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Preface

This book is intended for use in a first course in vibrations or structural dynamics
for undergraduates in mechanical, civil, and aerospace engineering or engineering
mechanics. The text contains the topics normally found in such courses in accredited
engineering departments as set out initially by Den Hartog and refined by Thompson.
In addition, topics on design, measurement, and computation are addressed.

Pedagogy

A major difference between the pedagogy of this text and competing texts is the use
of high level computing codes. While the book is written so that the codes do not
have to be used, I strongly encourage their use. These codes (Mathcad®, MATLAB®,
and Mathematica®) arc very easy to use, at the level of a programmable calculator and
hence do not require any prerequisite courses or training. Of course, it is easier if
the students have used one or the other of the codes before, but not necessary. In fact
the MATLAB® codes can be copied directly and will run as listed. I view using codes
in our undergraduate teaching as a responsibility. Over 10 years ago, the American
Society of Mechanical Engineers’ Board on Education “recommended that under-
graduates be exposed to mathematics software early in the mechanical engineering
program . .. Those who hire or work with recent college graduates should expect
them to arrive with a working knowledge of computer mathematics,” The American
Institute of Aeronautics and Astronautics also endorsed this point of view in June of
1994, In particular, as educators we have the responsibility to teach our students how
to use these codes responsibly. In addition, the use of these codes greatly enhances
the students understanding of the fundamentals of vibration. Just as a picture is worth
a thousand words, a numerical simulation or plot can enable a completely dynamic
understanding of vibration phenomena. Computer calculations and simulations are
presented at the end of each of the first 4 chapters.

Another unique feature of this text is the use of “windows”, which are distrib-
uted throughout the book and provide reminders to the reader of essential informa-
tion pertinent to the text material at hand. The windows are placed in the text at
points where such prior information is required. The windows are also used to sum-
marize essential information.

xi
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Preface

THIRD EDITION CHANGES

This third edition is largely in response to suggestions sent to me over the last five
years from students and faculty using the book in a classroom setting as well as en-
gineers using it for self-study. In addition, eight faculty members, some who used the
second edition and some who use the more traditional texts reviewed the book.
Almost all the suggestions have been incorporated, save a few which disagreed with
the pedagogy.

For example, I do not include more introductory material as is done in com-
peting texts because my goal here is to produce a text that is not too large. Many
books spend 100 pages before solving the first vibration problem so T prefer the
approach of getting right to the to fundamentals as soon as possible. As such this text
is written assuming that the students have had differential equations, dynamics, statics,
strength of materials and system dynamics. This is not unreasonable as this sequence
fits in well with ABET accredited engineering programs. In addition, the reminder/
review material from these courses is integrated throughout the text as needed (a just
in time approach) rather then lumped at the start of the course.

This new edition retains popular features from the previous editions, such as
fully embracing modern computational abilities (e.g. MATLAB, Mathematica and
Mathcad), lumping design concepts into a single chapter and using examples that
reinforce concepts. The main changes in this edition are textual clarifications based
on comments from readers, additional examples, additional problems and the intro-
duction of a series of example problems based on a camera mount that increases in
complexity with each chapter. This reinforces the idea that a single device can be
modeled a number of different ways depending on one’s purpose. New experimental
data has also been included.

Units

This book uses SI units. The first edition used a mixture of US Customary and SI
but at the insistence of the editor all units were changed to SI. I have stayed with
ST in this edition because of the increasing international arena that our engineering
graduates compete in. The engineering community is now completely global. For
instance GE Corporate Research has more engineers in its research center in India
than it does in the US. Engineering in the US is in danger of becoming the ‘garment’
workers of the next decade if we do not recognize the global work place. Our engi-
neers need to work in SI to be competitive in this increasingly international work
place.

Preface

iii
Instructor Support

This text comes with a bit of support, In particular, MS PowerPoint presentations
are available for each chapter along with some nice movies. The solutions manual is
available as both and MS Word and PDF format (sorry, instructors only). Sample
tests are available. The MS Word solutions manual can be cut and pasted into
presentation slides, tests or other class enhancements. These resources can be found
at www.prenhall.com/inman and will be updated often. Please also email me at
dinman@vt.edu with corrections, typos, questions and suggestions. The book is
reprinted yearly and at each reprint I have the option to fix typos, so please report
any you find to me, as others as well as I will appreciate it.

Student Support

The best place to get help in studying this material is from your instructor, as there
is nothing more educational than a verbal exchange. However, the book was writ-
ten as much as possible from a student’s perspective. Many students critiqued the
original manuscript and many of the changes in text have been the result of sugges-
tions from students trying to learn from the material, so please feel free to email me
(dinman@vt.edu) should you have questions about explanations. Also I would
appreciate knowing about any corrections or typos and in particular if you find an
explanation hard to follow. My goal in writing this was to provide a useful resource
for students learning vibration for the first time.

ACKNOWLEDGEMENTS

Many colleagues and students have contributed to the revision of this text through
suggestions and questions. In particular, T would like to thank the students of ME
3504 at Virginia Tech who have taken the course over the last 5 years and provided
valuable comments and suggestions. [ would also like to thank Prof. Joseph Slater of
Wright State for reviewing some of the new materials and constantly sending me sug-
gestions. Also Dr. Mehrdaad Ghorashi, University of Ottawa, Dr. Henry A Sodano,
Michigan Technological University, Dr. T. Michael Seigler, University of Kentucky
and Dr. Eric Ruggiero, General Electric Corporate Research Center for providing all
sorts of valuable input, corrections and suggestions. All have taught out of the second
edition of this book and provided valuable input. I am also thankful for the com-
ments of the anonymous reviewers.
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Pablo also provided the new experimental data that is in Chapter 7. Prof, Joe Slater
also deserves special mention for his efforts in writing and maintaining the Vibration
Toolbox for this course. [ would like to thank David Oliver, Phillip Mitchell and Arno
Maurer of Polytec, Inc. and Polytec, GMBH, for providing the art work of their scan-
ning laser test of a car that appears on the cover of the text.

I have also had the good fortune of having been sponsored by numerous com-
panies and federal agencies over the last 25 years to study, design, test and analyze a
large variety of vibrating structures and machines. Without these projects, I would
not have been able to write this book nor revise it with the appreciation for the prac-
tice of vibration, which I hope permeates the text.

Last I wish to thank my wife Cathy Little and our children Jennifer, Angela and
Daniel and my father for moral support, a sense of purpose and for putting up with
my absence while writing.

DANIEL J. INMAN
Blacksburg, Virginia

Introduction
to Vibration
and the Free Response

Vibration is the subdiscipline of dynamics that deals
with repetitive motion. Most of the examples in this
text are mechanical or structural elements.
However, vibration Is prevalent In biological systems
and Is in fact af the source of communication (the
ear vibrates to hear and the fongue and vocal
chords vibrate to speak). In the case of music,
vibrations, say of a stringed Instrument, are desired.
On the other hand, in most rmechanical systems and
structures, vibration is unwanted and even
destructive, For example, vibration in an aircraft
frame causes fatigue and can eventually lecd fo
failure. Wind induced vibration and mild earthquake
induced vibration can cause cracking and
breakage, asindicated in the photo on the bottom
left, Everyday experlence is full of vibration and
usually ways of mitigating vibration. Automobiles,
trains, and even some bicycles have devices o
reduce the vibration Induced by motion and
transmitted to the driver.

The task of this text is to teach the reader how
to analyze vibration, using principles of dynamics,
This necessarily requires the use of mathematics. In
fact, the sine function provides the fundamental
means of analyzing vibration phenomena.

The basic concepts of understanding
vibration, analyzing vibration, and predicting the
behavior of vibrating systems form the topics of this
text, The concepts and formulations presented in
the following chapters are Intended to provide the
skills needed for designing vibrating systems with
desired properties that enhance vibration when it is
wanted and reduce vibration when It Is unwanted.

This first chapter examines vibration in the
simplest possible situation in which no external force
is present (free vibration). This chapter introduces
both the Important concept of natural frequency
and how to model vibration mathematically.

The Web Is a great source of examples of
vibration and the reader is encouraged to search
¢ for movies of vibrating systems and other examples
3 that can be found there.

1



Introduction to Vibration and the Free Response Chap. 1

1.1 INTRODUCTION TO FREE VIBRATION

Vibration is the study of the repetitive motion of objects relative to a stationary frame
of reference or nominal position (usually equilibrium). Vibration is evident every-
where and in many cases greatly affects the nature of engineering designs. The vi-
brational properties of engineering devices are often limiting factors in their
performance. Vibration can be harmful and should be avoided, or it can be extremely
useful and desired. In either case, knowledge about vibration—how to analyze,
measure, and control it—is desired and forms the topic of this book.

Typical examples of vibration familiar to most are the motion of a guitar string,
the quality of ride of an automobile or motorcycle, the motion of an airplane’s wings,
and the swaying of a large building due to wind or an earthquake. In the chapters
that follow, vibration is modeled mathematically based on fundamental principles,
such as Newton’s laws, and analyzed using results from calculus and differential equa-
tions. Information about techniques used to measure the vibrations of a system are
developed. In addition, information and methods are given that are useful for
designing a particular system to have a specific vibrational response.

The physical explanation of the phenomena of vibration concerns the interplay
between potential energy and kinetic energy. A vibrating system must have a compo-
nent that stores potential energy and releases it as kinetic energy in the form of motion
(vibration) of a mass. The motion of the mass then gives up kinetic energy to the
potential-energy storing device. :

Engineering is built on a foundation of previous knowledge and the subject of
vibration is no exception. In particular, the topic of vibration builds on previous courses
in dynamics, system dynamics, strength of materials, differential equations, and some
matrix analysis. In most accredited engineering programs these courses are prerequi-
sites for a course in vibration. Thus the material that follows draws information and
methods from these courses. Vibration analysis is based on a coalescence of mathemat-
ics and physical observation. For example, consider a simple pendulum. You may have
seen one in a science museum, or seen a grandfather clock, or you might make a sim-
ple one with a string and a marble. As the pendulum swings back and forth, observe that
its motion as a function of time can be described very nicely by the sine function from
trigonometry. Even more interesting, if you make a free-body diagram of the pendu-
lum and apply Newtonian mechanics to get the equation of motion (summing moments
in this case), the resulting equation of motion has the sine function as its solution,

Sec. 1.1
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Further, the equation of motion predicts the period at which the pendulum oscillates.
In this example dynamics, observation, and mathematics all come into agreement to
produce a predictive model of the motion of a pendulum, which is easily verified by
experiment (physical observation).

This pendulum example tells the story of this text. We propose a series of steps
to build on the modeling skills developed in your first courses in statics, dynamics, and
strength of materials combined with system dynamics to find equations of motion of suc-
cessively more complicated systems. Then we will use the techniques of differential
equations to solve these equations of motion to predict how various mechanical systems
and structures vibrate. The following example illustrates the importance of recalling
the methods learned in the first course in dynamics.

Example 1.1.1

Derive the equation of motion of the pendulum in Figure 1.1.

AFy
q 3] F,— O
S
! 0
= m
@~
2 Figure 1.1 (a) A schematic of a
mg pendulum, (b) A free-body diagram
(@) (b) of (a).

Solution Consider the schematic of a pendulum of Figure 1.1(a). In this case, the mass
of the rod will be ignored as well as any friction in the hinge, Typically, one starts with a pho-
tograph or sketch of the part or structure of interest and is immediately faced with having
to make assumptions. This is the “art” or experience side of vibration analysis and madel-
ing. The general philosophy is to start with the simplest model possible (hence, here we
ignore friction and the mass of the rod and assume the motion remains in a plane) and try
to answer the relevant engineering questions. If the simple model doesn’t agree with the ex-
periment, then make it more complex by relaxing the assumptions until the model success-
fully predicts physical observation. With the assumptions in mind, the next step is to create
afree-body diagram of the system as indicated in Figure 1.1(h). With all the modeled forces
identified, Newton’s law and Euler’s law are used to derive the equations of motion.

In this example Euler’s law takes the form of summing moments about point O.
This yields

mg = Jo[l

where M, denotes moments about the point O, J, = ml* is the mass moment of inertia
of the mass m about the point O,/ is the length of the massless rod, and « is the angular
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acceleration vector. Since the problem is really in one dimension, the vector sum of
moments equation becomes the single scalar equation:

Joa(t) = —mgl sin 0(z) or miP8(t) + mgl sin 0(t) = 0

Here the moment arm for the force mg is the horizontal distance [ sin 8, and the two over-
dots indicate differentiation with respect to the time, ¢. This is a second-ord_er’ordinary
differential equation, which governs the time response of the per}dulum. Th{s is exactly
the procedure used in the first course in dynamics to obtain equations of motion.

The equation of motion is nonlinear because of the appearance of the_ sm(_ﬂ) and
hence a bit difficult to solve. The nonlinear term can be made linear by approximating the
sine for small values of 6(7) as sin 6 = 8. Then the equation of motion becomes

§() + S 60) = 0

This is a linear, second-order ordinary differential equation with constant coefficients and
is commonly solved in the first course in differential equations (usually the llhird course in
the calculus sequence). As we will see later in this chapter, this linear equation of motion
and its solution predict the period of oscillation of a simple pendulum quite accurately. The

last section of this chapter revisits the nonlinear version of the pendulum equation.
(]

Since Newton’s law for a constant mass system is stated in terms of force, which
is the mass times acceleration, an equation of motion with two time derivatives will
always result. Such equations require two constants of integration to _sgl.ve. Eu{e.r’s law
for constant mass systems also yields two time derivatives. Hence the 1lmtlal position for
8(0) and velocity of 8{0) must be specified in order to solve for 8(f) in Exm.nple 1.1.]'.
The term mgl sin 8 is called the restoring force. In Examp!e 1.1.1, the restoring force is
gravity, which provides a potential-energy storing mechanism. However, in most struc-
tures and machine parts the restoring force is elastic, This establishes the need for some
background in strength of materials when studying vibrations of structures and
machines. o

As mentioned in the example, when modeling a structure or machine it is best to
start with the simplest possible model. In this chapter we model only systems that can
be described by a single degree of freedom, that is, systems for which Newtonian
mechanics results in a single scalar equation with one displacement coordmatt.e. The
degree of freedom of a system is the minimum number of displacement fsoordmat_es
needed to represent the position of the system’s mass at any instant of time. For in-
stance, if the mass of the pendulum in Example 1.1.1 were a rigid body, free to rotate
about the end of the rod, the angle of rotation would define an additional deg{ffe of free-
dom. The problem would then require two coordinates fo determine the position of the
mass in space, hence two degrees of freedom. Systems with more than one degree of
freedom are discussed in Chapter 4, where material from basic matrix algeb.ra forms the
background. On the other hand, if the rod in Figure 1.1 is flexible, its distributed mass
must be considered, effectively resulting in an infinite number of degrees of freedom.
Systems with distributed mass and flexibility are discussed in Chapter 6, where material
from strength of materials forms the background.

Sec. 1.1
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The next important classification of vibration problems after degree of freedom
is the nature of the input or stimulus to a vibration system. In this chapter, only the free
response of the system is considered. Free response refers to analyzing the vibration of
a system resulting from a nonzero initial displacement and/or velocity of the system
with no external force or moment applied. Tn Chapter 2, the response of a single-degree-
of-freedom system to a harmonic input (i.e., a sinusoidal applied force) is discussed.
Chapter 3 examines the response of a system to a general forcing function (impulse or
shock loads, step functions, random inputs, etc.), building on information learned in
a course' in system dynamics. In the remaining chapters the models of vibration and
methods of analysis become more complex.

The following sections analyze equations similar to the linear version of the pen-
dulum equation given in Example 1.1.1. In addilion, energy dissipation is introduced,
and details of elastic restoring forces are presented. Introductions to design, measure-
ment, and simulation are also presented, The chapter ends with the introduction of
high-level computer codes (MATLAB®, Mathematica, and Mathcad) as a means to
visualize the response of a vibrating system and for making the calculations required
to solve vibration problems more efficiently. In addition, numerical simulation is
introduced in order to solve nonlinear vibration problems.

1.1.1 The Spring—Mass Model

From introductory physics and dynamics, the fundamental kinematical quantities
used to describe the motion of a particle are displacement, velocity, and acceleration
vectors. In addition, the laws of physics state that the motion of a mass with chang-
ing velocity is determined by the net force acting on the mass. An easy device to use
in thinking about vibration is a spring (such as the one used to pull a storm door shut,
or an automobile spring) with one end attached to a fixed object and a mass attached
to the other end. A schematic of this arrangement is given in Figure 1.2,

Tgnoring the mass of the spring itself, the forces acting on the mass consist of the
force of gravity pulling down (mg) and the elastic-restoring force of the spring pulling
back up (f;). Note that in this case the force vectors are collinear, reducing the static
equilibrium equation to one dimension easily treated as a scalar. The nature of the
spring force can be deduced by performing a simple static experiment. With no mass
attached, the spring stretches to the position labeled Xy = 0 in Figure 1.3. As succes-
sively more mass is attached to the spring, the force of gravity causes the spring to
stretch further, If the value of the mass is recorded, along with the value of the

S
m —0
P Figure 1.2 Schematic of a single-
degree-of-freedom spring-mass
mg oscillator and its free-body diagram.



Introduction to Vibration and the Free Response Chap. 1

Figure 1.3 Schematic of a massless
spring with no mass attached, showing
its static equilibrium position, followed
by increments of increasing mass,
illustrating the corresponding
deflections.

fi

T e

|
0 20mm

Figure 1.4 Static deflection curve for
the spring of Figure 1.3.

X

displacement of the end of the spring each time more mass is added, the plot of
the force (mass, denoted by m, times the acceleration due to gravity, denoted by g)
versus this displacement, denoted by x, yields a curve similar to that illustrated in
Figure 1.4. Note that in the region of values for x between 0 and about 20 mm (mil-
limeters), the curve is a straight line. This indicates that for deflections less than 20 mm
and forces less than 1000 N (newtons), the force that is applied by the spring to the
mass is proportional to the stretch of the spring. The constant of proportionality is the
slope of the straight line between 0 and 20 mm. For the particular spring of Figure 1.4,
the constant is 50 N/mm,or 5 X 10*N/m. Thus, the equation that describes the force
applied by the spring, denoted f, to the mass is

fie = kx (Y

The value of the slope, denoted by k, is called the stiffness of the spring and is a prop-
erty that characterizes the spring for all situations for which the displacement is less
than 20 mm. From strength of materials considerations, a linear spring of stiffness &
stores potential energy of the amount L kx?, _

Note that the relationship between fi and x of equation (1.1) is linear (i.e., the
curve is linear and f; depends linearly on x). If the displacement of the spring is larger
than 20 mm, the relationship between f, and x becomes nonlinear, as indicated in
Figure 1.4. Nonlinear systems arc much more difficult to analyze and form the topic
of Section 1.10. In this and all other chapters, it is assumed that displacements (and
forces) are limited to be in the linear range unless specified otherwise.

Next consider a free-body diagram of the mass in Figure 1.5, with the massless
spring elongated from its rest, or equilibrium, position. As in the earlier figures, the
mass of the object is taken to be m and the stiffness of the spring is taken to be k.
Assuming that the mass moves ona frictionless surface along the x direction, the only

Introduction to Free Vibration 7

[])—- £ y

- Friction-free

surface
il E k‘t

N F'igure 1..5 . ?i.ng}e spring-mass system
given an initial displacement x;, from its
rest, or equilibrium, position, and zero
initial velocity.

Rest
position

force actil?g on the mass in the x direction is the spring force. As long as the motion
qf the spring does not exceed its linear range, the sum of the forces in the x direc-
tion must equal the product of mass and acceleration.

i Summing the forces on the free-body diagram in Figure 1.5 along the x-direction
yields

mi(t) = —kx(r) or mi(t) + kx(t) =0 (1.2)

wl_'lere X(1) denotes the second time derivative of the displacement (i.e., the acceler-
atm_n). Note that the direction of the spring force is opposite that of tl;e deflection
(+ is marked to the right in the figure). As in Example 1.1.1, the displacement vec-
lgr apd acceleration vector are reduced to scalars, since the net force in the y direc-
tion is zero (N = mg) and the force in the x direction is collinear with the inertial
force. Bo.th the displacement and acceleration are functions of the elapsed time ¢, as
denoted in equation (1.2), Window 1.1 illustrates three types of mechanical syste;ns,

whic.h can be described by equation (1.2): a spring-mass system, a rotating shaft, and
a swinging pendulum (Example 1.1.1).

] Window 1.1
Examples of Single-Degree-of-Freedom Systems (Small Displacements)

o

Torsional
stiffness

Gravity

8(r) ‘j g

{ = length

~

Spring-mass Shaft and disk i
D] Sha Simpl d
mi+kx=10 Ji+ko=0 (i Efzg?i?)% glgm
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One of the goals of vibration analysis is to be able to predict the response, or
motion, of a vibrating system. Thus it is desirable to calculate the solution to equa-
tion (1.2). Fortunately, the differential equation of (1.2) is well known and is treated
extensively in introductory calculus and physics texts, as well as in texts on differen-
tial equations, In fact, there are a variety of ways to calculate this solution. These are
all discussed in some detail in the next section. For now, it is sufficient to present a
solution based on physical observation. From experience watching a spring such as
the one in Figure 1.5 (or a pendulum), it is guessed that the motion is periodic,
perhaps of the form

x(t) = Asin(w,t + ¢) (1.3)

This choice is made because the sine function describes oscillation. Equation (1.3) is
the sine function in its most general form, where the constant A is the amplitude, or
maximum value, of the displacement; w,,, the angular natural frequency, determines
the interval in time during which the function repeats itself; and &, called the phase,
determines the initial value of the sine function. It is standard to measure the time ¢
in seconds (s). The phase is measured in radians and the frequency is measured in
radians per second (rad/s).

To see if equation (1.3} is in fact a solution of the equation of motion, it is sub-
stituted into equation (1.2). Successive differentiation of the displacement, x() in
the form of equation (1.3), yields the velocity, (f), given by

() = 0, A cos{w,t + &) 1.4
and the acceleration, ¥(t), given by
¥(1) = —wlAsin(w,t + &) (1.5)

Substitution of equations (1.5) and (1.3) into (1.2) yields

—mwlAsin(w,t + ¢) = —kAsin(w,t + $)
Dividing by A and m yields the fact that this last equation is satisfied if
k ke

UJ,% ===y or W, = s (16)

m m

Hence, equation (1.3) is a solution of the equation of motion. The constant w,,
characterizes the spring—mass system, as well as the frequency at which the motion
repeats itself, and hence is called the system’s natural frequency. A plot of the solu-
tion x(t) versus time ¢ is given in Figure 1.6. It remains to interpret the constants A
and ¢,

Recall from differential equations that the equation of motion is of second order,
so that solving equation (1.2) involves integrating twice. Thus there are two constants
of integration to evaluate. These are the constants 4 and ¢. The physical significance,
or interpretation, of these constants is that they are determined by the initial state of
motion of the spring-mass system. Again, recall Newton’s laws. If no force is imparted
to the mass, it will stay at rest. If, however, the mass is displaced to a position of x; at
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—0.5 %
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=A=15 J
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Figure 1.6 Response of a simple
spring-mass system to an initial
displacement of ¥, = 0.5 mm and an
—={

A initial velocity of v, = 2V/2 mm/s.
T %‘,,I The natural [rc;queucy is 2 rad/s and the
n amplitude is 1.5 mm.

tml_c 1% 0, the' force kx; i.n the spring will result in motion. Also, if the mass is given
an initial velocity of v, at time ¢ = 0, motion will result because of the resulting change

in momentum. These are called initial conditions an i i
sctution (.3) et d when substituted into the

% = x(0) = Asin(w,0 + ¢) = Asind (1.7)
and
1 = X(0) = w, A cos(w,0 + b) = w,Acosd (1.8)
Solving these two simultaneous equations for the two unknowns A and ¢ yields

A/ 2.2 2
W, X5 + ),
— n-tl 0 and — o1 WXy
A h__-_fﬁu & = tan -—1)0 (1.9)

as illustrated in lFigure 1.7: Here the phase ¢ must lie in the proper quadrant, so care
must be taken in evaluating the arc tangent. Thus the solution of the equation of

*o

k 90° Ty

I Figure 1.7 Trigonometric relationship
A

&

between the phase, natural frequency, and
o 2 initial conditions. Note that the initial
=Alxg + conditions determine the proper quadrant
for the phase.



10

Intreduction to Vibration and the Free Response Chap. 1

motion for the spring-mass system is given by

_Veig+ 4

x(1) . sin(m,,r + tan™! M) (1.10)

" Uy

and is plotted in Figure 1.6. This solution is called the free response of the system,
because no force external to the system is applied after ¢ = (. The motion of
the spring-mass system is called simple harmonic motion or oscillatory motion and
is discussed in detail in the following section. The spring—mass system is also referred
to as a simple harmonic oscillator, as well as an undamped single-degree-of-freedom

system.

Example 1.1.2
The phase angle ¢ describes the relative shift in the sinusoidal vibration of the
spring-mass system resulting from the initial displacement, x,. Verify that equation (1.10)
satisfies the initial condition x(0) = x,.

Solution Substitution of = (}in equation (1.10) vields
Vol + 4 ( o m,,xn)
————sin| tan ' ——

x{(0) = Asing = —

" a

Figure 1.7 illustrates the phase angle ¢ defined by equation (1.9), This right triangle is used
to define the sine and tangent of the angle ¢. From the geometry of a right triangle, and
the definitions of the sine and tangent functions, the value of x(0) is computed to be

L i e ] 2
x([)) = 0}, X + o W, Xp —
O Vg + v

which verifies that the solution given by equation (1.10) is consistent with the initial
displacement condition.

o

Example 1.1.3
A vehicle wheel, tire, and suspension assembly can be modeled crudely as a single-
degree-of-freedom spring-mass system. The (unsprung) mass of the assembly is mea-
sured to be about 30 kilograms (kg). Its frequency of oscillation is observed to be 10 Hz.
‘What is the approximate stiffness of the suspension assembly?

Solution The relationship between frequency, mass, and stiffness is w,, = \/an S0
that
cycle 2 rad

k = mwj, = (30 kg}(lﬁ—

2
) = 1.184 X 10°N/m
sec  cycle

This provides one simple way to estimate the stiffness of a complicated device. This
stiffness could also be estimated by using a static deflection experiment similar to that

suggested by Figures 1.3 and 1.4,
O
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The main point of this section is summarized in Window 1.2. This illustrates
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Window 1.2
Summary of the Description of Simple Harmonic Motion

Displacement, x(r)
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isyy, Period

Amplitude

"

Xy
Initial
displace-

ment
# L
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1.2 HARMONIC MOTION

Tlhe fundamental kinematic properties of a particle moving in one dimension are
dlsPlacement, velocity, and acceleration, For the harmonic motion of a simple
Spring-mass system, thf::se are gl:ven by equations (1.3), (1.4), and (1.5), respectively.
Note the different relative amplitudes of each quantity, For systems with natural fre-
quency larger than 1 rad/s, the relative amplitude of the velocity response is larger
than thatlof the displacement response by a multiple of w,, and the accelerat{gon
response is larger by a multiple of 2. For systems with fre'é]‘uency less than 1, th,

velocity and acceleration have smaller relative amplitudes than the diS]:Jlacen;ente
{}]so..note that the velocity is 90° (or 7 /2 radians) out of phase with the positionl
‘[:;iffc.t; S;E £m,,(r)s~; .11/2' +d¢;) = cos ((.n"l 4 ¢»)]: while the acceleration is 180° out of phase
juustrateginl\{f?:dir\; 12 out of phase with the velocity. This is summarized and
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Window 1.3 ! The angular natural frcquéncy, w,, used in equations (1.3) and (1.10), is mea-
Relationship between Displacement, Velocity, and Acceleration i sured in radians per second and describes the repetitiveness of the oscillation. As in-
ela P for Simple Harmonic Motion dicated in Window 1.2, the time the cycle takes to repeat itself is the period T, which
is related to the natural frequency by
27 rad 2
o LY (1.11)

m” rad/s (l)"

This results from the elementary definition of the period of a sine function. Quite
often the frequency is measured and discussed in terms of cycles per second, which
is called hertz. The frequency in hertz (Hz), denoted by f;,, is related to the frequency
in radians per second, denoted w,,, by

49

Displacement
x(y = Asin (@t +4) 0

" 2w 2wrad/cycle 27s

- ‘2"—“ (Hz) (1.12)

Note that equation (1.2) is exactly the same form of differential equation
e ! ! as the linear pendulum equation of Example 1.1.1 and of the shaft and disc of
Window 1.1(b). As such the pendulum will have exactly the same form of solution
as equation (1.3), with frequency

| W, :\/%rad/s
.,

The solution of the pendulum equation thus predicts that the period of oscillation of
the pendulum is (s denotes seconds)

=2 =2w\ﬁs
wﬁ g

This analytical value of the period can be checked by measuring the period of
oscillation of a pendulum with a simple stopwatch. The period of the disk and shaft
system of Window 1.1 will have a frequency and period of

k 7
. : W, = \[}rad/s and T= 2“\[}{ s

respectively. The concept of frequency of vibration of a mechanical system is the sin-
gle most important physical concept (and number) in vibration analysis. Measurement
of either the period or the frequency allows validation of the analytical model. (If you
made a 1-meter pendulum, the period would be about 2 s, something you could try
at home.) As long as the only disturbance to these systems is a set of nonzero initial
conditions, the system will respond by oscillating with frequency v, and period 7.
For the case of the pendulum, the longer the pendulum is, the smaller the frequency
is and the longer the period is. That’s why in museum demonstrations of a pendulum,
the length is usually very large so that T is large and one can easily see the period (also
a pendulum is usually used to illustrate the earth’s precession; Google the phrase
Foucault Pendulum).

Velocity
i) = w,A cos (wd + ) 0 —

wPA

Acceleration
#(f) = —wiAsin (o, + ) 0

—wiA J
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Example 1.2.1 .
Consider a small spring about 30 mm (or 14in.) .Icmg, welded tc:: a statlonarjlrdt‘a;le
(ground) so that it is fixed at the point of contact, wn.h. a12-mm _(or 3-in.) bolt u&ff:w(_,3 l{0
the other end, which is free to move. The mass of this system Is about {19.2 X : g
(equivalent to about 1.73 ounces). The spring stiﬂne:‘ss can be measured using glt;;a metC :l“
suggested in Figure 1.4, Such a method yields a spring constant qf k = 857 .]i é m. fih
culate the natural frequency and period. Also determine the maximum amp tude o : g
response if the spring is initially deflected 10 mm. Assume that the spr?ngt !s‘ o;-;ir‘; ‘:)
along the direction of gravity as in Window 1.1. (Ignore the effect of gravity; see below.

Solution From equation (1.6) the natural [requency is

w, = \/E = 2k N/_m ~ = 132 rad/s
"= \om T V492 % 107 kg

In hertz, this becomes

@,
=—=21Hz
iz 2w
The period is
r=2"-L1 - o065
wﬂ' n )
To determine the maximum value of the displacement response, ml_tc‘f.rom Flgqra 1 6 _that
this corresponds to the value of the constant A. Assuming that no initial velocity is given

{o the spring (v, = 0), equation (1.9) yields
2. 2 + 2
X(Dmax = A = B B xp = 10 mm
Note that the maximum value of the velocity response is mZA or wx; = 1320 mjm/ s am?(.l
the acceleration response has maximum value w,A = w,.xg = 1'?4.24.1 X %0 mm{; A
Since , = 0, the phase is & = tan™! (wn%o/0) = /2, or 90°. Hence, in this case, the

response is x(t) = 10sin(132t + =/2) = 10 cos(132t) mm. "

Does gravily matter in spring problems? Th'f: answer is no if the systcrn ]oscﬂ—
lates in the linear region. Consider the spring of F1gurc‘ 13 z_md lﬂt[ a mas:s.of va uz m
extend the spring. Let A denote the distance dt?ﬂectcd in this statlg experiment (' is
called the static deflection); then the force acting up on the mass is kA..F.r(.)m static
equilibrium the forces acting on the mass must be zero so that (taking positive down
in the figure)
mg — kA =0

Next sum the forces along the vertical for the mass at some point x and apply
Newton’s law to get .
mi(t) = —k(x + A) + mg = ~kx + mg — Ax

Note the sign on the spring term is minus because the spring force opposes the motion,
which is taken here as positive down. The last two terms add to zero (mg — kA = 0)
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because of the static equilibrium condition and the equation of motion becomes
mi(t) + kx(t) =0

Thus gravity does not affect the dynamic response, Note x(¢) is measured from the
clongated (or compressed if upsidedown) position of the spring mass system, that is,
from its rest position. This is discussed again using energy methods in Figure 1.15.

Example 1.2.2

(a) A pendulum in Brussels swings with a period of 3 seconds. Compute the length of the
pendulum. (b) At another location, assume the length of the pendulum is known to be
2 meters and suppose the period is measured to be 2.839 scconds, What is the accelera-
tion due to gravity at that location?

Solution The relationship between period and natural frequency is given in equation
(1.11). (a) Substitution of the value of natural frequency for a pendulum and solving for
the length of the pendulum yields

2 4r? 7% (9.811 m/s%)(3)%s?

T:~"1=>w}’,=5=12=:-1=g—2=———( /2)() =2237m

W, l T 4 47
Here the value of g = 9.811 m/s”is used as that is the value it has in Brussels (at 51° lat-
itude and an altitude of 102 m). (b) Next manipulate the pendulum period equation to
solve for g. This yields

& _ 4n’ 4m? 4q?
=— = g=——]=—— _(2)m = 9434 m/s

1T T 8T e T segpa @ /
This is the value of the acceleration due to gravity in Denver, Colorado, United States
(at an altitude 1638 m and latitude 40°).

These sorts of calculations are usually done in high school science classes but
are repeated here to underscore the usefulness of the concept of natural frequency
and period in terms providing information about the vibration system’s physical prop-
erties, In addition this example serves to remind the reader of a familiar vibration
phenomenon.

O

The solution given by equation (1.10) was developed assuming that the re-
sponse should be harmonic based on physical observation. The form of the response
can also be derived by a more analytical approach following the theory of elemen-
tary differential equations (see, e.g., Boyce and DiPrima, 2004). This approach is re-
viewed here and will be generalized in later sections and chapters to solve for the
response of more complicated systems. :

Assume that the solution x(t) is of the form

x(t) = ae™ (1.13)
where a and \ are nonzero constants to be determined. Upon successive differenti-

ation, equation (1.13) becomes x(¢) = Aae™ and ¥(t) = A%ae". Substitution of the
assumed exponential form into equation (1.2) yields

mNaeM + kaeM = (1.14)
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Since the term ae™ is never zero, expression (1.14) can be divided by ae™ to yield
mi+k=0 (1.15)

Solving this algebraically results in

[ % [k . . .
A= —;;‘i m;ﬁ:tm,,] (1.16)

where j = /1 is the imaginary number and o, = '\/Hm is the natural frequency
as before. Note that there are two values for \, A = —w,,j and A = +w,j. This results
because the equation for \ is of second order. This implies that there must be two so-
lutions of equation (1.2) as well. Substitution of equation (1.16) into equation (1.13)
yields that the two solutions for x(t) are

x(t) = ae and x(t) = ae (1.17)

Since equation (1.2) is linear, the sum of two solutions is also a solution; hence the
response x(t) is of the form

x(t) = ayenl + gyeiont (1.18)

where a, and a, are complex-valued constants of integration. The Euler relations for
trigonometric functions state that 2jsin® = (e% — ¢ ) and 2cos = (¥ + &™),
where j = V-1 [See Appendix A, equations (A.18), (A.19), and (A.20), as well as
Window 1.5.] Using the Euler relations, equation (1.18) can be written as

x(t) = Asin(w,l + ) (1.19)

where A and ¢ are real-valued constants of integration. Note that equation (1.19) is
in agreement with the physically intuitive solution given by equation (1.3). The rela-
tionships among the various constants in equations (1.18) and (1.19) are given in
Window 1.4. Window 1.5 illustrates the use of Euler relations for deriving harmonic
functions from exponentials for a damped case.

Often when computing frequencies from equation (1.16) such as A? = —4, there
is a temptation to write that the frequency is w, = 2. This is incorrect because the
+ sign is removed once the Euler relation is used to obtain the function sin w,t.
The concept of frequency is not defined until it appears in the argument of the sine
function and as such is always positive.

A precise terminology is useful in discussing an engineering problem, and the sub-
ject of vibration is no exception. Since the position, velocity, and acceleration change
continually with time, several other quantities are used to discuss vibration. The peak
value, defined as the maximum displacement, or magnitude A of equation (1.9), is
often used to indicate the region in space in which the object vibrates. Another quan-
tity useful in describing vibration is the average value, denoted ¥, and defined by

_me T

J0O

Note that the average value of x(r) = A sinw,t over one period of oscillation is zero.
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) Window 1.4
Three Equivalent Representations of Harmonic Motion

Th.e solynon of mx + kx = 0 subject to nonzero initial conditions can be
written in three equivalent ways, First, the solution can be written as

x(t) = mel" + gyeion w, = \/‘E J= V-
m

wlyarc a, and a, are complex-valued constants: second, the solution can be
written as

x(f) = Asin(w,t + ¢)

where A and ¢ are real-valued constants; and third, the solution can be written
as

x(t) = A;cosw,t + A, sin w,t

wt_lere A, andlA.2 are real-valued constants, Each set of two constants is deter-
mined by the initial conditions. The various constants are related by

A=VA+ 4 ¢ tan“(%)
2

Al = i [15) Az = (ﬂl = az)j

A — A ,
PA. L. azzAlezf

2
which follow from trigonometric identities and the Euler’s formulas, Note that
@, and a, are a complex conjugate pair, so that A, and A, are both real numbers.

Il

0 Since the square of displacement is associated with a system’s potential energy,
e average of the displacement squared is sometimes a useful vibration property

d 8 S8, he mi n'Sq ar ( T riance b 3
f i
to 1SCL ] ea uare Vah]e Or varian ) QO he dl‘;placement x(t) delll)ted

- 1T
= Tlgnm? ] xX*(t) dt (1.21)
The square root of this value, called the root mean Square (rms) value, is commonl

used in s;mmfymg vibration. Because the peak value of the velocity an& acceleratim{
are multiples of the natural frequency times the displacement amplitude [i.e., equa-
tions '(1.3)~(1.5)], these three basic quantities often differ in value by an'o;d::lr of
magnitude or more. Hence logarithmic scales are often used. A common unit of mea-
suremgnf: for vibration amplitudes and rms values is the decibel (dB). The decibel
was originally defined in terms of the base 10 logarithm of the power ratio of two
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electrical signals, or as the ratio of the square of the amplitudes of two signals,
Following this idea, the decibel is defined as

2 x
dB =10 1ogw(ﬂ) = 20 logyy = (122)
X5 Xy

Here the signal x, is a reference signal. The decibel is used to quantify how falr thc;
measured signal x; is above the reference signal x,. Note that if t}%e mcas.uredl sagnad
is equal to the reference signal, then this corresponfis to 0 dB. The dCCle?} is use
extensively in acoustics to compare sound levels. Qsmg a dB scallc expands er'c.(l)m~
presses vibration response information for convenience in .graphl‘cal representau}on.
A standard way to specify all three vibration quant:tles—d_lsplacemcntl, \er ac-
ity, and acceleration—when discussing the response of a system i touse ap ((j:nl flm—
ilar to that of Figure 1.8. In this log scale plot, the_ log of [rcq}lency £ is plotted a or;lg
the abscissa and the log of velocity along the Ordlpate. Tl’}(‘.“ lines slanting to thF: rig l
of slope +1 are lines of constant displacement while the lines of slope —1 are lines of

Velocity (mm/s)

eak
ZDOO(P : 100 80 60 40 20
| / /
Displacement (mm)
(peak)”
0
1000 g——>s e v — 7. 1
800 r ‘ - 8
600 > - %E 6
A : =l
400 4 —l 4
A i \/ 2
200 -p—— ——
! 10000
2 4 N6 NGB 10
requency ( 8000
1000 2000 400? 6000
Acceleration (mm/s?)
(peak)

Figure 1.8 Nomograph for specifying acceptable limits of sinusoidal vibration.
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constant acceleration. In this case peak values are plotted, but rms values are often
plotted as well.

By sketching an enclosed shape on this plot, such as the one indicated by the
dark lines in Figure 1.8, the ranges of acceptable maximum displacement, velocities,
and acceleration can easily be indicated. This type of plot is called a nomograph. Such
nomographs are useful for any type of single-degree-of-freedom system experienc-
ing harmonic motion, because the construction of the nomograph depends only on
the frequency, w,,, and is independent of specific values of mass or stiffness, but rather
depends only on their ratio and the displacement amplitude. A nomograph is another
way to visualize the relationship between displacement, velocity, and acceleration
summarized in Window 1.3.

Example 1.2.3

In the plot of Figure 1.8, acceptable ranges of vibration for a given device are between
2 and 8 Hz. Marking off the vertical lines corresponding to 2 and 8 Hz on the nomo-
graph allows the relationships between acceleration, velocity, and displacement to be
visualized. If the maximum desired acceleration is 1g (9.8 m/s? or 9800 mm/s?) in a fre-
quency range of 2 to & Hz, and the velocity is limited to 400 mm/s, the peak displacement
will be limited to 30 mm, and the motion of the resulting vibration will be contained
within the borders of the region marked by the dark boundaries in Figure 1.8,

O

Frequencies of concern in mechanical vibration range from fractions of a hertz
to several thousand hertz. Amplitudes range from micrometers up to meters (for sys-
tems such as tall buildings). According to Mansfield (2005), human beings are more
sensitive to acceleration than displacement and easily perceive vibration around 5 Hz
at about 0.01 m/s? (about 0.01 mm), Horizontal vibration is easy to experience near
2 Hz. Work is still on going in attempting to characterize comfort levels for human
vibrations.

1.3 VISCOUS DAMPING

The response of the spring-mass model (Section 1.1) predicts that the system will
oscillate indefinitely. However, everyday observation indicates that most freely os-
cillating systems eventually die out and reduce to zero motion. This experience sug-
gests that the model sketched in Figure 1.5 and the corresponding mathematical
model given by equation (1.2) need to be modified to account for this decaying
motion. The choice of a representative model for the observed decay in an oscillat-
ing system is based partially on physical observation and partially on mathematical
convenience. The theory of differential equations suggests that adding a term to equa-
tion (1.2) of the form ci(r), where c is a constant, will result in a solution x(¢) that dies
out. Physical observation agrees fairly well with this model and is used successfully
to model the damping, or decay, in a variety of mechanical systems. This type of damp-
ing, called viscous damping, is described in detail in this section.
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Case Mounting

Seal point

I \
Mounting
point Orifice ‘ X

Figure 1.9 Schematic of a dashpot that produces a damping force f(t) = cx(r),
where x(¢) is the motion of the case relative to the piston.

While the spring forms a physical model for storing potential energy and hence
causing vibration, the dashpot, or damper, forms the physical model for dissipating en-
ergy and thus damping the response of a mechanical system. An example dashpot
consists of a piston fit into a cylinder filled with oil as indicated in Figure 1.9, This pis-
ton is perforated with holes so that motion of the piston in the oil is possible. The
laminar flow of the oil through the perforations as the piston moves causes a damp-
ing force on this piston. The force is proportional to the velocity of the piston, in a di-
rection opposite that of the piston motion. This damping force, denoted by £, has the
form

f. = cx(t) (1.23)

where ¢ is a constant of proportionality related to the oil viscosity. The constant c,
called the damping coefficient, has units of force per velocity, or N s/m, as it is
customarily written, However, following the strict rules of SI units, the units on
damping can be reduced to kg/s, which states the units on damping in terms of the
fundamental (also called basic) SI units (mass, time, and length).

In the case of the oil-filled dashpot, the constant ¢ can be determined by fluid
principles, However, in most cases, f; is provided by equivalent effects occurring in the
material forming the device. A good example is a block of rubber (which also provides
stiffness f,) such as an automobile motor mount, or the effects of air flowing around
an oscillating mass. In all cases in which the damping force f, is proportional to ve-
locity, the schematic of a dashpot is used to indicate the presence of this force. The
schematic is illustrated in Figure 1.10. The damping coefficient of a system cannot
be measured as simply as the mass or stiffness of a system can be. This is pointed out
in Section 1.6.

Using a simple force balance on the mass of Figure 1.10 in the x direction, the
equation of motion for x(f) becomes

mi =—f, — f, (1.24)
or ’
mi(t) + cx(t) + kx(t) =0 (1.25)
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_Fig_llm 110 Schematic of a single-degree-of-freedom system with viscous damping
indicated by a dashpot.

sulbje(':l to the initial conditions x(0) = x;and #(0) = v,. The forces f.and f} are neg-
ative in equation (1.24) because they appose the motion (positive to the right). Equa-
tion (1.25) and Figure 1.10, referred to as a damped single-degree-of-freedom system
form the topic of Chapters 1 through 3. ,
. To splve the damped system of equation (1 25), the same method used for soly-
ing equation (1.2) is used. In fact, this provides an additional reason to choose [,
to be of the form ci. Let x(t) have the form given in equation (1.13), x(r) = ae“c
Substitution of this form into equation (1.25) yields 1 .

(m\* + o\ + k)aeM = 0 (1.26)
Again, ae™ # 0, 50 that this reduces to a quadratic equation in A of the form
MmN 4 eN + k=0 (1.27)

called the characteristic equation. This is solved using the quadratic formula to yield
the two solutions

4 1
Mz=—5—%—Vc* - dkm (1.28)

2m  2m

Exan.l ination of this expression indicates that the roots \ will be real or complex, de-
pendmg on the value of the discriminant, ¢ — dfm. As long as m, ¢, and k are posi-
tive real numbers, A and A, will be distinet negative real numbers if ¢* — dkm > 0,
On the .other hand, if this discriminant is negative, the roots will be a complex con ju-
gate pair with negative real part, If the discriminant is zero, the two roots \, and X,
are equal negative real numbers. Note that equation (1.15) represents the character-
istic equation for the special undamped case (i.e.,c = 0).

.Il"l examining these three cases, it is convenient to define the crirical damping
coefficient, c,,, by

Co = 2mw,, = 2V km (1.29)
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where w, is the undamped natural frequency in rad/s. Furthermore, the nondimen-

sional number {, called the damping ratio, defined by
s ¢ _ ¢ _ ¢

Cer 2mu’n 2V km

can be used to characterize the three types of solutions to the characteristic equation.

Rewriting the roots given by equation (1.28) yields

}\1‘2 = “ﬁ’-ﬂn + W, V §2 -1 (131)

where it is now clear that the damping ratio { determines whether the roots are com-
plex or real. This in turn determines the nature of the response of the damped single-
degree-of-freedom system. For positive mass, damping, and stiffness coefficients, there
are three cases, which are delineated next.

(1.30)

1.3.1 Underdamped Motion

In this case the damping ratio  is less than 1 (0 < A\ < 1) and the discriminant of
equation (1.31) is negative, resulting in a complex conjugate pair of roots. These are
M =L, — @, V1= 5 (1.32)
and
A = —{w, + 0, V1 - % (1.33)
where j = /=1 and

Vi-gi=VI-2))=Ve-1 (1.34)

Following the same argument as that made for the undamped response of equation
(1.18), the solution of (1.25) is then of the form

x({) = e—iwni(aleﬁ\’l Pt 4. aze—}ﬂ‘“ﬂf) (1.35)

where a, and a, are arbitrary complex-valued constants of integration to be deter-
mined by the initial conditions. Using the Euler relations (see Window 1.5), this can
be written as

x(f) = Ae sin(wyt + $) (1.36)

where A and ¢ are constants of integration and w,, called the damped natural

frequency, is given by
wy = (ﬁ"m (137)

in units of rad/s. K
The constants A and ¢ are evaluated using the initial conditions in exactly the
same fashion as they were for the undamped system as indicated in equations (1.7)
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Window 1.5
Euler Relations and the Underdamped Solution

—
An underdamped solution of m% + c% + kx = 0 to nonzero initial conditions is
of the form

x(t) = ayeM + gyett
where \; and \, are complex numbers of the form

Nyi== —Ewu + mn’j and Ay = —Lw, — wdj

where 0, = Vk/m, [ = c/(2me,), ©; = 0, V1 — ¢, and j = V/=1. The
two constants a; and a, are complex numbers and hence represent four un-
known constants rather than the two constants of integration required to solve
a second-order differential equation, This demands that the two complex num-
be-rs a, and a, be conjugate pairs so that x(¢) depends only on two undeter-
mined constants. Substitution of the foregoing values of A; into the solution x()
yields
x(t) = e a et + ayeoilt)

Using the Euler relations e = cos¢ + jsin¢ and e = cosd — Jsind, x(£)
becomes

x(t) =e c"’”‘[(al + az) coswyt + f(m — a,)sin wdt]
Choosing the real numbers 4, = a; + a, and A= (al — a,)j, this becomes
x(t) = et A sinwyt + Azcosm,,t)

which is :'r.-:al valued. Defining the constant A = V/ A} + A% and the angle
¢ = tan "' (Az/4;) so that A, = Acosd and A, = A sin¢, the form of x(¢)
becomes [recall that sina cosh + cosasinh = sin(a + b)]

x(t) = A sin(wgt + ¢)

vyhcra A and ¢ are the constants of integration to be determined from the ini-
tial conditions. Complex numbers are reviewed in Appendix A.

and (1.8). Set# = 0in equation (1.36) to get x, = A sin d. Differentiating (1.36) yields
x(t) = —to, Ae " sin(w t + $) + wyAeted cos(wyt + ¢)
Let7 = 0and A = x/sin & in this last expression to get
x(0) = vy = ~Lw,xy + x,0,cotd
Solving this last expression for ¢ yields
XpWq

tangp = —————
Vo + gh}_.,.fn
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Displacement (mm)

1.0 —
/.\ --hhi‘“ == Time (s)
0.0 \j U A
104
4 Figure 1.11 Response of
I an underdamped system: 0 < § < 1.
With this value of &, the sine becomes
XoWg

sindg =
V ('Uu + Emnxu)z + (xo‘”d)z

Thus the value of A and ¢ are determined to be

e \/Eu‘*‘ {w,Xo) + (JCnmd)zi’ o= tan—lﬂ_ (1.38)

(Dzl Uy * cmnxﬂ

where x, and v, are the initial displacement and velocity. A plot"of_ x(r} versus ¢ for
this underdamped case is given in Figure 1.11. Note that the motion is oscillatory
with decaying amplitude. The damping ratio { determines the lrate of decay. The re-
sponse illustrated in Figure 1.11 is exhibited in many mechanical systems and con-
stitutes the most common case. As a check on the correctness of equation (1.38),
note that, if { = 0in the expressions for A and ¢, the undamped relations of equa-
tion (1.9) result.

1.3.2 Overdamped Motion

In this case, the damping ratio is greater than 1 ({ > 1).The discriminant of equation
(1.31) is positive, resulting in a pair of distinct real roots. These are

o= —lw, — 0, VE -1 (1.39)

and S ‘
A = —Lw, + w,’V 1;2 =] (140)
The solution of equation (1.25) then becomes
x(1) = e—gm"i(ale—m“v’;z;f; + azeﬂn,,\/;T—l':) (1.41)

which represents a nonoscillatory response. Again, the constants of integration 4, an'd
a, are determined by the initial conditions indicated in equations (1.7) and Q 8).In this
nonoscillatory case, the constants of integration arc real valued and are given by

= —Uy + (71_-’, + VE2 - ])(ﬁ)".xu
“r 20,V ~ 1

(1.42)
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Displacement (mm)

049 1. x%=03, ;=0
1 2. Xyp= G, Vy= 1
02 - \ 3, x%p=—0.3, vy=0
2
0.0
—02 3 Figure L.12 Response of an over-
dainped system, { > 1, for two values
of the initial displacement and zero
0.4 T 1 ; - T 1 Time (s)  initial velocity and one case with
0 X 2 3 4 5 6 xo = 0andyy = 1.
and

v+ (L + VI - 1o,x (1.43)
2w, \/’Lz———l '

Typical responses are plotted in Figure 1.12, where it is clear that motion does not in-
volve oscillation. An overdamped system does not oscillate but rather returns to its
rest position exponentially.

ay =

1.3.3 Critically Damped Motion

In this last case, the damping ratio is exactly 1 ({ = 1) and the discriminant of equation
(1.31) is identically zero. This corresponds to the value of { that separates oscillatory mo-
tion from nonoscillatory motion. Since the roots are repeated, they have the value
M= =, (1.44)
The solution takes the form
x(t) = (@, + agt)e™ (1.45)

where, again, the constants a; and a4, are determined by the initial conditions. Substi-
tuting the initial displacement into equation (1.45) and the initial velocity into the
derivative of equation (1.45) yields

ay = Xg, =1 * w, Xy (146)

Critically damped motion is plotted in Figure 1.13 for two different values of initial
conditions. It should be noted that critically damped systems can be thought of in

Displacement (mm)

06 4 e | L. xy = 0.4 mm, vy = + Imm/s
17 Mg 2. x5 = 04 mm,vy; = 0 mm/s
04 L hE 3. x5 = 04 mm, vg = —1mm/s

N Figure 1.13 Response of a
0.2 - \\ 3 critically damped system for
i three different initial velocities.
....... - The system properties are
0 T ~——r === == Time (s) k = 225 N/m, m = 100 kg, and

—0.1 0.5 1 15 2 235 3 L5 (=1
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several ways. They represent systems with the smallest value of damping rate that
yields nonoscillatory motion. Critical damping can also be thought of as the case that
separates nonoscillation from oscillation, or the value of damping that provides the
tastest return to zero without oscillation.

Example 1.3.1

Recall the small spring of Example 1.2.1 (L.e.,w, = 132 rad/s). The damping rate of the
spring is measured to be 0.11 kg/s. Calculate the damping ratio and determine if the
free motion of the spring-bolt system is overdamped, underdamped, or critically damped.

Solution From Example 1.2.1, m = 49.2 X 107 kg and k = 857.8 N/m. Using the
definition of the critical damping coefficient of equation (1.29) and these values for m
and k yields

o = 2Vhm = 2V/ (8578 N/m)(49.2 % 107 kg)
= 12.993 kg/s
If ¢ is measured to be 0.11 kg/s, the critical damping ratio becomes

o 011 (kehs)
= o T 12,993 (kgfs) 008

or 0.85% damping. Since £ is less than 1, the system is underdamped. The motion result-
ing from giving the spring-bolt system a small displacement will be oscillatory.

m}

The single-degree-of-freedom damped system of equation (1.25) is often writ-
ten in a standard form. This is obtained by dividing equation (1.25) by the mass, m.
This yields

i+£x+£x:0 (1.47)
m m

The coefficient of x(¢) is obviously w2, the undamped natural frequency squared. A
little manipulation illustrates that the coefficient of the velocity X is 2{w,. Thus equa-
tion (1.47) can be written as

(1) + 2Lw, x(1) + 0ix(t) =0 (1.48)

In this standard form, the values of the natural frequency and the damping ratio are
more obvious.

Example 1.3.2

The human leg has a measured natural frequency of around 20 Hz when in its rigid
(knee-locked) position in the longitudinal direction (i.e., along the length of the bone)
with a damping ratio of { = 0.224, Calculate the response of the tip of the leg bone to
an initial velocity of v, = 0.6 m/s and zero initial displacement (this would correspond
to the vibration induced while landing on your feet, with your knees locked from a height
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of 18 mm) and plot the response. What is the maximum acceleration experienced by the
leg assuming no damping?

Solution The damping ratio is { = 0.224 < 1, so the system is clearly underdamped.
20 cycles 217 rad

The natural frequency is o, = — = The ds
quency is w, T & v 125.66 rad/s. The damped natural

frequency is w, = 125.66V/1 ~ (0.244)7 = 122.467 rad/s. Using cquation (1.38) with
vy = 0.6 m/s and x; = 0 yields

V(06 + (0.224)(125.66)(0)F + (0)(122.467)
122.467 =k
b= um—’( iC) ) =0

Vo + Lmil({])‘

A=

005 m

The response as given by equation (1.36) is
x(t) = 0.005¢ ¥ gin (122.4671)

'ljhis is plotted in Figure 1.14.To find the maximum acceleration rate that the leg expe-
tiences for zero damping, use the undamped case of equation (1.9);

B2
A=, [xt+ (m—“) L0, = 125.66, 25 = 0.6, %) = 0

K
A e Qém
u}" h)l]

—mf,([:;q)’ = (0.6)(125.66 m/s?) = 75.396 m/s*

"

_4_

-5 T T T T T T T Time (s)
0 0.02 0.04 0.06 0.08 0.1 012 0.14

Figure 114 Plot of displacement versus time for the leg bone of Example 1.3.2.



28 Introduction to Vibration and the Free Response Chap. 1

In terms of g = 9.81 m/s% this becomes

75.396 m/s’

oglmye & o8es

maximum acceleration =

Example 1.3.3
Compute the form of the response of an underdamped system using the Cartesian form
of the solution given in Window 1.5.

Solution From basic trigonometry sin(x + y) = sinxcosy + cosxsiny. Applying
this to equation (1.36) with x = w,tand y = & yields

x(t) = Ae @ sin{wgt + ) = e V(A sino,t + A;cos wyl)
where A, = cosd and A, = sin, as indicated in Window 1.5. Evaluating the initial
conditions yields
x(0) = xo = ¢’(A;sin0 + A, cos0)
Solving yields A, = x,. Next differentiate x(z) to get
% = ~Lw,e (A sinwgt + Aycos wgt) + wee A coswyt — Ay sinw,t)
Applying the initial velocity condition yields
2o = %(0) = —Lw,{A; sin0 + x;c0s0) + 0 (A;cos0 — xgsin0)
Solving this last expression yields
4 %ot oum
wq
Thus the free response in Cartesian form becomes

x(t) = e“"'"’(

Yy + (w, Xy .
gLsmm,;f + X cosmdr)
Wg

1.4 MODELING AND ENERGY METHODS

Modeling is the art or process of writing down an equation, or system of equati_ons,
to describe the motion of a physical device. For example, equation (1.2) was obtained
by modeling the spring-mass system of Figure 1.5. By summing the forces acting on
the mass in the x direction and employing the experimental evidence of the mathe-
matical model of the force in a spring given by Figure 1.4, equation (1.2) can be ob-
tained. The success of this model is determined by how well the solution of
equation (1.2) predicts the observed behavior of the system. This comparison be-
tween the vibration response of a device and the response predicted by the analyti-
cal model is discussed in Section 1.6. The majority of this book is devoted to the
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analysis of vibration models. However, two methods of modeling—Newton’s law and
energy methods—are presented in this section. More comprehensive treatments of
modeling can be found in Doebelin (1980), Shames (1980, 1989), and Cannon (1967),
for example. The best reference for modeling is the text you used to study dynamics.

The force summation method is used in the previous sections and should be
familiar to the reader from introductory dynamics (sce, e.g., Shames, 1980), Newton's
law of motion (called Newton’s second law) states that the rate of change of the ab-
solute momentum of the mass center is proportional to the net applied force vector
and acts in a direction of the net force. For systems with constant mass (such as those
considered here) moving in only one direction, the rate of change of momentum
becomes the scalar relation

d . :

— (mx) = m¥

4 (M%)

which is often called the inertia force. The physical device of interest is examined by
noting the forces acting on the device. The forces are then summed (as vectors) to pro-
duce a dynamic equation following Newton’s law. For motion in the x direction only,
this becomes the scalar equation

> fu=mi (1.49)

where f,; denotes the ith force acting on the mass m in the x direction and the sum-
mation is over the number of such forces. In the first three chapters, only single-
degree-of-freedom systems moving in one direction are considered; thus Newton's law
takes on a scalar nature. In more practical problems with many degrees of freedom,
energy considerations can be combined with the concepts of virtual work to produce
Lagrange’s equations, as discussed in Section 4.7. Lagrange’s equations also provide
an energy-based alternative to summing forces to derive equations of motion.

For rigid bodies in plane motion (i.e., rigid bodies for which all the forces acting
on them are coplanar in a plane perpendicular to a principal axis) and free to rotate,
the sum of the applied torques is equal to the rate of change of angular momentum
of the mass, This is expressed as

> My = Jb (1.50)

where My, are the torques acting on the object through point 0,/ is the moment of
inertia (also denoted /,) about the rotation axis, and 0 is the angle of rotation. The sum
of moments method was used in Example 1.1.1 to find the equation of motion of a
pendulum and is discussed in more detail in Example 1.5.1.

If the forces or torques acting on an object or mechanical part are difficult to
determine, an energy approach may be more efficient. In this method the differen-
tial equation of motion is established by using the principle of energy conservation.
This principle is equivalent to Newton’s law for conservative systems and states that
the sum of the potential energy and kinetic energy of a particle remains constant at
each instant of time throughout the particle’s motion. Integrating Newton’s law
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(F = mi) over an increment of displacement and identifying the work done in a
conservative field as the change in potential energy yields

U] - Uz = Tz = T[ (]51)

where U, and U, represent the particle’s potential energy at the iigxes ty and f,,
respectively, and T, and T, represent the particle’s Kinetic energy at times 7, and f,,
respectively. Equation (1.51) can be rearranged to yield

T + U = constant (1.52)

where T and U denote the total kinetic and potential energy. respectively.

For periodic motion, if #; is chosen to be the time at which the movipg mass
passes through its static equilibrium position, U; can be set to zero at' that time, and
if 1, is chosen as the time at which the mass undergoes its maximum displacement so
that its velocity is zero (T, = 0), equation (1.51) yields

T =T, (1.53)

Since the reference potential energy U, is zero, U; in equation (1 .53)‘ is the ma)_(imum
value of polential energy in the system. Because the energy in thlls system is con-
served, T, must also be a maximum value so that equation (1.53) yields

Tmax = Umax (1 ‘54)

for conservative systems undergoing periodic motion. Since energy is a scalar quan-
tity, using the conservation of energy yields a possibility of o}')talnln g the equation of
motion of a system without using force or moment summations. '

Equations (1.52), (1.53), and (1.54) are three statements (_)f the conservation
of energy. Each of these can be used to determine the equation of motion of a
spring-mass system. As an illustration, consider the energy of the spring-mass system
of Figure 1.15, hanging in a gravitational field of strength g. The effect of gddmg
the mass m to the massless spring of stiffness k is to stretch the spring from its rest
position at 0 to the static equilibrium position A. The total po_tential energy of the
spring-mass system is the sum of the potential energy of the spring (or strain energy;
see, e.g., Shames, 1989) and the gravitational potential energy. The potential energy
of the spring is given by

Uspring = 3k(A + x)? (1.55)

k A kA
Figure 1.15 (a) A spring-mass system
0 = - 0 . . .
l B hanging in a gravitational field. Here A is
the static equilibrium position and x is
mg  the displacement from equilibrium.
| (b) The free-body diagram for static
Ll(f) (b) equilibrium.
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The gravitational potential cncrgy is

U= —mgx (1.56)

where the minus sign indicates that x = 0 is the reference for zero potential energy.
The kinetic energy of the system is
T =imi? (1.57)

Substituting these energy expressions into equation (1.52) yields

fmi?

— mgx + $k(A + x)? = constant (1.58)
Differentiating this expression with respect to time yields
i(mi + kx) + 2(kA — mg) =0 (1.59)

Since the static force balance on the mass from Figure 1.15(b) yields the fact that
kA = mg, equation (1.59) becomes

x(mi + kx) =0 (1.60)

The velocity & cannot be zero for all time; otherwise, x(¢) = constant and no vibra-
tion would be possible. Hence equation (1.60) yields the standard equation of motion
mi + kx =0 (1.61)

This procedure is called the energy method of obtaining the equation of motion.
The energy method can also be used to obtain the frequency of vibration di-
rectly for conservative systems that are oscillatory. The maximum value of sine (and
cosine) is 1. Hence, from equations (1.3) and (1.4), the maximum displacement is
A and the maximum velocity is w, A. Substitution of these maximum values into the
expression for Uy, and T, and using the energy equation (1.54) yields

im(w,A) = kA (1.62)
Solving equation (1.62) for o, yields the standard natural frequency relation », =
Vik/m.
Example 1.4.1

Figure 1.16 is a simple single degree of freedom model of a wheel mounted on a spring.
The friction in the system is such that the wheel rolls without slipping. Calculate the
natural frequency of oscillation using the energy method. Assume that no energy is lost
during the contact.

0 ~—|

Figure L16 The rotation of the wheel

|
b k (of radius 7) is given by 8() and the
linear displacement is denoted by x(1).
m,J The wheel has mass m and moment of
TrrrriiirrrrirrirsTy inertia /, and the spring has stiffness k.
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Solution From introductory dynamics, the rotational kinetic energy of the wheel is
T, = 3J6%, where J is the mass moment of inertia of the wheel and 8 = (1) is the angle
of rotation of the wheel. This assumes that the wheel moves relative to the surface with-
out slipping (so that no energy is lost at contact). The translational kinetic energy of the
wheel is Ty = $mi%
The rotation § and the translation x are related by x = r8. Thus & = r and
Ty = 373%/r%. At maximum energy x = A and & = w, A, so that
T s 17 .

Topax = = MXmay T =5 X
max max T 572

1
- 2Y,.2 A2
2 max = 3 (m + J/r )l A

and
=1 2 =1 2
Umax - zkxnmx - ?kA

Using conservation of energy in the form of equation (1.54) yields T, = Uy, OF
1
-;-(m + %)mﬁ - Ek

Solving this last expression for w, yields

_\/ k
e m+ J/r

the desired [requency of oscillation of the suspension system.

The denominator in the frequency expression derived in this example is called
the effective mass because the term (m + J /r*) has the same effect on the natural fre-
quency as does a mass of value (m + J/r?).

a

Example 1.4.2

Determine the equation of motion of the simple pendulum shown in Example 1.1.1 using
the energy method.

Solution Several assumptions must first be made to ensure simple behavior (a more
complicated version is considered in Example 1.4.6). Using the same assumptions given
in Example 1.1.1, the mass moment of inertia about point 0 is
Jo = mi®

The angular displacement 0(r) is measured from the static equilibrium or rest position
of the pendulum. The kinetic energy of the system is

T = 14,67 = $mi??
The potential energy of the system is

U = mgl(1 — cosB)
since /(1 — cos @) is the geometric change in elevation of the pendulum mass. Substitu-

tion of these expressions for the kinetic and potential energy into equation (1.52) and
differentiating yields

%[%m!zﬁg + mgl(1 — cos0)] =0
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or
mi?68 + mgi(sin6)d = 0
Factoring out 6 yields
8(mid + mglsing) = 0
Since O(¢) cannot be zero for all time, this becomes
mil* + mglsing = 0

or
§+5§sin9 =0

This is a nonlinear equation in 8 and is discussed in Section 1.10 and is derived from
Newton's law in Example 1.1.1. However, here, since sin 8 can be approximated by 6 for
small angles, the linear equation of motion for the pendulum becomes
i+%0=0
!

This corresponds to an oscillation with natural frequency w, = g/ for initial condi-
tions such that # remains small, as defined by the approximation sin 8 ~ 0, as discussed
in Example 1.1.1.

O

Example 1.4.3

Determine the equation of motion of the shaft and disk illustrated in Window 1.1 using
the energy method.

Solution The shaft and disk of Window 1.1 are modeled as a rod stiffness in twist-
ing, resulting in torsional motion, The shaft, or rod, exhibits a torque in twisting pro-
portional to the angle of twist 6(7). The potential energy associated with the torsional
spring stiffness is U = %kﬂz, where the stiffness coefficient & is determined much like
the method used to determine the spring stiffness in translation, as discussed in Sec-
tion 1.1. The angle 8(¢) is measured from the static equilibrium, or rest, position. The
kinetic energy associated with the disk of mass moment of inertia J is T = 3 /6% This
assumes that the inertia of the rod is much smaller than that of the disk and can be
neglected.

Substitution of these expressions for the kinetic and potential energy into equa-
tion (1.52) and differentiating yields

d 2 5 3
= G707 + 3k0%) = (70 + k6)d = 0
so that the eqﬁation of motion becomes (because § # 0)

Jo+ k0=0

This is the equation of motion for torsional vibration of a disk on a shaft. The natural
frequency of vibration is w, = Vk/7T.
O

¥
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Example 1.4.4

Model the mass of the spring of the system shown in Figure 1.17 and determine the
effect of including the mass of the spring on the value of the natural frequency.

o Z

mg k

h

y+dy

m 1 Figure 1.17 Spring-mass system with a
x(1) spring of nonnegligible mass, i,.

Solution One approach to considering the mass of the spring in a?alyfzing the system
vibration response is to calculate the kinetic energy of the spring. (xl)nsxder the kl_netlc
energy of the element dy of the spring. If m; is the total mass of the spring, (m,//) dly is the
mass of the element dy. The velocity of this element, denoted v, may be approxlmflted
by assuming that the velocity at any point varies linearly over the length of the spring:

¥
Yoy = Tx[r)

The total kinetic energy of the spring is the kinetic energy of the element dy integrated
over the length of the spring:

1 [tm [y T
Tspring:§.£ T[{ I:] dy

()
2\ 3

From the form of this expression, the effective mass of the spring i:«f ny ./3, or one-third
of that of the spring. Following the energy method, the maximum kinetic energy of the
system is thus

1 e
Trmu: = E (”7 + 3 )N%Az

Equating this to the maximum potential energy, s kA% yields the fact that the natural fre-

quency of the system is
S .
©r =\ + m,/3

Thus including the effects of the mass of the spring in the system decreases the natural
frequency. Note that if the mass of the spring is much smaller than the system mass n1,
the effect of the spring’s mass on the natural frequency is negligible. )
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Example 1.4.5

Fluid systems, as well as solid systems, exhibit vibration. Calculate the natural frequency
of oscillation of the fluid in the U-tube manometer illustrated in Figure 1.18 using the
energy method.

- |-

v = weight density (volume)
A = cross-sectional area

Figure 1,18  U-tube manometer
I = length of fluid

consisting of a fluid moving in a tube.

Solution The fluid has weight density v (i.e., the specific weight). The restoring force
is provided by gravity. The potential energy of the fluid [(weight)(displacement of c.g.)]
is 0.5(yAx)x in each column, so that the total change in potential energy is

U=U, — Uy = 3yAx* — (—3vAx?) = yAx®
The change in kinetic energy is

[ 4
T =}._AJ(]':2_0) _L.A]_Ij:!

2 T2 g
Equating the change in potential energy to the change in kinetic energy yields
1 Al
14 o a0
28

Assuming an oscillating motion of the form x(¢) = X sin(w,t + ¢) and evaluating this
expression for maximum velocity and position yields

12

2y _ 2
ng,,A X

where X is used to denote the amplitude of vibration. Solving for w,, yields

2
@, = T
which is the natural frequency of oscillation of the fluid in the tube. Note that it depends
only on the acceleration due to gravity and the length of the fluid. Vibration of fluids in-
side mechanical containers (called sloshing) occurs in gas tanks in both automobiles and
airplanes and forms an important application of vibration analysis.

|‘- EI
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Example 1.4.6

Consider the compound pendulum of Figure 1.19 pinned to rotate around point O.
Derive the equation of motion using Euler’s law (sum of moments as in Example 1.1.1).
A compound pendulum is any rigid body pinned at a point other than its center of
mass. If the only force acting on the system is gravity, then it will oscillate around that
point and behave like a pendulum. The purpose of this example is to determine the
equation of motion and to introduce the interesting dynamic property of the center of
percussion,

\&/

oy

(&)

Figure 1.19 (a) Compound pendulum pivoted to swing about point O under the
influence of gravity. (b) Free-body diagram.

Solution A compound pendulum results from a simple pendulum configuration
(Examples 1.1.1 and 1.4.2) if there is a significant mass distribution along its length. In
the figure G is the center of mass, O is the pivot point, and 6(r) is the angular displace-
ment of the centerline of the pendulum of mass m and moment of inertia J, measured
about the z-axis at point O. Point C is the center of percussion, which is defined as the
distance g, along the centerline such that a simple pendulum (a massless rod pivoted at
zero with mass m at its tip as in Example 1.4.2) of radius g, has the same period. Hence

_Jo
%= Jur
where r is the distance from the pivot point to the center of mass. Note that the pivot point
O and the center of percussion C can be interchanged to produce a pendulum with the
same frequency. The radius of gyration, ky,is the radius of a ring that has the same mo-
ment of inertia as the rigid body does. The radius of gyration and center of percussion
are related by

gor = ki

Sec. 1.4
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Consider the equation of motion of the compound pendulu i i
: ! ! m. Takin, s
e e p p g moments about its
2 My = Tgb(r) = —mgrsin0(r)
For small 6(r) this nonlinear equation becomes
Job{t) + mgro() =0

The natural frequency of oscillation becomes

mgr
O =T
Q

This frequency can be expressed in terms of the center of percussion as

{8
e N
o

whlclT is just the frequency of a simple pendulum of length gy. This can be seen by
examining the forces acting on the simple (massless) pendulum of Example 1.1.1 and
Figure 1.20(a) or recalling the result obtained in Example 1.1.1 and 1.4.2.

Summing moments about Q yiclds

ml*) = —mgl sing

or after approximating sin 0 with 0,
b+ f-ﬁ =0

Th‘is yields the simple pendulum frequency of w, = V/g/I, which is equivalent to
that obtained previously for the compound pendulum using / = ¢,

Next copsgder tlhe uniformly shaped compound pendulum of Figure 1.20(b) of
length 1. Here it is desired to caleulate the center of percussion and radius of gyration.

Figure 1.20  (a) Simple pendulum
consisting of a massless rod pivoted at
point @ with a mass attached to its tip,
(b) Compound pendulum consisting of a
shall with a center of mass at point GG.
Here f, is the pin reaction force,

mg mg

(a)
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The mass moment of inertia about point O is Jp, so that summing moments
about O yields

3 [
Job = —mgismﬂ

since the mass is assumed to be evenly distributed and the center of massisatr = 1/2. The
moment of inertia for a slender rod about Q is J, = % mi*; hence the equation of motion is

ml? .. 1
—0 + —f =
3 mg 6=0
where sin 6 has again been approximated by 6, assuming small motion. This becomes
w = HE
8+=-=-6=0
21
so that the natural frequency is
3E
B Eafo
n 2 [
The center of percussion becomes
Jo 2
= T3
and the radius of gyration becomes
{
ko = Vigor = 3

These positions are marked on Figure 1.20(b).

The center of percussion and pivot point play a significant role in designing an
automobile. The axle of the front wheels of an automobile is considered as the pivot
point of a compound pendulum parallel to the road. If the back wheels hit a bump, the
frequency of oscillation of the center of percussion will annoy passengers. Hence auto-
mobiles are designed such that the center of percussion falls over the axle and suspen-
sion system, away from passengers.

The concept of center of percussion is used in many swinging, or pendulum-like,
situations. The center of percussion is also the point on the pendulum where it may be
struck without causing motion at the point of support, This notion is used to define the
“sweet spot” in a tennis racket or baseball bat and defines where one should hold a
hammer, If the hammer is shaped so that the impact point is at the center of percussion
(i.e., the hammer’s head), then no force is felt if it is held at the “end” of the pendulum.
If a batter swings a bat such that the ball hits the center of percussion, the batter feels
good because not much force is transmitted to the hands. Hit at other spots on the bat

and the hands will experience the “hit” much more.
]

The energy method can be used in two ways. The first is to equate the maximum
kinetic energy to the maximum potential energy (equation 1.54) while assuming
harmonic motion. This yields the natural frequency without writing out the equation
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of motion., as illustrated in equation (1.62). Beyond the simple calculation of fre-
quency, this approach has limited use. However, the second use of the energy method
invt_a!v_es deriving the equation of motion from the conservation of energy by differ-
entiating eguation (1.52) with respect to time. This concept is more useful and is
ﬂlue'atrated in Examples 1.4.2 and 1.4.3. The concept of using energy quantities to
derive the equations of motion can be extended to more complicated systems with
many degrees of freedom, such as those discussed in Chapters 4 (multiple-degree-of-
freedom systems) and 6 (distributed parameter systems). The method is called
Lagrang.e’? method and is simply stated here to introduce the concept. Lagrange’s
method is introduced more formally in Chapter 4, where multiple-degree-of-freedom
systems make the power of Lagrange’s method obvious. '
Lagrange’s method for conservative systems consists of defining the Lagrangian

L,of the system defined by L. = T — U. Here T'is the total kinctic energy of the sys:
tem and Uis the total potential energy in the system, both stated in terms of “gener-
alle:d” coordinates. Generalized coordinates are denoted “qi(r)” and will be formally
.dcfmed later. Here it is sufficient to state that ¢; would be x in Example 1.4.4 and ¢
in Ex:_imple 1.4.3. Then Lagrange’s method for conservative systems states that the
equations of motion for the free response of an undamped system result from

d ( af,) 9L 0
de\og;) aq, (163)
Substitution of the expression for L into equation (1.63) yields
d ( aT) _T U
dq; g, B

dr
Here one equation refiults for each subscript, i. In the case of the single-degree-of-
freedom systems considered in this chapter, there is only one coordinate (i = 1) and
only one equation of motion will result.

%, (1.64)

Example 1.4.7

Use Lagrar?ge‘s method to derive the equation of motion of the simple spring-mass
system of Figure 1.5. Compare this derivation to using the energy method described in
Examples 1.4.2 and 1.4.3.

Solution In the case of the simple spring—mass system the kinetic and potential energy
are, respectively,

2 1

T ==mx and U= Ekxl

2

Here the generalized coordinate g,(f) is just the displacement x(r). FGIIDMng the
Lagrange approach, the Lagrange equation (1.64) becomes

d
(”)_”Jr%' d

i\at) T a

a1
) + —| =kx? | = m¥ -
mx) ax(zkx) mX+kx=0
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This, of course, agrees with the approach of Newton’s sum of forces. Next consider the
energy method, which starts with 7' + U = constant. Taking the total derivative with
respect to time yields

df1 1 R -
E(Emiz + Ekf) = mi¥ + kxk = 2(m¥ + kx) =0 = m¥ + kx =0
since the velocity cannot be zero for all time. Thus the two energy-based approaches
yield the same result and that result is equivalent to that obtained by Newton’s sum of
forces. Note that in order to follow the above calculations it is important to remember
the difference between total derivatives and partial derivatives and their respective rules

of calculation from calculus.
O

The Lagrange approach presented here is for the free response of undamped
systems (conservative systems) and has been applied to only a single-degree-of-
freedom system. However, the method is general and can be expanded to include the
forced response and damping,

So far, three basic systems have been modeled: rectilinear or translational motion
of a spring-mass system, torsional motion of a disk-shaft system, and the pendulum
motion of a suspended mass system. Each of these motions commonly experiences
energy dissipation of some form, The viscous damping model of Section 1.3 developed
for translational motion can be applied directly to both torsional and pendulum
motion. In the case of torsional motion of the shaft, the energy dissipation is assumed
to come from heating of the material and/or air resistance. Sometimes, as in the case
of using the rod and disk to model an automobile crankshaft or camshaft, the damping
is assumed to come from the oil that surrounds the disk and shaft, or bearings that
support the shaft.

In all three cases, the damping is modeled as proportional to velocity
(ie., f, = cxor f, = c8). The equations of motion are then of the form indicated in
Table1.1.Each of these equations can be expressed as a damped linear oscillator given
in the form of equation (1.48). Hence each of these three systems is characterized
by a natural frequency and a damping ratio. Each of these three systems has a
solution based on the nature of the damping ratio £, as discussed in Section 1.3.

TABLE1.1 A COMPARISON OF RECTILINEAR AND ROTATIONAL
SYSTEMS AND A SUMMARY OF UNITS

Rectilinear Torsional/pendulum
¥ (m) 0 (rad)

Spring force kx ko

Damping force cx cb

Inertia force my Ji

Equation of motion mitck+hkx=0 Ji+cb+ko=0

Stiffness units N/m N+m/rad

Damping units N-s/m, kg/s m*N-s/rad

Inertia units kg kg m?/rad

Force/torque N = kg-m/s* N-m = kg m?/s*

Sec. 1.5 Stiffness
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1.5 STIFFNESS

Th.e stiffness in a spring, introduced in Section 1.1, can be related more directly to ma-
teflal and geometric properties of the spring. This section introduces the relation-
sh1p§ between stiffness, elastic modulus, and geometry of various types of springs
alnd Jl]ustrgtes various situations that can lead to simple harmonic mot]:;o;'l A qpring-
Ilk'e behaw.or results from a variety of configurations, including longitudirllal ﬁfatiogn
(vibration in the direction of the length), transverse motion (vibration perpendicu-
lar to the length),and torsional motion (vibrationrotating around the length) Cponsidcr
again the s:tiffness of the spring introduced in Section 1.1. A spring is gener‘all made
of an elastic material. For a slender elastic material of length /, cross-sectional Zrea A

and elastic modulus E (or Young’s modulus), the sti i
: ulu: : stiffness of the bar fi i
along its length is given by : R

_EA

=% (1.65)

T li:is describes the spring constant for the vibration problem illustrated in Figure 1.21
where the mass of the rod is ignored (or very small relative to the mass m in the
figure). The modulus £ has the units of pascal (denoted Pa), which are N/m?2 The
modulus for several common materials is given in Table 1.2,

Next consider a twisting motion with a simi i i
‘ con: ] similar rod of circular cross section, as
illustrated in Figure 1.22, In this case the rod possesses a polar moment of inertia J P

A

|4 £ = elastic modulus
m A = cross-sectional area 5
I = length of bar l"lgu}-e 1:21 Stiffness associated with the
X0 x(f) = deflection loPgrtur:Imal vibration of a slender
prismatic bar,

TABLE 1.2 PHYSICAL CONSTANTS FOR SOME COMMON MATERIALS

Young’s modulus, Density, Shear modulus
Material E(N/m?) (ke/m)  G(N/m})
S[eel. | 2.0 x 101 7.8 x 10° 8.0 x 10"
Aluminum 71 x 10'° 27 x 100 2.67 x 100
Brass 10.0 x 10 85 X 10°  3.68 x 101
Copper 6.0 X 10 24 x 10° 222 x 101
Concrete 3.8 x 10° 1.3 x 10° —
Rubber 23 x 10° 1110 821 x 108
Plywood 5.4 % 10° 6.0 x 100
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GJ
P_ = stifiness of rod

k=
J = mass moment of inertia of the disk
G = shear modulus of rigidity of the rod
Jp = polar moment of inertia of the rod
6(0) [ = length of rod
6 = angular displacement

a(r)

Figure 122 Stiffness associated with the torsional vibration of a shaft.

and (shear) modulus of rigidity, G (see Table 1.2). For tlhc casezof a wire or shaft_ of
diameter d, Jp = wd"/32. The modulus of rigidity has units N/m”". The torsional stiff-
ness is (recall Window 1.1)
. (1.66)
‘ I
which is used to describe the vibration problem illustrated in Figure 1.22, »lvhere the
mass of the shaft is ignored. In the figure, o) represents the angular Posﬂmn of the
chaft relative to its equilibrium position. The disk of 1_‘ad1us r anfi rot'.l:\txonal moment
of inertia J will vibrate around the equilibrium position 8(0) with stiffness GJp/l.
Example 1.5.1 -
Calculate the natural frequency of oscillation of the torsional system given in Figure 1.22.

Solution Using the moment equation (1.50), the equation of motion for this system is

Té(t) = —ke(r)
This may be written as
& k
B(r) + 79(1) =0

This agrees with the result obtained using the‘energy methed as indicated in Exam-
ple 1.4.3.This indicates an oscillatory motion with frequency

W, = ; = ?‘

i i ith a diameter of 0.5 cm. If the
Suppose that the shaft is made of steel and is 2 m long wi had
disiljcphas mass moment of inertia J = 0.5 kg m? and considering that the shear modu-
lus of steel is G = 8 X 10" N/m? the frequency can be calculated by

kGl (8%10°N/m?)[m(05 X 102 m)*/32]

J f] (2m)(0.5 kg-m?)
= 4.9 (rad®/s?)

2=
n

)

Thus the natural frequency is @, = 2.2 rad/s. .
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2R
v
y
‘—o x(1)
d = diameter of spring material .
2R = diameter of turns _ Gd
n = number of turns G4n R’ Figure 1.23  Stiffness associated with a
x(f) = deflection helical spring.

Consider the helical spring of Figure 1.23. In this figure the deflection of the
spring is along the axis of the coil. The stiffness is actually dependent on the “twist”
of the metal rod forming this spring, The stiffness is a function of the shear modulus G,
the diameter of the rod, the diameter of the coils, and the number of coils. The stiff-
ness has the value

_ Gd*
64nR?

The helical-shaped spring is very common, Some examples are the spring inside a
retractable ballpoint pen and the spring contained in the front suspension of an
automobile.

Next consider the transverse vibration of the end of a “leaf” spring illustrated
in Figure 1.24. This type of spring behavior is similar to the rear suspension of an au-
tomobile as well as the wings of some aircraft. In the figure, [ is the length of the
beam, E is the elastic (Young’s) modulus of the beam, and [ is the (area) moment of
inertia of the cross-sectional area. The mass m at the tip of the beam will oscillate with

frequency
3 \/ﬁ
"“Nm N 1.68
¢ \/; mi® (1.68)

in the direction perpendicular to the length of the beam x(1).

(1.67)

e s

N T

x(D) Figure 1.24 Beam stiffness
E = elastic modulus associated with the transverse
[ = length of beam vibration of the tip of a beam
I'= moment of inertia c;f cross-sectional area about the neutral axis (Blevins, 1987).
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Example 1.5.2

Consider an airplane wing with a fuel pod mounted at its tip as illustrated in Figure 1.25.
The pod has a mass of 10 kg when it is empty and 1000 kg when it is full, Calculate the
change in the natural frequency of vibration of the wing, modeled as in Figure 1.25, as
the airplane uses up the fuelin the wing pod. The estimated physical parameters of the
beamare I = 52 % 10°m*, E = 69 x 107 N/m%and/ = 2m.

EI EJ X0)
—T

x(1)

Vertical wing vibration

Figure 1.25 Simple vibration model of an airplane wing with a fuel pod mounted at
its extremity.

Solution The natural frequency of the vibration of the wing modeled as a simple mass-
less beam with a tip mass is given by equation (1.68). The natural frequency when the

fuel pod is full is

381 [(3)(69 x 10°)(5:2 X 107%)
= 2B o AT e S = 11.67ad
Ol =\ T 1000(2)° ad/s
which is about 1.8 Hz (1.8 cycles per second). The natural frequency for the wing when
the fuel pod is empty becomes

e [3EI (3)(6.9 X 10°)(5.2 X 107) _
e R 10(2)°

or 18.5 Hz Hence the natural frequency of the airplane wing changes by a factor of 10
(i.e., becomes 10 times larger) when the fuel pod is empty. Such a drastic change may
cause changes in handling and performance characteristics of the aircraft.

O

115 rad/s

If the spring of Figure 1.24 is coiled in a plane as illustrated in Figure 1.26, the
stiffness of the spring is greatly affected and becomes

k = ? (1.69)

Several other spring arrangements and their associated stiffness values are
listed in Table 1.3. Texts on solid mechanics and strength of materials should be

consulted for further details,

Sec. 1.5

Stiffness

I = total length of spring
E = elastic modulus of spring

TABLE 1.3 SAMPLE SPRING CONSTANTS
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o ulus ¢ ) Figure 1.26  Stiffness associated with
= moment of inertia of cross-sectional arca  a coiled spring,.

Axial stiffness of a rod of length [, cross-sectional area A, and Kk = L
modulus E , I
Torsional stiffness of a rod of length /, shear modulus G, and torsion &k = %
constant J, depending on the cross section (s for circle of radius r and :
0.1406a" for a square of side a)
Ben.ding stiffness of a cantilevered beam of length /, modulus E, cross- &k = 2B
sectional moment of inertia / P
Axial stiffness of a tapered bar of length /, modulus E, and end diame- & = m
ters dy and d, A
Torsional stiffness on a hollow uniform shaft of shear modulus G, k& = ﬁG((@; (@
length /, inside diameter d,, and outside diameter d, ' 32
Transverlse st'iffness of a pinned-pinned beam of modulus E, area mo- & = B
ment of inertia 7, and length / for a load applied at point a from its end a(l - a)’
Transverse stiffness of a clamped-clamped beam of modulus E, area &k = 1081

) P

moment of inertia /, and length / for a load applied at its center

Example 153

{ﬂ\s anothel: example of vibration involving fluids, consider the rolling vibration of a ship
in water. Figure 1.27 illustrates a schematic of a ship rolling in water. Compute the nat-
ural frequency of the ship as it rolls back and forth about the axis through M.
) In the figure, G denotes the center of gravity, B denotes the center of buoyancy,
M is the point of intersection of the buoyant force before and after the roll (called the;
‘melacenle_r), and / is the length of GM. The perpendicular line from the center of grav-
g}y to t}u; :m;. ;1' a;tion of the buoyant force is marked by the point Z. Here W denotes
e weight of the ship,/ denotes the e shi is
Siam ﬂﬂ‘gla " %:rmn. s the mass moment of the ship about the roll axis, and 6(r)
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Centerline of

ship

Water level

! W = buoyant force

G: center of gravity
M:metacenter
B: center of buoyance

Figure 1.27 Dynamics of a
ship in rolling water.

Solution Summing moments about M yields:
Ji(t) = -WGZ = ~Whsin8(t)
Again for small enough values of 8, this nonlinear eq uation can be approximated by

Ji(r) + Whe(t) =0

Thus the natural frequency of the system is

_
w, = J

Sec. 1.5 Stiffness -

All of the spring types mentioned are represented schematically as indicated in
Figure 1.2. If more than one spring is present in a given device, the resulting stiffness
of the combined spring can be calculated by two simple rules, as given in Figure 1.28.
These rules can be derived by considering the equivalent forces in the system.

Springs in series
ky ks

— NN —e—"AAN—8 P 1

a b ¢ = ky + 1k,

Springs in parallel

ky
Kap =y + ky Figure 1.28 Rules for calculating the
a b equivalent stiffnesses for parallel and
ka series connections of springs.

Example 1.5.4

Consider the spring-mass arrangement of Figure 1.29(a) and calculate the natural fre-
quency of the system.

Solution To find the equivalent single stiffness representation of the five-spring system
given in Figure 1.29(a), the two simple rules of Figure 1.28 are applied. First, the paral-
lel arrangement of k; and k; is replaced by the single spring, as indicated at the top of
Figure 1.29(b). Next, the series arrangement of k; and &, is replaced with a single spring

of stiffness

__r
1/ks + 1/k,

Z

k] + k;_ k
- — — T
- 1 Y
ks T+ 1k, ks+ G T,
(a) (b © @

Figure 1.29 Reduction of a five-spring one-mass system to an equivalent single-spring-mass

system. :
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as indicated in the bottom left side of Figure 1.29(b). These two Rara“el springs on ltglle
bottom of Figure 1.29(b) are next combined using the parallel spring formula to yield a
single spring of stiffness i

ks + 1Ky

as indicated in Figure 1.29(c). The final step is to realize that the spring acting at th‘e tf)p
of Figure 1.29(c) and that at the bottom both attach the mass t{‘ll ground and hence act
in parallel. These two springs then combine to yield the single stiffness

k

1
= k]+ k2+k5+im<F_]/k4
ksks (ky + by + ks)(ka + ky) + sk

=kl+k1+ks+‘g+k4—————k3_+k4

as indicated symbolically in Figure 1.29(d). Hence the natural frequency of this system is

e
Tks + Kok + kesks + Kk + ok + ksky + Kok,
. mlks + ki)

Note that even though the system of Figure 1.29 contains five spri'ngs, it_ consists of onI{y
one mass moving in only one (rectilinear) direction and hence is a single-degree-ol-

freedom system. o

Springs are usually manufactured in only ccrtai.n increments of s‘;fégess v;llg:)s
depending on such things as the number of turns, 'matcrml,and soon (rec;ar lggsct. the.
Because mass production (and large sales? brings d.nwn the price ()h a péo . ni’n °
designer is often faced with a limited choice of spring consta:nts when ﬂs;gw ﬁle
system. It may thus be cheaper to use scvcral"‘off—t%lle—sht?lf’ springs %?fcf:r a‘; e
stiffness value necessary than to order alspecuill Spl:lng.WIth specific s ]; nfé.used
rules of combining parallel and series springs given in Figure 1.28 can then
to obtain the desired, or acceptable, stiffness and natural frequency.

Example 1.5.5 . { .
Consider the system of Figure 1.29(a) with ks = 0. Compare the snﬁlness and :ezlueja (]Y
of a 10-kg mass connected to ground, first by two para‘a.lel spr}ngs ky = ks = 0,
k., = 1000 N/m, and &, = 3000 N/m), then by two series springs ky =k, =0,

Y= 1
ks = 1000 N/m, and k, = 3000 N/m).
i i é J 1 so that ky = ks =0,
First consider the case of two parallel springs so ! _
:olgql(g(l]() N;m and k, = 3000 N/m. Then the equivalent stillness is given by Figure 1.28
1= s
to be the simple sum or

keq = 1000 N/m + 3000 N/m = 4000 N/m

and the corresponding frequency is

(4000 N/m
e RPN d
mpnml]el - 10 kg 20 ra /S

Sec. 1.6 Measurement
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In the case of a series connection (k, = k, = 0), the two springs (ks = 1000 N/m,
k, = 3000 N/m) combine according to Figure 1.28 to yield

- 1 _ 3000 _ 3000 _
by = 1/1000 + 1/3000 3 +1 4 750 N/m

The corresponding natural frequency becomes

[750 N/m
Ogeries = lo-k;-_m = 8.66 rad/s

Note that using two identical sets of springs connected to the same mass in the two dif-
ferent ways produces drastically different equivalent stiffness and resulting frequency.
A series connection decreases the equivalent stiffness, while a parallel connection in-
creases the equivalent stiffness. This is useful in designing systems,

O

Example 1.5.5 illustrates that fixed values of spring constants can be used in var-
ious combinations to produce a desired value of stiffness and corresponding frequency.
It is interesting to note that an identical set of physical devices can be used to create
a system with drastically different frequencies simply by changing the physical arrange-
ment of the components. This is similar to the choice of resistors in an electric circuit.
The formulas of this section are intended to be aids in designing vibration systems.

In addition to understanding the effect of stiffness on the dynamics—that is, on
the natural frequency—it is important not to forget static analysis when using springs.
In particular, the static deflection of each spring system needs to be checked to make

sure that the dynamic analysis is correctly interpreted. Recall from the discussion of
Figure 1.15 that the static deflection has the value

mg
A=—"=
k
where m is the mass supported by a spring of stiffness k in a gravitational field pro-
viding acceleration of gravity g. Static deflection is often ignored in introductory
treatments but is used extensively in spring design and is essential in nonlinear analy-
sis. Static deflection is denoted by a variety of symbols. The symbols 8, A, 8, and x;

are all used in vibration publications to denote the deflection of a spring caused by
the weight of the mass attached to it.

1.6 MEASUREMENT

Measurements associated with vibration are used for several purposes. First, the quan-
tities required to analyze the vibrating motion of a system all require measurement.
The mathematical models proposed in previous sections all require knowledge of
the mass, damping, and stiffness coefficients of the device under study. These coeffi-
cients can be mea%ured in a variety of ways, as discussed in this section. Vibration
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Suspension wires
of length

Disk of known moment Jy,

mass mig, and radius rg Figure 1.30 Trifilar suspension system

for measuring the moment of inertia of
irregularly shaped objects.

measurements are also used to verify and improve analytical models, This is discussed
in some detail in Chapter 7. Other uses of vibration testing techniques include relia-
bility and durability studies, searching for damage, and testing for acceptability in
terms of vibration parameters. These topics are also discussed briefly in Chapter 7.

In many cases, the mass of an object or device is simply determined by using a
scale. In fact, mass is a relatively easy quantity to measure. However, the mass moment
of inertia may require a dynamic measurement. A method of measuring the mass
moment of inertia of an irregularly shaped object is to place the object on the plat-
form of the apparatus of Figure 1.30 and measure the period of oscillation of the sys-
tem, 7. By using the methods of Section 1.4, it can be shown that the moment of
inertia of an object, J (about a vertical axis), placed on the disk of Figure 1.30 with
its mass center aligned vertically with that of the disk, is given by

gT%r(my + m)
4wl
Here m is the mass of the part being measured, m, is the mass of the disk, r, the ra-
dius of the disk, / the length of the wires, J, the moment of inertia of the disk, and g
the acceleration due to gravity.

The stiffness of a simple spring system can be measured as suggested in Sec-
tion 1.1. The elastic modulus, E, of an object can be measured in a similar fashion by
performing a tensile test (see, e.g., Shames, 1989). In this method, a tensile test machine
is employed that uses strain gages (discussed in Chapter 7) to measure the strain, €,
in the test specimen as well as the stress, o, both in the axial direction of the specimen.
This produces a curve such as the one shown in Figure 1.31. The slope of the curve
in the linear region defines the Young’s modulus, or elastic modulus, for the test
material. The relationship that the extension is proportional to the force is known as
Hooke’s law.

The elastic modulus can also be measured by using some of the formulas given
in Section 1.5 and measurement of the vibratory response of a structure or part. For
instance, consider the cantilevered arrangement of Figure 1.24. If the mass at the tip

- (1.70)
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Stress

Figure 1.31  Stress-strain curve of a test
. —™ € specimen for determining the elastic
Strain modulus.

is given a small deflection, it will oscillate with frequency w, = Vi /E. If w,, is mea-
surejd, the modulus can be determined from equation (1.68), as illustrated in the fol-
lowing example,

Example 1.6.1

Consider a steel beam configuration as shawn in Figure 1.24. The beam has a length
{=1m and. mcl)mcnt of inertia I = 107 m", with a mass m = 6 kg attached to the tip.
If_ the mass Is given a small initial deflection in the transverse direction and oscillates
with a period of T = 0.62 5, calculate the elastic modulus of steel.

Solution  Since 7 = 27/w,, equation (1.68) yields

[3
T = 2mq [
™ 3E1

Solving for E yields
"_1—11'2.!?1.‘3 41’!‘2(6 kg){l m)3

g ST

PANCEH 5 G
37 3(0.62 S)Z(In—y m.;) 205 x 10° N/m

(]

.'Fhal period 7', and hence the frequency w,,, can be measured with a stopwatch
for \Clbratlons that are large enough and last long enough to see. However many vi-
braltmns of ir;lt_erest h(;wc very small amplitudes and happen very quickly. I-ience sev-
eral very sophisticated devices for measurine time
e b o g e Ing time and frequency have been developed

The damping coefficient or, alternatively, the damping ratio is the most diffi-
cult quantity to determine, Both mass and stiffness can be determined by static
tests; however, damping requires a dynamic test to measure. A record of the dis-
Placemcnt response of an underdamped system can be used to determine the damp-
ing ratio. One approach is to note that the decay envelope, denoted by the dashed
line in Figure 1.32, for an underdamped system is Ae %', The measured points
x(0), x(t,), x(r,), x(r;), and 5o on can then be curve fit to A, Ae @, gt Ag-loats
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Displacement (mm)

1

0.5 — “\‘n
/[\ -ﬁ{;}‘ ST Time (s)
—-0.5 - ./
‘ Figure 1.32  Underdamped response
used to measure damping.

and so on. This will yield a value for the coefficient Lw,. If m and k are known, ¢ and

be determined from Lw,. -
‘ canThis approach also lead; to the concept of logarithmic decrement, denoted by

3 and defined by

(:E}T) (1.71)

=In
%

where T is the period of oscillation. Substitution of the analytical form of the under-
damped response given by equation (1.36) yields

Ae ot sin(wdt + ¢) (1.72)

e RN
3 =In Aptoal+T) sin(w gt + o T+ d))

Since w, I = 2, the denominator becomes ¢4+ sin (w,t + ¢),and the expression
for the decrement reduces to
5 = Inet” = {o,T (1.73)

The period T in this case is the damped period (27/w,) so that
Ll (1.74)

2w
§=tw,——F— =
g"w”vl_gl \"17;.2
Solving this expression for { yields

Pt (1.75)
Vin® + 8
which determines the damping ratio given the value of the‘logarithmic decrement.
Thus if the value of x(¢) is measured off the plot of Figure 1.32 at any two suc{-i
cessive peaks, say x(h) and x(t,), equation (1.71) can l?e used to pr(?duce a measure
value of 8, and equation (1.75) can be used to determine the damping ratio. The f:j)r;;
mula for the damping ratio, equations (1.29) and (1.30), and knowledge of m an
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subsequently yield the value of the damping coefficient ¢. Note that peak measure-
ments can be used over any integer multiple of the period (see Problem 1.75) to
increase the accuracy over measurements taken at adjacent peaks.

The computation in Problem 1.75 yields

1 x(1)
8= ;[n (x(r + HT))

where n is any integer number of successive (positive) peaks. While this does tend to
increase the accuracy of computing 3, the majority of damping measurements per-
formed today are based on modal analysis methods, as discussed in Chapter 7.

Example 1.6.2

The free response of the system of Figure 1.10 with a mass of 2 kg is recorded to be of
the form given in Figure 1.32, A static deflection test is performed and the stiffness is de-
termined to be 1.5 X 10° N/m. The displacements at 1, and r, are measured to be 9 and
1 mm, respectively. Calculate the damping coefficient.

Solution From the definition of the logarithmic decrement

5= ln[:gj] =In ﬁ%} = 21972

From equation (1.75),

21972

g =——— " =033 or 33%
Viag? + 219722

Also,
¢y = 2Vkm = 2V/(15 x 10° N/m)(2 kg) = 1.095 X 102 kg/s
and from equation (1.30) the damping coefficient becomes

¢ = c, L = (1.095 X 102)(0.33) = 36.15kg/s

Example 1.6.3

Mass and stiffness are usually measured in a straightforward manner as suggested in
Section 1.3. However, there are certain circumstances that preclude using these simple
methods. In these cases a measurement of the frequency of oscillation both before and
after a known amount of mass is added can be used to determine the mass and stiffness
of the original system. Suppose then that the frequency of the system in Figure 1.33(a)
is measured to be 2 rad/s and the frequency of Figure 1.33(b) with an added mass of 1 kg
is known to be 1 rad/s. Calculate m and k.

Solution From the definition of natural frequency

k k
m;=2= E and muzlz E""T
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wy = 1 rad/s

my=1kg

i

Figure 133 Using added mass and
measured frequencies 1o detertnine m

(a) (b) and k.

Solving for m and k yields

dm =k and m+1l=k
or

4
m =%kg and k =§N/m

This formulation can also be used to determine changes in mass of a system. As
an example, the frequency of oscillation of a hospital patiell'lt in bed can be uset_i to Tom
itor the change in the patient’s weight (mass) without having to move the patient from
the bed. In this case the mass my is considered to be the change in mass of the original
system. If the original mass and frequency are known, measuremegt. of the freqn_xency Wy
can be used to determine the change in mass m;. Given that Ihe.orlgmal weight is 120 Ib,
the original frequency is 100.4 Hz, and the &equency_r of the patient-bed system changes
to 100 Hz, determine the change in the patient’s weight.

From the two frequency relations

wim =k

and
wi(m + my) =k

Thus, wlm = wi(m + my). Solving for the change in mass m, yiclds

2
_ (g
mo—mmé

Multiplying by g and converting the frequency to hertz yields

Sec. 1.7

Design Considerations 55

or

100.4 Hz \?
W, = 120 lb[(m) _ 1}
= 0961b

Since the frequency decreased, the patient gained almost a pound. An increase in
frequency would indicate a loss of weight.
a

Measurement of m, ¢, k, w,, and { is used to verify the mathematical model of
asystem and for a variety of other reasons. Measurement of vibrating systems forms
an important aspect of the activity in industry related to vibration technology. Chap-
ter 7 is specifically devoted to measurement, and comments on vibration measure-
ments are mentioned throughout the remaining chapters.

1.7 DESIGN CONSIDERATIONS

Design in vibration refers to adjusting the physical parameters of a device to cause
its vibration response to meet a specified shape or performance criteria. For in-
stance, consider the response of the single-degree-of-freedom system of Figure 1.10.
The shape of the response is somewhat determined by the value of the damping
ratio in the sense that the response is either overdamped, underdamped, or critically
damped ({ > 1, { < 1, { = 1, respectively). The damping ratio in turn depends on
the values of m, ¢, and k. A designer may choose these values to produce the desired
response. ‘

Section 1.5 on stiffness considerations is actually an introduction to design as
well. The formulas given there for stiffness in terms of modulus and geometric di-
mensions can be used to design a system that has a given natural frequency. Exam-
ple 1.5.2 points out one of the important problems in design, that often the properties
that we are interested in designing for (frequency in this case) are very sensitive to
operational changes. In Example 1.5.2, the frequency changes a great deal as the
airplane uses up fuel.

Another important issue in design often focuses on using devices that are al-
ready available. For example, the rules given in Figure 1.28 are design rules for pro-
ducing a desired value of spring constant from a set of “available” springs by placing
them in certain combinations, s illustrated in Example 1.5.5. Often design work in
engincering involves using available products to produce configurations (or designs)
that suit your particular application. In the case of spring stiffness, springs are usually
mass produced, and hence inexpensive, in only certain discrete values of stiffness.
The formulas given for parallel and series connections of springs are then used to
produce the desired stiffness. If cost is not a restriction, then formulas such as given in
Table 1.3 may be used to design a single spring to fit the stated stiffness requirements.
Of course, designing a spring-mass system to have a desired natural frequency may
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not produce a system with an acceptable static deflection. Thus, the design process
becomes complicated. Design is one of the most active and exciting disciplines in
engineering because it often involves compromise and choice with many acceptable
solutions.

Unfortunately, the values of m1, ¢, and k have other constraints. In particular, the
size and material of which the device is made determines these parameters. Hence
the design procedure becomes a compromise. For example, for geometric reasons,
the mass of a device may be limited to be between 2 and 3 kg, and for static displace-
ment conditions. the stiffness may be required to be greater than 200 N/m. In this case,
the natural frequency must be in the interval

816 rad/s = w, = 10rad/s (1.76)

This severely limits the design of the vibration response, as illustrated in the follow-
ing example.

Example 1.7.1

Consider the system of Figure 1.10 with mass and stiffness properties as summarized by
inequality (1.76). Suppose that the system is subject to an initial velocity that is always
less than 300 mm/s, and to an initial displacement of zero (i.e.,xp = 0, = 300 mm,/s).
For this range of mass and stiffness, choose a value of the damping coefficient such that
the amplitude of vibration is always less than 25 mm.

Solution This is a design-oriented example, and hence, as typical of design calcula-
tions, there is not a nice, clean formula to follow. Rather, the solution must be obtained
using theory and parameter studies. First, note that for zero initial displacement, the
response may be written from equation (1.38) as

v ;

x(t) = —2 gt sin(wyt)

Wy
Also note that the amplitude of this periodic function is

)

—e
g

Ll

Thus, for small w, the amplitude is larger than for larger w,. Hence for the range of fre-
quencies of interest, it appears that the worst case (largest amplitude) will occur for the
smallest value of the frequency (w, = 8.16 rad/s). Also, the amplitude increases with v
so that using v, = 300 mm/s will ensure that amplitude is a large as possible. Now, v, and
w, are fixed, so it remains to investigate how the maximum value of x(t) varies as the
damping ratio is varied. One approach is to compute the amplitude of the response at
the first peak. From Figure 1.11 the largest amplitude occurs at the first time the deriv-
ative of x(¢) is zero, Taking the derivative of x(¢) and setting it equal to zero yields the
expression for the time to the first peak:

wge o cos(wyr) — Lw,e v sin{wyr) = 0
Solving this for f and denoting this value of time by T,, yields

_ 72
y *u]}— tan™ (&) = LS tan™ (\/1 ¢ )

d Lw, Wy ‘:
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The value of the amplitude of the first (and largest) peak is calculated by substituting
the value of T,, into x(r), resulting in

(vig -
A0 = 1) = — 2 = o ars(LE))
I‘J]"\/ = é C

Simplifying yields

L[ Vi-g
A) = 2 A )
n
For fixed initial velocity (the largest possible) and frequency (the lowest possible), this
value of A,,({) determines the largest value that the highest peak will have as ¢ vz;rir:s
The exact valqe of { that will keep this peak, and hence the response, at or below 25 mm‘
can be determined by numerically solving A ,,(£) = 0.025 (m) for a value of £. This yield;
{ = 0.281. Using the upper limit of the mass values (m = 3 kg) then yields the value of
the required damping coefficient:

¢ = 2mw,{ = 2(3)(8.16)(0.281) = 14.15kg/s

_For thisdvaluc of the damping the response is never larger than 25 mm. Note that if there
is no damping, the same initial conditions produce a response of ampli

s tud
A = ypy/w, = 37 mm. ’ A

O

‘ As a1l10ther {?xample of design, consider the problem of choosing a spring that
will result in a spring-mass system having a desired or specified frequency. The for-
mulas of Section 1.5 provide a means of designing a spring to have a specified stiff-

ness in terms of the properties of the spring material (modulus) and its geometry.
The following example illustrates this.

Example 1.7.2

Consid.er designing a helical spring such that when attached to a 10-kg mass, the result-
Ing spring-mass system has a natural frequency of 10 rad/s (about 1.6 Hz).

Sc.lfuliol'l From the definition of the natural frequency, the spring is required to have a
stiffness of

k = wim = (10)}(10) = 10° N/m
The stiffnn?ss of a helical spring is given by equation (1.67) to be

G dd 4
AR or 6.4 x 10* = %
This expl_‘cssion provides the starting point for a design. The choices available are the type
of r‘natenal to be used (hence various values of 7); the diameter of the material, d; the
radius of the coils, R; and the number of turns, . The choices of (G and d are, of c‘01.,1r5c
res‘trilctcd by available materials, » is restricted to be an integer, and R mal,y have re-,
strictions dictated by the size requirements of the device. Here it is assumed that steel
of 1-cm diame;ter is available, The shear modulus of steel is about

G = 8273 X 10" N/m?

k=10°N/m =
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so that the stiffness formula becomes

(8273 x 10" N/m?)(107% m)’
6.4 % 10'N/m = — .
’ nR’?

or
nR? =1292 X 1072

If the coil radius is chosen to be 10 ¢m, this yields the fact that the number of turns should be

129 X 1072 m’
ST

=1290r13

Thus, if 13 turns of 1-cm-diameter steel are coiled at a radius of 10 cm, the resulting
spring will have the desired stiffness and the 10-kg mass will oscillate at approximately
10 rad/s.

miy

In Example 1.7.2, several variables were chosen to produce a desired design. In
each case the design variables (such as d, R, etc.) are subject to constraints. Such con-
straints are considered formally in Chapter 5. Other aspects of vibration design are
presented throughout the text as appropriate. There are no set rules to follow in de-
sign work. However, some organized approaches to design arc presented in C'hapter 5.
The following example illustrates another difficulty in design, by examining what
happens when operating conditions are changed after the design is over.

Example 1.7.3
As a last example, consider modeling the vertical suspension system of a small sports car,
as a single-degree-of-freedom system of the form
mi+cex+kx=0

where m is the mass of the automobile and ¢ and k are the equivalent damping and stiff-
ness of the four-shock-absorber—spring systems. The car deflects the suspension system
under its own weight 0.05 m. The suspension is chosen (designed) to be eritically damped.
If the car has a mass of 1361 kg (mass of a Porsche Boxster), calculate the equivalent damp-
ing and stiffness coefficients of the suspension system. If two passengers, a full gas ta{)k,
and luggage totaling 200 kg are in the car, how does this affect the effective damping ratio?

Solution The mass is 1361 kg and the natural frequency is
= \/I
“n ™\ 1361

k= 1361 w}

so that

At rest the car’s springs are compressed an amount A, called the static deflection, by the
weight of the car. Hence, from a force balance at static equilibrium, mg = kA, so that
mg

A
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(kN (g ”17(9.8)“2
w"_(m) #(A) =003 = 14rad/s

The stiffness of the suspension system is thus
k = 1361(14)? = 2.668 X 10°N/m
For critical damping { = 1 or ¢ = ¢,, and equation (1.30) becomes
¢ = 2maw, = 2(1361)(14) = 3.81 x 10 kg/s

Now if the passengers and luggage are added to the car, the mass increases to
1361 + 290 = 1651 kg. Since the stiffness and damping coefficient remain the same, the
new static deflection becomes

mg 1651(9.8)

Ams—m = ——o
k 2.668 X 10°

and

= (0,06 m

The new [requency becomes

w B [ I8 o
w.,—\/:— 0.06 12.7 rad/s

From equations (1.29) and (1.30), the damping ratio becomes

§_£_3-81 % 104 3.81 x 10*
Cor 2niw, 2(1651)(12.7)

=09

Thus the car with passengers, fuel, and luggage is no longer critically damped and will
exhibit some oscillatory motion in the vertical direction,

O

Note that this illustrates a difficulty in design problems, in the sense that the
car cannot be exactly critically damped for all passenger situations. In this case, if
critical damping is desirable, it really cannot be achieved. Designs that change dra-
matically when one parameter changes a small amount are said not to be robust, This
is discussed in greater detail in Chapter 5.

1.8 STABILITY

In the preceding sections, the physical parameters m, ¢, and k are all considered to be
positive in equation (1.25). This allows the treatment of the solutions of equation (1.25)
to be classified into three groups: overdamped, underdamped, or critically damped.
The case with ¢ = 0 provides a fourth class, called undamped. These four solutions
are all well behaved'in the sense that they do not grow with time and their amplitudes
are finite. There are many situations, however, in which the coefficients are not
positive, and in these cases the motion is not well behaved. This situation refers to the
stability of solutioins of a system,
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Recalling that the solution of the undamped case (¢ = 0) is of the form
Asin(w,f + &), it is easy to see that the undamped response is bounded. That is, if
|x(t)| denotes the absolute value of x, then

t)| = Alsin(w,t + ¢)| = 4 = mi wlxl + v} (1.77)
n
for every value of r. Thus [x(¢)| is always less than some finite number for all time
and for all finite choices of initial conditions. In this case the response is well be-
haved and said to be stable (sometimes called marginally stable). If, on the other
hand, the value of k in equation (1.2) is negative and m is positive, the solutions are
of the form

x(t) = Asinhw,t + Bcoshw,f (1.78)

which increases without bound as ¢ does. In this case |x(¢)| no longer remains finite
and such solutions are called divergent or unstable. Figure 1.34 illustrates a stable re-
sponse and Figure 1.35 illustrates an unstable, or divergent, response.

Consider the response of the damped system of equation (1.25) with positive co-
efficients. As illustrated in Figures 1.11, 1,12, 1.13, and 1.14, it is clear that x(¢) ap-
proaches zero as t becomes large because of the exponential-decay terms. Such
solutions are called asymptotically stable. Again, if ¢ or k is negative (with m positive),

Displacement (mm)
1.0

JAWANA
SRVATAYA

Figure 1.34 Example of a stable response.

— Time (s)

Displacement (mm)

Figure 1.35 Example of an unstable, or
Time (s)  divergent, response.
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Displacement (mm)

Figure 1.36  Example of flutter instability.

the motion grows without bound and becomes unstable as in the undamped case. In
the damped case, however, the motion may be unstable in one of two ways. Similar
to overdamped solutions and underdamped solutions, the motion may grow without
bound and not oscillate, or it may grow without bound and oscillate. The nonoscilla-
tory case is called divergent instability and the oscillatory case is called flutter insta-
bility, or sometimes just flutter. Flutter instability is sketched in Figure 1.36. The trend
of growing without bound for large ¢ continues in Figures 1.35 and 1.36, even though
the figure stops. These types of instability occur in a variety of situations, often called
self-excited vibrations, and require some source of energy. The following example
illustrates such instabilities,

Example 1.8.1

Consider the inverted pendulum connected to two equal springs, shown in Figure 1.37.
Assume that the springs are undeflected when in the vertical position and that
the mass m of the ball at the end of the pendulum rod is substantially larger than the mass
of the rod itself, so that the rod is considered to be massless. If the rod is of length [ and
the springs are attached at the point //2, the equation of motion becomes
g (M2 . A o
mi* + b sin ﬂ) cosB — mglsing = 0 (1.79)

This is obtained by summing moments about the point of attachment of the pendulum
to ground (hence the reaction force at the pin does not enter into the equation). For val-
ues of 8 less than about /20, sin @ and cos 8 can be approximated by sin® = 6 and
cos® = 1. Applying this approximation to equation (1.79) yields

2
mP + %B — mglh =0

which upon rearranging becomes

2mi6(1) + (kI — 2mg)o(t) =0
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P~

Figure 1.37 Inverted pendulum oscillator and its free-body diagram. Here f, is the total reaction
force at the pin, and the pendulum is of length /.

where 8 is now restricted to be small (smaller than /20). If k, [, and m are all such that
the coefficient of 8, called the effective stiffness, is negative, that is, if

kl —2mg <0

the pendulum motion will be unstable by divergence, as illustrated in Figure 1.35.
O

Example 1.8.2
The vibration of an aircraft wing can be crudely modeled as

mi + cx + kx = yx&

where m, ¢, and k are the mass, damping, and stiffness values of the wing, respectively,
modeled as a single-degree-of-freedom system, and where . is an approximate model
of the acrodynamic forces on the wing (y > 0 for high speed). Rearranging this
expression yields

mi+(c—y)x+kx=0

If v and ¢ are such that ¢ — y > 0, the system is asymptotically stable. However, if v is
such that ¢ — v < O,then { = (¢ — v)/2mw, < 0 and the solutions are of the form

x(t) = Ae ™ sin(w,r + )

where —{w,t > 0for all ¢ > 0.Such solutions increase exponentially with time, as indi-

cated in Figure 1.36. This is an example of flutter instability and self-excited oscillation.
O

This brief introduction to stability applies to systems that can be treated as linear
and homogenous. More complex definitions of stability are required for forced systems
and for nonlinear systems. The notions of stability can be thought of in terms of chang-
ing energy: stable systems having constant energy, unstable systems having increasing
energy and asymptotically stable systems having decreasing energy. Stability can also
be thought of in terms of initial conditions and this is discussed in Section 1.10 where
a brief introduction to nonlinear vibrations is given. An essential difference between
linear and nonlinear systems lies in their respective stability properties.
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1.9 NUMERICAL SIMULATION OF THE TIME RESPONSE

So far most of the vibration problems examined have all been cast as linear differen-
tial equations that have solutions that can be determined analytically. These solu-
tions are often plotted versus time in order to visualize the physical vibration and
obtain an idea of the nature of the response. However, there are many more complex
and nonlinear systems that are either difficult or impossible to solve analytically (i.e.,
that do not have closed form solutions for the displacement as a function of time). The
nonlinear pendulum equation given in Example 1.1.1 is “linearized” by making the ap-
proximation sin(8) = 6 to provide a system which is simple to solve (having the same
analytical form as a linear spring-mass system). The approximation made to linearize
the pendulum equation is only valid for certain, relatively small initial conditions.
The approximation of sin(f) = 6 requires that the initial displacement and velocity
are such that 6(¢) remains less than about 10°. For cases with larger initial conditions,
a numerical integration routine may be used to compute and plot a solution of the
nonlinear equation of motion. Numerical integration can be used to compute the so-
lutions of a variety of difficult problems and is introduced here on simple problems
that have known analytical solutions so that the nature of the approximation can be
discussed. Later, numerical integration will be used for problems not having closed
form solutions.

The free response of any single-degree-of-freedom system may easily be com-
puted by simple numerical means such as Euler’s method or Runge—Kutta methods.
This section examines the use of these common numerical methods for solving vibra-
tion problems that are difficult to solve in closed form. Runge—Kutta schemes can be
found on calculators and in most common mathematical software packages such as
Mathematica, Mathcad, Maple, and MATLAB, or they may be programmed in more tra-
ditional languages, such as FORTRAN, or into spreadsheets, This section reviews the
use of numerical methods for solving differential equations and then applies these
methods to the solution of several vibration problems considered in the previous sec-
tions. These techniques are then used in the following section to analyze the response
of nonlinear systems. Appendix F introduces the use of Mathematica, Mathcad, and
MaTLAB for numerical integration and plotting, Many modern curriculums introduce
these methods and codes early in the engineering curriculum, in which case this sec-
tion can be skipped, or used as a quick review.

There are many schemes for numerically solving ordinary differential equa-
tions, such as those of vibration analysis. Two numerical solution schemes are pre-
sented here. The basis of numerical solutions of ordinary differential equations is to
essentially undo calculus by representing each derivative by a small but finite dif-
ference (recall the definition of a derivative from calculus given in Window 1.6). A
numerical solution of an ordinary differential equation is a procedure for con-
structing approximate values: x,, X, .. . , X,, of the solution x(¢) at the discrete val-
ues of time: £y < f; < t,--- < t,. Effectively, a numerical procedure produces a list
of discrete values x; = x(t;) that approximate the solution rather than a continuous
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function x(), which is the exact solution. The initial conditions of the vibration
problem of interest form the starting point. For a single-degree-of-freedom system
of the form

mi+cx+kx=0 x(0) =x  x(0) =, (1.80)

the initial values x, and v, form the first two points of the numerical solution. Let T
be the total length of time over which the solution is of interest (i.e., the equation is
to be solved for values of t between ¢ = O and t = T;).The time interval 7; — Ois then
divided up into 2 intervals (so that Ar = T/n). Then equation (1.80) is calculated at
the values of iy = 0,1, = At,t, = 2A1,....f, = nAt = Tyto produce an approximate
representation, or simulation, of the solution.

Window 1.6

The definition of a derivative of x(¢) atf = ;is
(ti41) — x(r)
At

dx(i‘,-) _ X
dt - A}—n}ni

where t;.; = t; + At and x(t) is continuous.

The concept of a numerical solution is easiest to grasp by first examining the nu-
merical solution of a first-order scalar differential equation. To this end consider the
first-order differential equation

x(t) = ax(1) x(0) = xg (1.81)
The Euler method proceeds from the definition of the slope form of the derivative
given in Window 1.6, before the limit is taken:

Xiep — X

= ax; 1.82
N : (182)
where x; denotes x(t;), x;;; denotes x(#,,), and At indicates the time interval between
t;and ;4 (i.e., At = t;.; — ;). This expression can be manipulated to yield
X = X + At(ax;) (1.83)

This formula computes the discrete value of the response x;,; from the previous value
x;, the time step At, and the system’s parameter a. This numerical solution is called
an Euler or tangent line method. The following example illustrates the use of the Euler
formula for computing a solution using VTB1_2.

Example 1.9.1
Use the Euler formula to compute the numerical solution of ¥ = —3x, x(0) = 1 for var-
jous time increments in the time interval 0 to 4, and compare the results to the exact
solution.
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TABLE 1.4 COMPARISON OF THE EXACT SOLUTION OF x = —3x, x(0) = 1
TO THE SOLUTION OBTAINED BY THE EULER METHOD WITH LARGE TIME
STEP (At = 0.5) FORTHE INTERVAL t = 0 TO 4

Elapsed Absolute
Index time Exact Euler error

0 0 1.0000 1.0000 0

1 0.5000 0.2231 —0.5000 —0.7231
2 1.0000 0.0498 0.2500 0.2002
3 1.5000 0.0111 =0.1250 —-0.1361
4 2.0000 0.0025 0.0625 0.0600
5 2.5000 0.0006 —0.0312 —-0.0318
6 3.0000 0.0001 0.0156 0.0155
1 3.5000 0.0000 —0.0078 —0.0078
8 4.0000 0,0000 0.0039 0.0039

Solution First, the exact solution can be obtained by direct integration or by assuming
a solution of the form x(r) = A¢. Substitution of this assumed form into the equation
& = —3x yields Ahe™ = =3AeM, or A = =3, so that the solution is of the form
x(r) = Ae™. Applying the initial conditions x(0) = 1 yields 4 = 1. Hence the analyt-
ical solution is simply x(r) = ™.

Next consider a numerical solution using the Euler method suggested by equa-
tion (1.83). In this case the constant ¢ = —3,s0 that x;.; = x; + At(—3x;). Suppose that a
very crude time step is taken (i.e., Ar = 0.5) and the solution is formed over the interval
from¢ = O tof = 4.Then Table 1.4 illustrates the values obtained from equation (1.83):

Xo = 1
x = xg + (0.5)(=3)(xp) = -0.5
X, =—05 — (1.5)(-0.5) = 025

forms the column marked “Euler.” The column marked “exact” is the value of e at
the indicated elapsed time for a given index. Note that while the Euler approximate gets
close to the correct final value, the value oscillates around zero while the exact value
does not. This points out a possible source of error in a numerical solution. On the other
hand, if Ar is taken to be very small, the difference between the solution obtained by
the Euler equation and the exact solution becomes hard to see, as Figure 1.38 illustrates.
Figure 1.38 is a plot of x(r) obtained via the Euler formula for Ar = 0.1. Note that it
looks very much like the exact solution e

! =1

It is important to note from the example that two sources of error are present
in computing the solution of a differential equation using a numerical scheme such
as the Euler method. The first is called the formula error, which is the difference be-
tween the exact sqlution and the solution obtained by the Euler approximation. This
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Figure 138 Plot of x(¢;) versus , for ¥ = —3x using At = 0.1 in equation (1.83) with
X(0) = 1.

is the error indicated in the last column of Table 1.4. Note thqt th]_s error af:cug'l;;l-
lates as the index increases because the value dl cach discrete time is dete;rrﬁr;e thy
the previous value, which is already in error. This can be somewhat cgntro fa Z’ gp
time step and the nature of the formula. The other source of error is the mujn d—nt
error due to machine arithmetic. This is, of course, controlled by the computer and its
architecture. Both sources of error can be significant. The sElcc‘:cs:sfu] use of a numcﬁ'—
ical method requires an awareness of both sources of errors in interpreting the results
of a computer simulation of the solution of any vibration probllem. _

The Euler method can be improved upon by decreasing the step size, as
Example 1.9.1 illustrates. Alternatively, a more ;ccurate procetl:lurc can be u.sedAt?
improve the accuracy (smaller formula error) without decrcasmgl the step size At.
Several methods exist (such as the improved Eule_r method and various Taylor lsenl;:-s
methods) and are discussed in Boyce anc(ij]ilPrlma (2004), for instance. Only the

- i is discussed and used here.

Rung’i‘htultltljn[gzﬁ;éﬁta method was developed by two different researchers frm:n
about 1895 to 1901 (C. Runge and M. W, Kutta). The Ru.ngc—Kutta -formul::s ((f?few
are several) involve a weighted average of values of the r.ight?hand side of ld e i 21;—
ential equation taken at different points between the tmle' intervals t; an fff- d
The derivations of various Runge-Kutta forr'ﬂullas are tedious but straight oxl'w&.lr
and are not presented here (see Boyce and DiPrima, 2004), One useful 1‘Ec‘eru at{llon
can be stated for the first-order problem ¥ = f(x, ¢), x(0) = x,, where f is any scalar
function (linear or nonlinear) as

xn-l—] = I" o+ E (kn} =+ Zkuz o+ 2ku3 =+ kmi) (184)

6

R o S e o

e

e
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where
ky = (x,,,r,,)
Ky = fl x, + %knl, t, + %)
k= flx, + %k,a, t, + %)

k,,q = f(x” + Atku}: Iu + Af)

The sum in parentheses in equation (1.84) represents the average of six numbers,
each of which looks like a slope at a different time; for instance, the term k,y is the
slope of the function at the “left” end of the time interval,

Such formulas can be enhanced by treating Af as a variable, At;. At each time
step ¢, the value of Ar; is adjusted based on how rapidly the solution x(¢) is changing.
If the solution is not changing very rapidly, a large value of At; is allowed without in-
creasing the formula error. On the other hand, if x(t) is changing rapidly, a small At; must
be chosen to keep the formula error small, Such step sizes can be chosen automatically
as part of the computer code for implementing the numerical solution. The Runge-Kutta
and Euler formulas just listed can be applied to vibration problems by notin g that the
most general (damped) vibration problem can be put into a first-order form.

Returning to a damped system of the form

x(0) = xy, 1(0) = i, (1.85)
the Euler method of equation (1.83) can be applied by writing this cxpression as two
first-order equations. To this end, divide equation (1.85) by the mass 7 and define two
new variables by x; = x(z) and x, = (). Then differentiate the definition of x(1),
rearrange equation (1.85), and replace x and its derivative with X and'x; to get

X1(1) = xy(7)
£5(t) = —mxy(t) — Exi(r) (1.86)
subject to the initial conditions x1(0) = xg and x,(0) = %,. The two coupled first-

order differential equations given in (1.86) may be written as a single expression by

using a vector and matrix form determined by first defining the vector 2 X 1 x(r)
and the 2 X 2 matrix A by

mi(t) + ci(t) + kx(t) = 0

0 1
Lt ] o-[] -] o

The matrix A defined in this way is called the state matrix and the vector x is called the
state vector. The position x; and the velocity x, are called the stare variables. Using these
definitions (see Appendix C), the rules of vector differentiation (element by element)
and multiplication of a matrix times a vector, equations (1.87) may be written as

E xX(1) = Ax(1) (1.88)
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subject to the initial condition x(0). Now the Euler method of numerical solution
given in equation (1.83) can be applied directly to this vector-matrix formulation of
equation (1.88), by simply calling the scalar x; the vector x; and replacing the scalar
a with the matrix A to produce

X(1;41) = x(t;) + ArAx(r;) (1.89)

This, along with the initial condition x(0), defines the Euler formula for integrating
the general single-degree-of-freedom vibration problem described in equation (1.84)
for computing and plotting the time response.

As suggested, the Euler-formula method can be greatly improved by using a
Runge-Kutta program. For instance, MATLAB has two different Runge-Kutta-based
simulations: ode23 and ode45. These are automatic step-size integration methods (i.e.,
At is chosen automatically). The Engineering Vibration Toolbox has one fixed-step
Runge-Kutta-based method, VTB1_3, for comparison. The M-file ode23 uses a simple
second- and third-order pair of formulas for medium accuracy and ode45 uses a fourth-
and fifth-order pair for greater accuracy. Each of these corresponds to a formulation
similar to that expressed in equations (1.84) with more terms and a variable step size
At. In general, the Runge—Kutta simulations are of a higher quality than those
obtained by the Euler method.

Example 1.9.2
Use the ode45 function to simulate the response to 3% + & + 2x = 0 subject to the
initial conditions x(0) = 0, ¥(0) = 0.25 over the time interval 0 = ¢ = 20.
Solution The first step is to write the equation of motion in first-order form. This yields
1"1 = X3
=3 -ixn
Next an M-file is created to store the equations of motion. An M-file is created by choos-
ing a name, say sdof.m, and entering

function xdot = sdof(t,x)

xdot = zeros(2,1);

xdot(1) = x(2);

xdot(2) = -(2/3)*x(1)-(1/3)*x(2);

Next, go to the command mode and enter

t0 = 0:tf = 20;

x0 = [0 0.25];

[t,x] = oded5('sdof',[t0 tf],x0);
plot(t,x)

The first line establishes the initial (t0) and final times (tf).The second line creates
the vector containing the initial conditions x0. The third line creates the two vectors t
containing the time history and x containing the response at each time increment in f,

Sec. 1.9 Numerical Simulation of the Time Response 69
0.3
E
s 02
23
£
2% o1
]
e
S
23
27 -0l
a
-0.2

Figure 139 Plot c.:f tl'llc displacement x(r) of the single-degree-of-freedom system of
Example 1,9.2 (solid line) and the corresponding velocity i(7) (dashed line).

by calling ode45 applied to the equations set up in sdof. The fourth line plots the vec-
tor x versus the vector 7, This is illustrated in Figure 1.39.

a

The prt?c_eding example may also be solved using Mathematica, Mathcad, and
Maple, by writing a FORTRAN routine, or by using any number of other comg;uter
code_s or programmable calculators. The followin g example illustrates the commands
required to produce the result of Example 1.9.2 using Mathematica and again using
Mathcac‘i.These approaches are then used in the next section to examine the response
of certain nonlinear vibration problems,

Example 1.9.3
Solve Example 1.9.2 using the Mathematica program.

Solution The Mathematica program uses an iterative method to compute the solution
End accepts _lhe second-order form of the equation of motion. The text after the prompt
In[11:="is typed by the user and returns the solution stored in the variable x[t]
Mathematica I}as several equal signs for different purposes. In the argument of thc:
ND{S(_)IYE function the user types in the differential equation to be solved, followed by
the mma% conditions, the name of the variable (response), and the name of ,the indepen-
dent variable followed by the interval over which the solution is sought. NDSolve
computes the solution and stores it as an interpolating function; hence the code returns
followmg the output prompt Out[1]=. The plot command requires the name of the in-
terpolating function returned by NDSolve, x[t] in this case, the independent variable,
t, and the range of values for the independent variable. ,

In[1]:=

oy b EEL /37" [E142/3) *xDt]==0,x" [0]=-0.25, X[0] =0} , x, {t,0
Plot[Eval uate[x[t]/.%]1,{t,0,20}]
Out[1]={{x->InterpolatingFunction[{{0.,20.}},<]}}
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out[2]= -Craphics-

Example 1.9.4
Solve Example 1.9.2 using the Mathcad program.

Solution The Mathcad program Uses a fixed time step Rungc—Kutta solution and rect‘uronlsi
the solution as a matrix with the first column consisting uf lllla time step, _the SECON ec
ump containing the response, and the third column containing the velocity response.

First type in the ipitial condition vector:

A [0.025]

Then type in the system in first-order form:

Y1
= 2
BCL.Y). 3= *(%‘h)'gw

Solve using Runge-Kutta:
Z = rkf‘ixed(y,o.zo,lu(!o,n)

Name the time vector from the Runge-Kutta matrix solution:

t = Z°
Name the displacement vector from the Runge-Kutta matrix solution:
X = z<1>

Name the velocity vector from the Runge-Kutta matrix solution:

dxdt 1= Z%
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Plot the solutions.

dxdt

-02 —

The use of these computational programs to simulate the response of a vibrat-
ing system is fairly straightforward. Further information on using each of these pro-
grams can be found in Appendix F or by consulting manuals or any one of numerous
books written on using these codes to solve various math and engineering problems.
You are encouraged to reproduce Example 1.9.4 and then repeat the problem for
various different values of the initial conditions and coefficients, In this way, you can
build some intuition and understanding of vibration phenomena and how to design
a system to produce a desired response. !

1.10 COULOMB FRICTION AND THE PENDULUM

In the previous sections, all of the systems considered are linear (or linearized)
and have solutions that can be obtained by analytical means. In this section two
common systems are analyzed that are nonlinear and do not have simple analyt-
ical solutions. The first is a spring—mass system with sliding friction (Coulomb
damping), and the second is the full nonlinear pendulum equation. In each case
a solution is obtained by using the numerical integration techniques introduced
in Section 1.9. The ability to compute the solution to general nonlinear systems
using these numerical techniques allows us to consider vibration under more
sophisticated effects.

Nonlinear vibration problems are much more complex than linear systems.
Their numerical solutions, however, are often fairly straightforward. Several new
phenomena result iwhcn nonlinear terms are considered. Most notably, the idea of a
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Figure 1.40  Spring-mass system sliding
on a surface with kinetic coefficient of
friction p.

single equilibrium point of a lincar system is lost. In the calff: of Coufl(:;lnb ::rl;rl'l}:g;g;
int i ilibri itions exists. In the case of the
ontintous region of equilibrium posit . ! 1SC
;ecndulum an ingfinite number of equilibrium points result.les single fact greatly
complicates the analysis, measurement, and design of VJl_)ratlpg systems. .
pA common damping mechanism occurring in machines is caused by sliding fric-

tion or dry friction and is called Coulomb damping. Coulomb damping is character-

ized by the relation
—uN >0
f=F#=4{ 0 x=0
pN X <0

where f, is the dissipation force, N is the normal force (sce any intr)o(;gctoryip:gic:
: i idi icti inetic fricti igure 1.40 1s
i i f sliding friction (or kinetic friction). Figure
text), and p. is the coefficient @ : Y
i : idi face and connected to a spring ol §
schematic of a mass m sliding on a sur and ¢ {08 Il e
icti { 5 .es the direction of motion causing a sys .
The frictional force f, always opposes . ey
icti ine 1.5 lists some measured values of the
coulomb friction to be nonlinear. Table S 8¢ . e at
i inetic fricti : iff t sliding objects. Summing forces in p
At of kinetic friction for several differen in p
((::; of Figure 1.41 in the x direction yields that (note that the mass changes direction

when the velocity passes through zero)
mx + kx = pmg for x<0

the vertical direction yields the fact Fhat the normal
here g is the acceleration due to gravi ty (not the case

(1.90)

Here the sum of the forces in
force N is just the weight, mg, W

TABLE 1.5 APPROXIMATE COEFFICIENTS OF FRICTION
FOR VARIOUS OBJECTS SLIDING TOGETHER

Material Kinetic Static
T
Metal on metal (lubricated) 0.07 0.09

Wood on wood 0.2 Ggg
Steel on steel (unlubricated) 0.3 0.
Rubber on steel 1.0 1.20
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fae— i)

F— ()

W=mg

- P
= —pmg

N
(2) (b)

Figure 1.41 Free-body diagram of the forces acting on the sliding block system of
Figure 1.40: (a) Mass moving to the left (i < 0); (b) mass moving to the right
(x > 0). From the y direction, N = ng.

if m is on an inclined plane). In a similar fashion, summing forces in part (b) of Fig-
ure 1.41 yields

mi + kx = —mg for x2=0 (1.91)

Since the sign of & determines the direction in which the opposing frictional force acts,
equations (1.90) and (1.91) can be written as the single equation

mi & wmespa(t) +hx = 0 (1.92)

where sgn(7) denotes the sigmum function, defined to have the value 1 for + > 0,
~1 for 7 < 0, and 0 for 7 = 0. This equation cannot be solved directly using
methods such as the variation of parameters or the method of undetermined
coefficients. This is because equation (1.92) is a nonlinear differential equation.
Rather, equation (1.92) can be solved by breaking the time intervals up into segments
corresponding to the changes in direction of motion (i.e., at those time intervals sep-
arated by X = 0). Alternatively, equation (1.92) can be solved numerically, as is
done in the following. Because the system’s equation of motion is linear in two
ranges, that is, equations (1.90) and (1.91) are linear, such systems are also called
bilinear.

The sliding block in Figure 1.41 requires nonzero initial conditions to set it in
motion. Suppose first that the initial velocity is zero. The motion will result only if the
initial position x; is such that the spring force kx is large enough to overcome the
static friction force pgng (kxy > png). Here p, is the coefficient of static friction,
which is generally larger than the kinetic or dynamic coefficient of friction for slid-
ing surfaces. If x; is not large enough, no motion results. The range of values of x, for
which no motion results defines the equilibrium position. If, on the other hand, the
initial velocity is nonzero, the object will move. One of the distinguishing features
of nonlinear systems is their multiple equilibrium positions, The solution of the equa-
tion of motion for the case when motion results can be obtained by considering the
following cases.
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i i “tibrium the mass is moving to the left, the friction
With x, to the right of any equilibrium . :
force is tlo thg right, and equation (1.90) holds. Equation (1.90) has a solution of the form
mg

; B
x(t) = Ajcosw,t + Bysmo,l + (1.93)

where , = Vk/mand A, and B, are constants to be determ_ined by !:hc i.mt1a‘11 con-
ditions ;{ere we have dropped the distinction between static and kinetic friction.

Applying the initial conditions yields

pmg ¢
x(0) = A+ = %o (1.94)
#(0) = ©,B; =0 (1.95)

Hence B; = 0and A; = Xo — g /k specifies the constants '!n equation (1.93). Thus
when thé mass starts from rest (at xo) and moves to the left,it moves as

pmg\ pmg 196
x(t) = (xg — )co:,m,,t += (1.96)

irst time X i iva-
This motion continues until the first ime x(t) = 0. This happens when the deri
tive of equation (1.96) is zero, or when

() = —m,,(xu -

x(f) = tarts to move to the right provided

when ¢; = m/w,, %() = 0 and the mass s =t ght
rtrrﬂllllsthe sprh:g for({c,”kx, is large enough to overcome the nlmmmum‘frmtwnal f_olicc:;:
pmg. Hence equation (1.91) now describes the motion. Solving equation (1.91) yields

”’;:g ) sinwyt; = 0 (1.97)

‘ pmg 08
x(t) = Aycosw,f + Bysina,l = (1.98)

for w/w, < t < t, where iy is the second time that X becomes ze;o.Tl}e m::t)lal c?;;-
ditions Eor equation (1.98) are calculated from the previous solution given by €q
tion (1.96) at f;:

2umg

m\ _ B pmg) S [ S L (1.99)

x("w_n) - (x" k)T T Tk e
IE ) sin = 1.100
x(::-n) = ~m,,(xo Tk )sm'rr =0 ( )

From equation (1.98) and its derivatives it follows that
SR = 1.101)
Az = Xy — _k-— Bg =0 (

The solution for the second interval of time then becomes

w ™ 2w
x(t) = (xu - gw_kmﬁ) cos oyt — = £ Zare= (1.102)

k W, W,
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Xp

Figure 1.42  Free response of a system with Coulomb friction present.

This procedure is repeated until the motion stops. The motion will stop when the ve-
locity is zero (X = () and the spring force (kx) is insufficient to overcome the maxi-
mum frictional force (umg). The response is plotted in Figure 1.42.

Several things can be noted about the free response with Coulomb friction ver-

sus the free response with viscous damping,. First, with Coulomb damping the ampli-
tude decays linearly with slope

Zpmgow,
- - 103
wk (1 )

rather than exponentially as does a viscously damped system. Second, the motion
under Coulomb friction comes to a complete stop, at a potentially different equilib-
rium position than when initially at rest, whereas a viscously damped system oscillates
around a single equilibrium, x = 0, with infinitesimally small amplitude. Finally, the
frequency of oscillation of a system with Coulomb damping is the same as the un-
damped frequency, whereas viscous damping alters the {requency of oscillation.

Example 1.10.1

The response of a mass oscillating on a surface is measured to be of the form indicated
in Figure 1.42. The initial position is measured to be 30 mm from its zero rest position,
and the final position is measured to be 3.5 mm from its zero rest position after four cy-
cles of oscillation in 1 8. Determine the coefficient of friction.

Solution First the frequency of motion is 4 Hz, or 25.13 rad/s, since four cycles were
completed in 1 5. The slope of the line of decreasing peaks is

13°T+£ = 26,5 mm/s
Therefore, from expression (1.103),

—2pmge, —2pgoe, —2
Bl BTG  Sob8 e, FUE

: W oe e,
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Solving for p yields
w(25.13 rad/s)(—26.5 mm/s)

= 0107
B =TT (22)(9.81 x 10° mm/s)
This small value for p indicates that the surface is probably very smooth or Jubricated.

O

The response of the system of equation (1 .92). can als_o be nbtamed_bﬁ the nu-
merical integration techniques of the previqus section, which is substam‘m y ?Sli
than the preceding construction of the solunc?n. For example, VIB1_5 (l.ilses a “i'eon
step Runge-Kutta method to integrate equation (1.92).lThc second-or ler f:quatl_un
of motion can be reformulated into two first-order equations somewhat like e(:lual.j i 0
(1.88) and integrated by the BEuler method u{’. equation (1 ,89}, or stan 1a23
Runge-Kutta methods may be employed as described in ;’}pPendlx E F1gdu;? : )
illustrates the response of a system subject to Coulomb friction for vavo ifferen
initial conditions using Mathcad’s fixed-time-step Runge-Kutta routine. Note 11111
particular that the system comes o rest at a different value of x; depending on the
initial conditions. Such a system has the same freguency yet could come to rest any-
where in the region bounded by the two verttc:al lines (x = &£ pmg Jk). The rlcspi;ii
will come to rest at the first time the velocity is zero and the displacement is w1

this region.

Displacement (m)

Ll

Time ($)

Figure 1.43 Free response (displacement versus time) of_a system subject to
Coulomb friction with two different initial positions (5 m, solid line; and 4.5 m,dashed
line) for zero initial velocity (m = 1000kg, . = 03, k = 5000 N/m).
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Comparing the response of a linear spring-mass system with viscous damping
(say the underdamped response of Figure 1.11) to the response of a spring-mass sys-
tem with Coulomb damping given previously, an obvious and significant difference
is the rest position. These multiple rest positions constitute a major feature of non-
linear systems: the existence of more than one equilibrium position.

The equilibrium point of a system, or set of governing equations, may be defined
best by first placing the equation of motion in state space, as was done in the previous
section for the purpose of numerical integration. A general single-degree-of-freedom
system may be written as

¥(t) + f(x(t), %(r)) =0 (1.104)

where the function f can take on any form, linear or nonlinear. For example, for a
linear spring-mass system the function f is just f(x, ) = cx(t) + kx(t), which is
a linear function of the state variables of position and velocity. For a nonlinear sys-
tem f will be some nonlinear function of the state variables. For instance, the pendu-
lum equation derived and discussed in Example 1.1.1 can be written in the form of
equation (1.104) by defining f to be f(8,8) = (g/!) sin(8), where 8 is now the dis-
placement variable.

The general state space model of equation (1.104) is written following the
procedure in the previous section by defining the two state variables x; = x(1)
and x, = x(t). Then equation (1.104) can be written as the first-order pair

(1) = x(1)
(1) = =f(x1, 1) (1.105)

This state space form of the equation is used both for numerical integration (as be-
fore for the Coulomb friction problem) as well as for formally defining an equilibrium
position by defining the state vector, x, used in equation (1.88) and a nonlinear vector
function, F, as

x(1) ]
F= 1.106
Lt G-
Equations (1.105) may now be written in the simple form
x = F(x) (1.107)

An equilibrium point of this system, denoted x,, is defined to be any value of x for
which F(x) is identically zero (called zero phase velocity). Thus the equilibrium point
is any vector of constants that satisfies the relations

F(x,) =0 (1.108)

A mechanical system is in equilibrium if its state does not change with time. Or,
stated another way, a mechanical system is in equilibrium if x, &, and ¥ are all

Zero. §
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For Coulomb friction, the equilibrium position cannot be directly deleanined
from using the signum function because of the discontinuity at zero velocity. To
compute the equilibrium position, consider equation (1.108) for the system of Fig-
ure 1.41. This yields

Solving yields the two conditions:

Xy = 0
and
f.—kx; =0
Realize that this last expression is static, so that the expression is satisfied as long as
m
g BT
k k

As discussed earlier, the friction foree is static, or in equilibrium, until the sprmgl jftorce
kx, is large enough to overcome the friction forc_e as exgressed by this inequali 3;..
This describes the condition that the velocity (x,) is zero and the position :fs
within the region defined by the force of friction. Depen_dmg‘ on tt.u: initial {:10:1l hlé
tions, the response will end up at a value of X, sumew_hcre in this region. Usually,
equilibrium values are sets of numbers, as the following example illustrates.

Example 1.10.2 . ) e
Calculate the equilibrium position for the nonlinear system definedby & + x — B°x = 0,
or in state equation form, letting x, = x as before,

X=X 0w B b Sy Ay

I (o ) I P

Solution These equations represent the vibration of a “soft spring” ar}d corresponcjl t;}
an approximation of the pendulum problem of Example 1.4.2, where sinx &~ x — x°/6.
The equations for the equilibrium position are

[l

X

x; =10
w82 ~1)=0

There are three solutions to this set of algebraic equations, corresponding to the three
equilibrium positions of the soft spring. They are

et HA
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Unstable
equilibrium
18+ Lsne=0 | Stable
it | equilibrium
k B |
x; =0,2m,4m, .. :
Xy = 0
: Xy =m, 3w, 5
1x=10
1
(a) (b) (©

Figure 1.44 (a) A pendulum consisting of a massless rod of length ¢ and tip mass m.
(b) The straight down equilibrium position. (¢) The straight up equilibrium position.

The next example considers the full nonlinear pendulum equation illustrated in
Figures 1.1 and 1.44. Physically the pendulum may swing all the way around its pivot
point and has equilibrium positions in both the straight-up and straight-down posi-
tions, as illustrated in Figure 1.44(b) and 1.44(c).

Example 1.10.3

Calculate the equilibrium positions of the pendulum of Figure 1.44 with the equation of
motion given in Example 1.1.1.

Selution  The pendulum equation in state-space form is given by

so that the vector equation F(x) = 0 yields the following equilibrium solutions:
x; = 0and x; = 0, 7, 2m, 3m, 4w, 57...

since sin (x,) is zero for any multiple of w. Note that there are an infinite number of
equilibrium positions, or vectors x,. These are all either the up position corresponding
to the odd values of  [Figure 1.44(c)], or the down position corresponding to even mul-
tiples of  [Figure 1.44(b)]. These positions form two distinct types of behavior. The re-
sponse for initial conditions near the even values of m is a stable oscillation around the
down position, just as in the linearized case, while the response to initial conditions near
even values of = moves away from the equilibrium position (called unstable) and the
value of the response increases without bound.

O

The stability of equilibrium of a nonlinear vibration problem is of major impor-
tance and is based ori the definitions given in Section 1.8. However, in the linear case
there is only one equilibrium value and every solution is either stable or unstable. In
this case the stability condition is said to be a global condition. In the nonlinear case
there is more than one equilibrium point, and the concept of stability is tied to each
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particular equilibrium point and is therefore referred to as local stability. As in the
example of the nonlinear pendulum equation, some equilibrium points are stable
and some are not. Furthermore, the stability of the response of a nonlinear system
depends on the initial conditions. In the linear case, the initial conditions have no
influence on the stability, and the system parameters and form of the equation com-
pletely determine the stability of the response. To see this, look again at the pendu-
lum of Figure 1.44, If the initial position and velocity are near the origin, the system
response will be stable and oscillate around the equilibrium point at zero. On the
other hand, if 