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INTRODUCTION

The mathematical language which is most convenient for analyzing multiple degree-
of-freedom vibratory systems is that of matrices. Matrix notation simplifies the pre-
liminary analytical study, and in situations where particular numerical answers are
required, matrices provide a standardized format for organizing the data and the
computations. Computations with matrices can be carried out by hand or by digital
computers. The availability of programs such as MATLAB makes the solution of
many complex problems in vibration analysis a matter of routine.

This chapter describes how matrices are used in vibration analysis. It begins with
definitions and rules for operating with matrices.The formulation of vibration prob-
lems in matrix notation then is treated. This is followed by general matrix solutions
of several important types of vibration problems, including free and forced vibra-
tions of both undamped and damped linear multiple degree-of-freedom systems.
Part II of this chapter considers finite element models.

MATRICES

Matrices are mathematical entities which facilitate the handling of simultaneous equa-
tions.They are applied to the differential equations of a vibratory system as follows:

A single degree-of-freedom system of the type in Fig. 28.1 has the differential
equation

mẍ + cẋ + kx = F

where m is the mass, c is the damping coefficient, k is the stiffness, F is the applied
force, x is the displacement coordinate, and dots denote time derivatives. In Fig. 28.2
a similar three degree-of-freedom system is shown.The equations of motion may be
obtained by applying Newton’s second law to each mass in turn:

mẍ1 + cẋ1 + 5kx1 − 2kx2 = F1

2mẍ2 + 2cẋ2 − 2cẋ3 − 2kx1 + 3kx2 − kx3 = F2 (28.1)

3mẍ3 − 2cẋ2 + 2cẋ3 − kx2 + kx3 = F3

28.1
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The accelerations, velocities, displacements, and forces may be organized into
columns, denoted by single boldface symbols:

ẍ1 ẋ1 x1 F1

ẍ = �ẍ2� ẋ = �ẋ2� x = �x2� f = �F2� (28.2)

ẍ3 ẋ3 x3 F3

The inertia, damping, and stiffness coefficients may be organized into square
arrays:

m 0 0 c 0 0 5k −2k 0

M = �0 2m 0 � C = �0 2c −2c� K = �−2k 3k −k� (28.3)

0 0 3m 0 −2c 2c 0 −k k

By using these symbols, it is shown below that it is possible to represent the three
equations of Eq. (28.1) by the following single equation:

Mẍ + Cẋ + Kx = f (28.4)

Note that this has the same form as the differential equation for the single degree-of-
freedom system of Fig. 28.1. The notation of Eq. (28.4) has the advantage that in sys-
tems of many degrees-of-freedom it clearly states the physical principle that at every
coordinate the external force is the sum of the inertia, damping, and stiffness forces.
Equation (28.4) is an abbreviation for Eq. (28.1). It is necessary to develop the rules
of operation with symbols such as those in Eqs. (28.2) and (28.3) to ensure that no
ambiguity is involved.The algebra of matrices is devised to facilitate manipulations of
simultaneous equations such as Eq. (28.1). Matrix algebra does not in any way sim-
plify individual operations such as multiplication or addition of numbers, but it is an
organizational tool which permits one to keep track of a complicated sequence of
operations in an optimum manner. Matrices are essential elements of linear algebra,1

and are widely employed in structural analysis2 and vibration analysis.3

DEFINITIONS

A matrix is an array of elements arranged systematically in rows and columns. For
example, a rectangular matrix A, of elements ajk, which has m rows and n columns is

a11 a12 . . . a1n

A = [ajk] = �a21 a22 . . . a2n�. . . . . . . . . . . .

am1 am2 . . . amn

28.2 CHAPTER TWENTY-EIGHT, PART I

FIGURE 28.1 Single degree-of-freedom sys-
tem.

FIGURE 28.2 Three degree-of-freedom sys-
tem.
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The elements ajk are usually numbers or functions, but, in principle, they may be any
well-defined quantities.The first subscript j on the element refers to the row number
while the second subscript k refers to the column number. The array is denoted by
the single symbol A, which can be used as such during operational manipulations in
which it is not necessary to specify continually all the elements ajk. When a numeri-
cal calculation is finally required, it is necessary to refer back to the explicit specifi-
cations of the elements ajk.

A rectangular matrix with m rows and n columns is said to be of order (m,n). A
matrix of order (n,n) is a square matrix and is said to be simply a square matrix of
order n. A matrix of order (n,1) is a column matrix and is said to be simply a column
matrix of order n. A column matrix is sometimes referred to as a column vector. Simi-
larly, a matrix of order (1,n) is a row matrix or a row vector. Boldface capital letters are
used here to represent square matrices and lower-case boldface letters to represent
column matrices or vectors. For example, the matrices in Eq. (28.2) are column matri-
ces of order three and the matrices in Eq. (28.3) are square matrices of order three.

Some special types of matrices are:

1. A diagonal matrix is a square matrix A whose elements ajk are zero when j ≠ k.
The only nonzero elements are those on the main diagonal, where j = k. In order to
emphasize that a matrix is diagonal, it is often written with small ticks in the direc-
tion of the main diagonal:

A = ajj

2. A unit matrix or identity matrix is a diagonal matrix whose main diagonal elements
are each equal to unity.The symbol I is used to denote a unit matrix. Examples are

1 0 0

�1 0� �0 1 0�0 1
0 0 1

3. A null matrix or zero matrix has all its elements equal to zero and is simply
written as zero.

4. The transpose AT of a matrix A is a matrix having the same elements but with
rows and columns interchanged. Thus, if the original matrix is

A = [ajk]

the transpose matrix is

AT = [ajk]T = [akj]

For example:

3 2 3 −1
A = �−1 4� AT = �2 4�

The transpose of a square matrix may be visualized as the matrix obtained by rotat-
ing the given matrix about its main diagonal as an axis.

The transpose of a column matrix is a row matrix. For example,

3
x = �−4� xT = [3 4 −2]

−2

MATRIX METHODS OF ANALYSIS 28.3

8434_Harris_28_b.qxd  09/20/2001  11:48 AM  Page 28.3



Throughout this chapter a row matrix is referred to as the transpose of the corre-
sponding column matrix.

5. A symmetric matrix is a square matrix whose off-diagonal elements are sym-
metric with respect to the main diagonal. A square matrix A is symmetric if, for all j
and k,

ajk = akj

A symmetric matrix is equal to its transpose. For example, all three of the matrices
in Eq. (28.3) are symmetric. In addition, the matrix M is a diagonal matrix.

MATRIX OPERATIONS

Equality of Matrices. Two matrices of the same order are equal if their corre-
sponding elements are equal. Thus two matrices A and B are equal if, for every j
and k,

ajk = bjk

Matrix Addition and Subtraction. Addition or subtraction of matrices of the
same order is performed by adding or subtracting corresponding elements. Thus,
A + B = C if for every j and k,

ajk + bjk = cjk

For example, if

3 2 −1 2
A = �−1 4� B = � 5 6�

then

2 4 4 0
A + B = �4 10� A − B = �−6 −2�

Multiplication of a Matrix by a Scalar. Multiplication of a matrix by a scalar c
multiplies each element of the matrix by c. Thus

cA = c[ajk] = [cajk]

In particular, the negative of a matrix has the sign of every element changed.

Matrix Multiplication. If A is a matrix of order (m,n) and B is a matrix of order
(n,p), then their matrix product AB = C is defined to be a matrix C of order (m,p)
where, for every j and k,

cjk = �
n

r = 1
ajrbrk (28.5)

The product of two matrices can be obtained only if they are conformable, i.e., if the
number of columns in A is equal to the number of rows in B.The symbolic equation

(m,n) × (n,p) = (m,p)

28.4 CHAPTER TWENTY-EIGHT, PART I
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indicates the orders of the matrices involved in a matrix product. Matrix products
are not commutative, i.e., in general,

AB ≠ BA

The matrix products which appear in this chapter are of the following types:

Square matrix × square matrix = square matrix
Square matrix × column vector = column vector
Row vector × square matrix = row vector
Row vector × column vector = scalar
Column vector × row vector = square matrix

In all cases, the matrices must be conformable. Numerical examples are given below.

AB = � � � � = �−(3 × 1) + (2 × 5) (3 × 2) + (2 × 6)� = � �(1 × 1) + (4 × 5) −(1 × 2) + (4 × 6)

(3 × 5) + (2 × 3)
Ax = � � � � = �−(1 × 5) + (4 × 3)� = � �

3 2yTA = [−2 1] �−1 4� = [−(2 × 3) − (1 × 1) − (2 × 2) + (1 × 4)] = [−7 0]

yTx = [−2 1] � � = (−10 + 3) = −7

−(5 × 2) (5 × 1)
xyT = � � [−2 1] = �−(3 × 2) (3 × 1)� = � �

The last product always results in a matrix with proportional rows and columns.
The operation of matrix multiplication is particularly suited for representing sys-

tems of simultaneous linear equations in a compact form in which the coefficients
are gathered into square matrices and the unknowns are placed in column matrices.
For example, it is the operation of matrix multiplication which gives unambiguous
meaning to the matrix abbreviation in Eq. (28.4) for the three simultaneous differ-
ential equations of Eq. (28.1). The two sides of Eq. (28.4) are column matrices of
order three whose corresponding elements must be equal. On the right, these ele-
ments are simply the external forces at the three masses. On the left, Eq. (28.4) states
that the resulting column is the sum of three column matrices, each of which results
from the matrix multiplication of a square matrix of coefficients defined in Eq.
(28.3) into a column matrix defined in Eq. (28.2). The rules of matrix operation just
given ensure that Eq. (28.4) is exactly equivalent to Eq. (28.1).

Premultiplication or postmultiplication of a square matrix by the identity matrix
leaves the original matrix unchanged; i.e.,

IA = AI = A

Two symmetrical matrices multiplied together are generally not symmetric. The
product of a matrix and its transpose is symmetric.

5
3

−10
−6

5
3

5
3

21
7

5
3

2
4

3
−1

18
22

7
21

2
6

−1
5

2
4

3
−1
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Continued matrix products such as ABC are defined, provided the number of
columns in each matrix is the same as the number of rows in the matrix immediately
following it. From the definition of matrix products, it follows that the associative law
holds for continued products:

(AB)C = A(BC)

A square matrix A multiplied by itself yields a square matrix which is called the
square of the matrix A and is denoted by A2. If A2 is in turn multiplied by A, the
resulting matrix is A3 = A(A2) = A2(A). Extension of this process gives meaning to
Am for any positive integer power m. Powers of symmetric matrices are themselves
symmetric.

The rule for transposition of matrix products is

(AB)T = BTAT

Inverse or Reciprocal Matrix. If, for a given square matrix A, a square matrix 
A−1 can be found such that

A−1A = AA−1 = I (28.6)

then A−1 is called the inverse or reciprocal of A. Not every square matrix A possesses
an inverse. If the determinant constructed from the elements of a square matrix is
zero, the matrix is said to be singular and there is no inverse. Every nonsingular
matrix possesses a unique inverse. The inverse of a symmetric matrix is symmetric.
The rule for the inverse of a matrix product is

(AB)−1 = (B−1)(A−1)

The solution to the set of simultaneous equations

Ax = c

where x is the unknown vector and c is a known input vector can be indicated with
the aid of the inverse of A. The formal solution for x proceeds as follows:

A−1Ax = A−1c

Ix = x = A−1c

When the inverse A−1 is known, the solution vector x is obtained by a simple matrix
multiplication of A−1 into the input vector c.

Calculation of inverses and the solutions of simultaneous linear equations are
readily performed for surprisingly large values of n by programs such as MATLAB.
When n = 2 and

A = � � x = � � c = � �
hand-computation is possible using the following formulas:

A−1 = � � x1 = x2 =
∆2�∆

∆1�∆
−a12

a11

a22

−a21

1
�∆

c1

c2

x1

x2

a12

a22

a11

a21

28.6 CHAPTER TWENTY-EIGHT, PART I

8434_Harris_28_b.qxd  09/20/2001  11:48 AM  Page 28.6



where the determinants have the values

∆ = a11a22 − a12a21 ∆1 = c1a22 − c2a12 ∆2 = c2a11 − c1a21

QUADRATIC FORMS

A general quadratic form Q of order n may be written as

Q = �
n

j = 1
�

n

k = 1
ajkxjxk

where the ajk are constants and the xj are the n variables. The form is quadratic since
it is of the second degree in the variables.The laws of matrix multiplication permit Q
to be written as

a11 a12 . . . a1n x1

Q = [x1 x2 . . . xn] �a21 a22 . . . a2n� �x2�. . . . . . . . . . . . . . .
an1 an2 . . . ann xn

which is

Q = xTAx

Any quadratic form can be expressed in terms of a symmetric matrix. If the given
matrix A is not symmetric, it can be replaced by the symmetric matrix

B = 1⁄2(A + AT)

without changing the value of the form.
As an example of a quadratic form, the potential energy V for the system of Fig.

28.2 is given by

2V = 3kx1
2 + 2k(x2 − x1)2 + k(x3 − x2)2

= 5kx1x1 − 2kx1x2

− 2kx2x1 + 3kx2x2 − kx2 x3

− kx3 x2 + kx3x3

Using the displacement vector x defined in Eq. (28.2) and the stiffness matrix K in
Eq. (28.3), the potential energy may be written as

V = 1⁄2xTKx

Similarly, the kinetic energy T is given by

2T = mẋ1
2 + 2mẋ2

2 + 3mẋ3
2

In terms of the inertia matrix M and the velocity vector ẋ defined in Eqs. (28.3) and
(28.2), the kinetic energy may be written as

T = 1⁄2ẋTMẋ

The dissipation function D for the system is given by

MATRIX METHODS OF ANALYSIS 28.7
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2D = cẋ1
2 + 2c(ẋ3 − ẋ2)2

= cẋ1ẋ1

+ 2cẋ2ẋ2 − 2cẋ2ẋ3

− 2cẋ3 ẋ2 + 2cẋ3 ẋ3

In terms of the velocity vector ̇x and the damping matrix C defined in Eqs. (28.2) and
(28.3), the dissipation function may be written as

D = 1⁄2ẋTCẋ

The dissipation function gives half the rate at which energy is being dissipated in the
system.

While quadratic forms assume positive and negative values in general, the three
physical forms just defined are intrinsically positive for a vibrating system with lin-
ear springs, constant masses, and viscous damping; i.e., they can never be negative
for a real motion of the system. Kinetic energy is zero only when the system is at
rest. The same thing is not necessarily true for potential energy or the dissipation
function.

Depending upon the arrangement of springs and dashpots in the system, there
may exist motions which do not involve any potential energy or dissipation. For
example, in vibratory systems where rigid body motions are possible (crankshaft tor-
sional systems, free-free beams, etc.), no elastic energy is involved in the rigid body
motions. Also, in Fig. 28.2, if x1 is zero while x2 and x3 have the same motion, there is
no energy dissipated and the dissipation function is zero. To distinguish between
these two possibilities, a quadratic form is called positive definite if it is never nega-
tive and if the only time it vanishes is when all the variables are zero. Kinetic energy
is always positive definite, while potential energy and the dissipation function are
positive but not necessarily positive definite. It depends upon the particular config-
uration of a given system whether the potential energy and the dissipation function
are positive definite or only positive. The terms positive and positive definite are
applied also to the matrices from which the quadratic forms are derived. For exam-
ple, of the three matrices defined in Eq. (28.3), the matrices M and K are positive
definite, but C is only positive. It can be shown that a matrix which is positive but not
positive definite is singular.

Differentiation of Quadratic Forms. In forming Lagrange’s equations of motion
for a vibrating system,* it is necessary to take derivatives of the potential energy V,
the kinetic energy T, and the dissipation function D. When these quadratic forms are
represented in matrix notation, it is convenient to have matrix formulas for differ-
entiation. In this paragraph rules are given for differentiating the slightly more gen-
eral bilinear form

F = xTAy = yTAx

where xT is a row vector of n variables xj, A is a square matrix of constant coeffi-
cients, and y is a column matrix of n variables yj. In a quadratic form the xj are iden-
tical with the yj.

For generality it is assumed that the xj and the yj are functions of n other variables uj.
In the formulas below, the notation Xu is used to represent the following square matrix:

28.8 CHAPTER TWENTY-EIGHT, PART I

* See Chap. 2 for a detailed discussion of Lagrange’s equations.
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. . .

Xu = . . .

. . . . . . . . . . . .

. . .

Now letting ∂/∂u stand for the column vector whose elements are the partial differ-
ential operators with respect to the uj, the general differentiation formula is

= = XuAy + YuATx
⋅⋅⋅

For a quadratic form Q = xTAx the above formula reduces to

= Xu(A + AT )x

Thus whether A is symmetric or not, this kind of differentiation produces a symmetri-
cal matrix of coefficients (A + AT ). It is this fact which ensures that vibration equations
in the form obtained from Lagrange’s equations always have symmetrical matrices of
coefficients. If A is symmetrical to begin with, the previous formula becomes

= 2XuAx

Finally, in the important special case where the xj are identical with the uj, the matrix
Xx reduces to the identity matrix, yielding

= 2Ax (28.7)

which is employed in the following section in developing Lagrange’s equations.

FORMULATION OF VIBRATION PROBLEMS IN MATRIX FORM

Consider a holonomic linear mechanical system with n degrees-of-freedom which
vibrates about a stable equilibrium configuration. Let the motion of the system be
described by n generalized displacements xj(t) which vanish in the equilibrium posi-
tion. The potential energy V can then be expressed in terms of these displacements
as a quadratic form. The kinetic energy T and the dissipation function D can be
expressed as quadratic forms in the generalized velocities ẋj(t).

∂Q
�
∂x

∂Q
�
∂u

∂Q
�
∂u

∂F
�
∂un

∂F
�
∂u2

∂F
�
∂u

∂F
�
∂u1

∂xn�
∂un

∂x2�
∂un

∂x1�
∂un

∂xn�
∂u2

∂x2�
∂u2

∂x1�
∂u2

∂xn�
∂u1

∂x2�
∂u1

∂x1�
∂u1
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The equations of motion are obtained by applying Lagrange’s equations

� � + + = fj(t) [ j = 1, 2, . . . , n]

The generalized external force fj(t) for each coordinate may be an active force in the
usual sense or a force generated by prescribed motion of the coordinates.

If each term in the foregoing equation is taken as the jth element of a column
matrix, all n equations can be considered simultaneously and written in matrix form
as follows:

� � + + = f

The quadratic forms can be expressed in matrix notation as

T = 1⁄2(ẋTMẋ)

D = 1⁄2(ẋTCẋ)

V = 1⁄2(xTKx)

where the inertia matrix M, the damping matrix C, and the stiffness matrix K may be
taken as symmetric square matrices of order n. Then the differentiation rule (28.7)
yields

(Mẋ) + Cẋ + Kx = f

or simply

Mẍ + Cẋ + Kx = f (28.8)

as the equations of motion in matrix form for a general linear vibratory system with
n degrees-of-freedom. This is a generalization of Eq. (28.4) for the three degree-of-
freedom system of Fig. 28.2. Equation (28.8) applies to all linear constant-
parameter vibratory systems. The specifications of any particular system are
contained in the coefficient matrices M, C, and K.The type of excitation is described
by the column matrix f. The individual terms in the coefficient matrices have the
following significance:

mjk is the momentum component at j due to a unit velocity at k.

cjk is the damping force at j due to a unit velocity at k.

kjk is the elastic force at j due to a unit displacement at k.

The general solution to Eq. (28.8) contains 2n constants of integration which
are usually fixed by the n displacements xj(t0) and the n velocities ẋj(t0) at some
initial time t0. When the excitation matrix f is zero, Eq. (28.8) is said to describe
the free vibration of the system. When f is nonzero, Eq. (28.8) describes a forced
vibration. When the time behavior of f is periodic and steady, it is sometimes con-
venient to divide the solution into a steady-state response plus a transient response
which decays with time. The steady-state response is independent of the initial
conditions.

d
�
dt

∂V
�
∂x

∂D
�
∂ẋ

∂T
�
∂ẋ

d
�
dt

∂V
�
∂xj

∂D
�
∂ẋj

∂T
�
∂ẋj

d
�
dt
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COUPLING OF THE EQUATIONS

The off-diagonal terms in the coefficient matrices are known as coupling terms. In
general, the equations have inertia, damping, and stiffness coupling; however, it is
often possible to obtain equations that have no coupling terms in one or more of the
three matrices. If the coupling terms vanish in all three matrices (i.e., if all three
square matrices are diagonal matrices), the system of Eq. (28.8) becomes a set of
independent uncoupled differential equations for the n generalized displacements
xj(t). Each displacement motion is a single degree-of-freedom vibration independent
of the motion of the other displacements.

The coupling in a system depends on the choice of coordinates used to describe
the motion. For example, Figs. 28.3 and 28.4 show the same physical system with two
different choices for the displacement coordinates.

The coefficient matrices corresponding to the coordinates shown in Fig. 28.3 are

m1 0 k1 + k2 −k2
M = �0 m2

� K = � −k2 k2
�

Here the inertia matrix is uncoupled because the coordinates chosen are the
absolute displacements of the masses. The elastic force in the spring k2 is generated
by the relative displacement of the two coordinates, which accounts for the coupling
terms in the stiffness matrix.

The coefficient matrices corresponding to the alternative coordinates shown in
Fig. 28.4 are

m1 + m2 m2 k1 0
M = � m2 m2

� K = �0 k2
�

Here the coordinates chosen relate directly to the extensions of the springs so that
the stiffness matrix is uncoupled. The absolute displacement of m2 is, however, the
sum of the coordinates, which accounts for the coupling terms in the inertia matrix.

A fundamental procedure for solving vibration problems in undamped systems
may be viewed as the search for a set of coordinates which simultaneously uncouples
both the stiffness and inertia matrices.This is always possible. In systems with damp-
ing (i.e., with all three coefficient matrices) there exist coordinates which uncouple
two of these, but it is not possible to uncouple all three matrices simultaneously,
except in the special case, called proportional damping, where C is a linear combi-
nation of K and M.

The system of Fig. 28.2 provides an example of a three degree-of-freedom system
with damping. The coefficient matrices are given in Eq. (28.3). The inertia matrix is
uncoupled, but the damping and stiffness matrices are coupled.

MATRIX METHODS OF ANALYSIS 28.11

FIGURE 28.3 Coordinates (x1,x2) with uncou-
pled inertia matrix.

FIGURE 28.4 Coordinates (x1,x2) with uncou-
pled stiffness matrix. The equilibrium length of
the spring k2 is L2.
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Another example of a system with
damping is furnished by the two
degree-of-freedom system shown in
Fig. 28.5. The excitation here is fur-
nished by acceleration ẍ0(t) of the base.
This system is used as the basis for the
numerical example at the end of Part I
of the chapter. With the coordinates
chosen as indicated in the figure, all
three coefficient matrices have coupling
terms. The equations of motion can be
placed in the standard form of Eq.
(28.8), where the coefficient matrices
and the excitation column are as fol-
lows:

m1 + m2 m2 c1 + c3 c3
M = � m2 m2

� C = � c3 c2 + c3
�

k1 + k3 k3 m1 + m2
K = � k3 k2 + k3

� f = −ẍ0 � m2
�

(28.9)

THE MATRIX EIGENVALUE PROBLEM

In the following sections the solutions to both free and forced vibration problems
are given in terms of solutions to a specialized algebraic problem known as the
matrix eigenvalue problem. In the present section a general theoretical discussion of
the matrix eigenvalue problem is given.

The free vibration equation for an undamped system,

Mẍ + Kx = 0 (28.10)

follows from Eq. (28.8) when the excitation f and the damping C vanish. If a solution
for x is assumed in the form

x = R {vejωt}

where v is a column vector of unknown amplitudes, ω is an unknown frequency, j is the
square root of −1, and R { } signifies “the real part of,” it is found on substituting in
Eq. (28.10) that it is necessary for v and ω to satisfy the following algebraic equation:

Kv = ω2Mv (28.11)

This algebraic problem is called the matrix eigenvalue problem. Where necessary it
is called the real eigenvalue problem to distinguish it from the complex eigenvalue
problem described in the section on Vibration of Systems with Damping.

To indicate the formal solution to Eq. (28.11), it is rewritten as

(K − ω2M)v = 0 (28.12)

which can be interpreted as a set of n homogeneous algebraic equations for the n
elements vj. This set always has the trivial solution

28.12 CHAPTER TWENTY-EIGHT, PART I

FIGURE 28.5 Two degree-of-freedom vibra-
tory system.The equilibrium length of the spring
k1 is L1 and the equilibrium length of the spring
k2 is L2.
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v = 0

It also has nontrivial solutions if the determinant of the matrix multiplying the vec-
tor v is zero, i.e., if

det (K − ω2M) = 0 (28.13)

When the determinant is expanded, a polynomial of order n in ω2 is obtained. Equa-
tion (28.13) is known as the characteristic equation or frequency equation. The
restrictions that M and K be symmetric and that M be positive definite are sufficient
to ensure that there are n real roots for ω2. If K is singular, at least one root is zero.
If K is positive definite, all roots are positive.The n roots determine the n natural fre-
quencies ωr (r = 1, . . . , n) of free vibration.These roots of the characteristic equation
are also known as normal values, characteristic values, proper values, latent roots, or
eigenvalues. When a natural frequency ωr is known, it is possible to return to Eq.
(28.12) and solve for the corresponding vector vr to within a multiplicative constant.
The eigenvalue problem does not fix the absolute amplitude of the vectors v, only
the relative amplitudes of the n coordinates.There are n independent vectors vr cor-
responding to the n natural frequencies which are known as natural modes. These
vectors are also known as normal modes, characteristic vectors, proper vectors, latent
vectors, or eigenvectors.

MODAL AND SPECTRAL MATRICES

The complete solution to the eigenvalue problem of Eq. (28.11) consists of n eigen-
values and n corresponding eigenvectors. These can be assembled compactly into
matrices. Let the eigenvector vr corresponding to the eigenvalue ωr

2 have elements
vjr (the first subscript indicates which row, the second subscript indicates which
eigenvector). The n eigenvectors then can be displayed in a single square matrix V,
each column of which is an eigenvector:

V = [vjk] = � �
The matrix V is called the modal matrix for the eigenvalue problem, Eq. (28.11).

The n eigenvalues ωr
2 can be assembled into a diagonal matrix Ω2 which is known

as the spectral matrix of the eigenvalue problem, Eq. (28.11)

ω1
2 0 . . . 0

�W2 = ωr
2 = �0 ω2

2 . . . 0
. . . . . . . . . . . .
0 0 . . . ωn

2

Each eigenvector and corresponding eigenvalue satisfy a relation of the following
form:

Kvr = Mvrωr
2

By using the modal and spectral matrices it is possible to assemble all of these rela-
tions into a single matrix equation

v1n

v2n

. . .
vnn

. . .

. . .

. . .

. . .

v12

v22

. . .
vn2

v11

v21

. .
vn1

MATRIX METHODS OF ANALYSIS 28.13

8434_Harris_28_b.qxd  09/20/2001  11:48 AM  Page 28.13



KV = MVW2 (28.14)

Equation (28.14) provides a compact display of the complete solution to the eigen-
value problem Eq. (28.11).

PROPERTIES OF THE SOLUTION

The eigenvectors corresponding to different eigenvalues can be shown to satisfy the
following orthogonality relations. When ωr

2 ≠ ωs
2,

vr
TKvs = 0 vr

TMvs = 0 (28.15)

In case the characteristic equation has a p-fold multiple root for ω2, then there is a 
p-fold infinity of corresponding eigenvectors. In this case, however, it is always pos-
sible to choose p of these vectors which mutually satisfy Eq. (28.15) and to express
any other eigenvector corresponding to the multiple root as a linear combination of
the p vectors selected. If these p vectors are included with the eigenvectors corre-
sponding to the other eigenvalues, a set of n vectors is obtained which satisfies the
orthogonality relations of Eq. (28.15) for any r ≠ s.

The orthogonality of the eigenvectors with respect to K and M implies that the
following square matrices are diagonal.

VTKV = vr
T Kvr

VTMV = vr
T Mvr

(28.16)

The elements vr
T Kvr along the main diagonal of VTKV are called the modal stiff-

nesses kr, and the elements vr
T Mvr along the main diagonal of VTMV are called the

modal masses mr. Since M is positive definite, all modal masses are guaranteed to be
positive. When K is singular, at least one of the modal stiffnesses will be zero. Each
eigenvalue ωr

2 is the quotient of the corresponding modal stiffness divided by the
corresponding modal mass; i.e.,

ωr
2 =

In numerical work it is sometimes convenient to normalize each eigenvector so
that its largest element is unity. In other applications it is common to normalize the
eigenvectors so that the modal masses mr all have the same value m, where m is
some convenient value such as the total mass of the system. In this case,

VTMV = mI (28.17)

and it is possible to express the inverse of the modal matrix V simply as

V−1 = VTM

An interpretation of the modal matrix V can be given by showing that it defines
a set of generalized coordinates for which both the inertia and stiffness matrices are
uncoupled. Let y(t) be a column of displacements related to the original displace-
ments x(t) by the following simultaneous equations:

y = V−1x or x = Vy

1
�
m

kr�
mr
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The potential and kinetic energies then take the forms

V = 1⁄2xTKx = 1⁄2yT(VTKV)y

T = 1⁄2 ẋTMẋ = 1⁄2 ẏT(VTMV)ẏ

where, according to Eq. (28.16), the square matrices in parentheses on the right
are diagonal; i.e., in the yj coordinate system there is neither stiffness nor inertia
coupling.

An alternative method for obtaining the same interpretation is to start from the
eigenvalue problem of Eq. (28.11). Consider the structure of the related eigenvalue
problem for w where again w is obtained from v by the transformation involving the
modal matrix V.

w = V−1v or v = Vw

Substituting in Eq. (28.11), premultiplying by VT, and using Eq. (28.14),

Kv = ω2Mv

KVw = ω2MVw

VTKVw = ω2VTMVw

(VTMV)W2w = ω2(VTMV)w

Now, since VTMV is a diagonal matrix of positive elements, it is permissible to can-
cel it from both sides, which leaves a simple diagonalized eigenvalue problem for w:

W2w = ω2w

A modal matrix for w is the identity matrix I, and the eigenvalues for w are the same
as those for v.

EIGENVECTOR EXPANSIONS

Any set of n independent vectors can be used as a basis for representing any other
vector of order n. In the following sections, the eigenvectors of the eigenvalue prob-
lem of Eq. (28.11) are used as such a basis.An eigenvector expansion of an arbitrary
vector y has the form

y = �
n

r = 1
vrar (28.18)

where the ar are scalar mode multipliers. When y and the vr are known, it is possible
to evaluate the ar by premultiplying both sides by vs

T M. Because of the orthogonal-
ity relations of Eq. (28.15), all the terms on the right vanish except the one for which
r = s. Inserting the value of the mode multiplier so obtained, the expansion can be
rewritten as

y = �
n

r = 1
vr (28.19)

or alternatively as

vr
T My

�
vr

T Mvr
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y = �
n

r = 1
y (28.20)

The form of Eq. (28.19) emphasizes the decomposition into eigenvectors since the
fraction on the right is just a scalar. The form of Eq. (28.20) is convenient when a
large number of vectors y are to be decomposed, since the fractions on the right,
which are now square matrices, must be computed only once. The form of Eq.
(28.20) becomes more economical of computation time when more than n vectors y
have to be expanded. A useful check on the calculation of the matrices on the right
of Eq. (28.20) is provided by the identity

�
n

r = 1
= I (28.21)

which follows from Eq. (28.20) because y is completely arbitrary.
An alternative expansion which is useful for expanding the excitation vector f is

f = �
n

r = 1
ωr

2Mvrar = �
n

r = 1
Mvr (28.22)

This may be viewed as an expansion of the excitation in terms of the inertia force
amplitudes of the natural modes. The mode multiplier ar has been evaluated by pre-
multiplying by vr

T.A form analogous to Eq. (28.20) and an identity corresponding to
Eq. (28.21) can easily be written.

RAYLEIGH’S QUOTIENT

If Eq. (28.11) is premultiplied by vT, the following scalar equation is obtained:

vTKv = ω2vTMv

The positive definiteness of M guarantees that vTMv is nonzero, so that it is per-
missible to solve for ω2.

ω2 = (28.23)

This quotient is called “Rayleigh’s quotient.” It also may be derived by equating
time averages of potential and kinetic energy under the assumption that the vibra-
tory system is executing simple harmonic motion at frequency ω with amplitude
ratios given by v or by equating the maximum value of kinetic energy to the maxi-
mum value of potential energy under the same assumption. Rayleigh’s quotient has
the following interesting properties.

1. When v is an eigenvector vr of Eq. (28.11), then Rayleigh’s quotient is equal to
the corresponding eigenvalue ωr

2.
2. If v is an approximation to vr with an error which is a first-order infinitesimal,

then Rayleigh’s quotient is an approximation to ωr
2 with an error which is a sec-

ond-order infinitesimal; i.e., Rayleigh’s quotient is stationary in the neighbor-
hoods of the true eigenvectors.

3. As v varies through all of n-dimensional vector space, Rayleigh’s quotient re-
mains bounded between the smallest and largest eigenvalues.

vTKv
�
vTMv

vr
Tf

�
vr

T Mvr

vrvr
T M

�
vr

T Mvr

vrvr
T M

�
vr

T Mvr
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A common engineering application of Rayleigh’s quotient involves simply eval-
uating Eq. (28.23) for a trial vector v which is selected on the basis of physical
insight. When eigenvectors are obtained by approximate methods, Rayleigh’s quo-
tient provides a means of improving the accuracy in the corresponding eigenvalue. If
the elements of an approximate eigenvector whose largest element is unity are cor-
rect to k decimal places, then Rayleigh’s quotient can be expected to be correct to
about 2k significant decimal places.

Perturbation Formulas. The perturbation formulas which follow provide the
basis for estimating the changes in the eigenvalues and the eigenvectors which result
from small changes in the stiffness and inertia parameters of a system. The formulas
are strictly accurate only for infinitesimal changes but are useful approximations for
small changes. They may be used by the designer to estimate the effects of a pro-
posed change in a vibratory system and may also be used to analyze the effects of
minor errors in the measurement of the system properties. Iterative procedures for
the solution of eigenvalue problems can be based on these formulas. They are
employed here to obtain approximations to the complex eigenvalues and eigenvec-
tors of a lightly damped vibratory system in terms of the corresponding solutions for
the same system without damping.

Suppose that the modal matrix V and the spectral matrix W2 for the eigenvalue
problem

KV = MVW2 (28.14)

are known. Consider the perturbed eigenvalue problem

K*V* = M*V*W*
2

where

K* = K + dK M* = M + dM

V* = V + dV W*
2 = W2 + dW2

The perturbation formula for the elements dωr
2 of the diagonal matrix dΩ2 is

dωr
2 = (28.24)

Thus in order to determine the change in a single eigenvalue due to changes in M
and K, it is necessary to know only the corresponding unperturbed eigenvalue and
eigenvector.To determine the change in a single eigenvector, however, it is necessary
to know all the unperturbed eigenvalues and eigenvectors. The following algorithm
may be used to evaluate the perturbations of both the modal matrix and the spectral
matrix. Calculate

F = VT dK V − VT dM VW2

and

L = VTMV

The matrix L is a diagonal matrix of positive elements and hence is easily inverted.
Continue calculating

G = L−1F = [gjk] and H = [hjk]

vr
T dK vr − ωr

2vr
T dM vr���

vr
T Mvr

MATRIX METHODS OF ANALYSIS 28.17

8434_Harris_28_b.qxd  09/20/2001  11:48 AM  Page 28.17



where

0 if ωj
2 = ωk

2

hjk = � if ωj
2 ≠ ωk

2

Then, finally, the perturbations of the modal matrix and the spectral matrix are given
by

dV = VH dW2 = gjj (28.25)

These formulas are derived by taking the total differential of Eq. (28.14), premulti-
plying each term by VT, and using a relation derived by taking the transpose of Eq.
(28.14). An interesting property of the perturbation approximation is that the
change in each eigenvector is orthogonal with respect to M to the corresponding
unperturbed eigenvector; i.e.,

vj
T M dvj = 0

VIBRATIONS OF SYSTEMS WITHOUT DAMPING

In this section the damping matrix C is neglected in Eq. (28.8), leaving the general
formulation in the form

Mẍ + Kx = f (28.26)

Solutions are outlined for the following three cases: free vibration (f = 0), steady-
state forced sinusoidal vibration (f = R {dejωt}, where d is a column vector of driving-
force amplitudes), and the response to general excitation (f an arbitrary function of
time). The first two cases are contained in the third, but for the sake of clarity each
is described separately.

FREE VIBRATION WITH SPECIFIED INITIAL CONDITIONS

It is desired to find the solution x(t) of Eq. (28.26) when f = 0 which satisfies the ini-
tial conditions

x = x(0) ẋ = ẋ(0) (28.27)

at t = 0 where x(0) and ẋ(0) are columns of prescribed initial displacements and
velocities. The differential equation to be solved is identical with Eq. (28.10), which
led to the matrix eigenvalue problem in the preceding section. Assuming that the
solution of the eigenvalue problem is available, the general solution of the differen-
tial equation is given by an arbitrary superposition of the natural modes

x = �
n

r = 1
vr(ar cos ωrt + br sin ωrt)

where the vr are the eigenvectors or natural modes, the ωr are the natural frequen-
cies, and the ar and br are 2n constants of integration. The corresponding velocity is

gjk
�ωk

2 − ωj
2
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ẋ = �
n

r = 1
vrωr(−ar sin ωrt + br cos ωrt)

Setting t = 0 in these expressions and substituting in the initial conditions of Eq.
(28.27) provides 2n simultaneous equations for determination of the constants of
integration.

�
n

r = 1
vrar = x(0) �

n

r = 1
vrωrbr = ẋ(0)

These equations may be interpreted as eigenvector expansions of the initial dis-
placement and velocity. The constants of integration can be evaluated by the same
technique used to obtain the mode multipliers in Eq. (28.19). Using the form of Eq.
(28.20), the solution of the free vibration problem then becomes

x(t) = �
n

r = 1
�x(0) cos ωr t + ẋ(0) sin ωr t� (28.28)

STEADY-STATE FORCED SINUSOIDAL VIBRATION

It is desired to find the steady-state solution to Eq. (28.26) for single-frequency sinu-
soidal excitation f of the form

f = R {dejωt}

where d is a column vector of driving force amplitudes (these may be complex to
permit differences in phase for the various components). The solution obtained is a
useful approximation for lightly damped systems provided that the forcing fre-
quency ω is not too close to a natural frequency ωr. For resonance and near-
resonance conditions it is necessary to include the damping as indicated in the
section which follows the present discussion.

The steady-state solution desired is assumed to have the form

x = R {aejωt}

where a is an unknown column vector of response amplitudes. When f and x are
inserted in Eq. (28.26), the following set of simultaneous equations for the elements
of a is obtained:

(K − ω2M)a = d (28.29)

If ω is not a natural frequency, the square matrix K − ω2M is nonsingular and may be
inverted to yield

a = (K − ω2M)−1d

as a complete solution for the response amplitudes in terms of the driving force
amplitudes. This solution is useful if several force amplitude distributions are to be
studied while the excitation frequency ω is held constant. The process requires
repeated inversions if a range of frequencies is to be studied.

An alternative procedure which permits a more thorough study of the effect of
frequency variation is available if the natural modes and frequencies are known. The
driving-force vector d is represented by the eigenvector expansion of Eq. (28.22), and
the response vector a is represented by the eigenvector expansion of Eq. (28.18):

1
�
ωr

vrvr
T M

�
vr

T Mvr
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d = �
n

r = 1
d a = �

n

r = 1
vrcr

where the cr are unknown coefficients. Substituting these into Eq. (28.29), and mak-
ing use of the fundamental eigenvalue relation of Eq. (28.11), leads to

�
n

r = 1
(ωr

2 − ω2)Mvrcr = �
n

r = 1
d

This equation can be uncoupled by premultiplying both sides by vr
T and using the

orthogonality condition of Eq. (28.15) to obtain

(ωr
2 − ω2)vr

TMvrcr = vr
Td

cr =

The final solution is then assembled by inserting the cr back into a and a back into x.

x = R � �
n

r = 1
d� (28.30)

This form clearly indicates the effect of frequency on the response.

RESPONSE TO GENERAL EXCITATION

It is now desired to obtain the solution to Eq. (28.26) for the general case in which
the excitation f(t) is an arbitrary vector function of time and for which initial dis-
placements x(0) and velocities ẋ(0) are prescribed. If the natural modes and fre-
quencies of the system are available, it is again possible to split the problem up into
n single degree-of-freedom response problems and to indicate a formal solution.

Following a procedure similar to that just used for steady-state forced sinusoidal
vibrations, an eigenvector expansion of the solution is assumed:

x(t) = �
n

r = 1
yrcr(t)

where the cr are unknown functions of time and the known excitation f(t) is
expanded according to Eq. (28.22). Inserting these into Eq. (28.26) yields

�
n

r = 1
(Mvr c̈r + Kvrcr) = �

n

r = 1
f(t)

Using Eq. (28.11) to eliminate K and premultiplying by vr
T to uncouple the equation,

c̈r + ωr
2cr

2 = (28.31)

is obtained as a single second-order differential equation for the time behavior of the
rth mode multiplier. The initial conditions for cr can be obtained by making eigen-
vector expansions of x(0) and ẋ(0) as was done previously for the free vibration case.
Formal solutions to Eq. (28.29) can be obtained by a number of methods, including
Laplace transforms and variation of parameters. When these mode multipliers are
substituted back to obtain x, the general solution has the following appearance:

vr
Tf(t)

�
vr

T Mvr

Mvrvr
T

�
vr

T Mvr

vrvr
T

�
vr

T Mvr

ejωt

�
ωr

2 − ω2

vr
Td

�
vr

TMvr

1
�
ωr

2 − ω2

Mvrvr
T

�
vr

T Mvr

Mvrvr
T

�
vr

TMvr

28.20 CHAPTER TWENTY-EIGHT, PART I

8434_Harris_28_b.qxd  09/20/2001  11:48 AM  Page 28.20



x(t) = �
n

r = 1
�x(0) cos ωrt + ẋ(0) sin ωrt�

+ �
n

r = 1
	t

0
f(t′) sin {ωr(t − t′)} dt′ (28.32)

The integrals involving the excitation can be evaluated in closed form if the ele-
ments fj(t) of f(t) are simple (e.g., step functions, ramps, single sine pulses, etc.).When
the fj(t) are more complicated, numerical results can be obtained by using integra-
tion software.

VIBRATION OF SYSTEMS WITH DAMPING

In this section solutions to the complete governing equation, Eq. (28.8), are dis-
cussed. The results of the preceding section for systems without damping are 
adequate for many purposes. There are, however, important problems in which it is
necessary to include the effect of damping, e.g., problems concerned with resonance,
random vibration, etc.

COMPLEX EIGENVALUE PROBLEM

When there is no excitation, Eq. (28.8) becomes

Mẍ + Cẋ + Kx = 0

which describes the free vibration of the system. As in the undamped case, there are
2n independent solutions which can be superposed to meet 2n initial conditions.
Assuming a solution in the form

x = uept

leads to the following algebraic problem:

(p2M + pC + K)u = 0 (28.33)

for the determination of the vector u and the scalar p. This is a complex eigenvalue
problem because the eigenvalue p and the elements of the eigenvector u are, in gen-
eral, complex numbers.The most common technique for solving the nth-order eigen-
value problem, Eq. (28.33), is to transform it to a 2nth-order problem having the
same form as Eq. (28.11). This may be done by introducing the column vector ṽ of
order 2n given by

ṽ = {u pu}T

and the two square matrices of order 2n given by

K̃ = � � M̃ = � �
In terms of these, an eigenvalue problem equivalent to Eq. (28.33) is

M
0

C
M

0
M

−K
0

vrvr
T

�
ωrvr

T Mvr

1
�
ωr

vrvr
T M

�
vr

T Mvr
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K̃ṽ = pM̃ṽ (28.34)

which is similar to Eq. (28.11) except that M̃ does not have the positive definite
property that M has. As a result, the eigenvalue p and the eigenvector v are gener-
ally complex. Since the computational time for most eigenvalue problems is propor-
tional to n3, the computational time for the 2nth-order system of Eq. (28.34) will be
about eight times that for the nth-order system of Eq. (28.11).

If the complex eigenvalue p = −α + jβ together with the complex eigenvector u =
v + jw satisfy the eigenvalue problem of Eq. (28.33), then so also does the complex
conjugate eigenvalue pC = −α − jβ together with the complex conjugate eigenvector
uC = v − jw. There are 2n eigenvalues which occur in pairs of complex conjugates or
as real negative numbers. When the damping is absent all roots lie on the imaginary
axis of the complex p-plane; for small damping the roots lie near the imaginary axis.
The corresponding 2n eigenvectors ur satisfy the following orthogonality relations:

(pr + ps)ur
TMus + ur

TCus = 0

ur
TKus − prpsur

TMus = 0

whenever pr ≠ ps; they can be made to hold for repeated roots by suitable choice of
the eigenvectors associated with a multiple root. When ps is put equal to pr

C, the
orthogonality relations provide convenient formulas for the real and imaginary
parts of the eigenvalues in terms of the eigenvectors

2αr = =

αr
2 + βr

2 = =

The complex eigenvalue is often represented in the form

pr = ωr(−ζr + j
1 − ζr
2�) (28.35)

where ωr = 
αr
2 + β�r

2� is called the undamped natural frequency of the rth mode, and
ζr = αr/ωr is called the critical damping ratio of the rth mode.

PERTURBATION APPROXIMATION TO COMPLEX 

EIGENVALUE PROBLEM

The complex eigenvalue problem of Eq. (28.33) can be solved approximately, when
the damping is light, by using the perturbation equations of Eqs. (28.24) and (28.25).
When C = 0 in Eq. (28.33) the complex eigenvalue problem reduces to the real
eigenvalue problem of Eq. (28.11) with p2 = −ω2. Suppose that the real eigenvalue ωr

2

and the real eigenvector vr are known. The perturbation of the rth mode due to the
addition of small damping C can be estimated by considering the damping to be a
perturbation of the stiffness matrix of the form

dK = jωrC

vr
TKvr+ wr

TKwr��
vr

TMvr+ wr
TMwr

ur
TKur

C

�
ur

TMur
C

vr
TCvr+ wr

TCwr��
vr

TMvr+ wr
TMwr

ur
TCur

C

�
ur

TMur
C
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In this way it is found that the perturbed solution corresponding to the rth mode
consists of a pair of complex conjugate eigenvalues

pr = −αr + jωr pr
C = −αr − jωr

and a pair of complex conjugate eigenvectors

ur = vr + jwr ur
C = vr − jwr

where ωr and vr are taken directly from the undamped system, and αr and wr are
small perturbations which are given below. The superscript C is used to denote the
complex conjugate.The real part of the eigenvalue, which describes the rate of decay
of the corresponding free motion, is given by the following quotient:

2αr = 2ζrωr = (28.36)

The decay rate αr for a particular r depends only on the rth mode undamped solu-
tion. The imaginary part of the eigenvector jwr, which describes the perturbations in
phase, is more difficult to obtain. All the undamped eigenvalues and eigenvectors
must be known. Let W be a square matrix whose columns are the wr. The following
algorithm may be used to evaluate W when the undamped modal matrix V is known.
Calculate

F = VTCV

and

L = VTMV

The matrix L is a diagonal matrix of positive elements and hence is easily inverted.
Continue calculating

G = L−1F = [gjk] and H = [hjk]

where

0 if ωj
2 = ωk

2

hjk = � if ωj
2 ≠ ωk

2

Then, finally, the eigenvector perturbations are given by

W = VH (28.37)

The individual eigenvector perturbations wr obtained in this manner are orthogonal
with respect to M to their corresponding unperturbed eigenvectors vr; i.e., wr

TMvr = 0.

FORMAL SOLUTIONS

If the solution to the eigenvalue problem of Eq. (28.33) is available, it is possible to
exhibit a general solution to the governing equation

Mx + Cẋ + Kx = f (28.8)

gjkωk
�ωk

2 − ωj
2

vr
TCvr�

vr
T Mvr
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for arbitrary excitation f(t) which meets prescribed initial conditions for x(0) and ẋ(0)
at t = 0. The solutions given below apply to the case where the 2n eigenvalues occur
as n pairs of complex conjugates (which is usually the case when the damping is light).
This does, however, restrict the treatment to systems with nonsingular stiffness matri-
ces K because if ωr

2 = 0 is an undamped eigenvalue, the corresponding eigenvalues in
the presence of damping are real.All quantities in the solutions below are real. These
forms have been obtained by breaking down complex solutions into real and imagi-
nary parts and recombining. With the notation

pr = −αr + jβr ur = vr + jwr

for the real and imaginary parts of eigenvalues and eigenvectors, it follows from Eq.
(28.35) that

αr = ζrωr βr = ωr 
1� −� ζ�r
2�

The general solution to Eq. (28.8) is then

x(t) = �
n

r = 1
{GrMẋ(0) + (−αrGrM + βrHrM + GrC)x(0)}e−αr t cos βrt

+ �
n

r = 1
{HrMẋ(0) + (−βrGrM − αrHrM + HrC)x(0)}e−αr t sin βrt

+ �
n

r = 1
Gr 	t

0
f(t′)e−αr (t − t′) cos βr(t − t′) dt′

+ �
n

r = 1
Hr 	t

0
f(t′)e−αr (t − t′) sin βr(t − t′) dt′ (28.38)

where

ar = −2αr(vr
T Mvr − wr

T Mwr) − 4βrvr
T Mwr + vr

TCvr − wr
TCwr

br = 2βr(vr
T Mvr − wr

T Mwr) − 4αrvr
T Mwr + 2vr

TCwr

Ar = vrvr
T − wrwr

T Br = vrwr
T + wrvr

T

Gr = arAr + brBr Hr = brAr − arBr

The solution of Eq. (28.38) should be compared with the corresponding solution of
Eq. (28.32) for systems without damping. When the damping matrix C = 0, Eq.
(28.38) reduces to Eq. (28.32).

For the important special case of steady-state forced sinusoidal excitation of
the form

f = R {dejωt}

where d is a column of driving force amplitudes, the steady-state portion of the
response can be written as follows, using the above notation:

x(t) = R � �
n

r = 1
d� (28.39)

This result reduces to Eq. (28.30) when the damping matrix C is set equal to zero.

αrGr + βrHr + jωGr���
ωr

2 − ω2 + j2ζrωrω
2ejωt

�
ar

2 + br
2

2
�
ar

2 + br
2

2
�
ar

2 + br
2

2
�
ar

2 + br
2

2
�
ar

2 + br
2
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APPROXIMATE SOLUTIONS

For a lightly damped system the exact solutions of Eq. (28.38) and Eq. (28.39) can be
abbreviated considerably by making approximations based on the smallness of the
damping.A systematic method of doing this is to consider the system without damp-
ing as a base upon which an infinitesimal amount of damping is superposed as a per-
turbation. An approximate solution to the complex eigenvalue problem by this
method is provided by Eqs. (28.36) and (28.37). This perturbation approximation
can be continued into Eqs. (28.38) and (28.39) by simply neglecting all squares and
products of the small quantities αr, ζr, wr, and C.When this is done it is found that the
formulas of Eqs. (28.38) and (28.39) may still be used if the parameters therein are
obtained from the simplified expressions below.

αr = ζrωr βr = ωr

ar = −4ωrvr
T Mwr br = 2ωrvr

T Mvr

ar
2 + br

2 = 4ωr
2(vr

T Mvr)2

(28.40)
Ar = vrvr

T Br = vrwr
T + wrvr

T

Gr = 2ωr(vr
T Mvr)(vrwr

T + wrvr
T )

Hr = 2ωr(vr
T Mvr)vrvr

T

For example, the steady-state forced sinusoidal solution of Eq. (28.39) takes the fol-
lowing explicit form in the perturbation approximation:

x(t) = R � �
n

r = 1

vrvr
T + �vrwr

T + wrvr
T�

d� (28.41)ωr
2 − ω2 + j2ζrωrω

A cruder approximation, which is often used, is based on accepting the complex
eigenvalue pr = −αr + jωr but completely neglecting the imaginary part jwr of the
eigenvector ur = vr + jwr. It is thus assumed that the undamped mode vr still applies
for the system with damping. The approximate parameter values of Eq. (28.40) are
further simplified by this assumption; e.g., ar = 0, Br = Gr = 0. The steady forced sinu-
soidal response of Eq. (28.41) reduces to

x(t) = R � �
n

r = 1
d� (28.42)

This approximation should be compared with the undamped solution of Eq. (28.30),
as well as with the exact solution of Eq. (28.39) and the perturbation approximation
of Eq. (28.41).

In the special case of proportional damping, the exact eigenvectors are real and
Eq. (28.36) produces the exact decay rate αr = ζrωr, so that the response of Eq.
(28.42) is an exact result.

Example 28.1. Consider the system of Fig. 28.5 with the following mass, damping,
and stiffness coefficients:

m1 = 1 lb-sec2/in. m2 = 2 lb-sec2/in.

c1 = 0.10 lb-sec/in. c2 = 0.02 lb-sec/in. c3 = 0.04 lb-sec/in.

k1 = 3 lb/in. k2 = 0.5 lb/in. k3 = 1 lb/in.

vrvr
T

�
vr

T Mvr

e jωt

��
ωr

2 − ω2 + j2ζrωrω

jω
�ωrejωt

�
vr

T Mvr
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The coefficient matrices of Eq. (28.9) then have the following numerical values:

3 2 0.14 0.04 4 1
M = � � C = � � K = � �

2 2 0.04 0.06 1 1.5

Assuming that the numerical values above are exact, the exact solutions to the com-
plex eigenvalue problem of Eq. (28.33) for these values of M, C, and K are, correct
to four decimal places,

pr = −αr + jβr ur = vr + jwr

2α1 = 0.0279 α1 = ζ1ω1 = 0.0139 ζ1 = 0.0166

β1 = 0.8397 ω1 = 0.8398 ω1
2 = 0.7053

2α2 = 0.1221 α2 = ζ2ω2 = 0.0611 ζ2 = 0.0324 (28.43)

β2 = 1.8818 ω2 = 1.8828 ω2
2 = 3.5449

V = � � W = �0.0016 0.0010�0 0

Note that this is a lightly damped system. The damping ratios in the two modes are
1.66 percent and 3.24 percent, respectively.

For comparison, the solution of the real eigenvalue problem Eq. (28.12) for the
corresponding undamped system (i.e., M and K as above, but C = 0) is, correct to four
decimal places,

V = � �
Note that, to this accuracy, there is no discrepancy in the real parts of the eigenvec-
tors. There are, however, small discrepancies in the imaginary parts of the eigenval-
ues. The difference between β1 for the damped system and ω1 for the undamped
system is 0.0001, and the corresponding difference between β2 and ω2 is 0.0009. The
imaginary parts of the eigenvectors and the real parts of the eigenvalues for the
damped system are completely absent in the undamped system. They may be
approximated by applying the perturbation equations of Eqs. (28.36) and (28.37) to
the solution of the eigenvalue problem for the undamped system.

The real parts αr of the eigenvalues obtained from Eq. (28.36) agree, to four dec-
imal places, with the exact values in Eq. (28.43).The imaginary parts wr of the eigen-
vectors obtained from Eq. (28.37) are

w1 = � � w2 = � �
These vectors satisfy the orthogonality conditions vr

T Mwr = 0.
In order to compare these values with Eq. (28.43), it is first necessary to normal-

ize the complete eigenvector vr + jwr, so that its second element is unity. For exam-
ple, this is done in the case of r = 1 by dividing both v1 and w1 by 1.0000 − j0.0014.
When this is done, it is found that the perturbation approximation to the eigenvec-
tors agrees, to four decimal places, with the exact solution of Eq. (28.43).

To illustrate the application of the formal solutions given above, consider the
steady-state forced oscillation of the system shown in Fig. 28.5 at a frequency ω due

0.0002
0.0009

0.0013
−0.0014

−0.9179
1.0000

0.2179
1.0000

ω1
2 = 0.7053

ω2
2 = 3.5447

−0.9179
1.0000

0.2179
1.0000
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to driving force amplitudes d1 and d2. Using the exact solution values of Eq. (28.43),
the expressions ar, br, Ar, Br, Gr, and Hr following Eq. (28.38) are evaluated for r = 1
and r = 2. With these values, the steady-state response, Eq. (28.39), becomes

� � = R �ejωt �� � + jω � �� � �0.7053 − ω2 + 0.0279jω

+
ejωt�� � + jω � ��

� ��3.5449 − ω2 + 0.1221jω

When the approximation in Eq. (28.41) based on the perturbation solution is evalu-
ated, the result is almost identical to this. A few entries differ by one or two units in
the fourth decimal place. The crude approximation, Eq. (28.42), is the same as the
perturbation approximation except that the terms in the numerators which are mul-
tiplied by jω are absent. This means that the relative error between the crude
approximation and the exact solution can be large at high frequencies. At low fre-
quencies, however, even the crude approximation provides useful results for lightly
damped systems. In the present case, the discrepancy between the crude approxima-
tion and the exact solution remains under 1 percent as long as ω is less than ω2 (the
highest natural frequency). At higher frequencies the absolute response level
decreases steadily, which tends to undercut the significance of the increasing relative
discrepancy between approximations.
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CHAPTER 28, PART II
FINITE ELEMENT MODELS

Robert N. Coppolino

INTRODUCTION

The finite element method (FEM), formally introduced by Clough1 in 1960, has
become a mature engineering discipline during the past forty years. In actual prac-
tice, finite element analysis is a systematic applied science, which incorporates (1)
the definition of a physical model of a complex system as a collection of building
blocks (finite elements), (2) the solution of matrix equations describing the physical
model, and (3) the analysis and interpretation of numerical results. The foundations
of finite element analysis are (a) the design of consistent, robust finite elements2; and
(b) matrix methods of numerical analysis3,4,5 (see Chap. 28, Part I). Originally devel-
oped to address modeling and analysis of complex structures, the finite element
approach is now applied to a wide variety of engineering applications including heat
transfer, fluid dynamics, and electromagnetics, as well as multiphysics (coupled
interaction) applications.

Modern finite element programs include powerful graphical user interface
(GUI) driven preprocessors and postprocessors, which automate routine operations
required for the definition of models and the interpretation of numerical results,
respectively (see Chap. 27). Moreover, finite element analysis, computer-assisted
design and optimization, and laboratory/field testing are viewed as an integrated
“concurrent engineering” process. Commercially available products, widely used in
industry, include MSC/NASTRAN (a product of MSC.Software), ANSYS (a prod-
uct family of ANSYS Incorporated), and ABAQUS (a product of HKS Incorpo-
rated), just to mention a few.

This chapter describes finite element modeling and analysis with an emphasis on
its application to the shock and vibration of structures and structures interacting
with fluid media. Included are discussions on the theoretical foundations of finite
element models, effective modeling guidelines, dynamic system models and analysis
strategies, and common industry practice.

THEORETICAL FOUNDATIONS OF FINITE

ELEMENT MODELS

APPLICATION OF MINIMAL PRINCIPLES

The matrix equations describing both individual finite elements and complete finite
element system models are defined on the basis of minimal principles. In particular,
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for structural dynamic systems, Hamilton’s Principle or Lagrange’s Equations6 con-
stitute the underlying physical principle. The fundamental statement of Hamilton’s
Principle is

δ 	t1

t0

(T + W)dt = 0 (28.44)

where T is the system kinetic energy, W is the work performed by internal and
external forces, t represents time, and δ is the variational operator. In the case of
statics, Hamilton’s Principle reduces to the Principle of Virtual Work, stated mathe-
matically as

δW = 0 (if T = 0) (28.45)

For most mechanical systems of interest, W may be expressed in terms of a conser-
vative interior elastic potential energy (U), dissipative interior work (WD), and the
work associated with externally applied forces (WE). Thus Hamilton’s Principle is
stated as

	t1

t0

(δT − δU + δWD + δWE)dt = 0 (28.46)

The kinematics of a mechanical system of volume, V, are described in terms of the
displacement field

{u} = [Nu Nq]� � (28.47)

where {u} is the displacement array at any point in V, {ui} is an array of discrete dis-
placements (typically) on the element surface, and {q} is an array of generalized dis-
placement coefficients. The transformation matrix partitions, Nu and Nq, describe
assumed shape functions for the particular finite element. The most commonly used
elements, namely H-type elements, do not include generalized displacement coeffi-
cients, {q}. The more general case element is called a P-type element. For simplicity,
the subsequent discussion will be limited to H-type elements.

In matrix notation (see Chap. 28, Part I), the strain field within the element vol-
ume is related to the assumed displacements by the differential operator matrix
[Nεu] as

{ε(x,y,z,t)} = {ε} = [Nεu]{u} (28.48)

The stress field within the element volume is expressed as

{σ(x,y,z,t)} = {σ} = [D]{ε} = [D][Nεu]{u} (28.49)

In the case of hybrid finite element formulations, for which there is an assumed ele-
ment stress field other than simply [D][Nεu], the situation is more involved.

Using the above general expressions, the kinetic and strain energies associated
with a finite element are

ui

q
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2T = 	
v

{ �u}T[Nu]T[ρ][Nu]{ �u}dV = { �u}T[Me]{ �u} (28.50)

2U = 	
v

{u}T[Nεu]T[D][Nεu]{u}dV = {u}T[Ke]{u} (28.51)

where [ρ] is the material density matrix, [D] is the material elastic matrix, and [Me]
and [Ke] are the individual element mass and stiffness matrices, respectively. The
superscript shown as { }T and [ ]T denotes the transpose of an array and matrix,
respectively. In the case of viscous damping (which is a common yet not necessarily
realistic assumption), the element virtual dissipative work is

δWD = {δu}T[Be]{ �u} (28.52)

where [Be] is the symmetric element damping matrix.
In order to assemble the mass, stiffness, and damping matrices associated with a

complete finite element system model, the displacement array for the entire system,
{ug}, must first be defined. The individual element contributions to the system are
then allocated (and accumulated) to the appropriate rows and columns of the sys-
tem matrices. This results in the formation of generally sparse, symmetric matrices.
The complete system kinetic and strain energies are, respectively,

2Tg = { �ug}T[Mgg]{ �ug} (28.53)

2Ug = {ug}T[Kgg]{ug} (28.54)

where [Mgg] and [Kgg] are the system mass and stiffness matrices.
For the case of viscous damping, the complete system virtual dissipative work is

δWDg = {δug}T[Bgg]{ �ug} (28.55)

Finally, the virtual work associated with externally applied forces on the complete
system is defined as

δWEg = {δug}T[Γge]{Fe} (28.56)

where [Γge] represents the allocation matrix for externally applied forces, {Fe},
including moments, stresses, and pressures if applicable. Substitution of the above
expressions for the complete system energies and virtual work into Hamilton’s Prin-
ciple, followed by key manipulations, results in the finite element system differential
equations

[Mgg]{üg} + [Bgg]{ �ug} + [Kgg]{ug} = [Γge]{Fe} (28.57)

The task of defining a finite element model is not yet complete at this point. Con-
straints and boundary conditions, as required, must now be imposed. The logical
sequence of imposed constraint types is (1) multipoint constraints (e.g., geometric
constraints expressed as algebraic relationships) and (2) single-point constraints
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(e.g., fixed supports). These constraints are described, in summary, by the linear
transformation

{ug} = [Ggf]{uf} (28.58)

where {uf} is the array of “free” displacements. By imposing the constraint transfor-
mation, [Ggf], in a symmetric manner to the system equations [see Eq. (28.57)], the
following constrained system equations are formed:

[Mff]{üf} + [Bff]{ �uf} + [Kff]{uf} = [Γfe]{Fe} (28.59)

where

[Mff] = [Ggf]T[Mgg][Ggf], [Bff] = [Ggf]T[Bgg][Ggf]

(28.60)
[Kff] = [Ggf]T[Kgg][Ggf], [Γfe] = [Ggf]T[Γge]

TYPICAL FINITE ELEMENTS

Commonly used finite elements in commercial codes may be divided into two pri-
mary classes, namely, (1) elements based on technical theories, and (2) elements
based on three-dimensional continuum theory. The first class of elements includes
one-dimensional beam elements.Truss and bar elements are special cases of the gen-
eral beam element. A modern beam element permits modeling of the shear defor-
mation and warping associated with general cross-section geometry. Beam elements,
which may describe a straight or curved segment, are typically described in terms of
nodal displacements (three linear and three angular displacements) at the two
extremities as illustrated in Fig. 28.6.

Also within the family of elements based on technical theories are shell elements.
Membrane and flat plate elements are special cases of the general shell element.
Shell elements are typically of triangular or quadrilateral form with straight or
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curved edges as illustrated in Fig. 28.7. Common H-type shell elements are defined
by nodal displacements (three linear and three angular displacements) at the ele-
ment corners. Shell elements may also be defined in terms of midside nodal dis-
placements. Modern shell elements may include such features as shear deformation,
anisotropic elastic materials, and composite layering.

The family of three-dimensional elastic elements includes tetrahedral, pentahe-
dral, wedge, and hexahedral configurations with straight or curved edges as illus-
trated in Fig. 28.8. H-type continuum elements are defined by nodal displacements
(three linear) at the element corners. Three-dimensional H-type elements may also
be defined in terms of midside nodal displacements.As in the case of shell elements,
anisotropic elastic materials may be employed in element formulations.

Effect of Static Loading—Differential Stiffness. The effective stiffness of struc-
tures subjected to static loads may be increased or decreased. For example, the lat-
eral stiffness of a column subjected to axial compression decreases, becoming
singular if the fundamental buckling load is imposed. In the case of an inflated bal-
loon, the shell-bending stiffness is almost entirely due to significant membrane ten-
sion. In each of these situations, the static load–associated differential stiffness
derives from a finite geometric change. Modern commercial finite element codes
contain the option to include differential stiffness effects in the model definition.

Fluid-Structure Interaction. Linear dynamic models of oscillating (but otherwise
assumed stationary) fluids interacting with elastic structures are employed in vibro-
acoustics, liquid-filled tank vibratory dynamics, and other applications. One popular
approach used to describe the fluid medium employs pressure degrees-of-freedom. On
the basis of complementary energy principles,7 three-dimensional fluid elements (with
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the geometric configurations illustrated in Fig. 28.8) are defined. The matrix equations
describing dynamics of such a fluid interacting with an elastic structure are of the form

� �� � + � �� � = � �� � (28.61)

where [C] is the fluid compliance matrix, [S] is the fluid susceptance matrix (analo-
gous to the inverse of a mass matrix), and [A] is the fluid-structure interface area
matrix. The matrix partitions [ΓQ] and [ΓF] are the fluid volumetric source flow {Q̈e}
and the structural applied load {Fe} allocation matrices, respectively. The system of
equations is unsymmetric due to the fact that it is based on a blend of standard struc-
tural displacement and complementary fluid pressure variational principles.

A variety of algebraic manipulations are used to cast the hydroelastic equations
in a conventional symmetric form. In many applications involving approximately
incompressible (liquid) fluids, the fluid compliance is ignored. The incompressible
hydroelastic equations (without source flow excitation) may then be cast in the
symmetric form7

[M + Mf]{ü} + [K]{u} = [ΓF]{Fe} (28.62)

where the (generally full) fluid mass matrix is

[Mf] = [A][S]−1[A]T (28.63)

Specialized constraints are often required to permit the decomposition of the generally
singular fluid susceptance matrix.7 Moreover, specialized eigenvalue analysis proce-
dures are recommended to efficiently deal with the full fluid mass matrix.

Q̈e

Fe

0
ΓF

ΓQ

0
P
u

0
K

S
−A

P̈
ü

AT

M
C
0
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For the most general case of a compressible fluid, introduction of the fluid volu-
metric strain variable

{v} = [C]{P} (28.64)

results in the symmetric equation set

� �� � + � �� � = � � � � (28.65)

As for the incompressible, symmetric formulation, a specialized efficient eigenvalue
analysis procedure (based on the subspace iteration algorithm8) is recommended to
efficiently deal with the full hydroelastic mass matrix.

In situations for which the fluid is a lightweight acoustic gas, a decoupling approx-
imation may provide reasonable, approximate dynamic solutions.The approximation
assumes that the acoustic medium is driven by a much heavier structure, which is
unaffected by fluid interaction. The decoupled approximate dynamic equations are

[M]{ü} + [K]{u} = [ΓF]{Fe} (28.66)

[C]{P̈} + [S]{P} = −[AT]{ü} + [ΓQ]{Q̈e} (28.67)

Uncoupled modal analyses of the structural and acoustic media are used in the com-
putation of the system dynamic response for this approximate formulation.

General Linear System Dynamic Interaction Considerations. In the previous
discussion on fluid-structure interaction, a variety of algebraic manipulations, which
transform coupled unsymmetric dynamic equations to a conventional symmetric lin-
ear formulation, were described.Transformations resulting in symmetric matrix equa-
tions, however, are not possible in more general situations involving dynamic
interaction.

Linear systems which include complicating effects due to the interaction with
general linear subsystems (e.g., control systems, propulsion systems, and perturbed
steady fluid flow) are generally appended with nonsymmetric matrix dynamic rela-
tionships.The nonconventional linear dynamic formulation incorporates state equa-
tions for the interacting subsystem

[Ai]{qi} − { �qi} = [Bi]{ �u} + [Ki]{u} (28.68)

and the forces of interaction with the structural dynamic system

[Γi]{Fi} = [Γi][Ci]{qi} (28.69)

where {qi} are subsystem state variables, [Ai] is the subsystem plant matrix, and [Bi],
[Ki], and [Ci] are coupling matrices. The complete dynamic system is described by
the state equations

� �� � − � � = � �{Fe} (28.70)
−M−1Γe

0
0

ü
�u
�qi

�u
u
qi

M−1ΓiCi

0
Ai

−M−1K
0

−Ki

−M−1B
I

−Bi

Q̈e

Fe

0
ΓF

S−1ΓQ

−AS−1ΓQ

v
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0
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C−1

0
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The above state equations are of the class

[Asys]{qsysi} − { �qsys} = [Γsysi]{Fsys} (28.71)

Nonlinear Dynamic Systems. The most general type of dynamic system includes
nonlinear effects, which may be due to large geometric deformations, nonlinear
material behavior, stick-slip friction, gapping, and other complicating effects (see
Chap. 4). Fortunately, many dynamic systems are approximately linear. A thorough
discussion of nonlinear finite element modeling and analysis techniques is beyond
the scope of the present discussion. However, two particularly useful classes of mod-
els are pointed out herein, namely, (1) linear systems with physically localized non-
linear features, and (2) general nonlinear systems.

A structural dynamic system with physically localized nonlinear features is
described by slightly modified linear matrix equations as

[M]{ü} + [B]{ �u} + [K]{u} = [ΓN]{FN(uN, �uN)} + [ΓF]{Fe} (28.72)

where [ΓN] is the allocation matrix for nonlinear features and {FN} are the nonlinear
forces related to local displacements and velocities. The local displacements and
velocities are related to global displacements and velocities as

{uN} = [ΓN]T{u}, { �uN} = [ΓN]T{ �u} (28.73)

This type of nonlinear dynamic formulation is useful in that the linear portion of the
system may be efficiently treated with modal analysis procedures, to be discussed
later.

General situations involving extensively distributed nonlinear behavior are
described by equations of the type

{ü} = [M]−1{F(u, �u,t)} (28.74)

or

� � = � �� � (28.75)

Advanced numerical integration procedures are employed to treat general nonlin-
ear dynamic systems. The procedures fall into two distinct classes, namely, (a)
implicit methods,9 and (b) explicit methods.4

EFFECTIVE MODELING GUIDELINES

CUT-OFF FREQUENCY AND GRID SPACING

In order to develop a relevant dynamic model, general requirements should be
addressed based on

F(u, �u,t)
�u

0
I

M−1

0
ü
�u
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1. Frequency bandwidth 0 < f < f*, and intensity (F*) of anticipated dynamic envi-
ronments.

2. General characteristics of structural or mechanical components.

Typical dynamic environments are summarized in Table 28.1. Dynamic environ-
ments are generally (a) harmonic, (b) transient, (c) impulsive, or (d) random. For all
categories, the cut-off frequency (f*) is reliably determined by shock response spec-
trum analysis (see Chap. 23).The overall intensity level of a dynamic environment is
described by a peak amplitude for harmonic, transient, and impulsive events, or by a
statistical amplitude (e.g., mean plus a multiple of the standard deviation) for a long-
duration random environment (see Chaps. 11 and 22). With the cut-off frequency
(f*) established, the shortest relevant wavelength of a forced vibration for compo-
nents in a structural assembly may be calculated. For finite element modeling, the
quarter wavelength (L/4) is of particular interest, since it defines the grid spacing
requirement needed to accurately model the dynamics. The guidelines for typical
structural components are summarized in Table 28.2.

In addition to the above grid spacing guidelines, the engineer must also consider
the limitations associated with beam and plate theories. In particular, if the wave-
length-to-thickness ratio (L/h) is less than about 10, a higher-order theory or 3D
elasticity modeling should be considered. Moreover, modeling requirements for the
capture of stress concentration details may call for a finer grid meshing than sug-
gested by the cut-off frequency. Finally, if the dynamic environment is sufficiently
high in amplitude, nonlinear modeling may be required, e.g., if plate deflections are
greater than the thickness, h.

MODAL DENSITY AND EFFECTIVENESS 

OF FINITE ELEMENT MODELS

Finite element modeling is an effective approach for the study of structural and
mechanical system dynamics as long as individual vibration modes have sufficient fre-
quency spacing or low modal density. Modal density is typically described as the num-
ber of modes within a 1⁄3 octave frequency band (f0 < f < 1.26 f0).When the modal density
of a structural component or structural assembly is greater than 10 modes per 1⁄3 octave
band, details of individual vibration modes are not of significance and statistical vibra-
tion response characteristics are of primary importance. In such a situation, the Statis-
tical Energy Analysis (SEA) method10 applies (see Chap. 11). Formulas for modal
density10 as a mathematical derivative, dn/dω (n = number of modes, ω = frequency in
radians/sec), for typical structural components are summarized in Table 28.3.
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TABLE 28.1 Summary of Typical Dynamic Environments

Environment Chapter or reference

Seismic excitation Chap. 24
Fluid flow Chap. 29, Part I
Wind loads Chap. 29, Part II
Sound Chap. 29, Part III
Transportation and handling impact MIL-STD-810E
Transportation and handling vibration MIL-STD-810E
Shipboard vibration MIL-STD-167-1
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DYNAMIC SYSTEM MODELS 

AND ANALYSIS STRATEGIES

FUNDAMENTAL DYNAMIC FORMULATIONS

finite element dynamic models fall into a variety of classes, which are expressed by
the following general equation sets:

1. Linear structural dynamic systems [see Eq. (28.59)]
2. Linear structural dynamic systems interacting with other media [see Eq. (28.70)]
3. Dynamic systems with localized nonlinear features [see Eqs. (28.72) and (28.73)]
4. Dynamic systems with distributed nonlinear features [see Eqs. (28.74) and

(28.75)]

28.38 CHAPTER TWENTY-EIGHT, PART II

TABLE 28.3 Modal Density for Typical Structural Components

Component Motion Modal density, dn/dω Additional data

String Lateral L/(π
/T/ρA�) T = tension, A = area,
ρ = mass density,
L = length

Rod Axial L/(π
E/ρ�) E = elastic modulus

Rod Torsion L/(π
G/ρ�) G = shear modulus

Beam Bending L/(2π)(ω
EI/ρA�)−1/2 EI = flexural stiffness

Membrane Lateral Asω/(2π)(N/ρh) N = stress resultant,
As = surface area

Plate Bending As/(4π)
D/ρh� D = plate flexural stiffness,
h = plate thickness

Acoustic Dilatational V0ω2/(2π2)(
B/ρ�)3 B = bulk modulus,
V0 = enclosed volume

TABLE 28.2 Guidelines for Dynamic Finite Element Model Meshing

Component Mode type L/4 Additional data

String Lateral (
T/ρA�)/4f* T = tension, A = area,
ρ = mass density

Rod Axial (
E/ρ�)/4f* E = elastic modulus

Rod Torsion (
G/ρ�)/4f* G = shear modulus

Beam Bending (π/2)(EI/ρA)1/4/
2πf*� EI = flexural stiffness

Membrane Lateral (
N/ρh�)/4f* N = stress resultant

Plate Bending (π/2)(D/ρh)1/4/
2πf*� D = plate flexural stiffness,
h = plate thickness

3D elastic Dilatational (
E/ρ�)/4f*

3D elastic Shear (
G/ρ�)/4f*

Acoustic Dilatational (
B/ρ�)/4f* B = bulk modulus
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The first category represents the type of systems most often dealt with in structural
dynamics and mechanical vibration. In the majority of engineering analyses, damp-
ing is assumed to be well-distributed in a manner justifying the use of normal mode
analysis techniques (see Chaps. 21 and 28, Part I). Systems in the first and second cat-
egories having more general damping features may be treated by complex modal
analysis procedures (see Chap. 28, Part I). When localized nonlinear features are
present, normal or complex mode analysis procedures may also be applied.The final
class, namely dynamic systems with distributed nonlinear features, must be treated
using numerical integration procedures. When a nonlinear system is subjected to a
slowly applied or moderately low frequency environment, implicit numerical inte-
gration is often the preferred numerical integration strategy. Alternatively, when 
the dynamic environment is suddenly applied, high-frequency and/or short-lived
explicit numerical integration is often advantageous.

APPLICATION OF NORMAL MODES IN TRANSIENT 

DYNAMIC ANALYSIS

The homogeneous form for the conventional linear structural dynamic formulation
[see Eq. (28.59)], with damping ignored, defines the real eigenvalue problem, that is,

[K]{Φn} − [M]{Φn}ωn
2 = {0} (28.76)

where

{u} = {Φn} sin (ωnt) (28.77)

There are as many distinct eigenvectors or modes, {Φn}, as set degrees-of-freedom
for a well-defined undamped dynamic system. The eigenvalues, ω2

n (ωn = natural fre-
quency of mode n), however, are not necessarily all distinct. Individual modes or
mode shapes represent displacement patterns of arbitrary amplitude. It is conven-
ient to normalize the mode shapes (to unit modal mass) as follows:

{Φn}T[M]{Φn} = 1 (28.78)

The assembly of all or a truncated set of normalized modes into a modal matrix, [Φ],
defines the (orthonormal) modal transformation

{U} = [Φ]{q} (28.79)

where

[Φ]T[M][Φ] = [OR] = [I] = diagonal identity matrix
(28.80)

[Φ]T[K][Φ] = [Λ] = [ω2
n] = diagonal eigenvalue matrix

The modal transformation produces the mathematically diagonal matrix

[Φ]T[B][Φ] = [2ζnωn] = diagonal modal damping matrix (28.81)
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only for special forms of the damping matrix. One such form, known as proportional
damping, is

[B] = α[M] + β[K] (28.82)

In reality, proportional damping is a mathematical construction that bears little
resemblance to physical reality. It is experimentally observed in many situations,
however, that the diagonal modal damping matrix is a valid approximation.

Application of the modal transformation to the dynamic equations [see Eq.
(28.59)] results in the uncoupled single degree-of-freedom dynamic equations

q̈n + 2�nωn
�qn + ωn

2qn = [Φn
TΓ]{F(t)} = [Γqn]{F(t)} = Qn(t) (28.83)

The symbol ζn is the critical damping ratio and [Γqn] = [Φn
TΓ] is the modal excitation

gain array.
The character and content of an individual normal mode, [Φn], is described fun-

damentally by the geometric distribution of the displacement degrees-of-freedom.
Utilizing the mass matrix, [M], the modal momentum distribution is

{Pn} = [M]{Φn} (28.84)

and the modal kinetic energy distribution is

{En} = {Pn} � {Φn} = ([M]{Φn}) � {Φn} (28.85)

where � denotes term-by-term multiplication. The sum of the terms in the modal
kinetic energy vector, {En}, is 1.0 when the mode is normalized to unit modal mass.

Internal structural loads and stresses, relative displacements, strains, and other
user-defined terms are calculated as recovery variables. In many cases the recovery
variables, {S}, are related to the physical displacements, {u}, through a load transfor-
mation matrix, [KS], specifically,

{S} = [KS]{u} (28.86)

A modal (displacement-based) load transformation matrix, defined by substitution
of the modal transformation, is

{S} = [ΦKS]{q} (28.87)

where

[ΦKS] = [KS][Φ]

The dynamic response of a structural dynamic system, described in terms of normal
modes, is computed as follows:

Step 1. Calculate the modal responses numerically with, for example, the Du-
hamel integral (see Chap. 8) given by
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qn(t) = 	t

0
hn (t − τ)Qn(τ)dτ (28.88)

where

hn(t − τ) = e−ζnωn(t − τ) sin ((ωn 
1 − ζn�2)(t − τ)) (28.89)

Similar relationships exist for modal velocity and acceleration.

Step 2. Calculate the physical displacement, velocity, and acceleration responses
by modal superposition using Eq. (28.79) and calculate loads using Eq. (28.87).

It should be noted that the calculation of modal responses to harmonic and random
excitation environments follows strategies paralleling steps 1 and 2. These matters
will be discussed at the end of this chapter.

MODAL TRUNCATION

A common practice in structural dynamics analysis is to describe a system response
in terms of a truncated set of lowest-frequency modes. The selection of an appropri-
ate truncated mode set is accomplished by a normalized displacement, shock
response spectrum analysis (see Chap. 23) of each force component in the excitation
environment, {F(t)}, and establishment of the cut-off frequency, ω*. All modal
responses for systems with a natural frequency, ωn > ω*, will respond quasi-statically.
Therefore, the dynamic response will be governed by the truncated set of modes,
[ΦL], with natural frequencies below ω*.The remaining set of high-frequency modes
is denoted as [ΦH]. Therefore, the partitioned modal relationships are

{u} = [ΦL]{qL} + [ΦH]{qH}

{q̈L} + [2�LωL]{ �qL} + [ω2
L]{qL} = [ΦT

LΓ]{F(t)} (28.90)

[ω2
H]{qH} ≈ [ΦT

HΓ]{F(t)}

Since the high-frequency modal equations are algebraic, the modal transformation
becomes

{u} = [ΦL]{qL} + [Ψρ]{F(t)} (28.91)

where [Ψρ] is the residual flexibility matrix defined as

[Ψρ] = [ΦH][ω2
H]−1[ΦH]T[Γ] (28.92)

The computation of structural dynamic response employing a truncated set of
modes often is inaccurate if the quasi-static response associated with the high-

ωn�

1 − ζn�2
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frequency modes is not accounted for. This being the case, it appears that all modes
must be computed as indicated in Eq. (28.92). Such a requirement results in an
excessive computational burden for large-order finite element models.

Residual Mode Vectors and Mode Acceleration. The significance of residual
flexibility (quasi-static response of high-frequency modes) is well established,11 as
are methods for the efficient definition of residual vectors.12 The basic definition for
residual flexibility, using all of the high-frequency modal vectors, is computationally
inefficient for large-order models. Therefore, procedures that do not explicitly
require knowledge of the high-frequency modes have been developed.

The most fundamental procedure for deriving residual vectors forms residual
shape vectors as the difference between a complete static solution and a static solu-
tion based on the low-frequency mode subset. The complete static solution for unit-
applied loads, using a shifted stiffness (allowing treatment of an unconstrained
structure), is

[ΨS] = [K + λSM]−1[Γ] (28.93)

where λS is a small “shift” used for singular stiffness matrices. For nonsingular stiff-
ness, the shift is not required. The corresponding truncated, low-frequency mode
static solution is

[ΨL] = [ΦL][ω2
L + λS]−1[ΦL]T[Γ] (28.94)

Therefore, the residual vectors are

[Ψρ] = [ΨS] − [ΨL] = [K + λSM]−1[Γ] − [ΦL][ω2
L + λS]−1[ΦL]T[Γ] (28.95)

Note that the high-frequency modes are not explicitly required in this formulation.
Therefore the excessive computational burden for large-order finite element mod-
els is mitigated.

An alternative strategy, which automatically compensates for modal truncation,
is the mode acceleration method.13 The basis for this strategy is the substitution of
truncated expressions for acceleration and velocity in the system dynamic equations,
which results in

[K]{u} = [Γ]{F} − [M][ΦL]{q̈L} − [B][ΦL]{ �qL} (28.96)

In most applications, the term with modal velocity is ignored. The static solution of
the above equation, at each time point, produces physical displacements, which
include the quasi-static effects of all high-frequency modes.

Load Transformation Matrices. Recovery of structural loads is often organized
by a definition of the load transformation matrices (LTMs).14 When residual mode
vectors are employed, Eqs. (28.91) and (28.86) are combined to define the displace-
ment LTM relationship

{S} = [LTMq]{q} + [LTMF]{F} (28.97)
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where

[LTMq] = [KS][ΦL], [LTMF] = [KS][Ψρ] (28.98)

When the mode acceleration method is employed, Eqs. (28.96) and (28.86) are com-
bined to define the mode acceleration LTM relationship

{S} = [LTMA]{q̈} + [LTMV]{ �q} + [LTMAF]{F} (28.99)

where

[LTMA] = −[KS][K−1MΦL]

[LTMV] = −[KS][K−1BΦL] (28.100)

[LTMF] = [KS][K−1Γ]

In practice, [LTMV] is generally ignored. Mode acceleration LTMs are used exten-
sively in the aeronautical and space vehicle industries, while their mode displace-
ment (and residual vector)–based counterpart is rarely applied.

APPLIED LOADS AND ENFORCED MOTIONS

Dynamic excitation environments sometimes are described in terms of specified
foundation or boundary motions, for example, in the study of structural dynamic
response to seismic excitations (see Chap. 24). In such situations, the physical dis-
placement array is partitioned into two subsets as follows:

{u} = � � = � � (28.101)

The conventional linear structural dynamic formulation is expressed in partitioned
form as

� �� � + � �� � + � �� � = � � (28.102)

Using the partitioned stiffness matrix, the transformation from absolute to relative
response displacements is

� � = � �� � = � �� � (28.103)

Moreover, this transformation may be expressed in modal form by substituting the
lowest-frequency modes associated with the interior eigenvalue problem, which fol-
lows the relationships already discussed in Eqs. (28.76) through (28.81), that is,

[Kii]{Φin} = [Mii]{Φin}ωin
2 , {ui} = [Φi]{qi} (28.104)
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0bi
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By combining Eqs. (28.103) and (28.104), the modal reduction transformation is

� � = � �� � (28.105)

Substitution of this transformation into the partitioned dynamic equation set, Eq.
(28.102), results in

� �� � + � �� � + � �� � = � � (28.106)

The terms in the above equation set have the following significance:

1. [Pib] is the modal participation factor matrix. Its terms express the degree of exci-
tation delivered by individual foundation accelerations. Moreover, its transpose
describes the degree of foundation reaction loads associated with individual
modal accelerations. The term-by-term product [Pib] � [Pib], called the modal
effective mass matrix, is often used to evaluate the completeness of a truncated
set of modes.

2. [M′bb] is the boundary mass matrix. When the boundary motions are sufficient to
impose all six rigid body motions (in a statically determinate or redundant man-
ner), this matrix expresses the complete rigid body mass properties of the mod-
eled system.

3. [K′bb] is the boundary stiffness matrix. When the boundary motions are sufficient
to impose all six rigid body motions in a statically determinate manner, this
matrix is null. If the boundary is statically indeterminate, the boundary stiffness
matrix will have six singularities associated with the six rigid body motions. In
rare situations, additional singularities will (correctly) be present if the structural
system includes mechanisms.

4. Critical evaluation of the properties of [M′bb] and [K′bb] is an effective means for
model verification.

5. In most situations, damping is not explicitly modeled. Therefore the boundary
damping matrix, [B′bb], will not be computed.

When the dynamic excitation environment consists entirely of prescribed boundary
motions, ({Fi} = {0}), Eq. (28.106) may be expressed in the following convenient form:

{q̈i} + [2ζiωi]{ �qi} + [ωi
2]{qi} = −[Pib]{üb} (modal response)

(28.107)
{Fb} = [M′bb]{üb} + [K′bb]{ub} + [Pbi]{q̈i} (boundary reactions)

The accurate recovery of structural loads is preferably accomplished with the mode
acceleration method. The load transformation matrix relationship for this situation
takes the following form (ignoring damping):

{S} = [LTMq̈]{q̈} + [LTMüb
]{üb} + [LTMub

]{ub} + [LTMFi
]{Fi} (28.108)

The above relationships are commonly used in seismic structural analysis and equip-
ment shock response analysis.
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STRATEGIES FOR DEALING WITH LARGE-ORDER MODELS

The capabilities of computer resources and commercial finite element software have
continually increased making very large-order (∼106 degrees-of-freedom or more)
finite element models a practical reality. A variety of numerical analysis strategies
have been introduced to efficiently deal with these large-order models.

In 1965, what is popularly known as the Guyan reduction method15 was intro-
duced. This method employs a static reduction transformation based on the model
stiffness matrix to consistently reduce the mass matrix. By subdividing the model
displacements into analysis (a) and omitted (o) subsets, the static reduction trans-
formation is

� � = � �{ua} (28.109)

By applying this transformation to the dynamic system, an approximate reduced
dynamic system for modal analysis is defined as

[Maa]{üa} + [Kaa]{ua} = {0} (28.110)

where

[Maa] = � �
T

� �� �
[Kaa] = � �

T

� �� �
(28.111)

The reduced approximate mass and stiffness matrices are generally fully populated,
in spite of the fact that the original system matrices are typically quite sparse. The
effective selection of an appropriate analysis set, {ua}, is a process requiring good
physical intuition. A recently introduced two-step procedure16 automatically iden-
tifies an appropriate analysis set. The Guyan reduction method is no longer a
favored strategy for dealing with large-order dynamic systems due to the develop-
ment of powerful numerical procedures for very large-order sparse dynamic sys-
tems. It continues to be employed, however, for the definition of test-analysis
models (TAMs) which are used for modal test planning and test-analysis correla-
tion analyses (see Chap. 41). Numerical procedures, which are currently favored for
dealing with modern large-order dynamic system modal (eigenvalue) analyses, are
(1) the Lanczos method17 (refined and implemented by many other developers)
and (2) subspace iteration.8

Segmentation of Large-Order Dynamic Systems. Many dynamic systems,
such as aircraft, launch vehicle–payload assemblies, spacecraft, and automobiles,
naturally lend themselves to substructure segmentation (see Fig. 28.9). Numerical
analysis strategies, which exploit substructure segmentation, were originally intro-
duced to improve the computational efficiency of large-order dynamic system analy-
sis. However, advances in numerical analysis of very large-order dynamic systems
have reduced the need for substructure segmentation. The enduring utilization of
substructure segmentation, especially in the aerospace industry, is a result of the fact
that substructure models provide cooperating organizations with a standard means
for sharing and integrating subsystem data. It should also be noted that some
research efforts in the area of parallel processing are utilizing mature substructure
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FIGURE 28.9 International space station substructure segmentation.
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analysis concepts. Each designated substructure (which also may be termed a super-
element) is defined in terms of interior, {ui}, and boundary, {ub}, displacement sub-
sets. Specific types of modal analysis strategies are employed to reduce or condense
the individual substructures to produce modal components.

The Craig-Bampton Modal Component. The most popularly employed modal
component type, the Craig-Bampton18 (or Hurty19) component, is defined by Eqs.
(28.101) through (28.106) and (28.108). The undamped key dynamic equations
describing this component are as follows:

1. The Craig-Bampton reduction transformation (boundary-fixed interior modes
and boundary deflection shapes) is identical to Eq. (28.105), that is,

� � = � �� � (28.112)

2. The Craig-Bampton mass and stiffness matrices, from Eq. (28.106), are

� �� � + � �� � = � � (28.113)

The MacNeal-Rubin Modal Component. The MacNeal-Rubin12,20 component
reduction transformation consists of a truncated set of free boundary modes and
quasi-static residual vectors associated with unit loads applied at the boundary
degrees-of-freedom. The key dynamic equations describing this component are as
follows:

1. The MacNeal-Rubin reduction transformation (boundary-free component
modes and residual vectors) is

� � = � �� � (28.114)

Noting that there are as many residual vectors as boundary degrees-of-freedom,
the above transformation may be expressed in terms of the modal and boundary
degrees-of-freedom, that is,

� � = � �� � (28.115)

2. The MacNeal-Rubin mass and stiffness matrices: Using the first reduction
transformation form [see Eq. (28.114)], the undamped component mode equations
are of the form

� �� � + � �� � = � � (28.116)

When the second reduction transformation form [see Eq. (28.115)] is employed,
the component mode equations are of the fully coupled form

� �� � + � �� � = � � (28.117)0
0
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The second form of the MacNeal-Rubin mass and stiffness matrices is preferred
for automated assembly of modal components.

The Mixed Boundary Modal Component. A more general type of modal com-
ponent may be defined employing fixed- and free-boundary degree-of-freedom sub-
sets.21 The reduced component mass and stiffness matrices associated with this
component are fully coupled, having a form similar to Eq. (28.117).

Each of the above three modal component types employs a truncated set of sub-
system modes. The frequency band, which determines an adequate set of subsystem
modes, is related to the base frequency band of the expected dynamic environment.
In particular, a generally accepted standard for the modal frequency band defines
the cut-off frequency as 1.4f* (see the discussion on Cut-Off Frequency and Grid
Spacing f*).

COMPONENT MODE SYNTHESIS STRATEGIES

Two alternative strategies for component mode synthesis are generally accepted in
industry. The first strategy views all substructures as appendages. The second alter-
native views substructures as appendages, which attach to a common main body.

General Method 1: Assembly of Appendage Substructures. The boundary
degrees-of-freedom for each component of a complete structural assembly map
onto an assembled structure boundary (collector, c) array, that is,

{ub} = [Tbc]{uc} (28.118)

Therefore, each component’s reduction transformation is expressed in the assem-
bled (collector) degrees-of-freedom as

� � = � �� � (28.119)

where Ψii represents the upper left modal transformation partition for the particular
modal component type. Application of this transformation to Eq. (28.113) or
(28.117) results in

� �� � + � �� � = � � (28.120)

The format of the assembled system dynamic equations, shown here for an assembly
of three components denoted as 1, 2, and 3, is

� �� � + � �� � = � � (28.121)

The system normal modes are calculated from the above equation where the final
system mode transformation (which decouples the system mass and stiffness matri-
ces) is
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� � = [Φsys]{qsys} (28.122)

General Method 2: Attachment of “Appendage” Substructures to a Main
Body. This method of component mode synthesis differs from General Method 1
in that all components are not considered appendages. A simple way to view this
approach is to first follow General Method 1 for all appendage substructures up to
Eq. (28.121).The boundary collector degrees-of-freedom, in this case, correspond to
those associated with a main body, which is described in terms of main body mass
and stiffness matrices [Mm] and [Km], respectively. The assembled system of
appendages and main body are described as

� �� � + � �� � = � � (28.123)

where the boundary-loaded main body mass and stiffness matrices are

[M′m] = [M′cc] + [Mm], [K′m] = [K′cc] + [Km] (28.124)

The truncated set of modes associated with the boundary-loaded main body define
the intermediate transformation

� � = � �� � (28.125)

Application of the above transformation to Eq. (28.124) results in the following
modal equations for the system

� �� � + � �� � = � � (28.126)

If the appendages are all of the Craig-Bampton type, the above equation set reduces
to the following Benfield-Hruda22 form

� �� � + � �� � = � � (28.127)

The mass coupling terms (P1C, etc.) are modal participation factor matrices, which
indicate the relative level of excitation delivered to the appendages by main body
modal accelerations. This feature of the Benfield-Hruda form is the primary reason
for the enduring popularity of the method. Uncoupled system modes are finally com-
puted from the eigenvalue solution of Eq. (28.127). Component mode synthesis pro-
cedures are also applied in multilevel cascades when such a strategy is warranted.
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DYNAMIC RESPONSE RESULTING FROM 

VARIOUS ENVIRONMENTS

The response of linear structural dynamic systems to dynamic environments may be
computed by either modal or direct methods. Modal methods tend to be computa-
tionally efficient when the required number of system modes addressing the
dynamic environment frequency band are significantly smaller than the order of the
system finite element model. When this is not the case, direct methods may be more
efficient. In addition, when transient environments are brief or impulsive, direct
integration may be more efficient than modal strategies. The following discussion
provides an overview of strategies for the computation of dynamic response to var-
ious environments.

Transient Environments. General relationships detailing the modal method of
transient dynamic analysis are presented in the section entitled Application of Nor-
mal Modes in Transient Dynamic Analysis. Enhancement of the modal solution
accuracy with residual vectors and the mode acceleration method was discussed in
the sections entitled Residual Mode Vectors and Mode Acceleration and Load Trans-
formation Matrices, respectively. Direct integration methods employing implicit9 or
explicit4 numerical strategies may be advantageous when environments are of wide
bandwidth and short-lived.

Brief or Impulsive Environments. Brief or impulsive dynamic environments are
often described in terms of shock response spectra (see Chap. 23). Peak dynamic
responses and structural loads are estimated by employing approximate modal
superposition methods utilizing shock response spectra as modal weighting func-
tions.23 A systematic approach to this process, which incorporates positive and nega-
tive spectra and quasi-static residual vectors, is presented in Ref. 11. Approximate
shock response spectra–based modal superposition methods are employed in earth-
quake engineering, equipment (e.g., naval shipboard subsystems) shock survivability
prediction, and related applications. This approach is especially appropriate when
standard dynamic environments are specified as shock response spectra.

Simple Harmonic Excitation. Computation of the structural dynamic response
due to simple harmonic excitation is either an end in itself or a key intermediate step
in the computation of the response to random or transient environments. In the case
of transient environments, the time-history response may be calculated through
application of Fourier transform techniques (see Chap. 23). The applied force and
displacement response, respectively, are conveniently expressed in terms of complex
exponential functions by

{F} = Fo(ω)eiωt, {u} = {U(ω)}eiωt, { �u} = iω{U(ω)}eiωt, {ü} = −ω2{U(ω)}eiωt (28.128)

where ω is the forcing frequency in radians per second. Upon substitution of the
above relationships into the linear structural dynamic equations [see Eq. (28.59)],
the following algebraic matrix equation is defined.

[K + iωB − ω2M]{U(ω)} = {ΓF}Fo(ω) (28.129)

When Fo(ω) = 1, the response quantities are called frequency response functions
(see Chap. 21). If the normal mode substitution is employed, the above equation set
is diagonalized (assuming modal viscous damping) as follows:
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{U(ω)} = [Φ]{q(ω)} { �U(ω)} = iω[Φ]{q(ω)} {Ü(ω)} = −ω2[Φ]{q(ω)}
(28.130)

(ω2
n + 2iζnωnω − ω2)qn(ω) = {Φn}T[ΓF]{F(ω)} 1 ≤ n ≤ nmax

When the modal method is used, it is recommended that a quasi-static residual vec-
tor be employed to mitigate modal truncation errors.This is not required if the direct
method, namely, the solution of Eq. (28.129), is employed.

The modal approach to simple harmonic or frequency response analysis is com-
putationally more efficient than the direct method if the number of modes required
in a frequency band of interest (0 ≤ ω ≤ ωmax) is much less than the number of finite
element model degrees-of-freedom. When this is not the case, the direct method
becomes more efficient since the direct solution for {U(ω)} involves decomposition
of a sparse coefficient matrix at each forcing frequency.

When the direct solution procedure is employed, it is most convenient to describe
modal damping as complex structural damping (see Chap. 2). In this situation the
linear, frequency domain, structural dynamic equations are

[(1 + iη)K + iωBL − ω2M]{U(ω)} = {ΓF}Fo(ω) (28.131)

where the well-known approximate equivalence of structural damping loss factor, η,
and (viscous) modal damping ratio, ζ, is η ≈ 2ζ.The advantage associated with struc-
tural damping is that the modes need not be explicitly determined in order to
account for modal damping effects. The matrix [BL] is included in the above equa-
tion to account for any known discrete viscous damping features.

An important aspect of effective frequency response analysis, regardless of
whether the modal or direct method is used, is the selection of a frequency grid for
the clear definition of harmonic response peaks. It is generally recommended that
solutions be calculated at frequency points capturing at least four points within a
modal half-power bandwidth, that is,

∆ω = �nωn/2 = ηωn (28.132)

This guideline suggests a logarithmic frequency grid (∆ω increases with increasing
frequency) is desirable.

Random Excitation. In the most common situations, random environments are
assumed to be associated with ergodic (see Chap. 1) processes.24 The computation of
structural dynamic response to random excitation, in such a situation, utilizes
numerical results from the response to a simple harmonic excitation. If a random
environment is imposed at several discrete structural degrees-of-freedom or as sev-
eral geometric load patterns, the frequency responses associated with the individual
loads are denoted as

Hij(ω) = Ui(ω)/Fo,j(ω) (28.133)

where these functions are computed either by the modal or direct method. There-
fore, the frequency-domain response associated with several excitations is

Ui(ω) = �
j

Hij(ω) ⋅ Fo,j(ω) (28.134)

or in matrix form
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U(ω) = [H(ω)]{Fo(ω)} (28.135)

Describing the correlated random excitations in terms of the input cross-spectral
density matrix, [GFF(ω)], the response autospectral density is

Wuu(ω) = [H(ω)] ⋅ [GFF(ω)] ⋅ [H(ω)]T* (28.136)

where the asterisk [ ]T* denotes the complex conjugate transpose of a matrix. Finally,
the mean square of response is calculated as the integral

Ψ2
u = u�i�(�t�)�2� = 	ω2

ω1

Wuu(ω)dω (28.137)

In order to assure the accurate computation of a mean-square response, this inte-
gral must be evaluated with a frequency grid with refinement consistent with Eq.
(28.132). If too coarse a frequency grid is used, the mean-square response may be
severely underestimated.
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