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INTRODUCTION

This chapter discusses the vibration of a rigid body on resilient supporting elements,
including (1) methods of determining the inertial properties of a rigid body, (2) dis-
cussion of the dynamic properties of resilient elements, and (3) motion of a single
rigid body on resilient supporting elements for various dynamic excitations and
degrees of symmetry.

The general equations of motion for a rigid body on linear massless resilient sup-
ports are given; these equations are general in that they include any configuration of
the rigid body and any configuration and location of the supports. They involve six
simultaneous equations with numerous terms, for which a general solution is
impracticable without the use of high-speed automatic computing equipment. Vari-
ous degrees of simplification are introduced by assuming certain symmetry, and
results useful for engineering purposes are presented. Several topics are considered:
(1) determination of undamped natural frequencies and discussion of coupling of
modes of vibration; (2) forced vibration where the excitation is a vibratory motion
of the foundation; (3) forced vibration where the excitation is a vibratory force or
moment generated within the body; and (4) free vibration caused by an instanta-
neous change in velocity of the system (velocity shock). Results are presented math-
ematically and, where feasible, graphically.

SYSTEM OF COORDINATES

The motion of the rigid body is referred to a fixed “inertial” frame of reference. The
inertial frame is represented by a system of cartesian coordinates �X, �Y, �Z. A similar sys-
tem of coordinates X, Y, Z fixed in the body has its origin at the center-of-mass. The
two sets of coordinates are coincident when the body is in equilibrium under the
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action of gravity alone. The motions of
the body are described by giving the dis-
placement of the body axes relative to
the inertial axes. The translational dis-
placements of the center-of-mass of the
body are xc, yc , zc in the �X, �Y, �Z directions,
respectively. The rotational displace-
ments of the body are characterized by
the angles of rotation α, β, γ of the body
axes about the �X, �Y, �Z axes, respectively.
These displacements are shown graphi-
cally in Fig. 3.1.

Only small translations and rotations
are considered. Hence, the rotations are
commutative (i.e., the resulting position
is independent of the order of the com-
ponent rotations) and the angles of rota-
tion about the body axes are equal to
those about the inertial axes. Therefore,
the displacements of a point b in the body
(with the coordinates bx, by, bz in the X,Y,
Z directions, respectively) are the sums of
the components of the center-of-mass
displacement in the directions of the �X,
�Y, �Z axes plus the tangential components
of the rotational displacement of the
body:

xb = xc + bzβ − byγ

yb = yc − bzα + bxγ (3.1)

zb = zc − bxβ + byα

EQUATIONS OF SMALL MOTION OF A RIGID BODY

The equations of motion for the translation of a rigid body are

mẍc = Fx mÿc = Fy mz̈c = Fz (3.2)

where m is the mass of the body, Fx, Fy, Fz are the summation of all forces acting on
the body, and ẍc , ÿc , z̈c are the accelerations of the center-of-mass of the body in the
�X, �Y, �Z directions, respectively.The motion of the center-of-mass of a rigid body is the
same as the motion of a particle having a mass equal to the total mass of the body
and acted upon by the resultant external force.

The equations of motion for the rotation of a rigid body are

Ixxα̈ − Ixyβ̈ − Ixz γ̈ = Mx

−Ixyα̈ + Iyyβ̈ − Iyzγ̈ = My (3.3)

−Ixzα̈ − Iyzβ̈ + Izzγ̈ = Mz

3.2 CHAPTER THREE

FIGURE 3.1 System of coordinates for the
motion of a rigid body consisting of a fixed iner-
tial set of reference axes (�X, �Y, �Z) and a set of
axes (X, Y, Z) fixed in the moving body with its
origin at the center-of-mass. The axes ��X, �Y, �Z and
X, Y, Z are coincident when the body is in equi-
librium under the action of gravity alone. The
displacement of the center-of-mass is given by
the translational displacements xc, yc, zc and the
rotational displacements α, β, γ as shown. A pos-
itive rotation about an axis is one which
advances a right-handed screw in the positive
direction of the axis.
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where α̈, β̈, γ̈ are the rotational accelerations about the X, Y, Z axes, as shown in Fig.
3.1; Mx , My , Mz are the summation of torques acting on the rigid body about the axes
X, Y, Z, respectively; and Ixx . . . , Ixy . . . are the moments and products of inertia of
the rigid body as defined below.

INERTIAL PROPERTIES OF A RIGID BODY

The properties of a rigid body that are significant in dynamics and vibration are the
mass, the position of the center-of-mass (or center-of-gravity), the moments of iner-
tia, the products of inertia, and the directions of the principal inertial axes. This sec-
tion discusses the properties of a rigid body, together with computational and
experimental methods for determining the properties.

MASS

Computation of Mass. The mass of a body is computed by integrating the prod-
uct of mass density ρ(V) and elemental volume dV over the body:

m = �
v
ρ(V)dV (3.4)

If the body is made up of a number of elements, each having constant or an average
density, the mass is

m = ρ1V1 + ρ2V2 + ⋅⋅⋅ + ρnVn (3.5)

where ρ1 is the density of the element V1, etc. Densities of various materials may be
found in handbooks containing properties of materials.1

If a rigid body has a common geometrical shape, or if it is an assembly of sub-
bodies having common geometrical shapes, the volume may be found from compi-
lations of formulas. Typical formulas are included in Tables 3.1 and 3.2. Tables of
areas of plane sections as well as volumes of solid bodies are useful.

If the volume of an element of the body is not given in such a table, the integra-
tion of Eq. (3.4) may be carried out analytically, graphically, or numerically.A graph-
ical approach may be used if the shape is so complicated that the analytical
expression for its boundaries is not available or is not readily integrable. This is
accomplished by graphically dividing the body into smaller parts, each of whose
boundaries may be altered slightly (without change to the area) in such a manner
that the volume is readily calculable or measurable.

The weight W of a body of mass m is a function of the acceleration of gravity g at
the particular location of the body in space:

W = mg (3.6)

Unless otherwise stated, it is understood that the weight of a body is given for an
average value of the acceleration of gravity on the surface of the earth. For engi-
neering purposes, g = 32.2 ft/sec2 or 386 in./sec2 (9.81 m/sec2) is usually used.

Experimental Determination of Mass. Although Newton’s second law of
motion, F = mẍ, may be used to measure mass, this usually is not convenient. The
mass of a body is most easily measured by performing a static measurement of the
weight of the body and converting the result to mass.This is done by use of the value
of the acceleration of gravity at the measurement location [Eq. (3.6)].

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.3
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TABLE 3.1 Properties of Plane Sections (After G. W. Housner and D. E. Hudson.2)

The dimensions Xc,Yc are the X,Y coordinates of the centroid, A is the area, Ix . . . is the area moment
of inertia with respect to the X . . . axis, ρx . . . is the radius of gyration with respect to the X . . . axis; uni-
form solid cylindrical bodies of length l in the Z direction having the various plane sections as their cross
sections have mass moment and product of inertia values about the Z axis equal to ρl times the values
given in the table, where ρ is the mass density of the body; the radii of gyration are unchanged.
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TABLE 3.1 Properties of Plane Sections (Continued)
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TABLE 3.1 Properties of Plane Sections (Continued)
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TABLE 3.2 Properties of Homogeneous Solid Bodies (After G. W. Housner and D. E. Hudson.2)

The dimensions Xc,Yc, Zc are the X,Y, Z coordinates of the centroid, S is the cross-sectional area of the
thin rod or hoop in cases 1 to 3, V is the volume, Ix . . . is the mass moment of inertia with respect to the
X . . . axis, ρx . . . is the radius of gyration with respect to the X . . . axis, ρ is the mass density of the body.
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TABLE 3.2 Properties of Homogeneous Solid Bodies (Continued)
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TABLE 3.2 Properties of Homogeneous Solid Bodies (Continued)
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CENTER-OF-MASS

Computation of Center-of-Mass. The center-of-mass (or center-of-gravity) is
that point located by the vector

rc = �
m

r(m)dm (3.7)

where r(m) is the radius vector of the element of mass dm. The center-of-mass of a
body in a cartesian coordinate system X, Y, Z is located at

Xc = �
V

X(V)ρ(V)dV

Yc = �
V

Y(V)ρ(V)dV (3.8)

Zc = �
V

Z(V)ρ(V)dV

where X(V), Y(V), Z(V) are the X, Y, Z coordinates of the element of volume dV
and m is the mass of the body.

If the body can be divided into elements whose centers-of-mass are known, the
center-of-mass of the entire body having a mass m is located by equations of the fol-
lowing type:

Xc = (Xc1m1 + Xc2m2 + ⋅⋅⋅ + Xcnmn), etc. (3.9)

where Xc1 is the X coordinate of the center-of-mass of element m1.Tables (see Tables
3.1 and 3.2) which specify the location of centers of area and volume (called cen-
troids) for simple sections and solid bodies often are an aid in dividing the body into
the submasses indicated in the above equation. The centroid and center-of-mass of
an element are coincident when the density of the material is uniform throughout
the element.

Experimental Determination of Center-of-Mass. The location of the center-of-
mass is normally measured indirectly by locating the center-of-gravity of the body,
and may be found in various ways. Theoretically, if the body is suspended by a flexi-
ble wire attached successively at different points on the body, all lines represented
by the wire in its various positions when extended inwardly into the body intersect
at the center-of-gravity. Two such lines determine the center-of-gravity, but more
may be used as a check. There are practical limitations to this method in that the
point of intersection often is difficult to designate.

Other techniques are based on the balancing of the body on point or line supports.
A point support locates the center-of-gravity along a vertical line through the point; a
line support locates it in a vertical plane through the line.The intersection of such lines
or planes determined with the body in various positions locates the center-of-gravity.
The greatest difficulty with this technique is the maintenance of the stability of the

1
�
m

1
�
m

1
�
m

1
�
m

1
�
m
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body while it is balanced, particularly
where the height of the body is great rel-
ative to a horizontal dimension. If a per-
fect point or edge support is used, the
equilibrium position is inherently unsta-
ble. It is only if the support has width that
some degree of stability can be achieved,
but then a resulting error in the location
of the line or plane containing the center-
of-gravity can be expected.

Another method of locating the 
center-of-gravity is to place the body in a
stable position on three scales. From static
moments the vector weight of the body is
the resultant of the measured forces at the
scales, as shown in Fig. 3.2. The vertical
line through the center-of-gravity is
located by the distances a0 and b0:

a0 = a1

(3.10)

b0 = b1

This method cannot be used with more than three scales.

MOMENT AND PRODUCT OF INERTIA

Computation of Moment and Product of Inertia.2,3 The moments of inertia of
a rigid body with respect to the orthogonal axes X, Y, Z fixed in the body are

Ixx = �
m

(Y 2 + Z 2) dm Iyy = �
m

(X 2 + Z 2) dm Izz = �
m

(X 2 + Y 2) dm (3.11)

where dm is the infinitesimal element of mass located at the coordinate distances X,
Y, Z; and the integration is taken over the mass of the body. Similarly, the products
of inertia are

Ixy = �
m

XY dm Ixz = �
m

XZ dm Iyz = �
m

YZ dm (3.12)

It is conventional in rigid body mechanics to take the center of coordinates at the
center-of-mass of the body. Unless otherwise specified, this location is assumed, and
the moments of inertia and products of inertia refer to axes through the center-of-
mass of the body. For a unique set of axes, the products of inertia vanish. These axes
are called the principal inertial axes of the body.The moments of inertia about these
axes are called the principal moments of inertia. The moments of inertia of a rigid
body can be defined in terms of radii of gyration as follows:

Ixx = mρx
2 Iyy = mρy

2 Izz = mρz
2 (3.13)

F3��
F1 + F2 + F3

F2��
F1 + F2 + F3

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.15

FIGURE 3.2 Three-scale method of locating
the center-of-gravity of a body. The vertical
forces F1, F2, F3 at the scales result from the
weight of the body. The vertical line located by
the distances a0 and b0 [see Eqs. (3.10)] passes
through the center-of-gravity of the body.

8434_Harris_03_b.qxd  09/20/2001  11:32 AM  Page 3.15



where Ixx, . . . are the moments of inertia of the body as defined by Eqs. (3.11), m is
the mass of the body, and ρx, . . . are the radii of gyration. The radius of gyration has
the dimension of length, and often leads to convenient expressions in dynamics of
rigid bodies when distances are normalized to an appropriate radius of gyration.
Solid bodies of various shapes have characteristic radii of gyration which sometimes
are useful intuitively in evaluating dynamic conditions.

Unless the body has a very simple shape, it is laborious to evaluate the integrals
of Eqs. (3.11) and (3.12). The problem is made easier by subdividing the body into
parts for which simplified calculations are possible. The moments and products of
inertia of the body are found by first determining the moments and products of iner-
tia for the individual parts with respect to appropriate reference axes chosen in the
parts, and then summing the contributions of the parts.This is done by selecting axes
through the centers-of-mass of the parts, and then determining the moments and
products of inertia of the parts relative to these axes. Then the moments and prod-
ucts of inertia are transferred to the axes chosen through the center-of-mass of the
whole body, and the transferred quantities summed. In general, the transfer involves

two sets of nonparallel coordinates
whose centers are displaced. Two trans-
formations are required as follows.

Transformation to Parallel Axes.
Referring to Fig. 3.3, suppose that X, Y,
Z is a convenient set of axes for the
moment of inertia of the whole body
with its origin at the center-of-mass. The
moments and products of inertia for a
part of the body are Ix″x″, Iy″y″, Iz″z″, Ix″y″,
Ix″z″, and Iy″z″, taken with respect to a set
of axes X″, Y″, Z″ fixed in the part and
having their center at the center-of-mass
of the part.The axes X′,Y′, Z′ are chosen
parallel to X″, Y″, Z″ with their origin at
the center-of-mass of the body. The per-
pendicular distance between the X″ and
X′ axes is ax; that between Y″ and Y′ is
ay; that between Z″ and Z′ is az. The
moments and products of inertia of the
part of mass mn with respect to the X′,
Y′, Z′ axes are

Ix′x′ = Ix″x″ + mnax
2

Iy′y′ = Iy″y″ + mnay
2 (3.14)

Iz′z′ = Iz″z″ + mnaz
2

The corresponding products of inertia are

Ix′y′ = Ix″y″ + mnaxay

Ix′z′ = Ix″z″ + mnaxaz (3.15)

Iy′z′ = Iy″z″ + mnayaz

If X″, Y″, Z″ are the principal axes of the part, the product of inertia terms on the
right-hand side of Eqs. (3.15) are zero.

3.16 CHAPTER THREE

FIGURE 3.3 Axes required for moment and
product of inertia transformations. Moments
and products of inertia with respect to the axes
X″, Y″, Z″ are transferred to the mutually paral-
lel axes X′, Y′, Z′ by Eqs. (3.14) and (3.15), and
then to the inclined axes X, Y, Z by Eqs. (3.16)
and (3.17).
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Transformation to Inclined Axes. The desired moments and products of iner-
tia with respect to axes X, Y, Z are now obtained by a transformation theorem relat-
ing the properties of bodies with respect to inclined sets of axes whose centers
coincide.This theorem makes use of the direction cosines λ for the respective sets of
axes. For example, λxx′ is the cosine of the angle between the X and X′ axes. The
expressions for the moments of inertia are

Ixx = λxx′
2Ix′x′ + λxy′

2Iy′y′ + λxz′
2Iz′z′ − 2λxx′λxy′Ix′y′ − 2λxx′λxz′Ix′z′ − 2λxy′λxz′Iy′z′

Iyy = λyx′
2Ix′x′ + λyy′

2Iy′y′ + λyz′
2Iz′z′ − 2λyx′λyy′Ix′y′ − 2λyx′λyz′Ix′z′ − 2λyy′λyz′Iy′z′ (3.16)

Izz = λzx′
2Ix′x′ + λzy′

2Iy′y′ + λzz′
2Iz′z′ − 2λzx′λzy′Ix′y′ − 2λzx′λzz′Ix′z′ − 2λzy′λzz′Iy′z′

The corresponding products of inertia are

−Ixy = λxx′λyx′Ix′x′ + λxy′λyy′Iy′y′ + λxz′λyz′Iz′z′ − (λxx′λyy′ + λxy′λyx′)Ix′y′
− (λxy′λyz′ + λxz′λyy′)Iy′z′ − (λxz′λyx′ + λxx′λyz′)Ix′z′

−Ixz = λxx′λzx′Ix′x′ + λxy′λzy′Iy′y′ + λxz′λzz′Iz′z′ − (λxx′λzy′ + λxy′λzx′)Ix′y′
− (λxy′λzz′ + λxz′λzy′)Iy′z′ − (λxx′λzz′ + λxz′λzx′)Ix′z′

(3.17)

−Iyz = λyx′λzx′Ix′x′ + λyy′λzy′Iy′y′ + λyz′λzz′Iz′z′ − (λyx′λzy′ + λyy′λzx′)Ix′y′
− (λyy′λzz′ + λyz′λzy′)Iy′z′ − (λyz′λzx′ + λyx′λzz′)Ix′z′

Experimental Determination of Moments of Inertia. The moment of inertia of
a body about a given axis may be found experimentally by suspending the body as a
pendulum so that rotational oscillations about that axis can occur.The period of free
oscillation is then measured, and is used with the geometry of the pendulum to cal-
culate the moment of inertia.

Two types of pendulums are useful:
the compound pendulum and the tor-
sional pendulum. When using the com-
pound pendulum, the body is supported
from two overhead points by wires,
illustrated in Fig. 3.4. The distance l is
measured between the axis of support
O–O and a parallel axis C–C through
the center-of-gravity of the body. The
moment of inertia about C–C is given by

Icc = ml2�� �2� � − 1� (3.18)

where τ0 is the period of oscillation in sec-
onds, l is the pendulum length in inches,
g is the gravitational acceleration in
in./sec2, and m is the mass in lb-sec2/in.,
yielding a moment of inertia in lb-in.-sec2.

The accuracy of the above method 
is dependent upon the accuracy with

which the distance l is known. Since the center-of-gravity often is an inaccessible
point, a direct measurement of l may not be practicable. However, a change in l can
be measured quite readily. If the experiment is repeated with a different support axis
O′–O′, the length l becomes l + ∆l and the period of oscillation becomes τ0′.Then, the
distance l can be written in terms of ∆l and the two periods τ0, τ0′ :

g
�
l

τ0�
2π

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.17

FIGURE 3.4 Compound pendulum method of
determining moment of inertia. The period of
oscillation of the test body about the horizontal
axis O–O and the perpendicular distance l
between the axis O–O and the parallel axis C–C
through the center-of-gravity of the test body
give Icc by Eq. (3.18).
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l = ∆l� � (3.19)

This value of l can be substituted into Eq. (3.18) to compute Icc.
Note that accuracy is not achieved if l is much larger than the radius of gyration

ρc of the body about the axis C–C (Icc = mρc
2). If l is large, then (τ0/2π)2 � l/g and the

expression in brackets in Eq. (3.18) is very small; thus, it is sensitive to small errors in
the measurement of both τ0 and l. Consequently, it is highly desirable that the dis-
tance l be chosen as small as convenient, preferably with the axis O–O passing
through the body.

A torsional pendulum may be constructed with the test body suspended by a sin-
gle torsional spring (in practice, a rod or wire) of known stiffness, or by three flexi-
ble wires. A solid body supported by a single torsional spring is shown in Fig. 3.5.
From the known torsional stiffness kt and the measured period of torsional oscilla-
tion τ, the moment of inertia of the body about the vertical torsional axis is

Icc = (3.20)

A platform may be constructed below the torsional spring to carry the bodies to
be measured, as shown in Fig. 3.6. By repeating the experiment with two different
bodies placed on the platform, it becomes unnecessary to measure the torsional stiff-
ness kt. If a body with a known moment of inertia I1 is placed on the platform and an
oscillation period τ1 results, the moment of inertia I2 of a body which produces a
period τ2 is given by

I2 = I1� � (3.21)

where τ0 is the period of the pendulum composed of platform alone.
A body suspended by three flexible wires, called a trifilar pendulum, as shown in

Fig. 3.7, offers some utilitarian advantages. Designating the perpendicular distances

(τ2/τ0)2 − 1
��
(τ1/τ0)2 − 1

ktτ2

�
4π2

(τ0′2/4π2)(g/∆l) − 1
���
[(τ0

2 − τ0′2)/4π2][g/∆l] − 1

3.18 CHAPTER THREE

FIGURE 3.5 Torsional pendulum method of
determining moment of inertia. The period of
torsional oscillation of the test body about the
vertical axis C–C passing through the center-of-
gravity and the torsional spring constant kt give
Icc by Eq. (3.20).

FIGURE 3.6 A variation of the torsional pen-
dulum method shown in Fig. 3.5 wherein a light
platform is used to carry the test body. The
moment of inertia Icc is given by Eq. (3.20).
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of the wires to the vertical axis C–C through the center-of-gravity of the body by R1,
R2, R3, the angles between wires by φ1, φ2, φ3, and the length of each wire by l, the
moment of inertia about axis C–C is

Icc = (3.22)

Apparatus that is more convenient for
repeated use embodies a light platform
supported by three equally spaced wires.
The body whose moment of inertia is to
be measured is placed on the platform
with its center-of-gravity equidistant
from the wires.Thus R1 = R2 = R3 = R and
φ1 = φ2 = φ3 = 120°. Substituting these
relations in Eq. (3.22), the moment of
inertia about the vertical axis C–C is

Icc = (3.23)

where the mass m is the sum of the
masses of the test body and the plat-
form. The moment of inertia of the plat-
form is subtracted from the test result to
obtain the moment of inertia of the
body being measured. It becomes un-
necessary to know the distances R and l
in Eq. (3.23) if the period of oscillation is
measured with the platform empty, with

the body being measured on the platform, and with a second body of known mass m1

and known moment of inertia I1 on the platform. Then the desired moment of iner-
tia I2 is

I2 = I1 � � (3.24)

where m0 is the mass of the unloaded platform, m2 is the mass of the body being
measured, τ0 is the period of oscillation with the platform unloaded, τ1 is the period
when loaded with known body of mass m1, and τ2 is the period when loaded with the
unknown body of mass m2.

Experimental Determination of Product of Inertia. The experimental determi-
nation of a product of inertia usually requires the measurement of moments of iner-
tia. (An exception is the balancing machine technique described later.) If possible,
symmetry of the body is used to locate directions of principal inertial axes, thereby
simplifying the relationship between the moments of inertia as known and the prod-
ucts of inertia to be found. Several alternative procedures are described below,
depending on the number of principal inertia axes whose directions are known.
Knowledge of two principal axes implies a knowledge of all three since they are
mutually perpendicular.

If the directions of all three principal axes (X′, Y′, Z′) are known and it is desir-
able to use another set of axes (X, Y, Z), Eqs. (3.16) and (3.17) may be simplified

[1 + (m2/m0)][τ2/τ0]2 − 1
���
[1 + (m1/m0)][τ1/τ0]2 − 1

mgR2τ2

�
4π2l

R1 sin φ1 + R2 sin φ2 + R3 sin φ3�����
R2R3 sin φ1 + R1R3 sin φ2 + R1R2 sin φ3

mgR1R2R3τ2

��
4π2l
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FIGURE 3.7 Trifilar pendulum method of
determining moment of inertia. The period of
torsional oscillation of the test body about the
vertical axis C–C passing through the center-of-
gravity and the geometry of the pendulum give
Icc by Eq. (3.22); with a simpler geometry, Icc is
given by Eq. (3.23).
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because the products of inertia with respect to the principal directions are zero. First,
the three principal moments of inertia (Ix′x′, Iy′y′, Iz′z′) are measured by one of the
above techniques; then the moments of inertia with respect to the X, Y, Z axes are

Ixx = λxx′
2Ix′x′ + λxy′

2Iy′y′ + λxz′
2Iz′z′

Iyy = λyx′
2Ix′x′ + λyy′

2Iy′y′ + λyz′
2Iz′z′ (3.25)

Izz = λzx′
2Ix′x′ + λzy′

2Iy′y′ + λzz′
2Iz′z′

The products of inertia with respect to the X, Y, Z axes are

−Ixy = λxx′λyx′Ix′x′ + λxy′λyy′Iy′y′ + λxz′λyz′Iz′z′

−Ixz = λxx′λzx′Ix′x′ + λxy′λzy′Iy′y′ + λxz′λzz′Iz′z′ (3.26)

−Iyz = λyx′λzx′Ix′x′ + λyy′λzy′Iy′y′ + λyz′λzz′Iz′z′

The direction of one principal axis Z may be known from symmetry. The axis
through the center-of-gravity perpendicular to the plane of symmetry is a principal
axis.The product of inertia with respect to X and Y axes, located in the plane of sym-
metry, is determined by first establishing another axis X′ at a counterclockwise angle
θ from X, as shown in Fig. 3.8. If the three moments of inertia Ixx , Ix′x′, and Iyy are
measured by any applicable means, the product of inertia Ixy is

Ixy = (3.27)

where 0 < θ < π. For optimum accuracy, θ
should be approximately π/4 or 3π/4.
Since the third axis Z is a principal axis,
Ixz and Iyz are zero.

Another method is illustrated in Fig.
3.9.4, 5 The plane of the X and Z axes is a
plane of symmetry, or the Y axis is other-
wise known to be a principal axis of iner-
tia. For determining Ixz , the body is
suspended by a cable so that the Y axis is
horizontal and the Z axis is vertical.Tor-
sional stiffness about the Z axis is pro-
vided by four springs acting in the Y
direction at the points shown. The body
is oscillated about the Z axis with vari-

ous positions of the springs so that the angle θ can be varied. The spring stiffnesses
and locations must be such that there is no net force in the Y direction due to a rota-
tion about the Z axis. In general, there is coupling between rotations about the X
and Z axes, with the result that oscillations about both axes occur as a result of an
initial rotational displacement about the Z axis. At some particular value of θ = θ0,
the two rotations are uncoupled; i.e., oscillation about the Z axis does not cause
oscillation about the X axis. Then

Ixz = Izz tan θ0 (3.28)

The moment of inertia Izz can be determined by one of the methods described under
Experimental Determination of Moments of Inertia.

Ixx cos2 θ + Iyy sin2 θ − Ix′x′
���sin 2θ

3.20 CHAPTER THREE

FIGURE 3.8 Axes required for determining
the product of inertia with respect to the axes X
and Y when Z is a principal axis of inertia. The
moments of inertia about the axes X, Y, and X′,
where X′ is in the plane of X and Y at a counter-
clockwise angle θ from X, give Ixy by Eq. (3.27).
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When the moments and product of inertia with respect to a pair of axes X and Z
in a principal plane of inertia XZ are known, the orientation of a principal axis P is
given by

θp = 1⁄2 tan−1� � (3.29)

where θp is the counterclockwise angle from the X axis to the P axis. The second
principal axis in this plane is at θp + 90°.

Consider the determination of products of inertia when the directions of all
principal axes of inertia are unknown. In one method, the moments of inertia about
two independent sets of three mutually perpendicular axes are measured, and the
direction cosines between these sets of axes are known from the positions of the
axes. The values for the six moments of inertia and the nine direction cosines are
then substituted into Eqs. (3.16) and (3.17). The result is six linear equations in the
six unknown products of inertia, from which the values of the desired products of
inertia may be found by simultaneous solution of the equations. This method leads
to experimental errors of relatively large magnitude because each product of iner-
tia is, in general, a function of all six moments of inertia, each of which contains an
experimental error.

An alternative method is based upon the knowledge that one of the principal
moments of inertia of a body is the largest and another is the smallest that can be
obtained for any axis through the center-of-gravity. A trial-and-error procedure can
be used to locate the orientation of the axis through the center-of-gravity having the
maximum and/or minimum moment of inertia. After one or both are located, the
moments and products of inertia for any set of axes are found by the techniques pre-
viously discussed.

The products of inertia of a body also may be determined by rotating the body at
a constant angular velocity Ω about an axis passing through the center-of-gravity, as
illustrated in Fig. 3.10. This method is similar to the balancing machine technique
used to balance a body dynamically (see Chap. 39). If the bearings are a distance l
apart and the dynamic reactions Fx and Fy are measured, the products of inertia are

2Ixz�
Izz − Ixx

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.21

FIGURE 3.9 Method of determining the product of inertia with
respect to the axes X and Z when Y is a principal axis of inertia. The
test body is oscillated about the vertical Z axis with torsional stiff-
ness provided by the four springs acting in the Y direction at the
points shown.There should be no net force on the test body in the Y
direction due to a rotation about the Z axis. The angle θ is varied
until, at some value of θ = θ0, oscillations about X and Z are uncou-
pled.The angle θ0 and the moment of inertia about the Z axis give Ixz

by Eq. (3.28).
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Ixz = − Iyz = − (3.30)

Limitations to this method are (1) the size of the body that can be accommodated
by the balancing machine and (2) the angular velocity that the body can withstand
without damage from centrifugal forces. If the angle between the Z axis and a prin-
cipal axis of inertia is small, high rotational speeds may be necessary to measure the
reaction forces accurately.

PROPERTIES OF RESILIENT SUPPORTS

A resilient support is considered to be a
three-dimensional element having two
terminals or end connections. When the
end connections are moved one relative
to the other in any direction, the ele-
ment resists such motion. In this chap-
ter, the element is considered to be
massless; the force that resists relative
motion across the element is considered
to consist of a spring force that is
directly proportional to the relative dis-
placement (deflection across the ele-
ment) and a damping force that is
directly proportional to the relative
velocity (velocity across the element).
Such an element is defined as a linear
resilient support. Nonlinear elements are
discussed in Chap. 4; elements with mass
are discussed in Chap. 30; and nonlinear
damping is discussed in Chaps. 2 and 30.

In a single degree-of-freedom system or in a system having constraints on the
paths of motion of elements of the system (Chap. 2), the resilient element is con-
strained to deflect in a given direction and the properties of the element are defined
with respect to the force opposing motion in this direction. In the absence of such
constraints, the application of a force to a resilient element generally causes a
motion in a different direction. The principal elastic axes of a resilient element are
those axes for which the element, when unconstrained, experiences a deflection co-
lineal with the direction of the applied force. Any axis of symmetry is a principal
elastic axis.

In rigid body dynamics, the rigid body sometimes vibrates in modes that are cou-
pled by the properties of the resilient elements as well as by their location. For
example, if the body experiences a static displacement x in the direction of the X
axis only, a resilient element opposes this motion by exerting a force kxxx on the
body in the direction of the X axis, where one subscript on the spring constant k
indicates the direction of the force exerted by the element and the other subscript
indicates the direction of the deflection. If the X direction is not a principal elastic
direction of the element and the body experiences a static displacement x in the X
direction, the body is acted upon by a force kyxx in the Y direction if no displacement
y is permitted. The stiffnesses have reciprocal properties; i.e., kxy = kyx. In general,

Fyl�
Ω2

Fxl�
Ω2
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FIGURE 3.10 Balancing machine technique
for determining products of inertia. The test
body is rotated about the Z axis with angular
velocity Ω. The dynamic reactions Fx and Fy

measured at the bearings, which are a distance l
apart, give Ixz and Iyz by Eq. (3.30).
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the stiffnesses in the directions of the coordinate axes can be expressed in terms of
(1) principal stiffnesses and (2) the angles between the coordinate axes and the
principal elastic axes of the element. (See Chap. 30 for a detailed discussion of a
biaxial stiffness element.) Therefore, the stiffness of a resilient element can be rep-
resented pictorially by the combination of three mutually perpendicular, idealized
springs oriented along the principal elastic directions of the resilient element. Each
spring has a stiffness equal to the principal stiffness represented.

A resilient element is assumed to have damping properties such that each spring
representing a value of principal stiffness is paralleled by an idealized viscous
damper, each damper representing a value of principal damping. Hence, coupling
through damping exists in a manner similar to coupling through stiffness. Conse-
quently, the viscous damping coefficient c is analogous to the spring coefficient k;
i.e., the force exerted by the damping of the resilient element in response to a veloc-
ity ẋ is cxxẋ in the direction of the X axis and cyxẋ in the direction of the Y axis if ẏ is
zero. Reciprocity exists; i.e., cxy = cyx.

The point of intersection of the principal elastic axes of a resilient element is des-
ignated as the elastic center of the resilient element. The elastic center is important
since it defines the theoretical point location of the resilient element for use in the
equations of motion of a resiliently supported rigid body. For example, the torque on
the rigid body about the Y axis due to a force kxxx transmitted by a resilient element
in the X direction is kxxazx, where az is the Z coordinate of the elastic center of the
resilient element.

In general, it is assumed that a resilient element is attached to the rigid body by
means of “ball joints”; i.e., the resilient element is incapable of applying a couple to
the body. If this assumption is not made, a resilient element would be represented
not only by translational springs and dampers along the principal elastic axes but
also by torsional springs and dampers resisting rotation about the principal elastic
directions.

Figure 3.11 shows that the torsional elements usually can be neglected. The
torque which acts on the rigid body due to a rotation β of the body and a rotation b
of the support is (kt + az

2kx) (β − b), where kt is the torsional spring constant in the β
direction. The torsional stiffness kt usually is much smaller than az

2kx and can be ne-
glected.Treatment of the general case indicates that if the torsional stiffnesses of the
resilient element are small compared with the product of the translational stiffnesses
times the square of distances from the elastic center of the resilient element to the
center-of-gravity of the rigid body, the torsional stiffnesses have a negligible effect
on the vibrational behavior of the body. The treatment of torsional dampers is com-
pletely analogous.

EQUATIONS OF MOTION FOR A RESILIENTLY

SUPPORTED RIGID BODY

The differential equations of motion for the rigid body are given by Eqs. (3.2) and
(3.3), where the F’s and M’s represent the forces and moments acting on the body,
either directly or through the resilient supporting elements. Figure 3.12 shows a view
of a rigid body at rest with an inertial set of axes �X, �Y, �Z and a coincident set of axes
X,Y, Z fixed in the rigid body, both sets of axes passing through the center-of-mass.A
typical resilient element (2) is represented by parallel spring and viscous damper
combinations arranged respectively parallel with the �X, �Y, �Z axes. Another resilient
element (1) is shown with its principal axes not parallel with �X, �Y, �Z.

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.23
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The displacement of the center-of-
gravity of the body in the �X, �Y, �Z direc-
tions is in Fig. 3.1 indicated by xc , yc , zc ,
respectively; and rotation of the rigid
body about these axes is indicated by a,
b, g, respectively. In Fig. 3.12, each
resilient element is represented by three
mutually perpendicular spring-damper
combinations. One end of each such
combination is attached to the rigid
body; the other end is considered to 
be attached to a foundation whose cor-
responding translational displacement is
defined by u, v, w in the �X, �Y, �Z di-
rections, respectively, and whose rota-
tional displacement about these axes is
defined by a, b, g, respectively.The point
of attachment of each of the idealized
resilient elements is located at the coor-
dinate distances ax , ay , az of the elastic
center of the resilient element.

Consider the rigid body to experi-
ence a translational displacement xc of
its center-of-gravity and no other dis-
placement, and neglect the effects of the

viscous dampers.The force developed by a resilient element has the effect of a force
−kxx(xc − u) in the X direction, a moment kxx(xc − u)ay in the γ coordinate (about the
Z axis), and a moment −kxx(xc − u)az in the β coordinate (about the Y axis). Further-
more, the coupling stiffness causes a force −kxy(xc − u) in the Y direction and a force
−kxz(xc − u) in the Z direction. These forces have the moments kxy(xc − u)az in the α
coordinate; −kxy(xc − u)ax in the γ coordinate; kxz(xc − u)ax in the β coordinate; and 
−kxz(xc − u)ay in the α coordinate. By considering in a similar manner the forces and
moments developed by a resilient element for successive displacements of the rigid
body in the three translational and three rotational coordinates, and summing over
the number of resilient elements, the equations of motion are written as follows:6, 7

mẍc + Σkxx(xc − u) + Σkxy(yc − v) + Σkxz(zc − w)

+ Σ(kxzay − kxyaz)(α − a) + Σ(kxxaz − kxzax)(β − b)

+ Σ(kxyax − kxxay)(γ − g) = Fx (3.31a)

Ixxα̈ − Ixyβ̈ − Ixzγ̈ + Σ(kxzay − kxyaz)(xc − u)

+ Σ(kyzay − kyyaz)(yc − v) + Σ(kzzay − kyzaz)(zc − w)

+ Σ(kyyaz
2 + kzzay

2 − 2kyzayaz)(α − a)

+ Σ(kxzayaz + kyzaxaz − kzzaxay − kxyaz
2)(β − b)

+ Σ(kxy ayaz + kyzaxay − kyyaxaz − kxzay
2)(γ − g) = Mx (3.31b)

mÿc + Σkxy(xc − u) + Σkyy(yc − v) + Σkyz(zc − w)

+ Σ(kyzay − kyyaz)(α − a) + Σ(kxyaz − kyzax)(β − b)

+ Σ(kyyax − kxyay)(γ − g) = Fy (3.31c)

3.24 CHAPTER THREE

FIGURE 3.11 Pictorial representation of the
properties of an undamped resilient element in
the XZ plane including a torsional spring kt. An
analysis of the motion of the supported body in
the XZ plane shows that the torsional spring can
be neglected if kt << az

2kx.
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Iyyβ̈ − Ixyα̈ − Iyzγ̈ + Σ(kxxaz − kxzax)(xc − u)

+ Σ(kxyaz − kyzax)(yc − v) + Σ(kxzaz − kzzax)(zc − w)

+ Σ(kxzayaz + kyzaxaz − kzzaxay − kxyaz
2)(α − a)

+ Σ(kxxaz
2 + kzzax

2 − 2kxzaxaz)(β − b)

+ Σ(kxyaxaz + kxzaxay − kxxayaz − kyzax
2)(γ − g) = My (3.31d)

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.25

FIGURE 3.12 Rigid body at rest supported by resilient elements, with inertial axes �X, �Y, �Z and
coincident reference axes X, Y, Z passing through the center-of-mass. The forces Fx, Fy, Fz and the
moments Mx, My, Mz are applied directly to the body; the translations u, v, w and rotations a, b, g in
and about the X, Y, Z axes, respectively, are applied to the resilient elements located at the coordi-
nates ax, ay, az. The principal directions of resilient element (2) are parallel to the �X, �Y, �Z axes 
(orthogonal), and those of resilient element (1) are not parallel to the �X, �Y, �Z axes (inclined).
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mz̈c + Σkxz(xc − u) + Σkyz(yc − v) + Σkzz(zc − w)

+ Σ(kzzay − kyzaz)(α − a) + Σ(kxzaz − kzzax)(β − b)

+ Σ(kyzax − kxzay)(γ − g) = Fz (3.31e)

Izzγ̈ − Ixzα̈ − Iyzβ̈ + Σ(kxyax − kxxay)(xc − u)

+ Σ(kyyax − kxyay)(yc − v) + Σ(kyzax − kxzay)(zc − w)

+ Σ(kxyayaz + kyzaxay − kyyaxaz − kxzay
2)(α − a)

+ Σ(kxyaxaz + kxzaxay − kxxayaz − kyzax
2)(β − b)

+ Σ(kxxay
2 + kyyax

2 − 2kxyaxay)(γ − g) = Mz (3.31f )

where the moments and products of inertia are defined by Eqs. (3.11) and (3.12) and
the stiffness coefficients are defined as follows:

kxx = kpλxp
2 + kqλxq

2 + krλxr
2

kyy = kpλyp
2 + kqλyq

2 + krλyr
2

kzz = kpλzp
2 + kqλzq

2 + krλzr
2

kxy = kpλxpλyp + kqλxqλyq + krλxrλyr

(3.32)

kxz = kpλxpλzp + kqλxqλzq + krλxrλzr

kyz = kpλypλzp + kqλyqλzq + krλyrλzr

where the λ’s are the cosines of the angles between the principal elastic axes of the
resilient supporting elements and the coordinate axes. For example, λxp is the cosine
of the angle between the X axis and the P axis of principal stiffness.

The equations of motion, Eqs. (3.31), do not include forces applied to the rigid
body by damping forces from the resilient elements. To include damping, appropri-
ate damping terms analogous to the corresponding stiffness terms are added to each
equation. For example, Eq. (3.31a) would become

mẍc + Σcxx(ẋc −u̇) + Σkxx(xc − u) + ⋅⋅⋅
+ Σ(cxzay − cxyaz)(α̇ − ȧ ) + Σ(kxzay − kxyaz)(α − a) + ⋅⋅⋅ = Fx (3.31a′ )

where cxx = cpλxp
2 + cqλxq

2 + crλxr
2

cxy = cpλxpλyp + cqλxqλyq + crλxrλyr

The number of degrees-of-freedom of a vibrational system is the minimum num-
ber of coordinates necessary to define completely the positions of the mass elements
of the system in space.The system of Fig. 3.12 requires a minimum of six coordinates
(xc ,yc ,zc ,α,β,γ) to define the position of the rigid body in space; thus, the system is
said to vibrate in six degrees-of-freedom. Equations (3.31) may be solved simulta-
neously for the three components xc , yc , zc of the center-of-gravity displacement and
the three components α, β, γ of the rotational displacement of the rigid body. In most
practical instances, the equations are simplified considerably by one or more of the
following simplifying conditions:

1. The reference axes X,Y, Z are selected to coincide with the principal inertial axes
of the body; then

3.26 CHAPTER THREE
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Ixy = Ixz = Iyz = 0 (3.33)

2. The resilient supporting elements are so arranged that one or more planes of
symmetry exist; i.e., motion parallel to the plane of symmetry has no tendency to
excite motion perpendicular to it, or rotation about an axis lying in the plane 
does not excite motion parallel to the plane. For example, in Eq. (3.31a), motion
in the XY plane does not tend to excite motion in the XZ or YZ plane if Σkxz,
Σ(kxzay − kxy az), and Σ(kxxaz − kxzax) are zero.

3. The principal elastic axes P, Q, R of all resilient supporting elements are orthog-
onal with the reference axes X,Y, Z of the body, respectively.Then, in Eqs. (3.32),

kxx = kp = kx kyy = kq = ky kzz = kr = kz

kxy = kxz = kyz = 0
(3.34)

where kx, ky, kz are defined for use when orthogonality exists. The supports are
then called orthogonal supports.

4. The forces Fx, Fy, Fz and moments Mx, My, Mz are applied directly to the body and
there are no motions (u = v = w = a = b = g = 0) of the foundation; or alternatively,
the forces and moments are zero and excitation results from motion of the foun-
dation.

In general, the effect of these simplifications is to reduce the numbers of terms in the
equations and, in some instances, to reduce the number of equations that must be
solved simultaneously. Simultaneous equations indicate coupled modes; i.e., motion
cannot exist in one coupled mode independently of motion in other modes which
are coupled to it.

MODAL COUPLING AND NATURAL

FREQUENCIES

Several conditions of symmetry resulting from zero values for the product of inertia
terms in Eq. (3.33) are discussed in the following sections.

ONE PLANE OF SYMMETRY WITH ORTHOGONAL RESILIENT

SUPPORTS

When the YZ plane of the rigid body system in Fig. 3.12 is a plane of symmetry, the
following terms in the equations of motion are zero:

Σkyy ax = Σkzzax = Σkyy axaz = Σkzzaxay = 0 (3.35)

Introducing the further simplification that the principal elastic axes of the resilient
elements are parallel with the reference axes, Eqs. (3.34) apply. Then the motions in
the three coordinates yc , zc , α are coupled but are independent of motion in any of
the other coordinates; furthermore, the other three coordinates xc , β, γ also are cou-
pled. For example, Fig. 3.13 illustrates a resiliently supported rigid body, wherein the
YZ plane is a plane of symmetry that meets the requirements of Eq. (3.35).The three
natural frequencies for the yc , zc , α coupled directions are found by solving Eqs.

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.27
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(3.31b), (3.31c), and (3.31e) [or Eqs. (3.31a), (3.31d), and (3.31f) for the xc , β, γ cou-
pled directions] simultaneously.6

� �
6

− A� �
4

+ B� �
2

− C = 0 (3.36)

where fz = 	 (3.37)

is a quantity having mathematical rather than physical significance if translational
motion in the direction of the Z axis is coupled to other modes of motion. (Such cou-
pling exists for the system of Fig. 3.13.) The roots fn represent the natural frequencies
of the system in the coupled modes. The coefficients A, B, C for the coupled modes
in the yc , zc , α coordinates are

Ayzα = 1 + + Dzx

Byzα = Dzx + (1 + Dzx) −

Cyzα = �Dzx − � −

where Dzx =

and ρx is the radius of gyration of the rigid body with respect to the X axis.
The corresponding coefficients for the coupled modes in the xc, β, γ coordinates are

Axβγ = + Dzy + Dzz

Bxβγ = (Dzy + Dzz) + DzyDzz

− − −

Cxβγ = �DzyDzz − � − Dzy

− Dzz + 2 

where Dzy = Dzz =

and ρy , ρz are the radii of gyration of the rigid body with respect to the Y, Z axes.
The roots of the cubic equation Eq. (3.36) may be found graphically from Fig.

3.14.6 The coefficients A, B, C are first calculated from the above relations for the
appropriate set of coupled coordinates. Figure 3.14 is entered on the abscissa scale
at the appropriate value for the quotient B/A2. Small values of B/A2 are in Fig.
3.14A, and large values in Fig. 3.14B. The quotient C/A3 is the parameter for the
family of curves. Upon selecting the appropriate curve, three values of (fn /fz)/
A�
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are read from the ordinate and trans-
ferred to the left scale of the nomo-
graph in Fig. 3.14B. Diagonal lines are
drawn for each root to the value of A on
the right scale, as indicated by dotted
lines, and the roots fn/fz of the equation
are indicated by the intercept of these
dotted lines with the center scale of the
nomograph.

The coefficients A, B, C can be sim-
plified if all resilient elements have
equal stiffness in the same direction.The
stiffness coefficients always appear to
equal powers in numerator and denomi-
nator, and lead to dimensionless ratios
of stiffness. For n resilient elements, typ-
ical terms reduce as follows:

= =

= � �
2
, etc.

TWO PLANES OF SYMMETRY

WITH ORTHOGONAL RESILIENT

SUPPORTS

Two planes of symmetry may be achieved
if, in addition to the conditions of Eqs.
(3.33) to (3.35), the following terms of
Eqs. (3.31) are zero:

Σkxxay = Σkzzay = Σkxxayaz = 0

(3.38)

Under these conditions, Eqs. (3.31) sep-
arate into two independent equations,
Eqs. (3.31e) and (3.31f ), and two sets
each consisting of two coupled equa-
tions [Eqs. (3.31a) and (3.31d); Eqs.

(3.31b) and (3.31c)]. The planes of symmetry are the XZ and YZ planes. For exam-
ple, a common system is illustrated in Fig. 3.15, where four identical resilient sup-
porting elements are located symmetrically about the Z axis in a plane not
containing the center-of-gravity.6 Coupling exists between translation in the X direc-
tion and rotation about the Y axis (xc ,β), as well as between translation in the Y
direction and rotation about the X axis (yc ,α).Translation in the Z direction (zc) and
rotation about the Z axis (γ) are each independent of all other modes.

The natural frequency in the Z direction is found by solving Eq. (3.31e) to obtain
Eq. (3.37), where Σkzz = 4kz. The rotational natural frequency fγ about the Z axis is
found by solving Eq. (3.31f); it can be expressed with respect to the natural fre-
quency in the direction of the Z axis:

Σay az
�ρyρz

kx
�
nkz

(Σkxayaz)2

��ρy
2ρz

2(Σkz)2

Σay
2

�
nρx

2

Σkzay
2

�ρx
2Σkz

ky
�
kz

Σky
�Σkz
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FIGURE 3.13 Example of a rigid body on
orthogonal resilient supporting elements with
one plane of symmetry.The YZ plane is a plane of
symmetry since each resilient element has prop-
erties identical to those of its mirror image in the
YZ plane; i.e., kx1 = kx2, kx3 = kx4, kx5 = kx6, etc. The
conditions satisfied are Eqs. (3.33) to (3.35).
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FIGURE 3.14A Graphical method of determining solutions of the cubic Eq. (3.36). Calculate A, B, C for the
appropriate set of coupled coordinates, enter the abscissa at B/A2 (values less than 0.2 on Fig. 3.14A, values greater
than 0.2 on Fig. 3.14B), and read three values of (fn/fz)/
A� from the curve having the appropriate value of C/A3.
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FIGURE 3.14B Using the above nomograph with values of (fn/fz)/
A� (see Fig. 3.14A), a diagonal line is drawn
from each value of (fn/fz)/
A� on the left scale of the nomograph to the value of A on the right scale, as indicated
by the dotted lines.The three roots fn/fz of Eq. (3.36) are given by the intercept of these dotted lines with the cen-
ter scale of the nomograph. (After F. F. Vane.6)
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= 	 � �
2

+ � �
2

(3.39)

where ρz is the radius of gyration with respect to the Z axis.
The natural frequencies in the coupled xc , β modes are found by solving Eqs.

(3.31a) and (3.31d) simultaneously; the roots yield the following expression for nat-
ural frequency:

= � �1 + � + ±

	� �1 + � + �2
− 4 

(3.40)

Figure 3.16 provides a convenient
graphical method for determining the
two coupled natural frequencies fxβ. An
expression similar to Eq. (3.40) is
obtained for fyα

2 /fz
2 by solving Eqs.

(3.31b) and (3.31d) simultaneously. By
replacing ρy , ax , kx , fxβ with ρx , ay , ky , fyα ,
respectively, Fig. 3.16 also can be used to
determine the two values of fyα.

It may be desirable to select resilient
element locations ax, ay, az which will pro-
duce coupled natural frequencies in
specified frequency ranges, with resilient
elements having specified stiffness ratios
kx /kz, ky /kz. For this purpose it is conven-
ient to plot solutions of Eq. (3.40) in the
form shown in Figs. 3.17 to 3.19. These
plots are termed space-plots and their
use is illustrated in Example 3.1.8

The space-plots are derived as fol-
lows: In general, the two roots of Eq.
(3.40) are numerically different, one
usually being greater than unity and the
other less than unity. Designating the
root associated with the positive sign
before the radical (higher value) as fh /fz,
Eq. (3.40) may be written in the follow-
ing form:

+ = 1

(3.40a)

Equation (3.40a) is shown graphically
by the large ellipses about the center of
Figs. 3.17 to 3.19, for stiffness ratios kx/kz
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FIGURE 3.15 Example of a rigid body on
orthogonal resilient supporting elements with
two planes of symmetry. The XZ and YZ planes
are planes of symmetry since the four resilient
supporting elements are identical and are located
symmetrically about the Z axis. The conditions
satisfied are Eqs. (3.33), (3.34), (3.35), and (3.38).
At any single frequency, coupled vibration in the
xc, β direction due to X vibration of the founda-
tion is equivalent to a pure rotation of the rigid
body with respect to an axis of rotation as shown.
Points 1, 2, and 3 refer to the example of Fig. 3.26.
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of 1⁄2, 1, and 2, respectively.A particular type of resilient element tends to have a con-
stant stiffness ratio kx/kz; thus, Figs. 3.17 to 3.19 may be used by cut-and-try methods
to find the coordinates ax, az of such elements to attain a desired value of fh.

Designating the root of Eq. (3.40) associated with the negative sign (lower value)
by fl, Eq. (3.40) may be written as follows:

− = 1 (3.40b)
(az/ρy)2

��
1 − (kz/kx)( fl /fz)2

(ax/ρy)2

�
(f2 /fx)2

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.33

FIGURE 3.16 Curves showing the ratio of each of the two coupled
natural frequencies fxβ to the decoupled natural frequency fz , for motion
in the XZ plane of symmetry for the system in Fig. 3.15 [see Eq. (3.40)].
Calculate the abscissa (ρy/ax) 
k�x /�k�z� and the parameter az/ρy , where ax,
az are indicated in Fig. 3.15; kx , kz are the stiffnesses of the resilient sup-
porting elements in the X, Z directions, respectively; and ρy is the radius
of gyration of the body about the Y axis. The two values read from the
ordinate when divided by ρy /ax give the natural frequency ratios fxβ /fz.
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Equation (3.40b) is shown graphically by the family of hyperbolas on each side of
the center in Figs. 3.17 to 3.19, for values of the stiffness ratio kx/kz of 1⁄2, 1, and 2.

The two roots fh/fz and fl/fz of Eq. (3.40) may be expressed as the ratio of one to
the other. This relationship is given parametrically as follows:

�2 ± 	 � + ��
2

+ � 2 �
2

= 1 (3.40c)

	 � − � −

Equation (3.40c) is shown graphically by the smaller ellipses (shown dotted) dis-
placed from the vertical center line in Figs. 3.17 to 3.19.

Example 3.1. A rigid body is symmetrical with respect to the XZ plane; its
width in the X direction is 13 in. and its height in the Z direction is 12 in. The center-
of-gravity is 51⁄2 in. from the lower side and 63⁄4 in. from the right side. The radius of
gyration about the Y axis through the center-of-gravity is 5.10 in. Use a space-plot to
evaluate the effects of the location for attachment of resilient supporting elements
having the characteristic stiffness ratio kx/kz = 1⁄2.
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fh
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FIGURE 3.17 Space-plot for the system in Fig. 3.15 when the stiffness ratio kx/kz = 0.5,
obtained from Eqs. (3.40a) to (3.40c). With all dimensions divided by the radius of gyration ρy

about the Y axis, superimpose the outline of the rigid body in the XZ plane on the plot; the cen-
ter-of-gravity of the body is located at the coordinate center of the plot. The elastic centers of
the resilient supporting elements give the natural frequency ratios fl/fz, fh/fz, and fh/fl for xc, β
coupled motion, each ratio being read from one of the three families of curves as indicated on
the plot. Replacing kx, ρy, ax with ky, ρx, ay, respectively, allows the plot to be applied to motions
in the YZ plane.
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Superimpose the outline of the body on the space-plot of Fig. 3.20, with its center-
of-gravity at the coordinate center of the plot. (Figure 3.20 is an enlargement of the
central portion of Fig. 3.17.) All dimensions are divided by the radius of gyration ρy .
Thus, the four corners of the body are located at coordinate distances as follows:

Upper right corner:

= = +1.28 = = +1.32

Upper left corner:

= = +1.28 = = −1.23

Lower right corner:

= = −1.08 = = +1.32

Lower left corner:

= = −1.08 = = −1.23
−6.25
�
5.10

ax�
ρy

−5.50
�
5.10

az�
ρy

+6.75
�
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ax�
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FIGURE 3.18 Space-plot for the system in Fig. 3.15 when the stiffness ratio kx /kz = 1. See cap-
tion for Fig. 3.17.
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The resilient supports are shown in heavy outline at A in Fig. 3.20, with their elastic
centers indicated by the solid dots. The horizontal coordinates of the resilient sup-
ports are ax/ρy = ±0.59, or ax = ±0.59 × 5.10 = ±3 in. from the vertical coordinate axis.
The corresponding natural frequencies are fh /fz = 1.25 (from the ellipses) and fl /fz =
0.33 (from the hyperbolas). An alternative position is indicated by the hollow cir-
cles B. The natural frequencies for this position are fh /fz = 1.43 and fl /fz = 0.50. The
natural frequency fz in vertical translation is found from the mass of the equipment
and the summation of stiffnesses in the Z direction, using Eq. (3.37). This example
shows how space-plots make it possible to determine the locations of the resilient
elements required to achieve given values of the coupled natural frequencies with
respect to fz.

THREE PLANES OF SYMMETRY WITH ORTHOGONAL RESILIENT

SUPPORTS

A system with three planes of symmetry is defined by six independent equations of
motion.A system having this property is sometimes called a center-of-gravity system.
The equations are derived from Eqs. (3.31) by substituting, in addition to the condi-
tions of Eqs. (3.33), (3.34), (3.35), and (3.38), the following condition:

Σkxx az = Σkyy az = 0 (3.41)
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FIGURE 3.19 Space-plot for the system in Fig. 3.15 when the stiffness ratio kx/kz = 2. See cap-
tion for Fig. 3.17.
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The resulting six independent equations define six uncoupled modes of vibration,
three in translation and three in rotation. The natural frequencies are:

Translation along X axis:

fx = 	
Translation along Y axis:

fy = 	
Translation along Z axis:

fz = 	 Σkz�
m

1
�
2π

Σky
�
m

1
�
2π

Σkx�
m

1
�
2π
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FIGURE 3.20 Enlargement of the central portion of Fig. 3.17 with the outline of the rigid body dis-
cussed in Example 3.1.
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Rotation about X axis:

fα = 	 (3.42)

Rotation about Y axis:

fβ = 	
Rotation about Z axis:

fγ = 	

TWO PLANES OF SYMMETRY

WITH RESILIENT SUPPORTS

INCLINED IN ONE PLANE ONLY

When the principal elastic axes of the
resilient supporting elements are in-
clined with respect to the X, Y, Z axes,
the stiffness coefficients kxy , kxz , kyz are
nonzero. This introduces elastic cou-
pling, which must be considered in eval-
uating the equations of motion. Two
planes of symmetry may be achieved by
meeting the conditions of Eqs. (3.33),
(3.35), and (3.38). For example, consider
the rigid body supported by four identi-
cal resilient supporting elements located
symmetrically about the Z axis, as
shown in Fig. 3.21. The XZ and the YZ
planes are planes of symmetry, and the
resilient elements are inclined toward
the YZ plane so that one of their princi-
pal elastic axes R is inclined at the angle
φ with the Z direction as shown; hence
kyy = kq, and kxy = kyz = 0.

Because of symmetry, translational
motion zc in the Z direction and rotation
γ about the Z axis are each decoupled
from the other modes.The pairs of trans-
lational and rotational modes in the xc, β
and yc, α coordinates are coupled. The
natural frequency in the Z direction is

= 	 sin2 φ + cos2 φ (3.43)

where fr is a fictitious natural frequency used for convenience only; it is related to
Eq. (3.37) wherein 4kr is substituted for Σkz:
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FIGURE 3.21 Example of a rigid body on
resilient supporting elements inclined toward
the YZ plane. The resilient supporting elements
are identical and are located symmetrically
about the Z axis, making XZ and YZ planes of
symmetry. The principal stiffnesses in the XZ
plane are kp and kr . The conditions satisfied are
Eqs. (3.33), (3.35), and (3.38).
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fr = 	
Equation (3.43) is plotted in Fig. 3.22, where the angle φ is indicated by the upper of
the abscissa scales.

The rotational natural frequency about the Z axis is obtained from

= 	� cos2 φ + sin2 φ� � �2
+ � �2

(3.44)

For the xc , β coupled mode, the two natural frequencies are

= �A ± 	A2 − 4 � �2� (3.45)

where A = � cos2 φ + sin2 φ��1 + � �
2� + � sin2 φ + cos2 φ�� �2

+ 2�1 − �� � sin φ cos φax
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FIGURE 3.22 Curves showing the ratio of the decoupled natural frequency
fz of translation zc to the fictitious natural frequency fr for the system shown in
Fig. 3.21 [see Eq. (3.43)] when the resilient supporting elements are inclined at
the angle φ. The curves also indicate the ratio of the decoupled natural fre-
quency fx of translation xc to fr when φ has a value φ′ (use lower abscissa scale)
which decouples xc, β motions [see Eqs. (3.47) and (3.48)].
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For the yc, α coupled mode, the natural frequencies are

= �B ± 	B2 − 4 � sin2 φ + cos2 φ�� �2� (3.46)

where B = �1 + � �2� + � sin2 φ + cos2 φ�� �2

DECOUPLING OF MODES IN A PLANE USING 

INCLINED RESILIENT SUPPORTS

The angle φ of inclination of principal elastic axes (see Fig. 3.21) can be varied to
produce changes in the amount of coupling between the xc and β coordinates.
Decoupling of the xc and β coordinates is effected if

� � = (3.47)

where φ′ is the value of the angle of inclination φ required to achieve decoupling.
When Eq. (3.47) is satisfied, the configuration is sometimes called an “equivalent
center-of-gravity system” in the YZ plane since all modes of motion in that plane are
decoupled. Figure 3.23 is a graphical presentation of Eq. (3.47). There may be two
values of φ′ that decouple the xc and β modes for any combination of stiffness and
location for the resilient supporting elements.

The decoupled natural frequency for translation in the X direction is obtained from

= 	 cos2 φ′ + sin2 φ′ (3.48)

The relation of Eq. (3.48) is shown graphically in Fig. 3.22 where the angle φ′ is indi-
cated by the lower of the abscissa scales. The natural frequency in the β mode is
obtained from

= 	 (3.49)

COMPLETE DECOUPLING OF MODES USING 

RADIALLY INCLINED RESILIENT SUPPORTS

In general, the analysis of rigid body motion with the resilient supporting elements
inclined in more than one plane is quite involved. A particular case where sufficient
symmetry exists to provide relatively simple yet useful results is the configuration
illustrated in Fig. 3.24. From symmetry about the Z axis, Ixx = Iyy. Any number n of
resilient supporting elements greater than 3 may be used. For clarity of illustration,
the rigid body is shown as a right circular cylinder with n = 3.

The resilient supporting elements are arranged symmetrically about the Z axis;
they are attached to one end face of the cylinder at a distance ar from the Z axis and
a distance az from the XY reference plane.The resilient elements are inclined so that
their principal elastic axes R intersect at a common point on the Z axis; thus, the angle
between the Z axis and the R axis for each element is φ. The principal elastic axes P
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also intersect at a common point on the Z axis, the angle between the Z axis and the
P axis for each element being 90° − φ. Consequently, the Q principal elastic axes are
each tangent to the circle of radius ar which bounds the end face of the cylinder.

The use of such a configuration permits decoupling of all six modes of vibration
of the rigid body. This complete decoupling is achieved if the angle of inclination φ
has the value φ′ which satisfies the following equation:

� � = (3.50)
(1⁄2)[1 − (kp/kr)] sin 2φ′

����
(kq/kr) + (kp/kr) + [1 − (kp/kr)] sin2φ′

az�
ar
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FIGURE 3.23 Curves showing the angle of inclination φ′ of the resilient
elements which achieves decoupling of the xc , β motions in Fig. 3.21 [see
Eq. (3.47)]. Calculate the ordinate |az /ax| and with the stiffness ratio kp /kr

determine two values of φ′ for which decoupling is possible. Decoupling is
not possible for a particular value of kp /kr if |az /ay| has a value greater than
the maximum ordinate of the kp /kr curve.
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Since complete decoupling is effected, the system may be termed an “equivalent
center-of-gravity system.”9, 10 The natural frequencies of the six decoupled modes are

= = 	 � cos2 φ′ + sin2 φ′ + � (3.51)

= = � � sin φ′ � sin φ′ + cos φ′� + cos φ′ � cos φ′ − sin φ′��1/2

(3.52)

= 	 (3.53)

The frequency ratio fz/fr is given by Eq.
(3.43) or Fig. 3.22. The fictitious natural
frequency fr is given by

fr = (1/2π)	�nkr /m

Similar solutions are also available for
the configuration of four resilient sup-
ports located in a rectangular array and
inclined to achieve complete decou-
pling.11

FORCED VIBRATION

Forced vibration results from a continu-
ing excitation that varies sinusoidally
with time.The excitation may be a vibra-
tory displacement of the foundation for
the resiliently supported rigid body
(foundation-induced vibration), or a
force or moment applied to or gener-
ated within the rigid body (body-
induced vibration). These two forms of
excitation are considered separately.

FOUNDATION-INDUCED SINUSOIDAL VIBRATION

This section includes an analysis of foundation-induced vibration for two different
systems, each having two planes of symmetry. In one system, the principal elastic
axes of the resilient elements are parallel to the X,Y, Z axes; in the other system, the
principal elastic axes are inclined with respect to two of the axes but in a plane par-
allel to one of the reference planes. The excitation is translational movement of the
foundation in its own plane, without rotation. No forces or moments are applied
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FIGURE 3.24 Example of a rigid cylindrical
body on radially inclined resilient supports. The
resilient supports are attached symmetrically
about the Z axis to one end face of the cylinder
at a distance ar from the Z axis and a distance az

from the XY plane. The resilient elements are
inclined so that their principal elastic axes R and
P intersect the Z axis at common points. The
angle between the R axes and the Z axis is φ;
and the angle between the P axis and Z axis is
90° − φ.The Q principal elastic axes are each tan-
gent to the circle of radius ar.
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directly to the rigid body; i.e., in the equations of motion [Eqs. (3.31)], the following
terms are equal to zero:

Fx = Fy = Fz = Mx = My = Mz = a = b = g = 0 (3.54)

Two Planes of Symmetry with Orthogonal Resilient Supports. The system is
shown in Fig. 3.15.The excitation is a motion of the foundation in the direction of the
X axis defined by u = u0 sin ωt. (Alternatively, the excitation may be the displace-
ment v = v0 sin ωt in the direction of the Y axis, and analogous results are obtained.)
The resulting motion of the resiliently supported rigid body involves translation xc

and rotation β simultaneously. The conditions of symmetry are defined by Eqs.
(3.33), (3.34), (3.35), and (3.38); these conditions decouple Eqs. (3.31) so that only
Eqs. (3.31a) and (3.31d), and Eqs. (3.31b) and (3.31c), remain coupled. Upon substi-
tuting u = u0 sin ωt as the excitation, the response in the coupled modes is of a form
xc = xc0 sin ωt, β = β0 sin ωt where xc0 and β0 are related to u0 as follows:

xc 0
=

�� �2
− � �2�

u0 � �4

− � + � �2

+ � �2�� �2

+ � �2
(3.55)

β0
=

− � �2

(3.56)
u0 /ρy � �4

− � + � �2

+ � �2�� �2

+ � �2

where fz = 
4�k�z/�m� in accordance with Eq. (3.37). A similar set of equations

apply for vibration in the coupled yc , α coordinates. There is no response of the sys-
tem in the zc or γ modes since there is no net excitation in these directions; that is, Fz

and Mz are zero.
As indicated by Eqs. (3.1), the displacement at any point in a rigid body is the sum

of the displacement at the center-of-gravity and the displacements resulting from
motion of the body in rotation about axes through the center-of-gravity. Equations

(3.55) and (3.56) together with analo-
gous equations for yc0, α 0 provide the
basis for calculating these displace-
ments. Care should be taken with phase
angles, particularly if two or more exci-
tations u, v, w exist concurrently.

At any single frequency, coupled
vibration in the xc , β modes is equivalent
to a pure rotation of the rigid body with
respect to an axis parallel to the Y axis,
in the YZ plane and displaced from the
center-of-gravity of the body (see Fig.
3.15).As a result, the rigid body has zero
displacement x in the horizontal plane
containing this axis. Therefore, the Z
coordinate of this axis bz′ satisfies xc 0 +
bz′β0 = 0, which is obtained from the first
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FIGURE 3.25 Curve showing the position of
the axis of pure rotation of the rigid body in Fig.
3.15 as a function of the frequency ratio f/fz when
the excitation is sinusoidal motion of the foun-
dation in the X direction [see Eq. (3.57)]. The
axis of rotation is parallel to the Y axis and in the
XZ plane, and its coordinate along the Z axis is
designated by bz′.
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of Eqs. (3.1) by setting xb = 0 (γ0 motion is not considered). Substituting Eqs. (3.55)
and (3.56) for xc 0 and β0, respectively, the axis of rotation is located at

= (3.57)

Figure 3.25 shows the relation of Eq. (3.57) graphically. At high values of frequency
f /fz, the axis does not change position significantly with frequency; bz′ /ρy approaches
a positive value as f /fz becomes large, since az is negative (see Fig. 3.15).

When the resilient supporting elements have damping as well as elastic properties,
the solution of the equations of motion [see Eq. (3.31a)] becomes too laborious for
general use. Responses of systems with damping have been obtained for several typi-
cal cases using a digital computer. Figures 3.26 A, B, and C show the response at three
points in the body of the system shown in Fig. 3.15, with the excitation u = u0 sin ωt.
The weight of the body is 45 lb; each of the four resilient supporting elements has 
a stiffness kz = 1,050 lb/in. and stiffness ratios kx/kz = ky/kz = 1⁄2. The critical damping
coefficients in the X, Y, Z directions are taken as ccx = 2
4�k�xm�, ccy = 2
4�k�ym�, ccz =
2
4�k�zm�, respectively, where the expression for ccz follows fromthe single degree-
of-freedom case defined by Eq. (2.12). The fractions of critical damping are cx/ccx =

(ax/ρy)2 − (f /fz)2

��
(az/ρy)(f /fz)2

bz′�
ρy

3.44 CHAPTER THREE

FIGURE 3.26A Response curves for point 1 with damping in the resilient supports in the system
shown in Fig. 3.15. The response is the ratio of the amplitude at point 1 of the rigid body in the X
direction to the amplitude of the foundation in the X direction (x0/u0). The fraction of critical
damping c/cc is the same in the X, Y, Z directions.
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cy /ccy = cz/ccz = c/cc , the parameter of the curves in Figs. 3.26A, B, and C. Coordinates
locating the resilient elements are ax = ±5.25 in., ay = ±3.50 in., and az = −6.50 in. The
radii of gyration with respect to the X, Y, Z axes are ρx = 4.40 in., ρy = 5.10 in., and 
ρz = 4.60 in.

Natural frequencies calculated from Eqs. (3.37) and (3.40) are fz = 30.0 Hz;
fxβ = 43.7 Hz, 15.0 Hz; and fyα = 43.2 Hz, 11.7 Hz. The fraction of critical damping 
c/cc varies between 0 and 0.25. Certain characteristic features of the response curves
in Figs. 3.26A, B, and C are:

1. The relatively small response at the frequency of 24.2 Hz in Fig. 3.26C occurs
because point 3 lies near the axis of rotation of the rigid body at that frequency. Point 2
lies near the axis of rotation at higher frequencies, and the response becomes corre-
spondingly low, as shown in Fig. 3.26B. The position of the axis of rotation changes rap-
idly for small changes of frequency in the low- and intermediate-frequency range
(indicated by the sharp dip in the curves for small damping in Fig. 3.26C) and varies
asymptotically toward a final position as the forcing frequency increases (see Fig.
3.25).

2. The effect of damping on the magnitude of the response at the higher and
lower natural frequencies in coupled modes is illustrated. When the fraction of crit-
ical damping is between 0.01 and 0.10, the response at the lower of the coupled nat-
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FIGURE 3.26B Response curves at point 2 in the system shown in Fig. 3.15. See caption for
Fig. 3.26A.
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ural frequencies is approximately 10 times as great as the response at the higher of
the coupled natural frequencies.With greater damping (c/cc ≥ 0.15), the effect of res-
onance in the vicinity of the higher coupled natural frequency becomes so slight as
to be hardly discernible.

Two Planes of Symmetry with Resilient Supports Inclined in One Plane Only.
The system is shown in Fig. 3.21, and the excitation is u = u0 sin ωt. The conditions of
symmetry are defined by Eqs. (3.33), (3.35), and (3.38). The response is entirely in
the xc , β coupled mode with the following amplitudes:

xc0
=

� �2
− � cos2 φ + sin2 φ�� �2

u0 � �4

− A� �2

+ � �2

(3.58)

β0
=

−�� cos2 φ + sin2 φ�� � + �1 − �� � sin φ cos φ�� �2

u0/ρy � �4

− A� �2

+ � �2

where A is defined after Eq. (3.45). A similar set of expressions may be written for
the response in the yc , α coupled mode when the excitation is the motion v = v0

sin ωt of the foundation:

yc 0
=

� sin2 φ + cos2 φ�� �2
− � �2

v0 � �4
− B� �2

+ � sin2 φ + cos2 φ�� �
(3.59)

α0
� �2

v0/ρx
=
� �4

− B� �2
+ � sin2 φ + cos2 φ�� �

where B is defined after Eq. (3.46). No motion occurs in the zc or γ mode since the
quantities Fz and Mz are zero in Eqs. (3.31e) and (3.31f ).

Response curves for the system shown in Fig. 3.21 when damping is included are
qualitatively similar to those shown in Figs. 3.26.The significant advantage in the use
of inclined resilient supports is the additional versatility gained from the ability to
vary the angle of inclination φ, which directly affects the degree of coupling in the xc ,
β coupled mode. For example, a change in the angle φ produces a change in the posi-
tion of the axis of pure rotation of the rigid body. In a manner similar to that used to
derive Eq. (3.57), Eqs. (3.58) yield the following expression defining the location of
the axis of rotation:

bz′ � �2
− � cos2 φ + sin2 φ�� �2

ρy
=
�� cos2 φ + sin2 φ� + �1 − � � � sin φ cos φ�� �2 (3.60)f
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BODY-INDUCED SINUSOIDAL VIBRATION

This section includes the analysis of a resiliently supported rigid body wherein the
excitation consists of forces and moments applied directly to the rigid body (or orig-
inating within the body). The system has two planes of symmetry with orthogonal
resilient supports; the modal coupling and natural frequencies for such a system are
considered above. Two types of excitation are considered: (1) a force rotating about
an axis parallel to one of the principal inertial axes and (2) an oscillatory moment
acting about one of the principal inertial axes. There is no motion of the foundation
that supports the resilient elements; thus, the following terms in Eqs. (3.31) are equal
to zero:

u = v = w = a = b = g = 0 (3.61)

Two Planes of Symmetry with Orthogonal Resilient Elements Excited by a
Rotating Force. The system excited by the rotating force is illustrated in Fig. 3.27.
The force F0 rotates at frequency ω about an axis parallel to the Y axis but spaced
therefrom by the coordinate distances dx, dz ; the force is in the XZ plane.The forces
and moments applied to the body by the rotating force F0 are
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FIGURE 3.26C Response curves at point 3 in the system shown in Fig. 3.15. See caption for
Fig. 3.26A.
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Fx = F0 cos ωt Mx = 0

Fy = 0 My = F0(dz cos ωt − dx sin ωt) (3.62)

Fz = F0 sin ωt Mz = 0

The conditions of symmetry are defined by Eqs. (3.33), (3.34), (3.35), and (3.38); and
the excitation is defined by Eqs. (3.61) and (3.62). Substituting these conditions into
the equations of motion, Eqs. (3.31) show that vibration response is not excited in the
coupled yc , α mode or in the γ mode. In the Z direction, the motion zc 0 of the body
and the force Ftz transmitted through the resilient elements can be found from Eq.
(2.30) and Fig. 2.17 since single degree-of-freedom behavior is involved. The hori-
zontal displacement amplitude xc 0 of the center-of-gravity in the X direction and the
rotational displacement amplitude β0 about the Y axis are given by

xc 0 kx
	� � − � + � �2

− � �2�2
+ � �2

F0 /4kx
=

kz � �
4

− � + � �
2

+ � �
2

�� �
2

+ � �
2

(3.63)

β0 kx
	� � − � + � �2�2

+ � � − ��2

F0 /4kxρy
=

kz � �4

− � + � �2

+ � �2�� �2
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FIGURE 3.27 Example of a rigid body on orthogonal resilient supports with
two planes of symmetry, excited by body-induced sinusoidal excitation. Alter-
native excitations are (1) the force F0 in the XZ plane rotating with angular
velocity ωt about an axis parallel to the Y axis and (2) the oscillatory moment
M0 sin ωt acting about the Y axis.There is no motion of the foundation that sup-
ports the resilient elements.
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where ax, az are location coordinates of the resilient supports, and

fz = 	 (3.64)

The amplitude of the oscillating force Ftx in the X direction and the amplitude of the
oscillating moment Mty about the Y axis which are transmitted to the foundation by
the combination of resilient elements are

Ftx = 4kx 	xc 0
2 − 2azxc 0β0 cos (φx − φβ) + az

2β0
2

(3.65)
Mty = 4kzax

2β0

where Ftx is the sum of the forces transmitted by the individual resilient elements
and Mty is a moment formed by forces in the Z direction of opposite sign at opposite
resilient supports. The angles φx and φβ are defined by

tan φx =
� − � + � �

2
− � �

2

[0° ≤ φx ≤ 360°]

tan φβ =
� − � + � �2

[0° ≤ φβ ≤ 360°]

� − � �
2�

To obtain the correct value of (φx − φβ) in Eq. (3.65), the signs of the numerator and
denominator in each tangent term must be inspected to determine the proper quad-
rant for φx and φβ.

Example 3.2. Consider an electric motor which has an unbalanced rotor, creat-
ing a centrifugal force. The motor weighs 3,750 lb, and has a radius of gyration ρy =
9.10 in.The distances dx = dy = dz = 0, that is, the axis of rotation is the Y principal axis
and the center-of-gravity of the rotor is in the XZ plane. The resilient supports each
have a stiffness ratio of kx/kz = 1.16, and are located at az = −14.75 in., ax = ±12.00 in.
The resulting displacement amplitudes of the center-of-gravity, expressed dimen-
sionlessly, are shown in Fig. 3.28; the force and moment amplitudes transmitted to
the foundation, expressed dimensionlessly, are shown in Fig. 3.29.The displacements
of the center-of-gravity of the body are dimensionalized with respect to the dis-
placements at zero frequency:

zc 0(0) =

xc 0(0) = �1 + � �2� (3.66)

β0(0) = � �2

At excitation frequencies greater than the higher natural frequency of the xc , β cou-
pled motion, the displacements, forces, and moment all continuously decrease as the
frequency increases.
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Two Planes of Symmetry with Orthogonal Resilient Elements Excited by an
Oscillating Moment. Consider the oscillatory moment M0 acting about the Y axis
with forcing frequency ω. The resulting applied forces and moments acting on the
body are

My = M0 sin ωt

Fx = Fy = Fz = Mx = Mz = 0
(3.67)

Substituting conditions of symmetry defined by Eqs. (3.33), (3.34), (3.35), and (3.38),
and the excitation defined by Eqs. (3.61) and (3.67), the equations of motion [Eqs.
(3.31)] show that oscillations are excited only in the xc , β coupled mode. Solving for
the resulting displacements,

xc 0
� �2

M0 /4kxρy

=

� �4
− � + � �2

+ � �2�� �2
+ � �2

(3.68)
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FIGURE 3.28 Response curves for the system shown in Fig. 3.27 when excited by a rotating force
F0 acting about the Y axis. The parameters of the system are kx /kz = 1.16, ax /ρy = ±1.32, az /ρy = −1.62.
Only xc , zc , β displacements of the body are excited [see Eqs. (3.63)].The displacements are expressed
dimensionlessly by employing the displacements at zero frequency [see Eqs. (3.66)].
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The amplitude of the oscillating force Ftx in the X direction and the amplitude of
the oscillating moment Mty about the Y axis transmitted to the foundation by the
combination of resilient supports are

Ftx = 4kx(xc 0 − azβ0)

Mty = 4kzax
2β0

(3.69)

where Ftx and Mty have the same meaning as in Eqs. (3.65). Low vibration transmis-
sion of force and moment to the foundation is decreased at the higher frequencies in
a manner similar to that shown in Fig. 3.29.

FOUNDATION-INDUCED VELOCITY SHOCK

A velocity shock is an instantaneous change in the velocity of one portion of a sys-
tem relative to another portion. In this section, the system is a rigid body supported
by orthogonal resilient elements within a rigid container; the container experiences
a velocity shock.The system has one plane of symmetry; modal coupling and natural
frequencies for such a system are considered above. Two types of velocity shock are
analyzed: (1) a sudden change in the translational velocity of the container and (2) a
sudden change in the rotational velocity of the container. In both instances the
change in velocity is from an initial velocity to zero. No forces or moments are
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FIGURE 3.29 Force and moment amplitudes transmitted to the foundation for the system shown
in Fig. 3.27 when excited by a rotating force F0 acting about the Y axis. The parameters of the system
are kx/kz = 1.16, ax/ρy = ±1.32, az/ρy = −1.62. The amplitudes of the oscillating forces in the X and Z
directions transmitted to the foundation are Ftx and Ftz, respectively. The amplitude of the total oscil-
lating moment about the Y axis transmitted to the foundation is Mty.
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applied directly to the resiliently supported body; i.e., only the forces transmitted by
the resilient supports act. Thus, in the equations of motion, Eqs. (3.31):

Fx = Fy = Fz = Mx = My = Mz = 0 (3.70)

The modal coupling and natural frequencies for this system have been deter-
mined when the YZ plane is a plane of symmetry and the conditions of symmetry
of Eqs. (3.33) to (3.35) apply. It is assumed that the velocity components of the
body (ẋc , ẏc , żc , α̇, β̇, γ̇) and the velocity components of the supporting container
(u̇, v̇, ẇ, ȧ, ḃ, ġ) are respectively equal at time t < 0.At t = 0, all velocity components
of the supporting container are brought to zero instantaneously. To determine the
subsequent motion of the resiliently supported body, the natural frequencies fn in
the coupled modes of response are first calculated using Eq. (3.36). Then the
response motion of the resiliently supported body to the two types of velocity
shock can be found by the analyses which follow.

One Plane of Symmetry with Orthogonal Resilient Supports Excited by a
Translational Velocity Shock. Figure 3.30 shows a rigid body supported within a
rigid container by resilient supports in such a manner that the YZ plane is a plane of
symmetry. The entire system moves with constant velocity v̇0 and without relative
motion.At time t = 0, the container impacts inelastically against the rigid wall shown
at the right.The following initial conditions of displacement and velocity apply at the
instant of impact (t = 0):

ẏc(0) = v̇0

xc(0) = yc(0) = zc(0) = α(0) = β(0) = γ(0) = 0 (3.71)

ẋc(0) = żc(0) = α̇ (0) = β̇(0) = γ̇(0) = 0

As a result of the impact, the velocity of the supported rigid body tends to continue
and is responsible for excitation of the system in the coupled mode of the yc , zc , α
motions. The maximum displacements of the center-of-gravity of the supported
body are

= �
3

n = 1
� �

= �
3

n = 1
� � (3.72)

= �
3

n = 1
� �

The maximum accelerations of the center-of-gravity of the supported body are
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where the subscript m denotes maximum value and

Mn = � − � �2�
Nn = � − � �2�

(3.74)
An = Mn + 1Nn + 2 − Mn + 2Nn + 1

B = � �
3

n = 1
Mn(Nn + 1 − Nn + 2)�

The fictitious natural frequency fz is defined for mathematical purposes by Eq.
(3.37).The numerical values of the subscript numbers n, n + 1, n + 2 denote the three
natural frequencies in the coupled mode of the yc , zc , α motions determined from
Eq. (3.36). These natural frequencies are arbitrarily assigned the values n = 1, 2, 3.
When n + 1 or n + 2 equals 4, use 1 instead; when n + 2 equals 5, use 2 instead. Max-
imum displacements and accelerations may be calculated for other points in the sup-
ported rigid body by using Eqs. (3.1) except that each of the terms must be made
numerically additive. For example, the maximum value of the y displacement at the
point b having the Z coordinate bz is

ybm = ycm + |bz|αm (3.75)

since γ = 0.
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FIGURE 3.30 Example of a rigid body supported within a rigid container by resilient elements
with YZ a plane of symmetry. Excitation is by a translational velocity shock in the Y direction. Prior
to impact the entire system moves with constant velocity v̇0 and without relative motion. The rigid
container impacts inelastically against the wall shown at the right, and yc , zc , α motions of the inter-
nally supported body result, as described mathematically by Eqs. (3.72) and (3.73).
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Since the system is assumed undamped, the response of the suspended body in
terms of displacement or acceleration consists of a superposition of three sinusoidal
components at the three natural frequencies in the coupled yc, zc , α mode. The
absolute values of terms appear in Eq. (3.75) because the maximum response is the
sum of the amplitudes of the three component vibrations which make up the over-all
response. In general, the maximum response occurs when the three component vibra-
tions reach their maximum positive or negative values at the same instant. Thus, the
maximum values of response apply both in positive and negative directions.

One Plane of Symmetry with Orthogonal Resilient Supports Excited by a
Rotational Velocity Shock. Alternative to the type of impact illustrated in Fig.
3.30, the system may be excited by imparting a rotational velocity shock (e.g., by lift-
ing and dropping one end of the container), as illustrated in Fig. 3.31. It is assumed
that the container impacts inelastically. The system has the same form of symmetry
as that shown in Fig. 3.30, and only the yc , zc , α modes are excited. The initial condi-
tions at the instant of impact (t = 0), based upon the angular velocity ȧ0 of the rigid
container about point A in Fig. 3.31, are

ẏc(0) = −dzȧ0 żc(0) = dyȧ0 ȧ(0) = ȧ0

xc(0) = yc(0) = zc(0) = α(0) = β(0) = γ(0) = 0 (3.76)

ẋc(0) = β̇(0) = γ̇(0) = 0

Note that dy and dz are negative quantities. The initial conditions in Eqs. (3.76) are
based on the assumption that motion of the rigid body relative to the container dur-
ing the fall is negligible compared to that which occurs after the impact. The maxi-
mum displacements of the center-of-gravity of the supported body are

= �
3

n = 1
�� An + (Nn + 1 − Nn + 2) + (Mn + 2 − Mn + 1)� �

= �
3

n = 1
��Mn� An + (Nn + 1 − Nn + 2) + (Mn + 2 − Mn + 1�� �

(3.77)

= �
3

n = 1
��Nn� An + (Nn + 1 − Nn + 2) + (Mn + 2 − Mn + 1)�� �

The maximum accelerations of the center-of-gravity of the supported body are

= �
3

n = 1
�� An + (Nn + 1 − Nn + 2) + (Mn + 2 − Mn + 1)� �

= �
3

n = 1
��Mn� An + (Nn + 1 − Nn + 2) + (Mn + 2 − Mn + 1)�� �

(3.78)

= �
3

n = 1
��Nn� An + (Nn + 1 − Nn + 2) + (Mn + 2 − Mn + 1)�� �

where dz and dy are the Z and Y coordinates, respectively, of the edges of the con-
tainer, as shown in Fig. 3.31, and the other quantities are the same as those appear-
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�ρx

dz
�ρx

1
�
B

α̈m�
2πfzȧ 0

fn�
fz

dy
�ρx

dz
�ρx

1
�
B

z̈cm�
2πρx fzȧ 0

fn�
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�ρx
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�ρx

1
�
B

ÿcm��
2πρx fzȧ 0

fz�
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�ρx
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�ρx

1
�
B

αm�
2πȧ 0/fz

fz�
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1
�
B

zcm��
2πρxȧ 0 /fz

fz�
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�ρx

1
�
B

ycm��
2πρxȧ 0 /fz
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ing in Eqs. (3.72) and (3.74). The maximum response at any point in the suspended
body can be found in the manner of Eq. (3.75).

The rotational velocity ȧ 0 of the container about the corner A in Fig. 3.31 may be
induced by lifting the opposite end to a height h and dropping it.The resulting veloc-
ity ȧ 0 is

ȧ 0 = � � dy′ + dz′ 	1 − � �2
− dz′�1/2

(3.79)

where g is the acceleration of gravity, ρA is the radius of gyration of the rigid body
plus container about the corner A, h is the initial elevation of the raised end of the
container, l is the length of the container, and dy′ and dz′ are the Y and Z coordinates,
respectively, of the edges of the container with respect to the center-of-gravity of the
assembly of rigid body plus container (see Fig. 3.31).

Example 3.3. The rigid body shown in Fig. 3.31 weighs 1,500 lb and has a radius
of gyration ρx = 42 in. with respect to the X axis. The resilient supporting elements
apply forces parallel to their longitudinal axes only. Each element with its longitudi-
nal axis in the X or Y direction has a stiffness of kx = ky = 500 lb/in. Each element
whose longitudinal axis extends in the Z direction has a stiffness kz = 1,000 lb/in.The
resilient elements are positioned as shown in Fig. 3.30, and l = 168 in., dy = dy′ =
−84 in., dz = dz′ = −21 in., ρA = 308 in. The rotational velocity shock results from a
height of drop h = 36 in.

The fictitious natural frequency fz is obtained from Eq. (3.37), yielding fz =
7.22 Hz. From Eq. (3.36) or Fig. 3.14, the natural frequencies in the yc , zc , α mode are
f1 = 3.58 Hz, f2 = 6.02 Hz, and f3 = 9.75 Hz. From Eqs. (3.74), it is determined that 
M1 � 0, M2 = 11.7, M3 = −15.3, N1 = −0.1, N2 = 7.1, N3 = 25.1, A1 = 402, A2 = 2, A3 = 1,
B = 405. Sample calculations for M1 and A1 are

M1 = � − � �2� = −0.04

A1 = M2N3 − M3N2 = (11.7)(25.1) − (−15.3)(7.1) = 402

4(1,000)(68 − 26)
��

4(500)(−10.5)
3.58
�
7.22

4(500)
�
8(1,000)

1
��
1 − (3.58/7.22)2

h
�
l

h
�
l

2g
�
ρA

2

VIBRATION OF A RESILIENTLY SUPPORTED RIGID BODY 3.55

FIGURE 3.31 System shown in Fig. 3.30 excited by a rotational velocity
shock about the X axis. The shock is induced by lifting and dropping one end
of the rigid container to make inelastic impact with the foundation. If the
height of drop is h, the rotational velocity of the system about the corner A at
the instant of impact is given by Eq. (3.79). The response of the resiliently sup-
ported body is described mathematically by Eqs. (3.77) and (3.78).
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From Eq. (3.79), ȧ 0 = 0.38 rad/sec. Then Eqs. (3.78) give the maximum acceleration
of the center-of-gravity in the Y direction of the supported body as follows:

� A1 + (N2 − N3) + (M3 − M2)�
ÿcm = +� A2 + (N3 − N1) + (M1 − M3)�

+� A3 + (N1 − N2) + (M2 − M1)�

� (402) + (7.1 − 25.1) + (−15.3 − 11.7)�
= +� (2) + (25.1 + 0.1) + (0 + 15.3)�

+� (1) + (−0.1 − 7.1) + (11.7 − 0)�
= 286 in./sec2 = 0.74g

In a similar manner:

zcm = 1,580 in./sec2 = 4.09g

α̈m = 45.9 rad/sec2
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