CHAPTER 13 VIBRATION MEASUREMENT INSTRUMENTATION

Robert B. Randall

INTRODUCTION

This chapter describes the principles of operation of typical instrumentation used in the measurement of shock and vibration. It deals with the measurement of parameters which characterize the total (broad-band) signal. Considerable reference is made to Chaps. 22 and 23, which give the mathematical background for various signal descriptors. Some reference is also made to the digital techniques of Chap. 27. Many of the techniques introduced here are applied in Chap. 16.

VIBRATION MEASUREMENT EQUIPMENT

Figure 13.1 shows a typical measurement system consisting of a preamplifier, a signal conditioner, a detector, and an indicating meter. Most or all of these elements often are combined into a single unit called a *vibration meter*, which is described in a following section.

The preamplifier is required to convert the very weak signal at high impedance from a typical piezoelectric transducer into a voltage signal at low impedance, which is less prone to the influence of external effects such as electromagnetic noise pickup. The signal conditioner is used to limit the frequency range of the signal (possibly to integrate it from acceleration to velocity and/or displacement) and to provide extra amplification. The detector is used to extract from the signal, parameters which characterize it, such as rms value, peak values, and crest factor. The so-called dc or slowly varying signal from the detector can be viewed on a meter, graphically recorded, or digitized and stored in a digital memory.

ACCELEROMETER PREAMPLIFIERS

Types of accelerometer preamplifiers include voltage preamplifiers, charge preamplifiers, and line-drive preamplifiers. Voltage preamplifiers now are little used

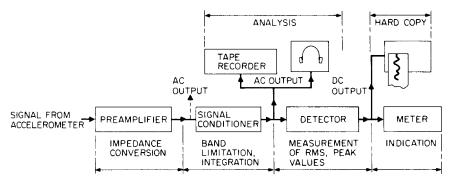


FIGURE 13.1 A block diagram of a typical vibration measurement system.

because, as indicated in Chap. 12, the voltage sensitivity of an accelerometer plus a cable is very dependent on the cable length. The sensitivity of the other two types is virtually independent of cable length, and this is of considerable practical importance.

Figure 13.2 shows the equivalent circuit of a charge preamplifier with an accelerometer and cable. The charge preamplifier consists of an operational amplifier having an amplification A, back-coupled across a condenser C_f ; the input voltage to the amplifier is e_i . The output voltage e_o of this circuit can be expressed as

$$e_o = e_i A = \frac{q_a A}{C_a + C_c + C_i - C_f (A - 1)}$$
(13.1)

which is proportional to the charge q_a generated by the accelerometer. If A is very large, then the capacitances C_a , C_c , and C_i become negligible in comparison with AC_f and the expression can be simplified to

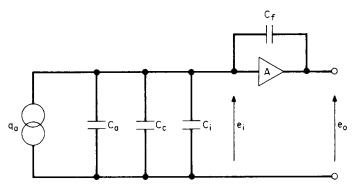


FIGURE 13.2 Diagram of a charge amplifier with accelerometer and cable. $A = \text{amplification of operational amplifier; } C_f = \text{shunt capacitance across amplifier; } C_a = \text{accelerometer capacitance; } C_c = \text{cable capacitance; } C_i = \text{preamplifier input capacitance; } q_a = \text{charge generated by accelerometer; } e_i = \text{amplifier input voltage}.$

$$e_o \approx -\frac{q_a}{C_f} \tag{13.2}$$

which is independent of the cable capacitance.

Although with a charge preamplifier the sensitivity is independent of cable length, the noise pickup in the high-impedance circuit increases with cable length, and so it is an advantage to have the preamplifier mounted as close to the transducer as is practicable. The line-drive amplifier represents an excellent solution to this problem, made possible by the development of miniaturized thick-film circuits. The amplifier can thus be attached to or even included internally in the transducer. In principle the initial amplifier can be of either charge or voltage type, but it can be advantageous to have the option of separating the amplifier from the transducer by a short length of cable, in which case the amplifier should be of the charge type. If the output signal from the initial amplifier is used to modulate the current or voltage of the power supply, then a single cable can be used both to power the amplifier and to carry the signal; the modulation is converted to a voltage signal in the power supply at the other end of this cable, which can be very long, e.g., up to a kilometer.

The output cable from a line-drive preamplifier is less subject to electromagnetic noise pickup than the cable connecting the transducer to a charge preamplifier. On the other hand, line-drive preamplifiers typically have some restriction of dynamic range and frequency range in comparison with a high-quality general-purpose charge preamplifier, and so reference should be made to the manufacturer's specifications when this choice is being made. Another problem is that it is more difficult to detect overload with an internal amplifier.

Signal Conditioners. A signal-conditioning section is often required to band-limit the signal, possibly to integrate it (to velocity and/or displacement), and to adjust the gain. High- and low-pass filters normally are required to remove extraneous low- and high-frequency signals and to restrict the measurement to within the frequency range of interest. For broad-band measurements the frequency range is often specified, while for tape-recording and/or subsequent analysis the main reason for the restriction in frequency range is to remove extraneous components which may dominate and restrict the available dynamic range of the useful part of the signal. See also Chap. 17.

Examples of extraneous low-frequency signals (see Chap. 12) are thermal transient effects, triboelectric effects described in Chap. 15, and accelerometer base strain. There may also be some low-frequency vibrations transmitted through the foundations from external sources. At the high-frequency end, the accelerometer resonance at least must be filtered out by an appropriate low-pass filter. This high- and low-pass filtering does not affect the signal in the input amplifier, which must be able to cope with the full dynamic range of the signal from the transducer. It is thus possible for a preamplifier to overload even when the output signal is relatively small. Consequently, it is important that the preamplifier indicates overload when it does occur.

Integration. Although an accelerometer, in general, is the best transducer to use, it is often preferable to evaluate vibration in terms of velocity or displacement. Most criteria for evaluating machine housing vibration (Chap. 16) are effectively constant-velocity criteria, as are many criteria for evaluating the effects of vibration on buildings and on humans, at least within certain frequency ranges (Chaps. 24 and 42). Some vibration criteria (e.g., for aircraft engines) are expressed in terms of displacement. For rotating machines, it is sometimes desired to add the absolute displacement of the bearing housing to the relative displacement of the shaft in its bearing (measured with proximity probes) to determine the absolute motion of the shaft in space.

Acceleration signals can be integrated electronically to obtain velocity and/or displacement signals; an accelerometer plus integrator can produce a velocity signal which is valid over a range of three decades (1000:1) in frequency—a capability which generally is not possessed by velocity transducers. Moreover, simply by switching the lower limiting frequency (for valid integration) on the preamplifier, the three decades can be moved by a further decade, without changing the transducer.

A typical sinusoidal vibration component may be represented by the phasor $Ae^{j\omega t}$. Integrating this once gives $\frac{1}{j\omega} Ae^{j\omega t}$, and thus integration corresponds in the frequency domain to a division by $j\omega$. This is the same as a phase shift of $-\pi/2$ and an amplitude weighting inversely proportional to frequency, and thus electronic integrating circuits must have this property.

One of the simplest integrating circuits is a simple *R*-*C* circuit, as illustrated in Fig. 13.3. If e_i represents the input voltage, then the output voltage e_o is given by

$$e_o = e_i \frac{1}{1 + j\omega RC} \tag{13.3}$$

which for high frequencies ($\omega RC >> 1$) becomes

$$e_o \approx \frac{e_i}{j\omega RC} \tag{13.4}$$

which represents an integration, apart from the scaling constant 1/RC.

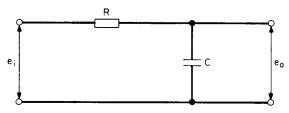


FIGURE 13.3 Electrical integration network of the simple *R*-*C* type.

The characteristic of Eq. (13.3) is shown in Fig. 13.4; it is that of a low-pass filter with a slope of -20 dB/decade and a cutoff frequency $f_n = 1/(2\pi RC)$ (corresponding to $\omega RC = 1$).

The limits f_L (below which no integration takes place) and f_T (above which the signal is integrated) can be taken as roughly a factor of 3 on either side of f_n , for normal measurements where amplitude accuracy is most important. Where phase accuracy is important (e.g., to measure true peak values), the factor should be somewhat greater. Modern integrators tend to use active filters with a more localized transition between the region of no integration and the region of integration.

One situation where the choice of the low-frequency limit is important is in the integration of impulsive signals, for example, in the determination of peak velocity and displacement from an input acceleration pulse. Figure 13.5 shows the effect of single and double integration on a 10-millisecond single-period sine burst, with both 1- and 10-Hz cutoff frequencies, in comparison with the true results. The deviations

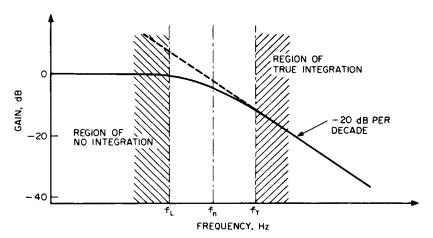


FIGURE 13.4 Frequency characteristic of the circuit shown in Fig. 13.3. f_T = lower frequency limit for true integration; f_L = upper frequency limit for no integration.

depend to some extent on the actual amplitude and phase characteristics of the integrator, but the following values can be used as a rough guide to select the integrator cutoff frequency f_{T} :

For single integration (acceleration to velocity),

$$f_T < \frac{1}{30t_p} \tag{13.5}$$

For double integration (acceleration to displacement),

$$f_T < \frac{1}{50t_p} \tag{13.6}$$

where t_p is the time from the start of the pulse to the measured peak. For the case shown in Fig. 13.5, these values of f_T are <6.7 Hz and <2 Hz, respectively.

DETECTORS

Detectors are used to extract parameters which characterize a signal, such as arithmetic average, mean-square, and root-mean-square (rms) values, as defined in Chap. 22. The arithmetic average value is the simplest to measure, using a full-wave rectifier to obtain the instantaneous magnitude and a smoothing circuit to obtain the average. However, even though there is a fixed (though different) relationship between average and rms values for sinusoidal and Gaussian random signals (Chap. 22), the relationship varies considerably for complex signals and, in particular, is affected considerably by phase relationships. Since mean-square and rms values are independent of phase relationships, they are usually preferred as signal descriptors for stationary signals; where an average detector is used, it is usually as an approximation of an rms detector.

Mean-square values have the advantage that they are directly additive when two signals are added together (in particular different frequency bands or components),

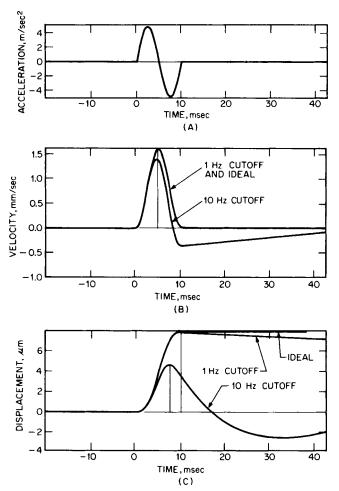


FIGURE 13.5 Integration and double integration of a 10-millisecond acceleration pulse using lower frequency limits of 1 and 10 Hz, respectively. (*A*) Input acceleration signal. (*B*) Velocity signal resulting from a single integration with different cutoff frequencies compared with ideal integration. (*C*) Displacement signal resulting from a double integration compared with ideal integration.

while rms values have the advantage that they have the same dimensions and units as the original signal. Thus, a "true rms" detector must include a squaring section and averager to obtain the mean-square value, followed by a square-root extractor.

Squaring. One of the earliest true rms detectors, the Wahrman detector,¹ used a piecewise linear approximation to the parabola representing true squaring. For moderate signal values, the errors for the piecewise linear circuit are quite small, but past the last breakpoint on the curve the deviation becomes progressively larger. The breakpoints are dimensioned for a typical rms level, and the errors are thus

greatest for relatively large instantaneous values, which are characteristic of signals with a high *crest factor* (ratio of peak to rms value). The higher the crest factor, the larger the number of breakpoints required. As an example, four breakpoints give an accuracy within ½ dB for crest factors up to 5. Thus, for accurate results, this type of detector must be specified with respect to both dynamic range and crest factor.

Later designs of analog squaring circuits, so-called log-mean-square or lms detectors, make use of the logarithmic characteristic of certain diodes to achieve squaring by doubling the logarithmic value of the rectified signal. This type generally has no limitation on crest factor other than that given by the dynamic range. In a similar manner, digital instruments achieve true squaring and are limited only by the dynamic range of the detector.

Averaging. The definition of mean-square value given in Eq. (22.1) assumes a uniform weighting for the whole of the averaging time *T*. In practice, for measurements on continuous signals, it is often desired to have a running average, giving at any time the average value over the previous *T* seconds. It is extremely difficult to achieve a linearly weighted running average, and so recourse is usually made to two alternatives:

- 1. Exponentially weighted running average. This is achieved by an *R*-*C* smoothing circuit in most analog instruments, and also by exponential averaging in digital instruments such as FFT analyzers.
- 2. Linearly weighted average over a fixed time period of length *T*. The result is available only at the end of each period and is usually held until processed further, and so new incoming data may be lost.

The averaging process acts as a low-pass filter to remove high-frequency ripple components and leave the slowly varying dc or average value. Figure 13.6 compares the low-pass filter characteristics of exponential and linear averaging and demonstrates that they are equivalent for the case where T = 2RC (where *RC* is the time constant of the exponential decay). This low-pass filtration in the frequency domain corresponds to a convolution in the time domain with the impulse response of the averaging circuit. The two impulse responses (reversed in time because of the convolution) are compared in Fig. 13.7 for the same case where T = 2RC. When scaled to give the same result on stationary signals (same area under the curve), the peak output for exponential averaging is twice that for linear averaging. Account must be taken of this in the analysis of impulses.

A method of checking the effective averaging time of an exponential averager is to remove the excitation and measure the rate of decay of the output. This will be 4.34 dB per *RC* time constant, or 8.7 dB per averaging time *T*. This does not apply to FFT analyzers operating above their real-time frequency, in the same way that the effective linear averaging time is then less than the time required to obtain the result.

Peak Detectors. In some cases it is desired to measure the true peak values of the original signal (for example, to avoid overloading a tape recorder). Peak detectors are available which capture the highest value encountered and either hold it until reset or have it decay slowly enough that the eye can read the peak value from a meter. Care should be taken to distinguish between maximum positive peak, maximum negative peak, maximum peak (positive or negative), and peak-to-peak values (Fig. 13.8). Care should also be taken to distinguish between true peak values and what is roughly referred to as peak-to-peak shaft vibration, which is often assumed to be sinusoidal and is measured with an average detector.



FIGURE 13.6 Comparison of linear averaging (over time *T*) with exponential averaging (time constant *RC*) in the frequency domain for the case where T = 2RC. The low-pass filter characteristics have the same asymptotic curves and the same bandwidth B = 1/T = 1/2RC.

Crest Factor. The *crest factor* is the ratio of peak to rms value. The maximum peak (positive or negative) should be used. It is meaningful only where peak values are reasonably uniform and repeatable from one signal sample to another. The crest factor yields a measure of the spikiness of a signal and is often used to characterize signals containing repetitive impulses in addition to a lower-level continuous signal. Examples of such vibration signals are those from reciprocating machines and those produced by localized faults in gears and rolling element bearings.

Kurtosis. *Kurtosis,* a statistical parameter akin to the mean and mean-square values, is defined in Eq. (11.13) as^2

$$a_4 = \int_{-\infty}^{\infty} \left(\frac{x - \bar{x}}{\sigma}\right)^4 p(x) dx \tag{13.7}$$

using the terminology of Chap. 11.

For signals with zero mean value $\overline{\xi}$, a practical estimator for this can be expressed as

$$\frac{\frac{1}{T} \int_{0}^{T} \xi^{4}(t) dt}{\left[\frac{1}{T} \int_{0}^{T} \xi^{2}(t) dt\right]^{2}}$$
(13.8)

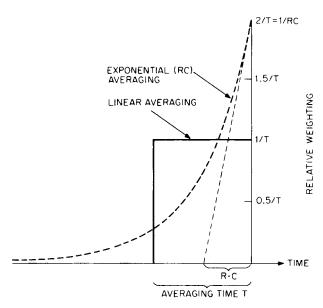


FIGURE 13.7 Comparison of linear averaging (over time *T*) with exponential averaging (time constant *RC*) in the time domain for the case where T = 2RC. The weighting curves represent the impulse-response functions reversed in time.

Because of the fourth power, considerable weight is given to large amplitude values, and the kurtosis thus is a good indicator of the spikiness of the signal. Because it takes the whole signal into account, rather than just isolated peaks, it generally gives a more stable value than the crest factor, but this must be weighed against the more complicated measurement procedure. Kurtosis is normally calculated digitally, but can be measured by a more complex version of the log-mean-square detector described above.

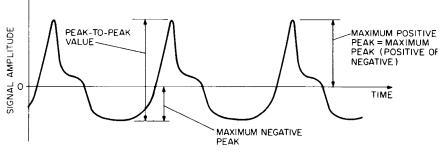


FIGURE 13.8 Illustration of various peak values.

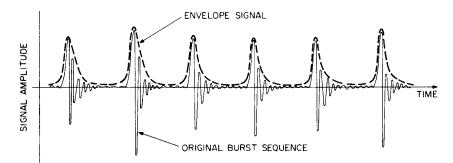


FIGURE 13.9 Illustration of the envelope signal for an impulsive signal containing repetitive high-frequency bursts.

Envelope Detectors. Many machine vibration signals of interest contain repetitive high-frequency bursts, as a result of exciting high-frequency resonances at regular intervals. Direct frequency analysis of the signal does not always give much information on the repetition frequencies, in particular when the resonances excited are at very high frequencies. These repetition frequencies are, however, easily measurable in the envelope signal illustrated in Fig. 13.9. Quite often, the signal is first bandpass-filtered in a frequency region dominated by the repetitive bursts (i.e., one of the regions containing resonances which are excited and where the extraneous background signal is low).

The true envelope signal can be obtained using a peak detector with a decay time constant set sufficiently short so that it is able to follow the relatively slow variations in the (rectified) signal envelope. If the signal is first passed through a bandpass filter, it will have a roughly sinusoidal form with slowly varying amplitude and there will be a fixed ratio of peak to (short-term) rms or average value, in which case an rms or average detector can be used instead of the peak detector. Moreover, where a frequency analysis of the signal is to be obtained with an FFT analyzer, it is not necessary to apply a smoothing circuit, as the antialiasing filters (described below) will automatically remove high-frequency ripple components in the rectified signal. Thus, a tunable bandpass filter of, say, one-third-octave bandwidth, followed by a full-wave rectifier, can be used as an envelope detector in cases where it is primarily the burst repetition frequencies which are of interest. It is shown in Chap. 14 that envelope signals can also be calculated by Hilbert transform techniques in an FFT analyzer. In most cases it is advantageous to analyze the square of the envelope signal,⁴ in which case a squaring circuit can replace the rectifier.

VIBRATION METERS

Vibration meters are instruments which receive a signal from a vibration transducer and process it so as to give an indication of relevant vibration parameters. They are sometimes made specifically to meet certain standards, for example, ISO 2372 on "Vibration Severity of Rotating Machines" or ISO 2631 on "Human Vibration." In these cases, the requirements are specified in the relevant standard; the discussion here is aimed at more general-purpose vibration meters.

For measurements on most rotating machines, a frequency range of 10 Hz to 10 kHz is desirable. The lower limit includes the shaft speed for all machines operating over 600 rpm and any subharmonic components such as oil whirl for higher-speed

plain bearing machines where such effects are most prevalent. The upper frequency of 10 kHz includes tooth-meshing frequencies and their harmonics in gearboxes, bladepassing frequencies in most bladed machines, and resonance frequencies typically excited by rolling element bearing faults.

It can be advantageous to be able to choose a number of upper and lower limiting frequencies within the overall range. For example, restriction of the upper frequency to 1 kHz allows measurements in accordance with ISO 2372 previously cited. For special purposes, it may be necessary to go to frequencies lower than 10 Hz, for example, in measurements on slow-speed machines and on bridges and other structures. It is possible to cover a total range of 1 Hz to 10 kHz with one accelerometer; if the meter is able to accept a range of transducers, its own frequency range can be even wider.

If restriction is to be made to one vibration parameter, then velocity usually is the best choice, as most machine vibration signals have a roughly uniform velocity spectrum, so that an increase at any frequency has a roughly equal chance of influencing overall vibration levels.

It is also desirable to be able to measure acceleration and displacement; changes at low frequency reflect themselves primarily in the displacement value, while changes at high frequency have the most effect on the acceleration value.

In addition to the measurement of rms levels in each of the vibration parameters, it is of advantage to be able to measure some parameter indicating the spikiness of the signal, such as peak values (and hence crest factor), kurtosis, spike energy, or shock-pulse value. Finally, it is useful if the meter has an ac output, to allow the signal to be fed to an oscilloscope, a tape recorder, or headphones. In the absence of frequency analysis, the human ear can discern a great deal about the characteristics of a signal, and this setup provides an excellent stethoscope. The ac signal should preferably be of selected parameter (acceleration, velocity, or displacement); the frequency range should be restricted as little as possible.

TAPE RECORDERS

The most widely used recording techniques for instrumentation tape recorders are direct recording, frequency-modulation (FM) recording, and digital recording. The first two are often combined in one recorder and are thus discussed together, while the latter is discussed separately.

Analog Recorders. In direct recording, the signal amplitude is reflected directly in the local degree of magnetization of the tape, while in FM recording the amplitude information is contained in the deviation of the frequency of a carrier tone from its nominal value. Thus, the degree of magnetization of the tape is less critical for FM recording, and the recorded blips are normally saturated. Hence, one of the advantages of FM recording is that the recorded signals are less susceptible to change due to poor storage conditions (heat, light, and stray magnetic fields). On the other hand, since the carrier frequency is typically 3 to 5 times higher than the maximum signal frequency in FM recording, tape speeds (and hence tape quantities used) must be 3 to 5 times greater for a given frequency range.

The major difference between the two techniques is in their ability to record lowfrequency signals. Since on playback of direct recordings it is the rate of change of tape magnetization which is detected, this technique cannot record down to dc; a typical lower frequency limit is 25 Hz. In contrast, FM recording can record down to dc; a dc signal is simply represented by a constant deviation of the carrier frequency.

Since on playback of direct recordings it is necessary to integrate the detected signal and compensate for other effects such as tape magnetic properties, this is usu-

ally done by equalization networks designed primarily to provide amplitude linearity; phase linearity is poor. Thus, the actual form of signals is likely to be modified by direct recording; peak values cannot be relied upon. The phase linearity of FM recording is excellent for all except the highest part of the frequency range, where the effects of the required low-pass filter become significant.

One of the most important characteristics of a tape recorder is its dynamic range, since the tape recorder is likely to be the element in the measurement chain whose dynamic range is restricted the most. The dynamic range usually is expressed in terms of a signal-to-noise ratio, which is typically 40 dB for FM recording and up to 50 dB for direct recording. These figures can be somewhat misleading, however, as the noise referred to is a total figure over the entire frequency range and has less influence in a narrow-band analysis. After narrow-band analysis, the noise level for FM recording typically is more than 60 dB below full scale, as compared with 70 to 90 dB for the digitization noise in a modern frequency analyzer.

Table 13.1 includes a summary of the most important features of FM and direct recording. Some recorders are able to record using both techniques, in which case the heads normally are optimized for FM and the signal-to-noise ratio for direct recording is reduced somewhat. The most important addition provided by direct recording is the possibility of recording considerably higher frequencies, typically 50 to 100 kHz.

Both techniques are limited by the accuracy of the tape transport system, and small variations in tape orientation and speed give rise to "wow" and "flutter."

	Direct	FM	DAT
Dynamic range (typical, narrow-band)	70 dB	60 dB	80 dB
Lower frequency limit (typical)	25 Hz	dc	dc
Upper frequency limit (typical)	50 kHz	10 kHz	20 kHz
Amplitude stability	Acceptable	Excellent	Excellent
Phase linearity	Poor	Good	Excellent
Preservation of recorded information	Acceptable	Good	Excellent

 TABLE 13.1
 Comparison of Recording Techniques

Digital Recorders. Instrumentation recorders are available based on the pulsecode modulation (PCM) principle. These have been developed from digital audiotape (DAT) recorders and have many characteristics in common. A typical DAT cassette can record, for 2 hours, two channels to 20,000 Hz, four channels to 10,000 Hz, or more channels with correspondingly lower frequency ranges. Double-speed versions give twice the number of channels for the same frequency range, but half the total recording time. For two-channel recording, the overall sampling rate is 96 kHz (48 kHz per channel), each sample being 16 bits, or 2 bytes, so that the overall amount of data stored on one DAT cassette is well over 1 gigabyte. Newer designs have a storage capacity of at least 25 gigabytes and allow recording of up to 32 channels with full 20-kHz frequency range. The problems of wow and flutter are largely eliminated by digital recorders because the sampling frequency during recording and playback is not directly tied to tape or rotating-head speed and can be made extremely accurate. Dynamic range is dependent primarily on the number of bits used in digitization but typically matches that of digital signal analyzers, giving approximately 20 dB more than typical analog recorders. Phase matching between channels is within a fraction of a degree over a very wide frequency range, meaning that signal reproduction is almost perfect.

As with any digital processing, the signal to be recorded must not contain any frequency components above half the sampling frequency. After sampling, it is not possible to determine whether this condition has been satisfied, and so it is normally necessary to filter the signals to be recorded with a very steep "antialiasing" filter. This is typically a 7-pole elliptic filter with cutoff frequency at 40 percent of the sampling frequency and a roll-off of 120 dB per octave. Less steep filters can be used to reduce the phase distortion effects in the vicinity of the cutoff frequency, but the cutoff frequency must then be reduced accordingly. To avoid further distortion, it is common to use digital interpolation techniques to increase the sample rate on playback, thus permitting the use of much "gentler" filters to smooth the output from the digital-to-analog converters.

Table 13.1 compares all three recording techniques.

DIGITAL SIGNAL PROCESSING

Computer software programs are commercially available which provide for signal processing using digital techniques, for example: FFT analysis, digital filtering, and optimization. One means of obtaining data in digital form is by using a digital tape recorder (described in the previous section) in which a digital output is obtained by bypassing the digital-to-analog converter contained in the recorder. Digital frequency analysis is discussed more fully in Chaps. 14 and 27. This section discusses the conversion of continuous analog signals which are converted into digital form using analog-to-digital converters; it also describes some of the differences between analog signal processing and digital signal processing.

ANALOG-TO-DIGITAL CONVERTERS

Analog-to-digital (A/D) converters serve to convert a continuous signal into a sequence of digital numbers representing the instantaneous value of the signal at specified time increments. Under certain conditions, it is possible to regain the original analog signal by the reverse process, using a digital-to-analog (D/A) converter, as discussed later. The time increments are normally uniform, i.e., they represent a constant sampling frequency; in other cases, they may be on some other basis such as uniform increments of shaft rotation (e.g., in the case of "order tracking," as discussed in Chap. 14).

The quality of the digitized signal depends on a number of factors, such as the accuracy of the sample intervals, the number of bits used in the digital representation, the linearity of the analog amplifiers with which the signal has been processed, and the quality of the low-pass filtering of the signal prior to the A/D conversion. Each of these factors is discussed later.

The first step in the A/D conversion process is the sample-and-hold circuit that samples the instantaneous value of the analog signal at the instant of each pulse of the sampling clock, and holds that analog voltage constant until the A/D conversion process is complete and it is reset. The accuracy of the sample spacing depends not only on the accuracy of the sample clock, but also on the acquisition time of the sample-and-hold circuit, but for the frequency range of typical vibration signals, both of these potential errors are negligible in high-quality A/D converters. For multiple channel conversion, it is common to use a single A/D converter multiplexing between channels, but even though it is possible to compensate for time delay

between channels, it is desirable to use synchronized sample-and-hold circuits which sample all channels simultaneously, even if the A/D conversion is done sequentially.

The output of an A/D converter is a binary integer number with 2^N possible values, where N is the number of bits. Depending on whether a sign bit is used, these can range from zero to $(2^{N}-1)$ or -2^{N-1} to $(2^{N-1}-1)$. The possible dynamic range of the digitized signal is thus heavily dependent on the number of bits used and is commonly taken to be 6 dB for each bit (each added bit giving a doubling of the number of possible levels and a doubling of the ratio of the maximum-to-minimum value). For averaged spectral results, the dynamic range can be increased somewhat by a process of adding "dither," a very low level random noise whose average spectrum is outside the dynamic range of the measurement system. When dither is added to a signal lower than the least significant bit (which otherwise would not register) it causes the latter to be set part of the time and thus gives an averaged result smaller than the least significant bit (note that the data should be converted from integer to floating point prior to the averaging process). On the other hand, the actual dynamic range of the measurement may be limited by factors other than the least significant bit, such as the noise level in the analog parts of the system, or the linearity of the latter. For example, it is not uncommon to have a 12-bit A/D converter (which should give a 72-dB dynamic range) with a linearity specification of 0.05% of full scale, this corresponding to a possible bias error of -66 dB with respect to full scale. Note that a bias error of this sort affects all values in the same way, and thus has a much greater effect than a random error of the same magnitude as is the case when several values of the same order are added together (e.g., when converting from constant bandwidth to constant percentage bandwidth spectra, which is done in some spectrum analyzers).

ANTIALIASING FILTERS

Discrete sampling in the time domain (i.e., multiplication by a train of unit impulse functions) corresponds in the frequency domain to a periodic repetition of the spectrum with a periodic spacing equal to the sampling frequency, as illustrated in Fig. 13.10. If the original signal does not contain any frequency components above half the sampling frequency f_s (i.e., outside the range from minus to plus $f_s/2$), this periodic repetition does not result in any loss of information and can in principle be removed again by low-pass filtering, as shown in Fig. 13.10B. If the sampling frequency is less than twice the highest frequency component in the signal, the periodic repetition of the spectrum gives mixing of the overlapped portions (known as aliasing), and it is no longer possible to separate them completely, as shown in Fig. 13.10C. Thus if it is desired to obtain correct frequency spectra, or to return to analog form via a D/A converter, it is absolutely necessary to ensure that the analog signal does not contain frequency components above $f_s/2$, and this is achieved by the use of appropriate low-pass filters, so-called antialiasing filters. As explained in Chap. 14, such filters have very steep characteristics (e.g., 120 dB/octave). Their application makes it possible to use up to 80 percent of the theoretically available spectrum (i.e., up to $f_s/2$), but they result in considerable phase distortion in the vicinity of the cutoff frequency.

Low-pass filters also change the waveform, as illustrated in Fig. 13.11 for the output of a square-wave generator (giving rise to uneven rectangular pulses so that all harmonics are produced). In Fig. 13.11*A* and *B*, a proper antialiasing filter has been used, so that the spectrum is correct, but the waveform has bursts at the beginning of

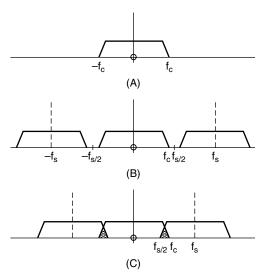


FIGURE 13.10 (*A*) Spectrum of a continuous bandlimited signal with maximum frequency f_{c} (*B*) Spectrum of digitized signal with sampling frequency $f_s > 2f_c$. (*C*) Spectrum of digitized signal with sampling frequency $f_s < 2f_c$; the hatched area indicates aliased components.

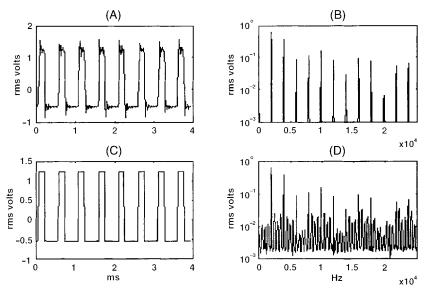


FIGURE 13.11 Effect time signals and spectra of antialiasing filters. (*A*) Time signal with filter. (*B*) Spectrum with filter. (*C*) Time signal without filter. (*D*) Spectrum without filter.

each level section. These can be interpreted either as the step-response of the lowpass filters or as the removal of the high-frequency components (the so-called *Gibbs phenomenon*). In Fig. 13.11*C* and *D*, no antialiasing filter has been used, and even though the waveform appears more like a square wave, the spectrum is now incorrect and contains aliasing components. This leads to the conclusion that where the sole purpose is to evaluate digitized waveforms, an antialiasing filter is not desirable, but where any treatment of the digitized signal is carried out (such as frequency analysis, digital filtering, or reconstruction of a signal by use of a D/A converter), antialiasing filters are absolutely necessary.

DIGITAL-TO-ANALOG CONVERSION

It is evident from Fig. 13.10 that in removing high-frequency components of the periodic spectrum of a sampled function, the low-pass filters which are used should be of the same quality as the original antialiasing filter prior to digitization. Furthermore, a D/A converter cannot produce true unit impulses, and it is usual that the converted voltage corresponding to each sample is carried over as a constant value in the sample interval. This is the equivalent of a convolution with a rectangular pulse of length Δt (equal to $1/f_s$), so that the spectrum is multiplied by a (sin *x*)/*x* function with its first zero at f_s , as illustrated in Fig. 13.12. The gain factor at 0.50 f_s is $2/\pi$ (-3.9 dB), and at 0.39 f_s (the normal range of an FFT spectrum) it is -2.3 dB. The effect of this factor, and the need for a very steep low-pass filter, can be reduced considerably by increasing the sampling rate (by digital interpolation) before D/A conversion, and this is commonly done where sufficiently fast hardware is available.

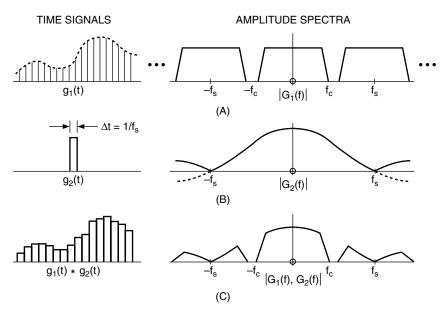


FIGURE 13.12 D/A conversion with constant voltage between samples. (A) Digitized time signal and its amplitude spectrum. (B) Rectangular pulse length Δt (equal to $1/f_s$) and its amplitude spectrum. (C) Convolution of (A) and (B) and the resulting amplitude spectrum.

DIGITAL PROCESSING

Once the signal has been obtained in digital form using proper antialiasing filters, many of the operations (described above and in Chaps. 14 and 27) can be carried out digitally.³ For example, acceleration signals can be integrated to obtain velocity using numerical integration directly in the time domain or if so desired, $j\omega$ operations in the frequency domain (where it can be combined with bandpass filtering). Each integration corresponds to a division by $j\omega$ of the Fourier spectrum (this applies only to ac-coupled signals).

REFERENCES

- 1. Wahrman, C. G.: Brüel & Kjaer Tech. Rev., (3) (1958).
- 2. Dyer, D., and R. M. Stewart: J. Mech. Des., 100:229 (1978).
- Oppenheim, A. V., and R. W. Schafer: "Discrete Time Signal Processing," Prentice-Hall, Inc., Englewood Cliffs, N.J., 1989.
- 4. Ho, D., and R. B. Randall: Mechanical Systems and Signal Processing, 14(5):763-788 (2000).