
CHAPTER 22
CONCEPTS IN

VIBRATION DATA
ANALYSIS

Allan G. Piersol

INTRODUCTION

Vibration data are usually acquired in the form of continuous electrical (analog) sig-
nals generated by transducers (see Chap. 12), where each analog signal represents
the instantaneous value of a strain, pressure, force, or motion parameter (displace-
ment, velocity, or acceleration) as a function of time. Such a signal is commonly
referred to as a time-history. A sample record is defined as the time-history repre-
senting a single vibration measurement x(t) over a finite duration T. Although sam-
ple records are usually acquired in the form of time-histories, any other variable of
interest can replace time t as the independent variable for analysis purposes. For
example, road roughness data are commonly acquired as sample records of road ele-
vation x versus distance d, that is, x(d); 0 ≤ d < D, where D is the length of the record.
However, for clarity, all discussions and equations in this chapter are presented in
terms of sample time-history records, where it is understood that any other variable
can be substituted for time.

CLASSIFICATIONS OF VIBRATION DATA

The appropriate analysis procedures for vibration environments depend heavily
upon certain basic characteristics of the vibration. The most important distinctions
are defined in Chap. 1 and illustrated in Fig. 22.1. These definitions may be summa-
rized as follows:

1. A stationary vibration is one whose basic properties do not vary with time. Sta-
tionary vibrations typically occur when the operating and/or environmental condi-
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22.2 CHAPTER TWENTY-TWO

tions producing the vibration are time invariant. For example, the vibration environ-
ment for a motor vehicle driving over a homogeneous road at constant speed and
with a constant engine rpm will be stationary.

2. A nonstationary vibration is one whose basic properties vary with time, but
slowly relative to the lowest frequency of the vibration. For example, the vibration
environment for a motor vehicle during acceleration from zero to highway speed
will be nonstationary. Those dynamic environments that change rapidly relative to
the lowest frequency in the environment are considered transients or shocks, which
are addressed in Chap. 23.

3. A deterministic vibration is one whose value at any time can be predicted from
its value at any other time. It follows that sample records of a deterministic vibration
collected repeatedly under similar conditions will have similar time-histories. For
example, the vibration environments of rotating machines and reciprocating engines
(see Chap. 38) are generally deterministic.

4. A random vibration is one whose instantaneous magnitude is not specified at
any given time. The instantaneous magnitudes of a random vibration are specified
only by probability functions giving the probable fraction of the total time that the
magnitude (or some sequence of magnitudes) lies within a specified range. From
another viewpoint, a random vibration can be thought of as a single physical real-
ization, x(t), of a random process, which theoretically is described by an ensemble
of all possible physical realizations denoted by {x(t)}.1 Virtually all stationary ran-
dom vibrations can be represented by an ergodic random process (see Chap. 1),
meaning the properties of the random process {x(t)} can be described by time aver-
ages over a signal sample record x(t). It follows that the sample records of a sta-
tionary random vibration collected repeatedly under similar conditions will have
time-histories that differ in detail but have the same average properties. For exam-
ple, the vibrations induced by turbulent flow, wind, and jet noise (see Chaps. 29,
Part I; 29, Part II; and 29, Part III) are generally random.

5. A mixed vibration is one that includes a combination of deterministic and ran-
dom components.To some degree, most vibration environments are mixed, although
either a deterministic or random component will often dominate.

FIGURE 22.1 Classifications of vibration environments.
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The next section in this chapter summarizes the quantitative descriptions of
vibration environments. This is followed by a discussion of the important prelimi-
nary steps in preparing measured vibration data for analysis, and the specific analy-
sis procedures for measured vibration data.

QUANTITATIVE DESCRIPTIONS 

OF STATIONARY VIBRATIONS

The properties of stationary vibration environments, both deterministic and ran-
dom, that are of primary interest to engineering applications are defined in Chaps.
11 and 14. Those definitions are now summarized by functional relationships that
lead directly to the applied computational algorithms used to compute the desired
properties from sample records of measured vibration data.

OVERALL VALUES

The most fundamental descriptions of a stationary vibration with a time-history x(t)
are given by overall values. In general, various different overall values might be
determined (see Chap. 11), but often the mean value µx, the mean-square value ψ2

x,
and/or the variance σ2

x are the only overall values of interest.These values for a sam-
ple record x(t) with duration T are theoretically given by1,2

Mean value: µx = lim
T → ∞

�T

0
x(t)dt

Mean-square value: ψ2
x = lim

T → ∞
�T

0
x2(t)dt (22.1)

Variance: σ2
x = lim

T → ∞
�T

0
[x(t) − µx]2dt

It can be shown1 that the three quantities defined in Eq. (22.1) are interrelated by

ψ2
x = µ2

x + σ2
x (22.2)

Hence, a knowledge of any two quantities determines the third. The positive square
root of the mean-square value and the variance, ψx and σx, are called the root-mean-
square (rms) value and the standard deviation, respectively.

The mean value defines the central tendency (static value) of the vibration, while
the standard deviation defines the dispersion of the vibration, each with the same
units as the vibration. The rms value is a measure of both the central tendency and
dispersion. In many cases, one or more of the following will be true: (a) the mean
value of the vibration is zero, (b) the vibration transducer cannot produce a static
(dc) output corresponding to a mean value (e.g., piezoelectric accelerometers),
and/or (c) a mean value cannot be measured because the data acquisition system is
ac coupled, that is, it will not transmit dc. In these cases, the rms value of the vibra-
tion is the same as its standard deviation, that is, ψx = σx.

1
�
T

1
�
T

1
�
T
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FINITE FOURIER TRANSFORMS

Since frequency domain descriptions of vibrations are generally of the greatest engi-
neering value, the Fourier transform plays a major role in both the theoretical defi-
nitions of properties and the analysis algorithms for vibration data. The finite
Fourier transform of a sample record x(t) is defined as

X(f,T) = �T

0
x(t)e−j2πftdt = �T

0
x(t) cos (2πft)dt − j�T

0
x(t) sin (2πft)dt (22.3)

where j = �−1�. Three properties of the definition in Eq. (22.3) should be noted, as
follows:

1. The finite Fourier transform is generally a complex number that is defined for
both positive and negative frequencies, that is, X(f,T); −∞ < f < ∞. However,
X(−f,T) = X*(f,T), where the asterisk denotes the complex conjugate, meaning
that values at mathematically negative frequencies are redundant and provide no
information beyond that provided by the values at positive frequencies. Since
engineers typically think of frequency as a positive value, it is common to present
finite Fourier transforms as 2X(f,T); 0 < f < ∞.

2. Fourier transforms are often defined as a function of radial frequency ω in radi-
ans/sec, as opposed to cyclical frequency f in Hz, particularly for analytical appli-
cations. However, data analysis is usually accomplished in terms of cyclical
frequency f, as defined in Eq. (22.3). The two definitions are interrelated by
X(f,T) = 2π X(ω,T).

3. The finite Fourier transform X(f,T) is equivalent to the Fourier series of x(t)
assumed to have a period T.

STATIONARY DETERMINISTIC VIBRATIONS

Stationary deterministic vibration environments generally fall into one of two cate-
gories, namely, periodic vibrations or almost-periodic vibrations.

Periodic Vibrations. Periodic vibrations are those with time-histories that exactly
repeat themselves after a time interval TP, that is, x(t) = x(t + iTP); i = 1, 2, 3, . . . ,
where TP is called the period of the vibration. All periodic vibrations can be decom-
posed into a Fourier series, which consists of a collection of commensurately related
sine waves,1,2 that is,

x(t) = a0 + �
k

ak sin (2πkf1t + θk) k = 1, 2, 3, . . . (22.4)

where a0 is the mean value, kf1 is the kth frequency component (harmonic), and ak

and θk are the amplitude and phase angle associated with the kth frequency compo-
nent of the periodic vibration. The k = 1 component is called the fundamental fre-
quency of the periodic vibration, and is given by f1 = 1/TP. The magnitude of the
frequency components in Eq. (22.4) are given by

Lx(f) = 0 < f (22.5)
2|X(f,TP)|
��

TP

22.4 CHAPTER TWENTY-TWO

8434_Harris_22_b.qxd  09/20/2001  12:06 PM  Page 22.4
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where X(f,TP) is as defined in Eq. (22.3) with T = TP, the period of the vibration. A
plot of Lx(f) versus frequency is called a line spectrum or a linear spectrum. The
phase angles, θk; k = 1, 2, 3, . . . , are usually ignored, but these phase values should be
retained if the time-history is not retained, since both the magnitude and phase val-
ues in Eq. (22.4) are required to reconstruct the time-history.

Periodic vibrations are usually produced by the mechanical excitations of rotat-
ing machines and reciprocating engines operating with a constant rotational speed.
They are also produced by the aerodynamic excitations from large fans and pro-
pellers, again operating at a constant rotational speed. An illustration of the time-
history and line spectrum for a periodic vibration composed of three harmonic
components (k = 1, 2, and 3) is shown in Fig. 22.2.

FIGURE 22.2 Time-history and line spectrum for periodic vibration.

Almost-Periodic Vibrations. Although periodic vibrations can be decomposed
into a collection of commensurately related sine waves, as given by Eq. (22.4), it does
not follow that the sum of two or more independent sinusoidal excitations will pro-
duce a periodic vibration. As noted previously in Chap. 1, the sum of such inde-
pendent sine waves will be periodic only if the ratios of all pairs of frequencies
create rational numbers. Those deterministic vibrations that do not have commen-
surately related frequency components are called almost-periodic1 (also called
quasi-periodic or complex) vibrations. Nevertheless, such vibrations can be de-
scribed by a line spectrum based upon a relationship similar to Eq. (22.4), except the
commensurately related frequencies kf1 are replaced by independent frequencies fk;
k = 1, 2, 3, . . . . As for periodic vibrations, the magnitude of the frequency compo-
nents for almost-periodic vibrations can be described by a line spectrum defined in
Eq. (22.5), except TP → ∞.

Almost-periodic vibrations often occur when two or more independent periodic
excitations are summed. For example, the vibration produced by two independent
rotating machines that are not synchronized or geared together will usually be
almost-periodic rather than periodic. An illustration of the time-history and line
spectrum for an almost-periodic vibration composed of the sum of two sine waves
that are not commensurately related is shown in Fig. 22.3.
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22.6 CHAPTER TWENTY-TWO

STATIONARY RANDOM VIBRATIONS

By definition, random vibrations cannot be described by an explicit mathematical
function and, hence, must be described in statistical terms.This can be done (a) in the
amplitude domain by probability functions, (b) in the time domain by correlation
functions, and/or (c) in the frequency domain by spectral density functions.

Probability Density Functions. From Chap. 11, the probability density function
of a stationary random vibration x(t) may be defined as

p(x) = lim
Τ → ∞

(22.6)

where T(x,∆x) is the time that x(t) is within the magnitude interval ∆x centered at x
during the sample record duration T. The integral of the probability density function
between any two magnitudes x1 and x2 defines the probability at any future instant
that the value of x(t) will fall between x1 and x2, that is,

Prob[x1 < x(t) ≤ x2] = �x2

x1

p(x)dx (22.7)

It is noted in Chaps. 11 and 20 that the vibration response of a linear structure to
a stationary random excitation tends to be closely approximated by a specific prob-
ability density function, namely, the Gaussian (normal) probability density function,
which is defined in Eq. (11.14) and plotted in Fig. 22.4. Hence, it is common to omit
the computation of probability density functions from the analysis of random vibra-
tion data, and to simply assume the probability density function is Gaussian. How-
ever, the vibration response of a nonlinear system, even when the excitation is
Gaussian, will generally not be Gaussian.3 For example, the probability density func-
tion for the acceleration response to a Gaussian excitation of a single degree-of-
freedom system with a stiffness that increases with displacement (often called a
hardening spring system as illustrated in Fig. 31.8) is typically as shown in Fig. 22.4.
Note that the Gaussian assumption for such data can lead to erroneous conclusions
concerning the occurrence of extreme values.

Correlation Functions. Autocorrelation functions and cross-correlation functions
are defined in Eqs. (11.15) through (11.19). They have important theoretical appli-

T(x,∆x)
�

T
1

�∆x

FIGURE 22.3 Time-history and line spectrum for almost-periodic vibration.

∆x → 0
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cations,1–6 and a few practical applications to vibration problems.7 However, the
Fourier transform of a correlation function, called a spectral density function, is gen-
erally of greater interest for practical applications. Furthermore, in those rare cases
where a correlation function may be of interest, it can always be computed by taking
the inverse Fourier transform of a spectral density function.

Power Spectral Density Functions. The power spectral density function (also
called the power spectrum, autospectral density function, or autospectrum) of a sta-
tionary random vibration x(t) is often defined as the Fourier transform of the auto-
correlation function (see Chap. 11). From a practical viewpoint, however, two
equivalent theoretical definitions are more relevant to later data analysis algo-
rithms. First, the power spectrum of x(t) may be defined as1

Wxx(f) = lim
T → ∞

E[|X(f,T)|2] f > 0 (22.8)

where E[ ] denotes the expected value of [ ], which implies an ensemble average,
and X(f,T) is defined in Eq. (22.3). Note that the power spectrum Wxx(f) in Eq.
(22.8) is defined for positive frequencies only, and is often referred to as a one-sided
spectrum.

The second definition for the power spectrum is more engineering-oriented.
Specifically, referring to Fig. 22.5, the random vibration record x(t) is passed through
a narrow bandpass filter with a bandwidth Be and center frequency f to obtain an
output x(f,Be,t). The output is squared and averaged over a duration T to obtain a

2
�
T
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FIGURE 22.4 Probability density functions for the acceleration response of linear and hardening
spring systems to stationary random excitation.

FIGURE 22.5 Definition of power spectrum by filtering, squaring, and averaging operations.

BANDPASS FILTER:

BANDWIDTH = B

CENTER FREQ. = f

x(t) e

DIVIDE BY BAND-

WIDTH B   AND

TAKE LIMITS

W   (f)xx

SQUARE AND

AVERAGE OVER

DURATION T
e

(f, B  , T)xψ2
ex  f, B  , t( )e
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bandwidth-limited mean-square value ψ2
x(f,Be,T). Finally, the bandwidth-limited

mean-square value is divided by the bandwidth Be. In the limit as Be approaches zero
and BeT approaches infinity, the computation illustrated in Fig. 22.5 yields the power
spectrum, that is,

Wxx(f) = lim
T → ∞

�T

0
x2 (f,Be,t)dt f > 0 (22.9)

It can be shown1 that Eq. (22.9) produces exactly the same result as Eq. (22.8), as
well as the result in Eq. (11.29).

The power spectrum describes the frequency content of the vibration and, hence, is
generally the most important and widely used function for engineering applications,4,7

which are facilitated by three important properties of power spectra, as follows:

1. Given two or more statistically independent vibrations, the power spectrum for
the sum of the vibrations is equal to the sum of the power spectra for the indi-
vidual vibrations, that is,

Wxx(f) = �
i

Wii(f) i = 1, 2, 3, . . . (22.10)

2. The area under the power spectrum between any two frequencies, fa and fb,
equals the mean-square value of the vibration in the frequency range from fa to
fb, that is,

ψ2
x(fa,fb) = �fb

fa
Wxx(f)df (22.11)

3. Given an excitation x(t) to a structural system with a frequency response function
H(f) (see Chap. 21), the power spectrum of the response y(t) is given by the prod-
uct of the power spectrum of the excitation and the squared magnitude of the fre-
quency response function, that is,

Wyy(f) = |H(f)|2 Wxx(f) (22.12)

Illustrations of the time-histories and autospectra for both wide bandwidth and
narrow bandwidth random vibrations are shown in Fig. 22.6.

Cross-Spectral Density Functions. Given two stationary random vibrations x(t)
and y(t), the cross-spectral density function (also called the cross-spectrum) is
defined as

Wxy(f) = lim
T → ∞

E[X*(f,T)Y(f,T)] f > 0 (22.13)

where E[ ] is the expected value of [ ], which implies an ensemble average, X*(f,T) is
the complex conjugate of the finite Fourier transform of x(t), as defined in Eq.
(22.3), and Y(f) is the finite Fourier transform of y(t), as defined in Eq. (22.3) with
y(t) replacing x(t).

The cross-spectrum is generally a complex number that measures the linear rela-
tionship between two random vibrations as a function of frequency with a possible
phase shift between the vibrations. Specifically, the cross-spectrum can be written as

2
�
T

1
�
BeT

Be → 0
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Wxy(f) = |Wxy(f)|e−jθxy(f) θxy(f) = 2πfτ(f) (22.14)

where τ(f) is the time delay between x(t) and y(t) at frequency f. An important appli-
cation of the cross-spectrum is as follows. Given a random excitation x(t) to a struc-
ture with a frequency response function H(f) (see Chap. 21), the cross-spectrum
between the excitation x(t) and the response y(t) is given by the product of the
power spectrum of the excitation and the frequency response function, H(f), that is,

Wxy(f) = H(f)Wxx(f) (22.15)

Coherence Functions. From Chap. 21, the coherence function between two ran-
dom vibrations x(t) and y(t) is given by

γ2
xy(f) = f > 0 (22.16)

where all terms are as defined in Eqs. (22.8) and (22.13). The coherence function is
bounded at all frequencies by zero and unity, where γ2

xy(f) = 0 means there is no lin-
ear relationship between x(t) and y(t) at the frequency f (the two vibrations are
uncorrelated) and γ2

xy(f) = 1 means there is a perfect linear relationship between x(t)
and y(t) at the frequency f (one vibration can be exactly predicted from the other).
This property leads to an important application of the coherence function. Specifi-
cally, given a stationary random vibration y(t) = x(t) + n(t), where n(t) represents
extraneous noise, including other vibrations that are not correlated with x(t), then

Wxx(f) = γ2
xy(f) Wyy(f) (22.17)

|Wxy(f)2|
��
Wxx(f)Wyy(f)
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FIGURE 22.6 Time-histories and autospectra for wide-bandwidth (A) and narrow-bandwidth (B)
random vibrations.

(A)

(B)
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The result in Eq. (22.17) is referred to as the coherent output power relationship.1

The coherence function is also an important parameter in establishing the statistical
sampling errors in various spectral estimates to be discussed later.

Other Functions. There are various other specialized functions that have impor-
tant applications for certain advanced stationary random data analysis problems,
including the following:

1. Cepstrum functions, which have important applications to machinery condition
monitoring (see Chap. 14).

2. Hilbert transforms, which can be used to determine the causality between two
measurements1 and certain properties of modulation processes (Chap. 14).

3. Conditioned spectral density and coherence functions, which have important
applications to the analysis of structural vibration responses to multiple excita-
tions that are partially correlated,1,7 as well as to the analysis of the vibration
responses of nonlinear systems.3,7

4. Higher-order spectral density functions, such as bi-spectra and tri-spectra, which
have applications to the analysis of the vibration responses of nonlinear systems.3

5. Cyclostationary functions, which have important applications to machinery fault
diagnosis procedures.8

QUANTITATIVE DESCRIPTIONS OF

NONSTATIONARY VIBRATIONS

Unlike stationary vibrations, the properties of nonstationary vibrations must be
described as a function of time, which theoretically requires instantaneous averages
computed over an ensemble of sample records, {x(t)}, acquired under statistically
similar conditions. In this context, the overall values for stationary vibrations in 
Eq. (22.1) are given for nonstationary vibrations by

Mean value: µx(t) = E[x(t)]

Mean-square value: ψ2
x(t) = E[x2(t)] (22.18)

Variance: σ2
x(t) = E[{x(t) − µx(t)}2]

where E[ ] denotes the expected value of [ ], which implies an ensemble average.
Equation (22.2) applies to the values in Eq. (22.18) at each time t, and the interpre-
tations of these values following Eq. (22.2) apply.

NONSTATIONARY DETERMINISTIC VIBRATIONS

Nonstationary deterministic vibrations are defined here as those vibrations that
would be periodic under constant conditions, but where the conditions are time-
varying such that the instantaneous magnitude and/or the fundamental frequency of
the vibration versus time vary slowly compared to the fundamental frequency of the
vibration (often called phase coherent vibrations). In other words, the vibration can
be described by Eq. (22.4) where the magnitude and phase terms, ak and θk, are
replaced by time-varying magnitude and phase terms, ak(t) and θk(t), and/or the fun-
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damental frequency f1 is replaced by a time-varying fundamental frequency f1(t),
that is,

x(t) = a0(t) + �
k

ak(t) cos [2πkf1(t) + θk(t)] (22.19)

A similar nonstationary deterministic vibration is given by Eq. (22.19) with kf1(t)
replaced by fk(t). Nonstationary deterministic vibrations described by Eq. (22.19)
are commonly displayed as a three-dimensional plot of the magnitude of the time-
varying coefficients versus time and frequency. Such a plot is often referred to as an
instantaneous line spectrum. An illustration of the time-history and instantaneous
line spectrum for a single instantaneous frequency component with linearly increas-
ing magnitude and frequency is shown in Fig. 22.7.

CONCEPTS IN VIBRATION DATA ANALYSIS 22.11

FIGURE 22.7 Time-history and instantaneous line spectrum for sine wave with slowly
increasing frequency and amplitude.

Another way to describe the frequency-time characteristics of a nonstationary
deterministic vibration is by the Wigner distribution, defined as1,9

WDxx(f,t) = �∞

−∞
x�t − �x�t + �e−j2πfτ dτ (22.20)

The Wigner distribution is similar to the instantaneous power spectrum discussed
later in this chapter, and has interesting theoretical properties.9 However, it often
produces negative spectral values, which are difficult to interpret for most engineer-
ing applications, and offers few advantages over the instantaneous line spectrum
given by Eq. (22.19).

NONSTATIONARY RANDOM VIBRATIONS

There are several theoretical ways to describe nonstationary random data,1 includ-
ing generalized spectra defined for two frequency variables that provide rigorous
excitation-response relationships, even for time-varying linear systems. From a data
analysis viewpoint, however, the most useful theoretical description for nonstation-
ary random vibrations is provided by the instantaneous power spectral density func-
tion (also called the instantaneous power spectrum or instantaneous autospectrum).
The instantaneous power spectrum is defined by1,7

τ
�
2

τ
�
2
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Wxx(f,t) = � E�x�t − � x �t + �	e−j2πfτ dτ (22.21)

where E[ ] denotes the expected value of [ ], which implies an ensemble average.
Note that the instantaneous power spectrum is essentially the Wigner distribution
defined in Eq. (22.20), except the product of the values of x(t) at two different times
is averaged.

Like the Wigner distribution, the instantaneous power spectrum can have nega-
tive values at some frequencies and times.1 For example, let a nonstationary random
process be defined as

{x(t)} = [cos 2πf0t]{u(t)} (22.22)

where {u(t)} is a narrow bandwidth stationary random process with a mean value of
zero and a standard deviation of unity, and the cosine term is a modulating function.
Substituting Eq. (22.22) for Eq. (22.21) yields

Wxx(f,t) = [Wuu(f − f0) + Wuu(f + f0)] + cos (4πf0t)Wuu(f) (22.23)

where Wuu(f) is the power spectrum of the stationary component {u(t)}. The instan-
taneous power spectrum given by Eq. (22.23) is plotted in Fig. 22.8. Note that the
instantaneous power spectrum consists of two stationary components (often called
sidebands) that are offset in frequency from the center frequency f1 of {u(t)} by plus
and minus the modulating frequency f0, and a time-varying component at the center

1
�
2

1
�
4

τ
�
2

τ
�
2

FIGURE 22.8 Instantaneous power spectrum for cosine-modulated, narrow bandwidth random
vibration.
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frequency f1 of {u(t)} that oscillates between positive and negative values. Further
note that for nonstationary vibration environments, as defined in this chapter, a
modulating frequency is small compared to the lowest frequency of the stationary
component, that is, f0 << f1 − B/2, where B is the bandwidth of the stationary compo-
nent. It follows that the stationary and time-varying spectral components of the
instantaneous power spectrum will heavily overlap and, hence, eliminate negative
spectral values at most times and frequencies.

PRELIMINARY DATA ANALYSIS

CONSIDERATIONS

Before the detailed analysis of vibration data is initiated, careful consideration
should be given to the following:

1. Final engineering applications of the analyzed data.
2. Stationary sample record durations for the data analysis.
3. Validation and editing of the data.
4. Data storage.
5. Analog-to-digital conversion.

The first two matters should actually be considered prior to the acquisition of the data,
but in any case should be carefully reviewed prior to the initiation of the data analysis.

ENGINEERING APPLICATIONS OF DATA ANALYSIS

Numerous possible applications might motivate the acquisition and analysis of vibra-
tion data, including the applications in this Handbook summarized in Table 22.1.

TABLE 22.1 Applications of Analyzed Vibration Data

Application Chapter

Formulation of test criteria and 
verification of test results 19, 20

Formulation of design criteria 41

Condition monitoring of machinery 16

Modal analysis and testing 21

Assessing the vibration response 
of structures 24; 29, Part I; 29, Part II; 29, Part III

Assessing the effects of vibration on 
humans 42

Prediction of structural failures and 
fatigue damage 11, 34, 35

Calibration of transducers 18

Evaluation of vibration responses of 
nonlinear systems 4

Balancing of rotating machinery 39, Part I

Input data for mathematical models 11; 28, Part I; 28, Part II
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The final application for the data is important in determining which properties of
the data should be computed. In most cases, the primary property of interest will be
some form of a frequency spectrum. However, there may be applications that
require other types of analysis. For example, fatigue damage predictions for ran-
dom vibration environments generally require some form of amplitude distribution
analysis, as detailed in Chaps. 11 and 34. These matters should be thoroughly
reviewed prior to initiating data analysis, not only to assure the needed data prop-
erties are computed, but also to avoid computing large amounts of unneeded infor-
mation.

STATIONARY SAMPLE RECORD DURATIONS

It is clear from the descriptions of vibrations in preceding sections that stationary
vibrations are much easier to analyze than nonstationary vibrations. It follows that
an effort should be made to collect stationary sample records of vibration data for
analysis. This is easily accomplished for the vibration data produced by laboratory
experiments, since most such experiments are performed under constant conditions
that naturally produce stationary results. On the other hand, the vibration data col-
lected from measurements of actual vibration environments are commonly nonsta-
tionary. Even in this case, measurement programs can often be designed to produce
stationary data for analysis purposes. For example, the vibration environment for a
motor vehicle during normal service operations is generally nonstationary. How-
ever, if the vehicle is operated over a homogeneous road at constant speed and
engine rpm, the resulting vibration levels will be approximately stationary. It follows
that the vibration environment of the vehicle under all conditions can be measured
and analyzed from a collection of stationary sample records, each representing a
specific road condition, vehicle speed, and/or engine rpm, that together cover all the
operating conditions for the vehicle. Whether a laboratory experiment or a field
experiment, the vibration data acquired for analysis should be forced to be station-
ary when possible.

Some vibrations are produced by excitations that cannot be forced to be station-
ary. Examples include the response of structures to wind loads (see Chap. 39, Part I)
and ocean waves (see Chap. 39, Part II). Even in these cases, however, it is often pos-
sible to identify and select piecewise stationary segments from a long sample record
for data analysis purposes. On the other hand, there are some types of vibration
environments that are inherently nonstationary, for example, a laboratory vibration
test involving a sweep-sine excitation (see Chap. 20) or the vibration environment of
a space vehicle during launch. In these situations, some type of nonstationary data
analysis procedure must be employed.

DATA VALIDATION AND EDITING

Every effort should be made to acquire accurate vibration data, as outlined in
Chap. 15. However, all vibration data collected and stored for later analysis should
be validated and, if necessary, edited to remove anomalies prior to analysis. The
four most common and serious anomalies in acquired vibration data are as fol-
lows:1,2

1. Signal clipping, which is a limiting on one or both sides of the time-history record,
is caused by too high a gain setting on one or more data acquisition instruments.

22.14 CHAPTER TWENTY-TWO

8434_Harris_22_b.qxd  09/20/2001  12:06 PM  Page 22.14



Severe clipping will reduce the rms value of the data and introduce spurious high-
frequency components.

2. Excessive instrumentation noise, which appears in the data as broad bandwidth
random noise, is caused by too low a gain setting on one or more of the data
acquisition instruments. Severe instrumentation noise will sum with random
vibration data, increasing the rms value of the data and obscuring the spectral
characteristics of the data.

3. Intermittent noise spikes, which appear as one or more sharp spikes in the time-
history record, are usually caused by a faulty connector in the data acquisition
system, but may also occur due to a faulty transmission in telemetry data. Inter-
mittent noise spikes will often severely distort the computed spectral characteris-
tics of the data.

4. Power-line pickup, which appears as a sine wave with a frequency of 60 Hz in
North America and 50 Hz in many other regions of the world, is caused by faulty
shielding and/or grounding of the data acquisition system. Power-line pickup will
cause a spectral component in the data at the power-line frequency and, if severe,
may saturate one or more of the data acquisition instruments.

These and other anomalies can often be detected by a visual inspection of the time-
history record of the measured vibration1,2 or, for data at frequencies above 50 Hz,
by simply listening to the vibration signal with a headset during the data acquisition
or the playback of stored sample records. The hearing system of an experienced
vibration data analyst can be a powerful detector of data anomalies.

In many cases, the anomalies in acquired vibration data cannot be corrected, but
there are important exceptions. For example, power-line pickup can easily be
removed from data by interpolation procedures in the frequency domain, assuming
the power-line pickup did not saturate a data acquisition instrument and the data
do not include an actual periodic component at the power-line frequency.2 Simi-
larly, intermittent noise spikes can often be removed from the data by interpolation
procedures in the time domain.2 For stationary random vibration data with even
the most severe clipping, accurate spectral information can often be recovered by
specialized analysis procedures.1 See the indicated references for details and illus-
trations.

DATA STORAGE

In some cases, the analysis of sample records of vibration data is accomplished
online using real-time data analysis equipment or appropriate online computer pro-
grams, but it is more common to input the sample records into some storage medium
for later analysis.2 In either case, since virtually all modern vibration data analysis is
accomplished using digital techniques, each analog sample record, x(t); 0 ≤ t ≤ T, is
usually converted immediately to a digital sample record, x(n∆t); n = 0, 1, 2, . . . ,
(N − 1), where ∆t is the sampling interval in seconds and N∆t = T. This translation
into a digital format is accomplished using an analog-to-digital converter (see
Chaps. 13 and 27). The storage of digital sample records can then be accomplished
by directly inputting the data into the random access memory (RAM) or hard disk
(HD) on a digital computer or, for long-term storage, a removable storage medium
such as a digital tape recorder, digital video disk (DVD), or compact disk/read-only
memory (CD/ROM).
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ANALOG-TO-DIGITAL CONVERSION

The analog-to-digital (A/D) conversion operation discussed in Chap. 27 introduces
two potential errors that must be carefully suppressed, namely, aliasing errors and
quantization errors.

Aliasing Error. The first potential error arises because at least two sample values
are needed to define one cycle of a vibration signal.This imposes an upper frequency
limit on the digital data given by1,2

fA = 1/(2∆t) (22.24)

where fA is called the Nyquist frequency in Hz. Any signal content in the sample
record above the Nyquist frequency fA will fold back around fA and sum with the sig-
nal content below fA, often causing a severe distortion of the data referred to as an
aliasing error. Aliasing can be suppressed by low-pass filtering the analog signals
from the transducers before the A/D conversion, where the low-pass filter cut-off
frequency is set at fc = 0.5 fA to 0.8 fA, depending on the rolloff rate of the low-pass
filter. See Chap. 13 for details.

Quantization Error. The second potential error arises because a continuous ana-
log signal is being converted into a finite set of numbers.This introduces a round-off
error commonly referred to as the quantization error or digital noise. The round-off
error is established by the A/D conversion word size, which is the number of binary
digits (bits) used to describe each data value. Specifically, a word size of w provides
2w discrete values (see Chap. 13). Assuming the full range of the A/D converter is
used and allowing one bit for sign designation, the peak signal-to-rms noise ratio of
the digitized data in dB is given by1,2

PS/N(dB) = 6(w − 1) + 10.8 (22.25)

The rms signal-to-noise ratio (S/N) for the converter is then given by Eq. (22.25)
minus the peak-to-rms value in dB for the signal being converted. For example, if the
vibration signal were a sine wave, 3 dB would be subtracted from Eq. (22.25) to
obtain the S/N, since the peak-to-rms ratio for a sine wave is 1/�2� = −3 dB. Modern
A/D converters typically employ word sizes of w ≥ 12 bits, corresponding to a
PS/N(dB) ≥ 76.8 dB. The actual PS/N may be somewhat less than indicated by Eq.
(22.25) because of miscellaneous errors in the converter that reduce the effective
word size.1 Nevertheless, if the full range of the converter is used, the digital noise
level will usually be sufficiently low for a proper analysis of the data, and often lower
than the noise level of the transducer and analog instrumentation preceding the A/D
converter. On the other hand, if the full range of the converter is not used, the digi-
tal noise could restrict the dynamic range of the analyzed data.

VIBRATION DATA ANALYSIS PROCEDURES

The algorithms for analyzing vibration data evolve directly from the equations for
the quantitative descriptions presented earlier, but without the limiting operations.
Although usually computed from sample records in the form of a digital time series,
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CONCEPTS IN VIBRATION DATA ANALYSIS 22.17

x(n∆t); n = 0, 1, 2 . . . , all analysis procedures are presented in terms of both analog
equations and digital algorithms for clarity.

THE DISCRETE FOURIER TRANSFORM

Many of the analysis produces for both deterministic and random vibration data
require the computation of the finite Fourier transform defined in Eq. (22.3). In dig-
ital terms where the sample record x(t) = x(n∆t), this finite Fourier transform, often
called a discrete Fourier transform (DFT), is given by Eq. (14.6) as

X(m∆f) = ∆t �
N − 1

n = 0
x(n∆t) exp [−j2πm∆f n∆t]; m = 0, 1, 2, . . . , (N − 1) (22.26)

As discussed in Chap. 14, the DFT can be computed with remarkable efficiency
using a fast Fourier transform (FFT) algorithm. Note that the DFT defines N dis-
crete frequency values for N discrete time values with an inherent frequency resolu-
tion of

∆f = (22.27)

However, the Nyquist frequency defined in Eq. (22.24) occurs at m = (N/2). Hence,
only the first [(N/2) + 1] frequency components represent unique values; the last
[(N/2) − 1] frequency components constitute the redundant values representing the
negative frequency components in Eq. (22.3).

PROCEDURES FOR STATIONARY DETERMINISTIC DATA ANALYSIS

The analog equations and digital algorithms for the analysis of stationary determin-
istic vibration data are summarized in Table 22.2. The hat (^) over the symbol for
each computed parameter in Table 22.2 denotes an estimate as opposed to an exact
value.

1
�
N∆t

TABLE 22.2 Summary of Algorithms for Stationary Deterministic Vibration Data Analysis

Function Analog equation Digital algorithm

Mean value µ̂x = �T

0
x(t)dt µ̂x = �

N − 1

n = 0
x(n∆t)

Mean-square value ψ̂2
x = �T

0
x2(t)dt ψ̂2

x = �
N − 1

n = 0
x2(n∆t)

Variance σ̂2
x = �T

0
[x(t) − µ̂x]2 σ̂2

x = �
N − 1

n = 0
[x(n∆t) − µ̂x]2

Line spectrum* L̂x(f) = |X(f,T)|; f > 0 L̂x(m∆f) = |X(m∆f)|;

m = 1, 2, . . . , � − 1�
*X(f,T) defined in Eq. (22.3), X(m∆f) defined in Eq. (22.26).

N
�
2

2
�
N∆t

2
�
T

1
�
N − 1

1
�
T

1
�
N

1
�
T

1
�
N

1
�
T
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Overall Values. The mean, mean-square, and variance values for stationary deter-
ministic vibrations are estimated from a sample record using Eq. (22.1) with a finite
value for the averaging time T, as shown in Table 22.2. For periodic data, as defined
by Eq. (22.4), the averaging time should ideally cover an integer multiple of periods,
that is,

T = iTP i = 1, 2, 3, . . . (22.28)

where TP is the period of the data. However, since the period of a measured periodic
vibration is probably not known prior to estimating its overall values, it is unlikely in
practice that the averaging time will comply with Eq. (22.28). This leads to a trunca-
tion error that diminishes as the averaging time T increases, and is generally negligi-
ble (less than 3 percent) if T > 10TP. For almost-periodic vibration data, there will
always be a truncation error, but again it will be negligible if T > 10T1 where T1 is the
period of the lowest frequency in the data.

Line Spectra. The line spectrum for a periodic signal, as defined in Eq. (22.5), will
be exact as long as the averaging time complies with Eq. (22.28). Again, compliance
with Eq. (22.28) is unlikely in practice for periodic data and is not possible for
almost-periodic data, so a line spectrum estimate will generally involve a truncation
error. Specifically, rather than a single spectral line at the frequency of each har-
monic component of the periodic vibration, as illustrated in Fig. 22.2, spectral lines
will occur at all frequencies given by

fk = k/T k = 1, 2, 3, . . . (22.29)

where T ≠ iTP; i = 1, 2, 3, . . . . The largest spectral lines will fall at those frequencies
nearest the frequency of the harmonic components of the vibration, but they will
underestimate the magnitudes of the harmonic components. Furthermore, the com-
puted spectral lines will fall off about each harmonic frequency as shown in Fig.
14.10. This allows a second type of error, referred to as the leakage error, where the
magnitude of any one harmonic component can influence the computed values of
neighboring harmonic components. Of course, these errors diminish rapidly as T >>
TP for periodic data, or T >> T1 for almost-periodic data where T1 is the lowest fre-
quency in the data. In addition, sample record-tapering operations (see Chap. 14) or
interpolation algorithms2 can be used to suppress these errors.

PROCEDURES FOR STATIONARY RANDOM DATA ANALYSIS

The analog equations and digital algorithms for the analysis of stationary random
vibration data are summarized in Table 22.3. As before, the hat (^) over the symbol
for each computed function in Table 22.3 denotes an estimate as opposed to an exact
value. Unlike deterministic data, the estimation of parameters for random vibration
data will involve statistical sampling errors of two types, namely, (a) a random error
and (b) a bias (systematic) error. It is convenient to present these errors in normal-
ized terms. Specifically, for an estimate φ̂ of a parameter φ ≠ 0,

Random error: εr[φ̂] = σ[φ̂]/φ (22.30a)

Bias error: εb[φ̂] = (E[φ̂] − φ)/φ (22.30b)
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TABLE 22.3 Summary of Algorithms for Stationary Random Vibration Data Analysis

Function Analog equation* Digital algorithm*

Mean, mean- Same as in Table 22.2 Same as in Table 22.2
square, and 
variance values

Probability 
density

p̂(x) = p̂(x) =

function

Power 
spectrum,

Ŵxx(f) = �
nd

i = 1
|Xi(f,T)|2; f > 0 Ŵxx(m∆f) = �

nd

i = 1
|Xi(m∆f)|2;

via ensemble
averaging m = 1,2, . . . , � − 1�

Power 
spectrum via

Ŵxx(f) = �T

0
x2 (f,Be,T)dt; Ŵxx(m∆f) = �

N − 1

n = 0
x2 (Be,m∆f,n∆t);

bandpass
filtering f > 0 m = 1,2, . . . , � − 1�

Cross-spectrum 
via ensemble

Ŵxy(f) = �
nd

i = 1
X*(f,T)Y(f,T); Ŵxy(m∆f) = �

nd

i = 1
|Xi

*(m∆f)Yi(m∆f)|;

averaging
f > 0 m = 1,2, . . . , � − 1�

Coherence γ̂ 2
xy(f) = ; f > 0 γ̂ 2

xy(m∆f) =
function

m = 1,2, . . . , � − 1�

Frequency Ĥxy(f) = ; f > 0 Ĥxy(m∆f) = ;
response
function

m = 1,2, . . . , � − 1�
Coherent Ŵxx(f) = γ̂xy(f)Ŵyy(f); f > 0 Ŵxx(m∆f) = γ̂ 2

xy(m∆f)Ŵyy(m∆f);
output
power m = 1,2, . . . , � − 1�
function

*X(f,T) defined in Eq. (22.3), X(m∆f ) defined in Eq. (22.26).

N
�
2

N
�
2

Ŵxy(m∆f )
��
Ŵxx(m∆f)

Ŵxy(f )
�̂
Wxx(f)

N
�
2

|Ŵxy(m∆f)|2
���
Ŵxx(m∆f)Ŵyy(m∆f)

|Ŵxy(f)|2
��
Ŵxx(f)Ŵyy(f)

N
�
2

2
�
ndN∆t

2
�
ndT

N
�
2

1
�
BeN∆t

1
�
BeT

N
�
2

2
�
ndN∆t

2
�
ndT

N(x,∆x)
�∆x N

T(x,∆x)
�∆x T
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where σ[φ̂] is the standard deviation of the estimate φ̂ and E[ ] denotes the expected
value. For example, if the random error for an estimate φ̂ is εr[φ̂] = 0.1, this means that
the estimate ̂φ is a random variable with a standard deviation that is 10 percent of the
value of the parameter φ being estimated. If the bias error is εb[φ̂] = −0.1, this means
the estimate φ̂ is systematically 10 percent less than the value of the parameter φ
being estimated; note that the bias error can be either positive or negative. The ran-
dom and bias errors for the various estimates in Table 22.3 are summarized in Table
22.4.
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TABLE 22.4 Statistical Sampling Errors for Stationary Random Vibration Data Analysis

Function Random error Bias error

Mean value εr[µ̂x] = � � None

Mean-square εr[ψ̂x] = � � + � � None
value

Variance εr[σ̂2
x] = None

Probability εr[p̂(x)] ≤ εb[p̂(x)] =
density function

Power spectrum* εr[Ŵxx(f)] = εb[Ŵxx(f)] = − � �
2

Cross-spectrum εr[|Ŵxy(f)|] = εb[Ŵxy(f)] =
magnitude*

Cross-spectrum σr[|θ̂xy(f)|] = †

phase*

Coherence εr[|γ̂ 2
xy(f)|] = εb[γ̂ 2

xy(f)] = 
function*

Frequency εr[|Ĥxy(f)|] = †

response
function 
magnitude*

Frequency σr[|φ̂xy(f )|] = †

response
function 
phase*

Coherent output εr[γ̂xy(f)Ŵxy(f)] = †

power spectrum*

* nd can be replaced by BeTr when frequency-averaging or digital filtering is employed.
† There are several sources of bias errors,1,9 but they usually will be small if the bias error for the power

spectral density estimate is small.

[2 − γ 2
xy(f)]1/2

��
|γxy(f)|�nd�

[1 − γ 2
xy(f)]1/2

��
|γxy(f)|�2nd�

[1 − γ 2
xy(f)]1/2

��
|γxy(f)|�2nd�

[1 − γ 2
xy(f)]2

��γ 2
xy(f)nd

�2�[1 − γ 2
xy(f)]

��
|γxy(f)|�nd�

[1 − γ 2
xy(f)]1/2

��
|γxy(f)|�2nd�

Bed2|Wxy(f)|/df 2

��
24 Wxy(f)

1
��
|γxy(f)|�nd�

Be�
2ζfr

1
�
3

1
�
�nd�

(∆x)2d2[p(x)]/dx2

��
24 p(x)

1
��
�2BT ∆�x p(x)�

1
�
�BT�

µxσx�ψ2
x

�2�
�
�BT�

σ2
x�ψ2
x

1
�
�BT�

σx�µx

1
�
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Overall Values. The mean, mean-square, and variance values for a stationary ran-
dom vibration are estimated from a sample record using Eq. (22.1) with a finite
value for the averaging time T in the same way as for stationary deterministic vibra-
tion data, as shown in Table 22.2. For random data, however, truncation errors are
replaced by the random errors given in Table 22.4, where it is assumed that the data
have a uniform power spectrum over a frequency range with a bandwidth B. Since
vibration data rarely have uniform power spectra, the error formulas for the overall
values provide only coarse approximations for the random errors to be expected.
However, for sample records of adequate duration to provide reasonably accurate
power spectra estimates, to be detailed shortly, the random error in overall value
estimates will generally be negligible.

Probability Density Functions. The probability density function for a stationary
random vibration is estimated from a sample record using Eq. (22.6) with finite val-
ues for the averaging time T and an amplitude window width ∆x, as shown in Table
22.3. In this table, T(x,∆x) is the total time the analog record x(t) falls within the
amplitude window ∆x centered at x, and N(x,∆x) is the total number of values of the
digital record x(n∆t), n = 0, 1, 2, . . . , that fall within the amplitude window ∆x cen-
tered at x. Probability density estimates for random vibration data will involve both
a bias error and a random error, as summarized in Table 22.4.The bias error is a func-
tion of the second derivative of the probability density versus amplitude, which gen-
erally is not known prior to the analysis. However, if the probability density function
is relatively smooth and the analysis is performed with an amplitude window width
of ∆x ≤ 0.1 σx, experience suggests the bias error will typically be less than 5 percent
for all values of x. The random error shown in Table 22.4 is only a bound; the actual
random error depends on the power spectrum of the data,1 but in most cases will be
small if the sample record duration is adequate to provide accurate power spectra
estimates.

Power Spectra. Referring to Table 22.3, there are two basic ways to estimate the
power spectrum from a sample record of a stationary random vibration, as follows:

Ensemble Averaging Procedure. The first approach to the estimation of a
power spectrum, identified as “ensemble averaging” in Table 22.3, is based upon the
definition in Eq. (22.8), and involves the following primary steps:1

1. Given a sample record of total duration Tr = nd N∆t, divide the record into an
ensemble of nd contiguous segments, each of duration T = N∆t.

2. Apply an appropriate tapering operation to each segment of duration T = N∆t to
suppress side-lobe leakage (see Chap. 14).

3. Compute a “raw” power spectrum from each segment of duration T = N∆t, which
will produce N/2 spectral values at positive frequencies with a resolution of ∆f =
1/T = 1/(N∆t).

4. Average the “raw” power spectra values from the nd segments to obtain a power
spectrum estimate with nd averages and a frequency resolution of Be = ∆f.

The averaging operation over the ensemble of nd estimates simulates the expected
value operation in Eq. (22.8), and determines the random error in the estimate given
in Table 22.4. The resolution bandwidth Be = 1/(N∆t) determines the maximum bias
error in the estimate given in Table 22.4, which for structural vibration data typically
occurs at peaks and notches in the power spectrum caused by the resonant response
of the structure at a frequency fr with a damping ratio ζ. See Chap. 14 for details on
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the computation of power spectra for random data, including overlapped processing
and “zoom” transform procedures.

The ensemble averaging procedure can be replaced by a frequency-averaging
procedure, as follows:1

1. Given a sample record of total duration Tr = ndN∆t, compute a raw power spec-
trum over the entire duration of the sample record, which will produce ndN/2
spectral estimates at positive frequencies with a resolution of Be = 1/Tr =
1/(ndN∆t).

2. Divide the frequency range of the spectral components into a collection of con-
tiguous frequency segments, each containing nd spectral components.

3. Average the spectral components in each of the frequency segments to obtain the
power spectrum estimate.

The averaging over nd spectral components in a frequency segment produces the same
random error in Table 22.4 as averaging over nd raw power spectra estimates in the
ensemble-averaging procedure. In addition, for the same values of N and nd, the fre-
quency resolution is the same as for the ensemble-averaging procedure, meaning the
bias error in Table 22.4 is essentially the same. However, the bandwidth for the various
frequency segments need not be a constant. Any desired variation in the bandwidth
can be introduced, including a bandwidth that increases linearly with its center fre-
quency (commonly referred to as a constant percentage frequency resolution).

Bandpass Filtering Procedure. The second approach to the estimation of a
power spectrum, identified as “bandpass filtering” in Table 22.3, uses the definition
given by Eq. (22.9), as illustrated in Fig. 22.5, and involves the following primary
steps:

1. Using digital filters discussed in Chap. 14, pass the sample record of total dura-
tion Tr through a collection of contiguous bandpass filters, each centered at fre-
quency fi with a bandwidth of Bi; i = 1, 2, 3, . . . .

2. Square and average the output of each bandpass filter over the total sample
record duration Tr to obtain the mean-square value of the sample record within
each filter bandwidth Bi.

3. Divide the mean-square value from each bandpass filter by the filter bandwidth
to obtain a power spectrum estimate at the center frequency of each filter.

It can be shown1 that the product of the bandwidth Bi and the averaging time Tr in
the above procedure is equivalent to nd in the ensemble-averaging procedure.
Hence, the bandpass filtering procedure produces the same random and bias errors
shown in Table 22.4 with nd = BiTr and Bi = Be.

Optimum Resolution Bandwidth Selections. A common problem in the esti-
mation of power spectra from sample records of stationary random vibration data is
the selection of an appropriate resolution bandwidth, Be = 1/T = 1/(N∆t). One
approach to this problem is to select that resolution bandwidth that will minimize
the total mean-square error in the estimate given by

ε2 = εr
2 + ε2

b (22.31)

where εr and εb are defined in Eq. (22.30). From Table 22.4, the maximum mean-
square error for power-spectral density estimates of structural vibration data is
approximated by
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ε2[Ŵxx(f)] = + � �
4

(22.32)

where ζ is the damping ratio of the structure at the resonance frequency fr . Taking
the derivative of Eq. (22.32) with respect to Be and equating to zero yields the reso-
lution bandwidth that will minimize the mean-square error as

B0(f) = 2 (22.33)

Note in Eq. (22.33) that the optimum resolution bandwidth B0(f) is a function of the
−1⁄5 power of the sample record duration, Tr, meaning the optimum resolution band-
width is relatively insensitive to the sample record duration. Further, the optimum
resolution bandwidth B0(f) is proportional to the 4⁄5 power of the product ζf. Assum-
ing all structural resonances have approximately the same damping, this means a
constant percentage resolution bandwidth will provide near-optimum results in
terms of a minimum mean-square error in the power-spectrum estimate. For exam-
ple, assume the vibration response of a structure exposed to a random excitation is
measured with a total sample record duration of Tr = 10 sec. Further assume all res-
onant modes of the structure have a damping ratio of ζ = 0.05. From Eq. (22.33), the
optimum resolution bandwidth for the computation of a power spectrum of the
structural vibration is B0(f) = 0.115f 4/5. Hence, if the frequency range of the analysis
is, say, 10 Hz to 1000 Hz, the optimum resolution bandwidth for the analysis
increases from B0 = 0.726 Hz at f = 10 Hz [B0(f) = 0.0726f] to B0 = 28.9 Hz at f = 1000
Hz [B0(f) = 0.0280 f]. It follows that a 1⁄12 octave bandwidth resolution, which is
equivalent to Be(f) = 0.058f, will provide relative good spectral estimates over the
frequency range of interest.

Cross-Spectra. Referring to Table 22.3 and Eq. (22.13), the computational ap-
proach for estimating the cross-spectrum between two sample records x(t) and y(t)
is the same as described for power spectra, except |X(f)|2 is replaced by X*(f)Y(f).
Referring to Table 22.4, the random errors in the magnitude and phase of a cross-
spectrum estimate are heavily dependent on the coherence function, as defined in
Eq. (22.16). Specifically, if the coherence at any frequency is unity, this means the
two sample records, x(t) and y(t), are linearly related and the normalized random
error in the estimate is the same as for a power-spectrum estimate. On the other
hand, if the coherence is zero, then x(t) and y(t) are unrelated and the normalized
random error in any estimate that may be computed is infinite. In practice, the true
value of the coherence is not known, so sample estimates of the coherence, to be dis-
cussed shortly, would be used in the error formula shown in Table 22.4. There are
several sources of bias errors for cross-spectra estimates,1,10 but these bias errors will
generally be minor if the bias errors in the power-spectra estimates for the two sam-
ple records are small and there is no major time delay between the two sample
records.

Other Spectral Functions. Referring to Table 22.3, the frequency response,
coherence, and coherent output power functions defined in Eqs. (22.15) through
(22.17) are estimated from sample records using the appropriate estimates for the
power spectra, cross-spectra, and coherence functions of the data. From Table 22.4,
as for the cross-spectrum, the random errors for estimates of these functions are
heavily dependent on the coherence function. There are several sources of bias
errors in the estimates of these functions,1,10 but the bias errors will generally be
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minor if the bias errors in the power spectra estimates used to compute the functions
is small and there is no major time delay between the two sample records.

PROCEDURES FOR NONSTATIONARY DATA ANALYSIS

As noted earlier, nonstationary vibration data are defined here as those whose basic
properties vary slowly relative to the lowest frequency in the vibration time-history.
Under this definition, the analog equations and digital algorithms for the analysis of
nonstationary vibration data from a single sample record, x(t), are summarized in
Table 22.5. These procedures are essentially the same as summarized in Tables 22.2
and 22.3, except the computations are performed over each of a sequence of short,
contiguous segments of the data where each segment is sufficiently short not to
smooth out the nonstationary characteristics of the data. In other words, given a non-
stationary sample record x(t) of total duration Tr, the record is assumed to be a
sequence of piecewise stationary segments, each covering the interval

iT to (i + 1)T = iN∆t to (i + 1)N∆t i = 0, 1, 2, . . . (22.34)

In many cases, rather than computing the estimates over the contiguous segments
defined in Eq. (22.34), a new segment is initiated every digital increment ∆t such that
each covers the interval

i∆t to (i + N)∆t i = 0, 1, 2, . . . (22.35)

The computation of estimates over the intervals defined in either Eq. (22.34) or
(22.35) is commonly referred to as a running average (also called a moving average).
Whether the averaging is performed over segments given by Eq. (22.34) or (22.35), the
primary problem is to select an appropriate averaging time, T = N∆t, for the estimates.

Overall Average Values for Deterministic Data. Referring to Table 22.5, the
optimum averaging time for the computation of time-varying mean, mean-square,
and variance values for nonstationary deterministic vibration data is bounded as fol-
lows. At the lower end, the averaging time must be at least as long as the period for
periodic data or the period of the lowest frequency component for almost-periodic
data. At the upper end, the averaging time must be sufficiently short to not smooth
out the time-varying properties in the data.This selection is usually accomplished by
trial-and-error procedures, as illustrated shortly.

Overall Average Values for Random Data. The optimum averaging time for the
computation of time-varying mean, mean-square, and variance values for nonsta-
tionary random vibration data is bounded as for nonstationary deterministic data
with one difference, namely, the computations for random data will involve a statis-
tical sampling (random) error, as summarized in Table 22.4. To minimize these ran-
dom errors, an averaging time that is as close as feasible to the upper bound noted
for deterministic data is desirable.Analytical procedures to select an optimum aver-
aging time that will minimize the mean-square error of the resulting time-varying
average value have been formulated,1 but they require a knowledge of the power
spectrum of the data, which is normally not available when overall average values
are being estimated. Hence, it is more common to select an averaging time by trial-
and-error procedures, as follows:
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TABLE 22.5 Summary of Algorithms for Nonstationary Vibration Data Analysis

Function Analog equation Digital algorithm

Mean value µ̂x(t) = �t + T/2

t − T/2
x(τ)dτ µ̂x(k∆t) = �

k + N/2

n = k − N/2
x(n∆t)

Mean-square value ψ̂2
x(t) = �t + T/2

t − T/2
x2(τ)dτ ψ̂2

x(k∆t) = �
k + N/2

n = k − N/2
x2(n∆t)

Variance σ̂2
x(t) = �t + T/2

t − T/2
[x(τ) − µ̂x]2dτ σ̂2

x(k∆t) = �
k + N/2

n = k − N/2
[x(n∆t) − µ̂x]2

Instantaneous line L̂x(f,ti) = |Xi(f,T)|; f > 0; L̂x(m∆f,ti) = |X(m∆f,ti)|;
spectrum via FFT

i = 1,2,3, . . . ; and m = 1,2, . . . , [(N/2) − 1] andfor deterministic
Xi(f,T) computed over ti � T/2 X(m∆f,ti) computed over ti � (Ni∆t/2)data*

Instantaneous Ŵxx(fk,ti) = �ti + Ti/2

ti − Ti/2
x2(fk,Bk,τ)dτ; Ŵxx(fk,ni∆t) = �

ni + (Ni/2)

n = ni − (Ni/2)
x2(fk,Bk,n∆t);

power spectrum via
i = 1,2,3, . . . , and k = 1,2,3, . . . i = 1,2,3, . . . , and k = 1,2,3, . . .bandpass filtering

for random data

* X(f,T) defined in Eq. (22.3), X(m∆f) defined in Eq. (22.26).
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1. Compute a running average for the overall value of interest using either Eq.
(22.34) or (22.35) with an averaging time, T = N∆t, that is too short to smooth out
the variations with time in the overall value being estimated.

2. Continuously recompute the running average with an increasing averaging time
until it is clear that the averaging time is smoothing out variations with time in the
overall value being estimated.

3. Choose that averaging time for the analysis that is just short of the averaging time
that clearly smoothes out variations with time in the overall value being estimated.

This procedure is illustrated in Fig. 22.9, which shows running average estimates for
the time-varying mean-square value of a nonstationary random vibration record
computed with averaging times of T = 0.1, 1.0, and 3.0 sec. Note that the running
average estimates with T = 0.1 sec reveal substantial random variations from one
estimate to the next, indicative of excessive random estimation errors, while the esti-
mates with T = 3 sec reveal a clear smoothing of the nonstationary trend in the data,
indicative of an excessive time interval bias error. The averaging time of T = 1 sec
provides a good compromise between the suppression of random and bias errors in
the data analysis.

Instantaneous Line Spectrum for Deterministic Data. Again referring to Table
22.5, the most common way to analyze the spectral characteristics of nonstationary
deterministic vibration data is to estimate the instantaneous line spectrum defined in
Eq. (22.19) by a sequence of line spectra computed over the time intervals defined in
Eq. (22.34) or (22.35).The resulting collection of line spectra is commonly referred to
as a waterfall plot or a cascade plot. An illustration of a waterfall plot computed from
a sample record of nonstationary deterministic vibration data is shown in Fig. 14.25.

For a spectral analysis using Fourier transforms, the averaging time T = N∆t and
the frequency resolution ∆f = 1/T = 1/(N∆t) are obviously interrelated. It follows that
there must always be a compromise between these two analysis parameters. On the
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one hand, the averaging time must be longer than the period of the lowest instanta-
neous frequency component in the data at any time covered by the sample record.
On the other hand, the frequency resolution must be narrower than the minimum
frequency separation of any two instantaneous frequency components in the data at
any time covered by the sample record. This compromise will generally be achiev-
able for nonstationary deterministic vibration data that would be periodic if they
were stationary. In this case, assuming the maximum period at any time covered by
the sample record is TP, it follows that ∆f < 1/TP if T > TP. However, for almost-
periodic deterministic vibration data, there may be two spectral components that, at
some instant, might be separated by less than ∆f = 1/T where T > T1. See Chap. 14 for
further details on the computation of waterfall plots and other procedures for the
analysis of nonstationary deterministic vibration data.

Instantaneous Power Spectra for Random Data. Referring to Table 22.5, the
instantaneous power spectrum for nonstationary random vibration data requires an
averaging operation to suppress the statistical sampling errors associated with all
random data analysis, as suggested by the expected value operation in Eq. (22.21).
This averaging operation can be accomplished in several ways. For example, the
sample record could be divided into a sequence of contiguous time intervals of
appropriate durations and a power spectrum for the data in each time interval com-
puted using the ensemble-averaging procedure detailed in Table 22.3. However, the
most straightforward way is to compute the instantaneous power spectrum using the
bandpass filtering approach in Fig. 22.5, and computing a running average of the
squared output of each bandpass filter centered at frequency fi with an averaging
time of Ti = Ni∆t; i = 1, 2, 3, . . . , as shown in Table 22.5. For reasons to be discussed
shortly, a fixed averaging time of T = N∆t commonly can be used for all frequency
bands with good results.

A straightforward but time-consuming way to select an appropriate averaging time
for an instantaneous power spectrum estimate with bandpass digital filters is to use the
trial-and-error procedure illustrated for nonstationary mean-square value estimates in
Fig. 22.9, except now the optimum averaging time would have to be determined sepa-
rately for each frequency resolution bandwidth Bi. On the other hand, the problem
can also be approached analytically by determining the averaging time and resolution
bandwidth that will minimize the total mean-square error in the estimate, similar to
the procedure given in Eqs. (22.31) through (22.33) for stationary random vibration
data. In this case, however, there is a third error that must be included in the total
mean-square error, namely, a time resolution bias error caused by smoothing through
the time-varying values of the instantaneous power spectrum. A maximum value for
the normalized time resolution bias error can be approximated by1

εbt[Ŵxx(f)] = � 	
2

(22.36)

where TDi is the half-power point duration about the maximum power-spectral den-
sity value in the ith resolution bandwidth, that is, the time interval between the time
t1 before and the time t2 after that time tm when the maximum value occurs such that
Wxx(fi,t1) = Wxx(fi,t2) = Wxx(fi,tm)/2. Ideally, this time duration should be determined
individually for each frequency resolution bandwidth, but it will often suffice to use
a single value for TD determined from the estimate for the time-varying mean-
square value of the data, as illustrated in Fig. 22.9.Adding Eq. (22.36) with a constant
value TD to Eq. (22.32), taking partial derivatives with respect to T and Be, equating
to zero, and solving the two simultaneous equations, yields the optimum averaging
time and resolution bandwidth as1

2π
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T0(f) = 1.31 TD
5/6/(ζf)1/6 B0(f) = 1.94(ζf)5/6/T D

1/6 (22.37)

Note in Eq. (22.37) that the averaging time T0(f) is a function of the −1⁄6 power of the
product ζf, while the resolution bandwidth B0(f) is a function of the 5⁄6 power of the
product ζf. Assuming all structural resonances have approximately the same damp-
ing ratio, this means a fixed averaging time and a constant percentage resolution
bandwidth will provide near-optimum results in terms of a minimum mean-square
error in the instantaneous power-spectrum estimate. For example, assume the meas-
ured vibration response of a structure exposed to a nonstationary random excitation
has a time-varying mean-square value similar to that shown in Fig. 22.9, where the
half-power duration is about TD ≈ 2.5 sec. Further assume all resonant modes of the
structure have a damping ratio of ζ = 0.05. From Eq. (22.37), the optimum averaging
time for the computation of an instantaneous power spectrum of the nonstationary
structural vibration is T0(f) = 4.63f −1/6, while the optimum resolution bandwidth is
B0(f) = 0.137f 5/6. Hence, if the frequency range of the analysis is, say, 10 Hz to 1000
Hz, the optimum averaging time for the analysis decreases from T0 = 3.15 sec at 10
Hz to T0 = 1.46 sec at 1000 Hz, while the optimum resolution bandwidth increases
from B0 = 0.933 Hz at f = 10 Hz [B0(f) = 0.0933f] to B0 = 43.3 Hz at f = 1000 Hz 
[B0(f) = 0.0433f]. It follows that an analysis with a fixed averaging time of about T =
2.5 sec and a constant percentage resolution bandwidth of 1⁄12 octave, which is equiv-
alent to Be(f) = 0.058f, will provide relative good instantaneous spectral estimates
over the entire frequency range of interest. See Ref. 1 for details on specialized pro-
cedures for analyzing special cases of nonstationary random vibration data.
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