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INTRODUCTION

Experimental modal analysis is the process of determining the modal parameters
(natural frequencies, damping factors, modal vectors, and modal scaling) of a linear,
time-invariant system. The modal parameters are often determined by analytical
means, such as finite element analysis. One common reason for experimental modal
analysis is the verification or correction of the results of the analytical approach.
Often, an analytical model does not exist, and the modal parameters determined
experimentally serve as the model for future evaluations, such as structural modifi-
cations. Predominantly, experimental modal analysis is used to explain a dynamics
problem (vibration or acoustic) whose solution is not obvious from intuition, ana-
lytical models, or previous experience.

The process of determining modal parameters from experimental data involves
several phases. The success of the experimental modal analysis process depends
upon having very specific goals for the test situation. Every phase of the process is
affected by the goals which are established, particularly with respect to the errors
associated with that phase. One possible delineation of these phases is as follows:

Modal analysis theory refers to that portion of classical vibration theory that
explains the existence of natural frequencies, damping factors, and mode shapes
for linear systems. This theory includes both lumped-parameter, or discrete, mod-
els and continuous models. This theory also includes real normal modes as well as
complex modes of vibration as possible solutions for the modal parameters.'

Experimental modal analysis methods involve the theoretical relationship
between measured quantities and classical vibration theory, often represented as
matrix differential equations. All commonly used methods trace from the matrix
differential equations but yield a final mathematical form in terms of measured
raw input and output data in the time or frequency domains or some form of
processed data such as impulse-response or frequency response functions.
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Modal data acquisition involves the practical aspects of acquiring the data that
are required to serve as input to the modal parameter estimation phase. Much
care must be taken to assure that the data match the requirements of the theory
as well as the requirements of the numerical algorithm involved in the modal
parameter estimation. The theoretical requirements involve concerns such as sys-
tem linearity and time invariance of system parameters. The numerical algo-
rithms are particularly concerned with the bias errors in the data as well as with
any overall dynamic range considerations*” (see Chap. 22).

Modal parameter estimation is concerned with the practical problem of estimat-
ing the modal parameters, based upon a choice of mathematical model as justi-
fied by the experimental modal analysis method, from the measured data.®'°

Modal data presentation/validation is the process of providing a physical view or
interpretation of the modal parameters. For example, this may simply be the
numerical tabulation of the frequency, damping, and modal vectors along with
the associated geometry of the measured degrees-of-freedom. More often, modal
data presentation involves the plotting and animation of such information.

Figure 21.1 is a representation of all phases of the process. In this example, a con-
tinuous beam is being evaluated for the first few modes of vibration. Modal analysis
theory explains that this is a linear system and that the modal vectors of this system
should be real normal modes. The experimental modal analysis method that has been
used is based upon the relationships of the frequency response function to the matrix
differential equations of motion. At each measured degree-of-freedom (DOF), the
imaginary part of the frequency response function for that measured response
degree-of-freedom and a common input degree-of-freedom is superimposed perpen-
dicular to the beam. Naturally, the modal data acquisition in this example involves the
estimation of frequency response functions for each degree-of-freedom shown. The
frequency response functions are complex-valued functions, and only the imaginary
portion of each function is shown. One method of modal parameter estimation sug-
gests that for systems with light damping and widely spaced modes, the imaginary
part of the frequency response function at the damped natural frequency may be
used as an estimate of the modal coefficient for that response degree-of-freedom. The
damped natural frequency can be identified as the frequency of the positive and neg-
ative peaks in the imaginary part of the frequency response functions. The damping
can be estimated from the sharpness of the peaks. In this abbreviated way, the modal
parameters have been estimated. Modal data presentation for this case is shown as
the lines connecting the peaks. While animation is possible, a reasonable interpreta-
tion of the modal vector can be gained in this case from plotting alone.

MEASUREMENT DEGREES-OF-FREEDOM

The development of any theoretical concept in the area of vibrations, including
modal analysis, depends upon an understanding of the concept of the number of
degrees-of-freedom #n of a system. This concept is extremely important to the area of
modal analysis since the number of modes of vibration of a mechanical system is
equal to the number of degrees-of-freedom. From a practical point of view, the rela-
tionship between this theoretical definition of the number of degrees-of-freedom
and the number of measurement degrees-of-freedom N,, N; is often confusing. For
this reason, the concept of degree-of-freedom is reviewed as a preliminary to the fol-
lowing experimental modal analysis material.
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FIGURE 21.1 Experimental modal analysis example using the imaginary part of the
frequency response functions.

To begin with, the basic definition that is normally associated with the concept of
the number of degrees-of-freedom involves the following statement: The number of
degrees-of-freedom for a mechanical system is equal to the number of independent
coordinates (or minimum number of coordinates) that is required to locate and orient
each mass in the mechanical system at any instant in time. As this definition is applied
to a point mass, 3 degrees-of-freedom are required since the location of the point
mass involves knowing the x, y, and z translations of the center-of-gravity of the
point mass. As this definition is applied to a rigid body mass, 6 degrees-of-freedom
are required since 8,, 6,, and 6, rotations are required in addition to the x, y, and z
translations in order to define both the orientation and the location of the rigid body
mass at any instant in time. As this definition is extended to any general deformable
body, the number of degrees-of-freedom is essentially infinite. However, while this is
theoretically true, it is quite common, particularly with respect to finite element
methods, to view the general deformable body in terms of a large number of physi-
cal points of interest with 6 degrees-of-freedom for each of the physical points. In
this way, the infinite number of degrees-of-freedom can be reduced to a large but
finite number.

When measurement limitations are imposed upon this theoretical concept of the
number of degrees-of-freedom of a mechanical system, the difference between the
theoretical number of degrees-of-freedom #n and the number of measurement
degrees-of-freedom N, N, begins to evolve. Initially, for a general deformable body,
the number of degrees-of-freedom n can be considered to be infinite or equal to
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some large finite number if a limited set of physical points of interest is considered,
as discussed in the previous paragraph. The first measurement limitation that needs
to be considered is that there is normally a limited frequency range that is of inter-
est to the analysis. When this limitation is considered, the number of degrees-of-
freedom of this system that are of interest is reduced from infinity to a reasonable
finite number. The next measurement limitation that needs to be considered
involves the physical limitation of the measurement system in terms of amplitude. A
common limitation of transducers, signal conditioning and data acquisition systems
results in a dynamic range of 80 to 100 dB (10* to 10°) in the measurement. This
means that the number of degrees-of-freedom is reduced further because of the
dynamic range limitations of the measurement instrumentation. Finally, since few
rotational transducers exist at this time, the normal measurements that are made
involve only translational quantities (displacement, velocity, acceleration, force) and
thus do not include rotational effects, or RDOF. In summary, even for the general
deformable body, the theoretical number of degrees-of-freedom that are of interest
is limited to a very reasonable finite value (n =1 to 50). Therefore, this number of
degrees-of-freedom # is the number of modes of vibration that are of interest.

Finally, then, the number of measurement degrees-of-freedom N,, N; can be
defined as the number of physical locations at which measurements are made multi-
plied by the number of measurements made at each physical location. Since the
physical locations are chosen somewhat arbitrarily, and certainly without exact
knowledge of the modes of vibration that are of interest, there is no specific rela-
tionship between the number of degrees-of-freedom n and the number of measure-
ment degrees-of-freedom N,, N;. In general, in order to define n modes of vibration
of a mechanical system, N, or N; must be equal to or larger than n. However, N, or
N, being larger than # is not a guarantee that » modes of vibration can be found from
the measurement degrees-of-freedom. The measurement degrees-of-freedom must
include physical locations that allow a unique determination of the » modes of vibra-
tion. For example, if none of the measurement degrees-of-freedom are located on a
portion of the mechanical system that is active in one of the n modes of vibration,
portions of the modal parameters for this mode of vibration cannot be found.

In the development of material in the following text, the assumption is made that
a set of measurement degrees-of-freedom exists that allows » modes of vibration to
be determined. In reality, either N, or N, is always chosen much larger than z since a
prior knowledge of the modes of vibration is not available. If the set of N, or N;
measurement degrees-of-freedom is large enough and if the measurement degrees-
of-freedom are distributed uniformly over the general deformable body, the n
modes of vibration are normally found.

Throughout this experimental modal analysis reference, the frequency response
function notation H,, is used to describe the measurement of the response at meas-
urement degree-of-freedom p resulting from an input applied at measurement
degree-of-freedom ¢q. The single subscript p or g refers to a single sensor aligned in
a specific direction (2 X, Y, or Z) at a physical location on or within the structure.

BASIC ASSUMPTIONS

There are four basic assumptions concerning any structure that are made in order to
perform an experimental modal analysis:

1. The structure is assumed to be linear, i.e., the response of the structure to any
combination of forces, simultaneously applied, is the sum of the individual responses
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to each of the forces acting alone. For a wide variety of structures this is a very good
assumption. When a structure is linear, its behavior can be characterized by a con-
trolled excitation experiment in which the forces applied to the structure have a
form that is convenient for measurement and parameter estimation rather than
being similar to the forces that are actually applied to the structure in its normal
environment. For many important kinds of structures, however, the assumption of
linearity is not valid. Where experimental modal analysis is applied in these cases, it
is hoped that the linear model that is identified provides a reasonable approxima-
tion of the structure’s behavior.

2. The structure is time invariant, i.e., the parameters that are to be determined
are constants. In general, a system which is not time invariant has components whose
mass, stiffness, or damping depend on factors that are not measured or are not
included in the model. For example, some components may be temperature depend-
ent. In this case, since temperature effects are not measured, the temperature of the
component is an unknown time-varying signal. Hence, the component has time-
varying characteristics. Therefore, for this case the modal parameters determined by
any measurement and estimation process depend on the time (and the associated
temperature dependence) when the measurements are made. If the structure that is
tested changes with time, then measurements made at the end of the test period
determine a different set of modal parameters from measurements made at the
beginning of the test period. Thus, the measurements made at the two different times
are inconsistent, violating the assumption of time invariance.

3. The structure obeys Maxwell’s reciprocity, i.e., a force applied at degree-of-
freedom p causes a response at degree-of-freedom ¢ that is the same as the response
at degree-of-freedom p caused by the same force applied at degree-of-freedom
g. With respect to frequency response function measurements, the frequency
response function between points p and g determined by exciting at p and measur-
ing the response at g is the same frequency response function found by exciting at g
and measuring the response at p (H,, = H,,).

4. The structure is observable, i.e., the input-output measurements that are made
contain enough information to generate an adequate behavioral model of the struc-
ture. Structures and machines which have loose components, or, more generally,
which have degrees-of-freedom of motion that are not measured, are not completely
observable. For example, consider the motion of a partially filled tank of liquid when
complicated sloshing of the fluid occurs. Sometimes enough data can be collected so
that the system is observable under the form chosen for the model, while at other
times an impractical amount of data is required. This assumption is particularly rel-
evant to the fact that the data normally describe an incomplete model of the struc-
ture. This occurs in at least two different ways. First, the data are normally limited to
a minimum and maximum frequency as well as a limited frequency resolution. Sec-
ond, no information relative to local rotations is available because of the lack of
available transducers in this area.

MODAL ANALYSIS THEORY

While modal analysis theory has not changed over the last century, the application
of the theory to experimentally measured data has changed significantly. The
advances of recent years with respect to measurement and analysis capabilities have
caused a reevaluation of what aspects of the theory relate to the practical world of
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testing. Thus, the aspect of transform relationships has taken on renewed importance
since digital forms of the integral transforms are in constant use. The theory from the
vibrations point of view involves a more thorough understanding of how the struc-
tural parameters of mass, damping, and stiffness relate to the impulse-response func-
tion (time domain), the frequency response function (Fourier or frequency domain),
and the transfer function (Laplace domain) for single and multiple degree-of-
freedom systems.

SINGLE DEGREE-OF-FREEDOM SYSTEMS

In order to understand modal analysis, complete comprehension of single degree-of-
freedom systems is necessary. In particular, complete familiarity with single degree-
of-freedom systems as presented and evaluated in the time, frequency (Fourier), and
Laplace domains serves as the basis for many of the models that are used in modal
parameter estimation. This single degree-of-freedom approach is trivial from a
modal analysis perspective since no modal vectors exist. The true importance of this
approach results from the fact that the multiple degree-of-freedom case can be
viewed as simply a linear superposition of single degree-of-freedom systems.

The general mathematical representation of a single degree-of-freedom system is
expressed by

mix (1) + cx(t) + kx(t) = f(r) (21.1)

where m = mass constant
¢ = damping constant
k = stiffness constant

This differential equation yields a characteristic equation of the following form:
ms’+cs+k=0 (21.2)

where s is the complex-valued frequency variable (Laplace variable). This charac-
teristic equation of a single degree-of-freedom system has two roots, A1 and A2,
which are

)\,1 =—-0; +j(l)1 7b2:—02 +j0)2 (213)

where ©; = damping factor for mode 1
o, = damped natural frequency for mode 1

Thus, the complementary solution of Eq. (21.1) is
x(t) = AeM' + Be* (21.4)

A and B are complex-valued constants determined from the initial conditions
imposed on the system at time ¢ = 0.

For most real structures, unless active damping systems are present, the damping
ratio is rarely greater than 10 percent. For this reason, all further discussion is
restricted to underdamped systems ( < 1). With reference to Eq. (21.2), this means
that the two roots A, and A, are always complex conjugates. Also, the two coeffi-
cients, A and B, are complex conjugates of each other. For an underdamped system,
the roots of the characteristic equation can be written as

}\.1 =0 +j(1)1 7\,1* =0, —j(,l)l (215)
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where o, = damping factor
o, = damped natural frequency

The roots of the characteristic equation (21.2) can also be written as
M =-8Q +jQ, V1 -2 (21.6)

The damping factor is defined as the real part of a root of the characteristic equa-
tion. The damping factor describes the exponential decay or growth of the harmonic.
This parameter has the same units as the imaginary part of the root of the charac-
teristic equation, typically radians per second.

Time Domain: Impulse-Response Function. The impulse-response function of
the single degree-of-freedom system is defined as the time response x() of the sys-
tem, assuming that the initial conditions are zero and that the system excitation f(r)
is a unit impulse. The response of the system x(f) to such a unit impulse is known as
the impulse-response function A(?) of the system. Therefore

h(f) = A + A'en" = e [ Aeor 4 A'e o ] (1.7)

Thus, the residue A controls the amplitude of the impulse response, the real part of
the pole is the decay rate, and the imaginary part of the pole is the frequency of oscil-
lation. Figure 21.2 illustrates the impulse-response function for a single degree-of-
freedom system.

Frequency Domain: Frequency Response Function. An equivalent equation
of motion for Eq. (21.1) is determined for the Fourier or frequency (®) domain. This
representation has the advantage of converting a differential equation to an alge-
braic equation. This is accomplished by taking the Fourier transform of Eq. (21.1).
Thus, Eq. (21.1) becomes

-
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FIGURE 21.2 Single degree-of-freedom impulse-response function.
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[ -m®’ + jeo + k ] X(0) = F(o) (21.8)

Restating the above equation,
X(w)=H(o) Flo) (21.9)

where

1
Ho)= ——————
(@) -mw’ + jew + k
Equation (21.9) states that the system response X(m) is directly related to the system
forcing function F(w) through the quantity H(w). If the system forcing function F(w)
and its response X(w) are known, H(®) can be calculated. That is,

X(w)

HO)= o)

(21.10)

The quantity H(w) is known as the frequency response function of the system. The
frequency response function relates the Fourier transform of the system input to the
Fourier transform of the system response.

The denominator of Eq. (21.9) is known as the characteristic equation of the sys-
tem and is of the same form as Eq. (21.2). Note that the characteristic values of this
complex equation are in general complex even though the equation is a function of
a real-valued independent variable . The characteristic values of this equation are
known as the complex roots of the characteristic equation or the complex poles of
the system. In terms of modal parameters, these characteristic values are also called
the modal frequencies.

The frequency response function H(®) can now be rewritten as a function of the
complex poles as follows:

1/m
(jo—21)(jo—2*)

H(o) = (21.11)

where A, = complex pole =G + joy,
7\.]* =0 —j(l)l

Since the frequency response function is a complex-valued function of a real-
valued independent variable , it is represented by a pair of curves, as shown in
Fig. 21.3.

Laplace Domain: Transfer Function. Just as in the previous case for the fre-
quency domain, the equivalent information can be presented in the Laplace domain
by way of the Laplace transform. The only significant difference in the development
concerns the fact that the Fourier transform is defined from negative infinity to pos-
itive infinity, while the Laplace transform is defined from zero to positive infinity
with initial conditions. The Laplace representation, also, has the advantage of con-
verting a differential equation to an algebraic equation.

The transfer function is defined in the same way that the frequency response
function is defined (assuming zero initial conditions):
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FIGURE 21.3 Single degree-of-freedom frequency response function (log magnitude/phase format).

X(s) = H(s) F(s) (21.12)
where

1

H()=—F5——
s) ms*>+cs+k

The quantity H(s) is defined as the transfer function of the system. The transfer func-
tion relates the Laplace transform of the system input to the Laplace transform of
the system response. From Eq. (21.12), the transfer function is defined as

X(s)

H6Y =)

(21.13)

The denominator term is once again referred to as the characteristic equation of the
system. As noted in the previous two cases, the roots of the characteristic equation
are given in Eq. (21.5).

The transfer function H(s) is now rewritten, just as in the frequency response
function case, as
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1/m

H(s) = (- M) — M%)

(21.14)

Since the transfer function is a complex-valued function of a complex independent
variable s, it is represented, as shown in Fig. 21.4, as a pair of surfaces.

The definition of undamped natural frequency, damped natural frequency, damp-
ing factor, percent of critical damping, and residue are all relative to the information
represented by Fig. 21.4. The projection of this information onto the plane of zero
amplitude yields the information shown in Fig. 21.5.
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FIGURE 214 Single degree-of-freedom transfer function (log magnitude/phase format).
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FIGURE 21.5 Transfer function (Laplace domain projection).

The concept of residues is now defined in terms of the partial fraction expansion
of the transfer function or frequency response function equation. Equation (21.27)
is expressed in terms of partial fractions as follows:

Um _ A A
(s—?x.l)(s—h*) B S-)\.l S-?Ll*

H(s) = (21.15)

The residues of the transfer function are defined as the constants A and A*. The ter-
minology and development of residues comes from the evaluation of analytic func-
tions in complex analysis. The residues of the transfer function are directly related to
the amplitude of the impulse-response function. In general, the residue A is a complex
quantity. As shown for a single degree-of-freedom system, A is purely imaginary. From
an experimental point of view, the transfer function is not estimated from measured
input-output data. Instead, the frequency response function is actually estimated via
the discrete Fourier transform.

MULTIPLE DEGREE-OF-FREEDOM SYSTEMS

Modal analysis concepts are applied when a continuous, nonhomogeneous structure
is described as a lumped-mass, multiple degree-of-freedom system. The modal (natu-
ral) frequencies, the modal damping, the modal vectors, or relative patterns of
motion, and the modal scaling can be found from an estimate of the mass, damping,
and stiffness matrices or from the measurement of the associated frequency response
functions. From the experimental viewpoint, the relationship of modal parameters
with respect to measured frequency response functions is most important.
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The development of the frequency response function solution for the multiple
degree-of-freedom case parallels that for the single degree-of-freedom case. This
development relates the mass, damping, and stiffness matrices to a matrix transfer
function model, or matrix frequency response function model, involving multiple
degrees-of-freedom. Just as in the analytical case where the ultimate solution can be
described in terms of single degree-of-freedom systems, the frequency response
functions between any input and response degree-of-freedom can be represented as
a linear superposition of the single degree-of-freedom models derived previously.

As a result of the linear superposition concept, the equations for the impulse-
response function, the frequency response function, and the transfer function for the
multiple degree-of-freedom system are defined as follows:

Impulse-response function:

hyy(t) = Zl Apgr €'+ A%, e (21.16)

Frequency response function:

LA A*
H, ()= —RF_ 4 P 21.17
@)= e @L17)

Transfer function:

LA A*
H,(s)= —par 4 T PaT 21.18
pa(S) ,le—x, T (21.18)

where = time variable

=
o = frequency variable
= Laplace variable
= measured degree-of-freedom (response)
= measured degree-of-freedom (input)
r = modal vector number
A, = residue
= O,
0O, = modal scaling factor
V,, = modal coefficient
A, = system pole
n = number of modal frequencies

It is important to note that the residue, A,,, in Egs. (21.16) through (21.18) is the
product of the modal deformations at the input g and response p degrees-of-
freedom and a modal scaling factor for mode r. Therefore, while the product of these
three terms is unique, each of the three terms individually is not unique.

Modal scaling refers to the relationship between the normalized modal vectors
and the absolute scaling of the mass matrix (analytical case) and/or the absolute
scaling of the residue information (experimental case). Modal scaling is normally
presented as modal mass or modal A. The driving point residue, A,,,, is particularly
important in deriving the modal scaling.
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Adllr = Qr\vqr\vqr = Qqurz (2119)

For undamped and proportionally damped systems, the rth modal mass of a mul-
tiple degree-of-freedom system can be defined as

1 WorWyr
M, =- —_Yprvar 21.20
20,0, 24,,0, (21.20)

where M, = modal mass
0O, = modal scaling constant
o, = damped natural frequency

If the largest scaled modal coefficient is equal to unity, Eq. (21.20) computes a quan-
tity of modal mass that has physical significance. The physical significance is that the
quantity of modal mass computed under these conditions is between zero and the
total mass of the system. Therefore, under this scaling condition, the modal mass can
be viewed as the amount of mass that is participating in each mode of vibration. For
a translational rigid body mode of vibration, the modal mass should be equal to the
total mass of the system. The modal mass defined in Eq. (21.20) is developed in
terms of displacement over force units. If measurements, and therefore residues, are
developed in terms of any other units (velocity over force or acceleration over
force), Eq. (21.20) has to be altered accordingly.

Once the modal mass is known, the modal damping C, and stiffness K, can be
obtained through the following single degree-of-freedom equations:

C,=20,M, (21.21)

K, = (62 +0)M,=Q>M, (21.22)

For systems with nonproportional damping, modal mass cannot be used for modal
scaling. For this case, and increasingly for the undamped and proportionally damped
cases as well, the modal A scaling factor is used as the basis for the relationship
between the scaled modal vectors and the residues determined from the measured
frequency response functions. This relationship is as follows:

_ VW _ 1
M, =-‘*prrar — 21.23
W) ( )

Note that this definition of modal A is also developed in terms of displacement over
force units. Once the modal A is known, modal B (Mp,) can be obtained through the
following single degree-of-freedom equation:

My, =AM, (21.24)

For undamped and proportionally damped systems, the relationship between the
modal mass and the modal A scaling factors can be uniquely determined as

M, =tj2M,o, (21.25)

In general, the modal vectors are considered to be dimensionless since they repre-
sent relative patterns of motion. Therefore, the modal mass or modal A scaling terms
carry the units of the respective measurement. For example, the development of the
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frequency response is based upon displacement over force units. The residue must
have units of length over force-seconds. Since the modal A scaling coefficient is
inversely related to the residue, modal A has units of force-seconds over length. This
unit combination is the same as mass over seconds. Likewise, since modal mass is
related to modal A, for proportionally damped systems, through a direct relation-
ship involving the damped natural frequency, the units of modal mass are mass units,
as expected.

DAMPING MECHANISMS

In order to evaluate multiple degree-of-freedom systems that are present in the real
world, the effect of damping on the complex frequencies and modal vectors must be
considered. Many physical mechanisms are needed to describe all of the possible
forms of damping that may be present in a particular structure or system. Some of
the classical types are (1) structural damping, (2) viscous damping, and (3) Coulomb
damping. It is generally difficult to ascertain which type of damping is present in any
particular structure. Indeed most structures exhibit damping characteristics that
result from a combination of all the above, plus others that have not been described
here. (Damping is described in detail in Chap. 36.)

Rather than consider the many different physical mechanisms, the probable loca-
tion of each mechanism, and the particular mathematical representation of the
mechanism of damping that is needed to describe the dissipative energy of the sys-
tem, a model is used that is concerned only with the resultant mathematical form.
This model represents a hypothetical form of damping that is proportional to the
system mass or stiffness matrix. Therefore

[C]=o[M] +B[K] (21.26)

Under this assumption, proportional damping is the case where the equivalent
damping matrix is equal to a linear combination of the mass and stiffness matrices.
For this mathematical form of damping, the coordinate transformation that diago-
nalizes the system mass and stiffness matrices also diagonalizes the system damping
matrix. Nonproportional damping is the case where this linear combination does not
exist. Therefore when a system with proportional damping exists, that system of cou-
pled equations of motion can be transformed to a system of equations that represent
an uncoupled system of single degree-of-freedom systems that are easily solved.
With respect to modal parameters, a system with proportional damping has real-
valued modal vectors (real or normal modes), while a system with nonproportional
damping has complex-valued modal vectors (complex modes).

EXPERIMENTAL MODAL ANALYSIS METHODS

In order to understand the various experimental approaches used to determine the
modal parameters of a structure, some sort of outline of the various techniques is
helpful in categorizing the different methods that have been developed over the last
fifty years. One of several overlapping approaches can be used. One approach is to
group the methods according to whether one mode or multiple modes are excited at
one time. The terminology that is used for this is
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¢ Phase resonanance (single mode)
¢ Phase separation (multiple mode)

A slightly more detailed approach is to group the methods according to the type
of measured data that is acquired. When this approach is utilized, the relevant ter-
minology is

¢ Sinusoidal input-output model (forced normal mode)
e Frequency response function model

¢ Damped complex exponential response model

¢ General input-output model

A very common approach to comparing and contrasting experimental modal
analysis methodologies that is often used in the literature is based upon the type of
model that is used in the modal parameter estimation stage. The relevant nomencla-
ture for this approach is

e Parametric model

e Modal model
e [M],[K],[C] model

e Nonparametric model

Finally, the different experimental modal analysis approaches may be grouped
according to the domain in which the modal parameter estimation model is formu-
lated. The relevant nomenclature for this approach is

¢ Time domain
¢ Frequency domain
e Spatial domain

Regardless of the approach used to organize or classify the different approaches
to generating modal parameters from experimental data, the fundamental underly-
ing theory is the same. The differences largely are a matter of logistics, user experi-
ence requirements, or numerical or computational limitations rather than the
fundamental superiority or inferiority of the method. Most methodology is based
upon measured frequency response or impulse-response functions. Further discus-
sion of experimental modal analysis is limited to techniques related to the measure-
ment and use of these functions for determining modal parameters. The most widely
utilized methods are discussed in detail in a following section on Modal Parameter
Estimation.

MODAL DATA ACQUISITION

Acquisition of data that are used in the formulation of a modal model involves many
important technical concerns. The primary concern is the digital signal processing, or
the converting of analog signals into a corresponding sequence of digital values that
accurately describe the time-varying characteristics of the inputs to and responses
from a system. Once the data are available in digital form, the most common
approach is to transform the data from the time domain to the frequency domain by
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use of a discrete Fourier transform algorithm. Since this algorithm involves discrete
data over a limited time period, there are large potential problems with this
approach that must be well understood. (Data acquisition and analysis are discussed
in detail in Chap. 27.)

DIGITAL SIGNAL PROCESSING

In order to determine modal parameters, the measured input (excitation) and
response data must be processed and put into a form that is compatible with the test
and modal parameter estimation methods. As a result, digital signal processing of
the data is a very important step in structural testing. This is one of the technology
areas where a clear understanding of the time-frequency-Laplace domain relation-
ships is important. The conversion of the data from the time domain into the fre-
quency and Laplace domains is important both in the measurement process and
subsequently in the parameter estimation process.

Digital signal processing of the measured input and response data is used for the
following reasons:

e Condensation. In general, the amount of measured data tremendously exceeds
the information present in the desired measurements (frequency response, unit
impulse response, coherence function, etc.). Therefore, digital signal processing is
used to condense the data.

* Measurements. The measurements which are used subsequently in the modal
parameter estimation process are estimated. Since there are many excitation,
measurement, and modal parameter estimation procedures, there are likewise a
large number of digital signal processing options which can be used.

¢ Noise reduction. Signal processing is used to reduce the influences of noise in
the measurement process. The types of noise are classified as follows:

e Noncoherent noise. 'This noise is due to electrical noise on the transducer sig-
nals or unmeasured excitation sources, etc., which are noncoherent with respect
to the measured input signals or to some other signal which is used in the aver-
aging process. Zero mean noncoherent noise can be eliminated by averaging
with respect to a reference signal. This reference signal can be the input signal
in terms of a spectrum averaging process, or it can be a synchronization or trig-
ger signal in terms of cyclic averaging or random decrement process.

e Signal processing noise. The signal processing itself may generate noise. For
example, leakage is a classic source of noise when using fast Fourier transforms
(FFT) for computing frequency-domain measurements. This type of noise is
reduced or eliminated by using completely observed time signals (periodic or
transient), by using various types of windows, or by increasing the frequency
resolution.

e Nonlinear noise. If the system is nonlinear, then free decay, frequency response,
or unit-impulse function measurements may be distorted, which consequently
causes problems when estimating modal parameters. Nonlinear distortion noise is
eliminated by linearizing the test structure before testing or by randomizing the
input signals to the structure. This causes the nonlinear distortion noise to become
noncoherent with respect to the input signal. The nonlinear noise can then be
averaged from the data in the same manner as ordinary noncoherent noise.

The process of representing an analog signal as a series of digital values is a basic
requirement of digital signal processing analyzers. In practice, the goal of the analog-
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to-digital conversion (ADC) process (see Chap. 27) is to obtain the conversion while
maintaining sufficient accuracy in terms of frequency, magnitude, and phase. When
dealing strictly with analog devices, this concern is satisfied by the performance char-
acteristics of each individual analog device. With the advent of digital signal processing,
the performance characteristics of the analog device are only the first criteria consid-
ered. The characteristics of the analog-to-digital conversion are also very important.

This process of analog-to-digital conversion involves two separate concepts, each
of which is related to the dynamic performance of a digital signal processing ana-
lyzer. Sampling is the part of the process related to the timing between individual
digital pieces of the time-history. Quantization is the part of the process related to
describing an analog amplitude as a digital value. Primarily, sampling considerations
alone affect the frequency accuracy, while both sampling and quantization consider-
ations affect magnitude and phase accuracy. The two constraining relationships that
govern the sampling process are known as Shannon’s sampling theorem (Fig. 21.6)
and Rayleigh’s criterion (Fig. 21.7). The selection of the sampling parameters by way
of these constraints is discussed in Chaps. 14 and 22.
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FIGURE 21.6 Shannon’s sampling theorem: maximum fre-
quency relationship.
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FIGURE 21.7 Rayleigh’s criterion: frequency resolution rela-
tionship.
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DISCRETE FOURIER TRANSFORM

The Fourier series concept explains that any physically realizable signal (signal that
satisfies the Dirochlet conditions) can be uniquely separated into a summation of
sine and cosine terms at appropriate frequencies. This generates a unique set of sine
and cosine terms because of the orthogonal nature of sine functions at different fre-
quencies, the orthogonal nature of cosine functions at different frequencies, and the
orthogonal nature of sine functions compared to cosine functions. If the choice of
frequencies is limited to a discrete set of frequencies, the discrete Fourier transform
describes the amount of each sine and cosine term at each discrete frequency. The
real part of the discrete Fourier transform describes the amount of each cosine term;
the imaginary part of the discrete Fourier transform describes the amount of each
sine term. Figure 21.8 is a graphical representation of this concept for a signal that
can be represented by a summation of sinusoids.

AMPL/TUDE
A

FIGURE 21.8 Discrete Fourier transform concept.

The discrete Fourier transform algorithm is the basis for the formulation of any
frequency-domain function in digital data acquisition systems. In terms of an inte-
gral Fourier transform, the function must exist for all time in a continuous sense in
order to be evaluated. For the realistic measurement situation, data are available in
a discrete sense over a limited time period. The discrete Fourier transform, there-
fore, is based upon a set of assumptions concerning this discrete sequence of values.
The assumptions can be reduced to two, of which one must be met by every signal
processed by the discrete Fourier transform algorithm. The first assumption is that
the signal must be a totally observed transient with respect to the time period of
observation. If this is not true, then the signal must be composed only of harmonics
of the time period of observation. If one of these two assumptions is met by any dis-
crete history processed by the discrete Fourier transform algorithm, then the result-
ing spectrum does not contain bias errors. Much of the data processing effort, with
respect to acquisition of data used for the formulation of a modal model, is con-
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cerned with the assurance that the input and response histories match one of these
two assumptions. A more complete discussion of the discrete Fourier transform
algorithm is included in Chap. 14.

ERRORS

The accurate measurement of frequency response functions depends heavily upon
the errors involved with the digital signal processing. In order to take full advantage
of experimental data in the evaluation of experimental procedures and verification
of theoretical approaches, the errors in measurement, generally designated noise,
must be reduced to acceptable levels. With the increasing use of personal computer
(PC) instrumentation, the user must take great care to be certain that errors are min-
imized. With respect to the frequency response function measurement, the errors in
the estimate are generally grouped into two categories: variance and bias. The vari-
ance portion of the error is due to random deviations of each sample function from
the mean. Statistically, then, if sufficient sample functions are evaluated, the estimate
closely approximates the true function with a high degree of confidence. The bias
portion of the error, on the other hand, is not necessarily reduced by using many
samples. The bias error is due to a system characteristic or measurement procedure
that consistently results in an incorrect estimate. Therefore, the expected value is not
equal to the true value. Examples of this are system nonlinearities or digitization
errors such as aliasing or leakage. With this type of error, knowledge of the form of
the error is vital in reducing the resultant effect in the frequency response function
measurement. See Chap. 22 for details.

TRANSDUCER CONSIDERATIONS

The transducer considerations are often the most overlooked aspect of the experi-
mental modal analysis process. Considerations involving the actual type and specifi-
cations of the transducers, mounting of the transducers, and calibration of the
transducers are often among the largest sources of error. Chapter 12 discusses trans-
ducers and transducer design in significant detail. Calibration of transducers is
reviewed in Chap. 18. Chapter 15 discusses measurement techniques, including
transducer mounting and alignment. These topics are critical to estimating the accu-
rate frequency response function measurements required for most experimental
modal analysis methods.

TEST ENVIRONMENT CONSIDERATIONS

The test environment for any modal analysis test involves several environmental
factors as well as appropriate boundary conditions. Primarily, temperature, humidity,
vacuum, and gravity effects must be properly considered to match previous analysis
models or to allow the experimentally determined model to properly reflect the sys-
tem. Very few experimental laboratory facilities have the capability to control these
factors in other than a rudimentary fashion.

In addition to the environmental concerns, the boundary conditions of the system
under test are very important. Traditionally, modal analysis tests have been per-
formed under the assumption that the test boundary conditions can be made to con-
form to one of four conditions:
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¢ Free-free boundary conditions (impedance is zero).

¢ Fixed boundary conditions (impedance is infinite).

¢ Operating boundary conditions (impedance is correct).
e Arbitrary boundary conditions (impedance is known).

Except in very special situations, none of these boundary conditions can be practi-
cally achieved. Instead, practical guidelines are normally used to evaluate the appro-
priateness of the chosen boundary conditions. For example, if a free-free boundary
is chosen, the desired frequency of the highest rigid body mode must be at least a
factor of 10 below the first deformation mode of the system under test. Likewise, for
the fixed-boundary test, the desired interface stiffness must be at least a factor of 10
greater than the local stiffness of the system under test. While either of these practi-
cal guidelines can be achieved for small test objects, a large class of systems cannot
be acceptably tested in either configuration. Arguments have been made that the
impedance of a support system can be defined (via test and/or analysis) and the
effects of such a support system eliminated from the measured data. This technique
is theoretically sound, but, because of significant dynamics in the support system and
limited measurement dynamics, the approach has not been uniformly applicable.

In response to this problem, many alternative structural testing concepts have
been proposed. Active suspension systems (see Chap. 32) and combinations of
active and passive systems are being evaluated, particularly for application to very
flexible space structures. Active inert-gas suspension systems have been used in the
past for the testing of smaller commercial and military aircraft, and, in general, such
approaches are formulated to better match the requirements of a free-free bound-
ary condition.

Another alternative test procedure is to define a series of relatively conventional
tests with various boundary conditions. These various boundary conditions are cho-
sen in such a way that each perturbed boundary condition can be accurately mod-
eled (for example, the addition of a large mass at interface boundaries). Therefore,
as the experimental model is acquired for each configuration and used to validate
and correct the associated analytical model, the underlying model is validated and
corrected accordingly. This procedure has the added benefit of adding the influence
of modes of vibration that occur above the maximum frequency of the test into the
validation of the model.

MEASUREMENT FORMULATION

For current approaches to experimental modal analysis, the frequency response
function is the most important, and most common, measurement to be made. When
estimating frequency response functions, a measurement model is needed that
allows the frequency response function to be estimated from measured input and
output data in the presence of noise (errors). These errors have been discussed in
this and other chapters in great detail.

There are at least four different testing configurations that can be considered.
These different testing conditions are largely a function of the number of acquisition
channels or excitation sources that are available to the test engineer.

« Single input/single output (SISO)
e Single input/multiple output (SIMO)
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e Multiple input/single output (MISO)
e Multiple input/multiple output (MIMO)

In general, the best testing situation is the multiple input/multiple output configura-
tion (MIMO), since the data are collected in the shortest possible time with the
fewest changes in the test conditions.

FREQUENCY RESPONSE FUNCTION ESTIMATION

The estimation of the frequency response function depends upon the transforma-
tion of data from the time to the frequency domain. The Fourier transform is used
for this computation. The computation is performed digitally using a fast Fourier
transform algorithm. The frequency response functions satisfy the following single
and multiple input relationships:

Single input relationship:

X,=H,,F, (21.27)
Multiple input relationship:
Xl Hll e qu Fl
Xz Hz] e Hz,] Fz
- (21.28)
Xp No x 1 le Hﬂq No x Ni Fq Nix 1

The most reasonable, and most common, approach to the estimation of frequency
response functions is the use of least squares (LS) or total least squares (TLS) tech-
niques.*’ These are standard techniques for estimating parameters in the presence of
noise. Least squares methods minimize the square of the magnitude error and thus
compute the best estimate of the magnitude of the frequency response function, but
they have little effect on the phase of the frequency response function. The primary
difference in the algorithms used to estimate frequency response functions is in the
assumption of where the noise enters the measurement problem. Three algorithms,
referred to as the H,, H,, and H, algorithms, are commonly available for estimating
frequency response functions. Table 21.1 summarizes the assumed location of the
noise for these three algorithms.

TABLE 21.1 Summary of Frequency Response Function
Estimation Models

Assumed location of noise

Technique Solution method Force inputs Response
H, LS No noise Noise
H, LS Noise No noise

H, TLS Noise Noise
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Consider the case of N, inputs and N, outputs measured during a modal test.
Based upon the assumed location of the noise entering the estimation process, Egs.

(21.29) through (21.31) represent the corresponding model for the H;, H,, and H,
estimation procedures.

H, technique:

[H Ing x5 {FYvi 1 = {X v x 1 = M, x 1 (21.29)

H, technique:
[H Tng o5 { {F) i1 = (0w 1) = (X, w1 (21.30)

H, technique:
L T s i LTI 1= (0)ns e 1} = X g 51 = (Mg x 1 (21.31)

This numerical model can be represented in block diagram form as shown in
Fig. 21.9.

Single Input FRF Estimation. With reference to Fig. 21.9 for a case involving
only one input and one output (input location ¢ and response location p), the equa-
tion that is used to represent the input-output relationship is

Xp —Mp= Hm(ﬁq ) (21.32)

where F= }:7 —v = actual input
X = X — 1 = actual output
X = spectrum of the pth output, measured
F = spectrum of the gth input, measured
H = frequency response function
v = spectrum of the noise part of the input
1 = spectrum of the noise part of the output
X = spectrum of the pth output, theoretical
F = spectrum of the gth input, theoretical

FIGURE 21.9 General system model: multiple inputs.
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If v =1 =0, the theoretical (expected) frequency response function of the system is
estimated. If n # 0 and/or v # 0, a least squares method is used to estimate a best fre-
quency response function in the presence of noise.

In order to develop an estimation of the frequency response function, a number of
averages N, is used to minimize the random errors (variance). This can be easily
accomplished through use of intermediate measurement of the power (auto-) and
cross-spectra. The estimate of the auto- and cross-spectra for the model in Fig. 21.9 is
defined as follows. Note that each function is a function of frequency.

Cross-spectra WXF,, and WXF ,;:

N,
WXF,,=> X,F}* (21.33)
1
N
WFX,,=> FX,* (21.34)
1
Autospectra WFF , and WXX,:
Ny
WFF,,=> F,F* (21.35)
1
Ny
WXX,,=> X,X,* (21.36)
1

where F* = complex conjugate of F(®)
X* = complex conjugate of X(w)

H, Algorithm: Minimize Noise on Output (). The most common formulation
of the frequency response function, often referred to as the H, algorithm, tends to
minimize the noise on the output. This formulation is shown in Eq. (21.37).

_ WXF,,
WEFFyq

(21.37)

prq

H, Algorithm: Minimize Noise on Input (v). Another formulation of the
frequency response function, often referred to as the H, algorithm, tends to mini-
mize the noise on the input. This formulation is shown in Eq. (21.38).

WXX,,

= 21.
pra WFqu ( 38)

In the H, formulation, an autospectrum is divided by a cross-spectrum. This can be a
problem since the cross-spectrum can theoretically be zero at one or more frequen-
cies. In both formulations, the phase information is preserved in the cross-spectrum
term.

H, Algorithm: Minimize Noise on Input and Output (n and v). The solution
for H,, using the H, algorithm is found by the eigenvalue decomposition of a matrix
of power spectra. For the single input case, the following matrix involving the auto-
and cross-spectra can be defined:
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(21.39)

(WFEX ]_[WFFq,, WXF,, }
=
2 x

WXF, " WXX,,

The solution for H,, is found by the eigenvalue decomposition of the [WFFX]
matrix as follows:

[WEFX,] = [V]] A l[V]* (21.40)

where| A J=diagonal matrix of eigenvalues. The solution for the H,,, matrix is found
from the eigenvector associated with the smallest (minimum) eigenvalue A,. The size
of the eigenvalue problem is second-order, resulting in finding the roots of a quad-
ratic equation. This eigenvalue solution must be repeated for each frequency, and
the complete solution process must be repeated for each response point X,,.

Alternatively, the solution for H,, is found by the eigenvalue decomposition of
the following matrix of auto- and cross-spectra:

_|wxx,, wWxF,"
[WXFF,,]_[WXFM WFF,, (21.41)
x 2
[WXFF,] = [V][ A I[V]* (21.42)

where [ A | = diagonal matrix of eigenvalues. The solution for H,, is again found
from the eigenvector associated with the smallest (minimum) eigenvalue A;. The
frequency response function is found from the normalized eigenvector associated
with the smallest eigenvalue. If [WFFX,] is used, the eigenvector associated with the
smallest eigenvalue must be normalized as follows:

Vi = {i’"’ } (21.43)

If [WXFF,] is used, the eigenvector associated with the smallest eigenvalue must be
normalized as follows:

{V}kmm:{;} } (21.44)

One important consideration in choosing one of the three formulations for
frequency response function estimation is the behavior of each formulation in the
presence of a bias error such as leakage. In all cases, the estimate differs from the
expected value, particularly in the region of a resonance (magnitude maximum) or
antiresonance (magnitude minimum). For example, H, tends to underestimate the
value at resonance, while H, tends to overestimate the value at resonance. The H,
algorithm gives an answer that is always bounded by the H; and H, values. The dif-
ferent approaches are based upon minimizing the magnitude of the error but have
no effect on the phase characteristics.

In addition to the attractiveness of H,, H,,and H, in terms of the minimization of
the error, the availability of auto- and cross-spectra allows the determination of other
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important functions. The quantity v,,” is called the scalar or ordinary coherence func-
tion and is a frequency-dependent, real value between 0 and 1. The ordinary coher-
ence function indicates the degree of causality in a frequency response function. If
the coherence is equal to 1 at any specific frequency, the system is said to have perfect
causality at that frequency. In other words, the measured response power is caused
totally by the measured input power (or by sources which are coherent with the
measured input power). A coherence value less than unity at any frequency indicates
that the measured response power is greater than that caused by the measured input.
This is due to some extraneous noise also contributing to the output power. It should
be emphasized, however, that low coherence does not necessarily imply poor esti-
mates of the frequency response function; it simply means that more averaging is
needed for a reliable result. The ordinary coherence function is computed as follows:

COH,, =2 | WXF, P WXF, WFX,,
Pq =

- = 21.45
"~ WFF,,WXX,, WFF,WXX,, (21.45)

When the coherence is zero, the output is caused totally by sources other than the
measured input. In general, then, the coherence can be a measure of the degree of
noise contamination in a measurement. Thus, with more averaging, the estimate of
coherence may contain less variance, therefore giving a better estimate of the noise
energy in a measured signal. This is not the case, though, if the low coherence is due
to bias errors such as nonlinearities, multiple inputs, or leakage. A typical ordinary
coherence function is shown in Fig. 21.10 together with the corresponding frequency
response function magnitude. In Fig. 21.10, the frequencies where the coherence is
lowest are often the same frequencies where the frequency response function is at a
maximum or a minimum in magnitude. This is often an indication of leakage since the
frequency response function is most sensitive to leakage error at the lightly damped
peaks corresponding to the maxima. At the minima, where there is little response
from the system, the leakage error, even though it is small, may still be significant.

In all of these cases, the estimated coherence function approaches, in the limit,
the expected value of coherence at each frequency, dependent upon the type of
noise present in the structure and measurement system. Note that, with more aver-
aging, the estimated value of coherence does not increase; the estimated value of
coherence always approaches the expected value from the upper side.

Multiple Input FRF Estimation. Multiple input estimation of frequency
response functions is desirable for several reasons. The principal advantage is the
increase in the accuracy of estimates of the frequency response functions. During
single input excitation of a system, large differences in the amplitudes of vibratory
motion at various locations may exist due to the dissipation of the excitation power
within the structure. This is especially true when the structure has heavy damping.
Small nonlinearities in the structure consequently cause errors in the measurement
of the response. With multiple input excitation, the vibratory amplitudes across the
structure typically are more uniform, with a consequent decrease in the effect of
nonlinearities.

A second reason for improved accuracy is the increase in consistency of the
frequency response functions compared to the single input method. When a number
of exciter systems are used, the elements from columns of the frequency response
function matrix corresponding to those exciter locations are being determined
simultaneously. With the single input method, each column is determined independ-
ently, and it is possible for small errors of measurement due to nonlinearities and
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FIGURE 21.10 frequency response function magnitude with associated ordinary
coherence function.

time-dependent system characteristics to cause a change in resonance frequencies,
damping, or mode shapes among the measurements in the several columns. This is
particularly important for the polyreference modal parameter estimation algorithms
that use frequency response functions from multiple columns or rows of the
frequency response function matrix simultaneously.

An additional, significant advantage of multiple input excitation is a reduction in
the test time. In general, when multiple input estimation of frequency response func-
tions is used, frequency response functions are obtained for all input locations in
approximately the same time as required for acquiring a set of frequency response
functions for one of the input locations using a single input estimation method.*!!!?

With reference to Fig. 21.9 for a case involving N; inputs and N, outputs, the equa-
tion that is used to represent the input-output relationship is
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Z H,,(F,—v,) (21.46)

In order to develop an estimation of the frequency response function for the multi-
ple input case, a number of averages N, is used to minimize the random errors
(variance). This can be easily accomplished through use of intermediate measure-
ment of the auto- and cross-spectra as defined in Egs. (21.33) through (21.36). Addi-
tional matrices, compared to the single input case, need to be defined. These
additional matrices are constructed from the auto- and cross-spectra previously
defined for the single input case. Each function and, therefore, each resulting matrix
is a function of frequency.

Input-output cross-spectra matrix:

Xi WXF, WXF,
11+ - 1N;
H Xz
[WXF]={X}{F})'= [Fo* B .. Fy*]=| o o0 oo (21.47)
WXFy,; ... WXFy v,
Xy

o

Input cross-spectra matrix:

A WFF, WFF
11 1N;
F
[WEF] = |FYF}' = ? [Fi* F* ... Fy*] = (21.48)
WFFy, ... WFFyy,
FN[

The frequency response functions can now be estimated for the three algorithms.

H, Algorithm: Minimize Noise on Output (1)
[H] = [WXF][WFF]" (21.49)

In the experimental procedure, the input and response signals are measured,
and the averaged cross-spectra and autospectra necessary to create the [WXF],
[WFF], and [WXX] matrices are computed. The input cross-spectrum matrix must
be inverted, at least implicitly, at every frequency in the analysis range. This means
that the computational load on the measurement system is greater than for the
single input case, in which only the reciprocal of a single input autospectrum is
computed.

Equation (21.49) is valid unless the input cross-spectrum matrix [WFF] is singu-
lar for specific frequencies or frequency intervals. When this happens, the inverse of
[WFF] does not exist and Eq. (21.49) cannot be used to solve for the frequency
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response function at those frequencies or in those frequency intervals. A computa-
tional procedure that solves Eq. (21.49) for [H] must monitor the rank of the matrix
[WFF] that is to be inverted, and provide information on how to alter the input sig-
nals or use the available data when a problem exists. The current approach for eval-
uating whether the inputs are sufficiently uncorrelated at each frequency involves
determining the principal/virtual forces using principal component analysis.'

H, Algorithm: Minimize Noise on Input (v)
[H] = [WXX][WFX]! (21.50)

One problem with using the H, algorithm is that the solution for [H] can be found
directly using an inverse only when the number of inputs N; and number of outputs
N, are equal.

H, Algorithm: Minimize Noise on Input and Output (v andn). The solution
for [H] is found by the eigenvalue decomposition of one of the following two
matrices:

[ [WFF) [WXF,]
[WFFX,] = , (21.51)
| [WXE]" WXX, v+ 1)
[ wxx,  [wxE)"
[WXFF,] = (21.52)
| [WXF,]  [WFF] |+ nxm+n
Therefore, the eigenvalue decomposition is
[WFFX,]=[V][ AJ[V]? (21.53)
or
[(WXFE,|=[V][ AJ[V]! (21.54)

where[ A |=diagonal matrix of eigenvalues. The solution for the pth row of the [H]
matrix is found from the eigenvector associated with the smallest (minimum) eigen-
value. Note that the size of the eigenvalue problem is N, + 1 and that the eigenvalue
solution must be repeated for each frequency. The complete solution process must
be repeated for each response point X,,.

The frequency response function associated with a single output p and all inputs
is found by normalizing the eigenvector associated with the smallest eigenvalue. If
[WFFX,] is used, the eigenvector associated with the smallest eigenvalue must be
normalized as follows:

H

pl

H,

p2

v} (21.55)

Amin =
HpN

-1
\ J

i
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If [WXFF,] is used, the eigenvector associated with the smallest eigenvalue must be
normalized as follows:

-1 )
le
{V}kmin = HPZ (21.56)
H,

PN;

\ J

The concept of the coherence function, as defined for single input measurement,
needs to be expanded to include the variety of relationships that are possible for
multiple inputs. Ordinary coherence is defined in this general sense as the correla-
tion coefficient describing the linear relationship between any two single spectra.
Great care must be taken in the interpretation of ordinary coherence when more
than one input is present. The ordinary coherence of an output with respect to an
input can be much less than unity even though the linear relationship between
inputs and outputs is valid, because of the influence of the other inputs.**

The ordinary coherence function can be formulated in terms of the elements of
the matrices defined previously. The ordinary coherence function between the pth
output and the gth input can be computed from the following formula:

Ordinary coherence function:

2
COHyy =22 =—WXEml__ (21.57)
WFF,,WXX,,
where WXX,, = autospectrum of the output p
WFF,, = autospectrum of the input g
WXF,, = cross-spectrum between output p and input g

Fartial coherence is defined as the ordinary coherence between a conditioned
output and another conditioned output, between a conditioned input and another
conditioned input, or between a conditioned input and a conditioned output. The
output and input are conditioned by removing contributions from other input(s).
The removal of the effects of the other input(s) is formulated on a linear least
squares basis. The order of removal of the inputs during “conditioning” has a definite
effect upon the partial coherence if some of the input(s) are mutually correlated.
There is a partial coherence function for every input-output, input-input, and input-
output combination for all permutations of conditioning. The usefulness of partial
coherence for experimental modal analysis is limited.

Multiple coherence is defined as the correlation coefficient describing the linear
relationship between an output and all known inputs. There is a multiple coherence
function for every output. Multiple coherence can be used to evaluate the impor-
tance of unknown contributions to each output. These unknown contributions can
be measurement noise, nonlinearities, or unknown inputs. In particular, as in the
evaluation of ordinary coherence, a low value of multiple coherence near a reso-
nance often means that leakage error is present in the frequency response function.

The formulation of the equations for the multiple coherence functions can be
simplified to the following equation:
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Multiple coherence function:
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(21.58)
where H,, = frequency response function for output p and input g
H,, = frequency response function for output p and input ¢
WFF, = cross-spectrum between output g and output ¢

If the multiple coherence of the pth output is near unity, then the pth output is
well predicted from the set of inputs using the least squares frequency response
functions.

Multiple Input Force Analysis/Evaluation. Of the variety of situations that can
cause difficulties in the computation of the frequency response functions, the one
with the highest potential for trouble is the case of coherent inputs. If two of the
inputs are fully coherent, then there are no unique frequency response functions
associated with those inputs. Unfortunately, there are a number of situations where
the input cross-spectrum matrix [WFF] may be singular at specific frequencies or
frequency intervals. When this happens, the inverse of [WFF] does not exist, and Eq.
(21.49) cannot be used to solve for the frequency response function at those fre-
quencies or in those frequency intervals. First, one of the input autospectra may be
zero in amplitude over some frequency interval. Second, two or more of the input
signals may be fully coherent over some frequency interval. Third, numerical prob-
lems which cause the computation of the inverse to be inexact may be present.

The current approach used to detect correlated inputs involves utilizing princi-
pal component analysis to determine the number of forces contributing to the
[WFF] matrix. In this approach, a principal component analysis must be conducted
on the [WFF] matrix." Principal component analysis involves an eigenvalue de-
composition of the [WFF] matrix. Since the eigenvectors of such a decomposition
are unitary, the eigenvalues should all be of approximately the same size if each of
the inputs is contributing. If one of the eigenvalues is much smaller at a particular
frequency, one of the inputs is not present or one of the inputs is correlated with the
other input(s).

[WEF] =[V][A] [V]" (21.59)

where [A] represents the eigenvalues of the [WFF | matrix. If any of the eigenvalues
of the [WFF] matrix are zero or insignificant, then the [WFF] matrix is singular.
Therefore, for a three-input test, the [WFF] matrix should have three eigenvalues of
approximately the same magnitude. (The number of distinct eigenvalues is equal to
the number of uncorrelated inputs.) Figure 21.11 shows the principal force plots for
a case with three inputs. At the frequencies where the third principal/virtual force
drops (lowest curve), the inputs are mutually correlated.

PRACTICAL MEASUREMENT CONSIDERATIONS

There are several factors that contribute to the quality of actual measured frequency
response function estimates. Some of the most common sources of error involve
measurement mistakes. With a proper measurement approach, most errors of this
type, such as overloading the input, extraneous signal pick-up via ground loops or
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FIGURE 21.11 Principal (virtual) force spectra for three inputs.

strong electric or magnetic fields nearby, etc., can be avoided. Violations of test
assumptions are often the source of another inaccuracy and can be viewed as a meas-
urement mistake. For example, frequency response and coherence functions have
been defined as parameters of a linear system. Nonlinearities generally shift energy
from one frequency to many new frequencies, in a way which may be difficult to rec-
ognize. The result is a distortion in the estimates of the system parameters, which may
not be apparent unless the excitation is changed. One way to reduce the effect of non-
linearities is to randomize these contributions by choosing a randomly different input
signal for each of the contributing averages. Subsequent averaging reduces these con-
tributions in the same way that random noise is reduced. Another example involves
control of the system input. One requirement is to excite the system with energy at all
frequencies for which measurements are expected. It is important to be sure that the
input signal spectrum does not have frequency ranges where little energy exists.
Otherwise, coherence is very low, and the variance on the frequency response func-
tion is unacceptable.

Assuming that the system is linear, the excitation is proper, and measurement
mistakes are avoided, some amount of error and/or noise is still present in the meas-
urement process. Five different approaches can be used to reduce this error involved
in frequency response function measurements. First of all, the use of different
frequency response function estimation algorithms (H, compared to H,) reduces the
effect of the leakage error on the estimation of the frequency response function
computation. The use of averaging significantly reduces errors of both variance and
bias and is probably the most general technique used to reduce errors in frequency
response function measurement. Selective excitation is often used to verify nonlin-
earities or randomize characteristics. In this way, bias errors due to system sources
can be reduced or controlled. The increase of frequency resolution through the zoom
fast Fourier transform improves the frequency response function estimate primarily
by reducing the leakage bias error through the use of a longer time sample. The
zoom fast Fourier transform by itself is a linear process and does not involve any
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specific error reduction characteristics compared to a baseband fast Fourier trans-
form (FFT). Finally, the use of weighting functions (windows) is widespread, and
much has been written about their value.*° Primarily, weighting functions compen-
sate for the bias error (leakage) caused by the analysis procedure.

Signal Averaging. The averaging of signals is normally viewed as a summation or
weighted summation process where each sample function has a common abscissa.®
Normally, the designation of history is given to sample functions with the abscissa of
absolute time, and the designation of spectrum is given to sample functions with the
abscissa of absolute frequency. The spectra are normally generated by Fourier trans-
forming the corresponding history. In order to generalize and consolidate the con-
cept of signal averaging as much as possible, the case of relative time is also
considered. In this way, relative history is discussed with units of the appropriate
event rather than seconds, and a relative spectrum is the corresponding Fourier
transform with units of cycles per event. This concept of signal averaging is used
widely in structural signature analysis where the event is a revolution of a rotating
shaft. This kind of approach simplifies the application of many other concepts of sig-
nal relationships, such as Shannon’s sampling theorem and Rayleigh’s criterion of
frequency resolution.

The process of signal averaging as it applies to frequency response functions is
simplified greatly by the intrinsic uniqueness of the frequency response function.
Since the frequency response function is expressed in terms of system properties of
mass, stiffness, and damping, it is reasonable to conclude that in most realistic struc-
tures, the frequency response functions are considered to be constants, just like
mass, stiffness, and damping. This concept means that when formulating the
frequency response function using H;, H,, or H, algorithms, the estimate of fre-
quency response is intrinsically unique, as long as the system is linear and the noise
can be eliminated. In general, the auto- and cross-power spectra are statistically
unique only if the input is stationary and sufficient averages are taken. Nevertheless,
the estimate of frequency response is valid whether the input is stationary, nonsta-
tionary, or deterministic.

The concept of the intrinsic uniqueness of the frequency response function also
permits a greater freedom in the testing procedure. Each function is derived as the
result of a separate test or as the result of different portions of the same continuous
test situation. In either case, the estimate of the frequency response function is the
same as long as the time-history data for the auto- and cross-power spectra that are
utilized in any computation of the frequency response or coherence function are
acquired simultaneously.

The approaches to signal averaging vary only in the relationship between the
sample functions used. Since the Fourier transform is a linear function, there is no
theoretical difference between the use of histories or spectra. (Practically, though,
there are precision considerations.) With this in mind, the signal averaging useful to
frequency response function measurements can be divided into three classifications:

¢ Asynchronous
¢ Synchronous
e Cyclic

These three classifications refer to the trigger and sampling relationships between
sample functions. Asynchronous averaging describes the averaging case when each
average is acquired without a triggering event; it is sometimes referred to as free-run
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averaging. Synchronous averaging describes the averaging case when each average
is acquired only when an external triggering event occurs. Cyclic averaging describes
the averaging case when each average is acquired with a specific absolute time, or
phase, relationship to all previous averages. (Averaging is discussed in detail in
Chaps. 13 and 22.)

Excitation. Excitation includes any form of input that is used to create a response
in a mechanical system. This can include environmental or operational inputs as well
as the controlled force input(s) that are used in a vibration or modal analysis test. In
general, the following discussion is limited to force inputs that are measured and/or
controlled in some rigorous way.>'>!

Excitation Assumptions. The primary assumption concerning the excitation of
a linear structure is that the excitation is observable. Whenever the excitation is
measured, this assumption simply implies that the measured characteristic properly
describes the actual input characteristics. For the case of multiple inputs, the differ-
ent inputs must often be uncorrelated for the computational procedures to yield a
solution. In most cases this means only that the multiple inputs must not be perfectly
correlated at any frequency. As long as the excitation is measured, the validity of
these limited assumptions can be evaluated.

There are a number of techniques that can be used to estimate modal character-
istics from response measurements with no measurement of the excitation. If this
approach is used, the excitation assumptions are much more imposing. If the excita-
tion is not measured, estimates of modal scaling (modal mass, modal A, residues,
etc.) cannot be generated. Even when these parameters are not required, all of these
techniques have one further restriction: an assumption has to be made concerning
the characteristics of the excitation of the system. Usually, the autospectrum of the
excitation signal is assumed to be constant over the frequency interval of interest.
This is not generally practical.

Classification of Excitation. Inputs which can be used to excite a system in
order to determine frequency response functions belong to one of two classifica-
tions. The first classification is that of a random signal. Signals of this form can be
defined by their statistical properties only over some time period. Any subset of the
total time period is unique, and no explicit mathematical relationship can be formu-
lated to describe the signal. Random signals can be further classified as stationary or
nonstationary. Stationary random signals are a special case where the statistical
properties of the random signals do not vary with respect to translations with time.
Finally, stationary random signals can be classified as ergodic or nonergodic. A sta-
tionary random signal is ergodic when a time average on any particular subset of the
signal is the same for any arbitrary subset of the random signal. All random signals
which are commonly used as input signals fall into the category of ergodic, station-
ary random signals.

The second classification of inputs which can be used to excite a system in order
to determine frequency response functions is that of a deterministic signal. Signals of
this form can be represented in an explicit mathematical relationship. Deterministic
signals are further divided into periodic and nonperiodic classifications. The most
common inputs in the periodic deterministic signal designation are sinusoidal in
nature, while the most common inputs in the nonperiodic deterministic designation
are transient in form.

The choice of input to be used to excite a system in order to determine frequency
response functions depends upon the characteristics of the system, the characteristics
of the parameter estimation, and the expected utilization of the data. The characteri-
zation of the system is primarily concerned with the linearity of the system. As long
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as the system is linear, all input forms should give the same expected value. Naturally,
though, all real systems have some degree of nonlinearity. Deterministic input signals
result in frequency response functions that are dependent upon the signal level and
type. A set of frequency response functions for different signal levels can be used to
document the nonlinear characteristics of the system. Random input signals, in the
presence of nonlinearities, result in a frequency response function that represents the
best linear representation of the nonlinear characteristics for a given level of random
signal input. For small nonlinearities, use of a random input does not differ greatly
from the use of a deterministic input.

The characterization of the parameter estimation is primarily concerned with the
type of mathematical model being used to represent the frequency response func-
tion. Generally, the model is a linear summation based upon the modal parameters
of the system. Unless the mathematical representation of all nonlinearities is known,
the parameter estimation process cannot properly weight the frequency response
function data to include nonlinear effects. For this reason, random input signals are
regularly used to obtain the best linear estimate of the frequency response function
when a parameter estimation process using a linear model is to be utilized.

The expected utilization of the data is concerned with the degree of detailed
information required by any postprocessing task. For experimental modal analysis,
this can range from implicit modal vectors needed for troubleshooting to explicit
modal vectors used in an orthogonality check. As more detail is required, input sig-
nals, both random and deterministic, need to match the system characteristics and
parameter estimation characteristics more closely. In all possible uses of frequency
response function data, the conflicting requirements of the need for accuracy, equip-
ment availability, testing time, and testing cost normally reduce the possible choices
of input signal.

With respect to the reduction of the variance and bias errors of the frequency
response function, random or deterministic signals can be utilized most effectively if
the signals are periodic with respect to the sample period or totally observable with
respect to the sample period. If either of these criteria is satisfied, regardless of sig-
nal type, the predominant bias error, leakage, is eliminated. If these criteria are not
satisfied, the leakage error may become significant. In either case, the variance error
is a function of the signal-to-noise ratio and the amount of averaging.

Many signals are appropriate for use in experimental modal analysis. Some of the
most commonly used signals are described in the following sections. For those exci-
tation signals that require the use of a shaker, Fig. 21.12 shows a typical test configu-
ration; Fig. 21.13 shows a typical test configuration when an impact form of
excitation is to be used. The advantages and disadvantages of each excitation signal
are summarized in Table 21.2.

Slow swept sine. 'The slow swept sine signal is a periodic deterministic signal
with a frequency that is an integer multiple of the FFT frequency increment. Suf-
ficient time is allowed in the measurement procedure for any transient response
to the changes in frequency to decay, so that the resultant input and response his-
tories are periodic with respect to the sample period. Therefore, the total time
needed to compute an entire frequency response function is a function of the
number of frequency increments required and the system damping.

Periodic chirp. The periodic chirp is a fast swept sine signal that is a periodic
deterministic signal and is formulated by sweeping a sine signal up or down
within a frequency band of interest during a single sample period. Normally, the
fast swept sine signal is made up of only integer multiples of the FFT frequency
increment. This signal is repeated without change so that the input and output
histories are periodic with respect to the sample period.



EXPERIMENTAL MODAL ANALYSIS 21.35

FOURIER ANALYZER

L]

SIGNAL ANTIALIASING
SIGNAL GENERATOR CONDITIONING FILTERS
A { » yy) 92

——

/ ACCELEROMETER

=

VAN

TEST SPECIMEN

SHAKER SYSTEM

FIGURE 21.12 Typical fixed-input modal test configuration: shaker.

Impact (impulse). The impact signal is a transient deterministic signal which is
formed by applying an input pulse lasting only a very small part of the sample
period to a system. The width, height, and shape of this pulse determine the usable
spectrum of the impact. Briefly, the width of the pulse determines the frequency
spectrum, while the height and shape of the pulse control the level of the spec-
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FIGURE 21.13 Typical fixed-response modal test configuration: impact hammer.
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TABLE 21.2 Characteristics of Excitation Signals Used in Experimental Modal Analysis

Slow
swept Periodic Step Pure Pseudo- Periodic Burst
sine chirp Impact relaxation random random random random
Minimize leakage Yes/No Yes Yes Yes No Yes Yes Yes
Signal-to-noise ratio Very High Low Low Fair Fair Fair Fair
high
RMS-to-peak ratio High High Low Low Fair Fair Fair Fair
Test measurement time Very Very Very Very Good Very Long Good
long short short short short
Controlled frequency Yes* Yes* No No Yes* Yes* Yes* Yes*
content
Controlled amplitude Yes* Yes* No Yes/No No Yes* Yes* No
content
Removes distortion No No No No Yes No Yes Yes
Characterize Yes Yes No No No Yes No No
nonlinearity

* Special hardware required.
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trum. Impact signals have proven to be quite popular due to the freedom of apply-
ing the input with some form of an instrumented hammer. While the concept is
straightforward, the effective utilization of an impact signal is very involved.'

Step relaxation. The step relaxation signal is a transient deterministic signal
which is formed by releasing a previously applied static input. The sample period
begins at the instant that the release occurs. This signal is normally generated by
the application of a static force through a cable. The cable is then cut or allowed
to release through a shear pin arrangement.

Pure random. The pure random signal is an ergodic, stationary random signal
which has a Gaussian probability distribution. In general, the signal contains all
frequencies (not just integer multiples of the FFT frequency increment), but it
may be filtered to include only information in a frequency band of interest. The
measured input spectrum of the pure random signal is altered by any impedance
mismatch between the system and the exciter.

Pseudo-random. The pseudo-random signal is an ergodic, stationary random
signal consisting only of integer multiples of the FFT frequency increment. The
frequency spectrum of this signal has a constant amplitude with random phase. If
sufficient time is allowed in the measurement procedure for any transient
response to the initiation of the signal to decay, the resultant input and response
histories are periodic with respect to the sample period. The number of averages
used in the measurement procedure is only a function of the reduction of the
variance error. In a noise-free environment, only one average may be necessary.

Periodic random. The periodic random signal is an ergodic, stationary random
signal consisting only of integer multiples of the FFT frequency increment. The
frequency spectrum of this signal has random amplitude and random phase dis-
tribution. Since a single history does not contain information at all frequencies, a
number of histories must be involved in the measurement process. For each aver-
age, an input history is created with random amplitude and random phase. The
system is excited with this input in a repetitive cycle until the transient response
to the change in excitation signal decays. The input and response histories should
then be periodic with respect to the sample period and are recorded as one aver-
age in the total process. With each new average, a new history, uncorrelated with
previous input signals, is generated, so that the resulting measurement is com-
pletely randomized.

Random transient (burst random). The random transient signal is neither a
completely transient deterministic signal nor a completely ergodic, stationary
random signal but contains properties of both signal types. The frequency spec-
trum of this signal has random amplitude and random phase distribution and
contains energy throughout the frequency spectrum. The difference between this
signal and the periodic random signal is that the random transient history is trun-
cated to zero after some percentage of the sample period (normally 50 to 80 per-
cent). The measurement procedure duplicates the periodic random procedure,
but without the need to wait for the transient response to decay. The point at
which the input history is truncated is chosen so that the response history decays
to zero within the sample period. Even for lightly damped systems, the response
history decays to zero very quickly because of the damping provided by the
exciter system trying to maintain the input at zero. This damping provided by the
exciter system is often overlooked in the analysis of the characteristics of this sig-
nal type. Since this measured input, although not part of the generated signal,
includes the variation of the input during the decay of the response history, the
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input and response histories are totally observable within the sample period and
the system damping is unaffected.

Increased Frequency Resolution. An increase in the frequency resolution of a
frequency response function affects measurement errors in several ways. Finer fre-
quency resolution allows more exact determination of the damped natural fre-
quency of each modal vector. The increased frequency resolution means that the
level of a broad-band signal is reduced. The most important benefit of increased fre-
quency resolution, though, is a reduction of the leakage error. Since the distortion of
the frequency response function due to leakage is a function of frequency spacing,
not frequency, the increase in frequency resolution reduces the true bandwidth of
the leakage error centered at each damped natural frequency. In order to increase
the frequency resolution, the total time per history must be increased in direct pro-
portion. The longer data acquisition time increases the variance error problem when
transient signals are utilized for input as well as emphasizing any nonstationary
problem with the data. The increase of frequency resolution often requires multiple
acquisition and/or processing of the histories in order to obtain an equivalent fre-
quency range. This increases the data storage and documentation overhead as well
as extending the total test time.

There are two approaches to increasing the frequency resolution of a frequency
response function. The first approach involves increasing the number of spectral lines
in a baseband measurement. The advantage of this approach is that no additional
hardware or software is required. However, FFT analyzers do not always have the
capability to alter the number of spectral lines used in the measurement. The second
approach involves the reduction of the bandwidth of the measurement while holding
the number of spectral lines constant. If the lower frequency limit of the bandwidth is
always zero, no additional hardware or software is required. Ideally, though, for an
arbitrary bandwidth, hardware and/or software to perform a frequency-shifted, or
digitally filtered, FFT is required.

The frequency-shifted FFT process for computing the frequency response func-
tion has additional characteristics pertinent to the reduction of errors. Primarily,
more accurate information can be obtained on weak spectral components if the
bandwidth is chosen to avoid strong spectral components. The out-of-band rejection
of the frequency-shifted FFT is better than that of most analog filters that are used
in a measurement procedure to attempt to achieve the same results. Additionally,
the precision of the resulting frequency response function is improved due to
processor gain inherent in the frequency-shifted FFT calculation procedure.**

Weighting Functions. Weighting functions, or data windows, are probably the
most common approach to the reduction of the leakage error in the frequency
response function (see Chap. 14). While weighting functions are sometimes desir-
able and necessary to modify the frequency-domain effects of truncating a signal in
the time domain, they are too often utilized when one of the other approaches to
error reduction would give superior results. Averaging, selective excitation, and
increasing the frequency resolution all act to reduce the leakage error by eliminat-
ing the cause of the error. Weighting functions, on the other hand, attempt to com-
pensate for the leakage error after the data have already been digitized.

Windows alter, or compensate for, the frequency-domain characteristic associ-
ated with the truncation of data in the time domain. Essentially, again using the nar-
row bandpass filter analogy, windows alter the characteristics of the bandpass filters
that are applied to the data. This compensation for the leakage error causes an atten-
dant distortion of the frequency and phase information of the frequency response
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function, particularly in the case of closely spaced, lightly damped system poles. This
distortion is a direct function of the width of the main lobe and the size of the side
lobes of the spectrum of the weighting function.*”’

MODAL PARAMETER ESTIMATION

Modal parameter estimation, or modal identification, is a special case of system
identification where the a priori model of the system is known to be in the form of
modal parameters. Modal parameters include the complex-valued modal frequen-
cies A,, modal vectors {,},and modal scaling (modal mass or modal A). Additionally,
most algorithms estimate modal participation vectors {L,} and residue vectors {A,}
as part of the overall process.

Modal parameter estimation involves estimating the modal parameters of a
structural system from measured input-output data. Most modal parameter estima-
tion is based upon the measured data being the frequency response function or the
equivalent impulse-response function, typically found by inverse Fourier transform-
ing the frequency response function. Therefore, the form of the model used to
represent the experimental data is normally stated in a mathematical frequency
response function (FRF) model using temporal (time or frequency) and spatial
(input degree-of-freedom and output degree-of-freedom) information.

In general, modal parameters are considered to be global properties of the sys-
tem. The concept of global modal parameters simply means that there is only one
answer for each modal parameter and that the modal parameter estimation solution
procedure enforces this constraint. Every frequency response or impulse-response
function measurement theoretically contains the information that is represented by
the characteristic equation, the modal frequencies, and damping. If individual meas-
urements are treated as independent of one another in the solution procedure, there
is nothing to guarantee that a single set of modal frequencies and damping is gener-
ated. Likewise, if more than one reference is measured in the data set, redundant
estimates of the modal vectors can be made unless the solution procedure utilizes all
references in the estimation process simultaneously. Most of the current modal
parameter estimation algorithms estimate the modal frequencies and damping in a
global sense, but very few estimate the modal vectors in a global sense.

Since the modal parameter estimation process involves a greatly overdetermined
problem, the estimates of modal parameters resulting from different algorithms are
not the same as a result of differences in the modal model and model domain, dif-
ferences in how the algorithms use the data, differences in the way the data are
weighted or condensed, and differences in user expertise.

MODAL IDENTIFICATION CONCEPTS

The most common approach in modal identification involves using numerical tech-
niques to separate the contributions of individual modes of vibration in measure-
ments such as frequency response functions. The concept involves estimating the
individual single degree-of-freedom (SDOF) contributions to the multiple degree-
of-freedom (MDOF) measurement.

[H(®)]n, x5, = i [Ardy, v 4 [A*In x N

21.6
r=1 j(l)_}\'r jm_}\fr#< ( 0)



21.40 CHAPTER TWENTY-ONE

Log Magnitude (dB)

Pa Degees)
8
[}

-180

Frequency (Herwz)

FIGURE 21.14 Modal superposition example (positive frequency poles).

This concept is mathematically represented in Eq. (21.60) and graphically repre-
sented in Figs. 21.14 and 21.15.

Equation (21.60) is often formulated in terms of modal vectors {y,} and modal
participation vectors {L,} instead of residue matrices [A,]. Modal participation vec-
tors are a result of multiple reference modal parameter estimation algorithms and
relate how well each modal vector is excited from each of the reference locations
included in the measured data. The combination of the modal participation vector
{L,} and the modal vector {v,} for a given mode give the residue matrix A,,, = L,\,,
for that mode.

Generally, the modal parameter estimation process involves several stages. Typi-
cally, the modal frequencies and modal participation vectors are found in a first
stage and residues, modal vectors, and modal scaling are determined in a second
stage. Most modal parameter estimation algorithms can be reformulated into a sin-
gle, consistent mathematical formulation with a corresponding set of definitions and
unifying concepts." Particularly, a matrix polynomial approach is used to unify the
presentation with respect to current algorithms such as the least squares complex
exponential (LSCE), polyreference time domain (PTD), Ibrahim time domain
(ITD), eigensystem realization algorithm (ERA), rational fraction polynomial
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FIGURE 21.15 Modal superposition example (positive and negative frequency poles).

(RFP), polyreference frequency domain (PFD) and complex mode indication func-
tion (CMIF) methods. Using this unified matrix polynomial approach (UMPA)
allows a discussion of the similarities and differences of the commonly used methods
as well as a discussion of the numerical characteristics. Least squares (LS), total least
squares (TLS), double least squares (DLS), and singular value decomposition
(SVD) methods are used in order to take advantage of redundant measurement
data. Eigenvalue and singular value decomposition transformation methods are uti-
lized to reduce the effective size of the resulting eigenvalue-eigenvector problem as
well. Many acronyms used in modal parameter estimation are listed in Table 21.3.

Data Domain. Modal parameters can be estimated from a variety of different
measurements that exist as discrete data in different data domains (time, frequency,
and/or spatial). These measurements can include free decays, forced responses, fre-
quency responses, and unit impulse responses. These measurements can be
processed one at a time or in partial or complete sets simultaneously. The measure-
ments can be generated with no measured inputs, a single measured input, or multi-
ple measured inputs. The data can be measured individually or simultaneously. In
other words, there is a tremendous variation in the types of measurements and in the



21.42 CHAPTER TWENTY-ONE

TABLE 21.3 Modal Parameter Estimation Algorithm Acronyms

CEA Complex exponential algorithm'®
LSCE Least squares complex exponential'®
PTD Polyreference time domain'”'®

ITD Ibrahim time domain®

MRITD  Multiple reference Ibrahim time domain®
ERA Eigensystem realization algorithm?®"?
PFD Polyreference frequency domain®>
SFD Simultaneous frequency domain®
MRFD Multireference frequency domain?’
RFP Rational fraction polynomial®®

(0) Orthogonal polynomial®!

CMIF Complex mode indication function®

types of constraints that can be placed upon the testing procedures used to acquire
these data. For most measurement situations, frequency response functions are uti-
lized in the frequency domain and impulse-response functions are utilized in the
time domain.

Another important concept in experimental modal analysis, and particularly
modal parameter estimation, involves understanding the relationships between the
temporal (time and/or frequency) information and the spatial (input DOF and out-
put DOF) information. Input-output data measured on a structural system can
always be represented as a superposition of the underlying temporal characteristics
(modal frequencies) with the underlying spatial characteristics (modal vectors).

Model Order Relationships. The estimation of an appropriate model order is the
most important problem encountered in modal parameter estimation. This problem
is complicated because of the formulation of the parameter estimation model in the
time or frequency domain, a single or multiple reference formulation of the modal
parameter estimation model, and the effects of random and bias errors on the modal
parameter estimation model. The basis of the formulation of the correct model order
can be seen by expanding the theoretical second-order matrix equation of motion to
a higher-order model.

| [m)s®+[c]s+[k] | =0 (21.61)

The above matrix polynomial is of model order two, has a matrix dimension of
nx n, and has a total of 2n characteristic roots (modal frequencies). This matrix poly-
nomial equation can be expanded to reduce the size of the matrices to a scalar equa-
tion.

(XQNSZN + Oy - 1S2N7 1y Oy — stN -2 + -+ 0= 0 (2162)

The above matrix polynomial is of model order 2n, has a matrix dimension of
1x 1, and has a total of 2n characteristic roots (modal frequencies). The characteris-
tic roots of this matrix polynomial equation are the same as those of the original
second-order matrix polynomial equation. Finally, the number of characteristic
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roots (modal frequencies) that can be determined depends upon the size of the
matrix coefficients involved in the model and the order of the highest polynomial
term in the model.

For modal parameter estimation algorithms that utilize experimental data, the
matrix polynomial equations that are formed are a function of matrix dimension,
from 1 x 1 to N; X N;or N, x N,. There are a significant number of procedures that
have been formulated particularly for aiding in these decisions and selecting the
appropriate estimation model. Procedures for estimating the appropriate matrix
size and model order are another of the differences between various estimation
procedures.

Fundamental Measurement Models. Most current modal parameter estima-
tion algorithms utilize frequency- or impulse-response functions as the data, or
known information, to solve for modal parameters. The general equation that can be
used to represent the relationship between the measured frequency response func-
tion matrix and the modal parameters is shown in Egs. (21.63) and (21.64).

[H((D)]NO x N; = |:W:|N0 x 2N’- ](01— A JzN N [L]TZN x Nj (2163)

1 T
[H((O)]TM v, = [L]v, « 2N’- jo—%, JZN . [\ll] Wan, (21.64)

Impulse-response functions are rarely measured directly but are calculated from
associated frequency response functions via the inverse FFT algorithm. The general
equation that can be used to represent the relationship between the impulse-
response function matrix and the modal parameters is shown in Egs. (21.9) and
(21.10).

[A(O]x, x v, = MNO oy ’- et Jm e (21.65)

T

(O], x n, = [L]n, x ZN’- e JZN . M (21.66)

INx N,

Many modal parameter estimation algorithms have been originally formulated
from Egs. (21.63) through (21.66). However, a more general development for all
algorithms is based upon relating the above equations to a general matrix polyno-
mial approach.

Characteristic Space. From a conceptual viewpoint, the measurement space of a
modal identification problem can be visualized as occupying a volume with the coor-
dinate axis defined in terms of three sets of characteristics. Two axes of the conceptual
volume correspond to spatial information and the third axis to temporal information.
The spatial coordinates are in terms of the input and output degrees-of-freedom
(DOF) of the system. The temporal axis is either time or frequency, depending upon
the domain of the measurements. These three axis define a 3-D volume which is
referred to as the characteristic space, as noted in Fig. 21.16. This space or volume rep-
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Output DOF
4

Input DOF

FIGURE 21.16 Conceptualization of modal
characteristic space (input DOF axis, output DOF
axis, time axis).

resents all possible measurement data as expressed by Egs. (21.63) through (21.66).
This conceptual representation is very useful in understanding what data subspace
has been measured. Also, this conceptual representation is very useful in recognizing
how the data are organized and utilized with respect to different modal parameter
estimation algorithms. Information parallel to one of the axes consists of a solution
composed of the superposition of the characteristics defined by that axis. The other
two characteristics determine the scaling of each term in the superposition.

In modal parameter estimation algorithms that utilize a single frequency
response function, data collection is concentrated on measuring the temporal aspect
(time/frequency) at a sufficient resolution to determine the modal parameters. In
this approach, the accuracy of the modal parameters, particularly frequency and
damping, is essentially limited by Shannon’s sampling theorem and Rayleigh’s crite-
rion. This focus on the temporal information ignores the added accuracy that use of
the spatial information brings to the estimation of modal parameters. Recognizing
the characteristic space aspects of the measurement space and using these charac-
teristics (modal vector/participation vector) concepts in the solution procedure
leads to the conclusion that the spatial information can compensate for the limita-
tions of temporal information. Therefore, there is a tradeoff between temporal and
spatial information for a given accuracy requirement. This is particularly notable in
the case of repeated roots. No amount of temporal resolution (accuracy) can theo-
retically solve repeated roots, but the addition of spatial information in the form of
multiple inputs and/or outputs resolves this problem.

Any structural testing procedure measures a subspace of the total possible data
available. Modal parameter estimation algorithms may then use all of this subspace
or may choose to further limit the data to a more restrictive subspace. It is theoreti-
cally possible to estimate the characteristics of the total space by measuring a sub-
space which samples all three characteristics. However, the selection of the subspace



EXPERIMENTAL MODAL ANALYSIS 21.45

has a significant influence on the results. In order for all of the modal parameters to
be estimated, the subspace must encompass a region which includes contributions of
all three characteristics. An important example is the necessity to use multiple refer-
ence data (inputs and outputs) in order to estimate repeated roots. The particular
subspace which is measured and the weighting of the data within the subspace in an
algorithm are the main differences among the various modal identification proce-
dures which have been developed.

In general, the amount of information in a measured subspace greatly exceeds
the amount necessary to solve for the unknown modal characteristics. Another
major difference among the various modal parameter estimation procedures is the
type of condensation algorithms that are used to reduce the data to match the num-
ber of unknowns [for example, least squares (LS), singular value decomposition
(SVD), etc.]. As is the case with any overspecified solution procedure, there is no
unique answer. The answer that is obtained depends upon the data that are selected,
the weighting of the data, and the unique algorithm used in the solution process. As
a result, the answer is the best answer depending upon the objective functions asso-
ciated with the algorithm being used. Historically, this point has created some con-
fusion since many users expect different methods to give exactly the same answer.

Many modal parameter estimation methods use information (subspace) where
only one or two characteristics are included. For example, the simplest (computa-
tionally) modal parameter estimation algorithms utilize one impulse-response func-
tion or one frequency response function at a time. In this case, only the temporal
characteristic is used, and, as might be expected, only temporal characteristics (modal
frequencies) can be estimated from the single measurement. The global characteris-
tic of modal frequency cannot be enforced. In practice, when multiple measurements
are taken, the modal frequency does not change from one measurement to the next.

Other modal parameter estimation algorithms utilize the data in a plane of the
characteristic space. For example, this corresponds to the data taken at a number of
response points but from a single excitation point or reference. This representation
of a column of measurements is shown in Fig. 21.16 as a plane in the characteristic
space. For this case, representing a single input (reference), while it is now possible
to enforce the global modal frequency assumption, it is not possible to compute
repeated roots and it is difficult to separate closely coupled modes because of the
lack of spatial data.

Many modal identification algorithms utilize data taken at a large number of out-
put DOFs due to excitation at a small number of input DOFs. Data taken in this
manner are consistent with a multiexciter type of test. Conceptually, this is repre-
sented by several planes of data parallel to the plane of data represented in Fig.
21.16. Some modal identification algorithms utilize data taken at a large number of
input DOFs and a small number of output DOFs. Data taken in this manner are con-
sistent with a roving hammer type of excitation with several fixed output sensors.
These data can also be generated by transposing the data matrix acquired using a
multiexciter test. The conceptual representation is several rows of the potential
measurement matrix perpendicular to the plane of data represented in Fig. 21.16.
Measurement data spaces involving many planes of measured data are the best pos-
sible modal identification situations, since the data subspace includes contributions
from temporal and spatial characteristics. This allows the best possibility of estimat-
ing all the important modal parameters. The data which define the subspace need to
be acquired through a consistent measurement process in order for the algorithms
to estimate accurate modal parameters. This means that the data must be measured
simultaneously and requires that data acquisition, digital signal processing, and
instrumentation be designed and operate accordingly.
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Fundamental Modal Identification Models. The common characteristics of dif-
ferent modal parameter estimation algorithms can be more readily identified by
using a matrix polynomial model rather than using a physically based mathematical
model. One way of understanding the basis of this model can be developed from the
polynomial model used for the frequency response function.

H ((D) — XP((D) — Bn(j('o)n + Bn - l(jm)n et Bl(]m)l + '30(]0‘))0 (21 67)
T FR(0) 0,(jo)" o (o) e+ o jo) + o jo)’ '

This can be rewritten as

> B jo)
Xp(o) _K=0 (21.68)
Fq((!)) Z ak(j(o)k

k=0

H,(®) =

Further rearranging yields the following equation, which is linear in the unknown o
and B terms:

m

PRADEAD =§0 Bu(j) F(0) (21.69)

Noting that the response function X, can be replaced by the frequency response
function H,, if the force function F, is assumed to be unity, the above equation can
be restated as

m

D ou(j0) Hyy(w) =k§0 Bi( jo)* (21.70)

The above formulation is essentially a linear equation in terms of the unknown
coefficients oy and ;. The equation is valid at each frequency of the measured
frequency response function. Since, in the worst case, the number of unknowns is
m +n + 2, the unknown coefficients can theoretically be determined if the frequency
response function has m + n + 2 or more discrete frequencies. Practically, this is
always the case. Note that the total number of unknown coefficients (or coefficient
matrices) is actually m + n + 1 since one coefficient (or coefficient matrix) can be
assumed to be 1 (or the identity matrix). This is the case because the equation can be
divided, or normalized, by one of the unknown coefficients (or coefficient matrices).
Note that numerical problems can result if the equation is normalized by a coeffi-
cient (or coefficient matrix) that is close to zero. Normally, the coefficient o, (or the
coefficient matrix [of]) is chosen as unity (or the identity matrix).

The previous models can be generalized to represent the general multiple
input/multiple output case as follows:

i [[ock (](D)k} {X(w)} =§ [[Bk 1( ](D)k}{F((D)} (21.71)
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Note that the size of the coefficient matrices [0y ] and [B;] is normally N; x N; or N, x
N, when the equations are developed from experimental data. Rather than the basic
model being developed in terms of force and response information, the models can
be stated in terms of frequency response information. The response vector {X(w)}
can be replaced by a vector of frequency response functions {H()} where either the
input or the output is held fixed. The force vector {F(w)} is then replaced by an inci-
dence matrix {R} of the same size which is composed of all zeros except for unity at
the position in the vector consistent with the driving point measurement (common
input and output DOF).

i [(Jm)k [ou] } {H(w)} =§ [(](D)k [Be] [{ ] R} (21.72)
where
qu((,l))\ 0 )
HZq(OJ) 0
H3q(“)) 0
H@)= | o | R= |-
Hy(w) 1
Hy (o)) Lo

The above model, in the frequency domain, corresponds to an autoregressive
moving-average (ARMA) model that is developed from a set of finite difference
equations in the time domain. The general characteristic matrix polynomial model
concept recognizes that both the time- and frequency-domain models generate
essentially the same matrix polynomial models. For that reason, the unified matrix
polynomial approach (UMPA) terminology is used to describe both domains since
the ARMA terminology has been connected primarily with the time domain."

In parallel with the development of Eq. (21.67), a time-domain model represent-
ing the relationship between a single response degree-of-freedom and a single input
degree-of-freedom can be stated as follows:

m

> (s k) =k2) Bif(t: + 1) (21.73)

k=0

For the general multiple input/multiple output case,
> fou] fx(ti- ) Z [Bul {£(t: )} (21.74)
K=0 =

If the discussion is limited to the use of free decay or impulse-response function
data, the previous time-domain equations can be greatly simplified by noting that
the forcing function can be assumed to be zero for all time greater than zero. If this
is the case, the [B] coefficients can be eliminated from the equations:

120 [ou] {hpq(t; . k)} =0 (21.75)
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In light of the above discussion, it is now apparent that most of the modal param-
eter estimation processes available can be developed by starting from a general
matrix polynomial formulation that is justifiable based upon the underlying matrix
differential equation. The general matrix polynomial formulation yields essentially
the same characteristic matrix polynomial equation for both time- and frequency-
domain data. For the frequency-domain data case, this yields

| [00] ™ + [0 - 1] 8™~ 1 [y 2] 8™ 24+ [0g] | =0 (21.76)
For the time-domain data case, this yields
| [(xm] "+ [(xm - 1] "+ [(xm - 2] "t [0‘0] | =0 (2177)

With respect to the previous discussion of model order, the characteristic matrix
polynomial equation, Eq. (21.76) or (21.77), has a model order of m, and the number
of modal frequencies or roots that are found from this characteristic matrix polyno-
mial equation is m times the size of the coefficient matrices [c]. In terms of sampled
data, the time-domain matrix polynomial results from a set of finite difference equa-
tions and the frequency-domain matrix polynomial results from a set of linear equa-
tions, where each equation is formulated at one of the frequencies of the measured
data. This distinction is important to note since the roots of the matrix characteristic
equation formulated in the time domain are in the z domain (z,) and must be con-
verted to the frequency domain (A,), while the roots of the matrix characteristic
equation formulated in the frequency domain (,) are already in the desired domain.
Note that the roots that are estimated in the time domain are limited to maximum
values determined by Shannon’s sampling theorem relationship (discrete time
steps).

z, =M™ A =0, + jo, (21.78)

_ lnz,} _ [lnzr]
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Using this general formulation, the most commonly used modal identification meth-
ods can be summarized as shown in Table 21.4.

The high-order model is typically used for those cases where the system is under-
sampled in the spatial domain. For example, the limiting case is when only one meas-
urement is made on the structure. For this case, the left-hand side of the general
linear equation corresponds to a scalar polynomial equation with the order equal to
or greater than the number of desired modal frequencies. This type of high-order
model may yield significant numerical problems for the frequency-domain case.

The low-order model is used for those cases where the spatial information is
complete. In other words, the number of independent physical coordinates is greater
than the number of desired modal frequencies. For this case, the order of the left-
hand side of the general linear equation, Eq. (21.72) or (21.75),is equal to 1 or 2.

The zero-order model corresponds to a case where the temporal information is
neglected and only the spatial information is used. These methods directly estimate
the eigenvectors as a first step. In general, these methods are programmed to process
data at a single temporal condition or variable. In this case, the method is essentially
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TABLE 21.4 Characteristics of Modal Parameter Estimation Algorithms

Domain Matrix polynomial order Coefficients

Algorithm Time Frequency Zero Low High Scalar Matrix
CEA ) ) .

LSCE . . .

PTD o . N; X N;
ITD . . N,%xN,
MRITD . . N,x N,
ERA o . N,%XN,
PFD . . N,x N,
SFD . . N,XN,
MRFD U o N,%xN,
RFP . . . Both
OP . . U Both
CMIF . . N, x N;

equivalent to the single degree-of-freedom (SDOF) methods which have been used
with frequency response functions. In other words, the comparison between the
zeroth-order matrix polynomial model and the higher-order matrix polynomial
models is similar to the comparison between the SDOF and MDOF methods used
in modal parameter estimation.

Two-Stage Linear Solution Procedure. Almost all modal parameter estimation
algorithms in use at this time involve a two-stage linear solution approach. For
example, with respect to Egs. (21.63) through (21.66), if all modal frequencies and
modal participation vectors can be found, the estimation of the complex residues
can proceed in a linear fashion. This procedure of separating the nonlinear problem
into a multistage linear problem is a common technique for most estimation meth-
ods today. For the case of structural dynamics, the common technique is to estimate
modal frequencies and modal participation vectors in a first stage and then to esti-
mate the modal coefficients plus any residuals in a second stage. Therefore, based
upon Egs. (21.63) through (21.66), most commonly used modal identification algo-
rithms can be outlined as follows:

First stage of modal parameter estimation:
¢ Load measured data into linear equation form [Eq. (21.72) or (21.75)].
¢ Find scalar or matrix autoregressive coefficients [oy].

¢ Normalize frequency range (frequency domain only).
e Utilize orthogonal polynomials (frequency domain only).

¢ Solve matrix polynomial for modal frequencies.

e Formulate companion matrix.

¢ Obtain eigenvalues of companion matrix A, or z,.

e Convert eigenvalues from z, to A, (time domain only).

 Obtain modal participation vectors L,, or modal vectors {y}, from eigenvec-
tors of the companion matrix.

Second stage of modal parameter estimation:
¢ Find modal vectors and modal scaling from Egs. (21.63) through (21.66).
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Equation (21.72) or (21.75) is used to formulate a single, block coefficient linear
equation as shown in the graphical analogy of Case 1a, Fig. 21.17. In order to esti-
mate complex conjugate pairs of roots, at least two equations from each piece or
block of data in the data space must be used. This situation is shown in Case 1b, Fig.
21.18.In order to develop enough equations to solve for the unknown matrix coeffi-
cients, further information is taken from the same block of data or from other blocks
of data in the data space until the number of equations equals (Case 2) or exceeds
(Case 3) the number of unknowns, as shown in Figs. 21.19 and 21.20. In the frequency
domain, this is accomplished by utilizing a different frequency from within each
measurement for each equation. In the time domain, this is accomplished by utiliz-
ing a different starting time or time shift from within each measurement for each
equation.

Once the matrix coefficients [0] have been found, the modal frequencies A, or z,
can be found using a number of numerical techniques. While in certain numerical sit-
uations, other numerical approaches may be more robust, a companion matrix
approach yields a consistent concept for understanding the process. Therefore, the
roots of the matrix characteristic equation can be found as the eigenvalues of the
associated companion matrix. The companion matrix can be formulated in one of
several ways. The most common formulation is as follows:

Case la: Case 1b:

FIGURE 21.17 Underdetermined set of linear FIGURE 21.18 Underdetermined set of lin-
equations. ear equations.

Case 2: Case 3:

FIGURE 21.19 Determined set of linear
equations.

FIGURE 21.20 Overdetermined set of linear
equations.
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Note again that the numerical characteristics of the eigenvalue solution of the com-
panion matrix are different for low-order cases than for high-order cases for a given
data set. The companion matrix can be used in the following eigenvalue formulation
to determine the modal frequencies for the original matrix coefficient equation:

[Clx) = A (1) (21.80)

The eigenvectors that can be found from the eigenvalue-eigenvector solution uti-
lizing the companion matrix may or may not be useful in terms of modal parameters.
The eigenvector that is found, associated with each eigenvalue, is of length model
order times matrix coefficient size. In fact, the unique (meaningful) portion of the
eigenvector is of length equal to the size of the coefficient matrices and is repeated
in the eigenvector a model order number of times. Each time the unique portion of
the eigenvector is repeated, it is multiplied by a scalar multiple of the associated
modal frequency. Therefore, the eigenvectors of the companion matrix have the fol-
lowing form:

Al

{oh= ¢ A{w} (21.81)
2wl
A |,

Note that unless the size of the coefficient matrices is at least as large as the number
of measurement degrees-of-freedom, only a partial set of modal coefficients, the
modal participation coefficients L,,, are found. For the case involving scalar coeffi-
cients, no meaningful modal coefficients are found.

If the size of the coefficient matrices, and therefore the modal participation vector,
is less than the largest spatial dimension of the problem, then the modal vectors are
typically found in a second-stage solution process using one of Egs. (21.63) through
(21.66). Even if the complete modal vector {y} of the system is found from the eigen-
vectors of the companion matrix approach, the modal scaling and modal participation
vectors for each modal frequency are normally found in this second-stage formulation.
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Data Sieving/Filtering. For almost all cases of modal identification, a large
amount of redundancy or overdetermination exists. This means that for Case 3,
defined in Fig. 21.20, the number of equations available compared to the number
required for the determined Case 2 (defined as the overdetermination factor) is quite
large. Beyond some value of overdetermination factor, the additional equations con-
tribute little to the result but may add significantly to the solution time. For this rea-
son, the data space is often filtered (limited in the temporal sense) or sieved (limited
in the input DOF or output DOF sense) in order to obtain a reasonable result in the
minimum time. For frequency-domain data, the filtering process normally involves
limiting the data set to a range of frequencies or a different frequency resolution
according to the desired frequency range of interest. For time-domain data, the fil-
tering process normally involves limiting the starting time value as well as the num-
ber of sets of time data taken from each measurement. Data sieving involves limiting
the data set to certain degrees-of-freedom that are of primary interest. This normally
involves restricting the data to specific directions (X, ¥, and/or Z directions) or spe-
cific locations or groups of degrees-of-freedom, such as components of a large struc-
tural system.

Equation Condensation. Several important concepts should be delineated in
the area of equation condensation methods. Equation condensation methods are
used to reduce the number of equations based upon measured data to more closely
match the number of unknowns in the modal parameter estimation algorithms.
There are a large number of condensation algorithms available. Based upon the
modal parameter estimation algorithms in use today, the three types of algorithms
most often used are

e Least squares. Least squares (LS), weighted least squares (WLS), total least
squares (TLS), or double least squares (DLS) methods are used to minimize the
squared error between the measured data and the estimation model. Historically,
this is one of the most popular procedures for finding a pseudo-inverse solution to
an overspecified system. The main advantage of this method is computational
speed and ease of implementation, while the major disadvantage is numerical pre-
cision.

e Transformation. There are a large number of transformation that can be used to
reduce the data. In the transformation methods, the measured data are reduced by
approximating them by the superposition of a set of significant vectors. The num-
ber of significant vectors is equal to the amount of independent measured data.
This set of vectors is used to approximate the measured data and used as input to
the parameter estimation procedures. Singular value decomposition (SVD) is one
of the more popular transformation methods. The major advantage of such meth-
ods is numerical precision, and the disadvantage is computational speed and
memory requirements.

e Coherent averaging. Coherent averaging is another popular method for reduc-
ing the data. In the coherent averaging method, the data are weighted by per-
forming a dot product between the data and a weighting vector (spatial filter).
Information in the data which is not coherent with the weighting vectors is aver-
aged out of the data. The method is often referred to as a spatial filtering proce-
dure. This method has both speed and precision but, in order to achieve precision,
requires a good set of weighting vectors. In general, the optimum weighting vec-
tors are connected with the solution, which is unknown. It should be noted that
least squares is an example of a noncoherent averaging process.
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The least squares and the transformation procedures tend to weight those modes
of vibration which are well excited. This can be a problem when trying to extract
modes which are not well excited. The solution is to use a weighting function for con-
densation which tends to enhance the mode of interest. This can be accomplished in
a number of ways:

¢ In the time domain, a spatial filter or a coherent averaging process can be used to
filter the response to enhance a particular mode or set of modes. For example, by
averaging the data from two symmetric exciter locations, the symmetric modes of
vibration can be enhanced. A second example is to use only the data in a local area
of the system to enhance local modes. The third method is using estimates of the
modes’ shapes as weighting functions to enhance particular modes.

¢ In the frequency domain, the data can be enhanced in the same manner as in the
time domain, plus the data can be additionally enhanced by weighting them in a
frequency band near the natural frequency of the mode of interest.

The type of equation condensation method that is utilized in a modal identifica-
tion algorithm has a significant influence on the results of the parameter estimation
process.

Coefficient Condensation. For the low-order modal identification algorithms, the
number of physical coordinates (typically &V,) is often much larger than the number
of desired modal frequencies (2r). For this situation, the numerical solution proce-
dure is constrained to solve for N, or 2N, modal frequencies. This can be very time
consuming and is unnecessary. The number of physical coordinates N, can be reduced
to a more reasonable size (N, = N, or N, = 2N,) by using a decomposition transfor-
mation from physical coordinates N, to the approximate number of effective modal
frequencies N,. Currently, SVD or eigenvalue decompositions (ED) are used to pre-
serve the principal modal information prior to formulating the linear equation solu-
tion for unknown matrix coefficients.*** In most cases, even when the spatial
information must be condensed, it is necessary to use a model order greater than 2 to
compensate for distortion errors or noise in the data and to compensate for the case
where the location of the transducers is not sufficient to totally define the structure.

[H=[T][H] (21.82)

where [H’]= transformed (condensed) frequency response function matrix
[T] = transformation matrix
[H] = original FRF matrix

The difference between the two techniques lies in the method of finding the trans-
formation matrix [7]. Once [H] has been condensed, however, the parameter esti-
mation procedure is the same as for the full data set. Because the data eliminated
from the parameter estimation process ideally correspond to the noise in the data,
the modal frequencies of the condensed data are the same as the modal frequencies
of the full data set. However, the modal vectors calculated from the condensed data
may need to be expanded back into the full space:

[¥]= [T [¥] (21.83)

where [¥]= full-space modal matrix
[¥] = condensed-space modal matrix
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Model Order Determination. Much of the work on modal parameter estimation
since 1975 has involved methodology for determining the correct model order for the
modal parameter model. Technically, model order refers to the highest power in
the matrix polynomial equation. The number of modal frequencies found is equal to
the model order times the size of the matrix coefficients, normally N, or N.. For a
given algorithm, the size of the matrix coefficients is normally fixed; therefore, deter-
mining the model order is directly linked to estimating n, the number of modal fre-
quencies in the measured data that are of interest. As has always been the case, an
estimate for the minimum number of modal frequencies can be easily found by
counting the number of peaks in the frequency response function in the frequency
band of analysis. This is a minimum estimate of » since the frequency response func-
tion measurement may be at a node of one or more modes of the system, repeated
roots may exist, and/or the frequency resolution of the measurement may be too
coarse to observe modes that are closely spaced in frequency. Several measurements
can be observed and a tabulation of peaks existing in any or all measurements can be
used as a more accurate minimum estimate of n. A more automated procedure for
including the peaks that are present in several frequency response functions is to
observe the summation of frequency response function power. This function repre-
sents the autopower or automoment of the frequency response functions summed
over a number of response measurements and is normally formulated as follows:

No Ni

Hiponer(0) = Z Z H,y(0) Hy*(o) (21.84)

These techniques are extremely useful but do not provide an accurate estimate of
model order when repeated roots exist or when modes are closely spaced in fre-
quency. For these reasons, an appropriate estimate of the order of the model is
of prime concern and is the single most important problem in modal parameter
estimation.

In order to determine a reasonable estimate of the model order for a set of rep-
resentative data, a number of techniques have been developed as guides or aids to
the user. Much of the user interaction involved in modal parameter estimation
involves the use of these tools. Most of the techniques that have been developed
allow the user to establish a maximum model order to be evaluated (in many cases,
this is set by the memory limits of the computer algorithm). Information is utilized
from the measured data based upon an assumption that the model order is equal to
this maximum. This information is evaluated in a sequential fashion to determine if
a model order less than the maximum is sufficient to describe the data sufficiently.
This is the point at which the user’s judgment and the use of various evaluation aids
becomes important. Some of the commonly used techniques are:

¢ Measurement synthesis and comparison (curve-fit)
e Error chart

e Stability diagram

¢ Mode indication functions

¢ Rank estimation

One of the most common techniques is to synthesize an impulse-response func-
tion or a frequency response function and compare it to the measured function to
see if modes have been missed. This curve-fitting procedure is also used as a meas-
ure of the overall success of the modal parameter estimation procedure. The differ-
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ence between the two functions can be quantified and normalized to give an indica-
tor of the degree of fit. There can be many reasons for a poor comparison; incorrect
model order is one of the possibilities.

Error Chart. Another method that has been used to indicate the correct model
order more directly is the error chart. Essentially, the error chart is a plot of the error
in the model as a function of increasing model order. The error in the model is a nor-
malized quantity that represents the ability of the model to predict data that are not
involved in the estimate of the model parameters. For example, when measured data
in the form of an impulse-response function are used, only a small percentage of the
total number of data values are involved in the estimate of modal parameters. If the
model is estimated based upon 10 modes, only 4 x 10 data points are required, at a
minimum, to estimate the modal parameters if no additional spatial information is
used. The error in the model can then be estimated by the ability of the model to pre-
dict the next several data points in the impulse-response function compared to the
measured data points. For the case of 10 modes and 40 data points, the error in the
model is calculated from the predicted and measured data points 41 through 50.
When the model order is insufficient, this error is large, but when the model order
reaches the correct value, further increase in the model order does not result in a fur-
ther decrease in the error. Figure 21.21 is an example of an error chart.

Stability Diagram. A further enhancement of the error chart is the stability
diagram. The stability diagram is developed in the same fashion as the error chart
and involves tracking the estimates of frequency, damping, and possibly modal par-
ticipation factors as a function of model order. As the model order is increased, more
and more modal frequencies are estimated, but, hopefully, the estimates of the phys-
ical modal parameters stabilize as the correct model order is found. For modes that
are very active in the measured data, the modal parameters stabilize at a very low
model order. For modes that are poorly excited in the measured data, the modal
parameters may not stabilize until a very high model order is chosen. Nevertheless,
the nonphysical (computational) modes do not stabilize at all during this process
and can be sorted out of the modal parameter data set more easily. Note that incon-
sistencies (frequency shifts, leakage errors, etc.) in the measured data set obscure the
stability and make the stability diagram difficult to use. Normally, a tolerance, in per-
centage, is given for the stability of each of the modal parameters that are being eval-
uated. Figure 21.22 is an example of a stability diagram. In Fig.21.22, a summation of

Error Chart for Increasing Model Order
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FIGURE 21.21 Model order determination: error chart.
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FIGURE 21.22 Model order determination: stability diagram.

the frequency response function power is plotted on the stability diagram for refer-
ence. Other mode indication functions can also be plotted against the stability dia-
gram for reference.

Mode Indication Functions. Mode indication functions (MIF) are normally
real-valued, frequency-domain functions that exhibit local minima or maxima at the
modal frequencies of the system. One mode indication function can be plotted for
each reference available in the measured data. The primary mode indication func-
tion exhibits a local minimum or maximum at each of the natural frequencies of the
system under test. The secondary mode indication function exhibits a local minimum
or maximum at repeated or pseudo-repeated roots of order 2 or more. Further mode
indication functions yield local minima or maxima for successively higher orders of
repeated or pseudo-repeated roots of the system under test.

MULTIVARIATE MODE INDICATION FUNCTION (MVMIF): The development of the
multivariate mode indication function is based upon finding a force vector {F} that
excites a normal mode at each frequency in the frequency range of interest.” If a
normal mode can be excited at a particular frequency, the response to such a force
vector exhibits the 90° phase lag characteristic. Therefore, the real part of the
response is as small as possible, particularly when compared to the imaginary part or
the total response. In order to evaluate this possibility, a minimization problem can
be formulated as follows:

min {F}" [Hrea]" [Hrea] {F)
"= AFY ([ Hyeal” [Hreal + [Hinag)" [Himeg]) {F)

=1 (21.85)

This minimization problem is similar to a Rayleigh quotient, and it can be shown
that the solution to the problem is found by finding the smallest eigenvalue A,;, and
the corresponding eigenvector {F},;, of the following problem:
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Multivariate Mode Indicator Function
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FIGURE 21.23 Multivariate mode indication function: seven-input example.

[HReal]T [HReal] {F} = 7\- ([HReal]T [HReal] + [HImag]T [HImag]) {F} (2186)

The above eigenvalue problem is formulated at each frequency in the frequency
range of interest. Note that the result of the matrix product [Hgea]” [Hgea] and
[Himae]" [Himag] in each case is a square, real-valued matrix of size equal to the num-
ber of references in the measured data N; x N;. The resulting plot of a multivariate
mode indication function for a seven-reference case can be seen in Fig. 21.23. The
frequencies where more than one curve approaches the same minimum are likely to
be repeated root frequencies (repeated modal frequencies).

COMPLEX MODE INDICATION FUNCTION (CMIF):  An algorithm based on singular
value decomposition methods applied to multiple reference FRF measurements,
identified as the complex mode indication function (CMIF), is utilized in order to
identify the proper number of modal frequencies, particularly when there are closely
spaced or repeated modal frequencies.* Unlike MvMIF, which indicates the exis-
tence of real normal modes, CMIF indicates the existence of real normal or complex
modes and the relative magnitude of each mode. Furthermore, MvMIF yields a set
of force patterns that can best excite the real normal mode, while CMIF yields the
corresponding mode shape and modal participation vector.

The CMIF, in the original formulation, is defined as the eigenvalues, solved from
the normal matrix formed from the frequency response function matrix, at each
spectral line. The normal matrix is obtained by premultiplying the FRF matrix by its
Hermitian matrix as [H(®)]"” [H(®)]. The CMIF is the plot of these eigenvalues on a
log magnitude scale as a function of frequency. The peaks detected in the CMIF plot
indicate the existence of modes, and the corresponding frequencies of these peaks
give the damped natural frequencies for each mode. In the application of CMIF to
traditional modal parameter estimation algorithms, the number of modes detected
in CMIF determines the minimum number of degrees-of-freedom of the system
equation for the algorithm. A number of additional degrees-of-freedom may be
needed to take care of residual effects and noise contamination.
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[H(w)}" [H(w)] = [V(0)] [A(@)] [V(0)]" (21.87)

By taking the singular value decomposition of the FRF matrix at each spectral line,
an expression similar to Eq. (21.87) is obtained:

[H(w)] = [U(w)] [Z(w)] [V(e)]* (21.88)
where N, = number of effective modes. The effective modes are the modes

that contribute to the response of the structure at this particular
frequency ®

[U(w)] = left singular matrix of size N, x N,, which is a unitary matrix
[A(w)] = eigenvalue matrix of size N, x N,, which is a diagonal matrix
[Z(®w)] = singular value matrix of size N, x N,, which is a diagonal matrix
[V(w)] = right singular matrix of size N, x N,, which is also a unitary

matrix

Most often, the number of input points (reference points) N; is less than the num-
ber of response points N,. In Eq. (21.88), if the number of effective modes is less than
or equal to the smaller dimension of the FRF matrix, i.e., N, < N,, the singular value
decomposition leads to approximate mode shapes (left singular vectors) and
approximate modal participation factors (right singular vectors). The singular value
is then equivalent to the scaling factor Q, divided by the difference between the dis-
crete frequency and the modal frequency jo — A,. For a given mode, since the scaling
factor is a constant, the closer the modal frequency is to the discrete frequency, the
larger the singular value is. Therefore, the damped natural frequency is the fre-
quency at which the maximum magnitude of the singular value occurs. If different
modes are compared, the stronger the mode contribution (larger residue value), the
larger the singular value is.

CMIF,(0) = Al@) =Z(@)  k=12,...,N, (21.89)

where CMIF,(w) = kth CMIF as a function of frequency ®
Ai(®) = kth eigenvalue of the normal matrix of FRF matrix as a
function of frequency
Y (w) = kth singular value of the FRF matrix as a function of
frequency ®

In practical calculations, the normal matrix formed from the FRF matrix, [H(w)]”
[H(w)],is calculated at each spectral line. The eigenvalues of this matrix are obtained.
The CMIF plot is the plot of these eigenvalues on a log magnitude scale as a function
of frequency. The peak in the CMIF indicates the location on the frequency axis that
is nearest to the pole. The frequency is the estimated damped natural frequency, to
within the accuracy of the frequency resolution. The magnitude of the eigenvalue
indicates the relative magnitude of the modes, residue over damping factor.

Since the mode shapes that contribute to each peak do not change much around
each peak, several adjacent spectral lines from the FRF matrix can be used simulta-
neously for a better estimation of mode shapes. By including several spectral lines of
data in the singular value decomposition calculation, the effect of the leakage error
can be minimized. The resulting plot of a complex mode indication function for a
seven-reference case can be seen in Fig. 21.24. The frequencies where more than one
curve approaches the same maximum are repeated root frequencies (repeated
modal frequencies).



EXPERIMENTAL MODAL ANALYSIS 21.59

Complex Mode indicator Function
10 T T T T T

10 .

10 3

10 (o} 500 1000 1500 2000 2500 3000
Frequency, Hz

FIGURE 21.24 Complex mode indication function: seven-input example.

Rank Estimation. A more recent model order evaluation technique involves
the estimate of the rank of the matrix of measured data. An estimate of the rank
of the matrix of measured data gives a good estimate of the model order of the sys-
tem. Essentially, the rank is an indicator of the number of independent character-
istics contributing to the data. While the rank cannot be calculated in an absolute
sense, it can be estimated from the singular value decomposition (SVD) of the
matrix of measured data. For each mode of the system, one singular value should
be found by the SVD procedure. The SVD procedure finds the largest singular
value first and then successively finds the next largest. The magnitudes of the sin-
gular values are used in one of two different procedures to estimate the rank. The
concept that is used is that the singular values should go to zero when the rank of
the matrix is exceeded. For theoretical data, this happens exactly. For measured
data, because of random errors and small inconsistencies in the data, the singular
values do not become zero but become very small. Therefore, the rate of change of
the singular values rather than the absolute values is used as an indicator. In one
approach, each singular value is divided by the first (largest) to form a normalized
ratio. This normalized ratio is treated much like the error chart, and the appropri-
ate rank (model order) is chosen when the normalized ratio approaches an asymp-
tote. In another similar approach, each singular value is divided by the previous
singular value, forming a normalized ratio that is approximately equal to 1 if the
successive singular values are not changing in magnitude. When a rapid decrease
in the magnitude of the singular value occurs, the ratio of successive singular val-
ues drops (or peaks if the inverse of the ratio is plotted) as an indicator of rank
(model order) of the system. Figure 21.25 shows examples of these rank estimate
procedures.

Residuals. Continuous systems have an infinite number of degrees-of-freedom,
but, in general, only a finite number of modes can be used to describe the dynamic
behavior of a system. The theoretical number of degrees-of-freedom can be reduced
by using a finite frequency range. Therefore, for example, the frequency response
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FIGURE 21.25 Model order determination: rank estimation.

can be broken up into three partial sums, each covering the modal contribution cor-
responding to modes located in the frequency ranges.

In the frequency range of interest, the modal parameters can be estimated to be
consistent with Eq. (21.60). In the lower and higher frequency ranges, residual terms
can be included to account for modes in these ranges. In this case, Eq. (21.60) can be
rewritten for a single frequency response function as

_ N Apgr Apgr*
Hy(0) = Ry +r21 jo—A2, " jo—A* + Ry, () (21.90)

where Rp,, = residual flexibility
Ry, (s) = residual inertia

The residual term that compensates for modes below the minimum frequency of
interest is called the inertia restraint, or residual inertia. The residual term that com-
pensates for modes above the maximum frequency of interest is called the residual
flexibility. These residuals are a function of each frequency response function meas-
urement and are not global properties of the frequency response function matrix.
Therefore, residuals cannot be estimated unless the frequency response function is
measured. In this common formulation of residuals, both terms are real-valued quan-
tities. In general, this is a simplification; the residual effects of modes below and/or
above the frequency range of interest cannot be completely represented by such sim-
ple mathematical relationships. As the system poles below and above the range of
interest are located in the proximity of the boundaries, these effects are not the real-
valued quantities noted in Eq. (21.90). In these cases, residual modes may be included
in the model to partially account for these effects. When this is done, the modal
parameters that are associated with these residual poles have no physical significance
but may be required in order to compensate for strong dynamic influences from out-
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side the frequency range of interest. Using the same argument, the lower and upper
residuals can take on any mathematical form that is convenient as long as the lack of
physical significance is understood. Mathematically, power functions of frequency
(zero, first, and second order) are commonly used within such a limitation. In general,
the use of residuals is confined to frequency response function models. This is primar-
ily due to the difficulty of formulating a reasonable mathematical model and solution
procedure in the time domain for the general case that includes residuals.

MODAL IDENTIFICATION ALGORITHMS (SDOF)

For any real system, the use of single degree-of-freedom algorithms to estimate
modal parameters is always an approximation since any realistic structural system
has many degrees-of-freedom. Nevertheless, in cases where the modes are not close
in frequency and do not affect one another significantly, single degree-of-freedom
algorithms are very effective. Specifically, single degree-of-freedom algorithms are
quick, rarely involving much mathematical manipulation of the data, and give suffi-
ciently accurate results for most modal parameter requirements. Naturally, most
multiple degree-of-freedom algorithms can be constrained to estimate only a single
degree-of-freedom at a time if further mathematical accuracy is desired. The most
commonly used single degree-of-freedom algorithms involve using the information
at a single frequency as an estimate of the modal vector.

Operating Vector Estimation. Technically, when many single degree-of-freedom
approaches are used to estimate modal parameters, sufficient simplifying assump-
tions are made that the results are not actually modal parameters. In these cases, the
results are often referred to as operating vectors rather than modal vectors. This term
refers to the fact that if the structural system is excited at this frequency, the result-
ing motion is a linear combination of the modal vectors rather than a single modal
vector. If one mode is dominant, then the operating vector is approximately equal to
the modal vector. The approximate relationships that are used in these cases are rep-
resented in the following two equations:

(21.91)

%
H,o(0o) = - Apwr +- A «
]mr_}\'r ]mr_xr.

Hpq((”r) = i‘pqr

(21.92)

r

For these less complicated methods, the damped natural frequencies ®, are esti-
mated by observing the maxima in the frequency response functions. The damping
factors o, are estimated using half-power methods.! The residues A,,, are then esti-
mated from Eq. (21.91) or (21.92) using the frequency response function data at the
damped natural frequency.

Complex Plot (Circle Fit). The circle-fit method utilizes the concept that the data
curve in the vicinity of a modal frequency looks circular. In fact, the diameter of the
circle is used to estimate the residue once the damping factor is estimated. More
importantly, this method utilizes the concept that the distance along the curve
between data points at equidistant frequencies is a maximum in the neighborhood
of the modal frequency. Therefore, the circle-fit method is the first method to detect
closely spaced modes.
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This method can give erroneous answers when the modal coefficient is near
zero. This occurs essentially because, when the mode does not exist in a particular
frequency response function (either the input or the response degree-of-freedom is
at a node of the mode), the remaining data in the frequency range of the mode are
strongly affected by the next higher or lower mode. Therefore, the diameter of the
circle that is estimated is a function of the modal coefficient for the next higher or
lower mode. This can be detected visually but is somewhat difficult to detect auto-
matically. The approximate relationship that is used in this case is represented in the
following equation:

AP‘I’ 4 AP‘I’ *

H,(o,)=R,, +
1717( ) Pq jmr_?\'r j(or_x-r*

(21.93)

Two-Point Finite Difference Formulation. The difference method formulations
are methods that are based upon comparing adjacent frequency information in the
vicinity of a resonance frequency. When a ratio of this information, together with
information from the derivative of the frequency response function at the same fre-
quencies, is formed, a reasonable estimation of the modal frequency and residue for
each mode can be determined under the assumption that modes are not too close
together. This method can give erroneous answers when the modal coefficient is
near zero. This problem can be detected by comparing the predicted modal fre-
quency to the frequency range of the data used in the finite difference algorithm. As
long as the predicted modal frequency lies within the frequency band, the estimate
of the residue (modal coefficient) should be valid.

The approximate relationships that are used in this case are represented in the
following equations. The frequencies noted in these relationships are as follows: ; is
a frequency near the damped natural frequency w,, and , is the peak frequency
close to the damped natural frequency ®,.

Modal frequency (\,):

7\" ~ jmpHPlI(mP) _j(l)lHPQ(ml) (2194)
Hpq(“)p) - Hpq(c‘)l)

Residue (A,,,):

~ j(wl - wp)]—lm(wl)HPq(wp)
qr
! H,y(®,) = Hyy(01)

Since both of the equations that are used to estimate modal frequency A, and residue
A,, are linear equations, a least squares solution can be formed by using other fre-
quency response function data in the vicinity of the resonance. For this case, addi-
tional equations can be developed using H,,,(®,) or H,,(;) in the above equations
instead of H, (o).

(21.95)

MODAL IDENTIFICATION ALGORITHMS (MDOF)

All multiple degree-of-freedom equations can be represented in a unified matrix
polynomial approach. The methods that are summarized in the following sections
are listed in Tables 21.3 and 21.4.
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High-Order Time-Domain Algorithms. The algorithms that fall into the cate-
gory of high-order time-domain algorithms include the algorithms most commonly
used to determine modal parameters. The least squares complex exponential
(LSCE) algorithm is the first algorithm to utilize more than one frequency response
function, in the form of impulse-response functions, in the solution for a global esti-
mate of the modal frequency. The polyreference time-domain (PTD) algorithm is an
extension to the LSCE algorithm that allows multiple references to be included in a
meaningful way so that the ability to resolve close modal frequencies is enhanced.
Since both the LSCE and PTD algorithms have good numerical characteristics,
these algorithms are still the most commonly used today. The only limitations for
these algorithms are the cases involving high damping. As these are high-order algo-
rithms, more time-domain information is required than for low-order algorithms.

First-Order Time-Domain Algorithms. The first-order time-domain algorithms
include several well-known algorithms such as the Ibrahim time-domain (ITD) algo-
rithm and the eigensystem realization algorithm (ERA).These algorithms are essen-
tially a state-space formulation with respect to the second-order time-domain
algorithms. The original development of these algorithms is quite different from that
presented here, but the resulting solution of linear equations is the same regardless
of development. There is a great body of published work on both the ITD and ERA
algorithms, much of which discusses the various approaches for condensing the
overdetermined set of equations that results from the data (least squares, double
least squares, singular value decomposition). The low-order time-domain algorithms
require very few time points in order to generate a solution because of the increased
use of spatial information.

Second-Order Time-Domain Algorithms. The second-order time-domain algo-
rithm has not been reported in the literature previously but is simply modeled after
the second-order matrix differential equation with matrix dimension N,. Since an
impulse-response function can be thought to be a linear summation of a number of
complementary solutions to such a matrix differential equation, the general second-
order matrix form is a natural model that can be used to determine the modal
parameters. This method is developed by noting that it is the time-domain equiva-
lent to a frequency-domain algorithm known as the polyreference frequency-
domain (PFD) algorithm. The low-order time-domain algorithms require very few
time points in order to generate a solution because of the increased use of spatial
information.

High-Order Frequency-Domain Algorithms. The high-order frequency-domain
algorithms, in the form of scalar coefficients, are the oldest multiple degree-of-
freedom algorithms utilized to estimate modal parameters from discrete data. These
are algorithms like the rational fraction polynomial (RFP), power polynomial (PP),
and orthogonal polynomial (OP) algorithms. These algorithms work well for narrow
frequency bands and limited numbers of modes but have poor numerical character-
istics otherwise. While the use of multiple references reduces the numerical condi-
tioning problem, the problem is still significant and not easily handled. In order to
circumvent the poor numerical characteristics, many approaches have been used (fre-
quency normalization, orthogonal polynomials), but the use of low-order frequency-
domain models has proven more effective.

Orthogonal Polynomial Concepts. The fundamental problem with using a
rational fraction polynomial (power polynomial) method can be highlighted by
looking at the characteristics of the data matrices. These matrices involve power
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polynomials that are functions of increasing powers of s = jo. These matrices are of
the Vandermonde form and are known to be ill-conditioned for cases involving wide
frequency ranges and high-ordered models.

VANDERMONDE MATRIX FORM:

(o) (o)t GoP . oy

(joo)*  (joo)'  (joo) e (jo)™ !

(jos)* (o) (joos)’ .. (jos)™ ! (21.96)
| o)’ (o)t (o) o (o)™

1ll-conditioning, in this case, means that the accuracy of the solution for the matrix
coefficients o, is limited by the numerical precision of the available arithmetic of
the computer. Since the matrix coefficients o, are used to determine the complex-
valued modal frequencies, this presents a serious limitation for the high-order fre-
quency-domain algorithms. The ill-conditioning problem can be best understood by
evaluating the condition number of the Vandermonde matrix. The condition number
measures the sensitivity of the solution of linear equations to errors, or small
amounts of noise, in the data. The condition number gives an indication of the accu-
racy of the results from matrix inversion and/or linear equation solution. The condi-
tion number for a matrix is computed by taking the ratio of the largest singular value
to the smallest singular value. A good condition number is a small number close to
unity; a bad condition number is a large number. For the theoretical case of a singu-
lar matrix, the condition number is infinite.

The ill-conditioned characteristic of matrices that are of the Vandermonde form
can be reduced, but not eliminated, by the following:

¢ Minimizing the frequency range of the data

e Minimizing the order of the model

¢ Normalizing the frequency range of the data (0,2) or (-2,2)
¢ Use of orthogonal polynomials

Several orthogonal polynomials have been applied to the frequency-domain modal
parameter estimation problem, such as

¢ Forsythe polynomials
¢ Chebyshev polynomials
¢ Legendre polynomials
e Laguerre polynomials

First-Order Frequency-Domain Algorithms. Several algorithms have been
developed that fall into the category of first-order frequency-domain algorithms,
including the simultaneous frequency-domain (SFD) algorithm and the multiple
reference simultaneous frequency-domain algorithm. These algorithms are essen-
tially frequency-domain equivalents to the ITD and ERA algorithms and effectively
involve a state-space formulation when compared to the second-order frequency-
domain algorithms. The state-space formulation utilizes the derivatives of the
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frequency response functions as well as the frequency response function in the solu-
tion. These algorithms have superior numerical characteristics compared to the
high-order frequency-domain algorithms. Unlike the low-order time-domain algo-
rithms, though, sufficient data from across the complete frequency range of interest
must be included in order to obtain a satisfactory solution.

Second-Order Frequency-Domain Algorithms. The second-order frequency-
domain algorithms include the polyreference frequency-domain (PFD) algorithms.
These algorithms have superior numerical characteristics compared to the high-
order frequency-domain algorithms. Unlike the low-order time-domain algorithms,
though, sufficient data from across the complete frequency range of interest must be
included in order to obtain a satisfactory solution.

Residue Estimation. Once the modal frequencies and modal participation vec-
tors have been estimated, the associated modal vectors and modal scaling (residues)
can be found with standard least squares methods in either the time or the frequency
domain. The most common approach is to estimate residues in the frequency
domain utilizing residuals, if appropriate:

1
{Hpq(m)}Ns x1= [~ {qu'}(Zn +2)x1 (21.97)
jo—4, Ny x (2n +2)
where N, = number of spectral lines > 2n + 2
1 1 1 D U B
jor—h jor - jor—ks T joy—hy 0
1 1 1 1 -1 1
JLO VR [ PR (I PR (5 P 5
[ '(01 7 } = 1 1 1 1 -1 1
I " Jos—A jos—X  jos—2s o jws — 7vzn oy’
1 1 1 1 -1 1
L JOn— A jONs— Ay jONs — Ag T jony— A o |

{qur} =
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H,y(o;)
Hp,y (o)
{Hpq(w)} = I_Ipq(w3)

Hpq(mN.y)

The above equation is a linear equation in terms of the unknown residues once
the modal frequencies are known. Since more frequency information N; is available
from the measured frequency response function than the number of unknowns
2n + 2, this system of equations is normally solved using the same least squares
methods discussed previously. If multiple-input frequency response function data
are available, the above equation is modified to find a single set of 2 residues rep-
resenting all of the frequency response functions for the multiple inputs and a sin-
gle output.

MODAL DATA PRESENTATION/VALIDATION

Once the modal parameters are determined, there are several procedures that allow
the modal model to be validated. Some of the procedures that are used are

e Measurement synthesis

¢ Visual verification (animation)

¢ Finite element analysis

¢ Modal vector orthogonality

¢ Modal vector consistency (modal assurance criterion)
¢ Modal modification prediction

¢ Modal complexity

¢ Modal phase colinearity and mean phase deviation

All of these methods depend upon the evaluation of an assumption concerning the
modal model. Unfortunately, the success of the validation method defines only the
validity of the assumption; the failure of the modal validation does not generally
define what the cause of the problem is.

MEASUREMENT SYNTHESIS

The most common validation procedure is to compare the data synthesized from the
modal model with the measured data. This is particularly effective if the measured
data are not part of the data used to estimate the modal parameters. This serves as
an independent check of the modal parameter estimation process. The visual match
can be given a numerical value if a correlation coefficient, similar to coherence, is
estimated. The basic assumption is that the measured frequency response function
and the synthesized frequency response function should be linearly related (unity)
at all frequencies.
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Synthesis correlation coefficient (SCC):

S Hy ()i, o)

=,

SCC,y=T,/’'= = [N R
Z Hpq(m)Hpq*((’))z H,(0)H,*(w)

=, 0 =0,

(21.98)

where H,,(®)= measured frequency response function
H,, (o) = synthesized frequency response function

VISUAL VERIFICATION

Another common method of modal model validation is to evaluate the modal vec-
tors visually. While this can be accomplished from plotted modal vectors superim-
posed upon the undeformed geometry, the modal vectors are normally animated
(superimposed upon the undeformed geometry) in order to quickly assess the
modal vector. In particular, modal vectors are evaluated for physically realizable
characteristics such as discontinuous motion or out-of-phase problems. Often, rigid
body modes of vibration are evaluated to determine scaling (calibration) errors or
invalid measurement degree-of-freedom assignment or orientation. Naturally, if the
system under test is believed to be proportionally damped, the modal vectors should
be normal modes, and this characteristic can be quickly observed by viewing an ani-
mation of the modal vector.

FINITE ELEMENT ANALYSIS

The results of a finite element analysis of the system under test can provide another
method of validating the modal model. While the problem of matching the number
of analytical degrees-of-freedom N, to the number of experimental degrees-of-
freedom N, causes some difficulty, the modal frequencies and modal vectors can be
compared visually or through orthogonality or consistency checks. Unfortunately,
when the comparison is not sufficiently acceptable, the question of error in the
experimental model versus error in the analytical model cannot be easily resolved.
Generally, assuming minimal errors and sufficient analysis and test experience, rea-
sonable agreement can be found in the first ten deformable modal vectors, but
agreement for higher modal vectors is more difficult. Finite element analysis is dis-
cussed in detail in Chap. 28, Part II.

MODAL VECTOR ORTHOGONALITY

Another method that is used to validate an experimental modal model is the
weighted orthogonality check. In this case, the experimental modal vectors are used
together with a mass matrix normally derived from a finite element model to evalu-
ate orthogonality. The experimental modal vectors are scaled so that the diagonal
terms of the modal mass matrix are unity. With this form of scaling, the off-diagonal
values in the modal mass matrix are expected to be less than 0.1 (10 percent of the
diagonal terms).
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Theoretically, for the case of proportional damping, each modal vector of a sys-
tem is orthogonal to all other modal vectors of that system when weighted by the
mass, stiffness, or damping matrix. In practice, these matrices are made available by
way of a finite element analysis, and normally the mass matrix is considered to be the
most accurate. For this reason, any further discussion of orthogonality is made with
respect to mass matrix weighting. As a result, the orthogonality relations can be
stated as follows:

Orthogonality of modal vectors:

(WM} =0 res (21.99)

WiMi{w} =M,  r=s (21.100)

Experimentally, the result of zero for the cross orthogonality [Eq. (21.99)] can rarely
be achieved, but values up to one-tenth of the magnitude of the generalized mass of
each mode are considered to be acceptable. It is a common procedure to form the
modal vectors into a normalized set of mode shape vectors with respect to the mass
matrix weighting. The accepted criterion in the aerospace industry, where this confi-
dence check is made most often, is for all of the generalized mass terms to be unity
and all cross-orthogonality terms to be less than 0.1. Often, even under this criterion,
an attempt is made to adjust the modal vectors so that the cross-orthogonality con-
ditions are satisfied.*-

In Egs. (21.99) and (21.100) the mass matrix must be an N, X N, matrix corre-
sponding to the measurement locations on the structure. This means that the finite
element mass matrix must be modified from whatever size and distribution of grid
locations are required in the finite element analysis to the N, X N, square matrix cor-
responding to the measurement locations. This normally involves some sort of
reduction algorithm as well as interpolation of grid locations to match the measure-
ment situation.***

When Eq. (21.99) is not sufficiently satisfied, one (or more) of three situations
may exist. First, the modal vectors can be invalid. This can be due to measurement
error or problems with the modal parameter estimation algorithms. This is a very
common assumption and many times contributes to the problem. Second, the mass
matrix can be invalid. Since the mass matrix is not easily related to the physical
properties of the system, this probably contributes significantly to the problem.
Third, the reduction of the mass matrix can be invalid. This can certainly be a realis-
tic problem and cause severe errors. One example of this situation occurs when a
relatively large amount of mass is reduced to a measurement location that is highly
flexible, such as the center of an unsupported panel. In such a situation the meas-
urement location is weighted very heavily in the orthogonality calculation of Eq.
(21.99) but may represent only incidental motion of the overall modal vector.

In all probability, all three situations contribute to the failure of cross-orthog-
onality criteria on occasion. When the orthogonality conditions are not satisfied, this
result does not indicate where the problem originates. From an experimental point of
view, it is important to try to develop methods that provide confidence that the modal
vector is or is not part of the problem.

MODAL VECTOR CONSISTENCY

Since the residue matrix contains redundant information with respect to a modal
vector, the consistency of the estimate of the modal vector under varying conditions
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such as excitation location or modal parameter estimation algorithms can be a valu-
able confidence factor to be utilized in the process of evaluation of the experimen-
tal modal vectors.

The common approach to estimation of modal vectors from the frequency
response function matrix is to measure a complete row or column of the frequency
response function matrix. This gives reasonable definition to those modal vectors
that have a nonzero modal coefficient at the excitation location and can be com-
pletely uncoupled with the forced normal mode excitation method. When the modal
coefficient at the excitation location of a modal vector is zero (very small with
respect to the dynamic range of the modal vector) or when the modal vectors cannot
be uncoupled, the estimation of the modal vector contains potential bias and vari-
ance errors. In such cases, additional rows and/or columns of the frequency response
function matrix are measured to detect such potential problems.

In these cases, information in the residue matrix corresponding to each pole of
the system is evaluated to determine separate estimates of the same modal vector.
This evaluation consists of the calculation of a complex modal scale factor (relating
two modal vectors) and a scalar modal assurance criterion (measuring the consis-
tency between two modal vectors). The function of the modal scale factor (MSF) is
to provide a means of normalizing all estimates of the same modal vector. When two
modal vectors are scaled similarly, elements of each vector can be averaged (with or
without weighting), differenced, or sorted to provide a best estimate of the modal
vector or to provide an indication of the type of error vector superimposed on the
modal vector. In terms of multiple-reference modal parameter estimation algo-
rithms, the modal scale factor is a normalized estimate of the modal participation
factor between two references for a specific mode of vibration. The function of the
modal assurance criterion (MAC) is to provide a measure of consistency between
estimates of a modal vector. This provides an additional confidence factor in the
evaluation of a modal vector from different excitation locations. The modal assur-
ance criterion also provides a method of determining the degree of causality
between estimates of different modal vectors from the same system.*! The modal
scale factor is defined, according to this approach, as follows:

MSF,, = 1¥er 1" (W } (21.101)
{Wdr }H {Wdr }

Equation (21.70) implies that the modal vector d is the reference to which the
modal vector c is compared. In the general case, modal vector ¢ can be considered to
be made up of two parts. The first part is the part correlated with modal vector d. The
second part is the part that is not correlated with modal vector d and includes con-
tamination from other modal vectors and any random contribution. This error vec-
tor is considered to be noise. The modal assurance criterion is defined as a scalar
constant relating the portion of the automoment of the modal vector that is linearly
related to the reference modal vector as follows:

(ol fwa) _ (vl twal(twa twe)
{\Vcr}” {Wn'r} {Wdr}” {Wdr} {WCY}H {‘Vc‘r}{‘v{lr}H {Wdr}

2

MACL’(I’ =

(21.102)

The modal assurance criterion is a scalar constant relating the causal relationship
between two modal vectors. The constant takes on values from 0, representing no
consistent correspondence, to 1, representing a consistent correspondence. In this
manner, if the modal vectors under consideration truly exhibit a consistent relation-
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ship, the modal assurance criterion should approach unity and the value of the
modal scale factor can be considered to be reasonable.

The modal assurance criterion can indicate only consistency, not validity. If the
same errors, random or bias, exist in all modal vector estimates, this is not delineated
by the modal assurance criterion. Invalid assumptions are normally the cause of this
sort of potential error. Even though the modal assurance criterion is unity, the
assumptions involving the system or the modal parameter estimation techniques are
not necessarily correct. The assumptions may cause consistent errors in all modal
vectors under all test conditions verified by the modal assurance criterion.

Coordinate Modal Assurance Criterion (COMAC). An extension of the modal
assurance criterion is the coordinate modal assurance criterion (COMAC).** The
COMAC attempts to identify which measurement degrees-of-freedom contribute
negatively to a low value of MAC. The COMAC is calculated over a set of mode
pairs, analytical versus analytical, experimental versus experimental, or experimen-
tal versus analytical. The two modal vectors in each mode pair represent the same
modal vector, but the set of mode pairs represents all modes of interest in a given
frequency range. For two sets of modes that are to be compared, there is a value of
COMAC computed for each (measurement) degree-of-freedom.
The coordinate modal assurance criterion (COMAC) is defined as follows:

N
Z] Yorhpr
N

N
Z Vo™ = OprPpr™

r=1

2

COMAC, = (21.103)

where v, = modal coefficient from (measured) degree-of-freedom p and modal
vector r from one set of modal vectors
¢, = modal coefficient from (measured) degree-of-freedom p and modal
vector r from a second set of modal vectors

The above formulation assumes that there is a match for every mode in the two
sets. Only those modes that match between the two sets are included in the
computation.

MODAL MODIFICATION PREDICTION

The use of a modal model to predict changes in modal parameters caused by a pertur-
bation (modification) of the system is becoming more of a reality as more measured
data are acquired simultaneously. In this validation procedure, a modal model is esti-
mated based upon a complete modal test. This modal model is used as the basis to pre-
dict a perturbation to the system that is tested, such as the addition of a mass at a
particular point on the structure. Then, the mass is added to the structure and the per-
turbed system is retested. The predicted and measured data or modal model can be
compared and contrasted as a measure of the validity of the underlying modal model.

MODAL COMPLEXITY

Modal complexity is a variation on the use of sensitivity analysis in the validation of
a modal model. When a mass is added to a structure, the modal frequencies either
should be unaffected or should shift to a slightly lower frequency. Modal overcom-
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plexity is a summation of this effect over all measured degrees-of-freedom for each
mode. Modal complexity is particularly useful for the case of complex modes in an
attempt to quantify whether the mode is genuinely a complex mode, a linear combi-
nation of several modes, or a computational artifact. The mode complexity is nor-
mally indicated by the mode overcomplexity value (MOV), which is the percentage
of the total number of response points that actually cause the damped natural fre-
quency to decrease when a mass is added. A separate MOV is estimated for each
mode of vibration, and the ideal result should be 1.0 (100 percent) for each mode.

MODAL PHASE COLINEARITY AND MEAN PHASE DEVIATION

For proportionally damped systems, the modal coefficients for a specific mode of
vibration should differ by 0° or 180°. The modal phase colinearity (MPC) is an index
expressing the consistency of the linear relationship between the real and imaginary
parts of each modal coefficient. This concept is essentially the same as the ordinary
coherence function with respect to the linear relationship of the frequency response
function for different averages or the modal assurance criterion (MAC) with respect
to the modal scale factor between modal vectors. The MPC should be 1.0 (100 per-
cent) for a mode that is essentially a normal mode. A low value of MPC indicates a
mode that is complex (after normalization) and is an indication of a nonproportionally
damped system or errors in the measured data and/or modal parameter estimation.

Another indicator that defines whether a modal vector is essentially a normal
mode is the mean phase deviation (MPD).This index is the statistical variance of the
phase angles for each mode shape coefficient for a specific modal vector from the
mean value of the phase angle. The MPD is an indication of the phase scatter of a
modal vector and should be near 0° for a real, normal mode.
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