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PREFACE

This book presents material fundamental to a modern treatment of vibrations, placing
the emphasis on analytical developments and computational solutions. It is intended
as a textbook for a number of courses on vibrations ranging from the junior level to
the second-year graduate level; the book can also serve as a reference for practicing
engineers. Certain material from pertinent disciplines was included to render the book
self-contained, and hence suitable for self-study. Consistent with this, the book begins
with very elementary material and raises the level gradually. A large number of exam-
ples and homework problems, as well as computer programs written in MATLAB!, are
provided. ' . ‘ ,

The following review is designed to help the reader decide how best to use the
book: , .
Chapter 1. Concepts from Vibrations—Sections 1.1-1.6 are devoted to a review of ba-
sic concepts from Newtonian mechanics. Issues concerning the modeling of mechanical
systems, from components to assembled systems, are discussed in Secs. 1.7 to 1.9, and
the differential equations of motion for such systems are derived in Sec. 1.10. Sections
1.11 and 1.12 are concerned with the nature of the excitations, the system characteristics
and the nature of the response; the concept of linearity and the closely related principle
of superposition are discussed. Finally, in Sec. 1.13, the concepts of equilibrium points
and motions about equilibrium points are introduced.

The whole chapter is suitable for a first course on vibrations at the undergraduate
level, but Secs. 1.1-1.6 may be omitted from a first course at the graduate level.
Chapter 2. Response of Single-Degree-of-Freedom Systems to Initial Excitations—
This chapter is concerned with the free vibration of undamped, viscously damped and
Coulomb damped systems to initial displacements and velocities. Itincludes a MATLAB
program for plotting the response of viscously damped systems.

This chapter is essential to a first course on vibrations at any level.

Chapter 3. Response of Single-Degree-of-Freedom Systems to Harmonic and Peri-
odic Excitations—In Secs. 3.1 and 3.2, the response to harmonic excitations is repre-
sented in the frequency domain, through magnitude and phase angle frequency response
plots. Sections 3.3-3.7 discuss applications such as systems with rotating eccentric
masses, systems with harmonically moving support, vibration isolation and vibration
measuring instruments. In Sec. 3.8, structural damping is treated by means of an anal-
ogy with viscous damping. Finally, in Sec. 3.9, the approach to the response of systems
to harmonic excitations is extended to periodic excitations through the use of Fourier
series. A MATLAB program generating frequency response plots is provided in Sec.
3.10.

The material in Secs. 3.1-3.6 is to be included in a first course on vibrations, but
the material in Secs. 3.7-3.9 is optional.

IMATLAB ® is a registered trademark of The MathWorks, Inc.
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Chapter 4. Response of Single-Degree-of-Freedom Systems to Nonperiodic Exci-
tations—Sections 4.1-4.3 introduce the unit impulse, unit step function and unit ramp
function and the respective response. Then, regarding arbitrary excitations as a super-
position of impulses of varying magnitude, the system response is represented in Sec.
4.4 as a corresponding superposition of impulse responses, becoming the convolution
integral in the limit. Section 4.5 discusses the concept of shock spectrum. Sections 4.6
and 4.7 are devoted to the system response by the Laplace transformation; the concept
of transfer function is introduced. Next, in Sec. 4.8, the response is obtained by the
state transition matrix. Numerical solutions for the response are carried out in discrete
time by the convolution sum in Sec. 4.9 and by the discrete-time transition matrix in
Sec. 4.10. A MATLAB program for the response using the convolution sum is given
in Sec. 4.11 and another program using the discrete-time transition matrix is given in
Sec. 4.12.

Sections 4.1-4.4 are to be included in a first course on vibrations at all levels.

Section 4.5 is optional, but recommended for a design-oriented course. Sections 4.6—
4.10 are optional for a junior course, recommended for a senior course and to be included
in a first course at the graduate level.
Chapter 5. Two-Degree-of-Freedom Systems—Sections 5.1-5.6 present in a simple
fashion such topics as the eigenvalue problem, natural modes, response to initial exci-
tations, coupling, orthogonality of modes and modal analysis. Section 5.7 is concerned
with the beat phenomenon, Sec. 5.8 derives the response to harmonic excitations and
Sec. 5.9 discusses vibration absorbers. The response to nonperiodic excitations is carried
out in continuous time in Sec. 5.10 and in discrete time in Sec. 5.11. Three MATLAB
programs are included, the first in Sec. 5.12 for the response to initial excitations, the
second in Sec. 5.13 for producing frequency response plots and the third in Sec. 5.14 for
the response to a rectangular pulse by the convolution sum.

The material belongs in an undergraduate course on vibrations, but is not essential

to a graduate course, unless a gradual transition to multi-degree-of-freedom systems is
deemed desirable.
Chapter 6. Elements of Analytical Dynamics—Sections 6.1-6.3 provide the prereq-
uisite material for the development in Sec. 6.4 of the extended Hamilton principle, which
permits the-derivation of all the equations of motion. In Sec. 6.5, the principle is used
to produce a generic form of the equations of motion, namely, Lagrange’s equations.

This chapter is suitable for a senior course on vibrations and is a virtual necessity
for a first-year graduate course.

Chapter 7. Multi-Degree-of-Freedom System——Sectlons 7.1-7.4 are concerned with
the formulation of the equations of motion for linear and linearized systems, as well
as with some basic properties of such systems. In Secs. 7.5-7.7, some of the concepts
discussed in Ch. 5, such as linear transformations, coupling, the eigenvalue problem,
natural modes and orthogonality of modes, are presented in a more compact manner
by means of matrix algebra. Then, in Sec. 7.8, the question of rigid-body motions is
addressed. In Secs. 7.9 and 7.10, modal analysis is first developed in a rigorous manner
and then used to obtain the response to initial excitations. Certain issues associated with
the eigenvalue problem are discussed in Secs. 7.11 and 7.12. Section 7.13 is devoted
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to Rayleigh’s quotient, a concept of great importance in vibrations. The response to
external excitations is obtained in.continuous time in Secs. 7.14 and 7.15 and in discrete
time in Sec. 7.17. MATLAB programs are provided as follows: the solution of the
eigenvalue problem for conservative systems and for nonconservative systems, both in
Sec. 7.18, the response to initial excitations in Sec. 7.19 and the response to external
excitations by the discrete-time transition matrix in Sec. 7.20.

This chapter, in full or in part, is suitable for a senior course on vibrations, and

should be considered as an alternative to Ch. 5. The material rightfully belongs in a
first-year graduate course.
Chapter 8. Distributed-Parameter Systems: Exact Solutions—In Sec. 8.1, the equa-
tions of motion for a set of lumped masses on a string are first derived by the Newtonian
approach and then transformed in the limit into a boundary-value problem for a dis-
tributed string. The same boundary-value problem is derived in Sec. 8.2 by the extended
Hamilton principle. In Sec. 8.3, the boundary-value problem for a beam in bending is
derived by both the Newtonian approach and the extended Hamilton principle. Sections
8.4-8.8 are devoted to the differential eigenvalue problem and its solution. Rayleigh’s
quotient is used in Sec. 8.8 to develop the variational approach to the differential eigen-
value problem. The response to initial excitations and external excitations by modal
analysis is considered in Secs. 8.9 and 8.10, respectively. A modal solution to'the prob-
lem of a rod subjected to a boundary force is obtained in Sec. 8.11. The wave equation
and its solution in terms of traveling waves and standing waves are introduced in Sec.
8.12, and in. Sec. 8.13 it is shown that a traveling wave solution matches the standing
waves solution obtained in Sec. 8.11.

Sections 8.1-8.5, 8.9 and 8.10 are suitable fora senior course or afirst-year graduate

course on vibrations. The balance of the chapter belongs in a second-year graduate
course. _
Chapter 9. Distributed-Parameter Systems: Approximate Methods—Sections 9.1-
9.4 discuss four lumped-parameter methods, including Holzer’s method and Myklestad’s
method. The balance of the chapter is concerned with series discretization techniques.
Section 9.5 presents Rayleigh’s principle, which is the basis for the variational approach
to the differential eigenvalue problem identified with the Rayleigh-Ritz method, as ex-
pounded in Secs. 9.6-9.8. Sections 9.9 and 9.10 consider two weighted residuals meth-
ods, Galerkin’s method and the collocation method, respectively. A MATLAB program
for the solution of the eigenvalue problem for a nonuniform rod by the Rayleigh-Ritz
method is provided in Sec. 9.11.

The material is suitable for a senior or a first-year graduate course on vibrations,
with the exception of the second half of Sec. 9.6 and the entire Sec. 9.7, which are more
suitable for a second-year graduate course.

Chapter 10. The Finite Element Method—Section 10.1 presents the formalism of the
finite element method. Sections 10.2 and 10.3 consider strings, rods and shafts in terms
of linear, quadratic and cubic interpolation functions. Then, Sec. 10.4 discusses beams
in bending. Estimates of errors incurred in using the finite element method are provided
in Sec. 10.5. In Secs. 10.6 and 10.7, trusses and frames are treated as assemblages of
rods and beams, respectively. Then, system response by the finite element method is
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discussed in Sec. 10.8. A MATLAB program for the solution of the eigenvalue problem
for a nonuniform pinned-pinned beam is provided in Sec. 10.9.

This chapter is suitable for a senior or a first-year graduate course on vibrations,
with the exception of Sec. 10.3, which is optional, and Secs. 10.6 and 10.7, which are
more suitable for a second-year graduate course.

Chapter 11. Nonlinear Oscillations—Sections 11.1-11.3 are concerned with qualita-
tive aspects of nonlinear systems, such as equilibrium points, stability of motion about
equilibrium, trajectories in the neighborhood of equilibrium and motions in the large.
Section 11.4 discusses the van der Pol oscillator and the concept of limit cycle. Sections
11.5-11.7 introduce the perturbation approach and how to obtain periodic perturbation
solutions by Lindstedt’s method. Using the perturbation approach, the jump phenomenon
is discussed in Sec. 11.8, subharmonic solutions in Sec. 11.9 and linear systems with
time-dependent coefficients in Sec. 11.10. Section 11.11 is devoted to numerical inte-
gration of differential equations of motion by the Runge-Kutta methods. A MATLAB
program for plotting trajectories for the van der Pol oscillator is provided in Sec. 11.12.

The material is suitable for a senior or a graduate course on nonlinear vibrations.
Chapter 12. Random Vibrations—Sections 12.1-12.3 introduce such concepts as ran-
dom process, stationarity, ergodicity, mean value, autocorrelation function, mean square
value and standard deviation. Sections 12.4 and 12.5 are concerned with probability
density functions. Properties of the autocorrelation function are discussed in Sec. 12.6.
Sections 12.7-12.11 are devoted to the response to random excitations using frequency
domain techniques. Sections 12.12-12.15 are concerned with joint properties of two
random processes. The response of multi-degree-of-freedom systems and distributed
systems to random excitations is discussed in Secs. 12.16 and 12.17, respectively.

The material is suitable for a graduate course on random vibrations.

Appendix A. Fourier Series—The material is concerned with the representation of
periodic functions by Fourier series. Both the real form and the complex form of Fourier
series are discussed.

Appendix B. Laplace Transformation—The appendix contains an introduction to the
Laplace transformation and its use to solve ordinary differential equations with constant
coefficients, such as those encountered in vibrations.

Appendix C. Linear Algebra—The appendix represents an introduction to matrices,
vector spaces and linear transformations. The material is indispensable to an efficient
and rigorous treatment of multi-degree-of-freedom systems.

In recent years, computational algorithms of interest in vibrations have matured to
the extent that they are now standard. Examples of these are the QR method for solving
algebraic eigenvalue problems and the method based on the discrete-time transition ma-
trix for computing the response of linear systems. At the same time, computers capable
of handling such algorithms have become ubiquitous. Moreover, the software for the
implementation of these algorithms has become easier to use. In this regard, MATLAB
must be considered the software of choice. It is quite intuitive, it can be used interactively
and it possesses an inventory of routines, referred to as functions, which simplify the
task of programming even more. This book contains 14 MATLAB programs solving
typical vibrations problems; they have been written using Version 5.3 of MATLAB. The
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programs can be used as they are, or they can be modified as needed, particularly the -
data. In addition, a number of MATLAB problems are included. Further information
concerning MATLAB can be obtained from:

/ The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760

It should be stressed that the book is independent of the MATLAB material and
can be used with or without it. Of course, the MATLAB material is designed to enhance
the study of vibrations, and its use is highly recommended.

The author wishes to express his appreciation to William J. Atherton, Cleveland
State University; Amr M. Baz, University of Maryland; Itzhak Green, Georgia Institute
of Technology; Robert H. Lipp, University of New Orleans; Hayrani Ali Oz, Ohio State
University; and Alan B. Palazzolo, Texas A&M University, for their extensive review of
the manuscript and their many useful suggestions. He also wishes to thank Timothy J.
Stemple, Virginia Polytechnic Institute and State University, for producing the computer-
generated figures and for reviewing an early version of the manuscript. Special thanks
are due to iThan Tuzcu, Virginia Polytechnic Institute and State University, for his major
role in developing the MATLAB programs, as well as for his thorough review of the
manuscript. Last but not least, the author would like to thank Norma B. Guynn for
typing the book essentially as it appears in its final form; the book places in evidence
the excellent quality of her work.

Leonard:Meirovitch
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INTRODUCTION

Dynamics is the branch of physics concerned with the motion of bodies under the action
of forces. For the problems of interest in this text, relativistic effects are extremely small,
so that the motions are governed by the laws of Newtonian mechanics. Vibrations, or
oscillations, can be regarded as a subset of dynamics in which a system subjected to
restoring forces swings back and forth about an equilibrium position, where a system is
defined as an assemblage of parts acting together as a whole. The restoring forces are
due to elasticity, or due to gravity.

For the most part, engineering systems are so complex that their response to stimuli
isdifficult to predict. Yet, the ability to predict system behavior is essential. In such cases,
itis necessary to construct a simplified model acting as a surrogate for the actual system.
The process consists of identifying constituent components, determining the dynamic
characteristics of the individual components, perhaps experimentally, and assembling the
components into a model representative of the whole system. Models are not unique,
and for a given system it is possible to construct a number of models. The choice of a
model depends on its use and on the system mass and stiffness properties, referred to as
parameters. For example, in preliminary design, a simple model predicting the system
behavior reasonably well may suffice. On the other hand, in advanced stages of design, a
very refined model capable of predicting accurately the behavior of the actual system may
be necessary. Many systems can be simulated by models whose behavior is described
by a single ordinary differential equation of motion, i.e., by single-degree-of-freedom
models. This is the case when the model consists of a single mass undergoing translation
in one direction, or rotation about one axis. Many other systems must be modeled by
an array of masses connected elastically. The behavior of such models is described bya
set of ordinary differential equations, and are known as multi-degree-of-freedom models.
They are commonly referred to as discrete systems, or lumped-parameter systems. Then,
there are systems with distributed mass and stiffness properties. They can be represented
by lumped-parameter models, or by distributed-parameter models, where the behavior
of the latter is described by partial differential equations. Occasionally, we encounter
systems with both lumped and distributed properties. Modeling is an important part of
engineering vibrations.

The response of a system to given excitations depends on the system character-
istics, as reflected in the differential equations of motion. Tf the response increases
proportionally to the excitation, then the system is said to be linear; otherwise it is non-
linear. Linearity is of paramount importance to a system, as it dictates the approach to
the solution of the equations of motion. Indeed, in the case of linear systems the princi-
ple of superposition applies, which can simplify the solution greatly. The superposition
principle does not apply to nonlinear systems.

Different types of excitations call for different methods of solution, particularly
the external excitations. By virtue of the superposition principle, the response of linear
systems to initial excitations and to external excitations can be obtained separately and
then combined linearly. Because for all practical purposes the response to initial excita-
tions decays with time, it is referred to as transient. In the case of sinusoidal excitations,
it is more advantageous to treat the response in the frequency domain, through frequency

Xvi
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response plots, rather than in the time domain. Periodic excitations can be represented as
a combination of sinusoidal functions by means of Fourier series, and the response can be
obtained as a corresponding combination of sinusoidal responses. Because in both cases
time plays no particular role, the response to sinusoidal excitations and the response to
periodic excitations are said to be steady state. Arbitrary excitations can be regarded as
superpositions of impulses of varying magnitude, so that the response can be obtained as
corresponding superpositions of impulse responses. The Laplace transformation method
yields the same results, perhaps in a less intuitive manner. In linear system theory, the
most common approach to the response is to cast the equations of motion in state form
and then solve them by a technique based on the state transition matrix. For the most
part, the response to arbitrary excitations must be obtained numerically on a computer,
which implies discrete-time processing. Random excitations require entirely different
approaches, and the response can be obtained in terms of statistical quantities.

Although the preceding discussion applies to all types of models, multi-degree-
of-freedom systems and distributed-parameter systems require further elaboration. The
equations of motion for multi-degree-of-freedom systems are more efficiently derived
by means of Lagrange’s equations than by direct application of Newton’s second law.
Linear, or linearized equations of motion are best expressed in matrix form. Because
these are simultaneous equations, the coefficient matrices, albeit symmetric, are fully
populated. Their solution can only be carried out by rendering the equations independent
by means of modal analysis. This involves the solution of an algebraic eigenvalue
problem and an orthogonal transformation using the modal matrix, all made possible .
by developments in linear algebra. The independent modal equations resemble those
for a single-degree-of-freedom and can be solved: accordingly. Although different in
appearance, partial differential equations describing distributed-parameter systems can
be solved in an analogous manner, the primary difference being that they require the
solution of a differential eigenvalue problem instead of an algebraic one.

For the most part, differential eigenvalue problems do not admit analytical so-
lutions, so that they must be solved approximately, which amounts to reducing them
to algebraic cigenvalue problems. This implies the construction of a discrete model
approximating the distributed-parameter system, which can be done through parameter
lumping or series discretization. Among series discretization methods, we include the
Rayleigh-Ritz method, the Galerkin method and the finite element method, the latter
being perhaps the most important development in strictural dynamics in the last half a
century.

The fact that the superposition principle does not hold for nonlinear systems causes
difficulties in producing solutions. If the interest lies only in qualitative stability char-
acteristics, rather than in the system response, then such information can be obtained
by linearizing the equations of motion about a given equilibrium point, solving the cor-
responding eigenvalue problem and reaching stability conclusions from the nature of
the eigenvalues. For systems with small nonlinearities, more quantitative results can be
obtained by means of perturbation techniques, which permit solutions using once again
methods of linéar analysis. For nonlinearities of arbitrary magnitude, solutions can only
be obtained numerically on a computer. To this end, the Runge-Kutta methods are quite
effective.
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Difficulties of a different kind arise in the case of random excitations. The response
to random excitations is also random and can only be defined in terms of statistical
quantities. This situation is much better for Gaussian random processes, for which the
probability that the response will remain below a certain value can be defined by means
of two statistics alone: the mean value and the standard deviation. The latter is the more
important one and can be computed working in the frequency domain using Fourier
transforms, rather than in the time domain.

Finally, it should be noted that the numerical work involved in this vibrations study
can be programmed for computer evaluation using MATLAB software. In fact, this book
contains MATLAB programs for a variety of vibrations problems, which can be regarded
as the foundation for a vibrations toolbox.



CHAPTER

CONCEPTS FROM VIBRATIONS

This text is concerned with systems executing oscillatory motion, where a system is
defined as an aggregation of components acting together as a whole. For mechanical
systems the oscillatory motion is generally referred to as vibration. The basic question in
vibrations is how systems respond to various stimuli, or excitations. As a preliminary to
our vibrations study, in this chapter we consider such topics as fundamental concepts from
Newtonian mechanics, component modeling, system modeling, derivation of system
differential equations of motion, general excitation and response characteristics and
motion stability.

The derivation of the equations of motion can be carried out by means of methods of
Newtonian mechanics or by methods of analytical dynamics, also known as Lagrangian
mechanics. Newtonian mechanics uses such concepts as force, momentum, velocity and
acceleration, all of which are vector quantities. For this reason, Newtonian mechanics
is referred to as vectorial mechanics. The basic tool in deriving the equations of motion
is the free-body diagram, namely, a diagram for each mass in the system showing all the
forces acting upon the mass. Newtonian mechanics is physical in nature and considers
constraints explicitly. By contrast, analytical dynamics is more abstract in nature and
eliminates constraints automatically. We discuss Newtonian mechanics.in this chapter
and analytical dynamics in Ch. 6.

A model consists of a collection of either individual components, or groups of
components, or both. Before modeling can be carried out, it is necessary to identify
and characterize the various types of system components, which implies establishing the
excitation-response relation, or input-output relation, for individual components or for
groups of components, either from experience or through testing.

1
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The task of system modeling amounts to devising a simplified model capable of
simulating the behavior of an actual physical system. For vibrating systems, the behavior
is governed by equations of motion. Derivation of explicit equations of motion consists
of applying the laws of physics to generate a mathematical formulation relating the
response to the excitation, or the output to the input. The formulation is commonly in
the form of differential equations obtained by methods presented in the beginning of this
chapter.

To derive the system response, it is necessary to solve the equations of motion.
This is by far the largest part of the study of vibrations, which can be traced to the fact
that there is a large variety of excitations, and each type of excitations tends to require a
different approach to the solution. We begin this study in Ch. 2.

In this chapter, we begin with a brief review of Newtonian mechanics and then
discuss the excitation-response characteristics of various system components with a
view to the derivation of the differential equations governing the behavior of vibrating
systems. Next, we examine the nature of the excitations and response in a general way,
and finally introduce such concepts as equilibrium positions and stability of motion about
equilibrium.

1.1 NEWTON’S LAWS

Newton’s laws were formulated for single particles and can be extended to systems of
particles and rigid bodies. Actually, the laws can be extended to elastic bodies as well,
as shown later in this text. Newton’s laws can be stated as follows:

First Law. [f there are no forces acting upon a particle, then the particle will
move in a straight line with constant velocity.
The first law states mathematically that, if F = 0, then v = constant, where F is the force
vector and v the velocity vector measured relative to a set of inertial axes xyz (Fig. 1.1),
defined as a reference frame either at rest or moving with uniform velocity relative to an
average position of the “distant stars.”

Second Law. A particle acted upon by a force moves so that the Jforce vector is
equal to the time rate of change of the linear momentum vector.
The mathematical expression of the second law is

dp
F=— 1.1

yr (1.1)
where

is the linear momentum vector, in which m is the mass of the particle, a positive quantity
whose value does not depend on time, and r is the posifion vector of m relative to the
inertial space xyz. If we insert Eq. (1.2) into Eq. (1.1), we obtain Newton’s second law
in its most familiar form

F=mv=mfF=ma (1.3)

in which a is the acceleration vector of the particle relative to the inertial space. Note
that all kinematical quantities measured relative to an inertial space are referred to as
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MO ='l'><F

Ho=rxp

X

FIGURE 1.1
Motion of a particle relative to an inertial reference frame

absolute. Equation (1.1), or Eq. (1.3), represents the equations of motion for particle m.
In ST units, the unit of mass is the kilogram (kg) and the unit of force is the newton (N).
The kilogram is a basic unit and the newton is a derived unit, 1 N=1kg-m/ s2.

Third Law. When two particles exert forces upon one another, the forces lie along
the line joining the particles and the corresponding force vectors are the negative of each
other.

This law is also known as the law of action and reaction. Denoting by f;; the force
exerted by particle j on particle i, the law can be stated mathematically as

f= £ i A (1.4)

where the vectors f;; and f;; are clearly collinear. Electromagnetic forces are exceptions
to this law, but they are of no concern in this text.

Note that the first law, known as Galileo’s inertial law, is a special case of the
second law in which the force F is zero. In this case, we conclude from Eq. (1.1) that the
linear momentum p, and hence the velocity v, is constant. Such a constant quantity is
the result of the integration of Eq. (1.1), for which reason it is referred to as an integral of
motion. The statement p = constant is commonly known as the conservation of linear
momentum.

It should be pointed out that, in using Newton’s second law to derive the equations
of motion, it is necessary to draw a free-body diagram, which is a diagram of the isolated
particle m showing all forces acting upon m: If in the process of isolating the particle
it becomes necessary to cut through internal forces, then these forces acquire the role
of externally applied forces. In this regard, it must be made clear that the symbol F in
Eq. (1.1), or Eq. (1.3), stands for the resultant of all forces acting on m.

Example 1.1. A simple pendulum consists of a bob of mass m suspended on a string of
length L (Fig. 1.2a). Derive the differential equation for the angular displacement 6(t) of
the pendulum, as well as an expression for the tension T in the string.
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mg r

FIGURE 1.2
a. Simple pendulum, b. Free-body diagram

The equation of motion and the tension T can be obtained conveniently by means of
Newton’s second law in terms of radial and transverse components. Figure 1.2b shows the
necessary free-body diagram, in which the tension 7', an internal force, plays the role of an
externally applied force. The only other force is the weight mg, which in the context of this
problem can be regarded as an applied force. From Fig. 1.2b, we can write the equations
of motion in terms of the radial and transverse components r and 6 as follows:

YF, =mgcos —T =ma,

(a)

Y Fp=—mgsind = may

Recognizing that » = L = constant, so that # = ¥ = 0, and recalling from kinematics the
expressions of the radial and transverse components of the acceleration (Ref. 11, Sec. 2.3),
we can write

ay =¥ —rb? = —L§?
. . " (b)
ag=rf+2r0=L0
Inserting the second of Eqgs. (b) into the second of Eqs. (a), we obtain the differential
equation of motion

é—l—%sin@:O (c)

from which we conclude that the motion of the pendulum does not depend on m, a fact
known to the ancient Greeks. On the other hand, the first of Eqgs. (a) and (b) give the tension
in the string

T =mgcosl9+mL92 d)

which does depend on the value of m, in addition to the angular displacement and angular
velocity of the pendulum.
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1.2 MOMENT OF A FORCE AND ANGULAR MOMENTUM

We consider a particle of mass m moving under the action of a force F and denote its
position relative to the origin O of the reference frame xyz by r and its absolute velocity
by v = F. By definition, the moment of the force F about point O is a vector given by
the cross product (vector product)

Mg =rxF (1.5)

and it represents a vector normal to the plane defined by r and F (Fig. 1.1). Ina similar
fashion, the moment of momentum, or angular momentum of m with respect to point O
is defined as the moment of the linear momentum about O and is a vector represented
mathematically by the cross product of the radius vector r and the linear momentum
p =mr, or

Hp =rxp=rxmr 1.6)

and we note that Hy is a vector normal to the plane defined by r and p (Fig. 1.1).
Next, we consider the time rate of change of Hp, recall that m is constant and
write

Hp = x mi+r x m¥ = r x mi 1.7

where, by the definition of the cross product, ¥ x mr = m(¥ x t) = 0. But, by Newton’s
second law, Eq. (1.3),

mi =F | (1.8)
Hence, inserting Eq. (1.8) into Eq. (1.7) and considering Eq. (1.5), we conclude that
Mo = Ho (1.9)

or, the moment of a force about a fixed point O is equal to the time rate of change of the
angular momentum about O.
When the moment about O is zero, Mg = 0, it follows from Eq. (1.9) that

H = constant (1.10)

which represents the principle of conservation of angular momentum, stating that, in
the absence of moments about O, the angular momentum about O is constant. Note
that it is not necessary that the force resultant be zero for the angular momentum to be
conserved, but only that the moment about O be zero, which is the case when the force
resultant passes through O.

It should be pointed out that the developments of this section were carried out for
the general three-dimensional case. In the special case of planar motions, the vectors
My, Hp and H, are all normal to the plane of motion.

Example 1.2. Derive the equation of motion for the simple pendulum of Fig. 1.3 using the
moment, angular momentum relation, Eq. (1.9).

From Fig. 1.3, the position, force and linear momentum vectors can be written in
terms of radial and transverse components as follows:

r = Lu,, F =mg(cosfu, —sinfug), p= mLéug (a)
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My = - mgL sinfk

F =mg (cos6u,—sinBug)

FIGURE 1.3
Simple pendulum

so that, using Egs. (1.5) and (1.6), the moment and angular momentum about O are
Mg =1 xF = Lu, x mg(cosfu, —sinfug) = —mgL sin 6k
, . ()
Ho =rxp=Lu, xmLOuy = mL*0k

respectively, where K is a unit vector normal to u, and ug. Inserting Egs. (b) into Eq. (1.9),
omitting the unit vector k and dividing through by m L2, we obtain the desired equation of
motion in the form

é—l—%sinH:O ©

which coincides with Eq. (c) of Example 1.1.

1.3 WORK AND ENERGY

We consider a particle of mass m moving along curve S under the action of a given force
F (Fig. 1.4). By definition, the increment of work performed by the force F in moving
the particle from position r to position r + dr is given by the dot product (scalar product)

dW =F.dr (1.11)

where the overbar indicates that W is an incremental expression rather than the differ-
ential of a function W. Clearly, dW is a scalar quantity. But, from kinematics dr = ¥dt,
so that using Newton’s second law, Eq. (1.3), we can write

— dr 1 ¢
dW:mi‘-i‘dt=md—:-1"dt:m1"~dl"=d<§mi‘-i‘) (1.12)

in which we recognized that the order of the terms in the multiplication is immaterial in
a dot product. At this point, we define the kinetic energy of mass m as

1
T = Zmi-i | (1.13)
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X

FIGURE 14
Particle moving under the action of a force

so that Eq. (1.12) can be rewritten in the form
dW =dT ' : (1.14)

and we note that, unlike dW, dT does represent the differential of a function, namely,
the kinetic energy function 7.

Next, we consider the work performed by F in moving the particle from position
Iy to position ry, as shown in Fig. 1.4. Integrating Eq. (1.14) and using Eq. (1.11), we
obtain

r n
/ F-dr:/ dT =T —-T (1.15)
r1 T
in which T; is the kinetic energy in the position r; (i = 1, 2). Hence, the work performed
by the force F in moving the particle m from position ry to position 1, is responsible for
a change in the kinetic energy from Ty to 1.

A very important class of forces is the class of conservative forces for which the
work depends only on the initial position v1 and the final position rz, and not on the path
taken from ry to rp. Denoting two distinct paths from ry to r, by I and I (Fig. 1.5), we
can express the preceding statement in the mathematical form

ry 2
/ F~dr=f F-dr (1.16)
I r

path I path II

Equation (1.16) can be given a different interpretation by writing

r2 r r r
f F-dr—/ F-dr:/ F-dr—l—/ F»dr:%F«dr:O (1.17)
r rq ry r .

path I path IT path I path II

in which § denotes an integral over a closed path. In view of this, we can state that
the work performed by conservative forces over a closed path is zero. In the following
discussions, we identify conservative forces by the subscript c.
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path II

FIGURE 1.5 ]
Motion on a path passing through a reference position

At this point, we consider a conservative force F., choose a path from r; to 1,
passing through the reference position If, as shown in Fig. 1.5, and define the potential
energy as the work performed by conservative forces in moving a particle from position
r to the reference position Iy, or

V(r) = /rr&f F,.dr (1.18)

where V is a scalar function depending on r alone, as ry is arbitrary and hence imma-
terial. Indeed, because the interest lies in changes in the potential energy as the particle
changes positions, rather than in the potential energy at a given point alone, when the
difference in the potential energy between two points is considered, any contribution to
the potential energy from rrer cancels out. In view of definition (1.18), we can express
the work performed by conservative forces in moving a particle from position r; to
position r; in the form

rn Tref ry Tref Fref
/ Fc~dr=/ Fc-dr—i-/- Fc-dr=/ Fc-dr—/ F.-dr
r] r] T, ry r

ref
=Va)-V)=—-(V2-V1) (1.19)

in'which V; = V(r;) (i =1,2). Equation (1.19) states that the work performed by
conservative forces in moving a particle from vy to vy is equal to the negative of the
change in the potential energy from V to Va.

In general, forces can be divided into two classes, conservative and nonconserva-
tive, where the latter are denoted by F,,.. Consistent with this, the work can be expressed
as the sum of work performed by conservative forces and nonconservative forces, or

r r 2
/ F-dr:f Fc-dr+/ F,.-dr (1.20)
ry Iry r]

Inserting Egs. (1.15) and (1.19) into Eq. (1.20), we obtain

r2
L-T= —(Vz—V1)+/ F,-dr (121

ry
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Then, defining the sum of the kinetic energy and potential energy as the tofal energy
function

E=T+V (1.22)

Eq. (1.21) can be rewritten as

ry
f Fp.-dr=E,— E; (1.23)
r| -

which states that the work performed by nonconservative forces in moving a particle
from ¥y to ry is responsible for a change in the total energy from E1 to E,. Equation
(1.23) can be expressed in the incremental form

Fnc'erdE (124)
so that, dividing through by d¢, we obtain
Foot=FE * (1.25)

But, in general the scalar product F - I represents the rate of work and is known as the
power. Hence, Eq. (1.25) states that the power associated with nonconservative forces
is equal to the time rate of change of the total energy. From Eq. (1.25), we conclude that
nonconservative forces can add or dissipate energy, depending on whether the product
F,. ¥ is positive or negative, respectively. Physically, this depends on whether the
projection of the nonconservative force vector F,. on the velocity vector £ is in the same
direction as ¥ or in the opposite direction,.respectively.
When there are only conservative forces present, F,. = 0, Eq. (1 25) reduces to

E=0 ' (1.26)
which yields
E = constant ‘ (1.27)

Hence, in the absence of nonconservative forces the total energy is conserved, a statement
known as the conservation of energy principle. This statement provides the justification
for the term “conservative forces” introduced earlier in this section, before a satisfactory
explanation of the term could be given. The total energy is a different type of integral of
motion than the linear momentum integral or angular momentum integral; it represents
a relation between displacements and velocities, and it can provide a great deal of infor-
mation concerning the motion of the particle. The value of the integral depends on the
initial displacements and velocities.

To ascertain the existence of an energy integral, or the absence of one, itis necessary
to identify the type of forces acting on the particle. To this end, we observe that the class
of conservative forces contains constant forces and forces depending on the position r
alone. On the other hand, the class of nonconservative forces includes forces depending
explicitly on time, or on the velocity F, or on both. '

For conservative systems defined by a single coordinate, Eq. (1.26) can be used to
derive the equation of motion.
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Example 1.3. Consider the simple pendulum of Examples 1.1 and 1.2, ascertain the ex-
istence of a motion integral and determine its expression for the initial conditions 8(0) =
0, 8(0) = wg. Then, use Eq. (1.26) to derive the equation of motion.

The only external force acting upon the bob, the weight mg, destroys the conservation
of both the linear momentum and the angular momentum about the point of support 0. On
the other hand, the force mg is constant, and hence conservative. As a result, there is a
motion integral in the form of the total energy.

From Eq. (1.13), we can write the kinetic energy

T= lmv2 = lmL2€2 (a)
2 2
To obtain the potential energy, we insert the first two of Egs. (a) of Example 1.2 into Eq.
(1.18) with rper = 0, recognize that the only change in the vector r is due to a change df in
direction and that the change Ld0 is normal to r (Ref. 11, Sec. 2.3), so that

dr =d(Lu,) = Ldfug (b)

and write

0 0
V(0):/ mg(cos@ur—sinéug)~Ld9u.9:—mgL/ sinfd@ = mgL(1—cos#) (c)
g (4

Equation (c) can be obtained in a simpler manner by using a scalar form of the integral
(1.18) in terms of the vertical component of force and displacement differential. An even
more direct approach consists of writing, on physical grounds,

V() =mgAh =mgL(1~cos®) @

where A#h is the rise of the bob above the reference position @ = 0, in which the bob is at
its lowest level. Hence, considering the initial conditions, the energy integral is

1
E=T+V = EmL2«92+mgL(1 —cosf) = ‘mL2 wy = constant (e)

which clearly represents a relation between the angular displacement 8 and angular velocity
0. As a matter of interest, we obtain the maximum angle reached by the pendulum by letting
6 =0 and writing

Gmaxzcos‘l(l—Lw%/Zg), wp < 2+/g/L )

If wo > 24/g/L, then § > 0, which implies that the pendulum rotates continuously, never
reaching an equilibrium position.
Next, we take the time derivative of Eq. (e) and write according to Eq. (1.26)

E= mLzéé—l-mgL sinf0 = (mL2d +mgLsing)d =0 €3]
so that, for § # 0, we must have
mL*0+mgLsing =0 (h)

which represents the equation of motion.

1.4 DYNAMICS OF SYSTEMS OF PARTICLES

Newton’s laws were formulated for single particles, but in this text the interest lies in
the vibration of flexible bodies and to a smaller extent in the oscillation of rigid bodies.
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Newton’s second law can be used to derive equations of motion for rigid bodies and
deformable bodies, which can be done conveniently by first deriving the equations for
systems of particles.

We consider a system of N particles of mass m; (i =1,2,...,N), as shown in
Fig. 1.6, in which F; denotes the force acting on m; and f;; denotes the force exerted by
mjonm; (i,j= 1,2,...,N;j #1i). According to Newton’s second law, Eq. (1.3), the
equation of motion for particle m; is

N
Fi+Zfij=mii‘i=miai, i=12,....,N (1.28)
j=1

where §; = a; is the acceleration of particle m; relative to an inertial space. To derive
an equation for the motion of the entire system of particles, we sum up Egs. (1.28) and
write

N N M N N
ZFi+ZZfij =Zmii"i :Zmiai (1.29)
i=1 i=] j=1 i=1 i=1

Then, recognizing that, by virtue of Egs. (1.4), the internal forces f;; and {;; cancel out
in pairs and letting

ZE- =F (1.30)

FIGURE 1.6
System of particles



i of all forces, the equation of motion for the system of particles is

N N
F=Zmii‘.,- :Zmiai (1.31)
i=1 =1 :

Next, we define the moment of momentum of the system of particles about the
fixed point O as

N
HO = Zl‘i X mii’[ (132)

i=1
Taking the time derivative of Eq. (1.32) and recognizing that I; x ¥; = 0, we obtain

N N
HO ZZ(I‘, X m;it; +1; X m; ;) IZI',' X m;¥; (1.33)

i=1 i=1

But, inserting Eqs. (1.28) into Eq. (1.33) and recognizing that the moments due to the
internal forces add up to zero (Ref. 11, Sec. 9.5), we can write

N
Ho=) rxF, (1.34)
i=1
Then, denoting the moment of all forces about O by

N
My = Zri x F; (1.35)
i=1

Eq. (1.34) yields
Mo =Hp (1.36)

Equation (1.36) states that the resultant of the moments about a fixed point O acting on
a system of particles is equal to the time rate of change of the moment of momentum
about O of the system of particles.

On occasions, it is advisable to refer the motion to a moving point, rather than to
a fixed point. A point playing a special role in dynamics is the mass center, denoted by
C and defined as a point coinciding with a weighted average position of all particles,
where the weighting factor for each particle 7 is the mass m; of the particle. The radius
vector from the origin O to the mass center C (Fig. 1.6) is defined as

N
Zm"ri N
= 1
rc= ’—;[ = ZZm,-r,- (1.37)

i=1
D_m
i=1
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in whichm = va=1 m; is the total mass of the system of particles. Then, we Can express
the absolute position, velocity and acceleration of particle m; as :

r,=rc+r;,i=12,...;N

F=vi=Fc+i=vc+Vv,i=12,...,N - (1.38)

B =fc+F —actal, i=1,2... N '
where r¢, ¢ = ve and ¥¢ = ac are the absolute position, velocity and acceleration of
point C, respectively, and r’, ¥ = v} and i} = a are the corresponding position, velocity

and acceleration vectors of particle m; relative to C. Using the first of Eqs. (1.38), we
can write

N N
1 : 1
rC:ZZmi(rc—i—r;):rc—l—EZmirl’- (1.39)
i=1 =1
from which we conclude that
N
> mx] =0 (1.40)
i=1

Hence, the mass center C can also be defined as a point such that the weighted average
position relative to C is zero.

Inserting Eqgs. (1.38) into Eq. (1.31) and observing that ¥c = ac is independent of
i, we obtain the force equation in the form

N N N
i=1 i=1 i=1

N N N
= "mia; =Y _mi(ac+a)) =mac+ ) _mia] (1.41)
i=1 i=1 i=1

Introducing Eq. (1.40) in Eq. (1.41), we obtain the simple force equation
F = mac (1.42)

which can be interpreted as stating that the motion of the system of particles is equivalent
to the motion of a single body of mass equal to the total mass m of the system of particles
and whose acceleration under the resultant force F is equal to the acceleration ac of the
mass center.

Now, we define the moment of momentum about C as

N
He =) r}xmf; (1.43)
j=1

consider Eq. (1.28) and the second of Egs. (1.38), use the same argument as that leading
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to Bq. (1.34), recall Eq. (1.40) and write the time derivative of Hc in the form

N N N N
HC = Z(I‘; X m,-i‘[ -|-l'; X mii‘i) = (Zm,r:) X f‘c —i—ZI‘; XFi = ZI‘; X F,‘
i=1 \i=l i=1 i=1
' (1.44)
Then, observing that

N
ng x F; = M¢ (1.45)
i=1 '

is the moment of all forces about C, the moment equation about C reduces to the same
simple form

M¢ =Hc (1.46)

as the moment equation about a fixed point O, Eq. (1.34). Moreover, introducing the
second of Egs. (1.38) in Eq: (1.43) and using Eq. (1.40), we obtain

N
He =) r} xm;¥ (1.47)
i=1

so that the moment of momentum about the mass center C also has the same simple
form as the moment of momentum about a fixed point O.

Note that if the motion is referred to an arbitrary moving point, rather than to the
mass center, both the force and moment equations are more involved. Hence, if the
motion is to be referred to a moving point, then it is a good policy to choose the moving
point as the mass center C.

1.5 DYNAMICS OF RIGID BODIES

Rigid bodies can be regarded as systems of particles, so that the developments of Sec. 1.4
apply equally well to rigid bodies. Still, there are some basic differences between
rigid bodies and arbitrary systems of particles, which require certain extensions of the
developments of Sec. 1.4. In the first place, rigid bodies are characterized by continuous
mass, i.e., the mass is distributed over the entire body, instead of being concentrated
at discrete points. As a result, the mass properties are described by means of a mass
density function p(x,y,z), representing mass per unit volume at a given point in the
body identified by the spatial variables x,y and z, which are the coordinates of the
given point relative to a set of axes x, y, z fixed in the body and known as body axes.
This is in contrast with the discrete masses m; in the case of collections of particles,
which are identified by the index i. Hence, to apply the developments of Sec. 1.4 to
continuous bodies, we must replace the discrete mass m; by the differential element of
mass dm(x, y, z) and the summation over the collection of particles by integration over
the body. Another difference lies in the fact that the distance between any two points
in a rigid body is constant. As a result, any motion of one point in a rigid body relative
to another is due entirely to rotation, which reduces drastically the number of variables
required for a description of the motion of rigid bodies.
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In deriving the equations of motion for rigid bodies, we consider the following
cases:

}.5.1 Pure Translation Relative to the Inertial Space

In the case of pure translation, the equations of motion are all force equations. In view of
the preceding discussion, the force equation can be obtained from Eq. (1.31) by writing
in general

F(t):f a(x,y,z,t)dm(x,y,z) (1.48)
body

where F is the resultant force vector, a is the acceleration vector of a point in the rigid
body and dm(x, y,z) = p(x,y,z)dV is the differential element of mass, in which m is
the total mass and dV is the differential element of volume. But, in pure translation the
acceleration is the same for every point of the body, a(x, v, z, t) = a(¢), so that Eq. (1.48)
yields simply

F=ma (1.49)

In the case of planar motions, the force equation, Eq. (1.49), has only two scalar
components, or

Fy =may, Fy =ma, (1.50)

where Fy and F), are the resultant forces in the x- and y-direction, respectively.

Note that on occasions the force equations are not sufficient to solve the problem,
so that a moment equation must be invoked, even though the angular acceleration is zero.
On such occasions, it is generally advisable to take moments about the mass center.

Example 1.4. Derive the equations of motion for the body in horizontal translation shown
in Fig. 1.7a. The horizontal reactions at the points of contact are proportional to the vertical
reactions at these points, where the proportionality constant is the friction coefficient p.
Then, use the parameter values 5 = 30°, 4 =0.5, H = 0.6L and D = 0.1L and determine
the magnitude F of the force F as a fraction of the weight mg when the body is on the verge
of tipping over, as well as the acceleration of the body as a fraction of g.

Figure 1.7b shows the corresponding free-body diagram. Just before tipping over,
the reaction N4 reduces to zero. Hence, using Egs. (1.50), we obtain simply

Fy = Fcosf3— uNp = ma,
. (a)
Fy=Fsin+Np—mg=0

We observe that there are three unknowns, F, Np and a,, and only two equations, so that
we must have another equation. We can write another equation by considering the fact that
the body undergoes no rotations, so that the moment about the mass center is zero. Hence,
taking moments about the mass center C, we have

H L H ‘
MC=—FCOSﬁE+(NB—FSIHﬂ)E—/,LNB(D—F?):0 (b)
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FIGURE 1.7
a. Rigid body in horizontal translation, b. Free-body diagram

Solving the second of Eqs. (a) and Eq. (b) for F/mg and using the given parameter values,
we can write

F L—-2uD—uH

m_g - HcosB+QL—-2uD —uH)sing
3 1-2x0.5%0.1-0.5%0.6
C0.6(v/3/2)+(2—2%0.5%0.1—0.5x0.6)/2

Then, inserting Np from the second of Egs. (a) into the first and using Eq. (c), we obtain
the nondimensional acceleration

—0.4547 ©

_ — Fsi 1
dr _ Feosf—pmg—Fsinf) oo V3 o1 Lo asar
g mg 2 2
=0.75% 1072 (@

1.5.2 Pure Rotation About a Fixed Point

In the case of pure rotation about a fixed point O, the motion is described by the moment
equation given by Eq. (1.36), in which, from Eq. (1.353),

My =/ r x dF (1.51)
body
is the resultant torque about point O (Fig. 1.8) and, from Eq. (1.32),
Hyp = / r x vdm (1.52)
body

is the moment of momentum, or angular momentum of the body about O. From kine-
matics (Ref. 11, Sec. 2.5), we can write the velocity vector of a point on a rigid body in
pure planar rotation in the form

vV =rwily (1.53)
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FIGURE 1.8
Pure rotation about a fixed point

Then, letting r = ru, and inserting Eq. (1.53) into Eq. (1.52), the angular m
for planar motion becomes

Hop = / ru, X rwlgdm = (/ rzdm> wk =Ipwk
body body

where k is a unit vector normal to the plane of motion and

Ip =/ r2dm
body

1jomentum

(1.54)

(1.55)

is the moment of inertia of the body about O. Hence, for planar motions, the angular
momentum has only one component. Consistent with this, the torque vector has only

one component also, namely
My = Mok
But, from Eq. (1.54),

Hp =Ipak

where o = w is the angular acceleration magnitude. Hence, inserting Egs.
(1.57) into Eq. (1.36), we obtain the single scalar moment equation

Mo =1pa

Example 1.5. A rigid body suspended from a point other than the mass center|

(1.56)

(1.57)
1.56) and

(1.58)

and free to

oscillate is known as a “compound pendulum.” Figure 1.9 depicts a compound pendulum

consisting of a uniform bar of total mass m hinged at point O at a distance L
mass center C. If the pendulum is released from rest in the horizontal position|
the angular acceleration of the pendulum immediately after release.

6 from the
determine
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FIGURE 1.9
Compound pendulum

Regarding counterclockwise moments and angular motions as positive, Eq. (1.58)
yields

L
Mo:—mgg=100z (a)

where the mass moment of inertia of the pendulum about O can be obtained through
integration as follows:

2L/3 342L/3 12
10=/x2dm="—’/ Kae="2 0 o)
m L —L/3 L3 —L/3 9

Hence, inserting Eq. (b) into Eq. (a), we conclude that the angular acceleration immediately
after release is

_3g
a= o
2L (
where the minus sign indicates that the acceleration is in the opposite sense to that indicated

in Fig. 1.9, i.e., it is in the clockwise sense.

1.5.3 General Planar Motion Referred to the Mass Center

In the general case, the body is capable of both translation and rotation relative to the
inertial space, so that it is necessary to refer the motion to a moving point. In this case,
it is advantageous for the most part to refer the motion to the moving mass center C.
The force and moment equations for rigid bodies retain the same general form as for
collections of particles. Hence, from Eq. (1.42), we write the force equation

which states that the force equation of motion of a rigid body is the same as that of a
fictitious body with the entire mass concentrated at the mass center C. Moreover, from
Eq. (1.46), the moment equation about the mass center C is

M = He (1.60)

where, by analogy with Eq. (1.45), the moment about C of a tigid body in planar motion
is defined as

Mc=/ ¥ xdF = Mck (1.61)
body
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in which ¥’ is the radius vector from C to dm, and, by analogy with Eq. (1.54), the
angular momentum about C is given by

Hc = Icwk ~ (1.62)

where I is the moment of inertia of the rigid body about C and w is the angular velocity
of the body relative to the inertial space.
For planar motions, the force equation, Eq. (1.59), has the two scalar components

Fy =macy, Fy =macy (1.63)

and, by analogy with Eq. (1.58) the moment equation about the mass center C has the
single component

Mc=Ica ‘ (1.64)

where « isdthe angular acceleration of the body relative to the inertial space. It should
be pointed out that, to obtain the motion of the rigid body, Egs. (1.63) and (1 64) must
in general be solved simultaneously.

Example 1.6. A uniform rigid bar of total mass m and length L, suspended at point O
by a string of length L1, is acted upon by the horizontal force F, as shown in Fig. 1.10a.
Use the angular displacements 81 and 6; to define the position, velocity and acceleration
of the mass center C in terms of body axes and then derive the equations of motion for the
translation of C and the rotation about C.

Referring to Fig. 1.10b, we can write the position, velocity and acceleration of the
mass center C in the form

Ly
rc=rap+rac = Liu+ 5 W2 (@)
. Lo,
Yo =Va+vac =L191u91+792u92 )
and
. . 2 .
ac =ap +asc = —Li67u +Libug — 02ur2 + —6ug (©)

2 2

respectively. Equations (a) - (¢) are in terms of two sets of unit vectors. To obtain expressions
in terms of the body axes ry, 02, we observe from Fig. 1.10b that the two sets of unit vectors
are related by

u,1 = cos(f2 — 61)uyp —sin(6z — 61)ug @
up; = sin(6z — 61 a2 +cos(fz — 61)ugy
Inserting Eqgs. (d) into Eqgs. (a) - (c), we obtain the position, velocity and acceleration of the
“mass center C in terms of components along the body axes, as follows:

Lo .
re = [L1 cos(f, — 1)+ —2*2—:| Uy — Lisin(@, —01)mgy - (e

. - Ly,
ve = L1615in(62 — 01)uyp + [L191 cos(fr —61) + 7292] ug )
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a. b. C.

FIGURE 1.10
a. Rigid bar on a string, b. Position of the mass center, ¢. Free-body diagram

and

. . Lo.
ac = [L191 sin(@y —61) — Llﬂ% cos(f — 1) — —2—29%] w2

. . I
+ [Lﬁl cos(fr — 01) + L1607 sin(6 — 0;) + 7202] gy (g

respectively.

To derive the equations of motion, we refer to the free-body diagram of Fig. 1.10c,
in which T is the tension in the string and mg the weight of the bar. By analogy with
Egs. (1.63), the force equations in terms of body axes components are

Fro =macy, Fp, =macg (h)
and from Eq. (1.64) the moment equation is
Mc =Ica=Ich ' @
But, from Fig. 1.10c, the force resultants and moment about C are

Fyp =Fsinfr +mgcosf — T cos(fy — 01)

Fgy =Fcos0y —mgsinb, + T sin(f; — ;) G
L L
M¢ =F72 cosfly — T72 sin(6y — 67)
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Moreover, we recognize that the acceleration components ac,» and acgy are simply the
coefficients of u,, and ugy in Eq. (g), respectively, and that for a thin bar I¢c = mL% /12. In
view of this, the desired equations of motion take the explicit form

v . Lo .
FsinOr4+mgcosfr—T cos(Br—01)=m [L101 sin(02—91)—L19% cos(@z—el)—%ﬁg]
|
|

Fcosfr—mgsinfr+T sin(fr—01) =m [L191 cos(fy — 91)+L19% sin(fy — 9“1)-1— 7202]

L L L%
FTZ cos02—T72 sin{(G,—01) :%92
&)

We observe that the motion of the bar is fully defined by the angular displacements
61 and 65, and there are three equations of motion. Hence, there must be a third unknown,
besides 01 and 62, which is the tension T. If the value of T presents no interest, then it
can be eliminated from Egs. (k) and, in the process, reduce the number of equations to two.
For example, the first two of Egs. (k) can be used to solve for . Then, introducing this
expression for T into any two of the three equations, we obtain two equations of motion in
terms of 8; and 6 and their time derivatives alone. This elimination process is left as an
exercise to the reader.

1.6 KINETIC ENERGY OF RIGID BODIES IN PLANAR MOTION

In Sec. 1.3, we defined the kinetic energy for a single particle, Eq. (1.13). The definition
can be extended to collections of particles and rigid bodies. Because in this text we
have no particular interest in the kinetic energy of arbitrary collections of particles, we
consider the kinetic energy of rigid bodies directly. To this end, we use the pattern of
Sec. 1.5, as follows:

1.6.1 Pure Translation Relative to the Inertial Space

By analogy with Eq. (1.13), the kinetic energy for a continuous body in planar motion
can be written as

T(t) = %/b ; v(x,y,t)-v(x,y, t)dm(x,y) (1.65)
ody

But, for a rigid body in pure translation, the velocity is the same for every point in the
body, v(x, y,t) = v(1), so that the kinetic energy reduces to

1
T = Emv-v (1.66)

which has the same form as the kinetic energy of a single particle, except that here m
represents the total mass of the body.
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1.6.2 Pure Rotation About a Fixed Point
Inserting Eq. (1.53) into Eq. (1.65), the kinetic energy in pure planar rotation about the
fixed point O can be written as

1, 2 1 2
T=— rwuay - rwugdm = ~w redm= -Ipw (1.67)
2 body 2 body 2

in which Iy is recognized as the mass moment of inertia about 0, Eq. (1.55), and w is
the magnitude of the angular velocity vector w.

1.6.3 General Planar Motion Referred to the Mass Center

As in Sec. 1.5, it is advantageous to work with a set of body axes with the origin at the
mass center C of the rigid body, so that the velocity of any point in the rigid body is the
sum of the velocity of translation of the mass center and the velocity of rotation about
the mass center. Hence, substituting ’ for r in Eq. (1.53), the velocity in planar motion
is

vV=vc+rway (1.68)

wherer’ is the distance from C to dm. Inserting Eq. (1.68)into Eq. (1.65) and recognizing
that, by analogy with Eq. (1.40),

/ rdm=0 (1.69)
body
we can write the kinetic energy of a rigid body in general planar motion in the form

1
T == / (Ve +r'wug) - (ve + 1 wug)dm
2 body

1 1
=—mvc - Ve + Ve ~wug/ r’dm+—/ rwag - ¥ wagdm
2 body body
=T+ Trot (170)
in which
1
Ttr ZEmVC-Vc (1.71)

is the kinetic energy of translation as if the entire body were concentrated at the mass
center C and

Trot = 1w2/ (r'Y2dm = 1Icu)2 (1.72)
2 body 2
is the kinetic energy of rotation about the mass center, where Ic is the mass moment
of inertia of the body about the mass center. Clearly, the advantage of choosing the
mass center C as the origin of the body axes is that the kinetic energy separates into two
parts, one due to translation of point C and one due to rotation about C, and there is no
coupling between the translation and rotation.
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Example 1.7. Derive the kinetic energy of the bar on a string of Example 1.6.

The bar translates and rotates, with the velocity of the mass center C being given
by Eq. (f) of Example 1.6 and the velocity of rotation being 0. Hence, the kinetic energy
consists of two parts, one due to translation of C and one due to rotation about C. Inserting
Eq. (f) of Example 1.6 into Eq. (1.71), we obtain the kinetic energy of translation

1 1 . . Lo .
Ty = Smve e =m {L191 sin(f2 —01)u2 + [L191 cos(fr —01) + —2592] 1192}

. {L191 sin(fh — 0)un + [Llel cos(fr —01)+ 7292] uez}

1 , . L3,
= [L§9%+L1Lzelezcos(ez — 00+ 720%} @

On the other hand, using Eq. (1.72) and recalling that the mass moment of inertia of a thin
uniform bar about C is I¢ = mL?/12, the kinetic energy of rotation about C is simply

1 R
Tror = EICW =~ —=0; (b)

1.7 CHARACTERISTICS OF DISCRETE SYSTEM COMPONENTS

Vibrating systems represent assemblages of individual components acting together as a
whole. Before we can produce the equations of motion for a given system, it is necessary
to establish the excitation-response characteristics of the constituent components. The
components can be broadly divided into three classes according to whether the compo-
nent forces are proportional to displacements, proportional to velocities, or proportional
to accelerations. Correspondingly, they can be divided into components that store and
release potential energy, dissipate energy and store and release kinetic energy. This
section is devoted to such component characterization.

In the first class, the components possess the characteristic that, when displaced
from equilibrium, they generate forces seeking to restore the system to equilibrium. For
the most part, but not exclusively, this property is due to elasticity. All elastic compo-
nents store potential energy as displacements increase, and release potential energy as
displacements decrease. A typical component in this group is the helical spring depicted
in Fig. 1.11 and shown schematically in Fig. 1.12a. Although this is only approximately
true, springs are generally assumed to be massless, so that a force Fy at one end must be
balanced by a force F; acting at the other end. A tensile force Fy, such as that shown in
Fig. 1.12a, causes the spring to undergo an elongation é equal to the difference x; —x;
between the displacements x; and x{ of the two end points. A typical plot of the force Fj

FIGURE 1.11
Helical Spring
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X1 X2 F{--———¢
0 : 0=x—x

Fy Fy ¢t rag

-<— Linear range —>

FIGURE 1.12
a. Spring under a tensile force, b. Force versus elongation

as a function of the elongation ¢ is as depicted in Fig. 1.12b. For a given range, known as
the linear range, § is proportional to F;, where the constant of proportionality k is equal
to the slope of the curve F; versus 8. Hence, in the linear range, the relation between
the force and elongation is simply

Fy = k6 = k(x2—x1) (1.73)

A spring operating in the linear range is said to be linear, in which case the constant & is
referred to as the spring constant, or spring stiffness. It is customary to identify a linear
spring by its stiffness k. We note that the units of k are newtons per meter (N/m). It
should be pointed out that Figs. 1.12a and 1.12b show the force F; external to the spring.
At every point inside the spring there is an elastic force — Fy; which tends to return the
spring to the undeformed configuration, and hence it represents a restoring force. In
many cases the undeformed configuration corresponds to the static equilibrium position
(Sec. 1.10). Clearly, because they depend on the elongation alone, spring forces are
conservative (see Sec. 1.3).

Next, we derive the potential energy expression. Recognizing that in the linear
range there is a spring restoring force equal to —k¢ corresponding to an elongation ¢
and taking the undeformed configuration as the reference position, we can use Eq. (1.18)
and write the potential energy

0 0 .
V(6) = / Fed¢ = / (—kQ)d( = %kéZ (1.74)
) 6

The potential energy can be interpreted geometrically as the integral of the shaded area
in Fig. 1.12b.

Beyond the linear range elongations are no longer proportional to the force, in
which case the spring is said to be nonlinear. If the force F; increases at a slower rate
than the elongation 6, then the spring is said to be a “softening spring.” This is the case
shown in Fig. 1.12b. On the other hand, if the force F, increases at a faster rate than the
elongation 8, then the spring is referred to as a “stiffening spring.”
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Spring forces are conservative, regardless of whether a spring is linear or nonlinear,
as they depend on the elongation alone. Hence using Eq. (1.18), we can write the potential
energy for springs operating beyond the linear range in the form

0
V(5):/ Fed( (1.75)
)

However, before the integral can be evaluated, it is necessary to specify how F, varies
with ¢ in the nonlinear range. If Fig. 1.12b was obtained experimentally, and no analytical
expression for F, is available, then the potential energy can be evaluated by determining
the area under the curve numerically.

The second type of component relates forces to velocities. This is the viscous
damper, or the dashpot, and it consists of a piston fitting loosely in a cylinder filled with
oil or water so that the viscous fluid can flow around the piston inside the cylinder, as
depicted in Fig. 1.13. Alternatively, the piston has holes permitting fluid to flow through
them. As with the spring, the viscous damper is assumed to be massless, so that a force
F; at one end must be balanced by a corresponding force Fy at the other end, as shown
schematically in Fig. 1.14a. It is also assumed that the forces Fy cause smooth shear in
the viscous fluid, so that the plot F; versus & is linear, as depicted in Fig. 1.14b, where
8 = %, — %1 is the velocity of separation of the end points. The relation between the force

FIGURE 1.13
Viscous damper

Fq
slope =¢
, . N
X1 X2
t——» ¢ ’—» c L
- = - 6 =x%-1%
Fy = Fy 0
a.
b.
FIGURE 1.14

a. Damper under a tensile force, b. Force versus separation velocity
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F, and the velocity of separation § is simply
Fy=cb=c(ir—i1) (1.76)

where the proportionality constant ¢, which is merely the slope of the curve Fy versus
6, is known as the coefficient of viscous damping. We identify a viscous damper by the
coefficient c¢. The units of ¢ are newton - second per meter (N -s/m).

At this point, we consider the energy implications of viscous dampers. The force
in the damper is opposed to the external force. By virtue of the assumption that the
damper is massless, the force has the same magnitude as the external force, so that it is
equal to —cé. Clearly, the damper force is nonconservative, as it depends on the velocity
and not on the position. Regarding the damper as part of a system and using Eq. (1.25),
we can write

E = (—cb)6 = —cé? (1.77)

where E is the total energy of the system. But, the right side of Eq. (1.77) is negative as
long as & # 0, and is equal to zero only when 4 = 0. Hence, we must conclude that the
system loses energy steadily, so that viscous dampers dissipate energy.

The third and final type of component is the rigid mass in translation. For motion in
the x-direction only, as shown in Fig. 1.15a, Newton’s second law, the first of Eqgs. (1.50),
yields

Fp =ma, = mi (1.78)

Consistent with the discussion of springs and dampers, Eq. (1.78) states that the force F,,
is proportional to the acceleration, with the constant of proportionality being the mass
m (Fig. 1.15b). We recall from Sec. 1.1 that the mass has units of kilograms (kg).

To examine the energy implications of the mass as a component, we consider
Eq. (1.66) and write the kinetic energy of translation in the x-direction in the form

1 .
T = —mi?
2
from which we conclude that masses store kinetic energy as velocities increase, and

release kinetic energy as velocities decrease.

(1.79)

X F,
Tslope=m
F,, %
m m—
0
o a
b.
FIGURE 1.15 '

a. Mass acted upon by a force, b. Force versus acceleration
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1o

FIGURE 1.16
a. Torsional spring, b. Torsional damper, ¢. Rotating mass

The spring constant k, the coefficient of viscous damping ¢ and the mass m repre-
sent parameters of a system. Because they do not require spatial variables to describe
their location and can be regarded as being located at discrete points, they are referred
to as lumped, or discrete parameters. We reiterate that, unless otherwise stated, springs
and dampers possess no mass and masses are rigid. Later in this text, we relax these
assumptions.

Similar types of components relate torques to rotational motions. For the torsional
spring of Fig. 1.16a, the relation between the torque M; and the angle of twist 6, — 01 is

Mg =kr (0, —01) (1.80)

where kr is the torsional spring constant and 6; and 6, are the angular displacements
of the end points. The units of k7 are newtons - meter per radian (N-m/rad). In a like
fashion, for the torsional viscous damper of Fig. 1.16b, the relation is

Mg = cr (02— 67) (1.81)

in which My is the torque acting on the damper and cy is the torsional coefficient of
viscous damping, where the units of ¢y are newtons - meter - second per radian (N -m -
s/rad). Finally, from Eq. (1.58), the relation between the torque Mo about the fixed
point O and the acceleration 6 of a rigid body about O, as shown in Fig. 1.16c¢, is

Mo =1p6 (1.82)

where 1o is the mass moment of inertia of the body about O, and we note that /o has
units kilogram - meter? (kg -m?).

1.8 EQUIVALENT SPRINGS, DAMPERS AND MASSES

On occasion springs and dampers occur in certain combinations. In such cases, the
analysis can be simplified appreciably by using equivalent springs and dampers to sim-
ulate the action of the combinations in question. To illustrate the idea, we consider
springs connected in parallel and springs connected in series. We confine ourselves to
linear springs, as the concept does not apply to nonlinear ones. Figure 1.17a shows a
system of two springs in parallel under the action of the tensile force F and Fig. 1.17b
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FIGURE 1.17

a. Springs in parallel, b. Force diagram

shows a diagram with the individual springs and the corresponding internal forces. From
Fig. 1.17b, by analogy with Eq. (1.73), we have the relations

Fs1 =ki(x2 —x1), Fys2 =ka(xp —x1) (1.83)

where Fy and Fy; are the forces acting on the springs k; and k,, respectively. Also from
Fig. 1.17b, we conclude that the spring forces F; and Fy must add up to the total force
F;, or

Fy=Fa+Fpn (1.84)
Inserting Egs. (1.83) into Eq. (1.84), we obtain
Fy = keq(x2 —x1) (1.85)
in which
keq = k1 + ko (1.86)

denotes the stiffness of an equivalent spring representing the combined effect of k; and
ko arranged in parallel. If a number n of springs k; (i =1,2,...,n) are arranged in
parallel, then it is not difficult to show that the equivalent spring is

keq = Zki (1.87)
i=1

For two springs in series, as depicted in Fig. 1.18a, we first recognize that the same
force Fj acts throughout both springs. Then, from Figs. 1.18b, we have the relations

Fy =ki(xog —x1), Fs =ka(x2 —x9) (1.88)
so that, eliminating xo from Egs. (1.88), we can write
Fy = keq(x2 —x1) (1.89)
in which

keq = l-l-l B (1.90)
TNk ky '
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FIGURE 1.18
a. Springs in series, b. Force diagram

is the equivalent spring constant for two springs connected in series. If there are n springs
connected in series, then the equivalent stiffness is

N -1
keq = (Z %) (1.91)
i=1 "

Expressions for equivalent spring constants for forsional springs in parallel and
in series can be shown to resemble Eqs. (1.87) and (1.91), respectively. Moreover,
equivalent coefficients of viscous damping for dashpots in parallel and in series can be
derived in an analogous manner. They have the same structure as Eqs. (1.87) and (1.91),
respectively, except that the symbol k is replaced by the symbol ¢.

Under certain circumstances, distributed elastic components can be treated as
equivalent discrete springs. As an illustration, we consider a component in the form
of a thin rod fixed at x = 0 and with the tensile force F at x = L (Fig. 1.19). If the
mass of the rod is negligibly small compared to any other masses in the system, then by
analogy with Eq. (1.73), the rod can be regarded as a spring with the equivalent spring
constant
F
6
where § = u(L) is the axial displacement of the tip of the rod. But, from mechanics of
materials (Ref. 1, Sec. 2.8), the static axial displacement u(x) of a point at a distance x
from the left end must satisfy the differential equation

du(x)
dx

keq = (1.92)

EA(x) =F(x),0<x<L (1.93)

FIGURE 1.19
Rod under a tensile force
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in which E is Young’s modulus, or modulus of elasticity, and A (x) is the cross-sectional
area of the rod. Note that the product E A(x) is commonly known as the axial stiffness.
Moreover, F(x) is the axial force, which in this case is the same for any point x and is
equal to the force F at x = L, F(x) = F. Because the rod is fixed at x = 0, the solution
u(x) must satisfy the boundary condition

u(@ =0 (1.94)
Integrating Eq. (1.93) and considering Eq. (1.94), we obtain simply
x)=F / T_de (1.95)
u(x) = —_— .
o EA®
But, at x = L the displacement must be equal to &, so that
L
d
u(L)=6=F/ _de (1.96)
o EA©)

Hence, inserting Eq. (1.96) into Eq. (1.92), we can write the equivalent axial spring
constant for the rod of Fig. 1.19 in the form

F L oge 77! |
keg=-—=| | 25 1.97
4 [/0 EA(f)] ’ (97

and we note that the units of keq are newtons per meter (N/m). In the case of a uniform

rod, EA(x) = EA = constant, Eq. (1.97) reduces to

EA

; L
Another case of interest is that in which the axial stiffness of the rod is sectionally

uniform, as shown in Fig. 1.20. Such a rod can be treated as two axial springs in series
with the stiffnesses

keq = (1.98)

EA;
kiZL—i, 121,2 ’ (199)
Then, inserting Egs. (1.99) into Eq. (1.90), we obtain the equivalent spring constant for
the sectionally uniform rod in the form

/1 1\ L Ly \ 7!
o (L 1Y Ly Ly 1.100
«a (/q + k2> <EA1 + EA2> (1.100)

—1_
AN I
EA, EA,

F L~ L —>]

FIGURE 1.20
Rod with sectionally constant stiffness
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FIGURE 1.21
Shaft in torsion subjected to a forque

Shafts in torsion are entirely analogous to rods deforming axially. Figure 1.21
shows a shaft clamped at x = 0 and subjected to a torque M at x = L. Indeed, all the
developments covered by Egs. (1.93)-(1.98) remain the same except that the torsional
displacement §(x) replaces the axial displacement u(x), the moment M replaces the
force F and the torsional stiffness G J (x) replaces the axial stiffness EA(x), where G
is the shear modulus and J (x) is the polar moment of inertia of the cross-sectional area.
Hence, from Eq. (1.98) the equivalent torsional spring constant for a uniform shaft is

k M_GJ 1.101
Q=g =L (1.101)
in which 6 = 0(L) is the tip angular displacement. We observe that, unlike axial springs,
the units of torsional springs are newton - meter per radian (N -m/rad). Clearly, the
analogy extends to sectionally uniform shafts in torsion. Indeed, to obtain the equivalent
torsional spring constant for two shafts in series clamped at x = 0, we simply replace
EA; by GJ; (i =1,2) in Eq. (1.100).

Next, we derive the equivalent spring constant for a beam in bending clamped at
x = 0 and acted upon by a transverse force F at x = L, as shown in Fig. 1.22. From
mechanics of materials (Ref. 1, Sec. 8.3), according to the elementary beam theory, the
transverse displacement w(x) satisfies the differential equation

d?w(x)
dx?
where EI(x) is the flexural rigidity, in which I (x) is the cross-sectional area moment
of inertia, and M (x) is the bending moment. In the case at hand, the bending moment
is equal to F(L —x). At the clamped end, x = 0, the displacement and the slope of the

displacement curve must be zero, so that the boundary conditions are

d
w=0 2 _0ax=0 (1.103)
dx

EI(x)

=Mkx), 0<x <L (1.102)

Integrating Eq. (1.102) twice and considering Eqgs. (1.103), we obtain the solution

x ¢ L—f
w(x)_—TF/(.) UO %dg]dg (1.104)
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FIGURE 1.22
Beam in bending under a transverse force

so that, letting w(L) = § and using the same approach as for the rod, the equivalent
spring constant for a cantilever beam is

F F LrreL—¢ !
= —— —Z >4 105
ko = 5 =0 {/0 [/o EI(©) 5}‘“} (1109

In the case of a uniform cantilever beam, EI(x) = EI = constant, Eq. (1.105) reduces

to
L ¢ —1 L —1
b=l L[ emoufuc] <[en [ (se5e)ac] =
‘ (1.106)

It should be pointed out that this is not the only equivalent spring constant possible,
although it is the most common one. Indeed, another equivalent spring constant can be
defined as the ratio of the bending moment M to the slope dw/dx at x = L (Problem
1.16).

Determination of the equivalent spring constant for a uniform cantilever beam
is relatively easy. When the beam is not uniform it may be possible to determine the
equivalent spring constant by performing the indicated double integration in Eq. (1.105).
Except for some simple cases, however, the integrations must be carried out numerically.
Moreover, in more complex cases even this task can prove very difficult. In such cases,
other approaches are advisable. One such approach is known as the moment-area method
(Ref. 1, Ch. 9), which is based on two theorems. To demonstrate these theorems, we
consider the displacement curve for a beam in bending shown in Fig. 1.23a. Then, we
denote the slope at any point x by

d
o) = TP (1.107)
dx
and rewrite Eq. (1.102) in the form
M
400y = M) 4 (1.108)

El(x)
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FIGURE 1.23

a. Displacement curve, b. M(x)/EI(x) versus x

Equation (1.108) can be interpreted geometrically as the shaded area in the diagram
M (x)/EI (x) versus x of Fig. 1.23b. Integrating Eq. (1.108) between the points x = x4
and x = xg, we obtain simply

[T M) ’
eB—aA_/XA e (1.109)

Equation (1.109) can be stated in words in the form of Theorem 1: The difference in
slopes between the points x4 and xp is equal to the area of the M(x)/EI(x) diagram
between these two points.

Next, we refer to Fig. 1.23a, consider Eq. (1.108) and express the differential
element of displacement at x = xp in the form

M(x)
dw|, _, = (xg—x)d0=(xp—x) El(x)dx (1.110)
so that, integrating Eq. (1.110) between x = x4 and x = xp, we obtain
XB M
wB_WA_GA(XB_XA)zlA (xB—x)EI(();))dx (1.11‘1)

Equation (1.111) lends itself not only to an interesting but also a useful geometric in-
terpretation. Indeed, we observe that the quantity inside the integral sign represents the
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FIGURE 1.24 ’
M (x)/EI(x) versus x for a cantilever beam

moment about x = xp of the shaded area in Fig. 1.23b, which permits us to state the
geometric interpretation of Eq. (1.111) in the form of Theorem 2: The displacement of
point B relative to the intersection of the tangent to the displacement curve at x = x4
and the vertical throughx = xp is equal to the moment about x = xp ofthe M(x)/EI(x)
diagram between the points x = x and x = xg.

As a simple illustration, we consider a uniform cantilever beam subjected to a
force F at x = L, as shown in Fig. 1.22. The diagram M (x)/E1 (x) has the triangular
form depicted in Fig. 1.24. Using Eq. (1.109) and recognizing that 84 =0, we conclude
that the slope of the deflection curve at x = L is simply

FL?

L M) F (L
A El(x)dx‘ﬁfo (L—x)dx_m (1.112)

Moreover, using Eq. (1.111) and recognizing that w, = 0 and 6 4 =0, the displacement
atx = L is

w(l)=wp = /L(L—x) Mx) dx = i/L(L—x)zdx = F—LS (1.113) .
This permits us to determine the equivalent spring constant by writing
keg= o= _3EL (1.114)
6  w(l) L3

which is the same as that given by Eq. (1.106). Note that in this particular example it
is perhaps simpler to obtain the results by applying the two theorems presented above
than carrying out integrations. Indeed, from Theorem 1, we conclude that the slope at
x = L is simply the area of the diagram of Fig. 1.24. Moreover, from Theorem 2, the
displacement at x = L is equal to the moment of the diagram of Fig. 1.24 with respect to
the end x = L, which is simply equal to the area of the diagram multiplied by the distance
2L /3 between the geometric center of the diagram and the vertical through x = L.

The preceding process for the calculation of the slope and displacement can be
better explained perhaps by conceiving of a fictitious beam free at x = 0 and clamped
at x = L and loaded with a distributed load in the form of the diagram M (x)/EI(x),
as shown in Fig. 1.25. Then, recalling from mechanics of materials that the integral
of a distributed load f is equal to the shearing force Q, we conclude that the slope
0(x) = dw(x)/dx of the actual beam at point x is equal to the shearing force Q of the
fictious beam at x. Moreover, the displacement w(x) of the actual beam at x is equal to



EQUIVALENT SPRINGS, DAMPERS AND MASSES 35

A2

FL
EI

T

e x —]
FIGURE 1.25
Cantilever beam loaded by the M (x)/EI (x) diagram

Table 1.1 - End Types for Conjugate Beams

Actual Beam Conjugate Beam
End Type Boundary Conditions Boundary Conditions End Type
Clamped w=0 dw/dx =0 M=0 0=0 Free
Free w#£0 | dw/dx#£0 | M#0 | Q#0 Clamped
Pinned w=0 | dw/dx#0 | M=0 0+0 Pinned

the moment M of the fictitious beam at x. The fictitious free-clamped beam loaded with
the diagram M (x)/EI (x) is known as the conjugate beam corresponding to the actual
clamped-free beam, and the procedure for determining the slope and the displacement
just outlined is called the conjugate beam method. The approach can be extended to
other types of beams by replacing an end type of the actual beam by an end type of
a conjugate beam as shown in Table 1.1. Of course, the first two entries in Table 1.1
merely represent the case just discussed. On the other hand, the third entry states that
the conjugate beam for a pinned-pinned beam is a pinned-pinned beam, which has very
useful implications.

As an example of the use of the conjugate beam method, we propose to calculate the
equivalent spring constant for a uniform pinned-pinned beam acted upon by a transverse
force F at x = a, as shown in Fig. 1.26a. To this end, we consider the displacement
curve of Fig. 1.26b, in which we identify 64 as the angle between the tangent to the
displacement curve at x = 0 and the horizontal and ¢ as the displacement at x = a.
The conjugate beam is also pinned-pinned and loaded by the diagram M (x)/EI(x), as
shown in Fig. 1.26c. The angle 4, which can be identified as the shearing force of the
conjugate beam at x =0, is

0 — Faba sa b 1 Fabb?2b Fab
4=0a= EIL2(3 )L+E1L23L T 6EIL?
Then, the displacement of the actual beam at x = a is simply the moment of the conjugate
beam at x = ¢ (Fig. 1.26d), or

[a(a+3b)+2b*] (1.115)

Fab a a _ Fa’b?
EIL23  3EIL

6=w(a)_—_ﬁ(a)=¥6£—;dz§[a(a+3b)+2b2]a— (L116)
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FIGURE 1.26
a. Pinned-pinned beam under transverse force, b. Displacement curve,
c. Conjugate beam, d. Moment diagram for the conjugate beam

Finally, the equivalent spring constant is simply

L F F 3EIL
TS T w@ ab?

The possibilities for defining equivalent spring constants are endless. Some of the
more common ones are given in Table 1.2.

Using the same approach, it is possible to define equivalent coefficients of viscous
damping for distributed components. However, the concept is not as useful as that of
equivalent spring constants.

Next, we reconsider the assumption that springs are massless. To this end, we re-
fer to auniformly distributed spring fixed at x = 0 and free at x = L,asshowninFig. 1.27,

(1.117)

FIGURE 1.27
Spring with distributed mass
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Table 1.2 - Equivalent Spring Constants

Component Sketch and Description keq
ki
k| n
Springs in parallel Z k;
i=1
1
ki k ky L _
<_.._/V\/\_.—\/\/\,—+ .. +—\/V\/—‘—> Springs in series n
> (/k)
i=1
. . EI
Torsiona] spring —
L
. . . EA
Rod in axial deformation T
GJ
Shaft in torsion —
L
Heljcal spring
d = diameter of coil cross Gd*
section 64nR3
n = number of coils
Cantilever beam with a ﬂ
moment at the tip L
Cantilever beam with a 3E1
force at the tip L3

and propose to derive an equivalent mass for the spring. Denoting the mass of the spring
by m, and using Eq. (1.65), we can write the kinetic energy in the form

T(z):%/ i%(x, Hydmg (1.118)

where it (x, 1) is the velocity of point x on the spring. But, from Eq. (1.95) with EA(&) =
E A = constant, it is easy to see that the static displacement of a massless spring is a
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Table 1.2 - Equivalent Spring Constants (continued)

Component Sketch and Description keq
&_/o Pmned—pmned beam 48T
17 with a force at 3
[ % s D) —> midspan
Clamped-clamped beam 192E1
with a force at midspan 13
Pl.nned—pmned beam 3EIL
with an off-center >
a’b?
force
Clamped-pinned beam T68E1
with a force at midspan 7L3
Cl.amped—clamped. beam 12ET
with one end sagging WER
under a force
Plpned—plnned beam 3EI
with an overhang and i
a force at the tip a*(L+a)
C%amped—pmned beam 12E1
with an overhang and ZOLT4n
a force at the tip a*(3L +4a)
E = modulus of elasticity
I = cross-sectional area moment of inertia
A = cross-sectional area
G = shear modulus
J = cross-sectional area polar moment of inertia

linear function of x. Hence, assuming that the mass of the spring does not affect this
displacement characteristic in a meaningful way, we approximate the displacement at
any point on the spring as follows:

ulx, 1) = %u(L,t) (1.119)
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Inserting Eq. (1.119) into Eq. (1.118) and recognizing that for a uniform spring dmg =
(ms/L)dx, we obtain

T() Lmy 12 (L t)/L 2d Lmy (L, 1) ! (L, 1) (1.120)
= =— s X = —— )= —m s .
213" N p/Meat
in which
X ,
Meg = gms (1.121)

represents the equivalent mass for the spring.

1.9 MODELING OF MECHANICAL SYSTEMS

In many ways, modeling is more of an art than an exact science. Indeed, more often than
not a physical system is so complex that an exact description is not feasible. Fortunately,
in many cases an exact description is not really necessary. This is certainly the case
in preliminary design, in which the objective is primarily to verify whether a certain
system is capable of meeting given performance criteria. In other cases, the interest lies
in checking only certain properties of the system, so that the same physical system can
be modeled in different ways. A model represents only an approximation of the actual
physical system, and a good model must retain all the essential dynamic characteristics
of the system. The implication is that the behavior predicted by the model must match
the observed behavior of the actual system reasonably well.

Broadly speaking, models of vibrating mechanical systems fall into two classes,
lumped-parameter, frequently referred to as discrete, and distributed-parameter systems.
On occasion, models contain both lumped and distributed parameters. The classification
is often a subjective matter, and the same physical system can at one time be modeled
as discrete and at another time as distributed. In this section, we consider a number of
physical systems and corresponding models.

Figure 1.28a represents a washing machine mounted on rubber supports and with
the drum rotating in the vertical plane with the constant angular velocity w relative to
the body of the machine. In the first place, we assume that the body of the machine and
the drum undergo no elastic deformations. Moreover, we assume that the clothes are
spread uniformly around the drum. Because the mass of the drum and of the clothes is
symmetric with respect to the axis of rotation, the inertial properties do not change with
time. Tt follows that the combined mass of the body of the machine, the drum and the
clothes, denoted by M, is constant and behaves as if it were rigid. Hence, the motion
of the system is fully defined by the vertical displacement x (¢) of mass M. The rubber
supports can be assumed to behave viscoelastically, which implies that they act as springs
and dashpots in parallel. For simplicity of notation, we denote the spring constants and
coefficients of viscous damping of the left and right supports by k/2.and ¢/2 each, so
that the corresponding model is as shown in Fig. 1.28b. The situation is different when
the clothes are spread nonuniformly around the drum. In this case, it is convenient to
represent the nonuniformity by an excess mass m concentrated at a distance e from the
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a. b.

FIGURE 1.28
a. Washing machine, b. Model of washing machine

axis of rotation, where e is known as the eccentricity. Because the motion of the eccentric
mass m relative to the body of the machine is prescribed, the motion of the system is
fully defined by the vertical displacement x (¢) in this case as well. As we shall see later
in this chapter, the effect of the rotating eccentric mass is to exert an inertial force upon
the system.

Another system of interest is the automobile shown in Fig. 1.29a. Although the
body/chassis structure is capable of elastic deformations, as a first approximation, it is
reasonable to assume that the body/chassis structure can be treated as a rigid slab. The
mass of the slab is supported by primary suspension systems at each of the four wheels,
where each system consists of a relatively soft spring and a hydraulic shock absorber
representing a viscous damper. The suspension systems transmit the load to the axles
and tires, where the latter transmit the load to the ground. The axle and wheels, including
the tires, possess some mass and the tires can be regarded as stiff springs. Although the
tires provide some viscoelastic damping, the magnitude is relatively small and can be
ignored. These considerations lead to the model depicted in Fig. 1.29b, from which
we identify the motions of the system as the vertical translation x; () of the body, the
rotations 6, (r) and 6.(t) of the body about axes y and z, respectively, and the vertical
translations x,; () (i =1, 2, 3,4) of the wheels. The system parameters can be identified
as the mass of the body mp, the mass moments of inertia J y and 7, of the body about axes
y and z, respectively, the coefficients of viscous damping c;; and spring constants ky;
of the primary suspension systems, the wheel masses m,,; and the tire spring constants
ky (i =1,2,3,4). Of course, the two front suspensions parameters are likely to have
equal values, and the same can be said about the rear suspensions. Moreover, the wheel
masses and tire spring constants are the same for all wheels and tires, respectively. The
distance between the axles is L and between the left and right wheels is B.

Another example is the missile in free flight depicted in Fig. 1.30a. The missile
tends to be a slender elastic body capable of bending about two transverse axes. It is
commor, however, to assume that the vibration takes place in one plane only, namely,
in the plane of the missile trajectory. A discrete model of the missile can be conceived
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FIGURE 1.29
a. Automobile, b. Model of automobile

by dividing the mass into n lumps of mass m; (i =1,2,...,n) connected by massless
segments of length Ax; and bending stiffness Ef; (i =1,2,...,n—1), as shown in
Fig. 1.30b. Then, the vibration of the missile can be defined in terms of the transverse
displacements w; (f) of the masses m; (i =1,2,...,n). The missile can also be modeled
as a distributed-parameter system in the form of a beam of length L, free at both ends
and undergoing bending vibration w(x, r) in the transverse direction (Fig. 1.30c). The
system parameters are the mass per unit length m(x) and the bending stiffness E 1 (x).
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a.

FIGURE 1.30
a. Missile in free flight, b. Discrete model, c. Distributed-parameter model

Finally, we consider the modeling of the aircraft displayed in Fig 1.31a. We assume
that the fuselage is rigid and that the wing is flexible and construct first a discrete model
by lumping the mass of the wing as shown in Fig. 1.31b. The fuselage has the mass m f
and the principal mass moments of inertia I, I, and I,, whereas the mass of the left half
of the wing is divided into the n lumped masses m; (i = 1,2, ... ,n). Of course, there
are n symmetric masses for the right half of the wing. For simplicity, we assume that the
wing undergoes pure bending only and denote the elastic displacements of the lumped
masses by w;(t) (i =1,2,...,2n). The fuselage undergoes-the vertical displacement
z(1), known as plunge, and the rotations 6, (1), 0, (¢) and 8, (¢), called roll, pitch and yaw,
respectively. Note that it has been assumed that the forward motion is known and that
the side motion can be ignored. Moreover, in general the wing can also undergo torsion
about its longitudinal axis. A more refined model can be obtained by regarding the wing
as distributed, as shown in Fig. 1.31c. In general, the inertia axis,! does not coincide with
the elastic axis,? so that the wing undergoes both bending and torsion. Hence, whereas
the fuselage inertial parameters and motions remain the same as for the wholly discrete
model, a point on the wing at a distance £ from the root, measured along the elastic axis,
undergoes the bending displacement w (&, £) and the twist (¢, ). Consistent with this,
the wing has the mass per unit length m (¢), the mass moment of inertia per unit length
Ly (&), the bending stiffness E1(£), where I(£) is the cross-sectional area moment of
inertia, and the torsional stiffness G J (), where G is the shear modulus and J (&) is the
cross-sectional area polar moment of inertia. Clearly, the model of Fig. 1.31c is part
discrete and part distributed.

Next, we return to the automobile model of Fig. 1.29b and observe that when
the automobile travels in straight forward motion, it is reasonable to assume that the
front wheels on' the one hand and the rear wheels on the other hand undergo the same

!"The inertia axis is the locus of the mass centers of the cross sections.
The elastic axis is defined as the locus of the shear centers of the cross sections, where a shear center is a
point such thata shearing force acting through it produces pure bending (with no torsion) and a moment about
it produces pure torsion (with no bending).
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FIGURE 1.31
a. Aircraft in flight, b. Discrete model, ¢. Distributed-parameter model

displacement, which implies that the rotation 6, is zero. Under these circumstances, the
model can be simplified as shown in Fig. 1.32a. Finally, assuming that the tire stiffness
is infinitely large, the model can be further simplified by ignoring the mass of the wheels
and the tire springs, as shown in Fig. 1.32b.
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a. Model of automobile in planar motion, b. Simplified automobile model
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1.10 SYSTEM DIFFERENTIAL EQUATIONS OF MOTION

A system subjected to excitations exhibits a response that depends on the nature of
the excitation and on the system characteristics. The excitations can be divided into
two broad classes, initial excitations and applied forces, or applied moments. The
initial excitations take the form of initial displacements or initial velocities, or both.
The implication of the first is that the system is released from rest in some displaced
position and allowed to vibrate freely. The time of release is the initial time, for the most
part = 0, and the displaced configuration at ¢ = 0 defines the initial displacements.
Similarly, initial velocities represent velocities imparted to the masses at t = 0. The
effect of the initial excitations is to impart energy to the system, potential energy in the
case of initial displacements and kinetic energy in the case of initial velocities. After the
energy has been imparted to the system, there are no longer any external factors affecting
the system, for which reason the subsequent motion is referred to as free vibration, or
free response. On the other hand, the response to applied forces and/or applied moments
is called forced vibration, or forced response. Note that applied forces (moments) are
also known as external or impressed forces (moments). Whereas the initial excitations
require little further discussion, the applied forces (moments) require a great deal of
elaboration. Indeed, there are many types of external forces (moments), and determining
the response involves different techniques for different types. We examine the nature of
the excitations in Sec. 1.11.

As can be concluded from the preceding discussions, excitations represent fac-
tors external to the system. On the other hand, the system characteristics represent
internal factors; they consist of the excitation-response characteristics of the individual
components and the manner in which the components are arranged. These factors are
considered naturally in the course of developing a mathematical formulation relating the
response of the whole system to excitations, where in general the formulation is in the
form of differential equations of motion. In this section, we derive equations of motion
for some systems of interest in vibrations using Newton’s second law. The basic tool
in deriving equations of motion by means of Newton’s second law is the free-body dia-
gram, a diagram with every mass in the system isolated and with all forces acting upon
the mass included. Reference is made here to externally applied forces. However, if in
the process of isolating a mass it becomes necessary to cut through the line of action of
internal forces, then these forces must be treated as external.

As a simple illustration, we consider the model of the washing machine of Fig.
1.28b. The corresponding free-body diagram is depicted in Fig. 1.33, in which the
two springs have been combined into one with spring constant equal to k and the two
dampers into one with coefficient of viscous damping equal to ¢. Then, if we measure
the displacement y(z) from the unstrained spring position, the corresponding forces are
—ky and —cy, respectively, and we recognize that these two forces are not genuine
applied forces. The only other force is the weight W = Mg, where g is the gravitational
constant. Using Newton’s second law, Eq. (1.3), and recognizing that the problem is
one-dimensional only, we can write the equation of motion in the form

—Mg—ky@®) —cy(t) = M¥(1) (1.122)
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Free-body diagram for a washing machine
model :

which can be rewritten as
My@) +ey(@) +ky() =—Mg (1.123)

and we note that the term —M g on the right side renders Eq. (1.123) nonhomogeneous.
As it turns out, a simple transformation can render the equation homogeneous. To this
end, we denote by x (¢) the displacement of M from the static equilibrium position, which
differs from the unstrained spring position y(¢) by the static equilibrium displacement
defined as

W Mg
b = — = —— 1.124
=7 Z ( )
But, from Fig. 1.33, the various displacements are related by
y(t) = x (1) — b (1.125)

Inserting Eq. (1.125) into Eq. (1.123), recognizing that 8 is constant, 'so that ¥ (¢) = ¥(t),
and canceling the term —M g on both sides of the equation, we obtain the equation of
motion relative to the equilibrium position in the form

ME@) + k() +kx(6) =0 (1.126)

which is homogeneous. The question may be asked as to how the weight disappeared.
The fact is that the weight did not really disappear. Indeed, the weight Mg is balanced
at all times by a constant force k&g in the spring. The conclusion is that it is possible
to simplify the equation of motion by measuring the displacement from equilibrium,
a conclusion which is true in general. Equation (1.126) represents the free vibration
equation; it will be studied in Ch. 2.

Next, we turn our attention to the case in which there is some imbalance in the
system, as shown in Fig. 1.34a. To derive the equation of motion, it is convenient
to consider two free-body diagrams, one for M —m and one for m. The two freé-body
diagrams are given by Figs. 1.34b and 1.34c, respectively, in which Fy and Fy represent
hinge reactions. Measuring x (¢) from the static equilibrium position, which permits us
to ignore the weight Mg, and using Newton’s second law, the equations of motion in the
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FIGURE 1.34
a. System with rotating eccentric mass, b. Free-body diagram for main mass, c. Free-body diagram
for eccentric mass

vertical direction are
—Fy —kx —cx =(M —m)i

2 (1.127)
Fy :maz—(x +esinwt) = m (% — ew? sinwt)
Eliminating the vertical reaction Fy and rearranging, we obtain the single equation of
motion

Mi+cx+kx = F = mew®sinwt (1.128)

where F' = F(¢) represents a force acting upon the system. Equation (1.128) confirms
the statements made in Sec. 1.9 that a single displacement defines the motion of the
system fully and that the rotating eccentric mass m exerts an inertial force on the system.
We will study the behavior of the system described by Eq. (1.128) in Ch. 3.

Finally, we propose to derive the equations of motion for the automobile model
of Fig. 1.32a with a vertical force added. This requires three free-body diagrams, one
for each mass, as shown in Fig. 1.35, and we note that gravitational forces were ignored
on the assumption that displacements are measured from equilibrium. To define the
displacements of mass mj,, we must choose a reference point. To this end, we recall
from Sec. 1.5 that the most indicated choice is the mass center, as the equations of motion
in terms of the mass center have a relatively simple form. Hence, we define x;, as the
vertical displacement of the mass center C. Moreover, it is reasonable to assume that
the angular displacement 6 is relatively small, so that sin @ ~ @. It follows that the front
and rear suspension systems undergo the elongations x, — afl — x r and xp + b6 — x,,
respectively. Then, referring to the free-body diagrams of Fig. 1.35 and using the first
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Free-body diagram for the system of Figure 1.32a

of Egs. (1.63) and Eq. (1.64), we obtain the system equations of motion
F—lksp(xp—al—xyp) — csr(Xp —aé—fc,f) —kgr (xp + b0 — x,)
— Csr (xb + b9 - xr) = mbjéb

Fe+ [ke (xp — ab — xp) + co (X — ab — % p)1a — ks, (xp + b0 — x7)

R . (1.129)
+ s (Xp + 00 —%,)1b =10 :
ksr(xp —a0——xf)-I—csf()'c;,—aé—)'cf)—kfxf =myiy
ke (x5 4 b8 — x,) + o Gip + 5O — %) — by Xy = m, 5y
which can be rewritten as follows: _
mpXp + (csf +csr)xp — (copa— csrb)é — CopXf — Corly
+ (kygp +kor)xp — (kspa — ks D)0 —kspxp — ke xr = F
I — (cspa —corb)ip + (csfa2 +c b6+ CspaX ¢ — Corbiy
(1.130)

— (kypa — ko b)xp + (kspa® + ko b0 + kypax f —kerbx, = Fe
mfjc'f - Csfxb +csfa9'+cxf5cf —ksfxb +ksfa9+ksfxf =0
My Xy — CorXp — Csrbé + CorXr — ksrXp — kor b0+ kgrxy =0

Equations (1.130) represent a set of four simultaneous second-order ordinary differential
equations in terms of the four unknowns x;, 8, x  and x,. Clearly, the automobile model
is considerably more involved than the washing machine model. |



48  CONCEPTS FROM VIBRATIONS

We observe that the behavior of the washing machine model, whether subjected
to inertial forces due to rotating eccentric masses or not, is fully described by a single
variable, where variables are commonly known as coordinates. On the other hand,
the behavior of the automobile model of Fig. 1.35 is described by four coordinates, as
indicated in the preceding paragraph. At this point, we define the number of degrees of
Sfreedom as the number of independent coordinates necessary to describe the motion of
a system fully. In view of this, the washing machine model represents a single-degree-
of-freedom system and the automobile model of Fig. 1.35 is a four-degree-of-freedom
system. Systems described by two or more variables are called multi-degree-of-freedom
systems. They are discussed in Ch. 7.

1.11 NATURE OF EXCITATIONS

The study of vibrations is concerned essentially with the question of how systems behave
in response to stimuli. To answer this question, it is necessary to solve the system
equations of motion, such as those derived in Sec. 1.10. The choice of methodology for
obtaining the solution and the solution itself depend on the type of excitation and on the
system characteristics. We examine the nature of the excitations in this section and of
the system characteristics in Sec. 1.12.

As indicated in Sec. 1.10, we distinguish between initial excitations and applied
forces, or moments. This distinction is not as airtight as it may seem, because initial
velocities are really caused by a special type of forces, namely, impulsive forces, as
we shall verify later in this text. As far as solving the differential equations of motion
is concerned, however, the distinction is important, as in the case of initial excitations
the equations are homogeneous and in the case of applied forces the equations are
nonhomogeneous.

Initial excitations consist of initial displacements and initial velocities and they
are generated by imparting potential energy and kinetic energy to a system, respectively.
The initial excitations set the system in a motion known as free vibration. 1f the system
is conservative, this motion persists ad infinitum, at least in theory. Whereas the total
energy remains constant, the balance between the potential energy and kinetic energy
fluctuates. On the other hand, if there is damping in the system, then energy is dissipated,
causing the total energy to go down continuously until it reaches zero, at which point the
motion stops. Of course, in practice all systems dissipate energy, even those assumed to
be conservative. The main difference is that conservative systems dissipate energy very
slowly. Still, all motions caused by initial excitations come to rest eventually. For this
reason, initial excitations are referred to at times as transient excitations.

In contrast with initial excitations, there is a large variety of applied forces. A
very important class of forces consists of harmonic excitations, which are simply forces
proportional to the trigonometric function sinwt, or to coswt, or to a combination of
the two. Examining Eq. (1.128), we conclude that the rotating eccentric mass exerts
a harmonic force upon the washing machine. This is but one of many examples of
harmonic forces occurring in real life, as we shall have the opportunity to see throughout
this text. To examine the nature of harmonic functions, we consider a combination of
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sinwt and coswt of the form
F(t) = Ajsinwt + Az coswt = Acos(wt — 1) (1.131)

where w is the frequency of the harmonic function; it has units of radians per second

(rad/s). Moreover,
A=,/A+ A3 (1.132)

is known as the amplitude and
A
2

¥ = tan (1.133)
as the phase angle. The function F(¢) can be interpreted geometrically as the vertical
projection of a vector A rotating with the angular velocity w, as shown in Fig. 1.36a.
The angle wt — 1) between A and the vertical axis increases linearly with time, so that
the vertical projection varies harmonically with time. The plot F'(¢) versus ¢ is displayed
in Fig. 1.36b, and we observe that the function repeats itself every time interval 7T,
where T has units of seconds (s) and is known as the period. Because cos(wr — 1)) =
cos[w(t +T) — 9], we conclude that the period is related to the frequency by

_271'

T (1.134)

w

Also from Fig. 1.36b, we conclude that there is a time interval +/w between F(0)
and the first peak, so that the phase angle is a measure of this interval. Whereas the
amplitude and frequency of the harmonic excitation function F'(¢) are important factors,
the phase angle of the excitation is largely irrelevant. Indeed, as we shall demonstrate in
Ch. 3, depending on the system damping, there is in general a phase angle between the
excitation and response, which is a characteristic of the response, and is not affected by
the phase angle 1) of the excitation. This implies that the location of the origin ¢ = 0 of
the time axis has no particular meaning. In fact, because the general shape of harmonic
functions, such as the cosine function of Eq. (1.131), is well defined, the only two pieces
of information necessary for the characterization of a given harmonic function are the

ol -y F(t).
lJ«<—— T ——>
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FIGURE 1.36 .
a. Rotating vector, b. Harmonic force as a function of time
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amplitude and frequency, with time playing a secondary tole only. Indeed, harmonic
excitations have the same characteristics for all times, —oc < ¢ < 00, for which reason
they are known as steady-state excitations. They are distinctly different from transient
excitations, such as initial displacements and velocities, for which the origin # = 0 of the
time axis defines the time when the response starts.

In deriving the response to harmonic excitations, it is convenient to work with a
different form than the trigonometric form given by Eq. (1.131), namely, the exponential
form. To this end, we consider the series

. 1 1 1 1
iwt __ : s 20 2 3, " 4 2 5
e _1+zwt+2!(lwt) +3!(lwt) +4!(1wt) +5!(lwt) +...
_1 1 s 1 4 . 1 5 1 5
= —E(wt) —|—4—!(wt) ...-l—l[wt——a(wt) +§(wt) —...]

=coswt+isinwt, i =+/—1 (1.135)

Equation (1.135) can be given a geometric interpretation similar to that of Fig. 1.36a. .
Indeed, as shown in Fig. 1.37, the exponential function ¢’“* can be represented in the
complex plane as a vector of unit magnitude and making an angle wt with respect to
the real axis. Clearly, the projection of the vector on the real axis is coswt and that on
the imaginary axes is i sinwt. As time increases, the vector rotates in the complex plane
with the angular velocity w, causing the two projections to vary harmonically with time.
From Eq. (1.135), we can write

Re ¢! = coswt, Im €' = sinwt (1.136)

where Re and Im denote the real part and imaginary part, respectively. Equations (1.136)
can be used to express either cosw? or sinw? in exponential form, as the case may be.
Hence, ignoring the excitation phase angle 1, we can replace the trigonometric form of
the harmonic force, Eq. (1.131), by the exponential form

F(t) =Re Ae'! (1.137)

The advantage of expressing a harmonic force in exponential form is that the response
is significantly simpler to obtain. Of course, the response will also have an exponential
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FIGURE 1.37
Unit vector rotating in the complex plane
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Periodic excitation

form, and hence it will be complex. Then, if the excitation is proportional to coswt,
‘we retain the real part of the response, and if the excitation is proportional to sinw?, we
retain the imaginary part of the response. The process may appear as an unnecessary
complication at this point, but its efficiency will be amply demonstrated in Ch. 3.

Harmonic excitations belong to a larger class of functions characterized by the fact
that the functions repeat themselves every time interval 7'. This is the class of periodic
functions, such as the function F(¢) of Fig. 1.38, in which T is the period. We observe
that, as with harmonic functions, in the case of periodic functions time plays only a sec-
ondary role. Hence, periodic excitations represent a more general class of steady-state
excitations. Whereas harmonic functions are periodic, periodic functions are not neces-
sarily harmonic. However, periodic functions can be expressed as linear combinations of
harmonic functions known as Fourier series (Appendix A). As with harmonic functions,
periodic functions can be expressed in terms of trigonometric functions or exponential
functions, referred to at times as the real form or the complex form of Fourier series,
respectively. The frequency of each harmonic function in a Fourier series is an integer
multiple of the lowest frequency, which is known as the fundamental frequency. A great
deal of information concerning the nature of a periodic function F(¢) is revealed by a
plot of the amplitude of each of the constituent harmonic functions in the Fourier series
as a function of the frequency, as it displays in one diagram the degree of participation
of each of these harmonic functions in F(¢), a diagram known as a frequency spectrum.
The frequency spectrum represents a frequency domain description of a periodic func-
tion. Hence, although Fig. 1.38 permits easy visualization of the periodic function F(¢)
as a function of time, a frequency domain description of F(¢) is more useful. Because
the plot of the frequency spectrum of a periodic function consists of mere points at the
individual frequencies, rather than being a continuous plot, this is a discrete frequency
spectrum. We study the response to periodic forces in Ch. 3.

The remaining types of excitations clearly belong in the class of nonperiodic
excitations, which includes a large variety of forces. Many of these forces represent
known functions of time, two of the most important ones being the impulse function and
the step function, and many other forces can be expressed as combinations of known
functions. In general, nonperiodic forces represent arbitrary excitations, such as the
force F(t) depicted in Fig. 1.39. Interestingly, even such completely arbitrary forces
can be represented as combinations of known functions, and in particular as combinations
of impulse forces of different amplitude and applied at different times. This is in contrast
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Nonperiodic excitation

with periodic forces, which can be represented by means of combinations of harmonic
functions. The representation in terms of impulse forces is very convenient in deriving
the response of systems to arbitrary excitations. This subject is discussed in great detail
in Ch. 4.

The three types of forces discussed above, namely, harmonic, periodic and nonpe-
riodic, have one thing in common, namely, their value is given in advance for any time
t. Such excitation forces are said to be deterministic. There are many excitation forces,
however, that do not lend themselves to such explicit time description. Examples of such
excitations are the forces exerted by an earthquake on a building, by a rough runway on a
taxiing aircraft, by a rocket engine on a structure, etc. The implication is that the value of
the force at some future time cannot be predicted. The reason for this is that there are too
many factors affecting the force. Of course, it may be possible to measure these forces as
functions of time, but records from different dates may differ from one another. Forces,
of this type are classified as nondeterministic, and are commonly referred to as random.
A typical random excitation is displayed in Fig. 1.40. Clearly, a description of random

F(1)

FIGURE 1.40
Random excitation
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forces as functions of time is not particularly meaningful. Many random phenomena,
but not all, exhibit a certain pattern known as statistical regularity, which permits their
description in terms of certain averages, such as the mean value and the mean square
value. Tn evaluating the response to random excitations, it turns out that a frequency
domain description is more useful than a time domain description. This amounts to de-
composing the random function F(¢) of Fig. 1.40 into harmonic components. Because
F(¢) is nonperiodic, a plot showing the contribution from each harmonic component
will have an entry at every frequency, resulting in a continuous frequency spectrum.
The subject of random vibrations is presented in Ch. 12, in which these concepts are
discussed in detail.

1.12 SYSTEM AND RESPONSE CHARACTERISTICS.
THE SUPERPOSITION PRINCIPLE

As indicated in Sec. 1.10, the manner in which a system responds to excitations depends
on the nature of the excitations and on the system characteristics. In Sec. 1.11, we
examined various types of excitations, and in this section we wish to investigate how
the system characteristics affect the response of the system. To this end, we consider
the symbolic block diagram of Fig. 1.41, in which the system is represented by a “black
box” containing the system characteristics. The meaning of the block diagram is that a
system subjected to an excitation F(z) exhibits a certain response x (7).

A system is broadly defined as an aggregation of components working together
as a single unit. The system characteristics are determined not only by the excitation-
response relations of the individual components but also by the manner in which these
components are connected to one another within the framework of the system. The
characteristics of a whole system are determined naturally in the process of deriving the
system equations of motion, as can be concluded from the developments in Sec. 1.10.

One of the most fundamental questions in vibrations is whether a system s linear or
nonlinear, as the answer has profound implications as far as the solution of the equations
of motion is concerned. To answer this question, we assume that a given system, when
acted upon by two distinct forces F (¢) and F»(?), exhibits the responses x1 (¢) and x2(¢),
respectively. Then, if we subject the system to a force of the form

F@t)y=ciFit)+ k() (1.138)

where ¢ and ¢ are constants, and the response to F (t)is

x(1) = c1x1(t) + cax2(2) (1.139)
Excitation Response
F(1) - System xt)
characteristics .
FIGURE 141

Symbolic'block diagram relating the excitation and the response
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the system is linear. This situation is depicted in Fig. 1.42. On the other hand, if
x(t) # c1x1(2) + c2x2(1) (1.140)

the system is nonlinear. Equations (1.138) and (1.139) can be extended to the case in
which F(¢) and x () are the sum of any number of excitations and responses, respectively.
The equations represent the principle of superposition and can be stated as follows: if
a linear system is acted upon by a linear combination of individual excitations, the
individual responses can be first obtained separately and then combined linearly to
obtain the total response.

As an illustration, we consider a system described by the differential equation

d*x  dx
and denote the response to Fy by x; and the response to F» by x;, so that
d? d
mF)gl +c§ +kx1 = F
) (1.142)
d X2 dx2
mﬁ +CZ +kxy = F,

Then, we assume an excitation in the form of Eq. (1.138), multiply the first of Egs.
(1.142) by ¢ and the second by ¢,, add up the results and write

d? d d? d
1 <m—dth1 —f—ci —|—kx1> +c2 (m—ﬂ +c£ -i—kxz)

dt dr? dt
2 d
=m—s(c1x1+cax2) + c—(c1x1 + c2x2) +k(c1x1 + cax2)
dt dt
=4k =F (1.143)

Comparing Eqs. (1.141) and (1.143), we conclude that Eq. (1.139) holds, so that the
system is linear.

Fy(t x)(t
1(%) > Linear system 1( )>
Fyt) , x(t)
' Linear system —-
F(1) = c1F1(1) + coF () x(1) = cixi(1) + coxoft)
> Linear system -
FIGURE 1.42

Excitation-response relation for linear systems
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Next, we consider the system described by

d’x dx 3
mW+CE+k(x+6x y=F (1.144)
Following the same process, we write
2
m% +c% +k(x1 —f—exf) ="
(1.145)
d2X2 dXQ 3
mﬁ —|—c—d—t— +k(r+exy)=I
multiply the first of Eqs. (1.145) by ¢; and the second by ¢; and obtain

d? d : a2 d
c1 limg}xz—l +c% +k(x; —|—exf):| +c2 [m—d—txz—z +c% +k(x —I—ex;)}
2 d
= m;ﬁi(clxl +oox2) + CE (c1x1 4+ cax2) +k(c1x1 +cax2) +ke(c1xf +czx§)
=ciFi+afR=F (1.146)
But, because
1%} +eax3 # (e1x1 +c2x2)° (1.147)

we conclude that Eq. (1.139) does not hold, so that the system described by Eq. (1.144)
is nonlinear. This can be explained by the fact that Eq. (1.144) represents the equation
of motion of a single-degree-of-freedom system with a nonlinear spring. For € > 0 itis
a stiffening spring, and for € < 0 it is a softening spring.

Comparing Egs. (1.141) and (1.144), we see that the only difference between the
two lies in the cubic term in x in Eq. (1.144). Hence, we can draw the conclusion that a
system is linear if the dependent variable x (t) and all its time derivatives appear in the
equation of motion to the first power or zero power only, Where zero power implies that
the corresponding term is constant. Based on this statement, it is possible for the most part
to ascertain whether a system is linear or nonlinear by merely inspecting the differential
equation, and tests such as the preceding ones are not really necessary. Although we
reached this conclusion on the basis of a single-degree-of-freedom system, a similar
conclusion can be reached for multi-degree-of-freedom systems and for distributed-
parameter systems. Indeed, it is sufficient for a single dependent variable or one of its
derivatives to be nonlinear for the whole system to be nonlinear.

The distinction between linear and nonlinear systems is not as sharp as it may seern,
and the same system can be regarded as linear over a certain range and as nonlinear over
another. To illustrate the idea, we consider Eq. (1.144) and assume that € is a small
quantity. Then, in the range in which ex3 << x the system can be regarded as linear. On
the other hand, if x reaches amplitudes such that ex3 is of the same order of magnitude
as x, the system must be treated as nonlinear. Clearly, there is a point beyond which the
system becomes nonlinear. This point bounds the linear range, as shown in Fig. 1.12b,
and quite often the point is not well defined; it depends to a large extent on the desired
accuracy. Nonlinear systems are discussed in Ch. 11.
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Before we discuss response characteristics, it is necessary to introduce an addi-
tional concept. To this end, we refer to the block diagram of Fig. 1.43 and consider
such excitations F(¢) that, if F(¢) is delayed by an amount of time T, the response x (¢)
is delayed by the same amount 7. This condition is automatically satisfied by linear
systems for which the coefficients multiplying the dependent variable x(¢) and its time
derivatives do not depend explicitly on time. Such systems are known as linear time-
invariant systems, or more commonly as linear systems with constant coefficients. An
example of a time-invariant system is that given by Eq. (1.141), in which the constant
coefficients are the system parameters m, ¢ and k. On the other hand, in the case in
which the system is described by the differential equation

mi (1) +k(14+acoswt)x(t) = F (1) (1.148)

the excitation-response relation is not as depicted by the block diagram of Fig. 1.43.
The reason for this is that Eq. (1.148) represents a time-varying system, or a system with
time-dependent coefficients. The treatment of time-varying systems is significantly more
difficult than that of time-invariant systems. The subject is discussed in Ch. 11. Unless
otherwise stated, we can assume that we are dealing with linear systems with constant
coefficients.

* The response to initial excitations is the simplest problem in vibrations. It amounts
to letting F (¢) = 0 in the differential equation of motion and assuming that the solution
x(z) of the resulting homogeneous equation has exponential form, which leads to a
characteristic equation for the exponents. Then, the coefficients of the exponential terms
are determined by letting x(¢) and x () evaluated at ¢ = 0 match the initial displacement
and velocity, respectively. We discuss this subject in Ch. 2.

The response to harmonic excitations is also harmonic and has the same frequency
as the excitation frequency, but it differs in magnitude and possesses a phase angle relative
to the excitation, both magnitude and phase angle depending on the driving frequency
w. The response to harmonic excitations is a steady-state response and, as in the case
of the excitation, it is best treated in the frequency domain. Plots of the magnitude and
phase angle versus w are known as frequency response plots, and provide a great deal of
information concerning the nature of the system response, much more than time domain
plots. The response to harmonic forces is presented in Ch. 3.

The power of the superposition principle becomes evident in the response to peri-
odic excitations. From Sec. 1.11, we recall that periodic excitations can be represented by
Fourier series, i.e., series of harmonic functions. The response to each of these harmonic
excitations is also harmonic, as indicated in the preceding paragraph. Then, invoking
the superposition principle, the response to periodic excitations can be expressed in the

F(t-1) x(t—71) -

»| Linear time-invariant system >

FIGURE 143
Excitation-response relation for linear time-invariant systems



VIBRATION ABOUT EQUILIBRIUM POINTS 57

form of a series of these harmonic responses. Hence, the response to periodic excitations
is a steady-state response as well. The response to periodic excitations is also discussed
in Ch. 3.

As pointed out in Sec. 1.11, an arbitrary excitation can be regarded as a superpo-
sition of impulse forces of different magnitude and applied at different times. But, the
response to a unit impulse applied at ¢ = 0 defines the impulse response and it represents
a characteristic of the system. Indeed, it is a function of time reflecting the system in-
ertia, damping and stiffness properties. Assuming that the impulse response is known,
the response of a linear system with constant coefficients can be expressed as a superpo-
sition of impulse responses of different magnitudes and applied at different times. This
superposition is called the convolution integral, or the superposition integral. A more
detailed discussion of the convolution integral and of practical ways of evaluating it on
a digital computer is presented in Ch. 4.

The principle of superposition lies at the basis of linear analysis and is largely
responsible for the theory of vibrations of linear systems being so well developed. Indeed,
the consequences of the principle are so pervasive that many of them are taken for
granted. A prime example is the fact that the solution of the equations of motion to
initial excitations, or the homogencous solution, and the solution to applied forces, or
the nonhomogeneous solution, can be obtained separately and then combined linearly
to obtain the complete solution. This fact applies to linear systems alone. At this
point, a word of caution is in order. Whereas the superposition of solutions is valid for
linear systems without restrictions, there are cases in which the rationale for superposing
solutions must be questioned. In this regard, we recall that initial displacements and
velocities are transient excitations, with the response to such excitations best described in
the time domain beginning at = 0. On the other hand, constant, harmonic and periodic
forces are steady-state excitations, the latter two more meaningfully described in the
frequency domain. But, responses to steady-state harmonic and periodic excitations are
also steady state, so that they too are better described in the frequency domain than in the
time domain. Hence, although the principle of superposition permits it, from a physical
point of view it is difficult to justify the addition of the response to initial excitations to
a steady-state response. ,

There remains the question of the response to random excitations. To answer this
question, it is necessary to introduce a whole variety of new concepts concerning the
nature of random functions, such as the mean value, mean square value, autocorrelation
function, power spectral density function, etc. Clearly, if the excitation is a random func-
tion, so is the response. To obtain the various quantities just mentioned for the response,
it is convenient to use Fourier transforms, which implies working in the frequency do-
main rather than the time domain. Still, the results are defined neither in the frequency
domain nor in the time domain but in terms of probability distributions. The entire Ch.
12 is devoted to the response of linear systems to random excitations.

1.13 VIBRATION ABOUT EQUILIBRIUM POINTS

In Sec. 1.10, we introduced the concepts of equilibrium and displacements from equi-
librium and used them to simplify the equations of motion. These concepts have signif-
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>

m — F(3y)

FIGURE 1.44
Mass subjected to nonlinear force

icantly wider implications than it may appear. In this section, we propose to examine
these implications, before we proceed with the actual solution of the equations of motion
in the following chapters. ‘

We consider the single-degree-of-freedom system shown in Fi g. 1.44 and described
by the generic differential equation of motion

my = F(y,y) (1.149)

where m is the mass and F(y, ¥) is in general a nonlinear function of the displacement y
and velocity y. We assume that general solutions of Eq. (1.149) are not possible, and our
interest lies in special solutions capable of shedding some light on the system behavior.
To this end, we assume that Eq. (1.149) admits the special constant solutions

y =Y. = constant, y = ¥ =0 (1.150)

Because the velocity and acceleration are zero, the constant solutions defined by Eqgs.
(1.150) represent equilibrium points, not unlike the static equilibrium of Sec. 1.10; they
can be obtained by inserting Eqs. (1.150) into Eq. (1.149) and solving the equilibrium
equation

F(y.,0) =0 (1.151)

Equation (1.151) represents an algebraic equation in y,. If F(y,,0) is a polynomial,
there are as many solutions as the degree of the polynomial, and if F (¥e, 0) is linear,
then there is just one solution. On the other hand, if F (., 0) is a transcendental function,
then mathematically there could be an infinite number of solutions. Physically, however,
there is only a finite number of equilibrium points, as many of these solutions represent
the same point, as shown in Example 1.9. If y, = 0 is a solution of Eq. (1.151), then the
corresponding equilibrium point is said to be trivial.

A problem of considerable importance in vibrations is how the system behaves
when disturbed from equilibrium, and in particular whether the subsequent motion re-
mains confined to the neighborhood of the equilibrium point or not. This is the same
as asking whether the equilibrium point is stable or not. The subject is discussed in a
rigorous manner in Ch. 11. At this point, we are content with some simple definitions,
as follows:

1. If a system disturbed from an equlibrium point returns to the same equilibrium point,
then the motion (or the equilibrium point) is said to be asymptotically stable.
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2. If a system disturbed from an equlibrium point oscillates about the same equilibrium
point without exhibiting any secular trend, i.., the system neither returns to the equi-
librium point nor moves away from it with time, then the motion (or the equilibrium
point) is merely stable.

3. If a system disturbed from an equlibrium point moves away from it with time, then
the motion (or the equilibrium point) is unstable.

To lend the discussion some quantitative substance, we let the solution of Eq.
(1.149) have the form

Y&y =ye+x(t) (1.152)

where x (¢) is a relatively small displacement from equilibrium. In view of Egs. (1.150),
it follows that

y(@) =x(@), §(t) =% (1.153)

Next, we expand F(y, ) in a Taylor series about an equilibrium point y., consider Eq.
(1.152) and the first of Egs. (1.153) and write

. IF(y,y) AF(y,y) . 2

F(y,y) =F(v.,,0) + ——— — 1.154
(3,9)=F(e,0)+ 3y y=y. ¥t 5y yzyeerO(x) ( )

=0 7 =0

in which O (xz) denotes terms of second order and higher in x and %, i.e., nonlinear terms.

Then, inserting the second of Egs. (1.153) and Eq. (1.154) into Eq. (1.149), considering

Eq. (1.151), introducing the notation

19F(y,)
m 3y

13F(y,>y
=y, LMD (1.155)
y=>DXe m 0y Y=Y

y=0 =0

and assuming that displacements from equilibrium are sufficiently small that the nonlin-
ear terms can be ignored, we obtain

$i4ai+bx=0 : (1.156)

Equation (1.156) represents the linearized equation of motion about equlibrium, and
the assumption permitting linearization of Eq. (1.149) is called the small motions as-
sumption. We propose to use Eq. (1.156) to investigate the motion characteristics in the
neighborhood of equilibrium. Of course, these characteristics depend on the parameters
a and b, which differ from one equilibrium point to another.

Equation (1.156) is linear with constant coefficients, so that its solution has the
exponential form

x(t) = Ae*’ (1.157)

where A is an inconsequential amplitude and s is a constant exponent. Clearly, the
behavior of the system in the neighborhood of equilibrium is dictated by the values
of 5. Note that, because Eq. (1.156) is of second order, there are two such values. To
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obtain these values, we introduce Eq. (1.157) into Eq. (1.156), divide through by Ae**
and conclude that the exponent s must satisfy the algebraic equation

s?+as+b=0 (1.158)

which is known as the characteristic equation. The roots of Eq. (1.158) are

51 a (a 2
=——d, =) =b 1.159
 on T2 2) (1.159)
so that the solution of Eq. (1.156) is
x(t) = A1’ 4 Aze™ (1.160)

and we note that s; and s, are in general complex. The nature of the motion in the
neighborhood of an equlibrium point can be investigated by considering the s-plane of
Fig. 1.45, a complex plane containing s; and s,. To this end, we observe that the roots s;
and s; of the characteristic equation can be real, pure imaginary, or complex. Because
x(t) must be real, if 5; and s, are either pure imaginary or complex, then they are the
complex conjugates of one another, and so are Ay and Aj. From Eq. (1.160), we see that
when s1 and s, are both real and negative the solution approaches zero asymptotically. If
the roots 51 and 5, are complex, the magnitude of the solution is controlled by the real part
of the roots. Indeed, an exponential function with complex exponent can be expressed
as the product of two factors, one corresponding to the real part of the exponent and the
other corresponding to the imaginary part. The factor corresponding to the real part plays
the role of a time-dependent amplitude and the factor corresponding to the imaginary
part varies harmonicaily with time, as can be concluded from Eq. (1.135). Hence, if
s1 and 55 are complex conjugates with negative real part, the solution approaches zero
in an oscillatory fashion as t — oco. It follows that in all cases in which s1 and s,
are both real and negative or complex conjugates with negative real part the motion

Stable iIms

\N74

Asymptoticallzf / / / / Re s

W
N/

FIGURE 1.45
Stability statements in the complex s-plane
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Stability statements in the parameier plane

in the neighborhood of an equilibrium point is asymptotically stable. This situation
corresponds to the cases in which both 51 and s, lie in the left half of the s-plane of Fig.
1.45. When s, and s, are pure imaginary complex conjugates, the solution is harmonic,
so that the system neither tends to the equilibrium point nor does it move away from
it as r — o0o. Hence, in all cases in which s\ and s, are pure imaginary the motion is
merely stable. These cases are represented by the imaginary axis in Fig. 1.45. Finally,
if either 51 or s is real and positive, or both s| and s, ave real and positive, or s1 and s,
are complex conjugates with positive real part, the solution diverges, so that the motion
is unstable. This situation corresponds to the cases in which at least one of the roots of
the characteristic equation lies in the positive half of the s-plane, as shown in Fig. 1.45.

The above stability statements can be rendered more explicit by using Eq. (1.159)
to tie them directly to the system parameters a and b. The whole range of stability
possibilities and of the corresponding types of motion are displayed in the parameter
plane a versus b of Fig. 1.46. The following review of the information contained in Fig.
1.46 should prove rewarding:

1. Asymptotically stable motion. This region covers the first quadrant of the parameter
plane, a > 0, b > 0. The parabola a? = 4b separates the region into two subregions.
In the subregion above the parabola, a? > 4b and the roots s1 and s, are real and
negative, so that the motion decays aperiodically. A typical plotis shown in Fig. 1.47.
In the subregion below the parabola, a? < 4b and the roots s and s> are complex
conjugates with negative real part. As explained above, the motion in this case is
a decaying oscillation, as depicted in Fig. 1.48. The parabola a® = 4b represents a
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x(t)

0

FIGURE 1.47
Aperiodically decaying motion

FIGURE 1.48
Decaying oscillation

borderline case corresponding to the repeated root s; = 52 = a/2; the motion in this
case also decays aperiodically.

»

Stable motion. This region is simply the line @ = 0, b > 0. In this case the roots s1
and s, are pure imaginary complex conjugates, so that the motion is pure harmonic
oscillation, as shown in Fig. 1.49. Note that this harmonic motion is different from
the steady-state harmonic response of the type encountered in Sec. 1.12.

3. Unstable motion. This region covers the remaining three quadrants, b < 0 and a < 0,
b > 0. In the region between the parabola a? = 4b and the positive b-axis, the roots
s1 and 5, are complex conjugates with positive real part, so that the motion represents
divergent oscillation. A typical plot is shown in Fig. 1.50. In the region below the
parabola a® = 4b in the fourth quadrant and in the second and third quadrants, both
roots are real with at least one root being positive, so that the motion diverges aperi-
odically, as depicted in Fig. 1.51. The statements concerning the motions displayed
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x(1)

FIGURE 1.49
Pure harmonic oscillation

x(1) e

FIGURE 1.50
Diverging oscillation

x(1)

0

FIGURE 1.51
Aperiodically diverging motion
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in Figs. 1.50 and 1.51 must be tempered by the realization that the plots represent
only trends. Indeed, at some point x(¢) violates the small motions assumption, So .
that the plots become meaningless.

The study of vibrations is concerned mainly with the cases in which the motion is
asymptotically stable or merely stable.

Example 1.8. Consider the washing machine described by Eq. (1.123), rewrite the equation
in the form of Eq. (1.149), determine the equilibrium position and investigate the nature of
the motion about the equilibrium.

Equation (1.123) can be rewritten in the form

My =—cy—ky—Mg (a)
so that, comparing Eq. (a) to Eq. (1.149), we conclude that m = M and
F(y,y)=—cy~ky—Mg ()

Hence, in this particular case F(y, y) is linear and no Taylor series expansion is necessary.
Consistent with this, the equilibrium equation is

F(ye,0) = —kye—Mg =0 ©
from which we obtain the sole equilibrium point

__Mg
Ve = %

which corroborates the statement made earlier in this section that linear systems admit a
single equilibrium position. Note that, except for the sign, this is the same result as that
obtained in Sec. 1.10.

Next, we consider the transformation

(@

M
() =ye+x(t>=—7g +x(0) ©

and observe that the right side of Eq. (e) is identical to Eq. (1.125) with &, as given by
Eq. (1.124). Hence, the difference in sign mentioned above can be traced to the fact that
the equilibrium position implied here is opposite in direction to that assumed in Sec. 1.10.
Introducing Eq. (e) into Eq. (a) and rearranging, we obtain

k
56+%)'6+sz0 (f)

which is the same as Eq. (1.156), provided that

a=—,b=— @

Because both @ and b are positive, we conclude from Fig. 1.46 that the motion about
equlhbnum is asymprotically stable. If ¢* > 4k M, the motion decays aperlodlcally, and
if ¢2 < 4kM the motion represents oscillatory decay. In the borderline case ¢ = 4kM
the motion also decays aperiodically. As we shall see in Ch. 2, the three cases represent
overdamping, underdamping and critical damping, respectively.
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Example 1.9. From Example 1.1, the equation of motion of a simple pendulum is
. g .
0+ =sinf=0
+ 2 sin (a)

Determine the equilibrium points and investigate the nature of the motion in the neighbor-
hood of equilibrium.
Comparing Eq. (a) to Eq. (1.149), we conclude that m =1, y = 6 and

F(y,)')):F(@,é):F(G,O):—%sinH ()
so that the function does not depend on 6. The equilibrium equation is simply
F(6,,0) =—%sin06 =0 ©
which has the solutions
6, =0,+xm, £27, ... (@

Hence, mathematically there is an infinite number of solutions. Physically, however, many
of these solutions represent the same equilibrium points, and in fact there are only two
equilibrium positions

0.1 =0, 0pp=m (€
Of course, the first one is recognized as the trivial one, in which the pendulum is at rest
hanging down. In the second equilibrium point, the pendulum is at rest in the upright

position.
Introducing the transformation

0(t) = 0.+ ¢(t) )
in Eq. (a), we can write the linearized equation, Eq. (1.149), in the form
$+bp=0 : ' ®
so that @ = 0. Moreover, from the first of Egs. (1.155),
aF(6,0) g
p=_"100) =& o0 h
30 oo L cosf, (b)

Hence, in the case of the trivial equilibrium, 8,1 = 0, we have
8 .
b==>0 :
7> @

From Fig. 1.46, we conclude that the parameters lie on the positive b-axis, so that motion
in the neighborhood of the trivial equilibrium is stable. On the other hand, for 8,2 = 7 we
obtain ) .
b=-2<0 )
L
so that, from Fig. 1.46, we conclude that the parameters lie on the negative b-axis, so that
motion in the neighborhood of the upright equilibrium position is unstable.

The above results conform to expectations. Any small disturbance from the equilib-
rium position in which the pendulum hangs down results in oscillation about the equilibrium.
On the other hand, any small disturbance of the pendulum from the upright equilibrium posi-
tion causes the pendulum to move away from equilibrium, soon violating the small motions
assumption. The case in which the pendulum oscillates about 0.1 = 0 is by far the most
important one, which explains why the equilibrium position fe = 7 is seldom mentioned
in vibrations.
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1.14 SUMMARY

The study of vibrations is concerned with the motion of a variety of systems, ranging
from the oscillation of a simple pendulum to the vibration of a complex structure. These
systems have one thing in common, namely, they all involve restoring forces. In the case
of a simple pendulum the restoring force is due to gravity, and in the case of a structure
the restoring forces are due to elasticity.

The motion of vibrating systems is governed by laws of mechanics, and in particu-
lar by Newton’s second law in one form or another. Although such material is generaily
taught in a sophomore course on dynamics, the equations of motion are of such impor-
‘tance in vibrations that the ability to derive them cannot be taken for granted. Hence, the
inclusion of material on the derivation of the equations of motion for vibrating systems
is highly desirable, and has the added advantage of making this text self-contained.

For the most part, particularly in applications from aerospace, civil and mechanical
engineering, vibration is undesirable and is to be avoided, or at least reduced. This can
be done through proper design, or by means of controls. To this end, it is necessary
to be able to predict how the system responds to various stimuli. When the system is
complex, this response must be predicted on the basis of a simplified model acting as a
surrogate for the actual system. Such a model must be sufficiently accurate to retain the
essential dynamic characteristics of the actual system and yet sufficiently simple to lend
itself to reasonable mathematical description. The main factors affecting the behavior of
vibrating systems are the mass and stiffness properties, as well as the damping properties.
Implicit is the manner in which these quantities are distributed throughout the system. In
general, a model can be regarded as an aggregation of individual components. Modeling
amounts to identifying the individual components and their inertia, stiffness and damping
properties, as well as how the individual components are connected to one another so
as to act together as a whole system. It should be said that modeling is more of an art
than an exact science, as there are no particular guidelines to rely on. In fact, a model is
not unique for a system, and the same system can be modeled in various ways so as to
reflect different objectives.

The equations describing the vibration of lumped models are in general ordinary
differential equations. In deriving the equations by some suitable form of Newton’s
second law, it is necessary to draw one free-body diagram for each mass in the system,
i.e., a diagram of a given mass isolated from all other masses in the system and showing
all forces acting upon the mass, which includes both externally applied forces and internal
forces. Note that, in cutting through internal forces in the process of isolating the mass,
these internal forces are to be treated as external. The number of ordinary differential
equations for a system generally coincides with the number of degrees of freedom of
the system, where the latter represents the minimum number of coordinates required to
describe the motion of the system fully. On occasion, when internal forces are carried
as unknowns, the number of equations exceeds the number of degrees of freedom by the
number of unknown forces.

To derive the system response, it is necessary to solve the differential equations of
motion. The nature of the response depends on the excitations and on the system charac-
teristics. The excitations represent external factors and consist of initial displacements
and velocities and applied forces and/or moments. For linear systems, it is possible to
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invoke the principle of superposition and determine the response to initial excitations
and the response to applied forces separately and combine them linearly to obtain the
system total response. In the absence of applied forces, the response to initial excitations
can be expressed in exponential form, where the exponents are in general complex, with
the real part defining the amplitude of the response and the imaginary part defining the
frequency. The type of applied forces determines not only the nature of the response but
also the choice of method by which the response is to be obtained. The simplest type
consists of harmonic forces, in which the response is also harmonic and having the same
frequency as the excitation. They are referred to as steady-state excitation and steady-
state response, respectively. Periodic forces can be expanded in Fourier series, which
are series of harmonic functions with frequencies that are integer multiples of the lowest
frequency, where the latter is known as the fundamental frequency. Then, by virtue of
the superposition principle, the individual responses to these harmonic components can
be combined linearly to obtain the response to the periodic force. In a somewhat similar
approach, a nonperiodic force can be regarded as a linear combination of impulses and,
invoking the superposition principle, the response can be obtained in the form of a linear
combination of impulse responses, where the combination becomes in the limit the con-
volution integral. Clearly, linearity is a system property of crucial importance, because
the superposition principle applies only to linear systems, which makes solutions for
nonlinear systems much more difficult to obtain than solutions for linear systems.

On occasion, particularly in preliminary design, explicit expressions for the system
response are not really necessary, and a statement concerning system stability suffices.
This is particularly true if the system is nonlinear. To produce such qualitative state-
ments, it is necessary to identify special solutions of the equations of motion; they are
constant solutions known as equilibrium points. Then, assuming small motions in the
neighborhood of a given equilibrium point, the equations of motion can be linearized
about that equilibrium point, and a stability statement can be based for the most part on
the eigenvalues of the linearized system. Cases in which the analysis based on linearized
equations is not valid are discussed in Ch. 11.

PROBLEMS

1.1. Two masses sliding on smooth inclined planes are each connected to a massless pulley (Fig.
1.52). The two pulleys are rigidly attached to one another and the diameter of one is twice the
diameter of the other. Use Newton’s second law to derive an expression for the acceleration
of mass mo. ' :

FIGURE 1.52
Masses sliding on inclined planes
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1.2. Abead of mass m is free to slide along a smooth circular hoop rotating about a vertical axis with
the constant angular velocity §2 (Fig. 1.53). Use Newton’s second law to derive the equation
of motion for the angle & working with the transverse component of force and acceleration.
Hint: the rotation of the hoop gives rise to a centripetal acceleration perpendicular to the
vertical axis, in addition to the transverse component of acceleration Rd. Note that the radial
component —R§? does not enter the picture.

FIGURE 1.53
Bead sliding along a rotating
hoop

1.3. A simple pendulum of mass m = 5 kg and length L = 2 m is released from rest in a position
defined by the angle 8y = 60° with respect to the vertical. Assuming that the string is
inextensible, determine the tension in the string in the positions 61 = 30° and €5 = 0.

1.4. A compound pendulum in the form of a uniform bar hinged at point O is hanging at rest
when struck at a point a distance % from O by a horizontal force F, as shown in Fig. 1.54.
Determine /2 so that the horizontal reaction at O is zero. Note that such a point is called the
center of percussion.

FIGURE 1.54
Compound pendulum struck by a
force
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1.5. A uniform rectangular door hangs at an angle o with respect to the vertical (Fig. 1.55).
Assume that the door is displaced initially with respect to the vertical plane and then allowed
to oscillate. Derive the equation for the oscillatory motion 6(¢) of the door by Newton’s
second law; the angle # can be arbitrarily large.

FIGURE 1.55
Oscillating door

1.6. Use Newton’s second law to derive the equation of motion for a compound pendulum con-
sisting of a uniform rod of total length L and mass per unit length m and a disk of radius R
and total mass M, as shown in Fig. 1.56.

FIGURE 1.56
Compound pendulum



70 CONCEPTS FROM VIBRATIONS

1.7. A uniform bar of mass m and length +/2R slides inside a smooth circular surface of radius R
(Fig. 1.57). Use Newton’s second law to derive the equation of motion for arbitrarily large
angles 6 and determine the forces exerted by the surface on the bar.

FIGURE 1.57
Bar sliding inside a smooth circular surface

1.8. A disk of mass m and radius r rolls without slip inside a rough circular surface of radius R, as
shown in Fig. 1.58. Derive the differential equation for the angular motion ¢ by writing two
equations of motion, one for the translation of C and one for the rotation of the disk about C s
and then eliminating the force at the point of contact A. The angle ¢ can be arbitrarily large.

FIGURE 1.58
Disk rolling without slip

1.9. A double pendulum consists of two bobs of mass m| and i, suspended by inextensible,
massless strings of length L1 and Ly (Fig. 1.59). Use Newton’s second law to derive four
equations of motion for the rectangular coordinates x1, ¥1,x2 and y5. Then, express x1, y1, x2
and y in terms of the angles §; and 6>, eliminate the tensions 77 and 15 in the strings and
obtain two equations of motion for 8; and 6.
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FIGURE 1.59
Double penduium

1.10. Solve Problem 1.9 by defining the motion directly in terms of the angular displacements 6
and 6.

1.11. The system depicted in Fig. 1.60 consists of two uniform rigid links of mass m; and m and
length L; and L. Use Eq. (1.58) for link 1 and Egs. (1.63) and (1.64) for link 2 to obtain
four equations of motion. Then, eliminate the constraint forces between the links and derive
two equations of motion in terms of #1 and 6.

0,

FIGURE 1.60
Two-link system

1.12. Determine the equivalent spring constant for the system of Fig. 1.61.

l_»x

FIGURE 1.61
System with springs in paralle]l and in series
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1.13. Derive the equivalent spring constant for the system of Fig. 1.62.

AMA
VWi

ko

E

le———— (4 —»I
FIGURE 1.62

System supported by springs through a
rigid link

1.14. The system shown in Fig. 1.63 consists of two gears A and B mounted on uniform circular
shafts of equal stiffness GJ/L; the gears arc capable of rolling on each other without slip.
Derive an expression for the equivalent spring constant of the system for the radii ratio
Ro/Rp=n.

FIGURE 1.63
Two gears rolling on one another



1.15.

1.16.

1.17.

1.18.

1.19.

1.20.
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The circular shaft of Fig. 1.64 has the torsional stiffness GJ(x) = GJ[1— %(x /L)?]. Obtain
the equivalent spring constant corresponding to a torque at x = L.

FIGURE 1.64
Nonuniform shaft acting as a torsional spring

Consider a uniform cantilever beam of bending stiffness E and obtain the equivalent spring
constant corresponding to a bending moment applied at the free end x = L. .
A cantilever beam in bending is made of two uniform sections, as shown in Fig. 1.65. Obtain
the equivalent spring constant corresponding to a vertical force applied at the free end x = L.

m
N r T ©/

i EIl E12
| L | L |
2 2

- FIGURE 1.65
Nonuniform beam acting as a spring

Verify the expression in Table 1.2 for the equivalent spring constant for a uniform pinned-
pinned beam with an overhang and a force at the tip.

Verify the expression in Table 1.2 for the equivalent spring constant for a uniform clamped-
pinned beam with an overhang and a force at the tip. Hint: Regard the problem as a combi-
nation of two problems, one of a cantilever beam with the load at the tip x = L + ¢ and the
other of a cantilever beam loaded with the pin reaction at x = L. Then, determine the pin
reaction and subsequently the spring constant by setting the displacement at x = L equal to
ZEr0.

The two gears of the system of Fig. 1.63 have mass polar moments of inertia I, and Ig. Derive
an expression for the equivalent mass polar moment of inertia for the radii ratio R4 /Rp =n.
Hints: (1) The reaction forces on the gears at the point of contact are equal in magnitude and
opposite in direction, (2) the angular acceleration of gear B is n times the angular acceleration
of gear A and (3) write one torque equation for each of the gears separately with the shafts
absent.
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1.21. Devise a model for the windmill of Fig. 1.66.

FIGURE 1.66
Windmill

1.22. Devise a model for the automobile antenna of Fig. 1.67.

FIGURE 1.67
Automobile antenna



PROBLEMS 75

1.23. Devise two different models for the boat shaft and propeller of Fig. 1.68.

ollow stepped
propeller shaft

FIGURE 1.68
Boat shaft and propeller

1.24. Devise a model for the radar antenna tower of Fig. 1.69.

FIGURE 1.69
Radar antenna tower
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1.25. Devise a model for the construction crane of Fig. 1.70.

Steel cable

FIGURE 1.70
Construction crane

1.26. Devise alumped model for the n-story building subjected to a horizontal earthquake excitation
(Fig. 1.71).

Concrete slab

columns

— aft)
FIGURE 1.71
n-story building subjected to earthquake excitation
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1.27. Devise a model for a motorcycle and rider (Fig. 1.72).

FIGURE 1.72
Motorcycle and rider

1.28. Derive the differential equation of motion for the system of Fig. 1.62 and verify the expression
for the equivalent spring constant derived in Problem 1.13. Hint: Write an equation for the
rotation 6 about O and an equation for thé translation x of mass m and then eliminate 6 to
obtain a single equation.

1.29. A mass m is suspended on a massless beam of uniform bending stiffness £1, as shown in
Fig. 1.73. Derive the differential equation of motion for the system.

o~
2~

FIGURE 1.73
Mass suspended on a massless beam through a spring
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1.30. A mass m is connected to a spring of stiffness k through a string wrapping around a rigid
pulley of radius R and mass moment of inertia / (Fig. 1.74). Derive the equation of motion
for the system.

FIGURE 1.74
Mass connected to a
spring through a
pulley

1.31. An L-shaped massless rigid member with a mass m at the tip and supported by a spring of
stiffness & is hinged at point O, as shown in Fig. 1.75. It is required to:

T
H
£k
L L
f 5 5 1
FIGURE 1.75
Mass supported by a spring through an L-shaped rigid
member

(a) Derive the equation for the angular motion 6(¢) about 0.
(b) Determine the equilibrium angle 4,.
(¢) Derive the differential equation for small angular motions §; (t) about 0,.
(d) Determine the height H for which the system becomes unstable.
1.32. An inverted pendulum is supported by a linear spring, as shown in Fig. 1.76. It is required
to:
(a) Derive the equation for the angular motion 6(¢) about 0.
(b) Determine the equilibrium positions.
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(¢) Derive the differential equation for small angular motions 0 (¢) about 8, for each equi-
librium position.

(d) Determine the stability nature of each equilibrium position.

h—(

-

L
FIGURE 1.76
Inverted pendulum supported by a
spring

1.33. A uniform rigid bar of total mass m and length L is hinged at point O to a shaft rotating with
the constant angular velocity €2 about a vertical axis, as shown in Fig. 1.77. It is required to:
(a) Derive the equation for the angular motion 6(¢) about O.
(b) Determine the equilibrium positions, assuming that the angle 6 can range from 0 to .
(c) Derive the differential equation for small angular motions 61 (¢) about 8, for each equi-
librium position.
(d) Determine the stability nature of each equilibrium position.

FIGURE 1.77
Rigid bar hinged to a rotating shaft



CHAPTER

2

RESPONSE OF
SINGLE-DEGREE-OF-FREEDOM
SYSTEMS TO INITIAL EXCITATIONS

The most basic mechanical system is the single-degree-of-freedom system, which is
characterized by the fact that its motion is described by a single variable, or coordinate.
As shown in Sec. 1.10, this motion is governed by a single ordinary differential equation,
such as Eq. (1.128), relating the displacement x(z) to the force F(z), referred to as
response and excitation, respectively.

As indicated in Sec. 1.11, excitations can be broadly divided into two types, initial
excitations and applied forces. By virtue of the superposition principle (Sec. 1.12), for
linear systems with constant coefficients, which include most systems discussed in this
text, the response to initial excitations and the response to applied forces can be obtained
separately and combined linearly.

The vibration of a system in response to initial excitations, consisting of initial
displacements and/or initial velocitics, is commonly known as free vibration. To obtain
the response to initial excitations, we must solve a homogeneous ordinary differential
equation, i.c., one with zero applied forces, such as that given by Eq. (1.126). We study
the free vibration of single-degree-of-freedom systems in this chapter.

The vibration caused by applied forces is referred to as forced vibration, and it
represents a problem considerably wider in scope than the free vibration problem, which
is due to the large variety of applied forces. The forced vibration of single-degree-of-
freedom systems is discussed in Chs. 3 and 4.

80
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2.1 UNDAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEMS
HARMONIC OSCILLATOR

We consider the free vibration of an undamped single-degree-of-freedom system of the
type shown in Fig. 2.1. The system represents a special case of the model of the washing
machine of Fig. 1.28b; its equation of motion was derived in Sec. 1.10. Hence, letting
M =m and ¢ = 0 in Eq. (1.126), the equation of motion for the free vibration of an
undamped single-degree-of-freedom system is

mi(t) +kx(t) =0 , @.1)

where x(#) is the displacement from the static equilibrium position, m the mass and k
the spring constant. Dividing through by m, Eq. (2.1) can be written in the form

¥ +wix(t) =0 (22)
in which
wa =k/m f 2.3)
is a real constant. The solution of Eq. (2.2) is subject to the initial conditions
x(0) =xp, X(0) =g 2.4)

where xo and vy are the initial displacement and initial velocity, respectively.
Equation (2.1), or Eq. (2.2), represents a system with constant coefficients of the
type studied in Sec. 1.13. Its solution has the exponential form

x(t) = Ae* (2.5)

Inserting Eq. (2.5) into Eq. (2.2) and dividing through by Ae*’, we obtain the character-
istic equation

s24wr=0 (2.6)
which has the two pure imaginary complex conjugate roots

51

= tiw, 2.7)
52 :

1 x(1)
m

FIGURE 2.1
Force-free undamped system
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where i = +/—1. Introducing Eq. (2.7) in Eq. (2.5), the general solution of Eq. (2.2) can
be written as

x(1) = A’ + Age™n! | (2.8)

in which A; and A, are constants of integration, both complex quantities. Because
x(t) must be real and e~*n’ is the complex conjugate of e“»!, it follows that A, is
the complex conjugate A; of A;. But, any complex number can be expressed as the
product of its magnitude multiplied by an exponential with pure imaginary exponent.
For convenience, we use the notation

C _. —  C
A= Ee"‘b, Ay=A; = —2—e’¢ : (2.9)

Where C and ¢ are real constants. Inserting Eqgs. (2.9) into Eq. (2.8) and recalling that
' +e™'* = 2cos o, we obtain the response

Cr . ,
x(0) =5 [e’“’n’—@ + e"(“’"t_d’)] = Ccos(wnt — B) (2.10)

so that now the constants of integration are C and ¢.

Equation (2.10) represents harmonic oscillation, for which reason a system de-
scribed by Eq. (2.2) is called a harmonic oscillator. In Sec. 1.10, we discussed the nature
of harmonic functions as excitations. Whereas many of the concepts and definitions re-
main the same, a discussion of harmonic functions as response to initial excitations is in
order. To this end, we plot the response given by Eq. (2.10), as shown in Fig. 2.2. There
are three quantities defining the response, the amplitude C, the phase angle ¢ and the
Jrequency wy, the first two depending on external factors, namely, the initial excitations,
and the third depending on internal factors, namely, the system parameters. It follows
that the amplitude and phase angle of the response differ from case to case, according
to the initial conditions. On the other hand, for a given system, the frequency of the
response is a characteristic of the system that stays always the same, independently of
the initial excitations, as can be concluded from Eq. (2.3). For th1s reason, w;, is called
the natural frequency of the harmonic oscillator.

x(t) slope = v
2
f——— T=4 ——

T n
C ¥
L :

<—>|

¢/ @
FIGURE 2.2

Response of a harmonic oscillator to initial excitations



UNDAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEMS. HARMONIC OSCILLATOR 83

To determine the constants of integration C and ¢, we must insist that solution
(2.10) match the initial conditions, Eqgs. (2.4). Hence, we write

x(0) = xg = Ccos ¢, x(0) = vp = w,Csing 2.11)

Equations (2.11) can be solved for the amplitude and phase angle, with the result

2
C= %+<@>,¢:mrlw (2.12)
Wn XoWy

Equation (2.10) defines the harmonic oscillation fully for given initial conditions xo and
vp and natural frequency w,,, where the dependence on xg and vy is only implicit, through
Egs. (2.12). An explicit expression can be obtained by recalling from trigonometry that
cos(o— ) = cosarcos 3+ sinasin 3, considering Egs. (2.11) and writing

x(t) = Ccos(wyt — @) = C(coswyt cos ¢ +sinwyt sin @)

=xocoswnt—l—v—osinwnt (2.13)
n
Although Eq. (2.13) has a simpler appearance than Eq. (2.10), it represents the sum of
two trigonometric functions and is not so easy to plot as Eq. (2.10).

The amplitude is identified in Fig. 2.2 as the maximum displacement, and the phase
angle as a measure of the amount of time necessary for the displacement to reach its
peak. Moreover, we recognize that the slope of the curve at ¢+ = O represents the initial
velocity vg. Also identified in Fig. 2.2 is the period T, defined as the time necessary
for the system to complete one vibration cycle, or as the time between two consecutive
peaks. The period of oscillation is also a characteristic of the system, in the sense that it
is determined by the system parameters and not by external factors. It is related to the
natural frequency by

27

T (2.14)

Wn
where T has units of seconds (s) and w, has units of radians per second (rad/s). Note
that the natural frequency can also be defined as the reciprocal of the period, or

f=— (2.15)

in which case it has units of cycles per second (cps), where one cycle per second is
kn