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INTRODUCTION

Fluid around a structure can significantly alter the structure’s vibrational characteris-
tics.The presence of a quiescent fluid decreases the natural frequencies and increases
the damping of the structure.A dense fluid couples the vibration of elastic structures
which are adjacent to each other. Fluid flow can induce vibration. A turbulent fluid
flow exerts random pressures on a structure, and these random pressures induce a
random response. The structure can resonate with periodic components of the wake.
If a structure is sufficiently flexible, the structural deformation under the fluid load-
ing will in turn change the fluid force. The response can be unstable with very large
structural vibrations—once the fluid velocity exceeds a critical threshold value.

Vibration induced by fluid flow can be classified by the nature of the fluid-
structure interaction as shown in Fig. 29.1. Effects which are largely independent of
viscosity include added mass and inertial coupling. Unsteady pressure on the sur-
face of a structure, due to either variations in the free stream flow or turbulent fluc-
tuations, induces a forced vibration response. Strong fluid-structure interaction
phenomena result when the fluid force on a structure induces a significant response
which in turn alters the fluid force. These phenomena are discussed in this section.

ADDED MASS AND INERTIAL COUPLING

If a body accelerates, decelerates, or vibrates in a fluid, then fluid is entrained by the
body. This entrainment of fluid, called the added mass or virtual mass effect, occurs
both in viscous and in inviscid, i.e., ideal, fluids. It is of practical importance when the
fluid density is comparable to the density of the structure because then the added
mass becomes a significant fraction of the total mass in dynamic motion.

Consider the rigid body shown in Fig. 29.2 which lies in a reservoir of incompress-
ible inviscid irrotational fluid.The surface S defines the surface of the body.The body
moves with velocity U(t). From ideal flow theory, it can be shown that there exists a
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velocity potential Φ(x, y, z, t) which is a
function of the special coordinates and
time, such that the velocity vector is the
gradient of a potential function:

V = ∇Φ (29.1)

V(x, y, z, t) is the fluid velocity vector.
The potential function Φ satisfies
Laplace’s equation:1,2

∇2Φ = 0 (29.2)

The boundary condition is that on the surface of the body; the normal component of
velocity must equal the velocity of the body:

= V ◊ n on the surface S

where n is the unit outward normal vector. The pressure in the fluid is given by the
Bernoulli equation

p = −ρ − ρV 2

where ρ is the fluid density and V is the magnitude of V. The force exerted by the
fluid on the body is the integral of the fluid pressure over the surface.

F = �
S

pn dS

If the fluid is of infinite extent, then the solution of these equations is consider-
ably simplified. The fluid force is1

F = −ρ �
S

Φn dS (29.3)
∂

�
∂t

1
�
2
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FIGURE 29.1 A classification of flow-induced vibration.

FIGURE 29.2 Fluid-filled region. Fluid den-
sity ρ.
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and flow potential can be expressed as φ = U(t)φ(x′, y′, z′), where x′, y′, and z′ are
coordinates that are fixed to the body and U is the flow velocity relative to the body.
Substituting this potential in Eq. (29.3) yields the following force:

F = −m (29.4)

where the added mass m is

m = ρ �
S

φ dS (29.5)

The added mass force Eq. (29.3) is zero for U and Φ independent of time, i.e., for
steady translation. This is the D’Alembert paradox for an ideal inviscid fluid flow;
the fluid force is not zero for steady translation in a viscous fluid.

As an example of added mass calculation, the potential for flow over a cylinder
of radius a is

φ = U cos θ

where r = radial coordinate
θ = angular coordinate

U = flow velocity

The added mass per unit length is found from Eq. (29.5). The result is

m = ρπa2

where a is the cylinder radius. This added fluid mass is equal to the mass of fluid dis-
placed by the cylinder.

In general, there will be an added mass tensor to represent the added mass for
acceleration in each of the three coordinate directions:

mij = ρ �
S

φj dS

and an added mass tensor for rotation about the three coordinate axes. φi is the
potential associated with flow in the i direction. Note that the added mass tensor is
symmetric, i.e., mij = mji, but if the body is not symmetric, there is coupling between
motions in the various coordinate directions.1 For example, if a body is not symmet-
ric about the X axis, acceleration in the X direction generally induces added mass
force in the Y direction and a moment as well.

Since the added mass acts in phase with acceleration [Eq. (29.3)], the net effect of
added mass is to increase the effective mass of the body and to decrease the natural
frequencies. In general, added mass is only important to mechanical structures in
dense fluids such as water. In gases, such as air, the added mass is ordinarily negligi-
ble except for very lightweight structures. Figure 29.3 gives added mass for various
sections and bodies in large unrestricted reservoirs.Additional tables of added mass
are given in Refs. 3 and 4.

If two structures are in close proximity, then the added mass will be a function of
the spacing between the structures and inertial coupling will be introduced between
the bodies. For example, consider a cylindrical rod centered in a fluid-filled annulus
bounded by a cylindrical cavity shown in Fig. 29.4. The radius of the rod is a and the

∂φi�
∂n

r2 + a2

�
r

∂φ
�
∂n

∂U
�
∂t
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radius of the outer cylinder is b. The fluid forces exerted on the rod and outer cylin-
der because of their relative acceleration are5

F1 = −mẍ1 + (M1 + m)ẍ2

F2 = (m + M1)ẍ1 − (m + M1 + M2)ẍ2

(29.6)

where x1, x2 = displacement of inner rod and outer cylinder
F1, F2 = force on inner rod and outer cylinder

m = ρπa2(b2 + a2)/(b2 − a2), added mass of inner rod
M1 = ρπa2

M2 = ρπb2

29.4 CHAPTER TWENTY-NINE, PART I

FIGURE 29.3 Added mass for lateral acceleration.3 The acceleration is left to right. b is
the span for two-dimensional sections.
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These forces include not only added
mass but also inertial coupling between
the motion of the two structures. [These
equations also apply for a sphere con-
tained within a spherical cavity but here
m = (M1/2)(b3 − 2a3)/(b3 − a3), M1 = 4⁄3ρπa3,
and M2 = 4⁄3ρπb3.] Coupling is introduced
between the cylinder and the rod
through the fluid annulus. The coupling
increases with the density of the fluid

and decreases with increasing gap. If the cylinder and the rod are elastic, motion of
either structure tends to set both structures into motion.

For example, consider an array of heat exchanger tubes contained within a shell.
Water fills the shell and surrounds the tubes. If the tubes are widely spaced (more
than about two diameters between centers), then the tubes are largely uncoupled
and the effect of added mass is simply to reduce the tube natural frequencies by the
addition of fluid equal to the displaced volume of the tubes. However, if the tubes
are closely spaced, then motion of one tube sets adjacent tubes and the shell into
motion. Fluid-coupled modes of vibration will result in the tubes and the shell mov-
ing in fixed modal patterns as shown in Fig. 29.5. In Refs. 6 and 7, analysis is given for
inertial coupling of a cylinder contained eccentrically within a cylindrical cavity,
rows of cylinders, and arrays of cylinders.

VIBRATION OF STRUCTURES INDUCED BY FLUID FLOW 29.5

FIGURE 29.4 A rod in a fluid-filled annulus.

FIGURE 29.5 Coupled modes of vibration of a bank of tubes in a
dense fluid.6

Added mass and inertial coupling occur in elastic and rigid bodies, but the added
complexity of elasticity and the three-dimensional motions make a closed-form
solution impossible for most elastic bodies. In the case of quasi-two-dimensional
structures (such as long span tubes or rods), the axial variation in the motion occurs
relatively slowly over the span, and two-dimensional results for sections are applica-
ble. Concentric cylindrical shells coupled by a fluid annulus are important in the
design of nuclear reactor containment vessels. Approximate solutions are required
for both the vessels and the fluid. Reviews of the analysis of fluid coupled concentric
vessels are given in Refs. 8 and 9.

Finite element numerical solutions, developed for an irrotational fluid, have
been incorporated in the NASTRAN and other computer programs to permit solu-
tion for added mass and inertial coupling.These programs solve the fluid and struc-
tural problems and then couple the results through interaction forces10 (see Chap.
28, Part II).
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WAVE-INDUCED VIBRATION OF STRUCTURES

Waves induce vibration of structures, such as marine pipelines, oil terminals, tanks,
and ships, by placing oscillatory pressure on the surface of the structure.These forces
are often well-represented by the inviscid flow solution for many large structures
such as ships and oil storage tanks. For most smaller structures, viscous effects influ-
ence the fluid force and the fluid forces are determined experimentally.

Consider an ocean wave approaching the vertical cylindrical structure as shown
in Fig. 29.6. The wave is propagating in the X direction. Using small-amplitude (lin-

29.6 CHAPTER TWENTY-NINE, PART I

FIGURE 29.6 A circular cylindrical structure exposed to
ocean waves.

ear) inviscid wave theory, the wave is characterized by the wave height h (vertical
distance between trough and crest), its angular frequency ω, and the associated
wavelength λ (horizontal distance between crests), and d is the depth of the water.
The wave potential Φ satisfies Laplace’s equation [Eq. (29.2)] and a free-surface
boundary condition.11 The associated horizontal component of wave velocity varies
with depth −z from the free surface and oscillates at frequency ω:

U(t, z) = cos � − ωt� (29.7)

This component of wave velocity induces substantial fluid forces on structures, such
as pilings and pipelines, which are oriented perpendicular to the direction of wave
propagation.

The forces which the wave exerts on the cylinder in the direction of wave propa-
gation (i.e., in line with U) can be considered the sum of three components: (1) a
buoyancy force associated with the pressure gradient in the laterally accelerating
fluid [Eq. (29.7)], (2) an added mass force associated with fluid entrained during rel-
ative acceleration between the fluid and the cylinder [Eq. (29.4)], and (3) a force due
to fluid dynamic drag associated with the relative velocity between the wave and the
cylinder. The first two force components can be determined from inviscid fluid
analysis as discussed previously.The drag component of force, however, is associated
with fluid viscosity.

Thus, the in-line fluid force per unit length of cylinder due to an unsteady flow is
expressed as the sum of the three fluid force components:

F = ρAU̇ + CI ρA(U̇ − ẍ) + 1⁄2ρ | U − ẋ | (U − ẋ)DCD (29.8)

2πx
�

λ
cosh [2π(z + d)/λ]
��

sinh (2πd/λ)
hω
�
2
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where x = lateral position of structure in direction of wave propagation
A = cross-sectional area = 1⁄4πD2 of cylinder having diameter D
CI = added mass coefficient, which has theoretical value of 1.0 for circular

cylinder
CD = drag coefficient

This is the generalized form of the Morison equation, widely used to compute the
wave forces on slender cylindrical ocean structures such as pipelines and piers.

If ẋ and ẍ are set equal to zero in Eq. (29.8), the incline force per unit length on
a stationary cylinder in an oscillating flow is obtained:

F(ẋ = ẍ = 0) = CmρȦU + 1⁄2ρ |U | UDCD (29.9)

Because of the absolute sign in the term |U | U, the force contains not only compo-
nents at the wave frequency but also components associated with the drag at har-
monics of the wave frequency. The resultant time-history of in-line force due to a
harmonically oscillating flow has an irregular form that repeats once every wave
period.

If the flow oscillates with zero mean flow, U = U0 cos ωt as in Eq. (29.7), then the
maximum fluid force per unit length on a stationary cylinder is

�ρACmωU0 if <
Fmax =

ρU0
2DCD + if >

(29.10)

If the cylinder is large (such as for a storage tank) with diameter D greater than the
ocean wave height h and if the wavelength of the ocean wave is comparable to the
diameter, then U0 is small compared to ωD and the maximum force is given by the
first alternative in Eq. (29.10). The drag force is negligible compared to the inertial
forces for large cylinders.As a result, the ocean wave forces on large cylinders can be
calculated using inviscid, i.e., potential flow, methods which are discussed in Refs. 11
and 12.

For the Reynolds number ranges typical of most offshore structures, measure-
ments show that the inertial coefficient Cm = 1 + CI for cylindrical structures gener-
ally falls in the range between 1.5 and 2.0. Cm = 1.8 is a typical value. Cm decreases for
very large diameter cylinders owing to the tendency of waves to diffract about large
cylinders (Refs. 13 and 14). Similarly, measurements show that the drag coefficient
falls between 0.6 and 1.0 for circular cylinders; CD = 0.8 is a typical value.

Wave forces on elastic ocean structures induce structural motion. Since the wave
force is nonlinear [Eq. (29.8)] and involves structural motion, no exact solution
exists. One approach is to integrate the equations of motion directly by applying Eq.
(29.8) at each spanwise point on a structure and then numerically integrate the time-
history of deflection using a predictor-corrector or recursive relationship to account
for the nonlinear term. A simpler approach is to assume that the structural defor-
mation does not influence the fluid force and apply Eq. (29.9) as a static load. This
static approximation is valid as long as the fundamental natural frequency of the
structure is well above the wave frequency and the first three or four harmonics of
the wave frequency. However, many marine structures are not sufficiently stiff to
satisfy this condition.

One generally valid simplification for dynamic analysis of relatively flexible struc-
tures is to consider that the wave velocity is much less than the structural velocity so

CmA
�
CDD2

U0�
ωD

(ρACmU0ω)2

��
2πU0

2DCD

1
�
2

CmA
�
CDD2

U0�
ωD
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that |U − ẋ| � |U |.With this approximation, application of Eq. (29.8) to a single degree-
of-freedom model for a structure gives the following linear equation of motion:

(m + ρACI)ẍ + (2ζωN + 1⁄2ρ |U | DCD)ẋ + kx = ρACmU̇ + 1⁄2ρ |U | UDCD (29.11)

where m = structural mass per unit length
k = stiffness
ζ = structural damping

This equation is solved by expanding both x(t) and U(t) in a Fourier series and
matching the coefficients.

The fluid forces contribute added mass and fluid damping to the left-hand side as
well as forcing terms to the right-hand side. This equation may be simplified further
by retaining only the first (constant) term in the series expansion for |U | in the fluid
damping term so that the equation becomes a classical forced oscillator with con-
stant coefficient.12

Flexible structures will resonate with the wave if the structural natural period
equals the wave period or a harmonic of the wave period. Since the wave frequen-
cies of importance are ordinarily less than 0.2 Hz (wave period generally greater
than one cycle per 5 sec), such a resonance occurs only for exceptionally flexible
structures such as deep-water oil production risers and offshore terminals. The
amplitude of structural response at resonance is a balance between the wave force
and the structural stiffness times the damping. Since the wave force diminishes with
increased structural motion [Eq. (29.8)], the resultant displacements are necessarily
self-limiting. In other words, the response which would be predicted by applying Eq.
(29.9) dynamically is overly pessimistic because the wave force contributes mass and
damping to the structure as well as excitation as can be seen in Eq. (29.11).

The above discussion considers only fluid forces which act in line with the direc-
tion of wave propagation. These in-line forces produce an in-line response. How-
ever, substantial transverse vibrations also occur for ocean flows around circular
cylinders.These vibrations are associated with periodic vortex shedding, which is dis-
cussed below. The models discussed in the following section for steady flow are
applicable to vortex shedding in oscillatory flows provided that the wave period
exceeds the period of shedding, based on the maximum oscillatory velocity so that it
is possible to fit one or more shedding cycles into the wave cycle.13,14

VORTEX-INDUCED VIBRATION

Many structures of practical importance such as buildings, pipelines, and cables are
not streamlined but rather have abrupt contours that can cause a fluid flow over the
structure to separate from the aft contours of the structure. Such structures are
called bluff bodies. For a bluff body in uniform cross flow, the wake behind the body
is not regular but contains distinct vortices of the pattern shown in Fig. 29.7 at a
Reynolds number Re = UD/v greater than about 50, where D is the width perpendi-
cular to the flow and v is the kinematic viscosity. The vortices are shed alternately
from each side of the body in a regular manner and give rise to an alternating force
on the body. Experimental studies have shown that the frequency, in hertz, of the
alternating lift force is expressed as16, 17

fs = (29.12)
SU
�
D
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The dimensionless constant S called the Strouhal number generally falls in the range
0.25 ≥ S ≥ 0.14 for circular cylinders, square cylinders, and most bluff sections. The
value of S increases slightly as the Reynolds number increases; a value of S = 0.2 is
typical for circular cylinders.

The oscillating lift force imposed on a single circular cylinder of length L and
diameter D, in a uniform cross flow of velocity U, due to vortex shedding is given by

F = 1⁄2ρU2CLDLJ sin (2πfst) (29.13)

where the lift coefficient CL is a function of Reynolds number and cylinder motion.
The experimental measurements of CL show considerable scatter with typical values
ranging from 0.1 to 1.0. The scatter is in part due to the fact that the alternating vor-

VIBRATION OF STRUCTURES INDUCED BY FLUID FLOW 29.9

FIGURE 29.7 Regimes of fluid flow across circular cylinders.15
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tex forces are not generally correlated on the entire cylinder length L. The spanwise
correlation length lc of vortex shedding over a stationary circular cylinder17 is
approximately three to seven diameters for 103 < Re < 2 × 105. In order to account
for the effect of the spanwise correlation on the net force on the cylinder of length
L, a factor J called the joint acceptance has been introduced on the right-hand side
of Eq. (29.13). Two limiting cases exist for the joint acceptance.

J = �� �
1/2

if lc << L

1 if fully correlated

Thus, if a cylinder is much longer than three to seven diameters, the lack of spanwise
correlation reduces the net vortex lift force [Eq. (29.13)] on the cylinder.

Cylinder vibration at or near the vortex shedding frequency organizes the wake
and changes the fluid force on the cylinder. Vibration of a cylinder in a fluid flow
can:12, 17, 18

1. Increase the strength of the shed vortices.
2. Increase the spanwise correlation of the vortex shedding.
3. Cause the vortex shedding frequency shift from the natural shedding frequency

[Eq. (29.12)] to the frequency of cylinder oscillation. This is called synchroniza-
tion or lock-in.

4. Increase the mean drag on the cylinder. Mean drag can triple for one diameter
amplitude cylinder vibration.

5. Alter the phase sequence and pattern of vortices in the wake. Figure 29.8 shows
the patterns of vortices in the wake of a transversely vibrating cylinder, where 
fs = natural shedding frequency [Eq. (29.12)], f = forced vibration frequency, and 
Ay = vibration amplitude transverse to flow.

As the flow velocity is increased or decreased so that the shedding frequency fs

approaches the natural frequency fn of an elasticly mounted cylinder so that

fn ≈ fs = so ≈ = ≈ 5

the vortex shedding frequency suddenly locks onto the structure natural frequency.
The resultant vibrations occur at or nearly at the natural frequency of the structure
and vortices in the near wake input energy to the cylinder. Large amplitude vortex-
induced structural vibration can result.

The vortex-induced vibrations of a spring-mounted cylinder in a flow are shown
as a function of velocity in Fig. 29.9 for two levels of damping. The horizontal scale
gives flow velocity nondimensionalized (i.e., divided by the cylinder diameter D
times the cylinder natural frequency f ), both of which are held fixed as velocity U
increases. The lower part of the figure shows the measured response cylinder single
amplitude Ay vibration response as a function of flow velocity. The maximum cylin-
der amplitude occurs at the resonance condition U / ( fD) � 5.5. The upper part of
the figure shows the vortex shedding frequency. The shedding frequency increases
with velocity as predicted by Eq. (29.8) until it equals the cylinder natural frequency
at U/fD = 5 and large amplitude cylinder vibrations begin. The shedding frequency 

1
�
S

U
�
fsD

U
�
fnD

SU
�
D

lc�
L
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is entrained by the cylinder natural frequency. Entrainment persists until velocity is
increased to U/fD = 6.5 at which point lock-in is broken and the shedding frequency
abruptly returns to its natural value. In general, the larger the structural response to
vortex shedding, the larger the range of lock-in.

Both the amplitude of the structural response and the velocity range over which
lock-in persists are functions of the dimensionless reduced damping parameter δr:

δr =

where m = mass per unit length of cylinder, including added mass
ζ = damping factor for vibration in mode of interest, ordinarily measured

in still fluid
ρ = fluid density

D = cylinder diameter

The lower δr, the greater the amplitude of the structural response and the greater
the range of flow velocities over which lock-in occurs (see Ref. 19 and Fig. 29.8). For
lightly damped structures in dense fluids (such as marine pipelines), δr is on the
order of 1 and lock-in can persist over a 40 percent variation in velocity above and
below that which produces resonance.

Within the synchronization band, substantial resonance vibration often occurs.
Peak-to-peak vibration amplitudes of up to three diameters have been observed in
water flows over cables and tubing. The vibrations are predominantly transverse to

2m(2πζ)
�

ρD2
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FIGURE 29.8 Patterns of vortices shed in the wake of a transversely oscillating cylin-
der in a cross flow.
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the flow and are self-limiting.12 Lesser amplitude vibrations have also been observed
in the drag direction at twice the vortex shedding frequency and at subharmonic fre-
quencies of the vortex shedding frequency, i.e., at one-fourth, one-third, or one-half
of the flow velocity required for synchronization,21 fs = fn.

If a uniform elastic cylinder is subjected to a crossflow uniformly over its span,
then the oscillating vortex-induced lift force is given by Eq. (29.13). At lock-in, the
vortex shedding frequency equals the natural frequency of the nth vibration mode 
fs = fn, and the amplitude of the cylinder response is

= (29.14)

where the maximum amplitude vibrations along the span are y(t) = Ay sin (2πfnt).
This equation is conservative if CL = J = 1. However, Eq. (29.14) gives overly conser-
vative predictions with CL = J = 1 owing to the tendency of the actual lift coefficient
to decrease at amplitudes in excess of 0.5 diameters and the lack of perfect spanwise
correlation at lower amplitudes. Semiempirical correlations are given in Refs. 12, 22,
and 23. One of these correlations is12

CLJ
�
4πS2δr

Ay
�
D
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FIGURE 29.9 Response of a spring-supported cylinder to vortex-
induced vibration.20
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= �0.3 + �
1/2

(29.15)

The mode shape parameter γ falls between 1.0 and 1.4. For a translating rigid rod 
(φ = 1), γ = 1, for a cable or pipeline with a sinusoidal mode shape, γ = 1.15 and for a
cantilever mode shape, γ = 1.4 and Ay is tip amplitude.

Equation (29.15) correctly predicts the self-limiting behavior of the resonance
vibrations. Setting damping to zero, δr = 0, it follows that Ay /D � 1.5, which is a
typical vibration level for lightly damped marine cables in a current. See Fig.
29.10. Large amplitude vibrations also are associated with increased steady drag
on the structure. Drag coefficients of up to 3.5 have been measured on resonantly
vibrating marine cables as opposed to the typical value of 1.0 for a stationary
cylinder.24

0.72
��
(δr + 1.9)S

0.07γ
��
(δr + 1.9)S2

Ay
�
D
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FIGURE 29.10 Maximum amplitude of vortex-induced vibration as a function of
damping.12

A number of fairings, strakes, and ribbons have been attached to the exterior of
circular cylindrical structures to reduce vortex-induced vibrations as shown in Fig.
29.11. These devices act by disrupting the near wake and disturbing the correlation
between the vortex shedding and vibration. They do, however, increase the steady
drag from that which is measured on a stationary structure. Reviews of vortex sup-
pression devices are given in Refs. 25 and 26.
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FLUID ELASTIC INSTABILITY

Fluid flow across an array of elastic tubes can induce a dynamic instability, resulting
in very large amplitude tube vibrations once the critical cross-flow velocity is
exceeded. This is a relatively common occurrence in tube and shell heat exchangers.
Once the critical cross-flow velocity is exceeded, vibration amplitude increases very
rapidly with cross-flow velocity V, usually as Vn where n = 4 or more, compared with
an exponent in the range 1.5 < n < 2.5 below the instability threshold. This can be
seen in Fig. 29.12, which shows the response of an array of metallic tubes to water
flow. The initial hump is attributed to vortex shedding. The cross-flow velocity is
defined as velocity perpendicular to the tube axis at the minimum gap between
tubes. Once the critical velocity is exceeded, the very large amplitude vibrations usu-
ally lead to failures of the heat exchanger tubes.

Often the large amplitude vibrations vary in time; the amplitudes grow and fall
about a mean value in pseudorandom fashion. Generally the tubes do not move
independently but instead move in somewhat synchronized orbits with neighboring
tubes. This orbital behavior has been observed in tests in both air and water with
orbits ranging from near circles to nearly straight lines. See Fig. 29.13.

As the tubes whirl in orbital motion, they extract energy from the fluid (Refs. 12,
28, and 29). Below the onset of instability, energy which is extracted is less than the
energy which is expended in damping. Above the critical velocity, the energy
extracted from the flow by the tube motion exceeds the energy expended in damp-
ing, so the vibrations increase in amplitude. Restricting the motion or introducing
frequency differences between one or more tubes often increases the critical veloc-
ity for onset of instability. Such increases in critical velocity are generally no greater
than about 40 percent unless additional support is given to all tubes exposed to high
velocity flow. Often the onset of instability is more gradual in a bank of tubes having
tube-to-tube frequency differences than in a bank with identical tubes. Only a rela-
tively small percentage of the tube will become unstable at one time. Flexible long-
span tubes in areas of high flow velocity (such as at inlets) are most susceptible to
the instability.

At cross-flow velocities beyond those which produce an onset of instability, dam-
aging vibrations are encountered. The tube vibration amplitudes are limited by
clashing with other tubes, by impacting with the tube supports, and by yielding of the
tubes. Sustained operation in the unstable vibration regime ordinarily results in tube

29.14 CHAPTER TWENTY-NINE, PART I

FIGURE 29.11 Methods of reducing vortex-induced vibration.
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failure due to wear or propagation of cracks in the tubes. Fluid elastic instability is
second only to corrosion as a cause of heat exchanger failure.

A displacement model for the fluid elastic forces is given in Ref. 12 which correctly
predicts the observed onset of instability for most cases in air and gases. Results are

less satisfactory in water or when the
motion of some of the tubes is restricted.
More complex models take into account
velocity-induced forces as well as the
displacement-induced forces.29,30 These
theories give somewhat better agree-
ment with data over limited ranges, but
none are entirely suitable for a design
tool.

The most viable, practical procedure
for predicting the onset of instability of
closely spaced arrays of tubes to cross
flow is to use the theoretical form given
by the displacement mechanism but

VIBRATION OF STRUCTURES INDUCED BY FLUID FLOW 29.15

FIGURE 29.12 Typical amplitude of vibration of a tube array
in cross flow.27

FIGURE 29.13 Tube vibration patterns for
fluid elastic instability.28
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with parameters obtained by filling experimental data. The onset of instability is
predicted as12, 22, 23,31

= C � 	
a

(29.16)

where Vcrit = uniform cross flow averaged over minimum gap between tubes (If the
velocity is nonuniform, then either the maximum can be used or a
modal weighted average can be employed.)

fn = fundamental natural frequency of tubing (Ordinarily the fundamen-
tal mode is most susceptible to instability.)

ζ = damping factor of fundamental mode (Typically ζ falls in the range
between 0.01 and 0.03 for tubes with some intermediate supports. For
rolled-in or welded-in tubes with no intermediate supports, ζ can be
as low as 0.001.)

mt = mass per unit length of tube including added mass and internal mass
of fluid

ρ = fluid density

Fitting Eq. (29.16) to the available 174 data points for onset of instability31 shown in
Fig. 29.14 leads to the mean and lower-bound coefficients for the parameter C and
the exponent a given in Table 29.1. The coefficient corresponding to the mean fit to
the experimental data is Cmean; C90% is the lower bound fit to the data such that 90%
of the data are above the curve.

Most of the data used in this correlation come from tube arrays with center-to-
center spacing of between 1.25 and 2.0 diameters and with various array geome-
tries. There is insufficient statistical evidence to determine if certain patterns are
more or less susceptible to instability than others. Instability has been observed for
both straight and curved tubes, tube rows, and tube arrays in a wide variety of tube
patterns.

The most common means of increasing the resistance of an array of tubes to
instability is to add intermediate supports to increase the natural frequency of the
tubes. Details of the tube support (particularly the gap between the tube and the
support) influence the resultant vibration. In general, smaller gaps tend to result in
lower tube-support impact velocities and hence in lower tube wear.32,33

INTERNAL FLOW IN PIPES

Internal flow through a pipe decreases the natural frequency of the pipe. Sufficiently
high internal velocity will induce buckling in a pipe supported at both ends since the
momentum of fluid turning through a small angle of pipe deflection is greater than
the stiffness of the pipe. If the pipe is restrained at only one end, the pipe will
become unstable at high velocities like an unrestrained garden hose.

The equation of motion for a straight pipe conveying steady fluid flow is34,35

EI + ρAv2 + 2ρAv + M = 0 (29.17)

where E and I are the modulus and moment of inertia of the pipe which conveys
fluid of density ρ through the internal area A of the pipe at a steady velocity v;
Y(x, t) is the lateral deflection of the pipe which has total mass per unit length M.

∂2Y
�
∂t2

∂2Y
�
∂x∂t

∂2Y
�
∂x2

∂4Y
�
∂x4

mt(2πζ)
�

ρD2

Vcrit�
fnD
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FIGURE 29.14 Velocity for onset of instability of tube arrays in cross flow as a function of the damping parameter.22
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The first and last terms in Eq. (29.17) are the usual stiffness and mass terms.The mid-
dle terms are associated with fluid forces imposed on the pipe by the internal fluid
as the pipe deflects slightly from its equilibrium position.

Although Eq. (29.17) is a linear partial differential equation with constant coeffi-
cients, its solution is difficult owing to the mixed derivative term (third term from the
left). One technique used to solve the equation is to expand the solution in terms of
the mode shapes of vibration which are obtained for zero flow, v = 0.

Y(x, t) = Σi aiyi(x) sin ωt (29.18)

where yi(x) are the mode shapes for zero flow that satisfy Eq. (29.17) and the
boundary conditions on the ends of the pipe span. Equation (29.18) is substituted
into Eq. (29.23), and the derivatives of yi(x) are expressed in terms of the orthogonal
set yi(x)

yi′(x) = Σibiyi(x)

Like terms in the series are equated.
For a uniform pipe with pinned ends, the result can be expressed as a decrease in

natural frequency due to flow.12

= �1 − � �
2

	
1/2

(29.19)

where f = fundamental natural frequency
f1 = fundamental natural frequency in absence of flow
vc = critical flow velocity

The critical flow velocity can be expressed as

vc = � 	
1/2

(29.20)

where L is the span of the pipe. As the flow velocity approaches vc, the fundamental
natural frequency f1 decreases to zero.The pipe span spontaneously buckles at v = vc.

The buckling velocity is a function of the boundary conditions on the ends of the
pipe, and there can be vibration; these solutions for various boundary conditions are
generally scaled by the velocity vc [Eq. (29.20)]. In general, only exceptionally thin-
walled flexible tubes with very high velocity flows, such as rocket motor feed lines
and penstocks, are prone to vibration induced by internal flow. External parallel
flow can also induce an analogous instability. (See the review given in Ref. 35.) For a
tube subjected to both internal and parallel external flow of the same magnitude, the
velocity for the onset of instability is

EI
�
ρA

π
�
L

v
�
vc

f
�
f1
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TABLE 29.1 Coefficients in Eq. (29.16) for Onset of Instability of Tube Arrays31

mt(2πζ)/ρD2 < 0.7 mt(2πζ)/ρD2 > 0.7

Cmean 3.9 4.0
C90% 2.7 2.4
a 0.21 0.5
rms error in fitted data for Vcrit, % 24.5 32.5
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vc = � 	
1/2

(29.21)

where Ai = πD2
i /4 and Ae = πD2

e /4 are the cross-sectional areas associated with the
tube inside and outside diameters Di and De, respectively.

Oscillatory flow in pipes can also cause vibration. Oscillations of fluids in pipes
can be caused by reciprocating pumps and acoustic oscillations produced by flow
through valves and obstructions. Internal flow imposes net fluid force on pipe at
bends and changes in area. For example, the fluid force acting on a 90° bend in a pipe
is the sum of pressure and momentum components:

Fbend = [(p − pa) + ρU 2] Ai − [(p − pa) + ρU 2] Aj (29.22)

Here p is the internal pressure in the pipe, pa is the pressure in the atmosphere sur-
rounding the pipe, and U is the internal velocity in the pipe. The vectors i and j are
unit vectors in the direction of the incoming and outgoing fluid, respectively.

If the pressure and velocity in the pipe oscillates, then the fluid force on the bend
will oscillate, causing pipe vibration in response to the internal flow. This problem is
most prevalent in unsupported bends in pipe that are adjacent to pumps and valves.
Two direct solutions are to (1) support pipe bends and changes in area so that fluid
forces are reacted to ground and (2) reduce fluid oscillations in pipe by avoiding
large pressure drops through valves and installation of oscillation-absorbing devices
on pump inlet and discharge.

REFERENCES

1. Newman, J. N.: “Marine Hydrodynamics,” The MIT Press, Cambridge, Mass., 1977.

2. Lamb, H.: “Hydrodynamics,” Dover Publications, New York, 1945. Reprint of 6th ed.,
1932.

3. Blevins, R. D.: “Formulas for Natural Frequency and Mode Shape,” Kreiger, Malabar,
Florida, 1984. Reprint of 1979 edition.

4. Milne-Thompson, L. L.: “Theoretical Hydrodynamics,” 5th ed., Macmillan, New York,
1968.

5. Fritz, R. J.: J. Eng. Industry, 94:167 (1972).

6. Chen, S-S: J. Eng. Industry, 97:1212 (1975).

7. Chen, S-S: Nucl. Eng. Des., 35:399 (1975).

8. Brown, S. J.: J. Pressure Vessel Tech., 104:2 (1982).

9. Au-Yang, M. K.: J. Vibration, Acoustics, 108:339 (1986).

10. Zienkiewicw, O. C.: “The Finite Element Method,” 3d ed., McGraw-Hill Book Company,
Inc., New York, 1977.

11. Ippen, A. T. (ed.): “Estuary and Coastline Hydrodynamics,” McGraw-Hill Book Com-
pany, Inc., New York, 1966.

12. Blevins, R. D.: “Flow-Induced Vibration,” 2d ed., Kreiger, Malibar, Fla., 1994.

13. Sarpkaya, T., and M. Isaacson: “Mechanics of Wave Forces on Offshore Structures,” Van
Nostrand Reinhold, New York, 1981.

14. Obasaju, E. D., P. W. Bearman, and J. M. R. Graham: J. Fluid Mech., 196:467 (1988).

EI
��ρAi + ρAe

π
�
L

VIBRATION OF STRUCTURES INDUCED BY FLUID FLOW 29.19

8434_Harris_29_b.qxd  09/20/2001  11:44 AM  Page 29.19



15. Lienard, J. H.: “Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular
Cylinder,” Washington State University, College of Engineering, Research Division Bul-
letin 300, 1966.

16. Roshko, A.: “On the Development of Turbulent Wakes from Vortex Streets,” National
Advisory Committee for Aeronautics Report NACA TN-2913, 1953.

17. Sarpkaya, T.: J. Appl. Mech., 46, 241 (1979).

18. Williamson, C. H. K., and A. Roshko: J. Fluids and Structures, 2:355 (1988).

19. Scruton, C.: “On the Wind Excited Oscillations of Stacks, Towers and Masts,” National
Physical Laboratory Symposium on Wind Effects on Buildings and Structures, Paper 16,
790, 1963.

20. Feng, C. C.: “The Measurement of Vortex-Induced Effects in Flow Past Stationary and
Oscillating Circular and D-Section Cylinder,” M.A.Sc. thesis, University of British
Columbia, 1968.

21. Durgin, W. W., P. A. March, and P. J. Lefebvre: J. Fluids Eng., 102:183 (1980).

22. ASME Boiler and Pressure Vessel Code, Section III, Division 1, Appendix N-1300, 1998.

23. Au-Yang, M. K., T. M. Mulcahy, and R. D. Blevins.: Pressure Vessel Technology, 113:257
(1991).

24. Vandiver, J. K.:“Drag Coefficients of Long Flexible Cylinders,” 1983 Offshore Technology
Conference, Paper 4490, 1983, p. 405.

25. Zdravkovich, M. M.: J. Wind Eng., Industrial Aerodynamics, 7:145 (1981).

26. Wong, H. Y., and A. Kokkalis: J. Wind Eng. Industrial Aerodynamics, 10:21 (1982).

27. Chen, S-S, J.A. Jendrzejczyk, and W. H. Lin:“Experiments on Fluid Elastic Instability in a
Tube Bank Subject to Liquid Cross Flow,” Argonne National Laboratory Report ANL-
CT-44, July 1978.

28. Connors, H. J.:“Fluid Elastic Vibration of Tube Arrays Excited by Cross Flow,” Paper pre-
sented at the Symposium on Flow Induced Vibration in Heat Exchangers, ASME Winter
Annual Meeting, December 1970.

29. Paidoussis, M. P., and S. J. Price: J. Fluid Mech., 187:45 (1988).

30. American Society of Mechanical Engineers.“Flow-Induced Vibrations—1994,” PVP-273,
New York, 1994.

31. Blevins, R. D.: J. Sound & Vibration, 97:641 (1984).

32. Blevins, R. D.: J. Eng. Materials Tech., 107:61 (1985).

33. Cha, J. H.: J. Pressure Vessel Tech., 109:265 (1987).

34. Housner, G. W.: J. Appl. Mech., 19:205 (1952).

35. Paidoussis, M. P., and P. Besancon: J. Sound & Vibration, 76:361 (1981).

29.20 CHAPTER TWENTY-NINE, PART I

8434_Harris_29_b.qxd  09/20/2001  11:44 AM  Page 29.20



CHAPTER 29, PART II
VIBRATION OF 

STRUCTURES INDUCED 
BY WIND

Alan G. Davenport 

Milos Novak

INTRODUCTION

Vibration of significant magnitude may be induced by wind in a wide variety of
structures including buildings, television and cooling towers, chimneys, bridges,
transmission lines, and radio telescopes. No structure exposed to wind seems entirely
immune from such excitation. The material presented here describes several mech-
anisms causing these oscillations and suggests a few simpler approaches that may be
taken in design to reduce vibration of structures induced by wind.There is an exten-
sive literature1–5 giving a more detailed treatment of the subject matter.

FORMS OF AERODYNAMIC EXCITATION

The types of structure referred to above are generally unstreamlined in shape. Such
shapes are termed “bluff bodies” in contrast to streamlined “aeronautical” shapes
discussed in Chap. 29, Part III. The distinguishing feature is that when the air flows
around such a bluff body, a significant wake forms downstream, as illustrated in Fig.
29.15. The wake is separated from the outside flow region by a shear layer. With a
sharp-edged body (such as a building or structural number) as in Fig. 29.15, this shear
layer emanates from the corner.With oval bodies such as the cylinder in Fig. 29.15, the
shear layer commences at a so-called boundary layer on the upstream surface at
points A and B (the separation points) and becomes a free shear layer. The exact
position of these separation points depends on a wide variety of factors, such as the
roughness of the cylinder, the turbulence in the flow, and the Reynolds number R =
VD/ν, where V = flow velocity, D = diameter of the body, and ν = kinematic viscosity.

The flow illustrated in Fig. 29.15 represents the time-average picture which would

29.21
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be obtained by averaging the movements of the fluid particles over a time interval
that is long compared with the “transit time” D/V. The instantaneous picture of the
flow may be quite different, as indicated in Fig. 29.16, for two reasons.

First, if the flow is the wind, it is under almost all practical circumstances strongly
turbulent; the oncoming flow will be varying continuously in direction and speed in
an irregular manner. These fluctuating motions will range over a wide range of fre-
quencies and scales (i.e., eddy sizes).

Second, the wake also will take on a fluctuating character. Here, however, the size
of the dominant eddies (vortices) will be of a similar size to the body.The vortices tend
to start off their career by curling up at the separation point and then are carried off
downstream. Sometimes these eddies are fairly regular in character and are shed alter-
nately from either side; if made visible by smoke or other means, they can be seen to
form a more or less regular stepping-stone pattern until they are broken up by the tur-
bulence or dissipate themselves. In a strongly turbulent flow,the regularity is disrupted.

The flow characteristics of the oncoming flow and the wake are the direct causes
of the forces on the bodies responsible for their oscillation. The forms of the result-
ing oscillation are as follows.

1. Turbulence-induced oscillations. Certain types of oscillation of structures can
be attributed almost exclusively to turbulence in the oncoming flow. In the wind these

29.22 CHAPTER TWENTY-NINE, PART II

FIGURE 29.15 Wake formation past bluff bodies:
(a) sharp-edged body; (b) circular cylinder.

FIGURE 29.16 Vortex street past circular cylinder (R = 56). (After
Kovasznay, Proc. Roy. Soc. London, 198, 1949.)
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VIBRATION OF STRUCTURES INDUCED BY WIND 29.23

FIGURE 29.17 Main types of wind-induced oscillations: (A) vibration due to turbu-
lence; (B) vibration due to vortex shedding; (C) aerodynamic instability.

may be described as “gust-induced oscillations” (or turbulence-induced, oscillations).
The gusts may cause longitudinal, transverse, or torsional oscillations of the structure,
which increase with wind velocity (Fig. 29.17).

2. Wake-induced oscillations. In other instances, the fluctuations in the wake may
be the predominant agency. Since these fluctuations are generally characterized by
alternating flow, first around one side of the body, then around the other, the most sig-
nificant pressure fluctuations act on the sides of the body in the wake behind the sep-
aration point (the so-called after body); they act mainly laterally or torsionally and to
a much lesser extent longitudinally. The resultant motion is known as vortex-induced
oscillation. Oscillation in the direction perpendicular to that of the wind is the most
important type. It often features a pronounced resonance peak (Fig. 29.17B).

While these distinctions between gust-induced and wake-induced forces are
helpful, they often strongly interact; the presence of free-stream turbulence, for
example, may significantly modify the wake.

3. Buffeting by the wake of an upstream structure. A further type of excitation is
that induced by the wake of an upstream structure (Fig. 29.18). Such an arrangement
of structures produces several effects. The turbulent wake containing strong vortices
shed from the upstream structure can buffet the downstream structure. In addition, if
the oncoming wind is very turbulent, it can cause the wake of the upstream structure
to veer, subjecting the downstream structure successively to the free flow and the
wake flow. This frequently occurs with chimneys in line, as well as with tall buildings.

4. Galloping and flutter mechanisms. The final mechanism for excitation is
associated with the movements of the structure itself. As the structure moves rela-
tive to the flow in response to the forces acting, it changes the flow regime sur-
rounding it. In so doing, the pressures change, and these changes are coupled with
the motion. A pressure change coupled to the velocity (either linearly or nonlin-
early) may be termed an aerodynamic damping term. It may be either positive or
negative. If positive, it adds to the mechanical damping and leads to higher effective
damping and a reduced tendency to vibrate; if negative, it can lead to instability and
large amplitudes of movement. This type of excitation occurs with a wide variety of
rectangular building shapes as well as bridge cross sections and common structural
shapes such as angles and I sections.

In other instances, the coupling may be with either the displacement or accelera-
tion, in which case they are described as either aerodynamic stiffness or mass terms,
the effect of which is to modify the mass or stiffness terms in the equations of
motion. Such modification can lead to changes in the apparent frequency of the
structure. If the aerodynamic stiffness is negative, it can lead to a reduction in the
effective stiffness of the structure and eventually to a form of instability known as
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divergence. All types of instability feature a sudden start at a critical wind velocity
and a rapid increase of violent displacements with wind velocity (Fig. 29.17C).

These various forms of excitation are briefly discussed in this chapter. Because all
types of oscillations are influenced strongly by the properties of the wind, some basic
wind characteristics are described first.

BASIC WIND CHARACTERISTICS

Wind is caused by differences in atmospheric pressure. At great altitudes, the air
motion is independent of the roughness of the ground surface and is called the
geostrophic, or gradient wind. Its velocity is reached at a height called gradient
height, which lies between about 1000 and 2000 ft. Below the gradient height, the
flow is affected by surface friction, by the action of which the flow is retarded and
turbulence is generated. In this region, known as the planetary boundary layer, the
three components of wind velocity resemble the traces shown in Fig. 29.19. The lon-
gitudinal component consists of a mean plus an irregular turbulent fluctuation; the
lateral and vertical components consist of similar fluctuations. These turbulent
motions can be characterized in a number of different ways.

The longitudinal motion at height z can be expressed as

Vz(t) = V̄z + v(t) (29.23)

where V̄z = mean wind velocity (the bar denotes time average) and v(t) = fluctuating
component.
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FIGURE 29.18 Buffeting by the wake of an upstream structure.
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Mean Wind Velocity. The mean wind velocity V̄z varies with height z as repre-
sented by the mean wind velocity profile (Fig. 29.20). The profiles observed in the
field can be matched by a logarithmic law, for which there are theoretical grounds, or
by an empirical power law

= � 	
α

(29.24)

where V̄G = gradient wind velocity, zG = gradient height, and α = an exponent <1.
Gradient height zG and exponent α depend on the surface roughness, which can be
characterized by the surface drag coefficient κ (here referenced to the wind speed at
10 meters).

A few typical values of these parameters are given in Fig. 29.20. The mean wind
profiles shown are characteristic of level terrain. They can significantly change, par-

z
�
zG

V̄z�̄
VG
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FIGURE 29.19 Record of horizontal component
of wind speed at three heights on 500 ft mast in open
terrain. (Courtesy of E. L. Deacon.)

FIGURE 29.20 Vertical profiles of mean wind velocity for three typical terrains.
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ticularly in the lower region, when the air flow meets an abrupt change in surface
roughness or terrain contour. A sudden increase in roughness reduces the wind
speed near the ground while a hill accelerates the flow over its crest.

The mean wind profiles are useful when predicting the wind speed at a particular
site.The gradient wind speed is estimated using data registered by the nearest mete-
orological stations at their standard height, which is usually 33 ft (10 meters). The
mean wind velocity generally depends on the period over which the wind speed is
averaged. Periods from 10 to 60 minutes appear adequate for engineering consider-
ations and usually yield reasonably steady mean values. The same duration is suit-
able to define the fluctuating wind component.

Fluctuating Components of the Wind. The fluctuating components of the wind
change with height less than the mean wind and are random both in time and space.
The random nature of the wind requires the application of statistical concepts (see
Chap. 11). The basic statistical characteristics of the velocity fluctuations are the
intensity of turbulence, the power spectral density (power spectrum), the correlation
between velocities at different points, and the probability distribution.

The intensity of turbulence is defined as σv/V̄z, where σv = 
v�2�(�t�)� is the root-mean-
square (rms) fluctuation in the longitudinal direction.The intensity of the lateral and
vertical fluctuations can be described similarly. For wind, the intensity of turbulence
is between 5 and 25 percent. The magnitude σv also defines the probability distribu-
tion of the fluctuations which may be assumed to be Gaussian (normal).

The energy of turbulent fluctuations (gustiness) is distributed over a range of fre-
quencies. This distribution of energy with frequency f can be described by the spec-
trum of turbulence (power spectral density) Wv(f ). The relationship between the
spectrum and the variance is

�∞

0
Wv(f ) df = σv

2

which leads to another form of the spectrum known as the logarithmic spectrum
fWv(f )/σv

2. This form of the spectrum is dimensionless and preserves the relative
contributions to the variance at different frequencies represented on a logarithmic
scale; and its integral is

�∞

0
d ln f = 1

The two forms of spectra are sketched in Fig. 29.21. A generalization of wind
spectra for different wind velocities is possible if the frequency scale is so modified

fWv(f )
�

σv
2
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FIGURE 29.21 Two different ways of presenting power spectral densities.
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that it too is dimensionless. The ratio f/V̄ is the so-called inverse wavelength related
to the “size” of atmospheric eddies. This may be expressed as a ratio to a represen-
tative length scale L, such as the wavelength of the eddies at the peak of the spec-
trum. The dimensionless frequency or inverse wavelength may now be written

f̄ = fL/V̄

Under certain circumstances this relationship is also known as the Strouhal number
or the reduced frequency.

It is generally found that while the length scale L in the oncoming flow corre-
sponds to that of the turbulence itself (this in the natural wind is of the order of
thousands of feet), in the wake the governing length scale is of the same order as the
diameter of the body D. This is illustrated in Fig. 29.22.

VIBRATION OF STRUCTURES INDUCED BY WIND 29.27

FIGURE 29.22 Universal spectrum of horizontal gusti-
ness in strong winds and example of spectrum of fluctua-
tions in wake.

The spectrum of horizontal gustiness in strong winds is largely independent of
height above the ground, is proportional to both the surface drag coefficient κ and
the square of the mean velocity at the standard height of 10 meters, V̄10, and can be
represented, with some approximations, as6,7

Wv(f ) = 4κV̄10
2 (29.25)

in which f = frequency, Hz, f̄ = fL/V̄10 where L = scale length ≈4000 ft, and κ is given
in Fig. 29.20. This spectrum is shown in Fig. 29.22.

The variance of the velocity fluctuations is

σv
2 = �∞

0
Wv(f ) df = 6.68κV̄10

2 (29.26)

It can be seen from Eqs. (29.25) and (29.26) that large velocity fluctuations can be
expected in rough terrain where coefficient κ is large.

The spatial correlation of wind speeds at two different stations is described by the
coherence function (see Chap. 22),

L/V̄10�
(2 + f̄ 2)5⁄6
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γ12
2(f ) = ≤ 1 (29.27)

where W12(f ) = cross spectrum (generally complex) between stations 1 and 2; W1(f)
and W2(f ) are power spectra of the two stations. The coherence function depends
primarily on the parameter ∆zf/V̄, where ∆z = separation and V̄ = 1⁄2(V̄1 + V̄2) is the
average wind speed. A suitable approximate function is

�C�o�h�e�re�n�ce� = e−c(∆zf/V̄)

where c is a constant having a value of approximately 7 for vertical separation and
approximately 15 for horizontal separation. Coherence decreases with both separa-
tion and frequency. A more detailed discussion of wind characteristics is given in
Refs. 1 and 7.

EXCITATION DUE TO TURBULENCE

When a structure is exposed to the effects of wind, the fluctuating wind velocity
translates into fluctuating pressures, which in turn produce a time-variable response
(deflection) of the structure. This response is random and represents the basic type
of wind-induced oscillations. The theoretical prediction of this oscillation is rather
complex but can be reduced to a simple procedure suitable for design purposes. The
discussion of the oscillation is therefore presented in two parts. In the first part, the
basic theoretical steps are outlined. In the second part, the design procedure known
as the gust-factor approach is given in more detail.

FUNDAMENTALS OF RESPONSE PREDICTION

If the area A of the structure exposed to wind is small relative to the significant tur-
bulent eddies, the so-called quasi-steady theory for turbulence can be used to esti-
mate aerodynamic forces. In the drag direction, the drag force

D(t) = ρCDAV 2(t)

= ρCDAV̄ 2�1 + 2 + 	
where ρ = air density (normally equal to 0.0024 slugs/ft3), and CD = drag coefficient.
If v(t) << V̄, the squared term is ignored. The spectra of the fluctuating drag and
velocity are then related as

= 4 (29.28)

where the mean drag (static component of the drag) is

D̄ = ρCDAV̄ 2 (29.29)

and Wv(f) is given by Eq. (29.25).

1
�
2

Wv(f )
�̄

V 2

WD(f )
�̄

D2

v2(t)
�̄
V 2

v(t)
�̄
V

1
�
2

1
�
2

|W12(f )|2
��
W1(f )W2(f )
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With large bodies, the wavelength is comparable to the size of the body itself
(that is, f �A�/V̄ ≈ 1) and it is necessary to modify the drag spectrum by the so-called
aerodynamic admittance function |Xaero(f )|2. This function6 describes the modifying 
influence of any changes in effective drag coefficient as well as the decrease in cor-
relation of the eddies as the wavelength of the eddies approaches the diameter of
the body. Thus, the modified drag spectrum is

= 4|Xaero(f )|2

If these forces act on an elastic spring-mass-damper system, the response of this
system u will have a spectrum

= |Xaero|2|Xmech|2

where static deflection ū =D̄/k, k = stiffness constant, and the mechanical admittance
function is

|Xmech|2 =

where ζ = critical damping ratio, and fn = natural frequency of the system.
The transition from the spectrum of the wind-velocity fluctuations to the spec-

trum of the response is shown diagrammatically in Fig. 29.23. The variance of the
response σu

2 is obtained from the spectrum of the response,

σu
2 = �∞

0
Wu(f ) df (29.30)

The relationships above describe the mean and the variance of the response. For
engineering purposes, it is also useful to define extreme values. It is often satisfactory
to assume that the process in question is Gaussian with probability density function
given by

1
���
[1 − (f/fn)2]2 + 4ζ2(f 2/fn

2)

4Wv(f )
�̄

V2

Wu(f )
�

ū2

Wv(f )
�̄

V2

WD(f )
�̄

D2
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FIGURE 29.23 Transition from gust spectrum to response spectrum.
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p(u) = e−(u − ū)2/2σu
2

This distribution is fully described by the mean and the variance. Maximum values
of the response during time T can be written as

umax = ū + gσu (29.31)

where g = peak factor.The average largest value of the peak factor in a period T can
be estimated from6

g = �2� l�n� ν�T� + (29.32)

where ν is an effective cycling rate of the process, generally close to the natural fre-
quency. The relationship of the distribution of the largest peak value to the distribu-
tion of all values is shown in Fig. 29.24. As can be seen, when the period T or the
natural frequency increases, the expected peak displacement also increases.The fac-
tor g usually ranges between 3 and 5.

0.5772
�
�2� l�n� ν�T�

1
�
�2�π� σu
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FIGURE 29.24 Relationship of distribution of largest peak value to dis-
tribution of all values (for a stationary random process).

Further extension of the concept includes the cross correlation of the wind loads
at different stations (e.g., heights), the shape of the vibration mode, and the nonuni-
formity of the mean flow.These factors can be included into the solution formulated
in terms of modal analysis (see Chap. 21). With a prismatic structure, the displace-
ment may be expressed in the form

u(z,t) =  
∞

j = 1
qj(t)φj(z) (29.33)

where qj(t) = the generalized coordinate of the jth mode, and φj(z) = the jth mode of
natural vibrations to an arbitrary scale.

With damping small and natural frequencies well separated, the cross correlation
of the generalized coordinate can be neglected and the mean-square displacement
(the variance) is
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u�2�(�z�,�t�)� =  
∞

j = 1
q�j�2� φj

2(z) (29.34)

The variance of the generalized coordinate q�j�2� is determined by the power spectrum
of the generalized force Qj.When the lateral dimension of the structure is small, only
cross correlation in direction z need be considered. Then the power spectrum of the
generalized force is

WQj
(f ) = �H

0
�H

0
W12(z1,z2, f )φj(z1)φj(z2) dz1 dz2 (29.35)

where W12(z1,z2, f ) = cross spectrum of the wind loads at heights z1 and z2, and 
H = height of the structure. With respect to Eq. (29.28), the cross spectrum of the
wind loads can be expressed in terms of the power spectrum of the wind speed [Eq.
(29.25)] and the coherence function, Eq. (29.27).

The variance of qj is

q�j�2� = �∞

0
WQj(f )

≈ WQj(fj) + �fj

0
WQj(f ) df (29.36)

where fj = jth natural frequency and generalized mass

Mj = �H

0
m(z)φj

2(z) dz (29.37)

where m(z) = mass of the structure per unit length. The approximate integration8 of
Eq. (29.36) yields the response composed of two parts, the resonance effect (the first
term) and the background turbulence effect (the second term), as shown in Fig.
29.25. The variance of the displacement follows from Eq. (29.34), and its standard 
deviation (rms dynamic displacement) is σu(z) = �u�2�(�z�,�t�)��. The peak response is 
established from Eq. (29.31) by means of the peak factor g [Eq. (29.32)] as in one
degree-of-freedom.The mean deflection ū(z) is the static deflection due to the mean
wind V̄z.

1
��
(2πfj)4Mj

2

1
��
64π3ζfj

3Mj
2

1
���
[1 − (f/fj)2]2 + 4ζ2(f/fj)2

1
��
(2πfj)4Mj

2
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FIGURE 29.25 Spectrum of structural response with indication
of resonance effect and background turbulence effect.
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Other analyses of slender structures are also available.9–11 In applications to
buildings and free-standing towers, the analysis can usually be limited to the first
modal component in Eq. (29.34).Application to buildings and structures with signif-
icant lateral dimension requires the incorporation of the horizontal cross correlation
as well. A complete solution established by means of simplifying assumptions and
numerical integrations is given below.

GUST-FACTOR APPROACH

The gust-factor approach is a design procedure derived on the basis of the theory
above by means of a few simplifying assumptions. The approach given here is a
modified version of the method described in Ref. 12 and adopted in Ref. 13. It con-
siders only the response in the first vibration mode which is assumed to be linear.
These assumptions are particularly suitable for buildings.The method yields all the
data needed in design: the maximum response, the equivalent static wind load that
would produce the same maximum response, and the maximum acceleration
needed for the evaluation of the physiological effects of strong winds (human
comfort).

The gust factor G is defined as the ratio of the expected peak displacement (load)
in a period T to the mean displacement (load) �u. Hence, the maximum expected
response is

umax = Gū = �1 + g � ū (29.38)

The gust factor is given as

G = 1 + g
 �B + � (29.39)

where ζ = damping ratio and K = factor related to the surface roughness; this factor
is equal to 0.08 for open terrain (zone A), 0.10 for suburban, urban, or wooded ter-
rain (zone B), and 0.14 for concentrations of tall buildings (zone C). All the other
parameters appearing in Eq. (29.39) can be obtained from Fig. 29.26. Ce = exposure
factor based on the mean wind speed profile (coefficient α) and thus on surface
roughness. For the three zones, the exposure factor is obtained from Fig. 29.26A for
the height of the building H. Ce relates to wind pressure rather than speed. Hence,
the mean wind speed at the top of the building is given by

V̄H =V̄10 �C�e�

where V̄10 = reference wind speed at the standard height of 10 meters.V̄10 can be
obtained from meteorological stations. Velocity V̄H is needed for determination of
parameters s and F. Factors B, s, F, and g are given in Fig. 29.26C to f as a function of
parameters indicated; D = width of the frontal area, and fn = the first natural fre-
quency of the structure in cycles per second.The average fluctuation rate ν, on which
the peak factor g depends, is evaluated from the formula

ν = f0 
 (29.40)
sF/ζ

�
B + sF/ζ

sF
�
ζ

K
�
Ce

σu�
ū
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The peak factor g is plotted in Fig. 29.26F, assuming a period of observation T = 3600
sec; it can also be calculated from Eq. (29.32).

The parameters given also yield the design wind pressure p, which produces dis-
placement umax if applied as a static load. This design pressure

p = qCeGCp (29.41)

VIBRATION OF STRUCTURES INDUCED BY WIND 29.33

FIGURE 29.26 Components of gust factor.
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where q = 1⁄2ρV̄10
2 is the reference mean-velocity pressure, and Ce = exposure factor.

In this case, Ce varies continuously with the elevation according to Fig. 29.26A for
pressures acting on the windward face of the structure; for the leeward face, Ce is
constant and evaluated at one-half the height of the building.The quantity Cp = aver-
age pressure coefficient, which depends on the shape of the structure and the flow
pattern around it. For a typical building with a flat roof and a height greater than
twice the width, the coefficients are given for the windward and leeward faces in Fig.
29.26B together with the pressure distribution.

The peak acceleration A of a structure due to gusting wind is given by

A = umax 

where umax = maximum deflection under the design pressure p. The other parameters
are equal to those used in Eq. (29.39). When the acceleration exceeds about 1 per-
cent of gravity, the motion is usually perceptible. However, there are large differ-
ences in the perceptibility of motions having very low frequencies.14,15 Similar
approaches are given in Refs. 16 to 18.

EFFECT OF GUSTS ON CLADDING AND WINDOWS

Wind gusts produce local pressures on cladding and window panels of a building.
Because the natural frequency of such a panel is very high compared with the fre-
quency components of the wind-speed fluctuations, the panel displacement is essen-
tially static. Its design may be based on the static displacement resulting from
maximum expected pressure, which is the algebraic sum of the height and time-
dependent exterior pressure (or suction) and the constant interior pressure (or suc-
tion). If the fluctuating component of the pressure p(t) is considered to be a
stationary random process, the exterior expected maximum pressure is

pmax = p̄ �1 + g � = p̄G (29.42)

where p̄ = 1⁄2ρCp
¯̄V 2 = mean pressure
Cp = local pressure coefficient
σp = standard deviation of the fluctuating pressure component
g = peak factor given by Eq. (29.32)

G = gust factor

To account for the sensitivity of glass to both static and dynamic fatigue, it has been
suggested19, 20 that g or G in Eq. (29.42) be multiplied by a wind-on-glass effect factor.

Factors g, σp/p̄, and Cp are most reliably determined from wind-tunnel experi-
ments. They strongly depend on location of the panel, wind direction, turbulence
intensity, and the local flow pattern determined by the shape of the building and its
immediate environment. In full-scale experiments, values of g in excess of 10 have
been observed in highly intermittent flow. Largest local pressure coefficients Cp

(actually suctions) appear with skew wind at the leading edge of the building where
a typical value is Cp = −1.5. In that part of the building exposed to free flow, a gust
factor G ≈ 2.5 is a reasonable estimate.13, 21 The interior pressure is not very high, but
its magnitude and sign depend on openings and leakage.

σp
�
p̄

KsF
�
Ceζ

4π2f0
2g

�
G
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Damage to windows may result from local wind pressure, but it also depends on
material properties of glass and its fatigue. The fatigue limit of glass is only about 20
percent of the instantaneous strength.20

VIBRATION DUE TO VORTEX SHEDDING

Vortex shedding represents the second most important mechanism for wind-
induced oscillations. Unlike the gusts, vortex shedding produces forces which origi-
nate in the wake behind the structure, act mainly in the across-wind direction, and
are, in general, rather regular. The resultant oscillation is resonant in character, is
often almost periodic, and usually appears in the direction perpendicular to that of
the wind. Lightly damped structures such as chimneys and towers are particularly
susceptible to vortex shedding. Many failures attributed to vortex shedding have
been reported.

When a bluff body is exposed to wind, vortices shed from the sides of the body
creating a pattern in its wake often called the Karman vortex street (Fig. 29.16). The
frequency of the shedding, nearly constant in many cases, depends on the shape and
size of the body, the velocity of the flow, and to a lesser degree on the surface rough-
ness and the turbulence of the flow. If the cross section of the body is noncircular, it
also depends on the wind direction. The dominant frequency of vortex shedding fs is
given by

fs = S
¯

Hz (29.43)

where S = dimensionless constant called the Strouhal number,V̄ = mean wind veloc-
ity, and D = width of the frontal area. The second dimensionless parameter is the
Reynolds number R = V̄D/ν, where ν = kinematic viscosity. For air under normal
conditions, ν = 1.6 × 10−4 ft2/sec.

For a body having a rectangular or square cross section, the Strouhal number is
almost independent of the Reynolds number. For a body having a circular cross sec-
tion, the Strouhal number varies with the regime of the flow as characterized by the
Reynolds number. There are three major regions: the subcritical region for R �� 3 ×
105, the supercritical region for 3 × 105 �� R �� 3 × 106, and the transcritical region for
R �

� 3 × 106. Approximate values of the Strouhal number for typical cross sections
are given in Table 29.2. The numbers given in this table are based on Refs. 1, 22, 23,
and 24 and other measurements, and may be used for turbulent shear flow.

PREDICTION OF VORTEX-INDUCED OSCILLATION

Although the mechanism of vortex shedding and the character of the lift forces have
been the subject of a great number of studies,25 the available information does not
permit an accurate prediction of these oscillations. The motion is most often viewed
as forced oscillation due to the lift force, which, per unit length, may be written as

FL = ρDV̄ 2CL(t) (29.44)
1
�
2

V�
D

VIBRATION OF STRUCTURES INDUCED BY WIND 29.35

8434_Harris_29_b.qxd  09/20/2001  11:44 AM  Page 29.35



where CL(t) is a lift coefficient fluctuating in a harmonic or random way. Some
authors26, 27 consider vortex shedding to be self-excitation, which does not seem nec-
essary, however, for relatively small motions. Hence, the solution of the response
depends on the time-history assumed for CL(t).

HARMONIC EXCITATION OF PRISMATIC CYLINDERS BY VORTICES

Harmonic excitation represents a traditional model for vortex excitation, but it is
really justified only for very low Reynolds numbers (�� 300) or possibly for large
vibration where the motion starts controlling both the wake and the lift forces in the
form of the “locking-in” phenomenon. Strongest oscillations arise at that wind
velocity for which the frequency of vortex shedding fs is equal to one of the natural
frequencies of the structure fj. This resonant wind velocity is, from Eq. (29.43),

Vc = fjD (29.45)

With free-standing towers and stacks, resonance in the first two modes is met most
often; resonance with higher modes has been observed as well with guyed towers
(Fig. 29.27).

At the resonant wind velocity, the lift force is given by Eq. (29.44) in which 
CL(t) = CL sin 2πfjt, and CL = amplitude of lift coefficient. Assuming a uniform wind
profile and a constant diameter D, the resonant amplitude of mode j at the critical
wind velocity Vc is, from Eq. (29.33),

uj(z) = φj(z) �H

0
φj(z) dz (29.46)

where Mj is given by Eq. (29.37) and ζ = structural damping ratio. The formula can
be further simplified if it is assumed that the lift force is distributed along the struc-
ture in proportion to the mode φj(z). This assumption reflects the loss of spanwise
correlation of the forces.Then, with constant mass per unit length m(z) = m, the res-
onant amplitude at the height where the modal displacement is maximum:

uj = (29.47)
D3

�
ζm

ρCL�
16π2S2

D3

�
ζMj

ρCL�
16π2S2

1
�
S
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TABLE 29.2 Aerodynamic Data for Prediction of Vortex-Induced Oscillations 
in Turbulent Flow

rms lift Correlation
Strouhal coefficient Bandwidth length L

Cross section number S σL B (diameters)

Circular:
Subcritical 0.2 0.5 0.1 2.5
Supercritical Not marked 0.14 Not marked 1.0
Transcritical 0.25 0.25 0.3 1.5

Square:
Wind normal to face 0.11 0.6 0.2 3
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For the first mode of a free-standing structure, this occurs at the tip. In higher modes,
this amplitude appears at the height where local resonance takes place. For circular
cylinders, a design value of the lift coefficient CL is about �2�σL. This simple formula
can be used for the first estimate of the amplitudes that are likely to represent the
upper bound. It is also indicative of the role of the diameter, mass, and damping of
the structure. Approximate values of σL are given in Table 29.2.

RANDOM EXCITATION OF PRISMATIC CYLINDERS BY VORTICES

Even when vortex shedding appears very regular, the lift force and thus CL(t) are not
purely harmonic but random. The power spectrum of the lift force per unit length is
from Eq. (29.44).

WL(f) = � ρDV̄ 2σL�
2

WL′(f) (29.48)

where σL = 
C�L�2�(�t�)� is the standard deviation of the lift coefficient and WL′(f) = nor-
malized power spectrum of CL(t) for which

1
�
2
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FIGURE 29.27 Vortex-induced oscillations in different modes measured on 1000 ft guyed
tower.28
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�∞

0
WL′(f) df = 1 (29.49)

With circular cylinders, the lift force is narrow-band random in the subcritical and
transcritical22,23 ranges where the energy is distributed about the dominant fre-
quency fs, given by Eq. (29.43) (Fig. 29.28A). Such spectra can be described by a
Gaussian-type curve,

29.38 CHAPTER TWENTY-NINE, PART II

FIGURE 29.28 Spectra of lift coefficient for circular cylinder.

A few design values of bandwidth B are given in Table 29.2. In the supercritical
range, the power spectrum is broad (Fig. 29.28B) and can be expressed as29

WL′(f) = 4.8 (29.51)

Because the vortices are three-dimensional, a realistic treatment also requires the
inclusion of the spanwise cross correlation of the lift forces. This can be done in
terms of the “correlation length” L given in number of diameters.

Approximate values of L are given in Table 29.2. The correlation length
decreases with turbulence30 and shear, and increases with aspect ratio 2H/D and the
amplitude of the motion as shown in Fig. 29.29.

Using the correlation length, the spectral density of the lift force, Eqs. (29.50) and
(29.51), and a few further approximations, the vibration can be evaluated from Eqs.
(29.34) to (29.36). The root-mean-square (rms) displacement at height z in mode j is
approximately


�u�j�2�(�z�,�t�)� = C
π1/4σLρD4φj(z/H)
��

�B�ζ� (4πS)2Mj

D
�̄
V

1 + 682.2(fD/ V̄)2

���
[1 + 227.4(fD/ V̄)2]2

(A) (B)

WL′ ( f ) = exp � − � �
2

	 (29.50)
1 − f/fs
�B

1
�
�π�Bfs
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where

C2 = �1

0 � �
3α

φj
2 � � d � �

Here, α = wind profile exponent (Fig. 29.20), and parameters S, σL, B, and L are
given in Table 29.2. The mode φj(z/H) is dimensionless, and consequently Mj is in

slugs in this case. The peak response is g 
u�j�2�(�z�,�t�)�, where the peak factor g is given by
Eq. (29.32). If it is larger than about 2 percent of diameter D, locking-in may develop
and the analysis should be repeated assuming harmonic excitation or at least random
excitation with a significantly increased correlation length, as Fig. 29.29 indicates.

RANDOM EXCITATION OF TAPERED CYLINDERS BY VORTICES

Tapered cylinders, such as stacks, also vibrate due to vortex shedding, but less is
known about the mechanism of excitation. It appears that the lift forces are nar-
rowband random with a rather small correlation length L and with the dominant
frequency fs given by Eq. (29.43). As the diameter is variable, local resonance
between fs and the natural frequency fj takes place at different heights zr. As the
wind speed increases, the resonance first appears at the tip and shifts downward.
The critical wind speed for each height follows from Eq. (29.45) with D = D(zr).
The rms displacements at height H due to local resonance at height zr can be
obtained from an approximate formula,32


 u�j�2�(�H�,�t�)�

= 
� φj(H)

where

Ψ = +

or with a constant taper

Ψ = +

where t = D(0) − D(H) and α = the wind-
profile exponent. The other parameters
can be taken from Table 29.2. The val-
ues listed for the transcritical region
may be adequate, inasmuch as most
tapered stacks are large. The peak dis-
placement is again obtained by means
of the peak factor given by Eq. (29.32).

Maximum response of chimneys in
the first mode usually results from local
resonance at about 3⁄4 H. The height of
maximum excitation follows from the
condition d[D4(z)φj(z)]/dz = 0.

αD(zr)�
zr

t
�
H

αD(zr)�
zr

dD(zr)�
dz

σLρD4(zr)φj(zr)��
8S2Mj

L
�
2π3ζΨ

z
�
H

z
�
H

z
�
H

(H/D)2

��
1 + (H/2LD)
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FIGURE 29.29 Variation of correlation length
of vortex shedding with amplitude of motion and
turbulence (2a = double amplitude, turbulence
intensity 10 percent).
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SUPPRESSION OF VORTEX-INDUCED VIBRATIONS

Vortex shedding may induce severe vibration of a cylindrical structure such as a
chimney, free-standing tower, guyed mast, bridge columns, etc. Very strong oscilla-
tions have been observed28,31 in all-welded structures where the damping ratio is
extremely low, sometimes less than 0.005.8,28 Welded structures are particularly
prone to fatigue failure, as the endurance limit may be only a fraction of the strength
if heavy notches, flaws, attachments, or other adverse details are present. In other
cases, the motion is intolerable because of its physiological effects or swaying of
antennas. For these reasons, suppression of vibration is often desirable.

In some cases, vibration can be reduced by increasing the structural damping.
This can be accomplished by additional dampers attached to an independent sup-
port28 or to a special mass suspended from the structure and suitably tuned or by
hanging chains33 (see Chap. 6). Columns of a few bridges were filled with gravel,
sand, or plastic balls partly filled with oil. The increase in mass may be unfavorable
but can increase the original structural damping.

Another successful method of vibration control is to break down the wake pat-
tern by providing the surface by helical “strakes” or “spoilers.”28,31,34 A suitable
height of the spoilers is about 0.1D or more with a pitch of about 5D. A significant
drawback of the spoilers is that they considerably increase the drag, sometimes by
100 percent or more.31,35

WAKE BUFFETING

If one structure is located in the wake of another, vortices shed from the upstream
structure may cause oscillation of the downstream structure.36,37 If the two structures
differ greatly in size or shape, this excitation is usually not significant. Strong vibra-
tion of the downstream structure may arise when two or more structures are identi-
cal and less than about 10 diameters apart. Then the structure in the wake is
efficiently excited by well-tuned wake buffeting and its own vortex shedding. Such
excitation has been observed with stacks and bridges, and to a certain degree with
hyperbolic cooling towers.36

GALLOPING OSCILLATIONS

Vibrations due to turbulence and vortices discussed above are induced by aerody-
namic forces which are, to a high degree, independent of the motion and act even on
stationary bodies. Quite a different kind of oscillation is induced by the aerodynamic
forces generated by the motion itself. Such forces may result from oscillatory
changes in pressure distribution brought about by the continuous change in the
angle under which the wind strikes the structure (“angle of attack”). This kind of
oscillation often has a tendency to diverge; it is called, summarily, aerodynamic insta-
bility, flutter, or self-excited oscillation. Sudden start and violent amplitudes are typi-
cal of such phenomena (Fig. 29.17C).

The mechanism of this oscillation is, in general, complex.The aerodynamic forces
may be a function of the displacements (translation and rotation), vibration velocity,
or both, and they may interact with turbulence and vortex shedding. The basic type
of the self-excited oscillations is the lateral (across-wind) oscillation induced by
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aerodynamic forces which are related to vibration velocity alone. Such oscillation is
referred to as galloping. Typical features of galloping oscillation are motion in the
direction perpendicular to that of the wind, sudden onset, large steady amplitudes
increasing with wind velocity, and a frequency equal to the natural frequency. Gal-
loping oscillation occurs in transmission lines and in a variety of structures having
square, rectangular, or other sharp-edged cross sections.

The origin of galloping oscillation depends on the relation between lift and drag.
If a body moves with a velocity u̇ in a flow having velocity V̄ perpendicular to its
direction (Fig. 29.30), the aerodynamic force acting on the body is produced by rela-
tive wind velocity V̄rel. The angle of attack of relative wind is

α = arctan (29.52)
u̇
�̄
V
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FIGURE 29.30 Cross section in flow.

The drag and lift components D and L of the aerodynamic force F are

D = CD ρhl V̄ 2
re1

L = CL ρhl V̄ 2
re1

where CD and CL are drag and lift coefficients at angle α (Fig. 29.31), h = depth of the
cross section, and l = length of the body.

The component of force F into the direction of axis Y, therefore, is

Fy = −(CD sin α + CL cos α) ρhl V̄2 sec2 α = CFy ρhl V̄2 (29.53)

where

CFy = −(CL + CD tan α) sec α (29.54)

The lateral force excites the vibration if the first derivative of CFy at α = 0 is >0, hence

A1 = �α = 0
= −� + CD� > 0 (29.55)

dCL�
dα

dCFy�
dα

1
�
2

1
�
2

1
�
2

1
�
2
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TABLE 29.3 Coefficients A1 for Determination of Galloping Onset Wind Velocity 
(Infinite Prisms)

Cross section
(Side ratio)

Unstable in smooth flow Stable in smooth flow

Square Rect. Rect. Rect. Rect. D-section*

V →

Flow

Smooth 2.7 1.91 2.8 0 −0.03 −0.1
Turbulent ≈10

percent
intensity 2.6 1.83 −2.0 0.74 0.17 0

* Varies with Reynolds number.

This condition for aerodynamic instabil-
ity is known as Den Hartog’s criterion.38

Substitution of Eq. (29.52) into Eq.
(29.54) indicates that the aerodynamic
forces depend on vibration velocity and
thus actually represent the aerodynamic
damping. This damping is negative if A1

> 0. Because the system also has struc-
tural damping ζ, which is positive, the
vibration will start only if the total avail-
able damping becomes less than 0. This
condition yields the onset (minimum)
wind velocity for galloping from the
equilibrium (or zero displacement) posi-
tion as

V̄0 = ζ (29.56)

where fj = natural frequency, n = ρh2/(4m) = mass parameter, and m = mass of the
body per unit length. Some values of coefficient A1 are given in Table 29.3.

Galloping oscillations starting from zero initial displacement can occur only
when the cross section has A1 > 0. Cross sections having A1 ≤ 0 are generally consid-
ered stable even though galloping may sometimes arise if triggered by a large initial
amplitude.41

The response and the onset velocity are often very sensitive to turbulence. Some
cross sections, such as a flat rectangle or a D section, are stable in smooth flow 
but can become unstable in turbulent flow.41, 42 With other cross sections, turbulence
may stabilize a shape that is unstable in smooth flow (see Table 29.2). From Eqs.
(29.53) and (29.54) the nonlinear, negative aerodynamic damping can be calcu-
lated43 for inclusion in the treatment of the across-wind response due to atmospheric
turbulence.

The prediction of oscillations for wind velocities greater than V0 depends on
the shape of the CFy coefficient and requires the application of nonlinear the-

2πfjh
�
nA1
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FIGURE 29.31 Lift and drag as function of
angle of attack.
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ory.39–42 A few typical cases are shown in Fig. 29.32. The cases are typical of a
square cross section, a flat rectangular section, and a D section whose angle of
attack is allowed to change due to drag. Similar response can be expected with
other cross sections.

Torsion can also participate in galloping oscillations and play an important part
in the vibration.This is the case with angle cross sections44 and bundled conductors.45

The quasi-steady theory of pure torsional galloping can be found in Ref. 46. A solu-
tion of coupled galloping is presented in Ref. 47.

Galloping often appears in overhead conductors which also vibrate due to vortex
shedding. Vortex shedding produces resonant vibration in a high-vibration mode.
Galloping usually involves the fundamental mode and is known to occur when the

VIBRATION OF STRUCTURES INDUCED BY WIND 29.43

FIGURE 29.32 Typical lateral force coefficients CFy and corresponding galloping
oscillations: (A) vibration from equilibrium position, (B) vibration triggered by initial
amplitudes, and (C) vibration with variable angle of attack.
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conductor is ice-coated or free of ice. The vibration often leads to fatigue failures,
and various techniques are therefore used to reduce the amplitude. This can be
achieved by means of resonant dampers48 consisting of auxiliary masses suspended
on short lengths of cable which dissipate energy through the bending (see Chap. 6),
or aerodynamic dampers49 consisting of perforated shrouds. Vibrations of bundled
conductors can be eliminated by twisting the bundle45 and thereby changing the
aerodynamic characteristics in the spanwise direction.

VIBRATION OF 

SPECIAL STRUCTURES

The basic types of vibration discussed above are common in many structures. How-
ever, there are some special structures which would require individual treatment. A
few examples are cited below.

Guyed towers experience complicated vibration patterns because of the nonlin-
earity of the guys, the three-dimensional character of the response, the interaction
between the guys and the tower, and other factors.28, 50–52

Hyperbolic cooling towers can suffer from some of the effects of wake buffeting36

and are susceptible to turbulence.53

Information on the vibration of a number of special structures can be found in
Refs. 2 to 5.
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CHAPTER 29, PART III
VIBRATION OF 

STRUCTURES INDUCED 
BY SOUND

John F. Wilby

INTRODUCTION

Vibration of structures due to interaction with a surrounding fluid can occur in a
variety of ways. Parts I and II of this chapter are concerned with several fluid flow
phenomena—waves, vortices, and wind—that induce vibration in an adjacent struc-
ture. The intent in Part III is to address the response of structures to acoustic and
aeroacoustic excitations, where the term aeroacoustic includes sources, such as tur-
bulent boundary layers, that have many characteristics similar to those of an acoustic
field. The excitations can be deterministic or random in nature, as defined in Chap.
1, depending on the particular source.

Sound-induced vibration can result in sound radiation to other regions, acoustic
fatigue (also known as sonic or high-cycle fatigue) of the structure being excited, or
transmission of vibration to attached equipment causing malfunction or failure.
Interest is often centered on aerospace applications where structures are light-
weight and sound levels are high. In that case, there is the likelihood of damage to
the primary structure of an aerospace vehicle, payloads in a launch vehicle, or the
equipment mounted on the structure. However, structural vibration due to acoustic
excitation occurs in a wide range of other environments including building damage
and vibration of equipment in microelectronics manufacturing facilities.

Different acoustic and aeroacoustic sources will be described, followed by a dis-
cussion of methods for predicting linear and nonlinear response of structures to an
acoustic or aeroacoustic excitation. Then, the problem of acoustic fatigue will be
addressed. Finally, test methods for the measurement of structural response to
acoustic and aeroacoustic excitations will be identified.

SOUND SOURCES

Acoustic and aeroacoustic pressure fields may be deterministic or random, sta-
tionary or nonstationary, and homogeneous or inhomogeneous (see definitions in

29.47
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Chap. 1). Deterministic pressures are periodic or almost-periodic (see Chap. 22)
and can be described by time-dependent functions, whereas random pressures can
be described only in statistical terms (see Chap. 22). Stationary pressure fields have
properties that, on the average, are invariant with time. That is not true of nonsta-
tionary pressure fields, which can include impulsive excitations such as blast waves
and sonic booms. Homogeneous pressure fields have properties that, on the aver-
age, are the same at any location on a structure, whereas inhomogeneous pressure
fields have properties that change with location.The term aeroacoustic is used here
in a general sense to include sound produced by fluid flow or by interaction of
flows with solid bodies, and fluctuating aerodynamic pressures such as those
beneath a turbulent boundary layer. For convenience, and without loss of general-
ity, both acoustic and aeroacoustic pressure fields will be referred to herein as
sound fields.

One important characteristic of a sound field is that the fluctuating pressures are
distributed over a large area, if not the entire surface, of the excited structure, and
usually consist of a wide range of frequencies that includes several modes of vibra-
tion of the structure.The response of the excited structure depends on several prop-
erties of the sound field—sound pressure, frequency content, spatial distribution of
pressure level and phase, and duration of exposure. The spatial characteristics of a
random pressure field are best described in terms of the pressure cross-spectrum
(see Chap. 22), although narrowband correlation functions have been used as equiv-
alent representations (see Chap. 11). Sound pressures encountered in everyday life
cover a range of many orders of magnitude.Thus, it is convenient to express them in
terms of a logarithmic quantity called the sound pressure level, Lp, which is
expressed in terms of decibels (dB) and is defined by

Lp = 10 log � 	 = 20 log � 	 dB (29.57)

where prms is the root-mean-square (rms) value of the sound pressure and pref is a ref-
erence pressure that has been established by international standard to be pref = 20
µPa in air. The common reference for underwater sound pressures is pref = 1 µPa.

The range of sound pressure levels encountered in practice is demonstrated by
the typical values listed in Table 29.4. The levels vary from 0 dB at the threshold of
human hearing to 170 dB or more on some surfaces of aerospace vehicles, well
above the threshold of pain for a human. Typical sound pressure levels near a busy
highway are on the order of 80 dB, and noisy machinery can generate sound pressure
levels of about 100 dB at the operator’s position.

Structural response to sound is of interest in a variety of situations but, as indi-
cated by Table 29.4, the most intense sound fields can be found in aerospace appli-
cations. Thus, aerospace vehicle sound sources are of special interest and provide a
wide range of characteristics. The sources include the exhaust of jet and rocket
engines, propellers and fans, powered lift devices, turbulent boundary layers, oscil-
lating shock waves, and sonic booms.1 In many cases, the pressure field is neither sta-
tionary nor homogeneous. However, it is often acceptable to assume stationarity and
homogeneity when predicting the response of a structure, if the variations in space
and time are gradual. There are exceptions to this assumption, for example, pro-
peller noise where the pressure field is strongly inhomogeneous with the sound
pressure levels being very high in the plane of rotation of the propeller and decreas-
ing rapidly in the forward and aft directions.A survey of near-field pressure fields on
flight vehicles can be found in Ref. 2.

prms�
pref

p2
rms�

p2
ref
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Although the following discussion on sound sources is directed toward aerospace
vehicles, it should be viewed more generally in terms of sound-generating mecha-
nisms that can be found in a wide range of situations. For example, the high-velocity
gas exhaust from a pressure relief valve has acoustical characteristics similar to
those of a jet engine exhaust. Axial fans in air-conditioning systems or gas-cooled
nuclear reactors have similar noise-generating mechanisms to those of a turbofan
engine. Also, regions of flow separation on an automobile can have characteristics
that are similar to those for separated flow on an airplane.

JET AND ROCKET EXHAUSTS

Jet and rocket noise is generated by interaction between the turbulent exhaust of the
jet or rocket engine and the surrounding air. At low exhaust velocities, below about
1000 ft/sec (300 m/sec), the acoustic power generated by the exhaust is proportional
to the eighth power of the exhaust velocity, Vj. However, as the velocity increases the
index decreases until, for rocket exhausts, where the exhaust velocity is of the order
of 9000 ft/sec (2750 m/sec), the acoustical power is proportional to the third power
of velocity. As the mechanical power of a rocket exhaust is also proportional to V j

3,
the acoustical power of a rocket exhaust is usually expressed in terms of an effi-
ciency factor η, which is the ratio of acoustical power Wa to mechanical power Wm.
That is,

Wa = ηWm = 0.5ηTVj (29.58)

where T is the thrust of the rocket engine.Typical values3,4 of the efficiency factor are
usually in the range 0.5 to 1.0 percent.

Since jet noise levels are determined by the relative velocity between the exhaust
and the surrounding air, the noise levels will decrease as the vehicle accelerates at
takeoff or liftoff, the highest levels occurring when the vehicle is stationary.This vari-
ation of noise level with vehicle speed means that the noise levels are nonstationary,
although they can be considered as stationary over short time periods.

VIBRATION OF STRUCTURES INDUCED BY SOUND 29.49

TABLE 29.4 Typical Sound Pressure Levels for Different Environments

Sound pressure
level Lp

(dB re 20 µPa) Environment

170 Jet noise on aircraft surface
160 Immediate hearing damage
140 Threshold of pain
120 Jet airplane takeoff at 1500 ft (500 m)
100 Punch press and wood planers at 3 ft (1 m)
90 Power mower at 3 ft (1 m)
80 Truck at 60 ft (20 m)
70 Automobile at 60 ft (20 m)
50 Conversation level, A-weighted, in a free field, at 3 ft (1 m)
40 Quiet residential neighborhood
20 Recording studio, A-weighted
0 Threshold of hearing
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Jet noise is strongly directional, with the highest sound pressure levels in the far
field occurring at angles of 30 to 50° to the jet axis, the angle being dependent on the
exhaust velocity. The situation is not so well defined in the near field, where the air-
craft structure is located. Representative near-field pressure contours can be found
in Refs. 4 to 7, and typical contours are shown in Fig. 29.33.7

29.50 CHAPTER TWENTY-NINE, PART III

FIGURE 29.33 Jet noise near-field sound pressure levels. D = nozzle diameter, x = distance
downstream of nozzle, y = distance from jet axis. (Reproduced with permission of ESDU Inter-
national.7)

Jet noise spectra are broadband and peak at different frequencies for different
locations in the near field.5–7 The spectra can be normalized in terms of a nondimen-
sional frequency using jet nozzle diameter D and jet velocity Vj as the normalizing
parameters. Then, the frequency of the spectral peak lies in the range 0.1 < fD/V <
1.0, depending on location relative to the nozzle, as shown in Fig. 29.34.7

The spatial distribution of the pressure phase for a jet noise near field can be pre-
sented in terms of the band-limited (e.g., one-third-octave band) crosscorrelation
function5,8,9 (see Chap. 11) or the normalized cross–spectral density function γp(ξ,f)
(see Chap. 22), since the two functions are equivalent. Typical measured values of
γp(ξ,f) for jet noise pressures close to a jet8,9 are shown in Fig. 29.35. Frequency f is
normalized with respect to separation distance ξ and the trace wavespeed of the inci-
dent sound, in order to permit scaling from one situation to another. Trace
wavespeed Vt is the wave speed of the incident sound when projected onto the sur-
face of the excited structure. Thus, for sound waves of speed c incident at an angle θ
to the normal to the surface, the trace wavespeed is c/sin θ. The value of Vt is often
frequency dependent and, in the case of the data in Fig. 29.35, has values of 1.43c,
1.25c, and 1.0c for frequencies 400, 500, and 800 Hz, respectively.These values of the
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trace wavespeed correspond to angles of incidence of 44, 53, and 90°, respectively.
The different angles of incidence are associated with the different locations in the jet
exhaust of the effective noise sources for different frequencies. Figure 29.35 refers to
measurements made in a plane passing through the jet axis. Corresponding infor-
mation in a direction perpendicular to that plane are less well defined.

For convenient substitution into analytical models, the normalized cross-spectrum
is often represented as an exponentially decaying cosine, with the general form

γp(ξ,f) = e−ak|ξ| cos (kξ) (29.59)

where a is a decay parameter and k is the wave number of the pressure field, where
wave number is defined by

k = = (29.60)

Curves of γp(ξ,f) are shown in Fig. 29.35 for three values of the decay parameter a,
namely, 0.05, 0.07, and 0.10.

Supersonic jet exhausts that are under- or overexpanded contain shockwaves
that result in the generation of additional broadband noise and discrete frequency
screech.1 The screech consists of a fundamental component, whose frequency is a
function of nozzle pressure ratio or flow Mach number, and several harmonics. The
directivity of the screech noise is a function of harmonic order, with the fundamen-
tal having a maximum in the upstream direction and the second harmonic having a
multilobed directivity pattern with peaks in directions perpendicular to the flow
direction, as well as in the upstream direction.

2πf
�
Vt

ω
�
Vt

VIBRATION OF STRUCTURES INDUCED BY SOUND 29.51

FIGURE 29.34 Normalized sound pressure spectra for several locations in jet noise near-
field. V = jet velocity; D, x, y, as defined in Fig. 29.33. (Reproduced with permission of ESDU
International.7)
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FIGURE 29.35 Example of normalized cross-spectral density function for jet noise near-field pressures. Test
data collapsed with trace velocity Vt = 1.43c (200, 400 Hz), 1.25c (500 Hz), and 1.0c (800 Hz). Continuous plots
represent Eq. (29.59) with decay parameter a = 0.05, 0.07, and 0.10. (Data from Richards and Mead.9)
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ENGINE EXHAUST FLOWS

Powered lift aircraft utilize the exhaust from the engines to augment the lift gener-
ated by the wing and increase the effectiveness of the control surfaces, utilizing sys-
tems such as upper surface blowing and externally blown flaps.1 By so doing, the
surfaces of the aircraft are exposed to high sound pressure levels that are a combi-
nation of acoustic and aeroacoustic pressures. For example, sound pressure levels of
up to 165 dB were measured on an airplane with upper surface blowing.10 In addi-
tion, the structure was heated to a temperature of 500 to 700°F (260 to 370°C). A
similar situation exists on stealth aircraft where the engine exhaust flows over the
upper surface of the aft structure so that the gases are cooled before they can be
observed from below.10 Sound pressure levels greater than 180 dB are predicted in
the neighborhood of the exhaust flows on hypersonic aircraft.10–12

PROPELLERS AND FANS

Propeller or fan noise consists of both broadband and discrete frequency compo-
nents, but the pressure spectrum is dominated by discrete frequency components at
the blade passage frequency of the propeller or fan and harmonics thereof. The
blade passage frequency fb is given by

fb = (29.61)

where Ω is the rotational speed (rpm) of the propeller or fan and B is the number of
blades. The spectra for counter-rotating propellers are more complex, with blade
passage frequency components for each of the propellers plus interaction tones,13 as
shown in Fig. 29.36. The spectrum in the figure also contains components for each
individual blade of the propeller, because the blades are not identical.

ΩB
�
60

VIBRATION OF STRUCTURES INDUCED BY SOUND 29.53

FIGURE 29.36 Spectrum for near-field sound pressure levels of high-speed, counter-rotating pro-
peller with 8 and 10 blades. BPF(8) and BPF(10) denote blade passage frequencies for 8- and 10-blade
propeller stages, respectively. (Simpson, Druez, Kimbrough, Brock, Burge, Mathur, Cannon, and Tran.13)
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Sound pressure levels on the fuselage of multiengined general aviation aircraft
are typically of the order of 130 dB at the blade passage frequency. High-speed pro-
pellers, with tip speeds that are supersonic under cruise conditions, have higher
sound pressure levels on the order of 150 dB.13

Cross-spectrum measurements of propeller noise on a general aviation airplane14

show that the pressure field in the plane of rotation is an aerodynamic potential field
that rotates with the propeller blades. Forward and aft of the plane of rotation the
pressure field is acoustic and has the characteristics of propagating acoustic waves gen-
erated by sources located near the tips of the propeller blades.The spatial distribution
of the cross-spectrum phase is more complicated for counter-rotating propellers.15

TURBULENT BOUNDARY LAYER

The dominant fluctuating pressures acting on launch vehicles, missiles, and aircraft
in high-speed flight are associated with the turbulent boundary layer on the external
surfaces of the vehicle. Similar fluctuating pressure fields are also encountered on
other moving vehicles including automobiles, particularly around the windshield,
and high-speed elevators. These pressure fields have many of the characteristics of
an acoustic pressure field, but the convection velocity of the pressure fluctuations
over the surface may be subsonic in contrast to an acoustic field where the trace
velocity is always equal to, or greater than, the speed of sound in the fluid.There are
also differences in the cross-spectra.

Measurements of turbulent boundary layer pressure fluctuations have been
made in wind tunnels, on aircraft in flight, and underwater.9,16–18 The measurements
have included both subsonic and supersonic flow conditions, but the emphasis has
been on subsonic conditions.A combination of analytical and empirical methods has
resulted in representations for the various characteristics of turbulent boundary
layer pressure fields for both attached and separated flow.

For an attached turbulent boundary layer, taking into account compressibility
effects, the rms pressure prms can be expressed as a function of Mach number, in rela-
tionships such as19

= (29.62)

where q is the dynamic pressure of the flow, given by q = 1⁄2ρV2 where V is velocity, ρ
is the density of the fluid, and M is the flow Mach number, defined at some location
such as free stream or the edge of the boundary layer. Corresponding relationships
can be developed for separated flow conditions.

The pressure spectrum Gp(ω) for an attached turbulent boundary layer is broad-
band and can be represented by a relationship of the form19

= (29.63)

where κ is a function of flow Mach number, V is the flow velocity, and δ* is the
boundary layer displacement thickness. The boundary layer displacement thickness
is the distance that the surface beneath the boundary layer would have to move out-
ward and normal to itself to account for the differences in the rate of mass flow with
the boundary layer present and, hypothetically, without the boundary layer. Sepa-
rated turbulent boundary layers in the neighborhood of steps, ramps, and other sur-

2κ(prms/q)2

��

π�1 + ��κω
V
δ*
��

2

	
Gp(ω)V
�

q2δ*

0.006
��
1 + 0.13M2
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q
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face discontinuities have higher pressure levels at low frequencies than is the case
for attached boundary layers, as shown in Fig. 29.37.18 Pressure spectrum and fre-
quency are normalized in Fig. 29.37 with respect to boundary layer thickness δ rather
than boundary layer displacement thickness δ*. Boundary layer thickness can be
defined as the distance from the surface at which the flow velocity reaches 99.5 per-
cent of the free stream velocity. Equation (29.63) can be modified to take into
account the low-frequency shifts seen in Fig. 29.63 by replacing κ with Cκ, where 
C > 1. The presence of oscillating shockwaves further increases the low-frequency
component of the pressure spectrum,18 as can be seen in Fig. 29.37.

VIBRATION OF STRUCTURES INDUCED BY SOUND 29.55

FIGURE 29.37 Pressure spectra beneath different turbulent boundary
layers in supersonic flow. Gp(f) = Gp(ω)/2π, V = flow velocity, q = flow
dynamic pressure, δ = boundary layer thickness. (Coe, Chyu, and Dods.18)

Normalized cross-spectra or band-limited cross-correlation functions have been
measured for attached turbulent boundary layers.16,17 The measured data indicate
that the normalized cross-spectrum is dependent on the thickness of the boundary
layer δ as well as on the convection speed Vc of the pressure field and the separation
distance ξ between the measuring points. Empirical relationships such as20
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0.5

|ξ|� cos � � (29.64)

have been proposed for attached turbulent boundary layers. There is little corre-
sponding information for separated boundary layers, where the flow is much more
complicated.

IMPULSIVE SOUNDS

Impulsive sounds, such as sonic booms generated by airplanes in supersonic flight1

and blast waves from explosions, can cause transient vibration of a structure.

ANALYTICAL METHODS

It is often assumed in the analysis of structural response to acoustic excitation that
the structure responds in a linear manner, so that there is a linear relationship
between excitation force and structural response. However, this assumption may not
be valid when the acoustic excitation levels are high. In that case the response is non-
linear.

LINEAR ANALYSIS

Several different methods can be used to calculate the linear response of a structure
to acoustical excitation. They include classical normal mode analysis, statistical
energy analysis, and finite element analysis. Each method has its own advantages
and disadvantages.

Classical Normal Mode Analysis. In the classical modal formulation,9 the acceler-
ation autospectrum Ga(x,ω) for location x and angular frequency ω can be written as

Ga(x,ω) = ω4A2Gp(ω) 
r


s

ψr(x)ψs(x)Hr(ω)Hs*(ω)j2
rs(ω) (29.65)

where A is the area of the structure exposed to the excitation, Gp(ω) is the excitation
pressure spectrum, ψr(x) is the mode shape of mode of order r, Hr(ω) is the structural
mode response function, j2

rs(ω) is the cross acceptance that describes the spatial cou-
pling between the excitation pressure field and the structural mode shapes, and an
asterisk denotes a complex conjugate. The cross acceptance is defined by

j2
rs(ω) = �� Gp(x, x′,ω)ψr(x)ψs(x′ )dxdx′ (29.66)

and the structural mode response function is defined by

|Hr(ω)|2 = Mr
−2[(ωr

2 − ω2)2 + ηr
2ωr

4]−1 (29.67)

where ηr is the damping loss factor (ηr = 2ζ r, where ζ r is the damping ratio), Mr is the
modal mass, and ωr is the resonance frequency of mode r. The modal mass is defined
as

1
�
A2Gp(ω)

ωξ
�
Vc

0.27
�

δ
0.1ω
�

Vc
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Mr = �
A

mψr
2(x)dx (29.68)

where m is the mass per unit area for a panel of area A. For a uniform panel with
simply supported boundaries, Mr = mA/4. Prediction methods for ωr can be found in
Chap. 7.

If the damping is small and the fluid loading is negligible (which is usually true in
air but not in water), the vibration is dominated by the response at the resonance
frequencies and contributions from the cross terms (r ≠ s) can be neglected. Then
Eq. (29.65) becomes

Ga(x,ω) = ω4A2Gp(ω) 
r

ψr
2(x)|Hr(ω)|2jr

2(ω) (29.69)

In Eq. (29.69), the cross acceptance of Eq. (29.66) is replaced by the joint acceptance

j r
2(ω) = �� Gp(x, x′,ω)ψr(x)ψr(x′ )dxdx′ (29.70)

Assuming that the structure has simply supported boundaries, and Gp(ω) and jr
2(ω)

vary slowly with ω in frequency band ∆ω, the space-average, mean square response
in frequency band ∆ω is

[a2]∆ω ≈ Gp(ω) 
r

jr
2(ω) �

∆ω
|Hr(ω)|2dω (29.71)

For small damping

�
ω

|Hr(ω)|2dω ≈ (29.72)

and Eq. (29.71) reduces to

[a2]∆ω ≈ Gp(ω) 
r � ∆ω

(29.73)

The notation r � ∆ω signifies that the summation is over all modes of order r whose
resonance frequency ωr lies in the frequency band ∆ω. From Eq. (29.73), the accel-
eration spectral density, averaged in space and frequency, is

〈Ga(ω)〉A,∆ω = ≈ Gp(ω) 
r � ∆ω

(29.74)

where 〈 〉A,∆ω denotes averaging over area A and frequency band ∆ω. It can be seen
in Eqs. (29.69), (29.73), and (29.74) that the two functions representing the excitation
pressure field are the pressure autospectrum, Gp(ω), and the joint acceptance, jr

2(ω).
The classical normal mode approach of Eq. (29.69) is an accurate way to predict

structural response to acoustic or aeroacoustic pressure fields, provided that the rel-
evant details of the structure and pressure field are known and represented cor-
rectly. However, that is often not the case. It is difficult to obtain the cross-spectrum
data for the pressure field and approximations have to be made. Also, an accurate
description of the normal modes and resonance frequencies of the structure is not
always available, especially for complicated structures. Experimental procedures
(see Chap. 21) and analytical methods, such as finite element analysis (see Chap. 28,
Part II), might be used to obtain normal mode information, but both methods

jr
2(ω)

�ωr
3Mr

2ηr

ω4A2π
�
8∆ω

[a2]∆ω
�∆ω

jr
2(ω)

�ωr
3Mr

2ηr

ω4A2π
�

8

π
�
2ωr

3ηrMr
2

ω4A2

�
4

1
�
A2Gp(ω)
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become increasingly inaccurate as frequency increases. One solution is to resort to
averaging techniques such as Eq. (29.73) or (29.74), but that has the disadvantage of
eliminating some of the details in the results. Statistical energy analysis (see Chap.
11) is a further step in the averaging process.

Analysis of structural response to sound underwater is complicated by the fact
that fluid loading is no longer negligible and has to be included in the analytical
model.21,22 The effect of fluid loading depends on whether the frequency of interest
is below or above the critical frequency, which is defined as the frequency at which
the trace wavespeed of the sound field is equal to the wavespeed of the flexural or
bending waves in the structure. At frequencies below the critical frequency, fluid
loading essentially acts as an entrained mass that has to be included as a second mass
term in the equations of motion.22 At frequencies above the critical frequency, the
fluid loading influences the radiation resistance and the sound radiation into the
fluid.22

Joint Acceptance. The joint acceptance function describes the efficiency by
which a particular pressure field can excite a structure. For a given pressure spec-
trum Gp(ω), different types of excitation, with different joint acceptance functions,
will generate different vibration levels in the responding structure. For example, tur-
bulent boundary layer pressure fluctuations will produce different vibration levels
than will jet noise of the same pressure level.

Simplifying assumptions are usually introduced so that the joint acceptance can
be obtained in closed form. Specifically, it is commonly assumed that the pressure
field is homogeneous, so that x and x′ can be replaced by ξ, where x′ − x = ξ.The vec-
tor ξ has components ξx and ξy in the x and y directions, respectively. Also, it is
assumed that the joint acceptance is separable in the x and y directions. Finally, it is
assumed that the structure is simply supported at the boundaries. Then, the compo-
nent of the joint acceptance in the x-direction is

j2
m(ω) = �

Lx
� γx(ξx,ω) cos (kxξx) sin � � sin � �dxdx′ (29.75)

with

γx(ξx,ω) = (29.76)

and mode order r � (m,n). Similar relationships apply in the y-direction.
Closed-form joint acceptance functions for three different types of excitation,

namely, attached turbulent boundary layer, jet noise, and diffuse (reverberant)
sound field, are given in Ref. 20. Typical nondimensional joint acceptance curves
based on Eqs. (29.75), (29.76), and (29.59) are shown in Fig. 29.38, for the case where
the decay parameter a in Eq. (29.59) has a value of 0.1. The joint acceptance for the
first mode shape (n = 1) has a maximum value at zero wave number or frequency,
but the joint acceptance for each of the other modes has a maximum value at a
nonzero value of frequency. Those maxima for the higher-order modes occur when
the wave number of the excitation is equal to the flexural wave number for the struc-
tural mode, a condition known as coincidence.

Statistical Energy Analysis. Statistical energy analysis (SEA) makes the general
assumption that it is not practical to represent all the details of a structure in a given
response prediction procedure (see Chap. 11). Thus, ensemble averaging is per-

|Gp(ξx,0,ω)|
��

Gp(ω)

mπx′
�

Lx

mπx
�

Lx

1
�
A2
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formed over a series of similar, but slightly different, structures to obtain an average
response. In practice, ensemble averaging is time-consuming, so it is replaced by fre-
quency averaging.

Equation (29.74) leads to a typical SEA relationship for simply supported panels,
specifically,

〈Ga(ω)〉A,∆ω = Gp(ω) (29.77)

where 〈 〉∆ω denotes averaging over frequency, nr(ω) is the modal density of the struc-
ture, and m is the mass/unit area of the panel (assumed uniform). The frequency-
band-averaged joint acceptance is

〈jr
2(ω)〉∆ω = 

N

r = 1
jr
2(ω) (29.78)

where N is the number of modes with resonance frequencies in frequency band ∆ω.
The modal density of the structure is defined by

nr(ω) = (29.79)

For a flat panel,

dN
�
dω

1
�
N

〈jr
2(ω)〉∆ω�〈ηr〉∆ω

2πωnr(ω)
��

m2
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FIGURE 29.38 Joint acceptance curves based on Eqs. (29.75), (29.76), and (29.59), with decay
parameter a = 0.1. L = length of panel, m = mode order, k = excitation wave number [Eq. (29.60)].
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n(ω) = (29.80)

where h is the panel thickness and cL is the longitudinal wave speed in the structure
given by

cL = 
� (29.81)

In Eq. (29.81), E is Young’s modulus of the structural material, ρ is the material den-
sity, and v is Poisson’s ratio.

The use of SEA techniques to simplify the analysis has the advantage that the
response can be calculated to high frequencies with minimum computing time, but
there is the disadvantage that the use of space- and frequency-averaging methods
means that structural response cannot be predicted for a specific point on the struc-
ture nor at a specific frequency. Additional methods have to be used to supplement
the SEA calculations. Further discussion on statistical energy analysis can be found
in Chap. 11.

SEA is of limited value at low frequencies where modes are sparse (N < 3, say).
The method can still be used but the variance of the results becomes large. However,
classical normal mode and finite element methods are applicable at low frequencies.
In practice, it is often found that there is a midfrequency range, above the usual fre-
quency range for normal mode and finite element methods and below the usual fre-
quency range for SEA, where none of the methods is very accurate.

Finite Element Analysis. In finite element analysis, a continuous structure is
modeled as an array of grid points connected by appropriate elements (see Chap. 28,
Part II). This means that the continuously distributed sound pressure field has to be
represented as an array of discrete forces applied at the grid points. The forces have
to be given autospectral functions that take into account the frequency characteris-
tics and amplitudes of the excitation pressure field, and the structural area attributed
to each grid point. In addition, the forces at each pair of grid points have to be
assigned the appropriate cross-spectrum function based on the spatial separation
between the grid points.

The response of the structure at location x can be calculated using relationships
of the form23

Ga(x,ω) = 
q

j = 1

q

k = 1
Hjx*T(ω) Gjk(ω) Hkx(ω) (29.82)

where Hjx(ω) is the frequency response function between the jth input and the
response location x, Gjk(ω) is the cross-spectrum between the jth and kth inputs, Aj

is the area associated with the jth input, and Ax is the area associated with the
response location. The frequency response function Hjx*T(ω) is the transpose of the
complex conjugate of Hjx(ω). Basic details of the finite element method can be
found in Chap. 28, Part II.

Successful application of finite element analysis to the calculation of the response
of a structure to acoustic or aeroacoustic pressure fields requires that there be an
adequate number of degrees-of-freedom in the finite element model and an appro-
priate representation of the pressure field auto- and cross-spectra. In principle, finite
element methods can be applied over the entire frequency range of interest, but that
is not necessarily true in practice. As frequency and number of modes increases, it

Ax�
Ak

Ax�
Aj

E
�ρ(1 − v2)

�3�A
�
2πhcL
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becomes more difficult to provide an accurate description of the structure including
boundary conditions. It also becomes more difficult to represent the details of the
pressure field cross-spectrum. Finally, the time required to perform the necessary
computations can become excessive. Thus, the finite element method suffers from
the same disadvantages as does the classical normal mode method.

Damping. It is obvious from Eqs. (29.73) and (29.74) that damping is an important
parameter in determining the magnitude of the structural response to acoustic or
aeroacoustic excitation, since the mean square acceleration is inversely proportional
to the damping loss factor ηr. The damping loss factor in Eq. (29.73) is composed of
three components, as follows:

ηr = ηr,struc + ηr,rad + ηr,aero (29.83)

The structural loss factor, ηr,struc, represents the damping due to material properties
of the structure and mechanisms such as gas pumping at riveted joints and slip
damping (see Chap. 36). It also represents damping due to any applied treatments
(see Chap. 37). The radiation damping loss factor, ηr,rad, represents damping associ-
ated with the radiation of sound as a consequence of the vibration of the structure.
This can be a significant contribution for structures such as composite structures that
are very lightly damped. For structures in vacuo, ηr,rad = 0.The aerodynamic damping
loss factor, ηr,aero, represents the damping associated with the presence of nonzero
mean flow over the structure. Additional information on the damping of structures
can be found in Refs. 24 and 25.

NONLINEAR VIBRATION

When excitation sound levels become too high, the response of a structure becomes
nonlinear and linear analysis methods for the prediction of structural vibration are
inaccurate. There are several situations where nonlinear response can be important.
They include vibration where the displacement of the structure is no longer small
with respect to the panel thickness, rattle induced by impulsive or low-frequency
noise, and snap-through response of curved or buckled plates. Snap-through motion
occurs when the local curvature of a panel that is curved by design or by buckling,
jumps from one direction to another. Buckling can be caused, for example, by ther-
mal stresses induced by high temperatures. Nonlinear response can be in the form of
a hardening or softening spring (see Chap. 4), or instability conditions with snap-
through motion.

Response characteristics often associated with nonlinear vibration are (1) the
response amplitude no longer increasing in proportion to the amplitude of the exci-
tation, (2) the resonance frequencies of the response modes changing with excita-
tion amplitude, and (3) broadening of resonance peaks, which is attributed to
nonlinear damping. The first two phenomena are demonstrated in Fig. 29.39, which
shows the response of a panel to a sound field generated by a siren.26 The response
in the first mode, in terms of amplitude and resonance frequency, becomes nonlinear
when the sound pressure reaches a level of about 102 dB.

Various approaches have been developed for the prediction of nonlinear
response of a structure to acoustic excitation,27–31 but they often have very limited
application. Characteristics of nonlinear vibration and several approximate methods
for analyzing the vibration are reviewed in Chap. 4. Nonlinear analytical methods
that give closed-form quantitative results are usually limited to simple structures.
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FIGURE 29.39 Nonlinear stress response characteristics for flat panel exposed to siren excitation. Panel with
clamped edges, panel length = 12 in. (0.30 m). (Mei.26)
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Approximate methods are usually required for complex structures such as those
found in aerospace applications. Other approaches include numerical methods, such
as the Monte Carlo approach, and finite element methods using nonlinear element
stiffness matrices. However, the methods are often restricted to simple acoustic
pressure fields such as (1) plane waves at normal incidence, with the pressure uni-
form in both amplitude and phase over the entire surface of the structure; (2) plane
acoustic waves at grazing incidence; or (3) uncorrelated pressure fields. Further-
more, structural response is often limited to a single mode.

The Monte Carlo method31 is based on the numerical generation of a large num-
ber of random, sample excitations and the calculation of the response to each sam-
ple. The method can be used for both linear and nonlinear responses to random
excitations, and it could be a feasible approach for nonlinear vibration where closed-
form or approximate solutions are not possible, although the method requires the
use of high-speed digital computers. One example of a second-order, nonlinear
equation of motion for a panel is

dXij/dt2 + 2ζijωij(dXij/dt) + ω2
ijXij + N(Xij,dXij/dt) = Fij(t) (29.84)

where Xij are the components of generalized coordinates, ωij are the natural fre-
quencies of a linear system, ζij are the modal damping coefficients, N is the nonlinear
system operator, and Fij(t) are the generalized random forces.

The time-domain Monte Carlo method consists of three basic steps:31 (1) random
inputs for Fij(t) are generated using simulation procedures of random processes; (2)
the equations of motion, such as Eq. (29.84), are solved numerically for each random
value of Fij(t); and (3) statistical moments and other needed quantities of the ran-
dom response Xij(t) are computed for ensemble averages. If the system is ergodic
(see Chap. 1), the ensemble averaging can be replaced by time averaging, with a sav-
ing in computing time.

In many aerospace situations, the structure is exposed to high temperatures and
the structural vibration is strongly dependent on thermal stresses induced by a ther-
mal environment. The effect is taken into account in some procedures by applying
the acoustic and thermal loads in sequence. A more appropriate analysis of nonlin-
ear response of aerospace structures considers acoustic and thermal loads simulta-
neously.27

Structural damping is often represented as linear damping. However, nonlinear
damping can be represented, for example, by replacing linear damping in Duffing’s
equation (see Chap. 4) with a nonlinear damping term32 such as ωoη(1 + αq2)dq/dt.

ACOUSTIC FATIGUE

Acoustically induced structural vibration results in oscillating stresses. The stress
levels may be low but, because of the frequencies involved, typically 100 to 500 Hz,
the number of stress reversals can be large enough at stress concentration points to
create fatigue cracks. This phenomenon is called high-cycle fatigue, acoustic fatigue,
or sonic fatigue.33 Most examples of failures induced by sonic fatigue occur in air-
craft structures in the form of skin failures along rivet lines, skin debonding in sand-
wich panels, and failure in internal attachment structures.5,6

In many cases the stresses induced by acoustic pressure fields are dominated by
response in the first mode of vibration of a panel, and the acoustical wavelength is
large relative to the dimensions on the panel. Then, the sound pressures are essen-
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tially in phase over the panel, and details of the pressure correlation are of minor
importance.The mean square stress σ2(t) can be estimated using the approximation6

σ2(t) ≈ K fnGp(fn)� �
2

(29.85)

where fn is the frequency of the dominant mode of order n, Gp(fn) is the spectral den-
sity of the excitation pressure at frequency fn, η is the damping ratio, and σo is the
stress at the point of interest due to a uniform static pressure of magnitude Fo. Equa-
tion (29.85) is based on early work34 for a single degree-of-freedom system. The fac-
tor K is included in Eq. (29.85) so that the equations can be modified to fit particular
structural configurations and materials. There are cases where acoustic fatigue is
caused by vibration of several modes, not just one. Thus, alternative prediction pro-
cedures are required that extend the approach in Eq. (29.85) to higher-order modes
and complex shapes, and estimate the influence of acoustical wavelength.12

It is apparent from Eq. (29.85) that increasing the damping of a structure would
decrease the stresses. Thus, the application of damping material will reduce the like-
lihood of acoustic fatigue. For example, damping treatment was applied to the fuselage
structure of a test airplane with high-speed propellers to minimize the likelihood of
acoustic fatigue in the plane of rotation of the propellers.13 Applied damping tech-
niques are described in Chap. 37 and the wider aspects of passive vibration control
are discussed in Ref. 35.

LABORATORY TESTING OF STRUCTURES 

AND EQUIPMENT

Laboratory tests are often required to supplement or validate analysis, evaluate new
structural designs, or develop a database of fatigue life for different environmental
conditions or for new materials, especially composites. Acoustical environments of
aircraft and space vehicles can reach overall sound pressure levels in the range
170–180 dB in local areas. Consequently, there is a need to develop similar levels in
the laboratory with the appropriate frequency distributions. Two test environments,
the progressive wave tube and the reverberant chamber, are used for many of the
laboratory tests. The purposes of the testing are to find weak points in the structural
design or in the manufacturing process, or to determine whether or not the structure
will have a satisfactory fatigue life (see Chap. 20). The progressive wave tube and
reverberant chamber play different roles in this process.

PROGRESSIVE WAVE TUBES

A progressive wave tube consists of duct with a sound source at one end and a sound-
absorbing termination at the other end. It is used to expose structural components,
such as a panel, to high-intensity sound pressure levels for long periods of time so as
to evaluate the susceptibility of the structure to acoustic fatigue.The test structure is
mounted in one wall of the tube and exposed to sound waves traveling along the
tube at grazing incidence.5,9,10,36 Relatively small test specimens are used because of
the difficulty of generating, in the laboratory, very high sound pressure levels over
large areas.

Due to concerns about the effect of high temperatures for some applications,

σo�
Fo

π
�
4η
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such as aircraft-powered lift devices, the structure beneath the engine exhaust of
stealth aircraft, and the vehicle structure of hypersonic vehicles, facilities have been
constructed that permit the heating of the test specimen at the same time that it is
being exposed to the high-intensity sound pressure levels. The acoustic excitation is
limited to the lower frequencies because of constraints on the source, which usually
consists of several electropneumatic modulators with broadband random acoustical
outputs. However, the lower frequencies are usually responsible for the highest
stresses that determine acoustical fatigue life.

A typical progressive wave tube is shown in Fig. 29.40. The number of electro-
pneumatic modulators is determined by the size of the duct, and the desired maxi-
mum sound pressure levels and frequency range. The number of modulators can
range from 2 to 12, generating maximum sound pressure levels from 170 to over 180
dB with frequency ranges varying from 30–500 Hz to 50–1500 Hz.9,10,36 Test panel
sizes range from 1 to 20 ft2 (0.1 to 2 m2).
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FIGURE 29.40 Typical progressive wave tube. (Shimovetz and Wentz.10)

REVERBERATION CHAMBERS

Reverberation chambers can be used to expose large structures to sound pressure
levels typical of those encountered in service. A reverberation chamber is an enclo-
sure with thick, rigid walls and smooth interior surfaces that strongly reflect sound
waves.37 Acoustic noise is introduced into the chamber at one or more locations, usu-
ally with air modulators mounted in one or more of the walls. Assuming that the
acoustic noise source is random in character, it produces a sound field within the
chamber that becomes increasingly homogeneous (a uniform sound pressure level
throughout the chamber) as the wavelength of the sound becomes small relative to
the minimum dimension of the chamber. Further, the sound field inside the chamber
approaches a diffuse noise field, where diffuse noise is defined as a sound field where
the sound waves at any point arrive from all directions with equal intensity and ran-
dom phase. High-intensity reverberation chambers typically have an interior volume
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of 7000 to 350,000 ft3 (200 to 10,000 m3), and are capable of producing sound pres-
sure levels in an empty chamber of 150 to 160 dB over a frequency range from 0.1 to
10 kHz.38

The vibration response of a test item to the acoustic excitation in a reverberation
chamber can be measured by suspending the test item near the middle of the cham-
ber, applying acoustic excitation with the desired level and spectrum, and measuring
the vibration response of the test item at all locations of interest. However, it must
be remembered that the spatial cross-spectrum for the field in a reverberation
chamber may be quite different from that for the sound field in the actual service
environment of the test item. Specifically, as mentioned earlier, the sound field in a
reverberation chamber with a random acoustic source will closely approximate a
diffuse noise field, which has a normalized spatial cross-spectrum between any two
points given by14

γ(ξ,ω) = (29.86)

where k is the wave number of the pressure field defined in Eq. (29.60), and ξ is the
separation distance. It should be noted that this is quite different from the normalized
cross-spectrum for the sound field produced by jet noise or a turbulent boundary
layer, as given by Eqs. (29.59) and (29.64), respectively. Hence, the cross-acceptance
function defined in Eq. (29.66), which couples the sound field to the test item, may be
different. It follows that the vibration response of the test item may be different from
that which occurs in the service environment.

The maximum sound pressure levels achievable in a reverberation chamber are
not as high as those in a progressive wave tube, but reverberant chambers can
accommodate larger structures. Thus, the two environments are usually used for dif-
ferent types of tests.
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