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INTRODUCTION

Auxiliary masses are frequently attached to vibrating systems by springs and damp-
ing devices to assist in controlling the amplitude of vibration of the system. Depend-
ing upon the application, these auxiliary mass systems fall into two distinct classes.

1. If the primary system is excited by a force or displacement that has a constant fre-
quency, or in some cases by an exciting force that is a constant multiple of a rota-
tional speed, then it is possible to modify the vibration pattern and to reduce its
amplitude significantly by the use of an auxiliary mass on a spring tuned to the
frequency of the excitation.When the auxiliary mass system has as little damping
as possible, it is called a dynamic absorber.

2. If it is impossible to incorporate damping into a structure that vibrates excessively,
it may be possible to provide the damping in an auxiliary system attached to the
structure. When used in this manner, the auxiliary mass system is one form of a
damper. (Other forms may be incorporated as an integral part of the system.) The
names damped absorber or auxiliary mass damper are given to this type of system.

It is sometimes useful to analyze the auxiliary mass system in terms of its electri-
cal analog.

FORMS OF DYNAMIC ABSORBERS AND

AUXILIARY MASS DAMPERS

In its simplest form, as applied to a single degree-of-freedom system, the character
of the auxiliary mass system is the same as that of the primary system. Thus a tor-
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sional system has a torsionally con-
nected auxiliary mass, a linear system
has a linear-spring connected mass, and
a pendulum has an auxiliary pendulum.
Examples of undamped auxiliary mass
systems attached to single degree-of-
freedom systems are shown in Figs. 6.1
and 6.2; examples of damped auxiliary
mass systems are shown in Figs. 6.3 and
6.4. With multiple degree-of-freedom
systems the attachment of the auxiliary
masses is not as conventional as with the
single degree-of-freedom system. For

example, consider the two degree-of-freedom system shown in Fig. 6.5A consisting
of two masses m1 and m2 on a rigid, massless bar. A dynamic absorber of the type
shown in Fig. 6.5B is effective for the vertical translational motion; however, if the
auxiliary masses are on cantilever beams mounted on the rigid bar, as shown in Fig.
6.5C, the absorber can be made effective for both vertical translational motion and
rotational motion about an axis normal to the page.

WAYS OF EXPRESSING THE EFFECTS OF

AUXILIARY MASS SYSTEMS

Suppose a linear auxiliary mass system, consisting of one or more masses, springs,
and dampers, is attached to a vibrating primary system.The reaction back on the pri-

mary system is proportional to the
amplitude of motion at the point of
attachment. It is a function of the fre-
quency of excitation and of the masses,
spring stiffnesses, and damping con-
stants of the auxiliary mass system. If
there is no damping in the auxiliary mass
system, the reaction forces are either in
phase or 180° out of phase with the dis-
placement and the acceleration at the
point of attachment. However, where
there is damping in the auxiliary system,
the reaction has a component that is 90°
out of phase with the acceleration and
the displacement.

Since the reaction is proportional to
the amplitude of motion, it is possible to
express the properties of the auxiliary
mass system in terms of the motion at
the point of attachment. This can be
done in three ways: (1) the ratio of the
reaction force to the displacement at
the point of attachment, (2) the ratio of
the reaction force to the velocity at the
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FIGURE 6.1 Dynamic vibration absorbers in
pendulum form (A) and linear form (B).

FIGURE 6.2 Typical dynamic vibration ab-
sorbers. The principal and auxiliary systems
vibrate in torsion in the arrangement at (A); the
auxiliary system is in the form of masses and
beams at (B).
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point of attachment, or (3) the ratio of
the reaction force to the acceleration at
the point of attachment. The first ratio
can be considered equivalent to a spring
whose stiffness changes with frequency.
The second ratio can be considered
equivalent to a damper; at any fre-
quency it is equal in magnitude to the
force-displacement ratio divided by the
angular frequency. The phase angle
between the force and the velocity is 90°
from the phase angle between the force
and the displacement. This force-
velocity ratio is called the mechanical

impedance Z of the auxiliary system. The third ratio corresponds to a mass and is
designated equivalent mass meq. The equivalent mass of a system is −1/ω2 that of the
equivalent spring keq of the system.
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FIGURE 6.3 Damped auxiliary mass systems
corresponding to the undamped vibration ab-
sorbers shown in Fig. 6.1.

FIGURE 6.4 Typical damped auxiliary mass
systems. In the torsional system at (A), damping
is provided by relative motion of the flywheels J,
Ja. In the antiroll tanks for ships shown at (B),
water flows from one tank to the other and
damping is provided by a constriction in the con-
necting pipe.

FIGURE 6.5 Application of a dynamic ab-
sorber to reduce the vibration of the spring-
mounted bar at (A) in both vertical translational
and rotational modes. The linear mass-spring
system at (B) is effective for only translational
motion, whereas the cantilever beams at (C) are
effective for rotational as well as translational
motion.
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Because of the phase relations between the force and the displacement, veloc-
ity, and acceleration at the point of connection, it is customary to represent the
ratios as complex quantities. Thus Z = keq/jω = jωmeq. Most dynamic analyses of
mechanical systems are made on purely reactive systems, i.e., systems having
masses and stiffnesses only, and no damping. The effects of auxiliary mass systems
are most easily understood if the effect of the auxiliary system is represented as a
reactive subsystem. For this reason, and because the hypothetical addition of a
mass to a system is often more easily comprehended than the addition of a spring,
the effects of auxiliary mass systems are treated in terms of the equivalent masses
in this chapter, i.e., in terms of the ratio of the force exerted by the auxiliary sys-
tem upon the primary system to the acceleration at the point of attachment of the
auxiliary system.

THE INFLUENCE OF A SIMPLE AUXILIARY MASS

SYSTEM UPON A VIBRATING SYSTEM

The magnitude of the equivalent mass of
a simple auxiliary mass system, consist-
ing of a mass ma, spring ka, and viscous
damper ca, can be determined readily by
evaluating the forces exerted by such a
system upon a foundation vibrating at a
frequency f = ω/2π. The system with its
assumed constants and displacements is
shown in Fig. 6.6A. The spring and damp-
ing forces acting on m are shown in Fig.
6.6B, and the equation of motion is

(−ka xr − ca jωxr)ejωt = −ma(x0 + xr)ω2ejωt

Solving for xr,

xr = (6.1)

The force acting on the foundation is

Fejωt = (ka + jcaω)xrejωt

Eliminating xr from the preceding equations,

F = x0 (6.2)

Since the force exerted by an equivalent mass meq rigidly attached to the moving
foundation is F = meqω2x0:

meq = ma (6.3)

Equation (6.3) can be written in terms of nondimensional quantities:

ka + jcaω��
ka + jcaω − maω2

(ka + jcaω)maω2

��
−maω2 + jcaω + ka

maω2x0��
−maω2 + jcaω + ka
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FIGURE 6.6 Auxiliary mass damper. The ar-
rangement of the damper is shown at (A), and
the forces acting on the mass are indicated at (B).
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meq = ma (6.4)

where βa = , a tuning parameter

ωa
2 = , the natural frequency of the auxiliary system

ζ = , a damping parameter

cca = 2�k�am�a�, critical damping of the auxiliary system

Equation (6.4) can be divided into the following real and imaginary components:

meq = ma − jma (6.5)

The real and imaginary parts of meq are shown in Fig. 6.7A and B, respectively. If
there is no damping, ζ = 0 and

meq = ma (6.6)

If βa = 1 in Eq. (6.6), meq becomes infinite and a finite force produces no displace-
ment.Thus, the auxiliary mass enforces a point of no motion (i.e., a node) at its point
of attachment.

This concept can be applied to reduce the amplitude of the forced vibration of
a single degree-of-freedom system by attaching a damped absorber.1,2 A sketch of
the system with a damped auxiliary mass system is shown in Fig. 6.8A. In the
equivalent system shown in Fig. 6.8B, there is no force acting on the mass m but
instead the support is given a motion uejωt. The equations for the system of Fig.
6.8B are similar to those for the system of Fig. 6.8A with the value ku substituted
for F. The amplitude of forced vibration of a single degree-of-freedom system, Eq.
(2.24), is

x0 =

The effect of the auxiliary mass system is to increase the mass m of the primary sys-
tem by the equivalent mass of the auxiliary system as given by Eq. (6.4):

F/kx0 =
1 − �m + ma �

Substituting µ = ma/m, the mass ratio, δst = F/k, the static deflection of the spring of
the primary system, and β = �m�ω�2/�k�, the ratio of the forcing frequency to the natu-
ral frequency of the primary system, and writing in dimensionless form,

=

The amplitude of motion of the primary mass, without regard to phase, is

(1 − βa
2) + 2ζβa j

������
(1 − βa

2) + 2ζβa j − β2[(1 − βa
2) + 2ζβa j + µ(1 + 2ζβa j)]

x0�
δst

(1 + 2ζβa j)
��
(1 − βa

2) + 2ζβa j
ω2

�
k

F/k
��
1 − mω2/k

1
�
1 − βa

2

2ζβa
3

��
(1 − βa

2)2 + (2ζβa)2

(1 − βa
2) + (2ζβa)2

��
(1 − βa

2)2 + (2ζβa)2

ca�
cca

ka�
ma

ω
�
ωa

1 + 2ζβa j
��
(1 − βa

2) + 2ζβa j
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FIGURE 6.7 Equivalent mass meq of the auxiliary-mass system shown in Fig. 6.6. The real part of
the equivalent mass is shown at (A) and the imaginary part at (B).
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= � �1/2
(6.7)

If ζ = 0 (no damping), then

= (6.8)

If βa = 1, x0 = 0; that is, the vibration of the
primary system is eliminated entirely
when the auxiliary system is undamped
and is tuned to the forcing frequency.

THE DYNAMIC ABSORBER

If the auxiliary mass system has no
damping and is tuned to the forcing fre-
quency, it acts as a dynamic absorber
and enforces a node at its point of
attachment. The auxiliary mass must be
sufficiently large so that it will not have
an excessive amplitude.3 For a dynamic
absorber attached to the primary system
at the point where the excitation is
introduced, the required mass of the
auxiliary body is easily determined.
Since the primary mass is motionless,
the force exerted by the absorber, when

the amplitude of motion of the auxiliary mass is u0, is equal and of opposite sign to
the exciting force F. Hence

F = maω2u0 (6.9)

Since the frequency is known, the mass and amplitude of motion necessary to
neutralize a given excitation force are determined by Eq. (6.9). The spring stiffness
in the auxiliary system is determined by the requirement that the auxiliary system be
tuned to the frequency of the exciting force:

ka = maω2 (6.10)

Although the concept of tuning a dynamic absorber appears simple, practical
considerations make it difficult to tune any system exactly. When the auxiliary mass
is small relative to the mass of the primary system, its effectiveness depends upon
accurate tuning. If the tuning is incorrect, the addition of the auxiliary mass may
bring the composite system (primary and auxiliary systems) into resonance with the
exciting force.

Consider the natural frequencies of the composite system.The natural frequency
of the primary system is ω0 = �k�/m�. With this relation, Eq. (6.8) in which the damp-
ing is zero (ζ = 0) becomes

= 1 − ω2/ωa
2

����
(1 − ω2/ωa

2)(1 − ω2/ω0
2) − (ω2/ω0

2)µ
x0�
δst

1 − βa
2

���
(1 − βa

2)(1 − β2) − β2µ
x0�
δst

(1 − βa
2)2 + (2ζβa)2

������
[(1 − βa

2)(1 − β2) − β2µ]2 + (2ζβa)2[1 − β2 − β2µ]2

x0�
δst
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FIGURE 6.8 Schematic diagram of auxiliary
mass ma coupled by a spring ka and viscous
damper ca to a primary system k, m. The primary
system is excited by the force F at (A), or alter-
natively by the foundation motion u at (B).
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At resonance the denominator is zero and ω is designated ωn:

(ωn
2 − ωa

2)(ωn
2 − ω0

2) − ωn
2ωa

2µ = 0 (6.11)

The natural frequencies are found from the roots ωn
2 of Eq. (6.11):

ωn
2 = ± �� �2

+ ωa
2ω0

2µ (6.12)

This last relation may be represented by Mohr’s circle, Fig. 6.9.
Since the absorber is nominally tuned to the frequency of the excitation, the root

ωn2
2 that is closer to the forcing frequency is of interest.The ratio ωn2/ωa is a measure of

the sensitivity of the tuning required to avoid resonance. This is given as a function of
µ for various ratios of ω0/ωa in Fig. 6.10. Dynamic absorbers are most generally used
when the primary system without the absorber is nearly in resonance with the excitation.
If the natural frequency of the primary system is less than the forcing frequency, it is
preferable to tune the dynamic absorber to a frequency slightly lower than the forcing
frequency to avoid the resonance that lies above the natural frequency of the primary
system. Likewise if the natural frequency of the primary system is above the forcing
frequency, it is well to tune the damper to a frequency slightly greater than the forc-
ing frequency. Figure 6.10 shows that the tuning for a primary system with high natu-
ral frequency is more sensitive than that for a primary system with low natural
frequency. Mohr’s circle of Fig. 6.9 provides a useful graphical representation.

ωa
2(1 + µ) − ω0

2

��
2

ωa
2(1 + µ) + ω0

2

��
2
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FIGURE 6.9 Representation of the natural
frequencies ωn of the composite system by
Mohr’s circle. The circle is constructed on the
diameter located by the natural frequencies ω0,
ωa of the primary and auxiliary systems, respec-
tively. The natural frequencies of the composite
system are indicated by the intercept of the cir-
cle with the horizontal axis.

FIGURE 6.10 Curves showing effect of mass
ratio ma/m on the natural frequencies ωn of the
composite system, for several ratios of the natu-
ral frequency ωa of the auxiliary system to the
natural frequency ω0 of the primary system.
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Where the natural frequency of the composite system is nearly equal to the tuned
frequency of the absorber, the amplitude of motion of the primary mass at reso-
nance is much smaller than that of the absorber. Consequently, the motion of the
primary mass does not become large even at resonance; but the motion of the
absorber, unless limited by damping, may become so large that failure occurs.

The use of the dynamic absorber is not restricted to single degree-of-freedom sys-
tems or to locations in simple systems where the exciting forces act. However,

dynamic absorbers are most effective if
located where the excitation force acts.
For example, consider a dynamic ab-
sorber that is attached to the spring in
the simple system shown in Fig. 6.11.
When the absorber is tuned so that
�k�a/�m�a� = ω, the equivalent mass is infi-
nite at its point of attachment and en-
forces a node at point A. If the stiffness
of the spring between A and the mass m
is k1, then the force F′ exerted by the
absorber to enforce the node is equal to
that exerted by a system composed of
the mass m and the spring k1 attached to
a fixed foundation at A and acted upon
by the force Fejωt. The force F ′ is

F ′ =

Thus the amplitude of motion of the auxiliary mass is

u0 = × (6.13)

The amplitude of motion of the primary mass is

x = 	1 − 
−1
(6.14)

Hence, an absorber attached to the spring is not as effective as one attached to the
body where the force is acting. It is possible for the primary system to come into res-
onance about the new node at A.

AUXILIARY MASS DAMPERS

In general, the dynamic absorber is effective only for a system that is subjected to a
constant frequency excitation. In the special case of a pendulum absorber (discussed
later in this chapter), it is effective for an excitation that is a constant multiple of a
rotating shaft speed. When excited at frequencies other than the frequency to which
it is tuned, the absorber acts as an attached mass of positive value at frequencies
below the tuned frequency and of negative value at frequencies above the tuned fre-
quency. It introduces an additional degree-of-freedom and an additional natural fre-
quency into the primary system.

mω2

�
k1

F
�
k1

1
�
maω2

F
��
1 − (mω2/k1)

F
��
1 − (mω2/k1)
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FIGURE 6.11 Dynamic absorber attached to
the spring of the primary system. The analysis
shows that this is not as effective as if it were
attached to the rigid body on which the force acts.
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In a multiple degree-of-freedom system, the introduction of an auxiliary mass
system tends to lower those original natural frequencies of the primary system that
are below the tuned frequency of the auxiliary system. This is because the auxiliary
mass system adds a positive equivalent mass at frequencies below the tuned fre-
quency. The original natural frequencies of the primary system that are higher than
the tuned frequency of the auxiliary system are raised by adding the auxiliary mass
system, because the equivalent mass of the auxiliary system is negative.A new natu-
ral mode of vibration corresponding to the vibration of the auxiliary mass system
against the primary system is injected between the displaced initial natural frequen-
cies of the primary system. Because the equivalent mass of the auxiliary mass system
is large only at frequencies near the tuned frequency, those frequencies of the pri-
mary system that are closest to the tuned frequency are most strongly influenced by
the auxiliary mass system. The addition of damping in the auxiliary mass system can
be effective in reducing the amplitudes of motion of the primary system at the natu-
ral frequencies. For this reason auxiliary mass dampers are used quite commonly to
reduce over-all vibration stresses and amplitudes.

Studies of the effects of a damped auxiliary mass system upon the amplitude of
motion of an undamped, single degree-of-freedom system1–5 have been applied to a
multimass system.6,7 In analyzing dampers utilizing auxiliary masses, it is desirable to
consider a composite system in which the characteristics of both the primary and
auxiliary systems are fixed. This composite system is excited by a harmonic force of
varying frequency. It is desirable to express the tuned frequency of the auxiliary
mass system in terms of the natural frequency of the primary system rather than the
ratio βa of the excitation frequency ω to the tuned frequency ωa of the auxiliary sys-
tem. Defining a new ratio α,

α = =

Then Eq. (6.7) becomes

= � �1/2
(6.15)

This equation is plotted in Fig. 6.12. Note that all curves pass through two points A,
B on the graph, independent of the damping parameter ζ.These points are known as
fixed points. Their locations are independent of the value of ζ if the ratio of the coef-
ficient of ζ2 to the term independent of ζ is the same in both numerator and denom-
inator of Eq. (6.15):

= (6.16)

This equation is satisfied if

(2αβ)2 = 0

+ = 0

− = 0

The first two solutions are trivial. The third yields the equation

(1 − β2 − β2µ)
���
(α2 − β2)(1 − β2) − α2β2µ

1
�
α2 − β2

(1 − β2 − β2µ)
���
(α2 − β2)(1 − β2) − α2β2µ

1
�
α2 − β2

2αβ(1 − β2 − β2µ)2

���
[(α2 − β2)(1 − β2) − α2β2µ]2

(2αβ)2

��
(α2 − β2)2

(α2 − β2)2 + (2ζαβ)2

������
[(α2 − β2)(1 − β2) − α2β2µ]2 + (2ζαβ)2(1 − β2 − β2µ)2

x0�
δst

β
�
βa

ωa�
ω0
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β4	1 + 
 − β2(1 + α2 + α2µ) + α2 = 0 (6.17)

The solution of this equation gives two values of β, designated βc, one corresponding
to each fixed point.

The amplitude of motion at each fixed point may be found by substituting each
value of βc given by Eq. (6.17) into Eq. (6.15). Since the amplitude is independent of
ζ, the value that gives the simplest calculation (namely, ζ = ∞) can be used for the cal-
culation:

�
c

= � �1/2
(6.18)

For the auxiliary mass damper to be most effective in limiting the value of x0/δst

over a full range of excitation frequencies, it is necessary to select the spring and
damping constants of the system as given by the parameters α and ζ, respectively, so
that the amplitude x0 of the primary mass is a minimum. First consider the influence
of the ratio α. As α is varied, the values of βc computed from Eq. (6.17) are substi-
tuted in Eq. (6.18) to obtain values of x0/δst for the fixed points A and B. The opti-
mum value of α is that for which the amplitude x0 at A is equal to that at B.

Let the two roots of Eq. (6.17) be β1
2 and β2

2, where β1
2 is less than 1 and β2

2 is
greater than 1. When x0/δst has the same value for both β1 and β2 in Eq. (6.18),

β1
2 + β2

2 = 2
�
1 + µ

1
��
(1 − βc

2 − βc
2µ)2

x0�
δst

µ
�
2
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FIGURE 6.12 Curves for auxiliary mass damper showing amplitude of
vibration of mass of primary system, as given by Eq. (6.15), as a function of the
ratio of forcing frequency ω to natural frequency of primary system ω = �k�/m�.
The mass ratio ma/m = 0.05, and the natural frequency ωa of the auxiliary mass
system is equal to the natural frequency ω0 of the primary system. Curves are
included for several values of damping in the auxiliary system.
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In an equation having unity for the coefficient of its highest power, the sum of the
roots is equal to the coefficient of the second term with its sign changed:

β1
2 + β2

2 =

From the two preceding equations, the optimum tuning (i.e., that required to give
the same amplitude of motion at both fixed points) is obtained:

αopt = (6.19)

where α is defined by the equation preceding Eq. (6.15).
If the effect of the damping is considered, it is possible to choose a value of the

damping parameter ζ that will make the fixed points nearly the points of greatest
amplitude of the motion. Consider Fig. 6.13, which represents the curves defining the
motion of a single degree-of-freedom system to which an ideally tuned damped
vibration absorber is attached (Fig. 6.8). The solid curves (1) represent the response
of a system fitted with an undamped absorber. Curve 2 represents infinite damping
of the auxiliary system. Curves 3 have horizontal tangents at the fixed points A and
B, respectively. Since it is difficult to determine the required damping from maxima
at the fixed points, the assumption is made that an optimum damping gives the same
value of x0/δst at a convenient point between A and B as at these fixed points. First
find the values of β at A and B. This is done by solving Eq. (6.17) with the values of
α as determined by Eq. (6.19) substituted:

β4 − + = 0
2

��
(2 + µ)(1 + µ)2

2β2

�
1 + µ

1
�
1 + µ

1 + α2 + α2µ
��

1 + µ/2
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FIGURE 6.13 Curves similar to Fig. 6.12 but with optimum tuning. Curves 1
apply to an undamped absorber, curve 2 represents infinite damping in the aux-
iliary system, and curves 3 have horizontal tangents at the fixed points A and B.

8434_Harris_06_b.qxd  09/20/2001  11:26 AM  Page 6.12



Solving for β to obtain the abscissas at the fixed points,

β2 = �	1 ± 
 (6.20)

A convenient value for β lying between the two fixed points A and B is defined by

βl
2 = (6.21)

The frequency corresponding to this frequency ratio βl is the natural frequency of
the composite system when the damping is infinite; it is called the locked fre-
quency.7 The value of x0/δst at the fixed points is found by substituting Eq. (6.20) into
Eq. (6.18):

at fixed point = �1 + (6.22)

An approximate value for the maximum damping is obtained by solving for the
value of ζ in Eq. (6.15) that gives a value of x0/δst = �1� +� 2�/µ� when βl

2 (the locked
frequency) is given by Eq. (6.21) and α has the optimum value given by Eq. (6.19).
This gives the following value for the optimum damping parameter:

ζopt = � (6.23)

It is possible to find the value of ζ2 that makes the fixed point A a maximum on
the x0/δst vs. β plot, Fig. 6.13, and also to find the value of ζ2 that makes the point B a
maximum. The average of the two values so obtained indicates optimum damping:4

ζopt = � (6.24)

Optimum Damping for an Auxiliary Mass Absorber Connected to the Pri-
mary System with Damping Only. In general, the most effective damping is
obtained where the auxiliary mass damping system includes a spring in its connec-
tion to the primary system. However, such a design requires a calculation of the opti-
mum stiffness of the spring. Sometimes it is more expedient to add an oversize mass,
coupled only by damping to the primary system, than it is to compute the optimum
system. However, if use is made of such a simplified damper by taking it from a list
of standard dampers and applying it with a minimum of calculations, the stock
dampers should be as efficient as the application will permit.

In computing the optimum damping characteristic for an auxiliary mass
absorber, attached to a single degree-of-freedom system by damping only, from the
relations that have been developed, note in Eq. (6.4) that ζ = ∞ and βa = ∞ when k =
0.Then α = β/βa = 0. However, the product ζα = ζβ/βa is finite; thus, substituting α = 0
but retaining the product ζα in Eq. (6.15),

= � (6.25)

The value of x0/δst is independent of ζα where the ratio of the coefficient of ζα to
the term independent of ζα in the numerator is the same as the corresponding ratio
in the denominator:

β2 + 4(ζα)2

����
β2(1 − β2)2 + 4(ζα)2[1 − β2(1 + µ)]2

x0�
δst

3µ
�
8(1 + µ)3

µ
�
2(1 + µ)

2
�
µ

x0�
δst

1
�
1 + µ

µ
�
2 + µ

1
�
1 + µ
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=

The solution of this equation for β gives the fixed points

β2 = 0 and β2 = (6.26)

The amplitude of motion of the primary mass where β2 = 2/(2 + µ) is

= (6.27)

Curves showing the motion of the mass of a primary system fitted with an auxiliary
mass system connected by damping only are given in Fig. 6.14.The optimum damp-
ing is that which makes the maximum amplitude occur at the fixed point B. By
finding the value of ζα that makes the slope of x0/δst versus β equal to zero at β2 =
2/(2 + µ), the optimum damping is defined by

(ζα)opt = � (6.28)

The values for the amplitude of vibration of the primary mass, the relative amplitude
between the primary and auxiliary masses, and the optimum damping constants are
given in Figs. 6.15 to 6.17 as functions of the mass ratio µ = ma/m.

1
��
2(2 + µ)(1 + µ)

2 + µ
�

µ
x0�
δst

2
�
2 + µ

4[1 − β2(1 + µ)]2

��
β2(1 − β2)2

4
�
β2
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FIGURE 6.14 Curves similar to Fig. 6.12 for system having auxiliary mass
coupled by damping only. Several values of damping are included.
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DYNAMIC VIBRATION ABSORBERS AND AUXILIARY MASS DAMPERS 6.15

FIGURE 6.15 Displacement amplitude of the primary mass as a function
of the size of the auxiliary mass: (a) auxiliary system coupled only by
Coulomb friction (α = 0) with optimum damping; (b) auxiliary system cou-
pled only by viscous damping (α = 0) of optimum value; (c) auxiliary system
coupled by spring and damper tuned to frequency of primary system (α =
1) with optimum damping; (d) auxiliary system coupled by spring and
damper with optimum tuning [α = 1/(1 + µ)] and optimum damping.

FIGURE 6.16 Relative displacement amplitude between the primary
mass and the auxiliary mass as a function of the size of the auxiliary mass:
(a) auxiliary system coupled by spring and damper with optimum tuning
[α = 1/(1 + µ)] and optimum damping; (b) auxiliary system coupled only by
viscous damping (α = 0) of optimum value; (c) auxiliary system coupled by
spring and damper tuned to frequency of primary system (α = 1) with opti-
mum damping.
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The Use of Auxiliary Mass Absorbers for Vibration Energy Dissipation.
When a complicated mass-spring system is analyzed for possible vibration troubles,
it is customary to compute the natural frequencies of the several modes of vibration
of the system. The vibration amplitudes and stresses are estimated by making an
energy balance between the energy input from the various exciting forces and the
energy dissipated in the system and external reactions. From this point of view, it is
desirable to know how much energy is dissipated in auxiliary mass systems and what
value the damping constant should have in an auxiliary mass system of limited size
to give maximum energy absorption. This is not the best criterion for determining
the optimum damping because it neglects the effects of damping upon the mode
shapes and the frequencies of the system, but it is generally adequate when com-
pared with the other uncertainties of the calculations. Methods of designing
dampers for torsional systems are given in Chap. 38.

Optimum Viscous Damping to Give Large Energy Absorption in an Auxiliary
Mass Absorber.8 Suppose the amplitude of motion of the primary system is unaf-
fected by the auxiliary mass system which is attached to it. All energy absorption
occurs in the damping element of the auxiliary mass system and is obtained by inte-
grating the differential work done in the damper over a vibration cycle. The force
exerted by damping is cẋr (the subscripts a are dropped), where xr is the relative
motion and the increment of work is cẋr dxr = cẋr

2dt. If xr = xr 0 cos ωt, the work done
over a cycle is

V = � cω2xr 0
2sin2 ωt dt = πcxr 0

2ω (6.29)

For a damper attached to a support moving in harmonic motion of amplitude x0,
the relative motion xr is given by Eq. (6.1). The amplitude of relative motion is

6.16 CHAPTER SIX

FIGURE 6.17 Curves showing damping required in auxiliary mass systems
to minimize vibration amplitude of primary system: (a) auxiliary mass cou-
pled by viscous damping only (α = 0); (b) auxiliary system coupled by spring
and damper tuned to frequency of primary system (α = 1); (c) auxiliary sys-
tem coupled by spring and damper with optimum tuning [α = 1/(1 + µ)].The
ordinate of the curves is ζα, where ζ is the fraction of critical damping in the
auxiliary system [Eq. (6.4)] and α is the tuning parameter [Eq. (6.15)].
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xr 0 = =

Substituting the above value of xr0 in Eq. (6.29) and integrating,

V = = (6.30)

Equation (6.30) can be used to find the tuning and the damping that gives the max-
imum energy dissipation when the amplitude of the forcing motion remains con-
stant. Placing ∂V/∂βa = 0, the optimum value of βa for given values of ζ is found from

(βa)2
opt = (2ζ2 − 1) ± 2 �1� −� ζ�2�+� ζ�4� (6.31)

Placing ∂V/∂ζ = 0, the optimum value of ζ for a given value of βa is

ζopt = (6.32)

Where k = 0, the optimum damping is determined most conveniently by setting
∂V/∂c = 0, using the dimensional form of Eq. (6.30), and determining c for maximum
energy absorption:

copt = mω (6.33)

Auxiliary Mass Damper Using Coulomb Friction Damping.9 Dampers relying
on Coulomb friction (i.e., friction whose force is constant) have been widely used.A
damper relying on dry friction and connected to its primary system with a spring is
too complicated to be analyzed or to be adjusted by experiment. For this reason, a
damper with Coulomb friction has been used with only friction damping connecting
the seismic mass (usually in a torsional application) to the primary system.1,2,9

Because the motion is irregular, it is necessary to use energy methods of analysis.
The analysis given here applies to the case of linear vibration. By analogy, the appli-
cation to torsional or other vibration can be made easily (see Table 2.1 for analogous
parameters).

Consider the system shown in Fig.
6.18. It consists of a mass resting on
wheels that provide no resistance to
motion and are connected through a
friction damper to a wall that is moving
sinusoidally. The friction damper con-
sists of two friction facings that are held
on opposite sides of a plate by a spring
that can be adjusted to give a desired
clamping force.The maximum force that
can be transmitted through each inter-
face of the damper is the product of the

normal force and the coefficient of friction; the maximum total force for the damper
is the summation over the number of interfaces.

Consider the velocity diagrams shown in Fig. 6.19A, B, and C. In these diagrams
the velocity of the moving wall, ẋ = x0ω sin ωt, is shown by curve 1; the velocity u̇ of
the mass is shown by curve 2.The force exerted by the damper when slipping occurs
is Fs. When Fs ≥ mü, the mass moves sinusoidally with the wall. When Fs < mü, slip-

1 − βa
2

�
2βa

πx0
2mω2(2ζβa)βa
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��
(1 − βa

2)2 + (2ζβa)2
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��
(k − mω2)2 + c2ω2

βa
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FIGURE 6.18 Schematic diagram of auxiliary
mass absorber with Coulomb friction damping.
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ping occurs in the damper and the mass is accelerated at a constant rate. Since a con-
stant acceleration produces a uniform change in velocity, the velocity of the mass
when the damper is slipping is shown by straight lines.The relative velocity between
the wall and the mass is shown by the vertical shading.

Figure 6.19A applies to a damper with a low friction force. The damper slips con-
tinuously. In Fig. 6.19B the velocities resulting from a larger friction force are shown.
Slipping disappears for certain portions of the cycle. Where the wall and the mass
have the same velocity, their accelerations also are equal. Slipping occurs when the
force transmitted by the damper is not large enough to keep the mass accelerating
with the wall. Since at the breakaway point the accelerations of the wall and mass
are equal, their velocity-time curves have the same slope; i.e., the curves are tangent
at this point. In Fig. 6.19C, the damping force is so large that the mass follows the
wall for a considerable portion of the cycle and slips only where its acceleration
becomes greater than the value of Fs/m. A slight increase in the clamping force or in
the coefficient of friction locks the mass to the wall; then there is no relative motion
and no damping.

Because of the nature of the damping force, the damping provided by the friction
damper can be computed most practically in terms of energy. If the friction force
exerted through the damper is Fs, the energy dissipated by the damper is the prod-
uct of the friction force and the total relative motion between the mass and the mov-
ing wall.The time reference is taken at the moment when the auxiliary mass m has a
zero velocity and is being accelerated to a positive velocity, Fig. 6.19A. Let the period
of the vibratory motion of the wall be τ = 2π/ω, where ω is the angular frequency of
the wall motion. By symmetry, the points of no slippage in the damper occur at times

6.18 CHAPTER SIX

FIGURE 6.19 Velocity-time diagrams for motion of wall (curve 1) and mass (curve 2) of Fig.
6.18. The conditions for a small damping force are shown at (A), for an intermediate damping
force at (B), and for a large damping force at (C). The relative velocity between the wall and the
mass is indicated by vertical shading.
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−τ/4, τ/4, and 3τ/4. Let the time when the velocity of the wall is zero be −t0; then the
velocity of the wall ẋ is

ẋ = +x0ω sin ω(t + t0)

The velocity u̇ of the mass for −τ/4 < t < τ/4 is

u̇ = üt = t

The velocities of the wall and the mass are equal at time t = τ/4:

x0ω sin ω 	 + t0
 =

Since ωτ/4 = π/2, sin ω(τ/4 + t0) = cos ωt0. Therefore

cos ωt0 =

The relative velocity between the moving wall and the mass is ẋ − u̇, and the total rel-
ative motion is the integral of the relative velocity over a cycle. Note that the area
between the two curves for the second half of the cycle is the same as for the first.
Hence, the work V per cycle is

V = 2 τ/4

−τ/4
Fs(ẋ − u̇) dt = 4Fsx0 �1 − 	 
2

(6.34)

Optimum damping occurs when the work per cycle is a maximum. It can be deter-
mined by setting the derivative of V with respect to Fs in Eq. (6.34) equal to zero and
solving for Fs:

(Fs)opt = mω2x0 (6.35)

Energy absorption per cycle with optimum damping is, from Eq. (6.34),

Vopt = mω2x0
2 (6.36)

A comparison of the effectiveness of the Coulomb friction damper with other types
is given in Fig. 6.15.

EFFECT OF NONLINEARITY IN THE SPRING OF

AN AUXILIARY MASS DAMPER

It is possible to extend the range of frequency over which a dynamic absorber is effec-
tive by using a nonlinear spring.10–12 When a nonlinear spring is used, the natural fre-
quency of the absorber is a function of the amplitude of vibration; it increases or
decreases, depending upon whether the spring stiffness increases or decreases with
deflection. Figure 6.20A shows a typical response curve for a system with increasing
spring stiffness; Fig. 6.20B illustrates types of systems having increasing spring stiff-
ness and shows typical force-deflection curves. Figure 6.21A shows a typical response
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curve for a system of decreasing spring stiffness; Fig. 6.21B illustrates types of systems
having decreasing stiffnesses and shows typical force-deflection curves.

To compute the equivalent mass at a given frequency when a nonlinear spring is
used, it is necessary to use a trial-and-error procedure. By the methods given in
Chap. 4, compute the natural frequency of the auxiliary mass system, assuming the
point of attachment fixed, as a function of the amplitude of motion of the auxiliary
mass. This will result in a curve similar to the dotted curves in Figs. 6.20A and 6.21A.
At the given frequency, compute βa in Eq. (6.4) in terms of the tuned frequency of
the absorber at zero amplitude. (The tuned frequency will change with amplitude
because the spring constant changes.) With this value of βa compute the equivalent
mass from Eq. (6.6). With this mass in the system, compute the amplitude of motion
x0 of the primary mass to which the auxiliary system is attached [Eq. (6.7)] and the
amplitude of the relative motion xr 0 = v2(1 − v2)x0. Using this value of xr 0, ascertain
the corresponding value of resonance frequency of the system from the computed
curve, and compute the new value of βa. Repeat the process until the value of βa

remains unchanged upon repeated calculation.
A dynamic absorber having a nonlinear characteristic can be used to introduce

nonlinearity into a resonant system. This can be useful in the case where a machine
passes through a resonance rapidly as the speed is increased but slowly as the speed is
decreased. In bringing this machine up to speed, there is a natural frequency that
comes into strong resonance, giving a critical speed. A strongly nonlinear dynamic
absorber tuned at low amplitudes to the optimum frequency for the damped absorber

6.20 CHAPTER SIX

FIGURE 6.20 Auxiliary mass damper with
nonlinear spring having stiffness that increases
as deflection increases. The response to forced
vibration and the natural frequency are shown
at (A). Several arrangements of nonlinear sys-
tems with the corresponding force-deflection
curves are shown at (B).

FIGURE 6.21 Auxiliary mass damper with
nonlinear spring having stiffness that decreases
as deflection increases. The response to forced
vibration and the natural frequency are shown
at (A). Two arrangements of nonlinear systems
with the corresponding force-deflection curves
are shown at (B).
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can be used to reduce the effects of the critical speed.Two resonant peaks will be intro-
duced, as shown on curve 1 of Fig. 6.13. By making the dynamic absorber nonlinear, so
that the stiffness becomes greater as the amplitude of vibration is increased, the peaks
are bent over to provide the response curve shown in Fig. 6.22. In starting, the machine
is accelerated through the two critical speeds so fast that a resonance is unable to build
up. In coasting to a stop, there would be ample time for significant amplitudes to build
up if the nonlinearity did not exist. Because of the nonlinearity, the amplitude of vibra-
tion as a function of speed (since β is proportional to speed) follows the path A, B, C,
D, E, F, G and never reaches the extreme amplitudes H1 and H2.

MULTIMASS ABSORBERS

In general, only one mass is used in a dynamic absorber. However, it is possible to
provide a dynamic absorber that is effective for two or more frequencies by attach-
ing an auxiliary mass system that resonates at the frequencies that are objectionable.
The principle that would make such a dynamic absorber effective is utilized in the
design of the elastic system of a ship’s propulsion plant driven by independent high-
pressure and low-pressure turbines. By making the frequencies of the two branches
about the reduction gear identical, the gear becomes a node for one of the resonant
modes. Then it is impossible to excite the mode of vibration where one turbine
branch vibrates against the other as a result of excitation transmitted by the pro-
peller shaft to that node.

DISTRIBUTED MASS ABSORBERS

It is possible to use distributed masses as vibration dampers. Consider an undamped
rod of distributed mass and elasticity attached to a foundation that vibrates the rod

DYNAMIC VIBRATION ABSORBERS AND AUXILIARY MASS DAMPERS 6.21

FIGURE 6.22 Motion of the primary mass, as a function of forcing fre-
quency, in a system having a nonlinear dynamic absorber whose natural fre-
quency increases with amplitude. The mass of the absorber is 0.25 times the
mass of the primary system (µ = 0.25).
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axially, as shown in Fig. 6.23. The differential equation for the motion of this rod is
derived in Chap. 7. The values of the constants are set by the boundary conditions:

Stress = E = 0 where x = l
(6.37)

u = u0 cos ωt where x = 0

The solution of the equation of motion is

u = u0 cos ωt 	cos � x + tan � l sin � x

(6.38)

= u0 cos ωt

where E is the modulus of elasticity and γ is the weight density of the material.When
x = 0, the force F on the foundation is

F = SE �
0

= SEu0 � 	tan � l
 (6.39)

where S is the cross-sectional area of the bar. It is apparent that as the argument of
the tangent has successive values of π/2, 3π/2, 5π/2, . . . , the force exerted on the
foundation becomes infinite. The distributed mass acts as a dynamic absorber
enforcing a node at its point of attachment. By tuning the mass so that

� l = or l = � (6.40)

the distributed mass acts as a dynamic absorber for not only the fundamental fre-
quency ω/2π but also for the third, fifth, seventh, . . . harmonics of the fundamental.

The above solution neglects damping. It is possible to consider the effect of
damping by including a damping term in the differential equation. The stress in an
element is assumed to be the sum of a deformation stress and a stress related to the
velocity of strain:

σ = E� + µ (6.41)

where ε = ∂u/∂x is the strain. Then the
differential equation becomes

E + µ = (6.42)

Since the absorber is excited by a founda-
tion moving with a frequency f = ω/2π,
u may be expressed as Ru1ejωt and the par-
tial differential equation can be written as
the ordinary linear differential equation

E + jωµ + = 0

This equation may be written
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FIGURE 6.23 Elastic body with distributed
mass used as auxiliary mass damper.
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	1 + 
 + u1 = 0 (6.43)

Since Eq. (6.43) is a second-order linear differential equation, the solution may be
written

u = A1eβ1x + A2eβ 2x (6.44)

where β1 and β2 are the two roots of the equation

β2 = (6.45)

For small values of µ, by a binomial expansion of the denominator,

±β = � + j� ω (6.46)

where µ is defined by Eq. (6.41).
The boundary conditions to be met by the damper are:

At x = 0: u = u0 therefore, A1 + A2 = u0

(6.47)
At x = l: σ = (E + jωµ) = 0 therefore, A1eβl − A2e−βl = 0

Solving Eqs. (6.47) for A1 and A2 and substituting the result in Eq. (6.44),

u = u0 (6.48)

The force exerted on the foundation by the damper is

F(x = 0) = Sσ(x = 0) = − Su0(E + jωµ) β tanh βl (6.49)

where S is the cross-section area of the bar.When the complex value of β as given in
Eq. (6.46) is substituted in Eq. (6.49), the following value for the dynamic force
exerted on the foundation is obtained:

F(x = 0)
=
	1 + 
 sin 2	� ωl
 + sinh 	 � ωl


SE� ωu0 cos 2	� ωl
 + cosh 	 � ωl


+ j
sin 2	� ωl
 − 	1 + 
 sinh 	 � 


(6.50)

cos 2	� ωl
 + cosh 	 � ωl

A plot of the real and imaginary values of F(x = 0)/SE � ωu0 is given in Fig. 6.24 for

zero damping and for a damping coefficient µω/E = 0.1 as a function of a tuning
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parameter �γ/�E�g�(ω�l)�. Damping decreases the effectiveness of the distributed mass
damper substantially, particularly for the higher modes.

Use of a distributed mass as a vibration absorber is practical only at very high fre-
quency; otherwise, too long a length is required.

PRACTICAL APPLICATIONS OF AUXILIARY MASS

DAMPERS AND ABSORBERS TO SINGLE

DEGREE-OF-FREEDOM SYSTEMS

THE DYNAMIC ABSORBER

The dynamic absorber, because of its tuning, can be used to eliminate vibration only
where the frequency of the vibration is constant. Many pieces of equipment to which
it is applied are operated by alternating current. So that it can be used for time keep-
ing, the frequency of this alternating current is held remarkably constant. For this
reason, most applications of dynamic absorbers are made to mechanisms that oper-
ate in synchronism from an ac power supply.

An application of a dynamic absorber to the pedestal of an ac generator having
considerable vibration is shown in Fig. 6.25, where the relative sizes of absorber and
pedestal are shown approximately to scale. In this case, the application is made to a
complicated structure and the mass of the absorber is much less than that of the pri-
mary system; however, since the frequency of the excitation is constant, the dynamic

6.24 CHAPTER SIX

FIGURE 6.24 Real and imaginary components of the force applied to a vibrating body by the dis-
tributed mass damper shown in Fig. 6.23. These relations are given mathematically by Eq. (6.50), and
the terms are defined in connection with Eq. (6.38). The curves are for a value of the damping coeffi-
cient µω/E = 0.1, where µ is defined by Eq. (6.41).
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absorber reduces the vibration. When
the mass ratio is small, it is important
that the absorber be accurately tuned
and that the damping be small. In this
case, the excitation was the unbalance in
the turbine rotor which was elastically
connected to the pedestal through the
flexibility of the shaft. If the absorber
were ideally effective, there would be no
forces at the frequency of the shaft
speed; therefore, there would be no dis-
placements from the pedestal where the
force is neutralized through the remain-
der of the structure.

The dynamic absorber has been
applied to the electric clipper shown in
Fig. 6.26. The structure consisting of the

cutter blade and its driving mechanism is actuated by the magnetic field at a fre-
quency of 120 Hz, as a result of the 60-Hz ac power supply. The forces and torques
required to move the blade are balanced by reactions on the housing, causing it to
vibrate.The dynamic absorber tuned to a frequency of 120 Hz enforces a node at the
location of its mass. Since this is approximately the center-of-gravity of the assembly
of the cutter and its driving mechanism, the absorber effectively neutralizes the
unbalanced force. The moment caused by the rotation of the moving parts is still
unbalanced. A second very small dynamic absorber placed in the handle of the clip-

per could enforce a node at the handle
and substantially eliminate all vibration.
The design of these absorbers is simple
after the unbalanced forces and torques
generated by the cutter mechanism are
computed. The sum of the inertia forces
generated by the two absorbers, m1x1ω2

+ m2x2ω2 (where m1 and x1 are the mass
and amplitude of motion of the first
absorber, m2 and x2 are the correspond-
ing values for the second absorber, and

ω = 240π), must equal the unbalanced force generated by the clipper mechanism.
The torque generated by the two absorbers must balance the torque of the mecha-
nism. Since the value of ω2 is known, the values of m1x1 and m2x2 can be determined.
Weights that fit into the available space with adequate room to move are chosen,
and a spring is designed of such stiffness that the natural frequency is 120 Hz.

Because of the desirable balancing properties of the simple dynamic absorber
and the constancy of frequency of ac power, it might be expected that devices oper-
ating at a frequency of 120 Hz would be used more widely. However, their applica-
tion is limited because the frequency of vibration is too high to allow large
amplitudes of motion.

REDUCTION OF ROLL OF SHIPS BY AUXILIARY TANKS

An interesting application of auxiliary mass absorbers is found in the auxiliary tanks
used to reduce the rolling of ships,1,13 as shown in Fig. 6.27.When a ship is heeled, the
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FIGURE 6.25 Application of a dynamic ab-
sorber to the bearing pedestal of an ac generator.

FIGURE 6.26 Application of a dynamic
absorber to a hair clipper.
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restoring moment krφ acting on it is pro-
portional to the angle of heel (or roll).
This restoring moment acts to return the
ship (and the water that moves with it)
to its equilibrium position. If Is repre-
sents the polar moment of inertia of the
ship and its entrained water, the differ-
ential equation for the rolling motion of
the ship is

Is φ̈ + krφ = Ms (6.51)

where Ms represents the rolling moments
exerted on the ship, usually by waves.

To reduce rolling of the ship, auxil-
iary wing tanks connected by pipes are
used. The water flowing from one tank
to another has a natural frequency that
is determined by the length and cross-
sectional area of the tube connecting the

tanks. The damping is controlled by restricting the flow of water, either with a valve
S in the line that allows air to flow between the tanks (Fig. 6.27) or with a valve V in
the water line. Since the tanks occupy valuable space, the mass ratio of the water in
the tanks to the ship is small. Fortunately, the excitation from waves generally is not
large relative to the restoring moments, and roll becomes objectionable only
because the normal damping of a ship in rolling motion is not very large. The use of
antirolling tanks in the German luxury liners Bremen and Europa reduced the max-
imum roll from 15 to 5°.

REDUCTION OF ROLL OF SHIPS BY GYROSCOPES

A large gyroscope may be used to re-
duce roll in ships, as shown in Fig.
6.28.1,14 In response to the velocity of
roll of a ship, the gyroscope precesses in
the plane of symmetry of the ship. By
braking this precession, energy can be
dissipated and the roll reduced. The
torque exerted by the gyroscope is pro-
portional to the rate of change of the
angular momentum about an axis per-
pendicular to the torque. Letting I rep-
resent the polar moment of inertia of
the gyroscope about its spin axis and θ̇
the angular velocity of precession of the
gyroscope, then the equation of motion
of the ship is

Is φ̈ + krφ + IΩθ̇ = Ms (6.52)

Assume that the gyroscope has (1) a moment of inertia about the precession axis
of Ig, (2) a weight of W, and (3) that its center-of-gravity is below the gimbal axis (as
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FIGURE 6.27 Cross section of ship equipped
with antiroll tanks. The flow of water from one
tank to the other tends to counteract rolling of
the ship.

FIGURE 6.28 Application of a gyroscope to a
ship to reduce roll.
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it must be for the gyro to come to equilibrium in a working position) a distance a, as
shown in Fig. 6.28. Then the equation of motion of the gyroscope is

Igθ̈ + Waθ + cθ̇ − IΩφ̇ = 0 (6.53)

where Ω is the spin velocity of the gyroscope. From Eq. (6.53), for a roll frequency of
ω, the angle of precession of the gyroscope is

θ = (6.54)

The torque exerted on the ship is

IΩθ̇ = (6.55)

The equivalent moment of inertia of the gyroscope system in its reaction on the ship is

(6.56)

By analogy with the steps of Eqs. (6.2) through (6.7), it follows that

= � (6.57)

where the parameters are defined in terms of ship and gyro constants as follows:

βg = β = ζ = µ = ψst =

Because IΩ can be made large by using a large gyro rotor and spinning it at a high
speed, and Wa can be made small by choice of a design, the value of µ can be made
quite large even though Is is large. In one experimental ship, µ = 20 was obtained.
Even with this large value of µ, the precession angle of the gyroscope would become
very large for optimum damping. Therefore it is necessary to use much more damp-
ing than optimum. Gyro stabilizers were used on the Italian ship Conte di Savoia;
they are sometimes installed on yachts.

Both antirolling tanks and gyro stabilizers are more effective if they are active
rather than passive. Activated dampers are considered below.

AUXILIARY MASS DAMPERS APPLIED TO

ROTATING MACHINERY

An important industrial use of auxiliary mass systems is to neutralize the unbalance
of centrifugal machinery.A common application is the balance ring in the spin dryer
of home washing machines. The operation of such a balancer is dependent upon the
basket of the washer rotating at a speed greater than the natural frequency of its
support.The balance ring is attached to the washing machine basket concentric with
its axis of rotation, as shown in Fig. 6.29.

Consider the washing machine basket shown in Fig. 6.29. When its center-of-
gravity does not coincide with its axis of rotation and it is rotating at a speed lower

Ms�
kr

(IΩ)2

�
WaIs

c
��
2 �W�a�Ig�

ω
�
�k�r /�Is�

ω
�
�W�a�/I�g�

(1 − βg
2)2 + (2ζβg)2

�����
[(1 − βg

2)(1 − β2) − β2µ]2 + (2ζβg)2(1 − β2)2

φ
�
φst

IΩ2

��
−Igω2 + Wa + cjω

−(IΩ)2ω2φ
��
−Igω2 + Wa + jcω

jIΩωφ
��
−Igω2 + Wa − jcω
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than its critical speed (corresponding to
the natural frequency in rocking motion
about the spherical seat), the centrifugal
force tends to pull the rotational axis in
the direction of the unbalance. This
effect increases with an increase in rota-
tional speed until the critical speed is
reached. At this speed the amplitude
would become infinite if it were not for
the damping in the system. Above the
critical speed, the phase position of the
axis of rotation relative to the center-of-
gravity shifts so that the basket tends to
rotate about its center-of-gravity with
the flexibly supported bearing moving in
a circle about an axis through the center-

of-gravity. The relative positions of the bearing center and the center-of-gravity are
shown in Fig. 6.30A and B.

Since the balance ring is circular with a smooth inner surface, any weights or fluids
contained in the ring can be acted upon only by forces directed radially.When the ring
is rotated about a vertical axis, the weights or fluids will move within the ring in such a
manner as to be concentrated on the side farthest from the axis of rotation. If this con-

centration occurs below the natural fre-
quency (Fig. 6.30A), the weights tend to
move further from the axis and the result-
ant center-of-gravity is displaced so as to
give a greater eccentricity. The points A
and G rotate about the axis O at the fre-
quency ω. The initial eccentricity of the
center-of-gravity of the washer basket
and its load from the axis of rotation is
represented by e, and ρ is the elastic dis-
placement of this center of rotation due
to the centrifugal force. Where the off-
center rotating weight is W, the unbal-
anced force is (W/g)(ρ + e)ω2 [where ρ =
e/(1 − β2) and β2 = ω2/ωn

2 < 1] and acts in
the direction from A to G.

If the displacement of the weights or
fluids in the balance ring occurs above
the natural frequency, the center-of-
gravity tends to move closer to the
dynamic location of the axis.The action in
this case is shown in Fig. 6.30B. Then the
points A and G rotate about O at the fre-

quency ω. The unbalanced force is (W/g)(ρ + e)ω2 [where ρ = e/(1 − β2) and β2 =
ω2/ωn

2 > 1]. This gives a negative force that acts in a direction from G to A. Thus the
eccentricity is brought toward zero and the rotor is automatically balanced. Because it
is necessary to pass through the critical speed in bringing the rotor up to speed and in
stopping it, it is desirable to heavily damp the balancing elements, either fluid or
weights.

In practical applications, the balancing elements can take several forms. The ear-
liest form consisted of two or more spheres or cylinders free to move in a race con-
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FIGURE 6.29 Schematic diagram showing
location of balance ring on basket of a spin dryer.

FIGURE 6.30 Diagram in plane normal to
axis of rotation of spin dryer in Fig. 6.29. Rela-
tive positions of axes when rotating speed is less
than natural frequency are shown at (A); corre-
sponding diagram for rotation speed greater
than natural frequency is shown at (B).
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centric with the axis of the rotor, as
shown in Fig. 6.31A. A later modifica-
tion consists of three annular discs that
rotate about an enlarged shaft concen-
tric with the axis, as indicated in Fig.
6.31B. These are contained in a sealed
compartment with oil for lubrication
and damping. A fluid type of damper is
shown in Fig. 6.31C, the fluid usually
being a high-density viscous material.
With proper damping, mercury would
be excellent, but it is too expensive.
Therefore a more viscous, high-density
halogenated fluid is used.

The balancers must be of sufficient
weight and operate at such a radius that
the product of their weight and the max-
imum eccentricity they can attain is
equivalent to the unbalanced moment
of the load. This requirement makes the
use of the spheres or cylinders difficult
because they cannot be made large; it
makes the annular plates large because
they are limited in the amount of eccen-
tricity that can be obtained.

In a cylindrical volume 24 in. (61 cm)
in diameter and 2 in. (5 cm) thick, seven
spheres 2 in. (5 cm) in diameter can neu-
tralize 98.6 lb-in. (114 kg-cm) of unbal-
ance; three cylinders 4 in. (10 cm) in
diameter by 2 in. (5 cm) thick can neu-
tralize 255 lb-in. (295 kg-cm); three
annular discs, each 5⁄8 in. (1.6 cm) thick
with an outside diameter of 19.55 in. (50
cm) and an inside diameter of 10.45 in.
(26.5 cm) [the optimum for a center post

6 in. (15.2 cm) in diameter], can neutralize 250 lb-in. (290 kg-cm); and half of a 2-in.
(5-cm) diameter torus filled with fluid of density 0.2 lb/in3 (5.5 gram/cm3) can neu-
tralize 609 lb-in. (700 kg-cm). Only the fluid-filled torus would be initially balanced.

AUXILIARY MASS DAMPERS APPLIED TO

TORSIONAL VIBRATION

Dampers and absorbers are used widely for the control of torsional vibration of
internal-combustion engines. The most common absorber is the viscous-damped,
untuned auxiliary mass unit shown in Fig. 6.32. The device is comprised of a cylin-
drical housing carrying an inertia mass that is free to rotate. There is a preset clear-
ance between the housing and the inertia mass that is filled with a silicone oil of
proper viscosity. Silicone oil is used because of its high viscosity index; i.e., its viscos-
ity changes relatively little with temperature.With the inertia mass and the damping
medium contained, the housing is seal-welded to provide a leakproof and simple
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FIGURE 6.31 Examples of balancing means
for rotating machinery: (A) spheres (or cylin-
ders) in a race; (B) annular discs rotating on
shaft; (C) damping fluid in torus.
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absorber. However, the silicone oil has
poor boundary lubricating properties
and if decomposed by a local hot spot
(such as might be caused by a reduced
clearance at some particular spot), the
decomposed damping fluid is abrasive.

Because of the simplicity of this un-
tuned damper, it is commonly used in
preference to the more effective tuned
absorber. However, it is possible to use
the same construction methods for a
tuned damper, as shown in Fig. 6.33. It is
also possible to mount the standard
damper with the housing for the un-
sprung inertia mass attached to the main

mass by a spring, as shown in Fig. 6.34. If the viscosity of the oil and the dimensions of
the masses and the clearance spaces are known, the damping effects of the dampers
shown in Figs. 6.32 and 6.34 can be computed directly in terms of the equations previ-
ously developed. The damper in Fig. 6.34 can be analyzed by treating the spring and
housing as additional elements in the main system and the untuned mass as a viscous
damped auxiliary mass. If the inertia of the housing is negligible, the inertia mass is
effectively connected to the main mass through a spring and a dashpot in series. The
two elements in series can be represented by a complex spring constant equal to

=

Where there is no damping in parallel with the spring, Eq. (6.3) becomes

meq = km/(k − mω2)

Substituting the complex value of the spring constant, the effective mass is

meq = � � (6.58)
m

���
−mω2 + cjkω/(k + cjω)

ckjω
�
k + cjω

kcjω
�
k + cjω

1
��
(1/jcω) + (1/k)
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FIGURE 6.32 Untuned auxiliary mass damper
with viscous damping. The application to a tor-
sional system is shown at (A), and the linear ana-
log at (B).

FIGURE 6.33 Tuned auxiliary mass damper
with viscous damping. The application to a tor-
sional system is shown at (A), and the linear ana-
log at (B).

FIGURE 6.34 Auxiliary mass damper with
viscous damping and spring-mounted housing.
The application to a torsional system is shown at
(A), and the linear analog at (B).
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In terms of the nondimensional parameters defined in Eq. (6.4):

meq = m + j (6.59)

Before the advent of silicone oil with
its chemical stability and relatively con-
stant viscosity over service temperature
conditions, the damper most commonly
used for absorbing torsional vibra-
tion energy was the dry friction or Lan-
chester damper shown in Fig. 6.35. The
damping is determined by the spring
tension and the coefficient of friction at
the sliding interfaces. Its optimum value
is determined by the equation for a tor-
sional system analogous to Eq. (6.35) for
a linear system:

(Ts)opt = Iω2θ0 (6.60)

where Ts is the slipping torque, I is the moment of inertia of the flywheels, and θ0 is
the amplitude of angular motion of the primary system. The dry-friction-based Lan-
chester damper requires frequent adjustment, as the braking material wears, to
maintain a constant braking force.

It is possible to use torque-transmitting couplings that can absorb vibration
energy, as the spring elements for tuned dampers. The Bibby coupling (Fig. 6.36) is
used in this manner. Since the stiffness of this coupling is nonlinear, the optimum
tuning of such an absorber is secured for only one amplitude of motion.

A discussion of dampers and of their application to engine systems is given in
Chap. 38.

DYNAMIC ABSORBERS TUNED TO ORDERS OF

VIBRATION RATHER THAN CONSTANT

FREQUENCIES

In the torsional vibration of rotating machinery, it is generally found that exciting
torques and forces occur at the same frequency as the rotational speed or at multi-
ples of this frequency.The ratio of the frequency of vibration to the rotational speed
is called the order of the vibration q. Thus a power plant driving a four-bladed pro-
peller may have a torsional vibration whose frequency is 4 times the rotational speed
of the drive shaft; sometimes it may have a second torsional vibration whose fre-
quency is 8 times the rotational speed. These are called the fourth-order and eighth-
order torsional vibrations.

If a dynamic absorber in the form of a pendulum acting in a centrifugal field is
used, then its natural frequency increases linearly with speed. Therefore it can be
used to neutralize an order of vibration.15–19

Consider a pendulum of length l and of mass m attached at a distance R from the
center of a rotating shaft, as shown in Fig. 6.37. Since the pendulum is excited by tor-
sional vibration in the shaft, let the radius R be rotating at a constant speed Ω with a

�2�
�

π

−2ζβa
3m

���
βa

4 − (2ζβa)2(1 − βa
2)

(2ζβa)2(1 − βa
2)

���
βa

4 − (2ζβa)2(1 − βa
2)
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FIGURE 6.35 Schematic cross section through
Lanchester damper.
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superposed vibration θ = θ0 cos qΩt, where q represents the order of the vibration.
Then the angle of R with respect to any desired reference is Ωt + θ0 cos qΩt. The
angle of the pendulum with respect to the radius R is defined as ψ = ψ0 cos qΩt, as
shown by Fig. 6.37.

The acceleration acting on the mass m at position B is most easily ascertained by
considering the change in velocity during a short increment of time ∆t. The compo-
nents of velocity of the mass m at time t are shown graphically in Fig. 6.38A; at time
t + ∆t, the corresponding velocities are shown in Fig. 6.38B. The change in velocity
during the time interval ∆t is shown in Fig. 6.38C. Since the acceleration is the change
in velocity per unit of time, the accelerations along and perpendicular to l are:

Acceleration along l:

(6.61)

Acceleration perpendicular to l:

(6.62)

Only the force −F, directed along the pendulum, acts on the mass m. Therefore the
equations of motion are

−F = −ml(Ω + θ̇ + ψ̇)2 − mR(Ω + θ̇)2 cos ψ + Rθ̈ sin ψ
(6.63)

0 = ml(θ̈ +ψ̈) + mR(Ω + θ̇)2 sin ψ + mRθ̈ cos ψ̇

Assuming that ψ and θ are small, Eqs. (6.63) simplify to

l(θ̈ + ψ̈) ∆t + R(Ω + θ̇)2 ∆t sin ψ + Rθ̈ ∆t cos ψ
�����

∆t

−l(Ω + θ̇ + ψ̇2) ∆t − R(Ω + θ̇)2 ∆t cos ψ + Rθ̈ ∆t sin ψ
������

∆t
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FIGURE 6.36 Coupling used as elastic and
damping element in auxiliary mass damper for
torsional vibration. The torque is transmitted by
an undulating strip of thin steel interposed
between the teeth on opposite hubs. The stiff-
ness of the strip is nonlinear, increasing as
torque increases. Oil pumped between the strip
and teeth dissipates energy.

FIGURE 6.37 Schematic diagram of pendu-
lum absorber.
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Ft = m(R + l)Ω2

(6.64)
l(θ̈ + ψ̈) + RΩ2ψ + Rθ̈ = 0

The second of Eqs. (6.64) upon substitu-
tion of θ = θ0 cos qΩt and ψ = ψ0 cos qΩt
yields

= =

(6.65)

The torque M exerted at point 0 by the
force F is

M = RF sin ψ = RFψ when ψ is small

From Eqs. (6.64) and (6.65), when ψ is
small,

M = (6.66)

If a flywheel having a moment of iner-
tia I is accelerated by a shaft having an
amplitude of angular vibratory motion θ0

and a frequency qΩ, the torque ampli-
tude exerted on the shaft is I(qΩ)2θ0.
Therefore, the equivalent moment of
inertia Ieq of the pendulum is

Ieq = = (6.67)

When

= q2 (6.68)

the equivalent inertia is infinite and the pendulum acts as a dynamic absorber by
enforcing a node at its point of attachment.

Where the pendulum is damped, the equivalent moment of inertia is given by an
equation analogous to Eqs. (6.4) and (6.5):

Ieq = m(R + l)2

= m(R + l)2 � − � (6.69)

where υ2 = q2l/R and ζ = (c/2mΩ)�l/�R�.
When the pendulum is attached to a single degree-of-freedom system as is shown

in Fig. 6.39, the amplitude of motion θa of the flywheel of inertia I is given, by anal-
ogy to Eq. (6.7), as

2ζυ3j
��
(1 − υ2)2 + (2ζυ)2

1 − υ2 + (2ζυ)2

��
(1 − υ2)2 + (2ζυ)2

1 + 2ζυj
��
(1 − υ2) + 2ζυj

R
�
l
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��
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��
R − q2l
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��
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��
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FIGURE 6.38 Velocity vectors for the pendu-
lum absorber: (A) velocities at time t; (B) veloc-
ities at time t + ∆t; (C) change in velocities during
time increment �t.
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= � (6.70)

where 2ζυ =

µp =

βp =

θst =

The pendulum tends to detune when the amplitude of motion of the pendulum is
large, thereby introducing harmonics of the torque that it neutralizes.17 Suppose the
shaft rotates at a constant speed Ω, i.e., θ0 = 0, and consider the torque exerted on the
shaft as m moves through a large amplitude ψ0 about its equilibrium position. Equa-
tions (6.63) become

F = ml(Ω + ψ̇)2 + mRΩ2 cos ψ
(6.71)

lψ̈ + RΩ2 sin ψ = 0

A solution for the second of Eqs. (6.71) is

ψ̇ = � �co�s�ψ� −� c�o�s�ψ�0� (6.72)

The solution of Eq. (6.72) involves elliptic integrals and is given approximately by

ψ = ψ0 sin ωt

where ω = � Ω

and F(ψ0/2, π/2) is an elliptic function of the first kind whose value may be obtained
from tables.

Since ω/Ω = q (the order of the disturbance), the tuning of the damper will be
changed for large angles and becomes

q2 = 	 

2

(6.73)

The value of q2l/R = υ2 used in Eqs. (6.69) and (6.70) is given in Fig. 6.40 as a function
of the amplitude of the pendulum.

Since the force exerted by the mass m is directed along the rod connecting it to
the pivot A (Fig. 6.37), the reactive torque on the shaft is

M = FR sin ψ

= mR2Ω2� 	1 + 

2

sin ψ + sin ψ cos ψ�
= mR2Ω2(A1 sin qΩt + A2 sin 2qΩt + A3 sin 3qΩt + . . .) (6.74)
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The values of the fundamental torque corresponding to the tuned frequency and
to the second and third harmonics of this tuned frequency are given in Fig. 6.41 as a
function of the angle of swing of the pendulum, for a typical installation. In this case,
the pendulum is tuned to the 41⁄2 order of vibration. (The 41⁄2 order of vibration is one
whose frequency is 41⁄2 times the rotational frequency and 9 times the fundamental
frequency. The latter is called the half order and occurs at half of the rotational fre-
quency. This is common in four-cycle engines.)

Two types of pendulum absorber are used. The one most commonly used is
shown in Fig. 6.42. The counterweight, which also is used to balance rotating forces
in the engine, is suspended from a hub carried by the crankshaft by pins that act
through holes with clearance, Fig. 6.42A. By suspending the pendulum from two
pins, the pendulum when oscillating does not rotate but rather moves as shown in
Fig. 6.42B. Since it is not subjected to angular acceleration, it may be treated as a
particle located at its center-of-gravity. Referring to Fig. 6.42A and B, the expres-
sion for acceleration [Eqs. (6.61) and (6.62)] and the equations of motion [Eqs.
(6.63)] apply if

R = H1 + H2

(6.75)
l = − Db

where H1 = distance from center of rotation to center of holes in crank hub
H2 = distance from center of holes in pendulum to center-of-gravity of pen-

dulum
Dc = diameter of hole in crank hub
Dp = diameter of hole in pendulum
Db = diameter of pin

In practice, difficulty arises from the wear of the holes and the pin. Moreover, the
motion on the pins generally is small and the loads due to centrifugal forces are large
so that fretting is a problem. Because the radius of motion of the pendulum is short,

Dc + Dp�
2
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FIGURE 6.39 Application of pendulum ab-
sorber to a rotational single degree-of-freedom
system.

FIGURE 6.40 Tuning function for a pendulum
absorber used in Eqs. (6.69) and (6.70).
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only a small amount of wear can be tolerated. Hardened pins and bushings are used
to reduce the wear.

The pendulum is most easily designed if it is recognized that the inertia torques
generated by the pendulum must neutralize the forcing torques. Thus

mω2lψ0R = M (6.76)

The radii l and R are set by the design of the crank and the order of vibration to be
neutralized. The original motion ψ0 is generally limited to a small angle, approxi-
mately 20°. It is probable that the most stringent condition is at the lowest operating
speed, although the absorber may be required only to avoid difficulty at some par-
ticular critical speed. Knowing the excitation M, it is possible to compute the
required mass of the pendulum weight.

A second type of pendulum absorber is a cylinder that rolls in a hole in a coun-
terweight, as shown in Fig. 6.43. In this type, the radius of the pendulum corre-
sponds to the difference in the radii of the hole and of the cylinder. It is found, by
observing tests and checking the tuning of actual systems using cylindrical pendu-
lums, that the weight rotates with a uniform angular velocity. Therefore the tuning
is independent of the moments of inertia of the cylinder. It is common to allow a
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FIGURE 6.41 Harmonic components of
torque generated by a pendulum absorber as a
function of its angle of swing. The torque is
expressed by the parameters used in Eq. (6.74).

FIGURE 6.42 Bifilar type of pendulum ab-
sorber. The mechanical arrangement is shown at
(A), and a schematic diagram at (B).
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larger amplitude of motion with the absorber of Fig. 6.43 than with the absorber of
Fig. 6.40.

Applications of pendulum absorbers to torsional-vibration problems are given in
Chap. 38.

PENDULUM ABSORBER FOR LINEAR VIBRATION

The principle of the pendulum absorber can be applied to linear vibration as well as
to torsional vibration.To neutralize linear vibration, pendulums are rotated about an
axis parallel to the direction of vibration, as shown in Fig. 6.44. This can be accom-
plished with an absorber mounted on the moving body. Two or more pendulums are
used so that centrifugal forces are balanced. Free rotational movement of each pen-
dulum in the plane of the axis allows the axial forces to be neutralized. The pendu-
lum assembly must rotate about the axis at some submultiple of the frequency of
vibration. The size of the absorber is determined by the condition that the compo-
nents of the inertia forces of the weights in the axial direction [Σmω2rθ] must bal-
ance the exciting forces. This device can be applied where the vibration is generated
by the action of rotating members but the magnitude of the vibratory forces is
uncertain. A discussion of this absorber, including the influence of moments of iner-
tia and damping of the pendulum, together with some applications to the elimina-
tion of vibration in special locations on a ship, is given in Ref. 20.

APPLICATIONS OF DAMPERS TO MULTIPLE

DEGREE-OF-FREEDOM SYSTEMS

Auxiliary mass dampers as applied to systems of several degrees-of-freedom can be
represented most effectively by equivalent masses or moments of inertia, as deter-
mined by Eq. (6.5) or Eq. (6.6). The choice of proper damping constants is more dif-
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FIGURE 6.43 Roller type of pendulum ab-
sorber.

FIGURE 6.44 Application of pendulum
absorbers to counteract linear vibration.
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ficult. For the case of torsional vibration, the practical problems of designing
dampers and selecting the proper damping are considered in Chap. 38.

There are many applications of dampers to vibrating structures that illustrate
the use of different types of auxiliary mass damper. One such application has been
to ships.21 These absorbers had low damping and were designed to be filled with
water so that they could be tuned to the objectionable frequencies. In one case, the
absorber was located near the propeller (the source of excitation) and when prop-
erly tuned was found to be effective in reducing the resonant vibration of the ship.
In another case, the absorber was located on an upper deck but was not as effec-
tive. It enforced a node at its point of attachment but, because of the flexibility
between the upper deck and the bottom of the ship, there was appreciable motion
in the vicinity of the propeller and vibratory energy was fed to the ship’s structure.
To operate properly, the absorbers must be closely tuned and the propeller speed
closely maintained. Because the natural frequencies of the ship vary with the types
of loading, it is not sufficient to install a fixed frequency absorber that is effective
at only one natural frequency of the hull, corresponding to a particular loading
condition.

An auxiliary mass absorber has been applied to the reduction of vibration in a
heavy building that vibrated at a low frequency under the excitation of a number of
looms.22 The frequency of the looms was substantially constant. However, the mag-
nitude of the excitation was variable as the looms came into and out of phase. The
dynamic absorber, consisting of a heavy weight hung as a pendulum, was tuned to
the frequency of excitation. Because the frequency was low and the forces large, the
absorber was quite large. However, it was effective in reducing the amplitude of
vibration in the building and was relatively simple to construct.

ACTIVATED VIBRATION ABSORBERS

The cost and space that can be allotted to ship antirolling devices are limited.There-
fore it is desirable to activate the absorbers so that their full capacity is used for
small amplitudes as well as large.Activated dampers can be made to deliver as large
restoring forces for small amplitudes of motion of the primary body as they would
be required to deliver if the motions were large. For example, the gyrostabilizer that
is used in the ship is precessed by a motor through its full effective range, in the case
of small angles as well as large. Thus, it introduces a restoring torque that is much
larger than would be introduced by the normal damped precession.14 In the same
manner the water in antiroll tanks is always pumped to the tank where it will intro-
duce the maximum torque to counteract the roll. By pumping, much larger quanti-
ties of water can be transferred and larger damping moments obtained than can be
obtained by controlled gravity flows.

Devices for damping the roll are desirable for ships. It has been common practice
to install bilge keels (long fins which extend into the water) in steel ships. Some ships
are now fitted with activated, retractable hydrofoils located at the bilge at the maxi-
mum beam. Both these devices are effective only when the ship is in motion and add
to the resistance of the ship.

Activated vibration absorbers are essentially servomechanisms designed to
maintain some desired steady state. Steam and gas turbine speed governors, wicket
gate controls for frequency regulation in water turbines, and temperature control
equipment can be considered as special forms of activated vibration absorbers.23
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THE USE OF AUXILIARY MASS DEVICES TO

REDUCE TRANSIENT AND SELF-EXCITED

VIBRATIONS

Where the vibration is self-excited or caused by repeated impact, it is necessary to
have sufficient damping to prevent a serious build-up of vibration amplitude. This
damping, which need not always be large, may be provided by a loosely coupled aux-
iliary mass.A simple application of this type is the ring fitted to the interior of a gear,
as shown in Fig. 6.45. By fitting this ring with the proper small clearance so that rel-
ative motion occurs between it and the gear, it is possible to obtain enough energy
dissipation to damp the high-frequency, low-energy vibration that causes the gear to
ring. The rubbery coatings applied to large, thin-metal panels such as automobile
doors to give them a solid rather than a “tinny” sound depend for their effectiveness
on a proper balance of mass, elasticity, and damping (see Chap. 37).

Another application where auxiliary
mass dampers are useful is in the pre-
vention of fatigue failures in turbines.
At the high-pressure end of an impulse
turbine, steam or hot gas is admitted
through only a few nozzles. Conse-
quently, as the blade passes the nozzle it
is given an impulse by the steam and set
into vibration at its natural frequency. It
is a characteristic of alloy steels that they
have very little internal damping at high
operating temperature. For this reason
the free vibration persists with only a
slightly diminished amplitude until the
blade again is subjected to the steam im-
pulse. Some of these second impulses
will be out of phase with the motion of
the blade and will reduce its amplitude;
however, successive impulses may in-
crease the amplitude on subsequent

passes until failure occurs. Damping can be increased by placing a number of loose
wires in a cylindrical hole cut in the blade in a radial direction. The damping of a
number of these wires has been computed in terms of the geometry of the applica-
tion (number of wires, density of wires, size of the hole, radius of the blade, rotational
speed, etc.) and the amplitude of vibration.24 These computations show reasonable
agreement with experimental results.

An auxiliary mass has been used to damp the cutting tool chatter set up in a bor-
ing bar.25 Because of the characteristics of the metal-cutting process or of some cou-
pling between motions of the tool parallel and perpendicular to the work face, it is
sometimes found that a self-excited vibration is initiated at the natural frequency of
the cutter system. Since the self-excitation energy is low, the vibration usually is ini-
tiated only if the damping is small. Chatter of the tool is most common in long,
poorly supported tools, such as boring bars (see Chap. 40). To eliminate this chatter,
a loose auxiliary mass is incorporated in the boring bar, as shown in Fig. 6.46. This
may be air-damped or fluid-damped. Since the excitation is at the natural frequency
of the tool, the damping should be such that the tool vibrates with a minimum ampli-
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FIGURE 6.45 Application of auxiliary mass
damper to deaden noise in gear.
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tude at this frequency. The damping
requirement can be estimated by substi-
tuting β = 1 in Eq. (6.25),

= � (6.77)

The optimum value of the parameter
(ζα) is infinity. Thus when the frequency
of excitation is constant, a greater reduc-

tion in amplitude can be obtained by a shift in natural frequency than by damping.
However, such a shift cannot be attained because the frequency of the excitation
always coincides with the natural frequency of the complete system. Instead, a bet-
ter technique is to determine the damping that gives the maximum decrement of the
free vibration.

Let the boring bar and damper be represented by a single degree-of-freedom sys-
tem with a damper mass coupled to the main mass by viscous damping, as shown in
Fig. 6.47A. The forces acting on the masses are shown in Fig. 6.47B. The equations of
motion are

−kx1 − cẋ1 + cẋ2 = m1 ẍ1
(6.78)

cẋ1 − cẋ2 = m2 ẍ2

Substituting x = Aest, the resulting frequency equation is

s3 + s2 + s + = 0 (6.79)

Where chatter occurs, this equation has
three roots, one real and two complex.
The complex roots correspond to decay-
ing free vibrations. Let the roots be as
follows:

α1, α2 + jβ, α2 − jβ

The value of β determines the frequency
of the free vibration, and the value of α2

determines the decrement (rate of
decrease of amplitude) of the free vibra-
tion. The decrement α2 is of primary
interest; it is most easily found from the
conditions that when the coefficient of s3

is unity, (1) the sum of the roots is equal
to the negative of the coefficient of s2,
(2) the sum of the products of the roots
taken two at a time is the negative of the
coefficient of s, and (3) the product of
the roots is the negative of the constant
term. The equations thus obtained are

α1 + 2α2 = − (6.80)
c(1 + µ)
�

µm1

kc
�
m1m2

k
�
m1

c(m1 + m2)��
m1m2

1 + 4(ζα)2

��
4(ζα)2µ2

x0�
δst
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FIGURE 6.46 Application of auxiliary mass
damper to reduce chatter in boring bar.

FIGURE 6.47 Schematic diagram of damper
shown in Fig. 6.46. The arrangement is shown at
(A), and the forces acting on the boring bar and
auxiliary mass are shown at (B).
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2α1α2 + α2
2 + β2 = −ωn

2 (6.81)

α1(α2
2 + β2) = −ωn

2 (6.82)

where ωn
2 = k/m1 and µ = m2/m1. It is not practical to find the optimum damping by

solving these equations for α2 and then setting the derivative of α2 with respect to c
equal to zero. However, it is possible to find the optimum damping by the following
process. Eliminate (α2

2 + β2) between Eqs. (6.81) and (6.82) to obtain

2α1
2α2 = ωn

2 	 − α1
 (6.83)

Substituting the value of α1 from Eq. (6.80) in Eq. (6.83),

2α2�2α2 + �2
= + ωn

2�2α2 + � (6.84)

To find the damping that gives the maximum decrement, differentiate with respect
to c and set dα2/dc = 0:

2α2�2α2 + � = 1⁄2ωn
2 (6.85)

Solving Eqs. (6.84) and (6.85) simultaneously,

copt = (6.86)

(α2)opt = − (6.87)

These values may be obtained by proper choice of clearance between the auxil-
iary mass and the hole in which it is located.Air damping is preferable to oil because
it requires less clearance. Therefore the plug is not immobilized by the centrifugal
forces that, with the rotating boring bar, become larger as the clearance is increased.

(2 + µ)ωn��
4(1 + µ)1/2

µ2m1ωn��
2(1 + µ)3/2

2 + µ
�
1 + µ

c(1 + µ)
�

µm1

c(1 + µ)
�

µm1

cωn
2

�
µm1

c(1 + µ)
�

µm1

c
�
µm1

c
�
m1µ
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FIGURE 6.48 Application of auxiliary mass to spring-mounted table to reduce vibration of table.
(Macinante.26)
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In precision measurements, it is necessary to isolate the instruments from effects
of shock and vibration in the earth and to damp any oscillations that might be gen-
erated in the measuring instruments. A heavy spring-mounted table fitted with a
heavy auxiliary mass that is attached to the table by a spring and submerged in an oil
bath (Fig. 6.48) has proved to be effective.26 In this example the table has a top sur-
face of 131⁄2 in. (34 cm) by 131⁄2 in. (34 cm) and a height of 6 in. (15 cm). Each auxiliary
mass weighs about 70 lb (32 kg).The springs for both the primary table and the aux-
iliary system are designed to give a natural frequency between 2 and 4 Hz in both the
horizontal and vertical directions. By trying different fluids in the bath, suitable
damping may be obtained experimentally.
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