CHAPTER 10
MECHANICAL IMPEDANCE

Elmer L. Hixson

INTRODUCTION

The mechanical impedance at a given point in a vibratory system is the ratio of the
sinusoidal force applied to the system at that point to the velocity at the same point.
For example, mechanical impedance is discussed in Chap. 6 as it relates to dynamic
absorbers and auxiliary mass dampers. In the following sections of this chapter, the
mechanical impedance of basic elements that make up vibratory systems is pre-
sented. This is followed by a discussion of combinations of these elements. Then, var-
ious mechanical circuit theorems are described. Such theorems can be used as an aid
in the modeling of mechanical circuits and in determining the response of vibratory
systems; they are the mechanical equivalents of well-known theorems employed in
the analysis of electric circuits. The measurement of mechanical impedance and
some applications are also given.

MECHANICAL IMPEDANCE OF VIBRATORY
SYSTEMS

The mechanical impedance Z of a system is the ratio of a sinusoidal driving force F
acting on the system to the resulting velocity v of the system. Its mechanical mobil-
ity I is the reciprocal of the mechanical impedance.

Consider a sinusoidal driving F that has a magnitude F, and an angular fre-
quency o:

F=F,e* (10.1)
The application of this force to a linear mechanical system results in a velocity v:
V= pel© o (10.2)

where Vv, is the magnitude of the velocity and ¢ is the phase angle between F and v.
Then by definition, the mechanical impedance of the system Z (at the point of
application of the force) is given by

Z=Flv (10.3)

10.1



10.2 CHAPTER TEN

BASIC MECHANICAL ELEMENTS

The idealized mechanical systems considered in this chapter are considered to be
represented by combinations of basic mechanical elements assembled to form linear
mechanical systems. These basic elements are mechanical resistances (dampers),
springs, and masses. In general, the characteristics of real masses, springs, and
mechanical resistance elements differ from those of ideal elements in two respects:

1. A spring may have a nonlinear force-deflection characteristic; a mass may suffer
plastic deformation with motion; and the force presented by a resistance may not
be exactly proportional to velocity.

2. All materials have some mass; thus, a perfect spring or resistance cannot be
made. Some compliance or spring effect is inherent in all elements. Energy can
be dissipated in a system in several ways: friction, acoustic radiation, hysteresis,
etc. Such a loss can be represented as a resistive component of the element
impedance.

Mechanical Resistance (Damper). A mechanical resistance is a device in which
the relative velocity between the end points is proportional to the force applied to the
end points. Such a device can be represented by the dashpot of Fig. 10.1a, in which the
force resisting the extension (or compression) of the dashpot is the result of viscous
friction. An ideal resistance is assumed to be made of massless, infinitely rigid ele-
ments. The velocity of point A, v,, with respect to the velocity at point B, v,, is

v=(vi—v) =% (10.4)

where c is a constant of proportionality

called the mechanical resistance or

F, A c BF G damping constant. For there to be a rel-
ative velocity v as a result of force at A,

i vy :l i Vo there must be an equal reaction force at

B. Thus, the transmitted force F, is

(a) equal to F,. The velocities v, and v, are

measured with respect to the stationary
reference G; their difference is the rela-

k
Fa A B R G tive velocity v between the end points
i VvV VvV V i of the resistance.
Vi v With the sinusoidal force of Eq. (10.1)
(®)

applied to point A with point B attached
to a fixed (immovable) point, the veloc-
ity v, is obtained from Eq. (10.4):

_O____ V1=
Vq

© Because c is a real number, the force

FIGURE 10.1 Schematic representations of ancrlI%eIOCItylilre.salld.tO bed mn phaie'th
basic mechanical elements. () An ideal mechan- € mechanical 1mpedance o ¢

ical resistance. (b) An ideal spring. (c) An ideal ~ Tesistance is obtained by substituting
mass. from Egs. (10.1) and (10.5) in Eq. (10.3):
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Z.=

< |4

=c (10.6)

The mechanical impedance of a resistance is the value of its damping constant c.

Spring. A linear spring is a device for which the relative displacement between its
end points is proportional to the force applied. It is illustrated in Fig. 10.1b and can
be represented mathematically as follows:

F,

X1 — X3 =7 (107)

where x;, x, are displacements relative to the reference point G and k is the spring
stiffness. The stiffness k can be expressed alternately in terms of a compliance C =
1/k. The spring transmits the applied force, so that Fy, = F,.

With the force of Eq. (10.1) applied to point A and with point B fixed, the dis-
placement of point A is given by Eq. (10.7):

The displacement is thus sinusoidal and in phase with the force. The relative velocity
of the end connections is required for impedance calculations and is given by the dif-
ferentiation of x with respect to time:

_ [oFe” _ o
k k

X=v Foel@ +9) (10.8)

Substituting Egs. (10.1) and (10.8) in Eq. (10.3), the impedance of the spring is

Z=-1% (10.9)

Mass. In the ideal mass illustrated in Figs. 2.2 and 10.1¢, the acceleration X of the
rigid body is proportional to the applied force F:

F,
B =—* 10.10
X1 m ( )

where m is the mass of the body. By Eq. (10.10), the force F, is required to give the
mass the acceleration X, and the force F, is transmitted to the reference G. When a
sinusoidal force is applied, Eq. (10.10) becomes

FO ej(»t

X1
m

(10.11)
The acceleration is sinusoidal and in phase with the applied force.
Integrating Eq. (10.11) to find velocity,

_ Foejmt
jom

x=v
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The mechanical impedance of the mass is the ratio of F to v, so that

Foejm’ .
P L 10.12
"= Feljom O (10.12)

Thus, the impedance of a mass is an imaginary quantity that depends on the magni-
tude of the mass and on the frequency.

COMBINATIONS OF MECHANICAL ELEMENTS

In analyzing the properties of mechanical systems, it is often advantageous to com-
bine groups of basic mechanical elements into single impedances. Methods for cal-
culating the impedances of such combined elements are described in this section. An
extensive coverage of mechanical impedance theory and a table of combined ele-
ments is given in Ref. 1.

Parallel Elements. Consider the combination of elements shown in Fig. 10.2, a
spring and a mechanical resistance. They are said to be in parallel since the same
force is applied to both, and both are constrained to have the same relative veloci-
ties between their connections. The force F, required to give the resistance the veloc-
ity v is found from Egs. (10.3) and (10.6).

F.=vZ.=vc
K L The force required to give the spring this
% same velocity is, from Egs. (10.8) and
\VARVY/ % (10.9),
F A c B % vk
_|| Fk = VZk =
| / JO
FIGURE 10.2 Schematic representation of a  The total force Fis
parallel spring-resistance combination.
F: FL. + Fk

Since Z = Flv,
.k
Z=c—-j—
c ]u)

Thus, the total mechanical impedance is the sum of the impedances of the two ele-
ments.

By extending this concept to any number of parallel elements, the driving force F
equals the sum of the resisting forces:

F=Nvz=vS 70 ad 7,2z, (10.13)
i=1 =

i=1 i

where Z, is the total mechanical impedance of the parallel combination of the indi-
vidual elements Z,.

Since mobility is the reciprocal of impedance, when the properties of the parallel
elements are expressed as mobilities, the total mobility of the combination follows
from Eq. (10.13):
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Series Elements. In Fig. 10.3 a spring and damper are connected so that the
applied force passes through both elements to the inertial reference. Then the veloc-
ity v is the sum of v, and v.. This is a series combination of elements. The method for
determining the mechanical impedance of the combination follows.

k c
F—»O—/\/\/\—{
7

FIGURE 10.3 Schematic representation of a series com-
bination of a spring and a damper.

Consider the more general case of three arbitrary impedances shown in Fig. 10.4.
Determine the impedance presented by the end of a number of series-connected
elements. Elements Z; and Z, must have no mass, since a mass always has one end
connected to a stationary inertial reference. However, the impedance Z; may be a
mass. The relative velocities between the end connections of each element are indi-
cated by v,, v, and v,; the velocities of the connections with respect to the stationary
reference point G are indicated by vy, v,, and vs:

V3=V, Va=vi+ (Va—V3) =V + v,
Vi=vy+ (V= Vo) =V, + v+,

The impedance at point 1 is F/v,, and the force Fis transmitted to all three elements.
The relative velocities are

Vp= 75— V_i
b= (.'_Z

Thus, the total impedance is defined by
1 FZ+FZ,+Fz, 1 1 1

7z~ F A

Extending this principle to any number of massless series elements,

1 51

A _521 Z (10.15)
3 G
Z, |—/ where Z, is the total mechanical imped-
ance of the elements Z; connected in
series.

L L Since mobility is the reciprocal of
impedance, the total mobility of series

FIGURE 10.4 Generalized three-element sys- .conne‘cted elements (expressed as mobil-
tem of series-connected mechanical impedances. ~ ities) is
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M=> M, (10.16)

i=1

Using Eqgs. (10.15) and (10.16), the mobility and impedance for Fig. 10.3 become:
M=1/c+jok  and  Z=(ckljo)/(c+ kljo)

MECHANICAL CIRCUIT THEOREMS

The following theorems are the mechanical analogs of theorems widely used in ana-
lyzing electric circuits. They are statements of basic principles (or combinations of
them) that apply to elements of mechanical systems. In all but Kirchhoff’s laws, these
theorems apply only to systems composed of linear, bilateral elements. A linear ele-
ment is one in which the magnitudes of the basic elements (¢, k, and m) are constant,
regardless of the amplitude of motion of the system; a bilateral element is one in
which forces are transmitted equally well in either direction through its connections.

KIRCHHOFF’'S LAWS

1. The sum of all the forces acting at a point (common connection of several ele-
ments) is zero:
Z F=0 (at a point) (10.17)
This follows directly from the considerations leading to Eq. (10.13).
2. The sum of the relative velocities across the connections of series mechanical ele-
ments taken around a closed loop is zero:

n

Z v;i=0 (around a closed loop) (10.18)

This follows from the considerations leading to Eq. (10.14).

Kirchhoff’s laws apply to any system, even when the elements are not linear or
bilateral.

Example 10.1. Find the velocity of all the connection points and the forces act-
ing on the elements of the system shown in Fig. 10.5. The system contains two veloc-
ity generators v, and v¢. Their magnitudes are known, their frequencies are the same,
and they are 180° out-of-phase.

A. Using Eq. (10.17), write a force equation for each connection point except
aande.
At point b: Fy — F, — F;=0.In terms of velocities and impedances:

vi=v)Zi— (vay—v3)Zy— (v, —vy) Z,=0 (a)

At point ¢, the two series elements have the same force acting: F, — F, = 0. In terms
of velocities and impedances:

(va=v3)Z,— (vs—vy)Z5=0 (b)

At point d: F, + F; — F, — F5=0. In terms of velocities and impedances:
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FIGURE 10.5 System of mechanical elements and vibration sources analyzed in Example 10.1 to
find the velocity of each connection and the force acting on each element.
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(V3= V) Zs+ (va—va)Zy— (va+ve)Zs— (va—vs5)Zs=0 (c)

Note that vg is (+) because of the 180° phase relation to v;.
At point f* F5 — F5=0. In terms of velocities and impedances:

(V4 — VS)Zﬁ — VSZ7 = O (d)

Since v; and v are known, the four unknown velocities v,, v3, v4, and vs may be deter-
mined by solving the four simultaneous equations above. After the velocities are
obtained, the forces may be determined from the following:

Fi= (vi—v)Z, F= (va—v3)Zy=(vs—vy)Z;s
F3 = (Vz - V4)Z4 F4 = (V4 + V(,)ZS
Fs= (V4 - VS)Zﬁ =vsZ;

B. The method of node forces. Equations (a) through (d) above can be rewritten
as follows:

vWZi= (Zi+ Zy+ Z3)vs— Zyvs — Zyvy (a”)
0= -Zwy+(Zo+ Z3)vs — Z3v, ®)
0= -Zwy—Z3v3+ (Zs+ Zy+ Zs+ Zs)vy — Zgvs (¢)

—VvZs= —Zvy+ (Zs+ Z7)vs (d”)

These equations can be written by inspection of the schematic diagram by the follow-
ing rule: At each point with a common velocity (force node), equate the force generators
to the sum of the impedances attached to the node multiplied by the velocity of the node,
minus the impedances multiplied by the velocities of their other connection points.

When the equations are written so that the unknown velocities form columns, the
equations are in the proper form for a determinant solution for any of the
unknowns. Note that the determinant of the Z’s is symmetrical about the main diag-
onal. This condition always exists and provides a check for the correctness of the
equations.

C. Using Eq. (10.18), write a velocity equation in terms of force and mobility
around enough closed loops to include each element at least once. In Fig. 10.5, note
that

F3=F1—F2 and F5=F1—F4
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Around loop (1):
Fz(wez + EIR;) - (F1 - Fz)EUQ =0 (6)

The minus sign preceding the second term results from going across the element 4 in
a direction opposite to the assumed force acting on it.

Around loop (2):
F4§D’e5 — Ve — (F] - F4)(§I)26 + 9)?7) =0 (f)

A summation of velocities from A to G along the upper path forms the following
closed loop:

Vl+F1§U81+Fz(we2+w23)+F4§D85—V(,=0 (g)

Equations (e), (f), and (g) then may be solved for the unknown forces Fj, F,, and F,.
The other forces are F; = F, — F, and Fs = F, — F,. The velocities are:

Vo=V — F19R1 V3=V, — Fz}IRZ Vy=Vy, — Fzg)&‘ Vs = F521R7

When a system includes more than one source of vibration energy, a Kirchhoff’s
law analysis with impedance methods can be made only if all the sources are oper-
ating at the same frequency. This is the case because sinusoidal forces and velocities
can add as phasors only when their frequencies are identical. However, they may dif-
fer in magnitude and phase. Kirchhoff’s laws still hold for instantaneous values and
can be used to write the differential equations of motion for any system.

RECIPROCITY THEOREM

If a force generator operating at a particular frequency at some point (1) in a system
of linear bilateral elements produces a velocity at another point (2), the generator can
be removed from (1) and placed at (2); then the former velocity at (2) will exist at (1),
provided the impedances at all points in the system are unchanged. This theorem also
can be stated in terms of a vibration generator that produces a certain velocity at its
point of attachment (1), regardless of force required, and the force resulting on some
element at (2).

Reciprocity is an important characteristic of linear bilateral elements. It indicates
that a system of such elements can transmit energy equally well in both directions. It
further simplifies the calculation on two-way energy transmission systems since the
characteristics need be calculated for only one direction.

SUPERPOSITION THEOREM

If a mechanical system of linear bilateral elements includes more than one vibration
source, the force or velocity response at a point in the system can be determined by
adding the response to each source, taken one at a time (the other sources supplying
no energy but replaced by their internal impedances).

The internal impedance of a vibrational generator is that impedance presented at
its connection point when the generator is supplying no energy. This theorem finds
useful application in systems having several sources. A very important application
arises when the applied force is nonsinusoidal but can be represented by a Fourier



MECHANICAL IMPEDANCE 109

series. Each term in the series can be considered a separate sinusoidal generator. The
response at any point in the system can be calculated for each generator by using the
impedance values at that frequency. Each response term becomes a term in the
Fourier series representation of the total response function. The over-all response as
a function of time then can be synthesized from the series.

Figure 10.6 illustrates an application of superposition. The velocities v.” and v.”
can be determined by the methods of Example 10.1. Then the velocity v. is the sum
of v/ and v.”.

THEVENIN’'S EQUIVALENT SYSTEM

If a mechanical system of linear bilateral elements contains vibration sources and
produces an output to a load at some point at any particular frequency, the whole sys-
tem can be represented at that frequency by a single constant-force generator F,in par-
allel with a single impedance Z; connected to the load. Thévenin’s equivalent-system
representation for a physical system may be determined by the following experi-
mental procedure: Denote by F, the force which is transmitted by the attachment
point of the system to an infinitely rigid fixed point; this is called the clamped force.
When the load connection is disconnected and perfectly free to move, a free veloc-
ity v;is measured. Then the parallel impedance Z; is F./v;. The impedance Z; also can
be determined by measuring the internal impedance of the system when no source
is supplying motional energy.

If the values of all the system ele-
ments in terms of ideal elements are
known, F, and Z; may be determined
analytically. A great advantage is de-
rived from this representation in that
attention is focused on the characteris-
tics of a system at its output point and

A not on the details of the elements of the

@) system. This allows an easy prediction of

F, the response when different loads are

attached to the output connection. After

a final load condition has been deter-

mined, the system may be analyzed in
detail for strength considerations.
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(b) ¢ NORTON'’'S EQUIVALENT
SYSTEM

A mechanical system of linear bilateral

elements having vibration sources and

an output connection may be represented

at any particular frequency by a single
constant-velocity generator v; in series

_chu with an internal impedance Z,.

(c) This is the series system counterpart
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FIGURE 10.6 System of mechanical elements
including two force generators used to illustrate
the principle of superposition.

of Thévenin’s equivalent system where
vy is the free velocity and Z; is the
impedance as defined above. The same
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advantages in analysis exist as with Thévenin’s parallel representation. The most
advantageous one depends upon the type of structure to be analyzed. In the experi-
mental determination of an equivalent system, it is usually easier to measure the free
velocity than the clamped force on large heavy structures, while the converse is true
for light structures. In any case, one representation is easily derived from the other.
When v;and Z; are determined, F. = v/Z,.

MECHANICAL 2-PORTS

Consider the “black box” shown in Fig. 10.7. It may have many elements between
terminals (ports) (1) and (2). The forces and velocities at the ports can be deter-
mined by the use of 2-port equations in terms of impedances and mobilities. The
impedance parameter equations are

Fl = levl + Zqu and F2 = Zz]V] + Z22V2

The Z parameters can be determined by measurements or from a known circuit
model. These parameters are defined as follows:

1. For v, =0 (port 2 clamped), Z,, = F,/v, and Z,, = F,/v;.
2. For v, =0 (port 1 clamped), Z,, = F/v, and Z,, = F,/v,

The mobility parameter equations for this situation are as follows:
V= EIRHFI + ﬂnlez and Vo= ﬂRlel + E).R»zze

These )¢ parameters can be determined by measurement or from a model. The def-
initions are as follows:

1. For F, =0 (port 2 free), ¢, = vi/F, and M, = v,/ F.
2. For F, =0 (port 1 free), M, = vi/F, and Ny, = v,/ F,.

Note that for large, massive structures, it may be difficult to clamp the ports to meas-
ure the impedance parameters. In this case, the mobility parameters requiring free
conditions may be more appropriate. Likewise, for very light structures, the imped-
ance parameters may be more appropriate. In any case, one set of parameters can be
determined from the other by matrix inversion.

W BLACK @
F{—— T_ BOX _F_ Fs
vy Vp

' y
77777777777777777777777

FIGURE 10.7 “Black box” representation of a me-
chanical system.
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MECHANICAL IMPEDANCE MEASUREMENTS
AND APPLICATIONS

Measurements

Transducers (Chap. 12), instrumentation (Chap. 13), and spectrum analyzers (Chap.
14) are essential subjects related to impedance measurements. Some special consid-
erations are given here. The measurement of mechanical impedance involves the
application of a sinusoidal force and the measurement of the complex ratio of force
to the resulting velocity. Many combinations of transducers are capable of perform-
ing these measurements. However, the most effective method is to use an impedance
transducer such as that shown in Fig. 10.8. These devices are available from suppliers
of vibration-measuring sensors. As shown in Fig. 10.8, the force supplied by the
vibration exciter passes through a force sensor to the unknown Z,, and the motion is
measured by an accelerometer whose output is integrated to obtain velocity. The
accelerometer measures the true motion, but the force sensor measures the force
required to move the accelerometer and its mounting structure, as well as the force
to Z,. This extra mass is usually called the “mass below the force gage.” The imped-
ance is then as follows:

Z,. =jo[K;/K,](esle,) — jom,

where e;and ¢, are the force gage and accelerometer phasor potentials, K;in volts/N
is the force gage sensitivity, K, in volts/m/sec? is the accelerometer sensitivity, and m,
is the mass below the force gage. The ratio K,/K, and m, can be determined by a cal-
ibration as follows:

1. With no attachment, Z, = 0. Then m, = [K//K,] (e//e,)o.

2. Attach a known mass, M. Then M + m, = [K/K,| (e/e,)1, m, = M/{[(efle,)o!
(effe,)i] — 1.

3. Thus [K{/K,] = m,/(es/e,)o.

«— T

SEISMIC
///MASS

FORCE
TRANSDUCERS

SEC A-A

ATTACHMENT
PLATE

FIGURE 10.8 Device for the measurement of mechanical
impedance in which force and acceleration are measured.
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With the aid of a two-channel analyzer (see Chap. 14) or appropriate signal process-
ing software (see Chap. 22), forces such as sine-sweeps, broad bandwidth random
noise, or impacts can be used for these measurements. The Fourier transform of the
force and acceleration potentials will provide correct sinusoidal terms. The impact
method can be implemented with a hammer equipped with a force gage and
accelerometer, as detailed in Chap. 21.

APPLICATIONS

The impedance concept is widely used in the study of mechanical systems.*¢ Three
practical applications are presented here.

Application 1. Assume one wishes to determine the free motion at a point on a
structure that would be altered by the attachment of a sensor such as an accelerom-
eter. The procedure is illustrated in Fig. 10.9, and involves the following steps.

1. Turn off the source causing the vibration v;.

2. Measure the internal impedance Z, at a point A over the expected frequency
range.

3. Attach the measuring device whose known impedance is Z,, and measure v,

4. Draw the Norton equivalent circuit at point A with Z,, attached. Note that Z, is
attached to the reference since it may be masslike.

5. Calculate the free velocity from

Vi=VuZul(Zo+ Z,,)

Application 2. Assume one wishes to choose a vibration isolator between a
vibrating machine and a flexible structure. The criteria are to reduce the ratio of the
velocity of the structure to the free velocity of the machine below some desired
value, or to reduce the ratio of the force transmitted to the structure to the clapped
force of the machine below some desired value. The procedure is as follows:

1. Model the system as shown in Fig. 10.10, where F,,, is the clamped force and Z,, is
the impedance at the attachment point. The structural impedance at the attach-
ment point is Zy and “Z” is a set of Z parameters of the isolator that satisfy

F] :Z“VI +212V2 and F22221V1+222V2

Vi <12,

Zy

77777777777

FIGURE 10.9 Measurement of free motion.
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wz

Fem Zn A Vo Zy

[11777777 77777777777 77777777777

FIGURE 10.10 Vibration isolation application.

2. Add the source and structure to obtain
F=F,—-ZWw and F=-Zy,
The system equations then become
Fon=(Zu+ Z,)vi+ Z1yv, and 0=2Zywi+ (Zn+ Z)n
3. Solve for the force to the structure F;, = F, from
FylF,,=ZpZy[(Z1+ Z,)(Zyn+ Zy) — Z1:75]

This result follows from vy = F/Zy and vy, = .,/ Z,,.
4. The ratio of the velocity of the structure to the free velocity of the machine is
then given by
Vst/vfm = ZZlZm/[(Z]] + Zm)(ZZZ +Zy) - Z]ZZZI]

Typical vibration isolators can be modeled as shown in Fig. 10.11, where the Z
parameters are given by

Z11:C+j(0m1+k/j(l); 222:C+jwm2+k/j(l); Z12:ZZIZC+k/j0)

The values of ¢, k, m;, and m, should be available from the manufacturer, or they can
be measured. Using the measured values of Z,, and Z, the transmissibilities of the
force and velocity can be computed from the expression above, and plots of these
functions versus frequency can be compared to the desired criteria.

Application 3. Assume one wishes to isolate a piece of equipment from a vibrat-
ing structure. The procedure is essentially the same as detailed in Application 2.

1
Sl m o m | @

777777777777777777777777

FIGURE 10.11 Vibration isolator model.
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Specifically, measure the clamped force Fy, or the free velocity vy, of the structure.
Then in Fig. 10.10, replace the F,,, and Z,, with F; and Z, and replace Z, with Z,,,.
Proceed to write the system 2-port equations and solve for the force or velocity
transmissibility.
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