and is extended horizontally so
that it intersects the solid and dotted curves.The intersection points indicate that the

ng
�
hc fn0

2

2
�
π

W
�
k0hc

πng
�

2
2
�
π

δ
�
hc
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FIGURE 30.35 Nomograph and curve for determining the natural frequency and deflection of an
isolation system incorporating a tangent isolator when a portion of the total load applied to the iso-
lator is nonmassive.
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natural frequency ratio fn/fn0
= 3.5 and the deflection ratio δ/hc = 0.81. The deflection

of the isolator at equilibrium as a result of the sustained acceleration is 0.81hc = 0.405
in. The undamped natural frequency for the sustained acceleration of 11g is fn = 3.5
× 10 = 35 Hz. The natural frequency also can be obtained from Fig. 30.34 by noting
that W/k0 hc = (g/hc)/(2πfn0

)2 = 0.196 [see Eq. (30.60) when ng = 0].Then for ng = 11, fn

= 24.5/�0�.5� = 35 Hz.
From Fig. 30.2 the transmissibility for ζ = 0.2, f/fn = 100/35 = 2.88 is 0.22. In the

absence of the sustained acceleration, the corresponding transmissibility would be
0.042 as obtained from Fig. 30.2 at f/fn = 100/10 = 10. Thus, the transmissibility at 100
Hz under a sustained acceleration of 11g is 5 times as great as that which would exist
for a dead-weight loading of the isolator.

Minimum Natural Frequency. The weight W0 for which a given tangent isola-
tor has a minimum natural frequency is

W0 = = [ fn = minimum] (30.62)

where the minimum natural frequency ( fn)min is defined by

(fn)min = �	 (30.63)

The minimum natural frequency is shown graphically in Fig. 30.36 as a function of
the characteristic height hc and the sustained acceleration parameter ng. The weight
W0 required to produce the minimum natural frequency ( fn)min is shown graphically
in Fig. 30.37 as a function of the initial stiffness k0 and the minimum natural fre-
quency ( fn)min. When the isolator is loaded to produce the minimum natural fre-
quency, the isolator deflection is one-half the characteristic height (δ = hc/2) and the
stiffness under load is twice the initial stiffness (k = 2k0).

ngg
�
πh

1
�
2

k0g
��
2π2( fn)min

2

2k0hc
�
πng
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FIGURE 30.36 Minimum natural frequency
fn(min) of a tangent isolator system as a function of
(1) the characteristic height hc of the isolator and
(2) the sustained acceleration ng expressed as a
multiple of the gravitational acceleration.

FIGURE 30.37 Weight loading W0 required to
cause a tangent isolator to have a minimum nat-
ural frequency fn(min), as a function of the stiffness
k0 at zero deflection.
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ISOLATION OF RANDOM VIBRATION

In random vibration, all frequencies exist concurrently, and the amplitude and phase
relations are distributed in a random manner. A trace of random vibration is illus-
trated in Fig. 11.1A. The equipment-isolator assembly responds to the random vibra-
tion with the substantially single-frequency pattern shown in Fig. 11.1B. This response
is similar to a sinusoidal motion with a continuously and irregularly varying envelope;
it is described as narrow-band random vibration or a random sine wave.

The characteristics of random vibration are defined by a frequency spectrum of
power spectral density (see Chaps. 11 and 22). This is a generic term used to desig-
nate the mean-square value of some magnitude parameter passed by a filter, divided
by the bandwidth of the filter, and plotted as a spectrum of frequency. The magni-
tude is commonly measured as acceleration in units of g; then the particular expres-
sion to use in place of power spectral density is mean-square acceleration density,
commonly expressed in units of g2/Hz. When the spectrum of mean-square acceler-
ation density is substantially flat in the frequency region extending on either side of
the natural frequency of the isolator, the response of the isolator may be determined
in terms of (1) the mean-square acceleration density of the isolated equipment and
(2) the deflection of the isolator at successive cycles of vibration.

The mean-square acceleration densities of the foundation and the isolated equip-
ment are related by the absolute transmissibility that applies to sinusoidal vibration:

Wr( f ) = We( f )TA
2 (30.64)

where Wr( f ) and We( f ) are the mean-square acceleration densities of the equip-
ment and the foundation, respectively, in units of g 2 /Hz and TA is the absolute trans-
missibility for the vibration-isolation system.
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